* elflink.c (_bfd_elf_link_create_dynamic_sections): If the
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->non_elf = 0;
90 h->type = STT_OBJECT;
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93 bed = get_elf_backend_data (abfd);
94 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
95 return h;
96 }
97
98 bfd_boolean
99 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
100 {
101 flagword flags;
102 asection *s;
103 struct elf_link_hash_entry *h;
104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
105 struct elf_link_hash_table *htab = elf_hash_table (info);
106
107 /* This function may be called more than once. */
108 s = bfd_get_section_by_name (abfd, ".got");
109 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
110 return TRUE;
111
112 flags = bed->dynamic_sec_flags;
113
114 s = bfd_make_section_with_flags (abfd,
115 (bed->rela_plts_and_copies_p
116 ? ".rela.got" : ".rel.got"),
117 (bed->dynamic_sec_flags
118 | SEC_READONLY));
119 if (s == NULL
120 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
121 return FALSE;
122 htab->srelgot = s;
123
124 s = bfd_make_section_with_flags (abfd, ".got", flags);
125 if (s == NULL
126 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
127 return FALSE;
128 htab->sgot = s;
129
130 if (bed->want_got_plt)
131 {
132 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
133 if (s == NULL
134 || !bfd_set_section_alignment (abfd, s,
135 bed->s->log_file_align))
136 return FALSE;
137 htab->sgotplt = s;
138 }
139
140 /* The first bit of the global offset table is the header. */
141 s->size += bed->got_header_size;
142
143 if (bed->want_got_sym)
144 {
145 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146 (or .got.plt) section. We don't do this in the linker script
147 because we don't want to define the symbol if we are not creating
148 a global offset table. */
149 h = _bfd_elf_define_linkage_sym (abfd, info, s,
150 "_GLOBAL_OFFSET_TABLE_");
151 elf_hash_table (info)->hgot = h;
152 if (h == NULL)
153 return FALSE;
154 }
155
156 return TRUE;
157 }
158 \f
159 /* Create a strtab to hold the dynamic symbol names. */
160 static bfd_boolean
161 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 {
163 struct elf_link_hash_table *hash_table;
164
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
168
169 if (hash_table->dynstr == NULL)
170 {
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
173 return FALSE;
174 }
175 return TRUE;
176 }
177
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
184
185 bfd_boolean
186 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187 {
188 flagword flags;
189 asection *s;
190 const struct elf_backend_data *bed;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
259 return FALSE;
260
261 if (info->emit_hash)
262 {
263 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
268 }
269
270 if (info->emit_gnu_hash)
271 {
272 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
284 }
285
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (bed->elf_backend_create_dynamic_sections == NULL
290 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
291 return FALSE;
292
293 elf_hash_table (info)->dynamic_sections_created = TRUE;
294
295 return TRUE;
296 }
297
298 /* Create dynamic sections when linking against a dynamic object. */
299
300 bfd_boolean
301 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
302 {
303 flagword flags, pltflags;
304 struct elf_link_hash_entry *h;
305 asection *s;
306 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
307 struct elf_link_hash_table *htab = elf_hash_table (info);
308
309 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
310 .rel[a].bss sections. */
311 flags = bed->dynamic_sec_flags;
312
313 pltflags = flags;
314 if (bed->plt_not_loaded)
315 /* We do not clear SEC_ALLOC here because we still want the OS to
316 allocate space for the section; it's just that there's nothing
317 to read in from the object file. */
318 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
319 else
320 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
321 if (bed->plt_readonly)
322 pltflags |= SEC_READONLY;
323
324 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
325 if (s == NULL
326 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
327 return FALSE;
328 htab->splt = s;
329
330 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
331 .plt section. */
332 if (bed->want_plt_sym)
333 {
334 h = _bfd_elf_define_linkage_sym (abfd, info, s,
335 "_PROCEDURE_LINKAGE_TABLE_");
336 elf_hash_table (info)->hplt = h;
337 if (h == NULL)
338 return FALSE;
339 }
340
341 s = bfd_make_section_with_flags (abfd,
342 (bed->rela_plts_and_copies_p
343 ? ".rela.plt" : ".rel.plt"),
344 flags | SEC_READONLY);
345 if (s == NULL
346 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
347 return FALSE;
348 htab->srelplt = s;
349
350 if (! _bfd_elf_create_got_section (abfd, info))
351 return FALSE;
352
353 if (bed->want_dynbss)
354 {
355 /* The .dynbss section is a place to put symbols which are defined
356 by dynamic objects, are referenced by regular objects, and are
357 not functions. We must allocate space for them in the process
358 image and use a R_*_COPY reloc to tell the dynamic linker to
359 initialize them at run time. The linker script puts the .dynbss
360 section into the .bss section of the final image. */
361 s = bfd_make_section_with_flags (abfd, ".dynbss",
362 (SEC_ALLOC
363 | SEC_LINKER_CREATED));
364 if (s == NULL)
365 return FALSE;
366
367 /* The .rel[a].bss section holds copy relocs. This section is not
368 normally needed. We need to create it here, though, so that the
369 linker will map it to an output section. We can't just create it
370 only if we need it, because we will not know whether we need it
371 until we have seen all the input files, and the first time the
372 main linker code calls BFD after examining all the input files
373 (size_dynamic_sections) the input sections have already been
374 mapped to the output sections. If the section turns out not to
375 be needed, we can discard it later. We will never need this
376 section when generating a shared object, since they do not use
377 copy relocs. */
378 if (! info->shared)
379 {
380 s = bfd_make_section_with_flags (abfd,
381 (bed->rela_plts_and_copies_p
382 ? ".rela.bss" : ".rel.bss"),
383 flags | SEC_READONLY);
384 if (s == NULL
385 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
386 return FALSE;
387 }
388 }
389
390 return TRUE;
391 }
392 \f
393 /* Record a new dynamic symbol. We record the dynamic symbols as we
394 read the input files, since we need to have a list of all of them
395 before we can determine the final sizes of the output sections.
396 Note that we may actually call this function even though we are not
397 going to output any dynamic symbols; in some cases we know that a
398 symbol should be in the dynamic symbol table, but only if there is
399 one. */
400
401 bfd_boolean
402 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
403 struct elf_link_hash_entry *h)
404 {
405 if (h->dynindx == -1)
406 {
407 struct elf_strtab_hash *dynstr;
408 char *p;
409 const char *name;
410 bfd_size_type indx;
411
412 /* XXX: The ABI draft says the linker must turn hidden and
413 internal symbols into STB_LOCAL symbols when producing the
414 DSO. However, if ld.so honors st_other in the dynamic table,
415 this would not be necessary. */
416 switch (ELF_ST_VISIBILITY (h->other))
417 {
418 case STV_INTERNAL:
419 case STV_HIDDEN:
420 if (h->root.type != bfd_link_hash_undefined
421 && h->root.type != bfd_link_hash_undefweak)
422 {
423 h->forced_local = 1;
424 if (!elf_hash_table (info)->is_relocatable_executable)
425 return TRUE;
426 }
427
428 default:
429 break;
430 }
431
432 h->dynindx = elf_hash_table (info)->dynsymcount;
433 ++elf_hash_table (info)->dynsymcount;
434
435 dynstr = elf_hash_table (info)->dynstr;
436 if (dynstr == NULL)
437 {
438 /* Create a strtab to hold the dynamic symbol names. */
439 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
440 if (dynstr == NULL)
441 return FALSE;
442 }
443
444 /* We don't put any version information in the dynamic string
445 table. */
446 name = h->root.root.string;
447 p = strchr (name, ELF_VER_CHR);
448 if (p != NULL)
449 /* We know that the p points into writable memory. In fact,
450 there are only a few symbols that have read-only names, being
451 those like _GLOBAL_OFFSET_TABLE_ that are created specially
452 by the backends. Most symbols will have names pointing into
453 an ELF string table read from a file, or to objalloc memory. */
454 *p = 0;
455
456 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
457
458 if (p != NULL)
459 *p = ELF_VER_CHR;
460
461 if (indx == (bfd_size_type) -1)
462 return FALSE;
463 h->dynstr_index = indx;
464 }
465
466 return TRUE;
467 }
468 \f
469 /* Mark a symbol dynamic. */
470
471 static void
472 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
473 struct elf_link_hash_entry *h,
474 Elf_Internal_Sym *sym)
475 {
476 struct bfd_elf_dynamic_list *d = info->dynamic_list;
477
478 /* It may be called more than once on the same H. */
479 if(h->dynamic || info->relocatable)
480 return;
481
482 if ((info->dynamic_data
483 && (h->type == STT_OBJECT
484 || (sym != NULL
485 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
486 || (d != NULL
487 && h->root.type == bfd_link_hash_new
488 && (*d->match) (&d->head, NULL, h->root.root.string)))
489 h->dynamic = 1;
490 }
491
492 /* Record an assignment to a symbol made by a linker script. We need
493 this in case some dynamic object refers to this symbol. */
494
495 bfd_boolean
496 bfd_elf_record_link_assignment (bfd *output_bfd,
497 struct bfd_link_info *info,
498 const char *name,
499 bfd_boolean provide,
500 bfd_boolean hidden)
501 {
502 struct elf_link_hash_entry *h, *hv;
503 struct elf_link_hash_table *htab;
504 const struct elf_backend_data *bed;
505
506 if (!is_elf_hash_table (info->hash))
507 return TRUE;
508
509 htab = elf_hash_table (info);
510 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
511 if (h == NULL)
512 return provide;
513
514 switch (h->root.type)
515 {
516 case bfd_link_hash_defined:
517 case bfd_link_hash_defweak:
518 case bfd_link_hash_common:
519 break;
520 case bfd_link_hash_undefweak:
521 case bfd_link_hash_undefined:
522 /* Since we're defining the symbol, don't let it seem to have not
523 been defined. record_dynamic_symbol and size_dynamic_sections
524 may depend on this. */
525 h->root.type = bfd_link_hash_new;
526 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
527 bfd_link_repair_undef_list (&htab->root);
528 break;
529 case bfd_link_hash_new:
530 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
531 h->non_elf = 0;
532 break;
533 case bfd_link_hash_indirect:
534 /* We had a versioned symbol in a dynamic library. We make the
535 the versioned symbol point to this one. */
536 bed = get_elf_backend_data (output_bfd);
537 hv = h;
538 while (hv->root.type == bfd_link_hash_indirect
539 || hv->root.type == bfd_link_hash_warning)
540 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
541 /* We don't need to update h->root.u since linker will set them
542 later. */
543 h->root.type = bfd_link_hash_undefined;
544 hv->root.type = bfd_link_hash_indirect;
545 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
546 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
547 break;
548 case bfd_link_hash_warning:
549 abort ();
550 break;
551 }
552
553 /* If this symbol is being provided by the linker script, and it is
554 currently defined by a dynamic object, but not by a regular
555 object, then mark it as undefined so that the generic linker will
556 force the correct value. */
557 if (provide
558 && h->def_dynamic
559 && !h->def_regular)
560 h->root.type = bfd_link_hash_undefined;
561
562 /* If this symbol is not being provided by the linker script, and it is
563 currently defined by a dynamic object, but not by a regular object,
564 then clear out any version information because the symbol will not be
565 associated with the dynamic object any more. */
566 if (!provide
567 && h->def_dynamic
568 && !h->def_regular)
569 h->verinfo.verdef = NULL;
570
571 h->def_regular = 1;
572
573 if (provide && hidden)
574 {
575 bed = get_elf_backend_data (output_bfd);
576 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
577 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
578 }
579
580 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
581 and executables. */
582 if (!info->relocatable
583 && h->dynindx != -1
584 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
585 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
586 h->forced_local = 1;
587
588 if ((h->def_dynamic
589 || h->ref_dynamic
590 || info->shared
591 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
592 && h->dynindx == -1)
593 {
594 if (! bfd_elf_link_record_dynamic_symbol (info, h))
595 return FALSE;
596
597 /* If this is a weak defined symbol, and we know a corresponding
598 real symbol from the same dynamic object, make sure the real
599 symbol is also made into a dynamic symbol. */
600 if (h->u.weakdef != NULL
601 && h->u.weakdef->dynindx == -1)
602 {
603 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
604 return FALSE;
605 }
606 }
607
608 return TRUE;
609 }
610
611 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
612 success, and 2 on a failure caused by attempting to record a symbol
613 in a discarded section, eg. a discarded link-once section symbol. */
614
615 int
616 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
617 bfd *input_bfd,
618 long input_indx)
619 {
620 bfd_size_type amt;
621 struct elf_link_local_dynamic_entry *entry;
622 struct elf_link_hash_table *eht;
623 struct elf_strtab_hash *dynstr;
624 unsigned long dynstr_index;
625 char *name;
626 Elf_External_Sym_Shndx eshndx;
627 char esym[sizeof (Elf64_External_Sym)];
628
629 if (! is_elf_hash_table (info->hash))
630 return 0;
631
632 /* See if the entry exists already. */
633 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
634 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
635 return 1;
636
637 amt = sizeof (*entry);
638 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
639 if (entry == NULL)
640 return 0;
641
642 /* Go find the symbol, so that we can find it's name. */
643 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
644 1, input_indx, &entry->isym, esym, &eshndx))
645 {
646 bfd_release (input_bfd, entry);
647 return 0;
648 }
649
650 if (entry->isym.st_shndx != SHN_UNDEF
651 && entry->isym.st_shndx < SHN_LORESERVE)
652 {
653 asection *s;
654
655 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
656 if (s == NULL || bfd_is_abs_section (s->output_section))
657 {
658 /* We can still bfd_release here as nothing has done another
659 bfd_alloc. We can't do this later in this function. */
660 bfd_release (input_bfd, entry);
661 return 2;
662 }
663 }
664
665 name = (bfd_elf_string_from_elf_section
666 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
667 entry->isym.st_name));
668
669 dynstr = elf_hash_table (info)->dynstr;
670 if (dynstr == NULL)
671 {
672 /* Create a strtab to hold the dynamic symbol names. */
673 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
674 if (dynstr == NULL)
675 return 0;
676 }
677
678 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
679 if (dynstr_index == (unsigned long) -1)
680 return 0;
681 entry->isym.st_name = dynstr_index;
682
683 eht = elf_hash_table (info);
684
685 entry->next = eht->dynlocal;
686 eht->dynlocal = entry;
687 entry->input_bfd = input_bfd;
688 entry->input_indx = input_indx;
689 eht->dynsymcount++;
690
691 /* Whatever binding the symbol had before, it's now local. */
692 entry->isym.st_info
693 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
694
695 /* The dynindx will be set at the end of size_dynamic_sections. */
696
697 return 1;
698 }
699
700 /* Return the dynindex of a local dynamic symbol. */
701
702 long
703 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
704 bfd *input_bfd,
705 long input_indx)
706 {
707 struct elf_link_local_dynamic_entry *e;
708
709 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
710 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
711 return e->dynindx;
712 return -1;
713 }
714
715 /* This function is used to renumber the dynamic symbols, if some of
716 them are removed because they are marked as local. This is called
717 via elf_link_hash_traverse. */
718
719 static bfd_boolean
720 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
721 void *data)
722 {
723 size_t *count = (size_t *) data;
724
725 if (h->root.type == bfd_link_hash_warning)
726 h = (struct elf_link_hash_entry *) h->root.u.i.link;
727
728 if (h->forced_local)
729 return TRUE;
730
731 if (h->dynindx != -1)
732 h->dynindx = ++(*count);
733
734 return TRUE;
735 }
736
737
738 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
739 STB_LOCAL binding. */
740
741 static bfd_boolean
742 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
743 void *data)
744 {
745 size_t *count = (size_t *) data;
746
747 if (h->root.type == bfd_link_hash_warning)
748 h = (struct elf_link_hash_entry *) h->root.u.i.link;
749
750 if (!h->forced_local)
751 return TRUE;
752
753 if (h->dynindx != -1)
754 h->dynindx = ++(*count);
755
756 return TRUE;
757 }
758
759 /* Return true if the dynamic symbol for a given section should be
760 omitted when creating a shared library. */
761 bfd_boolean
762 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
763 struct bfd_link_info *info,
764 asection *p)
765 {
766 struct elf_link_hash_table *htab;
767
768 switch (elf_section_data (p)->this_hdr.sh_type)
769 {
770 case SHT_PROGBITS:
771 case SHT_NOBITS:
772 /* If sh_type is yet undecided, assume it could be
773 SHT_PROGBITS/SHT_NOBITS. */
774 case SHT_NULL:
775 htab = elf_hash_table (info);
776 if (p == htab->tls_sec)
777 return FALSE;
778
779 if (htab->text_index_section != NULL)
780 return p != htab->text_index_section && p != htab->data_index_section;
781
782 if (strcmp (p->name, ".got") == 0
783 || strcmp (p->name, ".got.plt") == 0
784 || strcmp (p->name, ".plt") == 0)
785 {
786 asection *ip;
787
788 if (htab->dynobj != NULL
789 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
790 && (ip->flags & SEC_LINKER_CREATED)
791 && ip->output_section == p)
792 return TRUE;
793 }
794 return FALSE;
795
796 /* There shouldn't be section relative relocations
797 against any other section. */
798 default:
799 return TRUE;
800 }
801 }
802
803 /* Assign dynsym indices. In a shared library we generate a section
804 symbol for each output section, which come first. Next come symbols
805 which have been forced to local binding. Then all of the back-end
806 allocated local dynamic syms, followed by the rest of the global
807 symbols. */
808
809 static unsigned long
810 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
811 struct bfd_link_info *info,
812 unsigned long *section_sym_count)
813 {
814 unsigned long dynsymcount = 0;
815
816 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
817 {
818 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
819 asection *p;
820 for (p = output_bfd->sections; p ; p = p->next)
821 if ((p->flags & SEC_EXCLUDE) == 0
822 && (p->flags & SEC_ALLOC) != 0
823 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
824 elf_section_data (p)->dynindx = ++dynsymcount;
825 else
826 elf_section_data (p)->dynindx = 0;
827 }
828 *section_sym_count = dynsymcount;
829
830 elf_link_hash_traverse (elf_hash_table (info),
831 elf_link_renumber_local_hash_table_dynsyms,
832 &dynsymcount);
833
834 if (elf_hash_table (info)->dynlocal)
835 {
836 struct elf_link_local_dynamic_entry *p;
837 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
838 p->dynindx = ++dynsymcount;
839 }
840
841 elf_link_hash_traverse (elf_hash_table (info),
842 elf_link_renumber_hash_table_dynsyms,
843 &dynsymcount);
844
845 /* There is an unused NULL entry at the head of the table which
846 we must account for in our count. Unless there weren't any
847 symbols, which means we'll have no table at all. */
848 if (dynsymcount != 0)
849 ++dynsymcount;
850
851 elf_hash_table (info)->dynsymcount = dynsymcount;
852 return dynsymcount;
853 }
854
855 /* Merge st_other field. */
856
857 static void
858 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
859 Elf_Internal_Sym *isym, bfd_boolean definition,
860 bfd_boolean dynamic)
861 {
862 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
863
864 /* If st_other has a processor-specific meaning, specific
865 code might be needed here. We never merge the visibility
866 attribute with the one from a dynamic object. */
867 if (bed->elf_backend_merge_symbol_attribute)
868 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
869 dynamic);
870
871 /* If this symbol has default visibility and the user has requested
872 we not re-export it, then mark it as hidden. */
873 if (definition
874 && !dynamic
875 && (abfd->no_export
876 || (abfd->my_archive && abfd->my_archive->no_export))
877 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
878 isym->st_other = (STV_HIDDEN
879 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
880
881 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
882 {
883 unsigned char hvis, symvis, other, nvis;
884
885 /* Only merge the visibility. Leave the remainder of the
886 st_other field to elf_backend_merge_symbol_attribute. */
887 other = h->other & ~ELF_ST_VISIBILITY (-1);
888
889 /* Combine visibilities, using the most constraining one. */
890 hvis = ELF_ST_VISIBILITY (h->other);
891 symvis = ELF_ST_VISIBILITY (isym->st_other);
892 if (! hvis)
893 nvis = symvis;
894 else if (! symvis)
895 nvis = hvis;
896 else
897 nvis = hvis < symvis ? hvis : symvis;
898
899 h->other = other | nvis;
900 }
901 }
902
903 /* This function is called when we want to define a new symbol. It
904 handles the various cases which arise when we find a definition in
905 a dynamic object, or when there is already a definition in a
906 dynamic object. The new symbol is described by NAME, SYM, PSEC,
907 and PVALUE. We set SYM_HASH to the hash table entry. We set
908 OVERRIDE if the old symbol is overriding a new definition. We set
909 TYPE_CHANGE_OK if it is OK for the type to change. We set
910 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
911 change, we mean that we shouldn't warn if the type or size does
912 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
913 object is overridden by a regular object. */
914
915 bfd_boolean
916 _bfd_elf_merge_symbol (bfd *abfd,
917 struct bfd_link_info *info,
918 const char *name,
919 Elf_Internal_Sym *sym,
920 asection **psec,
921 bfd_vma *pvalue,
922 unsigned int *pold_alignment,
923 struct elf_link_hash_entry **sym_hash,
924 bfd_boolean *skip,
925 bfd_boolean *override,
926 bfd_boolean *type_change_ok,
927 bfd_boolean *size_change_ok)
928 {
929 asection *sec, *oldsec;
930 struct elf_link_hash_entry *h;
931 struct elf_link_hash_entry *flip;
932 int bind;
933 bfd *oldbfd;
934 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
935 bfd_boolean newweak, oldweak, newfunc, oldfunc;
936 const struct elf_backend_data *bed;
937
938 *skip = FALSE;
939 *override = FALSE;
940
941 sec = *psec;
942 bind = ELF_ST_BIND (sym->st_info);
943
944 /* Silently discard TLS symbols from --just-syms. There's no way to
945 combine a static TLS block with a new TLS block for this executable. */
946 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
947 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
948 {
949 *skip = TRUE;
950 return TRUE;
951 }
952
953 if (! bfd_is_und_section (sec))
954 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
955 else
956 h = ((struct elf_link_hash_entry *)
957 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
958 if (h == NULL)
959 return FALSE;
960 *sym_hash = h;
961
962 bed = get_elf_backend_data (abfd);
963
964 /* This code is for coping with dynamic objects, and is only useful
965 if we are doing an ELF link. */
966 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
967 return TRUE;
968
969 /* For merging, we only care about real symbols. */
970
971 while (h->root.type == bfd_link_hash_indirect
972 || h->root.type == bfd_link_hash_warning)
973 h = (struct elf_link_hash_entry *) h->root.u.i.link;
974
975 /* We have to check it for every instance since the first few may be
976 refereences and not all compilers emit symbol type for undefined
977 symbols. */
978 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
979
980 /* If we just created the symbol, mark it as being an ELF symbol.
981 Other than that, there is nothing to do--there is no merge issue
982 with a newly defined symbol--so we just return. */
983
984 if (h->root.type == bfd_link_hash_new)
985 {
986 h->non_elf = 0;
987 return TRUE;
988 }
989
990 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
991 existing symbol. */
992
993 switch (h->root.type)
994 {
995 default:
996 oldbfd = NULL;
997 oldsec = NULL;
998 break;
999
1000 case bfd_link_hash_undefined:
1001 case bfd_link_hash_undefweak:
1002 oldbfd = h->root.u.undef.abfd;
1003 oldsec = NULL;
1004 break;
1005
1006 case bfd_link_hash_defined:
1007 case bfd_link_hash_defweak:
1008 oldbfd = h->root.u.def.section->owner;
1009 oldsec = h->root.u.def.section;
1010 break;
1011
1012 case bfd_link_hash_common:
1013 oldbfd = h->root.u.c.p->section->owner;
1014 oldsec = h->root.u.c.p->section;
1015 break;
1016 }
1017
1018 /* Differentiate strong and weak symbols. */
1019 newweak = bind == STB_WEAK;
1020 oldweak = (h->root.type == bfd_link_hash_defweak
1021 || h->root.type == bfd_link_hash_undefweak);
1022
1023 /* In cases involving weak versioned symbols, we may wind up trying
1024 to merge a symbol with itself. Catch that here, to avoid the
1025 confusion that results if we try to override a symbol with
1026 itself. The additional tests catch cases like
1027 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1028 dynamic object, which we do want to handle here. */
1029 if (abfd == oldbfd
1030 && (newweak || oldweak)
1031 && ((abfd->flags & DYNAMIC) == 0
1032 || !h->def_regular))
1033 return TRUE;
1034
1035 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1036 respectively, is from a dynamic object. */
1037
1038 newdyn = (abfd->flags & DYNAMIC) != 0;
1039
1040 olddyn = FALSE;
1041 if (oldbfd != NULL)
1042 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1043 else if (oldsec != NULL)
1044 {
1045 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1046 indices used by MIPS ELF. */
1047 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1048 }
1049
1050 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1051 respectively, appear to be a definition rather than reference. */
1052
1053 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1054
1055 olddef = (h->root.type != bfd_link_hash_undefined
1056 && h->root.type != bfd_link_hash_undefweak
1057 && h->root.type != bfd_link_hash_common);
1058
1059 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1060 respectively, appear to be a function. */
1061
1062 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1063 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1064
1065 oldfunc = (h->type != STT_NOTYPE
1066 && bed->is_function_type (h->type));
1067
1068 /* When we try to create a default indirect symbol from the dynamic
1069 definition with the default version, we skip it if its type and
1070 the type of existing regular definition mismatch. We only do it
1071 if the existing regular definition won't be dynamic. */
1072 if (pold_alignment == NULL
1073 && !info->shared
1074 && !info->export_dynamic
1075 && !h->ref_dynamic
1076 && newdyn
1077 && newdef
1078 && !olddyn
1079 && (olddef || h->root.type == bfd_link_hash_common)
1080 && ELF_ST_TYPE (sym->st_info) != h->type
1081 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1082 && h->type != STT_NOTYPE
1083 && !(newfunc && oldfunc))
1084 {
1085 *skip = TRUE;
1086 return TRUE;
1087 }
1088
1089 /* Check TLS symbol. We don't check undefined symbol introduced by
1090 "ld -u". */
1091 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1092 && ELF_ST_TYPE (sym->st_info) != h->type
1093 && oldbfd != NULL)
1094 {
1095 bfd *ntbfd, *tbfd;
1096 bfd_boolean ntdef, tdef;
1097 asection *ntsec, *tsec;
1098
1099 if (h->type == STT_TLS)
1100 {
1101 ntbfd = abfd;
1102 ntsec = sec;
1103 ntdef = newdef;
1104 tbfd = oldbfd;
1105 tsec = oldsec;
1106 tdef = olddef;
1107 }
1108 else
1109 {
1110 ntbfd = oldbfd;
1111 ntsec = oldsec;
1112 ntdef = olddef;
1113 tbfd = abfd;
1114 tsec = sec;
1115 tdef = newdef;
1116 }
1117
1118 if (tdef && ntdef)
1119 (*_bfd_error_handler)
1120 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1121 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1122 else if (!tdef && !ntdef)
1123 (*_bfd_error_handler)
1124 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1125 tbfd, ntbfd, h->root.root.string);
1126 else if (tdef)
1127 (*_bfd_error_handler)
1128 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1129 tbfd, tsec, ntbfd, h->root.root.string);
1130 else
1131 (*_bfd_error_handler)
1132 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1133 tbfd, ntbfd, ntsec, h->root.root.string);
1134
1135 bfd_set_error (bfd_error_bad_value);
1136 return FALSE;
1137 }
1138
1139 /* We need to remember if a symbol has a definition in a dynamic
1140 object or is weak in all dynamic objects. Internal and hidden
1141 visibility will make it unavailable to dynamic objects. */
1142 if (newdyn && !h->dynamic_def)
1143 {
1144 if (!bfd_is_und_section (sec))
1145 h->dynamic_def = 1;
1146 else
1147 {
1148 /* Check if this symbol is weak in all dynamic objects. If it
1149 is the first time we see it in a dynamic object, we mark
1150 if it is weak. Otherwise, we clear it. */
1151 if (!h->ref_dynamic)
1152 {
1153 if (bind == STB_WEAK)
1154 h->dynamic_weak = 1;
1155 }
1156 else if (bind != STB_WEAK)
1157 h->dynamic_weak = 0;
1158 }
1159 }
1160
1161 /* If the old symbol has non-default visibility, we ignore the new
1162 definition from a dynamic object. */
1163 if (newdyn
1164 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1165 && !bfd_is_und_section (sec))
1166 {
1167 *skip = TRUE;
1168 /* Make sure this symbol is dynamic. */
1169 h->ref_dynamic = 1;
1170 /* A protected symbol has external availability. Make sure it is
1171 recorded as dynamic.
1172
1173 FIXME: Should we check type and size for protected symbol? */
1174 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1175 return bfd_elf_link_record_dynamic_symbol (info, h);
1176 else
1177 return TRUE;
1178 }
1179 else if (!newdyn
1180 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1181 && h->def_dynamic)
1182 {
1183 /* If the new symbol with non-default visibility comes from a
1184 relocatable file and the old definition comes from a dynamic
1185 object, we remove the old definition. */
1186 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1187 {
1188 /* Handle the case where the old dynamic definition is
1189 default versioned. We need to copy the symbol info from
1190 the symbol with default version to the normal one if it
1191 was referenced before. */
1192 if (h->ref_regular)
1193 {
1194 struct elf_link_hash_entry *vh = *sym_hash;
1195
1196 vh->root.type = h->root.type;
1197 h->root.type = bfd_link_hash_indirect;
1198 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1199 /* Protected symbols will override the dynamic definition
1200 with default version. */
1201 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1202 {
1203 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1204 vh->dynamic_def = 1;
1205 vh->ref_dynamic = 1;
1206 }
1207 else
1208 {
1209 h->root.type = vh->root.type;
1210 vh->ref_dynamic = 0;
1211 /* We have to hide it here since it was made dynamic
1212 global with extra bits when the symbol info was
1213 copied from the old dynamic definition. */
1214 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1215 }
1216 h = vh;
1217 }
1218 else
1219 h = *sym_hash;
1220 }
1221
1222 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1223 && bfd_is_und_section (sec))
1224 {
1225 /* If the new symbol is undefined and the old symbol was
1226 also undefined before, we need to make sure
1227 _bfd_generic_link_add_one_symbol doesn't mess
1228 up the linker hash table undefs list. Since the old
1229 definition came from a dynamic object, it is still on the
1230 undefs list. */
1231 h->root.type = bfd_link_hash_undefined;
1232 h->root.u.undef.abfd = abfd;
1233 }
1234 else
1235 {
1236 h->root.type = bfd_link_hash_new;
1237 h->root.u.undef.abfd = NULL;
1238 }
1239
1240 if (h->def_dynamic)
1241 {
1242 h->def_dynamic = 0;
1243 h->ref_dynamic = 1;
1244 h->dynamic_def = 1;
1245 }
1246 /* FIXME: Should we check type and size for protected symbol? */
1247 h->size = 0;
1248 h->type = 0;
1249 return TRUE;
1250 }
1251
1252 if (bind == STB_GNU_UNIQUE)
1253 h->unique_global = 1;
1254
1255 /* If a new weak symbol definition comes from a regular file and the
1256 old symbol comes from a dynamic library, we treat the new one as
1257 strong. Similarly, an old weak symbol definition from a regular
1258 file is treated as strong when the new symbol comes from a dynamic
1259 library. Further, an old weak symbol from a dynamic library is
1260 treated as strong if the new symbol is from a dynamic library.
1261 This reflects the way glibc's ld.so works.
1262
1263 Do this before setting *type_change_ok or *size_change_ok so that
1264 we warn properly when dynamic library symbols are overridden. */
1265
1266 if (newdef && !newdyn && olddyn)
1267 newweak = FALSE;
1268 if (olddef && newdyn)
1269 oldweak = FALSE;
1270
1271 /* Allow changes between different types of function symbol. */
1272 if (newfunc && oldfunc)
1273 *type_change_ok = TRUE;
1274
1275 /* It's OK to change the type if either the existing symbol or the
1276 new symbol is weak. A type change is also OK if the old symbol
1277 is undefined and the new symbol is defined. */
1278
1279 if (oldweak
1280 || newweak
1281 || (newdef
1282 && h->root.type == bfd_link_hash_undefined))
1283 *type_change_ok = TRUE;
1284
1285 /* It's OK to change the size if either the existing symbol or the
1286 new symbol is weak, or if the old symbol is undefined. */
1287
1288 if (*type_change_ok
1289 || h->root.type == bfd_link_hash_undefined)
1290 *size_change_ok = TRUE;
1291
1292 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1293 symbol, respectively, appears to be a common symbol in a dynamic
1294 object. If a symbol appears in an uninitialized section, and is
1295 not weak, and is not a function, then it may be a common symbol
1296 which was resolved when the dynamic object was created. We want
1297 to treat such symbols specially, because they raise special
1298 considerations when setting the symbol size: if the symbol
1299 appears as a common symbol in a regular object, and the size in
1300 the regular object is larger, we must make sure that we use the
1301 larger size. This problematic case can always be avoided in C,
1302 but it must be handled correctly when using Fortran shared
1303 libraries.
1304
1305 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1306 likewise for OLDDYNCOMMON and OLDDEF.
1307
1308 Note that this test is just a heuristic, and that it is quite
1309 possible to have an uninitialized symbol in a shared object which
1310 is really a definition, rather than a common symbol. This could
1311 lead to some minor confusion when the symbol really is a common
1312 symbol in some regular object. However, I think it will be
1313 harmless. */
1314
1315 if (newdyn
1316 && newdef
1317 && !newweak
1318 && (sec->flags & SEC_ALLOC) != 0
1319 && (sec->flags & SEC_LOAD) == 0
1320 && sym->st_size > 0
1321 && !newfunc)
1322 newdyncommon = TRUE;
1323 else
1324 newdyncommon = FALSE;
1325
1326 if (olddyn
1327 && olddef
1328 && h->root.type == bfd_link_hash_defined
1329 && h->def_dynamic
1330 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1331 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1332 && h->size > 0
1333 && !oldfunc)
1334 olddyncommon = TRUE;
1335 else
1336 olddyncommon = FALSE;
1337
1338 /* We now know everything about the old and new symbols. We ask the
1339 backend to check if we can merge them. */
1340 if (bed->merge_symbol
1341 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1342 pold_alignment, skip, override,
1343 type_change_ok, size_change_ok,
1344 &newdyn, &newdef, &newdyncommon, &newweak,
1345 abfd, &sec,
1346 &olddyn, &olddef, &olddyncommon, &oldweak,
1347 oldbfd, &oldsec))
1348 return FALSE;
1349
1350 /* If both the old and the new symbols look like common symbols in a
1351 dynamic object, set the size of the symbol to the larger of the
1352 two. */
1353
1354 if (olddyncommon
1355 && newdyncommon
1356 && sym->st_size != h->size)
1357 {
1358 /* Since we think we have two common symbols, issue a multiple
1359 common warning if desired. Note that we only warn if the
1360 size is different. If the size is the same, we simply let
1361 the old symbol override the new one as normally happens with
1362 symbols defined in dynamic objects. */
1363
1364 if (! ((*info->callbacks->multiple_common)
1365 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1366 return FALSE;
1367
1368 if (sym->st_size > h->size)
1369 h->size = sym->st_size;
1370
1371 *size_change_ok = TRUE;
1372 }
1373
1374 /* If we are looking at a dynamic object, and we have found a
1375 definition, we need to see if the symbol was already defined by
1376 some other object. If so, we want to use the existing
1377 definition, and we do not want to report a multiple symbol
1378 definition error; we do this by clobbering *PSEC to be
1379 bfd_und_section_ptr.
1380
1381 We treat a common symbol as a definition if the symbol in the
1382 shared library is a function, since common symbols always
1383 represent variables; this can cause confusion in principle, but
1384 any such confusion would seem to indicate an erroneous program or
1385 shared library. We also permit a common symbol in a regular
1386 object to override a weak symbol in a shared object. */
1387
1388 if (newdyn
1389 && newdef
1390 && (olddef
1391 || (h->root.type == bfd_link_hash_common
1392 && (newweak || newfunc))))
1393 {
1394 *override = TRUE;
1395 newdef = FALSE;
1396 newdyncommon = FALSE;
1397
1398 *psec = sec = bfd_und_section_ptr;
1399 *size_change_ok = TRUE;
1400
1401 /* If we get here when the old symbol is a common symbol, then
1402 we are explicitly letting it override a weak symbol or
1403 function in a dynamic object, and we don't want to warn about
1404 a type change. If the old symbol is a defined symbol, a type
1405 change warning may still be appropriate. */
1406
1407 if (h->root.type == bfd_link_hash_common)
1408 *type_change_ok = TRUE;
1409 }
1410
1411 /* Handle the special case of an old common symbol merging with a
1412 new symbol which looks like a common symbol in a shared object.
1413 We change *PSEC and *PVALUE to make the new symbol look like a
1414 common symbol, and let _bfd_generic_link_add_one_symbol do the
1415 right thing. */
1416
1417 if (newdyncommon
1418 && h->root.type == bfd_link_hash_common)
1419 {
1420 *override = TRUE;
1421 newdef = FALSE;
1422 newdyncommon = FALSE;
1423 *pvalue = sym->st_size;
1424 *psec = sec = bed->common_section (oldsec);
1425 *size_change_ok = TRUE;
1426 }
1427
1428 /* Skip weak definitions of symbols that are already defined. */
1429 if (newdef && olddef && newweak)
1430 {
1431 /* Don't skip new non-IR weak syms. */
1432 if (!((oldbfd->flags & BFD_PLUGIN) != 0
1433 && (abfd->flags & BFD_PLUGIN) == 0))
1434 *skip = TRUE;
1435
1436 /* Merge st_other. If the symbol already has a dynamic index,
1437 but visibility says it should not be visible, turn it into a
1438 local symbol. */
1439 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1440 if (h->dynindx != -1)
1441 switch (ELF_ST_VISIBILITY (h->other))
1442 {
1443 case STV_INTERNAL:
1444 case STV_HIDDEN:
1445 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1446 break;
1447 }
1448 }
1449
1450 /* If the old symbol is from a dynamic object, and the new symbol is
1451 a definition which is not from a dynamic object, then the new
1452 symbol overrides the old symbol. Symbols from regular files
1453 always take precedence over symbols from dynamic objects, even if
1454 they are defined after the dynamic object in the link.
1455
1456 As above, we again permit a common symbol in a regular object to
1457 override a definition in a shared object if the shared object
1458 symbol is a function or is weak. */
1459
1460 flip = NULL;
1461 if (!newdyn
1462 && (newdef
1463 || (bfd_is_com_section (sec)
1464 && (oldweak || oldfunc)))
1465 && olddyn
1466 && olddef
1467 && h->def_dynamic)
1468 {
1469 /* Change the hash table entry to undefined, and let
1470 _bfd_generic_link_add_one_symbol do the right thing with the
1471 new definition. */
1472
1473 h->root.type = bfd_link_hash_undefined;
1474 h->root.u.undef.abfd = h->root.u.def.section->owner;
1475 *size_change_ok = TRUE;
1476
1477 olddef = FALSE;
1478 olddyncommon = FALSE;
1479
1480 /* We again permit a type change when a common symbol may be
1481 overriding a function. */
1482
1483 if (bfd_is_com_section (sec))
1484 {
1485 if (oldfunc)
1486 {
1487 /* If a common symbol overrides a function, make sure
1488 that it isn't defined dynamically nor has type
1489 function. */
1490 h->def_dynamic = 0;
1491 h->type = STT_NOTYPE;
1492 }
1493 *type_change_ok = TRUE;
1494 }
1495
1496 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1497 flip = *sym_hash;
1498 else
1499 /* This union may have been set to be non-NULL when this symbol
1500 was seen in a dynamic object. We must force the union to be
1501 NULL, so that it is correct for a regular symbol. */
1502 h->verinfo.vertree = NULL;
1503 }
1504
1505 /* Handle the special case of a new common symbol merging with an
1506 old symbol that looks like it might be a common symbol defined in
1507 a shared object. Note that we have already handled the case in
1508 which a new common symbol should simply override the definition
1509 in the shared library. */
1510
1511 if (! newdyn
1512 && bfd_is_com_section (sec)
1513 && olddyncommon)
1514 {
1515 /* It would be best if we could set the hash table entry to a
1516 common symbol, but we don't know what to use for the section
1517 or the alignment. */
1518 if (! ((*info->callbacks->multiple_common)
1519 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1520 return FALSE;
1521
1522 /* If the presumed common symbol in the dynamic object is
1523 larger, pretend that the new symbol has its size. */
1524
1525 if (h->size > *pvalue)
1526 *pvalue = h->size;
1527
1528 /* We need to remember the alignment required by the symbol
1529 in the dynamic object. */
1530 BFD_ASSERT (pold_alignment);
1531 *pold_alignment = h->root.u.def.section->alignment_power;
1532
1533 olddef = FALSE;
1534 olddyncommon = FALSE;
1535
1536 h->root.type = bfd_link_hash_undefined;
1537 h->root.u.undef.abfd = h->root.u.def.section->owner;
1538
1539 *size_change_ok = TRUE;
1540 *type_change_ok = TRUE;
1541
1542 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1543 flip = *sym_hash;
1544 else
1545 h->verinfo.vertree = NULL;
1546 }
1547
1548 if (flip != NULL)
1549 {
1550 /* Handle the case where we had a versioned symbol in a dynamic
1551 library and now find a definition in a normal object. In this
1552 case, we make the versioned symbol point to the normal one. */
1553 flip->root.type = h->root.type;
1554 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1555 h->root.type = bfd_link_hash_indirect;
1556 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1557 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1558 if (h->def_dynamic)
1559 {
1560 h->def_dynamic = 0;
1561 flip->ref_dynamic = 1;
1562 }
1563 }
1564
1565 return TRUE;
1566 }
1567
1568 /* This function is called to create an indirect symbol from the
1569 default for the symbol with the default version if needed. The
1570 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1571 set DYNSYM if the new indirect symbol is dynamic. */
1572
1573 static bfd_boolean
1574 _bfd_elf_add_default_symbol (bfd *abfd,
1575 struct bfd_link_info *info,
1576 struct elf_link_hash_entry *h,
1577 const char *name,
1578 Elf_Internal_Sym *sym,
1579 asection **psec,
1580 bfd_vma *value,
1581 bfd_boolean *dynsym,
1582 bfd_boolean override)
1583 {
1584 bfd_boolean type_change_ok;
1585 bfd_boolean size_change_ok;
1586 bfd_boolean skip;
1587 char *shortname;
1588 struct elf_link_hash_entry *hi;
1589 struct bfd_link_hash_entry *bh;
1590 const struct elf_backend_data *bed;
1591 bfd_boolean collect;
1592 bfd_boolean dynamic;
1593 char *p;
1594 size_t len, shortlen;
1595 asection *sec;
1596
1597 /* If this symbol has a version, and it is the default version, we
1598 create an indirect symbol from the default name to the fully
1599 decorated name. This will cause external references which do not
1600 specify a version to be bound to this version of the symbol. */
1601 p = strchr (name, ELF_VER_CHR);
1602 if (p == NULL || p[1] != ELF_VER_CHR)
1603 return TRUE;
1604
1605 if (override)
1606 {
1607 /* We are overridden by an old definition. We need to check if we
1608 need to create the indirect symbol from the default name. */
1609 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1610 FALSE, FALSE);
1611 BFD_ASSERT (hi != NULL);
1612 if (hi == h)
1613 return TRUE;
1614 while (hi->root.type == bfd_link_hash_indirect
1615 || hi->root.type == bfd_link_hash_warning)
1616 {
1617 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1618 if (hi == h)
1619 return TRUE;
1620 }
1621 }
1622
1623 bed = get_elf_backend_data (abfd);
1624 collect = bed->collect;
1625 dynamic = (abfd->flags & DYNAMIC) != 0;
1626
1627 shortlen = p - name;
1628 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1629 if (shortname == NULL)
1630 return FALSE;
1631 memcpy (shortname, name, shortlen);
1632 shortname[shortlen] = '\0';
1633
1634 /* We are going to create a new symbol. Merge it with any existing
1635 symbol with this name. For the purposes of the merge, act as
1636 though we were defining the symbol we just defined, although we
1637 actually going to define an indirect symbol. */
1638 type_change_ok = FALSE;
1639 size_change_ok = FALSE;
1640 sec = *psec;
1641 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1642 NULL, &hi, &skip, &override,
1643 &type_change_ok, &size_change_ok))
1644 return FALSE;
1645
1646 if (skip)
1647 goto nondefault;
1648
1649 if (! override)
1650 {
1651 bh = &hi->root;
1652 if (! (_bfd_generic_link_add_one_symbol
1653 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1654 0, name, FALSE, collect, &bh)))
1655 return FALSE;
1656 hi = (struct elf_link_hash_entry *) bh;
1657 }
1658 else
1659 {
1660 /* In this case the symbol named SHORTNAME is overriding the
1661 indirect symbol we want to add. We were planning on making
1662 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1663 is the name without a version. NAME is the fully versioned
1664 name, and it is the default version.
1665
1666 Overriding means that we already saw a definition for the
1667 symbol SHORTNAME in a regular object, and it is overriding
1668 the symbol defined in the dynamic object.
1669
1670 When this happens, we actually want to change NAME, the
1671 symbol we just added, to refer to SHORTNAME. This will cause
1672 references to NAME in the shared object to become references
1673 to SHORTNAME in the regular object. This is what we expect
1674 when we override a function in a shared object: that the
1675 references in the shared object will be mapped to the
1676 definition in the regular object. */
1677
1678 while (hi->root.type == bfd_link_hash_indirect
1679 || hi->root.type == bfd_link_hash_warning)
1680 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1681
1682 h->root.type = bfd_link_hash_indirect;
1683 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1684 if (h->def_dynamic)
1685 {
1686 h->def_dynamic = 0;
1687 hi->ref_dynamic = 1;
1688 if (hi->ref_regular
1689 || hi->def_regular)
1690 {
1691 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1692 return FALSE;
1693 }
1694 }
1695
1696 /* Now set HI to H, so that the following code will set the
1697 other fields correctly. */
1698 hi = h;
1699 }
1700
1701 /* Check if HI is a warning symbol. */
1702 if (hi->root.type == bfd_link_hash_warning)
1703 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1704
1705 /* If there is a duplicate definition somewhere, then HI may not
1706 point to an indirect symbol. We will have reported an error to
1707 the user in that case. */
1708
1709 if (hi->root.type == bfd_link_hash_indirect)
1710 {
1711 struct elf_link_hash_entry *ht;
1712
1713 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1714 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1715
1716 /* See if the new flags lead us to realize that the symbol must
1717 be dynamic. */
1718 if (! *dynsym)
1719 {
1720 if (! dynamic)
1721 {
1722 if (! info->executable
1723 || hi->ref_dynamic)
1724 *dynsym = TRUE;
1725 }
1726 else
1727 {
1728 if (hi->ref_regular)
1729 *dynsym = TRUE;
1730 }
1731 }
1732 }
1733
1734 /* We also need to define an indirection from the nondefault version
1735 of the symbol. */
1736
1737 nondefault:
1738 len = strlen (name);
1739 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1740 if (shortname == NULL)
1741 return FALSE;
1742 memcpy (shortname, name, shortlen);
1743 memcpy (shortname + shortlen, p + 1, len - shortlen);
1744
1745 /* Once again, merge with any existing symbol. */
1746 type_change_ok = FALSE;
1747 size_change_ok = FALSE;
1748 sec = *psec;
1749 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1750 NULL, &hi, &skip, &override,
1751 &type_change_ok, &size_change_ok))
1752 return FALSE;
1753
1754 if (skip)
1755 return TRUE;
1756
1757 if (override)
1758 {
1759 /* Here SHORTNAME is a versioned name, so we don't expect to see
1760 the type of override we do in the case above unless it is
1761 overridden by a versioned definition. */
1762 if (hi->root.type != bfd_link_hash_defined
1763 && hi->root.type != bfd_link_hash_defweak)
1764 (*_bfd_error_handler)
1765 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1766 abfd, shortname);
1767 }
1768 else
1769 {
1770 bh = &hi->root;
1771 if (! (_bfd_generic_link_add_one_symbol
1772 (info, abfd, shortname, BSF_INDIRECT,
1773 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1774 return FALSE;
1775 hi = (struct elf_link_hash_entry *) bh;
1776
1777 /* If there is a duplicate definition somewhere, then HI may not
1778 point to an indirect symbol. We will have reported an error
1779 to the user in that case. */
1780
1781 if (hi->root.type == bfd_link_hash_indirect)
1782 {
1783 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1784
1785 /* See if the new flags lead us to realize that the symbol
1786 must be dynamic. */
1787 if (! *dynsym)
1788 {
1789 if (! dynamic)
1790 {
1791 if (! info->executable
1792 || hi->ref_dynamic)
1793 *dynsym = TRUE;
1794 }
1795 else
1796 {
1797 if (hi->ref_regular)
1798 *dynsym = TRUE;
1799 }
1800 }
1801 }
1802 }
1803
1804 return TRUE;
1805 }
1806 \f
1807 /* This routine is used to export all defined symbols into the dynamic
1808 symbol table. It is called via elf_link_hash_traverse. */
1809
1810 static bfd_boolean
1811 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1812 {
1813 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1814
1815 /* Ignore this if we won't export it. */
1816 if (!eif->info->export_dynamic && !h->dynamic)
1817 return TRUE;
1818
1819 /* Ignore indirect symbols. These are added by the versioning code. */
1820 if (h->root.type == bfd_link_hash_indirect)
1821 return TRUE;
1822
1823 if (h->root.type == bfd_link_hash_warning)
1824 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1825
1826 if (h->dynindx == -1
1827 && (h->def_regular
1828 || h->ref_regular))
1829 {
1830 bfd_boolean hide;
1831
1832 if (eif->verdefs == NULL
1833 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1834 && !hide))
1835 {
1836 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1837 {
1838 eif->failed = TRUE;
1839 return FALSE;
1840 }
1841 }
1842 }
1843
1844 return TRUE;
1845 }
1846 \f
1847 /* Look through the symbols which are defined in other shared
1848 libraries and referenced here. Update the list of version
1849 dependencies. This will be put into the .gnu.version_r section.
1850 This function is called via elf_link_hash_traverse. */
1851
1852 static bfd_boolean
1853 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1854 void *data)
1855 {
1856 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1857 Elf_Internal_Verneed *t;
1858 Elf_Internal_Vernaux *a;
1859 bfd_size_type amt;
1860
1861 if (h->root.type == bfd_link_hash_warning)
1862 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1863
1864 /* We only care about symbols defined in shared objects with version
1865 information. */
1866 if (!h->def_dynamic
1867 || h->def_regular
1868 || h->dynindx == -1
1869 || h->verinfo.verdef == NULL)
1870 return TRUE;
1871
1872 /* See if we already know about this version. */
1873 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1874 t != NULL;
1875 t = t->vn_nextref)
1876 {
1877 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1878 continue;
1879
1880 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1881 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1882 return TRUE;
1883
1884 break;
1885 }
1886
1887 /* This is a new version. Add it to tree we are building. */
1888
1889 if (t == NULL)
1890 {
1891 amt = sizeof *t;
1892 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1893 if (t == NULL)
1894 {
1895 rinfo->failed = TRUE;
1896 return FALSE;
1897 }
1898
1899 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1900 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1901 elf_tdata (rinfo->info->output_bfd)->verref = t;
1902 }
1903
1904 amt = sizeof *a;
1905 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1906 if (a == NULL)
1907 {
1908 rinfo->failed = TRUE;
1909 return FALSE;
1910 }
1911
1912 /* Note that we are copying a string pointer here, and testing it
1913 above. If bfd_elf_string_from_elf_section is ever changed to
1914 discard the string data when low in memory, this will have to be
1915 fixed. */
1916 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1917
1918 a->vna_flags = h->verinfo.verdef->vd_flags;
1919 a->vna_nextptr = t->vn_auxptr;
1920
1921 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1922 ++rinfo->vers;
1923
1924 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1925
1926 t->vn_auxptr = a;
1927
1928 return TRUE;
1929 }
1930
1931 /* Figure out appropriate versions for all the symbols. We may not
1932 have the version number script until we have read all of the input
1933 files, so until that point we don't know which symbols should be
1934 local. This function is called via elf_link_hash_traverse. */
1935
1936 static bfd_boolean
1937 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1938 {
1939 struct elf_info_failed *sinfo;
1940 struct bfd_link_info *info;
1941 const struct elf_backend_data *bed;
1942 struct elf_info_failed eif;
1943 char *p;
1944 bfd_size_type amt;
1945
1946 sinfo = (struct elf_info_failed *) data;
1947 info = sinfo->info;
1948
1949 if (h->root.type == bfd_link_hash_warning)
1950 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1951
1952 /* Fix the symbol flags. */
1953 eif.failed = FALSE;
1954 eif.info = info;
1955 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1956 {
1957 if (eif.failed)
1958 sinfo->failed = TRUE;
1959 return FALSE;
1960 }
1961
1962 /* We only need version numbers for symbols defined in regular
1963 objects. */
1964 if (!h->def_regular)
1965 return TRUE;
1966
1967 bed = get_elf_backend_data (info->output_bfd);
1968 p = strchr (h->root.root.string, ELF_VER_CHR);
1969 if (p != NULL && h->verinfo.vertree == NULL)
1970 {
1971 struct bfd_elf_version_tree *t;
1972 bfd_boolean hidden;
1973
1974 hidden = TRUE;
1975
1976 /* There are two consecutive ELF_VER_CHR characters if this is
1977 not a hidden symbol. */
1978 ++p;
1979 if (*p == ELF_VER_CHR)
1980 {
1981 hidden = FALSE;
1982 ++p;
1983 }
1984
1985 /* If there is no version string, we can just return out. */
1986 if (*p == '\0')
1987 {
1988 if (hidden)
1989 h->hidden = 1;
1990 return TRUE;
1991 }
1992
1993 /* Look for the version. If we find it, it is no longer weak. */
1994 for (t = sinfo->verdefs; t != NULL; t = t->next)
1995 {
1996 if (strcmp (t->name, p) == 0)
1997 {
1998 size_t len;
1999 char *alc;
2000 struct bfd_elf_version_expr *d;
2001
2002 len = p - h->root.root.string;
2003 alc = (char *) bfd_malloc (len);
2004 if (alc == NULL)
2005 {
2006 sinfo->failed = TRUE;
2007 return FALSE;
2008 }
2009 memcpy (alc, h->root.root.string, len - 1);
2010 alc[len - 1] = '\0';
2011 if (alc[len - 2] == ELF_VER_CHR)
2012 alc[len - 2] = '\0';
2013
2014 h->verinfo.vertree = t;
2015 t->used = TRUE;
2016 d = NULL;
2017
2018 if (t->globals.list != NULL)
2019 d = (*t->match) (&t->globals, NULL, alc);
2020
2021 /* See if there is anything to force this symbol to
2022 local scope. */
2023 if (d == NULL && t->locals.list != NULL)
2024 {
2025 d = (*t->match) (&t->locals, NULL, alc);
2026 if (d != NULL
2027 && h->dynindx != -1
2028 && ! info->export_dynamic)
2029 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2030 }
2031
2032 free (alc);
2033 break;
2034 }
2035 }
2036
2037 /* If we are building an application, we need to create a
2038 version node for this version. */
2039 if (t == NULL && info->executable)
2040 {
2041 struct bfd_elf_version_tree **pp;
2042 int version_index;
2043
2044 /* If we aren't going to export this symbol, we don't need
2045 to worry about it. */
2046 if (h->dynindx == -1)
2047 return TRUE;
2048
2049 amt = sizeof *t;
2050 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2051 if (t == NULL)
2052 {
2053 sinfo->failed = TRUE;
2054 return FALSE;
2055 }
2056
2057 t->name = p;
2058 t->name_indx = (unsigned int) -1;
2059 t->used = TRUE;
2060
2061 version_index = 1;
2062 /* Don't count anonymous version tag. */
2063 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2064 version_index = 0;
2065 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2066 ++version_index;
2067 t->vernum = version_index;
2068
2069 *pp = t;
2070
2071 h->verinfo.vertree = t;
2072 }
2073 else if (t == NULL)
2074 {
2075 /* We could not find the version for a symbol when
2076 generating a shared archive. Return an error. */
2077 (*_bfd_error_handler)
2078 (_("%B: version node not found for symbol %s"),
2079 info->output_bfd, h->root.root.string);
2080 bfd_set_error (bfd_error_bad_value);
2081 sinfo->failed = TRUE;
2082 return FALSE;
2083 }
2084
2085 if (hidden)
2086 h->hidden = 1;
2087 }
2088
2089 /* If we don't have a version for this symbol, see if we can find
2090 something. */
2091 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2092 {
2093 bfd_boolean hide;
2094
2095 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2096 h->root.root.string, &hide);
2097 if (h->verinfo.vertree != NULL && hide)
2098 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2099 }
2100
2101 return TRUE;
2102 }
2103 \f
2104 /* Read and swap the relocs from the section indicated by SHDR. This
2105 may be either a REL or a RELA section. The relocations are
2106 translated into RELA relocations and stored in INTERNAL_RELOCS,
2107 which should have already been allocated to contain enough space.
2108 The EXTERNAL_RELOCS are a buffer where the external form of the
2109 relocations should be stored.
2110
2111 Returns FALSE if something goes wrong. */
2112
2113 static bfd_boolean
2114 elf_link_read_relocs_from_section (bfd *abfd,
2115 asection *sec,
2116 Elf_Internal_Shdr *shdr,
2117 void *external_relocs,
2118 Elf_Internal_Rela *internal_relocs)
2119 {
2120 const struct elf_backend_data *bed;
2121 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2122 const bfd_byte *erela;
2123 const bfd_byte *erelaend;
2124 Elf_Internal_Rela *irela;
2125 Elf_Internal_Shdr *symtab_hdr;
2126 size_t nsyms;
2127
2128 /* Position ourselves at the start of the section. */
2129 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2130 return FALSE;
2131
2132 /* Read the relocations. */
2133 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2134 return FALSE;
2135
2136 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2137 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2138
2139 bed = get_elf_backend_data (abfd);
2140
2141 /* Convert the external relocations to the internal format. */
2142 if (shdr->sh_entsize == bed->s->sizeof_rel)
2143 swap_in = bed->s->swap_reloc_in;
2144 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2145 swap_in = bed->s->swap_reloca_in;
2146 else
2147 {
2148 bfd_set_error (bfd_error_wrong_format);
2149 return FALSE;
2150 }
2151
2152 erela = (const bfd_byte *) external_relocs;
2153 erelaend = erela + shdr->sh_size;
2154 irela = internal_relocs;
2155 while (erela < erelaend)
2156 {
2157 bfd_vma r_symndx;
2158
2159 (*swap_in) (abfd, erela, irela);
2160 r_symndx = ELF32_R_SYM (irela->r_info);
2161 if (bed->s->arch_size == 64)
2162 r_symndx >>= 24;
2163 if (nsyms > 0)
2164 {
2165 if ((size_t) r_symndx >= nsyms)
2166 {
2167 (*_bfd_error_handler)
2168 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2169 " for offset 0x%lx in section `%A'"),
2170 abfd, sec,
2171 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2172 bfd_set_error (bfd_error_bad_value);
2173 return FALSE;
2174 }
2175 }
2176 else if (r_symndx != STN_UNDEF)
2177 {
2178 (*_bfd_error_handler)
2179 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2180 " when the object file has no symbol table"),
2181 abfd, sec,
2182 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2183 bfd_set_error (bfd_error_bad_value);
2184 return FALSE;
2185 }
2186 irela += bed->s->int_rels_per_ext_rel;
2187 erela += shdr->sh_entsize;
2188 }
2189
2190 return TRUE;
2191 }
2192
2193 /* Read and swap the relocs for a section O. They may have been
2194 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2195 not NULL, they are used as buffers to read into. They are known to
2196 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2197 the return value is allocated using either malloc or bfd_alloc,
2198 according to the KEEP_MEMORY argument. If O has two relocation
2199 sections (both REL and RELA relocations), then the REL_HDR
2200 relocations will appear first in INTERNAL_RELOCS, followed by the
2201 RELA_HDR relocations. */
2202
2203 Elf_Internal_Rela *
2204 _bfd_elf_link_read_relocs (bfd *abfd,
2205 asection *o,
2206 void *external_relocs,
2207 Elf_Internal_Rela *internal_relocs,
2208 bfd_boolean keep_memory)
2209 {
2210 void *alloc1 = NULL;
2211 Elf_Internal_Rela *alloc2 = NULL;
2212 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2213 struct bfd_elf_section_data *esdo = elf_section_data (o);
2214 Elf_Internal_Rela *internal_rela_relocs;
2215
2216 if (esdo->relocs != NULL)
2217 return esdo->relocs;
2218
2219 if (o->reloc_count == 0)
2220 return NULL;
2221
2222 if (internal_relocs == NULL)
2223 {
2224 bfd_size_type size;
2225
2226 size = o->reloc_count;
2227 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2228 if (keep_memory)
2229 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2230 else
2231 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2232 if (internal_relocs == NULL)
2233 goto error_return;
2234 }
2235
2236 if (external_relocs == NULL)
2237 {
2238 bfd_size_type size = 0;
2239
2240 if (esdo->rel.hdr)
2241 size += esdo->rel.hdr->sh_size;
2242 if (esdo->rela.hdr)
2243 size += esdo->rela.hdr->sh_size;
2244
2245 alloc1 = bfd_malloc (size);
2246 if (alloc1 == NULL)
2247 goto error_return;
2248 external_relocs = alloc1;
2249 }
2250
2251 internal_rela_relocs = internal_relocs;
2252 if (esdo->rel.hdr)
2253 {
2254 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2255 external_relocs,
2256 internal_relocs))
2257 goto error_return;
2258 external_relocs = (((bfd_byte *) external_relocs)
2259 + esdo->rel.hdr->sh_size);
2260 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2261 * bed->s->int_rels_per_ext_rel);
2262 }
2263
2264 if (esdo->rela.hdr
2265 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2266 external_relocs,
2267 internal_rela_relocs)))
2268 goto error_return;
2269
2270 /* Cache the results for next time, if we can. */
2271 if (keep_memory)
2272 esdo->relocs = internal_relocs;
2273
2274 if (alloc1 != NULL)
2275 free (alloc1);
2276
2277 /* Don't free alloc2, since if it was allocated we are passing it
2278 back (under the name of internal_relocs). */
2279
2280 return internal_relocs;
2281
2282 error_return:
2283 if (alloc1 != NULL)
2284 free (alloc1);
2285 if (alloc2 != NULL)
2286 {
2287 if (keep_memory)
2288 bfd_release (abfd, alloc2);
2289 else
2290 free (alloc2);
2291 }
2292 return NULL;
2293 }
2294
2295 /* Compute the size of, and allocate space for, REL_HDR which is the
2296 section header for a section containing relocations for O. */
2297
2298 static bfd_boolean
2299 _bfd_elf_link_size_reloc_section (bfd *abfd,
2300 struct bfd_elf_section_reloc_data *reldata)
2301 {
2302 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2303
2304 /* That allows us to calculate the size of the section. */
2305 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2306
2307 /* The contents field must last into write_object_contents, so we
2308 allocate it with bfd_alloc rather than malloc. Also since we
2309 cannot be sure that the contents will actually be filled in,
2310 we zero the allocated space. */
2311 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2312 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2313 return FALSE;
2314
2315 if (reldata->hashes == NULL && reldata->count)
2316 {
2317 struct elf_link_hash_entry **p;
2318
2319 p = (struct elf_link_hash_entry **)
2320 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2321 if (p == NULL)
2322 return FALSE;
2323
2324 reldata->hashes = p;
2325 }
2326
2327 return TRUE;
2328 }
2329
2330 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2331 originated from the section given by INPUT_REL_HDR) to the
2332 OUTPUT_BFD. */
2333
2334 bfd_boolean
2335 _bfd_elf_link_output_relocs (bfd *output_bfd,
2336 asection *input_section,
2337 Elf_Internal_Shdr *input_rel_hdr,
2338 Elf_Internal_Rela *internal_relocs,
2339 struct elf_link_hash_entry **rel_hash
2340 ATTRIBUTE_UNUSED)
2341 {
2342 Elf_Internal_Rela *irela;
2343 Elf_Internal_Rela *irelaend;
2344 bfd_byte *erel;
2345 struct bfd_elf_section_reloc_data *output_reldata;
2346 asection *output_section;
2347 const struct elf_backend_data *bed;
2348 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2349 struct bfd_elf_section_data *esdo;
2350
2351 output_section = input_section->output_section;
2352
2353 bed = get_elf_backend_data (output_bfd);
2354 esdo = elf_section_data (output_section);
2355 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2356 {
2357 output_reldata = &esdo->rel;
2358 swap_out = bed->s->swap_reloc_out;
2359 }
2360 else if (esdo->rela.hdr
2361 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2362 {
2363 output_reldata = &esdo->rela;
2364 swap_out = bed->s->swap_reloca_out;
2365 }
2366 else
2367 {
2368 (*_bfd_error_handler)
2369 (_("%B: relocation size mismatch in %B section %A"),
2370 output_bfd, input_section->owner, input_section);
2371 bfd_set_error (bfd_error_wrong_format);
2372 return FALSE;
2373 }
2374
2375 erel = output_reldata->hdr->contents;
2376 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2377 irela = internal_relocs;
2378 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2379 * bed->s->int_rels_per_ext_rel);
2380 while (irela < irelaend)
2381 {
2382 (*swap_out) (output_bfd, irela, erel);
2383 irela += bed->s->int_rels_per_ext_rel;
2384 erel += input_rel_hdr->sh_entsize;
2385 }
2386
2387 /* Bump the counter, so that we know where to add the next set of
2388 relocations. */
2389 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2390
2391 return TRUE;
2392 }
2393 \f
2394 /* Make weak undefined symbols in PIE dynamic. */
2395
2396 bfd_boolean
2397 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2398 struct elf_link_hash_entry *h)
2399 {
2400 if (info->pie
2401 && h->dynindx == -1
2402 && h->root.type == bfd_link_hash_undefweak)
2403 return bfd_elf_link_record_dynamic_symbol (info, h);
2404
2405 return TRUE;
2406 }
2407
2408 /* Fix up the flags for a symbol. This handles various cases which
2409 can only be fixed after all the input files are seen. This is
2410 currently called by both adjust_dynamic_symbol and
2411 assign_sym_version, which is unnecessary but perhaps more robust in
2412 the face of future changes. */
2413
2414 static bfd_boolean
2415 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2416 struct elf_info_failed *eif)
2417 {
2418 const struct elf_backend_data *bed;
2419
2420 /* If this symbol was mentioned in a non-ELF file, try to set
2421 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2422 permit a non-ELF file to correctly refer to a symbol defined in
2423 an ELF dynamic object. */
2424 if (h->non_elf)
2425 {
2426 while (h->root.type == bfd_link_hash_indirect)
2427 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2428
2429 if (h->root.type != bfd_link_hash_defined
2430 && h->root.type != bfd_link_hash_defweak)
2431 {
2432 h->ref_regular = 1;
2433 h->ref_regular_nonweak = 1;
2434 }
2435 else
2436 {
2437 if (h->root.u.def.section->owner != NULL
2438 && (bfd_get_flavour (h->root.u.def.section->owner)
2439 == bfd_target_elf_flavour))
2440 {
2441 h->ref_regular = 1;
2442 h->ref_regular_nonweak = 1;
2443 }
2444 else
2445 h->def_regular = 1;
2446 }
2447
2448 if (h->dynindx == -1
2449 && (h->def_dynamic
2450 || h->ref_dynamic))
2451 {
2452 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2453 {
2454 eif->failed = TRUE;
2455 return FALSE;
2456 }
2457 }
2458 }
2459 else
2460 {
2461 /* Unfortunately, NON_ELF is only correct if the symbol
2462 was first seen in a non-ELF file. Fortunately, if the symbol
2463 was first seen in an ELF file, we're probably OK unless the
2464 symbol was defined in a non-ELF file. Catch that case here.
2465 FIXME: We're still in trouble if the symbol was first seen in
2466 a dynamic object, and then later in a non-ELF regular object. */
2467 if ((h->root.type == bfd_link_hash_defined
2468 || h->root.type == bfd_link_hash_defweak)
2469 && !h->def_regular
2470 && (h->root.u.def.section->owner != NULL
2471 ? (bfd_get_flavour (h->root.u.def.section->owner)
2472 != bfd_target_elf_flavour)
2473 : (bfd_is_abs_section (h->root.u.def.section)
2474 && !h->def_dynamic)))
2475 h->def_regular = 1;
2476 }
2477
2478 /* Backend specific symbol fixup. */
2479 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2480 if (bed->elf_backend_fixup_symbol
2481 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2482 return FALSE;
2483
2484 /* If this is a final link, and the symbol was defined as a common
2485 symbol in a regular object file, and there was no definition in
2486 any dynamic object, then the linker will have allocated space for
2487 the symbol in a common section but the DEF_REGULAR
2488 flag will not have been set. */
2489 if (h->root.type == bfd_link_hash_defined
2490 && !h->def_regular
2491 && h->ref_regular
2492 && !h->def_dynamic
2493 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2494 h->def_regular = 1;
2495
2496 /* If -Bsymbolic was used (which means to bind references to global
2497 symbols to the definition within the shared object), and this
2498 symbol was defined in a regular object, then it actually doesn't
2499 need a PLT entry. Likewise, if the symbol has non-default
2500 visibility. If the symbol has hidden or internal visibility, we
2501 will force it local. */
2502 if (h->needs_plt
2503 && eif->info->shared
2504 && is_elf_hash_table (eif->info->hash)
2505 && (SYMBOLIC_BIND (eif->info, h)
2506 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2507 && h->def_regular)
2508 {
2509 bfd_boolean force_local;
2510
2511 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2512 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2513 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2514 }
2515
2516 /* If a weak undefined symbol has non-default visibility, we also
2517 hide it from the dynamic linker. */
2518 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2519 && h->root.type == bfd_link_hash_undefweak)
2520 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2521
2522 /* If this is a weak defined symbol in a dynamic object, and we know
2523 the real definition in the dynamic object, copy interesting flags
2524 over to the real definition. */
2525 if (h->u.weakdef != NULL)
2526 {
2527 struct elf_link_hash_entry *weakdef;
2528
2529 weakdef = h->u.weakdef;
2530 if (h->root.type == bfd_link_hash_indirect)
2531 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2532
2533 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2534 || h->root.type == bfd_link_hash_defweak);
2535 BFD_ASSERT (weakdef->def_dynamic);
2536
2537 /* If the real definition is defined by a regular object file,
2538 don't do anything special. See the longer description in
2539 _bfd_elf_adjust_dynamic_symbol, below. */
2540 if (weakdef->def_regular)
2541 h->u.weakdef = NULL;
2542 else
2543 {
2544 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2545 || weakdef->root.type == bfd_link_hash_defweak);
2546 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2547 }
2548 }
2549
2550 return TRUE;
2551 }
2552
2553 /* Make the backend pick a good value for a dynamic symbol. This is
2554 called via elf_link_hash_traverse, and also calls itself
2555 recursively. */
2556
2557 static bfd_boolean
2558 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2559 {
2560 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2561 bfd *dynobj;
2562 const struct elf_backend_data *bed;
2563
2564 if (! is_elf_hash_table (eif->info->hash))
2565 return FALSE;
2566
2567 if (h->root.type == bfd_link_hash_warning)
2568 {
2569 h->got = elf_hash_table (eif->info)->init_got_offset;
2570 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2571
2572 /* When warning symbols are created, they **replace** the "real"
2573 entry in the hash table, thus we never get to see the real
2574 symbol in a hash traversal. So look at it now. */
2575 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2576 }
2577
2578 /* Ignore indirect symbols. These are added by the versioning code. */
2579 if (h->root.type == bfd_link_hash_indirect)
2580 return TRUE;
2581
2582 /* Fix the symbol flags. */
2583 if (! _bfd_elf_fix_symbol_flags (h, eif))
2584 return FALSE;
2585
2586 /* If this symbol does not require a PLT entry, and it is not
2587 defined by a dynamic object, or is not referenced by a regular
2588 object, ignore it. We do have to handle a weak defined symbol,
2589 even if no regular object refers to it, if we decided to add it
2590 to the dynamic symbol table. FIXME: Do we normally need to worry
2591 about symbols which are defined by one dynamic object and
2592 referenced by another one? */
2593 if (!h->needs_plt
2594 && h->type != STT_GNU_IFUNC
2595 && (h->def_regular
2596 || !h->def_dynamic
2597 || (!h->ref_regular
2598 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2599 {
2600 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2601 return TRUE;
2602 }
2603
2604 /* If we've already adjusted this symbol, don't do it again. This
2605 can happen via a recursive call. */
2606 if (h->dynamic_adjusted)
2607 return TRUE;
2608
2609 /* Don't look at this symbol again. Note that we must set this
2610 after checking the above conditions, because we may look at a
2611 symbol once, decide not to do anything, and then get called
2612 recursively later after REF_REGULAR is set below. */
2613 h->dynamic_adjusted = 1;
2614
2615 /* If this is a weak definition, and we know a real definition, and
2616 the real symbol is not itself defined by a regular object file,
2617 then get a good value for the real definition. We handle the
2618 real symbol first, for the convenience of the backend routine.
2619
2620 Note that there is a confusing case here. If the real definition
2621 is defined by a regular object file, we don't get the real symbol
2622 from the dynamic object, but we do get the weak symbol. If the
2623 processor backend uses a COPY reloc, then if some routine in the
2624 dynamic object changes the real symbol, we will not see that
2625 change in the corresponding weak symbol. This is the way other
2626 ELF linkers work as well, and seems to be a result of the shared
2627 library model.
2628
2629 I will clarify this issue. Most SVR4 shared libraries define the
2630 variable _timezone and define timezone as a weak synonym. The
2631 tzset call changes _timezone. If you write
2632 extern int timezone;
2633 int _timezone = 5;
2634 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2635 you might expect that, since timezone is a synonym for _timezone,
2636 the same number will print both times. However, if the processor
2637 backend uses a COPY reloc, then actually timezone will be copied
2638 into your process image, and, since you define _timezone
2639 yourself, _timezone will not. Thus timezone and _timezone will
2640 wind up at different memory locations. The tzset call will set
2641 _timezone, leaving timezone unchanged. */
2642
2643 if (h->u.weakdef != NULL)
2644 {
2645 /* If we get to this point, we know there is an implicit
2646 reference by a regular object file via the weak symbol H.
2647 FIXME: Is this really true? What if the traversal finds
2648 H->U.WEAKDEF before it finds H? */
2649 h->u.weakdef->ref_regular = 1;
2650
2651 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2652 return FALSE;
2653 }
2654
2655 /* If a symbol has no type and no size and does not require a PLT
2656 entry, then we are probably about to do the wrong thing here: we
2657 are probably going to create a COPY reloc for an empty object.
2658 This case can arise when a shared object is built with assembly
2659 code, and the assembly code fails to set the symbol type. */
2660 if (h->size == 0
2661 && h->type == STT_NOTYPE
2662 && !h->needs_plt)
2663 (*_bfd_error_handler)
2664 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2665 h->root.root.string);
2666
2667 dynobj = elf_hash_table (eif->info)->dynobj;
2668 bed = get_elf_backend_data (dynobj);
2669
2670 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2671 {
2672 eif->failed = TRUE;
2673 return FALSE;
2674 }
2675
2676 return TRUE;
2677 }
2678
2679 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2680 DYNBSS. */
2681
2682 bfd_boolean
2683 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2684 asection *dynbss)
2685 {
2686 unsigned int power_of_two;
2687 bfd_vma mask;
2688 asection *sec = h->root.u.def.section;
2689
2690 /* The section aligment of definition is the maximum alignment
2691 requirement of symbols defined in the section. Since we don't
2692 know the symbol alignment requirement, we start with the
2693 maximum alignment and check low bits of the symbol address
2694 for the minimum alignment. */
2695 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2696 mask = ((bfd_vma) 1 << power_of_two) - 1;
2697 while ((h->root.u.def.value & mask) != 0)
2698 {
2699 mask >>= 1;
2700 --power_of_two;
2701 }
2702
2703 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2704 dynbss))
2705 {
2706 /* Adjust the section alignment if needed. */
2707 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2708 power_of_two))
2709 return FALSE;
2710 }
2711
2712 /* We make sure that the symbol will be aligned properly. */
2713 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2714
2715 /* Define the symbol as being at this point in DYNBSS. */
2716 h->root.u.def.section = dynbss;
2717 h->root.u.def.value = dynbss->size;
2718
2719 /* Increment the size of DYNBSS to make room for the symbol. */
2720 dynbss->size += h->size;
2721
2722 return TRUE;
2723 }
2724
2725 /* Adjust all external symbols pointing into SEC_MERGE sections
2726 to reflect the object merging within the sections. */
2727
2728 static bfd_boolean
2729 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2730 {
2731 asection *sec;
2732
2733 if (h->root.type == bfd_link_hash_warning)
2734 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2735
2736 if ((h->root.type == bfd_link_hash_defined
2737 || h->root.type == bfd_link_hash_defweak)
2738 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2739 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2740 {
2741 bfd *output_bfd = (bfd *) data;
2742
2743 h->root.u.def.value =
2744 _bfd_merged_section_offset (output_bfd,
2745 &h->root.u.def.section,
2746 elf_section_data (sec)->sec_info,
2747 h->root.u.def.value);
2748 }
2749
2750 return TRUE;
2751 }
2752
2753 /* Returns false if the symbol referred to by H should be considered
2754 to resolve local to the current module, and true if it should be
2755 considered to bind dynamically. */
2756
2757 bfd_boolean
2758 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2759 struct bfd_link_info *info,
2760 bfd_boolean not_local_protected)
2761 {
2762 bfd_boolean binding_stays_local_p;
2763 const struct elf_backend_data *bed;
2764 struct elf_link_hash_table *hash_table;
2765
2766 if (h == NULL)
2767 return FALSE;
2768
2769 while (h->root.type == bfd_link_hash_indirect
2770 || h->root.type == bfd_link_hash_warning)
2771 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2772
2773 /* If it was forced local, then clearly it's not dynamic. */
2774 if (h->dynindx == -1)
2775 return FALSE;
2776 if (h->forced_local)
2777 return FALSE;
2778
2779 /* Identify the cases where name binding rules say that a
2780 visible symbol resolves locally. */
2781 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2782
2783 switch (ELF_ST_VISIBILITY (h->other))
2784 {
2785 case STV_INTERNAL:
2786 case STV_HIDDEN:
2787 return FALSE;
2788
2789 case STV_PROTECTED:
2790 hash_table = elf_hash_table (info);
2791 if (!is_elf_hash_table (hash_table))
2792 return FALSE;
2793
2794 bed = get_elf_backend_data (hash_table->dynobj);
2795
2796 /* Proper resolution for function pointer equality may require
2797 that these symbols perhaps be resolved dynamically, even though
2798 we should be resolving them to the current module. */
2799 if (!not_local_protected || !bed->is_function_type (h->type))
2800 binding_stays_local_p = TRUE;
2801 break;
2802
2803 default:
2804 break;
2805 }
2806
2807 /* If it isn't defined locally, then clearly it's dynamic. */
2808 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2809 return TRUE;
2810
2811 /* Otherwise, the symbol is dynamic if binding rules don't tell
2812 us that it remains local. */
2813 return !binding_stays_local_p;
2814 }
2815
2816 /* Return true if the symbol referred to by H should be considered
2817 to resolve local to the current module, and false otherwise. Differs
2818 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2819 undefined symbols. The two functions are virtually identical except
2820 for the place where forced_local and dynindx == -1 are tested. If
2821 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2822 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2823 the symbol is local only for defined symbols.
2824 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2825 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2826 treatment of undefined weak symbols. For those that do not make
2827 undefined weak symbols dynamic, both functions may return false. */
2828
2829 bfd_boolean
2830 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2831 struct bfd_link_info *info,
2832 bfd_boolean local_protected)
2833 {
2834 const struct elf_backend_data *bed;
2835 struct elf_link_hash_table *hash_table;
2836
2837 /* If it's a local sym, of course we resolve locally. */
2838 if (h == NULL)
2839 return TRUE;
2840
2841 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2842 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2843 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2844 return TRUE;
2845
2846 /* Common symbols that become definitions don't get the DEF_REGULAR
2847 flag set, so test it first, and don't bail out. */
2848 if (ELF_COMMON_DEF_P (h))
2849 /* Do nothing. */;
2850 /* If we don't have a definition in a regular file, then we can't
2851 resolve locally. The sym is either undefined or dynamic. */
2852 else if (!h->def_regular)
2853 return FALSE;
2854
2855 /* Forced local symbols resolve locally. */
2856 if (h->forced_local)
2857 return TRUE;
2858
2859 /* As do non-dynamic symbols. */
2860 if (h->dynindx == -1)
2861 return TRUE;
2862
2863 /* At this point, we know the symbol is defined and dynamic. In an
2864 executable it must resolve locally, likewise when building symbolic
2865 shared libraries. */
2866 if (info->executable || SYMBOLIC_BIND (info, h))
2867 return TRUE;
2868
2869 /* Now deal with defined dynamic symbols in shared libraries. Ones
2870 with default visibility might not resolve locally. */
2871 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2872 return FALSE;
2873
2874 hash_table = elf_hash_table (info);
2875 if (!is_elf_hash_table (hash_table))
2876 return TRUE;
2877
2878 bed = get_elf_backend_data (hash_table->dynobj);
2879
2880 /* STV_PROTECTED non-function symbols are local. */
2881 if (!bed->is_function_type (h->type))
2882 return TRUE;
2883
2884 /* Function pointer equality tests may require that STV_PROTECTED
2885 symbols be treated as dynamic symbols. If the address of a
2886 function not defined in an executable is set to that function's
2887 plt entry in the executable, then the address of the function in
2888 a shared library must also be the plt entry in the executable. */
2889 return local_protected;
2890 }
2891
2892 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2893 aligned. Returns the first TLS output section. */
2894
2895 struct bfd_section *
2896 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2897 {
2898 struct bfd_section *sec, *tls;
2899 unsigned int align = 0;
2900
2901 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2902 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2903 break;
2904 tls = sec;
2905
2906 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2907 if (sec->alignment_power > align)
2908 align = sec->alignment_power;
2909
2910 elf_hash_table (info)->tls_sec = tls;
2911
2912 /* Ensure the alignment of the first section is the largest alignment,
2913 so that the tls segment starts aligned. */
2914 if (tls != NULL)
2915 tls->alignment_power = align;
2916
2917 return tls;
2918 }
2919
2920 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2921 static bfd_boolean
2922 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2923 Elf_Internal_Sym *sym)
2924 {
2925 const struct elf_backend_data *bed;
2926
2927 /* Local symbols do not count, but target specific ones might. */
2928 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2929 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2930 return FALSE;
2931
2932 bed = get_elf_backend_data (abfd);
2933 /* Function symbols do not count. */
2934 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2935 return FALSE;
2936
2937 /* If the section is undefined, then so is the symbol. */
2938 if (sym->st_shndx == SHN_UNDEF)
2939 return FALSE;
2940
2941 /* If the symbol is defined in the common section, then
2942 it is a common definition and so does not count. */
2943 if (bed->common_definition (sym))
2944 return FALSE;
2945
2946 /* If the symbol is in a target specific section then we
2947 must rely upon the backend to tell us what it is. */
2948 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2949 /* FIXME - this function is not coded yet:
2950
2951 return _bfd_is_global_symbol_definition (abfd, sym);
2952
2953 Instead for now assume that the definition is not global,
2954 Even if this is wrong, at least the linker will behave
2955 in the same way that it used to do. */
2956 return FALSE;
2957
2958 return TRUE;
2959 }
2960
2961 /* Search the symbol table of the archive element of the archive ABFD
2962 whose archive map contains a mention of SYMDEF, and determine if
2963 the symbol is defined in this element. */
2964 static bfd_boolean
2965 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2966 {
2967 Elf_Internal_Shdr * hdr;
2968 bfd_size_type symcount;
2969 bfd_size_type extsymcount;
2970 bfd_size_type extsymoff;
2971 Elf_Internal_Sym *isymbuf;
2972 Elf_Internal_Sym *isym;
2973 Elf_Internal_Sym *isymend;
2974 bfd_boolean result;
2975
2976 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2977 if (abfd == NULL)
2978 return FALSE;
2979
2980 if (! bfd_check_format (abfd, bfd_object))
2981 return FALSE;
2982
2983 /* If we have already included the element containing this symbol in the
2984 link then we do not need to include it again. Just claim that any symbol
2985 it contains is not a definition, so that our caller will not decide to
2986 (re)include this element. */
2987 if (abfd->archive_pass)
2988 return FALSE;
2989
2990 /* Select the appropriate symbol table. */
2991 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2992 hdr = &elf_tdata (abfd)->symtab_hdr;
2993 else
2994 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2995
2996 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2997
2998 /* The sh_info field of the symtab header tells us where the
2999 external symbols start. We don't care about the local symbols. */
3000 if (elf_bad_symtab (abfd))
3001 {
3002 extsymcount = symcount;
3003 extsymoff = 0;
3004 }
3005 else
3006 {
3007 extsymcount = symcount - hdr->sh_info;
3008 extsymoff = hdr->sh_info;
3009 }
3010
3011 if (extsymcount == 0)
3012 return FALSE;
3013
3014 /* Read in the symbol table. */
3015 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3016 NULL, NULL, NULL);
3017 if (isymbuf == NULL)
3018 return FALSE;
3019
3020 /* Scan the symbol table looking for SYMDEF. */
3021 result = FALSE;
3022 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3023 {
3024 const char *name;
3025
3026 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3027 isym->st_name);
3028 if (name == NULL)
3029 break;
3030
3031 if (strcmp (name, symdef->name) == 0)
3032 {
3033 result = is_global_data_symbol_definition (abfd, isym);
3034 break;
3035 }
3036 }
3037
3038 free (isymbuf);
3039
3040 return result;
3041 }
3042 \f
3043 /* Add an entry to the .dynamic table. */
3044
3045 bfd_boolean
3046 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3047 bfd_vma tag,
3048 bfd_vma val)
3049 {
3050 struct elf_link_hash_table *hash_table;
3051 const struct elf_backend_data *bed;
3052 asection *s;
3053 bfd_size_type newsize;
3054 bfd_byte *newcontents;
3055 Elf_Internal_Dyn dyn;
3056
3057 hash_table = elf_hash_table (info);
3058 if (! is_elf_hash_table (hash_table))
3059 return FALSE;
3060
3061 bed = get_elf_backend_data (hash_table->dynobj);
3062 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3063 BFD_ASSERT (s != NULL);
3064
3065 newsize = s->size + bed->s->sizeof_dyn;
3066 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3067 if (newcontents == NULL)
3068 return FALSE;
3069
3070 dyn.d_tag = tag;
3071 dyn.d_un.d_val = val;
3072 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3073
3074 s->size = newsize;
3075 s->contents = newcontents;
3076
3077 return TRUE;
3078 }
3079
3080 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3081 otherwise just check whether one already exists. Returns -1 on error,
3082 1 if a DT_NEEDED tag already exists, and 0 on success. */
3083
3084 static int
3085 elf_add_dt_needed_tag (bfd *abfd,
3086 struct bfd_link_info *info,
3087 const char *soname,
3088 bfd_boolean do_it)
3089 {
3090 struct elf_link_hash_table *hash_table;
3091 bfd_size_type oldsize;
3092 bfd_size_type strindex;
3093
3094 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3095 return -1;
3096
3097 hash_table = elf_hash_table (info);
3098 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3099 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3100 if (strindex == (bfd_size_type) -1)
3101 return -1;
3102
3103 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3104 {
3105 asection *sdyn;
3106 const struct elf_backend_data *bed;
3107 bfd_byte *extdyn;
3108
3109 bed = get_elf_backend_data (hash_table->dynobj);
3110 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3111 if (sdyn != NULL)
3112 for (extdyn = sdyn->contents;
3113 extdyn < sdyn->contents + sdyn->size;
3114 extdyn += bed->s->sizeof_dyn)
3115 {
3116 Elf_Internal_Dyn dyn;
3117
3118 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3119 if (dyn.d_tag == DT_NEEDED
3120 && dyn.d_un.d_val == strindex)
3121 {
3122 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3123 return 1;
3124 }
3125 }
3126 }
3127
3128 if (do_it)
3129 {
3130 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3131 return -1;
3132
3133 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3134 return -1;
3135 }
3136 else
3137 /* We were just checking for existence of the tag. */
3138 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3139
3140 return 0;
3141 }
3142
3143 static bfd_boolean
3144 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3145 {
3146 for (; needed != NULL; needed = needed->next)
3147 if (strcmp (soname, needed->name) == 0)
3148 return TRUE;
3149
3150 return FALSE;
3151 }
3152
3153 /* Sort symbol by value and section. */
3154 static int
3155 elf_sort_symbol (const void *arg1, const void *arg2)
3156 {
3157 const struct elf_link_hash_entry *h1;
3158 const struct elf_link_hash_entry *h2;
3159 bfd_signed_vma vdiff;
3160
3161 h1 = *(const struct elf_link_hash_entry **) arg1;
3162 h2 = *(const struct elf_link_hash_entry **) arg2;
3163 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3164 if (vdiff != 0)
3165 return vdiff > 0 ? 1 : -1;
3166 else
3167 {
3168 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3169 if (sdiff != 0)
3170 return sdiff > 0 ? 1 : -1;
3171 }
3172 return 0;
3173 }
3174
3175 /* This function is used to adjust offsets into .dynstr for
3176 dynamic symbols. This is called via elf_link_hash_traverse. */
3177
3178 static bfd_boolean
3179 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3180 {
3181 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3182
3183 if (h->root.type == bfd_link_hash_warning)
3184 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3185
3186 if (h->dynindx != -1)
3187 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3188 return TRUE;
3189 }
3190
3191 /* Assign string offsets in .dynstr, update all structures referencing
3192 them. */
3193
3194 static bfd_boolean
3195 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3196 {
3197 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3198 struct elf_link_local_dynamic_entry *entry;
3199 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3200 bfd *dynobj = hash_table->dynobj;
3201 asection *sdyn;
3202 bfd_size_type size;
3203 const struct elf_backend_data *bed;
3204 bfd_byte *extdyn;
3205
3206 _bfd_elf_strtab_finalize (dynstr);
3207 size = _bfd_elf_strtab_size (dynstr);
3208
3209 bed = get_elf_backend_data (dynobj);
3210 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3211 BFD_ASSERT (sdyn != NULL);
3212
3213 /* Update all .dynamic entries referencing .dynstr strings. */
3214 for (extdyn = sdyn->contents;
3215 extdyn < sdyn->contents + sdyn->size;
3216 extdyn += bed->s->sizeof_dyn)
3217 {
3218 Elf_Internal_Dyn dyn;
3219
3220 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3221 switch (dyn.d_tag)
3222 {
3223 case DT_STRSZ:
3224 dyn.d_un.d_val = size;
3225 break;
3226 case DT_NEEDED:
3227 case DT_SONAME:
3228 case DT_RPATH:
3229 case DT_RUNPATH:
3230 case DT_FILTER:
3231 case DT_AUXILIARY:
3232 case DT_AUDIT:
3233 case DT_DEPAUDIT:
3234 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3235 break;
3236 default:
3237 continue;
3238 }
3239 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3240 }
3241
3242 /* Now update local dynamic symbols. */
3243 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3244 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3245 entry->isym.st_name);
3246
3247 /* And the rest of dynamic symbols. */
3248 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3249
3250 /* Adjust version definitions. */
3251 if (elf_tdata (output_bfd)->cverdefs)
3252 {
3253 asection *s;
3254 bfd_byte *p;
3255 bfd_size_type i;
3256 Elf_Internal_Verdef def;
3257 Elf_Internal_Verdaux defaux;
3258
3259 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3260 p = s->contents;
3261 do
3262 {
3263 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3264 &def);
3265 p += sizeof (Elf_External_Verdef);
3266 if (def.vd_aux != sizeof (Elf_External_Verdef))
3267 continue;
3268 for (i = 0; i < def.vd_cnt; ++i)
3269 {
3270 _bfd_elf_swap_verdaux_in (output_bfd,
3271 (Elf_External_Verdaux *) p, &defaux);
3272 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3273 defaux.vda_name);
3274 _bfd_elf_swap_verdaux_out (output_bfd,
3275 &defaux, (Elf_External_Verdaux *) p);
3276 p += sizeof (Elf_External_Verdaux);
3277 }
3278 }
3279 while (def.vd_next);
3280 }
3281
3282 /* Adjust version references. */
3283 if (elf_tdata (output_bfd)->verref)
3284 {
3285 asection *s;
3286 bfd_byte *p;
3287 bfd_size_type i;
3288 Elf_Internal_Verneed need;
3289 Elf_Internal_Vernaux needaux;
3290
3291 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3292 p = s->contents;
3293 do
3294 {
3295 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3296 &need);
3297 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3298 _bfd_elf_swap_verneed_out (output_bfd, &need,
3299 (Elf_External_Verneed *) p);
3300 p += sizeof (Elf_External_Verneed);
3301 for (i = 0; i < need.vn_cnt; ++i)
3302 {
3303 _bfd_elf_swap_vernaux_in (output_bfd,
3304 (Elf_External_Vernaux *) p, &needaux);
3305 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3306 needaux.vna_name);
3307 _bfd_elf_swap_vernaux_out (output_bfd,
3308 &needaux,
3309 (Elf_External_Vernaux *) p);
3310 p += sizeof (Elf_External_Vernaux);
3311 }
3312 }
3313 while (need.vn_next);
3314 }
3315
3316 return TRUE;
3317 }
3318 \f
3319 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3320 The default is to only match when the INPUT and OUTPUT are exactly
3321 the same target. */
3322
3323 bfd_boolean
3324 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3325 const bfd_target *output)
3326 {
3327 return input == output;
3328 }
3329
3330 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3331 This version is used when different targets for the same architecture
3332 are virtually identical. */
3333
3334 bfd_boolean
3335 _bfd_elf_relocs_compatible (const bfd_target *input,
3336 const bfd_target *output)
3337 {
3338 const struct elf_backend_data *obed, *ibed;
3339
3340 if (input == output)
3341 return TRUE;
3342
3343 ibed = xvec_get_elf_backend_data (input);
3344 obed = xvec_get_elf_backend_data (output);
3345
3346 if (ibed->arch != obed->arch)
3347 return FALSE;
3348
3349 /* If both backends are using this function, deem them compatible. */
3350 return ibed->relocs_compatible == obed->relocs_compatible;
3351 }
3352
3353 /* Add symbols from an ELF object file to the linker hash table. */
3354
3355 static bfd_boolean
3356 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3357 {
3358 Elf_Internal_Ehdr *ehdr;
3359 Elf_Internal_Shdr *hdr;
3360 bfd_size_type symcount;
3361 bfd_size_type extsymcount;
3362 bfd_size_type extsymoff;
3363 struct elf_link_hash_entry **sym_hash;
3364 bfd_boolean dynamic;
3365 Elf_External_Versym *extversym = NULL;
3366 Elf_External_Versym *ever;
3367 struct elf_link_hash_entry *weaks;
3368 struct elf_link_hash_entry **nondeflt_vers = NULL;
3369 bfd_size_type nondeflt_vers_cnt = 0;
3370 Elf_Internal_Sym *isymbuf = NULL;
3371 Elf_Internal_Sym *isym;
3372 Elf_Internal_Sym *isymend;
3373 const struct elf_backend_data *bed;
3374 bfd_boolean add_needed;
3375 struct elf_link_hash_table *htab;
3376 bfd_size_type amt;
3377 void *alloc_mark = NULL;
3378 struct bfd_hash_entry **old_table = NULL;
3379 unsigned int old_size = 0;
3380 unsigned int old_count = 0;
3381 void *old_tab = NULL;
3382 void *old_hash;
3383 void *old_ent;
3384 struct bfd_link_hash_entry *old_undefs = NULL;
3385 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3386 long old_dynsymcount = 0;
3387 size_t tabsize = 0;
3388 size_t hashsize = 0;
3389
3390 htab = elf_hash_table (info);
3391 bed = get_elf_backend_data (abfd);
3392
3393 if ((abfd->flags & DYNAMIC) == 0)
3394 dynamic = FALSE;
3395 else
3396 {
3397 dynamic = TRUE;
3398
3399 /* You can't use -r against a dynamic object. Also, there's no
3400 hope of using a dynamic object which does not exactly match
3401 the format of the output file. */
3402 if (info->relocatable
3403 || !is_elf_hash_table (htab)
3404 || info->output_bfd->xvec != abfd->xvec)
3405 {
3406 if (info->relocatable)
3407 bfd_set_error (bfd_error_invalid_operation);
3408 else
3409 bfd_set_error (bfd_error_wrong_format);
3410 goto error_return;
3411 }
3412 }
3413
3414 ehdr = elf_elfheader (abfd);
3415 if (info->warn_alternate_em
3416 && bed->elf_machine_code != ehdr->e_machine
3417 && ((bed->elf_machine_alt1 != 0
3418 && ehdr->e_machine == bed->elf_machine_alt1)
3419 || (bed->elf_machine_alt2 != 0
3420 && ehdr->e_machine == bed->elf_machine_alt2)))
3421 info->callbacks->einfo
3422 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3423 ehdr->e_machine, abfd, bed->elf_machine_code);
3424
3425 /* As a GNU extension, any input sections which are named
3426 .gnu.warning.SYMBOL are treated as warning symbols for the given
3427 symbol. This differs from .gnu.warning sections, which generate
3428 warnings when they are included in an output file. */
3429 /* PR 12761: Also generate this warning when building shared libraries. */
3430 if (info->executable || info->shared)
3431 {
3432 asection *s;
3433
3434 for (s = abfd->sections; s != NULL; s = s->next)
3435 {
3436 const char *name;
3437
3438 name = bfd_get_section_name (abfd, s);
3439 if (CONST_STRNEQ (name, ".gnu.warning."))
3440 {
3441 char *msg;
3442 bfd_size_type sz;
3443
3444 name += sizeof ".gnu.warning." - 1;
3445
3446 /* If this is a shared object, then look up the symbol
3447 in the hash table. If it is there, and it is already
3448 been defined, then we will not be using the entry
3449 from this shared object, so we don't need to warn.
3450 FIXME: If we see the definition in a regular object
3451 later on, we will warn, but we shouldn't. The only
3452 fix is to keep track of what warnings we are supposed
3453 to emit, and then handle them all at the end of the
3454 link. */
3455 if (dynamic)
3456 {
3457 struct elf_link_hash_entry *h;
3458
3459 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3460
3461 /* FIXME: What about bfd_link_hash_common? */
3462 if (h != NULL
3463 && (h->root.type == bfd_link_hash_defined
3464 || h->root.type == bfd_link_hash_defweak))
3465 {
3466 /* We don't want to issue this warning. Clobber
3467 the section size so that the warning does not
3468 get copied into the output file. */
3469 s->size = 0;
3470 continue;
3471 }
3472 }
3473
3474 sz = s->size;
3475 msg = (char *) bfd_alloc (abfd, sz + 1);
3476 if (msg == NULL)
3477 goto error_return;
3478
3479 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3480 goto error_return;
3481
3482 msg[sz] = '\0';
3483
3484 if (! (_bfd_generic_link_add_one_symbol
3485 (info, abfd, name, BSF_WARNING, s, 0, msg,
3486 FALSE, bed->collect, NULL)))
3487 goto error_return;
3488
3489 if (! info->relocatable)
3490 {
3491 /* Clobber the section size so that the warning does
3492 not get copied into the output file. */
3493 s->size = 0;
3494
3495 /* Also set SEC_EXCLUDE, so that symbols defined in
3496 the warning section don't get copied to the output. */
3497 s->flags |= SEC_EXCLUDE;
3498 }
3499 }
3500 }
3501 }
3502
3503 add_needed = TRUE;
3504 if (! dynamic)
3505 {
3506 /* If we are creating a shared library, create all the dynamic
3507 sections immediately. We need to attach them to something,
3508 so we attach them to this BFD, provided it is the right
3509 format. FIXME: If there are no input BFD's of the same
3510 format as the output, we can't make a shared library. */
3511 if (info->shared
3512 && is_elf_hash_table (htab)
3513 && info->output_bfd->xvec == abfd->xvec
3514 && !htab->dynamic_sections_created)
3515 {
3516 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3517 goto error_return;
3518 }
3519 }
3520 else if (!is_elf_hash_table (htab))
3521 goto error_return;
3522 else
3523 {
3524 asection *s;
3525 const char *soname = NULL;
3526 char *audit = NULL;
3527 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3528 int ret;
3529
3530 /* ld --just-symbols and dynamic objects don't mix very well.
3531 ld shouldn't allow it. */
3532 if ((s = abfd->sections) != NULL
3533 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3534 abort ();
3535
3536 /* If this dynamic lib was specified on the command line with
3537 --as-needed in effect, then we don't want to add a DT_NEEDED
3538 tag unless the lib is actually used. Similary for libs brought
3539 in by another lib's DT_NEEDED. When --no-add-needed is used
3540 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3541 any dynamic library in DT_NEEDED tags in the dynamic lib at
3542 all. */
3543 add_needed = (elf_dyn_lib_class (abfd)
3544 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3545 | DYN_NO_NEEDED)) == 0;
3546
3547 s = bfd_get_section_by_name (abfd, ".dynamic");
3548 if (s != NULL)
3549 {
3550 bfd_byte *dynbuf;
3551 bfd_byte *extdyn;
3552 unsigned int elfsec;
3553 unsigned long shlink;
3554
3555 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3556 {
3557 error_free_dyn:
3558 free (dynbuf);
3559 goto error_return;
3560 }
3561
3562 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3563 if (elfsec == SHN_BAD)
3564 goto error_free_dyn;
3565 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3566
3567 for (extdyn = dynbuf;
3568 extdyn < dynbuf + s->size;
3569 extdyn += bed->s->sizeof_dyn)
3570 {
3571 Elf_Internal_Dyn dyn;
3572
3573 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3574 if (dyn.d_tag == DT_SONAME)
3575 {
3576 unsigned int tagv = dyn.d_un.d_val;
3577 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3578 if (soname == NULL)
3579 goto error_free_dyn;
3580 }
3581 if (dyn.d_tag == DT_NEEDED)
3582 {
3583 struct bfd_link_needed_list *n, **pn;
3584 char *fnm, *anm;
3585 unsigned int tagv = dyn.d_un.d_val;
3586
3587 amt = sizeof (struct bfd_link_needed_list);
3588 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3589 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3590 if (n == NULL || fnm == NULL)
3591 goto error_free_dyn;
3592 amt = strlen (fnm) + 1;
3593 anm = (char *) bfd_alloc (abfd, amt);
3594 if (anm == NULL)
3595 goto error_free_dyn;
3596 memcpy (anm, fnm, amt);
3597 n->name = anm;
3598 n->by = abfd;
3599 n->next = NULL;
3600 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3601 ;
3602 *pn = n;
3603 }
3604 if (dyn.d_tag == DT_RUNPATH)
3605 {
3606 struct bfd_link_needed_list *n, **pn;
3607 char *fnm, *anm;
3608 unsigned int tagv = dyn.d_un.d_val;
3609
3610 amt = sizeof (struct bfd_link_needed_list);
3611 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3612 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3613 if (n == NULL || fnm == NULL)
3614 goto error_free_dyn;
3615 amt = strlen (fnm) + 1;
3616 anm = (char *) bfd_alloc (abfd, amt);
3617 if (anm == NULL)
3618 goto error_free_dyn;
3619 memcpy (anm, fnm, amt);
3620 n->name = anm;
3621 n->by = abfd;
3622 n->next = NULL;
3623 for (pn = & runpath;
3624 *pn != NULL;
3625 pn = &(*pn)->next)
3626 ;
3627 *pn = n;
3628 }
3629 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3630 if (!runpath && dyn.d_tag == DT_RPATH)
3631 {
3632 struct bfd_link_needed_list *n, **pn;
3633 char *fnm, *anm;
3634 unsigned int tagv = dyn.d_un.d_val;
3635
3636 amt = sizeof (struct bfd_link_needed_list);
3637 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3638 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3639 if (n == NULL || fnm == NULL)
3640 goto error_free_dyn;
3641 amt = strlen (fnm) + 1;
3642 anm = (char *) bfd_alloc (abfd, amt);
3643 if (anm == NULL)
3644 goto error_free_dyn;
3645 memcpy (anm, fnm, amt);
3646 n->name = anm;
3647 n->by = abfd;
3648 n->next = NULL;
3649 for (pn = & rpath;
3650 *pn != NULL;
3651 pn = &(*pn)->next)
3652 ;
3653 *pn = n;
3654 }
3655 if (dyn.d_tag == DT_AUDIT)
3656 {
3657 unsigned int tagv = dyn.d_un.d_val;
3658 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3659 }
3660 }
3661
3662 free (dynbuf);
3663 }
3664
3665 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3666 frees all more recently bfd_alloc'd blocks as well. */
3667 if (runpath)
3668 rpath = runpath;
3669
3670 if (rpath)
3671 {
3672 struct bfd_link_needed_list **pn;
3673 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3674 ;
3675 *pn = rpath;
3676 }
3677
3678 /* We do not want to include any of the sections in a dynamic
3679 object in the output file. We hack by simply clobbering the
3680 list of sections in the BFD. This could be handled more
3681 cleanly by, say, a new section flag; the existing
3682 SEC_NEVER_LOAD flag is not the one we want, because that one
3683 still implies that the section takes up space in the output
3684 file. */
3685 bfd_section_list_clear (abfd);
3686
3687 /* Find the name to use in a DT_NEEDED entry that refers to this
3688 object. If the object has a DT_SONAME entry, we use it.
3689 Otherwise, if the generic linker stuck something in
3690 elf_dt_name, we use that. Otherwise, we just use the file
3691 name. */
3692 if (soname == NULL || *soname == '\0')
3693 {
3694 soname = elf_dt_name (abfd);
3695 if (soname == NULL || *soname == '\0')
3696 soname = bfd_get_filename (abfd);
3697 }
3698
3699 /* Save the SONAME because sometimes the linker emulation code
3700 will need to know it. */
3701 elf_dt_name (abfd) = soname;
3702
3703 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3704 if (ret < 0)
3705 goto error_return;
3706
3707 /* If we have already included this dynamic object in the
3708 link, just ignore it. There is no reason to include a
3709 particular dynamic object more than once. */
3710 if (ret > 0)
3711 return TRUE;
3712
3713 /* Save the DT_AUDIT entry for the linker emulation code. */
3714 elf_dt_audit (abfd) = audit;
3715 }
3716
3717 /* If this is a dynamic object, we always link against the .dynsym
3718 symbol table, not the .symtab symbol table. The dynamic linker
3719 will only see the .dynsym symbol table, so there is no reason to
3720 look at .symtab for a dynamic object. */
3721
3722 if (! dynamic || elf_dynsymtab (abfd) == 0)
3723 hdr = &elf_tdata (abfd)->symtab_hdr;
3724 else
3725 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3726
3727 symcount = hdr->sh_size / bed->s->sizeof_sym;
3728
3729 /* The sh_info field of the symtab header tells us where the
3730 external symbols start. We don't care about the local symbols at
3731 this point. */
3732 if (elf_bad_symtab (abfd))
3733 {
3734 extsymcount = symcount;
3735 extsymoff = 0;
3736 }
3737 else
3738 {
3739 extsymcount = symcount - hdr->sh_info;
3740 extsymoff = hdr->sh_info;
3741 }
3742
3743 sym_hash = NULL;
3744 if (extsymcount != 0)
3745 {
3746 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3747 NULL, NULL, NULL);
3748 if (isymbuf == NULL)
3749 goto error_return;
3750
3751 /* We store a pointer to the hash table entry for each external
3752 symbol. */
3753 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3754 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3755 if (sym_hash == NULL)
3756 goto error_free_sym;
3757 elf_sym_hashes (abfd) = sym_hash;
3758 }
3759
3760 if (dynamic)
3761 {
3762 /* Read in any version definitions. */
3763 if (!_bfd_elf_slurp_version_tables (abfd,
3764 info->default_imported_symver))
3765 goto error_free_sym;
3766
3767 /* Read in the symbol versions, but don't bother to convert them
3768 to internal format. */
3769 if (elf_dynversym (abfd) != 0)
3770 {
3771 Elf_Internal_Shdr *versymhdr;
3772
3773 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3774 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3775 if (extversym == NULL)
3776 goto error_free_sym;
3777 amt = versymhdr->sh_size;
3778 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3779 || bfd_bread (extversym, amt, abfd) != amt)
3780 goto error_free_vers;
3781 }
3782 }
3783
3784 /* If we are loading an as-needed shared lib, save the symbol table
3785 state before we start adding symbols. If the lib turns out
3786 to be unneeded, restore the state. */
3787 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3788 {
3789 unsigned int i;
3790 size_t entsize;
3791
3792 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3793 {
3794 struct bfd_hash_entry *p;
3795 struct elf_link_hash_entry *h;
3796
3797 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3798 {
3799 h = (struct elf_link_hash_entry *) p;
3800 entsize += htab->root.table.entsize;
3801 if (h->root.type == bfd_link_hash_warning)
3802 entsize += htab->root.table.entsize;
3803 }
3804 }
3805
3806 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3807 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3808 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3809 if (old_tab == NULL)
3810 goto error_free_vers;
3811
3812 /* Remember the current objalloc pointer, so that all mem for
3813 symbols added can later be reclaimed. */
3814 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3815 if (alloc_mark == NULL)
3816 goto error_free_vers;
3817
3818 /* Make a special call to the linker "notice" function to
3819 tell it that we are about to handle an as-needed lib. */
3820 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3821 notice_as_needed, 0, NULL))
3822 goto error_free_vers;
3823
3824 /* Clone the symbol table and sym hashes. Remember some
3825 pointers into the symbol table, and dynamic symbol count. */
3826 old_hash = (char *) old_tab + tabsize;
3827 old_ent = (char *) old_hash + hashsize;
3828 memcpy (old_tab, htab->root.table.table, tabsize);
3829 memcpy (old_hash, sym_hash, hashsize);
3830 old_undefs = htab->root.undefs;
3831 old_undefs_tail = htab->root.undefs_tail;
3832 old_table = htab->root.table.table;
3833 old_size = htab->root.table.size;
3834 old_count = htab->root.table.count;
3835 old_dynsymcount = htab->dynsymcount;
3836
3837 for (i = 0; i < htab->root.table.size; i++)
3838 {
3839 struct bfd_hash_entry *p;
3840 struct elf_link_hash_entry *h;
3841
3842 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3843 {
3844 memcpy (old_ent, p, htab->root.table.entsize);
3845 old_ent = (char *) old_ent + htab->root.table.entsize;
3846 h = (struct elf_link_hash_entry *) p;
3847 if (h->root.type == bfd_link_hash_warning)
3848 {
3849 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3850 old_ent = (char *) old_ent + htab->root.table.entsize;
3851 }
3852 }
3853 }
3854 }
3855
3856 weaks = NULL;
3857 ever = extversym != NULL ? extversym + extsymoff : NULL;
3858 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3859 isym < isymend;
3860 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3861 {
3862 int bind;
3863 bfd_vma value;
3864 asection *sec, *new_sec;
3865 flagword flags;
3866 const char *name;
3867 struct elf_link_hash_entry *h;
3868 bfd_boolean definition;
3869 bfd_boolean size_change_ok;
3870 bfd_boolean type_change_ok;
3871 bfd_boolean new_weakdef;
3872 bfd_boolean override;
3873 bfd_boolean common;
3874 unsigned int old_alignment;
3875 bfd *old_bfd;
3876 bfd * undef_bfd = NULL;
3877
3878 override = FALSE;
3879
3880 flags = BSF_NO_FLAGS;
3881 sec = NULL;
3882 value = isym->st_value;
3883 *sym_hash = NULL;
3884 common = bed->common_definition (isym);
3885
3886 bind = ELF_ST_BIND (isym->st_info);
3887 switch (bind)
3888 {
3889 case STB_LOCAL:
3890 /* This should be impossible, since ELF requires that all
3891 global symbols follow all local symbols, and that sh_info
3892 point to the first global symbol. Unfortunately, Irix 5
3893 screws this up. */
3894 continue;
3895
3896 case STB_GLOBAL:
3897 if (isym->st_shndx != SHN_UNDEF && !common)
3898 flags = BSF_GLOBAL;
3899 break;
3900
3901 case STB_WEAK:
3902 flags = BSF_WEAK;
3903 break;
3904
3905 case STB_GNU_UNIQUE:
3906 flags = BSF_GNU_UNIQUE;
3907 break;
3908
3909 default:
3910 /* Leave it up to the processor backend. */
3911 break;
3912 }
3913
3914 if (isym->st_shndx == SHN_UNDEF)
3915 sec = bfd_und_section_ptr;
3916 else if (isym->st_shndx == SHN_ABS)
3917 sec = bfd_abs_section_ptr;
3918 else if (isym->st_shndx == SHN_COMMON)
3919 {
3920 sec = bfd_com_section_ptr;
3921 /* What ELF calls the size we call the value. What ELF
3922 calls the value we call the alignment. */
3923 value = isym->st_size;
3924 }
3925 else
3926 {
3927 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3928 if (sec == NULL)
3929 sec = bfd_abs_section_ptr;
3930 else if (sec->kept_section)
3931 {
3932 /* Symbols from discarded section are undefined. We keep
3933 its visibility. */
3934 sec = bfd_und_section_ptr;
3935 isym->st_shndx = SHN_UNDEF;
3936 }
3937 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3938 value -= sec->vma;
3939 }
3940
3941 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3942 isym->st_name);
3943 if (name == NULL)
3944 goto error_free_vers;
3945
3946 if (isym->st_shndx == SHN_COMMON
3947 && (abfd->flags & BFD_PLUGIN) != 0)
3948 {
3949 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3950
3951 if (xc == NULL)
3952 {
3953 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3954 | SEC_EXCLUDE);
3955 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3956 if (xc == NULL)
3957 goto error_free_vers;
3958 }
3959 sec = xc;
3960 }
3961 else if (isym->st_shndx == SHN_COMMON
3962 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3963 && !info->relocatable)
3964 {
3965 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3966
3967 if (tcomm == NULL)
3968 {
3969 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3970 | SEC_LINKER_CREATED);
3971 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3972 if (tcomm == NULL)
3973 goto error_free_vers;
3974 }
3975 sec = tcomm;
3976 }
3977 else if (bed->elf_add_symbol_hook)
3978 {
3979 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3980 &sec, &value))
3981 goto error_free_vers;
3982
3983 /* The hook function sets the name to NULL if this symbol
3984 should be skipped for some reason. */
3985 if (name == NULL)
3986 continue;
3987 }
3988
3989 /* Sanity check that all possibilities were handled. */
3990 if (sec == NULL)
3991 {
3992 bfd_set_error (bfd_error_bad_value);
3993 goto error_free_vers;
3994 }
3995
3996 if (bfd_is_und_section (sec)
3997 || bfd_is_com_section (sec))
3998 definition = FALSE;
3999 else
4000 definition = TRUE;
4001
4002 size_change_ok = FALSE;
4003 type_change_ok = bed->type_change_ok;
4004 old_alignment = 0;
4005 old_bfd = NULL;
4006 new_sec = sec;
4007
4008 if (is_elf_hash_table (htab))
4009 {
4010 Elf_Internal_Versym iver;
4011 unsigned int vernum = 0;
4012 bfd_boolean skip;
4013
4014 /* If this is a definition of a symbol which was previously
4015 referenced in a non-weak manner then make a note of the bfd
4016 that contained the reference. This is used if we need to
4017 refer to the source of the reference later on. */
4018 if (! bfd_is_und_section (sec))
4019 {
4020 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4021
4022 if (h != NULL
4023 && h->root.type == bfd_link_hash_undefined
4024 && h->root.u.undef.abfd)
4025 undef_bfd = h->root.u.undef.abfd;
4026 }
4027
4028 if (ever == NULL)
4029 {
4030 if (info->default_imported_symver)
4031 /* Use the default symbol version created earlier. */
4032 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4033 else
4034 iver.vs_vers = 0;
4035 }
4036 else
4037 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4038
4039 vernum = iver.vs_vers & VERSYM_VERSION;
4040
4041 /* If this is a hidden symbol, or if it is not version
4042 1, we append the version name to the symbol name.
4043 However, we do not modify a non-hidden absolute symbol
4044 if it is not a function, because it might be the version
4045 symbol itself. FIXME: What if it isn't? */
4046 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4047 || (vernum > 1
4048 && (!bfd_is_abs_section (sec)
4049 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4050 {
4051 const char *verstr;
4052 size_t namelen, verlen, newlen;
4053 char *newname, *p;
4054
4055 if (isym->st_shndx != SHN_UNDEF)
4056 {
4057 if (vernum > elf_tdata (abfd)->cverdefs)
4058 verstr = NULL;
4059 else if (vernum > 1)
4060 verstr =
4061 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4062 else
4063 verstr = "";
4064
4065 if (verstr == NULL)
4066 {
4067 (*_bfd_error_handler)
4068 (_("%B: %s: invalid version %u (max %d)"),
4069 abfd, name, vernum,
4070 elf_tdata (abfd)->cverdefs);
4071 bfd_set_error (bfd_error_bad_value);
4072 goto error_free_vers;
4073 }
4074 }
4075 else
4076 {
4077 /* We cannot simply test for the number of
4078 entries in the VERNEED section since the
4079 numbers for the needed versions do not start
4080 at 0. */
4081 Elf_Internal_Verneed *t;
4082
4083 verstr = NULL;
4084 for (t = elf_tdata (abfd)->verref;
4085 t != NULL;
4086 t = t->vn_nextref)
4087 {
4088 Elf_Internal_Vernaux *a;
4089
4090 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4091 {
4092 if (a->vna_other == vernum)
4093 {
4094 verstr = a->vna_nodename;
4095 break;
4096 }
4097 }
4098 if (a != NULL)
4099 break;
4100 }
4101 if (verstr == NULL)
4102 {
4103 (*_bfd_error_handler)
4104 (_("%B: %s: invalid needed version %d"),
4105 abfd, name, vernum);
4106 bfd_set_error (bfd_error_bad_value);
4107 goto error_free_vers;
4108 }
4109 }
4110
4111 namelen = strlen (name);
4112 verlen = strlen (verstr);
4113 newlen = namelen + verlen + 2;
4114 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4115 && isym->st_shndx != SHN_UNDEF)
4116 ++newlen;
4117
4118 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4119 if (newname == NULL)
4120 goto error_free_vers;
4121 memcpy (newname, name, namelen);
4122 p = newname + namelen;
4123 *p++ = ELF_VER_CHR;
4124 /* If this is a defined non-hidden version symbol,
4125 we add another @ to the name. This indicates the
4126 default version of the symbol. */
4127 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4128 && isym->st_shndx != SHN_UNDEF)
4129 *p++ = ELF_VER_CHR;
4130 memcpy (p, verstr, verlen + 1);
4131
4132 name = newname;
4133 }
4134
4135 /* If necessary, make a second attempt to locate the bfd
4136 containing an unresolved, non-weak reference to the
4137 current symbol. */
4138 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4139 {
4140 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4141
4142 if (h != NULL
4143 && h->root.type == bfd_link_hash_undefined
4144 && h->root.u.undef.abfd)
4145 undef_bfd = h->root.u.undef.abfd;
4146 }
4147
4148 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4149 &value, &old_alignment,
4150 sym_hash, &skip, &override,
4151 &type_change_ok, &size_change_ok))
4152 goto error_free_vers;
4153
4154 if (skip)
4155 continue;
4156
4157 if (override)
4158 definition = FALSE;
4159
4160 h = *sym_hash;
4161 while (h->root.type == bfd_link_hash_indirect
4162 || h->root.type == bfd_link_hash_warning)
4163 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4164
4165 /* Remember the old alignment if this is a common symbol, so
4166 that we don't reduce the alignment later on. We can't
4167 check later, because _bfd_generic_link_add_one_symbol
4168 will set a default for the alignment which we want to
4169 override. We also remember the old bfd where the existing
4170 definition comes from. */
4171 switch (h->root.type)
4172 {
4173 default:
4174 break;
4175
4176 case bfd_link_hash_defined:
4177 case bfd_link_hash_defweak:
4178 old_bfd = h->root.u.def.section->owner;
4179 break;
4180
4181 case bfd_link_hash_common:
4182 old_bfd = h->root.u.c.p->section->owner;
4183 old_alignment = h->root.u.c.p->alignment_power;
4184 break;
4185 }
4186
4187 if (elf_tdata (abfd)->verdef != NULL
4188 && ! override
4189 && vernum > 1
4190 && definition)
4191 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4192 }
4193
4194 if (! (_bfd_generic_link_add_one_symbol
4195 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4196 (struct bfd_link_hash_entry **) sym_hash)))
4197 goto error_free_vers;
4198
4199 h = *sym_hash;
4200 while (h->root.type == bfd_link_hash_indirect
4201 || h->root.type == bfd_link_hash_warning)
4202 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4203
4204 *sym_hash = h;
4205 if (is_elf_hash_table (htab))
4206 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4207
4208 new_weakdef = FALSE;
4209 if (dynamic
4210 && definition
4211 && (flags & BSF_WEAK) != 0
4212 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4213 && is_elf_hash_table (htab)
4214 && h->u.weakdef == NULL)
4215 {
4216 /* Keep a list of all weak defined non function symbols from
4217 a dynamic object, using the weakdef field. Later in this
4218 function we will set the weakdef field to the correct
4219 value. We only put non-function symbols from dynamic
4220 objects on this list, because that happens to be the only
4221 time we need to know the normal symbol corresponding to a
4222 weak symbol, and the information is time consuming to
4223 figure out. If the weakdef field is not already NULL,
4224 then this symbol was already defined by some previous
4225 dynamic object, and we will be using that previous
4226 definition anyhow. */
4227
4228 h->u.weakdef = weaks;
4229 weaks = h;
4230 new_weakdef = TRUE;
4231 }
4232
4233 /* Set the alignment of a common symbol. */
4234 if ((common || bfd_is_com_section (sec))
4235 && h->root.type == bfd_link_hash_common)
4236 {
4237 unsigned int align;
4238
4239 if (common)
4240 align = bfd_log2 (isym->st_value);
4241 else
4242 {
4243 /* The new symbol is a common symbol in a shared object.
4244 We need to get the alignment from the section. */
4245 align = new_sec->alignment_power;
4246 }
4247 if (align > old_alignment)
4248 h->root.u.c.p->alignment_power = align;
4249 else
4250 h->root.u.c.p->alignment_power = old_alignment;
4251 }
4252
4253 if (is_elf_hash_table (htab))
4254 {
4255 bfd_boolean dynsym;
4256
4257 /* Check the alignment when a common symbol is involved. This
4258 can change when a common symbol is overridden by a normal
4259 definition or a common symbol is ignored due to the old
4260 normal definition. We need to make sure the maximum
4261 alignment is maintained. */
4262 if ((old_alignment || common)
4263 && h->root.type != bfd_link_hash_common)
4264 {
4265 unsigned int common_align;
4266 unsigned int normal_align;
4267 unsigned int symbol_align;
4268 bfd *normal_bfd;
4269 bfd *common_bfd;
4270
4271 symbol_align = ffs (h->root.u.def.value) - 1;
4272 if (h->root.u.def.section->owner != NULL
4273 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4274 {
4275 normal_align = h->root.u.def.section->alignment_power;
4276 if (normal_align > symbol_align)
4277 normal_align = symbol_align;
4278 }
4279 else
4280 normal_align = symbol_align;
4281
4282 if (old_alignment)
4283 {
4284 common_align = old_alignment;
4285 common_bfd = old_bfd;
4286 normal_bfd = abfd;
4287 }
4288 else
4289 {
4290 common_align = bfd_log2 (isym->st_value);
4291 common_bfd = abfd;
4292 normal_bfd = old_bfd;
4293 }
4294
4295 if (normal_align < common_align)
4296 {
4297 /* PR binutils/2735 */
4298 if (normal_bfd == NULL)
4299 (*_bfd_error_handler)
4300 (_("Warning: alignment %u of common symbol `%s' in %B"
4301 " is greater than the alignment (%u) of its section %A"),
4302 common_bfd, h->root.u.def.section,
4303 1 << common_align, name, 1 << normal_align);
4304 else
4305 (*_bfd_error_handler)
4306 (_("Warning: alignment %u of symbol `%s' in %B"
4307 " is smaller than %u in %B"),
4308 normal_bfd, common_bfd,
4309 1 << normal_align, name, 1 << common_align);
4310 }
4311 }
4312
4313 /* Remember the symbol size if it isn't undefined. */
4314 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4315 && (definition || h->size == 0))
4316 {
4317 if (h->size != 0
4318 && h->size != isym->st_size
4319 && ! size_change_ok)
4320 (*_bfd_error_handler)
4321 (_("Warning: size of symbol `%s' changed"
4322 " from %lu in %B to %lu in %B"),
4323 old_bfd, abfd,
4324 name, (unsigned long) h->size,
4325 (unsigned long) isym->st_size);
4326
4327 h->size = isym->st_size;
4328 }
4329
4330 /* If this is a common symbol, then we always want H->SIZE
4331 to be the size of the common symbol. The code just above
4332 won't fix the size if a common symbol becomes larger. We
4333 don't warn about a size change here, because that is
4334 covered by --warn-common. Allow changed between different
4335 function types. */
4336 if (h->root.type == bfd_link_hash_common)
4337 h->size = h->root.u.c.size;
4338
4339 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4340 && (definition || h->type == STT_NOTYPE))
4341 {
4342 unsigned int type = ELF_ST_TYPE (isym->st_info);
4343
4344 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4345 symbol. */
4346 if (type == STT_GNU_IFUNC
4347 && (abfd->flags & DYNAMIC) != 0)
4348 type = STT_FUNC;
4349
4350 if (h->type != type)
4351 {
4352 if (h->type != STT_NOTYPE && ! type_change_ok)
4353 (*_bfd_error_handler)
4354 (_("Warning: type of symbol `%s' changed"
4355 " from %d to %d in %B"),
4356 abfd, name, h->type, type);
4357
4358 h->type = type;
4359 }
4360 }
4361
4362 /* Merge st_other field. */
4363 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4364
4365 /* Set a flag in the hash table entry indicating the type of
4366 reference or definition we just found. Keep a count of
4367 the number of dynamic symbols we find. A dynamic symbol
4368 is one which is referenced or defined by both a regular
4369 object and a shared object. */
4370 dynsym = FALSE;
4371 if (! dynamic)
4372 {
4373 if (! definition)
4374 {
4375 h->ref_regular = 1;
4376 if (bind != STB_WEAK)
4377 h->ref_regular_nonweak = 1;
4378 }
4379 else
4380 {
4381 h->def_regular = 1;
4382 if (h->def_dynamic)
4383 {
4384 h->def_dynamic = 0;
4385 h->ref_dynamic = 1;
4386 h->dynamic_def = 1;
4387 }
4388 }
4389 if (! info->executable
4390 || h->def_dynamic
4391 || h->ref_dynamic)
4392 dynsym = TRUE;
4393 }
4394 else
4395 {
4396 if (! definition)
4397 h->ref_dynamic = 1;
4398 else
4399 h->def_dynamic = 1;
4400 if (h->def_regular
4401 || h->ref_regular
4402 || (h->u.weakdef != NULL
4403 && ! new_weakdef
4404 && h->u.weakdef->dynindx != -1))
4405 dynsym = TRUE;
4406 }
4407
4408 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4409 {
4410 /* We don't want to make debug symbol dynamic. */
4411 dynsym = FALSE;
4412 }
4413
4414 if (definition)
4415 h->target_internal = isym->st_target_internal;
4416
4417 /* Check to see if we need to add an indirect symbol for
4418 the default name. */
4419 if (definition || h->root.type == bfd_link_hash_common)
4420 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4421 &sec, &value, &dynsym,
4422 override))
4423 goto error_free_vers;
4424
4425 if (definition && !dynamic)
4426 {
4427 char *p = strchr (name, ELF_VER_CHR);
4428 if (p != NULL && p[1] != ELF_VER_CHR)
4429 {
4430 /* Queue non-default versions so that .symver x, x@FOO
4431 aliases can be checked. */
4432 if (!nondeflt_vers)
4433 {
4434 amt = ((isymend - isym + 1)
4435 * sizeof (struct elf_link_hash_entry *));
4436 nondeflt_vers =
4437 (struct elf_link_hash_entry **) bfd_malloc (amt);
4438 if (!nondeflt_vers)
4439 goto error_free_vers;
4440 }
4441 nondeflt_vers[nondeflt_vers_cnt++] = h;
4442 }
4443 }
4444
4445 if (dynsym && h->dynindx == -1)
4446 {
4447 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4448 goto error_free_vers;
4449 if (h->u.weakdef != NULL
4450 && ! new_weakdef
4451 && h->u.weakdef->dynindx == -1)
4452 {
4453 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4454 goto error_free_vers;
4455 }
4456 }
4457 else if (dynsym && h->dynindx != -1)
4458 /* If the symbol already has a dynamic index, but
4459 visibility says it should not be visible, turn it into
4460 a local symbol. */
4461 switch (ELF_ST_VISIBILITY (h->other))
4462 {
4463 case STV_INTERNAL:
4464 case STV_HIDDEN:
4465 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4466 dynsym = FALSE;
4467 break;
4468 }
4469
4470 if (!add_needed
4471 && definition
4472 && ((dynsym
4473 && h->ref_regular)
4474 || (h->ref_dynamic
4475 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4476 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4477 {
4478 int ret;
4479 const char *soname = elf_dt_name (abfd);
4480
4481 /* A symbol from a library loaded via DT_NEEDED of some
4482 other library is referenced by a regular object.
4483 Add a DT_NEEDED entry for it. Issue an error if
4484 --no-add-needed is used and the reference was not
4485 a weak one. */
4486 if (undef_bfd != NULL
4487 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4488 {
4489 (*_bfd_error_handler)
4490 (_("%B: undefined reference to symbol '%s'"),
4491 undef_bfd, name);
4492 (*_bfd_error_handler)
4493 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4494 abfd, name);
4495 bfd_set_error (bfd_error_invalid_operation);
4496 goto error_free_vers;
4497 }
4498
4499 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4500 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4501
4502 add_needed = TRUE;
4503 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4504 if (ret < 0)
4505 goto error_free_vers;
4506
4507 BFD_ASSERT (ret == 0);
4508 }
4509 }
4510 }
4511
4512 if (extversym != NULL)
4513 {
4514 free (extversym);
4515 extversym = NULL;
4516 }
4517
4518 if (isymbuf != NULL)
4519 {
4520 free (isymbuf);
4521 isymbuf = NULL;
4522 }
4523
4524 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4525 {
4526 unsigned int i;
4527
4528 /* Restore the symbol table. */
4529 if (bed->as_needed_cleanup)
4530 (*bed->as_needed_cleanup) (abfd, info);
4531 old_hash = (char *) old_tab + tabsize;
4532 old_ent = (char *) old_hash + hashsize;
4533 sym_hash = elf_sym_hashes (abfd);
4534 htab->root.table.table = old_table;
4535 htab->root.table.size = old_size;
4536 htab->root.table.count = old_count;
4537 memcpy (htab->root.table.table, old_tab, tabsize);
4538 memcpy (sym_hash, old_hash, hashsize);
4539 htab->root.undefs = old_undefs;
4540 htab->root.undefs_tail = old_undefs_tail;
4541 for (i = 0; i < htab->root.table.size; i++)
4542 {
4543 struct bfd_hash_entry *p;
4544 struct elf_link_hash_entry *h;
4545
4546 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4547 {
4548 h = (struct elf_link_hash_entry *) p;
4549 if (h->root.type == bfd_link_hash_warning)
4550 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4551 if (h->dynindx >= old_dynsymcount)
4552 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4553
4554 memcpy (p, old_ent, htab->root.table.entsize);
4555 old_ent = (char *) old_ent + htab->root.table.entsize;
4556 h = (struct elf_link_hash_entry *) p;
4557 if (h->root.type == bfd_link_hash_warning)
4558 {
4559 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4560 old_ent = (char *) old_ent + htab->root.table.entsize;
4561 }
4562 }
4563 }
4564
4565 /* Make a special call to the linker "notice" function to
4566 tell it that symbols added for crefs may need to be removed. */
4567 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4568 notice_not_needed, 0, NULL))
4569 goto error_free_vers;
4570
4571 free (old_tab);
4572 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4573 alloc_mark);
4574 if (nondeflt_vers != NULL)
4575 free (nondeflt_vers);
4576 return TRUE;
4577 }
4578
4579 if (old_tab != NULL)
4580 {
4581 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4582 notice_needed, 0, NULL))
4583 goto error_free_vers;
4584 free (old_tab);
4585 old_tab = NULL;
4586 }
4587
4588 /* Now that all the symbols from this input file are created, handle
4589 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4590 if (nondeflt_vers != NULL)
4591 {
4592 bfd_size_type cnt, symidx;
4593
4594 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4595 {
4596 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4597 char *shortname, *p;
4598
4599 p = strchr (h->root.root.string, ELF_VER_CHR);
4600 if (p == NULL
4601 || (h->root.type != bfd_link_hash_defined
4602 && h->root.type != bfd_link_hash_defweak))
4603 continue;
4604
4605 amt = p - h->root.root.string;
4606 shortname = (char *) bfd_malloc (amt + 1);
4607 if (!shortname)
4608 goto error_free_vers;
4609 memcpy (shortname, h->root.root.string, amt);
4610 shortname[amt] = '\0';
4611
4612 hi = (struct elf_link_hash_entry *)
4613 bfd_link_hash_lookup (&htab->root, shortname,
4614 FALSE, FALSE, FALSE);
4615 if (hi != NULL
4616 && hi->root.type == h->root.type
4617 && hi->root.u.def.value == h->root.u.def.value
4618 && hi->root.u.def.section == h->root.u.def.section)
4619 {
4620 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4621 hi->root.type = bfd_link_hash_indirect;
4622 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4623 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4624 sym_hash = elf_sym_hashes (abfd);
4625 if (sym_hash)
4626 for (symidx = 0; symidx < extsymcount; ++symidx)
4627 if (sym_hash[symidx] == hi)
4628 {
4629 sym_hash[symidx] = h;
4630 break;
4631 }
4632 }
4633 free (shortname);
4634 }
4635 free (nondeflt_vers);
4636 nondeflt_vers = NULL;
4637 }
4638
4639 /* Now set the weakdefs field correctly for all the weak defined
4640 symbols we found. The only way to do this is to search all the
4641 symbols. Since we only need the information for non functions in
4642 dynamic objects, that's the only time we actually put anything on
4643 the list WEAKS. We need this information so that if a regular
4644 object refers to a symbol defined weakly in a dynamic object, the
4645 real symbol in the dynamic object is also put in the dynamic
4646 symbols; we also must arrange for both symbols to point to the
4647 same memory location. We could handle the general case of symbol
4648 aliasing, but a general symbol alias can only be generated in
4649 assembler code, handling it correctly would be very time
4650 consuming, and other ELF linkers don't handle general aliasing
4651 either. */
4652 if (weaks != NULL)
4653 {
4654 struct elf_link_hash_entry **hpp;
4655 struct elf_link_hash_entry **hppend;
4656 struct elf_link_hash_entry **sorted_sym_hash;
4657 struct elf_link_hash_entry *h;
4658 size_t sym_count;
4659
4660 /* Since we have to search the whole symbol list for each weak
4661 defined symbol, search time for N weak defined symbols will be
4662 O(N^2). Binary search will cut it down to O(NlogN). */
4663 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4664 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4665 if (sorted_sym_hash == NULL)
4666 goto error_return;
4667 sym_hash = sorted_sym_hash;
4668 hpp = elf_sym_hashes (abfd);
4669 hppend = hpp + extsymcount;
4670 sym_count = 0;
4671 for (; hpp < hppend; hpp++)
4672 {
4673 h = *hpp;
4674 if (h != NULL
4675 && h->root.type == bfd_link_hash_defined
4676 && !bed->is_function_type (h->type))
4677 {
4678 *sym_hash = h;
4679 sym_hash++;
4680 sym_count++;
4681 }
4682 }
4683
4684 qsort (sorted_sym_hash, sym_count,
4685 sizeof (struct elf_link_hash_entry *),
4686 elf_sort_symbol);
4687
4688 while (weaks != NULL)
4689 {
4690 struct elf_link_hash_entry *hlook;
4691 asection *slook;
4692 bfd_vma vlook;
4693 long ilook;
4694 size_t i, j, idx;
4695
4696 hlook = weaks;
4697 weaks = hlook->u.weakdef;
4698 hlook->u.weakdef = NULL;
4699
4700 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4701 || hlook->root.type == bfd_link_hash_defweak
4702 || hlook->root.type == bfd_link_hash_common
4703 || hlook->root.type == bfd_link_hash_indirect);
4704 slook = hlook->root.u.def.section;
4705 vlook = hlook->root.u.def.value;
4706
4707 ilook = -1;
4708 i = 0;
4709 j = sym_count;
4710 while (i < j)
4711 {
4712 bfd_signed_vma vdiff;
4713 idx = (i + j) / 2;
4714 h = sorted_sym_hash [idx];
4715 vdiff = vlook - h->root.u.def.value;
4716 if (vdiff < 0)
4717 j = idx;
4718 else if (vdiff > 0)
4719 i = idx + 1;
4720 else
4721 {
4722 long sdiff = slook->id - h->root.u.def.section->id;
4723 if (sdiff < 0)
4724 j = idx;
4725 else if (sdiff > 0)
4726 i = idx + 1;
4727 else
4728 {
4729 ilook = idx;
4730 break;
4731 }
4732 }
4733 }
4734
4735 /* We didn't find a value/section match. */
4736 if (ilook == -1)
4737 continue;
4738
4739 for (i = ilook; i < sym_count; i++)
4740 {
4741 h = sorted_sym_hash [i];
4742
4743 /* Stop if value or section doesn't match. */
4744 if (h->root.u.def.value != vlook
4745 || h->root.u.def.section != slook)
4746 break;
4747 else if (h != hlook)
4748 {
4749 hlook->u.weakdef = h;
4750
4751 /* If the weak definition is in the list of dynamic
4752 symbols, make sure the real definition is put
4753 there as well. */
4754 if (hlook->dynindx != -1 && h->dynindx == -1)
4755 {
4756 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4757 {
4758 err_free_sym_hash:
4759 free (sorted_sym_hash);
4760 goto error_return;
4761 }
4762 }
4763
4764 /* If the real definition is in the list of dynamic
4765 symbols, make sure the weak definition is put
4766 there as well. If we don't do this, then the
4767 dynamic loader might not merge the entries for the
4768 real definition and the weak definition. */
4769 if (h->dynindx != -1 && hlook->dynindx == -1)
4770 {
4771 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4772 goto err_free_sym_hash;
4773 }
4774 break;
4775 }
4776 }
4777 }
4778
4779 free (sorted_sym_hash);
4780 }
4781
4782 if (bed->check_directives
4783 && !(*bed->check_directives) (abfd, info))
4784 return FALSE;
4785
4786 /* If this object is the same format as the output object, and it is
4787 not a shared library, then let the backend look through the
4788 relocs.
4789
4790 This is required to build global offset table entries and to
4791 arrange for dynamic relocs. It is not required for the
4792 particular common case of linking non PIC code, even when linking
4793 against shared libraries, but unfortunately there is no way of
4794 knowing whether an object file has been compiled PIC or not.
4795 Looking through the relocs is not particularly time consuming.
4796 The problem is that we must either (1) keep the relocs in memory,
4797 which causes the linker to require additional runtime memory or
4798 (2) read the relocs twice from the input file, which wastes time.
4799 This would be a good case for using mmap.
4800
4801 I have no idea how to handle linking PIC code into a file of a
4802 different format. It probably can't be done. */
4803 if (! dynamic
4804 && is_elf_hash_table (htab)
4805 && bed->check_relocs != NULL
4806 && elf_object_id (abfd) == elf_hash_table_id (htab)
4807 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4808 {
4809 asection *o;
4810
4811 for (o = abfd->sections; o != NULL; o = o->next)
4812 {
4813 Elf_Internal_Rela *internal_relocs;
4814 bfd_boolean ok;
4815
4816 if ((o->flags & SEC_RELOC) == 0
4817 || o->reloc_count == 0
4818 || ((info->strip == strip_all || info->strip == strip_debugger)
4819 && (o->flags & SEC_DEBUGGING) != 0)
4820 || bfd_is_abs_section (o->output_section))
4821 continue;
4822
4823 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4824 info->keep_memory);
4825 if (internal_relocs == NULL)
4826 goto error_return;
4827
4828 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4829
4830 if (elf_section_data (o)->relocs != internal_relocs)
4831 free (internal_relocs);
4832
4833 if (! ok)
4834 goto error_return;
4835 }
4836 }
4837
4838 /* If this is a non-traditional link, try to optimize the handling
4839 of the .stab/.stabstr sections. */
4840 if (! dynamic
4841 && ! info->traditional_format
4842 && is_elf_hash_table (htab)
4843 && (info->strip != strip_all && info->strip != strip_debugger))
4844 {
4845 asection *stabstr;
4846
4847 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4848 if (stabstr != NULL)
4849 {
4850 bfd_size_type string_offset = 0;
4851 asection *stab;
4852
4853 for (stab = abfd->sections; stab; stab = stab->next)
4854 if (CONST_STRNEQ (stab->name, ".stab")
4855 && (!stab->name[5] ||
4856 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4857 && (stab->flags & SEC_MERGE) == 0
4858 && !bfd_is_abs_section (stab->output_section))
4859 {
4860 struct bfd_elf_section_data *secdata;
4861
4862 secdata = elf_section_data (stab);
4863 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4864 stabstr, &secdata->sec_info,
4865 &string_offset))
4866 goto error_return;
4867 if (secdata->sec_info)
4868 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4869 }
4870 }
4871 }
4872
4873 if (is_elf_hash_table (htab) && add_needed)
4874 {
4875 /* Add this bfd to the loaded list. */
4876 struct elf_link_loaded_list *n;
4877
4878 n = (struct elf_link_loaded_list *)
4879 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4880 if (n == NULL)
4881 goto error_return;
4882 n->abfd = abfd;
4883 n->next = htab->loaded;
4884 htab->loaded = n;
4885 }
4886
4887 return TRUE;
4888
4889 error_free_vers:
4890 if (old_tab != NULL)
4891 free (old_tab);
4892 if (nondeflt_vers != NULL)
4893 free (nondeflt_vers);
4894 if (extversym != NULL)
4895 free (extversym);
4896 error_free_sym:
4897 if (isymbuf != NULL)
4898 free (isymbuf);
4899 error_return:
4900 return FALSE;
4901 }
4902
4903 /* Return the linker hash table entry of a symbol that might be
4904 satisfied by an archive symbol. Return -1 on error. */
4905
4906 struct elf_link_hash_entry *
4907 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4908 struct bfd_link_info *info,
4909 const char *name)
4910 {
4911 struct elf_link_hash_entry *h;
4912 char *p, *copy;
4913 size_t len, first;
4914
4915 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4916 if (h != NULL)
4917 return h;
4918
4919 /* If this is a default version (the name contains @@), look up the
4920 symbol again with only one `@' as well as without the version.
4921 The effect is that references to the symbol with and without the
4922 version will be matched by the default symbol in the archive. */
4923
4924 p = strchr (name, ELF_VER_CHR);
4925 if (p == NULL || p[1] != ELF_VER_CHR)
4926 return h;
4927
4928 /* First check with only one `@'. */
4929 len = strlen (name);
4930 copy = (char *) bfd_alloc (abfd, len);
4931 if (copy == NULL)
4932 return (struct elf_link_hash_entry *) 0 - 1;
4933
4934 first = p - name + 1;
4935 memcpy (copy, name, first);
4936 memcpy (copy + first, name + first + 1, len - first);
4937
4938 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4939 if (h == NULL)
4940 {
4941 /* We also need to check references to the symbol without the
4942 version. */
4943 copy[first - 1] = '\0';
4944 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4945 FALSE, FALSE, TRUE);
4946 }
4947
4948 bfd_release (abfd, copy);
4949 return h;
4950 }
4951
4952 /* Add symbols from an ELF archive file to the linker hash table. We
4953 don't use _bfd_generic_link_add_archive_symbols because of a
4954 problem which arises on UnixWare. The UnixWare libc.so is an
4955 archive which includes an entry libc.so.1 which defines a bunch of
4956 symbols. The libc.so archive also includes a number of other
4957 object files, which also define symbols, some of which are the same
4958 as those defined in libc.so.1. Correct linking requires that we
4959 consider each object file in turn, and include it if it defines any
4960 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4961 this; it looks through the list of undefined symbols, and includes
4962 any object file which defines them. When this algorithm is used on
4963 UnixWare, it winds up pulling in libc.so.1 early and defining a
4964 bunch of symbols. This means that some of the other objects in the
4965 archive are not included in the link, which is incorrect since they
4966 precede libc.so.1 in the archive.
4967
4968 Fortunately, ELF archive handling is simpler than that done by
4969 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4970 oddities. In ELF, if we find a symbol in the archive map, and the
4971 symbol is currently undefined, we know that we must pull in that
4972 object file.
4973
4974 Unfortunately, we do have to make multiple passes over the symbol
4975 table until nothing further is resolved. */
4976
4977 static bfd_boolean
4978 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4979 {
4980 symindex c;
4981 bfd_boolean *defined = NULL;
4982 bfd_boolean *included = NULL;
4983 carsym *symdefs;
4984 bfd_boolean loop;
4985 bfd_size_type amt;
4986 const struct elf_backend_data *bed;
4987 struct elf_link_hash_entry * (*archive_symbol_lookup)
4988 (bfd *, struct bfd_link_info *, const char *);
4989
4990 if (! bfd_has_map (abfd))
4991 {
4992 /* An empty archive is a special case. */
4993 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4994 return TRUE;
4995 bfd_set_error (bfd_error_no_armap);
4996 return FALSE;
4997 }
4998
4999 /* Keep track of all symbols we know to be already defined, and all
5000 files we know to be already included. This is to speed up the
5001 second and subsequent passes. */
5002 c = bfd_ardata (abfd)->symdef_count;
5003 if (c == 0)
5004 return TRUE;
5005 amt = c;
5006 amt *= sizeof (bfd_boolean);
5007 defined = (bfd_boolean *) bfd_zmalloc (amt);
5008 included = (bfd_boolean *) bfd_zmalloc (amt);
5009 if (defined == NULL || included == NULL)
5010 goto error_return;
5011
5012 symdefs = bfd_ardata (abfd)->symdefs;
5013 bed = get_elf_backend_data (abfd);
5014 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5015
5016 do
5017 {
5018 file_ptr last;
5019 symindex i;
5020 carsym *symdef;
5021 carsym *symdefend;
5022
5023 loop = FALSE;
5024 last = -1;
5025
5026 symdef = symdefs;
5027 symdefend = symdef + c;
5028 for (i = 0; symdef < symdefend; symdef++, i++)
5029 {
5030 struct elf_link_hash_entry *h;
5031 bfd *element;
5032 struct bfd_link_hash_entry *undefs_tail;
5033 symindex mark;
5034
5035 if (defined[i] || included[i])
5036 continue;
5037 if (symdef->file_offset == last)
5038 {
5039 included[i] = TRUE;
5040 continue;
5041 }
5042
5043 h = archive_symbol_lookup (abfd, info, symdef->name);
5044 if (h == (struct elf_link_hash_entry *) 0 - 1)
5045 goto error_return;
5046
5047 if (h == NULL)
5048 continue;
5049
5050 if (h->root.type == bfd_link_hash_common)
5051 {
5052 /* We currently have a common symbol. The archive map contains
5053 a reference to this symbol, so we may want to include it. We
5054 only want to include it however, if this archive element
5055 contains a definition of the symbol, not just another common
5056 declaration of it.
5057
5058 Unfortunately some archivers (including GNU ar) will put
5059 declarations of common symbols into their archive maps, as
5060 well as real definitions, so we cannot just go by the archive
5061 map alone. Instead we must read in the element's symbol
5062 table and check that to see what kind of symbol definition
5063 this is. */
5064 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5065 continue;
5066 }
5067 else if (h->root.type != bfd_link_hash_undefined)
5068 {
5069 if (h->root.type != bfd_link_hash_undefweak)
5070 defined[i] = TRUE;
5071 continue;
5072 }
5073
5074 /* We need to include this archive member. */
5075 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5076 if (element == NULL)
5077 goto error_return;
5078
5079 if (! bfd_check_format (element, bfd_object))
5080 goto error_return;
5081
5082 /* Doublecheck that we have not included this object
5083 already--it should be impossible, but there may be
5084 something wrong with the archive. */
5085 if (element->archive_pass != 0)
5086 {
5087 bfd_set_error (bfd_error_bad_value);
5088 goto error_return;
5089 }
5090 element->archive_pass = 1;
5091
5092 undefs_tail = info->hash->undefs_tail;
5093
5094 if (!(*info->callbacks
5095 ->add_archive_element) (info, element, symdef->name, &element))
5096 goto error_return;
5097 if (!bfd_link_add_symbols (element, info))
5098 goto error_return;
5099
5100 /* If there are any new undefined symbols, we need to make
5101 another pass through the archive in order to see whether
5102 they can be defined. FIXME: This isn't perfect, because
5103 common symbols wind up on undefs_tail and because an
5104 undefined symbol which is defined later on in this pass
5105 does not require another pass. This isn't a bug, but it
5106 does make the code less efficient than it could be. */
5107 if (undefs_tail != info->hash->undefs_tail)
5108 loop = TRUE;
5109
5110 /* Look backward to mark all symbols from this object file
5111 which we have already seen in this pass. */
5112 mark = i;
5113 do
5114 {
5115 included[mark] = TRUE;
5116 if (mark == 0)
5117 break;
5118 --mark;
5119 }
5120 while (symdefs[mark].file_offset == symdef->file_offset);
5121
5122 /* We mark subsequent symbols from this object file as we go
5123 on through the loop. */
5124 last = symdef->file_offset;
5125 }
5126 }
5127 while (loop);
5128
5129 free (defined);
5130 free (included);
5131
5132 return TRUE;
5133
5134 error_return:
5135 if (defined != NULL)
5136 free (defined);
5137 if (included != NULL)
5138 free (included);
5139 return FALSE;
5140 }
5141
5142 /* Given an ELF BFD, add symbols to the global hash table as
5143 appropriate. */
5144
5145 bfd_boolean
5146 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5147 {
5148 switch (bfd_get_format (abfd))
5149 {
5150 case bfd_object:
5151 return elf_link_add_object_symbols (abfd, info);
5152 case bfd_archive:
5153 return elf_link_add_archive_symbols (abfd, info);
5154 default:
5155 bfd_set_error (bfd_error_wrong_format);
5156 return FALSE;
5157 }
5158 }
5159 \f
5160 struct hash_codes_info
5161 {
5162 unsigned long *hashcodes;
5163 bfd_boolean error;
5164 };
5165
5166 /* This function will be called though elf_link_hash_traverse to store
5167 all hash value of the exported symbols in an array. */
5168
5169 static bfd_boolean
5170 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5171 {
5172 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5173 const char *name;
5174 char *p;
5175 unsigned long ha;
5176 char *alc = NULL;
5177
5178 if (h->root.type == bfd_link_hash_warning)
5179 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5180
5181 /* Ignore indirect symbols. These are added by the versioning code. */
5182 if (h->dynindx == -1)
5183 return TRUE;
5184
5185 name = h->root.root.string;
5186 p = strchr (name, ELF_VER_CHR);
5187 if (p != NULL)
5188 {
5189 alc = (char *) bfd_malloc (p - name + 1);
5190 if (alc == NULL)
5191 {
5192 inf->error = TRUE;
5193 return FALSE;
5194 }
5195 memcpy (alc, name, p - name);
5196 alc[p - name] = '\0';
5197 name = alc;
5198 }
5199
5200 /* Compute the hash value. */
5201 ha = bfd_elf_hash (name);
5202
5203 /* Store the found hash value in the array given as the argument. */
5204 *(inf->hashcodes)++ = ha;
5205
5206 /* And store it in the struct so that we can put it in the hash table
5207 later. */
5208 h->u.elf_hash_value = ha;
5209
5210 if (alc != NULL)
5211 free (alc);
5212
5213 return TRUE;
5214 }
5215
5216 struct collect_gnu_hash_codes
5217 {
5218 bfd *output_bfd;
5219 const struct elf_backend_data *bed;
5220 unsigned long int nsyms;
5221 unsigned long int maskbits;
5222 unsigned long int *hashcodes;
5223 unsigned long int *hashval;
5224 unsigned long int *indx;
5225 unsigned long int *counts;
5226 bfd_vma *bitmask;
5227 bfd_byte *contents;
5228 long int min_dynindx;
5229 unsigned long int bucketcount;
5230 unsigned long int symindx;
5231 long int local_indx;
5232 long int shift1, shift2;
5233 unsigned long int mask;
5234 bfd_boolean error;
5235 };
5236
5237 /* This function will be called though elf_link_hash_traverse to store
5238 all hash value of the exported symbols in an array. */
5239
5240 static bfd_boolean
5241 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5242 {
5243 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5244 const char *name;
5245 char *p;
5246 unsigned long ha;
5247 char *alc = NULL;
5248
5249 if (h->root.type == bfd_link_hash_warning)
5250 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5251
5252 /* Ignore indirect symbols. These are added by the versioning code. */
5253 if (h->dynindx == -1)
5254 return TRUE;
5255
5256 /* Ignore also local symbols and undefined symbols. */
5257 if (! (*s->bed->elf_hash_symbol) (h))
5258 return TRUE;
5259
5260 name = h->root.root.string;
5261 p = strchr (name, ELF_VER_CHR);
5262 if (p != NULL)
5263 {
5264 alc = (char *) bfd_malloc (p - name + 1);
5265 if (alc == NULL)
5266 {
5267 s->error = TRUE;
5268 return FALSE;
5269 }
5270 memcpy (alc, name, p - name);
5271 alc[p - name] = '\0';
5272 name = alc;
5273 }
5274
5275 /* Compute the hash value. */
5276 ha = bfd_elf_gnu_hash (name);
5277
5278 /* Store the found hash value in the array for compute_bucket_count,
5279 and also for .dynsym reordering purposes. */
5280 s->hashcodes[s->nsyms] = ha;
5281 s->hashval[h->dynindx] = ha;
5282 ++s->nsyms;
5283 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5284 s->min_dynindx = h->dynindx;
5285
5286 if (alc != NULL)
5287 free (alc);
5288
5289 return TRUE;
5290 }
5291
5292 /* This function will be called though elf_link_hash_traverse to do
5293 final dynaminc symbol renumbering. */
5294
5295 static bfd_boolean
5296 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5297 {
5298 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5299 unsigned long int bucket;
5300 unsigned long int val;
5301
5302 if (h->root.type == bfd_link_hash_warning)
5303 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5304
5305 /* Ignore indirect symbols. */
5306 if (h->dynindx == -1)
5307 return TRUE;
5308
5309 /* Ignore also local symbols and undefined symbols. */
5310 if (! (*s->bed->elf_hash_symbol) (h))
5311 {
5312 if (h->dynindx >= s->min_dynindx)
5313 h->dynindx = s->local_indx++;
5314 return TRUE;
5315 }
5316
5317 bucket = s->hashval[h->dynindx] % s->bucketcount;
5318 val = (s->hashval[h->dynindx] >> s->shift1)
5319 & ((s->maskbits >> s->shift1) - 1);
5320 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5321 s->bitmask[val]
5322 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5323 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5324 if (s->counts[bucket] == 1)
5325 /* Last element terminates the chain. */
5326 val |= 1;
5327 bfd_put_32 (s->output_bfd, val,
5328 s->contents + (s->indx[bucket] - s->symindx) * 4);
5329 --s->counts[bucket];
5330 h->dynindx = s->indx[bucket]++;
5331 return TRUE;
5332 }
5333
5334 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5335
5336 bfd_boolean
5337 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5338 {
5339 return !(h->forced_local
5340 || h->root.type == bfd_link_hash_undefined
5341 || h->root.type == bfd_link_hash_undefweak
5342 || ((h->root.type == bfd_link_hash_defined
5343 || h->root.type == bfd_link_hash_defweak)
5344 && h->root.u.def.section->output_section == NULL));
5345 }
5346
5347 /* Array used to determine the number of hash table buckets to use
5348 based on the number of symbols there are. If there are fewer than
5349 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5350 fewer than 37 we use 17 buckets, and so forth. We never use more
5351 than 32771 buckets. */
5352
5353 static const size_t elf_buckets[] =
5354 {
5355 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5356 16411, 32771, 0
5357 };
5358
5359 /* Compute bucket count for hashing table. We do not use a static set
5360 of possible tables sizes anymore. Instead we determine for all
5361 possible reasonable sizes of the table the outcome (i.e., the
5362 number of collisions etc) and choose the best solution. The
5363 weighting functions are not too simple to allow the table to grow
5364 without bounds. Instead one of the weighting factors is the size.
5365 Therefore the result is always a good payoff between few collisions
5366 (= short chain lengths) and table size. */
5367 static size_t
5368 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5369 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5370 unsigned long int nsyms,
5371 int gnu_hash)
5372 {
5373 size_t best_size = 0;
5374 unsigned long int i;
5375
5376 /* We have a problem here. The following code to optimize the table
5377 size requires an integer type with more the 32 bits. If
5378 BFD_HOST_U_64_BIT is set we know about such a type. */
5379 #ifdef BFD_HOST_U_64_BIT
5380 if (info->optimize)
5381 {
5382 size_t minsize;
5383 size_t maxsize;
5384 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5385 bfd *dynobj = elf_hash_table (info)->dynobj;
5386 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5387 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5388 unsigned long int *counts;
5389 bfd_size_type amt;
5390 unsigned int no_improvement_count = 0;
5391
5392 /* Possible optimization parameters: if we have NSYMS symbols we say
5393 that the hashing table must at least have NSYMS/4 and at most
5394 2*NSYMS buckets. */
5395 minsize = nsyms / 4;
5396 if (minsize == 0)
5397 minsize = 1;
5398 best_size = maxsize = nsyms * 2;
5399 if (gnu_hash)
5400 {
5401 if (minsize < 2)
5402 minsize = 2;
5403 if ((best_size & 31) == 0)
5404 ++best_size;
5405 }
5406
5407 /* Create array where we count the collisions in. We must use bfd_malloc
5408 since the size could be large. */
5409 amt = maxsize;
5410 amt *= sizeof (unsigned long int);
5411 counts = (unsigned long int *) bfd_malloc (amt);
5412 if (counts == NULL)
5413 return 0;
5414
5415 /* Compute the "optimal" size for the hash table. The criteria is a
5416 minimal chain length. The minor criteria is (of course) the size
5417 of the table. */
5418 for (i = minsize; i < maxsize; ++i)
5419 {
5420 /* Walk through the array of hashcodes and count the collisions. */
5421 BFD_HOST_U_64_BIT max;
5422 unsigned long int j;
5423 unsigned long int fact;
5424
5425 if (gnu_hash && (i & 31) == 0)
5426 continue;
5427
5428 memset (counts, '\0', i * sizeof (unsigned long int));
5429
5430 /* Determine how often each hash bucket is used. */
5431 for (j = 0; j < nsyms; ++j)
5432 ++counts[hashcodes[j] % i];
5433
5434 /* For the weight function we need some information about the
5435 pagesize on the target. This is information need not be 100%
5436 accurate. Since this information is not available (so far) we
5437 define it here to a reasonable default value. If it is crucial
5438 to have a better value some day simply define this value. */
5439 # ifndef BFD_TARGET_PAGESIZE
5440 # define BFD_TARGET_PAGESIZE (4096)
5441 # endif
5442
5443 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5444 and the chains. */
5445 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5446
5447 # if 1
5448 /* Variant 1: optimize for short chains. We add the squares
5449 of all the chain lengths (which favors many small chain
5450 over a few long chains). */
5451 for (j = 0; j < i; ++j)
5452 max += counts[j] * counts[j];
5453
5454 /* This adds penalties for the overall size of the table. */
5455 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5456 max *= fact * fact;
5457 # else
5458 /* Variant 2: Optimize a lot more for small table. Here we
5459 also add squares of the size but we also add penalties for
5460 empty slots (the +1 term). */
5461 for (j = 0; j < i; ++j)
5462 max += (1 + counts[j]) * (1 + counts[j]);
5463
5464 /* The overall size of the table is considered, but not as
5465 strong as in variant 1, where it is squared. */
5466 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5467 max *= fact;
5468 # endif
5469
5470 /* Compare with current best results. */
5471 if (max < best_chlen)
5472 {
5473 best_chlen = max;
5474 best_size = i;
5475 no_improvement_count = 0;
5476 }
5477 /* PR 11843: Avoid futile long searches for the best bucket size
5478 when there are a large number of symbols. */
5479 else if (++no_improvement_count == 100)
5480 break;
5481 }
5482
5483 free (counts);
5484 }
5485 else
5486 #endif /* defined (BFD_HOST_U_64_BIT) */
5487 {
5488 /* This is the fallback solution if no 64bit type is available or if we
5489 are not supposed to spend much time on optimizations. We select the
5490 bucket count using a fixed set of numbers. */
5491 for (i = 0; elf_buckets[i] != 0; i++)
5492 {
5493 best_size = elf_buckets[i];
5494 if (nsyms < elf_buckets[i + 1])
5495 break;
5496 }
5497 if (gnu_hash && best_size < 2)
5498 best_size = 2;
5499 }
5500
5501 return best_size;
5502 }
5503
5504 /* Size any SHT_GROUP section for ld -r. */
5505
5506 bfd_boolean
5507 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5508 {
5509 bfd *ibfd;
5510
5511 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5512 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5513 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5514 return FALSE;
5515 return TRUE;
5516 }
5517
5518 /* Set up the sizes and contents of the ELF dynamic sections. This is
5519 called by the ELF linker emulation before_allocation routine. We
5520 must set the sizes of the sections before the linker sets the
5521 addresses of the various sections. */
5522
5523 bfd_boolean
5524 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5525 const char *soname,
5526 const char *rpath,
5527 const char *filter_shlib,
5528 const char *audit,
5529 const char *depaudit,
5530 const char * const *auxiliary_filters,
5531 struct bfd_link_info *info,
5532 asection **sinterpptr,
5533 struct bfd_elf_version_tree *verdefs)
5534 {
5535 bfd_size_type soname_indx;
5536 bfd *dynobj;
5537 const struct elf_backend_data *bed;
5538 struct elf_info_failed asvinfo;
5539
5540 *sinterpptr = NULL;
5541
5542 soname_indx = (bfd_size_type) -1;
5543
5544 if (!is_elf_hash_table (info->hash))
5545 return TRUE;
5546
5547 bed = get_elf_backend_data (output_bfd);
5548 if (info->execstack)
5549 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5550 else if (info->noexecstack)
5551 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5552 else
5553 {
5554 bfd *inputobj;
5555 asection *notesec = NULL;
5556 int exec = 0;
5557
5558 for (inputobj = info->input_bfds;
5559 inputobj;
5560 inputobj = inputobj->link_next)
5561 {
5562 asection *s;
5563
5564 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5565 continue;
5566 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5567 if (s)
5568 {
5569 if (s->flags & SEC_CODE)
5570 exec = PF_X;
5571 notesec = s;
5572 }
5573 else if (bed->default_execstack)
5574 exec = PF_X;
5575 }
5576 if (notesec)
5577 {
5578 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5579 if (exec && info->relocatable
5580 && notesec->output_section != bfd_abs_section_ptr)
5581 notesec->output_section->flags |= SEC_CODE;
5582 }
5583 }
5584
5585 /* Any syms created from now on start with -1 in
5586 got.refcount/offset and plt.refcount/offset. */
5587 elf_hash_table (info)->init_got_refcount
5588 = elf_hash_table (info)->init_got_offset;
5589 elf_hash_table (info)->init_plt_refcount
5590 = elf_hash_table (info)->init_plt_offset;
5591
5592 if (info->relocatable
5593 && !_bfd_elf_size_group_sections (info))
5594 return FALSE;
5595
5596 /* The backend may have to create some sections regardless of whether
5597 we're dynamic or not. */
5598 if (bed->elf_backend_always_size_sections
5599 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5600 return FALSE;
5601
5602 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5603 return FALSE;
5604
5605 dynobj = elf_hash_table (info)->dynobj;
5606
5607 /* If there were no dynamic objects in the link, there is nothing to
5608 do here. */
5609 if (dynobj == NULL)
5610 return TRUE;
5611
5612 if (elf_hash_table (info)->dynamic_sections_created)
5613 {
5614 struct elf_info_failed eif;
5615 struct elf_link_hash_entry *h;
5616 asection *dynstr;
5617 struct bfd_elf_version_tree *t;
5618 struct bfd_elf_version_expr *d;
5619 asection *s;
5620 bfd_boolean all_defined;
5621
5622 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5623 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5624
5625 if (soname != NULL)
5626 {
5627 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5628 soname, TRUE);
5629 if (soname_indx == (bfd_size_type) -1
5630 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5631 return FALSE;
5632 }
5633
5634 if (info->symbolic)
5635 {
5636 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5637 return FALSE;
5638 info->flags |= DF_SYMBOLIC;
5639 }
5640
5641 if (rpath != NULL)
5642 {
5643 bfd_size_type indx;
5644
5645 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5646 TRUE);
5647 if (indx == (bfd_size_type) -1
5648 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5649 return FALSE;
5650
5651 if (info->new_dtags)
5652 {
5653 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5654 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5655 return FALSE;
5656 }
5657 }
5658
5659 if (filter_shlib != NULL)
5660 {
5661 bfd_size_type indx;
5662
5663 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5664 filter_shlib, TRUE);
5665 if (indx == (bfd_size_type) -1
5666 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5667 return FALSE;
5668 }
5669
5670 if (auxiliary_filters != NULL)
5671 {
5672 const char * const *p;
5673
5674 for (p = auxiliary_filters; *p != NULL; p++)
5675 {
5676 bfd_size_type indx;
5677
5678 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5679 *p, TRUE);
5680 if (indx == (bfd_size_type) -1
5681 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5682 return FALSE;
5683 }
5684 }
5685
5686 if (audit != NULL)
5687 {
5688 bfd_size_type indx;
5689
5690 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5691 TRUE);
5692 if (indx == (bfd_size_type) -1
5693 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5694 return FALSE;
5695 }
5696
5697 if (depaudit != NULL)
5698 {
5699 bfd_size_type indx;
5700
5701 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5702 TRUE);
5703 if (indx == (bfd_size_type) -1
5704 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5705 return FALSE;
5706 }
5707
5708 eif.info = info;
5709 eif.verdefs = verdefs;
5710 eif.failed = FALSE;
5711
5712 /* If we are supposed to export all symbols into the dynamic symbol
5713 table (this is not the normal case), then do so. */
5714 if (info->export_dynamic
5715 || (info->executable && info->dynamic))
5716 {
5717 elf_link_hash_traverse (elf_hash_table (info),
5718 _bfd_elf_export_symbol,
5719 &eif);
5720 if (eif.failed)
5721 return FALSE;
5722 }
5723
5724 /* Make all global versions with definition. */
5725 for (t = verdefs; t != NULL; t = t->next)
5726 for (d = t->globals.list; d != NULL; d = d->next)
5727 if (!d->symver && d->literal)
5728 {
5729 const char *verstr, *name;
5730 size_t namelen, verlen, newlen;
5731 char *newname, *p, leading_char;
5732 struct elf_link_hash_entry *newh;
5733
5734 leading_char = bfd_get_symbol_leading_char (output_bfd);
5735 name = d->pattern;
5736 namelen = strlen (name) + (leading_char != '\0');
5737 verstr = t->name;
5738 verlen = strlen (verstr);
5739 newlen = namelen + verlen + 3;
5740
5741 newname = (char *) bfd_malloc (newlen);
5742 if (newname == NULL)
5743 return FALSE;
5744 newname[0] = leading_char;
5745 memcpy (newname + (leading_char != '\0'), name, namelen);
5746
5747 /* Check the hidden versioned definition. */
5748 p = newname + namelen;
5749 *p++ = ELF_VER_CHR;
5750 memcpy (p, verstr, verlen + 1);
5751 newh = elf_link_hash_lookup (elf_hash_table (info),
5752 newname, FALSE, FALSE,
5753 FALSE);
5754 if (newh == NULL
5755 || (newh->root.type != bfd_link_hash_defined
5756 && newh->root.type != bfd_link_hash_defweak))
5757 {
5758 /* Check the default versioned definition. */
5759 *p++ = ELF_VER_CHR;
5760 memcpy (p, verstr, verlen + 1);
5761 newh = elf_link_hash_lookup (elf_hash_table (info),
5762 newname, FALSE, FALSE,
5763 FALSE);
5764 }
5765 free (newname);
5766
5767 /* Mark this version if there is a definition and it is
5768 not defined in a shared object. */
5769 if (newh != NULL
5770 && !newh->def_dynamic
5771 && (newh->root.type == bfd_link_hash_defined
5772 || newh->root.type == bfd_link_hash_defweak))
5773 d->symver = 1;
5774 }
5775
5776 /* Attach all the symbols to their version information. */
5777 asvinfo.info = info;
5778 asvinfo.verdefs = verdefs;
5779 asvinfo.failed = FALSE;
5780
5781 elf_link_hash_traverse (elf_hash_table (info),
5782 _bfd_elf_link_assign_sym_version,
5783 &asvinfo);
5784 if (asvinfo.failed)
5785 return FALSE;
5786
5787 if (!info->allow_undefined_version)
5788 {
5789 /* Check if all global versions have a definition. */
5790 all_defined = TRUE;
5791 for (t = verdefs; t != NULL; t = t->next)
5792 for (d = t->globals.list; d != NULL; d = d->next)
5793 if (d->literal && !d->symver && !d->script)
5794 {
5795 (*_bfd_error_handler)
5796 (_("%s: undefined version: %s"),
5797 d->pattern, t->name);
5798 all_defined = FALSE;
5799 }
5800
5801 if (!all_defined)
5802 {
5803 bfd_set_error (bfd_error_bad_value);
5804 return FALSE;
5805 }
5806 }
5807
5808 /* Find all symbols which were defined in a dynamic object and make
5809 the backend pick a reasonable value for them. */
5810 elf_link_hash_traverse (elf_hash_table (info),
5811 _bfd_elf_adjust_dynamic_symbol,
5812 &eif);
5813 if (eif.failed)
5814 return FALSE;
5815
5816 /* Add some entries to the .dynamic section. We fill in some of the
5817 values later, in bfd_elf_final_link, but we must add the entries
5818 now so that we know the final size of the .dynamic section. */
5819
5820 /* If there are initialization and/or finalization functions to
5821 call then add the corresponding DT_INIT/DT_FINI entries. */
5822 h = (info->init_function
5823 ? elf_link_hash_lookup (elf_hash_table (info),
5824 info->init_function, FALSE,
5825 FALSE, FALSE)
5826 : NULL);
5827 if (h != NULL
5828 && (h->ref_regular
5829 || h->def_regular))
5830 {
5831 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5832 return FALSE;
5833 }
5834 h = (info->fini_function
5835 ? elf_link_hash_lookup (elf_hash_table (info),
5836 info->fini_function, FALSE,
5837 FALSE, FALSE)
5838 : NULL);
5839 if (h != NULL
5840 && (h->ref_regular
5841 || h->def_regular))
5842 {
5843 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5844 return FALSE;
5845 }
5846
5847 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5848 if (s != NULL && s->linker_has_input)
5849 {
5850 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5851 if (! info->executable)
5852 {
5853 bfd *sub;
5854 asection *o;
5855
5856 for (sub = info->input_bfds; sub != NULL;
5857 sub = sub->link_next)
5858 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5859 for (o = sub->sections; o != NULL; o = o->next)
5860 if (elf_section_data (o)->this_hdr.sh_type
5861 == SHT_PREINIT_ARRAY)
5862 {
5863 (*_bfd_error_handler)
5864 (_("%B: .preinit_array section is not allowed in DSO"),
5865 sub);
5866 break;
5867 }
5868
5869 bfd_set_error (bfd_error_nonrepresentable_section);
5870 return FALSE;
5871 }
5872
5873 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5874 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5875 return FALSE;
5876 }
5877 s = bfd_get_section_by_name (output_bfd, ".init_array");
5878 if (s != NULL && s->linker_has_input)
5879 {
5880 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5881 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5882 return FALSE;
5883 }
5884 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5885 if (s != NULL && s->linker_has_input)
5886 {
5887 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5888 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5889 return FALSE;
5890 }
5891
5892 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5893 /* If .dynstr is excluded from the link, we don't want any of
5894 these tags. Strictly, we should be checking each section
5895 individually; This quick check covers for the case where
5896 someone does a /DISCARD/ : { *(*) }. */
5897 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5898 {
5899 bfd_size_type strsize;
5900
5901 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5902 if ((info->emit_hash
5903 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5904 || (info->emit_gnu_hash
5905 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5906 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5907 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5908 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5909 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5910 bed->s->sizeof_sym))
5911 return FALSE;
5912 }
5913 }
5914
5915 /* The backend must work out the sizes of all the other dynamic
5916 sections. */
5917 if (bed->elf_backend_size_dynamic_sections
5918 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5919 return FALSE;
5920
5921 if (elf_hash_table (info)->dynamic_sections_created)
5922 {
5923 unsigned long section_sym_count;
5924 asection *s;
5925
5926 /* Set up the version definition section. */
5927 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5928 BFD_ASSERT (s != NULL);
5929
5930 /* We may have created additional version definitions if we are
5931 just linking a regular application. */
5932 verdefs = asvinfo.verdefs;
5933
5934 /* Skip anonymous version tag. */
5935 if (verdefs != NULL && verdefs->vernum == 0)
5936 verdefs = verdefs->next;
5937
5938 if (verdefs == NULL && !info->create_default_symver)
5939 s->flags |= SEC_EXCLUDE;
5940 else
5941 {
5942 unsigned int cdefs;
5943 bfd_size_type size;
5944 struct bfd_elf_version_tree *t;
5945 bfd_byte *p;
5946 Elf_Internal_Verdef def;
5947 Elf_Internal_Verdaux defaux;
5948 struct bfd_link_hash_entry *bh;
5949 struct elf_link_hash_entry *h;
5950 const char *name;
5951
5952 cdefs = 0;
5953 size = 0;
5954
5955 /* Make space for the base version. */
5956 size += sizeof (Elf_External_Verdef);
5957 size += sizeof (Elf_External_Verdaux);
5958 ++cdefs;
5959
5960 /* Make space for the default version. */
5961 if (info->create_default_symver)
5962 {
5963 size += sizeof (Elf_External_Verdef);
5964 ++cdefs;
5965 }
5966
5967 for (t = verdefs; t != NULL; t = t->next)
5968 {
5969 struct bfd_elf_version_deps *n;
5970
5971 /* Don't emit base version twice. */
5972 if (t->vernum == 0)
5973 continue;
5974
5975 size += sizeof (Elf_External_Verdef);
5976 size += sizeof (Elf_External_Verdaux);
5977 ++cdefs;
5978
5979 for (n = t->deps; n != NULL; n = n->next)
5980 size += sizeof (Elf_External_Verdaux);
5981 }
5982
5983 s->size = size;
5984 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5985 if (s->contents == NULL && s->size != 0)
5986 return FALSE;
5987
5988 /* Fill in the version definition section. */
5989
5990 p = s->contents;
5991
5992 def.vd_version = VER_DEF_CURRENT;
5993 def.vd_flags = VER_FLG_BASE;
5994 def.vd_ndx = 1;
5995 def.vd_cnt = 1;
5996 if (info->create_default_symver)
5997 {
5998 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5999 def.vd_next = sizeof (Elf_External_Verdef);
6000 }
6001 else
6002 {
6003 def.vd_aux = sizeof (Elf_External_Verdef);
6004 def.vd_next = (sizeof (Elf_External_Verdef)
6005 + sizeof (Elf_External_Verdaux));
6006 }
6007
6008 if (soname_indx != (bfd_size_type) -1)
6009 {
6010 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6011 soname_indx);
6012 def.vd_hash = bfd_elf_hash (soname);
6013 defaux.vda_name = soname_indx;
6014 name = soname;
6015 }
6016 else
6017 {
6018 bfd_size_type indx;
6019
6020 name = lbasename (output_bfd->filename);
6021 def.vd_hash = bfd_elf_hash (name);
6022 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6023 name, FALSE);
6024 if (indx == (bfd_size_type) -1)
6025 return FALSE;
6026 defaux.vda_name = indx;
6027 }
6028 defaux.vda_next = 0;
6029
6030 _bfd_elf_swap_verdef_out (output_bfd, &def,
6031 (Elf_External_Verdef *) p);
6032 p += sizeof (Elf_External_Verdef);
6033 if (info->create_default_symver)
6034 {
6035 /* Add a symbol representing this version. */
6036 bh = NULL;
6037 if (! (_bfd_generic_link_add_one_symbol
6038 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6039 0, NULL, FALSE,
6040 get_elf_backend_data (dynobj)->collect, &bh)))
6041 return FALSE;
6042 h = (struct elf_link_hash_entry *) bh;
6043 h->non_elf = 0;
6044 h->def_regular = 1;
6045 h->type = STT_OBJECT;
6046 h->verinfo.vertree = NULL;
6047
6048 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6049 return FALSE;
6050
6051 /* Create a duplicate of the base version with the same
6052 aux block, but different flags. */
6053 def.vd_flags = 0;
6054 def.vd_ndx = 2;
6055 def.vd_aux = sizeof (Elf_External_Verdef);
6056 if (verdefs)
6057 def.vd_next = (sizeof (Elf_External_Verdef)
6058 + sizeof (Elf_External_Verdaux));
6059 else
6060 def.vd_next = 0;
6061 _bfd_elf_swap_verdef_out (output_bfd, &def,
6062 (Elf_External_Verdef *) p);
6063 p += sizeof (Elf_External_Verdef);
6064 }
6065 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6066 (Elf_External_Verdaux *) p);
6067 p += sizeof (Elf_External_Verdaux);
6068
6069 for (t = verdefs; t != NULL; t = t->next)
6070 {
6071 unsigned int cdeps;
6072 struct bfd_elf_version_deps *n;
6073
6074 /* Don't emit the base version twice. */
6075 if (t->vernum == 0)
6076 continue;
6077
6078 cdeps = 0;
6079 for (n = t->deps; n != NULL; n = n->next)
6080 ++cdeps;
6081
6082 /* Add a symbol representing this version. */
6083 bh = NULL;
6084 if (! (_bfd_generic_link_add_one_symbol
6085 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6086 0, NULL, FALSE,
6087 get_elf_backend_data (dynobj)->collect, &bh)))
6088 return FALSE;
6089 h = (struct elf_link_hash_entry *) bh;
6090 h->non_elf = 0;
6091 h->def_regular = 1;
6092 h->type = STT_OBJECT;
6093 h->verinfo.vertree = t;
6094
6095 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6096 return FALSE;
6097
6098 def.vd_version = VER_DEF_CURRENT;
6099 def.vd_flags = 0;
6100 if (t->globals.list == NULL
6101 && t->locals.list == NULL
6102 && ! t->used)
6103 def.vd_flags |= VER_FLG_WEAK;
6104 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6105 def.vd_cnt = cdeps + 1;
6106 def.vd_hash = bfd_elf_hash (t->name);
6107 def.vd_aux = sizeof (Elf_External_Verdef);
6108 def.vd_next = 0;
6109
6110 /* If a basever node is next, it *must* be the last node in
6111 the chain, otherwise Verdef construction breaks. */
6112 if (t->next != NULL && t->next->vernum == 0)
6113 BFD_ASSERT (t->next->next == NULL);
6114
6115 if (t->next != NULL && t->next->vernum != 0)
6116 def.vd_next = (sizeof (Elf_External_Verdef)
6117 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6118
6119 _bfd_elf_swap_verdef_out (output_bfd, &def,
6120 (Elf_External_Verdef *) p);
6121 p += sizeof (Elf_External_Verdef);
6122
6123 defaux.vda_name = h->dynstr_index;
6124 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6125 h->dynstr_index);
6126 defaux.vda_next = 0;
6127 if (t->deps != NULL)
6128 defaux.vda_next = sizeof (Elf_External_Verdaux);
6129 t->name_indx = defaux.vda_name;
6130
6131 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6132 (Elf_External_Verdaux *) p);
6133 p += sizeof (Elf_External_Verdaux);
6134
6135 for (n = t->deps; n != NULL; n = n->next)
6136 {
6137 if (n->version_needed == NULL)
6138 {
6139 /* This can happen if there was an error in the
6140 version script. */
6141 defaux.vda_name = 0;
6142 }
6143 else
6144 {
6145 defaux.vda_name = n->version_needed->name_indx;
6146 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6147 defaux.vda_name);
6148 }
6149 if (n->next == NULL)
6150 defaux.vda_next = 0;
6151 else
6152 defaux.vda_next = sizeof (Elf_External_Verdaux);
6153
6154 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6155 (Elf_External_Verdaux *) p);
6156 p += sizeof (Elf_External_Verdaux);
6157 }
6158 }
6159
6160 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6161 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6162 return FALSE;
6163
6164 elf_tdata (output_bfd)->cverdefs = cdefs;
6165 }
6166
6167 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6168 {
6169 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6170 return FALSE;
6171 }
6172 else if (info->flags & DF_BIND_NOW)
6173 {
6174 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6175 return FALSE;
6176 }
6177
6178 if (info->flags_1)
6179 {
6180 if (info->executable)
6181 info->flags_1 &= ~ (DF_1_INITFIRST
6182 | DF_1_NODELETE
6183 | DF_1_NOOPEN);
6184 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6185 return FALSE;
6186 }
6187
6188 /* Work out the size of the version reference section. */
6189
6190 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6191 BFD_ASSERT (s != NULL);
6192 {
6193 struct elf_find_verdep_info sinfo;
6194
6195 sinfo.info = info;
6196 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6197 if (sinfo.vers == 0)
6198 sinfo.vers = 1;
6199 sinfo.failed = FALSE;
6200
6201 elf_link_hash_traverse (elf_hash_table (info),
6202 _bfd_elf_link_find_version_dependencies,
6203 &sinfo);
6204 if (sinfo.failed)
6205 return FALSE;
6206
6207 if (elf_tdata (output_bfd)->verref == NULL)
6208 s->flags |= SEC_EXCLUDE;
6209 else
6210 {
6211 Elf_Internal_Verneed *t;
6212 unsigned int size;
6213 unsigned int crefs;
6214 bfd_byte *p;
6215
6216 /* Build the version dependency section. */
6217 size = 0;
6218 crefs = 0;
6219 for (t = elf_tdata (output_bfd)->verref;
6220 t != NULL;
6221 t = t->vn_nextref)
6222 {
6223 Elf_Internal_Vernaux *a;
6224
6225 size += sizeof (Elf_External_Verneed);
6226 ++crefs;
6227 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6228 size += sizeof (Elf_External_Vernaux);
6229 }
6230
6231 s->size = size;
6232 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6233 if (s->contents == NULL)
6234 return FALSE;
6235
6236 p = s->contents;
6237 for (t = elf_tdata (output_bfd)->verref;
6238 t != NULL;
6239 t = t->vn_nextref)
6240 {
6241 unsigned int caux;
6242 Elf_Internal_Vernaux *a;
6243 bfd_size_type indx;
6244
6245 caux = 0;
6246 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6247 ++caux;
6248
6249 t->vn_version = VER_NEED_CURRENT;
6250 t->vn_cnt = caux;
6251 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6252 elf_dt_name (t->vn_bfd) != NULL
6253 ? elf_dt_name (t->vn_bfd)
6254 : lbasename (t->vn_bfd->filename),
6255 FALSE);
6256 if (indx == (bfd_size_type) -1)
6257 return FALSE;
6258 t->vn_file = indx;
6259 t->vn_aux = sizeof (Elf_External_Verneed);
6260 if (t->vn_nextref == NULL)
6261 t->vn_next = 0;
6262 else
6263 t->vn_next = (sizeof (Elf_External_Verneed)
6264 + caux * sizeof (Elf_External_Vernaux));
6265
6266 _bfd_elf_swap_verneed_out (output_bfd, t,
6267 (Elf_External_Verneed *) p);
6268 p += sizeof (Elf_External_Verneed);
6269
6270 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6271 {
6272 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6273 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6274 a->vna_nodename, FALSE);
6275 if (indx == (bfd_size_type) -1)
6276 return FALSE;
6277 a->vna_name = indx;
6278 if (a->vna_nextptr == NULL)
6279 a->vna_next = 0;
6280 else
6281 a->vna_next = sizeof (Elf_External_Vernaux);
6282
6283 _bfd_elf_swap_vernaux_out (output_bfd, a,
6284 (Elf_External_Vernaux *) p);
6285 p += sizeof (Elf_External_Vernaux);
6286 }
6287 }
6288
6289 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6290 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6291 return FALSE;
6292
6293 elf_tdata (output_bfd)->cverrefs = crefs;
6294 }
6295 }
6296
6297 if ((elf_tdata (output_bfd)->cverrefs == 0
6298 && elf_tdata (output_bfd)->cverdefs == 0)
6299 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6300 &section_sym_count) == 0)
6301 {
6302 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6303 s->flags |= SEC_EXCLUDE;
6304 }
6305 }
6306 return TRUE;
6307 }
6308
6309 /* Find the first non-excluded output section. We'll use its
6310 section symbol for some emitted relocs. */
6311 void
6312 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6313 {
6314 asection *s;
6315
6316 for (s = output_bfd->sections; s != NULL; s = s->next)
6317 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6318 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6319 {
6320 elf_hash_table (info)->text_index_section = s;
6321 break;
6322 }
6323 }
6324
6325 /* Find two non-excluded output sections, one for code, one for data.
6326 We'll use their section symbols for some emitted relocs. */
6327 void
6328 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6329 {
6330 asection *s;
6331
6332 /* Data first, since setting text_index_section changes
6333 _bfd_elf_link_omit_section_dynsym. */
6334 for (s = output_bfd->sections; s != NULL; s = s->next)
6335 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6336 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6337 {
6338 elf_hash_table (info)->data_index_section = s;
6339 break;
6340 }
6341
6342 for (s = output_bfd->sections; s != NULL; s = s->next)
6343 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6344 == (SEC_ALLOC | SEC_READONLY))
6345 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6346 {
6347 elf_hash_table (info)->text_index_section = s;
6348 break;
6349 }
6350
6351 if (elf_hash_table (info)->text_index_section == NULL)
6352 elf_hash_table (info)->text_index_section
6353 = elf_hash_table (info)->data_index_section;
6354 }
6355
6356 bfd_boolean
6357 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6358 {
6359 const struct elf_backend_data *bed;
6360
6361 if (!is_elf_hash_table (info->hash))
6362 return TRUE;
6363
6364 bed = get_elf_backend_data (output_bfd);
6365 (*bed->elf_backend_init_index_section) (output_bfd, info);
6366
6367 if (elf_hash_table (info)->dynamic_sections_created)
6368 {
6369 bfd *dynobj;
6370 asection *s;
6371 bfd_size_type dynsymcount;
6372 unsigned long section_sym_count;
6373 unsigned int dtagcount;
6374
6375 dynobj = elf_hash_table (info)->dynobj;
6376
6377 /* Assign dynsym indicies. In a shared library we generate a
6378 section symbol for each output section, which come first.
6379 Next come all of the back-end allocated local dynamic syms,
6380 followed by the rest of the global symbols. */
6381
6382 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6383 &section_sym_count);
6384
6385 /* Work out the size of the symbol version section. */
6386 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6387 BFD_ASSERT (s != NULL);
6388 if (dynsymcount != 0
6389 && (s->flags & SEC_EXCLUDE) == 0)
6390 {
6391 s->size = dynsymcount * sizeof (Elf_External_Versym);
6392 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6393 if (s->contents == NULL)
6394 return FALSE;
6395
6396 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6397 return FALSE;
6398 }
6399
6400 /* Set the size of the .dynsym and .hash sections. We counted
6401 the number of dynamic symbols in elf_link_add_object_symbols.
6402 We will build the contents of .dynsym and .hash when we build
6403 the final symbol table, because until then we do not know the
6404 correct value to give the symbols. We built the .dynstr
6405 section as we went along in elf_link_add_object_symbols. */
6406 s = bfd_get_section_by_name (dynobj, ".dynsym");
6407 BFD_ASSERT (s != NULL);
6408 s->size = dynsymcount * bed->s->sizeof_sym;
6409
6410 if (dynsymcount != 0)
6411 {
6412 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6413 if (s->contents == NULL)
6414 return FALSE;
6415
6416 /* The first entry in .dynsym is a dummy symbol.
6417 Clear all the section syms, in case we don't output them all. */
6418 ++section_sym_count;
6419 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6420 }
6421
6422 elf_hash_table (info)->bucketcount = 0;
6423
6424 /* Compute the size of the hashing table. As a side effect this
6425 computes the hash values for all the names we export. */
6426 if (info->emit_hash)
6427 {
6428 unsigned long int *hashcodes;
6429 struct hash_codes_info hashinf;
6430 bfd_size_type amt;
6431 unsigned long int nsyms;
6432 size_t bucketcount;
6433 size_t hash_entry_size;
6434
6435 /* Compute the hash values for all exported symbols. At the same
6436 time store the values in an array so that we could use them for
6437 optimizations. */
6438 amt = dynsymcount * sizeof (unsigned long int);
6439 hashcodes = (unsigned long int *) bfd_malloc (amt);
6440 if (hashcodes == NULL)
6441 return FALSE;
6442 hashinf.hashcodes = hashcodes;
6443 hashinf.error = FALSE;
6444
6445 /* Put all hash values in HASHCODES. */
6446 elf_link_hash_traverse (elf_hash_table (info),
6447 elf_collect_hash_codes, &hashinf);
6448 if (hashinf.error)
6449 {
6450 free (hashcodes);
6451 return FALSE;
6452 }
6453
6454 nsyms = hashinf.hashcodes - hashcodes;
6455 bucketcount
6456 = compute_bucket_count (info, hashcodes, nsyms, 0);
6457 free (hashcodes);
6458
6459 if (bucketcount == 0)
6460 return FALSE;
6461
6462 elf_hash_table (info)->bucketcount = bucketcount;
6463
6464 s = bfd_get_section_by_name (dynobj, ".hash");
6465 BFD_ASSERT (s != NULL);
6466 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6467 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6468 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6469 if (s->contents == NULL)
6470 return FALSE;
6471
6472 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6473 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6474 s->contents + hash_entry_size);
6475 }
6476
6477 if (info->emit_gnu_hash)
6478 {
6479 size_t i, cnt;
6480 unsigned char *contents;
6481 struct collect_gnu_hash_codes cinfo;
6482 bfd_size_type amt;
6483 size_t bucketcount;
6484
6485 memset (&cinfo, 0, sizeof (cinfo));
6486
6487 /* Compute the hash values for all exported symbols. At the same
6488 time store the values in an array so that we could use them for
6489 optimizations. */
6490 amt = dynsymcount * 2 * sizeof (unsigned long int);
6491 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6492 if (cinfo.hashcodes == NULL)
6493 return FALSE;
6494
6495 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6496 cinfo.min_dynindx = -1;
6497 cinfo.output_bfd = output_bfd;
6498 cinfo.bed = bed;
6499
6500 /* Put all hash values in HASHCODES. */
6501 elf_link_hash_traverse (elf_hash_table (info),
6502 elf_collect_gnu_hash_codes, &cinfo);
6503 if (cinfo.error)
6504 {
6505 free (cinfo.hashcodes);
6506 return FALSE;
6507 }
6508
6509 bucketcount
6510 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6511
6512 if (bucketcount == 0)
6513 {
6514 free (cinfo.hashcodes);
6515 return FALSE;
6516 }
6517
6518 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6519 BFD_ASSERT (s != NULL);
6520
6521 if (cinfo.nsyms == 0)
6522 {
6523 /* Empty .gnu.hash section is special. */
6524 BFD_ASSERT (cinfo.min_dynindx == -1);
6525 free (cinfo.hashcodes);
6526 s->size = 5 * 4 + bed->s->arch_size / 8;
6527 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6528 if (contents == NULL)
6529 return FALSE;
6530 s->contents = contents;
6531 /* 1 empty bucket. */
6532 bfd_put_32 (output_bfd, 1, contents);
6533 /* SYMIDX above the special symbol 0. */
6534 bfd_put_32 (output_bfd, 1, contents + 4);
6535 /* Just one word for bitmask. */
6536 bfd_put_32 (output_bfd, 1, contents + 8);
6537 /* Only hash fn bloom filter. */
6538 bfd_put_32 (output_bfd, 0, contents + 12);
6539 /* No hashes are valid - empty bitmask. */
6540 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6541 /* No hashes in the only bucket. */
6542 bfd_put_32 (output_bfd, 0,
6543 contents + 16 + bed->s->arch_size / 8);
6544 }
6545 else
6546 {
6547 unsigned long int maskwords, maskbitslog2, x;
6548 BFD_ASSERT (cinfo.min_dynindx != -1);
6549
6550 x = cinfo.nsyms;
6551 maskbitslog2 = 1;
6552 while ((x >>= 1) != 0)
6553 ++maskbitslog2;
6554 if (maskbitslog2 < 3)
6555 maskbitslog2 = 5;
6556 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6557 maskbitslog2 = maskbitslog2 + 3;
6558 else
6559 maskbitslog2 = maskbitslog2 + 2;
6560 if (bed->s->arch_size == 64)
6561 {
6562 if (maskbitslog2 == 5)
6563 maskbitslog2 = 6;
6564 cinfo.shift1 = 6;
6565 }
6566 else
6567 cinfo.shift1 = 5;
6568 cinfo.mask = (1 << cinfo.shift1) - 1;
6569 cinfo.shift2 = maskbitslog2;
6570 cinfo.maskbits = 1 << maskbitslog2;
6571 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6572 amt = bucketcount * sizeof (unsigned long int) * 2;
6573 amt += maskwords * sizeof (bfd_vma);
6574 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6575 if (cinfo.bitmask == NULL)
6576 {
6577 free (cinfo.hashcodes);
6578 return FALSE;
6579 }
6580
6581 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6582 cinfo.indx = cinfo.counts + bucketcount;
6583 cinfo.symindx = dynsymcount - cinfo.nsyms;
6584 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6585
6586 /* Determine how often each hash bucket is used. */
6587 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6588 for (i = 0; i < cinfo.nsyms; ++i)
6589 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6590
6591 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6592 if (cinfo.counts[i] != 0)
6593 {
6594 cinfo.indx[i] = cnt;
6595 cnt += cinfo.counts[i];
6596 }
6597 BFD_ASSERT (cnt == dynsymcount);
6598 cinfo.bucketcount = bucketcount;
6599 cinfo.local_indx = cinfo.min_dynindx;
6600
6601 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6602 s->size += cinfo.maskbits / 8;
6603 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6604 if (contents == NULL)
6605 {
6606 free (cinfo.bitmask);
6607 free (cinfo.hashcodes);
6608 return FALSE;
6609 }
6610
6611 s->contents = contents;
6612 bfd_put_32 (output_bfd, bucketcount, contents);
6613 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6614 bfd_put_32 (output_bfd, maskwords, contents + 8);
6615 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6616 contents += 16 + cinfo.maskbits / 8;
6617
6618 for (i = 0; i < bucketcount; ++i)
6619 {
6620 if (cinfo.counts[i] == 0)
6621 bfd_put_32 (output_bfd, 0, contents);
6622 else
6623 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6624 contents += 4;
6625 }
6626
6627 cinfo.contents = contents;
6628
6629 /* Renumber dynamic symbols, populate .gnu.hash section. */
6630 elf_link_hash_traverse (elf_hash_table (info),
6631 elf_renumber_gnu_hash_syms, &cinfo);
6632
6633 contents = s->contents + 16;
6634 for (i = 0; i < maskwords; ++i)
6635 {
6636 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6637 contents);
6638 contents += bed->s->arch_size / 8;
6639 }
6640
6641 free (cinfo.bitmask);
6642 free (cinfo.hashcodes);
6643 }
6644 }
6645
6646 s = bfd_get_section_by_name (dynobj, ".dynstr");
6647 BFD_ASSERT (s != NULL);
6648
6649 elf_finalize_dynstr (output_bfd, info);
6650
6651 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6652
6653 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6654 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6655 return FALSE;
6656 }
6657
6658 return TRUE;
6659 }
6660 \f
6661 /* Indicate that we are only retrieving symbol values from this
6662 section. */
6663
6664 void
6665 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6666 {
6667 if (is_elf_hash_table (info->hash))
6668 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6669 _bfd_generic_link_just_syms (sec, info);
6670 }
6671
6672 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6673
6674 static void
6675 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6676 asection *sec)
6677 {
6678 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6679 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6680 }
6681
6682 /* Finish SHF_MERGE section merging. */
6683
6684 bfd_boolean
6685 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6686 {
6687 bfd *ibfd;
6688 asection *sec;
6689
6690 if (!is_elf_hash_table (info->hash))
6691 return FALSE;
6692
6693 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6694 if ((ibfd->flags & DYNAMIC) == 0)
6695 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6696 if ((sec->flags & SEC_MERGE) != 0
6697 && !bfd_is_abs_section (sec->output_section))
6698 {
6699 struct bfd_elf_section_data *secdata;
6700
6701 secdata = elf_section_data (sec);
6702 if (! _bfd_add_merge_section (abfd,
6703 &elf_hash_table (info)->merge_info,
6704 sec, &secdata->sec_info))
6705 return FALSE;
6706 else if (secdata->sec_info)
6707 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6708 }
6709
6710 if (elf_hash_table (info)->merge_info != NULL)
6711 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6712 merge_sections_remove_hook);
6713 return TRUE;
6714 }
6715
6716 /* Create an entry in an ELF linker hash table. */
6717
6718 struct bfd_hash_entry *
6719 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6720 struct bfd_hash_table *table,
6721 const char *string)
6722 {
6723 /* Allocate the structure if it has not already been allocated by a
6724 subclass. */
6725 if (entry == NULL)
6726 {
6727 entry = (struct bfd_hash_entry *)
6728 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6729 if (entry == NULL)
6730 return entry;
6731 }
6732
6733 /* Call the allocation method of the superclass. */
6734 entry = _bfd_link_hash_newfunc (entry, table, string);
6735 if (entry != NULL)
6736 {
6737 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6738 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6739
6740 /* Set local fields. */
6741 ret->indx = -1;
6742 ret->dynindx = -1;
6743 ret->got = htab->init_got_refcount;
6744 ret->plt = htab->init_plt_refcount;
6745 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6746 - offsetof (struct elf_link_hash_entry, size)));
6747 /* Assume that we have been called by a non-ELF symbol reader.
6748 This flag is then reset by the code which reads an ELF input
6749 file. This ensures that a symbol created by a non-ELF symbol
6750 reader will have the flag set correctly. */
6751 ret->non_elf = 1;
6752 }
6753
6754 return entry;
6755 }
6756
6757 /* Copy data from an indirect symbol to its direct symbol, hiding the
6758 old indirect symbol. Also used for copying flags to a weakdef. */
6759
6760 void
6761 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6762 struct elf_link_hash_entry *dir,
6763 struct elf_link_hash_entry *ind)
6764 {
6765 struct elf_link_hash_table *htab;
6766
6767 /* Copy down any references that we may have already seen to the
6768 symbol which just became indirect. */
6769
6770 dir->ref_dynamic |= ind->ref_dynamic;
6771 dir->ref_regular |= ind->ref_regular;
6772 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6773 dir->non_got_ref |= ind->non_got_ref;
6774 dir->needs_plt |= ind->needs_plt;
6775 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6776
6777 if (ind->root.type != bfd_link_hash_indirect)
6778 return;
6779
6780 /* Copy over the global and procedure linkage table refcount entries.
6781 These may have been already set up by a check_relocs routine. */
6782 htab = elf_hash_table (info);
6783 if (ind->got.refcount > htab->init_got_refcount.refcount)
6784 {
6785 if (dir->got.refcount < 0)
6786 dir->got.refcount = 0;
6787 dir->got.refcount += ind->got.refcount;
6788 ind->got.refcount = htab->init_got_refcount.refcount;
6789 }
6790
6791 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6792 {
6793 if (dir->plt.refcount < 0)
6794 dir->plt.refcount = 0;
6795 dir->plt.refcount += ind->plt.refcount;
6796 ind->plt.refcount = htab->init_plt_refcount.refcount;
6797 }
6798
6799 if (ind->dynindx != -1)
6800 {
6801 if (dir->dynindx != -1)
6802 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6803 dir->dynindx = ind->dynindx;
6804 dir->dynstr_index = ind->dynstr_index;
6805 ind->dynindx = -1;
6806 ind->dynstr_index = 0;
6807 }
6808 }
6809
6810 void
6811 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6812 struct elf_link_hash_entry *h,
6813 bfd_boolean force_local)
6814 {
6815 /* STT_GNU_IFUNC symbol must go through PLT. */
6816 if (h->type != STT_GNU_IFUNC)
6817 {
6818 h->plt = elf_hash_table (info)->init_plt_offset;
6819 h->needs_plt = 0;
6820 }
6821 if (force_local)
6822 {
6823 h->forced_local = 1;
6824 if (h->dynindx != -1)
6825 {
6826 h->dynindx = -1;
6827 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6828 h->dynstr_index);
6829 }
6830 }
6831 }
6832
6833 /* Initialize an ELF linker hash table. */
6834
6835 bfd_boolean
6836 _bfd_elf_link_hash_table_init
6837 (struct elf_link_hash_table *table,
6838 bfd *abfd,
6839 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6840 struct bfd_hash_table *,
6841 const char *),
6842 unsigned int entsize,
6843 enum elf_target_id target_id)
6844 {
6845 bfd_boolean ret;
6846 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6847
6848 memset (table, 0, sizeof * table);
6849 table->init_got_refcount.refcount = can_refcount - 1;
6850 table->init_plt_refcount.refcount = can_refcount - 1;
6851 table->init_got_offset.offset = -(bfd_vma) 1;
6852 table->init_plt_offset.offset = -(bfd_vma) 1;
6853 /* The first dynamic symbol is a dummy. */
6854 table->dynsymcount = 1;
6855
6856 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6857
6858 table->root.type = bfd_link_elf_hash_table;
6859 table->hash_table_id = target_id;
6860
6861 return ret;
6862 }
6863
6864 /* Create an ELF linker hash table. */
6865
6866 struct bfd_link_hash_table *
6867 _bfd_elf_link_hash_table_create (bfd *abfd)
6868 {
6869 struct elf_link_hash_table *ret;
6870 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6871
6872 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6873 if (ret == NULL)
6874 return NULL;
6875
6876 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6877 sizeof (struct elf_link_hash_entry),
6878 GENERIC_ELF_DATA))
6879 {
6880 free (ret);
6881 return NULL;
6882 }
6883
6884 return &ret->root;
6885 }
6886
6887 /* This is a hook for the ELF emulation code in the generic linker to
6888 tell the backend linker what file name to use for the DT_NEEDED
6889 entry for a dynamic object. */
6890
6891 void
6892 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6893 {
6894 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6895 && bfd_get_format (abfd) == bfd_object)
6896 elf_dt_name (abfd) = name;
6897 }
6898
6899 int
6900 bfd_elf_get_dyn_lib_class (bfd *abfd)
6901 {
6902 int lib_class;
6903 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6904 && bfd_get_format (abfd) == bfd_object)
6905 lib_class = elf_dyn_lib_class (abfd);
6906 else
6907 lib_class = 0;
6908 return lib_class;
6909 }
6910
6911 void
6912 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6913 {
6914 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6915 && bfd_get_format (abfd) == bfd_object)
6916 elf_dyn_lib_class (abfd) = lib_class;
6917 }
6918
6919 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6920 the linker ELF emulation code. */
6921
6922 struct bfd_link_needed_list *
6923 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6924 struct bfd_link_info *info)
6925 {
6926 if (! is_elf_hash_table (info->hash))
6927 return NULL;
6928 return elf_hash_table (info)->needed;
6929 }
6930
6931 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6932 hook for the linker ELF emulation code. */
6933
6934 struct bfd_link_needed_list *
6935 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6936 struct bfd_link_info *info)
6937 {
6938 if (! is_elf_hash_table (info->hash))
6939 return NULL;
6940 return elf_hash_table (info)->runpath;
6941 }
6942
6943 /* Get the name actually used for a dynamic object for a link. This
6944 is the SONAME entry if there is one. Otherwise, it is the string
6945 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6946
6947 const char *
6948 bfd_elf_get_dt_soname (bfd *abfd)
6949 {
6950 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6951 && bfd_get_format (abfd) == bfd_object)
6952 return elf_dt_name (abfd);
6953 return NULL;
6954 }
6955
6956 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6957 the ELF linker emulation code. */
6958
6959 bfd_boolean
6960 bfd_elf_get_bfd_needed_list (bfd *abfd,
6961 struct bfd_link_needed_list **pneeded)
6962 {
6963 asection *s;
6964 bfd_byte *dynbuf = NULL;
6965 unsigned int elfsec;
6966 unsigned long shlink;
6967 bfd_byte *extdyn, *extdynend;
6968 size_t extdynsize;
6969 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6970
6971 *pneeded = NULL;
6972
6973 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6974 || bfd_get_format (abfd) != bfd_object)
6975 return TRUE;
6976
6977 s = bfd_get_section_by_name (abfd, ".dynamic");
6978 if (s == NULL || s->size == 0)
6979 return TRUE;
6980
6981 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6982 goto error_return;
6983
6984 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6985 if (elfsec == SHN_BAD)
6986 goto error_return;
6987
6988 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6989
6990 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6991 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6992
6993 extdyn = dynbuf;
6994 extdynend = extdyn + s->size;
6995 for (; extdyn < extdynend; extdyn += extdynsize)
6996 {
6997 Elf_Internal_Dyn dyn;
6998
6999 (*swap_dyn_in) (abfd, extdyn, &dyn);
7000
7001 if (dyn.d_tag == DT_NULL)
7002 break;
7003
7004 if (dyn.d_tag == DT_NEEDED)
7005 {
7006 const char *string;
7007 struct bfd_link_needed_list *l;
7008 unsigned int tagv = dyn.d_un.d_val;
7009 bfd_size_type amt;
7010
7011 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7012 if (string == NULL)
7013 goto error_return;
7014
7015 amt = sizeof *l;
7016 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7017 if (l == NULL)
7018 goto error_return;
7019
7020 l->by = abfd;
7021 l->name = string;
7022 l->next = *pneeded;
7023 *pneeded = l;
7024 }
7025 }
7026
7027 free (dynbuf);
7028
7029 return TRUE;
7030
7031 error_return:
7032 if (dynbuf != NULL)
7033 free (dynbuf);
7034 return FALSE;
7035 }
7036
7037 struct elf_symbuf_symbol
7038 {
7039 unsigned long st_name; /* Symbol name, index in string tbl */
7040 unsigned char st_info; /* Type and binding attributes */
7041 unsigned char st_other; /* Visibilty, and target specific */
7042 };
7043
7044 struct elf_symbuf_head
7045 {
7046 struct elf_symbuf_symbol *ssym;
7047 bfd_size_type count;
7048 unsigned int st_shndx;
7049 };
7050
7051 struct elf_symbol
7052 {
7053 union
7054 {
7055 Elf_Internal_Sym *isym;
7056 struct elf_symbuf_symbol *ssym;
7057 } u;
7058 const char *name;
7059 };
7060
7061 /* Sort references to symbols by ascending section number. */
7062
7063 static int
7064 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7065 {
7066 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7067 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7068
7069 return s1->st_shndx - s2->st_shndx;
7070 }
7071
7072 static int
7073 elf_sym_name_compare (const void *arg1, const void *arg2)
7074 {
7075 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7076 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7077 return strcmp (s1->name, s2->name);
7078 }
7079
7080 static struct elf_symbuf_head *
7081 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7082 {
7083 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7084 struct elf_symbuf_symbol *ssym;
7085 struct elf_symbuf_head *ssymbuf, *ssymhead;
7086 bfd_size_type i, shndx_count, total_size;
7087
7088 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7089 if (indbuf == NULL)
7090 return NULL;
7091
7092 for (ind = indbuf, i = 0; i < symcount; i++)
7093 if (isymbuf[i].st_shndx != SHN_UNDEF)
7094 *ind++ = &isymbuf[i];
7095 indbufend = ind;
7096
7097 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7098 elf_sort_elf_symbol);
7099
7100 shndx_count = 0;
7101 if (indbufend > indbuf)
7102 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7103 if (ind[0]->st_shndx != ind[1]->st_shndx)
7104 shndx_count++;
7105
7106 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7107 + (indbufend - indbuf) * sizeof (*ssym));
7108 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7109 if (ssymbuf == NULL)
7110 {
7111 free (indbuf);
7112 return NULL;
7113 }
7114
7115 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7116 ssymbuf->ssym = NULL;
7117 ssymbuf->count = shndx_count;
7118 ssymbuf->st_shndx = 0;
7119 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7120 {
7121 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7122 {
7123 ssymhead++;
7124 ssymhead->ssym = ssym;
7125 ssymhead->count = 0;
7126 ssymhead->st_shndx = (*ind)->st_shndx;
7127 }
7128 ssym->st_name = (*ind)->st_name;
7129 ssym->st_info = (*ind)->st_info;
7130 ssym->st_other = (*ind)->st_other;
7131 ssymhead->count++;
7132 }
7133 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7134 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7135 == total_size));
7136
7137 free (indbuf);
7138 return ssymbuf;
7139 }
7140
7141 /* Check if 2 sections define the same set of local and global
7142 symbols. */
7143
7144 static bfd_boolean
7145 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7146 struct bfd_link_info *info)
7147 {
7148 bfd *bfd1, *bfd2;
7149 const struct elf_backend_data *bed1, *bed2;
7150 Elf_Internal_Shdr *hdr1, *hdr2;
7151 bfd_size_type symcount1, symcount2;
7152 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7153 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7154 Elf_Internal_Sym *isym, *isymend;
7155 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7156 bfd_size_type count1, count2, i;
7157 unsigned int shndx1, shndx2;
7158 bfd_boolean result;
7159
7160 bfd1 = sec1->owner;
7161 bfd2 = sec2->owner;
7162
7163 /* Both sections have to be in ELF. */
7164 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7165 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7166 return FALSE;
7167
7168 if (elf_section_type (sec1) != elf_section_type (sec2))
7169 return FALSE;
7170
7171 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7172 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7173 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7174 return FALSE;
7175
7176 bed1 = get_elf_backend_data (bfd1);
7177 bed2 = get_elf_backend_data (bfd2);
7178 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7179 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7180 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7181 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7182
7183 if (symcount1 == 0 || symcount2 == 0)
7184 return FALSE;
7185
7186 result = FALSE;
7187 isymbuf1 = NULL;
7188 isymbuf2 = NULL;
7189 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7190 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7191
7192 if (ssymbuf1 == NULL)
7193 {
7194 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7195 NULL, NULL, NULL);
7196 if (isymbuf1 == NULL)
7197 goto done;
7198
7199 if (!info->reduce_memory_overheads)
7200 elf_tdata (bfd1)->symbuf = ssymbuf1
7201 = elf_create_symbuf (symcount1, isymbuf1);
7202 }
7203
7204 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7205 {
7206 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7207 NULL, NULL, NULL);
7208 if (isymbuf2 == NULL)
7209 goto done;
7210
7211 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7212 elf_tdata (bfd2)->symbuf = ssymbuf2
7213 = elf_create_symbuf (symcount2, isymbuf2);
7214 }
7215
7216 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7217 {
7218 /* Optimized faster version. */
7219 bfd_size_type lo, hi, mid;
7220 struct elf_symbol *symp;
7221 struct elf_symbuf_symbol *ssym, *ssymend;
7222
7223 lo = 0;
7224 hi = ssymbuf1->count;
7225 ssymbuf1++;
7226 count1 = 0;
7227 while (lo < hi)
7228 {
7229 mid = (lo + hi) / 2;
7230 if (shndx1 < ssymbuf1[mid].st_shndx)
7231 hi = mid;
7232 else if (shndx1 > ssymbuf1[mid].st_shndx)
7233 lo = mid + 1;
7234 else
7235 {
7236 count1 = ssymbuf1[mid].count;
7237 ssymbuf1 += mid;
7238 break;
7239 }
7240 }
7241
7242 lo = 0;
7243 hi = ssymbuf2->count;
7244 ssymbuf2++;
7245 count2 = 0;
7246 while (lo < hi)
7247 {
7248 mid = (lo + hi) / 2;
7249 if (shndx2 < ssymbuf2[mid].st_shndx)
7250 hi = mid;
7251 else if (shndx2 > ssymbuf2[mid].st_shndx)
7252 lo = mid + 1;
7253 else
7254 {
7255 count2 = ssymbuf2[mid].count;
7256 ssymbuf2 += mid;
7257 break;
7258 }
7259 }
7260
7261 if (count1 == 0 || count2 == 0 || count1 != count2)
7262 goto done;
7263
7264 symtable1 = (struct elf_symbol *)
7265 bfd_malloc (count1 * sizeof (struct elf_symbol));
7266 symtable2 = (struct elf_symbol *)
7267 bfd_malloc (count2 * sizeof (struct elf_symbol));
7268 if (symtable1 == NULL || symtable2 == NULL)
7269 goto done;
7270
7271 symp = symtable1;
7272 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7273 ssym < ssymend; ssym++, symp++)
7274 {
7275 symp->u.ssym = ssym;
7276 symp->name = bfd_elf_string_from_elf_section (bfd1,
7277 hdr1->sh_link,
7278 ssym->st_name);
7279 }
7280
7281 symp = symtable2;
7282 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7283 ssym < ssymend; ssym++, symp++)
7284 {
7285 symp->u.ssym = ssym;
7286 symp->name = bfd_elf_string_from_elf_section (bfd2,
7287 hdr2->sh_link,
7288 ssym->st_name);
7289 }
7290
7291 /* Sort symbol by name. */
7292 qsort (symtable1, count1, sizeof (struct elf_symbol),
7293 elf_sym_name_compare);
7294 qsort (symtable2, count1, sizeof (struct elf_symbol),
7295 elf_sym_name_compare);
7296
7297 for (i = 0; i < count1; i++)
7298 /* Two symbols must have the same binding, type and name. */
7299 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7300 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7301 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7302 goto done;
7303
7304 result = TRUE;
7305 goto done;
7306 }
7307
7308 symtable1 = (struct elf_symbol *)
7309 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7310 symtable2 = (struct elf_symbol *)
7311 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7312 if (symtable1 == NULL || symtable2 == NULL)
7313 goto done;
7314
7315 /* Count definitions in the section. */
7316 count1 = 0;
7317 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7318 if (isym->st_shndx == shndx1)
7319 symtable1[count1++].u.isym = isym;
7320
7321 count2 = 0;
7322 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7323 if (isym->st_shndx == shndx2)
7324 symtable2[count2++].u.isym = isym;
7325
7326 if (count1 == 0 || count2 == 0 || count1 != count2)
7327 goto done;
7328
7329 for (i = 0; i < count1; i++)
7330 symtable1[i].name
7331 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7332 symtable1[i].u.isym->st_name);
7333
7334 for (i = 0; i < count2; i++)
7335 symtable2[i].name
7336 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7337 symtable2[i].u.isym->st_name);
7338
7339 /* Sort symbol by name. */
7340 qsort (symtable1, count1, sizeof (struct elf_symbol),
7341 elf_sym_name_compare);
7342 qsort (symtable2, count1, sizeof (struct elf_symbol),
7343 elf_sym_name_compare);
7344
7345 for (i = 0; i < count1; i++)
7346 /* Two symbols must have the same binding, type and name. */
7347 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7348 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7349 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7350 goto done;
7351
7352 result = TRUE;
7353
7354 done:
7355 if (symtable1)
7356 free (symtable1);
7357 if (symtable2)
7358 free (symtable2);
7359 if (isymbuf1)
7360 free (isymbuf1);
7361 if (isymbuf2)
7362 free (isymbuf2);
7363
7364 return result;
7365 }
7366
7367 /* Return TRUE if 2 section types are compatible. */
7368
7369 bfd_boolean
7370 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7371 bfd *bbfd, const asection *bsec)
7372 {
7373 if (asec == NULL
7374 || bsec == NULL
7375 || abfd->xvec->flavour != bfd_target_elf_flavour
7376 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7377 return TRUE;
7378
7379 return elf_section_type (asec) == elf_section_type (bsec);
7380 }
7381 \f
7382 /* Final phase of ELF linker. */
7383
7384 /* A structure we use to avoid passing large numbers of arguments. */
7385
7386 struct elf_final_link_info
7387 {
7388 /* General link information. */
7389 struct bfd_link_info *info;
7390 /* Output BFD. */
7391 bfd *output_bfd;
7392 /* Symbol string table. */
7393 struct bfd_strtab_hash *symstrtab;
7394 /* .dynsym section. */
7395 asection *dynsym_sec;
7396 /* .hash section. */
7397 asection *hash_sec;
7398 /* symbol version section (.gnu.version). */
7399 asection *symver_sec;
7400 /* Buffer large enough to hold contents of any section. */
7401 bfd_byte *contents;
7402 /* Buffer large enough to hold external relocs of any section. */
7403 void *external_relocs;
7404 /* Buffer large enough to hold internal relocs of any section. */
7405 Elf_Internal_Rela *internal_relocs;
7406 /* Buffer large enough to hold external local symbols of any input
7407 BFD. */
7408 bfd_byte *external_syms;
7409 /* And a buffer for symbol section indices. */
7410 Elf_External_Sym_Shndx *locsym_shndx;
7411 /* Buffer large enough to hold internal local symbols of any input
7412 BFD. */
7413 Elf_Internal_Sym *internal_syms;
7414 /* Array large enough to hold a symbol index for each local symbol
7415 of any input BFD. */
7416 long *indices;
7417 /* Array large enough to hold a section pointer for each local
7418 symbol of any input BFD. */
7419 asection **sections;
7420 /* Buffer to hold swapped out symbols. */
7421 bfd_byte *symbuf;
7422 /* And one for symbol section indices. */
7423 Elf_External_Sym_Shndx *symshndxbuf;
7424 /* Number of swapped out symbols in buffer. */
7425 size_t symbuf_count;
7426 /* Number of symbols which fit in symbuf. */
7427 size_t symbuf_size;
7428 /* And same for symshndxbuf. */
7429 size_t shndxbuf_size;
7430 };
7431
7432 /* This struct is used to pass information to elf_link_output_extsym. */
7433
7434 struct elf_outext_info
7435 {
7436 bfd_boolean failed;
7437 bfd_boolean localsyms;
7438 struct elf_final_link_info *finfo;
7439 };
7440
7441
7442 /* Support for evaluating a complex relocation.
7443
7444 Complex relocations are generalized, self-describing relocations. The
7445 implementation of them consists of two parts: complex symbols, and the
7446 relocations themselves.
7447
7448 The relocations are use a reserved elf-wide relocation type code (R_RELC
7449 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7450 information (start bit, end bit, word width, etc) into the addend. This
7451 information is extracted from CGEN-generated operand tables within gas.
7452
7453 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7454 internal) representing prefix-notation expressions, including but not
7455 limited to those sorts of expressions normally encoded as addends in the
7456 addend field. The symbol mangling format is:
7457
7458 <node> := <literal>
7459 | <unary-operator> ':' <node>
7460 | <binary-operator> ':' <node> ':' <node>
7461 ;
7462
7463 <literal> := 's' <digits=N> ':' <N character symbol name>
7464 | 'S' <digits=N> ':' <N character section name>
7465 | '#' <hexdigits>
7466 ;
7467
7468 <binary-operator> := as in C
7469 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7470
7471 static void
7472 set_symbol_value (bfd *bfd_with_globals,
7473 Elf_Internal_Sym *isymbuf,
7474 size_t locsymcount,
7475 size_t symidx,
7476 bfd_vma val)
7477 {
7478 struct elf_link_hash_entry **sym_hashes;
7479 struct elf_link_hash_entry *h;
7480 size_t extsymoff = locsymcount;
7481
7482 if (symidx < locsymcount)
7483 {
7484 Elf_Internal_Sym *sym;
7485
7486 sym = isymbuf + symidx;
7487 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7488 {
7489 /* It is a local symbol: move it to the
7490 "absolute" section and give it a value. */
7491 sym->st_shndx = SHN_ABS;
7492 sym->st_value = val;
7493 return;
7494 }
7495 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7496 extsymoff = 0;
7497 }
7498
7499 /* It is a global symbol: set its link type
7500 to "defined" and give it a value. */
7501
7502 sym_hashes = elf_sym_hashes (bfd_with_globals);
7503 h = sym_hashes [symidx - extsymoff];
7504 while (h->root.type == bfd_link_hash_indirect
7505 || h->root.type == bfd_link_hash_warning)
7506 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7507 h->root.type = bfd_link_hash_defined;
7508 h->root.u.def.value = val;
7509 h->root.u.def.section = bfd_abs_section_ptr;
7510 }
7511
7512 static bfd_boolean
7513 resolve_symbol (const char *name,
7514 bfd *input_bfd,
7515 struct elf_final_link_info *finfo,
7516 bfd_vma *result,
7517 Elf_Internal_Sym *isymbuf,
7518 size_t locsymcount)
7519 {
7520 Elf_Internal_Sym *sym;
7521 struct bfd_link_hash_entry *global_entry;
7522 const char *candidate = NULL;
7523 Elf_Internal_Shdr *symtab_hdr;
7524 size_t i;
7525
7526 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7527
7528 for (i = 0; i < locsymcount; ++ i)
7529 {
7530 sym = isymbuf + i;
7531
7532 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7533 continue;
7534
7535 candidate = bfd_elf_string_from_elf_section (input_bfd,
7536 symtab_hdr->sh_link,
7537 sym->st_name);
7538 #ifdef DEBUG
7539 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7540 name, candidate, (unsigned long) sym->st_value);
7541 #endif
7542 if (candidate && strcmp (candidate, name) == 0)
7543 {
7544 asection *sec = finfo->sections [i];
7545
7546 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7547 *result += sec->output_offset + sec->output_section->vma;
7548 #ifdef DEBUG
7549 printf ("Found symbol with value %8.8lx\n",
7550 (unsigned long) *result);
7551 #endif
7552 return TRUE;
7553 }
7554 }
7555
7556 /* Hmm, haven't found it yet. perhaps it is a global. */
7557 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7558 FALSE, FALSE, TRUE);
7559 if (!global_entry)
7560 return FALSE;
7561
7562 if (global_entry->type == bfd_link_hash_defined
7563 || global_entry->type == bfd_link_hash_defweak)
7564 {
7565 *result = (global_entry->u.def.value
7566 + global_entry->u.def.section->output_section->vma
7567 + global_entry->u.def.section->output_offset);
7568 #ifdef DEBUG
7569 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7570 global_entry->root.string, (unsigned long) *result);
7571 #endif
7572 return TRUE;
7573 }
7574
7575 return FALSE;
7576 }
7577
7578 static bfd_boolean
7579 resolve_section (const char *name,
7580 asection *sections,
7581 bfd_vma *result)
7582 {
7583 asection *curr;
7584 unsigned int len;
7585
7586 for (curr = sections; curr; curr = curr->next)
7587 if (strcmp (curr->name, name) == 0)
7588 {
7589 *result = curr->vma;
7590 return TRUE;
7591 }
7592
7593 /* Hmm. still haven't found it. try pseudo-section names. */
7594 for (curr = sections; curr; curr = curr->next)
7595 {
7596 len = strlen (curr->name);
7597 if (len > strlen (name))
7598 continue;
7599
7600 if (strncmp (curr->name, name, len) == 0)
7601 {
7602 if (strncmp (".end", name + len, 4) == 0)
7603 {
7604 *result = curr->vma + curr->size;
7605 return TRUE;
7606 }
7607
7608 /* Insert more pseudo-section names here, if you like. */
7609 }
7610 }
7611
7612 return FALSE;
7613 }
7614
7615 static void
7616 undefined_reference (const char *reftype, const char *name)
7617 {
7618 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7619 reftype, name);
7620 }
7621
7622 static bfd_boolean
7623 eval_symbol (bfd_vma *result,
7624 const char **symp,
7625 bfd *input_bfd,
7626 struct elf_final_link_info *finfo,
7627 bfd_vma dot,
7628 Elf_Internal_Sym *isymbuf,
7629 size_t locsymcount,
7630 int signed_p)
7631 {
7632 size_t len;
7633 size_t symlen;
7634 bfd_vma a;
7635 bfd_vma b;
7636 char symbuf[4096];
7637 const char *sym = *symp;
7638 const char *symend;
7639 bfd_boolean symbol_is_section = FALSE;
7640
7641 len = strlen (sym);
7642 symend = sym + len;
7643
7644 if (len < 1 || len > sizeof (symbuf))
7645 {
7646 bfd_set_error (bfd_error_invalid_operation);
7647 return FALSE;
7648 }
7649
7650 switch (* sym)
7651 {
7652 case '.':
7653 *result = dot;
7654 *symp = sym + 1;
7655 return TRUE;
7656
7657 case '#':
7658 ++sym;
7659 *result = strtoul (sym, (char **) symp, 16);
7660 return TRUE;
7661
7662 case 'S':
7663 symbol_is_section = TRUE;
7664 case 's':
7665 ++sym;
7666 symlen = strtol (sym, (char **) symp, 10);
7667 sym = *symp + 1; /* Skip the trailing ':'. */
7668
7669 if (symend < sym || symlen + 1 > sizeof (symbuf))
7670 {
7671 bfd_set_error (bfd_error_invalid_operation);
7672 return FALSE;
7673 }
7674
7675 memcpy (symbuf, sym, symlen);
7676 symbuf[symlen] = '\0';
7677 *symp = sym + symlen;
7678
7679 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7680 the symbol as a section, or vice-versa. so we're pretty liberal in our
7681 interpretation here; section means "try section first", not "must be a
7682 section", and likewise with symbol. */
7683
7684 if (symbol_is_section)
7685 {
7686 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7687 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7688 isymbuf, locsymcount))
7689 {
7690 undefined_reference ("section", symbuf);
7691 return FALSE;
7692 }
7693 }
7694 else
7695 {
7696 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7697 isymbuf, locsymcount)
7698 && !resolve_section (symbuf, finfo->output_bfd->sections,
7699 result))
7700 {
7701 undefined_reference ("symbol", symbuf);
7702 return FALSE;
7703 }
7704 }
7705
7706 return TRUE;
7707
7708 /* All that remains are operators. */
7709
7710 #define UNARY_OP(op) \
7711 if (strncmp (sym, #op, strlen (#op)) == 0) \
7712 { \
7713 sym += strlen (#op); \
7714 if (*sym == ':') \
7715 ++sym; \
7716 *symp = sym; \
7717 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7718 isymbuf, locsymcount, signed_p)) \
7719 return FALSE; \
7720 if (signed_p) \
7721 *result = op ((bfd_signed_vma) a); \
7722 else \
7723 *result = op a; \
7724 return TRUE; \
7725 }
7726
7727 #define BINARY_OP(op) \
7728 if (strncmp (sym, #op, strlen (#op)) == 0) \
7729 { \
7730 sym += strlen (#op); \
7731 if (*sym == ':') \
7732 ++sym; \
7733 *symp = sym; \
7734 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7735 isymbuf, locsymcount, signed_p)) \
7736 return FALSE; \
7737 ++*symp; \
7738 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7739 isymbuf, locsymcount, signed_p)) \
7740 return FALSE; \
7741 if (signed_p) \
7742 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7743 else \
7744 *result = a op b; \
7745 return TRUE; \
7746 }
7747
7748 default:
7749 UNARY_OP (0-);
7750 BINARY_OP (<<);
7751 BINARY_OP (>>);
7752 BINARY_OP (==);
7753 BINARY_OP (!=);
7754 BINARY_OP (<=);
7755 BINARY_OP (>=);
7756 BINARY_OP (&&);
7757 BINARY_OP (||);
7758 UNARY_OP (~);
7759 UNARY_OP (!);
7760 BINARY_OP (*);
7761 BINARY_OP (/);
7762 BINARY_OP (%);
7763 BINARY_OP (^);
7764 BINARY_OP (|);
7765 BINARY_OP (&);
7766 BINARY_OP (+);
7767 BINARY_OP (-);
7768 BINARY_OP (<);
7769 BINARY_OP (>);
7770 #undef UNARY_OP
7771 #undef BINARY_OP
7772 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7773 bfd_set_error (bfd_error_invalid_operation);
7774 return FALSE;
7775 }
7776 }
7777
7778 static void
7779 put_value (bfd_vma size,
7780 unsigned long chunksz,
7781 bfd *input_bfd,
7782 bfd_vma x,
7783 bfd_byte *location)
7784 {
7785 location += (size - chunksz);
7786
7787 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7788 {
7789 switch (chunksz)
7790 {
7791 default:
7792 case 0:
7793 abort ();
7794 case 1:
7795 bfd_put_8 (input_bfd, x, location);
7796 break;
7797 case 2:
7798 bfd_put_16 (input_bfd, x, location);
7799 break;
7800 case 4:
7801 bfd_put_32 (input_bfd, x, location);
7802 break;
7803 case 8:
7804 #ifdef BFD64
7805 bfd_put_64 (input_bfd, x, location);
7806 #else
7807 abort ();
7808 #endif
7809 break;
7810 }
7811 }
7812 }
7813
7814 static bfd_vma
7815 get_value (bfd_vma size,
7816 unsigned long chunksz,
7817 bfd *input_bfd,
7818 bfd_byte *location)
7819 {
7820 bfd_vma x = 0;
7821
7822 for (; size; size -= chunksz, location += chunksz)
7823 {
7824 switch (chunksz)
7825 {
7826 default:
7827 case 0:
7828 abort ();
7829 case 1:
7830 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7831 break;
7832 case 2:
7833 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7834 break;
7835 case 4:
7836 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7837 break;
7838 case 8:
7839 #ifdef BFD64
7840 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7841 #else
7842 abort ();
7843 #endif
7844 break;
7845 }
7846 }
7847 return x;
7848 }
7849
7850 static void
7851 decode_complex_addend (unsigned long *start, /* in bits */
7852 unsigned long *oplen, /* in bits */
7853 unsigned long *len, /* in bits */
7854 unsigned long *wordsz, /* in bytes */
7855 unsigned long *chunksz, /* in bytes */
7856 unsigned long *lsb0_p,
7857 unsigned long *signed_p,
7858 unsigned long *trunc_p,
7859 unsigned long encoded)
7860 {
7861 * start = encoded & 0x3F;
7862 * len = (encoded >> 6) & 0x3F;
7863 * oplen = (encoded >> 12) & 0x3F;
7864 * wordsz = (encoded >> 18) & 0xF;
7865 * chunksz = (encoded >> 22) & 0xF;
7866 * lsb0_p = (encoded >> 27) & 1;
7867 * signed_p = (encoded >> 28) & 1;
7868 * trunc_p = (encoded >> 29) & 1;
7869 }
7870
7871 bfd_reloc_status_type
7872 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7873 asection *input_section ATTRIBUTE_UNUSED,
7874 bfd_byte *contents,
7875 Elf_Internal_Rela *rel,
7876 bfd_vma relocation)
7877 {
7878 bfd_vma shift, x, mask;
7879 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7880 bfd_reloc_status_type r;
7881
7882 /* Perform this reloc, since it is complex.
7883 (this is not to say that it necessarily refers to a complex
7884 symbol; merely that it is a self-describing CGEN based reloc.
7885 i.e. the addend has the complete reloc information (bit start, end,
7886 word size, etc) encoded within it.). */
7887
7888 decode_complex_addend (&start, &oplen, &len, &wordsz,
7889 &chunksz, &lsb0_p, &signed_p,
7890 &trunc_p, rel->r_addend);
7891
7892 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7893
7894 if (lsb0_p)
7895 shift = (start + 1) - len;
7896 else
7897 shift = (8 * wordsz) - (start + len);
7898
7899 /* FIXME: octets_per_byte. */
7900 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7901
7902 #ifdef DEBUG
7903 printf ("Doing complex reloc: "
7904 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7905 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7906 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7907 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7908 oplen, (unsigned long) x, (unsigned long) mask,
7909 (unsigned long) relocation);
7910 #endif
7911
7912 r = bfd_reloc_ok;
7913 if (! trunc_p)
7914 /* Now do an overflow check. */
7915 r = bfd_check_overflow ((signed_p
7916 ? complain_overflow_signed
7917 : complain_overflow_unsigned),
7918 len, 0, (8 * wordsz),
7919 relocation);
7920
7921 /* Do the deed. */
7922 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7923
7924 #ifdef DEBUG
7925 printf (" relocation: %8.8lx\n"
7926 " shifted mask: %8.8lx\n"
7927 " shifted/masked reloc: %8.8lx\n"
7928 " result: %8.8lx\n",
7929 (unsigned long) relocation, (unsigned long) (mask << shift),
7930 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7931 #endif
7932 /* FIXME: octets_per_byte. */
7933 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7934 return r;
7935 }
7936
7937 /* When performing a relocatable link, the input relocations are
7938 preserved. But, if they reference global symbols, the indices
7939 referenced must be updated. Update all the relocations found in
7940 RELDATA. */
7941
7942 static void
7943 elf_link_adjust_relocs (bfd *abfd,
7944 struct bfd_elf_section_reloc_data *reldata)
7945 {
7946 unsigned int i;
7947 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7948 bfd_byte *erela;
7949 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7950 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7951 bfd_vma r_type_mask;
7952 int r_sym_shift;
7953 unsigned int count = reldata->count;
7954 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7955
7956 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7957 {
7958 swap_in = bed->s->swap_reloc_in;
7959 swap_out = bed->s->swap_reloc_out;
7960 }
7961 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7962 {
7963 swap_in = bed->s->swap_reloca_in;
7964 swap_out = bed->s->swap_reloca_out;
7965 }
7966 else
7967 abort ();
7968
7969 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7970 abort ();
7971
7972 if (bed->s->arch_size == 32)
7973 {
7974 r_type_mask = 0xff;
7975 r_sym_shift = 8;
7976 }
7977 else
7978 {
7979 r_type_mask = 0xffffffff;
7980 r_sym_shift = 32;
7981 }
7982
7983 erela = reldata->hdr->contents;
7984 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7985 {
7986 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7987 unsigned int j;
7988
7989 if (*rel_hash == NULL)
7990 continue;
7991
7992 BFD_ASSERT ((*rel_hash)->indx >= 0);
7993
7994 (*swap_in) (abfd, erela, irela);
7995 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7996 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7997 | (irela[j].r_info & r_type_mask));
7998 (*swap_out) (abfd, irela, erela);
7999 }
8000 }
8001
8002 struct elf_link_sort_rela
8003 {
8004 union {
8005 bfd_vma offset;
8006 bfd_vma sym_mask;
8007 } u;
8008 enum elf_reloc_type_class type;
8009 /* We use this as an array of size int_rels_per_ext_rel. */
8010 Elf_Internal_Rela rela[1];
8011 };
8012
8013 static int
8014 elf_link_sort_cmp1 (const void *A, const void *B)
8015 {
8016 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8017 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8018 int relativea, relativeb;
8019
8020 relativea = a->type == reloc_class_relative;
8021 relativeb = b->type == reloc_class_relative;
8022
8023 if (relativea < relativeb)
8024 return 1;
8025 if (relativea > relativeb)
8026 return -1;
8027 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8028 return -1;
8029 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8030 return 1;
8031 if (a->rela->r_offset < b->rela->r_offset)
8032 return -1;
8033 if (a->rela->r_offset > b->rela->r_offset)
8034 return 1;
8035 return 0;
8036 }
8037
8038 static int
8039 elf_link_sort_cmp2 (const void *A, const void *B)
8040 {
8041 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8042 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8043 int copya, copyb;
8044
8045 if (a->u.offset < b->u.offset)
8046 return -1;
8047 if (a->u.offset > b->u.offset)
8048 return 1;
8049 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8050 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8051 if (copya < copyb)
8052 return -1;
8053 if (copya > copyb)
8054 return 1;
8055 if (a->rela->r_offset < b->rela->r_offset)
8056 return -1;
8057 if (a->rela->r_offset > b->rela->r_offset)
8058 return 1;
8059 return 0;
8060 }
8061
8062 static size_t
8063 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8064 {
8065 asection *dynamic_relocs;
8066 asection *rela_dyn;
8067 asection *rel_dyn;
8068 bfd_size_type count, size;
8069 size_t i, ret, sort_elt, ext_size;
8070 bfd_byte *sort, *s_non_relative, *p;
8071 struct elf_link_sort_rela *sq;
8072 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8073 int i2e = bed->s->int_rels_per_ext_rel;
8074 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8075 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8076 struct bfd_link_order *lo;
8077 bfd_vma r_sym_mask;
8078 bfd_boolean use_rela;
8079
8080 /* Find a dynamic reloc section. */
8081 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8082 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8083 if (rela_dyn != NULL && rela_dyn->size > 0
8084 && rel_dyn != NULL && rel_dyn->size > 0)
8085 {
8086 bfd_boolean use_rela_initialised = FALSE;
8087
8088 /* This is just here to stop gcc from complaining.
8089 It's initialization checking code is not perfect. */
8090 use_rela = TRUE;
8091
8092 /* Both sections are present. Examine the sizes
8093 of the indirect sections to help us choose. */
8094 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8095 if (lo->type == bfd_indirect_link_order)
8096 {
8097 asection *o = lo->u.indirect.section;
8098
8099 if ((o->size % bed->s->sizeof_rela) == 0)
8100 {
8101 if ((o->size % bed->s->sizeof_rel) == 0)
8102 /* Section size is divisible by both rel and rela sizes.
8103 It is of no help to us. */
8104 ;
8105 else
8106 {
8107 /* Section size is only divisible by rela. */
8108 if (use_rela_initialised && (use_rela == FALSE))
8109 {
8110 _bfd_error_handler
8111 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8112 bfd_set_error (bfd_error_invalid_operation);
8113 return 0;
8114 }
8115 else
8116 {
8117 use_rela = TRUE;
8118 use_rela_initialised = TRUE;
8119 }
8120 }
8121 }
8122 else if ((o->size % bed->s->sizeof_rel) == 0)
8123 {
8124 /* Section size is only divisible by rel. */
8125 if (use_rela_initialised && (use_rela == TRUE))
8126 {
8127 _bfd_error_handler
8128 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8129 bfd_set_error (bfd_error_invalid_operation);
8130 return 0;
8131 }
8132 else
8133 {
8134 use_rela = FALSE;
8135 use_rela_initialised = TRUE;
8136 }
8137 }
8138 else
8139 {
8140 /* The section size is not divisible by either - something is wrong. */
8141 _bfd_error_handler
8142 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8143 bfd_set_error (bfd_error_invalid_operation);
8144 return 0;
8145 }
8146 }
8147
8148 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8149 if (lo->type == bfd_indirect_link_order)
8150 {
8151 asection *o = lo->u.indirect.section;
8152
8153 if ((o->size % bed->s->sizeof_rela) == 0)
8154 {
8155 if ((o->size % bed->s->sizeof_rel) == 0)
8156 /* Section size is divisible by both rel and rela sizes.
8157 It is of no help to us. */
8158 ;
8159 else
8160 {
8161 /* Section size is only divisible by rela. */
8162 if (use_rela_initialised && (use_rela == FALSE))
8163 {
8164 _bfd_error_handler
8165 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8166 bfd_set_error (bfd_error_invalid_operation);
8167 return 0;
8168 }
8169 else
8170 {
8171 use_rela = TRUE;
8172 use_rela_initialised = TRUE;
8173 }
8174 }
8175 }
8176 else if ((o->size % bed->s->sizeof_rel) == 0)
8177 {
8178 /* Section size is only divisible by rel. */
8179 if (use_rela_initialised && (use_rela == TRUE))
8180 {
8181 _bfd_error_handler
8182 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8183 bfd_set_error (bfd_error_invalid_operation);
8184 return 0;
8185 }
8186 else
8187 {
8188 use_rela = FALSE;
8189 use_rela_initialised = TRUE;
8190 }
8191 }
8192 else
8193 {
8194 /* The section size is not divisible by either - something is wrong. */
8195 _bfd_error_handler
8196 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8197 bfd_set_error (bfd_error_invalid_operation);
8198 return 0;
8199 }
8200 }
8201
8202 if (! use_rela_initialised)
8203 /* Make a guess. */
8204 use_rela = TRUE;
8205 }
8206 else if (rela_dyn != NULL && rela_dyn->size > 0)
8207 use_rela = TRUE;
8208 else if (rel_dyn != NULL && rel_dyn->size > 0)
8209 use_rela = FALSE;
8210 else
8211 return 0;
8212
8213 if (use_rela)
8214 {
8215 dynamic_relocs = rela_dyn;
8216 ext_size = bed->s->sizeof_rela;
8217 swap_in = bed->s->swap_reloca_in;
8218 swap_out = bed->s->swap_reloca_out;
8219 }
8220 else
8221 {
8222 dynamic_relocs = rel_dyn;
8223 ext_size = bed->s->sizeof_rel;
8224 swap_in = bed->s->swap_reloc_in;
8225 swap_out = bed->s->swap_reloc_out;
8226 }
8227
8228 size = 0;
8229 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8230 if (lo->type == bfd_indirect_link_order)
8231 size += lo->u.indirect.section->size;
8232
8233 if (size != dynamic_relocs->size)
8234 return 0;
8235
8236 sort_elt = (sizeof (struct elf_link_sort_rela)
8237 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8238
8239 count = dynamic_relocs->size / ext_size;
8240 if (count == 0)
8241 return 0;
8242 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8243
8244 if (sort == NULL)
8245 {
8246 (*info->callbacks->warning)
8247 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8248 return 0;
8249 }
8250
8251 if (bed->s->arch_size == 32)
8252 r_sym_mask = ~(bfd_vma) 0xff;
8253 else
8254 r_sym_mask = ~(bfd_vma) 0xffffffff;
8255
8256 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8257 if (lo->type == bfd_indirect_link_order)
8258 {
8259 bfd_byte *erel, *erelend;
8260 asection *o = lo->u.indirect.section;
8261
8262 if (o->contents == NULL && o->size != 0)
8263 {
8264 /* This is a reloc section that is being handled as a normal
8265 section. See bfd_section_from_shdr. We can't combine
8266 relocs in this case. */
8267 free (sort);
8268 return 0;
8269 }
8270 erel = o->contents;
8271 erelend = o->contents + o->size;
8272 /* FIXME: octets_per_byte. */
8273 p = sort + o->output_offset / ext_size * sort_elt;
8274
8275 while (erel < erelend)
8276 {
8277 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8278
8279 (*swap_in) (abfd, erel, s->rela);
8280 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8281 s->u.sym_mask = r_sym_mask;
8282 p += sort_elt;
8283 erel += ext_size;
8284 }
8285 }
8286
8287 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8288
8289 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8290 {
8291 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8292 if (s->type != reloc_class_relative)
8293 break;
8294 }
8295 ret = i;
8296 s_non_relative = p;
8297
8298 sq = (struct elf_link_sort_rela *) s_non_relative;
8299 for (; i < count; i++, p += sort_elt)
8300 {
8301 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8302 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8303 sq = sp;
8304 sp->u.offset = sq->rela->r_offset;
8305 }
8306
8307 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8308
8309 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8310 if (lo->type == bfd_indirect_link_order)
8311 {
8312 bfd_byte *erel, *erelend;
8313 asection *o = lo->u.indirect.section;
8314
8315 erel = o->contents;
8316 erelend = o->contents + o->size;
8317 /* FIXME: octets_per_byte. */
8318 p = sort + o->output_offset / ext_size * sort_elt;
8319 while (erel < erelend)
8320 {
8321 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8322 (*swap_out) (abfd, s->rela, erel);
8323 p += sort_elt;
8324 erel += ext_size;
8325 }
8326 }
8327
8328 free (sort);
8329 *psec = dynamic_relocs;
8330 return ret;
8331 }
8332
8333 /* Flush the output symbols to the file. */
8334
8335 static bfd_boolean
8336 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8337 const struct elf_backend_data *bed)
8338 {
8339 if (finfo->symbuf_count > 0)
8340 {
8341 Elf_Internal_Shdr *hdr;
8342 file_ptr pos;
8343 bfd_size_type amt;
8344
8345 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8346 pos = hdr->sh_offset + hdr->sh_size;
8347 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8348 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8349 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8350 return FALSE;
8351
8352 hdr->sh_size += amt;
8353 finfo->symbuf_count = 0;
8354 }
8355
8356 return TRUE;
8357 }
8358
8359 /* Add a symbol to the output symbol table. */
8360
8361 static int
8362 elf_link_output_sym (struct elf_final_link_info *finfo,
8363 const char *name,
8364 Elf_Internal_Sym *elfsym,
8365 asection *input_sec,
8366 struct elf_link_hash_entry *h)
8367 {
8368 bfd_byte *dest;
8369 Elf_External_Sym_Shndx *destshndx;
8370 int (*output_symbol_hook)
8371 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8372 struct elf_link_hash_entry *);
8373 const struct elf_backend_data *bed;
8374
8375 bed = get_elf_backend_data (finfo->output_bfd);
8376 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8377 if (output_symbol_hook != NULL)
8378 {
8379 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8380 if (ret != 1)
8381 return ret;
8382 }
8383
8384 if (name == NULL || *name == '\0')
8385 elfsym->st_name = 0;
8386 else if (input_sec->flags & SEC_EXCLUDE)
8387 elfsym->st_name = 0;
8388 else
8389 {
8390 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8391 name, TRUE, FALSE);
8392 if (elfsym->st_name == (unsigned long) -1)
8393 return 0;
8394 }
8395
8396 if (finfo->symbuf_count >= finfo->symbuf_size)
8397 {
8398 if (! elf_link_flush_output_syms (finfo, bed))
8399 return 0;
8400 }
8401
8402 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8403 destshndx = finfo->symshndxbuf;
8404 if (destshndx != NULL)
8405 {
8406 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8407 {
8408 bfd_size_type amt;
8409
8410 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8411 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8412 amt * 2);
8413 if (destshndx == NULL)
8414 return 0;
8415 finfo->symshndxbuf = destshndx;
8416 memset ((char *) destshndx + amt, 0, amt);
8417 finfo->shndxbuf_size *= 2;
8418 }
8419 destshndx += bfd_get_symcount (finfo->output_bfd);
8420 }
8421
8422 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8423 finfo->symbuf_count += 1;
8424 bfd_get_symcount (finfo->output_bfd) += 1;
8425
8426 return 1;
8427 }
8428
8429 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8430
8431 static bfd_boolean
8432 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8433 {
8434 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8435 && sym->st_shndx < SHN_LORESERVE)
8436 {
8437 /* The gABI doesn't support dynamic symbols in output sections
8438 beyond 64k. */
8439 (*_bfd_error_handler)
8440 (_("%B: Too many sections: %d (>= %d)"),
8441 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8442 bfd_set_error (bfd_error_nonrepresentable_section);
8443 return FALSE;
8444 }
8445 return TRUE;
8446 }
8447
8448 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8449 allowing an unsatisfied unversioned symbol in the DSO to match a
8450 versioned symbol that would normally require an explicit version.
8451 We also handle the case that a DSO references a hidden symbol
8452 which may be satisfied by a versioned symbol in another DSO. */
8453
8454 static bfd_boolean
8455 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8456 const struct elf_backend_data *bed,
8457 struct elf_link_hash_entry *h)
8458 {
8459 bfd *abfd;
8460 struct elf_link_loaded_list *loaded;
8461
8462 if (!is_elf_hash_table (info->hash))
8463 return FALSE;
8464
8465 switch (h->root.type)
8466 {
8467 default:
8468 abfd = NULL;
8469 break;
8470
8471 case bfd_link_hash_undefined:
8472 case bfd_link_hash_undefweak:
8473 abfd = h->root.u.undef.abfd;
8474 if ((abfd->flags & DYNAMIC) == 0
8475 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8476 return FALSE;
8477 break;
8478
8479 case bfd_link_hash_defined:
8480 case bfd_link_hash_defweak:
8481 abfd = h->root.u.def.section->owner;
8482 break;
8483
8484 case bfd_link_hash_common:
8485 abfd = h->root.u.c.p->section->owner;
8486 break;
8487 }
8488 BFD_ASSERT (abfd != NULL);
8489
8490 for (loaded = elf_hash_table (info)->loaded;
8491 loaded != NULL;
8492 loaded = loaded->next)
8493 {
8494 bfd *input;
8495 Elf_Internal_Shdr *hdr;
8496 bfd_size_type symcount;
8497 bfd_size_type extsymcount;
8498 bfd_size_type extsymoff;
8499 Elf_Internal_Shdr *versymhdr;
8500 Elf_Internal_Sym *isym;
8501 Elf_Internal_Sym *isymend;
8502 Elf_Internal_Sym *isymbuf;
8503 Elf_External_Versym *ever;
8504 Elf_External_Versym *extversym;
8505
8506 input = loaded->abfd;
8507
8508 /* We check each DSO for a possible hidden versioned definition. */
8509 if (input == abfd
8510 || (input->flags & DYNAMIC) == 0
8511 || elf_dynversym (input) == 0)
8512 continue;
8513
8514 hdr = &elf_tdata (input)->dynsymtab_hdr;
8515
8516 symcount = hdr->sh_size / bed->s->sizeof_sym;
8517 if (elf_bad_symtab (input))
8518 {
8519 extsymcount = symcount;
8520 extsymoff = 0;
8521 }
8522 else
8523 {
8524 extsymcount = symcount - hdr->sh_info;
8525 extsymoff = hdr->sh_info;
8526 }
8527
8528 if (extsymcount == 0)
8529 continue;
8530
8531 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8532 NULL, NULL, NULL);
8533 if (isymbuf == NULL)
8534 return FALSE;
8535
8536 /* Read in any version definitions. */
8537 versymhdr = &elf_tdata (input)->dynversym_hdr;
8538 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8539 if (extversym == NULL)
8540 goto error_ret;
8541
8542 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8543 || (bfd_bread (extversym, versymhdr->sh_size, input)
8544 != versymhdr->sh_size))
8545 {
8546 free (extversym);
8547 error_ret:
8548 free (isymbuf);
8549 return FALSE;
8550 }
8551
8552 ever = extversym + extsymoff;
8553 isymend = isymbuf + extsymcount;
8554 for (isym = isymbuf; isym < isymend; isym++, ever++)
8555 {
8556 const char *name;
8557 Elf_Internal_Versym iver;
8558 unsigned short version_index;
8559
8560 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8561 || isym->st_shndx == SHN_UNDEF)
8562 continue;
8563
8564 name = bfd_elf_string_from_elf_section (input,
8565 hdr->sh_link,
8566 isym->st_name);
8567 if (strcmp (name, h->root.root.string) != 0)
8568 continue;
8569
8570 _bfd_elf_swap_versym_in (input, ever, &iver);
8571
8572 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8573 && !(h->def_regular
8574 && h->forced_local))
8575 {
8576 /* If we have a non-hidden versioned sym, then it should
8577 have provided a definition for the undefined sym unless
8578 it is defined in a non-shared object and forced local.
8579 */
8580 abort ();
8581 }
8582
8583 version_index = iver.vs_vers & VERSYM_VERSION;
8584 if (version_index == 1 || version_index == 2)
8585 {
8586 /* This is the base or first version. We can use it. */
8587 free (extversym);
8588 free (isymbuf);
8589 return TRUE;
8590 }
8591 }
8592
8593 free (extversym);
8594 free (isymbuf);
8595 }
8596
8597 return FALSE;
8598 }
8599
8600 /* Add an external symbol to the symbol table. This is called from
8601 the hash table traversal routine. When generating a shared object,
8602 we go through the symbol table twice. The first time we output
8603 anything that might have been forced to local scope in a version
8604 script. The second time we output the symbols that are still
8605 global symbols. */
8606
8607 static bfd_boolean
8608 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8609 {
8610 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8611 struct elf_final_link_info *finfo = eoinfo->finfo;
8612 bfd_boolean strip;
8613 Elf_Internal_Sym sym;
8614 asection *input_sec;
8615 const struct elf_backend_data *bed;
8616 long indx;
8617 int ret;
8618
8619 if (h->root.type == bfd_link_hash_warning)
8620 {
8621 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8622 if (h->root.type == bfd_link_hash_new)
8623 return TRUE;
8624 }
8625
8626 /* Decide whether to output this symbol in this pass. */
8627 if (eoinfo->localsyms)
8628 {
8629 if (!h->forced_local)
8630 return TRUE;
8631 }
8632 else
8633 {
8634 if (h->forced_local)
8635 return TRUE;
8636 }
8637
8638 bed = get_elf_backend_data (finfo->output_bfd);
8639
8640 if (h->root.type == bfd_link_hash_undefined)
8641 {
8642 /* If we have an undefined symbol reference here then it must have
8643 come from a shared library that is being linked in. (Undefined
8644 references in regular files have already been handled unless
8645 they are in unreferenced sections which are removed by garbage
8646 collection). */
8647 bfd_boolean ignore_undef = FALSE;
8648
8649 /* Some symbols may be special in that the fact that they're
8650 undefined can be safely ignored - let backend determine that. */
8651 if (bed->elf_backend_ignore_undef_symbol)
8652 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8653
8654 /* If we are reporting errors for this situation then do so now. */
8655 if (!ignore_undef
8656 && h->ref_dynamic
8657 && (!h->ref_regular || finfo->info->gc_sections)
8658 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8659 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8660 {
8661 if (! (finfo->info->callbacks->undefined_symbol
8662 (finfo->info, h->root.root.string,
8663 h->ref_regular ? NULL : h->root.u.undef.abfd,
8664 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8665 {
8666 bfd_set_error (bfd_error_bad_value);
8667 eoinfo->failed = TRUE;
8668 return FALSE;
8669 }
8670 }
8671 }
8672
8673 /* We should also warn if a forced local symbol is referenced from
8674 shared libraries. */
8675 if (! finfo->info->relocatable
8676 && (! finfo->info->shared)
8677 && h->forced_local
8678 && h->ref_dynamic
8679 && !h->dynamic_def
8680 && !h->dynamic_weak
8681 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8682 {
8683 bfd *def_bfd;
8684 const char *msg;
8685
8686 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8687 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8688 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8689 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8690 else
8691 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8692 def_bfd = finfo->output_bfd;
8693 if (h->root.u.def.section != bfd_abs_section_ptr)
8694 def_bfd = h->root.u.def.section->owner;
8695 (*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd,
8696 h->root.root.string);
8697 bfd_set_error (bfd_error_bad_value);
8698 eoinfo->failed = TRUE;
8699 return FALSE;
8700 }
8701
8702 /* We don't want to output symbols that have never been mentioned by
8703 a regular file, or that we have been told to strip. However, if
8704 h->indx is set to -2, the symbol is used by a reloc and we must
8705 output it. */
8706 if (h->indx == -2)
8707 strip = FALSE;
8708 else if ((h->def_dynamic
8709 || h->ref_dynamic
8710 || h->root.type == bfd_link_hash_new)
8711 && !h->def_regular
8712 && !h->ref_regular)
8713 strip = TRUE;
8714 else if (finfo->info->strip == strip_all)
8715 strip = TRUE;
8716 else if (finfo->info->strip == strip_some
8717 && bfd_hash_lookup (finfo->info->keep_hash,
8718 h->root.root.string, FALSE, FALSE) == NULL)
8719 strip = TRUE;
8720 else if (finfo->info->strip_discarded
8721 && (h->root.type == bfd_link_hash_defined
8722 || h->root.type == bfd_link_hash_defweak)
8723 && elf_discarded_section (h->root.u.def.section))
8724 strip = TRUE;
8725 else if ((h->root.type == bfd_link_hash_undefined
8726 || h->root.type == bfd_link_hash_undefweak)
8727 && h->root.u.undef.abfd != NULL
8728 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8729 strip = TRUE;
8730 else
8731 strip = FALSE;
8732
8733 /* If we're stripping it, and it's not a dynamic symbol, there's
8734 nothing else to do unless it is a forced local symbol or a
8735 STT_GNU_IFUNC symbol. */
8736 if (strip
8737 && h->dynindx == -1
8738 && h->type != STT_GNU_IFUNC
8739 && !h->forced_local)
8740 return TRUE;
8741
8742 sym.st_value = 0;
8743 sym.st_size = h->size;
8744 sym.st_other = h->other;
8745 if (h->forced_local)
8746 {
8747 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8748 /* Turn off visibility on local symbol. */
8749 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8750 }
8751 else if (h->unique_global)
8752 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8753 else if (h->root.type == bfd_link_hash_undefweak
8754 || h->root.type == bfd_link_hash_defweak)
8755 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8756 else
8757 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8758 sym.st_target_internal = h->target_internal;
8759
8760 switch (h->root.type)
8761 {
8762 default:
8763 case bfd_link_hash_new:
8764 case bfd_link_hash_warning:
8765 abort ();
8766 return FALSE;
8767
8768 case bfd_link_hash_undefined:
8769 case bfd_link_hash_undefweak:
8770 input_sec = bfd_und_section_ptr;
8771 sym.st_shndx = SHN_UNDEF;
8772 break;
8773
8774 case bfd_link_hash_defined:
8775 case bfd_link_hash_defweak:
8776 {
8777 input_sec = h->root.u.def.section;
8778 if (input_sec->output_section != NULL)
8779 {
8780 sym.st_shndx =
8781 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8782 input_sec->output_section);
8783 if (sym.st_shndx == SHN_BAD)
8784 {
8785 (*_bfd_error_handler)
8786 (_("%B: could not find output section %A for input section %A"),
8787 finfo->output_bfd, input_sec->output_section, input_sec);
8788 bfd_set_error (bfd_error_nonrepresentable_section);
8789 eoinfo->failed = TRUE;
8790 return FALSE;
8791 }
8792
8793 /* ELF symbols in relocatable files are section relative,
8794 but in nonrelocatable files they are virtual
8795 addresses. */
8796 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8797 if (! finfo->info->relocatable)
8798 {
8799 sym.st_value += input_sec->output_section->vma;
8800 if (h->type == STT_TLS)
8801 {
8802 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8803 if (tls_sec != NULL)
8804 sym.st_value -= tls_sec->vma;
8805 else
8806 {
8807 /* The TLS section may have been garbage collected. */
8808 BFD_ASSERT (finfo->info->gc_sections
8809 && !input_sec->gc_mark);
8810 }
8811 }
8812 }
8813 }
8814 else
8815 {
8816 BFD_ASSERT (input_sec->owner == NULL
8817 || (input_sec->owner->flags & DYNAMIC) != 0);
8818 sym.st_shndx = SHN_UNDEF;
8819 input_sec = bfd_und_section_ptr;
8820 }
8821 }
8822 break;
8823
8824 case bfd_link_hash_common:
8825 input_sec = h->root.u.c.p->section;
8826 sym.st_shndx = bed->common_section_index (input_sec);
8827 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8828 break;
8829
8830 case bfd_link_hash_indirect:
8831 /* These symbols are created by symbol versioning. They point
8832 to the decorated version of the name. For example, if the
8833 symbol foo@@GNU_1.2 is the default, which should be used when
8834 foo is used with no version, then we add an indirect symbol
8835 foo which points to foo@@GNU_1.2. We ignore these symbols,
8836 since the indirected symbol is already in the hash table. */
8837 return TRUE;
8838 }
8839
8840 /* Give the processor backend a chance to tweak the symbol value,
8841 and also to finish up anything that needs to be done for this
8842 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8843 forced local syms when non-shared is due to a historical quirk.
8844 STT_GNU_IFUNC symbol must go through PLT. */
8845 if ((h->type == STT_GNU_IFUNC
8846 && h->def_regular
8847 && !finfo->info->relocatable)
8848 || ((h->dynindx != -1
8849 || h->forced_local)
8850 && ((finfo->info->shared
8851 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8852 || h->root.type != bfd_link_hash_undefweak))
8853 || !h->forced_local)
8854 && elf_hash_table (finfo->info)->dynamic_sections_created))
8855 {
8856 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8857 (finfo->output_bfd, finfo->info, h, &sym)))
8858 {
8859 eoinfo->failed = TRUE;
8860 return FALSE;
8861 }
8862 }
8863
8864 /* If we are marking the symbol as undefined, and there are no
8865 non-weak references to this symbol from a regular object, then
8866 mark the symbol as weak undefined; if there are non-weak
8867 references, mark the symbol as strong. We can't do this earlier,
8868 because it might not be marked as undefined until the
8869 finish_dynamic_symbol routine gets through with it. */
8870 if (sym.st_shndx == SHN_UNDEF
8871 && h->ref_regular
8872 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8873 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8874 {
8875 int bindtype;
8876 unsigned int type = ELF_ST_TYPE (sym.st_info);
8877
8878 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8879 if (type == STT_GNU_IFUNC)
8880 type = STT_FUNC;
8881
8882 if (h->ref_regular_nonweak)
8883 bindtype = STB_GLOBAL;
8884 else
8885 bindtype = STB_WEAK;
8886 sym.st_info = ELF_ST_INFO (bindtype, type);
8887 }
8888
8889 /* If this is a symbol defined in a dynamic library, don't use the
8890 symbol size from the dynamic library. Relinking an executable
8891 against a new library may introduce gratuitous changes in the
8892 executable's symbols if we keep the size. */
8893 if (sym.st_shndx == SHN_UNDEF
8894 && !h->def_regular
8895 && h->def_dynamic)
8896 sym.st_size = 0;
8897
8898 /* If a non-weak symbol with non-default visibility is not defined
8899 locally, it is a fatal error. */
8900 if (! finfo->info->relocatable
8901 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8902 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8903 && h->root.type == bfd_link_hash_undefined
8904 && !h->def_regular)
8905 {
8906 const char *msg;
8907
8908 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8909 msg = _("%B: protected symbol `%s' isn't defined");
8910 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8911 msg = _("%B: internal symbol `%s' isn't defined");
8912 else
8913 msg = _("%B: hidden symbol `%s' isn't defined");
8914 (*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string);
8915 bfd_set_error (bfd_error_bad_value);
8916 eoinfo->failed = TRUE;
8917 return FALSE;
8918 }
8919
8920 /* If this symbol should be put in the .dynsym section, then put it
8921 there now. We already know the symbol index. We also fill in
8922 the entry in the .hash section. */
8923 if (h->dynindx != -1
8924 && elf_hash_table (finfo->info)->dynamic_sections_created)
8925 {
8926 bfd_byte *esym;
8927
8928 sym.st_name = h->dynstr_index;
8929 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8930 if (! check_dynsym (finfo->output_bfd, &sym))
8931 {
8932 eoinfo->failed = TRUE;
8933 return FALSE;
8934 }
8935 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8936
8937 if (finfo->hash_sec != NULL)
8938 {
8939 size_t hash_entry_size;
8940 bfd_byte *bucketpos;
8941 bfd_vma chain;
8942 size_t bucketcount;
8943 size_t bucket;
8944
8945 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8946 bucket = h->u.elf_hash_value % bucketcount;
8947
8948 hash_entry_size
8949 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8950 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8951 + (bucket + 2) * hash_entry_size);
8952 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8953 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8954 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8955 ((bfd_byte *) finfo->hash_sec->contents
8956 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8957 }
8958
8959 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8960 {
8961 Elf_Internal_Versym iversym;
8962 Elf_External_Versym *eversym;
8963
8964 if (!h->def_regular)
8965 {
8966 if (h->verinfo.verdef == NULL)
8967 iversym.vs_vers = 0;
8968 else
8969 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8970 }
8971 else
8972 {
8973 if (h->verinfo.vertree == NULL)
8974 iversym.vs_vers = 1;
8975 else
8976 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8977 if (finfo->info->create_default_symver)
8978 iversym.vs_vers++;
8979 }
8980
8981 if (h->hidden)
8982 iversym.vs_vers |= VERSYM_HIDDEN;
8983
8984 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8985 eversym += h->dynindx;
8986 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8987 }
8988 }
8989
8990 /* If we're stripping it, then it was just a dynamic symbol, and
8991 there's nothing else to do. */
8992 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8993 return TRUE;
8994
8995 indx = bfd_get_symcount (finfo->output_bfd);
8996 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8997 if (ret == 0)
8998 {
8999 eoinfo->failed = TRUE;
9000 return FALSE;
9001 }
9002 else if (ret == 1)
9003 h->indx = indx;
9004 else if (h->indx == -2)
9005 abort();
9006
9007 return TRUE;
9008 }
9009
9010 /* Return TRUE if special handling is done for relocs in SEC against
9011 symbols defined in discarded sections. */
9012
9013 static bfd_boolean
9014 elf_section_ignore_discarded_relocs (asection *sec)
9015 {
9016 const struct elf_backend_data *bed;
9017
9018 switch (sec->sec_info_type)
9019 {
9020 case ELF_INFO_TYPE_STABS:
9021 case ELF_INFO_TYPE_EH_FRAME:
9022 return TRUE;
9023 default:
9024 break;
9025 }
9026
9027 bed = get_elf_backend_data (sec->owner);
9028 if (bed->elf_backend_ignore_discarded_relocs != NULL
9029 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9030 return TRUE;
9031
9032 return FALSE;
9033 }
9034
9035 /* Return a mask saying how ld should treat relocations in SEC against
9036 symbols defined in discarded sections. If this function returns
9037 COMPLAIN set, ld will issue a warning message. If this function
9038 returns PRETEND set, and the discarded section was link-once and the
9039 same size as the kept link-once section, ld will pretend that the
9040 symbol was actually defined in the kept section. Otherwise ld will
9041 zero the reloc (at least that is the intent, but some cooperation by
9042 the target dependent code is needed, particularly for REL targets). */
9043
9044 unsigned int
9045 _bfd_elf_default_action_discarded (asection *sec)
9046 {
9047 if (sec->flags & SEC_DEBUGGING)
9048 return PRETEND;
9049
9050 if (strcmp (".eh_frame", sec->name) == 0)
9051 return 0;
9052
9053 if (strcmp (".gcc_except_table", sec->name) == 0)
9054 return 0;
9055
9056 return COMPLAIN | PRETEND;
9057 }
9058
9059 /* Find a match between a section and a member of a section group. */
9060
9061 static asection *
9062 match_group_member (asection *sec, asection *group,
9063 struct bfd_link_info *info)
9064 {
9065 asection *first = elf_next_in_group (group);
9066 asection *s = first;
9067
9068 while (s != NULL)
9069 {
9070 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9071 return s;
9072
9073 s = elf_next_in_group (s);
9074 if (s == first)
9075 break;
9076 }
9077
9078 return NULL;
9079 }
9080
9081 /* Check if the kept section of a discarded section SEC can be used
9082 to replace it. Return the replacement if it is OK. Otherwise return
9083 NULL. */
9084
9085 asection *
9086 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9087 {
9088 asection *kept;
9089
9090 kept = sec->kept_section;
9091 if (kept != NULL)
9092 {
9093 if ((kept->flags & SEC_GROUP) != 0)
9094 kept = match_group_member (sec, kept, info);
9095 if (kept != NULL
9096 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9097 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9098 kept = NULL;
9099 sec->kept_section = kept;
9100 }
9101 return kept;
9102 }
9103
9104 /* Link an input file into the linker output file. This function
9105 handles all the sections and relocations of the input file at once.
9106 This is so that we only have to read the local symbols once, and
9107 don't have to keep them in memory. */
9108
9109 static bfd_boolean
9110 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9111 {
9112 int (*relocate_section)
9113 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9114 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9115 bfd *output_bfd;
9116 Elf_Internal_Shdr *symtab_hdr;
9117 size_t locsymcount;
9118 size_t extsymoff;
9119 Elf_Internal_Sym *isymbuf;
9120 Elf_Internal_Sym *isym;
9121 Elf_Internal_Sym *isymend;
9122 long *pindex;
9123 asection **ppsection;
9124 asection *o;
9125 const struct elf_backend_data *bed;
9126 struct elf_link_hash_entry **sym_hashes;
9127 bfd_size_type address_size;
9128 bfd_vma r_type_mask;
9129 int r_sym_shift;
9130
9131 output_bfd = finfo->output_bfd;
9132 bed = get_elf_backend_data (output_bfd);
9133 relocate_section = bed->elf_backend_relocate_section;
9134
9135 /* If this is a dynamic object, we don't want to do anything here:
9136 we don't want the local symbols, and we don't want the section
9137 contents. */
9138 if ((input_bfd->flags & DYNAMIC) != 0)
9139 return TRUE;
9140
9141 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9142 if (elf_bad_symtab (input_bfd))
9143 {
9144 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9145 extsymoff = 0;
9146 }
9147 else
9148 {
9149 locsymcount = symtab_hdr->sh_info;
9150 extsymoff = symtab_hdr->sh_info;
9151 }
9152
9153 /* Read the local symbols. */
9154 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9155 if (isymbuf == NULL && locsymcount != 0)
9156 {
9157 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9158 finfo->internal_syms,
9159 finfo->external_syms,
9160 finfo->locsym_shndx);
9161 if (isymbuf == NULL)
9162 return FALSE;
9163 }
9164
9165 /* Find local symbol sections and adjust values of symbols in
9166 SEC_MERGE sections. Write out those local symbols we know are
9167 going into the output file. */
9168 isymend = isymbuf + locsymcount;
9169 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9170 isym < isymend;
9171 isym++, pindex++, ppsection++)
9172 {
9173 asection *isec;
9174 const char *name;
9175 Elf_Internal_Sym osym;
9176 long indx;
9177 int ret;
9178
9179 *pindex = -1;
9180
9181 if (elf_bad_symtab (input_bfd))
9182 {
9183 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9184 {
9185 *ppsection = NULL;
9186 continue;
9187 }
9188 }
9189
9190 if (isym->st_shndx == SHN_UNDEF)
9191 isec = bfd_und_section_ptr;
9192 else if (isym->st_shndx == SHN_ABS)
9193 isec = bfd_abs_section_ptr;
9194 else if (isym->st_shndx == SHN_COMMON)
9195 isec = bfd_com_section_ptr;
9196 else
9197 {
9198 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9199 if (isec == NULL)
9200 {
9201 /* Don't attempt to output symbols with st_shnx in the
9202 reserved range other than SHN_ABS and SHN_COMMON. */
9203 *ppsection = NULL;
9204 continue;
9205 }
9206 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9207 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9208 isym->st_value =
9209 _bfd_merged_section_offset (output_bfd, &isec,
9210 elf_section_data (isec)->sec_info,
9211 isym->st_value);
9212 }
9213
9214 *ppsection = isec;
9215
9216 /* Don't output the first, undefined, symbol. */
9217 if (ppsection == finfo->sections)
9218 continue;
9219
9220 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9221 {
9222 /* We never output section symbols. Instead, we use the
9223 section symbol of the corresponding section in the output
9224 file. */
9225 continue;
9226 }
9227
9228 /* If we are stripping all symbols, we don't want to output this
9229 one. */
9230 if (finfo->info->strip == strip_all)
9231 continue;
9232
9233 /* If we are discarding all local symbols, we don't want to
9234 output this one. If we are generating a relocatable output
9235 file, then some of the local symbols may be required by
9236 relocs; we output them below as we discover that they are
9237 needed. */
9238 if (finfo->info->discard == discard_all)
9239 continue;
9240
9241 /* If this symbol is defined in a section which we are
9242 discarding, we don't need to keep it. */
9243 if (isym->st_shndx != SHN_UNDEF
9244 && isym->st_shndx < SHN_LORESERVE
9245 && bfd_section_removed_from_list (output_bfd,
9246 isec->output_section))
9247 continue;
9248
9249 /* Get the name of the symbol. */
9250 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9251 isym->st_name);
9252 if (name == NULL)
9253 return FALSE;
9254
9255 /* See if we are discarding symbols with this name. */
9256 if ((finfo->info->strip == strip_some
9257 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9258 == NULL))
9259 || (((finfo->info->discard == discard_sec_merge
9260 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9261 || finfo->info->discard == discard_l)
9262 && bfd_is_local_label_name (input_bfd, name)))
9263 continue;
9264
9265 osym = *isym;
9266
9267 /* Adjust the section index for the output file. */
9268 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9269 isec->output_section);
9270 if (osym.st_shndx == SHN_BAD)
9271 return FALSE;
9272
9273 /* ELF symbols in relocatable files are section relative, but
9274 in executable files they are virtual addresses. Note that
9275 this code assumes that all ELF sections have an associated
9276 BFD section with a reasonable value for output_offset; below
9277 we assume that they also have a reasonable value for
9278 output_section. Any special sections must be set up to meet
9279 these requirements. */
9280 osym.st_value += isec->output_offset;
9281 if (! finfo->info->relocatable)
9282 {
9283 osym.st_value += isec->output_section->vma;
9284 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9285 {
9286 /* STT_TLS symbols are relative to PT_TLS segment base. */
9287 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9288 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9289 }
9290 }
9291
9292 indx = bfd_get_symcount (output_bfd);
9293 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9294 if (ret == 0)
9295 return FALSE;
9296 else if (ret == 1)
9297 *pindex = indx;
9298 }
9299
9300 if (bed->s->arch_size == 32)
9301 {
9302 r_type_mask = 0xff;
9303 r_sym_shift = 8;
9304 address_size = 4;
9305 }
9306 else
9307 {
9308 r_type_mask = 0xffffffff;
9309 r_sym_shift = 32;
9310 address_size = 8;
9311 }
9312
9313 /* Relocate the contents of each section. */
9314 sym_hashes = elf_sym_hashes (input_bfd);
9315 for (o = input_bfd->sections; o != NULL; o = o->next)
9316 {
9317 bfd_byte *contents;
9318
9319 if (! o->linker_mark)
9320 {
9321 /* This section was omitted from the link. */
9322 continue;
9323 }
9324
9325 if (finfo->info->relocatable
9326 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9327 {
9328 /* Deal with the group signature symbol. */
9329 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9330 unsigned long symndx = sec_data->this_hdr.sh_info;
9331 asection *osec = o->output_section;
9332
9333 if (symndx >= locsymcount
9334 || (elf_bad_symtab (input_bfd)
9335 && finfo->sections[symndx] == NULL))
9336 {
9337 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9338 while (h->root.type == bfd_link_hash_indirect
9339 || h->root.type == bfd_link_hash_warning)
9340 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9341 /* Arrange for symbol to be output. */
9342 h->indx = -2;
9343 elf_section_data (osec)->this_hdr.sh_info = -2;
9344 }
9345 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9346 {
9347 /* We'll use the output section target_index. */
9348 asection *sec = finfo->sections[symndx]->output_section;
9349 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9350 }
9351 else
9352 {
9353 if (finfo->indices[symndx] == -1)
9354 {
9355 /* Otherwise output the local symbol now. */
9356 Elf_Internal_Sym sym = isymbuf[symndx];
9357 asection *sec = finfo->sections[symndx]->output_section;
9358 const char *name;
9359 long indx;
9360 int ret;
9361
9362 name = bfd_elf_string_from_elf_section (input_bfd,
9363 symtab_hdr->sh_link,
9364 sym.st_name);
9365 if (name == NULL)
9366 return FALSE;
9367
9368 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9369 sec);
9370 if (sym.st_shndx == SHN_BAD)
9371 return FALSE;
9372
9373 sym.st_value += o->output_offset;
9374
9375 indx = bfd_get_symcount (output_bfd);
9376 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9377 if (ret == 0)
9378 return FALSE;
9379 else if (ret == 1)
9380 finfo->indices[symndx] = indx;
9381 else
9382 abort ();
9383 }
9384 elf_section_data (osec)->this_hdr.sh_info
9385 = finfo->indices[symndx];
9386 }
9387 }
9388
9389 if ((o->flags & SEC_HAS_CONTENTS) == 0
9390 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9391 continue;
9392
9393 if ((o->flags & SEC_LINKER_CREATED) != 0)
9394 {
9395 /* Section was created by _bfd_elf_link_create_dynamic_sections
9396 or somesuch. */
9397 continue;
9398 }
9399
9400 /* Get the contents of the section. They have been cached by a
9401 relaxation routine. Note that o is a section in an input
9402 file, so the contents field will not have been set by any of
9403 the routines which work on output files. */
9404 if (elf_section_data (o)->this_hdr.contents != NULL)
9405 contents = elf_section_data (o)->this_hdr.contents;
9406 else
9407 {
9408 contents = finfo->contents;
9409 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9410 return FALSE;
9411 }
9412
9413 if ((o->flags & SEC_RELOC) != 0)
9414 {
9415 Elf_Internal_Rela *internal_relocs;
9416 Elf_Internal_Rela *rel, *relend;
9417 int action_discarded;
9418 int ret;
9419
9420 /* Get the swapped relocs. */
9421 internal_relocs
9422 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9423 finfo->internal_relocs, FALSE);
9424 if (internal_relocs == NULL
9425 && o->reloc_count > 0)
9426 return FALSE;
9427
9428 /* We need to reverse-copy input .ctors/.dtors sections if
9429 they are placed in .init_array/.finit_array for output. */
9430 if (o->size > address_size
9431 && ((strncmp (o->name, ".ctors", 6) == 0
9432 && strcmp (o->output_section->name,
9433 ".init_array") == 0)
9434 || (strncmp (o->name, ".dtors", 6) == 0
9435 && strcmp (o->output_section->name,
9436 ".fini_array") == 0))
9437 && (o->name[6] == 0 || o->name[6] == '.'))
9438 {
9439 if (o->size != o->reloc_count * address_size)
9440 {
9441 (*_bfd_error_handler)
9442 (_("error: %B: size of section %A is not "
9443 "multiple of address size"),
9444 input_bfd, o);
9445 bfd_set_error (bfd_error_on_input);
9446 return FALSE;
9447 }
9448 o->flags |= SEC_ELF_REVERSE_COPY;
9449 }
9450
9451 action_discarded = -1;
9452 if (!elf_section_ignore_discarded_relocs (o))
9453 action_discarded = (*bed->action_discarded) (o);
9454
9455 /* Run through the relocs evaluating complex reloc symbols and
9456 looking for relocs against symbols from discarded sections
9457 or section symbols from removed link-once sections.
9458 Complain about relocs against discarded sections. Zero
9459 relocs against removed link-once sections. */
9460
9461 rel = internal_relocs;
9462 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9463 for ( ; rel < relend; rel++)
9464 {
9465 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9466 unsigned int s_type;
9467 asection **ps, *sec;
9468 struct elf_link_hash_entry *h = NULL;
9469 const char *sym_name;
9470
9471 if (r_symndx == STN_UNDEF)
9472 continue;
9473
9474 if (r_symndx >= locsymcount
9475 || (elf_bad_symtab (input_bfd)
9476 && finfo->sections[r_symndx] == NULL))
9477 {
9478 h = sym_hashes[r_symndx - extsymoff];
9479
9480 /* Badly formatted input files can contain relocs that
9481 reference non-existant symbols. Check here so that
9482 we do not seg fault. */
9483 if (h == NULL)
9484 {
9485 char buffer [32];
9486
9487 sprintf_vma (buffer, rel->r_info);
9488 (*_bfd_error_handler)
9489 (_("error: %B contains a reloc (0x%s) for section %A "
9490 "that references a non-existent global symbol"),
9491 input_bfd, o, buffer);
9492 bfd_set_error (bfd_error_bad_value);
9493 return FALSE;
9494 }
9495
9496 while (h->root.type == bfd_link_hash_indirect
9497 || h->root.type == bfd_link_hash_warning)
9498 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9499
9500 s_type = h->type;
9501
9502 ps = NULL;
9503 if (h->root.type == bfd_link_hash_defined
9504 || h->root.type == bfd_link_hash_defweak)
9505 ps = &h->root.u.def.section;
9506
9507 sym_name = h->root.root.string;
9508 }
9509 else
9510 {
9511 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9512
9513 s_type = ELF_ST_TYPE (sym->st_info);
9514 ps = &finfo->sections[r_symndx];
9515 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9516 sym, *ps);
9517 }
9518
9519 if ((s_type == STT_RELC || s_type == STT_SRELC)
9520 && !finfo->info->relocatable)
9521 {
9522 bfd_vma val;
9523 bfd_vma dot = (rel->r_offset
9524 + o->output_offset + o->output_section->vma);
9525 #ifdef DEBUG
9526 printf ("Encountered a complex symbol!");
9527 printf (" (input_bfd %s, section %s, reloc %ld\n",
9528 input_bfd->filename, o->name,
9529 (long) (rel - internal_relocs));
9530 printf (" symbol: idx %8.8lx, name %s\n",
9531 r_symndx, sym_name);
9532 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9533 (unsigned long) rel->r_info,
9534 (unsigned long) rel->r_offset);
9535 #endif
9536 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9537 isymbuf, locsymcount, s_type == STT_SRELC))
9538 return FALSE;
9539
9540 /* Symbol evaluated OK. Update to absolute value. */
9541 set_symbol_value (input_bfd, isymbuf, locsymcount,
9542 r_symndx, val);
9543 continue;
9544 }
9545
9546 if (action_discarded != -1 && ps != NULL)
9547 {
9548 /* Complain if the definition comes from a
9549 discarded section. */
9550 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9551 {
9552 BFD_ASSERT (r_symndx != STN_UNDEF);
9553 if (action_discarded & COMPLAIN)
9554 (*finfo->info->callbacks->einfo)
9555 (_("%X`%s' referenced in section `%A' of %B: "
9556 "defined in discarded section `%A' of %B\n"),
9557 sym_name, o, input_bfd, sec, sec->owner);
9558
9559 /* Try to do the best we can to support buggy old
9560 versions of gcc. Pretend that the symbol is
9561 really defined in the kept linkonce section.
9562 FIXME: This is quite broken. Modifying the
9563 symbol here means we will be changing all later
9564 uses of the symbol, not just in this section. */
9565 if (action_discarded & PRETEND)
9566 {
9567 asection *kept;
9568
9569 kept = _bfd_elf_check_kept_section (sec,
9570 finfo->info);
9571 if (kept != NULL)
9572 {
9573 *ps = kept;
9574 continue;
9575 }
9576 }
9577 }
9578 }
9579 }
9580
9581 /* Relocate the section by invoking a back end routine.
9582
9583 The back end routine is responsible for adjusting the
9584 section contents as necessary, and (if using Rela relocs
9585 and generating a relocatable output file) adjusting the
9586 reloc addend as necessary.
9587
9588 The back end routine does not have to worry about setting
9589 the reloc address or the reloc symbol index.
9590
9591 The back end routine is given a pointer to the swapped in
9592 internal symbols, and can access the hash table entries
9593 for the external symbols via elf_sym_hashes (input_bfd).
9594
9595 When generating relocatable output, the back end routine
9596 must handle STB_LOCAL/STT_SECTION symbols specially. The
9597 output symbol is going to be a section symbol
9598 corresponding to the output section, which will require
9599 the addend to be adjusted. */
9600
9601 ret = (*relocate_section) (output_bfd, finfo->info,
9602 input_bfd, o, contents,
9603 internal_relocs,
9604 isymbuf,
9605 finfo->sections);
9606 if (!ret)
9607 return FALSE;
9608
9609 if (ret == 2
9610 || finfo->info->relocatable
9611 || finfo->info->emitrelocations)
9612 {
9613 Elf_Internal_Rela *irela;
9614 Elf_Internal_Rela *irelaend, *irelamid;
9615 bfd_vma last_offset;
9616 struct elf_link_hash_entry **rel_hash;
9617 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9618 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9619 unsigned int next_erel;
9620 bfd_boolean rela_normal;
9621 struct bfd_elf_section_data *esdi, *esdo;
9622
9623 esdi = elf_section_data (o);
9624 esdo = elf_section_data (o->output_section);
9625 rela_normal = FALSE;
9626
9627 /* Adjust the reloc addresses and symbol indices. */
9628
9629 irela = internal_relocs;
9630 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9631 rel_hash = esdo->rel.hashes + esdo->rel.count;
9632 /* We start processing the REL relocs, if any. When we reach
9633 IRELAMID in the loop, we switch to the RELA relocs. */
9634 irelamid = irela;
9635 if (esdi->rel.hdr != NULL)
9636 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9637 * bed->s->int_rels_per_ext_rel);
9638 rel_hash_list = rel_hash;
9639 rela_hash_list = NULL;
9640 last_offset = o->output_offset;
9641 if (!finfo->info->relocatable)
9642 last_offset += o->output_section->vma;
9643 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9644 {
9645 unsigned long r_symndx;
9646 asection *sec;
9647 Elf_Internal_Sym sym;
9648
9649 if (next_erel == bed->s->int_rels_per_ext_rel)
9650 {
9651 rel_hash++;
9652 next_erel = 0;
9653 }
9654
9655 if (irela == irelamid)
9656 {
9657 rel_hash = esdo->rela.hashes + esdo->rela.count;
9658 rela_hash_list = rel_hash;
9659 rela_normal = bed->rela_normal;
9660 }
9661
9662 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9663 finfo->info, o,
9664 irela->r_offset);
9665 if (irela->r_offset >= (bfd_vma) -2)
9666 {
9667 /* This is a reloc for a deleted entry or somesuch.
9668 Turn it into an R_*_NONE reloc, at the same
9669 offset as the last reloc. elf_eh_frame.c and
9670 bfd_elf_discard_info rely on reloc offsets
9671 being ordered. */
9672 irela->r_offset = last_offset;
9673 irela->r_info = 0;
9674 irela->r_addend = 0;
9675 continue;
9676 }
9677
9678 irela->r_offset += o->output_offset;
9679
9680 /* Relocs in an executable have to be virtual addresses. */
9681 if (!finfo->info->relocatable)
9682 irela->r_offset += o->output_section->vma;
9683
9684 last_offset = irela->r_offset;
9685
9686 r_symndx = irela->r_info >> r_sym_shift;
9687 if (r_symndx == STN_UNDEF)
9688 continue;
9689
9690 if (r_symndx >= locsymcount
9691 || (elf_bad_symtab (input_bfd)
9692 && finfo->sections[r_symndx] == NULL))
9693 {
9694 struct elf_link_hash_entry *rh;
9695 unsigned long indx;
9696
9697 /* This is a reloc against a global symbol. We
9698 have not yet output all the local symbols, so
9699 we do not know the symbol index of any global
9700 symbol. We set the rel_hash entry for this
9701 reloc to point to the global hash table entry
9702 for this symbol. The symbol index is then
9703 set at the end of bfd_elf_final_link. */
9704 indx = r_symndx - extsymoff;
9705 rh = elf_sym_hashes (input_bfd)[indx];
9706 while (rh->root.type == bfd_link_hash_indirect
9707 || rh->root.type == bfd_link_hash_warning)
9708 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9709
9710 /* Setting the index to -2 tells
9711 elf_link_output_extsym that this symbol is
9712 used by a reloc. */
9713 BFD_ASSERT (rh->indx < 0);
9714 rh->indx = -2;
9715
9716 *rel_hash = rh;
9717
9718 continue;
9719 }
9720
9721 /* This is a reloc against a local symbol. */
9722
9723 *rel_hash = NULL;
9724 sym = isymbuf[r_symndx];
9725 sec = finfo->sections[r_symndx];
9726 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9727 {
9728 /* I suppose the backend ought to fill in the
9729 section of any STT_SECTION symbol against a
9730 processor specific section. */
9731 r_symndx = STN_UNDEF;
9732 if (bfd_is_abs_section (sec))
9733 ;
9734 else if (sec == NULL || sec->owner == NULL)
9735 {
9736 bfd_set_error (bfd_error_bad_value);
9737 return FALSE;
9738 }
9739 else
9740 {
9741 asection *osec = sec->output_section;
9742
9743 /* If we have discarded a section, the output
9744 section will be the absolute section. In
9745 case of discarded SEC_MERGE sections, use
9746 the kept section. relocate_section should
9747 have already handled discarded linkonce
9748 sections. */
9749 if (bfd_is_abs_section (osec)
9750 && sec->kept_section != NULL
9751 && sec->kept_section->output_section != NULL)
9752 {
9753 osec = sec->kept_section->output_section;
9754 irela->r_addend -= osec->vma;
9755 }
9756
9757 if (!bfd_is_abs_section (osec))
9758 {
9759 r_symndx = osec->target_index;
9760 if (r_symndx == STN_UNDEF)
9761 {
9762 struct elf_link_hash_table *htab;
9763 asection *oi;
9764
9765 htab = elf_hash_table (finfo->info);
9766 oi = htab->text_index_section;
9767 if ((osec->flags & SEC_READONLY) == 0
9768 && htab->data_index_section != NULL)
9769 oi = htab->data_index_section;
9770
9771 if (oi != NULL)
9772 {
9773 irela->r_addend += osec->vma - oi->vma;
9774 r_symndx = oi->target_index;
9775 }
9776 }
9777
9778 BFD_ASSERT (r_symndx != STN_UNDEF);
9779 }
9780 }
9781
9782 /* Adjust the addend according to where the
9783 section winds up in the output section. */
9784 if (rela_normal)
9785 irela->r_addend += sec->output_offset;
9786 }
9787 else
9788 {
9789 if (finfo->indices[r_symndx] == -1)
9790 {
9791 unsigned long shlink;
9792 const char *name;
9793 asection *osec;
9794 long indx;
9795
9796 if (finfo->info->strip == strip_all)
9797 {
9798 /* You can't do ld -r -s. */
9799 bfd_set_error (bfd_error_invalid_operation);
9800 return FALSE;
9801 }
9802
9803 /* This symbol was skipped earlier, but
9804 since it is needed by a reloc, we
9805 must output it now. */
9806 shlink = symtab_hdr->sh_link;
9807 name = (bfd_elf_string_from_elf_section
9808 (input_bfd, shlink, sym.st_name));
9809 if (name == NULL)
9810 return FALSE;
9811
9812 osec = sec->output_section;
9813 sym.st_shndx =
9814 _bfd_elf_section_from_bfd_section (output_bfd,
9815 osec);
9816 if (sym.st_shndx == SHN_BAD)
9817 return FALSE;
9818
9819 sym.st_value += sec->output_offset;
9820 if (! finfo->info->relocatable)
9821 {
9822 sym.st_value += osec->vma;
9823 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9824 {
9825 /* STT_TLS symbols are relative to PT_TLS
9826 segment base. */
9827 BFD_ASSERT (elf_hash_table (finfo->info)
9828 ->tls_sec != NULL);
9829 sym.st_value -= (elf_hash_table (finfo->info)
9830 ->tls_sec->vma);
9831 }
9832 }
9833
9834 indx = bfd_get_symcount (output_bfd);
9835 ret = elf_link_output_sym (finfo, name, &sym, sec,
9836 NULL);
9837 if (ret == 0)
9838 return FALSE;
9839 else if (ret == 1)
9840 finfo->indices[r_symndx] = indx;
9841 else
9842 abort ();
9843 }
9844
9845 r_symndx = finfo->indices[r_symndx];
9846 }
9847
9848 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9849 | (irela->r_info & r_type_mask));
9850 }
9851
9852 /* Swap out the relocs. */
9853 input_rel_hdr = esdi->rel.hdr;
9854 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9855 {
9856 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9857 input_rel_hdr,
9858 internal_relocs,
9859 rel_hash_list))
9860 return FALSE;
9861 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9862 * bed->s->int_rels_per_ext_rel);
9863 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9864 }
9865
9866 input_rela_hdr = esdi->rela.hdr;
9867 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9868 {
9869 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9870 input_rela_hdr,
9871 internal_relocs,
9872 rela_hash_list))
9873 return FALSE;
9874 }
9875 }
9876 }
9877
9878 /* Write out the modified section contents. */
9879 if (bed->elf_backend_write_section
9880 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9881 contents))
9882 {
9883 /* Section written out. */
9884 }
9885 else switch (o->sec_info_type)
9886 {
9887 case ELF_INFO_TYPE_STABS:
9888 if (! (_bfd_write_section_stabs
9889 (output_bfd,
9890 &elf_hash_table (finfo->info)->stab_info,
9891 o, &elf_section_data (o)->sec_info, contents)))
9892 return FALSE;
9893 break;
9894 case ELF_INFO_TYPE_MERGE:
9895 if (! _bfd_write_merged_section (output_bfd, o,
9896 elf_section_data (o)->sec_info))
9897 return FALSE;
9898 break;
9899 case ELF_INFO_TYPE_EH_FRAME:
9900 {
9901 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9902 o, contents))
9903 return FALSE;
9904 }
9905 break;
9906 default:
9907 {
9908 /* FIXME: octets_per_byte. */
9909 if (! (o->flags & SEC_EXCLUDE))
9910 {
9911 file_ptr offset = (file_ptr) o->output_offset;
9912 bfd_size_type todo = o->size;
9913 if ((o->flags & SEC_ELF_REVERSE_COPY))
9914 {
9915 /* Reverse-copy input section to output. */
9916 do
9917 {
9918 todo -= address_size;
9919 if (! bfd_set_section_contents (output_bfd,
9920 o->output_section,
9921 contents + todo,
9922 offset,
9923 address_size))
9924 return FALSE;
9925 if (todo == 0)
9926 break;
9927 offset += address_size;
9928 }
9929 while (1);
9930 }
9931 else if (! bfd_set_section_contents (output_bfd,
9932 o->output_section,
9933 contents,
9934 offset, todo))
9935 return FALSE;
9936 }
9937 }
9938 break;
9939 }
9940 }
9941
9942 return TRUE;
9943 }
9944
9945 /* Generate a reloc when linking an ELF file. This is a reloc
9946 requested by the linker, and does not come from any input file. This
9947 is used to build constructor and destructor tables when linking
9948 with -Ur. */
9949
9950 static bfd_boolean
9951 elf_reloc_link_order (bfd *output_bfd,
9952 struct bfd_link_info *info,
9953 asection *output_section,
9954 struct bfd_link_order *link_order)
9955 {
9956 reloc_howto_type *howto;
9957 long indx;
9958 bfd_vma offset;
9959 bfd_vma addend;
9960 struct bfd_elf_section_reloc_data *reldata;
9961 struct elf_link_hash_entry **rel_hash_ptr;
9962 Elf_Internal_Shdr *rel_hdr;
9963 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9964 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9965 bfd_byte *erel;
9966 unsigned int i;
9967 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9968
9969 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9970 if (howto == NULL)
9971 {
9972 bfd_set_error (bfd_error_bad_value);
9973 return FALSE;
9974 }
9975
9976 addend = link_order->u.reloc.p->addend;
9977
9978 if (esdo->rel.hdr)
9979 reldata = &esdo->rel;
9980 else if (esdo->rela.hdr)
9981 reldata = &esdo->rela;
9982 else
9983 {
9984 reldata = NULL;
9985 BFD_ASSERT (0);
9986 }
9987
9988 /* Figure out the symbol index. */
9989 rel_hash_ptr = reldata->hashes + reldata->count;
9990 if (link_order->type == bfd_section_reloc_link_order)
9991 {
9992 indx = link_order->u.reloc.p->u.section->target_index;
9993 BFD_ASSERT (indx != 0);
9994 *rel_hash_ptr = NULL;
9995 }
9996 else
9997 {
9998 struct elf_link_hash_entry *h;
9999
10000 /* Treat a reloc against a defined symbol as though it were
10001 actually against the section. */
10002 h = ((struct elf_link_hash_entry *)
10003 bfd_wrapped_link_hash_lookup (output_bfd, info,
10004 link_order->u.reloc.p->u.name,
10005 FALSE, FALSE, TRUE));
10006 if (h != NULL
10007 && (h->root.type == bfd_link_hash_defined
10008 || h->root.type == bfd_link_hash_defweak))
10009 {
10010 asection *section;
10011
10012 section = h->root.u.def.section;
10013 indx = section->output_section->target_index;
10014 *rel_hash_ptr = NULL;
10015 /* It seems that we ought to add the symbol value to the
10016 addend here, but in practice it has already been added
10017 because it was passed to constructor_callback. */
10018 addend += section->output_section->vma + section->output_offset;
10019 }
10020 else if (h != NULL)
10021 {
10022 /* Setting the index to -2 tells elf_link_output_extsym that
10023 this symbol is used by a reloc. */
10024 h->indx = -2;
10025 *rel_hash_ptr = h;
10026 indx = 0;
10027 }
10028 else
10029 {
10030 if (! ((*info->callbacks->unattached_reloc)
10031 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10032 return FALSE;
10033 indx = 0;
10034 }
10035 }
10036
10037 /* If this is an inplace reloc, we must write the addend into the
10038 object file. */
10039 if (howto->partial_inplace && addend != 0)
10040 {
10041 bfd_size_type size;
10042 bfd_reloc_status_type rstat;
10043 bfd_byte *buf;
10044 bfd_boolean ok;
10045 const char *sym_name;
10046
10047 size = (bfd_size_type) bfd_get_reloc_size (howto);
10048 buf = (bfd_byte *) bfd_zmalloc (size);
10049 if (buf == NULL)
10050 return FALSE;
10051 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10052 switch (rstat)
10053 {
10054 case bfd_reloc_ok:
10055 break;
10056
10057 default:
10058 case bfd_reloc_outofrange:
10059 abort ();
10060
10061 case bfd_reloc_overflow:
10062 if (link_order->type == bfd_section_reloc_link_order)
10063 sym_name = bfd_section_name (output_bfd,
10064 link_order->u.reloc.p->u.section);
10065 else
10066 sym_name = link_order->u.reloc.p->u.name;
10067 if (! ((*info->callbacks->reloc_overflow)
10068 (info, NULL, sym_name, howto->name, addend, NULL,
10069 NULL, (bfd_vma) 0)))
10070 {
10071 free (buf);
10072 return FALSE;
10073 }
10074 break;
10075 }
10076 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10077 link_order->offset, size);
10078 free (buf);
10079 if (! ok)
10080 return FALSE;
10081 }
10082
10083 /* The address of a reloc is relative to the section in a
10084 relocatable file, and is a virtual address in an executable
10085 file. */
10086 offset = link_order->offset;
10087 if (! info->relocatable)
10088 offset += output_section->vma;
10089
10090 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10091 {
10092 irel[i].r_offset = offset;
10093 irel[i].r_info = 0;
10094 irel[i].r_addend = 0;
10095 }
10096 if (bed->s->arch_size == 32)
10097 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10098 else
10099 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10100
10101 rel_hdr = reldata->hdr;
10102 erel = rel_hdr->contents;
10103 if (rel_hdr->sh_type == SHT_REL)
10104 {
10105 erel += reldata->count * bed->s->sizeof_rel;
10106 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10107 }
10108 else
10109 {
10110 irel[0].r_addend = addend;
10111 erel += reldata->count * bed->s->sizeof_rela;
10112 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10113 }
10114
10115 ++reldata->count;
10116
10117 return TRUE;
10118 }
10119
10120
10121 /* Get the output vma of the section pointed to by the sh_link field. */
10122
10123 static bfd_vma
10124 elf_get_linked_section_vma (struct bfd_link_order *p)
10125 {
10126 Elf_Internal_Shdr **elf_shdrp;
10127 asection *s;
10128 int elfsec;
10129
10130 s = p->u.indirect.section;
10131 elf_shdrp = elf_elfsections (s->owner);
10132 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10133 elfsec = elf_shdrp[elfsec]->sh_link;
10134 /* PR 290:
10135 The Intel C compiler generates SHT_IA_64_UNWIND with
10136 SHF_LINK_ORDER. But it doesn't set the sh_link or
10137 sh_info fields. Hence we could get the situation
10138 where elfsec is 0. */
10139 if (elfsec == 0)
10140 {
10141 const struct elf_backend_data *bed
10142 = get_elf_backend_data (s->owner);
10143 if (bed->link_order_error_handler)
10144 bed->link_order_error_handler
10145 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10146 return 0;
10147 }
10148 else
10149 {
10150 s = elf_shdrp[elfsec]->bfd_section;
10151 return s->output_section->vma + s->output_offset;
10152 }
10153 }
10154
10155
10156 /* Compare two sections based on the locations of the sections they are
10157 linked to. Used by elf_fixup_link_order. */
10158
10159 static int
10160 compare_link_order (const void * a, const void * b)
10161 {
10162 bfd_vma apos;
10163 bfd_vma bpos;
10164
10165 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10166 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10167 if (apos < bpos)
10168 return -1;
10169 return apos > bpos;
10170 }
10171
10172
10173 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10174 order as their linked sections. Returns false if this could not be done
10175 because an output section includes both ordered and unordered
10176 sections. Ideally we'd do this in the linker proper. */
10177
10178 static bfd_boolean
10179 elf_fixup_link_order (bfd *abfd, asection *o)
10180 {
10181 int seen_linkorder;
10182 int seen_other;
10183 int n;
10184 struct bfd_link_order *p;
10185 bfd *sub;
10186 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10187 unsigned elfsec;
10188 struct bfd_link_order **sections;
10189 asection *s, *other_sec, *linkorder_sec;
10190 bfd_vma offset;
10191
10192 other_sec = NULL;
10193 linkorder_sec = NULL;
10194 seen_other = 0;
10195 seen_linkorder = 0;
10196 for (p = o->map_head.link_order; p != NULL; p = p->next)
10197 {
10198 if (p->type == bfd_indirect_link_order)
10199 {
10200 s = p->u.indirect.section;
10201 sub = s->owner;
10202 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10203 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10204 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10205 && elfsec < elf_numsections (sub)
10206 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10207 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10208 {
10209 seen_linkorder++;
10210 linkorder_sec = s;
10211 }
10212 else
10213 {
10214 seen_other++;
10215 other_sec = s;
10216 }
10217 }
10218 else
10219 seen_other++;
10220
10221 if (seen_other && seen_linkorder)
10222 {
10223 if (other_sec && linkorder_sec)
10224 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10225 o, linkorder_sec,
10226 linkorder_sec->owner, other_sec,
10227 other_sec->owner);
10228 else
10229 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10230 o);
10231 bfd_set_error (bfd_error_bad_value);
10232 return FALSE;
10233 }
10234 }
10235
10236 if (!seen_linkorder)
10237 return TRUE;
10238
10239 sections = (struct bfd_link_order **)
10240 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10241 if (sections == NULL)
10242 return FALSE;
10243 seen_linkorder = 0;
10244
10245 for (p = o->map_head.link_order; p != NULL; p = p->next)
10246 {
10247 sections[seen_linkorder++] = p;
10248 }
10249 /* Sort the input sections in the order of their linked section. */
10250 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10251 compare_link_order);
10252
10253 /* Change the offsets of the sections. */
10254 offset = 0;
10255 for (n = 0; n < seen_linkorder; n++)
10256 {
10257 s = sections[n]->u.indirect.section;
10258 offset &= ~(bfd_vma) 0 << s->alignment_power;
10259 s->output_offset = offset;
10260 sections[n]->offset = offset;
10261 /* FIXME: octets_per_byte. */
10262 offset += sections[n]->size;
10263 }
10264
10265 free (sections);
10266 return TRUE;
10267 }
10268
10269
10270 /* Do the final step of an ELF link. */
10271
10272 bfd_boolean
10273 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10274 {
10275 bfd_boolean dynamic;
10276 bfd_boolean emit_relocs;
10277 bfd *dynobj;
10278 struct elf_final_link_info finfo;
10279 asection *o;
10280 struct bfd_link_order *p;
10281 bfd *sub;
10282 bfd_size_type max_contents_size;
10283 bfd_size_type max_external_reloc_size;
10284 bfd_size_type max_internal_reloc_count;
10285 bfd_size_type max_sym_count;
10286 bfd_size_type max_sym_shndx_count;
10287 file_ptr off;
10288 Elf_Internal_Sym elfsym;
10289 unsigned int i;
10290 Elf_Internal_Shdr *symtab_hdr;
10291 Elf_Internal_Shdr *symtab_shndx_hdr;
10292 Elf_Internal_Shdr *symstrtab_hdr;
10293 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10294 struct elf_outext_info eoinfo;
10295 bfd_boolean merged;
10296 size_t relativecount = 0;
10297 asection *reldyn = 0;
10298 bfd_size_type amt;
10299 asection *attr_section = NULL;
10300 bfd_vma attr_size = 0;
10301 const char *std_attrs_section;
10302
10303 if (! is_elf_hash_table (info->hash))
10304 return FALSE;
10305
10306 if (info->shared)
10307 abfd->flags |= DYNAMIC;
10308
10309 dynamic = elf_hash_table (info)->dynamic_sections_created;
10310 dynobj = elf_hash_table (info)->dynobj;
10311
10312 emit_relocs = (info->relocatable
10313 || info->emitrelocations);
10314
10315 finfo.info = info;
10316 finfo.output_bfd = abfd;
10317 finfo.symstrtab = _bfd_elf_stringtab_init ();
10318 if (finfo.symstrtab == NULL)
10319 return FALSE;
10320
10321 if (! dynamic)
10322 {
10323 finfo.dynsym_sec = NULL;
10324 finfo.hash_sec = NULL;
10325 finfo.symver_sec = NULL;
10326 }
10327 else
10328 {
10329 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10330 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10331 BFD_ASSERT (finfo.dynsym_sec != NULL);
10332 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10333 /* Note that it is OK if symver_sec is NULL. */
10334 }
10335
10336 finfo.contents = NULL;
10337 finfo.external_relocs = NULL;
10338 finfo.internal_relocs = NULL;
10339 finfo.external_syms = NULL;
10340 finfo.locsym_shndx = NULL;
10341 finfo.internal_syms = NULL;
10342 finfo.indices = NULL;
10343 finfo.sections = NULL;
10344 finfo.symbuf = NULL;
10345 finfo.symshndxbuf = NULL;
10346 finfo.symbuf_count = 0;
10347 finfo.shndxbuf_size = 0;
10348
10349 /* The object attributes have been merged. Remove the input
10350 sections from the link, and set the contents of the output
10351 secton. */
10352 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10353 for (o = abfd->sections; o != NULL; o = o->next)
10354 {
10355 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10356 || strcmp (o->name, ".gnu.attributes") == 0)
10357 {
10358 for (p = o->map_head.link_order; p != NULL; p = p->next)
10359 {
10360 asection *input_section;
10361
10362 if (p->type != bfd_indirect_link_order)
10363 continue;
10364 input_section = p->u.indirect.section;
10365 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10366 elf_link_input_bfd ignores this section. */
10367 input_section->flags &= ~SEC_HAS_CONTENTS;
10368 }
10369
10370 attr_size = bfd_elf_obj_attr_size (abfd);
10371 if (attr_size)
10372 {
10373 bfd_set_section_size (abfd, o, attr_size);
10374 attr_section = o;
10375 /* Skip this section later on. */
10376 o->map_head.link_order = NULL;
10377 }
10378 else
10379 o->flags |= SEC_EXCLUDE;
10380 }
10381 }
10382
10383 /* Count up the number of relocations we will output for each output
10384 section, so that we know the sizes of the reloc sections. We
10385 also figure out some maximum sizes. */
10386 max_contents_size = 0;
10387 max_external_reloc_size = 0;
10388 max_internal_reloc_count = 0;
10389 max_sym_count = 0;
10390 max_sym_shndx_count = 0;
10391 merged = FALSE;
10392 for (o = abfd->sections; o != NULL; o = o->next)
10393 {
10394 struct bfd_elf_section_data *esdo = elf_section_data (o);
10395 o->reloc_count = 0;
10396
10397 for (p = o->map_head.link_order; p != NULL; p = p->next)
10398 {
10399 unsigned int reloc_count = 0;
10400 struct bfd_elf_section_data *esdi = NULL;
10401
10402 if (p->type == bfd_section_reloc_link_order
10403 || p->type == bfd_symbol_reloc_link_order)
10404 reloc_count = 1;
10405 else if (p->type == bfd_indirect_link_order)
10406 {
10407 asection *sec;
10408
10409 sec = p->u.indirect.section;
10410 esdi = elf_section_data (sec);
10411
10412 /* Mark all sections which are to be included in the
10413 link. This will normally be every section. We need
10414 to do this so that we can identify any sections which
10415 the linker has decided to not include. */
10416 sec->linker_mark = TRUE;
10417
10418 if (sec->flags & SEC_MERGE)
10419 merged = TRUE;
10420
10421 if (info->relocatable || info->emitrelocations)
10422 reloc_count = sec->reloc_count;
10423 else if (bed->elf_backend_count_relocs)
10424 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10425
10426 if (sec->rawsize > max_contents_size)
10427 max_contents_size = sec->rawsize;
10428 if (sec->size > max_contents_size)
10429 max_contents_size = sec->size;
10430
10431 /* We are interested in just local symbols, not all
10432 symbols. */
10433 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10434 && (sec->owner->flags & DYNAMIC) == 0)
10435 {
10436 size_t sym_count;
10437
10438 if (elf_bad_symtab (sec->owner))
10439 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10440 / bed->s->sizeof_sym);
10441 else
10442 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10443
10444 if (sym_count > max_sym_count)
10445 max_sym_count = sym_count;
10446
10447 if (sym_count > max_sym_shndx_count
10448 && elf_symtab_shndx (sec->owner) != 0)
10449 max_sym_shndx_count = sym_count;
10450
10451 if ((sec->flags & SEC_RELOC) != 0)
10452 {
10453 size_t ext_size = 0;
10454
10455 if (esdi->rel.hdr != NULL)
10456 ext_size = esdi->rel.hdr->sh_size;
10457 if (esdi->rela.hdr != NULL)
10458 ext_size += esdi->rela.hdr->sh_size;
10459
10460 if (ext_size > max_external_reloc_size)
10461 max_external_reloc_size = ext_size;
10462 if (sec->reloc_count > max_internal_reloc_count)
10463 max_internal_reloc_count = sec->reloc_count;
10464 }
10465 }
10466 }
10467
10468 if (reloc_count == 0)
10469 continue;
10470
10471 o->reloc_count += reloc_count;
10472
10473 if (p->type == bfd_indirect_link_order
10474 && (info->relocatable || info->emitrelocations))
10475 {
10476 if (esdi->rel.hdr)
10477 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10478 if (esdi->rela.hdr)
10479 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10480 }
10481 else
10482 {
10483 if (o->use_rela_p)
10484 esdo->rela.count += reloc_count;
10485 else
10486 esdo->rel.count += reloc_count;
10487 }
10488 }
10489
10490 if (o->reloc_count > 0)
10491 o->flags |= SEC_RELOC;
10492 else
10493 {
10494 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10495 set it (this is probably a bug) and if it is set
10496 assign_section_numbers will create a reloc section. */
10497 o->flags &=~ SEC_RELOC;
10498 }
10499
10500 /* If the SEC_ALLOC flag is not set, force the section VMA to
10501 zero. This is done in elf_fake_sections as well, but forcing
10502 the VMA to 0 here will ensure that relocs against these
10503 sections are handled correctly. */
10504 if ((o->flags & SEC_ALLOC) == 0
10505 && ! o->user_set_vma)
10506 o->vma = 0;
10507 }
10508
10509 if (! info->relocatable && merged)
10510 elf_link_hash_traverse (elf_hash_table (info),
10511 _bfd_elf_link_sec_merge_syms, abfd);
10512
10513 /* Figure out the file positions for everything but the symbol table
10514 and the relocs. We set symcount to force assign_section_numbers
10515 to create a symbol table. */
10516 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10517 BFD_ASSERT (! abfd->output_has_begun);
10518 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10519 goto error_return;
10520
10521 /* Set sizes, and assign file positions for reloc sections. */
10522 for (o = abfd->sections; o != NULL; o = o->next)
10523 {
10524 struct bfd_elf_section_data *esdo = elf_section_data (o);
10525 if ((o->flags & SEC_RELOC) != 0)
10526 {
10527 if (esdo->rel.hdr
10528 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10529 goto error_return;
10530
10531 if (esdo->rela.hdr
10532 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10533 goto error_return;
10534 }
10535
10536 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10537 to count upwards while actually outputting the relocations. */
10538 esdo->rel.count = 0;
10539 esdo->rela.count = 0;
10540 }
10541
10542 _bfd_elf_assign_file_positions_for_relocs (abfd);
10543
10544 /* We have now assigned file positions for all the sections except
10545 .symtab and .strtab. We start the .symtab section at the current
10546 file position, and write directly to it. We build the .strtab
10547 section in memory. */
10548 bfd_get_symcount (abfd) = 0;
10549 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10550 /* sh_name is set in prep_headers. */
10551 symtab_hdr->sh_type = SHT_SYMTAB;
10552 /* sh_flags, sh_addr and sh_size all start off zero. */
10553 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10554 /* sh_link is set in assign_section_numbers. */
10555 /* sh_info is set below. */
10556 /* sh_offset is set just below. */
10557 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10558
10559 off = elf_tdata (abfd)->next_file_pos;
10560 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10561
10562 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10563 incorrect. We do not yet know the size of the .symtab section.
10564 We correct next_file_pos below, after we do know the size. */
10565
10566 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10567 continuously seeking to the right position in the file. */
10568 if (! info->keep_memory || max_sym_count < 20)
10569 finfo.symbuf_size = 20;
10570 else
10571 finfo.symbuf_size = max_sym_count;
10572 amt = finfo.symbuf_size;
10573 amt *= bed->s->sizeof_sym;
10574 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10575 if (finfo.symbuf == NULL)
10576 goto error_return;
10577 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10578 {
10579 /* Wild guess at number of output symbols. realloc'd as needed. */
10580 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10581 finfo.shndxbuf_size = amt;
10582 amt *= sizeof (Elf_External_Sym_Shndx);
10583 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10584 if (finfo.symshndxbuf == NULL)
10585 goto error_return;
10586 }
10587
10588 /* Start writing out the symbol table. The first symbol is always a
10589 dummy symbol. */
10590 if (info->strip != strip_all
10591 || emit_relocs)
10592 {
10593 elfsym.st_value = 0;
10594 elfsym.st_size = 0;
10595 elfsym.st_info = 0;
10596 elfsym.st_other = 0;
10597 elfsym.st_shndx = SHN_UNDEF;
10598 elfsym.st_target_internal = 0;
10599 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10600 NULL) != 1)
10601 goto error_return;
10602 }
10603
10604 /* Output a symbol for each section. We output these even if we are
10605 discarding local symbols, since they are used for relocs. These
10606 symbols have no names. We store the index of each one in the
10607 index field of the section, so that we can find it again when
10608 outputting relocs. */
10609 if (info->strip != strip_all
10610 || emit_relocs)
10611 {
10612 elfsym.st_size = 0;
10613 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10614 elfsym.st_other = 0;
10615 elfsym.st_value = 0;
10616 elfsym.st_target_internal = 0;
10617 for (i = 1; i < elf_numsections (abfd); i++)
10618 {
10619 o = bfd_section_from_elf_index (abfd, i);
10620 if (o != NULL)
10621 {
10622 o->target_index = bfd_get_symcount (abfd);
10623 elfsym.st_shndx = i;
10624 if (!info->relocatable)
10625 elfsym.st_value = o->vma;
10626 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10627 goto error_return;
10628 }
10629 }
10630 }
10631
10632 /* Allocate some memory to hold information read in from the input
10633 files. */
10634 if (max_contents_size != 0)
10635 {
10636 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10637 if (finfo.contents == NULL)
10638 goto error_return;
10639 }
10640
10641 if (max_external_reloc_size != 0)
10642 {
10643 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10644 if (finfo.external_relocs == NULL)
10645 goto error_return;
10646 }
10647
10648 if (max_internal_reloc_count != 0)
10649 {
10650 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10651 amt *= sizeof (Elf_Internal_Rela);
10652 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10653 if (finfo.internal_relocs == NULL)
10654 goto error_return;
10655 }
10656
10657 if (max_sym_count != 0)
10658 {
10659 amt = max_sym_count * bed->s->sizeof_sym;
10660 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10661 if (finfo.external_syms == NULL)
10662 goto error_return;
10663
10664 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10665 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10666 if (finfo.internal_syms == NULL)
10667 goto error_return;
10668
10669 amt = max_sym_count * sizeof (long);
10670 finfo.indices = (long int *) bfd_malloc (amt);
10671 if (finfo.indices == NULL)
10672 goto error_return;
10673
10674 amt = max_sym_count * sizeof (asection *);
10675 finfo.sections = (asection **) bfd_malloc (amt);
10676 if (finfo.sections == NULL)
10677 goto error_return;
10678 }
10679
10680 if (max_sym_shndx_count != 0)
10681 {
10682 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10683 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10684 if (finfo.locsym_shndx == NULL)
10685 goto error_return;
10686 }
10687
10688 if (elf_hash_table (info)->tls_sec)
10689 {
10690 bfd_vma base, end = 0;
10691 asection *sec;
10692
10693 for (sec = elf_hash_table (info)->tls_sec;
10694 sec && (sec->flags & SEC_THREAD_LOCAL);
10695 sec = sec->next)
10696 {
10697 bfd_size_type size = sec->size;
10698
10699 if (size == 0
10700 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10701 {
10702 struct bfd_link_order *ord = sec->map_tail.link_order;
10703
10704 if (ord != NULL)
10705 size = ord->offset + ord->size;
10706 }
10707 end = sec->vma + size;
10708 }
10709 base = elf_hash_table (info)->tls_sec->vma;
10710 /* Only align end of TLS section if static TLS doesn't have special
10711 alignment requirements. */
10712 if (bed->static_tls_alignment == 1)
10713 end = align_power (end,
10714 elf_hash_table (info)->tls_sec->alignment_power);
10715 elf_hash_table (info)->tls_size = end - base;
10716 }
10717
10718 /* Reorder SHF_LINK_ORDER sections. */
10719 for (o = abfd->sections; o != NULL; o = o->next)
10720 {
10721 if (!elf_fixup_link_order (abfd, o))
10722 return FALSE;
10723 }
10724
10725 /* Since ELF permits relocations to be against local symbols, we
10726 must have the local symbols available when we do the relocations.
10727 Since we would rather only read the local symbols once, and we
10728 would rather not keep them in memory, we handle all the
10729 relocations for a single input file at the same time.
10730
10731 Unfortunately, there is no way to know the total number of local
10732 symbols until we have seen all of them, and the local symbol
10733 indices precede the global symbol indices. This means that when
10734 we are generating relocatable output, and we see a reloc against
10735 a global symbol, we can not know the symbol index until we have
10736 finished examining all the local symbols to see which ones we are
10737 going to output. To deal with this, we keep the relocations in
10738 memory, and don't output them until the end of the link. This is
10739 an unfortunate waste of memory, but I don't see a good way around
10740 it. Fortunately, it only happens when performing a relocatable
10741 link, which is not the common case. FIXME: If keep_memory is set
10742 we could write the relocs out and then read them again; I don't
10743 know how bad the memory loss will be. */
10744
10745 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10746 sub->output_has_begun = FALSE;
10747 for (o = abfd->sections; o != NULL; o = o->next)
10748 {
10749 for (p = o->map_head.link_order; p != NULL; p = p->next)
10750 {
10751 if (p->type == bfd_indirect_link_order
10752 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10753 == bfd_target_elf_flavour)
10754 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10755 {
10756 if (! sub->output_has_begun)
10757 {
10758 if (! elf_link_input_bfd (&finfo, sub))
10759 goto error_return;
10760 sub->output_has_begun = TRUE;
10761 }
10762 }
10763 else if (p->type == bfd_section_reloc_link_order
10764 || p->type == bfd_symbol_reloc_link_order)
10765 {
10766 if (! elf_reloc_link_order (abfd, info, o, p))
10767 goto error_return;
10768 }
10769 else
10770 {
10771 if (! _bfd_default_link_order (abfd, info, o, p))
10772 {
10773 if (p->type == bfd_indirect_link_order
10774 && (bfd_get_flavour (sub)
10775 == bfd_target_elf_flavour)
10776 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10777 != bed->s->elfclass))
10778 {
10779 const char *iclass, *oclass;
10780
10781 if (bed->s->elfclass == ELFCLASS64)
10782 {
10783 iclass = "ELFCLASS32";
10784 oclass = "ELFCLASS64";
10785 }
10786 else
10787 {
10788 iclass = "ELFCLASS64";
10789 oclass = "ELFCLASS32";
10790 }
10791
10792 bfd_set_error (bfd_error_wrong_format);
10793 (*_bfd_error_handler)
10794 (_("%B: file class %s incompatible with %s"),
10795 sub, iclass, oclass);
10796 }
10797
10798 goto error_return;
10799 }
10800 }
10801 }
10802 }
10803
10804 /* Free symbol buffer if needed. */
10805 if (!info->reduce_memory_overheads)
10806 {
10807 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10808 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10809 && elf_tdata (sub)->symbuf)
10810 {
10811 free (elf_tdata (sub)->symbuf);
10812 elf_tdata (sub)->symbuf = NULL;
10813 }
10814 }
10815
10816 /* Output any global symbols that got converted to local in a
10817 version script or due to symbol visibility. We do this in a
10818 separate step since ELF requires all local symbols to appear
10819 prior to any global symbols. FIXME: We should only do this if
10820 some global symbols were, in fact, converted to become local.
10821 FIXME: Will this work correctly with the Irix 5 linker? */
10822 eoinfo.failed = FALSE;
10823 eoinfo.finfo = &finfo;
10824 eoinfo.localsyms = TRUE;
10825 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10826 &eoinfo);
10827 if (eoinfo.failed)
10828 return FALSE;
10829
10830 /* If backend needs to output some local symbols not present in the hash
10831 table, do it now. */
10832 if (bed->elf_backend_output_arch_local_syms)
10833 {
10834 typedef int (*out_sym_func)
10835 (void *, const char *, Elf_Internal_Sym *, asection *,
10836 struct elf_link_hash_entry *);
10837
10838 if (! ((*bed->elf_backend_output_arch_local_syms)
10839 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10840 return FALSE;
10841 }
10842
10843 /* That wrote out all the local symbols. Finish up the symbol table
10844 with the global symbols. Even if we want to strip everything we
10845 can, we still need to deal with those global symbols that got
10846 converted to local in a version script. */
10847
10848 /* The sh_info field records the index of the first non local symbol. */
10849 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10850
10851 if (dynamic
10852 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10853 {
10854 Elf_Internal_Sym sym;
10855 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10856 long last_local = 0;
10857
10858 /* Write out the section symbols for the output sections. */
10859 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10860 {
10861 asection *s;
10862
10863 sym.st_size = 0;
10864 sym.st_name = 0;
10865 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10866 sym.st_other = 0;
10867 sym.st_target_internal = 0;
10868
10869 for (s = abfd->sections; s != NULL; s = s->next)
10870 {
10871 int indx;
10872 bfd_byte *dest;
10873 long dynindx;
10874
10875 dynindx = elf_section_data (s)->dynindx;
10876 if (dynindx <= 0)
10877 continue;
10878 indx = elf_section_data (s)->this_idx;
10879 BFD_ASSERT (indx > 0);
10880 sym.st_shndx = indx;
10881 if (! check_dynsym (abfd, &sym))
10882 return FALSE;
10883 sym.st_value = s->vma;
10884 dest = dynsym + dynindx * bed->s->sizeof_sym;
10885 if (last_local < dynindx)
10886 last_local = dynindx;
10887 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10888 }
10889 }
10890
10891 /* Write out the local dynsyms. */
10892 if (elf_hash_table (info)->dynlocal)
10893 {
10894 struct elf_link_local_dynamic_entry *e;
10895 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10896 {
10897 asection *s;
10898 bfd_byte *dest;
10899
10900 /* Copy the internal symbol and turn off visibility.
10901 Note that we saved a word of storage and overwrote
10902 the original st_name with the dynstr_index. */
10903 sym = e->isym;
10904 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10905
10906 s = bfd_section_from_elf_index (e->input_bfd,
10907 e->isym.st_shndx);
10908 if (s != NULL)
10909 {
10910 sym.st_shndx =
10911 elf_section_data (s->output_section)->this_idx;
10912 if (! check_dynsym (abfd, &sym))
10913 return FALSE;
10914 sym.st_value = (s->output_section->vma
10915 + s->output_offset
10916 + e->isym.st_value);
10917 }
10918
10919 if (last_local < e->dynindx)
10920 last_local = e->dynindx;
10921
10922 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10923 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10924 }
10925 }
10926
10927 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10928 last_local + 1;
10929 }
10930
10931 /* We get the global symbols from the hash table. */
10932 eoinfo.failed = FALSE;
10933 eoinfo.localsyms = FALSE;
10934 eoinfo.finfo = &finfo;
10935 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10936 &eoinfo);
10937 if (eoinfo.failed)
10938 return FALSE;
10939
10940 /* If backend needs to output some symbols not present in the hash
10941 table, do it now. */
10942 if (bed->elf_backend_output_arch_syms)
10943 {
10944 typedef int (*out_sym_func)
10945 (void *, const char *, Elf_Internal_Sym *, asection *,
10946 struct elf_link_hash_entry *);
10947
10948 if (! ((*bed->elf_backend_output_arch_syms)
10949 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10950 return FALSE;
10951 }
10952
10953 /* Flush all symbols to the file. */
10954 if (! elf_link_flush_output_syms (&finfo, bed))
10955 return FALSE;
10956
10957 /* Now we know the size of the symtab section. */
10958 off += symtab_hdr->sh_size;
10959
10960 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10961 if (symtab_shndx_hdr->sh_name != 0)
10962 {
10963 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10964 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10965 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10966 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10967 symtab_shndx_hdr->sh_size = amt;
10968
10969 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10970 off, TRUE);
10971
10972 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10973 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10974 return FALSE;
10975 }
10976
10977
10978 /* Finish up and write out the symbol string table (.strtab)
10979 section. */
10980 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10981 /* sh_name was set in prep_headers. */
10982 symstrtab_hdr->sh_type = SHT_STRTAB;
10983 symstrtab_hdr->sh_flags = 0;
10984 symstrtab_hdr->sh_addr = 0;
10985 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10986 symstrtab_hdr->sh_entsize = 0;
10987 symstrtab_hdr->sh_link = 0;
10988 symstrtab_hdr->sh_info = 0;
10989 /* sh_offset is set just below. */
10990 symstrtab_hdr->sh_addralign = 1;
10991
10992 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10993 elf_tdata (abfd)->next_file_pos = off;
10994
10995 if (bfd_get_symcount (abfd) > 0)
10996 {
10997 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10998 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10999 return FALSE;
11000 }
11001
11002 /* Adjust the relocs to have the correct symbol indices. */
11003 for (o = abfd->sections; o != NULL; o = o->next)
11004 {
11005 struct bfd_elf_section_data *esdo = elf_section_data (o);
11006 if ((o->flags & SEC_RELOC) == 0)
11007 continue;
11008
11009 if (esdo->rel.hdr != NULL)
11010 elf_link_adjust_relocs (abfd, &esdo->rel);
11011 if (esdo->rela.hdr != NULL)
11012 elf_link_adjust_relocs (abfd, &esdo->rela);
11013
11014 /* Set the reloc_count field to 0 to prevent write_relocs from
11015 trying to swap the relocs out itself. */
11016 o->reloc_count = 0;
11017 }
11018
11019 if (dynamic && info->combreloc && dynobj != NULL)
11020 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11021
11022 /* If we are linking against a dynamic object, or generating a
11023 shared library, finish up the dynamic linking information. */
11024 if (dynamic)
11025 {
11026 bfd_byte *dyncon, *dynconend;
11027
11028 /* Fix up .dynamic entries. */
11029 o = bfd_get_section_by_name (dynobj, ".dynamic");
11030 BFD_ASSERT (o != NULL);
11031
11032 dyncon = o->contents;
11033 dynconend = o->contents + o->size;
11034 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11035 {
11036 Elf_Internal_Dyn dyn;
11037 const char *name;
11038 unsigned int type;
11039
11040 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11041
11042 switch (dyn.d_tag)
11043 {
11044 default:
11045 continue;
11046 case DT_NULL:
11047 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11048 {
11049 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11050 {
11051 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11052 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11053 default: continue;
11054 }
11055 dyn.d_un.d_val = relativecount;
11056 relativecount = 0;
11057 break;
11058 }
11059 continue;
11060
11061 case DT_INIT:
11062 name = info->init_function;
11063 goto get_sym;
11064 case DT_FINI:
11065 name = info->fini_function;
11066 get_sym:
11067 {
11068 struct elf_link_hash_entry *h;
11069
11070 h = elf_link_hash_lookup (elf_hash_table (info), name,
11071 FALSE, FALSE, TRUE);
11072 if (h != NULL
11073 && (h->root.type == bfd_link_hash_defined
11074 || h->root.type == bfd_link_hash_defweak))
11075 {
11076 dyn.d_un.d_ptr = h->root.u.def.value;
11077 o = h->root.u.def.section;
11078 if (o->output_section != NULL)
11079 dyn.d_un.d_ptr += (o->output_section->vma
11080 + o->output_offset);
11081 else
11082 {
11083 /* The symbol is imported from another shared
11084 library and does not apply to this one. */
11085 dyn.d_un.d_ptr = 0;
11086 }
11087 break;
11088 }
11089 }
11090 continue;
11091
11092 case DT_PREINIT_ARRAYSZ:
11093 name = ".preinit_array";
11094 goto get_size;
11095 case DT_INIT_ARRAYSZ:
11096 name = ".init_array";
11097 goto get_size;
11098 case DT_FINI_ARRAYSZ:
11099 name = ".fini_array";
11100 get_size:
11101 o = bfd_get_section_by_name (abfd, name);
11102 if (o == NULL)
11103 {
11104 (*_bfd_error_handler)
11105 (_("%B: could not find output section %s"), abfd, name);
11106 goto error_return;
11107 }
11108 if (o->size == 0)
11109 (*_bfd_error_handler)
11110 (_("warning: %s section has zero size"), name);
11111 dyn.d_un.d_val = o->size;
11112 break;
11113
11114 case DT_PREINIT_ARRAY:
11115 name = ".preinit_array";
11116 goto get_vma;
11117 case DT_INIT_ARRAY:
11118 name = ".init_array";
11119 goto get_vma;
11120 case DT_FINI_ARRAY:
11121 name = ".fini_array";
11122 goto get_vma;
11123
11124 case DT_HASH:
11125 name = ".hash";
11126 goto get_vma;
11127 case DT_GNU_HASH:
11128 name = ".gnu.hash";
11129 goto get_vma;
11130 case DT_STRTAB:
11131 name = ".dynstr";
11132 goto get_vma;
11133 case DT_SYMTAB:
11134 name = ".dynsym";
11135 goto get_vma;
11136 case DT_VERDEF:
11137 name = ".gnu.version_d";
11138 goto get_vma;
11139 case DT_VERNEED:
11140 name = ".gnu.version_r";
11141 goto get_vma;
11142 case DT_VERSYM:
11143 name = ".gnu.version";
11144 get_vma:
11145 o = bfd_get_section_by_name (abfd, name);
11146 if (o == NULL)
11147 {
11148 (*_bfd_error_handler)
11149 (_("%B: could not find output section %s"), abfd, name);
11150 goto error_return;
11151 }
11152 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11153 {
11154 (*_bfd_error_handler)
11155 (_("warning: section '%s' is being made into a note"), name);
11156 bfd_set_error (bfd_error_nonrepresentable_section);
11157 goto error_return;
11158 }
11159 dyn.d_un.d_ptr = o->vma;
11160 break;
11161
11162 case DT_REL:
11163 case DT_RELA:
11164 case DT_RELSZ:
11165 case DT_RELASZ:
11166 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11167 type = SHT_REL;
11168 else
11169 type = SHT_RELA;
11170 dyn.d_un.d_val = 0;
11171 dyn.d_un.d_ptr = 0;
11172 for (i = 1; i < elf_numsections (abfd); i++)
11173 {
11174 Elf_Internal_Shdr *hdr;
11175
11176 hdr = elf_elfsections (abfd)[i];
11177 if (hdr->sh_type == type
11178 && (hdr->sh_flags & SHF_ALLOC) != 0)
11179 {
11180 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11181 dyn.d_un.d_val += hdr->sh_size;
11182 else
11183 {
11184 if (dyn.d_un.d_ptr == 0
11185 || hdr->sh_addr < dyn.d_un.d_ptr)
11186 dyn.d_un.d_ptr = hdr->sh_addr;
11187 }
11188 }
11189 }
11190 break;
11191 }
11192 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11193 }
11194 }
11195
11196 /* If we have created any dynamic sections, then output them. */
11197 if (dynobj != NULL)
11198 {
11199 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11200 goto error_return;
11201
11202 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11203 if (info->warn_shared_textrel && info->shared)
11204 {
11205 bfd_byte *dyncon, *dynconend;
11206
11207 /* Fix up .dynamic entries. */
11208 o = bfd_get_section_by_name (dynobj, ".dynamic");
11209 BFD_ASSERT (o != NULL);
11210
11211 dyncon = o->contents;
11212 dynconend = o->contents + o->size;
11213 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11214 {
11215 Elf_Internal_Dyn dyn;
11216
11217 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11218
11219 if (dyn.d_tag == DT_TEXTREL)
11220 {
11221 info->callbacks->einfo
11222 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11223 break;
11224 }
11225 }
11226 }
11227
11228 for (o = dynobj->sections; o != NULL; o = o->next)
11229 {
11230 if ((o->flags & SEC_HAS_CONTENTS) == 0
11231 || o->size == 0
11232 || o->output_section == bfd_abs_section_ptr)
11233 continue;
11234 if ((o->flags & SEC_LINKER_CREATED) == 0)
11235 {
11236 /* At this point, we are only interested in sections
11237 created by _bfd_elf_link_create_dynamic_sections. */
11238 continue;
11239 }
11240 if (elf_hash_table (info)->stab_info.stabstr == o)
11241 continue;
11242 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11243 continue;
11244 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11245 != SHT_STRTAB)
11246 && (strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0))
11247 {
11248 /* FIXME: octets_per_byte. */
11249 if (! bfd_set_section_contents (abfd, o->output_section,
11250 o->contents,
11251 (file_ptr) o->output_offset,
11252 o->size))
11253 goto error_return;
11254 }
11255 else
11256 {
11257 /* The contents of the .dynstr section are actually in a
11258 stringtab. */
11259 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11260 if (bfd_seek (abfd, off, SEEK_SET) != 0
11261 || ! _bfd_elf_strtab_emit (abfd,
11262 elf_hash_table (info)->dynstr))
11263 goto error_return;
11264 }
11265 }
11266 }
11267
11268 if (info->relocatable)
11269 {
11270 bfd_boolean failed = FALSE;
11271
11272 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11273 if (failed)
11274 goto error_return;
11275 }
11276
11277 /* If we have optimized stabs strings, output them. */
11278 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11279 {
11280 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11281 goto error_return;
11282 }
11283
11284 if (info->eh_frame_hdr)
11285 {
11286 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11287 goto error_return;
11288 }
11289
11290 if (finfo.symstrtab != NULL)
11291 _bfd_stringtab_free (finfo.symstrtab);
11292 if (finfo.contents != NULL)
11293 free (finfo.contents);
11294 if (finfo.external_relocs != NULL)
11295 free (finfo.external_relocs);
11296 if (finfo.internal_relocs != NULL)
11297 free (finfo.internal_relocs);
11298 if (finfo.external_syms != NULL)
11299 free (finfo.external_syms);
11300 if (finfo.locsym_shndx != NULL)
11301 free (finfo.locsym_shndx);
11302 if (finfo.internal_syms != NULL)
11303 free (finfo.internal_syms);
11304 if (finfo.indices != NULL)
11305 free (finfo.indices);
11306 if (finfo.sections != NULL)
11307 free (finfo.sections);
11308 if (finfo.symbuf != NULL)
11309 free (finfo.symbuf);
11310 if (finfo.symshndxbuf != NULL)
11311 free (finfo.symshndxbuf);
11312 for (o = abfd->sections; o != NULL; o = o->next)
11313 {
11314 struct bfd_elf_section_data *esdo = elf_section_data (o);
11315 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11316 free (esdo->rel.hashes);
11317 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11318 free (esdo->rela.hashes);
11319 }
11320
11321 elf_tdata (abfd)->linker = TRUE;
11322
11323 if (attr_section)
11324 {
11325 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11326 if (contents == NULL)
11327 return FALSE; /* Bail out and fail. */
11328 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11329 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11330 free (contents);
11331 }
11332
11333 return TRUE;
11334
11335 error_return:
11336 if (finfo.symstrtab != NULL)
11337 _bfd_stringtab_free (finfo.symstrtab);
11338 if (finfo.contents != NULL)
11339 free (finfo.contents);
11340 if (finfo.external_relocs != NULL)
11341 free (finfo.external_relocs);
11342 if (finfo.internal_relocs != NULL)
11343 free (finfo.internal_relocs);
11344 if (finfo.external_syms != NULL)
11345 free (finfo.external_syms);
11346 if (finfo.locsym_shndx != NULL)
11347 free (finfo.locsym_shndx);
11348 if (finfo.internal_syms != NULL)
11349 free (finfo.internal_syms);
11350 if (finfo.indices != NULL)
11351 free (finfo.indices);
11352 if (finfo.sections != NULL)
11353 free (finfo.sections);
11354 if (finfo.symbuf != NULL)
11355 free (finfo.symbuf);
11356 if (finfo.symshndxbuf != NULL)
11357 free (finfo.symshndxbuf);
11358 for (o = abfd->sections; o != NULL; o = o->next)
11359 {
11360 struct bfd_elf_section_data *esdo = elf_section_data (o);
11361 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11362 free (esdo->rel.hashes);
11363 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11364 free (esdo->rela.hashes);
11365 }
11366
11367 return FALSE;
11368 }
11369 \f
11370 /* Initialize COOKIE for input bfd ABFD. */
11371
11372 static bfd_boolean
11373 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11374 struct bfd_link_info *info, bfd *abfd)
11375 {
11376 Elf_Internal_Shdr *symtab_hdr;
11377 const struct elf_backend_data *bed;
11378
11379 bed = get_elf_backend_data (abfd);
11380 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11381
11382 cookie->abfd = abfd;
11383 cookie->sym_hashes = elf_sym_hashes (abfd);
11384 cookie->bad_symtab = elf_bad_symtab (abfd);
11385 if (cookie->bad_symtab)
11386 {
11387 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11388 cookie->extsymoff = 0;
11389 }
11390 else
11391 {
11392 cookie->locsymcount = symtab_hdr->sh_info;
11393 cookie->extsymoff = symtab_hdr->sh_info;
11394 }
11395
11396 if (bed->s->arch_size == 32)
11397 cookie->r_sym_shift = 8;
11398 else
11399 cookie->r_sym_shift = 32;
11400
11401 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11402 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11403 {
11404 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11405 cookie->locsymcount, 0,
11406 NULL, NULL, NULL);
11407 if (cookie->locsyms == NULL)
11408 {
11409 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11410 return FALSE;
11411 }
11412 if (info->keep_memory)
11413 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11414 }
11415 return TRUE;
11416 }
11417
11418 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11419
11420 static void
11421 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11422 {
11423 Elf_Internal_Shdr *symtab_hdr;
11424
11425 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11426 if (cookie->locsyms != NULL
11427 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11428 free (cookie->locsyms);
11429 }
11430
11431 /* Initialize the relocation information in COOKIE for input section SEC
11432 of input bfd ABFD. */
11433
11434 static bfd_boolean
11435 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11436 struct bfd_link_info *info, bfd *abfd,
11437 asection *sec)
11438 {
11439 const struct elf_backend_data *bed;
11440
11441 if (sec->reloc_count == 0)
11442 {
11443 cookie->rels = NULL;
11444 cookie->relend = NULL;
11445 }
11446 else
11447 {
11448 bed = get_elf_backend_data (abfd);
11449
11450 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11451 info->keep_memory);
11452 if (cookie->rels == NULL)
11453 return FALSE;
11454 cookie->rel = cookie->rels;
11455 cookie->relend = (cookie->rels
11456 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11457 }
11458 cookie->rel = cookie->rels;
11459 return TRUE;
11460 }
11461
11462 /* Free the memory allocated by init_reloc_cookie_rels,
11463 if appropriate. */
11464
11465 static void
11466 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11467 asection *sec)
11468 {
11469 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11470 free (cookie->rels);
11471 }
11472
11473 /* Initialize the whole of COOKIE for input section SEC. */
11474
11475 static bfd_boolean
11476 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11477 struct bfd_link_info *info,
11478 asection *sec)
11479 {
11480 if (!init_reloc_cookie (cookie, info, sec->owner))
11481 goto error1;
11482 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11483 goto error2;
11484 return TRUE;
11485
11486 error2:
11487 fini_reloc_cookie (cookie, sec->owner);
11488 error1:
11489 return FALSE;
11490 }
11491
11492 /* Free the memory allocated by init_reloc_cookie_for_section,
11493 if appropriate. */
11494
11495 static void
11496 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11497 asection *sec)
11498 {
11499 fini_reloc_cookie_rels (cookie, sec);
11500 fini_reloc_cookie (cookie, sec->owner);
11501 }
11502 \f
11503 /* Garbage collect unused sections. */
11504
11505 /* Default gc_mark_hook. */
11506
11507 asection *
11508 _bfd_elf_gc_mark_hook (asection *sec,
11509 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11510 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11511 struct elf_link_hash_entry *h,
11512 Elf_Internal_Sym *sym)
11513 {
11514 const char *sec_name;
11515
11516 if (h != NULL)
11517 {
11518 switch (h->root.type)
11519 {
11520 case bfd_link_hash_defined:
11521 case bfd_link_hash_defweak:
11522 return h->root.u.def.section;
11523
11524 case bfd_link_hash_common:
11525 return h->root.u.c.p->section;
11526
11527 case bfd_link_hash_undefined:
11528 case bfd_link_hash_undefweak:
11529 /* To work around a glibc bug, keep all XXX input sections
11530 when there is an as yet undefined reference to __start_XXX
11531 or __stop_XXX symbols. The linker will later define such
11532 symbols for orphan input sections that have a name
11533 representable as a C identifier. */
11534 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11535 sec_name = h->root.root.string + 8;
11536 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11537 sec_name = h->root.root.string + 7;
11538 else
11539 sec_name = NULL;
11540
11541 if (sec_name && *sec_name != '\0')
11542 {
11543 bfd *i;
11544
11545 for (i = info->input_bfds; i; i = i->link_next)
11546 {
11547 sec = bfd_get_section_by_name (i, sec_name);
11548 if (sec)
11549 sec->flags |= SEC_KEEP;
11550 }
11551 }
11552 break;
11553
11554 default:
11555 break;
11556 }
11557 }
11558 else
11559 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11560
11561 return NULL;
11562 }
11563
11564 /* COOKIE->rel describes a relocation against section SEC, which is
11565 a section we've decided to keep. Return the section that contains
11566 the relocation symbol, or NULL if no section contains it. */
11567
11568 asection *
11569 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11570 elf_gc_mark_hook_fn gc_mark_hook,
11571 struct elf_reloc_cookie *cookie)
11572 {
11573 unsigned long r_symndx;
11574 struct elf_link_hash_entry *h;
11575
11576 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11577 if (r_symndx == STN_UNDEF)
11578 return NULL;
11579
11580 if (r_symndx >= cookie->locsymcount
11581 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11582 {
11583 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11584 while (h->root.type == bfd_link_hash_indirect
11585 || h->root.type == bfd_link_hash_warning)
11586 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11587 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11588 }
11589
11590 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11591 &cookie->locsyms[r_symndx]);
11592 }
11593
11594 /* COOKIE->rel describes a relocation against section SEC, which is
11595 a section we've decided to keep. Mark the section that contains
11596 the relocation symbol. */
11597
11598 bfd_boolean
11599 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11600 asection *sec,
11601 elf_gc_mark_hook_fn gc_mark_hook,
11602 struct elf_reloc_cookie *cookie)
11603 {
11604 asection *rsec;
11605
11606 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11607 if (rsec && !rsec->gc_mark)
11608 {
11609 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11610 rsec->gc_mark = 1;
11611 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11612 return FALSE;
11613 }
11614 return TRUE;
11615 }
11616
11617 /* The mark phase of garbage collection. For a given section, mark
11618 it and any sections in this section's group, and all the sections
11619 which define symbols to which it refers. */
11620
11621 bfd_boolean
11622 _bfd_elf_gc_mark (struct bfd_link_info *info,
11623 asection *sec,
11624 elf_gc_mark_hook_fn gc_mark_hook)
11625 {
11626 bfd_boolean ret;
11627 asection *group_sec, *eh_frame;
11628
11629 sec->gc_mark = 1;
11630
11631 /* Mark all the sections in the group. */
11632 group_sec = elf_section_data (sec)->next_in_group;
11633 if (group_sec && !group_sec->gc_mark)
11634 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11635 return FALSE;
11636
11637 /* Look through the section relocs. */
11638 ret = TRUE;
11639 eh_frame = elf_eh_frame_section (sec->owner);
11640 if ((sec->flags & SEC_RELOC) != 0
11641 && sec->reloc_count > 0
11642 && sec != eh_frame)
11643 {
11644 struct elf_reloc_cookie cookie;
11645
11646 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11647 ret = FALSE;
11648 else
11649 {
11650 for (; cookie.rel < cookie.relend; cookie.rel++)
11651 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11652 {
11653 ret = FALSE;
11654 break;
11655 }
11656 fini_reloc_cookie_for_section (&cookie, sec);
11657 }
11658 }
11659
11660 if (ret && eh_frame && elf_fde_list (sec))
11661 {
11662 struct elf_reloc_cookie cookie;
11663
11664 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11665 ret = FALSE;
11666 else
11667 {
11668 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11669 gc_mark_hook, &cookie))
11670 ret = FALSE;
11671 fini_reloc_cookie_for_section (&cookie, eh_frame);
11672 }
11673 }
11674
11675 return ret;
11676 }
11677
11678 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11679
11680 struct elf_gc_sweep_symbol_info
11681 {
11682 struct bfd_link_info *info;
11683 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11684 bfd_boolean);
11685 };
11686
11687 static bfd_boolean
11688 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11689 {
11690 if (h->root.type == bfd_link_hash_warning)
11691 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11692
11693 if ((h->root.type == bfd_link_hash_defined
11694 || h->root.type == bfd_link_hash_defweak)
11695 && !h->root.u.def.section->gc_mark
11696 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11697 {
11698 struct elf_gc_sweep_symbol_info *inf =
11699 (struct elf_gc_sweep_symbol_info *) data;
11700 (*inf->hide_symbol) (inf->info, h, TRUE);
11701 }
11702
11703 return TRUE;
11704 }
11705
11706 /* The sweep phase of garbage collection. Remove all garbage sections. */
11707
11708 typedef bfd_boolean (*gc_sweep_hook_fn)
11709 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11710
11711 static bfd_boolean
11712 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11713 {
11714 bfd *sub;
11715 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11716 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11717 unsigned long section_sym_count;
11718 struct elf_gc_sweep_symbol_info sweep_info;
11719
11720 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11721 {
11722 asection *o;
11723
11724 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11725 continue;
11726
11727 for (o = sub->sections; o != NULL; o = o->next)
11728 {
11729 /* When any section in a section group is kept, we keep all
11730 sections in the section group. If the first member of
11731 the section group is excluded, we will also exclude the
11732 group section. */
11733 if (o->flags & SEC_GROUP)
11734 {
11735 asection *first = elf_next_in_group (o);
11736 o->gc_mark = first->gc_mark;
11737 }
11738 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11739 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11740 {
11741 /* Keep debug and special sections. */
11742 o->gc_mark = 1;
11743 }
11744
11745 if (o->gc_mark)
11746 continue;
11747
11748 /* Skip sweeping sections already excluded. */
11749 if (o->flags & SEC_EXCLUDE)
11750 continue;
11751
11752 /* Since this is early in the link process, it is simple
11753 to remove a section from the output. */
11754 o->flags |= SEC_EXCLUDE;
11755
11756 if (info->print_gc_sections && o->size != 0)
11757 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11758
11759 /* But we also have to update some of the relocation
11760 info we collected before. */
11761 if (gc_sweep_hook
11762 && (o->flags & SEC_RELOC) != 0
11763 && o->reloc_count > 0
11764 && !bfd_is_abs_section (o->output_section))
11765 {
11766 Elf_Internal_Rela *internal_relocs;
11767 bfd_boolean r;
11768
11769 internal_relocs
11770 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11771 info->keep_memory);
11772 if (internal_relocs == NULL)
11773 return FALSE;
11774
11775 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11776
11777 if (elf_section_data (o)->relocs != internal_relocs)
11778 free (internal_relocs);
11779
11780 if (!r)
11781 return FALSE;
11782 }
11783 }
11784 }
11785
11786 /* Remove the symbols that were in the swept sections from the dynamic
11787 symbol table. GCFIXME: Anyone know how to get them out of the
11788 static symbol table as well? */
11789 sweep_info.info = info;
11790 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11791 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11792 &sweep_info);
11793
11794 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11795 return TRUE;
11796 }
11797
11798 /* Propagate collected vtable information. This is called through
11799 elf_link_hash_traverse. */
11800
11801 static bfd_boolean
11802 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11803 {
11804 if (h->root.type == bfd_link_hash_warning)
11805 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11806
11807 /* Those that are not vtables. */
11808 if (h->vtable == NULL || h->vtable->parent == NULL)
11809 return TRUE;
11810
11811 /* Those vtables that do not have parents, we cannot merge. */
11812 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11813 return TRUE;
11814
11815 /* If we've already been done, exit. */
11816 if (h->vtable->used && h->vtable->used[-1])
11817 return TRUE;
11818
11819 /* Make sure the parent's table is up to date. */
11820 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11821
11822 if (h->vtable->used == NULL)
11823 {
11824 /* None of this table's entries were referenced. Re-use the
11825 parent's table. */
11826 h->vtable->used = h->vtable->parent->vtable->used;
11827 h->vtable->size = h->vtable->parent->vtable->size;
11828 }
11829 else
11830 {
11831 size_t n;
11832 bfd_boolean *cu, *pu;
11833
11834 /* Or the parent's entries into ours. */
11835 cu = h->vtable->used;
11836 cu[-1] = TRUE;
11837 pu = h->vtable->parent->vtable->used;
11838 if (pu != NULL)
11839 {
11840 const struct elf_backend_data *bed;
11841 unsigned int log_file_align;
11842
11843 bed = get_elf_backend_data (h->root.u.def.section->owner);
11844 log_file_align = bed->s->log_file_align;
11845 n = h->vtable->parent->vtable->size >> log_file_align;
11846 while (n--)
11847 {
11848 if (*pu)
11849 *cu = TRUE;
11850 pu++;
11851 cu++;
11852 }
11853 }
11854 }
11855
11856 return TRUE;
11857 }
11858
11859 static bfd_boolean
11860 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11861 {
11862 asection *sec;
11863 bfd_vma hstart, hend;
11864 Elf_Internal_Rela *relstart, *relend, *rel;
11865 const struct elf_backend_data *bed;
11866 unsigned int log_file_align;
11867
11868 if (h->root.type == bfd_link_hash_warning)
11869 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11870
11871 /* Take care of both those symbols that do not describe vtables as
11872 well as those that are not loaded. */
11873 if (h->vtable == NULL || h->vtable->parent == NULL)
11874 return TRUE;
11875
11876 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11877 || h->root.type == bfd_link_hash_defweak);
11878
11879 sec = h->root.u.def.section;
11880 hstart = h->root.u.def.value;
11881 hend = hstart + h->size;
11882
11883 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11884 if (!relstart)
11885 return *(bfd_boolean *) okp = FALSE;
11886 bed = get_elf_backend_data (sec->owner);
11887 log_file_align = bed->s->log_file_align;
11888
11889 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11890
11891 for (rel = relstart; rel < relend; ++rel)
11892 if (rel->r_offset >= hstart && rel->r_offset < hend)
11893 {
11894 /* If the entry is in use, do nothing. */
11895 if (h->vtable->used
11896 && (rel->r_offset - hstart) < h->vtable->size)
11897 {
11898 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11899 if (h->vtable->used[entry])
11900 continue;
11901 }
11902 /* Otherwise, kill it. */
11903 rel->r_offset = rel->r_info = rel->r_addend = 0;
11904 }
11905
11906 return TRUE;
11907 }
11908
11909 /* Mark sections containing dynamically referenced symbols. When
11910 building shared libraries, we must assume that any visible symbol is
11911 referenced. */
11912
11913 bfd_boolean
11914 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11915 {
11916 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11917
11918 if (h->root.type == bfd_link_hash_warning)
11919 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11920
11921 if ((h->root.type == bfd_link_hash_defined
11922 || h->root.type == bfd_link_hash_defweak)
11923 && (h->ref_dynamic
11924 || (!info->executable
11925 && h->def_regular
11926 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11927 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11928 h->root.u.def.section->flags |= SEC_KEEP;
11929
11930 return TRUE;
11931 }
11932
11933 /* Keep all sections containing symbols undefined on the command-line,
11934 and the section containing the entry symbol. */
11935
11936 void
11937 _bfd_elf_gc_keep (struct bfd_link_info *info)
11938 {
11939 struct bfd_sym_chain *sym;
11940
11941 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11942 {
11943 struct elf_link_hash_entry *h;
11944
11945 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11946 FALSE, FALSE, FALSE);
11947
11948 if (h != NULL
11949 && (h->root.type == bfd_link_hash_defined
11950 || h->root.type == bfd_link_hash_defweak)
11951 && !bfd_is_abs_section (h->root.u.def.section))
11952 h->root.u.def.section->flags |= SEC_KEEP;
11953 }
11954 }
11955
11956 /* Do mark and sweep of unused sections. */
11957
11958 bfd_boolean
11959 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11960 {
11961 bfd_boolean ok = TRUE;
11962 bfd *sub;
11963 elf_gc_mark_hook_fn gc_mark_hook;
11964 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11965
11966 if (!bed->can_gc_sections
11967 || !is_elf_hash_table (info->hash))
11968 {
11969 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11970 return TRUE;
11971 }
11972
11973 bed->gc_keep (info);
11974
11975 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11976 at the .eh_frame section if we can mark the FDEs individually. */
11977 _bfd_elf_begin_eh_frame_parsing (info);
11978 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11979 {
11980 asection *sec;
11981 struct elf_reloc_cookie cookie;
11982
11983 sec = bfd_get_section_by_name (sub, ".eh_frame");
11984 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11985 {
11986 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11987 if (elf_section_data (sec)->sec_info)
11988 elf_eh_frame_section (sub) = sec;
11989 fini_reloc_cookie_for_section (&cookie, sec);
11990 }
11991 }
11992 _bfd_elf_end_eh_frame_parsing (info);
11993
11994 /* Apply transitive closure to the vtable entry usage info. */
11995 elf_link_hash_traverse (elf_hash_table (info),
11996 elf_gc_propagate_vtable_entries_used,
11997 &ok);
11998 if (!ok)
11999 return FALSE;
12000
12001 /* Kill the vtable relocations that were not used. */
12002 elf_link_hash_traverse (elf_hash_table (info),
12003 elf_gc_smash_unused_vtentry_relocs,
12004 &ok);
12005 if (!ok)
12006 return FALSE;
12007
12008 /* Mark dynamically referenced symbols. */
12009 if (elf_hash_table (info)->dynamic_sections_created)
12010 elf_link_hash_traverse (elf_hash_table (info),
12011 bed->gc_mark_dynamic_ref,
12012 info);
12013
12014 /* Grovel through relocs to find out who stays ... */
12015 gc_mark_hook = bed->gc_mark_hook;
12016 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12017 {
12018 asection *o;
12019
12020 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12021 continue;
12022
12023 /* Also keep SHT_NOTE sections. */
12024 for (o = sub->sections; o != NULL; o = o->next)
12025 if ((o->flags & SEC_EXCLUDE) == 0
12026 && ((o->flags & SEC_KEEP) != 0
12027 || elf_section_data (o)->this_hdr.sh_type == SHT_NOTE)
12028 && !o->gc_mark)
12029 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12030 return FALSE;
12031 }
12032
12033 /* Allow the backend to mark additional target specific sections. */
12034 if (bed->gc_mark_extra_sections)
12035 bed->gc_mark_extra_sections (info, gc_mark_hook);
12036
12037 /* ... and mark SEC_EXCLUDE for those that go. */
12038 return elf_gc_sweep (abfd, info);
12039 }
12040 \f
12041 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12042
12043 bfd_boolean
12044 bfd_elf_gc_record_vtinherit (bfd *abfd,
12045 asection *sec,
12046 struct elf_link_hash_entry *h,
12047 bfd_vma offset)
12048 {
12049 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12050 struct elf_link_hash_entry **search, *child;
12051 bfd_size_type extsymcount;
12052 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12053
12054 /* The sh_info field of the symtab header tells us where the
12055 external symbols start. We don't care about the local symbols at
12056 this point. */
12057 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12058 if (!elf_bad_symtab (abfd))
12059 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12060
12061 sym_hashes = elf_sym_hashes (abfd);
12062 sym_hashes_end = sym_hashes + extsymcount;
12063
12064 /* Hunt down the child symbol, which is in this section at the same
12065 offset as the relocation. */
12066 for (search = sym_hashes; search != sym_hashes_end; ++search)
12067 {
12068 if ((child = *search) != NULL
12069 && (child->root.type == bfd_link_hash_defined
12070 || child->root.type == bfd_link_hash_defweak)
12071 && child->root.u.def.section == sec
12072 && child->root.u.def.value == offset)
12073 goto win;
12074 }
12075
12076 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12077 abfd, sec, (unsigned long) offset);
12078 bfd_set_error (bfd_error_invalid_operation);
12079 return FALSE;
12080
12081 win:
12082 if (!child->vtable)
12083 {
12084 child->vtable = (struct elf_link_virtual_table_entry *)
12085 bfd_zalloc (abfd, sizeof (*child->vtable));
12086 if (!child->vtable)
12087 return FALSE;
12088 }
12089 if (!h)
12090 {
12091 /* This *should* only be the absolute section. It could potentially
12092 be that someone has defined a non-global vtable though, which
12093 would be bad. It isn't worth paging in the local symbols to be
12094 sure though; that case should simply be handled by the assembler. */
12095
12096 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12097 }
12098 else
12099 child->vtable->parent = h;
12100
12101 return TRUE;
12102 }
12103
12104 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12105
12106 bfd_boolean
12107 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12108 asection *sec ATTRIBUTE_UNUSED,
12109 struct elf_link_hash_entry *h,
12110 bfd_vma addend)
12111 {
12112 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12113 unsigned int log_file_align = bed->s->log_file_align;
12114
12115 if (!h->vtable)
12116 {
12117 h->vtable = (struct elf_link_virtual_table_entry *)
12118 bfd_zalloc (abfd, sizeof (*h->vtable));
12119 if (!h->vtable)
12120 return FALSE;
12121 }
12122
12123 if (addend >= h->vtable->size)
12124 {
12125 size_t size, bytes, file_align;
12126 bfd_boolean *ptr = h->vtable->used;
12127
12128 /* While the symbol is undefined, we have to be prepared to handle
12129 a zero size. */
12130 file_align = 1 << log_file_align;
12131 if (h->root.type == bfd_link_hash_undefined)
12132 size = addend + file_align;
12133 else
12134 {
12135 size = h->size;
12136 if (addend >= size)
12137 {
12138 /* Oops! We've got a reference past the defined end of
12139 the table. This is probably a bug -- shall we warn? */
12140 size = addend + file_align;
12141 }
12142 }
12143 size = (size + file_align - 1) & -file_align;
12144
12145 /* Allocate one extra entry for use as a "done" flag for the
12146 consolidation pass. */
12147 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12148
12149 if (ptr)
12150 {
12151 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12152
12153 if (ptr != NULL)
12154 {
12155 size_t oldbytes;
12156
12157 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12158 * sizeof (bfd_boolean));
12159 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12160 }
12161 }
12162 else
12163 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12164
12165 if (ptr == NULL)
12166 return FALSE;
12167
12168 /* And arrange for that done flag to be at index -1. */
12169 h->vtable->used = ptr + 1;
12170 h->vtable->size = size;
12171 }
12172
12173 h->vtable->used[addend >> log_file_align] = TRUE;
12174
12175 return TRUE;
12176 }
12177
12178 struct alloc_got_off_arg {
12179 bfd_vma gotoff;
12180 struct bfd_link_info *info;
12181 };
12182
12183 /* We need a special top-level link routine to convert got reference counts
12184 to real got offsets. */
12185
12186 static bfd_boolean
12187 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12188 {
12189 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12190 bfd *obfd = gofarg->info->output_bfd;
12191 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12192
12193 if (h->root.type == bfd_link_hash_warning)
12194 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12195
12196 if (h->got.refcount > 0)
12197 {
12198 h->got.offset = gofarg->gotoff;
12199 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12200 }
12201 else
12202 h->got.offset = (bfd_vma) -1;
12203
12204 return TRUE;
12205 }
12206
12207 /* And an accompanying bit to work out final got entry offsets once
12208 we're done. Should be called from final_link. */
12209
12210 bfd_boolean
12211 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12212 struct bfd_link_info *info)
12213 {
12214 bfd *i;
12215 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12216 bfd_vma gotoff;
12217 struct alloc_got_off_arg gofarg;
12218
12219 BFD_ASSERT (abfd == info->output_bfd);
12220
12221 if (! is_elf_hash_table (info->hash))
12222 return FALSE;
12223
12224 /* The GOT offset is relative to the .got section, but the GOT header is
12225 put into the .got.plt section, if the backend uses it. */
12226 if (bed->want_got_plt)
12227 gotoff = 0;
12228 else
12229 gotoff = bed->got_header_size;
12230
12231 /* Do the local .got entries first. */
12232 for (i = info->input_bfds; i; i = i->link_next)
12233 {
12234 bfd_signed_vma *local_got;
12235 bfd_size_type j, locsymcount;
12236 Elf_Internal_Shdr *symtab_hdr;
12237
12238 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12239 continue;
12240
12241 local_got = elf_local_got_refcounts (i);
12242 if (!local_got)
12243 continue;
12244
12245 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12246 if (elf_bad_symtab (i))
12247 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12248 else
12249 locsymcount = symtab_hdr->sh_info;
12250
12251 for (j = 0; j < locsymcount; ++j)
12252 {
12253 if (local_got[j] > 0)
12254 {
12255 local_got[j] = gotoff;
12256 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12257 }
12258 else
12259 local_got[j] = (bfd_vma) -1;
12260 }
12261 }
12262
12263 /* Then the global .got entries. .plt refcounts are handled by
12264 adjust_dynamic_symbol */
12265 gofarg.gotoff = gotoff;
12266 gofarg.info = info;
12267 elf_link_hash_traverse (elf_hash_table (info),
12268 elf_gc_allocate_got_offsets,
12269 &gofarg);
12270 return TRUE;
12271 }
12272
12273 /* Many folk need no more in the way of final link than this, once
12274 got entry reference counting is enabled. */
12275
12276 bfd_boolean
12277 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12278 {
12279 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12280 return FALSE;
12281
12282 /* Invoke the regular ELF backend linker to do all the work. */
12283 return bfd_elf_final_link (abfd, info);
12284 }
12285
12286 bfd_boolean
12287 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12288 {
12289 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12290
12291 if (rcookie->bad_symtab)
12292 rcookie->rel = rcookie->rels;
12293
12294 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12295 {
12296 unsigned long r_symndx;
12297
12298 if (! rcookie->bad_symtab)
12299 if (rcookie->rel->r_offset > offset)
12300 return FALSE;
12301 if (rcookie->rel->r_offset != offset)
12302 continue;
12303
12304 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12305 if (r_symndx == STN_UNDEF)
12306 return TRUE;
12307
12308 if (r_symndx >= rcookie->locsymcount
12309 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12310 {
12311 struct elf_link_hash_entry *h;
12312
12313 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12314
12315 while (h->root.type == bfd_link_hash_indirect
12316 || h->root.type == bfd_link_hash_warning)
12317 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12318
12319 if ((h->root.type == bfd_link_hash_defined
12320 || h->root.type == bfd_link_hash_defweak)
12321 && elf_discarded_section (h->root.u.def.section))
12322 return TRUE;
12323 else
12324 return FALSE;
12325 }
12326 else
12327 {
12328 /* It's not a relocation against a global symbol,
12329 but it could be a relocation against a local
12330 symbol for a discarded section. */
12331 asection *isec;
12332 Elf_Internal_Sym *isym;
12333
12334 /* Need to: get the symbol; get the section. */
12335 isym = &rcookie->locsyms[r_symndx];
12336 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12337 if (isec != NULL && elf_discarded_section (isec))
12338 return TRUE;
12339 }
12340 return FALSE;
12341 }
12342 return FALSE;
12343 }
12344
12345 /* Discard unneeded references to discarded sections.
12346 Returns TRUE if any section's size was changed. */
12347 /* This function assumes that the relocations are in sorted order,
12348 which is true for all known assemblers. */
12349
12350 bfd_boolean
12351 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12352 {
12353 struct elf_reloc_cookie cookie;
12354 asection *stab, *eh;
12355 const struct elf_backend_data *bed;
12356 bfd *abfd;
12357 bfd_boolean ret = FALSE;
12358
12359 if (info->traditional_format
12360 || !is_elf_hash_table (info->hash))
12361 return FALSE;
12362
12363 _bfd_elf_begin_eh_frame_parsing (info);
12364 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12365 {
12366 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12367 continue;
12368
12369 bed = get_elf_backend_data (abfd);
12370
12371 if ((abfd->flags & DYNAMIC) != 0)
12372 continue;
12373
12374 eh = NULL;
12375 if (!info->relocatable)
12376 {
12377 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12378 if (eh != NULL
12379 && (eh->size == 0
12380 || bfd_is_abs_section (eh->output_section)))
12381 eh = NULL;
12382 }
12383
12384 stab = bfd_get_section_by_name (abfd, ".stab");
12385 if (stab != NULL
12386 && (stab->size == 0
12387 || bfd_is_abs_section (stab->output_section)
12388 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12389 stab = NULL;
12390
12391 if (stab == NULL
12392 && eh == NULL
12393 && bed->elf_backend_discard_info == NULL)
12394 continue;
12395
12396 if (!init_reloc_cookie (&cookie, info, abfd))
12397 return FALSE;
12398
12399 if (stab != NULL
12400 && stab->reloc_count > 0
12401 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12402 {
12403 if (_bfd_discard_section_stabs (abfd, stab,
12404 elf_section_data (stab)->sec_info,
12405 bfd_elf_reloc_symbol_deleted_p,
12406 &cookie))
12407 ret = TRUE;
12408 fini_reloc_cookie_rels (&cookie, stab);
12409 }
12410
12411 if (eh != NULL
12412 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12413 {
12414 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12415 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12416 bfd_elf_reloc_symbol_deleted_p,
12417 &cookie))
12418 ret = TRUE;
12419 fini_reloc_cookie_rels (&cookie, eh);
12420 }
12421
12422 if (bed->elf_backend_discard_info != NULL
12423 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12424 ret = TRUE;
12425
12426 fini_reloc_cookie (&cookie, abfd);
12427 }
12428 _bfd_elf_end_eh_frame_parsing (info);
12429
12430 if (info->eh_frame_hdr
12431 && !info->relocatable
12432 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12433 ret = TRUE;
12434
12435 return ret;
12436 }
12437
12438 /* For a SHT_GROUP section, return the group signature. For other
12439 sections, return the normal section name. */
12440
12441 static const char *
12442 section_signature (asection *sec)
12443 {
12444 if ((sec->flags & SEC_GROUP) != 0
12445 && elf_next_in_group (sec) != NULL
12446 && elf_group_name (elf_next_in_group (sec)) != NULL)
12447 return elf_group_name (elf_next_in_group (sec));
12448 return sec->name;
12449 }
12450
12451 void
12452 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12453 struct bfd_link_info *info)
12454 {
12455 flagword flags;
12456 const char *name, *p;
12457 struct bfd_section_already_linked *l;
12458 struct bfd_section_already_linked_hash_entry *already_linked_list;
12459
12460 if (sec->output_section == bfd_abs_section_ptr)
12461 return;
12462
12463 flags = sec->flags;
12464
12465 /* Return if it isn't a linkonce section. A comdat group section
12466 also has SEC_LINK_ONCE set. */
12467 if ((flags & SEC_LINK_ONCE) == 0)
12468 return;
12469
12470 /* Don't put group member sections on our list of already linked
12471 sections. They are handled as a group via their group section. */
12472 if (elf_sec_group (sec) != NULL)
12473 return;
12474
12475 /* FIXME: When doing a relocatable link, we may have trouble
12476 copying relocations in other sections that refer to local symbols
12477 in the section being discarded. Those relocations will have to
12478 be converted somehow; as of this writing I'm not sure that any of
12479 the backends handle that correctly.
12480
12481 It is tempting to instead not discard link once sections when
12482 doing a relocatable link (technically, they should be discarded
12483 whenever we are building constructors). However, that fails,
12484 because the linker winds up combining all the link once sections
12485 into a single large link once section, which defeats the purpose
12486 of having link once sections in the first place.
12487
12488 Also, not merging link once sections in a relocatable link
12489 causes trouble for MIPS ELF, which relies on link once semantics
12490 to handle the .reginfo section correctly. */
12491
12492 name = section_signature (sec);
12493
12494 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12495 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12496 p++;
12497 else
12498 p = name;
12499
12500 already_linked_list = bfd_section_already_linked_table_lookup (p);
12501
12502 for (l = already_linked_list->entry; l != NULL; l = l->next)
12503 {
12504 /* We may have 2 different types of sections on the list: group
12505 sections and linkonce sections. Match like sections. */
12506 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12507 && strcmp (name, section_signature (l->sec)) == 0
12508 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12509 {
12510 /* The section has already been linked. See if we should
12511 issue a warning. */
12512 switch (flags & SEC_LINK_DUPLICATES)
12513 {
12514 default:
12515 abort ();
12516
12517 case SEC_LINK_DUPLICATES_DISCARD:
12518 break;
12519
12520 case SEC_LINK_DUPLICATES_ONE_ONLY:
12521 (*_bfd_error_handler)
12522 (_("%B: ignoring duplicate section `%A'"),
12523 abfd, sec);
12524 break;
12525
12526 case SEC_LINK_DUPLICATES_SAME_SIZE:
12527 if (sec->size != l->sec->size)
12528 (*_bfd_error_handler)
12529 (_("%B: duplicate section `%A' has different size"),
12530 abfd, sec);
12531 break;
12532
12533 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12534 if (sec->size != l->sec->size)
12535 (*_bfd_error_handler)
12536 (_("%B: duplicate section `%A' has different size"),
12537 abfd, sec);
12538 else if (sec->size != 0)
12539 {
12540 bfd_byte *sec_contents, *l_sec_contents;
12541
12542 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12543 (*_bfd_error_handler)
12544 (_("%B: warning: could not read contents of section `%A'"),
12545 abfd, sec);
12546 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12547 &l_sec_contents))
12548 (*_bfd_error_handler)
12549 (_("%B: warning: could not read contents of section `%A'"),
12550 l->sec->owner, l->sec);
12551 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12552 (*_bfd_error_handler)
12553 (_("%B: warning: duplicate section `%A' has different contents"),
12554 abfd, sec);
12555
12556 if (sec_contents)
12557 free (sec_contents);
12558 if (l_sec_contents)
12559 free (l_sec_contents);
12560 }
12561 break;
12562 }
12563
12564 /* Set the output_section field so that lang_add_section
12565 does not create a lang_input_section structure for this
12566 section. Since there might be a symbol in the section
12567 being discarded, we must retain a pointer to the section
12568 which we are really going to use. */
12569 sec->output_section = bfd_abs_section_ptr;
12570 sec->kept_section = l->sec;
12571
12572 if (flags & SEC_GROUP)
12573 {
12574 asection *first = elf_next_in_group (sec);
12575 asection *s = first;
12576
12577 while (s != NULL)
12578 {
12579 s->output_section = bfd_abs_section_ptr;
12580 /* Record which group discards it. */
12581 s->kept_section = l->sec;
12582 s = elf_next_in_group (s);
12583 /* These lists are circular. */
12584 if (s == first)
12585 break;
12586 }
12587 }
12588
12589 return;
12590 }
12591 }
12592
12593 /* A single member comdat group section may be discarded by a
12594 linkonce section and vice versa. */
12595
12596 if ((flags & SEC_GROUP) != 0)
12597 {
12598 asection *first = elf_next_in_group (sec);
12599
12600 if (first != NULL && elf_next_in_group (first) == first)
12601 /* Check this single member group against linkonce sections. */
12602 for (l = already_linked_list->entry; l != NULL; l = l->next)
12603 if ((l->sec->flags & SEC_GROUP) == 0
12604 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12605 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12606 {
12607 first->output_section = bfd_abs_section_ptr;
12608 first->kept_section = l->sec;
12609 sec->output_section = bfd_abs_section_ptr;
12610 break;
12611 }
12612 }
12613 else
12614 /* Check this linkonce section against single member groups. */
12615 for (l = already_linked_list->entry; l != NULL; l = l->next)
12616 if (l->sec->flags & SEC_GROUP)
12617 {
12618 asection *first = elf_next_in_group (l->sec);
12619
12620 if (first != NULL
12621 && elf_next_in_group (first) == first
12622 && bfd_elf_match_symbols_in_sections (first, sec, info))
12623 {
12624 sec->output_section = bfd_abs_section_ptr;
12625 sec->kept_section = first;
12626 break;
12627 }
12628 }
12629
12630 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12631 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12632 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12633 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12634 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12635 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12636 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12637 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12638 The reverse order cannot happen as there is never a bfd with only the
12639 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12640 matter as here were are looking only for cross-bfd sections. */
12641
12642 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12643 for (l = already_linked_list->entry; l != NULL; l = l->next)
12644 if ((l->sec->flags & SEC_GROUP) == 0
12645 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12646 {
12647 if (abfd != l->sec->owner)
12648 sec->output_section = bfd_abs_section_ptr;
12649 break;
12650 }
12651
12652 /* This is the first section with this name. Record it. */
12653 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12654 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12655 }
12656
12657 bfd_boolean
12658 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12659 {
12660 return sym->st_shndx == SHN_COMMON;
12661 }
12662
12663 unsigned int
12664 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12665 {
12666 return SHN_COMMON;
12667 }
12668
12669 asection *
12670 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12671 {
12672 return bfd_com_section_ptr;
12673 }
12674
12675 bfd_vma
12676 _bfd_elf_default_got_elt_size (bfd *abfd,
12677 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12678 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12679 bfd *ibfd ATTRIBUTE_UNUSED,
12680 unsigned long symndx ATTRIBUTE_UNUSED)
12681 {
12682 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12683 return bed->s->arch_size / 8;
12684 }
12685
12686 /* Routines to support the creation of dynamic relocs. */
12687
12688 /* Returns the name of the dynamic reloc section associated with SEC. */
12689
12690 static const char *
12691 get_dynamic_reloc_section_name (bfd * abfd,
12692 asection * sec,
12693 bfd_boolean is_rela)
12694 {
12695 char *name;
12696 const char *old_name = bfd_get_section_name (NULL, sec);
12697 const char *prefix = is_rela ? ".rela" : ".rel";
12698
12699 if (old_name == NULL)
12700 return NULL;
12701
12702 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12703 sprintf (name, "%s%s", prefix, old_name);
12704
12705 return name;
12706 }
12707
12708 /* Returns the dynamic reloc section associated with SEC.
12709 If necessary compute the name of the dynamic reloc section based
12710 on SEC's name (looked up in ABFD's string table) and the setting
12711 of IS_RELA. */
12712
12713 asection *
12714 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12715 asection * sec,
12716 bfd_boolean is_rela)
12717 {
12718 asection * reloc_sec = elf_section_data (sec)->sreloc;
12719
12720 if (reloc_sec == NULL)
12721 {
12722 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12723
12724 if (name != NULL)
12725 {
12726 reloc_sec = bfd_get_section_by_name (abfd, name);
12727
12728 if (reloc_sec != NULL)
12729 elf_section_data (sec)->sreloc = reloc_sec;
12730 }
12731 }
12732
12733 return reloc_sec;
12734 }
12735
12736 /* Returns the dynamic reloc section associated with SEC. If the
12737 section does not exist it is created and attached to the DYNOBJ
12738 bfd and stored in the SRELOC field of SEC's elf_section_data
12739 structure.
12740
12741 ALIGNMENT is the alignment for the newly created section and
12742 IS_RELA defines whether the name should be .rela.<SEC's name>
12743 or .rel.<SEC's name>. The section name is looked up in the
12744 string table associated with ABFD. */
12745
12746 asection *
12747 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12748 bfd * dynobj,
12749 unsigned int alignment,
12750 bfd * abfd,
12751 bfd_boolean is_rela)
12752 {
12753 asection * reloc_sec = elf_section_data (sec)->sreloc;
12754
12755 if (reloc_sec == NULL)
12756 {
12757 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12758
12759 if (name == NULL)
12760 return NULL;
12761
12762 reloc_sec = bfd_get_section_by_name (dynobj, name);
12763
12764 if (reloc_sec == NULL)
12765 {
12766 flagword flags;
12767
12768 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12769 if ((sec->flags & SEC_ALLOC) != 0)
12770 flags |= SEC_ALLOC | SEC_LOAD;
12771
12772 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12773 if (reloc_sec != NULL)
12774 {
12775 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12776 reloc_sec = NULL;
12777 }
12778 }
12779
12780 elf_section_data (sec)->sreloc = reloc_sec;
12781 }
12782
12783 return reloc_sec;
12784 }
12785
12786 /* Copy the ELF symbol type associated with a linker hash entry. */
12787 void
12788 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12789 struct bfd_link_hash_entry * hdest,
12790 struct bfd_link_hash_entry * hsrc)
12791 {
12792 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12793 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12794
12795 ehdest->type = ehsrc->type;
12796 ehdest->target_internal = ehsrc->target_internal;
12797 }
12798
12799 /* Append a RELA relocation REL to section S in BFD. */
12800
12801 void
12802 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12803 {
12804 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12805 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12806 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
12807 bed->s->swap_reloca_out (abfd, rel, loc);
12808 }
12809
12810 /* Append a REL relocation REL to section S in BFD. */
12811
12812 void
12813 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12814 {
12815 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12816 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
12817 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
12818 bed->s->swap_reloca_out (abfd, rel, loc);
12819 }