* elflink.c (_bfd_elf_adjust_dynamic_symbol): Don't clear plt
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 register asection *s;
189 const struct elf_backend_data *bed;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
259
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
263 if (s == NULL
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
265 return FALSE;
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
267 }
268
269 if (info->emit_gnu_hash)
270 {
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
281 else
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
283 }
284
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
289 return FALSE;
290
291 elf_hash_table (info)->dynamic_sections_created = TRUE;
292
293 return TRUE;
294 }
295
296 /* Create dynamic sections when linking against a dynamic object. */
297
298 bfd_boolean
299 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
300 {
301 flagword flags, pltflags;
302 struct elf_link_hash_entry *h;
303 asection *s;
304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
305 struct elf_link_hash_table *htab = elf_hash_table (info);
306
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
310
311 pltflags = flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
321
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323 if (s == NULL
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325 return FALSE;
326 htab->splt = s;
327
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
329 .plt section. */
330 if (bed->want_plt_sym)
331 {
332 h = _bfd_elf_define_linkage_sym (abfd, info, s,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info)->hplt = h;
335 if (h == NULL)
336 return FALSE;
337 }
338
339 s = bfd_make_section_with_flags (abfd,
340 (bed->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags | SEC_READONLY);
343 if (s == NULL
344 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
345 return FALSE;
346 htab->srelplt = s;
347
348 if (! _bfd_elf_create_got_section (abfd, info))
349 return FALSE;
350
351 if (bed->want_dynbss)
352 {
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s = bfd_make_section_with_flags (abfd, ".dynbss",
360 (SEC_ALLOC
361 | SEC_LINKER_CREATED));
362 if (s == NULL)
363 return FALSE;
364
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
375 copy relocs. */
376 if (! info->shared)
377 {
378 s = bfd_make_section_with_flags (abfd,
379 (bed->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags | SEC_READONLY);
382 if (s == NULL
383 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
384 return FALSE;
385 }
386 }
387
388 return TRUE;
389 }
390 \f
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
397 one. */
398
399 bfd_boolean
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
401 struct elf_link_hash_entry *h)
402 {
403 if (h->dynindx == -1)
404 {
405 struct elf_strtab_hash *dynstr;
406 char *p;
407 const char *name;
408 bfd_size_type indx;
409
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h->other))
415 {
416 case STV_INTERNAL:
417 case STV_HIDDEN:
418 if (h->root.type != bfd_link_hash_undefined
419 && h->root.type != bfd_link_hash_undefweak)
420 {
421 h->forced_local = 1;
422 if (!elf_hash_table (info)->is_relocatable_executable)
423 return TRUE;
424 }
425
426 default:
427 break;
428 }
429
430 h->dynindx = elf_hash_table (info)->dynsymcount;
431 ++elf_hash_table (info)->dynsymcount;
432
433 dynstr = elf_hash_table (info)->dynstr;
434 if (dynstr == NULL)
435 {
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
438 if (dynstr == NULL)
439 return FALSE;
440 }
441
442 /* We don't put any version information in the dynamic string
443 table. */
444 name = h->root.root.string;
445 p = strchr (name, ELF_VER_CHR);
446 if (p != NULL)
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
452 *p = 0;
453
454 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
455
456 if (p != NULL)
457 *p = ELF_VER_CHR;
458
459 if (indx == (bfd_size_type) -1)
460 return FALSE;
461 h->dynstr_index = indx;
462 }
463
464 return TRUE;
465 }
466 \f
467 /* Mark a symbol dynamic. */
468
469 static void
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
471 struct elf_link_hash_entry *h,
472 Elf_Internal_Sym *sym)
473 {
474 struct bfd_elf_dynamic_list *d = info->dynamic_list;
475
476 /* It may be called more than once on the same H. */
477 if(h->dynamic || info->relocatable)
478 return;
479
480 if ((info->dynamic_data
481 && (h->type == STT_OBJECT
482 || (sym != NULL
483 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
484 || (d != NULL
485 && h->root.type == bfd_link_hash_new
486 && (*d->match) (&d->head, NULL, h->root.root.string)))
487 h->dynamic = 1;
488 }
489
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
492
493 bfd_boolean
494 bfd_elf_record_link_assignment (bfd *output_bfd,
495 struct bfd_link_info *info,
496 const char *name,
497 bfd_boolean provide,
498 bfd_boolean hidden)
499 {
500 struct elf_link_hash_entry *h, *hv;
501 struct elf_link_hash_table *htab;
502 const struct elf_backend_data *bed;
503
504 if (!is_elf_hash_table (info->hash))
505 return TRUE;
506
507 htab = elf_hash_table (info);
508 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
509 if (h == NULL)
510 return provide;
511
512 switch (h->root.type)
513 {
514 case bfd_link_hash_defined:
515 case bfd_link_hash_defweak:
516 case bfd_link_hash_common:
517 break;
518 case bfd_link_hash_undefweak:
519 case bfd_link_hash_undefined:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h->root.type = bfd_link_hash_new;
524 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
525 bfd_link_repair_undef_list (&htab->root);
526 break;
527 case bfd_link_hash_new:
528 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
529 h->non_elf = 0;
530 break;
531 case bfd_link_hash_indirect:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed = get_elf_backend_data (output_bfd);
535 hv = h;
536 while (hv->root.type == bfd_link_hash_indirect
537 || hv->root.type == bfd_link_hash_warning)
538 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
539 /* We don't need to update h->root.u since linker will set them
540 later. */
541 h->root.type = bfd_link_hash_undefined;
542 hv->root.type = bfd_link_hash_indirect;
543 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
544 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
545 break;
546 case bfd_link_hash_warning:
547 abort ();
548 break;
549 }
550
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
555 if (provide
556 && h->def_dynamic
557 && !h->def_regular)
558 h->root.type = bfd_link_hash_undefined;
559
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
564 if (!provide
565 && h->def_dynamic
566 && !h->def_regular)
567 h->verinfo.verdef = NULL;
568
569 h->def_regular = 1;
570
571 if (provide && hidden)
572 {
573 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
574
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 }
578
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
586
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
592 {
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
595
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
601 {
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
604 }
605 }
606
607 return TRUE;
608 }
609
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
613
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
618 {
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
627
628 if (! is_elf_hash_table (info->hash))
629 return 0;
630
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
635
636 amt = sizeof (*entry);
637 entry = bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
640
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
644 {
645 bfd_release (input_bfd, entry);
646 return 0;
647 }
648
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
651 {
652 asection *s;
653
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
656 {
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
661 }
662 }
663
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
667
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
670 {
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
675 }
676
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
681
682 eht = elf_hash_table (info);
683
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
689
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694 /* The dynindx will be set at the end of size_dynamic_sections. */
695
696 return 1;
697 }
698
699 /* Return the dynindex of a local dynamic symbol. */
700
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
705 {
706 struct elf_link_local_dynamic_entry *e;
707
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
712 }
713
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
717
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
721 {
722 size_t *count = data;
723
724 if (h->root.type == bfd_link_hash_warning)
725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = data;
745
746 if (h->root.type == bfd_link_hash_warning)
747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
748
749 if (!h->forced_local)
750 return TRUE;
751
752 if (h->dynindx != -1)
753 h->dynindx = ++(*count);
754
755 return TRUE;
756 }
757
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
760 bfd_boolean
761 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762 struct bfd_link_info *info,
763 asection *p)
764 {
765 struct elf_link_hash_table *htab;
766
767 switch (elf_section_data (p)->this_hdr.sh_type)
768 {
769 case SHT_PROGBITS:
770 case SHT_NOBITS:
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
773 case SHT_NULL:
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
776 return FALSE;
777
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
780
781 if (strcmp (p->name, ".got") == 0
782 || strcmp (p->name, ".got.plt") == 0
783 || strcmp (p->name, ".plt") == 0)
784 {
785 asection *ip;
786
787 if (htab->dynobj != NULL
788 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789 && (ip->flags & SEC_LINKER_CREATED)
790 && ip->output_section == p)
791 return TRUE;
792 }
793 return FALSE;
794
795 /* There shouldn't be section relative relocations
796 against any other section. */
797 default:
798 return TRUE;
799 }
800 }
801
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
806 symbols. */
807
808 static unsigned long
809 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810 struct bfd_link_info *info,
811 unsigned long *section_sym_count)
812 {
813 unsigned long dynsymcount = 0;
814
815 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
816 {
817 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
818 asection *p;
819 for (p = output_bfd->sections; p ; p = p->next)
820 if ((p->flags & SEC_EXCLUDE) == 0
821 && (p->flags & SEC_ALLOC) != 0
822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823 elf_section_data (p)->dynindx = ++dynsymcount;
824 else
825 elf_section_data (p)->dynindx = 0;
826 }
827 *section_sym_count = dynsymcount;
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_local_hash_table_dynsyms,
831 &dynsymcount);
832
833 if (elf_hash_table (info)->dynlocal)
834 {
835 struct elf_link_local_dynamic_entry *p;
836 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837 p->dynindx = ++dynsymcount;
838 }
839
840 elf_link_hash_traverse (elf_hash_table (info),
841 elf_link_renumber_hash_table_dynsyms,
842 &dynsymcount);
843
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount != 0)
848 ++dynsymcount;
849
850 elf_hash_table (info)->dynsymcount = dynsymcount;
851 return dynsymcount;
852 }
853
854 /* Merge st_other field. */
855
856 static void
857 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858 Elf_Internal_Sym *isym, bfd_boolean definition,
859 bfd_boolean dynamic)
860 {
861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
862
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed->elf_backend_merge_symbol_attribute)
867 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
868 dynamic);
869
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
872 if (definition
873 && !dynamic
874 && (abfd->no_export
875 || (abfd->my_archive && abfd->my_archive->no_export))
876 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877 isym->st_other = (STV_HIDDEN
878 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
879
880 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
881 {
882 unsigned char hvis, symvis, other, nvis;
883
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other = h->other & ~ELF_ST_VISIBILITY (-1);
887
888 /* Combine visibilities, using the most constraining one. */
889 hvis = ELF_ST_VISIBILITY (h->other);
890 symvis = ELF_ST_VISIBILITY (isym->st_other);
891 if (! hvis)
892 nvis = symvis;
893 else if (! symvis)
894 nvis = hvis;
895 else
896 nvis = hvis < symvis ? hvis : symvis;
897
898 h->other = other | nvis;
899 }
900 }
901
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
913
914 bfd_boolean
915 _bfd_elf_merge_symbol (bfd *abfd,
916 struct bfd_link_info *info,
917 const char *name,
918 Elf_Internal_Sym *sym,
919 asection **psec,
920 bfd_vma *pvalue,
921 unsigned int *pold_alignment,
922 struct elf_link_hash_entry **sym_hash,
923 bfd_boolean *skip,
924 bfd_boolean *override,
925 bfd_boolean *type_change_ok,
926 bfd_boolean *size_change_ok)
927 {
928 asection *sec, *oldsec;
929 struct elf_link_hash_entry *h;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
947 {
948 *skip = TRUE;
949 return TRUE;
950 }
951
952 if (! bfd_is_und_section (sec))
953 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
954 else
955 h = ((struct elf_link_hash_entry *)
956 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
957 if (h == NULL)
958 return FALSE;
959 *sym_hash = h;
960
961 bed = get_elf_backend_data (abfd);
962
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966 return TRUE;
967
968 /* For merging, we only care about real symbols. */
969
970 while (h->root.type == bfd_link_hash_indirect
971 || h->root.type == bfd_link_hash_warning)
972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
973
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
976 symbols. */
977 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
978
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
982
983 if (h->root.type == bfd_link_hash_new)
984 {
985 h->non_elf = 0;
986 return TRUE;
987 }
988
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990 existing symbol. */
991
992 switch (h->root.type)
993 {
994 default:
995 oldbfd = NULL;
996 oldsec = NULL;
997 break;
998
999 case bfd_link_hash_undefined:
1000 case bfd_link_hash_undefweak:
1001 oldbfd = h->root.u.undef.abfd;
1002 oldsec = NULL;
1003 break;
1004
1005 case bfd_link_hash_defined:
1006 case bfd_link_hash_defweak:
1007 oldbfd = h->root.u.def.section->owner;
1008 oldsec = h->root.u.def.section;
1009 break;
1010
1011 case bfd_link_hash_common:
1012 oldbfd = h->root.u.c.p->section->owner;
1013 oldsec = h->root.u.c.p->section;
1014 break;
1015 }
1016
1017 /* In cases involving weak versioned symbols, we may wind up trying
1018 to merge a symbol with itself. Catch that here, to avoid the
1019 confusion that results if we try to override a symbol with
1020 itself. The additional tests catch cases like
1021 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1022 dynamic object, which we do want to handle here. */
1023 if (abfd == oldbfd
1024 && ((abfd->flags & DYNAMIC) == 0
1025 || !h->def_regular))
1026 return TRUE;
1027
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1030
1031 newdyn = (abfd->flags & DYNAMIC) != 0;
1032
1033 olddyn = FALSE;
1034 if (oldbfd != NULL)
1035 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036 else if (oldsec != NULL)
1037 {
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1041 }
1042
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1045
1046 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1047
1048 olddef = (h->root.type != bfd_link_hash_undefined
1049 && h->root.type != bfd_link_hash_undefweak
1050 && h->root.type != bfd_link_hash_common);
1051
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1054
1055 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1057
1058 oldfunc = (h->type != STT_NOTYPE
1059 && bed->is_function_type (h->type));
1060
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment == NULL
1066 && !info->shared
1067 && !info->export_dynamic
1068 && !h->ref_dynamic
1069 && newdyn
1070 && newdef
1071 && !olddyn
1072 && (olddef || h->root.type == bfd_link_hash_common)
1073 && ELF_ST_TYPE (sym->st_info) != h->type
1074 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075 && h->type != STT_NOTYPE
1076 && !(newfunc && oldfunc))
1077 {
1078 *skip = TRUE;
1079 return TRUE;
1080 }
1081
1082 /* Check TLS symbol. We don't check undefined symbol introduced by
1083 "ld -u". */
1084 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1085 && ELF_ST_TYPE (sym->st_info) != h->type
1086 && oldbfd != NULL)
1087 {
1088 bfd *ntbfd, *tbfd;
1089 bfd_boolean ntdef, tdef;
1090 asection *ntsec, *tsec;
1091
1092 if (h->type == STT_TLS)
1093 {
1094 ntbfd = abfd;
1095 ntsec = sec;
1096 ntdef = newdef;
1097 tbfd = oldbfd;
1098 tsec = oldsec;
1099 tdef = olddef;
1100 }
1101 else
1102 {
1103 ntbfd = oldbfd;
1104 ntsec = oldsec;
1105 ntdef = olddef;
1106 tbfd = abfd;
1107 tsec = sec;
1108 tdef = newdef;
1109 }
1110
1111 if (tdef && ntdef)
1112 (*_bfd_error_handler)
1113 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1114 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1115 else if (!tdef && !ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1118 tbfd, ntbfd, h->root.root.string);
1119 else if (tdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1122 tbfd, tsec, ntbfd, h->root.root.string);
1123 else
1124 (*_bfd_error_handler)
1125 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1126 tbfd, ntbfd, ntsec, h->root.root.string);
1127
1128 bfd_set_error (bfd_error_bad_value);
1129 return FALSE;
1130 }
1131
1132 /* We need to remember if a symbol has a definition in a dynamic
1133 object or is weak in all dynamic objects. Internal and hidden
1134 visibility will make it unavailable to dynamic objects. */
1135 if (newdyn && !h->dynamic_def)
1136 {
1137 if (!bfd_is_und_section (sec))
1138 h->dynamic_def = 1;
1139 else
1140 {
1141 /* Check if this symbol is weak in all dynamic objects. If it
1142 is the first time we see it in a dynamic object, we mark
1143 if it is weak. Otherwise, we clear it. */
1144 if (!h->ref_dynamic)
1145 {
1146 if (bind == STB_WEAK)
1147 h->dynamic_weak = 1;
1148 }
1149 else if (bind != STB_WEAK)
1150 h->dynamic_weak = 0;
1151 }
1152 }
1153
1154 /* If the old symbol has non-default visibility, we ignore the new
1155 definition from a dynamic object. */
1156 if (newdyn
1157 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1158 && !bfd_is_und_section (sec))
1159 {
1160 *skip = TRUE;
1161 /* Make sure this symbol is dynamic. */
1162 h->ref_dynamic = 1;
1163 /* A protected symbol has external availability. Make sure it is
1164 recorded as dynamic.
1165
1166 FIXME: Should we check type and size for protected symbol? */
1167 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1168 return bfd_elf_link_record_dynamic_symbol (info, h);
1169 else
1170 return TRUE;
1171 }
1172 else if (!newdyn
1173 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1174 && h->def_dynamic)
1175 {
1176 /* If the new symbol with non-default visibility comes from a
1177 relocatable file and the old definition comes from a dynamic
1178 object, we remove the old definition. */
1179 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1180 {
1181 /* Handle the case where the old dynamic definition is
1182 default versioned. We need to copy the symbol info from
1183 the symbol with default version to the normal one if it
1184 was referenced before. */
1185 if (h->ref_regular)
1186 {
1187 const struct elf_backend_data *bed
1188 = get_elf_backend_data (abfd);
1189 struct elf_link_hash_entry *vh = *sym_hash;
1190 vh->root.type = h->root.type;
1191 h->root.type = bfd_link_hash_indirect;
1192 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1193 /* Protected symbols will override the dynamic definition
1194 with default version. */
1195 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1196 {
1197 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1198 vh->dynamic_def = 1;
1199 vh->ref_dynamic = 1;
1200 }
1201 else
1202 {
1203 h->root.type = vh->root.type;
1204 vh->ref_dynamic = 0;
1205 /* We have to hide it here since it was made dynamic
1206 global with extra bits when the symbol info was
1207 copied from the old dynamic definition. */
1208 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1209 }
1210 h = vh;
1211 }
1212 else
1213 h = *sym_hash;
1214 }
1215
1216 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1217 && bfd_is_und_section (sec))
1218 {
1219 /* If the new symbol is undefined and the old symbol was
1220 also undefined before, we need to make sure
1221 _bfd_generic_link_add_one_symbol doesn't mess
1222 up the linker hash table undefs list. Since the old
1223 definition came from a dynamic object, it is still on the
1224 undefs list. */
1225 h->root.type = bfd_link_hash_undefined;
1226 h->root.u.undef.abfd = abfd;
1227 }
1228 else
1229 {
1230 h->root.type = bfd_link_hash_new;
1231 h->root.u.undef.abfd = NULL;
1232 }
1233
1234 if (h->def_dynamic)
1235 {
1236 h->def_dynamic = 0;
1237 h->ref_dynamic = 1;
1238 h->dynamic_def = 1;
1239 }
1240 /* FIXME: Should we check type and size for protected symbol? */
1241 h->size = 0;
1242 h->type = 0;
1243 return TRUE;
1244 }
1245
1246 /* Differentiate strong and weak symbols. */
1247 newweak = bind == STB_WEAK;
1248 oldweak = (h->root.type == bfd_link_hash_defweak
1249 || h->root.type == bfd_link_hash_undefweak);
1250
1251 if (bind == STB_GNU_UNIQUE)
1252 h->unique_global = 1;
1253
1254 /* If a new weak symbol definition comes from a regular file and the
1255 old symbol comes from a dynamic library, we treat the new one as
1256 strong. Similarly, an old weak symbol definition from a regular
1257 file is treated as strong when the new symbol comes from a dynamic
1258 library. Further, an old weak symbol from a dynamic library is
1259 treated as strong if the new symbol is from a dynamic library.
1260 This reflects the way glibc's ld.so works.
1261
1262 Do this before setting *type_change_ok or *size_change_ok so that
1263 we warn properly when dynamic library symbols are overridden. */
1264
1265 if (newdef && !newdyn && olddyn)
1266 newweak = FALSE;
1267 if (olddef && newdyn)
1268 oldweak = FALSE;
1269
1270 /* Allow changes between different types of function symbol. */
1271 if (newfunc && oldfunc)
1272 *type_change_ok = TRUE;
1273
1274 /* It's OK to change the type if either the existing symbol or the
1275 new symbol is weak. A type change is also OK if the old symbol
1276 is undefined and the new symbol is defined. */
1277
1278 if (oldweak
1279 || newweak
1280 || (newdef
1281 && h->root.type == bfd_link_hash_undefined))
1282 *type_change_ok = TRUE;
1283
1284 /* It's OK to change the size if either the existing symbol or the
1285 new symbol is weak, or if the old symbol is undefined. */
1286
1287 if (*type_change_ok
1288 || h->root.type == bfd_link_hash_undefined)
1289 *size_change_ok = TRUE;
1290
1291 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1292 symbol, respectively, appears to be a common symbol in a dynamic
1293 object. If a symbol appears in an uninitialized section, and is
1294 not weak, and is not a function, then it may be a common symbol
1295 which was resolved when the dynamic object was created. We want
1296 to treat such symbols specially, because they raise special
1297 considerations when setting the symbol size: if the symbol
1298 appears as a common symbol in a regular object, and the size in
1299 the regular object is larger, we must make sure that we use the
1300 larger size. This problematic case can always be avoided in C,
1301 but it must be handled correctly when using Fortran shared
1302 libraries.
1303
1304 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1305 likewise for OLDDYNCOMMON and OLDDEF.
1306
1307 Note that this test is just a heuristic, and that it is quite
1308 possible to have an uninitialized symbol in a shared object which
1309 is really a definition, rather than a common symbol. This could
1310 lead to some minor confusion when the symbol really is a common
1311 symbol in some regular object. However, I think it will be
1312 harmless. */
1313
1314 if (newdyn
1315 && newdef
1316 && !newweak
1317 && (sec->flags & SEC_ALLOC) != 0
1318 && (sec->flags & SEC_LOAD) == 0
1319 && sym->st_size > 0
1320 && !newfunc)
1321 newdyncommon = TRUE;
1322 else
1323 newdyncommon = FALSE;
1324
1325 if (olddyn
1326 && olddef
1327 && h->root.type == bfd_link_hash_defined
1328 && h->def_dynamic
1329 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1330 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1331 && h->size > 0
1332 && !oldfunc)
1333 olddyncommon = TRUE;
1334 else
1335 olddyncommon = FALSE;
1336
1337 /* We now know everything about the old and new symbols. We ask the
1338 backend to check if we can merge them. */
1339 if (bed->merge_symbol
1340 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1341 pold_alignment, skip, override,
1342 type_change_ok, size_change_ok,
1343 &newdyn, &newdef, &newdyncommon, &newweak,
1344 abfd, &sec,
1345 &olddyn, &olddef, &olddyncommon, &oldweak,
1346 oldbfd, &oldsec))
1347 return FALSE;
1348
1349 /* If both the old and the new symbols look like common symbols in a
1350 dynamic object, set the size of the symbol to the larger of the
1351 two. */
1352
1353 if (olddyncommon
1354 && newdyncommon
1355 && sym->st_size != h->size)
1356 {
1357 /* Since we think we have two common symbols, issue a multiple
1358 common warning if desired. Note that we only warn if the
1359 size is different. If the size is the same, we simply let
1360 the old symbol override the new one as normally happens with
1361 symbols defined in dynamic objects. */
1362
1363 if (! ((*info->callbacks->multiple_common)
1364 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1365 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1366 return FALSE;
1367
1368 if (sym->st_size > h->size)
1369 h->size = sym->st_size;
1370
1371 *size_change_ok = TRUE;
1372 }
1373
1374 /* If we are looking at a dynamic object, and we have found a
1375 definition, we need to see if the symbol was already defined by
1376 some other object. If so, we want to use the existing
1377 definition, and we do not want to report a multiple symbol
1378 definition error; we do this by clobbering *PSEC to be
1379 bfd_und_section_ptr.
1380
1381 We treat a common symbol as a definition if the symbol in the
1382 shared library is a function, since common symbols always
1383 represent variables; this can cause confusion in principle, but
1384 any such confusion would seem to indicate an erroneous program or
1385 shared library. We also permit a common symbol in a regular
1386 object to override a weak symbol in a shared object. */
1387
1388 if (newdyn
1389 && newdef
1390 && (olddef
1391 || (h->root.type == bfd_link_hash_common
1392 && (newweak || newfunc))))
1393 {
1394 *override = TRUE;
1395 newdef = FALSE;
1396 newdyncommon = FALSE;
1397
1398 *psec = sec = bfd_und_section_ptr;
1399 *size_change_ok = TRUE;
1400
1401 /* If we get here when the old symbol is a common symbol, then
1402 we are explicitly letting it override a weak symbol or
1403 function in a dynamic object, and we don't want to warn about
1404 a type change. If the old symbol is a defined symbol, a type
1405 change warning may still be appropriate. */
1406
1407 if (h->root.type == bfd_link_hash_common)
1408 *type_change_ok = TRUE;
1409 }
1410
1411 /* Handle the special case of an old common symbol merging with a
1412 new symbol which looks like a common symbol in a shared object.
1413 We change *PSEC and *PVALUE to make the new symbol look like a
1414 common symbol, and let _bfd_generic_link_add_one_symbol do the
1415 right thing. */
1416
1417 if (newdyncommon
1418 && h->root.type == bfd_link_hash_common)
1419 {
1420 *override = TRUE;
1421 newdef = FALSE;
1422 newdyncommon = FALSE;
1423 *pvalue = sym->st_size;
1424 *psec = sec = bed->common_section (oldsec);
1425 *size_change_ok = TRUE;
1426 }
1427
1428 /* Skip weak definitions of symbols that are already defined. */
1429 if (newdef && olddef && newweak)
1430 {
1431 *skip = TRUE;
1432
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1435 local symbol. */
1436 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437 if (h->dynindx != -1)
1438 switch (ELF_ST_VISIBILITY (h->other))
1439 {
1440 case STV_INTERNAL:
1441 case STV_HIDDEN:
1442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1443 break;
1444 }
1445 }
1446
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1452
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1456
1457 flip = NULL;
1458 if (!newdyn
1459 && (newdef
1460 || (bfd_is_com_section (sec)
1461 && (oldweak || oldfunc)))
1462 && olddyn
1463 && olddef
1464 && h->def_dynamic)
1465 {
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1468 new definition. */
1469
1470 h->root.type = bfd_link_hash_undefined;
1471 h->root.u.undef.abfd = h->root.u.def.section->owner;
1472 *size_change_ok = TRUE;
1473
1474 olddef = FALSE;
1475 olddyncommon = FALSE;
1476
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1479
1480 if (bfd_is_com_section (sec))
1481 {
1482 if (oldfunc)
1483 {
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1486 function. */
1487 h->def_dynamic = 0;
1488 h->type = STT_NOTYPE;
1489 }
1490 *type_change_ok = TRUE;
1491 }
1492
1493 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1494 flip = *sym_hash;
1495 else
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h->verinfo.vertree = NULL;
1500 }
1501
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1507
1508 if (! newdyn
1509 && bfd_is_com_section (sec)
1510 && olddyncommon)
1511 {
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info->callbacks->multiple_common)
1516 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1517 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1518 return FALSE;
1519
1520 /* If the presumed common symbol in the dynamic object is
1521 larger, pretend that the new symbol has its size. */
1522
1523 if (h->size > *pvalue)
1524 *pvalue = h->size;
1525
1526 /* We need to remember the alignment required by the symbol
1527 in the dynamic object. */
1528 BFD_ASSERT (pold_alignment);
1529 *pold_alignment = h->root.u.def.section->alignment_power;
1530
1531 olddef = FALSE;
1532 olddyncommon = FALSE;
1533
1534 h->root.type = bfd_link_hash_undefined;
1535 h->root.u.undef.abfd = h->root.u.def.section->owner;
1536
1537 *size_change_ok = TRUE;
1538 *type_change_ok = TRUE;
1539
1540 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1541 flip = *sym_hash;
1542 else
1543 h->verinfo.vertree = NULL;
1544 }
1545
1546 if (flip != NULL)
1547 {
1548 /* Handle the case where we had a versioned symbol in a dynamic
1549 library and now find a definition in a normal object. In this
1550 case, we make the versioned symbol point to the normal one. */
1551 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1552 flip->root.type = h->root.type;
1553 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1554 h->root.type = bfd_link_hash_indirect;
1555 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1556 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1557 if (h->def_dynamic)
1558 {
1559 h->def_dynamic = 0;
1560 flip->ref_dynamic = 1;
1561 }
1562 }
1563
1564 return TRUE;
1565 }
1566
1567 /* This function is called to create an indirect symbol from the
1568 default for the symbol with the default version if needed. The
1569 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1570 set DYNSYM if the new indirect symbol is dynamic. */
1571
1572 static bfd_boolean
1573 _bfd_elf_add_default_symbol (bfd *abfd,
1574 struct bfd_link_info *info,
1575 struct elf_link_hash_entry *h,
1576 const char *name,
1577 Elf_Internal_Sym *sym,
1578 asection **psec,
1579 bfd_vma *value,
1580 bfd_boolean *dynsym,
1581 bfd_boolean override)
1582 {
1583 bfd_boolean type_change_ok;
1584 bfd_boolean size_change_ok;
1585 bfd_boolean skip;
1586 char *shortname;
1587 struct elf_link_hash_entry *hi;
1588 struct bfd_link_hash_entry *bh;
1589 const struct elf_backend_data *bed;
1590 bfd_boolean collect;
1591 bfd_boolean dynamic;
1592 char *p;
1593 size_t len, shortlen;
1594 asection *sec;
1595
1596 /* If this symbol has a version, and it is the default version, we
1597 create an indirect symbol from the default name to the fully
1598 decorated name. This will cause external references which do not
1599 specify a version to be bound to this version of the symbol. */
1600 p = strchr (name, ELF_VER_CHR);
1601 if (p == NULL || p[1] != ELF_VER_CHR)
1602 return TRUE;
1603
1604 if (override)
1605 {
1606 /* We are overridden by an old definition. We need to check if we
1607 need to create the indirect symbol from the default name. */
1608 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1609 FALSE, FALSE);
1610 BFD_ASSERT (hi != NULL);
1611 if (hi == h)
1612 return TRUE;
1613 while (hi->root.type == bfd_link_hash_indirect
1614 || hi->root.type == bfd_link_hash_warning)
1615 {
1616 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1617 if (hi == h)
1618 return TRUE;
1619 }
1620 }
1621
1622 bed = get_elf_backend_data (abfd);
1623 collect = bed->collect;
1624 dynamic = (abfd->flags & DYNAMIC) != 0;
1625
1626 shortlen = p - name;
1627 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1628 if (shortname == NULL)
1629 return FALSE;
1630 memcpy (shortname, name, shortlen);
1631 shortname[shortlen] = '\0';
1632
1633 /* We are going to create a new symbol. Merge it with any existing
1634 symbol with this name. For the purposes of the merge, act as
1635 though we were defining the symbol we just defined, although we
1636 actually going to define an indirect symbol. */
1637 type_change_ok = FALSE;
1638 size_change_ok = FALSE;
1639 sec = *psec;
1640 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1641 NULL, &hi, &skip, &override,
1642 &type_change_ok, &size_change_ok))
1643 return FALSE;
1644
1645 if (skip)
1646 goto nondefault;
1647
1648 if (! override)
1649 {
1650 bh = &hi->root;
1651 if (! (_bfd_generic_link_add_one_symbol
1652 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1653 0, name, FALSE, collect, &bh)))
1654 return FALSE;
1655 hi = (struct elf_link_hash_entry *) bh;
1656 }
1657 else
1658 {
1659 /* In this case the symbol named SHORTNAME is overriding the
1660 indirect symbol we want to add. We were planning on making
1661 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1662 is the name without a version. NAME is the fully versioned
1663 name, and it is the default version.
1664
1665 Overriding means that we already saw a definition for the
1666 symbol SHORTNAME in a regular object, and it is overriding
1667 the symbol defined in the dynamic object.
1668
1669 When this happens, we actually want to change NAME, the
1670 symbol we just added, to refer to SHORTNAME. This will cause
1671 references to NAME in the shared object to become references
1672 to SHORTNAME in the regular object. This is what we expect
1673 when we override a function in a shared object: that the
1674 references in the shared object will be mapped to the
1675 definition in the regular object. */
1676
1677 while (hi->root.type == bfd_link_hash_indirect
1678 || hi->root.type == bfd_link_hash_warning)
1679 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1680
1681 h->root.type = bfd_link_hash_indirect;
1682 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1683 if (h->def_dynamic)
1684 {
1685 h->def_dynamic = 0;
1686 hi->ref_dynamic = 1;
1687 if (hi->ref_regular
1688 || hi->def_regular)
1689 {
1690 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1691 return FALSE;
1692 }
1693 }
1694
1695 /* Now set HI to H, so that the following code will set the
1696 other fields correctly. */
1697 hi = h;
1698 }
1699
1700 /* Check if HI is a warning symbol. */
1701 if (hi->root.type == bfd_link_hash_warning)
1702 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1703
1704 /* If there is a duplicate definition somewhere, then HI may not
1705 point to an indirect symbol. We will have reported an error to
1706 the user in that case. */
1707
1708 if (hi->root.type == bfd_link_hash_indirect)
1709 {
1710 struct elf_link_hash_entry *ht;
1711
1712 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1713 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1714
1715 /* See if the new flags lead us to realize that the symbol must
1716 be dynamic. */
1717 if (! *dynsym)
1718 {
1719 if (! dynamic)
1720 {
1721 if (info->shared
1722 || hi->ref_dynamic)
1723 *dynsym = TRUE;
1724 }
1725 else
1726 {
1727 if (hi->ref_regular)
1728 *dynsym = TRUE;
1729 }
1730 }
1731 }
1732
1733 /* We also need to define an indirection from the nondefault version
1734 of the symbol. */
1735
1736 nondefault:
1737 len = strlen (name);
1738 shortname = bfd_hash_allocate (&info->hash->table, len);
1739 if (shortname == NULL)
1740 return FALSE;
1741 memcpy (shortname, name, shortlen);
1742 memcpy (shortname + shortlen, p + 1, len - shortlen);
1743
1744 /* Once again, merge with any existing symbol. */
1745 type_change_ok = FALSE;
1746 size_change_ok = FALSE;
1747 sec = *psec;
1748 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1749 NULL, &hi, &skip, &override,
1750 &type_change_ok, &size_change_ok))
1751 return FALSE;
1752
1753 if (skip)
1754 return TRUE;
1755
1756 if (override)
1757 {
1758 /* Here SHORTNAME is a versioned name, so we don't expect to see
1759 the type of override we do in the case above unless it is
1760 overridden by a versioned definition. */
1761 if (hi->root.type != bfd_link_hash_defined
1762 && hi->root.type != bfd_link_hash_defweak)
1763 (*_bfd_error_handler)
1764 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1765 abfd, shortname);
1766 }
1767 else
1768 {
1769 bh = &hi->root;
1770 if (! (_bfd_generic_link_add_one_symbol
1771 (info, abfd, shortname, BSF_INDIRECT,
1772 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1773 return FALSE;
1774 hi = (struct elf_link_hash_entry *) bh;
1775
1776 /* If there is a duplicate definition somewhere, then HI may not
1777 point to an indirect symbol. We will have reported an error
1778 to the user in that case. */
1779
1780 if (hi->root.type == bfd_link_hash_indirect)
1781 {
1782 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1783
1784 /* See if the new flags lead us to realize that the symbol
1785 must be dynamic. */
1786 if (! *dynsym)
1787 {
1788 if (! dynamic)
1789 {
1790 if (info->shared
1791 || hi->ref_dynamic)
1792 *dynsym = TRUE;
1793 }
1794 else
1795 {
1796 if (hi->ref_regular)
1797 *dynsym = TRUE;
1798 }
1799 }
1800 }
1801 }
1802
1803 return TRUE;
1804 }
1805 \f
1806 /* This routine is used to export all defined symbols into the dynamic
1807 symbol table. It is called via elf_link_hash_traverse. */
1808
1809 static bfd_boolean
1810 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1811 {
1812 struct elf_info_failed *eif = data;
1813
1814 /* Ignore this if we won't export it. */
1815 if (!eif->info->export_dynamic && !h->dynamic)
1816 return TRUE;
1817
1818 /* Ignore indirect symbols. These are added by the versioning code. */
1819 if (h->root.type == bfd_link_hash_indirect)
1820 return TRUE;
1821
1822 if (h->root.type == bfd_link_hash_warning)
1823 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1824
1825 if (h->dynindx == -1
1826 && (h->def_regular
1827 || h->ref_regular))
1828 {
1829 bfd_boolean hide;
1830
1831 if (eif->verdefs == NULL
1832 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1833 && !hide))
1834 {
1835 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1836 {
1837 eif->failed = TRUE;
1838 return FALSE;
1839 }
1840 }
1841 }
1842
1843 return TRUE;
1844 }
1845 \f
1846 /* Look through the symbols which are defined in other shared
1847 libraries and referenced here. Update the list of version
1848 dependencies. This will be put into the .gnu.version_r section.
1849 This function is called via elf_link_hash_traverse. */
1850
1851 static bfd_boolean
1852 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1853 void *data)
1854 {
1855 struct elf_find_verdep_info *rinfo = data;
1856 Elf_Internal_Verneed *t;
1857 Elf_Internal_Vernaux *a;
1858 bfd_size_type amt;
1859
1860 if (h->root.type == bfd_link_hash_warning)
1861 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1862
1863 /* We only care about symbols defined in shared objects with version
1864 information. */
1865 if (!h->def_dynamic
1866 || h->def_regular
1867 || h->dynindx == -1
1868 || h->verinfo.verdef == NULL)
1869 return TRUE;
1870
1871 /* See if we already know about this version. */
1872 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1873 t != NULL;
1874 t = t->vn_nextref)
1875 {
1876 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1877 continue;
1878
1879 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1880 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1881 return TRUE;
1882
1883 break;
1884 }
1885
1886 /* This is a new version. Add it to tree we are building. */
1887
1888 if (t == NULL)
1889 {
1890 amt = sizeof *t;
1891 t = bfd_zalloc (rinfo->info->output_bfd, amt);
1892 if (t == NULL)
1893 {
1894 rinfo->failed = TRUE;
1895 return FALSE;
1896 }
1897
1898 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1899 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1900 elf_tdata (rinfo->info->output_bfd)->verref = t;
1901 }
1902
1903 amt = sizeof *a;
1904 a = bfd_zalloc (rinfo->info->output_bfd, amt);
1905 if (a == NULL)
1906 {
1907 rinfo->failed = TRUE;
1908 return FALSE;
1909 }
1910
1911 /* Note that we are copying a string pointer here, and testing it
1912 above. If bfd_elf_string_from_elf_section is ever changed to
1913 discard the string data when low in memory, this will have to be
1914 fixed. */
1915 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1916
1917 a->vna_flags = h->verinfo.verdef->vd_flags;
1918 a->vna_nextptr = t->vn_auxptr;
1919
1920 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1921 ++rinfo->vers;
1922
1923 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1924
1925 t->vn_auxptr = a;
1926
1927 return TRUE;
1928 }
1929
1930 /* Figure out appropriate versions for all the symbols. We may not
1931 have the version number script until we have read all of the input
1932 files, so until that point we don't know which symbols should be
1933 local. This function is called via elf_link_hash_traverse. */
1934
1935 static bfd_boolean
1936 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1937 {
1938 struct elf_info_failed *sinfo;
1939 struct bfd_link_info *info;
1940 const struct elf_backend_data *bed;
1941 struct elf_info_failed eif;
1942 char *p;
1943 bfd_size_type amt;
1944
1945 sinfo = data;
1946 info = sinfo->info;
1947
1948 if (h->root.type == bfd_link_hash_warning)
1949 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1950
1951 /* Fix the symbol flags. */
1952 eif.failed = FALSE;
1953 eif.info = info;
1954 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1955 {
1956 if (eif.failed)
1957 sinfo->failed = TRUE;
1958 return FALSE;
1959 }
1960
1961 /* We only need version numbers for symbols defined in regular
1962 objects. */
1963 if (!h->def_regular)
1964 return TRUE;
1965
1966 bed = get_elf_backend_data (info->output_bfd);
1967 p = strchr (h->root.root.string, ELF_VER_CHR);
1968 if (p != NULL && h->verinfo.vertree == NULL)
1969 {
1970 struct bfd_elf_version_tree *t;
1971 bfd_boolean hidden;
1972
1973 hidden = TRUE;
1974
1975 /* There are two consecutive ELF_VER_CHR characters if this is
1976 not a hidden symbol. */
1977 ++p;
1978 if (*p == ELF_VER_CHR)
1979 {
1980 hidden = FALSE;
1981 ++p;
1982 }
1983
1984 /* If there is no version string, we can just return out. */
1985 if (*p == '\0')
1986 {
1987 if (hidden)
1988 h->hidden = 1;
1989 return TRUE;
1990 }
1991
1992 /* Look for the version. If we find it, it is no longer weak. */
1993 for (t = sinfo->verdefs; t != NULL; t = t->next)
1994 {
1995 if (strcmp (t->name, p) == 0)
1996 {
1997 size_t len;
1998 char *alc;
1999 struct bfd_elf_version_expr *d;
2000
2001 len = p - h->root.root.string;
2002 alc = bfd_malloc (len);
2003 if (alc == NULL)
2004 {
2005 sinfo->failed = TRUE;
2006 return FALSE;
2007 }
2008 memcpy (alc, h->root.root.string, len - 1);
2009 alc[len - 1] = '\0';
2010 if (alc[len - 2] == ELF_VER_CHR)
2011 alc[len - 2] = '\0';
2012
2013 h->verinfo.vertree = t;
2014 t->used = TRUE;
2015 d = NULL;
2016
2017 if (t->globals.list != NULL)
2018 d = (*t->match) (&t->globals, NULL, alc);
2019
2020 /* See if there is anything to force this symbol to
2021 local scope. */
2022 if (d == NULL && t->locals.list != NULL)
2023 {
2024 d = (*t->match) (&t->locals, NULL, alc);
2025 if (d != NULL
2026 && h->dynindx != -1
2027 && ! info->export_dynamic)
2028 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2029 }
2030
2031 free (alc);
2032 break;
2033 }
2034 }
2035
2036 /* If we are building an application, we need to create a
2037 version node for this version. */
2038 if (t == NULL && info->executable)
2039 {
2040 struct bfd_elf_version_tree **pp;
2041 int version_index;
2042
2043 /* If we aren't going to export this symbol, we don't need
2044 to worry about it. */
2045 if (h->dynindx == -1)
2046 return TRUE;
2047
2048 amt = sizeof *t;
2049 t = bfd_zalloc (info->output_bfd, amt);
2050 if (t == NULL)
2051 {
2052 sinfo->failed = TRUE;
2053 return FALSE;
2054 }
2055
2056 t->name = p;
2057 t->name_indx = (unsigned int) -1;
2058 t->used = TRUE;
2059
2060 version_index = 1;
2061 /* Don't count anonymous version tag. */
2062 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2063 version_index = 0;
2064 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2065 ++version_index;
2066 t->vernum = version_index;
2067
2068 *pp = t;
2069
2070 h->verinfo.vertree = t;
2071 }
2072 else if (t == NULL)
2073 {
2074 /* We could not find the version for a symbol when
2075 generating a shared archive. Return an error. */
2076 (*_bfd_error_handler)
2077 (_("%B: version node not found for symbol %s"),
2078 info->output_bfd, h->root.root.string);
2079 bfd_set_error (bfd_error_bad_value);
2080 sinfo->failed = TRUE;
2081 return FALSE;
2082 }
2083
2084 if (hidden)
2085 h->hidden = 1;
2086 }
2087
2088 /* If we don't have a version for this symbol, see if we can find
2089 something. */
2090 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2091 {
2092 bfd_boolean hide;
2093
2094 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2095 h->root.root.string, &hide);
2096 if (h->verinfo.vertree != NULL && hide)
2097 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2098 }
2099
2100 return TRUE;
2101 }
2102 \f
2103 /* Read and swap the relocs from the section indicated by SHDR. This
2104 may be either a REL or a RELA section. The relocations are
2105 translated into RELA relocations and stored in INTERNAL_RELOCS,
2106 which should have already been allocated to contain enough space.
2107 The EXTERNAL_RELOCS are a buffer where the external form of the
2108 relocations should be stored.
2109
2110 Returns FALSE if something goes wrong. */
2111
2112 static bfd_boolean
2113 elf_link_read_relocs_from_section (bfd *abfd,
2114 asection *sec,
2115 Elf_Internal_Shdr *shdr,
2116 void *external_relocs,
2117 Elf_Internal_Rela *internal_relocs)
2118 {
2119 const struct elf_backend_data *bed;
2120 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2121 const bfd_byte *erela;
2122 const bfd_byte *erelaend;
2123 Elf_Internal_Rela *irela;
2124 Elf_Internal_Shdr *symtab_hdr;
2125 size_t nsyms;
2126
2127 /* Position ourselves at the start of the section. */
2128 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2129 return FALSE;
2130
2131 /* Read the relocations. */
2132 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2133 return FALSE;
2134
2135 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2136 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2137
2138 bed = get_elf_backend_data (abfd);
2139
2140 /* Convert the external relocations to the internal format. */
2141 if (shdr->sh_entsize == bed->s->sizeof_rel)
2142 swap_in = bed->s->swap_reloc_in;
2143 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2144 swap_in = bed->s->swap_reloca_in;
2145 else
2146 {
2147 bfd_set_error (bfd_error_wrong_format);
2148 return FALSE;
2149 }
2150
2151 erela = external_relocs;
2152 erelaend = erela + shdr->sh_size;
2153 irela = internal_relocs;
2154 while (erela < erelaend)
2155 {
2156 bfd_vma r_symndx;
2157
2158 (*swap_in) (abfd, erela, irela);
2159 r_symndx = ELF32_R_SYM (irela->r_info);
2160 if (bed->s->arch_size == 64)
2161 r_symndx >>= 24;
2162 if (nsyms > 0)
2163 {
2164 if ((size_t) r_symndx >= nsyms)
2165 {
2166 (*_bfd_error_handler)
2167 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2168 " for offset 0x%lx in section `%A'"),
2169 abfd, sec,
2170 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2171 bfd_set_error (bfd_error_bad_value);
2172 return FALSE;
2173 }
2174 }
2175 else if (r_symndx != 0)
2176 {
2177 (*_bfd_error_handler)
2178 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2179 " when the object file has no symbol table"),
2180 abfd, sec,
2181 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2182 bfd_set_error (bfd_error_bad_value);
2183 return FALSE;
2184 }
2185 irela += bed->s->int_rels_per_ext_rel;
2186 erela += shdr->sh_entsize;
2187 }
2188
2189 return TRUE;
2190 }
2191
2192 /* Read and swap the relocs for a section O. They may have been
2193 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2194 not NULL, they are used as buffers to read into. They are known to
2195 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2196 the return value is allocated using either malloc or bfd_alloc,
2197 according to the KEEP_MEMORY argument. If O has two relocation
2198 sections (both REL and RELA relocations), then the REL_HDR
2199 relocations will appear first in INTERNAL_RELOCS, followed by the
2200 REL_HDR2 relocations. */
2201
2202 Elf_Internal_Rela *
2203 _bfd_elf_link_read_relocs (bfd *abfd,
2204 asection *o,
2205 void *external_relocs,
2206 Elf_Internal_Rela *internal_relocs,
2207 bfd_boolean keep_memory)
2208 {
2209 Elf_Internal_Shdr *rel_hdr;
2210 void *alloc1 = NULL;
2211 Elf_Internal_Rela *alloc2 = NULL;
2212 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2213
2214 if (elf_section_data (o)->relocs != NULL)
2215 return elf_section_data (o)->relocs;
2216
2217 if (o->reloc_count == 0)
2218 return NULL;
2219
2220 rel_hdr = &elf_section_data (o)->rel_hdr;
2221
2222 if (internal_relocs == NULL)
2223 {
2224 bfd_size_type size;
2225
2226 size = o->reloc_count;
2227 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2228 if (keep_memory)
2229 internal_relocs = alloc2 = bfd_alloc (abfd, size);
2230 else
2231 internal_relocs = alloc2 = bfd_malloc (size);
2232 if (internal_relocs == NULL)
2233 goto error_return;
2234 }
2235
2236 if (external_relocs == NULL)
2237 {
2238 bfd_size_type size = rel_hdr->sh_size;
2239
2240 if (elf_section_data (o)->rel_hdr2)
2241 size += elf_section_data (o)->rel_hdr2->sh_size;
2242 alloc1 = bfd_malloc (size);
2243 if (alloc1 == NULL)
2244 goto error_return;
2245 external_relocs = alloc1;
2246 }
2247
2248 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2249 external_relocs,
2250 internal_relocs))
2251 goto error_return;
2252 if (elf_section_data (o)->rel_hdr2
2253 && (!elf_link_read_relocs_from_section
2254 (abfd, o,
2255 elf_section_data (o)->rel_hdr2,
2256 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2257 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2258 * bed->s->int_rels_per_ext_rel))))
2259 goto error_return;
2260
2261 /* Cache the results for next time, if we can. */
2262 if (keep_memory)
2263 elf_section_data (o)->relocs = internal_relocs;
2264
2265 if (alloc1 != NULL)
2266 free (alloc1);
2267
2268 /* Don't free alloc2, since if it was allocated we are passing it
2269 back (under the name of internal_relocs). */
2270
2271 return internal_relocs;
2272
2273 error_return:
2274 if (alloc1 != NULL)
2275 free (alloc1);
2276 if (alloc2 != NULL)
2277 {
2278 if (keep_memory)
2279 bfd_release (abfd, alloc2);
2280 else
2281 free (alloc2);
2282 }
2283 return NULL;
2284 }
2285
2286 /* Compute the size of, and allocate space for, REL_HDR which is the
2287 section header for a section containing relocations for O. */
2288
2289 static bfd_boolean
2290 _bfd_elf_link_size_reloc_section (bfd *abfd,
2291 Elf_Internal_Shdr *rel_hdr,
2292 asection *o)
2293 {
2294 bfd_size_type reloc_count;
2295 bfd_size_type num_rel_hashes;
2296
2297 /* Figure out how many relocations there will be. */
2298 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2299 reloc_count = elf_section_data (o)->rel_count;
2300 else
2301 reloc_count = elf_section_data (o)->rel_count2;
2302
2303 num_rel_hashes = o->reloc_count;
2304 if (num_rel_hashes < reloc_count)
2305 num_rel_hashes = reloc_count;
2306
2307 /* That allows us to calculate the size of the section. */
2308 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2309
2310 /* The contents field must last into write_object_contents, so we
2311 allocate it with bfd_alloc rather than malloc. Also since we
2312 cannot be sure that the contents will actually be filled in,
2313 we zero the allocated space. */
2314 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2315 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2316 return FALSE;
2317
2318 /* We only allocate one set of hash entries, so we only do it the
2319 first time we are called. */
2320 if (elf_section_data (o)->rel_hashes == NULL
2321 && num_rel_hashes)
2322 {
2323 struct elf_link_hash_entry **p;
2324
2325 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2326 if (p == NULL)
2327 return FALSE;
2328
2329 elf_section_data (o)->rel_hashes = p;
2330 }
2331
2332 return TRUE;
2333 }
2334
2335 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2336 originated from the section given by INPUT_REL_HDR) to the
2337 OUTPUT_BFD. */
2338
2339 bfd_boolean
2340 _bfd_elf_link_output_relocs (bfd *output_bfd,
2341 asection *input_section,
2342 Elf_Internal_Shdr *input_rel_hdr,
2343 Elf_Internal_Rela *internal_relocs,
2344 struct elf_link_hash_entry **rel_hash
2345 ATTRIBUTE_UNUSED)
2346 {
2347 Elf_Internal_Rela *irela;
2348 Elf_Internal_Rela *irelaend;
2349 bfd_byte *erel;
2350 Elf_Internal_Shdr *output_rel_hdr;
2351 asection *output_section;
2352 unsigned int *rel_countp = NULL;
2353 const struct elf_backend_data *bed;
2354 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2355
2356 output_section = input_section->output_section;
2357 output_rel_hdr = NULL;
2358
2359 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2360 == input_rel_hdr->sh_entsize)
2361 {
2362 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2363 rel_countp = &elf_section_data (output_section)->rel_count;
2364 }
2365 else if (elf_section_data (output_section)->rel_hdr2
2366 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2367 == input_rel_hdr->sh_entsize))
2368 {
2369 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2370 rel_countp = &elf_section_data (output_section)->rel_count2;
2371 }
2372 else
2373 {
2374 (*_bfd_error_handler)
2375 (_("%B: relocation size mismatch in %B section %A"),
2376 output_bfd, input_section->owner, input_section);
2377 bfd_set_error (bfd_error_wrong_format);
2378 return FALSE;
2379 }
2380
2381 bed = get_elf_backend_data (output_bfd);
2382 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2383 swap_out = bed->s->swap_reloc_out;
2384 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2385 swap_out = bed->s->swap_reloca_out;
2386 else
2387 abort ();
2388
2389 erel = output_rel_hdr->contents;
2390 erel += *rel_countp * input_rel_hdr->sh_entsize;
2391 irela = internal_relocs;
2392 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2393 * bed->s->int_rels_per_ext_rel);
2394 while (irela < irelaend)
2395 {
2396 (*swap_out) (output_bfd, irela, erel);
2397 irela += bed->s->int_rels_per_ext_rel;
2398 erel += input_rel_hdr->sh_entsize;
2399 }
2400
2401 /* Bump the counter, so that we know where to add the next set of
2402 relocations. */
2403 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2404
2405 return TRUE;
2406 }
2407 \f
2408 /* Make weak undefined symbols in PIE dynamic. */
2409
2410 bfd_boolean
2411 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2412 struct elf_link_hash_entry *h)
2413 {
2414 if (info->pie
2415 && h->dynindx == -1
2416 && h->root.type == bfd_link_hash_undefweak)
2417 return bfd_elf_link_record_dynamic_symbol (info, h);
2418
2419 return TRUE;
2420 }
2421
2422 /* Fix up the flags for a symbol. This handles various cases which
2423 can only be fixed after all the input files are seen. This is
2424 currently called by both adjust_dynamic_symbol and
2425 assign_sym_version, which is unnecessary but perhaps more robust in
2426 the face of future changes. */
2427
2428 static bfd_boolean
2429 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2430 struct elf_info_failed *eif)
2431 {
2432 const struct elf_backend_data *bed;
2433
2434 /* If this symbol was mentioned in a non-ELF file, try to set
2435 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2436 permit a non-ELF file to correctly refer to a symbol defined in
2437 an ELF dynamic object. */
2438 if (h->non_elf)
2439 {
2440 while (h->root.type == bfd_link_hash_indirect)
2441 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2442
2443 if (h->root.type != bfd_link_hash_defined
2444 && h->root.type != bfd_link_hash_defweak)
2445 {
2446 h->ref_regular = 1;
2447 h->ref_regular_nonweak = 1;
2448 }
2449 else
2450 {
2451 if (h->root.u.def.section->owner != NULL
2452 && (bfd_get_flavour (h->root.u.def.section->owner)
2453 == bfd_target_elf_flavour))
2454 {
2455 h->ref_regular = 1;
2456 h->ref_regular_nonweak = 1;
2457 }
2458 else
2459 h->def_regular = 1;
2460 }
2461
2462 if (h->dynindx == -1
2463 && (h->def_dynamic
2464 || h->ref_dynamic))
2465 {
2466 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2467 {
2468 eif->failed = TRUE;
2469 return FALSE;
2470 }
2471 }
2472 }
2473 else
2474 {
2475 /* Unfortunately, NON_ELF is only correct if the symbol
2476 was first seen in a non-ELF file. Fortunately, if the symbol
2477 was first seen in an ELF file, we're probably OK unless the
2478 symbol was defined in a non-ELF file. Catch that case here.
2479 FIXME: We're still in trouble if the symbol was first seen in
2480 a dynamic object, and then later in a non-ELF regular object. */
2481 if ((h->root.type == bfd_link_hash_defined
2482 || h->root.type == bfd_link_hash_defweak)
2483 && !h->def_regular
2484 && (h->root.u.def.section->owner != NULL
2485 ? (bfd_get_flavour (h->root.u.def.section->owner)
2486 != bfd_target_elf_flavour)
2487 : (bfd_is_abs_section (h->root.u.def.section)
2488 && !h->def_dynamic)))
2489 h->def_regular = 1;
2490 }
2491
2492 /* Backend specific symbol fixup. */
2493 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2494 if (bed->elf_backend_fixup_symbol
2495 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2496 return FALSE;
2497
2498 /* If this is a final link, and the symbol was defined as a common
2499 symbol in a regular object file, and there was no definition in
2500 any dynamic object, then the linker will have allocated space for
2501 the symbol in a common section but the DEF_REGULAR
2502 flag will not have been set. */
2503 if (h->root.type == bfd_link_hash_defined
2504 && !h->def_regular
2505 && h->ref_regular
2506 && !h->def_dynamic
2507 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2508 h->def_regular = 1;
2509
2510 /* If -Bsymbolic was used (which means to bind references to global
2511 symbols to the definition within the shared object), and this
2512 symbol was defined in a regular object, then it actually doesn't
2513 need a PLT entry. Likewise, if the symbol has non-default
2514 visibility. If the symbol has hidden or internal visibility, we
2515 will force it local. */
2516 if (h->needs_plt
2517 && eif->info->shared
2518 && is_elf_hash_table (eif->info->hash)
2519 && (SYMBOLIC_BIND (eif->info, h)
2520 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2521 && h->def_regular)
2522 {
2523 bfd_boolean force_local;
2524
2525 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2526 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2527 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2528 }
2529
2530 /* If a weak undefined symbol has non-default visibility, we also
2531 hide it from the dynamic linker. */
2532 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2533 && h->root.type == bfd_link_hash_undefweak)
2534 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2535
2536 /* If this is a weak defined symbol in a dynamic object, and we know
2537 the real definition in the dynamic object, copy interesting flags
2538 over to the real definition. */
2539 if (h->u.weakdef != NULL)
2540 {
2541 struct elf_link_hash_entry *weakdef;
2542
2543 weakdef = h->u.weakdef;
2544 if (h->root.type == bfd_link_hash_indirect)
2545 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2546
2547 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2548 || h->root.type == bfd_link_hash_defweak);
2549 BFD_ASSERT (weakdef->def_dynamic);
2550
2551 /* If the real definition is defined by a regular object file,
2552 don't do anything special. See the longer description in
2553 _bfd_elf_adjust_dynamic_symbol, below. */
2554 if (weakdef->def_regular)
2555 h->u.weakdef = NULL;
2556 else
2557 {
2558 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2559 || weakdef->root.type == bfd_link_hash_defweak);
2560 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2561 }
2562 }
2563
2564 return TRUE;
2565 }
2566
2567 /* Make the backend pick a good value for a dynamic symbol. This is
2568 called via elf_link_hash_traverse, and also calls itself
2569 recursively. */
2570
2571 static bfd_boolean
2572 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2573 {
2574 struct elf_info_failed *eif = data;
2575 bfd *dynobj;
2576 const struct elf_backend_data *bed;
2577
2578 if (! is_elf_hash_table (eif->info->hash))
2579 return FALSE;
2580
2581 if (h->root.type == bfd_link_hash_warning)
2582 {
2583 h->got = elf_hash_table (eif->info)->init_got_offset;
2584 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2585
2586 /* When warning symbols are created, they **replace** the "real"
2587 entry in the hash table, thus we never get to see the real
2588 symbol in a hash traversal. So look at it now. */
2589 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2590 }
2591
2592 /* Ignore indirect symbols. These are added by the versioning code. */
2593 if (h->root.type == bfd_link_hash_indirect)
2594 return TRUE;
2595
2596 /* Fix the symbol flags. */
2597 if (! _bfd_elf_fix_symbol_flags (h, eif))
2598 return FALSE;
2599
2600 /* If this symbol does not require a PLT entry, and it is not
2601 defined by a dynamic object, or is not referenced by a regular
2602 object, ignore it. We do have to handle a weak defined symbol,
2603 even if no regular object refers to it, if we decided to add it
2604 to the dynamic symbol table. FIXME: Do we normally need to worry
2605 about symbols which are defined by one dynamic object and
2606 referenced by another one? */
2607 if (!h->needs_plt
2608 && h->type != STT_GNU_IFUNC
2609 && (h->def_regular
2610 || !h->def_dynamic
2611 || (!h->ref_regular
2612 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2613 {
2614 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2615 return TRUE;
2616 }
2617
2618 /* If we've already adjusted this symbol, don't do it again. This
2619 can happen via a recursive call. */
2620 if (h->dynamic_adjusted)
2621 return TRUE;
2622
2623 /* Don't look at this symbol again. Note that we must set this
2624 after checking the above conditions, because we may look at a
2625 symbol once, decide not to do anything, and then get called
2626 recursively later after REF_REGULAR is set below. */
2627 h->dynamic_adjusted = 1;
2628
2629 /* If this is a weak definition, and we know a real definition, and
2630 the real symbol is not itself defined by a regular object file,
2631 then get a good value for the real definition. We handle the
2632 real symbol first, for the convenience of the backend routine.
2633
2634 Note that there is a confusing case here. If the real definition
2635 is defined by a regular object file, we don't get the real symbol
2636 from the dynamic object, but we do get the weak symbol. If the
2637 processor backend uses a COPY reloc, then if some routine in the
2638 dynamic object changes the real symbol, we will not see that
2639 change in the corresponding weak symbol. This is the way other
2640 ELF linkers work as well, and seems to be a result of the shared
2641 library model.
2642
2643 I will clarify this issue. Most SVR4 shared libraries define the
2644 variable _timezone and define timezone as a weak synonym. The
2645 tzset call changes _timezone. If you write
2646 extern int timezone;
2647 int _timezone = 5;
2648 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2649 you might expect that, since timezone is a synonym for _timezone,
2650 the same number will print both times. However, if the processor
2651 backend uses a COPY reloc, then actually timezone will be copied
2652 into your process image, and, since you define _timezone
2653 yourself, _timezone will not. Thus timezone and _timezone will
2654 wind up at different memory locations. The tzset call will set
2655 _timezone, leaving timezone unchanged. */
2656
2657 if (h->u.weakdef != NULL)
2658 {
2659 /* If we get to this point, we know there is an implicit
2660 reference by a regular object file via the weak symbol H.
2661 FIXME: Is this really true? What if the traversal finds
2662 H->U.WEAKDEF before it finds H? */
2663 h->u.weakdef->ref_regular = 1;
2664
2665 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2666 return FALSE;
2667 }
2668
2669 /* If a symbol has no type and no size and does not require a PLT
2670 entry, then we are probably about to do the wrong thing here: we
2671 are probably going to create a COPY reloc for an empty object.
2672 This case can arise when a shared object is built with assembly
2673 code, and the assembly code fails to set the symbol type. */
2674 if (h->size == 0
2675 && h->type == STT_NOTYPE
2676 && !h->needs_plt)
2677 (*_bfd_error_handler)
2678 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2679 h->root.root.string);
2680
2681 dynobj = elf_hash_table (eif->info)->dynobj;
2682 bed = get_elf_backend_data (dynobj);
2683
2684 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2685 {
2686 eif->failed = TRUE;
2687 return FALSE;
2688 }
2689
2690 return TRUE;
2691 }
2692
2693 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2694 DYNBSS. */
2695
2696 bfd_boolean
2697 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2698 asection *dynbss)
2699 {
2700 unsigned int power_of_two;
2701 bfd_vma mask;
2702 asection *sec = h->root.u.def.section;
2703
2704 /* The section aligment of definition is the maximum alignment
2705 requirement of symbols defined in the section. Since we don't
2706 know the symbol alignment requirement, we start with the
2707 maximum alignment and check low bits of the symbol address
2708 for the minimum alignment. */
2709 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2710 mask = ((bfd_vma) 1 << power_of_two) - 1;
2711 while ((h->root.u.def.value & mask) != 0)
2712 {
2713 mask >>= 1;
2714 --power_of_two;
2715 }
2716
2717 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2718 dynbss))
2719 {
2720 /* Adjust the section alignment if needed. */
2721 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2722 power_of_two))
2723 return FALSE;
2724 }
2725
2726 /* We make sure that the symbol will be aligned properly. */
2727 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2728
2729 /* Define the symbol as being at this point in DYNBSS. */
2730 h->root.u.def.section = dynbss;
2731 h->root.u.def.value = dynbss->size;
2732
2733 /* Increment the size of DYNBSS to make room for the symbol. */
2734 dynbss->size += h->size;
2735
2736 return TRUE;
2737 }
2738
2739 /* Adjust all external symbols pointing into SEC_MERGE sections
2740 to reflect the object merging within the sections. */
2741
2742 static bfd_boolean
2743 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2744 {
2745 asection *sec;
2746
2747 if (h->root.type == bfd_link_hash_warning)
2748 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2749
2750 if ((h->root.type == bfd_link_hash_defined
2751 || h->root.type == bfd_link_hash_defweak)
2752 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2753 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2754 {
2755 bfd *output_bfd = data;
2756
2757 h->root.u.def.value =
2758 _bfd_merged_section_offset (output_bfd,
2759 &h->root.u.def.section,
2760 elf_section_data (sec)->sec_info,
2761 h->root.u.def.value);
2762 }
2763
2764 return TRUE;
2765 }
2766
2767 /* Returns false if the symbol referred to by H should be considered
2768 to resolve local to the current module, and true if it should be
2769 considered to bind dynamically. */
2770
2771 bfd_boolean
2772 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2773 struct bfd_link_info *info,
2774 bfd_boolean ignore_protected)
2775 {
2776 bfd_boolean binding_stays_local_p;
2777 const struct elf_backend_data *bed;
2778 struct elf_link_hash_table *hash_table;
2779
2780 if (h == NULL)
2781 return FALSE;
2782
2783 while (h->root.type == bfd_link_hash_indirect
2784 || h->root.type == bfd_link_hash_warning)
2785 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2786
2787 /* If it was forced local, then clearly it's not dynamic. */
2788 if (h->dynindx == -1)
2789 return FALSE;
2790 if (h->forced_local)
2791 return FALSE;
2792
2793 /* Identify the cases where name binding rules say that a
2794 visible symbol resolves locally. */
2795 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2796
2797 switch (ELF_ST_VISIBILITY (h->other))
2798 {
2799 case STV_INTERNAL:
2800 case STV_HIDDEN:
2801 return FALSE;
2802
2803 case STV_PROTECTED:
2804 hash_table = elf_hash_table (info);
2805 if (!is_elf_hash_table (hash_table))
2806 return FALSE;
2807
2808 bed = get_elf_backend_data (hash_table->dynobj);
2809
2810 /* Proper resolution for function pointer equality may require
2811 that these symbols perhaps be resolved dynamically, even though
2812 we should be resolving them to the current module. */
2813 if (!ignore_protected || !bed->is_function_type (h->type))
2814 binding_stays_local_p = TRUE;
2815 break;
2816
2817 default:
2818 break;
2819 }
2820
2821 /* If it isn't defined locally, then clearly it's dynamic. */
2822 if (!h->def_regular)
2823 return TRUE;
2824
2825 /* Otherwise, the symbol is dynamic if binding rules don't tell
2826 us that it remains local. */
2827 return !binding_stays_local_p;
2828 }
2829
2830 /* Return true if the symbol referred to by H should be considered
2831 to resolve local to the current module, and false otherwise. Differs
2832 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2833 undefined symbols and weak symbols. */
2834
2835 bfd_boolean
2836 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2837 struct bfd_link_info *info,
2838 bfd_boolean local_protected)
2839 {
2840 const struct elf_backend_data *bed;
2841 struct elf_link_hash_table *hash_table;
2842
2843 /* If it's a local sym, of course we resolve locally. */
2844 if (h == NULL)
2845 return TRUE;
2846
2847 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2848 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2849 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2850 return TRUE;
2851
2852 /* Common symbols that become definitions don't get the DEF_REGULAR
2853 flag set, so test it first, and don't bail out. */
2854 if (ELF_COMMON_DEF_P (h))
2855 /* Do nothing. */;
2856 /* If we don't have a definition in a regular file, then we can't
2857 resolve locally. The sym is either undefined or dynamic. */
2858 else if (!h->def_regular)
2859 return FALSE;
2860
2861 /* Forced local symbols resolve locally. */
2862 if (h->forced_local)
2863 return TRUE;
2864
2865 /* As do non-dynamic symbols. */
2866 if (h->dynindx == -1)
2867 return TRUE;
2868
2869 /* At this point, we know the symbol is defined and dynamic. In an
2870 executable it must resolve locally, likewise when building symbolic
2871 shared libraries. */
2872 if (info->executable || SYMBOLIC_BIND (info, h))
2873 return TRUE;
2874
2875 /* Now deal with defined dynamic symbols in shared libraries. Ones
2876 with default visibility might not resolve locally. */
2877 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2878 return FALSE;
2879
2880 hash_table = elf_hash_table (info);
2881 if (!is_elf_hash_table (hash_table))
2882 return TRUE;
2883
2884 bed = get_elf_backend_data (hash_table->dynobj);
2885
2886 /* STV_PROTECTED non-function symbols are local. */
2887 if (!bed->is_function_type (h->type))
2888 return TRUE;
2889
2890 /* Function pointer equality tests may require that STV_PROTECTED
2891 symbols be treated as dynamic symbols, even when we know that the
2892 dynamic linker will resolve them locally. */
2893 return local_protected;
2894 }
2895
2896 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2897 aligned. Returns the first TLS output section. */
2898
2899 struct bfd_section *
2900 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2901 {
2902 struct bfd_section *sec, *tls;
2903 unsigned int align = 0;
2904
2905 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2906 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2907 break;
2908 tls = sec;
2909
2910 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2911 if (sec->alignment_power > align)
2912 align = sec->alignment_power;
2913
2914 elf_hash_table (info)->tls_sec = tls;
2915
2916 /* Ensure the alignment of the first section is the largest alignment,
2917 so that the tls segment starts aligned. */
2918 if (tls != NULL)
2919 tls->alignment_power = align;
2920
2921 return tls;
2922 }
2923
2924 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2925 static bfd_boolean
2926 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2927 Elf_Internal_Sym *sym)
2928 {
2929 const struct elf_backend_data *bed;
2930
2931 /* Local symbols do not count, but target specific ones might. */
2932 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2933 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2934 return FALSE;
2935
2936 bed = get_elf_backend_data (abfd);
2937 /* Function symbols do not count. */
2938 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2939 return FALSE;
2940
2941 /* If the section is undefined, then so is the symbol. */
2942 if (sym->st_shndx == SHN_UNDEF)
2943 return FALSE;
2944
2945 /* If the symbol is defined in the common section, then
2946 it is a common definition and so does not count. */
2947 if (bed->common_definition (sym))
2948 return FALSE;
2949
2950 /* If the symbol is in a target specific section then we
2951 must rely upon the backend to tell us what it is. */
2952 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2953 /* FIXME - this function is not coded yet:
2954
2955 return _bfd_is_global_symbol_definition (abfd, sym);
2956
2957 Instead for now assume that the definition is not global,
2958 Even if this is wrong, at least the linker will behave
2959 in the same way that it used to do. */
2960 return FALSE;
2961
2962 return TRUE;
2963 }
2964
2965 /* Search the symbol table of the archive element of the archive ABFD
2966 whose archive map contains a mention of SYMDEF, and determine if
2967 the symbol is defined in this element. */
2968 static bfd_boolean
2969 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2970 {
2971 Elf_Internal_Shdr * hdr;
2972 bfd_size_type symcount;
2973 bfd_size_type extsymcount;
2974 bfd_size_type extsymoff;
2975 Elf_Internal_Sym *isymbuf;
2976 Elf_Internal_Sym *isym;
2977 Elf_Internal_Sym *isymend;
2978 bfd_boolean result;
2979
2980 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2981 if (abfd == NULL)
2982 return FALSE;
2983
2984 if (! bfd_check_format (abfd, bfd_object))
2985 return FALSE;
2986
2987 /* If we have already included the element containing this symbol in the
2988 link then we do not need to include it again. Just claim that any symbol
2989 it contains is not a definition, so that our caller will not decide to
2990 (re)include this element. */
2991 if (abfd->archive_pass)
2992 return FALSE;
2993
2994 /* Select the appropriate symbol table. */
2995 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2996 hdr = &elf_tdata (abfd)->symtab_hdr;
2997 else
2998 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2999
3000 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3001
3002 /* The sh_info field of the symtab header tells us where the
3003 external symbols start. We don't care about the local symbols. */
3004 if (elf_bad_symtab (abfd))
3005 {
3006 extsymcount = symcount;
3007 extsymoff = 0;
3008 }
3009 else
3010 {
3011 extsymcount = symcount - hdr->sh_info;
3012 extsymoff = hdr->sh_info;
3013 }
3014
3015 if (extsymcount == 0)
3016 return FALSE;
3017
3018 /* Read in the symbol table. */
3019 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3020 NULL, NULL, NULL);
3021 if (isymbuf == NULL)
3022 return FALSE;
3023
3024 /* Scan the symbol table looking for SYMDEF. */
3025 result = FALSE;
3026 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3027 {
3028 const char *name;
3029
3030 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3031 isym->st_name);
3032 if (name == NULL)
3033 break;
3034
3035 if (strcmp (name, symdef->name) == 0)
3036 {
3037 result = is_global_data_symbol_definition (abfd, isym);
3038 break;
3039 }
3040 }
3041
3042 free (isymbuf);
3043
3044 return result;
3045 }
3046 \f
3047 /* Add an entry to the .dynamic table. */
3048
3049 bfd_boolean
3050 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3051 bfd_vma tag,
3052 bfd_vma val)
3053 {
3054 struct elf_link_hash_table *hash_table;
3055 const struct elf_backend_data *bed;
3056 asection *s;
3057 bfd_size_type newsize;
3058 bfd_byte *newcontents;
3059 Elf_Internal_Dyn dyn;
3060
3061 hash_table = elf_hash_table (info);
3062 if (! is_elf_hash_table (hash_table))
3063 return FALSE;
3064
3065 bed = get_elf_backend_data (hash_table->dynobj);
3066 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3067 BFD_ASSERT (s != NULL);
3068
3069 newsize = s->size + bed->s->sizeof_dyn;
3070 newcontents = bfd_realloc (s->contents, newsize);
3071 if (newcontents == NULL)
3072 return FALSE;
3073
3074 dyn.d_tag = tag;
3075 dyn.d_un.d_val = val;
3076 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3077
3078 s->size = newsize;
3079 s->contents = newcontents;
3080
3081 return TRUE;
3082 }
3083
3084 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3085 otherwise just check whether one already exists. Returns -1 on error,
3086 1 if a DT_NEEDED tag already exists, and 0 on success. */
3087
3088 static int
3089 elf_add_dt_needed_tag (bfd *abfd,
3090 struct bfd_link_info *info,
3091 const char *soname,
3092 bfd_boolean do_it)
3093 {
3094 struct elf_link_hash_table *hash_table;
3095 bfd_size_type oldsize;
3096 bfd_size_type strindex;
3097
3098 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3099 return -1;
3100
3101 hash_table = elf_hash_table (info);
3102 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3103 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3104 if (strindex == (bfd_size_type) -1)
3105 return -1;
3106
3107 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3108 {
3109 asection *sdyn;
3110 const struct elf_backend_data *bed;
3111 bfd_byte *extdyn;
3112
3113 bed = get_elf_backend_data (hash_table->dynobj);
3114 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3115 if (sdyn != NULL)
3116 for (extdyn = sdyn->contents;
3117 extdyn < sdyn->contents + sdyn->size;
3118 extdyn += bed->s->sizeof_dyn)
3119 {
3120 Elf_Internal_Dyn dyn;
3121
3122 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3123 if (dyn.d_tag == DT_NEEDED
3124 && dyn.d_un.d_val == strindex)
3125 {
3126 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3127 return 1;
3128 }
3129 }
3130 }
3131
3132 if (do_it)
3133 {
3134 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3135 return -1;
3136
3137 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3138 return -1;
3139 }
3140 else
3141 /* We were just checking for existence of the tag. */
3142 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3143
3144 return 0;
3145 }
3146
3147 static bfd_boolean
3148 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3149 {
3150 for (; needed != NULL; needed = needed->next)
3151 if (strcmp (soname, needed->name) == 0)
3152 return TRUE;
3153
3154 return FALSE;
3155 }
3156
3157 /* Sort symbol by value and section. */
3158 static int
3159 elf_sort_symbol (const void *arg1, const void *arg2)
3160 {
3161 const struct elf_link_hash_entry *h1;
3162 const struct elf_link_hash_entry *h2;
3163 bfd_signed_vma vdiff;
3164
3165 h1 = *(const struct elf_link_hash_entry **) arg1;
3166 h2 = *(const struct elf_link_hash_entry **) arg2;
3167 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3168 if (vdiff != 0)
3169 return vdiff > 0 ? 1 : -1;
3170 else
3171 {
3172 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3173 if (sdiff != 0)
3174 return sdiff > 0 ? 1 : -1;
3175 }
3176 return 0;
3177 }
3178
3179 /* This function is used to adjust offsets into .dynstr for
3180 dynamic symbols. This is called via elf_link_hash_traverse. */
3181
3182 static bfd_boolean
3183 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3184 {
3185 struct elf_strtab_hash *dynstr = data;
3186
3187 if (h->root.type == bfd_link_hash_warning)
3188 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3189
3190 if (h->dynindx != -1)
3191 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3192 return TRUE;
3193 }
3194
3195 /* Assign string offsets in .dynstr, update all structures referencing
3196 them. */
3197
3198 static bfd_boolean
3199 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3200 {
3201 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3202 struct elf_link_local_dynamic_entry *entry;
3203 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3204 bfd *dynobj = hash_table->dynobj;
3205 asection *sdyn;
3206 bfd_size_type size;
3207 const struct elf_backend_data *bed;
3208 bfd_byte *extdyn;
3209
3210 _bfd_elf_strtab_finalize (dynstr);
3211 size = _bfd_elf_strtab_size (dynstr);
3212
3213 bed = get_elf_backend_data (dynobj);
3214 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3215 BFD_ASSERT (sdyn != NULL);
3216
3217 /* Update all .dynamic entries referencing .dynstr strings. */
3218 for (extdyn = sdyn->contents;
3219 extdyn < sdyn->contents + sdyn->size;
3220 extdyn += bed->s->sizeof_dyn)
3221 {
3222 Elf_Internal_Dyn dyn;
3223
3224 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3225 switch (dyn.d_tag)
3226 {
3227 case DT_STRSZ:
3228 dyn.d_un.d_val = size;
3229 break;
3230 case DT_NEEDED:
3231 case DT_SONAME:
3232 case DT_RPATH:
3233 case DT_RUNPATH:
3234 case DT_FILTER:
3235 case DT_AUXILIARY:
3236 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3237 break;
3238 default:
3239 continue;
3240 }
3241 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3242 }
3243
3244 /* Now update local dynamic symbols. */
3245 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3246 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3247 entry->isym.st_name);
3248
3249 /* And the rest of dynamic symbols. */
3250 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3251
3252 /* Adjust version definitions. */
3253 if (elf_tdata (output_bfd)->cverdefs)
3254 {
3255 asection *s;
3256 bfd_byte *p;
3257 bfd_size_type i;
3258 Elf_Internal_Verdef def;
3259 Elf_Internal_Verdaux defaux;
3260
3261 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3262 p = s->contents;
3263 do
3264 {
3265 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3266 &def);
3267 p += sizeof (Elf_External_Verdef);
3268 if (def.vd_aux != sizeof (Elf_External_Verdef))
3269 continue;
3270 for (i = 0; i < def.vd_cnt; ++i)
3271 {
3272 _bfd_elf_swap_verdaux_in (output_bfd,
3273 (Elf_External_Verdaux *) p, &defaux);
3274 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3275 defaux.vda_name);
3276 _bfd_elf_swap_verdaux_out (output_bfd,
3277 &defaux, (Elf_External_Verdaux *) p);
3278 p += sizeof (Elf_External_Verdaux);
3279 }
3280 }
3281 while (def.vd_next);
3282 }
3283
3284 /* Adjust version references. */
3285 if (elf_tdata (output_bfd)->verref)
3286 {
3287 asection *s;
3288 bfd_byte *p;
3289 bfd_size_type i;
3290 Elf_Internal_Verneed need;
3291 Elf_Internal_Vernaux needaux;
3292
3293 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3294 p = s->contents;
3295 do
3296 {
3297 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3298 &need);
3299 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3300 _bfd_elf_swap_verneed_out (output_bfd, &need,
3301 (Elf_External_Verneed *) p);
3302 p += sizeof (Elf_External_Verneed);
3303 for (i = 0; i < need.vn_cnt; ++i)
3304 {
3305 _bfd_elf_swap_vernaux_in (output_bfd,
3306 (Elf_External_Vernaux *) p, &needaux);
3307 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3308 needaux.vna_name);
3309 _bfd_elf_swap_vernaux_out (output_bfd,
3310 &needaux,
3311 (Elf_External_Vernaux *) p);
3312 p += sizeof (Elf_External_Vernaux);
3313 }
3314 }
3315 while (need.vn_next);
3316 }
3317
3318 return TRUE;
3319 }
3320 \f
3321 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3322 The default is to only match when the INPUT and OUTPUT are exactly
3323 the same target. */
3324
3325 bfd_boolean
3326 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3327 const bfd_target *output)
3328 {
3329 return input == output;
3330 }
3331
3332 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3333 This version is used when different targets for the same architecture
3334 are virtually identical. */
3335
3336 bfd_boolean
3337 _bfd_elf_relocs_compatible (const bfd_target *input,
3338 const bfd_target *output)
3339 {
3340 const struct elf_backend_data *obed, *ibed;
3341
3342 if (input == output)
3343 return TRUE;
3344
3345 ibed = xvec_get_elf_backend_data (input);
3346 obed = xvec_get_elf_backend_data (output);
3347
3348 if (ibed->arch != obed->arch)
3349 return FALSE;
3350
3351 /* If both backends are using this function, deem them compatible. */
3352 return ibed->relocs_compatible == obed->relocs_compatible;
3353 }
3354
3355 /* Add symbols from an ELF object file to the linker hash table. */
3356
3357 static bfd_boolean
3358 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3359 {
3360 Elf_Internal_Ehdr *ehdr;
3361 Elf_Internal_Shdr *hdr;
3362 bfd_size_type symcount;
3363 bfd_size_type extsymcount;
3364 bfd_size_type extsymoff;
3365 struct elf_link_hash_entry **sym_hash;
3366 bfd_boolean dynamic;
3367 Elf_External_Versym *extversym = NULL;
3368 Elf_External_Versym *ever;
3369 struct elf_link_hash_entry *weaks;
3370 struct elf_link_hash_entry **nondeflt_vers = NULL;
3371 bfd_size_type nondeflt_vers_cnt = 0;
3372 Elf_Internal_Sym *isymbuf = NULL;
3373 Elf_Internal_Sym *isym;
3374 Elf_Internal_Sym *isymend;
3375 const struct elf_backend_data *bed;
3376 bfd_boolean add_needed;
3377 struct elf_link_hash_table *htab;
3378 bfd_size_type amt;
3379 void *alloc_mark = NULL;
3380 struct bfd_hash_entry **old_table = NULL;
3381 unsigned int old_size = 0;
3382 unsigned int old_count = 0;
3383 void *old_tab = NULL;
3384 void *old_hash;
3385 void *old_ent;
3386 struct bfd_link_hash_entry *old_undefs = NULL;
3387 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3388 long old_dynsymcount = 0;
3389 size_t tabsize = 0;
3390 size_t hashsize = 0;
3391
3392 htab = elf_hash_table (info);
3393 bed = get_elf_backend_data (abfd);
3394
3395 if ((abfd->flags & DYNAMIC) == 0)
3396 dynamic = FALSE;
3397 else
3398 {
3399 dynamic = TRUE;
3400
3401 /* You can't use -r against a dynamic object. Also, there's no
3402 hope of using a dynamic object which does not exactly match
3403 the format of the output file. */
3404 if (info->relocatable
3405 || !is_elf_hash_table (htab)
3406 || info->output_bfd->xvec != abfd->xvec)
3407 {
3408 if (info->relocatable)
3409 bfd_set_error (bfd_error_invalid_operation);
3410 else
3411 bfd_set_error (bfd_error_wrong_format);
3412 goto error_return;
3413 }
3414 }
3415
3416 ehdr = elf_elfheader (abfd);
3417 if (info->warn_alternate_em
3418 && bed->elf_machine_code != ehdr->e_machine
3419 && ((bed->elf_machine_alt1 != 0
3420 && ehdr->e_machine == bed->elf_machine_alt1)
3421 || (bed->elf_machine_alt2 != 0
3422 && ehdr->e_machine == bed->elf_machine_alt2)))
3423 info->callbacks->einfo
3424 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3425 ehdr->e_machine, abfd, bed->elf_machine_code);
3426
3427 /* As a GNU extension, any input sections which are named
3428 .gnu.warning.SYMBOL are treated as warning symbols for the given
3429 symbol. This differs from .gnu.warning sections, which generate
3430 warnings when they are included in an output file. */
3431 if (info->executable)
3432 {
3433 asection *s;
3434
3435 for (s = abfd->sections; s != NULL; s = s->next)
3436 {
3437 const char *name;
3438
3439 name = bfd_get_section_name (abfd, s);
3440 if (CONST_STRNEQ (name, ".gnu.warning."))
3441 {
3442 char *msg;
3443 bfd_size_type sz;
3444
3445 name += sizeof ".gnu.warning." - 1;
3446
3447 /* If this is a shared object, then look up the symbol
3448 in the hash table. If it is there, and it is already
3449 been defined, then we will not be using the entry
3450 from this shared object, so we don't need to warn.
3451 FIXME: If we see the definition in a regular object
3452 later on, we will warn, but we shouldn't. The only
3453 fix is to keep track of what warnings we are supposed
3454 to emit, and then handle them all at the end of the
3455 link. */
3456 if (dynamic)
3457 {
3458 struct elf_link_hash_entry *h;
3459
3460 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3461
3462 /* FIXME: What about bfd_link_hash_common? */
3463 if (h != NULL
3464 && (h->root.type == bfd_link_hash_defined
3465 || h->root.type == bfd_link_hash_defweak))
3466 {
3467 /* We don't want to issue this warning. Clobber
3468 the section size so that the warning does not
3469 get copied into the output file. */
3470 s->size = 0;
3471 continue;
3472 }
3473 }
3474
3475 sz = s->size;
3476 msg = bfd_alloc (abfd, sz + 1);
3477 if (msg == NULL)
3478 goto error_return;
3479
3480 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3481 goto error_return;
3482
3483 msg[sz] = '\0';
3484
3485 if (! (_bfd_generic_link_add_one_symbol
3486 (info, abfd, name, BSF_WARNING, s, 0, msg,
3487 FALSE, bed->collect, NULL)))
3488 goto error_return;
3489
3490 if (! info->relocatable)
3491 {
3492 /* Clobber the section size so that the warning does
3493 not get copied into the output file. */
3494 s->size = 0;
3495
3496 /* Also set SEC_EXCLUDE, so that symbols defined in
3497 the warning section don't get copied to the output. */
3498 s->flags |= SEC_EXCLUDE;
3499 }
3500 }
3501 }
3502 }
3503
3504 add_needed = TRUE;
3505 if (! dynamic)
3506 {
3507 /* If we are creating a shared library, create all the dynamic
3508 sections immediately. We need to attach them to something,
3509 so we attach them to this BFD, provided it is the right
3510 format. FIXME: If there are no input BFD's of the same
3511 format as the output, we can't make a shared library. */
3512 if (info->shared
3513 && is_elf_hash_table (htab)
3514 && info->output_bfd->xvec == abfd->xvec
3515 && !htab->dynamic_sections_created)
3516 {
3517 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3518 goto error_return;
3519 }
3520 }
3521 else if (!is_elf_hash_table (htab))
3522 goto error_return;
3523 else
3524 {
3525 asection *s;
3526 const char *soname = NULL;
3527 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3528 int ret;
3529
3530 /* ld --just-symbols and dynamic objects don't mix very well.
3531 ld shouldn't allow it. */
3532 if ((s = abfd->sections) != NULL
3533 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3534 abort ();
3535
3536 /* If this dynamic lib was specified on the command line with
3537 --as-needed in effect, then we don't want to add a DT_NEEDED
3538 tag unless the lib is actually used. Similary for libs brought
3539 in by another lib's DT_NEEDED. When --no-add-needed is used
3540 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3541 any dynamic library in DT_NEEDED tags in the dynamic lib at
3542 all. */
3543 add_needed = (elf_dyn_lib_class (abfd)
3544 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3545 | DYN_NO_NEEDED)) == 0;
3546
3547 s = bfd_get_section_by_name (abfd, ".dynamic");
3548 if (s != NULL)
3549 {
3550 bfd_byte *dynbuf;
3551 bfd_byte *extdyn;
3552 unsigned int elfsec;
3553 unsigned long shlink;
3554
3555 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3556 {
3557 error_free_dyn:
3558 free (dynbuf);
3559 goto error_return;
3560 }
3561
3562 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3563 if (elfsec == SHN_BAD)
3564 goto error_free_dyn;
3565 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3566
3567 for (extdyn = dynbuf;
3568 extdyn < dynbuf + s->size;
3569 extdyn += bed->s->sizeof_dyn)
3570 {
3571 Elf_Internal_Dyn dyn;
3572
3573 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3574 if (dyn.d_tag == DT_SONAME)
3575 {
3576 unsigned int tagv = dyn.d_un.d_val;
3577 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3578 if (soname == NULL)
3579 goto error_free_dyn;
3580 }
3581 if (dyn.d_tag == DT_NEEDED)
3582 {
3583 struct bfd_link_needed_list *n, **pn;
3584 char *fnm, *anm;
3585 unsigned int tagv = dyn.d_un.d_val;
3586
3587 amt = sizeof (struct bfd_link_needed_list);
3588 n = bfd_alloc (abfd, amt);
3589 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3590 if (n == NULL || fnm == NULL)
3591 goto error_free_dyn;
3592 amt = strlen (fnm) + 1;
3593 anm = bfd_alloc (abfd, amt);
3594 if (anm == NULL)
3595 goto error_free_dyn;
3596 memcpy (anm, fnm, amt);
3597 n->name = anm;
3598 n->by = abfd;
3599 n->next = NULL;
3600 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3601 ;
3602 *pn = n;
3603 }
3604 if (dyn.d_tag == DT_RUNPATH)
3605 {
3606 struct bfd_link_needed_list *n, **pn;
3607 char *fnm, *anm;
3608 unsigned int tagv = dyn.d_un.d_val;
3609
3610 amt = sizeof (struct bfd_link_needed_list);
3611 n = bfd_alloc (abfd, amt);
3612 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3613 if (n == NULL || fnm == NULL)
3614 goto error_free_dyn;
3615 amt = strlen (fnm) + 1;
3616 anm = bfd_alloc (abfd, amt);
3617 if (anm == NULL)
3618 goto error_free_dyn;
3619 memcpy (anm, fnm, amt);
3620 n->name = anm;
3621 n->by = abfd;
3622 n->next = NULL;
3623 for (pn = & runpath;
3624 *pn != NULL;
3625 pn = &(*pn)->next)
3626 ;
3627 *pn = n;
3628 }
3629 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3630 if (!runpath && dyn.d_tag == DT_RPATH)
3631 {
3632 struct bfd_link_needed_list *n, **pn;
3633 char *fnm, *anm;
3634 unsigned int tagv = dyn.d_un.d_val;
3635
3636 amt = sizeof (struct bfd_link_needed_list);
3637 n = bfd_alloc (abfd, amt);
3638 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3639 if (n == NULL || fnm == NULL)
3640 goto error_free_dyn;
3641 amt = strlen (fnm) + 1;
3642 anm = bfd_alloc (abfd, amt);
3643 if (anm == NULL)
3644 goto error_free_dyn;
3645 memcpy (anm, fnm, amt);
3646 n->name = anm;
3647 n->by = abfd;
3648 n->next = NULL;
3649 for (pn = & rpath;
3650 *pn != NULL;
3651 pn = &(*pn)->next)
3652 ;
3653 *pn = n;
3654 }
3655 }
3656
3657 free (dynbuf);
3658 }
3659
3660 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3661 frees all more recently bfd_alloc'd blocks as well. */
3662 if (runpath)
3663 rpath = runpath;
3664
3665 if (rpath)
3666 {
3667 struct bfd_link_needed_list **pn;
3668 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3669 ;
3670 *pn = rpath;
3671 }
3672
3673 /* We do not want to include any of the sections in a dynamic
3674 object in the output file. We hack by simply clobbering the
3675 list of sections in the BFD. This could be handled more
3676 cleanly by, say, a new section flag; the existing
3677 SEC_NEVER_LOAD flag is not the one we want, because that one
3678 still implies that the section takes up space in the output
3679 file. */
3680 bfd_section_list_clear (abfd);
3681
3682 /* Find the name to use in a DT_NEEDED entry that refers to this
3683 object. If the object has a DT_SONAME entry, we use it.
3684 Otherwise, if the generic linker stuck something in
3685 elf_dt_name, we use that. Otherwise, we just use the file
3686 name. */
3687 if (soname == NULL || *soname == '\0')
3688 {
3689 soname = elf_dt_name (abfd);
3690 if (soname == NULL || *soname == '\0')
3691 soname = bfd_get_filename (abfd);
3692 }
3693
3694 /* Save the SONAME because sometimes the linker emulation code
3695 will need to know it. */
3696 elf_dt_name (abfd) = soname;
3697
3698 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3699 if (ret < 0)
3700 goto error_return;
3701
3702 /* If we have already included this dynamic object in the
3703 link, just ignore it. There is no reason to include a
3704 particular dynamic object more than once. */
3705 if (ret > 0)
3706 return TRUE;
3707 }
3708
3709 /* If this is a dynamic object, we always link against the .dynsym
3710 symbol table, not the .symtab symbol table. The dynamic linker
3711 will only see the .dynsym symbol table, so there is no reason to
3712 look at .symtab for a dynamic object. */
3713
3714 if (! dynamic || elf_dynsymtab (abfd) == 0)
3715 hdr = &elf_tdata (abfd)->symtab_hdr;
3716 else
3717 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3718
3719 symcount = hdr->sh_size / bed->s->sizeof_sym;
3720
3721 /* The sh_info field of the symtab header tells us where the
3722 external symbols start. We don't care about the local symbols at
3723 this point. */
3724 if (elf_bad_symtab (abfd))
3725 {
3726 extsymcount = symcount;
3727 extsymoff = 0;
3728 }
3729 else
3730 {
3731 extsymcount = symcount - hdr->sh_info;
3732 extsymoff = hdr->sh_info;
3733 }
3734
3735 sym_hash = NULL;
3736 if (extsymcount != 0)
3737 {
3738 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3739 NULL, NULL, NULL);
3740 if (isymbuf == NULL)
3741 goto error_return;
3742
3743 /* We store a pointer to the hash table entry for each external
3744 symbol. */
3745 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3746 sym_hash = bfd_alloc (abfd, amt);
3747 if (sym_hash == NULL)
3748 goto error_free_sym;
3749 elf_sym_hashes (abfd) = sym_hash;
3750 }
3751
3752 if (dynamic)
3753 {
3754 /* Read in any version definitions. */
3755 if (!_bfd_elf_slurp_version_tables (abfd,
3756 info->default_imported_symver))
3757 goto error_free_sym;
3758
3759 /* Read in the symbol versions, but don't bother to convert them
3760 to internal format. */
3761 if (elf_dynversym (abfd) != 0)
3762 {
3763 Elf_Internal_Shdr *versymhdr;
3764
3765 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3766 extversym = bfd_malloc (versymhdr->sh_size);
3767 if (extversym == NULL)
3768 goto error_free_sym;
3769 amt = versymhdr->sh_size;
3770 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3771 || bfd_bread (extversym, amt, abfd) != amt)
3772 goto error_free_vers;
3773 }
3774 }
3775
3776 /* If we are loading an as-needed shared lib, save the symbol table
3777 state before we start adding symbols. If the lib turns out
3778 to be unneeded, restore the state. */
3779 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3780 {
3781 unsigned int i;
3782 size_t entsize;
3783
3784 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3785 {
3786 struct bfd_hash_entry *p;
3787 struct elf_link_hash_entry *h;
3788
3789 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3790 {
3791 h = (struct elf_link_hash_entry *) p;
3792 entsize += htab->root.table.entsize;
3793 if (h->root.type == bfd_link_hash_warning)
3794 entsize += htab->root.table.entsize;
3795 }
3796 }
3797
3798 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3799 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3800 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3801 if (old_tab == NULL)
3802 goto error_free_vers;
3803
3804 /* Remember the current objalloc pointer, so that all mem for
3805 symbols added can later be reclaimed. */
3806 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3807 if (alloc_mark == NULL)
3808 goto error_free_vers;
3809
3810 /* Make a special call to the linker "notice" function to
3811 tell it that we are about to handle an as-needed lib. */
3812 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3813 notice_as_needed))
3814 goto error_free_vers;
3815
3816 /* Clone the symbol table and sym hashes. Remember some
3817 pointers into the symbol table, and dynamic symbol count. */
3818 old_hash = (char *) old_tab + tabsize;
3819 old_ent = (char *) old_hash + hashsize;
3820 memcpy (old_tab, htab->root.table.table, tabsize);
3821 memcpy (old_hash, sym_hash, hashsize);
3822 old_undefs = htab->root.undefs;
3823 old_undefs_tail = htab->root.undefs_tail;
3824 old_table = htab->root.table.table;
3825 old_size = htab->root.table.size;
3826 old_count = htab->root.table.count;
3827 old_dynsymcount = htab->dynsymcount;
3828
3829 for (i = 0; i < htab->root.table.size; i++)
3830 {
3831 struct bfd_hash_entry *p;
3832 struct elf_link_hash_entry *h;
3833
3834 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3835 {
3836 memcpy (old_ent, p, htab->root.table.entsize);
3837 old_ent = (char *) old_ent + htab->root.table.entsize;
3838 h = (struct elf_link_hash_entry *) p;
3839 if (h->root.type == bfd_link_hash_warning)
3840 {
3841 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3842 old_ent = (char *) old_ent + htab->root.table.entsize;
3843 }
3844 }
3845 }
3846 }
3847
3848 weaks = NULL;
3849 ever = extversym != NULL ? extversym + extsymoff : NULL;
3850 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3851 isym < isymend;
3852 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3853 {
3854 int bind;
3855 bfd_vma value;
3856 asection *sec, *new_sec;
3857 flagword flags;
3858 const char *name;
3859 struct elf_link_hash_entry *h;
3860 bfd_boolean definition;
3861 bfd_boolean size_change_ok;
3862 bfd_boolean type_change_ok;
3863 bfd_boolean new_weakdef;
3864 bfd_boolean override;
3865 bfd_boolean common;
3866 unsigned int old_alignment;
3867 bfd *old_bfd;
3868
3869 override = FALSE;
3870
3871 flags = BSF_NO_FLAGS;
3872 sec = NULL;
3873 value = isym->st_value;
3874 *sym_hash = NULL;
3875 common = bed->common_definition (isym);
3876
3877 bind = ELF_ST_BIND (isym->st_info);
3878 switch (bind)
3879 {
3880 case STB_LOCAL:
3881 /* This should be impossible, since ELF requires that all
3882 global symbols follow all local symbols, and that sh_info
3883 point to the first global symbol. Unfortunately, Irix 5
3884 screws this up. */
3885 continue;
3886
3887 case STB_GLOBAL:
3888 if (isym->st_shndx != SHN_UNDEF && !common)
3889 flags = BSF_GLOBAL;
3890 break;
3891
3892 case STB_WEAK:
3893 flags = BSF_WEAK;
3894 break;
3895
3896 case STB_GNU_UNIQUE:
3897 flags = BSF_GNU_UNIQUE;
3898 break;
3899
3900 default:
3901 /* Leave it up to the processor backend. */
3902 break;
3903 }
3904
3905 if (isym->st_shndx == SHN_UNDEF)
3906 sec = bfd_und_section_ptr;
3907 else if (isym->st_shndx == SHN_ABS)
3908 sec = bfd_abs_section_ptr;
3909 else if (isym->st_shndx == SHN_COMMON)
3910 {
3911 sec = bfd_com_section_ptr;
3912 /* What ELF calls the size we call the value. What ELF
3913 calls the value we call the alignment. */
3914 value = isym->st_size;
3915 }
3916 else
3917 {
3918 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3919 if (sec == NULL)
3920 sec = bfd_abs_section_ptr;
3921 else if (sec->kept_section)
3922 {
3923 /* Symbols from discarded section are undefined. We keep
3924 its visibility. */
3925 sec = bfd_und_section_ptr;
3926 isym->st_shndx = SHN_UNDEF;
3927 }
3928 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3929 value -= sec->vma;
3930 }
3931
3932 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3933 isym->st_name);
3934 if (name == NULL)
3935 goto error_free_vers;
3936
3937 if (isym->st_shndx == SHN_COMMON
3938 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3939 && !info->relocatable)
3940 {
3941 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3942
3943 if (tcomm == NULL)
3944 {
3945 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3946 (SEC_ALLOC
3947 | SEC_IS_COMMON
3948 | SEC_LINKER_CREATED
3949 | SEC_THREAD_LOCAL));
3950 if (tcomm == NULL)
3951 goto error_free_vers;
3952 }
3953 sec = tcomm;
3954 }
3955 else if (bed->elf_add_symbol_hook)
3956 {
3957 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3958 &sec, &value))
3959 goto error_free_vers;
3960
3961 /* The hook function sets the name to NULL if this symbol
3962 should be skipped for some reason. */
3963 if (name == NULL)
3964 continue;
3965 }
3966
3967 /* Sanity check that all possibilities were handled. */
3968 if (sec == NULL)
3969 {
3970 bfd_set_error (bfd_error_bad_value);
3971 goto error_free_vers;
3972 }
3973
3974 if (bfd_is_und_section (sec)
3975 || bfd_is_com_section (sec))
3976 definition = FALSE;
3977 else
3978 definition = TRUE;
3979
3980 size_change_ok = FALSE;
3981 type_change_ok = bed->type_change_ok;
3982 old_alignment = 0;
3983 old_bfd = NULL;
3984 new_sec = sec;
3985
3986 if (is_elf_hash_table (htab))
3987 {
3988 Elf_Internal_Versym iver;
3989 unsigned int vernum = 0;
3990 bfd_boolean skip;
3991
3992 if (ever == NULL)
3993 {
3994 if (info->default_imported_symver)
3995 /* Use the default symbol version created earlier. */
3996 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3997 else
3998 iver.vs_vers = 0;
3999 }
4000 else
4001 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4002
4003 vernum = iver.vs_vers & VERSYM_VERSION;
4004
4005 /* If this is a hidden symbol, or if it is not version
4006 1, we append the version name to the symbol name.
4007 However, we do not modify a non-hidden absolute symbol
4008 if it is not a function, because it might be the version
4009 symbol itself. FIXME: What if it isn't? */
4010 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4011 || (vernum > 1
4012 && (!bfd_is_abs_section (sec)
4013 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4014 {
4015 const char *verstr;
4016 size_t namelen, verlen, newlen;
4017 char *newname, *p;
4018
4019 if (isym->st_shndx != SHN_UNDEF)
4020 {
4021 if (vernum > elf_tdata (abfd)->cverdefs)
4022 verstr = NULL;
4023 else if (vernum > 1)
4024 verstr =
4025 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4026 else
4027 verstr = "";
4028
4029 if (verstr == NULL)
4030 {
4031 (*_bfd_error_handler)
4032 (_("%B: %s: invalid version %u (max %d)"),
4033 abfd, name, vernum,
4034 elf_tdata (abfd)->cverdefs);
4035 bfd_set_error (bfd_error_bad_value);
4036 goto error_free_vers;
4037 }
4038 }
4039 else
4040 {
4041 /* We cannot simply test for the number of
4042 entries in the VERNEED section since the
4043 numbers for the needed versions do not start
4044 at 0. */
4045 Elf_Internal_Verneed *t;
4046
4047 verstr = NULL;
4048 for (t = elf_tdata (abfd)->verref;
4049 t != NULL;
4050 t = t->vn_nextref)
4051 {
4052 Elf_Internal_Vernaux *a;
4053
4054 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4055 {
4056 if (a->vna_other == vernum)
4057 {
4058 verstr = a->vna_nodename;
4059 break;
4060 }
4061 }
4062 if (a != NULL)
4063 break;
4064 }
4065 if (verstr == NULL)
4066 {
4067 (*_bfd_error_handler)
4068 (_("%B: %s: invalid needed version %d"),
4069 abfd, name, vernum);
4070 bfd_set_error (bfd_error_bad_value);
4071 goto error_free_vers;
4072 }
4073 }
4074
4075 namelen = strlen (name);
4076 verlen = strlen (verstr);
4077 newlen = namelen + verlen + 2;
4078 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4079 && isym->st_shndx != SHN_UNDEF)
4080 ++newlen;
4081
4082 newname = bfd_hash_allocate (&htab->root.table, newlen);
4083 if (newname == NULL)
4084 goto error_free_vers;
4085 memcpy (newname, name, namelen);
4086 p = newname + namelen;
4087 *p++ = ELF_VER_CHR;
4088 /* If this is a defined non-hidden version symbol,
4089 we add another @ to the name. This indicates the
4090 default version of the symbol. */
4091 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4092 && isym->st_shndx != SHN_UNDEF)
4093 *p++ = ELF_VER_CHR;
4094 memcpy (p, verstr, verlen + 1);
4095
4096 name = newname;
4097 }
4098
4099 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4100 &value, &old_alignment,
4101 sym_hash, &skip, &override,
4102 &type_change_ok, &size_change_ok))
4103 goto error_free_vers;
4104
4105 if (skip)
4106 continue;
4107
4108 if (override)
4109 definition = FALSE;
4110
4111 h = *sym_hash;
4112 while (h->root.type == bfd_link_hash_indirect
4113 || h->root.type == bfd_link_hash_warning)
4114 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4115
4116 /* Remember the old alignment if this is a common symbol, so
4117 that we don't reduce the alignment later on. We can't
4118 check later, because _bfd_generic_link_add_one_symbol
4119 will set a default for the alignment which we want to
4120 override. We also remember the old bfd where the existing
4121 definition comes from. */
4122 switch (h->root.type)
4123 {
4124 default:
4125 break;
4126
4127 case bfd_link_hash_defined:
4128 case bfd_link_hash_defweak:
4129 old_bfd = h->root.u.def.section->owner;
4130 break;
4131
4132 case bfd_link_hash_common:
4133 old_bfd = h->root.u.c.p->section->owner;
4134 old_alignment = h->root.u.c.p->alignment_power;
4135 break;
4136 }
4137
4138 if (elf_tdata (abfd)->verdef != NULL
4139 && ! override
4140 && vernum > 1
4141 && definition)
4142 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4143 }
4144
4145 if (! (_bfd_generic_link_add_one_symbol
4146 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4147 (struct bfd_link_hash_entry **) sym_hash)))
4148 goto error_free_vers;
4149
4150 h = *sym_hash;
4151 while (h->root.type == bfd_link_hash_indirect
4152 || h->root.type == bfd_link_hash_warning)
4153 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4154
4155 *sym_hash = h;
4156 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4157
4158 new_weakdef = FALSE;
4159 if (dynamic
4160 && definition
4161 && (flags & BSF_WEAK) != 0
4162 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4163 && is_elf_hash_table (htab)
4164 && h->u.weakdef == NULL)
4165 {
4166 /* Keep a list of all weak defined non function symbols from
4167 a dynamic object, using the weakdef field. Later in this
4168 function we will set the weakdef field to the correct
4169 value. We only put non-function symbols from dynamic
4170 objects on this list, because that happens to be the only
4171 time we need to know the normal symbol corresponding to a
4172 weak symbol, and the information is time consuming to
4173 figure out. If the weakdef field is not already NULL,
4174 then this symbol was already defined by some previous
4175 dynamic object, and we will be using that previous
4176 definition anyhow. */
4177
4178 h->u.weakdef = weaks;
4179 weaks = h;
4180 new_weakdef = TRUE;
4181 }
4182
4183 /* Set the alignment of a common symbol. */
4184 if ((common || bfd_is_com_section (sec))
4185 && h->root.type == bfd_link_hash_common)
4186 {
4187 unsigned int align;
4188
4189 if (common)
4190 align = bfd_log2 (isym->st_value);
4191 else
4192 {
4193 /* The new symbol is a common symbol in a shared object.
4194 We need to get the alignment from the section. */
4195 align = new_sec->alignment_power;
4196 }
4197 if (align > old_alignment
4198 /* Permit an alignment power of zero if an alignment of one
4199 is specified and no other alignments have been specified. */
4200 || (isym->st_value == 1 && old_alignment == 0))
4201 h->root.u.c.p->alignment_power = align;
4202 else
4203 h->root.u.c.p->alignment_power = old_alignment;
4204 }
4205
4206 if (is_elf_hash_table (htab))
4207 {
4208 bfd_boolean dynsym;
4209
4210 /* Check the alignment when a common symbol is involved. This
4211 can change when a common symbol is overridden by a normal
4212 definition or a common symbol is ignored due to the old
4213 normal definition. We need to make sure the maximum
4214 alignment is maintained. */
4215 if ((old_alignment || common)
4216 && h->root.type != bfd_link_hash_common)
4217 {
4218 unsigned int common_align;
4219 unsigned int normal_align;
4220 unsigned int symbol_align;
4221 bfd *normal_bfd;
4222 bfd *common_bfd;
4223
4224 symbol_align = ffs (h->root.u.def.value) - 1;
4225 if (h->root.u.def.section->owner != NULL
4226 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4227 {
4228 normal_align = h->root.u.def.section->alignment_power;
4229 if (normal_align > symbol_align)
4230 normal_align = symbol_align;
4231 }
4232 else
4233 normal_align = symbol_align;
4234
4235 if (old_alignment)
4236 {
4237 common_align = old_alignment;
4238 common_bfd = old_bfd;
4239 normal_bfd = abfd;
4240 }
4241 else
4242 {
4243 common_align = bfd_log2 (isym->st_value);
4244 common_bfd = abfd;
4245 normal_bfd = old_bfd;
4246 }
4247
4248 if (normal_align < common_align)
4249 {
4250 /* PR binutils/2735 */
4251 if (normal_bfd == NULL)
4252 (*_bfd_error_handler)
4253 (_("Warning: alignment %u of common symbol `%s' in %B"
4254 " is greater than the alignment (%u) of its section %A"),
4255 common_bfd, h->root.u.def.section,
4256 1 << common_align, name, 1 << normal_align);
4257 else
4258 (*_bfd_error_handler)
4259 (_("Warning: alignment %u of symbol `%s' in %B"
4260 " is smaller than %u in %B"),
4261 normal_bfd, common_bfd,
4262 1 << normal_align, name, 1 << common_align);
4263 }
4264 }
4265
4266 /* Remember the symbol size if it isn't undefined. */
4267 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4268 && (definition || h->size == 0))
4269 {
4270 if (h->size != 0
4271 && h->size != isym->st_size
4272 && ! size_change_ok)
4273 (*_bfd_error_handler)
4274 (_("Warning: size of symbol `%s' changed"
4275 " from %lu in %B to %lu in %B"),
4276 old_bfd, abfd,
4277 name, (unsigned long) h->size,
4278 (unsigned long) isym->st_size);
4279
4280 h->size = isym->st_size;
4281 }
4282
4283 /* If this is a common symbol, then we always want H->SIZE
4284 to be the size of the common symbol. The code just above
4285 won't fix the size if a common symbol becomes larger. We
4286 don't warn about a size change here, because that is
4287 covered by --warn-common. Allow changed between different
4288 function types. */
4289 if (h->root.type == bfd_link_hash_common)
4290 h->size = h->root.u.c.size;
4291
4292 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4293 && (definition || h->type == STT_NOTYPE))
4294 {
4295 unsigned int type = ELF_ST_TYPE (isym->st_info);
4296
4297 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4298 symbol. */
4299 if (type == STT_GNU_IFUNC
4300 && (abfd->flags & DYNAMIC) != 0)
4301 type = STT_FUNC;
4302
4303 if (h->type != type)
4304 {
4305 if (h->type != STT_NOTYPE && ! type_change_ok)
4306 (*_bfd_error_handler)
4307 (_("Warning: type of symbol `%s' changed"
4308 " from %d to %d in %B"),
4309 abfd, name, h->type, type);
4310
4311 h->type = type;
4312 }
4313 }
4314
4315 /* Merge st_other field. */
4316 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4317
4318 /* Set a flag in the hash table entry indicating the type of
4319 reference or definition we just found. Keep a count of
4320 the number of dynamic symbols we find. A dynamic symbol
4321 is one which is referenced or defined by both a regular
4322 object and a shared object. */
4323 dynsym = FALSE;
4324 if (! dynamic)
4325 {
4326 if (! definition)
4327 {
4328 h->ref_regular = 1;
4329 if (bind != STB_WEAK)
4330 h->ref_regular_nonweak = 1;
4331 }
4332 else
4333 {
4334 h->def_regular = 1;
4335 if (h->def_dynamic)
4336 {
4337 h->def_dynamic = 0;
4338 h->ref_dynamic = 1;
4339 h->dynamic_def = 1;
4340 }
4341 }
4342 if (! info->executable
4343 || h->def_dynamic
4344 || h->ref_dynamic)
4345 dynsym = TRUE;
4346 }
4347 else
4348 {
4349 if (! definition)
4350 h->ref_dynamic = 1;
4351 else
4352 h->def_dynamic = 1;
4353 if (h->def_regular
4354 || h->ref_regular
4355 || (h->u.weakdef != NULL
4356 && ! new_weakdef
4357 && h->u.weakdef->dynindx != -1))
4358 dynsym = TRUE;
4359 }
4360
4361 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4362 {
4363 /* We don't want to make debug symbol dynamic. */
4364 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4365 dynsym = FALSE;
4366 }
4367
4368 /* Check to see if we need to add an indirect symbol for
4369 the default name. */
4370 if (definition || h->root.type == bfd_link_hash_common)
4371 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4372 &sec, &value, &dynsym,
4373 override))
4374 goto error_free_vers;
4375
4376 if (definition && !dynamic)
4377 {
4378 char *p = strchr (name, ELF_VER_CHR);
4379 if (p != NULL && p[1] != ELF_VER_CHR)
4380 {
4381 /* Queue non-default versions so that .symver x, x@FOO
4382 aliases can be checked. */
4383 if (!nondeflt_vers)
4384 {
4385 amt = ((isymend - isym + 1)
4386 * sizeof (struct elf_link_hash_entry *));
4387 nondeflt_vers = bfd_malloc (amt);
4388 if (!nondeflt_vers)
4389 goto error_free_vers;
4390 }
4391 nondeflt_vers[nondeflt_vers_cnt++] = h;
4392 }
4393 }
4394
4395 if (dynsym && h->dynindx == -1)
4396 {
4397 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4398 goto error_free_vers;
4399 if (h->u.weakdef != NULL
4400 && ! new_weakdef
4401 && h->u.weakdef->dynindx == -1)
4402 {
4403 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4404 goto error_free_vers;
4405 }
4406 }
4407 else if (dynsym && h->dynindx != -1)
4408 /* If the symbol already has a dynamic index, but
4409 visibility says it should not be visible, turn it into
4410 a local symbol. */
4411 switch (ELF_ST_VISIBILITY (h->other))
4412 {
4413 case STV_INTERNAL:
4414 case STV_HIDDEN:
4415 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4416 dynsym = FALSE;
4417 break;
4418 }
4419
4420 if (!add_needed
4421 && definition
4422 && ((dynsym
4423 && h->ref_regular)
4424 || (h->ref_dynamic
4425 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4426 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4427 {
4428 int ret;
4429 const char *soname = elf_dt_name (abfd);
4430
4431 /* A symbol from a library loaded via DT_NEEDED of some
4432 other library is referenced by a regular object.
4433 Add a DT_NEEDED entry for it. Issue an error if
4434 --no-add-needed is used. */
4435 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4436 {
4437 (*_bfd_error_handler)
4438 (_("%s: invalid DSO for symbol `%s' definition"),
4439 abfd, name);
4440 bfd_set_error (bfd_error_bad_value);
4441 goto error_free_vers;
4442 }
4443
4444 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4445
4446 add_needed = TRUE;
4447 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4448 if (ret < 0)
4449 goto error_free_vers;
4450
4451 BFD_ASSERT (ret == 0);
4452 }
4453 }
4454 }
4455
4456 if (extversym != NULL)
4457 {
4458 free (extversym);
4459 extversym = NULL;
4460 }
4461
4462 if (isymbuf != NULL)
4463 {
4464 free (isymbuf);
4465 isymbuf = NULL;
4466 }
4467
4468 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4469 {
4470 unsigned int i;
4471
4472 /* Restore the symbol table. */
4473 if (bed->as_needed_cleanup)
4474 (*bed->as_needed_cleanup) (abfd, info);
4475 old_hash = (char *) old_tab + tabsize;
4476 old_ent = (char *) old_hash + hashsize;
4477 sym_hash = elf_sym_hashes (abfd);
4478 htab->root.table.table = old_table;
4479 htab->root.table.size = old_size;
4480 htab->root.table.count = old_count;
4481 memcpy (htab->root.table.table, old_tab, tabsize);
4482 memcpy (sym_hash, old_hash, hashsize);
4483 htab->root.undefs = old_undefs;
4484 htab->root.undefs_tail = old_undefs_tail;
4485 for (i = 0; i < htab->root.table.size; i++)
4486 {
4487 struct bfd_hash_entry *p;
4488 struct elf_link_hash_entry *h;
4489
4490 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4491 {
4492 h = (struct elf_link_hash_entry *) p;
4493 if (h->root.type == bfd_link_hash_warning)
4494 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4495 if (h->dynindx >= old_dynsymcount)
4496 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4497
4498 memcpy (p, old_ent, htab->root.table.entsize);
4499 old_ent = (char *) old_ent + htab->root.table.entsize;
4500 h = (struct elf_link_hash_entry *) p;
4501 if (h->root.type == bfd_link_hash_warning)
4502 {
4503 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4504 old_ent = (char *) old_ent + htab->root.table.entsize;
4505 }
4506 }
4507 }
4508
4509 /* Make a special call to the linker "notice" function to
4510 tell it that symbols added for crefs may need to be removed. */
4511 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4512 notice_not_needed))
4513 goto error_free_vers;
4514
4515 free (old_tab);
4516 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4517 alloc_mark);
4518 if (nondeflt_vers != NULL)
4519 free (nondeflt_vers);
4520 return TRUE;
4521 }
4522
4523 if (old_tab != NULL)
4524 {
4525 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4526 notice_needed))
4527 goto error_free_vers;
4528 free (old_tab);
4529 old_tab = NULL;
4530 }
4531
4532 /* Now that all the symbols from this input file are created, handle
4533 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4534 if (nondeflt_vers != NULL)
4535 {
4536 bfd_size_type cnt, symidx;
4537
4538 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4539 {
4540 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4541 char *shortname, *p;
4542
4543 p = strchr (h->root.root.string, ELF_VER_CHR);
4544 if (p == NULL
4545 || (h->root.type != bfd_link_hash_defined
4546 && h->root.type != bfd_link_hash_defweak))
4547 continue;
4548
4549 amt = p - h->root.root.string;
4550 shortname = bfd_malloc (amt + 1);
4551 if (!shortname)
4552 goto error_free_vers;
4553 memcpy (shortname, h->root.root.string, amt);
4554 shortname[amt] = '\0';
4555
4556 hi = (struct elf_link_hash_entry *)
4557 bfd_link_hash_lookup (&htab->root, shortname,
4558 FALSE, FALSE, FALSE);
4559 if (hi != NULL
4560 && hi->root.type == h->root.type
4561 && hi->root.u.def.value == h->root.u.def.value
4562 && hi->root.u.def.section == h->root.u.def.section)
4563 {
4564 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4565 hi->root.type = bfd_link_hash_indirect;
4566 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4567 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4568 sym_hash = elf_sym_hashes (abfd);
4569 if (sym_hash)
4570 for (symidx = 0; symidx < extsymcount; ++symidx)
4571 if (sym_hash[symidx] == hi)
4572 {
4573 sym_hash[symidx] = h;
4574 break;
4575 }
4576 }
4577 free (shortname);
4578 }
4579 free (nondeflt_vers);
4580 nondeflt_vers = NULL;
4581 }
4582
4583 /* Now set the weakdefs field correctly for all the weak defined
4584 symbols we found. The only way to do this is to search all the
4585 symbols. Since we only need the information for non functions in
4586 dynamic objects, that's the only time we actually put anything on
4587 the list WEAKS. We need this information so that if a regular
4588 object refers to a symbol defined weakly in a dynamic object, the
4589 real symbol in the dynamic object is also put in the dynamic
4590 symbols; we also must arrange for both symbols to point to the
4591 same memory location. We could handle the general case of symbol
4592 aliasing, but a general symbol alias can only be generated in
4593 assembler code, handling it correctly would be very time
4594 consuming, and other ELF linkers don't handle general aliasing
4595 either. */
4596 if (weaks != NULL)
4597 {
4598 struct elf_link_hash_entry **hpp;
4599 struct elf_link_hash_entry **hppend;
4600 struct elf_link_hash_entry **sorted_sym_hash;
4601 struct elf_link_hash_entry *h;
4602 size_t sym_count;
4603
4604 /* Since we have to search the whole symbol list for each weak
4605 defined symbol, search time for N weak defined symbols will be
4606 O(N^2). Binary search will cut it down to O(NlogN). */
4607 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4608 sorted_sym_hash = bfd_malloc (amt);
4609 if (sorted_sym_hash == NULL)
4610 goto error_return;
4611 sym_hash = sorted_sym_hash;
4612 hpp = elf_sym_hashes (abfd);
4613 hppend = hpp + extsymcount;
4614 sym_count = 0;
4615 for (; hpp < hppend; hpp++)
4616 {
4617 h = *hpp;
4618 if (h != NULL
4619 && h->root.type == bfd_link_hash_defined
4620 && !bed->is_function_type (h->type))
4621 {
4622 *sym_hash = h;
4623 sym_hash++;
4624 sym_count++;
4625 }
4626 }
4627
4628 qsort (sorted_sym_hash, sym_count,
4629 sizeof (struct elf_link_hash_entry *),
4630 elf_sort_symbol);
4631
4632 while (weaks != NULL)
4633 {
4634 struct elf_link_hash_entry *hlook;
4635 asection *slook;
4636 bfd_vma vlook;
4637 long ilook;
4638 size_t i, j, idx;
4639
4640 hlook = weaks;
4641 weaks = hlook->u.weakdef;
4642 hlook->u.weakdef = NULL;
4643
4644 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4645 || hlook->root.type == bfd_link_hash_defweak
4646 || hlook->root.type == bfd_link_hash_common
4647 || hlook->root.type == bfd_link_hash_indirect);
4648 slook = hlook->root.u.def.section;
4649 vlook = hlook->root.u.def.value;
4650
4651 ilook = -1;
4652 i = 0;
4653 j = sym_count;
4654 while (i < j)
4655 {
4656 bfd_signed_vma vdiff;
4657 idx = (i + j) / 2;
4658 h = sorted_sym_hash [idx];
4659 vdiff = vlook - h->root.u.def.value;
4660 if (vdiff < 0)
4661 j = idx;
4662 else if (vdiff > 0)
4663 i = idx + 1;
4664 else
4665 {
4666 long sdiff = slook->id - h->root.u.def.section->id;
4667 if (sdiff < 0)
4668 j = idx;
4669 else if (sdiff > 0)
4670 i = idx + 1;
4671 else
4672 {
4673 ilook = idx;
4674 break;
4675 }
4676 }
4677 }
4678
4679 /* We didn't find a value/section match. */
4680 if (ilook == -1)
4681 continue;
4682
4683 for (i = ilook; i < sym_count; i++)
4684 {
4685 h = sorted_sym_hash [i];
4686
4687 /* Stop if value or section doesn't match. */
4688 if (h->root.u.def.value != vlook
4689 || h->root.u.def.section != slook)
4690 break;
4691 else if (h != hlook)
4692 {
4693 hlook->u.weakdef = h;
4694
4695 /* If the weak definition is in the list of dynamic
4696 symbols, make sure the real definition is put
4697 there as well. */
4698 if (hlook->dynindx != -1 && h->dynindx == -1)
4699 {
4700 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4701 {
4702 err_free_sym_hash:
4703 free (sorted_sym_hash);
4704 goto error_return;
4705 }
4706 }
4707
4708 /* If the real definition is in the list of dynamic
4709 symbols, make sure the weak definition is put
4710 there as well. If we don't do this, then the
4711 dynamic loader might not merge the entries for the
4712 real definition and the weak definition. */
4713 if (h->dynindx != -1 && hlook->dynindx == -1)
4714 {
4715 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4716 goto err_free_sym_hash;
4717 }
4718 break;
4719 }
4720 }
4721 }
4722
4723 free (sorted_sym_hash);
4724 }
4725
4726 if (bed->check_directives
4727 && !(*bed->check_directives) (abfd, info))
4728 return FALSE;
4729
4730 /* If this object is the same format as the output object, and it is
4731 not a shared library, then let the backend look through the
4732 relocs.
4733
4734 This is required to build global offset table entries and to
4735 arrange for dynamic relocs. It is not required for the
4736 particular common case of linking non PIC code, even when linking
4737 against shared libraries, but unfortunately there is no way of
4738 knowing whether an object file has been compiled PIC or not.
4739 Looking through the relocs is not particularly time consuming.
4740 The problem is that we must either (1) keep the relocs in memory,
4741 which causes the linker to require additional runtime memory or
4742 (2) read the relocs twice from the input file, which wastes time.
4743 This would be a good case for using mmap.
4744
4745 I have no idea how to handle linking PIC code into a file of a
4746 different format. It probably can't be done. */
4747 if (! dynamic
4748 && is_elf_hash_table (htab)
4749 && bed->check_relocs != NULL
4750 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4751 {
4752 asection *o;
4753
4754 for (o = abfd->sections; o != NULL; o = o->next)
4755 {
4756 Elf_Internal_Rela *internal_relocs;
4757 bfd_boolean ok;
4758
4759 if ((o->flags & SEC_RELOC) == 0
4760 || o->reloc_count == 0
4761 || ((info->strip == strip_all || info->strip == strip_debugger)
4762 && (o->flags & SEC_DEBUGGING) != 0)
4763 || bfd_is_abs_section (o->output_section))
4764 continue;
4765
4766 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4767 info->keep_memory);
4768 if (internal_relocs == NULL)
4769 goto error_return;
4770
4771 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4772
4773 if (elf_section_data (o)->relocs != internal_relocs)
4774 free (internal_relocs);
4775
4776 if (! ok)
4777 goto error_return;
4778 }
4779 }
4780
4781 /* If this is a non-traditional link, try to optimize the handling
4782 of the .stab/.stabstr sections. */
4783 if (! dynamic
4784 && ! info->traditional_format
4785 && is_elf_hash_table (htab)
4786 && (info->strip != strip_all && info->strip != strip_debugger))
4787 {
4788 asection *stabstr;
4789
4790 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4791 if (stabstr != NULL)
4792 {
4793 bfd_size_type string_offset = 0;
4794 asection *stab;
4795
4796 for (stab = abfd->sections; stab; stab = stab->next)
4797 if (CONST_STRNEQ (stab->name, ".stab")
4798 && (!stab->name[5] ||
4799 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4800 && (stab->flags & SEC_MERGE) == 0
4801 && !bfd_is_abs_section (stab->output_section))
4802 {
4803 struct bfd_elf_section_data *secdata;
4804
4805 secdata = elf_section_data (stab);
4806 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4807 stabstr, &secdata->sec_info,
4808 &string_offset))
4809 goto error_return;
4810 if (secdata->sec_info)
4811 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4812 }
4813 }
4814 }
4815
4816 if (is_elf_hash_table (htab) && add_needed)
4817 {
4818 /* Add this bfd to the loaded list. */
4819 struct elf_link_loaded_list *n;
4820
4821 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4822 if (n == NULL)
4823 goto error_return;
4824 n->abfd = abfd;
4825 n->next = htab->loaded;
4826 htab->loaded = n;
4827 }
4828
4829 return TRUE;
4830
4831 error_free_vers:
4832 if (old_tab != NULL)
4833 free (old_tab);
4834 if (nondeflt_vers != NULL)
4835 free (nondeflt_vers);
4836 if (extversym != NULL)
4837 free (extversym);
4838 error_free_sym:
4839 if (isymbuf != NULL)
4840 free (isymbuf);
4841 error_return:
4842 return FALSE;
4843 }
4844
4845 /* Return the linker hash table entry of a symbol that might be
4846 satisfied by an archive symbol. Return -1 on error. */
4847
4848 struct elf_link_hash_entry *
4849 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4850 struct bfd_link_info *info,
4851 const char *name)
4852 {
4853 struct elf_link_hash_entry *h;
4854 char *p, *copy;
4855 size_t len, first;
4856
4857 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4858 if (h != NULL)
4859 return h;
4860
4861 /* If this is a default version (the name contains @@), look up the
4862 symbol again with only one `@' as well as without the version.
4863 The effect is that references to the symbol with and without the
4864 version will be matched by the default symbol in the archive. */
4865
4866 p = strchr (name, ELF_VER_CHR);
4867 if (p == NULL || p[1] != ELF_VER_CHR)
4868 return h;
4869
4870 /* First check with only one `@'. */
4871 len = strlen (name);
4872 copy = bfd_alloc (abfd, len);
4873 if (copy == NULL)
4874 return (struct elf_link_hash_entry *) 0 - 1;
4875
4876 first = p - name + 1;
4877 memcpy (copy, name, first);
4878 memcpy (copy + first, name + first + 1, len - first);
4879
4880 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4881 if (h == NULL)
4882 {
4883 /* We also need to check references to the symbol without the
4884 version. */
4885 copy[first - 1] = '\0';
4886 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4887 FALSE, FALSE, FALSE);
4888 }
4889
4890 bfd_release (abfd, copy);
4891 return h;
4892 }
4893
4894 /* Add symbols from an ELF archive file to the linker hash table. We
4895 don't use _bfd_generic_link_add_archive_symbols because of a
4896 problem which arises on UnixWare. The UnixWare libc.so is an
4897 archive which includes an entry libc.so.1 which defines a bunch of
4898 symbols. The libc.so archive also includes a number of other
4899 object files, which also define symbols, some of which are the same
4900 as those defined in libc.so.1. Correct linking requires that we
4901 consider each object file in turn, and include it if it defines any
4902 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4903 this; it looks through the list of undefined symbols, and includes
4904 any object file which defines them. When this algorithm is used on
4905 UnixWare, it winds up pulling in libc.so.1 early and defining a
4906 bunch of symbols. This means that some of the other objects in the
4907 archive are not included in the link, which is incorrect since they
4908 precede libc.so.1 in the archive.
4909
4910 Fortunately, ELF archive handling is simpler than that done by
4911 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4912 oddities. In ELF, if we find a symbol in the archive map, and the
4913 symbol is currently undefined, we know that we must pull in that
4914 object file.
4915
4916 Unfortunately, we do have to make multiple passes over the symbol
4917 table until nothing further is resolved. */
4918
4919 static bfd_boolean
4920 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4921 {
4922 symindex c;
4923 bfd_boolean *defined = NULL;
4924 bfd_boolean *included = NULL;
4925 carsym *symdefs;
4926 bfd_boolean loop;
4927 bfd_size_type amt;
4928 const struct elf_backend_data *bed;
4929 struct elf_link_hash_entry * (*archive_symbol_lookup)
4930 (bfd *, struct bfd_link_info *, const char *);
4931
4932 if (! bfd_has_map (abfd))
4933 {
4934 /* An empty archive is a special case. */
4935 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4936 return TRUE;
4937 bfd_set_error (bfd_error_no_armap);
4938 return FALSE;
4939 }
4940
4941 /* Keep track of all symbols we know to be already defined, and all
4942 files we know to be already included. This is to speed up the
4943 second and subsequent passes. */
4944 c = bfd_ardata (abfd)->symdef_count;
4945 if (c == 0)
4946 return TRUE;
4947 amt = c;
4948 amt *= sizeof (bfd_boolean);
4949 defined = bfd_zmalloc (amt);
4950 included = bfd_zmalloc (amt);
4951 if (defined == NULL || included == NULL)
4952 goto error_return;
4953
4954 symdefs = bfd_ardata (abfd)->symdefs;
4955 bed = get_elf_backend_data (abfd);
4956 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4957
4958 do
4959 {
4960 file_ptr last;
4961 symindex i;
4962 carsym *symdef;
4963 carsym *symdefend;
4964
4965 loop = FALSE;
4966 last = -1;
4967
4968 symdef = symdefs;
4969 symdefend = symdef + c;
4970 for (i = 0; symdef < symdefend; symdef++, i++)
4971 {
4972 struct elf_link_hash_entry *h;
4973 bfd *element;
4974 struct bfd_link_hash_entry *undefs_tail;
4975 symindex mark;
4976
4977 if (defined[i] || included[i])
4978 continue;
4979 if (symdef->file_offset == last)
4980 {
4981 included[i] = TRUE;
4982 continue;
4983 }
4984
4985 h = archive_symbol_lookup (abfd, info, symdef->name);
4986 if (h == (struct elf_link_hash_entry *) 0 - 1)
4987 goto error_return;
4988
4989 if (h == NULL)
4990 continue;
4991
4992 if (h->root.type == bfd_link_hash_common)
4993 {
4994 /* We currently have a common symbol. The archive map contains
4995 a reference to this symbol, so we may want to include it. We
4996 only want to include it however, if this archive element
4997 contains a definition of the symbol, not just another common
4998 declaration of it.
4999
5000 Unfortunately some archivers (including GNU ar) will put
5001 declarations of common symbols into their archive maps, as
5002 well as real definitions, so we cannot just go by the archive
5003 map alone. Instead we must read in the element's symbol
5004 table and check that to see what kind of symbol definition
5005 this is. */
5006 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5007 continue;
5008 }
5009 else if (h->root.type != bfd_link_hash_undefined)
5010 {
5011 if (h->root.type != bfd_link_hash_undefweak)
5012 defined[i] = TRUE;
5013 continue;
5014 }
5015
5016 /* We need to include this archive member. */
5017 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5018 if (element == NULL)
5019 goto error_return;
5020
5021 if (! bfd_check_format (element, bfd_object))
5022 goto error_return;
5023
5024 /* Doublecheck that we have not included this object
5025 already--it should be impossible, but there may be
5026 something wrong with the archive. */
5027 if (element->archive_pass != 0)
5028 {
5029 bfd_set_error (bfd_error_bad_value);
5030 goto error_return;
5031 }
5032 element->archive_pass = 1;
5033
5034 undefs_tail = info->hash->undefs_tail;
5035
5036 if (! (*info->callbacks->add_archive_element) (info, element,
5037 symdef->name))
5038 goto error_return;
5039 if (! bfd_link_add_symbols (element, info))
5040 goto error_return;
5041
5042 /* If there are any new undefined symbols, we need to make
5043 another pass through the archive in order to see whether
5044 they can be defined. FIXME: This isn't perfect, because
5045 common symbols wind up on undefs_tail and because an
5046 undefined symbol which is defined later on in this pass
5047 does not require another pass. This isn't a bug, but it
5048 does make the code less efficient than it could be. */
5049 if (undefs_tail != info->hash->undefs_tail)
5050 loop = TRUE;
5051
5052 /* Look backward to mark all symbols from this object file
5053 which we have already seen in this pass. */
5054 mark = i;
5055 do
5056 {
5057 included[mark] = TRUE;
5058 if (mark == 0)
5059 break;
5060 --mark;
5061 }
5062 while (symdefs[mark].file_offset == symdef->file_offset);
5063
5064 /* We mark subsequent symbols from this object file as we go
5065 on through the loop. */
5066 last = symdef->file_offset;
5067 }
5068 }
5069 while (loop);
5070
5071 free (defined);
5072 free (included);
5073
5074 return TRUE;
5075
5076 error_return:
5077 if (defined != NULL)
5078 free (defined);
5079 if (included != NULL)
5080 free (included);
5081 return FALSE;
5082 }
5083
5084 /* Given an ELF BFD, add symbols to the global hash table as
5085 appropriate. */
5086
5087 bfd_boolean
5088 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5089 {
5090 switch (bfd_get_format (abfd))
5091 {
5092 case bfd_object:
5093 return elf_link_add_object_symbols (abfd, info);
5094 case bfd_archive:
5095 return elf_link_add_archive_symbols (abfd, info);
5096 default:
5097 bfd_set_error (bfd_error_wrong_format);
5098 return FALSE;
5099 }
5100 }
5101 \f
5102 struct hash_codes_info
5103 {
5104 unsigned long *hashcodes;
5105 bfd_boolean error;
5106 };
5107
5108 /* This function will be called though elf_link_hash_traverse to store
5109 all hash value of the exported symbols in an array. */
5110
5111 static bfd_boolean
5112 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5113 {
5114 struct hash_codes_info *inf = data;
5115 const char *name;
5116 char *p;
5117 unsigned long ha;
5118 char *alc = NULL;
5119
5120 if (h->root.type == bfd_link_hash_warning)
5121 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5122
5123 /* Ignore indirect symbols. These are added by the versioning code. */
5124 if (h->dynindx == -1)
5125 return TRUE;
5126
5127 name = h->root.root.string;
5128 p = strchr (name, ELF_VER_CHR);
5129 if (p != NULL)
5130 {
5131 alc = bfd_malloc (p - name + 1);
5132 if (alc == NULL)
5133 {
5134 inf->error = TRUE;
5135 return FALSE;
5136 }
5137 memcpy (alc, name, p - name);
5138 alc[p - name] = '\0';
5139 name = alc;
5140 }
5141
5142 /* Compute the hash value. */
5143 ha = bfd_elf_hash (name);
5144
5145 /* Store the found hash value in the array given as the argument. */
5146 *(inf->hashcodes)++ = ha;
5147
5148 /* And store it in the struct so that we can put it in the hash table
5149 later. */
5150 h->u.elf_hash_value = ha;
5151
5152 if (alc != NULL)
5153 free (alc);
5154
5155 return TRUE;
5156 }
5157
5158 struct collect_gnu_hash_codes
5159 {
5160 bfd *output_bfd;
5161 const struct elf_backend_data *bed;
5162 unsigned long int nsyms;
5163 unsigned long int maskbits;
5164 unsigned long int *hashcodes;
5165 unsigned long int *hashval;
5166 unsigned long int *indx;
5167 unsigned long int *counts;
5168 bfd_vma *bitmask;
5169 bfd_byte *contents;
5170 long int min_dynindx;
5171 unsigned long int bucketcount;
5172 unsigned long int symindx;
5173 long int local_indx;
5174 long int shift1, shift2;
5175 unsigned long int mask;
5176 bfd_boolean error;
5177 };
5178
5179 /* This function will be called though elf_link_hash_traverse to store
5180 all hash value of the exported symbols in an array. */
5181
5182 static bfd_boolean
5183 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5184 {
5185 struct collect_gnu_hash_codes *s = data;
5186 const char *name;
5187 char *p;
5188 unsigned long ha;
5189 char *alc = NULL;
5190
5191 if (h->root.type == bfd_link_hash_warning)
5192 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5193
5194 /* Ignore indirect symbols. These are added by the versioning code. */
5195 if (h->dynindx == -1)
5196 return TRUE;
5197
5198 /* Ignore also local symbols and undefined symbols. */
5199 if (! (*s->bed->elf_hash_symbol) (h))
5200 return TRUE;
5201
5202 name = h->root.root.string;
5203 p = strchr (name, ELF_VER_CHR);
5204 if (p != NULL)
5205 {
5206 alc = bfd_malloc (p - name + 1);
5207 if (alc == NULL)
5208 {
5209 s->error = TRUE;
5210 return FALSE;
5211 }
5212 memcpy (alc, name, p - name);
5213 alc[p - name] = '\0';
5214 name = alc;
5215 }
5216
5217 /* Compute the hash value. */
5218 ha = bfd_elf_gnu_hash (name);
5219
5220 /* Store the found hash value in the array for compute_bucket_count,
5221 and also for .dynsym reordering purposes. */
5222 s->hashcodes[s->nsyms] = ha;
5223 s->hashval[h->dynindx] = ha;
5224 ++s->nsyms;
5225 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5226 s->min_dynindx = h->dynindx;
5227
5228 if (alc != NULL)
5229 free (alc);
5230
5231 return TRUE;
5232 }
5233
5234 /* This function will be called though elf_link_hash_traverse to do
5235 final dynaminc symbol renumbering. */
5236
5237 static bfd_boolean
5238 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5239 {
5240 struct collect_gnu_hash_codes *s = data;
5241 unsigned long int bucket;
5242 unsigned long int val;
5243
5244 if (h->root.type == bfd_link_hash_warning)
5245 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5246
5247 /* Ignore indirect symbols. */
5248 if (h->dynindx == -1)
5249 return TRUE;
5250
5251 /* Ignore also local symbols and undefined symbols. */
5252 if (! (*s->bed->elf_hash_symbol) (h))
5253 {
5254 if (h->dynindx >= s->min_dynindx)
5255 h->dynindx = s->local_indx++;
5256 return TRUE;
5257 }
5258
5259 bucket = s->hashval[h->dynindx] % s->bucketcount;
5260 val = (s->hashval[h->dynindx] >> s->shift1)
5261 & ((s->maskbits >> s->shift1) - 1);
5262 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5263 s->bitmask[val]
5264 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5265 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5266 if (s->counts[bucket] == 1)
5267 /* Last element terminates the chain. */
5268 val |= 1;
5269 bfd_put_32 (s->output_bfd, val,
5270 s->contents + (s->indx[bucket] - s->symindx) * 4);
5271 --s->counts[bucket];
5272 h->dynindx = s->indx[bucket]++;
5273 return TRUE;
5274 }
5275
5276 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5277
5278 bfd_boolean
5279 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5280 {
5281 return !(h->forced_local
5282 || h->root.type == bfd_link_hash_undefined
5283 || h->root.type == bfd_link_hash_undefweak
5284 || ((h->root.type == bfd_link_hash_defined
5285 || h->root.type == bfd_link_hash_defweak)
5286 && h->root.u.def.section->output_section == NULL));
5287 }
5288
5289 /* Array used to determine the number of hash table buckets to use
5290 based on the number of symbols there are. If there are fewer than
5291 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5292 fewer than 37 we use 17 buckets, and so forth. We never use more
5293 than 32771 buckets. */
5294
5295 static const size_t elf_buckets[] =
5296 {
5297 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5298 16411, 32771, 0
5299 };
5300
5301 /* Compute bucket count for hashing table. We do not use a static set
5302 of possible tables sizes anymore. Instead we determine for all
5303 possible reasonable sizes of the table the outcome (i.e., the
5304 number of collisions etc) and choose the best solution. The
5305 weighting functions are not too simple to allow the table to grow
5306 without bounds. Instead one of the weighting factors is the size.
5307 Therefore the result is always a good payoff between few collisions
5308 (= short chain lengths) and table size. */
5309 static size_t
5310 compute_bucket_count (struct bfd_link_info *info,
5311 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5312 unsigned long int nsyms,
5313 int gnu_hash)
5314 {
5315 size_t best_size = 0;
5316 unsigned long int i;
5317
5318 /* We have a problem here. The following code to optimize the table
5319 size requires an integer type with more the 32 bits. If
5320 BFD_HOST_U_64_BIT is set we know about such a type. */
5321 #ifdef BFD_HOST_U_64_BIT
5322 if (info->optimize)
5323 {
5324 size_t minsize;
5325 size_t maxsize;
5326 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5327 bfd *dynobj = elf_hash_table (info)->dynobj;
5328 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5329 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5330 unsigned long int *counts;
5331 bfd_size_type amt;
5332
5333 /* Possible optimization parameters: if we have NSYMS symbols we say
5334 that the hashing table must at least have NSYMS/4 and at most
5335 2*NSYMS buckets. */
5336 minsize = nsyms / 4;
5337 if (minsize == 0)
5338 minsize = 1;
5339 best_size = maxsize = nsyms * 2;
5340 if (gnu_hash)
5341 {
5342 if (minsize < 2)
5343 minsize = 2;
5344 if ((best_size & 31) == 0)
5345 ++best_size;
5346 }
5347
5348 /* Create array where we count the collisions in. We must use bfd_malloc
5349 since the size could be large. */
5350 amt = maxsize;
5351 amt *= sizeof (unsigned long int);
5352 counts = bfd_malloc (amt);
5353 if (counts == NULL)
5354 return 0;
5355
5356 /* Compute the "optimal" size for the hash table. The criteria is a
5357 minimal chain length. The minor criteria is (of course) the size
5358 of the table. */
5359 for (i = minsize; i < maxsize; ++i)
5360 {
5361 /* Walk through the array of hashcodes and count the collisions. */
5362 BFD_HOST_U_64_BIT max;
5363 unsigned long int j;
5364 unsigned long int fact;
5365
5366 if (gnu_hash && (i & 31) == 0)
5367 continue;
5368
5369 memset (counts, '\0', i * sizeof (unsigned long int));
5370
5371 /* Determine how often each hash bucket is used. */
5372 for (j = 0; j < nsyms; ++j)
5373 ++counts[hashcodes[j] % i];
5374
5375 /* For the weight function we need some information about the
5376 pagesize on the target. This is information need not be 100%
5377 accurate. Since this information is not available (so far) we
5378 define it here to a reasonable default value. If it is crucial
5379 to have a better value some day simply define this value. */
5380 # ifndef BFD_TARGET_PAGESIZE
5381 # define BFD_TARGET_PAGESIZE (4096)
5382 # endif
5383
5384 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5385 and the chains. */
5386 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5387
5388 # if 1
5389 /* Variant 1: optimize for short chains. We add the squares
5390 of all the chain lengths (which favors many small chain
5391 over a few long chains). */
5392 for (j = 0; j < i; ++j)
5393 max += counts[j] * counts[j];
5394
5395 /* This adds penalties for the overall size of the table. */
5396 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5397 max *= fact * fact;
5398 # else
5399 /* Variant 2: Optimize a lot more for small table. Here we
5400 also add squares of the size but we also add penalties for
5401 empty slots (the +1 term). */
5402 for (j = 0; j < i; ++j)
5403 max += (1 + counts[j]) * (1 + counts[j]);
5404
5405 /* The overall size of the table is considered, but not as
5406 strong as in variant 1, where it is squared. */
5407 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5408 max *= fact;
5409 # endif
5410
5411 /* Compare with current best results. */
5412 if (max < best_chlen)
5413 {
5414 best_chlen = max;
5415 best_size = i;
5416 }
5417 }
5418
5419 free (counts);
5420 }
5421 else
5422 #endif /* defined (BFD_HOST_U_64_BIT) */
5423 {
5424 /* This is the fallback solution if no 64bit type is available or if we
5425 are not supposed to spend much time on optimizations. We select the
5426 bucket count using a fixed set of numbers. */
5427 for (i = 0; elf_buckets[i] != 0; i++)
5428 {
5429 best_size = elf_buckets[i];
5430 if (nsyms < elf_buckets[i + 1])
5431 break;
5432 }
5433 if (gnu_hash && best_size < 2)
5434 best_size = 2;
5435 }
5436
5437 return best_size;
5438 }
5439
5440 /* Set up the sizes and contents of the ELF dynamic sections. This is
5441 called by the ELF linker emulation before_allocation routine. We
5442 must set the sizes of the sections before the linker sets the
5443 addresses of the various sections. */
5444
5445 bfd_boolean
5446 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5447 const char *soname,
5448 const char *rpath,
5449 const char *filter_shlib,
5450 const char * const *auxiliary_filters,
5451 struct bfd_link_info *info,
5452 asection **sinterpptr,
5453 struct bfd_elf_version_tree *verdefs)
5454 {
5455 bfd_size_type soname_indx;
5456 bfd *dynobj;
5457 const struct elf_backend_data *bed;
5458 struct elf_info_failed asvinfo;
5459
5460 *sinterpptr = NULL;
5461
5462 soname_indx = (bfd_size_type) -1;
5463
5464 if (!is_elf_hash_table (info->hash))
5465 return TRUE;
5466
5467 bed = get_elf_backend_data (output_bfd);
5468 if (info->execstack)
5469 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5470 else if (info->noexecstack)
5471 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5472 else
5473 {
5474 bfd *inputobj;
5475 asection *notesec = NULL;
5476 int exec = 0;
5477
5478 for (inputobj = info->input_bfds;
5479 inputobj;
5480 inputobj = inputobj->link_next)
5481 {
5482 asection *s;
5483
5484 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5485 continue;
5486 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5487 if (s)
5488 {
5489 if (s->flags & SEC_CODE)
5490 exec = PF_X;
5491 notesec = s;
5492 }
5493 else if (bed->default_execstack)
5494 exec = PF_X;
5495 }
5496 if (notesec)
5497 {
5498 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5499 if (exec && info->relocatable
5500 && notesec->output_section != bfd_abs_section_ptr)
5501 notesec->output_section->flags |= SEC_CODE;
5502 }
5503 }
5504
5505 /* Any syms created from now on start with -1 in
5506 got.refcount/offset and plt.refcount/offset. */
5507 elf_hash_table (info)->init_got_refcount
5508 = elf_hash_table (info)->init_got_offset;
5509 elf_hash_table (info)->init_plt_refcount
5510 = elf_hash_table (info)->init_plt_offset;
5511
5512 /* The backend may have to create some sections regardless of whether
5513 we're dynamic or not. */
5514 if (bed->elf_backend_always_size_sections
5515 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5516 return FALSE;
5517
5518 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5519 return FALSE;
5520
5521 dynobj = elf_hash_table (info)->dynobj;
5522
5523 /* If there were no dynamic objects in the link, there is nothing to
5524 do here. */
5525 if (dynobj == NULL)
5526 return TRUE;
5527
5528 if (elf_hash_table (info)->dynamic_sections_created)
5529 {
5530 struct elf_info_failed eif;
5531 struct elf_link_hash_entry *h;
5532 asection *dynstr;
5533 struct bfd_elf_version_tree *t;
5534 struct bfd_elf_version_expr *d;
5535 asection *s;
5536 bfd_boolean all_defined;
5537
5538 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5539 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5540
5541 if (soname != NULL)
5542 {
5543 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5544 soname, TRUE);
5545 if (soname_indx == (bfd_size_type) -1
5546 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5547 return FALSE;
5548 }
5549
5550 if (info->symbolic)
5551 {
5552 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5553 return FALSE;
5554 info->flags |= DF_SYMBOLIC;
5555 }
5556
5557 if (rpath != NULL)
5558 {
5559 bfd_size_type indx;
5560
5561 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5562 TRUE);
5563 if (indx == (bfd_size_type) -1
5564 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5565 return FALSE;
5566
5567 if (info->new_dtags)
5568 {
5569 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5570 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5571 return FALSE;
5572 }
5573 }
5574
5575 if (filter_shlib != NULL)
5576 {
5577 bfd_size_type indx;
5578
5579 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5580 filter_shlib, TRUE);
5581 if (indx == (bfd_size_type) -1
5582 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5583 return FALSE;
5584 }
5585
5586 if (auxiliary_filters != NULL)
5587 {
5588 const char * const *p;
5589
5590 for (p = auxiliary_filters; *p != NULL; p++)
5591 {
5592 bfd_size_type indx;
5593
5594 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5595 *p, TRUE);
5596 if (indx == (bfd_size_type) -1
5597 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5598 return FALSE;
5599 }
5600 }
5601
5602 eif.info = info;
5603 eif.verdefs = verdefs;
5604 eif.failed = FALSE;
5605
5606 /* If we are supposed to export all symbols into the dynamic symbol
5607 table (this is not the normal case), then do so. */
5608 if (info->export_dynamic
5609 || (info->executable && info->dynamic))
5610 {
5611 elf_link_hash_traverse (elf_hash_table (info),
5612 _bfd_elf_export_symbol,
5613 &eif);
5614 if (eif.failed)
5615 return FALSE;
5616 }
5617
5618 /* Make all global versions with definition. */
5619 for (t = verdefs; t != NULL; t = t->next)
5620 for (d = t->globals.list; d != NULL; d = d->next)
5621 if (!d->symver && d->literal)
5622 {
5623 const char *verstr, *name;
5624 size_t namelen, verlen, newlen;
5625 char *newname, *p;
5626 struct elf_link_hash_entry *newh;
5627
5628 name = d->pattern;
5629 namelen = strlen (name);
5630 verstr = t->name;
5631 verlen = strlen (verstr);
5632 newlen = namelen + verlen + 3;
5633
5634 newname = bfd_malloc (newlen);
5635 if (newname == NULL)
5636 return FALSE;
5637 memcpy (newname, name, namelen);
5638
5639 /* Check the hidden versioned definition. */
5640 p = newname + namelen;
5641 *p++ = ELF_VER_CHR;
5642 memcpy (p, verstr, verlen + 1);
5643 newh = elf_link_hash_lookup (elf_hash_table (info),
5644 newname, FALSE, FALSE,
5645 FALSE);
5646 if (newh == NULL
5647 || (newh->root.type != bfd_link_hash_defined
5648 && newh->root.type != bfd_link_hash_defweak))
5649 {
5650 /* Check the default versioned definition. */
5651 *p++ = ELF_VER_CHR;
5652 memcpy (p, verstr, verlen + 1);
5653 newh = elf_link_hash_lookup (elf_hash_table (info),
5654 newname, FALSE, FALSE,
5655 FALSE);
5656 }
5657 free (newname);
5658
5659 /* Mark this version if there is a definition and it is
5660 not defined in a shared object. */
5661 if (newh != NULL
5662 && !newh->def_dynamic
5663 && (newh->root.type == bfd_link_hash_defined
5664 || newh->root.type == bfd_link_hash_defweak))
5665 d->symver = 1;
5666 }
5667
5668 /* Attach all the symbols to their version information. */
5669 asvinfo.info = info;
5670 asvinfo.verdefs = verdefs;
5671 asvinfo.failed = FALSE;
5672
5673 elf_link_hash_traverse (elf_hash_table (info),
5674 _bfd_elf_link_assign_sym_version,
5675 &asvinfo);
5676 if (asvinfo.failed)
5677 return FALSE;
5678
5679 if (!info->allow_undefined_version)
5680 {
5681 /* Check if all global versions have a definition. */
5682 all_defined = TRUE;
5683 for (t = verdefs; t != NULL; t = t->next)
5684 for (d = t->globals.list; d != NULL; d = d->next)
5685 if (d->literal && !d->symver && !d->script)
5686 {
5687 (*_bfd_error_handler)
5688 (_("%s: undefined version: %s"),
5689 d->pattern, t->name);
5690 all_defined = FALSE;
5691 }
5692
5693 if (!all_defined)
5694 {
5695 bfd_set_error (bfd_error_bad_value);
5696 return FALSE;
5697 }
5698 }
5699
5700 /* Find all symbols which were defined in a dynamic object and make
5701 the backend pick a reasonable value for them. */
5702 elf_link_hash_traverse (elf_hash_table (info),
5703 _bfd_elf_adjust_dynamic_symbol,
5704 &eif);
5705 if (eif.failed)
5706 return FALSE;
5707
5708 /* Add some entries to the .dynamic section. We fill in some of the
5709 values later, in bfd_elf_final_link, but we must add the entries
5710 now so that we know the final size of the .dynamic section. */
5711
5712 /* If there are initialization and/or finalization functions to
5713 call then add the corresponding DT_INIT/DT_FINI entries. */
5714 h = (info->init_function
5715 ? elf_link_hash_lookup (elf_hash_table (info),
5716 info->init_function, FALSE,
5717 FALSE, FALSE)
5718 : NULL);
5719 if (h != NULL
5720 && (h->ref_regular
5721 || h->def_regular))
5722 {
5723 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5724 return FALSE;
5725 }
5726 h = (info->fini_function
5727 ? elf_link_hash_lookup (elf_hash_table (info),
5728 info->fini_function, FALSE,
5729 FALSE, FALSE)
5730 : NULL);
5731 if (h != NULL
5732 && (h->ref_regular
5733 || h->def_regular))
5734 {
5735 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5736 return FALSE;
5737 }
5738
5739 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5740 if (s != NULL && s->linker_has_input)
5741 {
5742 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5743 if (! info->executable)
5744 {
5745 bfd *sub;
5746 asection *o;
5747
5748 for (sub = info->input_bfds; sub != NULL;
5749 sub = sub->link_next)
5750 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5751 for (o = sub->sections; o != NULL; o = o->next)
5752 if (elf_section_data (o)->this_hdr.sh_type
5753 == SHT_PREINIT_ARRAY)
5754 {
5755 (*_bfd_error_handler)
5756 (_("%B: .preinit_array section is not allowed in DSO"),
5757 sub);
5758 break;
5759 }
5760
5761 bfd_set_error (bfd_error_nonrepresentable_section);
5762 return FALSE;
5763 }
5764
5765 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5766 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5767 return FALSE;
5768 }
5769 s = bfd_get_section_by_name (output_bfd, ".init_array");
5770 if (s != NULL && s->linker_has_input)
5771 {
5772 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5773 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5774 return FALSE;
5775 }
5776 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5777 if (s != NULL && s->linker_has_input)
5778 {
5779 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5780 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5781 return FALSE;
5782 }
5783
5784 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5785 /* If .dynstr is excluded from the link, we don't want any of
5786 these tags. Strictly, we should be checking each section
5787 individually; This quick check covers for the case where
5788 someone does a /DISCARD/ : { *(*) }. */
5789 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5790 {
5791 bfd_size_type strsize;
5792
5793 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5794 if ((info->emit_hash
5795 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5796 || (info->emit_gnu_hash
5797 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5798 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5799 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5800 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5801 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5802 bed->s->sizeof_sym))
5803 return FALSE;
5804 }
5805 }
5806
5807 /* The backend must work out the sizes of all the other dynamic
5808 sections. */
5809 if (bed->elf_backend_size_dynamic_sections
5810 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5811 return FALSE;
5812
5813 if (elf_hash_table (info)->dynamic_sections_created)
5814 {
5815 unsigned long section_sym_count;
5816 asection *s;
5817
5818 /* Set up the version definition section. */
5819 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5820 BFD_ASSERT (s != NULL);
5821
5822 /* We may have created additional version definitions if we are
5823 just linking a regular application. */
5824 verdefs = asvinfo.verdefs;
5825
5826 /* Skip anonymous version tag. */
5827 if (verdefs != NULL && verdefs->vernum == 0)
5828 verdefs = verdefs->next;
5829
5830 if (verdefs == NULL && !info->create_default_symver)
5831 s->flags |= SEC_EXCLUDE;
5832 else
5833 {
5834 unsigned int cdefs;
5835 bfd_size_type size;
5836 struct bfd_elf_version_tree *t;
5837 bfd_byte *p;
5838 Elf_Internal_Verdef def;
5839 Elf_Internal_Verdaux defaux;
5840 struct bfd_link_hash_entry *bh;
5841 struct elf_link_hash_entry *h;
5842 const char *name;
5843
5844 cdefs = 0;
5845 size = 0;
5846
5847 /* Make space for the base version. */
5848 size += sizeof (Elf_External_Verdef);
5849 size += sizeof (Elf_External_Verdaux);
5850 ++cdefs;
5851
5852 /* Make space for the default version. */
5853 if (info->create_default_symver)
5854 {
5855 size += sizeof (Elf_External_Verdef);
5856 ++cdefs;
5857 }
5858
5859 for (t = verdefs; t != NULL; t = t->next)
5860 {
5861 struct bfd_elf_version_deps *n;
5862
5863 size += sizeof (Elf_External_Verdef);
5864 size += sizeof (Elf_External_Verdaux);
5865 ++cdefs;
5866
5867 for (n = t->deps; n != NULL; n = n->next)
5868 size += sizeof (Elf_External_Verdaux);
5869 }
5870
5871 s->size = size;
5872 s->contents = bfd_alloc (output_bfd, s->size);
5873 if (s->contents == NULL && s->size != 0)
5874 return FALSE;
5875
5876 /* Fill in the version definition section. */
5877
5878 p = s->contents;
5879
5880 def.vd_version = VER_DEF_CURRENT;
5881 def.vd_flags = VER_FLG_BASE;
5882 def.vd_ndx = 1;
5883 def.vd_cnt = 1;
5884 if (info->create_default_symver)
5885 {
5886 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5887 def.vd_next = sizeof (Elf_External_Verdef);
5888 }
5889 else
5890 {
5891 def.vd_aux = sizeof (Elf_External_Verdef);
5892 def.vd_next = (sizeof (Elf_External_Verdef)
5893 + sizeof (Elf_External_Verdaux));
5894 }
5895
5896 if (soname_indx != (bfd_size_type) -1)
5897 {
5898 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5899 soname_indx);
5900 def.vd_hash = bfd_elf_hash (soname);
5901 defaux.vda_name = soname_indx;
5902 name = soname;
5903 }
5904 else
5905 {
5906 bfd_size_type indx;
5907
5908 name = lbasename (output_bfd->filename);
5909 def.vd_hash = bfd_elf_hash (name);
5910 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5911 name, FALSE);
5912 if (indx == (bfd_size_type) -1)
5913 return FALSE;
5914 defaux.vda_name = indx;
5915 }
5916 defaux.vda_next = 0;
5917
5918 _bfd_elf_swap_verdef_out (output_bfd, &def,
5919 (Elf_External_Verdef *) p);
5920 p += sizeof (Elf_External_Verdef);
5921 if (info->create_default_symver)
5922 {
5923 /* Add a symbol representing this version. */
5924 bh = NULL;
5925 if (! (_bfd_generic_link_add_one_symbol
5926 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5927 0, NULL, FALSE,
5928 get_elf_backend_data (dynobj)->collect, &bh)))
5929 return FALSE;
5930 h = (struct elf_link_hash_entry *) bh;
5931 h->non_elf = 0;
5932 h->def_regular = 1;
5933 h->type = STT_OBJECT;
5934 h->verinfo.vertree = NULL;
5935
5936 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5937 return FALSE;
5938
5939 /* Create a duplicate of the base version with the same
5940 aux block, but different flags. */
5941 def.vd_flags = 0;
5942 def.vd_ndx = 2;
5943 def.vd_aux = sizeof (Elf_External_Verdef);
5944 if (verdefs)
5945 def.vd_next = (sizeof (Elf_External_Verdef)
5946 + sizeof (Elf_External_Verdaux));
5947 else
5948 def.vd_next = 0;
5949 _bfd_elf_swap_verdef_out (output_bfd, &def,
5950 (Elf_External_Verdef *) p);
5951 p += sizeof (Elf_External_Verdef);
5952 }
5953 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5954 (Elf_External_Verdaux *) p);
5955 p += sizeof (Elf_External_Verdaux);
5956
5957 for (t = verdefs; t != NULL; t = t->next)
5958 {
5959 unsigned int cdeps;
5960 struct bfd_elf_version_deps *n;
5961
5962 cdeps = 0;
5963 for (n = t->deps; n != NULL; n = n->next)
5964 ++cdeps;
5965
5966 /* Add a symbol representing this version. */
5967 bh = NULL;
5968 if (! (_bfd_generic_link_add_one_symbol
5969 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5970 0, NULL, FALSE,
5971 get_elf_backend_data (dynobj)->collect, &bh)))
5972 return FALSE;
5973 h = (struct elf_link_hash_entry *) bh;
5974 h->non_elf = 0;
5975 h->def_regular = 1;
5976 h->type = STT_OBJECT;
5977 h->verinfo.vertree = t;
5978
5979 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5980 return FALSE;
5981
5982 def.vd_version = VER_DEF_CURRENT;
5983 def.vd_flags = 0;
5984 if (t->globals.list == NULL
5985 && t->locals.list == NULL
5986 && ! t->used)
5987 def.vd_flags |= VER_FLG_WEAK;
5988 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5989 def.vd_cnt = cdeps + 1;
5990 def.vd_hash = bfd_elf_hash (t->name);
5991 def.vd_aux = sizeof (Elf_External_Verdef);
5992 def.vd_next = 0;
5993 if (t->next != NULL)
5994 def.vd_next = (sizeof (Elf_External_Verdef)
5995 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5996
5997 _bfd_elf_swap_verdef_out (output_bfd, &def,
5998 (Elf_External_Verdef *) p);
5999 p += sizeof (Elf_External_Verdef);
6000
6001 defaux.vda_name = h->dynstr_index;
6002 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6003 h->dynstr_index);
6004 defaux.vda_next = 0;
6005 if (t->deps != NULL)
6006 defaux.vda_next = sizeof (Elf_External_Verdaux);
6007 t->name_indx = defaux.vda_name;
6008
6009 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6010 (Elf_External_Verdaux *) p);
6011 p += sizeof (Elf_External_Verdaux);
6012
6013 for (n = t->deps; n != NULL; n = n->next)
6014 {
6015 if (n->version_needed == NULL)
6016 {
6017 /* This can happen if there was an error in the
6018 version script. */
6019 defaux.vda_name = 0;
6020 }
6021 else
6022 {
6023 defaux.vda_name = n->version_needed->name_indx;
6024 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6025 defaux.vda_name);
6026 }
6027 if (n->next == NULL)
6028 defaux.vda_next = 0;
6029 else
6030 defaux.vda_next = sizeof (Elf_External_Verdaux);
6031
6032 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6033 (Elf_External_Verdaux *) p);
6034 p += sizeof (Elf_External_Verdaux);
6035 }
6036 }
6037
6038 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6039 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6040 return FALSE;
6041
6042 elf_tdata (output_bfd)->cverdefs = cdefs;
6043 }
6044
6045 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6046 {
6047 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6048 return FALSE;
6049 }
6050 else if (info->flags & DF_BIND_NOW)
6051 {
6052 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6053 return FALSE;
6054 }
6055
6056 if (info->flags_1)
6057 {
6058 if (info->executable)
6059 info->flags_1 &= ~ (DF_1_INITFIRST
6060 | DF_1_NODELETE
6061 | DF_1_NOOPEN);
6062 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6063 return FALSE;
6064 }
6065
6066 /* Work out the size of the version reference section. */
6067
6068 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6069 BFD_ASSERT (s != NULL);
6070 {
6071 struct elf_find_verdep_info sinfo;
6072
6073 sinfo.info = info;
6074 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6075 if (sinfo.vers == 0)
6076 sinfo.vers = 1;
6077 sinfo.failed = FALSE;
6078
6079 elf_link_hash_traverse (elf_hash_table (info),
6080 _bfd_elf_link_find_version_dependencies,
6081 &sinfo);
6082 if (sinfo.failed)
6083 return FALSE;
6084
6085 if (elf_tdata (output_bfd)->verref == NULL)
6086 s->flags |= SEC_EXCLUDE;
6087 else
6088 {
6089 Elf_Internal_Verneed *t;
6090 unsigned int size;
6091 unsigned int crefs;
6092 bfd_byte *p;
6093
6094 /* Build the version definition section. */
6095 size = 0;
6096 crefs = 0;
6097 for (t = elf_tdata (output_bfd)->verref;
6098 t != NULL;
6099 t = t->vn_nextref)
6100 {
6101 Elf_Internal_Vernaux *a;
6102
6103 size += sizeof (Elf_External_Verneed);
6104 ++crefs;
6105 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6106 size += sizeof (Elf_External_Vernaux);
6107 }
6108
6109 s->size = size;
6110 s->contents = bfd_alloc (output_bfd, s->size);
6111 if (s->contents == NULL)
6112 return FALSE;
6113
6114 p = s->contents;
6115 for (t = elf_tdata (output_bfd)->verref;
6116 t != NULL;
6117 t = t->vn_nextref)
6118 {
6119 unsigned int caux;
6120 Elf_Internal_Vernaux *a;
6121 bfd_size_type indx;
6122
6123 caux = 0;
6124 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6125 ++caux;
6126
6127 t->vn_version = VER_NEED_CURRENT;
6128 t->vn_cnt = caux;
6129 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6130 elf_dt_name (t->vn_bfd) != NULL
6131 ? elf_dt_name (t->vn_bfd)
6132 : lbasename (t->vn_bfd->filename),
6133 FALSE);
6134 if (indx == (bfd_size_type) -1)
6135 return FALSE;
6136 t->vn_file = indx;
6137 t->vn_aux = sizeof (Elf_External_Verneed);
6138 if (t->vn_nextref == NULL)
6139 t->vn_next = 0;
6140 else
6141 t->vn_next = (sizeof (Elf_External_Verneed)
6142 + caux * sizeof (Elf_External_Vernaux));
6143
6144 _bfd_elf_swap_verneed_out (output_bfd, t,
6145 (Elf_External_Verneed *) p);
6146 p += sizeof (Elf_External_Verneed);
6147
6148 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6149 {
6150 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6151 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6152 a->vna_nodename, FALSE);
6153 if (indx == (bfd_size_type) -1)
6154 return FALSE;
6155 a->vna_name = indx;
6156 if (a->vna_nextptr == NULL)
6157 a->vna_next = 0;
6158 else
6159 a->vna_next = sizeof (Elf_External_Vernaux);
6160
6161 _bfd_elf_swap_vernaux_out (output_bfd, a,
6162 (Elf_External_Vernaux *) p);
6163 p += sizeof (Elf_External_Vernaux);
6164 }
6165 }
6166
6167 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6168 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6169 return FALSE;
6170
6171 elf_tdata (output_bfd)->cverrefs = crefs;
6172 }
6173 }
6174
6175 if ((elf_tdata (output_bfd)->cverrefs == 0
6176 && elf_tdata (output_bfd)->cverdefs == 0)
6177 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6178 &section_sym_count) == 0)
6179 {
6180 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6181 s->flags |= SEC_EXCLUDE;
6182 }
6183 }
6184 return TRUE;
6185 }
6186
6187 /* Find the first non-excluded output section. We'll use its
6188 section symbol for some emitted relocs. */
6189 void
6190 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6191 {
6192 asection *s;
6193
6194 for (s = output_bfd->sections; s != NULL; s = s->next)
6195 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6196 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6197 {
6198 elf_hash_table (info)->text_index_section = s;
6199 break;
6200 }
6201 }
6202
6203 /* Find two non-excluded output sections, one for code, one for data.
6204 We'll use their section symbols for some emitted relocs. */
6205 void
6206 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6207 {
6208 asection *s;
6209
6210 /* Data first, since setting text_index_section changes
6211 _bfd_elf_link_omit_section_dynsym. */
6212 for (s = output_bfd->sections; s != NULL; s = s->next)
6213 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6214 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6215 {
6216 elf_hash_table (info)->data_index_section = s;
6217 break;
6218 }
6219
6220 for (s = output_bfd->sections; s != NULL; s = s->next)
6221 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6222 == (SEC_ALLOC | SEC_READONLY))
6223 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6224 {
6225 elf_hash_table (info)->text_index_section = s;
6226 break;
6227 }
6228
6229 if (elf_hash_table (info)->text_index_section == NULL)
6230 elf_hash_table (info)->text_index_section
6231 = elf_hash_table (info)->data_index_section;
6232 }
6233
6234 bfd_boolean
6235 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6236 {
6237 const struct elf_backend_data *bed;
6238
6239 if (!is_elf_hash_table (info->hash))
6240 return TRUE;
6241
6242 bed = get_elf_backend_data (output_bfd);
6243 (*bed->elf_backend_init_index_section) (output_bfd, info);
6244
6245 if (elf_hash_table (info)->dynamic_sections_created)
6246 {
6247 bfd *dynobj;
6248 asection *s;
6249 bfd_size_type dynsymcount;
6250 unsigned long section_sym_count;
6251 unsigned int dtagcount;
6252
6253 dynobj = elf_hash_table (info)->dynobj;
6254
6255 /* Assign dynsym indicies. In a shared library we generate a
6256 section symbol for each output section, which come first.
6257 Next come all of the back-end allocated local dynamic syms,
6258 followed by the rest of the global symbols. */
6259
6260 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6261 &section_sym_count);
6262
6263 /* Work out the size of the symbol version section. */
6264 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6265 BFD_ASSERT (s != NULL);
6266 if (dynsymcount != 0
6267 && (s->flags & SEC_EXCLUDE) == 0)
6268 {
6269 s->size = dynsymcount * sizeof (Elf_External_Versym);
6270 s->contents = bfd_zalloc (output_bfd, s->size);
6271 if (s->contents == NULL)
6272 return FALSE;
6273
6274 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6275 return FALSE;
6276 }
6277
6278 /* Set the size of the .dynsym and .hash sections. We counted
6279 the number of dynamic symbols in elf_link_add_object_symbols.
6280 We will build the contents of .dynsym and .hash when we build
6281 the final symbol table, because until then we do not know the
6282 correct value to give the symbols. We built the .dynstr
6283 section as we went along in elf_link_add_object_symbols. */
6284 s = bfd_get_section_by_name (dynobj, ".dynsym");
6285 BFD_ASSERT (s != NULL);
6286 s->size = dynsymcount * bed->s->sizeof_sym;
6287
6288 if (dynsymcount != 0)
6289 {
6290 s->contents = bfd_alloc (output_bfd, s->size);
6291 if (s->contents == NULL)
6292 return FALSE;
6293
6294 /* The first entry in .dynsym is a dummy symbol.
6295 Clear all the section syms, in case we don't output them all. */
6296 ++section_sym_count;
6297 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6298 }
6299
6300 elf_hash_table (info)->bucketcount = 0;
6301
6302 /* Compute the size of the hashing table. As a side effect this
6303 computes the hash values for all the names we export. */
6304 if (info->emit_hash)
6305 {
6306 unsigned long int *hashcodes;
6307 struct hash_codes_info hashinf;
6308 bfd_size_type amt;
6309 unsigned long int nsyms;
6310 size_t bucketcount;
6311 size_t hash_entry_size;
6312
6313 /* Compute the hash values for all exported symbols. At the same
6314 time store the values in an array so that we could use them for
6315 optimizations. */
6316 amt = dynsymcount * sizeof (unsigned long int);
6317 hashcodes = bfd_malloc (amt);
6318 if (hashcodes == NULL)
6319 return FALSE;
6320 hashinf.hashcodes = hashcodes;
6321 hashinf.error = FALSE;
6322
6323 /* Put all hash values in HASHCODES. */
6324 elf_link_hash_traverse (elf_hash_table (info),
6325 elf_collect_hash_codes, &hashinf);
6326 if (hashinf.error)
6327 {
6328 free (hashcodes);
6329 return FALSE;
6330 }
6331
6332 nsyms = hashinf.hashcodes - hashcodes;
6333 bucketcount
6334 = compute_bucket_count (info, hashcodes, nsyms, 0);
6335 free (hashcodes);
6336
6337 if (bucketcount == 0)
6338 return FALSE;
6339
6340 elf_hash_table (info)->bucketcount = bucketcount;
6341
6342 s = bfd_get_section_by_name (dynobj, ".hash");
6343 BFD_ASSERT (s != NULL);
6344 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6345 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6346 s->contents = bfd_zalloc (output_bfd, s->size);
6347 if (s->contents == NULL)
6348 return FALSE;
6349
6350 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6351 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6352 s->contents + hash_entry_size);
6353 }
6354
6355 if (info->emit_gnu_hash)
6356 {
6357 size_t i, cnt;
6358 unsigned char *contents;
6359 struct collect_gnu_hash_codes cinfo;
6360 bfd_size_type amt;
6361 size_t bucketcount;
6362
6363 memset (&cinfo, 0, sizeof (cinfo));
6364
6365 /* Compute the hash values for all exported symbols. At the same
6366 time store the values in an array so that we could use them for
6367 optimizations. */
6368 amt = dynsymcount * 2 * sizeof (unsigned long int);
6369 cinfo.hashcodes = bfd_malloc (amt);
6370 if (cinfo.hashcodes == NULL)
6371 return FALSE;
6372
6373 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6374 cinfo.min_dynindx = -1;
6375 cinfo.output_bfd = output_bfd;
6376 cinfo.bed = bed;
6377
6378 /* Put all hash values in HASHCODES. */
6379 elf_link_hash_traverse (elf_hash_table (info),
6380 elf_collect_gnu_hash_codes, &cinfo);
6381 if (cinfo.error)
6382 {
6383 free (cinfo.hashcodes);
6384 return FALSE;
6385 }
6386
6387 bucketcount
6388 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6389
6390 if (bucketcount == 0)
6391 {
6392 free (cinfo.hashcodes);
6393 return FALSE;
6394 }
6395
6396 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6397 BFD_ASSERT (s != NULL);
6398
6399 if (cinfo.nsyms == 0)
6400 {
6401 /* Empty .gnu.hash section is special. */
6402 BFD_ASSERT (cinfo.min_dynindx == -1);
6403 free (cinfo.hashcodes);
6404 s->size = 5 * 4 + bed->s->arch_size / 8;
6405 contents = bfd_zalloc (output_bfd, s->size);
6406 if (contents == NULL)
6407 return FALSE;
6408 s->contents = contents;
6409 /* 1 empty bucket. */
6410 bfd_put_32 (output_bfd, 1, contents);
6411 /* SYMIDX above the special symbol 0. */
6412 bfd_put_32 (output_bfd, 1, contents + 4);
6413 /* Just one word for bitmask. */
6414 bfd_put_32 (output_bfd, 1, contents + 8);
6415 /* Only hash fn bloom filter. */
6416 bfd_put_32 (output_bfd, 0, contents + 12);
6417 /* No hashes are valid - empty bitmask. */
6418 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6419 /* No hashes in the only bucket. */
6420 bfd_put_32 (output_bfd, 0,
6421 contents + 16 + bed->s->arch_size / 8);
6422 }
6423 else
6424 {
6425 unsigned long int maskwords, maskbitslog2;
6426 BFD_ASSERT (cinfo.min_dynindx != -1);
6427
6428 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6429 if (maskbitslog2 < 3)
6430 maskbitslog2 = 5;
6431 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6432 maskbitslog2 = maskbitslog2 + 3;
6433 else
6434 maskbitslog2 = maskbitslog2 + 2;
6435 if (bed->s->arch_size == 64)
6436 {
6437 if (maskbitslog2 == 5)
6438 maskbitslog2 = 6;
6439 cinfo.shift1 = 6;
6440 }
6441 else
6442 cinfo.shift1 = 5;
6443 cinfo.mask = (1 << cinfo.shift1) - 1;
6444 cinfo.shift2 = maskbitslog2;
6445 cinfo.maskbits = 1 << maskbitslog2;
6446 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6447 amt = bucketcount * sizeof (unsigned long int) * 2;
6448 amt += maskwords * sizeof (bfd_vma);
6449 cinfo.bitmask = bfd_malloc (amt);
6450 if (cinfo.bitmask == NULL)
6451 {
6452 free (cinfo.hashcodes);
6453 return FALSE;
6454 }
6455
6456 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6457 cinfo.indx = cinfo.counts + bucketcount;
6458 cinfo.symindx = dynsymcount - cinfo.nsyms;
6459 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6460
6461 /* Determine how often each hash bucket is used. */
6462 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6463 for (i = 0; i < cinfo.nsyms; ++i)
6464 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6465
6466 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6467 if (cinfo.counts[i] != 0)
6468 {
6469 cinfo.indx[i] = cnt;
6470 cnt += cinfo.counts[i];
6471 }
6472 BFD_ASSERT (cnt == dynsymcount);
6473 cinfo.bucketcount = bucketcount;
6474 cinfo.local_indx = cinfo.min_dynindx;
6475
6476 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6477 s->size += cinfo.maskbits / 8;
6478 contents = bfd_zalloc (output_bfd, s->size);
6479 if (contents == NULL)
6480 {
6481 free (cinfo.bitmask);
6482 free (cinfo.hashcodes);
6483 return FALSE;
6484 }
6485
6486 s->contents = contents;
6487 bfd_put_32 (output_bfd, bucketcount, contents);
6488 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6489 bfd_put_32 (output_bfd, maskwords, contents + 8);
6490 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6491 contents += 16 + cinfo.maskbits / 8;
6492
6493 for (i = 0; i < bucketcount; ++i)
6494 {
6495 if (cinfo.counts[i] == 0)
6496 bfd_put_32 (output_bfd, 0, contents);
6497 else
6498 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6499 contents += 4;
6500 }
6501
6502 cinfo.contents = contents;
6503
6504 /* Renumber dynamic symbols, populate .gnu.hash section. */
6505 elf_link_hash_traverse (elf_hash_table (info),
6506 elf_renumber_gnu_hash_syms, &cinfo);
6507
6508 contents = s->contents + 16;
6509 for (i = 0; i < maskwords; ++i)
6510 {
6511 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6512 contents);
6513 contents += bed->s->arch_size / 8;
6514 }
6515
6516 free (cinfo.bitmask);
6517 free (cinfo.hashcodes);
6518 }
6519 }
6520
6521 s = bfd_get_section_by_name (dynobj, ".dynstr");
6522 BFD_ASSERT (s != NULL);
6523
6524 elf_finalize_dynstr (output_bfd, info);
6525
6526 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6527
6528 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6529 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6530 return FALSE;
6531 }
6532
6533 return TRUE;
6534 }
6535 \f
6536 /* Indicate that we are only retrieving symbol values from this
6537 section. */
6538
6539 void
6540 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6541 {
6542 if (is_elf_hash_table (info->hash))
6543 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6544 _bfd_generic_link_just_syms (sec, info);
6545 }
6546
6547 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6548
6549 static void
6550 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6551 asection *sec)
6552 {
6553 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6554 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6555 }
6556
6557 /* Finish SHF_MERGE section merging. */
6558
6559 bfd_boolean
6560 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6561 {
6562 bfd *ibfd;
6563 asection *sec;
6564
6565 if (!is_elf_hash_table (info->hash))
6566 return FALSE;
6567
6568 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6569 if ((ibfd->flags & DYNAMIC) == 0)
6570 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6571 if ((sec->flags & SEC_MERGE) != 0
6572 && !bfd_is_abs_section (sec->output_section))
6573 {
6574 struct bfd_elf_section_data *secdata;
6575
6576 secdata = elf_section_data (sec);
6577 if (! _bfd_add_merge_section (abfd,
6578 &elf_hash_table (info)->merge_info,
6579 sec, &secdata->sec_info))
6580 return FALSE;
6581 else if (secdata->sec_info)
6582 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6583 }
6584
6585 if (elf_hash_table (info)->merge_info != NULL)
6586 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6587 merge_sections_remove_hook);
6588 return TRUE;
6589 }
6590
6591 /* Create an entry in an ELF linker hash table. */
6592
6593 struct bfd_hash_entry *
6594 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6595 struct bfd_hash_table *table,
6596 const char *string)
6597 {
6598 /* Allocate the structure if it has not already been allocated by a
6599 subclass. */
6600 if (entry == NULL)
6601 {
6602 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6603 if (entry == NULL)
6604 return entry;
6605 }
6606
6607 /* Call the allocation method of the superclass. */
6608 entry = _bfd_link_hash_newfunc (entry, table, string);
6609 if (entry != NULL)
6610 {
6611 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6612 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6613
6614 /* Set local fields. */
6615 ret->indx = -1;
6616 ret->dynindx = -1;
6617 ret->got = htab->init_got_refcount;
6618 ret->plt = htab->init_plt_refcount;
6619 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6620 - offsetof (struct elf_link_hash_entry, size)));
6621 /* Assume that we have been called by a non-ELF symbol reader.
6622 This flag is then reset by the code which reads an ELF input
6623 file. This ensures that a symbol created by a non-ELF symbol
6624 reader will have the flag set correctly. */
6625 ret->non_elf = 1;
6626 }
6627
6628 return entry;
6629 }
6630
6631 /* Copy data from an indirect symbol to its direct symbol, hiding the
6632 old indirect symbol. Also used for copying flags to a weakdef. */
6633
6634 void
6635 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6636 struct elf_link_hash_entry *dir,
6637 struct elf_link_hash_entry *ind)
6638 {
6639 struct elf_link_hash_table *htab;
6640
6641 /* Copy down any references that we may have already seen to the
6642 symbol which just became indirect. */
6643
6644 dir->ref_dynamic |= ind->ref_dynamic;
6645 dir->ref_regular |= ind->ref_regular;
6646 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6647 dir->non_got_ref |= ind->non_got_ref;
6648 dir->needs_plt |= ind->needs_plt;
6649 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6650
6651 if (ind->root.type != bfd_link_hash_indirect)
6652 return;
6653
6654 /* Copy over the global and procedure linkage table refcount entries.
6655 These may have been already set up by a check_relocs routine. */
6656 htab = elf_hash_table (info);
6657 if (ind->got.refcount > htab->init_got_refcount.refcount)
6658 {
6659 if (dir->got.refcount < 0)
6660 dir->got.refcount = 0;
6661 dir->got.refcount += ind->got.refcount;
6662 ind->got.refcount = htab->init_got_refcount.refcount;
6663 }
6664
6665 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6666 {
6667 if (dir->plt.refcount < 0)
6668 dir->plt.refcount = 0;
6669 dir->plt.refcount += ind->plt.refcount;
6670 ind->plt.refcount = htab->init_plt_refcount.refcount;
6671 }
6672
6673 if (ind->dynindx != -1)
6674 {
6675 if (dir->dynindx != -1)
6676 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6677 dir->dynindx = ind->dynindx;
6678 dir->dynstr_index = ind->dynstr_index;
6679 ind->dynindx = -1;
6680 ind->dynstr_index = 0;
6681 }
6682 }
6683
6684 void
6685 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6686 struct elf_link_hash_entry *h,
6687 bfd_boolean force_local)
6688 {
6689 /* STT_GNU_IFUNC symbol must go through PLT. */
6690 if (h->type != STT_GNU_IFUNC)
6691 {
6692 h->plt = elf_hash_table (info)->init_plt_offset;
6693 h->needs_plt = 0;
6694 }
6695 if (force_local)
6696 {
6697 h->forced_local = 1;
6698 if (h->dynindx != -1)
6699 {
6700 h->dynindx = -1;
6701 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6702 h->dynstr_index);
6703 }
6704 }
6705 }
6706
6707 /* Initialize an ELF linker hash table. */
6708
6709 bfd_boolean
6710 _bfd_elf_link_hash_table_init
6711 (struct elf_link_hash_table *table,
6712 bfd *abfd,
6713 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6714 struct bfd_hash_table *,
6715 const char *),
6716 unsigned int entsize)
6717 {
6718 bfd_boolean ret;
6719 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6720
6721 memset (table, 0, sizeof * table);
6722 table->init_got_refcount.refcount = can_refcount - 1;
6723 table->init_plt_refcount.refcount = can_refcount - 1;
6724 table->init_got_offset.offset = -(bfd_vma) 1;
6725 table->init_plt_offset.offset = -(bfd_vma) 1;
6726 /* The first dynamic symbol is a dummy. */
6727 table->dynsymcount = 1;
6728
6729 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6730 table->root.type = bfd_link_elf_hash_table;
6731
6732 return ret;
6733 }
6734
6735 /* Create an ELF linker hash table. */
6736
6737 struct bfd_link_hash_table *
6738 _bfd_elf_link_hash_table_create (bfd *abfd)
6739 {
6740 struct elf_link_hash_table *ret;
6741 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6742
6743 ret = bfd_malloc (amt);
6744 if (ret == NULL)
6745 return NULL;
6746
6747 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6748 sizeof (struct elf_link_hash_entry)))
6749 {
6750 free (ret);
6751 return NULL;
6752 }
6753
6754 return &ret->root;
6755 }
6756
6757 /* This is a hook for the ELF emulation code in the generic linker to
6758 tell the backend linker what file name to use for the DT_NEEDED
6759 entry for a dynamic object. */
6760
6761 void
6762 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6763 {
6764 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6765 && bfd_get_format (abfd) == bfd_object)
6766 elf_dt_name (abfd) = name;
6767 }
6768
6769 int
6770 bfd_elf_get_dyn_lib_class (bfd *abfd)
6771 {
6772 int lib_class;
6773 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6774 && bfd_get_format (abfd) == bfd_object)
6775 lib_class = elf_dyn_lib_class (abfd);
6776 else
6777 lib_class = 0;
6778 return lib_class;
6779 }
6780
6781 void
6782 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6783 {
6784 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6785 && bfd_get_format (abfd) == bfd_object)
6786 elf_dyn_lib_class (abfd) = lib_class;
6787 }
6788
6789 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6790 the linker ELF emulation code. */
6791
6792 struct bfd_link_needed_list *
6793 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6794 struct bfd_link_info *info)
6795 {
6796 if (! is_elf_hash_table (info->hash))
6797 return NULL;
6798 return elf_hash_table (info)->needed;
6799 }
6800
6801 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6802 hook for the linker ELF emulation code. */
6803
6804 struct bfd_link_needed_list *
6805 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6806 struct bfd_link_info *info)
6807 {
6808 if (! is_elf_hash_table (info->hash))
6809 return NULL;
6810 return elf_hash_table (info)->runpath;
6811 }
6812
6813 /* Get the name actually used for a dynamic object for a link. This
6814 is the SONAME entry if there is one. Otherwise, it is the string
6815 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6816
6817 const char *
6818 bfd_elf_get_dt_soname (bfd *abfd)
6819 {
6820 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6821 && bfd_get_format (abfd) == bfd_object)
6822 return elf_dt_name (abfd);
6823 return NULL;
6824 }
6825
6826 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6827 the ELF linker emulation code. */
6828
6829 bfd_boolean
6830 bfd_elf_get_bfd_needed_list (bfd *abfd,
6831 struct bfd_link_needed_list **pneeded)
6832 {
6833 asection *s;
6834 bfd_byte *dynbuf = NULL;
6835 unsigned int elfsec;
6836 unsigned long shlink;
6837 bfd_byte *extdyn, *extdynend;
6838 size_t extdynsize;
6839 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6840
6841 *pneeded = NULL;
6842
6843 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6844 || bfd_get_format (abfd) != bfd_object)
6845 return TRUE;
6846
6847 s = bfd_get_section_by_name (abfd, ".dynamic");
6848 if (s == NULL || s->size == 0)
6849 return TRUE;
6850
6851 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6852 goto error_return;
6853
6854 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6855 if (elfsec == SHN_BAD)
6856 goto error_return;
6857
6858 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6859
6860 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6861 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6862
6863 extdyn = dynbuf;
6864 extdynend = extdyn + s->size;
6865 for (; extdyn < extdynend; extdyn += extdynsize)
6866 {
6867 Elf_Internal_Dyn dyn;
6868
6869 (*swap_dyn_in) (abfd, extdyn, &dyn);
6870
6871 if (dyn.d_tag == DT_NULL)
6872 break;
6873
6874 if (dyn.d_tag == DT_NEEDED)
6875 {
6876 const char *string;
6877 struct bfd_link_needed_list *l;
6878 unsigned int tagv = dyn.d_un.d_val;
6879 bfd_size_type amt;
6880
6881 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6882 if (string == NULL)
6883 goto error_return;
6884
6885 amt = sizeof *l;
6886 l = bfd_alloc (abfd, amt);
6887 if (l == NULL)
6888 goto error_return;
6889
6890 l->by = abfd;
6891 l->name = string;
6892 l->next = *pneeded;
6893 *pneeded = l;
6894 }
6895 }
6896
6897 free (dynbuf);
6898
6899 return TRUE;
6900
6901 error_return:
6902 if (dynbuf != NULL)
6903 free (dynbuf);
6904 return FALSE;
6905 }
6906
6907 struct elf_symbuf_symbol
6908 {
6909 unsigned long st_name; /* Symbol name, index in string tbl */
6910 unsigned char st_info; /* Type and binding attributes */
6911 unsigned char st_other; /* Visibilty, and target specific */
6912 };
6913
6914 struct elf_symbuf_head
6915 {
6916 struct elf_symbuf_symbol *ssym;
6917 bfd_size_type count;
6918 unsigned int st_shndx;
6919 };
6920
6921 struct elf_symbol
6922 {
6923 union
6924 {
6925 Elf_Internal_Sym *isym;
6926 struct elf_symbuf_symbol *ssym;
6927 } u;
6928 const char *name;
6929 };
6930
6931 /* Sort references to symbols by ascending section number. */
6932
6933 static int
6934 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6935 {
6936 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6937 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6938
6939 return s1->st_shndx - s2->st_shndx;
6940 }
6941
6942 static int
6943 elf_sym_name_compare (const void *arg1, const void *arg2)
6944 {
6945 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6946 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6947 return strcmp (s1->name, s2->name);
6948 }
6949
6950 static struct elf_symbuf_head *
6951 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6952 {
6953 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6954 struct elf_symbuf_symbol *ssym;
6955 struct elf_symbuf_head *ssymbuf, *ssymhead;
6956 bfd_size_type i, shndx_count, total_size;
6957
6958 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6959 if (indbuf == NULL)
6960 return NULL;
6961
6962 for (ind = indbuf, i = 0; i < symcount; i++)
6963 if (isymbuf[i].st_shndx != SHN_UNDEF)
6964 *ind++ = &isymbuf[i];
6965 indbufend = ind;
6966
6967 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6968 elf_sort_elf_symbol);
6969
6970 shndx_count = 0;
6971 if (indbufend > indbuf)
6972 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6973 if (ind[0]->st_shndx != ind[1]->st_shndx)
6974 shndx_count++;
6975
6976 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
6977 + (indbufend - indbuf) * sizeof (*ssym));
6978 ssymbuf = bfd_malloc (total_size);
6979 if (ssymbuf == NULL)
6980 {
6981 free (indbuf);
6982 return NULL;
6983 }
6984
6985 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
6986 ssymbuf->ssym = NULL;
6987 ssymbuf->count = shndx_count;
6988 ssymbuf->st_shndx = 0;
6989 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6990 {
6991 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6992 {
6993 ssymhead++;
6994 ssymhead->ssym = ssym;
6995 ssymhead->count = 0;
6996 ssymhead->st_shndx = (*ind)->st_shndx;
6997 }
6998 ssym->st_name = (*ind)->st_name;
6999 ssym->st_info = (*ind)->st_info;
7000 ssym->st_other = (*ind)->st_other;
7001 ssymhead->count++;
7002 }
7003 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7004 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7005 == total_size));
7006
7007 free (indbuf);
7008 return ssymbuf;
7009 }
7010
7011 /* Check if 2 sections define the same set of local and global
7012 symbols. */
7013
7014 static bfd_boolean
7015 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7016 struct bfd_link_info *info)
7017 {
7018 bfd *bfd1, *bfd2;
7019 const struct elf_backend_data *bed1, *bed2;
7020 Elf_Internal_Shdr *hdr1, *hdr2;
7021 bfd_size_type symcount1, symcount2;
7022 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7023 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7024 Elf_Internal_Sym *isym, *isymend;
7025 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7026 bfd_size_type count1, count2, i;
7027 unsigned int shndx1, shndx2;
7028 bfd_boolean result;
7029
7030 bfd1 = sec1->owner;
7031 bfd2 = sec2->owner;
7032
7033 /* Both sections have to be in ELF. */
7034 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7035 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7036 return FALSE;
7037
7038 if (elf_section_type (sec1) != elf_section_type (sec2))
7039 return FALSE;
7040
7041 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7042 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7043 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7044 return FALSE;
7045
7046 bed1 = get_elf_backend_data (bfd1);
7047 bed2 = get_elf_backend_data (bfd2);
7048 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7049 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7050 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7051 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7052
7053 if (symcount1 == 0 || symcount2 == 0)
7054 return FALSE;
7055
7056 result = FALSE;
7057 isymbuf1 = NULL;
7058 isymbuf2 = NULL;
7059 ssymbuf1 = elf_tdata (bfd1)->symbuf;
7060 ssymbuf2 = elf_tdata (bfd2)->symbuf;
7061
7062 if (ssymbuf1 == NULL)
7063 {
7064 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7065 NULL, NULL, NULL);
7066 if (isymbuf1 == NULL)
7067 goto done;
7068
7069 if (!info->reduce_memory_overheads)
7070 elf_tdata (bfd1)->symbuf = ssymbuf1
7071 = elf_create_symbuf (symcount1, isymbuf1);
7072 }
7073
7074 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7075 {
7076 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7077 NULL, NULL, NULL);
7078 if (isymbuf2 == NULL)
7079 goto done;
7080
7081 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7082 elf_tdata (bfd2)->symbuf = ssymbuf2
7083 = elf_create_symbuf (symcount2, isymbuf2);
7084 }
7085
7086 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7087 {
7088 /* Optimized faster version. */
7089 bfd_size_type lo, hi, mid;
7090 struct elf_symbol *symp;
7091 struct elf_symbuf_symbol *ssym, *ssymend;
7092
7093 lo = 0;
7094 hi = ssymbuf1->count;
7095 ssymbuf1++;
7096 count1 = 0;
7097 while (lo < hi)
7098 {
7099 mid = (lo + hi) / 2;
7100 if (shndx1 < ssymbuf1[mid].st_shndx)
7101 hi = mid;
7102 else if (shndx1 > ssymbuf1[mid].st_shndx)
7103 lo = mid + 1;
7104 else
7105 {
7106 count1 = ssymbuf1[mid].count;
7107 ssymbuf1 += mid;
7108 break;
7109 }
7110 }
7111
7112 lo = 0;
7113 hi = ssymbuf2->count;
7114 ssymbuf2++;
7115 count2 = 0;
7116 while (lo < hi)
7117 {
7118 mid = (lo + hi) / 2;
7119 if (shndx2 < ssymbuf2[mid].st_shndx)
7120 hi = mid;
7121 else if (shndx2 > ssymbuf2[mid].st_shndx)
7122 lo = mid + 1;
7123 else
7124 {
7125 count2 = ssymbuf2[mid].count;
7126 ssymbuf2 += mid;
7127 break;
7128 }
7129 }
7130
7131 if (count1 == 0 || count2 == 0 || count1 != count2)
7132 goto done;
7133
7134 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7135 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7136 if (symtable1 == NULL || symtable2 == NULL)
7137 goto done;
7138
7139 symp = symtable1;
7140 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7141 ssym < ssymend; ssym++, symp++)
7142 {
7143 symp->u.ssym = ssym;
7144 symp->name = bfd_elf_string_from_elf_section (bfd1,
7145 hdr1->sh_link,
7146 ssym->st_name);
7147 }
7148
7149 symp = symtable2;
7150 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7151 ssym < ssymend; ssym++, symp++)
7152 {
7153 symp->u.ssym = ssym;
7154 symp->name = bfd_elf_string_from_elf_section (bfd2,
7155 hdr2->sh_link,
7156 ssym->st_name);
7157 }
7158
7159 /* Sort symbol by name. */
7160 qsort (symtable1, count1, sizeof (struct elf_symbol),
7161 elf_sym_name_compare);
7162 qsort (symtable2, count1, sizeof (struct elf_symbol),
7163 elf_sym_name_compare);
7164
7165 for (i = 0; i < count1; i++)
7166 /* Two symbols must have the same binding, type and name. */
7167 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7168 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7169 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7170 goto done;
7171
7172 result = TRUE;
7173 goto done;
7174 }
7175
7176 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7177 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7178 if (symtable1 == NULL || symtable2 == NULL)
7179 goto done;
7180
7181 /* Count definitions in the section. */
7182 count1 = 0;
7183 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7184 if (isym->st_shndx == shndx1)
7185 symtable1[count1++].u.isym = isym;
7186
7187 count2 = 0;
7188 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7189 if (isym->st_shndx == shndx2)
7190 symtable2[count2++].u.isym = isym;
7191
7192 if (count1 == 0 || count2 == 0 || count1 != count2)
7193 goto done;
7194
7195 for (i = 0; i < count1; i++)
7196 symtable1[i].name
7197 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7198 symtable1[i].u.isym->st_name);
7199
7200 for (i = 0; i < count2; i++)
7201 symtable2[i].name
7202 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7203 symtable2[i].u.isym->st_name);
7204
7205 /* Sort symbol by name. */
7206 qsort (symtable1, count1, sizeof (struct elf_symbol),
7207 elf_sym_name_compare);
7208 qsort (symtable2, count1, sizeof (struct elf_symbol),
7209 elf_sym_name_compare);
7210
7211 for (i = 0; i < count1; i++)
7212 /* Two symbols must have the same binding, type and name. */
7213 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7214 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7215 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7216 goto done;
7217
7218 result = TRUE;
7219
7220 done:
7221 if (symtable1)
7222 free (symtable1);
7223 if (symtable2)
7224 free (symtable2);
7225 if (isymbuf1)
7226 free (isymbuf1);
7227 if (isymbuf2)
7228 free (isymbuf2);
7229
7230 return result;
7231 }
7232
7233 /* Return TRUE if 2 section types are compatible. */
7234
7235 bfd_boolean
7236 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7237 bfd *bbfd, const asection *bsec)
7238 {
7239 if (asec == NULL
7240 || bsec == NULL
7241 || abfd->xvec->flavour != bfd_target_elf_flavour
7242 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7243 return TRUE;
7244
7245 return elf_section_type (asec) == elf_section_type (bsec);
7246 }
7247 \f
7248 /* Final phase of ELF linker. */
7249
7250 /* A structure we use to avoid passing large numbers of arguments. */
7251
7252 struct elf_final_link_info
7253 {
7254 /* General link information. */
7255 struct bfd_link_info *info;
7256 /* Output BFD. */
7257 bfd *output_bfd;
7258 /* Symbol string table. */
7259 struct bfd_strtab_hash *symstrtab;
7260 /* .dynsym section. */
7261 asection *dynsym_sec;
7262 /* .hash section. */
7263 asection *hash_sec;
7264 /* symbol version section (.gnu.version). */
7265 asection *symver_sec;
7266 /* Buffer large enough to hold contents of any section. */
7267 bfd_byte *contents;
7268 /* Buffer large enough to hold external relocs of any section. */
7269 void *external_relocs;
7270 /* Buffer large enough to hold internal relocs of any section. */
7271 Elf_Internal_Rela *internal_relocs;
7272 /* Buffer large enough to hold external local symbols of any input
7273 BFD. */
7274 bfd_byte *external_syms;
7275 /* And a buffer for symbol section indices. */
7276 Elf_External_Sym_Shndx *locsym_shndx;
7277 /* Buffer large enough to hold internal local symbols of any input
7278 BFD. */
7279 Elf_Internal_Sym *internal_syms;
7280 /* Array large enough to hold a symbol index for each local symbol
7281 of any input BFD. */
7282 long *indices;
7283 /* Array large enough to hold a section pointer for each local
7284 symbol of any input BFD. */
7285 asection **sections;
7286 /* Buffer to hold swapped out symbols. */
7287 bfd_byte *symbuf;
7288 /* And one for symbol section indices. */
7289 Elf_External_Sym_Shndx *symshndxbuf;
7290 /* Number of swapped out symbols in buffer. */
7291 size_t symbuf_count;
7292 /* Number of symbols which fit in symbuf. */
7293 size_t symbuf_size;
7294 /* And same for symshndxbuf. */
7295 size_t shndxbuf_size;
7296 };
7297
7298 /* This struct is used to pass information to elf_link_output_extsym. */
7299
7300 struct elf_outext_info
7301 {
7302 bfd_boolean failed;
7303 bfd_boolean localsyms;
7304 struct elf_final_link_info *finfo;
7305 };
7306
7307
7308 /* Support for evaluating a complex relocation.
7309
7310 Complex relocations are generalized, self-describing relocations. The
7311 implementation of them consists of two parts: complex symbols, and the
7312 relocations themselves.
7313
7314 The relocations are use a reserved elf-wide relocation type code (R_RELC
7315 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7316 information (start bit, end bit, word width, etc) into the addend. This
7317 information is extracted from CGEN-generated operand tables within gas.
7318
7319 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7320 internal) representing prefix-notation expressions, including but not
7321 limited to those sorts of expressions normally encoded as addends in the
7322 addend field. The symbol mangling format is:
7323
7324 <node> := <literal>
7325 | <unary-operator> ':' <node>
7326 | <binary-operator> ':' <node> ':' <node>
7327 ;
7328
7329 <literal> := 's' <digits=N> ':' <N character symbol name>
7330 | 'S' <digits=N> ':' <N character section name>
7331 | '#' <hexdigits>
7332 ;
7333
7334 <binary-operator> := as in C
7335 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7336
7337 static void
7338 set_symbol_value (bfd *bfd_with_globals,
7339 Elf_Internal_Sym *isymbuf,
7340 size_t locsymcount,
7341 size_t symidx,
7342 bfd_vma val)
7343 {
7344 struct elf_link_hash_entry **sym_hashes;
7345 struct elf_link_hash_entry *h;
7346 size_t extsymoff = locsymcount;
7347
7348 if (symidx < locsymcount)
7349 {
7350 Elf_Internal_Sym *sym;
7351
7352 sym = isymbuf + symidx;
7353 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7354 {
7355 /* It is a local symbol: move it to the
7356 "absolute" section and give it a value. */
7357 sym->st_shndx = SHN_ABS;
7358 sym->st_value = val;
7359 return;
7360 }
7361 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7362 extsymoff = 0;
7363 }
7364
7365 /* It is a global symbol: set its link type
7366 to "defined" and give it a value. */
7367
7368 sym_hashes = elf_sym_hashes (bfd_with_globals);
7369 h = sym_hashes [symidx - extsymoff];
7370 while (h->root.type == bfd_link_hash_indirect
7371 || h->root.type == bfd_link_hash_warning)
7372 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7373 h->root.type = bfd_link_hash_defined;
7374 h->root.u.def.value = val;
7375 h->root.u.def.section = bfd_abs_section_ptr;
7376 }
7377
7378 static bfd_boolean
7379 resolve_symbol (const char *name,
7380 bfd *input_bfd,
7381 struct elf_final_link_info *finfo,
7382 bfd_vma *result,
7383 Elf_Internal_Sym *isymbuf,
7384 size_t locsymcount)
7385 {
7386 Elf_Internal_Sym *sym;
7387 struct bfd_link_hash_entry *global_entry;
7388 const char *candidate = NULL;
7389 Elf_Internal_Shdr *symtab_hdr;
7390 size_t i;
7391
7392 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7393
7394 for (i = 0; i < locsymcount; ++ i)
7395 {
7396 sym = isymbuf + i;
7397
7398 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7399 continue;
7400
7401 candidate = bfd_elf_string_from_elf_section (input_bfd,
7402 symtab_hdr->sh_link,
7403 sym->st_name);
7404 #ifdef DEBUG
7405 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7406 name, candidate, (unsigned long) sym->st_value);
7407 #endif
7408 if (candidate && strcmp (candidate, name) == 0)
7409 {
7410 asection *sec = finfo->sections [i];
7411
7412 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7413 *result += sec->output_offset + sec->output_section->vma;
7414 #ifdef DEBUG
7415 printf ("Found symbol with value %8.8lx\n",
7416 (unsigned long) *result);
7417 #endif
7418 return TRUE;
7419 }
7420 }
7421
7422 /* Hmm, haven't found it yet. perhaps it is a global. */
7423 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7424 FALSE, FALSE, TRUE);
7425 if (!global_entry)
7426 return FALSE;
7427
7428 if (global_entry->type == bfd_link_hash_defined
7429 || global_entry->type == bfd_link_hash_defweak)
7430 {
7431 *result = (global_entry->u.def.value
7432 + global_entry->u.def.section->output_section->vma
7433 + global_entry->u.def.section->output_offset);
7434 #ifdef DEBUG
7435 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7436 global_entry->root.string, (unsigned long) *result);
7437 #endif
7438 return TRUE;
7439 }
7440
7441 return FALSE;
7442 }
7443
7444 static bfd_boolean
7445 resolve_section (const char *name,
7446 asection *sections,
7447 bfd_vma *result)
7448 {
7449 asection *curr;
7450 unsigned int len;
7451
7452 for (curr = sections; curr; curr = curr->next)
7453 if (strcmp (curr->name, name) == 0)
7454 {
7455 *result = curr->vma;
7456 return TRUE;
7457 }
7458
7459 /* Hmm. still haven't found it. try pseudo-section names. */
7460 for (curr = sections; curr; curr = curr->next)
7461 {
7462 len = strlen (curr->name);
7463 if (len > strlen (name))
7464 continue;
7465
7466 if (strncmp (curr->name, name, len) == 0)
7467 {
7468 if (strncmp (".end", name + len, 4) == 0)
7469 {
7470 *result = curr->vma + curr->size;
7471 return TRUE;
7472 }
7473
7474 /* Insert more pseudo-section names here, if you like. */
7475 }
7476 }
7477
7478 return FALSE;
7479 }
7480
7481 static void
7482 undefined_reference (const char *reftype, const char *name)
7483 {
7484 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7485 reftype, name);
7486 }
7487
7488 static bfd_boolean
7489 eval_symbol (bfd_vma *result,
7490 const char **symp,
7491 bfd *input_bfd,
7492 struct elf_final_link_info *finfo,
7493 bfd_vma dot,
7494 Elf_Internal_Sym *isymbuf,
7495 size_t locsymcount,
7496 int signed_p)
7497 {
7498 size_t len;
7499 size_t symlen;
7500 bfd_vma a;
7501 bfd_vma b;
7502 char symbuf[4096];
7503 const char *sym = *symp;
7504 const char *symend;
7505 bfd_boolean symbol_is_section = FALSE;
7506
7507 len = strlen (sym);
7508 symend = sym + len;
7509
7510 if (len < 1 || len > sizeof (symbuf))
7511 {
7512 bfd_set_error (bfd_error_invalid_operation);
7513 return FALSE;
7514 }
7515
7516 switch (* sym)
7517 {
7518 case '.':
7519 *result = dot;
7520 *symp = sym + 1;
7521 return TRUE;
7522
7523 case '#':
7524 ++sym;
7525 *result = strtoul (sym, (char **) symp, 16);
7526 return TRUE;
7527
7528 case 'S':
7529 symbol_is_section = TRUE;
7530 case 's':
7531 ++sym;
7532 symlen = strtol (sym, (char **) symp, 10);
7533 sym = *symp + 1; /* Skip the trailing ':'. */
7534
7535 if (symend < sym || symlen + 1 > sizeof (symbuf))
7536 {
7537 bfd_set_error (bfd_error_invalid_operation);
7538 return FALSE;
7539 }
7540
7541 memcpy (symbuf, sym, symlen);
7542 symbuf[symlen] = '\0';
7543 *symp = sym + symlen;
7544
7545 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7546 the symbol as a section, or vice-versa. so we're pretty liberal in our
7547 interpretation here; section means "try section first", not "must be a
7548 section", and likewise with symbol. */
7549
7550 if (symbol_is_section)
7551 {
7552 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7553 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7554 isymbuf, locsymcount))
7555 {
7556 undefined_reference ("section", symbuf);
7557 return FALSE;
7558 }
7559 }
7560 else
7561 {
7562 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7563 isymbuf, locsymcount)
7564 && !resolve_section (symbuf, finfo->output_bfd->sections,
7565 result))
7566 {
7567 undefined_reference ("symbol", symbuf);
7568 return FALSE;
7569 }
7570 }
7571
7572 return TRUE;
7573
7574 /* All that remains are operators. */
7575
7576 #define UNARY_OP(op) \
7577 if (strncmp (sym, #op, strlen (#op)) == 0) \
7578 { \
7579 sym += strlen (#op); \
7580 if (*sym == ':') \
7581 ++sym; \
7582 *symp = sym; \
7583 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7584 isymbuf, locsymcount, signed_p)) \
7585 return FALSE; \
7586 if (signed_p) \
7587 *result = op ((bfd_signed_vma) a); \
7588 else \
7589 *result = op a; \
7590 return TRUE; \
7591 }
7592
7593 #define BINARY_OP(op) \
7594 if (strncmp (sym, #op, strlen (#op)) == 0) \
7595 { \
7596 sym += strlen (#op); \
7597 if (*sym == ':') \
7598 ++sym; \
7599 *symp = sym; \
7600 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7601 isymbuf, locsymcount, signed_p)) \
7602 return FALSE; \
7603 ++*symp; \
7604 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7605 isymbuf, locsymcount, signed_p)) \
7606 return FALSE; \
7607 if (signed_p) \
7608 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7609 else \
7610 *result = a op b; \
7611 return TRUE; \
7612 }
7613
7614 default:
7615 UNARY_OP (0-);
7616 BINARY_OP (<<);
7617 BINARY_OP (>>);
7618 BINARY_OP (==);
7619 BINARY_OP (!=);
7620 BINARY_OP (<=);
7621 BINARY_OP (>=);
7622 BINARY_OP (&&);
7623 BINARY_OP (||);
7624 UNARY_OP (~);
7625 UNARY_OP (!);
7626 BINARY_OP (*);
7627 BINARY_OP (/);
7628 BINARY_OP (%);
7629 BINARY_OP (^);
7630 BINARY_OP (|);
7631 BINARY_OP (&);
7632 BINARY_OP (+);
7633 BINARY_OP (-);
7634 BINARY_OP (<);
7635 BINARY_OP (>);
7636 #undef UNARY_OP
7637 #undef BINARY_OP
7638 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7639 bfd_set_error (bfd_error_invalid_operation);
7640 return FALSE;
7641 }
7642 }
7643
7644 static void
7645 put_value (bfd_vma size,
7646 unsigned long chunksz,
7647 bfd *input_bfd,
7648 bfd_vma x,
7649 bfd_byte *location)
7650 {
7651 location += (size - chunksz);
7652
7653 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7654 {
7655 switch (chunksz)
7656 {
7657 default:
7658 case 0:
7659 abort ();
7660 case 1:
7661 bfd_put_8 (input_bfd, x, location);
7662 break;
7663 case 2:
7664 bfd_put_16 (input_bfd, x, location);
7665 break;
7666 case 4:
7667 bfd_put_32 (input_bfd, x, location);
7668 break;
7669 case 8:
7670 #ifdef BFD64
7671 bfd_put_64 (input_bfd, x, location);
7672 #else
7673 abort ();
7674 #endif
7675 break;
7676 }
7677 }
7678 }
7679
7680 static bfd_vma
7681 get_value (bfd_vma size,
7682 unsigned long chunksz,
7683 bfd *input_bfd,
7684 bfd_byte *location)
7685 {
7686 bfd_vma x = 0;
7687
7688 for (; size; size -= chunksz, location += chunksz)
7689 {
7690 switch (chunksz)
7691 {
7692 default:
7693 case 0:
7694 abort ();
7695 case 1:
7696 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7697 break;
7698 case 2:
7699 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7700 break;
7701 case 4:
7702 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7703 break;
7704 case 8:
7705 #ifdef BFD64
7706 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7707 #else
7708 abort ();
7709 #endif
7710 break;
7711 }
7712 }
7713 return x;
7714 }
7715
7716 static void
7717 decode_complex_addend (unsigned long *start, /* in bits */
7718 unsigned long *oplen, /* in bits */
7719 unsigned long *len, /* in bits */
7720 unsigned long *wordsz, /* in bytes */
7721 unsigned long *chunksz, /* in bytes */
7722 unsigned long *lsb0_p,
7723 unsigned long *signed_p,
7724 unsigned long *trunc_p,
7725 unsigned long encoded)
7726 {
7727 * start = encoded & 0x3F;
7728 * len = (encoded >> 6) & 0x3F;
7729 * oplen = (encoded >> 12) & 0x3F;
7730 * wordsz = (encoded >> 18) & 0xF;
7731 * chunksz = (encoded >> 22) & 0xF;
7732 * lsb0_p = (encoded >> 27) & 1;
7733 * signed_p = (encoded >> 28) & 1;
7734 * trunc_p = (encoded >> 29) & 1;
7735 }
7736
7737 bfd_reloc_status_type
7738 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7739 asection *input_section ATTRIBUTE_UNUSED,
7740 bfd_byte *contents,
7741 Elf_Internal_Rela *rel,
7742 bfd_vma relocation)
7743 {
7744 bfd_vma shift, x, mask;
7745 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7746 bfd_reloc_status_type r;
7747
7748 /* Perform this reloc, since it is complex.
7749 (this is not to say that it necessarily refers to a complex
7750 symbol; merely that it is a self-describing CGEN based reloc.
7751 i.e. the addend has the complete reloc information (bit start, end,
7752 word size, etc) encoded within it.). */
7753
7754 decode_complex_addend (&start, &oplen, &len, &wordsz,
7755 &chunksz, &lsb0_p, &signed_p,
7756 &trunc_p, rel->r_addend);
7757
7758 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7759
7760 if (lsb0_p)
7761 shift = (start + 1) - len;
7762 else
7763 shift = (8 * wordsz) - (start + len);
7764
7765 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7766
7767 #ifdef DEBUG
7768 printf ("Doing complex reloc: "
7769 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7770 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7771 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7772 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7773 oplen, x, mask, relocation);
7774 #endif
7775
7776 r = bfd_reloc_ok;
7777 if (! trunc_p)
7778 /* Now do an overflow check. */
7779 r = bfd_check_overflow ((signed_p
7780 ? complain_overflow_signed
7781 : complain_overflow_unsigned),
7782 len, 0, (8 * wordsz),
7783 relocation);
7784
7785 /* Do the deed. */
7786 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7787
7788 #ifdef DEBUG
7789 printf (" relocation: %8.8lx\n"
7790 " shifted mask: %8.8lx\n"
7791 " shifted/masked reloc: %8.8lx\n"
7792 " result: %8.8lx\n",
7793 relocation, (mask << shift),
7794 ((relocation & mask) << shift), x);
7795 #endif
7796 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7797 return r;
7798 }
7799
7800 /* When performing a relocatable link, the input relocations are
7801 preserved. But, if they reference global symbols, the indices
7802 referenced must be updated. Update all the relocations in
7803 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7804
7805 static void
7806 elf_link_adjust_relocs (bfd *abfd,
7807 Elf_Internal_Shdr *rel_hdr,
7808 unsigned int count,
7809 struct elf_link_hash_entry **rel_hash)
7810 {
7811 unsigned int i;
7812 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7813 bfd_byte *erela;
7814 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7815 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7816 bfd_vma r_type_mask;
7817 int r_sym_shift;
7818
7819 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7820 {
7821 swap_in = bed->s->swap_reloc_in;
7822 swap_out = bed->s->swap_reloc_out;
7823 }
7824 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7825 {
7826 swap_in = bed->s->swap_reloca_in;
7827 swap_out = bed->s->swap_reloca_out;
7828 }
7829 else
7830 abort ();
7831
7832 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7833 abort ();
7834
7835 if (bed->s->arch_size == 32)
7836 {
7837 r_type_mask = 0xff;
7838 r_sym_shift = 8;
7839 }
7840 else
7841 {
7842 r_type_mask = 0xffffffff;
7843 r_sym_shift = 32;
7844 }
7845
7846 erela = rel_hdr->contents;
7847 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7848 {
7849 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7850 unsigned int j;
7851
7852 if (*rel_hash == NULL)
7853 continue;
7854
7855 BFD_ASSERT ((*rel_hash)->indx >= 0);
7856
7857 (*swap_in) (abfd, erela, irela);
7858 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7859 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7860 | (irela[j].r_info & r_type_mask));
7861 (*swap_out) (abfd, irela, erela);
7862 }
7863 }
7864
7865 struct elf_link_sort_rela
7866 {
7867 union {
7868 bfd_vma offset;
7869 bfd_vma sym_mask;
7870 } u;
7871 enum elf_reloc_type_class type;
7872 /* We use this as an array of size int_rels_per_ext_rel. */
7873 Elf_Internal_Rela rela[1];
7874 };
7875
7876 static int
7877 elf_link_sort_cmp1 (const void *A, const void *B)
7878 {
7879 const struct elf_link_sort_rela *a = A;
7880 const struct elf_link_sort_rela *b = B;
7881 int relativea, relativeb;
7882
7883 relativea = a->type == reloc_class_relative;
7884 relativeb = b->type == reloc_class_relative;
7885
7886 if (relativea < relativeb)
7887 return 1;
7888 if (relativea > relativeb)
7889 return -1;
7890 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7891 return -1;
7892 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7893 return 1;
7894 if (a->rela->r_offset < b->rela->r_offset)
7895 return -1;
7896 if (a->rela->r_offset > b->rela->r_offset)
7897 return 1;
7898 return 0;
7899 }
7900
7901 static int
7902 elf_link_sort_cmp2 (const void *A, const void *B)
7903 {
7904 const struct elf_link_sort_rela *a = A;
7905 const struct elf_link_sort_rela *b = B;
7906 int copya, copyb;
7907
7908 if (a->u.offset < b->u.offset)
7909 return -1;
7910 if (a->u.offset > b->u.offset)
7911 return 1;
7912 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7913 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7914 if (copya < copyb)
7915 return -1;
7916 if (copya > copyb)
7917 return 1;
7918 if (a->rela->r_offset < b->rela->r_offset)
7919 return -1;
7920 if (a->rela->r_offset > b->rela->r_offset)
7921 return 1;
7922 return 0;
7923 }
7924
7925 static size_t
7926 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7927 {
7928 asection *dynamic_relocs;
7929 asection *rela_dyn;
7930 asection *rel_dyn;
7931 bfd_size_type count, size;
7932 size_t i, ret, sort_elt, ext_size;
7933 bfd_byte *sort, *s_non_relative, *p;
7934 struct elf_link_sort_rela *sq;
7935 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7936 int i2e = bed->s->int_rels_per_ext_rel;
7937 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7938 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7939 struct bfd_link_order *lo;
7940 bfd_vma r_sym_mask;
7941 bfd_boolean use_rela;
7942
7943 /* Find a dynamic reloc section. */
7944 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7945 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7946 if (rela_dyn != NULL && rela_dyn->size > 0
7947 && rel_dyn != NULL && rel_dyn->size > 0)
7948 {
7949 bfd_boolean use_rela_initialised = FALSE;
7950
7951 /* This is just here to stop gcc from complaining.
7952 It's initialization checking code is not perfect. */
7953 use_rela = TRUE;
7954
7955 /* Both sections are present. Examine the sizes
7956 of the indirect sections to help us choose. */
7957 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7958 if (lo->type == bfd_indirect_link_order)
7959 {
7960 asection *o = lo->u.indirect.section;
7961
7962 if ((o->size % bed->s->sizeof_rela) == 0)
7963 {
7964 if ((o->size % bed->s->sizeof_rel) == 0)
7965 /* Section size is divisible by both rel and rela sizes.
7966 It is of no help to us. */
7967 ;
7968 else
7969 {
7970 /* Section size is only divisible by rela. */
7971 if (use_rela_initialised && (use_rela == FALSE))
7972 {
7973 _bfd_error_handler
7974 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7975 bfd_set_error (bfd_error_invalid_operation);
7976 return 0;
7977 }
7978 else
7979 {
7980 use_rela = TRUE;
7981 use_rela_initialised = TRUE;
7982 }
7983 }
7984 }
7985 else if ((o->size % bed->s->sizeof_rel) == 0)
7986 {
7987 /* Section size is only divisible by rel. */
7988 if (use_rela_initialised && (use_rela == TRUE))
7989 {
7990 _bfd_error_handler
7991 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7992 bfd_set_error (bfd_error_invalid_operation);
7993 return 0;
7994 }
7995 else
7996 {
7997 use_rela = FALSE;
7998 use_rela_initialised = TRUE;
7999 }
8000 }
8001 else
8002 {
8003 /* The section size is not divisible by either - something is wrong. */
8004 _bfd_error_handler
8005 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8006 bfd_set_error (bfd_error_invalid_operation);
8007 return 0;
8008 }
8009 }
8010
8011 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8012 if (lo->type == bfd_indirect_link_order)
8013 {
8014 asection *o = lo->u.indirect.section;
8015
8016 if ((o->size % bed->s->sizeof_rela) == 0)
8017 {
8018 if ((o->size % bed->s->sizeof_rel) == 0)
8019 /* Section size is divisible by both rel and rela sizes.
8020 It is of no help to us. */
8021 ;
8022 else
8023 {
8024 /* Section size is only divisible by rela. */
8025 if (use_rela_initialised && (use_rela == FALSE))
8026 {
8027 _bfd_error_handler
8028 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8029 bfd_set_error (bfd_error_invalid_operation);
8030 return 0;
8031 }
8032 else
8033 {
8034 use_rela = TRUE;
8035 use_rela_initialised = TRUE;
8036 }
8037 }
8038 }
8039 else if ((o->size % bed->s->sizeof_rel) == 0)
8040 {
8041 /* Section size is only divisible by rel. */
8042 if (use_rela_initialised && (use_rela == TRUE))
8043 {
8044 _bfd_error_handler
8045 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8046 bfd_set_error (bfd_error_invalid_operation);
8047 return 0;
8048 }
8049 else
8050 {
8051 use_rela = FALSE;
8052 use_rela_initialised = TRUE;
8053 }
8054 }
8055 else
8056 {
8057 /* The section size is not divisible by either - something is wrong. */
8058 _bfd_error_handler
8059 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8060 bfd_set_error (bfd_error_invalid_operation);
8061 return 0;
8062 }
8063 }
8064
8065 if (! use_rela_initialised)
8066 /* Make a guess. */
8067 use_rela = TRUE;
8068 }
8069 else if (rela_dyn != NULL && rela_dyn->size > 0)
8070 use_rela = TRUE;
8071 else if (rel_dyn != NULL && rel_dyn->size > 0)
8072 use_rela = FALSE;
8073 else
8074 return 0;
8075
8076 if (use_rela)
8077 {
8078 dynamic_relocs = rela_dyn;
8079 ext_size = bed->s->sizeof_rela;
8080 swap_in = bed->s->swap_reloca_in;
8081 swap_out = bed->s->swap_reloca_out;
8082 }
8083 else
8084 {
8085 dynamic_relocs = rel_dyn;
8086 ext_size = bed->s->sizeof_rel;
8087 swap_in = bed->s->swap_reloc_in;
8088 swap_out = bed->s->swap_reloc_out;
8089 }
8090
8091 size = 0;
8092 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8093 if (lo->type == bfd_indirect_link_order)
8094 size += lo->u.indirect.section->size;
8095
8096 if (size != dynamic_relocs->size)
8097 return 0;
8098
8099 sort_elt = (sizeof (struct elf_link_sort_rela)
8100 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8101
8102 count = dynamic_relocs->size / ext_size;
8103 if (count == 0)
8104 return 0;
8105 sort = bfd_zmalloc (sort_elt * count);
8106
8107 if (sort == NULL)
8108 {
8109 (*info->callbacks->warning)
8110 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8111 return 0;
8112 }
8113
8114 if (bed->s->arch_size == 32)
8115 r_sym_mask = ~(bfd_vma) 0xff;
8116 else
8117 r_sym_mask = ~(bfd_vma) 0xffffffff;
8118
8119 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8120 if (lo->type == bfd_indirect_link_order)
8121 {
8122 bfd_byte *erel, *erelend;
8123 asection *o = lo->u.indirect.section;
8124
8125 if (o->contents == NULL && o->size != 0)
8126 {
8127 /* This is a reloc section that is being handled as a normal
8128 section. See bfd_section_from_shdr. We can't combine
8129 relocs in this case. */
8130 free (sort);
8131 return 0;
8132 }
8133 erel = o->contents;
8134 erelend = o->contents + o->size;
8135 p = sort + o->output_offset / ext_size * sort_elt;
8136
8137 while (erel < erelend)
8138 {
8139 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8140
8141 (*swap_in) (abfd, erel, s->rela);
8142 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8143 s->u.sym_mask = r_sym_mask;
8144 p += sort_elt;
8145 erel += ext_size;
8146 }
8147 }
8148
8149 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8150
8151 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8152 {
8153 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8154 if (s->type != reloc_class_relative)
8155 break;
8156 }
8157 ret = i;
8158 s_non_relative = p;
8159
8160 sq = (struct elf_link_sort_rela *) s_non_relative;
8161 for (; i < count; i++, p += sort_elt)
8162 {
8163 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8164 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8165 sq = sp;
8166 sp->u.offset = sq->rela->r_offset;
8167 }
8168
8169 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8170
8171 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8172 if (lo->type == bfd_indirect_link_order)
8173 {
8174 bfd_byte *erel, *erelend;
8175 asection *o = lo->u.indirect.section;
8176
8177 erel = o->contents;
8178 erelend = o->contents + o->size;
8179 p = sort + o->output_offset / ext_size * sort_elt;
8180 while (erel < erelend)
8181 {
8182 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8183 (*swap_out) (abfd, s->rela, erel);
8184 p += sort_elt;
8185 erel += ext_size;
8186 }
8187 }
8188
8189 free (sort);
8190 *psec = dynamic_relocs;
8191 return ret;
8192 }
8193
8194 /* Flush the output symbols to the file. */
8195
8196 static bfd_boolean
8197 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8198 const struct elf_backend_data *bed)
8199 {
8200 if (finfo->symbuf_count > 0)
8201 {
8202 Elf_Internal_Shdr *hdr;
8203 file_ptr pos;
8204 bfd_size_type amt;
8205
8206 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8207 pos = hdr->sh_offset + hdr->sh_size;
8208 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8209 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8210 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8211 return FALSE;
8212
8213 hdr->sh_size += amt;
8214 finfo->symbuf_count = 0;
8215 }
8216
8217 return TRUE;
8218 }
8219
8220 /* Add a symbol to the output symbol table. */
8221
8222 static int
8223 elf_link_output_sym (struct elf_final_link_info *finfo,
8224 const char *name,
8225 Elf_Internal_Sym *elfsym,
8226 asection *input_sec,
8227 struct elf_link_hash_entry *h)
8228 {
8229 bfd_byte *dest;
8230 Elf_External_Sym_Shndx *destshndx;
8231 int (*output_symbol_hook)
8232 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8233 struct elf_link_hash_entry *);
8234 const struct elf_backend_data *bed;
8235
8236 bed = get_elf_backend_data (finfo->output_bfd);
8237 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8238 if (output_symbol_hook != NULL)
8239 {
8240 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8241 if (ret != 1)
8242 return ret;
8243 }
8244
8245 if (name == NULL || *name == '\0')
8246 elfsym->st_name = 0;
8247 else if (input_sec->flags & SEC_EXCLUDE)
8248 elfsym->st_name = 0;
8249 else
8250 {
8251 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8252 name, TRUE, FALSE);
8253 if (elfsym->st_name == (unsigned long) -1)
8254 return 0;
8255 }
8256
8257 if (finfo->symbuf_count >= finfo->symbuf_size)
8258 {
8259 if (! elf_link_flush_output_syms (finfo, bed))
8260 return 0;
8261 }
8262
8263 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8264 destshndx = finfo->symshndxbuf;
8265 if (destshndx != NULL)
8266 {
8267 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8268 {
8269 bfd_size_type amt;
8270
8271 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8272 destshndx = bfd_realloc (destshndx, amt * 2);
8273 if (destshndx == NULL)
8274 return 0;
8275 finfo->symshndxbuf = destshndx;
8276 memset ((char *) destshndx + amt, 0, amt);
8277 finfo->shndxbuf_size *= 2;
8278 }
8279 destshndx += bfd_get_symcount (finfo->output_bfd);
8280 }
8281
8282 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8283 finfo->symbuf_count += 1;
8284 bfd_get_symcount (finfo->output_bfd) += 1;
8285
8286 return 1;
8287 }
8288
8289 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8290
8291 static bfd_boolean
8292 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8293 {
8294 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8295 && sym->st_shndx < SHN_LORESERVE)
8296 {
8297 /* The gABI doesn't support dynamic symbols in output sections
8298 beyond 64k. */
8299 (*_bfd_error_handler)
8300 (_("%B: Too many sections: %d (>= %d)"),
8301 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8302 bfd_set_error (bfd_error_nonrepresentable_section);
8303 return FALSE;
8304 }
8305 return TRUE;
8306 }
8307
8308 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8309 allowing an unsatisfied unversioned symbol in the DSO to match a
8310 versioned symbol that would normally require an explicit version.
8311 We also handle the case that a DSO references a hidden symbol
8312 which may be satisfied by a versioned symbol in another DSO. */
8313
8314 static bfd_boolean
8315 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8316 const struct elf_backend_data *bed,
8317 struct elf_link_hash_entry *h)
8318 {
8319 bfd *abfd;
8320 struct elf_link_loaded_list *loaded;
8321
8322 if (!is_elf_hash_table (info->hash))
8323 return FALSE;
8324
8325 switch (h->root.type)
8326 {
8327 default:
8328 abfd = NULL;
8329 break;
8330
8331 case bfd_link_hash_undefined:
8332 case bfd_link_hash_undefweak:
8333 abfd = h->root.u.undef.abfd;
8334 if ((abfd->flags & DYNAMIC) == 0
8335 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8336 return FALSE;
8337 break;
8338
8339 case bfd_link_hash_defined:
8340 case bfd_link_hash_defweak:
8341 abfd = h->root.u.def.section->owner;
8342 break;
8343
8344 case bfd_link_hash_common:
8345 abfd = h->root.u.c.p->section->owner;
8346 break;
8347 }
8348 BFD_ASSERT (abfd != NULL);
8349
8350 for (loaded = elf_hash_table (info)->loaded;
8351 loaded != NULL;
8352 loaded = loaded->next)
8353 {
8354 bfd *input;
8355 Elf_Internal_Shdr *hdr;
8356 bfd_size_type symcount;
8357 bfd_size_type extsymcount;
8358 bfd_size_type extsymoff;
8359 Elf_Internal_Shdr *versymhdr;
8360 Elf_Internal_Sym *isym;
8361 Elf_Internal_Sym *isymend;
8362 Elf_Internal_Sym *isymbuf;
8363 Elf_External_Versym *ever;
8364 Elf_External_Versym *extversym;
8365
8366 input = loaded->abfd;
8367
8368 /* We check each DSO for a possible hidden versioned definition. */
8369 if (input == abfd
8370 || (input->flags & DYNAMIC) == 0
8371 || elf_dynversym (input) == 0)
8372 continue;
8373
8374 hdr = &elf_tdata (input)->dynsymtab_hdr;
8375
8376 symcount = hdr->sh_size / bed->s->sizeof_sym;
8377 if (elf_bad_symtab (input))
8378 {
8379 extsymcount = symcount;
8380 extsymoff = 0;
8381 }
8382 else
8383 {
8384 extsymcount = symcount - hdr->sh_info;
8385 extsymoff = hdr->sh_info;
8386 }
8387
8388 if (extsymcount == 0)
8389 continue;
8390
8391 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8392 NULL, NULL, NULL);
8393 if (isymbuf == NULL)
8394 return FALSE;
8395
8396 /* Read in any version definitions. */
8397 versymhdr = &elf_tdata (input)->dynversym_hdr;
8398 extversym = bfd_malloc (versymhdr->sh_size);
8399 if (extversym == NULL)
8400 goto error_ret;
8401
8402 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8403 || (bfd_bread (extversym, versymhdr->sh_size, input)
8404 != versymhdr->sh_size))
8405 {
8406 free (extversym);
8407 error_ret:
8408 free (isymbuf);
8409 return FALSE;
8410 }
8411
8412 ever = extversym + extsymoff;
8413 isymend = isymbuf + extsymcount;
8414 for (isym = isymbuf; isym < isymend; isym++, ever++)
8415 {
8416 const char *name;
8417 Elf_Internal_Versym iver;
8418 unsigned short version_index;
8419
8420 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8421 || isym->st_shndx == SHN_UNDEF)
8422 continue;
8423
8424 name = bfd_elf_string_from_elf_section (input,
8425 hdr->sh_link,
8426 isym->st_name);
8427 if (strcmp (name, h->root.root.string) != 0)
8428 continue;
8429
8430 _bfd_elf_swap_versym_in (input, ever, &iver);
8431
8432 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8433 {
8434 /* If we have a non-hidden versioned sym, then it should
8435 have provided a definition for the undefined sym. */
8436 abort ();
8437 }
8438
8439 version_index = iver.vs_vers & VERSYM_VERSION;
8440 if (version_index == 1 || version_index == 2)
8441 {
8442 /* This is the base or first version. We can use it. */
8443 free (extversym);
8444 free (isymbuf);
8445 return TRUE;
8446 }
8447 }
8448
8449 free (extversym);
8450 free (isymbuf);
8451 }
8452
8453 return FALSE;
8454 }
8455
8456 /* Add an external symbol to the symbol table. This is called from
8457 the hash table traversal routine. When generating a shared object,
8458 we go through the symbol table twice. The first time we output
8459 anything that might have been forced to local scope in a version
8460 script. The second time we output the symbols that are still
8461 global symbols. */
8462
8463 static bfd_boolean
8464 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8465 {
8466 struct elf_outext_info *eoinfo = data;
8467 struct elf_final_link_info *finfo = eoinfo->finfo;
8468 bfd_boolean strip;
8469 Elf_Internal_Sym sym;
8470 asection *input_sec;
8471 const struct elf_backend_data *bed;
8472 long indx;
8473 int ret;
8474
8475 if (h->root.type == bfd_link_hash_warning)
8476 {
8477 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8478 if (h->root.type == bfd_link_hash_new)
8479 return TRUE;
8480 }
8481
8482 /* Decide whether to output this symbol in this pass. */
8483 if (eoinfo->localsyms)
8484 {
8485 if (!h->forced_local)
8486 return TRUE;
8487 }
8488 else
8489 {
8490 if (h->forced_local)
8491 return TRUE;
8492 }
8493
8494 bed = get_elf_backend_data (finfo->output_bfd);
8495
8496 if (h->root.type == bfd_link_hash_undefined)
8497 {
8498 /* If we have an undefined symbol reference here then it must have
8499 come from a shared library that is being linked in. (Undefined
8500 references in regular files have already been handled). */
8501 bfd_boolean ignore_undef = FALSE;
8502
8503 /* Some symbols may be special in that the fact that they're
8504 undefined can be safely ignored - let backend determine that. */
8505 if (bed->elf_backend_ignore_undef_symbol)
8506 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8507
8508 /* If we are reporting errors for this situation then do so now. */
8509 if (ignore_undef == FALSE
8510 && h->ref_dynamic
8511 && ! h->ref_regular
8512 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8513 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8514 {
8515 if (! (finfo->info->callbacks->undefined_symbol
8516 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8517 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8518 {
8519 eoinfo->failed = TRUE;
8520 return FALSE;
8521 }
8522 }
8523 }
8524
8525 /* We should also warn if a forced local symbol is referenced from
8526 shared libraries. */
8527 if (! finfo->info->relocatable
8528 && (! finfo->info->shared)
8529 && h->forced_local
8530 && h->ref_dynamic
8531 && !h->dynamic_def
8532 && !h->dynamic_weak
8533 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8534 {
8535 (*_bfd_error_handler)
8536 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8537 finfo->output_bfd,
8538 h->root.u.def.section == bfd_abs_section_ptr
8539 ? finfo->output_bfd : h->root.u.def.section->owner,
8540 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8541 ? "internal"
8542 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8543 ? "hidden" : "local",
8544 h->root.root.string);
8545 eoinfo->failed = TRUE;
8546 return FALSE;
8547 }
8548
8549 /* We don't want to output symbols that have never been mentioned by
8550 a regular file, or that we have been told to strip. However, if
8551 h->indx is set to -2, the symbol is used by a reloc and we must
8552 output it. */
8553 if (h->indx == -2)
8554 strip = FALSE;
8555 else if ((h->def_dynamic
8556 || h->ref_dynamic
8557 || h->root.type == bfd_link_hash_new)
8558 && !h->def_regular
8559 && !h->ref_regular)
8560 strip = TRUE;
8561 else if (finfo->info->strip == strip_all)
8562 strip = TRUE;
8563 else if (finfo->info->strip == strip_some
8564 && bfd_hash_lookup (finfo->info->keep_hash,
8565 h->root.root.string, FALSE, FALSE) == NULL)
8566 strip = TRUE;
8567 else if (finfo->info->strip_discarded
8568 && (h->root.type == bfd_link_hash_defined
8569 || h->root.type == bfd_link_hash_defweak)
8570 && elf_discarded_section (h->root.u.def.section))
8571 strip = TRUE;
8572 else
8573 strip = FALSE;
8574
8575 /* If we're stripping it, and it's not a dynamic symbol, there's
8576 nothing else to do unless it is a forced local symbol. */
8577 if (strip
8578 && h->dynindx == -1
8579 && !h->forced_local)
8580 return TRUE;
8581
8582 sym.st_value = 0;
8583 sym.st_size = h->size;
8584 sym.st_other = h->other;
8585 if (h->forced_local)
8586 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8587 else if (h->unique_global)
8588 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8589 else if (h->root.type == bfd_link_hash_undefweak
8590 || h->root.type == bfd_link_hash_defweak)
8591 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8592 else
8593 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8594
8595 switch (h->root.type)
8596 {
8597 default:
8598 case bfd_link_hash_new:
8599 case bfd_link_hash_warning:
8600 abort ();
8601 return FALSE;
8602
8603 case bfd_link_hash_undefined:
8604 case bfd_link_hash_undefweak:
8605 input_sec = bfd_und_section_ptr;
8606 sym.st_shndx = SHN_UNDEF;
8607 break;
8608
8609 case bfd_link_hash_defined:
8610 case bfd_link_hash_defweak:
8611 {
8612 input_sec = h->root.u.def.section;
8613 if (input_sec->output_section != NULL)
8614 {
8615 sym.st_shndx =
8616 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8617 input_sec->output_section);
8618 if (sym.st_shndx == SHN_BAD)
8619 {
8620 (*_bfd_error_handler)
8621 (_("%B: could not find output section %A for input section %A"),
8622 finfo->output_bfd, input_sec->output_section, input_sec);
8623 eoinfo->failed = TRUE;
8624 return FALSE;
8625 }
8626
8627 /* ELF symbols in relocatable files are section relative,
8628 but in nonrelocatable files they are virtual
8629 addresses. */
8630 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8631 if (! finfo->info->relocatable)
8632 {
8633 sym.st_value += input_sec->output_section->vma;
8634 if (h->type == STT_TLS)
8635 {
8636 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8637 if (tls_sec != NULL)
8638 sym.st_value -= tls_sec->vma;
8639 else
8640 {
8641 /* The TLS section may have been garbage collected. */
8642 BFD_ASSERT (finfo->info->gc_sections
8643 && !input_sec->gc_mark);
8644 }
8645 }
8646 }
8647 }
8648 else
8649 {
8650 BFD_ASSERT (input_sec->owner == NULL
8651 || (input_sec->owner->flags & DYNAMIC) != 0);
8652 sym.st_shndx = SHN_UNDEF;
8653 input_sec = bfd_und_section_ptr;
8654 }
8655 }
8656 break;
8657
8658 case bfd_link_hash_common:
8659 input_sec = h->root.u.c.p->section;
8660 sym.st_shndx = bed->common_section_index (input_sec);
8661 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8662 break;
8663
8664 case bfd_link_hash_indirect:
8665 /* These symbols are created by symbol versioning. They point
8666 to the decorated version of the name. For example, if the
8667 symbol foo@@GNU_1.2 is the default, which should be used when
8668 foo is used with no version, then we add an indirect symbol
8669 foo which points to foo@@GNU_1.2. We ignore these symbols,
8670 since the indirected symbol is already in the hash table. */
8671 return TRUE;
8672 }
8673
8674 /* Give the processor backend a chance to tweak the symbol value,
8675 and also to finish up anything that needs to be done for this
8676 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8677 forced local syms when non-shared is due to a historical quirk.
8678 STT_GNU_IFUNC symbol must go through PLT. */
8679 if ((h->type == STT_GNU_IFUNC
8680 && h->def_regular
8681 && !finfo->info->relocatable)
8682 || ((h->dynindx != -1
8683 || h->forced_local)
8684 && ((finfo->info->shared
8685 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8686 || h->root.type != bfd_link_hash_undefweak))
8687 || !h->forced_local)
8688 && elf_hash_table (finfo->info)->dynamic_sections_created))
8689 {
8690 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8691 (finfo->output_bfd, finfo->info, h, &sym)))
8692 {
8693 eoinfo->failed = TRUE;
8694 return FALSE;
8695 }
8696 }
8697
8698 /* If we are marking the symbol as undefined, and there are no
8699 non-weak references to this symbol from a regular object, then
8700 mark the symbol as weak undefined; if there are non-weak
8701 references, mark the symbol as strong. We can't do this earlier,
8702 because it might not be marked as undefined until the
8703 finish_dynamic_symbol routine gets through with it. */
8704 if (sym.st_shndx == SHN_UNDEF
8705 && h->ref_regular
8706 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8707 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8708 {
8709 int bindtype;
8710 unsigned int type = ELF_ST_TYPE (sym.st_info);
8711
8712 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8713 if (type == STT_GNU_IFUNC)
8714 type = STT_FUNC;
8715
8716 if (h->ref_regular_nonweak)
8717 bindtype = STB_GLOBAL;
8718 else
8719 bindtype = STB_WEAK;
8720 sym.st_info = ELF_ST_INFO (bindtype, type);
8721 }
8722
8723 /* If this is a symbol defined in a dynamic library, don't use the
8724 symbol size from the dynamic library. Relinking an executable
8725 against a new library may introduce gratuitous changes in the
8726 executable's symbols if we keep the size. */
8727 if (sym.st_shndx == SHN_UNDEF
8728 && !h->def_regular
8729 && h->def_dynamic)
8730 sym.st_size = 0;
8731
8732 /* If a non-weak symbol with non-default visibility is not defined
8733 locally, it is a fatal error. */
8734 if (! finfo->info->relocatable
8735 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8736 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8737 && h->root.type == bfd_link_hash_undefined
8738 && !h->def_regular)
8739 {
8740 (*_bfd_error_handler)
8741 (_("%B: %s symbol `%s' isn't defined"),
8742 finfo->output_bfd,
8743 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8744 ? "protected"
8745 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8746 ? "internal" : "hidden",
8747 h->root.root.string);
8748 eoinfo->failed = TRUE;
8749 return FALSE;
8750 }
8751
8752 /* If this symbol should be put in the .dynsym section, then put it
8753 there now. We already know the symbol index. We also fill in
8754 the entry in the .hash section. */
8755 if (h->dynindx != -1
8756 && elf_hash_table (finfo->info)->dynamic_sections_created)
8757 {
8758 bfd_byte *esym;
8759
8760 sym.st_name = h->dynstr_index;
8761 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8762 if (! check_dynsym (finfo->output_bfd, &sym))
8763 {
8764 eoinfo->failed = TRUE;
8765 return FALSE;
8766 }
8767 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8768
8769 if (finfo->hash_sec != NULL)
8770 {
8771 size_t hash_entry_size;
8772 bfd_byte *bucketpos;
8773 bfd_vma chain;
8774 size_t bucketcount;
8775 size_t bucket;
8776
8777 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8778 bucket = h->u.elf_hash_value % bucketcount;
8779
8780 hash_entry_size
8781 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8782 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8783 + (bucket + 2) * hash_entry_size);
8784 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8785 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8786 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8787 ((bfd_byte *) finfo->hash_sec->contents
8788 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8789 }
8790
8791 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8792 {
8793 Elf_Internal_Versym iversym;
8794 Elf_External_Versym *eversym;
8795
8796 if (!h->def_regular)
8797 {
8798 if (h->verinfo.verdef == NULL)
8799 iversym.vs_vers = 0;
8800 else
8801 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8802 }
8803 else
8804 {
8805 if (h->verinfo.vertree == NULL)
8806 iversym.vs_vers = 1;
8807 else
8808 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8809 if (finfo->info->create_default_symver)
8810 iversym.vs_vers++;
8811 }
8812
8813 if (h->hidden)
8814 iversym.vs_vers |= VERSYM_HIDDEN;
8815
8816 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8817 eversym += h->dynindx;
8818 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8819 }
8820 }
8821
8822 /* If we're stripping it, then it was just a dynamic symbol, and
8823 there's nothing else to do. */
8824 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8825 return TRUE;
8826
8827 indx = bfd_get_symcount (finfo->output_bfd);
8828 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8829 if (ret == 0)
8830 {
8831 eoinfo->failed = TRUE;
8832 return FALSE;
8833 }
8834 else if (ret == 1)
8835 h->indx = indx;
8836 else if (h->indx == -2)
8837 abort();
8838
8839 return TRUE;
8840 }
8841
8842 /* Return TRUE if special handling is done for relocs in SEC against
8843 symbols defined in discarded sections. */
8844
8845 static bfd_boolean
8846 elf_section_ignore_discarded_relocs (asection *sec)
8847 {
8848 const struct elf_backend_data *bed;
8849
8850 switch (sec->sec_info_type)
8851 {
8852 case ELF_INFO_TYPE_STABS:
8853 case ELF_INFO_TYPE_EH_FRAME:
8854 return TRUE;
8855 default:
8856 break;
8857 }
8858
8859 bed = get_elf_backend_data (sec->owner);
8860 if (bed->elf_backend_ignore_discarded_relocs != NULL
8861 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8862 return TRUE;
8863
8864 return FALSE;
8865 }
8866
8867 /* Return a mask saying how ld should treat relocations in SEC against
8868 symbols defined in discarded sections. If this function returns
8869 COMPLAIN set, ld will issue a warning message. If this function
8870 returns PRETEND set, and the discarded section was link-once and the
8871 same size as the kept link-once section, ld will pretend that the
8872 symbol was actually defined in the kept section. Otherwise ld will
8873 zero the reloc (at least that is the intent, but some cooperation by
8874 the target dependent code is needed, particularly for REL targets). */
8875
8876 unsigned int
8877 _bfd_elf_default_action_discarded (asection *sec)
8878 {
8879 if (sec->flags & SEC_DEBUGGING)
8880 return PRETEND;
8881
8882 if (strcmp (".eh_frame", sec->name) == 0)
8883 return 0;
8884
8885 if (strcmp (".gcc_except_table", sec->name) == 0)
8886 return 0;
8887
8888 return COMPLAIN | PRETEND;
8889 }
8890
8891 /* Find a match between a section and a member of a section group. */
8892
8893 static asection *
8894 match_group_member (asection *sec, asection *group,
8895 struct bfd_link_info *info)
8896 {
8897 asection *first = elf_next_in_group (group);
8898 asection *s = first;
8899
8900 while (s != NULL)
8901 {
8902 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8903 return s;
8904
8905 s = elf_next_in_group (s);
8906 if (s == first)
8907 break;
8908 }
8909
8910 return NULL;
8911 }
8912
8913 /* Check if the kept section of a discarded section SEC can be used
8914 to replace it. Return the replacement if it is OK. Otherwise return
8915 NULL. */
8916
8917 asection *
8918 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8919 {
8920 asection *kept;
8921
8922 kept = sec->kept_section;
8923 if (kept != NULL)
8924 {
8925 if ((kept->flags & SEC_GROUP) != 0)
8926 kept = match_group_member (sec, kept, info);
8927 if (kept != NULL
8928 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8929 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8930 kept = NULL;
8931 sec->kept_section = kept;
8932 }
8933 return kept;
8934 }
8935
8936 /* Link an input file into the linker output file. This function
8937 handles all the sections and relocations of the input file at once.
8938 This is so that we only have to read the local symbols once, and
8939 don't have to keep them in memory. */
8940
8941 static bfd_boolean
8942 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8943 {
8944 int (*relocate_section)
8945 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8946 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8947 bfd *output_bfd;
8948 Elf_Internal_Shdr *symtab_hdr;
8949 size_t locsymcount;
8950 size_t extsymoff;
8951 Elf_Internal_Sym *isymbuf;
8952 Elf_Internal_Sym *isym;
8953 Elf_Internal_Sym *isymend;
8954 long *pindex;
8955 asection **ppsection;
8956 asection *o;
8957 const struct elf_backend_data *bed;
8958 struct elf_link_hash_entry **sym_hashes;
8959
8960 output_bfd = finfo->output_bfd;
8961 bed = get_elf_backend_data (output_bfd);
8962 relocate_section = bed->elf_backend_relocate_section;
8963
8964 /* If this is a dynamic object, we don't want to do anything here:
8965 we don't want the local symbols, and we don't want the section
8966 contents. */
8967 if ((input_bfd->flags & DYNAMIC) != 0)
8968 return TRUE;
8969
8970 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8971 if (elf_bad_symtab (input_bfd))
8972 {
8973 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8974 extsymoff = 0;
8975 }
8976 else
8977 {
8978 locsymcount = symtab_hdr->sh_info;
8979 extsymoff = symtab_hdr->sh_info;
8980 }
8981
8982 /* Read the local symbols. */
8983 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8984 if (isymbuf == NULL && locsymcount != 0)
8985 {
8986 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8987 finfo->internal_syms,
8988 finfo->external_syms,
8989 finfo->locsym_shndx);
8990 if (isymbuf == NULL)
8991 return FALSE;
8992 }
8993
8994 /* Find local symbol sections and adjust values of symbols in
8995 SEC_MERGE sections. Write out those local symbols we know are
8996 going into the output file. */
8997 isymend = isymbuf + locsymcount;
8998 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8999 isym < isymend;
9000 isym++, pindex++, ppsection++)
9001 {
9002 asection *isec;
9003 const char *name;
9004 Elf_Internal_Sym osym;
9005 long indx;
9006 int ret;
9007
9008 *pindex = -1;
9009
9010 if (elf_bad_symtab (input_bfd))
9011 {
9012 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9013 {
9014 *ppsection = NULL;
9015 continue;
9016 }
9017 }
9018
9019 if (isym->st_shndx == SHN_UNDEF)
9020 isec = bfd_und_section_ptr;
9021 else if (isym->st_shndx == SHN_ABS)
9022 isec = bfd_abs_section_ptr;
9023 else if (isym->st_shndx == SHN_COMMON)
9024 isec = bfd_com_section_ptr;
9025 else
9026 {
9027 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9028 if (isec == NULL)
9029 {
9030 /* Don't attempt to output symbols with st_shnx in the
9031 reserved range other than SHN_ABS and SHN_COMMON. */
9032 *ppsection = NULL;
9033 continue;
9034 }
9035 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9036 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9037 isym->st_value =
9038 _bfd_merged_section_offset (output_bfd, &isec,
9039 elf_section_data (isec)->sec_info,
9040 isym->st_value);
9041 }
9042
9043 *ppsection = isec;
9044
9045 /* Don't output the first, undefined, symbol. */
9046 if (ppsection == finfo->sections)
9047 continue;
9048
9049 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9050 {
9051 /* We never output section symbols. Instead, we use the
9052 section symbol of the corresponding section in the output
9053 file. */
9054 continue;
9055 }
9056
9057 /* If we are stripping all symbols, we don't want to output this
9058 one. */
9059 if (finfo->info->strip == strip_all)
9060 continue;
9061
9062 /* If we are discarding all local symbols, we don't want to
9063 output this one. If we are generating a relocatable output
9064 file, then some of the local symbols may be required by
9065 relocs; we output them below as we discover that they are
9066 needed. */
9067 if (finfo->info->discard == discard_all)
9068 continue;
9069
9070 /* If this symbol is defined in a section which we are
9071 discarding, we don't need to keep it. */
9072 if (isym->st_shndx != SHN_UNDEF
9073 && isym->st_shndx < SHN_LORESERVE
9074 && bfd_section_removed_from_list (output_bfd,
9075 isec->output_section))
9076 continue;
9077
9078 /* Get the name of the symbol. */
9079 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9080 isym->st_name);
9081 if (name == NULL)
9082 return FALSE;
9083
9084 /* See if we are discarding symbols with this name. */
9085 if ((finfo->info->strip == strip_some
9086 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9087 == NULL))
9088 || (((finfo->info->discard == discard_sec_merge
9089 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9090 || finfo->info->discard == discard_l)
9091 && bfd_is_local_label_name (input_bfd, name)))
9092 continue;
9093
9094 osym = *isym;
9095
9096 /* Adjust the section index for the output file. */
9097 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9098 isec->output_section);
9099 if (osym.st_shndx == SHN_BAD)
9100 return FALSE;
9101
9102 /* ELF symbols in relocatable files are section relative, but
9103 in executable files they are virtual addresses. Note that
9104 this code assumes that all ELF sections have an associated
9105 BFD section with a reasonable value for output_offset; below
9106 we assume that they also have a reasonable value for
9107 output_section. Any special sections must be set up to meet
9108 these requirements. */
9109 osym.st_value += isec->output_offset;
9110 if (! finfo->info->relocatable)
9111 {
9112 osym.st_value += isec->output_section->vma;
9113 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9114 {
9115 /* STT_TLS symbols are relative to PT_TLS segment base. */
9116 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9117 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9118 }
9119 }
9120
9121 indx = bfd_get_symcount (output_bfd);
9122 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9123 if (ret == 0)
9124 return FALSE;
9125 else if (ret == 1)
9126 *pindex = indx;
9127 }
9128
9129 /* Relocate the contents of each section. */
9130 sym_hashes = elf_sym_hashes (input_bfd);
9131 for (o = input_bfd->sections; o != NULL; o = o->next)
9132 {
9133 bfd_byte *contents;
9134
9135 if (! o->linker_mark)
9136 {
9137 /* This section was omitted from the link. */
9138 continue;
9139 }
9140
9141 if (finfo->info->relocatable
9142 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9143 {
9144 /* Deal with the group signature symbol. */
9145 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9146 unsigned long symndx = sec_data->this_hdr.sh_info;
9147 asection *osec = o->output_section;
9148
9149 if (symndx >= locsymcount
9150 || (elf_bad_symtab (input_bfd)
9151 && finfo->sections[symndx] == NULL))
9152 {
9153 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9154 while (h->root.type == bfd_link_hash_indirect
9155 || h->root.type == bfd_link_hash_warning)
9156 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9157 /* Arrange for symbol to be output. */
9158 h->indx = -2;
9159 elf_section_data (osec)->this_hdr.sh_info = -2;
9160 }
9161 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9162 {
9163 /* We'll use the output section target_index. */
9164 asection *sec = finfo->sections[symndx]->output_section;
9165 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9166 }
9167 else
9168 {
9169 if (finfo->indices[symndx] == -1)
9170 {
9171 /* Otherwise output the local symbol now. */
9172 Elf_Internal_Sym sym = isymbuf[symndx];
9173 asection *sec = finfo->sections[symndx]->output_section;
9174 const char *name;
9175 long indx;
9176 int ret;
9177
9178 name = bfd_elf_string_from_elf_section (input_bfd,
9179 symtab_hdr->sh_link,
9180 sym.st_name);
9181 if (name == NULL)
9182 return FALSE;
9183
9184 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9185 sec);
9186 if (sym.st_shndx == SHN_BAD)
9187 return FALSE;
9188
9189 sym.st_value += o->output_offset;
9190
9191 indx = bfd_get_symcount (output_bfd);
9192 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9193 if (ret == 0)
9194 return FALSE;
9195 else if (ret == 1)
9196 finfo->indices[symndx] = indx;
9197 else
9198 abort ();
9199 }
9200 elf_section_data (osec)->this_hdr.sh_info
9201 = finfo->indices[symndx];
9202 }
9203 }
9204
9205 if ((o->flags & SEC_HAS_CONTENTS) == 0
9206 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9207 continue;
9208
9209 if ((o->flags & SEC_LINKER_CREATED) != 0)
9210 {
9211 /* Section was created by _bfd_elf_link_create_dynamic_sections
9212 or somesuch. */
9213 continue;
9214 }
9215
9216 /* Get the contents of the section. They have been cached by a
9217 relaxation routine. Note that o is a section in an input
9218 file, so the contents field will not have been set by any of
9219 the routines which work on output files. */
9220 if (elf_section_data (o)->this_hdr.contents != NULL)
9221 contents = elf_section_data (o)->this_hdr.contents;
9222 else
9223 {
9224 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9225
9226 contents = finfo->contents;
9227 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9228 return FALSE;
9229 }
9230
9231 if ((o->flags & SEC_RELOC) != 0)
9232 {
9233 Elf_Internal_Rela *internal_relocs;
9234 Elf_Internal_Rela *rel, *relend;
9235 bfd_vma r_type_mask;
9236 int r_sym_shift;
9237 int action_discarded;
9238 int ret;
9239
9240 /* Get the swapped relocs. */
9241 internal_relocs
9242 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9243 finfo->internal_relocs, FALSE);
9244 if (internal_relocs == NULL
9245 && o->reloc_count > 0)
9246 return FALSE;
9247
9248 if (bed->s->arch_size == 32)
9249 {
9250 r_type_mask = 0xff;
9251 r_sym_shift = 8;
9252 }
9253 else
9254 {
9255 r_type_mask = 0xffffffff;
9256 r_sym_shift = 32;
9257 }
9258
9259 action_discarded = -1;
9260 if (!elf_section_ignore_discarded_relocs (o))
9261 action_discarded = (*bed->action_discarded) (o);
9262
9263 /* Run through the relocs evaluating complex reloc symbols and
9264 looking for relocs against symbols from discarded sections
9265 or section symbols from removed link-once sections.
9266 Complain about relocs against discarded sections. Zero
9267 relocs against removed link-once sections. */
9268
9269 rel = internal_relocs;
9270 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9271 for ( ; rel < relend; rel++)
9272 {
9273 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9274 unsigned int s_type;
9275 asection **ps, *sec;
9276 struct elf_link_hash_entry *h = NULL;
9277 const char *sym_name;
9278
9279 if (r_symndx == STN_UNDEF)
9280 continue;
9281
9282 if (r_symndx >= locsymcount
9283 || (elf_bad_symtab (input_bfd)
9284 && finfo->sections[r_symndx] == NULL))
9285 {
9286 h = sym_hashes[r_symndx - extsymoff];
9287
9288 /* Badly formatted input files can contain relocs that
9289 reference non-existant symbols. Check here so that
9290 we do not seg fault. */
9291 if (h == NULL)
9292 {
9293 char buffer [32];
9294
9295 sprintf_vma (buffer, rel->r_info);
9296 (*_bfd_error_handler)
9297 (_("error: %B contains a reloc (0x%s) for section %A "
9298 "that references a non-existent global symbol"),
9299 input_bfd, o, buffer);
9300 bfd_set_error (bfd_error_bad_value);
9301 return FALSE;
9302 }
9303
9304 while (h->root.type == bfd_link_hash_indirect
9305 || h->root.type == bfd_link_hash_warning)
9306 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9307
9308 s_type = h->type;
9309
9310 ps = NULL;
9311 if (h->root.type == bfd_link_hash_defined
9312 || h->root.type == bfd_link_hash_defweak)
9313 ps = &h->root.u.def.section;
9314
9315 sym_name = h->root.root.string;
9316 }
9317 else
9318 {
9319 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9320
9321 s_type = ELF_ST_TYPE (sym->st_info);
9322 ps = &finfo->sections[r_symndx];
9323 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9324 sym, *ps);
9325 }
9326
9327 if ((s_type == STT_RELC || s_type == STT_SRELC)
9328 && !finfo->info->relocatable)
9329 {
9330 bfd_vma val;
9331 bfd_vma dot = (rel->r_offset
9332 + o->output_offset + o->output_section->vma);
9333 #ifdef DEBUG
9334 printf ("Encountered a complex symbol!");
9335 printf (" (input_bfd %s, section %s, reloc %ld\n",
9336 input_bfd->filename, o->name, rel - internal_relocs);
9337 printf (" symbol: idx %8.8lx, name %s\n",
9338 r_symndx, sym_name);
9339 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9340 (unsigned long) rel->r_info,
9341 (unsigned long) rel->r_offset);
9342 #endif
9343 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9344 isymbuf, locsymcount, s_type == STT_SRELC))
9345 return FALSE;
9346
9347 /* Symbol evaluated OK. Update to absolute value. */
9348 set_symbol_value (input_bfd, isymbuf, locsymcount,
9349 r_symndx, val);
9350 continue;
9351 }
9352
9353 if (action_discarded != -1 && ps != NULL)
9354 {
9355 /* Complain if the definition comes from a
9356 discarded section. */
9357 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9358 {
9359 BFD_ASSERT (r_symndx != 0);
9360 if (action_discarded & COMPLAIN)
9361 (*finfo->info->callbacks->einfo)
9362 (_("%X`%s' referenced in section `%A' of %B: "
9363 "defined in discarded section `%A' of %B\n"),
9364 sym_name, o, input_bfd, sec, sec->owner);
9365
9366 /* Try to do the best we can to support buggy old
9367 versions of gcc. Pretend that the symbol is
9368 really defined in the kept linkonce section.
9369 FIXME: This is quite broken. Modifying the
9370 symbol here means we will be changing all later
9371 uses of the symbol, not just in this section. */
9372 if (action_discarded & PRETEND)
9373 {
9374 asection *kept;
9375
9376 kept = _bfd_elf_check_kept_section (sec,
9377 finfo->info);
9378 if (kept != NULL)
9379 {
9380 *ps = kept;
9381 continue;
9382 }
9383 }
9384 }
9385 }
9386 }
9387
9388 /* Relocate the section by invoking a back end routine.
9389
9390 The back end routine is responsible for adjusting the
9391 section contents as necessary, and (if using Rela relocs
9392 and generating a relocatable output file) adjusting the
9393 reloc addend as necessary.
9394
9395 The back end routine does not have to worry about setting
9396 the reloc address or the reloc symbol index.
9397
9398 The back end routine is given a pointer to the swapped in
9399 internal symbols, and can access the hash table entries
9400 for the external symbols via elf_sym_hashes (input_bfd).
9401
9402 When generating relocatable output, the back end routine
9403 must handle STB_LOCAL/STT_SECTION symbols specially. The
9404 output symbol is going to be a section symbol
9405 corresponding to the output section, which will require
9406 the addend to be adjusted. */
9407
9408 ret = (*relocate_section) (output_bfd, finfo->info,
9409 input_bfd, o, contents,
9410 internal_relocs,
9411 isymbuf,
9412 finfo->sections);
9413 if (!ret)
9414 return FALSE;
9415
9416 if (ret == 2
9417 || finfo->info->relocatable
9418 || finfo->info->emitrelocations)
9419 {
9420 Elf_Internal_Rela *irela;
9421 Elf_Internal_Rela *irelaend;
9422 bfd_vma last_offset;
9423 struct elf_link_hash_entry **rel_hash;
9424 struct elf_link_hash_entry **rel_hash_list;
9425 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9426 unsigned int next_erel;
9427 bfd_boolean rela_normal;
9428
9429 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9430 rela_normal = (bed->rela_normal
9431 && (input_rel_hdr->sh_entsize
9432 == bed->s->sizeof_rela));
9433
9434 /* Adjust the reloc addresses and symbol indices. */
9435
9436 irela = internal_relocs;
9437 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9438 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9439 + elf_section_data (o->output_section)->rel_count
9440 + elf_section_data (o->output_section)->rel_count2);
9441 rel_hash_list = rel_hash;
9442 last_offset = o->output_offset;
9443 if (!finfo->info->relocatable)
9444 last_offset += o->output_section->vma;
9445 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9446 {
9447 unsigned long r_symndx;
9448 asection *sec;
9449 Elf_Internal_Sym sym;
9450
9451 if (next_erel == bed->s->int_rels_per_ext_rel)
9452 {
9453 rel_hash++;
9454 next_erel = 0;
9455 }
9456
9457 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9458 finfo->info, o,
9459 irela->r_offset);
9460 if (irela->r_offset >= (bfd_vma) -2)
9461 {
9462 /* This is a reloc for a deleted entry or somesuch.
9463 Turn it into an R_*_NONE reloc, at the same
9464 offset as the last reloc. elf_eh_frame.c and
9465 bfd_elf_discard_info rely on reloc offsets
9466 being ordered. */
9467 irela->r_offset = last_offset;
9468 irela->r_info = 0;
9469 irela->r_addend = 0;
9470 continue;
9471 }
9472
9473 irela->r_offset += o->output_offset;
9474
9475 /* Relocs in an executable have to be virtual addresses. */
9476 if (!finfo->info->relocatable)
9477 irela->r_offset += o->output_section->vma;
9478
9479 last_offset = irela->r_offset;
9480
9481 r_symndx = irela->r_info >> r_sym_shift;
9482 if (r_symndx == STN_UNDEF)
9483 continue;
9484
9485 if (r_symndx >= locsymcount
9486 || (elf_bad_symtab (input_bfd)
9487 && finfo->sections[r_symndx] == NULL))
9488 {
9489 struct elf_link_hash_entry *rh;
9490 unsigned long indx;
9491
9492 /* This is a reloc against a global symbol. We
9493 have not yet output all the local symbols, so
9494 we do not know the symbol index of any global
9495 symbol. We set the rel_hash entry for this
9496 reloc to point to the global hash table entry
9497 for this symbol. The symbol index is then
9498 set at the end of bfd_elf_final_link. */
9499 indx = r_symndx - extsymoff;
9500 rh = elf_sym_hashes (input_bfd)[indx];
9501 while (rh->root.type == bfd_link_hash_indirect
9502 || rh->root.type == bfd_link_hash_warning)
9503 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9504
9505 /* Setting the index to -2 tells
9506 elf_link_output_extsym that this symbol is
9507 used by a reloc. */
9508 BFD_ASSERT (rh->indx < 0);
9509 rh->indx = -2;
9510
9511 *rel_hash = rh;
9512
9513 continue;
9514 }
9515
9516 /* This is a reloc against a local symbol. */
9517
9518 *rel_hash = NULL;
9519 sym = isymbuf[r_symndx];
9520 sec = finfo->sections[r_symndx];
9521 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9522 {
9523 /* I suppose the backend ought to fill in the
9524 section of any STT_SECTION symbol against a
9525 processor specific section. */
9526 r_symndx = 0;
9527 if (bfd_is_abs_section (sec))
9528 ;
9529 else if (sec == NULL || sec->owner == NULL)
9530 {
9531 bfd_set_error (bfd_error_bad_value);
9532 return FALSE;
9533 }
9534 else
9535 {
9536 asection *osec = sec->output_section;
9537
9538 /* If we have discarded a section, the output
9539 section will be the absolute section. In
9540 case of discarded SEC_MERGE sections, use
9541 the kept section. relocate_section should
9542 have already handled discarded linkonce
9543 sections. */
9544 if (bfd_is_abs_section (osec)
9545 && sec->kept_section != NULL
9546 && sec->kept_section->output_section != NULL)
9547 {
9548 osec = sec->kept_section->output_section;
9549 irela->r_addend -= osec->vma;
9550 }
9551
9552 if (!bfd_is_abs_section (osec))
9553 {
9554 r_symndx = osec->target_index;
9555 if (r_symndx == 0)
9556 {
9557 struct elf_link_hash_table *htab;
9558 asection *oi;
9559
9560 htab = elf_hash_table (finfo->info);
9561 oi = htab->text_index_section;
9562 if ((osec->flags & SEC_READONLY) == 0
9563 && htab->data_index_section != NULL)
9564 oi = htab->data_index_section;
9565
9566 if (oi != NULL)
9567 {
9568 irela->r_addend += osec->vma - oi->vma;
9569 r_symndx = oi->target_index;
9570 }
9571 }
9572
9573 BFD_ASSERT (r_symndx != 0);
9574 }
9575 }
9576
9577 /* Adjust the addend according to where the
9578 section winds up in the output section. */
9579 if (rela_normal)
9580 irela->r_addend += sec->output_offset;
9581 }
9582 else
9583 {
9584 if (finfo->indices[r_symndx] == -1)
9585 {
9586 unsigned long shlink;
9587 const char *name;
9588 asection *osec;
9589 long indx;
9590
9591 if (finfo->info->strip == strip_all)
9592 {
9593 /* You can't do ld -r -s. */
9594 bfd_set_error (bfd_error_invalid_operation);
9595 return FALSE;
9596 }
9597
9598 /* This symbol was skipped earlier, but
9599 since it is needed by a reloc, we
9600 must output it now. */
9601 shlink = symtab_hdr->sh_link;
9602 name = (bfd_elf_string_from_elf_section
9603 (input_bfd, shlink, sym.st_name));
9604 if (name == NULL)
9605 return FALSE;
9606
9607 osec = sec->output_section;
9608 sym.st_shndx =
9609 _bfd_elf_section_from_bfd_section (output_bfd,
9610 osec);
9611 if (sym.st_shndx == SHN_BAD)
9612 return FALSE;
9613
9614 sym.st_value += sec->output_offset;
9615 if (! finfo->info->relocatable)
9616 {
9617 sym.st_value += osec->vma;
9618 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9619 {
9620 /* STT_TLS symbols are relative to PT_TLS
9621 segment base. */
9622 BFD_ASSERT (elf_hash_table (finfo->info)
9623 ->tls_sec != NULL);
9624 sym.st_value -= (elf_hash_table (finfo->info)
9625 ->tls_sec->vma);
9626 }
9627 }
9628
9629 indx = bfd_get_symcount (output_bfd);
9630 ret = elf_link_output_sym (finfo, name, &sym, sec,
9631 NULL);
9632 if (ret == 0)
9633 return FALSE;
9634 else if (ret == 1)
9635 finfo->indices[r_symndx] = indx;
9636 else
9637 abort ();
9638 }
9639
9640 r_symndx = finfo->indices[r_symndx];
9641 }
9642
9643 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9644 | (irela->r_info & r_type_mask));
9645 }
9646
9647 /* Swap out the relocs. */
9648 if (input_rel_hdr->sh_size != 0
9649 && !bed->elf_backend_emit_relocs (output_bfd, o,
9650 input_rel_hdr,
9651 internal_relocs,
9652 rel_hash_list))
9653 return FALSE;
9654
9655 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9656 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9657 {
9658 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9659 * bed->s->int_rels_per_ext_rel);
9660 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9661 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9662 input_rel_hdr2,
9663 internal_relocs,
9664 rel_hash_list))
9665 return FALSE;
9666 }
9667 }
9668 }
9669
9670 /* Write out the modified section contents. */
9671 if (bed->elf_backend_write_section
9672 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9673 contents))
9674 {
9675 /* Section written out. */
9676 }
9677 else switch (o->sec_info_type)
9678 {
9679 case ELF_INFO_TYPE_STABS:
9680 if (! (_bfd_write_section_stabs
9681 (output_bfd,
9682 &elf_hash_table (finfo->info)->stab_info,
9683 o, &elf_section_data (o)->sec_info, contents)))
9684 return FALSE;
9685 break;
9686 case ELF_INFO_TYPE_MERGE:
9687 if (! _bfd_write_merged_section (output_bfd, o,
9688 elf_section_data (o)->sec_info))
9689 return FALSE;
9690 break;
9691 case ELF_INFO_TYPE_EH_FRAME:
9692 {
9693 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9694 o, contents))
9695 return FALSE;
9696 }
9697 break;
9698 default:
9699 {
9700 if (! (o->flags & SEC_EXCLUDE)
9701 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9702 && ! bfd_set_section_contents (output_bfd, o->output_section,
9703 contents,
9704 (file_ptr) o->output_offset,
9705 o->size))
9706 return FALSE;
9707 }
9708 break;
9709 }
9710 }
9711
9712 return TRUE;
9713 }
9714
9715 /* Generate a reloc when linking an ELF file. This is a reloc
9716 requested by the linker, and does not come from any input file. This
9717 is used to build constructor and destructor tables when linking
9718 with -Ur. */
9719
9720 static bfd_boolean
9721 elf_reloc_link_order (bfd *output_bfd,
9722 struct bfd_link_info *info,
9723 asection *output_section,
9724 struct bfd_link_order *link_order)
9725 {
9726 reloc_howto_type *howto;
9727 long indx;
9728 bfd_vma offset;
9729 bfd_vma addend;
9730 struct elf_link_hash_entry **rel_hash_ptr;
9731 Elf_Internal_Shdr *rel_hdr;
9732 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9733 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9734 bfd_byte *erel;
9735 unsigned int i;
9736
9737 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9738 if (howto == NULL)
9739 {
9740 bfd_set_error (bfd_error_bad_value);
9741 return FALSE;
9742 }
9743
9744 addend = link_order->u.reloc.p->addend;
9745
9746 /* Figure out the symbol index. */
9747 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9748 + elf_section_data (output_section)->rel_count
9749 + elf_section_data (output_section)->rel_count2);
9750 if (link_order->type == bfd_section_reloc_link_order)
9751 {
9752 indx = link_order->u.reloc.p->u.section->target_index;
9753 BFD_ASSERT (indx != 0);
9754 *rel_hash_ptr = NULL;
9755 }
9756 else
9757 {
9758 struct elf_link_hash_entry *h;
9759
9760 /* Treat a reloc against a defined symbol as though it were
9761 actually against the section. */
9762 h = ((struct elf_link_hash_entry *)
9763 bfd_wrapped_link_hash_lookup (output_bfd, info,
9764 link_order->u.reloc.p->u.name,
9765 FALSE, FALSE, TRUE));
9766 if (h != NULL
9767 && (h->root.type == bfd_link_hash_defined
9768 || h->root.type == bfd_link_hash_defweak))
9769 {
9770 asection *section;
9771
9772 section = h->root.u.def.section;
9773 indx = section->output_section->target_index;
9774 *rel_hash_ptr = NULL;
9775 /* It seems that we ought to add the symbol value to the
9776 addend here, but in practice it has already been added
9777 because it was passed to constructor_callback. */
9778 addend += section->output_section->vma + section->output_offset;
9779 }
9780 else if (h != NULL)
9781 {
9782 /* Setting the index to -2 tells elf_link_output_extsym that
9783 this symbol is used by a reloc. */
9784 h->indx = -2;
9785 *rel_hash_ptr = h;
9786 indx = 0;
9787 }
9788 else
9789 {
9790 if (! ((*info->callbacks->unattached_reloc)
9791 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9792 return FALSE;
9793 indx = 0;
9794 }
9795 }
9796
9797 /* If this is an inplace reloc, we must write the addend into the
9798 object file. */
9799 if (howto->partial_inplace && addend != 0)
9800 {
9801 bfd_size_type size;
9802 bfd_reloc_status_type rstat;
9803 bfd_byte *buf;
9804 bfd_boolean ok;
9805 const char *sym_name;
9806
9807 size = bfd_get_reloc_size (howto);
9808 buf = bfd_zmalloc (size);
9809 if (buf == NULL)
9810 return FALSE;
9811 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9812 switch (rstat)
9813 {
9814 case bfd_reloc_ok:
9815 break;
9816
9817 default:
9818 case bfd_reloc_outofrange:
9819 abort ();
9820
9821 case bfd_reloc_overflow:
9822 if (link_order->type == bfd_section_reloc_link_order)
9823 sym_name = bfd_section_name (output_bfd,
9824 link_order->u.reloc.p->u.section);
9825 else
9826 sym_name = link_order->u.reloc.p->u.name;
9827 if (! ((*info->callbacks->reloc_overflow)
9828 (info, NULL, sym_name, howto->name, addend, NULL,
9829 NULL, (bfd_vma) 0)))
9830 {
9831 free (buf);
9832 return FALSE;
9833 }
9834 break;
9835 }
9836 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9837 link_order->offset, size);
9838 free (buf);
9839 if (! ok)
9840 return FALSE;
9841 }
9842
9843 /* The address of a reloc is relative to the section in a
9844 relocatable file, and is a virtual address in an executable
9845 file. */
9846 offset = link_order->offset;
9847 if (! info->relocatable)
9848 offset += output_section->vma;
9849
9850 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9851 {
9852 irel[i].r_offset = offset;
9853 irel[i].r_info = 0;
9854 irel[i].r_addend = 0;
9855 }
9856 if (bed->s->arch_size == 32)
9857 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9858 else
9859 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9860
9861 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9862 erel = rel_hdr->contents;
9863 if (rel_hdr->sh_type == SHT_REL)
9864 {
9865 erel += (elf_section_data (output_section)->rel_count
9866 * bed->s->sizeof_rel);
9867 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9868 }
9869 else
9870 {
9871 irel[0].r_addend = addend;
9872 erel += (elf_section_data (output_section)->rel_count
9873 * bed->s->sizeof_rela);
9874 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9875 }
9876
9877 ++elf_section_data (output_section)->rel_count;
9878
9879 return TRUE;
9880 }
9881
9882
9883 /* Get the output vma of the section pointed to by the sh_link field. */
9884
9885 static bfd_vma
9886 elf_get_linked_section_vma (struct bfd_link_order *p)
9887 {
9888 Elf_Internal_Shdr **elf_shdrp;
9889 asection *s;
9890 int elfsec;
9891
9892 s = p->u.indirect.section;
9893 elf_shdrp = elf_elfsections (s->owner);
9894 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9895 elfsec = elf_shdrp[elfsec]->sh_link;
9896 /* PR 290:
9897 The Intel C compiler generates SHT_IA_64_UNWIND with
9898 SHF_LINK_ORDER. But it doesn't set the sh_link or
9899 sh_info fields. Hence we could get the situation
9900 where elfsec is 0. */
9901 if (elfsec == 0)
9902 {
9903 const struct elf_backend_data *bed
9904 = get_elf_backend_data (s->owner);
9905 if (bed->link_order_error_handler)
9906 bed->link_order_error_handler
9907 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9908 return 0;
9909 }
9910 else
9911 {
9912 s = elf_shdrp[elfsec]->bfd_section;
9913 return s->output_section->vma + s->output_offset;
9914 }
9915 }
9916
9917
9918 /* Compare two sections based on the locations of the sections they are
9919 linked to. Used by elf_fixup_link_order. */
9920
9921 static int
9922 compare_link_order (const void * a, const void * b)
9923 {
9924 bfd_vma apos;
9925 bfd_vma bpos;
9926
9927 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9928 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9929 if (apos < bpos)
9930 return -1;
9931 return apos > bpos;
9932 }
9933
9934
9935 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9936 order as their linked sections. Returns false if this could not be done
9937 because an output section includes both ordered and unordered
9938 sections. Ideally we'd do this in the linker proper. */
9939
9940 static bfd_boolean
9941 elf_fixup_link_order (bfd *abfd, asection *o)
9942 {
9943 int seen_linkorder;
9944 int seen_other;
9945 int n;
9946 struct bfd_link_order *p;
9947 bfd *sub;
9948 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9949 unsigned elfsec;
9950 struct bfd_link_order **sections;
9951 asection *s, *other_sec, *linkorder_sec;
9952 bfd_vma offset;
9953
9954 other_sec = NULL;
9955 linkorder_sec = NULL;
9956 seen_other = 0;
9957 seen_linkorder = 0;
9958 for (p = o->map_head.link_order; p != NULL; p = p->next)
9959 {
9960 if (p->type == bfd_indirect_link_order)
9961 {
9962 s = p->u.indirect.section;
9963 sub = s->owner;
9964 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9965 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9966 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9967 && elfsec < elf_numsections (sub)
9968 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
9969 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
9970 {
9971 seen_linkorder++;
9972 linkorder_sec = s;
9973 }
9974 else
9975 {
9976 seen_other++;
9977 other_sec = s;
9978 }
9979 }
9980 else
9981 seen_other++;
9982
9983 if (seen_other && seen_linkorder)
9984 {
9985 if (other_sec && linkorder_sec)
9986 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9987 o, linkorder_sec,
9988 linkorder_sec->owner, other_sec,
9989 other_sec->owner);
9990 else
9991 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9992 o);
9993 bfd_set_error (bfd_error_bad_value);
9994 return FALSE;
9995 }
9996 }
9997
9998 if (!seen_linkorder)
9999 return TRUE;
10000
10001 sections = (struct bfd_link_order **)
10002 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10003 if (sections == NULL)
10004 return FALSE;
10005 seen_linkorder = 0;
10006
10007 for (p = o->map_head.link_order; p != NULL; p = p->next)
10008 {
10009 sections[seen_linkorder++] = p;
10010 }
10011 /* Sort the input sections in the order of their linked section. */
10012 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10013 compare_link_order);
10014
10015 /* Change the offsets of the sections. */
10016 offset = 0;
10017 for (n = 0; n < seen_linkorder; n++)
10018 {
10019 s = sections[n]->u.indirect.section;
10020 offset &= ~(bfd_vma) 0 << s->alignment_power;
10021 s->output_offset = offset;
10022 sections[n]->offset = offset;
10023 offset += sections[n]->size;
10024 }
10025
10026 free (sections);
10027 return TRUE;
10028 }
10029
10030
10031 /* Do the final step of an ELF link. */
10032
10033 bfd_boolean
10034 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10035 {
10036 bfd_boolean dynamic;
10037 bfd_boolean emit_relocs;
10038 bfd *dynobj;
10039 struct elf_final_link_info finfo;
10040 register asection *o;
10041 register struct bfd_link_order *p;
10042 register bfd *sub;
10043 bfd_size_type max_contents_size;
10044 bfd_size_type max_external_reloc_size;
10045 bfd_size_type max_internal_reloc_count;
10046 bfd_size_type max_sym_count;
10047 bfd_size_type max_sym_shndx_count;
10048 file_ptr off;
10049 Elf_Internal_Sym elfsym;
10050 unsigned int i;
10051 Elf_Internal_Shdr *symtab_hdr;
10052 Elf_Internal_Shdr *symtab_shndx_hdr;
10053 Elf_Internal_Shdr *symstrtab_hdr;
10054 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10055 struct elf_outext_info eoinfo;
10056 bfd_boolean merged;
10057 size_t relativecount = 0;
10058 asection *reldyn = 0;
10059 bfd_size_type amt;
10060 asection *attr_section = NULL;
10061 bfd_vma attr_size = 0;
10062 const char *std_attrs_section;
10063
10064 if (! is_elf_hash_table (info->hash))
10065 return FALSE;
10066
10067 if (info->shared)
10068 abfd->flags |= DYNAMIC;
10069
10070 dynamic = elf_hash_table (info)->dynamic_sections_created;
10071 dynobj = elf_hash_table (info)->dynobj;
10072
10073 emit_relocs = (info->relocatable
10074 || info->emitrelocations);
10075
10076 finfo.info = info;
10077 finfo.output_bfd = abfd;
10078 finfo.symstrtab = _bfd_elf_stringtab_init ();
10079 if (finfo.symstrtab == NULL)
10080 return FALSE;
10081
10082 if (! dynamic)
10083 {
10084 finfo.dynsym_sec = NULL;
10085 finfo.hash_sec = NULL;
10086 finfo.symver_sec = NULL;
10087 }
10088 else
10089 {
10090 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10091 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10092 BFD_ASSERT (finfo.dynsym_sec != NULL);
10093 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10094 /* Note that it is OK if symver_sec is NULL. */
10095 }
10096
10097 finfo.contents = NULL;
10098 finfo.external_relocs = NULL;
10099 finfo.internal_relocs = NULL;
10100 finfo.external_syms = NULL;
10101 finfo.locsym_shndx = NULL;
10102 finfo.internal_syms = NULL;
10103 finfo.indices = NULL;
10104 finfo.sections = NULL;
10105 finfo.symbuf = NULL;
10106 finfo.symshndxbuf = NULL;
10107 finfo.symbuf_count = 0;
10108 finfo.shndxbuf_size = 0;
10109
10110 /* The object attributes have been merged. Remove the input
10111 sections from the link, and set the contents of the output
10112 secton. */
10113 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10114 for (o = abfd->sections; o != NULL; o = o->next)
10115 {
10116 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10117 || strcmp (o->name, ".gnu.attributes") == 0)
10118 {
10119 for (p = o->map_head.link_order; p != NULL; p = p->next)
10120 {
10121 asection *input_section;
10122
10123 if (p->type != bfd_indirect_link_order)
10124 continue;
10125 input_section = p->u.indirect.section;
10126 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10127 elf_link_input_bfd ignores this section. */
10128 input_section->flags &= ~SEC_HAS_CONTENTS;
10129 }
10130
10131 attr_size = bfd_elf_obj_attr_size (abfd);
10132 if (attr_size)
10133 {
10134 bfd_set_section_size (abfd, o, attr_size);
10135 attr_section = o;
10136 /* Skip this section later on. */
10137 o->map_head.link_order = NULL;
10138 }
10139 else
10140 o->flags |= SEC_EXCLUDE;
10141 }
10142 }
10143
10144 /* Count up the number of relocations we will output for each output
10145 section, so that we know the sizes of the reloc sections. We
10146 also figure out some maximum sizes. */
10147 max_contents_size = 0;
10148 max_external_reloc_size = 0;
10149 max_internal_reloc_count = 0;
10150 max_sym_count = 0;
10151 max_sym_shndx_count = 0;
10152 merged = FALSE;
10153 for (o = abfd->sections; o != NULL; o = o->next)
10154 {
10155 struct bfd_elf_section_data *esdo = elf_section_data (o);
10156 o->reloc_count = 0;
10157
10158 for (p = o->map_head.link_order; p != NULL; p = p->next)
10159 {
10160 unsigned int reloc_count = 0;
10161 struct bfd_elf_section_data *esdi = NULL;
10162 unsigned int *rel_count1;
10163
10164 if (p->type == bfd_section_reloc_link_order
10165 || p->type == bfd_symbol_reloc_link_order)
10166 reloc_count = 1;
10167 else if (p->type == bfd_indirect_link_order)
10168 {
10169 asection *sec;
10170
10171 sec = p->u.indirect.section;
10172 esdi = elf_section_data (sec);
10173
10174 /* Mark all sections which are to be included in the
10175 link. This will normally be every section. We need
10176 to do this so that we can identify any sections which
10177 the linker has decided to not include. */
10178 sec->linker_mark = TRUE;
10179
10180 if (sec->flags & SEC_MERGE)
10181 merged = TRUE;
10182
10183 if (info->relocatable || info->emitrelocations)
10184 reloc_count = sec->reloc_count;
10185 else if (bed->elf_backend_count_relocs)
10186 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10187
10188 if (sec->rawsize > max_contents_size)
10189 max_contents_size = sec->rawsize;
10190 if (sec->size > max_contents_size)
10191 max_contents_size = sec->size;
10192
10193 /* We are interested in just local symbols, not all
10194 symbols. */
10195 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10196 && (sec->owner->flags & DYNAMIC) == 0)
10197 {
10198 size_t sym_count;
10199
10200 if (elf_bad_symtab (sec->owner))
10201 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10202 / bed->s->sizeof_sym);
10203 else
10204 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10205
10206 if (sym_count > max_sym_count)
10207 max_sym_count = sym_count;
10208
10209 if (sym_count > max_sym_shndx_count
10210 && elf_symtab_shndx (sec->owner) != 0)
10211 max_sym_shndx_count = sym_count;
10212
10213 if ((sec->flags & SEC_RELOC) != 0)
10214 {
10215 size_t ext_size;
10216
10217 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10218 if (ext_size > max_external_reloc_size)
10219 max_external_reloc_size = ext_size;
10220 if (sec->reloc_count > max_internal_reloc_count)
10221 max_internal_reloc_count = sec->reloc_count;
10222 }
10223 }
10224 }
10225
10226 if (reloc_count == 0)
10227 continue;
10228
10229 o->reloc_count += reloc_count;
10230
10231 /* MIPS may have a mix of REL and RELA relocs on sections.
10232 To support this curious ABI we keep reloc counts in
10233 elf_section_data too. We must be careful to add the
10234 relocations from the input section to the right output
10235 count. FIXME: Get rid of one count. We have
10236 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10237 rel_count1 = &esdo->rel_count;
10238 if (esdi != NULL)
10239 {
10240 bfd_boolean same_size;
10241 bfd_size_type entsize1;
10242
10243 entsize1 = esdi->rel_hdr.sh_entsize;
10244 /* PR 9827: If the header size has not been set yet then
10245 assume that it will match the output section's reloc type. */
10246 if (entsize1 == 0)
10247 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10248 else
10249 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10250 || entsize1 == bed->s->sizeof_rela);
10251 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10252
10253 if (!same_size)
10254 rel_count1 = &esdo->rel_count2;
10255
10256 if (esdi->rel_hdr2 != NULL)
10257 {
10258 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10259 unsigned int alt_count;
10260 unsigned int *rel_count2;
10261
10262 BFD_ASSERT (entsize2 != entsize1
10263 && (entsize2 == bed->s->sizeof_rel
10264 || entsize2 == bed->s->sizeof_rela));
10265
10266 rel_count2 = &esdo->rel_count2;
10267 if (!same_size)
10268 rel_count2 = &esdo->rel_count;
10269
10270 /* The following is probably too simplistic if the
10271 backend counts output relocs unusually. */
10272 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10273 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10274 *rel_count2 += alt_count;
10275 reloc_count -= alt_count;
10276 }
10277 }
10278 *rel_count1 += reloc_count;
10279 }
10280
10281 if (o->reloc_count > 0)
10282 o->flags |= SEC_RELOC;
10283 else
10284 {
10285 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10286 set it (this is probably a bug) and if it is set
10287 assign_section_numbers will create a reloc section. */
10288 o->flags &=~ SEC_RELOC;
10289 }
10290
10291 /* If the SEC_ALLOC flag is not set, force the section VMA to
10292 zero. This is done in elf_fake_sections as well, but forcing
10293 the VMA to 0 here will ensure that relocs against these
10294 sections are handled correctly. */
10295 if ((o->flags & SEC_ALLOC) == 0
10296 && ! o->user_set_vma)
10297 o->vma = 0;
10298 }
10299
10300 if (! info->relocatable && merged)
10301 elf_link_hash_traverse (elf_hash_table (info),
10302 _bfd_elf_link_sec_merge_syms, abfd);
10303
10304 /* Figure out the file positions for everything but the symbol table
10305 and the relocs. We set symcount to force assign_section_numbers
10306 to create a symbol table. */
10307 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10308 BFD_ASSERT (! abfd->output_has_begun);
10309 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10310 goto error_return;
10311
10312 /* Set sizes, and assign file positions for reloc sections. */
10313 for (o = abfd->sections; o != NULL; o = o->next)
10314 {
10315 if ((o->flags & SEC_RELOC) != 0)
10316 {
10317 if (!(_bfd_elf_link_size_reloc_section
10318 (abfd, &elf_section_data (o)->rel_hdr, o)))
10319 goto error_return;
10320
10321 if (elf_section_data (o)->rel_hdr2
10322 && !(_bfd_elf_link_size_reloc_section
10323 (abfd, elf_section_data (o)->rel_hdr2, o)))
10324 goto error_return;
10325 }
10326
10327 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10328 to count upwards while actually outputting the relocations. */
10329 elf_section_data (o)->rel_count = 0;
10330 elf_section_data (o)->rel_count2 = 0;
10331 }
10332
10333 _bfd_elf_assign_file_positions_for_relocs (abfd);
10334
10335 /* We have now assigned file positions for all the sections except
10336 .symtab and .strtab. We start the .symtab section at the current
10337 file position, and write directly to it. We build the .strtab
10338 section in memory. */
10339 bfd_get_symcount (abfd) = 0;
10340 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10341 /* sh_name is set in prep_headers. */
10342 symtab_hdr->sh_type = SHT_SYMTAB;
10343 /* sh_flags, sh_addr and sh_size all start off zero. */
10344 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10345 /* sh_link is set in assign_section_numbers. */
10346 /* sh_info is set below. */
10347 /* sh_offset is set just below. */
10348 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10349
10350 off = elf_tdata (abfd)->next_file_pos;
10351 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10352
10353 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10354 incorrect. We do not yet know the size of the .symtab section.
10355 We correct next_file_pos below, after we do know the size. */
10356
10357 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10358 continuously seeking to the right position in the file. */
10359 if (! info->keep_memory || max_sym_count < 20)
10360 finfo.symbuf_size = 20;
10361 else
10362 finfo.symbuf_size = max_sym_count;
10363 amt = finfo.symbuf_size;
10364 amt *= bed->s->sizeof_sym;
10365 finfo.symbuf = bfd_malloc (amt);
10366 if (finfo.symbuf == NULL)
10367 goto error_return;
10368 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10369 {
10370 /* Wild guess at number of output symbols. realloc'd as needed. */
10371 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10372 finfo.shndxbuf_size = amt;
10373 amt *= sizeof (Elf_External_Sym_Shndx);
10374 finfo.symshndxbuf = bfd_zmalloc (amt);
10375 if (finfo.symshndxbuf == NULL)
10376 goto error_return;
10377 }
10378
10379 /* Start writing out the symbol table. The first symbol is always a
10380 dummy symbol. */
10381 if (info->strip != strip_all
10382 || emit_relocs)
10383 {
10384 elfsym.st_value = 0;
10385 elfsym.st_size = 0;
10386 elfsym.st_info = 0;
10387 elfsym.st_other = 0;
10388 elfsym.st_shndx = SHN_UNDEF;
10389 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10390 NULL) != 1)
10391 goto error_return;
10392 }
10393
10394 /* Output a symbol for each section. We output these even if we are
10395 discarding local symbols, since they are used for relocs. These
10396 symbols have no names. We store the index of each one in the
10397 index field of the section, so that we can find it again when
10398 outputting relocs. */
10399 if (info->strip != strip_all
10400 || emit_relocs)
10401 {
10402 elfsym.st_size = 0;
10403 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10404 elfsym.st_other = 0;
10405 elfsym.st_value = 0;
10406 for (i = 1; i < elf_numsections (abfd); i++)
10407 {
10408 o = bfd_section_from_elf_index (abfd, i);
10409 if (o != NULL)
10410 {
10411 o->target_index = bfd_get_symcount (abfd);
10412 elfsym.st_shndx = i;
10413 if (!info->relocatable)
10414 elfsym.st_value = o->vma;
10415 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10416 goto error_return;
10417 }
10418 }
10419 }
10420
10421 /* Allocate some memory to hold information read in from the input
10422 files. */
10423 if (max_contents_size != 0)
10424 {
10425 finfo.contents = bfd_malloc (max_contents_size);
10426 if (finfo.contents == NULL)
10427 goto error_return;
10428 }
10429
10430 if (max_external_reloc_size != 0)
10431 {
10432 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10433 if (finfo.external_relocs == NULL)
10434 goto error_return;
10435 }
10436
10437 if (max_internal_reloc_count != 0)
10438 {
10439 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10440 amt *= sizeof (Elf_Internal_Rela);
10441 finfo.internal_relocs = bfd_malloc (amt);
10442 if (finfo.internal_relocs == NULL)
10443 goto error_return;
10444 }
10445
10446 if (max_sym_count != 0)
10447 {
10448 amt = max_sym_count * bed->s->sizeof_sym;
10449 finfo.external_syms = bfd_malloc (amt);
10450 if (finfo.external_syms == NULL)
10451 goto error_return;
10452
10453 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10454 finfo.internal_syms = bfd_malloc (amt);
10455 if (finfo.internal_syms == NULL)
10456 goto error_return;
10457
10458 amt = max_sym_count * sizeof (long);
10459 finfo.indices = bfd_malloc (amt);
10460 if (finfo.indices == NULL)
10461 goto error_return;
10462
10463 amt = max_sym_count * sizeof (asection *);
10464 finfo.sections = bfd_malloc (amt);
10465 if (finfo.sections == NULL)
10466 goto error_return;
10467 }
10468
10469 if (max_sym_shndx_count != 0)
10470 {
10471 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10472 finfo.locsym_shndx = bfd_malloc (amt);
10473 if (finfo.locsym_shndx == NULL)
10474 goto error_return;
10475 }
10476
10477 if (elf_hash_table (info)->tls_sec)
10478 {
10479 bfd_vma base, end = 0;
10480 asection *sec;
10481
10482 for (sec = elf_hash_table (info)->tls_sec;
10483 sec && (sec->flags & SEC_THREAD_LOCAL);
10484 sec = sec->next)
10485 {
10486 bfd_size_type size = sec->size;
10487
10488 if (size == 0
10489 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10490 {
10491 struct bfd_link_order *o = sec->map_tail.link_order;
10492 if (o != NULL)
10493 size = o->offset + o->size;
10494 }
10495 end = sec->vma + size;
10496 }
10497 base = elf_hash_table (info)->tls_sec->vma;
10498 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10499 elf_hash_table (info)->tls_size = end - base;
10500 }
10501
10502 /* Reorder SHF_LINK_ORDER sections. */
10503 for (o = abfd->sections; o != NULL; o = o->next)
10504 {
10505 if (!elf_fixup_link_order (abfd, o))
10506 return FALSE;
10507 }
10508
10509 /* Since ELF permits relocations to be against local symbols, we
10510 must have the local symbols available when we do the relocations.
10511 Since we would rather only read the local symbols once, and we
10512 would rather not keep them in memory, we handle all the
10513 relocations for a single input file at the same time.
10514
10515 Unfortunately, there is no way to know the total number of local
10516 symbols until we have seen all of them, and the local symbol
10517 indices precede the global symbol indices. This means that when
10518 we are generating relocatable output, and we see a reloc against
10519 a global symbol, we can not know the symbol index until we have
10520 finished examining all the local symbols to see which ones we are
10521 going to output. To deal with this, we keep the relocations in
10522 memory, and don't output them until the end of the link. This is
10523 an unfortunate waste of memory, but I don't see a good way around
10524 it. Fortunately, it only happens when performing a relocatable
10525 link, which is not the common case. FIXME: If keep_memory is set
10526 we could write the relocs out and then read them again; I don't
10527 know how bad the memory loss will be. */
10528
10529 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10530 sub->output_has_begun = FALSE;
10531 for (o = abfd->sections; o != NULL; o = o->next)
10532 {
10533 for (p = o->map_head.link_order; p != NULL; p = p->next)
10534 {
10535 if (p->type == bfd_indirect_link_order
10536 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10537 == bfd_target_elf_flavour)
10538 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10539 {
10540 if (! sub->output_has_begun)
10541 {
10542 if (! elf_link_input_bfd (&finfo, sub))
10543 goto error_return;
10544 sub->output_has_begun = TRUE;
10545 }
10546 }
10547 else if (p->type == bfd_section_reloc_link_order
10548 || p->type == bfd_symbol_reloc_link_order)
10549 {
10550 if (! elf_reloc_link_order (abfd, info, o, p))
10551 goto error_return;
10552 }
10553 else
10554 {
10555 if (! _bfd_default_link_order (abfd, info, o, p))
10556 goto error_return;
10557 }
10558 }
10559 }
10560
10561 /* Free symbol buffer if needed. */
10562 if (!info->reduce_memory_overheads)
10563 {
10564 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10565 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10566 && elf_tdata (sub)->symbuf)
10567 {
10568 free (elf_tdata (sub)->symbuf);
10569 elf_tdata (sub)->symbuf = NULL;
10570 }
10571 }
10572
10573 /* Output any global symbols that got converted to local in a
10574 version script or due to symbol visibility. We do this in a
10575 separate step since ELF requires all local symbols to appear
10576 prior to any global symbols. FIXME: We should only do this if
10577 some global symbols were, in fact, converted to become local.
10578 FIXME: Will this work correctly with the Irix 5 linker? */
10579 eoinfo.failed = FALSE;
10580 eoinfo.finfo = &finfo;
10581 eoinfo.localsyms = TRUE;
10582 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10583 &eoinfo);
10584 if (eoinfo.failed)
10585 return FALSE;
10586
10587 /* If backend needs to output some local symbols not present in the hash
10588 table, do it now. */
10589 if (bed->elf_backend_output_arch_local_syms)
10590 {
10591 typedef int (*out_sym_func)
10592 (void *, const char *, Elf_Internal_Sym *, asection *,
10593 struct elf_link_hash_entry *);
10594
10595 if (! ((*bed->elf_backend_output_arch_local_syms)
10596 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10597 return FALSE;
10598 }
10599
10600 /* That wrote out all the local symbols. Finish up the symbol table
10601 with the global symbols. Even if we want to strip everything we
10602 can, we still need to deal with those global symbols that got
10603 converted to local in a version script. */
10604
10605 /* The sh_info field records the index of the first non local symbol. */
10606 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10607
10608 if (dynamic
10609 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10610 {
10611 Elf_Internal_Sym sym;
10612 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10613 long last_local = 0;
10614
10615 /* Write out the section symbols for the output sections. */
10616 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10617 {
10618 asection *s;
10619
10620 sym.st_size = 0;
10621 sym.st_name = 0;
10622 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10623 sym.st_other = 0;
10624
10625 for (s = abfd->sections; s != NULL; s = s->next)
10626 {
10627 int indx;
10628 bfd_byte *dest;
10629 long dynindx;
10630
10631 dynindx = elf_section_data (s)->dynindx;
10632 if (dynindx <= 0)
10633 continue;
10634 indx = elf_section_data (s)->this_idx;
10635 BFD_ASSERT (indx > 0);
10636 sym.st_shndx = indx;
10637 if (! check_dynsym (abfd, &sym))
10638 return FALSE;
10639 sym.st_value = s->vma;
10640 dest = dynsym + dynindx * bed->s->sizeof_sym;
10641 if (last_local < dynindx)
10642 last_local = dynindx;
10643 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10644 }
10645 }
10646
10647 /* Write out the local dynsyms. */
10648 if (elf_hash_table (info)->dynlocal)
10649 {
10650 struct elf_link_local_dynamic_entry *e;
10651 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10652 {
10653 asection *s;
10654 bfd_byte *dest;
10655
10656 sym.st_size = e->isym.st_size;
10657 sym.st_other = e->isym.st_other;
10658
10659 /* Copy the internal symbol as is.
10660 Note that we saved a word of storage and overwrote
10661 the original st_name with the dynstr_index. */
10662 sym = e->isym;
10663
10664 s = bfd_section_from_elf_index (e->input_bfd,
10665 e->isym.st_shndx);
10666 if (s != NULL)
10667 {
10668 sym.st_shndx =
10669 elf_section_data (s->output_section)->this_idx;
10670 if (! check_dynsym (abfd, &sym))
10671 return FALSE;
10672 sym.st_value = (s->output_section->vma
10673 + s->output_offset
10674 + e->isym.st_value);
10675 }
10676
10677 if (last_local < e->dynindx)
10678 last_local = e->dynindx;
10679
10680 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10681 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10682 }
10683 }
10684
10685 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10686 last_local + 1;
10687 }
10688
10689 /* We get the global symbols from the hash table. */
10690 eoinfo.failed = FALSE;
10691 eoinfo.localsyms = FALSE;
10692 eoinfo.finfo = &finfo;
10693 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10694 &eoinfo);
10695 if (eoinfo.failed)
10696 return FALSE;
10697
10698 /* If backend needs to output some symbols not present in the hash
10699 table, do it now. */
10700 if (bed->elf_backend_output_arch_syms)
10701 {
10702 typedef int (*out_sym_func)
10703 (void *, const char *, Elf_Internal_Sym *, asection *,
10704 struct elf_link_hash_entry *);
10705
10706 if (! ((*bed->elf_backend_output_arch_syms)
10707 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10708 return FALSE;
10709 }
10710
10711 /* Flush all symbols to the file. */
10712 if (! elf_link_flush_output_syms (&finfo, bed))
10713 return FALSE;
10714
10715 /* Now we know the size of the symtab section. */
10716 off += symtab_hdr->sh_size;
10717
10718 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10719 if (symtab_shndx_hdr->sh_name != 0)
10720 {
10721 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10722 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10723 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10724 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10725 symtab_shndx_hdr->sh_size = amt;
10726
10727 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10728 off, TRUE);
10729
10730 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10731 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10732 return FALSE;
10733 }
10734
10735
10736 /* Finish up and write out the symbol string table (.strtab)
10737 section. */
10738 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10739 /* sh_name was set in prep_headers. */
10740 symstrtab_hdr->sh_type = SHT_STRTAB;
10741 symstrtab_hdr->sh_flags = 0;
10742 symstrtab_hdr->sh_addr = 0;
10743 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10744 symstrtab_hdr->sh_entsize = 0;
10745 symstrtab_hdr->sh_link = 0;
10746 symstrtab_hdr->sh_info = 0;
10747 /* sh_offset is set just below. */
10748 symstrtab_hdr->sh_addralign = 1;
10749
10750 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10751 elf_tdata (abfd)->next_file_pos = off;
10752
10753 if (bfd_get_symcount (abfd) > 0)
10754 {
10755 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10756 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10757 return FALSE;
10758 }
10759
10760 /* Adjust the relocs to have the correct symbol indices. */
10761 for (o = abfd->sections; o != NULL; o = o->next)
10762 {
10763 if ((o->flags & SEC_RELOC) == 0)
10764 continue;
10765
10766 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10767 elf_section_data (o)->rel_count,
10768 elf_section_data (o)->rel_hashes);
10769 if (elf_section_data (o)->rel_hdr2 != NULL)
10770 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10771 elf_section_data (o)->rel_count2,
10772 (elf_section_data (o)->rel_hashes
10773 + elf_section_data (o)->rel_count));
10774
10775 /* Set the reloc_count field to 0 to prevent write_relocs from
10776 trying to swap the relocs out itself. */
10777 o->reloc_count = 0;
10778 }
10779
10780 if (dynamic && info->combreloc && dynobj != NULL)
10781 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10782
10783 /* If we are linking against a dynamic object, or generating a
10784 shared library, finish up the dynamic linking information. */
10785 if (dynamic)
10786 {
10787 bfd_byte *dyncon, *dynconend;
10788
10789 /* Fix up .dynamic entries. */
10790 o = bfd_get_section_by_name (dynobj, ".dynamic");
10791 BFD_ASSERT (o != NULL);
10792
10793 dyncon = o->contents;
10794 dynconend = o->contents + o->size;
10795 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10796 {
10797 Elf_Internal_Dyn dyn;
10798 const char *name;
10799 unsigned int type;
10800
10801 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10802
10803 switch (dyn.d_tag)
10804 {
10805 default:
10806 continue;
10807 case DT_NULL:
10808 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10809 {
10810 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10811 {
10812 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10813 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10814 default: continue;
10815 }
10816 dyn.d_un.d_val = relativecount;
10817 relativecount = 0;
10818 break;
10819 }
10820 continue;
10821
10822 case DT_INIT:
10823 name = info->init_function;
10824 goto get_sym;
10825 case DT_FINI:
10826 name = info->fini_function;
10827 get_sym:
10828 {
10829 struct elf_link_hash_entry *h;
10830
10831 h = elf_link_hash_lookup (elf_hash_table (info), name,
10832 FALSE, FALSE, TRUE);
10833 if (h != NULL
10834 && (h->root.type == bfd_link_hash_defined
10835 || h->root.type == bfd_link_hash_defweak))
10836 {
10837 dyn.d_un.d_ptr = h->root.u.def.value;
10838 o = h->root.u.def.section;
10839 if (o->output_section != NULL)
10840 dyn.d_un.d_ptr += (o->output_section->vma
10841 + o->output_offset);
10842 else
10843 {
10844 /* The symbol is imported from another shared
10845 library and does not apply to this one. */
10846 dyn.d_un.d_ptr = 0;
10847 }
10848 break;
10849 }
10850 }
10851 continue;
10852
10853 case DT_PREINIT_ARRAYSZ:
10854 name = ".preinit_array";
10855 goto get_size;
10856 case DT_INIT_ARRAYSZ:
10857 name = ".init_array";
10858 goto get_size;
10859 case DT_FINI_ARRAYSZ:
10860 name = ".fini_array";
10861 get_size:
10862 o = bfd_get_section_by_name (abfd, name);
10863 if (o == NULL)
10864 {
10865 (*_bfd_error_handler)
10866 (_("%B: could not find output section %s"), abfd, name);
10867 goto error_return;
10868 }
10869 if (o->size == 0)
10870 (*_bfd_error_handler)
10871 (_("warning: %s section has zero size"), name);
10872 dyn.d_un.d_val = o->size;
10873 break;
10874
10875 case DT_PREINIT_ARRAY:
10876 name = ".preinit_array";
10877 goto get_vma;
10878 case DT_INIT_ARRAY:
10879 name = ".init_array";
10880 goto get_vma;
10881 case DT_FINI_ARRAY:
10882 name = ".fini_array";
10883 goto get_vma;
10884
10885 case DT_HASH:
10886 name = ".hash";
10887 goto get_vma;
10888 case DT_GNU_HASH:
10889 name = ".gnu.hash";
10890 goto get_vma;
10891 case DT_STRTAB:
10892 name = ".dynstr";
10893 goto get_vma;
10894 case DT_SYMTAB:
10895 name = ".dynsym";
10896 goto get_vma;
10897 case DT_VERDEF:
10898 name = ".gnu.version_d";
10899 goto get_vma;
10900 case DT_VERNEED:
10901 name = ".gnu.version_r";
10902 goto get_vma;
10903 case DT_VERSYM:
10904 name = ".gnu.version";
10905 get_vma:
10906 o = bfd_get_section_by_name (abfd, name);
10907 if (o == NULL)
10908 {
10909 (*_bfd_error_handler)
10910 (_("%B: could not find output section %s"), abfd, name);
10911 goto error_return;
10912 }
10913 dyn.d_un.d_ptr = o->vma;
10914 break;
10915
10916 case DT_REL:
10917 case DT_RELA:
10918 case DT_RELSZ:
10919 case DT_RELASZ:
10920 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10921 type = SHT_REL;
10922 else
10923 type = SHT_RELA;
10924 dyn.d_un.d_val = 0;
10925 dyn.d_un.d_ptr = 0;
10926 for (i = 1; i < elf_numsections (abfd); i++)
10927 {
10928 Elf_Internal_Shdr *hdr;
10929
10930 hdr = elf_elfsections (abfd)[i];
10931 if (hdr->sh_type == type
10932 && (hdr->sh_flags & SHF_ALLOC) != 0)
10933 {
10934 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10935 dyn.d_un.d_val += hdr->sh_size;
10936 else
10937 {
10938 if (dyn.d_un.d_ptr == 0
10939 || hdr->sh_addr < dyn.d_un.d_ptr)
10940 dyn.d_un.d_ptr = hdr->sh_addr;
10941 }
10942 }
10943 }
10944 break;
10945 }
10946 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10947 }
10948 }
10949
10950 /* If we have created any dynamic sections, then output them. */
10951 if (dynobj != NULL)
10952 {
10953 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10954 goto error_return;
10955
10956 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10957 if (info->warn_shared_textrel && info->shared)
10958 {
10959 bfd_byte *dyncon, *dynconend;
10960
10961 /* Fix up .dynamic entries. */
10962 o = bfd_get_section_by_name (dynobj, ".dynamic");
10963 BFD_ASSERT (o != NULL);
10964
10965 dyncon = o->contents;
10966 dynconend = o->contents + o->size;
10967 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10968 {
10969 Elf_Internal_Dyn dyn;
10970
10971 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10972
10973 if (dyn.d_tag == DT_TEXTREL)
10974 {
10975 info->callbacks->einfo
10976 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10977 break;
10978 }
10979 }
10980 }
10981
10982 for (o = dynobj->sections; o != NULL; o = o->next)
10983 {
10984 if ((o->flags & SEC_HAS_CONTENTS) == 0
10985 || o->size == 0
10986 || o->output_section == bfd_abs_section_ptr)
10987 continue;
10988 if ((o->flags & SEC_LINKER_CREATED) == 0)
10989 {
10990 /* At this point, we are only interested in sections
10991 created by _bfd_elf_link_create_dynamic_sections. */
10992 continue;
10993 }
10994 if (elf_hash_table (info)->stab_info.stabstr == o)
10995 continue;
10996 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10997 continue;
10998 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10999 != SHT_STRTAB)
11000 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11001 {
11002 if (! bfd_set_section_contents (abfd, o->output_section,
11003 o->contents,
11004 (file_ptr) o->output_offset,
11005 o->size))
11006 goto error_return;
11007 }
11008 else
11009 {
11010 /* The contents of the .dynstr section are actually in a
11011 stringtab. */
11012 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11013 if (bfd_seek (abfd, off, SEEK_SET) != 0
11014 || ! _bfd_elf_strtab_emit (abfd,
11015 elf_hash_table (info)->dynstr))
11016 goto error_return;
11017 }
11018 }
11019 }
11020
11021 if (info->relocatable)
11022 {
11023 bfd_boolean failed = FALSE;
11024
11025 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11026 if (failed)
11027 goto error_return;
11028 }
11029
11030 /* If we have optimized stabs strings, output them. */
11031 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11032 {
11033 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11034 goto error_return;
11035 }
11036
11037 if (info->eh_frame_hdr)
11038 {
11039 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11040 goto error_return;
11041 }
11042
11043 if (finfo.symstrtab != NULL)
11044 _bfd_stringtab_free (finfo.symstrtab);
11045 if (finfo.contents != NULL)
11046 free (finfo.contents);
11047 if (finfo.external_relocs != NULL)
11048 free (finfo.external_relocs);
11049 if (finfo.internal_relocs != NULL)
11050 free (finfo.internal_relocs);
11051 if (finfo.external_syms != NULL)
11052 free (finfo.external_syms);
11053 if (finfo.locsym_shndx != NULL)
11054 free (finfo.locsym_shndx);
11055 if (finfo.internal_syms != NULL)
11056 free (finfo.internal_syms);
11057 if (finfo.indices != NULL)
11058 free (finfo.indices);
11059 if (finfo.sections != NULL)
11060 free (finfo.sections);
11061 if (finfo.symbuf != NULL)
11062 free (finfo.symbuf);
11063 if (finfo.symshndxbuf != NULL)
11064 free (finfo.symshndxbuf);
11065 for (o = abfd->sections; o != NULL; o = o->next)
11066 {
11067 if ((o->flags & SEC_RELOC) != 0
11068 && elf_section_data (o)->rel_hashes != NULL)
11069 free (elf_section_data (o)->rel_hashes);
11070 }
11071
11072 elf_tdata (abfd)->linker = TRUE;
11073
11074 if (attr_section)
11075 {
11076 bfd_byte *contents = bfd_malloc (attr_size);
11077 if (contents == NULL)
11078 return FALSE; /* Bail out and fail. */
11079 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11080 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11081 free (contents);
11082 }
11083
11084 return TRUE;
11085
11086 error_return:
11087 if (finfo.symstrtab != NULL)
11088 _bfd_stringtab_free (finfo.symstrtab);
11089 if (finfo.contents != NULL)
11090 free (finfo.contents);
11091 if (finfo.external_relocs != NULL)
11092 free (finfo.external_relocs);
11093 if (finfo.internal_relocs != NULL)
11094 free (finfo.internal_relocs);
11095 if (finfo.external_syms != NULL)
11096 free (finfo.external_syms);
11097 if (finfo.locsym_shndx != NULL)
11098 free (finfo.locsym_shndx);
11099 if (finfo.internal_syms != NULL)
11100 free (finfo.internal_syms);
11101 if (finfo.indices != NULL)
11102 free (finfo.indices);
11103 if (finfo.sections != NULL)
11104 free (finfo.sections);
11105 if (finfo.symbuf != NULL)
11106 free (finfo.symbuf);
11107 if (finfo.symshndxbuf != NULL)
11108 free (finfo.symshndxbuf);
11109 for (o = abfd->sections; o != NULL; o = o->next)
11110 {
11111 if ((o->flags & SEC_RELOC) != 0
11112 && elf_section_data (o)->rel_hashes != NULL)
11113 free (elf_section_data (o)->rel_hashes);
11114 }
11115
11116 return FALSE;
11117 }
11118 \f
11119 /* Initialize COOKIE for input bfd ABFD. */
11120
11121 static bfd_boolean
11122 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11123 struct bfd_link_info *info, bfd *abfd)
11124 {
11125 Elf_Internal_Shdr *symtab_hdr;
11126 const struct elf_backend_data *bed;
11127
11128 bed = get_elf_backend_data (abfd);
11129 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11130
11131 cookie->abfd = abfd;
11132 cookie->sym_hashes = elf_sym_hashes (abfd);
11133 cookie->bad_symtab = elf_bad_symtab (abfd);
11134 if (cookie->bad_symtab)
11135 {
11136 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11137 cookie->extsymoff = 0;
11138 }
11139 else
11140 {
11141 cookie->locsymcount = symtab_hdr->sh_info;
11142 cookie->extsymoff = symtab_hdr->sh_info;
11143 }
11144
11145 if (bed->s->arch_size == 32)
11146 cookie->r_sym_shift = 8;
11147 else
11148 cookie->r_sym_shift = 32;
11149
11150 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11151 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11152 {
11153 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11154 cookie->locsymcount, 0,
11155 NULL, NULL, NULL);
11156 if (cookie->locsyms == NULL)
11157 {
11158 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11159 return FALSE;
11160 }
11161 if (info->keep_memory)
11162 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11163 }
11164 return TRUE;
11165 }
11166
11167 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11168
11169 static void
11170 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11171 {
11172 Elf_Internal_Shdr *symtab_hdr;
11173
11174 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11175 if (cookie->locsyms != NULL
11176 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11177 free (cookie->locsyms);
11178 }
11179
11180 /* Initialize the relocation information in COOKIE for input section SEC
11181 of input bfd ABFD. */
11182
11183 static bfd_boolean
11184 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11185 struct bfd_link_info *info, bfd *abfd,
11186 asection *sec)
11187 {
11188 const struct elf_backend_data *bed;
11189
11190 if (sec->reloc_count == 0)
11191 {
11192 cookie->rels = NULL;
11193 cookie->relend = NULL;
11194 }
11195 else
11196 {
11197 bed = get_elf_backend_data (abfd);
11198
11199 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11200 info->keep_memory);
11201 if (cookie->rels == NULL)
11202 return FALSE;
11203 cookie->rel = cookie->rels;
11204 cookie->relend = (cookie->rels
11205 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11206 }
11207 cookie->rel = cookie->rels;
11208 return TRUE;
11209 }
11210
11211 /* Free the memory allocated by init_reloc_cookie_rels,
11212 if appropriate. */
11213
11214 static void
11215 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11216 asection *sec)
11217 {
11218 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11219 free (cookie->rels);
11220 }
11221
11222 /* Initialize the whole of COOKIE for input section SEC. */
11223
11224 static bfd_boolean
11225 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11226 struct bfd_link_info *info,
11227 asection *sec)
11228 {
11229 if (!init_reloc_cookie (cookie, info, sec->owner))
11230 goto error1;
11231 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11232 goto error2;
11233 return TRUE;
11234
11235 error2:
11236 fini_reloc_cookie (cookie, sec->owner);
11237 error1:
11238 return FALSE;
11239 }
11240
11241 /* Free the memory allocated by init_reloc_cookie_for_section,
11242 if appropriate. */
11243
11244 static void
11245 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11246 asection *sec)
11247 {
11248 fini_reloc_cookie_rels (cookie, sec);
11249 fini_reloc_cookie (cookie, sec->owner);
11250 }
11251 \f
11252 /* Garbage collect unused sections. */
11253
11254 /* Default gc_mark_hook. */
11255
11256 asection *
11257 _bfd_elf_gc_mark_hook (asection *sec,
11258 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11259 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11260 struct elf_link_hash_entry *h,
11261 Elf_Internal_Sym *sym)
11262 {
11263 if (h != NULL)
11264 {
11265 switch (h->root.type)
11266 {
11267 case bfd_link_hash_defined:
11268 case bfd_link_hash_defweak:
11269 return h->root.u.def.section;
11270
11271 case bfd_link_hash_common:
11272 return h->root.u.c.p->section;
11273
11274 default:
11275 break;
11276 }
11277 }
11278 else
11279 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11280
11281 return NULL;
11282 }
11283
11284 /* COOKIE->rel describes a relocation against section SEC, which is
11285 a section we've decided to keep. Return the section that contains
11286 the relocation symbol, or NULL if no section contains it. */
11287
11288 asection *
11289 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11290 elf_gc_mark_hook_fn gc_mark_hook,
11291 struct elf_reloc_cookie *cookie)
11292 {
11293 unsigned long r_symndx;
11294 struct elf_link_hash_entry *h;
11295
11296 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11297 if (r_symndx == 0)
11298 return NULL;
11299
11300 if (r_symndx >= cookie->locsymcount
11301 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11302 {
11303 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11304 while (h->root.type == bfd_link_hash_indirect
11305 || h->root.type == bfd_link_hash_warning)
11306 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11307 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11308 }
11309
11310 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11311 &cookie->locsyms[r_symndx]);
11312 }
11313
11314 /* COOKIE->rel describes a relocation against section SEC, which is
11315 a section we've decided to keep. Mark the section that contains
11316 the relocation symbol. */
11317
11318 bfd_boolean
11319 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11320 asection *sec,
11321 elf_gc_mark_hook_fn gc_mark_hook,
11322 struct elf_reloc_cookie *cookie)
11323 {
11324 asection *rsec;
11325
11326 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11327 if (rsec && !rsec->gc_mark)
11328 {
11329 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11330 rsec->gc_mark = 1;
11331 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11332 return FALSE;
11333 }
11334 return TRUE;
11335 }
11336
11337 /* The mark phase of garbage collection. For a given section, mark
11338 it and any sections in this section's group, and all the sections
11339 which define symbols to which it refers. */
11340
11341 bfd_boolean
11342 _bfd_elf_gc_mark (struct bfd_link_info *info,
11343 asection *sec,
11344 elf_gc_mark_hook_fn gc_mark_hook)
11345 {
11346 bfd_boolean ret;
11347 asection *group_sec, *eh_frame;
11348
11349 sec->gc_mark = 1;
11350
11351 /* Mark all the sections in the group. */
11352 group_sec = elf_section_data (sec)->next_in_group;
11353 if (group_sec && !group_sec->gc_mark)
11354 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11355 return FALSE;
11356
11357 /* Look through the section relocs. */
11358 ret = TRUE;
11359 eh_frame = elf_eh_frame_section (sec->owner);
11360 if ((sec->flags & SEC_RELOC) != 0
11361 && sec->reloc_count > 0
11362 && sec != eh_frame)
11363 {
11364 struct elf_reloc_cookie cookie;
11365
11366 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11367 ret = FALSE;
11368 else
11369 {
11370 for (; cookie.rel < cookie.relend; cookie.rel++)
11371 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11372 {
11373 ret = FALSE;
11374 break;
11375 }
11376 fini_reloc_cookie_for_section (&cookie, sec);
11377 }
11378 }
11379
11380 if (ret && eh_frame && elf_fde_list (sec))
11381 {
11382 struct elf_reloc_cookie cookie;
11383
11384 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11385 ret = FALSE;
11386 else
11387 {
11388 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11389 gc_mark_hook, &cookie))
11390 ret = FALSE;
11391 fini_reloc_cookie_for_section (&cookie, eh_frame);
11392 }
11393 }
11394
11395 return ret;
11396 }
11397
11398 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11399
11400 struct elf_gc_sweep_symbol_info
11401 {
11402 struct bfd_link_info *info;
11403 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11404 bfd_boolean);
11405 };
11406
11407 static bfd_boolean
11408 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11409 {
11410 if (h->root.type == bfd_link_hash_warning)
11411 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11412
11413 if ((h->root.type == bfd_link_hash_defined
11414 || h->root.type == bfd_link_hash_defweak)
11415 && !h->root.u.def.section->gc_mark
11416 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11417 {
11418 struct elf_gc_sweep_symbol_info *inf = data;
11419 (*inf->hide_symbol) (inf->info, h, TRUE);
11420 }
11421
11422 return TRUE;
11423 }
11424
11425 /* The sweep phase of garbage collection. Remove all garbage sections. */
11426
11427 typedef bfd_boolean (*gc_sweep_hook_fn)
11428 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11429
11430 static bfd_boolean
11431 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11432 {
11433 bfd *sub;
11434 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11435 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11436 unsigned long section_sym_count;
11437 struct elf_gc_sweep_symbol_info sweep_info;
11438
11439 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11440 {
11441 asection *o;
11442
11443 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11444 continue;
11445
11446 for (o = sub->sections; o != NULL; o = o->next)
11447 {
11448 /* When any section in a section group is kept, we keep all
11449 sections in the section group. If the first member of
11450 the section group is excluded, we will also exclude the
11451 group section. */
11452 if (o->flags & SEC_GROUP)
11453 {
11454 asection *first = elf_next_in_group (o);
11455 o->gc_mark = first->gc_mark;
11456 }
11457 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11458 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11459 {
11460 /* Keep debug and special sections. */
11461 o->gc_mark = 1;
11462 }
11463
11464 if (o->gc_mark)
11465 continue;
11466
11467 /* Skip sweeping sections already excluded. */
11468 if (o->flags & SEC_EXCLUDE)
11469 continue;
11470
11471 /* Since this is early in the link process, it is simple
11472 to remove a section from the output. */
11473 o->flags |= SEC_EXCLUDE;
11474
11475 if (info->print_gc_sections && o->size != 0)
11476 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11477
11478 /* But we also have to update some of the relocation
11479 info we collected before. */
11480 if (gc_sweep_hook
11481 && (o->flags & SEC_RELOC) != 0
11482 && o->reloc_count > 0
11483 && !bfd_is_abs_section (o->output_section))
11484 {
11485 Elf_Internal_Rela *internal_relocs;
11486 bfd_boolean r;
11487
11488 internal_relocs
11489 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11490 info->keep_memory);
11491 if (internal_relocs == NULL)
11492 return FALSE;
11493
11494 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11495
11496 if (elf_section_data (o)->relocs != internal_relocs)
11497 free (internal_relocs);
11498
11499 if (!r)
11500 return FALSE;
11501 }
11502 }
11503 }
11504
11505 /* Remove the symbols that were in the swept sections from the dynamic
11506 symbol table. GCFIXME: Anyone know how to get them out of the
11507 static symbol table as well? */
11508 sweep_info.info = info;
11509 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11510 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11511 &sweep_info);
11512
11513 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11514 return TRUE;
11515 }
11516
11517 /* Propagate collected vtable information. This is called through
11518 elf_link_hash_traverse. */
11519
11520 static bfd_boolean
11521 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11522 {
11523 if (h->root.type == bfd_link_hash_warning)
11524 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11525
11526 /* Those that are not vtables. */
11527 if (h->vtable == NULL || h->vtable->parent == NULL)
11528 return TRUE;
11529
11530 /* Those vtables that do not have parents, we cannot merge. */
11531 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11532 return TRUE;
11533
11534 /* If we've already been done, exit. */
11535 if (h->vtable->used && h->vtable->used[-1])
11536 return TRUE;
11537
11538 /* Make sure the parent's table is up to date. */
11539 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11540
11541 if (h->vtable->used == NULL)
11542 {
11543 /* None of this table's entries were referenced. Re-use the
11544 parent's table. */
11545 h->vtable->used = h->vtable->parent->vtable->used;
11546 h->vtable->size = h->vtable->parent->vtable->size;
11547 }
11548 else
11549 {
11550 size_t n;
11551 bfd_boolean *cu, *pu;
11552
11553 /* Or the parent's entries into ours. */
11554 cu = h->vtable->used;
11555 cu[-1] = TRUE;
11556 pu = h->vtable->parent->vtable->used;
11557 if (pu != NULL)
11558 {
11559 const struct elf_backend_data *bed;
11560 unsigned int log_file_align;
11561
11562 bed = get_elf_backend_data (h->root.u.def.section->owner);
11563 log_file_align = bed->s->log_file_align;
11564 n = h->vtable->parent->vtable->size >> log_file_align;
11565 while (n--)
11566 {
11567 if (*pu)
11568 *cu = TRUE;
11569 pu++;
11570 cu++;
11571 }
11572 }
11573 }
11574
11575 return TRUE;
11576 }
11577
11578 static bfd_boolean
11579 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11580 {
11581 asection *sec;
11582 bfd_vma hstart, hend;
11583 Elf_Internal_Rela *relstart, *relend, *rel;
11584 const struct elf_backend_data *bed;
11585 unsigned int log_file_align;
11586
11587 if (h->root.type == bfd_link_hash_warning)
11588 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11589
11590 /* Take care of both those symbols that do not describe vtables as
11591 well as those that are not loaded. */
11592 if (h->vtable == NULL || h->vtable->parent == NULL)
11593 return TRUE;
11594
11595 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11596 || h->root.type == bfd_link_hash_defweak);
11597
11598 sec = h->root.u.def.section;
11599 hstart = h->root.u.def.value;
11600 hend = hstart + h->size;
11601
11602 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11603 if (!relstart)
11604 return *(bfd_boolean *) okp = FALSE;
11605 bed = get_elf_backend_data (sec->owner);
11606 log_file_align = bed->s->log_file_align;
11607
11608 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11609
11610 for (rel = relstart; rel < relend; ++rel)
11611 if (rel->r_offset >= hstart && rel->r_offset < hend)
11612 {
11613 /* If the entry is in use, do nothing. */
11614 if (h->vtable->used
11615 && (rel->r_offset - hstart) < h->vtable->size)
11616 {
11617 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11618 if (h->vtable->used[entry])
11619 continue;
11620 }
11621 /* Otherwise, kill it. */
11622 rel->r_offset = rel->r_info = rel->r_addend = 0;
11623 }
11624
11625 return TRUE;
11626 }
11627
11628 /* Mark sections containing dynamically referenced symbols. When
11629 building shared libraries, we must assume that any visible symbol is
11630 referenced. */
11631
11632 bfd_boolean
11633 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11634 {
11635 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11636
11637 if (h->root.type == bfd_link_hash_warning)
11638 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11639
11640 if ((h->root.type == bfd_link_hash_defined
11641 || h->root.type == bfd_link_hash_defweak)
11642 && (h->ref_dynamic
11643 || (!info->executable
11644 && h->def_regular
11645 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11646 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11647 h->root.u.def.section->flags |= SEC_KEEP;
11648
11649 return TRUE;
11650 }
11651
11652 /* Keep all sections containing symbols undefined on the command-line,
11653 and the section containing the entry symbol. */
11654
11655 void
11656 _bfd_elf_gc_keep (struct bfd_link_info *info)
11657 {
11658 struct bfd_sym_chain *sym;
11659
11660 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11661 {
11662 struct elf_link_hash_entry *h;
11663
11664 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11665 FALSE, FALSE, FALSE);
11666
11667 if (h != NULL
11668 && (h->root.type == bfd_link_hash_defined
11669 || h->root.type == bfd_link_hash_defweak)
11670 && !bfd_is_abs_section (h->root.u.def.section))
11671 h->root.u.def.section->flags |= SEC_KEEP;
11672 }
11673 }
11674
11675 /* Do mark and sweep of unused sections. */
11676
11677 bfd_boolean
11678 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11679 {
11680 bfd_boolean ok = TRUE;
11681 bfd *sub;
11682 elf_gc_mark_hook_fn gc_mark_hook;
11683 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11684
11685 if (!bed->can_gc_sections
11686 || !is_elf_hash_table (info->hash))
11687 {
11688 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11689 return TRUE;
11690 }
11691
11692 bed->gc_keep (info);
11693
11694 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11695 at the .eh_frame section if we can mark the FDEs individually. */
11696 _bfd_elf_begin_eh_frame_parsing (info);
11697 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11698 {
11699 asection *sec;
11700 struct elf_reloc_cookie cookie;
11701
11702 sec = bfd_get_section_by_name (sub, ".eh_frame");
11703 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11704 {
11705 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11706 if (elf_section_data (sec)->sec_info)
11707 elf_eh_frame_section (sub) = sec;
11708 fini_reloc_cookie_for_section (&cookie, sec);
11709 }
11710 }
11711 _bfd_elf_end_eh_frame_parsing (info);
11712
11713 /* Apply transitive closure to the vtable entry usage info. */
11714 elf_link_hash_traverse (elf_hash_table (info),
11715 elf_gc_propagate_vtable_entries_used,
11716 &ok);
11717 if (!ok)
11718 return FALSE;
11719
11720 /* Kill the vtable relocations that were not used. */
11721 elf_link_hash_traverse (elf_hash_table (info),
11722 elf_gc_smash_unused_vtentry_relocs,
11723 &ok);
11724 if (!ok)
11725 return FALSE;
11726
11727 /* Mark dynamically referenced symbols. */
11728 if (elf_hash_table (info)->dynamic_sections_created)
11729 elf_link_hash_traverse (elf_hash_table (info),
11730 bed->gc_mark_dynamic_ref,
11731 info);
11732
11733 /* Grovel through relocs to find out who stays ... */
11734 gc_mark_hook = bed->gc_mark_hook;
11735 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11736 {
11737 asection *o;
11738
11739 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11740 continue;
11741
11742 for (o = sub->sections; o != NULL; o = o->next)
11743 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11744 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11745 return FALSE;
11746 }
11747
11748 /* Allow the backend to mark additional target specific sections. */
11749 if (bed->gc_mark_extra_sections)
11750 bed->gc_mark_extra_sections (info, gc_mark_hook);
11751
11752 /* ... and mark SEC_EXCLUDE for those that go. */
11753 return elf_gc_sweep (abfd, info);
11754 }
11755 \f
11756 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11757
11758 bfd_boolean
11759 bfd_elf_gc_record_vtinherit (bfd *abfd,
11760 asection *sec,
11761 struct elf_link_hash_entry *h,
11762 bfd_vma offset)
11763 {
11764 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11765 struct elf_link_hash_entry **search, *child;
11766 bfd_size_type extsymcount;
11767 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11768
11769 /* The sh_info field of the symtab header tells us where the
11770 external symbols start. We don't care about the local symbols at
11771 this point. */
11772 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11773 if (!elf_bad_symtab (abfd))
11774 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11775
11776 sym_hashes = elf_sym_hashes (abfd);
11777 sym_hashes_end = sym_hashes + extsymcount;
11778
11779 /* Hunt down the child symbol, which is in this section at the same
11780 offset as the relocation. */
11781 for (search = sym_hashes; search != sym_hashes_end; ++search)
11782 {
11783 if ((child = *search) != NULL
11784 && (child->root.type == bfd_link_hash_defined
11785 || child->root.type == bfd_link_hash_defweak)
11786 && child->root.u.def.section == sec
11787 && child->root.u.def.value == offset)
11788 goto win;
11789 }
11790
11791 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11792 abfd, sec, (unsigned long) offset);
11793 bfd_set_error (bfd_error_invalid_operation);
11794 return FALSE;
11795
11796 win:
11797 if (!child->vtable)
11798 {
11799 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11800 if (!child->vtable)
11801 return FALSE;
11802 }
11803 if (!h)
11804 {
11805 /* This *should* only be the absolute section. It could potentially
11806 be that someone has defined a non-global vtable though, which
11807 would be bad. It isn't worth paging in the local symbols to be
11808 sure though; that case should simply be handled by the assembler. */
11809
11810 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11811 }
11812 else
11813 child->vtable->parent = h;
11814
11815 return TRUE;
11816 }
11817
11818 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11819
11820 bfd_boolean
11821 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11822 asection *sec ATTRIBUTE_UNUSED,
11823 struct elf_link_hash_entry *h,
11824 bfd_vma addend)
11825 {
11826 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11827 unsigned int log_file_align = bed->s->log_file_align;
11828
11829 if (!h->vtable)
11830 {
11831 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11832 if (!h->vtable)
11833 return FALSE;
11834 }
11835
11836 if (addend >= h->vtable->size)
11837 {
11838 size_t size, bytes, file_align;
11839 bfd_boolean *ptr = h->vtable->used;
11840
11841 /* While the symbol is undefined, we have to be prepared to handle
11842 a zero size. */
11843 file_align = 1 << log_file_align;
11844 if (h->root.type == bfd_link_hash_undefined)
11845 size = addend + file_align;
11846 else
11847 {
11848 size = h->size;
11849 if (addend >= size)
11850 {
11851 /* Oops! We've got a reference past the defined end of
11852 the table. This is probably a bug -- shall we warn? */
11853 size = addend + file_align;
11854 }
11855 }
11856 size = (size + file_align - 1) & -file_align;
11857
11858 /* Allocate one extra entry for use as a "done" flag for the
11859 consolidation pass. */
11860 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11861
11862 if (ptr)
11863 {
11864 ptr = bfd_realloc (ptr - 1, bytes);
11865
11866 if (ptr != NULL)
11867 {
11868 size_t oldbytes;
11869
11870 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11871 * sizeof (bfd_boolean));
11872 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11873 }
11874 }
11875 else
11876 ptr = bfd_zmalloc (bytes);
11877
11878 if (ptr == NULL)
11879 return FALSE;
11880
11881 /* And arrange for that done flag to be at index -1. */
11882 h->vtable->used = ptr + 1;
11883 h->vtable->size = size;
11884 }
11885
11886 h->vtable->used[addend >> log_file_align] = TRUE;
11887
11888 return TRUE;
11889 }
11890
11891 struct alloc_got_off_arg {
11892 bfd_vma gotoff;
11893 struct bfd_link_info *info;
11894 };
11895
11896 /* We need a special top-level link routine to convert got reference counts
11897 to real got offsets. */
11898
11899 static bfd_boolean
11900 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11901 {
11902 struct alloc_got_off_arg *gofarg = arg;
11903 bfd *obfd = gofarg->info->output_bfd;
11904 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
11905
11906 if (h->root.type == bfd_link_hash_warning)
11907 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11908
11909 if (h->got.refcount > 0)
11910 {
11911 h->got.offset = gofarg->gotoff;
11912 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
11913 }
11914 else
11915 h->got.offset = (bfd_vma) -1;
11916
11917 return TRUE;
11918 }
11919
11920 /* And an accompanying bit to work out final got entry offsets once
11921 we're done. Should be called from final_link. */
11922
11923 bfd_boolean
11924 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11925 struct bfd_link_info *info)
11926 {
11927 bfd *i;
11928 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11929 bfd_vma gotoff;
11930 struct alloc_got_off_arg gofarg;
11931
11932 BFD_ASSERT (abfd == info->output_bfd);
11933
11934 if (! is_elf_hash_table (info->hash))
11935 return FALSE;
11936
11937 /* The GOT offset is relative to the .got section, but the GOT header is
11938 put into the .got.plt section, if the backend uses it. */
11939 if (bed->want_got_plt)
11940 gotoff = 0;
11941 else
11942 gotoff = bed->got_header_size;
11943
11944 /* Do the local .got entries first. */
11945 for (i = info->input_bfds; i; i = i->link_next)
11946 {
11947 bfd_signed_vma *local_got;
11948 bfd_size_type j, locsymcount;
11949 Elf_Internal_Shdr *symtab_hdr;
11950
11951 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11952 continue;
11953
11954 local_got = elf_local_got_refcounts (i);
11955 if (!local_got)
11956 continue;
11957
11958 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11959 if (elf_bad_symtab (i))
11960 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11961 else
11962 locsymcount = symtab_hdr->sh_info;
11963
11964 for (j = 0; j < locsymcount; ++j)
11965 {
11966 if (local_got[j] > 0)
11967 {
11968 local_got[j] = gotoff;
11969 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
11970 }
11971 else
11972 local_got[j] = (bfd_vma) -1;
11973 }
11974 }
11975
11976 /* Then the global .got entries. .plt refcounts are handled by
11977 adjust_dynamic_symbol */
11978 gofarg.gotoff = gotoff;
11979 gofarg.info = info;
11980 elf_link_hash_traverse (elf_hash_table (info),
11981 elf_gc_allocate_got_offsets,
11982 &gofarg);
11983 return TRUE;
11984 }
11985
11986 /* Many folk need no more in the way of final link than this, once
11987 got entry reference counting is enabled. */
11988
11989 bfd_boolean
11990 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11991 {
11992 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11993 return FALSE;
11994
11995 /* Invoke the regular ELF backend linker to do all the work. */
11996 return bfd_elf_final_link (abfd, info);
11997 }
11998
11999 bfd_boolean
12000 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12001 {
12002 struct elf_reloc_cookie *rcookie = cookie;
12003
12004 if (rcookie->bad_symtab)
12005 rcookie->rel = rcookie->rels;
12006
12007 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12008 {
12009 unsigned long r_symndx;
12010
12011 if (! rcookie->bad_symtab)
12012 if (rcookie->rel->r_offset > offset)
12013 return FALSE;
12014 if (rcookie->rel->r_offset != offset)
12015 continue;
12016
12017 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12018 if (r_symndx == SHN_UNDEF)
12019 return TRUE;
12020
12021 if (r_symndx >= rcookie->locsymcount
12022 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12023 {
12024 struct elf_link_hash_entry *h;
12025
12026 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12027
12028 while (h->root.type == bfd_link_hash_indirect
12029 || h->root.type == bfd_link_hash_warning)
12030 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12031
12032 if ((h->root.type == bfd_link_hash_defined
12033 || h->root.type == bfd_link_hash_defweak)
12034 && elf_discarded_section (h->root.u.def.section))
12035 return TRUE;
12036 else
12037 return FALSE;
12038 }
12039 else
12040 {
12041 /* It's not a relocation against a global symbol,
12042 but it could be a relocation against a local
12043 symbol for a discarded section. */
12044 asection *isec;
12045 Elf_Internal_Sym *isym;
12046
12047 /* Need to: get the symbol; get the section. */
12048 isym = &rcookie->locsyms[r_symndx];
12049 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12050 if (isec != NULL && elf_discarded_section (isec))
12051 return TRUE;
12052 }
12053 return FALSE;
12054 }
12055 return FALSE;
12056 }
12057
12058 /* Discard unneeded references to discarded sections.
12059 Returns TRUE if any section's size was changed. */
12060 /* This function assumes that the relocations are in sorted order,
12061 which is true for all known assemblers. */
12062
12063 bfd_boolean
12064 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12065 {
12066 struct elf_reloc_cookie cookie;
12067 asection *stab, *eh;
12068 const struct elf_backend_data *bed;
12069 bfd *abfd;
12070 bfd_boolean ret = FALSE;
12071
12072 if (info->traditional_format
12073 || !is_elf_hash_table (info->hash))
12074 return FALSE;
12075
12076 _bfd_elf_begin_eh_frame_parsing (info);
12077 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12078 {
12079 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12080 continue;
12081
12082 bed = get_elf_backend_data (abfd);
12083
12084 if ((abfd->flags & DYNAMIC) != 0)
12085 continue;
12086
12087 eh = NULL;
12088 if (!info->relocatable)
12089 {
12090 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12091 if (eh != NULL
12092 && (eh->size == 0
12093 || bfd_is_abs_section (eh->output_section)))
12094 eh = NULL;
12095 }
12096
12097 stab = bfd_get_section_by_name (abfd, ".stab");
12098 if (stab != NULL
12099 && (stab->size == 0
12100 || bfd_is_abs_section (stab->output_section)
12101 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12102 stab = NULL;
12103
12104 if (stab == NULL
12105 && eh == NULL
12106 && bed->elf_backend_discard_info == NULL)
12107 continue;
12108
12109 if (!init_reloc_cookie (&cookie, info, abfd))
12110 return FALSE;
12111
12112 if (stab != NULL
12113 && stab->reloc_count > 0
12114 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12115 {
12116 if (_bfd_discard_section_stabs (abfd, stab,
12117 elf_section_data (stab)->sec_info,
12118 bfd_elf_reloc_symbol_deleted_p,
12119 &cookie))
12120 ret = TRUE;
12121 fini_reloc_cookie_rels (&cookie, stab);
12122 }
12123
12124 if (eh != NULL
12125 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12126 {
12127 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12128 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12129 bfd_elf_reloc_symbol_deleted_p,
12130 &cookie))
12131 ret = TRUE;
12132 fini_reloc_cookie_rels (&cookie, eh);
12133 }
12134
12135 if (bed->elf_backend_discard_info != NULL
12136 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12137 ret = TRUE;
12138
12139 fini_reloc_cookie (&cookie, abfd);
12140 }
12141 _bfd_elf_end_eh_frame_parsing (info);
12142
12143 if (info->eh_frame_hdr
12144 && !info->relocatable
12145 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12146 ret = TRUE;
12147
12148 return ret;
12149 }
12150
12151 /* For a SHT_GROUP section, return the group signature. For other
12152 sections, return the normal section name. */
12153
12154 static const char *
12155 section_signature (asection *sec)
12156 {
12157 if ((sec->flags & SEC_GROUP) != 0
12158 && elf_next_in_group (sec) != NULL
12159 && elf_group_name (elf_next_in_group (sec)) != NULL)
12160 return elf_group_name (elf_next_in_group (sec));
12161 return sec->name;
12162 }
12163
12164 void
12165 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12166 struct bfd_link_info *info)
12167 {
12168 flagword flags;
12169 const char *name, *p;
12170 struct bfd_section_already_linked *l;
12171 struct bfd_section_already_linked_hash_entry *already_linked_list;
12172
12173 if (sec->output_section == bfd_abs_section_ptr)
12174 return;
12175
12176 flags = sec->flags;
12177
12178 /* Return if it isn't a linkonce section. A comdat group section
12179 also has SEC_LINK_ONCE set. */
12180 if ((flags & SEC_LINK_ONCE) == 0)
12181 return;
12182
12183 /* Don't put group member sections on our list of already linked
12184 sections. They are handled as a group via their group section. */
12185 if (elf_sec_group (sec) != NULL)
12186 return;
12187
12188 /* FIXME: When doing a relocatable link, we may have trouble
12189 copying relocations in other sections that refer to local symbols
12190 in the section being discarded. Those relocations will have to
12191 be converted somehow; as of this writing I'm not sure that any of
12192 the backends handle that correctly.
12193
12194 It is tempting to instead not discard link once sections when
12195 doing a relocatable link (technically, they should be discarded
12196 whenever we are building constructors). However, that fails,
12197 because the linker winds up combining all the link once sections
12198 into a single large link once section, which defeats the purpose
12199 of having link once sections in the first place.
12200
12201 Also, not merging link once sections in a relocatable link
12202 causes trouble for MIPS ELF, which relies on link once semantics
12203 to handle the .reginfo section correctly. */
12204
12205 name = section_signature (sec);
12206
12207 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12208 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12209 p++;
12210 else
12211 p = name;
12212
12213 already_linked_list = bfd_section_already_linked_table_lookup (p);
12214
12215 for (l = already_linked_list->entry; l != NULL; l = l->next)
12216 {
12217 /* We may have 2 different types of sections on the list: group
12218 sections and linkonce sections. Match like sections. */
12219 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12220 && strcmp (name, section_signature (l->sec)) == 0
12221 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12222 {
12223 /* The section has already been linked. See if we should
12224 issue a warning. */
12225 switch (flags & SEC_LINK_DUPLICATES)
12226 {
12227 default:
12228 abort ();
12229
12230 case SEC_LINK_DUPLICATES_DISCARD:
12231 break;
12232
12233 case SEC_LINK_DUPLICATES_ONE_ONLY:
12234 (*_bfd_error_handler)
12235 (_("%B: ignoring duplicate section `%A'"),
12236 abfd, sec);
12237 break;
12238
12239 case SEC_LINK_DUPLICATES_SAME_SIZE:
12240 if (sec->size != l->sec->size)
12241 (*_bfd_error_handler)
12242 (_("%B: duplicate section `%A' has different size"),
12243 abfd, sec);
12244 break;
12245
12246 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12247 if (sec->size != l->sec->size)
12248 (*_bfd_error_handler)
12249 (_("%B: duplicate section `%A' has different size"),
12250 abfd, sec);
12251 else if (sec->size != 0)
12252 {
12253 bfd_byte *sec_contents, *l_sec_contents;
12254
12255 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12256 (*_bfd_error_handler)
12257 (_("%B: warning: could not read contents of section `%A'"),
12258 abfd, sec);
12259 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12260 &l_sec_contents))
12261 (*_bfd_error_handler)
12262 (_("%B: warning: could not read contents of section `%A'"),
12263 l->sec->owner, l->sec);
12264 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12265 (*_bfd_error_handler)
12266 (_("%B: warning: duplicate section `%A' has different contents"),
12267 abfd, sec);
12268
12269 if (sec_contents)
12270 free (sec_contents);
12271 if (l_sec_contents)
12272 free (l_sec_contents);
12273 }
12274 break;
12275 }
12276
12277 /* Set the output_section field so that lang_add_section
12278 does not create a lang_input_section structure for this
12279 section. Since there might be a symbol in the section
12280 being discarded, we must retain a pointer to the section
12281 which we are really going to use. */
12282 sec->output_section = bfd_abs_section_ptr;
12283 sec->kept_section = l->sec;
12284
12285 if (flags & SEC_GROUP)
12286 {
12287 asection *first = elf_next_in_group (sec);
12288 asection *s = first;
12289
12290 while (s != NULL)
12291 {
12292 s->output_section = bfd_abs_section_ptr;
12293 /* Record which group discards it. */
12294 s->kept_section = l->sec;
12295 s = elf_next_in_group (s);
12296 /* These lists are circular. */
12297 if (s == first)
12298 break;
12299 }
12300 }
12301
12302 return;
12303 }
12304 }
12305
12306 /* A single member comdat group section may be discarded by a
12307 linkonce section and vice versa. */
12308
12309 if ((flags & SEC_GROUP) != 0)
12310 {
12311 asection *first = elf_next_in_group (sec);
12312
12313 if (first != NULL && elf_next_in_group (first) == first)
12314 /* Check this single member group against linkonce sections. */
12315 for (l = already_linked_list->entry; l != NULL; l = l->next)
12316 if ((l->sec->flags & SEC_GROUP) == 0
12317 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12318 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12319 {
12320 first->output_section = bfd_abs_section_ptr;
12321 first->kept_section = l->sec;
12322 sec->output_section = bfd_abs_section_ptr;
12323 break;
12324 }
12325 }
12326 else
12327 /* Check this linkonce section against single member groups. */
12328 for (l = already_linked_list->entry; l != NULL; l = l->next)
12329 if (l->sec->flags & SEC_GROUP)
12330 {
12331 asection *first = elf_next_in_group (l->sec);
12332
12333 if (first != NULL
12334 && elf_next_in_group (first) == first
12335 && bfd_elf_match_symbols_in_sections (first, sec, info))
12336 {
12337 sec->output_section = bfd_abs_section_ptr;
12338 sec->kept_section = first;
12339 break;
12340 }
12341 }
12342
12343 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12344 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12345 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12346 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12347 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12348 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12349 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12350 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12351 The reverse order cannot happen as there is never a bfd with only the
12352 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12353 matter as here were are looking only for cross-bfd sections. */
12354
12355 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12356 for (l = already_linked_list->entry; l != NULL; l = l->next)
12357 if ((l->sec->flags & SEC_GROUP) == 0
12358 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12359 {
12360 if (abfd != l->sec->owner)
12361 sec->output_section = bfd_abs_section_ptr;
12362 break;
12363 }
12364
12365 /* This is the first section with this name. Record it. */
12366 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12367 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12368 }
12369
12370 bfd_boolean
12371 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12372 {
12373 return sym->st_shndx == SHN_COMMON;
12374 }
12375
12376 unsigned int
12377 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12378 {
12379 return SHN_COMMON;
12380 }
12381
12382 asection *
12383 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12384 {
12385 return bfd_com_section_ptr;
12386 }
12387
12388 bfd_vma
12389 _bfd_elf_default_got_elt_size (bfd *abfd,
12390 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12391 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12392 bfd *ibfd ATTRIBUTE_UNUSED,
12393 unsigned long symndx ATTRIBUTE_UNUSED)
12394 {
12395 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12396 return bed->s->arch_size / 8;
12397 }
12398
12399 /* Routines to support the creation of dynamic relocs. */
12400
12401 /* Return true if NAME is a name of a relocation
12402 section associated with section S. */
12403
12404 static bfd_boolean
12405 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12406 {
12407 if (rela)
12408 return CONST_STRNEQ (name, ".rela")
12409 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12410
12411 return CONST_STRNEQ (name, ".rel")
12412 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12413 }
12414
12415 /* Returns the name of the dynamic reloc section associated with SEC. */
12416
12417 static const char *
12418 get_dynamic_reloc_section_name (bfd * abfd,
12419 asection * sec,
12420 bfd_boolean is_rela)
12421 {
12422 const char * name;
12423 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12424 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12425
12426 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12427 if (name == NULL)
12428 return NULL;
12429
12430 if (! is_reloc_section (is_rela, name, sec))
12431 {
12432 static bfd_boolean complained = FALSE;
12433
12434 if (! complained)
12435 {
12436 (*_bfd_error_handler)
12437 (_("%B: bad relocation section name `%s\'"), abfd, name);
12438 complained = TRUE;
12439 }
12440 name = NULL;
12441 }
12442
12443 return name;
12444 }
12445
12446 /* Returns the dynamic reloc section associated with SEC.
12447 If necessary compute the name of the dynamic reloc section based
12448 on SEC's name (looked up in ABFD's string table) and the setting
12449 of IS_RELA. */
12450
12451 asection *
12452 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12453 asection * sec,
12454 bfd_boolean is_rela)
12455 {
12456 asection * reloc_sec = elf_section_data (sec)->sreloc;
12457
12458 if (reloc_sec == NULL)
12459 {
12460 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12461
12462 if (name != NULL)
12463 {
12464 reloc_sec = bfd_get_section_by_name (abfd, name);
12465
12466 if (reloc_sec != NULL)
12467 elf_section_data (sec)->sreloc = reloc_sec;
12468 }
12469 }
12470
12471 return reloc_sec;
12472 }
12473
12474 /* Returns the dynamic reloc section associated with SEC. If the
12475 section does not exist it is created and attached to the DYNOBJ
12476 bfd and stored in the SRELOC field of SEC's elf_section_data
12477 structure.
12478
12479 ALIGNMENT is the alignment for the newly created section and
12480 IS_RELA defines whether the name should be .rela.<SEC's name>
12481 or .rel.<SEC's name>. The section name is looked up in the
12482 string table associated with ABFD. */
12483
12484 asection *
12485 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12486 bfd * dynobj,
12487 unsigned int alignment,
12488 bfd * abfd,
12489 bfd_boolean is_rela)
12490 {
12491 asection * reloc_sec = elf_section_data (sec)->sreloc;
12492
12493 if (reloc_sec == NULL)
12494 {
12495 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12496
12497 if (name == NULL)
12498 return NULL;
12499
12500 reloc_sec = bfd_get_section_by_name (dynobj, name);
12501
12502 if (reloc_sec == NULL)
12503 {
12504 flagword flags;
12505
12506 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12507 if ((sec->flags & SEC_ALLOC) != 0)
12508 flags |= SEC_ALLOC | SEC_LOAD;
12509
12510 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12511 if (reloc_sec != NULL)
12512 {
12513 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12514 reloc_sec = NULL;
12515 }
12516 }
12517
12518 elf_section_data (sec)->sreloc = reloc_sec;
12519 }
12520
12521 return reloc_sec;
12522 }