* elf-bfd.h (enum elf_reloc_type_class): Add reloc_class_ifunc.
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* This function is called when we want to merge a new symbol with an
899 existing symbol. It handles the various cases which arise when we
900 find a definition in a dynamic object, or when there is already a
901 definition in a dynamic object. The new symbol is described by
902 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
903 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
904 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
905 of an old common symbol. We set OVERRIDE if the old symbol is
906 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
907 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
908 to change. By OK to change, we mean that we shouldn't warn if the
909 type or size does change. */
910
911 static bfd_boolean
912 _bfd_elf_merge_symbol (bfd *abfd,
913 struct bfd_link_info *info,
914 const char *name,
915 Elf_Internal_Sym *sym,
916 asection **psec,
917 bfd_vma *pvalue,
918 struct elf_link_hash_entry **sym_hash,
919 bfd **poldbfd,
920 bfd_boolean *pold_weak,
921 unsigned int *pold_alignment,
922 bfd_boolean *skip,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
926 {
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *hi;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 if (! bfd_is_und_section (sec))
944 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
945 else
946 h = ((struct elf_link_hash_entry *)
947 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
948 if (h == NULL)
949 return FALSE;
950 *sym_hash = h;
951
952 bed = get_elf_backend_data (abfd);
953
954 /* This code is for coping with dynamic objects, and is only useful
955 if we are doing an ELF link. */
956 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
957 return TRUE;
958
959 /* For merging, we only care about real symbols. But we need to make
960 sure that indirect symbol dynamic flags are updated. */
961 hi = h;
962 while (h->root.type == bfd_link_hash_indirect
963 || h->root.type == bfd_link_hash_warning)
964 h = (struct elf_link_hash_entry *) h->root.u.i.link;
965
966 /* We have to check it for every instance since the first few may be
967 references and not all compilers emit symbol type for undefined
968 symbols. */
969 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
970
971 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
972 respectively, is from a dynamic object. */
973
974 newdyn = (abfd->flags & DYNAMIC) != 0;
975
976 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
977 syms and defined syms in dynamic libraries respectively.
978 ref_dynamic on the other hand can be set for a symbol defined in
979 a dynamic library, and def_dynamic may not be set; When the
980 definition in a dynamic lib is overridden by a definition in the
981 executable use of the symbol in the dynamic lib becomes a
982 reference to the executable symbol. */
983 if (newdyn)
984 {
985 if (bfd_is_und_section (sec))
986 {
987 if (bind != STB_WEAK)
988 {
989 h->ref_dynamic_nonweak = 1;
990 hi->ref_dynamic_nonweak = 1;
991 }
992 }
993 else
994 {
995 h->dynamic_def = 1;
996 hi->dynamic_def = 1;
997 }
998 }
999
1000 /* If we just created the symbol, mark it as being an ELF symbol.
1001 Other than that, there is nothing to do--there is no merge issue
1002 with a newly defined symbol--so we just return. */
1003
1004 if (h->root.type == bfd_link_hash_new)
1005 {
1006 h->non_elf = 0;
1007 return TRUE;
1008 }
1009
1010 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1011 existing symbol. */
1012
1013 switch (h->root.type)
1014 {
1015 default:
1016 oldbfd = NULL;
1017 oldsec = NULL;
1018 break;
1019
1020 case bfd_link_hash_undefined:
1021 case bfd_link_hash_undefweak:
1022 oldbfd = h->root.u.undef.abfd;
1023 oldsec = NULL;
1024 break;
1025
1026 case bfd_link_hash_defined:
1027 case bfd_link_hash_defweak:
1028 oldbfd = h->root.u.def.section->owner;
1029 oldsec = h->root.u.def.section;
1030 break;
1031
1032 case bfd_link_hash_common:
1033 oldbfd = h->root.u.c.p->section->owner;
1034 oldsec = h->root.u.c.p->section;
1035 if (pold_alignment)
1036 *pold_alignment = h->root.u.c.p->alignment_power;
1037 break;
1038 }
1039 if (poldbfd && *poldbfd == NULL)
1040 *poldbfd = oldbfd;
1041
1042 /* Differentiate strong and weak symbols. */
1043 newweak = bind == STB_WEAK;
1044 oldweak = (h->root.type == bfd_link_hash_defweak
1045 || h->root.type == bfd_link_hash_undefweak);
1046 if (pold_weak)
1047 *pold_weak = oldweak;
1048
1049 /* In cases involving weak versioned symbols, we may wind up trying
1050 to merge a symbol with itself. Catch that here, to avoid the
1051 confusion that results if we try to override a symbol with
1052 itself. The additional tests catch cases like
1053 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1054 dynamic object, which we do want to handle here. */
1055 if (abfd == oldbfd
1056 && (newweak || oldweak)
1057 && ((abfd->flags & DYNAMIC) == 0
1058 || !h->def_regular))
1059 return TRUE;
1060
1061 olddyn = FALSE;
1062 if (oldbfd != NULL)
1063 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1064 else if (oldsec != NULL)
1065 {
1066 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1067 indices used by MIPS ELF. */
1068 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1069 }
1070
1071 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1072 respectively, appear to be a definition rather than reference. */
1073
1074 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1075
1076 olddef = (h->root.type != bfd_link_hash_undefined
1077 && h->root.type != bfd_link_hash_undefweak
1078 && h->root.type != bfd_link_hash_common);
1079
1080 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1081 respectively, appear to be a function. */
1082
1083 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1084 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1085
1086 oldfunc = (h->type != STT_NOTYPE
1087 && bed->is_function_type (h->type));
1088
1089 /* When we try to create a default indirect symbol from the dynamic
1090 definition with the default version, we skip it if its type and
1091 the type of existing regular definition mismatch. We only do it
1092 if the existing regular definition won't be dynamic. */
1093 if (pold_alignment == NULL
1094 && !info->shared
1095 && !info->export_dynamic
1096 && !h->ref_dynamic
1097 && newdyn
1098 && newdef
1099 && !olddyn
1100 && (olddef || h->root.type == bfd_link_hash_common)
1101 && ELF_ST_TYPE (sym->st_info) != h->type
1102 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1103 && h->type != STT_NOTYPE
1104 && !(newfunc && oldfunc))
1105 {
1106 *skip = TRUE;
1107 return TRUE;
1108 }
1109
1110 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1111 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1112 *type_change_ok = TRUE;
1113
1114 /* Check TLS symbol. We don't check undefined symbol introduced by
1115 "ld -u". */
1116 else if (oldbfd != NULL
1117 && ELF_ST_TYPE (sym->st_info) != h->type
1118 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1119 {
1120 bfd *ntbfd, *tbfd;
1121 bfd_boolean ntdef, tdef;
1122 asection *ntsec, *tsec;
1123
1124 if (h->type == STT_TLS)
1125 {
1126 ntbfd = abfd;
1127 ntsec = sec;
1128 ntdef = newdef;
1129 tbfd = oldbfd;
1130 tsec = oldsec;
1131 tdef = olddef;
1132 }
1133 else
1134 {
1135 ntbfd = oldbfd;
1136 ntsec = oldsec;
1137 ntdef = olddef;
1138 tbfd = abfd;
1139 tsec = sec;
1140 tdef = newdef;
1141 }
1142
1143 if (tdef && ntdef)
1144 (*_bfd_error_handler)
1145 (_("%s: TLS definition in %B section %A "
1146 "mismatches non-TLS definition in %B section %A"),
1147 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1148 else if (!tdef && !ntdef)
1149 (*_bfd_error_handler)
1150 (_("%s: TLS reference in %B "
1151 "mismatches non-TLS reference in %B"),
1152 tbfd, ntbfd, h->root.root.string);
1153 else if (tdef)
1154 (*_bfd_error_handler)
1155 (_("%s: TLS definition in %B section %A "
1156 "mismatches non-TLS reference in %B"),
1157 tbfd, tsec, ntbfd, h->root.root.string);
1158 else
1159 (*_bfd_error_handler)
1160 (_("%s: TLS reference in %B "
1161 "mismatches non-TLS definition in %B section %A"),
1162 tbfd, ntbfd, ntsec, h->root.root.string);
1163
1164 bfd_set_error (bfd_error_bad_value);
1165 return FALSE;
1166 }
1167
1168 /* If the old symbol has non-default visibility, we ignore the new
1169 definition from a dynamic object. */
1170 if (newdyn
1171 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1172 && !bfd_is_und_section (sec))
1173 {
1174 *skip = TRUE;
1175 /* Make sure this symbol is dynamic. */
1176 h->ref_dynamic = 1;
1177 hi->ref_dynamic = 1;
1178 /* A protected symbol has external availability. Make sure it is
1179 recorded as dynamic.
1180
1181 FIXME: Should we check type and size for protected symbol? */
1182 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1183 return bfd_elf_link_record_dynamic_symbol (info, h);
1184 else
1185 return TRUE;
1186 }
1187 else if (!newdyn
1188 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1189 && h->def_dynamic)
1190 {
1191 /* If the new symbol with non-default visibility comes from a
1192 relocatable file and the old definition comes from a dynamic
1193 object, we remove the old definition. */
1194 if (hi->root.type == bfd_link_hash_indirect)
1195 {
1196 /* Handle the case where the old dynamic definition is
1197 default versioned. We need to copy the symbol info from
1198 the symbol with default version to the normal one if it
1199 was referenced before. */
1200 if (h->ref_regular)
1201 {
1202 hi->root.type = h->root.type;
1203 h->root.type = bfd_link_hash_indirect;
1204 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1205
1206 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1207 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1208 {
1209 /* If the new symbol is hidden or internal, completely undo
1210 any dynamic link state. */
1211 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1212 h->forced_local = 0;
1213 h->ref_dynamic = 0;
1214 }
1215 else
1216 h->ref_dynamic = 1;
1217
1218 h->def_dynamic = 0;
1219 /* FIXME: Should we check type and size for protected symbol? */
1220 h->size = 0;
1221 h->type = 0;
1222
1223 h = hi;
1224 }
1225 else
1226 h = hi;
1227 }
1228
1229 /* If the old symbol was undefined before, then it will still be
1230 on the undefs list. If the new symbol is undefined or
1231 common, we can't make it bfd_link_hash_new here, because new
1232 undefined or common symbols will be added to the undefs list
1233 by _bfd_generic_link_add_one_symbol. Symbols may not be
1234 added twice to the undefs list. Also, if the new symbol is
1235 undefweak then we don't want to lose the strong undef. */
1236 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1237 {
1238 h->root.type = bfd_link_hash_undefined;
1239 h->root.u.undef.abfd = abfd;
1240 }
1241 else
1242 {
1243 h->root.type = bfd_link_hash_new;
1244 h->root.u.undef.abfd = NULL;
1245 }
1246
1247 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1248 {
1249 /* If the new symbol is hidden or internal, completely undo
1250 any dynamic link state. */
1251 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1252 h->forced_local = 0;
1253 h->ref_dynamic = 0;
1254 }
1255 else
1256 h->ref_dynamic = 1;
1257 h->def_dynamic = 0;
1258 /* FIXME: Should we check type and size for protected symbol? */
1259 h->size = 0;
1260 h->type = 0;
1261 return TRUE;
1262 }
1263
1264 /* If a new weak symbol definition comes from a regular file and the
1265 old symbol comes from a dynamic library, we treat the new one as
1266 strong. Similarly, an old weak symbol definition from a regular
1267 file is treated as strong when the new symbol comes from a dynamic
1268 library. Further, an old weak symbol from a dynamic library is
1269 treated as strong if the new symbol is from a dynamic library.
1270 This reflects the way glibc's ld.so works.
1271
1272 Do this before setting *type_change_ok or *size_change_ok so that
1273 we warn properly when dynamic library symbols are overridden. */
1274
1275 if (newdef && !newdyn && olddyn)
1276 newweak = FALSE;
1277 if (olddef && newdyn)
1278 oldweak = FALSE;
1279
1280 /* Allow changes between different types of function symbol. */
1281 if (newfunc && oldfunc)
1282 *type_change_ok = TRUE;
1283
1284 /* It's OK to change the type if either the existing symbol or the
1285 new symbol is weak. A type change is also OK if the old symbol
1286 is undefined and the new symbol is defined. */
1287
1288 if (oldweak
1289 || newweak
1290 || (newdef
1291 && h->root.type == bfd_link_hash_undefined))
1292 *type_change_ok = TRUE;
1293
1294 /* It's OK to change the size if either the existing symbol or the
1295 new symbol is weak, or if the old symbol is undefined. */
1296
1297 if (*type_change_ok
1298 || h->root.type == bfd_link_hash_undefined)
1299 *size_change_ok = TRUE;
1300
1301 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1302 symbol, respectively, appears to be a common symbol in a dynamic
1303 object. If a symbol appears in an uninitialized section, and is
1304 not weak, and is not a function, then it may be a common symbol
1305 which was resolved when the dynamic object was created. We want
1306 to treat such symbols specially, because they raise special
1307 considerations when setting the symbol size: if the symbol
1308 appears as a common symbol in a regular object, and the size in
1309 the regular object is larger, we must make sure that we use the
1310 larger size. This problematic case can always be avoided in C,
1311 but it must be handled correctly when using Fortran shared
1312 libraries.
1313
1314 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1315 likewise for OLDDYNCOMMON and OLDDEF.
1316
1317 Note that this test is just a heuristic, and that it is quite
1318 possible to have an uninitialized symbol in a shared object which
1319 is really a definition, rather than a common symbol. This could
1320 lead to some minor confusion when the symbol really is a common
1321 symbol in some regular object. However, I think it will be
1322 harmless. */
1323
1324 if (newdyn
1325 && newdef
1326 && !newweak
1327 && (sec->flags & SEC_ALLOC) != 0
1328 && (sec->flags & SEC_LOAD) == 0
1329 && sym->st_size > 0
1330 && !newfunc)
1331 newdyncommon = TRUE;
1332 else
1333 newdyncommon = FALSE;
1334
1335 if (olddyn
1336 && olddef
1337 && h->root.type == bfd_link_hash_defined
1338 && h->def_dynamic
1339 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1340 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1341 && h->size > 0
1342 && !oldfunc)
1343 olddyncommon = TRUE;
1344 else
1345 olddyncommon = FALSE;
1346
1347 /* We now know everything about the old and new symbols. We ask the
1348 backend to check if we can merge them. */
1349 if (bed->merge_symbol != NULL)
1350 {
1351 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1352 return FALSE;
1353 sec = *psec;
1354 }
1355
1356 /* If both the old and the new symbols look like common symbols in a
1357 dynamic object, set the size of the symbol to the larger of the
1358 two. */
1359
1360 if (olddyncommon
1361 && newdyncommon
1362 && sym->st_size != h->size)
1363 {
1364 /* Since we think we have two common symbols, issue a multiple
1365 common warning if desired. Note that we only warn if the
1366 size is different. If the size is the same, we simply let
1367 the old symbol override the new one as normally happens with
1368 symbols defined in dynamic objects. */
1369
1370 if (! ((*info->callbacks->multiple_common)
1371 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1372 return FALSE;
1373
1374 if (sym->st_size > h->size)
1375 h->size = sym->st_size;
1376
1377 *size_change_ok = TRUE;
1378 }
1379
1380 /* If we are looking at a dynamic object, and we have found a
1381 definition, we need to see if the symbol was already defined by
1382 some other object. If so, we want to use the existing
1383 definition, and we do not want to report a multiple symbol
1384 definition error; we do this by clobbering *PSEC to be
1385 bfd_und_section_ptr.
1386
1387 We treat a common symbol as a definition if the symbol in the
1388 shared library is a function, since common symbols always
1389 represent variables; this can cause confusion in principle, but
1390 any such confusion would seem to indicate an erroneous program or
1391 shared library. We also permit a common symbol in a regular
1392 object to override a weak symbol in a shared object. */
1393
1394 if (newdyn
1395 && newdef
1396 && (olddef
1397 || (h->root.type == bfd_link_hash_common
1398 && (newweak || newfunc))))
1399 {
1400 *override = TRUE;
1401 newdef = FALSE;
1402 newdyncommon = FALSE;
1403
1404 *psec = sec = bfd_und_section_ptr;
1405 *size_change_ok = TRUE;
1406
1407 /* If we get here when the old symbol is a common symbol, then
1408 we are explicitly letting it override a weak symbol or
1409 function in a dynamic object, and we don't want to warn about
1410 a type change. If the old symbol is a defined symbol, a type
1411 change warning may still be appropriate. */
1412
1413 if (h->root.type == bfd_link_hash_common)
1414 *type_change_ok = TRUE;
1415 }
1416
1417 /* Handle the special case of an old common symbol merging with a
1418 new symbol which looks like a common symbol in a shared object.
1419 We change *PSEC and *PVALUE to make the new symbol look like a
1420 common symbol, and let _bfd_generic_link_add_one_symbol do the
1421 right thing. */
1422
1423 if (newdyncommon
1424 && h->root.type == bfd_link_hash_common)
1425 {
1426 *override = TRUE;
1427 newdef = FALSE;
1428 newdyncommon = FALSE;
1429 *pvalue = sym->st_size;
1430 *psec = sec = bed->common_section (oldsec);
1431 *size_change_ok = TRUE;
1432 }
1433
1434 /* Skip weak definitions of symbols that are already defined. */
1435 if (newdef && olddef && newweak)
1436 {
1437 /* Don't skip new non-IR weak syms. */
1438 if (!(oldbfd != NULL
1439 && (oldbfd->flags & BFD_PLUGIN) != 0
1440 && (abfd->flags & BFD_PLUGIN) == 0))
1441 *skip = TRUE;
1442
1443 /* Merge st_other. If the symbol already has a dynamic index,
1444 but visibility says it should not be visible, turn it into a
1445 local symbol. */
1446 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1447 if (h->dynindx != -1)
1448 switch (ELF_ST_VISIBILITY (h->other))
1449 {
1450 case STV_INTERNAL:
1451 case STV_HIDDEN:
1452 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1453 break;
1454 }
1455 }
1456
1457 /* If the old symbol is from a dynamic object, and the new symbol is
1458 a definition which is not from a dynamic object, then the new
1459 symbol overrides the old symbol. Symbols from regular files
1460 always take precedence over symbols from dynamic objects, even if
1461 they are defined after the dynamic object in the link.
1462
1463 As above, we again permit a common symbol in a regular object to
1464 override a definition in a shared object if the shared object
1465 symbol is a function or is weak. */
1466
1467 flip = NULL;
1468 if (!newdyn
1469 && (newdef
1470 || (bfd_is_com_section (sec)
1471 && (oldweak || oldfunc)))
1472 && olddyn
1473 && olddef
1474 && h->def_dynamic)
1475 {
1476 /* Change the hash table entry to undefined, and let
1477 _bfd_generic_link_add_one_symbol do the right thing with the
1478 new definition. */
1479
1480 h->root.type = bfd_link_hash_undefined;
1481 h->root.u.undef.abfd = h->root.u.def.section->owner;
1482 *size_change_ok = TRUE;
1483
1484 olddef = FALSE;
1485 olddyncommon = FALSE;
1486
1487 /* We again permit a type change when a common symbol may be
1488 overriding a function. */
1489
1490 if (bfd_is_com_section (sec))
1491 {
1492 if (oldfunc)
1493 {
1494 /* If a common symbol overrides a function, make sure
1495 that it isn't defined dynamically nor has type
1496 function. */
1497 h->def_dynamic = 0;
1498 h->type = STT_NOTYPE;
1499 }
1500 *type_change_ok = TRUE;
1501 }
1502
1503 if (hi->root.type == bfd_link_hash_indirect)
1504 flip = hi;
1505 else
1506 /* This union may have been set to be non-NULL when this symbol
1507 was seen in a dynamic object. We must force the union to be
1508 NULL, so that it is correct for a regular symbol. */
1509 h->verinfo.vertree = NULL;
1510 }
1511
1512 /* Handle the special case of a new common symbol merging with an
1513 old symbol that looks like it might be a common symbol defined in
1514 a shared object. Note that we have already handled the case in
1515 which a new common symbol should simply override the definition
1516 in the shared library. */
1517
1518 if (! newdyn
1519 && bfd_is_com_section (sec)
1520 && olddyncommon)
1521 {
1522 /* It would be best if we could set the hash table entry to a
1523 common symbol, but we don't know what to use for the section
1524 or the alignment. */
1525 if (! ((*info->callbacks->multiple_common)
1526 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1527 return FALSE;
1528
1529 /* If the presumed common symbol in the dynamic object is
1530 larger, pretend that the new symbol has its size. */
1531
1532 if (h->size > *pvalue)
1533 *pvalue = h->size;
1534
1535 /* We need to remember the alignment required by the symbol
1536 in the dynamic object. */
1537 BFD_ASSERT (pold_alignment);
1538 *pold_alignment = h->root.u.def.section->alignment_power;
1539
1540 olddef = FALSE;
1541 olddyncommon = FALSE;
1542
1543 h->root.type = bfd_link_hash_undefined;
1544 h->root.u.undef.abfd = h->root.u.def.section->owner;
1545
1546 *size_change_ok = TRUE;
1547 *type_change_ok = TRUE;
1548
1549 if (hi->root.type == bfd_link_hash_indirect)
1550 flip = hi;
1551 else
1552 h->verinfo.vertree = NULL;
1553 }
1554
1555 if (flip != NULL)
1556 {
1557 /* Handle the case where we had a versioned symbol in a dynamic
1558 library and now find a definition in a normal object. In this
1559 case, we make the versioned symbol point to the normal one. */
1560 flip->root.type = h->root.type;
1561 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1562 h->root.type = bfd_link_hash_indirect;
1563 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1564 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1565 if (h->def_dynamic)
1566 {
1567 h->def_dynamic = 0;
1568 flip->ref_dynamic = 1;
1569 }
1570 }
1571
1572 return TRUE;
1573 }
1574
1575 /* This function is called to create an indirect symbol from the
1576 default for the symbol with the default version if needed. The
1577 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1578 set DYNSYM if the new indirect symbol is dynamic. */
1579
1580 static bfd_boolean
1581 _bfd_elf_add_default_symbol (bfd *abfd,
1582 struct bfd_link_info *info,
1583 struct elf_link_hash_entry *h,
1584 const char *name,
1585 Elf_Internal_Sym *sym,
1586 asection *sec,
1587 bfd_vma value,
1588 bfd **poldbfd,
1589 bfd_boolean *dynsym)
1590 {
1591 bfd_boolean type_change_ok;
1592 bfd_boolean size_change_ok;
1593 bfd_boolean skip;
1594 char *shortname;
1595 struct elf_link_hash_entry *hi;
1596 struct bfd_link_hash_entry *bh;
1597 const struct elf_backend_data *bed;
1598 bfd_boolean collect;
1599 bfd_boolean dynamic;
1600 bfd_boolean override;
1601 char *p;
1602 size_t len, shortlen;
1603 asection *tmp_sec;
1604
1605 /* If this symbol has a version, and it is the default version, we
1606 create an indirect symbol from the default name to the fully
1607 decorated name. This will cause external references which do not
1608 specify a version to be bound to this version of the symbol. */
1609 p = strchr (name, ELF_VER_CHR);
1610 if (p == NULL || p[1] != ELF_VER_CHR)
1611 return TRUE;
1612
1613 bed = get_elf_backend_data (abfd);
1614 collect = bed->collect;
1615 dynamic = (abfd->flags & DYNAMIC) != 0;
1616
1617 shortlen = p - name;
1618 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1619 if (shortname == NULL)
1620 return FALSE;
1621 memcpy (shortname, name, shortlen);
1622 shortname[shortlen] = '\0';
1623
1624 /* We are going to create a new symbol. Merge it with any existing
1625 symbol with this name. For the purposes of the merge, act as
1626 though we were defining the symbol we just defined, although we
1627 actually going to define an indirect symbol. */
1628 type_change_ok = FALSE;
1629 size_change_ok = FALSE;
1630 tmp_sec = sec;
1631 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1632 &hi, poldbfd, NULL, NULL, &skip, &override,
1633 &type_change_ok, &size_change_ok))
1634 return FALSE;
1635
1636 if (skip)
1637 goto nondefault;
1638
1639 if (! override)
1640 {
1641 bh = &hi->root;
1642 if (! (_bfd_generic_link_add_one_symbol
1643 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1644 0, name, FALSE, collect, &bh)))
1645 return FALSE;
1646 hi = (struct elf_link_hash_entry *) bh;
1647 }
1648 else
1649 {
1650 /* In this case the symbol named SHORTNAME is overriding the
1651 indirect symbol we want to add. We were planning on making
1652 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1653 is the name without a version. NAME is the fully versioned
1654 name, and it is the default version.
1655
1656 Overriding means that we already saw a definition for the
1657 symbol SHORTNAME in a regular object, and it is overriding
1658 the symbol defined in the dynamic object.
1659
1660 When this happens, we actually want to change NAME, the
1661 symbol we just added, to refer to SHORTNAME. This will cause
1662 references to NAME in the shared object to become references
1663 to SHORTNAME in the regular object. This is what we expect
1664 when we override a function in a shared object: that the
1665 references in the shared object will be mapped to the
1666 definition in the regular object. */
1667
1668 while (hi->root.type == bfd_link_hash_indirect
1669 || hi->root.type == bfd_link_hash_warning)
1670 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1671
1672 h->root.type = bfd_link_hash_indirect;
1673 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1674 if (h->def_dynamic)
1675 {
1676 h->def_dynamic = 0;
1677 hi->ref_dynamic = 1;
1678 if (hi->ref_regular
1679 || hi->def_regular)
1680 {
1681 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1682 return FALSE;
1683 }
1684 }
1685
1686 /* Now set HI to H, so that the following code will set the
1687 other fields correctly. */
1688 hi = h;
1689 }
1690
1691 /* Check if HI is a warning symbol. */
1692 if (hi->root.type == bfd_link_hash_warning)
1693 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1694
1695 /* If there is a duplicate definition somewhere, then HI may not
1696 point to an indirect symbol. We will have reported an error to
1697 the user in that case. */
1698
1699 if (hi->root.type == bfd_link_hash_indirect)
1700 {
1701 struct elf_link_hash_entry *ht;
1702
1703 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1704 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1705
1706 /* See if the new flags lead us to realize that the symbol must
1707 be dynamic. */
1708 if (! *dynsym)
1709 {
1710 if (! dynamic)
1711 {
1712 if (! info->executable
1713 || hi->def_dynamic
1714 || hi->ref_dynamic)
1715 *dynsym = TRUE;
1716 }
1717 else
1718 {
1719 if (hi->ref_regular)
1720 *dynsym = TRUE;
1721 }
1722 }
1723 }
1724
1725 /* We also need to define an indirection from the nondefault version
1726 of the symbol. */
1727
1728 nondefault:
1729 len = strlen (name);
1730 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1731 if (shortname == NULL)
1732 return FALSE;
1733 memcpy (shortname, name, shortlen);
1734 memcpy (shortname + shortlen, p + 1, len - shortlen);
1735
1736 /* Once again, merge with any existing symbol. */
1737 type_change_ok = FALSE;
1738 size_change_ok = FALSE;
1739 tmp_sec = sec;
1740 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1741 &hi, NULL, NULL, NULL, &skip, &override,
1742 &type_change_ok, &size_change_ok))
1743 return FALSE;
1744
1745 if (skip)
1746 return TRUE;
1747
1748 if (override)
1749 {
1750 /* Here SHORTNAME is a versioned name, so we don't expect to see
1751 the type of override we do in the case above unless it is
1752 overridden by a versioned definition. */
1753 if (hi->root.type != bfd_link_hash_defined
1754 && hi->root.type != bfd_link_hash_defweak)
1755 (*_bfd_error_handler)
1756 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1757 abfd, shortname);
1758 }
1759 else
1760 {
1761 bh = &hi->root;
1762 if (! (_bfd_generic_link_add_one_symbol
1763 (info, abfd, shortname, BSF_INDIRECT,
1764 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1765 return FALSE;
1766 hi = (struct elf_link_hash_entry *) bh;
1767
1768 /* If there is a duplicate definition somewhere, then HI may not
1769 point to an indirect symbol. We will have reported an error
1770 to the user in that case. */
1771
1772 if (hi->root.type == bfd_link_hash_indirect)
1773 {
1774 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1775
1776 /* See if the new flags lead us to realize that the symbol
1777 must be dynamic. */
1778 if (! *dynsym)
1779 {
1780 if (! dynamic)
1781 {
1782 if (! info->executable
1783 || hi->ref_dynamic)
1784 *dynsym = TRUE;
1785 }
1786 else
1787 {
1788 if (hi->ref_regular)
1789 *dynsym = TRUE;
1790 }
1791 }
1792 }
1793 }
1794
1795 return TRUE;
1796 }
1797 \f
1798 /* This routine is used to export all defined symbols into the dynamic
1799 symbol table. It is called via elf_link_hash_traverse. */
1800
1801 static bfd_boolean
1802 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1803 {
1804 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1805
1806 /* Ignore indirect symbols. These are added by the versioning code. */
1807 if (h->root.type == bfd_link_hash_indirect)
1808 return TRUE;
1809
1810 /* Ignore this if we won't export it. */
1811 if (!eif->info->export_dynamic && !h->dynamic)
1812 return TRUE;
1813
1814 if (h->dynindx == -1
1815 && (h->def_regular || h->ref_regular)
1816 && ! bfd_hide_sym_by_version (eif->info->version_info,
1817 h->root.root.string))
1818 {
1819 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1820 {
1821 eif->failed = TRUE;
1822 return FALSE;
1823 }
1824 }
1825
1826 return TRUE;
1827 }
1828 \f
1829 /* Look through the symbols which are defined in other shared
1830 libraries and referenced here. Update the list of version
1831 dependencies. This will be put into the .gnu.version_r section.
1832 This function is called via elf_link_hash_traverse. */
1833
1834 static bfd_boolean
1835 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1836 void *data)
1837 {
1838 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1839 Elf_Internal_Verneed *t;
1840 Elf_Internal_Vernaux *a;
1841 bfd_size_type amt;
1842
1843 /* We only care about symbols defined in shared objects with version
1844 information. */
1845 if (!h->def_dynamic
1846 || h->def_regular
1847 || h->dynindx == -1
1848 || h->verinfo.verdef == NULL)
1849 return TRUE;
1850
1851 /* See if we already know about this version. */
1852 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1853 t != NULL;
1854 t = t->vn_nextref)
1855 {
1856 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1857 continue;
1858
1859 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1860 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1861 return TRUE;
1862
1863 break;
1864 }
1865
1866 /* This is a new version. Add it to tree we are building. */
1867
1868 if (t == NULL)
1869 {
1870 amt = sizeof *t;
1871 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1872 if (t == NULL)
1873 {
1874 rinfo->failed = TRUE;
1875 return FALSE;
1876 }
1877
1878 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1879 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1880 elf_tdata (rinfo->info->output_bfd)->verref = t;
1881 }
1882
1883 amt = sizeof *a;
1884 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1885 if (a == NULL)
1886 {
1887 rinfo->failed = TRUE;
1888 return FALSE;
1889 }
1890
1891 /* Note that we are copying a string pointer here, and testing it
1892 above. If bfd_elf_string_from_elf_section is ever changed to
1893 discard the string data when low in memory, this will have to be
1894 fixed. */
1895 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1896
1897 a->vna_flags = h->verinfo.verdef->vd_flags;
1898 a->vna_nextptr = t->vn_auxptr;
1899
1900 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1901 ++rinfo->vers;
1902
1903 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1904
1905 t->vn_auxptr = a;
1906
1907 return TRUE;
1908 }
1909
1910 /* Figure out appropriate versions for all the symbols. We may not
1911 have the version number script until we have read all of the input
1912 files, so until that point we don't know which symbols should be
1913 local. This function is called via elf_link_hash_traverse. */
1914
1915 static bfd_boolean
1916 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1917 {
1918 struct elf_info_failed *sinfo;
1919 struct bfd_link_info *info;
1920 const struct elf_backend_data *bed;
1921 struct elf_info_failed eif;
1922 char *p;
1923 bfd_size_type amt;
1924
1925 sinfo = (struct elf_info_failed *) data;
1926 info = sinfo->info;
1927
1928 /* Fix the symbol flags. */
1929 eif.failed = FALSE;
1930 eif.info = info;
1931 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1932 {
1933 if (eif.failed)
1934 sinfo->failed = TRUE;
1935 return FALSE;
1936 }
1937
1938 /* We only need version numbers for symbols defined in regular
1939 objects. */
1940 if (!h->def_regular)
1941 return TRUE;
1942
1943 bed = get_elf_backend_data (info->output_bfd);
1944 p = strchr (h->root.root.string, ELF_VER_CHR);
1945 if (p != NULL && h->verinfo.vertree == NULL)
1946 {
1947 struct bfd_elf_version_tree *t;
1948 bfd_boolean hidden;
1949
1950 hidden = TRUE;
1951
1952 /* There are two consecutive ELF_VER_CHR characters if this is
1953 not a hidden symbol. */
1954 ++p;
1955 if (*p == ELF_VER_CHR)
1956 {
1957 hidden = FALSE;
1958 ++p;
1959 }
1960
1961 /* If there is no version string, we can just return out. */
1962 if (*p == '\0')
1963 {
1964 if (hidden)
1965 h->hidden = 1;
1966 return TRUE;
1967 }
1968
1969 /* Look for the version. If we find it, it is no longer weak. */
1970 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1971 {
1972 if (strcmp (t->name, p) == 0)
1973 {
1974 size_t len;
1975 char *alc;
1976 struct bfd_elf_version_expr *d;
1977
1978 len = p - h->root.root.string;
1979 alc = (char *) bfd_malloc (len);
1980 if (alc == NULL)
1981 {
1982 sinfo->failed = TRUE;
1983 return FALSE;
1984 }
1985 memcpy (alc, h->root.root.string, len - 1);
1986 alc[len - 1] = '\0';
1987 if (alc[len - 2] == ELF_VER_CHR)
1988 alc[len - 2] = '\0';
1989
1990 h->verinfo.vertree = t;
1991 t->used = TRUE;
1992 d = NULL;
1993
1994 if (t->globals.list != NULL)
1995 d = (*t->match) (&t->globals, NULL, alc);
1996
1997 /* See if there is anything to force this symbol to
1998 local scope. */
1999 if (d == NULL && t->locals.list != NULL)
2000 {
2001 d = (*t->match) (&t->locals, NULL, alc);
2002 if (d != NULL
2003 && h->dynindx != -1
2004 && ! info->export_dynamic)
2005 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2006 }
2007
2008 free (alc);
2009 break;
2010 }
2011 }
2012
2013 /* If we are building an application, we need to create a
2014 version node for this version. */
2015 if (t == NULL && info->executable)
2016 {
2017 struct bfd_elf_version_tree **pp;
2018 int version_index;
2019
2020 /* If we aren't going to export this symbol, we don't need
2021 to worry about it. */
2022 if (h->dynindx == -1)
2023 return TRUE;
2024
2025 amt = sizeof *t;
2026 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2027 if (t == NULL)
2028 {
2029 sinfo->failed = TRUE;
2030 return FALSE;
2031 }
2032
2033 t->name = p;
2034 t->name_indx = (unsigned int) -1;
2035 t->used = TRUE;
2036
2037 version_index = 1;
2038 /* Don't count anonymous version tag. */
2039 if (sinfo->info->version_info != NULL
2040 && sinfo->info->version_info->vernum == 0)
2041 version_index = 0;
2042 for (pp = &sinfo->info->version_info;
2043 *pp != NULL;
2044 pp = &(*pp)->next)
2045 ++version_index;
2046 t->vernum = version_index;
2047
2048 *pp = t;
2049
2050 h->verinfo.vertree = t;
2051 }
2052 else if (t == NULL)
2053 {
2054 /* We could not find the version for a symbol when
2055 generating a shared archive. Return an error. */
2056 (*_bfd_error_handler)
2057 (_("%B: version node not found for symbol %s"),
2058 info->output_bfd, h->root.root.string);
2059 bfd_set_error (bfd_error_bad_value);
2060 sinfo->failed = TRUE;
2061 return FALSE;
2062 }
2063
2064 if (hidden)
2065 h->hidden = 1;
2066 }
2067
2068 /* If we don't have a version for this symbol, see if we can find
2069 something. */
2070 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2071 {
2072 bfd_boolean hide;
2073
2074 h->verinfo.vertree
2075 = bfd_find_version_for_sym (sinfo->info->version_info,
2076 h->root.root.string, &hide);
2077 if (h->verinfo.vertree != NULL && hide)
2078 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2079 }
2080
2081 return TRUE;
2082 }
2083 \f
2084 /* Read and swap the relocs from the section indicated by SHDR. This
2085 may be either a REL or a RELA section. The relocations are
2086 translated into RELA relocations and stored in INTERNAL_RELOCS,
2087 which should have already been allocated to contain enough space.
2088 The EXTERNAL_RELOCS are a buffer where the external form of the
2089 relocations should be stored.
2090
2091 Returns FALSE if something goes wrong. */
2092
2093 static bfd_boolean
2094 elf_link_read_relocs_from_section (bfd *abfd,
2095 asection *sec,
2096 Elf_Internal_Shdr *shdr,
2097 void *external_relocs,
2098 Elf_Internal_Rela *internal_relocs)
2099 {
2100 const struct elf_backend_data *bed;
2101 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2102 const bfd_byte *erela;
2103 const bfd_byte *erelaend;
2104 Elf_Internal_Rela *irela;
2105 Elf_Internal_Shdr *symtab_hdr;
2106 size_t nsyms;
2107
2108 /* Position ourselves at the start of the section. */
2109 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2110 return FALSE;
2111
2112 /* Read the relocations. */
2113 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2114 return FALSE;
2115
2116 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2117 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2118
2119 bed = get_elf_backend_data (abfd);
2120
2121 /* Convert the external relocations to the internal format. */
2122 if (shdr->sh_entsize == bed->s->sizeof_rel)
2123 swap_in = bed->s->swap_reloc_in;
2124 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2125 swap_in = bed->s->swap_reloca_in;
2126 else
2127 {
2128 bfd_set_error (bfd_error_wrong_format);
2129 return FALSE;
2130 }
2131
2132 erela = (const bfd_byte *) external_relocs;
2133 erelaend = erela + shdr->sh_size;
2134 irela = internal_relocs;
2135 while (erela < erelaend)
2136 {
2137 bfd_vma r_symndx;
2138
2139 (*swap_in) (abfd, erela, irela);
2140 r_symndx = ELF32_R_SYM (irela->r_info);
2141 if (bed->s->arch_size == 64)
2142 r_symndx >>= 24;
2143 if (nsyms > 0)
2144 {
2145 if ((size_t) r_symndx >= nsyms)
2146 {
2147 (*_bfd_error_handler)
2148 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2149 " for offset 0x%lx in section `%A'"),
2150 abfd, sec,
2151 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2152 bfd_set_error (bfd_error_bad_value);
2153 return FALSE;
2154 }
2155 }
2156 else if (r_symndx != STN_UNDEF)
2157 {
2158 (*_bfd_error_handler)
2159 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2160 " when the object file has no symbol table"),
2161 abfd, sec,
2162 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2163 bfd_set_error (bfd_error_bad_value);
2164 return FALSE;
2165 }
2166 irela += bed->s->int_rels_per_ext_rel;
2167 erela += shdr->sh_entsize;
2168 }
2169
2170 return TRUE;
2171 }
2172
2173 /* Read and swap the relocs for a section O. They may have been
2174 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2175 not NULL, they are used as buffers to read into. They are known to
2176 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2177 the return value is allocated using either malloc or bfd_alloc,
2178 according to the KEEP_MEMORY argument. If O has two relocation
2179 sections (both REL and RELA relocations), then the REL_HDR
2180 relocations will appear first in INTERNAL_RELOCS, followed by the
2181 RELA_HDR relocations. */
2182
2183 Elf_Internal_Rela *
2184 _bfd_elf_link_read_relocs (bfd *abfd,
2185 asection *o,
2186 void *external_relocs,
2187 Elf_Internal_Rela *internal_relocs,
2188 bfd_boolean keep_memory)
2189 {
2190 void *alloc1 = NULL;
2191 Elf_Internal_Rela *alloc2 = NULL;
2192 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2193 struct bfd_elf_section_data *esdo = elf_section_data (o);
2194 Elf_Internal_Rela *internal_rela_relocs;
2195
2196 if (esdo->relocs != NULL)
2197 return esdo->relocs;
2198
2199 if (o->reloc_count == 0)
2200 return NULL;
2201
2202 if (internal_relocs == NULL)
2203 {
2204 bfd_size_type size;
2205
2206 size = o->reloc_count;
2207 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2208 if (keep_memory)
2209 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2210 else
2211 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2212 if (internal_relocs == NULL)
2213 goto error_return;
2214 }
2215
2216 if (external_relocs == NULL)
2217 {
2218 bfd_size_type size = 0;
2219
2220 if (esdo->rel.hdr)
2221 size += esdo->rel.hdr->sh_size;
2222 if (esdo->rela.hdr)
2223 size += esdo->rela.hdr->sh_size;
2224
2225 alloc1 = bfd_malloc (size);
2226 if (alloc1 == NULL)
2227 goto error_return;
2228 external_relocs = alloc1;
2229 }
2230
2231 internal_rela_relocs = internal_relocs;
2232 if (esdo->rel.hdr)
2233 {
2234 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2235 external_relocs,
2236 internal_relocs))
2237 goto error_return;
2238 external_relocs = (((bfd_byte *) external_relocs)
2239 + esdo->rel.hdr->sh_size);
2240 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2241 * bed->s->int_rels_per_ext_rel);
2242 }
2243
2244 if (esdo->rela.hdr
2245 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2246 external_relocs,
2247 internal_rela_relocs)))
2248 goto error_return;
2249
2250 /* Cache the results for next time, if we can. */
2251 if (keep_memory)
2252 esdo->relocs = internal_relocs;
2253
2254 if (alloc1 != NULL)
2255 free (alloc1);
2256
2257 /* Don't free alloc2, since if it was allocated we are passing it
2258 back (under the name of internal_relocs). */
2259
2260 return internal_relocs;
2261
2262 error_return:
2263 if (alloc1 != NULL)
2264 free (alloc1);
2265 if (alloc2 != NULL)
2266 {
2267 if (keep_memory)
2268 bfd_release (abfd, alloc2);
2269 else
2270 free (alloc2);
2271 }
2272 return NULL;
2273 }
2274
2275 /* Compute the size of, and allocate space for, REL_HDR which is the
2276 section header for a section containing relocations for O. */
2277
2278 static bfd_boolean
2279 _bfd_elf_link_size_reloc_section (bfd *abfd,
2280 struct bfd_elf_section_reloc_data *reldata)
2281 {
2282 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2283
2284 /* That allows us to calculate the size of the section. */
2285 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2286
2287 /* The contents field must last into write_object_contents, so we
2288 allocate it with bfd_alloc rather than malloc. Also since we
2289 cannot be sure that the contents will actually be filled in,
2290 we zero the allocated space. */
2291 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2292 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2293 return FALSE;
2294
2295 if (reldata->hashes == NULL && reldata->count)
2296 {
2297 struct elf_link_hash_entry **p;
2298
2299 p = (struct elf_link_hash_entry **)
2300 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2301 if (p == NULL)
2302 return FALSE;
2303
2304 reldata->hashes = p;
2305 }
2306
2307 return TRUE;
2308 }
2309
2310 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2311 originated from the section given by INPUT_REL_HDR) to the
2312 OUTPUT_BFD. */
2313
2314 bfd_boolean
2315 _bfd_elf_link_output_relocs (bfd *output_bfd,
2316 asection *input_section,
2317 Elf_Internal_Shdr *input_rel_hdr,
2318 Elf_Internal_Rela *internal_relocs,
2319 struct elf_link_hash_entry **rel_hash
2320 ATTRIBUTE_UNUSED)
2321 {
2322 Elf_Internal_Rela *irela;
2323 Elf_Internal_Rela *irelaend;
2324 bfd_byte *erel;
2325 struct bfd_elf_section_reloc_data *output_reldata;
2326 asection *output_section;
2327 const struct elf_backend_data *bed;
2328 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2329 struct bfd_elf_section_data *esdo;
2330
2331 output_section = input_section->output_section;
2332
2333 bed = get_elf_backend_data (output_bfd);
2334 esdo = elf_section_data (output_section);
2335 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2336 {
2337 output_reldata = &esdo->rel;
2338 swap_out = bed->s->swap_reloc_out;
2339 }
2340 else if (esdo->rela.hdr
2341 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2342 {
2343 output_reldata = &esdo->rela;
2344 swap_out = bed->s->swap_reloca_out;
2345 }
2346 else
2347 {
2348 (*_bfd_error_handler)
2349 (_("%B: relocation size mismatch in %B section %A"),
2350 output_bfd, input_section->owner, input_section);
2351 bfd_set_error (bfd_error_wrong_format);
2352 return FALSE;
2353 }
2354
2355 erel = output_reldata->hdr->contents;
2356 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2357 irela = internal_relocs;
2358 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2359 * bed->s->int_rels_per_ext_rel);
2360 while (irela < irelaend)
2361 {
2362 (*swap_out) (output_bfd, irela, erel);
2363 irela += bed->s->int_rels_per_ext_rel;
2364 erel += input_rel_hdr->sh_entsize;
2365 }
2366
2367 /* Bump the counter, so that we know where to add the next set of
2368 relocations. */
2369 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2370
2371 return TRUE;
2372 }
2373 \f
2374 /* Make weak undefined symbols in PIE dynamic. */
2375
2376 bfd_boolean
2377 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2378 struct elf_link_hash_entry *h)
2379 {
2380 if (info->pie
2381 && h->dynindx == -1
2382 && h->root.type == bfd_link_hash_undefweak)
2383 return bfd_elf_link_record_dynamic_symbol (info, h);
2384
2385 return TRUE;
2386 }
2387
2388 /* Fix up the flags for a symbol. This handles various cases which
2389 can only be fixed after all the input files are seen. This is
2390 currently called by both adjust_dynamic_symbol and
2391 assign_sym_version, which is unnecessary but perhaps more robust in
2392 the face of future changes. */
2393
2394 static bfd_boolean
2395 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2396 struct elf_info_failed *eif)
2397 {
2398 const struct elf_backend_data *bed;
2399
2400 /* If this symbol was mentioned in a non-ELF file, try to set
2401 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2402 permit a non-ELF file to correctly refer to a symbol defined in
2403 an ELF dynamic object. */
2404 if (h->non_elf)
2405 {
2406 while (h->root.type == bfd_link_hash_indirect)
2407 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2408
2409 if (h->root.type != bfd_link_hash_defined
2410 && h->root.type != bfd_link_hash_defweak)
2411 {
2412 h->ref_regular = 1;
2413 h->ref_regular_nonweak = 1;
2414 }
2415 else
2416 {
2417 if (h->root.u.def.section->owner != NULL
2418 && (bfd_get_flavour (h->root.u.def.section->owner)
2419 == bfd_target_elf_flavour))
2420 {
2421 h->ref_regular = 1;
2422 h->ref_regular_nonweak = 1;
2423 }
2424 else
2425 h->def_regular = 1;
2426 }
2427
2428 if (h->dynindx == -1
2429 && (h->def_dynamic
2430 || h->ref_dynamic))
2431 {
2432 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2433 {
2434 eif->failed = TRUE;
2435 return FALSE;
2436 }
2437 }
2438 }
2439 else
2440 {
2441 /* Unfortunately, NON_ELF is only correct if the symbol
2442 was first seen in a non-ELF file. Fortunately, if the symbol
2443 was first seen in an ELF file, we're probably OK unless the
2444 symbol was defined in a non-ELF file. Catch that case here.
2445 FIXME: We're still in trouble if the symbol was first seen in
2446 a dynamic object, and then later in a non-ELF regular object. */
2447 if ((h->root.type == bfd_link_hash_defined
2448 || h->root.type == bfd_link_hash_defweak)
2449 && !h->def_regular
2450 && (h->root.u.def.section->owner != NULL
2451 ? (bfd_get_flavour (h->root.u.def.section->owner)
2452 != bfd_target_elf_flavour)
2453 : (bfd_is_abs_section (h->root.u.def.section)
2454 && !h->def_dynamic)))
2455 h->def_regular = 1;
2456 }
2457
2458 /* Backend specific symbol fixup. */
2459 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2460 if (bed->elf_backend_fixup_symbol
2461 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2462 return FALSE;
2463
2464 /* If this is a final link, and the symbol was defined as a common
2465 symbol in a regular object file, and there was no definition in
2466 any dynamic object, then the linker will have allocated space for
2467 the symbol in a common section but the DEF_REGULAR
2468 flag will not have been set. */
2469 if (h->root.type == bfd_link_hash_defined
2470 && !h->def_regular
2471 && h->ref_regular
2472 && !h->def_dynamic
2473 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2474 h->def_regular = 1;
2475
2476 /* If -Bsymbolic was used (which means to bind references to global
2477 symbols to the definition within the shared object), and this
2478 symbol was defined in a regular object, then it actually doesn't
2479 need a PLT entry. Likewise, if the symbol has non-default
2480 visibility. If the symbol has hidden or internal visibility, we
2481 will force it local. */
2482 if (h->needs_plt
2483 && eif->info->shared
2484 && is_elf_hash_table (eif->info->hash)
2485 && (SYMBOLIC_BIND (eif->info, h)
2486 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2487 && h->def_regular)
2488 {
2489 bfd_boolean force_local;
2490
2491 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2492 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2493 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2494 }
2495
2496 /* If a weak undefined symbol has non-default visibility, we also
2497 hide it from the dynamic linker. */
2498 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2499 && h->root.type == bfd_link_hash_undefweak)
2500 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2501
2502 /* If this is a weak defined symbol in a dynamic object, and we know
2503 the real definition in the dynamic object, copy interesting flags
2504 over to the real definition. */
2505 if (h->u.weakdef != NULL)
2506 {
2507 /* If the real definition is defined by a regular object file,
2508 don't do anything special. See the longer description in
2509 _bfd_elf_adjust_dynamic_symbol, below. */
2510 if (h->u.weakdef->def_regular)
2511 h->u.weakdef = NULL;
2512 else
2513 {
2514 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2515
2516 while (h->root.type == bfd_link_hash_indirect)
2517 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2518
2519 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2520 || h->root.type == bfd_link_hash_defweak);
2521 BFD_ASSERT (weakdef->def_dynamic);
2522 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2523 || weakdef->root.type == bfd_link_hash_defweak);
2524 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2525 }
2526 }
2527
2528 return TRUE;
2529 }
2530
2531 /* Make the backend pick a good value for a dynamic symbol. This is
2532 called via elf_link_hash_traverse, and also calls itself
2533 recursively. */
2534
2535 static bfd_boolean
2536 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2537 {
2538 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2539 bfd *dynobj;
2540 const struct elf_backend_data *bed;
2541
2542 if (! is_elf_hash_table (eif->info->hash))
2543 return FALSE;
2544
2545 /* Ignore indirect symbols. These are added by the versioning code. */
2546 if (h->root.type == bfd_link_hash_indirect)
2547 return TRUE;
2548
2549 /* Fix the symbol flags. */
2550 if (! _bfd_elf_fix_symbol_flags (h, eif))
2551 return FALSE;
2552
2553 /* If this symbol does not require a PLT entry, and it is not
2554 defined by a dynamic object, or is not referenced by a regular
2555 object, ignore it. We do have to handle a weak defined symbol,
2556 even if no regular object refers to it, if we decided to add it
2557 to the dynamic symbol table. FIXME: Do we normally need to worry
2558 about symbols which are defined by one dynamic object and
2559 referenced by another one? */
2560 if (!h->needs_plt
2561 && h->type != STT_GNU_IFUNC
2562 && (h->def_regular
2563 || !h->def_dynamic
2564 || (!h->ref_regular
2565 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2566 {
2567 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2568 return TRUE;
2569 }
2570
2571 /* If we've already adjusted this symbol, don't do it again. This
2572 can happen via a recursive call. */
2573 if (h->dynamic_adjusted)
2574 return TRUE;
2575
2576 /* Don't look at this symbol again. Note that we must set this
2577 after checking the above conditions, because we may look at a
2578 symbol once, decide not to do anything, and then get called
2579 recursively later after REF_REGULAR is set below. */
2580 h->dynamic_adjusted = 1;
2581
2582 /* If this is a weak definition, and we know a real definition, and
2583 the real symbol is not itself defined by a regular object file,
2584 then get a good value for the real definition. We handle the
2585 real symbol first, for the convenience of the backend routine.
2586
2587 Note that there is a confusing case here. If the real definition
2588 is defined by a regular object file, we don't get the real symbol
2589 from the dynamic object, but we do get the weak symbol. If the
2590 processor backend uses a COPY reloc, then if some routine in the
2591 dynamic object changes the real symbol, we will not see that
2592 change in the corresponding weak symbol. This is the way other
2593 ELF linkers work as well, and seems to be a result of the shared
2594 library model.
2595
2596 I will clarify this issue. Most SVR4 shared libraries define the
2597 variable _timezone and define timezone as a weak synonym. The
2598 tzset call changes _timezone. If you write
2599 extern int timezone;
2600 int _timezone = 5;
2601 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2602 you might expect that, since timezone is a synonym for _timezone,
2603 the same number will print both times. However, if the processor
2604 backend uses a COPY reloc, then actually timezone will be copied
2605 into your process image, and, since you define _timezone
2606 yourself, _timezone will not. Thus timezone and _timezone will
2607 wind up at different memory locations. The tzset call will set
2608 _timezone, leaving timezone unchanged. */
2609
2610 if (h->u.weakdef != NULL)
2611 {
2612 /* If we get to this point, there is an implicit reference to
2613 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2614 h->u.weakdef->ref_regular = 1;
2615
2616 /* Ensure that the backend adjust_dynamic_symbol function sees
2617 H->U.WEAKDEF before H by recursively calling ourselves. */
2618 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2619 return FALSE;
2620 }
2621
2622 /* If a symbol has no type and no size and does not require a PLT
2623 entry, then we are probably about to do the wrong thing here: we
2624 are probably going to create a COPY reloc for an empty object.
2625 This case can arise when a shared object is built with assembly
2626 code, and the assembly code fails to set the symbol type. */
2627 if (h->size == 0
2628 && h->type == STT_NOTYPE
2629 && !h->needs_plt)
2630 (*_bfd_error_handler)
2631 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2632 h->root.root.string);
2633
2634 dynobj = elf_hash_table (eif->info)->dynobj;
2635 bed = get_elf_backend_data (dynobj);
2636
2637 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2638 {
2639 eif->failed = TRUE;
2640 return FALSE;
2641 }
2642
2643 return TRUE;
2644 }
2645
2646 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2647 DYNBSS. */
2648
2649 bfd_boolean
2650 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2651 asection *dynbss)
2652 {
2653 unsigned int power_of_two;
2654 bfd_vma mask;
2655 asection *sec = h->root.u.def.section;
2656
2657 /* The section aligment of definition is the maximum alignment
2658 requirement of symbols defined in the section. Since we don't
2659 know the symbol alignment requirement, we start with the
2660 maximum alignment and check low bits of the symbol address
2661 for the minimum alignment. */
2662 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2663 mask = ((bfd_vma) 1 << power_of_two) - 1;
2664 while ((h->root.u.def.value & mask) != 0)
2665 {
2666 mask >>= 1;
2667 --power_of_two;
2668 }
2669
2670 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2671 dynbss))
2672 {
2673 /* Adjust the section alignment if needed. */
2674 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2675 power_of_two))
2676 return FALSE;
2677 }
2678
2679 /* We make sure that the symbol will be aligned properly. */
2680 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2681
2682 /* Define the symbol as being at this point in DYNBSS. */
2683 h->root.u.def.section = dynbss;
2684 h->root.u.def.value = dynbss->size;
2685
2686 /* Increment the size of DYNBSS to make room for the symbol. */
2687 dynbss->size += h->size;
2688
2689 return TRUE;
2690 }
2691
2692 /* Adjust all external symbols pointing into SEC_MERGE sections
2693 to reflect the object merging within the sections. */
2694
2695 static bfd_boolean
2696 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2697 {
2698 asection *sec;
2699
2700 if ((h->root.type == bfd_link_hash_defined
2701 || h->root.type == bfd_link_hash_defweak)
2702 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2703 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2704 {
2705 bfd *output_bfd = (bfd *) data;
2706
2707 h->root.u.def.value =
2708 _bfd_merged_section_offset (output_bfd,
2709 &h->root.u.def.section,
2710 elf_section_data (sec)->sec_info,
2711 h->root.u.def.value);
2712 }
2713
2714 return TRUE;
2715 }
2716
2717 /* Returns false if the symbol referred to by H should be considered
2718 to resolve local to the current module, and true if it should be
2719 considered to bind dynamically. */
2720
2721 bfd_boolean
2722 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2723 struct bfd_link_info *info,
2724 bfd_boolean not_local_protected)
2725 {
2726 bfd_boolean binding_stays_local_p;
2727 const struct elf_backend_data *bed;
2728 struct elf_link_hash_table *hash_table;
2729
2730 if (h == NULL)
2731 return FALSE;
2732
2733 while (h->root.type == bfd_link_hash_indirect
2734 || h->root.type == bfd_link_hash_warning)
2735 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2736
2737 /* If it was forced local, then clearly it's not dynamic. */
2738 if (h->dynindx == -1)
2739 return FALSE;
2740 if (h->forced_local)
2741 return FALSE;
2742
2743 /* Identify the cases where name binding rules say that a
2744 visible symbol resolves locally. */
2745 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2746
2747 switch (ELF_ST_VISIBILITY (h->other))
2748 {
2749 case STV_INTERNAL:
2750 case STV_HIDDEN:
2751 return FALSE;
2752
2753 case STV_PROTECTED:
2754 hash_table = elf_hash_table (info);
2755 if (!is_elf_hash_table (hash_table))
2756 return FALSE;
2757
2758 bed = get_elf_backend_data (hash_table->dynobj);
2759
2760 /* Proper resolution for function pointer equality may require
2761 that these symbols perhaps be resolved dynamically, even though
2762 we should be resolving them to the current module. */
2763 if (!not_local_protected || !bed->is_function_type (h->type))
2764 binding_stays_local_p = TRUE;
2765 break;
2766
2767 default:
2768 break;
2769 }
2770
2771 /* If it isn't defined locally, then clearly it's dynamic. */
2772 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2773 return TRUE;
2774
2775 /* Otherwise, the symbol is dynamic if binding rules don't tell
2776 us that it remains local. */
2777 return !binding_stays_local_p;
2778 }
2779
2780 /* Return true if the symbol referred to by H should be considered
2781 to resolve local to the current module, and false otherwise. Differs
2782 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2783 undefined symbols. The two functions are virtually identical except
2784 for the place where forced_local and dynindx == -1 are tested. If
2785 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2786 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2787 the symbol is local only for defined symbols.
2788 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2789 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2790 treatment of undefined weak symbols. For those that do not make
2791 undefined weak symbols dynamic, both functions may return false. */
2792
2793 bfd_boolean
2794 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2795 struct bfd_link_info *info,
2796 bfd_boolean local_protected)
2797 {
2798 const struct elf_backend_data *bed;
2799 struct elf_link_hash_table *hash_table;
2800
2801 /* If it's a local sym, of course we resolve locally. */
2802 if (h == NULL)
2803 return TRUE;
2804
2805 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2806 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2807 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2808 return TRUE;
2809
2810 /* Common symbols that become definitions don't get the DEF_REGULAR
2811 flag set, so test it first, and don't bail out. */
2812 if (ELF_COMMON_DEF_P (h))
2813 /* Do nothing. */;
2814 /* If we don't have a definition in a regular file, then we can't
2815 resolve locally. The sym is either undefined or dynamic. */
2816 else if (!h->def_regular)
2817 return FALSE;
2818
2819 /* Forced local symbols resolve locally. */
2820 if (h->forced_local)
2821 return TRUE;
2822
2823 /* As do non-dynamic symbols. */
2824 if (h->dynindx == -1)
2825 return TRUE;
2826
2827 /* At this point, we know the symbol is defined and dynamic. In an
2828 executable it must resolve locally, likewise when building symbolic
2829 shared libraries. */
2830 if (info->executable || SYMBOLIC_BIND (info, h))
2831 return TRUE;
2832
2833 /* Now deal with defined dynamic symbols in shared libraries. Ones
2834 with default visibility might not resolve locally. */
2835 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2836 return FALSE;
2837
2838 hash_table = elf_hash_table (info);
2839 if (!is_elf_hash_table (hash_table))
2840 return TRUE;
2841
2842 bed = get_elf_backend_data (hash_table->dynobj);
2843
2844 /* STV_PROTECTED non-function symbols are local. */
2845 if (!bed->is_function_type (h->type))
2846 return TRUE;
2847
2848 /* Function pointer equality tests may require that STV_PROTECTED
2849 symbols be treated as dynamic symbols. If the address of a
2850 function not defined in an executable is set to that function's
2851 plt entry in the executable, then the address of the function in
2852 a shared library must also be the plt entry in the executable. */
2853 return local_protected;
2854 }
2855
2856 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2857 aligned. Returns the first TLS output section. */
2858
2859 struct bfd_section *
2860 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2861 {
2862 struct bfd_section *sec, *tls;
2863 unsigned int align = 0;
2864
2865 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2866 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2867 break;
2868 tls = sec;
2869
2870 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2871 if (sec->alignment_power > align)
2872 align = sec->alignment_power;
2873
2874 elf_hash_table (info)->tls_sec = tls;
2875
2876 /* Ensure the alignment of the first section is the largest alignment,
2877 so that the tls segment starts aligned. */
2878 if (tls != NULL)
2879 tls->alignment_power = align;
2880
2881 return tls;
2882 }
2883
2884 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2885 static bfd_boolean
2886 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2887 Elf_Internal_Sym *sym)
2888 {
2889 const struct elf_backend_data *bed;
2890
2891 /* Local symbols do not count, but target specific ones might. */
2892 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2893 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2894 return FALSE;
2895
2896 bed = get_elf_backend_data (abfd);
2897 /* Function symbols do not count. */
2898 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2899 return FALSE;
2900
2901 /* If the section is undefined, then so is the symbol. */
2902 if (sym->st_shndx == SHN_UNDEF)
2903 return FALSE;
2904
2905 /* If the symbol is defined in the common section, then
2906 it is a common definition and so does not count. */
2907 if (bed->common_definition (sym))
2908 return FALSE;
2909
2910 /* If the symbol is in a target specific section then we
2911 must rely upon the backend to tell us what it is. */
2912 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2913 /* FIXME - this function is not coded yet:
2914
2915 return _bfd_is_global_symbol_definition (abfd, sym);
2916
2917 Instead for now assume that the definition is not global,
2918 Even if this is wrong, at least the linker will behave
2919 in the same way that it used to do. */
2920 return FALSE;
2921
2922 return TRUE;
2923 }
2924
2925 /* Search the symbol table of the archive element of the archive ABFD
2926 whose archive map contains a mention of SYMDEF, and determine if
2927 the symbol is defined in this element. */
2928 static bfd_boolean
2929 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2930 {
2931 Elf_Internal_Shdr * hdr;
2932 bfd_size_type symcount;
2933 bfd_size_type extsymcount;
2934 bfd_size_type extsymoff;
2935 Elf_Internal_Sym *isymbuf;
2936 Elf_Internal_Sym *isym;
2937 Elf_Internal_Sym *isymend;
2938 bfd_boolean result;
2939
2940 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2941 if (abfd == NULL)
2942 return FALSE;
2943
2944 if (! bfd_check_format (abfd, bfd_object))
2945 return FALSE;
2946
2947 /* If we have already included the element containing this symbol in the
2948 link then we do not need to include it again. Just claim that any symbol
2949 it contains is not a definition, so that our caller will not decide to
2950 (re)include this element. */
2951 if (abfd->archive_pass)
2952 return FALSE;
2953
2954 /* Select the appropriate symbol table. */
2955 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2956 hdr = &elf_tdata (abfd)->symtab_hdr;
2957 else
2958 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2959
2960 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2961
2962 /* The sh_info field of the symtab header tells us where the
2963 external symbols start. We don't care about the local symbols. */
2964 if (elf_bad_symtab (abfd))
2965 {
2966 extsymcount = symcount;
2967 extsymoff = 0;
2968 }
2969 else
2970 {
2971 extsymcount = symcount - hdr->sh_info;
2972 extsymoff = hdr->sh_info;
2973 }
2974
2975 if (extsymcount == 0)
2976 return FALSE;
2977
2978 /* Read in the symbol table. */
2979 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2980 NULL, NULL, NULL);
2981 if (isymbuf == NULL)
2982 return FALSE;
2983
2984 /* Scan the symbol table looking for SYMDEF. */
2985 result = FALSE;
2986 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2987 {
2988 const char *name;
2989
2990 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2991 isym->st_name);
2992 if (name == NULL)
2993 break;
2994
2995 if (strcmp (name, symdef->name) == 0)
2996 {
2997 result = is_global_data_symbol_definition (abfd, isym);
2998 break;
2999 }
3000 }
3001
3002 free (isymbuf);
3003
3004 return result;
3005 }
3006 \f
3007 /* Add an entry to the .dynamic table. */
3008
3009 bfd_boolean
3010 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3011 bfd_vma tag,
3012 bfd_vma val)
3013 {
3014 struct elf_link_hash_table *hash_table;
3015 const struct elf_backend_data *bed;
3016 asection *s;
3017 bfd_size_type newsize;
3018 bfd_byte *newcontents;
3019 Elf_Internal_Dyn dyn;
3020
3021 hash_table = elf_hash_table (info);
3022 if (! is_elf_hash_table (hash_table))
3023 return FALSE;
3024
3025 bed = get_elf_backend_data (hash_table->dynobj);
3026 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3027 BFD_ASSERT (s != NULL);
3028
3029 newsize = s->size + bed->s->sizeof_dyn;
3030 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3031 if (newcontents == NULL)
3032 return FALSE;
3033
3034 dyn.d_tag = tag;
3035 dyn.d_un.d_val = val;
3036 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3037
3038 s->size = newsize;
3039 s->contents = newcontents;
3040
3041 return TRUE;
3042 }
3043
3044 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3045 otherwise just check whether one already exists. Returns -1 on error,
3046 1 if a DT_NEEDED tag already exists, and 0 on success. */
3047
3048 static int
3049 elf_add_dt_needed_tag (bfd *abfd,
3050 struct bfd_link_info *info,
3051 const char *soname,
3052 bfd_boolean do_it)
3053 {
3054 struct elf_link_hash_table *hash_table;
3055 bfd_size_type strindex;
3056
3057 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3058 return -1;
3059
3060 hash_table = elf_hash_table (info);
3061 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3062 if (strindex == (bfd_size_type) -1)
3063 return -1;
3064
3065 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3066 {
3067 asection *sdyn;
3068 const struct elf_backend_data *bed;
3069 bfd_byte *extdyn;
3070
3071 bed = get_elf_backend_data (hash_table->dynobj);
3072 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3073 if (sdyn != NULL)
3074 for (extdyn = sdyn->contents;
3075 extdyn < sdyn->contents + sdyn->size;
3076 extdyn += bed->s->sizeof_dyn)
3077 {
3078 Elf_Internal_Dyn dyn;
3079
3080 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3081 if (dyn.d_tag == DT_NEEDED
3082 && dyn.d_un.d_val == strindex)
3083 {
3084 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3085 return 1;
3086 }
3087 }
3088 }
3089
3090 if (do_it)
3091 {
3092 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3093 return -1;
3094
3095 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3096 return -1;
3097 }
3098 else
3099 /* We were just checking for existence of the tag. */
3100 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3101
3102 return 0;
3103 }
3104
3105 static bfd_boolean
3106 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3107 {
3108 for (; needed != NULL; needed = needed->next)
3109 if (strcmp (soname, needed->name) == 0)
3110 return TRUE;
3111
3112 return FALSE;
3113 }
3114
3115 /* Sort symbol by value, section, and size. */
3116 static int
3117 elf_sort_symbol (const void *arg1, const void *arg2)
3118 {
3119 const struct elf_link_hash_entry *h1;
3120 const struct elf_link_hash_entry *h2;
3121 bfd_signed_vma vdiff;
3122
3123 h1 = *(const struct elf_link_hash_entry **) arg1;
3124 h2 = *(const struct elf_link_hash_entry **) arg2;
3125 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3126 if (vdiff != 0)
3127 return vdiff > 0 ? 1 : -1;
3128 else
3129 {
3130 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3131 if (sdiff != 0)
3132 return sdiff > 0 ? 1 : -1;
3133 }
3134 vdiff = h1->size - h2->size;
3135 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3136 }
3137
3138 /* This function is used to adjust offsets into .dynstr for
3139 dynamic symbols. This is called via elf_link_hash_traverse. */
3140
3141 static bfd_boolean
3142 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3143 {
3144 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3145
3146 if (h->dynindx != -1)
3147 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3148 return TRUE;
3149 }
3150
3151 /* Assign string offsets in .dynstr, update all structures referencing
3152 them. */
3153
3154 static bfd_boolean
3155 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3156 {
3157 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3158 struct elf_link_local_dynamic_entry *entry;
3159 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3160 bfd *dynobj = hash_table->dynobj;
3161 asection *sdyn;
3162 bfd_size_type size;
3163 const struct elf_backend_data *bed;
3164 bfd_byte *extdyn;
3165
3166 _bfd_elf_strtab_finalize (dynstr);
3167 size = _bfd_elf_strtab_size (dynstr);
3168
3169 bed = get_elf_backend_data (dynobj);
3170 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3171 BFD_ASSERT (sdyn != NULL);
3172
3173 /* Update all .dynamic entries referencing .dynstr strings. */
3174 for (extdyn = sdyn->contents;
3175 extdyn < sdyn->contents + sdyn->size;
3176 extdyn += bed->s->sizeof_dyn)
3177 {
3178 Elf_Internal_Dyn dyn;
3179
3180 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3181 switch (dyn.d_tag)
3182 {
3183 case DT_STRSZ:
3184 dyn.d_un.d_val = size;
3185 break;
3186 case DT_NEEDED:
3187 case DT_SONAME:
3188 case DT_RPATH:
3189 case DT_RUNPATH:
3190 case DT_FILTER:
3191 case DT_AUXILIARY:
3192 case DT_AUDIT:
3193 case DT_DEPAUDIT:
3194 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3195 break;
3196 default:
3197 continue;
3198 }
3199 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3200 }
3201
3202 /* Now update local dynamic symbols. */
3203 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3204 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3205 entry->isym.st_name);
3206
3207 /* And the rest of dynamic symbols. */
3208 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3209
3210 /* Adjust version definitions. */
3211 if (elf_tdata (output_bfd)->cverdefs)
3212 {
3213 asection *s;
3214 bfd_byte *p;
3215 bfd_size_type i;
3216 Elf_Internal_Verdef def;
3217 Elf_Internal_Verdaux defaux;
3218
3219 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3220 p = s->contents;
3221 do
3222 {
3223 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3224 &def);
3225 p += sizeof (Elf_External_Verdef);
3226 if (def.vd_aux != sizeof (Elf_External_Verdef))
3227 continue;
3228 for (i = 0; i < def.vd_cnt; ++i)
3229 {
3230 _bfd_elf_swap_verdaux_in (output_bfd,
3231 (Elf_External_Verdaux *) p, &defaux);
3232 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3233 defaux.vda_name);
3234 _bfd_elf_swap_verdaux_out (output_bfd,
3235 &defaux, (Elf_External_Verdaux *) p);
3236 p += sizeof (Elf_External_Verdaux);
3237 }
3238 }
3239 while (def.vd_next);
3240 }
3241
3242 /* Adjust version references. */
3243 if (elf_tdata (output_bfd)->verref)
3244 {
3245 asection *s;
3246 bfd_byte *p;
3247 bfd_size_type i;
3248 Elf_Internal_Verneed need;
3249 Elf_Internal_Vernaux needaux;
3250
3251 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3252 p = s->contents;
3253 do
3254 {
3255 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3256 &need);
3257 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3258 _bfd_elf_swap_verneed_out (output_bfd, &need,
3259 (Elf_External_Verneed *) p);
3260 p += sizeof (Elf_External_Verneed);
3261 for (i = 0; i < need.vn_cnt; ++i)
3262 {
3263 _bfd_elf_swap_vernaux_in (output_bfd,
3264 (Elf_External_Vernaux *) p, &needaux);
3265 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3266 needaux.vna_name);
3267 _bfd_elf_swap_vernaux_out (output_bfd,
3268 &needaux,
3269 (Elf_External_Vernaux *) p);
3270 p += sizeof (Elf_External_Vernaux);
3271 }
3272 }
3273 while (need.vn_next);
3274 }
3275
3276 return TRUE;
3277 }
3278 \f
3279 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3280 The default is to only match when the INPUT and OUTPUT are exactly
3281 the same target. */
3282
3283 bfd_boolean
3284 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3285 const bfd_target *output)
3286 {
3287 return input == output;
3288 }
3289
3290 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3291 This version is used when different targets for the same architecture
3292 are virtually identical. */
3293
3294 bfd_boolean
3295 _bfd_elf_relocs_compatible (const bfd_target *input,
3296 const bfd_target *output)
3297 {
3298 const struct elf_backend_data *obed, *ibed;
3299
3300 if (input == output)
3301 return TRUE;
3302
3303 ibed = xvec_get_elf_backend_data (input);
3304 obed = xvec_get_elf_backend_data (output);
3305
3306 if (ibed->arch != obed->arch)
3307 return FALSE;
3308
3309 /* If both backends are using this function, deem them compatible. */
3310 return ibed->relocs_compatible == obed->relocs_compatible;
3311 }
3312
3313 /* Add symbols from an ELF object file to the linker hash table. */
3314
3315 static bfd_boolean
3316 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3317 {
3318 Elf_Internal_Ehdr *ehdr;
3319 Elf_Internal_Shdr *hdr;
3320 bfd_size_type symcount;
3321 bfd_size_type extsymcount;
3322 bfd_size_type extsymoff;
3323 struct elf_link_hash_entry **sym_hash;
3324 bfd_boolean dynamic;
3325 Elf_External_Versym *extversym = NULL;
3326 Elf_External_Versym *ever;
3327 struct elf_link_hash_entry *weaks;
3328 struct elf_link_hash_entry **nondeflt_vers = NULL;
3329 bfd_size_type nondeflt_vers_cnt = 0;
3330 Elf_Internal_Sym *isymbuf = NULL;
3331 Elf_Internal_Sym *isym;
3332 Elf_Internal_Sym *isymend;
3333 const struct elf_backend_data *bed;
3334 bfd_boolean add_needed;
3335 struct elf_link_hash_table *htab;
3336 bfd_size_type amt;
3337 void *alloc_mark = NULL;
3338 struct bfd_hash_entry **old_table = NULL;
3339 unsigned int old_size = 0;
3340 unsigned int old_count = 0;
3341 void *old_tab = NULL;
3342 void *old_hash;
3343 void *old_ent;
3344 struct bfd_link_hash_entry *old_undefs = NULL;
3345 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3346 long old_dynsymcount = 0;
3347 bfd_size_type old_dynstr_size = 0;
3348 size_t tabsize = 0;
3349 size_t hashsize = 0;
3350
3351 htab = elf_hash_table (info);
3352 bed = get_elf_backend_data (abfd);
3353
3354 if ((abfd->flags & DYNAMIC) == 0)
3355 dynamic = FALSE;
3356 else
3357 {
3358 dynamic = TRUE;
3359
3360 /* You can't use -r against a dynamic object. Also, there's no
3361 hope of using a dynamic object which does not exactly match
3362 the format of the output file. */
3363 if (info->relocatable
3364 || !is_elf_hash_table (htab)
3365 || info->output_bfd->xvec != abfd->xvec)
3366 {
3367 if (info->relocatable)
3368 bfd_set_error (bfd_error_invalid_operation);
3369 else
3370 bfd_set_error (bfd_error_wrong_format);
3371 goto error_return;
3372 }
3373 }
3374
3375 ehdr = elf_elfheader (abfd);
3376 if (info->warn_alternate_em
3377 && bed->elf_machine_code != ehdr->e_machine
3378 && ((bed->elf_machine_alt1 != 0
3379 && ehdr->e_machine == bed->elf_machine_alt1)
3380 || (bed->elf_machine_alt2 != 0
3381 && ehdr->e_machine == bed->elf_machine_alt2)))
3382 info->callbacks->einfo
3383 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3384 ehdr->e_machine, abfd, bed->elf_machine_code);
3385
3386 /* As a GNU extension, any input sections which are named
3387 .gnu.warning.SYMBOL are treated as warning symbols for the given
3388 symbol. This differs from .gnu.warning sections, which generate
3389 warnings when they are included in an output file. */
3390 /* PR 12761: Also generate this warning when building shared libraries. */
3391 if (info->executable || info->shared)
3392 {
3393 asection *s;
3394
3395 for (s = abfd->sections; s != NULL; s = s->next)
3396 {
3397 const char *name;
3398
3399 name = bfd_get_section_name (abfd, s);
3400 if (CONST_STRNEQ (name, ".gnu.warning."))
3401 {
3402 char *msg;
3403 bfd_size_type sz;
3404
3405 name += sizeof ".gnu.warning." - 1;
3406
3407 /* If this is a shared object, then look up the symbol
3408 in the hash table. If it is there, and it is already
3409 been defined, then we will not be using the entry
3410 from this shared object, so we don't need to warn.
3411 FIXME: If we see the definition in a regular object
3412 later on, we will warn, but we shouldn't. The only
3413 fix is to keep track of what warnings we are supposed
3414 to emit, and then handle them all at the end of the
3415 link. */
3416 if (dynamic)
3417 {
3418 struct elf_link_hash_entry *h;
3419
3420 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3421
3422 /* FIXME: What about bfd_link_hash_common? */
3423 if (h != NULL
3424 && (h->root.type == bfd_link_hash_defined
3425 || h->root.type == bfd_link_hash_defweak))
3426 {
3427 /* We don't want to issue this warning. Clobber
3428 the section size so that the warning does not
3429 get copied into the output file. */
3430 s->size = 0;
3431 continue;
3432 }
3433 }
3434
3435 sz = s->size;
3436 msg = (char *) bfd_alloc (abfd, sz + 1);
3437 if (msg == NULL)
3438 goto error_return;
3439
3440 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3441 goto error_return;
3442
3443 msg[sz] = '\0';
3444
3445 if (! (_bfd_generic_link_add_one_symbol
3446 (info, abfd, name, BSF_WARNING, s, 0, msg,
3447 FALSE, bed->collect, NULL)))
3448 goto error_return;
3449
3450 if (! info->relocatable)
3451 {
3452 /* Clobber the section size so that the warning does
3453 not get copied into the output file. */
3454 s->size = 0;
3455
3456 /* Also set SEC_EXCLUDE, so that symbols defined in
3457 the warning section don't get copied to the output. */
3458 s->flags |= SEC_EXCLUDE;
3459 }
3460 }
3461 }
3462 }
3463
3464 add_needed = TRUE;
3465 if (! dynamic)
3466 {
3467 /* If we are creating a shared library, create all the dynamic
3468 sections immediately. We need to attach them to something,
3469 so we attach them to this BFD, provided it is the right
3470 format. FIXME: If there are no input BFD's of the same
3471 format as the output, we can't make a shared library. */
3472 if (info->shared
3473 && is_elf_hash_table (htab)
3474 && info->output_bfd->xvec == abfd->xvec
3475 && !htab->dynamic_sections_created)
3476 {
3477 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3478 goto error_return;
3479 }
3480 }
3481 else if (!is_elf_hash_table (htab))
3482 goto error_return;
3483 else
3484 {
3485 asection *s;
3486 const char *soname = NULL;
3487 char *audit = NULL;
3488 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3489 int ret;
3490
3491 /* ld --just-symbols and dynamic objects don't mix very well.
3492 ld shouldn't allow it. */
3493 if ((s = abfd->sections) != NULL
3494 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3495 abort ();
3496
3497 /* If this dynamic lib was specified on the command line with
3498 --as-needed in effect, then we don't want to add a DT_NEEDED
3499 tag unless the lib is actually used. Similary for libs brought
3500 in by another lib's DT_NEEDED. When --no-add-needed is used
3501 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3502 any dynamic library in DT_NEEDED tags in the dynamic lib at
3503 all. */
3504 add_needed = (elf_dyn_lib_class (abfd)
3505 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3506 | DYN_NO_NEEDED)) == 0;
3507
3508 s = bfd_get_section_by_name (abfd, ".dynamic");
3509 if (s != NULL)
3510 {
3511 bfd_byte *dynbuf;
3512 bfd_byte *extdyn;
3513 unsigned int elfsec;
3514 unsigned long shlink;
3515
3516 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3517 {
3518 error_free_dyn:
3519 free (dynbuf);
3520 goto error_return;
3521 }
3522
3523 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3524 if (elfsec == SHN_BAD)
3525 goto error_free_dyn;
3526 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3527
3528 for (extdyn = dynbuf;
3529 extdyn < dynbuf + s->size;
3530 extdyn += bed->s->sizeof_dyn)
3531 {
3532 Elf_Internal_Dyn dyn;
3533
3534 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3535 if (dyn.d_tag == DT_SONAME)
3536 {
3537 unsigned int tagv = dyn.d_un.d_val;
3538 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3539 if (soname == NULL)
3540 goto error_free_dyn;
3541 }
3542 if (dyn.d_tag == DT_NEEDED)
3543 {
3544 struct bfd_link_needed_list *n, **pn;
3545 char *fnm, *anm;
3546 unsigned int tagv = dyn.d_un.d_val;
3547
3548 amt = sizeof (struct bfd_link_needed_list);
3549 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3550 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3551 if (n == NULL || fnm == NULL)
3552 goto error_free_dyn;
3553 amt = strlen (fnm) + 1;
3554 anm = (char *) bfd_alloc (abfd, amt);
3555 if (anm == NULL)
3556 goto error_free_dyn;
3557 memcpy (anm, fnm, amt);
3558 n->name = anm;
3559 n->by = abfd;
3560 n->next = NULL;
3561 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3562 ;
3563 *pn = n;
3564 }
3565 if (dyn.d_tag == DT_RUNPATH)
3566 {
3567 struct bfd_link_needed_list *n, **pn;
3568 char *fnm, *anm;
3569 unsigned int tagv = dyn.d_un.d_val;
3570
3571 amt = sizeof (struct bfd_link_needed_list);
3572 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3573 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3574 if (n == NULL || fnm == NULL)
3575 goto error_free_dyn;
3576 amt = strlen (fnm) + 1;
3577 anm = (char *) bfd_alloc (abfd, amt);
3578 if (anm == NULL)
3579 goto error_free_dyn;
3580 memcpy (anm, fnm, amt);
3581 n->name = anm;
3582 n->by = abfd;
3583 n->next = NULL;
3584 for (pn = & runpath;
3585 *pn != NULL;
3586 pn = &(*pn)->next)
3587 ;
3588 *pn = n;
3589 }
3590 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3591 if (!runpath && dyn.d_tag == DT_RPATH)
3592 {
3593 struct bfd_link_needed_list *n, **pn;
3594 char *fnm, *anm;
3595 unsigned int tagv = dyn.d_un.d_val;
3596
3597 amt = sizeof (struct bfd_link_needed_list);
3598 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3599 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3600 if (n == NULL || fnm == NULL)
3601 goto error_free_dyn;
3602 amt = strlen (fnm) + 1;
3603 anm = (char *) bfd_alloc (abfd, amt);
3604 if (anm == NULL)
3605 goto error_free_dyn;
3606 memcpy (anm, fnm, amt);
3607 n->name = anm;
3608 n->by = abfd;
3609 n->next = NULL;
3610 for (pn = & rpath;
3611 *pn != NULL;
3612 pn = &(*pn)->next)
3613 ;
3614 *pn = n;
3615 }
3616 if (dyn.d_tag == DT_AUDIT)
3617 {
3618 unsigned int tagv = dyn.d_un.d_val;
3619 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3620 }
3621 }
3622
3623 free (dynbuf);
3624 }
3625
3626 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3627 frees all more recently bfd_alloc'd blocks as well. */
3628 if (runpath)
3629 rpath = runpath;
3630
3631 if (rpath)
3632 {
3633 struct bfd_link_needed_list **pn;
3634 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3635 ;
3636 *pn = rpath;
3637 }
3638
3639 /* We do not want to include any of the sections in a dynamic
3640 object in the output file. We hack by simply clobbering the
3641 list of sections in the BFD. This could be handled more
3642 cleanly by, say, a new section flag; the existing
3643 SEC_NEVER_LOAD flag is not the one we want, because that one
3644 still implies that the section takes up space in the output
3645 file. */
3646 bfd_section_list_clear (abfd);
3647
3648 /* Find the name to use in a DT_NEEDED entry that refers to this
3649 object. If the object has a DT_SONAME entry, we use it.
3650 Otherwise, if the generic linker stuck something in
3651 elf_dt_name, we use that. Otherwise, we just use the file
3652 name. */
3653 if (soname == NULL || *soname == '\0')
3654 {
3655 soname = elf_dt_name (abfd);
3656 if (soname == NULL || *soname == '\0')
3657 soname = bfd_get_filename (abfd);
3658 }
3659
3660 /* Save the SONAME because sometimes the linker emulation code
3661 will need to know it. */
3662 elf_dt_name (abfd) = soname;
3663
3664 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3665 if (ret < 0)
3666 goto error_return;
3667
3668 /* If we have already included this dynamic object in the
3669 link, just ignore it. There is no reason to include a
3670 particular dynamic object more than once. */
3671 if (ret > 0)
3672 return TRUE;
3673
3674 /* Save the DT_AUDIT entry for the linker emulation code. */
3675 elf_dt_audit (abfd) = audit;
3676 }
3677
3678 /* If this is a dynamic object, we always link against the .dynsym
3679 symbol table, not the .symtab symbol table. The dynamic linker
3680 will only see the .dynsym symbol table, so there is no reason to
3681 look at .symtab for a dynamic object. */
3682
3683 if (! dynamic || elf_dynsymtab (abfd) == 0)
3684 hdr = &elf_tdata (abfd)->symtab_hdr;
3685 else
3686 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3687
3688 symcount = hdr->sh_size / bed->s->sizeof_sym;
3689
3690 /* The sh_info field of the symtab header tells us where the
3691 external symbols start. We don't care about the local symbols at
3692 this point. */
3693 if (elf_bad_symtab (abfd))
3694 {
3695 extsymcount = symcount;
3696 extsymoff = 0;
3697 }
3698 else
3699 {
3700 extsymcount = symcount - hdr->sh_info;
3701 extsymoff = hdr->sh_info;
3702 }
3703
3704 sym_hash = NULL;
3705 if (extsymcount != 0)
3706 {
3707 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3708 NULL, NULL, NULL);
3709 if (isymbuf == NULL)
3710 goto error_return;
3711
3712 /* We store a pointer to the hash table entry for each external
3713 symbol. */
3714 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3715 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3716 if (sym_hash == NULL)
3717 goto error_free_sym;
3718 elf_sym_hashes (abfd) = sym_hash;
3719 }
3720
3721 if (dynamic)
3722 {
3723 /* Read in any version definitions. */
3724 if (!_bfd_elf_slurp_version_tables (abfd,
3725 info->default_imported_symver))
3726 goto error_free_sym;
3727
3728 /* Read in the symbol versions, but don't bother to convert them
3729 to internal format. */
3730 if (elf_dynversym (abfd) != 0)
3731 {
3732 Elf_Internal_Shdr *versymhdr;
3733
3734 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3735 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3736 if (extversym == NULL)
3737 goto error_free_sym;
3738 amt = versymhdr->sh_size;
3739 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3740 || bfd_bread (extversym, amt, abfd) != amt)
3741 goto error_free_vers;
3742 }
3743 }
3744
3745 /* If we are loading an as-needed shared lib, save the symbol table
3746 state before we start adding symbols. If the lib turns out
3747 to be unneeded, restore the state. */
3748 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3749 {
3750 unsigned int i;
3751 size_t entsize;
3752
3753 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3754 {
3755 struct bfd_hash_entry *p;
3756 struct elf_link_hash_entry *h;
3757
3758 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3759 {
3760 h = (struct elf_link_hash_entry *) p;
3761 entsize += htab->root.table.entsize;
3762 if (h->root.type == bfd_link_hash_warning)
3763 entsize += htab->root.table.entsize;
3764 }
3765 }
3766
3767 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3768 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3769 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3770 if (old_tab == NULL)
3771 goto error_free_vers;
3772
3773 /* Remember the current objalloc pointer, so that all mem for
3774 symbols added can later be reclaimed. */
3775 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3776 if (alloc_mark == NULL)
3777 goto error_free_vers;
3778
3779 /* Make a special call to the linker "notice" function to
3780 tell it that we are about to handle an as-needed lib. */
3781 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3782 notice_as_needed, 0, NULL))
3783 goto error_free_vers;
3784
3785 /* Clone the symbol table and sym hashes. Remember some
3786 pointers into the symbol table, and dynamic symbol count. */
3787 old_hash = (char *) old_tab + tabsize;
3788 old_ent = (char *) old_hash + hashsize;
3789 memcpy (old_tab, htab->root.table.table, tabsize);
3790 memcpy (old_hash, sym_hash, hashsize);
3791 old_undefs = htab->root.undefs;
3792 old_undefs_tail = htab->root.undefs_tail;
3793 old_table = htab->root.table.table;
3794 old_size = htab->root.table.size;
3795 old_count = htab->root.table.count;
3796 old_dynsymcount = htab->dynsymcount;
3797 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3798
3799 for (i = 0; i < htab->root.table.size; i++)
3800 {
3801 struct bfd_hash_entry *p;
3802 struct elf_link_hash_entry *h;
3803
3804 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3805 {
3806 memcpy (old_ent, p, htab->root.table.entsize);
3807 old_ent = (char *) old_ent + htab->root.table.entsize;
3808 h = (struct elf_link_hash_entry *) p;
3809 if (h->root.type == bfd_link_hash_warning)
3810 {
3811 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3812 old_ent = (char *) old_ent + htab->root.table.entsize;
3813 }
3814 }
3815 }
3816 }
3817
3818 weaks = NULL;
3819 ever = extversym != NULL ? extversym + extsymoff : NULL;
3820 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3821 isym < isymend;
3822 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3823 {
3824 int bind;
3825 bfd_vma value;
3826 asection *sec, *new_sec;
3827 flagword flags;
3828 const char *name;
3829 struct elf_link_hash_entry *h;
3830 struct elf_link_hash_entry *hi;
3831 bfd_boolean definition;
3832 bfd_boolean size_change_ok;
3833 bfd_boolean type_change_ok;
3834 bfd_boolean new_weakdef;
3835 bfd_boolean new_weak;
3836 bfd_boolean old_weak;
3837 bfd_boolean override;
3838 bfd_boolean common;
3839 unsigned int old_alignment;
3840 bfd *old_bfd;
3841
3842 override = FALSE;
3843
3844 flags = BSF_NO_FLAGS;
3845 sec = NULL;
3846 value = isym->st_value;
3847 *sym_hash = NULL;
3848 common = bed->common_definition (isym);
3849
3850 bind = ELF_ST_BIND (isym->st_info);
3851 switch (bind)
3852 {
3853 case STB_LOCAL:
3854 /* This should be impossible, since ELF requires that all
3855 global symbols follow all local symbols, and that sh_info
3856 point to the first global symbol. Unfortunately, Irix 5
3857 screws this up. */
3858 continue;
3859
3860 case STB_GLOBAL:
3861 if (isym->st_shndx != SHN_UNDEF && !common)
3862 flags = BSF_GLOBAL;
3863 break;
3864
3865 case STB_WEAK:
3866 flags = BSF_WEAK;
3867 break;
3868
3869 case STB_GNU_UNIQUE:
3870 flags = BSF_GNU_UNIQUE;
3871 break;
3872
3873 default:
3874 /* Leave it up to the processor backend. */
3875 break;
3876 }
3877
3878 if (isym->st_shndx == SHN_UNDEF)
3879 sec = bfd_und_section_ptr;
3880 else if (isym->st_shndx == SHN_ABS)
3881 sec = bfd_abs_section_ptr;
3882 else if (isym->st_shndx == SHN_COMMON)
3883 {
3884 sec = bfd_com_section_ptr;
3885 /* What ELF calls the size we call the value. What ELF
3886 calls the value we call the alignment. */
3887 value = isym->st_size;
3888 }
3889 else
3890 {
3891 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3892 if (sec == NULL)
3893 sec = bfd_abs_section_ptr;
3894 else if (discarded_section (sec))
3895 {
3896 /* Symbols from discarded section are undefined. We keep
3897 its visibility. */
3898 sec = bfd_und_section_ptr;
3899 isym->st_shndx = SHN_UNDEF;
3900 }
3901 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3902 value -= sec->vma;
3903 }
3904
3905 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3906 isym->st_name);
3907 if (name == NULL)
3908 goto error_free_vers;
3909
3910 if (isym->st_shndx == SHN_COMMON
3911 && (abfd->flags & BFD_PLUGIN) != 0)
3912 {
3913 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3914
3915 if (xc == NULL)
3916 {
3917 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3918 | SEC_EXCLUDE);
3919 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3920 if (xc == NULL)
3921 goto error_free_vers;
3922 }
3923 sec = xc;
3924 }
3925 else if (isym->st_shndx == SHN_COMMON
3926 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3927 && !info->relocatable)
3928 {
3929 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3930
3931 if (tcomm == NULL)
3932 {
3933 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3934 | SEC_LINKER_CREATED);
3935 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3936 if (tcomm == NULL)
3937 goto error_free_vers;
3938 }
3939 sec = tcomm;
3940 }
3941 else if (bed->elf_add_symbol_hook)
3942 {
3943 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3944 &sec, &value))
3945 goto error_free_vers;
3946
3947 /* The hook function sets the name to NULL if this symbol
3948 should be skipped for some reason. */
3949 if (name == NULL)
3950 continue;
3951 }
3952
3953 /* Sanity check that all possibilities were handled. */
3954 if (sec == NULL)
3955 {
3956 bfd_set_error (bfd_error_bad_value);
3957 goto error_free_vers;
3958 }
3959
3960 /* Silently discard TLS symbols from --just-syms. There's
3961 no way to combine a static TLS block with a new TLS block
3962 for this executable. */
3963 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3964 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3965 continue;
3966
3967 if (bfd_is_und_section (sec)
3968 || bfd_is_com_section (sec))
3969 definition = FALSE;
3970 else
3971 definition = TRUE;
3972
3973 size_change_ok = FALSE;
3974 type_change_ok = bed->type_change_ok;
3975 old_weak = FALSE;
3976 old_alignment = 0;
3977 old_bfd = NULL;
3978 new_sec = sec;
3979
3980 if (is_elf_hash_table (htab))
3981 {
3982 Elf_Internal_Versym iver;
3983 unsigned int vernum = 0;
3984 bfd_boolean skip;
3985
3986 if (ever == NULL)
3987 {
3988 if (info->default_imported_symver)
3989 /* Use the default symbol version created earlier. */
3990 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3991 else
3992 iver.vs_vers = 0;
3993 }
3994 else
3995 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3996
3997 vernum = iver.vs_vers & VERSYM_VERSION;
3998
3999 /* If this is a hidden symbol, or if it is not version
4000 1, we append the version name to the symbol name.
4001 However, we do not modify a non-hidden absolute symbol
4002 if it is not a function, because it might be the version
4003 symbol itself. FIXME: What if it isn't? */
4004 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4005 || (vernum > 1
4006 && (!bfd_is_abs_section (sec)
4007 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4008 {
4009 const char *verstr;
4010 size_t namelen, verlen, newlen;
4011 char *newname, *p;
4012
4013 if (isym->st_shndx != SHN_UNDEF)
4014 {
4015 if (vernum > elf_tdata (abfd)->cverdefs)
4016 verstr = NULL;
4017 else if (vernum > 1)
4018 verstr =
4019 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4020 else
4021 verstr = "";
4022
4023 if (verstr == NULL)
4024 {
4025 (*_bfd_error_handler)
4026 (_("%B: %s: invalid version %u (max %d)"),
4027 abfd, name, vernum,
4028 elf_tdata (abfd)->cverdefs);
4029 bfd_set_error (bfd_error_bad_value);
4030 goto error_free_vers;
4031 }
4032 }
4033 else
4034 {
4035 /* We cannot simply test for the number of
4036 entries in the VERNEED section since the
4037 numbers for the needed versions do not start
4038 at 0. */
4039 Elf_Internal_Verneed *t;
4040
4041 verstr = NULL;
4042 for (t = elf_tdata (abfd)->verref;
4043 t != NULL;
4044 t = t->vn_nextref)
4045 {
4046 Elf_Internal_Vernaux *a;
4047
4048 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4049 {
4050 if (a->vna_other == vernum)
4051 {
4052 verstr = a->vna_nodename;
4053 break;
4054 }
4055 }
4056 if (a != NULL)
4057 break;
4058 }
4059 if (verstr == NULL)
4060 {
4061 (*_bfd_error_handler)
4062 (_("%B: %s: invalid needed version %d"),
4063 abfd, name, vernum);
4064 bfd_set_error (bfd_error_bad_value);
4065 goto error_free_vers;
4066 }
4067 }
4068
4069 namelen = strlen (name);
4070 verlen = strlen (verstr);
4071 newlen = namelen + verlen + 2;
4072 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4073 && isym->st_shndx != SHN_UNDEF)
4074 ++newlen;
4075
4076 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4077 if (newname == NULL)
4078 goto error_free_vers;
4079 memcpy (newname, name, namelen);
4080 p = newname + namelen;
4081 *p++ = ELF_VER_CHR;
4082 /* If this is a defined non-hidden version symbol,
4083 we add another @ to the name. This indicates the
4084 default version of the symbol. */
4085 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4086 && isym->st_shndx != SHN_UNDEF)
4087 *p++ = ELF_VER_CHR;
4088 memcpy (p, verstr, verlen + 1);
4089
4090 name = newname;
4091 }
4092
4093 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4094 sym_hash, &old_bfd, &old_weak,
4095 &old_alignment, &skip, &override,
4096 &type_change_ok, &size_change_ok))
4097 goto error_free_vers;
4098
4099 if (skip)
4100 continue;
4101
4102 if (override)
4103 definition = FALSE;
4104
4105 h = *sym_hash;
4106 while (h->root.type == bfd_link_hash_indirect
4107 || h->root.type == bfd_link_hash_warning)
4108 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4109
4110 if (elf_tdata (abfd)->verdef != NULL
4111 && vernum > 1
4112 && definition)
4113 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4114 }
4115
4116 if (! (_bfd_generic_link_add_one_symbol
4117 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4118 (struct bfd_link_hash_entry **) sym_hash)))
4119 goto error_free_vers;
4120
4121 h = *sym_hash;
4122 /* We need to make sure that indirect symbol dynamic flags are
4123 updated. */
4124 hi = h;
4125 while (h->root.type == bfd_link_hash_indirect
4126 || h->root.type == bfd_link_hash_warning)
4127 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4128
4129 *sym_hash = h;
4130
4131 new_weak = (flags & BSF_WEAK) != 0;
4132 new_weakdef = FALSE;
4133 if (dynamic
4134 && definition
4135 && new_weak
4136 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4137 && is_elf_hash_table (htab)
4138 && h->u.weakdef == NULL)
4139 {
4140 /* Keep a list of all weak defined non function symbols from
4141 a dynamic object, using the weakdef field. Later in this
4142 function we will set the weakdef field to the correct
4143 value. We only put non-function symbols from dynamic
4144 objects on this list, because that happens to be the only
4145 time we need to know the normal symbol corresponding to a
4146 weak symbol, and the information is time consuming to
4147 figure out. If the weakdef field is not already NULL,
4148 then this symbol was already defined by some previous
4149 dynamic object, and we will be using that previous
4150 definition anyhow. */
4151
4152 h->u.weakdef = weaks;
4153 weaks = h;
4154 new_weakdef = TRUE;
4155 }
4156
4157 /* Set the alignment of a common symbol. */
4158 if ((common || bfd_is_com_section (sec))
4159 && h->root.type == bfd_link_hash_common)
4160 {
4161 unsigned int align;
4162
4163 if (common)
4164 align = bfd_log2 (isym->st_value);
4165 else
4166 {
4167 /* The new symbol is a common symbol in a shared object.
4168 We need to get the alignment from the section. */
4169 align = new_sec->alignment_power;
4170 }
4171 if (align > old_alignment)
4172 h->root.u.c.p->alignment_power = align;
4173 else
4174 h->root.u.c.p->alignment_power = old_alignment;
4175 }
4176
4177 if (is_elf_hash_table (htab))
4178 {
4179 /* Set a flag in the hash table entry indicating the type of
4180 reference or definition we just found. A dynamic symbol
4181 is one which is referenced or defined by both a regular
4182 object and a shared object. */
4183 bfd_boolean dynsym = FALSE;
4184
4185 /* Plugin symbols aren't normal. Don't set def_regular or
4186 ref_regular for them, or make them dynamic. */
4187 if ((abfd->flags & BFD_PLUGIN) != 0)
4188 ;
4189 else if (! dynamic)
4190 {
4191 if (! definition)
4192 {
4193 h->ref_regular = 1;
4194 if (bind != STB_WEAK)
4195 h->ref_regular_nonweak = 1;
4196 }
4197 else
4198 {
4199 h->def_regular = 1;
4200 if (h->def_dynamic)
4201 {
4202 h->def_dynamic = 0;
4203 h->ref_dynamic = 1;
4204 }
4205 }
4206
4207 /* If the indirect symbol has been forced local, don't
4208 make the real symbol dynamic. */
4209 if ((h == hi || !hi->forced_local)
4210 && (! info->executable
4211 || h->def_dynamic
4212 || h->ref_dynamic))
4213 dynsym = TRUE;
4214 }
4215 else
4216 {
4217 if (! definition)
4218 {
4219 h->ref_dynamic = 1;
4220 hi->ref_dynamic = 1;
4221 }
4222 else
4223 {
4224 h->def_dynamic = 1;
4225 hi->def_dynamic = 1;
4226 }
4227
4228 /* If the indirect symbol has been forced local, don't
4229 make the real symbol dynamic. */
4230 if ((h == hi || !hi->forced_local)
4231 && (h->def_regular
4232 || h->ref_regular
4233 || (h->u.weakdef != NULL
4234 && ! new_weakdef
4235 && h->u.weakdef->dynindx != -1)))
4236 dynsym = TRUE;
4237 }
4238
4239 /* Check to see if we need to add an indirect symbol for
4240 the default name. */
4241 if (definition
4242 || (!override && h->root.type == bfd_link_hash_common))
4243 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4244 sec, value, &old_bfd, &dynsym))
4245 goto error_free_vers;
4246
4247 /* Check the alignment when a common symbol is involved. This
4248 can change when a common symbol is overridden by a normal
4249 definition or a common symbol is ignored due to the old
4250 normal definition. We need to make sure the maximum
4251 alignment is maintained. */
4252 if ((old_alignment || common)
4253 && h->root.type != bfd_link_hash_common)
4254 {
4255 unsigned int common_align;
4256 unsigned int normal_align;
4257 unsigned int symbol_align;
4258 bfd *normal_bfd;
4259 bfd *common_bfd;
4260
4261 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4262 || h->root.type == bfd_link_hash_defweak);
4263
4264 symbol_align = ffs (h->root.u.def.value) - 1;
4265 if (h->root.u.def.section->owner != NULL
4266 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4267 {
4268 normal_align = h->root.u.def.section->alignment_power;
4269 if (normal_align > symbol_align)
4270 normal_align = symbol_align;
4271 }
4272 else
4273 normal_align = symbol_align;
4274
4275 if (old_alignment)
4276 {
4277 common_align = old_alignment;
4278 common_bfd = old_bfd;
4279 normal_bfd = abfd;
4280 }
4281 else
4282 {
4283 common_align = bfd_log2 (isym->st_value);
4284 common_bfd = abfd;
4285 normal_bfd = old_bfd;
4286 }
4287
4288 if (normal_align < common_align)
4289 {
4290 /* PR binutils/2735 */
4291 if (normal_bfd == NULL)
4292 (*_bfd_error_handler)
4293 (_("Warning: alignment %u of common symbol `%s' in %B is"
4294 " greater than the alignment (%u) of its section %A"),
4295 common_bfd, h->root.u.def.section,
4296 1 << common_align, name, 1 << normal_align);
4297 else
4298 (*_bfd_error_handler)
4299 (_("Warning: alignment %u of symbol `%s' in %B"
4300 " is smaller than %u in %B"),
4301 normal_bfd, common_bfd,
4302 1 << normal_align, name, 1 << common_align);
4303 }
4304 }
4305
4306 /* Remember the symbol size if it isn't undefined. */
4307 if (isym->st_size != 0
4308 && isym->st_shndx != SHN_UNDEF
4309 && (definition || h->size == 0))
4310 {
4311 if (h->size != 0
4312 && h->size != isym->st_size
4313 && ! size_change_ok)
4314 (*_bfd_error_handler)
4315 (_("Warning: size of symbol `%s' changed"
4316 " from %lu in %B to %lu in %B"),
4317 old_bfd, abfd,
4318 name, (unsigned long) h->size,
4319 (unsigned long) isym->st_size);
4320
4321 h->size = isym->st_size;
4322 }
4323
4324 /* If this is a common symbol, then we always want H->SIZE
4325 to be the size of the common symbol. The code just above
4326 won't fix the size if a common symbol becomes larger. We
4327 don't warn about a size change here, because that is
4328 covered by --warn-common. Allow changes between different
4329 function types. */
4330 if (h->root.type == bfd_link_hash_common)
4331 h->size = h->root.u.c.size;
4332
4333 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4334 && ((definition && !new_weak)
4335 || (old_weak && h->root.type == bfd_link_hash_common)
4336 || h->type == STT_NOTYPE))
4337 {
4338 unsigned int type = ELF_ST_TYPE (isym->st_info);
4339
4340 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4341 symbol. */
4342 if (type == STT_GNU_IFUNC
4343 && (abfd->flags & DYNAMIC) != 0)
4344 type = STT_FUNC;
4345
4346 if (h->type != type)
4347 {
4348 if (h->type != STT_NOTYPE && ! type_change_ok)
4349 (*_bfd_error_handler)
4350 (_("Warning: type of symbol `%s' changed"
4351 " from %d to %d in %B"),
4352 abfd, name, h->type, type);
4353
4354 h->type = type;
4355 }
4356 }
4357
4358 /* Merge st_other field. */
4359 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4360
4361 /* We don't want to make debug symbol dynamic. */
4362 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4363 dynsym = FALSE;
4364
4365 /* Nor should we make plugin symbols dynamic. */
4366 if ((abfd->flags & BFD_PLUGIN) != 0)
4367 dynsym = FALSE;
4368
4369 if (definition)
4370 {
4371 h->target_internal = isym->st_target_internal;
4372 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4373 }
4374
4375 if (definition && !dynamic)
4376 {
4377 char *p = strchr (name, ELF_VER_CHR);
4378 if (p != NULL && p[1] != ELF_VER_CHR)
4379 {
4380 /* Queue non-default versions so that .symver x, x@FOO
4381 aliases can be checked. */
4382 if (!nondeflt_vers)
4383 {
4384 amt = ((isymend - isym + 1)
4385 * sizeof (struct elf_link_hash_entry *));
4386 nondeflt_vers =
4387 (struct elf_link_hash_entry **) bfd_malloc (amt);
4388 if (!nondeflt_vers)
4389 goto error_free_vers;
4390 }
4391 nondeflt_vers[nondeflt_vers_cnt++] = h;
4392 }
4393 }
4394
4395 if (dynsym && h->dynindx == -1)
4396 {
4397 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4398 goto error_free_vers;
4399 if (h->u.weakdef != NULL
4400 && ! new_weakdef
4401 && h->u.weakdef->dynindx == -1)
4402 {
4403 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4404 goto error_free_vers;
4405 }
4406 }
4407 else if (dynsym && h->dynindx != -1)
4408 /* If the symbol already has a dynamic index, but
4409 visibility says it should not be visible, turn it into
4410 a local symbol. */
4411 switch (ELF_ST_VISIBILITY (h->other))
4412 {
4413 case STV_INTERNAL:
4414 case STV_HIDDEN:
4415 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4416 dynsym = FALSE;
4417 break;
4418 }
4419
4420 /* Don't add DT_NEEDED for references from the dummy bfd. */
4421 if (!add_needed
4422 && definition
4423 && ((dynsym
4424 && h->ref_regular_nonweak
4425 && (old_bfd == NULL
4426 || (old_bfd->flags & BFD_PLUGIN) == 0))
4427 || (h->ref_dynamic_nonweak
4428 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4429 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4430 {
4431 int ret;
4432 const char *soname = elf_dt_name (abfd);
4433
4434 /* A symbol from a library loaded via DT_NEEDED of some
4435 other library is referenced by a regular object.
4436 Add a DT_NEEDED entry for it. Issue an error if
4437 --no-add-needed is used and the reference was not
4438 a weak one. */
4439 if (old_bfd != NULL
4440 && h->ref_regular_nonweak
4441 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4442 {
4443 (*_bfd_error_handler)
4444 (_("%B: undefined reference to symbol '%s'"),
4445 old_bfd, name);
4446 (*_bfd_error_handler)
4447 (_("note: '%s' is defined in DSO %B"
4448 " so try adding it to the linker command line"),
4449 abfd, name);
4450 bfd_set_error (bfd_error_invalid_operation);
4451 goto error_free_vers;
4452 }
4453
4454 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4455 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4456
4457 add_needed = TRUE;
4458 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4459 if (ret < 0)
4460 goto error_free_vers;
4461
4462 BFD_ASSERT (ret == 0);
4463 }
4464 }
4465 }
4466
4467 if (extversym != NULL)
4468 {
4469 free (extversym);
4470 extversym = NULL;
4471 }
4472
4473 if (isymbuf != NULL)
4474 {
4475 free (isymbuf);
4476 isymbuf = NULL;
4477 }
4478
4479 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4480 {
4481 unsigned int i;
4482
4483 /* Restore the symbol table. */
4484 if (bed->as_needed_cleanup)
4485 (*bed->as_needed_cleanup) (abfd, info);
4486 old_hash = (char *) old_tab + tabsize;
4487 old_ent = (char *) old_hash + hashsize;
4488 sym_hash = elf_sym_hashes (abfd);
4489 htab->root.table.table = old_table;
4490 htab->root.table.size = old_size;
4491 htab->root.table.count = old_count;
4492 memcpy (htab->root.table.table, old_tab, tabsize);
4493 memcpy (sym_hash, old_hash, hashsize);
4494 htab->root.undefs = old_undefs;
4495 htab->root.undefs_tail = old_undefs_tail;
4496 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4497 for (i = 0; i < htab->root.table.size; i++)
4498 {
4499 struct bfd_hash_entry *p;
4500 struct elf_link_hash_entry *h;
4501 bfd_size_type size;
4502 unsigned int alignment_power;
4503
4504 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4505 {
4506 h = (struct elf_link_hash_entry *) p;
4507 if (h->root.type == bfd_link_hash_warning)
4508 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4509 if (h->dynindx >= old_dynsymcount
4510 && h->dynstr_index < old_dynstr_size)
4511 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4512
4513 /* Preserve the maximum alignment and size for common
4514 symbols even if this dynamic lib isn't on DT_NEEDED
4515 since it can still be loaded at run time by another
4516 dynamic lib. */
4517 if (h->root.type == bfd_link_hash_common)
4518 {
4519 size = h->root.u.c.size;
4520 alignment_power = h->root.u.c.p->alignment_power;
4521 }
4522 else
4523 {
4524 size = 0;
4525 alignment_power = 0;
4526 }
4527 memcpy (p, old_ent, htab->root.table.entsize);
4528 old_ent = (char *) old_ent + htab->root.table.entsize;
4529 h = (struct elf_link_hash_entry *) p;
4530 if (h->root.type == bfd_link_hash_warning)
4531 {
4532 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4533 old_ent = (char *) old_ent + htab->root.table.entsize;
4534 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4535 }
4536 if (h->root.type == bfd_link_hash_common)
4537 {
4538 if (size > h->root.u.c.size)
4539 h->root.u.c.size = size;
4540 if (alignment_power > h->root.u.c.p->alignment_power)
4541 h->root.u.c.p->alignment_power = alignment_power;
4542 }
4543 }
4544 }
4545
4546 /* Make a special call to the linker "notice" function to
4547 tell it that symbols added for crefs may need to be removed. */
4548 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4549 notice_not_needed, 0, NULL))
4550 goto error_free_vers;
4551
4552 free (old_tab);
4553 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4554 alloc_mark);
4555 if (nondeflt_vers != NULL)
4556 free (nondeflt_vers);
4557 return TRUE;
4558 }
4559
4560 if (old_tab != NULL)
4561 {
4562 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4563 notice_needed, 0, NULL))
4564 goto error_free_vers;
4565 free (old_tab);
4566 old_tab = NULL;
4567 }
4568
4569 /* Now that all the symbols from this input file are created, handle
4570 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4571 if (nondeflt_vers != NULL)
4572 {
4573 bfd_size_type cnt, symidx;
4574
4575 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4576 {
4577 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4578 char *shortname, *p;
4579
4580 p = strchr (h->root.root.string, ELF_VER_CHR);
4581 if (p == NULL
4582 || (h->root.type != bfd_link_hash_defined
4583 && h->root.type != bfd_link_hash_defweak))
4584 continue;
4585
4586 amt = p - h->root.root.string;
4587 shortname = (char *) bfd_malloc (amt + 1);
4588 if (!shortname)
4589 goto error_free_vers;
4590 memcpy (shortname, h->root.root.string, amt);
4591 shortname[amt] = '\0';
4592
4593 hi = (struct elf_link_hash_entry *)
4594 bfd_link_hash_lookup (&htab->root, shortname,
4595 FALSE, FALSE, FALSE);
4596 if (hi != NULL
4597 && hi->root.type == h->root.type
4598 && hi->root.u.def.value == h->root.u.def.value
4599 && hi->root.u.def.section == h->root.u.def.section)
4600 {
4601 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4602 hi->root.type = bfd_link_hash_indirect;
4603 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4604 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4605 sym_hash = elf_sym_hashes (abfd);
4606 if (sym_hash)
4607 for (symidx = 0; symidx < extsymcount; ++symidx)
4608 if (sym_hash[symidx] == hi)
4609 {
4610 sym_hash[symidx] = h;
4611 break;
4612 }
4613 }
4614 free (shortname);
4615 }
4616 free (nondeflt_vers);
4617 nondeflt_vers = NULL;
4618 }
4619
4620 /* Now set the weakdefs field correctly for all the weak defined
4621 symbols we found. The only way to do this is to search all the
4622 symbols. Since we only need the information for non functions in
4623 dynamic objects, that's the only time we actually put anything on
4624 the list WEAKS. We need this information so that if a regular
4625 object refers to a symbol defined weakly in a dynamic object, the
4626 real symbol in the dynamic object is also put in the dynamic
4627 symbols; we also must arrange for both symbols to point to the
4628 same memory location. We could handle the general case of symbol
4629 aliasing, but a general symbol alias can only be generated in
4630 assembler code, handling it correctly would be very time
4631 consuming, and other ELF linkers don't handle general aliasing
4632 either. */
4633 if (weaks != NULL)
4634 {
4635 struct elf_link_hash_entry **hpp;
4636 struct elf_link_hash_entry **hppend;
4637 struct elf_link_hash_entry **sorted_sym_hash;
4638 struct elf_link_hash_entry *h;
4639 size_t sym_count;
4640
4641 /* Since we have to search the whole symbol list for each weak
4642 defined symbol, search time for N weak defined symbols will be
4643 O(N^2). Binary search will cut it down to O(NlogN). */
4644 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4645 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4646 if (sorted_sym_hash == NULL)
4647 goto error_return;
4648 sym_hash = sorted_sym_hash;
4649 hpp = elf_sym_hashes (abfd);
4650 hppend = hpp + extsymcount;
4651 sym_count = 0;
4652 for (; hpp < hppend; hpp++)
4653 {
4654 h = *hpp;
4655 if (h != NULL
4656 && h->root.type == bfd_link_hash_defined
4657 && !bed->is_function_type (h->type))
4658 {
4659 *sym_hash = h;
4660 sym_hash++;
4661 sym_count++;
4662 }
4663 }
4664
4665 qsort (sorted_sym_hash, sym_count,
4666 sizeof (struct elf_link_hash_entry *),
4667 elf_sort_symbol);
4668
4669 while (weaks != NULL)
4670 {
4671 struct elf_link_hash_entry *hlook;
4672 asection *slook;
4673 bfd_vma vlook;
4674 size_t i, j, idx;
4675
4676 hlook = weaks;
4677 weaks = hlook->u.weakdef;
4678 hlook->u.weakdef = NULL;
4679
4680 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4681 || hlook->root.type == bfd_link_hash_defweak
4682 || hlook->root.type == bfd_link_hash_common
4683 || hlook->root.type == bfd_link_hash_indirect);
4684 slook = hlook->root.u.def.section;
4685 vlook = hlook->root.u.def.value;
4686
4687 i = 0;
4688 j = sym_count;
4689 while (i != j)
4690 {
4691 bfd_signed_vma vdiff;
4692 idx = (i + j) / 2;
4693 h = sorted_sym_hash[idx];
4694 vdiff = vlook - h->root.u.def.value;
4695 if (vdiff < 0)
4696 j = idx;
4697 else if (vdiff > 0)
4698 i = idx + 1;
4699 else
4700 {
4701 long sdiff = slook->id - h->root.u.def.section->id;
4702 if (sdiff < 0)
4703 j = idx;
4704 else if (sdiff > 0)
4705 i = idx + 1;
4706 else
4707 break;
4708 }
4709 }
4710
4711 /* We didn't find a value/section match. */
4712 if (i == j)
4713 continue;
4714
4715 /* With multiple aliases, or when the weak symbol is already
4716 strongly defined, we have multiple matching symbols and
4717 the binary search above may land on any of them. Step
4718 one past the matching symbol(s). */
4719 while (++idx != j)
4720 {
4721 h = sorted_sym_hash[idx];
4722 if (h->root.u.def.section != slook
4723 || h->root.u.def.value != vlook)
4724 break;
4725 }
4726
4727 /* Now look back over the aliases. Since we sorted by size
4728 as well as value and section, we'll choose the one with
4729 the largest size. */
4730 while (idx-- != i)
4731 {
4732 h = sorted_sym_hash[idx];
4733
4734 /* Stop if value or section doesn't match. */
4735 if (h->root.u.def.section != slook
4736 || h->root.u.def.value != vlook)
4737 break;
4738 else if (h != hlook)
4739 {
4740 hlook->u.weakdef = h;
4741
4742 /* If the weak definition is in the list of dynamic
4743 symbols, make sure the real definition is put
4744 there as well. */
4745 if (hlook->dynindx != -1 && h->dynindx == -1)
4746 {
4747 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4748 {
4749 err_free_sym_hash:
4750 free (sorted_sym_hash);
4751 goto error_return;
4752 }
4753 }
4754
4755 /* If the real definition is in the list of dynamic
4756 symbols, make sure the weak definition is put
4757 there as well. If we don't do this, then the
4758 dynamic loader might not merge the entries for the
4759 real definition and the weak definition. */
4760 if (h->dynindx != -1 && hlook->dynindx == -1)
4761 {
4762 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4763 goto err_free_sym_hash;
4764 }
4765 break;
4766 }
4767 }
4768 }
4769
4770 free (sorted_sym_hash);
4771 }
4772
4773 if (bed->check_directives
4774 && !(*bed->check_directives) (abfd, info))
4775 return FALSE;
4776
4777 /* If this object is the same format as the output object, and it is
4778 not a shared library, then let the backend look through the
4779 relocs.
4780
4781 This is required to build global offset table entries and to
4782 arrange for dynamic relocs. It is not required for the
4783 particular common case of linking non PIC code, even when linking
4784 against shared libraries, but unfortunately there is no way of
4785 knowing whether an object file has been compiled PIC or not.
4786 Looking through the relocs is not particularly time consuming.
4787 The problem is that we must either (1) keep the relocs in memory,
4788 which causes the linker to require additional runtime memory or
4789 (2) read the relocs twice from the input file, which wastes time.
4790 This would be a good case for using mmap.
4791
4792 I have no idea how to handle linking PIC code into a file of a
4793 different format. It probably can't be done. */
4794 if (! dynamic
4795 && is_elf_hash_table (htab)
4796 && bed->check_relocs != NULL
4797 && elf_object_id (abfd) == elf_hash_table_id (htab)
4798 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4799 {
4800 asection *o;
4801
4802 for (o = abfd->sections; o != NULL; o = o->next)
4803 {
4804 Elf_Internal_Rela *internal_relocs;
4805 bfd_boolean ok;
4806
4807 if ((o->flags & SEC_RELOC) == 0
4808 || o->reloc_count == 0
4809 || ((info->strip == strip_all || info->strip == strip_debugger)
4810 && (o->flags & SEC_DEBUGGING) != 0)
4811 || bfd_is_abs_section (o->output_section))
4812 continue;
4813
4814 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4815 info->keep_memory);
4816 if (internal_relocs == NULL)
4817 goto error_return;
4818
4819 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4820
4821 if (elf_section_data (o)->relocs != internal_relocs)
4822 free (internal_relocs);
4823
4824 if (! ok)
4825 goto error_return;
4826 }
4827 }
4828
4829 /* If this is a non-traditional link, try to optimize the handling
4830 of the .stab/.stabstr sections. */
4831 if (! dynamic
4832 && ! info->traditional_format
4833 && is_elf_hash_table (htab)
4834 && (info->strip != strip_all && info->strip != strip_debugger))
4835 {
4836 asection *stabstr;
4837
4838 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4839 if (stabstr != NULL)
4840 {
4841 bfd_size_type string_offset = 0;
4842 asection *stab;
4843
4844 for (stab = abfd->sections; stab; stab = stab->next)
4845 if (CONST_STRNEQ (stab->name, ".stab")
4846 && (!stab->name[5] ||
4847 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4848 && (stab->flags & SEC_MERGE) == 0
4849 && !bfd_is_abs_section (stab->output_section))
4850 {
4851 struct bfd_elf_section_data *secdata;
4852
4853 secdata = elf_section_data (stab);
4854 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4855 stabstr, &secdata->sec_info,
4856 &string_offset))
4857 goto error_return;
4858 if (secdata->sec_info)
4859 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4860 }
4861 }
4862 }
4863
4864 if (is_elf_hash_table (htab) && add_needed)
4865 {
4866 /* Add this bfd to the loaded list. */
4867 struct elf_link_loaded_list *n;
4868
4869 n = (struct elf_link_loaded_list *)
4870 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4871 if (n == NULL)
4872 goto error_return;
4873 n->abfd = abfd;
4874 n->next = htab->loaded;
4875 htab->loaded = n;
4876 }
4877
4878 return TRUE;
4879
4880 error_free_vers:
4881 if (old_tab != NULL)
4882 free (old_tab);
4883 if (nondeflt_vers != NULL)
4884 free (nondeflt_vers);
4885 if (extversym != NULL)
4886 free (extversym);
4887 error_free_sym:
4888 if (isymbuf != NULL)
4889 free (isymbuf);
4890 error_return:
4891 return FALSE;
4892 }
4893
4894 /* Return the linker hash table entry of a symbol that might be
4895 satisfied by an archive symbol. Return -1 on error. */
4896
4897 struct elf_link_hash_entry *
4898 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4899 struct bfd_link_info *info,
4900 const char *name)
4901 {
4902 struct elf_link_hash_entry *h;
4903 char *p, *copy;
4904 size_t len, first;
4905
4906 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4907 if (h != NULL)
4908 return h;
4909
4910 /* If this is a default version (the name contains @@), look up the
4911 symbol again with only one `@' as well as without the version.
4912 The effect is that references to the symbol with and without the
4913 version will be matched by the default symbol in the archive. */
4914
4915 p = strchr (name, ELF_VER_CHR);
4916 if (p == NULL || p[1] != ELF_VER_CHR)
4917 return h;
4918
4919 /* First check with only one `@'. */
4920 len = strlen (name);
4921 copy = (char *) bfd_alloc (abfd, len);
4922 if (copy == NULL)
4923 return (struct elf_link_hash_entry *) 0 - 1;
4924
4925 first = p - name + 1;
4926 memcpy (copy, name, first);
4927 memcpy (copy + first, name + first + 1, len - first);
4928
4929 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4930 if (h == NULL)
4931 {
4932 /* We also need to check references to the symbol without the
4933 version. */
4934 copy[first - 1] = '\0';
4935 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4936 FALSE, FALSE, TRUE);
4937 }
4938
4939 bfd_release (abfd, copy);
4940 return h;
4941 }
4942
4943 /* Add symbols from an ELF archive file to the linker hash table. We
4944 don't use _bfd_generic_link_add_archive_symbols because of a
4945 problem which arises on UnixWare. The UnixWare libc.so is an
4946 archive which includes an entry libc.so.1 which defines a bunch of
4947 symbols. The libc.so archive also includes a number of other
4948 object files, which also define symbols, some of which are the same
4949 as those defined in libc.so.1. Correct linking requires that we
4950 consider each object file in turn, and include it if it defines any
4951 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4952 this; it looks through the list of undefined symbols, and includes
4953 any object file which defines them. When this algorithm is used on
4954 UnixWare, it winds up pulling in libc.so.1 early and defining a
4955 bunch of symbols. This means that some of the other objects in the
4956 archive are not included in the link, which is incorrect since they
4957 precede libc.so.1 in the archive.
4958
4959 Fortunately, ELF archive handling is simpler than that done by
4960 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4961 oddities. In ELF, if we find a symbol in the archive map, and the
4962 symbol is currently undefined, we know that we must pull in that
4963 object file.
4964
4965 Unfortunately, we do have to make multiple passes over the symbol
4966 table until nothing further is resolved. */
4967
4968 static bfd_boolean
4969 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4970 {
4971 symindex c;
4972 bfd_boolean *defined = NULL;
4973 bfd_boolean *included = NULL;
4974 carsym *symdefs;
4975 bfd_boolean loop;
4976 bfd_size_type amt;
4977 const struct elf_backend_data *bed;
4978 struct elf_link_hash_entry * (*archive_symbol_lookup)
4979 (bfd *, struct bfd_link_info *, const char *);
4980
4981 if (! bfd_has_map (abfd))
4982 {
4983 /* An empty archive is a special case. */
4984 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4985 return TRUE;
4986 bfd_set_error (bfd_error_no_armap);
4987 return FALSE;
4988 }
4989
4990 /* Keep track of all symbols we know to be already defined, and all
4991 files we know to be already included. This is to speed up the
4992 second and subsequent passes. */
4993 c = bfd_ardata (abfd)->symdef_count;
4994 if (c == 0)
4995 return TRUE;
4996 amt = c;
4997 amt *= sizeof (bfd_boolean);
4998 defined = (bfd_boolean *) bfd_zmalloc (amt);
4999 included = (bfd_boolean *) bfd_zmalloc (amt);
5000 if (defined == NULL || included == NULL)
5001 goto error_return;
5002
5003 symdefs = bfd_ardata (abfd)->symdefs;
5004 bed = get_elf_backend_data (abfd);
5005 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5006
5007 do
5008 {
5009 file_ptr last;
5010 symindex i;
5011 carsym *symdef;
5012 carsym *symdefend;
5013
5014 loop = FALSE;
5015 last = -1;
5016
5017 symdef = symdefs;
5018 symdefend = symdef + c;
5019 for (i = 0; symdef < symdefend; symdef++, i++)
5020 {
5021 struct elf_link_hash_entry *h;
5022 bfd *element;
5023 struct bfd_link_hash_entry *undefs_tail;
5024 symindex mark;
5025
5026 if (defined[i] || included[i])
5027 continue;
5028 if (symdef->file_offset == last)
5029 {
5030 included[i] = TRUE;
5031 continue;
5032 }
5033
5034 h = archive_symbol_lookup (abfd, info, symdef->name);
5035 if (h == (struct elf_link_hash_entry *) 0 - 1)
5036 goto error_return;
5037
5038 if (h == NULL)
5039 continue;
5040
5041 if (h->root.type == bfd_link_hash_common)
5042 {
5043 /* We currently have a common symbol. The archive map contains
5044 a reference to this symbol, so we may want to include it. We
5045 only want to include it however, if this archive element
5046 contains a definition of the symbol, not just another common
5047 declaration of it.
5048
5049 Unfortunately some archivers (including GNU ar) will put
5050 declarations of common symbols into their archive maps, as
5051 well as real definitions, so we cannot just go by the archive
5052 map alone. Instead we must read in the element's symbol
5053 table and check that to see what kind of symbol definition
5054 this is. */
5055 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5056 continue;
5057 }
5058 else if (h->root.type != bfd_link_hash_undefined)
5059 {
5060 if (h->root.type != bfd_link_hash_undefweak)
5061 defined[i] = TRUE;
5062 continue;
5063 }
5064
5065 /* We need to include this archive member. */
5066 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5067 if (element == NULL)
5068 goto error_return;
5069
5070 if (! bfd_check_format (element, bfd_object))
5071 goto error_return;
5072
5073 /* Doublecheck that we have not included this object
5074 already--it should be impossible, but there may be
5075 something wrong with the archive. */
5076 if (element->archive_pass != 0)
5077 {
5078 bfd_set_error (bfd_error_bad_value);
5079 goto error_return;
5080 }
5081 element->archive_pass = 1;
5082
5083 undefs_tail = info->hash->undefs_tail;
5084
5085 if (!(*info->callbacks
5086 ->add_archive_element) (info, element, symdef->name, &element))
5087 goto error_return;
5088 if (!bfd_link_add_symbols (element, info))
5089 goto error_return;
5090
5091 /* If there are any new undefined symbols, we need to make
5092 another pass through the archive in order to see whether
5093 they can be defined. FIXME: This isn't perfect, because
5094 common symbols wind up on undefs_tail and because an
5095 undefined symbol which is defined later on in this pass
5096 does not require another pass. This isn't a bug, but it
5097 does make the code less efficient than it could be. */
5098 if (undefs_tail != info->hash->undefs_tail)
5099 loop = TRUE;
5100
5101 /* Look backward to mark all symbols from this object file
5102 which we have already seen in this pass. */
5103 mark = i;
5104 do
5105 {
5106 included[mark] = TRUE;
5107 if (mark == 0)
5108 break;
5109 --mark;
5110 }
5111 while (symdefs[mark].file_offset == symdef->file_offset);
5112
5113 /* We mark subsequent symbols from this object file as we go
5114 on through the loop. */
5115 last = symdef->file_offset;
5116 }
5117 }
5118 while (loop);
5119
5120 free (defined);
5121 free (included);
5122
5123 return TRUE;
5124
5125 error_return:
5126 if (defined != NULL)
5127 free (defined);
5128 if (included != NULL)
5129 free (included);
5130 return FALSE;
5131 }
5132
5133 /* Given an ELF BFD, add symbols to the global hash table as
5134 appropriate. */
5135
5136 bfd_boolean
5137 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5138 {
5139 switch (bfd_get_format (abfd))
5140 {
5141 case bfd_object:
5142 return elf_link_add_object_symbols (abfd, info);
5143 case bfd_archive:
5144 return elf_link_add_archive_symbols (abfd, info);
5145 default:
5146 bfd_set_error (bfd_error_wrong_format);
5147 return FALSE;
5148 }
5149 }
5150 \f
5151 struct hash_codes_info
5152 {
5153 unsigned long *hashcodes;
5154 bfd_boolean error;
5155 };
5156
5157 /* This function will be called though elf_link_hash_traverse to store
5158 all hash value of the exported symbols in an array. */
5159
5160 static bfd_boolean
5161 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5162 {
5163 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5164 const char *name;
5165 char *p;
5166 unsigned long ha;
5167 char *alc = NULL;
5168
5169 /* Ignore indirect symbols. These are added by the versioning code. */
5170 if (h->dynindx == -1)
5171 return TRUE;
5172
5173 name = h->root.root.string;
5174 p = strchr (name, ELF_VER_CHR);
5175 if (p != NULL)
5176 {
5177 alc = (char *) bfd_malloc (p - name + 1);
5178 if (alc == NULL)
5179 {
5180 inf->error = TRUE;
5181 return FALSE;
5182 }
5183 memcpy (alc, name, p - name);
5184 alc[p - name] = '\0';
5185 name = alc;
5186 }
5187
5188 /* Compute the hash value. */
5189 ha = bfd_elf_hash (name);
5190
5191 /* Store the found hash value in the array given as the argument. */
5192 *(inf->hashcodes)++ = ha;
5193
5194 /* And store it in the struct so that we can put it in the hash table
5195 later. */
5196 h->u.elf_hash_value = ha;
5197
5198 if (alc != NULL)
5199 free (alc);
5200
5201 return TRUE;
5202 }
5203
5204 struct collect_gnu_hash_codes
5205 {
5206 bfd *output_bfd;
5207 const struct elf_backend_data *bed;
5208 unsigned long int nsyms;
5209 unsigned long int maskbits;
5210 unsigned long int *hashcodes;
5211 unsigned long int *hashval;
5212 unsigned long int *indx;
5213 unsigned long int *counts;
5214 bfd_vma *bitmask;
5215 bfd_byte *contents;
5216 long int min_dynindx;
5217 unsigned long int bucketcount;
5218 unsigned long int symindx;
5219 long int local_indx;
5220 long int shift1, shift2;
5221 unsigned long int mask;
5222 bfd_boolean error;
5223 };
5224
5225 /* This function will be called though elf_link_hash_traverse to store
5226 all hash value of the exported symbols in an array. */
5227
5228 static bfd_boolean
5229 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5230 {
5231 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5232 const char *name;
5233 char *p;
5234 unsigned long ha;
5235 char *alc = NULL;
5236
5237 /* Ignore indirect symbols. These are added by the versioning code. */
5238 if (h->dynindx == -1)
5239 return TRUE;
5240
5241 /* Ignore also local symbols and undefined symbols. */
5242 if (! (*s->bed->elf_hash_symbol) (h))
5243 return TRUE;
5244
5245 name = h->root.root.string;
5246 p = strchr (name, ELF_VER_CHR);
5247 if (p != NULL)
5248 {
5249 alc = (char *) bfd_malloc (p - name + 1);
5250 if (alc == NULL)
5251 {
5252 s->error = TRUE;
5253 return FALSE;
5254 }
5255 memcpy (alc, name, p - name);
5256 alc[p - name] = '\0';
5257 name = alc;
5258 }
5259
5260 /* Compute the hash value. */
5261 ha = bfd_elf_gnu_hash (name);
5262
5263 /* Store the found hash value in the array for compute_bucket_count,
5264 and also for .dynsym reordering purposes. */
5265 s->hashcodes[s->nsyms] = ha;
5266 s->hashval[h->dynindx] = ha;
5267 ++s->nsyms;
5268 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5269 s->min_dynindx = h->dynindx;
5270
5271 if (alc != NULL)
5272 free (alc);
5273
5274 return TRUE;
5275 }
5276
5277 /* This function will be called though elf_link_hash_traverse to do
5278 final dynaminc symbol renumbering. */
5279
5280 static bfd_boolean
5281 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5282 {
5283 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5284 unsigned long int bucket;
5285 unsigned long int val;
5286
5287 /* Ignore indirect symbols. */
5288 if (h->dynindx == -1)
5289 return TRUE;
5290
5291 /* Ignore also local symbols and undefined symbols. */
5292 if (! (*s->bed->elf_hash_symbol) (h))
5293 {
5294 if (h->dynindx >= s->min_dynindx)
5295 h->dynindx = s->local_indx++;
5296 return TRUE;
5297 }
5298
5299 bucket = s->hashval[h->dynindx] % s->bucketcount;
5300 val = (s->hashval[h->dynindx] >> s->shift1)
5301 & ((s->maskbits >> s->shift1) - 1);
5302 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5303 s->bitmask[val]
5304 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5305 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5306 if (s->counts[bucket] == 1)
5307 /* Last element terminates the chain. */
5308 val |= 1;
5309 bfd_put_32 (s->output_bfd, val,
5310 s->contents + (s->indx[bucket] - s->symindx) * 4);
5311 --s->counts[bucket];
5312 h->dynindx = s->indx[bucket]++;
5313 return TRUE;
5314 }
5315
5316 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5317
5318 bfd_boolean
5319 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5320 {
5321 return !(h->forced_local
5322 || h->root.type == bfd_link_hash_undefined
5323 || h->root.type == bfd_link_hash_undefweak
5324 || ((h->root.type == bfd_link_hash_defined
5325 || h->root.type == bfd_link_hash_defweak)
5326 && h->root.u.def.section->output_section == NULL));
5327 }
5328
5329 /* Array used to determine the number of hash table buckets to use
5330 based on the number of symbols there are. If there are fewer than
5331 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5332 fewer than 37 we use 17 buckets, and so forth. We never use more
5333 than 32771 buckets. */
5334
5335 static const size_t elf_buckets[] =
5336 {
5337 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5338 16411, 32771, 0
5339 };
5340
5341 /* Compute bucket count for hashing table. We do not use a static set
5342 of possible tables sizes anymore. Instead we determine for all
5343 possible reasonable sizes of the table the outcome (i.e., the
5344 number of collisions etc) and choose the best solution. The
5345 weighting functions are not too simple to allow the table to grow
5346 without bounds. Instead one of the weighting factors is the size.
5347 Therefore the result is always a good payoff between few collisions
5348 (= short chain lengths) and table size. */
5349 static size_t
5350 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5351 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5352 unsigned long int nsyms,
5353 int gnu_hash)
5354 {
5355 size_t best_size = 0;
5356 unsigned long int i;
5357
5358 /* We have a problem here. The following code to optimize the table
5359 size requires an integer type with more the 32 bits. If
5360 BFD_HOST_U_64_BIT is set we know about such a type. */
5361 #ifdef BFD_HOST_U_64_BIT
5362 if (info->optimize)
5363 {
5364 size_t minsize;
5365 size_t maxsize;
5366 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5367 bfd *dynobj = elf_hash_table (info)->dynobj;
5368 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5369 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5370 unsigned long int *counts;
5371 bfd_size_type amt;
5372 unsigned int no_improvement_count = 0;
5373
5374 /* Possible optimization parameters: if we have NSYMS symbols we say
5375 that the hashing table must at least have NSYMS/4 and at most
5376 2*NSYMS buckets. */
5377 minsize = nsyms / 4;
5378 if (minsize == 0)
5379 minsize = 1;
5380 best_size = maxsize = nsyms * 2;
5381 if (gnu_hash)
5382 {
5383 if (minsize < 2)
5384 minsize = 2;
5385 if ((best_size & 31) == 0)
5386 ++best_size;
5387 }
5388
5389 /* Create array where we count the collisions in. We must use bfd_malloc
5390 since the size could be large. */
5391 amt = maxsize;
5392 amt *= sizeof (unsigned long int);
5393 counts = (unsigned long int *) bfd_malloc (amt);
5394 if (counts == NULL)
5395 return 0;
5396
5397 /* Compute the "optimal" size for the hash table. The criteria is a
5398 minimal chain length. The minor criteria is (of course) the size
5399 of the table. */
5400 for (i = minsize; i < maxsize; ++i)
5401 {
5402 /* Walk through the array of hashcodes and count the collisions. */
5403 BFD_HOST_U_64_BIT max;
5404 unsigned long int j;
5405 unsigned long int fact;
5406
5407 if (gnu_hash && (i & 31) == 0)
5408 continue;
5409
5410 memset (counts, '\0', i * sizeof (unsigned long int));
5411
5412 /* Determine how often each hash bucket is used. */
5413 for (j = 0; j < nsyms; ++j)
5414 ++counts[hashcodes[j] % i];
5415
5416 /* For the weight function we need some information about the
5417 pagesize on the target. This is information need not be 100%
5418 accurate. Since this information is not available (so far) we
5419 define it here to a reasonable default value. If it is crucial
5420 to have a better value some day simply define this value. */
5421 # ifndef BFD_TARGET_PAGESIZE
5422 # define BFD_TARGET_PAGESIZE (4096)
5423 # endif
5424
5425 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5426 and the chains. */
5427 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5428
5429 # if 1
5430 /* Variant 1: optimize for short chains. We add the squares
5431 of all the chain lengths (which favors many small chain
5432 over a few long chains). */
5433 for (j = 0; j < i; ++j)
5434 max += counts[j] * counts[j];
5435
5436 /* This adds penalties for the overall size of the table. */
5437 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5438 max *= fact * fact;
5439 # else
5440 /* Variant 2: Optimize a lot more for small table. Here we
5441 also add squares of the size but we also add penalties for
5442 empty slots (the +1 term). */
5443 for (j = 0; j < i; ++j)
5444 max += (1 + counts[j]) * (1 + counts[j]);
5445
5446 /* The overall size of the table is considered, but not as
5447 strong as in variant 1, where it is squared. */
5448 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5449 max *= fact;
5450 # endif
5451
5452 /* Compare with current best results. */
5453 if (max < best_chlen)
5454 {
5455 best_chlen = max;
5456 best_size = i;
5457 no_improvement_count = 0;
5458 }
5459 /* PR 11843: Avoid futile long searches for the best bucket size
5460 when there are a large number of symbols. */
5461 else if (++no_improvement_count == 100)
5462 break;
5463 }
5464
5465 free (counts);
5466 }
5467 else
5468 #endif /* defined (BFD_HOST_U_64_BIT) */
5469 {
5470 /* This is the fallback solution if no 64bit type is available or if we
5471 are not supposed to spend much time on optimizations. We select the
5472 bucket count using a fixed set of numbers. */
5473 for (i = 0; elf_buckets[i] != 0; i++)
5474 {
5475 best_size = elf_buckets[i];
5476 if (nsyms < elf_buckets[i + 1])
5477 break;
5478 }
5479 if (gnu_hash && best_size < 2)
5480 best_size = 2;
5481 }
5482
5483 return best_size;
5484 }
5485
5486 /* Size any SHT_GROUP section for ld -r. */
5487
5488 bfd_boolean
5489 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5490 {
5491 bfd *ibfd;
5492
5493 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5494 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5495 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5496 return FALSE;
5497 return TRUE;
5498 }
5499
5500 /* Set a default stack segment size. The value in INFO wins. If it
5501 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5502 undefined it is initialized. */
5503
5504 bfd_boolean
5505 bfd_elf_stack_segment_size (bfd *output_bfd,
5506 struct bfd_link_info *info,
5507 const char *legacy_symbol,
5508 bfd_vma default_size)
5509 {
5510 struct elf_link_hash_entry *h = NULL;
5511
5512 /* Look for legacy symbol. */
5513 if (legacy_symbol)
5514 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5515 FALSE, FALSE, FALSE);
5516 if (h && (h->root.type == bfd_link_hash_defined
5517 || h->root.type == bfd_link_hash_defweak)
5518 && h->def_regular
5519 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5520 {
5521 /* The symbol has no type if specified on the command line. */
5522 h->type = STT_OBJECT;
5523 if (info->stacksize)
5524 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5525 output_bfd, legacy_symbol);
5526 else if (h->root.u.def.section != bfd_abs_section_ptr)
5527 (*_bfd_error_handler) (_("%B: %s not absolute"),
5528 output_bfd, legacy_symbol);
5529 else
5530 info->stacksize = h->root.u.def.value;
5531 }
5532
5533 if (!info->stacksize)
5534 /* If the user didn't set a size, or explicitly inhibit the
5535 size, set it now. */
5536 info->stacksize = default_size;
5537
5538 /* Provide the legacy symbol, if it is referenced. */
5539 if (h && (h->root.type == bfd_link_hash_undefined
5540 || h->root.type == bfd_link_hash_undefweak))
5541 {
5542 struct bfd_link_hash_entry *bh = NULL;
5543
5544 if (!(_bfd_generic_link_add_one_symbol
5545 (info, output_bfd, legacy_symbol,
5546 BSF_GLOBAL, bfd_abs_section_ptr,
5547 info->stacksize >= 0 ? info->stacksize : 0,
5548 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5549 return FALSE;
5550
5551 h = (struct elf_link_hash_entry *) bh;
5552 h->def_regular = 1;
5553 h->type = STT_OBJECT;
5554 }
5555
5556 return TRUE;
5557 }
5558
5559 /* Set up the sizes and contents of the ELF dynamic sections. This is
5560 called by the ELF linker emulation before_allocation routine. We
5561 must set the sizes of the sections before the linker sets the
5562 addresses of the various sections. */
5563
5564 bfd_boolean
5565 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5566 const char *soname,
5567 const char *rpath,
5568 const char *filter_shlib,
5569 const char *audit,
5570 const char *depaudit,
5571 const char * const *auxiliary_filters,
5572 struct bfd_link_info *info,
5573 asection **sinterpptr)
5574 {
5575 bfd_size_type soname_indx;
5576 bfd *dynobj;
5577 const struct elf_backend_data *bed;
5578 struct elf_info_failed asvinfo;
5579
5580 *sinterpptr = NULL;
5581
5582 soname_indx = (bfd_size_type) -1;
5583
5584 if (!is_elf_hash_table (info->hash))
5585 return TRUE;
5586
5587 bed = get_elf_backend_data (output_bfd);
5588
5589 /* Any syms created from now on start with -1 in
5590 got.refcount/offset and plt.refcount/offset. */
5591 elf_hash_table (info)->init_got_refcount
5592 = elf_hash_table (info)->init_got_offset;
5593 elf_hash_table (info)->init_plt_refcount
5594 = elf_hash_table (info)->init_plt_offset;
5595
5596 if (info->relocatable
5597 && !_bfd_elf_size_group_sections (info))
5598 return FALSE;
5599
5600 /* The backend may have to create some sections regardless of whether
5601 we're dynamic or not. */
5602 if (bed->elf_backend_always_size_sections
5603 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5604 return FALSE;
5605
5606 /* Determine any GNU_STACK segment requirements, after the backend
5607 has had a chance to set a default segment size. */
5608 if (info->execstack)
5609 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5610 else if (info->noexecstack)
5611 elf_stack_flags (output_bfd) = PF_R | PF_W;
5612 else
5613 {
5614 bfd *inputobj;
5615 asection *notesec = NULL;
5616 int exec = 0;
5617
5618 for (inputobj = info->input_bfds;
5619 inputobj;
5620 inputobj = inputobj->link_next)
5621 {
5622 asection *s;
5623
5624 if (inputobj->flags
5625 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5626 continue;
5627 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5628 if (s)
5629 {
5630 if (s->flags & SEC_CODE)
5631 exec = PF_X;
5632 notesec = s;
5633 }
5634 else if (bed->default_execstack)
5635 exec = PF_X;
5636 }
5637 if (notesec || info->stacksize > 0)
5638 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5639 if (notesec && exec && info->relocatable
5640 && notesec->output_section != bfd_abs_section_ptr)
5641 notesec->output_section->flags |= SEC_CODE;
5642 }
5643
5644 dynobj = elf_hash_table (info)->dynobj;
5645
5646 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5647 {
5648 struct elf_info_failed eif;
5649 struct elf_link_hash_entry *h;
5650 asection *dynstr;
5651 struct bfd_elf_version_tree *t;
5652 struct bfd_elf_version_expr *d;
5653 asection *s;
5654 bfd_boolean all_defined;
5655
5656 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5657 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5658
5659 if (soname != NULL)
5660 {
5661 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5662 soname, TRUE);
5663 if (soname_indx == (bfd_size_type) -1
5664 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5665 return FALSE;
5666 }
5667
5668 if (info->symbolic)
5669 {
5670 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5671 return FALSE;
5672 info->flags |= DF_SYMBOLIC;
5673 }
5674
5675 if (rpath != NULL)
5676 {
5677 bfd_size_type indx;
5678 bfd_vma tag;
5679
5680 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5681 TRUE);
5682 if (indx == (bfd_size_type) -1)
5683 return FALSE;
5684
5685 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5686 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5687 return FALSE;
5688 }
5689
5690 if (filter_shlib != NULL)
5691 {
5692 bfd_size_type indx;
5693
5694 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5695 filter_shlib, TRUE);
5696 if (indx == (bfd_size_type) -1
5697 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5698 return FALSE;
5699 }
5700
5701 if (auxiliary_filters != NULL)
5702 {
5703 const char * const *p;
5704
5705 for (p = auxiliary_filters; *p != NULL; p++)
5706 {
5707 bfd_size_type indx;
5708
5709 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5710 *p, TRUE);
5711 if (indx == (bfd_size_type) -1
5712 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5713 return FALSE;
5714 }
5715 }
5716
5717 if (audit != NULL)
5718 {
5719 bfd_size_type indx;
5720
5721 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5722 TRUE);
5723 if (indx == (bfd_size_type) -1
5724 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5725 return FALSE;
5726 }
5727
5728 if (depaudit != NULL)
5729 {
5730 bfd_size_type indx;
5731
5732 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5733 TRUE);
5734 if (indx == (bfd_size_type) -1
5735 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5736 return FALSE;
5737 }
5738
5739 eif.info = info;
5740 eif.failed = FALSE;
5741
5742 /* If we are supposed to export all symbols into the dynamic symbol
5743 table (this is not the normal case), then do so. */
5744 if (info->export_dynamic
5745 || (info->executable && info->dynamic))
5746 {
5747 elf_link_hash_traverse (elf_hash_table (info),
5748 _bfd_elf_export_symbol,
5749 &eif);
5750 if (eif.failed)
5751 return FALSE;
5752 }
5753
5754 /* Make all global versions with definition. */
5755 for (t = info->version_info; t != NULL; t = t->next)
5756 for (d = t->globals.list; d != NULL; d = d->next)
5757 if (!d->symver && d->literal)
5758 {
5759 const char *verstr, *name;
5760 size_t namelen, verlen, newlen;
5761 char *newname, *p, leading_char;
5762 struct elf_link_hash_entry *newh;
5763
5764 leading_char = bfd_get_symbol_leading_char (output_bfd);
5765 name = d->pattern;
5766 namelen = strlen (name) + (leading_char != '\0');
5767 verstr = t->name;
5768 verlen = strlen (verstr);
5769 newlen = namelen + verlen + 3;
5770
5771 newname = (char *) bfd_malloc (newlen);
5772 if (newname == NULL)
5773 return FALSE;
5774 newname[0] = leading_char;
5775 memcpy (newname + (leading_char != '\0'), name, namelen);
5776
5777 /* Check the hidden versioned definition. */
5778 p = newname + namelen;
5779 *p++ = ELF_VER_CHR;
5780 memcpy (p, verstr, verlen + 1);
5781 newh = elf_link_hash_lookup (elf_hash_table (info),
5782 newname, FALSE, FALSE,
5783 FALSE);
5784 if (newh == NULL
5785 || (newh->root.type != bfd_link_hash_defined
5786 && newh->root.type != bfd_link_hash_defweak))
5787 {
5788 /* Check the default versioned definition. */
5789 *p++ = ELF_VER_CHR;
5790 memcpy (p, verstr, verlen + 1);
5791 newh = elf_link_hash_lookup (elf_hash_table (info),
5792 newname, FALSE, FALSE,
5793 FALSE);
5794 }
5795 free (newname);
5796
5797 /* Mark this version if there is a definition and it is
5798 not defined in a shared object. */
5799 if (newh != NULL
5800 && !newh->def_dynamic
5801 && (newh->root.type == bfd_link_hash_defined
5802 || newh->root.type == bfd_link_hash_defweak))
5803 d->symver = 1;
5804 }
5805
5806 /* Attach all the symbols to their version information. */
5807 asvinfo.info = info;
5808 asvinfo.failed = FALSE;
5809
5810 elf_link_hash_traverse (elf_hash_table (info),
5811 _bfd_elf_link_assign_sym_version,
5812 &asvinfo);
5813 if (asvinfo.failed)
5814 return FALSE;
5815
5816 if (!info->allow_undefined_version)
5817 {
5818 /* Check if all global versions have a definition. */
5819 all_defined = TRUE;
5820 for (t = info->version_info; t != NULL; t = t->next)
5821 for (d = t->globals.list; d != NULL; d = d->next)
5822 if (d->literal && !d->symver && !d->script)
5823 {
5824 (*_bfd_error_handler)
5825 (_("%s: undefined version: %s"),
5826 d->pattern, t->name);
5827 all_defined = FALSE;
5828 }
5829
5830 if (!all_defined)
5831 {
5832 bfd_set_error (bfd_error_bad_value);
5833 return FALSE;
5834 }
5835 }
5836
5837 /* Find all symbols which were defined in a dynamic object and make
5838 the backend pick a reasonable value for them. */
5839 elf_link_hash_traverse (elf_hash_table (info),
5840 _bfd_elf_adjust_dynamic_symbol,
5841 &eif);
5842 if (eif.failed)
5843 return FALSE;
5844
5845 /* Add some entries to the .dynamic section. We fill in some of the
5846 values later, in bfd_elf_final_link, but we must add the entries
5847 now so that we know the final size of the .dynamic section. */
5848
5849 /* If there are initialization and/or finalization functions to
5850 call then add the corresponding DT_INIT/DT_FINI entries. */
5851 h = (info->init_function
5852 ? elf_link_hash_lookup (elf_hash_table (info),
5853 info->init_function, FALSE,
5854 FALSE, FALSE)
5855 : NULL);
5856 if (h != NULL
5857 && (h->ref_regular
5858 || h->def_regular))
5859 {
5860 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5861 return FALSE;
5862 }
5863 h = (info->fini_function
5864 ? elf_link_hash_lookup (elf_hash_table (info),
5865 info->fini_function, FALSE,
5866 FALSE, FALSE)
5867 : NULL);
5868 if (h != NULL
5869 && (h->ref_regular
5870 || h->def_regular))
5871 {
5872 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5873 return FALSE;
5874 }
5875
5876 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5877 if (s != NULL && s->linker_has_input)
5878 {
5879 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5880 if (! info->executable)
5881 {
5882 bfd *sub;
5883 asection *o;
5884
5885 for (sub = info->input_bfds; sub != NULL;
5886 sub = sub->link_next)
5887 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5888 for (o = sub->sections; o != NULL; o = o->next)
5889 if (elf_section_data (o)->this_hdr.sh_type
5890 == SHT_PREINIT_ARRAY)
5891 {
5892 (*_bfd_error_handler)
5893 (_("%B: .preinit_array section is not allowed in DSO"),
5894 sub);
5895 break;
5896 }
5897
5898 bfd_set_error (bfd_error_nonrepresentable_section);
5899 return FALSE;
5900 }
5901
5902 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5903 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5904 return FALSE;
5905 }
5906 s = bfd_get_section_by_name (output_bfd, ".init_array");
5907 if (s != NULL && s->linker_has_input)
5908 {
5909 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5910 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5911 return FALSE;
5912 }
5913 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5914 if (s != NULL && s->linker_has_input)
5915 {
5916 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5917 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5918 return FALSE;
5919 }
5920
5921 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5922 /* If .dynstr is excluded from the link, we don't want any of
5923 these tags. Strictly, we should be checking each section
5924 individually; This quick check covers for the case where
5925 someone does a /DISCARD/ : { *(*) }. */
5926 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5927 {
5928 bfd_size_type strsize;
5929
5930 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5931 if ((info->emit_hash
5932 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5933 || (info->emit_gnu_hash
5934 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5935 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5936 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5937 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5938 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5939 bed->s->sizeof_sym))
5940 return FALSE;
5941 }
5942 }
5943
5944 /* The backend must work out the sizes of all the other dynamic
5945 sections. */
5946 if (dynobj != NULL
5947 && bed->elf_backend_size_dynamic_sections != NULL
5948 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5949 return FALSE;
5950
5951 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5952 return FALSE;
5953
5954 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5955 {
5956 unsigned long section_sym_count;
5957 struct bfd_elf_version_tree *verdefs;
5958 asection *s;
5959
5960 /* Set up the version definition section. */
5961 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5962 BFD_ASSERT (s != NULL);
5963
5964 /* We may have created additional version definitions if we are
5965 just linking a regular application. */
5966 verdefs = info->version_info;
5967
5968 /* Skip anonymous version tag. */
5969 if (verdefs != NULL && verdefs->vernum == 0)
5970 verdefs = verdefs->next;
5971
5972 if (verdefs == NULL && !info->create_default_symver)
5973 s->flags |= SEC_EXCLUDE;
5974 else
5975 {
5976 unsigned int cdefs;
5977 bfd_size_type size;
5978 struct bfd_elf_version_tree *t;
5979 bfd_byte *p;
5980 Elf_Internal_Verdef def;
5981 Elf_Internal_Verdaux defaux;
5982 struct bfd_link_hash_entry *bh;
5983 struct elf_link_hash_entry *h;
5984 const char *name;
5985
5986 cdefs = 0;
5987 size = 0;
5988
5989 /* Make space for the base version. */
5990 size += sizeof (Elf_External_Verdef);
5991 size += sizeof (Elf_External_Verdaux);
5992 ++cdefs;
5993
5994 /* Make space for the default version. */
5995 if (info->create_default_symver)
5996 {
5997 size += sizeof (Elf_External_Verdef);
5998 ++cdefs;
5999 }
6000
6001 for (t = verdefs; t != NULL; t = t->next)
6002 {
6003 struct bfd_elf_version_deps *n;
6004
6005 /* Don't emit base version twice. */
6006 if (t->vernum == 0)
6007 continue;
6008
6009 size += sizeof (Elf_External_Verdef);
6010 size += sizeof (Elf_External_Verdaux);
6011 ++cdefs;
6012
6013 for (n = t->deps; n != NULL; n = n->next)
6014 size += sizeof (Elf_External_Verdaux);
6015 }
6016
6017 s->size = size;
6018 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6019 if (s->contents == NULL && s->size != 0)
6020 return FALSE;
6021
6022 /* Fill in the version definition section. */
6023
6024 p = s->contents;
6025
6026 def.vd_version = VER_DEF_CURRENT;
6027 def.vd_flags = VER_FLG_BASE;
6028 def.vd_ndx = 1;
6029 def.vd_cnt = 1;
6030 if (info->create_default_symver)
6031 {
6032 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6033 def.vd_next = sizeof (Elf_External_Verdef);
6034 }
6035 else
6036 {
6037 def.vd_aux = sizeof (Elf_External_Verdef);
6038 def.vd_next = (sizeof (Elf_External_Verdef)
6039 + sizeof (Elf_External_Verdaux));
6040 }
6041
6042 if (soname_indx != (bfd_size_type) -1)
6043 {
6044 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6045 soname_indx);
6046 def.vd_hash = bfd_elf_hash (soname);
6047 defaux.vda_name = soname_indx;
6048 name = soname;
6049 }
6050 else
6051 {
6052 bfd_size_type indx;
6053
6054 name = lbasename (output_bfd->filename);
6055 def.vd_hash = bfd_elf_hash (name);
6056 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6057 name, FALSE);
6058 if (indx == (bfd_size_type) -1)
6059 return FALSE;
6060 defaux.vda_name = indx;
6061 }
6062 defaux.vda_next = 0;
6063
6064 _bfd_elf_swap_verdef_out (output_bfd, &def,
6065 (Elf_External_Verdef *) p);
6066 p += sizeof (Elf_External_Verdef);
6067 if (info->create_default_symver)
6068 {
6069 /* Add a symbol representing this version. */
6070 bh = NULL;
6071 if (! (_bfd_generic_link_add_one_symbol
6072 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6073 0, NULL, FALSE,
6074 get_elf_backend_data (dynobj)->collect, &bh)))
6075 return FALSE;
6076 h = (struct elf_link_hash_entry *) bh;
6077 h->non_elf = 0;
6078 h->def_regular = 1;
6079 h->type = STT_OBJECT;
6080 h->verinfo.vertree = NULL;
6081
6082 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6083 return FALSE;
6084
6085 /* Create a duplicate of the base version with the same
6086 aux block, but different flags. */
6087 def.vd_flags = 0;
6088 def.vd_ndx = 2;
6089 def.vd_aux = sizeof (Elf_External_Verdef);
6090 if (verdefs)
6091 def.vd_next = (sizeof (Elf_External_Verdef)
6092 + sizeof (Elf_External_Verdaux));
6093 else
6094 def.vd_next = 0;
6095 _bfd_elf_swap_verdef_out (output_bfd, &def,
6096 (Elf_External_Verdef *) p);
6097 p += sizeof (Elf_External_Verdef);
6098 }
6099 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6100 (Elf_External_Verdaux *) p);
6101 p += sizeof (Elf_External_Verdaux);
6102
6103 for (t = verdefs; t != NULL; t = t->next)
6104 {
6105 unsigned int cdeps;
6106 struct bfd_elf_version_deps *n;
6107
6108 /* Don't emit the base version twice. */
6109 if (t->vernum == 0)
6110 continue;
6111
6112 cdeps = 0;
6113 for (n = t->deps; n != NULL; n = n->next)
6114 ++cdeps;
6115
6116 /* Add a symbol representing this version. */
6117 bh = NULL;
6118 if (! (_bfd_generic_link_add_one_symbol
6119 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6120 0, NULL, FALSE,
6121 get_elf_backend_data (dynobj)->collect, &bh)))
6122 return FALSE;
6123 h = (struct elf_link_hash_entry *) bh;
6124 h->non_elf = 0;
6125 h->def_regular = 1;
6126 h->type = STT_OBJECT;
6127 h->verinfo.vertree = t;
6128
6129 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6130 return FALSE;
6131
6132 def.vd_version = VER_DEF_CURRENT;
6133 def.vd_flags = 0;
6134 if (t->globals.list == NULL
6135 && t->locals.list == NULL
6136 && ! t->used)
6137 def.vd_flags |= VER_FLG_WEAK;
6138 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6139 def.vd_cnt = cdeps + 1;
6140 def.vd_hash = bfd_elf_hash (t->name);
6141 def.vd_aux = sizeof (Elf_External_Verdef);
6142 def.vd_next = 0;
6143
6144 /* If a basever node is next, it *must* be the last node in
6145 the chain, otherwise Verdef construction breaks. */
6146 if (t->next != NULL && t->next->vernum == 0)
6147 BFD_ASSERT (t->next->next == NULL);
6148
6149 if (t->next != NULL && t->next->vernum != 0)
6150 def.vd_next = (sizeof (Elf_External_Verdef)
6151 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6152
6153 _bfd_elf_swap_verdef_out (output_bfd, &def,
6154 (Elf_External_Verdef *) p);
6155 p += sizeof (Elf_External_Verdef);
6156
6157 defaux.vda_name = h->dynstr_index;
6158 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6159 h->dynstr_index);
6160 defaux.vda_next = 0;
6161 if (t->deps != NULL)
6162 defaux.vda_next = sizeof (Elf_External_Verdaux);
6163 t->name_indx = defaux.vda_name;
6164
6165 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6166 (Elf_External_Verdaux *) p);
6167 p += sizeof (Elf_External_Verdaux);
6168
6169 for (n = t->deps; n != NULL; n = n->next)
6170 {
6171 if (n->version_needed == NULL)
6172 {
6173 /* This can happen if there was an error in the
6174 version script. */
6175 defaux.vda_name = 0;
6176 }
6177 else
6178 {
6179 defaux.vda_name = n->version_needed->name_indx;
6180 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6181 defaux.vda_name);
6182 }
6183 if (n->next == NULL)
6184 defaux.vda_next = 0;
6185 else
6186 defaux.vda_next = sizeof (Elf_External_Verdaux);
6187
6188 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6189 (Elf_External_Verdaux *) p);
6190 p += sizeof (Elf_External_Verdaux);
6191 }
6192 }
6193
6194 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6195 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6196 return FALSE;
6197
6198 elf_tdata (output_bfd)->cverdefs = cdefs;
6199 }
6200
6201 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6202 {
6203 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6204 return FALSE;
6205 }
6206 else if (info->flags & DF_BIND_NOW)
6207 {
6208 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6209 return FALSE;
6210 }
6211
6212 if (info->flags_1)
6213 {
6214 if (info->executable)
6215 info->flags_1 &= ~ (DF_1_INITFIRST
6216 | DF_1_NODELETE
6217 | DF_1_NOOPEN);
6218 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6219 return FALSE;
6220 }
6221
6222 /* Work out the size of the version reference section. */
6223
6224 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6225 BFD_ASSERT (s != NULL);
6226 {
6227 struct elf_find_verdep_info sinfo;
6228
6229 sinfo.info = info;
6230 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6231 if (sinfo.vers == 0)
6232 sinfo.vers = 1;
6233 sinfo.failed = FALSE;
6234
6235 elf_link_hash_traverse (elf_hash_table (info),
6236 _bfd_elf_link_find_version_dependencies,
6237 &sinfo);
6238 if (sinfo.failed)
6239 return FALSE;
6240
6241 if (elf_tdata (output_bfd)->verref == NULL)
6242 s->flags |= SEC_EXCLUDE;
6243 else
6244 {
6245 Elf_Internal_Verneed *t;
6246 unsigned int size;
6247 unsigned int crefs;
6248 bfd_byte *p;
6249
6250 /* Build the version dependency section. */
6251 size = 0;
6252 crefs = 0;
6253 for (t = elf_tdata (output_bfd)->verref;
6254 t != NULL;
6255 t = t->vn_nextref)
6256 {
6257 Elf_Internal_Vernaux *a;
6258
6259 size += sizeof (Elf_External_Verneed);
6260 ++crefs;
6261 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6262 size += sizeof (Elf_External_Vernaux);
6263 }
6264
6265 s->size = size;
6266 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6267 if (s->contents == NULL)
6268 return FALSE;
6269
6270 p = s->contents;
6271 for (t = elf_tdata (output_bfd)->verref;
6272 t != NULL;
6273 t = t->vn_nextref)
6274 {
6275 unsigned int caux;
6276 Elf_Internal_Vernaux *a;
6277 bfd_size_type indx;
6278
6279 caux = 0;
6280 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6281 ++caux;
6282
6283 t->vn_version = VER_NEED_CURRENT;
6284 t->vn_cnt = caux;
6285 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6286 elf_dt_name (t->vn_bfd) != NULL
6287 ? elf_dt_name (t->vn_bfd)
6288 : lbasename (t->vn_bfd->filename),
6289 FALSE);
6290 if (indx == (bfd_size_type) -1)
6291 return FALSE;
6292 t->vn_file = indx;
6293 t->vn_aux = sizeof (Elf_External_Verneed);
6294 if (t->vn_nextref == NULL)
6295 t->vn_next = 0;
6296 else
6297 t->vn_next = (sizeof (Elf_External_Verneed)
6298 + caux * sizeof (Elf_External_Vernaux));
6299
6300 _bfd_elf_swap_verneed_out (output_bfd, t,
6301 (Elf_External_Verneed *) p);
6302 p += sizeof (Elf_External_Verneed);
6303
6304 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6305 {
6306 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6307 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6308 a->vna_nodename, FALSE);
6309 if (indx == (bfd_size_type) -1)
6310 return FALSE;
6311 a->vna_name = indx;
6312 if (a->vna_nextptr == NULL)
6313 a->vna_next = 0;
6314 else
6315 a->vna_next = sizeof (Elf_External_Vernaux);
6316
6317 _bfd_elf_swap_vernaux_out (output_bfd, a,
6318 (Elf_External_Vernaux *) p);
6319 p += sizeof (Elf_External_Vernaux);
6320 }
6321 }
6322
6323 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6324 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6325 return FALSE;
6326
6327 elf_tdata (output_bfd)->cverrefs = crefs;
6328 }
6329 }
6330
6331 if ((elf_tdata (output_bfd)->cverrefs == 0
6332 && elf_tdata (output_bfd)->cverdefs == 0)
6333 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6334 &section_sym_count) == 0)
6335 {
6336 s = bfd_get_linker_section (dynobj, ".gnu.version");
6337 s->flags |= SEC_EXCLUDE;
6338 }
6339 }
6340 return TRUE;
6341 }
6342
6343 /* Find the first non-excluded output section. We'll use its
6344 section symbol for some emitted relocs. */
6345 void
6346 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6347 {
6348 asection *s;
6349
6350 for (s = output_bfd->sections; s != NULL; s = s->next)
6351 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6352 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6353 {
6354 elf_hash_table (info)->text_index_section = s;
6355 break;
6356 }
6357 }
6358
6359 /* Find two non-excluded output sections, one for code, one for data.
6360 We'll use their section symbols for some emitted relocs. */
6361 void
6362 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6363 {
6364 asection *s;
6365
6366 /* Data first, since setting text_index_section changes
6367 _bfd_elf_link_omit_section_dynsym. */
6368 for (s = output_bfd->sections; s != NULL; s = s->next)
6369 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6370 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6371 {
6372 elf_hash_table (info)->data_index_section = s;
6373 break;
6374 }
6375
6376 for (s = output_bfd->sections; s != NULL; s = s->next)
6377 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6378 == (SEC_ALLOC | SEC_READONLY))
6379 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6380 {
6381 elf_hash_table (info)->text_index_section = s;
6382 break;
6383 }
6384
6385 if (elf_hash_table (info)->text_index_section == NULL)
6386 elf_hash_table (info)->text_index_section
6387 = elf_hash_table (info)->data_index_section;
6388 }
6389
6390 bfd_boolean
6391 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6392 {
6393 const struct elf_backend_data *bed;
6394
6395 if (!is_elf_hash_table (info->hash))
6396 return TRUE;
6397
6398 bed = get_elf_backend_data (output_bfd);
6399 (*bed->elf_backend_init_index_section) (output_bfd, info);
6400
6401 if (elf_hash_table (info)->dynamic_sections_created)
6402 {
6403 bfd *dynobj;
6404 asection *s;
6405 bfd_size_type dynsymcount;
6406 unsigned long section_sym_count;
6407 unsigned int dtagcount;
6408
6409 dynobj = elf_hash_table (info)->dynobj;
6410
6411 /* Assign dynsym indicies. In a shared library we generate a
6412 section symbol for each output section, which come first.
6413 Next come all of the back-end allocated local dynamic syms,
6414 followed by the rest of the global symbols. */
6415
6416 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6417 &section_sym_count);
6418
6419 /* Work out the size of the symbol version section. */
6420 s = bfd_get_linker_section (dynobj, ".gnu.version");
6421 BFD_ASSERT (s != NULL);
6422 if (dynsymcount != 0
6423 && (s->flags & SEC_EXCLUDE) == 0)
6424 {
6425 s->size = dynsymcount * sizeof (Elf_External_Versym);
6426 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6427 if (s->contents == NULL)
6428 return FALSE;
6429
6430 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6431 return FALSE;
6432 }
6433
6434 /* Set the size of the .dynsym and .hash sections. We counted
6435 the number of dynamic symbols in elf_link_add_object_symbols.
6436 We will build the contents of .dynsym and .hash when we build
6437 the final symbol table, because until then we do not know the
6438 correct value to give the symbols. We built the .dynstr
6439 section as we went along in elf_link_add_object_symbols. */
6440 s = bfd_get_linker_section (dynobj, ".dynsym");
6441 BFD_ASSERT (s != NULL);
6442 s->size = dynsymcount * bed->s->sizeof_sym;
6443
6444 if (dynsymcount != 0)
6445 {
6446 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6447 if (s->contents == NULL)
6448 return FALSE;
6449
6450 /* The first entry in .dynsym is a dummy symbol.
6451 Clear all the section syms, in case we don't output them all. */
6452 ++section_sym_count;
6453 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6454 }
6455
6456 elf_hash_table (info)->bucketcount = 0;
6457
6458 /* Compute the size of the hashing table. As a side effect this
6459 computes the hash values for all the names we export. */
6460 if (info->emit_hash)
6461 {
6462 unsigned long int *hashcodes;
6463 struct hash_codes_info hashinf;
6464 bfd_size_type amt;
6465 unsigned long int nsyms;
6466 size_t bucketcount;
6467 size_t hash_entry_size;
6468
6469 /* Compute the hash values for all exported symbols. At the same
6470 time store the values in an array so that we could use them for
6471 optimizations. */
6472 amt = dynsymcount * sizeof (unsigned long int);
6473 hashcodes = (unsigned long int *) bfd_malloc (amt);
6474 if (hashcodes == NULL)
6475 return FALSE;
6476 hashinf.hashcodes = hashcodes;
6477 hashinf.error = FALSE;
6478
6479 /* Put all hash values in HASHCODES. */
6480 elf_link_hash_traverse (elf_hash_table (info),
6481 elf_collect_hash_codes, &hashinf);
6482 if (hashinf.error)
6483 {
6484 free (hashcodes);
6485 return FALSE;
6486 }
6487
6488 nsyms = hashinf.hashcodes - hashcodes;
6489 bucketcount
6490 = compute_bucket_count (info, hashcodes, nsyms, 0);
6491 free (hashcodes);
6492
6493 if (bucketcount == 0)
6494 return FALSE;
6495
6496 elf_hash_table (info)->bucketcount = bucketcount;
6497
6498 s = bfd_get_linker_section (dynobj, ".hash");
6499 BFD_ASSERT (s != NULL);
6500 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6501 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6502 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6503 if (s->contents == NULL)
6504 return FALSE;
6505
6506 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6507 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6508 s->contents + hash_entry_size);
6509 }
6510
6511 if (info->emit_gnu_hash)
6512 {
6513 size_t i, cnt;
6514 unsigned char *contents;
6515 struct collect_gnu_hash_codes cinfo;
6516 bfd_size_type amt;
6517 size_t bucketcount;
6518
6519 memset (&cinfo, 0, sizeof (cinfo));
6520
6521 /* Compute the hash values for all exported symbols. At the same
6522 time store the values in an array so that we could use them for
6523 optimizations. */
6524 amt = dynsymcount * 2 * sizeof (unsigned long int);
6525 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6526 if (cinfo.hashcodes == NULL)
6527 return FALSE;
6528
6529 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6530 cinfo.min_dynindx = -1;
6531 cinfo.output_bfd = output_bfd;
6532 cinfo.bed = bed;
6533
6534 /* Put all hash values in HASHCODES. */
6535 elf_link_hash_traverse (elf_hash_table (info),
6536 elf_collect_gnu_hash_codes, &cinfo);
6537 if (cinfo.error)
6538 {
6539 free (cinfo.hashcodes);
6540 return FALSE;
6541 }
6542
6543 bucketcount
6544 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6545
6546 if (bucketcount == 0)
6547 {
6548 free (cinfo.hashcodes);
6549 return FALSE;
6550 }
6551
6552 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6553 BFD_ASSERT (s != NULL);
6554
6555 if (cinfo.nsyms == 0)
6556 {
6557 /* Empty .gnu.hash section is special. */
6558 BFD_ASSERT (cinfo.min_dynindx == -1);
6559 free (cinfo.hashcodes);
6560 s->size = 5 * 4 + bed->s->arch_size / 8;
6561 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6562 if (contents == NULL)
6563 return FALSE;
6564 s->contents = contents;
6565 /* 1 empty bucket. */
6566 bfd_put_32 (output_bfd, 1, contents);
6567 /* SYMIDX above the special symbol 0. */
6568 bfd_put_32 (output_bfd, 1, contents + 4);
6569 /* Just one word for bitmask. */
6570 bfd_put_32 (output_bfd, 1, contents + 8);
6571 /* Only hash fn bloom filter. */
6572 bfd_put_32 (output_bfd, 0, contents + 12);
6573 /* No hashes are valid - empty bitmask. */
6574 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6575 /* No hashes in the only bucket. */
6576 bfd_put_32 (output_bfd, 0,
6577 contents + 16 + bed->s->arch_size / 8);
6578 }
6579 else
6580 {
6581 unsigned long int maskwords, maskbitslog2, x;
6582 BFD_ASSERT (cinfo.min_dynindx != -1);
6583
6584 x = cinfo.nsyms;
6585 maskbitslog2 = 1;
6586 while ((x >>= 1) != 0)
6587 ++maskbitslog2;
6588 if (maskbitslog2 < 3)
6589 maskbitslog2 = 5;
6590 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6591 maskbitslog2 = maskbitslog2 + 3;
6592 else
6593 maskbitslog2 = maskbitslog2 + 2;
6594 if (bed->s->arch_size == 64)
6595 {
6596 if (maskbitslog2 == 5)
6597 maskbitslog2 = 6;
6598 cinfo.shift1 = 6;
6599 }
6600 else
6601 cinfo.shift1 = 5;
6602 cinfo.mask = (1 << cinfo.shift1) - 1;
6603 cinfo.shift2 = maskbitslog2;
6604 cinfo.maskbits = 1 << maskbitslog2;
6605 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6606 amt = bucketcount * sizeof (unsigned long int) * 2;
6607 amt += maskwords * sizeof (bfd_vma);
6608 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6609 if (cinfo.bitmask == NULL)
6610 {
6611 free (cinfo.hashcodes);
6612 return FALSE;
6613 }
6614
6615 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6616 cinfo.indx = cinfo.counts + bucketcount;
6617 cinfo.symindx = dynsymcount - cinfo.nsyms;
6618 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6619
6620 /* Determine how often each hash bucket is used. */
6621 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6622 for (i = 0; i < cinfo.nsyms; ++i)
6623 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6624
6625 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6626 if (cinfo.counts[i] != 0)
6627 {
6628 cinfo.indx[i] = cnt;
6629 cnt += cinfo.counts[i];
6630 }
6631 BFD_ASSERT (cnt == dynsymcount);
6632 cinfo.bucketcount = bucketcount;
6633 cinfo.local_indx = cinfo.min_dynindx;
6634
6635 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6636 s->size += cinfo.maskbits / 8;
6637 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6638 if (contents == NULL)
6639 {
6640 free (cinfo.bitmask);
6641 free (cinfo.hashcodes);
6642 return FALSE;
6643 }
6644
6645 s->contents = contents;
6646 bfd_put_32 (output_bfd, bucketcount, contents);
6647 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6648 bfd_put_32 (output_bfd, maskwords, contents + 8);
6649 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6650 contents += 16 + cinfo.maskbits / 8;
6651
6652 for (i = 0; i < bucketcount; ++i)
6653 {
6654 if (cinfo.counts[i] == 0)
6655 bfd_put_32 (output_bfd, 0, contents);
6656 else
6657 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6658 contents += 4;
6659 }
6660
6661 cinfo.contents = contents;
6662
6663 /* Renumber dynamic symbols, populate .gnu.hash section. */
6664 elf_link_hash_traverse (elf_hash_table (info),
6665 elf_renumber_gnu_hash_syms, &cinfo);
6666
6667 contents = s->contents + 16;
6668 for (i = 0; i < maskwords; ++i)
6669 {
6670 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6671 contents);
6672 contents += bed->s->arch_size / 8;
6673 }
6674
6675 free (cinfo.bitmask);
6676 free (cinfo.hashcodes);
6677 }
6678 }
6679
6680 s = bfd_get_linker_section (dynobj, ".dynstr");
6681 BFD_ASSERT (s != NULL);
6682
6683 elf_finalize_dynstr (output_bfd, info);
6684
6685 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6686
6687 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6688 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6689 return FALSE;
6690 }
6691
6692 return TRUE;
6693 }
6694 \f
6695 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6696
6697 static void
6698 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6699 asection *sec)
6700 {
6701 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6702 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6703 }
6704
6705 /* Finish SHF_MERGE section merging. */
6706
6707 bfd_boolean
6708 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6709 {
6710 bfd *ibfd;
6711 asection *sec;
6712
6713 if (!is_elf_hash_table (info->hash))
6714 return FALSE;
6715
6716 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6717 if ((ibfd->flags & DYNAMIC) == 0)
6718 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6719 if ((sec->flags & SEC_MERGE) != 0
6720 && !bfd_is_abs_section (sec->output_section))
6721 {
6722 struct bfd_elf_section_data *secdata;
6723
6724 secdata = elf_section_data (sec);
6725 if (! _bfd_add_merge_section (abfd,
6726 &elf_hash_table (info)->merge_info,
6727 sec, &secdata->sec_info))
6728 return FALSE;
6729 else if (secdata->sec_info)
6730 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6731 }
6732
6733 if (elf_hash_table (info)->merge_info != NULL)
6734 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6735 merge_sections_remove_hook);
6736 return TRUE;
6737 }
6738
6739 /* Create an entry in an ELF linker hash table. */
6740
6741 struct bfd_hash_entry *
6742 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6743 struct bfd_hash_table *table,
6744 const char *string)
6745 {
6746 /* Allocate the structure if it has not already been allocated by a
6747 subclass. */
6748 if (entry == NULL)
6749 {
6750 entry = (struct bfd_hash_entry *)
6751 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6752 if (entry == NULL)
6753 return entry;
6754 }
6755
6756 /* Call the allocation method of the superclass. */
6757 entry = _bfd_link_hash_newfunc (entry, table, string);
6758 if (entry != NULL)
6759 {
6760 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6761 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6762
6763 /* Set local fields. */
6764 ret->indx = -1;
6765 ret->dynindx = -1;
6766 ret->got = htab->init_got_refcount;
6767 ret->plt = htab->init_plt_refcount;
6768 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6769 - offsetof (struct elf_link_hash_entry, size)));
6770 /* Assume that we have been called by a non-ELF symbol reader.
6771 This flag is then reset by the code which reads an ELF input
6772 file. This ensures that a symbol created by a non-ELF symbol
6773 reader will have the flag set correctly. */
6774 ret->non_elf = 1;
6775 }
6776
6777 return entry;
6778 }
6779
6780 /* Copy data from an indirect symbol to its direct symbol, hiding the
6781 old indirect symbol. Also used for copying flags to a weakdef. */
6782
6783 void
6784 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6785 struct elf_link_hash_entry *dir,
6786 struct elf_link_hash_entry *ind)
6787 {
6788 struct elf_link_hash_table *htab;
6789
6790 /* Copy down any references that we may have already seen to the
6791 symbol which just became indirect. */
6792
6793 dir->ref_dynamic |= ind->ref_dynamic;
6794 dir->ref_regular |= ind->ref_regular;
6795 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6796 dir->non_got_ref |= ind->non_got_ref;
6797 dir->needs_plt |= ind->needs_plt;
6798 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6799
6800 if (ind->root.type != bfd_link_hash_indirect)
6801 return;
6802
6803 /* Copy over the global and procedure linkage table refcount entries.
6804 These may have been already set up by a check_relocs routine. */
6805 htab = elf_hash_table (info);
6806 if (ind->got.refcount > htab->init_got_refcount.refcount)
6807 {
6808 if (dir->got.refcount < 0)
6809 dir->got.refcount = 0;
6810 dir->got.refcount += ind->got.refcount;
6811 ind->got.refcount = htab->init_got_refcount.refcount;
6812 }
6813
6814 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6815 {
6816 if (dir->plt.refcount < 0)
6817 dir->plt.refcount = 0;
6818 dir->plt.refcount += ind->plt.refcount;
6819 ind->plt.refcount = htab->init_plt_refcount.refcount;
6820 }
6821
6822 if (ind->dynindx != -1)
6823 {
6824 if (dir->dynindx != -1)
6825 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6826 dir->dynindx = ind->dynindx;
6827 dir->dynstr_index = ind->dynstr_index;
6828 ind->dynindx = -1;
6829 ind->dynstr_index = 0;
6830 }
6831 }
6832
6833 void
6834 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6835 struct elf_link_hash_entry *h,
6836 bfd_boolean force_local)
6837 {
6838 /* STT_GNU_IFUNC symbol must go through PLT. */
6839 if (h->type != STT_GNU_IFUNC)
6840 {
6841 h->plt = elf_hash_table (info)->init_plt_offset;
6842 h->needs_plt = 0;
6843 }
6844 if (force_local)
6845 {
6846 h->forced_local = 1;
6847 if (h->dynindx != -1)
6848 {
6849 h->dynindx = -1;
6850 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6851 h->dynstr_index);
6852 }
6853 }
6854 }
6855
6856 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6857 caller. */
6858
6859 bfd_boolean
6860 _bfd_elf_link_hash_table_init
6861 (struct elf_link_hash_table *table,
6862 bfd *abfd,
6863 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6864 struct bfd_hash_table *,
6865 const char *),
6866 unsigned int entsize,
6867 enum elf_target_id target_id)
6868 {
6869 bfd_boolean ret;
6870 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6871
6872 table->init_got_refcount.refcount = can_refcount - 1;
6873 table->init_plt_refcount.refcount = can_refcount - 1;
6874 table->init_got_offset.offset = -(bfd_vma) 1;
6875 table->init_plt_offset.offset = -(bfd_vma) 1;
6876 /* The first dynamic symbol is a dummy. */
6877 table->dynsymcount = 1;
6878
6879 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6880
6881 table->root.type = bfd_link_elf_hash_table;
6882 table->hash_table_id = target_id;
6883
6884 return ret;
6885 }
6886
6887 /* Create an ELF linker hash table. */
6888
6889 struct bfd_link_hash_table *
6890 _bfd_elf_link_hash_table_create (bfd *abfd)
6891 {
6892 struct elf_link_hash_table *ret;
6893 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6894
6895 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6896 if (ret == NULL)
6897 return NULL;
6898
6899 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6900 sizeof (struct elf_link_hash_entry),
6901 GENERIC_ELF_DATA))
6902 {
6903 free (ret);
6904 return NULL;
6905 }
6906
6907 return &ret->root;
6908 }
6909
6910 /* Destroy an ELF linker hash table. */
6911
6912 void
6913 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6914 {
6915 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6916 if (htab->dynstr != NULL)
6917 _bfd_elf_strtab_free (htab->dynstr);
6918 _bfd_merge_sections_free (htab->merge_info);
6919 _bfd_generic_link_hash_table_free (hash);
6920 }
6921
6922 /* This is a hook for the ELF emulation code in the generic linker to
6923 tell the backend linker what file name to use for the DT_NEEDED
6924 entry for a dynamic object. */
6925
6926 void
6927 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6928 {
6929 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6930 && bfd_get_format (abfd) == bfd_object)
6931 elf_dt_name (abfd) = name;
6932 }
6933
6934 int
6935 bfd_elf_get_dyn_lib_class (bfd *abfd)
6936 {
6937 int lib_class;
6938 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6939 && bfd_get_format (abfd) == bfd_object)
6940 lib_class = elf_dyn_lib_class (abfd);
6941 else
6942 lib_class = 0;
6943 return lib_class;
6944 }
6945
6946 void
6947 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6948 {
6949 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6950 && bfd_get_format (abfd) == bfd_object)
6951 elf_dyn_lib_class (abfd) = lib_class;
6952 }
6953
6954 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6955 the linker ELF emulation code. */
6956
6957 struct bfd_link_needed_list *
6958 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6959 struct bfd_link_info *info)
6960 {
6961 if (! is_elf_hash_table (info->hash))
6962 return NULL;
6963 return elf_hash_table (info)->needed;
6964 }
6965
6966 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6967 hook for the linker ELF emulation code. */
6968
6969 struct bfd_link_needed_list *
6970 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6971 struct bfd_link_info *info)
6972 {
6973 if (! is_elf_hash_table (info->hash))
6974 return NULL;
6975 return elf_hash_table (info)->runpath;
6976 }
6977
6978 /* Get the name actually used for a dynamic object for a link. This
6979 is the SONAME entry if there is one. Otherwise, it is the string
6980 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6981
6982 const char *
6983 bfd_elf_get_dt_soname (bfd *abfd)
6984 {
6985 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6986 && bfd_get_format (abfd) == bfd_object)
6987 return elf_dt_name (abfd);
6988 return NULL;
6989 }
6990
6991 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6992 the ELF linker emulation code. */
6993
6994 bfd_boolean
6995 bfd_elf_get_bfd_needed_list (bfd *abfd,
6996 struct bfd_link_needed_list **pneeded)
6997 {
6998 asection *s;
6999 bfd_byte *dynbuf = NULL;
7000 unsigned int elfsec;
7001 unsigned long shlink;
7002 bfd_byte *extdyn, *extdynend;
7003 size_t extdynsize;
7004 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7005
7006 *pneeded = NULL;
7007
7008 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7009 || bfd_get_format (abfd) != bfd_object)
7010 return TRUE;
7011
7012 s = bfd_get_section_by_name (abfd, ".dynamic");
7013 if (s == NULL || s->size == 0)
7014 return TRUE;
7015
7016 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7017 goto error_return;
7018
7019 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7020 if (elfsec == SHN_BAD)
7021 goto error_return;
7022
7023 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7024
7025 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7026 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7027
7028 extdyn = dynbuf;
7029 extdynend = extdyn + s->size;
7030 for (; extdyn < extdynend; extdyn += extdynsize)
7031 {
7032 Elf_Internal_Dyn dyn;
7033
7034 (*swap_dyn_in) (abfd, extdyn, &dyn);
7035
7036 if (dyn.d_tag == DT_NULL)
7037 break;
7038
7039 if (dyn.d_tag == DT_NEEDED)
7040 {
7041 const char *string;
7042 struct bfd_link_needed_list *l;
7043 unsigned int tagv = dyn.d_un.d_val;
7044 bfd_size_type amt;
7045
7046 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7047 if (string == NULL)
7048 goto error_return;
7049
7050 amt = sizeof *l;
7051 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7052 if (l == NULL)
7053 goto error_return;
7054
7055 l->by = abfd;
7056 l->name = string;
7057 l->next = *pneeded;
7058 *pneeded = l;
7059 }
7060 }
7061
7062 free (dynbuf);
7063
7064 return TRUE;
7065
7066 error_return:
7067 if (dynbuf != NULL)
7068 free (dynbuf);
7069 return FALSE;
7070 }
7071
7072 struct elf_symbuf_symbol
7073 {
7074 unsigned long st_name; /* Symbol name, index in string tbl */
7075 unsigned char st_info; /* Type and binding attributes */
7076 unsigned char st_other; /* Visibilty, and target specific */
7077 };
7078
7079 struct elf_symbuf_head
7080 {
7081 struct elf_symbuf_symbol *ssym;
7082 bfd_size_type count;
7083 unsigned int st_shndx;
7084 };
7085
7086 struct elf_symbol
7087 {
7088 union
7089 {
7090 Elf_Internal_Sym *isym;
7091 struct elf_symbuf_symbol *ssym;
7092 } u;
7093 const char *name;
7094 };
7095
7096 /* Sort references to symbols by ascending section number. */
7097
7098 static int
7099 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7100 {
7101 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7102 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7103
7104 return s1->st_shndx - s2->st_shndx;
7105 }
7106
7107 static int
7108 elf_sym_name_compare (const void *arg1, const void *arg2)
7109 {
7110 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7111 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7112 return strcmp (s1->name, s2->name);
7113 }
7114
7115 static struct elf_symbuf_head *
7116 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7117 {
7118 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7119 struct elf_symbuf_symbol *ssym;
7120 struct elf_symbuf_head *ssymbuf, *ssymhead;
7121 bfd_size_type i, shndx_count, total_size;
7122
7123 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7124 if (indbuf == NULL)
7125 return NULL;
7126
7127 for (ind = indbuf, i = 0; i < symcount; i++)
7128 if (isymbuf[i].st_shndx != SHN_UNDEF)
7129 *ind++ = &isymbuf[i];
7130 indbufend = ind;
7131
7132 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7133 elf_sort_elf_symbol);
7134
7135 shndx_count = 0;
7136 if (indbufend > indbuf)
7137 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7138 if (ind[0]->st_shndx != ind[1]->st_shndx)
7139 shndx_count++;
7140
7141 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7142 + (indbufend - indbuf) * sizeof (*ssym));
7143 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7144 if (ssymbuf == NULL)
7145 {
7146 free (indbuf);
7147 return NULL;
7148 }
7149
7150 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7151 ssymbuf->ssym = NULL;
7152 ssymbuf->count = shndx_count;
7153 ssymbuf->st_shndx = 0;
7154 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7155 {
7156 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7157 {
7158 ssymhead++;
7159 ssymhead->ssym = ssym;
7160 ssymhead->count = 0;
7161 ssymhead->st_shndx = (*ind)->st_shndx;
7162 }
7163 ssym->st_name = (*ind)->st_name;
7164 ssym->st_info = (*ind)->st_info;
7165 ssym->st_other = (*ind)->st_other;
7166 ssymhead->count++;
7167 }
7168 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7169 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7170 == total_size));
7171
7172 free (indbuf);
7173 return ssymbuf;
7174 }
7175
7176 /* Check if 2 sections define the same set of local and global
7177 symbols. */
7178
7179 static bfd_boolean
7180 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7181 struct bfd_link_info *info)
7182 {
7183 bfd *bfd1, *bfd2;
7184 const struct elf_backend_data *bed1, *bed2;
7185 Elf_Internal_Shdr *hdr1, *hdr2;
7186 bfd_size_type symcount1, symcount2;
7187 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7188 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7189 Elf_Internal_Sym *isym, *isymend;
7190 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7191 bfd_size_type count1, count2, i;
7192 unsigned int shndx1, shndx2;
7193 bfd_boolean result;
7194
7195 bfd1 = sec1->owner;
7196 bfd2 = sec2->owner;
7197
7198 /* Both sections have to be in ELF. */
7199 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7200 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7201 return FALSE;
7202
7203 if (elf_section_type (sec1) != elf_section_type (sec2))
7204 return FALSE;
7205
7206 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7207 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7208 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7209 return FALSE;
7210
7211 bed1 = get_elf_backend_data (bfd1);
7212 bed2 = get_elf_backend_data (bfd2);
7213 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7214 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7215 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7216 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7217
7218 if (symcount1 == 0 || symcount2 == 0)
7219 return FALSE;
7220
7221 result = FALSE;
7222 isymbuf1 = NULL;
7223 isymbuf2 = NULL;
7224 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7225 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7226
7227 if (ssymbuf1 == NULL)
7228 {
7229 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7230 NULL, NULL, NULL);
7231 if (isymbuf1 == NULL)
7232 goto done;
7233
7234 if (!info->reduce_memory_overheads)
7235 elf_tdata (bfd1)->symbuf = ssymbuf1
7236 = elf_create_symbuf (symcount1, isymbuf1);
7237 }
7238
7239 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7240 {
7241 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7242 NULL, NULL, NULL);
7243 if (isymbuf2 == NULL)
7244 goto done;
7245
7246 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7247 elf_tdata (bfd2)->symbuf = ssymbuf2
7248 = elf_create_symbuf (symcount2, isymbuf2);
7249 }
7250
7251 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7252 {
7253 /* Optimized faster version. */
7254 bfd_size_type lo, hi, mid;
7255 struct elf_symbol *symp;
7256 struct elf_symbuf_symbol *ssym, *ssymend;
7257
7258 lo = 0;
7259 hi = ssymbuf1->count;
7260 ssymbuf1++;
7261 count1 = 0;
7262 while (lo < hi)
7263 {
7264 mid = (lo + hi) / 2;
7265 if (shndx1 < ssymbuf1[mid].st_shndx)
7266 hi = mid;
7267 else if (shndx1 > ssymbuf1[mid].st_shndx)
7268 lo = mid + 1;
7269 else
7270 {
7271 count1 = ssymbuf1[mid].count;
7272 ssymbuf1 += mid;
7273 break;
7274 }
7275 }
7276
7277 lo = 0;
7278 hi = ssymbuf2->count;
7279 ssymbuf2++;
7280 count2 = 0;
7281 while (lo < hi)
7282 {
7283 mid = (lo + hi) / 2;
7284 if (shndx2 < ssymbuf2[mid].st_shndx)
7285 hi = mid;
7286 else if (shndx2 > ssymbuf2[mid].st_shndx)
7287 lo = mid + 1;
7288 else
7289 {
7290 count2 = ssymbuf2[mid].count;
7291 ssymbuf2 += mid;
7292 break;
7293 }
7294 }
7295
7296 if (count1 == 0 || count2 == 0 || count1 != count2)
7297 goto done;
7298
7299 symtable1 = (struct elf_symbol *)
7300 bfd_malloc (count1 * sizeof (struct elf_symbol));
7301 symtable2 = (struct elf_symbol *)
7302 bfd_malloc (count2 * sizeof (struct elf_symbol));
7303 if (symtable1 == NULL || symtable2 == NULL)
7304 goto done;
7305
7306 symp = symtable1;
7307 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7308 ssym < ssymend; ssym++, symp++)
7309 {
7310 symp->u.ssym = ssym;
7311 symp->name = bfd_elf_string_from_elf_section (bfd1,
7312 hdr1->sh_link,
7313 ssym->st_name);
7314 }
7315
7316 symp = symtable2;
7317 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7318 ssym < ssymend; ssym++, symp++)
7319 {
7320 symp->u.ssym = ssym;
7321 symp->name = bfd_elf_string_from_elf_section (bfd2,
7322 hdr2->sh_link,
7323 ssym->st_name);
7324 }
7325
7326 /* Sort symbol by name. */
7327 qsort (symtable1, count1, sizeof (struct elf_symbol),
7328 elf_sym_name_compare);
7329 qsort (symtable2, count1, sizeof (struct elf_symbol),
7330 elf_sym_name_compare);
7331
7332 for (i = 0; i < count1; i++)
7333 /* Two symbols must have the same binding, type and name. */
7334 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7335 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7336 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7337 goto done;
7338
7339 result = TRUE;
7340 goto done;
7341 }
7342
7343 symtable1 = (struct elf_symbol *)
7344 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7345 symtable2 = (struct elf_symbol *)
7346 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7347 if (symtable1 == NULL || symtable2 == NULL)
7348 goto done;
7349
7350 /* Count definitions in the section. */
7351 count1 = 0;
7352 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7353 if (isym->st_shndx == shndx1)
7354 symtable1[count1++].u.isym = isym;
7355
7356 count2 = 0;
7357 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7358 if (isym->st_shndx == shndx2)
7359 symtable2[count2++].u.isym = isym;
7360
7361 if (count1 == 0 || count2 == 0 || count1 != count2)
7362 goto done;
7363
7364 for (i = 0; i < count1; i++)
7365 symtable1[i].name
7366 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7367 symtable1[i].u.isym->st_name);
7368
7369 for (i = 0; i < count2; i++)
7370 symtable2[i].name
7371 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7372 symtable2[i].u.isym->st_name);
7373
7374 /* Sort symbol by name. */
7375 qsort (symtable1, count1, sizeof (struct elf_symbol),
7376 elf_sym_name_compare);
7377 qsort (symtable2, count1, sizeof (struct elf_symbol),
7378 elf_sym_name_compare);
7379
7380 for (i = 0; i < count1; i++)
7381 /* Two symbols must have the same binding, type and name. */
7382 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7383 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7384 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7385 goto done;
7386
7387 result = TRUE;
7388
7389 done:
7390 if (symtable1)
7391 free (symtable1);
7392 if (symtable2)
7393 free (symtable2);
7394 if (isymbuf1)
7395 free (isymbuf1);
7396 if (isymbuf2)
7397 free (isymbuf2);
7398
7399 return result;
7400 }
7401
7402 /* Return TRUE if 2 section types are compatible. */
7403
7404 bfd_boolean
7405 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7406 bfd *bbfd, const asection *bsec)
7407 {
7408 if (asec == NULL
7409 || bsec == NULL
7410 || abfd->xvec->flavour != bfd_target_elf_flavour
7411 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7412 return TRUE;
7413
7414 return elf_section_type (asec) == elf_section_type (bsec);
7415 }
7416 \f
7417 /* Final phase of ELF linker. */
7418
7419 /* A structure we use to avoid passing large numbers of arguments. */
7420
7421 struct elf_final_link_info
7422 {
7423 /* General link information. */
7424 struct bfd_link_info *info;
7425 /* Output BFD. */
7426 bfd *output_bfd;
7427 /* Symbol string table. */
7428 struct bfd_strtab_hash *symstrtab;
7429 /* .dynsym section. */
7430 asection *dynsym_sec;
7431 /* .hash section. */
7432 asection *hash_sec;
7433 /* symbol version section (.gnu.version). */
7434 asection *symver_sec;
7435 /* Buffer large enough to hold contents of any section. */
7436 bfd_byte *contents;
7437 /* Buffer large enough to hold external relocs of any section. */
7438 void *external_relocs;
7439 /* Buffer large enough to hold internal relocs of any section. */
7440 Elf_Internal_Rela *internal_relocs;
7441 /* Buffer large enough to hold external local symbols of any input
7442 BFD. */
7443 bfd_byte *external_syms;
7444 /* And a buffer for symbol section indices. */
7445 Elf_External_Sym_Shndx *locsym_shndx;
7446 /* Buffer large enough to hold internal local symbols of any input
7447 BFD. */
7448 Elf_Internal_Sym *internal_syms;
7449 /* Array large enough to hold a symbol index for each local symbol
7450 of any input BFD. */
7451 long *indices;
7452 /* Array large enough to hold a section pointer for each local
7453 symbol of any input BFD. */
7454 asection **sections;
7455 /* Buffer to hold swapped out symbols. */
7456 bfd_byte *symbuf;
7457 /* And one for symbol section indices. */
7458 Elf_External_Sym_Shndx *symshndxbuf;
7459 /* Number of swapped out symbols in buffer. */
7460 size_t symbuf_count;
7461 /* Number of symbols which fit in symbuf. */
7462 size_t symbuf_size;
7463 /* And same for symshndxbuf. */
7464 size_t shndxbuf_size;
7465 /* Number of STT_FILE syms seen. */
7466 size_t filesym_count;
7467 };
7468
7469 /* This struct is used to pass information to elf_link_output_extsym. */
7470
7471 struct elf_outext_info
7472 {
7473 bfd_boolean failed;
7474 bfd_boolean localsyms;
7475 bfd_boolean need_second_pass;
7476 bfd_boolean second_pass;
7477 struct elf_final_link_info *flinfo;
7478 };
7479
7480
7481 /* Support for evaluating a complex relocation.
7482
7483 Complex relocations are generalized, self-describing relocations. The
7484 implementation of them consists of two parts: complex symbols, and the
7485 relocations themselves.
7486
7487 The relocations are use a reserved elf-wide relocation type code (R_RELC
7488 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7489 information (start bit, end bit, word width, etc) into the addend. This
7490 information is extracted from CGEN-generated operand tables within gas.
7491
7492 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7493 internal) representing prefix-notation expressions, including but not
7494 limited to those sorts of expressions normally encoded as addends in the
7495 addend field. The symbol mangling format is:
7496
7497 <node> := <literal>
7498 | <unary-operator> ':' <node>
7499 | <binary-operator> ':' <node> ':' <node>
7500 ;
7501
7502 <literal> := 's' <digits=N> ':' <N character symbol name>
7503 | 'S' <digits=N> ':' <N character section name>
7504 | '#' <hexdigits>
7505 ;
7506
7507 <binary-operator> := as in C
7508 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7509
7510 static void
7511 set_symbol_value (bfd *bfd_with_globals,
7512 Elf_Internal_Sym *isymbuf,
7513 size_t locsymcount,
7514 size_t symidx,
7515 bfd_vma val)
7516 {
7517 struct elf_link_hash_entry **sym_hashes;
7518 struct elf_link_hash_entry *h;
7519 size_t extsymoff = locsymcount;
7520
7521 if (symidx < locsymcount)
7522 {
7523 Elf_Internal_Sym *sym;
7524
7525 sym = isymbuf + symidx;
7526 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7527 {
7528 /* It is a local symbol: move it to the
7529 "absolute" section and give it a value. */
7530 sym->st_shndx = SHN_ABS;
7531 sym->st_value = val;
7532 return;
7533 }
7534 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7535 extsymoff = 0;
7536 }
7537
7538 /* It is a global symbol: set its link type
7539 to "defined" and give it a value. */
7540
7541 sym_hashes = elf_sym_hashes (bfd_with_globals);
7542 h = sym_hashes [symidx - extsymoff];
7543 while (h->root.type == bfd_link_hash_indirect
7544 || h->root.type == bfd_link_hash_warning)
7545 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7546 h->root.type = bfd_link_hash_defined;
7547 h->root.u.def.value = val;
7548 h->root.u.def.section = bfd_abs_section_ptr;
7549 }
7550
7551 static bfd_boolean
7552 resolve_symbol (const char *name,
7553 bfd *input_bfd,
7554 struct elf_final_link_info *flinfo,
7555 bfd_vma *result,
7556 Elf_Internal_Sym *isymbuf,
7557 size_t locsymcount)
7558 {
7559 Elf_Internal_Sym *sym;
7560 struct bfd_link_hash_entry *global_entry;
7561 const char *candidate = NULL;
7562 Elf_Internal_Shdr *symtab_hdr;
7563 size_t i;
7564
7565 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7566
7567 for (i = 0; i < locsymcount; ++ i)
7568 {
7569 sym = isymbuf + i;
7570
7571 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7572 continue;
7573
7574 candidate = bfd_elf_string_from_elf_section (input_bfd,
7575 symtab_hdr->sh_link,
7576 sym->st_name);
7577 #ifdef DEBUG
7578 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7579 name, candidate, (unsigned long) sym->st_value);
7580 #endif
7581 if (candidate && strcmp (candidate, name) == 0)
7582 {
7583 asection *sec = flinfo->sections [i];
7584
7585 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7586 *result += sec->output_offset + sec->output_section->vma;
7587 #ifdef DEBUG
7588 printf ("Found symbol with value %8.8lx\n",
7589 (unsigned long) *result);
7590 #endif
7591 return TRUE;
7592 }
7593 }
7594
7595 /* Hmm, haven't found it yet. perhaps it is a global. */
7596 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7597 FALSE, FALSE, TRUE);
7598 if (!global_entry)
7599 return FALSE;
7600
7601 if (global_entry->type == bfd_link_hash_defined
7602 || global_entry->type == bfd_link_hash_defweak)
7603 {
7604 *result = (global_entry->u.def.value
7605 + global_entry->u.def.section->output_section->vma
7606 + global_entry->u.def.section->output_offset);
7607 #ifdef DEBUG
7608 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7609 global_entry->root.string, (unsigned long) *result);
7610 #endif
7611 return TRUE;
7612 }
7613
7614 return FALSE;
7615 }
7616
7617 static bfd_boolean
7618 resolve_section (const char *name,
7619 asection *sections,
7620 bfd_vma *result)
7621 {
7622 asection *curr;
7623 unsigned int len;
7624
7625 for (curr = sections; curr; curr = curr->next)
7626 if (strcmp (curr->name, name) == 0)
7627 {
7628 *result = curr->vma;
7629 return TRUE;
7630 }
7631
7632 /* Hmm. still haven't found it. try pseudo-section names. */
7633 for (curr = sections; curr; curr = curr->next)
7634 {
7635 len = strlen (curr->name);
7636 if (len > strlen (name))
7637 continue;
7638
7639 if (strncmp (curr->name, name, len) == 0)
7640 {
7641 if (strncmp (".end", name + len, 4) == 0)
7642 {
7643 *result = curr->vma + curr->size;
7644 return TRUE;
7645 }
7646
7647 /* Insert more pseudo-section names here, if you like. */
7648 }
7649 }
7650
7651 return FALSE;
7652 }
7653
7654 static void
7655 undefined_reference (const char *reftype, const char *name)
7656 {
7657 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7658 reftype, name);
7659 }
7660
7661 static bfd_boolean
7662 eval_symbol (bfd_vma *result,
7663 const char **symp,
7664 bfd *input_bfd,
7665 struct elf_final_link_info *flinfo,
7666 bfd_vma dot,
7667 Elf_Internal_Sym *isymbuf,
7668 size_t locsymcount,
7669 int signed_p)
7670 {
7671 size_t len;
7672 size_t symlen;
7673 bfd_vma a;
7674 bfd_vma b;
7675 char symbuf[4096];
7676 const char *sym = *symp;
7677 const char *symend;
7678 bfd_boolean symbol_is_section = FALSE;
7679
7680 len = strlen (sym);
7681 symend = sym + len;
7682
7683 if (len < 1 || len > sizeof (symbuf))
7684 {
7685 bfd_set_error (bfd_error_invalid_operation);
7686 return FALSE;
7687 }
7688
7689 switch (* sym)
7690 {
7691 case '.':
7692 *result = dot;
7693 *symp = sym + 1;
7694 return TRUE;
7695
7696 case '#':
7697 ++sym;
7698 *result = strtoul (sym, (char **) symp, 16);
7699 return TRUE;
7700
7701 case 'S':
7702 symbol_is_section = TRUE;
7703 case 's':
7704 ++sym;
7705 symlen = strtol (sym, (char **) symp, 10);
7706 sym = *symp + 1; /* Skip the trailing ':'. */
7707
7708 if (symend < sym || symlen + 1 > sizeof (symbuf))
7709 {
7710 bfd_set_error (bfd_error_invalid_operation);
7711 return FALSE;
7712 }
7713
7714 memcpy (symbuf, sym, symlen);
7715 symbuf[symlen] = '\0';
7716 *symp = sym + symlen;
7717
7718 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7719 the symbol as a section, or vice-versa. so we're pretty liberal in our
7720 interpretation here; section means "try section first", not "must be a
7721 section", and likewise with symbol. */
7722
7723 if (symbol_is_section)
7724 {
7725 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7726 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7727 isymbuf, locsymcount))
7728 {
7729 undefined_reference ("section", symbuf);
7730 return FALSE;
7731 }
7732 }
7733 else
7734 {
7735 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7736 isymbuf, locsymcount)
7737 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7738 result))
7739 {
7740 undefined_reference ("symbol", symbuf);
7741 return FALSE;
7742 }
7743 }
7744
7745 return TRUE;
7746
7747 /* All that remains are operators. */
7748
7749 #define UNARY_OP(op) \
7750 if (strncmp (sym, #op, strlen (#op)) == 0) \
7751 { \
7752 sym += strlen (#op); \
7753 if (*sym == ':') \
7754 ++sym; \
7755 *symp = sym; \
7756 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7757 isymbuf, locsymcount, signed_p)) \
7758 return FALSE; \
7759 if (signed_p) \
7760 *result = op ((bfd_signed_vma) a); \
7761 else \
7762 *result = op a; \
7763 return TRUE; \
7764 }
7765
7766 #define BINARY_OP(op) \
7767 if (strncmp (sym, #op, strlen (#op)) == 0) \
7768 { \
7769 sym += strlen (#op); \
7770 if (*sym == ':') \
7771 ++sym; \
7772 *symp = sym; \
7773 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7774 isymbuf, locsymcount, signed_p)) \
7775 return FALSE; \
7776 ++*symp; \
7777 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7778 isymbuf, locsymcount, signed_p)) \
7779 return FALSE; \
7780 if (signed_p) \
7781 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7782 else \
7783 *result = a op b; \
7784 return TRUE; \
7785 }
7786
7787 default:
7788 UNARY_OP (0-);
7789 BINARY_OP (<<);
7790 BINARY_OP (>>);
7791 BINARY_OP (==);
7792 BINARY_OP (!=);
7793 BINARY_OP (<=);
7794 BINARY_OP (>=);
7795 BINARY_OP (&&);
7796 BINARY_OP (||);
7797 UNARY_OP (~);
7798 UNARY_OP (!);
7799 BINARY_OP (*);
7800 BINARY_OP (/);
7801 BINARY_OP (%);
7802 BINARY_OP (^);
7803 BINARY_OP (|);
7804 BINARY_OP (&);
7805 BINARY_OP (+);
7806 BINARY_OP (-);
7807 BINARY_OP (<);
7808 BINARY_OP (>);
7809 #undef UNARY_OP
7810 #undef BINARY_OP
7811 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7812 bfd_set_error (bfd_error_invalid_operation);
7813 return FALSE;
7814 }
7815 }
7816
7817 static void
7818 put_value (bfd_vma size,
7819 unsigned long chunksz,
7820 bfd *input_bfd,
7821 bfd_vma x,
7822 bfd_byte *location)
7823 {
7824 location += (size - chunksz);
7825
7826 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7827 {
7828 switch (chunksz)
7829 {
7830 default:
7831 case 0:
7832 abort ();
7833 case 1:
7834 bfd_put_8 (input_bfd, x, location);
7835 break;
7836 case 2:
7837 bfd_put_16 (input_bfd, x, location);
7838 break;
7839 case 4:
7840 bfd_put_32 (input_bfd, x, location);
7841 break;
7842 case 8:
7843 #ifdef BFD64
7844 bfd_put_64 (input_bfd, x, location);
7845 #else
7846 abort ();
7847 #endif
7848 break;
7849 }
7850 }
7851 }
7852
7853 static bfd_vma
7854 get_value (bfd_vma size,
7855 unsigned long chunksz,
7856 bfd *input_bfd,
7857 bfd_byte *location)
7858 {
7859 int shift;
7860 bfd_vma x = 0;
7861
7862 /* Sanity checks. */
7863 BFD_ASSERT (chunksz <= sizeof (x)
7864 && size >= chunksz
7865 && chunksz != 0
7866 && (size % chunksz) == 0
7867 && input_bfd != NULL
7868 && location != NULL);
7869
7870 if (chunksz == sizeof (x))
7871 {
7872 BFD_ASSERT (size == chunksz);
7873
7874 /* Make sure that we do not perform an undefined shift operation.
7875 We know that size == chunksz so there will only be one iteration
7876 of the loop below. */
7877 shift = 0;
7878 }
7879 else
7880 shift = 8 * chunksz;
7881
7882 for (; size; size -= chunksz, location += chunksz)
7883 {
7884 switch (chunksz)
7885 {
7886 case 1:
7887 x = (x << shift) | bfd_get_8 (input_bfd, location);
7888 break;
7889 case 2:
7890 x = (x << shift) | bfd_get_16 (input_bfd, location);
7891 break;
7892 case 4:
7893 x = (x << shift) | bfd_get_32 (input_bfd, location);
7894 break;
7895 #ifdef BFD64
7896 case 8:
7897 x = (x << shift) | bfd_get_64 (input_bfd, location);
7898 break;
7899 #endif
7900 default:
7901 abort ();
7902 }
7903 }
7904 return x;
7905 }
7906
7907 static void
7908 decode_complex_addend (unsigned long *start, /* in bits */
7909 unsigned long *oplen, /* in bits */
7910 unsigned long *len, /* in bits */
7911 unsigned long *wordsz, /* in bytes */
7912 unsigned long *chunksz, /* in bytes */
7913 unsigned long *lsb0_p,
7914 unsigned long *signed_p,
7915 unsigned long *trunc_p,
7916 unsigned long encoded)
7917 {
7918 * start = encoded & 0x3F;
7919 * len = (encoded >> 6) & 0x3F;
7920 * oplen = (encoded >> 12) & 0x3F;
7921 * wordsz = (encoded >> 18) & 0xF;
7922 * chunksz = (encoded >> 22) & 0xF;
7923 * lsb0_p = (encoded >> 27) & 1;
7924 * signed_p = (encoded >> 28) & 1;
7925 * trunc_p = (encoded >> 29) & 1;
7926 }
7927
7928 bfd_reloc_status_type
7929 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7930 asection *input_section ATTRIBUTE_UNUSED,
7931 bfd_byte *contents,
7932 Elf_Internal_Rela *rel,
7933 bfd_vma relocation)
7934 {
7935 bfd_vma shift, x, mask;
7936 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7937 bfd_reloc_status_type r;
7938
7939 /* Perform this reloc, since it is complex.
7940 (this is not to say that it necessarily refers to a complex
7941 symbol; merely that it is a self-describing CGEN based reloc.
7942 i.e. the addend has the complete reloc information (bit start, end,
7943 word size, etc) encoded within it.). */
7944
7945 decode_complex_addend (&start, &oplen, &len, &wordsz,
7946 &chunksz, &lsb0_p, &signed_p,
7947 &trunc_p, rel->r_addend);
7948
7949 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7950
7951 if (lsb0_p)
7952 shift = (start + 1) - len;
7953 else
7954 shift = (8 * wordsz) - (start + len);
7955
7956 /* FIXME: octets_per_byte. */
7957 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7958
7959 #ifdef DEBUG
7960 printf ("Doing complex reloc: "
7961 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7962 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7963 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7964 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7965 oplen, (unsigned long) x, (unsigned long) mask,
7966 (unsigned long) relocation);
7967 #endif
7968
7969 r = bfd_reloc_ok;
7970 if (! trunc_p)
7971 /* Now do an overflow check. */
7972 r = bfd_check_overflow ((signed_p
7973 ? complain_overflow_signed
7974 : complain_overflow_unsigned),
7975 len, 0, (8 * wordsz),
7976 relocation);
7977
7978 /* Do the deed. */
7979 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7980
7981 #ifdef DEBUG
7982 printf (" relocation: %8.8lx\n"
7983 " shifted mask: %8.8lx\n"
7984 " shifted/masked reloc: %8.8lx\n"
7985 " result: %8.8lx\n",
7986 (unsigned long) relocation, (unsigned long) (mask << shift),
7987 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7988 #endif
7989 /* FIXME: octets_per_byte. */
7990 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7991 return r;
7992 }
7993
7994 /* When performing a relocatable link, the input relocations are
7995 preserved. But, if they reference global symbols, the indices
7996 referenced must be updated. Update all the relocations found in
7997 RELDATA. */
7998
7999 static void
8000 elf_link_adjust_relocs (bfd *abfd,
8001 struct bfd_elf_section_reloc_data *reldata)
8002 {
8003 unsigned int i;
8004 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8005 bfd_byte *erela;
8006 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8007 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8008 bfd_vma r_type_mask;
8009 int r_sym_shift;
8010 unsigned int count = reldata->count;
8011 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8012
8013 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8014 {
8015 swap_in = bed->s->swap_reloc_in;
8016 swap_out = bed->s->swap_reloc_out;
8017 }
8018 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8019 {
8020 swap_in = bed->s->swap_reloca_in;
8021 swap_out = bed->s->swap_reloca_out;
8022 }
8023 else
8024 abort ();
8025
8026 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8027 abort ();
8028
8029 if (bed->s->arch_size == 32)
8030 {
8031 r_type_mask = 0xff;
8032 r_sym_shift = 8;
8033 }
8034 else
8035 {
8036 r_type_mask = 0xffffffff;
8037 r_sym_shift = 32;
8038 }
8039
8040 erela = reldata->hdr->contents;
8041 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8042 {
8043 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8044 unsigned int j;
8045
8046 if (*rel_hash == NULL)
8047 continue;
8048
8049 BFD_ASSERT ((*rel_hash)->indx >= 0);
8050
8051 (*swap_in) (abfd, erela, irela);
8052 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8053 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8054 | (irela[j].r_info & r_type_mask));
8055 (*swap_out) (abfd, irela, erela);
8056 }
8057 }
8058
8059 struct elf_link_sort_rela
8060 {
8061 union {
8062 bfd_vma offset;
8063 bfd_vma sym_mask;
8064 } u;
8065 enum elf_reloc_type_class type;
8066 /* We use this as an array of size int_rels_per_ext_rel. */
8067 Elf_Internal_Rela rela[1];
8068 };
8069
8070 static int
8071 elf_link_sort_cmp1 (const void *A, const void *B)
8072 {
8073 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8074 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8075 int relativea, relativeb;
8076
8077 relativea = a->type == reloc_class_relative;
8078 relativeb = b->type == reloc_class_relative;
8079
8080 if (relativea < relativeb)
8081 return 1;
8082 if (relativea > relativeb)
8083 return -1;
8084 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8085 return -1;
8086 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8087 return 1;
8088 if (a->rela->r_offset < b->rela->r_offset)
8089 return -1;
8090 if (a->rela->r_offset > b->rela->r_offset)
8091 return 1;
8092 return 0;
8093 }
8094
8095 static int
8096 elf_link_sort_cmp2 (const void *A, const void *B)
8097 {
8098 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8099 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8100
8101 if (a->type < b->type)
8102 return -1;
8103 if (a->type > b->type)
8104 return 1;
8105 if (a->u.offset < b->u.offset)
8106 return -1;
8107 if (a->u.offset > b->u.offset)
8108 return 1;
8109 if (a->rela->r_offset < b->rela->r_offset)
8110 return -1;
8111 if (a->rela->r_offset > b->rela->r_offset)
8112 return 1;
8113 return 0;
8114 }
8115
8116 static size_t
8117 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8118 {
8119 asection *dynamic_relocs;
8120 asection *rela_dyn;
8121 asection *rel_dyn;
8122 bfd_size_type count, size;
8123 size_t i, ret, sort_elt, ext_size;
8124 bfd_byte *sort, *s_non_relative, *p;
8125 struct elf_link_sort_rela *sq;
8126 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8127 int i2e = bed->s->int_rels_per_ext_rel;
8128 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8129 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8130 struct bfd_link_order *lo;
8131 bfd_vma r_sym_mask;
8132 bfd_boolean use_rela;
8133
8134 /* Find a dynamic reloc section. */
8135 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8136 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8137 if (rela_dyn != NULL && rela_dyn->size > 0
8138 && rel_dyn != NULL && rel_dyn->size > 0)
8139 {
8140 bfd_boolean use_rela_initialised = FALSE;
8141
8142 /* This is just here to stop gcc from complaining.
8143 It's initialization checking code is not perfect. */
8144 use_rela = TRUE;
8145
8146 /* Both sections are present. Examine the sizes
8147 of the indirect sections to help us choose. */
8148 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8149 if (lo->type == bfd_indirect_link_order)
8150 {
8151 asection *o = lo->u.indirect.section;
8152
8153 if ((o->size % bed->s->sizeof_rela) == 0)
8154 {
8155 if ((o->size % bed->s->sizeof_rel) == 0)
8156 /* Section size is divisible by both rel and rela sizes.
8157 It is of no help to us. */
8158 ;
8159 else
8160 {
8161 /* Section size is only divisible by rela. */
8162 if (use_rela_initialised && (use_rela == FALSE))
8163 {
8164 _bfd_error_handler
8165 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8166 bfd_set_error (bfd_error_invalid_operation);
8167 return 0;
8168 }
8169 else
8170 {
8171 use_rela = TRUE;
8172 use_rela_initialised = TRUE;
8173 }
8174 }
8175 }
8176 else if ((o->size % bed->s->sizeof_rel) == 0)
8177 {
8178 /* Section size is only divisible by rel. */
8179 if (use_rela_initialised && (use_rela == TRUE))
8180 {
8181 _bfd_error_handler
8182 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8183 bfd_set_error (bfd_error_invalid_operation);
8184 return 0;
8185 }
8186 else
8187 {
8188 use_rela = FALSE;
8189 use_rela_initialised = TRUE;
8190 }
8191 }
8192 else
8193 {
8194 /* The section size is not divisible by either - something is wrong. */
8195 _bfd_error_handler
8196 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8197 bfd_set_error (bfd_error_invalid_operation);
8198 return 0;
8199 }
8200 }
8201
8202 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8203 if (lo->type == bfd_indirect_link_order)
8204 {
8205 asection *o = lo->u.indirect.section;
8206
8207 if ((o->size % bed->s->sizeof_rela) == 0)
8208 {
8209 if ((o->size % bed->s->sizeof_rel) == 0)
8210 /* Section size is divisible by both rel and rela sizes.
8211 It is of no help to us. */
8212 ;
8213 else
8214 {
8215 /* Section size is only divisible by rela. */
8216 if (use_rela_initialised && (use_rela == FALSE))
8217 {
8218 _bfd_error_handler
8219 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8220 bfd_set_error (bfd_error_invalid_operation);
8221 return 0;
8222 }
8223 else
8224 {
8225 use_rela = TRUE;
8226 use_rela_initialised = TRUE;
8227 }
8228 }
8229 }
8230 else if ((o->size % bed->s->sizeof_rel) == 0)
8231 {
8232 /* Section size is only divisible by rel. */
8233 if (use_rela_initialised && (use_rela == TRUE))
8234 {
8235 _bfd_error_handler
8236 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8237 bfd_set_error (bfd_error_invalid_operation);
8238 return 0;
8239 }
8240 else
8241 {
8242 use_rela = FALSE;
8243 use_rela_initialised = TRUE;
8244 }
8245 }
8246 else
8247 {
8248 /* The section size is not divisible by either - something is wrong. */
8249 _bfd_error_handler
8250 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8251 bfd_set_error (bfd_error_invalid_operation);
8252 return 0;
8253 }
8254 }
8255
8256 if (! use_rela_initialised)
8257 /* Make a guess. */
8258 use_rela = TRUE;
8259 }
8260 else if (rela_dyn != NULL && rela_dyn->size > 0)
8261 use_rela = TRUE;
8262 else if (rel_dyn != NULL && rel_dyn->size > 0)
8263 use_rela = FALSE;
8264 else
8265 return 0;
8266
8267 if (use_rela)
8268 {
8269 dynamic_relocs = rela_dyn;
8270 ext_size = bed->s->sizeof_rela;
8271 swap_in = bed->s->swap_reloca_in;
8272 swap_out = bed->s->swap_reloca_out;
8273 }
8274 else
8275 {
8276 dynamic_relocs = rel_dyn;
8277 ext_size = bed->s->sizeof_rel;
8278 swap_in = bed->s->swap_reloc_in;
8279 swap_out = bed->s->swap_reloc_out;
8280 }
8281
8282 size = 0;
8283 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8284 if (lo->type == bfd_indirect_link_order)
8285 size += lo->u.indirect.section->size;
8286
8287 if (size != dynamic_relocs->size)
8288 return 0;
8289
8290 sort_elt = (sizeof (struct elf_link_sort_rela)
8291 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8292
8293 count = dynamic_relocs->size / ext_size;
8294 if (count == 0)
8295 return 0;
8296 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8297
8298 if (sort == NULL)
8299 {
8300 (*info->callbacks->warning)
8301 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8302 return 0;
8303 }
8304
8305 if (bed->s->arch_size == 32)
8306 r_sym_mask = ~(bfd_vma) 0xff;
8307 else
8308 r_sym_mask = ~(bfd_vma) 0xffffffff;
8309
8310 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8311 if (lo->type == bfd_indirect_link_order)
8312 {
8313 bfd_byte *erel, *erelend;
8314 asection *o = lo->u.indirect.section;
8315
8316 if (o->contents == NULL && o->size != 0)
8317 {
8318 /* This is a reloc section that is being handled as a normal
8319 section. See bfd_section_from_shdr. We can't combine
8320 relocs in this case. */
8321 free (sort);
8322 return 0;
8323 }
8324 erel = o->contents;
8325 erelend = o->contents + o->size;
8326 /* FIXME: octets_per_byte. */
8327 p = sort + o->output_offset / ext_size * sort_elt;
8328
8329 while (erel < erelend)
8330 {
8331 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8332
8333 (*swap_in) (abfd, erel, s->rela);
8334 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8335 s->u.sym_mask = r_sym_mask;
8336 p += sort_elt;
8337 erel += ext_size;
8338 }
8339 }
8340
8341 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8342
8343 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8344 {
8345 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8346 if (s->type != reloc_class_relative)
8347 break;
8348 }
8349 ret = i;
8350 s_non_relative = p;
8351
8352 sq = (struct elf_link_sort_rela *) s_non_relative;
8353 for (; i < count; i++, p += sort_elt)
8354 {
8355 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8356 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8357 sq = sp;
8358 sp->u.offset = sq->rela->r_offset;
8359 }
8360
8361 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8362
8363 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8364 if (lo->type == bfd_indirect_link_order)
8365 {
8366 bfd_byte *erel, *erelend;
8367 asection *o = lo->u.indirect.section;
8368
8369 erel = o->contents;
8370 erelend = o->contents + o->size;
8371 /* FIXME: octets_per_byte. */
8372 p = sort + o->output_offset / ext_size * sort_elt;
8373 while (erel < erelend)
8374 {
8375 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8376 (*swap_out) (abfd, s->rela, erel);
8377 p += sort_elt;
8378 erel += ext_size;
8379 }
8380 }
8381
8382 free (sort);
8383 *psec = dynamic_relocs;
8384 return ret;
8385 }
8386
8387 /* Flush the output symbols to the file. */
8388
8389 static bfd_boolean
8390 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8391 const struct elf_backend_data *bed)
8392 {
8393 if (flinfo->symbuf_count > 0)
8394 {
8395 Elf_Internal_Shdr *hdr;
8396 file_ptr pos;
8397 bfd_size_type amt;
8398
8399 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8400 pos = hdr->sh_offset + hdr->sh_size;
8401 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8402 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8403 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8404 return FALSE;
8405
8406 hdr->sh_size += amt;
8407 flinfo->symbuf_count = 0;
8408 }
8409
8410 return TRUE;
8411 }
8412
8413 /* Add a symbol to the output symbol table. */
8414
8415 static int
8416 elf_link_output_sym (struct elf_final_link_info *flinfo,
8417 const char *name,
8418 Elf_Internal_Sym *elfsym,
8419 asection *input_sec,
8420 struct elf_link_hash_entry *h)
8421 {
8422 bfd_byte *dest;
8423 Elf_External_Sym_Shndx *destshndx;
8424 int (*output_symbol_hook)
8425 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8426 struct elf_link_hash_entry *);
8427 const struct elf_backend_data *bed;
8428
8429 bed = get_elf_backend_data (flinfo->output_bfd);
8430 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8431 if (output_symbol_hook != NULL)
8432 {
8433 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8434 if (ret != 1)
8435 return ret;
8436 }
8437
8438 if (name == NULL || *name == '\0')
8439 elfsym->st_name = 0;
8440 else if (input_sec->flags & SEC_EXCLUDE)
8441 elfsym->st_name = 0;
8442 else
8443 {
8444 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8445 name, TRUE, FALSE);
8446 if (elfsym->st_name == (unsigned long) -1)
8447 return 0;
8448 }
8449
8450 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8451 {
8452 if (! elf_link_flush_output_syms (flinfo, bed))
8453 return 0;
8454 }
8455
8456 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8457 destshndx = flinfo->symshndxbuf;
8458 if (destshndx != NULL)
8459 {
8460 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8461 {
8462 bfd_size_type amt;
8463
8464 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8465 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8466 amt * 2);
8467 if (destshndx == NULL)
8468 return 0;
8469 flinfo->symshndxbuf = destshndx;
8470 memset ((char *) destshndx + amt, 0, amt);
8471 flinfo->shndxbuf_size *= 2;
8472 }
8473 destshndx += bfd_get_symcount (flinfo->output_bfd);
8474 }
8475
8476 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8477 flinfo->symbuf_count += 1;
8478 bfd_get_symcount (flinfo->output_bfd) += 1;
8479
8480 return 1;
8481 }
8482
8483 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8484
8485 static bfd_boolean
8486 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8487 {
8488 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8489 && sym->st_shndx < SHN_LORESERVE)
8490 {
8491 /* The gABI doesn't support dynamic symbols in output sections
8492 beyond 64k. */
8493 (*_bfd_error_handler)
8494 (_("%B: Too many sections: %d (>= %d)"),
8495 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8496 bfd_set_error (bfd_error_nonrepresentable_section);
8497 return FALSE;
8498 }
8499 return TRUE;
8500 }
8501
8502 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8503 allowing an unsatisfied unversioned symbol in the DSO to match a
8504 versioned symbol that would normally require an explicit version.
8505 We also handle the case that a DSO references a hidden symbol
8506 which may be satisfied by a versioned symbol in another DSO. */
8507
8508 static bfd_boolean
8509 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8510 const struct elf_backend_data *bed,
8511 struct elf_link_hash_entry *h)
8512 {
8513 bfd *abfd;
8514 struct elf_link_loaded_list *loaded;
8515
8516 if (!is_elf_hash_table (info->hash))
8517 return FALSE;
8518
8519 /* Check indirect symbol. */
8520 while (h->root.type == bfd_link_hash_indirect)
8521 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8522
8523 switch (h->root.type)
8524 {
8525 default:
8526 abfd = NULL;
8527 break;
8528
8529 case bfd_link_hash_undefined:
8530 case bfd_link_hash_undefweak:
8531 abfd = h->root.u.undef.abfd;
8532 if ((abfd->flags & DYNAMIC) == 0
8533 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8534 return FALSE;
8535 break;
8536
8537 case bfd_link_hash_defined:
8538 case bfd_link_hash_defweak:
8539 abfd = h->root.u.def.section->owner;
8540 break;
8541
8542 case bfd_link_hash_common:
8543 abfd = h->root.u.c.p->section->owner;
8544 break;
8545 }
8546 BFD_ASSERT (abfd != NULL);
8547
8548 for (loaded = elf_hash_table (info)->loaded;
8549 loaded != NULL;
8550 loaded = loaded->next)
8551 {
8552 bfd *input;
8553 Elf_Internal_Shdr *hdr;
8554 bfd_size_type symcount;
8555 bfd_size_type extsymcount;
8556 bfd_size_type extsymoff;
8557 Elf_Internal_Shdr *versymhdr;
8558 Elf_Internal_Sym *isym;
8559 Elf_Internal_Sym *isymend;
8560 Elf_Internal_Sym *isymbuf;
8561 Elf_External_Versym *ever;
8562 Elf_External_Versym *extversym;
8563
8564 input = loaded->abfd;
8565
8566 /* We check each DSO for a possible hidden versioned definition. */
8567 if (input == abfd
8568 || (input->flags & DYNAMIC) == 0
8569 || elf_dynversym (input) == 0)
8570 continue;
8571
8572 hdr = &elf_tdata (input)->dynsymtab_hdr;
8573
8574 symcount = hdr->sh_size / bed->s->sizeof_sym;
8575 if (elf_bad_symtab (input))
8576 {
8577 extsymcount = symcount;
8578 extsymoff = 0;
8579 }
8580 else
8581 {
8582 extsymcount = symcount - hdr->sh_info;
8583 extsymoff = hdr->sh_info;
8584 }
8585
8586 if (extsymcount == 0)
8587 continue;
8588
8589 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8590 NULL, NULL, NULL);
8591 if (isymbuf == NULL)
8592 return FALSE;
8593
8594 /* Read in any version definitions. */
8595 versymhdr = &elf_tdata (input)->dynversym_hdr;
8596 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8597 if (extversym == NULL)
8598 goto error_ret;
8599
8600 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8601 || (bfd_bread (extversym, versymhdr->sh_size, input)
8602 != versymhdr->sh_size))
8603 {
8604 free (extversym);
8605 error_ret:
8606 free (isymbuf);
8607 return FALSE;
8608 }
8609
8610 ever = extversym + extsymoff;
8611 isymend = isymbuf + extsymcount;
8612 for (isym = isymbuf; isym < isymend; isym++, ever++)
8613 {
8614 const char *name;
8615 Elf_Internal_Versym iver;
8616 unsigned short version_index;
8617
8618 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8619 || isym->st_shndx == SHN_UNDEF)
8620 continue;
8621
8622 name = bfd_elf_string_from_elf_section (input,
8623 hdr->sh_link,
8624 isym->st_name);
8625 if (strcmp (name, h->root.root.string) != 0)
8626 continue;
8627
8628 _bfd_elf_swap_versym_in (input, ever, &iver);
8629
8630 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8631 && !(h->def_regular
8632 && h->forced_local))
8633 {
8634 /* If we have a non-hidden versioned sym, then it should
8635 have provided a definition for the undefined sym unless
8636 it is defined in a non-shared object and forced local.
8637 */
8638 abort ();
8639 }
8640
8641 version_index = iver.vs_vers & VERSYM_VERSION;
8642 if (version_index == 1 || version_index == 2)
8643 {
8644 /* This is the base or first version. We can use it. */
8645 free (extversym);
8646 free (isymbuf);
8647 return TRUE;
8648 }
8649 }
8650
8651 free (extversym);
8652 free (isymbuf);
8653 }
8654
8655 return FALSE;
8656 }
8657
8658 /* Add an external symbol to the symbol table. This is called from
8659 the hash table traversal routine. When generating a shared object,
8660 we go through the symbol table twice. The first time we output
8661 anything that might have been forced to local scope in a version
8662 script. The second time we output the symbols that are still
8663 global symbols. */
8664
8665 static bfd_boolean
8666 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8667 {
8668 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8669 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8670 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8671 bfd_boolean strip;
8672 Elf_Internal_Sym sym;
8673 asection *input_sec;
8674 const struct elf_backend_data *bed;
8675 long indx;
8676 int ret;
8677
8678 if (h->root.type == bfd_link_hash_warning)
8679 {
8680 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8681 if (h->root.type == bfd_link_hash_new)
8682 return TRUE;
8683 }
8684
8685 /* Decide whether to output this symbol in this pass. */
8686 if (eoinfo->localsyms)
8687 {
8688 if (!h->forced_local)
8689 return TRUE;
8690 if (eoinfo->second_pass
8691 && !((h->root.type == bfd_link_hash_defined
8692 || h->root.type == bfd_link_hash_defweak)
8693 && h->root.u.def.section->output_section != NULL))
8694 return TRUE;
8695 }
8696 else
8697 {
8698 if (h->forced_local)
8699 return TRUE;
8700 }
8701
8702 bed = get_elf_backend_data (flinfo->output_bfd);
8703
8704 if (h->root.type == bfd_link_hash_undefined)
8705 {
8706 /* If we have an undefined symbol reference here then it must have
8707 come from a shared library that is being linked in. (Undefined
8708 references in regular files have already been handled unless
8709 they are in unreferenced sections which are removed by garbage
8710 collection). */
8711 bfd_boolean ignore_undef = FALSE;
8712
8713 /* Some symbols may be special in that the fact that they're
8714 undefined can be safely ignored - let backend determine that. */
8715 if (bed->elf_backend_ignore_undef_symbol)
8716 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8717
8718 /* If we are reporting errors for this situation then do so now. */
8719 if (!ignore_undef
8720 && h->ref_dynamic
8721 && (!h->ref_regular || flinfo->info->gc_sections)
8722 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8723 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8724 {
8725 if (!(flinfo->info->callbacks->undefined_symbol
8726 (flinfo->info, h->root.root.string,
8727 h->ref_regular ? NULL : h->root.u.undef.abfd,
8728 NULL, 0,
8729 (flinfo->info->unresolved_syms_in_shared_libs
8730 == RM_GENERATE_ERROR))))
8731 {
8732 bfd_set_error (bfd_error_bad_value);
8733 eoinfo->failed = TRUE;
8734 return FALSE;
8735 }
8736 }
8737 }
8738
8739 /* We should also warn if a forced local symbol is referenced from
8740 shared libraries. */
8741 if (!flinfo->info->relocatable
8742 && flinfo->info->executable
8743 && h->forced_local
8744 && h->ref_dynamic
8745 && h->def_regular
8746 && !h->dynamic_def
8747 && h->ref_dynamic_nonweak
8748 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8749 {
8750 bfd *def_bfd;
8751 const char *msg;
8752 struct elf_link_hash_entry *hi = h;
8753
8754 /* Check indirect symbol. */
8755 while (hi->root.type == bfd_link_hash_indirect)
8756 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8757
8758 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8759 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8760 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8761 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8762 else
8763 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8764 def_bfd = flinfo->output_bfd;
8765 if (hi->root.u.def.section != bfd_abs_section_ptr)
8766 def_bfd = hi->root.u.def.section->owner;
8767 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8768 h->root.root.string);
8769 bfd_set_error (bfd_error_bad_value);
8770 eoinfo->failed = TRUE;
8771 return FALSE;
8772 }
8773
8774 /* We don't want to output symbols that have never been mentioned by
8775 a regular file, or that we have been told to strip. However, if
8776 h->indx is set to -2, the symbol is used by a reloc and we must
8777 output it. */
8778 if (h->indx == -2)
8779 strip = FALSE;
8780 else if ((h->def_dynamic
8781 || h->ref_dynamic
8782 || h->root.type == bfd_link_hash_new)
8783 && !h->def_regular
8784 && !h->ref_regular)
8785 strip = TRUE;
8786 else if (flinfo->info->strip == strip_all)
8787 strip = TRUE;
8788 else if (flinfo->info->strip == strip_some
8789 && bfd_hash_lookup (flinfo->info->keep_hash,
8790 h->root.root.string, FALSE, FALSE) == NULL)
8791 strip = TRUE;
8792 else if ((h->root.type == bfd_link_hash_defined
8793 || h->root.type == bfd_link_hash_defweak)
8794 && ((flinfo->info->strip_discarded
8795 && discarded_section (h->root.u.def.section))
8796 || (h->root.u.def.section->owner != NULL
8797 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8798 strip = TRUE;
8799 else if ((h->root.type == bfd_link_hash_undefined
8800 || h->root.type == bfd_link_hash_undefweak)
8801 && h->root.u.undef.abfd != NULL
8802 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8803 strip = TRUE;
8804 else
8805 strip = FALSE;
8806
8807 /* If we're stripping it, and it's not a dynamic symbol, there's
8808 nothing else to do unless it is a forced local symbol or a
8809 STT_GNU_IFUNC symbol. */
8810 if (strip
8811 && h->dynindx == -1
8812 && h->type != STT_GNU_IFUNC
8813 && !h->forced_local)
8814 return TRUE;
8815
8816 sym.st_value = 0;
8817 sym.st_size = h->size;
8818 sym.st_other = h->other;
8819 if (h->forced_local)
8820 {
8821 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8822 /* Turn off visibility on local symbol. */
8823 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8824 }
8825 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8826 else if (h->unique_global && h->def_regular)
8827 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8828 else if (h->root.type == bfd_link_hash_undefweak
8829 || h->root.type == bfd_link_hash_defweak)
8830 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8831 else
8832 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8833 sym.st_target_internal = h->target_internal;
8834
8835 switch (h->root.type)
8836 {
8837 default:
8838 case bfd_link_hash_new:
8839 case bfd_link_hash_warning:
8840 abort ();
8841 return FALSE;
8842
8843 case bfd_link_hash_undefined:
8844 case bfd_link_hash_undefweak:
8845 input_sec = bfd_und_section_ptr;
8846 sym.st_shndx = SHN_UNDEF;
8847 break;
8848
8849 case bfd_link_hash_defined:
8850 case bfd_link_hash_defweak:
8851 {
8852 input_sec = h->root.u.def.section;
8853 if (input_sec->output_section != NULL)
8854 {
8855 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8856 {
8857 bfd_boolean second_pass_sym
8858 = (input_sec->owner == flinfo->output_bfd
8859 || input_sec->owner == NULL
8860 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8861 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8862
8863 eoinfo->need_second_pass |= second_pass_sym;
8864 if (eoinfo->second_pass != second_pass_sym)
8865 return TRUE;
8866 }
8867
8868 sym.st_shndx =
8869 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8870 input_sec->output_section);
8871 if (sym.st_shndx == SHN_BAD)
8872 {
8873 (*_bfd_error_handler)
8874 (_("%B: could not find output section %A for input section %A"),
8875 flinfo->output_bfd, input_sec->output_section, input_sec);
8876 bfd_set_error (bfd_error_nonrepresentable_section);
8877 eoinfo->failed = TRUE;
8878 return FALSE;
8879 }
8880
8881 /* ELF symbols in relocatable files are section relative,
8882 but in nonrelocatable files they are virtual
8883 addresses. */
8884 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8885 if (!flinfo->info->relocatable)
8886 {
8887 sym.st_value += input_sec->output_section->vma;
8888 if (h->type == STT_TLS)
8889 {
8890 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8891 if (tls_sec != NULL)
8892 sym.st_value -= tls_sec->vma;
8893 else
8894 {
8895 /* The TLS section may have been garbage collected. */
8896 BFD_ASSERT (flinfo->info->gc_sections
8897 && !input_sec->gc_mark);
8898 }
8899 }
8900 }
8901 }
8902 else
8903 {
8904 BFD_ASSERT (input_sec->owner == NULL
8905 || (input_sec->owner->flags & DYNAMIC) != 0);
8906 sym.st_shndx = SHN_UNDEF;
8907 input_sec = bfd_und_section_ptr;
8908 }
8909 }
8910 break;
8911
8912 case bfd_link_hash_common:
8913 input_sec = h->root.u.c.p->section;
8914 sym.st_shndx = bed->common_section_index (input_sec);
8915 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8916 break;
8917
8918 case bfd_link_hash_indirect:
8919 /* These symbols are created by symbol versioning. They point
8920 to the decorated version of the name. For example, if the
8921 symbol foo@@GNU_1.2 is the default, which should be used when
8922 foo is used with no version, then we add an indirect symbol
8923 foo which points to foo@@GNU_1.2. We ignore these symbols,
8924 since the indirected symbol is already in the hash table. */
8925 return TRUE;
8926 }
8927
8928 /* Give the processor backend a chance to tweak the symbol value,
8929 and also to finish up anything that needs to be done for this
8930 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8931 forced local syms when non-shared is due to a historical quirk.
8932 STT_GNU_IFUNC symbol must go through PLT. */
8933 if ((h->type == STT_GNU_IFUNC
8934 && h->def_regular
8935 && !flinfo->info->relocatable)
8936 || ((h->dynindx != -1
8937 || h->forced_local)
8938 && ((flinfo->info->shared
8939 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8940 || h->root.type != bfd_link_hash_undefweak))
8941 || !h->forced_local)
8942 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8943 {
8944 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8945 (flinfo->output_bfd, flinfo->info, h, &sym)))
8946 {
8947 eoinfo->failed = TRUE;
8948 return FALSE;
8949 }
8950 }
8951
8952 /* If we are marking the symbol as undefined, and there are no
8953 non-weak references to this symbol from a regular object, then
8954 mark the symbol as weak undefined; if there are non-weak
8955 references, mark the symbol as strong. We can't do this earlier,
8956 because it might not be marked as undefined until the
8957 finish_dynamic_symbol routine gets through with it. */
8958 if (sym.st_shndx == SHN_UNDEF
8959 && h->ref_regular
8960 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8961 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8962 {
8963 int bindtype;
8964 unsigned int type = ELF_ST_TYPE (sym.st_info);
8965
8966 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8967 if (type == STT_GNU_IFUNC)
8968 type = STT_FUNC;
8969
8970 if (h->ref_regular_nonweak)
8971 bindtype = STB_GLOBAL;
8972 else
8973 bindtype = STB_WEAK;
8974 sym.st_info = ELF_ST_INFO (bindtype, type);
8975 }
8976
8977 /* If this is a symbol defined in a dynamic library, don't use the
8978 symbol size from the dynamic library. Relinking an executable
8979 against a new library may introduce gratuitous changes in the
8980 executable's symbols if we keep the size. */
8981 if (sym.st_shndx == SHN_UNDEF
8982 && !h->def_regular
8983 && h->def_dynamic)
8984 sym.st_size = 0;
8985
8986 /* If a non-weak symbol with non-default visibility is not defined
8987 locally, it is a fatal error. */
8988 if (!flinfo->info->relocatable
8989 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8990 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8991 && h->root.type == bfd_link_hash_undefined
8992 && !h->def_regular)
8993 {
8994 const char *msg;
8995
8996 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8997 msg = _("%B: protected symbol `%s' isn't defined");
8998 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8999 msg = _("%B: internal symbol `%s' isn't defined");
9000 else
9001 msg = _("%B: hidden symbol `%s' isn't defined");
9002 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9003 bfd_set_error (bfd_error_bad_value);
9004 eoinfo->failed = TRUE;
9005 return FALSE;
9006 }
9007
9008 /* If this symbol should be put in the .dynsym section, then put it
9009 there now. We already know the symbol index. We also fill in
9010 the entry in the .hash section. */
9011 if (flinfo->dynsym_sec != NULL
9012 && h->dynindx != -1
9013 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9014 {
9015 bfd_byte *esym;
9016
9017 /* Since there is no version information in the dynamic string,
9018 if there is no version info in symbol version section, we will
9019 have a run-time problem. */
9020 if (h->verinfo.verdef == NULL)
9021 {
9022 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9023
9024 if (p && p [1] != '\0')
9025 {
9026 (*_bfd_error_handler)
9027 (_("%B: No symbol version section for versioned symbol `%s'"),
9028 flinfo->output_bfd, h->root.root.string);
9029 eoinfo->failed = TRUE;
9030 return FALSE;
9031 }
9032 }
9033
9034 sym.st_name = h->dynstr_index;
9035 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9036 if (!check_dynsym (flinfo->output_bfd, &sym))
9037 {
9038 eoinfo->failed = TRUE;
9039 return FALSE;
9040 }
9041 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9042
9043 if (flinfo->hash_sec != NULL)
9044 {
9045 size_t hash_entry_size;
9046 bfd_byte *bucketpos;
9047 bfd_vma chain;
9048 size_t bucketcount;
9049 size_t bucket;
9050
9051 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9052 bucket = h->u.elf_hash_value % bucketcount;
9053
9054 hash_entry_size
9055 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9056 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9057 + (bucket + 2) * hash_entry_size);
9058 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9059 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9060 bucketpos);
9061 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9062 ((bfd_byte *) flinfo->hash_sec->contents
9063 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9064 }
9065
9066 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9067 {
9068 Elf_Internal_Versym iversym;
9069 Elf_External_Versym *eversym;
9070
9071 if (!h->def_regular)
9072 {
9073 if (h->verinfo.verdef == NULL)
9074 iversym.vs_vers = 0;
9075 else
9076 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9077 }
9078 else
9079 {
9080 if (h->verinfo.vertree == NULL)
9081 iversym.vs_vers = 1;
9082 else
9083 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9084 if (flinfo->info->create_default_symver)
9085 iversym.vs_vers++;
9086 }
9087
9088 if (h->hidden)
9089 iversym.vs_vers |= VERSYM_HIDDEN;
9090
9091 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9092 eversym += h->dynindx;
9093 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9094 }
9095 }
9096
9097 /* If we're stripping it, then it was just a dynamic symbol, and
9098 there's nothing else to do. */
9099 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9100 return TRUE;
9101
9102 indx = bfd_get_symcount (flinfo->output_bfd);
9103 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9104 if (ret == 0)
9105 {
9106 eoinfo->failed = TRUE;
9107 return FALSE;
9108 }
9109 else if (ret == 1)
9110 h->indx = indx;
9111 else if (h->indx == -2)
9112 abort();
9113
9114 return TRUE;
9115 }
9116
9117 /* Return TRUE if special handling is done for relocs in SEC against
9118 symbols defined in discarded sections. */
9119
9120 static bfd_boolean
9121 elf_section_ignore_discarded_relocs (asection *sec)
9122 {
9123 const struct elf_backend_data *bed;
9124
9125 switch (sec->sec_info_type)
9126 {
9127 case SEC_INFO_TYPE_STABS:
9128 case SEC_INFO_TYPE_EH_FRAME:
9129 return TRUE;
9130 default:
9131 break;
9132 }
9133
9134 bed = get_elf_backend_data (sec->owner);
9135 if (bed->elf_backend_ignore_discarded_relocs != NULL
9136 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9137 return TRUE;
9138
9139 return FALSE;
9140 }
9141
9142 /* Return a mask saying how ld should treat relocations in SEC against
9143 symbols defined in discarded sections. If this function returns
9144 COMPLAIN set, ld will issue a warning message. If this function
9145 returns PRETEND set, and the discarded section was link-once and the
9146 same size as the kept link-once section, ld will pretend that the
9147 symbol was actually defined in the kept section. Otherwise ld will
9148 zero the reloc (at least that is the intent, but some cooperation by
9149 the target dependent code is needed, particularly for REL targets). */
9150
9151 unsigned int
9152 _bfd_elf_default_action_discarded (asection *sec)
9153 {
9154 if (sec->flags & SEC_DEBUGGING)
9155 return PRETEND;
9156
9157 if (strcmp (".eh_frame", sec->name) == 0)
9158 return 0;
9159
9160 if (strcmp (".gcc_except_table", sec->name) == 0)
9161 return 0;
9162
9163 return COMPLAIN | PRETEND;
9164 }
9165
9166 /* Find a match between a section and a member of a section group. */
9167
9168 static asection *
9169 match_group_member (asection *sec, asection *group,
9170 struct bfd_link_info *info)
9171 {
9172 asection *first = elf_next_in_group (group);
9173 asection *s = first;
9174
9175 while (s != NULL)
9176 {
9177 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9178 return s;
9179
9180 s = elf_next_in_group (s);
9181 if (s == first)
9182 break;
9183 }
9184
9185 return NULL;
9186 }
9187
9188 /* Check if the kept section of a discarded section SEC can be used
9189 to replace it. Return the replacement if it is OK. Otherwise return
9190 NULL. */
9191
9192 asection *
9193 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9194 {
9195 asection *kept;
9196
9197 kept = sec->kept_section;
9198 if (kept != NULL)
9199 {
9200 if ((kept->flags & SEC_GROUP) != 0)
9201 kept = match_group_member (sec, kept, info);
9202 if (kept != NULL
9203 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9204 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9205 kept = NULL;
9206 sec->kept_section = kept;
9207 }
9208 return kept;
9209 }
9210
9211 /* Link an input file into the linker output file. This function
9212 handles all the sections and relocations of the input file at once.
9213 This is so that we only have to read the local symbols once, and
9214 don't have to keep them in memory. */
9215
9216 static bfd_boolean
9217 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9218 {
9219 int (*relocate_section)
9220 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9221 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9222 bfd *output_bfd;
9223 Elf_Internal_Shdr *symtab_hdr;
9224 size_t locsymcount;
9225 size_t extsymoff;
9226 Elf_Internal_Sym *isymbuf;
9227 Elf_Internal_Sym *isym;
9228 Elf_Internal_Sym *isymend;
9229 long *pindex;
9230 asection **ppsection;
9231 asection *o;
9232 const struct elf_backend_data *bed;
9233 struct elf_link_hash_entry **sym_hashes;
9234 bfd_size_type address_size;
9235 bfd_vma r_type_mask;
9236 int r_sym_shift;
9237 bfd_boolean have_file_sym = FALSE;
9238
9239 output_bfd = flinfo->output_bfd;
9240 bed = get_elf_backend_data (output_bfd);
9241 relocate_section = bed->elf_backend_relocate_section;
9242
9243 /* If this is a dynamic object, we don't want to do anything here:
9244 we don't want the local symbols, and we don't want the section
9245 contents. */
9246 if ((input_bfd->flags & DYNAMIC) != 0)
9247 return TRUE;
9248
9249 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9250 if (elf_bad_symtab (input_bfd))
9251 {
9252 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9253 extsymoff = 0;
9254 }
9255 else
9256 {
9257 locsymcount = symtab_hdr->sh_info;
9258 extsymoff = symtab_hdr->sh_info;
9259 }
9260
9261 /* Read the local symbols. */
9262 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9263 if (isymbuf == NULL && locsymcount != 0)
9264 {
9265 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9266 flinfo->internal_syms,
9267 flinfo->external_syms,
9268 flinfo->locsym_shndx);
9269 if (isymbuf == NULL)
9270 return FALSE;
9271 }
9272
9273 /* Find local symbol sections and adjust values of symbols in
9274 SEC_MERGE sections. Write out those local symbols we know are
9275 going into the output file. */
9276 isymend = isymbuf + locsymcount;
9277 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9278 isym < isymend;
9279 isym++, pindex++, ppsection++)
9280 {
9281 asection *isec;
9282 const char *name;
9283 Elf_Internal_Sym osym;
9284 long indx;
9285 int ret;
9286
9287 *pindex = -1;
9288
9289 if (elf_bad_symtab (input_bfd))
9290 {
9291 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9292 {
9293 *ppsection = NULL;
9294 continue;
9295 }
9296 }
9297
9298 if (isym->st_shndx == SHN_UNDEF)
9299 isec = bfd_und_section_ptr;
9300 else if (isym->st_shndx == SHN_ABS)
9301 isec = bfd_abs_section_ptr;
9302 else if (isym->st_shndx == SHN_COMMON)
9303 isec = bfd_com_section_ptr;
9304 else
9305 {
9306 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9307 if (isec == NULL)
9308 {
9309 /* Don't attempt to output symbols with st_shnx in the
9310 reserved range other than SHN_ABS and SHN_COMMON. */
9311 *ppsection = NULL;
9312 continue;
9313 }
9314 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9315 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9316 isym->st_value =
9317 _bfd_merged_section_offset (output_bfd, &isec,
9318 elf_section_data (isec)->sec_info,
9319 isym->st_value);
9320 }
9321
9322 *ppsection = isec;
9323
9324 /* Don't output the first, undefined, symbol. */
9325 if (ppsection == flinfo->sections)
9326 continue;
9327
9328 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9329 {
9330 /* We never output section symbols. Instead, we use the
9331 section symbol of the corresponding section in the output
9332 file. */
9333 continue;
9334 }
9335
9336 /* If we are stripping all symbols, we don't want to output this
9337 one. */
9338 if (flinfo->info->strip == strip_all)
9339 continue;
9340
9341 /* If we are discarding all local symbols, we don't want to
9342 output this one. If we are generating a relocatable output
9343 file, then some of the local symbols may be required by
9344 relocs; we output them below as we discover that they are
9345 needed. */
9346 if (flinfo->info->discard == discard_all)
9347 continue;
9348
9349 /* If this symbol is defined in a section which we are
9350 discarding, we don't need to keep it. */
9351 if (isym->st_shndx != SHN_UNDEF
9352 && isym->st_shndx < SHN_LORESERVE
9353 && bfd_section_removed_from_list (output_bfd,
9354 isec->output_section))
9355 continue;
9356
9357 /* Get the name of the symbol. */
9358 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9359 isym->st_name);
9360 if (name == NULL)
9361 return FALSE;
9362
9363 /* See if we are discarding symbols with this name. */
9364 if ((flinfo->info->strip == strip_some
9365 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9366 == NULL))
9367 || (((flinfo->info->discard == discard_sec_merge
9368 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9369 || flinfo->info->discard == discard_l)
9370 && bfd_is_local_label_name (input_bfd, name)))
9371 continue;
9372
9373 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9374 {
9375 have_file_sym = TRUE;
9376 flinfo->filesym_count += 1;
9377 }
9378 if (!have_file_sym)
9379 {
9380 /* In the absence of debug info, bfd_find_nearest_line uses
9381 FILE symbols to determine the source file for local
9382 function symbols. Provide a FILE symbol here if input
9383 files lack such, so that their symbols won't be
9384 associated with a previous input file. It's not the
9385 source file, but the best we can do. */
9386 have_file_sym = TRUE;
9387 flinfo->filesym_count += 1;
9388 memset (&osym, 0, sizeof (osym));
9389 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9390 osym.st_shndx = SHN_ABS;
9391 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9392 bfd_abs_section_ptr, NULL))
9393 return FALSE;
9394 }
9395
9396 osym = *isym;
9397
9398 /* Adjust the section index for the output file. */
9399 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9400 isec->output_section);
9401 if (osym.st_shndx == SHN_BAD)
9402 return FALSE;
9403
9404 /* ELF symbols in relocatable files are section relative, but
9405 in executable files they are virtual addresses. Note that
9406 this code assumes that all ELF sections have an associated
9407 BFD section with a reasonable value for output_offset; below
9408 we assume that they also have a reasonable value for
9409 output_section. Any special sections must be set up to meet
9410 these requirements. */
9411 osym.st_value += isec->output_offset;
9412 if (!flinfo->info->relocatable)
9413 {
9414 osym.st_value += isec->output_section->vma;
9415 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9416 {
9417 /* STT_TLS symbols are relative to PT_TLS segment base. */
9418 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9419 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9420 }
9421 }
9422
9423 indx = bfd_get_symcount (output_bfd);
9424 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9425 if (ret == 0)
9426 return FALSE;
9427 else if (ret == 1)
9428 *pindex = indx;
9429 }
9430
9431 if (bed->s->arch_size == 32)
9432 {
9433 r_type_mask = 0xff;
9434 r_sym_shift = 8;
9435 address_size = 4;
9436 }
9437 else
9438 {
9439 r_type_mask = 0xffffffff;
9440 r_sym_shift = 32;
9441 address_size = 8;
9442 }
9443
9444 /* Relocate the contents of each section. */
9445 sym_hashes = elf_sym_hashes (input_bfd);
9446 for (o = input_bfd->sections; o != NULL; o = o->next)
9447 {
9448 bfd_byte *contents;
9449
9450 if (! o->linker_mark)
9451 {
9452 /* This section was omitted from the link. */
9453 continue;
9454 }
9455
9456 if (flinfo->info->relocatable
9457 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9458 {
9459 /* Deal with the group signature symbol. */
9460 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9461 unsigned long symndx = sec_data->this_hdr.sh_info;
9462 asection *osec = o->output_section;
9463
9464 if (symndx >= locsymcount
9465 || (elf_bad_symtab (input_bfd)
9466 && flinfo->sections[symndx] == NULL))
9467 {
9468 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9469 while (h->root.type == bfd_link_hash_indirect
9470 || h->root.type == bfd_link_hash_warning)
9471 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9472 /* Arrange for symbol to be output. */
9473 h->indx = -2;
9474 elf_section_data (osec)->this_hdr.sh_info = -2;
9475 }
9476 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9477 {
9478 /* We'll use the output section target_index. */
9479 asection *sec = flinfo->sections[symndx]->output_section;
9480 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9481 }
9482 else
9483 {
9484 if (flinfo->indices[symndx] == -1)
9485 {
9486 /* Otherwise output the local symbol now. */
9487 Elf_Internal_Sym sym = isymbuf[symndx];
9488 asection *sec = flinfo->sections[symndx]->output_section;
9489 const char *name;
9490 long indx;
9491 int ret;
9492
9493 name = bfd_elf_string_from_elf_section (input_bfd,
9494 symtab_hdr->sh_link,
9495 sym.st_name);
9496 if (name == NULL)
9497 return FALSE;
9498
9499 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9500 sec);
9501 if (sym.st_shndx == SHN_BAD)
9502 return FALSE;
9503
9504 sym.st_value += o->output_offset;
9505
9506 indx = bfd_get_symcount (output_bfd);
9507 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9508 if (ret == 0)
9509 return FALSE;
9510 else if (ret == 1)
9511 flinfo->indices[symndx] = indx;
9512 else
9513 abort ();
9514 }
9515 elf_section_data (osec)->this_hdr.sh_info
9516 = flinfo->indices[symndx];
9517 }
9518 }
9519
9520 if ((o->flags & SEC_HAS_CONTENTS) == 0
9521 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9522 continue;
9523
9524 if ((o->flags & SEC_LINKER_CREATED) != 0)
9525 {
9526 /* Section was created by _bfd_elf_link_create_dynamic_sections
9527 or somesuch. */
9528 continue;
9529 }
9530
9531 /* Get the contents of the section. They have been cached by a
9532 relaxation routine. Note that o is a section in an input
9533 file, so the contents field will not have been set by any of
9534 the routines which work on output files. */
9535 if (elf_section_data (o)->this_hdr.contents != NULL)
9536 contents = elf_section_data (o)->this_hdr.contents;
9537 else
9538 {
9539 contents = flinfo->contents;
9540 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9541 return FALSE;
9542 }
9543
9544 if ((o->flags & SEC_RELOC) != 0)
9545 {
9546 Elf_Internal_Rela *internal_relocs;
9547 Elf_Internal_Rela *rel, *relend;
9548 int action_discarded;
9549 int ret;
9550
9551 /* Get the swapped relocs. */
9552 internal_relocs
9553 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9554 flinfo->internal_relocs, FALSE);
9555 if (internal_relocs == NULL
9556 && o->reloc_count > 0)
9557 return FALSE;
9558
9559 /* We need to reverse-copy input .ctors/.dtors sections if
9560 they are placed in .init_array/.finit_array for output. */
9561 if (o->size > address_size
9562 && ((strncmp (o->name, ".ctors", 6) == 0
9563 && strcmp (o->output_section->name,
9564 ".init_array") == 0)
9565 || (strncmp (o->name, ".dtors", 6) == 0
9566 && strcmp (o->output_section->name,
9567 ".fini_array") == 0))
9568 && (o->name[6] == 0 || o->name[6] == '.'))
9569 {
9570 if (o->size != o->reloc_count * address_size)
9571 {
9572 (*_bfd_error_handler)
9573 (_("error: %B: size of section %A is not "
9574 "multiple of address size"),
9575 input_bfd, o);
9576 bfd_set_error (bfd_error_on_input);
9577 return FALSE;
9578 }
9579 o->flags |= SEC_ELF_REVERSE_COPY;
9580 }
9581
9582 action_discarded = -1;
9583 if (!elf_section_ignore_discarded_relocs (o))
9584 action_discarded = (*bed->action_discarded) (o);
9585
9586 /* Run through the relocs evaluating complex reloc symbols and
9587 looking for relocs against symbols from discarded sections
9588 or section symbols from removed link-once sections.
9589 Complain about relocs against discarded sections. Zero
9590 relocs against removed link-once sections. */
9591
9592 rel = internal_relocs;
9593 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9594 for ( ; rel < relend; rel++)
9595 {
9596 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9597 unsigned int s_type;
9598 asection **ps, *sec;
9599 struct elf_link_hash_entry *h = NULL;
9600 const char *sym_name;
9601
9602 if (r_symndx == STN_UNDEF)
9603 continue;
9604
9605 if (r_symndx >= locsymcount
9606 || (elf_bad_symtab (input_bfd)
9607 && flinfo->sections[r_symndx] == NULL))
9608 {
9609 h = sym_hashes[r_symndx - extsymoff];
9610
9611 /* Badly formatted input files can contain relocs that
9612 reference non-existant symbols. Check here so that
9613 we do not seg fault. */
9614 if (h == NULL)
9615 {
9616 char buffer [32];
9617
9618 sprintf_vma (buffer, rel->r_info);
9619 (*_bfd_error_handler)
9620 (_("error: %B contains a reloc (0x%s) for section %A "
9621 "that references a non-existent global symbol"),
9622 input_bfd, o, buffer);
9623 bfd_set_error (bfd_error_bad_value);
9624 return FALSE;
9625 }
9626
9627 while (h->root.type == bfd_link_hash_indirect
9628 || h->root.type == bfd_link_hash_warning)
9629 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9630
9631 s_type = h->type;
9632
9633 ps = NULL;
9634 if (h->root.type == bfd_link_hash_defined
9635 || h->root.type == bfd_link_hash_defweak)
9636 ps = &h->root.u.def.section;
9637
9638 sym_name = h->root.root.string;
9639 }
9640 else
9641 {
9642 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9643
9644 s_type = ELF_ST_TYPE (sym->st_info);
9645 ps = &flinfo->sections[r_symndx];
9646 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9647 sym, *ps);
9648 }
9649
9650 if ((s_type == STT_RELC || s_type == STT_SRELC)
9651 && !flinfo->info->relocatable)
9652 {
9653 bfd_vma val;
9654 bfd_vma dot = (rel->r_offset
9655 + o->output_offset + o->output_section->vma);
9656 #ifdef DEBUG
9657 printf ("Encountered a complex symbol!");
9658 printf (" (input_bfd %s, section %s, reloc %ld\n",
9659 input_bfd->filename, o->name,
9660 (long) (rel - internal_relocs));
9661 printf (" symbol: idx %8.8lx, name %s\n",
9662 r_symndx, sym_name);
9663 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9664 (unsigned long) rel->r_info,
9665 (unsigned long) rel->r_offset);
9666 #endif
9667 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9668 isymbuf, locsymcount, s_type == STT_SRELC))
9669 return FALSE;
9670
9671 /* Symbol evaluated OK. Update to absolute value. */
9672 set_symbol_value (input_bfd, isymbuf, locsymcount,
9673 r_symndx, val);
9674 continue;
9675 }
9676
9677 if (action_discarded != -1 && ps != NULL)
9678 {
9679 /* Complain if the definition comes from a
9680 discarded section. */
9681 if ((sec = *ps) != NULL && discarded_section (sec))
9682 {
9683 BFD_ASSERT (r_symndx != STN_UNDEF);
9684 if (action_discarded & COMPLAIN)
9685 (*flinfo->info->callbacks->einfo)
9686 (_("%X`%s' referenced in section `%A' of %B: "
9687 "defined in discarded section `%A' of %B\n"),
9688 sym_name, o, input_bfd, sec, sec->owner);
9689
9690 /* Try to do the best we can to support buggy old
9691 versions of gcc. Pretend that the symbol is
9692 really defined in the kept linkonce section.
9693 FIXME: This is quite broken. Modifying the
9694 symbol here means we will be changing all later
9695 uses of the symbol, not just in this section. */
9696 if (action_discarded & PRETEND)
9697 {
9698 asection *kept;
9699
9700 kept = _bfd_elf_check_kept_section (sec,
9701 flinfo->info);
9702 if (kept != NULL)
9703 {
9704 *ps = kept;
9705 continue;
9706 }
9707 }
9708 }
9709 }
9710 }
9711
9712 /* Relocate the section by invoking a back end routine.
9713
9714 The back end routine is responsible for adjusting the
9715 section contents as necessary, and (if using Rela relocs
9716 and generating a relocatable output file) adjusting the
9717 reloc addend as necessary.
9718
9719 The back end routine does not have to worry about setting
9720 the reloc address or the reloc symbol index.
9721
9722 The back end routine is given a pointer to the swapped in
9723 internal symbols, and can access the hash table entries
9724 for the external symbols via elf_sym_hashes (input_bfd).
9725
9726 When generating relocatable output, the back end routine
9727 must handle STB_LOCAL/STT_SECTION symbols specially. The
9728 output symbol is going to be a section symbol
9729 corresponding to the output section, which will require
9730 the addend to be adjusted. */
9731
9732 ret = (*relocate_section) (output_bfd, flinfo->info,
9733 input_bfd, o, contents,
9734 internal_relocs,
9735 isymbuf,
9736 flinfo->sections);
9737 if (!ret)
9738 return FALSE;
9739
9740 if (ret == 2
9741 || flinfo->info->relocatable
9742 || flinfo->info->emitrelocations)
9743 {
9744 Elf_Internal_Rela *irela;
9745 Elf_Internal_Rela *irelaend, *irelamid;
9746 bfd_vma last_offset;
9747 struct elf_link_hash_entry **rel_hash;
9748 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9749 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9750 unsigned int next_erel;
9751 bfd_boolean rela_normal;
9752 struct bfd_elf_section_data *esdi, *esdo;
9753
9754 esdi = elf_section_data (o);
9755 esdo = elf_section_data (o->output_section);
9756 rela_normal = FALSE;
9757
9758 /* Adjust the reloc addresses and symbol indices. */
9759
9760 irela = internal_relocs;
9761 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9762 rel_hash = esdo->rel.hashes + esdo->rel.count;
9763 /* We start processing the REL relocs, if any. When we reach
9764 IRELAMID in the loop, we switch to the RELA relocs. */
9765 irelamid = irela;
9766 if (esdi->rel.hdr != NULL)
9767 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9768 * bed->s->int_rels_per_ext_rel);
9769 rel_hash_list = rel_hash;
9770 rela_hash_list = NULL;
9771 last_offset = o->output_offset;
9772 if (!flinfo->info->relocatable)
9773 last_offset += o->output_section->vma;
9774 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9775 {
9776 unsigned long r_symndx;
9777 asection *sec;
9778 Elf_Internal_Sym sym;
9779
9780 if (next_erel == bed->s->int_rels_per_ext_rel)
9781 {
9782 rel_hash++;
9783 next_erel = 0;
9784 }
9785
9786 if (irela == irelamid)
9787 {
9788 rel_hash = esdo->rela.hashes + esdo->rela.count;
9789 rela_hash_list = rel_hash;
9790 rela_normal = bed->rela_normal;
9791 }
9792
9793 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9794 flinfo->info, o,
9795 irela->r_offset);
9796 if (irela->r_offset >= (bfd_vma) -2)
9797 {
9798 /* This is a reloc for a deleted entry or somesuch.
9799 Turn it into an R_*_NONE reloc, at the same
9800 offset as the last reloc. elf_eh_frame.c and
9801 bfd_elf_discard_info rely on reloc offsets
9802 being ordered. */
9803 irela->r_offset = last_offset;
9804 irela->r_info = 0;
9805 irela->r_addend = 0;
9806 continue;
9807 }
9808
9809 irela->r_offset += o->output_offset;
9810
9811 /* Relocs in an executable have to be virtual addresses. */
9812 if (!flinfo->info->relocatable)
9813 irela->r_offset += o->output_section->vma;
9814
9815 last_offset = irela->r_offset;
9816
9817 r_symndx = irela->r_info >> r_sym_shift;
9818 if (r_symndx == STN_UNDEF)
9819 continue;
9820
9821 if (r_symndx >= locsymcount
9822 || (elf_bad_symtab (input_bfd)
9823 && flinfo->sections[r_symndx] == NULL))
9824 {
9825 struct elf_link_hash_entry *rh;
9826 unsigned long indx;
9827
9828 /* This is a reloc against a global symbol. We
9829 have not yet output all the local symbols, so
9830 we do not know the symbol index of any global
9831 symbol. We set the rel_hash entry for this
9832 reloc to point to the global hash table entry
9833 for this symbol. The symbol index is then
9834 set at the end of bfd_elf_final_link. */
9835 indx = r_symndx - extsymoff;
9836 rh = elf_sym_hashes (input_bfd)[indx];
9837 while (rh->root.type == bfd_link_hash_indirect
9838 || rh->root.type == bfd_link_hash_warning)
9839 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9840
9841 /* Setting the index to -2 tells
9842 elf_link_output_extsym that this symbol is
9843 used by a reloc. */
9844 BFD_ASSERT (rh->indx < 0);
9845 rh->indx = -2;
9846
9847 *rel_hash = rh;
9848
9849 continue;
9850 }
9851
9852 /* This is a reloc against a local symbol. */
9853
9854 *rel_hash = NULL;
9855 sym = isymbuf[r_symndx];
9856 sec = flinfo->sections[r_symndx];
9857 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9858 {
9859 /* I suppose the backend ought to fill in the
9860 section of any STT_SECTION symbol against a
9861 processor specific section. */
9862 r_symndx = STN_UNDEF;
9863 if (bfd_is_abs_section (sec))
9864 ;
9865 else if (sec == NULL || sec->owner == NULL)
9866 {
9867 bfd_set_error (bfd_error_bad_value);
9868 return FALSE;
9869 }
9870 else
9871 {
9872 asection *osec = sec->output_section;
9873
9874 /* If we have discarded a section, the output
9875 section will be the absolute section. In
9876 case of discarded SEC_MERGE sections, use
9877 the kept section. relocate_section should
9878 have already handled discarded linkonce
9879 sections. */
9880 if (bfd_is_abs_section (osec)
9881 && sec->kept_section != NULL
9882 && sec->kept_section->output_section != NULL)
9883 {
9884 osec = sec->kept_section->output_section;
9885 irela->r_addend -= osec->vma;
9886 }
9887
9888 if (!bfd_is_abs_section (osec))
9889 {
9890 r_symndx = osec->target_index;
9891 if (r_symndx == STN_UNDEF)
9892 {
9893 irela->r_addend += osec->vma;
9894 osec = _bfd_nearby_section (output_bfd, osec,
9895 osec->vma);
9896 irela->r_addend -= osec->vma;
9897 r_symndx = osec->target_index;
9898 }
9899 }
9900 }
9901
9902 /* Adjust the addend according to where the
9903 section winds up in the output section. */
9904 if (rela_normal)
9905 irela->r_addend += sec->output_offset;
9906 }
9907 else
9908 {
9909 if (flinfo->indices[r_symndx] == -1)
9910 {
9911 unsigned long shlink;
9912 const char *name;
9913 asection *osec;
9914 long indx;
9915
9916 if (flinfo->info->strip == strip_all)
9917 {
9918 /* You can't do ld -r -s. */
9919 bfd_set_error (bfd_error_invalid_operation);
9920 return FALSE;
9921 }
9922
9923 /* This symbol was skipped earlier, but
9924 since it is needed by a reloc, we
9925 must output it now. */
9926 shlink = symtab_hdr->sh_link;
9927 name = (bfd_elf_string_from_elf_section
9928 (input_bfd, shlink, sym.st_name));
9929 if (name == NULL)
9930 return FALSE;
9931
9932 osec = sec->output_section;
9933 sym.st_shndx =
9934 _bfd_elf_section_from_bfd_section (output_bfd,
9935 osec);
9936 if (sym.st_shndx == SHN_BAD)
9937 return FALSE;
9938
9939 sym.st_value += sec->output_offset;
9940 if (!flinfo->info->relocatable)
9941 {
9942 sym.st_value += osec->vma;
9943 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9944 {
9945 /* STT_TLS symbols are relative to PT_TLS
9946 segment base. */
9947 BFD_ASSERT (elf_hash_table (flinfo->info)
9948 ->tls_sec != NULL);
9949 sym.st_value -= (elf_hash_table (flinfo->info)
9950 ->tls_sec->vma);
9951 }
9952 }
9953
9954 indx = bfd_get_symcount (output_bfd);
9955 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9956 NULL);
9957 if (ret == 0)
9958 return FALSE;
9959 else if (ret == 1)
9960 flinfo->indices[r_symndx] = indx;
9961 else
9962 abort ();
9963 }
9964
9965 r_symndx = flinfo->indices[r_symndx];
9966 }
9967
9968 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9969 | (irela->r_info & r_type_mask));
9970 }
9971
9972 /* Swap out the relocs. */
9973 input_rel_hdr = esdi->rel.hdr;
9974 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9975 {
9976 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9977 input_rel_hdr,
9978 internal_relocs,
9979 rel_hash_list))
9980 return FALSE;
9981 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9982 * bed->s->int_rels_per_ext_rel);
9983 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9984 }
9985
9986 input_rela_hdr = esdi->rela.hdr;
9987 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9988 {
9989 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9990 input_rela_hdr,
9991 internal_relocs,
9992 rela_hash_list))
9993 return FALSE;
9994 }
9995 }
9996 }
9997
9998 /* Write out the modified section contents. */
9999 if (bed->elf_backend_write_section
10000 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10001 contents))
10002 {
10003 /* Section written out. */
10004 }
10005 else switch (o->sec_info_type)
10006 {
10007 case SEC_INFO_TYPE_STABS:
10008 if (! (_bfd_write_section_stabs
10009 (output_bfd,
10010 &elf_hash_table (flinfo->info)->stab_info,
10011 o, &elf_section_data (o)->sec_info, contents)))
10012 return FALSE;
10013 break;
10014 case SEC_INFO_TYPE_MERGE:
10015 if (! _bfd_write_merged_section (output_bfd, o,
10016 elf_section_data (o)->sec_info))
10017 return FALSE;
10018 break;
10019 case SEC_INFO_TYPE_EH_FRAME:
10020 {
10021 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10022 o, contents))
10023 return FALSE;
10024 }
10025 break;
10026 default:
10027 {
10028 /* FIXME: octets_per_byte. */
10029 if (! (o->flags & SEC_EXCLUDE))
10030 {
10031 file_ptr offset = (file_ptr) o->output_offset;
10032 bfd_size_type todo = o->size;
10033 if ((o->flags & SEC_ELF_REVERSE_COPY))
10034 {
10035 /* Reverse-copy input section to output. */
10036 do
10037 {
10038 todo -= address_size;
10039 if (! bfd_set_section_contents (output_bfd,
10040 o->output_section,
10041 contents + todo,
10042 offset,
10043 address_size))
10044 return FALSE;
10045 if (todo == 0)
10046 break;
10047 offset += address_size;
10048 }
10049 while (1);
10050 }
10051 else if (! bfd_set_section_contents (output_bfd,
10052 o->output_section,
10053 contents,
10054 offset, todo))
10055 return FALSE;
10056 }
10057 }
10058 break;
10059 }
10060 }
10061
10062 return TRUE;
10063 }
10064
10065 /* Generate a reloc when linking an ELF file. This is a reloc
10066 requested by the linker, and does not come from any input file. This
10067 is used to build constructor and destructor tables when linking
10068 with -Ur. */
10069
10070 static bfd_boolean
10071 elf_reloc_link_order (bfd *output_bfd,
10072 struct bfd_link_info *info,
10073 asection *output_section,
10074 struct bfd_link_order *link_order)
10075 {
10076 reloc_howto_type *howto;
10077 long indx;
10078 bfd_vma offset;
10079 bfd_vma addend;
10080 struct bfd_elf_section_reloc_data *reldata;
10081 struct elf_link_hash_entry **rel_hash_ptr;
10082 Elf_Internal_Shdr *rel_hdr;
10083 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10084 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10085 bfd_byte *erel;
10086 unsigned int i;
10087 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10088
10089 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10090 if (howto == NULL)
10091 {
10092 bfd_set_error (bfd_error_bad_value);
10093 return FALSE;
10094 }
10095
10096 addend = link_order->u.reloc.p->addend;
10097
10098 if (esdo->rel.hdr)
10099 reldata = &esdo->rel;
10100 else if (esdo->rela.hdr)
10101 reldata = &esdo->rela;
10102 else
10103 {
10104 reldata = NULL;
10105 BFD_ASSERT (0);
10106 }
10107
10108 /* Figure out the symbol index. */
10109 rel_hash_ptr = reldata->hashes + reldata->count;
10110 if (link_order->type == bfd_section_reloc_link_order)
10111 {
10112 indx = link_order->u.reloc.p->u.section->target_index;
10113 BFD_ASSERT (indx != 0);
10114 *rel_hash_ptr = NULL;
10115 }
10116 else
10117 {
10118 struct elf_link_hash_entry *h;
10119
10120 /* Treat a reloc against a defined symbol as though it were
10121 actually against the section. */
10122 h = ((struct elf_link_hash_entry *)
10123 bfd_wrapped_link_hash_lookup (output_bfd, info,
10124 link_order->u.reloc.p->u.name,
10125 FALSE, FALSE, TRUE));
10126 if (h != NULL
10127 && (h->root.type == bfd_link_hash_defined
10128 || h->root.type == bfd_link_hash_defweak))
10129 {
10130 asection *section;
10131
10132 section = h->root.u.def.section;
10133 indx = section->output_section->target_index;
10134 *rel_hash_ptr = NULL;
10135 /* It seems that we ought to add the symbol value to the
10136 addend here, but in practice it has already been added
10137 because it was passed to constructor_callback. */
10138 addend += section->output_section->vma + section->output_offset;
10139 }
10140 else if (h != NULL)
10141 {
10142 /* Setting the index to -2 tells elf_link_output_extsym that
10143 this symbol is used by a reloc. */
10144 h->indx = -2;
10145 *rel_hash_ptr = h;
10146 indx = 0;
10147 }
10148 else
10149 {
10150 if (! ((*info->callbacks->unattached_reloc)
10151 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10152 return FALSE;
10153 indx = 0;
10154 }
10155 }
10156
10157 /* If this is an inplace reloc, we must write the addend into the
10158 object file. */
10159 if (howto->partial_inplace && addend != 0)
10160 {
10161 bfd_size_type size;
10162 bfd_reloc_status_type rstat;
10163 bfd_byte *buf;
10164 bfd_boolean ok;
10165 const char *sym_name;
10166
10167 size = (bfd_size_type) bfd_get_reloc_size (howto);
10168 buf = (bfd_byte *) bfd_zmalloc (size);
10169 if (buf == NULL)
10170 return FALSE;
10171 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10172 switch (rstat)
10173 {
10174 case bfd_reloc_ok:
10175 break;
10176
10177 default:
10178 case bfd_reloc_outofrange:
10179 abort ();
10180
10181 case bfd_reloc_overflow:
10182 if (link_order->type == bfd_section_reloc_link_order)
10183 sym_name = bfd_section_name (output_bfd,
10184 link_order->u.reloc.p->u.section);
10185 else
10186 sym_name = link_order->u.reloc.p->u.name;
10187 if (! ((*info->callbacks->reloc_overflow)
10188 (info, NULL, sym_name, howto->name, addend, NULL,
10189 NULL, (bfd_vma) 0)))
10190 {
10191 free (buf);
10192 return FALSE;
10193 }
10194 break;
10195 }
10196 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10197 link_order->offset, size);
10198 free (buf);
10199 if (! ok)
10200 return FALSE;
10201 }
10202
10203 /* The address of a reloc is relative to the section in a
10204 relocatable file, and is a virtual address in an executable
10205 file. */
10206 offset = link_order->offset;
10207 if (! info->relocatable)
10208 offset += output_section->vma;
10209
10210 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10211 {
10212 irel[i].r_offset = offset;
10213 irel[i].r_info = 0;
10214 irel[i].r_addend = 0;
10215 }
10216 if (bed->s->arch_size == 32)
10217 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10218 else
10219 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10220
10221 rel_hdr = reldata->hdr;
10222 erel = rel_hdr->contents;
10223 if (rel_hdr->sh_type == SHT_REL)
10224 {
10225 erel += reldata->count * bed->s->sizeof_rel;
10226 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10227 }
10228 else
10229 {
10230 irel[0].r_addend = addend;
10231 erel += reldata->count * bed->s->sizeof_rela;
10232 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10233 }
10234
10235 ++reldata->count;
10236
10237 return TRUE;
10238 }
10239
10240
10241 /* Get the output vma of the section pointed to by the sh_link field. */
10242
10243 static bfd_vma
10244 elf_get_linked_section_vma (struct bfd_link_order *p)
10245 {
10246 Elf_Internal_Shdr **elf_shdrp;
10247 asection *s;
10248 int elfsec;
10249
10250 s = p->u.indirect.section;
10251 elf_shdrp = elf_elfsections (s->owner);
10252 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10253 elfsec = elf_shdrp[elfsec]->sh_link;
10254 /* PR 290:
10255 The Intel C compiler generates SHT_IA_64_UNWIND with
10256 SHF_LINK_ORDER. But it doesn't set the sh_link or
10257 sh_info fields. Hence we could get the situation
10258 where elfsec is 0. */
10259 if (elfsec == 0)
10260 {
10261 const struct elf_backend_data *bed
10262 = get_elf_backend_data (s->owner);
10263 if (bed->link_order_error_handler)
10264 bed->link_order_error_handler
10265 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10266 return 0;
10267 }
10268 else
10269 {
10270 s = elf_shdrp[elfsec]->bfd_section;
10271 return s->output_section->vma + s->output_offset;
10272 }
10273 }
10274
10275
10276 /* Compare two sections based on the locations of the sections they are
10277 linked to. Used by elf_fixup_link_order. */
10278
10279 static int
10280 compare_link_order (const void * a, const void * b)
10281 {
10282 bfd_vma apos;
10283 bfd_vma bpos;
10284
10285 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10286 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10287 if (apos < bpos)
10288 return -1;
10289 return apos > bpos;
10290 }
10291
10292
10293 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10294 order as their linked sections. Returns false if this could not be done
10295 because an output section includes both ordered and unordered
10296 sections. Ideally we'd do this in the linker proper. */
10297
10298 static bfd_boolean
10299 elf_fixup_link_order (bfd *abfd, asection *o)
10300 {
10301 int seen_linkorder;
10302 int seen_other;
10303 int n;
10304 struct bfd_link_order *p;
10305 bfd *sub;
10306 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10307 unsigned elfsec;
10308 struct bfd_link_order **sections;
10309 asection *s, *other_sec, *linkorder_sec;
10310 bfd_vma offset;
10311
10312 other_sec = NULL;
10313 linkorder_sec = NULL;
10314 seen_other = 0;
10315 seen_linkorder = 0;
10316 for (p = o->map_head.link_order; p != NULL; p = p->next)
10317 {
10318 if (p->type == bfd_indirect_link_order)
10319 {
10320 s = p->u.indirect.section;
10321 sub = s->owner;
10322 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10323 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10324 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10325 && elfsec < elf_numsections (sub)
10326 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10327 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10328 {
10329 seen_linkorder++;
10330 linkorder_sec = s;
10331 }
10332 else
10333 {
10334 seen_other++;
10335 other_sec = s;
10336 }
10337 }
10338 else
10339 seen_other++;
10340
10341 if (seen_other && seen_linkorder)
10342 {
10343 if (other_sec && linkorder_sec)
10344 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10345 o, linkorder_sec,
10346 linkorder_sec->owner, other_sec,
10347 other_sec->owner);
10348 else
10349 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10350 o);
10351 bfd_set_error (bfd_error_bad_value);
10352 return FALSE;
10353 }
10354 }
10355
10356 if (!seen_linkorder)
10357 return TRUE;
10358
10359 sections = (struct bfd_link_order **)
10360 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10361 if (sections == NULL)
10362 return FALSE;
10363 seen_linkorder = 0;
10364
10365 for (p = o->map_head.link_order; p != NULL; p = p->next)
10366 {
10367 sections[seen_linkorder++] = p;
10368 }
10369 /* Sort the input sections in the order of their linked section. */
10370 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10371 compare_link_order);
10372
10373 /* Change the offsets of the sections. */
10374 offset = 0;
10375 for (n = 0; n < seen_linkorder; n++)
10376 {
10377 s = sections[n]->u.indirect.section;
10378 offset &= ~(bfd_vma) 0 << s->alignment_power;
10379 s->output_offset = offset;
10380 sections[n]->offset = offset;
10381 /* FIXME: octets_per_byte. */
10382 offset += sections[n]->size;
10383 }
10384
10385 free (sections);
10386 return TRUE;
10387 }
10388
10389 static void
10390 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10391 {
10392 asection *o;
10393
10394 if (flinfo->symstrtab != NULL)
10395 _bfd_stringtab_free (flinfo->symstrtab);
10396 if (flinfo->contents != NULL)
10397 free (flinfo->contents);
10398 if (flinfo->external_relocs != NULL)
10399 free (flinfo->external_relocs);
10400 if (flinfo->internal_relocs != NULL)
10401 free (flinfo->internal_relocs);
10402 if (flinfo->external_syms != NULL)
10403 free (flinfo->external_syms);
10404 if (flinfo->locsym_shndx != NULL)
10405 free (flinfo->locsym_shndx);
10406 if (flinfo->internal_syms != NULL)
10407 free (flinfo->internal_syms);
10408 if (flinfo->indices != NULL)
10409 free (flinfo->indices);
10410 if (flinfo->sections != NULL)
10411 free (flinfo->sections);
10412 if (flinfo->symbuf != NULL)
10413 free (flinfo->symbuf);
10414 if (flinfo->symshndxbuf != NULL)
10415 free (flinfo->symshndxbuf);
10416 for (o = obfd->sections; o != NULL; o = o->next)
10417 {
10418 struct bfd_elf_section_data *esdo = elf_section_data (o);
10419 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10420 free (esdo->rel.hashes);
10421 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10422 free (esdo->rela.hashes);
10423 }
10424 }
10425
10426 /* Do the final step of an ELF link. */
10427
10428 bfd_boolean
10429 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10430 {
10431 bfd_boolean dynamic;
10432 bfd_boolean emit_relocs;
10433 bfd *dynobj;
10434 struct elf_final_link_info flinfo;
10435 asection *o;
10436 struct bfd_link_order *p;
10437 bfd *sub;
10438 bfd_size_type max_contents_size;
10439 bfd_size_type max_external_reloc_size;
10440 bfd_size_type max_internal_reloc_count;
10441 bfd_size_type max_sym_count;
10442 bfd_size_type max_sym_shndx_count;
10443 file_ptr off;
10444 Elf_Internal_Sym elfsym;
10445 unsigned int i;
10446 Elf_Internal_Shdr *symtab_hdr;
10447 Elf_Internal_Shdr *symtab_shndx_hdr;
10448 Elf_Internal_Shdr *symstrtab_hdr;
10449 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10450 struct elf_outext_info eoinfo;
10451 bfd_boolean merged;
10452 size_t relativecount = 0;
10453 asection *reldyn = 0;
10454 bfd_size_type amt;
10455 asection *attr_section = NULL;
10456 bfd_vma attr_size = 0;
10457 const char *std_attrs_section;
10458
10459 if (! is_elf_hash_table (info->hash))
10460 return FALSE;
10461
10462 if (info->shared)
10463 abfd->flags |= DYNAMIC;
10464
10465 dynamic = elf_hash_table (info)->dynamic_sections_created;
10466 dynobj = elf_hash_table (info)->dynobj;
10467
10468 emit_relocs = (info->relocatable
10469 || info->emitrelocations);
10470
10471 flinfo.info = info;
10472 flinfo.output_bfd = abfd;
10473 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10474 if (flinfo.symstrtab == NULL)
10475 return FALSE;
10476
10477 if (! dynamic)
10478 {
10479 flinfo.dynsym_sec = NULL;
10480 flinfo.hash_sec = NULL;
10481 flinfo.symver_sec = NULL;
10482 }
10483 else
10484 {
10485 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10486 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10487 /* Note that dynsym_sec can be NULL (on VMS). */
10488 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10489 /* Note that it is OK if symver_sec is NULL. */
10490 }
10491
10492 flinfo.contents = NULL;
10493 flinfo.external_relocs = NULL;
10494 flinfo.internal_relocs = NULL;
10495 flinfo.external_syms = NULL;
10496 flinfo.locsym_shndx = NULL;
10497 flinfo.internal_syms = NULL;
10498 flinfo.indices = NULL;
10499 flinfo.sections = NULL;
10500 flinfo.symbuf = NULL;
10501 flinfo.symshndxbuf = NULL;
10502 flinfo.symbuf_count = 0;
10503 flinfo.shndxbuf_size = 0;
10504 flinfo.filesym_count = 0;
10505
10506 /* The object attributes have been merged. Remove the input
10507 sections from the link, and set the contents of the output
10508 secton. */
10509 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10510 for (o = abfd->sections; o != NULL; o = o->next)
10511 {
10512 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10513 || strcmp (o->name, ".gnu.attributes") == 0)
10514 {
10515 for (p = o->map_head.link_order; p != NULL; p = p->next)
10516 {
10517 asection *input_section;
10518
10519 if (p->type != bfd_indirect_link_order)
10520 continue;
10521 input_section = p->u.indirect.section;
10522 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10523 elf_link_input_bfd ignores this section. */
10524 input_section->flags &= ~SEC_HAS_CONTENTS;
10525 }
10526
10527 attr_size = bfd_elf_obj_attr_size (abfd);
10528 if (attr_size)
10529 {
10530 bfd_set_section_size (abfd, o, attr_size);
10531 attr_section = o;
10532 /* Skip this section later on. */
10533 o->map_head.link_order = NULL;
10534 }
10535 else
10536 o->flags |= SEC_EXCLUDE;
10537 }
10538 }
10539
10540 /* Count up the number of relocations we will output for each output
10541 section, so that we know the sizes of the reloc sections. We
10542 also figure out some maximum sizes. */
10543 max_contents_size = 0;
10544 max_external_reloc_size = 0;
10545 max_internal_reloc_count = 0;
10546 max_sym_count = 0;
10547 max_sym_shndx_count = 0;
10548 merged = FALSE;
10549 for (o = abfd->sections; o != NULL; o = o->next)
10550 {
10551 struct bfd_elf_section_data *esdo = elf_section_data (o);
10552 o->reloc_count = 0;
10553
10554 for (p = o->map_head.link_order; p != NULL; p = p->next)
10555 {
10556 unsigned int reloc_count = 0;
10557 struct bfd_elf_section_data *esdi = NULL;
10558
10559 if (p->type == bfd_section_reloc_link_order
10560 || p->type == bfd_symbol_reloc_link_order)
10561 reloc_count = 1;
10562 else if (p->type == bfd_indirect_link_order)
10563 {
10564 asection *sec;
10565
10566 sec = p->u.indirect.section;
10567 esdi = elf_section_data (sec);
10568
10569 /* Mark all sections which are to be included in the
10570 link. This will normally be every section. We need
10571 to do this so that we can identify any sections which
10572 the linker has decided to not include. */
10573 sec->linker_mark = TRUE;
10574
10575 if (sec->flags & SEC_MERGE)
10576 merged = TRUE;
10577
10578 if (esdo->this_hdr.sh_type == SHT_REL
10579 || esdo->this_hdr.sh_type == SHT_RELA)
10580 /* Some backends use reloc_count in relocation sections
10581 to count particular types of relocs. Of course,
10582 reloc sections themselves can't have relocations. */
10583 reloc_count = 0;
10584 else if (info->relocatable || info->emitrelocations)
10585 reloc_count = sec->reloc_count;
10586 else if (bed->elf_backend_count_relocs)
10587 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10588
10589 if (sec->rawsize > max_contents_size)
10590 max_contents_size = sec->rawsize;
10591 if (sec->size > max_contents_size)
10592 max_contents_size = sec->size;
10593
10594 /* We are interested in just local symbols, not all
10595 symbols. */
10596 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10597 && (sec->owner->flags & DYNAMIC) == 0)
10598 {
10599 size_t sym_count;
10600
10601 if (elf_bad_symtab (sec->owner))
10602 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10603 / bed->s->sizeof_sym);
10604 else
10605 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10606
10607 if (sym_count > max_sym_count)
10608 max_sym_count = sym_count;
10609
10610 if (sym_count > max_sym_shndx_count
10611 && elf_symtab_shndx (sec->owner) != 0)
10612 max_sym_shndx_count = sym_count;
10613
10614 if ((sec->flags & SEC_RELOC) != 0)
10615 {
10616 size_t ext_size = 0;
10617
10618 if (esdi->rel.hdr != NULL)
10619 ext_size = esdi->rel.hdr->sh_size;
10620 if (esdi->rela.hdr != NULL)
10621 ext_size += esdi->rela.hdr->sh_size;
10622
10623 if (ext_size > max_external_reloc_size)
10624 max_external_reloc_size = ext_size;
10625 if (sec->reloc_count > max_internal_reloc_count)
10626 max_internal_reloc_count = sec->reloc_count;
10627 }
10628 }
10629 }
10630
10631 if (reloc_count == 0)
10632 continue;
10633
10634 o->reloc_count += reloc_count;
10635
10636 if (p->type == bfd_indirect_link_order
10637 && (info->relocatable || info->emitrelocations))
10638 {
10639 if (esdi->rel.hdr)
10640 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10641 if (esdi->rela.hdr)
10642 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10643 }
10644 else
10645 {
10646 if (o->use_rela_p)
10647 esdo->rela.count += reloc_count;
10648 else
10649 esdo->rel.count += reloc_count;
10650 }
10651 }
10652
10653 if (o->reloc_count > 0)
10654 o->flags |= SEC_RELOC;
10655 else
10656 {
10657 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10658 set it (this is probably a bug) and if it is set
10659 assign_section_numbers will create a reloc section. */
10660 o->flags &=~ SEC_RELOC;
10661 }
10662
10663 /* If the SEC_ALLOC flag is not set, force the section VMA to
10664 zero. This is done in elf_fake_sections as well, but forcing
10665 the VMA to 0 here will ensure that relocs against these
10666 sections are handled correctly. */
10667 if ((o->flags & SEC_ALLOC) == 0
10668 && ! o->user_set_vma)
10669 o->vma = 0;
10670 }
10671
10672 if (! info->relocatable && merged)
10673 elf_link_hash_traverse (elf_hash_table (info),
10674 _bfd_elf_link_sec_merge_syms, abfd);
10675
10676 /* Figure out the file positions for everything but the symbol table
10677 and the relocs. We set symcount to force assign_section_numbers
10678 to create a symbol table. */
10679 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10680 BFD_ASSERT (! abfd->output_has_begun);
10681 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10682 goto error_return;
10683
10684 /* Set sizes, and assign file positions for reloc sections. */
10685 for (o = abfd->sections; o != NULL; o = o->next)
10686 {
10687 struct bfd_elf_section_data *esdo = elf_section_data (o);
10688 if ((o->flags & SEC_RELOC) != 0)
10689 {
10690 if (esdo->rel.hdr
10691 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10692 goto error_return;
10693
10694 if (esdo->rela.hdr
10695 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10696 goto error_return;
10697 }
10698
10699 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10700 to count upwards while actually outputting the relocations. */
10701 esdo->rel.count = 0;
10702 esdo->rela.count = 0;
10703 }
10704
10705 _bfd_elf_assign_file_positions_for_relocs (abfd);
10706
10707 /* We have now assigned file positions for all the sections except
10708 .symtab and .strtab. We start the .symtab section at the current
10709 file position, and write directly to it. We build the .strtab
10710 section in memory. */
10711 bfd_get_symcount (abfd) = 0;
10712 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10713 /* sh_name is set in prep_headers. */
10714 symtab_hdr->sh_type = SHT_SYMTAB;
10715 /* sh_flags, sh_addr and sh_size all start off zero. */
10716 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10717 /* sh_link is set in assign_section_numbers. */
10718 /* sh_info is set below. */
10719 /* sh_offset is set just below. */
10720 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10721
10722 off = elf_next_file_pos (abfd);
10723 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10724
10725 /* Note that at this point elf_next_file_pos (abfd) is
10726 incorrect. We do not yet know the size of the .symtab section.
10727 We correct next_file_pos below, after we do know the size. */
10728
10729 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10730 continuously seeking to the right position in the file. */
10731 if (! info->keep_memory || max_sym_count < 20)
10732 flinfo.symbuf_size = 20;
10733 else
10734 flinfo.symbuf_size = max_sym_count;
10735 amt = flinfo.symbuf_size;
10736 amt *= bed->s->sizeof_sym;
10737 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10738 if (flinfo.symbuf == NULL)
10739 goto error_return;
10740 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10741 {
10742 /* Wild guess at number of output symbols. realloc'd as needed. */
10743 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10744 flinfo.shndxbuf_size = amt;
10745 amt *= sizeof (Elf_External_Sym_Shndx);
10746 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10747 if (flinfo.symshndxbuf == NULL)
10748 goto error_return;
10749 }
10750
10751 /* Start writing out the symbol table. The first symbol is always a
10752 dummy symbol. */
10753 if (info->strip != strip_all
10754 || emit_relocs)
10755 {
10756 elfsym.st_value = 0;
10757 elfsym.st_size = 0;
10758 elfsym.st_info = 0;
10759 elfsym.st_other = 0;
10760 elfsym.st_shndx = SHN_UNDEF;
10761 elfsym.st_target_internal = 0;
10762 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10763 NULL) != 1)
10764 goto error_return;
10765 }
10766
10767 /* Output a symbol for each section. We output these even if we are
10768 discarding local symbols, since they are used for relocs. These
10769 symbols have no names. We store the index of each one in the
10770 index field of the section, so that we can find it again when
10771 outputting relocs. */
10772 if (info->strip != strip_all
10773 || emit_relocs)
10774 {
10775 elfsym.st_size = 0;
10776 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10777 elfsym.st_other = 0;
10778 elfsym.st_value = 0;
10779 elfsym.st_target_internal = 0;
10780 for (i = 1; i < elf_numsections (abfd); i++)
10781 {
10782 o = bfd_section_from_elf_index (abfd, i);
10783 if (o != NULL)
10784 {
10785 o->target_index = bfd_get_symcount (abfd);
10786 elfsym.st_shndx = i;
10787 if (!info->relocatable)
10788 elfsym.st_value = o->vma;
10789 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10790 goto error_return;
10791 }
10792 }
10793 }
10794
10795 /* Allocate some memory to hold information read in from the input
10796 files. */
10797 if (max_contents_size != 0)
10798 {
10799 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10800 if (flinfo.contents == NULL)
10801 goto error_return;
10802 }
10803
10804 if (max_external_reloc_size != 0)
10805 {
10806 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10807 if (flinfo.external_relocs == NULL)
10808 goto error_return;
10809 }
10810
10811 if (max_internal_reloc_count != 0)
10812 {
10813 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10814 amt *= sizeof (Elf_Internal_Rela);
10815 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10816 if (flinfo.internal_relocs == NULL)
10817 goto error_return;
10818 }
10819
10820 if (max_sym_count != 0)
10821 {
10822 amt = max_sym_count * bed->s->sizeof_sym;
10823 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10824 if (flinfo.external_syms == NULL)
10825 goto error_return;
10826
10827 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10828 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10829 if (flinfo.internal_syms == NULL)
10830 goto error_return;
10831
10832 amt = max_sym_count * sizeof (long);
10833 flinfo.indices = (long int *) bfd_malloc (amt);
10834 if (flinfo.indices == NULL)
10835 goto error_return;
10836
10837 amt = max_sym_count * sizeof (asection *);
10838 flinfo.sections = (asection **) bfd_malloc (amt);
10839 if (flinfo.sections == NULL)
10840 goto error_return;
10841 }
10842
10843 if (max_sym_shndx_count != 0)
10844 {
10845 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10846 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10847 if (flinfo.locsym_shndx == NULL)
10848 goto error_return;
10849 }
10850
10851 if (elf_hash_table (info)->tls_sec)
10852 {
10853 bfd_vma base, end = 0;
10854 asection *sec;
10855
10856 for (sec = elf_hash_table (info)->tls_sec;
10857 sec && (sec->flags & SEC_THREAD_LOCAL);
10858 sec = sec->next)
10859 {
10860 bfd_size_type size = sec->size;
10861
10862 if (size == 0
10863 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10864 {
10865 struct bfd_link_order *ord = sec->map_tail.link_order;
10866
10867 if (ord != NULL)
10868 size = ord->offset + ord->size;
10869 }
10870 end = sec->vma + size;
10871 }
10872 base = elf_hash_table (info)->tls_sec->vma;
10873 /* Only align end of TLS section if static TLS doesn't have special
10874 alignment requirements. */
10875 if (bed->static_tls_alignment == 1)
10876 end = align_power (end,
10877 elf_hash_table (info)->tls_sec->alignment_power);
10878 elf_hash_table (info)->tls_size = end - base;
10879 }
10880
10881 /* Reorder SHF_LINK_ORDER sections. */
10882 for (o = abfd->sections; o != NULL; o = o->next)
10883 {
10884 if (!elf_fixup_link_order (abfd, o))
10885 return FALSE;
10886 }
10887
10888 /* Since ELF permits relocations to be against local symbols, we
10889 must have the local symbols available when we do the relocations.
10890 Since we would rather only read the local symbols once, and we
10891 would rather not keep them in memory, we handle all the
10892 relocations for a single input file at the same time.
10893
10894 Unfortunately, there is no way to know the total number of local
10895 symbols until we have seen all of them, and the local symbol
10896 indices precede the global symbol indices. This means that when
10897 we are generating relocatable output, and we see a reloc against
10898 a global symbol, we can not know the symbol index until we have
10899 finished examining all the local symbols to see which ones we are
10900 going to output. To deal with this, we keep the relocations in
10901 memory, and don't output them until the end of the link. This is
10902 an unfortunate waste of memory, but I don't see a good way around
10903 it. Fortunately, it only happens when performing a relocatable
10904 link, which is not the common case. FIXME: If keep_memory is set
10905 we could write the relocs out and then read them again; I don't
10906 know how bad the memory loss will be. */
10907
10908 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10909 sub->output_has_begun = FALSE;
10910 for (o = abfd->sections; o != NULL; o = o->next)
10911 {
10912 for (p = o->map_head.link_order; p != NULL; p = p->next)
10913 {
10914 if (p->type == bfd_indirect_link_order
10915 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10916 == bfd_target_elf_flavour)
10917 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10918 {
10919 if (! sub->output_has_begun)
10920 {
10921 if (! elf_link_input_bfd (&flinfo, sub))
10922 goto error_return;
10923 sub->output_has_begun = TRUE;
10924 }
10925 }
10926 else if (p->type == bfd_section_reloc_link_order
10927 || p->type == bfd_symbol_reloc_link_order)
10928 {
10929 if (! elf_reloc_link_order (abfd, info, o, p))
10930 goto error_return;
10931 }
10932 else
10933 {
10934 if (! _bfd_default_link_order (abfd, info, o, p))
10935 {
10936 if (p->type == bfd_indirect_link_order
10937 && (bfd_get_flavour (sub)
10938 == bfd_target_elf_flavour)
10939 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10940 != bed->s->elfclass))
10941 {
10942 const char *iclass, *oclass;
10943
10944 if (bed->s->elfclass == ELFCLASS64)
10945 {
10946 iclass = "ELFCLASS32";
10947 oclass = "ELFCLASS64";
10948 }
10949 else
10950 {
10951 iclass = "ELFCLASS64";
10952 oclass = "ELFCLASS32";
10953 }
10954
10955 bfd_set_error (bfd_error_wrong_format);
10956 (*_bfd_error_handler)
10957 (_("%B: file class %s incompatible with %s"),
10958 sub, iclass, oclass);
10959 }
10960
10961 goto error_return;
10962 }
10963 }
10964 }
10965 }
10966
10967 /* Free symbol buffer if needed. */
10968 if (!info->reduce_memory_overheads)
10969 {
10970 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10971 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10972 && elf_tdata (sub)->symbuf)
10973 {
10974 free (elf_tdata (sub)->symbuf);
10975 elf_tdata (sub)->symbuf = NULL;
10976 }
10977 }
10978
10979 /* Output a FILE symbol so that following locals are not associated
10980 with the wrong input file. */
10981 memset (&elfsym, 0, sizeof (elfsym));
10982 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10983 elfsym.st_shndx = SHN_ABS;
10984
10985 if (flinfo.filesym_count > 1
10986 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
10987 bfd_und_section_ptr, NULL))
10988 return FALSE;
10989
10990 /* Output any global symbols that got converted to local in a
10991 version script or due to symbol visibility. We do this in a
10992 separate step since ELF requires all local symbols to appear
10993 prior to any global symbols. FIXME: We should only do this if
10994 some global symbols were, in fact, converted to become local.
10995 FIXME: Will this work correctly with the Irix 5 linker? */
10996 eoinfo.failed = FALSE;
10997 eoinfo.flinfo = &flinfo;
10998 eoinfo.localsyms = TRUE;
10999 eoinfo.need_second_pass = FALSE;
11000 eoinfo.second_pass = FALSE;
11001 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11002 if (eoinfo.failed)
11003 return FALSE;
11004
11005 if (flinfo.filesym_count == 1
11006 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11007 bfd_und_section_ptr, NULL))
11008 return FALSE;
11009
11010 if (eoinfo.need_second_pass)
11011 {
11012 eoinfo.second_pass = TRUE;
11013 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11014 if (eoinfo.failed)
11015 return FALSE;
11016 }
11017
11018 /* If backend needs to output some local symbols not present in the hash
11019 table, do it now. */
11020 if (bed->elf_backend_output_arch_local_syms)
11021 {
11022 typedef int (*out_sym_func)
11023 (void *, const char *, Elf_Internal_Sym *, asection *,
11024 struct elf_link_hash_entry *);
11025
11026 if (! ((*bed->elf_backend_output_arch_local_syms)
11027 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11028 return FALSE;
11029 }
11030
11031 /* That wrote out all the local symbols. Finish up the symbol table
11032 with the global symbols. Even if we want to strip everything we
11033 can, we still need to deal with those global symbols that got
11034 converted to local in a version script. */
11035
11036 /* The sh_info field records the index of the first non local symbol. */
11037 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11038
11039 if (dynamic
11040 && flinfo.dynsym_sec != NULL
11041 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11042 {
11043 Elf_Internal_Sym sym;
11044 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11045 long last_local = 0;
11046
11047 /* Write out the section symbols for the output sections. */
11048 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11049 {
11050 asection *s;
11051
11052 sym.st_size = 0;
11053 sym.st_name = 0;
11054 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11055 sym.st_other = 0;
11056 sym.st_target_internal = 0;
11057
11058 for (s = abfd->sections; s != NULL; s = s->next)
11059 {
11060 int indx;
11061 bfd_byte *dest;
11062 long dynindx;
11063
11064 dynindx = elf_section_data (s)->dynindx;
11065 if (dynindx <= 0)
11066 continue;
11067 indx = elf_section_data (s)->this_idx;
11068 BFD_ASSERT (indx > 0);
11069 sym.st_shndx = indx;
11070 if (! check_dynsym (abfd, &sym))
11071 return FALSE;
11072 sym.st_value = s->vma;
11073 dest = dynsym + dynindx * bed->s->sizeof_sym;
11074 if (last_local < dynindx)
11075 last_local = dynindx;
11076 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11077 }
11078 }
11079
11080 /* Write out the local dynsyms. */
11081 if (elf_hash_table (info)->dynlocal)
11082 {
11083 struct elf_link_local_dynamic_entry *e;
11084 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11085 {
11086 asection *s;
11087 bfd_byte *dest;
11088
11089 /* Copy the internal symbol and turn off visibility.
11090 Note that we saved a word of storage and overwrote
11091 the original st_name with the dynstr_index. */
11092 sym = e->isym;
11093 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11094
11095 s = bfd_section_from_elf_index (e->input_bfd,
11096 e->isym.st_shndx);
11097 if (s != NULL)
11098 {
11099 sym.st_shndx =
11100 elf_section_data (s->output_section)->this_idx;
11101 if (! check_dynsym (abfd, &sym))
11102 return FALSE;
11103 sym.st_value = (s->output_section->vma
11104 + s->output_offset
11105 + e->isym.st_value);
11106 }
11107
11108 if (last_local < e->dynindx)
11109 last_local = e->dynindx;
11110
11111 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11112 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11113 }
11114 }
11115
11116 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11117 last_local + 1;
11118 }
11119
11120 /* We get the global symbols from the hash table. */
11121 eoinfo.failed = FALSE;
11122 eoinfo.localsyms = FALSE;
11123 eoinfo.flinfo = &flinfo;
11124 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11125 if (eoinfo.failed)
11126 return FALSE;
11127
11128 /* If backend needs to output some symbols not present in the hash
11129 table, do it now. */
11130 if (bed->elf_backend_output_arch_syms)
11131 {
11132 typedef int (*out_sym_func)
11133 (void *, const char *, Elf_Internal_Sym *, asection *,
11134 struct elf_link_hash_entry *);
11135
11136 if (! ((*bed->elf_backend_output_arch_syms)
11137 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11138 return FALSE;
11139 }
11140
11141 /* Flush all symbols to the file. */
11142 if (! elf_link_flush_output_syms (&flinfo, bed))
11143 return FALSE;
11144
11145 /* Now we know the size of the symtab section. */
11146 off += symtab_hdr->sh_size;
11147
11148 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11149 if (symtab_shndx_hdr->sh_name != 0)
11150 {
11151 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11152 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11153 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11154 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11155 symtab_shndx_hdr->sh_size = amt;
11156
11157 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11158 off, TRUE);
11159
11160 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11161 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11162 return FALSE;
11163 }
11164
11165
11166 /* Finish up and write out the symbol string table (.strtab)
11167 section. */
11168 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11169 /* sh_name was set in prep_headers. */
11170 symstrtab_hdr->sh_type = SHT_STRTAB;
11171 symstrtab_hdr->sh_flags = 0;
11172 symstrtab_hdr->sh_addr = 0;
11173 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11174 symstrtab_hdr->sh_entsize = 0;
11175 symstrtab_hdr->sh_link = 0;
11176 symstrtab_hdr->sh_info = 0;
11177 /* sh_offset is set just below. */
11178 symstrtab_hdr->sh_addralign = 1;
11179
11180 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11181 elf_next_file_pos (abfd) = off;
11182
11183 if (bfd_get_symcount (abfd) > 0)
11184 {
11185 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11186 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11187 return FALSE;
11188 }
11189
11190 /* Adjust the relocs to have the correct symbol indices. */
11191 for (o = abfd->sections; o != NULL; o = o->next)
11192 {
11193 struct bfd_elf_section_data *esdo = elf_section_data (o);
11194 if ((o->flags & SEC_RELOC) == 0)
11195 continue;
11196
11197 if (esdo->rel.hdr != NULL)
11198 elf_link_adjust_relocs (abfd, &esdo->rel);
11199 if (esdo->rela.hdr != NULL)
11200 elf_link_adjust_relocs (abfd, &esdo->rela);
11201
11202 /* Set the reloc_count field to 0 to prevent write_relocs from
11203 trying to swap the relocs out itself. */
11204 o->reloc_count = 0;
11205 }
11206
11207 if (dynamic && info->combreloc && dynobj != NULL)
11208 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11209
11210 /* If we are linking against a dynamic object, or generating a
11211 shared library, finish up the dynamic linking information. */
11212 if (dynamic)
11213 {
11214 bfd_byte *dyncon, *dynconend;
11215
11216 /* Fix up .dynamic entries. */
11217 o = bfd_get_linker_section (dynobj, ".dynamic");
11218 BFD_ASSERT (o != NULL);
11219
11220 dyncon = o->contents;
11221 dynconend = o->contents + o->size;
11222 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11223 {
11224 Elf_Internal_Dyn dyn;
11225 const char *name;
11226 unsigned int type;
11227
11228 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11229
11230 switch (dyn.d_tag)
11231 {
11232 default:
11233 continue;
11234 case DT_NULL:
11235 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11236 {
11237 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11238 {
11239 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11240 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11241 default: continue;
11242 }
11243 dyn.d_un.d_val = relativecount;
11244 relativecount = 0;
11245 break;
11246 }
11247 continue;
11248
11249 case DT_INIT:
11250 name = info->init_function;
11251 goto get_sym;
11252 case DT_FINI:
11253 name = info->fini_function;
11254 get_sym:
11255 {
11256 struct elf_link_hash_entry *h;
11257
11258 h = elf_link_hash_lookup (elf_hash_table (info), name,
11259 FALSE, FALSE, TRUE);
11260 if (h != NULL
11261 && (h->root.type == bfd_link_hash_defined
11262 || h->root.type == bfd_link_hash_defweak))
11263 {
11264 dyn.d_un.d_ptr = h->root.u.def.value;
11265 o = h->root.u.def.section;
11266 if (o->output_section != NULL)
11267 dyn.d_un.d_ptr += (o->output_section->vma
11268 + o->output_offset);
11269 else
11270 {
11271 /* The symbol is imported from another shared
11272 library and does not apply to this one. */
11273 dyn.d_un.d_ptr = 0;
11274 }
11275 break;
11276 }
11277 }
11278 continue;
11279
11280 case DT_PREINIT_ARRAYSZ:
11281 name = ".preinit_array";
11282 goto get_size;
11283 case DT_INIT_ARRAYSZ:
11284 name = ".init_array";
11285 goto get_size;
11286 case DT_FINI_ARRAYSZ:
11287 name = ".fini_array";
11288 get_size:
11289 o = bfd_get_section_by_name (abfd, name);
11290 if (o == NULL)
11291 {
11292 (*_bfd_error_handler)
11293 (_("%B: could not find output section %s"), abfd, name);
11294 goto error_return;
11295 }
11296 if (o->size == 0)
11297 (*_bfd_error_handler)
11298 (_("warning: %s section has zero size"), name);
11299 dyn.d_un.d_val = o->size;
11300 break;
11301
11302 case DT_PREINIT_ARRAY:
11303 name = ".preinit_array";
11304 goto get_vma;
11305 case DT_INIT_ARRAY:
11306 name = ".init_array";
11307 goto get_vma;
11308 case DT_FINI_ARRAY:
11309 name = ".fini_array";
11310 goto get_vma;
11311
11312 case DT_HASH:
11313 name = ".hash";
11314 goto get_vma;
11315 case DT_GNU_HASH:
11316 name = ".gnu.hash";
11317 goto get_vma;
11318 case DT_STRTAB:
11319 name = ".dynstr";
11320 goto get_vma;
11321 case DT_SYMTAB:
11322 name = ".dynsym";
11323 goto get_vma;
11324 case DT_VERDEF:
11325 name = ".gnu.version_d";
11326 goto get_vma;
11327 case DT_VERNEED:
11328 name = ".gnu.version_r";
11329 goto get_vma;
11330 case DT_VERSYM:
11331 name = ".gnu.version";
11332 get_vma:
11333 o = bfd_get_section_by_name (abfd, name);
11334 if (o == NULL)
11335 {
11336 (*_bfd_error_handler)
11337 (_("%B: could not find output section %s"), abfd, name);
11338 goto error_return;
11339 }
11340 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11341 {
11342 (*_bfd_error_handler)
11343 (_("warning: section '%s' is being made into a note"), name);
11344 bfd_set_error (bfd_error_nonrepresentable_section);
11345 goto error_return;
11346 }
11347 dyn.d_un.d_ptr = o->vma;
11348 break;
11349
11350 case DT_REL:
11351 case DT_RELA:
11352 case DT_RELSZ:
11353 case DT_RELASZ:
11354 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11355 type = SHT_REL;
11356 else
11357 type = SHT_RELA;
11358 dyn.d_un.d_val = 0;
11359 dyn.d_un.d_ptr = 0;
11360 for (i = 1; i < elf_numsections (abfd); i++)
11361 {
11362 Elf_Internal_Shdr *hdr;
11363
11364 hdr = elf_elfsections (abfd)[i];
11365 if (hdr->sh_type == type
11366 && (hdr->sh_flags & SHF_ALLOC) != 0)
11367 {
11368 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11369 dyn.d_un.d_val += hdr->sh_size;
11370 else
11371 {
11372 if (dyn.d_un.d_ptr == 0
11373 || hdr->sh_addr < dyn.d_un.d_ptr)
11374 dyn.d_un.d_ptr = hdr->sh_addr;
11375 }
11376 }
11377 }
11378 break;
11379 }
11380 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11381 }
11382 }
11383
11384 /* If we have created any dynamic sections, then output them. */
11385 if (dynobj != NULL)
11386 {
11387 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11388 goto error_return;
11389
11390 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11391 if (((info->warn_shared_textrel && info->shared)
11392 || info->error_textrel)
11393 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11394 {
11395 bfd_byte *dyncon, *dynconend;
11396
11397 dyncon = o->contents;
11398 dynconend = o->contents + o->size;
11399 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11400 {
11401 Elf_Internal_Dyn dyn;
11402
11403 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11404
11405 if (dyn.d_tag == DT_TEXTREL)
11406 {
11407 if (info->error_textrel)
11408 info->callbacks->einfo
11409 (_("%P%X: read-only segment has dynamic relocations.\n"));
11410 else
11411 info->callbacks->einfo
11412 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11413 break;
11414 }
11415 }
11416 }
11417
11418 for (o = dynobj->sections; o != NULL; o = o->next)
11419 {
11420 if ((o->flags & SEC_HAS_CONTENTS) == 0
11421 || o->size == 0
11422 || o->output_section == bfd_abs_section_ptr)
11423 continue;
11424 if ((o->flags & SEC_LINKER_CREATED) == 0)
11425 {
11426 /* At this point, we are only interested in sections
11427 created by _bfd_elf_link_create_dynamic_sections. */
11428 continue;
11429 }
11430 if (elf_hash_table (info)->stab_info.stabstr == o)
11431 continue;
11432 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11433 continue;
11434 if (strcmp (o->name, ".dynstr") != 0)
11435 {
11436 /* FIXME: octets_per_byte. */
11437 if (! bfd_set_section_contents (abfd, o->output_section,
11438 o->contents,
11439 (file_ptr) o->output_offset,
11440 o->size))
11441 goto error_return;
11442 }
11443 else
11444 {
11445 /* The contents of the .dynstr section are actually in a
11446 stringtab. */
11447 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11448 if (bfd_seek (abfd, off, SEEK_SET) != 0
11449 || ! _bfd_elf_strtab_emit (abfd,
11450 elf_hash_table (info)->dynstr))
11451 goto error_return;
11452 }
11453 }
11454 }
11455
11456 if (info->relocatable)
11457 {
11458 bfd_boolean failed = FALSE;
11459
11460 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11461 if (failed)
11462 goto error_return;
11463 }
11464
11465 /* If we have optimized stabs strings, output them. */
11466 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11467 {
11468 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11469 goto error_return;
11470 }
11471
11472 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11473 goto error_return;
11474
11475 elf_final_link_free (abfd, &flinfo);
11476
11477 elf_linker (abfd) = TRUE;
11478
11479 if (attr_section)
11480 {
11481 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11482 if (contents == NULL)
11483 return FALSE; /* Bail out and fail. */
11484 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11485 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11486 free (contents);
11487 }
11488
11489 return TRUE;
11490
11491 error_return:
11492 elf_final_link_free (abfd, &flinfo);
11493 return FALSE;
11494 }
11495 \f
11496 /* Initialize COOKIE for input bfd ABFD. */
11497
11498 static bfd_boolean
11499 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11500 struct bfd_link_info *info, bfd *abfd)
11501 {
11502 Elf_Internal_Shdr *symtab_hdr;
11503 const struct elf_backend_data *bed;
11504
11505 bed = get_elf_backend_data (abfd);
11506 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11507
11508 cookie->abfd = abfd;
11509 cookie->sym_hashes = elf_sym_hashes (abfd);
11510 cookie->bad_symtab = elf_bad_symtab (abfd);
11511 if (cookie->bad_symtab)
11512 {
11513 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11514 cookie->extsymoff = 0;
11515 }
11516 else
11517 {
11518 cookie->locsymcount = symtab_hdr->sh_info;
11519 cookie->extsymoff = symtab_hdr->sh_info;
11520 }
11521
11522 if (bed->s->arch_size == 32)
11523 cookie->r_sym_shift = 8;
11524 else
11525 cookie->r_sym_shift = 32;
11526
11527 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11528 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11529 {
11530 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11531 cookie->locsymcount, 0,
11532 NULL, NULL, NULL);
11533 if (cookie->locsyms == NULL)
11534 {
11535 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11536 return FALSE;
11537 }
11538 if (info->keep_memory)
11539 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11540 }
11541 return TRUE;
11542 }
11543
11544 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11545
11546 static void
11547 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11548 {
11549 Elf_Internal_Shdr *symtab_hdr;
11550
11551 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11552 if (cookie->locsyms != NULL
11553 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11554 free (cookie->locsyms);
11555 }
11556
11557 /* Initialize the relocation information in COOKIE for input section SEC
11558 of input bfd ABFD. */
11559
11560 static bfd_boolean
11561 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11562 struct bfd_link_info *info, bfd *abfd,
11563 asection *sec)
11564 {
11565 const struct elf_backend_data *bed;
11566
11567 if (sec->reloc_count == 0)
11568 {
11569 cookie->rels = NULL;
11570 cookie->relend = NULL;
11571 }
11572 else
11573 {
11574 bed = get_elf_backend_data (abfd);
11575
11576 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11577 info->keep_memory);
11578 if (cookie->rels == NULL)
11579 return FALSE;
11580 cookie->rel = cookie->rels;
11581 cookie->relend = (cookie->rels
11582 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11583 }
11584 cookie->rel = cookie->rels;
11585 return TRUE;
11586 }
11587
11588 /* Free the memory allocated by init_reloc_cookie_rels,
11589 if appropriate. */
11590
11591 static void
11592 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11593 asection *sec)
11594 {
11595 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11596 free (cookie->rels);
11597 }
11598
11599 /* Initialize the whole of COOKIE for input section SEC. */
11600
11601 static bfd_boolean
11602 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11603 struct bfd_link_info *info,
11604 asection *sec)
11605 {
11606 if (!init_reloc_cookie (cookie, info, sec->owner))
11607 goto error1;
11608 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11609 goto error2;
11610 return TRUE;
11611
11612 error2:
11613 fini_reloc_cookie (cookie, sec->owner);
11614 error1:
11615 return FALSE;
11616 }
11617
11618 /* Free the memory allocated by init_reloc_cookie_for_section,
11619 if appropriate. */
11620
11621 static void
11622 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11623 asection *sec)
11624 {
11625 fini_reloc_cookie_rels (cookie, sec);
11626 fini_reloc_cookie (cookie, sec->owner);
11627 }
11628 \f
11629 /* Garbage collect unused sections. */
11630
11631 /* Default gc_mark_hook. */
11632
11633 asection *
11634 _bfd_elf_gc_mark_hook (asection *sec,
11635 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11636 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11637 struct elf_link_hash_entry *h,
11638 Elf_Internal_Sym *sym)
11639 {
11640 const char *sec_name;
11641
11642 if (h != NULL)
11643 {
11644 switch (h->root.type)
11645 {
11646 case bfd_link_hash_defined:
11647 case bfd_link_hash_defweak:
11648 return h->root.u.def.section;
11649
11650 case bfd_link_hash_common:
11651 return h->root.u.c.p->section;
11652
11653 case bfd_link_hash_undefined:
11654 case bfd_link_hash_undefweak:
11655 /* To work around a glibc bug, keep all XXX input sections
11656 when there is an as yet undefined reference to __start_XXX
11657 or __stop_XXX symbols. The linker will later define such
11658 symbols for orphan input sections that have a name
11659 representable as a C identifier. */
11660 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11661 sec_name = h->root.root.string + 8;
11662 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11663 sec_name = h->root.root.string + 7;
11664 else
11665 sec_name = NULL;
11666
11667 if (sec_name && *sec_name != '\0')
11668 {
11669 bfd *i;
11670
11671 for (i = info->input_bfds; i; i = i->link_next)
11672 {
11673 sec = bfd_get_section_by_name (i, sec_name);
11674 if (sec)
11675 sec->flags |= SEC_KEEP;
11676 }
11677 }
11678 break;
11679
11680 default:
11681 break;
11682 }
11683 }
11684 else
11685 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11686
11687 return NULL;
11688 }
11689
11690 /* COOKIE->rel describes a relocation against section SEC, which is
11691 a section we've decided to keep. Return the section that contains
11692 the relocation symbol, or NULL if no section contains it. */
11693
11694 asection *
11695 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11696 elf_gc_mark_hook_fn gc_mark_hook,
11697 struct elf_reloc_cookie *cookie)
11698 {
11699 unsigned long r_symndx;
11700 struct elf_link_hash_entry *h;
11701
11702 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11703 if (r_symndx == STN_UNDEF)
11704 return NULL;
11705
11706 if (r_symndx >= cookie->locsymcount
11707 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11708 {
11709 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11710 while (h->root.type == bfd_link_hash_indirect
11711 || h->root.type == bfd_link_hash_warning)
11712 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11713 h->mark = 1;
11714 /* If this symbol is weak and there is a non-weak definition, we
11715 keep the non-weak definition because many backends put
11716 dynamic reloc info on the non-weak definition for code
11717 handling copy relocs. */
11718 if (h->u.weakdef != NULL)
11719 h->u.weakdef->mark = 1;
11720 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11721 }
11722
11723 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11724 &cookie->locsyms[r_symndx]);
11725 }
11726
11727 /* COOKIE->rel describes a relocation against section SEC, which is
11728 a section we've decided to keep. Mark the section that contains
11729 the relocation symbol. */
11730
11731 bfd_boolean
11732 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11733 asection *sec,
11734 elf_gc_mark_hook_fn gc_mark_hook,
11735 struct elf_reloc_cookie *cookie)
11736 {
11737 asection *rsec;
11738
11739 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11740 if (rsec && !rsec->gc_mark)
11741 {
11742 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11743 || (rsec->owner->flags & DYNAMIC) != 0)
11744 rsec->gc_mark = 1;
11745 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11746 return FALSE;
11747 }
11748 return TRUE;
11749 }
11750
11751 /* The mark phase of garbage collection. For a given section, mark
11752 it and any sections in this section's group, and all the sections
11753 which define symbols to which it refers. */
11754
11755 bfd_boolean
11756 _bfd_elf_gc_mark (struct bfd_link_info *info,
11757 asection *sec,
11758 elf_gc_mark_hook_fn gc_mark_hook)
11759 {
11760 bfd_boolean ret;
11761 asection *group_sec, *eh_frame;
11762
11763 sec->gc_mark = 1;
11764
11765 /* Mark all the sections in the group. */
11766 group_sec = elf_section_data (sec)->next_in_group;
11767 if (group_sec && !group_sec->gc_mark)
11768 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11769 return FALSE;
11770
11771 /* Look through the section relocs. */
11772 ret = TRUE;
11773 eh_frame = elf_eh_frame_section (sec->owner);
11774 if ((sec->flags & SEC_RELOC) != 0
11775 && sec->reloc_count > 0
11776 && sec != eh_frame)
11777 {
11778 struct elf_reloc_cookie cookie;
11779
11780 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11781 ret = FALSE;
11782 else
11783 {
11784 for (; cookie.rel < cookie.relend; cookie.rel++)
11785 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11786 {
11787 ret = FALSE;
11788 break;
11789 }
11790 fini_reloc_cookie_for_section (&cookie, sec);
11791 }
11792 }
11793
11794 if (ret && eh_frame && elf_fde_list (sec))
11795 {
11796 struct elf_reloc_cookie cookie;
11797
11798 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11799 ret = FALSE;
11800 else
11801 {
11802 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11803 gc_mark_hook, &cookie))
11804 ret = FALSE;
11805 fini_reloc_cookie_for_section (&cookie, eh_frame);
11806 }
11807 }
11808
11809 return ret;
11810 }
11811
11812 /* Keep debug and special sections. */
11813
11814 bfd_boolean
11815 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11816 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11817 {
11818 bfd *ibfd;
11819
11820 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11821 {
11822 asection *isec;
11823 bfd_boolean some_kept;
11824
11825 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11826 continue;
11827
11828 /* Ensure all linker created sections are kept, and see whether
11829 any other section is already marked. */
11830 some_kept = FALSE;
11831 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11832 {
11833 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11834 isec->gc_mark = 1;
11835 else if (isec->gc_mark)
11836 some_kept = TRUE;
11837 }
11838
11839 /* If no section in this file will be kept, then we can
11840 toss out debug sections. */
11841 if (!some_kept)
11842 continue;
11843
11844 /* Keep debug and special sections like .comment when they are
11845 not part of a group, or when we have single-member groups. */
11846 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11847 if ((elf_next_in_group (isec) == NULL
11848 || elf_next_in_group (isec) == isec)
11849 && ((isec->flags & SEC_DEBUGGING) != 0
11850 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11851 isec->gc_mark = 1;
11852 }
11853 return TRUE;
11854 }
11855
11856 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11857
11858 struct elf_gc_sweep_symbol_info
11859 {
11860 struct bfd_link_info *info;
11861 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11862 bfd_boolean);
11863 };
11864
11865 static bfd_boolean
11866 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11867 {
11868 if (!h->mark
11869 && (((h->root.type == bfd_link_hash_defined
11870 || h->root.type == bfd_link_hash_defweak)
11871 && !(h->def_regular
11872 && h->root.u.def.section->gc_mark))
11873 || h->root.type == bfd_link_hash_undefined
11874 || h->root.type == bfd_link_hash_undefweak))
11875 {
11876 struct elf_gc_sweep_symbol_info *inf;
11877
11878 inf = (struct elf_gc_sweep_symbol_info *) data;
11879 (*inf->hide_symbol) (inf->info, h, TRUE);
11880 h->def_regular = 0;
11881 h->ref_regular = 0;
11882 h->ref_regular_nonweak = 0;
11883 }
11884
11885 return TRUE;
11886 }
11887
11888 /* The sweep phase of garbage collection. Remove all garbage sections. */
11889
11890 typedef bfd_boolean (*gc_sweep_hook_fn)
11891 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11892
11893 static bfd_boolean
11894 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11895 {
11896 bfd *sub;
11897 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11898 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11899 unsigned long section_sym_count;
11900 struct elf_gc_sweep_symbol_info sweep_info;
11901
11902 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11903 {
11904 asection *o;
11905
11906 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11907 continue;
11908
11909 for (o = sub->sections; o != NULL; o = o->next)
11910 {
11911 /* When any section in a section group is kept, we keep all
11912 sections in the section group. If the first member of
11913 the section group is excluded, we will also exclude the
11914 group section. */
11915 if (o->flags & SEC_GROUP)
11916 {
11917 asection *first = elf_next_in_group (o);
11918 o->gc_mark = first->gc_mark;
11919 }
11920
11921 if (o->gc_mark)
11922 continue;
11923
11924 /* Skip sweeping sections already excluded. */
11925 if (o->flags & SEC_EXCLUDE)
11926 continue;
11927
11928 /* Since this is early in the link process, it is simple
11929 to remove a section from the output. */
11930 o->flags |= SEC_EXCLUDE;
11931
11932 if (info->print_gc_sections && o->size != 0)
11933 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11934
11935 /* But we also have to update some of the relocation
11936 info we collected before. */
11937 if (gc_sweep_hook
11938 && (o->flags & SEC_RELOC) != 0
11939 && o->reloc_count > 0
11940 && !bfd_is_abs_section (o->output_section))
11941 {
11942 Elf_Internal_Rela *internal_relocs;
11943 bfd_boolean r;
11944
11945 internal_relocs
11946 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11947 info->keep_memory);
11948 if (internal_relocs == NULL)
11949 return FALSE;
11950
11951 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11952
11953 if (elf_section_data (o)->relocs != internal_relocs)
11954 free (internal_relocs);
11955
11956 if (!r)
11957 return FALSE;
11958 }
11959 }
11960 }
11961
11962 /* Remove the symbols that were in the swept sections from the dynamic
11963 symbol table. GCFIXME: Anyone know how to get them out of the
11964 static symbol table as well? */
11965 sweep_info.info = info;
11966 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11967 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11968 &sweep_info);
11969
11970 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11971 return TRUE;
11972 }
11973
11974 /* Propagate collected vtable information. This is called through
11975 elf_link_hash_traverse. */
11976
11977 static bfd_boolean
11978 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11979 {
11980 /* Those that are not vtables. */
11981 if (h->vtable == NULL || h->vtable->parent == NULL)
11982 return TRUE;
11983
11984 /* Those vtables that do not have parents, we cannot merge. */
11985 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11986 return TRUE;
11987
11988 /* If we've already been done, exit. */
11989 if (h->vtable->used && h->vtable->used[-1])
11990 return TRUE;
11991
11992 /* Make sure the parent's table is up to date. */
11993 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11994
11995 if (h->vtable->used == NULL)
11996 {
11997 /* None of this table's entries were referenced. Re-use the
11998 parent's table. */
11999 h->vtable->used = h->vtable->parent->vtable->used;
12000 h->vtable->size = h->vtable->parent->vtable->size;
12001 }
12002 else
12003 {
12004 size_t n;
12005 bfd_boolean *cu, *pu;
12006
12007 /* Or the parent's entries into ours. */
12008 cu = h->vtable->used;
12009 cu[-1] = TRUE;
12010 pu = h->vtable->parent->vtable->used;
12011 if (pu != NULL)
12012 {
12013 const struct elf_backend_data *bed;
12014 unsigned int log_file_align;
12015
12016 bed = get_elf_backend_data (h->root.u.def.section->owner);
12017 log_file_align = bed->s->log_file_align;
12018 n = h->vtable->parent->vtable->size >> log_file_align;
12019 while (n--)
12020 {
12021 if (*pu)
12022 *cu = TRUE;
12023 pu++;
12024 cu++;
12025 }
12026 }
12027 }
12028
12029 return TRUE;
12030 }
12031
12032 static bfd_boolean
12033 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12034 {
12035 asection *sec;
12036 bfd_vma hstart, hend;
12037 Elf_Internal_Rela *relstart, *relend, *rel;
12038 const struct elf_backend_data *bed;
12039 unsigned int log_file_align;
12040
12041 /* Take care of both those symbols that do not describe vtables as
12042 well as those that are not loaded. */
12043 if (h->vtable == NULL || h->vtable->parent == NULL)
12044 return TRUE;
12045
12046 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12047 || h->root.type == bfd_link_hash_defweak);
12048
12049 sec = h->root.u.def.section;
12050 hstart = h->root.u.def.value;
12051 hend = hstart + h->size;
12052
12053 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12054 if (!relstart)
12055 return *(bfd_boolean *) okp = FALSE;
12056 bed = get_elf_backend_data (sec->owner);
12057 log_file_align = bed->s->log_file_align;
12058
12059 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12060
12061 for (rel = relstart; rel < relend; ++rel)
12062 if (rel->r_offset >= hstart && rel->r_offset < hend)
12063 {
12064 /* If the entry is in use, do nothing. */
12065 if (h->vtable->used
12066 && (rel->r_offset - hstart) < h->vtable->size)
12067 {
12068 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12069 if (h->vtable->used[entry])
12070 continue;
12071 }
12072 /* Otherwise, kill it. */
12073 rel->r_offset = rel->r_info = rel->r_addend = 0;
12074 }
12075
12076 return TRUE;
12077 }
12078
12079 /* Mark sections containing dynamically referenced symbols. When
12080 building shared libraries, we must assume that any visible symbol is
12081 referenced. */
12082
12083 bfd_boolean
12084 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12085 {
12086 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12087
12088 if ((h->root.type == bfd_link_hash_defined
12089 || h->root.type == bfd_link_hash_defweak)
12090 && (h->ref_dynamic
12091 || ((!info->executable || info->export_dynamic)
12092 && h->def_regular
12093 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12094 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12095 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12096 || !bfd_hide_sym_by_version (info->version_info,
12097 h->root.root.string)))))
12098 h->root.u.def.section->flags |= SEC_KEEP;
12099
12100 return TRUE;
12101 }
12102
12103 /* Keep all sections containing symbols undefined on the command-line,
12104 and the section containing the entry symbol. */
12105
12106 void
12107 _bfd_elf_gc_keep (struct bfd_link_info *info)
12108 {
12109 struct bfd_sym_chain *sym;
12110
12111 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12112 {
12113 struct elf_link_hash_entry *h;
12114
12115 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12116 FALSE, FALSE, FALSE);
12117
12118 if (h != NULL
12119 && (h->root.type == bfd_link_hash_defined
12120 || h->root.type == bfd_link_hash_defweak)
12121 && !bfd_is_abs_section (h->root.u.def.section))
12122 h->root.u.def.section->flags |= SEC_KEEP;
12123 }
12124 }
12125
12126 /* Do mark and sweep of unused sections. */
12127
12128 bfd_boolean
12129 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12130 {
12131 bfd_boolean ok = TRUE;
12132 bfd *sub;
12133 elf_gc_mark_hook_fn gc_mark_hook;
12134 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12135
12136 if (!bed->can_gc_sections
12137 || !is_elf_hash_table (info->hash))
12138 {
12139 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12140 return TRUE;
12141 }
12142
12143 bed->gc_keep (info);
12144
12145 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12146 at the .eh_frame section if we can mark the FDEs individually. */
12147 _bfd_elf_begin_eh_frame_parsing (info);
12148 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12149 {
12150 asection *sec;
12151 struct elf_reloc_cookie cookie;
12152
12153 sec = bfd_get_section_by_name (sub, ".eh_frame");
12154 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12155 {
12156 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12157 if (elf_section_data (sec)->sec_info
12158 && (sec->flags & SEC_LINKER_CREATED) == 0)
12159 elf_eh_frame_section (sub) = sec;
12160 fini_reloc_cookie_for_section (&cookie, sec);
12161 sec = bfd_get_next_section_by_name (sec);
12162 }
12163 }
12164 _bfd_elf_end_eh_frame_parsing (info);
12165
12166 /* Apply transitive closure to the vtable entry usage info. */
12167 elf_link_hash_traverse (elf_hash_table (info),
12168 elf_gc_propagate_vtable_entries_used,
12169 &ok);
12170 if (!ok)
12171 return FALSE;
12172
12173 /* Kill the vtable relocations that were not used. */
12174 elf_link_hash_traverse (elf_hash_table (info),
12175 elf_gc_smash_unused_vtentry_relocs,
12176 &ok);
12177 if (!ok)
12178 return FALSE;
12179
12180 /* Mark dynamically referenced symbols. */
12181 if (elf_hash_table (info)->dynamic_sections_created)
12182 elf_link_hash_traverse (elf_hash_table (info),
12183 bed->gc_mark_dynamic_ref,
12184 info);
12185
12186 /* Grovel through relocs to find out who stays ... */
12187 gc_mark_hook = bed->gc_mark_hook;
12188 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12189 {
12190 asection *o;
12191
12192 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12193 continue;
12194
12195 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12196 Also treat note sections as a root, if the section is not part
12197 of a group. */
12198 for (o = sub->sections; o != NULL; o = o->next)
12199 if (!o->gc_mark
12200 && (o->flags & SEC_EXCLUDE) == 0
12201 && ((o->flags & SEC_KEEP) != 0
12202 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12203 && elf_next_in_group (o) == NULL )))
12204 {
12205 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12206 return FALSE;
12207 }
12208 }
12209
12210 /* Allow the backend to mark additional target specific sections. */
12211 bed->gc_mark_extra_sections (info, gc_mark_hook);
12212
12213 /* ... and mark SEC_EXCLUDE for those that go. */
12214 return elf_gc_sweep (abfd, info);
12215 }
12216 \f
12217 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12218
12219 bfd_boolean
12220 bfd_elf_gc_record_vtinherit (bfd *abfd,
12221 asection *sec,
12222 struct elf_link_hash_entry *h,
12223 bfd_vma offset)
12224 {
12225 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12226 struct elf_link_hash_entry **search, *child;
12227 bfd_size_type extsymcount;
12228 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12229
12230 /* The sh_info field of the symtab header tells us where the
12231 external symbols start. We don't care about the local symbols at
12232 this point. */
12233 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12234 if (!elf_bad_symtab (abfd))
12235 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12236
12237 sym_hashes = elf_sym_hashes (abfd);
12238 sym_hashes_end = sym_hashes + extsymcount;
12239
12240 /* Hunt down the child symbol, which is in this section at the same
12241 offset as the relocation. */
12242 for (search = sym_hashes; search != sym_hashes_end; ++search)
12243 {
12244 if ((child = *search) != NULL
12245 && (child->root.type == bfd_link_hash_defined
12246 || child->root.type == bfd_link_hash_defweak)
12247 && child->root.u.def.section == sec
12248 && child->root.u.def.value == offset)
12249 goto win;
12250 }
12251
12252 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12253 abfd, sec, (unsigned long) offset);
12254 bfd_set_error (bfd_error_invalid_operation);
12255 return FALSE;
12256
12257 win:
12258 if (!child->vtable)
12259 {
12260 child->vtable = (struct elf_link_virtual_table_entry *)
12261 bfd_zalloc (abfd, sizeof (*child->vtable));
12262 if (!child->vtable)
12263 return FALSE;
12264 }
12265 if (!h)
12266 {
12267 /* This *should* only be the absolute section. It could potentially
12268 be that someone has defined a non-global vtable though, which
12269 would be bad. It isn't worth paging in the local symbols to be
12270 sure though; that case should simply be handled by the assembler. */
12271
12272 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12273 }
12274 else
12275 child->vtable->parent = h;
12276
12277 return TRUE;
12278 }
12279
12280 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12281
12282 bfd_boolean
12283 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12284 asection *sec ATTRIBUTE_UNUSED,
12285 struct elf_link_hash_entry *h,
12286 bfd_vma addend)
12287 {
12288 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12289 unsigned int log_file_align = bed->s->log_file_align;
12290
12291 if (!h->vtable)
12292 {
12293 h->vtable = (struct elf_link_virtual_table_entry *)
12294 bfd_zalloc (abfd, sizeof (*h->vtable));
12295 if (!h->vtable)
12296 return FALSE;
12297 }
12298
12299 if (addend >= h->vtable->size)
12300 {
12301 size_t size, bytes, file_align;
12302 bfd_boolean *ptr = h->vtable->used;
12303
12304 /* While the symbol is undefined, we have to be prepared to handle
12305 a zero size. */
12306 file_align = 1 << log_file_align;
12307 if (h->root.type == bfd_link_hash_undefined)
12308 size = addend + file_align;
12309 else
12310 {
12311 size = h->size;
12312 if (addend >= size)
12313 {
12314 /* Oops! We've got a reference past the defined end of
12315 the table. This is probably a bug -- shall we warn? */
12316 size = addend + file_align;
12317 }
12318 }
12319 size = (size + file_align - 1) & -file_align;
12320
12321 /* Allocate one extra entry for use as a "done" flag for the
12322 consolidation pass. */
12323 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12324
12325 if (ptr)
12326 {
12327 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12328
12329 if (ptr != NULL)
12330 {
12331 size_t oldbytes;
12332
12333 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12334 * sizeof (bfd_boolean));
12335 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12336 }
12337 }
12338 else
12339 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12340
12341 if (ptr == NULL)
12342 return FALSE;
12343
12344 /* And arrange for that done flag to be at index -1. */
12345 h->vtable->used = ptr + 1;
12346 h->vtable->size = size;
12347 }
12348
12349 h->vtable->used[addend >> log_file_align] = TRUE;
12350
12351 return TRUE;
12352 }
12353
12354 /* Map an ELF section header flag to its corresponding string. */
12355 typedef struct
12356 {
12357 char *flag_name;
12358 flagword flag_value;
12359 } elf_flags_to_name_table;
12360
12361 static elf_flags_to_name_table elf_flags_to_names [] =
12362 {
12363 { "SHF_WRITE", SHF_WRITE },
12364 { "SHF_ALLOC", SHF_ALLOC },
12365 { "SHF_EXECINSTR", SHF_EXECINSTR },
12366 { "SHF_MERGE", SHF_MERGE },
12367 { "SHF_STRINGS", SHF_STRINGS },
12368 { "SHF_INFO_LINK", SHF_INFO_LINK},
12369 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12370 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12371 { "SHF_GROUP", SHF_GROUP },
12372 { "SHF_TLS", SHF_TLS },
12373 { "SHF_MASKOS", SHF_MASKOS },
12374 { "SHF_EXCLUDE", SHF_EXCLUDE },
12375 };
12376
12377 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12378 bfd_boolean
12379 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12380 struct flag_info *flaginfo,
12381 asection *section)
12382 {
12383 const bfd_vma sh_flags = elf_section_flags (section);
12384
12385 if (!flaginfo->flags_initialized)
12386 {
12387 bfd *obfd = info->output_bfd;
12388 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12389 struct flag_info_list *tf = flaginfo->flag_list;
12390 int with_hex = 0;
12391 int without_hex = 0;
12392
12393 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12394 {
12395 unsigned i;
12396 flagword (*lookup) (char *);
12397
12398 lookup = bed->elf_backend_lookup_section_flags_hook;
12399 if (lookup != NULL)
12400 {
12401 flagword hexval = (*lookup) ((char *) tf->name);
12402
12403 if (hexval != 0)
12404 {
12405 if (tf->with == with_flags)
12406 with_hex |= hexval;
12407 else if (tf->with == without_flags)
12408 without_hex |= hexval;
12409 tf->valid = TRUE;
12410 continue;
12411 }
12412 }
12413 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12414 {
12415 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12416 {
12417 if (tf->with == with_flags)
12418 with_hex |= elf_flags_to_names[i].flag_value;
12419 else if (tf->with == without_flags)
12420 without_hex |= elf_flags_to_names[i].flag_value;
12421 tf->valid = TRUE;
12422 break;
12423 }
12424 }
12425 if (!tf->valid)
12426 {
12427 info->callbacks->einfo
12428 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12429 return FALSE;
12430 }
12431 }
12432 flaginfo->flags_initialized = TRUE;
12433 flaginfo->only_with_flags |= with_hex;
12434 flaginfo->not_with_flags |= without_hex;
12435 }
12436
12437 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12438 return FALSE;
12439
12440 if ((flaginfo->not_with_flags & sh_flags) != 0)
12441 return FALSE;
12442
12443 return TRUE;
12444 }
12445
12446 struct alloc_got_off_arg {
12447 bfd_vma gotoff;
12448 struct bfd_link_info *info;
12449 };
12450
12451 /* We need a special top-level link routine to convert got reference counts
12452 to real got offsets. */
12453
12454 static bfd_boolean
12455 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12456 {
12457 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12458 bfd *obfd = gofarg->info->output_bfd;
12459 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12460
12461 if (h->got.refcount > 0)
12462 {
12463 h->got.offset = gofarg->gotoff;
12464 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12465 }
12466 else
12467 h->got.offset = (bfd_vma) -1;
12468
12469 return TRUE;
12470 }
12471
12472 /* And an accompanying bit to work out final got entry offsets once
12473 we're done. Should be called from final_link. */
12474
12475 bfd_boolean
12476 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12477 struct bfd_link_info *info)
12478 {
12479 bfd *i;
12480 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12481 bfd_vma gotoff;
12482 struct alloc_got_off_arg gofarg;
12483
12484 BFD_ASSERT (abfd == info->output_bfd);
12485
12486 if (! is_elf_hash_table (info->hash))
12487 return FALSE;
12488
12489 /* The GOT offset is relative to the .got section, but the GOT header is
12490 put into the .got.plt section, if the backend uses it. */
12491 if (bed->want_got_plt)
12492 gotoff = 0;
12493 else
12494 gotoff = bed->got_header_size;
12495
12496 /* Do the local .got entries first. */
12497 for (i = info->input_bfds; i; i = i->link_next)
12498 {
12499 bfd_signed_vma *local_got;
12500 bfd_size_type j, locsymcount;
12501 Elf_Internal_Shdr *symtab_hdr;
12502
12503 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12504 continue;
12505
12506 local_got = elf_local_got_refcounts (i);
12507 if (!local_got)
12508 continue;
12509
12510 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12511 if (elf_bad_symtab (i))
12512 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12513 else
12514 locsymcount = symtab_hdr->sh_info;
12515
12516 for (j = 0; j < locsymcount; ++j)
12517 {
12518 if (local_got[j] > 0)
12519 {
12520 local_got[j] = gotoff;
12521 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12522 }
12523 else
12524 local_got[j] = (bfd_vma) -1;
12525 }
12526 }
12527
12528 /* Then the global .got entries. .plt refcounts are handled by
12529 adjust_dynamic_symbol */
12530 gofarg.gotoff = gotoff;
12531 gofarg.info = info;
12532 elf_link_hash_traverse (elf_hash_table (info),
12533 elf_gc_allocate_got_offsets,
12534 &gofarg);
12535 return TRUE;
12536 }
12537
12538 /* Many folk need no more in the way of final link than this, once
12539 got entry reference counting is enabled. */
12540
12541 bfd_boolean
12542 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12543 {
12544 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12545 return FALSE;
12546
12547 /* Invoke the regular ELF backend linker to do all the work. */
12548 return bfd_elf_final_link (abfd, info);
12549 }
12550
12551 bfd_boolean
12552 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12553 {
12554 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12555
12556 if (rcookie->bad_symtab)
12557 rcookie->rel = rcookie->rels;
12558
12559 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12560 {
12561 unsigned long r_symndx;
12562
12563 if (! rcookie->bad_symtab)
12564 if (rcookie->rel->r_offset > offset)
12565 return FALSE;
12566 if (rcookie->rel->r_offset != offset)
12567 continue;
12568
12569 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12570 if (r_symndx == STN_UNDEF)
12571 return TRUE;
12572
12573 if (r_symndx >= rcookie->locsymcount
12574 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12575 {
12576 struct elf_link_hash_entry *h;
12577
12578 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12579
12580 while (h->root.type == bfd_link_hash_indirect
12581 || h->root.type == bfd_link_hash_warning)
12582 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12583
12584 if ((h->root.type == bfd_link_hash_defined
12585 || h->root.type == bfd_link_hash_defweak)
12586 && discarded_section (h->root.u.def.section))
12587 return TRUE;
12588 else
12589 return FALSE;
12590 }
12591 else
12592 {
12593 /* It's not a relocation against a global symbol,
12594 but it could be a relocation against a local
12595 symbol for a discarded section. */
12596 asection *isec;
12597 Elf_Internal_Sym *isym;
12598
12599 /* Need to: get the symbol; get the section. */
12600 isym = &rcookie->locsyms[r_symndx];
12601 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12602 if (isec != NULL && discarded_section (isec))
12603 return TRUE;
12604 }
12605 return FALSE;
12606 }
12607 return FALSE;
12608 }
12609
12610 /* Discard unneeded references to discarded sections.
12611 Returns TRUE if any section's size was changed. */
12612 /* This function assumes that the relocations are in sorted order,
12613 which is true for all known assemblers. */
12614
12615 bfd_boolean
12616 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12617 {
12618 struct elf_reloc_cookie cookie;
12619 asection *stab, *eh;
12620 const struct elf_backend_data *bed;
12621 bfd *abfd;
12622 bfd_boolean ret = FALSE;
12623
12624 if (info->traditional_format
12625 || !is_elf_hash_table (info->hash))
12626 return FALSE;
12627
12628 _bfd_elf_begin_eh_frame_parsing (info);
12629 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12630 {
12631 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12632 continue;
12633
12634 bed = get_elf_backend_data (abfd);
12635
12636 eh = NULL;
12637 if (!info->relocatable)
12638 {
12639 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12640 while (eh != NULL
12641 && (eh->size == 0
12642 || bfd_is_abs_section (eh->output_section)))
12643 eh = bfd_get_next_section_by_name (eh);
12644 }
12645
12646 stab = bfd_get_section_by_name (abfd, ".stab");
12647 if (stab != NULL
12648 && (stab->size == 0
12649 || bfd_is_abs_section (stab->output_section)
12650 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12651 stab = NULL;
12652
12653 if (stab == NULL
12654 && eh == NULL
12655 && bed->elf_backend_discard_info == NULL)
12656 continue;
12657
12658 if (!init_reloc_cookie (&cookie, info, abfd))
12659 return FALSE;
12660
12661 if (stab != NULL
12662 && stab->reloc_count > 0
12663 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12664 {
12665 if (_bfd_discard_section_stabs (abfd, stab,
12666 elf_section_data (stab)->sec_info,
12667 bfd_elf_reloc_symbol_deleted_p,
12668 &cookie))
12669 ret = TRUE;
12670 fini_reloc_cookie_rels (&cookie, stab);
12671 }
12672
12673 while (eh != NULL
12674 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12675 {
12676 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12677 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12678 bfd_elf_reloc_symbol_deleted_p,
12679 &cookie))
12680 ret = TRUE;
12681 fini_reloc_cookie_rels (&cookie, eh);
12682 eh = bfd_get_next_section_by_name (eh);
12683 }
12684
12685 if (bed->elf_backend_discard_info != NULL
12686 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12687 ret = TRUE;
12688
12689 fini_reloc_cookie (&cookie, abfd);
12690 }
12691 _bfd_elf_end_eh_frame_parsing (info);
12692
12693 if (info->eh_frame_hdr
12694 && !info->relocatable
12695 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12696 ret = TRUE;
12697
12698 return ret;
12699 }
12700
12701 bfd_boolean
12702 _bfd_elf_section_already_linked (bfd *abfd,
12703 asection *sec,
12704 struct bfd_link_info *info)
12705 {
12706 flagword flags;
12707 const char *name, *key;
12708 struct bfd_section_already_linked *l;
12709 struct bfd_section_already_linked_hash_entry *already_linked_list;
12710
12711 if (sec->output_section == bfd_abs_section_ptr)
12712 return FALSE;
12713
12714 flags = sec->flags;
12715
12716 /* Return if it isn't a linkonce section. A comdat group section
12717 also has SEC_LINK_ONCE set. */
12718 if ((flags & SEC_LINK_ONCE) == 0)
12719 return FALSE;
12720
12721 /* Don't put group member sections on our list of already linked
12722 sections. They are handled as a group via their group section. */
12723 if (elf_sec_group (sec) != NULL)
12724 return FALSE;
12725
12726 /* For a SHT_GROUP section, use the group signature as the key. */
12727 name = sec->name;
12728 if ((flags & SEC_GROUP) != 0
12729 && elf_next_in_group (sec) != NULL
12730 && elf_group_name (elf_next_in_group (sec)) != NULL)
12731 key = elf_group_name (elf_next_in_group (sec));
12732 else
12733 {
12734 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12735 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12736 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12737 key++;
12738 else
12739 /* Must be a user linkonce section that doesn't follow gcc's
12740 naming convention. In this case we won't be matching
12741 single member groups. */
12742 key = name;
12743 }
12744
12745 already_linked_list = bfd_section_already_linked_table_lookup (key);
12746
12747 for (l = already_linked_list->entry; l != NULL; l = l->next)
12748 {
12749 /* We may have 2 different types of sections on the list: group
12750 sections with a signature of <key> (<key> is some string),
12751 and linkonce sections named .gnu.linkonce.<type>.<key>.
12752 Match like sections. LTO plugin sections are an exception.
12753 They are always named .gnu.linkonce.t.<key> and match either
12754 type of section. */
12755 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12756 && ((flags & SEC_GROUP) != 0
12757 || strcmp (name, l->sec->name) == 0))
12758 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12759 {
12760 /* The section has already been linked. See if we should
12761 issue a warning. */
12762 if (!_bfd_handle_already_linked (sec, l, info))
12763 return FALSE;
12764
12765 if (flags & SEC_GROUP)
12766 {
12767 asection *first = elf_next_in_group (sec);
12768 asection *s = first;
12769
12770 while (s != NULL)
12771 {
12772 s->output_section = bfd_abs_section_ptr;
12773 /* Record which group discards it. */
12774 s->kept_section = l->sec;
12775 s = elf_next_in_group (s);
12776 /* These lists are circular. */
12777 if (s == first)
12778 break;
12779 }
12780 }
12781
12782 return TRUE;
12783 }
12784 }
12785
12786 /* A single member comdat group section may be discarded by a
12787 linkonce section and vice versa. */
12788 if ((flags & SEC_GROUP) != 0)
12789 {
12790 asection *first = elf_next_in_group (sec);
12791
12792 if (first != NULL && elf_next_in_group (first) == first)
12793 /* Check this single member group against linkonce sections. */
12794 for (l = already_linked_list->entry; l != NULL; l = l->next)
12795 if ((l->sec->flags & SEC_GROUP) == 0
12796 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12797 {
12798 first->output_section = bfd_abs_section_ptr;
12799 first->kept_section = l->sec;
12800 sec->output_section = bfd_abs_section_ptr;
12801 break;
12802 }
12803 }
12804 else
12805 /* Check this linkonce section against single member groups. */
12806 for (l = already_linked_list->entry; l != NULL; l = l->next)
12807 if (l->sec->flags & SEC_GROUP)
12808 {
12809 asection *first = elf_next_in_group (l->sec);
12810
12811 if (first != NULL
12812 && elf_next_in_group (first) == first
12813 && bfd_elf_match_symbols_in_sections (first, sec, info))
12814 {
12815 sec->output_section = bfd_abs_section_ptr;
12816 sec->kept_section = first;
12817 break;
12818 }
12819 }
12820
12821 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12822 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12823 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12824 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12825 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12826 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12827 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12828 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12829 The reverse order cannot happen as there is never a bfd with only the
12830 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12831 matter as here were are looking only for cross-bfd sections. */
12832
12833 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12834 for (l = already_linked_list->entry; l != NULL; l = l->next)
12835 if ((l->sec->flags & SEC_GROUP) == 0
12836 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12837 {
12838 if (abfd != l->sec->owner)
12839 sec->output_section = bfd_abs_section_ptr;
12840 break;
12841 }
12842
12843 /* This is the first section with this name. Record it. */
12844 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12845 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12846 return sec->output_section == bfd_abs_section_ptr;
12847 }
12848
12849 bfd_boolean
12850 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12851 {
12852 return sym->st_shndx == SHN_COMMON;
12853 }
12854
12855 unsigned int
12856 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12857 {
12858 return SHN_COMMON;
12859 }
12860
12861 asection *
12862 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12863 {
12864 return bfd_com_section_ptr;
12865 }
12866
12867 bfd_vma
12868 _bfd_elf_default_got_elt_size (bfd *abfd,
12869 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12870 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12871 bfd *ibfd ATTRIBUTE_UNUSED,
12872 unsigned long symndx ATTRIBUTE_UNUSED)
12873 {
12874 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12875 return bed->s->arch_size / 8;
12876 }
12877
12878 /* Routines to support the creation of dynamic relocs. */
12879
12880 /* Returns the name of the dynamic reloc section associated with SEC. */
12881
12882 static const char *
12883 get_dynamic_reloc_section_name (bfd * abfd,
12884 asection * sec,
12885 bfd_boolean is_rela)
12886 {
12887 char *name;
12888 const char *old_name = bfd_get_section_name (NULL, sec);
12889 const char *prefix = is_rela ? ".rela" : ".rel";
12890
12891 if (old_name == NULL)
12892 return NULL;
12893
12894 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12895 sprintf (name, "%s%s", prefix, old_name);
12896
12897 return name;
12898 }
12899
12900 /* Returns the dynamic reloc section associated with SEC.
12901 If necessary compute the name of the dynamic reloc section based
12902 on SEC's name (looked up in ABFD's string table) and the setting
12903 of IS_RELA. */
12904
12905 asection *
12906 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12907 asection * sec,
12908 bfd_boolean is_rela)
12909 {
12910 asection * reloc_sec = elf_section_data (sec)->sreloc;
12911
12912 if (reloc_sec == NULL)
12913 {
12914 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12915
12916 if (name != NULL)
12917 {
12918 reloc_sec = bfd_get_linker_section (abfd, name);
12919
12920 if (reloc_sec != NULL)
12921 elf_section_data (sec)->sreloc = reloc_sec;
12922 }
12923 }
12924
12925 return reloc_sec;
12926 }
12927
12928 /* Returns the dynamic reloc section associated with SEC. If the
12929 section does not exist it is created and attached to the DYNOBJ
12930 bfd and stored in the SRELOC field of SEC's elf_section_data
12931 structure.
12932
12933 ALIGNMENT is the alignment for the newly created section and
12934 IS_RELA defines whether the name should be .rela.<SEC's name>
12935 or .rel.<SEC's name>. The section name is looked up in the
12936 string table associated with ABFD. */
12937
12938 asection *
12939 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12940 bfd * dynobj,
12941 unsigned int alignment,
12942 bfd * abfd,
12943 bfd_boolean is_rela)
12944 {
12945 asection * reloc_sec = elf_section_data (sec)->sreloc;
12946
12947 if (reloc_sec == NULL)
12948 {
12949 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12950
12951 if (name == NULL)
12952 return NULL;
12953
12954 reloc_sec = bfd_get_linker_section (dynobj, name);
12955
12956 if (reloc_sec == NULL)
12957 {
12958 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
12959 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12960 if ((sec->flags & SEC_ALLOC) != 0)
12961 flags |= SEC_ALLOC | SEC_LOAD;
12962
12963 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
12964 if (reloc_sec != NULL)
12965 {
12966 /* _bfd_elf_get_sec_type_attr chooses a section type by
12967 name. Override as it may be wrong, eg. for a user
12968 section named "auto" we'll get ".relauto" which is
12969 seen to be a .rela section. */
12970 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
12971 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12972 reloc_sec = NULL;
12973 }
12974 }
12975
12976 elf_section_data (sec)->sreloc = reloc_sec;
12977 }
12978
12979 return reloc_sec;
12980 }
12981
12982 /* Copy the ELF symbol type associated with a linker hash entry. */
12983 void
12984 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12985 struct bfd_link_hash_entry * hdest,
12986 struct bfd_link_hash_entry * hsrc)
12987 {
12988 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12989 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12990
12991 ehdest->type = ehsrc->type;
12992 ehdest->target_internal = ehsrc->target_internal;
12993 }
12994
12995 /* Append a RELA relocation REL to section S in BFD. */
12996
12997 void
12998 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12999 {
13000 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13001 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13002 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13003 bed->s->swap_reloca_out (abfd, rel, loc);
13004 }
13005
13006 /* Append a REL relocation REL to section S in BFD. */
13007
13008 void
13009 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13010 {
13011 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13012 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13013 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13014 bed->s->swap_reloc_out (abfd, rel, loc);
13015 }