Update comments for the last commit
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995-2013 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30
31 /* This struct is used to pass information to routines called via
32 elf_link_hash_traverse which must return failure. */
33
34 struct elf_info_failed
35 {
36 struct bfd_link_info *info;
37 bfd_boolean failed;
38 };
39
40 /* This structure is used to pass information to
41 _bfd_elf_link_find_version_dependencies. */
42
43 struct elf_find_verdep_info
44 {
45 /* General link information. */
46 struct bfd_link_info *info;
47 /* The number of dependencies. */
48 unsigned int vers;
49 /* Whether we had a failure. */
50 bfd_boolean failed;
51 };
52
53 static bfd_boolean _bfd_elf_fix_symbol_flags
54 (struct elf_link_hash_entry *, struct elf_info_failed *);
55
56 /* Define a symbol in a dynamic linkage section. */
57
58 struct elf_link_hash_entry *
59 _bfd_elf_define_linkage_sym (bfd *abfd,
60 struct bfd_link_info *info,
61 asection *sec,
62 const char *name)
63 {
64 struct elf_link_hash_entry *h;
65 struct bfd_link_hash_entry *bh;
66 const struct elf_backend_data *bed;
67
68 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
69 if (h != NULL)
70 {
71 /* Zap symbol defined in an as-needed lib that wasn't linked.
72 This is a symptom of a larger problem: Absolute symbols
73 defined in shared libraries can't be overridden, because we
74 lose the link to the bfd which is via the symbol section. */
75 h->root.type = bfd_link_hash_new;
76 }
77
78 bh = &h->root;
79 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
80 sec, 0, NULL, FALSE,
81 get_elf_backend_data (abfd)->collect,
82 &bh))
83 return NULL;
84 h = (struct elf_link_hash_entry *) bh;
85 h->def_regular = 1;
86 h->non_elf = 0;
87 h->type = STT_OBJECT;
88 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
89 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
90
91 bed = get_elf_backend_data (abfd);
92 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
93 return h;
94 }
95
96 bfd_boolean
97 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
98 {
99 flagword flags;
100 asection *s;
101 struct elf_link_hash_entry *h;
102 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
103 struct elf_link_hash_table *htab = elf_hash_table (info);
104
105 /* This function may be called more than once. */
106 s = bfd_get_linker_section (abfd, ".got");
107 if (s != NULL)
108 return TRUE;
109
110 flags = bed->dynamic_sec_flags;
111
112 s = bfd_make_section_anyway_with_flags (abfd,
113 (bed->rela_plts_and_copies_p
114 ? ".rela.got" : ".rel.got"),
115 (bed->dynamic_sec_flags
116 | SEC_READONLY));
117 if (s == NULL
118 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
119 return FALSE;
120 htab->srelgot = s;
121
122 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
123 if (s == NULL
124 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
125 return FALSE;
126 htab->sgot = s;
127
128 if (bed->want_got_plt)
129 {
130 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
131 if (s == NULL
132 || !bfd_set_section_alignment (abfd, s,
133 bed->s->log_file_align))
134 return FALSE;
135 htab->sgotplt = s;
136 }
137
138 /* The first bit of the global offset table is the header. */
139 s->size += bed->got_header_size;
140
141 if (bed->want_got_sym)
142 {
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h = _bfd_elf_define_linkage_sym (abfd, info, s,
148 "_GLOBAL_OFFSET_TABLE_");
149 elf_hash_table (info)->hgot = h;
150 if (h == NULL)
151 return FALSE;
152 }
153
154 return TRUE;
155 }
156 \f
157 /* Create a strtab to hold the dynamic symbol names. */
158 static bfd_boolean
159 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
160 {
161 struct elf_link_hash_table *hash_table;
162
163 hash_table = elf_hash_table (info);
164 if (hash_table->dynobj == NULL)
165 hash_table->dynobj = abfd;
166
167 if (hash_table->dynstr == NULL)
168 {
169 hash_table->dynstr = _bfd_elf_strtab_init ();
170 if (hash_table->dynstr == NULL)
171 return FALSE;
172 }
173 return TRUE;
174 }
175
176 /* Create some sections which will be filled in with dynamic linking
177 information. ABFD is an input file which requires dynamic sections
178 to be created. The dynamic sections take up virtual memory space
179 when the final executable is run, so we need to create them before
180 addresses are assigned to the output sections. We work out the
181 actual contents and size of these sections later. */
182
183 bfd_boolean
184 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
185 {
186 flagword flags;
187 asection *s;
188 const struct elf_backend_data *bed;
189 struct elf_link_hash_entry *h;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
258 elf_hash_table (info)->hdynamic = h;
259 if (h == NULL)
260 return FALSE;
261
262 if (info->emit_hash)
263 {
264 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
265 flags | SEC_READONLY);
266 if (s == NULL
267 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
268 return FALSE;
269 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
270 }
271
272 if (info->emit_gnu_hash)
273 {
274 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
275 flags | SEC_READONLY);
276 if (s == NULL
277 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
278 return FALSE;
279 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
280 4 32-bit words followed by variable count of 64-bit words, then
281 variable count of 32-bit words. */
282 if (bed->s->arch_size == 64)
283 elf_section_data (s)->this_hdr.sh_entsize = 0;
284 else
285 elf_section_data (s)->this_hdr.sh_entsize = 4;
286 }
287
288 /* Let the backend create the rest of the sections. This lets the
289 backend set the right flags. The backend will normally create
290 the .got and .plt sections. */
291 if (bed->elf_backend_create_dynamic_sections == NULL
292 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
293 return FALSE;
294
295 elf_hash_table (info)->dynamic_sections_created = TRUE;
296
297 return TRUE;
298 }
299
300 /* Create dynamic sections when linking against a dynamic object. */
301
302 bfd_boolean
303 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
304 {
305 flagword flags, pltflags;
306 struct elf_link_hash_entry *h;
307 asection *s;
308 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
309 struct elf_link_hash_table *htab = elf_hash_table (info);
310
311 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
312 .rel[a].bss sections. */
313 flags = bed->dynamic_sec_flags;
314
315 pltflags = flags;
316 if (bed->plt_not_loaded)
317 /* We do not clear SEC_ALLOC here because we still want the OS to
318 allocate space for the section; it's just that there's nothing
319 to read in from the object file. */
320 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
321 else
322 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
323 if (bed->plt_readonly)
324 pltflags |= SEC_READONLY;
325
326 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
327 if (s == NULL
328 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
329 return FALSE;
330 htab->splt = s;
331
332 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
333 .plt section. */
334 if (bed->want_plt_sym)
335 {
336 h = _bfd_elf_define_linkage_sym (abfd, info, s,
337 "_PROCEDURE_LINKAGE_TABLE_");
338 elf_hash_table (info)->hplt = h;
339 if (h == NULL)
340 return FALSE;
341 }
342
343 s = bfd_make_section_anyway_with_flags (abfd,
344 (bed->rela_plts_and_copies_p
345 ? ".rela.plt" : ".rel.plt"),
346 flags | SEC_READONLY);
347 if (s == NULL
348 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349 return FALSE;
350 htab->srelplt = s;
351
352 if (! _bfd_elf_create_got_section (abfd, info))
353 return FALSE;
354
355 if (bed->want_dynbss)
356 {
357 /* The .dynbss section is a place to put symbols which are defined
358 by dynamic objects, are referenced by regular objects, and are
359 not functions. We must allocate space for them in the process
360 image and use a R_*_COPY reloc to tell the dynamic linker to
361 initialize them at run time. The linker script puts the .dynbss
362 section into the .bss section of the final image. */
363 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
364 (SEC_ALLOC | SEC_LINKER_CREATED));
365 if (s == NULL)
366 return FALSE;
367
368 /* The .rel[a].bss section holds copy relocs. This section is not
369 normally needed. We need to create it here, though, so that the
370 linker will map it to an output section. We can't just create it
371 only if we need it, because we will not know whether we need it
372 until we have seen all the input files, and the first time the
373 main linker code calls BFD after examining all the input files
374 (size_dynamic_sections) the input sections have already been
375 mapped to the output sections. If the section turns out not to
376 be needed, we can discard it later. We will never need this
377 section when generating a shared object, since they do not use
378 copy relocs. */
379 if (! info->shared)
380 {
381 s = bfd_make_section_anyway_with_flags (abfd,
382 (bed->rela_plts_and_copies_p
383 ? ".rela.bss" : ".rel.bss"),
384 flags | SEC_READONLY);
385 if (s == NULL
386 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
387 return FALSE;
388 }
389 }
390
391 return TRUE;
392 }
393 \f
394 /* Record a new dynamic symbol. We record the dynamic symbols as we
395 read the input files, since we need to have a list of all of them
396 before we can determine the final sizes of the output sections.
397 Note that we may actually call this function even though we are not
398 going to output any dynamic symbols; in some cases we know that a
399 symbol should be in the dynamic symbol table, but only if there is
400 one. */
401
402 bfd_boolean
403 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
404 struct elf_link_hash_entry *h)
405 {
406 if (h->dynindx == -1)
407 {
408 struct elf_strtab_hash *dynstr;
409 char *p;
410 const char *name;
411 bfd_size_type indx;
412
413 /* XXX: The ABI draft says the linker must turn hidden and
414 internal symbols into STB_LOCAL symbols when producing the
415 DSO. However, if ld.so honors st_other in the dynamic table,
416 this would not be necessary. */
417 switch (ELF_ST_VISIBILITY (h->other))
418 {
419 case STV_INTERNAL:
420 case STV_HIDDEN:
421 if (h->root.type != bfd_link_hash_undefined
422 && h->root.type != bfd_link_hash_undefweak)
423 {
424 h->forced_local = 1;
425 if (!elf_hash_table (info)->is_relocatable_executable)
426 return TRUE;
427 }
428
429 default:
430 break;
431 }
432
433 h->dynindx = elf_hash_table (info)->dynsymcount;
434 ++elf_hash_table (info)->dynsymcount;
435
436 dynstr = elf_hash_table (info)->dynstr;
437 if (dynstr == NULL)
438 {
439 /* Create a strtab to hold the dynamic symbol names. */
440 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
441 if (dynstr == NULL)
442 return FALSE;
443 }
444
445 /* We don't put any version information in the dynamic string
446 table. */
447 name = h->root.root.string;
448 p = strchr (name, ELF_VER_CHR);
449 if (p != NULL)
450 /* We know that the p points into writable memory. In fact,
451 there are only a few symbols that have read-only names, being
452 those like _GLOBAL_OFFSET_TABLE_ that are created specially
453 by the backends. Most symbols will have names pointing into
454 an ELF string table read from a file, or to objalloc memory. */
455 *p = 0;
456
457 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
458
459 if (p != NULL)
460 *p = ELF_VER_CHR;
461
462 if (indx == (bfd_size_type) -1)
463 return FALSE;
464 h->dynstr_index = indx;
465 }
466
467 return TRUE;
468 }
469 \f
470 /* Mark a symbol dynamic. */
471
472 static void
473 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
474 struct elf_link_hash_entry *h,
475 Elf_Internal_Sym *sym)
476 {
477 struct bfd_elf_dynamic_list *d = info->dynamic_list;
478
479 /* It may be called more than once on the same H. */
480 if(h->dynamic || info->relocatable)
481 return;
482
483 if ((info->dynamic_data
484 && (h->type == STT_OBJECT
485 || (sym != NULL
486 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
487 || (d != NULL
488 && h->root.type == bfd_link_hash_new
489 && (*d->match) (&d->head, NULL, h->root.root.string)))
490 h->dynamic = 1;
491 }
492
493 /* Record an assignment to a symbol made by a linker script. We need
494 this in case some dynamic object refers to this symbol. */
495
496 bfd_boolean
497 bfd_elf_record_link_assignment (bfd *output_bfd,
498 struct bfd_link_info *info,
499 const char *name,
500 bfd_boolean provide,
501 bfd_boolean hidden)
502 {
503 struct elf_link_hash_entry *h, *hv;
504 struct elf_link_hash_table *htab;
505 const struct elf_backend_data *bed;
506
507 if (!is_elf_hash_table (info->hash))
508 return TRUE;
509
510 htab = elf_hash_table (info);
511 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
512 if (h == NULL)
513 return provide;
514
515 switch (h->root.type)
516 {
517 case bfd_link_hash_defined:
518 case bfd_link_hash_defweak:
519 case bfd_link_hash_common:
520 break;
521 case bfd_link_hash_undefweak:
522 case bfd_link_hash_undefined:
523 /* Since we're defining the symbol, don't let it seem to have not
524 been defined. record_dynamic_symbol and size_dynamic_sections
525 may depend on this. */
526 h->root.type = bfd_link_hash_new;
527 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
528 bfd_link_repair_undef_list (&htab->root);
529 break;
530 case bfd_link_hash_new:
531 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
532 h->non_elf = 0;
533 break;
534 case bfd_link_hash_indirect:
535 /* We had a versioned symbol in a dynamic library. We make the
536 the versioned symbol point to this one. */
537 bed = get_elf_backend_data (output_bfd);
538 hv = h;
539 while (hv->root.type == bfd_link_hash_indirect
540 || hv->root.type == bfd_link_hash_warning)
541 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
542 /* We don't need to update h->root.u since linker will set them
543 later. */
544 h->root.type = bfd_link_hash_undefined;
545 hv->root.type = bfd_link_hash_indirect;
546 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
547 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
548 break;
549 case bfd_link_hash_warning:
550 abort ();
551 break;
552 }
553
554 /* If this symbol is being provided by the linker script, and it is
555 currently defined by a dynamic object, but not by a regular
556 object, then mark it as undefined so that the generic linker will
557 force the correct value. */
558 if (provide
559 && h->def_dynamic
560 && !h->def_regular)
561 h->root.type = bfd_link_hash_undefined;
562
563 /* If this symbol is not being provided by the linker script, and it is
564 currently defined by a dynamic object, but not by a regular object,
565 then clear out any version information because the symbol will not be
566 associated with the dynamic object any more. */
567 if (!provide
568 && h->def_dynamic
569 && !h->def_regular)
570 h->verinfo.verdef = NULL;
571
572 h->def_regular = 1;
573
574 if (hidden)
575 {
576 bed = get_elf_backend_data (output_bfd);
577 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* This function is called when we want to merge a new symbol with an
899 existing symbol. It handles the various cases which arise when we
900 find a definition in a dynamic object, or when there is already a
901 definition in a dynamic object. The new symbol is described by
902 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
903 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
904 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
905 of an old common symbol. We set OVERRIDE if the old symbol is
906 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
907 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
908 to change. By OK to change, we mean that we shouldn't warn if the
909 type or size does change. */
910
911 static bfd_boolean
912 _bfd_elf_merge_symbol (bfd *abfd,
913 struct bfd_link_info *info,
914 const char *name,
915 Elf_Internal_Sym *sym,
916 asection **psec,
917 bfd_vma *pvalue,
918 struct elf_link_hash_entry **sym_hash,
919 bfd **poldbfd,
920 bfd_boolean *pold_weak,
921 unsigned int *pold_alignment,
922 bfd_boolean *skip,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
926 {
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *hi;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 if (! bfd_is_und_section (sec))
944 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
945 else
946 h = ((struct elf_link_hash_entry *)
947 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
948 if (h == NULL)
949 return FALSE;
950 *sym_hash = h;
951
952 bed = get_elf_backend_data (abfd);
953
954 /* For merging, we only care about real symbols. But we need to make
955 sure that indirect symbol dynamic flags are updated. */
956 hi = h;
957 while (h->root.type == bfd_link_hash_indirect
958 || h->root.type == bfd_link_hash_warning)
959 h = (struct elf_link_hash_entry *) h->root.u.i.link;
960
961 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
962 existing symbol. */
963
964 oldbfd = NULL;
965 oldsec = NULL;
966 switch (h->root.type)
967 {
968 default:
969 break;
970
971 case bfd_link_hash_undefined:
972 case bfd_link_hash_undefweak:
973 oldbfd = h->root.u.undef.abfd;
974 break;
975
976 case bfd_link_hash_defined:
977 case bfd_link_hash_defweak:
978 oldbfd = h->root.u.def.section->owner;
979 oldsec = h->root.u.def.section;
980 break;
981
982 case bfd_link_hash_common:
983 oldbfd = h->root.u.c.p->section->owner;
984 oldsec = h->root.u.c.p->section;
985 if (pold_alignment)
986 *pold_alignment = h->root.u.c.p->alignment_power;
987 break;
988 }
989 if (poldbfd && *poldbfd == NULL)
990 *poldbfd = oldbfd;
991
992 /* Differentiate strong and weak symbols. */
993 newweak = bind == STB_WEAK;
994 oldweak = (h->root.type == bfd_link_hash_defweak
995 || h->root.type == bfd_link_hash_undefweak);
996 if (pold_weak)
997 *pold_weak = oldweak;
998
999 /* This code is for coping with dynamic objects, and is only useful
1000 if we are doing an ELF link. */
1001 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1002 return TRUE;
1003
1004 /* We have to check it for every instance since the first few may be
1005 references and not all compilers emit symbol type for undefined
1006 symbols. */
1007 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1008
1009 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1010 respectively, is from a dynamic object. */
1011
1012 newdyn = (abfd->flags & DYNAMIC) != 0;
1013
1014 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1015 syms and defined syms in dynamic libraries respectively.
1016 ref_dynamic on the other hand can be set for a symbol defined in
1017 a dynamic library, and def_dynamic may not be set; When the
1018 definition in a dynamic lib is overridden by a definition in the
1019 executable use of the symbol in the dynamic lib becomes a
1020 reference to the executable symbol. */
1021 if (newdyn)
1022 {
1023 if (bfd_is_und_section (sec))
1024 {
1025 if (bind != STB_WEAK)
1026 {
1027 h->ref_dynamic_nonweak = 1;
1028 hi->ref_dynamic_nonweak = 1;
1029 }
1030 }
1031 else
1032 {
1033 h->dynamic_def = 1;
1034 hi->dynamic_def = 1;
1035 }
1036 }
1037
1038 /* If we just created the symbol, mark it as being an ELF symbol.
1039 Other than that, there is nothing to do--there is no merge issue
1040 with a newly defined symbol--so we just return. */
1041
1042 if (h->root.type == bfd_link_hash_new)
1043 {
1044 h->non_elf = 0;
1045 return TRUE;
1046 }
1047
1048 /* In cases involving weak versioned symbols, we may wind up trying
1049 to merge a symbol with itself. Catch that here, to avoid the
1050 confusion that results if we try to override a symbol with
1051 itself. The additional tests catch cases like
1052 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1053 dynamic object, which we do want to handle here. */
1054 if (abfd == oldbfd
1055 && (newweak || oldweak)
1056 && ((abfd->flags & DYNAMIC) == 0
1057 || !h->def_regular))
1058 return TRUE;
1059
1060 olddyn = FALSE;
1061 if (oldbfd != NULL)
1062 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1063 else if (oldsec != NULL)
1064 {
1065 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1066 indices used by MIPS ELF. */
1067 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1068 }
1069
1070 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1071 respectively, appear to be a definition rather than reference. */
1072
1073 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1074
1075 olddef = (h->root.type != bfd_link_hash_undefined
1076 && h->root.type != bfd_link_hash_undefweak
1077 && h->root.type != bfd_link_hash_common);
1078
1079 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1080 respectively, appear to be a function. */
1081
1082 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1083 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1084
1085 oldfunc = (h->type != STT_NOTYPE
1086 && bed->is_function_type (h->type));
1087
1088 /* When we try to create a default indirect symbol from the dynamic
1089 definition with the default version, we skip it if its type and
1090 the type of existing regular definition mismatch. */
1091 if (pold_alignment == NULL
1092 && newdyn
1093 && newdef
1094 && !olddyn
1095 && (olddef || h->root.type == bfd_link_hash_common)
1096 && ELF_ST_TYPE (sym->st_info) != h->type
1097 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1098 && h->type != STT_NOTYPE
1099 && !(newfunc && oldfunc))
1100 {
1101 *skip = TRUE;
1102 return TRUE;
1103 }
1104
1105 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1106 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1107 *type_change_ok = TRUE;
1108
1109 /* Check TLS symbol. We don't check undefined symbol introduced by
1110 "ld -u". */
1111 else if (oldbfd != NULL
1112 && ELF_ST_TYPE (sym->st_info) != h->type
1113 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1114 {
1115 bfd *ntbfd, *tbfd;
1116 bfd_boolean ntdef, tdef;
1117 asection *ntsec, *tsec;
1118
1119 if (h->type == STT_TLS)
1120 {
1121 ntbfd = abfd;
1122 ntsec = sec;
1123 ntdef = newdef;
1124 tbfd = oldbfd;
1125 tsec = oldsec;
1126 tdef = olddef;
1127 }
1128 else
1129 {
1130 ntbfd = oldbfd;
1131 ntsec = oldsec;
1132 ntdef = olddef;
1133 tbfd = abfd;
1134 tsec = sec;
1135 tdef = newdef;
1136 }
1137
1138 if (tdef && ntdef)
1139 (*_bfd_error_handler)
1140 (_("%s: TLS definition in %B section %A "
1141 "mismatches non-TLS definition in %B section %A"),
1142 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1143 else if (!tdef && !ntdef)
1144 (*_bfd_error_handler)
1145 (_("%s: TLS reference in %B "
1146 "mismatches non-TLS reference in %B"),
1147 tbfd, ntbfd, h->root.root.string);
1148 else if (tdef)
1149 (*_bfd_error_handler)
1150 (_("%s: TLS definition in %B section %A "
1151 "mismatches non-TLS reference in %B"),
1152 tbfd, tsec, ntbfd, h->root.root.string);
1153 else
1154 (*_bfd_error_handler)
1155 (_("%s: TLS reference in %B "
1156 "mismatches non-TLS definition in %B section %A"),
1157 tbfd, ntbfd, ntsec, h->root.root.string);
1158
1159 bfd_set_error (bfd_error_bad_value);
1160 return FALSE;
1161 }
1162
1163 /* If the old symbol has non-default visibility, we ignore the new
1164 definition from a dynamic object. */
1165 if (newdyn
1166 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1167 && !bfd_is_und_section (sec))
1168 {
1169 *skip = TRUE;
1170 /* Make sure this symbol is dynamic. */
1171 h->ref_dynamic = 1;
1172 hi->ref_dynamic = 1;
1173 /* A protected symbol has external availability. Make sure it is
1174 recorded as dynamic.
1175
1176 FIXME: Should we check type and size for protected symbol? */
1177 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1178 return bfd_elf_link_record_dynamic_symbol (info, h);
1179 else
1180 return TRUE;
1181 }
1182 else if (!newdyn
1183 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1184 && h->def_dynamic)
1185 {
1186 /* If the new symbol with non-default visibility comes from a
1187 relocatable file and the old definition comes from a dynamic
1188 object, we remove the old definition. */
1189 if (hi->root.type == bfd_link_hash_indirect)
1190 {
1191 /* Handle the case where the old dynamic definition is
1192 default versioned. We need to copy the symbol info from
1193 the symbol with default version to the normal one if it
1194 was referenced before. */
1195 if (h->ref_regular)
1196 {
1197 hi->root.type = h->root.type;
1198 h->root.type = bfd_link_hash_indirect;
1199 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1200
1201 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1202 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1203 {
1204 /* If the new symbol is hidden or internal, completely undo
1205 any dynamic link state. */
1206 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1207 h->forced_local = 0;
1208 h->ref_dynamic = 0;
1209 }
1210 else
1211 h->ref_dynamic = 1;
1212
1213 h->def_dynamic = 0;
1214 /* FIXME: Should we check type and size for protected symbol? */
1215 h->size = 0;
1216 h->type = 0;
1217
1218 h = hi;
1219 }
1220 else
1221 h = hi;
1222 }
1223
1224 /* If the old symbol was undefined before, then it will still be
1225 on the undefs list. If the new symbol is undefined or
1226 common, we can't make it bfd_link_hash_new here, because new
1227 undefined or common symbols will be added to the undefs list
1228 by _bfd_generic_link_add_one_symbol. Symbols may not be
1229 added twice to the undefs list. Also, if the new symbol is
1230 undefweak then we don't want to lose the strong undef. */
1231 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1232 {
1233 h->root.type = bfd_link_hash_undefined;
1234 h->root.u.undef.abfd = abfd;
1235 }
1236 else
1237 {
1238 h->root.type = bfd_link_hash_new;
1239 h->root.u.undef.abfd = NULL;
1240 }
1241
1242 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1243 {
1244 /* If the new symbol is hidden or internal, completely undo
1245 any dynamic link state. */
1246 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1247 h->forced_local = 0;
1248 h->ref_dynamic = 0;
1249 }
1250 else
1251 h->ref_dynamic = 1;
1252 h->def_dynamic = 0;
1253 /* FIXME: Should we check type and size for protected symbol? */
1254 h->size = 0;
1255 h->type = 0;
1256 return TRUE;
1257 }
1258
1259 /* If a new weak symbol definition comes from a regular file and the
1260 old symbol comes from a dynamic library, we treat the new one as
1261 strong. Similarly, an old weak symbol definition from a regular
1262 file is treated as strong when the new symbol comes from a dynamic
1263 library. Further, an old weak symbol from a dynamic library is
1264 treated as strong if the new symbol is from a dynamic library.
1265 This reflects the way glibc's ld.so works.
1266
1267 Do this before setting *type_change_ok or *size_change_ok so that
1268 we warn properly when dynamic library symbols are overridden. */
1269
1270 if (newdef && !newdyn && olddyn)
1271 newweak = FALSE;
1272 if (olddef && newdyn)
1273 oldweak = FALSE;
1274
1275 /* Allow changes between different types of function symbol. */
1276 if (newfunc && oldfunc)
1277 *type_change_ok = TRUE;
1278
1279 /* It's OK to change the type if either the existing symbol or the
1280 new symbol is weak. A type change is also OK if the old symbol
1281 is undefined and the new symbol is defined. */
1282
1283 if (oldweak
1284 || newweak
1285 || (newdef
1286 && h->root.type == bfd_link_hash_undefined))
1287 *type_change_ok = TRUE;
1288
1289 /* It's OK to change the size if either the existing symbol or the
1290 new symbol is weak, or if the old symbol is undefined. */
1291
1292 if (*type_change_ok
1293 || h->root.type == bfd_link_hash_undefined)
1294 *size_change_ok = TRUE;
1295
1296 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1297 symbol, respectively, appears to be a common symbol in a dynamic
1298 object. If a symbol appears in an uninitialized section, and is
1299 not weak, and is not a function, then it may be a common symbol
1300 which was resolved when the dynamic object was created. We want
1301 to treat such symbols specially, because they raise special
1302 considerations when setting the symbol size: if the symbol
1303 appears as a common symbol in a regular object, and the size in
1304 the regular object is larger, we must make sure that we use the
1305 larger size. This problematic case can always be avoided in C,
1306 but it must be handled correctly when using Fortran shared
1307 libraries.
1308
1309 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1310 likewise for OLDDYNCOMMON and OLDDEF.
1311
1312 Note that this test is just a heuristic, and that it is quite
1313 possible to have an uninitialized symbol in a shared object which
1314 is really a definition, rather than a common symbol. This could
1315 lead to some minor confusion when the symbol really is a common
1316 symbol in some regular object. However, I think it will be
1317 harmless. */
1318
1319 if (newdyn
1320 && newdef
1321 && !newweak
1322 && (sec->flags & SEC_ALLOC) != 0
1323 && (sec->flags & SEC_LOAD) == 0
1324 && sym->st_size > 0
1325 && !newfunc)
1326 newdyncommon = TRUE;
1327 else
1328 newdyncommon = FALSE;
1329
1330 if (olddyn
1331 && olddef
1332 && h->root.type == bfd_link_hash_defined
1333 && h->def_dynamic
1334 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1335 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1336 && h->size > 0
1337 && !oldfunc)
1338 olddyncommon = TRUE;
1339 else
1340 olddyncommon = FALSE;
1341
1342 /* We now know everything about the old and new symbols. We ask the
1343 backend to check if we can merge them. */
1344 if (bed->merge_symbol != NULL)
1345 {
1346 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1347 return FALSE;
1348 sec = *psec;
1349 }
1350
1351 /* If both the old and the new symbols look like common symbols in a
1352 dynamic object, set the size of the symbol to the larger of the
1353 two. */
1354
1355 if (olddyncommon
1356 && newdyncommon
1357 && sym->st_size != h->size)
1358 {
1359 /* Since we think we have two common symbols, issue a multiple
1360 common warning if desired. Note that we only warn if the
1361 size is different. If the size is the same, we simply let
1362 the old symbol override the new one as normally happens with
1363 symbols defined in dynamic objects. */
1364
1365 if (! ((*info->callbacks->multiple_common)
1366 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1367 return FALSE;
1368
1369 if (sym->st_size > h->size)
1370 h->size = sym->st_size;
1371
1372 *size_change_ok = TRUE;
1373 }
1374
1375 /* If we are looking at a dynamic object, and we have found a
1376 definition, we need to see if the symbol was already defined by
1377 some other object. If so, we want to use the existing
1378 definition, and we do not want to report a multiple symbol
1379 definition error; we do this by clobbering *PSEC to be
1380 bfd_und_section_ptr.
1381
1382 We treat a common symbol as a definition if the symbol in the
1383 shared library is a function, since common symbols always
1384 represent variables; this can cause confusion in principle, but
1385 any such confusion would seem to indicate an erroneous program or
1386 shared library. We also permit a common symbol in a regular
1387 object to override a weak symbol in a shared object. */
1388
1389 if (newdyn
1390 && newdef
1391 && (olddef
1392 || (h->root.type == bfd_link_hash_common
1393 && (newweak || newfunc))))
1394 {
1395 *override = TRUE;
1396 newdef = FALSE;
1397 newdyncommon = FALSE;
1398
1399 *psec = sec = bfd_und_section_ptr;
1400 *size_change_ok = TRUE;
1401
1402 /* If we get here when the old symbol is a common symbol, then
1403 we are explicitly letting it override a weak symbol or
1404 function in a dynamic object, and we don't want to warn about
1405 a type change. If the old symbol is a defined symbol, a type
1406 change warning may still be appropriate. */
1407
1408 if (h->root.type == bfd_link_hash_common)
1409 *type_change_ok = TRUE;
1410 }
1411
1412 /* Handle the special case of an old common symbol merging with a
1413 new symbol which looks like a common symbol in a shared object.
1414 We change *PSEC and *PVALUE to make the new symbol look like a
1415 common symbol, and let _bfd_generic_link_add_one_symbol do the
1416 right thing. */
1417
1418 if (newdyncommon
1419 && h->root.type == bfd_link_hash_common)
1420 {
1421 *override = TRUE;
1422 newdef = FALSE;
1423 newdyncommon = FALSE;
1424 *pvalue = sym->st_size;
1425 *psec = sec = bed->common_section (oldsec);
1426 *size_change_ok = TRUE;
1427 }
1428
1429 /* Skip weak definitions of symbols that are already defined. */
1430 if (newdef && olddef && newweak)
1431 {
1432 /* Don't skip new non-IR weak syms. */
1433 if (!(oldbfd != NULL
1434 && (oldbfd->flags & BFD_PLUGIN) != 0
1435 && (abfd->flags & BFD_PLUGIN) == 0))
1436 {
1437 newdef = FALSE;
1438 *skip = TRUE;
1439 }
1440
1441 /* Merge st_other. If the symbol already has a dynamic index,
1442 but visibility says it should not be visible, turn it into a
1443 local symbol. */
1444 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1445 if (h->dynindx != -1)
1446 switch (ELF_ST_VISIBILITY (h->other))
1447 {
1448 case STV_INTERNAL:
1449 case STV_HIDDEN:
1450 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1451 break;
1452 }
1453 }
1454
1455 /* If the old symbol is from a dynamic object, and the new symbol is
1456 a definition which is not from a dynamic object, then the new
1457 symbol overrides the old symbol. Symbols from regular files
1458 always take precedence over symbols from dynamic objects, even if
1459 they are defined after the dynamic object in the link.
1460
1461 As above, we again permit a common symbol in a regular object to
1462 override a definition in a shared object if the shared object
1463 symbol is a function or is weak. */
1464
1465 flip = NULL;
1466 if (!newdyn
1467 && (newdef
1468 || (bfd_is_com_section (sec)
1469 && (oldweak || oldfunc)))
1470 && olddyn
1471 && olddef
1472 && h->def_dynamic)
1473 {
1474 /* Change the hash table entry to undefined, and let
1475 _bfd_generic_link_add_one_symbol do the right thing with the
1476 new definition. */
1477
1478 h->root.type = bfd_link_hash_undefined;
1479 h->root.u.undef.abfd = h->root.u.def.section->owner;
1480 *size_change_ok = TRUE;
1481
1482 olddef = FALSE;
1483 olddyncommon = FALSE;
1484
1485 /* We again permit a type change when a common symbol may be
1486 overriding a function. */
1487
1488 if (bfd_is_com_section (sec))
1489 {
1490 if (oldfunc)
1491 {
1492 /* If a common symbol overrides a function, make sure
1493 that it isn't defined dynamically nor has type
1494 function. */
1495 h->def_dynamic = 0;
1496 h->type = STT_NOTYPE;
1497 }
1498 *type_change_ok = TRUE;
1499 }
1500
1501 if (hi->root.type == bfd_link_hash_indirect)
1502 flip = hi;
1503 else
1504 /* This union may have been set to be non-NULL when this symbol
1505 was seen in a dynamic object. We must force the union to be
1506 NULL, so that it is correct for a regular symbol. */
1507 h->verinfo.vertree = NULL;
1508 }
1509
1510 /* Handle the special case of a new common symbol merging with an
1511 old symbol that looks like it might be a common symbol defined in
1512 a shared object. Note that we have already handled the case in
1513 which a new common symbol should simply override the definition
1514 in the shared library. */
1515
1516 if (! newdyn
1517 && bfd_is_com_section (sec)
1518 && olddyncommon)
1519 {
1520 /* It would be best if we could set the hash table entry to a
1521 common symbol, but we don't know what to use for the section
1522 or the alignment. */
1523 if (! ((*info->callbacks->multiple_common)
1524 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1525 return FALSE;
1526
1527 /* If the presumed common symbol in the dynamic object is
1528 larger, pretend that the new symbol has its size. */
1529
1530 if (h->size > *pvalue)
1531 *pvalue = h->size;
1532
1533 /* We need to remember the alignment required by the symbol
1534 in the dynamic object. */
1535 BFD_ASSERT (pold_alignment);
1536 *pold_alignment = h->root.u.def.section->alignment_power;
1537
1538 olddef = FALSE;
1539 olddyncommon = FALSE;
1540
1541 h->root.type = bfd_link_hash_undefined;
1542 h->root.u.undef.abfd = h->root.u.def.section->owner;
1543
1544 *size_change_ok = TRUE;
1545 *type_change_ok = TRUE;
1546
1547 if (hi->root.type == bfd_link_hash_indirect)
1548 flip = hi;
1549 else
1550 h->verinfo.vertree = NULL;
1551 }
1552
1553 if (flip != NULL)
1554 {
1555 /* Handle the case where we had a versioned symbol in a dynamic
1556 library and now find a definition in a normal object. In this
1557 case, we make the versioned symbol point to the normal one. */
1558 flip->root.type = h->root.type;
1559 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1560 h->root.type = bfd_link_hash_indirect;
1561 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1562 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1563 if (h->def_dynamic)
1564 {
1565 h->def_dynamic = 0;
1566 flip->ref_dynamic = 1;
1567 }
1568 }
1569
1570 return TRUE;
1571 }
1572
1573 /* This function is called to create an indirect symbol from the
1574 default for the symbol with the default version if needed. The
1575 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1576 set DYNSYM if the new indirect symbol is dynamic. */
1577
1578 static bfd_boolean
1579 _bfd_elf_add_default_symbol (bfd *abfd,
1580 struct bfd_link_info *info,
1581 struct elf_link_hash_entry *h,
1582 const char *name,
1583 Elf_Internal_Sym *sym,
1584 asection *sec,
1585 bfd_vma value,
1586 bfd **poldbfd,
1587 bfd_boolean *dynsym)
1588 {
1589 bfd_boolean type_change_ok;
1590 bfd_boolean size_change_ok;
1591 bfd_boolean skip;
1592 char *shortname;
1593 struct elf_link_hash_entry *hi;
1594 struct bfd_link_hash_entry *bh;
1595 const struct elf_backend_data *bed;
1596 bfd_boolean collect;
1597 bfd_boolean dynamic;
1598 bfd_boolean override;
1599 char *p;
1600 size_t len, shortlen;
1601 asection *tmp_sec;
1602
1603 /* If this symbol has a version, and it is the default version, we
1604 create an indirect symbol from the default name to the fully
1605 decorated name. This will cause external references which do not
1606 specify a version to be bound to this version of the symbol. */
1607 p = strchr (name, ELF_VER_CHR);
1608 if (p == NULL || p[1] != ELF_VER_CHR)
1609 return TRUE;
1610
1611 bed = get_elf_backend_data (abfd);
1612 collect = bed->collect;
1613 dynamic = (abfd->flags & DYNAMIC) != 0;
1614
1615 shortlen = p - name;
1616 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1617 if (shortname == NULL)
1618 return FALSE;
1619 memcpy (shortname, name, shortlen);
1620 shortname[shortlen] = '\0';
1621
1622 /* We are going to create a new symbol. Merge it with any existing
1623 symbol with this name. For the purposes of the merge, act as
1624 though we were defining the symbol we just defined, although we
1625 actually going to define an indirect symbol. */
1626 type_change_ok = FALSE;
1627 size_change_ok = FALSE;
1628 tmp_sec = sec;
1629 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1630 &hi, poldbfd, NULL, NULL, &skip, &override,
1631 &type_change_ok, &size_change_ok))
1632 return FALSE;
1633
1634 if (skip)
1635 goto nondefault;
1636
1637 if (! override)
1638 {
1639 bh = &hi->root;
1640 if (! (_bfd_generic_link_add_one_symbol
1641 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1642 0, name, FALSE, collect, &bh)))
1643 return FALSE;
1644 hi = (struct elf_link_hash_entry *) bh;
1645 }
1646 else
1647 {
1648 /* In this case the symbol named SHORTNAME is overriding the
1649 indirect symbol we want to add. We were planning on making
1650 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1651 is the name without a version. NAME is the fully versioned
1652 name, and it is the default version.
1653
1654 Overriding means that we already saw a definition for the
1655 symbol SHORTNAME in a regular object, and it is overriding
1656 the symbol defined in the dynamic object.
1657
1658 When this happens, we actually want to change NAME, the
1659 symbol we just added, to refer to SHORTNAME. This will cause
1660 references to NAME in the shared object to become references
1661 to SHORTNAME in the regular object. This is what we expect
1662 when we override a function in a shared object: that the
1663 references in the shared object will be mapped to the
1664 definition in the regular object. */
1665
1666 while (hi->root.type == bfd_link_hash_indirect
1667 || hi->root.type == bfd_link_hash_warning)
1668 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1669
1670 h->root.type = bfd_link_hash_indirect;
1671 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1672 if (h->def_dynamic)
1673 {
1674 h->def_dynamic = 0;
1675 hi->ref_dynamic = 1;
1676 if (hi->ref_regular
1677 || hi->def_regular)
1678 {
1679 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1680 return FALSE;
1681 }
1682 }
1683
1684 /* Now set HI to H, so that the following code will set the
1685 other fields correctly. */
1686 hi = h;
1687 }
1688
1689 /* Check if HI is a warning symbol. */
1690 if (hi->root.type == bfd_link_hash_warning)
1691 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1692
1693 /* If there is a duplicate definition somewhere, then HI may not
1694 point to an indirect symbol. We will have reported an error to
1695 the user in that case. */
1696
1697 if (hi->root.type == bfd_link_hash_indirect)
1698 {
1699 struct elf_link_hash_entry *ht;
1700
1701 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1702 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1703
1704 /* A reference to the SHORTNAME symbol from a dynamic library
1705 will be satisfied by the versioned symbol at runtime. In
1706 effect, we have a reference to the versioned symbol. */
1707 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1708 hi->dynamic_def |= ht->dynamic_def;
1709
1710 /* See if the new flags lead us to realize that the symbol must
1711 be dynamic. */
1712 if (! *dynsym)
1713 {
1714 if (! dynamic)
1715 {
1716 if (! info->executable
1717 || hi->def_dynamic
1718 || hi->ref_dynamic)
1719 *dynsym = TRUE;
1720 }
1721 else
1722 {
1723 if (hi->ref_regular)
1724 *dynsym = TRUE;
1725 }
1726 }
1727 }
1728
1729 /* We also need to define an indirection from the nondefault version
1730 of the symbol. */
1731
1732 nondefault:
1733 len = strlen (name);
1734 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1735 if (shortname == NULL)
1736 return FALSE;
1737 memcpy (shortname, name, shortlen);
1738 memcpy (shortname + shortlen, p + 1, len - shortlen);
1739
1740 /* Once again, merge with any existing symbol. */
1741 type_change_ok = FALSE;
1742 size_change_ok = FALSE;
1743 tmp_sec = sec;
1744 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1745 &hi, NULL, NULL, NULL, &skip, &override,
1746 &type_change_ok, &size_change_ok))
1747 return FALSE;
1748
1749 if (skip)
1750 return TRUE;
1751
1752 if (override)
1753 {
1754 /* Here SHORTNAME is a versioned name, so we don't expect to see
1755 the type of override we do in the case above unless it is
1756 overridden by a versioned definition. */
1757 if (hi->root.type != bfd_link_hash_defined
1758 && hi->root.type != bfd_link_hash_defweak)
1759 (*_bfd_error_handler)
1760 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1761 abfd, shortname);
1762 }
1763 else
1764 {
1765 bh = &hi->root;
1766 if (! (_bfd_generic_link_add_one_symbol
1767 (info, abfd, shortname, BSF_INDIRECT,
1768 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1769 return FALSE;
1770 hi = (struct elf_link_hash_entry *) bh;
1771
1772 /* If there is a duplicate definition somewhere, then HI may not
1773 point to an indirect symbol. We will have reported an error
1774 to the user in that case. */
1775
1776 if (hi->root.type == bfd_link_hash_indirect)
1777 {
1778 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1779 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1780 hi->dynamic_def |= h->dynamic_def;
1781
1782 /* See if the new flags lead us to realize that the symbol
1783 must be dynamic. */
1784 if (! *dynsym)
1785 {
1786 if (! dynamic)
1787 {
1788 if (! info->executable
1789 || hi->ref_dynamic)
1790 *dynsym = TRUE;
1791 }
1792 else
1793 {
1794 if (hi->ref_regular)
1795 *dynsym = TRUE;
1796 }
1797 }
1798 }
1799 }
1800
1801 return TRUE;
1802 }
1803 \f
1804 /* This routine is used to export all defined symbols into the dynamic
1805 symbol table. It is called via elf_link_hash_traverse. */
1806
1807 static bfd_boolean
1808 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1809 {
1810 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1811
1812 /* Ignore indirect symbols. These are added by the versioning code. */
1813 if (h->root.type == bfd_link_hash_indirect)
1814 return TRUE;
1815
1816 /* Ignore this if we won't export it. */
1817 if (!eif->info->export_dynamic && !h->dynamic)
1818 return TRUE;
1819
1820 if (h->dynindx == -1
1821 && (h->def_regular || h->ref_regular)
1822 && ! bfd_hide_sym_by_version (eif->info->version_info,
1823 h->root.root.string))
1824 {
1825 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1826 {
1827 eif->failed = TRUE;
1828 return FALSE;
1829 }
1830 }
1831
1832 return TRUE;
1833 }
1834 \f
1835 /* Look through the symbols which are defined in other shared
1836 libraries and referenced here. Update the list of version
1837 dependencies. This will be put into the .gnu.version_r section.
1838 This function is called via elf_link_hash_traverse. */
1839
1840 static bfd_boolean
1841 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1842 void *data)
1843 {
1844 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1845 Elf_Internal_Verneed *t;
1846 Elf_Internal_Vernaux *a;
1847 bfd_size_type amt;
1848
1849 /* We only care about symbols defined in shared objects with version
1850 information. */
1851 if (!h->def_dynamic
1852 || h->def_regular
1853 || h->dynindx == -1
1854 || h->verinfo.verdef == NULL)
1855 return TRUE;
1856
1857 /* See if we already know about this version. */
1858 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1859 t != NULL;
1860 t = t->vn_nextref)
1861 {
1862 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1863 continue;
1864
1865 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1866 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1867 return TRUE;
1868
1869 break;
1870 }
1871
1872 /* This is a new version. Add it to tree we are building. */
1873
1874 if (t == NULL)
1875 {
1876 amt = sizeof *t;
1877 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1878 if (t == NULL)
1879 {
1880 rinfo->failed = TRUE;
1881 return FALSE;
1882 }
1883
1884 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1885 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1886 elf_tdata (rinfo->info->output_bfd)->verref = t;
1887 }
1888
1889 amt = sizeof *a;
1890 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1891 if (a == NULL)
1892 {
1893 rinfo->failed = TRUE;
1894 return FALSE;
1895 }
1896
1897 /* Note that we are copying a string pointer here, and testing it
1898 above. If bfd_elf_string_from_elf_section is ever changed to
1899 discard the string data when low in memory, this will have to be
1900 fixed. */
1901 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1902
1903 a->vna_flags = h->verinfo.verdef->vd_flags;
1904 a->vna_nextptr = t->vn_auxptr;
1905
1906 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1907 ++rinfo->vers;
1908
1909 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1910
1911 t->vn_auxptr = a;
1912
1913 return TRUE;
1914 }
1915
1916 /* Figure out appropriate versions for all the symbols. We may not
1917 have the version number script until we have read all of the input
1918 files, so until that point we don't know which symbols should be
1919 local. This function is called via elf_link_hash_traverse. */
1920
1921 static bfd_boolean
1922 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1923 {
1924 struct elf_info_failed *sinfo;
1925 struct bfd_link_info *info;
1926 const struct elf_backend_data *bed;
1927 struct elf_info_failed eif;
1928 char *p;
1929 bfd_size_type amt;
1930
1931 sinfo = (struct elf_info_failed *) data;
1932 info = sinfo->info;
1933
1934 /* Fix the symbol flags. */
1935 eif.failed = FALSE;
1936 eif.info = info;
1937 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1938 {
1939 if (eif.failed)
1940 sinfo->failed = TRUE;
1941 return FALSE;
1942 }
1943
1944 /* We only need version numbers for symbols defined in regular
1945 objects. */
1946 if (!h->def_regular)
1947 return TRUE;
1948
1949 bed = get_elf_backend_data (info->output_bfd);
1950 p = strchr (h->root.root.string, ELF_VER_CHR);
1951 if (p != NULL && h->verinfo.vertree == NULL)
1952 {
1953 struct bfd_elf_version_tree *t;
1954 bfd_boolean hidden;
1955
1956 hidden = TRUE;
1957
1958 /* There are two consecutive ELF_VER_CHR characters if this is
1959 not a hidden symbol. */
1960 ++p;
1961 if (*p == ELF_VER_CHR)
1962 {
1963 hidden = FALSE;
1964 ++p;
1965 }
1966
1967 /* If there is no version string, we can just return out. */
1968 if (*p == '\0')
1969 {
1970 if (hidden)
1971 h->hidden = 1;
1972 return TRUE;
1973 }
1974
1975 /* Look for the version. If we find it, it is no longer weak. */
1976 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1977 {
1978 if (strcmp (t->name, p) == 0)
1979 {
1980 size_t len;
1981 char *alc;
1982 struct bfd_elf_version_expr *d;
1983
1984 len = p - h->root.root.string;
1985 alc = (char *) bfd_malloc (len);
1986 if (alc == NULL)
1987 {
1988 sinfo->failed = TRUE;
1989 return FALSE;
1990 }
1991 memcpy (alc, h->root.root.string, len - 1);
1992 alc[len - 1] = '\0';
1993 if (alc[len - 2] == ELF_VER_CHR)
1994 alc[len - 2] = '\0';
1995
1996 h->verinfo.vertree = t;
1997 t->used = TRUE;
1998 d = NULL;
1999
2000 if (t->globals.list != NULL)
2001 d = (*t->match) (&t->globals, NULL, alc);
2002
2003 /* See if there is anything to force this symbol to
2004 local scope. */
2005 if (d == NULL && t->locals.list != NULL)
2006 {
2007 d = (*t->match) (&t->locals, NULL, alc);
2008 if (d != NULL
2009 && h->dynindx != -1
2010 && ! info->export_dynamic)
2011 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2012 }
2013
2014 free (alc);
2015 break;
2016 }
2017 }
2018
2019 /* If we are building an application, we need to create a
2020 version node for this version. */
2021 if (t == NULL && info->executable)
2022 {
2023 struct bfd_elf_version_tree **pp;
2024 int version_index;
2025
2026 /* If we aren't going to export this symbol, we don't need
2027 to worry about it. */
2028 if (h->dynindx == -1)
2029 return TRUE;
2030
2031 amt = sizeof *t;
2032 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2033 if (t == NULL)
2034 {
2035 sinfo->failed = TRUE;
2036 return FALSE;
2037 }
2038
2039 t->name = p;
2040 t->name_indx = (unsigned int) -1;
2041 t->used = TRUE;
2042
2043 version_index = 1;
2044 /* Don't count anonymous version tag. */
2045 if (sinfo->info->version_info != NULL
2046 && sinfo->info->version_info->vernum == 0)
2047 version_index = 0;
2048 for (pp = &sinfo->info->version_info;
2049 *pp != NULL;
2050 pp = &(*pp)->next)
2051 ++version_index;
2052 t->vernum = version_index;
2053
2054 *pp = t;
2055
2056 h->verinfo.vertree = t;
2057 }
2058 else if (t == NULL)
2059 {
2060 /* We could not find the version for a symbol when
2061 generating a shared archive. Return an error. */
2062 (*_bfd_error_handler)
2063 (_("%B: version node not found for symbol %s"),
2064 info->output_bfd, h->root.root.string);
2065 bfd_set_error (bfd_error_bad_value);
2066 sinfo->failed = TRUE;
2067 return FALSE;
2068 }
2069
2070 if (hidden)
2071 h->hidden = 1;
2072 }
2073
2074 /* If we don't have a version for this symbol, see if we can find
2075 something. */
2076 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2077 {
2078 bfd_boolean hide;
2079
2080 h->verinfo.vertree
2081 = bfd_find_version_for_sym (sinfo->info->version_info,
2082 h->root.root.string, &hide);
2083 if (h->verinfo.vertree != NULL && hide)
2084 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2085 }
2086
2087 return TRUE;
2088 }
2089 \f
2090 /* Read and swap the relocs from the section indicated by SHDR. This
2091 may be either a REL or a RELA section. The relocations are
2092 translated into RELA relocations and stored in INTERNAL_RELOCS,
2093 which should have already been allocated to contain enough space.
2094 The EXTERNAL_RELOCS are a buffer where the external form of the
2095 relocations should be stored.
2096
2097 Returns FALSE if something goes wrong. */
2098
2099 static bfd_boolean
2100 elf_link_read_relocs_from_section (bfd *abfd,
2101 asection *sec,
2102 Elf_Internal_Shdr *shdr,
2103 void *external_relocs,
2104 Elf_Internal_Rela *internal_relocs)
2105 {
2106 const struct elf_backend_data *bed;
2107 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2108 const bfd_byte *erela;
2109 const bfd_byte *erelaend;
2110 Elf_Internal_Rela *irela;
2111 Elf_Internal_Shdr *symtab_hdr;
2112 size_t nsyms;
2113
2114 /* Position ourselves at the start of the section. */
2115 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2116 return FALSE;
2117
2118 /* Read the relocations. */
2119 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2120 return FALSE;
2121
2122 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2123 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2124
2125 bed = get_elf_backend_data (abfd);
2126
2127 /* Convert the external relocations to the internal format. */
2128 if (shdr->sh_entsize == bed->s->sizeof_rel)
2129 swap_in = bed->s->swap_reloc_in;
2130 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2131 swap_in = bed->s->swap_reloca_in;
2132 else
2133 {
2134 bfd_set_error (bfd_error_wrong_format);
2135 return FALSE;
2136 }
2137
2138 erela = (const bfd_byte *) external_relocs;
2139 erelaend = erela + shdr->sh_size;
2140 irela = internal_relocs;
2141 while (erela < erelaend)
2142 {
2143 bfd_vma r_symndx;
2144
2145 (*swap_in) (abfd, erela, irela);
2146 r_symndx = ELF32_R_SYM (irela->r_info);
2147 if (bed->s->arch_size == 64)
2148 r_symndx >>= 24;
2149 if (nsyms > 0)
2150 {
2151 if ((size_t) r_symndx >= nsyms)
2152 {
2153 (*_bfd_error_handler)
2154 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2155 " for offset 0x%lx in section `%A'"),
2156 abfd, sec,
2157 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2158 bfd_set_error (bfd_error_bad_value);
2159 return FALSE;
2160 }
2161 }
2162 else if (r_symndx != STN_UNDEF)
2163 {
2164 (*_bfd_error_handler)
2165 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2166 " when the object file has no symbol table"),
2167 abfd, sec,
2168 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2169 bfd_set_error (bfd_error_bad_value);
2170 return FALSE;
2171 }
2172 irela += bed->s->int_rels_per_ext_rel;
2173 erela += shdr->sh_entsize;
2174 }
2175
2176 return TRUE;
2177 }
2178
2179 /* Read and swap the relocs for a section O. They may have been
2180 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2181 not NULL, they are used as buffers to read into. They are known to
2182 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2183 the return value is allocated using either malloc or bfd_alloc,
2184 according to the KEEP_MEMORY argument. If O has two relocation
2185 sections (both REL and RELA relocations), then the REL_HDR
2186 relocations will appear first in INTERNAL_RELOCS, followed by the
2187 RELA_HDR relocations. */
2188
2189 Elf_Internal_Rela *
2190 _bfd_elf_link_read_relocs (bfd *abfd,
2191 asection *o,
2192 void *external_relocs,
2193 Elf_Internal_Rela *internal_relocs,
2194 bfd_boolean keep_memory)
2195 {
2196 void *alloc1 = NULL;
2197 Elf_Internal_Rela *alloc2 = NULL;
2198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2199 struct bfd_elf_section_data *esdo = elf_section_data (o);
2200 Elf_Internal_Rela *internal_rela_relocs;
2201
2202 if (esdo->relocs != NULL)
2203 return esdo->relocs;
2204
2205 if (o->reloc_count == 0)
2206 return NULL;
2207
2208 if (internal_relocs == NULL)
2209 {
2210 bfd_size_type size;
2211
2212 size = o->reloc_count;
2213 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2214 if (keep_memory)
2215 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2216 else
2217 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2218 if (internal_relocs == NULL)
2219 goto error_return;
2220 }
2221
2222 if (external_relocs == NULL)
2223 {
2224 bfd_size_type size = 0;
2225
2226 if (esdo->rel.hdr)
2227 size += esdo->rel.hdr->sh_size;
2228 if (esdo->rela.hdr)
2229 size += esdo->rela.hdr->sh_size;
2230
2231 alloc1 = bfd_malloc (size);
2232 if (alloc1 == NULL)
2233 goto error_return;
2234 external_relocs = alloc1;
2235 }
2236
2237 internal_rela_relocs = internal_relocs;
2238 if (esdo->rel.hdr)
2239 {
2240 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2241 external_relocs,
2242 internal_relocs))
2243 goto error_return;
2244 external_relocs = (((bfd_byte *) external_relocs)
2245 + esdo->rel.hdr->sh_size);
2246 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2247 * bed->s->int_rels_per_ext_rel);
2248 }
2249
2250 if (esdo->rela.hdr
2251 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2252 external_relocs,
2253 internal_rela_relocs)))
2254 goto error_return;
2255
2256 /* Cache the results for next time, if we can. */
2257 if (keep_memory)
2258 esdo->relocs = internal_relocs;
2259
2260 if (alloc1 != NULL)
2261 free (alloc1);
2262
2263 /* Don't free alloc2, since if it was allocated we are passing it
2264 back (under the name of internal_relocs). */
2265
2266 return internal_relocs;
2267
2268 error_return:
2269 if (alloc1 != NULL)
2270 free (alloc1);
2271 if (alloc2 != NULL)
2272 {
2273 if (keep_memory)
2274 bfd_release (abfd, alloc2);
2275 else
2276 free (alloc2);
2277 }
2278 return NULL;
2279 }
2280
2281 /* Compute the size of, and allocate space for, REL_HDR which is the
2282 section header for a section containing relocations for O. */
2283
2284 static bfd_boolean
2285 _bfd_elf_link_size_reloc_section (bfd *abfd,
2286 struct bfd_elf_section_reloc_data *reldata)
2287 {
2288 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2289
2290 /* That allows us to calculate the size of the section. */
2291 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2292
2293 /* The contents field must last into write_object_contents, so we
2294 allocate it with bfd_alloc rather than malloc. Also since we
2295 cannot be sure that the contents will actually be filled in,
2296 we zero the allocated space. */
2297 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2298 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2299 return FALSE;
2300
2301 if (reldata->hashes == NULL && reldata->count)
2302 {
2303 struct elf_link_hash_entry **p;
2304
2305 p = (struct elf_link_hash_entry **)
2306 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2307 if (p == NULL)
2308 return FALSE;
2309
2310 reldata->hashes = p;
2311 }
2312
2313 return TRUE;
2314 }
2315
2316 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2317 originated from the section given by INPUT_REL_HDR) to the
2318 OUTPUT_BFD. */
2319
2320 bfd_boolean
2321 _bfd_elf_link_output_relocs (bfd *output_bfd,
2322 asection *input_section,
2323 Elf_Internal_Shdr *input_rel_hdr,
2324 Elf_Internal_Rela *internal_relocs,
2325 struct elf_link_hash_entry **rel_hash
2326 ATTRIBUTE_UNUSED)
2327 {
2328 Elf_Internal_Rela *irela;
2329 Elf_Internal_Rela *irelaend;
2330 bfd_byte *erel;
2331 struct bfd_elf_section_reloc_data *output_reldata;
2332 asection *output_section;
2333 const struct elf_backend_data *bed;
2334 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2335 struct bfd_elf_section_data *esdo;
2336
2337 output_section = input_section->output_section;
2338
2339 bed = get_elf_backend_data (output_bfd);
2340 esdo = elf_section_data (output_section);
2341 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2342 {
2343 output_reldata = &esdo->rel;
2344 swap_out = bed->s->swap_reloc_out;
2345 }
2346 else if (esdo->rela.hdr
2347 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2348 {
2349 output_reldata = &esdo->rela;
2350 swap_out = bed->s->swap_reloca_out;
2351 }
2352 else
2353 {
2354 (*_bfd_error_handler)
2355 (_("%B: relocation size mismatch in %B section %A"),
2356 output_bfd, input_section->owner, input_section);
2357 bfd_set_error (bfd_error_wrong_format);
2358 return FALSE;
2359 }
2360
2361 erel = output_reldata->hdr->contents;
2362 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2363 irela = internal_relocs;
2364 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2365 * bed->s->int_rels_per_ext_rel);
2366 while (irela < irelaend)
2367 {
2368 (*swap_out) (output_bfd, irela, erel);
2369 irela += bed->s->int_rels_per_ext_rel;
2370 erel += input_rel_hdr->sh_entsize;
2371 }
2372
2373 /* Bump the counter, so that we know where to add the next set of
2374 relocations. */
2375 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2376
2377 return TRUE;
2378 }
2379 \f
2380 /* Make weak undefined symbols in PIE dynamic. */
2381
2382 bfd_boolean
2383 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2384 struct elf_link_hash_entry *h)
2385 {
2386 if (info->pie
2387 && h->dynindx == -1
2388 && h->root.type == bfd_link_hash_undefweak)
2389 return bfd_elf_link_record_dynamic_symbol (info, h);
2390
2391 return TRUE;
2392 }
2393
2394 /* Fix up the flags for a symbol. This handles various cases which
2395 can only be fixed after all the input files are seen. This is
2396 currently called by both adjust_dynamic_symbol and
2397 assign_sym_version, which is unnecessary but perhaps more robust in
2398 the face of future changes. */
2399
2400 static bfd_boolean
2401 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2402 struct elf_info_failed *eif)
2403 {
2404 const struct elf_backend_data *bed;
2405
2406 /* If this symbol was mentioned in a non-ELF file, try to set
2407 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2408 permit a non-ELF file to correctly refer to a symbol defined in
2409 an ELF dynamic object. */
2410 if (h->non_elf)
2411 {
2412 while (h->root.type == bfd_link_hash_indirect)
2413 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2414
2415 if (h->root.type != bfd_link_hash_defined
2416 && h->root.type != bfd_link_hash_defweak)
2417 {
2418 h->ref_regular = 1;
2419 h->ref_regular_nonweak = 1;
2420 }
2421 else
2422 {
2423 if (h->root.u.def.section->owner != NULL
2424 && (bfd_get_flavour (h->root.u.def.section->owner)
2425 == bfd_target_elf_flavour))
2426 {
2427 h->ref_regular = 1;
2428 h->ref_regular_nonweak = 1;
2429 }
2430 else
2431 h->def_regular = 1;
2432 }
2433
2434 if (h->dynindx == -1
2435 && (h->def_dynamic
2436 || h->ref_dynamic))
2437 {
2438 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2439 {
2440 eif->failed = TRUE;
2441 return FALSE;
2442 }
2443 }
2444 }
2445 else
2446 {
2447 /* Unfortunately, NON_ELF is only correct if the symbol
2448 was first seen in a non-ELF file. Fortunately, if the symbol
2449 was first seen in an ELF file, we're probably OK unless the
2450 symbol was defined in a non-ELF file. Catch that case here.
2451 FIXME: We're still in trouble if the symbol was first seen in
2452 a dynamic object, and then later in a non-ELF regular object. */
2453 if ((h->root.type == bfd_link_hash_defined
2454 || h->root.type == bfd_link_hash_defweak)
2455 && !h->def_regular
2456 && (h->root.u.def.section->owner != NULL
2457 ? (bfd_get_flavour (h->root.u.def.section->owner)
2458 != bfd_target_elf_flavour)
2459 : (bfd_is_abs_section (h->root.u.def.section)
2460 && !h->def_dynamic)))
2461 h->def_regular = 1;
2462 }
2463
2464 /* Backend specific symbol fixup. */
2465 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2466 if (bed->elf_backend_fixup_symbol
2467 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2468 return FALSE;
2469
2470 /* If this is a final link, and the symbol was defined as a common
2471 symbol in a regular object file, and there was no definition in
2472 any dynamic object, then the linker will have allocated space for
2473 the symbol in a common section but the DEF_REGULAR
2474 flag will not have been set. */
2475 if (h->root.type == bfd_link_hash_defined
2476 && !h->def_regular
2477 && h->ref_regular
2478 && !h->def_dynamic
2479 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2480 h->def_regular = 1;
2481
2482 /* If -Bsymbolic was used (which means to bind references to global
2483 symbols to the definition within the shared object), and this
2484 symbol was defined in a regular object, then it actually doesn't
2485 need a PLT entry. Likewise, if the symbol has non-default
2486 visibility. If the symbol has hidden or internal visibility, we
2487 will force it local. */
2488 if (h->needs_plt
2489 && eif->info->shared
2490 && is_elf_hash_table (eif->info->hash)
2491 && (SYMBOLIC_BIND (eif->info, h)
2492 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2493 && h->def_regular)
2494 {
2495 bfd_boolean force_local;
2496
2497 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2498 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2499 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2500 }
2501
2502 /* If a weak undefined symbol has non-default visibility, we also
2503 hide it from the dynamic linker. */
2504 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2505 && h->root.type == bfd_link_hash_undefweak)
2506 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2507
2508 /* If this is a weak defined symbol in a dynamic object, and we know
2509 the real definition in the dynamic object, copy interesting flags
2510 over to the real definition. */
2511 if (h->u.weakdef != NULL)
2512 {
2513 /* If the real definition is defined by a regular object file,
2514 don't do anything special. See the longer description in
2515 _bfd_elf_adjust_dynamic_symbol, below. */
2516 if (h->u.weakdef->def_regular)
2517 h->u.weakdef = NULL;
2518 else
2519 {
2520 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2521
2522 while (h->root.type == bfd_link_hash_indirect)
2523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2524
2525 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2526 || h->root.type == bfd_link_hash_defweak);
2527 BFD_ASSERT (weakdef->def_dynamic);
2528 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2529 || weakdef->root.type == bfd_link_hash_defweak);
2530 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2531 }
2532 }
2533
2534 return TRUE;
2535 }
2536
2537 /* Make the backend pick a good value for a dynamic symbol. This is
2538 called via elf_link_hash_traverse, and also calls itself
2539 recursively. */
2540
2541 static bfd_boolean
2542 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2543 {
2544 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2545 bfd *dynobj;
2546 const struct elf_backend_data *bed;
2547
2548 if (! is_elf_hash_table (eif->info->hash))
2549 return FALSE;
2550
2551 /* Ignore indirect symbols. These are added by the versioning code. */
2552 if (h->root.type == bfd_link_hash_indirect)
2553 return TRUE;
2554
2555 /* Fix the symbol flags. */
2556 if (! _bfd_elf_fix_symbol_flags (h, eif))
2557 return FALSE;
2558
2559 /* If this symbol does not require a PLT entry, and it is not
2560 defined by a dynamic object, or is not referenced by a regular
2561 object, ignore it. We do have to handle a weak defined symbol,
2562 even if no regular object refers to it, if we decided to add it
2563 to the dynamic symbol table. FIXME: Do we normally need to worry
2564 about symbols which are defined by one dynamic object and
2565 referenced by another one? */
2566 if (!h->needs_plt
2567 && h->type != STT_GNU_IFUNC
2568 && (h->def_regular
2569 || !h->def_dynamic
2570 || (!h->ref_regular
2571 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2572 {
2573 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2574 return TRUE;
2575 }
2576
2577 /* If we've already adjusted this symbol, don't do it again. This
2578 can happen via a recursive call. */
2579 if (h->dynamic_adjusted)
2580 return TRUE;
2581
2582 /* Don't look at this symbol again. Note that we must set this
2583 after checking the above conditions, because we may look at a
2584 symbol once, decide not to do anything, and then get called
2585 recursively later after REF_REGULAR is set below. */
2586 h->dynamic_adjusted = 1;
2587
2588 /* If this is a weak definition, and we know a real definition, and
2589 the real symbol is not itself defined by a regular object file,
2590 then get a good value for the real definition. We handle the
2591 real symbol first, for the convenience of the backend routine.
2592
2593 Note that there is a confusing case here. If the real definition
2594 is defined by a regular object file, we don't get the real symbol
2595 from the dynamic object, but we do get the weak symbol. If the
2596 processor backend uses a COPY reloc, then if some routine in the
2597 dynamic object changes the real symbol, we will not see that
2598 change in the corresponding weak symbol. This is the way other
2599 ELF linkers work as well, and seems to be a result of the shared
2600 library model.
2601
2602 I will clarify this issue. Most SVR4 shared libraries define the
2603 variable _timezone and define timezone as a weak synonym. The
2604 tzset call changes _timezone. If you write
2605 extern int timezone;
2606 int _timezone = 5;
2607 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2608 you might expect that, since timezone is a synonym for _timezone,
2609 the same number will print both times. However, if the processor
2610 backend uses a COPY reloc, then actually timezone will be copied
2611 into your process image, and, since you define _timezone
2612 yourself, _timezone will not. Thus timezone and _timezone will
2613 wind up at different memory locations. The tzset call will set
2614 _timezone, leaving timezone unchanged. */
2615
2616 if (h->u.weakdef != NULL)
2617 {
2618 /* If we get to this point, there is an implicit reference to
2619 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2620 h->u.weakdef->ref_regular = 1;
2621
2622 /* Ensure that the backend adjust_dynamic_symbol function sees
2623 H->U.WEAKDEF before H by recursively calling ourselves. */
2624 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2625 return FALSE;
2626 }
2627
2628 /* If a symbol has no type and no size and does not require a PLT
2629 entry, then we are probably about to do the wrong thing here: we
2630 are probably going to create a COPY reloc for an empty object.
2631 This case can arise when a shared object is built with assembly
2632 code, and the assembly code fails to set the symbol type. */
2633 if (h->size == 0
2634 && h->type == STT_NOTYPE
2635 && !h->needs_plt)
2636 (*_bfd_error_handler)
2637 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2638 h->root.root.string);
2639
2640 dynobj = elf_hash_table (eif->info)->dynobj;
2641 bed = get_elf_backend_data (dynobj);
2642
2643 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2644 {
2645 eif->failed = TRUE;
2646 return FALSE;
2647 }
2648
2649 return TRUE;
2650 }
2651
2652 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2653 DYNBSS. */
2654
2655 bfd_boolean
2656 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2657 asection *dynbss)
2658 {
2659 unsigned int power_of_two;
2660 bfd_vma mask;
2661 asection *sec = h->root.u.def.section;
2662
2663 /* The section aligment of definition is the maximum alignment
2664 requirement of symbols defined in the section. Since we don't
2665 know the symbol alignment requirement, we start with the
2666 maximum alignment and check low bits of the symbol address
2667 for the minimum alignment. */
2668 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2669 mask = ((bfd_vma) 1 << power_of_two) - 1;
2670 while ((h->root.u.def.value & mask) != 0)
2671 {
2672 mask >>= 1;
2673 --power_of_two;
2674 }
2675
2676 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2677 dynbss))
2678 {
2679 /* Adjust the section alignment if needed. */
2680 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2681 power_of_two))
2682 return FALSE;
2683 }
2684
2685 /* We make sure that the symbol will be aligned properly. */
2686 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2687
2688 /* Define the symbol as being at this point in DYNBSS. */
2689 h->root.u.def.section = dynbss;
2690 h->root.u.def.value = dynbss->size;
2691
2692 /* Increment the size of DYNBSS to make room for the symbol. */
2693 dynbss->size += h->size;
2694
2695 return TRUE;
2696 }
2697
2698 /* Adjust all external symbols pointing into SEC_MERGE sections
2699 to reflect the object merging within the sections. */
2700
2701 static bfd_boolean
2702 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2703 {
2704 asection *sec;
2705
2706 if ((h->root.type == bfd_link_hash_defined
2707 || h->root.type == bfd_link_hash_defweak)
2708 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2709 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2710 {
2711 bfd *output_bfd = (bfd *) data;
2712
2713 h->root.u.def.value =
2714 _bfd_merged_section_offset (output_bfd,
2715 &h->root.u.def.section,
2716 elf_section_data (sec)->sec_info,
2717 h->root.u.def.value);
2718 }
2719
2720 return TRUE;
2721 }
2722
2723 /* Returns false if the symbol referred to by H should be considered
2724 to resolve local to the current module, and true if it should be
2725 considered to bind dynamically. */
2726
2727 bfd_boolean
2728 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2729 struct bfd_link_info *info,
2730 bfd_boolean not_local_protected)
2731 {
2732 bfd_boolean binding_stays_local_p;
2733 const struct elf_backend_data *bed;
2734 struct elf_link_hash_table *hash_table;
2735
2736 if (h == NULL)
2737 return FALSE;
2738
2739 while (h->root.type == bfd_link_hash_indirect
2740 || h->root.type == bfd_link_hash_warning)
2741 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2742
2743 /* If it was forced local, then clearly it's not dynamic. */
2744 if (h->dynindx == -1)
2745 return FALSE;
2746 if (h->forced_local)
2747 return FALSE;
2748
2749 /* Identify the cases where name binding rules say that a
2750 visible symbol resolves locally. */
2751 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2752
2753 switch (ELF_ST_VISIBILITY (h->other))
2754 {
2755 case STV_INTERNAL:
2756 case STV_HIDDEN:
2757 return FALSE;
2758
2759 case STV_PROTECTED:
2760 hash_table = elf_hash_table (info);
2761 if (!is_elf_hash_table (hash_table))
2762 return FALSE;
2763
2764 bed = get_elf_backend_data (hash_table->dynobj);
2765
2766 /* Proper resolution for function pointer equality may require
2767 that these symbols perhaps be resolved dynamically, even though
2768 we should be resolving them to the current module. */
2769 if (!not_local_protected || !bed->is_function_type (h->type))
2770 binding_stays_local_p = TRUE;
2771 break;
2772
2773 default:
2774 break;
2775 }
2776
2777 /* If it isn't defined locally, then clearly it's dynamic. */
2778 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2779 return TRUE;
2780
2781 /* Otherwise, the symbol is dynamic if binding rules don't tell
2782 us that it remains local. */
2783 return !binding_stays_local_p;
2784 }
2785
2786 /* Return true if the symbol referred to by H should be considered
2787 to resolve local to the current module, and false otherwise. Differs
2788 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2789 undefined symbols. The two functions are virtually identical except
2790 for the place where forced_local and dynindx == -1 are tested. If
2791 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2792 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2793 the symbol is local only for defined symbols.
2794 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2795 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2796 treatment of undefined weak symbols. For those that do not make
2797 undefined weak symbols dynamic, both functions may return false. */
2798
2799 bfd_boolean
2800 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2801 struct bfd_link_info *info,
2802 bfd_boolean local_protected)
2803 {
2804 const struct elf_backend_data *bed;
2805 struct elf_link_hash_table *hash_table;
2806
2807 /* If it's a local sym, of course we resolve locally. */
2808 if (h == NULL)
2809 return TRUE;
2810
2811 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2812 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2813 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2814 return TRUE;
2815
2816 /* Common symbols that become definitions don't get the DEF_REGULAR
2817 flag set, so test it first, and don't bail out. */
2818 if (ELF_COMMON_DEF_P (h))
2819 /* Do nothing. */;
2820 /* If we don't have a definition in a regular file, then we can't
2821 resolve locally. The sym is either undefined or dynamic. */
2822 else if (!h->def_regular)
2823 return FALSE;
2824
2825 /* Forced local symbols resolve locally. */
2826 if (h->forced_local)
2827 return TRUE;
2828
2829 /* As do non-dynamic symbols. */
2830 if (h->dynindx == -1)
2831 return TRUE;
2832
2833 /* At this point, we know the symbol is defined and dynamic. In an
2834 executable it must resolve locally, likewise when building symbolic
2835 shared libraries. */
2836 if (info->executable || SYMBOLIC_BIND (info, h))
2837 return TRUE;
2838
2839 /* Now deal with defined dynamic symbols in shared libraries. Ones
2840 with default visibility might not resolve locally. */
2841 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2842 return FALSE;
2843
2844 hash_table = elf_hash_table (info);
2845 if (!is_elf_hash_table (hash_table))
2846 return TRUE;
2847
2848 bed = get_elf_backend_data (hash_table->dynobj);
2849
2850 /* STV_PROTECTED non-function symbols are local. */
2851 if (!bed->is_function_type (h->type))
2852 return TRUE;
2853
2854 /* Function pointer equality tests may require that STV_PROTECTED
2855 symbols be treated as dynamic symbols. If the address of a
2856 function not defined in an executable is set to that function's
2857 plt entry in the executable, then the address of the function in
2858 a shared library must also be the plt entry in the executable. */
2859 return local_protected;
2860 }
2861
2862 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2863 aligned. Returns the first TLS output section. */
2864
2865 struct bfd_section *
2866 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2867 {
2868 struct bfd_section *sec, *tls;
2869 unsigned int align = 0;
2870
2871 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2872 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2873 break;
2874 tls = sec;
2875
2876 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2877 if (sec->alignment_power > align)
2878 align = sec->alignment_power;
2879
2880 elf_hash_table (info)->tls_sec = tls;
2881
2882 /* Ensure the alignment of the first section is the largest alignment,
2883 so that the tls segment starts aligned. */
2884 if (tls != NULL)
2885 tls->alignment_power = align;
2886
2887 return tls;
2888 }
2889
2890 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2891 static bfd_boolean
2892 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2893 Elf_Internal_Sym *sym)
2894 {
2895 const struct elf_backend_data *bed;
2896
2897 /* Local symbols do not count, but target specific ones might. */
2898 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2899 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2900 return FALSE;
2901
2902 bed = get_elf_backend_data (abfd);
2903 /* Function symbols do not count. */
2904 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2905 return FALSE;
2906
2907 /* If the section is undefined, then so is the symbol. */
2908 if (sym->st_shndx == SHN_UNDEF)
2909 return FALSE;
2910
2911 /* If the symbol is defined in the common section, then
2912 it is a common definition and so does not count. */
2913 if (bed->common_definition (sym))
2914 return FALSE;
2915
2916 /* If the symbol is in a target specific section then we
2917 must rely upon the backend to tell us what it is. */
2918 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2919 /* FIXME - this function is not coded yet:
2920
2921 return _bfd_is_global_symbol_definition (abfd, sym);
2922
2923 Instead for now assume that the definition is not global,
2924 Even if this is wrong, at least the linker will behave
2925 in the same way that it used to do. */
2926 return FALSE;
2927
2928 return TRUE;
2929 }
2930
2931 /* Search the symbol table of the archive element of the archive ABFD
2932 whose archive map contains a mention of SYMDEF, and determine if
2933 the symbol is defined in this element. */
2934 static bfd_boolean
2935 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2936 {
2937 Elf_Internal_Shdr * hdr;
2938 bfd_size_type symcount;
2939 bfd_size_type extsymcount;
2940 bfd_size_type extsymoff;
2941 Elf_Internal_Sym *isymbuf;
2942 Elf_Internal_Sym *isym;
2943 Elf_Internal_Sym *isymend;
2944 bfd_boolean result;
2945
2946 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2947 if (abfd == NULL)
2948 return FALSE;
2949
2950 if (! bfd_check_format (abfd, bfd_object))
2951 return FALSE;
2952
2953 /* If we have already included the element containing this symbol in the
2954 link then we do not need to include it again. Just claim that any symbol
2955 it contains is not a definition, so that our caller will not decide to
2956 (re)include this element. */
2957 if (abfd->archive_pass)
2958 return FALSE;
2959
2960 /* Select the appropriate symbol table. */
2961 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2962 hdr = &elf_tdata (abfd)->symtab_hdr;
2963 else
2964 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2965
2966 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2967
2968 /* The sh_info field of the symtab header tells us where the
2969 external symbols start. We don't care about the local symbols. */
2970 if (elf_bad_symtab (abfd))
2971 {
2972 extsymcount = symcount;
2973 extsymoff = 0;
2974 }
2975 else
2976 {
2977 extsymcount = symcount - hdr->sh_info;
2978 extsymoff = hdr->sh_info;
2979 }
2980
2981 if (extsymcount == 0)
2982 return FALSE;
2983
2984 /* Read in the symbol table. */
2985 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2986 NULL, NULL, NULL);
2987 if (isymbuf == NULL)
2988 return FALSE;
2989
2990 /* Scan the symbol table looking for SYMDEF. */
2991 result = FALSE;
2992 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2993 {
2994 const char *name;
2995
2996 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2997 isym->st_name);
2998 if (name == NULL)
2999 break;
3000
3001 if (strcmp (name, symdef->name) == 0)
3002 {
3003 result = is_global_data_symbol_definition (abfd, isym);
3004 break;
3005 }
3006 }
3007
3008 free (isymbuf);
3009
3010 return result;
3011 }
3012 \f
3013 /* Add an entry to the .dynamic table. */
3014
3015 bfd_boolean
3016 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3017 bfd_vma tag,
3018 bfd_vma val)
3019 {
3020 struct elf_link_hash_table *hash_table;
3021 const struct elf_backend_data *bed;
3022 asection *s;
3023 bfd_size_type newsize;
3024 bfd_byte *newcontents;
3025 Elf_Internal_Dyn dyn;
3026
3027 hash_table = elf_hash_table (info);
3028 if (! is_elf_hash_table (hash_table))
3029 return FALSE;
3030
3031 bed = get_elf_backend_data (hash_table->dynobj);
3032 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3033 BFD_ASSERT (s != NULL);
3034
3035 newsize = s->size + bed->s->sizeof_dyn;
3036 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3037 if (newcontents == NULL)
3038 return FALSE;
3039
3040 dyn.d_tag = tag;
3041 dyn.d_un.d_val = val;
3042 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3043
3044 s->size = newsize;
3045 s->contents = newcontents;
3046
3047 return TRUE;
3048 }
3049
3050 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3051 otherwise just check whether one already exists. Returns -1 on error,
3052 1 if a DT_NEEDED tag already exists, and 0 on success. */
3053
3054 static int
3055 elf_add_dt_needed_tag (bfd *abfd,
3056 struct bfd_link_info *info,
3057 const char *soname,
3058 bfd_boolean do_it)
3059 {
3060 struct elf_link_hash_table *hash_table;
3061 bfd_size_type strindex;
3062
3063 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3064 return -1;
3065
3066 hash_table = elf_hash_table (info);
3067 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3068 if (strindex == (bfd_size_type) -1)
3069 return -1;
3070
3071 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3072 {
3073 asection *sdyn;
3074 const struct elf_backend_data *bed;
3075 bfd_byte *extdyn;
3076
3077 bed = get_elf_backend_data (hash_table->dynobj);
3078 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3079 if (sdyn != NULL)
3080 for (extdyn = sdyn->contents;
3081 extdyn < sdyn->contents + sdyn->size;
3082 extdyn += bed->s->sizeof_dyn)
3083 {
3084 Elf_Internal_Dyn dyn;
3085
3086 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3087 if (dyn.d_tag == DT_NEEDED
3088 && dyn.d_un.d_val == strindex)
3089 {
3090 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3091 return 1;
3092 }
3093 }
3094 }
3095
3096 if (do_it)
3097 {
3098 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3099 return -1;
3100
3101 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3102 return -1;
3103 }
3104 else
3105 /* We were just checking for existence of the tag. */
3106 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3107
3108 return 0;
3109 }
3110
3111 static bfd_boolean
3112 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3113 {
3114 for (; needed != NULL; needed = needed->next)
3115 if (strcmp (soname, needed->name) == 0)
3116 return TRUE;
3117
3118 return FALSE;
3119 }
3120
3121 /* Sort symbol by value, section, and size. */
3122 static int
3123 elf_sort_symbol (const void *arg1, const void *arg2)
3124 {
3125 const struct elf_link_hash_entry *h1;
3126 const struct elf_link_hash_entry *h2;
3127 bfd_signed_vma vdiff;
3128
3129 h1 = *(const struct elf_link_hash_entry **) arg1;
3130 h2 = *(const struct elf_link_hash_entry **) arg2;
3131 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3132 if (vdiff != 0)
3133 return vdiff > 0 ? 1 : -1;
3134 else
3135 {
3136 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3137 if (sdiff != 0)
3138 return sdiff > 0 ? 1 : -1;
3139 }
3140 vdiff = h1->size - h2->size;
3141 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3142 }
3143
3144 /* This function is used to adjust offsets into .dynstr for
3145 dynamic symbols. This is called via elf_link_hash_traverse. */
3146
3147 static bfd_boolean
3148 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3149 {
3150 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3151
3152 if (h->dynindx != -1)
3153 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3154 return TRUE;
3155 }
3156
3157 /* Assign string offsets in .dynstr, update all structures referencing
3158 them. */
3159
3160 static bfd_boolean
3161 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3162 {
3163 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3164 struct elf_link_local_dynamic_entry *entry;
3165 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3166 bfd *dynobj = hash_table->dynobj;
3167 asection *sdyn;
3168 bfd_size_type size;
3169 const struct elf_backend_data *bed;
3170 bfd_byte *extdyn;
3171
3172 _bfd_elf_strtab_finalize (dynstr);
3173 size = _bfd_elf_strtab_size (dynstr);
3174
3175 bed = get_elf_backend_data (dynobj);
3176 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3177 BFD_ASSERT (sdyn != NULL);
3178
3179 /* Update all .dynamic entries referencing .dynstr strings. */
3180 for (extdyn = sdyn->contents;
3181 extdyn < sdyn->contents + sdyn->size;
3182 extdyn += bed->s->sizeof_dyn)
3183 {
3184 Elf_Internal_Dyn dyn;
3185
3186 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3187 switch (dyn.d_tag)
3188 {
3189 case DT_STRSZ:
3190 dyn.d_un.d_val = size;
3191 break;
3192 case DT_NEEDED:
3193 case DT_SONAME:
3194 case DT_RPATH:
3195 case DT_RUNPATH:
3196 case DT_FILTER:
3197 case DT_AUXILIARY:
3198 case DT_AUDIT:
3199 case DT_DEPAUDIT:
3200 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3201 break;
3202 default:
3203 continue;
3204 }
3205 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3206 }
3207
3208 /* Now update local dynamic symbols. */
3209 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3210 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3211 entry->isym.st_name);
3212
3213 /* And the rest of dynamic symbols. */
3214 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3215
3216 /* Adjust version definitions. */
3217 if (elf_tdata (output_bfd)->cverdefs)
3218 {
3219 asection *s;
3220 bfd_byte *p;
3221 bfd_size_type i;
3222 Elf_Internal_Verdef def;
3223 Elf_Internal_Verdaux defaux;
3224
3225 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3226 p = s->contents;
3227 do
3228 {
3229 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3230 &def);
3231 p += sizeof (Elf_External_Verdef);
3232 if (def.vd_aux != sizeof (Elf_External_Verdef))
3233 continue;
3234 for (i = 0; i < def.vd_cnt; ++i)
3235 {
3236 _bfd_elf_swap_verdaux_in (output_bfd,
3237 (Elf_External_Verdaux *) p, &defaux);
3238 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3239 defaux.vda_name);
3240 _bfd_elf_swap_verdaux_out (output_bfd,
3241 &defaux, (Elf_External_Verdaux *) p);
3242 p += sizeof (Elf_External_Verdaux);
3243 }
3244 }
3245 while (def.vd_next);
3246 }
3247
3248 /* Adjust version references. */
3249 if (elf_tdata (output_bfd)->verref)
3250 {
3251 asection *s;
3252 bfd_byte *p;
3253 bfd_size_type i;
3254 Elf_Internal_Verneed need;
3255 Elf_Internal_Vernaux needaux;
3256
3257 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3258 p = s->contents;
3259 do
3260 {
3261 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3262 &need);
3263 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3264 _bfd_elf_swap_verneed_out (output_bfd, &need,
3265 (Elf_External_Verneed *) p);
3266 p += sizeof (Elf_External_Verneed);
3267 for (i = 0; i < need.vn_cnt; ++i)
3268 {
3269 _bfd_elf_swap_vernaux_in (output_bfd,
3270 (Elf_External_Vernaux *) p, &needaux);
3271 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3272 needaux.vna_name);
3273 _bfd_elf_swap_vernaux_out (output_bfd,
3274 &needaux,
3275 (Elf_External_Vernaux *) p);
3276 p += sizeof (Elf_External_Vernaux);
3277 }
3278 }
3279 while (need.vn_next);
3280 }
3281
3282 return TRUE;
3283 }
3284 \f
3285 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3286 The default is to only match when the INPUT and OUTPUT are exactly
3287 the same target. */
3288
3289 bfd_boolean
3290 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3291 const bfd_target *output)
3292 {
3293 return input == output;
3294 }
3295
3296 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3297 This version is used when different targets for the same architecture
3298 are virtually identical. */
3299
3300 bfd_boolean
3301 _bfd_elf_relocs_compatible (const bfd_target *input,
3302 const bfd_target *output)
3303 {
3304 const struct elf_backend_data *obed, *ibed;
3305
3306 if (input == output)
3307 return TRUE;
3308
3309 ibed = xvec_get_elf_backend_data (input);
3310 obed = xvec_get_elf_backend_data (output);
3311
3312 if (ibed->arch != obed->arch)
3313 return FALSE;
3314
3315 /* If both backends are using this function, deem them compatible. */
3316 return ibed->relocs_compatible == obed->relocs_compatible;
3317 }
3318
3319 /* Make a special call to the linker "notice" function to tell it that
3320 we are about to handle an as-needed lib, or have finished
3321 processing the lib. */
3322
3323 bfd_boolean
3324 _bfd_elf_notice_as_needed (bfd *ibfd,
3325 struct bfd_link_info *info,
3326 enum notice_asneeded_action act)
3327 {
3328 return (*info->callbacks->notice) (info, NULL, ibfd, NULL, act, 0, NULL);
3329 }
3330
3331 /* Add symbols from an ELF object file to the linker hash table. */
3332
3333 static bfd_boolean
3334 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3335 {
3336 Elf_Internal_Ehdr *ehdr;
3337 Elf_Internal_Shdr *hdr;
3338 bfd_size_type symcount;
3339 bfd_size_type extsymcount;
3340 bfd_size_type extsymoff;
3341 struct elf_link_hash_entry **sym_hash;
3342 bfd_boolean dynamic;
3343 Elf_External_Versym *extversym = NULL;
3344 Elf_External_Versym *ever;
3345 struct elf_link_hash_entry *weaks;
3346 struct elf_link_hash_entry **nondeflt_vers = NULL;
3347 bfd_size_type nondeflt_vers_cnt = 0;
3348 Elf_Internal_Sym *isymbuf = NULL;
3349 Elf_Internal_Sym *isym;
3350 Elf_Internal_Sym *isymend;
3351 const struct elf_backend_data *bed;
3352 bfd_boolean add_needed;
3353 struct elf_link_hash_table *htab;
3354 bfd_size_type amt;
3355 void *alloc_mark = NULL;
3356 struct bfd_hash_entry **old_table = NULL;
3357 unsigned int old_size = 0;
3358 unsigned int old_count = 0;
3359 void *old_tab = NULL;
3360 void *old_ent;
3361 struct bfd_link_hash_entry *old_undefs = NULL;
3362 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3363 long old_dynsymcount = 0;
3364 bfd_size_type old_dynstr_size = 0;
3365 size_t tabsize = 0;
3366 asection *s;
3367
3368 htab = elf_hash_table (info);
3369 bed = get_elf_backend_data (abfd);
3370
3371 if ((abfd->flags & DYNAMIC) == 0)
3372 dynamic = FALSE;
3373 else
3374 {
3375 dynamic = TRUE;
3376
3377 /* You can't use -r against a dynamic object. Also, there's no
3378 hope of using a dynamic object which does not exactly match
3379 the format of the output file. */
3380 if (info->relocatable
3381 || !is_elf_hash_table (htab)
3382 || info->output_bfd->xvec != abfd->xvec)
3383 {
3384 if (info->relocatable)
3385 bfd_set_error (bfd_error_invalid_operation);
3386 else
3387 bfd_set_error (bfd_error_wrong_format);
3388 goto error_return;
3389 }
3390 }
3391
3392 ehdr = elf_elfheader (abfd);
3393 if (info->warn_alternate_em
3394 && bed->elf_machine_code != ehdr->e_machine
3395 && ((bed->elf_machine_alt1 != 0
3396 && ehdr->e_machine == bed->elf_machine_alt1)
3397 || (bed->elf_machine_alt2 != 0
3398 && ehdr->e_machine == bed->elf_machine_alt2)))
3399 info->callbacks->einfo
3400 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3401 ehdr->e_machine, abfd, bed->elf_machine_code);
3402
3403 /* As a GNU extension, any input sections which are named
3404 .gnu.warning.SYMBOL are treated as warning symbols for the given
3405 symbol. This differs from .gnu.warning sections, which generate
3406 warnings when they are included in an output file. */
3407 /* PR 12761: Also generate this warning when building shared libraries. */
3408 for (s = abfd->sections; s != NULL; s = s->next)
3409 {
3410 const char *name;
3411
3412 name = bfd_get_section_name (abfd, s);
3413 if (CONST_STRNEQ (name, ".gnu.warning."))
3414 {
3415 char *msg;
3416 bfd_size_type sz;
3417
3418 name += sizeof ".gnu.warning." - 1;
3419
3420 /* If this is a shared object, then look up the symbol
3421 in the hash table. If it is there, and it is already
3422 been defined, then we will not be using the entry
3423 from this shared object, so we don't need to warn.
3424 FIXME: If we see the definition in a regular object
3425 later on, we will warn, but we shouldn't. The only
3426 fix is to keep track of what warnings we are supposed
3427 to emit, and then handle them all at the end of the
3428 link. */
3429 if (dynamic)
3430 {
3431 struct elf_link_hash_entry *h;
3432
3433 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3434
3435 /* FIXME: What about bfd_link_hash_common? */
3436 if (h != NULL
3437 && (h->root.type == bfd_link_hash_defined
3438 || h->root.type == bfd_link_hash_defweak))
3439 continue;
3440 }
3441
3442 sz = s->size;
3443 msg = (char *) bfd_alloc (abfd, sz + 1);
3444 if (msg == NULL)
3445 goto error_return;
3446
3447 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3448 goto error_return;
3449
3450 msg[sz] = '\0';
3451
3452 if (! (_bfd_generic_link_add_one_symbol
3453 (info, abfd, name, BSF_WARNING, s, 0, msg,
3454 FALSE, bed->collect, NULL)))
3455 goto error_return;
3456
3457 if (!info->relocatable && info->executable)
3458 {
3459 /* Clobber the section size so that the warning does
3460 not get copied into the output file. */
3461 s->size = 0;
3462
3463 /* Also set SEC_EXCLUDE, so that symbols defined in
3464 the warning section don't get copied to the output. */
3465 s->flags |= SEC_EXCLUDE;
3466 }
3467 }
3468 }
3469
3470 add_needed = TRUE;
3471 if (! dynamic)
3472 {
3473 /* If we are creating a shared library, create all the dynamic
3474 sections immediately. We need to attach them to something,
3475 so we attach them to this BFD, provided it is the right
3476 format. FIXME: If there are no input BFD's of the same
3477 format as the output, we can't make a shared library. */
3478 if (info->shared
3479 && is_elf_hash_table (htab)
3480 && info->output_bfd->xvec == abfd->xvec
3481 && !htab->dynamic_sections_created)
3482 {
3483 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3484 goto error_return;
3485 }
3486 }
3487 else if (!is_elf_hash_table (htab))
3488 goto error_return;
3489 else
3490 {
3491 const char *soname = NULL;
3492 char *audit = NULL;
3493 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3494 int ret;
3495
3496 /* ld --just-symbols and dynamic objects don't mix very well.
3497 ld shouldn't allow it. */
3498 if ((s = abfd->sections) != NULL
3499 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3500 abort ();
3501
3502 /* If this dynamic lib was specified on the command line with
3503 --as-needed in effect, then we don't want to add a DT_NEEDED
3504 tag unless the lib is actually used. Similary for libs brought
3505 in by another lib's DT_NEEDED. When --no-add-needed is used
3506 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3507 any dynamic library in DT_NEEDED tags in the dynamic lib at
3508 all. */
3509 add_needed = (elf_dyn_lib_class (abfd)
3510 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3511 | DYN_NO_NEEDED)) == 0;
3512
3513 s = bfd_get_section_by_name (abfd, ".dynamic");
3514 if (s != NULL)
3515 {
3516 bfd_byte *dynbuf;
3517 bfd_byte *extdyn;
3518 unsigned int elfsec;
3519 unsigned long shlink;
3520
3521 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3522 {
3523 error_free_dyn:
3524 free (dynbuf);
3525 goto error_return;
3526 }
3527
3528 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3529 if (elfsec == SHN_BAD)
3530 goto error_free_dyn;
3531 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3532
3533 for (extdyn = dynbuf;
3534 extdyn < dynbuf + s->size;
3535 extdyn += bed->s->sizeof_dyn)
3536 {
3537 Elf_Internal_Dyn dyn;
3538
3539 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3540 if (dyn.d_tag == DT_SONAME)
3541 {
3542 unsigned int tagv = dyn.d_un.d_val;
3543 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3544 if (soname == NULL)
3545 goto error_free_dyn;
3546 }
3547 if (dyn.d_tag == DT_NEEDED)
3548 {
3549 struct bfd_link_needed_list *n, **pn;
3550 char *fnm, *anm;
3551 unsigned int tagv = dyn.d_un.d_val;
3552
3553 amt = sizeof (struct bfd_link_needed_list);
3554 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3555 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3556 if (n == NULL || fnm == NULL)
3557 goto error_free_dyn;
3558 amt = strlen (fnm) + 1;
3559 anm = (char *) bfd_alloc (abfd, amt);
3560 if (anm == NULL)
3561 goto error_free_dyn;
3562 memcpy (anm, fnm, amt);
3563 n->name = anm;
3564 n->by = abfd;
3565 n->next = NULL;
3566 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3567 ;
3568 *pn = n;
3569 }
3570 if (dyn.d_tag == DT_RUNPATH)
3571 {
3572 struct bfd_link_needed_list *n, **pn;
3573 char *fnm, *anm;
3574 unsigned int tagv = dyn.d_un.d_val;
3575
3576 amt = sizeof (struct bfd_link_needed_list);
3577 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3578 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3579 if (n == NULL || fnm == NULL)
3580 goto error_free_dyn;
3581 amt = strlen (fnm) + 1;
3582 anm = (char *) bfd_alloc (abfd, amt);
3583 if (anm == NULL)
3584 goto error_free_dyn;
3585 memcpy (anm, fnm, amt);
3586 n->name = anm;
3587 n->by = abfd;
3588 n->next = NULL;
3589 for (pn = & runpath;
3590 *pn != NULL;
3591 pn = &(*pn)->next)
3592 ;
3593 *pn = n;
3594 }
3595 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3596 if (!runpath && dyn.d_tag == DT_RPATH)
3597 {
3598 struct bfd_link_needed_list *n, **pn;
3599 char *fnm, *anm;
3600 unsigned int tagv = dyn.d_un.d_val;
3601
3602 amt = sizeof (struct bfd_link_needed_list);
3603 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3604 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3605 if (n == NULL || fnm == NULL)
3606 goto error_free_dyn;
3607 amt = strlen (fnm) + 1;
3608 anm = (char *) bfd_alloc (abfd, amt);
3609 if (anm == NULL)
3610 goto error_free_dyn;
3611 memcpy (anm, fnm, amt);
3612 n->name = anm;
3613 n->by = abfd;
3614 n->next = NULL;
3615 for (pn = & rpath;
3616 *pn != NULL;
3617 pn = &(*pn)->next)
3618 ;
3619 *pn = n;
3620 }
3621 if (dyn.d_tag == DT_AUDIT)
3622 {
3623 unsigned int tagv = dyn.d_un.d_val;
3624 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3625 }
3626 }
3627
3628 free (dynbuf);
3629 }
3630
3631 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3632 frees all more recently bfd_alloc'd blocks as well. */
3633 if (runpath)
3634 rpath = runpath;
3635
3636 if (rpath)
3637 {
3638 struct bfd_link_needed_list **pn;
3639 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3640 ;
3641 *pn = rpath;
3642 }
3643
3644 /* We do not want to include any of the sections in a dynamic
3645 object in the output file. We hack by simply clobbering the
3646 list of sections in the BFD. This could be handled more
3647 cleanly by, say, a new section flag; the existing
3648 SEC_NEVER_LOAD flag is not the one we want, because that one
3649 still implies that the section takes up space in the output
3650 file. */
3651 bfd_section_list_clear (abfd);
3652
3653 /* Find the name to use in a DT_NEEDED entry that refers to this
3654 object. If the object has a DT_SONAME entry, we use it.
3655 Otherwise, if the generic linker stuck something in
3656 elf_dt_name, we use that. Otherwise, we just use the file
3657 name. */
3658 if (soname == NULL || *soname == '\0')
3659 {
3660 soname = elf_dt_name (abfd);
3661 if (soname == NULL || *soname == '\0')
3662 soname = bfd_get_filename (abfd);
3663 }
3664
3665 /* Save the SONAME because sometimes the linker emulation code
3666 will need to know it. */
3667 elf_dt_name (abfd) = soname;
3668
3669 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3670 if (ret < 0)
3671 goto error_return;
3672
3673 /* If we have already included this dynamic object in the
3674 link, just ignore it. There is no reason to include a
3675 particular dynamic object more than once. */
3676 if (ret > 0)
3677 return TRUE;
3678
3679 /* Save the DT_AUDIT entry for the linker emulation code. */
3680 elf_dt_audit (abfd) = audit;
3681 }
3682
3683 /* If this is a dynamic object, we always link against the .dynsym
3684 symbol table, not the .symtab symbol table. The dynamic linker
3685 will only see the .dynsym symbol table, so there is no reason to
3686 look at .symtab for a dynamic object. */
3687
3688 if (! dynamic || elf_dynsymtab (abfd) == 0)
3689 hdr = &elf_tdata (abfd)->symtab_hdr;
3690 else
3691 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3692
3693 symcount = hdr->sh_size / bed->s->sizeof_sym;
3694
3695 /* The sh_info field of the symtab header tells us where the
3696 external symbols start. We don't care about the local symbols at
3697 this point. */
3698 if (elf_bad_symtab (abfd))
3699 {
3700 extsymcount = symcount;
3701 extsymoff = 0;
3702 }
3703 else
3704 {
3705 extsymcount = symcount - hdr->sh_info;
3706 extsymoff = hdr->sh_info;
3707 }
3708
3709 sym_hash = elf_sym_hashes (abfd);
3710 if (extsymcount != 0)
3711 {
3712 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3713 NULL, NULL, NULL);
3714 if (isymbuf == NULL)
3715 goto error_return;
3716
3717 if (sym_hash == NULL)
3718 {
3719 /* We store a pointer to the hash table entry for each
3720 external symbol. */
3721 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3722 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3723 if (sym_hash == NULL)
3724 goto error_free_sym;
3725 elf_sym_hashes (abfd) = sym_hash;
3726 }
3727 }
3728
3729 if (dynamic)
3730 {
3731 /* Read in any version definitions. */
3732 if (!_bfd_elf_slurp_version_tables (abfd,
3733 info->default_imported_symver))
3734 goto error_free_sym;
3735
3736 /* Read in the symbol versions, but don't bother to convert them
3737 to internal format. */
3738 if (elf_dynversym (abfd) != 0)
3739 {
3740 Elf_Internal_Shdr *versymhdr;
3741
3742 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3743 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3744 if (extversym == NULL)
3745 goto error_free_sym;
3746 amt = versymhdr->sh_size;
3747 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3748 || bfd_bread (extversym, amt, abfd) != amt)
3749 goto error_free_vers;
3750 }
3751 }
3752
3753 /* If we are loading an as-needed shared lib, save the symbol table
3754 state before we start adding symbols. If the lib turns out
3755 to be unneeded, restore the state. */
3756 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3757 {
3758 unsigned int i;
3759 size_t entsize;
3760
3761 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3762 {
3763 struct bfd_hash_entry *p;
3764 struct elf_link_hash_entry *h;
3765
3766 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3767 {
3768 h = (struct elf_link_hash_entry *) p;
3769 entsize += htab->root.table.entsize;
3770 if (h->root.type == bfd_link_hash_warning)
3771 entsize += htab->root.table.entsize;
3772 }
3773 }
3774
3775 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3776 old_tab = bfd_malloc (tabsize + entsize);
3777 if (old_tab == NULL)
3778 goto error_free_vers;
3779
3780 /* Remember the current objalloc pointer, so that all mem for
3781 symbols added can later be reclaimed. */
3782 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3783 if (alloc_mark == NULL)
3784 goto error_free_vers;
3785
3786 /* Make a special call to the linker "notice" function to
3787 tell it that we are about to handle an as-needed lib. */
3788 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3789 goto error_free_vers;
3790
3791 /* Clone the symbol table. Remember some pointers into the
3792 symbol table, and dynamic symbol count. */
3793 old_ent = (char *) old_tab + tabsize;
3794 memcpy (old_tab, htab->root.table.table, tabsize);
3795 old_undefs = htab->root.undefs;
3796 old_undefs_tail = htab->root.undefs_tail;
3797 old_table = htab->root.table.table;
3798 old_size = htab->root.table.size;
3799 old_count = htab->root.table.count;
3800 old_dynsymcount = htab->dynsymcount;
3801 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3802
3803 for (i = 0; i < htab->root.table.size; i++)
3804 {
3805 struct bfd_hash_entry *p;
3806 struct elf_link_hash_entry *h;
3807
3808 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3809 {
3810 memcpy (old_ent, p, htab->root.table.entsize);
3811 old_ent = (char *) old_ent + htab->root.table.entsize;
3812 h = (struct elf_link_hash_entry *) p;
3813 if (h->root.type == bfd_link_hash_warning)
3814 {
3815 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3816 old_ent = (char *) old_ent + htab->root.table.entsize;
3817 }
3818 }
3819 }
3820 }
3821
3822 weaks = NULL;
3823 ever = extversym != NULL ? extversym + extsymoff : NULL;
3824 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3825 isym < isymend;
3826 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3827 {
3828 int bind;
3829 bfd_vma value;
3830 asection *sec, *new_sec;
3831 flagword flags;
3832 const char *name;
3833 struct elf_link_hash_entry *h;
3834 struct elf_link_hash_entry *hi;
3835 bfd_boolean definition;
3836 bfd_boolean size_change_ok;
3837 bfd_boolean type_change_ok;
3838 bfd_boolean new_weakdef;
3839 bfd_boolean new_weak;
3840 bfd_boolean old_weak;
3841 bfd_boolean override;
3842 bfd_boolean common;
3843 unsigned int old_alignment;
3844 bfd *old_bfd;
3845
3846 override = FALSE;
3847
3848 flags = BSF_NO_FLAGS;
3849 sec = NULL;
3850 value = isym->st_value;
3851 common = bed->common_definition (isym);
3852
3853 bind = ELF_ST_BIND (isym->st_info);
3854 switch (bind)
3855 {
3856 case STB_LOCAL:
3857 /* This should be impossible, since ELF requires that all
3858 global symbols follow all local symbols, and that sh_info
3859 point to the first global symbol. Unfortunately, Irix 5
3860 screws this up. */
3861 continue;
3862
3863 case STB_GLOBAL:
3864 if (isym->st_shndx != SHN_UNDEF && !common)
3865 flags = BSF_GLOBAL;
3866 break;
3867
3868 case STB_WEAK:
3869 flags = BSF_WEAK;
3870 break;
3871
3872 case STB_GNU_UNIQUE:
3873 flags = BSF_GNU_UNIQUE;
3874 break;
3875
3876 default:
3877 /* Leave it up to the processor backend. */
3878 break;
3879 }
3880
3881 if (isym->st_shndx == SHN_UNDEF)
3882 sec = bfd_und_section_ptr;
3883 else if (isym->st_shndx == SHN_ABS)
3884 sec = bfd_abs_section_ptr;
3885 else if (isym->st_shndx == SHN_COMMON)
3886 {
3887 sec = bfd_com_section_ptr;
3888 /* What ELF calls the size we call the value. What ELF
3889 calls the value we call the alignment. */
3890 value = isym->st_size;
3891 }
3892 else
3893 {
3894 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3895 if (sec == NULL)
3896 sec = bfd_abs_section_ptr;
3897 else if (discarded_section (sec))
3898 {
3899 /* Symbols from discarded section are undefined. We keep
3900 its visibility. */
3901 sec = bfd_und_section_ptr;
3902 isym->st_shndx = SHN_UNDEF;
3903 }
3904 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3905 value -= sec->vma;
3906 }
3907
3908 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3909 isym->st_name);
3910 if (name == NULL)
3911 goto error_free_vers;
3912
3913 if (isym->st_shndx == SHN_COMMON
3914 && (abfd->flags & BFD_PLUGIN) != 0)
3915 {
3916 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3917
3918 if (xc == NULL)
3919 {
3920 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3921 | SEC_EXCLUDE);
3922 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3923 if (xc == NULL)
3924 goto error_free_vers;
3925 }
3926 sec = xc;
3927 }
3928 else if (isym->st_shndx == SHN_COMMON
3929 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3930 && !info->relocatable)
3931 {
3932 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3933
3934 if (tcomm == NULL)
3935 {
3936 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3937 | SEC_LINKER_CREATED);
3938 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3939 if (tcomm == NULL)
3940 goto error_free_vers;
3941 }
3942 sec = tcomm;
3943 }
3944 else if (bed->elf_add_symbol_hook)
3945 {
3946 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3947 &sec, &value))
3948 goto error_free_vers;
3949
3950 /* The hook function sets the name to NULL if this symbol
3951 should be skipped for some reason. */
3952 if (name == NULL)
3953 continue;
3954 }
3955
3956 /* Sanity check that all possibilities were handled. */
3957 if (sec == NULL)
3958 {
3959 bfd_set_error (bfd_error_bad_value);
3960 goto error_free_vers;
3961 }
3962
3963 /* Silently discard TLS symbols from --just-syms. There's
3964 no way to combine a static TLS block with a new TLS block
3965 for this executable. */
3966 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3967 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3968 continue;
3969
3970 if (bfd_is_und_section (sec)
3971 || bfd_is_com_section (sec))
3972 definition = FALSE;
3973 else
3974 definition = TRUE;
3975
3976 size_change_ok = FALSE;
3977 type_change_ok = bed->type_change_ok;
3978 old_weak = FALSE;
3979 old_alignment = 0;
3980 old_bfd = NULL;
3981 new_sec = sec;
3982
3983 if (is_elf_hash_table (htab))
3984 {
3985 Elf_Internal_Versym iver;
3986 unsigned int vernum = 0;
3987 bfd_boolean skip;
3988
3989 if (ever == NULL)
3990 {
3991 if (info->default_imported_symver)
3992 /* Use the default symbol version created earlier. */
3993 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3994 else
3995 iver.vs_vers = 0;
3996 }
3997 else
3998 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3999
4000 vernum = iver.vs_vers & VERSYM_VERSION;
4001
4002 /* If this is a hidden symbol, or if it is not version
4003 1, we append the version name to the symbol name.
4004 However, we do not modify a non-hidden absolute symbol
4005 if it is not a function, because it might be the version
4006 symbol itself. FIXME: What if it isn't? */
4007 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4008 || (vernum > 1
4009 && (!bfd_is_abs_section (sec)
4010 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4011 {
4012 const char *verstr;
4013 size_t namelen, verlen, newlen;
4014 char *newname, *p;
4015
4016 if (isym->st_shndx != SHN_UNDEF)
4017 {
4018 if (vernum > elf_tdata (abfd)->cverdefs)
4019 verstr = NULL;
4020 else if (vernum > 1)
4021 verstr =
4022 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4023 else
4024 verstr = "";
4025
4026 if (verstr == NULL)
4027 {
4028 (*_bfd_error_handler)
4029 (_("%B: %s: invalid version %u (max %d)"),
4030 abfd, name, vernum,
4031 elf_tdata (abfd)->cverdefs);
4032 bfd_set_error (bfd_error_bad_value);
4033 goto error_free_vers;
4034 }
4035 }
4036 else
4037 {
4038 /* We cannot simply test for the number of
4039 entries in the VERNEED section since the
4040 numbers for the needed versions do not start
4041 at 0. */
4042 Elf_Internal_Verneed *t;
4043
4044 verstr = NULL;
4045 for (t = elf_tdata (abfd)->verref;
4046 t != NULL;
4047 t = t->vn_nextref)
4048 {
4049 Elf_Internal_Vernaux *a;
4050
4051 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4052 {
4053 if (a->vna_other == vernum)
4054 {
4055 verstr = a->vna_nodename;
4056 break;
4057 }
4058 }
4059 if (a != NULL)
4060 break;
4061 }
4062 if (verstr == NULL)
4063 {
4064 (*_bfd_error_handler)
4065 (_("%B: %s: invalid needed version %d"),
4066 abfd, name, vernum);
4067 bfd_set_error (bfd_error_bad_value);
4068 goto error_free_vers;
4069 }
4070 }
4071
4072 namelen = strlen (name);
4073 verlen = strlen (verstr);
4074 newlen = namelen + verlen + 2;
4075 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4076 && isym->st_shndx != SHN_UNDEF)
4077 ++newlen;
4078
4079 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4080 if (newname == NULL)
4081 goto error_free_vers;
4082 memcpy (newname, name, namelen);
4083 p = newname + namelen;
4084 *p++ = ELF_VER_CHR;
4085 /* If this is a defined non-hidden version symbol,
4086 we add another @ to the name. This indicates the
4087 default version of the symbol. */
4088 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4089 && isym->st_shndx != SHN_UNDEF)
4090 *p++ = ELF_VER_CHR;
4091 memcpy (p, verstr, verlen + 1);
4092
4093 name = newname;
4094 }
4095
4096 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4097 sym_hash, &old_bfd, &old_weak,
4098 &old_alignment, &skip, &override,
4099 &type_change_ok, &size_change_ok))
4100 goto error_free_vers;
4101
4102 if (skip)
4103 continue;
4104
4105 if (override)
4106 definition = FALSE;
4107
4108 h = *sym_hash;
4109 while (h->root.type == bfd_link_hash_indirect
4110 || h->root.type == bfd_link_hash_warning)
4111 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4112
4113 if (elf_tdata (abfd)->verdef != NULL
4114 && vernum > 1
4115 && definition)
4116 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4117 }
4118
4119 if (! (_bfd_generic_link_add_one_symbol
4120 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4121 (struct bfd_link_hash_entry **) sym_hash)))
4122 goto error_free_vers;
4123
4124 h = *sym_hash;
4125 /* We need to make sure that indirect symbol dynamic flags are
4126 updated. */
4127 hi = h;
4128 while (h->root.type == bfd_link_hash_indirect
4129 || h->root.type == bfd_link_hash_warning)
4130 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4131
4132 *sym_hash = h;
4133
4134 new_weak = (flags & BSF_WEAK) != 0;
4135 new_weakdef = FALSE;
4136 if (dynamic
4137 && definition
4138 && new_weak
4139 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4140 && is_elf_hash_table (htab)
4141 && h->u.weakdef == NULL)
4142 {
4143 /* Keep a list of all weak defined non function symbols from
4144 a dynamic object, using the weakdef field. Later in this
4145 function we will set the weakdef field to the correct
4146 value. We only put non-function symbols from dynamic
4147 objects on this list, because that happens to be the only
4148 time we need to know the normal symbol corresponding to a
4149 weak symbol, and the information is time consuming to
4150 figure out. If the weakdef field is not already NULL,
4151 then this symbol was already defined by some previous
4152 dynamic object, and we will be using that previous
4153 definition anyhow. */
4154
4155 h->u.weakdef = weaks;
4156 weaks = h;
4157 new_weakdef = TRUE;
4158 }
4159
4160 /* Set the alignment of a common symbol. */
4161 if ((common || bfd_is_com_section (sec))
4162 && h->root.type == bfd_link_hash_common)
4163 {
4164 unsigned int align;
4165
4166 if (common)
4167 align = bfd_log2 (isym->st_value);
4168 else
4169 {
4170 /* The new symbol is a common symbol in a shared object.
4171 We need to get the alignment from the section. */
4172 align = new_sec->alignment_power;
4173 }
4174 if (align > old_alignment)
4175 h->root.u.c.p->alignment_power = align;
4176 else
4177 h->root.u.c.p->alignment_power = old_alignment;
4178 }
4179
4180 if (is_elf_hash_table (htab))
4181 {
4182 /* Set a flag in the hash table entry indicating the type of
4183 reference or definition we just found. A dynamic symbol
4184 is one which is referenced or defined by both a regular
4185 object and a shared object. */
4186 bfd_boolean dynsym = FALSE;
4187
4188 /* Plugin symbols aren't normal. Don't set def_regular or
4189 ref_regular for them, or make them dynamic. */
4190 if ((abfd->flags & BFD_PLUGIN) != 0)
4191 ;
4192 else if (! dynamic)
4193 {
4194 if (! definition)
4195 {
4196 h->ref_regular = 1;
4197 if (bind != STB_WEAK)
4198 h->ref_regular_nonweak = 1;
4199 }
4200 else
4201 {
4202 h->def_regular = 1;
4203 if (h->def_dynamic)
4204 {
4205 h->def_dynamic = 0;
4206 h->ref_dynamic = 1;
4207 }
4208 }
4209
4210 /* If the indirect symbol has been forced local, don't
4211 make the real symbol dynamic. */
4212 if ((h == hi || !hi->forced_local)
4213 && (! info->executable
4214 || h->def_dynamic
4215 || h->ref_dynamic))
4216 dynsym = TRUE;
4217 }
4218 else
4219 {
4220 if (! definition)
4221 {
4222 h->ref_dynamic = 1;
4223 hi->ref_dynamic = 1;
4224 }
4225 else
4226 {
4227 h->def_dynamic = 1;
4228 hi->def_dynamic = 1;
4229 }
4230
4231 /* If the indirect symbol has been forced local, don't
4232 make the real symbol dynamic. */
4233 if ((h == hi || !hi->forced_local)
4234 && (h->def_regular
4235 || h->ref_regular
4236 || (h->u.weakdef != NULL
4237 && ! new_weakdef
4238 && h->u.weakdef->dynindx != -1)))
4239 dynsym = TRUE;
4240 }
4241
4242 /* Check to see if we need to add an indirect symbol for
4243 the default name. */
4244 if (definition
4245 || (!override && h->root.type == bfd_link_hash_common))
4246 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4247 sec, value, &old_bfd, &dynsym))
4248 goto error_free_vers;
4249
4250 /* Check the alignment when a common symbol is involved. This
4251 can change when a common symbol is overridden by a normal
4252 definition or a common symbol is ignored due to the old
4253 normal definition. We need to make sure the maximum
4254 alignment is maintained. */
4255 if ((old_alignment || common)
4256 && h->root.type != bfd_link_hash_common)
4257 {
4258 unsigned int common_align;
4259 unsigned int normal_align;
4260 unsigned int symbol_align;
4261 bfd *normal_bfd;
4262 bfd *common_bfd;
4263
4264 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4265 || h->root.type == bfd_link_hash_defweak);
4266
4267 symbol_align = ffs (h->root.u.def.value) - 1;
4268 if (h->root.u.def.section->owner != NULL
4269 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4270 {
4271 normal_align = h->root.u.def.section->alignment_power;
4272 if (normal_align > symbol_align)
4273 normal_align = symbol_align;
4274 }
4275 else
4276 normal_align = symbol_align;
4277
4278 if (old_alignment)
4279 {
4280 common_align = old_alignment;
4281 common_bfd = old_bfd;
4282 normal_bfd = abfd;
4283 }
4284 else
4285 {
4286 common_align = bfd_log2 (isym->st_value);
4287 common_bfd = abfd;
4288 normal_bfd = old_bfd;
4289 }
4290
4291 if (normal_align < common_align)
4292 {
4293 /* PR binutils/2735 */
4294 if (normal_bfd == NULL)
4295 (*_bfd_error_handler)
4296 (_("Warning: alignment %u of common symbol `%s' in %B is"
4297 " greater than the alignment (%u) of its section %A"),
4298 common_bfd, h->root.u.def.section,
4299 1 << common_align, name, 1 << normal_align);
4300 else
4301 (*_bfd_error_handler)
4302 (_("Warning: alignment %u of symbol `%s' in %B"
4303 " is smaller than %u in %B"),
4304 normal_bfd, common_bfd,
4305 1 << normal_align, name, 1 << common_align);
4306 }
4307 }
4308
4309 /* Remember the symbol size if it isn't undefined. */
4310 if (isym->st_size != 0
4311 && isym->st_shndx != SHN_UNDEF
4312 && (definition || h->size == 0))
4313 {
4314 if (h->size != 0
4315 && h->size != isym->st_size
4316 && ! size_change_ok)
4317 (*_bfd_error_handler)
4318 (_("Warning: size of symbol `%s' changed"
4319 " from %lu in %B to %lu in %B"),
4320 old_bfd, abfd,
4321 name, (unsigned long) h->size,
4322 (unsigned long) isym->st_size);
4323
4324 h->size = isym->st_size;
4325 }
4326
4327 /* If this is a common symbol, then we always want H->SIZE
4328 to be the size of the common symbol. The code just above
4329 won't fix the size if a common symbol becomes larger. We
4330 don't warn about a size change here, because that is
4331 covered by --warn-common. Allow changes between different
4332 function types. */
4333 if (h->root.type == bfd_link_hash_common)
4334 h->size = h->root.u.c.size;
4335
4336 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4337 && ((definition && !new_weak)
4338 || (old_weak && h->root.type == bfd_link_hash_common)
4339 || h->type == STT_NOTYPE))
4340 {
4341 unsigned int type = ELF_ST_TYPE (isym->st_info);
4342
4343 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4344 symbol. */
4345 if (type == STT_GNU_IFUNC
4346 && (abfd->flags & DYNAMIC) != 0)
4347 type = STT_FUNC;
4348
4349 if (h->type != type)
4350 {
4351 if (h->type != STT_NOTYPE && ! type_change_ok)
4352 (*_bfd_error_handler)
4353 (_("Warning: type of symbol `%s' changed"
4354 " from %d to %d in %B"),
4355 abfd, name, h->type, type);
4356
4357 h->type = type;
4358 }
4359 }
4360
4361 /* Merge st_other field. */
4362 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4363
4364 /* We don't want to make debug symbol dynamic. */
4365 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4366 dynsym = FALSE;
4367
4368 /* Nor should we make plugin symbols dynamic. */
4369 if ((abfd->flags & BFD_PLUGIN) != 0)
4370 dynsym = FALSE;
4371
4372 if (definition)
4373 {
4374 h->target_internal = isym->st_target_internal;
4375 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4376 }
4377
4378 if (definition && !dynamic)
4379 {
4380 char *p = strchr (name, ELF_VER_CHR);
4381 if (p != NULL && p[1] != ELF_VER_CHR)
4382 {
4383 /* Queue non-default versions so that .symver x, x@FOO
4384 aliases can be checked. */
4385 if (!nondeflt_vers)
4386 {
4387 amt = ((isymend - isym + 1)
4388 * sizeof (struct elf_link_hash_entry *));
4389 nondeflt_vers =
4390 (struct elf_link_hash_entry **) bfd_malloc (amt);
4391 if (!nondeflt_vers)
4392 goto error_free_vers;
4393 }
4394 nondeflt_vers[nondeflt_vers_cnt++] = h;
4395 }
4396 }
4397
4398 if (dynsym && h->dynindx == -1)
4399 {
4400 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4401 goto error_free_vers;
4402 if (h->u.weakdef != NULL
4403 && ! new_weakdef
4404 && h->u.weakdef->dynindx == -1)
4405 {
4406 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4407 goto error_free_vers;
4408 }
4409 }
4410 else if (dynsym && h->dynindx != -1)
4411 /* If the symbol already has a dynamic index, but
4412 visibility says it should not be visible, turn it into
4413 a local symbol. */
4414 switch (ELF_ST_VISIBILITY (h->other))
4415 {
4416 case STV_INTERNAL:
4417 case STV_HIDDEN:
4418 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4419 dynsym = FALSE;
4420 break;
4421 }
4422
4423 /* Don't add DT_NEEDED for references from the dummy bfd. */
4424 if (!add_needed
4425 && definition
4426 && ((dynsym
4427 && h->ref_regular_nonweak
4428 && (old_bfd == NULL
4429 || (old_bfd->flags & BFD_PLUGIN) == 0))
4430 || (h->ref_dynamic_nonweak
4431 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4432 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4433 {
4434 int ret;
4435 const char *soname = elf_dt_name (abfd);
4436
4437 /* A symbol from a library loaded via DT_NEEDED of some
4438 other library is referenced by a regular object.
4439 Add a DT_NEEDED entry for it. Issue an error if
4440 --no-add-needed is used and the reference was not
4441 a weak one. */
4442 if (old_bfd != NULL
4443 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4444 {
4445 (*_bfd_error_handler)
4446 (_("%B: undefined reference to symbol '%s'"),
4447 old_bfd, name);
4448 bfd_set_error (bfd_error_missing_dso);
4449 goto error_free_vers;
4450 }
4451
4452 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4453 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4454
4455 add_needed = TRUE;
4456 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4457 if (ret < 0)
4458 goto error_free_vers;
4459
4460 BFD_ASSERT (ret == 0);
4461 }
4462 }
4463 }
4464
4465 if (extversym != NULL)
4466 {
4467 free (extversym);
4468 extversym = NULL;
4469 }
4470
4471 if (isymbuf != NULL)
4472 {
4473 free (isymbuf);
4474 isymbuf = NULL;
4475 }
4476
4477 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4478 {
4479 unsigned int i;
4480
4481 /* Restore the symbol table. */
4482 old_ent = (char *) old_tab + tabsize;
4483 memset (elf_sym_hashes (abfd), 0,
4484 extsymcount * sizeof (struct elf_link_hash_entry *));
4485 htab->root.table.table = old_table;
4486 htab->root.table.size = old_size;
4487 htab->root.table.count = old_count;
4488 memcpy (htab->root.table.table, old_tab, tabsize);
4489 htab->root.undefs = old_undefs;
4490 htab->root.undefs_tail = old_undefs_tail;
4491 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4492 for (i = 0; i < htab->root.table.size; i++)
4493 {
4494 struct bfd_hash_entry *p;
4495 struct elf_link_hash_entry *h;
4496 bfd_size_type size;
4497 unsigned int alignment_power;
4498
4499 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4500 {
4501 h = (struct elf_link_hash_entry *) p;
4502 if (h->root.type == bfd_link_hash_warning)
4503 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4504 if (h->dynindx >= old_dynsymcount
4505 && h->dynstr_index < old_dynstr_size)
4506 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4507
4508 /* Preserve the maximum alignment and size for common
4509 symbols even if this dynamic lib isn't on DT_NEEDED
4510 since it can still be loaded at run time by another
4511 dynamic lib. */
4512 if (h->root.type == bfd_link_hash_common)
4513 {
4514 size = h->root.u.c.size;
4515 alignment_power = h->root.u.c.p->alignment_power;
4516 }
4517 else
4518 {
4519 size = 0;
4520 alignment_power = 0;
4521 }
4522 memcpy (p, old_ent, htab->root.table.entsize);
4523 old_ent = (char *) old_ent + htab->root.table.entsize;
4524 h = (struct elf_link_hash_entry *) p;
4525 if (h->root.type == bfd_link_hash_warning)
4526 {
4527 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4528 old_ent = (char *) old_ent + htab->root.table.entsize;
4529 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4530 }
4531 if (h->root.type == bfd_link_hash_common)
4532 {
4533 if (size > h->root.u.c.size)
4534 h->root.u.c.size = size;
4535 if (alignment_power > h->root.u.c.p->alignment_power)
4536 h->root.u.c.p->alignment_power = alignment_power;
4537 }
4538 }
4539 }
4540
4541 /* Make a special call to the linker "notice" function to
4542 tell it that symbols added for crefs may need to be removed. */
4543 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4544 goto error_free_vers;
4545
4546 free (old_tab);
4547 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4548 alloc_mark);
4549 if (nondeflt_vers != NULL)
4550 free (nondeflt_vers);
4551 return TRUE;
4552 }
4553
4554 if (old_tab != NULL)
4555 {
4556 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4557 goto error_free_vers;
4558 free (old_tab);
4559 old_tab = NULL;
4560 }
4561
4562 /* Now that all the symbols from this input file are created, handle
4563 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4564 if (nondeflt_vers != NULL)
4565 {
4566 bfd_size_type cnt, symidx;
4567
4568 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4569 {
4570 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4571 char *shortname, *p;
4572
4573 p = strchr (h->root.root.string, ELF_VER_CHR);
4574 if (p == NULL
4575 || (h->root.type != bfd_link_hash_defined
4576 && h->root.type != bfd_link_hash_defweak))
4577 continue;
4578
4579 amt = p - h->root.root.string;
4580 shortname = (char *) bfd_malloc (amt + 1);
4581 if (!shortname)
4582 goto error_free_vers;
4583 memcpy (shortname, h->root.root.string, amt);
4584 shortname[amt] = '\0';
4585
4586 hi = (struct elf_link_hash_entry *)
4587 bfd_link_hash_lookup (&htab->root, shortname,
4588 FALSE, FALSE, FALSE);
4589 if (hi != NULL
4590 && hi->root.type == h->root.type
4591 && hi->root.u.def.value == h->root.u.def.value
4592 && hi->root.u.def.section == h->root.u.def.section)
4593 {
4594 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4595 hi->root.type = bfd_link_hash_indirect;
4596 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4597 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4598 sym_hash = elf_sym_hashes (abfd);
4599 if (sym_hash)
4600 for (symidx = 0; symidx < extsymcount; ++symidx)
4601 if (sym_hash[symidx] == hi)
4602 {
4603 sym_hash[symidx] = h;
4604 break;
4605 }
4606 }
4607 free (shortname);
4608 }
4609 free (nondeflt_vers);
4610 nondeflt_vers = NULL;
4611 }
4612
4613 /* Now set the weakdefs field correctly for all the weak defined
4614 symbols we found. The only way to do this is to search all the
4615 symbols. Since we only need the information for non functions in
4616 dynamic objects, that's the only time we actually put anything on
4617 the list WEAKS. We need this information so that if a regular
4618 object refers to a symbol defined weakly in a dynamic object, the
4619 real symbol in the dynamic object is also put in the dynamic
4620 symbols; we also must arrange for both symbols to point to the
4621 same memory location. We could handle the general case of symbol
4622 aliasing, but a general symbol alias can only be generated in
4623 assembler code, handling it correctly would be very time
4624 consuming, and other ELF linkers don't handle general aliasing
4625 either. */
4626 if (weaks != NULL)
4627 {
4628 struct elf_link_hash_entry **hpp;
4629 struct elf_link_hash_entry **hppend;
4630 struct elf_link_hash_entry **sorted_sym_hash;
4631 struct elf_link_hash_entry *h;
4632 size_t sym_count;
4633
4634 /* Since we have to search the whole symbol list for each weak
4635 defined symbol, search time for N weak defined symbols will be
4636 O(N^2). Binary search will cut it down to O(NlogN). */
4637 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4638 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4639 if (sorted_sym_hash == NULL)
4640 goto error_return;
4641 sym_hash = sorted_sym_hash;
4642 hpp = elf_sym_hashes (abfd);
4643 hppend = hpp + extsymcount;
4644 sym_count = 0;
4645 for (; hpp < hppend; hpp++)
4646 {
4647 h = *hpp;
4648 if (h != NULL
4649 && h->root.type == bfd_link_hash_defined
4650 && !bed->is_function_type (h->type))
4651 {
4652 *sym_hash = h;
4653 sym_hash++;
4654 sym_count++;
4655 }
4656 }
4657
4658 qsort (sorted_sym_hash, sym_count,
4659 sizeof (struct elf_link_hash_entry *),
4660 elf_sort_symbol);
4661
4662 while (weaks != NULL)
4663 {
4664 struct elf_link_hash_entry *hlook;
4665 asection *slook;
4666 bfd_vma vlook;
4667 size_t i, j, idx = 0;
4668
4669 hlook = weaks;
4670 weaks = hlook->u.weakdef;
4671 hlook->u.weakdef = NULL;
4672
4673 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4674 || hlook->root.type == bfd_link_hash_defweak
4675 || hlook->root.type == bfd_link_hash_common
4676 || hlook->root.type == bfd_link_hash_indirect);
4677 slook = hlook->root.u.def.section;
4678 vlook = hlook->root.u.def.value;
4679
4680 i = 0;
4681 j = sym_count;
4682 while (i != j)
4683 {
4684 bfd_signed_vma vdiff;
4685 idx = (i + j) / 2;
4686 h = sorted_sym_hash[idx];
4687 vdiff = vlook - h->root.u.def.value;
4688 if (vdiff < 0)
4689 j = idx;
4690 else if (vdiff > 0)
4691 i = idx + 1;
4692 else
4693 {
4694 long sdiff = slook->id - h->root.u.def.section->id;
4695 if (sdiff < 0)
4696 j = idx;
4697 else if (sdiff > 0)
4698 i = idx + 1;
4699 else
4700 break;
4701 }
4702 }
4703
4704 /* We didn't find a value/section match. */
4705 if (i == j)
4706 continue;
4707
4708 /* With multiple aliases, or when the weak symbol is already
4709 strongly defined, we have multiple matching symbols and
4710 the binary search above may land on any of them. Step
4711 one past the matching symbol(s). */
4712 while (++idx != j)
4713 {
4714 h = sorted_sym_hash[idx];
4715 if (h->root.u.def.section != slook
4716 || h->root.u.def.value != vlook)
4717 break;
4718 }
4719
4720 /* Now look back over the aliases. Since we sorted by size
4721 as well as value and section, we'll choose the one with
4722 the largest size. */
4723 while (idx-- != i)
4724 {
4725 h = sorted_sym_hash[idx];
4726
4727 /* Stop if value or section doesn't match. */
4728 if (h->root.u.def.section != slook
4729 || h->root.u.def.value != vlook)
4730 break;
4731 else if (h != hlook)
4732 {
4733 hlook->u.weakdef = h;
4734
4735 /* If the weak definition is in the list of dynamic
4736 symbols, make sure the real definition is put
4737 there as well. */
4738 if (hlook->dynindx != -1 && h->dynindx == -1)
4739 {
4740 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4741 {
4742 err_free_sym_hash:
4743 free (sorted_sym_hash);
4744 goto error_return;
4745 }
4746 }
4747
4748 /* If the real definition is in the list of dynamic
4749 symbols, make sure the weak definition is put
4750 there as well. If we don't do this, then the
4751 dynamic loader might not merge the entries for the
4752 real definition and the weak definition. */
4753 if (h->dynindx != -1 && hlook->dynindx == -1)
4754 {
4755 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4756 goto err_free_sym_hash;
4757 }
4758 break;
4759 }
4760 }
4761 }
4762
4763 free (sorted_sym_hash);
4764 }
4765
4766 if (bed->check_directives
4767 && !(*bed->check_directives) (abfd, info))
4768 return FALSE;
4769
4770 /* If this object is the same format as the output object, and it is
4771 not a shared library, then let the backend look through the
4772 relocs.
4773
4774 This is required to build global offset table entries and to
4775 arrange for dynamic relocs. It is not required for the
4776 particular common case of linking non PIC code, even when linking
4777 against shared libraries, but unfortunately there is no way of
4778 knowing whether an object file has been compiled PIC or not.
4779 Looking through the relocs is not particularly time consuming.
4780 The problem is that we must either (1) keep the relocs in memory,
4781 which causes the linker to require additional runtime memory or
4782 (2) read the relocs twice from the input file, which wastes time.
4783 This would be a good case for using mmap.
4784
4785 I have no idea how to handle linking PIC code into a file of a
4786 different format. It probably can't be done. */
4787 if (! dynamic
4788 && is_elf_hash_table (htab)
4789 && bed->check_relocs != NULL
4790 && elf_object_id (abfd) == elf_hash_table_id (htab)
4791 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4792 {
4793 asection *o;
4794
4795 for (o = abfd->sections; o != NULL; o = o->next)
4796 {
4797 Elf_Internal_Rela *internal_relocs;
4798 bfd_boolean ok;
4799
4800 if ((o->flags & SEC_RELOC) == 0
4801 || o->reloc_count == 0
4802 || ((info->strip == strip_all || info->strip == strip_debugger)
4803 && (o->flags & SEC_DEBUGGING) != 0)
4804 || bfd_is_abs_section (o->output_section))
4805 continue;
4806
4807 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4808 info->keep_memory);
4809 if (internal_relocs == NULL)
4810 goto error_return;
4811
4812 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4813
4814 if (elf_section_data (o)->relocs != internal_relocs)
4815 free (internal_relocs);
4816
4817 if (! ok)
4818 goto error_return;
4819 }
4820 }
4821
4822 /* If this is a non-traditional link, try to optimize the handling
4823 of the .stab/.stabstr sections. */
4824 if (! dynamic
4825 && ! info->traditional_format
4826 && is_elf_hash_table (htab)
4827 && (info->strip != strip_all && info->strip != strip_debugger))
4828 {
4829 asection *stabstr;
4830
4831 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4832 if (stabstr != NULL)
4833 {
4834 bfd_size_type string_offset = 0;
4835 asection *stab;
4836
4837 for (stab = abfd->sections; stab; stab = stab->next)
4838 if (CONST_STRNEQ (stab->name, ".stab")
4839 && (!stab->name[5] ||
4840 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4841 && (stab->flags & SEC_MERGE) == 0
4842 && !bfd_is_abs_section (stab->output_section))
4843 {
4844 struct bfd_elf_section_data *secdata;
4845
4846 secdata = elf_section_data (stab);
4847 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4848 stabstr, &secdata->sec_info,
4849 &string_offset))
4850 goto error_return;
4851 if (secdata->sec_info)
4852 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4853 }
4854 }
4855 }
4856
4857 if (is_elf_hash_table (htab) && add_needed)
4858 {
4859 /* Add this bfd to the loaded list. */
4860 struct elf_link_loaded_list *n;
4861
4862 n = (struct elf_link_loaded_list *)
4863 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4864 if (n == NULL)
4865 goto error_return;
4866 n->abfd = abfd;
4867 n->next = htab->loaded;
4868 htab->loaded = n;
4869 }
4870
4871 return TRUE;
4872
4873 error_free_vers:
4874 if (old_tab != NULL)
4875 free (old_tab);
4876 if (nondeflt_vers != NULL)
4877 free (nondeflt_vers);
4878 if (extversym != NULL)
4879 free (extversym);
4880 error_free_sym:
4881 if (isymbuf != NULL)
4882 free (isymbuf);
4883 error_return:
4884 return FALSE;
4885 }
4886
4887 /* Return the linker hash table entry of a symbol that might be
4888 satisfied by an archive symbol. Return -1 on error. */
4889
4890 struct elf_link_hash_entry *
4891 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4892 struct bfd_link_info *info,
4893 const char *name)
4894 {
4895 struct elf_link_hash_entry *h;
4896 char *p, *copy;
4897 size_t len, first;
4898
4899 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4900 if (h != NULL)
4901 return h;
4902
4903 /* If this is a default version (the name contains @@), look up the
4904 symbol again with only one `@' as well as without the version.
4905 The effect is that references to the symbol with and without the
4906 version will be matched by the default symbol in the archive. */
4907
4908 p = strchr (name, ELF_VER_CHR);
4909 if (p == NULL || p[1] != ELF_VER_CHR)
4910 return h;
4911
4912 /* First check with only one `@'. */
4913 len = strlen (name);
4914 copy = (char *) bfd_alloc (abfd, len);
4915 if (copy == NULL)
4916 return (struct elf_link_hash_entry *) 0 - 1;
4917
4918 first = p - name + 1;
4919 memcpy (copy, name, first);
4920 memcpy (copy + first, name + first + 1, len - first);
4921
4922 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4923 if (h == NULL)
4924 {
4925 /* We also need to check references to the symbol without the
4926 version. */
4927 copy[first - 1] = '\0';
4928 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4929 FALSE, FALSE, TRUE);
4930 }
4931
4932 bfd_release (abfd, copy);
4933 return h;
4934 }
4935
4936 /* Add symbols from an ELF archive file to the linker hash table. We
4937 don't use _bfd_generic_link_add_archive_symbols because of a
4938 problem which arises on UnixWare. The UnixWare libc.so is an
4939 archive which includes an entry libc.so.1 which defines a bunch of
4940 symbols. The libc.so archive also includes a number of other
4941 object files, which also define symbols, some of which are the same
4942 as those defined in libc.so.1. Correct linking requires that we
4943 consider each object file in turn, and include it if it defines any
4944 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4945 this; it looks through the list of undefined symbols, and includes
4946 any object file which defines them. When this algorithm is used on
4947 UnixWare, it winds up pulling in libc.so.1 early and defining a
4948 bunch of symbols. This means that some of the other objects in the
4949 archive are not included in the link, which is incorrect since they
4950 precede libc.so.1 in the archive.
4951
4952 Fortunately, ELF archive handling is simpler than that done by
4953 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4954 oddities. In ELF, if we find a symbol in the archive map, and the
4955 symbol is currently undefined, we know that we must pull in that
4956 object file.
4957
4958 Unfortunately, we do have to make multiple passes over the symbol
4959 table until nothing further is resolved. */
4960
4961 static bfd_boolean
4962 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4963 {
4964 symindex c;
4965 bfd_boolean *defined = NULL;
4966 bfd_boolean *included = NULL;
4967 carsym *symdefs;
4968 bfd_boolean loop;
4969 bfd_size_type amt;
4970 const struct elf_backend_data *bed;
4971 struct elf_link_hash_entry * (*archive_symbol_lookup)
4972 (bfd *, struct bfd_link_info *, const char *);
4973
4974 if (! bfd_has_map (abfd))
4975 {
4976 /* An empty archive is a special case. */
4977 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4978 return TRUE;
4979 bfd_set_error (bfd_error_no_armap);
4980 return FALSE;
4981 }
4982
4983 /* Keep track of all symbols we know to be already defined, and all
4984 files we know to be already included. This is to speed up the
4985 second and subsequent passes. */
4986 c = bfd_ardata (abfd)->symdef_count;
4987 if (c == 0)
4988 return TRUE;
4989 amt = c;
4990 amt *= sizeof (bfd_boolean);
4991 defined = (bfd_boolean *) bfd_zmalloc (amt);
4992 included = (bfd_boolean *) bfd_zmalloc (amt);
4993 if (defined == NULL || included == NULL)
4994 goto error_return;
4995
4996 symdefs = bfd_ardata (abfd)->symdefs;
4997 bed = get_elf_backend_data (abfd);
4998 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4999
5000 do
5001 {
5002 file_ptr last;
5003 symindex i;
5004 carsym *symdef;
5005 carsym *symdefend;
5006
5007 loop = FALSE;
5008 last = -1;
5009
5010 symdef = symdefs;
5011 symdefend = symdef + c;
5012 for (i = 0; symdef < symdefend; symdef++, i++)
5013 {
5014 struct elf_link_hash_entry *h;
5015 bfd *element;
5016 struct bfd_link_hash_entry *undefs_tail;
5017 symindex mark;
5018
5019 if (defined[i] || included[i])
5020 continue;
5021 if (symdef->file_offset == last)
5022 {
5023 included[i] = TRUE;
5024 continue;
5025 }
5026
5027 h = archive_symbol_lookup (abfd, info, symdef->name);
5028 if (h == (struct elf_link_hash_entry *) 0 - 1)
5029 goto error_return;
5030
5031 if (h == NULL)
5032 continue;
5033
5034 if (h->root.type == bfd_link_hash_common)
5035 {
5036 /* We currently have a common symbol. The archive map contains
5037 a reference to this symbol, so we may want to include it. We
5038 only want to include it however, if this archive element
5039 contains a definition of the symbol, not just another common
5040 declaration of it.
5041
5042 Unfortunately some archivers (including GNU ar) will put
5043 declarations of common symbols into their archive maps, as
5044 well as real definitions, so we cannot just go by the archive
5045 map alone. Instead we must read in the element's symbol
5046 table and check that to see what kind of symbol definition
5047 this is. */
5048 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5049 continue;
5050 }
5051 else if (h->root.type != bfd_link_hash_undefined)
5052 {
5053 if (h->root.type != bfd_link_hash_undefweak)
5054 defined[i] = TRUE;
5055 continue;
5056 }
5057
5058 /* We need to include this archive member. */
5059 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5060 if (element == NULL)
5061 goto error_return;
5062
5063 if (! bfd_check_format (element, bfd_object))
5064 goto error_return;
5065
5066 /* Doublecheck that we have not included this object
5067 already--it should be impossible, but there may be
5068 something wrong with the archive. */
5069 if (element->archive_pass != 0)
5070 {
5071 bfd_set_error (bfd_error_bad_value);
5072 goto error_return;
5073 }
5074 element->archive_pass = 1;
5075
5076 undefs_tail = info->hash->undefs_tail;
5077
5078 if (!(*info->callbacks
5079 ->add_archive_element) (info, element, symdef->name, &element))
5080 goto error_return;
5081 if (!bfd_link_add_symbols (element, info))
5082 goto error_return;
5083
5084 /* If there are any new undefined symbols, we need to make
5085 another pass through the archive in order to see whether
5086 they can be defined. FIXME: This isn't perfect, because
5087 common symbols wind up on undefs_tail and because an
5088 undefined symbol which is defined later on in this pass
5089 does not require another pass. This isn't a bug, but it
5090 does make the code less efficient than it could be. */
5091 if (undefs_tail != info->hash->undefs_tail)
5092 loop = TRUE;
5093
5094 /* Look backward to mark all symbols from this object file
5095 which we have already seen in this pass. */
5096 mark = i;
5097 do
5098 {
5099 included[mark] = TRUE;
5100 if (mark == 0)
5101 break;
5102 --mark;
5103 }
5104 while (symdefs[mark].file_offset == symdef->file_offset);
5105
5106 /* We mark subsequent symbols from this object file as we go
5107 on through the loop. */
5108 last = symdef->file_offset;
5109 }
5110 }
5111 while (loop);
5112
5113 free (defined);
5114 free (included);
5115
5116 return TRUE;
5117
5118 error_return:
5119 if (defined != NULL)
5120 free (defined);
5121 if (included != NULL)
5122 free (included);
5123 return FALSE;
5124 }
5125
5126 /* Given an ELF BFD, add symbols to the global hash table as
5127 appropriate. */
5128
5129 bfd_boolean
5130 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5131 {
5132 switch (bfd_get_format (abfd))
5133 {
5134 case bfd_object:
5135 return elf_link_add_object_symbols (abfd, info);
5136 case bfd_archive:
5137 return elf_link_add_archive_symbols (abfd, info);
5138 default:
5139 bfd_set_error (bfd_error_wrong_format);
5140 return FALSE;
5141 }
5142 }
5143 \f
5144 struct hash_codes_info
5145 {
5146 unsigned long *hashcodes;
5147 bfd_boolean error;
5148 };
5149
5150 /* This function will be called though elf_link_hash_traverse to store
5151 all hash value of the exported symbols in an array. */
5152
5153 static bfd_boolean
5154 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5155 {
5156 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5157 const char *name;
5158 char *p;
5159 unsigned long ha;
5160 char *alc = NULL;
5161
5162 /* Ignore indirect symbols. These are added by the versioning code. */
5163 if (h->dynindx == -1)
5164 return TRUE;
5165
5166 name = h->root.root.string;
5167 p = strchr (name, ELF_VER_CHR);
5168 if (p != NULL)
5169 {
5170 alc = (char *) bfd_malloc (p - name + 1);
5171 if (alc == NULL)
5172 {
5173 inf->error = TRUE;
5174 return FALSE;
5175 }
5176 memcpy (alc, name, p - name);
5177 alc[p - name] = '\0';
5178 name = alc;
5179 }
5180
5181 /* Compute the hash value. */
5182 ha = bfd_elf_hash (name);
5183
5184 /* Store the found hash value in the array given as the argument. */
5185 *(inf->hashcodes)++ = ha;
5186
5187 /* And store it in the struct so that we can put it in the hash table
5188 later. */
5189 h->u.elf_hash_value = ha;
5190
5191 if (alc != NULL)
5192 free (alc);
5193
5194 return TRUE;
5195 }
5196
5197 struct collect_gnu_hash_codes
5198 {
5199 bfd *output_bfd;
5200 const struct elf_backend_data *bed;
5201 unsigned long int nsyms;
5202 unsigned long int maskbits;
5203 unsigned long int *hashcodes;
5204 unsigned long int *hashval;
5205 unsigned long int *indx;
5206 unsigned long int *counts;
5207 bfd_vma *bitmask;
5208 bfd_byte *contents;
5209 long int min_dynindx;
5210 unsigned long int bucketcount;
5211 unsigned long int symindx;
5212 long int local_indx;
5213 long int shift1, shift2;
5214 unsigned long int mask;
5215 bfd_boolean error;
5216 };
5217
5218 /* This function will be called though elf_link_hash_traverse to store
5219 all hash value of the exported symbols in an array. */
5220
5221 static bfd_boolean
5222 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5223 {
5224 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5225 const char *name;
5226 char *p;
5227 unsigned long ha;
5228 char *alc = NULL;
5229
5230 /* Ignore indirect symbols. These are added by the versioning code. */
5231 if (h->dynindx == -1)
5232 return TRUE;
5233
5234 /* Ignore also local symbols and undefined symbols. */
5235 if (! (*s->bed->elf_hash_symbol) (h))
5236 return TRUE;
5237
5238 name = h->root.root.string;
5239 p = strchr (name, ELF_VER_CHR);
5240 if (p != NULL)
5241 {
5242 alc = (char *) bfd_malloc (p - name + 1);
5243 if (alc == NULL)
5244 {
5245 s->error = TRUE;
5246 return FALSE;
5247 }
5248 memcpy (alc, name, p - name);
5249 alc[p - name] = '\0';
5250 name = alc;
5251 }
5252
5253 /* Compute the hash value. */
5254 ha = bfd_elf_gnu_hash (name);
5255
5256 /* Store the found hash value in the array for compute_bucket_count,
5257 and also for .dynsym reordering purposes. */
5258 s->hashcodes[s->nsyms] = ha;
5259 s->hashval[h->dynindx] = ha;
5260 ++s->nsyms;
5261 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5262 s->min_dynindx = h->dynindx;
5263
5264 if (alc != NULL)
5265 free (alc);
5266
5267 return TRUE;
5268 }
5269
5270 /* This function will be called though elf_link_hash_traverse to do
5271 final dynaminc symbol renumbering. */
5272
5273 static bfd_boolean
5274 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5275 {
5276 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5277 unsigned long int bucket;
5278 unsigned long int val;
5279
5280 /* Ignore indirect symbols. */
5281 if (h->dynindx == -1)
5282 return TRUE;
5283
5284 /* Ignore also local symbols and undefined symbols. */
5285 if (! (*s->bed->elf_hash_symbol) (h))
5286 {
5287 if (h->dynindx >= s->min_dynindx)
5288 h->dynindx = s->local_indx++;
5289 return TRUE;
5290 }
5291
5292 bucket = s->hashval[h->dynindx] % s->bucketcount;
5293 val = (s->hashval[h->dynindx] >> s->shift1)
5294 & ((s->maskbits >> s->shift1) - 1);
5295 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5296 s->bitmask[val]
5297 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5298 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5299 if (s->counts[bucket] == 1)
5300 /* Last element terminates the chain. */
5301 val |= 1;
5302 bfd_put_32 (s->output_bfd, val,
5303 s->contents + (s->indx[bucket] - s->symindx) * 4);
5304 --s->counts[bucket];
5305 h->dynindx = s->indx[bucket]++;
5306 return TRUE;
5307 }
5308
5309 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5310
5311 bfd_boolean
5312 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5313 {
5314 return !(h->forced_local
5315 || h->root.type == bfd_link_hash_undefined
5316 || h->root.type == bfd_link_hash_undefweak
5317 || ((h->root.type == bfd_link_hash_defined
5318 || h->root.type == bfd_link_hash_defweak)
5319 && h->root.u.def.section->output_section == NULL));
5320 }
5321
5322 /* Array used to determine the number of hash table buckets to use
5323 based on the number of symbols there are. If there are fewer than
5324 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5325 fewer than 37 we use 17 buckets, and so forth. We never use more
5326 than 32771 buckets. */
5327
5328 static const size_t elf_buckets[] =
5329 {
5330 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5331 16411, 32771, 0
5332 };
5333
5334 /* Compute bucket count for hashing table. We do not use a static set
5335 of possible tables sizes anymore. Instead we determine for all
5336 possible reasonable sizes of the table the outcome (i.e., the
5337 number of collisions etc) and choose the best solution. The
5338 weighting functions are not too simple to allow the table to grow
5339 without bounds. Instead one of the weighting factors is the size.
5340 Therefore the result is always a good payoff between few collisions
5341 (= short chain lengths) and table size. */
5342 static size_t
5343 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5344 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5345 unsigned long int nsyms,
5346 int gnu_hash)
5347 {
5348 size_t best_size = 0;
5349 unsigned long int i;
5350
5351 /* We have a problem here. The following code to optimize the table
5352 size requires an integer type with more the 32 bits. If
5353 BFD_HOST_U_64_BIT is set we know about such a type. */
5354 #ifdef BFD_HOST_U_64_BIT
5355 if (info->optimize)
5356 {
5357 size_t minsize;
5358 size_t maxsize;
5359 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5360 bfd *dynobj = elf_hash_table (info)->dynobj;
5361 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5362 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5363 unsigned long int *counts;
5364 bfd_size_type amt;
5365 unsigned int no_improvement_count = 0;
5366
5367 /* Possible optimization parameters: if we have NSYMS symbols we say
5368 that the hashing table must at least have NSYMS/4 and at most
5369 2*NSYMS buckets. */
5370 minsize = nsyms / 4;
5371 if (minsize == 0)
5372 minsize = 1;
5373 best_size = maxsize = nsyms * 2;
5374 if (gnu_hash)
5375 {
5376 if (minsize < 2)
5377 minsize = 2;
5378 if ((best_size & 31) == 0)
5379 ++best_size;
5380 }
5381
5382 /* Create array where we count the collisions in. We must use bfd_malloc
5383 since the size could be large. */
5384 amt = maxsize;
5385 amt *= sizeof (unsigned long int);
5386 counts = (unsigned long int *) bfd_malloc (amt);
5387 if (counts == NULL)
5388 return 0;
5389
5390 /* Compute the "optimal" size for the hash table. The criteria is a
5391 minimal chain length. The minor criteria is (of course) the size
5392 of the table. */
5393 for (i = minsize; i < maxsize; ++i)
5394 {
5395 /* Walk through the array of hashcodes and count the collisions. */
5396 BFD_HOST_U_64_BIT max;
5397 unsigned long int j;
5398 unsigned long int fact;
5399
5400 if (gnu_hash && (i & 31) == 0)
5401 continue;
5402
5403 memset (counts, '\0', i * sizeof (unsigned long int));
5404
5405 /* Determine how often each hash bucket is used. */
5406 for (j = 0; j < nsyms; ++j)
5407 ++counts[hashcodes[j] % i];
5408
5409 /* For the weight function we need some information about the
5410 pagesize on the target. This is information need not be 100%
5411 accurate. Since this information is not available (so far) we
5412 define it here to a reasonable default value. If it is crucial
5413 to have a better value some day simply define this value. */
5414 # ifndef BFD_TARGET_PAGESIZE
5415 # define BFD_TARGET_PAGESIZE (4096)
5416 # endif
5417
5418 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5419 and the chains. */
5420 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5421
5422 # if 1
5423 /* Variant 1: optimize for short chains. We add the squares
5424 of all the chain lengths (which favors many small chain
5425 over a few long chains). */
5426 for (j = 0; j < i; ++j)
5427 max += counts[j] * counts[j];
5428
5429 /* This adds penalties for the overall size of the table. */
5430 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5431 max *= fact * fact;
5432 # else
5433 /* Variant 2: Optimize a lot more for small table. Here we
5434 also add squares of the size but we also add penalties for
5435 empty slots (the +1 term). */
5436 for (j = 0; j < i; ++j)
5437 max += (1 + counts[j]) * (1 + counts[j]);
5438
5439 /* The overall size of the table is considered, but not as
5440 strong as in variant 1, where it is squared. */
5441 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5442 max *= fact;
5443 # endif
5444
5445 /* Compare with current best results. */
5446 if (max < best_chlen)
5447 {
5448 best_chlen = max;
5449 best_size = i;
5450 no_improvement_count = 0;
5451 }
5452 /* PR 11843: Avoid futile long searches for the best bucket size
5453 when there are a large number of symbols. */
5454 else if (++no_improvement_count == 100)
5455 break;
5456 }
5457
5458 free (counts);
5459 }
5460 else
5461 #endif /* defined (BFD_HOST_U_64_BIT) */
5462 {
5463 /* This is the fallback solution if no 64bit type is available or if we
5464 are not supposed to spend much time on optimizations. We select the
5465 bucket count using a fixed set of numbers. */
5466 for (i = 0; elf_buckets[i] != 0; i++)
5467 {
5468 best_size = elf_buckets[i];
5469 if (nsyms < elf_buckets[i + 1])
5470 break;
5471 }
5472 if (gnu_hash && best_size < 2)
5473 best_size = 2;
5474 }
5475
5476 return best_size;
5477 }
5478
5479 /* Size any SHT_GROUP section for ld -r. */
5480
5481 bfd_boolean
5482 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5483 {
5484 bfd *ibfd;
5485
5486 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5487 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5488 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5489 return FALSE;
5490 return TRUE;
5491 }
5492
5493 /* Set a default stack segment size. The value in INFO wins. If it
5494 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5495 undefined it is initialized. */
5496
5497 bfd_boolean
5498 bfd_elf_stack_segment_size (bfd *output_bfd,
5499 struct bfd_link_info *info,
5500 const char *legacy_symbol,
5501 bfd_vma default_size)
5502 {
5503 struct elf_link_hash_entry *h = NULL;
5504
5505 /* Look for legacy symbol. */
5506 if (legacy_symbol)
5507 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5508 FALSE, FALSE, FALSE);
5509 if (h && (h->root.type == bfd_link_hash_defined
5510 || h->root.type == bfd_link_hash_defweak)
5511 && h->def_regular
5512 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5513 {
5514 /* The symbol has no type if specified on the command line. */
5515 h->type = STT_OBJECT;
5516 if (info->stacksize)
5517 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5518 output_bfd, legacy_symbol);
5519 else if (h->root.u.def.section != bfd_abs_section_ptr)
5520 (*_bfd_error_handler) (_("%B: %s not absolute"),
5521 output_bfd, legacy_symbol);
5522 else
5523 info->stacksize = h->root.u.def.value;
5524 }
5525
5526 if (!info->stacksize)
5527 /* If the user didn't set a size, or explicitly inhibit the
5528 size, set it now. */
5529 info->stacksize = default_size;
5530
5531 /* Provide the legacy symbol, if it is referenced. */
5532 if (h && (h->root.type == bfd_link_hash_undefined
5533 || h->root.type == bfd_link_hash_undefweak))
5534 {
5535 struct bfd_link_hash_entry *bh = NULL;
5536
5537 if (!(_bfd_generic_link_add_one_symbol
5538 (info, output_bfd, legacy_symbol,
5539 BSF_GLOBAL, bfd_abs_section_ptr,
5540 info->stacksize >= 0 ? info->stacksize : 0,
5541 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5542 return FALSE;
5543
5544 h = (struct elf_link_hash_entry *) bh;
5545 h->def_regular = 1;
5546 h->type = STT_OBJECT;
5547 }
5548
5549 return TRUE;
5550 }
5551
5552 /* Set up the sizes and contents of the ELF dynamic sections. This is
5553 called by the ELF linker emulation before_allocation routine. We
5554 must set the sizes of the sections before the linker sets the
5555 addresses of the various sections. */
5556
5557 bfd_boolean
5558 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5559 const char *soname,
5560 const char *rpath,
5561 const char *filter_shlib,
5562 const char *audit,
5563 const char *depaudit,
5564 const char * const *auxiliary_filters,
5565 struct bfd_link_info *info,
5566 asection **sinterpptr)
5567 {
5568 bfd_size_type soname_indx;
5569 bfd *dynobj;
5570 const struct elf_backend_data *bed;
5571 struct elf_info_failed asvinfo;
5572
5573 *sinterpptr = NULL;
5574
5575 soname_indx = (bfd_size_type) -1;
5576
5577 if (!is_elf_hash_table (info->hash))
5578 return TRUE;
5579
5580 bed = get_elf_backend_data (output_bfd);
5581
5582 /* Any syms created from now on start with -1 in
5583 got.refcount/offset and plt.refcount/offset. */
5584 elf_hash_table (info)->init_got_refcount
5585 = elf_hash_table (info)->init_got_offset;
5586 elf_hash_table (info)->init_plt_refcount
5587 = elf_hash_table (info)->init_plt_offset;
5588
5589 if (info->relocatable
5590 && !_bfd_elf_size_group_sections (info))
5591 return FALSE;
5592
5593 /* The backend may have to create some sections regardless of whether
5594 we're dynamic or not. */
5595 if (bed->elf_backend_always_size_sections
5596 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5597 return FALSE;
5598
5599 /* Determine any GNU_STACK segment requirements, after the backend
5600 has had a chance to set a default segment size. */
5601 if (info->execstack)
5602 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5603 else if (info->noexecstack)
5604 elf_stack_flags (output_bfd) = PF_R | PF_W;
5605 else
5606 {
5607 bfd *inputobj;
5608 asection *notesec = NULL;
5609 int exec = 0;
5610
5611 for (inputobj = info->input_bfds;
5612 inputobj;
5613 inputobj = inputobj->link_next)
5614 {
5615 asection *s;
5616
5617 if (inputobj->flags
5618 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5619 continue;
5620 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5621 if (s)
5622 {
5623 if (s->flags & SEC_CODE)
5624 exec = PF_X;
5625 notesec = s;
5626 }
5627 else if (bed->default_execstack)
5628 exec = PF_X;
5629 }
5630 if (notesec || info->stacksize > 0)
5631 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5632 if (notesec && exec && info->relocatable
5633 && notesec->output_section != bfd_abs_section_ptr)
5634 notesec->output_section->flags |= SEC_CODE;
5635 }
5636
5637 dynobj = elf_hash_table (info)->dynobj;
5638
5639 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5640 {
5641 struct elf_info_failed eif;
5642 struct elf_link_hash_entry *h;
5643 asection *dynstr;
5644 struct bfd_elf_version_tree *t;
5645 struct bfd_elf_version_expr *d;
5646 asection *s;
5647 bfd_boolean all_defined;
5648
5649 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5650 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5651
5652 if (soname != NULL)
5653 {
5654 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5655 soname, TRUE);
5656 if (soname_indx == (bfd_size_type) -1
5657 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5658 return FALSE;
5659 }
5660
5661 if (info->symbolic)
5662 {
5663 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5664 return FALSE;
5665 info->flags |= DF_SYMBOLIC;
5666 }
5667
5668 if (rpath != NULL)
5669 {
5670 bfd_size_type indx;
5671 bfd_vma tag;
5672
5673 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5674 TRUE);
5675 if (indx == (bfd_size_type) -1)
5676 return FALSE;
5677
5678 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5679 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5680 return FALSE;
5681 }
5682
5683 if (filter_shlib != NULL)
5684 {
5685 bfd_size_type indx;
5686
5687 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5688 filter_shlib, TRUE);
5689 if (indx == (bfd_size_type) -1
5690 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5691 return FALSE;
5692 }
5693
5694 if (auxiliary_filters != NULL)
5695 {
5696 const char * const *p;
5697
5698 for (p = auxiliary_filters; *p != NULL; p++)
5699 {
5700 bfd_size_type indx;
5701
5702 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5703 *p, TRUE);
5704 if (indx == (bfd_size_type) -1
5705 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5706 return FALSE;
5707 }
5708 }
5709
5710 if (audit != NULL)
5711 {
5712 bfd_size_type indx;
5713
5714 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5715 TRUE);
5716 if (indx == (bfd_size_type) -1
5717 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5718 return FALSE;
5719 }
5720
5721 if (depaudit != NULL)
5722 {
5723 bfd_size_type indx;
5724
5725 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5726 TRUE);
5727 if (indx == (bfd_size_type) -1
5728 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5729 return FALSE;
5730 }
5731
5732 eif.info = info;
5733 eif.failed = FALSE;
5734
5735 /* If we are supposed to export all symbols into the dynamic symbol
5736 table (this is not the normal case), then do so. */
5737 if (info->export_dynamic
5738 || (info->executable && info->dynamic))
5739 {
5740 elf_link_hash_traverse (elf_hash_table (info),
5741 _bfd_elf_export_symbol,
5742 &eif);
5743 if (eif.failed)
5744 return FALSE;
5745 }
5746
5747 /* Make all global versions with definition. */
5748 for (t = info->version_info; t != NULL; t = t->next)
5749 for (d = t->globals.list; d != NULL; d = d->next)
5750 if (!d->symver && d->literal)
5751 {
5752 const char *verstr, *name;
5753 size_t namelen, verlen, newlen;
5754 char *newname, *p, leading_char;
5755 struct elf_link_hash_entry *newh;
5756
5757 leading_char = bfd_get_symbol_leading_char (output_bfd);
5758 name = d->pattern;
5759 namelen = strlen (name) + (leading_char != '\0');
5760 verstr = t->name;
5761 verlen = strlen (verstr);
5762 newlen = namelen + verlen + 3;
5763
5764 newname = (char *) bfd_malloc (newlen);
5765 if (newname == NULL)
5766 return FALSE;
5767 newname[0] = leading_char;
5768 memcpy (newname + (leading_char != '\0'), name, namelen);
5769
5770 /* Check the hidden versioned definition. */
5771 p = newname + namelen;
5772 *p++ = ELF_VER_CHR;
5773 memcpy (p, verstr, verlen + 1);
5774 newh = elf_link_hash_lookup (elf_hash_table (info),
5775 newname, FALSE, FALSE,
5776 FALSE);
5777 if (newh == NULL
5778 || (newh->root.type != bfd_link_hash_defined
5779 && newh->root.type != bfd_link_hash_defweak))
5780 {
5781 /* Check the default versioned definition. */
5782 *p++ = ELF_VER_CHR;
5783 memcpy (p, verstr, verlen + 1);
5784 newh = elf_link_hash_lookup (elf_hash_table (info),
5785 newname, FALSE, FALSE,
5786 FALSE);
5787 }
5788 free (newname);
5789
5790 /* Mark this version if there is a definition and it is
5791 not defined in a shared object. */
5792 if (newh != NULL
5793 && !newh->def_dynamic
5794 && (newh->root.type == bfd_link_hash_defined
5795 || newh->root.type == bfd_link_hash_defweak))
5796 d->symver = 1;
5797 }
5798
5799 /* Attach all the symbols to their version information. */
5800 asvinfo.info = info;
5801 asvinfo.failed = FALSE;
5802
5803 elf_link_hash_traverse (elf_hash_table (info),
5804 _bfd_elf_link_assign_sym_version,
5805 &asvinfo);
5806 if (asvinfo.failed)
5807 return FALSE;
5808
5809 if (!info->allow_undefined_version)
5810 {
5811 /* Check if all global versions have a definition. */
5812 all_defined = TRUE;
5813 for (t = info->version_info; t != NULL; t = t->next)
5814 for (d = t->globals.list; d != NULL; d = d->next)
5815 if (d->literal && !d->symver && !d->script)
5816 {
5817 (*_bfd_error_handler)
5818 (_("%s: undefined version: %s"),
5819 d->pattern, t->name);
5820 all_defined = FALSE;
5821 }
5822
5823 if (!all_defined)
5824 {
5825 bfd_set_error (bfd_error_bad_value);
5826 return FALSE;
5827 }
5828 }
5829
5830 /* Find all symbols which were defined in a dynamic object and make
5831 the backend pick a reasonable value for them. */
5832 elf_link_hash_traverse (elf_hash_table (info),
5833 _bfd_elf_adjust_dynamic_symbol,
5834 &eif);
5835 if (eif.failed)
5836 return FALSE;
5837
5838 /* Add some entries to the .dynamic section. We fill in some of the
5839 values later, in bfd_elf_final_link, but we must add the entries
5840 now so that we know the final size of the .dynamic section. */
5841
5842 /* If there are initialization and/or finalization functions to
5843 call then add the corresponding DT_INIT/DT_FINI entries. */
5844 h = (info->init_function
5845 ? elf_link_hash_lookup (elf_hash_table (info),
5846 info->init_function, FALSE,
5847 FALSE, FALSE)
5848 : NULL);
5849 if (h != NULL
5850 && (h->ref_regular
5851 || h->def_regular))
5852 {
5853 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5854 return FALSE;
5855 }
5856 h = (info->fini_function
5857 ? elf_link_hash_lookup (elf_hash_table (info),
5858 info->fini_function, FALSE,
5859 FALSE, FALSE)
5860 : NULL);
5861 if (h != NULL
5862 && (h->ref_regular
5863 || h->def_regular))
5864 {
5865 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5866 return FALSE;
5867 }
5868
5869 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5870 if (s != NULL && s->linker_has_input)
5871 {
5872 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5873 if (! info->executable)
5874 {
5875 bfd *sub;
5876 asection *o;
5877
5878 for (sub = info->input_bfds; sub != NULL;
5879 sub = sub->link_next)
5880 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5881 for (o = sub->sections; o != NULL; o = o->next)
5882 if (elf_section_data (o)->this_hdr.sh_type
5883 == SHT_PREINIT_ARRAY)
5884 {
5885 (*_bfd_error_handler)
5886 (_("%B: .preinit_array section is not allowed in DSO"),
5887 sub);
5888 break;
5889 }
5890
5891 bfd_set_error (bfd_error_nonrepresentable_section);
5892 return FALSE;
5893 }
5894
5895 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5896 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5897 return FALSE;
5898 }
5899 s = bfd_get_section_by_name (output_bfd, ".init_array");
5900 if (s != NULL && s->linker_has_input)
5901 {
5902 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5903 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5904 return FALSE;
5905 }
5906 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5907 if (s != NULL && s->linker_has_input)
5908 {
5909 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5910 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5911 return FALSE;
5912 }
5913
5914 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5915 /* If .dynstr is excluded from the link, we don't want any of
5916 these tags. Strictly, we should be checking each section
5917 individually; This quick check covers for the case where
5918 someone does a /DISCARD/ : { *(*) }. */
5919 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5920 {
5921 bfd_size_type strsize;
5922
5923 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5924 if ((info->emit_hash
5925 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5926 || (info->emit_gnu_hash
5927 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5928 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5929 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5930 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5931 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5932 bed->s->sizeof_sym))
5933 return FALSE;
5934 }
5935 }
5936
5937 /* The backend must work out the sizes of all the other dynamic
5938 sections. */
5939 if (dynobj != NULL
5940 && bed->elf_backend_size_dynamic_sections != NULL
5941 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5942 return FALSE;
5943
5944 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5945 return FALSE;
5946
5947 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5948 {
5949 unsigned long section_sym_count;
5950 struct bfd_elf_version_tree *verdefs;
5951 asection *s;
5952
5953 /* Set up the version definition section. */
5954 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5955 BFD_ASSERT (s != NULL);
5956
5957 /* We may have created additional version definitions if we are
5958 just linking a regular application. */
5959 verdefs = info->version_info;
5960
5961 /* Skip anonymous version tag. */
5962 if (verdefs != NULL && verdefs->vernum == 0)
5963 verdefs = verdefs->next;
5964
5965 if (verdefs == NULL && !info->create_default_symver)
5966 s->flags |= SEC_EXCLUDE;
5967 else
5968 {
5969 unsigned int cdefs;
5970 bfd_size_type size;
5971 struct bfd_elf_version_tree *t;
5972 bfd_byte *p;
5973 Elf_Internal_Verdef def;
5974 Elf_Internal_Verdaux defaux;
5975 struct bfd_link_hash_entry *bh;
5976 struct elf_link_hash_entry *h;
5977 const char *name;
5978
5979 cdefs = 0;
5980 size = 0;
5981
5982 /* Make space for the base version. */
5983 size += sizeof (Elf_External_Verdef);
5984 size += sizeof (Elf_External_Verdaux);
5985 ++cdefs;
5986
5987 /* Make space for the default version. */
5988 if (info->create_default_symver)
5989 {
5990 size += sizeof (Elf_External_Verdef);
5991 ++cdefs;
5992 }
5993
5994 for (t = verdefs; t != NULL; t = t->next)
5995 {
5996 struct bfd_elf_version_deps *n;
5997
5998 /* Don't emit base version twice. */
5999 if (t->vernum == 0)
6000 continue;
6001
6002 size += sizeof (Elf_External_Verdef);
6003 size += sizeof (Elf_External_Verdaux);
6004 ++cdefs;
6005
6006 for (n = t->deps; n != NULL; n = n->next)
6007 size += sizeof (Elf_External_Verdaux);
6008 }
6009
6010 s->size = size;
6011 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6012 if (s->contents == NULL && s->size != 0)
6013 return FALSE;
6014
6015 /* Fill in the version definition section. */
6016
6017 p = s->contents;
6018
6019 def.vd_version = VER_DEF_CURRENT;
6020 def.vd_flags = VER_FLG_BASE;
6021 def.vd_ndx = 1;
6022 def.vd_cnt = 1;
6023 if (info->create_default_symver)
6024 {
6025 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6026 def.vd_next = sizeof (Elf_External_Verdef);
6027 }
6028 else
6029 {
6030 def.vd_aux = sizeof (Elf_External_Verdef);
6031 def.vd_next = (sizeof (Elf_External_Verdef)
6032 + sizeof (Elf_External_Verdaux));
6033 }
6034
6035 if (soname_indx != (bfd_size_type) -1)
6036 {
6037 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6038 soname_indx);
6039 def.vd_hash = bfd_elf_hash (soname);
6040 defaux.vda_name = soname_indx;
6041 name = soname;
6042 }
6043 else
6044 {
6045 bfd_size_type indx;
6046
6047 name = lbasename (output_bfd->filename);
6048 def.vd_hash = bfd_elf_hash (name);
6049 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6050 name, FALSE);
6051 if (indx == (bfd_size_type) -1)
6052 return FALSE;
6053 defaux.vda_name = indx;
6054 }
6055 defaux.vda_next = 0;
6056
6057 _bfd_elf_swap_verdef_out (output_bfd, &def,
6058 (Elf_External_Verdef *) p);
6059 p += sizeof (Elf_External_Verdef);
6060 if (info->create_default_symver)
6061 {
6062 /* Add a symbol representing this version. */
6063 bh = NULL;
6064 if (! (_bfd_generic_link_add_one_symbol
6065 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6066 0, NULL, FALSE,
6067 get_elf_backend_data (dynobj)->collect, &bh)))
6068 return FALSE;
6069 h = (struct elf_link_hash_entry *) bh;
6070 h->non_elf = 0;
6071 h->def_regular = 1;
6072 h->type = STT_OBJECT;
6073 h->verinfo.vertree = NULL;
6074
6075 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6076 return FALSE;
6077
6078 /* Create a duplicate of the base version with the same
6079 aux block, but different flags. */
6080 def.vd_flags = 0;
6081 def.vd_ndx = 2;
6082 def.vd_aux = sizeof (Elf_External_Verdef);
6083 if (verdefs)
6084 def.vd_next = (sizeof (Elf_External_Verdef)
6085 + sizeof (Elf_External_Verdaux));
6086 else
6087 def.vd_next = 0;
6088 _bfd_elf_swap_verdef_out (output_bfd, &def,
6089 (Elf_External_Verdef *) p);
6090 p += sizeof (Elf_External_Verdef);
6091 }
6092 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6093 (Elf_External_Verdaux *) p);
6094 p += sizeof (Elf_External_Verdaux);
6095
6096 for (t = verdefs; t != NULL; t = t->next)
6097 {
6098 unsigned int cdeps;
6099 struct bfd_elf_version_deps *n;
6100
6101 /* Don't emit the base version twice. */
6102 if (t->vernum == 0)
6103 continue;
6104
6105 cdeps = 0;
6106 for (n = t->deps; n != NULL; n = n->next)
6107 ++cdeps;
6108
6109 /* Add a symbol representing this version. */
6110 bh = NULL;
6111 if (! (_bfd_generic_link_add_one_symbol
6112 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6113 0, NULL, FALSE,
6114 get_elf_backend_data (dynobj)->collect, &bh)))
6115 return FALSE;
6116 h = (struct elf_link_hash_entry *) bh;
6117 h->non_elf = 0;
6118 h->def_regular = 1;
6119 h->type = STT_OBJECT;
6120 h->verinfo.vertree = t;
6121
6122 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6123 return FALSE;
6124
6125 def.vd_version = VER_DEF_CURRENT;
6126 def.vd_flags = 0;
6127 if (t->globals.list == NULL
6128 && t->locals.list == NULL
6129 && ! t->used)
6130 def.vd_flags |= VER_FLG_WEAK;
6131 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6132 def.vd_cnt = cdeps + 1;
6133 def.vd_hash = bfd_elf_hash (t->name);
6134 def.vd_aux = sizeof (Elf_External_Verdef);
6135 def.vd_next = 0;
6136
6137 /* If a basever node is next, it *must* be the last node in
6138 the chain, otherwise Verdef construction breaks. */
6139 if (t->next != NULL && t->next->vernum == 0)
6140 BFD_ASSERT (t->next->next == NULL);
6141
6142 if (t->next != NULL && t->next->vernum != 0)
6143 def.vd_next = (sizeof (Elf_External_Verdef)
6144 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6145
6146 _bfd_elf_swap_verdef_out (output_bfd, &def,
6147 (Elf_External_Verdef *) p);
6148 p += sizeof (Elf_External_Verdef);
6149
6150 defaux.vda_name = h->dynstr_index;
6151 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6152 h->dynstr_index);
6153 defaux.vda_next = 0;
6154 if (t->deps != NULL)
6155 defaux.vda_next = sizeof (Elf_External_Verdaux);
6156 t->name_indx = defaux.vda_name;
6157
6158 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6159 (Elf_External_Verdaux *) p);
6160 p += sizeof (Elf_External_Verdaux);
6161
6162 for (n = t->deps; n != NULL; n = n->next)
6163 {
6164 if (n->version_needed == NULL)
6165 {
6166 /* This can happen if there was an error in the
6167 version script. */
6168 defaux.vda_name = 0;
6169 }
6170 else
6171 {
6172 defaux.vda_name = n->version_needed->name_indx;
6173 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6174 defaux.vda_name);
6175 }
6176 if (n->next == NULL)
6177 defaux.vda_next = 0;
6178 else
6179 defaux.vda_next = sizeof (Elf_External_Verdaux);
6180
6181 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6182 (Elf_External_Verdaux *) p);
6183 p += sizeof (Elf_External_Verdaux);
6184 }
6185 }
6186
6187 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6188 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6189 return FALSE;
6190
6191 elf_tdata (output_bfd)->cverdefs = cdefs;
6192 }
6193
6194 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6195 {
6196 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6197 return FALSE;
6198 }
6199 else if (info->flags & DF_BIND_NOW)
6200 {
6201 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6202 return FALSE;
6203 }
6204
6205 if (info->flags_1)
6206 {
6207 if (info->executable)
6208 info->flags_1 &= ~ (DF_1_INITFIRST
6209 | DF_1_NODELETE
6210 | DF_1_NOOPEN);
6211 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6212 return FALSE;
6213 }
6214
6215 /* Work out the size of the version reference section. */
6216
6217 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6218 BFD_ASSERT (s != NULL);
6219 {
6220 struct elf_find_verdep_info sinfo;
6221
6222 sinfo.info = info;
6223 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6224 if (sinfo.vers == 0)
6225 sinfo.vers = 1;
6226 sinfo.failed = FALSE;
6227
6228 elf_link_hash_traverse (elf_hash_table (info),
6229 _bfd_elf_link_find_version_dependencies,
6230 &sinfo);
6231 if (sinfo.failed)
6232 return FALSE;
6233
6234 if (elf_tdata (output_bfd)->verref == NULL)
6235 s->flags |= SEC_EXCLUDE;
6236 else
6237 {
6238 Elf_Internal_Verneed *t;
6239 unsigned int size;
6240 unsigned int crefs;
6241 bfd_byte *p;
6242
6243 /* Build the version dependency section. */
6244 size = 0;
6245 crefs = 0;
6246 for (t = elf_tdata (output_bfd)->verref;
6247 t != NULL;
6248 t = t->vn_nextref)
6249 {
6250 Elf_Internal_Vernaux *a;
6251
6252 size += sizeof (Elf_External_Verneed);
6253 ++crefs;
6254 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6255 size += sizeof (Elf_External_Vernaux);
6256 }
6257
6258 s->size = size;
6259 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6260 if (s->contents == NULL)
6261 return FALSE;
6262
6263 p = s->contents;
6264 for (t = elf_tdata (output_bfd)->verref;
6265 t != NULL;
6266 t = t->vn_nextref)
6267 {
6268 unsigned int caux;
6269 Elf_Internal_Vernaux *a;
6270 bfd_size_type indx;
6271
6272 caux = 0;
6273 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6274 ++caux;
6275
6276 t->vn_version = VER_NEED_CURRENT;
6277 t->vn_cnt = caux;
6278 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6279 elf_dt_name (t->vn_bfd) != NULL
6280 ? elf_dt_name (t->vn_bfd)
6281 : lbasename (t->vn_bfd->filename),
6282 FALSE);
6283 if (indx == (bfd_size_type) -1)
6284 return FALSE;
6285 t->vn_file = indx;
6286 t->vn_aux = sizeof (Elf_External_Verneed);
6287 if (t->vn_nextref == NULL)
6288 t->vn_next = 0;
6289 else
6290 t->vn_next = (sizeof (Elf_External_Verneed)
6291 + caux * sizeof (Elf_External_Vernaux));
6292
6293 _bfd_elf_swap_verneed_out (output_bfd, t,
6294 (Elf_External_Verneed *) p);
6295 p += sizeof (Elf_External_Verneed);
6296
6297 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6298 {
6299 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6300 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6301 a->vna_nodename, FALSE);
6302 if (indx == (bfd_size_type) -1)
6303 return FALSE;
6304 a->vna_name = indx;
6305 if (a->vna_nextptr == NULL)
6306 a->vna_next = 0;
6307 else
6308 a->vna_next = sizeof (Elf_External_Vernaux);
6309
6310 _bfd_elf_swap_vernaux_out (output_bfd, a,
6311 (Elf_External_Vernaux *) p);
6312 p += sizeof (Elf_External_Vernaux);
6313 }
6314 }
6315
6316 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6317 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6318 return FALSE;
6319
6320 elf_tdata (output_bfd)->cverrefs = crefs;
6321 }
6322 }
6323
6324 if ((elf_tdata (output_bfd)->cverrefs == 0
6325 && elf_tdata (output_bfd)->cverdefs == 0)
6326 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6327 &section_sym_count) == 0)
6328 {
6329 s = bfd_get_linker_section (dynobj, ".gnu.version");
6330 s->flags |= SEC_EXCLUDE;
6331 }
6332 }
6333 return TRUE;
6334 }
6335
6336 /* Find the first non-excluded output section. We'll use its
6337 section symbol for some emitted relocs. */
6338 void
6339 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6340 {
6341 asection *s;
6342
6343 for (s = output_bfd->sections; s != NULL; s = s->next)
6344 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6345 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6346 {
6347 elf_hash_table (info)->text_index_section = s;
6348 break;
6349 }
6350 }
6351
6352 /* Find two non-excluded output sections, one for code, one for data.
6353 We'll use their section symbols for some emitted relocs. */
6354 void
6355 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6356 {
6357 asection *s;
6358
6359 /* Data first, since setting text_index_section changes
6360 _bfd_elf_link_omit_section_dynsym. */
6361 for (s = output_bfd->sections; s != NULL; s = s->next)
6362 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6363 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6364 {
6365 elf_hash_table (info)->data_index_section = s;
6366 break;
6367 }
6368
6369 for (s = output_bfd->sections; s != NULL; s = s->next)
6370 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6371 == (SEC_ALLOC | SEC_READONLY))
6372 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6373 {
6374 elf_hash_table (info)->text_index_section = s;
6375 break;
6376 }
6377
6378 if (elf_hash_table (info)->text_index_section == NULL)
6379 elf_hash_table (info)->text_index_section
6380 = elf_hash_table (info)->data_index_section;
6381 }
6382
6383 bfd_boolean
6384 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6385 {
6386 const struct elf_backend_data *bed;
6387
6388 if (!is_elf_hash_table (info->hash))
6389 return TRUE;
6390
6391 bed = get_elf_backend_data (output_bfd);
6392 (*bed->elf_backend_init_index_section) (output_bfd, info);
6393
6394 if (elf_hash_table (info)->dynamic_sections_created)
6395 {
6396 bfd *dynobj;
6397 asection *s;
6398 bfd_size_type dynsymcount;
6399 unsigned long section_sym_count;
6400 unsigned int dtagcount;
6401
6402 dynobj = elf_hash_table (info)->dynobj;
6403
6404 /* Assign dynsym indicies. In a shared library we generate a
6405 section symbol for each output section, which come first.
6406 Next come all of the back-end allocated local dynamic syms,
6407 followed by the rest of the global symbols. */
6408
6409 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6410 &section_sym_count);
6411
6412 /* Work out the size of the symbol version section. */
6413 s = bfd_get_linker_section (dynobj, ".gnu.version");
6414 BFD_ASSERT (s != NULL);
6415 if (dynsymcount != 0
6416 && (s->flags & SEC_EXCLUDE) == 0)
6417 {
6418 s->size = dynsymcount * sizeof (Elf_External_Versym);
6419 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6420 if (s->contents == NULL)
6421 return FALSE;
6422
6423 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6424 return FALSE;
6425 }
6426
6427 /* Set the size of the .dynsym and .hash sections. We counted
6428 the number of dynamic symbols in elf_link_add_object_symbols.
6429 We will build the contents of .dynsym and .hash when we build
6430 the final symbol table, because until then we do not know the
6431 correct value to give the symbols. We built the .dynstr
6432 section as we went along in elf_link_add_object_symbols. */
6433 s = bfd_get_linker_section (dynobj, ".dynsym");
6434 BFD_ASSERT (s != NULL);
6435 s->size = dynsymcount * bed->s->sizeof_sym;
6436
6437 if (dynsymcount != 0)
6438 {
6439 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6440 if (s->contents == NULL)
6441 return FALSE;
6442
6443 /* The first entry in .dynsym is a dummy symbol.
6444 Clear all the section syms, in case we don't output them all. */
6445 ++section_sym_count;
6446 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6447 }
6448
6449 elf_hash_table (info)->bucketcount = 0;
6450
6451 /* Compute the size of the hashing table. As a side effect this
6452 computes the hash values for all the names we export. */
6453 if (info->emit_hash)
6454 {
6455 unsigned long int *hashcodes;
6456 struct hash_codes_info hashinf;
6457 bfd_size_type amt;
6458 unsigned long int nsyms;
6459 size_t bucketcount;
6460 size_t hash_entry_size;
6461
6462 /* Compute the hash values for all exported symbols. At the same
6463 time store the values in an array so that we could use them for
6464 optimizations. */
6465 amt = dynsymcount * sizeof (unsigned long int);
6466 hashcodes = (unsigned long int *) bfd_malloc (amt);
6467 if (hashcodes == NULL)
6468 return FALSE;
6469 hashinf.hashcodes = hashcodes;
6470 hashinf.error = FALSE;
6471
6472 /* Put all hash values in HASHCODES. */
6473 elf_link_hash_traverse (elf_hash_table (info),
6474 elf_collect_hash_codes, &hashinf);
6475 if (hashinf.error)
6476 {
6477 free (hashcodes);
6478 return FALSE;
6479 }
6480
6481 nsyms = hashinf.hashcodes - hashcodes;
6482 bucketcount
6483 = compute_bucket_count (info, hashcodes, nsyms, 0);
6484 free (hashcodes);
6485
6486 if (bucketcount == 0)
6487 return FALSE;
6488
6489 elf_hash_table (info)->bucketcount = bucketcount;
6490
6491 s = bfd_get_linker_section (dynobj, ".hash");
6492 BFD_ASSERT (s != NULL);
6493 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6494 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6495 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6496 if (s->contents == NULL)
6497 return FALSE;
6498
6499 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6500 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6501 s->contents + hash_entry_size);
6502 }
6503
6504 if (info->emit_gnu_hash)
6505 {
6506 size_t i, cnt;
6507 unsigned char *contents;
6508 struct collect_gnu_hash_codes cinfo;
6509 bfd_size_type amt;
6510 size_t bucketcount;
6511
6512 memset (&cinfo, 0, sizeof (cinfo));
6513
6514 /* Compute the hash values for all exported symbols. At the same
6515 time store the values in an array so that we could use them for
6516 optimizations. */
6517 amt = dynsymcount * 2 * sizeof (unsigned long int);
6518 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6519 if (cinfo.hashcodes == NULL)
6520 return FALSE;
6521
6522 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6523 cinfo.min_dynindx = -1;
6524 cinfo.output_bfd = output_bfd;
6525 cinfo.bed = bed;
6526
6527 /* Put all hash values in HASHCODES. */
6528 elf_link_hash_traverse (elf_hash_table (info),
6529 elf_collect_gnu_hash_codes, &cinfo);
6530 if (cinfo.error)
6531 {
6532 free (cinfo.hashcodes);
6533 return FALSE;
6534 }
6535
6536 bucketcount
6537 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6538
6539 if (bucketcount == 0)
6540 {
6541 free (cinfo.hashcodes);
6542 return FALSE;
6543 }
6544
6545 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6546 BFD_ASSERT (s != NULL);
6547
6548 if (cinfo.nsyms == 0)
6549 {
6550 /* Empty .gnu.hash section is special. */
6551 BFD_ASSERT (cinfo.min_dynindx == -1);
6552 free (cinfo.hashcodes);
6553 s->size = 5 * 4 + bed->s->arch_size / 8;
6554 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6555 if (contents == NULL)
6556 return FALSE;
6557 s->contents = contents;
6558 /* 1 empty bucket. */
6559 bfd_put_32 (output_bfd, 1, contents);
6560 /* SYMIDX above the special symbol 0. */
6561 bfd_put_32 (output_bfd, 1, contents + 4);
6562 /* Just one word for bitmask. */
6563 bfd_put_32 (output_bfd, 1, contents + 8);
6564 /* Only hash fn bloom filter. */
6565 bfd_put_32 (output_bfd, 0, contents + 12);
6566 /* No hashes are valid - empty bitmask. */
6567 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6568 /* No hashes in the only bucket. */
6569 bfd_put_32 (output_bfd, 0,
6570 contents + 16 + bed->s->arch_size / 8);
6571 }
6572 else
6573 {
6574 unsigned long int maskwords, maskbitslog2, x;
6575 BFD_ASSERT (cinfo.min_dynindx != -1);
6576
6577 x = cinfo.nsyms;
6578 maskbitslog2 = 1;
6579 while ((x >>= 1) != 0)
6580 ++maskbitslog2;
6581 if (maskbitslog2 < 3)
6582 maskbitslog2 = 5;
6583 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6584 maskbitslog2 = maskbitslog2 + 3;
6585 else
6586 maskbitslog2 = maskbitslog2 + 2;
6587 if (bed->s->arch_size == 64)
6588 {
6589 if (maskbitslog2 == 5)
6590 maskbitslog2 = 6;
6591 cinfo.shift1 = 6;
6592 }
6593 else
6594 cinfo.shift1 = 5;
6595 cinfo.mask = (1 << cinfo.shift1) - 1;
6596 cinfo.shift2 = maskbitslog2;
6597 cinfo.maskbits = 1 << maskbitslog2;
6598 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6599 amt = bucketcount * sizeof (unsigned long int) * 2;
6600 amt += maskwords * sizeof (bfd_vma);
6601 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6602 if (cinfo.bitmask == NULL)
6603 {
6604 free (cinfo.hashcodes);
6605 return FALSE;
6606 }
6607
6608 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6609 cinfo.indx = cinfo.counts + bucketcount;
6610 cinfo.symindx = dynsymcount - cinfo.nsyms;
6611 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6612
6613 /* Determine how often each hash bucket is used. */
6614 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6615 for (i = 0; i < cinfo.nsyms; ++i)
6616 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6617
6618 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6619 if (cinfo.counts[i] != 0)
6620 {
6621 cinfo.indx[i] = cnt;
6622 cnt += cinfo.counts[i];
6623 }
6624 BFD_ASSERT (cnt == dynsymcount);
6625 cinfo.bucketcount = bucketcount;
6626 cinfo.local_indx = cinfo.min_dynindx;
6627
6628 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6629 s->size += cinfo.maskbits / 8;
6630 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6631 if (contents == NULL)
6632 {
6633 free (cinfo.bitmask);
6634 free (cinfo.hashcodes);
6635 return FALSE;
6636 }
6637
6638 s->contents = contents;
6639 bfd_put_32 (output_bfd, bucketcount, contents);
6640 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6641 bfd_put_32 (output_bfd, maskwords, contents + 8);
6642 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6643 contents += 16 + cinfo.maskbits / 8;
6644
6645 for (i = 0; i < bucketcount; ++i)
6646 {
6647 if (cinfo.counts[i] == 0)
6648 bfd_put_32 (output_bfd, 0, contents);
6649 else
6650 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6651 contents += 4;
6652 }
6653
6654 cinfo.contents = contents;
6655
6656 /* Renumber dynamic symbols, populate .gnu.hash section. */
6657 elf_link_hash_traverse (elf_hash_table (info),
6658 elf_renumber_gnu_hash_syms, &cinfo);
6659
6660 contents = s->contents + 16;
6661 for (i = 0; i < maskwords; ++i)
6662 {
6663 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6664 contents);
6665 contents += bed->s->arch_size / 8;
6666 }
6667
6668 free (cinfo.bitmask);
6669 free (cinfo.hashcodes);
6670 }
6671 }
6672
6673 s = bfd_get_linker_section (dynobj, ".dynstr");
6674 BFD_ASSERT (s != NULL);
6675
6676 elf_finalize_dynstr (output_bfd, info);
6677
6678 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6679
6680 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6681 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6682 return FALSE;
6683 }
6684
6685 return TRUE;
6686 }
6687 \f
6688 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6689
6690 static void
6691 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6692 asection *sec)
6693 {
6694 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6695 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6696 }
6697
6698 /* Finish SHF_MERGE section merging. */
6699
6700 bfd_boolean
6701 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6702 {
6703 bfd *ibfd;
6704 asection *sec;
6705
6706 if (!is_elf_hash_table (info->hash))
6707 return FALSE;
6708
6709 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6710 if ((ibfd->flags & DYNAMIC) == 0)
6711 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6712 if ((sec->flags & SEC_MERGE) != 0
6713 && !bfd_is_abs_section (sec->output_section))
6714 {
6715 struct bfd_elf_section_data *secdata;
6716
6717 secdata = elf_section_data (sec);
6718 if (! _bfd_add_merge_section (abfd,
6719 &elf_hash_table (info)->merge_info,
6720 sec, &secdata->sec_info))
6721 return FALSE;
6722 else if (secdata->sec_info)
6723 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6724 }
6725
6726 if (elf_hash_table (info)->merge_info != NULL)
6727 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6728 merge_sections_remove_hook);
6729 return TRUE;
6730 }
6731
6732 /* Create an entry in an ELF linker hash table. */
6733
6734 struct bfd_hash_entry *
6735 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6736 struct bfd_hash_table *table,
6737 const char *string)
6738 {
6739 /* Allocate the structure if it has not already been allocated by a
6740 subclass. */
6741 if (entry == NULL)
6742 {
6743 entry = (struct bfd_hash_entry *)
6744 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6745 if (entry == NULL)
6746 return entry;
6747 }
6748
6749 /* Call the allocation method of the superclass. */
6750 entry = _bfd_link_hash_newfunc (entry, table, string);
6751 if (entry != NULL)
6752 {
6753 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6754 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6755
6756 /* Set local fields. */
6757 ret->indx = -1;
6758 ret->dynindx = -1;
6759 ret->got = htab->init_got_refcount;
6760 ret->plt = htab->init_plt_refcount;
6761 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6762 - offsetof (struct elf_link_hash_entry, size)));
6763 /* Assume that we have been called by a non-ELF symbol reader.
6764 This flag is then reset by the code which reads an ELF input
6765 file. This ensures that a symbol created by a non-ELF symbol
6766 reader will have the flag set correctly. */
6767 ret->non_elf = 1;
6768 }
6769
6770 return entry;
6771 }
6772
6773 /* Copy data from an indirect symbol to its direct symbol, hiding the
6774 old indirect symbol. Also used for copying flags to a weakdef. */
6775
6776 void
6777 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6778 struct elf_link_hash_entry *dir,
6779 struct elf_link_hash_entry *ind)
6780 {
6781 struct elf_link_hash_table *htab;
6782
6783 /* Copy down any references that we may have already seen to the
6784 symbol which just became indirect. */
6785
6786 dir->ref_dynamic |= ind->ref_dynamic;
6787 dir->ref_regular |= ind->ref_regular;
6788 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6789 dir->non_got_ref |= ind->non_got_ref;
6790 dir->needs_plt |= ind->needs_plt;
6791 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6792
6793 if (ind->root.type != bfd_link_hash_indirect)
6794 return;
6795
6796 /* Copy over the global and procedure linkage table refcount entries.
6797 These may have been already set up by a check_relocs routine. */
6798 htab = elf_hash_table (info);
6799 if (ind->got.refcount > htab->init_got_refcount.refcount)
6800 {
6801 if (dir->got.refcount < 0)
6802 dir->got.refcount = 0;
6803 dir->got.refcount += ind->got.refcount;
6804 ind->got.refcount = htab->init_got_refcount.refcount;
6805 }
6806
6807 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6808 {
6809 if (dir->plt.refcount < 0)
6810 dir->plt.refcount = 0;
6811 dir->plt.refcount += ind->plt.refcount;
6812 ind->plt.refcount = htab->init_plt_refcount.refcount;
6813 }
6814
6815 if (ind->dynindx != -1)
6816 {
6817 if (dir->dynindx != -1)
6818 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6819 dir->dynindx = ind->dynindx;
6820 dir->dynstr_index = ind->dynstr_index;
6821 ind->dynindx = -1;
6822 ind->dynstr_index = 0;
6823 }
6824 }
6825
6826 void
6827 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6828 struct elf_link_hash_entry *h,
6829 bfd_boolean force_local)
6830 {
6831 /* STT_GNU_IFUNC symbol must go through PLT. */
6832 if (h->type != STT_GNU_IFUNC)
6833 {
6834 h->plt = elf_hash_table (info)->init_plt_offset;
6835 h->needs_plt = 0;
6836 }
6837 if (force_local)
6838 {
6839 h->forced_local = 1;
6840 if (h->dynindx != -1)
6841 {
6842 h->dynindx = -1;
6843 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6844 h->dynstr_index);
6845 }
6846 }
6847 }
6848
6849 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6850 caller. */
6851
6852 bfd_boolean
6853 _bfd_elf_link_hash_table_init
6854 (struct elf_link_hash_table *table,
6855 bfd *abfd,
6856 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6857 struct bfd_hash_table *,
6858 const char *),
6859 unsigned int entsize,
6860 enum elf_target_id target_id)
6861 {
6862 bfd_boolean ret;
6863 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6864
6865 table->init_got_refcount.refcount = can_refcount - 1;
6866 table->init_plt_refcount.refcount = can_refcount - 1;
6867 table->init_got_offset.offset = -(bfd_vma) 1;
6868 table->init_plt_offset.offset = -(bfd_vma) 1;
6869 /* The first dynamic symbol is a dummy. */
6870 table->dynsymcount = 1;
6871
6872 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6873
6874 table->root.type = bfd_link_elf_hash_table;
6875 table->hash_table_id = target_id;
6876
6877 return ret;
6878 }
6879
6880 /* Create an ELF linker hash table. */
6881
6882 struct bfd_link_hash_table *
6883 _bfd_elf_link_hash_table_create (bfd *abfd)
6884 {
6885 struct elf_link_hash_table *ret;
6886 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6887
6888 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6889 if (ret == NULL)
6890 return NULL;
6891
6892 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6893 sizeof (struct elf_link_hash_entry),
6894 GENERIC_ELF_DATA))
6895 {
6896 free (ret);
6897 return NULL;
6898 }
6899
6900 return &ret->root;
6901 }
6902
6903 /* Destroy an ELF linker hash table. */
6904
6905 void
6906 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6907 {
6908 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6909 if (htab->dynstr != NULL)
6910 _bfd_elf_strtab_free (htab->dynstr);
6911 _bfd_merge_sections_free (htab->merge_info);
6912 _bfd_generic_link_hash_table_free (hash);
6913 }
6914
6915 /* This is a hook for the ELF emulation code in the generic linker to
6916 tell the backend linker what file name to use for the DT_NEEDED
6917 entry for a dynamic object. */
6918
6919 void
6920 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6921 {
6922 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6923 && bfd_get_format (abfd) == bfd_object)
6924 elf_dt_name (abfd) = name;
6925 }
6926
6927 int
6928 bfd_elf_get_dyn_lib_class (bfd *abfd)
6929 {
6930 int lib_class;
6931 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6932 && bfd_get_format (abfd) == bfd_object)
6933 lib_class = elf_dyn_lib_class (abfd);
6934 else
6935 lib_class = 0;
6936 return lib_class;
6937 }
6938
6939 void
6940 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6941 {
6942 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6943 && bfd_get_format (abfd) == bfd_object)
6944 elf_dyn_lib_class (abfd) = lib_class;
6945 }
6946
6947 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6948 the linker ELF emulation code. */
6949
6950 struct bfd_link_needed_list *
6951 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6952 struct bfd_link_info *info)
6953 {
6954 if (! is_elf_hash_table (info->hash))
6955 return NULL;
6956 return elf_hash_table (info)->needed;
6957 }
6958
6959 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6960 hook for the linker ELF emulation code. */
6961
6962 struct bfd_link_needed_list *
6963 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6964 struct bfd_link_info *info)
6965 {
6966 if (! is_elf_hash_table (info->hash))
6967 return NULL;
6968 return elf_hash_table (info)->runpath;
6969 }
6970
6971 /* Get the name actually used for a dynamic object for a link. This
6972 is the SONAME entry if there is one. Otherwise, it is the string
6973 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6974
6975 const char *
6976 bfd_elf_get_dt_soname (bfd *abfd)
6977 {
6978 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6979 && bfd_get_format (abfd) == bfd_object)
6980 return elf_dt_name (abfd);
6981 return NULL;
6982 }
6983
6984 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6985 the ELF linker emulation code. */
6986
6987 bfd_boolean
6988 bfd_elf_get_bfd_needed_list (bfd *abfd,
6989 struct bfd_link_needed_list **pneeded)
6990 {
6991 asection *s;
6992 bfd_byte *dynbuf = NULL;
6993 unsigned int elfsec;
6994 unsigned long shlink;
6995 bfd_byte *extdyn, *extdynend;
6996 size_t extdynsize;
6997 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6998
6999 *pneeded = NULL;
7000
7001 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7002 || bfd_get_format (abfd) != bfd_object)
7003 return TRUE;
7004
7005 s = bfd_get_section_by_name (abfd, ".dynamic");
7006 if (s == NULL || s->size == 0)
7007 return TRUE;
7008
7009 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7010 goto error_return;
7011
7012 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7013 if (elfsec == SHN_BAD)
7014 goto error_return;
7015
7016 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7017
7018 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7019 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7020
7021 extdyn = dynbuf;
7022 extdynend = extdyn + s->size;
7023 for (; extdyn < extdynend; extdyn += extdynsize)
7024 {
7025 Elf_Internal_Dyn dyn;
7026
7027 (*swap_dyn_in) (abfd, extdyn, &dyn);
7028
7029 if (dyn.d_tag == DT_NULL)
7030 break;
7031
7032 if (dyn.d_tag == DT_NEEDED)
7033 {
7034 const char *string;
7035 struct bfd_link_needed_list *l;
7036 unsigned int tagv = dyn.d_un.d_val;
7037 bfd_size_type amt;
7038
7039 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7040 if (string == NULL)
7041 goto error_return;
7042
7043 amt = sizeof *l;
7044 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7045 if (l == NULL)
7046 goto error_return;
7047
7048 l->by = abfd;
7049 l->name = string;
7050 l->next = *pneeded;
7051 *pneeded = l;
7052 }
7053 }
7054
7055 free (dynbuf);
7056
7057 return TRUE;
7058
7059 error_return:
7060 if (dynbuf != NULL)
7061 free (dynbuf);
7062 return FALSE;
7063 }
7064
7065 struct elf_symbuf_symbol
7066 {
7067 unsigned long st_name; /* Symbol name, index in string tbl */
7068 unsigned char st_info; /* Type and binding attributes */
7069 unsigned char st_other; /* Visibilty, and target specific */
7070 };
7071
7072 struct elf_symbuf_head
7073 {
7074 struct elf_symbuf_symbol *ssym;
7075 bfd_size_type count;
7076 unsigned int st_shndx;
7077 };
7078
7079 struct elf_symbol
7080 {
7081 union
7082 {
7083 Elf_Internal_Sym *isym;
7084 struct elf_symbuf_symbol *ssym;
7085 } u;
7086 const char *name;
7087 };
7088
7089 /* Sort references to symbols by ascending section number. */
7090
7091 static int
7092 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7093 {
7094 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7095 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7096
7097 return s1->st_shndx - s2->st_shndx;
7098 }
7099
7100 static int
7101 elf_sym_name_compare (const void *arg1, const void *arg2)
7102 {
7103 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7104 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7105 return strcmp (s1->name, s2->name);
7106 }
7107
7108 static struct elf_symbuf_head *
7109 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7110 {
7111 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7112 struct elf_symbuf_symbol *ssym;
7113 struct elf_symbuf_head *ssymbuf, *ssymhead;
7114 bfd_size_type i, shndx_count, total_size;
7115
7116 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7117 if (indbuf == NULL)
7118 return NULL;
7119
7120 for (ind = indbuf, i = 0; i < symcount; i++)
7121 if (isymbuf[i].st_shndx != SHN_UNDEF)
7122 *ind++ = &isymbuf[i];
7123 indbufend = ind;
7124
7125 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7126 elf_sort_elf_symbol);
7127
7128 shndx_count = 0;
7129 if (indbufend > indbuf)
7130 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7131 if (ind[0]->st_shndx != ind[1]->st_shndx)
7132 shndx_count++;
7133
7134 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7135 + (indbufend - indbuf) * sizeof (*ssym));
7136 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7137 if (ssymbuf == NULL)
7138 {
7139 free (indbuf);
7140 return NULL;
7141 }
7142
7143 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7144 ssymbuf->ssym = NULL;
7145 ssymbuf->count = shndx_count;
7146 ssymbuf->st_shndx = 0;
7147 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7148 {
7149 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7150 {
7151 ssymhead++;
7152 ssymhead->ssym = ssym;
7153 ssymhead->count = 0;
7154 ssymhead->st_shndx = (*ind)->st_shndx;
7155 }
7156 ssym->st_name = (*ind)->st_name;
7157 ssym->st_info = (*ind)->st_info;
7158 ssym->st_other = (*ind)->st_other;
7159 ssymhead->count++;
7160 }
7161 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7162 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7163 == total_size));
7164
7165 free (indbuf);
7166 return ssymbuf;
7167 }
7168
7169 /* Check if 2 sections define the same set of local and global
7170 symbols. */
7171
7172 static bfd_boolean
7173 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7174 struct bfd_link_info *info)
7175 {
7176 bfd *bfd1, *bfd2;
7177 const struct elf_backend_data *bed1, *bed2;
7178 Elf_Internal_Shdr *hdr1, *hdr2;
7179 bfd_size_type symcount1, symcount2;
7180 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7181 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7182 Elf_Internal_Sym *isym, *isymend;
7183 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7184 bfd_size_type count1, count2, i;
7185 unsigned int shndx1, shndx2;
7186 bfd_boolean result;
7187
7188 bfd1 = sec1->owner;
7189 bfd2 = sec2->owner;
7190
7191 /* Both sections have to be in ELF. */
7192 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7193 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7194 return FALSE;
7195
7196 if (elf_section_type (sec1) != elf_section_type (sec2))
7197 return FALSE;
7198
7199 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7200 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7201 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7202 return FALSE;
7203
7204 bed1 = get_elf_backend_data (bfd1);
7205 bed2 = get_elf_backend_data (bfd2);
7206 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7207 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7208 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7209 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7210
7211 if (symcount1 == 0 || symcount2 == 0)
7212 return FALSE;
7213
7214 result = FALSE;
7215 isymbuf1 = NULL;
7216 isymbuf2 = NULL;
7217 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7218 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7219
7220 if (ssymbuf1 == NULL)
7221 {
7222 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7223 NULL, NULL, NULL);
7224 if (isymbuf1 == NULL)
7225 goto done;
7226
7227 if (!info->reduce_memory_overheads)
7228 elf_tdata (bfd1)->symbuf = ssymbuf1
7229 = elf_create_symbuf (symcount1, isymbuf1);
7230 }
7231
7232 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7233 {
7234 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7235 NULL, NULL, NULL);
7236 if (isymbuf2 == NULL)
7237 goto done;
7238
7239 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7240 elf_tdata (bfd2)->symbuf = ssymbuf2
7241 = elf_create_symbuf (symcount2, isymbuf2);
7242 }
7243
7244 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7245 {
7246 /* Optimized faster version. */
7247 bfd_size_type lo, hi, mid;
7248 struct elf_symbol *symp;
7249 struct elf_symbuf_symbol *ssym, *ssymend;
7250
7251 lo = 0;
7252 hi = ssymbuf1->count;
7253 ssymbuf1++;
7254 count1 = 0;
7255 while (lo < hi)
7256 {
7257 mid = (lo + hi) / 2;
7258 if (shndx1 < ssymbuf1[mid].st_shndx)
7259 hi = mid;
7260 else if (shndx1 > ssymbuf1[mid].st_shndx)
7261 lo = mid + 1;
7262 else
7263 {
7264 count1 = ssymbuf1[mid].count;
7265 ssymbuf1 += mid;
7266 break;
7267 }
7268 }
7269
7270 lo = 0;
7271 hi = ssymbuf2->count;
7272 ssymbuf2++;
7273 count2 = 0;
7274 while (lo < hi)
7275 {
7276 mid = (lo + hi) / 2;
7277 if (shndx2 < ssymbuf2[mid].st_shndx)
7278 hi = mid;
7279 else if (shndx2 > ssymbuf2[mid].st_shndx)
7280 lo = mid + 1;
7281 else
7282 {
7283 count2 = ssymbuf2[mid].count;
7284 ssymbuf2 += mid;
7285 break;
7286 }
7287 }
7288
7289 if (count1 == 0 || count2 == 0 || count1 != count2)
7290 goto done;
7291
7292 symtable1 = (struct elf_symbol *)
7293 bfd_malloc (count1 * sizeof (struct elf_symbol));
7294 symtable2 = (struct elf_symbol *)
7295 bfd_malloc (count2 * sizeof (struct elf_symbol));
7296 if (symtable1 == NULL || symtable2 == NULL)
7297 goto done;
7298
7299 symp = symtable1;
7300 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7301 ssym < ssymend; ssym++, symp++)
7302 {
7303 symp->u.ssym = ssym;
7304 symp->name = bfd_elf_string_from_elf_section (bfd1,
7305 hdr1->sh_link,
7306 ssym->st_name);
7307 }
7308
7309 symp = symtable2;
7310 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7311 ssym < ssymend; ssym++, symp++)
7312 {
7313 symp->u.ssym = ssym;
7314 symp->name = bfd_elf_string_from_elf_section (bfd2,
7315 hdr2->sh_link,
7316 ssym->st_name);
7317 }
7318
7319 /* Sort symbol by name. */
7320 qsort (symtable1, count1, sizeof (struct elf_symbol),
7321 elf_sym_name_compare);
7322 qsort (symtable2, count1, sizeof (struct elf_symbol),
7323 elf_sym_name_compare);
7324
7325 for (i = 0; i < count1; i++)
7326 /* Two symbols must have the same binding, type and name. */
7327 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7328 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7329 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7330 goto done;
7331
7332 result = TRUE;
7333 goto done;
7334 }
7335
7336 symtable1 = (struct elf_symbol *)
7337 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7338 symtable2 = (struct elf_symbol *)
7339 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7340 if (symtable1 == NULL || symtable2 == NULL)
7341 goto done;
7342
7343 /* Count definitions in the section. */
7344 count1 = 0;
7345 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7346 if (isym->st_shndx == shndx1)
7347 symtable1[count1++].u.isym = isym;
7348
7349 count2 = 0;
7350 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7351 if (isym->st_shndx == shndx2)
7352 symtable2[count2++].u.isym = isym;
7353
7354 if (count1 == 0 || count2 == 0 || count1 != count2)
7355 goto done;
7356
7357 for (i = 0; i < count1; i++)
7358 symtable1[i].name
7359 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7360 symtable1[i].u.isym->st_name);
7361
7362 for (i = 0; i < count2; i++)
7363 symtable2[i].name
7364 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7365 symtable2[i].u.isym->st_name);
7366
7367 /* Sort symbol by name. */
7368 qsort (symtable1, count1, sizeof (struct elf_symbol),
7369 elf_sym_name_compare);
7370 qsort (symtable2, count1, sizeof (struct elf_symbol),
7371 elf_sym_name_compare);
7372
7373 for (i = 0; i < count1; i++)
7374 /* Two symbols must have the same binding, type and name. */
7375 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7376 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7377 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7378 goto done;
7379
7380 result = TRUE;
7381
7382 done:
7383 if (symtable1)
7384 free (symtable1);
7385 if (symtable2)
7386 free (symtable2);
7387 if (isymbuf1)
7388 free (isymbuf1);
7389 if (isymbuf2)
7390 free (isymbuf2);
7391
7392 return result;
7393 }
7394
7395 /* Return TRUE if 2 section types are compatible. */
7396
7397 bfd_boolean
7398 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7399 bfd *bbfd, const asection *bsec)
7400 {
7401 if (asec == NULL
7402 || bsec == NULL
7403 || abfd->xvec->flavour != bfd_target_elf_flavour
7404 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7405 return TRUE;
7406
7407 return elf_section_type (asec) == elf_section_type (bsec);
7408 }
7409 \f
7410 /* Final phase of ELF linker. */
7411
7412 /* A structure we use to avoid passing large numbers of arguments. */
7413
7414 struct elf_final_link_info
7415 {
7416 /* General link information. */
7417 struct bfd_link_info *info;
7418 /* Output BFD. */
7419 bfd *output_bfd;
7420 /* Symbol string table. */
7421 struct bfd_strtab_hash *symstrtab;
7422 /* .dynsym section. */
7423 asection *dynsym_sec;
7424 /* .hash section. */
7425 asection *hash_sec;
7426 /* symbol version section (.gnu.version). */
7427 asection *symver_sec;
7428 /* Buffer large enough to hold contents of any section. */
7429 bfd_byte *contents;
7430 /* Buffer large enough to hold external relocs of any section. */
7431 void *external_relocs;
7432 /* Buffer large enough to hold internal relocs of any section. */
7433 Elf_Internal_Rela *internal_relocs;
7434 /* Buffer large enough to hold external local symbols of any input
7435 BFD. */
7436 bfd_byte *external_syms;
7437 /* And a buffer for symbol section indices. */
7438 Elf_External_Sym_Shndx *locsym_shndx;
7439 /* Buffer large enough to hold internal local symbols of any input
7440 BFD. */
7441 Elf_Internal_Sym *internal_syms;
7442 /* Array large enough to hold a symbol index for each local symbol
7443 of any input BFD. */
7444 long *indices;
7445 /* Array large enough to hold a section pointer for each local
7446 symbol of any input BFD. */
7447 asection **sections;
7448 /* Buffer to hold swapped out symbols. */
7449 bfd_byte *symbuf;
7450 /* And one for symbol section indices. */
7451 Elf_External_Sym_Shndx *symshndxbuf;
7452 /* Number of swapped out symbols in buffer. */
7453 size_t symbuf_count;
7454 /* Number of symbols which fit in symbuf. */
7455 size_t symbuf_size;
7456 /* And same for symshndxbuf. */
7457 size_t shndxbuf_size;
7458 /* Number of STT_FILE syms seen. */
7459 size_t filesym_count;
7460 };
7461
7462 /* This struct is used to pass information to elf_link_output_extsym. */
7463
7464 struct elf_outext_info
7465 {
7466 bfd_boolean failed;
7467 bfd_boolean localsyms;
7468 bfd_boolean need_second_pass;
7469 bfd_boolean second_pass;
7470 bfd_boolean file_sym_done;
7471 struct elf_final_link_info *flinfo;
7472 };
7473
7474
7475 /* Support for evaluating a complex relocation.
7476
7477 Complex relocations are generalized, self-describing relocations. The
7478 implementation of them consists of two parts: complex symbols, and the
7479 relocations themselves.
7480
7481 The relocations are use a reserved elf-wide relocation type code (R_RELC
7482 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7483 information (start bit, end bit, word width, etc) into the addend. This
7484 information is extracted from CGEN-generated operand tables within gas.
7485
7486 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7487 internal) representing prefix-notation expressions, including but not
7488 limited to those sorts of expressions normally encoded as addends in the
7489 addend field. The symbol mangling format is:
7490
7491 <node> := <literal>
7492 | <unary-operator> ':' <node>
7493 | <binary-operator> ':' <node> ':' <node>
7494 ;
7495
7496 <literal> := 's' <digits=N> ':' <N character symbol name>
7497 | 'S' <digits=N> ':' <N character section name>
7498 | '#' <hexdigits>
7499 ;
7500
7501 <binary-operator> := as in C
7502 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7503
7504 static void
7505 set_symbol_value (bfd *bfd_with_globals,
7506 Elf_Internal_Sym *isymbuf,
7507 size_t locsymcount,
7508 size_t symidx,
7509 bfd_vma val)
7510 {
7511 struct elf_link_hash_entry **sym_hashes;
7512 struct elf_link_hash_entry *h;
7513 size_t extsymoff = locsymcount;
7514
7515 if (symidx < locsymcount)
7516 {
7517 Elf_Internal_Sym *sym;
7518
7519 sym = isymbuf + symidx;
7520 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7521 {
7522 /* It is a local symbol: move it to the
7523 "absolute" section and give it a value. */
7524 sym->st_shndx = SHN_ABS;
7525 sym->st_value = val;
7526 return;
7527 }
7528 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7529 extsymoff = 0;
7530 }
7531
7532 /* It is a global symbol: set its link type
7533 to "defined" and give it a value. */
7534
7535 sym_hashes = elf_sym_hashes (bfd_with_globals);
7536 h = sym_hashes [symidx - extsymoff];
7537 while (h->root.type == bfd_link_hash_indirect
7538 || h->root.type == bfd_link_hash_warning)
7539 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7540 h->root.type = bfd_link_hash_defined;
7541 h->root.u.def.value = val;
7542 h->root.u.def.section = bfd_abs_section_ptr;
7543 }
7544
7545 static bfd_boolean
7546 resolve_symbol (const char *name,
7547 bfd *input_bfd,
7548 struct elf_final_link_info *flinfo,
7549 bfd_vma *result,
7550 Elf_Internal_Sym *isymbuf,
7551 size_t locsymcount)
7552 {
7553 Elf_Internal_Sym *sym;
7554 struct bfd_link_hash_entry *global_entry;
7555 const char *candidate = NULL;
7556 Elf_Internal_Shdr *symtab_hdr;
7557 size_t i;
7558
7559 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7560
7561 for (i = 0; i < locsymcount; ++ i)
7562 {
7563 sym = isymbuf + i;
7564
7565 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7566 continue;
7567
7568 candidate = bfd_elf_string_from_elf_section (input_bfd,
7569 symtab_hdr->sh_link,
7570 sym->st_name);
7571 #ifdef DEBUG
7572 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7573 name, candidate, (unsigned long) sym->st_value);
7574 #endif
7575 if (candidate && strcmp (candidate, name) == 0)
7576 {
7577 asection *sec = flinfo->sections [i];
7578
7579 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7580 *result += sec->output_offset + sec->output_section->vma;
7581 #ifdef DEBUG
7582 printf ("Found symbol with value %8.8lx\n",
7583 (unsigned long) *result);
7584 #endif
7585 return TRUE;
7586 }
7587 }
7588
7589 /* Hmm, haven't found it yet. perhaps it is a global. */
7590 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7591 FALSE, FALSE, TRUE);
7592 if (!global_entry)
7593 return FALSE;
7594
7595 if (global_entry->type == bfd_link_hash_defined
7596 || global_entry->type == bfd_link_hash_defweak)
7597 {
7598 *result = (global_entry->u.def.value
7599 + global_entry->u.def.section->output_section->vma
7600 + global_entry->u.def.section->output_offset);
7601 #ifdef DEBUG
7602 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7603 global_entry->root.string, (unsigned long) *result);
7604 #endif
7605 return TRUE;
7606 }
7607
7608 return FALSE;
7609 }
7610
7611 static bfd_boolean
7612 resolve_section (const char *name,
7613 asection *sections,
7614 bfd_vma *result)
7615 {
7616 asection *curr;
7617 unsigned int len;
7618
7619 for (curr = sections; curr; curr = curr->next)
7620 if (strcmp (curr->name, name) == 0)
7621 {
7622 *result = curr->vma;
7623 return TRUE;
7624 }
7625
7626 /* Hmm. still haven't found it. try pseudo-section names. */
7627 for (curr = sections; curr; curr = curr->next)
7628 {
7629 len = strlen (curr->name);
7630 if (len > strlen (name))
7631 continue;
7632
7633 if (strncmp (curr->name, name, len) == 0)
7634 {
7635 if (strncmp (".end", name + len, 4) == 0)
7636 {
7637 *result = curr->vma + curr->size;
7638 return TRUE;
7639 }
7640
7641 /* Insert more pseudo-section names here, if you like. */
7642 }
7643 }
7644
7645 return FALSE;
7646 }
7647
7648 static void
7649 undefined_reference (const char *reftype, const char *name)
7650 {
7651 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7652 reftype, name);
7653 }
7654
7655 static bfd_boolean
7656 eval_symbol (bfd_vma *result,
7657 const char **symp,
7658 bfd *input_bfd,
7659 struct elf_final_link_info *flinfo,
7660 bfd_vma dot,
7661 Elf_Internal_Sym *isymbuf,
7662 size_t locsymcount,
7663 int signed_p)
7664 {
7665 size_t len;
7666 size_t symlen;
7667 bfd_vma a;
7668 bfd_vma b;
7669 char symbuf[4096];
7670 const char *sym = *symp;
7671 const char *symend;
7672 bfd_boolean symbol_is_section = FALSE;
7673
7674 len = strlen (sym);
7675 symend = sym + len;
7676
7677 if (len < 1 || len > sizeof (symbuf))
7678 {
7679 bfd_set_error (bfd_error_invalid_operation);
7680 return FALSE;
7681 }
7682
7683 switch (* sym)
7684 {
7685 case '.':
7686 *result = dot;
7687 *symp = sym + 1;
7688 return TRUE;
7689
7690 case '#':
7691 ++sym;
7692 *result = strtoul (sym, (char **) symp, 16);
7693 return TRUE;
7694
7695 case 'S':
7696 symbol_is_section = TRUE;
7697 case 's':
7698 ++sym;
7699 symlen = strtol (sym, (char **) symp, 10);
7700 sym = *symp + 1; /* Skip the trailing ':'. */
7701
7702 if (symend < sym || symlen + 1 > sizeof (symbuf))
7703 {
7704 bfd_set_error (bfd_error_invalid_operation);
7705 return FALSE;
7706 }
7707
7708 memcpy (symbuf, sym, symlen);
7709 symbuf[symlen] = '\0';
7710 *symp = sym + symlen;
7711
7712 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7713 the symbol as a section, or vice-versa. so we're pretty liberal in our
7714 interpretation here; section means "try section first", not "must be a
7715 section", and likewise with symbol. */
7716
7717 if (symbol_is_section)
7718 {
7719 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7720 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7721 isymbuf, locsymcount))
7722 {
7723 undefined_reference ("section", symbuf);
7724 return FALSE;
7725 }
7726 }
7727 else
7728 {
7729 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7730 isymbuf, locsymcount)
7731 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7732 result))
7733 {
7734 undefined_reference ("symbol", symbuf);
7735 return FALSE;
7736 }
7737 }
7738
7739 return TRUE;
7740
7741 /* All that remains are operators. */
7742
7743 #define UNARY_OP(op) \
7744 if (strncmp (sym, #op, strlen (#op)) == 0) \
7745 { \
7746 sym += strlen (#op); \
7747 if (*sym == ':') \
7748 ++sym; \
7749 *symp = sym; \
7750 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7751 isymbuf, locsymcount, signed_p)) \
7752 return FALSE; \
7753 if (signed_p) \
7754 *result = op ((bfd_signed_vma) a); \
7755 else \
7756 *result = op a; \
7757 return TRUE; \
7758 }
7759
7760 #define BINARY_OP(op) \
7761 if (strncmp (sym, #op, strlen (#op)) == 0) \
7762 { \
7763 sym += strlen (#op); \
7764 if (*sym == ':') \
7765 ++sym; \
7766 *symp = sym; \
7767 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7768 isymbuf, locsymcount, signed_p)) \
7769 return FALSE; \
7770 ++*symp; \
7771 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7772 isymbuf, locsymcount, signed_p)) \
7773 return FALSE; \
7774 if (signed_p) \
7775 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7776 else \
7777 *result = a op b; \
7778 return TRUE; \
7779 }
7780
7781 default:
7782 UNARY_OP (0-);
7783 BINARY_OP (<<);
7784 BINARY_OP (>>);
7785 BINARY_OP (==);
7786 BINARY_OP (!=);
7787 BINARY_OP (<=);
7788 BINARY_OP (>=);
7789 BINARY_OP (&&);
7790 BINARY_OP (||);
7791 UNARY_OP (~);
7792 UNARY_OP (!);
7793 BINARY_OP (*);
7794 BINARY_OP (/);
7795 BINARY_OP (%);
7796 BINARY_OP (^);
7797 BINARY_OP (|);
7798 BINARY_OP (&);
7799 BINARY_OP (+);
7800 BINARY_OP (-);
7801 BINARY_OP (<);
7802 BINARY_OP (>);
7803 #undef UNARY_OP
7804 #undef BINARY_OP
7805 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7806 bfd_set_error (bfd_error_invalid_operation);
7807 return FALSE;
7808 }
7809 }
7810
7811 static void
7812 put_value (bfd_vma size,
7813 unsigned long chunksz,
7814 bfd *input_bfd,
7815 bfd_vma x,
7816 bfd_byte *location)
7817 {
7818 location += (size - chunksz);
7819
7820 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7821 {
7822 switch (chunksz)
7823 {
7824 default:
7825 case 0:
7826 abort ();
7827 case 1:
7828 bfd_put_8 (input_bfd, x, location);
7829 break;
7830 case 2:
7831 bfd_put_16 (input_bfd, x, location);
7832 break;
7833 case 4:
7834 bfd_put_32 (input_bfd, x, location);
7835 break;
7836 case 8:
7837 #ifdef BFD64
7838 bfd_put_64 (input_bfd, x, location);
7839 #else
7840 abort ();
7841 #endif
7842 break;
7843 }
7844 }
7845 }
7846
7847 static bfd_vma
7848 get_value (bfd_vma size,
7849 unsigned long chunksz,
7850 bfd *input_bfd,
7851 bfd_byte *location)
7852 {
7853 int shift;
7854 bfd_vma x = 0;
7855
7856 /* Sanity checks. */
7857 BFD_ASSERT (chunksz <= sizeof (x)
7858 && size >= chunksz
7859 && chunksz != 0
7860 && (size % chunksz) == 0
7861 && input_bfd != NULL
7862 && location != NULL);
7863
7864 if (chunksz == sizeof (x))
7865 {
7866 BFD_ASSERT (size == chunksz);
7867
7868 /* Make sure that we do not perform an undefined shift operation.
7869 We know that size == chunksz so there will only be one iteration
7870 of the loop below. */
7871 shift = 0;
7872 }
7873 else
7874 shift = 8 * chunksz;
7875
7876 for (; size; size -= chunksz, location += chunksz)
7877 {
7878 switch (chunksz)
7879 {
7880 case 1:
7881 x = (x << shift) | bfd_get_8 (input_bfd, location);
7882 break;
7883 case 2:
7884 x = (x << shift) | bfd_get_16 (input_bfd, location);
7885 break;
7886 case 4:
7887 x = (x << shift) | bfd_get_32 (input_bfd, location);
7888 break;
7889 #ifdef BFD64
7890 case 8:
7891 x = (x << shift) | bfd_get_64 (input_bfd, location);
7892 break;
7893 #endif
7894 default:
7895 abort ();
7896 }
7897 }
7898 return x;
7899 }
7900
7901 static void
7902 decode_complex_addend (unsigned long *start, /* in bits */
7903 unsigned long *oplen, /* in bits */
7904 unsigned long *len, /* in bits */
7905 unsigned long *wordsz, /* in bytes */
7906 unsigned long *chunksz, /* in bytes */
7907 unsigned long *lsb0_p,
7908 unsigned long *signed_p,
7909 unsigned long *trunc_p,
7910 unsigned long encoded)
7911 {
7912 * start = encoded & 0x3F;
7913 * len = (encoded >> 6) & 0x3F;
7914 * oplen = (encoded >> 12) & 0x3F;
7915 * wordsz = (encoded >> 18) & 0xF;
7916 * chunksz = (encoded >> 22) & 0xF;
7917 * lsb0_p = (encoded >> 27) & 1;
7918 * signed_p = (encoded >> 28) & 1;
7919 * trunc_p = (encoded >> 29) & 1;
7920 }
7921
7922 bfd_reloc_status_type
7923 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7924 asection *input_section ATTRIBUTE_UNUSED,
7925 bfd_byte *contents,
7926 Elf_Internal_Rela *rel,
7927 bfd_vma relocation)
7928 {
7929 bfd_vma shift, x, mask;
7930 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7931 bfd_reloc_status_type r;
7932
7933 /* Perform this reloc, since it is complex.
7934 (this is not to say that it necessarily refers to a complex
7935 symbol; merely that it is a self-describing CGEN based reloc.
7936 i.e. the addend has the complete reloc information (bit start, end,
7937 word size, etc) encoded within it.). */
7938
7939 decode_complex_addend (&start, &oplen, &len, &wordsz,
7940 &chunksz, &lsb0_p, &signed_p,
7941 &trunc_p, rel->r_addend);
7942
7943 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7944
7945 if (lsb0_p)
7946 shift = (start + 1) - len;
7947 else
7948 shift = (8 * wordsz) - (start + len);
7949
7950 /* FIXME: octets_per_byte. */
7951 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7952
7953 #ifdef DEBUG
7954 printf ("Doing complex reloc: "
7955 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7956 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7957 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7958 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7959 oplen, (unsigned long) x, (unsigned long) mask,
7960 (unsigned long) relocation);
7961 #endif
7962
7963 r = bfd_reloc_ok;
7964 if (! trunc_p)
7965 /* Now do an overflow check. */
7966 r = bfd_check_overflow ((signed_p
7967 ? complain_overflow_signed
7968 : complain_overflow_unsigned),
7969 len, 0, (8 * wordsz),
7970 relocation);
7971
7972 /* Do the deed. */
7973 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7974
7975 #ifdef DEBUG
7976 printf (" relocation: %8.8lx\n"
7977 " shifted mask: %8.8lx\n"
7978 " shifted/masked reloc: %8.8lx\n"
7979 " result: %8.8lx\n",
7980 (unsigned long) relocation, (unsigned long) (mask << shift),
7981 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7982 #endif
7983 /* FIXME: octets_per_byte. */
7984 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7985 return r;
7986 }
7987
7988 /* When performing a relocatable link, the input relocations are
7989 preserved. But, if they reference global symbols, the indices
7990 referenced must be updated. Update all the relocations found in
7991 RELDATA. */
7992
7993 static void
7994 elf_link_adjust_relocs (bfd *abfd,
7995 struct bfd_elf_section_reloc_data *reldata)
7996 {
7997 unsigned int i;
7998 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7999 bfd_byte *erela;
8000 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8001 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8002 bfd_vma r_type_mask;
8003 int r_sym_shift;
8004 unsigned int count = reldata->count;
8005 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8006
8007 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8008 {
8009 swap_in = bed->s->swap_reloc_in;
8010 swap_out = bed->s->swap_reloc_out;
8011 }
8012 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8013 {
8014 swap_in = bed->s->swap_reloca_in;
8015 swap_out = bed->s->swap_reloca_out;
8016 }
8017 else
8018 abort ();
8019
8020 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8021 abort ();
8022
8023 if (bed->s->arch_size == 32)
8024 {
8025 r_type_mask = 0xff;
8026 r_sym_shift = 8;
8027 }
8028 else
8029 {
8030 r_type_mask = 0xffffffff;
8031 r_sym_shift = 32;
8032 }
8033
8034 erela = reldata->hdr->contents;
8035 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8036 {
8037 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8038 unsigned int j;
8039
8040 if (*rel_hash == NULL)
8041 continue;
8042
8043 BFD_ASSERT ((*rel_hash)->indx >= 0);
8044
8045 (*swap_in) (abfd, erela, irela);
8046 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8047 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8048 | (irela[j].r_info & r_type_mask));
8049 (*swap_out) (abfd, irela, erela);
8050 }
8051 }
8052
8053 struct elf_link_sort_rela
8054 {
8055 union {
8056 bfd_vma offset;
8057 bfd_vma sym_mask;
8058 } u;
8059 enum elf_reloc_type_class type;
8060 /* We use this as an array of size int_rels_per_ext_rel. */
8061 Elf_Internal_Rela rela[1];
8062 };
8063
8064 static int
8065 elf_link_sort_cmp1 (const void *A, const void *B)
8066 {
8067 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8068 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8069 int relativea, relativeb;
8070
8071 relativea = a->type == reloc_class_relative;
8072 relativeb = b->type == reloc_class_relative;
8073
8074 if (relativea < relativeb)
8075 return 1;
8076 if (relativea > relativeb)
8077 return -1;
8078 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8079 return -1;
8080 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8081 return 1;
8082 if (a->rela->r_offset < b->rela->r_offset)
8083 return -1;
8084 if (a->rela->r_offset > b->rela->r_offset)
8085 return 1;
8086 return 0;
8087 }
8088
8089 static int
8090 elf_link_sort_cmp2 (const void *A, const void *B)
8091 {
8092 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8093 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8094
8095 if (a->type < b->type)
8096 return -1;
8097 if (a->type > b->type)
8098 return 1;
8099 if (a->u.offset < b->u.offset)
8100 return -1;
8101 if (a->u.offset > b->u.offset)
8102 return 1;
8103 if (a->rela->r_offset < b->rela->r_offset)
8104 return -1;
8105 if (a->rela->r_offset > b->rela->r_offset)
8106 return 1;
8107 return 0;
8108 }
8109
8110 static size_t
8111 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8112 {
8113 asection *dynamic_relocs;
8114 asection *rela_dyn;
8115 asection *rel_dyn;
8116 bfd_size_type count, size;
8117 size_t i, ret, sort_elt, ext_size;
8118 bfd_byte *sort, *s_non_relative, *p;
8119 struct elf_link_sort_rela *sq;
8120 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8121 int i2e = bed->s->int_rels_per_ext_rel;
8122 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8123 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8124 struct bfd_link_order *lo;
8125 bfd_vma r_sym_mask;
8126 bfd_boolean use_rela;
8127
8128 /* Find a dynamic reloc section. */
8129 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8130 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8131 if (rela_dyn != NULL && rela_dyn->size > 0
8132 && rel_dyn != NULL && rel_dyn->size > 0)
8133 {
8134 bfd_boolean use_rela_initialised = FALSE;
8135
8136 /* This is just here to stop gcc from complaining.
8137 It's initialization checking code is not perfect. */
8138 use_rela = TRUE;
8139
8140 /* Both sections are present. Examine the sizes
8141 of the indirect sections to help us choose. */
8142 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8143 if (lo->type == bfd_indirect_link_order)
8144 {
8145 asection *o = lo->u.indirect.section;
8146
8147 if ((o->size % bed->s->sizeof_rela) == 0)
8148 {
8149 if ((o->size % bed->s->sizeof_rel) == 0)
8150 /* Section size is divisible by both rel and rela sizes.
8151 It is of no help to us. */
8152 ;
8153 else
8154 {
8155 /* Section size is only divisible by rela. */
8156 if (use_rela_initialised && (use_rela == FALSE))
8157 {
8158 _bfd_error_handler
8159 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8160 bfd_set_error (bfd_error_invalid_operation);
8161 return 0;
8162 }
8163 else
8164 {
8165 use_rela = TRUE;
8166 use_rela_initialised = TRUE;
8167 }
8168 }
8169 }
8170 else if ((o->size % bed->s->sizeof_rel) == 0)
8171 {
8172 /* Section size is only divisible by rel. */
8173 if (use_rela_initialised && (use_rela == TRUE))
8174 {
8175 _bfd_error_handler
8176 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8177 bfd_set_error (bfd_error_invalid_operation);
8178 return 0;
8179 }
8180 else
8181 {
8182 use_rela = FALSE;
8183 use_rela_initialised = TRUE;
8184 }
8185 }
8186 else
8187 {
8188 /* The section size is not divisible by either - something is wrong. */
8189 _bfd_error_handler
8190 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8191 bfd_set_error (bfd_error_invalid_operation);
8192 return 0;
8193 }
8194 }
8195
8196 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8197 if (lo->type == bfd_indirect_link_order)
8198 {
8199 asection *o = lo->u.indirect.section;
8200
8201 if ((o->size % bed->s->sizeof_rela) == 0)
8202 {
8203 if ((o->size % bed->s->sizeof_rel) == 0)
8204 /* Section size is divisible by both rel and rela sizes.
8205 It is of no help to us. */
8206 ;
8207 else
8208 {
8209 /* Section size is only divisible by rela. */
8210 if (use_rela_initialised && (use_rela == FALSE))
8211 {
8212 _bfd_error_handler
8213 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8214 bfd_set_error (bfd_error_invalid_operation);
8215 return 0;
8216 }
8217 else
8218 {
8219 use_rela = TRUE;
8220 use_rela_initialised = TRUE;
8221 }
8222 }
8223 }
8224 else if ((o->size % bed->s->sizeof_rel) == 0)
8225 {
8226 /* Section size is only divisible by rel. */
8227 if (use_rela_initialised && (use_rela == TRUE))
8228 {
8229 _bfd_error_handler
8230 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8231 bfd_set_error (bfd_error_invalid_operation);
8232 return 0;
8233 }
8234 else
8235 {
8236 use_rela = FALSE;
8237 use_rela_initialised = TRUE;
8238 }
8239 }
8240 else
8241 {
8242 /* The section size is not divisible by either - something is wrong. */
8243 _bfd_error_handler
8244 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8245 bfd_set_error (bfd_error_invalid_operation);
8246 return 0;
8247 }
8248 }
8249
8250 if (! use_rela_initialised)
8251 /* Make a guess. */
8252 use_rela = TRUE;
8253 }
8254 else if (rela_dyn != NULL && rela_dyn->size > 0)
8255 use_rela = TRUE;
8256 else if (rel_dyn != NULL && rel_dyn->size > 0)
8257 use_rela = FALSE;
8258 else
8259 return 0;
8260
8261 if (use_rela)
8262 {
8263 dynamic_relocs = rela_dyn;
8264 ext_size = bed->s->sizeof_rela;
8265 swap_in = bed->s->swap_reloca_in;
8266 swap_out = bed->s->swap_reloca_out;
8267 }
8268 else
8269 {
8270 dynamic_relocs = rel_dyn;
8271 ext_size = bed->s->sizeof_rel;
8272 swap_in = bed->s->swap_reloc_in;
8273 swap_out = bed->s->swap_reloc_out;
8274 }
8275
8276 size = 0;
8277 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8278 if (lo->type == bfd_indirect_link_order)
8279 size += lo->u.indirect.section->size;
8280
8281 if (size != dynamic_relocs->size)
8282 return 0;
8283
8284 sort_elt = (sizeof (struct elf_link_sort_rela)
8285 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8286
8287 count = dynamic_relocs->size / ext_size;
8288 if (count == 0)
8289 return 0;
8290 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8291
8292 if (sort == NULL)
8293 {
8294 (*info->callbacks->warning)
8295 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8296 return 0;
8297 }
8298
8299 if (bed->s->arch_size == 32)
8300 r_sym_mask = ~(bfd_vma) 0xff;
8301 else
8302 r_sym_mask = ~(bfd_vma) 0xffffffff;
8303
8304 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8305 if (lo->type == bfd_indirect_link_order)
8306 {
8307 bfd_byte *erel, *erelend;
8308 asection *o = lo->u.indirect.section;
8309
8310 if (o->contents == NULL && o->size != 0)
8311 {
8312 /* This is a reloc section that is being handled as a normal
8313 section. See bfd_section_from_shdr. We can't combine
8314 relocs in this case. */
8315 free (sort);
8316 return 0;
8317 }
8318 erel = o->contents;
8319 erelend = o->contents + o->size;
8320 /* FIXME: octets_per_byte. */
8321 p = sort + o->output_offset / ext_size * sort_elt;
8322
8323 while (erel < erelend)
8324 {
8325 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8326
8327 (*swap_in) (abfd, erel, s->rela);
8328 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8329 s->u.sym_mask = r_sym_mask;
8330 p += sort_elt;
8331 erel += ext_size;
8332 }
8333 }
8334
8335 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8336
8337 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8338 {
8339 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8340 if (s->type != reloc_class_relative)
8341 break;
8342 }
8343 ret = i;
8344 s_non_relative = p;
8345
8346 sq = (struct elf_link_sort_rela *) s_non_relative;
8347 for (; i < count; i++, p += sort_elt)
8348 {
8349 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8350 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8351 sq = sp;
8352 sp->u.offset = sq->rela->r_offset;
8353 }
8354
8355 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8356
8357 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8358 if (lo->type == bfd_indirect_link_order)
8359 {
8360 bfd_byte *erel, *erelend;
8361 asection *o = lo->u.indirect.section;
8362
8363 erel = o->contents;
8364 erelend = o->contents + o->size;
8365 /* FIXME: octets_per_byte. */
8366 p = sort + o->output_offset / ext_size * sort_elt;
8367 while (erel < erelend)
8368 {
8369 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8370 (*swap_out) (abfd, s->rela, erel);
8371 p += sort_elt;
8372 erel += ext_size;
8373 }
8374 }
8375
8376 free (sort);
8377 *psec = dynamic_relocs;
8378 return ret;
8379 }
8380
8381 /* Flush the output symbols to the file. */
8382
8383 static bfd_boolean
8384 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8385 const struct elf_backend_data *bed)
8386 {
8387 if (flinfo->symbuf_count > 0)
8388 {
8389 Elf_Internal_Shdr *hdr;
8390 file_ptr pos;
8391 bfd_size_type amt;
8392
8393 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8394 pos = hdr->sh_offset + hdr->sh_size;
8395 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8396 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8397 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8398 return FALSE;
8399
8400 hdr->sh_size += amt;
8401 flinfo->symbuf_count = 0;
8402 }
8403
8404 return TRUE;
8405 }
8406
8407 /* Add a symbol to the output symbol table. */
8408
8409 static int
8410 elf_link_output_sym (struct elf_final_link_info *flinfo,
8411 const char *name,
8412 Elf_Internal_Sym *elfsym,
8413 asection *input_sec,
8414 struct elf_link_hash_entry *h)
8415 {
8416 bfd_byte *dest;
8417 Elf_External_Sym_Shndx *destshndx;
8418 int (*output_symbol_hook)
8419 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8420 struct elf_link_hash_entry *);
8421 const struct elf_backend_data *bed;
8422
8423 bed = get_elf_backend_data (flinfo->output_bfd);
8424 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8425 if (output_symbol_hook != NULL)
8426 {
8427 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8428 if (ret != 1)
8429 return ret;
8430 }
8431
8432 if (name == NULL || *name == '\0')
8433 elfsym->st_name = 0;
8434 else if (input_sec->flags & SEC_EXCLUDE)
8435 elfsym->st_name = 0;
8436 else
8437 {
8438 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8439 name, TRUE, FALSE);
8440 if (elfsym->st_name == (unsigned long) -1)
8441 return 0;
8442 }
8443
8444 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8445 {
8446 if (! elf_link_flush_output_syms (flinfo, bed))
8447 return 0;
8448 }
8449
8450 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8451 destshndx = flinfo->symshndxbuf;
8452 if (destshndx != NULL)
8453 {
8454 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8455 {
8456 bfd_size_type amt;
8457
8458 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8459 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8460 amt * 2);
8461 if (destshndx == NULL)
8462 return 0;
8463 flinfo->symshndxbuf = destshndx;
8464 memset ((char *) destshndx + amt, 0, amt);
8465 flinfo->shndxbuf_size *= 2;
8466 }
8467 destshndx += bfd_get_symcount (flinfo->output_bfd);
8468 }
8469
8470 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8471 flinfo->symbuf_count += 1;
8472 bfd_get_symcount (flinfo->output_bfd) += 1;
8473
8474 return 1;
8475 }
8476
8477 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8478
8479 static bfd_boolean
8480 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8481 {
8482 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8483 && sym->st_shndx < SHN_LORESERVE)
8484 {
8485 /* The gABI doesn't support dynamic symbols in output sections
8486 beyond 64k. */
8487 (*_bfd_error_handler)
8488 (_("%B: Too many sections: %d (>= %d)"),
8489 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8490 bfd_set_error (bfd_error_nonrepresentable_section);
8491 return FALSE;
8492 }
8493 return TRUE;
8494 }
8495
8496 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8497 allowing an unsatisfied unversioned symbol in the DSO to match a
8498 versioned symbol that would normally require an explicit version.
8499 We also handle the case that a DSO references a hidden symbol
8500 which may be satisfied by a versioned symbol in another DSO. */
8501
8502 static bfd_boolean
8503 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8504 const struct elf_backend_data *bed,
8505 struct elf_link_hash_entry *h)
8506 {
8507 bfd *abfd;
8508 struct elf_link_loaded_list *loaded;
8509
8510 if (!is_elf_hash_table (info->hash))
8511 return FALSE;
8512
8513 /* Check indirect symbol. */
8514 while (h->root.type == bfd_link_hash_indirect)
8515 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8516
8517 switch (h->root.type)
8518 {
8519 default:
8520 abfd = NULL;
8521 break;
8522
8523 case bfd_link_hash_undefined:
8524 case bfd_link_hash_undefweak:
8525 abfd = h->root.u.undef.abfd;
8526 if ((abfd->flags & DYNAMIC) == 0
8527 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8528 return FALSE;
8529 break;
8530
8531 case bfd_link_hash_defined:
8532 case bfd_link_hash_defweak:
8533 abfd = h->root.u.def.section->owner;
8534 break;
8535
8536 case bfd_link_hash_common:
8537 abfd = h->root.u.c.p->section->owner;
8538 break;
8539 }
8540 BFD_ASSERT (abfd != NULL);
8541
8542 for (loaded = elf_hash_table (info)->loaded;
8543 loaded != NULL;
8544 loaded = loaded->next)
8545 {
8546 bfd *input;
8547 Elf_Internal_Shdr *hdr;
8548 bfd_size_type symcount;
8549 bfd_size_type extsymcount;
8550 bfd_size_type extsymoff;
8551 Elf_Internal_Shdr *versymhdr;
8552 Elf_Internal_Sym *isym;
8553 Elf_Internal_Sym *isymend;
8554 Elf_Internal_Sym *isymbuf;
8555 Elf_External_Versym *ever;
8556 Elf_External_Versym *extversym;
8557
8558 input = loaded->abfd;
8559
8560 /* We check each DSO for a possible hidden versioned definition. */
8561 if (input == abfd
8562 || (input->flags & DYNAMIC) == 0
8563 || elf_dynversym (input) == 0)
8564 continue;
8565
8566 hdr = &elf_tdata (input)->dynsymtab_hdr;
8567
8568 symcount = hdr->sh_size / bed->s->sizeof_sym;
8569 if (elf_bad_symtab (input))
8570 {
8571 extsymcount = symcount;
8572 extsymoff = 0;
8573 }
8574 else
8575 {
8576 extsymcount = symcount - hdr->sh_info;
8577 extsymoff = hdr->sh_info;
8578 }
8579
8580 if (extsymcount == 0)
8581 continue;
8582
8583 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8584 NULL, NULL, NULL);
8585 if (isymbuf == NULL)
8586 return FALSE;
8587
8588 /* Read in any version definitions. */
8589 versymhdr = &elf_tdata (input)->dynversym_hdr;
8590 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8591 if (extversym == NULL)
8592 goto error_ret;
8593
8594 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8595 || (bfd_bread (extversym, versymhdr->sh_size, input)
8596 != versymhdr->sh_size))
8597 {
8598 free (extversym);
8599 error_ret:
8600 free (isymbuf);
8601 return FALSE;
8602 }
8603
8604 ever = extversym + extsymoff;
8605 isymend = isymbuf + extsymcount;
8606 for (isym = isymbuf; isym < isymend; isym++, ever++)
8607 {
8608 const char *name;
8609 Elf_Internal_Versym iver;
8610 unsigned short version_index;
8611
8612 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8613 || isym->st_shndx == SHN_UNDEF)
8614 continue;
8615
8616 name = bfd_elf_string_from_elf_section (input,
8617 hdr->sh_link,
8618 isym->st_name);
8619 if (strcmp (name, h->root.root.string) != 0)
8620 continue;
8621
8622 _bfd_elf_swap_versym_in (input, ever, &iver);
8623
8624 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8625 && !(h->def_regular
8626 && h->forced_local))
8627 {
8628 /* If we have a non-hidden versioned sym, then it should
8629 have provided a definition for the undefined sym unless
8630 it is defined in a non-shared object and forced local.
8631 */
8632 abort ();
8633 }
8634
8635 version_index = iver.vs_vers & VERSYM_VERSION;
8636 if (version_index == 1 || version_index == 2)
8637 {
8638 /* This is the base or first version. We can use it. */
8639 free (extversym);
8640 free (isymbuf);
8641 return TRUE;
8642 }
8643 }
8644
8645 free (extversym);
8646 free (isymbuf);
8647 }
8648
8649 return FALSE;
8650 }
8651
8652 /* Add an external symbol to the symbol table. This is called from
8653 the hash table traversal routine. When generating a shared object,
8654 we go through the symbol table twice. The first time we output
8655 anything that might have been forced to local scope in a version
8656 script. The second time we output the symbols that are still
8657 global symbols. */
8658
8659 static bfd_boolean
8660 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8661 {
8662 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8663 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8664 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8665 bfd_boolean strip;
8666 Elf_Internal_Sym sym;
8667 asection *input_sec;
8668 const struct elf_backend_data *bed;
8669 long indx;
8670 int ret;
8671
8672 if (h->root.type == bfd_link_hash_warning)
8673 {
8674 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8675 if (h->root.type == bfd_link_hash_new)
8676 return TRUE;
8677 }
8678
8679 /* Decide whether to output this symbol in this pass. */
8680 if (eoinfo->localsyms)
8681 {
8682 if (!h->forced_local)
8683 return TRUE;
8684 if (eoinfo->second_pass
8685 && !((h->root.type == bfd_link_hash_defined
8686 || h->root.type == bfd_link_hash_defweak)
8687 && h->root.u.def.section->output_section != NULL))
8688 return TRUE;
8689
8690 if (!eoinfo->file_sym_done
8691 && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1
8692 : eoinfo->flinfo->filesym_count > 1))
8693 {
8694 /* Output a FILE symbol so that following locals are not associated
8695 with the wrong input file. */
8696 memset (&sym, 0, sizeof (sym));
8697 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8698 sym.st_shndx = SHN_ABS;
8699 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym,
8700 bfd_und_section_ptr, NULL))
8701 return FALSE;
8702
8703 eoinfo->file_sym_done = TRUE;
8704 }
8705 }
8706 else
8707 {
8708 if (h->forced_local)
8709 return TRUE;
8710 }
8711
8712 bed = get_elf_backend_data (flinfo->output_bfd);
8713
8714 if (h->root.type == bfd_link_hash_undefined)
8715 {
8716 /* If we have an undefined symbol reference here then it must have
8717 come from a shared library that is being linked in. (Undefined
8718 references in regular files have already been handled unless
8719 they are in unreferenced sections which are removed by garbage
8720 collection). */
8721 bfd_boolean ignore_undef = FALSE;
8722
8723 /* Some symbols may be special in that the fact that they're
8724 undefined can be safely ignored - let backend determine that. */
8725 if (bed->elf_backend_ignore_undef_symbol)
8726 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8727
8728 /* If we are reporting errors for this situation then do so now. */
8729 if (!ignore_undef
8730 && h->ref_dynamic
8731 && (!h->ref_regular || flinfo->info->gc_sections)
8732 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8733 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8734 {
8735 if (!(flinfo->info->callbacks->undefined_symbol
8736 (flinfo->info, h->root.root.string,
8737 h->ref_regular ? NULL : h->root.u.undef.abfd,
8738 NULL, 0,
8739 (flinfo->info->unresolved_syms_in_shared_libs
8740 == RM_GENERATE_ERROR))))
8741 {
8742 bfd_set_error (bfd_error_bad_value);
8743 eoinfo->failed = TRUE;
8744 return FALSE;
8745 }
8746 }
8747 }
8748
8749 /* We should also warn if a forced local symbol is referenced from
8750 shared libraries. */
8751 if (!flinfo->info->relocatable
8752 && flinfo->info->executable
8753 && h->forced_local
8754 && h->ref_dynamic
8755 && h->def_regular
8756 && !h->dynamic_def
8757 && h->ref_dynamic_nonweak
8758 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8759 {
8760 bfd *def_bfd;
8761 const char *msg;
8762 struct elf_link_hash_entry *hi = h;
8763
8764 /* Check indirect symbol. */
8765 while (hi->root.type == bfd_link_hash_indirect)
8766 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8767
8768 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8769 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8770 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8771 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8772 else
8773 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8774 def_bfd = flinfo->output_bfd;
8775 if (hi->root.u.def.section != bfd_abs_section_ptr)
8776 def_bfd = hi->root.u.def.section->owner;
8777 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8778 h->root.root.string);
8779 bfd_set_error (bfd_error_bad_value);
8780 eoinfo->failed = TRUE;
8781 return FALSE;
8782 }
8783
8784 /* We don't want to output symbols that have never been mentioned by
8785 a regular file, or that we have been told to strip. However, if
8786 h->indx is set to -2, the symbol is used by a reloc and we must
8787 output it. */
8788 if (h->indx == -2)
8789 strip = FALSE;
8790 else if ((h->def_dynamic
8791 || h->ref_dynamic
8792 || h->root.type == bfd_link_hash_new)
8793 && !h->def_regular
8794 && !h->ref_regular)
8795 strip = TRUE;
8796 else if (flinfo->info->strip == strip_all)
8797 strip = TRUE;
8798 else if (flinfo->info->strip == strip_some
8799 && bfd_hash_lookup (flinfo->info->keep_hash,
8800 h->root.root.string, FALSE, FALSE) == NULL)
8801 strip = TRUE;
8802 else if ((h->root.type == bfd_link_hash_defined
8803 || h->root.type == bfd_link_hash_defweak)
8804 && ((flinfo->info->strip_discarded
8805 && discarded_section (h->root.u.def.section))
8806 || (h->root.u.def.section->owner != NULL
8807 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8808 strip = TRUE;
8809 else if ((h->root.type == bfd_link_hash_undefined
8810 || h->root.type == bfd_link_hash_undefweak)
8811 && h->root.u.undef.abfd != NULL
8812 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8813 strip = TRUE;
8814 else
8815 strip = FALSE;
8816
8817 /* If we're stripping it, and it's not a dynamic symbol, there's
8818 nothing else to do unless it is a forced local symbol or a
8819 STT_GNU_IFUNC symbol. */
8820 if (strip
8821 && h->dynindx == -1
8822 && h->type != STT_GNU_IFUNC
8823 && !h->forced_local)
8824 return TRUE;
8825
8826 sym.st_value = 0;
8827 sym.st_size = h->size;
8828 sym.st_other = h->other;
8829 if (h->forced_local)
8830 {
8831 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8832 /* Turn off visibility on local symbol. */
8833 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8834 }
8835 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8836 else if (h->unique_global && h->def_regular)
8837 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8838 else if (h->root.type == bfd_link_hash_undefweak
8839 || h->root.type == bfd_link_hash_defweak)
8840 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8841 else
8842 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8843 sym.st_target_internal = h->target_internal;
8844
8845 switch (h->root.type)
8846 {
8847 default:
8848 case bfd_link_hash_new:
8849 case bfd_link_hash_warning:
8850 abort ();
8851 return FALSE;
8852
8853 case bfd_link_hash_undefined:
8854 case bfd_link_hash_undefweak:
8855 input_sec = bfd_und_section_ptr;
8856 sym.st_shndx = SHN_UNDEF;
8857 break;
8858
8859 case bfd_link_hash_defined:
8860 case bfd_link_hash_defweak:
8861 {
8862 input_sec = h->root.u.def.section;
8863 if (input_sec->output_section != NULL)
8864 {
8865 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8866 {
8867 bfd_boolean second_pass_sym
8868 = (input_sec->owner == flinfo->output_bfd
8869 || input_sec->owner == NULL
8870 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8871 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8872
8873 eoinfo->need_second_pass |= second_pass_sym;
8874 if (eoinfo->second_pass != second_pass_sym)
8875 return TRUE;
8876 }
8877
8878 sym.st_shndx =
8879 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8880 input_sec->output_section);
8881 if (sym.st_shndx == SHN_BAD)
8882 {
8883 (*_bfd_error_handler)
8884 (_("%B: could not find output section %A for input section %A"),
8885 flinfo->output_bfd, input_sec->output_section, input_sec);
8886 bfd_set_error (bfd_error_nonrepresentable_section);
8887 eoinfo->failed = TRUE;
8888 return FALSE;
8889 }
8890
8891 /* ELF symbols in relocatable files are section relative,
8892 but in nonrelocatable files they are virtual
8893 addresses. */
8894 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8895 if (!flinfo->info->relocatable)
8896 {
8897 sym.st_value += input_sec->output_section->vma;
8898 if (h->type == STT_TLS)
8899 {
8900 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8901 if (tls_sec != NULL)
8902 sym.st_value -= tls_sec->vma;
8903 else
8904 {
8905 /* The TLS section may have been garbage collected. */
8906 BFD_ASSERT (flinfo->info->gc_sections
8907 && !input_sec->gc_mark);
8908 }
8909 }
8910 }
8911 }
8912 else
8913 {
8914 BFD_ASSERT (input_sec->owner == NULL
8915 || (input_sec->owner->flags & DYNAMIC) != 0);
8916 sym.st_shndx = SHN_UNDEF;
8917 input_sec = bfd_und_section_ptr;
8918 }
8919 }
8920 break;
8921
8922 case bfd_link_hash_common:
8923 input_sec = h->root.u.c.p->section;
8924 sym.st_shndx = bed->common_section_index (input_sec);
8925 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8926 break;
8927
8928 case bfd_link_hash_indirect:
8929 /* These symbols are created by symbol versioning. They point
8930 to the decorated version of the name. For example, if the
8931 symbol foo@@GNU_1.2 is the default, which should be used when
8932 foo is used with no version, then we add an indirect symbol
8933 foo which points to foo@@GNU_1.2. We ignore these symbols,
8934 since the indirected symbol is already in the hash table. */
8935 return TRUE;
8936 }
8937
8938 /* Give the processor backend a chance to tweak the symbol value,
8939 and also to finish up anything that needs to be done for this
8940 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8941 forced local syms when non-shared is due to a historical quirk.
8942 STT_GNU_IFUNC symbol must go through PLT. */
8943 if ((h->type == STT_GNU_IFUNC
8944 && h->def_regular
8945 && !flinfo->info->relocatable)
8946 || ((h->dynindx != -1
8947 || h->forced_local)
8948 && ((flinfo->info->shared
8949 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8950 || h->root.type != bfd_link_hash_undefweak))
8951 || !h->forced_local)
8952 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8953 {
8954 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8955 (flinfo->output_bfd, flinfo->info, h, &sym)))
8956 {
8957 eoinfo->failed = TRUE;
8958 return FALSE;
8959 }
8960 }
8961
8962 /* If we are marking the symbol as undefined, and there are no
8963 non-weak references to this symbol from a regular object, then
8964 mark the symbol as weak undefined; if there are non-weak
8965 references, mark the symbol as strong. We can't do this earlier,
8966 because it might not be marked as undefined until the
8967 finish_dynamic_symbol routine gets through with it. */
8968 if (sym.st_shndx == SHN_UNDEF
8969 && h->ref_regular
8970 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8971 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8972 {
8973 int bindtype;
8974 unsigned int type = ELF_ST_TYPE (sym.st_info);
8975
8976 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8977 if (type == STT_GNU_IFUNC)
8978 type = STT_FUNC;
8979
8980 if (h->ref_regular_nonweak)
8981 bindtype = STB_GLOBAL;
8982 else
8983 bindtype = STB_WEAK;
8984 sym.st_info = ELF_ST_INFO (bindtype, type);
8985 }
8986
8987 /* If this is a symbol defined in a dynamic library, don't use the
8988 symbol size from the dynamic library. Relinking an executable
8989 against a new library may introduce gratuitous changes in the
8990 executable's symbols if we keep the size. */
8991 if (sym.st_shndx == SHN_UNDEF
8992 && !h->def_regular
8993 && h->def_dynamic)
8994 sym.st_size = 0;
8995
8996 /* If a non-weak symbol with non-default visibility is not defined
8997 locally, it is a fatal error. */
8998 if (!flinfo->info->relocatable
8999 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9000 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9001 && h->root.type == bfd_link_hash_undefined
9002 && !h->def_regular)
9003 {
9004 const char *msg;
9005
9006 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9007 msg = _("%B: protected symbol `%s' isn't defined");
9008 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9009 msg = _("%B: internal symbol `%s' isn't defined");
9010 else
9011 msg = _("%B: hidden symbol `%s' isn't defined");
9012 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9013 bfd_set_error (bfd_error_bad_value);
9014 eoinfo->failed = TRUE;
9015 return FALSE;
9016 }
9017
9018 /* If this symbol should be put in the .dynsym section, then put it
9019 there now. We already know the symbol index. We also fill in
9020 the entry in the .hash section. */
9021 if (flinfo->dynsym_sec != NULL
9022 && h->dynindx != -1
9023 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9024 {
9025 bfd_byte *esym;
9026
9027 /* Since there is no version information in the dynamic string,
9028 if there is no version info in symbol version section, we will
9029 have a run-time problem. */
9030 if (h->verinfo.verdef == NULL)
9031 {
9032 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9033
9034 if (p && p [1] != '\0')
9035 {
9036 (*_bfd_error_handler)
9037 (_("%B: No symbol version section for versioned symbol `%s'"),
9038 flinfo->output_bfd, h->root.root.string);
9039 eoinfo->failed = TRUE;
9040 return FALSE;
9041 }
9042 }
9043
9044 sym.st_name = h->dynstr_index;
9045 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9046 if (!check_dynsym (flinfo->output_bfd, &sym))
9047 {
9048 eoinfo->failed = TRUE;
9049 return FALSE;
9050 }
9051 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9052
9053 if (flinfo->hash_sec != NULL)
9054 {
9055 size_t hash_entry_size;
9056 bfd_byte *bucketpos;
9057 bfd_vma chain;
9058 size_t bucketcount;
9059 size_t bucket;
9060
9061 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9062 bucket = h->u.elf_hash_value % bucketcount;
9063
9064 hash_entry_size
9065 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9066 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9067 + (bucket + 2) * hash_entry_size);
9068 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9069 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9070 bucketpos);
9071 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9072 ((bfd_byte *) flinfo->hash_sec->contents
9073 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9074 }
9075
9076 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9077 {
9078 Elf_Internal_Versym iversym;
9079 Elf_External_Versym *eversym;
9080
9081 if (!h->def_regular)
9082 {
9083 if (h->verinfo.verdef == NULL)
9084 iversym.vs_vers = 0;
9085 else
9086 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9087 }
9088 else
9089 {
9090 if (h->verinfo.vertree == NULL)
9091 iversym.vs_vers = 1;
9092 else
9093 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9094 if (flinfo->info->create_default_symver)
9095 iversym.vs_vers++;
9096 }
9097
9098 if (h->hidden)
9099 iversym.vs_vers |= VERSYM_HIDDEN;
9100
9101 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9102 eversym += h->dynindx;
9103 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9104 }
9105 }
9106
9107 /* If we're stripping it, then it was just a dynamic symbol, and
9108 there's nothing else to do. */
9109 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9110 return TRUE;
9111
9112 indx = bfd_get_symcount (flinfo->output_bfd);
9113 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9114 if (ret == 0)
9115 {
9116 eoinfo->failed = TRUE;
9117 return FALSE;
9118 }
9119 else if (ret == 1)
9120 h->indx = indx;
9121 else if (h->indx == -2)
9122 abort();
9123
9124 return TRUE;
9125 }
9126
9127 /* Return TRUE if special handling is done for relocs in SEC against
9128 symbols defined in discarded sections. */
9129
9130 static bfd_boolean
9131 elf_section_ignore_discarded_relocs (asection *sec)
9132 {
9133 const struct elf_backend_data *bed;
9134
9135 switch (sec->sec_info_type)
9136 {
9137 case SEC_INFO_TYPE_STABS:
9138 case SEC_INFO_TYPE_EH_FRAME:
9139 return TRUE;
9140 default:
9141 break;
9142 }
9143
9144 bed = get_elf_backend_data (sec->owner);
9145 if (bed->elf_backend_ignore_discarded_relocs != NULL
9146 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9147 return TRUE;
9148
9149 return FALSE;
9150 }
9151
9152 /* Return a mask saying how ld should treat relocations in SEC against
9153 symbols defined in discarded sections. If this function returns
9154 COMPLAIN set, ld will issue a warning message. If this function
9155 returns PRETEND set, and the discarded section was link-once and the
9156 same size as the kept link-once section, ld will pretend that the
9157 symbol was actually defined in the kept section. Otherwise ld will
9158 zero the reloc (at least that is the intent, but some cooperation by
9159 the target dependent code is needed, particularly for REL targets). */
9160
9161 unsigned int
9162 _bfd_elf_default_action_discarded (asection *sec)
9163 {
9164 if (sec->flags & SEC_DEBUGGING)
9165 return PRETEND;
9166
9167 if (strcmp (".eh_frame", sec->name) == 0)
9168 return 0;
9169
9170 if (strcmp (".gcc_except_table", sec->name) == 0)
9171 return 0;
9172
9173 return COMPLAIN | PRETEND;
9174 }
9175
9176 /* Find a match between a section and a member of a section group. */
9177
9178 static asection *
9179 match_group_member (asection *sec, asection *group,
9180 struct bfd_link_info *info)
9181 {
9182 asection *first = elf_next_in_group (group);
9183 asection *s = first;
9184
9185 while (s != NULL)
9186 {
9187 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9188 return s;
9189
9190 s = elf_next_in_group (s);
9191 if (s == first)
9192 break;
9193 }
9194
9195 return NULL;
9196 }
9197
9198 /* Check if the kept section of a discarded section SEC can be used
9199 to replace it. Return the replacement if it is OK. Otherwise return
9200 NULL. */
9201
9202 asection *
9203 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9204 {
9205 asection *kept;
9206
9207 kept = sec->kept_section;
9208 if (kept != NULL)
9209 {
9210 if ((kept->flags & SEC_GROUP) != 0)
9211 kept = match_group_member (sec, kept, info);
9212 if (kept != NULL
9213 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9214 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9215 kept = NULL;
9216 sec->kept_section = kept;
9217 }
9218 return kept;
9219 }
9220
9221 /* Link an input file into the linker output file. This function
9222 handles all the sections and relocations of the input file at once.
9223 This is so that we only have to read the local symbols once, and
9224 don't have to keep them in memory. */
9225
9226 static bfd_boolean
9227 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9228 {
9229 int (*relocate_section)
9230 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9231 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9232 bfd *output_bfd;
9233 Elf_Internal_Shdr *symtab_hdr;
9234 size_t locsymcount;
9235 size_t extsymoff;
9236 Elf_Internal_Sym *isymbuf;
9237 Elf_Internal_Sym *isym;
9238 Elf_Internal_Sym *isymend;
9239 long *pindex;
9240 asection **ppsection;
9241 asection *o;
9242 const struct elf_backend_data *bed;
9243 struct elf_link_hash_entry **sym_hashes;
9244 bfd_size_type address_size;
9245 bfd_vma r_type_mask;
9246 int r_sym_shift;
9247 bfd_boolean have_file_sym = FALSE;
9248
9249 output_bfd = flinfo->output_bfd;
9250 bed = get_elf_backend_data (output_bfd);
9251 relocate_section = bed->elf_backend_relocate_section;
9252
9253 /* If this is a dynamic object, we don't want to do anything here:
9254 we don't want the local symbols, and we don't want the section
9255 contents. */
9256 if ((input_bfd->flags & DYNAMIC) != 0)
9257 return TRUE;
9258
9259 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9260 if (elf_bad_symtab (input_bfd))
9261 {
9262 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9263 extsymoff = 0;
9264 }
9265 else
9266 {
9267 locsymcount = symtab_hdr->sh_info;
9268 extsymoff = symtab_hdr->sh_info;
9269 }
9270
9271 /* Read the local symbols. */
9272 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9273 if (isymbuf == NULL && locsymcount != 0)
9274 {
9275 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9276 flinfo->internal_syms,
9277 flinfo->external_syms,
9278 flinfo->locsym_shndx);
9279 if (isymbuf == NULL)
9280 return FALSE;
9281 }
9282
9283 /* Find local symbol sections and adjust values of symbols in
9284 SEC_MERGE sections. Write out those local symbols we know are
9285 going into the output file. */
9286 isymend = isymbuf + locsymcount;
9287 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9288 isym < isymend;
9289 isym++, pindex++, ppsection++)
9290 {
9291 asection *isec;
9292 const char *name;
9293 Elf_Internal_Sym osym;
9294 long indx;
9295 int ret;
9296
9297 *pindex = -1;
9298
9299 if (elf_bad_symtab (input_bfd))
9300 {
9301 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9302 {
9303 *ppsection = NULL;
9304 continue;
9305 }
9306 }
9307
9308 if (isym->st_shndx == SHN_UNDEF)
9309 isec = bfd_und_section_ptr;
9310 else if (isym->st_shndx == SHN_ABS)
9311 isec = bfd_abs_section_ptr;
9312 else if (isym->st_shndx == SHN_COMMON)
9313 isec = bfd_com_section_ptr;
9314 else
9315 {
9316 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9317 if (isec == NULL)
9318 {
9319 /* Don't attempt to output symbols with st_shnx in the
9320 reserved range other than SHN_ABS and SHN_COMMON. */
9321 *ppsection = NULL;
9322 continue;
9323 }
9324 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9325 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9326 isym->st_value =
9327 _bfd_merged_section_offset (output_bfd, &isec,
9328 elf_section_data (isec)->sec_info,
9329 isym->st_value);
9330 }
9331
9332 *ppsection = isec;
9333
9334 /* Don't output the first, undefined, symbol. */
9335 if (ppsection == flinfo->sections)
9336 continue;
9337
9338 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9339 {
9340 /* We never output section symbols. Instead, we use the
9341 section symbol of the corresponding section in the output
9342 file. */
9343 continue;
9344 }
9345
9346 /* If we are stripping all symbols, we don't want to output this
9347 one. */
9348 if (flinfo->info->strip == strip_all)
9349 continue;
9350
9351 /* If we are discarding all local symbols, we don't want to
9352 output this one. If we are generating a relocatable output
9353 file, then some of the local symbols may be required by
9354 relocs; we output them below as we discover that they are
9355 needed. */
9356 if (flinfo->info->discard == discard_all)
9357 continue;
9358
9359 /* If this symbol is defined in a section which we are
9360 discarding, we don't need to keep it. */
9361 if (isym->st_shndx != SHN_UNDEF
9362 && isym->st_shndx < SHN_LORESERVE
9363 && bfd_section_removed_from_list (output_bfd,
9364 isec->output_section))
9365 continue;
9366
9367 /* Get the name of the symbol. */
9368 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9369 isym->st_name);
9370 if (name == NULL)
9371 return FALSE;
9372
9373 /* See if we are discarding symbols with this name. */
9374 if ((flinfo->info->strip == strip_some
9375 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9376 == NULL))
9377 || (((flinfo->info->discard == discard_sec_merge
9378 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9379 || flinfo->info->discard == discard_l)
9380 && bfd_is_local_label_name (input_bfd, name)))
9381 continue;
9382
9383 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9384 {
9385 have_file_sym = TRUE;
9386 flinfo->filesym_count += 1;
9387 }
9388 if (!have_file_sym)
9389 {
9390 /* In the absence of debug info, bfd_find_nearest_line uses
9391 FILE symbols to determine the source file for local
9392 function symbols. Provide a FILE symbol here if input
9393 files lack such, so that their symbols won't be
9394 associated with a previous input file. It's not the
9395 source file, but the best we can do. */
9396 have_file_sym = TRUE;
9397 flinfo->filesym_count += 1;
9398 memset (&osym, 0, sizeof (osym));
9399 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9400 osym.st_shndx = SHN_ABS;
9401 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9402 bfd_abs_section_ptr, NULL))
9403 return FALSE;
9404 }
9405
9406 osym = *isym;
9407
9408 /* Adjust the section index for the output file. */
9409 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9410 isec->output_section);
9411 if (osym.st_shndx == SHN_BAD)
9412 return FALSE;
9413
9414 /* ELF symbols in relocatable files are section relative, but
9415 in executable files they are virtual addresses. Note that
9416 this code assumes that all ELF sections have an associated
9417 BFD section with a reasonable value for output_offset; below
9418 we assume that they also have a reasonable value for
9419 output_section. Any special sections must be set up to meet
9420 these requirements. */
9421 osym.st_value += isec->output_offset;
9422 if (!flinfo->info->relocatable)
9423 {
9424 osym.st_value += isec->output_section->vma;
9425 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9426 {
9427 /* STT_TLS symbols are relative to PT_TLS segment base. */
9428 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9429 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9430 }
9431 }
9432
9433 indx = bfd_get_symcount (output_bfd);
9434 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9435 if (ret == 0)
9436 return FALSE;
9437 else if (ret == 1)
9438 *pindex = indx;
9439 }
9440
9441 if (bed->s->arch_size == 32)
9442 {
9443 r_type_mask = 0xff;
9444 r_sym_shift = 8;
9445 address_size = 4;
9446 }
9447 else
9448 {
9449 r_type_mask = 0xffffffff;
9450 r_sym_shift = 32;
9451 address_size = 8;
9452 }
9453
9454 /* Relocate the contents of each section. */
9455 sym_hashes = elf_sym_hashes (input_bfd);
9456 for (o = input_bfd->sections; o != NULL; o = o->next)
9457 {
9458 bfd_byte *contents;
9459
9460 if (! o->linker_mark)
9461 {
9462 /* This section was omitted from the link. */
9463 continue;
9464 }
9465
9466 if (flinfo->info->relocatable
9467 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9468 {
9469 /* Deal with the group signature symbol. */
9470 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9471 unsigned long symndx = sec_data->this_hdr.sh_info;
9472 asection *osec = o->output_section;
9473
9474 if (symndx >= locsymcount
9475 || (elf_bad_symtab (input_bfd)
9476 && flinfo->sections[symndx] == NULL))
9477 {
9478 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9479 while (h->root.type == bfd_link_hash_indirect
9480 || h->root.type == bfd_link_hash_warning)
9481 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9482 /* Arrange for symbol to be output. */
9483 h->indx = -2;
9484 elf_section_data (osec)->this_hdr.sh_info = -2;
9485 }
9486 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9487 {
9488 /* We'll use the output section target_index. */
9489 asection *sec = flinfo->sections[symndx]->output_section;
9490 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9491 }
9492 else
9493 {
9494 if (flinfo->indices[symndx] == -1)
9495 {
9496 /* Otherwise output the local symbol now. */
9497 Elf_Internal_Sym sym = isymbuf[symndx];
9498 asection *sec = flinfo->sections[symndx]->output_section;
9499 const char *name;
9500 long indx;
9501 int ret;
9502
9503 name = bfd_elf_string_from_elf_section (input_bfd,
9504 symtab_hdr->sh_link,
9505 sym.st_name);
9506 if (name == NULL)
9507 return FALSE;
9508
9509 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9510 sec);
9511 if (sym.st_shndx == SHN_BAD)
9512 return FALSE;
9513
9514 sym.st_value += o->output_offset;
9515
9516 indx = bfd_get_symcount (output_bfd);
9517 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9518 if (ret == 0)
9519 return FALSE;
9520 else if (ret == 1)
9521 flinfo->indices[symndx] = indx;
9522 else
9523 abort ();
9524 }
9525 elf_section_data (osec)->this_hdr.sh_info
9526 = flinfo->indices[symndx];
9527 }
9528 }
9529
9530 if ((o->flags & SEC_HAS_CONTENTS) == 0
9531 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9532 continue;
9533
9534 if ((o->flags & SEC_LINKER_CREATED) != 0)
9535 {
9536 /* Section was created by _bfd_elf_link_create_dynamic_sections
9537 or somesuch. */
9538 continue;
9539 }
9540
9541 /* Get the contents of the section. They have been cached by a
9542 relaxation routine. Note that o is a section in an input
9543 file, so the contents field will not have been set by any of
9544 the routines which work on output files. */
9545 if (elf_section_data (o)->this_hdr.contents != NULL)
9546 contents = elf_section_data (o)->this_hdr.contents;
9547 else
9548 {
9549 contents = flinfo->contents;
9550 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9551 return FALSE;
9552 }
9553
9554 if ((o->flags & SEC_RELOC) != 0)
9555 {
9556 Elf_Internal_Rela *internal_relocs;
9557 Elf_Internal_Rela *rel, *relend;
9558 int action_discarded;
9559 int ret;
9560
9561 /* Get the swapped relocs. */
9562 internal_relocs
9563 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9564 flinfo->internal_relocs, FALSE);
9565 if (internal_relocs == NULL
9566 && o->reloc_count > 0)
9567 return FALSE;
9568
9569 /* We need to reverse-copy input .ctors/.dtors sections if
9570 they are placed in .init_array/.finit_array for output. */
9571 if (o->size > address_size
9572 && ((strncmp (o->name, ".ctors", 6) == 0
9573 && strcmp (o->output_section->name,
9574 ".init_array") == 0)
9575 || (strncmp (o->name, ".dtors", 6) == 0
9576 && strcmp (o->output_section->name,
9577 ".fini_array") == 0))
9578 && (o->name[6] == 0 || o->name[6] == '.'))
9579 {
9580 if (o->size != o->reloc_count * address_size)
9581 {
9582 (*_bfd_error_handler)
9583 (_("error: %B: size of section %A is not "
9584 "multiple of address size"),
9585 input_bfd, o);
9586 bfd_set_error (bfd_error_on_input);
9587 return FALSE;
9588 }
9589 o->flags |= SEC_ELF_REVERSE_COPY;
9590 }
9591
9592 action_discarded = -1;
9593 if (!elf_section_ignore_discarded_relocs (o))
9594 action_discarded = (*bed->action_discarded) (o);
9595
9596 /* Run through the relocs evaluating complex reloc symbols and
9597 looking for relocs against symbols from discarded sections
9598 or section symbols from removed link-once sections.
9599 Complain about relocs against discarded sections. Zero
9600 relocs against removed link-once sections. */
9601
9602 rel = internal_relocs;
9603 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9604 for ( ; rel < relend; rel++)
9605 {
9606 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9607 unsigned int s_type;
9608 asection **ps, *sec;
9609 struct elf_link_hash_entry *h = NULL;
9610 const char *sym_name;
9611
9612 if (r_symndx == STN_UNDEF)
9613 continue;
9614
9615 if (r_symndx >= locsymcount
9616 || (elf_bad_symtab (input_bfd)
9617 && flinfo->sections[r_symndx] == NULL))
9618 {
9619 h = sym_hashes[r_symndx - extsymoff];
9620
9621 /* Badly formatted input files can contain relocs that
9622 reference non-existant symbols. Check here so that
9623 we do not seg fault. */
9624 if (h == NULL)
9625 {
9626 char buffer [32];
9627
9628 sprintf_vma (buffer, rel->r_info);
9629 (*_bfd_error_handler)
9630 (_("error: %B contains a reloc (0x%s) for section %A "
9631 "that references a non-existent global symbol"),
9632 input_bfd, o, buffer);
9633 bfd_set_error (bfd_error_bad_value);
9634 return FALSE;
9635 }
9636
9637 while (h->root.type == bfd_link_hash_indirect
9638 || h->root.type == bfd_link_hash_warning)
9639 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9640
9641 s_type = h->type;
9642
9643 ps = NULL;
9644 if (h->root.type == bfd_link_hash_defined
9645 || h->root.type == bfd_link_hash_defweak)
9646 ps = &h->root.u.def.section;
9647
9648 sym_name = h->root.root.string;
9649 }
9650 else
9651 {
9652 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9653
9654 s_type = ELF_ST_TYPE (sym->st_info);
9655 ps = &flinfo->sections[r_symndx];
9656 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9657 sym, *ps);
9658 }
9659
9660 if ((s_type == STT_RELC || s_type == STT_SRELC)
9661 && !flinfo->info->relocatable)
9662 {
9663 bfd_vma val;
9664 bfd_vma dot = (rel->r_offset
9665 + o->output_offset + o->output_section->vma);
9666 #ifdef DEBUG
9667 printf ("Encountered a complex symbol!");
9668 printf (" (input_bfd %s, section %s, reloc %ld\n",
9669 input_bfd->filename, o->name,
9670 (long) (rel - internal_relocs));
9671 printf (" symbol: idx %8.8lx, name %s\n",
9672 r_symndx, sym_name);
9673 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9674 (unsigned long) rel->r_info,
9675 (unsigned long) rel->r_offset);
9676 #endif
9677 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9678 isymbuf, locsymcount, s_type == STT_SRELC))
9679 return FALSE;
9680
9681 /* Symbol evaluated OK. Update to absolute value. */
9682 set_symbol_value (input_bfd, isymbuf, locsymcount,
9683 r_symndx, val);
9684 continue;
9685 }
9686
9687 if (action_discarded != -1 && ps != NULL)
9688 {
9689 /* Complain if the definition comes from a
9690 discarded section. */
9691 if ((sec = *ps) != NULL && discarded_section (sec))
9692 {
9693 BFD_ASSERT (r_symndx != STN_UNDEF);
9694 if (action_discarded & COMPLAIN)
9695 (*flinfo->info->callbacks->einfo)
9696 (_("%X`%s' referenced in section `%A' of %B: "
9697 "defined in discarded section `%A' of %B\n"),
9698 sym_name, o, input_bfd, sec, sec->owner);
9699
9700 /* Try to do the best we can to support buggy old
9701 versions of gcc. Pretend that the symbol is
9702 really defined in the kept linkonce section.
9703 FIXME: This is quite broken. Modifying the
9704 symbol here means we will be changing all later
9705 uses of the symbol, not just in this section. */
9706 if (action_discarded & PRETEND)
9707 {
9708 asection *kept;
9709
9710 kept = _bfd_elf_check_kept_section (sec,
9711 flinfo->info);
9712 if (kept != NULL)
9713 {
9714 *ps = kept;
9715 continue;
9716 }
9717 }
9718 }
9719 }
9720 }
9721
9722 /* Relocate the section by invoking a back end routine.
9723
9724 The back end routine is responsible for adjusting the
9725 section contents as necessary, and (if using Rela relocs
9726 and generating a relocatable output file) adjusting the
9727 reloc addend as necessary.
9728
9729 The back end routine does not have to worry about setting
9730 the reloc address or the reloc symbol index.
9731
9732 The back end routine is given a pointer to the swapped in
9733 internal symbols, and can access the hash table entries
9734 for the external symbols via elf_sym_hashes (input_bfd).
9735
9736 When generating relocatable output, the back end routine
9737 must handle STB_LOCAL/STT_SECTION symbols specially. The
9738 output symbol is going to be a section symbol
9739 corresponding to the output section, which will require
9740 the addend to be adjusted. */
9741
9742 ret = (*relocate_section) (output_bfd, flinfo->info,
9743 input_bfd, o, contents,
9744 internal_relocs,
9745 isymbuf,
9746 flinfo->sections);
9747 if (!ret)
9748 return FALSE;
9749
9750 if (ret == 2
9751 || flinfo->info->relocatable
9752 || flinfo->info->emitrelocations)
9753 {
9754 Elf_Internal_Rela *irela;
9755 Elf_Internal_Rela *irelaend, *irelamid;
9756 bfd_vma last_offset;
9757 struct elf_link_hash_entry **rel_hash;
9758 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9759 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9760 unsigned int next_erel;
9761 bfd_boolean rela_normal;
9762 struct bfd_elf_section_data *esdi, *esdo;
9763
9764 esdi = elf_section_data (o);
9765 esdo = elf_section_data (o->output_section);
9766 rela_normal = FALSE;
9767
9768 /* Adjust the reloc addresses and symbol indices. */
9769
9770 irela = internal_relocs;
9771 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9772 rel_hash = esdo->rel.hashes + esdo->rel.count;
9773 /* We start processing the REL relocs, if any. When we reach
9774 IRELAMID in the loop, we switch to the RELA relocs. */
9775 irelamid = irela;
9776 if (esdi->rel.hdr != NULL)
9777 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9778 * bed->s->int_rels_per_ext_rel);
9779 rel_hash_list = rel_hash;
9780 rela_hash_list = NULL;
9781 last_offset = o->output_offset;
9782 if (!flinfo->info->relocatable)
9783 last_offset += o->output_section->vma;
9784 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9785 {
9786 unsigned long r_symndx;
9787 asection *sec;
9788 Elf_Internal_Sym sym;
9789
9790 if (next_erel == bed->s->int_rels_per_ext_rel)
9791 {
9792 rel_hash++;
9793 next_erel = 0;
9794 }
9795
9796 if (irela == irelamid)
9797 {
9798 rel_hash = esdo->rela.hashes + esdo->rela.count;
9799 rela_hash_list = rel_hash;
9800 rela_normal = bed->rela_normal;
9801 }
9802
9803 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9804 flinfo->info, o,
9805 irela->r_offset);
9806 if (irela->r_offset >= (bfd_vma) -2)
9807 {
9808 /* This is a reloc for a deleted entry or somesuch.
9809 Turn it into an R_*_NONE reloc, at the same
9810 offset as the last reloc. elf_eh_frame.c and
9811 bfd_elf_discard_info rely on reloc offsets
9812 being ordered. */
9813 irela->r_offset = last_offset;
9814 irela->r_info = 0;
9815 irela->r_addend = 0;
9816 continue;
9817 }
9818
9819 irela->r_offset += o->output_offset;
9820
9821 /* Relocs in an executable have to be virtual addresses. */
9822 if (!flinfo->info->relocatable)
9823 irela->r_offset += o->output_section->vma;
9824
9825 last_offset = irela->r_offset;
9826
9827 r_symndx = irela->r_info >> r_sym_shift;
9828 if (r_symndx == STN_UNDEF)
9829 continue;
9830
9831 if (r_symndx >= locsymcount
9832 || (elf_bad_symtab (input_bfd)
9833 && flinfo->sections[r_symndx] == NULL))
9834 {
9835 struct elf_link_hash_entry *rh;
9836 unsigned long indx;
9837
9838 /* This is a reloc against a global symbol. We
9839 have not yet output all the local symbols, so
9840 we do not know the symbol index of any global
9841 symbol. We set the rel_hash entry for this
9842 reloc to point to the global hash table entry
9843 for this symbol. The symbol index is then
9844 set at the end of bfd_elf_final_link. */
9845 indx = r_symndx - extsymoff;
9846 rh = elf_sym_hashes (input_bfd)[indx];
9847 while (rh->root.type == bfd_link_hash_indirect
9848 || rh->root.type == bfd_link_hash_warning)
9849 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9850
9851 /* Setting the index to -2 tells
9852 elf_link_output_extsym that this symbol is
9853 used by a reloc. */
9854 BFD_ASSERT (rh->indx < 0);
9855 rh->indx = -2;
9856
9857 *rel_hash = rh;
9858
9859 continue;
9860 }
9861
9862 /* This is a reloc against a local symbol. */
9863
9864 *rel_hash = NULL;
9865 sym = isymbuf[r_symndx];
9866 sec = flinfo->sections[r_symndx];
9867 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9868 {
9869 /* I suppose the backend ought to fill in the
9870 section of any STT_SECTION symbol against a
9871 processor specific section. */
9872 r_symndx = STN_UNDEF;
9873 if (bfd_is_abs_section (sec))
9874 ;
9875 else if (sec == NULL || sec->owner == NULL)
9876 {
9877 bfd_set_error (bfd_error_bad_value);
9878 return FALSE;
9879 }
9880 else
9881 {
9882 asection *osec = sec->output_section;
9883
9884 /* If we have discarded a section, the output
9885 section will be the absolute section. In
9886 case of discarded SEC_MERGE sections, use
9887 the kept section. relocate_section should
9888 have already handled discarded linkonce
9889 sections. */
9890 if (bfd_is_abs_section (osec)
9891 && sec->kept_section != NULL
9892 && sec->kept_section->output_section != NULL)
9893 {
9894 osec = sec->kept_section->output_section;
9895 irela->r_addend -= osec->vma;
9896 }
9897
9898 if (!bfd_is_abs_section (osec))
9899 {
9900 r_symndx = osec->target_index;
9901 if (r_symndx == STN_UNDEF)
9902 {
9903 irela->r_addend += osec->vma;
9904 osec = _bfd_nearby_section (output_bfd, osec,
9905 osec->vma);
9906 irela->r_addend -= osec->vma;
9907 r_symndx = osec->target_index;
9908 }
9909 }
9910 }
9911
9912 /* Adjust the addend according to where the
9913 section winds up in the output section. */
9914 if (rela_normal)
9915 irela->r_addend += sec->output_offset;
9916 }
9917 else
9918 {
9919 if (flinfo->indices[r_symndx] == -1)
9920 {
9921 unsigned long shlink;
9922 const char *name;
9923 asection *osec;
9924 long indx;
9925
9926 if (flinfo->info->strip == strip_all)
9927 {
9928 /* You can't do ld -r -s. */
9929 bfd_set_error (bfd_error_invalid_operation);
9930 return FALSE;
9931 }
9932
9933 /* This symbol was skipped earlier, but
9934 since it is needed by a reloc, we
9935 must output it now. */
9936 shlink = symtab_hdr->sh_link;
9937 name = (bfd_elf_string_from_elf_section
9938 (input_bfd, shlink, sym.st_name));
9939 if (name == NULL)
9940 return FALSE;
9941
9942 osec = sec->output_section;
9943 sym.st_shndx =
9944 _bfd_elf_section_from_bfd_section (output_bfd,
9945 osec);
9946 if (sym.st_shndx == SHN_BAD)
9947 return FALSE;
9948
9949 sym.st_value += sec->output_offset;
9950 if (!flinfo->info->relocatable)
9951 {
9952 sym.st_value += osec->vma;
9953 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9954 {
9955 /* STT_TLS symbols are relative to PT_TLS
9956 segment base. */
9957 BFD_ASSERT (elf_hash_table (flinfo->info)
9958 ->tls_sec != NULL);
9959 sym.st_value -= (elf_hash_table (flinfo->info)
9960 ->tls_sec->vma);
9961 }
9962 }
9963
9964 indx = bfd_get_symcount (output_bfd);
9965 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9966 NULL);
9967 if (ret == 0)
9968 return FALSE;
9969 else if (ret == 1)
9970 flinfo->indices[r_symndx] = indx;
9971 else
9972 abort ();
9973 }
9974
9975 r_symndx = flinfo->indices[r_symndx];
9976 }
9977
9978 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9979 | (irela->r_info & r_type_mask));
9980 }
9981
9982 /* Swap out the relocs. */
9983 input_rel_hdr = esdi->rel.hdr;
9984 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9985 {
9986 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9987 input_rel_hdr,
9988 internal_relocs,
9989 rel_hash_list))
9990 return FALSE;
9991 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9992 * bed->s->int_rels_per_ext_rel);
9993 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9994 }
9995
9996 input_rela_hdr = esdi->rela.hdr;
9997 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9998 {
9999 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10000 input_rela_hdr,
10001 internal_relocs,
10002 rela_hash_list))
10003 return FALSE;
10004 }
10005 }
10006 }
10007
10008 /* Write out the modified section contents. */
10009 if (bed->elf_backend_write_section
10010 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10011 contents))
10012 {
10013 /* Section written out. */
10014 }
10015 else switch (o->sec_info_type)
10016 {
10017 case SEC_INFO_TYPE_STABS:
10018 if (! (_bfd_write_section_stabs
10019 (output_bfd,
10020 &elf_hash_table (flinfo->info)->stab_info,
10021 o, &elf_section_data (o)->sec_info, contents)))
10022 return FALSE;
10023 break;
10024 case SEC_INFO_TYPE_MERGE:
10025 if (! _bfd_write_merged_section (output_bfd, o,
10026 elf_section_data (o)->sec_info))
10027 return FALSE;
10028 break;
10029 case SEC_INFO_TYPE_EH_FRAME:
10030 {
10031 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10032 o, contents))
10033 return FALSE;
10034 }
10035 break;
10036 default:
10037 {
10038 /* FIXME: octets_per_byte. */
10039 if (! (o->flags & SEC_EXCLUDE))
10040 {
10041 file_ptr offset = (file_ptr) o->output_offset;
10042 bfd_size_type todo = o->size;
10043 if ((o->flags & SEC_ELF_REVERSE_COPY))
10044 {
10045 /* Reverse-copy input section to output. */
10046 do
10047 {
10048 todo -= address_size;
10049 if (! bfd_set_section_contents (output_bfd,
10050 o->output_section,
10051 contents + todo,
10052 offset,
10053 address_size))
10054 return FALSE;
10055 if (todo == 0)
10056 break;
10057 offset += address_size;
10058 }
10059 while (1);
10060 }
10061 else if (! bfd_set_section_contents (output_bfd,
10062 o->output_section,
10063 contents,
10064 offset, todo))
10065 return FALSE;
10066 }
10067 }
10068 break;
10069 }
10070 }
10071
10072 return TRUE;
10073 }
10074
10075 /* Generate a reloc when linking an ELF file. This is a reloc
10076 requested by the linker, and does not come from any input file. This
10077 is used to build constructor and destructor tables when linking
10078 with -Ur. */
10079
10080 static bfd_boolean
10081 elf_reloc_link_order (bfd *output_bfd,
10082 struct bfd_link_info *info,
10083 asection *output_section,
10084 struct bfd_link_order *link_order)
10085 {
10086 reloc_howto_type *howto;
10087 long indx;
10088 bfd_vma offset;
10089 bfd_vma addend;
10090 struct bfd_elf_section_reloc_data *reldata;
10091 struct elf_link_hash_entry **rel_hash_ptr;
10092 Elf_Internal_Shdr *rel_hdr;
10093 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10094 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10095 bfd_byte *erel;
10096 unsigned int i;
10097 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10098
10099 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10100 if (howto == NULL)
10101 {
10102 bfd_set_error (bfd_error_bad_value);
10103 return FALSE;
10104 }
10105
10106 addend = link_order->u.reloc.p->addend;
10107
10108 if (esdo->rel.hdr)
10109 reldata = &esdo->rel;
10110 else if (esdo->rela.hdr)
10111 reldata = &esdo->rela;
10112 else
10113 {
10114 reldata = NULL;
10115 BFD_ASSERT (0);
10116 }
10117
10118 /* Figure out the symbol index. */
10119 rel_hash_ptr = reldata->hashes + reldata->count;
10120 if (link_order->type == bfd_section_reloc_link_order)
10121 {
10122 indx = link_order->u.reloc.p->u.section->target_index;
10123 BFD_ASSERT (indx != 0);
10124 *rel_hash_ptr = NULL;
10125 }
10126 else
10127 {
10128 struct elf_link_hash_entry *h;
10129
10130 /* Treat a reloc against a defined symbol as though it were
10131 actually against the section. */
10132 h = ((struct elf_link_hash_entry *)
10133 bfd_wrapped_link_hash_lookup (output_bfd, info,
10134 link_order->u.reloc.p->u.name,
10135 FALSE, FALSE, TRUE));
10136 if (h != NULL
10137 && (h->root.type == bfd_link_hash_defined
10138 || h->root.type == bfd_link_hash_defweak))
10139 {
10140 asection *section;
10141
10142 section = h->root.u.def.section;
10143 indx = section->output_section->target_index;
10144 *rel_hash_ptr = NULL;
10145 /* It seems that we ought to add the symbol value to the
10146 addend here, but in practice it has already been added
10147 because it was passed to constructor_callback. */
10148 addend += section->output_section->vma + section->output_offset;
10149 }
10150 else if (h != NULL)
10151 {
10152 /* Setting the index to -2 tells elf_link_output_extsym that
10153 this symbol is used by a reloc. */
10154 h->indx = -2;
10155 *rel_hash_ptr = h;
10156 indx = 0;
10157 }
10158 else
10159 {
10160 if (! ((*info->callbacks->unattached_reloc)
10161 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10162 return FALSE;
10163 indx = 0;
10164 }
10165 }
10166
10167 /* If this is an inplace reloc, we must write the addend into the
10168 object file. */
10169 if (howto->partial_inplace && addend != 0)
10170 {
10171 bfd_size_type size;
10172 bfd_reloc_status_type rstat;
10173 bfd_byte *buf;
10174 bfd_boolean ok;
10175 const char *sym_name;
10176
10177 size = (bfd_size_type) bfd_get_reloc_size (howto);
10178 buf = (bfd_byte *) bfd_zmalloc (size);
10179 if (buf == NULL)
10180 return FALSE;
10181 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10182 switch (rstat)
10183 {
10184 case bfd_reloc_ok:
10185 break;
10186
10187 default:
10188 case bfd_reloc_outofrange:
10189 abort ();
10190
10191 case bfd_reloc_overflow:
10192 if (link_order->type == bfd_section_reloc_link_order)
10193 sym_name = bfd_section_name (output_bfd,
10194 link_order->u.reloc.p->u.section);
10195 else
10196 sym_name = link_order->u.reloc.p->u.name;
10197 if (! ((*info->callbacks->reloc_overflow)
10198 (info, NULL, sym_name, howto->name, addend, NULL,
10199 NULL, (bfd_vma) 0)))
10200 {
10201 free (buf);
10202 return FALSE;
10203 }
10204 break;
10205 }
10206 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10207 link_order->offset, size);
10208 free (buf);
10209 if (! ok)
10210 return FALSE;
10211 }
10212
10213 /* The address of a reloc is relative to the section in a
10214 relocatable file, and is a virtual address in an executable
10215 file. */
10216 offset = link_order->offset;
10217 if (! info->relocatable)
10218 offset += output_section->vma;
10219
10220 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10221 {
10222 irel[i].r_offset = offset;
10223 irel[i].r_info = 0;
10224 irel[i].r_addend = 0;
10225 }
10226 if (bed->s->arch_size == 32)
10227 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10228 else
10229 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10230
10231 rel_hdr = reldata->hdr;
10232 erel = rel_hdr->contents;
10233 if (rel_hdr->sh_type == SHT_REL)
10234 {
10235 erel += reldata->count * bed->s->sizeof_rel;
10236 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10237 }
10238 else
10239 {
10240 irel[0].r_addend = addend;
10241 erel += reldata->count * bed->s->sizeof_rela;
10242 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10243 }
10244
10245 ++reldata->count;
10246
10247 return TRUE;
10248 }
10249
10250
10251 /* Get the output vma of the section pointed to by the sh_link field. */
10252
10253 static bfd_vma
10254 elf_get_linked_section_vma (struct bfd_link_order *p)
10255 {
10256 Elf_Internal_Shdr **elf_shdrp;
10257 asection *s;
10258 int elfsec;
10259
10260 s = p->u.indirect.section;
10261 elf_shdrp = elf_elfsections (s->owner);
10262 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10263 elfsec = elf_shdrp[elfsec]->sh_link;
10264 /* PR 290:
10265 The Intel C compiler generates SHT_IA_64_UNWIND with
10266 SHF_LINK_ORDER. But it doesn't set the sh_link or
10267 sh_info fields. Hence we could get the situation
10268 where elfsec is 0. */
10269 if (elfsec == 0)
10270 {
10271 const struct elf_backend_data *bed
10272 = get_elf_backend_data (s->owner);
10273 if (bed->link_order_error_handler)
10274 bed->link_order_error_handler
10275 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10276 return 0;
10277 }
10278 else
10279 {
10280 s = elf_shdrp[elfsec]->bfd_section;
10281 return s->output_section->vma + s->output_offset;
10282 }
10283 }
10284
10285
10286 /* Compare two sections based on the locations of the sections they are
10287 linked to. Used by elf_fixup_link_order. */
10288
10289 static int
10290 compare_link_order (const void * a, const void * b)
10291 {
10292 bfd_vma apos;
10293 bfd_vma bpos;
10294
10295 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10296 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10297 if (apos < bpos)
10298 return -1;
10299 return apos > bpos;
10300 }
10301
10302
10303 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10304 order as their linked sections. Returns false if this could not be done
10305 because an output section includes both ordered and unordered
10306 sections. Ideally we'd do this in the linker proper. */
10307
10308 static bfd_boolean
10309 elf_fixup_link_order (bfd *abfd, asection *o)
10310 {
10311 int seen_linkorder;
10312 int seen_other;
10313 int n;
10314 struct bfd_link_order *p;
10315 bfd *sub;
10316 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10317 unsigned elfsec;
10318 struct bfd_link_order **sections;
10319 asection *s, *other_sec, *linkorder_sec;
10320 bfd_vma offset;
10321
10322 other_sec = NULL;
10323 linkorder_sec = NULL;
10324 seen_other = 0;
10325 seen_linkorder = 0;
10326 for (p = o->map_head.link_order; p != NULL; p = p->next)
10327 {
10328 if (p->type == bfd_indirect_link_order)
10329 {
10330 s = p->u.indirect.section;
10331 sub = s->owner;
10332 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10333 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10334 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10335 && elfsec < elf_numsections (sub)
10336 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10337 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10338 {
10339 seen_linkorder++;
10340 linkorder_sec = s;
10341 }
10342 else
10343 {
10344 seen_other++;
10345 other_sec = s;
10346 }
10347 }
10348 else
10349 seen_other++;
10350
10351 if (seen_other && seen_linkorder)
10352 {
10353 if (other_sec && linkorder_sec)
10354 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10355 o, linkorder_sec,
10356 linkorder_sec->owner, other_sec,
10357 other_sec->owner);
10358 else
10359 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10360 o);
10361 bfd_set_error (bfd_error_bad_value);
10362 return FALSE;
10363 }
10364 }
10365
10366 if (!seen_linkorder)
10367 return TRUE;
10368
10369 sections = (struct bfd_link_order **)
10370 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10371 if (sections == NULL)
10372 return FALSE;
10373 seen_linkorder = 0;
10374
10375 for (p = o->map_head.link_order; p != NULL; p = p->next)
10376 {
10377 sections[seen_linkorder++] = p;
10378 }
10379 /* Sort the input sections in the order of their linked section. */
10380 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10381 compare_link_order);
10382
10383 /* Change the offsets of the sections. */
10384 offset = 0;
10385 for (n = 0; n < seen_linkorder; n++)
10386 {
10387 s = sections[n]->u.indirect.section;
10388 offset &= ~(bfd_vma) 0 << s->alignment_power;
10389 s->output_offset = offset;
10390 sections[n]->offset = offset;
10391 /* FIXME: octets_per_byte. */
10392 offset += sections[n]->size;
10393 }
10394
10395 free (sections);
10396 return TRUE;
10397 }
10398
10399 static void
10400 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10401 {
10402 asection *o;
10403
10404 if (flinfo->symstrtab != NULL)
10405 _bfd_stringtab_free (flinfo->symstrtab);
10406 if (flinfo->contents != NULL)
10407 free (flinfo->contents);
10408 if (flinfo->external_relocs != NULL)
10409 free (flinfo->external_relocs);
10410 if (flinfo->internal_relocs != NULL)
10411 free (flinfo->internal_relocs);
10412 if (flinfo->external_syms != NULL)
10413 free (flinfo->external_syms);
10414 if (flinfo->locsym_shndx != NULL)
10415 free (flinfo->locsym_shndx);
10416 if (flinfo->internal_syms != NULL)
10417 free (flinfo->internal_syms);
10418 if (flinfo->indices != NULL)
10419 free (flinfo->indices);
10420 if (flinfo->sections != NULL)
10421 free (flinfo->sections);
10422 if (flinfo->symbuf != NULL)
10423 free (flinfo->symbuf);
10424 if (flinfo->symshndxbuf != NULL)
10425 free (flinfo->symshndxbuf);
10426 for (o = obfd->sections; o != NULL; o = o->next)
10427 {
10428 struct bfd_elf_section_data *esdo = elf_section_data (o);
10429 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10430 free (esdo->rel.hashes);
10431 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10432 free (esdo->rela.hashes);
10433 }
10434 }
10435
10436 /* Do the final step of an ELF link. */
10437
10438 bfd_boolean
10439 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10440 {
10441 bfd_boolean dynamic;
10442 bfd_boolean emit_relocs;
10443 bfd *dynobj;
10444 struct elf_final_link_info flinfo;
10445 asection *o;
10446 struct bfd_link_order *p;
10447 bfd *sub;
10448 bfd_size_type max_contents_size;
10449 bfd_size_type max_external_reloc_size;
10450 bfd_size_type max_internal_reloc_count;
10451 bfd_size_type max_sym_count;
10452 bfd_size_type max_sym_shndx_count;
10453 file_ptr off;
10454 Elf_Internal_Sym elfsym;
10455 unsigned int i;
10456 Elf_Internal_Shdr *symtab_hdr;
10457 Elf_Internal_Shdr *symtab_shndx_hdr;
10458 Elf_Internal_Shdr *symstrtab_hdr;
10459 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10460 struct elf_outext_info eoinfo;
10461 bfd_boolean merged;
10462 size_t relativecount = 0;
10463 asection *reldyn = 0;
10464 bfd_size_type amt;
10465 asection *attr_section = NULL;
10466 bfd_vma attr_size = 0;
10467 const char *std_attrs_section;
10468
10469 if (! is_elf_hash_table (info->hash))
10470 return FALSE;
10471
10472 if (info->shared)
10473 abfd->flags |= DYNAMIC;
10474
10475 dynamic = elf_hash_table (info)->dynamic_sections_created;
10476 dynobj = elf_hash_table (info)->dynobj;
10477
10478 emit_relocs = (info->relocatable
10479 || info->emitrelocations);
10480
10481 flinfo.info = info;
10482 flinfo.output_bfd = abfd;
10483 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10484 if (flinfo.symstrtab == NULL)
10485 return FALSE;
10486
10487 if (! dynamic)
10488 {
10489 flinfo.dynsym_sec = NULL;
10490 flinfo.hash_sec = NULL;
10491 flinfo.symver_sec = NULL;
10492 }
10493 else
10494 {
10495 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10496 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10497 /* Note that dynsym_sec can be NULL (on VMS). */
10498 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10499 /* Note that it is OK if symver_sec is NULL. */
10500 }
10501
10502 flinfo.contents = NULL;
10503 flinfo.external_relocs = NULL;
10504 flinfo.internal_relocs = NULL;
10505 flinfo.external_syms = NULL;
10506 flinfo.locsym_shndx = NULL;
10507 flinfo.internal_syms = NULL;
10508 flinfo.indices = NULL;
10509 flinfo.sections = NULL;
10510 flinfo.symbuf = NULL;
10511 flinfo.symshndxbuf = NULL;
10512 flinfo.symbuf_count = 0;
10513 flinfo.shndxbuf_size = 0;
10514 flinfo.filesym_count = 0;
10515
10516 /* The object attributes have been merged. Remove the input
10517 sections from the link, and set the contents of the output
10518 secton. */
10519 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10520 for (o = abfd->sections; o != NULL; o = o->next)
10521 {
10522 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10523 || strcmp (o->name, ".gnu.attributes") == 0)
10524 {
10525 for (p = o->map_head.link_order; p != NULL; p = p->next)
10526 {
10527 asection *input_section;
10528
10529 if (p->type != bfd_indirect_link_order)
10530 continue;
10531 input_section = p->u.indirect.section;
10532 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10533 elf_link_input_bfd ignores this section. */
10534 input_section->flags &= ~SEC_HAS_CONTENTS;
10535 }
10536
10537 attr_size = bfd_elf_obj_attr_size (abfd);
10538 if (attr_size)
10539 {
10540 bfd_set_section_size (abfd, o, attr_size);
10541 attr_section = o;
10542 /* Skip this section later on. */
10543 o->map_head.link_order = NULL;
10544 }
10545 else
10546 o->flags |= SEC_EXCLUDE;
10547 }
10548 }
10549
10550 /* Count up the number of relocations we will output for each output
10551 section, so that we know the sizes of the reloc sections. We
10552 also figure out some maximum sizes. */
10553 max_contents_size = 0;
10554 max_external_reloc_size = 0;
10555 max_internal_reloc_count = 0;
10556 max_sym_count = 0;
10557 max_sym_shndx_count = 0;
10558 merged = FALSE;
10559 for (o = abfd->sections; o != NULL; o = o->next)
10560 {
10561 struct bfd_elf_section_data *esdo = elf_section_data (o);
10562 o->reloc_count = 0;
10563
10564 for (p = o->map_head.link_order; p != NULL; p = p->next)
10565 {
10566 unsigned int reloc_count = 0;
10567 struct bfd_elf_section_data *esdi = NULL;
10568
10569 if (p->type == bfd_section_reloc_link_order
10570 || p->type == bfd_symbol_reloc_link_order)
10571 reloc_count = 1;
10572 else if (p->type == bfd_indirect_link_order)
10573 {
10574 asection *sec;
10575
10576 sec = p->u.indirect.section;
10577 esdi = elf_section_data (sec);
10578
10579 /* Mark all sections which are to be included in the
10580 link. This will normally be every section. We need
10581 to do this so that we can identify any sections which
10582 the linker has decided to not include. */
10583 sec->linker_mark = TRUE;
10584
10585 if (sec->flags & SEC_MERGE)
10586 merged = TRUE;
10587
10588 if (esdo->this_hdr.sh_type == SHT_REL
10589 || esdo->this_hdr.sh_type == SHT_RELA)
10590 /* Some backends use reloc_count in relocation sections
10591 to count particular types of relocs. Of course,
10592 reloc sections themselves can't have relocations. */
10593 reloc_count = 0;
10594 else if (info->relocatable || info->emitrelocations)
10595 reloc_count = sec->reloc_count;
10596 else if (bed->elf_backend_count_relocs)
10597 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10598
10599 if (sec->rawsize > max_contents_size)
10600 max_contents_size = sec->rawsize;
10601 if (sec->size > max_contents_size)
10602 max_contents_size = sec->size;
10603
10604 /* We are interested in just local symbols, not all
10605 symbols. */
10606 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10607 && (sec->owner->flags & DYNAMIC) == 0)
10608 {
10609 size_t sym_count;
10610
10611 if (elf_bad_symtab (sec->owner))
10612 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10613 / bed->s->sizeof_sym);
10614 else
10615 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10616
10617 if (sym_count > max_sym_count)
10618 max_sym_count = sym_count;
10619
10620 if (sym_count > max_sym_shndx_count
10621 && elf_symtab_shndx (sec->owner) != 0)
10622 max_sym_shndx_count = sym_count;
10623
10624 if ((sec->flags & SEC_RELOC) != 0)
10625 {
10626 size_t ext_size = 0;
10627
10628 if (esdi->rel.hdr != NULL)
10629 ext_size = esdi->rel.hdr->sh_size;
10630 if (esdi->rela.hdr != NULL)
10631 ext_size += esdi->rela.hdr->sh_size;
10632
10633 if (ext_size > max_external_reloc_size)
10634 max_external_reloc_size = ext_size;
10635 if (sec->reloc_count > max_internal_reloc_count)
10636 max_internal_reloc_count = sec->reloc_count;
10637 }
10638 }
10639 }
10640
10641 if (reloc_count == 0)
10642 continue;
10643
10644 o->reloc_count += reloc_count;
10645
10646 if (p->type == bfd_indirect_link_order
10647 && (info->relocatable || info->emitrelocations))
10648 {
10649 if (esdi->rel.hdr)
10650 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10651 if (esdi->rela.hdr)
10652 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10653 }
10654 else
10655 {
10656 if (o->use_rela_p)
10657 esdo->rela.count += reloc_count;
10658 else
10659 esdo->rel.count += reloc_count;
10660 }
10661 }
10662
10663 if (o->reloc_count > 0)
10664 o->flags |= SEC_RELOC;
10665 else
10666 {
10667 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10668 set it (this is probably a bug) and if it is set
10669 assign_section_numbers will create a reloc section. */
10670 o->flags &=~ SEC_RELOC;
10671 }
10672
10673 /* If the SEC_ALLOC flag is not set, force the section VMA to
10674 zero. This is done in elf_fake_sections as well, but forcing
10675 the VMA to 0 here will ensure that relocs against these
10676 sections are handled correctly. */
10677 if ((o->flags & SEC_ALLOC) == 0
10678 && ! o->user_set_vma)
10679 o->vma = 0;
10680 }
10681
10682 if (! info->relocatable && merged)
10683 elf_link_hash_traverse (elf_hash_table (info),
10684 _bfd_elf_link_sec_merge_syms, abfd);
10685
10686 /* Figure out the file positions for everything but the symbol table
10687 and the relocs. We set symcount to force assign_section_numbers
10688 to create a symbol table. */
10689 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10690 BFD_ASSERT (! abfd->output_has_begun);
10691 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10692 goto error_return;
10693
10694 /* Set sizes, and assign file positions for reloc sections. */
10695 for (o = abfd->sections; o != NULL; o = o->next)
10696 {
10697 struct bfd_elf_section_data *esdo = elf_section_data (o);
10698 if ((o->flags & SEC_RELOC) != 0)
10699 {
10700 if (esdo->rel.hdr
10701 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10702 goto error_return;
10703
10704 if (esdo->rela.hdr
10705 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10706 goto error_return;
10707 }
10708
10709 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10710 to count upwards while actually outputting the relocations. */
10711 esdo->rel.count = 0;
10712 esdo->rela.count = 0;
10713 }
10714
10715 _bfd_elf_assign_file_positions_for_relocs (abfd);
10716
10717 /* We have now assigned file positions for all the sections except
10718 .symtab and .strtab. We start the .symtab section at the current
10719 file position, and write directly to it. We build the .strtab
10720 section in memory. */
10721 bfd_get_symcount (abfd) = 0;
10722 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10723 /* sh_name is set in prep_headers. */
10724 symtab_hdr->sh_type = SHT_SYMTAB;
10725 /* sh_flags, sh_addr and sh_size all start off zero. */
10726 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10727 /* sh_link is set in assign_section_numbers. */
10728 /* sh_info is set below. */
10729 /* sh_offset is set just below. */
10730 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10731
10732 off = elf_next_file_pos (abfd);
10733 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10734
10735 /* Note that at this point elf_next_file_pos (abfd) is
10736 incorrect. We do not yet know the size of the .symtab section.
10737 We correct next_file_pos below, after we do know the size. */
10738
10739 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10740 continuously seeking to the right position in the file. */
10741 if (! info->keep_memory || max_sym_count < 20)
10742 flinfo.symbuf_size = 20;
10743 else
10744 flinfo.symbuf_size = max_sym_count;
10745 amt = flinfo.symbuf_size;
10746 amt *= bed->s->sizeof_sym;
10747 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10748 if (flinfo.symbuf == NULL)
10749 goto error_return;
10750 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10751 {
10752 /* Wild guess at number of output symbols. realloc'd as needed. */
10753 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10754 flinfo.shndxbuf_size = amt;
10755 amt *= sizeof (Elf_External_Sym_Shndx);
10756 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10757 if (flinfo.symshndxbuf == NULL)
10758 goto error_return;
10759 }
10760
10761 /* Start writing out the symbol table. The first symbol is always a
10762 dummy symbol. */
10763 if (info->strip != strip_all
10764 || emit_relocs)
10765 {
10766 elfsym.st_value = 0;
10767 elfsym.st_size = 0;
10768 elfsym.st_info = 0;
10769 elfsym.st_other = 0;
10770 elfsym.st_shndx = SHN_UNDEF;
10771 elfsym.st_target_internal = 0;
10772 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10773 NULL) != 1)
10774 goto error_return;
10775 }
10776
10777 /* Output a symbol for each section. We output these even if we are
10778 discarding local symbols, since they are used for relocs. These
10779 symbols have no names. We store the index of each one in the
10780 index field of the section, so that we can find it again when
10781 outputting relocs. */
10782 if (info->strip != strip_all
10783 || emit_relocs)
10784 {
10785 elfsym.st_size = 0;
10786 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10787 elfsym.st_other = 0;
10788 elfsym.st_value = 0;
10789 elfsym.st_target_internal = 0;
10790 for (i = 1; i < elf_numsections (abfd); i++)
10791 {
10792 o = bfd_section_from_elf_index (abfd, i);
10793 if (o != NULL)
10794 {
10795 o->target_index = bfd_get_symcount (abfd);
10796 elfsym.st_shndx = i;
10797 if (!info->relocatable)
10798 elfsym.st_value = o->vma;
10799 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10800 goto error_return;
10801 }
10802 }
10803 }
10804
10805 /* Allocate some memory to hold information read in from the input
10806 files. */
10807 if (max_contents_size != 0)
10808 {
10809 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10810 if (flinfo.contents == NULL)
10811 goto error_return;
10812 }
10813
10814 if (max_external_reloc_size != 0)
10815 {
10816 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10817 if (flinfo.external_relocs == NULL)
10818 goto error_return;
10819 }
10820
10821 if (max_internal_reloc_count != 0)
10822 {
10823 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10824 amt *= sizeof (Elf_Internal_Rela);
10825 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10826 if (flinfo.internal_relocs == NULL)
10827 goto error_return;
10828 }
10829
10830 if (max_sym_count != 0)
10831 {
10832 amt = max_sym_count * bed->s->sizeof_sym;
10833 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10834 if (flinfo.external_syms == NULL)
10835 goto error_return;
10836
10837 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10838 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10839 if (flinfo.internal_syms == NULL)
10840 goto error_return;
10841
10842 amt = max_sym_count * sizeof (long);
10843 flinfo.indices = (long int *) bfd_malloc (amt);
10844 if (flinfo.indices == NULL)
10845 goto error_return;
10846
10847 amt = max_sym_count * sizeof (asection *);
10848 flinfo.sections = (asection **) bfd_malloc (amt);
10849 if (flinfo.sections == NULL)
10850 goto error_return;
10851 }
10852
10853 if (max_sym_shndx_count != 0)
10854 {
10855 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10856 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10857 if (flinfo.locsym_shndx == NULL)
10858 goto error_return;
10859 }
10860
10861 if (elf_hash_table (info)->tls_sec)
10862 {
10863 bfd_vma base, end = 0;
10864 asection *sec;
10865
10866 for (sec = elf_hash_table (info)->tls_sec;
10867 sec && (sec->flags & SEC_THREAD_LOCAL);
10868 sec = sec->next)
10869 {
10870 bfd_size_type size = sec->size;
10871
10872 if (size == 0
10873 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10874 {
10875 struct bfd_link_order *ord = sec->map_tail.link_order;
10876
10877 if (ord != NULL)
10878 size = ord->offset + ord->size;
10879 }
10880 end = sec->vma + size;
10881 }
10882 base = elf_hash_table (info)->tls_sec->vma;
10883 /* Only align end of TLS section if static TLS doesn't have special
10884 alignment requirements. */
10885 if (bed->static_tls_alignment == 1)
10886 end = align_power (end,
10887 elf_hash_table (info)->tls_sec->alignment_power);
10888 elf_hash_table (info)->tls_size = end - base;
10889 }
10890
10891 /* Reorder SHF_LINK_ORDER sections. */
10892 for (o = abfd->sections; o != NULL; o = o->next)
10893 {
10894 if (!elf_fixup_link_order (abfd, o))
10895 return FALSE;
10896 }
10897
10898 /* Since ELF permits relocations to be against local symbols, we
10899 must have the local symbols available when we do the relocations.
10900 Since we would rather only read the local symbols once, and we
10901 would rather not keep them in memory, we handle all the
10902 relocations for a single input file at the same time.
10903
10904 Unfortunately, there is no way to know the total number of local
10905 symbols until we have seen all of them, and the local symbol
10906 indices precede the global symbol indices. This means that when
10907 we are generating relocatable output, and we see a reloc against
10908 a global symbol, we can not know the symbol index until we have
10909 finished examining all the local symbols to see which ones we are
10910 going to output. To deal with this, we keep the relocations in
10911 memory, and don't output them until the end of the link. This is
10912 an unfortunate waste of memory, but I don't see a good way around
10913 it. Fortunately, it only happens when performing a relocatable
10914 link, which is not the common case. FIXME: If keep_memory is set
10915 we could write the relocs out and then read them again; I don't
10916 know how bad the memory loss will be. */
10917
10918 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10919 sub->output_has_begun = FALSE;
10920 for (o = abfd->sections; o != NULL; o = o->next)
10921 {
10922 for (p = o->map_head.link_order; p != NULL; p = p->next)
10923 {
10924 if (p->type == bfd_indirect_link_order
10925 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10926 == bfd_target_elf_flavour)
10927 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10928 {
10929 if (! sub->output_has_begun)
10930 {
10931 if (! elf_link_input_bfd (&flinfo, sub))
10932 goto error_return;
10933 sub->output_has_begun = TRUE;
10934 }
10935 }
10936 else if (p->type == bfd_section_reloc_link_order
10937 || p->type == bfd_symbol_reloc_link_order)
10938 {
10939 if (! elf_reloc_link_order (abfd, info, o, p))
10940 goto error_return;
10941 }
10942 else
10943 {
10944 if (! _bfd_default_link_order (abfd, info, o, p))
10945 {
10946 if (p->type == bfd_indirect_link_order
10947 && (bfd_get_flavour (sub)
10948 == bfd_target_elf_flavour)
10949 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10950 != bed->s->elfclass))
10951 {
10952 const char *iclass, *oclass;
10953
10954 if (bed->s->elfclass == ELFCLASS64)
10955 {
10956 iclass = "ELFCLASS32";
10957 oclass = "ELFCLASS64";
10958 }
10959 else
10960 {
10961 iclass = "ELFCLASS64";
10962 oclass = "ELFCLASS32";
10963 }
10964
10965 bfd_set_error (bfd_error_wrong_format);
10966 (*_bfd_error_handler)
10967 (_("%B: file class %s incompatible with %s"),
10968 sub, iclass, oclass);
10969 }
10970
10971 goto error_return;
10972 }
10973 }
10974 }
10975 }
10976
10977 /* Free symbol buffer if needed. */
10978 if (!info->reduce_memory_overheads)
10979 {
10980 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10981 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10982 && elf_tdata (sub)->symbuf)
10983 {
10984 free (elf_tdata (sub)->symbuf);
10985 elf_tdata (sub)->symbuf = NULL;
10986 }
10987 }
10988
10989 /* Output any global symbols that got converted to local in a
10990 version script or due to symbol visibility. We do this in a
10991 separate step since ELF requires all local symbols to appear
10992 prior to any global symbols. FIXME: We should only do this if
10993 some global symbols were, in fact, converted to become local.
10994 FIXME: Will this work correctly with the Irix 5 linker? */
10995 eoinfo.failed = FALSE;
10996 eoinfo.flinfo = &flinfo;
10997 eoinfo.localsyms = TRUE;
10998 eoinfo.need_second_pass = FALSE;
10999 eoinfo.second_pass = FALSE;
11000 eoinfo.file_sym_done = FALSE;
11001 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11002 if (eoinfo.failed)
11003 return FALSE;
11004
11005 if (eoinfo.need_second_pass)
11006 {
11007 eoinfo.second_pass = TRUE;
11008 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11009 if (eoinfo.failed)
11010 return FALSE;
11011 }
11012
11013 /* If backend needs to output some local symbols not present in the hash
11014 table, do it now. */
11015 if (bed->elf_backend_output_arch_local_syms)
11016 {
11017 typedef int (*out_sym_func)
11018 (void *, const char *, Elf_Internal_Sym *, asection *,
11019 struct elf_link_hash_entry *);
11020
11021 if (! ((*bed->elf_backend_output_arch_local_syms)
11022 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11023 return FALSE;
11024 }
11025
11026 /* That wrote out all the local symbols. Finish up the symbol table
11027 with the global symbols. Even if we want to strip everything we
11028 can, we still need to deal with those global symbols that got
11029 converted to local in a version script. */
11030
11031 /* The sh_info field records the index of the first non local symbol. */
11032 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11033
11034 if (dynamic
11035 && flinfo.dynsym_sec != NULL
11036 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11037 {
11038 Elf_Internal_Sym sym;
11039 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11040 long last_local = 0;
11041
11042 /* Write out the section symbols for the output sections. */
11043 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11044 {
11045 asection *s;
11046
11047 sym.st_size = 0;
11048 sym.st_name = 0;
11049 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11050 sym.st_other = 0;
11051 sym.st_target_internal = 0;
11052
11053 for (s = abfd->sections; s != NULL; s = s->next)
11054 {
11055 int indx;
11056 bfd_byte *dest;
11057 long dynindx;
11058
11059 dynindx = elf_section_data (s)->dynindx;
11060 if (dynindx <= 0)
11061 continue;
11062 indx = elf_section_data (s)->this_idx;
11063 BFD_ASSERT (indx > 0);
11064 sym.st_shndx = indx;
11065 if (! check_dynsym (abfd, &sym))
11066 return FALSE;
11067 sym.st_value = s->vma;
11068 dest = dynsym + dynindx * bed->s->sizeof_sym;
11069 if (last_local < dynindx)
11070 last_local = dynindx;
11071 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11072 }
11073 }
11074
11075 /* Write out the local dynsyms. */
11076 if (elf_hash_table (info)->dynlocal)
11077 {
11078 struct elf_link_local_dynamic_entry *e;
11079 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11080 {
11081 asection *s;
11082 bfd_byte *dest;
11083
11084 /* Copy the internal symbol and turn off visibility.
11085 Note that we saved a word of storage and overwrote
11086 the original st_name with the dynstr_index. */
11087 sym = e->isym;
11088 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11089
11090 s = bfd_section_from_elf_index (e->input_bfd,
11091 e->isym.st_shndx);
11092 if (s != NULL)
11093 {
11094 sym.st_shndx =
11095 elf_section_data (s->output_section)->this_idx;
11096 if (! check_dynsym (abfd, &sym))
11097 return FALSE;
11098 sym.st_value = (s->output_section->vma
11099 + s->output_offset
11100 + e->isym.st_value);
11101 }
11102
11103 if (last_local < e->dynindx)
11104 last_local = e->dynindx;
11105
11106 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11107 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11108 }
11109 }
11110
11111 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11112 last_local + 1;
11113 }
11114
11115 /* We get the global symbols from the hash table. */
11116 eoinfo.failed = FALSE;
11117 eoinfo.localsyms = FALSE;
11118 eoinfo.flinfo = &flinfo;
11119 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11120 if (eoinfo.failed)
11121 return FALSE;
11122
11123 /* If backend needs to output some symbols not present in the hash
11124 table, do it now. */
11125 if (bed->elf_backend_output_arch_syms)
11126 {
11127 typedef int (*out_sym_func)
11128 (void *, const char *, Elf_Internal_Sym *, asection *,
11129 struct elf_link_hash_entry *);
11130
11131 if (! ((*bed->elf_backend_output_arch_syms)
11132 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11133 return FALSE;
11134 }
11135
11136 /* Flush all symbols to the file. */
11137 if (! elf_link_flush_output_syms (&flinfo, bed))
11138 return FALSE;
11139
11140 /* Now we know the size of the symtab section. */
11141 off += symtab_hdr->sh_size;
11142
11143 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11144 if (symtab_shndx_hdr->sh_name != 0)
11145 {
11146 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11147 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11148 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11149 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11150 symtab_shndx_hdr->sh_size = amt;
11151
11152 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11153 off, TRUE);
11154
11155 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11156 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11157 return FALSE;
11158 }
11159
11160
11161 /* Finish up and write out the symbol string table (.strtab)
11162 section. */
11163 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11164 /* sh_name was set in prep_headers. */
11165 symstrtab_hdr->sh_type = SHT_STRTAB;
11166 symstrtab_hdr->sh_flags = 0;
11167 symstrtab_hdr->sh_addr = 0;
11168 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11169 symstrtab_hdr->sh_entsize = 0;
11170 symstrtab_hdr->sh_link = 0;
11171 symstrtab_hdr->sh_info = 0;
11172 /* sh_offset is set just below. */
11173 symstrtab_hdr->sh_addralign = 1;
11174
11175 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11176 elf_next_file_pos (abfd) = off;
11177
11178 if (bfd_get_symcount (abfd) > 0)
11179 {
11180 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11181 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11182 return FALSE;
11183 }
11184
11185 /* Adjust the relocs to have the correct symbol indices. */
11186 for (o = abfd->sections; o != NULL; o = o->next)
11187 {
11188 struct bfd_elf_section_data *esdo = elf_section_data (o);
11189 if ((o->flags & SEC_RELOC) == 0)
11190 continue;
11191
11192 if (esdo->rel.hdr != NULL)
11193 elf_link_adjust_relocs (abfd, &esdo->rel);
11194 if (esdo->rela.hdr != NULL)
11195 elf_link_adjust_relocs (abfd, &esdo->rela);
11196
11197 /* Set the reloc_count field to 0 to prevent write_relocs from
11198 trying to swap the relocs out itself. */
11199 o->reloc_count = 0;
11200 }
11201
11202 if (dynamic && info->combreloc && dynobj != NULL)
11203 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11204
11205 /* If we are linking against a dynamic object, or generating a
11206 shared library, finish up the dynamic linking information. */
11207 if (dynamic)
11208 {
11209 bfd_byte *dyncon, *dynconend;
11210
11211 /* Fix up .dynamic entries. */
11212 o = bfd_get_linker_section (dynobj, ".dynamic");
11213 BFD_ASSERT (o != NULL);
11214
11215 dyncon = o->contents;
11216 dynconend = o->contents + o->size;
11217 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11218 {
11219 Elf_Internal_Dyn dyn;
11220 const char *name;
11221 unsigned int type;
11222
11223 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11224
11225 switch (dyn.d_tag)
11226 {
11227 default:
11228 continue;
11229 case DT_NULL:
11230 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11231 {
11232 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11233 {
11234 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11235 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11236 default: continue;
11237 }
11238 dyn.d_un.d_val = relativecount;
11239 relativecount = 0;
11240 break;
11241 }
11242 continue;
11243
11244 case DT_INIT:
11245 name = info->init_function;
11246 goto get_sym;
11247 case DT_FINI:
11248 name = info->fini_function;
11249 get_sym:
11250 {
11251 struct elf_link_hash_entry *h;
11252
11253 h = elf_link_hash_lookup (elf_hash_table (info), name,
11254 FALSE, FALSE, TRUE);
11255 if (h != NULL
11256 && (h->root.type == bfd_link_hash_defined
11257 || h->root.type == bfd_link_hash_defweak))
11258 {
11259 dyn.d_un.d_ptr = h->root.u.def.value;
11260 o = h->root.u.def.section;
11261 if (o->output_section != NULL)
11262 dyn.d_un.d_ptr += (o->output_section->vma
11263 + o->output_offset);
11264 else
11265 {
11266 /* The symbol is imported from another shared
11267 library and does not apply to this one. */
11268 dyn.d_un.d_ptr = 0;
11269 }
11270 break;
11271 }
11272 }
11273 continue;
11274
11275 case DT_PREINIT_ARRAYSZ:
11276 name = ".preinit_array";
11277 goto get_size;
11278 case DT_INIT_ARRAYSZ:
11279 name = ".init_array";
11280 goto get_size;
11281 case DT_FINI_ARRAYSZ:
11282 name = ".fini_array";
11283 get_size:
11284 o = bfd_get_section_by_name (abfd, name);
11285 if (o == NULL)
11286 {
11287 (*_bfd_error_handler)
11288 (_("%B: could not find output section %s"), abfd, name);
11289 goto error_return;
11290 }
11291 if (o->size == 0)
11292 (*_bfd_error_handler)
11293 (_("warning: %s section has zero size"), name);
11294 dyn.d_un.d_val = o->size;
11295 break;
11296
11297 case DT_PREINIT_ARRAY:
11298 name = ".preinit_array";
11299 goto get_vma;
11300 case DT_INIT_ARRAY:
11301 name = ".init_array";
11302 goto get_vma;
11303 case DT_FINI_ARRAY:
11304 name = ".fini_array";
11305 goto get_vma;
11306
11307 case DT_HASH:
11308 name = ".hash";
11309 goto get_vma;
11310 case DT_GNU_HASH:
11311 name = ".gnu.hash";
11312 goto get_vma;
11313 case DT_STRTAB:
11314 name = ".dynstr";
11315 goto get_vma;
11316 case DT_SYMTAB:
11317 name = ".dynsym";
11318 goto get_vma;
11319 case DT_VERDEF:
11320 name = ".gnu.version_d";
11321 goto get_vma;
11322 case DT_VERNEED:
11323 name = ".gnu.version_r";
11324 goto get_vma;
11325 case DT_VERSYM:
11326 name = ".gnu.version";
11327 get_vma:
11328 o = bfd_get_section_by_name (abfd, name);
11329 if (o == NULL)
11330 {
11331 (*_bfd_error_handler)
11332 (_("%B: could not find output section %s"), abfd, name);
11333 goto error_return;
11334 }
11335 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11336 {
11337 (*_bfd_error_handler)
11338 (_("warning: section '%s' is being made into a note"), name);
11339 bfd_set_error (bfd_error_nonrepresentable_section);
11340 goto error_return;
11341 }
11342 dyn.d_un.d_ptr = o->vma;
11343 break;
11344
11345 case DT_REL:
11346 case DT_RELA:
11347 case DT_RELSZ:
11348 case DT_RELASZ:
11349 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11350 type = SHT_REL;
11351 else
11352 type = SHT_RELA;
11353 dyn.d_un.d_val = 0;
11354 dyn.d_un.d_ptr = 0;
11355 for (i = 1; i < elf_numsections (abfd); i++)
11356 {
11357 Elf_Internal_Shdr *hdr;
11358
11359 hdr = elf_elfsections (abfd)[i];
11360 if (hdr->sh_type == type
11361 && (hdr->sh_flags & SHF_ALLOC) != 0)
11362 {
11363 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11364 dyn.d_un.d_val += hdr->sh_size;
11365 else
11366 {
11367 if (dyn.d_un.d_ptr == 0
11368 || hdr->sh_addr < dyn.d_un.d_ptr)
11369 dyn.d_un.d_ptr = hdr->sh_addr;
11370 }
11371 }
11372 }
11373 break;
11374 }
11375 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11376 }
11377 }
11378
11379 /* If we have created any dynamic sections, then output them. */
11380 if (dynobj != NULL)
11381 {
11382 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11383 goto error_return;
11384
11385 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11386 if (((info->warn_shared_textrel && info->shared)
11387 || info->error_textrel)
11388 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11389 {
11390 bfd_byte *dyncon, *dynconend;
11391
11392 dyncon = o->contents;
11393 dynconend = o->contents + o->size;
11394 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11395 {
11396 Elf_Internal_Dyn dyn;
11397
11398 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11399
11400 if (dyn.d_tag == DT_TEXTREL)
11401 {
11402 if (info->error_textrel)
11403 info->callbacks->einfo
11404 (_("%P%X: read-only segment has dynamic relocations.\n"));
11405 else
11406 info->callbacks->einfo
11407 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11408 break;
11409 }
11410 }
11411 }
11412
11413 for (o = dynobj->sections; o != NULL; o = o->next)
11414 {
11415 if ((o->flags & SEC_HAS_CONTENTS) == 0
11416 || o->size == 0
11417 || o->output_section == bfd_abs_section_ptr)
11418 continue;
11419 if ((o->flags & SEC_LINKER_CREATED) == 0)
11420 {
11421 /* At this point, we are only interested in sections
11422 created by _bfd_elf_link_create_dynamic_sections. */
11423 continue;
11424 }
11425 if (elf_hash_table (info)->stab_info.stabstr == o)
11426 continue;
11427 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11428 continue;
11429 if (strcmp (o->name, ".dynstr") != 0)
11430 {
11431 /* FIXME: octets_per_byte. */
11432 if (! bfd_set_section_contents (abfd, o->output_section,
11433 o->contents,
11434 (file_ptr) o->output_offset,
11435 o->size))
11436 goto error_return;
11437 }
11438 else
11439 {
11440 /* The contents of the .dynstr section are actually in a
11441 stringtab. */
11442 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11443 if (bfd_seek (abfd, off, SEEK_SET) != 0
11444 || ! _bfd_elf_strtab_emit (abfd,
11445 elf_hash_table (info)->dynstr))
11446 goto error_return;
11447 }
11448 }
11449 }
11450
11451 if (info->relocatable)
11452 {
11453 bfd_boolean failed = FALSE;
11454
11455 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11456 if (failed)
11457 goto error_return;
11458 }
11459
11460 /* If we have optimized stabs strings, output them. */
11461 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11462 {
11463 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11464 goto error_return;
11465 }
11466
11467 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11468 goto error_return;
11469
11470 elf_final_link_free (abfd, &flinfo);
11471
11472 elf_linker (abfd) = TRUE;
11473
11474 if (attr_section)
11475 {
11476 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11477 if (contents == NULL)
11478 return FALSE; /* Bail out and fail. */
11479 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11480 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11481 free (contents);
11482 }
11483
11484 return TRUE;
11485
11486 error_return:
11487 elf_final_link_free (abfd, &flinfo);
11488 return FALSE;
11489 }
11490 \f
11491 /* Initialize COOKIE for input bfd ABFD. */
11492
11493 static bfd_boolean
11494 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11495 struct bfd_link_info *info, bfd *abfd)
11496 {
11497 Elf_Internal_Shdr *symtab_hdr;
11498 const struct elf_backend_data *bed;
11499
11500 bed = get_elf_backend_data (abfd);
11501 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11502
11503 cookie->abfd = abfd;
11504 cookie->sym_hashes = elf_sym_hashes (abfd);
11505 cookie->bad_symtab = elf_bad_symtab (abfd);
11506 if (cookie->bad_symtab)
11507 {
11508 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11509 cookie->extsymoff = 0;
11510 }
11511 else
11512 {
11513 cookie->locsymcount = symtab_hdr->sh_info;
11514 cookie->extsymoff = symtab_hdr->sh_info;
11515 }
11516
11517 if (bed->s->arch_size == 32)
11518 cookie->r_sym_shift = 8;
11519 else
11520 cookie->r_sym_shift = 32;
11521
11522 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11523 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11524 {
11525 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11526 cookie->locsymcount, 0,
11527 NULL, NULL, NULL);
11528 if (cookie->locsyms == NULL)
11529 {
11530 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11531 return FALSE;
11532 }
11533 if (info->keep_memory)
11534 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11535 }
11536 return TRUE;
11537 }
11538
11539 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11540
11541 static void
11542 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11543 {
11544 Elf_Internal_Shdr *symtab_hdr;
11545
11546 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11547 if (cookie->locsyms != NULL
11548 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11549 free (cookie->locsyms);
11550 }
11551
11552 /* Initialize the relocation information in COOKIE for input section SEC
11553 of input bfd ABFD. */
11554
11555 static bfd_boolean
11556 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11557 struct bfd_link_info *info, bfd *abfd,
11558 asection *sec)
11559 {
11560 const struct elf_backend_data *bed;
11561
11562 if (sec->reloc_count == 0)
11563 {
11564 cookie->rels = NULL;
11565 cookie->relend = NULL;
11566 }
11567 else
11568 {
11569 bed = get_elf_backend_data (abfd);
11570
11571 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11572 info->keep_memory);
11573 if (cookie->rels == NULL)
11574 return FALSE;
11575 cookie->rel = cookie->rels;
11576 cookie->relend = (cookie->rels
11577 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11578 }
11579 cookie->rel = cookie->rels;
11580 return TRUE;
11581 }
11582
11583 /* Free the memory allocated by init_reloc_cookie_rels,
11584 if appropriate. */
11585
11586 static void
11587 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11588 asection *sec)
11589 {
11590 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11591 free (cookie->rels);
11592 }
11593
11594 /* Initialize the whole of COOKIE for input section SEC. */
11595
11596 static bfd_boolean
11597 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11598 struct bfd_link_info *info,
11599 asection *sec)
11600 {
11601 if (!init_reloc_cookie (cookie, info, sec->owner))
11602 goto error1;
11603 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11604 goto error2;
11605 return TRUE;
11606
11607 error2:
11608 fini_reloc_cookie (cookie, sec->owner);
11609 error1:
11610 return FALSE;
11611 }
11612
11613 /* Free the memory allocated by init_reloc_cookie_for_section,
11614 if appropriate. */
11615
11616 static void
11617 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11618 asection *sec)
11619 {
11620 fini_reloc_cookie_rels (cookie, sec);
11621 fini_reloc_cookie (cookie, sec->owner);
11622 }
11623 \f
11624 /* Garbage collect unused sections. */
11625
11626 /* Default gc_mark_hook. */
11627
11628 asection *
11629 _bfd_elf_gc_mark_hook (asection *sec,
11630 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11631 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11632 struct elf_link_hash_entry *h,
11633 Elf_Internal_Sym *sym)
11634 {
11635 const char *sec_name;
11636
11637 if (h != NULL)
11638 {
11639 switch (h->root.type)
11640 {
11641 case bfd_link_hash_defined:
11642 case bfd_link_hash_defweak:
11643 return h->root.u.def.section;
11644
11645 case bfd_link_hash_common:
11646 return h->root.u.c.p->section;
11647
11648 case bfd_link_hash_undefined:
11649 case bfd_link_hash_undefweak:
11650 /* To work around a glibc bug, keep all XXX input sections
11651 when there is an as yet undefined reference to __start_XXX
11652 or __stop_XXX symbols. The linker will later define such
11653 symbols for orphan input sections that have a name
11654 representable as a C identifier. */
11655 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11656 sec_name = h->root.root.string + 8;
11657 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11658 sec_name = h->root.root.string + 7;
11659 else
11660 sec_name = NULL;
11661
11662 if (sec_name && *sec_name != '\0')
11663 {
11664 bfd *i;
11665
11666 for (i = info->input_bfds; i; i = i->link_next)
11667 {
11668 sec = bfd_get_section_by_name (i, sec_name);
11669 if (sec)
11670 sec->flags |= SEC_KEEP;
11671 }
11672 }
11673 break;
11674
11675 default:
11676 break;
11677 }
11678 }
11679 else
11680 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11681
11682 return NULL;
11683 }
11684
11685 /* COOKIE->rel describes a relocation against section SEC, which is
11686 a section we've decided to keep. Return the section that contains
11687 the relocation symbol, or NULL if no section contains it. */
11688
11689 asection *
11690 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11691 elf_gc_mark_hook_fn gc_mark_hook,
11692 struct elf_reloc_cookie *cookie)
11693 {
11694 unsigned long r_symndx;
11695 struct elf_link_hash_entry *h;
11696
11697 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11698 if (r_symndx == STN_UNDEF)
11699 return NULL;
11700
11701 if (r_symndx >= cookie->locsymcount
11702 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11703 {
11704 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11705 while (h->root.type == bfd_link_hash_indirect
11706 || h->root.type == bfd_link_hash_warning)
11707 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11708 h->mark = 1;
11709 /* If this symbol is weak and there is a non-weak definition, we
11710 keep the non-weak definition because many backends put
11711 dynamic reloc info on the non-weak definition for code
11712 handling copy relocs. */
11713 if (h->u.weakdef != NULL)
11714 h->u.weakdef->mark = 1;
11715 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11716 }
11717
11718 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11719 &cookie->locsyms[r_symndx]);
11720 }
11721
11722 /* COOKIE->rel describes a relocation against section SEC, which is
11723 a section we've decided to keep. Mark the section that contains
11724 the relocation symbol. */
11725
11726 bfd_boolean
11727 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11728 asection *sec,
11729 elf_gc_mark_hook_fn gc_mark_hook,
11730 struct elf_reloc_cookie *cookie)
11731 {
11732 asection *rsec;
11733
11734 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11735 if (rsec && !rsec->gc_mark)
11736 {
11737 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11738 || (rsec->owner->flags & DYNAMIC) != 0)
11739 rsec->gc_mark = 1;
11740 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11741 return FALSE;
11742 }
11743 return TRUE;
11744 }
11745
11746 /* The mark phase of garbage collection. For a given section, mark
11747 it and any sections in this section's group, and all the sections
11748 which define symbols to which it refers. */
11749
11750 bfd_boolean
11751 _bfd_elf_gc_mark (struct bfd_link_info *info,
11752 asection *sec,
11753 elf_gc_mark_hook_fn gc_mark_hook)
11754 {
11755 bfd_boolean ret;
11756 asection *group_sec, *eh_frame;
11757
11758 sec->gc_mark = 1;
11759
11760 /* Mark all the sections in the group. */
11761 group_sec = elf_section_data (sec)->next_in_group;
11762 if (group_sec && !group_sec->gc_mark)
11763 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11764 return FALSE;
11765
11766 /* Look through the section relocs. */
11767 ret = TRUE;
11768 eh_frame = elf_eh_frame_section (sec->owner);
11769 if ((sec->flags & SEC_RELOC) != 0
11770 && sec->reloc_count > 0
11771 && sec != eh_frame)
11772 {
11773 struct elf_reloc_cookie cookie;
11774
11775 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11776 ret = FALSE;
11777 else
11778 {
11779 for (; cookie.rel < cookie.relend; cookie.rel++)
11780 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11781 {
11782 ret = FALSE;
11783 break;
11784 }
11785 fini_reloc_cookie_for_section (&cookie, sec);
11786 }
11787 }
11788
11789 if (ret && eh_frame && elf_fde_list (sec))
11790 {
11791 struct elf_reloc_cookie cookie;
11792
11793 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11794 ret = FALSE;
11795 else
11796 {
11797 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11798 gc_mark_hook, &cookie))
11799 ret = FALSE;
11800 fini_reloc_cookie_for_section (&cookie, eh_frame);
11801 }
11802 }
11803
11804 return ret;
11805 }
11806
11807 /* Keep debug and special sections. */
11808
11809 bfd_boolean
11810 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11811 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11812 {
11813 bfd *ibfd;
11814
11815 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11816 {
11817 asection *isec;
11818 bfd_boolean some_kept;
11819 bfd_boolean debug_frag_seen;
11820
11821 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11822 continue;
11823
11824 /* Ensure all linker created sections are kept,
11825 see if any other section is already marked,
11826 and note if we have any fragmented debug sections. */
11827 debug_frag_seen = some_kept = FALSE;
11828 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11829 {
11830 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11831 isec->gc_mark = 1;
11832 else if (isec->gc_mark)
11833 some_kept = TRUE;
11834
11835 if (debug_frag_seen == FALSE
11836 && (isec->flags & SEC_DEBUGGING)
11837 && CONST_STRNEQ (isec->name, ".debug_line."))
11838 debug_frag_seen = TRUE;
11839 }
11840
11841 /* If no section in this file will be kept, then we can
11842 toss out the debug and special sections. */
11843 if (!some_kept)
11844 continue;
11845
11846 /* Keep debug and special sections like .comment when they are
11847 not part of a group, or when we have single-member groups. */
11848 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11849 if ((elf_next_in_group (isec) == NULL
11850 || elf_next_in_group (isec) == isec)
11851 && ((isec->flags & SEC_DEBUGGING) != 0
11852 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11853 isec->gc_mark = 1;
11854
11855 if (! debug_frag_seen)
11856 continue;
11857
11858 /* Look for CODE sections which are going to be discarded,
11859 and find and discard any fragmented debug sections which
11860 are associated with that code section. */
11861 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11862 if ((isec->flags & SEC_CODE) != 0
11863 && isec->gc_mark == 0)
11864 {
11865 unsigned int ilen;
11866 asection *dsec;
11867
11868 ilen = strlen (isec->name);
11869
11870 /* Association is determined by the name of the debug section
11871 containing the name of the code section as a suffix. For
11872 example .debug_line.text.foo is a debug section associated
11873 with .text.foo. */
11874 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
11875 {
11876 unsigned int dlen;
11877
11878 if (dsec->gc_mark == 0
11879 || (dsec->flags & SEC_DEBUGGING) == 0)
11880 continue;
11881
11882 dlen = strlen (dsec->name);
11883
11884 if (dlen > ilen
11885 && strncmp (dsec->name + (dlen - ilen),
11886 isec->name, ilen) == 0)
11887 {
11888 dsec->gc_mark = 0;
11889 break;
11890 }
11891 }
11892 }
11893 }
11894 return TRUE;
11895 }
11896
11897 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11898
11899 struct elf_gc_sweep_symbol_info
11900 {
11901 struct bfd_link_info *info;
11902 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11903 bfd_boolean);
11904 };
11905
11906 static bfd_boolean
11907 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11908 {
11909 if (!h->mark
11910 && (((h->root.type == bfd_link_hash_defined
11911 || h->root.type == bfd_link_hash_defweak)
11912 && !(h->def_regular
11913 && h->root.u.def.section->gc_mark))
11914 || h->root.type == bfd_link_hash_undefined
11915 || h->root.type == bfd_link_hash_undefweak))
11916 {
11917 struct elf_gc_sweep_symbol_info *inf;
11918
11919 inf = (struct elf_gc_sweep_symbol_info *) data;
11920 (*inf->hide_symbol) (inf->info, h, TRUE);
11921 h->def_regular = 0;
11922 h->ref_regular = 0;
11923 h->ref_regular_nonweak = 0;
11924 }
11925
11926 return TRUE;
11927 }
11928
11929 /* The sweep phase of garbage collection. Remove all garbage sections. */
11930
11931 typedef bfd_boolean (*gc_sweep_hook_fn)
11932 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11933
11934 static bfd_boolean
11935 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11936 {
11937 bfd *sub;
11938 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11939 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11940 unsigned long section_sym_count;
11941 struct elf_gc_sweep_symbol_info sweep_info;
11942
11943 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11944 {
11945 asection *o;
11946
11947 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11948 continue;
11949
11950 for (o = sub->sections; o != NULL; o = o->next)
11951 {
11952 /* When any section in a section group is kept, we keep all
11953 sections in the section group. If the first member of
11954 the section group is excluded, we will also exclude the
11955 group section. */
11956 if (o->flags & SEC_GROUP)
11957 {
11958 asection *first = elf_next_in_group (o);
11959 o->gc_mark = first->gc_mark;
11960 }
11961
11962 if (o->gc_mark)
11963 continue;
11964
11965 /* Skip sweeping sections already excluded. */
11966 if (o->flags & SEC_EXCLUDE)
11967 continue;
11968
11969 /* Since this is early in the link process, it is simple
11970 to remove a section from the output. */
11971 o->flags |= SEC_EXCLUDE;
11972
11973 if (info->print_gc_sections && o->size != 0)
11974 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11975
11976 /* But we also have to update some of the relocation
11977 info we collected before. */
11978 if (gc_sweep_hook
11979 && (o->flags & SEC_RELOC) != 0
11980 && o->reloc_count > 0
11981 && !bfd_is_abs_section (o->output_section))
11982 {
11983 Elf_Internal_Rela *internal_relocs;
11984 bfd_boolean r;
11985
11986 internal_relocs
11987 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11988 info->keep_memory);
11989 if (internal_relocs == NULL)
11990 return FALSE;
11991
11992 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11993
11994 if (elf_section_data (o)->relocs != internal_relocs)
11995 free (internal_relocs);
11996
11997 if (!r)
11998 return FALSE;
11999 }
12000 }
12001 }
12002
12003 /* Remove the symbols that were in the swept sections from the dynamic
12004 symbol table. GCFIXME: Anyone know how to get them out of the
12005 static symbol table as well? */
12006 sweep_info.info = info;
12007 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12008 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12009 &sweep_info);
12010
12011 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12012 return TRUE;
12013 }
12014
12015 /* Propagate collected vtable information. This is called through
12016 elf_link_hash_traverse. */
12017
12018 static bfd_boolean
12019 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12020 {
12021 /* Those that are not vtables. */
12022 if (h->vtable == NULL || h->vtable->parent == NULL)
12023 return TRUE;
12024
12025 /* Those vtables that do not have parents, we cannot merge. */
12026 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12027 return TRUE;
12028
12029 /* If we've already been done, exit. */
12030 if (h->vtable->used && h->vtable->used[-1])
12031 return TRUE;
12032
12033 /* Make sure the parent's table is up to date. */
12034 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12035
12036 if (h->vtable->used == NULL)
12037 {
12038 /* None of this table's entries were referenced. Re-use the
12039 parent's table. */
12040 h->vtable->used = h->vtable->parent->vtable->used;
12041 h->vtable->size = h->vtable->parent->vtable->size;
12042 }
12043 else
12044 {
12045 size_t n;
12046 bfd_boolean *cu, *pu;
12047
12048 /* Or the parent's entries into ours. */
12049 cu = h->vtable->used;
12050 cu[-1] = TRUE;
12051 pu = h->vtable->parent->vtable->used;
12052 if (pu != NULL)
12053 {
12054 const struct elf_backend_data *bed;
12055 unsigned int log_file_align;
12056
12057 bed = get_elf_backend_data (h->root.u.def.section->owner);
12058 log_file_align = bed->s->log_file_align;
12059 n = h->vtable->parent->vtable->size >> log_file_align;
12060 while (n--)
12061 {
12062 if (*pu)
12063 *cu = TRUE;
12064 pu++;
12065 cu++;
12066 }
12067 }
12068 }
12069
12070 return TRUE;
12071 }
12072
12073 static bfd_boolean
12074 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12075 {
12076 asection *sec;
12077 bfd_vma hstart, hend;
12078 Elf_Internal_Rela *relstart, *relend, *rel;
12079 const struct elf_backend_data *bed;
12080 unsigned int log_file_align;
12081
12082 /* Take care of both those symbols that do not describe vtables as
12083 well as those that are not loaded. */
12084 if (h->vtable == NULL || h->vtable->parent == NULL)
12085 return TRUE;
12086
12087 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12088 || h->root.type == bfd_link_hash_defweak);
12089
12090 sec = h->root.u.def.section;
12091 hstart = h->root.u.def.value;
12092 hend = hstart + h->size;
12093
12094 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12095 if (!relstart)
12096 return *(bfd_boolean *) okp = FALSE;
12097 bed = get_elf_backend_data (sec->owner);
12098 log_file_align = bed->s->log_file_align;
12099
12100 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12101
12102 for (rel = relstart; rel < relend; ++rel)
12103 if (rel->r_offset >= hstart && rel->r_offset < hend)
12104 {
12105 /* If the entry is in use, do nothing. */
12106 if (h->vtable->used
12107 && (rel->r_offset - hstart) < h->vtable->size)
12108 {
12109 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12110 if (h->vtable->used[entry])
12111 continue;
12112 }
12113 /* Otherwise, kill it. */
12114 rel->r_offset = rel->r_info = rel->r_addend = 0;
12115 }
12116
12117 return TRUE;
12118 }
12119
12120 /* Mark sections containing dynamically referenced symbols. When
12121 building shared libraries, we must assume that any visible symbol is
12122 referenced. */
12123
12124 bfd_boolean
12125 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12126 {
12127 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12128
12129 if ((h->root.type == bfd_link_hash_defined
12130 || h->root.type == bfd_link_hash_defweak)
12131 && (h->ref_dynamic
12132 || ((!info->executable || info->export_dynamic)
12133 && h->def_regular
12134 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12135 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12136 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12137 || !bfd_hide_sym_by_version (info->version_info,
12138 h->root.root.string)))))
12139 h->root.u.def.section->flags |= SEC_KEEP;
12140
12141 return TRUE;
12142 }
12143
12144 /* Keep all sections containing symbols undefined on the command-line,
12145 and the section containing the entry symbol. */
12146
12147 void
12148 _bfd_elf_gc_keep (struct bfd_link_info *info)
12149 {
12150 struct bfd_sym_chain *sym;
12151
12152 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12153 {
12154 struct elf_link_hash_entry *h;
12155
12156 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12157 FALSE, FALSE, FALSE);
12158
12159 if (h != NULL
12160 && (h->root.type == bfd_link_hash_defined
12161 || h->root.type == bfd_link_hash_defweak)
12162 && !bfd_is_abs_section (h->root.u.def.section))
12163 h->root.u.def.section->flags |= SEC_KEEP;
12164 }
12165 }
12166
12167 /* Do mark and sweep of unused sections. */
12168
12169 bfd_boolean
12170 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12171 {
12172 bfd_boolean ok = TRUE;
12173 bfd *sub;
12174 elf_gc_mark_hook_fn gc_mark_hook;
12175 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12176
12177 if (!bed->can_gc_sections
12178 || !is_elf_hash_table (info->hash))
12179 {
12180 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12181 return TRUE;
12182 }
12183
12184 bed->gc_keep (info);
12185
12186 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12187 at the .eh_frame section if we can mark the FDEs individually. */
12188 _bfd_elf_begin_eh_frame_parsing (info);
12189 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12190 {
12191 asection *sec;
12192 struct elf_reloc_cookie cookie;
12193
12194 sec = bfd_get_section_by_name (sub, ".eh_frame");
12195 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12196 {
12197 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12198 if (elf_section_data (sec)->sec_info
12199 && (sec->flags & SEC_LINKER_CREATED) == 0)
12200 elf_eh_frame_section (sub) = sec;
12201 fini_reloc_cookie_for_section (&cookie, sec);
12202 sec = bfd_get_next_section_by_name (sec);
12203 }
12204 }
12205 _bfd_elf_end_eh_frame_parsing (info);
12206
12207 /* Apply transitive closure to the vtable entry usage info. */
12208 elf_link_hash_traverse (elf_hash_table (info),
12209 elf_gc_propagate_vtable_entries_used,
12210 &ok);
12211 if (!ok)
12212 return FALSE;
12213
12214 /* Kill the vtable relocations that were not used. */
12215 elf_link_hash_traverse (elf_hash_table (info),
12216 elf_gc_smash_unused_vtentry_relocs,
12217 &ok);
12218 if (!ok)
12219 return FALSE;
12220
12221 /* Mark dynamically referenced symbols. */
12222 if (elf_hash_table (info)->dynamic_sections_created)
12223 elf_link_hash_traverse (elf_hash_table (info),
12224 bed->gc_mark_dynamic_ref,
12225 info);
12226
12227 /* Grovel through relocs to find out who stays ... */
12228 gc_mark_hook = bed->gc_mark_hook;
12229 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12230 {
12231 asection *o;
12232
12233 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12234 continue;
12235
12236 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12237 Also treat note sections as a root, if the section is not part
12238 of a group. */
12239 for (o = sub->sections; o != NULL; o = o->next)
12240 if (!o->gc_mark
12241 && (o->flags & SEC_EXCLUDE) == 0
12242 && ((o->flags & SEC_KEEP) != 0
12243 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12244 && elf_next_in_group (o) == NULL )))
12245 {
12246 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12247 return FALSE;
12248 }
12249 }
12250
12251 /* Allow the backend to mark additional target specific sections. */
12252 bed->gc_mark_extra_sections (info, gc_mark_hook);
12253
12254 /* ... and mark SEC_EXCLUDE for those that go. */
12255 return elf_gc_sweep (abfd, info);
12256 }
12257 \f
12258 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12259
12260 bfd_boolean
12261 bfd_elf_gc_record_vtinherit (bfd *abfd,
12262 asection *sec,
12263 struct elf_link_hash_entry *h,
12264 bfd_vma offset)
12265 {
12266 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12267 struct elf_link_hash_entry **search, *child;
12268 bfd_size_type extsymcount;
12269 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12270
12271 /* The sh_info field of the symtab header tells us where the
12272 external symbols start. We don't care about the local symbols at
12273 this point. */
12274 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12275 if (!elf_bad_symtab (abfd))
12276 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12277
12278 sym_hashes = elf_sym_hashes (abfd);
12279 sym_hashes_end = sym_hashes + extsymcount;
12280
12281 /* Hunt down the child symbol, which is in this section at the same
12282 offset as the relocation. */
12283 for (search = sym_hashes; search != sym_hashes_end; ++search)
12284 {
12285 if ((child = *search) != NULL
12286 && (child->root.type == bfd_link_hash_defined
12287 || child->root.type == bfd_link_hash_defweak)
12288 && child->root.u.def.section == sec
12289 && child->root.u.def.value == offset)
12290 goto win;
12291 }
12292
12293 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12294 abfd, sec, (unsigned long) offset);
12295 bfd_set_error (bfd_error_invalid_operation);
12296 return FALSE;
12297
12298 win:
12299 if (!child->vtable)
12300 {
12301 child->vtable = (struct elf_link_virtual_table_entry *)
12302 bfd_zalloc (abfd, sizeof (*child->vtable));
12303 if (!child->vtable)
12304 return FALSE;
12305 }
12306 if (!h)
12307 {
12308 /* This *should* only be the absolute section. It could potentially
12309 be that someone has defined a non-global vtable though, which
12310 would be bad. It isn't worth paging in the local symbols to be
12311 sure though; that case should simply be handled by the assembler. */
12312
12313 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12314 }
12315 else
12316 child->vtable->parent = h;
12317
12318 return TRUE;
12319 }
12320
12321 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12322
12323 bfd_boolean
12324 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12325 asection *sec ATTRIBUTE_UNUSED,
12326 struct elf_link_hash_entry *h,
12327 bfd_vma addend)
12328 {
12329 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12330 unsigned int log_file_align = bed->s->log_file_align;
12331
12332 if (!h->vtable)
12333 {
12334 h->vtable = (struct elf_link_virtual_table_entry *)
12335 bfd_zalloc (abfd, sizeof (*h->vtable));
12336 if (!h->vtable)
12337 return FALSE;
12338 }
12339
12340 if (addend >= h->vtable->size)
12341 {
12342 size_t size, bytes, file_align;
12343 bfd_boolean *ptr = h->vtable->used;
12344
12345 /* While the symbol is undefined, we have to be prepared to handle
12346 a zero size. */
12347 file_align = 1 << log_file_align;
12348 if (h->root.type == bfd_link_hash_undefined)
12349 size = addend + file_align;
12350 else
12351 {
12352 size = h->size;
12353 if (addend >= size)
12354 {
12355 /* Oops! We've got a reference past the defined end of
12356 the table. This is probably a bug -- shall we warn? */
12357 size = addend + file_align;
12358 }
12359 }
12360 size = (size + file_align - 1) & -file_align;
12361
12362 /* Allocate one extra entry for use as a "done" flag for the
12363 consolidation pass. */
12364 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12365
12366 if (ptr)
12367 {
12368 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12369
12370 if (ptr != NULL)
12371 {
12372 size_t oldbytes;
12373
12374 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12375 * sizeof (bfd_boolean));
12376 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12377 }
12378 }
12379 else
12380 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12381
12382 if (ptr == NULL)
12383 return FALSE;
12384
12385 /* And arrange for that done flag to be at index -1. */
12386 h->vtable->used = ptr + 1;
12387 h->vtable->size = size;
12388 }
12389
12390 h->vtable->used[addend >> log_file_align] = TRUE;
12391
12392 return TRUE;
12393 }
12394
12395 /* Map an ELF section header flag to its corresponding string. */
12396 typedef struct
12397 {
12398 char *flag_name;
12399 flagword flag_value;
12400 } elf_flags_to_name_table;
12401
12402 static elf_flags_to_name_table elf_flags_to_names [] =
12403 {
12404 { "SHF_WRITE", SHF_WRITE },
12405 { "SHF_ALLOC", SHF_ALLOC },
12406 { "SHF_EXECINSTR", SHF_EXECINSTR },
12407 { "SHF_MERGE", SHF_MERGE },
12408 { "SHF_STRINGS", SHF_STRINGS },
12409 { "SHF_INFO_LINK", SHF_INFO_LINK},
12410 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12411 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12412 { "SHF_GROUP", SHF_GROUP },
12413 { "SHF_TLS", SHF_TLS },
12414 { "SHF_MASKOS", SHF_MASKOS },
12415 { "SHF_EXCLUDE", SHF_EXCLUDE },
12416 };
12417
12418 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12419 bfd_boolean
12420 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12421 struct flag_info *flaginfo,
12422 asection *section)
12423 {
12424 const bfd_vma sh_flags = elf_section_flags (section);
12425
12426 if (!flaginfo->flags_initialized)
12427 {
12428 bfd *obfd = info->output_bfd;
12429 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12430 struct flag_info_list *tf = flaginfo->flag_list;
12431 int with_hex = 0;
12432 int without_hex = 0;
12433
12434 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12435 {
12436 unsigned i;
12437 flagword (*lookup) (char *);
12438
12439 lookup = bed->elf_backend_lookup_section_flags_hook;
12440 if (lookup != NULL)
12441 {
12442 flagword hexval = (*lookup) ((char *) tf->name);
12443
12444 if (hexval != 0)
12445 {
12446 if (tf->with == with_flags)
12447 with_hex |= hexval;
12448 else if (tf->with == without_flags)
12449 without_hex |= hexval;
12450 tf->valid = TRUE;
12451 continue;
12452 }
12453 }
12454 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12455 {
12456 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12457 {
12458 if (tf->with == with_flags)
12459 with_hex |= elf_flags_to_names[i].flag_value;
12460 else if (tf->with == without_flags)
12461 without_hex |= elf_flags_to_names[i].flag_value;
12462 tf->valid = TRUE;
12463 break;
12464 }
12465 }
12466 if (!tf->valid)
12467 {
12468 info->callbacks->einfo
12469 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12470 return FALSE;
12471 }
12472 }
12473 flaginfo->flags_initialized = TRUE;
12474 flaginfo->only_with_flags |= with_hex;
12475 flaginfo->not_with_flags |= without_hex;
12476 }
12477
12478 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12479 return FALSE;
12480
12481 if ((flaginfo->not_with_flags & sh_flags) != 0)
12482 return FALSE;
12483
12484 return TRUE;
12485 }
12486
12487 struct alloc_got_off_arg {
12488 bfd_vma gotoff;
12489 struct bfd_link_info *info;
12490 };
12491
12492 /* We need a special top-level link routine to convert got reference counts
12493 to real got offsets. */
12494
12495 static bfd_boolean
12496 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12497 {
12498 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12499 bfd *obfd = gofarg->info->output_bfd;
12500 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12501
12502 if (h->got.refcount > 0)
12503 {
12504 h->got.offset = gofarg->gotoff;
12505 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12506 }
12507 else
12508 h->got.offset = (bfd_vma) -1;
12509
12510 return TRUE;
12511 }
12512
12513 /* And an accompanying bit to work out final got entry offsets once
12514 we're done. Should be called from final_link. */
12515
12516 bfd_boolean
12517 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12518 struct bfd_link_info *info)
12519 {
12520 bfd *i;
12521 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12522 bfd_vma gotoff;
12523 struct alloc_got_off_arg gofarg;
12524
12525 BFD_ASSERT (abfd == info->output_bfd);
12526
12527 if (! is_elf_hash_table (info->hash))
12528 return FALSE;
12529
12530 /* The GOT offset is relative to the .got section, but the GOT header is
12531 put into the .got.plt section, if the backend uses it. */
12532 if (bed->want_got_plt)
12533 gotoff = 0;
12534 else
12535 gotoff = bed->got_header_size;
12536
12537 /* Do the local .got entries first. */
12538 for (i = info->input_bfds; i; i = i->link_next)
12539 {
12540 bfd_signed_vma *local_got;
12541 bfd_size_type j, locsymcount;
12542 Elf_Internal_Shdr *symtab_hdr;
12543
12544 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12545 continue;
12546
12547 local_got = elf_local_got_refcounts (i);
12548 if (!local_got)
12549 continue;
12550
12551 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12552 if (elf_bad_symtab (i))
12553 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12554 else
12555 locsymcount = symtab_hdr->sh_info;
12556
12557 for (j = 0; j < locsymcount; ++j)
12558 {
12559 if (local_got[j] > 0)
12560 {
12561 local_got[j] = gotoff;
12562 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12563 }
12564 else
12565 local_got[j] = (bfd_vma) -1;
12566 }
12567 }
12568
12569 /* Then the global .got entries. .plt refcounts are handled by
12570 adjust_dynamic_symbol */
12571 gofarg.gotoff = gotoff;
12572 gofarg.info = info;
12573 elf_link_hash_traverse (elf_hash_table (info),
12574 elf_gc_allocate_got_offsets,
12575 &gofarg);
12576 return TRUE;
12577 }
12578
12579 /* Many folk need no more in the way of final link than this, once
12580 got entry reference counting is enabled. */
12581
12582 bfd_boolean
12583 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12584 {
12585 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12586 return FALSE;
12587
12588 /* Invoke the regular ELF backend linker to do all the work. */
12589 return bfd_elf_final_link (abfd, info);
12590 }
12591
12592 bfd_boolean
12593 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12594 {
12595 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12596
12597 if (rcookie->bad_symtab)
12598 rcookie->rel = rcookie->rels;
12599
12600 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12601 {
12602 unsigned long r_symndx;
12603
12604 if (! rcookie->bad_symtab)
12605 if (rcookie->rel->r_offset > offset)
12606 return FALSE;
12607 if (rcookie->rel->r_offset != offset)
12608 continue;
12609
12610 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12611 if (r_symndx == STN_UNDEF)
12612 return TRUE;
12613
12614 if (r_symndx >= rcookie->locsymcount
12615 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12616 {
12617 struct elf_link_hash_entry *h;
12618
12619 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12620
12621 while (h->root.type == bfd_link_hash_indirect
12622 || h->root.type == bfd_link_hash_warning)
12623 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12624
12625 if ((h->root.type == bfd_link_hash_defined
12626 || h->root.type == bfd_link_hash_defweak)
12627 && discarded_section (h->root.u.def.section))
12628 return TRUE;
12629 else
12630 return FALSE;
12631 }
12632 else
12633 {
12634 /* It's not a relocation against a global symbol,
12635 but it could be a relocation against a local
12636 symbol for a discarded section. */
12637 asection *isec;
12638 Elf_Internal_Sym *isym;
12639
12640 /* Need to: get the symbol; get the section. */
12641 isym = &rcookie->locsyms[r_symndx];
12642 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12643 if (isec != NULL && discarded_section (isec))
12644 return TRUE;
12645 }
12646 return FALSE;
12647 }
12648 return FALSE;
12649 }
12650
12651 /* Discard unneeded references to discarded sections.
12652 Returns TRUE if any section's size was changed. */
12653 /* This function assumes that the relocations are in sorted order,
12654 which is true for all known assemblers. */
12655
12656 bfd_boolean
12657 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12658 {
12659 struct elf_reloc_cookie cookie;
12660 asection *stab, *eh;
12661 const struct elf_backend_data *bed;
12662 bfd *abfd;
12663 bfd_boolean ret = FALSE;
12664
12665 if (info->traditional_format
12666 || !is_elf_hash_table (info->hash))
12667 return FALSE;
12668
12669 _bfd_elf_begin_eh_frame_parsing (info);
12670 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12671 {
12672 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12673 continue;
12674
12675 bed = get_elf_backend_data (abfd);
12676
12677 eh = NULL;
12678 if (!info->relocatable)
12679 {
12680 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12681 while (eh != NULL
12682 && (eh->size == 0
12683 || bfd_is_abs_section (eh->output_section)))
12684 eh = bfd_get_next_section_by_name (eh);
12685 }
12686
12687 stab = bfd_get_section_by_name (abfd, ".stab");
12688 if (stab != NULL
12689 && (stab->size == 0
12690 || bfd_is_abs_section (stab->output_section)
12691 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12692 stab = NULL;
12693
12694 if (stab == NULL
12695 && eh == NULL
12696 && bed->elf_backend_discard_info == NULL)
12697 continue;
12698
12699 if (!init_reloc_cookie (&cookie, info, abfd))
12700 return FALSE;
12701
12702 if (stab != NULL
12703 && stab->reloc_count > 0
12704 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12705 {
12706 if (_bfd_discard_section_stabs (abfd, stab,
12707 elf_section_data (stab)->sec_info,
12708 bfd_elf_reloc_symbol_deleted_p,
12709 &cookie))
12710 ret = TRUE;
12711 fini_reloc_cookie_rels (&cookie, stab);
12712 }
12713
12714 while (eh != NULL
12715 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12716 {
12717 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12718 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12719 bfd_elf_reloc_symbol_deleted_p,
12720 &cookie))
12721 ret = TRUE;
12722 fini_reloc_cookie_rels (&cookie, eh);
12723 eh = bfd_get_next_section_by_name (eh);
12724 }
12725
12726 if (bed->elf_backend_discard_info != NULL
12727 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12728 ret = TRUE;
12729
12730 fini_reloc_cookie (&cookie, abfd);
12731 }
12732 _bfd_elf_end_eh_frame_parsing (info);
12733
12734 if (info->eh_frame_hdr
12735 && !info->relocatable
12736 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12737 ret = TRUE;
12738
12739 return ret;
12740 }
12741
12742 bfd_boolean
12743 _bfd_elf_section_already_linked (bfd *abfd,
12744 asection *sec,
12745 struct bfd_link_info *info)
12746 {
12747 flagword flags;
12748 const char *name, *key;
12749 struct bfd_section_already_linked *l;
12750 struct bfd_section_already_linked_hash_entry *already_linked_list;
12751
12752 if (sec->output_section == bfd_abs_section_ptr)
12753 return FALSE;
12754
12755 flags = sec->flags;
12756
12757 /* Return if it isn't a linkonce section. A comdat group section
12758 also has SEC_LINK_ONCE set. */
12759 if ((flags & SEC_LINK_ONCE) == 0)
12760 return FALSE;
12761
12762 /* Don't put group member sections on our list of already linked
12763 sections. They are handled as a group via their group section. */
12764 if (elf_sec_group (sec) != NULL)
12765 return FALSE;
12766
12767 /* For a SHT_GROUP section, use the group signature as the key. */
12768 name = sec->name;
12769 if ((flags & SEC_GROUP) != 0
12770 && elf_next_in_group (sec) != NULL
12771 && elf_group_name (elf_next_in_group (sec)) != NULL)
12772 key = elf_group_name (elf_next_in_group (sec));
12773 else
12774 {
12775 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12776 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12777 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12778 key++;
12779 else
12780 /* Must be a user linkonce section that doesn't follow gcc's
12781 naming convention. In this case we won't be matching
12782 single member groups. */
12783 key = name;
12784 }
12785
12786 already_linked_list = bfd_section_already_linked_table_lookup (key);
12787
12788 for (l = already_linked_list->entry; l != NULL; l = l->next)
12789 {
12790 /* We may have 2 different types of sections on the list: group
12791 sections with a signature of <key> (<key> is some string),
12792 and linkonce sections named .gnu.linkonce.<type>.<key>.
12793 Match like sections. LTO plugin sections are an exception.
12794 They are always named .gnu.linkonce.t.<key> and match either
12795 type of section. */
12796 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12797 && ((flags & SEC_GROUP) != 0
12798 || strcmp (name, l->sec->name) == 0))
12799 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12800 {
12801 /* The section has already been linked. See if we should
12802 issue a warning. */
12803 if (!_bfd_handle_already_linked (sec, l, info))
12804 return FALSE;
12805
12806 if (flags & SEC_GROUP)
12807 {
12808 asection *first = elf_next_in_group (sec);
12809 asection *s = first;
12810
12811 while (s != NULL)
12812 {
12813 s->output_section = bfd_abs_section_ptr;
12814 /* Record which group discards it. */
12815 s->kept_section = l->sec;
12816 s = elf_next_in_group (s);
12817 /* These lists are circular. */
12818 if (s == first)
12819 break;
12820 }
12821 }
12822
12823 return TRUE;
12824 }
12825 }
12826
12827 /* A single member comdat group section may be discarded by a
12828 linkonce section and vice versa. */
12829 if ((flags & SEC_GROUP) != 0)
12830 {
12831 asection *first = elf_next_in_group (sec);
12832
12833 if (first != NULL && elf_next_in_group (first) == first)
12834 /* Check this single member group against linkonce sections. */
12835 for (l = already_linked_list->entry; l != NULL; l = l->next)
12836 if ((l->sec->flags & SEC_GROUP) == 0
12837 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12838 {
12839 first->output_section = bfd_abs_section_ptr;
12840 first->kept_section = l->sec;
12841 sec->output_section = bfd_abs_section_ptr;
12842 break;
12843 }
12844 }
12845 else
12846 /* Check this linkonce section against single member groups. */
12847 for (l = already_linked_list->entry; l != NULL; l = l->next)
12848 if (l->sec->flags & SEC_GROUP)
12849 {
12850 asection *first = elf_next_in_group (l->sec);
12851
12852 if (first != NULL
12853 && elf_next_in_group (first) == first
12854 && bfd_elf_match_symbols_in_sections (first, sec, info))
12855 {
12856 sec->output_section = bfd_abs_section_ptr;
12857 sec->kept_section = first;
12858 break;
12859 }
12860 }
12861
12862 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12863 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12864 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12865 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12866 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12867 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12868 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12869 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12870 The reverse order cannot happen as there is never a bfd with only the
12871 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12872 matter as here were are looking only for cross-bfd sections. */
12873
12874 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12875 for (l = already_linked_list->entry; l != NULL; l = l->next)
12876 if ((l->sec->flags & SEC_GROUP) == 0
12877 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12878 {
12879 if (abfd != l->sec->owner)
12880 sec->output_section = bfd_abs_section_ptr;
12881 break;
12882 }
12883
12884 /* This is the first section with this name. Record it. */
12885 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12886 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12887 return sec->output_section == bfd_abs_section_ptr;
12888 }
12889
12890 bfd_boolean
12891 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12892 {
12893 return sym->st_shndx == SHN_COMMON;
12894 }
12895
12896 unsigned int
12897 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12898 {
12899 return SHN_COMMON;
12900 }
12901
12902 asection *
12903 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12904 {
12905 return bfd_com_section_ptr;
12906 }
12907
12908 bfd_vma
12909 _bfd_elf_default_got_elt_size (bfd *abfd,
12910 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12911 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12912 bfd *ibfd ATTRIBUTE_UNUSED,
12913 unsigned long symndx ATTRIBUTE_UNUSED)
12914 {
12915 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12916 return bed->s->arch_size / 8;
12917 }
12918
12919 /* Routines to support the creation of dynamic relocs. */
12920
12921 /* Returns the name of the dynamic reloc section associated with SEC. */
12922
12923 static const char *
12924 get_dynamic_reloc_section_name (bfd * abfd,
12925 asection * sec,
12926 bfd_boolean is_rela)
12927 {
12928 char *name;
12929 const char *old_name = bfd_get_section_name (NULL, sec);
12930 const char *prefix = is_rela ? ".rela" : ".rel";
12931
12932 if (old_name == NULL)
12933 return NULL;
12934
12935 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12936 sprintf (name, "%s%s", prefix, old_name);
12937
12938 return name;
12939 }
12940
12941 /* Returns the dynamic reloc section associated with SEC.
12942 If necessary compute the name of the dynamic reloc section based
12943 on SEC's name (looked up in ABFD's string table) and the setting
12944 of IS_RELA. */
12945
12946 asection *
12947 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12948 asection * sec,
12949 bfd_boolean is_rela)
12950 {
12951 asection * reloc_sec = elf_section_data (sec)->sreloc;
12952
12953 if (reloc_sec == NULL)
12954 {
12955 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12956
12957 if (name != NULL)
12958 {
12959 reloc_sec = bfd_get_linker_section (abfd, name);
12960
12961 if (reloc_sec != NULL)
12962 elf_section_data (sec)->sreloc = reloc_sec;
12963 }
12964 }
12965
12966 return reloc_sec;
12967 }
12968
12969 /* Returns the dynamic reloc section associated with SEC. If the
12970 section does not exist it is created and attached to the DYNOBJ
12971 bfd and stored in the SRELOC field of SEC's elf_section_data
12972 structure.
12973
12974 ALIGNMENT is the alignment for the newly created section and
12975 IS_RELA defines whether the name should be .rela.<SEC's name>
12976 or .rel.<SEC's name>. The section name is looked up in the
12977 string table associated with ABFD. */
12978
12979 asection *
12980 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12981 bfd * dynobj,
12982 unsigned int alignment,
12983 bfd * abfd,
12984 bfd_boolean is_rela)
12985 {
12986 asection * reloc_sec = elf_section_data (sec)->sreloc;
12987
12988 if (reloc_sec == NULL)
12989 {
12990 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12991
12992 if (name == NULL)
12993 return NULL;
12994
12995 reloc_sec = bfd_get_linker_section (dynobj, name);
12996
12997 if (reloc_sec == NULL)
12998 {
12999 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13000 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13001 if ((sec->flags & SEC_ALLOC) != 0)
13002 flags |= SEC_ALLOC | SEC_LOAD;
13003
13004 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13005 if (reloc_sec != NULL)
13006 {
13007 /* _bfd_elf_get_sec_type_attr chooses a section type by
13008 name. Override as it may be wrong, eg. for a user
13009 section named "auto" we'll get ".relauto" which is
13010 seen to be a .rela section. */
13011 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13012 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13013 reloc_sec = NULL;
13014 }
13015 }
13016
13017 elf_section_data (sec)->sreloc = reloc_sec;
13018 }
13019
13020 return reloc_sec;
13021 }
13022
13023 /* Copy the ELF symbol type associated with a linker hash entry. */
13024 void
13025 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13026 struct bfd_link_hash_entry * hdest,
13027 struct bfd_link_hash_entry * hsrc)
13028 {
13029 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13030 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13031
13032 ehdest->type = ehsrc->type;
13033 ehdest->target_internal = ehsrc->target_internal;
13034 }
13035
13036 /* Append a RELA relocation REL to section S in BFD. */
13037
13038 void
13039 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13040 {
13041 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13042 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13043 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13044 bed->s->swap_reloca_out (abfd, rel, loc);
13045 }
13046
13047 /* Append a REL relocation REL to section S in BFD. */
13048
13049 void
13050 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13051 {
13052 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13053 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13054 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13055 bed->s->swap_reloc_out (abfd, rel, loc);
13056 }