Remove path name from test case
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2023 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 #include <limits.h>
36 #ifndef CHAR_BIT
37 #define CHAR_BIT 8
38 #endif
39
40 /* This struct is used to pass information to routines called via
41 elf_link_hash_traverse which must return failure. */
42
43 struct elf_info_failed
44 {
45 struct bfd_link_info *info;
46 bool failed;
47 };
48
49 /* This structure is used to pass information to
50 _bfd_elf_link_find_version_dependencies. */
51
52 struct elf_find_verdep_info
53 {
54 /* General link information. */
55 struct bfd_link_info *info;
56 /* The number of dependencies. */
57 unsigned int vers;
58 /* Whether we had a failure. */
59 bool failed;
60 };
61
62 static bool _bfd_elf_fix_symbol_flags
63 (struct elf_link_hash_entry *, struct elf_info_failed *);
64
65 asection *
66 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
67 unsigned long r_symndx,
68 bool discard)
69 {
70 if (r_symndx >= cookie->locsymcount
71 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
72 {
73 struct elf_link_hash_entry *h;
74
75 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
76
77 while (h->root.type == bfd_link_hash_indirect
78 || h->root.type == bfd_link_hash_warning)
79 h = (struct elf_link_hash_entry *) h->root.u.i.link;
80
81 if ((h->root.type == bfd_link_hash_defined
82 || h->root.type == bfd_link_hash_defweak)
83 && discarded_section (h->root.u.def.section))
84 return h->root.u.def.section;
85 else
86 return NULL;
87 }
88 else
89 {
90 /* It's not a relocation against a global symbol,
91 but it could be a relocation against a local
92 symbol for a discarded section. */
93 asection *isec;
94 Elf_Internal_Sym *isym;
95
96 /* Need to: get the symbol; get the section. */
97 isym = &cookie->locsyms[r_symndx];
98 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
99 if (isec != NULL
100 && discard ? discarded_section (isec) : 1)
101 return isec;
102 }
103 return NULL;
104 }
105
106 /* Define a symbol in a dynamic linkage section. */
107
108 struct elf_link_hash_entry *
109 _bfd_elf_define_linkage_sym (bfd *abfd,
110 struct bfd_link_info *info,
111 asection *sec,
112 const char *name)
113 {
114 struct elf_link_hash_entry *h;
115 struct bfd_link_hash_entry *bh;
116 const struct elf_backend_data *bed;
117
118 h = elf_link_hash_lookup (elf_hash_table (info), name, false, false, false);
119 if (h != NULL)
120 {
121 /* Zap symbol defined in an as-needed lib that wasn't linked.
122 This is a symptom of a larger problem: Absolute symbols
123 defined in shared libraries can't be overridden, because we
124 lose the link to the bfd which is via the symbol section. */
125 h->root.type = bfd_link_hash_new;
126 bh = &h->root;
127 }
128 else
129 bh = NULL;
130
131 bed = get_elf_backend_data (abfd);
132 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
133 sec, 0, NULL, false, bed->collect,
134 &bh))
135 return NULL;
136 h = (struct elf_link_hash_entry *) bh;
137 BFD_ASSERT (h != NULL);
138 h->def_regular = 1;
139 h->non_elf = 0;
140 h->root.linker_def = 1;
141 h->type = STT_OBJECT;
142 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
143 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
144
145 (*bed->elf_backend_hide_symbol) (info, h, true);
146 return h;
147 }
148
149 bool
150 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
151 {
152 flagword flags;
153 asection *s;
154 struct elf_link_hash_entry *h;
155 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
156 struct elf_link_hash_table *htab = elf_hash_table (info);
157
158 /* This function may be called more than once. */
159 if (htab->sgot != NULL)
160 return true;
161
162 flags = bed->dynamic_sec_flags;
163
164 s = bfd_make_section_anyway_with_flags (abfd,
165 (bed->rela_plts_and_copies_p
166 ? ".rela.got" : ".rel.got"),
167 (bed->dynamic_sec_flags
168 | SEC_READONLY));
169 if (s == NULL
170 || !bfd_set_section_alignment (s, bed->s->log_file_align))
171 return false;
172 htab->srelgot = s;
173
174 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
175 if (s == NULL
176 || !bfd_set_section_alignment (s, bed->s->log_file_align))
177 return false;
178 htab->sgot = s;
179
180 if (bed->want_got_plt)
181 {
182 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
183 if (s == NULL
184 || !bfd_set_section_alignment (s, bed->s->log_file_align))
185 return false;
186 htab->sgotplt = s;
187 }
188
189 /* The first bit of the global offset table is the header. */
190 s->size += bed->got_header_size;
191
192 if (bed->want_got_sym)
193 {
194 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
195 (or .got.plt) section. We don't do this in the linker script
196 because we don't want to define the symbol if we are not creating
197 a global offset table. */
198 h = _bfd_elf_define_linkage_sym (abfd, info, s,
199 "_GLOBAL_OFFSET_TABLE_");
200 elf_hash_table (info)->hgot = h;
201 if (h == NULL)
202 return false;
203 }
204
205 return true;
206 }
207 \f
208 /* Create a strtab to hold the dynamic symbol names. */
209 static bool
210 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
211 {
212 struct elf_link_hash_table *hash_table;
213
214 hash_table = elf_hash_table (info);
215 if (hash_table->dynobj == NULL)
216 {
217 /* We may not set dynobj, an input file holding linker created
218 dynamic sections to abfd, which may be a dynamic object with
219 its own dynamic sections. We need to find a normal input file
220 to hold linker created sections if possible. */
221 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
222 {
223 bfd *ibfd;
224 asection *s;
225 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
226 if ((ibfd->flags
227 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
228 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
229 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
230 && !((s = ibfd->sections) != NULL
231 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
232 {
233 abfd = ibfd;
234 break;
235 }
236 }
237 hash_table->dynobj = abfd;
238 }
239
240 if (hash_table->dynstr == NULL)
241 {
242 hash_table->dynstr = _bfd_elf_strtab_init ();
243 if (hash_table->dynstr == NULL)
244 return false;
245 }
246 return true;
247 }
248
249 /* Create some sections which will be filled in with dynamic linking
250 information. ABFD is an input file which requires dynamic sections
251 to be created. The dynamic sections take up virtual memory space
252 when the final executable is run, so we need to create them before
253 addresses are assigned to the output sections. We work out the
254 actual contents and size of these sections later. */
255
256 bool
257 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
258 {
259 flagword flags;
260 asection *s;
261 const struct elf_backend_data *bed;
262 struct elf_link_hash_entry *h;
263
264 if (! is_elf_hash_table (info->hash))
265 return false;
266
267 if (elf_hash_table (info)->dynamic_sections_created)
268 return true;
269
270 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
271 return false;
272
273 abfd = elf_hash_table (info)->dynobj;
274 bed = get_elf_backend_data (abfd);
275
276 flags = bed->dynamic_sec_flags;
277
278 /* A dynamically linked executable has a .interp section, but a
279 shared library does not. */
280 if (bfd_link_executable (info) && !info->nointerp)
281 {
282 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
283 flags | SEC_READONLY);
284 if (s == NULL)
285 return false;
286 }
287
288 /* Create sections to hold version informations. These are removed
289 if they are not needed. */
290 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
291 flags | SEC_READONLY);
292 if (s == NULL
293 || !bfd_set_section_alignment (s, bed->s->log_file_align))
294 return false;
295
296 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
297 flags | SEC_READONLY);
298 if (s == NULL
299 || !bfd_set_section_alignment (s, 1))
300 return false;
301
302 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
303 flags | SEC_READONLY);
304 if (s == NULL
305 || !bfd_set_section_alignment (s, bed->s->log_file_align))
306 return false;
307
308 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
309 flags | SEC_READONLY);
310 if (s == NULL
311 || !bfd_set_section_alignment (s, bed->s->log_file_align))
312 return false;
313 elf_hash_table (info)->dynsym = s;
314
315 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
316 flags | SEC_READONLY);
317 if (s == NULL)
318 return false;
319
320 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
321 if (s == NULL
322 || !bfd_set_section_alignment (s, bed->s->log_file_align))
323 return false;
324
325 /* The special symbol _DYNAMIC is always set to the start of the
326 .dynamic section. We could set _DYNAMIC in a linker script, but we
327 only want to define it if we are, in fact, creating a .dynamic
328 section. We don't want to define it if there is no .dynamic
329 section, since on some ELF platforms the start up code examines it
330 to decide how to initialize the process. */
331 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
332 elf_hash_table (info)->hdynamic = h;
333 if (h == NULL)
334 return false;
335
336 if (info->emit_hash)
337 {
338 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
339 flags | SEC_READONLY);
340 if (s == NULL
341 || !bfd_set_section_alignment (s, bed->s->log_file_align))
342 return false;
343 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
344 }
345
346 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
347 {
348 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
349 flags | SEC_READONLY);
350 if (s == NULL
351 || !bfd_set_section_alignment (s, bed->s->log_file_align))
352 return false;
353 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
354 4 32-bit words followed by variable count of 64-bit words, then
355 variable count of 32-bit words. */
356 if (bed->s->arch_size == 64)
357 elf_section_data (s)->this_hdr.sh_entsize = 0;
358 else
359 elf_section_data (s)->this_hdr.sh_entsize = 4;
360 }
361
362 if (info->enable_dt_relr)
363 {
364 s = bfd_make_section_anyway_with_flags (abfd, ".relr.dyn",
365 (bed->dynamic_sec_flags
366 | SEC_READONLY));
367 if (s == NULL
368 || !bfd_set_section_alignment (s, bed->s->log_file_align))
369 return false;
370 elf_hash_table (info)->srelrdyn = s;
371 }
372
373 /* Let the backend create the rest of the sections. This lets the
374 backend set the right flags. The backend will normally create
375 the .got and .plt sections. */
376 if (bed->elf_backend_create_dynamic_sections == NULL
377 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
378 return false;
379
380 elf_hash_table (info)->dynamic_sections_created = true;
381
382 return true;
383 }
384
385 /* Create dynamic sections when linking against a dynamic object. */
386
387 bool
388 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
389 {
390 flagword flags, pltflags;
391 struct elf_link_hash_entry *h;
392 asection *s;
393 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
394 struct elf_link_hash_table *htab = elf_hash_table (info);
395
396 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
397 .rel[a].bss sections. */
398 flags = bed->dynamic_sec_flags;
399
400 pltflags = flags;
401 if (bed->plt_not_loaded)
402 /* We do not clear SEC_ALLOC here because we still want the OS to
403 allocate space for the section; it's just that there's nothing
404 to read in from the object file. */
405 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
406 else
407 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
408 if (bed->plt_readonly)
409 pltflags |= SEC_READONLY;
410
411 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
412 if (s == NULL
413 || !bfd_set_section_alignment (s, bed->plt_alignment))
414 return false;
415 htab->splt = s;
416
417 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
418 .plt section. */
419 if (bed->want_plt_sym)
420 {
421 h = _bfd_elf_define_linkage_sym (abfd, info, s,
422 "_PROCEDURE_LINKAGE_TABLE_");
423 elf_hash_table (info)->hplt = h;
424 if (h == NULL)
425 return false;
426 }
427
428 s = bfd_make_section_anyway_with_flags (abfd,
429 (bed->rela_plts_and_copies_p
430 ? ".rela.plt" : ".rel.plt"),
431 flags | SEC_READONLY);
432 if (s == NULL
433 || !bfd_set_section_alignment (s, bed->s->log_file_align))
434 return false;
435 htab->srelplt = s;
436
437 if (! _bfd_elf_create_got_section (abfd, info))
438 return false;
439
440 if (bed->want_dynbss)
441 {
442 /* The .dynbss section is a place to put symbols which are defined
443 by dynamic objects, are referenced by regular objects, and are
444 not functions. We must allocate space for them in the process
445 image and use a R_*_COPY reloc to tell the dynamic linker to
446 initialize them at run time. The linker script puts the .dynbss
447 section into the .bss section of the final image. */
448 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
449 SEC_ALLOC | SEC_LINKER_CREATED);
450 if (s == NULL)
451 return false;
452 htab->sdynbss = s;
453
454 if (bed->want_dynrelro)
455 {
456 /* Similarly, but for symbols that were originally in read-only
457 sections. This section doesn't really need to have contents,
458 but make it like other .data.rel.ro sections. */
459 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
460 flags);
461 if (s == NULL)
462 return false;
463 htab->sdynrelro = s;
464 }
465
466 /* The .rel[a].bss section holds copy relocs. This section is not
467 normally needed. We need to create it here, though, so that the
468 linker will map it to an output section. We can't just create it
469 only if we need it, because we will not know whether we need it
470 until we have seen all the input files, and the first time the
471 main linker code calls BFD after examining all the input files
472 (size_dynamic_sections) the input sections have already been
473 mapped to the output sections. If the section turns out not to
474 be needed, we can discard it later. We will never need this
475 section when generating a shared object, since they do not use
476 copy relocs. */
477 if (bfd_link_executable (info))
478 {
479 s = bfd_make_section_anyway_with_flags (abfd,
480 (bed->rela_plts_and_copies_p
481 ? ".rela.bss" : ".rel.bss"),
482 flags | SEC_READONLY);
483 if (s == NULL
484 || !bfd_set_section_alignment (s, bed->s->log_file_align))
485 return false;
486 htab->srelbss = s;
487
488 if (bed->want_dynrelro)
489 {
490 s = (bfd_make_section_anyway_with_flags
491 (abfd, (bed->rela_plts_and_copies_p
492 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
493 flags | SEC_READONLY));
494 if (s == NULL
495 || !bfd_set_section_alignment (s, bed->s->log_file_align))
496 return false;
497 htab->sreldynrelro = s;
498 }
499 }
500 }
501
502 return true;
503 }
504 \f
505 /* Record a new dynamic symbol. We record the dynamic symbols as we
506 read the input files, since we need to have a list of all of them
507 before we can determine the final sizes of the output sections.
508 Note that we may actually call this function even though we are not
509 going to output any dynamic symbols; in some cases we know that a
510 symbol should be in the dynamic symbol table, but only if there is
511 one. */
512
513 bool
514 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
515 struct elf_link_hash_entry *h)
516 {
517 if (h->dynindx == -1)
518 {
519 struct elf_strtab_hash *dynstr;
520 char *p;
521 const char *name;
522 size_t indx;
523
524 if (h->root.type == bfd_link_hash_defined
525 || h->root.type == bfd_link_hash_defweak)
526 {
527 /* An IR symbol should not be made dynamic. */
528 if (h->root.u.def.section != NULL
529 && h->root.u.def.section->owner != NULL
530 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)
531 return true;
532 }
533
534 /* XXX: The ABI draft says the linker must turn hidden and
535 internal symbols into STB_LOCAL symbols when producing the
536 DSO. However, if ld.so honors st_other in the dynamic table,
537 this would not be necessary. */
538 switch (ELF_ST_VISIBILITY (h->other))
539 {
540 case STV_INTERNAL:
541 case STV_HIDDEN:
542 if (h->root.type != bfd_link_hash_undefined
543 && h->root.type != bfd_link_hash_undefweak)
544 {
545 h->forced_local = 1;
546 if (!elf_hash_table (info)->is_relocatable_executable
547 || ((h->root.type == bfd_link_hash_defined
548 || h->root.type == bfd_link_hash_defweak)
549 && h->root.u.def.section->owner != NULL
550 && h->root.u.def.section->owner->no_export)
551 || (h->root.type == bfd_link_hash_common
552 && h->root.u.c.p->section->owner != NULL
553 && h->root.u.c.p->section->owner->no_export))
554 return true;
555 }
556
557 default:
558 break;
559 }
560
561 h->dynindx = elf_hash_table (info)->dynsymcount;
562 ++elf_hash_table (info)->dynsymcount;
563
564 dynstr = elf_hash_table (info)->dynstr;
565 if (dynstr == NULL)
566 {
567 /* Create a strtab to hold the dynamic symbol names. */
568 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
569 if (dynstr == NULL)
570 return false;
571 }
572
573 /* We don't put any version information in the dynamic string
574 table. */
575 name = h->root.root.string;
576 p = strchr (name, ELF_VER_CHR);
577 if (p != NULL)
578 /* We know that the p points into writable memory. In fact,
579 there are only a few symbols that have read-only names, being
580 those like _GLOBAL_OFFSET_TABLE_ that are created specially
581 by the backends. Most symbols will have names pointing into
582 an ELF string table read from a file, or to objalloc memory. */
583 *p = 0;
584
585 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
586
587 if (p != NULL)
588 *p = ELF_VER_CHR;
589
590 if (indx == (size_t) -1)
591 return false;
592 h->dynstr_index = indx;
593 }
594
595 return true;
596 }
597 \f
598 /* Mark a symbol dynamic. */
599
600 static void
601 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
602 struct elf_link_hash_entry *h,
603 Elf_Internal_Sym *sym)
604 {
605 struct bfd_elf_dynamic_list *d = info->dynamic_list;
606
607 /* It may be called more than once on the same H. */
608 if(h->dynamic || bfd_link_relocatable (info))
609 return;
610
611 if ((info->dynamic_data
612 && (h->type == STT_OBJECT
613 || h->type == STT_COMMON
614 || (sym != NULL
615 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
616 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
617 || (d != NULL
618 && h->non_elf
619 && (*d->match) (&d->head, NULL, h->root.root.string)))
620 {
621 h->dynamic = 1;
622 /* NB: If a symbol is made dynamic by --dynamic-list, it has
623 non-IR reference. */
624 h->root.non_ir_ref_dynamic = 1;
625 }
626 }
627
628 /* Record an assignment to a symbol made by a linker script. We need
629 this in case some dynamic object refers to this symbol. */
630
631 bool
632 bfd_elf_record_link_assignment (bfd *output_bfd,
633 struct bfd_link_info *info,
634 const char *name,
635 bool provide,
636 bool hidden)
637 {
638 struct elf_link_hash_entry *h, *hv;
639 struct elf_link_hash_table *htab;
640 const struct elf_backend_data *bed;
641
642 if (!is_elf_hash_table (info->hash))
643 return true;
644
645 htab = elf_hash_table (info);
646 h = elf_link_hash_lookup (htab, name, !provide, true, false);
647 if (h == NULL)
648 return provide;
649
650 if (h->root.type == bfd_link_hash_warning)
651 h = (struct elf_link_hash_entry *) h->root.u.i.link;
652
653 if (h->versioned == unknown)
654 {
655 /* Set versioned if symbol version is unknown. */
656 char *version = strrchr (name, ELF_VER_CHR);
657 if (version)
658 {
659 if (version > name && version[-1] != ELF_VER_CHR)
660 h->versioned = versioned_hidden;
661 else
662 h->versioned = versioned;
663 }
664 }
665
666 /* Symbols defined in a linker script but not referenced anywhere
667 else will have non_elf set. */
668 if (h->non_elf)
669 {
670 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
671 h->non_elf = 0;
672 }
673
674 switch (h->root.type)
675 {
676 case bfd_link_hash_defined:
677 case bfd_link_hash_defweak:
678 case bfd_link_hash_common:
679 break;
680 case bfd_link_hash_undefweak:
681 case bfd_link_hash_undefined:
682 /* Since we're defining the symbol, don't let it seem to have not
683 been defined. record_dynamic_symbol and size_dynamic_sections
684 may depend on this. */
685 h->root.type = bfd_link_hash_new;
686 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
687 bfd_link_repair_undef_list (&htab->root);
688 break;
689 case bfd_link_hash_new:
690 break;
691 case bfd_link_hash_indirect:
692 /* We had a versioned symbol in a dynamic library. We make the
693 the versioned symbol point to this one. */
694 bed = get_elf_backend_data (output_bfd);
695 hv = h;
696 while (hv->root.type == bfd_link_hash_indirect
697 || hv->root.type == bfd_link_hash_warning)
698 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
699 /* We don't need to update h->root.u since linker will set them
700 later. */
701 h->root.type = bfd_link_hash_undefined;
702 hv->root.type = bfd_link_hash_indirect;
703 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
704 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
705 break;
706 default:
707 BFD_FAIL ();
708 return false;
709 }
710
711 /* If this symbol is being provided by the linker script, and it is
712 currently defined by a dynamic object, but not by a regular
713 object, then mark it as undefined so that the generic linker will
714 force the correct value. */
715 if (provide
716 && h->def_dynamic
717 && !h->def_regular)
718 h->root.type = bfd_link_hash_undefined;
719
720 /* If this symbol is currently defined by a dynamic object, but not
721 by a regular object, then clear out any version information because
722 the symbol will not be associated with the dynamic object any
723 more. */
724 if (h->def_dynamic && !h->def_regular)
725 h->verinfo.verdef = NULL;
726
727 /* Make sure this symbol is not garbage collected. */
728 h->mark = 1;
729
730 h->def_regular = 1;
731
732 if (hidden)
733 {
734 bed = get_elf_backend_data (output_bfd);
735 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
736 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
737 (*bed->elf_backend_hide_symbol) (info, h, true);
738 }
739
740 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
741 and executables. */
742 if (!bfd_link_relocatable (info)
743 && h->dynindx != -1
744 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
745 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
746 h->forced_local = 1;
747
748 if ((h->def_dynamic
749 || h->ref_dynamic
750 || bfd_link_dll (info)
751 || elf_hash_table (info)->is_relocatable_executable)
752 && !h->forced_local
753 && h->dynindx == -1)
754 {
755 if (! bfd_elf_link_record_dynamic_symbol (info, h))
756 return false;
757
758 /* If this is a weak defined symbol, and we know a corresponding
759 real symbol from the same dynamic object, make sure the real
760 symbol is also made into a dynamic symbol. */
761 if (h->is_weakalias)
762 {
763 struct elf_link_hash_entry *def = weakdef (h);
764
765 if (def->dynindx == -1
766 && !bfd_elf_link_record_dynamic_symbol (info, def))
767 return false;
768 }
769 }
770
771 return true;
772 }
773
774 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
775 success, and 2 on a failure caused by attempting to record a symbol
776 in a discarded section, eg. a discarded link-once section symbol. */
777
778 int
779 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
780 bfd *input_bfd,
781 long input_indx)
782 {
783 size_t amt;
784 struct elf_link_local_dynamic_entry *entry;
785 struct elf_link_hash_table *eht;
786 struct elf_strtab_hash *dynstr;
787 size_t dynstr_index;
788 char *name;
789 Elf_External_Sym_Shndx eshndx;
790 char esym[sizeof (Elf64_External_Sym)];
791
792 if (! is_elf_hash_table (info->hash))
793 return 0;
794
795 /* See if the entry exists already. */
796 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
797 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
798 return 1;
799
800 amt = sizeof (*entry);
801 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
802 if (entry == NULL)
803 return 0;
804
805 /* Go find the symbol, so that we can find it's name. */
806 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
807 1, input_indx, &entry->isym, esym, &eshndx))
808 {
809 bfd_release (input_bfd, entry);
810 return 0;
811 }
812
813 if (entry->isym.st_shndx != SHN_UNDEF
814 && entry->isym.st_shndx < SHN_LORESERVE)
815 {
816 asection *s;
817
818 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
819 if (s == NULL || bfd_is_abs_section (s->output_section))
820 {
821 /* We can still bfd_release here as nothing has done another
822 bfd_alloc. We can't do this later in this function. */
823 bfd_release (input_bfd, entry);
824 return 2;
825 }
826 }
827
828 name = (bfd_elf_string_from_elf_section
829 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
830 entry->isym.st_name));
831
832 dynstr = elf_hash_table (info)->dynstr;
833 if (dynstr == NULL)
834 {
835 /* Create a strtab to hold the dynamic symbol names. */
836 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
837 if (dynstr == NULL)
838 return 0;
839 }
840
841 dynstr_index = _bfd_elf_strtab_add (dynstr, name, false);
842 if (dynstr_index == (size_t) -1)
843 return 0;
844 entry->isym.st_name = dynstr_index;
845
846 eht = elf_hash_table (info);
847
848 entry->next = eht->dynlocal;
849 eht->dynlocal = entry;
850 entry->input_bfd = input_bfd;
851 entry->input_indx = input_indx;
852 eht->dynsymcount++;
853
854 /* Whatever binding the symbol had before, it's now local. */
855 entry->isym.st_info
856 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
857
858 /* The dynindx will be set at the end of size_dynamic_sections. */
859
860 return 1;
861 }
862
863 /* Return the dynindex of a local dynamic symbol. */
864
865 long
866 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
867 bfd *input_bfd,
868 long input_indx)
869 {
870 struct elf_link_local_dynamic_entry *e;
871
872 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
873 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
874 return e->dynindx;
875 return -1;
876 }
877
878 /* This function is used to renumber the dynamic symbols, if some of
879 them are removed because they are marked as local. This is called
880 via elf_link_hash_traverse. */
881
882 static bool
883 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
884 void *data)
885 {
886 size_t *count = (size_t *) data;
887
888 if (h->forced_local)
889 return true;
890
891 if (h->dynindx != -1)
892 h->dynindx = ++(*count);
893
894 return true;
895 }
896
897
898 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
899 STB_LOCAL binding. */
900
901 static bool
902 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
903 void *data)
904 {
905 size_t *count = (size_t *) data;
906
907 if (!h->forced_local)
908 return true;
909
910 if (h->dynindx != -1)
911 h->dynindx = ++(*count);
912
913 return true;
914 }
915
916 /* Return true if the dynamic symbol for a given section should be
917 omitted when creating a shared library. */
918 bool
919 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
920 struct bfd_link_info *info,
921 asection *p)
922 {
923 struct elf_link_hash_table *htab;
924 asection *ip;
925
926 switch (elf_section_data (p)->this_hdr.sh_type)
927 {
928 case SHT_PROGBITS:
929 case SHT_NOBITS:
930 /* If sh_type is yet undecided, assume it could be
931 SHT_PROGBITS/SHT_NOBITS. */
932 case SHT_NULL:
933 htab = elf_hash_table (info);
934 if (htab->text_index_section != NULL)
935 return p != htab->text_index_section && p != htab->data_index_section;
936
937 return (htab->dynobj != NULL
938 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
939 && ip->output_section == p);
940
941 /* There shouldn't be section relative relocations
942 against any other section. */
943 default:
944 return true;
945 }
946 }
947
948 bool
949 _bfd_elf_omit_section_dynsym_all
950 (bfd *output_bfd ATTRIBUTE_UNUSED,
951 struct bfd_link_info *info ATTRIBUTE_UNUSED,
952 asection *p ATTRIBUTE_UNUSED)
953 {
954 return true;
955 }
956
957 /* Assign dynsym indices. In a shared library we generate a section
958 symbol for each output section, which come first. Next come symbols
959 which have been forced to local binding. Then all of the back-end
960 allocated local dynamic syms, followed by the rest of the global
961 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
962 (This prevents the early call before elf_backend_init_index_section
963 and strip_excluded_output_sections setting dynindx for sections
964 that are stripped.) */
965
966 static unsigned long
967 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
968 struct bfd_link_info *info,
969 unsigned long *section_sym_count)
970 {
971 unsigned long dynsymcount = 0;
972 bool do_sec = section_sym_count != NULL;
973
974 if (bfd_link_pic (info)
975 || elf_hash_table (info)->is_relocatable_executable)
976 {
977 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
978 asection *p;
979 for (p = output_bfd->sections; p ; p = p->next)
980 if ((p->flags & SEC_EXCLUDE) == 0
981 && (p->flags & SEC_ALLOC) != 0
982 && elf_hash_table (info)->dynamic_relocs
983 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
984 {
985 ++dynsymcount;
986 if (do_sec)
987 elf_section_data (p)->dynindx = dynsymcount;
988 }
989 else if (do_sec)
990 elf_section_data (p)->dynindx = 0;
991 }
992 if (do_sec)
993 *section_sym_count = dynsymcount;
994
995 elf_link_hash_traverse (elf_hash_table (info),
996 elf_link_renumber_local_hash_table_dynsyms,
997 &dynsymcount);
998
999 if (elf_hash_table (info)->dynlocal)
1000 {
1001 struct elf_link_local_dynamic_entry *p;
1002 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
1003 p->dynindx = ++dynsymcount;
1004 }
1005 elf_hash_table (info)->local_dynsymcount = dynsymcount;
1006
1007 elf_link_hash_traverse (elf_hash_table (info),
1008 elf_link_renumber_hash_table_dynsyms,
1009 &dynsymcount);
1010
1011 /* There is an unused NULL entry at the head of the table which we
1012 must account for in our count even if the table is empty since it
1013 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
1014 .dynamic section. */
1015 dynsymcount++;
1016
1017 elf_hash_table (info)->dynsymcount = dynsymcount;
1018 return dynsymcount;
1019 }
1020
1021 /* Merge st_other field. */
1022
1023 static void
1024 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
1025 unsigned int st_other, asection *sec,
1026 bool definition, bool dynamic)
1027 {
1028 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1029
1030 /* If st_other has a processor-specific meaning, specific
1031 code might be needed here. */
1032 if (bed->elf_backend_merge_symbol_attribute)
1033 (*bed->elf_backend_merge_symbol_attribute) (h, st_other, definition,
1034 dynamic);
1035
1036 if (!dynamic)
1037 {
1038 unsigned symvis = ELF_ST_VISIBILITY (st_other);
1039 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1040
1041 /* Keep the most constraining visibility. Leave the remainder
1042 of the st_other field to elf_backend_merge_symbol_attribute. */
1043 if (symvis - 1 < hvis - 1)
1044 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1045 }
1046 else if (definition
1047 && ELF_ST_VISIBILITY (st_other) != STV_DEFAULT
1048 && (sec->flags & SEC_READONLY) == 0)
1049 h->protected_def = 1;
1050 }
1051
1052 /* This function is called when we want to merge a new symbol with an
1053 existing symbol. It handles the various cases which arise when we
1054 find a definition in a dynamic object, or when there is already a
1055 definition in a dynamic object. The new symbol is described by
1056 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1057 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1058 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1059 of an old common symbol. We set OVERRIDE if the old symbol is
1060 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1061 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1062 to change. By OK to change, we mean that we shouldn't warn if the
1063 type or size does change. */
1064
1065 static bool
1066 _bfd_elf_merge_symbol (bfd *abfd,
1067 struct bfd_link_info *info,
1068 const char *name,
1069 Elf_Internal_Sym *sym,
1070 asection **psec,
1071 bfd_vma *pvalue,
1072 struct elf_link_hash_entry **sym_hash,
1073 bfd **poldbfd,
1074 bool *pold_weak,
1075 unsigned int *pold_alignment,
1076 bool *skip,
1077 bfd **override,
1078 bool *type_change_ok,
1079 bool *size_change_ok,
1080 bool *matched)
1081 {
1082 asection *sec, *oldsec;
1083 struct elf_link_hash_entry *h;
1084 struct elf_link_hash_entry *hi;
1085 struct elf_link_hash_entry *flip;
1086 int bind;
1087 bfd *oldbfd;
1088 bool newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1089 bool newweak, oldweak, newfunc, oldfunc;
1090 const struct elf_backend_data *bed;
1091 char *new_version;
1092 bool default_sym = *matched;
1093 struct elf_link_hash_table *htab;
1094
1095 *skip = false;
1096 *override = NULL;
1097
1098 sec = *psec;
1099 bind = ELF_ST_BIND (sym->st_info);
1100
1101 if (! bfd_is_und_section (sec))
1102 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
1103 else
1104 h = ((struct elf_link_hash_entry *)
1105 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
1106 if (h == NULL)
1107 return false;
1108 *sym_hash = h;
1109
1110 bed = get_elf_backend_data (abfd);
1111
1112 /* NEW_VERSION is the symbol version of the new symbol. */
1113 if (h->versioned != unversioned)
1114 {
1115 /* Symbol version is unknown or versioned. */
1116 new_version = strrchr (name, ELF_VER_CHR);
1117 if (new_version)
1118 {
1119 if (h->versioned == unknown)
1120 {
1121 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1122 h->versioned = versioned_hidden;
1123 else
1124 h->versioned = versioned;
1125 }
1126 new_version += 1;
1127 if (new_version[0] == '\0')
1128 new_version = NULL;
1129 }
1130 else
1131 h->versioned = unversioned;
1132 }
1133 else
1134 new_version = NULL;
1135
1136 /* For merging, we only care about real symbols. But we need to make
1137 sure that indirect symbol dynamic flags are updated. */
1138 hi = h;
1139 while (h->root.type == bfd_link_hash_indirect
1140 || h->root.type == bfd_link_hash_warning)
1141 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1142
1143 if (!*matched)
1144 {
1145 if (hi == h || h->root.type == bfd_link_hash_new)
1146 *matched = true;
1147 else
1148 {
1149 /* OLD_HIDDEN is true if the existing symbol is only visible
1150 to the symbol with the same symbol version. NEW_HIDDEN is
1151 true if the new symbol is only visible to the symbol with
1152 the same symbol version. */
1153 bool old_hidden = h->versioned == versioned_hidden;
1154 bool new_hidden = hi->versioned == versioned_hidden;
1155 if (!old_hidden && !new_hidden)
1156 /* The new symbol matches the existing symbol if both
1157 aren't hidden. */
1158 *matched = true;
1159 else
1160 {
1161 /* OLD_VERSION is the symbol version of the existing
1162 symbol. */
1163 char *old_version;
1164
1165 if (h->versioned >= versioned)
1166 old_version = strrchr (h->root.root.string,
1167 ELF_VER_CHR) + 1;
1168 else
1169 old_version = NULL;
1170
1171 /* The new symbol matches the existing symbol if they
1172 have the same symbol version. */
1173 *matched = (old_version == new_version
1174 || (old_version != NULL
1175 && new_version != NULL
1176 && strcmp (old_version, new_version) == 0));
1177 }
1178 }
1179 }
1180
1181 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1182 existing symbol. */
1183
1184 oldbfd = NULL;
1185 oldsec = NULL;
1186 switch (h->root.type)
1187 {
1188 default:
1189 break;
1190
1191 case bfd_link_hash_undefined:
1192 case bfd_link_hash_undefweak:
1193 oldbfd = h->root.u.undef.abfd;
1194 break;
1195
1196 case bfd_link_hash_defined:
1197 case bfd_link_hash_defweak:
1198 oldbfd = h->root.u.def.section->owner;
1199 oldsec = h->root.u.def.section;
1200 break;
1201
1202 case bfd_link_hash_common:
1203 oldbfd = h->root.u.c.p->section->owner;
1204 oldsec = h->root.u.c.p->section;
1205 if (pold_alignment)
1206 *pold_alignment = h->root.u.c.p->alignment_power;
1207 break;
1208 }
1209 if (poldbfd && *poldbfd == NULL)
1210 *poldbfd = oldbfd;
1211
1212 /* Differentiate strong and weak symbols. */
1213 newweak = bind == STB_WEAK;
1214 oldweak = (h->root.type == bfd_link_hash_defweak
1215 || h->root.type == bfd_link_hash_undefweak);
1216 if (pold_weak)
1217 *pold_weak = oldweak;
1218
1219 /* We have to check it for every instance since the first few may be
1220 references and not all compilers emit symbol type for undefined
1221 symbols. */
1222 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1223
1224 htab = elf_hash_table (info);
1225
1226 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1227 respectively, is from a dynamic object. */
1228
1229 newdyn = (abfd->flags & DYNAMIC) != 0;
1230
1231 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1232 syms and defined syms in dynamic libraries respectively.
1233 ref_dynamic on the other hand can be set for a symbol defined in
1234 a dynamic library, and def_dynamic may not be set; When the
1235 definition in a dynamic lib is overridden by a definition in the
1236 executable use of the symbol in the dynamic lib becomes a
1237 reference to the executable symbol. */
1238 if (newdyn)
1239 {
1240 if (bfd_is_und_section (sec))
1241 {
1242 if (bind != STB_WEAK)
1243 {
1244 h->ref_dynamic_nonweak = 1;
1245 hi->ref_dynamic_nonweak = 1;
1246 }
1247 }
1248 else
1249 {
1250 /* Update the existing symbol only if they match. */
1251 if (*matched)
1252 h->dynamic_def = 1;
1253 hi->dynamic_def = 1;
1254 }
1255 }
1256
1257 /* If we just created the symbol, mark it as being an ELF symbol.
1258 Other than that, there is nothing to do--there is no merge issue
1259 with a newly defined symbol--so we just return. */
1260
1261 if (h->root.type == bfd_link_hash_new)
1262 {
1263 h->non_elf = 0;
1264 return true;
1265 }
1266
1267 /* In cases involving weak versioned symbols, we may wind up trying
1268 to merge a symbol with itself. Catch that here, to avoid the
1269 confusion that results if we try to override a symbol with
1270 itself. The additional tests catch cases like
1271 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1272 dynamic object, which we do want to handle here. */
1273 if (abfd == oldbfd
1274 && (newweak || oldweak)
1275 && ((abfd->flags & DYNAMIC) == 0
1276 || !h->def_regular))
1277 return true;
1278
1279 olddyn = false;
1280 if (oldbfd != NULL)
1281 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1282 else if (oldsec != NULL)
1283 {
1284 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1285 indices used by MIPS ELF. */
1286 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1287 }
1288
1289 /* Set non_ir_ref_dynamic only when not handling DT_NEEDED entries. */
1290 if (!htab->handling_dt_needed
1291 && oldbfd != NULL
1292 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN))
1293 {
1294 if (newdyn != olddyn)
1295 {
1296 /* Handle a case where plugin_notice won't be called and thus
1297 won't set the non_ir_ref flags on the first pass over
1298 symbols. */
1299 h->root.non_ir_ref_dynamic = true;
1300 hi->root.non_ir_ref_dynamic = true;
1301 }
1302 else if ((oldbfd->flags & BFD_PLUGIN) != 0
1303 && hi->root.type == bfd_link_hash_indirect)
1304 {
1305 /* Change indirect symbol from IR to undefined. */
1306 hi->root.type = bfd_link_hash_undefined;
1307 hi->root.u.undef.abfd = oldbfd;
1308 }
1309 }
1310
1311 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1312 respectively, appear to be a definition rather than reference. */
1313
1314 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1315
1316 olddef = (h->root.type != bfd_link_hash_undefined
1317 && h->root.type != bfd_link_hash_undefweak
1318 && h->root.type != bfd_link_hash_common);
1319
1320 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1321 respectively, appear to be a function. */
1322
1323 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1324 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1325
1326 oldfunc = (h->type != STT_NOTYPE
1327 && bed->is_function_type (h->type));
1328
1329 if (!(newfunc && oldfunc)
1330 && ELF_ST_TYPE (sym->st_info) != h->type
1331 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1332 && h->type != STT_NOTYPE
1333 && (newdef || bfd_is_com_section (sec))
1334 && (olddef || h->root.type == bfd_link_hash_common))
1335 {
1336 /* If creating a default indirect symbol ("foo" or "foo@") from
1337 a dynamic versioned definition ("foo@@") skip doing so if
1338 there is an existing regular definition with a different
1339 type. We don't want, for example, a "time" variable in the
1340 executable overriding a "time" function in a shared library. */
1341 if (newdyn
1342 && !olddyn)
1343 {
1344 *skip = true;
1345 return true;
1346 }
1347
1348 /* When adding a symbol from a regular object file after we have
1349 created indirect symbols, undo the indirection and any
1350 dynamic state. */
1351 if (hi != h
1352 && !newdyn
1353 && olddyn)
1354 {
1355 h = hi;
1356 (*bed->elf_backend_hide_symbol) (info, h, true);
1357 h->forced_local = 0;
1358 h->ref_dynamic = 0;
1359 h->def_dynamic = 0;
1360 h->dynamic_def = 0;
1361 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1362 {
1363 h->root.type = bfd_link_hash_undefined;
1364 h->root.u.undef.abfd = abfd;
1365 }
1366 else
1367 {
1368 h->root.type = bfd_link_hash_new;
1369 h->root.u.undef.abfd = NULL;
1370 }
1371 return true;
1372 }
1373 }
1374
1375 /* Check TLS symbols. We don't check undefined symbols introduced
1376 by "ld -u" which have no type (and oldbfd NULL), and we don't
1377 check symbols from plugins because they also have no type. */
1378 if (oldbfd != NULL
1379 && (oldbfd->flags & BFD_PLUGIN) == 0
1380 && (abfd->flags & BFD_PLUGIN) == 0
1381 && ELF_ST_TYPE (sym->st_info) != h->type
1382 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1383 {
1384 bfd *ntbfd, *tbfd;
1385 bool ntdef, tdef;
1386 asection *ntsec, *tsec;
1387
1388 if (h->type == STT_TLS)
1389 {
1390 ntbfd = abfd;
1391 ntsec = sec;
1392 ntdef = newdef;
1393 tbfd = oldbfd;
1394 tsec = oldsec;
1395 tdef = olddef;
1396 }
1397 else
1398 {
1399 ntbfd = oldbfd;
1400 ntsec = oldsec;
1401 ntdef = olddef;
1402 tbfd = abfd;
1403 tsec = sec;
1404 tdef = newdef;
1405 }
1406
1407 if (tdef && ntdef)
1408 _bfd_error_handler
1409 /* xgettext:c-format */
1410 (_("%s: TLS definition in %pB section %pA "
1411 "mismatches non-TLS definition in %pB section %pA"),
1412 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1413 else if (!tdef && !ntdef)
1414 _bfd_error_handler
1415 /* xgettext:c-format */
1416 (_("%s: TLS reference in %pB "
1417 "mismatches non-TLS reference in %pB"),
1418 h->root.root.string, tbfd, ntbfd);
1419 else if (tdef)
1420 _bfd_error_handler
1421 /* xgettext:c-format */
1422 (_("%s: TLS definition in %pB section %pA "
1423 "mismatches non-TLS reference in %pB"),
1424 h->root.root.string, tbfd, tsec, ntbfd);
1425 else
1426 _bfd_error_handler
1427 /* xgettext:c-format */
1428 (_("%s: TLS reference in %pB "
1429 "mismatches non-TLS definition in %pB section %pA"),
1430 h->root.root.string, tbfd, ntbfd, ntsec);
1431
1432 bfd_set_error (bfd_error_bad_value);
1433 return false;
1434 }
1435
1436 /* If the old symbol has non-default visibility, we ignore the new
1437 definition from a dynamic object. */
1438 if (newdyn
1439 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1440 && !bfd_is_und_section (sec))
1441 {
1442 *skip = true;
1443 /* Make sure this symbol is dynamic. */
1444 h->ref_dynamic = 1;
1445 hi->ref_dynamic = 1;
1446 /* A protected symbol has external availability. Make sure it is
1447 recorded as dynamic.
1448
1449 FIXME: Should we check type and size for protected symbol? */
1450 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1451 return bfd_elf_link_record_dynamic_symbol (info, h);
1452 else
1453 return true;
1454 }
1455 else if (!newdyn
1456 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1457 && h->def_dynamic)
1458 {
1459 /* If the new symbol with non-default visibility comes from a
1460 relocatable file and the old definition comes from a dynamic
1461 object, we remove the old definition. */
1462 if (hi->root.type == bfd_link_hash_indirect)
1463 {
1464 /* Handle the case where the old dynamic definition is
1465 default versioned. We need to copy the symbol info from
1466 the symbol with default version to the normal one if it
1467 was referenced before. */
1468 if (h->ref_regular)
1469 {
1470 hi->root.type = h->root.type;
1471 h->root.type = bfd_link_hash_indirect;
1472 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1473
1474 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1475 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1476 {
1477 /* If the new symbol is hidden or internal, completely undo
1478 any dynamic link state. */
1479 (*bed->elf_backend_hide_symbol) (info, h, true);
1480 h->forced_local = 0;
1481 h->ref_dynamic = 0;
1482 }
1483 else
1484 h->ref_dynamic = 1;
1485
1486 h->def_dynamic = 0;
1487 /* FIXME: Should we check type and size for protected symbol? */
1488 h->size = 0;
1489 h->type = 0;
1490
1491 h = hi;
1492 }
1493 else
1494 h = hi;
1495 }
1496
1497 /* If the old symbol was undefined before, then it will still be
1498 on the undefs list. If the new symbol is undefined or
1499 common, we can't make it bfd_link_hash_new here, because new
1500 undefined or common symbols will be added to the undefs list
1501 by _bfd_generic_link_add_one_symbol. Symbols may not be
1502 added twice to the undefs list. Also, if the new symbol is
1503 undefweak then we don't want to lose the strong undef. */
1504 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1505 {
1506 h->root.type = bfd_link_hash_undefined;
1507 h->root.u.undef.abfd = abfd;
1508 }
1509 else
1510 {
1511 h->root.type = bfd_link_hash_new;
1512 h->root.u.undef.abfd = NULL;
1513 }
1514
1515 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1516 {
1517 /* If the new symbol is hidden or internal, completely undo
1518 any dynamic link state. */
1519 (*bed->elf_backend_hide_symbol) (info, h, true);
1520 h->forced_local = 0;
1521 h->ref_dynamic = 0;
1522 }
1523 else
1524 h->ref_dynamic = 1;
1525 h->def_dynamic = 0;
1526 /* FIXME: Should we check type and size for protected symbol? */
1527 h->size = 0;
1528 h->type = 0;
1529 return true;
1530 }
1531
1532 /* If a new weak symbol definition comes from a regular file and the
1533 old symbol comes from a dynamic library, we treat the new one as
1534 strong. Similarly, an old weak symbol definition from a regular
1535 file is treated as strong when the new symbol comes from a dynamic
1536 library. Further, an old weak symbol from a dynamic library is
1537 treated as strong if the new symbol is from a dynamic library.
1538 This reflects the way glibc's ld.so works.
1539
1540 Also allow a weak symbol to override a linker script symbol
1541 defined by an early pass over the script. This is done so the
1542 linker knows the symbol is defined in an object file, for the
1543 DEFINED script function.
1544
1545 Do this before setting *type_change_ok or *size_change_ok so that
1546 we warn properly when dynamic library symbols are overridden. */
1547
1548 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1549 newweak = false;
1550 if (olddef && newdyn)
1551 oldweak = false;
1552
1553 /* Allow changes between different types of function symbol. */
1554 if (newfunc && oldfunc)
1555 *type_change_ok = true;
1556
1557 /* It's OK to change the type if either the existing symbol or the
1558 new symbol is weak. A type change is also OK if the old symbol
1559 is undefined and the new symbol is defined. */
1560
1561 if (oldweak
1562 || newweak
1563 || (newdef
1564 && h->root.type == bfd_link_hash_undefined))
1565 *type_change_ok = true;
1566
1567 /* It's OK to change the size if either the existing symbol or the
1568 new symbol is weak, or if the old symbol is undefined. */
1569
1570 if (*type_change_ok
1571 || h->root.type == bfd_link_hash_undefined)
1572 *size_change_ok = true;
1573
1574 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1575 symbol, respectively, appears to be a common symbol in a dynamic
1576 object. If a symbol appears in an uninitialized section, and is
1577 not weak, and is not a function, then it may be a common symbol
1578 which was resolved when the dynamic object was created. We want
1579 to treat such symbols specially, because they raise special
1580 considerations when setting the symbol size: if the symbol
1581 appears as a common symbol in a regular object, and the size in
1582 the regular object is larger, we must make sure that we use the
1583 larger size. This problematic case can always be avoided in C,
1584 but it must be handled correctly when using Fortran shared
1585 libraries.
1586
1587 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1588 likewise for OLDDYNCOMMON and OLDDEF.
1589
1590 Note that this test is just a heuristic, and that it is quite
1591 possible to have an uninitialized symbol in a shared object which
1592 is really a definition, rather than a common symbol. This could
1593 lead to some minor confusion when the symbol really is a common
1594 symbol in some regular object. However, I think it will be
1595 harmless. */
1596
1597 if (newdyn
1598 && newdef
1599 && !newweak
1600 && (sec->flags & SEC_ALLOC) != 0
1601 && (sec->flags & SEC_LOAD) == 0
1602 && sym->st_size > 0
1603 && !newfunc)
1604 newdyncommon = true;
1605 else
1606 newdyncommon = false;
1607
1608 if (olddyn
1609 && olddef
1610 && h->root.type == bfd_link_hash_defined
1611 && h->def_dynamic
1612 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1613 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1614 && h->size > 0
1615 && !oldfunc)
1616 olddyncommon = true;
1617 else
1618 olddyncommon = false;
1619
1620 /* We now know everything about the old and new symbols. We ask the
1621 backend to check if we can merge them. */
1622 if (bed->merge_symbol != NULL)
1623 {
1624 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1625 return false;
1626 sec = *psec;
1627 }
1628
1629 /* There are multiple definitions of a normal symbol. Skip the
1630 default symbol as well as definition from an IR object. */
1631 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1632 && !default_sym && h->def_regular
1633 && !(oldbfd != NULL
1634 && (oldbfd->flags & BFD_PLUGIN) != 0
1635 && (abfd->flags & BFD_PLUGIN) == 0))
1636 {
1637 /* Handle a multiple definition. */
1638 (*info->callbacks->multiple_definition) (info, &h->root,
1639 abfd, sec, *pvalue);
1640 *skip = true;
1641 return true;
1642 }
1643
1644 /* If both the old and the new symbols look like common symbols in a
1645 dynamic object, set the size of the symbol to the larger of the
1646 two. */
1647
1648 if (olddyncommon
1649 && newdyncommon
1650 && sym->st_size != h->size)
1651 {
1652 /* Since we think we have two common symbols, issue a multiple
1653 common warning if desired. Note that we only warn if the
1654 size is different. If the size is the same, we simply let
1655 the old symbol override the new one as normally happens with
1656 symbols defined in dynamic objects. */
1657
1658 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1659 bfd_link_hash_common, sym->st_size);
1660 if (sym->st_size > h->size)
1661 h->size = sym->st_size;
1662
1663 *size_change_ok = true;
1664 }
1665
1666 /* If we are looking at a dynamic object, and we have found a
1667 definition, we need to see if the symbol was already defined by
1668 some other object. If so, we want to use the existing
1669 definition, and we do not want to report a multiple symbol
1670 definition error; we do this by clobbering *PSEC to be
1671 bfd_und_section_ptr.
1672
1673 We treat a common symbol as a definition if the symbol in the
1674 shared library is a function, since common symbols always
1675 represent variables; this can cause confusion in principle, but
1676 any such confusion would seem to indicate an erroneous program or
1677 shared library. We also permit a common symbol in a regular
1678 object to override a weak symbol in a shared object. */
1679
1680 if (newdyn
1681 && newdef
1682 && (olddef
1683 || (h->root.type == bfd_link_hash_common
1684 && (newweak || newfunc))))
1685 {
1686 *override = abfd;
1687 newdef = false;
1688 newdyncommon = false;
1689
1690 *psec = sec = bfd_und_section_ptr;
1691 *size_change_ok = true;
1692
1693 /* If we get here when the old symbol is a common symbol, then
1694 we are explicitly letting it override a weak symbol or
1695 function in a dynamic object, and we don't want to warn about
1696 a type change. If the old symbol is a defined symbol, a type
1697 change warning may still be appropriate. */
1698
1699 if (h->root.type == bfd_link_hash_common)
1700 *type_change_ok = true;
1701 }
1702
1703 /* Handle the special case of an old common symbol merging with a
1704 new symbol which looks like a common symbol in a shared object.
1705 We change *PSEC and *PVALUE to make the new symbol look like a
1706 common symbol, and let _bfd_generic_link_add_one_symbol do the
1707 right thing. */
1708
1709 if (newdyncommon
1710 && h->root.type == bfd_link_hash_common)
1711 {
1712 *override = oldbfd;
1713 newdef = false;
1714 newdyncommon = false;
1715 *pvalue = sym->st_size;
1716 *psec = sec = bed->common_section (oldsec);
1717 *size_change_ok = true;
1718 }
1719
1720 /* Skip weak definitions of symbols that are already defined. */
1721 if (newdef && olddef && newweak)
1722 {
1723 /* Don't skip new non-IR weak syms. */
1724 if (!(oldbfd != NULL
1725 && (oldbfd->flags & BFD_PLUGIN) != 0
1726 && (abfd->flags & BFD_PLUGIN) == 0))
1727 {
1728 newdef = false;
1729 *skip = true;
1730 }
1731
1732 /* Merge st_other. If the symbol already has a dynamic index,
1733 but visibility says it should not be visible, turn it into a
1734 local symbol. */
1735 elf_merge_st_other (abfd, h, sym->st_other, sec, newdef, newdyn);
1736 if (h->dynindx != -1)
1737 switch (ELF_ST_VISIBILITY (h->other))
1738 {
1739 case STV_INTERNAL:
1740 case STV_HIDDEN:
1741 (*bed->elf_backend_hide_symbol) (info, h, true);
1742 break;
1743 }
1744 }
1745
1746 /* If the old symbol is from a dynamic object, and the new symbol is
1747 a definition which is not from a dynamic object, then the new
1748 symbol overrides the old symbol. Symbols from regular files
1749 always take precedence over symbols from dynamic objects, even if
1750 they are defined after the dynamic object in the link.
1751
1752 As above, we again permit a common symbol in a regular object to
1753 override a definition in a shared object if the shared object
1754 symbol is a function or is weak. */
1755
1756 flip = NULL;
1757 if (!newdyn
1758 && (newdef
1759 || (bfd_is_com_section (sec)
1760 && (oldweak || oldfunc)))
1761 && olddyn
1762 && olddef
1763 && h->def_dynamic)
1764 {
1765 /* Change the hash table entry to undefined, and let
1766 _bfd_generic_link_add_one_symbol do the right thing with the
1767 new definition. */
1768
1769 h->root.type = bfd_link_hash_undefined;
1770 h->root.u.undef.abfd = h->root.u.def.section->owner;
1771 *size_change_ok = true;
1772
1773 olddef = false;
1774 olddyncommon = false;
1775
1776 /* We again permit a type change when a common symbol may be
1777 overriding a function. */
1778
1779 if (bfd_is_com_section (sec))
1780 {
1781 if (oldfunc)
1782 {
1783 /* If a common symbol overrides a function, make sure
1784 that it isn't defined dynamically nor has type
1785 function. */
1786 h->def_dynamic = 0;
1787 h->type = STT_NOTYPE;
1788 }
1789 *type_change_ok = true;
1790 }
1791
1792 if (hi->root.type == bfd_link_hash_indirect)
1793 flip = hi;
1794 else
1795 /* This union may have been set to be non-NULL when this symbol
1796 was seen in a dynamic object. We must force the union to be
1797 NULL, so that it is correct for a regular symbol. */
1798 h->verinfo.vertree = NULL;
1799 }
1800
1801 /* Handle the special case of a new common symbol merging with an
1802 old symbol that looks like it might be a common symbol defined in
1803 a shared object. Note that we have already handled the case in
1804 which a new common symbol should simply override the definition
1805 in the shared library. */
1806
1807 if (! newdyn
1808 && bfd_is_com_section (sec)
1809 && olddyncommon)
1810 {
1811 /* It would be best if we could set the hash table entry to a
1812 common symbol, but we don't know what to use for the section
1813 or the alignment. */
1814 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1815 bfd_link_hash_common, sym->st_size);
1816
1817 /* If the presumed common symbol in the dynamic object is
1818 larger, pretend that the new symbol has its size. */
1819
1820 if (h->size > *pvalue)
1821 *pvalue = h->size;
1822
1823 /* We need to remember the alignment required by the symbol
1824 in the dynamic object. */
1825 BFD_ASSERT (pold_alignment);
1826 *pold_alignment = h->root.u.def.section->alignment_power;
1827
1828 olddef = false;
1829 olddyncommon = false;
1830
1831 h->root.type = bfd_link_hash_undefined;
1832 h->root.u.undef.abfd = h->root.u.def.section->owner;
1833
1834 *size_change_ok = true;
1835 *type_change_ok = true;
1836
1837 if (hi->root.type == bfd_link_hash_indirect)
1838 flip = hi;
1839 else
1840 h->verinfo.vertree = NULL;
1841 }
1842
1843 if (flip != NULL)
1844 {
1845 /* Handle the case where we had a versioned symbol in a dynamic
1846 library and now find a definition in a normal object. In this
1847 case, we make the versioned symbol point to the normal one. */
1848 flip->root.type = h->root.type;
1849 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1850 h->root.type = bfd_link_hash_indirect;
1851 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1852 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1853 if (h->def_dynamic)
1854 {
1855 h->def_dynamic = 0;
1856 flip->ref_dynamic = 1;
1857 }
1858 }
1859
1860 return true;
1861 }
1862
1863 /* This function is called to create an indirect symbol from the
1864 default for the symbol with the default version if needed. The
1865 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1866 set DYNSYM if the new indirect symbol is dynamic. */
1867
1868 static bool
1869 _bfd_elf_add_default_symbol (bfd *abfd,
1870 struct bfd_link_info *info,
1871 struct elf_link_hash_entry *h,
1872 const char *name,
1873 Elf_Internal_Sym *sym,
1874 asection *sec,
1875 bfd_vma value,
1876 bfd **poldbfd,
1877 bool *dynsym)
1878 {
1879 bool type_change_ok;
1880 bool size_change_ok;
1881 bool skip;
1882 char *shortname;
1883 struct elf_link_hash_entry *hi;
1884 struct bfd_link_hash_entry *bh;
1885 const struct elf_backend_data *bed;
1886 bool collect;
1887 bool dynamic;
1888 bfd *override;
1889 char *p;
1890 size_t len, shortlen;
1891 asection *tmp_sec;
1892 bool matched;
1893
1894 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1895 return true;
1896
1897 /* If this symbol has a version, and it is the default version, we
1898 create an indirect symbol from the default name to the fully
1899 decorated name. This will cause external references which do not
1900 specify a version to be bound to this version of the symbol. */
1901 p = strchr (name, ELF_VER_CHR);
1902 if (h->versioned == unknown)
1903 {
1904 if (p == NULL)
1905 {
1906 h->versioned = unversioned;
1907 return true;
1908 }
1909 else
1910 {
1911 if (p[1] != ELF_VER_CHR)
1912 {
1913 h->versioned = versioned_hidden;
1914 return true;
1915 }
1916 else
1917 h->versioned = versioned;
1918 }
1919 }
1920 else
1921 {
1922 /* PR ld/19073: We may see an unversioned definition after the
1923 default version. */
1924 if (p == NULL)
1925 return true;
1926 }
1927
1928 bed = get_elf_backend_data (abfd);
1929 collect = bed->collect;
1930 dynamic = (abfd->flags & DYNAMIC) != 0;
1931
1932 shortlen = p - name;
1933 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1934 if (shortname == NULL)
1935 return false;
1936 memcpy (shortname, name, shortlen);
1937 shortname[shortlen] = '\0';
1938
1939 /* We are going to create a new symbol. Merge it with any existing
1940 symbol with this name. For the purposes of the merge, act as
1941 though we were defining the symbol we just defined, although we
1942 actually going to define an indirect symbol. */
1943 type_change_ok = false;
1944 size_change_ok = false;
1945 matched = true;
1946 tmp_sec = sec;
1947 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1948 &hi, poldbfd, NULL, NULL, &skip, &override,
1949 &type_change_ok, &size_change_ok, &matched))
1950 return false;
1951
1952 if (skip)
1953 goto nondefault;
1954
1955 if (hi->def_regular || ELF_COMMON_DEF_P (hi))
1956 {
1957 /* If the undecorated symbol will have a version added by a
1958 script different to H, then don't indirect to/from the
1959 undecorated symbol. This isn't ideal because we may not yet
1960 have seen symbol versions, if given by a script on the
1961 command line rather than via --version-script. */
1962 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1963 {
1964 bool hide;
1965
1966 hi->verinfo.vertree
1967 = bfd_find_version_for_sym (info->version_info,
1968 hi->root.root.string, &hide);
1969 if (hi->verinfo.vertree != NULL && hide)
1970 {
1971 (*bed->elf_backend_hide_symbol) (info, hi, true);
1972 goto nondefault;
1973 }
1974 }
1975 if (hi->verinfo.vertree != NULL
1976 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1977 goto nondefault;
1978 }
1979
1980 if (! override)
1981 {
1982 /* Add the default symbol if not performing a relocatable link. */
1983 if (! bfd_link_relocatable (info))
1984 {
1985 bh = &hi->root;
1986 if (bh->type == bfd_link_hash_defined
1987 && bh->u.def.section->owner != NULL
1988 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1989 {
1990 /* Mark the previous definition from IR object as
1991 undefined so that the generic linker will override
1992 it. */
1993 bh->type = bfd_link_hash_undefined;
1994 bh->u.undef.abfd = bh->u.def.section->owner;
1995 }
1996 if (! (_bfd_generic_link_add_one_symbol
1997 (info, abfd, shortname, BSF_INDIRECT,
1998 bfd_ind_section_ptr,
1999 0, name, false, collect, &bh)))
2000 return false;
2001 hi = (struct elf_link_hash_entry *) bh;
2002 }
2003 }
2004 else
2005 {
2006 /* In this case the symbol named SHORTNAME is overriding the
2007 indirect symbol we want to add. We were planning on making
2008 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
2009 is the name without a version. NAME is the fully versioned
2010 name, and it is the default version.
2011
2012 Overriding means that we already saw a definition for the
2013 symbol SHORTNAME in a regular object, and it is overriding
2014 the symbol defined in the dynamic object.
2015
2016 When this happens, we actually want to change NAME, the
2017 symbol we just added, to refer to SHORTNAME. This will cause
2018 references to NAME in the shared object to become references
2019 to SHORTNAME in the regular object. This is what we expect
2020 when we override a function in a shared object: that the
2021 references in the shared object will be mapped to the
2022 definition in the regular object. */
2023
2024 while (hi->root.type == bfd_link_hash_indirect
2025 || hi->root.type == bfd_link_hash_warning)
2026 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2027
2028 h->root.type = bfd_link_hash_indirect;
2029 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
2030 if (h->def_dynamic)
2031 {
2032 h->def_dynamic = 0;
2033 hi->ref_dynamic = 1;
2034 if (hi->ref_regular
2035 || hi->def_regular)
2036 {
2037 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
2038 return false;
2039 }
2040 }
2041
2042 /* Now set HI to H, so that the following code will set the
2043 other fields correctly. */
2044 hi = h;
2045 }
2046
2047 /* Check if HI is a warning symbol. */
2048 if (hi->root.type == bfd_link_hash_warning)
2049 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2050
2051 /* If there is a duplicate definition somewhere, then HI may not
2052 point to an indirect symbol. We will have reported an error to
2053 the user in that case. */
2054
2055 if (hi->root.type == bfd_link_hash_indirect)
2056 {
2057 struct elf_link_hash_entry *ht;
2058
2059 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2060 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2061
2062 /* If we first saw a reference to SHORTNAME with non-default
2063 visibility, merge that visibility to the @@VER symbol. */
2064 elf_merge_st_other (abfd, ht, hi->other, sec, true, dynamic);
2065
2066 /* A reference to the SHORTNAME symbol from a dynamic library
2067 will be satisfied by the versioned symbol at runtime. In
2068 effect, we have a reference to the versioned symbol. */
2069 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2070 hi->dynamic_def |= ht->dynamic_def;
2071
2072 /* See if the new flags lead us to realize that the symbol must
2073 be dynamic. */
2074 if (! *dynsym)
2075 {
2076 if (! dynamic)
2077 {
2078 if (! bfd_link_executable (info)
2079 || hi->def_dynamic
2080 || hi->ref_dynamic)
2081 *dynsym = true;
2082 }
2083 else
2084 {
2085 if (hi->ref_regular)
2086 *dynsym = true;
2087 }
2088 }
2089 }
2090
2091 /* We also need to define an indirection from the nondefault version
2092 of the symbol. */
2093
2094 nondefault:
2095 len = strlen (name);
2096 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2097 if (shortname == NULL)
2098 return false;
2099 memcpy (shortname, name, shortlen);
2100 memcpy (shortname + shortlen, p + 1, len - shortlen);
2101
2102 /* Once again, merge with any existing symbol. */
2103 type_change_ok = false;
2104 size_change_ok = false;
2105 tmp_sec = sec;
2106 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2107 &hi, poldbfd, NULL, NULL, &skip, &override,
2108 &type_change_ok, &size_change_ok, &matched))
2109 return false;
2110
2111 if (skip)
2112 {
2113 if (!dynamic
2114 && h->root.type == bfd_link_hash_defweak
2115 && hi->root.type == bfd_link_hash_defined)
2116 {
2117 /* We are handling a weak sym@@ver and attempting to define
2118 a weak sym@ver, but _bfd_elf_merge_symbol said to skip the
2119 new weak sym@ver because there is already a strong sym@ver.
2120 However, sym@ver and sym@@ver are really the same symbol.
2121 The existing strong sym@ver ought to override sym@@ver. */
2122 h->root.type = bfd_link_hash_defined;
2123 h->root.u.def.section = hi->root.u.def.section;
2124 h->root.u.def.value = hi->root.u.def.value;
2125 hi->root.type = bfd_link_hash_indirect;
2126 hi->root.u.i.link = &h->root;
2127 }
2128 else
2129 return true;
2130 }
2131 else if (override)
2132 {
2133 /* Here SHORTNAME is a versioned name, so we don't expect to see
2134 the type of override we do in the case above unless it is
2135 overridden by a versioned definition. */
2136 if (hi->root.type != bfd_link_hash_defined
2137 && hi->root.type != bfd_link_hash_defweak)
2138 _bfd_error_handler
2139 /* xgettext:c-format */
2140 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2141 abfd, shortname);
2142 return true;
2143 }
2144 else
2145 {
2146 bh = &hi->root;
2147 if (! (_bfd_generic_link_add_one_symbol
2148 (info, abfd, shortname, BSF_INDIRECT,
2149 bfd_ind_section_ptr, 0, name, false, collect, &bh)))
2150 return false;
2151 hi = (struct elf_link_hash_entry *) bh;
2152 }
2153
2154 /* If there is a duplicate definition somewhere, then HI may not
2155 point to an indirect symbol. We will have reported an error
2156 to the user in that case. */
2157 if (hi->root.type == bfd_link_hash_indirect)
2158 {
2159 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2160 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2161 hi->dynamic_def |= h->dynamic_def;
2162
2163 /* If we first saw a reference to @VER symbol with
2164 non-default visibility, merge that visibility to the
2165 @@VER symbol. */
2166 elf_merge_st_other (abfd, h, hi->other, sec, true, dynamic);
2167
2168 /* See if the new flags lead us to realize that the symbol
2169 must be dynamic. */
2170 if (! *dynsym)
2171 {
2172 if (! dynamic)
2173 {
2174 if (! bfd_link_executable (info)
2175 || hi->ref_dynamic)
2176 *dynsym = true;
2177 }
2178 else
2179 {
2180 if (hi->ref_regular)
2181 *dynsym = true;
2182 }
2183 }
2184 }
2185
2186 return true;
2187 }
2188 \f
2189 /* This routine is used to export all defined symbols into the dynamic
2190 symbol table. It is called via elf_link_hash_traverse. */
2191
2192 static bool
2193 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2194 {
2195 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2196
2197 /* Ignore indirect symbols. These are added by the versioning code. */
2198 if (h->root.type == bfd_link_hash_indirect)
2199 return true;
2200
2201 /* Ignore this if we won't export it. */
2202 if (!eif->info->export_dynamic && !h->dynamic)
2203 return true;
2204
2205 if (h->dynindx == -1
2206 && (h->def_regular || h->ref_regular)
2207 && ! bfd_hide_sym_by_version (eif->info->version_info,
2208 h->root.root.string))
2209 {
2210 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2211 {
2212 eif->failed = true;
2213 return false;
2214 }
2215 }
2216
2217 return true;
2218 }
2219 \f
2220 /* Return true if GLIBC_ABI_DT_RELR is added to the list of version
2221 dependencies successfully. GLIBC_ABI_DT_RELR will be put into the
2222 .gnu.version_r section. */
2223
2224 static bool
2225 elf_link_add_dt_relr_dependency (struct elf_find_verdep_info *rinfo)
2226 {
2227 bfd *glibc_bfd = NULL;
2228 Elf_Internal_Verneed *t;
2229 Elf_Internal_Vernaux *a;
2230 size_t amt;
2231 const char *relr = "GLIBC_ABI_DT_RELR";
2232
2233 /* See if we already know about GLIBC_PRIVATE_DT_RELR. */
2234 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2235 t != NULL;
2236 t = t->vn_nextref)
2237 {
2238 const char *soname = bfd_elf_get_dt_soname (t->vn_bfd);
2239 /* Skip the shared library if it isn't libc.so. */
2240 if (!soname || !startswith (soname, "libc.so."))
2241 continue;
2242
2243 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2244 {
2245 /* Return if GLIBC_PRIVATE_DT_RELR dependency has been
2246 added. */
2247 if (a->vna_nodename == relr
2248 || strcmp (a->vna_nodename, relr) == 0)
2249 return true;
2250
2251 /* Check if libc.so provides GLIBC_2.XX version. */
2252 if (!glibc_bfd && startswith (a->vna_nodename, "GLIBC_2."))
2253 glibc_bfd = t->vn_bfd;
2254 }
2255
2256 break;
2257 }
2258
2259 /* Skip if it isn't linked against glibc. */
2260 if (glibc_bfd == NULL)
2261 return true;
2262
2263 /* This is a new version. Add it to tree we are building. */
2264 if (t == NULL)
2265 {
2266 amt = sizeof *t;
2267 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd,
2268 amt);
2269 if (t == NULL)
2270 {
2271 rinfo->failed = true;
2272 return false;
2273 }
2274
2275 t->vn_bfd = glibc_bfd;
2276 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2277 elf_tdata (rinfo->info->output_bfd)->verref = t;
2278 }
2279
2280 amt = sizeof *a;
2281 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2282 if (a == NULL)
2283 {
2284 rinfo->failed = true;
2285 return false;
2286 }
2287
2288 a->vna_nodename = relr;
2289 a->vna_flags = 0;
2290 a->vna_nextptr = t->vn_auxptr;
2291 a->vna_other = rinfo->vers + 1;
2292 ++rinfo->vers;
2293
2294 t->vn_auxptr = a;
2295
2296 return true;
2297 }
2298
2299 /* Look through the symbols which are defined in other shared
2300 libraries and referenced here. Update the list of version
2301 dependencies. This will be put into the .gnu.version_r section.
2302 This function is called via elf_link_hash_traverse. */
2303
2304 static bool
2305 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2306 void *data)
2307 {
2308 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2309 Elf_Internal_Verneed *t;
2310 Elf_Internal_Vernaux *a;
2311 size_t amt;
2312
2313 /* We only care about symbols defined in shared objects with version
2314 information. */
2315 if (!h->def_dynamic
2316 || h->def_regular
2317 || h->dynindx == -1
2318 || h->verinfo.verdef == NULL
2319 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2320 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2321 return true;
2322
2323 /* See if we already know about this version. */
2324 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2325 t != NULL;
2326 t = t->vn_nextref)
2327 {
2328 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2329 continue;
2330
2331 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2332 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2333 return true;
2334
2335 break;
2336 }
2337
2338 /* This is a new version. Add it to tree we are building. */
2339
2340 if (t == NULL)
2341 {
2342 amt = sizeof *t;
2343 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2344 if (t == NULL)
2345 {
2346 rinfo->failed = true;
2347 return false;
2348 }
2349
2350 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2351 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2352 elf_tdata (rinfo->info->output_bfd)->verref = t;
2353 }
2354
2355 amt = sizeof *a;
2356 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2357 if (a == NULL)
2358 {
2359 rinfo->failed = true;
2360 return false;
2361 }
2362
2363 /* Note that we are copying a string pointer here, and testing it
2364 above. If bfd_elf_string_from_elf_section is ever changed to
2365 discard the string data when low in memory, this will have to be
2366 fixed. */
2367 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2368
2369 a->vna_flags = h->verinfo.verdef->vd_flags;
2370 a->vna_nextptr = t->vn_auxptr;
2371
2372 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2373 ++rinfo->vers;
2374
2375 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2376
2377 t->vn_auxptr = a;
2378
2379 return true;
2380 }
2381
2382 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2383 hidden. Set *T_P to NULL if there is no match. */
2384
2385 static bool
2386 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2387 struct elf_link_hash_entry *h,
2388 const char *version_p,
2389 struct bfd_elf_version_tree **t_p,
2390 bool *hide)
2391 {
2392 struct bfd_elf_version_tree *t;
2393
2394 /* Look for the version. If we find it, it is no longer weak. */
2395 for (t = info->version_info; t != NULL; t = t->next)
2396 {
2397 if (strcmp (t->name, version_p) == 0)
2398 {
2399 size_t len;
2400 char *alc;
2401 struct bfd_elf_version_expr *d;
2402
2403 len = version_p - h->root.root.string;
2404 alc = (char *) bfd_malloc (len);
2405 if (alc == NULL)
2406 return false;
2407 memcpy (alc, h->root.root.string, len - 1);
2408 alc[len - 1] = '\0';
2409 if (alc[len - 2] == ELF_VER_CHR)
2410 alc[len - 2] = '\0';
2411
2412 h->verinfo.vertree = t;
2413 t->used = true;
2414 d = NULL;
2415
2416 if (t->globals.list != NULL)
2417 d = (*t->match) (&t->globals, NULL, alc);
2418
2419 /* See if there is anything to force this symbol to
2420 local scope. */
2421 if (d == NULL && t->locals.list != NULL)
2422 {
2423 d = (*t->match) (&t->locals, NULL, alc);
2424 if (d != NULL
2425 && h->dynindx != -1
2426 && ! info->export_dynamic)
2427 *hide = true;
2428 }
2429
2430 free (alc);
2431 break;
2432 }
2433 }
2434
2435 *t_p = t;
2436
2437 return true;
2438 }
2439
2440 /* Return TRUE if the symbol H is hidden by version script. */
2441
2442 bool
2443 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2444 struct elf_link_hash_entry *h)
2445 {
2446 const char *p;
2447 bool hide = false;
2448 const struct elf_backend_data *bed
2449 = get_elf_backend_data (info->output_bfd);
2450
2451 /* Version script only hides symbols defined in regular objects. */
2452 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2453 return true;
2454
2455 p = strchr (h->root.root.string, ELF_VER_CHR);
2456 if (p != NULL && h->verinfo.vertree == NULL)
2457 {
2458 struct bfd_elf_version_tree *t;
2459
2460 ++p;
2461 if (*p == ELF_VER_CHR)
2462 ++p;
2463
2464 if (*p != '\0'
2465 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2466 && hide)
2467 {
2468 if (hide)
2469 (*bed->elf_backend_hide_symbol) (info, h, true);
2470 return true;
2471 }
2472 }
2473
2474 /* If we don't have a version for this symbol, see if we can find
2475 something. */
2476 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2477 {
2478 h->verinfo.vertree
2479 = bfd_find_version_for_sym (info->version_info,
2480 h->root.root.string, &hide);
2481 if (h->verinfo.vertree != NULL && hide)
2482 {
2483 (*bed->elf_backend_hide_symbol) (info, h, true);
2484 return true;
2485 }
2486 }
2487
2488 return false;
2489 }
2490
2491 /* Figure out appropriate versions for all the symbols. We may not
2492 have the version number script until we have read all of the input
2493 files, so until that point we don't know which symbols should be
2494 local. This function is called via elf_link_hash_traverse. */
2495
2496 static bool
2497 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2498 {
2499 struct elf_info_failed *sinfo;
2500 struct bfd_link_info *info;
2501 const struct elf_backend_data *bed;
2502 struct elf_info_failed eif;
2503 char *p;
2504 bool hide;
2505
2506 sinfo = (struct elf_info_failed *) data;
2507 info = sinfo->info;
2508
2509 /* Fix the symbol flags. */
2510 eif.failed = false;
2511 eif.info = info;
2512 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2513 {
2514 if (eif.failed)
2515 sinfo->failed = true;
2516 return false;
2517 }
2518
2519 bed = get_elf_backend_data (info->output_bfd);
2520
2521 /* We only need version numbers for symbols defined in regular
2522 objects. */
2523 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2524 {
2525 /* Hide symbols defined in discarded input sections. */
2526 if ((h->root.type == bfd_link_hash_defined
2527 || h->root.type == bfd_link_hash_defweak)
2528 && discarded_section (h->root.u.def.section))
2529 (*bed->elf_backend_hide_symbol) (info, h, true);
2530 return true;
2531 }
2532
2533 hide = false;
2534 p = strchr (h->root.root.string, ELF_VER_CHR);
2535 if (p != NULL && h->verinfo.vertree == NULL)
2536 {
2537 struct bfd_elf_version_tree *t;
2538
2539 ++p;
2540 if (*p == ELF_VER_CHR)
2541 ++p;
2542
2543 /* If there is no version string, we can just return out. */
2544 if (*p == '\0')
2545 return true;
2546
2547 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2548 {
2549 sinfo->failed = true;
2550 return false;
2551 }
2552
2553 if (hide)
2554 (*bed->elf_backend_hide_symbol) (info, h, true);
2555
2556 /* If we are building an application, we need to create a
2557 version node for this version. */
2558 if (t == NULL && bfd_link_executable (info))
2559 {
2560 struct bfd_elf_version_tree **pp;
2561 int version_index;
2562
2563 /* If we aren't going to export this symbol, we don't need
2564 to worry about it. */
2565 if (h->dynindx == -1)
2566 return true;
2567
2568 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2569 sizeof *t);
2570 if (t == NULL)
2571 {
2572 sinfo->failed = true;
2573 return false;
2574 }
2575
2576 t->name = p;
2577 t->name_indx = (unsigned int) -1;
2578 t->used = true;
2579
2580 version_index = 1;
2581 /* Don't count anonymous version tag. */
2582 if (sinfo->info->version_info != NULL
2583 && sinfo->info->version_info->vernum == 0)
2584 version_index = 0;
2585 for (pp = &sinfo->info->version_info;
2586 *pp != NULL;
2587 pp = &(*pp)->next)
2588 ++version_index;
2589 t->vernum = version_index;
2590
2591 *pp = t;
2592
2593 h->verinfo.vertree = t;
2594 }
2595 else if (t == NULL)
2596 {
2597 /* We could not find the version for a symbol when
2598 generating a shared archive. Return an error. */
2599 _bfd_error_handler
2600 /* xgettext:c-format */
2601 (_("%pB: version node not found for symbol %s"),
2602 info->output_bfd, h->root.root.string);
2603 bfd_set_error (bfd_error_bad_value);
2604 sinfo->failed = true;
2605 return false;
2606 }
2607 }
2608
2609 /* If we don't have a version for this symbol, see if we can find
2610 something. */
2611 if (!hide
2612 && h->verinfo.vertree == NULL
2613 && sinfo->info->version_info != NULL)
2614 {
2615 h->verinfo.vertree
2616 = bfd_find_version_for_sym (sinfo->info->version_info,
2617 h->root.root.string, &hide);
2618 if (h->verinfo.vertree != NULL && hide)
2619 (*bed->elf_backend_hide_symbol) (info, h, true);
2620 }
2621
2622 return true;
2623 }
2624 \f
2625 /* Read and swap the relocs from the section indicated by SHDR. This
2626 may be either a REL or a RELA section. The relocations are
2627 translated into RELA relocations and stored in INTERNAL_RELOCS,
2628 which should have already been allocated to contain enough space.
2629 The EXTERNAL_RELOCS are a buffer where the external form of the
2630 relocations should be stored.
2631
2632 Returns FALSE if something goes wrong. */
2633
2634 static bool
2635 elf_link_read_relocs_from_section (bfd *abfd,
2636 asection *sec,
2637 Elf_Internal_Shdr *shdr,
2638 void *external_relocs,
2639 Elf_Internal_Rela *internal_relocs)
2640 {
2641 const struct elf_backend_data *bed;
2642 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2643 const bfd_byte *erela;
2644 const bfd_byte *erelaend;
2645 Elf_Internal_Rela *irela;
2646 Elf_Internal_Shdr *symtab_hdr;
2647 size_t nsyms;
2648
2649 /* Position ourselves at the start of the section. */
2650 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2651 return false;
2652
2653 /* Read the relocations. */
2654 if (bfd_read (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2655 return false;
2656
2657 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2658 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2659
2660 bed = get_elf_backend_data (abfd);
2661
2662 /* Convert the external relocations to the internal format. */
2663 if (shdr->sh_entsize == bed->s->sizeof_rel)
2664 swap_in = bed->s->swap_reloc_in;
2665 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2666 swap_in = bed->s->swap_reloca_in;
2667 else
2668 {
2669 bfd_set_error (bfd_error_wrong_format);
2670 return false;
2671 }
2672
2673 erela = (const bfd_byte *) external_relocs;
2674 /* Setting erelaend like this and comparing with <= handles case of
2675 a fuzzed object with sh_size not a multiple of sh_entsize. */
2676 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2677 irela = internal_relocs;
2678 while (erela <= erelaend)
2679 {
2680 bfd_vma r_symndx;
2681
2682 (*swap_in) (abfd, erela, irela);
2683 r_symndx = ELF32_R_SYM (irela->r_info);
2684 if (bed->s->arch_size == 64)
2685 r_symndx >>= 24;
2686 if (nsyms > 0)
2687 {
2688 if ((size_t) r_symndx >= nsyms)
2689 {
2690 _bfd_error_handler
2691 /* xgettext:c-format */
2692 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2693 " for offset %#" PRIx64 " in section `%pA'"),
2694 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2695 (uint64_t) irela->r_offset, sec);
2696 bfd_set_error (bfd_error_bad_value);
2697 return false;
2698 }
2699 }
2700 else if (r_symndx != STN_UNDEF)
2701 {
2702 _bfd_error_handler
2703 /* xgettext:c-format */
2704 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2705 " for offset %#" PRIx64 " in section `%pA'"
2706 " when the object file has no symbol table"),
2707 abfd, (uint64_t) r_symndx,
2708 (uint64_t) irela->r_offset, sec);
2709 bfd_set_error (bfd_error_bad_value);
2710 return false;
2711 }
2712 irela += bed->s->int_rels_per_ext_rel;
2713 erela += shdr->sh_entsize;
2714 }
2715
2716 return true;
2717 }
2718
2719 /* Read and swap the relocs for a section O. They may have been
2720 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2721 not NULL, they are used as buffers to read into. They are known to
2722 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2723 the return value is allocated using either malloc or bfd_alloc,
2724 according to the KEEP_MEMORY argument. If O has two relocation
2725 sections (both REL and RELA relocations), then the REL_HDR
2726 relocations will appear first in INTERNAL_RELOCS, followed by the
2727 RELA_HDR relocations. If INFO isn't NULL and KEEP_MEMORY is true,
2728 update cache_size. */
2729
2730 Elf_Internal_Rela *
2731 _bfd_elf_link_info_read_relocs (bfd *abfd,
2732 struct bfd_link_info *info,
2733 asection *o,
2734 void *external_relocs,
2735 Elf_Internal_Rela *internal_relocs,
2736 bool keep_memory)
2737 {
2738 void *alloc1 = NULL;
2739 Elf_Internal_Rela *alloc2 = NULL;
2740 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2741 struct bfd_elf_section_data *esdo = elf_section_data (o);
2742 Elf_Internal_Rela *internal_rela_relocs;
2743
2744 if (esdo->relocs != NULL)
2745 return esdo->relocs;
2746
2747 if (o->reloc_count == 0)
2748 return NULL;
2749
2750 if (internal_relocs == NULL)
2751 {
2752 bfd_size_type size;
2753
2754 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2755 if (keep_memory)
2756 {
2757 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2758 if (info)
2759 info->cache_size += size;
2760 }
2761 else
2762 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2763 if (internal_relocs == NULL)
2764 goto error_return;
2765 }
2766
2767 if (external_relocs == NULL)
2768 {
2769 bfd_size_type size = 0;
2770
2771 if (esdo->rel.hdr)
2772 size += esdo->rel.hdr->sh_size;
2773 if (esdo->rela.hdr)
2774 size += esdo->rela.hdr->sh_size;
2775
2776 alloc1 = bfd_malloc (size);
2777 if (alloc1 == NULL)
2778 goto error_return;
2779 external_relocs = alloc1;
2780 }
2781
2782 internal_rela_relocs = internal_relocs;
2783 if (esdo->rel.hdr)
2784 {
2785 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2786 external_relocs,
2787 internal_relocs))
2788 goto error_return;
2789 external_relocs = (((bfd_byte *) external_relocs)
2790 + esdo->rel.hdr->sh_size);
2791 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2792 * bed->s->int_rels_per_ext_rel);
2793 }
2794
2795 if (esdo->rela.hdr
2796 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2797 external_relocs,
2798 internal_rela_relocs)))
2799 goto error_return;
2800
2801 /* Cache the results for next time, if we can. */
2802 if (keep_memory)
2803 esdo->relocs = internal_relocs;
2804
2805 free (alloc1);
2806
2807 /* Don't free alloc2, since if it was allocated we are passing it
2808 back (under the name of internal_relocs). */
2809
2810 return internal_relocs;
2811
2812 error_return:
2813 free (alloc1);
2814 if (alloc2 != NULL)
2815 {
2816 if (keep_memory)
2817 bfd_release (abfd, alloc2);
2818 else
2819 free (alloc2);
2820 }
2821 return NULL;
2822 }
2823
2824 /* This is similar to _bfd_elf_link_info_read_relocs, except for that
2825 NULL is passed to _bfd_elf_link_info_read_relocs for pointer to
2826 struct bfd_link_info. */
2827
2828 Elf_Internal_Rela *
2829 _bfd_elf_link_read_relocs (bfd *abfd,
2830 asection *o,
2831 void *external_relocs,
2832 Elf_Internal_Rela *internal_relocs,
2833 bool keep_memory)
2834 {
2835 return _bfd_elf_link_info_read_relocs (abfd, NULL, o, external_relocs,
2836 internal_relocs, keep_memory);
2837
2838 }
2839
2840 /* Compute the size of, and allocate space for, REL_HDR which is the
2841 section header for a section containing relocations for O. */
2842
2843 static bool
2844 _bfd_elf_link_size_reloc_section (bfd *abfd,
2845 struct bfd_elf_section_reloc_data *reldata)
2846 {
2847 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2848
2849 /* That allows us to calculate the size of the section. */
2850 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2851
2852 /* The contents field must last into write_object_contents, so we
2853 allocate it with bfd_alloc rather than malloc. Also since we
2854 cannot be sure that the contents will actually be filled in,
2855 we zero the allocated space. */
2856 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2857 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2858 return false;
2859
2860 if (reldata->hashes == NULL && reldata->count)
2861 {
2862 struct elf_link_hash_entry **p;
2863
2864 p = ((struct elf_link_hash_entry **)
2865 bfd_zmalloc (reldata->count * sizeof (*p)));
2866 if (p == NULL)
2867 return false;
2868
2869 reldata->hashes = p;
2870 }
2871
2872 return true;
2873 }
2874
2875 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2876 originated from the section given by INPUT_REL_HDR) to the
2877 OUTPUT_BFD. */
2878
2879 bool
2880 _bfd_elf_link_output_relocs (bfd *output_bfd,
2881 asection *input_section,
2882 Elf_Internal_Shdr *input_rel_hdr,
2883 Elf_Internal_Rela *internal_relocs,
2884 struct elf_link_hash_entry **rel_hash
2885 ATTRIBUTE_UNUSED)
2886 {
2887 Elf_Internal_Rela *irela;
2888 Elf_Internal_Rela *irelaend;
2889 bfd_byte *erel;
2890 struct bfd_elf_section_reloc_data *output_reldata;
2891 asection *output_section;
2892 const struct elf_backend_data *bed;
2893 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2894 struct bfd_elf_section_data *esdo;
2895
2896 output_section = input_section->output_section;
2897
2898 bed = get_elf_backend_data (output_bfd);
2899 esdo = elf_section_data (output_section);
2900 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2901 {
2902 output_reldata = &esdo->rel;
2903 swap_out = bed->s->swap_reloc_out;
2904 }
2905 else if (esdo->rela.hdr
2906 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2907 {
2908 output_reldata = &esdo->rela;
2909 swap_out = bed->s->swap_reloca_out;
2910 }
2911 else
2912 {
2913 _bfd_error_handler
2914 /* xgettext:c-format */
2915 (_("%pB: relocation size mismatch in %pB section %pA"),
2916 output_bfd, input_section->owner, input_section);
2917 bfd_set_error (bfd_error_wrong_format);
2918 return false;
2919 }
2920
2921 erel = output_reldata->hdr->contents;
2922 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2923 irela = internal_relocs;
2924 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2925 * bed->s->int_rels_per_ext_rel);
2926 while (irela < irelaend)
2927 {
2928 (*swap_out) (output_bfd, irela, erel);
2929 irela += bed->s->int_rels_per_ext_rel;
2930 erel += input_rel_hdr->sh_entsize;
2931 }
2932
2933 /* Bump the counter, so that we know where to add the next set of
2934 relocations. */
2935 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2936
2937 return true;
2938 }
2939 \f
2940 /* Make weak undefined symbols in PIE dynamic. */
2941
2942 bool
2943 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2944 struct elf_link_hash_entry *h)
2945 {
2946 if (bfd_link_pie (info)
2947 && h->dynindx == -1
2948 && h->root.type == bfd_link_hash_undefweak)
2949 return bfd_elf_link_record_dynamic_symbol (info, h);
2950
2951 return true;
2952 }
2953
2954 /* Fix up the flags for a symbol. This handles various cases which
2955 can only be fixed after all the input files are seen. This is
2956 currently called by both adjust_dynamic_symbol and
2957 assign_sym_version, which is unnecessary but perhaps more robust in
2958 the face of future changes. */
2959
2960 static bool
2961 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2962 struct elf_info_failed *eif)
2963 {
2964 const struct elf_backend_data *bed;
2965
2966 /* If this symbol was mentioned in a non-ELF file, try to set
2967 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2968 permit a non-ELF file to correctly refer to a symbol defined in
2969 an ELF dynamic object. */
2970 if (h->non_elf)
2971 {
2972 while (h->root.type == bfd_link_hash_indirect)
2973 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2974
2975 if (h->root.type != bfd_link_hash_defined
2976 && h->root.type != bfd_link_hash_defweak)
2977 {
2978 h->ref_regular = 1;
2979 h->ref_regular_nonweak = 1;
2980 }
2981 else
2982 {
2983 if (h->root.u.def.section->owner != NULL
2984 && (bfd_get_flavour (h->root.u.def.section->owner)
2985 == bfd_target_elf_flavour))
2986 {
2987 h->ref_regular = 1;
2988 h->ref_regular_nonweak = 1;
2989 }
2990 else
2991 h->def_regular = 1;
2992 }
2993
2994 if (h->dynindx == -1
2995 && (h->def_dynamic
2996 || h->ref_dynamic))
2997 {
2998 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2999 {
3000 eif->failed = true;
3001 return false;
3002 }
3003 }
3004 }
3005 else
3006 {
3007 /* Unfortunately, NON_ELF is only correct if the symbol
3008 was first seen in a non-ELF file. Fortunately, if the symbol
3009 was first seen in an ELF file, we're probably OK unless the
3010 symbol was defined in a non-ELF file. Catch that case here.
3011 FIXME: We're still in trouble if the symbol was first seen in
3012 a dynamic object, and then later in a non-ELF regular object. */
3013 if ((h->root.type == bfd_link_hash_defined
3014 || h->root.type == bfd_link_hash_defweak)
3015 && !h->def_regular
3016 && (h->root.u.def.section->owner != NULL
3017 ? (bfd_get_flavour (h->root.u.def.section->owner)
3018 != bfd_target_elf_flavour)
3019 : (bfd_is_abs_section (h->root.u.def.section)
3020 && !h->def_dynamic)))
3021 h->def_regular = 1;
3022 }
3023
3024 /* Backend specific symbol fixup. */
3025 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3026 if (bed->elf_backend_fixup_symbol
3027 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
3028 return false;
3029
3030 /* If this is a final link, and the symbol was defined as a common
3031 symbol in a regular object file, and there was no definition in
3032 any dynamic object, then the linker will have allocated space for
3033 the symbol in a common section but the DEF_REGULAR
3034 flag will not have been set. */
3035 if (h->root.type == bfd_link_hash_defined
3036 && !h->def_regular
3037 && h->ref_regular
3038 && !h->def_dynamic
3039 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
3040 h->def_regular = 1;
3041
3042 /* Symbols defined in discarded sections shouldn't be dynamic. */
3043 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
3044 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
3045
3046 /* If a weak undefined symbol has non-default visibility, we also
3047 hide it from the dynamic linker. */
3048 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3049 && h->root.type == bfd_link_hash_undefweak)
3050 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
3051
3052 /* A hidden versioned symbol in executable should be forced local if
3053 it is is locally defined, not referenced by shared library and not
3054 exported. */
3055 else if (bfd_link_executable (eif->info)
3056 && h->versioned == versioned_hidden
3057 && !eif->info->export_dynamic
3058 && !h->dynamic
3059 && !h->ref_dynamic
3060 && h->def_regular)
3061 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
3062
3063 /* If -Bsymbolic was used (which means to bind references to global
3064 symbols to the definition within the shared object), and this
3065 symbol was defined in a regular object, then it actually doesn't
3066 need a PLT entry. Likewise, if the symbol has non-default
3067 visibility. If the symbol has hidden or internal visibility, we
3068 will force it local. */
3069 else if (h->needs_plt
3070 && bfd_link_pic (eif->info)
3071 && is_elf_hash_table (eif->info->hash)
3072 && (SYMBOLIC_BIND (eif->info, h)
3073 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
3074 && h->def_regular)
3075 {
3076 bool force_local;
3077
3078 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3079 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
3080 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
3081 }
3082
3083 /* If this is a weak defined symbol in a dynamic object, and we know
3084 the real definition in the dynamic object, copy interesting flags
3085 over to the real definition. */
3086 if (h->is_weakalias)
3087 {
3088 struct elf_link_hash_entry *def = weakdef (h);
3089
3090 /* If the real definition is defined by a regular object file,
3091 don't do anything special. See the longer description in
3092 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
3093 bfd_link_hash_defined as it was when put on the alias list
3094 then it must have originally been a versioned symbol (for
3095 which a non-versioned indirect symbol is created) and later
3096 a definition for the non-versioned symbol is found. In that
3097 case the indirection is flipped with the versioned symbol
3098 becoming an indirect pointing at the non-versioned symbol.
3099 Thus, not an alias any more. */
3100 if (def->def_regular
3101 || def->root.type != bfd_link_hash_defined)
3102 {
3103 h = def;
3104 while ((h = h->u.alias) != def)
3105 h->is_weakalias = 0;
3106 }
3107 else
3108 {
3109 while (h->root.type == bfd_link_hash_indirect)
3110 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3111 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3112 || h->root.type == bfd_link_hash_defweak);
3113 BFD_ASSERT (def->def_dynamic);
3114 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
3115 }
3116 }
3117
3118 return true;
3119 }
3120
3121 /* Make the backend pick a good value for a dynamic symbol. This is
3122 called via elf_link_hash_traverse, and also calls itself
3123 recursively. */
3124
3125 static bool
3126 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
3127 {
3128 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3129 struct elf_link_hash_table *htab;
3130 const struct elf_backend_data *bed;
3131
3132 if (! is_elf_hash_table (eif->info->hash))
3133 return false;
3134
3135 /* Ignore indirect symbols. These are added by the versioning code. */
3136 if (h->root.type == bfd_link_hash_indirect)
3137 return true;
3138
3139 /* Fix the symbol flags. */
3140 if (! _bfd_elf_fix_symbol_flags (h, eif))
3141 return false;
3142
3143 htab = elf_hash_table (eif->info);
3144 bed = get_elf_backend_data (htab->dynobj);
3145
3146 if (h->root.type == bfd_link_hash_undefweak)
3147 {
3148 if (eif->info->dynamic_undefined_weak == 0)
3149 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
3150 else if (eif->info->dynamic_undefined_weak > 0
3151 && h->ref_regular
3152 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3153 && !bfd_hide_sym_by_version (eif->info->version_info,
3154 h->root.root.string))
3155 {
3156 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
3157 {
3158 eif->failed = true;
3159 return false;
3160 }
3161 }
3162 }
3163
3164 /* If this symbol does not require a PLT entry, and it is not
3165 defined by a dynamic object, or is not referenced by a regular
3166 object, ignore it. We do have to handle a weak defined symbol,
3167 even if no regular object refers to it, if we decided to add it
3168 to the dynamic symbol table. FIXME: Do we normally need to worry
3169 about symbols which are defined by one dynamic object and
3170 referenced by another one? */
3171 if (!h->needs_plt
3172 && h->type != STT_GNU_IFUNC
3173 && (h->def_regular
3174 || !h->def_dynamic
3175 || (!h->ref_regular
3176 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3177 {
3178 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3179 return true;
3180 }
3181
3182 /* If we've already adjusted this symbol, don't do it again. This
3183 can happen via a recursive call. */
3184 if (h->dynamic_adjusted)
3185 return true;
3186
3187 /* Don't look at this symbol again. Note that we must set this
3188 after checking the above conditions, because we may look at a
3189 symbol once, decide not to do anything, and then get called
3190 recursively later after REF_REGULAR is set below. */
3191 h->dynamic_adjusted = 1;
3192
3193 /* If this is a weak definition, and we know a real definition, and
3194 the real symbol is not itself defined by a regular object file,
3195 then get a good value for the real definition. We handle the
3196 real symbol first, for the convenience of the backend routine.
3197
3198 Note that there is a confusing case here. If the real definition
3199 is defined by a regular object file, we don't get the real symbol
3200 from the dynamic object, but we do get the weak symbol. If the
3201 processor backend uses a COPY reloc, then if some routine in the
3202 dynamic object changes the real symbol, we will not see that
3203 change in the corresponding weak symbol. This is the way other
3204 ELF linkers work as well, and seems to be a result of the shared
3205 library model.
3206
3207 I will clarify this issue. Most SVR4 shared libraries define the
3208 variable _timezone and define timezone as a weak synonym. The
3209 tzset call changes _timezone. If you write
3210 extern int timezone;
3211 int _timezone = 5;
3212 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3213 you might expect that, since timezone is a synonym for _timezone,
3214 the same number will print both times. However, if the processor
3215 backend uses a COPY reloc, then actually timezone will be copied
3216 into your process image, and, since you define _timezone
3217 yourself, _timezone will not. Thus timezone and _timezone will
3218 wind up at different memory locations. The tzset call will set
3219 _timezone, leaving timezone unchanged. */
3220
3221 if (h->is_weakalias)
3222 {
3223 struct elf_link_hash_entry *def = weakdef (h);
3224
3225 /* If we get to this point, there is an implicit reference to
3226 the alias by a regular object file via the weak symbol H. */
3227 def->ref_regular = 1;
3228
3229 /* Ensure that the backend adjust_dynamic_symbol function sees
3230 the strong alias before H by recursively calling ourselves. */
3231 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3232 return false;
3233 }
3234
3235 /* If a symbol has no type and no size and does not require a PLT
3236 entry, then we are probably about to do the wrong thing here: we
3237 are probably going to create a COPY reloc for an empty object.
3238 This case can arise when a shared object is built with assembly
3239 code, and the assembly code fails to set the symbol type. */
3240 if (h->size == 0
3241 && h->type == STT_NOTYPE
3242 && !h->needs_plt)
3243 _bfd_error_handler
3244 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3245 h->root.root.string);
3246
3247 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3248 {
3249 eif->failed = true;
3250 return false;
3251 }
3252
3253 return true;
3254 }
3255
3256 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3257 DYNBSS. */
3258
3259 bool
3260 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3261 struct elf_link_hash_entry *h,
3262 asection *dynbss)
3263 {
3264 unsigned int power_of_two;
3265 bfd_vma mask;
3266 asection *sec = h->root.u.def.section;
3267
3268 /* The section alignment of the definition is the maximum alignment
3269 requirement of symbols defined in the section. Since we don't
3270 know the symbol alignment requirement, we start with the
3271 maximum alignment and check low bits of the symbol address
3272 for the minimum alignment. */
3273 power_of_two = bfd_section_alignment (sec);
3274 mask = ((bfd_vma) 1 << power_of_two) - 1;
3275 while ((h->root.u.def.value & mask) != 0)
3276 {
3277 mask >>= 1;
3278 --power_of_two;
3279 }
3280
3281 if (power_of_two > bfd_section_alignment (dynbss))
3282 {
3283 /* Adjust the section alignment if needed. */
3284 if (!bfd_set_section_alignment (dynbss, power_of_two))
3285 return false;
3286 }
3287
3288 /* We make sure that the symbol will be aligned properly. */
3289 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3290
3291 /* Define the symbol as being at this point in DYNBSS. */
3292 h->root.u.def.section = dynbss;
3293 h->root.u.def.value = dynbss->size;
3294
3295 /* Increment the size of DYNBSS to make room for the symbol. */
3296 dynbss->size += h->size;
3297
3298 /* No error if extern_protected_data is true. */
3299 if (h->protected_def
3300 && (!info->extern_protected_data
3301 || (info->extern_protected_data < 0
3302 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3303 info->callbacks->einfo
3304 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3305 h->root.root.string);
3306
3307 return true;
3308 }
3309
3310 /* Adjust all external symbols pointing into SEC_MERGE sections
3311 to reflect the object merging within the sections. */
3312
3313 static bool
3314 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3315 {
3316 asection *sec;
3317
3318 if ((h->root.type == bfd_link_hash_defined
3319 || h->root.type == bfd_link_hash_defweak)
3320 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3321 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3322 {
3323 bfd *output_bfd = (bfd *) data;
3324
3325 h->root.u.def.value =
3326 _bfd_merged_section_offset (output_bfd,
3327 &h->root.u.def.section,
3328 elf_section_data (sec)->sec_info,
3329 h->root.u.def.value);
3330 }
3331
3332 return true;
3333 }
3334
3335 /* Returns false if the symbol referred to by H should be considered
3336 to resolve local to the current module, and true if it should be
3337 considered to bind dynamically. */
3338
3339 bool
3340 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3341 struct bfd_link_info *info,
3342 bool not_local_protected)
3343 {
3344 bool binding_stays_local_p;
3345 const struct elf_backend_data *bed;
3346 struct elf_link_hash_table *hash_table;
3347
3348 if (h == NULL)
3349 return false;
3350
3351 while (h->root.type == bfd_link_hash_indirect
3352 || h->root.type == bfd_link_hash_warning)
3353 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3354
3355 /* If it was forced local, then clearly it's not dynamic. */
3356 if (h->dynindx == -1)
3357 return false;
3358 if (h->forced_local)
3359 return false;
3360
3361 /* Identify the cases where name binding rules say that a
3362 visible symbol resolves locally. */
3363 binding_stays_local_p = (bfd_link_executable (info)
3364 || SYMBOLIC_BIND (info, h));
3365
3366 switch (ELF_ST_VISIBILITY (h->other))
3367 {
3368 case STV_INTERNAL:
3369 case STV_HIDDEN:
3370 return false;
3371
3372 case STV_PROTECTED:
3373 hash_table = elf_hash_table (info);
3374 if (!is_elf_hash_table (&hash_table->root))
3375 return false;
3376
3377 bed = get_elf_backend_data (hash_table->dynobj);
3378
3379 /* Proper resolution for function pointer equality may require
3380 that these symbols perhaps be resolved dynamically, even though
3381 we should be resolving them to the current module. */
3382 if (!not_local_protected || !bed->is_function_type (h->type))
3383 binding_stays_local_p = true;
3384 break;
3385
3386 default:
3387 break;
3388 }
3389
3390 /* If it isn't defined locally, then clearly it's dynamic. */
3391 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3392 return true;
3393
3394 /* Otherwise, the symbol is dynamic if binding rules don't tell
3395 us that it remains local. */
3396 return !binding_stays_local_p;
3397 }
3398
3399 /* Return true if the symbol referred to by H should be considered
3400 to resolve local to the current module, and false otherwise. Differs
3401 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3402 undefined symbols. The two functions are virtually identical except
3403 for the place where dynindx == -1 is tested. If that test is true,
3404 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3405 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3406 defined symbols.
3407 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3408 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3409 treatment of undefined weak symbols. For those that do not make
3410 undefined weak symbols dynamic, both functions may return false. */
3411
3412 bool
3413 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3414 struct bfd_link_info *info,
3415 bool local_protected)
3416 {
3417 const struct elf_backend_data *bed;
3418 struct elf_link_hash_table *hash_table;
3419
3420 /* If it's a local sym, of course we resolve locally. */
3421 if (h == NULL)
3422 return true;
3423
3424 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3425 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3426 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3427 return true;
3428
3429 /* Forced local symbols resolve locally. */
3430 if (h->forced_local)
3431 return true;
3432
3433 /* Common symbols that become definitions don't get the DEF_REGULAR
3434 flag set, so test it first, and don't bail out. */
3435 if (ELF_COMMON_DEF_P (h))
3436 /* Do nothing. */;
3437 /* If we don't have a definition in a regular file, then we can't
3438 resolve locally. The sym is either undefined or dynamic. */
3439 else if (!h->def_regular)
3440 return false;
3441
3442 /* Non-dynamic symbols resolve locally. */
3443 if (h->dynindx == -1)
3444 return true;
3445
3446 /* At this point, we know the symbol is defined and dynamic. In an
3447 executable it must resolve locally, likewise when building symbolic
3448 shared libraries. */
3449 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3450 return true;
3451
3452 /* Now deal with defined dynamic symbols in shared libraries. Ones
3453 with default visibility might not resolve locally. */
3454 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3455 return false;
3456
3457 hash_table = elf_hash_table (info);
3458 if (!is_elf_hash_table (&hash_table->root))
3459 return true;
3460
3461 /* STV_PROTECTED symbols with indirect external access are local. */
3462 if (info->indirect_extern_access > 0)
3463 return true;
3464
3465 bed = get_elf_backend_data (hash_table->dynobj);
3466
3467 /* If extern_protected_data is false, STV_PROTECTED non-function
3468 symbols are local. */
3469 if ((!info->extern_protected_data
3470 || (info->extern_protected_data < 0
3471 && !bed->extern_protected_data))
3472 && !bed->is_function_type (h->type))
3473 return true;
3474
3475 /* Function pointer equality tests may require that STV_PROTECTED
3476 symbols be treated as dynamic symbols. If the address of a
3477 function not defined in an executable is set to that function's
3478 plt entry in the executable, then the address of the function in
3479 a shared library must also be the plt entry in the executable. */
3480 return local_protected;
3481 }
3482
3483 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3484 aligned. Returns the first TLS output section. */
3485
3486 struct bfd_section *
3487 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3488 {
3489 struct bfd_section *sec, *tls;
3490 unsigned int align = 0;
3491
3492 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3493 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3494 break;
3495 tls = sec;
3496
3497 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3498 if (sec->alignment_power > align)
3499 align = sec->alignment_power;
3500
3501 elf_hash_table (info)->tls_sec = tls;
3502
3503 /* Ensure the alignment of the first section (usually .tdata) is the largest
3504 alignment, so that the tls segment starts aligned. */
3505 if (tls != NULL)
3506 tls->alignment_power = align;
3507
3508 return tls;
3509 }
3510
3511 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3512 static bool
3513 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3514 Elf_Internal_Sym *sym)
3515 {
3516 const struct elf_backend_data *bed;
3517
3518 /* Local symbols do not count, but target specific ones might. */
3519 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3520 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3521 return false;
3522
3523 bed = get_elf_backend_data (abfd);
3524 /* Function symbols do not count. */
3525 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3526 return false;
3527
3528 /* If the section is undefined, then so is the symbol. */
3529 if (sym->st_shndx == SHN_UNDEF)
3530 return false;
3531
3532 /* If the symbol is defined in the common section, then
3533 it is a common definition and so does not count. */
3534 if (bed->common_definition (sym))
3535 return false;
3536
3537 /* If the symbol is in a target specific section then we
3538 must rely upon the backend to tell us what it is. */
3539 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3540 /* FIXME - this function is not coded yet:
3541
3542 return _bfd_is_global_symbol_definition (abfd, sym);
3543
3544 Instead for now assume that the definition is not global,
3545 Even if this is wrong, at least the linker will behave
3546 in the same way that it used to do. */
3547 return false;
3548
3549 return true;
3550 }
3551
3552 /* Search the symbol table of the archive element of the archive ABFD
3553 whose archive map contains a mention of SYMDEF, and determine if
3554 the symbol is defined in this element. */
3555 static bool
3556 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3557 {
3558 Elf_Internal_Shdr * hdr;
3559 size_t symcount;
3560 size_t extsymcount;
3561 size_t extsymoff;
3562 Elf_Internal_Sym *isymbuf;
3563 Elf_Internal_Sym *isym;
3564 Elf_Internal_Sym *isymend;
3565 bool result;
3566
3567 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset, NULL);
3568 if (abfd == NULL)
3569 return false;
3570
3571 if (! bfd_check_format (abfd, bfd_object))
3572 return false;
3573
3574 /* Select the appropriate symbol table. If we don't know if the
3575 object file is an IR object, give linker LTO plugin a chance to
3576 get the correct symbol table. */
3577 if (abfd->plugin_format == bfd_plugin_yes
3578 #if BFD_SUPPORTS_PLUGINS
3579 || (abfd->plugin_format == bfd_plugin_unknown
3580 && bfd_link_plugin_object_p (abfd))
3581 #endif
3582 )
3583 {
3584 /* Use the IR symbol table if the object has been claimed by
3585 plugin. */
3586 abfd = abfd->plugin_dummy_bfd;
3587 hdr = &elf_tdata (abfd)->symtab_hdr;
3588 }
3589 else
3590 {
3591 if (elf_use_dt_symtab_p (abfd))
3592 {
3593 bfd_set_error (bfd_error_wrong_format);
3594 return false;
3595 }
3596
3597 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3598 hdr = &elf_tdata (abfd)->symtab_hdr;
3599 else
3600 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3601 }
3602
3603 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3604
3605 /* The sh_info field of the symtab header tells us where the
3606 external symbols start. We don't care about the local symbols. */
3607 if (elf_bad_symtab (abfd))
3608 {
3609 extsymcount = symcount;
3610 extsymoff = 0;
3611 }
3612 else
3613 {
3614 extsymcount = symcount - hdr->sh_info;
3615 extsymoff = hdr->sh_info;
3616 }
3617
3618 if (extsymcount == 0)
3619 return false;
3620
3621 /* Read in the symbol table. */
3622 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3623 NULL, NULL, NULL);
3624 if (isymbuf == NULL)
3625 return false;
3626
3627 /* Scan the symbol table looking for SYMDEF. */
3628 result = false;
3629 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3630 {
3631 const char *name;
3632
3633 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3634 isym->st_name);
3635 if (name == NULL)
3636 break;
3637
3638 if (strcmp (name, symdef->name) == 0)
3639 {
3640 result = is_global_data_symbol_definition (abfd, isym);
3641 break;
3642 }
3643 }
3644
3645 free (isymbuf);
3646
3647 return result;
3648 }
3649 \f
3650 /* Add an entry to the .dynamic table. */
3651
3652 bool
3653 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3654 bfd_vma tag,
3655 bfd_vma val)
3656 {
3657 struct elf_link_hash_table *hash_table;
3658 const struct elf_backend_data *bed;
3659 asection *s;
3660 bfd_size_type newsize;
3661 bfd_byte *newcontents;
3662 Elf_Internal_Dyn dyn;
3663
3664 hash_table = elf_hash_table (info);
3665 if (! is_elf_hash_table (&hash_table->root))
3666 return false;
3667
3668 if (tag == DT_RELA || tag == DT_REL)
3669 hash_table->dynamic_relocs = true;
3670
3671 bed = get_elf_backend_data (hash_table->dynobj);
3672 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3673 BFD_ASSERT (s != NULL);
3674
3675 newsize = s->size + bed->s->sizeof_dyn;
3676 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3677 if (newcontents == NULL)
3678 return false;
3679
3680 dyn.d_tag = tag;
3681 dyn.d_un.d_val = val;
3682 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3683
3684 s->size = newsize;
3685 s->contents = newcontents;
3686
3687 return true;
3688 }
3689
3690 /* Strip zero-sized dynamic sections. */
3691
3692 bool
3693 _bfd_elf_strip_zero_sized_dynamic_sections (struct bfd_link_info *info)
3694 {
3695 struct elf_link_hash_table *hash_table;
3696 const struct elf_backend_data *bed;
3697 asection *s, *sdynamic, **pp;
3698 asection *rela_dyn, *rel_dyn;
3699 Elf_Internal_Dyn dyn;
3700 bfd_byte *extdyn, *next;
3701 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3702 bool strip_zero_sized;
3703 bool strip_zero_sized_plt;
3704
3705 if (bfd_link_relocatable (info))
3706 return true;
3707
3708 hash_table = elf_hash_table (info);
3709 if (!is_elf_hash_table (&hash_table->root))
3710 return false;
3711
3712 if (!hash_table->dynobj)
3713 return true;
3714
3715 sdynamic= bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3716 if (!sdynamic)
3717 return true;
3718
3719 bed = get_elf_backend_data (hash_table->dynobj);
3720 swap_dyn_in = bed->s->swap_dyn_in;
3721
3722 strip_zero_sized = false;
3723 strip_zero_sized_plt = false;
3724
3725 /* Strip zero-sized dynamic sections. */
3726 rela_dyn = bfd_get_section_by_name (info->output_bfd, ".rela.dyn");
3727 rel_dyn = bfd_get_section_by_name (info->output_bfd, ".rel.dyn");
3728 for (pp = &info->output_bfd->sections; (s = *pp) != NULL;)
3729 if (s->size == 0
3730 && (s == rela_dyn
3731 || s == rel_dyn
3732 || s == hash_table->srelplt->output_section
3733 || s == hash_table->splt->output_section))
3734 {
3735 *pp = s->next;
3736 info->output_bfd->section_count--;
3737 strip_zero_sized = true;
3738 if (s == rela_dyn)
3739 s = rela_dyn;
3740 if (s == rel_dyn)
3741 s = rel_dyn;
3742 else if (s == hash_table->splt->output_section)
3743 {
3744 s = hash_table->splt;
3745 strip_zero_sized_plt = true;
3746 }
3747 else
3748 s = hash_table->srelplt;
3749 s->flags |= SEC_EXCLUDE;
3750 s->output_section = bfd_abs_section_ptr;
3751 }
3752 else
3753 pp = &s->next;
3754
3755 if (strip_zero_sized_plt && sdynamic->size != 0)
3756 for (extdyn = sdynamic->contents;
3757 extdyn < sdynamic->contents + sdynamic->size;
3758 extdyn = next)
3759 {
3760 next = extdyn + bed->s->sizeof_dyn;
3761 swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3762 switch (dyn.d_tag)
3763 {
3764 default:
3765 break;
3766 case DT_JMPREL:
3767 case DT_PLTRELSZ:
3768 case DT_PLTREL:
3769 /* Strip DT_PLTRELSZ, DT_JMPREL and DT_PLTREL entries if
3770 the procedure linkage table (the .plt section) has been
3771 removed. */
3772 memmove (extdyn, next,
3773 sdynamic->size - (next - sdynamic->contents));
3774 next = extdyn;
3775 }
3776 }
3777
3778 if (strip_zero_sized)
3779 {
3780 /* Regenerate program headers. */
3781 elf_seg_map (info->output_bfd) = NULL;
3782 return _bfd_elf_map_sections_to_segments (info->output_bfd, info,
3783 NULL);
3784 }
3785
3786 return true;
3787 }
3788
3789 /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error,
3790 1 if a DT_NEEDED tag already exists, and 0 on success. */
3791
3792 int
3793 bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info)
3794 {
3795 struct elf_link_hash_table *hash_table;
3796 size_t strindex;
3797 const char *soname;
3798
3799 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3800 return -1;
3801
3802 hash_table = elf_hash_table (info);
3803 soname = elf_dt_name (abfd);
3804 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, false);
3805 if (strindex == (size_t) -1)
3806 return -1;
3807
3808 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3809 {
3810 asection *sdyn;
3811 const struct elf_backend_data *bed;
3812 bfd_byte *extdyn;
3813
3814 bed = get_elf_backend_data (hash_table->dynobj);
3815 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3816 if (sdyn != NULL && sdyn->size != 0)
3817 for (extdyn = sdyn->contents;
3818 extdyn < sdyn->contents + sdyn->size;
3819 extdyn += bed->s->sizeof_dyn)
3820 {
3821 Elf_Internal_Dyn dyn;
3822
3823 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3824 if (dyn.d_tag == DT_NEEDED
3825 && dyn.d_un.d_val == strindex)
3826 {
3827 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3828 return 1;
3829 }
3830 }
3831 }
3832
3833 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3834 return -1;
3835
3836 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3837 return -1;
3838
3839 return 0;
3840 }
3841
3842 /* Return true if SONAME is on the needed list between NEEDED and STOP
3843 (or the end of list if STOP is NULL), and needed by a library that
3844 will be loaded. */
3845
3846 static bool
3847 on_needed_list (const char *soname,
3848 struct bfd_link_needed_list *needed,
3849 struct bfd_link_needed_list *stop)
3850 {
3851 struct bfd_link_needed_list *look;
3852 for (look = needed; look != stop; look = look->next)
3853 if (strcmp (soname, look->name) == 0
3854 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3855 /* If needed by a library that itself is not directly
3856 needed, recursively check whether that library is
3857 indirectly needed. Since we add DT_NEEDED entries to
3858 the end of the list, library dependencies appear after
3859 the library. Therefore search prior to the current
3860 LOOK, preventing possible infinite recursion. */
3861 || on_needed_list (elf_dt_name (look->by), needed, look)))
3862 return true;
3863
3864 return false;
3865 }
3866
3867 /* Sort symbol by value, section, size, and type. */
3868 static int
3869 elf_sort_symbol (const void *arg1, const void *arg2)
3870 {
3871 const struct elf_link_hash_entry *h1;
3872 const struct elf_link_hash_entry *h2;
3873 bfd_signed_vma vdiff;
3874 int sdiff;
3875 const char *n1;
3876 const char *n2;
3877
3878 h1 = *(const struct elf_link_hash_entry **) arg1;
3879 h2 = *(const struct elf_link_hash_entry **) arg2;
3880 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3881 if (vdiff != 0)
3882 return vdiff > 0 ? 1 : -1;
3883
3884 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3885 if (sdiff != 0)
3886 return sdiff;
3887
3888 /* Sort so that sized symbols are selected over zero size symbols. */
3889 vdiff = h1->size - h2->size;
3890 if (vdiff != 0)
3891 return vdiff > 0 ? 1 : -1;
3892
3893 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */
3894 if (h1->type != h2->type)
3895 return h1->type - h2->type;
3896
3897 /* If symbols are properly sized and typed, and multiple strong
3898 aliases are not defined in a shared library by the user we
3899 shouldn't get here. Unfortunately linker script symbols like
3900 __bss_start sometimes match a user symbol defined at the start of
3901 .bss without proper size and type. We'd like to preference the
3902 user symbol over reserved system symbols. Sort on leading
3903 underscores. */
3904 n1 = h1->root.root.string;
3905 n2 = h2->root.root.string;
3906 while (*n1 == *n2)
3907 {
3908 if (*n1 == 0)
3909 break;
3910 ++n1;
3911 ++n2;
3912 }
3913 if (*n1 == '_')
3914 return -1;
3915 if (*n2 == '_')
3916 return 1;
3917
3918 /* Final sort on name selects user symbols like '_u' over reserved
3919 system symbols like '_Z' and also will avoid qsort instability. */
3920 return *n1 - *n2;
3921 }
3922
3923 /* This function is used to adjust offsets into .dynstr for
3924 dynamic symbols. This is called via elf_link_hash_traverse. */
3925
3926 static bool
3927 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3928 {
3929 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3930
3931 if (h->dynindx != -1)
3932 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3933 return true;
3934 }
3935
3936 /* Assign string offsets in .dynstr, update all structures referencing
3937 them. */
3938
3939 static bool
3940 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3941 {
3942 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3943 struct elf_link_local_dynamic_entry *entry;
3944 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3945 bfd *dynobj = hash_table->dynobj;
3946 asection *sdyn;
3947 bfd_size_type size;
3948 const struct elf_backend_data *bed;
3949 bfd_byte *extdyn;
3950
3951 _bfd_elf_strtab_finalize (dynstr);
3952 size = _bfd_elf_strtab_size (dynstr);
3953
3954 /* Allow the linker to examine the dynsymtab now it's fully populated. */
3955
3956 if (info->callbacks->examine_strtab)
3957 info->callbacks->examine_strtab (dynstr);
3958
3959 bed = get_elf_backend_data (dynobj);
3960 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3961 BFD_ASSERT (sdyn != NULL);
3962
3963 /* Update all .dynamic entries referencing .dynstr strings. */
3964 for (extdyn = sdyn->contents;
3965 extdyn < PTR_ADD (sdyn->contents, sdyn->size);
3966 extdyn += bed->s->sizeof_dyn)
3967 {
3968 Elf_Internal_Dyn dyn;
3969
3970 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3971 switch (dyn.d_tag)
3972 {
3973 case DT_STRSZ:
3974 dyn.d_un.d_val = size;
3975 break;
3976 case DT_NEEDED:
3977 case DT_SONAME:
3978 case DT_RPATH:
3979 case DT_RUNPATH:
3980 case DT_FILTER:
3981 case DT_AUXILIARY:
3982 case DT_AUDIT:
3983 case DT_DEPAUDIT:
3984 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3985 break;
3986 default:
3987 continue;
3988 }
3989 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3990 }
3991
3992 /* Now update local dynamic symbols. */
3993 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3994 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3995 entry->isym.st_name);
3996
3997 /* And the rest of dynamic symbols. */
3998 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3999
4000 /* Adjust version definitions. */
4001 if (elf_tdata (output_bfd)->cverdefs)
4002 {
4003 asection *s;
4004 bfd_byte *p;
4005 size_t i;
4006 Elf_Internal_Verdef def;
4007 Elf_Internal_Verdaux defaux;
4008
4009 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
4010 p = s->contents;
4011 do
4012 {
4013 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
4014 &def);
4015 p += sizeof (Elf_External_Verdef);
4016 if (def.vd_aux != sizeof (Elf_External_Verdef))
4017 continue;
4018 for (i = 0; i < def.vd_cnt; ++i)
4019 {
4020 _bfd_elf_swap_verdaux_in (output_bfd,
4021 (Elf_External_Verdaux *) p, &defaux);
4022 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
4023 defaux.vda_name);
4024 _bfd_elf_swap_verdaux_out (output_bfd,
4025 &defaux, (Elf_External_Verdaux *) p);
4026 p += sizeof (Elf_External_Verdaux);
4027 }
4028 }
4029 while (def.vd_next);
4030 }
4031
4032 /* Adjust version references. */
4033 if (elf_tdata (output_bfd)->verref)
4034 {
4035 asection *s;
4036 bfd_byte *p;
4037 size_t i;
4038 Elf_Internal_Verneed need;
4039 Elf_Internal_Vernaux needaux;
4040
4041 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
4042 p = s->contents;
4043 do
4044 {
4045 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
4046 &need);
4047 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
4048 _bfd_elf_swap_verneed_out (output_bfd, &need,
4049 (Elf_External_Verneed *) p);
4050 p += sizeof (Elf_External_Verneed);
4051 for (i = 0; i < need.vn_cnt; ++i)
4052 {
4053 _bfd_elf_swap_vernaux_in (output_bfd,
4054 (Elf_External_Vernaux *) p, &needaux);
4055 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
4056 needaux.vna_name);
4057 _bfd_elf_swap_vernaux_out (output_bfd,
4058 &needaux,
4059 (Elf_External_Vernaux *) p);
4060 p += sizeof (Elf_External_Vernaux);
4061 }
4062 }
4063 while (need.vn_next);
4064 }
4065
4066 return true;
4067 }
4068 \f
4069 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
4070 The default is to only match when the INPUT and OUTPUT are exactly
4071 the same target. */
4072
4073 bool
4074 _bfd_elf_default_relocs_compatible (const bfd_target *input,
4075 const bfd_target *output)
4076 {
4077 return input == output;
4078 }
4079
4080 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
4081 This version is used when different targets for the same architecture
4082 are virtually identical. */
4083
4084 bool
4085 _bfd_elf_relocs_compatible (const bfd_target *input,
4086 const bfd_target *output)
4087 {
4088 const struct elf_backend_data *obed, *ibed;
4089
4090 if (input == output)
4091 return true;
4092
4093 ibed = xvec_get_elf_backend_data (input);
4094 obed = xvec_get_elf_backend_data (output);
4095
4096 if (ibed->arch != obed->arch)
4097 return false;
4098
4099 /* If both backends are using this function, deem them compatible. */
4100 return ibed->relocs_compatible == obed->relocs_compatible;
4101 }
4102
4103 /* Make a special call to the linker "notice" function to tell it that
4104 we are about to handle an as-needed lib, or have finished
4105 processing the lib. */
4106
4107 bool
4108 _bfd_elf_notice_as_needed (bfd *ibfd,
4109 struct bfd_link_info *info,
4110 enum notice_asneeded_action act)
4111 {
4112 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
4113 }
4114
4115 /* Call ACTION on each relocation in an ELF object file. */
4116
4117 bool
4118 _bfd_elf_link_iterate_on_relocs
4119 (bfd *abfd, struct bfd_link_info *info,
4120 bool (*action) (bfd *, struct bfd_link_info *, asection *,
4121 const Elf_Internal_Rela *))
4122 {
4123 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4124 struct elf_link_hash_table *htab = elf_hash_table (info);
4125
4126 /* If this object is the same format as the output object, and it is
4127 not a shared library, then let the backend look through the
4128 relocs.
4129
4130 This is required to build global offset table entries and to
4131 arrange for dynamic relocs. It is not required for the
4132 particular common case of linking non PIC code, even when linking
4133 against shared libraries, but unfortunately there is no way of
4134 knowing whether an object file has been compiled PIC or not.
4135 Looking through the relocs is not particularly time consuming.
4136 The problem is that we must either (1) keep the relocs in memory,
4137 which causes the linker to require additional runtime memory or
4138 (2) read the relocs twice from the input file, which wastes time.
4139 This would be a good case for using mmap.
4140
4141 I have no idea how to handle linking PIC code into a file of a
4142 different format. It probably can't be done. */
4143 if ((abfd->flags & DYNAMIC) == 0
4144 && is_elf_hash_table (&htab->root)
4145 && elf_object_id (abfd) == elf_hash_table_id (htab)
4146 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4147 {
4148 asection *o;
4149
4150 for (o = abfd->sections; o != NULL; o = o->next)
4151 {
4152 Elf_Internal_Rela *internal_relocs;
4153 bool ok;
4154
4155 /* Don't check relocations in excluded sections. Don't do
4156 anything special with non-loaded, non-alloced sections.
4157 In particular, any relocs in such sections should not
4158 affect GOT and PLT reference counting (ie. we don't
4159 allow them to create GOT or PLT entries), there's no
4160 possibility or desire to optimize TLS relocs, and
4161 there's not much point in propagating relocs to shared
4162 libs that the dynamic linker won't relocate. */
4163 if ((o->flags & SEC_ALLOC) == 0
4164 || (o->flags & SEC_RELOC) == 0
4165 || (o->flags & SEC_EXCLUDE) != 0
4166 || o->reloc_count == 0
4167 || ((info->strip == strip_all || info->strip == strip_debugger)
4168 && (o->flags & SEC_DEBUGGING) != 0)
4169 || bfd_is_abs_section (o->output_section))
4170 continue;
4171
4172 internal_relocs = _bfd_elf_link_info_read_relocs (abfd, info,
4173 o, NULL,
4174 NULL,
4175 _bfd_link_keep_memory (info));
4176 if (internal_relocs == NULL)
4177 return false;
4178
4179 ok = action (abfd, info, o, internal_relocs);
4180
4181 if (elf_section_data (o)->relocs != internal_relocs)
4182 free (internal_relocs);
4183
4184 if (! ok)
4185 return false;
4186 }
4187 }
4188
4189 return true;
4190 }
4191
4192 /* Check relocations in an ELF object file. This is called after
4193 all input files have been opened. */
4194
4195 bool
4196 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
4197 {
4198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4199 if (bed->check_relocs != NULL)
4200 return _bfd_elf_link_iterate_on_relocs (abfd, info,
4201 bed->check_relocs);
4202 return true;
4203 }
4204
4205 /* Add symbols from an ELF object file to the linker hash table. */
4206
4207 static bool
4208 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
4209 {
4210 Elf_Internal_Ehdr *ehdr;
4211 Elf_Internal_Shdr *hdr;
4212 size_t symcount;
4213 size_t extsymcount;
4214 size_t extsymoff;
4215 struct elf_link_hash_entry **sym_hash;
4216 bool dynamic;
4217 Elf_External_Versym *extversym = NULL;
4218 Elf_External_Versym *extversym_end = NULL;
4219 Elf_External_Versym *ever;
4220 struct elf_link_hash_entry *weaks;
4221 struct elf_link_hash_entry **nondeflt_vers = NULL;
4222 size_t nondeflt_vers_cnt = 0;
4223 Elf_Internal_Sym *isymbuf = NULL;
4224 Elf_Internal_Sym *isym;
4225 Elf_Internal_Sym *isymend;
4226 const struct elf_backend_data *bed;
4227 bool add_needed;
4228 struct elf_link_hash_table *htab;
4229 void *alloc_mark = NULL;
4230 struct bfd_hash_entry **old_table = NULL;
4231 unsigned int old_size = 0;
4232 unsigned int old_count = 0;
4233 void *old_tab = NULL;
4234 void *old_ent;
4235 struct bfd_link_hash_entry *old_undefs = NULL;
4236 struct bfd_link_hash_entry *old_undefs_tail = NULL;
4237 void *old_strtab = NULL;
4238 size_t tabsize = 0;
4239 asection *s;
4240 bool just_syms;
4241
4242 htab = elf_hash_table (info);
4243 bed = get_elf_backend_data (abfd);
4244
4245 if (elf_use_dt_symtab_p (abfd))
4246 {
4247 bfd_set_error (bfd_error_wrong_format);
4248 return false;
4249 }
4250
4251 if ((abfd->flags & DYNAMIC) == 0)
4252 dynamic = false;
4253 else
4254 {
4255 dynamic = true;
4256
4257 /* You can't use -r against a dynamic object. Also, there's no
4258 hope of using a dynamic object which does not exactly match
4259 the format of the output file. */
4260 if (bfd_link_relocatable (info)
4261 || !is_elf_hash_table (&htab->root)
4262 || info->output_bfd->xvec != abfd->xvec)
4263 {
4264 if (bfd_link_relocatable (info))
4265 bfd_set_error (bfd_error_invalid_operation);
4266 else
4267 bfd_set_error (bfd_error_wrong_format);
4268 goto error_return;
4269 }
4270 }
4271
4272 ehdr = elf_elfheader (abfd);
4273 if (info->warn_alternate_em
4274 && bed->elf_machine_code != ehdr->e_machine
4275 && ((bed->elf_machine_alt1 != 0
4276 && ehdr->e_machine == bed->elf_machine_alt1)
4277 || (bed->elf_machine_alt2 != 0
4278 && ehdr->e_machine == bed->elf_machine_alt2)))
4279 _bfd_error_handler
4280 /* xgettext:c-format */
4281 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
4282 ehdr->e_machine, abfd, bed->elf_machine_code);
4283
4284 /* As a GNU extension, any input sections which are named
4285 .gnu.warning.SYMBOL are treated as warning symbols for the given
4286 symbol. This differs from .gnu.warning sections, which generate
4287 warnings when they are included in an output file. */
4288 /* PR 12761: Also generate this warning when building shared libraries. */
4289 for (s = abfd->sections; s != NULL; s = s->next)
4290 {
4291 const char *name;
4292
4293 name = bfd_section_name (s);
4294 if (startswith (name, ".gnu.warning."))
4295 {
4296 char *msg;
4297 bfd_size_type sz;
4298
4299 name += sizeof ".gnu.warning." - 1;
4300
4301 /* If this is a shared object, then look up the symbol
4302 in the hash table. If it is there, and it is already
4303 been defined, then we will not be using the entry
4304 from this shared object, so we don't need to warn.
4305 FIXME: If we see the definition in a regular object
4306 later on, we will warn, but we shouldn't. The only
4307 fix is to keep track of what warnings we are supposed
4308 to emit, and then handle them all at the end of the
4309 link. */
4310 if (dynamic)
4311 {
4312 struct elf_link_hash_entry *h;
4313
4314 h = elf_link_hash_lookup (htab, name, false, false, true);
4315
4316 /* FIXME: What about bfd_link_hash_common? */
4317 if (h != NULL
4318 && (h->root.type == bfd_link_hash_defined
4319 || h->root.type == bfd_link_hash_defweak))
4320 continue;
4321 }
4322
4323 sz = s->size;
4324 msg = (char *) bfd_alloc (abfd, sz + 1);
4325 if (msg == NULL)
4326 goto error_return;
4327
4328 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4329 goto error_return;
4330
4331 msg[sz] = '\0';
4332
4333 if (! (_bfd_generic_link_add_one_symbol
4334 (info, abfd, name, BSF_WARNING, s, 0, msg,
4335 false, bed->collect, NULL)))
4336 goto error_return;
4337
4338 if (bfd_link_executable (info))
4339 {
4340 /* Clobber the section size so that the warning does
4341 not get copied into the output file. */
4342 s->size = 0;
4343
4344 /* Also set SEC_EXCLUDE, so that symbols defined in
4345 the warning section don't get copied to the output. */
4346 s->flags |= SEC_EXCLUDE;
4347 }
4348 }
4349 }
4350
4351 just_syms = ((s = abfd->sections) != NULL
4352 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4353
4354 add_needed = true;
4355 if (! dynamic)
4356 {
4357 /* If we are creating a shared library, create all the dynamic
4358 sections immediately. We need to attach them to something,
4359 so we attach them to this BFD, provided it is the right
4360 format and is not from ld --just-symbols. Always create the
4361 dynamic sections for -E/--dynamic-list. FIXME: If there
4362 are no input BFD's of the same format as the output, we can't
4363 make a shared library. */
4364 if (!just_syms
4365 && (bfd_link_pic (info)
4366 || (!bfd_link_relocatable (info)
4367 && info->nointerp
4368 && (info->export_dynamic || info->dynamic)))
4369 && is_elf_hash_table (&htab->root)
4370 && info->output_bfd->xvec == abfd->xvec
4371 && !htab->dynamic_sections_created)
4372 {
4373 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4374 goto error_return;
4375 }
4376 }
4377 else if (!is_elf_hash_table (&htab->root))
4378 goto error_return;
4379 else
4380 {
4381 const char *soname = NULL;
4382 char *audit = NULL;
4383 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4384 const Elf_Internal_Phdr *phdr;
4385 struct elf_link_loaded_list *loaded_lib;
4386
4387 /* ld --just-symbols and dynamic objects don't mix very well.
4388 ld shouldn't allow it. */
4389 if (just_syms)
4390 abort ();
4391
4392 /* If this dynamic lib was specified on the command line with
4393 --as-needed in effect, then we don't want to add a DT_NEEDED
4394 tag unless the lib is actually used. Similary for libs brought
4395 in by another lib's DT_NEEDED. When --no-add-needed is used
4396 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4397 any dynamic library in DT_NEEDED tags in the dynamic lib at
4398 all. */
4399 add_needed = (elf_dyn_lib_class (abfd)
4400 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4401 | DYN_NO_NEEDED)) == 0;
4402
4403 s = bfd_get_section_by_name (abfd, ".dynamic");
4404 if (s != NULL && s->size != 0 && (s->flags & SEC_HAS_CONTENTS) != 0)
4405 {
4406 bfd_byte *dynbuf;
4407 bfd_byte *extdyn;
4408 unsigned int elfsec;
4409 unsigned long shlink;
4410
4411 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4412 {
4413 error_free_dyn:
4414 free (dynbuf);
4415 goto error_return;
4416 }
4417
4418 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4419 if (elfsec == SHN_BAD)
4420 goto error_free_dyn;
4421 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4422
4423 for (extdyn = dynbuf;
4424 (size_t) (dynbuf + s->size - extdyn) >= bed->s->sizeof_dyn;
4425 extdyn += bed->s->sizeof_dyn)
4426 {
4427 Elf_Internal_Dyn dyn;
4428
4429 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4430 if (dyn.d_tag == DT_SONAME)
4431 {
4432 unsigned int tagv = dyn.d_un.d_val;
4433 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4434 if (soname == NULL)
4435 goto error_free_dyn;
4436 }
4437 if (dyn.d_tag == DT_NEEDED)
4438 {
4439 struct bfd_link_needed_list *n, **pn;
4440 char *fnm, *anm;
4441 unsigned int tagv = dyn.d_un.d_val;
4442 size_t amt = sizeof (struct bfd_link_needed_list);
4443
4444 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4445 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4446 if (n == NULL || fnm == NULL)
4447 goto error_free_dyn;
4448 amt = strlen (fnm) + 1;
4449 anm = (char *) bfd_alloc (abfd, amt);
4450 if (anm == NULL)
4451 goto error_free_dyn;
4452 memcpy (anm, fnm, amt);
4453 n->name = anm;
4454 n->by = abfd;
4455 n->next = NULL;
4456 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4457 ;
4458 *pn = n;
4459 }
4460 if (dyn.d_tag == DT_RUNPATH)
4461 {
4462 struct bfd_link_needed_list *n, **pn;
4463 char *fnm, *anm;
4464 unsigned int tagv = dyn.d_un.d_val;
4465 size_t amt = sizeof (struct bfd_link_needed_list);
4466
4467 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4468 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4469 if (n == NULL || fnm == NULL)
4470 goto error_free_dyn;
4471 amt = strlen (fnm) + 1;
4472 anm = (char *) bfd_alloc (abfd, amt);
4473 if (anm == NULL)
4474 goto error_free_dyn;
4475 memcpy (anm, fnm, amt);
4476 n->name = anm;
4477 n->by = abfd;
4478 n->next = NULL;
4479 for (pn = & runpath;
4480 *pn != NULL;
4481 pn = &(*pn)->next)
4482 ;
4483 *pn = n;
4484 }
4485 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4486 if (!runpath && dyn.d_tag == DT_RPATH)
4487 {
4488 struct bfd_link_needed_list *n, **pn;
4489 char *fnm, *anm;
4490 unsigned int tagv = dyn.d_un.d_val;
4491 size_t amt = sizeof (struct bfd_link_needed_list);
4492
4493 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4494 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4495 if (n == NULL || fnm == NULL)
4496 goto error_free_dyn;
4497 amt = strlen (fnm) + 1;
4498 anm = (char *) bfd_alloc (abfd, amt);
4499 if (anm == NULL)
4500 goto error_free_dyn;
4501 memcpy (anm, fnm, amt);
4502 n->name = anm;
4503 n->by = abfd;
4504 n->next = NULL;
4505 for (pn = & rpath;
4506 *pn != NULL;
4507 pn = &(*pn)->next)
4508 ;
4509 *pn = n;
4510 }
4511 if (dyn.d_tag == DT_AUDIT)
4512 {
4513 unsigned int tagv = dyn.d_un.d_val;
4514 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4515 }
4516 if (dyn.d_tag == DT_FLAGS_1)
4517 elf_tdata (abfd)->is_pie = (dyn.d_un.d_val & DF_1_PIE) != 0;
4518 }
4519
4520 free (dynbuf);
4521 }
4522
4523 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4524 frees all more recently bfd_alloc'd blocks as well. */
4525 if (runpath)
4526 rpath = runpath;
4527
4528 if (rpath)
4529 {
4530 struct bfd_link_needed_list **pn;
4531 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4532 ;
4533 *pn = rpath;
4534 }
4535
4536 /* If we have a PT_GNU_RELRO program header, mark as read-only
4537 all sections contained fully therein. This makes relro
4538 shared library sections appear as they will at run-time. */
4539 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4540 while (phdr-- > elf_tdata (abfd)->phdr)
4541 if (phdr->p_type == PT_GNU_RELRO)
4542 {
4543 for (s = abfd->sections; s != NULL; s = s->next)
4544 {
4545 unsigned int opb = bfd_octets_per_byte (abfd, s);
4546
4547 if ((s->flags & SEC_ALLOC) != 0
4548 && s->vma * opb >= phdr->p_vaddr
4549 && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz)
4550 s->flags |= SEC_READONLY;
4551 }
4552 break;
4553 }
4554
4555 /* We do not want to include any of the sections in a dynamic
4556 object in the output file. We hack by simply clobbering the
4557 list of sections in the BFD. This could be handled more
4558 cleanly by, say, a new section flag; the existing
4559 SEC_NEVER_LOAD flag is not the one we want, because that one
4560 still implies that the section takes up space in the output
4561 file. */
4562 bfd_section_list_clear (abfd);
4563
4564 /* Find the name to use in a DT_NEEDED entry that refers to this
4565 object. If the object has a DT_SONAME entry, we use it.
4566 Otherwise, if the generic linker stuck something in
4567 elf_dt_name, we use that. Otherwise, we just use the file
4568 name. */
4569 if (soname == NULL || *soname == '\0')
4570 {
4571 soname = elf_dt_name (abfd);
4572 if (soname == NULL || *soname == '\0')
4573 soname = bfd_get_filename (abfd);
4574 }
4575
4576 /* Save the SONAME because sometimes the linker emulation code
4577 will need to know it. */
4578 elf_dt_name (abfd) = soname;
4579
4580 /* If we have already included this dynamic object in the
4581 link, just ignore it. There is no reason to include a
4582 particular dynamic object more than once. */
4583 for (loaded_lib = htab->dyn_loaded;
4584 loaded_lib != NULL;
4585 loaded_lib = loaded_lib->next)
4586 {
4587 if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0)
4588 return true;
4589 }
4590
4591 /* Create dynamic sections for backends that require that be done
4592 before setup_gnu_properties. */
4593 if (add_needed
4594 && !_bfd_elf_link_create_dynamic_sections (abfd, info))
4595 return false;
4596
4597 /* Save the DT_AUDIT entry for the linker emulation code. */
4598 elf_dt_audit (abfd) = audit;
4599 }
4600
4601 /* If this is a dynamic object, we always link against the .dynsym
4602 symbol table, not the .symtab symbol table. The dynamic linker
4603 will only see the .dynsym symbol table, so there is no reason to
4604 look at .symtab for a dynamic object. */
4605
4606 if (! dynamic || elf_dynsymtab (abfd) == 0)
4607 hdr = &elf_tdata (abfd)->symtab_hdr;
4608 else
4609 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4610
4611 symcount = hdr->sh_size / bed->s->sizeof_sym;
4612
4613 /* The sh_info field of the symtab header tells us where the
4614 external symbols start. We don't care about the local symbols at
4615 this point. */
4616 if (elf_bad_symtab (abfd))
4617 {
4618 extsymcount = symcount;
4619 extsymoff = 0;
4620 }
4621 else
4622 {
4623 extsymcount = symcount - hdr->sh_info;
4624 extsymoff = hdr->sh_info;
4625 }
4626
4627 sym_hash = elf_sym_hashes (abfd);
4628 if (extsymcount != 0)
4629 {
4630 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4631 NULL, NULL, NULL);
4632 if (isymbuf == NULL)
4633 goto error_return;
4634
4635 if (sym_hash == NULL)
4636 {
4637 /* We store a pointer to the hash table entry for each
4638 external symbol. */
4639 size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4640 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4641 if (sym_hash == NULL)
4642 goto error_free_sym;
4643 elf_sym_hashes (abfd) = sym_hash;
4644 }
4645 }
4646
4647 if (dynamic)
4648 {
4649 /* Read in any version definitions. */
4650 if (!_bfd_elf_slurp_version_tables (abfd,
4651 info->default_imported_symver))
4652 goto error_free_sym;
4653
4654 /* Read in the symbol versions, but don't bother to convert them
4655 to internal format. */
4656 if (elf_dynversym (abfd) != 0)
4657 {
4658 Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4659 bfd_size_type amt = versymhdr->sh_size;
4660
4661 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0)
4662 goto error_free_sym;
4663 extversym = (Elf_External_Versym *)
4664 _bfd_malloc_and_read (abfd, amt, amt);
4665 if (extversym == NULL)
4666 goto error_free_sym;
4667 extversym_end = extversym + amt / sizeof (*extversym);
4668 }
4669 }
4670
4671 /* If we are loading an as-needed shared lib, save the symbol table
4672 state before we start adding symbols. If the lib turns out
4673 to be unneeded, restore the state. */
4674 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4675 {
4676 unsigned int i;
4677 size_t entsize;
4678
4679 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4680 {
4681 struct bfd_hash_entry *p;
4682 struct elf_link_hash_entry *h;
4683
4684 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4685 {
4686 h = (struct elf_link_hash_entry *) p;
4687 entsize += htab->root.table.entsize;
4688 if (h->root.type == bfd_link_hash_warning)
4689 {
4690 entsize += htab->root.table.entsize;
4691 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4692 }
4693 if (h->root.type == bfd_link_hash_common)
4694 entsize += sizeof (*h->root.u.c.p);
4695 }
4696 }
4697
4698 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4699 old_tab = bfd_malloc (tabsize + entsize);
4700 if (old_tab == NULL)
4701 goto error_free_vers;
4702
4703 /* Remember the current objalloc pointer, so that all mem for
4704 symbols added can later be reclaimed. */
4705 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4706 if (alloc_mark == NULL)
4707 goto error_free_vers;
4708
4709 /* Make a special call to the linker "notice" function to
4710 tell it that we are about to handle an as-needed lib. */
4711 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4712 goto error_free_vers;
4713
4714 /* Clone the symbol table. Remember some pointers into the
4715 symbol table, and dynamic symbol count. */
4716 old_ent = (char *) old_tab + tabsize;
4717 memcpy (old_tab, htab->root.table.table, tabsize);
4718 old_undefs = htab->root.undefs;
4719 old_undefs_tail = htab->root.undefs_tail;
4720 old_table = htab->root.table.table;
4721 old_size = htab->root.table.size;
4722 old_count = htab->root.table.count;
4723 old_strtab = NULL;
4724 if (htab->dynstr != NULL)
4725 {
4726 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4727 if (old_strtab == NULL)
4728 goto error_free_vers;
4729 }
4730
4731 for (i = 0; i < htab->root.table.size; i++)
4732 {
4733 struct bfd_hash_entry *p;
4734 struct elf_link_hash_entry *h;
4735
4736 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4737 {
4738 h = (struct elf_link_hash_entry *) p;
4739 memcpy (old_ent, h, htab->root.table.entsize);
4740 old_ent = (char *) old_ent + htab->root.table.entsize;
4741 if (h->root.type == bfd_link_hash_warning)
4742 {
4743 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4744 memcpy (old_ent, h, htab->root.table.entsize);
4745 old_ent = (char *) old_ent + htab->root.table.entsize;
4746 }
4747 if (h->root.type == bfd_link_hash_common)
4748 {
4749 memcpy (old_ent, h->root.u.c.p, sizeof (*h->root.u.c.p));
4750 old_ent = (char *) old_ent + sizeof (*h->root.u.c.p);
4751 }
4752 }
4753 }
4754 }
4755
4756 weaks = NULL;
4757 if (extversym == NULL)
4758 ever = NULL;
4759 else if (extversym + extsymoff < extversym_end)
4760 ever = extversym + extsymoff;
4761 else
4762 {
4763 /* xgettext:c-format */
4764 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4765 abfd, (long) extsymoff,
4766 (long) (extversym_end - extversym) / sizeof (* extversym));
4767 bfd_set_error (bfd_error_bad_value);
4768 goto error_free_vers;
4769 }
4770
4771 if (!bfd_link_relocatable (info)
4772 && abfd->lto_slim_object)
4773 {
4774 _bfd_error_handler
4775 (_("%pB: plugin needed to handle lto object"), abfd);
4776 }
4777
4778 for (isym = isymbuf, isymend = PTR_ADD (isymbuf, extsymcount);
4779 isym < isymend;
4780 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4781 {
4782 int bind;
4783 bfd_vma value;
4784 asection *sec, *new_sec;
4785 flagword flags;
4786 const char *name;
4787 struct elf_link_hash_entry *h;
4788 struct elf_link_hash_entry *hi;
4789 bool definition;
4790 bool size_change_ok;
4791 bool type_change_ok;
4792 bool new_weak;
4793 bool old_weak;
4794 bfd *override;
4795 bool common;
4796 bool discarded;
4797 unsigned int old_alignment;
4798 unsigned int shindex;
4799 bfd *old_bfd;
4800 bool matched;
4801
4802 override = NULL;
4803
4804 flags = BSF_NO_FLAGS;
4805 sec = NULL;
4806 value = isym->st_value;
4807 common = bed->common_definition (isym);
4808 if (common && info->inhibit_common_definition)
4809 {
4810 /* Treat common symbol as undefined for --no-define-common. */
4811 isym->st_shndx = SHN_UNDEF;
4812 common = false;
4813 }
4814 discarded = false;
4815
4816 bind = ELF_ST_BIND (isym->st_info);
4817 switch (bind)
4818 {
4819 case STB_LOCAL:
4820 /* This should be impossible, since ELF requires that all
4821 global symbols follow all local symbols, and that sh_info
4822 point to the first global symbol. Unfortunately, Irix 5
4823 screws this up. */
4824 if (elf_bad_symtab (abfd))
4825 continue;
4826
4827 /* If we aren't prepared to handle locals within the globals
4828 then we'll likely segfault on a NULL symbol hash if the
4829 symbol is ever referenced in relocations. */
4830 shindex = elf_elfheader (abfd)->e_shstrndx;
4831 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4832 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4833 " (>= sh_info of %lu)"),
4834 abfd, name, (long) (isym - isymbuf + extsymoff),
4835 (long) extsymoff);
4836
4837 /* Dynamic object relocations are not processed by ld, so
4838 ld won't run into the problem mentioned above. */
4839 if (dynamic)
4840 continue;
4841 bfd_set_error (bfd_error_bad_value);
4842 goto error_free_vers;
4843
4844 case STB_GLOBAL:
4845 if (isym->st_shndx != SHN_UNDEF && !common)
4846 flags = BSF_GLOBAL;
4847 break;
4848
4849 case STB_WEAK:
4850 flags = BSF_WEAK;
4851 break;
4852
4853 case STB_GNU_UNIQUE:
4854 flags = BSF_GNU_UNIQUE;
4855 break;
4856
4857 default:
4858 /* Leave it up to the processor backend. */
4859 break;
4860 }
4861
4862 if (isym->st_shndx == SHN_UNDEF)
4863 sec = bfd_und_section_ptr;
4864 else if (isym->st_shndx == SHN_ABS)
4865 sec = bfd_abs_section_ptr;
4866 else if (isym->st_shndx == SHN_COMMON)
4867 {
4868 sec = bfd_com_section_ptr;
4869 /* What ELF calls the size we call the value. What ELF
4870 calls the value we call the alignment. */
4871 value = isym->st_size;
4872 }
4873 else
4874 {
4875 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4876 if (sec == NULL)
4877 sec = bfd_abs_section_ptr;
4878 else if (discarded_section (sec))
4879 {
4880 /* Symbols from discarded section are undefined. We keep
4881 its visibility. */
4882 sec = bfd_und_section_ptr;
4883 discarded = true;
4884 isym->st_shndx = SHN_UNDEF;
4885 }
4886 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4887 value -= sec->vma;
4888 }
4889
4890 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4891 isym->st_name);
4892 if (name == NULL)
4893 goto error_free_vers;
4894
4895 if (isym->st_shndx == SHN_COMMON
4896 && (abfd->flags & BFD_PLUGIN) != 0)
4897 {
4898 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4899
4900 if (xc == NULL)
4901 {
4902 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4903 | SEC_EXCLUDE);
4904 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4905 if (xc == NULL)
4906 goto error_free_vers;
4907 }
4908 sec = xc;
4909 }
4910 else if (isym->st_shndx == SHN_COMMON
4911 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4912 && !bfd_link_relocatable (info))
4913 {
4914 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4915
4916 if (tcomm == NULL)
4917 {
4918 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4919 | SEC_LINKER_CREATED);
4920 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4921 if (tcomm == NULL)
4922 goto error_free_vers;
4923 }
4924 sec = tcomm;
4925 }
4926 else if (bed->elf_add_symbol_hook)
4927 {
4928 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4929 &sec, &value))
4930 goto error_free_vers;
4931
4932 /* The hook function sets the name to NULL if this symbol
4933 should be skipped for some reason. */
4934 if (name == NULL)
4935 continue;
4936 }
4937
4938 /* Sanity check that all possibilities were handled. */
4939 if (sec == NULL)
4940 abort ();
4941
4942 /* Silently discard TLS symbols from --just-syms. There's
4943 no way to combine a static TLS block with a new TLS block
4944 for this executable. */
4945 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4946 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4947 continue;
4948
4949 if (bfd_is_und_section (sec)
4950 || bfd_is_com_section (sec))
4951 definition = false;
4952 else
4953 definition = true;
4954
4955 size_change_ok = false;
4956 type_change_ok = bed->type_change_ok;
4957 old_weak = false;
4958 matched = false;
4959 old_alignment = 0;
4960 old_bfd = NULL;
4961 new_sec = sec;
4962
4963 if (is_elf_hash_table (&htab->root))
4964 {
4965 Elf_Internal_Versym iver;
4966 unsigned int vernum = 0;
4967 bool skip;
4968
4969 if (ever == NULL)
4970 {
4971 if (info->default_imported_symver)
4972 /* Use the default symbol version created earlier. */
4973 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4974 else
4975 iver.vs_vers = 0;
4976 }
4977 else if (ever >= extversym_end)
4978 {
4979 /* xgettext:c-format */
4980 _bfd_error_handler (_("%pB: not enough version information"),
4981 abfd);
4982 bfd_set_error (bfd_error_bad_value);
4983 goto error_free_vers;
4984 }
4985 else
4986 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4987
4988 vernum = iver.vs_vers & VERSYM_VERSION;
4989
4990 /* If this is a hidden symbol, or if it is not version
4991 1, we append the version name to the symbol name.
4992 However, we do not modify a non-hidden absolute symbol
4993 if it is not a function, because it might be the version
4994 symbol itself. FIXME: What if it isn't? */
4995 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4996 || (vernum > 1
4997 && (!bfd_is_abs_section (sec)
4998 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4999 {
5000 const char *verstr;
5001 size_t namelen, verlen, newlen;
5002 char *newname, *p;
5003
5004 if (isym->st_shndx != SHN_UNDEF)
5005 {
5006 if (vernum > elf_tdata (abfd)->cverdefs)
5007 verstr = NULL;
5008 else if (vernum > 1)
5009 verstr =
5010 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
5011 else
5012 verstr = "";
5013
5014 if (verstr == NULL)
5015 {
5016 _bfd_error_handler
5017 /* xgettext:c-format */
5018 (_("%pB: %s: invalid version %u (max %d)"),
5019 abfd, name, vernum,
5020 elf_tdata (abfd)->cverdefs);
5021 bfd_set_error (bfd_error_bad_value);
5022 goto error_free_vers;
5023 }
5024 }
5025 else
5026 {
5027 /* We cannot simply test for the number of
5028 entries in the VERNEED section since the
5029 numbers for the needed versions do not start
5030 at 0. */
5031 Elf_Internal_Verneed *t;
5032
5033 verstr = NULL;
5034 for (t = elf_tdata (abfd)->verref;
5035 t != NULL;
5036 t = t->vn_nextref)
5037 {
5038 Elf_Internal_Vernaux *a;
5039
5040 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5041 {
5042 if (a->vna_other == vernum)
5043 {
5044 verstr = a->vna_nodename;
5045 break;
5046 }
5047 }
5048 if (a != NULL)
5049 break;
5050 }
5051 if (verstr == NULL)
5052 {
5053 _bfd_error_handler
5054 /* xgettext:c-format */
5055 (_("%pB: %s: invalid needed version %d"),
5056 abfd, name, vernum);
5057 bfd_set_error (bfd_error_bad_value);
5058 goto error_free_vers;
5059 }
5060 }
5061
5062 namelen = strlen (name);
5063 verlen = strlen (verstr);
5064 newlen = namelen + verlen + 2;
5065 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
5066 && isym->st_shndx != SHN_UNDEF)
5067 ++newlen;
5068
5069 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
5070 if (newname == NULL)
5071 goto error_free_vers;
5072 memcpy (newname, name, namelen);
5073 p = newname + namelen;
5074 *p++ = ELF_VER_CHR;
5075 /* If this is a defined non-hidden version symbol,
5076 we add another @ to the name. This indicates the
5077 default version of the symbol. */
5078 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
5079 && isym->st_shndx != SHN_UNDEF)
5080 *p++ = ELF_VER_CHR;
5081 memcpy (p, verstr, verlen + 1);
5082
5083 name = newname;
5084 }
5085
5086 /* If this symbol has default visibility and the user has
5087 requested we not re-export it, then mark it as hidden. */
5088 if (!bfd_is_und_section (sec)
5089 && !dynamic
5090 && abfd->no_export
5091 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
5092 isym->st_other = (STV_HIDDEN
5093 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
5094
5095 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
5096 sym_hash, &old_bfd, &old_weak,
5097 &old_alignment, &skip, &override,
5098 &type_change_ok, &size_change_ok,
5099 &matched))
5100 goto error_free_vers;
5101
5102 if (skip)
5103 continue;
5104
5105 /* Override a definition only if the new symbol matches the
5106 existing one. */
5107 if (override && matched)
5108 definition = false;
5109
5110 h = *sym_hash;
5111 while (h->root.type == bfd_link_hash_indirect
5112 || h->root.type == bfd_link_hash_warning)
5113 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5114
5115 if (h->versioned != unversioned
5116 && elf_tdata (abfd)->verdef != NULL
5117 && vernum > 1
5118 && definition)
5119 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
5120 }
5121
5122 if (! (_bfd_generic_link_add_one_symbol
5123 (info, override ? override : abfd, name, flags, sec, value,
5124 NULL, false, bed->collect,
5125 (struct bfd_link_hash_entry **) sym_hash)))
5126 goto error_free_vers;
5127
5128 h = *sym_hash;
5129 /* We need to make sure that indirect symbol dynamic flags are
5130 updated. */
5131 hi = h;
5132 while (h->root.type == bfd_link_hash_indirect
5133 || h->root.type == bfd_link_hash_warning)
5134 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5135
5136 *sym_hash = h;
5137
5138 /* Setting the index to -3 tells elf_link_output_extsym that
5139 this symbol is defined in a discarded section. */
5140 if (discarded && is_elf_hash_table (&htab->root))
5141 h->indx = -3;
5142
5143 new_weak = (flags & BSF_WEAK) != 0;
5144 if (dynamic
5145 && definition
5146 && new_weak
5147 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
5148 && is_elf_hash_table (&htab->root)
5149 && h->u.alias == NULL)
5150 {
5151 /* Keep a list of all weak defined non function symbols from
5152 a dynamic object, using the alias field. Later in this
5153 function we will set the alias field to the correct
5154 value. We only put non-function symbols from dynamic
5155 objects on this list, because that happens to be the only
5156 time we need to know the normal symbol corresponding to a
5157 weak symbol, and the information is time consuming to
5158 figure out. If the alias field is not already NULL,
5159 then this symbol was already defined by some previous
5160 dynamic object, and we will be using that previous
5161 definition anyhow. */
5162
5163 h->u.alias = weaks;
5164 weaks = h;
5165 }
5166
5167 /* Set the alignment of a common symbol. */
5168 if ((common || bfd_is_com_section (sec))
5169 && h->root.type == bfd_link_hash_common)
5170 {
5171 unsigned int align;
5172
5173 if (common)
5174 align = bfd_log2 (isym->st_value);
5175 else
5176 {
5177 /* The new symbol is a common symbol in a shared object.
5178 We need to get the alignment from the section. */
5179 align = new_sec->alignment_power;
5180 }
5181 if (align > old_alignment)
5182 h->root.u.c.p->alignment_power = align;
5183 else
5184 h->root.u.c.p->alignment_power = old_alignment;
5185 }
5186
5187 if (is_elf_hash_table (&htab->root))
5188 {
5189 /* Set a flag in the hash table entry indicating the type of
5190 reference or definition we just found. A dynamic symbol
5191 is one which is referenced or defined by both a regular
5192 object and a shared object. */
5193 bool dynsym = false;
5194
5195 /* Plugin symbols aren't normal. Don't set def/ref flags. */
5196 if ((abfd->flags & BFD_PLUGIN) != 0)
5197 {
5198 /* Except for this flag to track nonweak references. */
5199 if (!definition
5200 && bind != STB_WEAK)
5201 h->ref_ir_nonweak = 1;
5202 }
5203 else if (!dynamic)
5204 {
5205 if (! definition)
5206 {
5207 h->ref_regular = 1;
5208 if (bind != STB_WEAK)
5209 h->ref_regular_nonweak = 1;
5210 }
5211 else
5212 {
5213 h->def_regular = 1;
5214 if (h->def_dynamic)
5215 {
5216 h->def_dynamic = 0;
5217 h->ref_dynamic = 1;
5218 }
5219 }
5220 }
5221 else
5222 {
5223 if (! definition)
5224 {
5225 h->ref_dynamic = 1;
5226 hi->ref_dynamic = 1;
5227 }
5228 else
5229 {
5230 h->def_dynamic = 1;
5231 hi->def_dynamic = 1;
5232 }
5233 }
5234
5235 /* If an indirect symbol has been forced local, don't
5236 make the real symbol dynamic. */
5237 if (h != hi && hi->forced_local)
5238 ;
5239 else if (!dynamic)
5240 {
5241 if (bfd_link_dll (info)
5242 || h->def_dynamic
5243 || h->ref_dynamic)
5244 dynsym = true;
5245 }
5246 else
5247 {
5248 if (h->def_regular
5249 || h->ref_regular
5250 || (h->is_weakalias
5251 && weakdef (h)->dynindx != -1))
5252 dynsym = true;
5253 }
5254
5255 /* Check to see if we need to add an indirect symbol for
5256 the default name. */
5257 if ((definition
5258 || (!override && h->root.type == bfd_link_hash_common))
5259 && !(hi != h
5260 && hi->versioned == versioned_hidden))
5261 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
5262 sec, value, &old_bfd, &dynsym))
5263 goto error_free_vers;
5264
5265 /* Check the alignment when a common symbol is involved. This
5266 can change when a common symbol is overridden by a normal
5267 definition or a common symbol is ignored due to the old
5268 normal definition. We need to make sure the maximum
5269 alignment is maintained. */
5270 if ((old_alignment || common)
5271 && h->root.type != bfd_link_hash_common)
5272 {
5273 unsigned int common_align;
5274 unsigned int normal_align;
5275 unsigned int symbol_align;
5276 bfd *normal_bfd;
5277 bfd *common_bfd;
5278
5279 BFD_ASSERT (h->root.type == bfd_link_hash_defined
5280 || h->root.type == bfd_link_hash_defweak);
5281
5282 symbol_align = ffs (h->root.u.def.value) - 1;
5283 if (h->root.u.def.section->owner != NULL
5284 && (h->root.u.def.section->owner->flags
5285 & (DYNAMIC | BFD_PLUGIN)) == 0)
5286 {
5287 normal_align = h->root.u.def.section->alignment_power;
5288 if (normal_align > symbol_align)
5289 normal_align = symbol_align;
5290 }
5291 else
5292 normal_align = symbol_align;
5293
5294 if (old_alignment)
5295 {
5296 common_align = old_alignment;
5297 common_bfd = old_bfd;
5298 normal_bfd = abfd;
5299 }
5300 else
5301 {
5302 common_align = bfd_log2 (isym->st_value);
5303 common_bfd = abfd;
5304 normal_bfd = old_bfd;
5305 }
5306
5307 if (normal_align < common_align)
5308 {
5309 /* PR binutils/2735 */
5310 if (normal_bfd == NULL)
5311 _bfd_error_handler
5312 /* xgettext:c-format */
5313 (_("warning: alignment %u of common symbol `%s' in %pB is"
5314 " greater than the alignment (%u) of its section %pA"),
5315 1 << common_align, name, common_bfd,
5316 1 << normal_align, h->root.u.def.section);
5317 else
5318 _bfd_error_handler
5319 /* xgettext:c-format */
5320 (_("warning: alignment %u of normal symbol `%s' in %pB"
5321 " is smaller than %u used by the common definition in %pB"),
5322 1 << normal_align, name, normal_bfd,
5323 1 << common_align, common_bfd);
5324
5325 /* PR 30499: make sure that users understand that this warning is serious. */
5326 _bfd_error_handler
5327 (_("warning: NOTE: alignment discrepancies can cause real problems. Investigation is advised."));
5328 }
5329 }
5330
5331 /* Remember the symbol size if it isn't undefined. */
5332 if (isym->st_size != 0
5333 && isym->st_shndx != SHN_UNDEF
5334 && (definition || h->size == 0))
5335 {
5336 if (h->size != 0
5337 && h->size != isym->st_size
5338 && ! size_change_ok)
5339 {
5340 _bfd_error_handler
5341 /* xgettext:c-format */
5342 (_("warning: size of symbol `%s' changed"
5343 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
5344 name, (uint64_t) h->size, old_bfd,
5345 (uint64_t) isym->st_size, abfd);
5346
5347 /* PR 30499: make sure that users understand that this warning is serious. */
5348 _bfd_error_handler
5349 (_("warning: NOTE: size discrepancies can cause real problems. Investigation is advised."));
5350 }
5351
5352 h->size = isym->st_size;
5353 }
5354
5355 /* If this is a common symbol, then we always want H->SIZE
5356 to be the size of the common symbol. The code just above
5357 won't fix the size if a common symbol becomes larger. We
5358 don't warn about a size change here, because that is
5359 covered by --warn-common. Allow changes between different
5360 function types. */
5361 if (h->root.type == bfd_link_hash_common)
5362 h->size = h->root.u.c.size;
5363
5364 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
5365 && ((definition && !new_weak)
5366 || (old_weak && h->root.type == bfd_link_hash_common)
5367 || h->type == STT_NOTYPE))
5368 {
5369 unsigned int type = ELF_ST_TYPE (isym->st_info);
5370
5371 /* Turn an IFUNC symbol from a DSO into a normal FUNC
5372 symbol. */
5373 if (type == STT_GNU_IFUNC
5374 && (abfd->flags & DYNAMIC) != 0)
5375 type = STT_FUNC;
5376
5377 if (h->type != type)
5378 {
5379 if (h->type != STT_NOTYPE && ! type_change_ok)
5380 /* xgettext:c-format */
5381 _bfd_error_handler
5382 (_("warning: type of symbol `%s' changed"
5383 " from %d to %d in %pB"),
5384 name, h->type, type, abfd);
5385
5386 h->type = type;
5387 }
5388 }
5389
5390 /* Merge st_other field. */
5391 elf_merge_st_other (abfd, h, isym->st_other, sec,
5392 definition, dynamic);
5393
5394 /* We don't want to make debug symbol dynamic. */
5395 if (definition
5396 && (sec->flags & SEC_DEBUGGING)
5397 && !bfd_link_relocatable (info))
5398 dynsym = false;
5399
5400 /* Nor should we make plugin symbols dynamic. */
5401 if ((abfd->flags & BFD_PLUGIN) != 0)
5402 dynsym = false;
5403
5404 if (definition)
5405 {
5406 h->target_internal = isym->st_target_internal;
5407 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5408 }
5409
5410 /* Don't add indirect symbols for .symver x, x@FOO aliases
5411 in IR. Since all data or text symbols in IR have the
5412 same type, value and section, we can't tell if a symbol
5413 is an alias of another symbol by their types, values and
5414 sections. */
5415 if (definition
5416 && !dynamic
5417 && (abfd->flags & BFD_PLUGIN) == 0)
5418 {
5419 char *p = strchr (name, ELF_VER_CHR);
5420 if (p != NULL && p[1] != ELF_VER_CHR)
5421 {
5422 /* Queue non-default versions so that .symver x, x@FOO
5423 aliases can be checked. */
5424 if (!nondeflt_vers)
5425 {
5426 size_t amt = ((isymend - isym + 1)
5427 * sizeof (struct elf_link_hash_entry *));
5428 nondeflt_vers
5429 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5430 if (!nondeflt_vers)
5431 goto error_free_vers;
5432 }
5433 nondeflt_vers[nondeflt_vers_cnt++] = h;
5434 }
5435 }
5436
5437 if (dynsym && h->dynindx == -1)
5438 {
5439 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5440 goto error_free_vers;
5441 if (h->is_weakalias
5442 && weakdef (h)->dynindx == -1)
5443 {
5444 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5445 goto error_free_vers;
5446 }
5447 }
5448 else if (h->dynindx != -1)
5449 /* If the symbol already has a dynamic index, but
5450 visibility says it should not be visible, turn it into
5451 a local symbol. */
5452 switch (ELF_ST_VISIBILITY (h->other))
5453 {
5454 case STV_INTERNAL:
5455 case STV_HIDDEN:
5456 (*bed->elf_backend_hide_symbol) (info, h, true);
5457 dynsym = false;
5458 break;
5459 }
5460
5461 if (!add_needed
5462 && matched
5463 && definition
5464 && h->root.type != bfd_link_hash_indirect
5465 && ((dynsym
5466 && h->ref_regular_nonweak)
5467 || (old_bfd != NULL
5468 && (old_bfd->flags & BFD_PLUGIN) != 0
5469 && h->ref_ir_nonweak
5470 && !info->lto_all_symbols_read)
5471 || (h->ref_dynamic_nonweak
5472 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5473 && !on_needed_list (elf_dt_name (abfd),
5474 htab->needed, NULL))))
5475 {
5476 const char *soname = elf_dt_name (abfd);
5477
5478 info->callbacks->minfo ("%!", soname, old_bfd,
5479 h->root.root.string);
5480
5481 /* A symbol from a library loaded via DT_NEEDED of some
5482 other library is referenced by a regular object.
5483 Add a DT_NEEDED entry for it. Issue an error if
5484 --no-add-needed is used and the reference was not
5485 a weak one. */
5486 if (old_bfd != NULL
5487 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5488 {
5489 _bfd_error_handler
5490 /* xgettext:c-format */
5491 (_("%pB: undefined reference to symbol '%s'"),
5492 old_bfd, name);
5493 bfd_set_error (bfd_error_missing_dso);
5494 goto error_free_vers;
5495 }
5496
5497 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5498 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5499
5500 /* Create dynamic sections for backends that require
5501 that be done before setup_gnu_properties. */
5502 if (!_bfd_elf_link_create_dynamic_sections (abfd, info))
5503 return false;
5504 add_needed = true;
5505 }
5506 }
5507 }
5508
5509 if (info->lto_plugin_active
5510 && !bfd_link_relocatable (info)
5511 && (abfd->flags & BFD_PLUGIN) == 0
5512 && !just_syms
5513 && extsymcount)
5514 {
5515 int r_sym_shift;
5516
5517 if (bed->s->arch_size == 32)
5518 r_sym_shift = 8;
5519 else
5520 r_sym_shift = 32;
5521
5522 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5523 referenced in regular objects so that linker plugin will get
5524 the correct symbol resolution. */
5525
5526 sym_hash = elf_sym_hashes (abfd);
5527 for (s = abfd->sections; s != NULL; s = s->next)
5528 {
5529 Elf_Internal_Rela *internal_relocs;
5530 Elf_Internal_Rela *rel, *relend;
5531
5532 /* Don't check relocations in excluded sections. */
5533 if ((s->flags & SEC_RELOC) == 0
5534 || s->reloc_count == 0
5535 || (s->flags & SEC_EXCLUDE) != 0
5536 || ((info->strip == strip_all
5537 || info->strip == strip_debugger)
5538 && (s->flags & SEC_DEBUGGING) != 0))
5539 continue;
5540
5541 internal_relocs = _bfd_elf_link_info_read_relocs (abfd, info,
5542 s, NULL,
5543 NULL,
5544 _bfd_link_keep_memory (info));
5545 if (internal_relocs == NULL)
5546 goto error_free_vers;
5547
5548 rel = internal_relocs;
5549 relend = rel + s->reloc_count;
5550 for ( ; rel < relend; rel++)
5551 {
5552 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5553 struct elf_link_hash_entry *h;
5554
5555 /* Skip local symbols. */
5556 if (r_symndx < extsymoff)
5557 continue;
5558
5559 h = sym_hash[r_symndx - extsymoff];
5560 if (h != NULL)
5561 h->root.non_ir_ref_regular = 1;
5562 }
5563
5564 if (elf_section_data (s)->relocs != internal_relocs)
5565 free (internal_relocs);
5566 }
5567 }
5568
5569 free (extversym);
5570 extversym = NULL;
5571 free (isymbuf);
5572 isymbuf = NULL;
5573
5574 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5575 {
5576 unsigned int i;
5577
5578 /* Restore the symbol table. */
5579 old_ent = (char *) old_tab + tabsize;
5580 memset (elf_sym_hashes (abfd), 0,
5581 extsymcount * sizeof (struct elf_link_hash_entry *));
5582 htab->root.table.table = old_table;
5583 htab->root.table.size = old_size;
5584 htab->root.table.count = old_count;
5585 memcpy (htab->root.table.table, old_tab, tabsize);
5586 htab->root.undefs = old_undefs;
5587 htab->root.undefs_tail = old_undefs_tail;
5588 if (htab->dynstr != NULL)
5589 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5590 free (old_strtab);
5591 old_strtab = NULL;
5592 for (i = 0; i < htab->root.table.size; i++)
5593 {
5594 struct bfd_hash_entry *p;
5595 struct elf_link_hash_entry *h;
5596 unsigned int non_ir_ref_dynamic;
5597
5598 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5599 {
5600 /* Preserve non_ir_ref_dynamic so that this symbol
5601 will be exported when the dynamic lib becomes needed
5602 in the second pass. */
5603 h = (struct elf_link_hash_entry *) p;
5604 if (h->root.type == bfd_link_hash_warning)
5605 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5606 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5607
5608 h = (struct elf_link_hash_entry *) p;
5609 memcpy (h, old_ent, htab->root.table.entsize);
5610 old_ent = (char *) old_ent + htab->root.table.entsize;
5611 if (h->root.type == bfd_link_hash_warning)
5612 {
5613 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5614 memcpy (h, old_ent, htab->root.table.entsize);
5615 old_ent = (char *) old_ent + htab->root.table.entsize;
5616 }
5617 if (h->root.type == bfd_link_hash_common)
5618 {
5619 memcpy (h->root.u.c.p, old_ent, sizeof (*h->root.u.c.p));
5620 old_ent = (char *) old_ent + sizeof (*h->root.u.c.p);
5621 }
5622 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5623 }
5624 }
5625
5626 /* Make a special call to the linker "notice" function to
5627 tell it that symbols added for crefs may need to be removed. */
5628 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5629 goto error_free_vers;
5630
5631 free (old_tab);
5632 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5633 alloc_mark);
5634 free (nondeflt_vers);
5635 return true;
5636 }
5637
5638 if (old_tab != NULL)
5639 {
5640 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5641 goto error_free_vers;
5642 free (old_tab);
5643 old_tab = NULL;
5644 }
5645
5646 /* Now that all the symbols from this input file are created, if
5647 not performing a relocatable link, handle .symver foo, foo@BAR
5648 such that any relocs against foo become foo@BAR. */
5649 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5650 {
5651 size_t cnt, symidx;
5652
5653 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5654 {
5655 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5656 char *shortname, *p;
5657 size_t amt;
5658
5659 p = strchr (h->root.root.string, ELF_VER_CHR);
5660 if (p == NULL
5661 || (h->root.type != bfd_link_hash_defined
5662 && h->root.type != bfd_link_hash_defweak))
5663 continue;
5664
5665 amt = p - h->root.root.string;
5666 shortname = (char *) bfd_malloc (amt + 1);
5667 if (!shortname)
5668 goto error_free_vers;
5669 memcpy (shortname, h->root.root.string, amt);
5670 shortname[amt] = '\0';
5671
5672 hi = (struct elf_link_hash_entry *)
5673 bfd_link_hash_lookup (&htab->root, shortname,
5674 false, false, false);
5675 if (hi != NULL
5676 && hi->root.type == h->root.type
5677 && hi->root.u.def.value == h->root.u.def.value
5678 && hi->root.u.def.section == h->root.u.def.section)
5679 {
5680 (*bed->elf_backend_hide_symbol) (info, hi, true);
5681 hi->root.type = bfd_link_hash_indirect;
5682 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5683 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5684 sym_hash = elf_sym_hashes (abfd);
5685 if (sym_hash)
5686 for (symidx = 0; symidx < extsymcount; ++symidx)
5687 if (sym_hash[symidx] == hi)
5688 {
5689 sym_hash[symidx] = h;
5690 break;
5691 }
5692 }
5693 free (shortname);
5694 }
5695 free (nondeflt_vers);
5696 nondeflt_vers = NULL;
5697 }
5698
5699 /* Now set the alias field correctly for all the weak defined
5700 symbols we found. The only way to do this is to search all the
5701 symbols. Since we only need the information for non functions in
5702 dynamic objects, that's the only time we actually put anything on
5703 the list WEAKS. We need this information so that if a regular
5704 object refers to a symbol defined weakly in a dynamic object, the
5705 real symbol in the dynamic object is also put in the dynamic
5706 symbols; we also must arrange for both symbols to point to the
5707 same memory location. We could handle the general case of symbol
5708 aliasing, but a general symbol alias can only be generated in
5709 assembler code, handling it correctly would be very time
5710 consuming, and other ELF linkers don't handle general aliasing
5711 either. */
5712 if (weaks != NULL)
5713 {
5714 struct elf_link_hash_entry **hpp;
5715 struct elf_link_hash_entry **hppend;
5716 struct elf_link_hash_entry **sorted_sym_hash;
5717 struct elf_link_hash_entry *h;
5718 size_t sym_count, amt;
5719
5720 /* Since we have to search the whole symbol list for each weak
5721 defined symbol, search time for N weak defined symbols will be
5722 O(N^2). Binary search will cut it down to O(NlogN). */
5723 amt = extsymcount * sizeof (*sorted_sym_hash);
5724 sorted_sym_hash = bfd_malloc (amt);
5725 if (sorted_sym_hash == NULL)
5726 goto error_return;
5727 sym_hash = sorted_sym_hash;
5728 hpp = elf_sym_hashes (abfd);
5729 hppend = hpp + extsymcount;
5730 sym_count = 0;
5731 for (; hpp < hppend; hpp++)
5732 {
5733 h = *hpp;
5734 if (h != NULL
5735 && h->root.type == bfd_link_hash_defined
5736 && !bed->is_function_type (h->type))
5737 {
5738 *sym_hash = h;
5739 sym_hash++;
5740 sym_count++;
5741 }
5742 }
5743
5744 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash),
5745 elf_sort_symbol);
5746
5747 while (weaks != NULL)
5748 {
5749 struct elf_link_hash_entry *hlook;
5750 asection *slook;
5751 bfd_vma vlook;
5752 size_t i, j, idx = 0;
5753
5754 hlook = weaks;
5755 weaks = hlook->u.alias;
5756 hlook->u.alias = NULL;
5757
5758 if (hlook->root.type != bfd_link_hash_defined
5759 && hlook->root.type != bfd_link_hash_defweak)
5760 continue;
5761
5762 slook = hlook->root.u.def.section;
5763 vlook = hlook->root.u.def.value;
5764
5765 i = 0;
5766 j = sym_count;
5767 while (i != j)
5768 {
5769 bfd_signed_vma vdiff;
5770 idx = (i + j) / 2;
5771 h = sorted_sym_hash[idx];
5772 vdiff = vlook - h->root.u.def.value;
5773 if (vdiff < 0)
5774 j = idx;
5775 else if (vdiff > 0)
5776 i = idx + 1;
5777 else
5778 {
5779 int sdiff = slook->id - h->root.u.def.section->id;
5780 if (sdiff < 0)
5781 j = idx;
5782 else if (sdiff > 0)
5783 i = idx + 1;
5784 else
5785 break;
5786 }
5787 }
5788
5789 /* We didn't find a value/section match. */
5790 if (i == j)
5791 continue;
5792
5793 /* With multiple aliases, or when the weak symbol is already
5794 strongly defined, we have multiple matching symbols and
5795 the binary search above may land on any of them. Step
5796 one past the matching symbol(s). */
5797 while (++idx != j)
5798 {
5799 h = sorted_sym_hash[idx];
5800 if (h->root.u.def.section != slook
5801 || h->root.u.def.value != vlook)
5802 break;
5803 }
5804
5805 /* Now look back over the aliases. Since we sorted by size
5806 as well as value and section, we'll choose the one with
5807 the largest size. */
5808 while (idx-- != i)
5809 {
5810 h = sorted_sym_hash[idx];
5811
5812 /* Stop if value or section doesn't match. */
5813 if (h->root.u.def.section != slook
5814 || h->root.u.def.value != vlook)
5815 break;
5816 else if (h != hlook)
5817 {
5818 struct elf_link_hash_entry *t;
5819
5820 hlook->u.alias = h;
5821 hlook->is_weakalias = 1;
5822 t = h;
5823 if (t->u.alias != NULL)
5824 while (t->u.alias != h)
5825 t = t->u.alias;
5826 t->u.alias = hlook;
5827
5828 /* If the weak definition is in the list of dynamic
5829 symbols, make sure the real definition is put
5830 there as well. */
5831 if (hlook->dynindx != -1 && h->dynindx == -1)
5832 {
5833 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5834 {
5835 err_free_sym_hash:
5836 free (sorted_sym_hash);
5837 goto error_return;
5838 }
5839 }
5840
5841 /* If the real definition is in the list of dynamic
5842 symbols, make sure the weak definition is put
5843 there as well. If we don't do this, then the
5844 dynamic loader might not merge the entries for the
5845 real definition and the weak definition. */
5846 if (h->dynindx != -1 && hlook->dynindx == -1)
5847 {
5848 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5849 goto err_free_sym_hash;
5850 }
5851 break;
5852 }
5853 }
5854 }
5855
5856 free (sorted_sym_hash);
5857 }
5858
5859 if (bed->check_directives
5860 && !(*bed->check_directives) (abfd, info))
5861 return false;
5862
5863 /* If this is a non-traditional link, try to optimize the handling
5864 of the .stab/.stabstr sections. */
5865 if (! dynamic
5866 && ! info->traditional_format
5867 && is_elf_hash_table (&htab->root)
5868 && (info->strip != strip_all && info->strip != strip_debugger))
5869 {
5870 asection *stabstr;
5871
5872 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5873 if (stabstr != NULL)
5874 {
5875 bfd_size_type string_offset = 0;
5876 asection *stab;
5877
5878 for (stab = abfd->sections; stab; stab = stab->next)
5879 if (startswith (stab->name, ".stab")
5880 && (!stab->name[5] ||
5881 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5882 && (stab->flags & SEC_MERGE) == 0
5883 && !bfd_is_abs_section (stab->output_section))
5884 {
5885 struct bfd_elf_section_data *secdata;
5886
5887 secdata = elf_section_data (stab);
5888 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5889 stabstr, &secdata->sec_info,
5890 &string_offset))
5891 goto error_return;
5892 if (secdata->sec_info)
5893 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5894 }
5895 }
5896 }
5897
5898 if (dynamic && add_needed)
5899 {
5900 /* Add this bfd to the loaded list. */
5901 struct elf_link_loaded_list *n;
5902
5903 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5904 if (n == NULL)
5905 goto error_return;
5906 n->abfd = abfd;
5907 n->next = htab->dyn_loaded;
5908 htab->dyn_loaded = n;
5909 }
5910 if (dynamic && !add_needed
5911 && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0)
5912 elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED;
5913
5914 return true;
5915
5916 error_free_vers:
5917 free (old_tab);
5918 free (old_strtab);
5919 free (nondeflt_vers);
5920 free (extversym);
5921 error_free_sym:
5922 free (isymbuf);
5923 error_return:
5924 return false;
5925 }
5926
5927 /* Return the linker hash table entry of a symbol that might be
5928 satisfied by an archive symbol. Return -1 on error. */
5929
5930 struct bfd_link_hash_entry *
5931 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5932 struct bfd_link_info *info,
5933 const char *name)
5934 {
5935 struct bfd_link_hash_entry *h;
5936 char *p, *copy;
5937 size_t len, first;
5938
5939 h = bfd_link_hash_lookup (info->hash, name, false, false, true);
5940 if (h != NULL)
5941 return h;
5942
5943 /* If this is a default version (the name contains @@), look up the
5944 symbol again with only one `@' as well as without the version.
5945 The effect is that references to the symbol with and without the
5946 version will be matched by the default symbol in the archive. */
5947
5948 p = strchr (name, ELF_VER_CHR);
5949 if (p == NULL || p[1] != ELF_VER_CHR)
5950 return h;
5951
5952 /* First check with only one `@'. */
5953 len = strlen (name);
5954 copy = (char *) bfd_alloc (abfd, len);
5955 if (copy == NULL)
5956 return (struct bfd_link_hash_entry *) -1;
5957
5958 first = p - name + 1;
5959 memcpy (copy, name, first);
5960 memcpy (copy + first, name + first + 1, len - first);
5961
5962 h = bfd_link_hash_lookup (info->hash, copy, false, false, true);
5963 if (h == NULL)
5964 {
5965 /* We also need to check references to the symbol without the
5966 version. */
5967 copy[first - 1] = '\0';
5968 h = bfd_link_hash_lookup (info->hash, copy, false, false, true);
5969 }
5970
5971 bfd_release (abfd, copy);
5972 return h;
5973 }
5974
5975 /* Add symbols from an ELF archive file to the linker hash table. We
5976 don't use _bfd_generic_link_add_archive_symbols because we need to
5977 handle versioned symbols.
5978
5979 Fortunately, ELF archive handling is simpler than that done by
5980 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5981 oddities. In ELF, if we find a symbol in the archive map, and the
5982 symbol is currently undefined, we know that we must pull in that
5983 object file.
5984
5985 Unfortunately, we do have to make multiple passes over the symbol
5986 table until nothing further is resolved. */
5987
5988 static bool
5989 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5990 {
5991 symindex c;
5992 unsigned char *included = NULL;
5993 carsym *symdefs;
5994 bool loop;
5995 size_t amt;
5996 const struct elf_backend_data *bed;
5997 struct bfd_link_hash_entry * (*archive_symbol_lookup)
5998 (bfd *, struct bfd_link_info *, const char *);
5999
6000 if (! bfd_has_map (abfd))
6001 {
6002 /* An empty archive is a special case. */
6003 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
6004 return true;
6005 bfd_set_error (bfd_error_no_armap);
6006 return false;
6007 }
6008
6009 /* Keep track of all symbols we know to be already defined, and all
6010 files we know to be already included. This is to speed up the
6011 second and subsequent passes. */
6012 c = bfd_ardata (abfd)->symdef_count;
6013 if (c == 0)
6014 return true;
6015 amt = c * sizeof (*included);
6016 included = (unsigned char *) bfd_zmalloc (amt);
6017 if (included == NULL)
6018 return false;
6019
6020 symdefs = bfd_ardata (abfd)->symdefs;
6021 bed = get_elf_backend_data (abfd);
6022 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
6023
6024 do
6025 {
6026 file_ptr last;
6027 symindex i;
6028 carsym *symdef;
6029 carsym *symdefend;
6030
6031 loop = false;
6032 last = -1;
6033
6034 symdef = symdefs;
6035 symdefend = symdef + c;
6036 for (i = 0; symdef < symdefend; symdef++, i++)
6037 {
6038 struct bfd_link_hash_entry *h;
6039 bfd *element;
6040 struct bfd_link_hash_entry *undefs_tail;
6041 symindex mark;
6042
6043 if (included[i])
6044 continue;
6045 if (symdef->file_offset == last)
6046 {
6047 included[i] = true;
6048 continue;
6049 }
6050
6051 h = archive_symbol_lookup (abfd, info, symdef->name);
6052 if (h == (struct bfd_link_hash_entry *) -1)
6053 goto error_return;
6054
6055 if (h == NULL)
6056 continue;
6057
6058 if (h->type == bfd_link_hash_undefined)
6059 {
6060 /* If the archive element has already been loaded then one
6061 of the symbols defined by that element might have been
6062 made undefined due to being in a discarded section. */
6063 if (is_elf_hash_table (info->hash)
6064 && ((struct elf_link_hash_entry *) h)->indx == -3)
6065 continue;
6066 }
6067 else if (h->type == bfd_link_hash_common)
6068 {
6069 /* We currently have a common symbol. The archive map contains
6070 a reference to this symbol, so we may want to include it. We
6071 only want to include it however, if this archive element
6072 contains a definition of the symbol, not just another common
6073 declaration of it.
6074
6075 Unfortunately some archivers (including GNU ar) will put
6076 declarations of common symbols into their archive maps, as
6077 well as real definitions, so we cannot just go by the archive
6078 map alone. Instead we must read in the element's symbol
6079 table and check that to see what kind of symbol definition
6080 this is. */
6081 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
6082 continue;
6083 }
6084 else
6085 {
6086 if (h->type != bfd_link_hash_undefweak)
6087 /* Symbol must be defined. Don't check it again. */
6088 included[i] = true;
6089 continue;
6090 }
6091
6092 /* We need to include this archive member. */
6093 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset,
6094 info);
6095 if (element == NULL)
6096 goto error_return;
6097
6098 if (! bfd_check_format (element, bfd_object))
6099 goto error_return;
6100
6101 undefs_tail = info->hash->undefs_tail;
6102
6103 if (!(*info->callbacks
6104 ->add_archive_element) (info, element, symdef->name, &element))
6105 continue;
6106 if (!bfd_link_add_symbols (element, info))
6107 goto error_return;
6108
6109 /* If there are any new undefined symbols, we need to make
6110 another pass through the archive in order to see whether
6111 they can be defined. FIXME: This isn't perfect, because
6112 common symbols wind up on undefs_tail and because an
6113 undefined symbol which is defined later on in this pass
6114 does not require another pass. This isn't a bug, but it
6115 does make the code less efficient than it could be. */
6116 if (undefs_tail != info->hash->undefs_tail)
6117 loop = true;
6118
6119 /* Look backward to mark all symbols from this object file
6120 which we have already seen in this pass. */
6121 mark = i;
6122 do
6123 {
6124 included[mark] = true;
6125 if (mark == 0)
6126 break;
6127 --mark;
6128 }
6129 while (symdefs[mark].file_offset == symdef->file_offset);
6130
6131 /* We mark subsequent symbols from this object file as we go
6132 on through the loop. */
6133 last = symdef->file_offset;
6134 }
6135 }
6136 while (loop);
6137
6138 free (included);
6139 return true;
6140
6141 error_return:
6142 free (included);
6143 return false;
6144 }
6145
6146 /* Given an ELF BFD, add symbols to the global hash table as
6147 appropriate. */
6148
6149 bool
6150 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
6151 {
6152 switch (bfd_get_format (abfd))
6153 {
6154 case bfd_object:
6155 return elf_link_add_object_symbols (abfd, info);
6156 case bfd_archive:
6157 return elf_link_add_archive_symbols (abfd, info);
6158 default:
6159 bfd_set_error (bfd_error_wrong_format);
6160 return false;
6161 }
6162 }
6163 \f
6164 struct hash_codes_info
6165 {
6166 unsigned long *hashcodes;
6167 bool error;
6168 };
6169
6170 /* This function will be called though elf_link_hash_traverse to store
6171 all hash value of the exported symbols in an array. */
6172
6173 static bool
6174 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
6175 {
6176 struct hash_codes_info *inf = (struct hash_codes_info *) data;
6177 const char *name;
6178 unsigned long ha;
6179 char *alc = NULL;
6180
6181 /* Ignore indirect symbols. These are added by the versioning code. */
6182 if (h->dynindx == -1)
6183 return true;
6184
6185 name = h->root.root.string;
6186 if (h->versioned >= versioned)
6187 {
6188 char *p = strchr (name, ELF_VER_CHR);
6189 if (p != NULL)
6190 {
6191 alc = (char *) bfd_malloc (p - name + 1);
6192 if (alc == NULL)
6193 {
6194 inf->error = true;
6195 return false;
6196 }
6197 memcpy (alc, name, p - name);
6198 alc[p - name] = '\0';
6199 name = alc;
6200 }
6201 }
6202
6203 /* Compute the hash value. */
6204 ha = bfd_elf_hash (name);
6205
6206 /* Store the found hash value in the array given as the argument. */
6207 *(inf->hashcodes)++ = ha;
6208
6209 /* And store it in the struct so that we can put it in the hash table
6210 later. */
6211 h->u.elf_hash_value = ha;
6212
6213 free (alc);
6214 return true;
6215 }
6216
6217 struct collect_gnu_hash_codes
6218 {
6219 bfd *output_bfd;
6220 const struct elf_backend_data *bed;
6221 unsigned long int nsyms;
6222 unsigned long int maskbits;
6223 unsigned long int *hashcodes;
6224 unsigned long int *hashval;
6225 unsigned long int *indx;
6226 unsigned long int *counts;
6227 bfd_vma *bitmask;
6228 bfd_byte *contents;
6229 bfd_size_type xlat;
6230 long int min_dynindx;
6231 unsigned long int bucketcount;
6232 unsigned long int symindx;
6233 long int local_indx;
6234 long int shift1, shift2;
6235 unsigned long int mask;
6236 bool error;
6237 };
6238
6239 /* This function will be called though elf_link_hash_traverse to store
6240 all hash value of the exported symbols in an array. */
6241
6242 static bool
6243 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
6244 {
6245 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6246 const char *name;
6247 unsigned long ha;
6248 char *alc = NULL;
6249
6250 /* Ignore indirect symbols. These are added by the versioning code. */
6251 if (h->dynindx == -1)
6252 return true;
6253
6254 /* Ignore also local symbols and undefined symbols. */
6255 if (! (*s->bed->elf_hash_symbol) (h))
6256 return true;
6257
6258 name = h->root.root.string;
6259 if (h->versioned >= versioned)
6260 {
6261 char *p = strchr (name, ELF_VER_CHR);
6262 if (p != NULL)
6263 {
6264 alc = (char *) bfd_malloc (p - name + 1);
6265 if (alc == NULL)
6266 {
6267 s->error = true;
6268 return false;
6269 }
6270 memcpy (alc, name, p - name);
6271 alc[p - name] = '\0';
6272 name = alc;
6273 }
6274 }
6275
6276 /* Compute the hash value. */
6277 ha = bfd_elf_gnu_hash (name);
6278
6279 /* Store the found hash value in the array for compute_bucket_count,
6280 and also for .dynsym reordering purposes. */
6281 s->hashcodes[s->nsyms] = ha;
6282 s->hashval[h->dynindx] = ha;
6283 ++s->nsyms;
6284 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
6285 s->min_dynindx = h->dynindx;
6286
6287 free (alc);
6288 return true;
6289 }
6290
6291 /* This function will be called though elf_link_hash_traverse to do
6292 final dynamic symbol renumbering in case of .gnu.hash.
6293 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
6294 to the translation table. */
6295
6296 static bool
6297 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
6298 {
6299 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6300 unsigned long int bucket;
6301 unsigned long int val;
6302
6303 /* Ignore indirect symbols. */
6304 if (h->dynindx == -1)
6305 return true;
6306
6307 /* Ignore also local symbols and undefined symbols. */
6308 if (! (*s->bed->elf_hash_symbol) (h))
6309 {
6310 if (h->dynindx >= s->min_dynindx)
6311 {
6312 if (s->bed->record_xhash_symbol != NULL)
6313 {
6314 (*s->bed->record_xhash_symbol) (h, 0);
6315 s->local_indx++;
6316 }
6317 else
6318 h->dynindx = s->local_indx++;
6319 }
6320 return true;
6321 }
6322
6323 bucket = s->hashval[h->dynindx] % s->bucketcount;
6324 val = (s->hashval[h->dynindx] >> s->shift1)
6325 & ((s->maskbits >> s->shift1) - 1);
6326 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
6327 s->bitmask[val]
6328 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
6329 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
6330 if (s->counts[bucket] == 1)
6331 /* Last element terminates the chain. */
6332 val |= 1;
6333 bfd_put_32 (s->output_bfd, val,
6334 s->contents + (s->indx[bucket] - s->symindx) * 4);
6335 --s->counts[bucket];
6336 if (s->bed->record_xhash_symbol != NULL)
6337 {
6338 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
6339
6340 (*s->bed->record_xhash_symbol) (h, xlat_loc);
6341 }
6342 else
6343 h->dynindx = s->indx[bucket]++;
6344 return true;
6345 }
6346
6347 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6348
6349 bool
6350 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
6351 {
6352 return !(h->forced_local
6353 || h->root.type == bfd_link_hash_undefined
6354 || h->root.type == bfd_link_hash_undefweak
6355 || ((h->root.type == bfd_link_hash_defined
6356 || h->root.type == bfd_link_hash_defweak)
6357 && h->root.u.def.section->output_section == NULL));
6358 }
6359
6360 /* Array used to determine the number of hash table buckets to use
6361 based on the number of symbols there are. If there are fewer than
6362 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6363 fewer than 37 we use 17 buckets, and so forth. We never use more
6364 than 32771 buckets. */
6365
6366 static const size_t elf_buckets[] =
6367 {
6368 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6369 16411, 32771, 0
6370 };
6371
6372 /* Compute bucket count for hashing table. We do not use a static set
6373 of possible tables sizes anymore. Instead we determine for all
6374 possible reasonable sizes of the table the outcome (i.e., the
6375 number of collisions etc) and choose the best solution. The
6376 weighting functions are not too simple to allow the table to grow
6377 without bounds. Instead one of the weighting factors is the size.
6378 Therefore the result is always a good payoff between few collisions
6379 (= short chain lengths) and table size. */
6380 static size_t
6381 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6382 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6383 unsigned long int nsyms,
6384 int gnu_hash)
6385 {
6386 size_t best_size = 0;
6387 unsigned long int i;
6388
6389 if (info->optimize)
6390 {
6391 size_t minsize;
6392 size_t maxsize;
6393 uint64_t best_chlen = ~((uint64_t) 0);
6394 bfd *dynobj = elf_hash_table (info)->dynobj;
6395 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6396 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6397 unsigned long int *counts;
6398 bfd_size_type amt;
6399 unsigned int no_improvement_count = 0;
6400
6401 /* Possible optimization parameters: if we have NSYMS symbols we say
6402 that the hashing table must at least have NSYMS/4 and at most
6403 2*NSYMS buckets. */
6404 minsize = nsyms / 4;
6405 if (minsize == 0)
6406 minsize = 1;
6407 best_size = maxsize = nsyms * 2;
6408 if (gnu_hash)
6409 {
6410 if (minsize < 2)
6411 minsize = 2;
6412 if ((best_size & 31) == 0)
6413 ++best_size;
6414 }
6415
6416 /* Create array where we count the collisions in. We must use bfd_malloc
6417 since the size could be large. */
6418 amt = maxsize;
6419 amt *= sizeof (unsigned long int);
6420 counts = (unsigned long int *) bfd_malloc (amt);
6421 if (counts == NULL)
6422 return 0;
6423
6424 /* Compute the "optimal" size for the hash table. The criteria is a
6425 minimal chain length. The minor criteria is (of course) the size
6426 of the table. */
6427 for (i = minsize; i < maxsize; ++i)
6428 {
6429 /* Walk through the array of hashcodes and count the collisions. */
6430 uint64_t max;
6431 unsigned long int j;
6432 unsigned long int fact;
6433
6434 if (gnu_hash && (i & 31) == 0)
6435 continue;
6436
6437 memset (counts, '\0', i * sizeof (unsigned long int));
6438
6439 /* Determine how often each hash bucket is used. */
6440 for (j = 0; j < nsyms; ++j)
6441 ++counts[hashcodes[j] % i];
6442
6443 /* For the weight function we need some information about the
6444 pagesize on the target. This is information need not be 100%
6445 accurate. Since this information is not available (so far) we
6446 define it here to a reasonable default value. If it is crucial
6447 to have a better value some day simply define this value. */
6448 # ifndef BFD_TARGET_PAGESIZE
6449 # define BFD_TARGET_PAGESIZE (4096)
6450 # endif
6451
6452 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6453 and the chains. */
6454 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6455
6456 # if 1
6457 /* Variant 1: optimize for short chains. We add the squares
6458 of all the chain lengths (which favors many small chain
6459 over a few long chains). */
6460 for (j = 0; j < i; ++j)
6461 max += counts[j] * counts[j];
6462
6463 /* This adds penalties for the overall size of the table. */
6464 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6465 max *= fact * fact;
6466 # else
6467 /* Variant 2: Optimize a lot more for small table. Here we
6468 also add squares of the size but we also add penalties for
6469 empty slots (the +1 term). */
6470 for (j = 0; j < i; ++j)
6471 max += (1 + counts[j]) * (1 + counts[j]);
6472
6473 /* The overall size of the table is considered, but not as
6474 strong as in variant 1, where it is squared. */
6475 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6476 max *= fact;
6477 # endif
6478
6479 /* Compare with current best results. */
6480 if (max < best_chlen)
6481 {
6482 best_chlen = max;
6483 best_size = i;
6484 no_improvement_count = 0;
6485 }
6486 /* PR 11843: Avoid futile long searches for the best bucket size
6487 when there are a large number of symbols. */
6488 else if (++no_improvement_count == 100)
6489 break;
6490 }
6491
6492 free (counts);
6493 }
6494 else
6495 {
6496 for (i = 0; elf_buckets[i] != 0; i++)
6497 {
6498 best_size = elf_buckets[i];
6499 if (nsyms < elf_buckets[i + 1])
6500 break;
6501 }
6502 if (gnu_hash && best_size < 2)
6503 best_size = 2;
6504 }
6505
6506 return best_size;
6507 }
6508
6509 /* Size any SHT_GROUP section for ld -r. */
6510
6511 bool
6512 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6513 {
6514 bfd *ibfd;
6515 asection *s;
6516
6517 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6518 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6519 && (s = ibfd->sections) != NULL
6520 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6521 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6522 return false;
6523 return true;
6524 }
6525
6526 /* Set a default stack segment size. The value in INFO wins. If it
6527 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6528 undefined it is initialized. */
6529
6530 bool
6531 bfd_elf_stack_segment_size (bfd *output_bfd,
6532 struct bfd_link_info *info,
6533 const char *legacy_symbol,
6534 bfd_vma default_size)
6535 {
6536 struct elf_link_hash_entry *h = NULL;
6537
6538 /* Look for legacy symbol. */
6539 if (legacy_symbol)
6540 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6541 false, false, false);
6542 if (h && (h->root.type == bfd_link_hash_defined
6543 || h->root.type == bfd_link_hash_defweak)
6544 && h->def_regular
6545 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6546 {
6547 /* The symbol has no type if specified on the command line. */
6548 h->type = STT_OBJECT;
6549 if (info->stacksize)
6550 /* xgettext:c-format */
6551 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6552 output_bfd, legacy_symbol);
6553 else if (h->root.u.def.section != bfd_abs_section_ptr)
6554 /* xgettext:c-format */
6555 _bfd_error_handler (_("%pB: %s not absolute"),
6556 output_bfd, legacy_symbol);
6557 else
6558 info->stacksize = h->root.u.def.value;
6559 }
6560
6561 if (!info->stacksize)
6562 /* If the user didn't set a size, or explicitly inhibit the
6563 size, set it now. */
6564 info->stacksize = default_size;
6565
6566 /* Provide the legacy symbol, if it is referenced. */
6567 if (h && (h->root.type == bfd_link_hash_undefined
6568 || h->root.type == bfd_link_hash_undefweak))
6569 {
6570 struct bfd_link_hash_entry *bh = NULL;
6571
6572 if (!(_bfd_generic_link_add_one_symbol
6573 (info, output_bfd, legacy_symbol,
6574 BSF_GLOBAL, bfd_abs_section_ptr,
6575 info->stacksize >= 0 ? info->stacksize : 0,
6576 NULL, false, get_elf_backend_data (output_bfd)->collect, &bh)))
6577 return false;
6578
6579 h = (struct elf_link_hash_entry *) bh;
6580 h->def_regular = 1;
6581 h->type = STT_OBJECT;
6582 }
6583
6584 return true;
6585 }
6586
6587 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6588
6589 struct elf_gc_sweep_symbol_info
6590 {
6591 struct bfd_link_info *info;
6592 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6593 bool);
6594 };
6595
6596 static bool
6597 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6598 {
6599 if (!h->mark
6600 && (((h->root.type == bfd_link_hash_defined
6601 || h->root.type == bfd_link_hash_defweak)
6602 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6603 && h->root.u.def.section->gc_mark))
6604 || h->root.type == bfd_link_hash_undefined
6605 || h->root.type == bfd_link_hash_undefweak))
6606 {
6607 struct elf_gc_sweep_symbol_info *inf;
6608
6609 inf = (struct elf_gc_sweep_symbol_info *) data;
6610 (*inf->hide_symbol) (inf->info, h, true);
6611 h->def_regular = 0;
6612 h->ref_regular = 0;
6613 h->ref_regular_nonweak = 0;
6614 }
6615
6616 return true;
6617 }
6618
6619 /* Set up the sizes and contents of the ELF dynamic sections. This is
6620 called by the ELF linker emulation before_allocation routine. We
6621 must set the sizes of the sections before the linker sets the
6622 addresses of the various sections. */
6623
6624 bool
6625 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6626 const char *soname,
6627 const char *rpath,
6628 const char *filter_shlib,
6629 const char *audit,
6630 const char *depaudit,
6631 const char * const *auxiliary_filters,
6632 struct bfd_link_info *info,
6633 asection **sinterpptr)
6634 {
6635 bfd *dynobj;
6636 const struct elf_backend_data *bed;
6637
6638 *sinterpptr = NULL;
6639
6640 if (!is_elf_hash_table (info->hash))
6641 return true;
6642
6643 /* Any syms created from now on start with -1 in
6644 got.refcount/offset and plt.refcount/offset. */
6645 elf_hash_table (info)->init_got_refcount
6646 = elf_hash_table (info)->init_got_offset;
6647 elf_hash_table (info)->init_plt_refcount
6648 = elf_hash_table (info)->init_plt_offset;
6649
6650 bed = get_elf_backend_data (output_bfd);
6651
6652 /* The backend may have to create some sections regardless of whether
6653 we're dynamic or not. */
6654 if (bed->elf_backend_always_size_sections
6655 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6656 return false;
6657
6658 dynobj = elf_hash_table (info)->dynobj;
6659
6660 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6661 {
6662 struct bfd_elf_version_tree *verdefs;
6663 struct elf_info_failed asvinfo;
6664 struct bfd_elf_version_tree *t;
6665 struct bfd_elf_version_expr *d;
6666 asection *s;
6667 size_t soname_indx;
6668
6669 /* If we are supposed to export all symbols into the dynamic symbol
6670 table (this is not the normal case), then do so. */
6671 if (info->export_dynamic
6672 || (bfd_link_executable (info) && info->dynamic))
6673 {
6674 struct elf_info_failed eif;
6675
6676 eif.info = info;
6677 eif.failed = false;
6678 elf_link_hash_traverse (elf_hash_table (info),
6679 _bfd_elf_export_symbol,
6680 &eif);
6681 if (eif.failed)
6682 return false;
6683 }
6684
6685 if (soname != NULL)
6686 {
6687 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6688 soname, true);
6689 if (soname_indx == (size_t) -1
6690 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6691 return false;
6692 }
6693 else
6694 soname_indx = (size_t) -1;
6695
6696 /* Make all global versions with definition. */
6697 for (t = info->version_info; t != NULL; t = t->next)
6698 for (d = t->globals.list; d != NULL; d = d->next)
6699 if (!d->symver && d->literal)
6700 {
6701 const char *verstr, *name;
6702 size_t namelen, verlen, newlen;
6703 char *newname, *p, leading_char;
6704 struct elf_link_hash_entry *newh;
6705
6706 leading_char = bfd_get_symbol_leading_char (output_bfd);
6707 name = d->pattern;
6708 namelen = strlen (name) + (leading_char != '\0');
6709 verstr = t->name;
6710 verlen = strlen (verstr);
6711 newlen = namelen + verlen + 3;
6712
6713 newname = (char *) bfd_malloc (newlen);
6714 if (newname == NULL)
6715 return false;
6716 newname[0] = leading_char;
6717 memcpy (newname + (leading_char != '\0'), name, namelen);
6718
6719 /* Check the hidden versioned definition. */
6720 p = newname + namelen;
6721 *p++ = ELF_VER_CHR;
6722 memcpy (p, verstr, verlen + 1);
6723 newh = elf_link_hash_lookup (elf_hash_table (info),
6724 newname, false, false,
6725 false);
6726 if (newh == NULL
6727 || (newh->root.type != bfd_link_hash_defined
6728 && newh->root.type != bfd_link_hash_defweak))
6729 {
6730 /* Check the default versioned definition. */
6731 *p++ = ELF_VER_CHR;
6732 memcpy (p, verstr, verlen + 1);
6733 newh = elf_link_hash_lookup (elf_hash_table (info),
6734 newname, false, false,
6735 false);
6736 }
6737 free (newname);
6738
6739 /* Mark this version if there is a definition and it is
6740 not defined in a shared object. */
6741 if (newh != NULL
6742 && !newh->def_dynamic
6743 && (newh->root.type == bfd_link_hash_defined
6744 || newh->root.type == bfd_link_hash_defweak))
6745 d->symver = 1;
6746 }
6747
6748 /* Attach all the symbols to their version information. */
6749 asvinfo.info = info;
6750 asvinfo.failed = false;
6751
6752 elf_link_hash_traverse (elf_hash_table (info),
6753 _bfd_elf_link_assign_sym_version,
6754 &asvinfo);
6755 if (asvinfo.failed)
6756 return false;
6757
6758 if (!info->allow_undefined_version)
6759 {
6760 /* Check if all global versions have a definition. */
6761 bool all_defined = true;
6762 for (t = info->version_info; t != NULL; t = t->next)
6763 for (d = t->globals.list; d != NULL; d = d->next)
6764 if (d->literal && !d->symver && !d->script)
6765 {
6766 _bfd_error_handler
6767 (_("%s: undefined version: %s"),
6768 d->pattern, t->name);
6769 all_defined = false;
6770 }
6771
6772 if (!all_defined)
6773 {
6774 bfd_set_error (bfd_error_bad_value);
6775 return false;
6776 }
6777 }
6778
6779 /* Set up the version definition section. */
6780 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6781 BFD_ASSERT (s != NULL);
6782
6783 /* We may have created additional version definitions if we are
6784 just linking a regular application. */
6785 verdefs = info->version_info;
6786
6787 /* Skip anonymous version tag. */
6788 if (verdefs != NULL && verdefs->vernum == 0)
6789 verdefs = verdefs->next;
6790
6791 if (verdefs == NULL && !info->create_default_symver)
6792 s->flags |= SEC_EXCLUDE;
6793 else
6794 {
6795 unsigned int cdefs;
6796 bfd_size_type size;
6797 bfd_byte *p;
6798 Elf_Internal_Verdef def;
6799 Elf_Internal_Verdaux defaux;
6800 struct bfd_link_hash_entry *bh;
6801 struct elf_link_hash_entry *h;
6802 const char *name;
6803
6804 cdefs = 0;
6805 size = 0;
6806
6807 /* Make space for the base version. */
6808 size += sizeof (Elf_External_Verdef);
6809 size += sizeof (Elf_External_Verdaux);
6810 ++cdefs;
6811
6812 /* Make space for the default version. */
6813 if (info->create_default_symver)
6814 {
6815 size += sizeof (Elf_External_Verdef);
6816 ++cdefs;
6817 }
6818
6819 for (t = verdefs; t != NULL; t = t->next)
6820 {
6821 struct bfd_elf_version_deps *n;
6822
6823 /* Don't emit base version twice. */
6824 if (t->vernum == 0)
6825 continue;
6826
6827 size += sizeof (Elf_External_Verdef);
6828 size += sizeof (Elf_External_Verdaux);
6829 ++cdefs;
6830
6831 for (n = t->deps; n != NULL; n = n->next)
6832 size += sizeof (Elf_External_Verdaux);
6833 }
6834
6835 s->size = size;
6836 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6837 if (s->contents == NULL && s->size != 0)
6838 return false;
6839
6840 /* Fill in the version definition section. */
6841
6842 p = s->contents;
6843
6844 def.vd_version = VER_DEF_CURRENT;
6845 def.vd_flags = VER_FLG_BASE;
6846 def.vd_ndx = 1;
6847 def.vd_cnt = 1;
6848 if (info->create_default_symver)
6849 {
6850 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6851 def.vd_next = sizeof (Elf_External_Verdef);
6852 }
6853 else
6854 {
6855 def.vd_aux = sizeof (Elf_External_Verdef);
6856 def.vd_next = (sizeof (Elf_External_Verdef)
6857 + sizeof (Elf_External_Verdaux));
6858 }
6859
6860 if (soname_indx != (size_t) -1)
6861 {
6862 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6863 soname_indx);
6864 def.vd_hash = bfd_elf_hash (soname);
6865 defaux.vda_name = soname_indx;
6866 name = soname;
6867 }
6868 else
6869 {
6870 size_t indx;
6871
6872 name = lbasename (bfd_get_filename (output_bfd));
6873 def.vd_hash = bfd_elf_hash (name);
6874 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6875 name, false);
6876 if (indx == (size_t) -1)
6877 return false;
6878 defaux.vda_name = indx;
6879 }
6880 defaux.vda_next = 0;
6881
6882 _bfd_elf_swap_verdef_out (output_bfd, &def,
6883 (Elf_External_Verdef *) p);
6884 p += sizeof (Elf_External_Verdef);
6885 if (info->create_default_symver)
6886 {
6887 /* Add a symbol representing this version. */
6888 bh = NULL;
6889 if (! (_bfd_generic_link_add_one_symbol
6890 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6891 0, NULL, false,
6892 get_elf_backend_data (dynobj)->collect, &bh)))
6893 return false;
6894 h = (struct elf_link_hash_entry *) bh;
6895 h->non_elf = 0;
6896 h->def_regular = 1;
6897 h->type = STT_OBJECT;
6898 h->verinfo.vertree = NULL;
6899
6900 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6901 return false;
6902
6903 /* Create a duplicate of the base version with the same
6904 aux block, but different flags. */
6905 def.vd_flags = 0;
6906 def.vd_ndx = 2;
6907 def.vd_aux = sizeof (Elf_External_Verdef);
6908 if (verdefs)
6909 def.vd_next = (sizeof (Elf_External_Verdef)
6910 + sizeof (Elf_External_Verdaux));
6911 else
6912 def.vd_next = 0;
6913 _bfd_elf_swap_verdef_out (output_bfd, &def,
6914 (Elf_External_Verdef *) p);
6915 p += sizeof (Elf_External_Verdef);
6916 }
6917 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6918 (Elf_External_Verdaux *) p);
6919 p += sizeof (Elf_External_Verdaux);
6920
6921 for (t = verdefs; t != NULL; t = t->next)
6922 {
6923 unsigned int cdeps;
6924 struct bfd_elf_version_deps *n;
6925
6926 /* Don't emit the base version twice. */
6927 if (t->vernum == 0)
6928 continue;
6929
6930 cdeps = 0;
6931 for (n = t->deps; n != NULL; n = n->next)
6932 ++cdeps;
6933
6934 /* Add a symbol representing this version. */
6935 bh = NULL;
6936 if (! (_bfd_generic_link_add_one_symbol
6937 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6938 0, NULL, false,
6939 get_elf_backend_data (dynobj)->collect, &bh)))
6940 return false;
6941 h = (struct elf_link_hash_entry *) bh;
6942 h->non_elf = 0;
6943 h->def_regular = 1;
6944 h->type = STT_OBJECT;
6945 h->verinfo.vertree = t;
6946
6947 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6948 return false;
6949
6950 def.vd_version = VER_DEF_CURRENT;
6951 def.vd_flags = 0;
6952 if (t->globals.list == NULL
6953 && t->locals.list == NULL
6954 && ! t->used)
6955 def.vd_flags |= VER_FLG_WEAK;
6956 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6957 def.vd_cnt = cdeps + 1;
6958 def.vd_hash = bfd_elf_hash (t->name);
6959 def.vd_aux = sizeof (Elf_External_Verdef);
6960 def.vd_next = 0;
6961
6962 /* If a basever node is next, it *must* be the last node in
6963 the chain, otherwise Verdef construction breaks. */
6964 if (t->next != NULL && t->next->vernum == 0)
6965 BFD_ASSERT (t->next->next == NULL);
6966
6967 if (t->next != NULL && t->next->vernum != 0)
6968 def.vd_next = (sizeof (Elf_External_Verdef)
6969 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6970
6971 _bfd_elf_swap_verdef_out (output_bfd, &def,
6972 (Elf_External_Verdef *) p);
6973 p += sizeof (Elf_External_Verdef);
6974
6975 defaux.vda_name = h->dynstr_index;
6976 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6977 h->dynstr_index);
6978 defaux.vda_next = 0;
6979 if (t->deps != NULL)
6980 defaux.vda_next = sizeof (Elf_External_Verdaux);
6981 t->name_indx = defaux.vda_name;
6982
6983 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6984 (Elf_External_Verdaux *) p);
6985 p += sizeof (Elf_External_Verdaux);
6986
6987 for (n = t->deps; n != NULL; n = n->next)
6988 {
6989 if (n->version_needed == NULL)
6990 {
6991 /* This can happen if there was an error in the
6992 version script. */
6993 defaux.vda_name = 0;
6994 }
6995 else
6996 {
6997 defaux.vda_name = n->version_needed->name_indx;
6998 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6999 defaux.vda_name);
7000 }
7001 if (n->next == NULL)
7002 defaux.vda_next = 0;
7003 else
7004 defaux.vda_next = sizeof (Elf_External_Verdaux);
7005
7006 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
7007 (Elf_External_Verdaux *) p);
7008 p += sizeof (Elf_External_Verdaux);
7009 }
7010 }
7011
7012 elf_tdata (output_bfd)->cverdefs = cdefs;
7013 }
7014 }
7015
7016 if (info->gc_sections && bed->can_gc_sections)
7017 {
7018 struct elf_gc_sweep_symbol_info sweep_info;
7019
7020 /* Remove the symbols that were in the swept sections from the
7021 dynamic symbol table. */
7022 sweep_info.info = info;
7023 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
7024 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
7025 &sweep_info);
7026 }
7027
7028 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7029 {
7030 asection *s;
7031 struct elf_find_verdep_info sinfo;
7032
7033 /* Work out the size of the version reference section. */
7034
7035 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
7036 BFD_ASSERT (s != NULL);
7037
7038 sinfo.info = info;
7039 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
7040 if (sinfo.vers == 0)
7041 sinfo.vers = 1;
7042 sinfo.failed = false;
7043
7044 elf_link_hash_traverse (elf_hash_table (info),
7045 _bfd_elf_link_find_version_dependencies,
7046 &sinfo);
7047 if (sinfo.failed)
7048 return false;
7049
7050 if (info->enable_dt_relr)
7051 {
7052 elf_link_add_dt_relr_dependency (&sinfo);
7053 if (sinfo.failed)
7054 return false;
7055 }
7056
7057 if (elf_tdata (output_bfd)->verref == NULL)
7058 s->flags |= SEC_EXCLUDE;
7059 else
7060 {
7061 Elf_Internal_Verneed *vn;
7062 unsigned int size;
7063 unsigned int crefs;
7064 bfd_byte *p;
7065
7066 /* Build the version dependency section. */
7067 size = 0;
7068 crefs = 0;
7069 for (vn = elf_tdata (output_bfd)->verref;
7070 vn != NULL;
7071 vn = vn->vn_nextref)
7072 {
7073 Elf_Internal_Vernaux *a;
7074
7075 size += sizeof (Elf_External_Verneed);
7076 ++crefs;
7077 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
7078 size += sizeof (Elf_External_Vernaux);
7079 }
7080
7081 s->size = size;
7082 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7083 if (s->contents == NULL)
7084 return false;
7085
7086 p = s->contents;
7087 for (vn = elf_tdata (output_bfd)->verref;
7088 vn != NULL;
7089 vn = vn->vn_nextref)
7090 {
7091 unsigned int caux;
7092 Elf_Internal_Vernaux *a;
7093 size_t indx;
7094
7095 caux = 0;
7096 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
7097 ++caux;
7098
7099 vn->vn_version = VER_NEED_CURRENT;
7100 vn->vn_cnt = caux;
7101 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7102 elf_dt_name (vn->vn_bfd) != NULL
7103 ? elf_dt_name (vn->vn_bfd)
7104 : lbasename (bfd_get_filename
7105 (vn->vn_bfd)),
7106 false);
7107 if (indx == (size_t) -1)
7108 return false;
7109 vn->vn_file = indx;
7110 vn->vn_aux = sizeof (Elf_External_Verneed);
7111 if (vn->vn_nextref == NULL)
7112 vn->vn_next = 0;
7113 else
7114 vn->vn_next = (sizeof (Elf_External_Verneed)
7115 + caux * sizeof (Elf_External_Vernaux));
7116
7117 _bfd_elf_swap_verneed_out (output_bfd, vn,
7118 (Elf_External_Verneed *) p);
7119 p += sizeof (Elf_External_Verneed);
7120
7121 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
7122 {
7123 a->vna_hash = bfd_elf_hash (a->vna_nodename);
7124 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7125 a->vna_nodename, false);
7126 if (indx == (size_t) -1)
7127 return false;
7128 a->vna_name = indx;
7129 if (a->vna_nextptr == NULL)
7130 a->vna_next = 0;
7131 else
7132 a->vna_next = sizeof (Elf_External_Vernaux);
7133
7134 _bfd_elf_swap_vernaux_out (output_bfd, a,
7135 (Elf_External_Vernaux *) p);
7136 p += sizeof (Elf_External_Vernaux);
7137 }
7138 }
7139
7140 elf_tdata (output_bfd)->cverrefs = crefs;
7141 }
7142 }
7143
7144 if (bfd_link_relocatable (info)
7145 && !_bfd_elf_size_group_sections (info))
7146 return false;
7147
7148 /* Determine any GNU_STACK segment requirements, after the backend
7149 has had a chance to set a default segment size. */
7150 if (info->execstack)
7151 {
7152 /* If the user has explicitly requested warnings, then generate one even
7153 though the choice is the result of another command line option. */
7154 if (info->warn_execstack == 1)
7155 {
7156 if (info->error_execstack)
7157 {
7158 _bfd_error_handler
7159 (_("\
7160 error: creating an executable stack because of -z execstack command line option"));
7161 return false;
7162 }
7163
7164 _bfd_error_handler
7165 (_("\
7166 warning: enabling an executable stack because of -z execstack command line option"));
7167 }
7168
7169 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
7170 }
7171 else if (info->noexecstack)
7172 elf_stack_flags (output_bfd) = PF_R | PF_W;
7173 else
7174 {
7175 bfd *inputobj;
7176 asection *notesec = NULL;
7177 bfd *noteobj = NULL;
7178 bfd *emptyobj = NULL;
7179 int exec = 0;
7180
7181 for (inputobj = info->input_bfds;
7182 inputobj;
7183 inputobj = inputobj->link.next)
7184 {
7185 asection *s;
7186
7187 if (inputobj->flags
7188 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
7189 continue;
7190 s = inputobj->sections;
7191 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7192 continue;
7193
7194 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
7195 if (s)
7196 {
7197 notesec = s;
7198 if (s->flags & SEC_CODE)
7199 {
7200 noteobj = inputobj;
7201 exec = PF_X;
7202 /* There is no point in scanning the remaining bfds. */
7203 break;
7204 }
7205 }
7206 else if (bed->default_execstack && info->default_execstack)
7207 {
7208 exec = PF_X;
7209 emptyobj = inputobj;
7210 }
7211 }
7212
7213 if (notesec || info->stacksize > 0)
7214 {
7215 if (exec)
7216 {
7217 if (info->warn_execstack != 0)
7218 {
7219 /* PR 29072: Because an executable stack is a serious
7220 security risk, make sure that the user knows that it is
7221 being enabled despite the fact that it was not requested
7222 on the command line. */
7223 if (noteobj)
7224 {
7225 if (info->error_execstack)
7226 {
7227 _bfd_error_handler (_("\
7228 error: %s: is triggering the generation of an executable stack (because it has an executable .note.GNU-stack section)"),
7229 bfd_get_filename (noteobj));
7230 return false;
7231 }
7232
7233 _bfd_error_handler (_("\
7234 warning: %s: requires executable stack (because the .note.GNU-stack section is executable)"),
7235 bfd_get_filename (noteobj));
7236 }
7237 else if (emptyobj)
7238 {
7239 if (info->error_execstack)
7240 {
7241 _bfd_error_handler (_("\
7242 error: %s: is triggering the generation of an executable stack because it does not have a .note.GNU-stack section"),
7243 bfd_get_filename (emptyobj));
7244 return false;
7245 }
7246
7247 _bfd_error_handler (_("\
7248 warning: %s: missing .note.GNU-stack section implies executable stack"),
7249 bfd_get_filename (emptyobj));
7250 _bfd_error_handler (_("\
7251 NOTE: This behaviour is deprecated and will be removed in a future version of the linker"));
7252 }
7253 }
7254 }
7255 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
7256 }
7257
7258 if (notesec && exec && bfd_link_relocatable (info)
7259 && notesec->output_section != bfd_abs_section_ptr)
7260 notesec->output_section->flags |= SEC_CODE;
7261 }
7262
7263 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7264 {
7265 struct elf_info_failed eif;
7266 struct elf_link_hash_entry *h;
7267 asection *dynstr;
7268 asection *s;
7269
7270 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
7271 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
7272
7273 if (info->symbolic)
7274 {
7275 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
7276 return false;
7277 info->flags |= DF_SYMBOLIC;
7278 }
7279
7280 if (rpath != NULL)
7281 {
7282 size_t indx;
7283 bfd_vma tag;
7284
7285 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
7286 true);
7287 if (indx == (size_t) -1)
7288 return false;
7289
7290 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
7291 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
7292 return false;
7293 }
7294
7295 if (filter_shlib != NULL)
7296 {
7297 size_t indx;
7298
7299 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7300 filter_shlib, true);
7301 if (indx == (size_t) -1
7302 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
7303 return false;
7304 }
7305
7306 if (auxiliary_filters != NULL)
7307 {
7308 const char * const *p;
7309
7310 for (p = auxiliary_filters; *p != NULL; p++)
7311 {
7312 size_t indx;
7313
7314 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7315 *p, true);
7316 if (indx == (size_t) -1
7317 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
7318 return false;
7319 }
7320 }
7321
7322 if (audit != NULL)
7323 {
7324 size_t indx;
7325
7326 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
7327 true);
7328 if (indx == (size_t) -1
7329 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
7330 return false;
7331 }
7332
7333 if (depaudit != NULL)
7334 {
7335 size_t indx;
7336
7337 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
7338 true);
7339 if (indx == (size_t) -1
7340 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
7341 return false;
7342 }
7343
7344 eif.info = info;
7345 eif.failed = false;
7346
7347 /* Find all symbols which were defined in a dynamic object and make
7348 the backend pick a reasonable value for them. */
7349 elf_link_hash_traverse (elf_hash_table (info),
7350 _bfd_elf_adjust_dynamic_symbol,
7351 &eif);
7352 if (eif.failed)
7353 return false;
7354
7355 /* Add some entries to the .dynamic section. We fill in some of the
7356 values later, in bfd_elf_final_link, but we must add the entries
7357 now so that we know the final size of the .dynamic section. */
7358
7359 /* If there are initialization and/or finalization functions to
7360 call then add the corresponding DT_INIT/DT_FINI entries. */
7361 h = (info->init_function
7362 ? elf_link_hash_lookup (elf_hash_table (info),
7363 info->init_function, false,
7364 false, false)
7365 : NULL);
7366 if (h != NULL
7367 && (h->ref_regular
7368 || h->def_regular))
7369 {
7370 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
7371 return false;
7372 }
7373 h = (info->fini_function
7374 ? elf_link_hash_lookup (elf_hash_table (info),
7375 info->fini_function, false,
7376 false, false)
7377 : NULL);
7378 if (h != NULL
7379 && (h->ref_regular
7380 || h->def_regular))
7381 {
7382 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
7383 return false;
7384 }
7385
7386 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
7387 if (s != NULL && s->linker_has_input)
7388 {
7389 /* DT_PREINIT_ARRAY is not allowed in shared library. */
7390 if (! bfd_link_executable (info))
7391 {
7392 bfd *sub;
7393 asection *o;
7394
7395 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
7396 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
7397 && (o = sub->sections) != NULL
7398 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
7399 for (o = sub->sections; o != NULL; o = o->next)
7400 if (elf_section_data (o)->this_hdr.sh_type
7401 == SHT_PREINIT_ARRAY)
7402 {
7403 _bfd_error_handler
7404 (_("%pB: .preinit_array section is not allowed in DSO"),
7405 sub);
7406 break;
7407 }
7408
7409 bfd_set_error (bfd_error_nonrepresentable_section);
7410 return false;
7411 }
7412
7413 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
7414 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
7415 return false;
7416 }
7417 s = bfd_get_section_by_name (output_bfd, ".init_array");
7418 if (s != NULL && s->linker_has_input)
7419 {
7420 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
7421 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
7422 return false;
7423 }
7424 s = bfd_get_section_by_name (output_bfd, ".fini_array");
7425 if (s != NULL && s->linker_has_input)
7426 {
7427 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
7428 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
7429 return false;
7430 }
7431
7432 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
7433 /* If .dynstr is excluded from the link, we don't want any of
7434 these tags. Strictly, we should be checking each section
7435 individually; This quick check covers for the case where
7436 someone does a /DISCARD/ : { *(*) }. */
7437 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
7438 {
7439 bfd_size_type strsize;
7440
7441 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7442 if ((info->emit_hash
7443 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7444 || (info->emit_gnu_hash
7445 && (bed->record_xhash_symbol == NULL
7446 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7447 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7448 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7449 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7450 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7451 bed->s->sizeof_sym)
7452 || (info->gnu_flags_1
7453 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_FLAGS_1,
7454 info->gnu_flags_1)))
7455 return false;
7456 }
7457 }
7458
7459 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7460 return false;
7461
7462 /* The backend must work out the sizes of all the other dynamic
7463 sections. */
7464 if (dynobj != NULL
7465 && bed->elf_backend_size_dynamic_sections != NULL
7466 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7467 return false;
7468
7469 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7470 {
7471 if (elf_tdata (output_bfd)->cverdefs)
7472 {
7473 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7474
7475 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7476 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7477 return false;
7478 }
7479
7480 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7481 {
7482 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7483 return false;
7484 }
7485 else if (info->flags & DF_BIND_NOW)
7486 {
7487 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7488 return false;
7489 }
7490
7491 if (info->flags_1)
7492 {
7493 if (bfd_link_executable (info))
7494 info->flags_1 &= ~ (DF_1_INITFIRST
7495 | DF_1_NODELETE
7496 | DF_1_NOOPEN);
7497 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7498 return false;
7499 }
7500
7501 if (elf_tdata (output_bfd)->cverrefs)
7502 {
7503 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7504
7505 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7506 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7507 return false;
7508 }
7509
7510 if ((elf_tdata (output_bfd)->cverrefs == 0
7511 && elf_tdata (output_bfd)->cverdefs == 0)
7512 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7513 {
7514 asection *s;
7515
7516 s = bfd_get_linker_section (dynobj, ".gnu.version");
7517 s->flags |= SEC_EXCLUDE;
7518 }
7519 }
7520 return true;
7521 }
7522
7523 /* Find the first non-excluded output section. We'll use its
7524 section symbol for some emitted relocs. */
7525 void
7526 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7527 {
7528 asection *s;
7529 asection *found = NULL;
7530
7531 for (s = output_bfd->sections; s != NULL; s = s->next)
7532 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7533 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7534 {
7535 found = s;
7536 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7537 break;
7538 }
7539 elf_hash_table (info)->text_index_section = found;
7540 }
7541
7542 /* Find two non-excluded output sections, one for code, one for data.
7543 We'll use their section symbols for some emitted relocs. */
7544 void
7545 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7546 {
7547 asection *s;
7548 asection *found = NULL;
7549
7550 /* Data first, since setting text_index_section changes
7551 _bfd_elf_omit_section_dynsym_default. */
7552 for (s = output_bfd->sections; s != NULL; s = s->next)
7553 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7554 && !(s->flags & SEC_READONLY)
7555 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7556 {
7557 found = s;
7558 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7559 break;
7560 }
7561 elf_hash_table (info)->data_index_section = found;
7562
7563 for (s = output_bfd->sections; s != NULL; s = s->next)
7564 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7565 && (s->flags & SEC_READONLY)
7566 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7567 {
7568 found = s;
7569 break;
7570 }
7571 elf_hash_table (info)->text_index_section = found;
7572 }
7573
7574 #define GNU_HASH_SECTION_NAME(bed) \
7575 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7576
7577 bool
7578 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7579 {
7580 const struct elf_backend_data *bed;
7581 unsigned long section_sym_count;
7582 bfd_size_type dynsymcount = 0;
7583
7584 if (!is_elf_hash_table (info->hash))
7585 return true;
7586
7587 bed = get_elf_backend_data (output_bfd);
7588 (*bed->elf_backend_init_index_section) (output_bfd, info);
7589
7590 /* Assign dynsym indices. In a shared library we generate a section
7591 symbol for each output section, which come first. Next come all
7592 of the back-end allocated local dynamic syms, followed by the rest
7593 of the global symbols.
7594
7595 This is usually not needed for static binaries, however backends
7596 can request to always do it, e.g. the MIPS backend uses dynamic
7597 symbol counts to lay out GOT, which will be produced in the
7598 presence of GOT relocations even in static binaries (holding fixed
7599 data in that case, to satisfy those relocations). */
7600
7601 if (elf_hash_table (info)->dynamic_sections_created
7602 || bed->always_renumber_dynsyms)
7603 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7604 &section_sym_count);
7605
7606 if (elf_hash_table (info)->dynamic_sections_created)
7607 {
7608 bfd *dynobj;
7609 asection *s;
7610 unsigned int dtagcount;
7611
7612 dynobj = elf_hash_table (info)->dynobj;
7613
7614 /* Work out the size of the symbol version section. */
7615 s = bfd_get_linker_section (dynobj, ".gnu.version");
7616 BFD_ASSERT (s != NULL);
7617 if ((s->flags & SEC_EXCLUDE) == 0)
7618 {
7619 s->size = dynsymcount * sizeof (Elf_External_Versym);
7620 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7621 if (s->contents == NULL)
7622 return false;
7623
7624 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7625 return false;
7626 }
7627
7628 /* Set the size of the .dynsym and .hash sections. We counted
7629 the number of dynamic symbols in elf_link_add_object_symbols.
7630 We will build the contents of .dynsym and .hash when we build
7631 the final symbol table, because until then we do not know the
7632 correct value to give the symbols. We built the .dynstr
7633 section as we went along in elf_link_add_object_symbols. */
7634 s = elf_hash_table (info)->dynsym;
7635 BFD_ASSERT (s != NULL);
7636 s->size = dynsymcount * bed->s->sizeof_sym;
7637
7638 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7639 if (s->contents == NULL)
7640 return false;
7641
7642 /* The first entry in .dynsym is a dummy symbol. Clear all the
7643 section syms, in case we don't output them all. */
7644 ++section_sym_count;
7645 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7646
7647 elf_hash_table (info)->bucketcount = 0;
7648
7649 /* Compute the size of the hashing table. As a side effect this
7650 computes the hash values for all the names we export. */
7651 if (info->emit_hash)
7652 {
7653 unsigned long int *hashcodes;
7654 struct hash_codes_info hashinf;
7655 bfd_size_type amt;
7656 unsigned long int nsyms;
7657 size_t bucketcount;
7658 size_t hash_entry_size;
7659
7660 /* Compute the hash values for all exported symbols. At the same
7661 time store the values in an array so that we could use them for
7662 optimizations. */
7663 amt = dynsymcount * sizeof (unsigned long int);
7664 hashcodes = (unsigned long int *) bfd_malloc (amt);
7665 if (hashcodes == NULL)
7666 return false;
7667 hashinf.hashcodes = hashcodes;
7668 hashinf.error = false;
7669
7670 /* Put all hash values in HASHCODES. */
7671 elf_link_hash_traverse (elf_hash_table (info),
7672 elf_collect_hash_codes, &hashinf);
7673 if (hashinf.error)
7674 {
7675 free (hashcodes);
7676 return false;
7677 }
7678
7679 nsyms = hashinf.hashcodes - hashcodes;
7680 bucketcount
7681 = compute_bucket_count (info, hashcodes, nsyms, 0);
7682 free (hashcodes);
7683
7684 if (bucketcount == 0 && nsyms > 0)
7685 return false;
7686
7687 elf_hash_table (info)->bucketcount = bucketcount;
7688
7689 s = bfd_get_linker_section (dynobj, ".hash");
7690 BFD_ASSERT (s != NULL);
7691 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7692 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7693 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7694 if (s->contents == NULL)
7695 return false;
7696
7697 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7698 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7699 s->contents + hash_entry_size);
7700 }
7701
7702 if (info->emit_gnu_hash)
7703 {
7704 size_t i, cnt;
7705 unsigned char *contents;
7706 struct collect_gnu_hash_codes cinfo;
7707 bfd_size_type amt;
7708 size_t bucketcount;
7709
7710 memset (&cinfo, 0, sizeof (cinfo));
7711
7712 /* Compute the hash values for all exported symbols. At the same
7713 time store the values in an array so that we could use them for
7714 optimizations. */
7715 amt = dynsymcount * 2 * sizeof (unsigned long int);
7716 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7717 if (cinfo.hashcodes == NULL)
7718 return false;
7719
7720 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7721 cinfo.min_dynindx = -1;
7722 cinfo.output_bfd = output_bfd;
7723 cinfo.bed = bed;
7724
7725 /* Put all hash values in HASHCODES. */
7726 elf_link_hash_traverse (elf_hash_table (info),
7727 elf_collect_gnu_hash_codes, &cinfo);
7728 if (cinfo.error)
7729 {
7730 free (cinfo.hashcodes);
7731 return false;
7732 }
7733
7734 bucketcount
7735 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7736
7737 if (bucketcount == 0)
7738 {
7739 free (cinfo.hashcodes);
7740 return false;
7741 }
7742
7743 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7744 BFD_ASSERT (s != NULL);
7745
7746 if (cinfo.nsyms == 0)
7747 {
7748 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7749 BFD_ASSERT (cinfo.min_dynindx == -1);
7750 free (cinfo.hashcodes);
7751 s->size = 5 * 4 + bed->s->arch_size / 8;
7752 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7753 if (contents == NULL)
7754 return false;
7755 s->contents = contents;
7756 /* 1 empty bucket. */
7757 bfd_put_32 (output_bfd, 1, contents);
7758 /* SYMIDX above the special symbol 0. */
7759 bfd_put_32 (output_bfd, 1, contents + 4);
7760 /* Just one word for bitmask. */
7761 bfd_put_32 (output_bfd, 1, contents + 8);
7762 /* Only hash fn bloom filter. */
7763 bfd_put_32 (output_bfd, 0, contents + 12);
7764 /* No hashes are valid - empty bitmask. */
7765 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7766 /* No hashes in the only bucket. */
7767 bfd_put_32 (output_bfd, 0,
7768 contents + 16 + bed->s->arch_size / 8);
7769 }
7770 else
7771 {
7772 unsigned long int maskwords, maskbitslog2, x;
7773 BFD_ASSERT (cinfo.min_dynindx != -1);
7774
7775 x = cinfo.nsyms;
7776 maskbitslog2 = 1;
7777 while ((x >>= 1) != 0)
7778 ++maskbitslog2;
7779 if (maskbitslog2 < 3)
7780 maskbitslog2 = 5;
7781 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7782 maskbitslog2 = maskbitslog2 + 3;
7783 else
7784 maskbitslog2 = maskbitslog2 + 2;
7785 if (bed->s->arch_size == 64)
7786 {
7787 if (maskbitslog2 == 5)
7788 maskbitslog2 = 6;
7789 cinfo.shift1 = 6;
7790 }
7791 else
7792 cinfo.shift1 = 5;
7793 cinfo.mask = (1 << cinfo.shift1) - 1;
7794 cinfo.shift2 = maskbitslog2;
7795 cinfo.maskbits = 1 << maskbitslog2;
7796 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7797 amt = bucketcount * sizeof (unsigned long int) * 2;
7798 amt += maskwords * sizeof (bfd_vma);
7799 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7800 if (cinfo.bitmask == NULL)
7801 {
7802 free (cinfo.hashcodes);
7803 return false;
7804 }
7805
7806 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7807 cinfo.indx = cinfo.counts + bucketcount;
7808 cinfo.symindx = dynsymcount - cinfo.nsyms;
7809 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7810
7811 /* Determine how often each hash bucket is used. */
7812 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7813 for (i = 0; i < cinfo.nsyms; ++i)
7814 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7815
7816 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7817 if (cinfo.counts[i] != 0)
7818 {
7819 cinfo.indx[i] = cnt;
7820 cnt += cinfo.counts[i];
7821 }
7822 BFD_ASSERT (cnt == dynsymcount);
7823 cinfo.bucketcount = bucketcount;
7824 cinfo.local_indx = cinfo.min_dynindx;
7825
7826 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7827 s->size += cinfo.maskbits / 8;
7828 if (bed->record_xhash_symbol != NULL)
7829 s->size += cinfo.nsyms * 4;
7830 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7831 if (contents == NULL)
7832 {
7833 free (cinfo.bitmask);
7834 free (cinfo.hashcodes);
7835 return false;
7836 }
7837
7838 s->contents = contents;
7839 bfd_put_32 (output_bfd, bucketcount, contents);
7840 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7841 bfd_put_32 (output_bfd, maskwords, contents + 8);
7842 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7843 contents += 16 + cinfo.maskbits / 8;
7844
7845 for (i = 0; i < bucketcount; ++i)
7846 {
7847 if (cinfo.counts[i] == 0)
7848 bfd_put_32 (output_bfd, 0, contents);
7849 else
7850 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7851 contents += 4;
7852 }
7853
7854 cinfo.contents = contents;
7855
7856 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7857 /* Renumber dynamic symbols, if populating .gnu.hash section.
7858 If using .MIPS.xhash, populate the translation table. */
7859 elf_link_hash_traverse (elf_hash_table (info),
7860 elf_gnu_hash_process_symidx, &cinfo);
7861
7862 contents = s->contents + 16;
7863 for (i = 0; i < maskwords; ++i)
7864 {
7865 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7866 contents);
7867 contents += bed->s->arch_size / 8;
7868 }
7869
7870 free (cinfo.bitmask);
7871 free (cinfo.hashcodes);
7872 }
7873 }
7874
7875 s = bfd_get_linker_section (dynobj, ".dynstr");
7876 BFD_ASSERT (s != NULL);
7877
7878 elf_finalize_dynstr (output_bfd, info);
7879
7880 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7881
7882 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7883 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7884 return false;
7885 }
7886
7887 return true;
7888 }
7889 \f
7890 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7891
7892 static void
7893 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7894 asection *sec)
7895 {
7896 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7897 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7898 }
7899
7900 /* Finish SHF_MERGE section merging. */
7901
7902 bool
7903 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7904 {
7905 bfd *ibfd;
7906 asection *sec;
7907
7908 if (!is_elf_hash_table (info->hash))
7909 return false;
7910
7911 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7912 if ((ibfd->flags & DYNAMIC) == 0
7913 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7914 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7915 == get_elf_backend_data (obfd)->s->elfclass))
7916 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7917 if ((sec->flags & SEC_MERGE) != 0
7918 && !bfd_is_abs_section (sec->output_section))
7919 {
7920 struct bfd_elf_section_data *secdata;
7921
7922 secdata = elf_section_data (sec);
7923 if (! _bfd_add_merge_section (obfd,
7924 &elf_hash_table (info)->merge_info,
7925 sec, &secdata->sec_info))
7926 return false;
7927 else if (secdata->sec_info)
7928 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7929 }
7930
7931 if (elf_hash_table (info)->merge_info != NULL)
7932 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7933 merge_sections_remove_hook);
7934 return true;
7935 }
7936
7937 /* Create an entry in an ELF linker hash table. */
7938
7939 struct bfd_hash_entry *
7940 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7941 struct bfd_hash_table *table,
7942 const char *string)
7943 {
7944 /* Allocate the structure if it has not already been allocated by a
7945 subclass. */
7946 if (entry == NULL)
7947 {
7948 entry = (struct bfd_hash_entry *)
7949 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7950 if (entry == NULL)
7951 return entry;
7952 }
7953
7954 /* Call the allocation method of the superclass. */
7955 entry = _bfd_link_hash_newfunc (entry, table, string);
7956 if (entry != NULL)
7957 {
7958 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7959 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7960
7961 /* Set local fields. */
7962 ret->indx = -1;
7963 ret->dynindx = -1;
7964 ret->got = htab->init_got_refcount;
7965 ret->plt = htab->init_plt_refcount;
7966 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7967 - offsetof (struct elf_link_hash_entry, size)));
7968 /* Assume that we have been called by a non-ELF symbol reader.
7969 This flag is then reset by the code which reads an ELF input
7970 file. This ensures that a symbol created by a non-ELF symbol
7971 reader will have the flag set correctly. */
7972 ret->non_elf = 1;
7973 }
7974
7975 return entry;
7976 }
7977
7978 /* Copy data from an indirect symbol to its direct symbol, hiding the
7979 old indirect symbol. Also used for copying flags to a weakdef. */
7980
7981 void
7982 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7983 struct elf_link_hash_entry *dir,
7984 struct elf_link_hash_entry *ind)
7985 {
7986 struct elf_link_hash_table *htab;
7987
7988 if (ind->dyn_relocs != NULL)
7989 {
7990 if (dir->dyn_relocs != NULL)
7991 {
7992 struct elf_dyn_relocs **pp;
7993 struct elf_dyn_relocs *p;
7994
7995 /* Add reloc counts against the indirect sym to the direct sym
7996 list. Merge any entries against the same section. */
7997 for (pp = &ind->dyn_relocs; (p = *pp) != NULL; )
7998 {
7999 struct elf_dyn_relocs *q;
8000
8001 for (q = dir->dyn_relocs; q != NULL; q = q->next)
8002 if (q->sec == p->sec)
8003 {
8004 q->pc_count += p->pc_count;
8005 q->count += p->count;
8006 *pp = p->next;
8007 break;
8008 }
8009 if (q == NULL)
8010 pp = &p->next;
8011 }
8012 *pp = dir->dyn_relocs;
8013 }
8014
8015 dir->dyn_relocs = ind->dyn_relocs;
8016 ind->dyn_relocs = NULL;
8017 }
8018
8019 /* Copy down any references that we may have already seen to the
8020 symbol which just became indirect. */
8021
8022 if (dir->versioned != versioned_hidden)
8023 dir->ref_dynamic |= ind->ref_dynamic;
8024 dir->ref_regular |= ind->ref_regular;
8025 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
8026 dir->non_got_ref |= ind->non_got_ref;
8027 dir->needs_plt |= ind->needs_plt;
8028 dir->pointer_equality_needed |= ind->pointer_equality_needed;
8029
8030 if (ind->root.type != bfd_link_hash_indirect)
8031 return;
8032
8033 /* Copy over the global and procedure linkage table refcount entries.
8034 These may have been already set up by a check_relocs routine. */
8035 htab = elf_hash_table (info);
8036 if (ind->got.refcount > htab->init_got_refcount.refcount)
8037 {
8038 if (dir->got.refcount < 0)
8039 dir->got.refcount = 0;
8040 dir->got.refcount += ind->got.refcount;
8041 ind->got.refcount = htab->init_got_refcount.refcount;
8042 }
8043
8044 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
8045 {
8046 if (dir->plt.refcount < 0)
8047 dir->plt.refcount = 0;
8048 dir->plt.refcount += ind->plt.refcount;
8049 ind->plt.refcount = htab->init_plt_refcount.refcount;
8050 }
8051
8052 if (ind->dynindx != -1)
8053 {
8054 if (dir->dynindx != -1)
8055 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
8056 dir->dynindx = ind->dynindx;
8057 dir->dynstr_index = ind->dynstr_index;
8058 ind->dynindx = -1;
8059 ind->dynstr_index = 0;
8060 }
8061 }
8062
8063 void
8064 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
8065 struct elf_link_hash_entry *h,
8066 bool force_local)
8067 {
8068 /* STT_GNU_IFUNC symbol must go through PLT. */
8069 if (h->type != STT_GNU_IFUNC)
8070 {
8071 h->plt = elf_hash_table (info)->init_plt_offset;
8072 h->needs_plt = 0;
8073 }
8074 if (force_local)
8075 {
8076 h->forced_local = 1;
8077 if (h->dynindx != -1)
8078 {
8079 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
8080 h->dynstr_index);
8081 h->dynindx = -1;
8082 h->dynstr_index = 0;
8083 }
8084 }
8085 }
8086
8087 /* Hide a symbol. */
8088
8089 void
8090 _bfd_elf_link_hide_symbol (bfd *output_bfd,
8091 struct bfd_link_info *info,
8092 struct bfd_link_hash_entry *h)
8093 {
8094 if (is_elf_hash_table (info->hash))
8095 {
8096 const struct elf_backend_data *bed
8097 = get_elf_backend_data (output_bfd);
8098 struct elf_link_hash_entry *eh
8099 = (struct elf_link_hash_entry *) h;
8100 bed->elf_backend_hide_symbol (info, eh, true);
8101 eh->def_dynamic = 0;
8102 eh->ref_dynamic = 0;
8103 eh->dynamic_def = 0;
8104 }
8105 }
8106
8107 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
8108 caller. */
8109
8110 bool
8111 _bfd_elf_link_hash_table_init
8112 (struct elf_link_hash_table *table,
8113 bfd *abfd,
8114 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
8115 struct bfd_hash_table *,
8116 const char *),
8117 unsigned int entsize,
8118 enum elf_target_id target_id)
8119 {
8120 bool ret;
8121 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
8122
8123 table->init_got_refcount.refcount = can_refcount - 1;
8124 table->init_plt_refcount.refcount = can_refcount - 1;
8125 table->init_got_offset.offset = -(bfd_vma) 1;
8126 table->init_plt_offset.offset = -(bfd_vma) 1;
8127 /* The first dynamic symbol is a dummy. */
8128 table->dynsymcount = 1;
8129
8130 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
8131
8132 table->root.type = bfd_link_elf_hash_table;
8133 table->hash_table_id = target_id;
8134 table->target_os = get_elf_backend_data (abfd)->target_os;
8135
8136 return ret;
8137 }
8138
8139 /* Create an ELF linker hash table. */
8140
8141 struct bfd_link_hash_table *
8142 _bfd_elf_link_hash_table_create (bfd *abfd)
8143 {
8144 struct elf_link_hash_table *ret;
8145 size_t amt = sizeof (struct elf_link_hash_table);
8146
8147 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
8148 if (ret == NULL)
8149 return NULL;
8150
8151 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
8152 sizeof (struct elf_link_hash_entry),
8153 GENERIC_ELF_DATA))
8154 {
8155 free (ret);
8156 return NULL;
8157 }
8158 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
8159
8160 return &ret->root;
8161 }
8162
8163 /* Destroy an ELF linker hash table. */
8164
8165 void
8166 _bfd_elf_link_hash_table_free (bfd *obfd)
8167 {
8168 struct elf_link_hash_table *htab;
8169
8170 htab = (struct elf_link_hash_table *) obfd->link.hash;
8171 if (htab->dynstr != NULL)
8172 _bfd_elf_strtab_free (htab->dynstr);
8173 _bfd_merge_sections_free (htab->merge_info);
8174 _bfd_generic_link_hash_table_free (obfd);
8175 }
8176
8177 /* This is a hook for the ELF emulation code in the generic linker to
8178 tell the backend linker what file name to use for the DT_NEEDED
8179 entry for a dynamic object. */
8180
8181 void
8182 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
8183 {
8184 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
8185 && bfd_get_format (abfd) == bfd_object)
8186 elf_dt_name (abfd) = name;
8187 }
8188
8189 int
8190 bfd_elf_get_dyn_lib_class (bfd *abfd)
8191 {
8192 int lib_class;
8193 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
8194 && bfd_get_format (abfd) == bfd_object)
8195 lib_class = elf_dyn_lib_class (abfd);
8196 else
8197 lib_class = 0;
8198 return lib_class;
8199 }
8200
8201 void
8202 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
8203 {
8204 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
8205 && bfd_get_format (abfd) == bfd_object)
8206 elf_dyn_lib_class (abfd) = lib_class;
8207 }
8208
8209 /* Get the list of DT_NEEDED entries for a link. This is a hook for
8210 the linker ELF emulation code. */
8211
8212 struct bfd_link_needed_list *
8213 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
8214 struct bfd_link_info *info)
8215 {
8216 if (! is_elf_hash_table (info->hash))
8217 return NULL;
8218 return elf_hash_table (info)->needed;
8219 }
8220
8221 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
8222 hook for the linker ELF emulation code. */
8223
8224 struct bfd_link_needed_list *
8225 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
8226 struct bfd_link_info *info)
8227 {
8228 if (! is_elf_hash_table (info->hash))
8229 return NULL;
8230 return elf_hash_table (info)->runpath;
8231 }
8232
8233 /* Get the name actually used for a dynamic object for a link. This
8234 is the SONAME entry if there is one. Otherwise, it is the string
8235 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
8236
8237 const char *
8238 bfd_elf_get_dt_soname (bfd *abfd)
8239 {
8240 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
8241 && bfd_get_format (abfd) == bfd_object)
8242 return elf_dt_name (abfd);
8243 return NULL;
8244 }
8245
8246 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
8247 the ELF linker emulation code. */
8248
8249 bool
8250 bfd_elf_get_bfd_needed_list (bfd *abfd,
8251 struct bfd_link_needed_list **pneeded)
8252 {
8253 asection *s;
8254 bfd_byte *dynbuf = NULL;
8255 unsigned int elfsec;
8256 unsigned long shlink;
8257 bfd_byte *extdyn, *extdynend;
8258 size_t extdynsize;
8259 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
8260
8261 *pneeded = NULL;
8262
8263 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
8264 || bfd_get_format (abfd) != bfd_object)
8265 return true;
8266
8267 s = bfd_get_section_by_name (abfd, ".dynamic");
8268 if (s == NULL || s->size == 0 || (s->flags & SEC_HAS_CONTENTS) == 0)
8269 return true;
8270
8271 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
8272 goto error_return;
8273
8274 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
8275 if (elfsec == SHN_BAD)
8276 goto error_return;
8277
8278 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
8279
8280 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
8281 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
8282
8283 for (extdyn = dynbuf, extdynend = dynbuf + s->size;
8284 (size_t) (extdynend - extdyn) >= extdynsize;
8285 extdyn += extdynsize)
8286 {
8287 Elf_Internal_Dyn dyn;
8288
8289 (*swap_dyn_in) (abfd, extdyn, &dyn);
8290
8291 if (dyn.d_tag == DT_NULL)
8292 break;
8293
8294 if (dyn.d_tag == DT_NEEDED)
8295 {
8296 const char *string;
8297 struct bfd_link_needed_list *l;
8298 unsigned int tagv = dyn.d_un.d_val;
8299 size_t amt;
8300
8301 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
8302 if (string == NULL)
8303 goto error_return;
8304
8305 amt = sizeof *l;
8306 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
8307 if (l == NULL)
8308 goto error_return;
8309
8310 l->by = abfd;
8311 l->name = string;
8312 l->next = *pneeded;
8313 *pneeded = l;
8314 }
8315 }
8316
8317 free (dynbuf);
8318
8319 return true;
8320
8321 error_return:
8322 free (dynbuf);
8323 return false;
8324 }
8325
8326 struct elf_symbuf_symbol
8327 {
8328 unsigned long st_name; /* Symbol name, index in string tbl */
8329 unsigned char st_info; /* Type and binding attributes */
8330 unsigned char st_other; /* Visibilty, and target specific */
8331 };
8332
8333 struct elf_symbuf_head
8334 {
8335 struct elf_symbuf_symbol *ssym;
8336 size_t count;
8337 unsigned int st_shndx;
8338 };
8339
8340 struct elf_symbol
8341 {
8342 union
8343 {
8344 Elf_Internal_Sym *isym;
8345 struct elf_symbuf_symbol *ssym;
8346 void *p;
8347 } u;
8348 const char *name;
8349 };
8350
8351 /* Sort references to symbols by ascending section number. */
8352
8353 static int
8354 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8355 {
8356 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
8357 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
8358
8359 if (s1->st_shndx != s2->st_shndx)
8360 return s1->st_shndx > s2->st_shndx ? 1 : -1;
8361 /* Final sort by the address of the sym in the symbuf ensures
8362 a stable sort. */
8363 if (s1 != s2)
8364 return s1 > s2 ? 1 : -1;
8365 return 0;
8366 }
8367
8368 static int
8369 elf_sym_name_compare (const void *arg1, const void *arg2)
8370 {
8371 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8372 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8373 int ret = strcmp (s1->name, s2->name);
8374 if (ret != 0)
8375 return ret;
8376 if (s1->u.p != s2->u.p)
8377 return s1->u.p > s2->u.p ? 1 : -1;
8378 return 0;
8379 }
8380
8381 static struct elf_symbuf_head *
8382 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
8383 {
8384 Elf_Internal_Sym **ind, **indbufend, **indbuf;
8385 struct elf_symbuf_symbol *ssym;
8386 struct elf_symbuf_head *ssymbuf, *ssymhead;
8387 size_t i, shndx_count, total_size, amt;
8388
8389 amt = symcount * sizeof (*indbuf);
8390 indbuf = (Elf_Internal_Sym **) bfd_malloc (amt);
8391 if (indbuf == NULL)
8392 return NULL;
8393
8394 for (ind = indbuf, i = 0; i < symcount; i++)
8395 if (isymbuf[i].st_shndx != SHN_UNDEF)
8396 *ind++ = &isymbuf[i];
8397 indbufend = ind;
8398
8399 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
8400 elf_sort_elf_symbol);
8401
8402 shndx_count = 0;
8403 if (indbufend > indbuf)
8404 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
8405 if (ind[0]->st_shndx != ind[1]->st_shndx)
8406 shndx_count++;
8407
8408 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
8409 + (indbufend - indbuf) * sizeof (*ssym));
8410 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
8411 if (ssymbuf == NULL)
8412 {
8413 free (indbuf);
8414 return NULL;
8415 }
8416
8417 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
8418 ssymbuf->ssym = NULL;
8419 ssymbuf->count = shndx_count;
8420 ssymbuf->st_shndx = 0;
8421 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
8422 {
8423 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
8424 {
8425 ssymhead++;
8426 ssymhead->ssym = ssym;
8427 ssymhead->count = 0;
8428 ssymhead->st_shndx = (*ind)->st_shndx;
8429 }
8430 ssym->st_name = (*ind)->st_name;
8431 ssym->st_info = (*ind)->st_info;
8432 ssym->st_other = (*ind)->st_other;
8433 ssymhead->count++;
8434 }
8435 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
8436 && (uintptr_t) ssym - (uintptr_t) ssymbuf == total_size);
8437
8438 free (indbuf);
8439 return ssymbuf;
8440 }
8441
8442 /* Check if 2 sections define the same set of local and global
8443 symbols. */
8444
8445 static bool
8446 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8447 struct bfd_link_info *info)
8448 {
8449 bfd *bfd1, *bfd2;
8450 const struct elf_backend_data *bed1, *bed2;
8451 Elf_Internal_Shdr *hdr1, *hdr2;
8452 size_t symcount1, symcount2;
8453 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8454 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8455 Elf_Internal_Sym *isym, *isymend;
8456 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8457 size_t count1, count2, sec_count1, sec_count2, i;
8458 unsigned int shndx1, shndx2;
8459 bool result;
8460 bool ignore_section_symbol_p;
8461
8462 bfd1 = sec1->owner;
8463 bfd2 = sec2->owner;
8464
8465 /* Both sections have to be in ELF. */
8466 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8467 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8468 return false;
8469
8470 if (elf_section_type (sec1) != elf_section_type (sec2))
8471 return false;
8472
8473 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8474 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8475 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
8476 return false;
8477
8478 bed1 = get_elf_backend_data (bfd1);
8479 bed2 = get_elf_backend_data (bfd2);
8480 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8481 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8482 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8483 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8484
8485 if (symcount1 == 0 || symcount2 == 0)
8486 return false;
8487
8488 result = false;
8489 isymbuf1 = NULL;
8490 isymbuf2 = NULL;
8491 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8492 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8493
8494 /* Ignore section symbols only when matching non-debugging sections
8495 or linkonce section with comdat section. */
8496 ignore_section_symbol_p
8497 = ((sec1->flags & SEC_DEBUGGING) == 0
8498 || ((elf_section_flags (sec1) & SHF_GROUP)
8499 != (elf_section_flags (sec2) & SHF_GROUP)));
8500
8501 if (ssymbuf1 == NULL)
8502 {
8503 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8504 NULL, NULL, NULL);
8505 if (isymbuf1 == NULL)
8506 goto done;
8507
8508 if (info != NULL && !info->reduce_memory_overheads)
8509 {
8510 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1);
8511 elf_tdata (bfd1)->symbuf = ssymbuf1;
8512 }
8513 }
8514
8515 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8516 {
8517 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8518 NULL, NULL, NULL);
8519 if (isymbuf2 == NULL)
8520 goto done;
8521
8522 if (ssymbuf1 != NULL && info != NULL && !info->reduce_memory_overheads)
8523 {
8524 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2);
8525 elf_tdata (bfd2)->symbuf = ssymbuf2;
8526 }
8527 }
8528
8529 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8530 {
8531 /* Optimized faster version. */
8532 size_t lo, hi, mid;
8533 struct elf_symbol *symp;
8534 struct elf_symbuf_symbol *ssym, *ssymend;
8535
8536 lo = 0;
8537 hi = ssymbuf1->count;
8538 ssymbuf1++;
8539 count1 = 0;
8540 sec_count1 = 0;
8541 while (lo < hi)
8542 {
8543 mid = (lo + hi) / 2;
8544 if (shndx1 < ssymbuf1[mid].st_shndx)
8545 hi = mid;
8546 else if (shndx1 > ssymbuf1[mid].st_shndx)
8547 lo = mid + 1;
8548 else
8549 {
8550 count1 = ssymbuf1[mid].count;
8551 ssymbuf1 += mid;
8552 break;
8553 }
8554 }
8555 if (ignore_section_symbol_p)
8556 {
8557 for (i = 0; i < count1; i++)
8558 if (ELF_ST_TYPE (ssymbuf1->ssym[i].st_info) == STT_SECTION)
8559 sec_count1++;
8560 count1 -= sec_count1;
8561 }
8562
8563 lo = 0;
8564 hi = ssymbuf2->count;
8565 ssymbuf2++;
8566 count2 = 0;
8567 sec_count2 = 0;
8568 while (lo < hi)
8569 {
8570 mid = (lo + hi) / 2;
8571 if (shndx2 < ssymbuf2[mid].st_shndx)
8572 hi = mid;
8573 else if (shndx2 > ssymbuf2[mid].st_shndx)
8574 lo = mid + 1;
8575 else
8576 {
8577 count2 = ssymbuf2[mid].count;
8578 ssymbuf2 += mid;
8579 break;
8580 }
8581 }
8582 if (ignore_section_symbol_p)
8583 {
8584 for (i = 0; i < count2; i++)
8585 if (ELF_ST_TYPE (ssymbuf2->ssym[i].st_info) == STT_SECTION)
8586 sec_count2++;
8587 count2 -= sec_count2;
8588 }
8589
8590 if (count1 == 0 || count2 == 0 || count1 != count2)
8591 goto done;
8592
8593 symtable1
8594 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8595 symtable2
8596 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8597 if (symtable1 == NULL || symtable2 == NULL)
8598 goto done;
8599
8600 symp = symtable1;
8601 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1 + sec_count1;
8602 ssym < ssymend; ssym++)
8603 if (sec_count1 == 0
8604 || ELF_ST_TYPE (ssym->st_info) != STT_SECTION)
8605 {
8606 symp->u.ssym = ssym;
8607 symp->name = bfd_elf_string_from_elf_section (bfd1,
8608 hdr1->sh_link,
8609 ssym->st_name);
8610 symp++;
8611 }
8612
8613 symp = symtable2;
8614 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2 + sec_count2;
8615 ssym < ssymend; ssym++)
8616 if (sec_count2 == 0
8617 || ELF_ST_TYPE (ssym->st_info) != STT_SECTION)
8618 {
8619 symp->u.ssym = ssym;
8620 symp->name = bfd_elf_string_from_elf_section (bfd2,
8621 hdr2->sh_link,
8622 ssym->st_name);
8623 symp++;
8624 }
8625
8626 /* Sort symbol by name. */
8627 qsort (symtable1, count1, sizeof (struct elf_symbol),
8628 elf_sym_name_compare);
8629 qsort (symtable2, count1, sizeof (struct elf_symbol),
8630 elf_sym_name_compare);
8631
8632 for (i = 0; i < count1; i++)
8633 /* Two symbols must have the same binding, type and name. */
8634 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8635 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8636 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8637 goto done;
8638
8639 result = true;
8640 goto done;
8641 }
8642
8643 symtable1 = (struct elf_symbol *)
8644 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8645 symtable2 = (struct elf_symbol *)
8646 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8647 if (symtable1 == NULL || symtable2 == NULL)
8648 goto done;
8649
8650 /* Count definitions in the section. */
8651 count1 = 0;
8652 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8653 if (isym->st_shndx == shndx1
8654 && (!ignore_section_symbol_p
8655 || ELF_ST_TYPE (isym->st_info) != STT_SECTION))
8656 symtable1[count1++].u.isym = isym;
8657
8658 count2 = 0;
8659 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8660 if (isym->st_shndx == shndx2
8661 && (!ignore_section_symbol_p
8662 || ELF_ST_TYPE (isym->st_info) != STT_SECTION))
8663 symtable2[count2++].u.isym = isym;
8664
8665 if (count1 == 0 || count2 == 0 || count1 != count2)
8666 goto done;
8667
8668 for (i = 0; i < count1; i++)
8669 symtable1[i].name
8670 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8671 symtable1[i].u.isym->st_name);
8672
8673 for (i = 0; i < count2; i++)
8674 symtable2[i].name
8675 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8676 symtable2[i].u.isym->st_name);
8677
8678 /* Sort symbol by name. */
8679 qsort (symtable1, count1, sizeof (struct elf_symbol),
8680 elf_sym_name_compare);
8681 qsort (symtable2, count1, sizeof (struct elf_symbol),
8682 elf_sym_name_compare);
8683
8684 for (i = 0; i < count1; i++)
8685 /* Two symbols must have the same binding, type and name. */
8686 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8687 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8688 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8689 goto done;
8690
8691 result = true;
8692
8693 done:
8694 free (symtable1);
8695 free (symtable2);
8696 free (isymbuf1);
8697 free (isymbuf2);
8698
8699 return result;
8700 }
8701
8702 /* Return TRUE if 2 section types are compatible. */
8703
8704 bool
8705 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8706 bfd *bbfd, const asection *bsec)
8707 {
8708 if (asec == NULL
8709 || bsec == NULL
8710 || abfd->xvec->flavour != bfd_target_elf_flavour
8711 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8712 return true;
8713
8714 return elf_section_type (asec) == elf_section_type (bsec);
8715 }
8716 \f
8717 /* Final phase of ELF linker. */
8718
8719 /* A structure we use to avoid passing large numbers of arguments. */
8720
8721 struct elf_final_link_info
8722 {
8723 /* General link information. */
8724 struct bfd_link_info *info;
8725 /* Output BFD. */
8726 bfd *output_bfd;
8727 /* Symbol string table. */
8728 struct elf_strtab_hash *symstrtab;
8729 /* .hash section. */
8730 asection *hash_sec;
8731 /* symbol version section (.gnu.version). */
8732 asection *symver_sec;
8733 /* Buffer large enough to hold contents of any section. */
8734 bfd_byte *contents;
8735 /* Buffer large enough to hold external relocs of any section. */
8736 void *external_relocs;
8737 /* Buffer large enough to hold internal relocs of any section. */
8738 Elf_Internal_Rela *internal_relocs;
8739 /* Buffer large enough to hold external local symbols of any input
8740 BFD. */
8741 bfd_byte *external_syms;
8742 /* And a buffer for symbol section indices. */
8743 Elf_External_Sym_Shndx *locsym_shndx;
8744 /* Buffer large enough to hold internal local symbols of any input
8745 BFD. */
8746 Elf_Internal_Sym *internal_syms;
8747 /* Array large enough to hold a symbol index for each local symbol
8748 of any input BFD. */
8749 long *indices;
8750 /* Array large enough to hold a section pointer for each local
8751 symbol of any input BFD. */
8752 asection **sections;
8753 /* Buffer for SHT_SYMTAB_SHNDX section. */
8754 Elf_External_Sym_Shndx *symshndxbuf;
8755 /* Number of STT_FILE syms seen. */
8756 size_t filesym_count;
8757 /* Local symbol hash table. */
8758 struct bfd_hash_table local_hash_table;
8759 };
8760
8761 struct local_hash_entry
8762 {
8763 /* Base hash table entry structure. */
8764 struct bfd_hash_entry root;
8765 /* Size of the local symbol name. */
8766 size_t size;
8767 /* Number of the duplicated local symbol names. */
8768 long count;
8769 };
8770
8771 /* Create an entry in the local symbol hash table. */
8772
8773 static struct bfd_hash_entry *
8774 local_hash_newfunc (struct bfd_hash_entry *entry,
8775 struct bfd_hash_table *table,
8776 const char *string)
8777 {
8778
8779 /* Allocate the structure if it has not already been allocated by a
8780 subclass. */
8781 if (entry == NULL)
8782 {
8783 entry = bfd_hash_allocate (table,
8784 sizeof (struct local_hash_entry));
8785 if (entry == NULL)
8786 return entry;
8787 }
8788
8789 /* Call the allocation method of the superclass. */
8790 entry = bfd_hash_newfunc (entry, table, string);
8791 if (entry != NULL)
8792 {
8793 ((struct local_hash_entry *) entry)->count = 0;
8794 ((struct local_hash_entry *) entry)->size = 0;
8795 }
8796
8797 return entry;
8798 }
8799
8800 /* This struct is used to pass information to elf_link_output_extsym. */
8801
8802 struct elf_outext_info
8803 {
8804 bool failed;
8805 bool localsyms;
8806 bool file_sym_done;
8807 struct elf_final_link_info *flinfo;
8808 };
8809
8810
8811 /* Support for evaluating a complex relocation.
8812
8813 Complex relocations are generalized, self-describing relocations. The
8814 implementation of them consists of two parts: complex symbols, and the
8815 relocations themselves.
8816
8817 The relocations use a reserved elf-wide relocation type code (R_RELC
8818 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8819 information (start bit, end bit, word width, etc) into the addend. This
8820 information is extracted from CGEN-generated operand tables within gas.
8821
8822 Complex symbols are mangled symbols (STT_RELC external / BSF_RELC
8823 internal) representing prefix-notation expressions, including but not
8824 limited to those sorts of expressions normally encoded as addends in the
8825 addend field. The symbol mangling format is:
8826
8827 <node> := <literal>
8828 | <unary-operator> ':' <node>
8829 | <binary-operator> ':' <node> ':' <node>
8830 ;
8831
8832 <literal> := 's' <digits=N> ':' <N character symbol name>
8833 | 'S' <digits=N> ':' <N character section name>
8834 | '#' <hexdigits>
8835 ;
8836
8837 <binary-operator> := as in C
8838 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8839
8840 static void
8841 set_symbol_value (bfd *bfd_with_globals,
8842 Elf_Internal_Sym *isymbuf,
8843 size_t locsymcount,
8844 size_t symidx,
8845 bfd_vma val)
8846 {
8847 struct elf_link_hash_entry **sym_hashes;
8848 struct elf_link_hash_entry *h;
8849 size_t extsymoff = locsymcount;
8850
8851 if (symidx < locsymcount)
8852 {
8853 Elf_Internal_Sym *sym;
8854
8855 sym = isymbuf + symidx;
8856 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8857 {
8858 /* It is a local symbol: move it to the
8859 "absolute" section and give it a value. */
8860 sym->st_shndx = SHN_ABS;
8861 sym->st_value = val;
8862 return;
8863 }
8864 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8865 extsymoff = 0;
8866 }
8867
8868 /* It is a global symbol: set its link type
8869 to "defined" and give it a value. */
8870
8871 sym_hashes = elf_sym_hashes (bfd_with_globals);
8872 h = sym_hashes [symidx - extsymoff];
8873 while (h->root.type == bfd_link_hash_indirect
8874 || h->root.type == bfd_link_hash_warning)
8875 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8876 h->root.type = bfd_link_hash_defined;
8877 h->root.u.def.value = val;
8878 h->root.u.def.section = bfd_abs_section_ptr;
8879 }
8880
8881 static bool
8882 resolve_symbol (const char *name,
8883 bfd *input_bfd,
8884 struct elf_final_link_info *flinfo,
8885 bfd_vma *result,
8886 Elf_Internal_Sym *isymbuf,
8887 size_t locsymcount)
8888 {
8889 Elf_Internal_Sym *sym;
8890 struct bfd_link_hash_entry *global_entry;
8891 const char *candidate = NULL;
8892 Elf_Internal_Shdr *symtab_hdr;
8893 size_t i;
8894
8895 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8896
8897 for (i = 0; i < locsymcount; ++ i)
8898 {
8899 sym = isymbuf + i;
8900
8901 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8902 continue;
8903
8904 candidate = bfd_elf_string_from_elf_section (input_bfd,
8905 symtab_hdr->sh_link,
8906 sym->st_name);
8907 #ifdef DEBUG
8908 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8909 name, candidate, (unsigned long) sym->st_value);
8910 #endif
8911 if (candidate && strcmp (candidate, name) == 0)
8912 {
8913 asection *sec = flinfo->sections [i];
8914
8915 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8916 *result += sec->output_offset + sec->output_section->vma;
8917 #ifdef DEBUG
8918 printf ("Found symbol with value %8.8lx\n",
8919 (unsigned long) *result);
8920 #endif
8921 return true;
8922 }
8923 }
8924
8925 /* Hmm, haven't found it yet. perhaps it is a global. */
8926 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8927 false, false, true);
8928 if (!global_entry)
8929 return false;
8930
8931 if (global_entry->type == bfd_link_hash_defined
8932 || global_entry->type == bfd_link_hash_defweak)
8933 {
8934 *result = (global_entry->u.def.value
8935 + global_entry->u.def.section->output_section->vma
8936 + global_entry->u.def.section->output_offset);
8937 #ifdef DEBUG
8938 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8939 global_entry->root.string, (unsigned long) *result);
8940 #endif
8941 return true;
8942 }
8943
8944 return false;
8945 }
8946
8947 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8948 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8949 names like "foo.end" which is the end address of section "foo". */
8950
8951 static bool
8952 resolve_section (const char *name,
8953 asection *sections,
8954 bfd_vma *result,
8955 bfd * abfd)
8956 {
8957 asection *curr;
8958 unsigned int len;
8959
8960 for (curr = sections; curr; curr = curr->next)
8961 if (strcmp (curr->name, name) == 0)
8962 {
8963 *result = curr->vma;
8964 return true;
8965 }
8966
8967 /* Hmm. still haven't found it. try pseudo-section names. */
8968 /* FIXME: This could be coded more efficiently... */
8969 for (curr = sections; curr; curr = curr->next)
8970 {
8971 len = strlen (curr->name);
8972 if (len > strlen (name))
8973 continue;
8974
8975 if (strncmp (curr->name, name, len) == 0)
8976 {
8977 if (startswith (name + len, ".end"))
8978 {
8979 *result = (curr->vma
8980 + curr->size / bfd_octets_per_byte (abfd, curr));
8981 return true;
8982 }
8983
8984 /* Insert more pseudo-section names here, if you like. */
8985 }
8986 }
8987
8988 return false;
8989 }
8990
8991 static void
8992 undefined_reference (const char *reftype, const char *name)
8993 {
8994 /* xgettext:c-format */
8995 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8996 reftype, name);
8997 bfd_set_error (bfd_error_bad_value);
8998 }
8999
9000 static bool
9001 eval_symbol (bfd_vma *result,
9002 const char **symp,
9003 bfd *input_bfd,
9004 struct elf_final_link_info *flinfo,
9005 bfd_vma dot,
9006 Elf_Internal_Sym *isymbuf,
9007 size_t locsymcount,
9008 int signed_p)
9009 {
9010 size_t len;
9011 size_t symlen;
9012 bfd_vma a;
9013 bfd_vma b;
9014 char symbuf[4096];
9015 const char *sym = *symp;
9016 const char *symend;
9017 bool symbol_is_section = false;
9018
9019 len = strlen (sym);
9020 symend = sym + len;
9021
9022 if (len < 1 || len > sizeof (symbuf))
9023 {
9024 bfd_set_error (bfd_error_invalid_operation);
9025 return false;
9026 }
9027
9028 switch (* sym)
9029 {
9030 case '.':
9031 *result = dot;
9032 *symp = sym + 1;
9033 return true;
9034
9035 case '#':
9036 ++sym;
9037 *result = strtoul (sym, (char **) symp, 16);
9038 return true;
9039
9040 case 'S':
9041 symbol_is_section = true;
9042 /* Fall through. */
9043 case 's':
9044 ++sym;
9045 symlen = strtol (sym, (char **) symp, 10);
9046 sym = *symp + 1; /* Skip the trailing ':'. */
9047
9048 if (symend < sym || symlen + 1 > sizeof (symbuf))
9049 {
9050 bfd_set_error (bfd_error_invalid_operation);
9051 return false;
9052 }
9053
9054 memcpy (symbuf, sym, symlen);
9055 symbuf[symlen] = '\0';
9056 *symp = sym + symlen;
9057
9058 /* Is it always possible, with complex symbols, that gas "mis-guessed"
9059 the symbol as a section, or vice-versa. so we're pretty liberal in our
9060 interpretation here; section means "try section first", not "must be a
9061 section", and likewise with symbol. */
9062
9063 if (symbol_is_section)
9064 {
9065 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
9066 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
9067 isymbuf, locsymcount))
9068 {
9069 undefined_reference ("section", symbuf);
9070 return false;
9071 }
9072 }
9073 else
9074 {
9075 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
9076 isymbuf, locsymcount)
9077 && !resolve_section (symbuf, flinfo->output_bfd->sections,
9078 result, input_bfd))
9079 {
9080 undefined_reference ("symbol", symbuf);
9081 return false;
9082 }
9083 }
9084
9085 return true;
9086
9087 /* All that remains are operators. */
9088
9089 #define UNARY_OP(op) \
9090 if (startswith (sym, #op)) \
9091 { \
9092 sym += strlen (#op); \
9093 if (*sym == ':') \
9094 ++sym; \
9095 *symp = sym; \
9096 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
9097 isymbuf, locsymcount, signed_p)) \
9098 return false; \
9099 if (signed_p) \
9100 *result = op ((bfd_signed_vma) a); \
9101 else \
9102 *result = op a; \
9103 return true; \
9104 }
9105
9106 #define BINARY_OP_HEAD(op) \
9107 if (startswith (sym, #op)) \
9108 { \
9109 sym += strlen (#op); \
9110 if (*sym == ':') \
9111 ++sym; \
9112 *symp = sym; \
9113 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
9114 isymbuf, locsymcount, signed_p)) \
9115 return false; \
9116 ++*symp; \
9117 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
9118 isymbuf, locsymcount, signed_p)) \
9119 return false;
9120 #define BINARY_OP_TAIL(op) \
9121 if (signed_p) \
9122 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
9123 else \
9124 *result = a op b; \
9125 return true; \
9126 }
9127 #define BINARY_OP(op) BINARY_OP_HEAD(op) BINARY_OP_TAIL(op)
9128
9129 default:
9130 UNARY_OP (0-);
9131 BINARY_OP_HEAD (<<);
9132 if (b >= sizeof (a) * CHAR_BIT)
9133 {
9134 *result = 0;
9135 return true;
9136 }
9137 signed_p = 0;
9138 BINARY_OP_TAIL (<<);
9139 BINARY_OP_HEAD (>>);
9140 if (b >= sizeof (a) * CHAR_BIT)
9141 {
9142 *result = signed_p && (bfd_signed_vma) a < 0 ? -1 : 0;
9143 return true;
9144 }
9145 BINARY_OP_TAIL (>>);
9146 BINARY_OP (==);
9147 BINARY_OP (!=);
9148 BINARY_OP (<=);
9149 BINARY_OP (>=);
9150 BINARY_OP (&&);
9151 BINARY_OP (||);
9152 UNARY_OP (~);
9153 UNARY_OP (!);
9154 BINARY_OP (*);
9155 BINARY_OP_HEAD (/);
9156 if (b == 0)
9157 {
9158 _bfd_error_handler (_("division by zero"));
9159 bfd_set_error (bfd_error_bad_value);
9160 return false;
9161 }
9162 BINARY_OP_TAIL (/);
9163 BINARY_OP_HEAD (%);
9164 if (b == 0)
9165 {
9166 _bfd_error_handler (_("division by zero"));
9167 bfd_set_error (bfd_error_bad_value);
9168 return false;
9169 }
9170 BINARY_OP_TAIL (%);
9171 BINARY_OP (^);
9172 BINARY_OP (|);
9173 BINARY_OP (&);
9174 BINARY_OP (+);
9175 BINARY_OP (-);
9176 BINARY_OP (<);
9177 BINARY_OP (>);
9178 #undef UNARY_OP
9179 #undef BINARY_OP
9180 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
9181 bfd_set_error (bfd_error_invalid_operation);
9182 return false;
9183 }
9184 }
9185
9186 static void
9187 put_value (bfd_vma size,
9188 unsigned long chunksz,
9189 bfd *input_bfd,
9190 bfd_vma x,
9191 bfd_byte *location)
9192 {
9193 location += (size - chunksz);
9194
9195 for (; size; size -= chunksz, location -= chunksz)
9196 {
9197 switch (chunksz)
9198 {
9199 case 1:
9200 bfd_put_8 (input_bfd, x, location);
9201 x >>= 8;
9202 break;
9203 case 2:
9204 bfd_put_16 (input_bfd, x, location);
9205 x >>= 16;
9206 break;
9207 case 4:
9208 bfd_put_32 (input_bfd, x, location);
9209 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
9210 x >>= 16;
9211 x >>= 16;
9212 break;
9213 #ifdef BFD64
9214 case 8:
9215 bfd_put_64 (input_bfd, x, location);
9216 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
9217 x >>= 32;
9218 x >>= 32;
9219 break;
9220 #endif
9221 default:
9222 abort ();
9223 break;
9224 }
9225 }
9226 }
9227
9228 static bfd_vma
9229 get_value (bfd_vma size,
9230 unsigned long chunksz,
9231 bfd *input_bfd,
9232 bfd_byte *location)
9233 {
9234 int shift;
9235 bfd_vma x = 0;
9236
9237 /* Sanity checks. */
9238 BFD_ASSERT (chunksz <= sizeof (x)
9239 && size >= chunksz
9240 && chunksz != 0
9241 && (size % chunksz) == 0
9242 && input_bfd != NULL
9243 && location != NULL);
9244
9245 if (chunksz == sizeof (x))
9246 {
9247 BFD_ASSERT (size == chunksz);
9248
9249 /* Make sure that we do not perform an undefined shift operation.
9250 We know that size == chunksz so there will only be one iteration
9251 of the loop below. */
9252 shift = 0;
9253 }
9254 else
9255 shift = 8 * chunksz;
9256
9257 for (; size; size -= chunksz, location += chunksz)
9258 {
9259 switch (chunksz)
9260 {
9261 case 1:
9262 x = (x << shift) | bfd_get_8 (input_bfd, location);
9263 break;
9264 case 2:
9265 x = (x << shift) | bfd_get_16 (input_bfd, location);
9266 break;
9267 case 4:
9268 x = (x << shift) | bfd_get_32 (input_bfd, location);
9269 break;
9270 #ifdef BFD64
9271 case 8:
9272 x = (x << shift) | bfd_get_64 (input_bfd, location);
9273 break;
9274 #endif
9275 default:
9276 abort ();
9277 }
9278 }
9279 return x;
9280 }
9281
9282 static void
9283 decode_complex_addend (unsigned long *start, /* in bits */
9284 unsigned long *oplen, /* in bits */
9285 unsigned long *len, /* in bits */
9286 unsigned long *wordsz, /* in bytes */
9287 unsigned long *chunksz, /* in bytes */
9288 unsigned long *lsb0_p,
9289 unsigned long *signed_p,
9290 unsigned long *trunc_p,
9291 unsigned long encoded)
9292 {
9293 * start = encoded & 0x3F;
9294 * len = (encoded >> 6) & 0x3F;
9295 * oplen = (encoded >> 12) & 0x3F;
9296 * wordsz = (encoded >> 18) & 0xF;
9297 * chunksz = (encoded >> 22) & 0xF;
9298 * lsb0_p = (encoded >> 27) & 1;
9299 * signed_p = (encoded >> 28) & 1;
9300 * trunc_p = (encoded >> 29) & 1;
9301 }
9302
9303 bfd_reloc_status_type
9304 bfd_elf_perform_complex_relocation (bfd *input_bfd,
9305 asection *input_section,
9306 bfd_byte *contents,
9307 Elf_Internal_Rela *rel,
9308 bfd_vma relocation)
9309 {
9310 bfd_vma shift, x, mask;
9311 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
9312 bfd_reloc_status_type r;
9313 bfd_size_type octets;
9314
9315 /* Perform this reloc, since it is complex.
9316 (this is not to say that it necessarily refers to a complex
9317 symbol; merely that it is a self-describing CGEN based reloc.
9318 i.e. the addend has the complete reloc information (bit start, end,
9319 word size, etc) encoded within it.). */
9320
9321 decode_complex_addend (&start, &oplen, &len, &wordsz,
9322 &chunksz, &lsb0_p, &signed_p,
9323 &trunc_p, rel->r_addend);
9324
9325 mask = (((1L << (len - 1)) - 1) << 1) | 1;
9326
9327 if (lsb0_p)
9328 shift = (start + 1) - len;
9329 else
9330 shift = (8 * wordsz) - (start + len);
9331
9332 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section);
9333 x = get_value (wordsz, chunksz, input_bfd, contents + octets);
9334
9335 #ifdef DEBUG
9336 printf ("Doing complex reloc: "
9337 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
9338 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
9339 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
9340 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
9341 oplen, (unsigned long) x, (unsigned long) mask,
9342 (unsigned long) relocation);
9343 #endif
9344
9345 r = bfd_reloc_ok;
9346 if (! trunc_p)
9347 /* Now do an overflow check. */
9348 r = bfd_check_overflow ((signed_p
9349 ? complain_overflow_signed
9350 : complain_overflow_unsigned),
9351 len, 0, (8 * wordsz),
9352 relocation);
9353
9354 /* Do the deed. */
9355 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
9356
9357 #ifdef DEBUG
9358 printf (" relocation: %8.8lx\n"
9359 " shifted mask: %8.8lx\n"
9360 " shifted/masked reloc: %8.8lx\n"
9361 " result: %8.8lx\n",
9362 (unsigned long) relocation, (unsigned long) (mask << shift),
9363 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
9364 #endif
9365 put_value (wordsz, chunksz, input_bfd, x, contents + octets);
9366 return r;
9367 }
9368
9369 /* Functions to read r_offset from external (target order) reloc
9370 entry. Faster than bfd_getl32 et al, because we let the compiler
9371 know the value is aligned. */
9372
9373 static bfd_vma
9374 ext32l_r_offset (const void *p)
9375 {
9376 union aligned32
9377 {
9378 uint32_t v;
9379 unsigned char c[4];
9380 };
9381 const union aligned32 *a
9382 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
9383
9384 uint32_t aval = ( (uint32_t) a->c[0]
9385 | (uint32_t) a->c[1] << 8
9386 | (uint32_t) a->c[2] << 16
9387 | (uint32_t) a->c[3] << 24);
9388 return aval;
9389 }
9390
9391 static bfd_vma
9392 ext32b_r_offset (const void *p)
9393 {
9394 union aligned32
9395 {
9396 uint32_t v;
9397 unsigned char c[4];
9398 };
9399 const union aligned32 *a
9400 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
9401
9402 uint32_t aval = ( (uint32_t) a->c[0] << 24
9403 | (uint32_t) a->c[1] << 16
9404 | (uint32_t) a->c[2] << 8
9405 | (uint32_t) a->c[3]);
9406 return aval;
9407 }
9408
9409 static bfd_vma
9410 ext64l_r_offset (const void *p)
9411 {
9412 union aligned64
9413 {
9414 uint64_t v;
9415 unsigned char c[8];
9416 };
9417 const union aligned64 *a
9418 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9419
9420 uint64_t aval = ( (uint64_t) a->c[0]
9421 | (uint64_t) a->c[1] << 8
9422 | (uint64_t) a->c[2] << 16
9423 | (uint64_t) a->c[3] << 24
9424 | (uint64_t) a->c[4] << 32
9425 | (uint64_t) a->c[5] << 40
9426 | (uint64_t) a->c[6] << 48
9427 | (uint64_t) a->c[7] << 56);
9428 return aval;
9429 }
9430
9431 static bfd_vma
9432 ext64b_r_offset (const void *p)
9433 {
9434 union aligned64
9435 {
9436 uint64_t v;
9437 unsigned char c[8];
9438 };
9439 const union aligned64 *a
9440 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9441
9442 uint64_t aval = ( (uint64_t) a->c[0] << 56
9443 | (uint64_t) a->c[1] << 48
9444 | (uint64_t) a->c[2] << 40
9445 | (uint64_t) a->c[3] << 32
9446 | (uint64_t) a->c[4] << 24
9447 | (uint64_t) a->c[5] << 16
9448 | (uint64_t) a->c[6] << 8
9449 | (uint64_t) a->c[7]);
9450 return aval;
9451 }
9452
9453 /* When performing a relocatable link, the input relocations are
9454 preserved. But, if they reference global symbols, the indices
9455 referenced must be updated. Update all the relocations found in
9456 RELDATA. */
9457
9458 static bool
9459 elf_link_adjust_relocs (bfd *abfd,
9460 asection *sec,
9461 struct bfd_elf_section_reloc_data *reldata,
9462 bool sort,
9463 struct bfd_link_info *info)
9464 {
9465 unsigned int i;
9466 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9467 bfd_byte *erela;
9468 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9469 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9470 bfd_vma r_type_mask;
9471 int r_sym_shift;
9472 unsigned int count = reldata->count;
9473 struct elf_link_hash_entry **rel_hash = reldata->hashes;
9474
9475 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
9476 {
9477 swap_in = bed->s->swap_reloc_in;
9478 swap_out = bed->s->swap_reloc_out;
9479 }
9480 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
9481 {
9482 swap_in = bed->s->swap_reloca_in;
9483 swap_out = bed->s->swap_reloca_out;
9484 }
9485 else
9486 abort ();
9487
9488 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
9489 abort ();
9490
9491 if (bed->s->arch_size == 32)
9492 {
9493 r_type_mask = 0xff;
9494 r_sym_shift = 8;
9495 }
9496 else
9497 {
9498 r_type_mask = 0xffffffff;
9499 r_sym_shift = 32;
9500 }
9501
9502 erela = reldata->hdr->contents;
9503 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
9504 {
9505 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
9506 unsigned int j;
9507
9508 if (*rel_hash == NULL)
9509 continue;
9510
9511 if ((*rel_hash)->indx == -2
9512 && info->gc_sections
9513 && ! info->gc_keep_exported)
9514 {
9515 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
9516 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
9517 abfd, sec,
9518 (*rel_hash)->root.root.string);
9519 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
9520 abfd, sec);
9521 bfd_set_error (bfd_error_invalid_operation);
9522 return false;
9523 }
9524 BFD_ASSERT ((*rel_hash)->indx >= 0);
9525
9526 (*swap_in) (abfd, erela, irela);
9527 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
9528 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
9529 | (irela[j].r_info & r_type_mask));
9530 (*swap_out) (abfd, irela, erela);
9531 }
9532
9533 if (bed->elf_backend_update_relocs)
9534 (*bed->elf_backend_update_relocs) (sec, reldata);
9535
9536 if (sort && count != 0)
9537 {
9538 bfd_vma (*ext_r_off) (const void *);
9539 bfd_vma r_off;
9540 size_t elt_size;
9541 bfd_byte *base, *end, *p, *loc;
9542 bfd_byte *buf = NULL;
9543
9544 if (bed->s->arch_size == 32)
9545 {
9546 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9547 ext_r_off = ext32l_r_offset;
9548 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9549 ext_r_off = ext32b_r_offset;
9550 else
9551 abort ();
9552 }
9553 else
9554 {
9555 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9556 ext_r_off = ext64l_r_offset;
9557 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9558 ext_r_off = ext64b_r_offset;
9559 else
9560 abort ();
9561 }
9562
9563 /* Must use a stable sort here. A modified insertion sort,
9564 since the relocs are mostly sorted already. */
9565 elt_size = reldata->hdr->sh_entsize;
9566 base = reldata->hdr->contents;
9567 end = base + count * elt_size;
9568 if (elt_size > sizeof (Elf64_External_Rela))
9569 abort ();
9570
9571 /* Ensure the first element is lowest. This acts as a sentinel,
9572 speeding the main loop below. */
9573 r_off = (*ext_r_off) (base);
9574 for (p = loc = base; (p += elt_size) < end; )
9575 {
9576 bfd_vma r_off2 = (*ext_r_off) (p);
9577 if (r_off > r_off2)
9578 {
9579 r_off = r_off2;
9580 loc = p;
9581 }
9582 }
9583 if (loc != base)
9584 {
9585 /* Don't just swap *base and *loc as that changes the order
9586 of the original base[0] and base[1] if they happen to
9587 have the same r_offset. */
9588 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
9589 memcpy (onebuf, loc, elt_size);
9590 memmove (base + elt_size, base, loc - base);
9591 memcpy (base, onebuf, elt_size);
9592 }
9593
9594 for (p = base + elt_size; (p += elt_size) < end; )
9595 {
9596 /* base to p is sorted, *p is next to insert. */
9597 r_off = (*ext_r_off) (p);
9598 /* Search the sorted region for location to insert. */
9599 loc = p - elt_size;
9600 while (r_off < (*ext_r_off) (loc))
9601 loc -= elt_size;
9602 loc += elt_size;
9603 if (loc != p)
9604 {
9605 /* Chances are there is a run of relocs to insert here,
9606 from one of more input files. Files are not always
9607 linked in order due to the way elf_link_input_bfd is
9608 called. See pr17666. */
9609 size_t sortlen = p - loc;
9610 bfd_vma r_off2 = (*ext_r_off) (loc);
9611 size_t runlen = elt_size;
9612 bfd_vma r_off_runend = r_off;
9613 bfd_vma r_off_runend_next;
9614 size_t buf_size = 96 * 1024;
9615 while (p + runlen < end
9616 && (sortlen <= buf_size
9617 || runlen + elt_size <= buf_size)
9618 /* run must not break the ordering of base..loc+1 */
9619 && r_off2 > (r_off_runend_next = (*ext_r_off) (p + runlen))
9620 /* run must be already sorted */
9621 && r_off_runend_next >= r_off_runend)
9622 {
9623 runlen += elt_size;
9624 r_off_runend = r_off_runend_next;
9625 }
9626 if (buf == NULL)
9627 {
9628 buf = bfd_malloc (buf_size);
9629 if (buf == NULL)
9630 return false;
9631 }
9632 if (runlen < sortlen)
9633 {
9634 memcpy (buf, p, runlen);
9635 memmove (loc + runlen, loc, sortlen);
9636 memcpy (loc, buf, runlen);
9637 }
9638 else
9639 {
9640 memcpy (buf, loc, sortlen);
9641 memmove (loc, p, runlen);
9642 memcpy (loc + runlen, buf, sortlen);
9643 }
9644 p += runlen - elt_size;
9645 }
9646 }
9647 /* Hashes are no longer valid. */
9648 free (reldata->hashes);
9649 reldata->hashes = NULL;
9650 free (buf);
9651 }
9652 return true;
9653 }
9654
9655 struct elf_link_sort_rela
9656 {
9657 union {
9658 bfd_vma offset;
9659 bfd_vma sym_mask;
9660 } u;
9661 enum elf_reloc_type_class type;
9662 /* We use this as an array of size int_rels_per_ext_rel. */
9663 Elf_Internal_Rela rela[1];
9664 };
9665
9666 /* qsort stability here and for cmp2 is only an issue if multiple
9667 dynamic relocations are emitted at the same address. But targets
9668 that apply a series of dynamic relocations each operating on the
9669 result of the prior relocation can't use -z combreloc as
9670 implemented anyway. Such schemes tend to be broken by sorting on
9671 symbol index. That leaves dynamic NONE relocs as the only other
9672 case where ld might emit multiple relocs at the same address, and
9673 those are only emitted due to target bugs. */
9674
9675 static int
9676 elf_link_sort_cmp1 (const void *A, const void *B)
9677 {
9678 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9679 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9680 int relativea, relativeb;
9681
9682 relativea = a->type == reloc_class_relative;
9683 relativeb = b->type == reloc_class_relative;
9684
9685 if (relativea < relativeb)
9686 return 1;
9687 if (relativea > relativeb)
9688 return -1;
9689 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9690 return -1;
9691 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9692 return 1;
9693 if (a->rela->r_offset < b->rela->r_offset)
9694 return -1;
9695 if (a->rela->r_offset > b->rela->r_offset)
9696 return 1;
9697 return 0;
9698 }
9699
9700 static int
9701 elf_link_sort_cmp2 (const void *A, const void *B)
9702 {
9703 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9704 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9705
9706 if (a->type < b->type)
9707 return -1;
9708 if (a->type > b->type)
9709 return 1;
9710 if (a->u.offset < b->u.offset)
9711 return -1;
9712 if (a->u.offset > b->u.offset)
9713 return 1;
9714 if (a->rela->r_offset < b->rela->r_offset)
9715 return -1;
9716 if (a->rela->r_offset > b->rela->r_offset)
9717 return 1;
9718 return 0;
9719 }
9720
9721 static size_t
9722 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9723 {
9724 asection *dynamic_relocs;
9725 asection *rela_dyn;
9726 asection *rel_dyn;
9727 bfd_size_type count, size;
9728 size_t i, ret, sort_elt, ext_size;
9729 bfd_byte *sort, *s_non_relative, *p;
9730 struct elf_link_sort_rela *sq;
9731 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9732 int i2e = bed->s->int_rels_per_ext_rel;
9733 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
9734 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9735 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9736 struct bfd_link_order *lo;
9737 bfd_vma r_sym_mask;
9738 bool use_rela;
9739
9740 /* Find a dynamic reloc section. */
9741 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9742 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9743 if (rela_dyn != NULL && rela_dyn->size > 0
9744 && rel_dyn != NULL && rel_dyn->size > 0)
9745 {
9746 bool use_rela_initialised = false;
9747
9748 /* This is just here to stop gcc from complaining.
9749 Its initialization checking code is not perfect. */
9750 use_rela = true;
9751
9752 /* Both sections are present. Examine the sizes
9753 of the indirect sections to help us choose. */
9754 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9755 if (lo->type == bfd_indirect_link_order)
9756 {
9757 asection *o = lo->u.indirect.section;
9758
9759 if ((o->size % bed->s->sizeof_rela) == 0)
9760 {
9761 if ((o->size % bed->s->sizeof_rel) == 0)
9762 /* Section size is divisible by both rel and rela sizes.
9763 It is of no help to us. */
9764 ;
9765 else
9766 {
9767 /* Section size is only divisible by rela. */
9768 if (use_rela_initialised && !use_rela)
9769 {
9770 _bfd_error_handler (_("%pB: unable to sort relocs - "
9771 "they are in more than one size"),
9772 abfd);
9773 bfd_set_error (bfd_error_invalid_operation);
9774 return 0;
9775 }
9776 else
9777 {
9778 use_rela = true;
9779 use_rela_initialised = true;
9780 }
9781 }
9782 }
9783 else if ((o->size % bed->s->sizeof_rel) == 0)
9784 {
9785 /* Section size is only divisible by rel. */
9786 if (use_rela_initialised && use_rela)
9787 {
9788 _bfd_error_handler (_("%pB: unable to sort relocs - "
9789 "they are in more than one size"),
9790 abfd);
9791 bfd_set_error (bfd_error_invalid_operation);
9792 return 0;
9793 }
9794 else
9795 {
9796 use_rela = false;
9797 use_rela_initialised = true;
9798 }
9799 }
9800 else
9801 {
9802 /* The section size is not divisible by either -
9803 something is wrong. */
9804 _bfd_error_handler (_("%pB: unable to sort relocs - "
9805 "they are of an unknown size"), abfd);
9806 bfd_set_error (bfd_error_invalid_operation);
9807 return 0;
9808 }
9809 }
9810
9811 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9812 if (lo->type == bfd_indirect_link_order)
9813 {
9814 asection *o = lo->u.indirect.section;
9815
9816 if ((o->size % bed->s->sizeof_rela) == 0)
9817 {
9818 if ((o->size % bed->s->sizeof_rel) == 0)
9819 /* Section size is divisible by both rel and rela sizes.
9820 It is of no help to us. */
9821 ;
9822 else
9823 {
9824 /* Section size is only divisible by rela. */
9825 if (use_rela_initialised && !use_rela)
9826 {
9827 _bfd_error_handler (_("%pB: unable to sort relocs - "
9828 "they are in more than one size"),
9829 abfd);
9830 bfd_set_error (bfd_error_invalid_operation);
9831 return 0;
9832 }
9833 else
9834 {
9835 use_rela = true;
9836 use_rela_initialised = true;
9837 }
9838 }
9839 }
9840 else if ((o->size % bed->s->sizeof_rel) == 0)
9841 {
9842 /* Section size is only divisible by rel. */
9843 if (use_rela_initialised && use_rela)
9844 {
9845 _bfd_error_handler (_("%pB: unable to sort relocs - "
9846 "they are in more than one size"),
9847 abfd);
9848 bfd_set_error (bfd_error_invalid_operation);
9849 return 0;
9850 }
9851 else
9852 {
9853 use_rela = false;
9854 use_rela_initialised = true;
9855 }
9856 }
9857 else
9858 {
9859 /* The section size is not divisible by either -
9860 something is wrong. */
9861 _bfd_error_handler (_("%pB: unable to sort relocs - "
9862 "they are of an unknown size"), abfd);
9863 bfd_set_error (bfd_error_invalid_operation);
9864 return 0;
9865 }
9866 }
9867
9868 if (! use_rela_initialised)
9869 /* Make a guess. */
9870 use_rela = true;
9871 }
9872 else if (rela_dyn != NULL && rela_dyn->size > 0)
9873 use_rela = true;
9874 else if (rel_dyn != NULL && rel_dyn->size > 0)
9875 use_rela = false;
9876 else
9877 return 0;
9878
9879 if (use_rela)
9880 {
9881 dynamic_relocs = rela_dyn;
9882 ext_size = bed->s->sizeof_rela;
9883 swap_in = bed->s->swap_reloca_in;
9884 swap_out = bed->s->swap_reloca_out;
9885 }
9886 else
9887 {
9888 dynamic_relocs = rel_dyn;
9889 ext_size = bed->s->sizeof_rel;
9890 swap_in = bed->s->swap_reloc_in;
9891 swap_out = bed->s->swap_reloc_out;
9892 }
9893
9894 size = 0;
9895 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9896 if (lo->type == bfd_indirect_link_order)
9897 size += lo->u.indirect.section->size;
9898
9899 if (size != dynamic_relocs->size)
9900 return 0;
9901
9902 sort_elt = (sizeof (struct elf_link_sort_rela)
9903 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9904
9905 count = dynamic_relocs->size / ext_size;
9906 if (count == 0)
9907 return 0;
9908 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9909
9910 if (sort == NULL)
9911 {
9912 (*info->callbacks->warning)
9913 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9914 return 0;
9915 }
9916
9917 if (bed->s->arch_size == 32)
9918 r_sym_mask = ~(bfd_vma) 0xff;
9919 else
9920 r_sym_mask = ~(bfd_vma) 0xffffffff;
9921
9922 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9923 if (lo->type == bfd_indirect_link_order)
9924 {
9925 bfd_byte *erel, *erelend;
9926 asection *o = lo->u.indirect.section;
9927
9928 if (o->contents == NULL && o->size != 0)
9929 {
9930 /* This is a reloc section that is being handled as a normal
9931 section. See bfd_section_from_shdr. We can't combine
9932 relocs in this case. */
9933 free (sort);
9934 return 0;
9935 }
9936 erel = o->contents;
9937 erelend = o->contents + o->size;
9938 p = sort + o->output_offset * opb / ext_size * sort_elt;
9939
9940 while (erel < erelend)
9941 {
9942 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9943
9944 (*swap_in) (abfd, erel, s->rela);
9945 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9946 s->u.sym_mask = r_sym_mask;
9947 p += sort_elt;
9948 erel += ext_size;
9949 }
9950 }
9951
9952 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9953
9954 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9955 {
9956 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9957 if (s->type != reloc_class_relative)
9958 break;
9959 }
9960 ret = i;
9961 s_non_relative = p;
9962
9963 sq = (struct elf_link_sort_rela *) s_non_relative;
9964 for (; i < count; i++, p += sort_elt)
9965 {
9966 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9967 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9968 sq = sp;
9969 sp->u.offset = sq->rela->r_offset;
9970 }
9971
9972 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9973
9974 struct elf_link_hash_table *htab = elf_hash_table (info);
9975 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9976 {
9977 /* We have plt relocs in .rela.dyn. */
9978 sq = (struct elf_link_sort_rela *) sort;
9979 for (i = 0; i < count; i++)
9980 if (sq[count - i - 1].type != reloc_class_plt)
9981 break;
9982 if (i != 0 && htab->srelplt->size == i * ext_size)
9983 {
9984 struct bfd_link_order **plo;
9985 /* Put srelplt link_order last. This is so the output_offset
9986 set in the next loop is correct for DT_JMPREL. */
9987 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9988 if ((*plo)->type == bfd_indirect_link_order
9989 && (*plo)->u.indirect.section == htab->srelplt)
9990 {
9991 lo = *plo;
9992 *plo = lo->next;
9993 }
9994 else
9995 plo = &(*plo)->next;
9996 *plo = lo;
9997 lo->next = NULL;
9998 dynamic_relocs->map_tail.link_order = lo;
9999 }
10000 }
10001
10002 p = sort;
10003 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
10004 if (lo->type == bfd_indirect_link_order)
10005 {
10006 bfd_byte *erel, *erelend;
10007 asection *o = lo->u.indirect.section;
10008
10009 erel = o->contents;
10010 erelend = o->contents + o->size;
10011 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
10012 while (erel < erelend)
10013 {
10014 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
10015 (*swap_out) (abfd, s->rela, erel);
10016 p += sort_elt;
10017 erel += ext_size;
10018 }
10019 }
10020
10021 free (sort);
10022 *psec = dynamic_relocs;
10023 return ret;
10024 }
10025
10026 /* Add a symbol to the output symbol string table. */
10027
10028 static int
10029 elf_link_output_symstrtab (void *finf,
10030 const char *name,
10031 Elf_Internal_Sym *elfsym,
10032 asection *input_sec,
10033 struct elf_link_hash_entry *h)
10034 {
10035 struct elf_final_link_info *flinfo = finf;
10036 int (*output_symbol_hook)
10037 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
10038 struct elf_link_hash_entry *);
10039 struct elf_link_hash_table *hash_table;
10040 const struct elf_backend_data *bed;
10041 bfd_size_type strtabsize;
10042
10043 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
10044
10045 bed = get_elf_backend_data (flinfo->output_bfd);
10046 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
10047 if (output_symbol_hook != NULL)
10048 {
10049 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
10050 if (ret != 1)
10051 return ret;
10052 }
10053
10054 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
10055 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
10056 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
10057 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
10058
10059 if (name == NULL || *name == '\0')
10060 elfsym->st_name = (unsigned long) -1;
10061 else
10062 {
10063 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
10064 to get the final offset for st_name. */
10065 char *versioned_name = (char *) name;
10066 if (h != NULL)
10067 {
10068 if (h->versioned == versioned && h->def_dynamic)
10069 {
10070 /* Keep only one '@' for versioned symbols defined in
10071 shared objects. */
10072 char *version = strrchr (name, ELF_VER_CHR);
10073 char *base_end = strchr (name, ELF_VER_CHR);
10074 if (version != base_end)
10075 {
10076 size_t base_len;
10077 size_t len = strlen (name);
10078 versioned_name = bfd_alloc (flinfo->output_bfd, len);
10079 if (versioned_name == NULL)
10080 return 0;
10081 base_len = base_end - name;
10082 memcpy (versioned_name, name, base_len);
10083 memcpy (versioned_name + base_len, version,
10084 len - base_len);
10085 }
10086 }
10087 }
10088 else if (flinfo->info->unique_symbol
10089 && ELF_ST_BIND (elfsym->st_info) == STB_LOCAL)
10090 {
10091 struct local_hash_entry *lh;
10092 size_t count_len;
10093 size_t base_len;
10094 char buf[30];
10095 switch (ELF_ST_TYPE (elfsym->st_info))
10096 {
10097 case STT_FILE:
10098 case STT_SECTION:
10099 break;
10100 default:
10101 lh = (struct local_hash_entry *) bfd_hash_lookup
10102 (&flinfo->local_hash_table, name, true, false);
10103 if (lh == NULL)
10104 return 0;
10105 /* Always append ".COUNT" to local symbols to avoid
10106 potential conflicts with local symbol "XXX.COUNT". */
10107 sprintf (buf, "%lx", lh->count);
10108 base_len = lh->size;
10109 if (!base_len)
10110 {
10111 base_len = strlen (name);
10112 lh->size = base_len;
10113 }
10114 count_len = strlen (buf);
10115 versioned_name = bfd_alloc (flinfo->output_bfd,
10116 base_len + count_len + 2);
10117 if (versioned_name == NULL)
10118 return 0;
10119 memcpy (versioned_name, name, base_len);
10120 versioned_name[base_len] = '.';
10121 memcpy (versioned_name + base_len + 1, buf,
10122 count_len + 1);
10123 lh->count++;
10124 break;
10125 }
10126 }
10127 elfsym->st_name
10128 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
10129 versioned_name, false);
10130 if (elfsym->st_name == (unsigned long) -1)
10131 return 0;
10132 }
10133
10134 hash_table = elf_hash_table (flinfo->info);
10135 strtabsize = hash_table->strtabsize;
10136 if (strtabsize <= flinfo->output_bfd->symcount)
10137 {
10138 strtabsize += strtabsize;
10139 hash_table->strtabsize = strtabsize;
10140 strtabsize *= sizeof (*hash_table->strtab);
10141 hash_table->strtab
10142 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
10143 strtabsize);
10144 if (hash_table->strtab == NULL)
10145 return 0;
10146 }
10147 hash_table->strtab[flinfo->output_bfd->symcount].sym = *elfsym;
10148 hash_table->strtab[flinfo->output_bfd->symcount].dest_index
10149 = flinfo->output_bfd->symcount;
10150 flinfo->output_bfd->symcount += 1;
10151
10152 return 1;
10153 }
10154
10155 /* Swap symbols out to the symbol table and flush the output symbols to
10156 the file. */
10157
10158 static bool
10159 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
10160 {
10161 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
10162 size_t amt;
10163 size_t i;
10164 const struct elf_backend_data *bed;
10165 bfd_byte *symbuf;
10166 Elf_Internal_Shdr *hdr;
10167 file_ptr pos;
10168 bool ret;
10169
10170 if (flinfo->output_bfd->symcount == 0)
10171 return true;
10172
10173 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
10174
10175 bed = get_elf_backend_data (flinfo->output_bfd);
10176
10177 amt = bed->s->sizeof_sym * flinfo->output_bfd->symcount;
10178 symbuf = (bfd_byte *) bfd_malloc (amt);
10179 if (symbuf == NULL)
10180 return false;
10181
10182 if (flinfo->symshndxbuf)
10183 {
10184 amt = sizeof (Elf_External_Sym_Shndx);
10185 amt *= bfd_get_symcount (flinfo->output_bfd);
10186 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10187 if (flinfo->symshndxbuf == NULL)
10188 {
10189 free (symbuf);
10190 return false;
10191 }
10192 }
10193
10194 /* Now swap out the symbols. */
10195 for (i = 0; i < flinfo->output_bfd->symcount; i++)
10196 {
10197 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
10198 if (elfsym->sym.st_name == (unsigned long) -1)
10199 elfsym->sym.st_name = 0;
10200 else
10201 elfsym->sym.st_name
10202 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
10203 elfsym->sym.st_name);
10204
10205 /* Inform the linker of the addition of this symbol. */
10206
10207 if (flinfo->info->callbacks->ctf_new_symbol)
10208 flinfo->info->callbacks->ctf_new_symbol (elfsym->dest_index,
10209 &elfsym->sym);
10210
10211 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
10212 ((bfd_byte *) symbuf
10213 + (elfsym->dest_index
10214 * bed->s->sizeof_sym)),
10215 NPTR_ADD (flinfo->symshndxbuf,
10216 elfsym->dest_index));
10217 }
10218
10219 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
10220 pos = hdr->sh_offset + hdr->sh_size;
10221 amt = bed->s->sizeof_sym * flinfo->output_bfd->symcount;
10222 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
10223 && bfd_write (symbuf, amt, flinfo->output_bfd) == amt)
10224 {
10225 hdr->sh_size += amt;
10226 ret = true;
10227 }
10228 else
10229 ret = false;
10230
10231 free (symbuf);
10232
10233 free (hash_table->strtab);
10234 hash_table->strtab = NULL;
10235
10236 return ret;
10237 }
10238
10239 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
10240
10241 static bool
10242 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
10243 {
10244 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
10245 && sym->st_shndx < SHN_LORESERVE)
10246 {
10247 /* The gABI doesn't support dynamic symbols in output sections
10248 beyond 64k. */
10249 _bfd_error_handler
10250 /* xgettext:c-format */
10251 (_("%pB: too many sections: %d (>= %d)"),
10252 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
10253 bfd_set_error (bfd_error_nonrepresentable_section);
10254 return false;
10255 }
10256 return true;
10257 }
10258
10259 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
10260 allowing an unsatisfied unversioned symbol in the DSO to match a
10261 versioned symbol that would normally require an explicit version.
10262 We also handle the case that a DSO references a hidden symbol
10263 which may be satisfied by a versioned symbol in another DSO. */
10264
10265 static bool
10266 elf_link_check_versioned_symbol (struct bfd_link_info *info,
10267 const struct elf_backend_data *bed,
10268 struct elf_link_hash_entry *h)
10269 {
10270 bfd *abfd;
10271 struct elf_link_loaded_list *loaded;
10272
10273 if (!is_elf_hash_table (info->hash))
10274 return false;
10275
10276 /* Check indirect symbol. */
10277 while (h->root.type == bfd_link_hash_indirect)
10278 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10279
10280 switch (h->root.type)
10281 {
10282 default:
10283 abfd = NULL;
10284 break;
10285
10286 case bfd_link_hash_undefined:
10287 case bfd_link_hash_undefweak:
10288 abfd = h->root.u.undef.abfd;
10289 if (abfd == NULL
10290 || (abfd->flags & DYNAMIC) == 0
10291 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
10292 return false;
10293 break;
10294
10295 case bfd_link_hash_defined:
10296 case bfd_link_hash_defweak:
10297 abfd = h->root.u.def.section->owner;
10298 break;
10299
10300 case bfd_link_hash_common:
10301 abfd = h->root.u.c.p->section->owner;
10302 break;
10303 }
10304 BFD_ASSERT (abfd != NULL);
10305
10306 for (loaded = elf_hash_table (info)->dyn_loaded;
10307 loaded != NULL;
10308 loaded = loaded->next)
10309 {
10310 bfd *input;
10311 Elf_Internal_Shdr *hdr;
10312 size_t symcount;
10313 size_t extsymcount;
10314 size_t extsymoff;
10315 Elf_Internal_Shdr *versymhdr;
10316 Elf_Internal_Sym *isym;
10317 Elf_Internal_Sym *isymend;
10318 Elf_Internal_Sym *isymbuf;
10319 Elf_External_Versym *ever;
10320 Elf_External_Versym *extversym;
10321
10322 input = loaded->abfd;
10323
10324 /* We check each DSO for a possible hidden versioned definition. */
10325 if (input == abfd
10326 || elf_dynversym (input) == 0)
10327 continue;
10328
10329 hdr = &elf_tdata (input)->dynsymtab_hdr;
10330
10331 symcount = hdr->sh_size / bed->s->sizeof_sym;
10332 if (elf_bad_symtab (input))
10333 {
10334 extsymcount = symcount;
10335 extsymoff = 0;
10336 }
10337 else
10338 {
10339 extsymcount = symcount - hdr->sh_info;
10340 extsymoff = hdr->sh_info;
10341 }
10342
10343 if (extsymcount == 0)
10344 continue;
10345
10346 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
10347 NULL, NULL, NULL);
10348 if (isymbuf == NULL)
10349 return false;
10350
10351 /* Read in any version definitions. */
10352 versymhdr = &elf_tdata (input)->dynversym_hdr;
10353 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
10354 || (extversym = (Elf_External_Versym *)
10355 _bfd_malloc_and_read (input, versymhdr->sh_size,
10356 versymhdr->sh_size)) == NULL)
10357 {
10358 free (isymbuf);
10359 return false;
10360 }
10361
10362 ever = extversym + extsymoff;
10363 isymend = isymbuf + extsymcount;
10364 for (isym = isymbuf; isym < isymend; isym++, ever++)
10365 {
10366 const char *name;
10367 Elf_Internal_Versym iver;
10368 unsigned short version_index;
10369
10370 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
10371 || isym->st_shndx == SHN_UNDEF)
10372 continue;
10373
10374 name = bfd_elf_string_from_elf_section (input,
10375 hdr->sh_link,
10376 isym->st_name);
10377 if (strcmp (name, h->root.root.string) != 0)
10378 continue;
10379
10380 _bfd_elf_swap_versym_in (input, ever, &iver);
10381
10382 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
10383 && !(h->def_regular
10384 && h->forced_local))
10385 {
10386 /* If we have a non-hidden versioned sym, then it should
10387 have provided a definition for the undefined sym unless
10388 it is defined in a non-shared object and forced local.
10389 */
10390 abort ();
10391 }
10392
10393 version_index = iver.vs_vers & VERSYM_VERSION;
10394 if (version_index == 1 || version_index == 2)
10395 {
10396 /* This is the base or first version. We can use it. */
10397 free (extversym);
10398 free (isymbuf);
10399 return true;
10400 }
10401 }
10402
10403 free (extversym);
10404 free (isymbuf);
10405 }
10406
10407 return false;
10408 }
10409
10410 /* Convert ELF common symbol TYPE. */
10411
10412 static int
10413 elf_link_convert_common_type (struct bfd_link_info *info, int type)
10414 {
10415 /* Commom symbol can only appear in relocatable link. */
10416 if (!bfd_link_relocatable (info))
10417 abort ();
10418 switch (info->elf_stt_common)
10419 {
10420 case unchanged:
10421 break;
10422 case elf_stt_common:
10423 type = STT_COMMON;
10424 break;
10425 case no_elf_stt_common:
10426 type = STT_OBJECT;
10427 break;
10428 }
10429 return type;
10430 }
10431
10432 /* Add an external symbol to the symbol table. This is called from
10433 the hash table traversal routine. When generating a shared object,
10434 we go through the symbol table twice. The first time we output
10435 anything that might have been forced to local scope in a version
10436 script. The second time we output the symbols that are still
10437 global symbols. */
10438
10439 static bool
10440 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
10441 {
10442 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
10443 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
10444 struct elf_final_link_info *flinfo = eoinfo->flinfo;
10445 bool strip;
10446 Elf_Internal_Sym sym;
10447 asection *input_sec;
10448 const struct elf_backend_data *bed;
10449 long indx;
10450 int ret;
10451 unsigned int type;
10452
10453 if (h->root.type == bfd_link_hash_warning)
10454 {
10455 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10456 if (h->root.type == bfd_link_hash_new)
10457 return true;
10458 }
10459
10460 /* Decide whether to output this symbol in this pass. */
10461 if (eoinfo->localsyms)
10462 {
10463 if (!h->forced_local)
10464 return true;
10465 }
10466 else
10467 {
10468 if (h->forced_local)
10469 return true;
10470 }
10471
10472 bed = get_elf_backend_data (flinfo->output_bfd);
10473
10474 if (h->root.type == bfd_link_hash_undefined)
10475 {
10476 /* If we have an undefined symbol reference here then it must have
10477 come from a shared library that is being linked in. (Undefined
10478 references in regular files have already been handled unless
10479 they are in unreferenced sections which are removed by garbage
10480 collection). */
10481 bool ignore_undef = false;
10482
10483 /* Some symbols may be special in that the fact that they're
10484 undefined can be safely ignored - let backend determine that. */
10485 if (bed->elf_backend_ignore_undef_symbol)
10486 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
10487
10488 /* If we are reporting errors for this situation then do so now. */
10489 if (!ignore_undef
10490 && h->ref_dynamic_nonweak
10491 && (!h->ref_regular || flinfo->info->gc_sections)
10492 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
10493 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
10494 {
10495 flinfo->info->callbacks->undefined_symbol
10496 (flinfo->info, h->root.root.string,
10497 h->ref_regular ? NULL : h->root.u.undef.abfd, NULL, 0,
10498 flinfo->info->unresolved_syms_in_shared_libs == RM_DIAGNOSE
10499 && !flinfo->info->warn_unresolved_syms);
10500 }
10501
10502 /* Strip a global symbol defined in a discarded section. */
10503 if (h->indx == -3)
10504 return true;
10505 }
10506
10507 /* We should also warn if a forced local symbol is referenced from
10508 shared libraries. */
10509 if (bfd_link_executable (flinfo->info)
10510 && h->forced_local
10511 && h->ref_dynamic
10512 && h->def_regular
10513 && !h->dynamic_def
10514 && h->ref_dynamic_nonweak
10515 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
10516 {
10517 bfd *def_bfd;
10518 const char *msg;
10519 struct elf_link_hash_entry *hi = h;
10520
10521 /* Check indirect symbol. */
10522 while (hi->root.type == bfd_link_hash_indirect)
10523 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
10524
10525 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
10526 /* xgettext:c-format */
10527 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
10528 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
10529 /* xgettext:c-format */
10530 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
10531 else
10532 /* xgettext:c-format */
10533 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
10534 def_bfd = flinfo->output_bfd;
10535 if (hi->root.u.def.section != bfd_abs_section_ptr)
10536 def_bfd = hi->root.u.def.section->owner;
10537 _bfd_error_handler (msg, flinfo->output_bfd,
10538 h->root.root.string, def_bfd);
10539 bfd_set_error (bfd_error_bad_value);
10540 eoinfo->failed = true;
10541 return false;
10542 }
10543
10544 /* We don't want to output symbols that have never been mentioned by
10545 a regular file, or that we have been told to strip. However, if
10546 h->indx is set to -2, the symbol is used by a reloc and we must
10547 output it. */
10548 strip = false;
10549 if (h->indx == -2)
10550 ;
10551 else if ((h->def_dynamic
10552 || h->ref_dynamic
10553 || h->root.type == bfd_link_hash_new)
10554 && !h->def_regular
10555 && !h->ref_regular)
10556 strip = true;
10557 else if (flinfo->info->strip == strip_all)
10558 strip = true;
10559 else if (flinfo->info->strip == strip_some
10560 && bfd_hash_lookup (flinfo->info->keep_hash,
10561 h->root.root.string, false, false) == NULL)
10562 strip = true;
10563 else if ((h->root.type == bfd_link_hash_defined
10564 || h->root.type == bfd_link_hash_defweak)
10565 && ((flinfo->info->strip_discarded
10566 && discarded_section (h->root.u.def.section))
10567 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
10568 && h->root.u.def.section->owner != NULL
10569 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
10570 strip = true;
10571 else if ((h->root.type == bfd_link_hash_undefined
10572 || h->root.type == bfd_link_hash_undefweak)
10573 && h->root.u.undef.abfd != NULL
10574 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
10575 strip = true;
10576
10577 type = h->type;
10578
10579 /* If we're stripping it, and it's not a dynamic symbol, there's
10580 nothing else to do. However, if it is a forced local symbol or
10581 an ifunc symbol we need to give the backend finish_dynamic_symbol
10582 function a chance to make it dynamic. */
10583 if (strip
10584 && h->dynindx == -1
10585 && type != STT_GNU_IFUNC
10586 && !h->forced_local)
10587 return true;
10588
10589 sym.st_value = 0;
10590 sym.st_size = h->size;
10591 sym.st_other = h->other;
10592 switch (h->root.type)
10593 {
10594 default:
10595 case bfd_link_hash_new:
10596 case bfd_link_hash_warning:
10597 abort ();
10598 return false;
10599
10600 case bfd_link_hash_undefined:
10601 case bfd_link_hash_undefweak:
10602 input_sec = bfd_und_section_ptr;
10603 sym.st_shndx = SHN_UNDEF;
10604 break;
10605
10606 case bfd_link_hash_defined:
10607 case bfd_link_hash_defweak:
10608 {
10609 input_sec = h->root.u.def.section;
10610 if (input_sec->output_section != NULL)
10611 {
10612 sym.st_shndx =
10613 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
10614 input_sec->output_section);
10615 if (sym.st_shndx == SHN_BAD)
10616 {
10617 _bfd_error_handler
10618 /* xgettext:c-format */
10619 (_("%pB: could not find output section %pA for input section %pA"),
10620 flinfo->output_bfd, input_sec->output_section, input_sec);
10621 bfd_set_error (bfd_error_nonrepresentable_section);
10622 eoinfo->failed = true;
10623 return false;
10624 }
10625
10626 /* ELF symbols in relocatable files are section relative,
10627 but in nonrelocatable files they are virtual
10628 addresses. */
10629 sym.st_value = h->root.u.def.value + input_sec->output_offset;
10630 if (!bfd_link_relocatable (flinfo->info))
10631 {
10632 sym.st_value += input_sec->output_section->vma;
10633 if (h->type == STT_TLS)
10634 {
10635 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
10636 if (tls_sec != NULL)
10637 sym.st_value -= tls_sec->vma;
10638 }
10639 }
10640 }
10641 else
10642 {
10643 BFD_ASSERT (input_sec->owner == NULL
10644 || (input_sec->owner->flags & DYNAMIC) != 0);
10645 sym.st_shndx = SHN_UNDEF;
10646 input_sec = bfd_und_section_ptr;
10647 }
10648 }
10649 break;
10650
10651 case bfd_link_hash_common:
10652 input_sec = h->root.u.c.p->section;
10653 sym.st_shndx = bed->common_section_index (input_sec);
10654 sym.st_value = 1 << h->root.u.c.p->alignment_power;
10655 break;
10656
10657 case bfd_link_hash_indirect:
10658 /* These symbols are created by symbol versioning. They point
10659 to the decorated version of the name. For example, if the
10660 symbol foo@@GNU_1.2 is the default, which should be used when
10661 foo is used with no version, then we add an indirect symbol
10662 foo which points to foo@@GNU_1.2. We ignore these symbols,
10663 since the indirected symbol is already in the hash table. */
10664 return true;
10665 }
10666
10667 if (type == STT_COMMON || type == STT_OBJECT)
10668 switch (h->root.type)
10669 {
10670 case bfd_link_hash_common:
10671 type = elf_link_convert_common_type (flinfo->info, type);
10672 break;
10673 case bfd_link_hash_defined:
10674 case bfd_link_hash_defweak:
10675 if (bed->common_definition (&sym))
10676 type = elf_link_convert_common_type (flinfo->info, type);
10677 else
10678 type = STT_OBJECT;
10679 break;
10680 case bfd_link_hash_undefined:
10681 case bfd_link_hash_undefweak:
10682 break;
10683 default:
10684 abort ();
10685 }
10686
10687 if (h->forced_local)
10688 {
10689 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10690 /* Turn off visibility on local symbol. */
10691 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10692 }
10693 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10694 else if (h->unique_global && h->def_regular)
10695 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10696 else if (h->root.type == bfd_link_hash_undefweak
10697 || h->root.type == bfd_link_hash_defweak)
10698 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10699 else
10700 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10701 sym.st_target_internal = h->target_internal;
10702
10703 /* Give the processor backend a chance to tweak the symbol value,
10704 and also to finish up anything that needs to be done for this
10705 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10706 forced local syms when non-shared is due to a historical quirk.
10707 STT_GNU_IFUNC symbol must go through PLT. */
10708 if ((h->type == STT_GNU_IFUNC
10709 && h->def_regular
10710 && !bfd_link_relocatable (flinfo->info))
10711 || ((h->dynindx != -1
10712 || h->forced_local)
10713 && ((bfd_link_pic (flinfo->info)
10714 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10715 || h->root.type != bfd_link_hash_undefweak))
10716 || !h->forced_local)
10717 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10718 {
10719 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10720 (flinfo->output_bfd, flinfo->info, h, &sym)))
10721 {
10722 eoinfo->failed = true;
10723 return false;
10724 }
10725 }
10726
10727 /* If we are marking the symbol as undefined, and there are no
10728 non-weak references to this symbol from a regular object, then
10729 mark the symbol as weak undefined; if there are non-weak
10730 references, mark the symbol as strong. We can't do this earlier,
10731 because it might not be marked as undefined until the
10732 finish_dynamic_symbol routine gets through with it. */
10733 if (sym.st_shndx == SHN_UNDEF
10734 && h->ref_regular
10735 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10736 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10737 {
10738 int bindtype;
10739 type = ELF_ST_TYPE (sym.st_info);
10740
10741 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10742 if (type == STT_GNU_IFUNC)
10743 type = STT_FUNC;
10744
10745 if (h->ref_regular_nonweak)
10746 bindtype = STB_GLOBAL;
10747 else
10748 bindtype = STB_WEAK;
10749 sym.st_info = ELF_ST_INFO (bindtype, type);
10750 }
10751
10752 /* If this is a symbol defined in a dynamic library, don't use the
10753 symbol size from the dynamic library. Relinking an executable
10754 against a new library may introduce gratuitous changes in the
10755 executable's symbols if we keep the size. */
10756 if (sym.st_shndx == SHN_UNDEF
10757 && !h->def_regular
10758 && h->def_dynamic)
10759 sym.st_size = 0;
10760
10761 /* If a non-weak symbol with non-default visibility is not defined
10762 locally, it is a fatal error. */
10763 if (!bfd_link_relocatable (flinfo->info)
10764 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10765 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10766 && h->root.type == bfd_link_hash_undefined
10767 && !h->def_regular)
10768 {
10769 const char *msg;
10770
10771 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10772 /* xgettext:c-format */
10773 msg = _("%pB: protected symbol `%s' isn't defined");
10774 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10775 /* xgettext:c-format */
10776 msg = _("%pB: internal symbol `%s' isn't defined");
10777 else
10778 /* xgettext:c-format */
10779 msg = _("%pB: hidden symbol `%s' isn't defined");
10780 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10781 bfd_set_error (bfd_error_bad_value);
10782 eoinfo->failed = true;
10783 return false;
10784 }
10785
10786 /* If this symbol should be put in the .dynsym section, then put it
10787 there now. We already know the symbol index. We also fill in
10788 the entry in the .hash section. */
10789 if (h->dynindx != -1
10790 && elf_hash_table (flinfo->info)->dynamic_sections_created
10791 && elf_hash_table (flinfo->info)->dynsym != NULL
10792 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10793 {
10794 bfd_byte *esym;
10795
10796 /* Since there is no version information in the dynamic string,
10797 if there is no version info in symbol version section, we will
10798 have a run-time problem if not linking executable, referenced
10799 by shared library, or not bound locally. */
10800 if (h->verinfo.verdef == NULL
10801 && (!bfd_link_executable (flinfo->info)
10802 || h->ref_dynamic
10803 || !h->def_regular))
10804 {
10805 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10806
10807 if (p && p [1] != '\0')
10808 {
10809 _bfd_error_handler
10810 /* xgettext:c-format */
10811 (_("%pB: no symbol version section for versioned symbol `%s'"),
10812 flinfo->output_bfd, h->root.root.string);
10813 eoinfo->failed = true;
10814 return false;
10815 }
10816 }
10817
10818 sym.st_name = h->dynstr_index;
10819 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10820 + h->dynindx * bed->s->sizeof_sym);
10821 if (!check_dynsym (flinfo->output_bfd, &sym))
10822 {
10823 eoinfo->failed = true;
10824 return false;
10825 }
10826
10827 /* Inform the linker of the addition of this symbol. */
10828
10829 if (flinfo->info->callbacks->ctf_new_dynsym)
10830 flinfo->info->callbacks->ctf_new_dynsym (h->dynindx, &sym);
10831
10832 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10833
10834 if (flinfo->hash_sec != NULL)
10835 {
10836 size_t hash_entry_size;
10837 bfd_byte *bucketpos;
10838 bfd_vma chain;
10839 size_t bucketcount;
10840 size_t bucket;
10841
10842 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10843 bucket = h->u.elf_hash_value % bucketcount;
10844
10845 hash_entry_size
10846 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10847 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10848 + (bucket + 2) * hash_entry_size);
10849 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10850 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10851 bucketpos);
10852 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10853 ((bfd_byte *) flinfo->hash_sec->contents
10854 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10855 }
10856
10857 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10858 {
10859 Elf_Internal_Versym iversym;
10860 Elf_External_Versym *eversym;
10861
10862 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
10863 {
10864 if (h->verinfo.verdef == NULL
10865 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10866 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10867 iversym.vs_vers = 1;
10868 else
10869 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10870 }
10871 else
10872 {
10873 if (h->verinfo.vertree == NULL)
10874 iversym.vs_vers = 1;
10875 else
10876 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10877 if (flinfo->info->create_default_symver)
10878 iversym.vs_vers++;
10879 }
10880
10881 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10882 defined locally. */
10883 if (h->versioned == versioned_hidden && h->def_regular)
10884 iversym.vs_vers |= VERSYM_HIDDEN;
10885
10886 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10887 eversym += h->dynindx;
10888 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10889 }
10890 }
10891
10892 /* If the symbol is undefined, and we didn't output it to .dynsym,
10893 strip it from .symtab too. Obviously we can't do this for
10894 relocatable output or when needed for --emit-relocs. */
10895 else if (input_sec == bfd_und_section_ptr
10896 && h->indx != -2
10897 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10898 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10899 && !bfd_link_relocatable (flinfo->info))
10900 return true;
10901
10902 /* Also strip others that we couldn't earlier due to dynamic symbol
10903 processing. */
10904 if (strip)
10905 return true;
10906 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10907 return true;
10908
10909 /* Output a FILE symbol so that following locals are not associated
10910 with the wrong input file. We need one for forced local symbols
10911 if we've seen more than one FILE symbol or when we have exactly
10912 one FILE symbol but global symbols are present in a file other
10913 than the one with the FILE symbol. We also need one if linker
10914 defined symbols are present. In practice these conditions are
10915 always met, so just emit the FILE symbol unconditionally. */
10916 if (eoinfo->localsyms
10917 && !eoinfo->file_sym_done
10918 && eoinfo->flinfo->filesym_count != 0)
10919 {
10920 Elf_Internal_Sym fsym;
10921
10922 memset (&fsym, 0, sizeof (fsym));
10923 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10924 fsym.st_shndx = SHN_ABS;
10925 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10926 bfd_und_section_ptr, NULL))
10927 return false;
10928
10929 eoinfo->file_sym_done = true;
10930 }
10931
10932 indx = bfd_get_symcount (flinfo->output_bfd);
10933 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10934 input_sec, h);
10935 if (ret == 0)
10936 {
10937 eoinfo->failed = true;
10938 return false;
10939 }
10940 else if (ret == 1)
10941 h->indx = indx;
10942 else if (h->indx == -2)
10943 abort();
10944
10945 return true;
10946 }
10947
10948 /* Return TRUE if special handling is done for relocs in SEC against
10949 symbols defined in discarded sections. */
10950
10951 static bool
10952 elf_section_ignore_discarded_relocs (asection *sec)
10953 {
10954 const struct elf_backend_data *bed;
10955
10956 switch (sec->sec_info_type)
10957 {
10958 case SEC_INFO_TYPE_STABS:
10959 case SEC_INFO_TYPE_EH_FRAME:
10960 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10961 case SEC_INFO_TYPE_SFRAME:
10962 return true;
10963 default:
10964 break;
10965 }
10966
10967 bed = get_elf_backend_data (sec->owner);
10968 if (bed->elf_backend_ignore_discarded_relocs != NULL
10969 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10970 return true;
10971
10972 return false;
10973 }
10974
10975 /* Return a mask saying how ld should treat relocations in SEC against
10976 symbols defined in discarded sections. If this function returns
10977 COMPLAIN set, ld will issue a warning message. If this function
10978 returns PRETEND set, and the discarded section was link-once and the
10979 same size as the kept link-once section, ld will pretend that the
10980 symbol was actually defined in the kept section. Otherwise ld will
10981 zero the reloc (at least that is the intent, but some cooperation by
10982 the target dependent code is needed, particularly for REL targets). */
10983
10984 unsigned int
10985 _bfd_elf_default_action_discarded (asection *sec)
10986 {
10987 const struct elf_backend_data *bed;
10988 bed = get_elf_backend_data (sec->owner);
10989
10990 if (sec->flags & SEC_DEBUGGING)
10991 return PRETEND;
10992
10993 if (strcmp (".eh_frame", sec->name) == 0)
10994 return 0;
10995
10996 if (bed->elf_backend_can_make_multiple_eh_frame
10997 && strncmp (sec->name, ".eh_frame.", 10) == 0)
10998 return 0;
10999
11000 if (strcmp (".sframe", sec->name) == 0)
11001 return 0;
11002
11003 if (strcmp (".gcc_except_table", sec->name) == 0)
11004 return 0;
11005
11006 return COMPLAIN | PRETEND;
11007 }
11008
11009 /* Find a match between a section and a member of a section group. */
11010
11011 static asection *
11012 match_group_member (asection *sec, asection *group,
11013 struct bfd_link_info *info)
11014 {
11015 asection *first = elf_next_in_group (group);
11016 asection *s = first;
11017
11018 while (s != NULL)
11019 {
11020 if (bfd_elf_match_symbols_in_sections (s, sec, info))
11021 return s;
11022
11023 s = elf_next_in_group (s);
11024 if (s == first)
11025 break;
11026 }
11027
11028 return NULL;
11029 }
11030
11031 /* Check if the kept section of a discarded section SEC can be used
11032 to replace it. Return the replacement if it is OK. Otherwise return
11033 NULL. */
11034
11035 asection *
11036 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
11037 {
11038 asection *kept;
11039
11040 kept = sec->kept_section;
11041 if (kept != NULL)
11042 {
11043 if ((kept->flags & SEC_GROUP) != 0)
11044 kept = match_group_member (sec, kept, info);
11045 if (kept != NULL)
11046 {
11047 if ((sec->rawsize != 0 ? sec->rawsize : sec->size)
11048 != (kept->rawsize != 0 ? kept->rawsize : kept->size))
11049 kept = NULL;
11050 else
11051 {
11052 /* Get the real kept section. */
11053 asection *next;
11054 for (next = kept->kept_section;
11055 next != NULL;
11056 next = next->kept_section)
11057 kept = next;
11058 }
11059 }
11060 sec->kept_section = kept;
11061 }
11062 return kept;
11063 }
11064
11065 /* Link an input file into the linker output file. This function
11066 handles all the sections and relocations of the input file at once.
11067 This is so that we only have to read the local symbols once, and
11068 don't have to keep them in memory. */
11069
11070 static bool
11071 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
11072 {
11073 int (*relocate_section)
11074 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
11075 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
11076 bfd *output_bfd;
11077 Elf_Internal_Shdr *symtab_hdr;
11078 size_t locsymcount;
11079 size_t extsymoff;
11080 Elf_Internal_Sym *isymbuf;
11081 Elf_Internal_Sym *isym;
11082 Elf_Internal_Sym *isymend;
11083 long *pindex;
11084 asection **ppsection;
11085 asection *o;
11086 const struct elf_backend_data *bed;
11087 struct elf_link_hash_entry **sym_hashes;
11088 bfd_size_type address_size;
11089 bfd_vma r_type_mask;
11090 int r_sym_shift;
11091 bool have_file_sym = false;
11092
11093 output_bfd = flinfo->output_bfd;
11094 bed = get_elf_backend_data (output_bfd);
11095 relocate_section = bed->elf_backend_relocate_section;
11096
11097 /* If this is a dynamic object, we don't want to do anything here:
11098 we don't want the local symbols, and we don't want the section
11099 contents. */
11100 if ((input_bfd->flags & DYNAMIC) != 0)
11101 return true;
11102
11103 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
11104 if (elf_bad_symtab (input_bfd))
11105 {
11106 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11107 extsymoff = 0;
11108 }
11109 else
11110 {
11111 locsymcount = symtab_hdr->sh_info;
11112 extsymoff = symtab_hdr->sh_info;
11113 }
11114
11115 /* Enable GNU OSABI features in the output BFD that are used in the input
11116 BFD. */
11117 if (bed->elf_osabi == ELFOSABI_NONE
11118 || bed->elf_osabi == ELFOSABI_GNU
11119 || bed->elf_osabi == ELFOSABI_FREEBSD)
11120 elf_tdata (output_bfd)->has_gnu_osabi
11121 |= (elf_tdata (input_bfd)->has_gnu_osabi
11122 & (bfd_link_relocatable (flinfo->info)
11123 ? -1 : ~elf_gnu_osabi_retain));
11124
11125 /* Read the local symbols. */
11126 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
11127 if (isymbuf == NULL && locsymcount != 0)
11128 {
11129 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
11130 flinfo->internal_syms,
11131 flinfo->external_syms,
11132 flinfo->locsym_shndx);
11133 if (isymbuf == NULL)
11134 return false;
11135 }
11136
11137 /* Find local symbol sections and adjust values of symbols in
11138 SEC_MERGE sections. Write out those local symbols we know are
11139 going into the output file. */
11140 isymend = PTR_ADD (isymbuf, locsymcount);
11141 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
11142 isym < isymend;
11143 isym++, pindex++, ppsection++)
11144 {
11145 asection *isec;
11146 const char *name;
11147 Elf_Internal_Sym osym;
11148 long indx;
11149 int ret;
11150
11151 *pindex = -1;
11152
11153 if (elf_bad_symtab (input_bfd))
11154 {
11155 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
11156 {
11157 *ppsection = NULL;
11158 continue;
11159 }
11160 }
11161
11162 if (isym->st_shndx == SHN_UNDEF)
11163 isec = bfd_und_section_ptr;
11164 else if (isym->st_shndx == SHN_ABS)
11165 isec = bfd_abs_section_ptr;
11166 else if (isym->st_shndx == SHN_COMMON)
11167 isec = bfd_com_section_ptr;
11168 else
11169 {
11170 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
11171 if (isec == NULL)
11172 {
11173 /* Don't attempt to output symbols with st_shnx in the
11174 reserved range other than SHN_ABS and SHN_COMMON. */
11175 isec = bfd_und_section_ptr;
11176 }
11177 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
11178 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
11179 isym->st_value =
11180 _bfd_merged_section_offset (output_bfd, &isec,
11181 elf_section_data (isec)->sec_info,
11182 isym->st_value);
11183 }
11184
11185 *ppsection = isec;
11186
11187 /* Don't output the first, undefined, symbol. In fact, don't
11188 output any undefined local symbol. */
11189 if (isec == bfd_und_section_ptr)
11190 continue;
11191
11192 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
11193 {
11194 /* We never output section symbols. Instead, we use the
11195 section symbol of the corresponding section in the output
11196 file. */
11197 continue;
11198 }
11199
11200 /* If we are stripping all symbols, we don't want to output this
11201 one. */
11202 if (flinfo->info->strip == strip_all)
11203 continue;
11204
11205 /* If we are discarding all local symbols, we don't want to
11206 output this one. If we are generating a relocatable output
11207 file, then some of the local symbols may be required by
11208 relocs; we output them below as we discover that they are
11209 needed. */
11210 if (flinfo->info->discard == discard_all)
11211 continue;
11212
11213 /* If this symbol is defined in a section which we are
11214 discarding, we don't need to keep it. */
11215 if (isym->st_shndx < SHN_LORESERVE
11216 && (isec->output_section == NULL
11217 || bfd_section_removed_from_list (output_bfd,
11218 isec->output_section)))
11219 continue;
11220
11221 /* Get the name of the symbol. */
11222 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
11223 isym->st_name);
11224 if (name == NULL)
11225 return false;
11226
11227 /* See if we are discarding symbols with this name. */
11228 if ((flinfo->info->strip == strip_some
11229 && (bfd_hash_lookup (flinfo->info->keep_hash, name, false, false)
11230 == NULL))
11231 || (((flinfo->info->discard == discard_sec_merge
11232 && (isec->flags & SEC_MERGE)
11233 && !bfd_link_relocatable (flinfo->info))
11234 || flinfo->info->discard == discard_l)
11235 && bfd_is_local_label_name (input_bfd, name)))
11236 continue;
11237
11238 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
11239 {
11240 if (input_bfd->lto_output)
11241 /* -flto puts a temp file name here. This means builds
11242 are not reproducible. Discard the symbol. */
11243 continue;
11244 have_file_sym = true;
11245 flinfo->filesym_count += 1;
11246 }
11247 if (!have_file_sym)
11248 {
11249 /* In the absence of debug info, bfd_find_nearest_line uses
11250 FILE symbols to determine the source file for local
11251 function symbols. Provide a FILE symbol here if input
11252 files lack such, so that their symbols won't be
11253 associated with a previous input file. It's not the
11254 source file, but the best we can do. */
11255 const char *filename;
11256 have_file_sym = true;
11257 flinfo->filesym_count += 1;
11258 memset (&osym, 0, sizeof (osym));
11259 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
11260 osym.st_shndx = SHN_ABS;
11261 if (input_bfd->lto_output)
11262 filename = NULL;
11263 else
11264 filename = lbasename (bfd_get_filename (input_bfd));
11265 if (!elf_link_output_symstrtab (flinfo, filename, &osym,
11266 bfd_abs_section_ptr, NULL))
11267 return false;
11268 }
11269
11270 osym = *isym;
11271
11272 /* Adjust the section index for the output file. */
11273 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11274 isec->output_section);
11275 if (osym.st_shndx == SHN_BAD)
11276 return false;
11277
11278 /* ELF symbols in relocatable files are section relative, but
11279 in executable files they are virtual addresses. Note that
11280 this code assumes that all ELF sections have an associated
11281 BFD section with a reasonable value for output_offset; below
11282 we assume that they also have a reasonable value for
11283 output_section. Any special sections must be set up to meet
11284 these requirements. */
11285 osym.st_value += isec->output_offset;
11286 if (!bfd_link_relocatable (flinfo->info))
11287 {
11288 osym.st_value += isec->output_section->vma;
11289 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
11290 {
11291 /* STT_TLS symbols are relative to PT_TLS segment base. */
11292 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
11293 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
11294 else
11295 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
11296 STT_NOTYPE);
11297 }
11298 }
11299
11300 indx = bfd_get_symcount (output_bfd);
11301 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
11302 if (ret == 0)
11303 return false;
11304 else if (ret == 1)
11305 *pindex = indx;
11306 }
11307
11308 if (bed->s->arch_size == 32)
11309 {
11310 r_type_mask = 0xff;
11311 r_sym_shift = 8;
11312 address_size = 4;
11313 }
11314 else
11315 {
11316 r_type_mask = 0xffffffff;
11317 r_sym_shift = 32;
11318 address_size = 8;
11319 }
11320
11321 /* Relocate the contents of each section. */
11322 sym_hashes = elf_sym_hashes (input_bfd);
11323 for (o = input_bfd->sections; o != NULL; o = o->next)
11324 {
11325 bfd_byte *contents;
11326
11327 if (! o->linker_mark)
11328 {
11329 /* This section was omitted from the link. */
11330 continue;
11331 }
11332
11333 if (!flinfo->info->resolve_section_groups
11334 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
11335 {
11336 /* Deal with the group signature symbol. */
11337 struct bfd_elf_section_data *sec_data = elf_section_data (o);
11338 unsigned long symndx = sec_data->this_hdr.sh_info;
11339 asection *osec = o->output_section;
11340
11341 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
11342 if (symndx >= locsymcount
11343 || (elf_bad_symtab (input_bfd)
11344 && flinfo->sections[symndx] == NULL))
11345 {
11346 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
11347 while (h->root.type == bfd_link_hash_indirect
11348 || h->root.type == bfd_link_hash_warning)
11349 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11350 /* Arrange for symbol to be output. */
11351 h->indx = -2;
11352 elf_section_data (osec)->this_hdr.sh_info = -2;
11353 }
11354 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
11355 {
11356 /* We'll use the output section target_index. */
11357 asection *sec = flinfo->sections[symndx]->output_section;
11358 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
11359 }
11360 else
11361 {
11362 if (flinfo->indices[symndx] == -1)
11363 {
11364 /* Otherwise output the local symbol now. */
11365 Elf_Internal_Sym sym = isymbuf[symndx];
11366 asection *sec = flinfo->sections[symndx]->output_section;
11367 const char *name;
11368 long indx;
11369 int ret;
11370
11371 name = bfd_elf_string_from_elf_section (input_bfd,
11372 symtab_hdr->sh_link,
11373 sym.st_name);
11374 if (name == NULL)
11375 return false;
11376
11377 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11378 sec);
11379 if (sym.st_shndx == SHN_BAD)
11380 return false;
11381
11382 sym.st_value += o->output_offset;
11383
11384 indx = bfd_get_symcount (output_bfd);
11385 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
11386 NULL);
11387 if (ret == 0)
11388 return false;
11389 else if (ret == 1)
11390 flinfo->indices[symndx] = indx;
11391 else
11392 abort ();
11393 }
11394 elf_section_data (osec)->this_hdr.sh_info
11395 = flinfo->indices[symndx];
11396 }
11397 }
11398
11399 if ((o->flags & SEC_HAS_CONTENTS) == 0
11400 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
11401 continue;
11402
11403 if ((o->flags & SEC_LINKER_CREATED) != 0)
11404 {
11405 /* Section was created by _bfd_elf_link_create_dynamic_sections
11406 or somesuch. */
11407 continue;
11408 }
11409
11410 /* Get the contents of the section. They have been cached by a
11411 relaxation routine. Note that o is a section in an input
11412 file, so the contents field will not have been set by any of
11413 the routines which work on output files. */
11414 if (elf_section_data (o)->this_hdr.contents != NULL)
11415 {
11416 contents = elf_section_data (o)->this_hdr.contents;
11417 if (bed->caches_rawsize
11418 && o->rawsize != 0
11419 && o->rawsize < o->size)
11420 {
11421 memcpy (flinfo->contents, contents, o->rawsize);
11422 contents = flinfo->contents;
11423 }
11424 }
11425 else if (!(o->flags & SEC_RELOC)
11426 && !bed->elf_backend_write_section
11427 && o->sec_info_type == SEC_INFO_TYPE_MERGE)
11428 /* A MERGE section that has no relocations doesn't need the
11429 contents anymore, they have been recorded earlier. Except
11430 if the backend has special provisions for writing sections. */
11431 contents = NULL;
11432 else
11433 {
11434 contents = flinfo->contents;
11435 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
11436 return false;
11437 }
11438
11439 if ((o->flags & SEC_RELOC) != 0)
11440 {
11441 Elf_Internal_Rela *internal_relocs;
11442 Elf_Internal_Rela *rel, *relend;
11443 int action_discarded;
11444 int ret;
11445
11446 /* Get the swapped relocs. */
11447 internal_relocs
11448 = _bfd_elf_link_info_read_relocs (input_bfd, flinfo->info, o,
11449 flinfo->external_relocs,
11450 flinfo->internal_relocs,
11451 false);
11452 if (internal_relocs == NULL
11453 && o->reloc_count > 0)
11454 return false;
11455
11456 action_discarded = -1;
11457 if (!elf_section_ignore_discarded_relocs (o))
11458 action_discarded = (*bed->action_discarded) (o);
11459
11460 /* Run through the relocs evaluating complex reloc symbols and
11461 looking for relocs against symbols from discarded sections
11462 or section symbols from removed link-once sections.
11463 Complain about relocs against discarded sections. Zero
11464 relocs against removed link-once sections. */
11465
11466 rel = internal_relocs;
11467 relend = rel + o->reloc_count;
11468 for ( ; rel < relend; rel++)
11469 {
11470 unsigned long r_symndx = rel->r_info >> r_sym_shift;
11471 unsigned int s_type;
11472 asection **ps, *sec;
11473 struct elf_link_hash_entry *h = NULL;
11474 const char *sym_name;
11475
11476 if (r_symndx == STN_UNDEF)
11477 continue;
11478
11479 if (r_symndx >= locsymcount
11480 || (elf_bad_symtab (input_bfd)
11481 && flinfo->sections[r_symndx] == NULL))
11482 {
11483 h = sym_hashes[r_symndx - extsymoff];
11484
11485 /* Badly formatted input files can contain relocs that
11486 reference non-existant symbols. Check here so that
11487 we do not seg fault. */
11488 if (h == NULL)
11489 {
11490 _bfd_error_handler
11491 /* xgettext:c-format */
11492 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
11493 "that references a non-existent global symbol"),
11494 input_bfd, (uint64_t) rel->r_info, o);
11495 bfd_set_error (bfd_error_bad_value);
11496 return false;
11497 }
11498
11499 while (h->root.type == bfd_link_hash_indirect
11500 || h->root.type == bfd_link_hash_warning)
11501 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11502
11503 s_type = h->type;
11504
11505 /* If a plugin symbol is referenced from a non-IR file,
11506 mark the symbol as undefined. Note that the
11507 linker may attach linker created dynamic sections
11508 to the plugin bfd. Symbols defined in linker
11509 created sections are not plugin symbols. */
11510 if ((h->root.non_ir_ref_regular
11511 || h->root.non_ir_ref_dynamic)
11512 && (h->root.type == bfd_link_hash_defined
11513 || h->root.type == bfd_link_hash_defweak)
11514 && (h->root.u.def.section->flags
11515 & SEC_LINKER_CREATED) == 0
11516 && h->root.u.def.section->owner != NULL
11517 && (h->root.u.def.section->owner->flags
11518 & BFD_PLUGIN) != 0)
11519 {
11520 h->root.type = bfd_link_hash_undefined;
11521 h->root.u.undef.abfd = h->root.u.def.section->owner;
11522 }
11523
11524 ps = NULL;
11525 if (h->root.type == bfd_link_hash_defined
11526 || h->root.type == bfd_link_hash_defweak)
11527 ps = &h->root.u.def.section;
11528
11529 sym_name = h->root.root.string;
11530 }
11531 else
11532 {
11533 Elf_Internal_Sym *sym = isymbuf + r_symndx;
11534
11535 s_type = ELF_ST_TYPE (sym->st_info);
11536 ps = &flinfo->sections[r_symndx];
11537 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
11538 sym, *ps);
11539 }
11540
11541 if ((s_type == STT_RELC || s_type == STT_SRELC)
11542 && !bfd_link_relocatable (flinfo->info))
11543 {
11544 bfd_vma val;
11545 bfd_vma dot = (rel->r_offset
11546 + o->output_offset + o->output_section->vma);
11547 #ifdef DEBUG
11548 printf ("Encountered a complex symbol!");
11549 printf (" (input_bfd %s, section %s, reloc %ld\n",
11550 bfd_get_filename (input_bfd), o->name,
11551 (long) (rel - internal_relocs));
11552 printf (" symbol: idx %8.8lx, name %s\n",
11553 r_symndx, sym_name);
11554 printf (" reloc : info %8.8lx, addr %8.8lx\n",
11555 (unsigned long) rel->r_info,
11556 (unsigned long) rel->r_offset);
11557 #endif
11558 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
11559 isymbuf, locsymcount, s_type == STT_SRELC))
11560 return false;
11561
11562 /* Symbol evaluated OK. Update to absolute value. */
11563 set_symbol_value (input_bfd, isymbuf, locsymcount,
11564 r_symndx, val);
11565 continue;
11566 }
11567
11568 if (action_discarded != -1 && ps != NULL)
11569 {
11570 /* Complain if the definition comes from a
11571 discarded section. */
11572 if ((sec = *ps) != NULL && discarded_section (sec))
11573 {
11574 BFD_ASSERT (r_symndx != STN_UNDEF);
11575 if (action_discarded & COMPLAIN)
11576 (*flinfo->info->callbacks->einfo)
11577 /* xgettext:c-format */
11578 (_("%X`%s' referenced in section `%pA' of %pB: "
11579 "defined in discarded section `%pA' of %pB\n"),
11580 sym_name, o, input_bfd, sec, sec->owner);
11581
11582 /* Try to do the best we can to support buggy old
11583 versions of gcc. Pretend that the symbol is
11584 really defined in the kept linkonce section.
11585 FIXME: This is quite broken. Modifying the
11586 symbol here means we will be changing all later
11587 uses of the symbol, not just in this section. */
11588 if (action_discarded & PRETEND)
11589 {
11590 asection *kept;
11591
11592 kept = _bfd_elf_check_kept_section (sec,
11593 flinfo->info);
11594 if (kept != NULL)
11595 {
11596 *ps = kept;
11597 continue;
11598 }
11599 }
11600 }
11601 }
11602 }
11603
11604 /* Relocate the section by invoking a back end routine.
11605
11606 The back end routine is responsible for adjusting the
11607 section contents as necessary, and (if using Rela relocs
11608 and generating a relocatable output file) adjusting the
11609 reloc addend as necessary.
11610
11611 The back end routine does not have to worry about setting
11612 the reloc address or the reloc symbol index.
11613
11614 The back end routine is given a pointer to the swapped in
11615 internal symbols, and can access the hash table entries
11616 for the external symbols via elf_sym_hashes (input_bfd).
11617
11618 When generating relocatable output, the back end routine
11619 must handle STB_LOCAL/STT_SECTION symbols specially. The
11620 output symbol is going to be a section symbol
11621 corresponding to the output section, which will require
11622 the addend to be adjusted. */
11623
11624 ret = (*relocate_section) (output_bfd, flinfo->info,
11625 input_bfd, o, contents,
11626 internal_relocs,
11627 isymbuf,
11628 flinfo->sections);
11629 if (!ret)
11630 return false;
11631
11632 if (ret == 2
11633 || bfd_link_relocatable (flinfo->info)
11634 || flinfo->info->emitrelocations)
11635 {
11636 Elf_Internal_Rela *irela;
11637 Elf_Internal_Rela *irelaend, *irelamid;
11638 bfd_vma last_offset;
11639 struct elf_link_hash_entry **rel_hash;
11640 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
11641 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
11642 unsigned int next_erel;
11643 bool rela_normal;
11644 struct bfd_elf_section_data *esdi, *esdo;
11645
11646 esdi = elf_section_data (o);
11647 esdo = elf_section_data (o->output_section);
11648 rela_normal = false;
11649
11650 /* Adjust the reloc addresses and symbol indices. */
11651
11652 irela = internal_relocs;
11653 irelaend = irela + o->reloc_count;
11654 rel_hash = PTR_ADD (esdo->rel.hashes, esdo->rel.count);
11655 /* We start processing the REL relocs, if any. When we reach
11656 IRELAMID in the loop, we switch to the RELA relocs. */
11657 irelamid = irela;
11658 if (esdi->rel.hdr != NULL)
11659 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
11660 * bed->s->int_rels_per_ext_rel);
11661 rel_hash_list = rel_hash;
11662 rela_hash_list = NULL;
11663 last_offset = o->output_offset;
11664 if (!bfd_link_relocatable (flinfo->info))
11665 last_offset += o->output_section->vma;
11666 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
11667 {
11668 unsigned long r_symndx;
11669 asection *sec;
11670 Elf_Internal_Sym sym;
11671
11672 if (next_erel == bed->s->int_rels_per_ext_rel)
11673 {
11674 rel_hash++;
11675 next_erel = 0;
11676 }
11677
11678 if (irela == irelamid)
11679 {
11680 rel_hash = PTR_ADD (esdo->rela.hashes, esdo->rela.count);
11681 rela_hash_list = rel_hash;
11682 rela_normal = bed->rela_normal;
11683 }
11684
11685 irela->r_offset = _bfd_elf_section_offset (output_bfd,
11686 flinfo->info, o,
11687 irela->r_offset);
11688 if (irela->r_offset >= (bfd_vma) -2)
11689 {
11690 /* This is a reloc for a deleted entry or somesuch.
11691 Turn it into an R_*_NONE reloc, at the same
11692 offset as the last reloc. elf_eh_frame.c and
11693 bfd_elf_discard_info rely on reloc offsets
11694 being ordered. */
11695 irela->r_offset = last_offset;
11696 irela->r_info = 0;
11697 irela->r_addend = 0;
11698 continue;
11699 }
11700
11701 irela->r_offset += o->output_offset;
11702
11703 /* Relocs in an executable have to be virtual addresses. */
11704 if (!bfd_link_relocatable (flinfo->info))
11705 irela->r_offset += o->output_section->vma;
11706
11707 last_offset = irela->r_offset;
11708
11709 r_symndx = irela->r_info >> r_sym_shift;
11710 if (r_symndx == STN_UNDEF)
11711 continue;
11712
11713 if (r_symndx >= locsymcount
11714 || (elf_bad_symtab (input_bfd)
11715 && flinfo->sections[r_symndx] == NULL))
11716 {
11717 struct elf_link_hash_entry *rh;
11718 unsigned long indx;
11719
11720 /* This is a reloc against a global symbol. We
11721 have not yet output all the local symbols, so
11722 we do not know the symbol index of any global
11723 symbol. We set the rel_hash entry for this
11724 reloc to point to the global hash table entry
11725 for this symbol. The symbol index is then
11726 set at the end of bfd_elf_final_link. */
11727 indx = r_symndx - extsymoff;
11728 rh = elf_sym_hashes (input_bfd)[indx];
11729 while (rh->root.type == bfd_link_hash_indirect
11730 || rh->root.type == bfd_link_hash_warning)
11731 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11732
11733 /* Setting the index to -2 tells
11734 elf_link_output_extsym that this symbol is
11735 used by a reloc. */
11736 BFD_ASSERT (rh->indx < 0);
11737 rh->indx = -2;
11738 *rel_hash = rh;
11739
11740 continue;
11741 }
11742
11743 /* This is a reloc against a local symbol. */
11744
11745 *rel_hash = NULL;
11746 sym = isymbuf[r_symndx];
11747 sec = flinfo->sections[r_symndx];
11748 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11749 {
11750 /* I suppose the backend ought to fill in the
11751 section of any STT_SECTION symbol against a
11752 processor specific section. */
11753 r_symndx = STN_UNDEF;
11754 if (bfd_is_abs_section (sec))
11755 ;
11756 else if (sec == NULL || sec->owner == NULL)
11757 {
11758 bfd_set_error (bfd_error_bad_value);
11759 return false;
11760 }
11761 else
11762 {
11763 asection *osec = sec->output_section;
11764
11765 /* If we have discarded a section, the output
11766 section will be the absolute section. In
11767 case of discarded SEC_MERGE sections, use
11768 the kept section. relocate_section should
11769 have already handled discarded linkonce
11770 sections. */
11771 if (bfd_is_abs_section (osec)
11772 && sec->kept_section != NULL
11773 && sec->kept_section->output_section != NULL)
11774 {
11775 osec = sec->kept_section->output_section;
11776 irela->r_addend -= osec->vma;
11777 }
11778
11779 if (!bfd_is_abs_section (osec))
11780 {
11781 r_symndx = osec->target_index;
11782 if (r_symndx == STN_UNDEF)
11783 {
11784 irela->r_addend += osec->vma;
11785 osec = _bfd_nearby_section (output_bfd, osec,
11786 osec->vma);
11787 irela->r_addend -= osec->vma;
11788 r_symndx = osec->target_index;
11789 }
11790 }
11791 }
11792
11793 /* Adjust the addend according to where the
11794 section winds up in the output section. */
11795 if (rela_normal)
11796 irela->r_addend += sec->output_offset;
11797 }
11798 else
11799 {
11800 if (flinfo->indices[r_symndx] == -1)
11801 {
11802 unsigned long shlink;
11803 const char *name;
11804 asection *osec;
11805 long indx;
11806
11807 if (flinfo->info->strip == strip_all)
11808 {
11809 /* You can't do ld -r -s. */
11810 bfd_set_error (bfd_error_invalid_operation);
11811 return false;
11812 }
11813
11814 /* This symbol was skipped earlier, but
11815 since it is needed by a reloc, we
11816 must output it now. */
11817 shlink = symtab_hdr->sh_link;
11818 name = (bfd_elf_string_from_elf_section
11819 (input_bfd, shlink, sym.st_name));
11820 if (name == NULL)
11821 return false;
11822
11823 osec = sec->output_section;
11824 sym.st_shndx =
11825 _bfd_elf_section_from_bfd_section (output_bfd,
11826 osec);
11827 if (sym.st_shndx == SHN_BAD)
11828 return false;
11829
11830 sym.st_value += sec->output_offset;
11831 if (!bfd_link_relocatable (flinfo->info))
11832 {
11833 sym.st_value += osec->vma;
11834 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11835 {
11836 struct elf_link_hash_table *htab
11837 = elf_hash_table (flinfo->info);
11838
11839 /* STT_TLS symbols are relative to PT_TLS
11840 segment base. */
11841 if (htab->tls_sec != NULL)
11842 sym.st_value -= htab->tls_sec->vma;
11843 else
11844 sym.st_info
11845 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11846 STT_NOTYPE);
11847 }
11848 }
11849
11850 indx = bfd_get_symcount (output_bfd);
11851 ret = elf_link_output_symstrtab (flinfo, name,
11852 &sym, sec,
11853 NULL);
11854 if (ret == 0)
11855 return false;
11856 else if (ret == 1)
11857 flinfo->indices[r_symndx] = indx;
11858 else
11859 abort ();
11860 }
11861
11862 r_symndx = flinfo->indices[r_symndx];
11863 }
11864
11865 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11866 | (irela->r_info & r_type_mask));
11867 }
11868
11869 /* Swap out the relocs. */
11870 input_rel_hdr = esdi->rel.hdr;
11871 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11872 {
11873 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11874 input_rel_hdr,
11875 internal_relocs,
11876 rel_hash_list))
11877 return false;
11878 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11879 * bed->s->int_rels_per_ext_rel);
11880 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11881 }
11882
11883 input_rela_hdr = esdi->rela.hdr;
11884 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11885 {
11886 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11887 input_rela_hdr,
11888 internal_relocs,
11889 rela_hash_list))
11890 return false;
11891 }
11892 }
11893 }
11894
11895 /* Write out the modified section contents. */
11896 if (bed->elf_backend_write_section
11897 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11898 contents))
11899 {
11900 /* Section written out. */
11901 }
11902 else switch (o->sec_info_type)
11903 {
11904 case SEC_INFO_TYPE_STABS:
11905 if (! (_bfd_write_section_stabs
11906 (output_bfd,
11907 &elf_hash_table (flinfo->info)->stab_info,
11908 o, &elf_section_data (o)->sec_info, contents)))
11909 return false;
11910 break;
11911 case SEC_INFO_TYPE_MERGE:
11912 if (! _bfd_write_merged_section (output_bfd, o,
11913 elf_section_data (o)->sec_info))
11914 return false;
11915 break;
11916 case SEC_INFO_TYPE_EH_FRAME:
11917 {
11918 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11919 o, contents))
11920 return false;
11921 }
11922 break;
11923 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11924 {
11925 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11926 flinfo->info,
11927 o, contents))
11928 return false;
11929 }
11930 break;
11931 case SEC_INFO_TYPE_SFRAME:
11932 {
11933 /* Merge .sframe sections into the ctf frame encoder
11934 context of the output_bfd's section. The final .sframe
11935 output section will be written out later. */
11936 if (!_bfd_elf_merge_section_sframe (output_bfd, flinfo->info,
11937 o, contents))
11938 return false;
11939 }
11940 break;
11941 default:
11942 {
11943 if (! (o->flags & SEC_EXCLUDE))
11944 {
11945 file_ptr offset = (file_ptr) o->output_offset;
11946 bfd_size_type todo = o->size;
11947
11948 offset *= bfd_octets_per_byte (output_bfd, o);
11949
11950 if ((o->flags & SEC_ELF_REVERSE_COPY)
11951 && o->size > address_size)
11952 {
11953 /* Reverse-copy input section to output. */
11954
11955 if ((o->size & (address_size - 1)) != 0
11956 || (o->reloc_count != 0
11957 && (o->size * bed->s->int_rels_per_ext_rel
11958 != o->reloc_count * address_size)))
11959 {
11960 _bfd_error_handler
11961 /* xgettext:c-format */
11962 (_("error: %pB: size of section %pA is not "
11963 "multiple of address size"),
11964 input_bfd, o);
11965 bfd_set_error (bfd_error_bad_value);
11966 return false;
11967 }
11968
11969 do
11970 {
11971 todo -= address_size;
11972 if (! bfd_set_section_contents (output_bfd,
11973 o->output_section,
11974 contents + todo,
11975 offset,
11976 address_size))
11977 return false;
11978 if (todo == 0)
11979 break;
11980 offset += address_size;
11981 }
11982 while (1);
11983 }
11984 else if (! bfd_set_section_contents (output_bfd,
11985 o->output_section,
11986 contents,
11987 offset, todo))
11988 return false;
11989 }
11990 }
11991 break;
11992 }
11993 }
11994
11995 return true;
11996 }
11997
11998 /* Generate a reloc when linking an ELF file. This is a reloc
11999 requested by the linker, and does not come from any input file. This
12000 is used to build constructor and destructor tables when linking
12001 with -Ur. */
12002
12003 static bool
12004 elf_reloc_link_order (bfd *output_bfd,
12005 struct bfd_link_info *info,
12006 asection *output_section,
12007 struct bfd_link_order *link_order)
12008 {
12009 reloc_howto_type *howto;
12010 long indx;
12011 bfd_vma offset;
12012 bfd_vma addend;
12013 struct bfd_elf_section_reloc_data *reldata;
12014 struct elf_link_hash_entry **rel_hash_ptr;
12015 Elf_Internal_Shdr *rel_hdr;
12016 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
12017 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
12018 bfd_byte *erel;
12019 unsigned int i;
12020 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
12021
12022 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
12023 if (howto == NULL)
12024 {
12025 bfd_set_error (bfd_error_bad_value);
12026 return false;
12027 }
12028
12029 addend = link_order->u.reloc.p->addend;
12030
12031 if (esdo->rel.hdr)
12032 reldata = &esdo->rel;
12033 else if (esdo->rela.hdr)
12034 reldata = &esdo->rela;
12035 else
12036 {
12037 reldata = NULL;
12038 BFD_ASSERT (0);
12039 }
12040
12041 /* Figure out the symbol index. */
12042 rel_hash_ptr = reldata->hashes + reldata->count;
12043 if (link_order->type == bfd_section_reloc_link_order)
12044 {
12045 indx = link_order->u.reloc.p->u.section->target_index;
12046 BFD_ASSERT (indx != 0);
12047 *rel_hash_ptr = NULL;
12048 }
12049 else
12050 {
12051 struct elf_link_hash_entry *h;
12052
12053 /* Treat a reloc against a defined symbol as though it were
12054 actually against the section. */
12055 h = ((struct elf_link_hash_entry *)
12056 bfd_wrapped_link_hash_lookup (output_bfd, info,
12057 link_order->u.reloc.p->u.name,
12058 false, false, true));
12059 if (h != NULL
12060 && (h->root.type == bfd_link_hash_defined
12061 || h->root.type == bfd_link_hash_defweak))
12062 {
12063 asection *section;
12064
12065 section = h->root.u.def.section;
12066 indx = section->output_section->target_index;
12067 *rel_hash_ptr = NULL;
12068 /* It seems that we ought to add the symbol value to the
12069 addend here, but in practice it has already been added
12070 because it was passed to constructor_callback. */
12071 addend += section->output_section->vma + section->output_offset;
12072 }
12073 else if (h != NULL)
12074 {
12075 /* Setting the index to -2 tells elf_link_output_extsym that
12076 this symbol is used by a reloc. */
12077 h->indx = -2;
12078 *rel_hash_ptr = h;
12079 indx = 0;
12080 }
12081 else
12082 {
12083 (*info->callbacks->unattached_reloc)
12084 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
12085 indx = 0;
12086 }
12087 }
12088
12089 /* If this is an inplace reloc, we must write the addend into the
12090 object file. */
12091 if (howto->partial_inplace && addend != 0)
12092 {
12093 bfd_size_type size;
12094 bfd_reloc_status_type rstat;
12095 bfd_byte *buf;
12096 bool ok;
12097 const char *sym_name;
12098 bfd_size_type octets;
12099
12100 size = (bfd_size_type) bfd_get_reloc_size (howto);
12101 buf = (bfd_byte *) bfd_zmalloc (size);
12102 if (buf == NULL && size != 0)
12103 return false;
12104 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
12105 switch (rstat)
12106 {
12107 case bfd_reloc_ok:
12108 break;
12109
12110 default:
12111 case bfd_reloc_outofrange:
12112 abort ();
12113
12114 case bfd_reloc_overflow:
12115 if (link_order->type == bfd_section_reloc_link_order)
12116 sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
12117 else
12118 sym_name = link_order->u.reloc.p->u.name;
12119 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
12120 howto->name, addend, NULL, NULL,
12121 (bfd_vma) 0);
12122 break;
12123 }
12124
12125 octets = link_order->offset * bfd_octets_per_byte (output_bfd,
12126 output_section);
12127 ok = bfd_set_section_contents (output_bfd, output_section, buf,
12128 octets, size);
12129 free (buf);
12130 if (! ok)
12131 return false;
12132 }
12133
12134 /* The address of a reloc is relative to the section in a
12135 relocatable file, and is a virtual address in an executable
12136 file. */
12137 offset = link_order->offset;
12138 if (! bfd_link_relocatable (info))
12139 offset += output_section->vma;
12140
12141 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
12142 {
12143 irel[i].r_offset = offset;
12144 irel[i].r_info = 0;
12145 irel[i].r_addend = 0;
12146 }
12147 if (bed->s->arch_size == 32)
12148 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
12149 else
12150 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
12151
12152 rel_hdr = reldata->hdr;
12153 erel = rel_hdr->contents;
12154 if (rel_hdr->sh_type == SHT_REL)
12155 {
12156 erel += reldata->count * bed->s->sizeof_rel;
12157 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
12158 }
12159 else
12160 {
12161 irel[0].r_addend = addend;
12162 erel += reldata->count * bed->s->sizeof_rela;
12163 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
12164 }
12165
12166 ++reldata->count;
12167
12168 return true;
12169 }
12170
12171 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
12172 Returns TRUE upon success, FALSE otherwise. */
12173
12174 static bool
12175 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
12176 {
12177 bool ret = false;
12178 bfd *implib_bfd;
12179 const struct elf_backend_data *bed;
12180 flagword flags;
12181 enum bfd_architecture arch;
12182 unsigned int mach;
12183 asymbol **sympp = NULL;
12184 long symsize;
12185 long symcount;
12186 long src_count;
12187 elf_symbol_type *osymbuf;
12188 size_t amt;
12189
12190 implib_bfd = info->out_implib_bfd;
12191 bed = get_elf_backend_data (abfd);
12192
12193 if (!bfd_set_format (implib_bfd, bfd_object))
12194 return false;
12195
12196 /* Use flag from executable but make it a relocatable object. */
12197 flags = bfd_get_file_flags (abfd);
12198 flags &= ~HAS_RELOC;
12199 if (!bfd_set_start_address (implib_bfd, 0)
12200 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
12201 return false;
12202
12203 /* Copy architecture of output file to import library file. */
12204 arch = bfd_get_arch (abfd);
12205 mach = bfd_get_mach (abfd);
12206 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
12207 && (abfd->target_defaulted
12208 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
12209 return false;
12210
12211 /* Get symbol table size. */
12212 symsize = bfd_get_symtab_upper_bound (abfd);
12213 if (symsize < 0)
12214 return false;
12215
12216 /* Read in the symbol table. */
12217 sympp = (asymbol **) bfd_malloc (symsize);
12218 if (sympp == NULL)
12219 return false;
12220
12221 symcount = bfd_canonicalize_symtab (abfd, sympp);
12222 if (symcount < 0)
12223 goto free_sym_buf;
12224
12225 /* Allow the BFD backend to copy any private header data it
12226 understands from the output BFD to the import library BFD. */
12227 if (! bfd_copy_private_header_data (abfd, implib_bfd))
12228 goto free_sym_buf;
12229
12230 /* Filter symbols to appear in the import library. */
12231 if (bed->elf_backend_filter_implib_symbols)
12232 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
12233 symcount);
12234 else
12235 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
12236 if (symcount == 0)
12237 {
12238 bfd_set_error (bfd_error_no_symbols);
12239 _bfd_error_handler (_("%pB: no symbol found for import library"),
12240 implib_bfd);
12241 goto free_sym_buf;
12242 }
12243
12244
12245 /* Make symbols absolute. */
12246 amt = symcount * sizeof (*osymbuf);
12247 osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt);
12248 if (osymbuf == NULL)
12249 goto free_sym_buf;
12250
12251 for (src_count = 0; src_count < symcount; src_count++)
12252 {
12253 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
12254 sizeof (*osymbuf));
12255 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
12256 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
12257 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
12258 osymbuf[src_count].internal_elf_sym.st_value =
12259 osymbuf[src_count].symbol.value;
12260 sympp[src_count] = &osymbuf[src_count].symbol;
12261 }
12262
12263 bfd_set_symtab (implib_bfd, sympp, symcount);
12264
12265 /* Allow the BFD backend to copy any private data it understands
12266 from the output BFD to the import library BFD. This is done last
12267 to permit the routine to look at the filtered symbol table. */
12268 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
12269 goto free_sym_buf;
12270
12271 if (!bfd_close (implib_bfd))
12272 goto free_sym_buf;
12273
12274 ret = true;
12275
12276 free_sym_buf:
12277 free (sympp);
12278 return ret;
12279 }
12280
12281 static void
12282 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
12283 {
12284 asection *o;
12285
12286 if (flinfo->symstrtab != NULL)
12287 _bfd_elf_strtab_free (flinfo->symstrtab);
12288 free (flinfo->contents);
12289 free (flinfo->external_relocs);
12290 free (flinfo->internal_relocs);
12291 free (flinfo->external_syms);
12292 free (flinfo->locsym_shndx);
12293 free (flinfo->internal_syms);
12294 free (flinfo->indices);
12295 free (flinfo->sections);
12296 if (flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
12297 free (flinfo->symshndxbuf);
12298 for (o = obfd->sections; o != NULL; o = o->next)
12299 {
12300 struct bfd_elf_section_data *esdo = elf_section_data (o);
12301 free (esdo->rel.hashes);
12302 free (esdo->rela.hashes);
12303 }
12304 }
12305
12306 /* Do the final step of an ELF link. */
12307
12308 bool
12309 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12310 {
12311 bool dynamic;
12312 bool emit_relocs;
12313 bfd *dynobj;
12314 struct elf_final_link_info flinfo;
12315 asection *o;
12316 struct bfd_link_order *p;
12317 bfd *sub;
12318 bfd_size_type max_contents_size;
12319 bfd_size_type max_external_reloc_size;
12320 bfd_size_type max_internal_reloc_count;
12321 bfd_size_type max_sym_count;
12322 bfd_size_type max_sym_shndx_count;
12323 Elf_Internal_Sym elfsym;
12324 unsigned int i;
12325 Elf_Internal_Shdr *symtab_hdr;
12326 Elf_Internal_Shdr *symtab_shndx_hdr;
12327 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12328 struct elf_outext_info eoinfo;
12329 bool merged;
12330 size_t relativecount;
12331 size_t relr_entsize;
12332 asection *reldyn = 0;
12333 bfd_size_type amt;
12334 asection *attr_section = NULL;
12335 bfd_vma attr_size = 0;
12336 const char *std_attrs_section;
12337 struct elf_link_hash_table *htab = elf_hash_table (info);
12338 bool sections_removed;
12339 bool ret;
12340
12341 if (!is_elf_hash_table (&htab->root))
12342 return false;
12343
12344 if (bfd_link_pic (info))
12345 abfd->flags |= DYNAMIC;
12346
12347 dynamic = htab->dynamic_sections_created;
12348 dynobj = htab->dynobj;
12349
12350 emit_relocs = (bfd_link_relocatable (info)
12351 || info->emitrelocations);
12352
12353 memset (&flinfo, 0, sizeof (flinfo));
12354 flinfo.info = info;
12355 flinfo.output_bfd = abfd;
12356 flinfo.symstrtab = _bfd_elf_strtab_init ();
12357 if (flinfo.symstrtab == NULL)
12358 return false;
12359
12360 if (! dynamic)
12361 {
12362 flinfo.hash_sec = NULL;
12363 flinfo.symver_sec = NULL;
12364 }
12365 else
12366 {
12367 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
12368 /* Note that dynsym_sec can be NULL (on VMS). */
12369 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
12370 /* Note that it is OK if symver_sec is NULL. */
12371 }
12372
12373 if (info->unique_symbol
12374 && !bfd_hash_table_init (&flinfo.local_hash_table,
12375 local_hash_newfunc,
12376 sizeof (struct local_hash_entry)))
12377 return false;
12378
12379 /* The object attributes have been merged. Remove the input
12380 sections from the link, and set the contents of the output
12381 section. */
12382 sections_removed = false;
12383 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
12384 for (o = abfd->sections; o != NULL; o = o->next)
12385 {
12386 bool remove_section = false;
12387
12388 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
12389 || strcmp (o->name, ".gnu.attributes") == 0)
12390 {
12391 for (p = o->map_head.link_order; p != NULL; p = p->next)
12392 {
12393 asection *input_section;
12394
12395 if (p->type != bfd_indirect_link_order)
12396 continue;
12397 input_section = p->u.indirect.section;
12398 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12399 elf_link_input_bfd ignores this section. */
12400 input_section->flags &= ~SEC_HAS_CONTENTS;
12401 }
12402
12403 attr_size = bfd_elf_obj_attr_size (abfd);
12404 bfd_set_section_size (o, attr_size);
12405 /* Skip this section later on. */
12406 o->map_head.link_order = NULL;
12407 if (attr_size)
12408 attr_section = o;
12409 else
12410 remove_section = true;
12411 }
12412 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
12413 {
12414 /* Remove empty group section from linker output. */
12415 remove_section = true;
12416 }
12417 if (remove_section)
12418 {
12419 o->flags |= SEC_EXCLUDE;
12420 bfd_section_list_remove (abfd, o);
12421 abfd->section_count--;
12422 sections_removed = true;
12423 }
12424 }
12425 if (sections_removed)
12426 _bfd_fix_excluded_sec_syms (abfd, info);
12427
12428 /* Count up the number of relocations we will output for each output
12429 section, so that we know the sizes of the reloc sections. We
12430 also figure out some maximum sizes. */
12431 max_contents_size = 0;
12432 max_external_reloc_size = 0;
12433 max_internal_reloc_count = 0;
12434 max_sym_count = 0;
12435 max_sym_shndx_count = 0;
12436 merged = false;
12437 for (o = abfd->sections; o != NULL; o = o->next)
12438 {
12439 struct bfd_elf_section_data *esdo = elf_section_data (o);
12440 o->reloc_count = 0;
12441
12442 for (p = o->map_head.link_order; p != NULL; p = p->next)
12443 {
12444 unsigned int reloc_count = 0;
12445 unsigned int additional_reloc_count = 0;
12446 struct bfd_elf_section_data *esdi = NULL;
12447
12448 if (p->type == bfd_section_reloc_link_order
12449 || p->type == bfd_symbol_reloc_link_order)
12450 reloc_count = 1;
12451 else if (p->type == bfd_indirect_link_order)
12452 {
12453 asection *sec;
12454
12455 sec = p->u.indirect.section;
12456
12457 /* Mark all sections which are to be included in the
12458 link. This will normally be every section. We need
12459 to do this so that we can identify any sections which
12460 the linker has decided to not include. */
12461 sec->linker_mark = true;
12462
12463 if (sec->flags & SEC_MERGE)
12464 merged = true;
12465
12466 if (sec->rawsize > max_contents_size)
12467 max_contents_size = sec->rawsize;
12468 if (sec->size > max_contents_size)
12469 max_contents_size = sec->size;
12470
12471 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
12472 && (sec->owner->flags & DYNAMIC) == 0)
12473 {
12474 size_t sym_count;
12475
12476 /* We are interested in just local symbols, not all
12477 symbols. */
12478 if (elf_bad_symtab (sec->owner))
12479 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
12480 / bed->s->sizeof_sym);
12481 else
12482 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
12483
12484 if (sym_count > max_sym_count)
12485 max_sym_count = sym_count;
12486
12487 if (sym_count > max_sym_shndx_count
12488 && elf_symtab_shndx_list (sec->owner) != NULL)
12489 max_sym_shndx_count = sym_count;
12490
12491 esdi = elf_section_data (sec);
12492
12493 if (esdi->this_hdr.sh_type == SHT_REL
12494 || esdi->this_hdr.sh_type == SHT_RELA)
12495 /* Some backends use reloc_count in relocation sections
12496 to count particular types of relocs. Of course,
12497 reloc sections themselves can't have relocations. */
12498 ;
12499 else if (emit_relocs)
12500 {
12501 reloc_count = sec->reloc_count;
12502 if (bed->elf_backend_count_additional_relocs)
12503 {
12504 int c;
12505 c = (*bed->elf_backend_count_additional_relocs) (sec);
12506 additional_reloc_count += c;
12507 }
12508 }
12509 else if (bed->elf_backend_count_relocs)
12510 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
12511
12512 if ((sec->flags & SEC_RELOC) != 0)
12513 {
12514 size_t ext_size = 0;
12515
12516 if (esdi->rel.hdr != NULL)
12517 ext_size = esdi->rel.hdr->sh_size;
12518 if (esdi->rela.hdr != NULL)
12519 ext_size += esdi->rela.hdr->sh_size;
12520
12521 if (ext_size > max_external_reloc_size)
12522 max_external_reloc_size = ext_size;
12523 if (sec->reloc_count > max_internal_reloc_count)
12524 max_internal_reloc_count = sec->reloc_count;
12525 }
12526 }
12527 }
12528
12529 if (reloc_count == 0)
12530 continue;
12531
12532 reloc_count += additional_reloc_count;
12533 o->reloc_count += reloc_count;
12534
12535 if (p->type == bfd_indirect_link_order && emit_relocs)
12536 {
12537 if (esdi->rel.hdr)
12538 {
12539 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
12540 esdo->rel.count += additional_reloc_count;
12541 }
12542 if (esdi->rela.hdr)
12543 {
12544 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
12545 esdo->rela.count += additional_reloc_count;
12546 }
12547 }
12548 else
12549 {
12550 if (o->use_rela_p)
12551 esdo->rela.count += reloc_count;
12552 else
12553 esdo->rel.count += reloc_count;
12554 }
12555 }
12556
12557 if (o->reloc_count > 0)
12558 o->flags |= SEC_RELOC;
12559 else
12560 {
12561 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12562 set it (this is probably a bug) and if it is set
12563 assign_section_numbers will create a reloc section. */
12564 o->flags &=~ SEC_RELOC;
12565 }
12566
12567 /* If the SEC_ALLOC flag is not set, force the section VMA to
12568 zero. This is done in elf_fake_sections as well, but forcing
12569 the VMA to 0 here will ensure that relocs against these
12570 sections are handled correctly. */
12571 if ((o->flags & SEC_ALLOC) == 0
12572 && ! o->user_set_vma)
12573 o->vma = 0;
12574 }
12575
12576 if (! bfd_link_relocatable (info) && merged)
12577 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12578
12579 /* Figure out the file positions for everything but the symbol table
12580 and the relocs. We set symcount to force assign_section_numbers
12581 to create a symbol table. */
12582 abfd->symcount = info->strip != strip_all || emit_relocs;
12583 BFD_ASSERT (! abfd->output_has_begun);
12584 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12585 goto error_return;
12586
12587 /* Set sizes, and assign file positions for reloc sections. */
12588 for (o = abfd->sections; o != NULL; o = o->next)
12589 {
12590 struct bfd_elf_section_data *esdo = elf_section_data (o);
12591 if ((o->flags & SEC_RELOC) != 0)
12592 {
12593 if (esdo->rel.hdr
12594 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12595 goto error_return;
12596
12597 if (esdo->rela.hdr
12598 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12599 goto error_return;
12600 }
12601
12602 /* _bfd_elf_compute_section_file_positions makes temporary use
12603 of target_index. Reset it. */
12604 o->target_index = 0;
12605
12606 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12607 to count upwards while actually outputting the relocations. */
12608 esdo->rel.count = 0;
12609 esdo->rela.count = 0;
12610
12611 if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12612 && !bfd_section_is_ctf (o))
12613 {
12614 /* Cache the section contents so that they can be compressed
12615 later. Use bfd_malloc since it will be freed by
12616 bfd_compress_section_contents. */
12617 unsigned char *contents = esdo->this_hdr.contents;
12618 if (contents != NULL)
12619 abort ();
12620 contents
12621 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12622 if (contents == NULL)
12623 goto error_return;
12624 esdo->this_hdr.contents = contents;
12625 }
12626 }
12627
12628 /* We have now assigned file positions for all the sections except .symtab,
12629 .strtab, and non-loaded reloc and compressed debugging sections. We start
12630 the .symtab section at the current file position, and write directly to it.
12631 We build the .strtab section in memory. */
12632 abfd->symcount = 0;
12633 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12634 /* sh_name is set in prep_headers. */
12635 symtab_hdr->sh_type = SHT_SYMTAB;
12636 /* sh_flags, sh_addr and sh_size all start off zero. */
12637 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12638 /* sh_link is set in assign_section_numbers. */
12639 /* sh_info is set below. */
12640 /* sh_offset is set just below. */
12641 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12642
12643 if (max_sym_count < 20)
12644 max_sym_count = 20;
12645 htab->strtabsize = max_sym_count;
12646 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12647 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12648 if (htab->strtab == NULL)
12649 goto error_return;
12650 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12651 flinfo.symshndxbuf
12652 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12653 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12654
12655 if (info->strip != strip_all || emit_relocs)
12656 {
12657 file_ptr off = elf_next_file_pos (abfd);
12658
12659 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
12660
12661 /* Note that at this point elf_next_file_pos (abfd) is
12662 incorrect. We do not yet know the size of the .symtab section.
12663 We correct next_file_pos below, after we do know the size. */
12664
12665 /* Start writing out the symbol table. The first symbol is always a
12666 dummy symbol. */
12667 elfsym.st_value = 0;
12668 elfsym.st_size = 0;
12669 elfsym.st_info = 0;
12670 elfsym.st_other = 0;
12671 elfsym.st_shndx = SHN_UNDEF;
12672 elfsym.st_target_internal = 0;
12673 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12674 bfd_und_section_ptr, NULL) != 1)
12675 goto error_return;
12676
12677 /* Output a symbol for each section if asked or they are used for
12678 relocs. These symbols usually have no names. We store the
12679 index of each one in the index field of the section, so that
12680 we can find it again when outputting relocs. */
12681
12682 if (bfd_keep_unused_section_symbols (abfd) || emit_relocs)
12683 {
12684 bool name_local_sections
12685 = (bed->elf_backend_name_local_section_symbols
12686 && bed->elf_backend_name_local_section_symbols (abfd));
12687 const char *name = NULL;
12688
12689 elfsym.st_size = 0;
12690 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12691 elfsym.st_other = 0;
12692 elfsym.st_value = 0;
12693 elfsym.st_target_internal = 0;
12694 for (i = 1; i < elf_numsections (abfd); i++)
12695 {
12696 o = bfd_section_from_elf_index (abfd, i);
12697 if (o != NULL)
12698 {
12699 o->target_index = bfd_get_symcount (abfd);
12700 elfsym.st_shndx = i;
12701 if (!bfd_link_relocatable (info))
12702 elfsym.st_value = o->vma;
12703 if (name_local_sections)
12704 name = o->name;
12705 if (elf_link_output_symstrtab (&flinfo, name, &elfsym, o,
12706 NULL) != 1)
12707 goto error_return;
12708 }
12709 }
12710 }
12711 }
12712
12713 /* On some targets like Irix 5 the symbol split between local and global
12714 ones recorded in the sh_info field needs to be done between section
12715 and all other symbols. */
12716 if (bed->elf_backend_elfsym_local_is_section
12717 && bed->elf_backend_elfsym_local_is_section (abfd))
12718 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12719
12720 /* Allocate some memory to hold information read in from the input
12721 files. */
12722 if (max_contents_size != 0)
12723 {
12724 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12725 if (flinfo.contents == NULL)
12726 goto error_return;
12727 }
12728
12729 if (max_external_reloc_size != 0)
12730 {
12731 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12732 if (flinfo.external_relocs == NULL)
12733 goto error_return;
12734 }
12735
12736 if (max_internal_reloc_count != 0)
12737 {
12738 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12739 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12740 if (flinfo.internal_relocs == NULL)
12741 goto error_return;
12742 }
12743
12744 if (max_sym_count != 0)
12745 {
12746 amt = max_sym_count * bed->s->sizeof_sym;
12747 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12748 if (flinfo.external_syms == NULL)
12749 goto error_return;
12750
12751 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12752 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12753 if (flinfo.internal_syms == NULL)
12754 goto error_return;
12755
12756 amt = max_sym_count * sizeof (long);
12757 flinfo.indices = (long int *) bfd_malloc (amt);
12758 if (flinfo.indices == NULL)
12759 goto error_return;
12760
12761 amt = max_sym_count * sizeof (asection *);
12762 flinfo.sections = (asection **) bfd_malloc (amt);
12763 if (flinfo.sections == NULL)
12764 goto error_return;
12765 }
12766
12767 if (max_sym_shndx_count != 0)
12768 {
12769 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12770 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12771 if (flinfo.locsym_shndx == NULL)
12772 goto error_return;
12773 }
12774
12775 if (htab->tls_sec)
12776 {
12777 bfd_vma base, end = 0; /* Both bytes. */
12778 asection *sec;
12779
12780 for (sec = htab->tls_sec;
12781 sec && (sec->flags & SEC_THREAD_LOCAL);
12782 sec = sec->next)
12783 {
12784 bfd_size_type size = sec->size;
12785 unsigned int opb = bfd_octets_per_byte (abfd, sec);
12786
12787 if (size == 0
12788 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12789 {
12790 struct bfd_link_order *ord = sec->map_tail.link_order;
12791
12792 if (ord != NULL)
12793 size = ord->offset * opb + ord->size;
12794 }
12795 end = sec->vma + size / opb;
12796 }
12797 base = htab->tls_sec->vma;
12798 /* Only align end of TLS section if static TLS doesn't have special
12799 alignment requirements. */
12800 if (bed->static_tls_alignment == 1)
12801 end = align_power (end, htab->tls_sec->alignment_power);
12802 htab->tls_size = end - base;
12803 }
12804
12805 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12806 return false;
12807
12808 /* Finish relative relocations here after regular symbol processing
12809 is finished if DT_RELR is enabled. */
12810 if (info->enable_dt_relr
12811 && bed->finish_relative_relocs
12812 && !bed->finish_relative_relocs (info))
12813 info->callbacks->einfo
12814 (_("%F%P: %pB: failed to finish relative relocations\n"), abfd);
12815
12816 /* Since ELF permits relocations to be against local symbols, we
12817 must have the local symbols available when we do the relocations.
12818 Since we would rather only read the local symbols once, and we
12819 would rather not keep them in memory, we handle all the
12820 relocations for a single input file at the same time.
12821
12822 Unfortunately, there is no way to know the total number of local
12823 symbols until we have seen all of them, and the local symbol
12824 indices precede the global symbol indices. This means that when
12825 we are generating relocatable output, and we see a reloc against
12826 a global symbol, we can not know the symbol index until we have
12827 finished examining all the local symbols to see which ones we are
12828 going to output. To deal with this, we keep the relocations in
12829 memory, and don't output them until the end of the link. This is
12830 an unfortunate waste of memory, but I don't see a good way around
12831 it. Fortunately, it only happens when performing a relocatable
12832 link, which is not the common case. FIXME: If keep_memory is set
12833 we could write the relocs out and then read them again; I don't
12834 know how bad the memory loss will be. */
12835
12836 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12837 sub->output_has_begun = false;
12838 for (o = abfd->sections; o != NULL; o = o->next)
12839 {
12840 for (p = o->map_head.link_order; p != NULL; p = p->next)
12841 {
12842 if (p->type == bfd_indirect_link_order
12843 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12844 == bfd_target_elf_flavour)
12845 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12846 {
12847 if (! sub->output_has_begun)
12848 {
12849 if (! elf_link_input_bfd (&flinfo, sub))
12850 goto error_return;
12851 sub->output_has_begun = true;
12852 }
12853 }
12854 else if (p->type == bfd_section_reloc_link_order
12855 || p->type == bfd_symbol_reloc_link_order)
12856 {
12857 if (! elf_reloc_link_order (abfd, info, o, p))
12858 goto error_return;
12859 }
12860 else
12861 {
12862 if (! _bfd_default_link_order (abfd, info, o, p))
12863 {
12864 if (p->type == bfd_indirect_link_order
12865 && (bfd_get_flavour (sub)
12866 == bfd_target_elf_flavour)
12867 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12868 != bed->s->elfclass))
12869 {
12870 const char *iclass, *oclass;
12871
12872 switch (bed->s->elfclass)
12873 {
12874 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12875 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12876 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12877 default: abort ();
12878 }
12879
12880 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12881 {
12882 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12883 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12884 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12885 default: abort ();
12886 }
12887
12888 bfd_set_error (bfd_error_wrong_format);
12889 _bfd_error_handler
12890 /* xgettext:c-format */
12891 (_("%pB: file class %s incompatible with %s"),
12892 sub, iclass, oclass);
12893 }
12894
12895 goto error_return;
12896 }
12897 }
12898 }
12899 }
12900
12901 /* Free symbol buffer if needed. */
12902 if (!info->reduce_memory_overheads)
12903 {
12904 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12905 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
12906 {
12907 free (elf_tdata (sub)->symbuf);
12908 elf_tdata (sub)->symbuf = NULL;
12909 }
12910 }
12911
12912 ret = true;
12913
12914 /* Output any global symbols that got converted to local in a
12915 version script or due to symbol visibility. We do this in a
12916 separate step since ELF requires all local symbols to appear
12917 prior to any global symbols. FIXME: We should only do this if
12918 some global symbols were, in fact, converted to become local.
12919 FIXME: Will this work correctly with the Irix 5 linker? */
12920 eoinfo.failed = false;
12921 eoinfo.flinfo = &flinfo;
12922 eoinfo.localsyms = true;
12923 eoinfo.file_sym_done = false;
12924 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12925 if (eoinfo.failed)
12926 {
12927 ret = false;
12928 goto return_local_hash_table;
12929 }
12930
12931 /* If backend needs to output some local symbols not present in the hash
12932 table, do it now. */
12933 if (bed->elf_backend_output_arch_local_syms)
12934 {
12935 if (! ((*bed->elf_backend_output_arch_local_syms)
12936 (abfd, info, &flinfo, elf_link_output_symstrtab)))
12937 {
12938 ret = false;
12939 goto return_local_hash_table;
12940 }
12941 }
12942
12943 /* That wrote out all the local symbols. Finish up the symbol table
12944 with the global symbols. Even if we want to strip everything we
12945 can, we still need to deal with those global symbols that got
12946 converted to local in a version script. */
12947
12948 /* The sh_info field records the index of the first non local symbol. */
12949 if (!symtab_hdr->sh_info)
12950 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12951
12952 if (dynamic
12953 && htab->dynsym != NULL
12954 && htab->dynsym->output_section != bfd_abs_section_ptr)
12955 {
12956 Elf_Internal_Sym sym;
12957 bfd_byte *dynsym = htab->dynsym->contents;
12958
12959 o = htab->dynsym->output_section;
12960 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12961
12962 /* Write out the section symbols for the output sections. */
12963 if (bfd_link_pic (info)
12964 || htab->is_relocatable_executable)
12965 {
12966 asection *s;
12967
12968 sym.st_size = 0;
12969 sym.st_name = 0;
12970 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12971 sym.st_other = 0;
12972 sym.st_target_internal = 0;
12973
12974 for (s = abfd->sections; s != NULL; s = s->next)
12975 {
12976 int indx;
12977 bfd_byte *dest;
12978 long dynindx;
12979
12980 dynindx = elf_section_data (s)->dynindx;
12981 if (dynindx <= 0)
12982 continue;
12983 indx = elf_section_data (s)->this_idx;
12984 BFD_ASSERT (indx > 0);
12985 sym.st_shndx = indx;
12986 if (! check_dynsym (abfd, &sym))
12987 {
12988 ret = false;
12989 goto return_local_hash_table;
12990 }
12991 sym.st_value = s->vma;
12992 dest = dynsym + dynindx * bed->s->sizeof_sym;
12993
12994 /* Inform the linker of the addition of this symbol. */
12995
12996 if (info->callbacks->ctf_new_dynsym)
12997 info->callbacks->ctf_new_dynsym (dynindx, &sym);
12998
12999 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
13000 }
13001 }
13002
13003 /* Write out the local dynsyms. */
13004 if (htab->dynlocal)
13005 {
13006 struct elf_link_local_dynamic_entry *e;
13007 for (e = htab->dynlocal; e ; e = e->next)
13008 {
13009 asection *s;
13010 bfd_byte *dest;
13011
13012 /* Copy the internal symbol and turn off visibility.
13013 Note that we saved a word of storage and overwrote
13014 the original st_name with the dynstr_index. */
13015 sym = e->isym;
13016 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
13017 sym.st_shndx = SHN_UNDEF;
13018
13019 s = bfd_section_from_elf_index (e->input_bfd,
13020 e->isym.st_shndx);
13021 if (s != NULL
13022 && s->output_section != NULL
13023 && elf_section_data (s->output_section) != NULL)
13024 {
13025 sym.st_shndx =
13026 elf_section_data (s->output_section)->this_idx;
13027 if (! check_dynsym (abfd, &sym))
13028 {
13029 ret = false;
13030 goto return_local_hash_table;
13031 }
13032 sym.st_value = (s->output_section->vma
13033 + s->output_offset
13034 + e->isym.st_value);
13035 }
13036
13037 /* Inform the linker of the addition of this symbol. */
13038
13039 if (info->callbacks->ctf_new_dynsym)
13040 info->callbacks->ctf_new_dynsym (e->dynindx, &sym);
13041
13042 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
13043 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
13044 }
13045 }
13046 }
13047
13048 /* We get the global symbols from the hash table. */
13049 eoinfo.failed = false;
13050 eoinfo.localsyms = false;
13051 eoinfo.flinfo = &flinfo;
13052 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
13053 if (eoinfo.failed)
13054 {
13055 ret = false;
13056 goto return_local_hash_table;
13057 }
13058
13059 /* If backend needs to output some symbols not present in the hash
13060 table, do it now. */
13061 if (bed->elf_backend_output_arch_syms
13062 && (info->strip != strip_all || emit_relocs))
13063 {
13064 if (! ((*bed->elf_backend_output_arch_syms)
13065 (abfd, info, &flinfo, elf_link_output_symstrtab)))
13066 {
13067 ret = false;
13068 goto return_local_hash_table;
13069 }
13070 }
13071
13072 /* Finalize the .strtab section. */
13073 _bfd_elf_strtab_finalize (flinfo.symstrtab);
13074
13075 /* Swap out the .strtab section. */
13076 if (!elf_link_swap_symbols_out (&flinfo))
13077 {
13078 ret = false;
13079 goto return_local_hash_table;
13080 }
13081
13082 /* Now we know the size of the symtab section. */
13083 if (bfd_get_symcount (abfd) > 0)
13084 {
13085 /* Finish up and write out the symbol string table (.strtab)
13086 section. */
13087 Elf_Internal_Shdr *symstrtab_hdr = NULL;
13088 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
13089
13090 if (elf_symtab_shndx_list (abfd))
13091 {
13092 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
13093
13094 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
13095 {
13096 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
13097 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
13098 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
13099 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
13100 symtab_shndx_hdr->sh_size = amt;
13101
13102 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
13103 off, true);
13104
13105 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
13106 || (bfd_write (flinfo.symshndxbuf, amt, abfd) != amt))
13107 {
13108 ret = false;
13109 goto return_local_hash_table;
13110 }
13111 }
13112 }
13113
13114 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
13115 /* sh_name was set in prep_headers. */
13116 symstrtab_hdr->sh_type = SHT_STRTAB;
13117 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
13118 symstrtab_hdr->sh_addr = 0;
13119 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
13120 symstrtab_hdr->sh_entsize = 0;
13121 symstrtab_hdr->sh_link = 0;
13122 symstrtab_hdr->sh_info = 0;
13123 /* sh_offset is set just below. */
13124 symstrtab_hdr->sh_addralign = 1;
13125
13126 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
13127 off, true);
13128 elf_next_file_pos (abfd) = off;
13129
13130 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
13131 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
13132 {
13133 ret = false;
13134 goto return_local_hash_table;
13135 }
13136 }
13137
13138 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
13139 {
13140 _bfd_error_handler (_("%pB: failed to generate import library"),
13141 info->out_implib_bfd);
13142 ret = false;
13143 goto return_local_hash_table;
13144 }
13145
13146 /* Adjust the relocs to have the correct symbol indices. */
13147 for (o = abfd->sections; o != NULL; o = o->next)
13148 {
13149 struct bfd_elf_section_data *esdo = elf_section_data (o);
13150 bool sort;
13151
13152 if ((o->flags & SEC_RELOC) == 0)
13153 continue;
13154
13155 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
13156 if (esdo->rel.hdr != NULL
13157 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
13158 {
13159 ret = false;
13160 goto return_local_hash_table;
13161 }
13162 if (esdo->rela.hdr != NULL
13163 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
13164 {
13165 ret = false;
13166 goto return_local_hash_table;
13167 }
13168
13169 /* Set the reloc_count field to 0 to prevent write_relocs from
13170 trying to swap the relocs out itself. */
13171 o->reloc_count = 0;
13172 }
13173
13174 relativecount = 0;
13175 if (dynamic && info->combreloc && dynobj != NULL)
13176 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
13177
13178 relr_entsize = 0;
13179 if (htab->srelrdyn != NULL
13180 && htab->srelrdyn->output_section != NULL
13181 && htab->srelrdyn->size != 0)
13182 {
13183 asection *s = htab->srelrdyn->output_section;
13184 relr_entsize = elf_section_data (s)->this_hdr.sh_entsize;
13185 if (relr_entsize == 0)
13186 {
13187 relr_entsize = bed->s->arch_size / 8;
13188 elf_section_data (s)->this_hdr.sh_entsize = relr_entsize;
13189 }
13190 }
13191
13192 /* If we are linking against a dynamic object, or generating a
13193 shared library, finish up the dynamic linking information. */
13194 if (dynamic)
13195 {
13196 bfd_byte *dyncon, *dynconend;
13197
13198 /* Fix up .dynamic entries. */
13199 o = bfd_get_linker_section (dynobj, ".dynamic");
13200 BFD_ASSERT (o != NULL);
13201
13202 dyncon = o->contents;
13203 dynconend = PTR_ADD (o->contents, o->size);
13204 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
13205 {
13206 Elf_Internal_Dyn dyn;
13207 const char *name;
13208 unsigned int type;
13209 bfd_size_type sh_size;
13210 bfd_vma sh_addr;
13211
13212 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
13213
13214 switch (dyn.d_tag)
13215 {
13216 default:
13217 continue;
13218 case DT_NULL:
13219 if (relativecount != 0)
13220 {
13221 switch (elf_section_data (reldyn)->this_hdr.sh_type)
13222 {
13223 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
13224 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
13225 }
13226 if (dyn.d_tag != DT_NULL
13227 && dynconend - dyncon >= bed->s->sizeof_dyn)
13228 {
13229 dyn.d_un.d_val = relativecount;
13230 relativecount = 0;
13231 break;
13232 }
13233 relativecount = 0;
13234 }
13235 if (relr_entsize != 0)
13236 {
13237 if (dynconend - dyncon >= 3 * bed->s->sizeof_dyn)
13238 {
13239 asection *s = htab->srelrdyn;
13240 dyn.d_tag = DT_RELR;
13241 dyn.d_un.d_ptr
13242 = s->output_section->vma + s->output_offset;
13243 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
13244 dyncon += bed->s->sizeof_dyn;
13245
13246 dyn.d_tag = DT_RELRSZ;
13247 dyn.d_un.d_val = s->size;
13248 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
13249 dyncon += bed->s->sizeof_dyn;
13250
13251 dyn.d_tag = DT_RELRENT;
13252 dyn.d_un.d_val = relr_entsize;
13253 relr_entsize = 0;
13254 break;
13255 }
13256 relr_entsize = 0;
13257 }
13258 continue;
13259
13260 case DT_INIT:
13261 name = info->init_function;
13262 goto get_sym;
13263 case DT_FINI:
13264 name = info->fini_function;
13265 get_sym:
13266 {
13267 struct elf_link_hash_entry *h;
13268
13269 h = elf_link_hash_lookup (htab, name, false, false, true);
13270 if (h != NULL
13271 && (h->root.type == bfd_link_hash_defined
13272 || h->root.type == bfd_link_hash_defweak))
13273 {
13274 dyn.d_un.d_ptr = h->root.u.def.value;
13275 o = h->root.u.def.section;
13276 if (o->output_section != NULL)
13277 dyn.d_un.d_ptr += (o->output_section->vma
13278 + o->output_offset);
13279 else
13280 {
13281 /* The symbol is imported from another shared
13282 library and does not apply to this one. */
13283 dyn.d_un.d_ptr = 0;
13284 }
13285 break;
13286 }
13287 }
13288 continue;
13289
13290 case DT_PREINIT_ARRAYSZ:
13291 name = ".preinit_array";
13292 goto get_out_size;
13293 case DT_INIT_ARRAYSZ:
13294 name = ".init_array";
13295 goto get_out_size;
13296 case DT_FINI_ARRAYSZ:
13297 name = ".fini_array";
13298 get_out_size:
13299 o = bfd_get_section_by_name (abfd, name);
13300 if (o == NULL)
13301 {
13302 _bfd_error_handler
13303 (_("could not find section %s"), name);
13304 goto error_return;
13305 }
13306 if (o->size == 0)
13307 _bfd_error_handler
13308 (_("warning: %s section has zero size"), name);
13309 dyn.d_un.d_val = o->size;
13310 break;
13311
13312 case DT_PREINIT_ARRAY:
13313 name = ".preinit_array";
13314 goto get_out_vma;
13315 case DT_INIT_ARRAY:
13316 name = ".init_array";
13317 goto get_out_vma;
13318 case DT_FINI_ARRAY:
13319 name = ".fini_array";
13320 get_out_vma:
13321 o = bfd_get_section_by_name (abfd, name);
13322 goto do_vma;
13323
13324 case DT_HASH:
13325 name = ".hash";
13326 goto get_vma;
13327 case DT_GNU_HASH:
13328 name = ".gnu.hash";
13329 goto get_vma;
13330 case DT_STRTAB:
13331 name = ".dynstr";
13332 goto get_vma;
13333 case DT_SYMTAB:
13334 name = ".dynsym";
13335 goto get_vma;
13336 case DT_VERDEF:
13337 name = ".gnu.version_d";
13338 goto get_vma;
13339 case DT_VERNEED:
13340 name = ".gnu.version_r";
13341 goto get_vma;
13342 case DT_VERSYM:
13343 name = ".gnu.version";
13344 get_vma:
13345 o = bfd_get_linker_section (dynobj, name);
13346 do_vma:
13347 if (o == NULL || bfd_is_abs_section (o->output_section))
13348 {
13349 _bfd_error_handler
13350 (_("could not find section %s"), name);
13351 goto error_return;
13352 }
13353 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
13354 {
13355 _bfd_error_handler
13356 (_("warning: section '%s' is being made into a note"), name);
13357 bfd_set_error (bfd_error_nonrepresentable_section);
13358 goto error_return;
13359 }
13360 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
13361 break;
13362
13363 case DT_REL:
13364 case DT_RELA:
13365 case DT_RELSZ:
13366 case DT_RELASZ:
13367 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
13368 type = SHT_REL;
13369 else
13370 type = SHT_RELA;
13371 sh_size = 0;
13372 sh_addr = 0;
13373 for (i = 1; i < elf_numsections (abfd); i++)
13374 {
13375 Elf_Internal_Shdr *hdr;
13376
13377 hdr = elf_elfsections (abfd)[i];
13378 if (hdr->sh_type == type
13379 && (hdr->sh_flags & SHF_ALLOC) != 0)
13380 {
13381 sh_size += hdr->sh_size;
13382 if (sh_addr == 0
13383 || sh_addr > hdr->sh_addr)
13384 sh_addr = hdr->sh_addr;
13385 }
13386 }
13387
13388 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
13389 {
13390 unsigned int opb = bfd_octets_per_byte (abfd, o);
13391
13392 /* Don't count procedure linkage table relocs in the
13393 overall reloc count. */
13394 sh_size -= htab->srelplt->size;
13395 if (sh_size == 0)
13396 /* If the size is zero, make the address zero too.
13397 This is to avoid a glibc bug. If the backend
13398 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
13399 zero, then we'll put DT_RELA at the end of
13400 DT_JMPREL. glibc will interpret the end of
13401 DT_RELA matching the end of DT_JMPREL as the
13402 case where DT_RELA includes DT_JMPREL, and for
13403 LD_BIND_NOW will decide that processing DT_RELA
13404 will process the PLT relocs too. Net result:
13405 No PLT relocs applied. */
13406 sh_addr = 0;
13407
13408 /* If .rela.plt is the first .rela section, exclude
13409 it from DT_RELA. */
13410 else if (sh_addr == (htab->srelplt->output_section->vma
13411 + htab->srelplt->output_offset) * opb)
13412 sh_addr += htab->srelplt->size;
13413 }
13414
13415 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
13416 dyn.d_un.d_val = sh_size;
13417 else
13418 dyn.d_un.d_ptr = sh_addr;
13419 break;
13420 }
13421 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
13422 }
13423 }
13424
13425 /* If we have created any dynamic sections, then output them. */
13426 if (dynobj != NULL)
13427 {
13428 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
13429 goto error_return;
13430
13431 /* Check for DT_TEXTREL (late, in case the backend removes it). */
13432 if (bfd_link_textrel_check (info)
13433 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL
13434 && o->size != 0)
13435 {
13436 bfd_byte *dyncon, *dynconend;
13437
13438 dyncon = o->contents;
13439 dynconend = o->contents + o->size;
13440 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
13441 {
13442 Elf_Internal_Dyn dyn;
13443
13444 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
13445
13446 if (dyn.d_tag == DT_TEXTREL)
13447 {
13448 if (info->textrel_check == textrel_check_error)
13449 info->callbacks->einfo
13450 (_("%P%X: read-only segment has dynamic relocations\n"));
13451 else if (bfd_link_dll (info))
13452 info->callbacks->einfo
13453 (_("%P: warning: creating DT_TEXTREL in a shared object\n"));
13454 else if (bfd_link_pde (info))
13455 info->callbacks->einfo
13456 (_("%P: warning: creating DT_TEXTREL in a PDE\n"));
13457 else
13458 info->callbacks->einfo
13459 (_("%P: warning: creating DT_TEXTREL in a PIE\n"));
13460 break;
13461 }
13462 }
13463 }
13464
13465 for (o = dynobj->sections; o != NULL; o = o->next)
13466 {
13467 if ((o->flags & SEC_HAS_CONTENTS) == 0
13468 || o->size == 0
13469 || o->output_section == bfd_abs_section_ptr)
13470 continue;
13471 if ((o->flags & SEC_LINKER_CREATED) == 0)
13472 {
13473 /* At this point, we are only interested in sections
13474 created by _bfd_elf_link_create_dynamic_sections. */
13475 continue;
13476 }
13477 if (htab->stab_info.stabstr == o)
13478 continue;
13479 if (htab->eh_info.hdr_sec == o)
13480 continue;
13481 if (strcmp (o->name, ".dynstr") != 0)
13482 {
13483 bfd_size_type octets = ((file_ptr) o->output_offset
13484 * bfd_octets_per_byte (abfd, o));
13485 if (!bfd_set_section_contents (abfd, o->output_section,
13486 o->contents, octets, o->size))
13487 goto error_return;
13488 }
13489 else
13490 {
13491 /* The contents of the .dynstr section are actually in a
13492 stringtab. */
13493 file_ptr off;
13494
13495 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
13496 if (bfd_seek (abfd, off, SEEK_SET) != 0
13497 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
13498 goto error_return;
13499 }
13500 }
13501 }
13502
13503 if (!info->resolve_section_groups)
13504 {
13505 bool failed = false;
13506
13507 BFD_ASSERT (bfd_link_relocatable (info));
13508 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
13509 if (failed)
13510 goto error_return;
13511 }
13512
13513 /* If we have optimized stabs strings, output them. */
13514 if (htab->stab_info.stabstr != NULL)
13515 {
13516 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
13517 goto error_return;
13518 }
13519
13520 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
13521 goto error_return;
13522
13523 if (! _bfd_elf_write_section_sframe (abfd, info))
13524 goto error_return;
13525
13526 if (info->callbacks->emit_ctf)
13527 info->callbacks->emit_ctf ();
13528
13529 elf_final_link_free (abfd, &flinfo);
13530
13531 if (attr_section)
13532 {
13533 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
13534 if (contents == NULL)
13535 {
13536 /* Bail out and fail. */
13537 ret = false;
13538 goto return_local_hash_table;
13539 }
13540 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
13541 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
13542 free (contents);
13543 }
13544
13545 return_local_hash_table:
13546 if (info->unique_symbol)
13547 bfd_hash_table_free (&flinfo.local_hash_table);
13548 return ret;
13549
13550 error_return:
13551 elf_final_link_free (abfd, &flinfo);
13552 ret = false;
13553 goto return_local_hash_table;
13554 }
13555 \f
13556 /* Initialize COOKIE for input bfd ABFD. */
13557
13558 static bool
13559 init_reloc_cookie (struct elf_reloc_cookie *cookie,
13560 struct bfd_link_info *info, bfd *abfd)
13561 {
13562 Elf_Internal_Shdr *symtab_hdr;
13563 const struct elf_backend_data *bed;
13564
13565 bed = get_elf_backend_data (abfd);
13566 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13567
13568 cookie->abfd = abfd;
13569 cookie->sym_hashes = elf_sym_hashes (abfd);
13570 cookie->bad_symtab = elf_bad_symtab (abfd);
13571 if (cookie->bad_symtab)
13572 {
13573 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13574 cookie->extsymoff = 0;
13575 }
13576 else
13577 {
13578 cookie->locsymcount = symtab_hdr->sh_info;
13579 cookie->extsymoff = symtab_hdr->sh_info;
13580 }
13581
13582 if (bed->s->arch_size == 32)
13583 cookie->r_sym_shift = 8;
13584 else
13585 cookie->r_sym_shift = 32;
13586
13587 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
13588 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
13589 {
13590 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13591 cookie->locsymcount, 0,
13592 NULL, NULL, NULL);
13593 if (cookie->locsyms == NULL)
13594 {
13595 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
13596 return false;
13597 }
13598 if (_bfd_link_keep_memory (info) )
13599 {
13600 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
13601 info->cache_size += (cookie->locsymcount
13602 * sizeof (Elf_External_Sym_Shndx));
13603 }
13604 }
13605 return true;
13606 }
13607
13608 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
13609
13610 static void
13611 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
13612 {
13613 Elf_Internal_Shdr *symtab_hdr;
13614
13615 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13616 if (symtab_hdr->contents != (unsigned char *) cookie->locsyms)
13617 free (cookie->locsyms);
13618 }
13619
13620 /* Initialize the relocation information in COOKIE for input section SEC
13621 of input bfd ABFD. */
13622
13623 static bool
13624 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13625 struct bfd_link_info *info, bfd *abfd,
13626 asection *sec)
13627 {
13628 if (sec->reloc_count == 0)
13629 {
13630 cookie->rels = NULL;
13631 cookie->relend = NULL;
13632 }
13633 else
13634 {
13635 cookie->rels = _bfd_elf_link_info_read_relocs (abfd, info, sec,
13636 NULL, NULL,
13637 _bfd_link_keep_memory (info));
13638 if (cookie->rels == NULL)
13639 return false;
13640 cookie->rel = cookie->rels;
13641 cookie->relend = cookie->rels + sec->reloc_count;
13642 }
13643 cookie->rel = cookie->rels;
13644 return true;
13645 }
13646
13647 /* Free the memory allocated by init_reloc_cookie_rels,
13648 if appropriate. */
13649
13650 static void
13651 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13652 asection *sec)
13653 {
13654 if (elf_section_data (sec)->relocs != cookie->rels)
13655 free (cookie->rels);
13656 }
13657
13658 /* Initialize the whole of COOKIE for input section SEC. */
13659
13660 static bool
13661 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13662 struct bfd_link_info *info,
13663 asection *sec)
13664 {
13665 if (!init_reloc_cookie (cookie, info, sec->owner))
13666 goto error1;
13667 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
13668 goto error2;
13669 return true;
13670
13671 error2:
13672 fini_reloc_cookie (cookie, sec->owner);
13673 error1:
13674 return false;
13675 }
13676
13677 /* Free the memory allocated by init_reloc_cookie_for_section,
13678 if appropriate. */
13679
13680 static void
13681 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13682 asection *sec)
13683 {
13684 fini_reloc_cookie_rels (cookie, sec);
13685 fini_reloc_cookie (cookie, sec->owner);
13686 }
13687 \f
13688 /* Garbage collect unused sections. */
13689
13690 /* Default gc_mark_hook. */
13691
13692 asection *
13693 _bfd_elf_gc_mark_hook (asection *sec,
13694 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13695 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13696 struct elf_link_hash_entry *h,
13697 Elf_Internal_Sym *sym)
13698 {
13699 if (h != NULL)
13700 {
13701 switch (h->root.type)
13702 {
13703 case bfd_link_hash_defined:
13704 case bfd_link_hash_defweak:
13705 return h->root.u.def.section;
13706
13707 case bfd_link_hash_common:
13708 return h->root.u.c.p->section;
13709
13710 default:
13711 break;
13712 }
13713 }
13714 else
13715 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13716
13717 return NULL;
13718 }
13719
13720 /* Return the debug definition section. */
13721
13722 static asection *
13723 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13724 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13725 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13726 struct elf_link_hash_entry *h,
13727 Elf_Internal_Sym *sym)
13728 {
13729 if (h != NULL)
13730 {
13731 /* Return the global debug definition section. */
13732 if ((h->root.type == bfd_link_hash_defined
13733 || h->root.type == bfd_link_hash_defweak)
13734 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13735 return h->root.u.def.section;
13736 }
13737 else
13738 {
13739 /* Return the local debug definition section. */
13740 asection *isec = bfd_section_from_elf_index (sec->owner,
13741 sym->st_shndx);
13742 if (isec != NULL && (isec->flags & SEC_DEBUGGING) != 0)
13743 return isec;
13744 }
13745
13746 return NULL;
13747 }
13748
13749 /* COOKIE->rel describes a relocation against section SEC, which is
13750 a section we've decided to keep. Return the section that contains
13751 the relocation symbol, or NULL if no section contains it. */
13752
13753 asection *
13754 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13755 elf_gc_mark_hook_fn gc_mark_hook,
13756 struct elf_reloc_cookie *cookie,
13757 bool *start_stop)
13758 {
13759 unsigned long r_symndx;
13760 struct elf_link_hash_entry *h, *hw;
13761
13762 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13763 if (r_symndx == STN_UNDEF)
13764 return NULL;
13765
13766 if (r_symndx >= cookie->locsymcount
13767 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13768 {
13769 bool was_marked;
13770
13771 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13772 if (h == NULL)
13773 {
13774 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13775 sec->owner);
13776 return NULL;
13777 }
13778 while (h->root.type == bfd_link_hash_indirect
13779 || h->root.type == bfd_link_hash_warning)
13780 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13781
13782 was_marked = h->mark;
13783 h->mark = 1;
13784 /* Keep all aliases of the symbol too. If an object symbol
13785 needs to be copied into .dynbss then all of its aliases
13786 should be present as dynamic symbols, not just the one used
13787 on the copy relocation. */
13788 hw = h;
13789 while (hw->is_weakalias)
13790 {
13791 hw = hw->u.alias;
13792 hw->mark = 1;
13793 }
13794
13795 if (!was_marked && h->start_stop && !h->root.ldscript_def)
13796 {
13797 if (info->start_stop_gc)
13798 return NULL;
13799
13800 /* To work around a glibc bug, mark XXX input sections
13801 when there is a reference to __start_XXX or __stop_XXX
13802 symbols. */
13803 else if (start_stop != NULL)
13804 {
13805 asection *s = h->u2.start_stop_section;
13806 *start_stop = true;
13807 return s;
13808 }
13809 }
13810
13811 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13812 }
13813
13814 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13815 &cookie->locsyms[r_symndx]);
13816 }
13817
13818 /* COOKIE->rel describes a relocation against section SEC, which is
13819 a section we've decided to keep. Mark the section that contains
13820 the relocation symbol. */
13821
13822 bool
13823 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13824 asection *sec,
13825 elf_gc_mark_hook_fn gc_mark_hook,
13826 struct elf_reloc_cookie *cookie)
13827 {
13828 asection *rsec;
13829 bool start_stop = false;
13830
13831 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13832 while (rsec != NULL)
13833 {
13834 if (!rsec->gc_mark)
13835 {
13836 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13837 || (rsec->owner->flags & DYNAMIC) != 0)
13838 rsec->gc_mark = 1;
13839 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13840 return false;
13841 }
13842 if (!start_stop)
13843 break;
13844 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13845 }
13846 return true;
13847 }
13848
13849 /* The mark phase of garbage collection. For a given section, mark
13850 it and any sections in this section's group, and all the sections
13851 which define symbols to which it refers. */
13852
13853 bool
13854 _bfd_elf_gc_mark (struct bfd_link_info *info,
13855 asection *sec,
13856 elf_gc_mark_hook_fn gc_mark_hook)
13857 {
13858 bool ret;
13859 asection *group_sec, *eh_frame;
13860
13861 sec->gc_mark = 1;
13862
13863 /* Mark all the sections in the group. */
13864 group_sec = elf_section_data (sec)->next_in_group;
13865 if (group_sec && !group_sec->gc_mark)
13866 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13867 return false;
13868
13869 /* Look through the section relocs. */
13870 ret = true;
13871 eh_frame = elf_eh_frame_section (sec->owner);
13872 if ((sec->flags & SEC_RELOC) != 0
13873 && sec->reloc_count > 0
13874 && sec != eh_frame)
13875 {
13876 struct elf_reloc_cookie cookie;
13877
13878 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13879 ret = false;
13880 else
13881 {
13882 for (; cookie.rel < cookie.relend; cookie.rel++)
13883 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13884 {
13885 ret = false;
13886 break;
13887 }
13888 fini_reloc_cookie_for_section (&cookie, sec);
13889 }
13890 }
13891
13892 if (ret && eh_frame && elf_fde_list (sec))
13893 {
13894 struct elf_reloc_cookie cookie;
13895
13896 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13897 ret = false;
13898 else
13899 {
13900 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13901 gc_mark_hook, &cookie))
13902 ret = false;
13903 fini_reloc_cookie_for_section (&cookie, eh_frame);
13904 }
13905 }
13906
13907 eh_frame = elf_section_eh_frame_entry (sec);
13908 if (ret && eh_frame && !eh_frame->gc_mark)
13909 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13910 ret = false;
13911
13912 return ret;
13913 }
13914
13915 /* Scan and mark sections in a special or debug section group. */
13916
13917 static void
13918 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13919 {
13920 /* Point to first section of section group. */
13921 asection *ssec;
13922 /* Used to iterate the section group. */
13923 asection *msec;
13924
13925 bool is_special_grp = true;
13926 bool is_debug_grp = true;
13927
13928 /* First scan to see if group contains any section other than debug
13929 and special section. */
13930 ssec = msec = elf_next_in_group (grp);
13931 do
13932 {
13933 if ((msec->flags & SEC_DEBUGGING) == 0)
13934 is_debug_grp = false;
13935
13936 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13937 is_special_grp = false;
13938
13939 msec = elf_next_in_group (msec);
13940 }
13941 while (msec != ssec);
13942
13943 /* If this is a pure debug section group or pure special section group,
13944 keep all sections in this group. */
13945 if (is_debug_grp || is_special_grp)
13946 {
13947 do
13948 {
13949 msec->gc_mark = 1;
13950 msec = elf_next_in_group (msec);
13951 }
13952 while (msec != ssec);
13953 }
13954 }
13955
13956 /* Keep debug and special sections. */
13957
13958 bool
13959 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13960 elf_gc_mark_hook_fn mark_hook)
13961 {
13962 bfd *ibfd;
13963
13964 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13965 {
13966 asection *isec;
13967 bool some_kept;
13968 bool debug_frag_seen;
13969 bool has_kept_debug_info;
13970
13971 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13972 continue;
13973 isec = ibfd->sections;
13974 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13975 continue;
13976
13977 /* Ensure all linker created sections are kept,
13978 see if any other section is already marked,
13979 and note if we have any fragmented debug sections. */
13980 debug_frag_seen = some_kept = has_kept_debug_info = false;
13981 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13982 {
13983 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13984 isec->gc_mark = 1;
13985 else if (isec->gc_mark
13986 && (isec->flags & SEC_ALLOC) != 0
13987 && elf_section_type (isec) != SHT_NOTE)
13988 some_kept = true;
13989 else
13990 {
13991 /* Since all sections, except for backend specific ones,
13992 have been garbage collected, call mark_hook on this
13993 section if any of its linked-to sections is marked. */
13994 asection *linked_to_sec;
13995 for (linked_to_sec = elf_linked_to_section (isec);
13996 linked_to_sec != NULL && !linked_to_sec->linker_mark;
13997 linked_to_sec = elf_linked_to_section (linked_to_sec))
13998 {
13999 if (linked_to_sec->gc_mark)
14000 {
14001 if (!_bfd_elf_gc_mark (info, isec, mark_hook))
14002 return false;
14003 break;
14004 }
14005 linked_to_sec->linker_mark = 1;
14006 }
14007 for (linked_to_sec = elf_linked_to_section (isec);
14008 linked_to_sec != NULL && linked_to_sec->linker_mark;
14009 linked_to_sec = elf_linked_to_section (linked_to_sec))
14010 linked_to_sec->linker_mark = 0;
14011 }
14012
14013 if (!debug_frag_seen
14014 && (isec->flags & SEC_DEBUGGING)
14015 && startswith (isec->name, ".debug_line."))
14016 debug_frag_seen = true;
14017 else if (strcmp (bfd_section_name (isec),
14018 "__patchable_function_entries") == 0
14019 && elf_linked_to_section (isec) == NULL)
14020 info->callbacks->einfo (_("%F%P: %pB(%pA): error: "
14021 "need linked-to section "
14022 "for --gc-sections\n"),
14023 isec->owner, isec);
14024 }
14025
14026 /* If no non-note alloc section in this file will be kept, then
14027 we can toss out the debug and special sections. */
14028 if (!some_kept)
14029 continue;
14030
14031 /* Keep debug and special sections like .comment when they are
14032 not part of a group. Also keep section groups that contain
14033 just debug sections or special sections. NB: Sections with
14034 linked-to section has been handled above. */
14035 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
14036 {
14037 if ((isec->flags & SEC_GROUP) != 0)
14038 _bfd_elf_gc_mark_debug_special_section_group (isec);
14039 else if (((isec->flags & SEC_DEBUGGING) != 0
14040 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
14041 && elf_next_in_group (isec) == NULL
14042 && elf_linked_to_section (isec) == NULL)
14043 isec->gc_mark = 1;
14044 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
14045 has_kept_debug_info = true;
14046 }
14047
14048 /* Look for CODE sections which are going to be discarded,
14049 and find and discard any fragmented debug sections which
14050 are associated with that code section. */
14051 if (debug_frag_seen)
14052 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
14053 if ((isec->flags & SEC_CODE) != 0
14054 && isec->gc_mark == 0)
14055 {
14056 unsigned int ilen;
14057 asection *dsec;
14058
14059 ilen = strlen (isec->name);
14060
14061 /* Association is determined by the name of the debug
14062 section containing the name of the code section as
14063 a suffix. For example .debug_line.text.foo is a
14064 debug section associated with .text.foo. */
14065 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
14066 {
14067 unsigned int dlen;
14068
14069 if (dsec->gc_mark == 0
14070 || (dsec->flags & SEC_DEBUGGING) == 0)
14071 continue;
14072
14073 dlen = strlen (dsec->name);
14074
14075 if (dlen > ilen
14076 && strncmp (dsec->name + (dlen - ilen),
14077 isec->name, ilen) == 0)
14078 dsec->gc_mark = 0;
14079 }
14080 }
14081
14082 /* Mark debug sections referenced by kept debug sections. */
14083 if (has_kept_debug_info)
14084 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
14085 if (isec->gc_mark
14086 && (isec->flags & SEC_DEBUGGING) != 0)
14087 if (!_bfd_elf_gc_mark (info, isec,
14088 elf_gc_mark_debug_section))
14089 return false;
14090 }
14091 return true;
14092 }
14093
14094 static bool
14095 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
14096 {
14097 bfd *sub;
14098 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14099
14100 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
14101 {
14102 asection *o;
14103
14104 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
14105 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
14106 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
14107 continue;
14108 o = sub->sections;
14109 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14110 continue;
14111
14112 for (o = sub->sections; o != NULL; o = o->next)
14113 {
14114 /* When any section in a section group is kept, we keep all
14115 sections in the section group. If the first member of
14116 the section group is excluded, we will also exclude the
14117 group section. */
14118 if (o->flags & SEC_GROUP)
14119 {
14120 asection *first = elf_next_in_group (o);
14121 o->gc_mark = first->gc_mark;
14122 }
14123
14124 if (o->gc_mark)
14125 continue;
14126
14127 /* Skip sweeping sections already excluded. */
14128 if (o->flags & SEC_EXCLUDE)
14129 continue;
14130
14131 /* Since this is early in the link process, it is simple
14132 to remove a section from the output. */
14133 o->flags |= SEC_EXCLUDE;
14134
14135 if (info->print_gc_sections && o->size != 0)
14136 /* xgettext:c-format */
14137 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
14138 o, sub);
14139 }
14140 }
14141
14142 return true;
14143 }
14144
14145 /* Propagate collected vtable information. This is called through
14146 elf_link_hash_traverse. */
14147
14148 static bool
14149 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
14150 {
14151 /* Those that are not vtables. */
14152 if (h->start_stop
14153 || h->u2.vtable == NULL
14154 || h->u2.vtable->parent == NULL)
14155 return true;
14156
14157 /* Those vtables that do not have parents, we cannot merge. */
14158 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
14159 return true;
14160
14161 /* If we've already been done, exit. */
14162 if (h->u2.vtable->used && h->u2.vtable->used[-1])
14163 return true;
14164
14165 /* Make sure the parent's table is up to date. */
14166 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
14167
14168 if (h->u2.vtable->used == NULL)
14169 {
14170 /* None of this table's entries were referenced. Re-use the
14171 parent's table. */
14172 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
14173 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
14174 }
14175 else
14176 {
14177 size_t n;
14178 bool *cu, *pu;
14179
14180 /* Or the parent's entries into ours. */
14181 cu = h->u2.vtable->used;
14182 cu[-1] = true;
14183 pu = h->u2.vtable->parent->u2.vtable->used;
14184 if (pu != NULL)
14185 {
14186 const struct elf_backend_data *bed;
14187 unsigned int log_file_align;
14188
14189 bed = get_elf_backend_data (h->root.u.def.section->owner);
14190 log_file_align = bed->s->log_file_align;
14191 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
14192 while (n--)
14193 {
14194 if (*pu)
14195 *cu = true;
14196 pu++;
14197 cu++;
14198 }
14199 }
14200 }
14201
14202 return true;
14203 }
14204
14205 struct link_info_ok
14206 {
14207 struct bfd_link_info *info;
14208 bool ok;
14209 };
14210
14211 static bool
14212 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h,
14213 void *ptr)
14214 {
14215 asection *sec;
14216 bfd_vma hstart, hend;
14217 Elf_Internal_Rela *relstart, *relend, *rel;
14218 const struct elf_backend_data *bed;
14219 unsigned int log_file_align;
14220 struct link_info_ok *info = (struct link_info_ok *) ptr;
14221
14222 /* Take care of both those symbols that do not describe vtables as
14223 well as those that are not loaded. */
14224 if (h->start_stop
14225 || h->u2.vtable == NULL
14226 || h->u2.vtable->parent == NULL)
14227 return true;
14228
14229 BFD_ASSERT (h->root.type == bfd_link_hash_defined
14230 || h->root.type == bfd_link_hash_defweak);
14231
14232 sec = h->root.u.def.section;
14233 hstart = h->root.u.def.value;
14234 hend = hstart + h->size;
14235
14236 relstart = _bfd_elf_link_info_read_relocs (sec->owner, info->info,
14237 sec, NULL, NULL, true);
14238 if (!relstart)
14239 return info->ok = false;
14240 bed = get_elf_backend_data (sec->owner);
14241 log_file_align = bed->s->log_file_align;
14242
14243 relend = relstart + sec->reloc_count;
14244
14245 for (rel = relstart; rel < relend; ++rel)
14246 if (rel->r_offset >= hstart && rel->r_offset < hend)
14247 {
14248 /* If the entry is in use, do nothing. */
14249 if (h->u2.vtable->used
14250 && (rel->r_offset - hstart) < h->u2.vtable->size)
14251 {
14252 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
14253 if (h->u2.vtable->used[entry])
14254 continue;
14255 }
14256 /* Otherwise, kill it. */
14257 rel->r_offset = rel->r_info = rel->r_addend = 0;
14258 }
14259
14260 return true;
14261 }
14262
14263 /* Mark sections containing dynamically referenced symbols. When
14264 building shared libraries, we must assume that any visible symbol is
14265 referenced. */
14266
14267 bool
14268 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
14269 {
14270 struct bfd_link_info *info = (struct bfd_link_info *) inf;
14271 struct bfd_elf_dynamic_list *d = info->dynamic_list;
14272
14273 if ((h->root.type == bfd_link_hash_defined
14274 || h->root.type == bfd_link_hash_defweak)
14275 && (!h->start_stop
14276 || h->root.ldscript_def
14277 || !info->start_stop_gc)
14278 && ((h->ref_dynamic && !h->forced_local)
14279 || ((h->def_regular || ELF_COMMON_DEF_P (h))
14280 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
14281 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
14282 && (!bfd_link_executable (info)
14283 || info->gc_keep_exported
14284 || info->export_dynamic
14285 || (h->dynamic
14286 && d != NULL
14287 && (*d->match) (&d->head, NULL, h->root.root.string)))
14288 && (h->versioned >= versioned
14289 || !bfd_hide_sym_by_version (info->version_info,
14290 h->root.root.string)))))
14291 h->root.u.def.section->flags |= SEC_KEEP;
14292
14293 return true;
14294 }
14295
14296 /* Keep all sections containing symbols undefined on the command-line,
14297 and the section containing the entry symbol. */
14298
14299 void
14300 _bfd_elf_gc_keep (struct bfd_link_info *info)
14301 {
14302 struct bfd_sym_chain *sym;
14303
14304 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
14305 {
14306 struct elf_link_hash_entry *h;
14307
14308 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
14309 false, false, false);
14310
14311 if (h != NULL
14312 && (h->root.type == bfd_link_hash_defined
14313 || h->root.type == bfd_link_hash_defweak)
14314 && !bfd_is_const_section (h->root.u.def.section))
14315 h->root.u.def.section->flags |= SEC_KEEP;
14316 }
14317 }
14318
14319 bool
14320 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
14321 struct bfd_link_info *info)
14322 {
14323 bfd *ibfd = info->input_bfds;
14324
14325 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
14326 {
14327 asection *sec;
14328 struct elf_reloc_cookie cookie;
14329
14330 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
14331 continue;
14332 sec = ibfd->sections;
14333 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14334 continue;
14335
14336 if (!init_reloc_cookie (&cookie, info, ibfd))
14337 return false;
14338
14339 for (sec = ibfd->sections; sec; sec = sec->next)
14340 {
14341 if (startswith (bfd_section_name (sec), ".eh_frame_entry")
14342 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
14343 {
14344 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
14345 fini_reloc_cookie_rels (&cookie, sec);
14346 }
14347 }
14348 }
14349 return true;
14350 }
14351
14352 /* Do mark and sweep of unused sections. */
14353
14354 bool
14355 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
14356 {
14357 bool ok = true;
14358 bfd *sub;
14359 elf_gc_mark_hook_fn gc_mark_hook;
14360 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14361 struct elf_link_hash_table *htab;
14362 struct link_info_ok info_ok;
14363
14364 if (!bed->can_gc_sections
14365 || !is_elf_hash_table (info->hash))
14366 {
14367 _bfd_error_handler(_("warning: gc-sections option ignored"));
14368 return true;
14369 }
14370
14371 bed->gc_keep (info);
14372 htab = elf_hash_table (info);
14373
14374 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
14375 at the .eh_frame section if we can mark the FDEs individually. */
14376 for (sub = info->input_bfds;
14377 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
14378 sub = sub->link.next)
14379 {
14380 asection *sec;
14381 struct elf_reloc_cookie cookie;
14382
14383 sec = sub->sections;
14384 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14385 continue;
14386 sec = bfd_get_section_by_name (sub, ".eh_frame");
14387 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
14388 {
14389 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
14390 if (elf_section_data (sec)->sec_info
14391 && (sec->flags & SEC_LINKER_CREATED) == 0)
14392 elf_eh_frame_section (sub) = sec;
14393 fini_reloc_cookie_for_section (&cookie, sec);
14394 sec = bfd_get_next_section_by_name (NULL, sec);
14395 }
14396 }
14397
14398 /* Apply transitive closure to the vtable entry usage info. */
14399 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
14400 if (!ok)
14401 return false;
14402
14403 /* Kill the vtable relocations that were not used. */
14404 info_ok.info = info;
14405 info_ok.ok = true;
14406 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &info_ok);
14407 if (!info_ok.ok)
14408 return false;
14409
14410 /* Mark dynamically referenced symbols. */
14411 if (htab->dynamic_sections_created || info->gc_keep_exported)
14412 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
14413
14414 /* Grovel through relocs to find out who stays ... */
14415 gc_mark_hook = bed->gc_mark_hook;
14416 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
14417 {
14418 asection *o;
14419
14420 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
14421 || elf_object_id (sub) != elf_hash_table_id (htab)
14422 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
14423 continue;
14424
14425 o = sub->sections;
14426 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14427 continue;
14428
14429 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
14430 Also treat note sections as a root, if the section is not part
14431 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
14432 well as FINI_ARRAY sections for ld -r. */
14433 for (o = sub->sections; o != NULL; o = o->next)
14434 if (!o->gc_mark
14435 && (o->flags & SEC_EXCLUDE) == 0
14436 && ((o->flags & SEC_KEEP) != 0
14437 || (bfd_link_relocatable (info)
14438 && ((elf_section_data (o)->this_hdr.sh_type
14439 == SHT_PREINIT_ARRAY)
14440 || (elf_section_data (o)->this_hdr.sh_type
14441 == SHT_INIT_ARRAY)
14442 || (elf_section_data (o)->this_hdr.sh_type
14443 == SHT_FINI_ARRAY)))
14444 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
14445 && elf_next_in_group (o) == NULL
14446 && elf_linked_to_section (o) == NULL)
14447 || ((elf_tdata (sub)->has_gnu_osabi & elf_gnu_osabi_retain)
14448 && (elf_section_flags (o) & SHF_GNU_RETAIN))))
14449 {
14450 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
14451 return false;
14452 }
14453 }
14454
14455 /* Allow the backend to mark additional target specific sections. */
14456 bed->gc_mark_extra_sections (info, gc_mark_hook);
14457
14458 /* ... and mark SEC_EXCLUDE for those that go. */
14459 return elf_gc_sweep (abfd, info);
14460 }
14461 \f
14462 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
14463
14464 bool
14465 bfd_elf_gc_record_vtinherit (bfd *abfd,
14466 asection *sec,
14467 struct elf_link_hash_entry *h,
14468 bfd_vma offset)
14469 {
14470 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
14471 struct elf_link_hash_entry **search, *child;
14472 size_t extsymcount;
14473 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14474
14475 /* The sh_info field of the symtab header tells us where the
14476 external symbols start. We don't care about the local symbols at
14477 this point. */
14478 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
14479 if (!elf_bad_symtab (abfd))
14480 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
14481
14482 sym_hashes = elf_sym_hashes (abfd);
14483 sym_hashes_end = PTR_ADD (sym_hashes, extsymcount);
14484
14485 /* Hunt down the child symbol, which is in this section at the same
14486 offset as the relocation. */
14487 for (search = sym_hashes; search != sym_hashes_end; ++search)
14488 {
14489 if ((child = *search) != NULL
14490 && (child->root.type == bfd_link_hash_defined
14491 || child->root.type == bfd_link_hash_defweak)
14492 && child->root.u.def.section == sec
14493 && child->root.u.def.value == offset)
14494 goto win;
14495 }
14496
14497 /* xgettext:c-format */
14498 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
14499 abfd, sec, (uint64_t) offset);
14500 bfd_set_error (bfd_error_invalid_operation);
14501 return false;
14502
14503 win:
14504 if (!child->u2.vtable)
14505 {
14506 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
14507 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
14508 if (!child->u2.vtable)
14509 return false;
14510 }
14511 if (!h)
14512 {
14513 /* This *should* only be the absolute section. It could potentially
14514 be that someone has defined a non-global vtable though, which
14515 would be bad. It isn't worth paging in the local symbols to be
14516 sure though; that case should simply be handled by the assembler. */
14517
14518 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
14519 }
14520 else
14521 child->u2.vtable->parent = h;
14522
14523 return true;
14524 }
14525
14526 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
14527
14528 bool
14529 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
14530 struct elf_link_hash_entry *h,
14531 bfd_vma addend)
14532 {
14533 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14534 unsigned int log_file_align = bed->s->log_file_align;
14535
14536 if (!h)
14537 {
14538 /* xgettext:c-format */
14539 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
14540 abfd, sec);
14541 bfd_set_error (bfd_error_bad_value);
14542 return false;
14543 }
14544
14545 if (!h->u2.vtable)
14546 {
14547 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
14548 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
14549 if (!h->u2.vtable)
14550 return false;
14551 }
14552
14553 if (addend >= h->u2.vtable->size)
14554 {
14555 size_t size, bytes, file_align;
14556 bool *ptr = h->u2.vtable->used;
14557
14558 /* While the symbol is undefined, we have to be prepared to handle
14559 a zero size. */
14560 file_align = 1 << log_file_align;
14561 if (h->root.type == bfd_link_hash_undefined)
14562 size = addend + file_align;
14563 else
14564 {
14565 size = h->size;
14566 if (addend >= size)
14567 {
14568 /* Oops! We've got a reference past the defined end of
14569 the table. This is probably a bug -- shall we warn? */
14570 size = addend + file_align;
14571 }
14572 }
14573 size = (size + file_align - 1) & -file_align;
14574
14575 /* Allocate one extra entry for use as a "done" flag for the
14576 consolidation pass. */
14577 bytes = ((size >> log_file_align) + 1) * sizeof (bool);
14578
14579 if (ptr)
14580 {
14581 ptr = (bool *) bfd_realloc (ptr - 1, bytes);
14582
14583 if (ptr != NULL)
14584 {
14585 size_t oldbytes;
14586
14587 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
14588 * sizeof (bool));
14589 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
14590 }
14591 }
14592 else
14593 ptr = (bool *) bfd_zmalloc (bytes);
14594
14595 if (ptr == NULL)
14596 return false;
14597
14598 /* And arrange for that done flag to be at index -1. */
14599 h->u2.vtable->used = ptr + 1;
14600 h->u2.vtable->size = size;
14601 }
14602
14603 h->u2.vtable->used[addend >> log_file_align] = true;
14604
14605 return true;
14606 }
14607
14608 /* Map an ELF section header flag to its corresponding string. */
14609 typedef struct
14610 {
14611 char *flag_name;
14612 flagword flag_value;
14613 } elf_flags_to_name_table;
14614
14615 static const elf_flags_to_name_table elf_flags_to_names [] =
14616 {
14617 { "SHF_WRITE", SHF_WRITE },
14618 { "SHF_ALLOC", SHF_ALLOC },
14619 { "SHF_EXECINSTR", SHF_EXECINSTR },
14620 { "SHF_MERGE", SHF_MERGE },
14621 { "SHF_STRINGS", SHF_STRINGS },
14622 { "SHF_INFO_LINK", SHF_INFO_LINK},
14623 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
14624 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
14625 { "SHF_GROUP", SHF_GROUP },
14626 { "SHF_TLS", SHF_TLS },
14627 { "SHF_MASKOS", SHF_MASKOS },
14628 { "SHF_EXCLUDE", SHF_EXCLUDE },
14629 };
14630
14631 /* Returns TRUE if the section is to be included, otherwise FALSE. */
14632 bool
14633 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
14634 struct flag_info *flaginfo,
14635 asection *section)
14636 {
14637 const bfd_vma sh_flags = elf_section_flags (section);
14638
14639 if (!flaginfo->flags_initialized)
14640 {
14641 bfd *obfd = info->output_bfd;
14642 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14643 struct flag_info_list *tf = flaginfo->flag_list;
14644 int with_hex = 0;
14645 int without_hex = 0;
14646
14647 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
14648 {
14649 unsigned i;
14650 flagword (*lookup) (char *);
14651
14652 lookup = bed->elf_backend_lookup_section_flags_hook;
14653 if (lookup != NULL)
14654 {
14655 flagword hexval = (*lookup) ((char *) tf->name);
14656
14657 if (hexval != 0)
14658 {
14659 if (tf->with == with_flags)
14660 with_hex |= hexval;
14661 else if (tf->with == without_flags)
14662 without_hex |= hexval;
14663 tf->valid = true;
14664 continue;
14665 }
14666 }
14667 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
14668 {
14669 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
14670 {
14671 if (tf->with == with_flags)
14672 with_hex |= elf_flags_to_names[i].flag_value;
14673 else if (tf->with == without_flags)
14674 without_hex |= elf_flags_to_names[i].flag_value;
14675 tf->valid = true;
14676 break;
14677 }
14678 }
14679 if (!tf->valid)
14680 {
14681 info->callbacks->einfo
14682 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
14683 return false;
14684 }
14685 }
14686 flaginfo->flags_initialized = true;
14687 flaginfo->only_with_flags |= with_hex;
14688 flaginfo->not_with_flags |= without_hex;
14689 }
14690
14691 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
14692 return false;
14693
14694 if ((flaginfo->not_with_flags & sh_flags) != 0)
14695 return false;
14696
14697 return true;
14698 }
14699
14700 struct alloc_got_off_arg {
14701 bfd_vma gotoff;
14702 struct bfd_link_info *info;
14703 };
14704
14705 /* We need a special top-level link routine to convert got reference counts
14706 to real got offsets. */
14707
14708 static bool
14709 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
14710 {
14711 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
14712 bfd *obfd = gofarg->info->output_bfd;
14713 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14714
14715 if (h->got.refcount > 0)
14716 {
14717 h->got.offset = gofarg->gotoff;
14718 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
14719 }
14720 else
14721 h->got.offset = (bfd_vma) -1;
14722
14723 return true;
14724 }
14725
14726 /* And an accompanying bit to work out final got entry offsets once
14727 we're done. Should be called from final_link. */
14728
14729 bool
14730 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
14731 struct bfd_link_info *info)
14732 {
14733 bfd *i;
14734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14735 bfd_vma gotoff;
14736 struct alloc_got_off_arg gofarg;
14737
14738 BFD_ASSERT (abfd == info->output_bfd);
14739
14740 if (! is_elf_hash_table (info->hash))
14741 return false;
14742
14743 /* The GOT offset is relative to the .got section, but the GOT header is
14744 put into the .got.plt section, if the backend uses it. */
14745 if (bed->want_got_plt)
14746 gotoff = 0;
14747 else
14748 gotoff = bed->got_header_size;
14749
14750 /* Do the local .got entries first. */
14751 for (i = info->input_bfds; i; i = i->link.next)
14752 {
14753 bfd_signed_vma *local_got;
14754 size_t j, locsymcount;
14755 Elf_Internal_Shdr *symtab_hdr;
14756
14757 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14758 continue;
14759
14760 local_got = elf_local_got_refcounts (i);
14761 if (!local_got)
14762 continue;
14763
14764 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14765 if (elf_bad_symtab (i))
14766 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14767 else
14768 locsymcount = symtab_hdr->sh_info;
14769
14770 for (j = 0; j < locsymcount; ++j)
14771 {
14772 if (local_got[j] > 0)
14773 {
14774 local_got[j] = gotoff;
14775 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14776 }
14777 else
14778 local_got[j] = (bfd_vma) -1;
14779 }
14780 }
14781
14782 /* Then the global .got entries. .plt refcounts are handled by
14783 adjust_dynamic_symbol */
14784 gofarg.gotoff = gotoff;
14785 gofarg.info = info;
14786 elf_link_hash_traverse (elf_hash_table (info),
14787 elf_gc_allocate_got_offsets,
14788 &gofarg);
14789 return true;
14790 }
14791
14792 /* Many folk need no more in the way of final link than this, once
14793 got entry reference counting is enabled. */
14794
14795 bool
14796 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14797 {
14798 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14799 return false;
14800
14801 /* Invoke the regular ELF backend linker to do all the work. */
14802 return bfd_elf_final_link (abfd, info);
14803 }
14804
14805 bool
14806 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14807 {
14808 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14809
14810 if (rcookie->bad_symtab)
14811 rcookie->rel = rcookie->rels;
14812
14813 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14814 {
14815 unsigned long r_symndx;
14816
14817 if (! rcookie->bad_symtab)
14818 if (rcookie->rel->r_offset > offset)
14819 return false;
14820 if (rcookie->rel->r_offset != offset)
14821 continue;
14822
14823 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14824 if (r_symndx == STN_UNDEF)
14825 return true;
14826
14827 if (r_symndx >= rcookie->locsymcount
14828 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14829 {
14830 struct elf_link_hash_entry *h;
14831
14832 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14833
14834 while (h->root.type == bfd_link_hash_indirect
14835 || h->root.type == bfd_link_hash_warning)
14836 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14837
14838 if ((h->root.type == bfd_link_hash_defined
14839 || h->root.type == bfd_link_hash_defweak)
14840 && (h->root.u.def.section->owner != rcookie->abfd
14841 || h->root.u.def.section->kept_section != NULL
14842 || discarded_section (h->root.u.def.section)))
14843 return true;
14844 }
14845 else
14846 {
14847 /* It's not a relocation against a global symbol,
14848 but it could be a relocation against a local
14849 symbol for a discarded section. */
14850 asection *isec;
14851 Elf_Internal_Sym *isym;
14852
14853 /* Need to: get the symbol; get the section. */
14854 isym = &rcookie->locsyms[r_symndx];
14855 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14856 if (isec != NULL
14857 && (isec->kept_section != NULL
14858 || discarded_section (isec)))
14859 return true;
14860 }
14861 return false;
14862 }
14863 return false;
14864 }
14865
14866 /* Discard unneeded references to discarded sections.
14867 Returns -1 on error, 1 if any section's size was changed, 0 if
14868 nothing changed. This function assumes that the relocations are in
14869 sorted order, which is true for all known assemblers. */
14870
14871 int
14872 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14873 {
14874 struct elf_reloc_cookie cookie;
14875 asection *o;
14876 bfd *abfd;
14877 int changed = 0;
14878
14879 if (info->traditional_format
14880 || !is_elf_hash_table (info->hash))
14881 return 0;
14882
14883 o = bfd_get_section_by_name (output_bfd, ".stab");
14884 if (o != NULL)
14885 {
14886 asection *i;
14887
14888 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14889 {
14890 if (i->size == 0
14891 || i->reloc_count == 0
14892 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14893 continue;
14894
14895 abfd = i->owner;
14896 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14897 continue;
14898
14899 if (!init_reloc_cookie_for_section (&cookie, info, i))
14900 return -1;
14901
14902 if (_bfd_discard_section_stabs (abfd, i,
14903 elf_section_data (i)->sec_info,
14904 bfd_elf_reloc_symbol_deleted_p,
14905 &cookie))
14906 changed = 1;
14907
14908 fini_reloc_cookie_for_section (&cookie, i);
14909 }
14910 }
14911
14912 o = NULL;
14913 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14914 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14915 if (o != NULL)
14916 {
14917 asection *i;
14918 int eh_changed = 0;
14919 unsigned int eh_alignment; /* Octets. */
14920
14921 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14922 {
14923 if (i->size == 0)
14924 continue;
14925
14926 abfd = i->owner;
14927 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14928 continue;
14929
14930 if (!init_reloc_cookie_for_section (&cookie, info, i))
14931 return -1;
14932
14933 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14934 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14935 bfd_elf_reloc_symbol_deleted_p,
14936 &cookie))
14937 {
14938 eh_changed = 1;
14939 if (i->size != i->rawsize)
14940 changed = 1;
14941 }
14942
14943 fini_reloc_cookie_for_section (&cookie, i);
14944 }
14945
14946 eh_alignment = ((1 << o->alignment_power)
14947 * bfd_octets_per_byte (output_bfd, o));
14948 /* Skip over zero terminator, and prevent empty sections from
14949 adding alignment padding at the end. */
14950 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14951 if (i->size == 0)
14952 i->flags |= SEC_EXCLUDE;
14953 else if (i->size > 4)
14954 break;
14955 /* The last non-empty eh_frame section doesn't need padding. */
14956 if (i != NULL)
14957 i = i->map_tail.s;
14958 /* Any prior sections must pad the last FDE out to the output
14959 section alignment. Otherwise we might have zero padding
14960 between sections, which would be seen as a terminator. */
14961 for (; i != NULL; i = i->map_tail.s)
14962 if (i->size == 4)
14963 /* All but the last zero terminator should have been removed. */
14964 BFD_FAIL ();
14965 else
14966 {
14967 bfd_size_type size
14968 = (i->size + eh_alignment - 1) & -eh_alignment;
14969 if (i->size != size)
14970 {
14971 i->size = size;
14972 changed = 1;
14973 eh_changed = 1;
14974 }
14975 }
14976 if (eh_changed)
14977 elf_link_hash_traverse (elf_hash_table (info),
14978 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14979 }
14980
14981 o = bfd_get_section_by_name (output_bfd, ".sframe");
14982 if (o != NULL)
14983 {
14984 asection *i;
14985
14986 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14987 {
14988 if (i->size == 0)
14989 continue;
14990
14991 abfd = i->owner;
14992 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14993 continue;
14994
14995 if (!init_reloc_cookie_for_section (&cookie, info, i))
14996 return -1;
14997
14998 if (_bfd_elf_parse_sframe (abfd, info, i, &cookie))
14999 {
15000 if (_bfd_elf_discard_section_sframe (i,
15001 bfd_elf_reloc_symbol_deleted_p,
15002 &cookie))
15003 {
15004 if (i->size != i->rawsize)
15005 changed = 1;
15006 }
15007 }
15008 fini_reloc_cookie_for_section (&cookie, i);
15009 }
15010 /* Update the reference to the output .sframe section. Used to
15011 determine later if PT_GNU_SFRAME segment is to be generated. */
15012 if (!_bfd_elf_set_section_sframe (output_bfd, info))
15013 return -1;
15014 }
15015
15016 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
15017 {
15018 const struct elf_backend_data *bed;
15019 asection *s;
15020
15021 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
15022 continue;
15023 s = abfd->sections;
15024 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
15025 continue;
15026
15027 bed = get_elf_backend_data (abfd);
15028
15029 if (bed->elf_backend_discard_info != NULL)
15030 {
15031 if (!init_reloc_cookie (&cookie, info, abfd))
15032 return -1;
15033
15034 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
15035 changed = 1;
15036
15037 fini_reloc_cookie (&cookie, abfd);
15038 }
15039 }
15040
15041 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
15042 _bfd_elf_end_eh_frame_parsing (info);
15043
15044 if (info->eh_frame_hdr_type
15045 && !bfd_link_relocatable (info)
15046 && _bfd_elf_discard_section_eh_frame_hdr (info))
15047 changed = 1;
15048
15049 return changed;
15050 }
15051
15052 bool
15053 _bfd_elf_section_already_linked (bfd *abfd,
15054 asection *sec,
15055 struct bfd_link_info *info)
15056 {
15057 flagword flags;
15058 const char *name, *key;
15059 struct bfd_section_already_linked *l;
15060 struct bfd_section_already_linked_hash_entry *already_linked_list;
15061
15062 if (sec->output_section == bfd_abs_section_ptr)
15063 return false;
15064
15065 flags = sec->flags;
15066
15067 /* Return if it isn't a linkonce section. A comdat group section
15068 also has SEC_LINK_ONCE set. */
15069 if ((flags & SEC_LINK_ONCE) == 0)
15070 return false;
15071
15072 /* Don't put group member sections on our list of already linked
15073 sections. They are handled as a group via their group section. */
15074 if (elf_sec_group (sec) != NULL)
15075 return false;
15076
15077 /* For a SHT_GROUP section, use the group signature as the key. */
15078 name = sec->name;
15079 if ((flags & SEC_GROUP) != 0
15080 && elf_next_in_group (sec) != NULL
15081 && elf_group_name (elf_next_in_group (sec)) != NULL)
15082 key = elf_group_name (elf_next_in_group (sec));
15083 else
15084 {
15085 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
15086 if (startswith (name, ".gnu.linkonce.")
15087 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
15088 key++;
15089 else
15090 /* Must be a user linkonce section that doesn't follow gcc's
15091 naming convention. In this case we won't be matching
15092 single member groups. */
15093 key = name;
15094 }
15095
15096 already_linked_list = bfd_section_already_linked_table_lookup (key);
15097
15098 for (l = already_linked_list->entry; l != NULL; l = l->next)
15099 {
15100 /* We may have 2 different types of sections on the list: group
15101 sections with a signature of <key> (<key> is some string),
15102 and linkonce sections named .gnu.linkonce.<type>.<key>.
15103 Match like sections. LTO plugin sections are an exception.
15104 They are always named .gnu.linkonce.t.<key> and match either
15105 type of section. */
15106 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
15107 && ((flags & SEC_GROUP) != 0
15108 || strcmp (name, l->sec->name) == 0))
15109 || (l->sec->owner->flags & BFD_PLUGIN) != 0
15110 || (sec->owner->flags & BFD_PLUGIN) != 0)
15111 {
15112 /* The section has already been linked. See if we should
15113 issue a warning. */
15114 if (!_bfd_handle_already_linked (sec, l, info))
15115 return false;
15116
15117 if (flags & SEC_GROUP)
15118 {
15119 asection *first = elf_next_in_group (sec);
15120 asection *s = first;
15121
15122 while (s != NULL)
15123 {
15124 s->output_section = bfd_abs_section_ptr;
15125 /* Record which group discards it. */
15126 s->kept_section = l->sec;
15127 s = elf_next_in_group (s);
15128 /* These lists are circular. */
15129 if (s == first)
15130 break;
15131 }
15132 }
15133
15134 return true;
15135 }
15136 }
15137
15138 /* A single member comdat group section may be discarded by a
15139 linkonce section and vice versa. */
15140 if ((flags & SEC_GROUP) != 0)
15141 {
15142 asection *first = elf_next_in_group (sec);
15143
15144 if (first != NULL && elf_next_in_group (first) == first)
15145 /* Check this single member group against linkonce sections. */
15146 for (l = already_linked_list->entry; l != NULL; l = l->next)
15147 if ((l->sec->flags & SEC_GROUP) == 0
15148 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
15149 {
15150 first->output_section = bfd_abs_section_ptr;
15151 first->kept_section = l->sec;
15152 sec->output_section = bfd_abs_section_ptr;
15153 break;
15154 }
15155 }
15156 else
15157 /* Check this linkonce section against single member groups. */
15158 for (l = already_linked_list->entry; l != NULL; l = l->next)
15159 if (l->sec->flags & SEC_GROUP)
15160 {
15161 asection *first = elf_next_in_group (l->sec);
15162
15163 if (first != NULL
15164 && elf_next_in_group (first) == first
15165 && bfd_elf_match_symbols_in_sections (first, sec, info))
15166 {
15167 sec->output_section = bfd_abs_section_ptr;
15168 sec->kept_section = first;
15169 break;
15170 }
15171 }
15172
15173 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
15174 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
15175 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
15176 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
15177 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
15178 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
15179 `.gnu.linkonce.t.F' section from a different bfd not requiring any
15180 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
15181 The reverse order cannot happen as there is never a bfd with only the
15182 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
15183 matter as here were are looking only for cross-bfd sections. */
15184
15185 if ((flags & SEC_GROUP) == 0 && startswith (name, ".gnu.linkonce.r."))
15186 for (l = already_linked_list->entry; l != NULL; l = l->next)
15187 if ((l->sec->flags & SEC_GROUP) == 0
15188 && startswith (l->sec->name, ".gnu.linkonce.t."))
15189 {
15190 if (abfd != l->sec->owner)
15191 sec->output_section = bfd_abs_section_ptr;
15192 break;
15193 }
15194
15195 /* This is the first section with this name. Record it. */
15196 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
15197 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
15198 return sec->output_section == bfd_abs_section_ptr;
15199 }
15200
15201 bool
15202 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
15203 {
15204 return sym->st_shndx == SHN_COMMON;
15205 }
15206
15207 unsigned int
15208 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
15209 {
15210 return SHN_COMMON;
15211 }
15212
15213 asection *
15214 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
15215 {
15216 return bfd_com_section_ptr;
15217 }
15218
15219 bfd_vma
15220 _bfd_elf_default_got_elt_size (bfd *abfd,
15221 struct bfd_link_info *info ATTRIBUTE_UNUSED,
15222 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
15223 bfd *ibfd ATTRIBUTE_UNUSED,
15224 unsigned long symndx ATTRIBUTE_UNUSED)
15225 {
15226 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15227 return bed->s->arch_size / 8;
15228 }
15229
15230 /* Routines to support the creation of dynamic relocs. */
15231
15232 /* Returns the name of the dynamic reloc section associated with SEC. */
15233
15234 static const char *
15235 get_dynamic_reloc_section_name (bfd * abfd,
15236 asection * sec,
15237 bool is_rela)
15238 {
15239 char *name;
15240 const char *old_name = bfd_section_name (sec);
15241 const char *prefix = is_rela ? ".rela" : ".rel";
15242
15243 if (old_name == NULL)
15244 return NULL;
15245
15246 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
15247 sprintf (name, "%s%s", prefix, old_name);
15248
15249 return name;
15250 }
15251
15252 /* Returns the dynamic reloc section associated with SEC.
15253 If necessary compute the name of the dynamic reloc section based
15254 on SEC's name (looked up in ABFD's string table) and the setting
15255 of IS_RELA. */
15256
15257 asection *
15258 _bfd_elf_get_dynamic_reloc_section (bfd *abfd,
15259 asection *sec,
15260 bool is_rela)
15261 {
15262 asection *reloc_sec = elf_section_data (sec)->sreloc;
15263
15264 if (reloc_sec == NULL)
15265 {
15266 const char *name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
15267
15268 if (name != NULL)
15269 {
15270 reloc_sec = bfd_get_linker_section (abfd, name);
15271
15272 if (reloc_sec != NULL)
15273 elf_section_data (sec)->sreloc = reloc_sec;
15274 }
15275 }
15276
15277 return reloc_sec;
15278 }
15279
15280 /* Returns the dynamic reloc section associated with SEC. If the
15281 section does not exist it is created and attached to the DYNOBJ
15282 bfd and stored in the SRELOC field of SEC's elf_section_data
15283 structure.
15284
15285 ALIGNMENT is the alignment for the newly created section and
15286 IS_RELA defines whether the name should be .rela.<SEC's name>
15287 or .rel.<SEC's name>. The section name is looked up in the
15288 string table associated with ABFD. */
15289
15290 asection *
15291 _bfd_elf_make_dynamic_reloc_section (asection *sec,
15292 bfd *dynobj,
15293 unsigned int alignment,
15294 bfd *abfd,
15295 bool is_rela)
15296 {
15297 asection * reloc_sec = elf_section_data (sec)->sreloc;
15298
15299 if (reloc_sec == NULL)
15300 {
15301 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
15302
15303 if (name == NULL)
15304 return NULL;
15305
15306 reloc_sec = bfd_get_linker_section (dynobj, name);
15307
15308 if (reloc_sec == NULL)
15309 {
15310 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
15311 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
15312 if ((sec->flags & SEC_ALLOC) != 0)
15313 flags |= SEC_ALLOC | SEC_LOAD;
15314
15315 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
15316 if (reloc_sec != NULL)
15317 {
15318 /* _bfd_elf_get_sec_type_attr chooses a section type by
15319 name. Override as it may be wrong, eg. for a user
15320 section named "auto" we'll get ".relauto" which is
15321 seen to be a .rela section. */
15322 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
15323 if (!bfd_set_section_alignment (reloc_sec, alignment))
15324 reloc_sec = NULL;
15325 }
15326 }
15327
15328 elf_section_data (sec)->sreloc = reloc_sec;
15329 }
15330
15331 return reloc_sec;
15332 }
15333
15334 /* Copy the ELF symbol type and other attributes for a linker script
15335 assignment from HSRC to HDEST. Generally this should be treated as
15336 if we found a strong non-dynamic definition for HDEST (except that
15337 ld ignores multiple definition errors). */
15338 void
15339 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
15340 struct bfd_link_hash_entry *hdest,
15341 struct bfd_link_hash_entry *hsrc)
15342 {
15343 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
15344 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
15345 Elf_Internal_Sym isym;
15346
15347 ehdest->type = ehsrc->type;
15348 ehdest->target_internal = ehsrc->target_internal;
15349
15350 isym.st_other = ehsrc->other;
15351 elf_merge_st_other (abfd, ehdest, isym.st_other, NULL, true, false);
15352 }
15353
15354 /* Append a RELA relocation REL to section S in BFD. */
15355
15356 void
15357 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
15358 {
15359 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15360 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
15361 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
15362 bed->s->swap_reloca_out (abfd, rel, loc);
15363 }
15364
15365 /* Append a REL relocation REL to section S in BFD. */
15366
15367 void
15368 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
15369 {
15370 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15371 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
15372 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
15373 bed->s->swap_reloc_out (abfd, rel, loc);
15374 }
15375
15376 /* Define __start, __stop, .startof. or .sizeof. symbol. */
15377
15378 struct bfd_link_hash_entry *
15379 bfd_elf_define_start_stop (struct bfd_link_info *info,
15380 const char *symbol, asection *sec)
15381 {
15382 struct elf_link_hash_entry *h;
15383
15384 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
15385 false, false, true);
15386 /* NB: Common symbols will be turned into definition later. */
15387 if (h != NULL
15388 && !h->root.ldscript_def
15389 && (h->root.type == bfd_link_hash_undefined
15390 || h->root.type == bfd_link_hash_undefweak
15391 || ((h->ref_regular || h->def_dynamic)
15392 && !h->def_regular
15393 && h->root.type != bfd_link_hash_common)))
15394 {
15395 bool was_dynamic = h->ref_dynamic || h->def_dynamic;
15396 h->verinfo.verdef = NULL;
15397 h->root.type = bfd_link_hash_defined;
15398 h->root.u.def.section = sec;
15399 h->root.u.def.value = 0;
15400 h->def_regular = 1;
15401 h->def_dynamic = 0;
15402 h->start_stop = 1;
15403 h->u2.start_stop_section = sec;
15404 if (symbol[0] == '.')
15405 {
15406 /* .startof. and .sizeof. symbols are local. */
15407 const struct elf_backend_data *bed;
15408 bed = get_elf_backend_data (info->output_bfd);
15409 (*bed->elf_backend_hide_symbol) (info, h, true);
15410 }
15411 else
15412 {
15413 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
15414 h->other = ((h->other & ~ELF_ST_VISIBILITY (-1))
15415 | info->start_stop_visibility);
15416 if (was_dynamic)
15417 bfd_elf_link_record_dynamic_symbol (info, h);
15418 }
15419 return &h->root;
15420 }
15421 return NULL;
15422 }
15423
15424 /* Find dynamic relocs for H that apply to read-only sections. */
15425
15426 asection *
15427 _bfd_elf_readonly_dynrelocs (struct elf_link_hash_entry *h)
15428 {
15429 struct elf_dyn_relocs *p;
15430
15431 for (p = h->dyn_relocs; p != NULL; p = p->next)
15432 {
15433 asection *s = p->sec->output_section;
15434
15435 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15436 return p->sec;
15437 }
15438 return NULL;
15439 }
15440
15441 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
15442 read-only sections. */
15443
15444 bool
15445 _bfd_elf_maybe_set_textrel (struct elf_link_hash_entry *h, void *inf)
15446 {
15447 asection *sec;
15448
15449 if (h->root.type == bfd_link_hash_indirect)
15450 return true;
15451
15452 sec = _bfd_elf_readonly_dynrelocs (h);
15453 if (sec != NULL)
15454 {
15455 struct bfd_link_info *info = (struct bfd_link_info *) inf;
15456
15457 info->flags |= DF_TEXTREL;
15458 /* xgettext:c-format */
15459 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' "
15460 "in read-only section `%pA'\n"),
15461 sec->owner, h->root.root.string, sec);
15462
15463 if (bfd_link_textrel_check (info))
15464 /* xgettext:c-format */
15465 info->callbacks->einfo (_("%P: %pB: warning: relocation against `%s' "
15466 "in read-only section `%pA'\n"),
15467 sec->owner, h->root.root.string, sec);
15468
15469 /* Not an error, just cut short the traversal. */
15470 return false;
15471 }
15472 return true;
15473 }
15474
15475 /* Add dynamic tags. */
15476
15477 bool
15478 _bfd_elf_add_dynamic_tags (bfd *output_bfd, struct bfd_link_info *info,
15479 bool need_dynamic_reloc)
15480 {
15481 struct elf_link_hash_table *htab = elf_hash_table (info);
15482
15483 if (htab->dynamic_sections_created)
15484 {
15485 /* Add some entries to the .dynamic section. We fill in the
15486 values later, in finish_dynamic_sections, but we must add
15487 the entries now so that we get the correct size for the
15488 .dynamic section. The DT_DEBUG entry is filled in by the
15489 dynamic linker and used by the debugger. */
15490 #define add_dynamic_entry(TAG, VAL) \
15491 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
15492
15493 const struct elf_backend_data *bed
15494 = get_elf_backend_data (output_bfd);
15495
15496 if (bfd_link_executable (info))
15497 {
15498 if (!add_dynamic_entry (DT_DEBUG, 0))
15499 return false;
15500 }
15501
15502 if (htab->dt_pltgot_required || htab->splt->size != 0)
15503 {
15504 /* DT_PLTGOT is used by prelink even if there is no PLT
15505 relocation. */
15506 if (!add_dynamic_entry (DT_PLTGOT, 0))
15507 return false;
15508 }
15509
15510 if (htab->dt_jmprel_required || htab->srelplt->size != 0)
15511 {
15512 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
15513 || !add_dynamic_entry (DT_PLTREL,
15514 (bed->rela_plts_and_copies_p
15515 ? DT_RELA : DT_REL))
15516 || !add_dynamic_entry (DT_JMPREL, 0))
15517 return false;
15518 }
15519
15520 if (htab->tlsdesc_plt
15521 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
15522 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
15523 return false;
15524
15525 if (need_dynamic_reloc)
15526 {
15527 if (bed->rela_plts_and_copies_p)
15528 {
15529 if (!add_dynamic_entry (DT_RELA, 0)
15530 || !add_dynamic_entry (DT_RELASZ, 0)
15531 || !add_dynamic_entry (DT_RELAENT,
15532 bed->s->sizeof_rela))
15533 return false;
15534 }
15535 else
15536 {
15537 if (!add_dynamic_entry (DT_REL, 0)
15538 || !add_dynamic_entry (DT_RELSZ, 0)
15539 || !add_dynamic_entry (DT_RELENT,
15540 bed->s->sizeof_rel))
15541 return false;
15542 }
15543
15544 /* If any dynamic relocs apply to a read-only section,
15545 then we need a DT_TEXTREL entry. */
15546 if ((info->flags & DF_TEXTREL) == 0)
15547 elf_link_hash_traverse (htab, _bfd_elf_maybe_set_textrel,
15548 info);
15549
15550 if ((info->flags & DF_TEXTREL) != 0)
15551 {
15552 if (htab->ifunc_resolvers)
15553 info->callbacks->einfo
15554 (_("%P: warning: GNU indirect functions with DT_TEXTREL "
15555 "may result in a segfault at runtime; recompile with %s\n"),
15556 bfd_link_dll (info) ? "-fPIC" : "-fPIE");
15557
15558 if (!add_dynamic_entry (DT_TEXTREL, 0))
15559 return false;
15560 }
15561 }
15562 }
15563 #undef add_dynamic_entry
15564
15565 return true;
15566 }