PR ld/12549
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* Mark if a symbol has a definition in a dynamic object or is
899 weak in all dynamic objects. */
900
901 static void
902 _bfd_elf_mark_dynamic_def_weak (struct elf_link_hash_entry *h,
903 asection *sec, int bind)
904 {
905 if (!h->dynamic_def)
906 {
907 if (!bfd_is_und_section (sec))
908 h->dynamic_def = 1;
909 else
910 {
911 /* Check if this symbol is weak in all dynamic objects. If it
912 is the first time we see it in a dynamic object, we mark
913 if it is weak. Otherwise, we clear it. */
914 if (!h->ref_dynamic)
915 {
916 if (bind == STB_WEAK)
917 h->dynamic_weak = 1;
918 }
919 else if (bind != STB_WEAK)
920 h->dynamic_weak = 0;
921 }
922 }
923 }
924
925 /* This function is called when we want to define a new symbol. It
926 handles the various cases which arise when we find a definition in
927 a dynamic object, or when there is already a definition in a
928 dynamic object. The new symbol is described by NAME, SYM, PSEC,
929 and PVALUE. We set SYM_HASH to the hash table entry. We set
930 OVERRIDE if the old symbol is overriding a new definition. We set
931 TYPE_CHANGE_OK if it is OK for the type to change. We set
932 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
933 change, we mean that we shouldn't warn if the type or size does
934 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
935 object is overridden by a regular object. */
936
937 bfd_boolean
938 _bfd_elf_merge_symbol (bfd *abfd,
939 struct bfd_link_info *info,
940 const char *name,
941 Elf_Internal_Sym *sym,
942 asection **psec,
943 bfd_vma *pvalue,
944 bfd_boolean *pold_weak,
945 unsigned int *pold_alignment,
946 struct elf_link_hash_entry **sym_hash,
947 bfd_boolean *skip,
948 bfd_boolean *override,
949 bfd_boolean *type_change_ok,
950 bfd_boolean *size_change_ok)
951 {
952 asection *sec, *oldsec;
953 struct elf_link_hash_entry *h;
954 struct elf_link_hash_entry *hi;
955 struct elf_link_hash_entry *flip;
956 int bind;
957 bfd *oldbfd;
958 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
959 bfd_boolean newweak, oldweak, newfunc, oldfunc;
960 const struct elf_backend_data *bed;
961
962 *skip = FALSE;
963 *override = FALSE;
964
965 sec = *psec;
966 bind = ELF_ST_BIND (sym->st_info);
967
968 /* Silently discard TLS symbols from --just-syms. There's no way to
969 combine a static TLS block with a new TLS block for this executable. */
970 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
971 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
972 {
973 *skip = TRUE;
974 return TRUE;
975 }
976
977 if (! bfd_is_und_section (sec))
978 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
979 else
980 h = ((struct elf_link_hash_entry *)
981 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
982 if (h == NULL)
983 return FALSE;
984 *sym_hash = h;
985
986 bed = get_elf_backend_data (abfd);
987
988 /* This code is for coping with dynamic objects, and is only useful
989 if we are doing an ELF link. */
990 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
991 return TRUE;
992
993 /* For merging, we only care about real symbols. But we need to make
994 sure that indirect symbol dynamic flags are updated. */
995 hi = h;
996 while (h->root.type == bfd_link_hash_indirect
997 || h->root.type == bfd_link_hash_warning)
998 h = (struct elf_link_hash_entry *) h->root.u.i.link;
999
1000 /* We have to check it for every instance since the first few may be
1001 refereences and not all compilers emit symbol type for undefined
1002 symbols. */
1003 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1004
1005 /* If we just created the symbol, mark it as being an ELF symbol.
1006 Other than that, there is nothing to do--there is no merge issue
1007 with a newly defined symbol--so we just return. */
1008
1009 if (h->root.type == bfd_link_hash_new)
1010 {
1011 h->non_elf = 0;
1012 return TRUE;
1013 }
1014
1015 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1016 existing symbol. */
1017
1018 switch (h->root.type)
1019 {
1020 default:
1021 oldbfd = NULL;
1022 oldsec = NULL;
1023 break;
1024
1025 case bfd_link_hash_undefined:
1026 case bfd_link_hash_undefweak:
1027 oldbfd = h->root.u.undef.abfd;
1028 oldsec = NULL;
1029 break;
1030
1031 case bfd_link_hash_defined:
1032 case bfd_link_hash_defweak:
1033 oldbfd = h->root.u.def.section->owner;
1034 oldsec = h->root.u.def.section;
1035 break;
1036
1037 case bfd_link_hash_common:
1038 oldbfd = h->root.u.c.p->section->owner;
1039 oldsec = h->root.u.c.p->section;
1040 break;
1041 }
1042
1043 /* Differentiate strong and weak symbols. */
1044 newweak = bind == STB_WEAK;
1045 oldweak = (h->root.type == bfd_link_hash_defweak
1046 || h->root.type == bfd_link_hash_undefweak);
1047 if (pold_weak)
1048 *pold_weak = oldweak;
1049
1050 /* In cases involving weak versioned symbols, we may wind up trying
1051 to merge a symbol with itself. Catch that here, to avoid the
1052 confusion that results if we try to override a symbol with
1053 itself. The additional tests catch cases like
1054 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1055 dynamic object, which we do want to handle here. */
1056 if (abfd == oldbfd
1057 && (newweak || oldweak)
1058 && ((abfd->flags & DYNAMIC) == 0
1059 || !h->def_regular))
1060 return TRUE;
1061
1062 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1063 respectively, is from a dynamic object. */
1064
1065 newdyn = (abfd->flags & DYNAMIC) != 0;
1066
1067 olddyn = FALSE;
1068 if (oldbfd != NULL)
1069 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1070 else if (oldsec != NULL)
1071 {
1072 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1073 indices used by MIPS ELF. */
1074 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1075 }
1076
1077 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1078 respectively, appear to be a definition rather than reference. */
1079
1080 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1081
1082 olddef = (h->root.type != bfd_link_hash_undefined
1083 && h->root.type != bfd_link_hash_undefweak
1084 && h->root.type != bfd_link_hash_common);
1085
1086 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1087 respectively, appear to be a function. */
1088
1089 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1090 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1091
1092 oldfunc = (h->type != STT_NOTYPE
1093 && bed->is_function_type (h->type));
1094
1095 /* When we try to create a default indirect symbol from the dynamic
1096 definition with the default version, we skip it if its type and
1097 the type of existing regular definition mismatch. We only do it
1098 if the existing regular definition won't be dynamic. */
1099 if (pold_alignment == NULL
1100 && !info->shared
1101 && !info->export_dynamic
1102 && !h->ref_dynamic
1103 && newdyn
1104 && newdef
1105 && !olddyn
1106 && (olddef || h->root.type == bfd_link_hash_common)
1107 && ELF_ST_TYPE (sym->st_info) != h->type
1108 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1109 && h->type != STT_NOTYPE
1110 && !(newfunc && oldfunc))
1111 {
1112 *skip = TRUE;
1113 return TRUE;
1114 }
1115
1116 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1117 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1118 *type_change_ok = TRUE;
1119
1120 /* Check TLS symbol. We don't check undefined symbol introduced by
1121 "ld -u". */
1122 else if (oldbfd != NULL
1123 && ELF_ST_TYPE (sym->st_info) != h->type
1124 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1125 {
1126 bfd *ntbfd, *tbfd;
1127 bfd_boolean ntdef, tdef;
1128 asection *ntsec, *tsec;
1129
1130 if (h->type == STT_TLS)
1131 {
1132 ntbfd = abfd;
1133 ntsec = sec;
1134 ntdef = newdef;
1135 tbfd = oldbfd;
1136 tsec = oldsec;
1137 tdef = olddef;
1138 }
1139 else
1140 {
1141 ntbfd = oldbfd;
1142 ntsec = oldsec;
1143 ntdef = olddef;
1144 tbfd = abfd;
1145 tsec = sec;
1146 tdef = newdef;
1147 }
1148
1149 if (tdef && ntdef)
1150 (*_bfd_error_handler)
1151 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1152 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1153 else if (!tdef && !ntdef)
1154 (*_bfd_error_handler)
1155 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1156 tbfd, ntbfd, h->root.root.string);
1157 else if (tdef)
1158 (*_bfd_error_handler)
1159 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1160 tbfd, tsec, ntbfd, h->root.root.string);
1161 else
1162 (*_bfd_error_handler)
1163 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1164 tbfd, ntbfd, ntsec, h->root.root.string);
1165
1166 bfd_set_error (bfd_error_bad_value);
1167 return FALSE;
1168 }
1169
1170 /* We need to remember if a symbol has a definition in a dynamic
1171 object or is weak in all dynamic objects. Internal and hidden
1172 visibility will make it unavailable to dynamic objects. */
1173 if (newdyn)
1174 {
1175 _bfd_elf_mark_dynamic_def_weak (h, sec, bind);
1176 if (h != hi)
1177 _bfd_elf_mark_dynamic_def_weak (hi, sec, bind);
1178 }
1179
1180 /* If the old symbol has non-default visibility, we ignore the new
1181 definition from a dynamic object. */
1182 if (newdyn
1183 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1184 && !bfd_is_und_section (sec))
1185 {
1186 *skip = TRUE;
1187 /* Make sure this symbol is dynamic. */
1188 h->ref_dynamic = 1;
1189 hi->ref_dynamic = 1;
1190 /* A protected symbol has external availability. Make sure it is
1191 recorded as dynamic.
1192
1193 FIXME: Should we check type and size for protected symbol? */
1194 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1195 return bfd_elf_link_record_dynamic_symbol (info, h);
1196 else
1197 return TRUE;
1198 }
1199 else if (!newdyn
1200 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1201 && h->def_dynamic)
1202 {
1203 /* If the new symbol with non-default visibility comes from a
1204 relocatable file and the old definition comes from a dynamic
1205 object, we remove the old definition. */
1206 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1207 {
1208 /* Handle the case where the old dynamic definition is
1209 default versioned. We need to copy the symbol info from
1210 the symbol with default version to the normal one if it
1211 was referenced before. */
1212 if (h->ref_regular)
1213 {
1214 struct elf_link_hash_entry *vh = *sym_hash;
1215
1216 vh->root.type = h->root.type;
1217 h->root.type = bfd_link_hash_indirect;
1218 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1219
1220 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1221 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1222 {
1223 /* If the new symbol is hidden or internal, completely undo
1224 any dynamic link state. */
1225 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1226 h->forced_local = 0;
1227 h->ref_dynamic = 0;
1228 }
1229 else
1230 h->ref_dynamic = 1;
1231
1232 h->def_dynamic = 0;
1233 h->dynamic_def = 0;
1234 /* FIXME: Should we check type and size for protected symbol? */
1235 h->size = 0;
1236 h->type = 0;
1237
1238 h = vh;
1239 }
1240 else
1241 h = *sym_hash;
1242 }
1243
1244 /* If the old symbol was undefined before, then it will still be
1245 on the undefs list. If the new symbol is undefined or
1246 common, we can't make it bfd_link_hash_new here, because new
1247 undefined or common symbols will be added to the undefs list
1248 by _bfd_generic_link_add_one_symbol. Symbols may not be
1249 added twice to the undefs list. Also, if the new symbol is
1250 undefweak then we don't want to lose the strong undef. */
1251 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1252 {
1253 h->root.type = bfd_link_hash_undefined;
1254 h->root.u.undef.abfd = abfd;
1255 }
1256 else
1257 {
1258 h->root.type = bfd_link_hash_new;
1259 h->root.u.undef.abfd = NULL;
1260 }
1261
1262 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1263 {
1264 /* If the new symbol is hidden or internal, completely undo
1265 any dynamic link state. */
1266 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1267 h->forced_local = 0;
1268 h->ref_dynamic = 0;
1269 }
1270 else
1271 h->ref_dynamic = 1;
1272 h->def_dynamic = 0;
1273 h->dynamic_def = 0;
1274 /* FIXME: Should we check type and size for protected symbol? */
1275 h->size = 0;
1276 h->type = 0;
1277 return TRUE;
1278 }
1279
1280 if (bind == STB_GNU_UNIQUE)
1281 h->unique_global = 1;
1282
1283 /* If a new weak symbol definition comes from a regular file and the
1284 old symbol comes from a dynamic library, we treat the new one as
1285 strong. Similarly, an old weak symbol definition from a regular
1286 file is treated as strong when the new symbol comes from a dynamic
1287 library. Further, an old weak symbol from a dynamic library is
1288 treated as strong if the new symbol is from a dynamic library.
1289 This reflects the way glibc's ld.so works.
1290
1291 Do this before setting *type_change_ok or *size_change_ok so that
1292 we warn properly when dynamic library symbols are overridden. */
1293
1294 if (newdef && !newdyn && olddyn)
1295 newweak = FALSE;
1296 if (olddef && newdyn)
1297 oldweak = FALSE;
1298
1299 /* Allow changes between different types of function symbol. */
1300 if (newfunc && oldfunc)
1301 *type_change_ok = TRUE;
1302
1303 /* It's OK to change the type if either the existing symbol or the
1304 new symbol is weak. A type change is also OK if the old symbol
1305 is undefined and the new symbol is defined. */
1306
1307 if (oldweak
1308 || newweak
1309 || (newdef
1310 && h->root.type == bfd_link_hash_undefined))
1311 *type_change_ok = TRUE;
1312
1313 /* It's OK to change the size if either the existing symbol or the
1314 new symbol is weak, or if the old symbol is undefined. */
1315
1316 if (*type_change_ok
1317 || h->root.type == bfd_link_hash_undefined)
1318 *size_change_ok = TRUE;
1319
1320 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1321 symbol, respectively, appears to be a common symbol in a dynamic
1322 object. If a symbol appears in an uninitialized section, and is
1323 not weak, and is not a function, then it may be a common symbol
1324 which was resolved when the dynamic object was created. We want
1325 to treat such symbols specially, because they raise special
1326 considerations when setting the symbol size: if the symbol
1327 appears as a common symbol in a regular object, and the size in
1328 the regular object is larger, we must make sure that we use the
1329 larger size. This problematic case can always be avoided in C,
1330 but it must be handled correctly when using Fortran shared
1331 libraries.
1332
1333 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1334 likewise for OLDDYNCOMMON and OLDDEF.
1335
1336 Note that this test is just a heuristic, and that it is quite
1337 possible to have an uninitialized symbol in a shared object which
1338 is really a definition, rather than a common symbol. This could
1339 lead to some minor confusion when the symbol really is a common
1340 symbol in some regular object. However, I think it will be
1341 harmless. */
1342
1343 if (newdyn
1344 && newdef
1345 && !newweak
1346 && (sec->flags & SEC_ALLOC) != 0
1347 && (sec->flags & SEC_LOAD) == 0
1348 && sym->st_size > 0
1349 && !newfunc)
1350 newdyncommon = TRUE;
1351 else
1352 newdyncommon = FALSE;
1353
1354 if (olddyn
1355 && olddef
1356 && h->root.type == bfd_link_hash_defined
1357 && h->def_dynamic
1358 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1359 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1360 && h->size > 0
1361 && !oldfunc)
1362 olddyncommon = TRUE;
1363 else
1364 olddyncommon = FALSE;
1365
1366 /* We now know everything about the old and new symbols. We ask the
1367 backend to check if we can merge them. */
1368 if (bed->merge_symbol
1369 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1370 pold_alignment, skip, override,
1371 type_change_ok, size_change_ok,
1372 &newdyn, &newdef, &newdyncommon, &newweak,
1373 abfd, &sec,
1374 &olddyn, &olddef, &olddyncommon, &oldweak,
1375 oldbfd, &oldsec))
1376 return FALSE;
1377
1378 /* If both the old and the new symbols look like common symbols in a
1379 dynamic object, set the size of the symbol to the larger of the
1380 two. */
1381
1382 if (olddyncommon
1383 && newdyncommon
1384 && sym->st_size != h->size)
1385 {
1386 /* Since we think we have two common symbols, issue a multiple
1387 common warning if desired. Note that we only warn if the
1388 size is different. If the size is the same, we simply let
1389 the old symbol override the new one as normally happens with
1390 symbols defined in dynamic objects. */
1391
1392 if (! ((*info->callbacks->multiple_common)
1393 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1394 return FALSE;
1395
1396 if (sym->st_size > h->size)
1397 h->size = sym->st_size;
1398
1399 *size_change_ok = TRUE;
1400 }
1401
1402 /* If we are looking at a dynamic object, and we have found a
1403 definition, we need to see if the symbol was already defined by
1404 some other object. If so, we want to use the existing
1405 definition, and we do not want to report a multiple symbol
1406 definition error; we do this by clobbering *PSEC to be
1407 bfd_und_section_ptr.
1408
1409 We treat a common symbol as a definition if the symbol in the
1410 shared library is a function, since common symbols always
1411 represent variables; this can cause confusion in principle, but
1412 any such confusion would seem to indicate an erroneous program or
1413 shared library. We also permit a common symbol in a regular
1414 object to override a weak symbol in a shared object. */
1415
1416 if (newdyn
1417 && newdef
1418 && (olddef
1419 || (h->root.type == bfd_link_hash_common
1420 && (newweak || newfunc))))
1421 {
1422 *override = TRUE;
1423 newdef = FALSE;
1424 newdyncommon = FALSE;
1425
1426 *psec = sec = bfd_und_section_ptr;
1427 *size_change_ok = TRUE;
1428
1429 /* If we get here when the old symbol is a common symbol, then
1430 we are explicitly letting it override a weak symbol or
1431 function in a dynamic object, and we don't want to warn about
1432 a type change. If the old symbol is a defined symbol, a type
1433 change warning may still be appropriate. */
1434
1435 if (h->root.type == bfd_link_hash_common)
1436 *type_change_ok = TRUE;
1437 }
1438
1439 /* Handle the special case of an old common symbol merging with a
1440 new symbol which looks like a common symbol in a shared object.
1441 We change *PSEC and *PVALUE to make the new symbol look like a
1442 common symbol, and let _bfd_generic_link_add_one_symbol do the
1443 right thing. */
1444
1445 if (newdyncommon
1446 && h->root.type == bfd_link_hash_common)
1447 {
1448 *override = TRUE;
1449 newdef = FALSE;
1450 newdyncommon = FALSE;
1451 *pvalue = sym->st_size;
1452 *psec = sec = bed->common_section (oldsec);
1453 *size_change_ok = TRUE;
1454 }
1455
1456 /* Skip weak definitions of symbols that are already defined. */
1457 if (newdef && olddef && newweak)
1458 {
1459 /* Don't skip new non-IR weak syms. */
1460 if (!(oldbfd != NULL
1461 && (oldbfd->flags & BFD_PLUGIN) != 0
1462 && (abfd->flags & BFD_PLUGIN) == 0))
1463 *skip = TRUE;
1464
1465 /* Merge st_other. If the symbol already has a dynamic index,
1466 but visibility says it should not be visible, turn it into a
1467 local symbol. */
1468 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1469 if (h->dynindx != -1)
1470 switch (ELF_ST_VISIBILITY (h->other))
1471 {
1472 case STV_INTERNAL:
1473 case STV_HIDDEN:
1474 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1475 break;
1476 }
1477 }
1478
1479 /* If the old symbol is from a dynamic object, and the new symbol is
1480 a definition which is not from a dynamic object, then the new
1481 symbol overrides the old symbol. Symbols from regular files
1482 always take precedence over symbols from dynamic objects, even if
1483 they are defined after the dynamic object in the link.
1484
1485 As above, we again permit a common symbol in a regular object to
1486 override a definition in a shared object if the shared object
1487 symbol is a function or is weak. */
1488
1489 flip = NULL;
1490 if (!newdyn
1491 && (newdef
1492 || (bfd_is_com_section (sec)
1493 && (oldweak || oldfunc)))
1494 && olddyn
1495 && olddef
1496 && h->def_dynamic)
1497 {
1498 /* Change the hash table entry to undefined, and let
1499 _bfd_generic_link_add_one_symbol do the right thing with the
1500 new definition. */
1501
1502 h->root.type = bfd_link_hash_undefined;
1503 h->root.u.undef.abfd = h->root.u.def.section->owner;
1504 *size_change_ok = TRUE;
1505
1506 olddef = FALSE;
1507 olddyncommon = FALSE;
1508
1509 /* We again permit a type change when a common symbol may be
1510 overriding a function. */
1511
1512 if (bfd_is_com_section (sec))
1513 {
1514 if (oldfunc)
1515 {
1516 /* If a common symbol overrides a function, make sure
1517 that it isn't defined dynamically nor has type
1518 function. */
1519 h->def_dynamic = 0;
1520 h->type = STT_NOTYPE;
1521 }
1522 *type_change_ok = TRUE;
1523 }
1524
1525 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1526 flip = *sym_hash;
1527 else
1528 /* This union may have been set to be non-NULL when this symbol
1529 was seen in a dynamic object. We must force the union to be
1530 NULL, so that it is correct for a regular symbol. */
1531 h->verinfo.vertree = NULL;
1532 }
1533
1534 /* Handle the special case of a new common symbol merging with an
1535 old symbol that looks like it might be a common symbol defined in
1536 a shared object. Note that we have already handled the case in
1537 which a new common symbol should simply override the definition
1538 in the shared library. */
1539
1540 if (! newdyn
1541 && bfd_is_com_section (sec)
1542 && olddyncommon)
1543 {
1544 /* It would be best if we could set the hash table entry to a
1545 common symbol, but we don't know what to use for the section
1546 or the alignment. */
1547 if (! ((*info->callbacks->multiple_common)
1548 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1549 return FALSE;
1550
1551 /* If the presumed common symbol in the dynamic object is
1552 larger, pretend that the new symbol has its size. */
1553
1554 if (h->size > *pvalue)
1555 *pvalue = h->size;
1556
1557 /* We need to remember the alignment required by the symbol
1558 in the dynamic object. */
1559 BFD_ASSERT (pold_alignment);
1560 *pold_alignment = h->root.u.def.section->alignment_power;
1561
1562 olddef = FALSE;
1563 olddyncommon = FALSE;
1564
1565 h->root.type = bfd_link_hash_undefined;
1566 h->root.u.undef.abfd = h->root.u.def.section->owner;
1567
1568 *size_change_ok = TRUE;
1569 *type_change_ok = TRUE;
1570
1571 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1572 flip = *sym_hash;
1573 else
1574 h->verinfo.vertree = NULL;
1575 }
1576
1577 if (flip != NULL)
1578 {
1579 /* Handle the case where we had a versioned symbol in a dynamic
1580 library and now find a definition in a normal object. In this
1581 case, we make the versioned symbol point to the normal one. */
1582 flip->root.type = h->root.type;
1583 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1584 h->root.type = bfd_link_hash_indirect;
1585 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1586 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1587 if (h->def_dynamic)
1588 {
1589 h->def_dynamic = 0;
1590 flip->ref_dynamic = 1;
1591 }
1592 }
1593
1594 return TRUE;
1595 }
1596
1597 /* This function is called to create an indirect symbol from the
1598 default for the symbol with the default version if needed. The
1599 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1600 set DYNSYM if the new indirect symbol is dynamic. */
1601
1602 static bfd_boolean
1603 _bfd_elf_add_default_symbol (bfd *abfd,
1604 struct bfd_link_info *info,
1605 struct elf_link_hash_entry *h,
1606 const char *name,
1607 Elf_Internal_Sym *sym,
1608 asection **psec,
1609 bfd_vma *value,
1610 bfd_boolean *dynsym,
1611 bfd_boolean override)
1612 {
1613 bfd_boolean type_change_ok;
1614 bfd_boolean size_change_ok;
1615 bfd_boolean skip;
1616 char *shortname;
1617 struct elf_link_hash_entry *hi;
1618 struct bfd_link_hash_entry *bh;
1619 const struct elf_backend_data *bed;
1620 bfd_boolean collect;
1621 bfd_boolean dynamic;
1622 char *p;
1623 size_t len, shortlen;
1624 asection *sec;
1625
1626 /* If this symbol has a version, and it is the default version, we
1627 create an indirect symbol from the default name to the fully
1628 decorated name. This will cause external references which do not
1629 specify a version to be bound to this version of the symbol. */
1630 p = strchr (name, ELF_VER_CHR);
1631 if (p == NULL || p[1] != ELF_VER_CHR)
1632 return TRUE;
1633
1634 if (override)
1635 {
1636 /* We are overridden by an old definition. We need to check if we
1637 need to create the indirect symbol from the default name. */
1638 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1639 FALSE, FALSE);
1640 BFD_ASSERT (hi != NULL);
1641 if (hi == h)
1642 return TRUE;
1643 while (hi->root.type == bfd_link_hash_indirect
1644 || hi->root.type == bfd_link_hash_warning)
1645 {
1646 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1647 if (hi == h)
1648 return TRUE;
1649 }
1650 }
1651
1652 bed = get_elf_backend_data (abfd);
1653 collect = bed->collect;
1654 dynamic = (abfd->flags & DYNAMIC) != 0;
1655
1656 shortlen = p - name;
1657 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1658 if (shortname == NULL)
1659 return FALSE;
1660 memcpy (shortname, name, shortlen);
1661 shortname[shortlen] = '\0';
1662
1663 /* We are going to create a new symbol. Merge it with any existing
1664 symbol with this name. For the purposes of the merge, act as
1665 though we were defining the symbol we just defined, although we
1666 actually going to define an indirect symbol. */
1667 type_change_ok = FALSE;
1668 size_change_ok = FALSE;
1669 sec = *psec;
1670 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1671 NULL, NULL, &hi, &skip, &override,
1672 &type_change_ok, &size_change_ok))
1673 return FALSE;
1674
1675 if (skip)
1676 goto nondefault;
1677
1678 if (! override)
1679 {
1680 bh = &hi->root;
1681 if (! (_bfd_generic_link_add_one_symbol
1682 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1683 0, name, FALSE, collect, &bh)))
1684 return FALSE;
1685 hi = (struct elf_link_hash_entry *) bh;
1686 }
1687 else
1688 {
1689 /* In this case the symbol named SHORTNAME is overriding the
1690 indirect symbol we want to add. We were planning on making
1691 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1692 is the name without a version. NAME is the fully versioned
1693 name, and it is the default version.
1694
1695 Overriding means that we already saw a definition for the
1696 symbol SHORTNAME in a regular object, and it is overriding
1697 the symbol defined in the dynamic object.
1698
1699 When this happens, we actually want to change NAME, the
1700 symbol we just added, to refer to SHORTNAME. This will cause
1701 references to NAME in the shared object to become references
1702 to SHORTNAME in the regular object. This is what we expect
1703 when we override a function in a shared object: that the
1704 references in the shared object will be mapped to the
1705 definition in the regular object. */
1706
1707 while (hi->root.type == bfd_link_hash_indirect
1708 || hi->root.type == bfd_link_hash_warning)
1709 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1710
1711 h->root.type = bfd_link_hash_indirect;
1712 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1713 if (h->def_dynamic)
1714 {
1715 h->def_dynamic = 0;
1716 hi->ref_dynamic = 1;
1717 if (hi->ref_regular
1718 || hi->def_regular)
1719 {
1720 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1721 return FALSE;
1722 }
1723 }
1724
1725 /* Now set HI to H, so that the following code will set the
1726 other fields correctly. */
1727 hi = h;
1728 }
1729
1730 /* Check if HI is a warning symbol. */
1731 if (hi->root.type == bfd_link_hash_warning)
1732 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1733
1734 /* If there is a duplicate definition somewhere, then HI may not
1735 point to an indirect symbol. We will have reported an error to
1736 the user in that case. */
1737
1738 if (hi->root.type == bfd_link_hash_indirect)
1739 {
1740 struct elf_link_hash_entry *ht;
1741
1742 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1743 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1744
1745 /* See if the new flags lead us to realize that the symbol must
1746 be dynamic. */
1747 if (! *dynsym)
1748 {
1749 if (! dynamic)
1750 {
1751 if (! info->executable
1752 || hi->def_dynamic
1753 || hi->ref_dynamic)
1754 *dynsym = TRUE;
1755 }
1756 else
1757 {
1758 if (hi->ref_regular)
1759 *dynsym = TRUE;
1760 }
1761 }
1762 }
1763
1764 /* We also need to define an indirection from the nondefault version
1765 of the symbol. */
1766
1767 nondefault:
1768 len = strlen (name);
1769 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1770 if (shortname == NULL)
1771 return FALSE;
1772 memcpy (shortname, name, shortlen);
1773 memcpy (shortname + shortlen, p + 1, len - shortlen);
1774
1775 /* Once again, merge with any existing symbol. */
1776 type_change_ok = FALSE;
1777 size_change_ok = FALSE;
1778 sec = *psec;
1779 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1780 NULL, NULL, &hi, &skip, &override,
1781 &type_change_ok, &size_change_ok))
1782 return FALSE;
1783
1784 if (skip)
1785 return TRUE;
1786
1787 if (override)
1788 {
1789 /* Here SHORTNAME is a versioned name, so we don't expect to see
1790 the type of override we do in the case above unless it is
1791 overridden by a versioned definition. */
1792 if (hi->root.type != bfd_link_hash_defined
1793 && hi->root.type != bfd_link_hash_defweak)
1794 (*_bfd_error_handler)
1795 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1796 abfd, shortname);
1797 }
1798 else
1799 {
1800 bh = &hi->root;
1801 if (! (_bfd_generic_link_add_one_symbol
1802 (info, abfd, shortname, BSF_INDIRECT,
1803 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1804 return FALSE;
1805 hi = (struct elf_link_hash_entry *) bh;
1806
1807 /* If there is a duplicate definition somewhere, then HI may not
1808 point to an indirect symbol. We will have reported an error
1809 to the user in that case. */
1810
1811 if (hi->root.type == bfd_link_hash_indirect)
1812 {
1813 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1814
1815 /* See if the new flags lead us to realize that the symbol
1816 must be dynamic. */
1817 if (! *dynsym)
1818 {
1819 if (! dynamic)
1820 {
1821 if (! info->executable
1822 || hi->ref_dynamic)
1823 *dynsym = TRUE;
1824 }
1825 else
1826 {
1827 if (hi->ref_regular)
1828 *dynsym = TRUE;
1829 }
1830 }
1831 }
1832 }
1833
1834 return TRUE;
1835 }
1836 \f
1837 /* This routine is used to export all defined symbols into the dynamic
1838 symbol table. It is called via elf_link_hash_traverse. */
1839
1840 static bfd_boolean
1841 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1842 {
1843 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1844
1845 /* Ignore indirect symbols. These are added by the versioning code. */
1846 if (h->root.type == bfd_link_hash_indirect)
1847 return TRUE;
1848
1849 /* Ignore this if we won't export it. */
1850 if (!eif->info->export_dynamic && !h->dynamic)
1851 return TRUE;
1852
1853 if (h->dynindx == -1
1854 && (h->def_regular || h->ref_regular)
1855 && ! bfd_hide_sym_by_version (eif->info->version_info,
1856 h->root.root.string))
1857 {
1858 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1859 {
1860 eif->failed = TRUE;
1861 return FALSE;
1862 }
1863 }
1864
1865 return TRUE;
1866 }
1867 \f
1868 /* Look through the symbols which are defined in other shared
1869 libraries and referenced here. Update the list of version
1870 dependencies. This will be put into the .gnu.version_r section.
1871 This function is called via elf_link_hash_traverse. */
1872
1873 static bfd_boolean
1874 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1875 void *data)
1876 {
1877 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1878 Elf_Internal_Verneed *t;
1879 Elf_Internal_Vernaux *a;
1880 bfd_size_type amt;
1881
1882 /* We only care about symbols defined in shared objects with version
1883 information. */
1884 if (!h->def_dynamic
1885 || h->def_regular
1886 || h->dynindx == -1
1887 || h->verinfo.verdef == NULL)
1888 return TRUE;
1889
1890 /* See if we already know about this version. */
1891 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1892 t != NULL;
1893 t = t->vn_nextref)
1894 {
1895 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1896 continue;
1897
1898 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1899 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1900 return TRUE;
1901
1902 break;
1903 }
1904
1905 /* This is a new version. Add it to tree we are building. */
1906
1907 if (t == NULL)
1908 {
1909 amt = sizeof *t;
1910 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1911 if (t == NULL)
1912 {
1913 rinfo->failed = TRUE;
1914 return FALSE;
1915 }
1916
1917 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1918 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1919 elf_tdata (rinfo->info->output_bfd)->verref = t;
1920 }
1921
1922 amt = sizeof *a;
1923 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1924 if (a == NULL)
1925 {
1926 rinfo->failed = TRUE;
1927 return FALSE;
1928 }
1929
1930 /* Note that we are copying a string pointer here, and testing it
1931 above. If bfd_elf_string_from_elf_section is ever changed to
1932 discard the string data when low in memory, this will have to be
1933 fixed. */
1934 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1935
1936 a->vna_flags = h->verinfo.verdef->vd_flags;
1937 a->vna_nextptr = t->vn_auxptr;
1938
1939 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1940 ++rinfo->vers;
1941
1942 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1943
1944 t->vn_auxptr = a;
1945
1946 return TRUE;
1947 }
1948
1949 /* Figure out appropriate versions for all the symbols. We may not
1950 have the version number script until we have read all of the input
1951 files, so until that point we don't know which symbols should be
1952 local. This function is called via elf_link_hash_traverse. */
1953
1954 static bfd_boolean
1955 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1956 {
1957 struct elf_info_failed *sinfo;
1958 struct bfd_link_info *info;
1959 const struct elf_backend_data *bed;
1960 struct elf_info_failed eif;
1961 char *p;
1962 bfd_size_type amt;
1963
1964 sinfo = (struct elf_info_failed *) data;
1965 info = sinfo->info;
1966
1967 /* Fix the symbol flags. */
1968 eif.failed = FALSE;
1969 eif.info = info;
1970 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1971 {
1972 if (eif.failed)
1973 sinfo->failed = TRUE;
1974 return FALSE;
1975 }
1976
1977 /* We only need version numbers for symbols defined in regular
1978 objects. */
1979 if (!h->def_regular)
1980 return TRUE;
1981
1982 bed = get_elf_backend_data (info->output_bfd);
1983 p = strchr (h->root.root.string, ELF_VER_CHR);
1984 if (p != NULL && h->verinfo.vertree == NULL)
1985 {
1986 struct bfd_elf_version_tree *t;
1987 bfd_boolean hidden;
1988
1989 hidden = TRUE;
1990
1991 /* There are two consecutive ELF_VER_CHR characters if this is
1992 not a hidden symbol. */
1993 ++p;
1994 if (*p == ELF_VER_CHR)
1995 {
1996 hidden = FALSE;
1997 ++p;
1998 }
1999
2000 /* If there is no version string, we can just return out. */
2001 if (*p == '\0')
2002 {
2003 if (hidden)
2004 h->hidden = 1;
2005 return TRUE;
2006 }
2007
2008 /* Look for the version. If we find it, it is no longer weak. */
2009 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2010 {
2011 if (strcmp (t->name, p) == 0)
2012 {
2013 size_t len;
2014 char *alc;
2015 struct bfd_elf_version_expr *d;
2016
2017 len = p - h->root.root.string;
2018 alc = (char *) bfd_malloc (len);
2019 if (alc == NULL)
2020 {
2021 sinfo->failed = TRUE;
2022 return FALSE;
2023 }
2024 memcpy (alc, h->root.root.string, len - 1);
2025 alc[len - 1] = '\0';
2026 if (alc[len - 2] == ELF_VER_CHR)
2027 alc[len - 2] = '\0';
2028
2029 h->verinfo.vertree = t;
2030 t->used = TRUE;
2031 d = NULL;
2032
2033 if (t->globals.list != NULL)
2034 d = (*t->match) (&t->globals, NULL, alc);
2035
2036 /* See if there is anything to force this symbol to
2037 local scope. */
2038 if (d == NULL && t->locals.list != NULL)
2039 {
2040 d = (*t->match) (&t->locals, NULL, alc);
2041 if (d != NULL
2042 && h->dynindx != -1
2043 && ! info->export_dynamic)
2044 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2045 }
2046
2047 free (alc);
2048 break;
2049 }
2050 }
2051
2052 /* If we are building an application, we need to create a
2053 version node for this version. */
2054 if (t == NULL && info->executable)
2055 {
2056 struct bfd_elf_version_tree **pp;
2057 int version_index;
2058
2059 /* If we aren't going to export this symbol, we don't need
2060 to worry about it. */
2061 if (h->dynindx == -1)
2062 return TRUE;
2063
2064 amt = sizeof *t;
2065 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2066 if (t == NULL)
2067 {
2068 sinfo->failed = TRUE;
2069 return FALSE;
2070 }
2071
2072 t->name = p;
2073 t->name_indx = (unsigned int) -1;
2074 t->used = TRUE;
2075
2076 version_index = 1;
2077 /* Don't count anonymous version tag. */
2078 if (sinfo->info->version_info != NULL
2079 && sinfo->info->version_info->vernum == 0)
2080 version_index = 0;
2081 for (pp = &sinfo->info->version_info;
2082 *pp != NULL;
2083 pp = &(*pp)->next)
2084 ++version_index;
2085 t->vernum = version_index;
2086
2087 *pp = t;
2088
2089 h->verinfo.vertree = t;
2090 }
2091 else if (t == NULL)
2092 {
2093 /* We could not find the version for a symbol when
2094 generating a shared archive. Return an error. */
2095 (*_bfd_error_handler)
2096 (_("%B: version node not found for symbol %s"),
2097 info->output_bfd, h->root.root.string);
2098 bfd_set_error (bfd_error_bad_value);
2099 sinfo->failed = TRUE;
2100 return FALSE;
2101 }
2102
2103 if (hidden)
2104 h->hidden = 1;
2105 }
2106
2107 /* If we don't have a version for this symbol, see if we can find
2108 something. */
2109 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2110 {
2111 bfd_boolean hide;
2112
2113 h->verinfo.vertree
2114 = bfd_find_version_for_sym (sinfo->info->version_info,
2115 h->root.root.string, &hide);
2116 if (h->verinfo.vertree != NULL && hide)
2117 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2118 }
2119
2120 return TRUE;
2121 }
2122 \f
2123 /* Read and swap the relocs from the section indicated by SHDR. This
2124 may be either a REL or a RELA section. The relocations are
2125 translated into RELA relocations and stored in INTERNAL_RELOCS,
2126 which should have already been allocated to contain enough space.
2127 The EXTERNAL_RELOCS are a buffer where the external form of the
2128 relocations should be stored.
2129
2130 Returns FALSE if something goes wrong. */
2131
2132 static bfd_boolean
2133 elf_link_read_relocs_from_section (bfd *abfd,
2134 asection *sec,
2135 Elf_Internal_Shdr *shdr,
2136 void *external_relocs,
2137 Elf_Internal_Rela *internal_relocs)
2138 {
2139 const struct elf_backend_data *bed;
2140 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2141 const bfd_byte *erela;
2142 const bfd_byte *erelaend;
2143 Elf_Internal_Rela *irela;
2144 Elf_Internal_Shdr *symtab_hdr;
2145 size_t nsyms;
2146
2147 /* Position ourselves at the start of the section. */
2148 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2149 return FALSE;
2150
2151 /* Read the relocations. */
2152 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2153 return FALSE;
2154
2155 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2156 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2157
2158 bed = get_elf_backend_data (abfd);
2159
2160 /* Convert the external relocations to the internal format. */
2161 if (shdr->sh_entsize == bed->s->sizeof_rel)
2162 swap_in = bed->s->swap_reloc_in;
2163 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2164 swap_in = bed->s->swap_reloca_in;
2165 else
2166 {
2167 bfd_set_error (bfd_error_wrong_format);
2168 return FALSE;
2169 }
2170
2171 erela = (const bfd_byte *) external_relocs;
2172 erelaend = erela + shdr->sh_size;
2173 irela = internal_relocs;
2174 while (erela < erelaend)
2175 {
2176 bfd_vma r_symndx;
2177
2178 (*swap_in) (abfd, erela, irela);
2179 r_symndx = ELF32_R_SYM (irela->r_info);
2180 if (bed->s->arch_size == 64)
2181 r_symndx >>= 24;
2182 if (nsyms > 0)
2183 {
2184 if ((size_t) r_symndx >= nsyms)
2185 {
2186 (*_bfd_error_handler)
2187 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2188 " for offset 0x%lx in section `%A'"),
2189 abfd, sec,
2190 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2191 bfd_set_error (bfd_error_bad_value);
2192 return FALSE;
2193 }
2194 }
2195 else if (r_symndx != STN_UNDEF)
2196 {
2197 (*_bfd_error_handler)
2198 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2199 " when the object file has no symbol table"),
2200 abfd, sec,
2201 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2202 bfd_set_error (bfd_error_bad_value);
2203 return FALSE;
2204 }
2205 irela += bed->s->int_rels_per_ext_rel;
2206 erela += shdr->sh_entsize;
2207 }
2208
2209 return TRUE;
2210 }
2211
2212 /* Read and swap the relocs for a section O. They may have been
2213 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2214 not NULL, they are used as buffers to read into. They are known to
2215 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2216 the return value is allocated using either malloc or bfd_alloc,
2217 according to the KEEP_MEMORY argument. If O has two relocation
2218 sections (both REL and RELA relocations), then the REL_HDR
2219 relocations will appear first in INTERNAL_RELOCS, followed by the
2220 RELA_HDR relocations. */
2221
2222 Elf_Internal_Rela *
2223 _bfd_elf_link_read_relocs (bfd *abfd,
2224 asection *o,
2225 void *external_relocs,
2226 Elf_Internal_Rela *internal_relocs,
2227 bfd_boolean keep_memory)
2228 {
2229 void *alloc1 = NULL;
2230 Elf_Internal_Rela *alloc2 = NULL;
2231 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2232 struct bfd_elf_section_data *esdo = elf_section_data (o);
2233 Elf_Internal_Rela *internal_rela_relocs;
2234
2235 if (esdo->relocs != NULL)
2236 return esdo->relocs;
2237
2238 if (o->reloc_count == 0)
2239 return NULL;
2240
2241 if (internal_relocs == NULL)
2242 {
2243 bfd_size_type size;
2244
2245 size = o->reloc_count;
2246 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2247 if (keep_memory)
2248 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2249 else
2250 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2251 if (internal_relocs == NULL)
2252 goto error_return;
2253 }
2254
2255 if (external_relocs == NULL)
2256 {
2257 bfd_size_type size = 0;
2258
2259 if (esdo->rel.hdr)
2260 size += esdo->rel.hdr->sh_size;
2261 if (esdo->rela.hdr)
2262 size += esdo->rela.hdr->sh_size;
2263
2264 alloc1 = bfd_malloc (size);
2265 if (alloc1 == NULL)
2266 goto error_return;
2267 external_relocs = alloc1;
2268 }
2269
2270 internal_rela_relocs = internal_relocs;
2271 if (esdo->rel.hdr)
2272 {
2273 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2274 external_relocs,
2275 internal_relocs))
2276 goto error_return;
2277 external_relocs = (((bfd_byte *) external_relocs)
2278 + esdo->rel.hdr->sh_size);
2279 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2280 * bed->s->int_rels_per_ext_rel);
2281 }
2282
2283 if (esdo->rela.hdr
2284 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2285 external_relocs,
2286 internal_rela_relocs)))
2287 goto error_return;
2288
2289 /* Cache the results for next time, if we can. */
2290 if (keep_memory)
2291 esdo->relocs = internal_relocs;
2292
2293 if (alloc1 != NULL)
2294 free (alloc1);
2295
2296 /* Don't free alloc2, since if it was allocated we are passing it
2297 back (under the name of internal_relocs). */
2298
2299 return internal_relocs;
2300
2301 error_return:
2302 if (alloc1 != NULL)
2303 free (alloc1);
2304 if (alloc2 != NULL)
2305 {
2306 if (keep_memory)
2307 bfd_release (abfd, alloc2);
2308 else
2309 free (alloc2);
2310 }
2311 return NULL;
2312 }
2313
2314 /* Compute the size of, and allocate space for, REL_HDR which is the
2315 section header for a section containing relocations for O. */
2316
2317 static bfd_boolean
2318 _bfd_elf_link_size_reloc_section (bfd *abfd,
2319 struct bfd_elf_section_reloc_data *reldata)
2320 {
2321 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2322
2323 /* That allows us to calculate the size of the section. */
2324 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2325
2326 /* The contents field must last into write_object_contents, so we
2327 allocate it with bfd_alloc rather than malloc. Also since we
2328 cannot be sure that the contents will actually be filled in,
2329 we zero the allocated space. */
2330 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2331 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2332 return FALSE;
2333
2334 if (reldata->hashes == NULL && reldata->count)
2335 {
2336 struct elf_link_hash_entry **p;
2337
2338 p = (struct elf_link_hash_entry **)
2339 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2340 if (p == NULL)
2341 return FALSE;
2342
2343 reldata->hashes = p;
2344 }
2345
2346 return TRUE;
2347 }
2348
2349 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2350 originated from the section given by INPUT_REL_HDR) to the
2351 OUTPUT_BFD. */
2352
2353 bfd_boolean
2354 _bfd_elf_link_output_relocs (bfd *output_bfd,
2355 asection *input_section,
2356 Elf_Internal_Shdr *input_rel_hdr,
2357 Elf_Internal_Rela *internal_relocs,
2358 struct elf_link_hash_entry **rel_hash
2359 ATTRIBUTE_UNUSED)
2360 {
2361 Elf_Internal_Rela *irela;
2362 Elf_Internal_Rela *irelaend;
2363 bfd_byte *erel;
2364 struct bfd_elf_section_reloc_data *output_reldata;
2365 asection *output_section;
2366 const struct elf_backend_data *bed;
2367 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2368 struct bfd_elf_section_data *esdo;
2369
2370 output_section = input_section->output_section;
2371
2372 bed = get_elf_backend_data (output_bfd);
2373 esdo = elf_section_data (output_section);
2374 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2375 {
2376 output_reldata = &esdo->rel;
2377 swap_out = bed->s->swap_reloc_out;
2378 }
2379 else if (esdo->rela.hdr
2380 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2381 {
2382 output_reldata = &esdo->rela;
2383 swap_out = bed->s->swap_reloca_out;
2384 }
2385 else
2386 {
2387 (*_bfd_error_handler)
2388 (_("%B: relocation size mismatch in %B section %A"),
2389 output_bfd, input_section->owner, input_section);
2390 bfd_set_error (bfd_error_wrong_format);
2391 return FALSE;
2392 }
2393
2394 erel = output_reldata->hdr->contents;
2395 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2396 irela = internal_relocs;
2397 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2398 * bed->s->int_rels_per_ext_rel);
2399 while (irela < irelaend)
2400 {
2401 (*swap_out) (output_bfd, irela, erel);
2402 irela += bed->s->int_rels_per_ext_rel;
2403 erel += input_rel_hdr->sh_entsize;
2404 }
2405
2406 /* Bump the counter, so that we know where to add the next set of
2407 relocations. */
2408 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2409
2410 return TRUE;
2411 }
2412 \f
2413 /* Make weak undefined symbols in PIE dynamic. */
2414
2415 bfd_boolean
2416 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2417 struct elf_link_hash_entry *h)
2418 {
2419 if (info->pie
2420 && h->dynindx == -1
2421 && h->root.type == bfd_link_hash_undefweak)
2422 return bfd_elf_link_record_dynamic_symbol (info, h);
2423
2424 return TRUE;
2425 }
2426
2427 /* Fix up the flags for a symbol. This handles various cases which
2428 can only be fixed after all the input files are seen. This is
2429 currently called by both adjust_dynamic_symbol and
2430 assign_sym_version, which is unnecessary but perhaps more robust in
2431 the face of future changes. */
2432
2433 static bfd_boolean
2434 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2435 struct elf_info_failed *eif)
2436 {
2437 const struct elf_backend_data *bed;
2438
2439 /* If this symbol was mentioned in a non-ELF file, try to set
2440 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2441 permit a non-ELF file to correctly refer to a symbol defined in
2442 an ELF dynamic object. */
2443 if (h->non_elf)
2444 {
2445 while (h->root.type == bfd_link_hash_indirect)
2446 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2447
2448 if (h->root.type != bfd_link_hash_defined
2449 && h->root.type != bfd_link_hash_defweak)
2450 {
2451 h->ref_regular = 1;
2452 h->ref_regular_nonweak = 1;
2453 }
2454 else
2455 {
2456 if (h->root.u.def.section->owner != NULL
2457 && (bfd_get_flavour (h->root.u.def.section->owner)
2458 == bfd_target_elf_flavour))
2459 {
2460 h->ref_regular = 1;
2461 h->ref_regular_nonweak = 1;
2462 }
2463 else
2464 h->def_regular = 1;
2465 }
2466
2467 if (h->dynindx == -1
2468 && (h->def_dynamic
2469 || h->ref_dynamic))
2470 {
2471 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2472 {
2473 eif->failed = TRUE;
2474 return FALSE;
2475 }
2476 }
2477 }
2478 else
2479 {
2480 /* Unfortunately, NON_ELF is only correct if the symbol
2481 was first seen in a non-ELF file. Fortunately, if the symbol
2482 was first seen in an ELF file, we're probably OK unless the
2483 symbol was defined in a non-ELF file. Catch that case here.
2484 FIXME: We're still in trouble if the symbol was first seen in
2485 a dynamic object, and then later in a non-ELF regular object. */
2486 if ((h->root.type == bfd_link_hash_defined
2487 || h->root.type == bfd_link_hash_defweak)
2488 && !h->def_regular
2489 && (h->root.u.def.section->owner != NULL
2490 ? (bfd_get_flavour (h->root.u.def.section->owner)
2491 != bfd_target_elf_flavour)
2492 : (bfd_is_abs_section (h->root.u.def.section)
2493 && !h->def_dynamic)))
2494 h->def_regular = 1;
2495 }
2496
2497 /* Backend specific symbol fixup. */
2498 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2499 if (bed->elf_backend_fixup_symbol
2500 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2501 return FALSE;
2502
2503 /* If this is a final link, and the symbol was defined as a common
2504 symbol in a regular object file, and there was no definition in
2505 any dynamic object, then the linker will have allocated space for
2506 the symbol in a common section but the DEF_REGULAR
2507 flag will not have been set. */
2508 if (h->root.type == bfd_link_hash_defined
2509 && !h->def_regular
2510 && h->ref_regular
2511 && !h->def_dynamic
2512 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2513 h->def_regular = 1;
2514
2515 /* If -Bsymbolic was used (which means to bind references to global
2516 symbols to the definition within the shared object), and this
2517 symbol was defined in a regular object, then it actually doesn't
2518 need a PLT entry. Likewise, if the symbol has non-default
2519 visibility. If the symbol has hidden or internal visibility, we
2520 will force it local. */
2521 if (h->needs_plt
2522 && eif->info->shared
2523 && is_elf_hash_table (eif->info->hash)
2524 && (SYMBOLIC_BIND (eif->info, h)
2525 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2526 && h->def_regular)
2527 {
2528 bfd_boolean force_local;
2529
2530 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2531 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2532 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2533 }
2534
2535 /* If a weak undefined symbol has non-default visibility, we also
2536 hide it from the dynamic linker. */
2537 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2538 && h->root.type == bfd_link_hash_undefweak)
2539 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2540
2541 /* If this is a weak defined symbol in a dynamic object, and we know
2542 the real definition in the dynamic object, copy interesting flags
2543 over to the real definition. */
2544 if (h->u.weakdef != NULL)
2545 {
2546 /* If the real definition is defined by a regular object file,
2547 don't do anything special. See the longer description in
2548 _bfd_elf_adjust_dynamic_symbol, below. */
2549 if (h->u.weakdef->def_regular)
2550 h->u.weakdef = NULL;
2551 else
2552 {
2553 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2554
2555 while (h->root.type == bfd_link_hash_indirect)
2556 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2557
2558 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2559 || h->root.type == bfd_link_hash_defweak);
2560 BFD_ASSERT (weakdef->def_dynamic);
2561 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2562 || weakdef->root.type == bfd_link_hash_defweak);
2563 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2564 }
2565 }
2566
2567 return TRUE;
2568 }
2569
2570 /* Make the backend pick a good value for a dynamic symbol. This is
2571 called via elf_link_hash_traverse, and also calls itself
2572 recursively. */
2573
2574 static bfd_boolean
2575 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2576 {
2577 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2578 bfd *dynobj;
2579 const struct elf_backend_data *bed;
2580
2581 if (! is_elf_hash_table (eif->info->hash))
2582 return FALSE;
2583
2584 /* Ignore indirect symbols. These are added by the versioning code. */
2585 if (h->root.type == bfd_link_hash_indirect)
2586 return TRUE;
2587
2588 /* Fix the symbol flags. */
2589 if (! _bfd_elf_fix_symbol_flags (h, eif))
2590 return FALSE;
2591
2592 /* If this symbol does not require a PLT entry, and it is not
2593 defined by a dynamic object, or is not referenced by a regular
2594 object, ignore it. We do have to handle a weak defined symbol,
2595 even if no regular object refers to it, if we decided to add it
2596 to the dynamic symbol table. FIXME: Do we normally need to worry
2597 about symbols which are defined by one dynamic object and
2598 referenced by another one? */
2599 if (!h->needs_plt
2600 && h->type != STT_GNU_IFUNC
2601 && (h->def_regular
2602 || !h->def_dynamic
2603 || (!h->ref_regular
2604 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2605 {
2606 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2607 return TRUE;
2608 }
2609
2610 /* If we've already adjusted this symbol, don't do it again. This
2611 can happen via a recursive call. */
2612 if (h->dynamic_adjusted)
2613 return TRUE;
2614
2615 /* Don't look at this symbol again. Note that we must set this
2616 after checking the above conditions, because we may look at a
2617 symbol once, decide not to do anything, and then get called
2618 recursively later after REF_REGULAR is set below. */
2619 h->dynamic_adjusted = 1;
2620
2621 /* If this is a weak definition, and we know a real definition, and
2622 the real symbol is not itself defined by a regular object file,
2623 then get a good value for the real definition. We handle the
2624 real symbol first, for the convenience of the backend routine.
2625
2626 Note that there is a confusing case here. If the real definition
2627 is defined by a regular object file, we don't get the real symbol
2628 from the dynamic object, but we do get the weak symbol. If the
2629 processor backend uses a COPY reloc, then if some routine in the
2630 dynamic object changes the real symbol, we will not see that
2631 change in the corresponding weak symbol. This is the way other
2632 ELF linkers work as well, and seems to be a result of the shared
2633 library model.
2634
2635 I will clarify this issue. Most SVR4 shared libraries define the
2636 variable _timezone and define timezone as a weak synonym. The
2637 tzset call changes _timezone. If you write
2638 extern int timezone;
2639 int _timezone = 5;
2640 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2641 you might expect that, since timezone is a synonym for _timezone,
2642 the same number will print both times. However, if the processor
2643 backend uses a COPY reloc, then actually timezone will be copied
2644 into your process image, and, since you define _timezone
2645 yourself, _timezone will not. Thus timezone and _timezone will
2646 wind up at different memory locations. The tzset call will set
2647 _timezone, leaving timezone unchanged. */
2648
2649 if (h->u.weakdef != NULL)
2650 {
2651 /* If we get to this point, there is an implicit reference to
2652 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2653 h->u.weakdef->ref_regular = 1;
2654
2655 /* Ensure that the backend adjust_dynamic_symbol function sees
2656 H->U.WEAKDEF before H by recursively calling ourselves. */
2657 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2658 return FALSE;
2659 }
2660
2661 /* If a symbol has no type and no size and does not require a PLT
2662 entry, then we are probably about to do the wrong thing here: we
2663 are probably going to create a COPY reloc for an empty object.
2664 This case can arise when a shared object is built with assembly
2665 code, and the assembly code fails to set the symbol type. */
2666 if (h->size == 0
2667 && h->type == STT_NOTYPE
2668 && !h->needs_plt)
2669 (*_bfd_error_handler)
2670 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2671 h->root.root.string);
2672
2673 dynobj = elf_hash_table (eif->info)->dynobj;
2674 bed = get_elf_backend_data (dynobj);
2675
2676 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2677 {
2678 eif->failed = TRUE;
2679 return FALSE;
2680 }
2681
2682 return TRUE;
2683 }
2684
2685 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2686 DYNBSS. */
2687
2688 bfd_boolean
2689 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2690 asection *dynbss)
2691 {
2692 unsigned int power_of_two;
2693 bfd_vma mask;
2694 asection *sec = h->root.u.def.section;
2695
2696 /* The section aligment of definition is the maximum alignment
2697 requirement of symbols defined in the section. Since we don't
2698 know the symbol alignment requirement, we start with the
2699 maximum alignment and check low bits of the symbol address
2700 for the minimum alignment. */
2701 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2702 mask = ((bfd_vma) 1 << power_of_two) - 1;
2703 while ((h->root.u.def.value & mask) != 0)
2704 {
2705 mask >>= 1;
2706 --power_of_two;
2707 }
2708
2709 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2710 dynbss))
2711 {
2712 /* Adjust the section alignment if needed. */
2713 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2714 power_of_two))
2715 return FALSE;
2716 }
2717
2718 /* We make sure that the symbol will be aligned properly. */
2719 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2720
2721 /* Define the symbol as being at this point in DYNBSS. */
2722 h->root.u.def.section = dynbss;
2723 h->root.u.def.value = dynbss->size;
2724
2725 /* Increment the size of DYNBSS to make room for the symbol. */
2726 dynbss->size += h->size;
2727
2728 return TRUE;
2729 }
2730
2731 /* Adjust all external symbols pointing into SEC_MERGE sections
2732 to reflect the object merging within the sections. */
2733
2734 static bfd_boolean
2735 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2736 {
2737 asection *sec;
2738
2739 if ((h->root.type == bfd_link_hash_defined
2740 || h->root.type == bfd_link_hash_defweak)
2741 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2742 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2743 {
2744 bfd *output_bfd = (bfd *) data;
2745
2746 h->root.u.def.value =
2747 _bfd_merged_section_offset (output_bfd,
2748 &h->root.u.def.section,
2749 elf_section_data (sec)->sec_info,
2750 h->root.u.def.value);
2751 }
2752
2753 return TRUE;
2754 }
2755
2756 /* Returns false if the symbol referred to by H should be considered
2757 to resolve local to the current module, and true if it should be
2758 considered to bind dynamically. */
2759
2760 bfd_boolean
2761 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2762 struct bfd_link_info *info,
2763 bfd_boolean not_local_protected)
2764 {
2765 bfd_boolean binding_stays_local_p;
2766 const struct elf_backend_data *bed;
2767 struct elf_link_hash_table *hash_table;
2768
2769 if (h == NULL)
2770 return FALSE;
2771
2772 while (h->root.type == bfd_link_hash_indirect
2773 || h->root.type == bfd_link_hash_warning)
2774 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2775
2776 /* If it was forced local, then clearly it's not dynamic. */
2777 if (h->dynindx == -1)
2778 return FALSE;
2779 if (h->forced_local)
2780 return FALSE;
2781
2782 /* Identify the cases where name binding rules say that a
2783 visible symbol resolves locally. */
2784 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2785
2786 switch (ELF_ST_VISIBILITY (h->other))
2787 {
2788 case STV_INTERNAL:
2789 case STV_HIDDEN:
2790 return FALSE;
2791
2792 case STV_PROTECTED:
2793 hash_table = elf_hash_table (info);
2794 if (!is_elf_hash_table (hash_table))
2795 return FALSE;
2796
2797 bed = get_elf_backend_data (hash_table->dynobj);
2798
2799 /* Proper resolution for function pointer equality may require
2800 that these symbols perhaps be resolved dynamically, even though
2801 we should be resolving them to the current module. */
2802 if (!not_local_protected || !bed->is_function_type (h->type))
2803 binding_stays_local_p = TRUE;
2804 break;
2805
2806 default:
2807 break;
2808 }
2809
2810 /* If it isn't defined locally, then clearly it's dynamic. */
2811 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2812 return TRUE;
2813
2814 /* Otherwise, the symbol is dynamic if binding rules don't tell
2815 us that it remains local. */
2816 return !binding_stays_local_p;
2817 }
2818
2819 /* Return true if the symbol referred to by H should be considered
2820 to resolve local to the current module, and false otherwise. Differs
2821 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2822 undefined symbols. The two functions are virtually identical except
2823 for the place where forced_local and dynindx == -1 are tested. If
2824 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2825 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2826 the symbol is local only for defined symbols.
2827 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2828 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2829 treatment of undefined weak symbols. For those that do not make
2830 undefined weak symbols dynamic, both functions may return false. */
2831
2832 bfd_boolean
2833 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2834 struct bfd_link_info *info,
2835 bfd_boolean local_protected)
2836 {
2837 const struct elf_backend_data *bed;
2838 struct elf_link_hash_table *hash_table;
2839
2840 /* If it's a local sym, of course we resolve locally. */
2841 if (h == NULL)
2842 return TRUE;
2843
2844 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2845 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2846 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2847 return TRUE;
2848
2849 /* Common symbols that become definitions don't get the DEF_REGULAR
2850 flag set, so test it first, and don't bail out. */
2851 if (ELF_COMMON_DEF_P (h))
2852 /* Do nothing. */;
2853 /* If we don't have a definition in a regular file, then we can't
2854 resolve locally. The sym is either undefined or dynamic. */
2855 else if (!h->def_regular)
2856 return FALSE;
2857
2858 /* Forced local symbols resolve locally. */
2859 if (h->forced_local)
2860 return TRUE;
2861
2862 /* As do non-dynamic symbols. */
2863 if (h->dynindx == -1)
2864 return TRUE;
2865
2866 /* At this point, we know the symbol is defined and dynamic. In an
2867 executable it must resolve locally, likewise when building symbolic
2868 shared libraries. */
2869 if (info->executable || SYMBOLIC_BIND (info, h))
2870 return TRUE;
2871
2872 /* Now deal with defined dynamic symbols in shared libraries. Ones
2873 with default visibility might not resolve locally. */
2874 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2875 return FALSE;
2876
2877 hash_table = elf_hash_table (info);
2878 if (!is_elf_hash_table (hash_table))
2879 return TRUE;
2880
2881 bed = get_elf_backend_data (hash_table->dynobj);
2882
2883 /* STV_PROTECTED non-function symbols are local. */
2884 if (!bed->is_function_type (h->type))
2885 return TRUE;
2886
2887 /* Function pointer equality tests may require that STV_PROTECTED
2888 symbols be treated as dynamic symbols. If the address of a
2889 function not defined in an executable is set to that function's
2890 plt entry in the executable, then the address of the function in
2891 a shared library must also be the plt entry in the executable. */
2892 return local_protected;
2893 }
2894
2895 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2896 aligned. Returns the first TLS output section. */
2897
2898 struct bfd_section *
2899 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2900 {
2901 struct bfd_section *sec, *tls;
2902 unsigned int align = 0;
2903
2904 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2905 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2906 break;
2907 tls = sec;
2908
2909 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2910 if (sec->alignment_power > align)
2911 align = sec->alignment_power;
2912
2913 elf_hash_table (info)->tls_sec = tls;
2914
2915 /* Ensure the alignment of the first section is the largest alignment,
2916 so that the tls segment starts aligned. */
2917 if (tls != NULL)
2918 tls->alignment_power = align;
2919
2920 return tls;
2921 }
2922
2923 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2924 static bfd_boolean
2925 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2926 Elf_Internal_Sym *sym)
2927 {
2928 const struct elf_backend_data *bed;
2929
2930 /* Local symbols do not count, but target specific ones might. */
2931 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2932 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2933 return FALSE;
2934
2935 bed = get_elf_backend_data (abfd);
2936 /* Function symbols do not count. */
2937 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2938 return FALSE;
2939
2940 /* If the section is undefined, then so is the symbol. */
2941 if (sym->st_shndx == SHN_UNDEF)
2942 return FALSE;
2943
2944 /* If the symbol is defined in the common section, then
2945 it is a common definition and so does not count. */
2946 if (bed->common_definition (sym))
2947 return FALSE;
2948
2949 /* If the symbol is in a target specific section then we
2950 must rely upon the backend to tell us what it is. */
2951 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2952 /* FIXME - this function is not coded yet:
2953
2954 return _bfd_is_global_symbol_definition (abfd, sym);
2955
2956 Instead for now assume that the definition is not global,
2957 Even if this is wrong, at least the linker will behave
2958 in the same way that it used to do. */
2959 return FALSE;
2960
2961 return TRUE;
2962 }
2963
2964 /* Search the symbol table of the archive element of the archive ABFD
2965 whose archive map contains a mention of SYMDEF, and determine if
2966 the symbol is defined in this element. */
2967 static bfd_boolean
2968 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2969 {
2970 Elf_Internal_Shdr * hdr;
2971 bfd_size_type symcount;
2972 bfd_size_type extsymcount;
2973 bfd_size_type extsymoff;
2974 Elf_Internal_Sym *isymbuf;
2975 Elf_Internal_Sym *isym;
2976 Elf_Internal_Sym *isymend;
2977 bfd_boolean result;
2978
2979 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2980 if (abfd == NULL)
2981 return FALSE;
2982
2983 if (! bfd_check_format (abfd, bfd_object))
2984 return FALSE;
2985
2986 /* If we have already included the element containing this symbol in the
2987 link then we do not need to include it again. Just claim that any symbol
2988 it contains is not a definition, so that our caller will not decide to
2989 (re)include this element. */
2990 if (abfd->archive_pass)
2991 return FALSE;
2992
2993 /* Select the appropriate symbol table. */
2994 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2995 hdr = &elf_tdata (abfd)->symtab_hdr;
2996 else
2997 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2998
2999 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3000
3001 /* The sh_info field of the symtab header tells us where the
3002 external symbols start. We don't care about the local symbols. */
3003 if (elf_bad_symtab (abfd))
3004 {
3005 extsymcount = symcount;
3006 extsymoff = 0;
3007 }
3008 else
3009 {
3010 extsymcount = symcount - hdr->sh_info;
3011 extsymoff = hdr->sh_info;
3012 }
3013
3014 if (extsymcount == 0)
3015 return FALSE;
3016
3017 /* Read in the symbol table. */
3018 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3019 NULL, NULL, NULL);
3020 if (isymbuf == NULL)
3021 return FALSE;
3022
3023 /* Scan the symbol table looking for SYMDEF. */
3024 result = FALSE;
3025 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3026 {
3027 const char *name;
3028
3029 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3030 isym->st_name);
3031 if (name == NULL)
3032 break;
3033
3034 if (strcmp (name, symdef->name) == 0)
3035 {
3036 result = is_global_data_symbol_definition (abfd, isym);
3037 break;
3038 }
3039 }
3040
3041 free (isymbuf);
3042
3043 return result;
3044 }
3045 \f
3046 /* Add an entry to the .dynamic table. */
3047
3048 bfd_boolean
3049 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3050 bfd_vma tag,
3051 bfd_vma val)
3052 {
3053 struct elf_link_hash_table *hash_table;
3054 const struct elf_backend_data *bed;
3055 asection *s;
3056 bfd_size_type newsize;
3057 bfd_byte *newcontents;
3058 Elf_Internal_Dyn dyn;
3059
3060 hash_table = elf_hash_table (info);
3061 if (! is_elf_hash_table (hash_table))
3062 return FALSE;
3063
3064 bed = get_elf_backend_data (hash_table->dynobj);
3065 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3066 BFD_ASSERT (s != NULL);
3067
3068 newsize = s->size + bed->s->sizeof_dyn;
3069 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3070 if (newcontents == NULL)
3071 return FALSE;
3072
3073 dyn.d_tag = tag;
3074 dyn.d_un.d_val = val;
3075 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3076
3077 s->size = newsize;
3078 s->contents = newcontents;
3079
3080 return TRUE;
3081 }
3082
3083 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3084 otherwise just check whether one already exists. Returns -1 on error,
3085 1 if a DT_NEEDED tag already exists, and 0 on success. */
3086
3087 static int
3088 elf_add_dt_needed_tag (bfd *abfd,
3089 struct bfd_link_info *info,
3090 const char *soname,
3091 bfd_boolean do_it)
3092 {
3093 struct elf_link_hash_table *hash_table;
3094 bfd_size_type oldsize;
3095 bfd_size_type strindex;
3096
3097 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3098 return -1;
3099
3100 hash_table = elf_hash_table (info);
3101 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3102 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3103 if (strindex == (bfd_size_type) -1)
3104 return -1;
3105
3106 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3107 {
3108 asection *sdyn;
3109 const struct elf_backend_data *bed;
3110 bfd_byte *extdyn;
3111
3112 bed = get_elf_backend_data (hash_table->dynobj);
3113 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3114 if (sdyn != NULL)
3115 for (extdyn = sdyn->contents;
3116 extdyn < sdyn->contents + sdyn->size;
3117 extdyn += bed->s->sizeof_dyn)
3118 {
3119 Elf_Internal_Dyn dyn;
3120
3121 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3122 if (dyn.d_tag == DT_NEEDED
3123 && dyn.d_un.d_val == strindex)
3124 {
3125 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3126 return 1;
3127 }
3128 }
3129 }
3130
3131 if (do_it)
3132 {
3133 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3134 return -1;
3135
3136 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3137 return -1;
3138 }
3139 else
3140 /* We were just checking for existence of the tag. */
3141 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3142
3143 return 0;
3144 }
3145
3146 static bfd_boolean
3147 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3148 {
3149 for (; needed != NULL; needed = needed->next)
3150 if (strcmp (soname, needed->name) == 0)
3151 return TRUE;
3152
3153 return FALSE;
3154 }
3155
3156 /* Sort symbol by value, section, and size. */
3157 static int
3158 elf_sort_symbol (const void *arg1, const void *arg2)
3159 {
3160 const struct elf_link_hash_entry *h1;
3161 const struct elf_link_hash_entry *h2;
3162 bfd_signed_vma vdiff;
3163
3164 h1 = *(const struct elf_link_hash_entry **) arg1;
3165 h2 = *(const struct elf_link_hash_entry **) arg2;
3166 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3167 if (vdiff != 0)
3168 return vdiff > 0 ? 1 : -1;
3169 else
3170 {
3171 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3172 if (sdiff != 0)
3173 return sdiff > 0 ? 1 : -1;
3174 }
3175 vdiff = h1->size - h2->size;
3176 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3177 }
3178
3179 /* This function is used to adjust offsets into .dynstr for
3180 dynamic symbols. This is called via elf_link_hash_traverse. */
3181
3182 static bfd_boolean
3183 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3184 {
3185 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3186
3187 if (h->dynindx != -1)
3188 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3189 return TRUE;
3190 }
3191
3192 /* Assign string offsets in .dynstr, update all structures referencing
3193 them. */
3194
3195 static bfd_boolean
3196 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3197 {
3198 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3199 struct elf_link_local_dynamic_entry *entry;
3200 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3201 bfd *dynobj = hash_table->dynobj;
3202 asection *sdyn;
3203 bfd_size_type size;
3204 const struct elf_backend_data *bed;
3205 bfd_byte *extdyn;
3206
3207 _bfd_elf_strtab_finalize (dynstr);
3208 size = _bfd_elf_strtab_size (dynstr);
3209
3210 bed = get_elf_backend_data (dynobj);
3211 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3212 BFD_ASSERT (sdyn != NULL);
3213
3214 /* Update all .dynamic entries referencing .dynstr strings. */
3215 for (extdyn = sdyn->contents;
3216 extdyn < sdyn->contents + sdyn->size;
3217 extdyn += bed->s->sizeof_dyn)
3218 {
3219 Elf_Internal_Dyn dyn;
3220
3221 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3222 switch (dyn.d_tag)
3223 {
3224 case DT_STRSZ:
3225 dyn.d_un.d_val = size;
3226 break;
3227 case DT_NEEDED:
3228 case DT_SONAME:
3229 case DT_RPATH:
3230 case DT_RUNPATH:
3231 case DT_FILTER:
3232 case DT_AUXILIARY:
3233 case DT_AUDIT:
3234 case DT_DEPAUDIT:
3235 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3236 break;
3237 default:
3238 continue;
3239 }
3240 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3241 }
3242
3243 /* Now update local dynamic symbols. */
3244 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3245 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3246 entry->isym.st_name);
3247
3248 /* And the rest of dynamic symbols. */
3249 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3250
3251 /* Adjust version definitions. */
3252 if (elf_tdata (output_bfd)->cverdefs)
3253 {
3254 asection *s;
3255 bfd_byte *p;
3256 bfd_size_type i;
3257 Elf_Internal_Verdef def;
3258 Elf_Internal_Verdaux defaux;
3259
3260 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3261 p = s->contents;
3262 do
3263 {
3264 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3265 &def);
3266 p += sizeof (Elf_External_Verdef);
3267 if (def.vd_aux != sizeof (Elf_External_Verdef))
3268 continue;
3269 for (i = 0; i < def.vd_cnt; ++i)
3270 {
3271 _bfd_elf_swap_verdaux_in (output_bfd,
3272 (Elf_External_Verdaux *) p, &defaux);
3273 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3274 defaux.vda_name);
3275 _bfd_elf_swap_verdaux_out (output_bfd,
3276 &defaux, (Elf_External_Verdaux *) p);
3277 p += sizeof (Elf_External_Verdaux);
3278 }
3279 }
3280 while (def.vd_next);
3281 }
3282
3283 /* Adjust version references. */
3284 if (elf_tdata (output_bfd)->verref)
3285 {
3286 asection *s;
3287 bfd_byte *p;
3288 bfd_size_type i;
3289 Elf_Internal_Verneed need;
3290 Elf_Internal_Vernaux needaux;
3291
3292 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3293 p = s->contents;
3294 do
3295 {
3296 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3297 &need);
3298 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3299 _bfd_elf_swap_verneed_out (output_bfd, &need,
3300 (Elf_External_Verneed *) p);
3301 p += sizeof (Elf_External_Verneed);
3302 for (i = 0; i < need.vn_cnt; ++i)
3303 {
3304 _bfd_elf_swap_vernaux_in (output_bfd,
3305 (Elf_External_Vernaux *) p, &needaux);
3306 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3307 needaux.vna_name);
3308 _bfd_elf_swap_vernaux_out (output_bfd,
3309 &needaux,
3310 (Elf_External_Vernaux *) p);
3311 p += sizeof (Elf_External_Vernaux);
3312 }
3313 }
3314 while (need.vn_next);
3315 }
3316
3317 return TRUE;
3318 }
3319 \f
3320 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3321 The default is to only match when the INPUT and OUTPUT are exactly
3322 the same target. */
3323
3324 bfd_boolean
3325 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3326 const bfd_target *output)
3327 {
3328 return input == output;
3329 }
3330
3331 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3332 This version is used when different targets for the same architecture
3333 are virtually identical. */
3334
3335 bfd_boolean
3336 _bfd_elf_relocs_compatible (const bfd_target *input,
3337 const bfd_target *output)
3338 {
3339 const struct elf_backend_data *obed, *ibed;
3340
3341 if (input == output)
3342 return TRUE;
3343
3344 ibed = xvec_get_elf_backend_data (input);
3345 obed = xvec_get_elf_backend_data (output);
3346
3347 if (ibed->arch != obed->arch)
3348 return FALSE;
3349
3350 /* If both backends are using this function, deem them compatible. */
3351 return ibed->relocs_compatible == obed->relocs_compatible;
3352 }
3353
3354 /* Add symbols from an ELF object file to the linker hash table. */
3355
3356 static bfd_boolean
3357 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3358 {
3359 Elf_Internal_Ehdr *ehdr;
3360 Elf_Internal_Shdr *hdr;
3361 bfd_size_type symcount;
3362 bfd_size_type extsymcount;
3363 bfd_size_type extsymoff;
3364 struct elf_link_hash_entry **sym_hash;
3365 bfd_boolean dynamic;
3366 Elf_External_Versym *extversym = NULL;
3367 Elf_External_Versym *ever;
3368 struct elf_link_hash_entry *weaks;
3369 struct elf_link_hash_entry **nondeflt_vers = NULL;
3370 bfd_size_type nondeflt_vers_cnt = 0;
3371 Elf_Internal_Sym *isymbuf = NULL;
3372 Elf_Internal_Sym *isym;
3373 Elf_Internal_Sym *isymend;
3374 const struct elf_backend_data *bed;
3375 bfd_boolean add_needed;
3376 struct elf_link_hash_table *htab;
3377 bfd_size_type amt;
3378 void *alloc_mark = NULL;
3379 struct bfd_hash_entry **old_table = NULL;
3380 unsigned int old_size = 0;
3381 unsigned int old_count = 0;
3382 void *old_tab = NULL;
3383 void *old_hash;
3384 void *old_ent;
3385 struct bfd_link_hash_entry *old_undefs = NULL;
3386 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3387 long old_dynsymcount = 0;
3388 bfd_size_type old_dynstr_size = 0;
3389 size_t tabsize = 0;
3390 size_t hashsize = 0;
3391
3392 htab = elf_hash_table (info);
3393 bed = get_elf_backend_data (abfd);
3394
3395 if ((abfd->flags & DYNAMIC) == 0)
3396 dynamic = FALSE;
3397 else
3398 {
3399 dynamic = TRUE;
3400
3401 /* You can't use -r against a dynamic object. Also, there's no
3402 hope of using a dynamic object which does not exactly match
3403 the format of the output file. */
3404 if (info->relocatable
3405 || !is_elf_hash_table (htab)
3406 || info->output_bfd->xvec != abfd->xvec)
3407 {
3408 if (info->relocatable)
3409 bfd_set_error (bfd_error_invalid_operation);
3410 else
3411 bfd_set_error (bfd_error_wrong_format);
3412 goto error_return;
3413 }
3414 }
3415
3416 ehdr = elf_elfheader (abfd);
3417 if (info->warn_alternate_em
3418 && bed->elf_machine_code != ehdr->e_machine
3419 && ((bed->elf_machine_alt1 != 0
3420 && ehdr->e_machine == bed->elf_machine_alt1)
3421 || (bed->elf_machine_alt2 != 0
3422 && ehdr->e_machine == bed->elf_machine_alt2)))
3423 info->callbacks->einfo
3424 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3425 ehdr->e_machine, abfd, bed->elf_machine_code);
3426
3427 /* As a GNU extension, any input sections which are named
3428 .gnu.warning.SYMBOL are treated as warning symbols for the given
3429 symbol. This differs from .gnu.warning sections, which generate
3430 warnings when they are included in an output file. */
3431 /* PR 12761: Also generate this warning when building shared libraries. */
3432 if (info->executable || info->shared)
3433 {
3434 asection *s;
3435
3436 for (s = abfd->sections; s != NULL; s = s->next)
3437 {
3438 const char *name;
3439
3440 name = bfd_get_section_name (abfd, s);
3441 if (CONST_STRNEQ (name, ".gnu.warning."))
3442 {
3443 char *msg;
3444 bfd_size_type sz;
3445
3446 name += sizeof ".gnu.warning." - 1;
3447
3448 /* If this is a shared object, then look up the symbol
3449 in the hash table. If it is there, and it is already
3450 been defined, then we will not be using the entry
3451 from this shared object, so we don't need to warn.
3452 FIXME: If we see the definition in a regular object
3453 later on, we will warn, but we shouldn't. The only
3454 fix is to keep track of what warnings we are supposed
3455 to emit, and then handle them all at the end of the
3456 link. */
3457 if (dynamic)
3458 {
3459 struct elf_link_hash_entry *h;
3460
3461 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3462
3463 /* FIXME: What about bfd_link_hash_common? */
3464 if (h != NULL
3465 && (h->root.type == bfd_link_hash_defined
3466 || h->root.type == bfd_link_hash_defweak))
3467 {
3468 /* We don't want to issue this warning. Clobber
3469 the section size so that the warning does not
3470 get copied into the output file. */
3471 s->size = 0;
3472 continue;
3473 }
3474 }
3475
3476 sz = s->size;
3477 msg = (char *) bfd_alloc (abfd, sz + 1);
3478 if (msg == NULL)
3479 goto error_return;
3480
3481 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3482 goto error_return;
3483
3484 msg[sz] = '\0';
3485
3486 if (! (_bfd_generic_link_add_one_symbol
3487 (info, abfd, name, BSF_WARNING, s, 0, msg,
3488 FALSE, bed->collect, NULL)))
3489 goto error_return;
3490
3491 if (! info->relocatable)
3492 {
3493 /* Clobber the section size so that the warning does
3494 not get copied into the output file. */
3495 s->size = 0;
3496
3497 /* Also set SEC_EXCLUDE, so that symbols defined in
3498 the warning section don't get copied to the output. */
3499 s->flags |= SEC_EXCLUDE;
3500 }
3501 }
3502 }
3503 }
3504
3505 add_needed = TRUE;
3506 if (! dynamic)
3507 {
3508 /* If we are creating a shared library, create all the dynamic
3509 sections immediately. We need to attach them to something,
3510 so we attach them to this BFD, provided it is the right
3511 format. FIXME: If there are no input BFD's of the same
3512 format as the output, we can't make a shared library. */
3513 if (info->shared
3514 && is_elf_hash_table (htab)
3515 && info->output_bfd->xvec == abfd->xvec
3516 && !htab->dynamic_sections_created)
3517 {
3518 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3519 goto error_return;
3520 }
3521 }
3522 else if (!is_elf_hash_table (htab))
3523 goto error_return;
3524 else
3525 {
3526 asection *s;
3527 const char *soname = NULL;
3528 char *audit = NULL;
3529 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3530 int ret;
3531
3532 /* ld --just-symbols and dynamic objects don't mix very well.
3533 ld shouldn't allow it. */
3534 if ((s = abfd->sections) != NULL
3535 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3536 abort ();
3537
3538 /* If this dynamic lib was specified on the command line with
3539 --as-needed in effect, then we don't want to add a DT_NEEDED
3540 tag unless the lib is actually used. Similary for libs brought
3541 in by another lib's DT_NEEDED. When --no-add-needed is used
3542 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3543 any dynamic library in DT_NEEDED tags in the dynamic lib at
3544 all. */
3545 add_needed = (elf_dyn_lib_class (abfd)
3546 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3547 | DYN_NO_NEEDED)) == 0;
3548
3549 s = bfd_get_section_by_name (abfd, ".dynamic");
3550 if (s != NULL)
3551 {
3552 bfd_byte *dynbuf;
3553 bfd_byte *extdyn;
3554 unsigned int elfsec;
3555 unsigned long shlink;
3556
3557 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3558 {
3559 error_free_dyn:
3560 free (dynbuf);
3561 goto error_return;
3562 }
3563
3564 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3565 if (elfsec == SHN_BAD)
3566 goto error_free_dyn;
3567 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3568
3569 for (extdyn = dynbuf;
3570 extdyn < dynbuf + s->size;
3571 extdyn += bed->s->sizeof_dyn)
3572 {
3573 Elf_Internal_Dyn dyn;
3574
3575 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3576 if (dyn.d_tag == DT_SONAME)
3577 {
3578 unsigned int tagv = dyn.d_un.d_val;
3579 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3580 if (soname == NULL)
3581 goto error_free_dyn;
3582 }
3583 if (dyn.d_tag == DT_NEEDED)
3584 {
3585 struct bfd_link_needed_list *n, **pn;
3586 char *fnm, *anm;
3587 unsigned int tagv = dyn.d_un.d_val;
3588
3589 amt = sizeof (struct bfd_link_needed_list);
3590 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3591 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3592 if (n == NULL || fnm == NULL)
3593 goto error_free_dyn;
3594 amt = strlen (fnm) + 1;
3595 anm = (char *) bfd_alloc (abfd, amt);
3596 if (anm == NULL)
3597 goto error_free_dyn;
3598 memcpy (anm, fnm, amt);
3599 n->name = anm;
3600 n->by = abfd;
3601 n->next = NULL;
3602 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3603 ;
3604 *pn = n;
3605 }
3606 if (dyn.d_tag == DT_RUNPATH)
3607 {
3608 struct bfd_link_needed_list *n, **pn;
3609 char *fnm, *anm;
3610 unsigned int tagv = dyn.d_un.d_val;
3611
3612 amt = sizeof (struct bfd_link_needed_list);
3613 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3614 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3615 if (n == NULL || fnm == NULL)
3616 goto error_free_dyn;
3617 amt = strlen (fnm) + 1;
3618 anm = (char *) bfd_alloc (abfd, amt);
3619 if (anm == NULL)
3620 goto error_free_dyn;
3621 memcpy (anm, fnm, amt);
3622 n->name = anm;
3623 n->by = abfd;
3624 n->next = NULL;
3625 for (pn = & runpath;
3626 *pn != NULL;
3627 pn = &(*pn)->next)
3628 ;
3629 *pn = n;
3630 }
3631 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3632 if (!runpath && dyn.d_tag == DT_RPATH)
3633 {
3634 struct bfd_link_needed_list *n, **pn;
3635 char *fnm, *anm;
3636 unsigned int tagv = dyn.d_un.d_val;
3637
3638 amt = sizeof (struct bfd_link_needed_list);
3639 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3640 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3641 if (n == NULL || fnm == NULL)
3642 goto error_free_dyn;
3643 amt = strlen (fnm) + 1;
3644 anm = (char *) bfd_alloc (abfd, amt);
3645 if (anm == NULL)
3646 goto error_free_dyn;
3647 memcpy (anm, fnm, amt);
3648 n->name = anm;
3649 n->by = abfd;
3650 n->next = NULL;
3651 for (pn = & rpath;
3652 *pn != NULL;
3653 pn = &(*pn)->next)
3654 ;
3655 *pn = n;
3656 }
3657 if (dyn.d_tag == DT_AUDIT)
3658 {
3659 unsigned int tagv = dyn.d_un.d_val;
3660 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3661 }
3662 }
3663
3664 free (dynbuf);
3665 }
3666
3667 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3668 frees all more recently bfd_alloc'd blocks as well. */
3669 if (runpath)
3670 rpath = runpath;
3671
3672 if (rpath)
3673 {
3674 struct bfd_link_needed_list **pn;
3675 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3676 ;
3677 *pn = rpath;
3678 }
3679
3680 /* We do not want to include any of the sections in a dynamic
3681 object in the output file. We hack by simply clobbering the
3682 list of sections in the BFD. This could be handled more
3683 cleanly by, say, a new section flag; the existing
3684 SEC_NEVER_LOAD flag is not the one we want, because that one
3685 still implies that the section takes up space in the output
3686 file. */
3687 bfd_section_list_clear (abfd);
3688
3689 /* Find the name to use in a DT_NEEDED entry that refers to this
3690 object. If the object has a DT_SONAME entry, we use it.
3691 Otherwise, if the generic linker stuck something in
3692 elf_dt_name, we use that. Otherwise, we just use the file
3693 name. */
3694 if (soname == NULL || *soname == '\0')
3695 {
3696 soname = elf_dt_name (abfd);
3697 if (soname == NULL || *soname == '\0')
3698 soname = bfd_get_filename (abfd);
3699 }
3700
3701 /* Save the SONAME because sometimes the linker emulation code
3702 will need to know it. */
3703 elf_dt_name (abfd) = soname;
3704
3705 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3706 if (ret < 0)
3707 goto error_return;
3708
3709 /* If we have already included this dynamic object in the
3710 link, just ignore it. There is no reason to include a
3711 particular dynamic object more than once. */
3712 if (ret > 0)
3713 return TRUE;
3714
3715 /* Save the DT_AUDIT entry for the linker emulation code. */
3716 elf_dt_audit (abfd) = audit;
3717 }
3718
3719 /* If this is a dynamic object, we always link against the .dynsym
3720 symbol table, not the .symtab symbol table. The dynamic linker
3721 will only see the .dynsym symbol table, so there is no reason to
3722 look at .symtab for a dynamic object. */
3723
3724 if (! dynamic || elf_dynsymtab (abfd) == 0)
3725 hdr = &elf_tdata (abfd)->symtab_hdr;
3726 else
3727 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3728
3729 symcount = hdr->sh_size / bed->s->sizeof_sym;
3730
3731 /* The sh_info field of the symtab header tells us where the
3732 external symbols start. We don't care about the local symbols at
3733 this point. */
3734 if (elf_bad_symtab (abfd))
3735 {
3736 extsymcount = symcount;
3737 extsymoff = 0;
3738 }
3739 else
3740 {
3741 extsymcount = symcount - hdr->sh_info;
3742 extsymoff = hdr->sh_info;
3743 }
3744
3745 sym_hash = NULL;
3746 if (extsymcount != 0)
3747 {
3748 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3749 NULL, NULL, NULL);
3750 if (isymbuf == NULL)
3751 goto error_return;
3752
3753 /* We store a pointer to the hash table entry for each external
3754 symbol. */
3755 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3756 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3757 if (sym_hash == NULL)
3758 goto error_free_sym;
3759 elf_sym_hashes (abfd) = sym_hash;
3760 }
3761
3762 if (dynamic)
3763 {
3764 /* Read in any version definitions. */
3765 if (!_bfd_elf_slurp_version_tables (abfd,
3766 info->default_imported_symver))
3767 goto error_free_sym;
3768
3769 /* Read in the symbol versions, but don't bother to convert them
3770 to internal format. */
3771 if (elf_dynversym (abfd) != 0)
3772 {
3773 Elf_Internal_Shdr *versymhdr;
3774
3775 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3776 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3777 if (extversym == NULL)
3778 goto error_free_sym;
3779 amt = versymhdr->sh_size;
3780 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3781 || bfd_bread (extversym, amt, abfd) != amt)
3782 goto error_free_vers;
3783 }
3784 }
3785
3786 /* If we are loading an as-needed shared lib, save the symbol table
3787 state before we start adding symbols. If the lib turns out
3788 to be unneeded, restore the state. */
3789 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3790 {
3791 unsigned int i;
3792 size_t entsize;
3793
3794 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3795 {
3796 struct bfd_hash_entry *p;
3797 struct elf_link_hash_entry *h;
3798
3799 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3800 {
3801 h = (struct elf_link_hash_entry *) p;
3802 entsize += htab->root.table.entsize;
3803 if (h->root.type == bfd_link_hash_warning)
3804 entsize += htab->root.table.entsize;
3805 }
3806 }
3807
3808 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3809 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3810 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3811 if (old_tab == NULL)
3812 goto error_free_vers;
3813
3814 /* Remember the current objalloc pointer, so that all mem for
3815 symbols added can later be reclaimed. */
3816 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3817 if (alloc_mark == NULL)
3818 goto error_free_vers;
3819
3820 /* Make a special call to the linker "notice" function to
3821 tell it that we are about to handle an as-needed lib. */
3822 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3823 notice_as_needed, 0, NULL))
3824 goto error_free_vers;
3825
3826 /* Clone the symbol table and sym hashes. Remember some
3827 pointers into the symbol table, and dynamic symbol count. */
3828 old_hash = (char *) old_tab + tabsize;
3829 old_ent = (char *) old_hash + hashsize;
3830 memcpy (old_tab, htab->root.table.table, tabsize);
3831 memcpy (old_hash, sym_hash, hashsize);
3832 old_undefs = htab->root.undefs;
3833 old_undefs_tail = htab->root.undefs_tail;
3834 old_table = htab->root.table.table;
3835 old_size = htab->root.table.size;
3836 old_count = htab->root.table.count;
3837 old_dynsymcount = htab->dynsymcount;
3838 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3839
3840 for (i = 0; i < htab->root.table.size; i++)
3841 {
3842 struct bfd_hash_entry *p;
3843 struct elf_link_hash_entry *h;
3844
3845 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3846 {
3847 memcpy (old_ent, p, htab->root.table.entsize);
3848 old_ent = (char *) old_ent + htab->root.table.entsize;
3849 h = (struct elf_link_hash_entry *) p;
3850 if (h->root.type == bfd_link_hash_warning)
3851 {
3852 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3853 old_ent = (char *) old_ent + htab->root.table.entsize;
3854 }
3855 }
3856 }
3857 }
3858
3859 weaks = NULL;
3860 ever = extversym != NULL ? extversym + extsymoff : NULL;
3861 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3862 isym < isymend;
3863 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3864 {
3865 int bind;
3866 bfd_vma value;
3867 asection *sec, *new_sec;
3868 flagword flags;
3869 const char *name;
3870 struct elf_link_hash_entry *h;
3871 struct elf_link_hash_entry *hi;
3872 bfd_boolean definition;
3873 bfd_boolean size_change_ok;
3874 bfd_boolean type_change_ok;
3875 bfd_boolean new_weakdef;
3876 bfd_boolean new_weak;
3877 bfd_boolean old_weak;
3878 bfd_boolean override;
3879 bfd_boolean common;
3880 unsigned int old_alignment;
3881 bfd *old_bfd;
3882 bfd * undef_bfd = NULL;
3883
3884 override = FALSE;
3885
3886 flags = BSF_NO_FLAGS;
3887 sec = NULL;
3888 value = isym->st_value;
3889 *sym_hash = NULL;
3890 common = bed->common_definition (isym);
3891
3892 bind = ELF_ST_BIND (isym->st_info);
3893 switch (bind)
3894 {
3895 case STB_LOCAL:
3896 /* This should be impossible, since ELF requires that all
3897 global symbols follow all local symbols, and that sh_info
3898 point to the first global symbol. Unfortunately, Irix 5
3899 screws this up. */
3900 continue;
3901
3902 case STB_GLOBAL:
3903 if (isym->st_shndx != SHN_UNDEF && !common)
3904 flags = BSF_GLOBAL;
3905 break;
3906
3907 case STB_WEAK:
3908 flags = BSF_WEAK;
3909 break;
3910
3911 case STB_GNU_UNIQUE:
3912 flags = BSF_GNU_UNIQUE;
3913 break;
3914
3915 default:
3916 /* Leave it up to the processor backend. */
3917 break;
3918 }
3919
3920 if (isym->st_shndx == SHN_UNDEF)
3921 sec = bfd_und_section_ptr;
3922 else if (isym->st_shndx == SHN_ABS)
3923 sec = bfd_abs_section_ptr;
3924 else if (isym->st_shndx == SHN_COMMON)
3925 {
3926 sec = bfd_com_section_ptr;
3927 /* What ELF calls the size we call the value. What ELF
3928 calls the value we call the alignment. */
3929 value = isym->st_size;
3930 }
3931 else
3932 {
3933 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3934 if (sec == NULL)
3935 sec = bfd_abs_section_ptr;
3936 else if (discarded_section (sec))
3937 {
3938 /* Symbols from discarded section are undefined. We keep
3939 its visibility. */
3940 sec = bfd_und_section_ptr;
3941 isym->st_shndx = SHN_UNDEF;
3942 }
3943 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3944 value -= sec->vma;
3945 }
3946
3947 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3948 isym->st_name);
3949 if (name == NULL)
3950 goto error_free_vers;
3951
3952 if (isym->st_shndx == SHN_COMMON
3953 && (abfd->flags & BFD_PLUGIN) != 0)
3954 {
3955 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3956
3957 if (xc == NULL)
3958 {
3959 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3960 | SEC_EXCLUDE);
3961 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3962 if (xc == NULL)
3963 goto error_free_vers;
3964 }
3965 sec = xc;
3966 }
3967 else if (isym->st_shndx == SHN_COMMON
3968 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3969 && !info->relocatable)
3970 {
3971 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3972
3973 if (tcomm == NULL)
3974 {
3975 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3976 | SEC_LINKER_CREATED);
3977 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3978 if (tcomm == NULL)
3979 goto error_free_vers;
3980 }
3981 sec = tcomm;
3982 }
3983 else if (bed->elf_add_symbol_hook)
3984 {
3985 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3986 &sec, &value))
3987 goto error_free_vers;
3988
3989 /* The hook function sets the name to NULL if this symbol
3990 should be skipped for some reason. */
3991 if (name == NULL)
3992 continue;
3993 }
3994
3995 /* Sanity check that all possibilities were handled. */
3996 if (sec == NULL)
3997 {
3998 bfd_set_error (bfd_error_bad_value);
3999 goto error_free_vers;
4000 }
4001
4002 if (bfd_is_und_section (sec)
4003 || bfd_is_com_section (sec))
4004 definition = FALSE;
4005 else
4006 definition = TRUE;
4007
4008 size_change_ok = FALSE;
4009 type_change_ok = bed->type_change_ok;
4010 old_weak = FALSE;
4011 old_alignment = 0;
4012 old_bfd = NULL;
4013 new_sec = sec;
4014
4015 if (is_elf_hash_table (htab))
4016 {
4017 Elf_Internal_Versym iver;
4018 unsigned int vernum = 0;
4019 bfd_boolean skip;
4020
4021 /* If this is a definition of a symbol which was previously
4022 referenced in a non-weak manner then make a note of the bfd
4023 that contained the reference. This is used if we need to
4024 refer to the source of the reference later on. */
4025 if (! bfd_is_und_section (sec))
4026 {
4027 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4028
4029 if (h != NULL
4030 && h->root.type == bfd_link_hash_undefined
4031 && h->root.u.undef.abfd)
4032 undef_bfd = h->root.u.undef.abfd;
4033 }
4034
4035 if (ever == NULL)
4036 {
4037 if (info->default_imported_symver)
4038 /* Use the default symbol version created earlier. */
4039 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4040 else
4041 iver.vs_vers = 0;
4042 }
4043 else
4044 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4045
4046 vernum = iver.vs_vers & VERSYM_VERSION;
4047
4048 /* If this is a hidden symbol, or if it is not version
4049 1, we append the version name to the symbol name.
4050 However, we do not modify a non-hidden absolute symbol
4051 if it is not a function, because it might be the version
4052 symbol itself. FIXME: What if it isn't? */
4053 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4054 || (vernum > 1
4055 && (!bfd_is_abs_section (sec)
4056 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4057 {
4058 const char *verstr;
4059 size_t namelen, verlen, newlen;
4060 char *newname, *p;
4061
4062 if (isym->st_shndx != SHN_UNDEF)
4063 {
4064 if (vernum > elf_tdata (abfd)->cverdefs)
4065 verstr = NULL;
4066 else if (vernum > 1)
4067 verstr =
4068 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4069 else
4070 verstr = "";
4071
4072 if (verstr == NULL)
4073 {
4074 (*_bfd_error_handler)
4075 (_("%B: %s: invalid version %u (max %d)"),
4076 abfd, name, vernum,
4077 elf_tdata (abfd)->cverdefs);
4078 bfd_set_error (bfd_error_bad_value);
4079 goto error_free_vers;
4080 }
4081 }
4082 else
4083 {
4084 /* We cannot simply test for the number of
4085 entries in the VERNEED section since the
4086 numbers for the needed versions do not start
4087 at 0. */
4088 Elf_Internal_Verneed *t;
4089
4090 verstr = NULL;
4091 for (t = elf_tdata (abfd)->verref;
4092 t != NULL;
4093 t = t->vn_nextref)
4094 {
4095 Elf_Internal_Vernaux *a;
4096
4097 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4098 {
4099 if (a->vna_other == vernum)
4100 {
4101 verstr = a->vna_nodename;
4102 break;
4103 }
4104 }
4105 if (a != NULL)
4106 break;
4107 }
4108 if (verstr == NULL)
4109 {
4110 (*_bfd_error_handler)
4111 (_("%B: %s: invalid needed version %d"),
4112 abfd, name, vernum);
4113 bfd_set_error (bfd_error_bad_value);
4114 goto error_free_vers;
4115 }
4116 }
4117
4118 namelen = strlen (name);
4119 verlen = strlen (verstr);
4120 newlen = namelen + verlen + 2;
4121 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4122 && isym->st_shndx != SHN_UNDEF)
4123 ++newlen;
4124
4125 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4126 if (newname == NULL)
4127 goto error_free_vers;
4128 memcpy (newname, name, namelen);
4129 p = newname + namelen;
4130 *p++ = ELF_VER_CHR;
4131 /* If this is a defined non-hidden version symbol,
4132 we add another @ to the name. This indicates the
4133 default version of the symbol. */
4134 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4135 && isym->st_shndx != SHN_UNDEF)
4136 *p++ = ELF_VER_CHR;
4137 memcpy (p, verstr, verlen + 1);
4138
4139 name = newname;
4140 }
4141
4142 /* If necessary, make a second attempt to locate the bfd
4143 containing an unresolved, non-weak reference to the
4144 current symbol. */
4145 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4146 {
4147 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4148
4149 if (h != NULL
4150 && h->root.type == bfd_link_hash_undefined
4151 && h->root.u.undef.abfd)
4152 undef_bfd = h->root.u.undef.abfd;
4153 }
4154
4155 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4156 &value, &old_weak, &old_alignment,
4157 sym_hash, &skip, &override,
4158 &type_change_ok, &size_change_ok))
4159 goto error_free_vers;
4160
4161 if (skip)
4162 continue;
4163
4164 if (override)
4165 definition = FALSE;
4166
4167 h = *sym_hash;
4168 while (h->root.type == bfd_link_hash_indirect
4169 || h->root.type == bfd_link_hash_warning)
4170 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4171
4172 /* Remember the old alignment if this is a common symbol, so
4173 that we don't reduce the alignment later on. We can't
4174 check later, because _bfd_generic_link_add_one_symbol
4175 will set a default for the alignment which we want to
4176 override. We also remember the old bfd where the existing
4177 definition comes from. */
4178 switch (h->root.type)
4179 {
4180 default:
4181 break;
4182
4183 case bfd_link_hash_defined:
4184 case bfd_link_hash_defweak:
4185 old_bfd = h->root.u.def.section->owner;
4186 break;
4187
4188 case bfd_link_hash_common:
4189 old_bfd = h->root.u.c.p->section->owner;
4190 old_alignment = h->root.u.c.p->alignment_power;
4191 break;
4192 }
4193
4194 if (elf_tdata (abfd)->verdef != NULL
4195 && ! override
4196 && vernum > 1
4197 && definition)
4198 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4199 }
4200
4201 if (! (_bfd_generic_link_add_one_symbol
4202 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4203 (struct bfd_link_hash_entry **) sym_hash)))
4204 goto error_free_vers;
4205
4206 h = *sym_hash;
4207 /* We need to make sure that indirect symbol dynamic flags are
4208 updated. */
4209 hi = h;
4210 while (h->root.type == bfd_link_hash_indirect
4211 || h->root.type == bfd_link_hash_warning)
4212 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4213
4214 *sym_hash = h;
4215 if (is_elf_hash_table (htab))
4216 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4217
4218 new_weak = (flags & BSF_WEAK) != 0;
4219 new_weakdef = FALSE;
4220 if (dynamic
4221 && definition
4222 && new_weak
4223 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4224 && is_elf_hash_table (htab)
4225 && h->u.weakdef == NULL)
4226 {
4227 /* Keep a list of all weak defined non function symbols from
4228 a dynamic object, using the weakdef field. Later in this
4229 function we will set the weakdef field to the correct
4230 value. We only put non-function symbols from dynamic
4231 objects on this list, because that happens to be the only
4232 time we need to know the normal symbol corresponding to a
4233 weak symbol, and the information is time consuming to
4234 figure out. If the weakdef field is not already NULL,
4235 then this symbol was already defined by some previous
4236 dynamic object, and we will be using that previous
4237 definition anyhow. */
4238
4239 h->u.weakdef = weaks;
4240 weaks = h;
4241 new_weakdef = TRUE;
4242 }
4243
4244 /* Set the alignment of a common symbol. */
4245 if ((common || bfd_is_com_section (sec))
4246 && h->root.type == bfd_link_hash_common)
4247 {
4248 unsigned int align;
4249
4250 if (common)
4251 align = bfd_log2 (isym->st_value);
4252 else
4253 {
4254 /* The new symbol is a common symbol in a shared object.
4255 We need to get the alignment from the section. */
4256 align = new_sec->alignment_power;
4257 }
4258 if (align > old_alignment)
4259 h->root.u.c.p->alignment_power = align;
4260 else
4261 h->root.u.c.p->alignment_power = old_alignment;
4262 }
4263
4264 if (is_elf_hash_table (htab))
4265 {
4266 bfd_boolean dynsym;
4267
4268 /* Check the alignment when a common symbol is involved. This
4269 can change when a common symbol is overridden by a normal
4270 definition or a common symbol is ignored due to the old
4271 normal definition. We need to make sure the maximum
4272 alignment is maintained. */
4273 if ((old_alignment || common)
4274 && h->root.type != bfd_link_hash_common)
4275 {
4276 unsigned int common_align;
4277 unsigned int normal_align;
4278 unsigned int symbol_align;
4279 bfd *normal_bfd;
4280 bfd *common_bfd;
4281
4282 symbol_align = ffs (h->root.u.def.value) - 1;
4283 if (h->root.u.def.section->owner != NULL
4284 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4285 {
4286 normal_align = h->root.u.def.section->alignment_power;
4287 if (normal_align > symbol_align)
4288 normal_align = symbol_align;
4289 }
4290 else
4291 normal_align = symbol_align;
4292
4293 if (old_alignment)
4294 {
4295 common_align = old_alignment;
4296 common_bfd = old_bfd;
4297 normal_bfd = abfd;
4298 }
4299 else
4300 {
4301 common_align = bfd_log2 (isym->st_value);
4302 common_bfd = abfd;
4303 normal_bfd = old_bfd;
4304 }
4305
4306 if (normal_align < common_align)
4307 {
4308 /* PR binutils/2735 */
4309 if (normal_bfd == NULL)
4310 (*_bfd_error_handler)
4311 (_("Warning: alignment %u of common symbol `%s' in %B"
4312 " is greater than the alignment (%u) of its section %A"),
4313 common_bfd, h->root.u.def.section,
4314 1 << common_align, name, 1 << normal_align);
4315 else
4316 (*_bfd_error_handler)
4317 (_("Warning: alignment %u of symbol `%s' in %B"
4318 " is smaller than %u in %B"),
4319 normal_bfd, common_bfd,
4320 1 << normal_align, name, 1 << common_align);
4321 }
4322 }
4323
4324 /* Remember the symbol size if it isn't undefined. */
4325 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4326 && (definition || h->size == 0))
4327 {
4328 if (h->size != 0
4329 && h->size != isym->st_size
4330 && ! size_change_ok)
4331 (*_bfd_error_handler)
4332 (_("Warning: size of symbol `%s' changed"
4333 " from %lu in %B to %lu in %B"),
4334 old_bfd, abfd,
4335 name, (unsigned long) h->size,
4336 (unsigned long) isym->st_size);
4337
4338 h->size = isym->st_size;
4339 }
4340
4341 /* If this is a common symbol, then we always want H->SIZE
4342 to be the size of the common symbol. The code just above
4343 won't fix the size if a common symbol becomes larger. We
4344 don't warn about a size change here, because that is
4345 covered by --warn-common. Allow changed between different
4346 function types. */
4347 if (h->root.type == bfd_link_hash_common)
4348 h->size = h->root.u.c.size;
4349
4350 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4351 && ((definition && !new_weak)
4352 || (old_weak && h->root.type == bfd_link_hash_common)
4353 || h->type == STT_NOTYPE))
4354 {
4355 unsigned int type = ELF_ST_TYPE (isym->st_info);
4356
4357 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4358 symbol. */
4359 if (type == STT_GNU_IFUNC
4360 && (abfd->flags & DYNAMIC) != 0)
4361 type = STT_FUNC;
4362
4363 if (h->type != type)
4364 {
4365 if (h->type != STT_NOTYPE && ! type_change_ok)
4366 (*_bfd_error_handler)
4367 (_("Warning: type of symbol `%s' changed"
4368 " from %d to %d in %B"),
4369 abfd, name, h->type, type);
4370
4371 h->type = type;
4372 }
4373 }
4374
4375 /* Merge st_other field. */
4376 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4377
4378 /* Set a flag in the hash table entry indicating the type of
4379 reference or definition we just found. Keep a count of
4380 the number of dynamic symbols we find. A dynamic symbol
4381 is one which is referenced or defined by both a regular
4382 object and a shared object. */
4383 dynsym = FALSE;
4384 if (! dynamic)
4385 {
4386 if (! definition)
4387 {
4388 h->ref_regular = 1;
4389 if (bind != STB_WEAK)
4390 h->ref_regular_nonweak = 1;
4391 }
4392 else
4393 {
4394 h->def_regular = 1;
4395 if (h->def_dynamic)
4396 {
4397 h->def_dynamic = 0;
4398 h->ref_dynamic = 1;
4399 }
4400 }
4401
4402 /* If the indirect symbol has been forced local, don't
4403 make the real symbol dynamic. */
4404 if ((h == hi || !hi->forced_local)
4405 && (! info->executable
4406 || h->def_dynamic
4407 || h->ref_dynamic))
4408 dynsym = TRUE;
4409 }
4410 else
4411 {
4412 if (! definition)
4413 {
4414 h->ref_dynamic = 1;
4415 hi->ref_dynamic = 1;
4416 }
4417 else
4418 {
4419 h->def_dynamic = 1;
4420 h->dynamic_def = 1;
4421 hi->def_dynamic = 1;
4422 hi->dynamic_def = 1;
4423 }
4424
4425 /* If the indirect symbol has been forced local, don't
4426 make the real symbol dynamic. */
4427 if ((h == hi || !hi->forced_local)
4428 && (h->def_regular
4429 || h->ref_regular
4430 || (h->u.weakdef != NULL
4431 && ! new_weakdef
4432 && h->u.weakdef->dynindx != -1)))
4433 dynsym = TRUE;
4434 }
4435
4436 /* We don't want to make debug symbol dynamic. */
4437 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4438 dynsym = FALSE;
4439
4440 /* Nor should we make plugin symbols dynamic. */
4441 if ((abfd->flags & BFD_PLUGIN) != 0)
4442 dynsym = FALSE;
4443
4444 if (definition)
4445 h->target_internal = isym->st_target_internal;
4446
4447 /* Check to see if we need to add an indirect symbol for
4448 the default name. */
4449 if (definition || h->root.type == bfd_link_hash_common)
4450 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4451 &sec, &value, &dynsym,
4452 override))
4453 goto error_free_vers;
4454
4455 if (definition && !dynamic)
4456 {
4457 char *p = strchr (name, ELF_VER_CHR);
4458 if (p != NULL && p[1] != ELF_VER_CHR)
4459 {
4460 /* Queue non-default versions so that .symver x, x@FOO
4461 aliases can be checked. */
4462 if (!nondeflt_vers)
4463 {
4464 amt = ((isymend - isym + 1)
4465 * sizeof (struct elf_link_hash_entry *));
4466 nondeflt_vers =
4467 (struct elf_link_hash_entry **) bfd_malloc (amt);
4468 if (!nondeflt_vers)
4469 goto error_free_vers;
4470 }
4471 nondeflt_vers[nondeflt_vers_cnt++] = h;
4472 }
4473 }
4474
4475 if (dynsym && h->dynindx == -1)
4476 {
4477 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4478 goto error_free_vers;
4479 if (h->u.weakdef != NULL
4480 && ! new_weakdef
4481 && h->u.weakdef->dynindx == -1)
4482 {
4483 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4484 goto error_free_vers;
4485 }
4486 }
4487 else if (dynsym && h->dynindx != -1)
4488 /* If the symbol already has a dynamic index, but
4489 visibility says it should not be visible, turn it into
4490 a local symbol. */
4491 switch (ELF_ST_VISIBILITY (h->other))
4492 {
4493 case STV_INTERNAL:
4494 case STV_HIDDEN:
4495 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4496 dynsym = FALSE;
4497 break;
4498 }
4499
4500 if (!add_needed
4501 && definition
4502 && ((dynsym
4503 && h->ref_regular)
4504 || (h->ref_dynamic
4505 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4506 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4507 {
4508 int ret;
4509 const char *soname = elf_dt_name (abfd);
4510
4511 /* A symbol from a library loaded via DT_NEEDED of some
4512 other library is referenced by a regular object.
4513 Add a DT_NEEDED entry for it. Issue an error if
4514 --no-add-needed is used and the reference was not
4515 a weak one. */
4516 if (undef_bfd != NULL
4517 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4518 {
4519 (*_bfd_error_handler)
4520 (_("%B: undefined reference to symbol '%s'"),
4521 undef_bfd, name);
4522 (*_bfd_error_handler)
4523 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4524 abfd, name);
4525 bfd_set_error (bfd_error_invalid_operation);
4526 goto error_free_vers;
4527 }
4528
4529 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4530 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4531
4532 add_needed = TRUE;
4533 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4534 if (ret < 0)
4535 goto error_free_vers;
4536
4537 BFD_ASSERT (ret == 0);
4538 }
4539 }
4540 }
4541
4542 if (extversym != NULL)
4543 {
4544 free (extversym);
4545 extversym = NULL;
4546 }
4547
4548 if (isymbuf != NULL)
4549 {
4550 free (isymbuf);
4551 isymbuf = NULL;
4552 }
4553
4554 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4555 {
4556 unsigned int i;
4557
4558 /* Restore the symbol table. */
4559 if (bed->as_needed_cleanup)
4560 (*bed->as_needed_cleanup) (abfd, info);
4561 old_hash = (char *) old_tab + tabsize;
4562 old_ent = (char *) old_hash + hashsize;
4563 sym_hash = elf_sym_hashes (abfd);
4564 htab->root.table.table = old_table;
4565 htab->root.table.size = old_size;
4566 htab->root.table.count = old_count;
4567 memcpy (htab->root.table.table, old_tab, tabsize);
4568 memcpy (sym_hash, old_hash, hashsize);
4569 htab->root.undefs = old_undefs;
4570 htab->root.undefs_tail = old_undefs_tail;
4571 _bfd_elf_strtab_clear_refs (htab->dynstr, old_dynstr_size);
4572 for (i = 0; i < htab->root.table.size; i++)
4573 {
4574 struct bfd_hash_entry *p;
4575 struct elf_link_hash_entry *h;
4576 bfd_size_type size;
4577 unsigned int alignment_power;
4578
4579 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4580 {
4581 h = (struct elf_link_hash_entry *) p;
4582 if (h->root.type == bfd_link_hash_warning)
4583 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4584 if (h->dynindx >= old_dynsymcount
4585 && h->dynstr_index < old_dynstr_size)
4586 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4587
4588 /* Preserve the maximum alignment and size for common
4589 symbols even if this dynamic lib isn't on DT_NEEDED
4590 since it can still be loaded at run time by another
4591 dynamic lib. */
4592 if (h->root.type == bfd_link_hash_common)
4593 {
4594 size = h->root.u.c.size;
4595 alignment_power = h->root.u.c.p->alignment_power;
4596 }
4597 else
4598 {
4599 size = 0;
4600 alignment_power = 0;
4601 }
4602 memcpy (p, old_ent, htab->root.table.entsize);
4603 old_ent = (char *) old_ent + htab->root.table.entsize;
4604 h = (struct elf_link_hash_entry *) p;
4605 if (h->root.type == bfd_link_hash_warning)
4606 {
4607 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4608 old_ent = (char *) old_ent + htab->root.table.entsize;
4609 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4610 }
4611 if (h->root.type == bfd_link_hash_common)
4612 {
4613 if (size > h->root.u.c.size)
4614 h->root.u.c.size = size;
4615 if (alignment_power > h->root.u.c.p->alignment_power)
4616 h->root.u.c.p->alignment_power = alignment_power;
4617 }
4618 }
4619 }
4620
4621 /* Make a special call to the linker "notice" function to
4622 tell it that symbols added for crefs may need to be removed. */
4623 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4624 notice_not_needed, 0, NULL))
4625 goto error_free_vers;
4626
4627 free (old_tab);
4628 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4629 alloc_mark);
4630 if (nondeflt_vers != NULL)
4631 free (nondeflt_vers);
4632 return TRUE;
4633 }
4634
4635 if (old_tab != NULL)
4636 {
4637 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4638 notice_needed, 0, NULL))
4639 goto error_free_vers;
4640 free (old_tab);
4641 old_tab = NULL;
4642 }
4643
4644 /* Now that all the symbols from this input file are created, handle
4645 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4646 if (nondeflt_vers != NULL)
4647 {
4648 bfd_size_type cnt, symidx;
4649
4650 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4651 {
4652 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4653 char *shortname, *p;
4654
4655 p = strchr (h->root.root.string, ELF_VER_CHR);
4656 if (p == NULL
4657 || (h->root.type != bfd_link_hash_defined
4658 && h->root.type != bfd_link_hash_defweak))
4659 continue;
4660
4661 amt = p - h->root.root.string;
4662 shortname = (char *) bfd_malloc (amt + 1);
4663 if (!shortname)
4664 goto error_free_vers;
4665 memcpy (shortname, h->root.root.string, amt);
4666 shortname[amt] = '\0';
4667
4668 hi = (struct elf_link_hash_entry *)
4669 bfd_link_hash_lookup (&htab->root, shortname,
4670 FALSE, FALSE, FALSE);
4671 if (hi != NULL
4672 && hi->root.type == h->root.type
4673 && hi->root.u.def.value == h->root.u.def.value
4674 && hi->root.u.def.section == h->root.u.def.section)
4675 {
4676 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4677 hi->root.type = bfd_link_hash_indirect;
4678 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4679 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4680 sym_hash = elf_sym_hashes (abfd);
4681 if (sym_hash)
4682 for (symidx = 0; symidx < extsymcount; ++symidx)
4683 if (sym_hash[symidx] == hi)
4684 {
4685 sym_hash[symidx] = h;
4686 break;
4687 }
4688 }
4689 free (shortname);
4690 }
4691 free (nondeflt_vers);
4692 nondeflt_vers = NULL;
4693 }
4694
4695 /* Now set the weakdefs field correctly for all the weak defined
4696 symbols we found. The only way to do this is to search all the
4697 symbols. Since we only need the information for non functions in
4698 dynamic objects, that's the only time we actually put anything on
4699 the list WEAKS. We need this information so that if a regular
4700 object refers to a symbol defined weakly in a dynamic object, the
4701 real symbol in the dynamic object is also put in the dynamic
4702 symbols; we also must arrange for both symbols to point to the
4703 same memory location. We could handle the general case of symbol
4704 aliasing, but a general symbol alias can only be generated in
4705 assembler code, handling it correctly would be very time
4706 consuming, and other ELF linkers don't handle general aliasing
4707 either. */
4708 if (weaks != NULL)
4709 {
4710 struct elf_link_hash_entry **hpp;
4711 struct elf_link_hash_entry **hppend;
4712 struct elf_link_hash_entry **sorted_sym_hash;
4713 struct elf_link_hash_entry *h;
4714 size_t sym_count;
4715
4716 /* Since we have to search the whole symbol list for each weak
4717 defined symbol, search time for N weak defined symbols will be
4718 O(N^2). Binary search will cut it down to O(NlogN). */
4719 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4720 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4721 if (sorted_sym_hash == NULL)
4722 goto error_return;
4723 sym_hash = sorted_sym_hash;
4724 hpp = elf_sym_hashes (abfd);
4725 hppend = hpp + extsymcount;
4726 sym_count = 0;
4727 for (; hpp < hppend; hpp++)
4728 {
4729 h = *hpp;
4730 if (h != NULL
4731 && h->root.type == bfd_link_hash_defined
4732 && !bed->is_function_type (h->type))
4733 {
4734 *sym_hash = h;
4735 sym_hash++;
4736 sym_count++;
4737 }
4738 }
4739
4740 qsort (sorted_sym_hash, sym_count,
4741 sizeof (struct elf_link_hash_entry *),
4742 elf_sort_symbol);
4743
4744 while (weaks != NULL)
4745 {
4746 struct elf_link_hash_entry *hlook;
4747 asection *slook;
4748 bfd_vma vlook;
4749 size_t i, j, idx;
4750
4751 hlook = weaks;
4752 weaks = hlook->u.weakdef;
4753 hlook->u.weakdef = NULL;
4754
4755 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4756 || hlook->root.type == bfd_link_hash_defweak
4757 || hlook->root.type == bfd_link_hash_common
4758 || hlook->root.type == bfd_link_hash_indirect);
4759 slook = hlook->root.u.def.section;
4760 vlook = hlook->root.u.def.value;
4761
4762 i = 0;
4763 j = sym_count;
4764 while (i != j)
4765 {
4766 bfd_signed_vma vdiff;
4767 idx = (i + j) / 2;
4768 h = sorted_sym_hash[idx];
4769 vdiff = vlook - h->root.u.def.value;
4770 if (vdiff < 0)
4771 j = idx;
4772 else if (vdiff > 0)
4773 i = idx + 1;
4774 else
4775 {
4776 long sdiff = slook->id - h->root.u.def.section->id;
4777 if (sdiff < 0)
4778 j = idx;
4779 else if (sdiff > 0)
4780 i = idx + 1;
4781 else
4782 break;
4783 }
4784 }
4785
4786 /* We didn't find a value/section match. */
4787 if (i == j)
4788 continue;
4789
4790 /* With multiple aliases, or when the weak symbol is already
4791 strongly defined, we have multiple matching symbols and
4792 the binary search above may land on any of them. Step
4793 one past the matching symbol(s). */
4794 while (++idx != j)
4795 {
4796 h = sorted_sym_hash[idx];
4797 if (h->root.u.def.section != slook
4798 || h->root.u.def.value != vlook)
4799 break;
4800 }
4801
4802 /* Now look back over the aliases. Since we sorted by size
4803 as well as value and section, we'll choose the one with
4804 the largest size. */
4805 while (idx-- != i)
4806 {
4807 h = sorted_sym_hash[idx];
4808
4809 /* Stop if value or section doesn't match. */
4810 if (h->root.u.def.section != slook
4811 || h->root.u.def.value != vlook)
4812 break;
4813 else if (h != hlook)
4814 {
4815 hlook->u.weakdef = h;
4816
4817 /* If the weak definition is in the list of dynamic
4818 symbols, make sure the real definition is put
4819 there as well. */
4820 if (hlook->dynindx != -1 && h->dynindx == -1)
4821 {
4822 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4823 {
4824 err_free_sym_hash:
4825 free (sorted_sym_hash);
4826 goto error_return;
4827 }
4828 }
4829
4830 /* If the real definition is in the list of dynamic
4831 symbols, make sure the weak definition is put
4832 there as well. If we don't do this, then the
4833 dynamic loader might not merge the entries for the
4834 real definition and the weak definition. */
4835 if (h->dynindx != -1 && hlook->dynindx == -1)
4836 {
4837 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4838 goto err_free_sym_hash;
4839 }
4840 break;
4841 }
4842 }
4843 }
4844
4845 free (sorted_sym_hash);
4846 }
4847
4848 if (bed->check_directives
4849 && !(*bed->check_directives) (abfd, info))
4850 return FALSE;
4851
4852 /* If this object is the same format as the output object, and it is
4853 not a shared library, then let the backend look through the
4854 relocs.
4855
4856 This is required to build global offset table entries and to
4857 arrange for dynamic relocs. It is not required for the
4858 particular common case of linking non PIC code, even when linking
4859 against shared libraries, but unfortunately there is no way of
4860 knowing whether an object file has been compiled PIC or not.
4861 Looking through the relocs is not particularly time consuming.
4862 The problem is that we must either (1) keep the relocs in memory,
4863 which causes the linker to require additional runtime memory or
4864 (2) read the relocs twice from the input file, which wastes time.
4865 This would be a good case for using mmap.
4866
4867 I have no idea how to handle linking PIC code into a file of a
4868 different format. It probably can't be done. */
4869 if (! dynamic
4870 && is_elf_hash_table (htab)
4871 && bed->check_relocs != NULL
4872 && elf_object_id (abfd) == elf_hash_table_id (htab)
4873 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4874 {
4875 asection *o;
4876
4877 for (o = abfd->sections; o != NULL; o = o->next)
4878 {
4879 Elf_Internal_Rela *internal_relocs;
4880 bfd_boolean ok;
4881
4882 if ((o->flags & SEC_RELOC) == 0
4883 || o->reloc_count == 0
4884 || ((info->strip == strip_all || info->strip == strip_debugger)
4885 && (o->flags & SEC_DEBUGGING) != 0)
4886 || bfd_is_abs_section (o->output_section))
4887 continue;
4888
4889 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4890 info->keep_memory);
4891 if (internal_relocs == NULL)
4892 goto error_return;
4893
4894 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4895
4896 if (elf_section_data (o)->relocs != internal_relocs)
4897 free (internal_relocs);
4898
4899 if (! ok)
4900 goto error_return;
4901 }
4902 }
4903
4904 /* If this is a non-traditional link, try to optimize the handling
4905 of the .stab/.stabstr sections. */
4906 if (! dynamic
4907 && ! info->traditional_format
4908 && is_elf_hash_table (htab)
4909 && (info->strip != strip_all && info->strip != strip_debugger))
4910 {
4911 asection *stabstr;
4912
4913 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4914 if (stabstr != NULL)
4915 {
4916 bfd_size_type string_offset = 0;
4917 asection *stab;
4918
4919 for (stab = abfd->sections; stab; stab = stab->next)
4920 if (CONST_STRNEQ (stab->name, ".stab")
4921 && (!stab->name[5] ||
4922 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4923 && (stab->flags & SEC_MERGE) == 0
4924 && !bfd_is_abs_section (stab->output_section))
4925 {
4926 struct bfd_elf_section_data *secdata;
4927
4928 secdata = elf_section_data (stab);
4929 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4930 stabstr, &secdata->sec_info,
4931 &string_offset))
4932 goto error_return;
4933 if (secdata->sec_info)
4934 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4935 }
4936 }
4937 }
4938
4939 if (is_elf_hash_table (htab) && add_needed)
4940 {
4941 /* Add this bfd to the loaded list. */
4942 struct elf_link_loaded_list *n;
4943
4944 n = (struct elf_link_loaded_list *)
4945 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4946 if (n == NULL)
4947 goto error_return;
4948 n->abfd = abfd;
4949 n->next = htab->loaded;
4950 htab->loaded = n;
4951 }
4952
4953 return TRUE;
4954
4955 error_free_vers:
4956 if (old_tab != NULL)
4957 free (old_tab);
4958 if (nondeflt_vers != NULL)
4959 free (nondeflt_vers);
4960 if (extversym != NULL)
4961 free (extversym);
4962 error_free_sym:
4963 if (isymbuf != NULL)
4964 free (isymbuf);
4965 error_return:
4966 return FALSE;
4967 }
4968
4969 /* Return the linker hash table entry of a symbol that might be
4970 satisfied by an archive symbol. Return -1 on error. */
4971
4972 struct elf_link_hash_entry *
4973 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4974 struct bfd_link_info *info,
4975 const char *name)
4976 {
4977 struct elf_link_hash_entry *h;
4978 char *p, *copy;
4979 size_t len, first;
4980
4981 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4982 if (h != NULL)
4983 return h;
4984
4985 /* If this is a default version (the name contains @@), look up the
4986 symbol again with only one `@' as well as without the version.
4987 The effect is that references to the symbol with and without the
4988 version will be matched by the default symbol in the archive. */
4989
4990 p = strchr (name, ELF_VER_CHR);
4991 if (p == NULL || p[1] != ELF_VER_CHR)
4992 return h;
4993
4994 /* First check with only one `@'. */
4995 len = strlen (name);
4996 copy = (char *) bfd_alloc (abfd, len);
4997 if (copy == NULL)
4998 return (struct elf_link_hash_entry *) 0 - 1;
4999
5000 first = p - name + 1;
5001 memcpy (copy, name, first);
5002 memcpy (copy + first, name + first + 1, len - first);
5003
5004 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5005 if (h == NULL)
5006 {
5007 /* We also need to check references to the symbol without the
5008 version. */
5009 copy[first - 1] = '\0';
5010 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5011 FALSE, FALSE, TRUE);
5012 }
5013
5014 bfd_release (abfd, copy);
5015 return h;
5016 }
5017
5018 /* Add symbols from an ELF archive file to the linker hash table. We
5019 don't use _bfd_generic_link_add_archive_symbols because of a
5020 problem which arises on UnixWare. The UnixWare libc.so is an
5021 archive which includes an entry libc.so.1 which defines a bunch of
5022 symbols. The libc.so archive also includes a number of other
5023 object files, which also define symbols, some of which are the same
5024 as those defined in libc.so.1. Correct linking requires that we
5025 consider each object file in turn, and include it if it defines any
5026 symbols we need. _bfd_generic_link_add_archive_symbols does not do
5027 this; it looks through the list of undefined symbols, and includes
5028 any object file which defines them. When this algorithm is used on
5029 UnixWare, it winds up pulling in libc.so.1 early and defining a
5030 bunch of symbols. This means that some of the other objects in the
5031 archive are not included in the link, which is incorrect since they
5032 precede libc.so.1 in the archive.
5033
5034 Fortunately, ELF archive handling is simpler than that done by
5035 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5036 oddities. In ELF, if we find a symbol in the archive map, and the
5037 symbol is currently undefined, we know that we must pull in that
5038 object file.
5039
5040 Unfortunately, we do have to make multiple passes over the symbol
5041 table until nothing further is resolved. */
5042
5043 static bfd_boolean
5044 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5045 {
5046 symindex c;
5047 bfd_boolean *defined = NULL;
5048 bfd_boolean *included = NULL;
5049 carsym *symdefs;
5050 bfd_boolean loop;
5051 bfd_size_type amt;
5052 const struct elf_backend_data *bed;
5053 struct elf_link_hash_entry * (*archive_symbol_lookup)
5054 (bfd *, struct bfd_link_info *, const char *);
5055
5056 if (! bfd_has_map (abfd))
5057 {
5058 /* An empty archive is a special case. */
5059 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5060 return TRUE;
5061 bfd_set_error (bfd_error_no_armap);
5062 return FALSE;
5063 }
5064
5065 /* Keep track of all symbols we know to be already defined, and all
5066 files we know to be already included. This is to speed up the
5067 second and subsequent passes. */
5068 c = bfd_ardata (abfd)->symdef_count;
5069 if (c == 0)
5070 return TRUE;
5071 amt = c;
5072 amt *= sizeof (bfd_boolean);
5073 defined = (bfd_boolean *) bfd_zmalloc (amt);
5074 included = (bfd_boolean *) bfd_zmalloc (amt);
5075 if (defined == NULL || included == NULL)
5076 goto error_return;
5077
5078 symdefs = bfd_ardata (abfd)->symdefs;
5079 bed = get_elf_backend_data (abfd);
5080 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5081
5082 do
5083 {
5084 file_ptr last;
5085 symindex i;
5086 carsym *symdef;
5087 carsym *symdefend;
5088
5089 loop = FALSE;
5090 last = -1;
5091
5092 symdef = symdefs;
5093 symdefend = symdef + c;
5094 for (i = 0; symdef < symdefend; symdef++, i++)
5095 {
5096 struct elf_link_hash_entry *h;
5097 bfd *element;
5098 struct bfd_link_hash_entry *undefs_tail;
5099 symindex mark;
5100
5101 if (defined[i] || included[i])
5102 continue;
5103 if (symdef->file_offset == last)
5104 {
5105 included[i] = TRUE;
5106 continue;
5107 }
5108
5109 h = archive_symbol_lookup (abfd, info, symdef->name);
5110 if (h == (struct elf_link_hash_entry *) 0 - 1)
5111 goto error_return;
5112
5113 if (h == NULL)
5114 continue;
5115
5116 if (h->root.type == bfd_link_hash_common)
5117 {
5118 /* We currently have a common symbol. The archive map contains
5119 a reference to this symbol, so we may want to include it. We
5120 only want to include it however, if this archive element
5121 contains a definition of the symbol, not just another common
5122 declaration of it.
5123
5124 Unfortunately some archivers (including GNU ar) will put
5125 declarations of common symbols into their archive maps, as
5126 well as real definitions, so we cannot just go by the archive
5127 map alone. Instead we must read in the element's symbol
5128 table and check that to see what kind of symbol definition
5129 this is. */
5130 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5131 continue;
5132 }
5133 else if (h->root.type != bfd_link_hash_undefined)
5134 {
5135 if (h->root.type != bfd_link_hash_undefweak)
5136 defined[i] = TRUE;
5137 continue;
5138 }
5139
5140 /* We need to include this archive member. */
5141 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5142 if (element == NULL)
5143 goto error_return;
5144
5145 if (! bfd_check_format (element, bfd_object))
5146 goto error_return;
5147
5148 /* Doublecheck that we have not included this object
5149 already--it should be impossible, but there may be
5150 something wrong with the archive. */
5151 if (element->archive_pass != 0)
5152 {
5153 bfd_set_error (bfd_error_bad_value);
5154 goto error_return;
5155 }
5156 element->archive_pass = 1;
5157
5158 undefs_tail = info->hash->undefs_tail;
5159
5160 if (!(*info->callbacks
5161 ->add_archive_element) (info, element, symdef->name, &element))
5162 goto error_return;
5163 if (!bfd_link_add_symbols (element, info))
5164 goto error_return;
5165
5166 /* If there are any new undefined symbols, we need to make
5167 another pass through the archive in order to see whether
5168 they can be defined. FIXME: This isn't perfect, because
5169 common symbols wind up on undefs_tail and because an
5170 undefined symbol which is defined later on in this pass
5171 does not require another pass. This isn't a bug, but it
5172 does make the code less efficient than it could be. */
5173 if (undefs_tail != info->hash->undefs_tail)
5174 loop = TRUE;
5175
5176 /* Look backward to mark all symbols from this object file
5177 which we have already seen in this pass. */
5178 mark = i;
5179 do
5180 {
5181 included[mark] = TRUE;
5182 if (mark == 0)
5183 break;
5184 --mark;
5185 }
5186 while (symdefs[mark].file_offset == symdef->file_offset);
5187
5188 /* We mark subsequent symbols from this object file as we go
5189 on through the loop. */
5190 last = symdef->file_offset;
5191 }
5192 }
5193 while (loop);
5194
5195 free (defined);
5196 free (included);
5197
5198 return TRUE;
5199
5200 error_return:
5201 if (defined != NULL)
5202 free (defined);
5203 if (included != NULL)
5204 free (included);
5205 return FALSE;
5206 }
5207
5208 /* Given an ELF BFD, add symbols to the global hash table as
5209 appropriate. */
5210
5211 bfd_boolean
5212 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5213 {
5214 switch (bfd_get_format (abfd))
5215 {
5216 case bfd_object:
5217 return elf_link_add_object_symbols (abfd, info);
5218 case bfd_archive:
5219 return elf_link_add_archive_symbols (abfd, info);
5220 default:
5221 bfd_set_error (bfd_error_wrong_format);
5222 return FALSE;
5223 }
5224 }
5225 \f
5226 struct hash_codes_info
5227 {
5228 unsigned long *hashcodes;
5229 bfd_boolean error;
5230 };
5231
5232 /* This function will be called though elf_link_hash_traverse to store
5233 all hash value of the exported symbols in an array. */
5234
5235 static bfd_boolean
5236 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5237 {
5238 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5239 const char *name;
5240 char *p;
5241 unsigned long ha;
5242 char *alc = NULL;
5243
5244 /* Ignore indirect symbols. These are added by the versioning code. */
5245 if (h->dynindx == -1)
5246 return TRUE;
5247
5248 name = h->root.root.string;
5249 p = strchr (name, ELF_VER_CHR);
5250 if (p != NULL)
5251 {
5252 alc = (char *) bfd_malloc (p - name + 1);
5253 if (alc == NULL)
5254 {
5255 inf->error = TRUE;
5256 return FALSE;
5257 }
5258 memcpy (alc, name, p - name);
5259 alc[p - name] = '\0';
5260 name = alc;
5261 }
5262
5263 /* Compute the hash value. */
5264 ha = bfd_elf_hash (name);
5265
5266 /* Store the found hash value in the array given as the argument. */
5267 *(inf->hashcodes)++ = ha;
5268
5269 /* And store it in the struct so that we can put it in the hash table
5270 later. */
5271 h->u.elf_hash_value = ha;
5272
5273 if (alc != NULL)
5274 free (alc);
5275
5276 return TRUE;
5277 }
5278
5279 struct collect_gnu_hash_codes
5280 {
5281 bfd *output_bfd;
5282 const struct elf_backend_data *bed;
5283 unsigned long int nsyms;
5284 unsigned long int maskbits;
5285 unsigned long int *hashcodes;
5286 unsigned long int *hashval;
5287 unsigned long int *indx;
5288 unsigned long int *counts;
5289 bfd_vma *bitmask;
5290 bfd_byte *contents;
5291 long int min_dynindx;
5292 unsigned long int bucketcount;
5293 unsigned long int symindx;
5294 long int local_indx;
5295 long int shift1, shift2;
5296 unsigned long int mask;
5297 bfd_boolean error;
5298 };
5299
5300 /* This function will be called though elf_link_hash_traverse to store
5301 all hash value of the exported symbols in an array. */
5302
5303 static bfd_boolean
5304 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5305 {
5306 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5307 const char *name;
5308 char *p;
5309 unsigned long ha;
5310 char *alc = NULL;
5311
5312 /* Ignore indirect symbols. These are added by the versioning code. */
5313 if (h->dynindx == -1)
5314 return TRUE;
5315
5316 /* Ignore also local symbols and undefined symbols. */
5317 if (! (*s->bed->elf_hash_symbol) (h))
5318 return TRUE;
5319
5320 name = h->root.root.string;
5321 p = strchr (name, ELF_VER_CHR);
5322 if (p != NULL)
5323 {
5324 alc = (char *) bfd_malloc (p - name + 1);
5325 if (alc == NULL)
5326 {
5327 s->error = TRUE;
5328 return FALSE;
5329 }
5330 memcpy (alc, name, p - name);
5331 alc[p - name] = '\0';
5332 name = alc;
5333 }
5334
5335 /* Compute the hash value. */
5336 ha = bfd_elf_gnu_hash (name);
5337
5338 /* Store the found hash value in the array for compute_bucket_count,
5339 and also for .dynsym reordering purposes. */
5340 s->hashcodes[s->nsyms] = ha;
5341 s->hashval[h->dynindx] = ha;
5342 ++s->nsyms;
5343 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5344 s->min_dynindx = h->dynindx;
5345
5346 if (alc != NULL)
5347 free (alc);
5348
5349 return TRUE;
5350 }
5351
5352 /* This function will be called though elf_link_hash_traverse to do
5353 final dynaminc symbol renumbering. */
5354
5355 static bfd_boolean
5356 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5357 {
5358 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5359 unsigned long int bucket;
5360 unsigned long int val;
5361
5362 /* Ignore indirect symbols. */
5363 if (h->dynindx == -1)
5364 return TRUE;
5365
5366 /* Ignore also local symbols and undefined symbols. */
5367 if (! (*s->bed->elf_hash_symbol) (h))
5368 {
5369 if (h->dynindx >= s->min_dynindx)
5370 h->dynindx = s->local_indx++;
5371 return TRUE;
5372 }
5373
5374 bucket = s->hashval[h->dynindx] % s->bucketcount;
5375 val = (s->hashval[h->dynindx] >> s->shift1)
5376 & ((s->maskbits >> s->shift1) - 1);
5377 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5378 s->bitmask[val]
5379 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5380 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5381 if (s->counts[bucket] == 1)
5382 /* Last element terminates the chain. */
5383 val |= 1;
5384 bfd_put_32 (s->output_bfd, val,
5385 s->contents + (s->indx[bucket] - s->symindx) * 4);
5386 --s->counts[bucket];
5387 h->dynindx = s->indx[bucket]++;
5388 return TRUE;
5389 }
5390
5391 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5392
5393 bfd_boolean
5394 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5395 {
5396 return !(h->forced_local
5397 || h->root.type == bfd_link_hash_undefined
5398 || h->root.type == bfd_link_hash_undefweak
5399 || ((h->root.type == bfd_link_hash_defined
5400 || h->root.type == bfd_link_hash_defweak)
5401 && h->root.u.def.section->output_section == NULL));
5402 }
5403
5404 /* Array used to determine the number of hash table buckets to use
5405 based on the number of symbols there are. If there are fewer than
5406 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5407 fewer than 37 we use 17 buckets, and so forth. We never use more
5408 than 32771 buckets. */
5409
5410 static const size_t elf_buckets[] =
5411 {
5412 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5413 16411, 32771, 0
5414 };
5415
5416 /* Compute bucket count for hashing table. We do not use a static set
5417 of possible tables sizes anymore. Instead we determine for all
5418 possible reasonable sizes of the table the outcome (i.e., the
5419 number of collisions etc) and choose the best solution. The
5420 weighting functions are not too simple to allow the table to grow
5421 without bounds. Instead one of the weighting factors is the size.
5422 Therefore the result is always a good payoff between few collisions
5423 (= short chain lengths) and table size. */
5424 static size_t
5425 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5426 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5427 unsigned long int nsyms,
5428 int gnu_hash)
5429 {
5430 size_t best_size = 0;
5431 unsigned long int i;
5432
5433 /* We have a problem here. The following code to optimize the table
5434 size requires an integer type with more the 32 bits. If
5435 BFD_HOST_U_64_BIT is set we know about such a type. */
5436 #ifdef BFD_HOST_U_64_BIT
5437 if (info->optimize)
5438 {
5439 size_t minsize;
5440 size_t maxsize;
5441 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5442 bfd *dynobj = elf_hash_table (info)->dynobj;
5443 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5444 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5445 unsigned long int *counts;
5446 bfd_size_type amt;
5447 unsigned int no_improvement_count = 0;
5448
5449 /* Possible optimization parameters: if we have NSYMS symbols we say
5450 that the hashing table must at least have NSYMS/4 and at most
5451 2*NSYMS buckets. */
5452 minsize = nsyms / 4;
5453 if (minsize == 0)
5454 minsize = 1;
5455 best_size = maxsize = nsyms * 2;
5456 if (gnu_hash)
5457 {
5458 if (minsize < 2)
5459 minsize = 2;
5460 if ((best_size & 31) == 0)
5461 ++best_size;
5462 }
5463
5464 /* Create array where we count the collisions in. We must use bfd_malloc
5465 since the size could be large. */
5466 amt = maxsize;
5467 amt *= sizeof (unsigned long int);
5468 counts = (unsigned long int *) bfd_malloc (amt);
5469 if (counts == NULL)
5470 return 0;
5471
5472 /* Compute the "optimal" size for the hash table. The criteria is a
5473 minimal chain length. The minor criteria is (of course) the size
5474 of the table. */
5475 for (i = minsize; i < maxsize; ++i)
5476 {
5477 /* Walk through the array of hashcodes and count the collisions. */
5478 BFD_HOST_U_64_BIT max;
5479 unsigned long int j;
5480 unsigned long int fact;
5481
5482 if (gnu_hash && (i & 31) == 0)
5483 continue;
5484
5485 memset (counts, '\0', i * sizeof (unsigned long int));
5486
5487 /* Determine how often each hash bucket is used. */
5488 for (j = 0; j < nsyms; ++j)
5489 ++counts[hashcodes[j] % i];
5490
5491 /* For the weight function we need some information about the
5492 pagesize on the target. This is information need not be 100%
5493 accurate. Since this information is not available (so far) we
5494 define it here to a reasonable default value. If it is crucial
5495 to have a better value some day simply define this value. */
5496 # ifndef BFD_TARGET_PAGESIZE
5497 # define BFD_TARGET_PAGESIZE (4096)
5498 # endif
5499
5500 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5501 and the chains. */
5502 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5503
5504 # if 1
5505 /* Variant 1: optimize for short chains. We add the squares
5506 of all the chain lengths (which favors many small chain
5507 over a few long chains). */
5508 for (j = 0; j < i; ++j)
5509 max += counts[j] * counts[j];
5510
5511 /* This adds penalties for the overall size of the table. */
5512 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5513 max *= fact * fact;
5514 # else
5515 /* Variant 2: Optimize a lot more for small table. Here we
5516 also add squares of the size but we also add penalties for
5517 empty slots (the +1 term). */
5518 for (j = 0; j < i; ++j)
5519 max += (1 + counts[j]) * (1 + counts[j]);
5520
5521 /* The overall size of the table is considered, but not as
5522 strong as in variant 1, where it is squared. */
5523 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5524 max *= fact;
5525 # endif
5526
5527 /* Compare with current best results. */
5528 if (max < best_chlen)
5529 {
5530 best_chlen = max;
5531 best_size = i;
5532 no_improvement_count = 0;
5533 }
5534 /* PR 11843: Avoid futile long searches for the best bucket size
5535 when there are a large number of symbols. */
5536 else if (++no_improvement_count == 100)
5537 break;
5538 }
5539
5540 free (counts);
5541 }
5542 else
5543 #endif /* defined (BFD_HOST_U_64_BIT) */
5544 {
5545 /* This is the fallback solution if no 64bit type is available or if we
5546 are not supposed to spend much time on optimizations. We select the
5547 bucket count using a fixed set of numbers. */
5548 for (i = 0; elf_buckets[i] != 0; i++)
5549 {
5550 best_size = elf_buckets[i];
5551 if (nsyms < elf_buckets[i + 1])
5552 break;
5553 }
5554 if (gnu_hash && best_size < 2)
5555 best_size = 2;
5556 }
5557
5558 return best_size;
5559 }
5560
5561 /* Size any SHT_GROUP section for ld -r. */
5562
5563 bfd_boolean
5564 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5565 {
5566 bfd *ibfd;
5567
5568 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5569 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5570 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5571 return FALSE;
5572 return TRUE;
5573 }
5574
5575 /* Set a default stack segment size. The value in INFO wins. If it
5576 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5577 undefined it is initialized. */
5578
5579 bfd_boolean
5580 bfd_elf_stack_segment_size (bfd *output_bfd,
5581 struct bfd_link_info *info,
5582 const char *legacy_symbol,
5583 bfd_vma default_size)
5584 {
5585 struct elf_link_hash_entry *h = NULL;
5586
5587 /* Look for legacy symbol. */
5588 if (legacy_symbol)
5589 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5590 FALSE, FALSE, FALSE);
5591 if (h && (h->root.type == bfd_link_hash_defined
5592 || h->root.type == bfd_link_hash_defweak)
5593 && h->def_regular
5594 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5595 {
5596 /* The symbol has no type if specified on the command line. */
5597 h->type = STT_OBJECT;
5598 if (info->stacksize)
5599 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5600 output_bfd, legacy_symbol);
5601 else if (h->root.u.def.section != bfd_abs_section_ptr)
5602 (*_bfd_error_handler) (_("%B: %s not absolute"),
5603 output_bfd, legacy_symbol);
5604 else
5605 info->stacksize = h->root.u.def.value;
5606 }
5607
5608 if (!info->stacksize)
5609 /* If the user didn't set a size, or explicitly inhibit the
5610 size, set it now. */
5611 info->stacksize = default_size;
5612
5613 /* Provide the legacy symbol, if it is referenced. */
5614 if (h && (h->root.type == bfd_link_hash_undefined
5615 || h->root.type == bfd_link_hash_undefweak))
5616 {
5617 struct bfd_link_hash_entry *bh = NULL;
5618
5619 if (!(_bfd_generic_link_add_one_symbol
5620 (info, output_bfd, legacy_symbol,
5621 BSF_GLOBAL, bfd_abs_section_ptr,
5622 info->stacksize >= 0 ? info->stacksize : 0,
5623 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5624 return FALSE;
5625
5626 h = (struct elf_link_hash_entry *) bh;
5627 h->def_regular = 1;
5628 h->type = STT_OBJECT;
5629 }
5630
5631 return TRUE;
5632 }
5633
5634 /* Set up the sizes and contents of the ELF dynamic sections. This is
5635 called by the ELF linker emulation before_allocation routine. We
5636 must set the sizes of the sections before the linker sets the
5637 addresses of the various sections. */
5638
5639 bfd_boolean
5640 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5641 const char *soname,
5642 const char *rpath,
5643 const char *filter_shlib,
5644 const char *audit,
5645 const char *depaudit,
5646 const char * const *auxiliary_filters,
5647 struct bfd_link_info *info,
5648 asection **sinterpptr)
5649 {
5650 bfd_size_type soname_indx;
5651 bfd *dynobj;
5652 const struct elf_backend_data *bed;
5653 struct elf_info_failed asvinfo;
5654
5655 *sinterpptr = NULL;
5656
5657 soname_indx = (bfd_size_type) -1;
5658
5659 if (!is_elf_hash_table (info->hash))
5660 return TRUE;
5661
5662 bed = get_elf_backend_data (output_bfd);
5663
5664 /* Any syms created from now on start with -1 in
5665 got.refcount/offset and plt.refcount/offset. */
5666 elf_hash_table (info)->init_got_refcount
5667 = elf_hash_table (info)->init_got_offset;
5668 elf_hash_table (info)->init_plt_refcount
5669 = elf_hash_table (info)->init_plt_offset;
5670
5671 if (info->relocatable
5672 && !_bfd_elf_size_group_sections (info))
5673 return FALSE;
5674
5675 /* The backend may have to create some sections regardless of whether
5676 we're dynamic or not. */
5677 if (bed->elf_backend_always_size_sections
5678 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5679 return FALSE;
5680
5681 /* Determine any GNU_STACK segment requirements, after the backend
5682 has had a chance to set a default segment size. */
5683 if (info->execstack)
5684 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5685 else if (info->noexecstack)
5686 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5687 else
5688 {
5689 bfd *inputobj;
5690 asection *notesec = NULL;
5691 int exec = 0;
5692
5693 for (inputobj = info->input_bfds;
5694 inputobj;
5695 inputobj = inputobj->link_next)
5696 {
5697 asection *s;
5698
5699 if (inputobj->flags
5700 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5701 continue;
5702 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5703 if (s)
5704 {
5705 if (s->flags & SEC_CODE)
5706 exec = PF_X;
5707 notesec = s;
5708 }
5709 else if (bed->default_execstack)
5710 exec = PF_X;
5711 }
5712 if (notesec || info->stacksize > 0)
5713 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5714 if (notesec && exec && info->relocatable
5715 && notesec->output_section != bfd_abs_section_ptr)
5716 notesec->output_section->flags |= SEC_CODE;
5717 }
5718
5719 dynobj = elf_hash_table (info)->dynobj;
5720
5721 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5722 {
5723 struct elf_info_failed eif;
5724 struct elf_link_hash_entry *h;
5725 asection *dynstr;
5726 struct bfd_elf_version_tree *t;
5727 struct bfd_elf_version_expr *d;
5728 asection *s;
5729 bfd_boolean all_defined;
5730
5731 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5732 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5733
5734 if (soname != NULL)
5735 {
5736 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5737 soname, TRUE);
5738 if (soname_indx == (bfd_size_type) -1
5739 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5740 return FALSE;
5741 }
5742
5743 if (info->symbolic)
5744 {
5745 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5746 return FALSE;
5747 info->flags |= DF_SYMBOLIC;
5748 }
5749
5750 if (rpath != NULL)
5751 {
5752 bfd_size_type indx;
5753
5754 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5755 TRUE);
5756 if (indx == (bfd_size_type) -1
5757 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5758 return FALSE;
5759
5760 if (info->new_dtags)
5761 {
5762 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5763 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5764 return FALSE;
5765 }
5766 }
5767
5768 if (filter_shlib != NULL)
5769 {
5770 bfd_size_type indx;
5771
5772 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5773 filter_shlib, TRUE);
5774 if (indx == (bfd_size_type) -1
5775 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5776 return FALSE;
5777 }
5778
5779 if (auxiliary_filters != NULL)
5780 {
5781 const char * const *p;
5782
5783 for (p = auxiliary_filters; *p != NULL; p++)
5784 {
5785 bfd_size_type indx;
5786
5787 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5788 *p, TRUE);
5789 if (indx == (bfd_size_type) -1
5790 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5791 return FALSE;
5792 }
5793 }
5794
5795 if (audit != NULL)
5796 {
5797 bfd_size_type indx;
5798
5799 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5800 TRUE);
5801 if (indx == (bfd_size_type) -1
5802 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5803 return FALSE;
5804 }
5805
5806 if (depaudit != NULL)
5807 {
5808 bfd_size_type indx;
5809
5810 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5811 TRUE);
5812 if (indx == (bfd_size_type) -1
5813 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5814 return FALSE;
5815 }
5816
5817 eif.info = info;
5818 eif.failed = FALSE;
5819
5820 /* If we are supposed to export all symbols into the dynamic symbol
5821 table (this is not the normal case), then do so. */
5822 if (info->export_dynamic
5823 || (info->executable && info->dynamic))
5824 {
5825 elf_link_hash_traverse (elf_hash_table (info),
5826 _bfd_elf_export_symbol,
5827 &eif);
5828 if (eif.failed)
5829 return FALSE;
5830 }
5831
5832 /* Make all global versions with definition. */
5833 for (t = info->version_info; t != NULL; t = t->next)
5834 for (d = t->globals.list; d != NULL; d = d->next)
5835 if (!d->symver && d->literal)
5836 {
5837 const char *verstr, *name;
5838 size_t namelen, verlen, newlen;
5839 char *newname, *p, leading_char;
5840 struct elf_link_hash_entry *newh;
5841
5842 leading_char = bfd_get_symbol_leading_char (output_bfd);
5843 name = d->pattern;
5844 namelen = strlen (name) + (leading_char != '\0');
5845 verstr = t->name;
5846 verlen = strlen (verstr);
5847 newlen = namelen + verlen + 3;
5848
5849 newname = (char *) bfd_malloc (newlen);
5850 if (newname == NULL)
5851 return FALSE;
5852 newname[0] = leading_char;
5853 memcpy (newname + (leading_char != '\0'), name, namelen);
5854
5855 /* Check the hidden versioned definition. */
5856 p = newname + namelen;
5857 *p++ = ELF_VER_CHR;
5858 memcpy (p, verstr, verlen + 1);
5859 newh = elf_link_hash_lookup (elf_hash_table (info),
5860 newname, FALSE, FALSE,
5861 FALSE);
5862 if (newh == NULL
5863 || (newh->root.type != bfd_link_hash_defined
5864 && newh->root.type != bfd_link_hash_defweak))
5865 {
5866 /* Check the default versioned definition. */
5867 *p++ = ELF_VER_CHR;
5868 memcpy (p, verstr, verlen + 1);
5869 newh = elf_link_hash_lookup (elf_hash_table (info),
5870 newname, FALSE, FALSE,
5871 FALSE);
5872 }
5873 free (newname);
5874
5875 /* Mark this version if there is a definition and it is
5876 not defined in a shared object. */
5877 if (newh != NULL
5878 && !newh->def_dynamic
5879 && (newh->root.type == bfd_link_hash_defined
5880 || newh->root.type == bfd_link_hash_defweak))
5881 d->symver = 1;
5882 }
5883
5884 /* Attach all the symbols to their version information. */
5885 asvinfo.info = info;
5886 asvinfo.failed = FALSE;
5887
5888 elf_link_hash_traverse (elf_hash_table (info),
5889 _bfd_elf_link_assign_sym_version,
5890 &asvinfo);
5891 if (asvinfo.failed)
5892 return FALSE;
5893
5894 if (!info->allow_undefined_version)
5895 {
5896 /* Check if all global versions have a definition. */
5897 all_defined = TRUE;
5898 for (t = info->version_info; t != NULL; t = t->next)
5899 for (d = t->globals.list; d != NULL; d = d->next)
5900 if (d->literal && !d->symver && !d->script)
5901 {
5902 (*_bfd_error_handler)
5903 (_("%s: undefined version: %s"),
5904 d->pattern, t->name);
5905 all_defined = FALSE;
5906 }
5907
5908 if (!all_defined)
5909 {
5910 bfd_set_error (bfd_error_bad_value);
5911 return FALSE;
5912 }
5913 }
5914
5915 /* Find all symbols which were defined in a dynamic object and make
5916 the backend pick a reasonable value for them. */
5917 elf_link_hash_traverse (elf_hash_table (info),
5918 _bfd_elf_adjust_dynamic_symbol,
5919 &eif);
5920 if (eif.failed)
5921 return FALSE;
5922
5923 /* Add some entries to the .dynamic section. We fill in some of the
5924 values later, in bfd_elf_final_link, but we must add the entries
5925 now so that we know the final size of the .dynamic section. */
5926
5927 /* If there are initialization and/or finalization functions to
5928 call then add the corresponding DT_INIT/DT_FINI entries. */
5929 h = (info->init_function
5930 ? elf_link_hash_lookup (elf_hash_table (info),
5931 info->init_function, FALSE,
5932 FALSE, FALSE)
5933 : NULL);
5934 if (h != NULL
5935 && (h->ref_regular
5936 || h->def_regular))
5937 {
5938 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5939 return FALSE;
5940 }
5941 h = (info->fini_function
5942 ? elf_link_hash_lookup (elf_hash_table (info),
5943 info->fini_function, FALSE,
5944 FALSE, FALSE)
5945 : NULL);
5946 if (h != NULL
5947 && (h->ref_regular
5948 || h->def_regular))
5949 {
5950 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5951 return FALSE;
5952 }
5953
5954 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5955 if (s != NULL && s->linker_has_input)
5956 {
5957 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5958 if (! info->executable)
5959 {
5960 bfd *sub;
5961 asection *o;
5962
5963 for (sub = info->input_bfds; sub != NULL;
5964 sub = sub->link_next)
5965 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5966 for (o = sub->sections; o != NULL; o = o->next)
5967 if (elf_section_data (o)->this_hdr.sh_type
5968 == SHT_PREINIT_ARRAY)
5969 {
5970 (*_bfd_error_handler)
5971 (_("%B: .preinit_array section is not allowed in DSO"),
5972 sub);
5973 break;
5974 }
5975
5976 bfd_set_error (bfd_error_nonrepresentable_section);
5977 return FALSE;
5978 }
5979
5980 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5981 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5982 return FALSE;
5983 }
5984 s = bfd_get_section_by_name (output_bfd, ".init_array");
5985 if (s != NULL && s->linker_has_input)
5986 {
5987 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5988 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5989 return FALSE;
5990 }
5991 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5992 if (s != NULL && s->linker_has_input)
5993 {
5994 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5995 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5996 return FALSE;
5997 }
5998
5999 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6000 /* If .dynstr is excluded from the link, we don't want any of
6001 these tags. Strictly, we should be checking each section
6002 individually; This quick check covers for the case where
6003 someone does a /DISCARD/ : { *(*) }. */
6004 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6005 {
6006 bfd_size_type strsize;
6007
6008 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6009 if ((info->emit_hash
6010 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6011 || (info->emit_gnu_hash
6012 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6013 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6014 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6015 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6016 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6017 bed->s->sizeof_sym))
6018 return FALSE;
6019 }
6020 }
6021
6022 /* The backend must work out the sizes of all the other dynamic
6023 sections. */
6024 if (dynobj != NULL
6025 && bed->elf_backend_size_dynamic_sections != NULL
6026 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6027 return FALSE;
6028
6029 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6030 return FALSE;
6031
6032 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6033 {
6034 unsigned long section_sym_count;
6035 struct bfd_elf_version_tree *verdefs;
6036 asection *s;
6037
6038 /* Set up the version definition section. */
6039 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6040 BFD_ASSERT (s != NULL);
6041
6042 /* We may have created additional version definitions if we are
6043 just linking a regular application. */
6044 verdefs = info->version_info;
6045
6046 /* Skip anonymous version tag. */
6047 if (verdefs != NULL && verdefs->vernum == 0)
6048 verdefs = verdefs->next;
6049
6050 if (verdefs == NULL && !info->create_default_symver)
6051 s->flags |= SEC_EXCLUDE;
6052 else
6053 {
6054 unsigned int cdefs;
6055 bfd_size_type size;
6056 struct bfd_elf_version_tree *t;
6057 bfd_byte *p;
6058 Elf_Internal_Verdef def;
6059 Elf_Internal_Verdaux defaux;
6060 struct bfd_link_hash_entry *bh;
6061 struct elf_link_hash_entry *h;
6062 const char *name;
6063
6064 cdefs = 0;
6065 size = 0;
6066
6067 /* Make space for the base version. */
6068 size += sizeof (Elf_External_Verdef);
6069 size += sizeof (Elf_External_Verdaux);
6070 ++cdefs;
6071
6072 /* Make space for the default version. */
6073 if (info->create_default_symver)
6074 {
6075 size += sizeof (Elf_External_Verdef);
6076 ++cdefs;
6077 }
6078
6079 for (t = verdefs; t != NULL; t = t->next)
6080 {
6081 struct bfd_elf_version_deps *n;
6082
6083 /* Don't emit base version twice. */
6084 if (t->vernum == 0)
6085 continue;
6086
6087 size += sizeof (Elf_External_Verdef);
6088 size += sizeof (Elf_External_Verdaux);
6089 ++cdefs;
6090
6091 for (n = t->deps; n != NULL; n = n->next)
6092 size += sizeof (Elf_External_Verdaux);
6093 }
6094
6095 s->size = size;
6096 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6097 if (s->contents == NULL && s->size != 0)
6098 return FALSE;
6099
6100 /* Fill in the version definition section. */
6101
6102 p = s->contents;
6103
6104 def.vd_version = VER_DEF_CURRENT;
6105 def.vd_flags = VER_FLG_BASE;
6106 def.vd_ndx = 1;
6107 def.vd_cnt = 1;
6108 if (info->create_default_symver)
6109 {
6110 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6111 def.vd_next = sizeof (Elf_External_Verdef);
6112 }
6113 else
6114 {
6115 def.vd_aux = sizeof (Elf_External_Verdef);
6116 def.vd_next = (sizeof (Elf_External_Verdef)
6117 + sizeof (Elf_External_Verdaux));
6118 }
6119
6120 if (soname_indx != (bfd_size_type) -1)
6121 {
6122 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6123 soname_indx);
6124 def.vd_hash = bfd_elf_hash (soname);
6125 defaux.vda_name = soname_indx;
6126 name = soname;
6127 }
6128 else
6129 {
6130 bfd_size_type indx;
6131
6132 name = lbasename (output_bfd->filename);
6133 def.vd_hash = bfd_elf_hash (name);
6134 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6135 name, FALSE);
6136 if (indx == (bfd_size_type) -1)
6137 return FALSE;
6138 defaux.vda_name = indx;
6139 }
6140 defaux.vda_next = 0;
6141
6142 _bfd_elf_swap_verdef_out (output_bfd, &def,
6143 (Elf_External_Verdef *) p);
6144 p += sizeof (Elf_External_Verdef);
6145 if (info->create_default_symver)
6146 {
6147 /* Add a symbol representing this version. */
6148 bh = NULL;
6149 if (! (_bfd_generic_link_add_one_symbol
6150 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6151 0, NULL, FALSE,
6152 get_elf_backend_data (dynobj)->collect, &bh)))
6153 return FALSE;
6154 h = (struct elf_link_hash_entry *) bh;
6155 h->non_elf = 0;
6156 h->def_regular = 1;
6157 h->type = STT_OBJECT;
6158 h->verinfo.vertree = NULL;
6159
6160 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6161 return FALSE;
6162
6163 /* Create a duplicate of the base version with the same
6164 aux block, but different flags. */
6165 def.vd_flags = 0;
6166 def.vd_ndx = 2;
6167 def.vd_aux = sizeof (Elf_External_Verdef);
6168 if (verdefs)
6169 def.vd_next = (sizeof (Elf_External_Verdef)
6170 + sizeof (Elf_External_Verdaux));
6171 else
6172 def.vd_next = 0;
6173 _bfd_elf_swap_verdef_out (output_bfd, &def,
6174 (Elf_External_Verdef *) p);
6175 p += sizeof (Elf_External_Verdef);
6176 }
6177 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6178 (Elf_External_Verdaux *) p);
6179 p += sizeof (Elf_External_Verdaux);
6180
6181 for (t = verdefs; t != NULL; t = t->next)
6182 {
6183 unsigned int cdeps;
6184 struct bfd_elf_version_deps *n;
6185
6186 /* Don't emit the base version twice. */
6187 if (t->vernum == 0)
6188 continue;
6189
6190 cdeps = 0;
6191 for (n = t->deps; n != NULL; n = n->next)
6192 ++cdeps;
6193
6194 /* Add a symbol representing this version. */
6195 bh = NULL;
6196 if (! (_bfd_generic_link_add_one_symbol
6197 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6198 0, NULL, FALSE,
6199 get_elf_backend_data (dynobj)->collect, &bh)))
6200 return FALSE;
6201 h = (struct elf_link_hash_entry *) bh;
6202 h->non_elf = 0;
6203 h->def_regular = 1;
6204 h->type = STT_OBJECT;
6205 h->verinfo.vertree = t;
6206
6207 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6208 return FALSE;
6209
6210 def.vd_version = VER_DEF_CURRENT;
6211 def.vd_flags = 0;
6212 if (t->globals.list == NULL
6213 && t->locals.list == NULL
6214 && ! t->used)
6215 def.vd_flags |= VER_FLG_WEAK;
6216 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6217 def.vd_cnt = cdeps + 1;
6218 def.vd_hash = bfd_elf_hash (t->name);
6219 def.vd_aux = sizeof (Elf_External_Verdef);
6220 def.vd_next = 0;
6221
6222 /* If a basever node is next, it *must* be the last node in
6223 the chain, otherwise Verdef construction breaks. */
6224 if (t->next != NULL && t->next->vernum == 0)
6225 BFD_ASSERT (t->next->next == NULL);
6226
6227 if (t->next != NULL && t->next->vernum != 0)
6228 def.vd_next = (sizeof (Elf_External_Verdef)
6229 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6230
6231 _bfd_elf_swap_verdef_out (output_bfd, &def,
6232 (Elf_External_Verdef *) p);
6233 p += sizeof (Elf_External_Verdef);
6234
6235 defaux.vda_name = h->dynstr_index;
6236 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6237 h->dynstr_index);
6238 defaux.vda_next = 0;
6239 if (t->deps != NULL)
6240 defaux.vda_next = sizeof (Elf_External_Verdaux);
6241 t->name_indx = defaux.vda_name;
6242
6243 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6244 (Elf_External_Verdaux *) p);
6245 p += sizeof (Elf_External_Verdaux);
6246
6247 for (n = t->deps; n != NULL; n = n->next)
6248 {
6249 if (n->version_needed == NULL)
6250 {
6251 /* This can happen if there was an error in the
6252 version script. */
6253 defaux.vda_name = 0;
6254 }
6255 else
6256 {
6257 defaux.vda_name = n->version_needed->name_indx;
6258 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6259 defaux.vda_name);
6260 }
6261 if (n->next == NULL)
6262 defaux.vda_next = 0;
6263 else
6264 defaux.vda_next = sizeof (Elf_External_Verdaux);
6265
6266 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6267 (Elf_External_Verdaux *) p);
6268 p += sizeof (Elf_External_Verdaux);
6269 }
6270 }
6271
6272 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6273 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6274 return FALSE;
6275
6276 elf_tdata (output_bfd)->cverdefs = cdefs;
6277 }
6278
6279 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6280 {
6281 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6282 return FALSE;
6283 }
6284 else if (info->flags & DF_BIND_NOW)
6285 {
6286 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6287 return FALSE;
6288 }
6289
6290 if (info->flags_1)
6291 {
6292 if (info->executable)
6293 info->flags_1 &= ~ (DF_1_INITFIRST
6294 | DF_1_NODELETE
6295 | DF_1_NOOPEN);
6296 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6297 return FALSE;
6298 }
6299
6300 /* Work out the size of the version reference section. */
6301
6302 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6303 BFD_ASSERT (s != NULL);
6304 {
6305 struct elf_find_verdep_info sinfo;
6306
6307 sinfo.info = info;
6308 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6309 if (sinfo.vers == 0)
6310 sinfo.vers = 1;
6311 sinfo.failed = FALSE;
6312
6313 elf_link_hash_traverse (elf_hash_table (info),
6314 _bfd_elf_link_find_version_dependencies,
6315 &sinfo);
6316 if (sinfo.failed)
6317 return FALSE;
6318
6319 if (elf_tdata (output_bfd)->verref == NULL)
6320 s->flags |= SEC_EXCLUDE;
6321 else
6322 {
6323 Elf_Internal_Verneed *t;
6324 unsigned int size;
6325 unsigned int crefs;
6326 bfd_byte *p;
6327
6328 /* Build the version dependency section. */
6329 size = 0;
6330 crefs = 0;
6331 for (t = elf_tdata (output_bfd)->verref;
6332 t != NULL;
6333 t = t->vn_nextref)
6334 {
6335 Elf_Internal_Vernaux *a;
6336
6337 size += sizeof (Elf_External_Verneed);
6338 ++crefs;
6339 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6340 size += sizeof (Elf_External_Vernaux);
6341 }
6342
6343 s->size = size;
6344 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6345 if (s->contents == NULL)
6346 return FALSE;
6347
6348 p = s->contents;
6349 for (t = elf_tdata (output_bfd)->verref;
6350 t != NULL;
6351 t = t->vn_nextref)
6352 {
6353 unsigned int caux;
6354 Elf_Internal_Vernaux *a;
6355 bfd_size_type indx;
6356
6357 caux = 0;
6358 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6359 ++caux;
6360
6361 t->vn_version = VER_NEED_CURRENT;
6362 t->vn_cnt = caux;
6363 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6364 elf_dt_name (t->vn_bfd) != NULL
6365 ? elf_dt_name (t->vn_bfd)
6366 : lbasename (t->vn_bfd->filename),
6367 FALSE);
6368 if (indx == (bfd_size_type) -1)
6369 return FALSE;
6370 t->vn_file = indx;
6371 t->vn_aux = sizeof (Elf_External_Verneed);
6372 if (t->vn_nextref == NULL)
6373 t->vn_next = 0;
6374 else
6375 t->vn_next = (sizeof (Elf_External_Verneed)
6376 + caux * sizeof (Elf_External_Vernaux));
6377
6378 _bfd_elf_swap_verneed_out (output_bfd, t,
6379 (Elf_External_Verneed *) p);
6380 p += sizeof (Elf_External_Verneed);
6381
6382 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6383 {
6384 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6385 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6386 a->vna_nodename, FALSE);
6387 if (indx == (bfd_size_type) -1)
6388 return FALSE;
6389 a->vna_name = indx;
6390 if (a->vna_nextptr == NULL)
6391 a->vna_next = 0;
6392 else
6393 a->vna_next = sizeof (Elf_External_Vernaux);
6394
6395 _bfd_elf_swap_vernaux_out (output_bfd, a,
6396 (Elf_External_Vernaux *) p);
6397 p += sizeof (Elf_External_Vernaux);
6398 }
6399 }
6400
6401 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6402 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6403 return FALSE;
6404
6405 elf_tdata (output_bfd)->cverrefs = crefs;
6406 }
6407 }
6408
6409 if ((elf_tdata (output_bfd)->cverrefs == 0
6410 && elf_tdata (output_bfd)->cverdefs == 0)
6411 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6412 &section_sym_count) == 0)
6413 {
6414 s = bfd_get_linker_section (dynobj, ".gnu.version");
6415 s->flags |= SEC_EXCLUDE;
6416 }
6417 }
6418 return TRUE;
6419 }
6420
6421 /* Find the first non-excluded output section. We'll use its
6422 section symbol for some emitted relocs. */
6423 void
6424 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6425 {
6426 asection *s;
6427
6428 for (s = output_bfd->sections; s != NULL; s = s->next)
6429 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6430 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6431 {
6432 elf_hash_table (info)->text_index_section = s;
6433 break;
6434 }
6435 }
6436
6437 /* Find two non-excluded output sections, one for code, one for data.
6438 We'll use their section symbols for some emitted relocs. */
6439 void
6440 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6441 {
6442 asection *s;
6443
6444 /* Data first, since setting text_index_section changes
6445 _bfd_elf_link_omit_section_dynsym. */
6446 for (s = output_bfd->sections; s != NULL; s = s->next)
6447 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6448 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6449 {
6450 elf_hash_table (info)->data_index_section = s;
6451 break;
6452 }
6453
6454 for (s = output_bfd->sections; s != NULL; s = s->next)
6455 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6456 == (SEC_ALLOC | SEC_READONLY))
6457 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6458 {
6459 elf_hash_table (info)->text_index_section = s;
6460 break;
6461 }
6462
6463 if (elf_hash_table (info)->text_index_section == NULL)
6464 elf_hash_table (info)->text_index_section
6465 = elf_hash_table (info)->data_index_section;
6466 }
6467
6468 bfd_boolean
6469 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6470 {
6471 const struct elf_backend_data *bed;
6472
6473 if (!is_elf_hash_table (info->hash))
6474 return TRUE;
6475
6476 bed = get_elf_backend_data (output_bfd);
6477 (*bed->elf_backend_init_index_section) (output_bfd, info);
6478
6479 if (elf_hash_table (info)->dynamic_sections_created)
6480 {
6481 bfd *dynobj;
6482 asection *s;
6483 bfd_size_type dynsymcount;
6484 unsigned long section_sym_count;
6485 unsigned int dtagcount;
6486
6487 dynobj = elf_hash_table (info)->dynobj;
6488
6489 /* Assign dynsym indicies. In a shared library we generate a
6490 section symbol for each output section, which come first.
6491 Next come all of the back-end allocated local dynamic syms,
6492 followed by the rest of the global symbols. */
6493
6494 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6495 &section_sym_count);
6496
6497 /* Work out the size of the symbol version section. */
6498 s = bfd_get_linker_section (dynobj, ".gnu.version");
6499 BFD_ASSERT (s != NULL);
6500 if (dynsymcount != 0
6501 && (s->flags & SEC_EXCLUDE) == 0)
6502 {
6503 s->size = dynsymcount * sizeof (Elf_External_Versym);
6504 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6505 if (s->contents == NULL)
6506 return FALSE;
6507
6508 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6509 return FALSE;
6510 }
6511
6512 /* Set the size of the .dynsym and .hash sections. We counted
6513 the number of dynamic symbols in elf_link_add_object_symbols.
6514 We will build the contents of .dynsym and .hash when we build
6515 the final symbol table, because until then we do not know the
6516 correct value to give the symbols. We built the .dynstr
6517 section as we went along in elf_link_add_object_symbols. */
6518 s = bfd_get_linker_section (dynobj, ".dynsym");
6519 BFD_ASSERT (s != NULL);
6520 s->size = dynsymcount * bed->s->sizeof_sym;
6521
6522 if (dynsymcount != 0)
6523 {
6524 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6525 if (s->contents == NULL)
6526 return FALSE;
6527
6528 /* The first entry in .dynsym is a dummy symbol.
6529 Clear all the section syms, in case we don't output them all. */
6530 ++section_sym_count;
6531 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6532 }
6533
6534 elf_hash_table (info)->bucketcount = 0;
6535
6536 /* Compute the size of the hashing table. As a side effect this
6537 computes the hash values for all the names we export. */
6538 if (info->emit_hash)
6539 {
6540 unsigned long int *hashcodes;
6541 struct hash_codes_info hashinf;
6542 bfd_size_type amt;
6543 unsigned long int nsyms;
6544 size_t bucketcount;
6545 size_t hash_entry_size;
6546
6547 /* Compute the hash values for all exported symbols. At the same
6548 time store the values in an array so that we could use them for
6549 optimizations. */
6550 amt = dynsymcount * sizeof (unsigned long int);
6551 hashcodes = (unsigned long int *) bfd_malloc (amt);
6552 if (hashcodes == NULL)
6553 return FALSE;
6554 hashinf.hashcodes = hashcodes;
6555 hashinf.error = FALSE;
6556
6557 /* Put all hash values in HASHCODES. */
6558 elf_link_hash_traverse (elf_hash_table (info),
6559 elf_collect_hash_codes, &hashinf);
6560 if (hashinf.error)
6561 {
6562 free (hashcodes);
6563 return FALSE;
6564 }
6565
6566 nsyms = hashinf.hashcodes - hashcodes;
6567 bucketcount
6568 = compute_bucket_count (info, hashcodes, nsyms, 0);
6569 free (hashcodes);
6570
6571 if (bucketcount == 0)
6572 return FALSE;
6573
6574 elf_hash_table (info)->bucketcount = bucketcount;
6575
6576 s = bfd_get_linker_section (dynobj, ".hash");
6577 BFD_ASSERT (s != NULL);
6578 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6579 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6580 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6581 if (s->contents == NULL)
6582 return FALSE;
6583
6584 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6585 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6586 s->contents + hash_entry_size);
6587 }
6588
6589 if (info->emit_gnu_hash)
6590 {
6591 size_t i, cnt;
6592 unsigned char *contents;
6593 struct collect_gnu_hash_codes cinfo;
6594 bfd_size_type amt;
6595 size_t bucketcount;
6596
6597 memset (&cinfo, 0, sizeof (cinfo));
6598
6599 /* Compute the hash values for all exported symbols. At the same
6600 time store the values in an array so that we could use them for
6601 optimizations. */
6602 amt = dynsymcount * 2 * sizeof (unsigned long int);
6603 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6604 if (cinfo.hashcodes == NULL)
6605 return FALSE;
6606
6607 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6608 cinfo.min_dynindx = -1;
6609 cinfo.output_bfd = output_bfd;
6610 cinfo.bed = bed;
6611
6612 /* Put all hash values in HASHCODES. */
6613 elf_link_hash_traverse (elf_hash_table (info),
6614 elf_collect_gnu_hash_codes, &cinfo);
6615 if (cinfo.error)
6616 {
6617 free (cinfo.hashcodes);
6618 return FALSE;
6619 }
6620
6621 bucketcount
6622 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6623
6624 if (bucketcount == 0)
6625 {
6626 free (cinfo.hashcodes);
6627 return FALSE;
6628 }
6629
6630 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6631 BFD_ASSERT (s != NULL);
6632
6633 if (cinfo.nsyms == 0)
6634 {
6635 /* Empty .gnu.hash section is special. */
6636 BFD_ASSERT (cinfo.min_dynindx == -1);
6637 free (cinfo.hashcodes);
6638 s->size = 5 * 4 + bed->s->arch_size / 8;
6639 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6640 if (contents == NULL)
6641 return FALSE;
6642 s->contents = contents;
6643 /* 1 empty bucket. */
6644 bfd_put_32 (output_bfd, 1, contents);
6645 /* SYMIDX above the special symbol 0. */
6646 bfd_put_32 (output_bfd, 1, contents + 4);
6647 /* Just one word for bitmask. */
6648 bfd_put_32 (output_bfd, 1, contents + 8);
6649 /* Only hash fn bloom filter. */
6650 bfd_put_32 (output_bfd, 0, contents + 12);
6651 /* No hashes are valid - empty bitmask. */
6652 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6653 /* No hashes in the only bucket. */
6654 bfd_put_32 (output_bfd, 0,
6655 contents + 16 + bed->s->arch_size / 8);
6656 }
6657 else
6658 {
6659 unsigned long int maskwords, maskbitslog2, x;
6660 BFD_ASSERT (cinfo.min_dynindx != -1);
6661
6662 x = cinfo.nsyms;
6663 maskbitslog2 = 1;
6664 while ((x >>= 1) != 0)
6665 ++maskbitslog2;
6666 if (maskbitslog2 < 3)
6667 maskbitslog2 = 5;
6668 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6669 maskbitslog2 = maskbitslog2 + 3;
6670 else
6671 maskbitslog2 = maskbitslog2 + 2;
6672 if (bed->s->arch_size == 64)
6673 {
6674 if (maskbitslog2 == 5)
6675 maskbitslog2 = 6;
6676 cinfo.shift1 = 6;
6677 }
6678 else
6679 cinfo.shift1 = 5;
6680 cinfo.mask = (1 << cinfo.shift1) - 1;
6681 cinfo.shift2 = maskbitslog2;
6682 cinfo.maskbits = 1 << maskbitslog2;
6683 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6684 amt = bucketcount * sizeof (unsigned long int) * 2;
6685 amt += maskwords * sizeof (bfd_vma);
6686 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6687 if (cinfo.bitmask == NULL)
6688 {
6689 free (cinfo.hashcodes);
6690 return FALSE;
6691 }
6692
6693 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6694 cinfo.indx = cinfo.counts + bucketcount;
6695 cinfo.symindx = dynsymcount - cinfo.nsyms;
6696 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6697
6698 /* Determine how often each hash bucket is used. */
6699 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6700 for (i = 0; i < cinfo.nsyms; ++i)
6701 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6702
6703 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6704 if (cinfo.counts[i] != 0)
6705 {
6706 cinfo.indx[i] = cnt;
6707 cnt += cinfo.counts[i];
6708 }
6709 BFD_ASSERT (cnt == dynsymcount);
6710 cinfo.bucketcount = bucketcount;
6711 cinfo.local_indx = cinfo.min_dynindx;
6712
6713 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6714 s->size += cinfo.maskbits / 8;
6715 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6716 if (contents == NULL)
6717 {
6718 free (cinfo.bitmask);
6719 free (cinfo.hashcodes);
6720 return FALSE;
6721 }
6722
6723 s->contents = contents;
6724 bfd_put_32 (output_bfd, bucketcount, contents);
6725 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6726 bfd_put_32 (output_bfd, maskwords, contents + 8);
6727 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6728 contents += 16 + cinfo.maskbits / 8;
6729
6730 for (i = 0; i < bucketcount; ++i)
6731 {
6732 if (cinfo.counts[i] == 0)
6733 bfd_put_32 (output_bfd, 0, contents);
6734 else
6735 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6736 contents += 4;
6737 }
6738
6739 cinfo.contents = contents;
6740
6741 /* Renumber dynamic symbols, populate .gnu.hash section. */
6742 elf_link_hash_traverse (elf_hash_table (info),
6743 elf_renumber_gnu_hash_syms, &cinfo);
6744
6745 contents = s->contents + 16;
6746 for (i = 0; i < maskwords; ++i)
6747 {
6748 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6749 contents);
6750 contents += bed->s->arch_size / 8;
6751 }
6752
6753 free (cinfo.bitmask);
6754 free (cinfo.hashcodes);
6755 }
6756 }
6757
6758 s = bfd_get_linker_section (dynobj, ".dynstr");
6759 BFD_ASSERT (s != NULL);
6760
6761 elf_finalize_dynstr (output_bfd, info);
6762
6763 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6764
6765 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6766 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6767 return FALSE;
6768 }
6769
6770 return TRUE;
6771 }
6772 \f
6773 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6774
6775 static void
6776 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6777 asection *sec)
6778 {
6779 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6780 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6781 }
6782
6783 /* Finish SHF_MERGE section merging. */
6784
6785 bfd_boolean
6786 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6787 {
6788 bfd *ibfd;
6789 asection *sec;
6790
6791 if (!is_elf_hash_table (info->hash))
6792 return FALSE;
6793
6794 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6795 if ((ibfd->flags & DYNAMIC) == 0)
6796 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6797 if ((sec->flags & SEC_MERGE) != 0
6798 && !bfd_is_abs_section (sec->output_section))
6799 {
6800 struct bfd_elf_section_data *secdata;
6801
6802 secdata = elf_section_data (sec);
6803 if (! _bfd_add_merge_section (abfd,
6804 &elf_hash_table (info)->merge_info,
6805 sec, &secdata->sec_info))
6806 return FALSE;
6807 else if (secdata->sec_info)
6808 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6809 }
6810
6811 if (elf_hash_table (info)->merge_info != NULL)
6812 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6813 merge_sections_remove_hook);
6814 return TRUE;
6815 }
6816
6817 /* Create an entry in an ELF linker hash table. */
6818
6819 struct bfd_hash_entry *
6820 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6821 struct bfd_hash_table *table,
6822 const char *string)
6823 {
6824 /* Allocate the structure if it has not already been allocated by a
6825 subclass. */
6826 if (entry == NULL)
6827 {
6828 entry = (struct bfd_hash_entry *)
6829 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6830 if (entry == NULL)
6831 return entry;
6832 }
6833
6834 /* Call the allocation method of the superclass. */
6835 entry = _bfd_link_hash_newfunc (entry, table, string);
6836 if (entry != NULL)
6837 {
6838 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6839 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6840
6841 /* Set local fields. */
6842 ret->indx = -1;
6843 ret->dynindx = -1;
6844 ret->got = htab->init_got_refcount;
6845 ret->plt = htab->init_plt_refcount;
6846 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6847 - offsetof (struct elf_link_hash_entry, size)));
6848 /* Assume that we have been called by a non-ELF symbol reader.
6849 This flag is then reset by the code which reads an ELF input
6850 file. This ensures that a symbol created by a non-ELF symbol
6851 reader will have the flag set correctly. */
6852 ret->non_elf = 1;
6853 }
6854
6855 return entry;
6856 }
6857
6858 /* Copy data from an indirect symbol to its direct symbol, hiding the
6859 old indirect symbol. Also used for copying flags to a weakdef. */
6860
6861 void
6862 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6863 struct elf_link_hash_entry *dir,
6864 struct elf_link_hash_entry *ind)
6865 {
6866 struct elf_link_hash_table *htab;
6867
6868 /* Copy down any references that we may have already seen to the
6869 symbol which just became indirect. */
6870
6871 dir->ref_dynamic |= ind->ref_dynamic;
6872 dir->ref_regular |= ind->ref_regular;
6873 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6874 dir->non_got_ref |= ind->non_got_ref;
6875 dir->needs_plt |= ind->needs_plt;
6876 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6877
6878 if (ind->root.type != bfd_link_hash_indirect)
6879 return;
6880
6881 /* Copy over the global and procedure linkage table refcount entries.
6882 These may have been already set up by a check_relocs routine. */
6883 htab = elf_hash_table (info);
6884 if (ind->got.refcount > htab->init_got_refcount.refcount)
6885 {
6886 if (dir->got.refcount < 0)
6887 dir->got.refcount = 0;
6888 dir->got.refcount += ind->got.refcount;
6889 ind->got.refcount = htab->init_got_refcount.refcount;
6890 }
6891
6892 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6893 {
6894 if (dir->plt.refcount < 0)
6895 dir->plt.refcount = 0;
6896 dir->plt.refcount += ind->plt.refcount;
6897 ind->plt.refcount = htab->init_plt_refcount.refcount;
6898 }
6899
6900 if (ind->dynindx != -1)
6901 {
6902 if (dir->dynindx != -1)
6903 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6904 dir->dynindx = ind->dynindx;
6905 dir->dynstr_index = ind->dynstr_index;
6906 ind->dynindx = -1;
6907 ind->dynstr_index = 0;
6908 }
6909 }
6910
6911 void
6912 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6913 struct elf_link_hash_entry *h,
6914 bfd_boolean force_local)
6915 {
6916 /* STT_GNU_IFUNC symbol must go through PLT. */
6917 if (h->type != STT_GNU_IFUNC)
6918 {
6919 h->plt = elf_hash_table (info)->init_plt_offset;
6920 h->needs_plt = 0;
6921 }
6922 if (force_local)
6923 {
6924 h->forced_local = 1;
6925 if (h->dynindx != -1)
6926 {
6927 h->dynindx = -1;
6928 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6929 h->dynstr_index);
6930 }
6931 }
6932 }
6933
6934 /* Initialize an ELF linker hash table. */
6935
6936 bfd_boolean
6937 _bfd_elf_link_hash_table_init
6938 (struct elf_link_hash_table *table,
6939 bfd *abfd,
6940 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6941 struct bfd_hash_table *,
6942 const char *),
6943 unsigned int entsize,
6944 enum elf_target_id target_id)
6945 {
6946 bfd_boolean ret;
6947 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6948
6949 memset (table, 0, sizeof * table);
6950 table->init_got_refcount.refcount = can_refcount - 1;
6951 table->init_plt_refcount.refcount = can_refcount - 1;
6952 table->init_got_offset.offset = -(bfd_vma) 1;
6953 table->init_plt_offset.offset = -(bfd_vma) 1;
6954 /* The first dynamic symbol is a dummy. */
6955 table->dynsymcount = 1;
6956
6957 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6958
6959 table->root.type = bfd_link_elf_hash_table;
6960 table->hash_table_id = target_id;
6961
6962 return ret;
6963 }
6964
6965 /* Create an ELF linker hash table. */
6966
6967 struct bfd_link_hash_table *
6968 _bfd_elf_link_hash_table_create (bfd *abfd)
6969 {
6970 struct elf_link_hash_table *ret;
6971 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6972
6973 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6974 if (ret == NULL)
6975 return NULL;
6976
6977 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6978 sizeof (struct elf_link_hash_entry),
6979 GENERIC_ELF_DATA))
6980 {
6981 free (ret);
6982 return NULL;
6983 }
6984
6985 return &ret->root;
6986 }
6987
6988 /* This is a hook for the ELF emulation code in the generic linker to
6989 tell the backend linker what file name to use for the DT_NEEDED
6990 entry for a dynamic object. */
6991
6992 void
6993 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6994 {
6995 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6996 && bfd_get_format (abfd) == bfd_object)
6997 elf_dt_name (abfd) = name;
6998 }
6999
7000 int
7001 bfd_elf_get_dyn_lib_class (bfd *abfd)
7002 {
7003 int lib_class;
7004 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7005 && bfd_get_format (abfd) == bfd_object)
7006 lib_class = elf_dyn_lib_class (abfd);
7007 else
7008 lib_class = 0;
7009 return lib_class;
7010 }
7011
7012 void
7013 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7014 {
7015 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7016 && bfd_get_format (abfd) == bfd_object)
7017 elf_dyn_lib_class (abfd) = lib_class;
7018 }
7019
7020 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7021 the linker ELF emulation code. */
7022
7023 struct bfd_link_needed_list *
7024 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7025 struct bfd_link_info *info)
7026 {
7027 if (! is_elf_hash_table (info->hash))
7028 return NULL;
7029 return elf_hash_table (info)->needed;
7030 }
7031
7032 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7033 hook for the linker ELF emulation code. */
7034
7035 struct bfd_link_needed_list *
7036 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7037 struct bfd_link_info *info)
7038 {
7039 if (! is_elf_hash_table (info->hash))
7040 return NULL;
7041 return elf_hash_table (info)->runpath;
7042 }
7043
7044 /* Get the name actually used for a dynamic object for a link. This
7045 is the SONAME entry if there is one. Otherwise, it is the string
7046 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7047
7048 const char *
7049 bfd_elf_get_dt_soname (bfd *abfd)
7050 {
7051 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7052 && bfd_get_format (abfd) == bfd_object)
7053 return elf_dt_name (abfd);
7054 return NULL;
7055 }
7056
7057 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7058 the ELF linker emulation code. */
7059
7060 bfd_boolean
7061 bfd_elf_get_bfd_needed_list (bfd *abfd,
7062 struct bfd_link_needed_list **pneeded)
7063 {
7064 asection *s;
7065 bfd_byte *dynbuf = NULL;
7066 unsigned int elfsec;
7067 unsigned long shlink;
7068 bfd_byte *extdyn, *extdynend;
7069 size_t extdynsize;
7070 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7071
7072 *pneeded = NULL;
7073
7074 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7075 || bfd_get_format (abfd) != bfd_object)
7076 return TRUE;
7077
7078 s = bfd_get_section_by_name (abfd, ".dynamic");
7079 if (s == NULL || s->size == 0)
7080 return TRUE;
7081
7082 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7083 goto error_return;
7084
7085 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7086 if (elfsec == SHN_BAD)
7087 goto error_return;
7088
7089 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7090
7091 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7092 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7093
7094 extdyn = dynbuf;
7095 extdynend = extdyn + s->size;
7096 for (; extdyn < extdynend; extdyn += extdynsize)
7097 {
7098 Elf_Internal_Dyn dyn;
7099
7100 (*swap_dyn_in) (abfd, extdyn, &dyn);
7101
7102 if (dyn.d_tag == DT_NULL)
7103 break;
7104
7105 if (dyn.d_tag == DT_NEEDED)
7106 {
7107 const char *string;
7108 struct bfd_link_needed_list *l;
7109 unsigned int tagv = dyn.d_un.d_val;
7110 bfd_size_type amt;
7111
7112 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7113 if (string == NULL)
7114 goto error_return;
7115
7116 amt = sizeof *l;
7117 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7118 if (l == NULL)
7119 goto error_return;
7120
7121 l->by = abfd;
7122 l->name = string;
7123 l->next = *pneeded;
7124 *pneeded = l;
7125 }
7126 }
7127
7128 free (dynbuf);
7129
7130 return TRUE;
7131
7132 error_return:
7133 if (dynbuf != NULL)
7134 free (dynbuf);
7135 return FALSE;
7136 }
7137
7138 struct elf_symbuf_symbol
7139 {
7140 unsigned long st_name; /* Symbol name, index in string tbl */
7141 unsigned char st_info; /* Type and binding attributes */
7142 unsigned char st_other; /* Visibilty, and target specific */
7143 };
7144
7145 struct elf_symbuf_head
7146 {
7147 struct elf_symbuf_symbol *ssym;
7148 bfd_size_type count;
7149 unsigned int st_shndx;
7150 };
7151
7152 struct elf_symbol
7153 {
7154 union
7155 {
7156 Elf_Internal_Sym *isym;
7157 struct elf_symbuf_symbol *ssym;
7158 } u;
7159 const char *name;
7160 };
7161
7162 /* Sort references to symbols by ascending section number. */
7163
7164 static int
7165 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7166 {
7167 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7168 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7169
7170 return s1->st_shndx - s2->st_shndx;
7171 }
7172
7173 static int
7174 elf_sym_name_compare (const void *arg1, const void *arg2)
7175 {
7176 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7177 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7178 return strcmp (s1->name, s2->name);
7179 }
7180
7181 static struct elf_symbuf_head *
7182 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7183 {
7184 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7185 struct elf_symbuf_symbol *ssym;
7186 struct elf_symbuf_head *ssymbuf, *ssymhead;
7187 bfd_size_type i, shndx_count, total_size;
7188
7189 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7190 if (indbuf == NULL)
7191 return NULL;
7192
7193 for (ind = indbuf, i = 0; i < symcount; i++)
7194 if (isymbuf[i].st_shndx != SHN_UNDEF)
7195 *ind++ = &isymbuf[i];
7196 indbufend = ind;
7197
7198 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7199 elf_sort_elf_symbol);
7200
7201 shndx_count = 0;
7202 if (indbufend > indbuf)
7203 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7204 if (ind[0]->st_shndx != ind[1]->st_shndx)
7205 shndx_count++;
7206
7207 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7208 + (indbufend - indbuf) * sizeof (*ssym));
7209 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7210 if (ssymbuf == NULL)
7211 {
7212 free (indbuf);
7213 return NULL;
7214 }
7215
7216 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7217 ssymbuf->ssym = NULL;
7218 ssymbuf->count = shndx_count;
7219 ssymbuf->st_shndx = 0;
7220 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7221 {
7222 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7223 {
7224 ssymhead++;
7225 ssymhead->ssym = ssym;
7226 ssymhead->count = 0;
7227 ssymhead->st_shndx = (*ind)->st_shndx;
7228 }
7229 ssym->st_name = (*ind)->st_name;
7230 ssym->st_info = (*ind)->st_info;
7231 ssym->st_other = (*ind)->st_other;
7232 ssymhead->count++;
7233 }
7234 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7235 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7236 == total_size));
7237
7238 free (indbuf);
7239 return ssymbuf;
7240 }
7241
7242 /* Check if 2 sections define the same set of local and global
7243 symbols. */
7244
7245 static bfd_boolean
7246 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7247 struct bfd_link_info *info)
7248 {
7249 bfd *bfd1, *bfd2;
7250 const struct elf_backend_data *bed1, *bed2;
7251 Elf_Internal_Shdr *hdr1, *hdr2;
7252 bfd_size_type symcount1, symcount2;
7253 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7254 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7255 Elf_Internal_Sym *isym, *isymend;
7256 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7257 bfd_size_type count1, count2, i;
7258 unsigned int shndx1, shndx2;
7259 bfd_boolean result;
7260
7261 bfd1 = sec1->owner;
7262 bfd2 = sec2->owner;
7263
7264 /* Both sections have to be in ELF. */
7265 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7266 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7267 return FALSE;
7268
7269 if (elf_section_type (sec1) != elf_section_type (sec2))
7270 return FALSE;
7271
7272 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7273 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7274 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7275 return FALSE;
7276
7277 bed1 = get_elf_backend_data (bfd1);
7278 bed2 = get_elf_backend_data (bfd2);
7279 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7280 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7281 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7282 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7283
7284 if (symcount1 == 0 || symcount2 == 0)
7285 return FALSE;
7286
7287 result = FALSE;
7288 isymbuf1 = NULL;
7289 isymbuf2 = NULL;
7290 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7291 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7292
7293 if (ssymbuf1 == NULL)
7294 {
7295 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7296 NULL, NULL, NULL);
7297 if (isymbuf1 == NULL)
7298 goto done;
7299
7300 if (!info->reduce_memory_overheads)
7301 elf_tdata (bfd1)->symbuf = ssymbuf1
7302 = elf_create_symbuf (symcount1, isymbuf1);
7303 }
7304
7305 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7306 {
7307 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7308 NULL, NULL, NULL);
7309 if (isymbuf2 == NULL)
7310 goto done;
7311
7312 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7313 elf_tdata (bfd2)->symbuf = ssymbuf2
7314 = elf_create_symbuf (symcount2, isymbuf2);
7315 }
7316
7317 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7318 {
7319 /* Optimized faster version. */
7320 bfd_size_type lo, hi, mid;
7321 struct elf_symbol *symp;
7322 struct elf_symbuf_symbol *ssym, *ssymend;
7323
7324 lo = 0;
7325 hi = ssymbuf1->count;
7326 ssymbuf1++;
7327 count1 = 0;
7328 while (lo < hi)
7329 {
7330 mid = (lo + hi) / 2;
7331 if (shndx1 < ssymbuf1[mid].st_shndx)
7332 hi = mid;
7333 else if (shndx1 > ssymbuf1[mid].st_shndx)
7334 lo = mid + 1;
7335 else
7336 {
7337 count1 = ssymbuf1[mid].count;
7338 ssymbuf1 += mid;
7339 break;
7340 }
7341 }
7342
7343 lo = 0;
7344 hi = ssymbuf2->count;
7345 ssymbuf2++;
7346 count2 = 0;
7347 while (lo < hi)
7348 {
7349 mid = (lo + hi) / 2;
7350 if (shndx2 < ssymbuf2[mid].st_shndx)
7351 hi = mid;
7352 else if (shndx2 > ssymbuf2[mid].st_shndx)
7353 lo = mid + 1;
7354 else
7355 {
7356 count2 = ssymbuf2[mid].count;
7357 ssymbuf2 += mid;
7358 break;
7359 }
7360 }
7361
7362 if (count1 == 0 || count2 == 0 || count1 != count2)
7363 goto done;
7364
7365 symtable1 = (struct elf_symbol *)
7366 bfd_malloc (count1 * sizeof (struct elf_symbol));
7367 symtable2 = (struct elf_symbol *)
7368 bfd_malloc (count2 * sizeof (struct elf_symbol));
7369 if (symtable1 == NULL || symtable2 == NULL)
7370 goto done;
7371
7372 symp = symtable1;
7373 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7374 ssym < ssymend; ssym++, symp++)
7375 {
7376 symp->u.ssym = ssym;
7377 symp->name = bfd_elf_string_from_elf_section (bfd1,
7378 hdr1->sh_link,
7379 ssym->st_name);
7380 }
7381
7382 symp = symtable2;
7383 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7384 ssym < ssymend; ssym++, symp++)
7385 {
7386 symp->u.ssym = ssym;
7387 symp->name = bfd_elf_string_from_elf_section (bfd2,
7388 hdr2->sh_link,
7389 ssym->st_name);
7390 }
7391
7392 /* Sort symbol by name. */
7393 qsort (symtable1, count1, sizeof (struct elf_symbol),
7394 elf_sym_name_compare);
7395 qsort (symtable2, count1, sizeof (struct elf_symbol),
7396 elf_sym_name_compare);
7397
7398 for (i = 0; i < count1; i++)
7399 /* Two symbols must have the same binding, type and name. */
7400 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7401 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7402 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7403 goto done;
7404
7405 result = TRUE;
7406 goto done;
7407 }
7408
7409 symtable1 = (struct elf_symbol *)
7410 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7411 symtable2 = (struct elf_symbol *)
7412 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7413 if (symtable1 == NULL || symtable2 == NULL)
7414 goto done;
7415
7416 /* Count definitions in the section. */
7417 count1 = 0;
7418 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7419 if (isym->st_shndx == shndx1)
7420 symtable1[count1++].u.isym = isym;
7421
7422 count2 = 0;
7423 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7424 if (isym->st_shndx == shndx2)
7425 symtable2[count2++].u.isym = isym;
7426
7427 if (count1 == 0 || count2 == 0 || count1 != count2)
7428 goto done;
7429
7430 for (i = 0; i < count1; i++)
7431 symtable1[i].name
7432 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7433 symtable1[i].u.isym->st_name);
7434
7435 for (i = 0; i < count2; i++)
7436 symtable2[i].name
7437 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7438 symtable2[i].u.isym->st_name);
7439
7440 /* Sort symbol by name. */
7441 qsort (symtable1, count1, sizeof (struct elf_symbol),
7442 elf_sym_name_compare);
7443 qsort (symtable2, count1, sizeof (struct elf_symbol),
7444 elf_sym_name_compare);
7445
7446 for (i = 0; i < count1; i++)
7447 /* Two symbols must have the same binding, type and name. */
7448 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7449 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7450 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7451 goto done;
7452
7453 result = TRUE;
7454
7455 done:
7456 if (symtable1)
7457 free (symtable1);
7458 if (symtable2)
7459 free (symtable2);
7460 if (isymbuf1)
7461 free (isymbuf1);
7462 if (isymbuf2)
7463 free (isymbuf2);
7464
7465 return result;
7466 }
7467
7468 /* Return TRUE if 2 section types are compatible. */
7469
7470 bfd_boolean
7471 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7472 bfd *bbfd, const asection *bsec)
7473 {
7474 if (asec == NULL
7475 || bsec == NULL
7476 || abfd->xvec->flavour != bfd_target_elf_flavour
7477 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7478 return TRUE;
7479
7480 return elf_section_type (asec) == elf_section_type (bsec);
7481 }
7482 \f
7483 /* Final phase of ELF linker. */
7484
7485 /* A structure we use to avoid passing large numbers of arguments. */
7486
7487 struct elf_final_link_info
7488 {
7489 /* General link information. */
7490 struct bfd_link_info *info;
7491 /* Output BFD. */
7492 bfd *output_bfd;
7493 /* Symbol string table. */
7494 struct bfd_strtab_hash *symstrtab;
7495 /* .dynsym section. */
7496 asection *dynsym_sec;
7497 /* .hash section. */
7498 asection *hash_sec;
7499 /* symbol version section (.gnu.version). */
7500 asection *symver_sec;
7501 /* Buffer large enough to hold contents of any section. */
7502 bfd_byte *contents;
7503 /* Buffer large enough to hold external relocs of any section. */
7504 void *external_relocs;
7505 /* Buffer large enough to hold internal relocs of any section. */
7506 Elf_Internal_Rela *internal_relocs;
7507 /* Buffer large enough to hold external local symbols of any input
7508 BFD. */
7509 bfd_byte *external_syms;
7510 /* And a buffer for symbol section indices. */
7511 Elf_External_Sym_Shndx *locsym_shndx;
7512 /* Buffer large enough to hold internal local symbols of any input
7513 BFD. */
7514 Elf_Internal_Sym *internal_syms;
7515 /* Array large enough to hold a symbol index for each local symbol
7516 of any input BFD. */
7517 long *indices;
7518 /* Array large enough to hold a section pointer for each local
7519 symbol of any input BFD. */
7520 asection **sections;
7521 /* Buffer to hold swapped out symbols. */
7522 bfd_byte *symbuf;
7523 /* And one for symbol section indices. */
7524 Elf_External_Sym_Shndx *symshndxbuf;
7525 /* Number of swapped out symbols in buffer. */
7526 size_t symbuf_count;
7527 /* Number of symbols which fit in symbuf. */
7528 size_t symbuf_size;
7529 /* And same for symshndxbuf. */
7530 size_t shndxbuf_size;
7531 /* Number of STT_FILE syms seen. */
7532 size_t filesym_count;
7533 };
7534
7535 /* This struct is used to pass information to elf_link_output_extsym. */
7536
7537 struct elf_outext_info
7538 {
7539 bfd_boolean failed;
7540 bfd_boolean localsyms;
7541 bfd_boolean need_second_pass;
7542 bfd_boolean second_pass;
7543 struct elf_final_link_info *flinfo;
7544 };
7545
7546
7547 /* Support for evaluating a complex relocation.
7548
7549 Complex relocations are generalized, self-describing relocations. The
7550 implementation of them consists of two parts: complex symbols, and the
7551 relocations themselves.
7552
7553 The relocations are use a reserved elf-wide relocation type code (R_RELC
7554 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7555 information (start bit, end bit, word width, etc) into the addend. This
7556 information is extracted from CGEN-generated operand tables within gas.
7557
7558 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7559 internal) representing prefix-notation expressions, including but not
7560 limited to those sorts of expressions normally encoded as addends in the
7561 addend field. The symbol mangling format is:
7562
7563 <node> := <literal>
7564 | <unary-operator> ':' <node>
7565 | <binary-operator> ':' <node> ':' <node>
7566 ;
7567
7568 <literal> := 's' <digits=N> ':' <N character symbol name>
7569 | 'S' <digits=N> ':' <N character section name>
7570 | '#' <hexdigits>
7571 ;
7572
7573 <binary-operator> := as in C
7574 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7575
7576 static void
7577 set_symbol_value (bfd *bfd_with_globals,
7578 Elf_Internal_Sym *isymbuf,
7579 size_t locsymcount,
7580 size_t symidx,
7581 bfd_vma val)
7582 {
7583 struct elf_link_hash_entry **sym_hashes;
7584 struct elf_link_hash_entry *h;
7585 size_t extsymoff = locsymcount;
7586
7587 if (symidx < locsymcount)
7588 {
7589 Elf_Internal_Sym *sym;
7590
7591 sym = isymbuf + symidx;
7592 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7593 {
7594 /* It is a local symbol: move it to the
7595 "absolute" section and give it a value. */
7596 sym->st_shndx = SHN_ABS;
7597 sym->st_value = val;
7598 return;
7599 }
7600 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7601 extsymoff = 0;
7602 }
7603
7604 /* It is a global symbol: set its link type
7605 to "defined" and give it a value. */
7606
7607 sym_hashes = elf_sym_hashes (bfd_with_globals);
7608 h = sym_hashes [symidx - extsymoff];
7609 while (h->root.type == bfd_link_hash_indirect
7610 || h->root.type == bfd_link_hash_warning)
7611 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7612 h->root.type = bfd_link_hash_defined;
7613 h->root.u.def.value = val;
7614 h->root.u.def.section = bfd_abs_section_ptr;
7615 }
7616
7617 static bfd_boolean
7618 resolve_symbol (const char *name,
7619 bfd *input_bfd,
7620 struct elf_final_link_info *flinfo,
7621 bfd_vma *result,
7622 Elf_Internal_Sym *isymbuf,
7623 size_t locsymcount)
7624 {
7625 Elf_Internal_Sym *sym;
7626 struct bfd_link_hash_entry *global_entry;
7627 const char *candidate = NULL;
7628 Elf_Internal_Shdr *symtab_hdr;
7629 size_t i;
7630
7631 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7632
7633 for (i = 0; i < locsymcount; ++ i)
7634 {
7635 sym = isymbuf + i;
7636
7637 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7638 continue;
7639
7640 candidate = bfd_elf_string_from_elf_section (input_bfd,
7641 symtab_hdr->sh_link,
7642 sym->st_name);
7643 #ifdef DEBUG
7644 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7645 name, candidate, (unsigned long) sym->st_value);
7646 #endif
7647 if (candidate && strcmp (candidate, name) == 0)
7648 {
7649 asection *sec = flinfo->sections [i];
7650
7651 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7652 *result += sec->output_offset + sec->output_section->vma;
7653 #ifdef DEBUG
7654 printf ("Found symbol with value %8.8lx\n",
7655 (unsigned long) *result);
7656 #endif
7657 return TRUE;
7658 }
7659 }
7660
7661 /* Hmm, haven't found it yet. perhaps it is a global. */
7662 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7663 FALSE, FALSE, TRUE);
7664 if (!global_entry)
7665 return FALSE;
7666
7667 if (global_entry->type == bfd_link_hash_defined
7668 || global_entry->type == bfd_link_hash_defweak)
7669 {
7670 *result = (global_entry->u.def.value
7671 + global_entry->u.def.section->output_section->vma
7672 + global_entry->u.def.section->output_offset);
7673 #ifdef DEBUG
7674 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7675 global_entry->root.string, (unsigned long) *result);
7676 #endif
7677 return TRUE;
7678 }
7679
7680 return FALSE;
7681 }
7682
7683 static bfd_boolean
7684 resolve_section (const char *name,
7685 asection *sections,
7686 bfd_vma *result)
7687 {
7688 asection *curr;
7689 unsigned int len;
7690
7691 for (curr = sections; curr; curr = curr->next)
7692 if (strcmp (curr->name, name) == 0)
7693 {
7694 *result = curr->vma;
7695 return TRUE;
7696 }
7697
7698 /* Hmm. still haven't found it. try pseudo-section names. */
7699 for (curr = sections; curr; curr = curr->next)
7700 {
7701 len = strlen (curr->name);
7702 if (len > strlen (name))
7703 continue;
7704
7705 if (strncmp (curr->name, name, len) == 0)
7706 {
7707 if (strncmp (".end", name + len, 4) == 0)
7708 {
7709 *result = curr->vma + curr->size;
7710 return TRUE;
7711 }
7712
7713 /* Insert more pseudo-section names here, if you like. */
7714 }
7715 }
7716
7717 return FALSE;
7718 }
7719
7720 static void
7721 undefined_reference (const char *reftype, const char *name)
7722 {
7723 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7724 reftype, name);
7725 }
7726
7727 static bfd_boolean
7728 eval_symbol (bfd_vma *result,
7729 const char **symp,
7730 bfd *input_bfd,
7731 struct elf_final_link_info *flinfo,
7732 bfd_vma dot,
7733 Elf_Internal_Sym *isymbuf,
7734 size_t locsymcount,
7735 int signed_p)
7736 {
7737 size_t len;
7738 size_t symlen;
7739 bfd_vma a;
7740 bfd_vma b;
7741 char symbuf[4096];
7742 const char *sym = *symp;
7743 const char *symend;
7744 bfd_boolean symbol_is_section = FALSE;
7745
7746 len = strlen (sym);
7747 symend = sym + len;
7748
7749 if (len < 1 || len > sizeof (symbuf))
7750 {
7751 bfd_set_error (bfd_error_invalid_operation);
7752 return FALSE;
7753 }
7754
7755 switch (* sym)
7756 {
7757 case '.':
7758 *result = dot;
7759 *symp = sym + 1;
7760 return TRUE;
7761
7762 case '#':
7763 ++sym;
7764 *result = strtoul (sym, (char **) symp, 16);
7765 return TRUE;
7766
7767 case 'S':
7768 symbol_is_section = TRUE;
7769 case 's':
7770 ++sym;
7771 symlen = strtol (sym, (char **) symp, 10);
7772 sym = *symp + 1; /* Skip the trailing ':'. */
7773
7774 if (symend < sym || symlen + 1 > sizeof (symbuf))
7775 {
7776 bfd_set_error (bfd_error_invalid_operation);
7777 return FALSE;
7778 }
7779
7780 memcpy (symbuf, sym, symlen);
7781 symbuf[symlen] = '\0';
7782 *symp = sym + symlen;
7783
7784 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7785 the symbol as a section, or vice-versa. so we're pretty liberal in our
7786 interpretation here; section means "try section first", not "must be a
7787 section", and likewise with symbol. */
7788
7789 if (symbol_is_section)
7790 {
7791 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7792 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7793 isymbuf, locsymcount))
7794 {
7795 undefined_reference ("section", symbuf);
7796 return FALSE;
7797 }
7798 }
7799 else
7800 {
7801 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7802 isymbuf, locsymcount)
7803 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7804 result))
7805 {
7806 undefined_reference ("symbol", symbuf);
7807 return FALSE;
7808 }
7809 }
7810
7811 return TRUE;
7812
7813 /* All that remains are operators. */
7814
7815 #define UNARY_OP(op) \
7816 if (strncmp (sym, #op, strlen (#op)) == 0) \
7817 { \
7818 sym += strlen (#op); \
7819 if (*sym == ':') \
7820 ++sym; \
7821 *symp = sym; \
7822 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7823 isymbuf, locsymcount, signed_p)) \
7824 return FALSE; \
7825 if (signed_p) \
7826 *result = op ((bfd_signed_vma) a); \
7827 else \
7828 *result = op a; \
7829 return TRUE; \
7830 }
7831
7832 #define BINARY_OP(op) \
7833 if (strncmp (sym, #op, strlen (#op)) == 0) \
7834 { \
7835 sym += strlen (#op); \
7836 if (*sym == ':') \
7837 ++sym; \
7838 *symp = sym; \
7839 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7840 isymbuf, locsymcount, signed_p)) \
7841 return FALSE; \
7842 ++*symp; \
7843 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7844 isymbuf, locsymcount, signed_p)) \
7845 return FALSE; \
7846 if (signed_p) \
7847 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7848 else \
7849 *result = a op b; \
7850 return TRUE; \
7851 }
7852
7853 default:
7854 UNARY_OP (0-);
7855 BINARY_OP (<<);
7856 BINARY_OP (>>);
7857 BINARY_OP (==);
7858 BINARY_OP (!=);
7859 BINARY_OP (<=);
7860 BINARY_OP (>=);
7861 BINARY_OP (&&);
7862 BINARY_OP (||);
7863 UNARY_OP (~);
7864 UNARY_OP (!);
7865 BINARY_OP (*);
7866 BINARY_OP (/);
7867 BINARY_OP (%);
7868 BINARY_OP (^);
7869 BINARY_OP (|);
7870 BINARY_OP (&);
7871 BINARY_OP (+);
7872 BINARY_OP (-);
7873 BINARY_OP (<);
7874 BINARY_OP (>);
7875 #undef UNARY_OP
7876 #undef BINARY_OP
7877 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7878 bfd_set_error (bfd_error_invalid_operation);
7879 return FALSE;
7880 }
7881 }
7882
7883 static void
7884 put_value (bfd_vma size,
7885 unsigned long chunksz,
7886 bfd *input_bfd,
7887 bfd_vma x,
7888 bfd_byte *location)
7889 {
7890 location += (size - chunksz);
7891
7892 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7893 {
7894 switch (chunksz)
7895 {
7896 default:
7897 case 0:
7898 abort ();
7899 case 1:
7900 bfd_put_8 (input_bfd, x, location);
7901 break;
7902 case 2:
7903 bfd_put_16 (input_bfd, x, location);
7904 break;
7905 case 4:
7906 bfd_put_32 (input_bfd, x, location);
7907 break;
7908 case 8:
7909 #ifdef BFD64
7910 bfd_put_64 (input_bfd, x, location);
7911 #else
7912 abort ();
7913 #endif
7914 break;
7915 }
7916 }
7917 }
7918
7919 static bfd_vma
7920 get_value (bfd_vma size,
7921 unsigned long chunksz,
7922 bfd *input_bfd,
7923 bfd_byte *location)
7924 {
7925 int shift;
7926 bfd_vma x = 0;
7927
7928 /* Sanity checks. */
7929 BFD_ASSERT (chunksz <= sizeof (x)
7930 && size >= chunksz
7931 && chunksz != 0
7932 && (size % chunksz) == 0
7933 && input_bfd != NULL
7934 && location != NULL);
7935
7936 if (chunksz == sizeof (x))
7937 {
7938 BFD_ASSERT (size == chunksz);
7939
7940 /* Make sure that we do not perform an undefined shift operation.
7941 We know that size == chunksz so there will only be one iteration
7942 of the loop below. */
7943 shift = 0;
7944 }
7945 else
7946 shift = 8 * chunksz;
7947
7948 for (; size; size -= chunksz, location += chunksz)
7949 {
7950 switch (chunksz)
7951 {
7952 case 1:
7953 x = (x << shift) | bfd_get_8 (input_bfd, location);
7954 break;
7955 case 2:
7956 x = (x << shift) | bfd_get_16 (input_bfd, location);
7957 break;
7958 case 4:
7959 x = (x << shift) | bfd_get_32 (input_bfd, location);
7960 break;
7961 #ifdef BFD64
7962 case 8:
7963 x = (x << shift) | bfd_get_64 (input_bfd, location);
7964 break;
7965 #endif
7966 default:
7967 abort ();
7968 }
7969 }
7970 return x;
7971 }
7972
7973 static void
7974 decode_complex_addend (unsigned long *start, /* in bits */
7975 unsigned long *oplen, /* in bits */
7976 unsigned long *len, /* in bits */
7977 unsigned long *wordsz, /* in bytes */
7978 unsigned long *chunksz, /* in bytes */
7979 unsigned long *lsb0_p,
7980 unsigned long *signed_p,
7981 unsigned long *trunc_p,
7982 unsigned long encoded)
7983 {
7984 * start = encoded & 0x3F;
7985 * len = (encoded >> 6) & 0x3F;
7986 * oplen = (encoded >> 12) & 0x3F;
7987 * wordsz = (encoded >> 18) & 0xF;
7988 * chunksz = (encoded >> 22) & 0xF;
7989 * lsb0_p = (encoded >> 27) & 1;
7990 * signed_p = (encoded >> 28) & 1;
7991 * trunc_p = (encoded >> 29) & 1;
7992 }
7993
7994 bfd_reloc_status_type
7995 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7996 asection *input_section ATTRIBUTE_UNUSED,
7997 bfd_byte *contents,
7998 Elf_Internal_Rela *rel,
7999 bfd_vma relocation)
8000 {
8001 bfd_vma shift, x, mask;
8002 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8003 bfd_reloc_status_type r;
8004
8005 /* Perform this reloc, since it is complex.
8006 (this is not to say that it necessarily refers to a complex
8007 symbol; merely that it is a self-describing CGEN based reloc.
8008 i.e. the addend has the complete reloc information (bit start, end,
8009 word size, etc) encoded within it.). */
8010
8011 decode_complex_addend (&start, &oplen, &len, &wordsz,
8012 &chunksz, &lsb0_p, &signed_p,
8013 &trunc_p, rel->r_addend);
8014
8015 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8016
8017 if (lsb0_p)
8018 shift = (start + 1) - len;
8019 else
8020 shift = (8 * wordsz) - (start + len);
8021
8022 /* FIXME: octets_per_byte. */
8023 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8024
8025 #ifdef DEBUG
8026 printf ("Doing complex reloc: "
8027 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8028 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8029 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8030 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8031 oplen, (unsigned long) x, (unsigned long) mask,
8032 (unsigned long) relocation);
8033 #endif
8034
8035 r = bfd_reloc_ok;
8036 if (! trunc_p)
8037 /* Now do an overflow check. */
8038 r = bfd_check_overflow ((signed_p
8039 ? complain_overflow_signed
8040 : complain_overflow_unsigned),
8041 len, 0, (8 * wordsz),
8042 relocation);
8043
8044 /* Do the deed. */
8045 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8046
8047 #ifdef DEBUG
8048 printf (" relocation: %8.8lx\n"
8049 " shifted mask: %8.8lx\n"
8050 " shifted/masked reloc: %8.8lx\n"
8051 " result: %8.8lx\n",
8052 (unsigned long) relocation, (unsigned long) (mask << shift),
8053 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8054 #endif
8055 /* FIXME: octets_per_byte. */
8056 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8057 return r;
8058 }
8059
8060 /* When performing a relocatable link, the input relocations are
8061 preserved. But, if they reference global symbols, the indices
8062 referenced must be updated. Update all the relocations found in
8063 RELDATA. */
8064
8065 static void
8066 elf_link_adjust_relocs (bfd *abfd,
8067 struct bfd_elf_section_reloc_data *reldata)
8068 {
8069 unsigned int i;
8070 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8071 bfd_byte *erela;
8072 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8073 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8074 bfd_vma r_type_mask;
8075 int r_sym_shift;
8076 unsigned int count = reldata->count;
8077 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8078
8079 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8080 {
8081 swap_in = bed->s->swap_reloc_in;
8082 swap_out = bed->s->swap_reloc_out;
8083 }
8084 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8085 {
8086 swap_in = bed->s->swap_reloca_in;
8087 swap_out = bed->s->swap_reloca_out;
8088 }
8089 else
8090 abort ();
8091
8092 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8093 abort ();
8094
8095 if (bed->s->arch_size == 32)
8096 {
8097 r_type_mask = 0xff;
8098 r_sym_shift = 8;
8099 }
8100 else
8101 {
8102 r_type_mask = 0xffffffff;
8103 r_sym_shift = 32;
8104 }
8105
8106 erela = reldata->hdr->contents;
8107 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8108 {
8109 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8110 unsigned int j;
8111
8112 if (*rel_hash == NULL)
8113 continue;
8114
8115 BFD_ASSERT ((*rel_hash)->indx >= 0);
8116
8117 (*swap_in) (abfd, erela, irela);
8118 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8119 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8120 | (irela[j].r_info & r_type_mask));
8121 (*swap_out) (abfd, irela, erela);
8122 }
8123 }
8124
8125 struct elf_link_sort_rela
8126 {
8127 union {
8128 bfd_vma offset;
8129 bfd_vma sym_mask;
8130 } u;
8131 enum elf_reloc_type_class type;
8132 /* We use this as an array of size int_rels_per_ext_rel. */
8133 Elf_Internal_Rela rela[1];
8134 };
8135
8136 static int
8137 elf_link_sort_cmp1 (const void *A, const void *B)
8138 {
8139 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8140 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8141 int relativea, relativeb;
8142
8143 relativea = a->type == reloc_class_relative;
8144 relativeb = b->type == reloc_class_relative;
8145
8146 if (relativea < relativeb)
8147 return 1;
8148 if (relativea > relativeb)
8149 return -1;
8150 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8151 return -1;
8152 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8153 return 1;
8154 if (a->rela->r_offset < b->rela->r_offset)
8155 return -1;
8156 if (a->rela->r_offset > b->rela->r_offset)
8157 return 1;
8158 return 0;
8159 }
8160
8161 static int
8162 elf_link_sort_cmp2 (const void *A, const void *B)
8163 {
8164 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8165 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8166 int copya, copyb;
8167
8168 if (a->u.offset < b->u.offset)
8169 return -1;
8170 if (a->u.offset > b->u.offset)
8171 return 1;
8172 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8173 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8174 if (copya < copyb)
8175 return -1;
8176 if (copya > copyb)
8177 return 1;
8178 if (a->rela->r_offset < b->rela->r_offset)
8179 return -1;
8180 if (a->rela->r_offset > b->rela->r_offset)
8181 return 1;
8182 return 0;
8183 }
8184
8185 static size_t
8186 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8187 {
8188 asection *dynamic_relocs;
8189 asection *rela_dyn;
8190 asection *rel_dyn;
8191 bfd_size_type count, size;
8192 size_t i, ret, sort_elt, ext_size;
8193 bfd_byte *sort, *s_non_relative, *p;
8194 struct elf_link_sort_rela *sq;
8195 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8196 int i2e = bed->s->int_rels_per_ext_rel;
8197 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8198 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8199 struct bfd_link_order *lo;
8200 bfd_vma r_sym_mask;
8201 bfd_boolean use_rela;
8202
8203 /* Find a dynamic reloc section. */
8204 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8205 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8206 if (rela_dyn != NULL && rela_dyn->size > 0
8207 && rel_dyn != NULL && rel_dyn->size > 0)
8208 {
8209 bfd_boolean use_rela_initialised = FALSE;
8210
8211 /* This is just here to stop gcc from complaining.
8212 It's initialization checking code is not perfect. */
8213 use_rela = TRUE;
8214
8215 /* Both sections are present. Examine the sizes
8216 of the indirect sections to help us choose. */
8217 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8218 if (lo->type == bfd_indirect_link_order)
8219 {
8220 asection *o = lo->u.indirect.section;
8221
8222 if ((o->size % bed->s->sizeof_rela) == 0)
8223 {
8224 if ((o->size % bed->s->sizeof_rel) == 0)
8225 /* Section size is divisible by both rel and rela sizes.
8226 It is of no help to us. */
8227 ;
8228 else
8229 {
8230 /* Section size is only divisible by rela. */
8231 if (use_rela_initialised && (use_rela == FALSE))
8232 {
8233 _bfd_error_handler
8234 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8235 bfd_set_error (bfd_error_invalid_operation);
8236 return 0;
8237 }
8238 else
8239 {
8240 use_rela = TRUE;
8241 use_rela_initialised = TRUE;
8242 }
8243 }
8244 }
8245 else if ((o->size % bed->s->sizeof_rel) == 0)
8246 {
8247 /* Section size is only divisible by rel. */
8248 if (use_rela_initialised && (use_rela == TRUE))
8249 {
8250 _bfd_error_handler
8251 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8252 bfd_set_error (bfd_error_invalid_operation);
8253 return 0;
8254 }
8255 else
8256 {
8257 use_rela = FALSE;
8258 use_rela_initialised = TRUE;
8259 }
8260 }
8261 else
8262 {
8263 /* The section size is not divisible by either - something is wrong. */
8264 _bfd_error_handler
8265 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8266 bfd_set_error (bfd_error_invalid_operation);
8267 return 0;
8268 }
8269 }
8270
8271 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8272 if (lo->type == bfd_indirect_link_order)
8273 {
8274 asection *o = lo->u.indirect.section;
8275
8276 if ((o->size % bed->s->sizeof_rela) == 0)
8277 {
8278 if ((o->size % bed->s->sizeof_rel) == 0)
8279 /* Section size is divisible by both rel and rela sizes.
8280 It is of no help to us. */
8281 ;
8282 else
8283 {
8284 /* Section size is only divisible by rela. */
8285 if (use_rela_initialised && (use_rela == FALSE))
8286 {
8287 _bfd_error_handler
8288 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8289 bfd_set_error (bfd_error_invalid_operation);
8290 return 0;
8291 }
8292 else
8293 {
8294 use_rela = TRUE;
8295 use_rela_initialised = TRUE;
8296 }
8297 }
8298 }
8299 else if ((o->size % bed->s->sizeof_rel) == 0)
8300 {
8301 /* Section size is only divisible by rel. */
8302 if (use_rela_initialised && (use_rela == TRUE))
8303 {
8304 _bfd_error_handler
8305 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8306 bfd_set_error (bfd_error_invalid_operation);
8307 return 0;
8308 }
8309 else
8310 {
8311 use_rela = FALSE;
8312 use_rela_initialised = TRUE;
8313 }
8314 }
8315 else
8316 {
8317 /* The section size is not divisible by either - something is wrong. */
8318 _bfd_error_handler
8319 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8320 bfd_set_error (bfd_error_invalid_operation);
8321 return 0;
8322 }
8323 }
8324
8325 if (! use_rela_initialised)
8326 /* Make a guess. */
8327 use_rela = TRUE;
8328 }
8329 else if (rela_dyn != NULL && rela_dyn->size > 0)
8330 use_rela = TRUE;
8331 else if (rel_dyn != NULL && rel_dyn->size > 0)
8332 use_rela = FALSE;
8333 else
8334 return 0;
8335
8336 if (use_rela)
8337 {
8338 dynamic_relocs = rela_dyn;
8339 ext_size = bed->s->sizeof_rela;
8340 swap_in = bed->s->swap_reloca_in;
8341 swap_out = bed->s->swap_reloca_out;
8342 }
8343 else
8344 {
8345 dynamic_relocs = rel_dyn;
8346 ext_size = bed->s->sizeof_rel;
8347 swap_in = bed->s->swap_reloc_in;
8348 swap_out = bed->s->swap_reloc_out;
8349 }
8350
8351 size = 0;
8352 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8353 if (lo->type == bfd_indirect_link_order)
8354 size += lo->u.indirect.section->size;
8355
8356 if (size != dynamic_relocs->size)
8357 return 0;
8358
8359 sort_elt = (sizeof (struct elf_link_sort_rela)
8360 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8361
8362 count = dynamic_relocs->size / ext_size;
8363 if (count == 0)
8364 return 0;
8365 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8366
8367 if (sort == NULL)
8368 {
8369 (*info->callbacks->warning)
8370 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8371 return 0;
8372 }
8373
8374 if (bed->s->arch_size == 32)
8375 r_sym_mask = ~(bfd_vma) 0xff;
8376 else
8377 r_sym_mask = ~(bfd_vma) 0xffffffff;
8378
8379 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8380 if (lo->type == bfd_indirect_link_order)
8381 {
8382 bfd_byte *erel, *erelend;
8383 asection *o = lo->u.indirect.section;
8384
8385 if (o->contents == NULL && o->size != 0)
8386 {
8387 /* This is a reloc section that is being handled as a normal
8388 section. See bfd_section_from_shdr. We can't combine
8389 relocs in this case. */
8390 free (sort);
8391 return 0;
8392 }
8393 erel = o->contents;
8394 erelend = o->contents + o->size;
8395 /* FIXME: octets_per_byte. */
8396 p = sort + o->output_offset / ext_size * sort_elt;
8397
8398 while (erel < erelend)
8399 {
8400 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8401
8402 (*swap_in) (abfd, erel, s->rela);
8403 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8404 s->u.sym_mask = r_sym_mask;
8405 p += sort_elt;
8406 erel += ext_size;
8407 }
8408 }
8409
8410 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8411
8412 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8413 {
8414 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8415 if (s->type != reloc_class_relative)
8416 break;
8417 }
8418 ret = i;
8419 s_non_relative = p;
8420
8421 sq = (struct elf_link_sort_rela *) s_non_relative;
8422 for (; i < count; i++, p += sort_elt)
8423 {
8424 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8425 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8426 sq = sp;
8427 sp->u.offset = sq->rela->r_offset;
8428 }
8429
8430 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8431
8432 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8433 if (lo->type == bfd_indirect_link_order)
8434 {
8435 bfd_byte *erel, *erelend;
8436 asection *o = lo->u.indirect.section;
8437
8438 erel = o->contents;
8439 erelend = o->contents + o->size;
8440 /* FIXME: octets_per_byte. */
8441 p = sort + o->output_offset / ext_size * sort_elt;
8442 while (erel < erelend)
8443 {
8444 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8445 (*swap_out) (abfd, s->rela, erel);
8446 p += sort_elt;
8447 erel += ext_size;
8448 }
8449 }
8450
8451 free (sort);
8452 *psec = dynamic_relocs;
8453 return ret;
8454 }
8455
8456 /* Flush the output symbols to the file. */
8457
8458 static bfd_boolean
8459 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8460 const struct elf_backend_data *bed)
8461 {
8462 if (flinfo->symbuf_count > 0)
8463 {
8464 Elf_Internal_Shdr *hdr;
8465 file_ptr pos;
8466 bfd_size_type amt;
8467
8468 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8469 pos = hdr->sh_offset + hdr->sh_size;
8470 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8471 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8472 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8473 return FALSE;
8474
8475 hdr->sh_size += amt;
8476 flinfo->symbuf_count = 0;
8477 }
8478
8479 return TRUE;
8480 }
8481
8482 /* Add a symbol to the output symbol table. */
8483
8484 static int
8485 elf_link_output_sym (struct elf_final_link_info *flinfo,
8486 const char *name,
8487 Elf_Internal_Sym *elfsym,
8488 asection *input_sec,
8489 struct elf_link_hash_entry *h)
8490 {
8491 bfd_byte *dest;
8492 Elf_External_Sym_Shndx *destshndx;
8493 int (*output_symbol_hook)
8494 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8495 struct elf_link_hash_entry *);
8496 const struct elf_backend_data *bed;
8497
8498 bed = get_elf_backend_data (flinfo->output_bfd);
8499 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8500 if (output_symbol_hook != NULL)
8501 {
8502 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8503 if (ret != 1)
8504 return ret;
8505 }
8506
8507 if (name == NULL || *name == '\0')
8508 elfsym->st_name = 0;
8509 else if (input_sec->flags & SEC_EXCLUDE)
8510 elfsym->st_name = 0;
8511 else
8512 {
8513 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8514 name, TRUE, FALSE);
8515 if (elfsym->st_name == (unsigned long) -1)
8516 return 0;
8517 }
8518
8519 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8520 {
8521 if (! elf_link_flush_output_syms (flinfo, bed))
8522 return 0;
8523 }
8524
8525 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8526 destshndx = flinfo->symshndxbuf;
8527 if (destshndx != NULL)
8528 {
8529 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8530 {
8531 bfd_size_type amt;
8532
8533 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8534 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8535 amt * 2);
8536 if (destshndx == NULL)
8537 return 0;
8538 flinfo->symshndxbuf = destshndx;
8539 memset ((char *) destshndx + amt, 0, amt);
8540 flinfo->shndxbuf_size *= 2;
8541 }
8542 destshndx += bfd_get_symcount (flinfo->output_bfd);
8543 }
8544
8545 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8546 flinfo->symbuf_count += 1;
8547 bfd_get_symcount (flinfo->output_bfd) += 1;
8548
8549 return 1;
8550 }
8551
8552 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8553
8554 static bfd_boolean
8555 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8556 {
8557 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8558 && sym->st_shndx < SHN_LORESERVE)
8559 {
8560 /* The gABI doesn't support dynamic symbols in output sections
8561 beyond 64k. */
8562 (*_bfd_error_handler)
8563 (_("%B: Too many sections: %d (>= %d)"),
8564 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8565 bfd_set_error (bfd_error_nonrepresentable_section);
8566 return FALSE;
8567 }
8568 return TRUE;
8569 }
8570
8571 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8572 allowing an unsatisfied unversioned symbol in the DSO to match a
8573 versioned symbol that would normally require an explicit version.
8574 We also handle the case that a DSO references a hidden symbol
8575 which may be satisfied by a versioned symbol in another DSO. */
8576
8577 static bfd_boolean
8578 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8579 const struct elf_backend_data *bed,
8580 struct elf_link_hash_entry *h)
8581 {
8582 bfd *abfd;
8583 struct elf_link_loaded_list *loaded;
8584
8585 if (!is_elf_hash_table (info->hash))
8586 return FALSE;
8587
8588 /* Check indirect symbol. */
8589 while (h->root.type == bfd_link_hash_indirect)
8590 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8591
8592 switch (h->root.type)
8593 {
8594 default:
8595 abfd = NULL;
8596 break;
8597
8598 case bfd_link_hash_undefined:
8599 case bfd_link_hash_undefweak:
8600 abfd = h->root.u.undef.abfd;
8601 if ((abfd->flags & DYNAMIC) == 0
8602 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8603 return FALSE;
8604 break;
8605
8606 case bfd_link_hash_defined:
8607 case bfd_link_hash_defweak:
8608 abfd = h->root.u.def.section->owner;
8609 break;
8610
8611 case bfd_link_hash_common:
8612 abfd = h->root.u.c.p->section->owner;
8613 break;
8614 }
8615 BFD_ASSERT (abfd != NULL);
8616
8617 for (loaded = elf_hash_table (info)->loaded;
8618 loaded != NULL;
8619 loaded = loaded->next)
8620 {
8621 bfd *input;
8622 Elf_Internal_Shdr *hdr;
8623 bfd_size_type symcount;
8624 bfd_size_type extsymcount;
8625 bfd_size_type extsymoff;
8626 Elf_Internal_Shdr *versymhdr;
8627 Elf_Internal_Sym *isym;
8628 Elf_Internal_Sym *isymend;
8629 Elf_Internal_Sym *isymbuf;
8630 Elf_External_Versym *ever;
8631 Elf_External_Versym *extversym;
8632
8633 input = loaded->abfd;
8634
8635 /* We check each DSO for a possible hidden versioned definition. */
8636 if (input == abfd
8637 || (input->flags & DYNAMIC) == 0
8638 || elf_dynversym (input) == 0)
8639 continue;
8640
8641 hdr = &elf_tdata (input)->dynsymtab_hdr;
8642
8643 symcount = hdr->sh_size / bed->s->sizeof_sym;
8644 if (elf_bad_symtab (input))
8645 {
8646 extsymcount = symcount;
8647 extsymoff = 0;
8648 }
8649 else
8650 {
8651 extsymcount = symcount - hdr->sh_info;
8652 extsymoff = hdr->sh_info;
8653 }
8654
8655 if (extsymcount == 0)
8656 continue;
8657
8658 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8659 NULL, NULL, NULL);
8660 if (isymbuf == NULL)
8661 return FALSE;
8662
8663 /* Read in any version definitions. */
8664 versymhdr = &elf_tdata (input)->dynversym_hdr;
8665 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8666 if (extversym == NULL)
8667 goto error_ret;
8668
8669 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8670 || (bfd_bread (extversym, versymhdr->sh_size, input)
8671 != versymhdr->sh_size))
8672 {
8673 free (extversym);
8674 error_ret:
8675 free (isymbuf);
8676 return FALSE;
8677 }
8678
8679 ever = extversym + extsymoff;
8680 isymend = isymbuf + extsymcount;
8681 for (isym = isymbuf; isym < isymend; isym++, ever++)
8682 {
8683 const char *name;
8684 Elf_Internal_Versym iver;
8685 unsigned short version_index;
8686
8687 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8688 || isym->st_shndx == SHN_UNDEF)
8689 continue;
8690
8691 name = bfd_elf_string_from_elf_section (input,
8692 hdr->sh_link,
8693 isym->st_name);
8694 if (strcmp (name, h->root.root.string) != 0)
8695 continue;
8696
8697 _bfd_elf_swap_versym_in (input, ever, &iver);
8698
8699 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8700 && !(h->def_regular
8701 && h->forced_local))
8702 {
8703 /* If we have a non-hidden versioned sym, then it should
8704 have provided a definition for the undefined sym unless
8705 it is defined in a non-shared object and forced local.
8706 */
8707 abort ();
8708 }
8709
8710 version_index = iver.vs_vers & VERSYM_VERSION;
8711 if (version_index == 1 || version_index == 2)
8712 {
8713 /* This is the base or first version. We can use it. */
8714 free (extversym);
8715 free (isymbuf);
8716 return TRUE;
8717 }
8718 }
8719
8720 free (extversym);
8721 free (isymbuf);
8722 }
8723
8724 return FALSE;
8725 }
8726
8727 /* Add an external symbol to the symbol table. This is called from
8728 the hash table traversal routine. When generating a shared object,
8729 we go through the symbol table twice. The first time we output
8730 anything that might have been forced to local scope in a version
8731 script. The second time we output the symbols that are still
8732 global symbols. */
8733
8734 static bfd_boolean
8735 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8736 {
8737 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8738 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8739 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8740 bfd_boolean strip;
8741 Elf_Internal_Sym sym;
8742 asection *input_sec;
8743 const struct elf_backend_data *bed;
8744 long indx;
8745 int ret;
8746
8747 if (h->root.type == bfd_link_hash_warning)
8748 {
8749 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8750 if (h->root.type == bfd_link_hash_new)
8751 return TRUE;
8752 }
8753
8754 /* Decide whether to output this symbol in this pass. */
8755 if (eoinfo->localsyms)
8756 {
8757 if (!h->forced_local)
8758 return TRUE;
8759 if (eoinfo->second_pass
8760 && !((h->root.type == bfd_link_hash_defined
8761 || h->root.type == bfd_link_hash_defweak)
8762 && h->root.u.def.section->output_section != NULL))
8763 return TRUE;
8764 }
8765 else
8766 {
8767 if (h->forced_local)
8768 return TRUE;
8769 }
8770
8771 bed = get_elf_backend_data (flinfo->output_bfd);
8772
8773 if (h->root.type == bfd_link_hash_undefined)
8774 {
8775 /* If we have an undefined symbol reference here then it must have
8776 come from a shared library that is being linked in. (Undefined
8777 references in regular files have already been handled unless
8778 they are in unreferenced sections which are removed by garbage
8779 collection). */
8780 bfd_boolean ignore_undef = FALSE;
8781
8782 /* Some symbols may be special in that the fact that they're
8783 undefined can be safely ignored - let backend determine that. */
8784 if (bed->elf_backend_ignore_undef_symbol)
8785 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8786
8787 /* If we are reporting errors for this situation then do so now. */
8788 if (!ignore_undef
8789 && h->ref_dynamic
8790 && (!h->ref_regular || flinfo->info->gc_sections)
8791 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8792 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8793 {
8794 if (!(flinfo->info->callbacks->undefined_symbol
8795 (flinfo->info, h->root.root.string,
8796 h->ref_regular ? NULL : h->root.u.undef.abfd,
8797 NULL, 0,
8798 (flinfo->info->unresolved_syms_in_shared_libs
8799 == RM_GENERATE_ERROR))))
8800 {
8801 bfd_set_error (bfd_error_bad_value);
8802 eoinfo->failed = TRUE;
8803 return FALSE;
8804 }
8805 }
8806 }
8807
8808 /* We should also warn if a forced local symbol is referenced from
8809 shared libraries. */
8810 if (!flinfo->info->relocatable
8811 && flinfo->info->executable
8812 && h->forced_local
8813 && h->ref_dynamic
8814 && h->def_regular
8815 && !h->dynamic_def
8816 && !h->dynamic_weak
8817 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8818 {
8819 bfd *def_bfd;
8820 const char *msg;
8821 struct elf_link_hash_entry *hi = h;
8822
8823 /* Check indirect symbol. */
8824 while (hi->root.type == bfd_link_hash_indirect)
8825 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8826
8827 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8828 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8829 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8830 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8831 else
8832 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8833 def_bfd = flinfo->output_bfd;
8834 if (hi->root.u.def.section != bfd_abs_section_ptr)
8835 def_bfd = hi->root.u.def.section->owner;
8836 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8837 h->root.root.string);
8838 bfd_set_error (bfd_error_bad_value);
8839 eoinfo->failed = TRUE;
8840 return FALSE;
8841 }
8842
8843 /* We don't want to output symbols that have never been mentioned by
8844 a regular file, or that we have been told to strip. However, if
8845 h->indx is set to -2, the symbol is used by a reloc and we must
8846 output it. */
8847 if (h->indx == -2)
8848 strip = FALSE;
8849 else if ((h->def_dynamic
8850 || h->ref_dynamic
8851 || h->root.type == bfd_link_hash_new)
8852 && !h->def_regular
8853 && !h->ref_regular)
8854 strip = TRUE;
8855 else if (flinfo->info->strip == strip_all)
8856 strip = TRUE;
8857 else if (flinfo->info->strip == strip_some
8858 && bfd_hash_lookup (flinfo->info->keep_hash,
8859 h->root.root.string, FALSE, FALSE) == NULL)
8860 strip = TRUE;
8861 else if ((h->root.type == bfd_link_hash_defined
8862 || h->root.type == bfd_link_hash_defweak)
8863 && ((flinfo->info->strip_discarded
8864 && discarded_section (h->root.u.def.section))
8865 || (h->root.u.def.section->owner != NULL
8866 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8867 strip = TRUE;
8868 else if ((h->root.type == bfd_link_hash_undefined
8869 || h->root.type == bfd_link_hash_undefweak)
8870 && h->root.u.undef.abfd != NULL
8871 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8872 strip = TRUE;
8873 else
8874 strip = FALSE;
8875
8876 /* If we're stripping it, and it's not a dynamic symbol, there's
8877 nothing else to do unless it is a forced local symbol or a
8878 STT_GNU_IFUNC symbol. */
8879 if (strip
8880 && h->dynindx == -1
8881 && h->type != STT_GNU_IFUNC
8882 && !h->forced_local)
8883 return TRUE;
8884
8885 sym.st_value = 0;
8886 sym.st_size = h->size;
8887 sym.st_other = h->other;
8888 if (h->forced_local)
8889 {
8890 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8891 /* Turn off visibility on local symbol. */
8892 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8893 }
8894 else if (h->unique_global)
8895 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8896 else if (h->root.type == bfd_link_hash_undefweak
8897 || h->root.type == bfd_link_hash_defweak)
8898 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8899 else
8900 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8901 sym.st_target_internal = h->target_internal;
8902
8903 switch (h->root.type)
8904 {
8905 default:
8906 case bfd_link_hash_new:
8907 case bfd_link_hash_warning:
8908 abort ();
8909 return FALSE;
8910
8911 case bfd_link_hash_undefined:
8912 case bfd_link_hash_undefweak:
8913 input_sec = bfd_und_section_ptr;
8914 sym.st_shndx = SHN_UNDEF;
8915 break;
8916
8917 case bfd_link_hash_defined:
8918 case bfd_link_hash_defweak:
8919 {
8920 input_sec = h->root.u.def.section;
8921 if (input_sec->output_section != NULL)
8922 {
8923 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8924 {
8925 bfd_boolean second_pass_sym
8926 = (input_sec->owner == flinfo->output_bfd
8927 || input_sec->owner == NULL
8928 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8929 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8930
8931 eoinfo->need_second_pass |= second_pass_sym;
8932 if (eoinfo->second_pass != second_pass_sym)
8933 return TRUE;
8934 }
8935
8936 sym.st_shndx =
8937 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8938 input_sec->output_section);
8939 if (sym.st_shndx == SHN_BAD)
8940 {
8941 (*_bfd_error_handler)
8942 (_("%B: could not find output section %A for input section %A"),
8943 flinfo->output_bfd, input_sec->output_section, input_sec);
8944 bfd_set_error (bfd_error_nonrepresentable_section);
8945 eoinfo->failed = TRUE;
8946 return FALSE;
8947 }
8948
8949 /* ELF symbols in relocatable files are section relative,
8950 but in nonrelocatable files they are virtual
8951 addresses. */
8952 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8953 if (!flinfo->info->relocatable)
8954 {
8955 sym.st_value += input_sec->output_section->vma;
8956 if (h->type == STT_TLS)
8957 {
8958 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8959 if (tls_sec != NULL)
8960 sym.st_value -= tls_sec->vma;
8961 else
8962 {
8963 /* The TLS section may have been garbage collected. */
8964 BFD_ASSERT (flinfo->info->gc_sections
8965 && !input_sec->gc_mark);
8966 }
8967 }
8968 }
8969 }
8970 else
8971 {
8972 BFD_ASSERT (input_sec->owner == NULL
8973 || (input_sec->owner->flags & DYNAMIC) != 0);
8974 sym.st_shndx = SHN_UNDEF;
8975 input_sec = bfd_und_section_ptr;
8976 }
8977 }
8978 break;
8979
8980 case bfd_link_hash_common:
8981 input_sec = h->root.u.c.p->section;
8982 sym.st_shndx = bed->common_section_index (input_sec);
8983 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8984 break;
8985
8986 case bfd_link_hash_indirect:
8987 /* These symbols are created by symbol versioning. They point
8988 to the decorated version of the name. For example, if the
8989 symbol foo@@GNU_1.2 is the default, which should be used when
8990 foo is used with no version, then we add an indirect symbol
8991 foo which points to foo@@GNU_1.2. We ignore these symbols,
8992 since the indirected symbol is already in the hash table. */
8993 return TRUE;
8994 }
8995
8996 /* Give the processor backend a chance to tweak the symbol value,
8997 and also to finish up anything that needs to be done for this
8998 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8999 forced local syms when non-shared is due to a historical quirk.
9000 STT_GNU_IFUNC symbol must go through PLT. */
9001 if ((h->type == STT_GNU_IFUNC
9002 && h->def_regular
9003 && !flinfo->info->relocatable)
9004 || ((h->dynindx != -1
9005 || h->forced_local)
9006 && ((flinfo->info->shared
9007 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9008 || h->root.type != bfd_link_hash_undefweak))
9009 || !h->forced_local)
9010 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9011 {
9012 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9013 (flinfo->output_bfd, flinfo->info, h, &sym)))
9014 {
9015 eoinfo->failed = TRUE;
9016 return FALSE;
9017 }
9018 }
9019
9020 /* If we are marking the symbol as undefined, and there are no
9021 non-weak references to this symbol from a regular object, then
9022 mark the symbol as weak undefined; if there are non-weak
9023 references, mark the symbol as strong. We can't do this earlier,
9024 because it might not be marked as undefined until the
9025 finish_dynamic_symbol routine gets through with it. */
9026 if (sym.st_shndx == SHN_UNDEF
9027 && h->ref_regular
9028 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9029 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9030 {
9031 int bindtype;
9032 unsigned int type = ELF_ST_TYPE (sym.st_info);
9033
9034 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9035 if (type == STT_GNU_IFUNC)
9036 type = STT_FUNC;
9037
9038 if (h->ref_regular_nonweak)
9039 bindtype = STB_GLOBAL;
9040 else
9041 bindtype = STB_WEAK;
9042 sym.st_info = ELF_ST_INFO (bindtype, type);
9043 }
9044
9045 /* If this is a symbol defined in a dynamic library, don't use the
9046 symbol size from the dynamic library. Relinking an executable
9047 against a new library may introduce gratuitous changes in the
9048 executable's symbols if we keep the size. */
9049 if (sym.st_shndx == SHN_UNDEF
9050 && !h->def_regular
9051 && h->def_dynamic)
9052 sym.st_size = 0;
9053
9054 /* If a non-weak symbol with non-default visibility is not defined
9055 locally, it is a fatal error. */
9056 if (!flinfo->info->relocatable
9057 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9058 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9059 && h->root.type == bfd_link_hash_undefined
9060 && !h->def_regular)
9061 {
9062 const char *msg;
9063
9064 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9065 msg = _("%B: protected symbol `%s' isn't defined");
9066 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9067 msg = _("%B: internal symbol `%s' isn't defined");
9068 else
9069 msg = _("%B: hidden symbol `%s' isn't defined");
9070 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9071 bfd_set_error (bfd_error_bad_value);
9072 eoinfo->failed = TRUE;
9073 return FALSE;
9074 }
9075
9076 /* If this symbol should be put in the .dynsym section, then put it
9077 there now. We already know the symbol index. We also fill in
9078 the entry in the .hash section. */
9079 if (flinfo->dynsym_sec != NULL
9080 && h->dynindx != -1
9081 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9082 {
9083 bfd_byte *esym;
9084
9085 /* Since there is no version information in the dynamic string,
9086 if there is no version info in symbol version section, we will
9087 have a run-time problem. */
9088 if (h->verinfo.verdef == NULL)
9089 {
9090 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9091
9092 if (p && p [1] != '\0')
9093 {
9094 (*_bfd_error_handler)
9095 (_("%B: No symbol version section for versioned symbol `%s'"),
9096 flinfo->output_bfd, h->root.root.string);
9097 eoinfo->failed = TRUE;
9098 return FALSE;
9099 }
9100 }
9101
9102 sym.st_name = h->dynstr_index;
9103 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9104 if (!check_dynsym (flinfo->output_bfd, &sym))
9105 {
9106 eoinfo->failed = TRUE;
9107 return FALSE;
9108 }
9109 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9110
9111 if (flinfo->hash_sec != NULL)
9112 {
9113 size_t hash_entry_size;
9114 bfd_byte *bucketpos;
9115 bfd_vma chain;
9116 size_t bucketcount;
9117 size_t bucket;
9118
9119 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9120 bucket = h->u.elf_hash_value % bucketcount;
9121
9122 hash_entry_size
9123 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9124 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9125 + (bucket + 2) * hash_entry_size);
9126 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9127 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9128 bucketpos);
9129 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9130 ((bfd_byte *) flinfo->hash_sec->contents
9131 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9132 }
9133
9134 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9135 {
9136 Elf_Internal_Versym iversym;
9137 Elf_External_Versym *eversym;
9138
9139 if (!h->def_regular)
9140 {
9141 if (h->verinfo.verdef == NULL)
9142 iversym.vs_vers = 0;
9143 else
9144 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9145 }
9146 else
9147 {
9148 if (h->verinfo.vertree == NULL)
9149 iversym.vs_vers = 1;
9150 else
9151 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9152 if (flinfo->info->create_default_symver)
9153 iversym.vs_vers++;
9154 }
9155
9156 if (h->hidden)
9157 iversym.vs_vers |= VERSYM_HIDDEN;
9158
9159 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9160 eversym += h->dynindx;
9161 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9162 }
9163 }
9164
9165 /* If we're stripping it, then it was just a dynamic symbol, and
9166 there's nothing else to do. */
9167 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9168 return TRUE;
9169
9170 indx = bfd_get_symcount (flinfo->output_bfd);
9171 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9172 if (ret == 0)
9173 {
9174 eoinfo->failed = TRUE;
9175 return FALSE;
9176 }
9177 else if (ret == 1)
9178 h->indx = indx;
9179 else if (h->indx == -2)
9180 abort();
9181
9182 return TRUE;
9183 }
9184
9185 /* Return TRUE if special handling is done for relocs in SEC against
9186 symbols defined in discarded sections. */
9187
9188 static bfd_boolean
9189 elf_section_ignore_discarded_relocs (asection *sec)
9190 {
9191 const struct elf_backend_data *bed;
9192
9193 switch (sec->sec_info_type)
9194 {
9195 case SEC_INFO_TYPE_STABS:
9196 case SEC_INFO_TYPE_EH_FRAME:
9197 return TRUE;
9198 default:
9199 break;
9200 }
9201
9202 bed = get_elf_backend_data (sec->owner);
9203 if (bed->elf_backend_ignore_discarded_relocs != NULL
9204 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9205 return TRUE;
9206
9207 return FALSE;
9208 }
9209
9210 /* Return a mask saying how ld should treat relocations in SEC against
9211 symbols defined in discarded sections. If this function returns
9212 COMPLAIN set, ld will issue a warning message. If this function
9213 returns PRETEND set, and the discarded section was link-once and the
9214 same size as the kept link-once section, ld will pretend that the
9215 symbol was actually defined in the kept section. Otherwise ld will
9216 zero the reloc (at least that is the intent, but some cooperation by
9217 the target dependent code is needed, particularly for REL targets). */
9218
9219 unsigned int
9220 _bfd_elf_default_action_discarded (asection *sec)
9221 {
9222 if (sec->flags & SEC_DEBUGGING)
9223 return PRETEND;
9224
9225 if (strcmp (".eh_frame", sec->name) == 0)
9226 return 0;
9227
9228 if (strcmp (".gcc_except_table", sec->name) == 0)
9229 return 0;
9230
9231 return COMPLAIN | PRETEND;
9232 }
9233
9234 /* Find a match between a section and a member of a section group. */
9235
9236 static asection *
9237 match_group_member (asection *sec, asection *group,
9238 struct bfd_link_info *info)
9239 {
9240 asection *first = elf_next_in_group (group);
9241 asection *s = first;
9242
9243 while (s != NULL)
9244 {
9245 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9246 return s;
9247
9248 s = elf_next_in_group (s);
9249 if (s == first)
9250 break;
9251 }
9252
9253 return NULL;
9254 }
9255
9256 /* Check if the kept section of a discarded section SEC can be used
9257 to replace it. Return the replacement if it is OK. Otherwise return
9258 NULL. */
9259
9260 asection *
9261 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9262 {
9263 asection *kept;
9264
9265 kept = sec->kept_section;
9266 if (kept != NULL)
9267 {
9268 if ((kept->flags & SEC_GROUP) != 0)
9269 kept = match_group_member (sec, kept, info);
9270 if (kept != NULL
9271 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9272 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9273 kept = NULL;
9274 sec->kept_section = kept;
9275 }
9276 return kept;
9277 }
9278
9279 /* Link an input file into the linker output file. This function
9280 handles all the sections and relocations of the input file at once.
9281 This is so that we only have to read the local symbols once, and
9282 don't have to keep them in memory. */
9283
9284 static bfd_boolean
9285 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9286 {
9287 int (*relocate_section)
9288 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9289 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9290 bfd *output_bfd;
9291 Elf_Internal_Shdr *symtab_hdr;
9292 size_t locsymcount;
9293 size_t extsymoff;
9294 Elf_Internal_Sym *isymbuf;
9295 Elf_Internal_Sym *isym;
9296 Elf_Internal_Sym *isymend;
9297 long *pindex;
9298 asection **ppsection;
9299 asection *o;
9300 const struct elf_backend_data *bed;
9301 struct elf_link_hash_entry **sym_hashes;
9302 bfd_size_type address_size;
9303 bfd_vma r_type_mask;
9304 int r_sym_shift;
9305 bfd_boolean have_file_sym = FALSE;
9306
9307 output_bfd = flinfo->output_bfd;
9308 bed = get_elf_backend_data (output_bfd);
9309 relocate_section = bed->elf_backend_relocate_section;
9310
9311 /* If this is a dynamic object, we don't want to do anything here:
9312 we don't want the local symbols, and we don't want the section
9313 contents. */
9314 if ((input_bfd->flags & DYNAMIC) != 0)
9315 return TRUE;
9316
9317 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9318 if (elf_bad_symtab (input_bfd))
9319 {
9320 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9321 extsymoff = 0;
9322 }
9323 else
9324 {
9325 locsymcount = symtab_hdr->sh_info;
9326 extsymoff = symtab_hdr->sh_info;
9327 }
9328
9329 /* Read the local symbols. */
9330 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9331 if (isymbuf == NULL && locsymcount != 0)
9332 {
9333 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9334 flinfo->internal_syms,
9335 flinfo->external_syms,
9336 flinfo->locsym_shndx);
9337 if (isymbuf == NULL)
9338 return FALSE;
9339 }
9340
9341 /* Find local symbol sections and adjust values of symbols in
9342 SEC_MERGE sections. Write out those local symbols we know are
9343 going into the output file. */
9344 isymend = isymbuf + locsymcount;
9345 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9346 isym < isymend;
9347 isym++, pindex++, ppsection++)
9348 {
9349 asection *isec;
9350 const char *name;
9351 Elf_Internal_Sym osym;
9352 long indx;
9353 int ret;
9354
9355 *pindex = -1;
9356
9357 if (elf_bad_symtab (input_bfd))
9358 {
9359 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9360 {
9361 *ppsection = NULL;
9362 continue;
9363 }
9364 }
9365
9366 if (isym->st_shndx == SHN_UNDEF)
9367 isec = bfd_und_section_ptr;
9368 else if (isym->st_shndx == SHN_ABS)
9369 isec = bfd_abs_section_ptr;
9370 else if (isym->st_shndx == SHN_COMMON)
9371 isec = bfd_com_section_ptr;
9372 else
9373 {
9374 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9375 if (isec == NULL)
9376 {
9377 /* Don't attempt to output symbols with st_shnx in the
9378 reserved range other than SHN_ABS and SHN_COMMON. */
9379 *ppsection = NULL;
9380 continue;
9381 }
9382 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9383 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9384 isym->st_value =
9385 _bfd_merged_section_offset (output_bfd, &isec,
9386 elf_section_data (isec)->sec_info,
9387 isym->st_value);
9388 }
9389
9390 *ppsection = isec;
9391
9392 /* Don't output the first, undefined, symbol. */
9393 if (ppsection == flinfo->sections)
9394 continue;
9395
9396 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9397 {
9398 /* We never output section symbols. Instead, we use the
9399 section symbol of the corresponding section in the output
9400 file. */
9401 continue;
9402 }
9403
9404 /* If we are stripping all symbols, we don't want to output this
9405 one. */
9406 if (flinfo->info->strip == strip_all)
9407 continue;
9408
9409 /* If we are discarding all local symbols, we don't want to
9410 output this one. If we are generating a relocatable output
9411 file, then some of the local symbols may be required by
9412 relocs; we output them below as we discover that they are
9413 needed. */
9414 if (flinfo->info->discard == discard_all)
9415 continue;
9416
9417 /* If this symbol is defined in a section which we are
9418 discarding, we don't need to keep it. */
9419 if (isym->st_shndx != SHN_UNDEF
9420 && isym->st_shndx < SHN_LORESERVE
9421 && bfd_section_removed_from_list (output_bfd,
9422 isec->output_section))
9423 continue;
9424
9425 /* Get the name of the symbol. */
9426 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9427 isym->st_name);
9428 if (name == NULL)
9429 return FALSE;
9430
9431 /* See if we are discarding symbols with this name. */
9432 if ((flinfo->info->strip == strip_some
9433 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9434 == NULL))
9435 || (((flinfo->info->discard == discard_sec_merge
9436 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9437 || flinfo->info->discard == discard_l)
9438 && bfd_is_local_label_name (input_bfd, name)))
9439 continue;
9440
9441 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9442 {
9443 have_file_sym = TRUE;
9444 flinfo->filesym_count += 1;
9445 }
9446 if (!have_file_sym)
9447 {
9448 /* In the absence of debug info, bfd_find_nearest_line uses
9449 FILE symbols to determine the source file for local
9450 function symbols. Provide a FILE symbol here if input
9451 files lack such, so that their symbols won't be
9452 associated with a previous input file. It's not the
9453 source file, but the best we can do. */
9454 have_file_sym = TRUE;
9455 flinfo->filesym_count += 1;
9456 memset (&osym, 0, sizeof (osym));
9457 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9458 osym.st_shndx = SHN_ABS;
9459 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9460 bfd_abs_section_ptr, NULL))
9461 return FALSE;
9462 }
9463
9464 osym = *isym;
9465
9466 /* Adjust the section index for the output file. */
9467 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9468 isec->output_section);
9469 if (osym.st_shndx == SHN_BAD)
9470 return FALSE;
9471
9472 /* ELF symbols in relocatable files are section relative, but
9473 in executable files they are virtual addresses. Note that
9474 this code assumes that all ELF sections have an associated
9475 BFD section with a reasonable value for output_offset; below
9476 we assume that they also have a reasonable value for
9477 output_section. Any special sections must be set up to meet
9478 these requirements. */
9479 osym.st_value += isec->output_offset;
9480 if (!flinfo->info->relocatable)
9481 {
9482 osym.st_value += isec->output_section->vma;
9483 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9484 {
9485 /* STT_TLS symbols are relative to PT_TLS segment base. */
9486 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9487 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9488 }
9489 }
9490
9491 indx = bfd_get_symcount (output_bfd);
9492 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9493 if (ret == 0)
9494 return FALSE;
9495 else if (ret == 1)
9496 *pindex = indx;
9497 }
9498
9499 if (bed->s->arch_size == 32)
9500 {
9501 r_type_mask = 0xff;
9502 r_sym_shift = 8;
9503 address_size = 4;
9504 }
9505 else
9506 {
9507 r_type_mask = 0xffffffff;
9508 r_sym_shift = 32;
9509 address_size = 8;
9510 }
9511
9512 /* Relocate the contents of each section. */
9513 sym_hashes = elf_sym_hashes (input_bfd);
9514 for (o = input_bfd->sections; o != NULL; o = o->next)
9515 {
9516 bfd_byte *contents;
9517
9518 if (! o->linker_mark)
9519 {
9520 /* This section was omitted from the link. */
9521 continue;
9522 }
9523
9524 if (flinfo->info->relocatable
9525 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9526 {
9527 /* Deal with the group signature symbol. */
9528 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9529 unsigned long symndx = sec_data->this_hdr.sh_info;
9530 asection *osec = o->output_section;
9531
9532 if (symndx >= locsymcount
9533 || (elf_bad_symtab (input_bfd)
9534 && flinfo->sections[symndx] == NULL))
9535 {
9536 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9537 while (h->root.type == bfd_link_hash_indirect
9538 || h->root.type == bfd_link_hash_warning)
9539 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9540 /* Arrange for symbol to be output. */
9541 h->indx = -2;
9542 elf_section_data (osec)->this_hdr.sh_info = -2;
9543 }
9544 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9545 {
9546 /* We'll use the output section target_index. */
9547 asection *sec = flinfo->sections[symndx]->output_section;
9548 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9549 }
9550 else
9551 {
9552 if (flinfo->indices[symndx] == -1)
9553 {
9554 /* Otherwise output the local symbol now. */
9555 Elf_Internal_Sym sym = isymbuf[symndx];
9556 asection *sec = flinfo->sections[symndx]->output_section;
9557 const char *name;
9558 long indx;
9559 int ret;
9560
9561 name = bfd_elf_string_from_elf_section (input_bfd,
9562 symtab_hdr->sh_link,
9563 sym.st_name);
9564 if (name == NULL)
9565 return FALSE;
9566
9567 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9568 sec);
9569 if (sym.st_shndx == SHN_BAD)
9570 return FALSE;
9571
9572 sym.st_value += o->output_offset;
9573
9574 indx = bfd_get_symcount (output_bfd);
9575 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9576 if (ret == 0)
9577 return FALSE;
9578 else if (ret == 1)
9579 flinfo->indices[symndx] = indx;
9580 else
9581 abort ();
9582 }
9583 elf_section_data (osec)->this_hdr.sh_info
9584 = flinfo->indices[symndx];
9585 }
9586 }
9587
9588 if ((o->flags & SEC_HAS_CONTENTS) == 0
9589 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9590 continue;
9591
9592 if ((o->flags & SEC_LINKER_CREATED) != 0)
9593 {
9594 /* Section was created by _bfd_elf_link_create_dynamic_sections
9595 or somesuch. */
9596 continue;
9597 }
9598
9599 /* Get the contents of the section. They have been cached by a
9600 relaxation routine. Note that o is a section in an input
9601 file, so the contents field will not have been set by any of
9602 the routines which work on output files. */
9603 if (elf_section_data (o)->this_hdr.contents != NULL)
9604 contents = elf_section_data (o)->this_hdr.contents;
9605 else
9606 {
9607 contents = flinfo->contents;
9608 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9609 return FALSE;
9610 }
9611
9612 if ((o->flags & SEC_RELOC) != 0)
9613 {
9614 Elf_Internal_Rela *internal_relocs;
9615 Elf_Internal_Rela *rel, *relend;
9616 int action_discarded;
9617 int ret;
9618
9619 /* Get the swapped relocs. */
9620 internal_relocs
9621 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9622 flinfo->internal_relocs, FALSE);
9623 if (internal_relocs == NULL
9624 && o->reloc_count > 0)
9625 return FALSE;
9626
9627 /* We need to reverse-copy input .ctors/.dtors sections if
9628 they are placed in .init_array/.finit_array for output. */
9629 if (o->size > address_size
9630 && ((strncmp (o->name, ".ctors", 6) == 0
9631 && strcmp (o->output_section->name,
9632 ".init_array") == 0)
9633 || (strncmp (o->name, ".dtors", 6) == 0
9634 && strcmp (o->output_section->name,
9635 ".fini_array") == 0))
9636 && (o->name[6] == 0 || o->name[6] == '.'))
9637 {
9638 if (o->size != o->reloc_count * address_size)
9639 {
9640 (*_bfd_error_handler)
9641 (_("error: %B: size of section %A is not "
9642 "multiple of address size"),
9643 input_bfd, o);
9644 bfd_set_error (bfd_error_on_input);
9645 return FALSE;
9646 }
9647 o->flags |= SEC_ELF_REVERSE_COPY;
9648 }
9649
9650 action_discarded = -1;
9651 if (!elf_section_ignore_discarded_relocs (o))
9652 action_discarded = (*bed->action_discarded) (o);
9653
9654 /* Run through the relocs evaluating complex reloc symbols and
9655 looking for relocs against symbols from discarded sections
9656 or section symbols from removed link-once sections.
9657 Complain about relocs against discarded sections. Zero
9658 relocs against removed link-once sections. */
9659
9660 rel = internal_relocs;
9661 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9662 for ( ; rel < relend; rel++)
9663 {
9664 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9665 unsigned int s_type;
9666 asection **ps, *sec;
9667 struct elf_link_hash_entry *h = NULL;
9668 const char *sym_name;
9669
9670 if (r_symndx == STN_UNDEF)
9671 continue;
9672
9673 if (r_symndx >= locsymcount
9674 || (elf_bad_symtab (input_bfd)
9675 && flinfo->sections[r_symndx] == NULL))
9676 {
9677 h = sym_hashes[r_symndx - extsymoff];
9678
9679 /* Badly formatted input files can contain relocs that
9680 reference non-existant symbols. Check here so that
9681 we do not seg fault. */
9682 if (h == NULL)
9683 {
9684 char buffer [32];
9685
9686 sprintf_vma (buffer, rel->r_info);
9687 (*_bfd_error_handler)
9688 (_("error: %B contains a reloc (0x%s) for section %A "
9689 "that references a non-existent global symbol"),
9690 input_bfd, o, buffer);
9691 bfd_set_error (bfd_error_bad_value);
9692 return FALSE;
9693 }
9694
9695 while (h->root.type == bfd_link_hash_indirect
9696 || h->root.type == bfd_link_hash_warning)
9697 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9698
9699 s_type = h->type;
9700
9701 ps = NULL;
9702 if (h->root.type == bfd_link_hash_defined
9703 || h->root.type == bfd_link_hash_defweak)
9704 ps = &h->root.u.def.section;
9705
9706 sym_name = h->root.root.string;
9707 }
9708 else
9709 {
9710 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9711
9712 s_type = ELF_ST_TYPE (sym->st_info);
9713 ps = &flinfo->sections[r_symndx];
9714 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9715 sym, *ps);
9716 }
9717
9718 if ((s_type == STT_RELC || s_type == STT_SRELC)
9719 && !flinfo->info->relocatable)
9720 {
9721 bfd_vma val;
9722 bfd_vma dot = (rel->r_offset
9723 + o->output_offset + o->output_section->vma);
9724 #ifdef DEBUG
9725 printf ("Encountered a complex symbol!");
9726 printf (" (input_bfd %s, section %s, reloc %ld\n",
9727 input_bfd->filename, o->name,
9728 (long) (rel - internal_relocs));
9729 printf (" symbol: idx %8.8lx, name %s\n",
9730 r_symndx, sym_name);
9731 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9732 (unsigned long) rel->r_info,
9733 (unsigned long) rel->r_offset);
9734 #endif
9735 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9736 isymbuf, locsymcount, s_type == STT_SRELC))
9737 return FALSE;
9738
9739 /* Symbol evaluated OK. Update to absolute value. */
9740 set_symbol_value (input_bfd, isymbuf, locsymcount,
9741 r_symndx, val);
9742 continue;
9743 }
9744
9745 if (action_discarded != -1 && ps != NULL)
9746 {
9747 /* Complain if the definition comes from a
9748 discarded section. */
9749 if ((sec = *ps) != NULL && discarded_section (sec))
9750 {
9751 BFD_ASSERT (r_symndx != STN_UNDEF);
9752 if (action_discarded & COMPLAIN)
9753 (*flinfo->info->callbacks->einfo)
9754 (_("%X`%s' referenced in section `%A' of %B: "
9755 "defined in discarded section `%A' of %B\n"),
9756 sym_name, o, input_bfd, sec, sec->owner);
9757
9758 /* Try to do the best we can to support buggy old
9759 versions of gcc. Pretend that the symbol is
9760 really defined in the kept linkonce section.
9761 FIXME: This is quite broken. Modifying the
9762 symbol here means we will be changing all later
9763 uses of the symbol, not just in this section. */
9764 if (action_discarded & PRETEND)
9765 {
9766 asection *kept;
9767
9768 kept = _bfd_elf_check_kept_section (sec,
9769 flinfo->info);
9770 if (kept != NULL)
9771 {
9772 *ps = kept;
9773 continue;
9774 }
9775 }
9776 }
9777 }
9778 }
9779
9780 /* Relocate the section by invoking a back end routine.
9781
9782 The back end routine is responsible for adjusting the
9783 section contents as necessary, and (if using Rela relocs
9784 and generating a relocatable output file) adjusting the
9785 reloc addend as necessary.
9786
9787 The back end routine does not have to worry about setting
9788 the reloc address or the reloc symbol index.
9789
9790 The back end routine is given a pointer to the swapped in
9791 internal symbols, and can access the hash table entries
9792 for the external symbols via elf_sym_hashes (input_bfd).
9793
9794 When generating relocatable output, the back end routine
9795 must handle STB_LOCAL/STT_SECTION symbols specially. The
9796 output symbol is going to be a section symbol
9797 corresponding to the output section, which will require
9798 the addend to be adjusted. */
9799
9800 ret = (*relocate_section) (output_bfd, flinfo->info,
9801 input_bfd, o, contents,
9802 internal_relocs,
9803 isymbuf,
9804 flinfo->sections);
9805 if (!ret)
9806 return FALSE;
9807
9808 if (ret == 2
9809 || flinfo->info->relocatable
9810 || flinfo->info->emitrelocations)
9811 {
9812 Elf_Internal_Rela *irela;
9813 Elf_Internal_Rela *irelaend, *irelamid;
9814 bfd_vma last_offset;
9815 struct elf_link_hash_entry **rel_hash;
9816 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9817 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9818 unsigned int next_erel;
9819 bfd_boolean rela_normal;
9820 struct bfd_elf_section_data *esdi, *esdo;
9821
9822 esdi = elf_section_data (o);
9823 esdo = elf_section_data (o->output_section);
9824 rela_normal = FALSE;
9825
9826 /* Adjust the reloc addresses and symbol indices. */
9827
9828 irela = internal_relocs;
9829 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9830 rel_hash = esdo->rel.hashes + esdo->rel.count;
9831 /* We start processing the REL relocs, if any. When we reach
9832 IRELAMID in the loop, we switch to the RELA relocs. */
9833 irelamid = irela;
9834 if (esdi->rel.hdr != NULL)
9835 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9836 * bed->s->int_rels_per_ext_rel);
9837 rel_hash_list = rel_hash;
9838 rela_hash_list = NULL;
9839 last_offset = o->output_offset;
9840 if (!flinfo->info->relocatable)
9841 last_offset += o->output_section->vma;
9842 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9843 {
9844 unsigned long r_symndx;
9845 asection *sec;
9846 Elf_Internal_Sym sym;
9847
9848 if (next_erel == bed->s->int_rels_per_ext_rel)
9849 {
9850 rel_hash++;
9851 next_erel = 0;
9852 }
9853
9854 if (irela == irelamid)
9855 {
9856 rel_hash = esdo->rela.hashes + esdo->rela.count;
9857 rela_hash_list = rel_hash;
9858 rela_normal = bed->rela_normal;
9859 }
9860
9861 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9862 flinfo->info, o,
9863 irela->r_offset);
9864 if (irela->r_offset >= (bfd_vma) -2)
9865 {
9866 /* This is a reloc for a deleted entry or somesuch.
9867 Turn it into an R_*_NONE reloc, at the same
9868 offset as the last reloc. elf_eh_frame.c and
9869 bfd_elf_discard_info rely on reloc offsets
9870 being ordered. */
9871 irela->r_offset = last_offset;
9872 irela->r_info = 0;
9873 irela->r_addend = 0;
9874 continue;
9875 }
9876
9877 irela->r_offset += o->output_offset;
9878
9879 /* Relocs in an executable have to be virtual addresses. */
9880 if (!flinfo->info->relocatable)
9881 irela->r_offset += o->output_section->vma;
9882
9883 last_offset = irela->r_offset;
9884
9885 r_symndx = irela->r_info >> r_sym_shift;
9886 if (r_symndx == STN_UNDEF)
9887 continue;
9888
9889 if (r_symndx >= locsymcount
9890 || (elf_bad_symtab (input_bfd)
9891 && flinfo->sections[r_symndx] == NULL))
9892 {
9893 struct elf_link_hash_entry *rh;
9894 unsigned long indx;
9895
9896 /* This is a reloc against a global symbol. We
9897 have not yet output all the local symbols, so
9898 we do not know the symbol index of any global
9899 symbol. We set the rel_hash entry for this
9900 reloc to point to the global hash table entry
9901 for this symbol. The symbol index is then
9902 set at the end of bfd_elf_final_link. */
9903 indx = r_symndx - extsymoff;
9904 rh = elf_sym_hashes (input_bfd)[indx];
9905 while (rh->root.type == bfd_link_hash_indirect
9906 || rh->root.type == bfd_link_hash_warning)
9907 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9908
9909 /* Setting the index to -2 tells
9910 elf_link_output_extsym that this symbol is
9911 used by a reloc. */
9912 BFD_ASSERT (rh->indx < 0);
9913 rh->indx = -2;
9914
9915 *rel_hash = rh;
9916
9917 continue;
9918 }
9919
9920 /* This is a reloc against a local symbol. */
9921
9922 *rel_hash = NULL;
9923 sym = isymbuf[r_symndx];
9924 sec = flinfo->sections[r_symndx];
9925 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9926 {
9927 /* I suppose the backend ought to fill in the
9928 section of any STT_SECTION symbol against a
9929 processor specific section. */
9930 r_symndx = STN_UNDEF;
9931 if (bfd_is_abs_section (sec))
9932 ;
9933 else if (sec == NULL || sec->owner == NULL)
9934 {
9935 bfd_set_error (bfd_error_bad_value);
9936 return FALSE;
9937 }
9938 else
9939 {
9940 asection *osec = sec->output_section;
9941
9942 /* If we have discarded a section, the output
9943 section will be the absolute section. In
9944 case of discarded SEC_MERGE sections, use
9945 the kept section. relocate_section should
9946 have already handled discarded linkonce
9947 sections. */
9948 if (bfd_is_abs_section (osec)
9949 && sec->kept_section != NULL
9950 && sec->kept_section->output_section != NULL)
9951 {
9952 osec = sec->kept_section->output_section;
9953 irela->r_addend -= osec->vma;
9954 }
9955
9956 if (!bfd_is_abs_section (osec))
9957 {
9958 r_symndx = osec->target_index;
9959 if (r_symndx == STN_UNDEF)
9960 {
9961 irela->r_addend += osec->vma;
9962 osec = _bfd_nearby_section (output_bfd, osec,
9963 osec->vma);
9964 irela->r_addend -= osec->vma;
9965 r_symndx = osec->target_index;
9966 }
9967 }
9968 }
9969
9970 /* Adjust the addend according to where the
9971 section winds up in the output section. */
9972 if (rela_normal)
9973 irela->r_addend += sec->output_offset;
9974 }
9975 else
9976 {
9977 if (flinfo->indices[r_symndx] == -1)
9978 {
9979 unsigned long shlink;
9980 const char *name;
9981 asection *osec;
9982 long indx;
9983
9984 if (flinfo->info->strip == strip_all)
9985 {
9986 /* You can't do ld -r -s. */
9987 bfd_set_error (bfd_error_invalid_operation);
9988 return FALSE;
9989 }
9990
9991 /* This symbol was skipped earlier, but
9992 since it is needed by a reloc, we
9993 must output it now. */
9994 shlink = symtab_hdr->sh_link;
9995 name = (bfd_elf_string_from_elf_section
9996 (input_bfd, shlink, sym.st_name));
9997 if (name == NULL)
9998 return FALSE;
9999
10000 osec = sec->output_section;
10001 sym.st_shndx =
10002 _bfd_elf_section_from_bfd_section (output_bfd,
10003 osec);
10004 if (sym.st_shndx == SHN_BAD)
10005 return FALSE;
10006
10007 sym.st_value += sec->output_offset;
10008 if (!flinfo->info->relocatable)
10009 {
10010 sym.st_value += osec->vma;
10011 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10012 {
10013 /* STT_TLS symbols are relative to PT_TLS
10014 segment base. */
10015 BFD_ASSERT (elf_hash_table (flinfo->info)
10016 ->tls_sec != NULL);
10017 sym.st_value -= (elf_hash_table (flinfo->info)
10018 ->tls_sec->vma);
10019 }
10020 }
10021
10022 indx = bfd_get_symcount (output_bfd);
10023 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10024 NULL);
10025 if (ret == 0)
10026 return FALSE;
10027 else if (ret == 1)
10028 flinfo->indices[r_symndx] = indx;
10029 else
10030 abort ();
10031 }
10032
10033 r_symndx = flinfo->indices[r_symndx];
10034 }
10035
10036 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10037 | (irela->r_info & r_type_mask));
10038 }
10039
10040 /* Swap out the relocs. */
10041 input_rel_hdr = esdi->rel.hdr;
10042 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10043 {
10044 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10045 input_rel_hdr,
10046 internal_relocs,
10047 rel_hash_list))
10048 return FALSE;
10049 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10050 * bed->s->int_rels_per_ext_rel);
10051 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10052 }
10053
10054 input_rela_hdr = esdi->rela.hdr;
10055 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10056 {
10057 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10058 input_rela_hdr,
10059 internal_relocs,
10060 rela_hash_list))
10061 return FALSE;
10062 }
10063 }
10064 }
10065
10066 /* Write out the modified section contents. */
10067 if (bed->elf_backend_write_section
10068 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10069 contents))
10070 {
10071 /* Section written out. */
10072 }
10073 else switch (o->sec_info_type)
10074 {
10075 case SEC_INFO_TYPE_STABS:
10076 if (! (_bfd_write_section_stabs
10077 (output_bfd,
10078 &elf_hash_table (flinfo->info)->stab_info,
10079 o, &elf_section_data (o)->sec_info, contents)))
10080 return FALSE;
10081 break;
10082 case SEC_INFO_TYPE_MERGE:
10083 if (! _bfd_write_merged_section (output_bfd, o,
10084 elf_section_data (o)->sec_info))
10085 return FALSE;
10086 break;
10087 case SEC_INFO_TYPE_EH_FRAME:
10088 {
10089 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10090 o, contents))
10091 return FALSE;
10092 }
10093 break;
10094 default:
10095 {
10096 /* FIXME: octets_per_byte. */
10097 if (! (o->flags & SEC_EXCLUDE))
10098 {
10099 file_ptr offset = (file_ptr) o->output_offset;
10100 bfd_size_type todo = o->size;
10101 if ((o->flags & SEC_ELF_REVERSE_COPY))
10102 {
10103 /* Reverse-copy input section to output. */
10104 do
10105 {
10106 todo -= address_size;
10107 if (! bfd_set_section_contents (output_bfd,
10108 o->output_section,
10109 contents + todo,
10110 offset,
10111 address_size))
10112 return FALSE;
10113 if (todo == 0)
10114 break;
10115 offset += address_size;
10116 }
10117 while (1);
10118 }
10119 else if (! bfd_set_section_contents (output_bfd,
10120 o->output_section,
10121 contents,
10122 offset, todo))
10123 return FALSE;
10124 }
10125 }
10126 break;
10127 }
10128 }
10129
10130 return TRUE;
10131 }
10132
10133 /* Generate a reloc when linking an ELF file. This is a reloc
10134 requested by the linker, and does not come from any input file. This
10135 is used to build constructor and destructor tables when linking
10136 with -Ur. */
10137
10138 static bfd_boolean
10139 elf_reloc_link_order (bfd *output_bfd,
10140 struct bfd_link_info *info,
10141 asection *output_section,
10142 struct bfd_link_order *link_order)
10143 {
10144 reloc_howto_type *howto;
10145 long indx;
10146 bfd_vma offset;
10147 bfd_vma addend;
10148 struct bfd_elf_section_reloc_data *reldata;
10149 struct elf_link_hash_entry **rel_hash_ptr;
10150 Elf_Internal_Shdr *rel_hdr;
10151 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10152 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10153 bfd_byte *erel;
10154 unsigned int i;
10155 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10156
10157 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10158 if (howto == NULL)
10159 {
10160 bfd_set_error (bfd_error_bad_value);
10161 return FALSE;
10162 }
10163
10164 addend = link_order->u.reloc.p->addend;
10165
10166 if (esdo->rel.hdr)
10167 reldata = &esdo->rel;
10168 else if (esdo->rela.hdr)
10169 reldata = &esdo->rela;
10170 else
10171 {
10172 reldata = NULL;
10173 BFD_ASSERT (0);
10174 }
10175
10176 /* Figure out the symbol index. */
10177 rel_hash_ptr = reldata->hashes + reldata->count;
10178 if (link_order->type == bfd_section_reloc_link_order)
10179 {
10180 indx = link_order->u.reloc.p->u.section->target_index;
10181 BFD_ASSERT (indx != 0);
10182 *rel_hash_ptr = NULL;
10183 }
10184 else
10185 {
10186 struct elf_link_hash_entry *h;
10187
10188 /* Treat a reloc against a defined symbol as though it were
10189 actually against the section. */
10190 h = ((struct elf_link_hash_entry *)
10191 bfd_wrapped_link_hash_lookup (output_bfd, info,
10192 link_order->u.reloc.p->u.name,
10193 FALSE, FALSE, TRUE));
10194 if (h != NULL
10195 && (h->root.type == bfd_link_hash_defined
10196 || h->root.type == bfd_link_hash_defweak))
10197 {
10198 asection *section;
10199
10200 section = h->root.u.def.section;
10201 indx = section->output_section->target_index;
10202 *rel_hash_ptr = NULL;
10203 /* It seems that we ought to add the symbol value to the
10204 addend here, but in practice it has already been added
10205 because it was passed to constructor_callback. */
10206 addend += section->output_section->vma + section->output_offset;
10207 }
10208 else if (h != NULL)
10209 {
10210 /* Setting the index to -2 tells elf_link_output_extsym that
10211 this symbol is used by a reloc. */
10212 h->indx = -2;
10213 *rel_hash_ptr = h;
10214 indx = 0;
10215 }
10216 else
10217 {
10218 if (! ((*info->callbacks->unattached_reloc)
10219 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10220 return FALSE;
10221 indx = 0;
10222 }
10223 }
10224
10225 /* If this is an inplace reloc, we must write the addend into the
10226 object file. */
10227 if (howto->partial_inplace && addend != 0)
10228 {
10229 bfd_size_type size;
10230 bfd_reloc_status_type rstat;
10231 bfd_byte *buf;
10232 bfd_boolean ok;
10233 const char *sym_name;
10234
10235 size = (bfd_size_type) bfd_get_reloc_size (howto);
10236 buf = (bfd_byte *) bfd_zmalloc (size);
10237 if (buf == NULL)
10238 return FALSE;
10239 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10240 switch (rstat)
10241 {
10242 case bfd_reloc_ok:
10243 break;
10244
10245 default:
10246 case bfd_reloc_outofrange:
10247 abort ();
10248
10249 case bfd_reloc_overflow:
10250 if (link_order->type == bfd_section_reloc_link_order)
10251 sym_name = bfd_section_name (output_bfd,
10252 link_order->u.reloc.p->u.section);
10253 else
10254 sym_name = link_order->u.reloc.p->u.name;
10255 if (! ((*info->callbacks->reloc_overflow)
10256 (info, NULL, sym_name, howto->name, addend, NULL,
10257 NULL, (bfd_vma) 0)))
10258 {
10259 free (buf);
10260 return FALSE;
10261 }
10262 break;
10263 }
10264 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10265 link_order->offset, size);
10266 free (buf);
10267 if (! ok)
10268 return FALSE;
10269 }
10270
10271 /* The address of a reloc is relative to the section in a
10272 relocatable file, and is a virtual address in an executable
10273 file. */
10274 offset = link_order->offset;
10275 if (! info->relocatable)
10276 offset += output_section->vma;
10277
10278 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10279 {
10280 irel[i].r_offset = offset;
10281 irel[i].r_info = 0;
10282 irel[i].r_addend = 0;
10283 }
10284 if (bed->s->arch_size == 32)
10285 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10286 else
10287 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10288
10289 rel_hdr = reldata->hdr;
10290 erel = rel_hdr->contents;
10291 if (rel_hdr->sh_type == SHT_REL)
10292 {
10293 erel += reldata->count * bed->s->sizeof_rel;
10294 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10295 }
10296 else
10297 {
10298 irel[0].r_addend = addend;
10299 erel += reldata->count * bed->s->sizeof_rela;
10300 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10301 }
10302
10303 ++reldata->count;
10304
10305 return TRUE;
10306 }
10307
10308
10309 /* Get the output vma of the section pointed to by the sh_link field. */
10310
10311 static bfd_vma
10312 elf_get_linked_section_vma (struct bfd_link_order *p)
10313 {
10314 Elf_Internal_Shdr **elf_shdrp;
10315 asection *s;
10316 int elfsec;
10317
10318 s = p->u.indirect.section;
10319 elf_shdrp = elf_elfsections (s->owner);
10320 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10321 elfsec = elf_shdrp[elfsec]->sh_link;
10322 /* PR 290:
10323 The Intel C compiler generates SHT_IA_64_UNWIND with
10324 SHF_LINK_ORDER. But it doesn't set the sh_link or
10325 sh_info fields. Hence we could get the situation
10326 where elfsec is 0. */
10327 if (elfsec == 0)
10328 {
10329 const struct elf_backend_data *bed
10330 = get_elf_backend_data (s->owner);
10331 if (bed->link_order_error_handler)
10332 bed->link_order_error_handler
10333 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10334 return 0;
10335 }
10336 else
10337 {
10338 s = elf_shdrp[elfsec]->bfd_section;
10339 return s->output_section->vma + s->output_offset;
10340 }
10341 }
10342
10343
10344 /* Compare two sections based on the locations of the sections they are
10345 linked to. Used by elf_fixup_link_order. */
10346
10347 static int
10348 compare_link_order (const void * a, const void * b)
10349 {
10350 bfd_vma apos;
10351 bfd_vma bpos;
10352
10353 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10354 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10355 if (apos < bpos)
10356 return -1;
10357 return apos > bpos;
10358 }
10359
10360
10361 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10362 order as their linked sections. Returns false if this could not be done
10363 because an output section includes both ordered and unordered
10364 sections. Ideally we'd do this in the linker proper. */
10365
10366 static bfd_boolean
10367 elf_fixup_link_order (bfd *abfd, asection *o)
10368 {
10369 int seen_linkorder;
10370 int seen_other;
10371 int n;
10372 struct bfd_link_order *p;
10373 bfd *sub;
10374 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10375 unsigned elfsec;
10376 struct bfd_link_order **sections;
10377 asection *s, *other_sec, *linkorder_sec;
10378 bfd_vma offset;
10379
10380 other_sec = NULL;
10381 linkorder_sec = NULL;
10382 seen_other = 0;
10383 seen_linkorder = 0;
10384 for (p = o->map_head.link_order; p != NULL; p = p->next)
10385 {
10386 if (p->type == bfd_indirect_link_order)
10387 {
10388 s = p->u.indirect.section;
10389 sub = s->owner;
10390 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10391 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10392 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10393 && elfsec < elf_numsections (sub)
10394 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10395 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10396 {
10397 seen_linkorder++;
10398 linkorder_sec = s;
10399 }
10400 else
10401 {
10402 seen_other++;
10403 other_sec = s;
10404 }
10405 }
10406 else
10407 seen_other++;
10408
10409 if (seen_other && seen_linkorder)
10410 {
10411 if (other_sec && linkorder_sec)
10412 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10413 o, linkorder_sec,
10414 linkorder_sec->owner, other_sec,
10415 other_sec->owner);
10416 else
10417 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10418 o);
10419 bfd_set_error (bfd_error_bad_value);
10420 return FALSE;
10421 }
10422 }
10423
10424 if (!seen_linkorder)
10425 return TRUE;
10426
10427 sections = (struct bfd_link_order **)
10428 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10429 if (sections == NULL)
10430 return FALSE;
10431 seen_linkorder = 0;
10432
10433 for (p = o->map_head.link_order; p != NULL; p = p->next)
10434 {
10435 sections[seen_linkorder++] = p;
10436 }
10437 /* Sort the input sections in the order of their linked section. */
10438 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10439 compare_link_order);
10440
10441 /* Change the offsets of the sections. */
10442 offset = 0;
10443 for (n = 0; n < seen_linkorder; n++)
10444 {
10445 s = sections[n]->u.indirect.section;
10446 offset &= ~(bfd_vma) 0 << s->alignment_power;
10447 s->output_offset = offset;
10448 sections[n]->offset = offset;
10449 /* FIXME: octets_per_byte. */
10450 offset += sections[n]->size;
10451 }
10452
10453 free (sections);
10454 return TRUE;
10455 }
10456
10457
10458 /* Do the final step of an ELF link. */
10459
10460 bfd_boolean
10461 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10462 {
10463 bfd_boolean dynamic;
10464 bfd_boolean emit_relocs;
10465 bfd *dynobj;
10466 struct elf_final_link_info flinfo;
10467 asection *o;
10468 struct bfd_link_order *p;
10469 bfd *sub;
10470 bfd_size_type max_contents_size;
10471 bfd_size_type max_external_reloc_size;
10472 bfd_size_type max_internal_reloc_count;
10473 bfd_size_type max_sym_count;
10474 bfd_size_type max_sym_shndx_count;
10475 file_ptr off;
10476 Elf_Internal_Sym elfsym;
10477 unsigned int i;
10478 Elf_Internal_Shdr *symtab_hdr;
10479 Elf_Internal_Shdr *symtab_shndx_hdr;
10480 Elf_Internal_Shdr *symstrtab_hdr;
10481 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10482 struct elf_outext_info eoinfo;
10483 bfd_boolean merged;
10484 size_t relativecount = 0;
10485 asection *reldyn = 0;
10486 bfd_size_type amt;
10487 asection *attr_section = NULL;
10488 bfd_vma attr_size = 0;
10489 const char *std_attrs_section;
10490
10491 if (! is_elf_hash_table (info->hash))
10492 return FALSE;
10493
10494 if (info->shared)
10495 abfd->flags |= DYNAMIC;
10496
10497 dynamic = elf_hash_table (info)->dynamic_sections_created;
10498 dynobj = elf_hash_table (info)->dynobj;
10499
10500 emit_relocs = (info->relocatable
10501 || info->emitrelocations);
10502
10503 flinfo.info = info;
10504 flinfo.output_bfd = abfd;
10505 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10506 if (flinfo.symstrtab == NULL)
10507 return FALSE;
10508
10509 if (! dynamic)
10510 {
10511 flinfo.dynsym_sec = NULL;
10512 flinfo.hash_sec = NULL;
10513 flinfo.symver_sec = NULL;
10514 }
10515 else
10516 {
10517 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10518 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10519 /* Note that dynsym_sec can be NULL (on VMS). */
10520 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10521 /* Note that it is OK if symver_sec is NULL. */
10522 }
10523
10524 flinfo.contents = NULL;
10525 flinfo.external_relocs = NULL;
10526 flinfo.internal_relocs = NULL;
10527 flinfo.external_syms = NULL;
10528 flinfo.locsym_shndx = NULL;
10529 flinfo.internal_syms = NULL;
10530 flinfo.indices = NULL;
10531 flinfo.sections = NULL;
10532 flinfo.symbuf = NULL;
10533 flinfo.symshndxbuf = NULL;
10534 flinfo.symbuf_count = 0;
10535 flinfo.shndxbuf_size = 0;
10536 flinfo.filesym_count = 0;
10537
10538 /* The object attributes have been merged. Remove the input
10539 sections from the link, and set the contents of the output
10540 secton. */
10541 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10542 for (o = abfd->sections; o != NULL; o = o->next)
10543 {
10544 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10545 || strcmp (o->name, ".gnu.attributes") == 0)
10546 {
10547 for (p = o->map_head.link_order; p != NULL; p = p->next)
10548 {
10549 asection *input_section;
10550
10551 if (p->type != bfd_indirect_link_order)
10552 continue;
10553 input_section = p->u.indirect.section;
10554 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10555 elf_link_input_bfd ignores this section. */
10556 input_section->flags &= ~SEC_HAS_CONTENTS;
10557 }
10558
10559 attr_size = bfd_elf_obj_attr_size (abfd);
10560 if (attr_size)
10561 {
10562 bfd_set_section_size (abfd, o, attr_size);
10563 attr_section = o;
10564 /* Skip this section later on. */
10565 o->map_head.link_order = NULL;
10566 }
10567 else
10568 o->flags |= SEC_EXCLUDE;
10569 }
10570 }
10571
10572 /* Count up the number of relocations we will output for each output
10573 section, so that we know the sizes of the reloc sections. We
10574 also figure out some maximum sizes. */
10575 max_contents_size = 0;
10576 max_external_reloc_size = 0;
10577 max_internal_reloc_count = 0;
10578 max_sym_count = 0;
10579 max_sym_shndx_count = 0;
10580 merged = FALSE;
10581 for (o = abfd->sections; o != NULL; o = o->next)
10582 {
10583 struct bfd_elf_section_data *esdo = elf_section_data (o);
10584 o->reloc_count = 0;
10585
10586 for (p = o->map_head.link_order; p != NULL; p = p->next)
10587 {
10588 unsigned int reloc_count = 0;
10589 struct bfd_elf_section_data *esdi = NULL;
10590
10591 if (p->type == bfd_section_reloc_link_order
10592 || p->type == bfd_symbol_reloc_link_order)
10593 reloc_count = 1;
10594 else if (p->type == bfd_indirect_link_order)
10595 {
10596 asection *sec;
10597
10598 sec = p->u.indirect.section;
10599 esdi = elf_section_data (sec);
10600
10601 /* Mark all sections which are to be included in the
10602 link. This will normally be every section. We need
10603 to do this so that we can identify any sections which
10604 the linker has decided to not include. */
10605 sec->linker_mark = TRUE;
10606
10607 if (sec->flags & SEC_MERGE)
10608 merged = TRUE;
10609
10610 if (esdo->this_hdr.sh_type == SHT_REL
10611 || esdo->this_hdr.sh_type == SHT_RELA)
10612 /* Some backends use reloc_count in relocation sections
10613 to count particular types of relocs. Of course,
10614 reloc sections themselves can't have relocations. */
10615 reloc_count = 0;
10616 else if (info->relocatable || info->emitrelocations)
10617 reloc_count = sec->reloc_count;
10618 else if (bed->elf_backend_count_relocs)
10619 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10620
10621 if (sec->rawsize > max_contents_size)
10622 max_contents_size = sec->rawsize;
10623 if (sec->size > max_contents_size)
10624 max_contents_size = sec->size;
10625
10626 /* We are interested in just local symbols, not all
10627 symbols. */
10628 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10629 && (sec->owner->flags & DYNAMIC) == 0)
10630 {
10631 size_t sym_count;
10632
10633 if (elf_bad_symtab (sec->owner))
10634 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10635 / bed->s->sizeof_sym);
10636 else
10637 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10638
10639 if (sym_count > max_sym_count)
10640 max_sym_count = sym_count;
10641
10642 if (sym_count > max_sym_shndx_count
10643 && elf_symtab_shndx (sec->owner) != 0)
10644 max_sym_shndx_count = sym_count;
10645
10646 if ((sec->flags & SEC_RELOC) != 0)
10647 {
10648 size_t ext_size = 0;
10649
10650 if (esdi->rel.hdr != NULL)
10651 ext_size = esdi->rel.hdr->sh_size;
10652 if (esdi->rela.hdr != NULL)
10653 ext_size += esdi->rela.hdr->sh_size;
10654
10655 if (ext_size > max_external_reloc_size)
10656 max_external_reloc_size = ext_size;
10657 if (sec->reloc_count > max_internal_reloc_count)
10658 max_internal_reloc_count = sec->reloc_count;
10659 }
10660 }
10661 }
10662
10663 if (reloc_count == 0)
10664 continue;
10665
10666 o->reloc_count += reloc_count;
10667
10668 if (p->type == bfd_indirect_link_order
10669 && (info->relocatable || info->emitrelocations))
10670 {
10671 if (esdi->rel.hdr)
10672 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10673 if (esdi->rela.hdr)
10674 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10675 }
10676 else
10677 {
10678 if (o->use_rela_p)
10679 esdo->rela.count += reloc_count;
10680 else
10681 esdo->rel.count += reloc_count;
10682 }
10683 }
10684
10685 if (o->reloc_count > 0)
10686 o->flags |= SEC_RELOC;
10687 else
10688 {
10689 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10690 set it (this is probably a bug) and if it is set
10691 assign_section_numbers will create a reloc section. */
10692 o->flags &=~ SEC_RELOC;
10693 }
10694
10695 /* If the SEC_ALLOC flag is not set, force the section VMA to
10696 zero. This is done in elf_fake_sections as well, but forcing
10697 the VMA to 0 here will ensure that relocs against these
10698 sections are handled correctly. */
10699 if ((o->flags & SEC_ALLOC) == 0
10700 && ! o->user_set_vma)
10701 o->vma = 0;
10702 }
10703
10704 if (! info->relocatable && merged)
10705 elf_link_hash_traverse (elf_hash_table (info),
10706 _bfd_elf_link_sec_merge_syms, abfd);
10707
10708 /* Figure out the file positions for everything but the symbol table
10709 and the relocs. We set symcount to force assign_section_numbers
10710 to create a symbol table. */
10711 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10712 BFD_ASSERT (! abfd->output_has_begun);
10713 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10714 goto error_return;
10715
10716 /* Set sizes, and assign file positions for reloc sections. */
10717 for (o = abfd->sections; o != NULL; o = o->next)
10718 {
10719 struct bfd_elf_section_data *esdo = elf_section_data (o);
10720 if ((o->flags & SEC_RELOC) != 0)
10721 {
10722 if (esdo->rel.hdr
10723 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10724 goto error_return;
10725
10726 if (esdo->rela.hdr
10727 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10728 goto error_return;
10729 }
10730
10731 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10732 to count upwards while actually outputting the relocations. */
10733 esdo->rel.count = 0;
10734 esdo->rela.count = 0;
10735 }
10736
10737 _bfd_elf_assign_file_positions_for_relocs (abfd);
10738
10739 /* We have now assigned file positions for all the sections except
10740 .symtab and .strtab. We start the .symtab section at the current
10741 file position, and write directly to it. We build the .strtab
10742 section in memory. */
10743 bfd_get_symcount (abfd) = 0;
10744 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10745 /* sh_name is set in prep_headers. */
10746 symtab_hdr->sh_type = SHT_SYMTAB;
10747 /* sh_flags, sh_addr and sh_size all start off zero. */
10748 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10749 /* sh_link is set in assign_section_numbers. */
10750 /* sh_info is set below. */
10751 /* sh_offset is set just below. */
10752 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10753
10754 off = elf_tdata (abfd)->next_file_pos;
10755 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10756
10757 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10758 incorrect. We do not yet know the size of the .symtab section.
10759 We correct next_file_pos below, after we do know the size. */
10760
10761 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10762 continuously seeking to the right position in the file. */
10763 if (! info->keep_memory || max_sym_count < 20)
10764 flinfo.symbuf_size = 20;
10765 else
10766 flinfo.symbuf_size = max_sym_count;
10767 amt = flinfo.symbuf_size;
10768 amt *= bed->s->sizeof_sym;
10769 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10770 if (flinfo.symbuf == NULL)
10771 goto error_return;
10772 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10773 {
10774 /* Wild guess at number of output symbols. realloc'd as needed. */
10775 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10776 flinfo.shndxbuf_size = amt;
10777 amt *= sizeof (Elf_External_Sym_Shndx);
10778 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10779 if (flinfo.symshndxbuf == NULL)
10780 goto error_return;
10781 }
10782
10783 /* Start writing out the symbol table. The first symbol is always a
10784 dummy symbol. */
10785 if (info->strip != strip_all
10786 || emit_relocs)
10787 {
10788 elfsym.st_value = 0;
10789 elfsym.st_size = 0;
10790 elfsym.st_info = 0;
10791 elfsym.st_other = 0;
10792 elfsym.st_shndx = SHN_UNDEF;
10793 elfsym.st_target_internal = 0;
10794 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10795 NULL) != 1)
10796 goto error_return;
10797 }
10798
10799 /* Output a symbol for each section. We output these even if we are
10800 discarding local symbols, since they are used for relocs. These
10801 symbols have no names. We store the index of each one in the
10802 index field of the section, so that we can find it again when
10803 outputting relocs. */
10804 if (info->strip != strip_all
10805 || emit_relocs)
10806 {
10807 elfsym.st_size = 0;
10808 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10809 elfsym.st_other = 0;
10810 elfsym.st_value = 0;
10811 elfsym.st_target_internal = 0;
10812 for (i = 1; i < elf_numsections (abfd); i++)
10813 {
10814 o = bfd_section_from_elf_index (abfd, i);
10815 if (o != NULL)
10816 {
10817 o->target_index = bfd_get_symcount (abfd);
10818 elfsym.st_shndx = i;
10819 if (!info->relocatable)
10820 elfsym.st_value = o->vma;
10821 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10822 goto error_return;
10823 }
10824 }
10825 }
10826
10827 /* Allocate some memory to hold information read in from the input
10828 files. */
10829 if (max_contents_size != 0)
10830 {
10831 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10832 if (flinfo.contents == NULL)
10833 goto error_return;
10834 }
10835
10836 if (max_external_reloc_size != 0)
10837 {
10838 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10839 if (flinfo.external_relocs == NULL)
10840 goto error_return;
10841 }
10842
10843 if (max_internal_reloc_count != 0)
10844 {
10845 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10846 amt *= sizeof (Elf_Internal_Rela);
10847 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10848 if (flinfo.internal_relocs == NULL)
10849 goto error_return;
10850 }
10851
10852 if (max_sym_count != 0)
10853 {
10854 amt = max_sym_count * bed->s->sizeof_sym;
10855 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10856 if (flinfo.external_syms == NULL)
10857 goto error_return;
10858
10859 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10860 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10861 if (flinfo.internal_syms == NULL)
10862 goto error_return;
10863
10864 amt = max_sym_count * sizeof (long);
10865 flinfo.indices = (long int *) bfd_malloc (amt);
10866 if (flinfo.indices == NULL)
10867 goto error_return;
10868
10869 amt = max_sym_count * sizeof (asection *);
10870 flinfo.sections = (asection **) bfd_malloc (amt);
10871 if (flinfo.sections == NULL)
10872 goto error_return;
10873 }
10874
10875 if (max_sym_shndx_count != 0)
10876 {
10877 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10878 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10879 if (flinfo.locsym_shndx == NULL)
10880 goto error_return;
10881 }
10882
10883 if (elf_hash_table (info)->tls_sec)
10884 {
10885 bfd_vma base, end = 0;
10886 asection *sec;
10887
10888 for (sec = elf_hash_table (info)->tls_sec;
10889 sec && (sec->flags & SEC_THREAD_LOCAL);
10890 sec = sec->next)
10891 {
10892 bfd_size_type size = sec->size;
10893
10894 if (size == 0
10895 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10896 {
10897 struct bfd_link_order *ord = sec->map_tail.link_order;
10898
10899 if (ord != NULL)
10900 size = ord->offset + ord->size;
10901 }
10902 end = sec->vma + size;
10903 }
10904 base = elf_hash_table (info)->tls_sec->vma;
10905 /* Only align end of TLS section if static TLS doesn't have special
10906 alignment requirements. */
10907 if (bed->static_tls_alignment == 1)
10908 end = align_power (end,
10909 elf_hash_table (info)->tls_sec->alignment_power);
10910 elf_hash_table (info)->tls_size = end - base;
10911 }
10912
10913 /* Reorder SHF_LINK_ORDER sections. */
10914 for (o = abfd->sections; o != NULL; o = o->next)
10915 {
10916 if (!elf_fixup_link_order (abfd, o))
10917 return FALSE;
10918 }
10919
10920 /* Since ELF permits relocations to be against local symbols, we
10921 must have the local symbols available when we do the relocations.
10922 Since we would rather only read the local symbols once, and we
10923 would rather not keep them in memory, we handle all the
10924 relocations for a single input file at the same time.
10925
10926 Unfortunately, there is no way to know the total number of local
10927 symbols until we have seen all of them, and the local symbol
10928 indices precede the global symbol indices. This means that when
10929 we are generating relocatable output, and we see a reloc against
10930 a global symbol, we can not know the symbol index until we have
10931 finished examining all the local symbols to see which ones we are
10932 going to output. To deal with this, we keep the relocations in
10933 memory, and don't output them until the end of the link. This is
10934 an unfortunate waste of memory, but I don't see a good way around
10935 it. Fortunately, it only happens when performing a relocatable
10936 link, which is not the common case. FIXME: If keep_memory is set
10937 we could write the relocs out and then read them again; I don't
10938 know how bad the memory loss will be. */
10939
10940 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10941 sub->output_has_begun = FALSE;
10942 for (o = abfd->sections; o != NULL; o = o->next)
10943 {
10944 for (p = o->map_head.link_order; p != NULL; p = p->next)
10945 {
10946 if (p->type == bfd_indirect_link_order
10947 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10948 == bfd_target_elf_flavour)
10949 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10950 {
10951 if (! sub->output_has_begun)
10952 {
10953 if (! elf_link_input_bfd (&flinfo, sub))
10954 goto error_return;
10955 sub->output_has_begun = TRUE;
10956 }
10957 }
10958 else if (p->type == bfd_section_reloc_link_order
10959 || p->type == bfd_symbol_reloc_link_order)
10960 {
10961 if (! elf_reloc_link_order (abfd, info, o, p))
10962 goto error_return;
10963 }
10964 else
10965 {
10966 if (! _bfd_default_link_order (abfd, info, o, p))
10967 {
10968 if (p->type == bfd_indirect_link_order
10969 && (bfd_get_flavour (sub)
10970 == bfd_target_elf_flavour)
10971 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10972 != bed->s->elfclass))
10973 {
10974 const char *iclass, *oclass;
10975
10976 if (bed->s->elfclass == ELFCLASS64)
10977 {
10978 iclass = "ELFCLASS32";
10979 oclass = "ELFCLASS64";
10980 }
10981 else
10982 {
10983 iclass = "ELFCLASS64";
10984 oclass = "ELFCLASS32";
10985 }
10986
10987 bfd_set_error (bfd_error_wrong_format);
10988 (*_bfd_error_handler)
10989 (_("%B: file class %s incompatible with %s"),
10990 sub, iclass, oclass);
10991 }
10992
10993 goto error_return;
10994 }
10995 }
10996 }
10997 }
10998
10999 /* Free symbol buffer if needed. */
11000 if (!info->reduce_memory_overheads)
11001 {
11002 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11003 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11004 && elf_tdata (sub)->symbuf)
11005 {
11006 free (elf_tdata (sub)->symbuf);
11007 elf_tdata (sub)->symbuf = NULL;
11008 }
11009 }
11010
11011 /* Output a FILE symbol so that following locals are not associated
11012 with the wrong input file. */
11013 memset (&elfsym, 0, sizeof (elfsym));
11014 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
11015 elfsym.st_shndx = SHN_ABS;
11016
11017 if (flinfo.filesym_count > 1
11018 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11019 bfd_und_section_ptr, NULL))
11020 return FALSE;
11021
11022 /* Output any global symbols that got converted to local in a
11023 version script or due to symbol visibility. We do this in a
11024 separate step since ELF requires all local symbols to appear
11025 prior to any global symbols. FIXME: We should only do this if
11026 some global symbols were, in fact, converted to become local.
11027 FIXME: Will this work correctly with the Irix 5 linker? */
11028 eoinfo.failed = FALSE;
11029 eoinfo.flinfo = &flinfo;
11030 eoinfo.localsyms = TRUE;
11031 eoinfo.need_second_pass = FALSE;
11032 eoinfo.second_pass = FALSE;
11033 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11034 if (eoinfo.failed)
11035 return FALSE;
11036
11037 if (flinfo.filesym_count == 1
11038 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11039 bfd_und_section_ptr, NULL))
11040 return FALSE;
11041
11042 if (eoinfo.need_second_pass)
11043 {
11044 eoinfo.second_pass = TRUE;
11045 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11046 if (eoinfo.failed)
11047 return FALSE;
11048 }
11049
11050 /* If backend needs to output some local symbols not present in the hash
11051 table, do it now. */
11052 if (bed->elf_backend_output_arch_local_syms)
11053 {
11054 typedef int (*out_sym_func)
11055 (void *, const char *, Elf_Internal_Sym *, asection *,
11056 struct elf_link_hash_entry *);
11057
11058 if (! ((*bed->elf_backend_output_arch_local_syms)
11059 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11060 return FALSE;
11061 }
11062
11063 /* That wrote out all the local symbols. Finish up the symbol table
11064 with the global symbols. Even if we want to strip everything we
11065 can, we still need to deal with those global symbols that got
11066 converted to local in a version script. */
11067
11068 /* The sh_info field records the index of the first non local symbol. */
11069 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11070
11071 if (dynamic
11072 && flinfo.dynsym_sec != NULL
11073 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11074 {
11075 Elf_Internal_Sym sym;
11076 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11077 long last_local = 0;
11078
11079 /* Write out the section symbols for the output sections. */
11080 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11081 {
11082 asection *s;
11083
11084 sym.st_size = 0;
11085 sym.st_name = 0;
11086 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11087 sym.st_other = 0;
11088 sym.st_target_internal = 0;
11089
11090 for (s = abfd->sections; s != NULL; s = s->next)
11091 {
11092 int indx;
11093 bfd_byte *dest;
11094 long dynindx;
11095
11096 dynindx = elf_section_data (s)->dynindx;
11097 if (dynindx <= 0)
11098 continue;
11099 indx = elf_section_data (s)->this_idx;
11100 BFD_ASSERT (indx > 0);
11101 sym.st_shndx = indx;
11102 if (! check_dynsym (abfd, &sym))
11103 return FALSE;
11104 sym.st_value = s->vma;
11105 dest = dynsym + dynindx * bed->s->sizeof_sym;
11106 if (last_local < dynindx)
11107 last_local = dynindx;
11108 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11109 }
11110 }
11111
11112 /* Write out the local dynsyms. */
11113 if (elf_hash_table (info)->dynlocal)
11114 {
11115 struct elf_link_local_dynamic_entry *e;
11116 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11117 {
11118 asection *s;
11119 bfd_byte *dest;
11120
11121 /* Copy the internal symbol and turn off visibility.
11122 Note that we saved a word of storage and overwrote
11123 the original st_name with the dynstr_index. */
11124 sym = e->isym;
11125 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11126
11127 s = bfd_section_from_elf_index (e->input_bfd,
11128 e->isym.st_shndx);
11129 if (s != NULL)
11130 {
11131 sym.st_shndx =
11132 elf_section_data (s->output_section)->this_idx;
11133 if (! check_dynsym (abfd, &sym))
11134 return FALSE;
11135 sym.st_value = (s->output_section->vma
11136 + s->output_offset
11137 + e->isym.st_value);
11138 }
11139
11140 if (last_local < e->dynindx)
11141 last_local = e->dynindx;
11142
11143 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11144 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11145 }
11146 }
11147
11148 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11149 last_local + 1;
11150 }
11151
11152 /* We get the global symbols from the hash table. */
11153 eoinfo.failed = FALSE;
11154 eoinfo.localsyms = FALSE;
11155 eoinfo.flinfo = &flinfo;
11156 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11157 if (eoinfo.failed)
11158 return FALSE;
11159
11160 /* If backend needs to output some symbols not present in the hash
11161 table, do it now. */
11162 if (bed->elf_backend_output_arch_syms)
11163 {
11164 typedef int (*out_sym_func)
11165 (void *, const char *, Elf_Internal_Sym *, asection *,
11166 struct elf_link_hash_entry *);
11167
11168 if (! ((*bed->elf_backend_output_arch_syms)
11169 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11170 return FALSE;
11171 }
11172
11173 /* Flush all symbols to the file. */
11174 if (! elf_link_flush_output_syms (&flinfo, bed))
11175 return FALSE;
11176
11177 /* Now we know the size of the symtab section. */
11178 off += symtab_hdr->sh_size;
11179
11180 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11181 if (symtab_shndx_hdr->sh_name != 0)
11182 {
11183 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11184 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11185 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11186 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11187 symtab_shndx_hdr->sh_size = amt;
11188
11189 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11190 off, TRUE);
11191
11192 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11193 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11194 return FALSE;
11195 }
11196
11197
11198 /* Finish up and write out the symbol string table (.strtab)
11199 section. */
11200 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11201 /* sh_name was set in prep_headers. */
11202 symstrtab_hdr->sh_type = SHT_STRTAB;
11203 symstrtab_hdr->sh_flags = 0;
11204 symstrtab_hdr->sh_addr = 0;
11205 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11206 symstrtab_hdr->sh_entsize = 0;
11207 symstrtab_hdr->sh_link = 0;
11208 symstrtab_hdr->sh_info = 0;
11209 /* sh_offset is set just below. */
11210 symstrtab_hdr->sh_addralign = 1;
11211
11212 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11213 elf_tdata (abfd)->next_file_pos = off;
11214
11215 if (bfd_get_symcount (abfd) > 0)
11216 {
11217 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11218 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11219 return FALSE;
11220 }
11221
11222 /* Adjust the relocs to have the correct symbol indices. */
11223 for (o = abfd->sections; o != NULL; o = o->next)
11224 {
11225 struct bfd_elf_section_data *esdo = elf_section_data (o);
11226 if ((o->flags & SEC_RELOC) == 0)
11227 continue;
11228
11229 if (esdo->rel.hdr != NULL)
11230 elf_link_adjust_relocs (abfd, &esdo->rel);
11231 if (esdo->rela.hdr != NULL)
11232 elf_link_adjust_relocs (abfd, &esdo->rela);
11233
11234 /* Set the reloc_count field to 0 to prevent write_relocs from
11235 trying to swap the relocs out itself. */
11236 o->reloc_count = 0;
11237 }
11238
11239 if (dynamic && info->combreloc && dynobj != NULL)
11240 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11241
11242 /* If we are linking against a dynamic object, or generating a
11243 shared library, finish up the dynamic linking information. */
11244 if (dynamic)
11245 {
11246 bfd_byte *dyncon, *dynconend;
11247
11248 /* Fix up .dynamic entries. */
11249 o = bfd_get_linker_section (dynobj, ".dynamic");
11250 BFD_ASSERT (o != NULL);
11251
11252 dyncon = o->contents;
11253 dynconend = o->contents + o->size;
11254 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11255 {
11256 Elf_Internal_Dyn dyn;
11257 const char *name;
11258 unsigned int type;
11259
11260 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11261
11262 switch (dyn.d_tag)
11263 {
11264 default:
11265 continue;
11266 case DT_NULL:
11267 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11268 {
11269 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11270 {
11271 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11272 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11273 default: continue;
11274 }
11275 dyn.d_un.d_val = relativecount;
11276 relativecount = 0;
11277 break;
11278 }
11279 continue;
11280
11281 case DT_INIT:
11282 name = info->init_function;
11283 goto get_sym;
11284 case DT_FINI:
11285 name = info->fini_function;
11286 get_sym:
11287 {
11288 struct elf_link_hash_entry *h;
11289
11290 h = elf_link_hash_lookup (elf_hash_table (info), name,
11291 FALSE, FALSE, TRUE);
11292 if (h != NULL
11293 && (h->root.type == bfd_link_hash_defined
11294 || h->root.type == bfd_link_hash_defweak))
11295 {
11296 dyn.d_un.d_ptr = h->root.u.def.value;
11297 o = h->root.u.def.section;
11298 if (o->output_section != NULL)
11299 dyn.d_un.d_ptr += (o->output_section->vma
11300 + o->output_offset);
11301 else
11302 {
11303 /* The symbol is imported from another shared
11304 library and does not apply to this one. */
11305 dyn.d_un.d_ptr = 0;
11306 }
11307 break;
11308 }
11309 }
11310 continue;
11311
11312 case DT_PREINIT_ARRAYSZ:
11313 name = ".preinit_array";
11314 goto get_size;
11315 case DT_INIT_ARRAYSZ:
11316 name = ".init_array";
11317 goto get_size;
11318 case DT_FINI_ARRAYSZ:
11319 name = ".fini_array";
11320 get_size:
11321 o = bfd_get_section_by_name (abfd, name);
11322 if (o == NULL)
11323 {
11324 (*_bfd_error_handler)
11325 (_("%B: could not find output section %s"), abfd, name);
11326 goto error_return;
11327 }
11328 if (o->size == 0)
11329 (*_bfd_error_handler)
11330 (_("warning: %s section has zero size"), name);
11331 dyn.d_un.d_val = o->size;
11332 break;
11333
11334 case DT_PREINIT_ARRAY:
11335 name = ".preinit_array";
11336 goto get_vma;
11337 case DT_INIT_ARRAY:
11338 name = ".init_array";
11339 goto get_vma;
11340 case DT_FINI_ARRAY:
11341 name = ".fini_array";
11342 goto get_vma;
11343
11344 case DT_HASH:
11345 name = ".hash";
11346 goto get_vma;
11347 case DT_GNU_HASH:
11348 name = ".gnu.hash";
11349 goto get_vma;
11350 case DT_STRTAB:
11351 name = ".dynstr";
11352 goto get_vma;
11353 case DT_SYMTAB:
11354 name = ".dynsym";
11355 goto get_vma;
11356 case DT_VERDEF:
11357 name = ".gnu.version_d";
11358 goto get_vma;
11359 case DT_VERNEED:
11360 name = ".gnu.version_r";
11361 goto get_vma;
11362 case DT_VERSYM:
11363 name = ".gnu.version";
11364 get_vma:
11365 o = bfd_get_section_by_name (abfd, name);
11366 if (o == NULL)
11367 {
11368 (*_bfd_error_handler)
11369 (_("%B: could not find output section %s"), abfd, name);
11370 goto error_return;
11371 }
11372 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11373 {
11374 (*_bfd_error_handler)
11375 (_("warning: section '%s' is being made into a note"), name);
11376 bfd_set_error (bfd_error_nonrepresentable_section);
11377 goto error_return;
11378 }
11379 dyn.d_un.d_ptr = o->vma;
11380 break;
11381
11382 case DT_REL:
11383 case DT_RELA:
11384 case DT_RELSZ:
11385 case DT_RELASZ:
11386 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11387 type = SHT_REL;
11388 else
11389 type = SHT_RELA;
11390 dyn.d_un.d_val = 0;
11391 dyn.d_un.d_ptr = 0;
11392 for (i = 1; i < elf_numsections (abfd); i++)
11393 {
11394 Elf_Internal_Shdr *hdr;
11395
11396 hdr = elf_elfsections (abfd)[i];
11397 if (hdr->sh_type == type
11398 && (hdr->sh_flags & SHF_ALLOC) != 0)
11399 {
11400 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11401 dyn.d_un.d_val += hdr->sh_size;
11402 else
11403 {
11404 if (dyn.d_un.d_ptr == 0
11405 || hdr->sh_addr < dyn.d_un.d_ptr)
11406 dyn.d_un.d_ptr = hdr->sh_addr;
11407 }
11408 }
11409 }
11410 break;
11411 }
11412 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11413 }
11414 }
11415
11416 /* If we have created any dynamic sections, then output them. */
11417 if (dynobj != NULL)
11418 {
11419 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11420 goto error_return;
11421
11422 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11423 if (((info->warn_shared_textrel && info->shared)
11424 || info->error_textrel)
11425 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11426 {
11427 bfd_byte *dyncon, *dynconend;
11428
11429 dyncon = o->contents;
11430 dynconend = o->contents + o->size;
11431 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11432 {
11433 Elf_Internal_Dyn dyn;
11434
11435 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11436
11437 if (dyn.d_tag == DT_TEXTREL)
11438 {
11439 if (info->error_textrel)
11440 info->callbacks->einfo
11441 (_("%P%X: read-only segment has dynamic relocations.\n"));
11442 else
11443 info->callbacks->einfo
11444 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11445 break;
11446 }
11447 }
11448 }
11449
11450 for (o = dynobj->sections; o != NULL; o = o->next)
11451 {
11452 if ((o->flags & SEC_HAS_CONTENTS) == 0
11453 || o->size == 0
11454 || o->output_section == bfd_abs_section_ptr)
11455 continue;
11456 if ((o->flags & SEC_LINKER_CREATED) == 0)
11457 {
11458 /* At this point, we are only interested in sections
11459 created by _bfd_elf_link_create_dynamic_sections. */
11460 continue;
11461 }
11462 if (elf_hash_table (info)->stab_info.stabstr == o)
11463 continue;
11464 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11465 continue;
11466 if (strcmp (o->name, ".dynstr") != 0)
11467 {
11468 /* FIXME: octets_per_byte. */
11469 if (! bfd_set_section_contents (abfd, o->output_section,
11470 o->contents,
11471 (file_ptr) o->output_offset,
11472 o->size))
11473 goto error_return;
11474 }
11475 else
11476 {
11477 /* The contents of the .dynstr section are actually in a
11478 stringtab. */
11479 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11480 if (bfd_seek (abfd, off, SEEK_SET) != 0
11481 || ! _bfd_elf_strtab_emit (abfd,
11482 elf_hash_table (info)->dynstr))
11483 goto error_return;
11484 }
11485 }
11486 }
11487
11488 if (info->relocatable)
11489 {
11490 bfd_boolean failed = FALSE;
11491
11492 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11493 if (failed)
11494 goto error_return;
11495 }
11496
11497 /* If we have optimized stabs strings, output them. */
11498 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11499 {
11500 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11501 goto error_return;
11502 }
11503
11504 if (info->eh_frame_hdr)
11505 {
11506 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11507 goto error_return;
11508 }
11509
11510 if (flinfo.symstrtab != NULL)
11511 _bfd_stringtab_free (flinfo.symstrtab);
11512 if (flinfo.contents != NULL)
11513 free (flinfo.contents);
11514 if (flinfo.external_relocs != NULL)
11515 free (flinfo.external_relocs);
11516 if (flinfo.internal_relocs != NULL)
11517 free (flinfo.internal_relocs);
11518 if (flinfo.external_syms != NULL)
11519 free (flinfo.external_syms);
11520 if (flinfo.locsym_shndx != NULL)
11521 free (flinfo.locsym_shndx);
11522 if (flinfo.internal_syms != NULL)
11523 free (flinfo.internal_syms);
11524 if (flinfo.indices != NULL)
11525 free (flinfo.indices);
11526 if (flinfo.sections != NULL)
11527 free (flinfo.sections);
11528 if (flinfo.symbuf != NULL)
11529 free (flinfo.symbuf);
11530 if (flinfo.symshndxbuf != NULL)
11531 free (flinfo.symshndxbuf);
11532 for (o = abfd->sections; o != NULL; o = o->next)
11533 {
11534 struct bfd_elf_section_data *esdo = elf_section_data (o);
11535 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11536 free (esdo->rel.hashes);
11537 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11538 free (esdo->rela.hashes);
11539 }
11540
11541 elf_tdata (abfd)->linker = TRUE;
11542
11543 if (attr_section)
11544 {
11545 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11546 if (contents == NULL)
11547 return FALSE; /* Bail out and fail. */
11548 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11549 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11550 free (contents);
11551 }
11552
11553 return TRUE;
11554
11555 error_return:
11556 if (flinfo.symstrtab != NULL)
11557 _bfd_stringtab_free (flinfo.symstrtab);
11558 if (flinfo.contents != NULL)
11559 free (flinfo.contents);
11560 if (flinfo.external_relocs != NULL)
11561 free (flinfo.external_relocs);
11562 if (flinfo.internal_relocs != NULL)
11563 free (flinfo.internal_relocs);
11564 if (flinfo.external_syms != NULL)
11565 free (flinfo.external_syms);
11566 if (flinfo.locsym_shndx != NULL)
11567 free (flinfo.locsym_shndx);
11568 if (flinfo.internal_syms != NULL)
11569 free (flinfo.internal_syms);
11570 if (flinfo.indices != NULL)
11571 free (flinfo.indices);
11572 if (flinfo.sections != NULL)
11573 free (flinfo.sections);
11574 if (flinfo.symbuf != NULL)
11575 free (flinfo.symbuf);
11576 if (flinfo.symshndxbuf != NULL)
11577 free (flinfo.symshndxbuf);
11578 for (o = abfd->sections; o != NULL; o = o->next)
11579 {
11580 struct bfd_elf_section_data *esdo = elf_section_data (o);
11581 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11582 free (esdo->rel.hashes);
11583 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11584 free (esdo->rela.hashes);
11585 }
11586
11587 return FALSE;
11588 }
11589 \f
11590 /* Initialize COOKIE for input bfd ABFD. */
11591
11592 static bfd_boolean
11593 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11594 struct bfd_link_info *info, bfd *abfd)
11595 {
11596 Elf_Internal_Shdr *symtab_hdr;
11597 const struct elf_backend_data *bed;
11598
11599 bed = get_elf_backend_data (abfd);
11600 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11601
11602 cookie->abfd = abfd;
11603 cookie->sym_hashes = elf_sym_hashes (abfd);
11604 cookie->bad_symtab = elf_bad_symtab (abfd);
11605 if (cookie->bad_symtab)
11606 {
11607 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11608 cookie->extsymoff = 0;
11609 }
11610 else
11611 {
11612 cookie->locsymcount = symtab_hdr->sh_info;
11613 cookie->extsymoff = symtab_hdr->sh_info;
11614 }
11615
11616 if (bed->s->arch_size == 32)
11617 cookie->r_sym_shift = 8;
11618 else
11619 cookie->r_sym_shift = 32;
11620
11621 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11622 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11623 {
11624 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11625 cookie->locsymcount, 0,
11626 NULL, NULL, NULL);
11627 if (cookie->locsyms == NULL)
11628 {
11629 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11630 return FALSE;
11631 }
11632 if (info->keep_memory)
11633 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11634 }
11635 return TRUE;
11636 }
11637
11638 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11639
11640 static void
11641 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11642 {
11643 Elf_Internal_Shdr *symtab_hdr;
11644
11645 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11646 if (cookie->locsyms != NULL
11647 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11648 free (cookie->locsyms);
11649 }
11650
11651 /* Initialize the relocation information in COOKIE for input section SEC
11652 of input bfd ABFD. */
11653
11654 static bfd_boolean
11655 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11656 struct bfd_link_info *info, bfd *abfd,
11657 asection *sec)
11658 {
11659 const struct elf_backend_data *bed;
11660
11661 if (sec->reloc_count == 0)
11662 {
11663 cookie->rels = NULL;
11664 cookie->relend = NULL;
11665 }
11666 else
11667 {
11668 bed = get_elf_backend_data (abfd);
11669
11670 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11671 info->keep_memory);
11672 if (cookie->rels == NULL)
11673 return FALSE;
11674 cookie->rel = cookie->rels;
11675 cookie->relend = (cookie->rels
11676 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11677 }
11678 cookie->rel = cookie->rels;
11679 return TRUE;
11680 }
11681
11682 /* Free the memory allocated by init_reloc_cookie_rels,
11683 if appropriate. */
11684
11685 static void
11686 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11687 asection *sec)
11688 {
11689 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11690 free (cookie->rels);
11691 }
11692
11693 /* Initialize the whole of COOKIE for input section SEC. */
11694
11695 static bfd_boolean
11696 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11697 struct bfd_link_info *info,
11698 asection *sec)
11699 {
11700 if (!init_reloc_cookie (cookie, info, sec->owner))
11701 goto error1;
11702 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11703 goto error2;
11704 return TRUE;
11705
11706 error2:
11707 fini_reloc_cookie (cookie, sec->owner);
11708 error1:
11709 return FALSE;
11710 }
11711
11712 /* Free the memory allocated by init_reloc_cookie_for_section,
11713 if appropriate. */
11714
11715 static void
11716 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11717 asection *sec)
11718 {
11719 fini_reloc_cookie_rels (cookie, sec);
11720 fini_reloc_cookie (cookie, sec->owner);
11721 }
11722 \f
11723 /* Garbage collect unused sections. */
11724
11725 /* Default gc_mark_hook. */
11726
11727 asection *
11728 _bfd_elf_gc_mark_hook (asection *sec,
11729 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11730 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11731 struct elf_link_hash_entry *h,
11732 Elf_Internal_Sym *sym)
11733 {
11734 const char *sec_name;
11735
11736 if (h != NULL)
11737 {
11738 switch (h->root.type)
11739 {
11740 case bfd_link_hash_defined:
11741 case bfd_link_hash_defweak:
11742 return h->root.u.def.section;
11743
11744 case bfd_link_hash_common:
11745 return h->root.u.c.p->section;
11746
11747 case bfd_link_hash_undefined:
11748 case bfd_link_hash_undefweak:
11749 /* To work around a glibc bug, keep all XXX input sections
11750 when there is an as yet undefined reference to __start_XXX
11751 or __stop_XXX symbols. The linker will later define such
11752 symbols for orphan input sections that have a name
11753 representable as a C identifier. */
11754 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11755 sec_name = h->root.root.string + 8;
11756 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11757 sec_name = h->root.root.string + 7;
11758 else
11759 sec_name = NULL;
11760
11761 if (sec_name && *sec_name != '\0')
11762 {
11763 bfd *i;
11764
11765 for (i = info->input_bfds; i; i = i->link_next)
11766 {
11767 sec = bfd_get_section_by_name (i, sec_name);
11768 if (sec)
11769 sec->flags |= SEC_KEEP;
11770 }
11771 }
11772 break;
11773
11774 default:
11775 break;
11776 }
11777 }
11778 else
11779 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11780
11781 return NULL;
11782 }
11783
11784 /* COOKIE->rel describes a relocation against section SEC, which is
11785 a section we've decided to keep. Return the section that contains
11786 the relocation symbol, or NULL if no section contains it. */
11787
11788 asection *
11789 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11790 elf_gc_mark_hook_fn gc_mark_hook,
11791 struct elf_reloc_cookie *cookie)
11792 {
11793 unsigned long r_symndx;
11794 struct elf_link_hash_entry *h;
11795
11796 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11797 if (r_symndx == STN_UNDEF)
11798 return NULL;
11799
11800 if (r_symndx >= cookie->locsymcount
11801 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11802 {
11803 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11804 while (h->root.type == bfd_link_hash_indirect
11805 || h->root.type == bfd_link_hash_warning)
11806 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11807 h->mark = 1;
11808 /* If this symbol is weak and there is a non-weak definition, we
11809 keep the non-weak definition because many backends put
11810 dynamic reloc info on the non-weak definition for code
11811 handling copy relocs. */
11812 if (h->u.weakdef != NULL)
11813 h->u.weakdef->mark = 1;
11814 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11815 }
11816
11817 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11818 &cookie->locsyms[r_symndx]);
11819 }
11820
11821 /* COOKIE->rel describes a relocation against section SEC, which is
11822 a section we've decided to keep. Mark the section that contains
11823 the relocation symbol. */
11824
11825 bfd_boolean
11826 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11827 asection *sec,
11828 elf_gc_mark_hook_fn gc_mark_hook,
11829 struct elf_reloc_cookie *cookie)
11830 {
11831 asection *rsec;
11832
11833 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11834 if (rsec && !rsec->gc_mark)
11835 {
11836 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11837 || (rsec->owner->flags & DYNAMIC) != 0)
11838 rsec->gc_mark = 1;
11839 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11840 return FALSE;
11841 }
11842 return TRUE;
11843 }
11844
11845 /* The mark phase of garbage collection. For a given section, mark
11846 it and any sections in this section's group, and all the sections
11847 which define symbols to which it refers. */
11848
11849 bfd_boolean
11850 _bfd_elf_gc_mark (struct bfd_link_info *info,
11851 asection *sec,
11852 elf_gc_mark_hook_fn gc_mark_hook)
11853 {
11854 bfd_boolean ret;
11855 asection *group_sec, *eh_frame;
11856
11857 sec->gc_mark = 1;
11858
11859 /* Mark all the sections in the group. */
11860 group_sec = elf_section_data (sec)->next_in_group;
11861 if (group_sec && !group_sec->gc_mark)
11862 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11863 return FALSE;
11864
11865 /* Look through the section relocs. */
11866 ret = TRUE;
11867 eh_frame = elf_eh_frame_section (sec->owner);
11868 if ((sec->flags & SEC_RELOC) != 0
11869 && sec->reloc_count > 0
11870 && sec != eh_frame)
11871 {
11872 struct elf_reloc_cookie cookie;
11873
11874 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11875 ret = FALSE;
11876 else
11877 {
11878 for (; cookie.rel < cookie.relend; cookie.rel++)
11879 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11880 {
11881 ret = FALSE;
11882 break;
11883 }
11884 fini_reloc_cookie_for_section (&cookie, sec);
11885 }
11886 }
11887
11888 if (ret && eh_frame && elf_fde_list (sec))
11889 {
11890 struct elf_reloc_cookie cookie;
11891
11892 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11893 ret = FALSE;
11894 else
11895 {
11896 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11897 gc_mark_hook, &cookie))
11898 ret = FALSE;
11899 fini_reloc_cookie_for_section (&cookie, eh_frame);
11900 }
11901 }
11902
11903 return ret;
11904 }
11905
11906 /* Keep debug and special sections. */
11907
11908 bfd_boolean
11909 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11910 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11911 {
11912 bfd *ibfd;
11913
11914 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11915 {
11916 asection *isec;
11917 bfd_boolean some_kept;
11918
11919 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11920 continue;
11921
11922 /* Ensure all linker created sections are kept, and see whether
11923 any other section is already marked. */
11924 some_kept = FALSE;
11925 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11926 {
11927 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11928 isec->gc_mark = 1;
11929 else if (isec->gc_mark)
11930 some_kept = TRUE;
11931 }
11932
11933 /* If no section in this file will be kept, then we can
11934 toss out debug sections. */
11935 if (!some_kept)
11936 continue;
11937
11938 /* Keep debug and special sections like .comment when they are
11939 not part of a group, or when we have single-member groups. */
11940 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11941 if ((elf_next_in_group (isec) == NULL
11942 || elf_next_in_group (isec) == isec)
11943 && ((isec->flags & SEC_DEBUGGING) != 0
11944 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11945 isec->gc_mark = 1;
11946 }
11947 return TRUE;
11948 }
11949
11950 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11951
11952 struct elf_gc_sweep_symbol_info
11953 {
11954 struct bfd_link_info *info;
11955 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11956 bfd_boolean);
11957 };
11958
11959 static bfd_boolean
11960 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11961 {
11962 if (!h->mark
11963 && (((h->root.type == bfd_link_hash_defined
11964 || h->root.type == bfd_link_hash_defweak)
11965 && !(h->def_regular
11966 && h->root.u.def.section->gc_mark))
11967 || h->root.type == bfd_link_hash_undefined
11968 || h->root.type == bfd_link_hash_undefweak))
11969 {
11970 struct elf_gc_sweep_symbol_info *inf;
11971
11972 inf = (struct elf_gc_sweep_symbol_info *) data;
11973 (*inf->hide_symbol) (inf->info, h, TRUE);
11974 h->def_regular = 0;
11975 h->ref_regular = 0;
11976 h->ref_regular_nonweak = 0;
11977 }
11978
11979 return TRUE;
11980 }
11981
11982 /* The sweep phase of garbage collection. Remove all garbage sections. */
11983
11984 typedef bfd_boolean (*gc_sweep_hook_fn)
11985 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11986
11987 static bfd_boolean
11988 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11989 {
11990 bfd *sub;
11991 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11992 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11993 unsigned long section_sym_count;
11994 struct elf_gc_sweep_symbol_info sweep_info;
11995
11996 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11997 {
11998 asection *o;
11999
12000 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12001 continue;
12002
12003 for (o = sub->sections; o != NULL; o = o->next)
12004 {
12005 /* When any section in a section group is kept, we keep all
12006 sections in the section group. If the first member of
12007 the section group is excluded, we will also exclude the
12008 group section. */
12009 if (o->flags & SEC_GROUP)
12010 {
12011 asection *first = elf_next_in_group (o);
12012 o->gc_mark = first->gc_mark;
12013 }
12014
12015 if (o->gc_mark)
12016 continue;
12017
12018 /* Skip sweeping sections already excluded. */
12019 if (o->flags & SEC_EXCLUDE)
12020 continue;
12021
12022 /* Since this is early in the link process, it is simple
12023 to remove a section from the output. */
12024 o->flags |= SEC_EXCLUDE;
12025
12026 if (info->print_gc_sections && o->size != 0)
12027 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12028
12029 /* But we also have to update some of the relocation
12030 info we collected before. */
12031 if (gc_sweep_hook
12032 && (o->flags & SEC_RELOC) != 0
12033 && o->reloc_count > 0
12034 && !bfd_is_abs_section (o->output_section))
12035 {
12036 Elf_Internal_Rela *internal_relocs;
12037 bfd_boolean r;
12038
12039 internal_relocs
12040 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12041 info->keep_memory);
12042 if (internal_relocs == NULL)
12043 return FALSE;
12044
12045 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12046
12047 if (elf_section_data (o)->relocs != internal_relocs)
12048 free (internal_relocs);
12049
12050 if (!r)
12051 return FALSE;
12052 }
12053 }
12054 }
12055
12056 /* Remove the symbols that were in the swept sections from the dynamic
12057 symbol table. GCFIXME: Anyone know how to get them out of the
12058 static symbol table as well? */
12059 sweep_info.info = info;
12060 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12061 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12062 &sweep_info);
12063
12064 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12065 return TRUE;
12066 }
12067
12068 /* Propagate collected vtable information. This is called through
12069 elf_link_hash_traverse. */
12070
12071 static bfd_boolean
12072 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12073 {
12074 /* Those that are not vtables. */
12075 if (h->vtable == NULL || h->vtable->parent == NULL)
12076 return TRUE;
12077
12078 /* Those vtables that do not have parents, we cannot merge. */
12079 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12080 return TRUE;
12081
12082 /* If we've already been done, exit. */
12083 if (h->vtable->used && h->vtable->used[-1])
12084 return TRUE;
12085
12086 /* Make sure the parent's table is up to date. */
12087 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12088
12089 if (h->vtable->used == NULL)
12090 {
12091 /* None of this table's entries were referenced. Re-use the
12092 parent's table. */
12093 h->vtable->used = h->vtable->parent->vtable->used;
12094 h->vtable->size = h->vtable->parent->vtable->size;
12095 }
12096 else
12097 {
12098 size_t n;
12099 bfd_boolean *cu, *pu;
12100
12101 /* Or the parent's entries into ours. */
12102 cu = h->vtable->used;
12103 cu[-1] = TRUE;
12104 pu = h->vtable->parent->vtable->used;
12105 if (pu != NULL)
12106 {
12107 const struct elf_backend_data *bed;
12108 unsigned int log_file_align;
12109
12110 bed = get_elf_backend_data (h->root.u.def.section->owner);
12111 log_file_align = bed->s->log_file_align;
12112 n = h->vtable->parent->vtable->size >> log_file_align;
12113 while (n--)
12114 {
12115 if (*pu)
12116 *cu = TRUE;
12117 pu++;
12118 cu++;
12119 }
12120 }
12121 }
12122
12123 return TRUE;
12124 }
12125
12126 static bfd_boolean
12127 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12128 {
12129 asection *sec;
12130 bfd_vma hstart, hend;
12131 Elf_Internal_Rela *relstart, *relend, *rel;
12132 const struct elf_backend_data *bed;
12133 unsigned int log_file_align;
12134
12135 /* Take care of both those symbols that do not describe vtables as
12136 well as those that are not loaded. */
12137 if (h->vtable == NULL || h->vtable->parent == NULL)
12138 return TRUE;
12139
12140 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12141 || h->root.type == bfd_link_hash_defweak);
12142
12143 sec = h->root.u.def.section;
12144 hstart = h->root.u.def.value;
12145 hend = hstart + h->size;
12146
12147 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12148 if (!relstart)
12149 return *(bfd_boolean *) okp = FALSE;
12150 bed = get_elf_backend_data (sec->owner);
12151 log_file_align = bed->s->log_file_align;
12152
12153 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12154
12155 for (rel = relstart; rel < relend; ++rel)
12156 if (rel->r_offset >= hstart && rel->r_offset < hend)
12157 {
12158 /* If the entry is in use, do nothing. */
12159 if (h->vtable->used
12160 && (rel->r_offset - hstart) < h->vtable->size)
12161 {
12162 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12163 if (h->vtable->used[entry])
12164 continue;
12165 }
12166 /* Otherwise, kill it. */
12167 rel->r_offset = rel->r_info = rel->r_addend = 0;
12168 }
12169
12170 return TRUE;
12171 }
12172
12173 /* Mark sections containing dynamically referenced symbols. When
12174 building shared libraries, we must assume that any visible symbol is
12175 referenced. */
12176
12177 bfd_boolean
12178 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12179 {
12180 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12181
12182 if ((h->root.type == bfd_link_hash_defined
12183 || h->root.type == bfd_link_hash_defweak)
12184 && (h->ref_dynamic
12185 || ((!info->executable || info->export_dynamic)
12186 && h->def_regular
12187 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12188 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12189 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12190 || !bfd_hide_sym_by_version (info->version_info,
12191 h->root.root.string)))))
12192 h->root.u.def.section->flags |= SEC_KEEP;
12193
12194 return TRUE;
12195 }
12196
12197 /* Keep all sections containing symbols undefined on the command-line,
12198 and the section containing the entry symbol. */
12199
12200 void
12201 _bfd_elf_gc_keep (struct bfd_link_info *info)
12202 {
12203 struct bfd_sym_chain *sym;
12204
12205 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12206 {
12207 struct elf_link_hash_entry *h;
12208
12209 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12210 FALSE, FALSE, FALSE);
12211
12212 if (h != NULL
12213 && (h->root.type == bfd_link_hash_defined
12214 || h->root.type == bfd_link_hash_defweak)
12215 && !bfd_is_abs_section (h->root.u.def.section))
12216 h->root.u.def.section->flags |= SEC_KEEP;
12217 }
12218 }
12219
12220 /* Do mark and sweep of unused sections. */
12221
12222 bfd_boolean
12223 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12224 {
12225 bfd_boolean ok = TRUE;
12226 bfd *sub;
12227 elf_gc_mark_hook_fn gc_mark_hook;
12228 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12229
12230 if (!bed->can_gc_sections
12231 || !is_elf_hash_table (info->hash))
12232 {
12233 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12234 return TRUE;
12235 }
12236
12237 bed->gc_keep (info);
12238
12239 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12240 at the .eh_frame section if we can mark the FDEs individually. */
12241 _bfd_elf_begin_eh_frame_parsing (info);
12242 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12243 {
12244 asection *sec;
12245 struct elf_reloc_cookie cookie;
12246
12247 sec = bfd_get_section_by_name (sub, ".eh_frame");
12248 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12249 {
12250 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12251 if (elf_section_data (sec)->sec_info
12252 && (sec->flags & SEC_LINKER_CREATED) == 0)
12253 elf_eh_frame_section (sub) = sec;
12254 fini_reloc_cookie_for_section (&cookie, sec);
12255 sec = bfd_get_next_section_by_name (sec);
12256 }
12257 }
12258 _bfd_elf_end_eh_frame_parsing (info);
12259
12260 /* Apply transitive closure to the vtable entry usage info. */
12261 elf_link_hash_traverse (elf_hash_table (info),
12262 elf_gc_propagate_vtable_entries_used,
12263 &ok);
12264 if (!ok)
12265 return FALSE;
12266
12267 /* Kill the vtable relocations that were not used. */
12268 elf_link_hash_traverse (elf_hash_table (info),
12269 elf_gc_smash_unused_vtentry_relocs,
12270 &ok);
12271 if (!ok)
12272 return FALSE;
12273
12274 /* Mark dynamically referenced symbols. */
12275 if (elf_hash_table (info)->dynamic_sections_created)
12276 elf_link_hash_traverse (elf_hash_table (info),
12277 bed->gc_mark_dynamic_ref,
12278 info);
12279
12280 /* Grovel through relocs to find out who stays ... */
12281 gc_mark_hook = bed->gc_mark_hook;
12282 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12283 {
12284 asection *o;
12285
12286 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12287 continue;
12288
12289 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12290 Also treat note sections as a root, if the section is not part
12291 of a group. */
12292 for (o = sub->sections; o != NULL; o = o->next)
12293 if (!o->gc_mark
12294 && (o->flags & SEC_EXCLUDE) == 0
12295 && ((o->flags & SEC_KEEP) != 0
12296 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12297 && elf_next_in_group (o) == NULL )))
12298 {
12299 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12300 return FALSE;
12301 }
12302 }
12303
12304 /* Allow the backend to mark additional target specific sections. */
12305 bed->gc_mark_extra_sections (info, gc_mark_hook);
12306
12307 /* ... and mark SEC_EXCLUDE for those that go. */
12308 return elf_gc_sweep (abfd, info);
12309 }
12310 \f
12311 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12312
12313 bfd_boolean
12314 bfd_elf_gc_record_vtinherit (bfd *abfd,
12315 asection *sec,
12316 struct elf_link_hash_entry *h,
12317 bfd_vma offset)
12318 {
12319 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12320 struct elf_link_hash_entry **search, *child;
12321 bfd_size_type extsymcount;
12322 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12323
12324 /* The sh_info field of the symtab header tells us where the
12325 external symbols start. We don't care about the local symbols at
12326 this point. */
12327 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12328 if (!elf_bad_symtab (abfd))
12329 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12330
12331 sym_hashes = elf_sym_hashes (abfd);
12332 sym_hashes_end = sym_hashes + extsymcount;
12333
12334 /* Hunt down the child symbol, which is in this section at the same
12335 offset as the relocation. */
12336 for (search = sym_hashes; search != sym_hashes_end; ++search)
12337 {
12338 if ((child = *search) != NULL
12339 && (child->root.type == bfd_link_hash_defined
12340 || child->root.type == bfd_link_hash_defweak)
12341 && child->root.u.def.section == sec
12342 && child->root.u.def.value == offset)
12343 goto win;
12344 }
12345
12346 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12347 abfd, sec, (unsigned long) offset);
12348 bfd_set_error (bfd_error_invalid_operation);
12349 return FALSE;
12350
12351 win:
12352 if (!child->vtable)
12353 {
12354 child->vtable = (struct elf_link_virtual_table_entry *)
12355 bfd_zalloc (abfd, sizeof (*child->vtable));
12356 if (!child->vtable)
12357 return FALSE;
12358 }
12359 if (!h)
12360 {
12361 /* This *should* only be the absolute section. It could potentially
12362 be that someone has defined a non-global vtable though, which
12363 would be bad. It isn't worth paging in the local symbols to be
12364 sure though; that case should simply be handled by the assembler. */
12365
12366 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12367 }
12368 else
12369 child->vtable->parent = h;
12370
12371 return TRUE;
12372 }
12373
12374 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12375
12376 bfd_boolean
12377 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12378 asection *sec ATTRIBUTE_UNUSED,
12379 struct elf_link_hash_entry *h,
12380 bfd_vma addend)
12381 {
12382 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12383 unsigned int log_file_align = bed->s->log_file_align;
12384
12385 if (!h->vtable)
12386 {
12387 h->vtable = (struct elf_link_virtual_table_entry *)
12388 bfd_zalloc (abfd, sizeof (*h->vtable));
12389 if (!h->vtable)
12390 return FALSE;
12391 }
12392
12393 if (addend >= h->vtable->size)
12394 {
12395 size_t size, bytes, file_align;
12396 bfd_boolean *ptr = h->vtable->used;
12397
12398 /* While the symbol is undefined, we have to be prepared to handle
12399 a zero size. */
12400 file_align = 1 << log_file_align;
12401 if (h->root.type == bfd_link_hash_undefined)
12402 size = addend + file_align;
12403 else
12404 {
12405 size = h->size;
12406 if (addend >= size)
12407 {
12408 /* Oops! We've got a reference past the defined end of
12409 the table. This is probably a bug -- shall we warn? */
12410 size = addend + file_align;
12411 }
12412 }
12413 size = (size + file_align - 1) & -file_align;
12414
12415 /* Allocate one extra entry for use as a "done" flag for the
12416 consolidation pass. */
12417 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12418
12419 if (ptr)
12420 {
12421 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12422
12423 if (ptr != NULL)
12424 {
12425 size_t oldbytes;
12426
12427 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12428 * sizeof (bfd_boolean));
12429 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12430 }
12431 }
12432 else
12433 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12434
12435 if (ptr == NULL)
12436 return FALSE;
12437
12438 /* And arrange for that done flag to be at index -1. */
12439 h->vtable->used = ptr + 1;
12440 h->vtable->size = size;
12441 }
12442
12443 h->vtable->used[addend >> log_file_align] = TRUE;
12444
12445 return TRUE;
12446 }
12447
12448 /* Map an ELF section header flag to its corresponding string. */
12449 typedef struct
12450 {
12451 char *flag_name;
12452 flagword flag_value;
12453 } elf_flags_to_name_table;
12454
12455 static elf_flags_to_name_table elf_flags_to_names [] =
12456 {
12457 { "SHF_WRITE", SHF_WRITE },
12458 { "SHF_ALLOC", SHF_ALLOC },
12459 { "SHF_EXECINSTR", SHF_EXECINSTR },
12460 { "SHF_MERGE", SHF_MERGE },
12461 { "SHF_STRINGS", SHF_STRINGS },
12462 { "SHF_INFO_LINK", SHF_INFO_LINK},
12463 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12464 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12465 { "SHF_GROUP", SHF_GROUP },
12466 { "SHF_TLS", SHF_TLS },
12467 { "SHF_MASKOS", SHF_MASKOS },
12468 { "SHF_EXCLUDE", SHF_EXCLUDE },
12469 };
12470
12471 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12472 bfd_boolean
12473 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12474 struct flag_info *flaginfo,
12475 asection *section)
12476 {
12477 const bfd_vma sh_flags = elf_section_flags (section);
12478
12479 if (!flaginfo->flags_initialized)
12480 {
12481 bfd *obfd = info->output_bfd;
12482 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12483 struct flag_info_list *tf = flaginfo->flag_list;
12484 int with_hex = 0;
12485 int without_hex = 0;
12486
12487 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12488 {
12489 unsigned i;
12490 flagword (*lookup) (char *);
12491
12492 lookup = bed->elf_backend_lookup_section_flags_hook;
12493 if (lookup != NULL)
12494 {
12495 flagword hexval = (*lookup) ((char *) tf->name);
12496
12497 if (hexval != 0)
12498 {
12499 if (tf->with == with_flags)
12500 with_hex |= hexval;
12501 else if (tf->with == without_flags)
12502 without_hex |= hexval;
12503 tf->valid = TRUE;
12504 continue;
12505 }
12506 }
12507 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12508 {
12509 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12510 {
12511 if (tf->with == with_flags)
12512 with_hex |= elf_flags_to_names[i].flag_value;
12513 else if (tf->with == without_flags)
12514 without_hex |= elf_flags_to_names[i].flag_value;
12515 tf->valid = TRUE;
12516 break;
12517 }
12518 }
12519 if (!tf->valid)
12520 {
12521 info->callbacks->einfo
12522 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12523 return FALSE;
12524 }
12525 }
12526 flaginfo->flags_initialized = TRUE;
12527 flaginfo->only_with_flags |= with_hex;
12528 flaginfo->not_with_flags |= without_hex;
12529 }
12530
12531 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12532 return FALSE;
12533
12534 if ((flaginfo->not_with_flags & sh_flags) != 0)
12535 return FALSE;
12536
12537 return TRUE;
12538 }
12539
12540 struct alloc_got_off_arg {
12541 bfd_vma gotoff;
12542 struct bfd_link_info *info;
12543 };
12544
12545 /* We need a special top-level link routine to convert got reference counts
12546 to real got offsets. */
12547
12548 static bfd_boolean
12549 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12550 {
12551 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12552 bfd *obfd = gofarg->info->output_bfd;
12553 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12554
12555 if (h->got.refcount > 0)
12556 {
12557 h->got.offset = gofarg->gotoff;
12558 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12559 }
12560 else
12561 h->got.offset = (bfd_vma) -1;
12562
12563 return TRUE;
12564 }
12565
12566 /* And an accompanying bit to work out final got entry offsets once
12567 we're done. Should be called from final_link. */
12568
12569 bfd_boolean
12570 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12571 struct bfd_link_info *info)
12572 {
12573 bfd *i;
12574 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12575 bfd_vma gotoff;
12576 struct alloc_got_off_arg gofarg;
12577
12578 BFD_ASSERT (abfd == info->output_bfd);
12579
12580 if (! is_elf_hash_table (info->hash))
12581 return FALSE;
12582
12583 /* The GOT offset is relative to the .got section, but the GOT header is
12584 put into the .got.plt section, if the backend uses it. */
12585 if (bed->want_got_plt)
12586 gotoff = 0;
12587 else
12588 gotoff = bed->got_header_size;
12589
12590 /* Do the local .got entries first. */
12591 for (i = info->input_bfds; i; i = i->link_next)
12592 {
12593 bfd_signed_vma *local_got;
12594 bfd_size_type j, locsymcount;
12595 Elf_Internal_Shdr *symtab_hdr;
12596
12597 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12598 continue;
12599
12600 local_got = elf_local_got_refcounts (i);
12601 if (!local_got)
12602 continue;
12603
12604 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12605 if (elf_bad_symtab (i))
12606 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12607 else
12608 locsymcount = symtab_hdr->sh_info;
12609
12610 for (j = 0; j < locsymcount; ++j)
12611 {
12612 if (local_got[j] > 0)
12613 {
12614 local_got[j] = gotoff;
12615 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12616 }
12617 else
12618 local_got[j] = (bfd_vma) -1;
12619 }
12620 }
12621
12622 /* Then the global .got entries. .plt refcounts are handled by
12623 adjust_dynamic_symbol */
12624 gofarg.gotoff = gotoff;
12625 gofarg.info = info;
12626 elf_link_hash_traverse (elf_hash_table (info),
12627 elf_gc_allocate_got_offsets,
12628 &gofarg);
12629 return TRUE;
12630 }
12631
12632 /* Many folk need no more in the way of final link than this, once
12633 got entry reference counting is enabled. */
12634
12635 bfd_boolean
12636 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12637 {
12638 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12639 return FALSE;
12640
12641 /* Invoke the regular ELF backend linker to do all the work. */
12642 return bfd_elf_final_link (abfd, info);
12643 }
12644
12645 bfd_boolean
12646 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12647 {
12648 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12649
12650 if (rcookie->bad_symtab)
12651 rcookie->rel = rcookie->rels;
12652
12653 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12654 {
12655 unsigned long r_symndx;
12656
12657 if (! rcookie->bad_symtab)
12658 if (rcookie->rel->r_offset > offset)
12659 return FALSE;
12660 if (rcookie->rel->r_offset != offset)
12661 continue;
12662
12663 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12664 if (r_symndx == STN_UNDEF)
12665 return TRUE;
12666
12667 if (r_symndx >= rcookie->locsymcount
12668 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12669 {
12670 struct elf_link_hash_entry *h;
12671
12672 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12673
12674 while (h->root.type == bfd_link_hash_indirect
12675 || h->root.type == bfd_link_hash_warning)
12676 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12677
12678 if ((h->root.type == bfd_link_hash_defined
12679 || h->root.type == bfd_link_hash_defweak)
12680 && discarded_section (h->root.u.def.section))
12681 return TRUE;
12682 else
12683 return FALSE;
12684 }
12685 else
12686 {
12687 /* It's not a relocation against a global symbol,
12688 but it could be a relocation against a local
12689 symbol for a discarded section. */
12690 asection *isec;
12691 Elf_Internal_Sym *isym;
12692
12693 /* Need to: get the symbol; get the section. */
12694 isym = &rcookie->locsyms[r_symndx];
12695 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12696 if (isec != NULL && discarded_section (isec))
12697 return TRUE;
12698 }
12699 return FALSE;
12700 }
12701 return FALSE;
12702 }
12703
12704 /* Discard unneeded references to discarded sections.
12705 Returns TRUE if any section's size was changed. */
12706 /* This function assumes that the relocations are in sorted order,
12707 which is true for all known assemblers. */
12708
12709 bfd_boolean
12710 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12711 {
12712 struct elf_reloc_cookie cookie;
12713 asection *stab, *eh;
12714 const struct elf_backend_data *bed;
12715 bfd *abfd;
12716 bfd_boolean ret = FALSE;
12717
12718 if (info->traditional_format
12719 || !is_elf_hash_table (info->hash))
12720 return FALSE;
12721
12722 _bfd_elf_begin_eh_frame_parsing (info);
12723 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12724 {
12725 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12726 continue;
12727
12728 bed = get_elf_backend_data (abfd);
12729
12730 eh = NULL;
12731 if (!info->relocatable)
12732 {
12733 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12734 while (eh != NULL
12735 && (eh->size == 0
12736 || bfd_is_abs_section (eh->output_section)))
12737 eh = bfd_get_next_section_by_name (eh);
12738 }
12739
12740 stab = bfd_get_section_by_name (abfd, ".stab");
12741 if (stab != NULL
12742 && (stab->size == 0
12743 || bfd_is_abs_section (stab->output_section)
12744 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12745 stab = NULL;
12746
12747 if (stab == NULL
12748 && eh == NULL
12749 && bed->elf_backend_discard_info == NULL)
12750 continue;
12751
12752 if (!init_reloc_cookie (&cookie, info, abfd))
12753 return FALSE;
12754
12755 if (stab != NULL
12756 && stab->reloc_count > 0
12757 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12758 {
12759 if (_bfd_discard_section_stabs (abfd, stab,
12760 elf_section_data (stab)->sec_info,
12761 bfd_elf_reloc_symbol_deleted_p,
12762 &cookie))
12763 ret = TRUE;
12764 fini_reloc_cookie_rels (&cookie, stab);
12765 }
12766
12767 while (eh != NULL
12768 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12769 {
12770 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12771 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12772 bfd_elf_reloc_symbol_deleted_p,
12773 &cookie))
12774 ret = TRUE;
12775 fini_reloc_cookie_rels (&cookie, eh);
12776 eh = bfd_get_next_section_by_name (eh);
12777 }
12778
12779 if (bed->elf_backend_discard_info != NULL
12780 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12781 ret = TRUE;
12782
12783 fini_reloc_cookie (&cookie, abfd);
12784 }
12785 _bfd_elf_end_eh_frame_parsing (info);
12786
12787 if (info->eh_frame_hdr
12788 && !info->relocatable
12789 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12790 ret = TRUE;
12791
12792 return ret;
12793 }
12794
12795 bfd_boolean
12796 _bfd_elf_section_already_linked (bfd *abfd,
12797 asection *sec,
12798 struct bfd_link_info *info)
12799 {
12800 flagword flags;
12801 const char *name, *key;
12802 struct bfd_section_already_linked *l;
12803 struct bfd_section_already_linked_hash_entry *already_linked_list;
12804
12805 if (sec->output_section == bfd_abs_section_ptr)
12806 return FALSE;
12807
12808 flags = sec->flags;
12809
12810 /* Return if it isn't a linkonce section. A comdat group section
12811 also has SEC_LINK_ONCE set. */
12812 if ((flags & SEC_LINK_ONCE) == 0)
12813 return FALSE;
12814
12815 /* Don't put group member sections on our list of already linked
12816 sections. They are handled as a group via their group section. */
12817 if (elf_sec_group (sec) != NULL)
12818 return FALSE;
12819
12820 /* For a SHT_GROUP section, use the group signature as the key. */
12821 name = sec->name;
12822 if ((flags & SEC_GROUP) != 0
12823 && elf_next_in_group (sec) != NULL
12824 && elf_group_name (elf_next_in_group (sec)) != NULL)
12825 key = elf_group_name (elf_next_in_group (sec));
12826 else
12827 {
12828 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12829 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12830 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12831 key++;
12832 else
12833 /* Must be a user linkonce section that doesn't follow gcc's
12834 naming convention. In this case we won't be matching
12835 single member groups. */
12836 key = name;
12837 }
12838
12839 already_linked_list = bfd_section_already_linked_table_lookup (key);
12840
12841 for (l = already_linked_list->entry; l != NULL; l = l->next)
12842 {
12843 /* We may have 2 different types of sections on the list: group
12844 sections with a signature of <key> (<key> is some string),
12845 and linkonce sections named .gnu.linkonce.<type>.<key>.
12846 Match like sections. LTO plugin sections are an exception.
12847 They are always named .gnu.linkonce.t.<key> and match either
12848 type of section. */
12849 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12850 && ((flags & SEC_GROUP) != 0
12851 || strcmp (name, l->sec->name) == 0))
12852 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12853 {
12854 /* The section has already been linked. See if we should
12855 issue a warning. */
12856 if (!_bfd_handle_already_linked (sec, l, info))
12857 return FALSE;
12858
12859 if (flags & SEC_GROUP)
12860 {
12861 asection *first = elf_next_in_group (sec);
12862 asection *s = first;
12863
12864 while (s != NULL)
12865 {
12866 s->output_section = bfd_abs_section_ptr;
12867 /* Record which group discards it. */
12868 s->kept_section = l->sec;
12869 s = elf_next_in_group (s);
12870 /* These lists are circular. */
12871 if (s == first)
12872 break;
12873 }
12874 }
12875
12876 return TRUE;
12877 }
12878 }
12879
12880 /* A single member comdat group section may be discarded by a
12881 linkonce section and vice versa. */
12882 if ((flags & SEC_GROUP) != 0)
12883 {
12884 asection *first = elf_next_in_group (sec);
12885
12886 if (first != NULL && elf_next_in_group (first) == first)
12887 /* Check this single member group against linkonce sections. */
12888 for (l = already_linked_list->entry; l != NULL; l = l->next)
12889 if ((l->sec->flags & SEC_GROUP) == 0
12890 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12891 {
12892 first->output_section = bfd_abs_section_ptr;
12893 first->kept_section = l->sec;
12894 sec->output_section = bfd_abs_section_ptr;
12895 break;
12896 }
12897 }
12898 else
12899 /* Check this linkonce section against single member groups. */
12900 for (l = already_linked_list->entry; l != NULL; l = l->next)
12901 if (l->sec->flags & SEC_GROUP)
12902 {
12903 asection *first = elf_next_in_group (l->sec);
12904
12905 if (first != NULL
12906 && elf_next_in_group (first) == first
12907 && bfd_elf_match_symbols_in_sections (first, sec, info))
12908 {
12909 sec->output_section = bfd_abs_section_ptr;
12910 sec->kept_section = first;
12911 break;
12912 }
12913 }
12914
12915 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12916 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12917 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12918 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12919 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12920 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12921 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12922 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12923 The reverse order cannot happen as there is never a bfd with only the
12924 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12925 matter as here were are looking only for cross-bfd sections. */
12926
12927 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12928 for (l = already_linked_list->entry; l != NULL; l = l->next)
12929 if ((l->sec->flags & SEC_GROUP) == 0
12930 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12931 {
12932 if (abfd != l->sec->owner)
12933 sec->output_section = bfd_abs_section_ptr;
12934 break;
12935 }
12936
12937 /* This is the first section with this name. Record it. */
12938 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12939 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12940 return sec->output_section == bfd_abs_section_ptr;
12941 }
12942
12943 bfd_boolean
12944 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12945 {
12946 return sym->st_shndx == SHN_COMMON;
12947 }
12948
12949 unsigned int
12950 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12951 {
12952 return SHN_COMMON;
12953 }
12954
12955 asection *
12956 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12957 {
12958 return bfd_com_section_ptr;
12959 }
12960
12961 bfd_vma
12962 _bfd_elf_default_got_elt_size (bfd *abfd,
12963 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12964 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12965 bfd *ibfd ATTRIBUTE_UNUSED,
12966 unsigned long symndx ATTRIBUTE_UNUSED)
12967 {
12968 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12969 return bed->s->arch_size / 8;
12970 }
12971
12972 /* Routines to support the creation of dynamic relocs. */
12973
12974 /* Returns the name of the dynamic reloc section associated with SEC. */
12975
12976 static const char *
12977 get_dynamic_reloc_section_name (bfd * abfd,
12978 asection * sec,
12979 bfd_boolean is_rela)
12980 {
12981 char *name;
12982 const char *old_name = bfd_get_section_name (NULL, sec);
12983 const char *prefix = is_rela ? ".rela" : ".rel";
12984
12985 if (old_name == NULL)
12986 return NULL;
12987
12988 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12989 sprintf (name, "%s%s", prefix, old_name);
12990
12991 return name;
12992 }
12993
12994 /* Returns the dynamic reloc section associated with SEC.
12995 If necessary compute the name of the dynamic reloc section based
12996 on SEC's name (looked up in ABFD's string table) and the setting
12997 of IS_RELA. */
12998
12999 asection *
13000 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13001 asection * sec,
13002 bfd_boolean is_rela)
13003 {
13004 asection * reloc_sec = elf_section_data (sec)->sreloc;
13005
13006 if (reloc_sec == NULL)
13007 {
13008 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13009
13010 if (name != NULL)
13011 {
13012 reloc_sec = bfd_get_linker_section (abfd, name);
13013
13014 if (reloc_sec != NULL)
13015 elf_section_data (sec)->sreloc = reloc_sec;
13016 }
13017 }
13018
13019 return reloc_sec;
13020 }
13021
13022 /* Returns the dynamic reloc section associated with SEC. If the
13023 section does not exist it is created and attached to the DYNOBJ
13024 bfd and stored in the SRELOC field of SEC's elf_section_data
13025 structure.
13026
13027 ALIGNMENT is the alignment for the newly created section and
13028 IS_RELA defines whether the name should be .rela.<SEC's name>
13029 or .rel.<SEC's name>. The section name is looked up in the
13030 string table associated with ABFD. */
13031
13032 asection *
13033 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13034 bfd * dynobj,
13035 unsigned int alignment,
13036 bfd * abfd,
13037 bfd_boolean is_rela)
13038 {
13039 asection * reloc_sec = elf_section_data (sec)->sreloc;
13040
13041 if (reloc_sec == NULL)
13042 {
13043 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13044
13045 if (name == NULL)
13046 return NULL;
13047
13048 reloc_sec = bfd_get_linker_section (dynobj, name);
13049
13050 if (reloc_sec == NULL)
13051 {
13052 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13053 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13054 if ((sec->flags & SEC_ALLOC) != 0)
13055 flags |= SEC_ALLOC | SEC_LOAD;
13056
13057 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13058 if (reloc_sec != NULL)
13059 {
13060 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13061 reloc_sec = NULL;
13062 }
13063 }
13064
13065 elf_section_data (sec)->sreloc = reloc_sec;
13066 }
13067
13068 return reloc_sec;
13069 }
13070
13071 /* Copy the ELF symbol type associated with a linker hash entry. */
13072 void
13073 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13074 struct bfd_link_hash_entry * hdest,
13075 struct bfd_link_hash_entry * hsrc)
13076 {
13077 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13078 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13079
13080 ehdest->type = ehsrc->type;
13081 ehdest->target_internal = ehsrc->target_internal;
13082 }
13083
13084 /* Append a RELA relocation REL to section S in BFD. */
13085
13086 void
13087 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13088 {
13089 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13090 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13091 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13092 bed->s->swap_reloca_out (abfd, rel, loc);
13093 }
13094
13095 /* Append a REL relocation REL to section S in BFD. */
13096
13097 void
13098 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13099 {
13100 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13101 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13102 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13103 bed->s->swap_reloc_out (abfd, rel, loc);
13104 }