Add extern_protected_data and set it for x86
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 /* Define a symbol in a dynamic linkage section. */
58
59 struct elf_link_hash_entry *
60 _bfd_elf_define_linkage_sym (bfd *abfd,
61 struct bfd_link_info *info,
62 asection *sec,
63 const char *name)
64 {
65 struct elf_link_hash_entry *h;
66 struct bfd_link_hash_entry *bh;
67 const struct elf_backend_data *bed;
68
69 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
70 if (h != NULL)
71 {
72 /* Zap symbol defined in an as-needed lib that wasn't linked.
73 This is a symptom of a larger problem: Absolute symbols
74 defined in shared libraries can't be overridden, because we
75 lose the link to the bfd which is via the symbol section. */
76 h->root.type = bfd_link_hash_new;
77 }
78
79 bh = &h->root;
80 bed = get_elf_backend_data (abfd);
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE, bed->collect,
83 &bh))
84 return NULL;
85 h = (struct elf_link_hash_entry *) bh;
86 h->def_regular = 1;
87 h->non_elf = 0;
88 h->root.linker_def = 1;
89 h->type = STT_OBJECT;
90 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
579 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
580 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
581 }
582
583 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
584 and executables. */
585 if (!info->relocatable
586 && h->dynindx != -1
587 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
588 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
589 h->forced_local = 1;
590
591 if ((h->def_dynamic
592 || h->ref_dynamic
593 || info->shared
594 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
595 && h->dynindx == -1)
596 {
597 if (! bfd_elf_link_record_dynamic_symbol (info, h))
598 return FALSE;
599
600 /* If this is a weak defined symbol, and we know a corresponding
601 real symbol from the same dynamic object, make sure the real
602 symbol is also made into a dynamic symbol. */
603 if (h->u.weakdef != NULL
604 && h->u.weakdef->dynindx == -1)
605 {
606 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
607 return FALSE;
608 }
609 }
610
611 return TRUE;
612 }
613
614 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
615 success, and 2 on a failure caused by attempting to record a symbol
616 in a discarded section, eg. a discarded link-once section symbol. */
617
618 int
619 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
620 bfd *input_bfd,
621 long input_indx)
622 {
623 bfd_size_type amt;
624 struct elf_link_local_dynamic_entry *entry;
625 struct elf_link_hash_table *eht;
626 struct elf_strtab_hash *dynstr;
627 unsigned long dynstr_index;
628 char *name;
629 Elf_External_Sym_Shndx eshndx;
630 char esym[sizeof (Elf64_External_Sym)];
631
632 if (! is_elf_hash_table (info->hash))
633 return 0;
634
635 /* See if the entry exists already. */
636 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
637 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
638 return 1;
639
640 amt = sizeof (*entry);
641 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
642 if (entry == NULL)
643 return 0;
644
645 /* Go find the symbol, so that we can find it's name. */
646 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
647 1, input_indx, &entry->isym, esym, &eshndx))
648 {
649 bfd_release (input_bfd, entry);
650 return 0;
651 }
652
653 if (entry->isym.st_shndx != SHN_UNDEF
654 && entry->isym.st_shndx < SHN_LORESERVE)
655 {
656 asection *s;
657
658 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
659 if (s == NULL || bfd_is_abs_section (s->output_section))
660 {
661 /* We can still bfd_release here as nothing has done another
662 bfd_alloc. We can't do this later in this function. */
663 bfd_release (input_bfd, entry);
664 return 2;
665 }
666 }
667
668 name = (bfd_elf_string_from_elf_section
669 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
670 entry->isym.st_name));
671
672 dynstr = elf_hash_table (info)->dynstr;
673 if (dynstr == NULL)
674 {
675 /* Create a strtab to hold the dynamic symbol names. */
676 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
677 if (dynstr == NULL)
678 return 0;
679 }
680
681 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
682 if (dynstr_index == (unsigned long) -1)
683 return 0;
684 entry->isym.st_name = dynstr_index;
685
686 eht = elf_hash_table (info);
687
688 entry->next = eht->dynlocal;
689 eht->dynlocal = entry;
690 entry->input_bfd = input_bfd;
691 entry->input_indx = input_indx;
692 eht->dynsymcount++;
693
694 /* Whatever binding the symbol had before, it's now local. */
695 entry->isym.st_info
696 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
697
698 /* The dynindx will be set at the end of size_dynamic_sections. */
699
700 return 1;
701 }
702
703 /* Return the dynindex of a local dynamic symbol. */
704
705 long
706 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
707 bfd *input_bfd,
708 long input_indx)
709 {
710 struct elf_link_local_dynamic_entry *e;
711
712 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
713 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
714 return e->dynindx;
715 return -1;
716 }
717
718 /* This function is used to renumber the dynamic symbols, if some of
719 them are removed because they are marked as local. This is called
720 via elf_link_hash_traverse. */
721
722 static bfd_boolean
723 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
724 void *data)
725 {
726 size_t *count = (size_t *) data;
727
728 if (h->forced_local)
729 return TRUE;
730
731 if (h->dynindx != -1)
732 h->dynindx = ++(*count);
733
734 return TRUE;
735 }
736
737
738 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
739 STB_LOCAL binding. */
740
741 static bfd_boolean
742 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
743 void *data)
744 {
745 size_t *count = (size_t *) data;
746
747 if (!h->forced_local)
748 return TRUE;
749
750 if (h->dynindx != -1)
751 h->dynindx = ++(*count);
752
753 return TRUE;
754 }
755
756 /* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
758 bfd_boolean
759 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
760 struct bfd_link_info *info,
761 asection *p)
762 {
763 struct elf_link_hash_table *htab;
764 asection *ip;
765
766 switch (elf_section_data (p)->this_hdr.sh_type)
767 {
768 case SHT_PROGBITS:
769 case SHT_NOBITS:
770 /* If sh_type is yet undecided, assume it could be
771 SHT_PROGBITS/SHT_NOBITS. */
772 case SHT_NULL:
773 htab = elf_hash_table (info);
774 if (p == htab->tls_sec)
775 return FALSE;
776
777 if (htab->text_index_section != NULL)
778 return p != htab->text_index_section && p != htab->data_index_section;
779
780 return (htab->dynobj != NULL
781 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
782 && ip->output_section == p);
783
784 /* There shouldn't be section relative relocations
785 against any other section. */
786 default:
787 return TRUE;
788 }
789 }
790
791 /* Assign dynsym indices. In a shared library we generate a section
792 symbol for each output section, which come first. Next come symbols
793 which have been forced to local binding. Then all of the back-end
794 allocated local dynamic syms, followed by the rest of the global
795 symbols. */
796
797 static unsigned long
798 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
799 struct bfd_link_info *info,
800 unsigned long *section_sym_count)
801 {
802 unsigned long dynsymcount = 0;
803
804 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
805 {
806 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
807 asection *p;
808 for (p = output_bfd->sections; p ; p = p->next)
809 if ((p->flags & SEC_EXCLUDE) == 0
810 && (p->flags & SEC_ALLOC) != 0
811 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
812 elf_section_data (p)->dynindx = ++dynsymcount;
813 else
814 elf_section_data (p)->dynindx = 0;
815 }
816 *section_sym_count = dynsymcount;
817
818 elf_link_hash_traverse (elf_hash_table (info),
819 elf_link_renumber_local_hash_table_dynsyms,
820 &dynsymcount);
821
822 if (elf_hash_table (info)->dynlocal)
823 {
824 struct elf_link_local_dynamic_entry *p;
825 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
826 p->dynindx = ++dynsymcount;
827 }
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_hash_table_dynsyms,
831 &dynsymcount);
832
833 /* There is an unused NULL entry at the head of the table which
834 we must account for in our count. Unless there weren't any
835 symbols, which means we'll have no table at all. */
836 if (dynsymcount != 0)
837 ++dynsymcount;
838
839 elf_hash_table (info)->dynsymcount = dynsymcount;
840 return dynsymcount;
841 }
842
843 /* Merge st_other field. */
844
845 static void
846 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
847 const Elf_Internal_Sym *isym,
848 bfd_boolean definition, bfd_boolean dynamic)
849 {
850 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
851
852 /* If st_other has a processor-specific meaning, specific
853 code might be needed here. */
854 if (bed->elf_backend_merge_symbol_attribute)
855 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
856 dynamic);
857
858 if (!dynamic)
859 {
860 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
861 unsigned hvis = ELF_ST_VISIBILITY (h->other);
862
863 /* Keep the most constraining visibility. Leave the remainder
864 of the st_other field to elf_backend_merge_symbol_attribute. */
865 if (symvis - 1 < hvis - 1)
866 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
867 }
868 else if (definition && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT)
869 h->protected_def = 1;
870 }
871
872 /* This function is called when we want to merge a new symbol with an
873 existing symbol. It handles the various cases which arise when we
874 find a definition in a dynamic object, or when there is already a
875 definition in a dynamic object. The new symbol is described by
876 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
877 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
878 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
879 of an old common symbol. We set OVERRIDE if the old symbol is
880 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
881 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
882 to change. By OK to change, we mean that we shouldn't warn if the
883 type or size does change. */
884
885 static bfd_boolean
886 _bfd_elf_merge_symbol (bfd *abfd,
887 struct bfd_link_info *info,
888 const char *name,
889 Elf_Internal_Sym *sym,
890 asection **psec,
891 bfd_vma *pvalue,
892 struct elf_link_hash_entry **sym_hash,
893 bfd **poldbfd,
894 bfd_boolean *pold_weak,
895 unsigned int *pold_alignment,
896 bfd_boolean *skip,
897 bfd_boolean *override,
898 bfd_boolean *type_change_ok,
899 bfd_boolean *size_change_ok)
900 {
901 asection *sec, *oldsec;
902 struct elf_link_hash_entry *h;
903 struct elf_link_hash_entry *hi;
904 struct elf_link_hash_entry *flip;
905 int bind;
906 bfd *oldbfd;
907 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
908 bfd_boolean newweak, oldweak, newfunc, oldfunc;
909 const struct elf_backend_data *bed;
910
911 *skip = FALSE;
912 *override = FALSE;
913
914 sec = *psec;
915 bind = ELF_ST_BIND (sym->st_info);
916
917 if (! bfd_is_und_section (sec))
918 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
919 else
920 h = ((struct elf_link_hash_entry *)
921 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
922 if (h == NULL)
923 return FALSE;
924 *sym_hash = h;
925
926 bed = get_elf_backend_data (abfd);
927
928 /* For merging, we only care about real symbols. But we need to make
929 sure that indirect symbol dynamic flags are updated. */
930 hi = h;
931 while (h->root.type == bfd_link_hash_indirect
932 || h->root.type == bfd_link_hash_warning)
933 h = (struct elf_link_hash_entry *) h->root.u.i.link;
934
935 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
936 existing symbol. */
937
938 oldbfd = NULL;
939 oldsec = NULL;
940 switch (h->root.type)
941 {
942 default:
943 break;
944
945 case bfd_link_hash_undefined:
946 case bfd_link_hash_undefweak:
947 oldbfd = h->root.u.undef.abfd;
948 break;
949
950 case bfd_link_hash_defined:
951 case bfd_link_hash_defweak:
952 oldbfd = h->root.u.def.section->owner;
953 oldsec = h->root.u.def.section;
954 break;
955
956 case bfd_link_hash_common:
957 oldbfd = h->root.u.c.p->section->owner;
958 oldsec = h->root.u.c.p->section;
959 if (pold_alignment)
960 *pold_alignment = h->root.u.c.p->alignment_power;
961 break;
962 }
963 if (poldbfd && *poldbfd == NULL)
964 *poldbfd = oldbfd;
965
966 /* Differentiate strong and weak symbols. */
967 newweak = bind == STB_WEAK;
968 oldweak = (h->root.type == bfd_link_hash_defweak
969 || h->root.type == bfd_link_hash_undefweak);
970 if (pold_weak)
971 *pold_weak = oldweak;
972
973 /* This code is for coping with dynamic objects, and is only useful
974 if we are doing an ELF link. */
975 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
976 return TRUE;
977
978 /* We have to check it for every instance since the first few may be
979 references and not all compilers emit symbol type for undefined
980 symbols. */
981 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
982
983 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
984 respectively, is from a dynamic object. */
985
986 newdyn = (abfd->flags & DYNAMIC) != 0;
987
988 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
989 syms and defined syms in dynamic libraries respectively.
990 ref_dynamic on the other hand can be set for a symbol defined in
991 a dynamic library, and def_dynamic may not be set; When the
992 definition in a dynamic lib is overridden by a definition in the
993 executable use of the symbol in the dynamic lib becomes a
994 reference to the executable symbol. */
995 if (newdyn)
996 {
997 if (bfd_is_und_section (sec))
998 {
999 if (bind != STB_WEAK)
1000 {
1001 h->ref_dynamic_nonweak = 1;
1002 hi->ref_dynamic_nonweak = 1;
1003 }
1004 }
1005 else
1006 {
1007 h->dynamic_def = 1;
1008 hi->dynamic_def = 1;
1009 }
1010 }
1011
1012 /* If we just created the symbol, mark it as being an ELF symbol.
1013 Other than that, there is nothing to do--there is no merge issue
1014 with a newly defined symbol--so we just return. */
1015
1016 if (h->root.type == bfd_link_hash_new)
1017 {
1018 h->non_elf = 0;
1019 return TRUE;
1020 }
1021
1022 /* In cases involving weak versioned symbols, we may wind up trying
1023 to merge a symbol with itself. Catch that here, to avoid the
1024 confusion that results if we try to override a symbol with
1025 itself. The additional tests catch cases like
1026 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1027 dynamic object, which we do want to handle here. */
1028 if (abfd == oldbfd
1029 && (newweak || oldweak)
1030 && ((abfd->flags & DYNAMIC) == 0
1031 || !h->def_regular))
1032 return TRUE;
1033
1034 olddyn = FALSE;
1035 if (oldbfd != NULL)
1036 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1037 else if (oldsec != NULL)
1038 {
1039 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1040 indices used by MIPS ELF. */
1041 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1042 }
1043
1044 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1045 respectively, appear to be a definition rather than reference. */
1046
1047 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1048
1049 olddef = (h->root.type != bfd_link_hash_undefined
1050 && h->root.type != bfd_link_hash_undefweak
1051 && h->root.type != bfd_link_hash_common);
1052
1053 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1054 respectively, appear to be a function. */
1055
1056 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1057 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1058
1059 oldfunc = (h->type != STT_NOTYPE
1060 && bed->is_function_type (h->type));
1061
1062 /* When we try to create a default indirect symbol from the dynamic
1063 definition with the default version, we skip it if its type and
1064 the type of existing regular definition mismatch. */
1065 if (pold_alignment == NULL
1066 && newdyn
1067 && newdef
1068 && !olddyn
1069 && (((olddef || h->root.type == bfd_link_hash_common)
1070 && ELF_ST_TYPE (sym->st_info) != h->type
1071 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1072 && h->type != STT_NOTYPE
1073 && !(newfunc && oldfunc))
1074 || (olddef
1075 && ((h->type == STT_GNU_IFUNC)
1076 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1077 {
1078 *skip = TRUE;
1079 return TRUE;
1080 }
1081
1082 /* Check TLS symbols. We don't check undefined symbols introduced
1083 by "ld -u" which have no type (and oldbfd NULL), and we don't
1084 check symbols from plugins because they also have no type. */
1085 if (oldbfd != NULL
1086 && (oldbfd->flags & BFD_PLUGIN) == 0
1087 && (abfd->flags & BFD_PLUGIN) == 0
1088 && ELF_ST_TYPE (sym->st_info) != h->type
1089 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1090 {
1091 bfd *ntbfd, *tbfd;
1092 bfd_boolean ntdef, tdef;
1093 asection *ntsec, *tsec;
1094
1095 if (h->type == STT_TLS)
1096 {
1097 ntbfd = abfd;
1098 ntsec = sec;
1099 ntdef = newdef;
1100 tbfd = oldbfd;
1101 tsec = oldsec;
1102 tdef = olddef;
1103 }
1104 else
1105 {
1106 ntbfd = oldbfd;
1107 ntsec = oldsec;
1108 ntdef = olddef;
1109 tbfd = abfd;
1110 tsec = sec;
1111 tdef = newdef;
1112 }
1113
1114 if (tdef && ntdef)
1115 (*_bfd_error_handler)
1116 (_("%s: TLS definition in %B section %A "
1117 "mismatches non-TLS definition in %B section %A"),
1118 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1119 else if (!tdef && !ntdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS reference in %B "
1122 "mismatches non-TLS reference in %B"),
1123 tbfd, ntbfd, h->root.root.string);
1124 else if (tdef)
1125 (*_bfd_error_handler)
1126 (_("%s: TLS definition in %B section %A "
1127 "mismatches non-TLS reference in %B"),
1128 tbfd, tsec, ntbfd, h->root.root.string);
1129 else
1130 (*_bfd_error_handler)
1131 (_("%s: TLS reference in %B "
1132 "mismatches non-TLS definition in %B section %A"),
1133 tbfd, ntbfd, ntsec, h->root.root.string);
1134
1135 bfd_set_error (bfd_error_bad_value);
1136 return FALSE;
1137 }
1138
1139 /* If the old symbol has non-default visibility, we ignore the new
1140 definition from a dynamic object. */
1141 if (newdyn
1142 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1143 && !bfd_is_und_section (sec))
1144 {
1145 *skip = TRUE;
1146 /* Make sure this symbol is dynamic. */
1147 h->ref_dynamic = 1;
1148 hi->ref_dynamic = 1;
1149 /* A protected symbol has external availability. Make sure it is
1150 recorded as dynamic.
1151
1152 FIXME: Should we check type and size for protected symbol? */
1153 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1154 return bfd_elf_link_record_dynamic_symbol (info, h);
1155 else
1156 return TRUE;
1157 }
1158 else if (!newdyn
1159 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1160 && h->def_dynamic)
1161 {
1162 /* If the new symbol with non-default visibility comes from a
1163 relocatable file and the old definition comes from a dynamic
1164 object, we remove the old definition. */
1165 if (hi->root.type == bfd_link_hash_indirect)
1166 {
1167 /* Handle the case where the old dynamic definition is
1168 default versioned. We need to copy the symbol info from
1169 the symbol with default version to the normal one if it
1170 was referenced before. */
1171 if (h->ref_regular)
1172 {
1173 hi->root.type = h->root.type;
1174 h->root.type = bfd_link_hash_indirect;
1175 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1176
1177 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1178 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1179 {
1180 /* If the new symbol is hidden or internal, completely undo
1181 any dynamic link state. */
1182 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1183 h->forced_local = 0;
1184 h->ref_dynamic = 0;
1185 }
1186 else
1187 h->ref_dynamic = 1;
1188
1189 h->def_dynamic = 0;
1190 /* FIXME: Should we check type and size for protected symbol? */
1191 h->size = 0;
1192 h->type = 0;
1193
1194 h = hi;
1195 }
1196 else
1197 h = hi;
1198 }
1199
1200 /* If the old symbol was undefined before, then it will still be
1201 on the undefs list. If the new symbol is undefined or
1202 common, we can't make it bfd_link_hash_new here, because new
1203 undefined or common symbols will be added to the undefs list
1204 by _bfd_generic_link_add_one_symbol. Symbols may not be
1205 added twice to the undefs list. Also, if the new symbol is
1206 undefweak then we don't want to lose the strong undef. */
1207 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1208 {
1209 h->root.type = bfd_link_hash_undefined;
1210 h->root.u.undef.abfd = abfd;
1211 }
1212 else
1213 {
1214 h->root.type = bfd_link_hash_new;
1215 h->root.u.undef.abfd = NULL;
1216 }
1217
1218 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1219 {
1220 /* If the new symbol is hidden or internal, completely undo
1221 any dynamic link state. */
1222 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1223 h->forced_local = 0;
1224 h->ref_dynamic = 0;
1225 }
1226 else
1227 h->ref_dynamic = 1;
1228 h->def_dynamic = 0;
1229 /* FIXME: Should we check type and size for protected symbol? */
1230 h->size = 0;
1231 h->type = 0;
1232 return TRUE;
1233 }
1234
1235 /* If a new weak symbol definition comes from a regular file and the
1236 old symbol comes from a dynamic library, we treat the new one as
1237 strong. Similarly, an old weak symbol definition from a regular
1238 file is treated as strong when the new symbol comes from a dynamic
1239 library. Further, an old weak symbol from a dynamic library is
1240 treated as strong if the new symbol is from a dynamic library.
1241 This reflects the way glibc's ld.so works.
1242
1243 Do this before setting *type_change_ok or *size_change_ok so that
1244 we warn properly when dynamic library symbols are overridden. */
1245
1246 if (newdef && !newdyn && olddyn)
1247 newweak = FALSE;
1248 if (olddef && newdyn)
1249 oldweak = FALSE;
1250
1251 /* Allow changes between different types of function symbol. */
1252 if (newfunc && oldfunc)
1253 *type_change_ok = TRUE;
1254
1255 /* It's OK to change the type if either the existing symbol or the
1256 new symbol is weak. A type change is also OK if the old symbol
1257 is undefined and the new symbol is defined. */
1258
1259 if (oldweak
1260 || newweak
1261 || (newdef
1262 && h->root.type == bfd_link_hash_undefined))
1263 *type_change_ok = TRUE;
1264
1265 /* It's OK to change the size if either the existing symbol or the
1266 new symbol is weak, or if the old symbol is undefined. */
1267
1268 if (*type_change_ok
1269 || h->root.type == bfd_link_hash_undefined)
1270 *size_change_ok = TRUE;
1271
1272 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1273 symbol, respectively, appears to be a common symbol in a dynamic
1274 object. If a symbol appears in an uninitialized section, and is
1275 not weak, and is not a function, then it may be a common symbol
1276 which was resolved when the dynamic object was created. We want
1277 to treat such symbols specially, because they raise special
1278 considerations when setting the symbol size: if the symbol
1279 appears as a common symbol in a regular object, and the size in
1280 the regular object is larger, we must make sure that we use the
1281 larger size. This problematic case can always be avoided in C,
1282 but it must be handled correctly when using Fortran shared
1283 libraries.
1284
1285 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1286 likewise for OLDDYNCOMMON and OLDDEF.
1287
1288 Note that this test is just a heuristic, and that it is quite
1289 possible to have an uninitialized symbol in a shared object which
1290 is really a definition, rather than a common symbol. This could
1291 lead to some minor confusion when the symbol really is a common
1292 symbol in some regular object. However, I think it will be
1293 harmless. */
1294
1295 if (newdyn
1296 && newdef
1297 && !newweak
1298 && (sec->flags & SEC_ALLOC) != 0
1299 && (sec->flags & SEC_LOAD) == 0
1300 && sym->st_size > 0
1301 && !newfunc)
1302 newdyncommon = TRUE;
1303 else
1304 newdyncommon = FALSE;
1305
1306 if (olddyn
1307 && olddef
1308 && h->root.type == bfd_link_hash_defined
1309 && h->def_dynamic
1310 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1311 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1312 && h->size > 0
1313 && !oldfunc)
1314 olddyncommon = TRUE;
1315 else
1316 olddyncommon = FALSE;
1317
1318 /* We now know everything about the old and new symbols. We ask the
1319 backend to check if we can merge them. */
1320 if (bed->merge_symbol != NULL)
1321 {
1322 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1323 return FALSE;
1324 sec = *psec;
1325 }
1326
1327 /* If both the old and the new symbols look like common symbols in a
1328 dynamic object, set the size of the symbol to the larger of the
1329 two. */
1330
1331 if (olddyncommon
1332 && newdyncommon
1333 && sym->st_size != h->size)
1334 {
1335 /* Since we think we have two common symbols, issue a multiple
1336 common warning if desired. Note that we only warn if the
1337 size is different. If the size is the same, we simply let
1338 the old symbol override the new one as normally happens with
1339 symbols defined in dynamic objects. */
1340
1341 if (! ((*info->callbacks->multiple_common)
1342 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1343 return FALSE;
1344
1345 if (sym->st_size > h->size)
1346 h->size = sym->st_size;
1347
1348 *size_change_ok = TRUE;
1349 }
1350
1351 /* If we are looking at a dynamic object, and we have found a
1352 definition, we need to see if the symbol was already defined by
1353 some other object. If so, we want to use the existing
1354 definition, and we do not want to report a multiple symbol
1355 definition error; we do this by clobbering *PSEC to be
1356 bfd_und_section_ptr.
1357
1358 We treat a common symbol as a definition if the symbol in the
1359 shared library is a function, since common symbols always
1360 represent variables; this can cause confusion in principle, but
1361 any such confusion would seem to indicate an erroneous program or
1362 shared library. We also permit a common symbol in a regular
1363 object to override a weak symbol in a shared object. */
1364
1365 if (newdyn
1366 && newdef
1367 && (olddef
1368 || (h->root.type == bfd_link_hash_common
1369 && (newweak || newfunc))))
1370 {
1371 *override = TRUE;
1372 newdef = FALSE;
1373 newdyncommon = FALSE;
1374
1375 *psec = sec = bfd_und_section_ptr;
1376 *size_change_ok = TRUE;
1377
1378 /* If we get here when the old symbol is a common symbol, then
1379 we are explicitly letting it override a weak symbol or
1380 function in a dynamic object, and we don't want to warn about
1381 a type change. If the old symbol is a defined symbol, a type
1382 change warning may still be appropriate. */
1383
1384 if (h->root.type == bfd_link_hash_common)
1385 *type_change_ok = TRUE;
1386 }
1387
1388 /* Handle the special case of an old common symbol merging with a
1389 new symbol which looks like a common symbol in a shared object.
1390 We change *PSEC and *PVALUE to make the new symbol look like a
1391 common symbol, and let _bfd_generic_link_add_one_symbol do the
1392 right thing. */
1393
1394 if (newdyncommon
1395 && h->root.type == bfd_link_hash_common)
1396 {
1397 *override = TRUE;
1398 newdef = FALSE;
1399 newdyncommon = FALSE;
1400 *pvalue = sym->st_size;
1401 *psec = sec = bed->common_section (oldsec);
1402 *size_change_ok = TRUE;
1403 }
1404
1405 /* Skip weak definitions of symbols that are already defined. */
1406 if (newdef && olddef && newweak)
1407 {
1408 /* Don't skip new non-IR weak syms. */
1409 if (!(oldbfd != NULL
1410 && (oldbfd->flags & BFD_PLUGIN) != 0
1411 && (abfd->flags & BFD_PLUGIN) == 0))
1412 {
1413 newdef = FALSE;
1414 *skip = TRUE;
1415 }
1416
1417 /* Merge st_other. If the symbol already has a dynamic index,
1418 but visibility says it should not be visible, turn it into a
1419 local symbol. */
1420 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1421 if (h->dynindx != -1)
1422 switch (ELF_ST_VISIBILITY (h->other))
1423 {
1424 case STV_INTERNAL:
1425 case STV_HIDDEN:
1426 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1427 break;
1428 }
1429 }
1430
1431 /* If the old symbol is from a dynamic object, and the new symbol is
1432 a definition which is not from a dynamic object, then the new
1433 symbol overrides the old symbol. Symbols from regular files
1434 always take precedence over symbols from dynamic objects, even if
1435 they are defined after the dynamic object in the link.
1436
1437 As above, we again permit a common symbol in a regular object to
1438 override a definition in a shared object if the shared object
1439 symbol is a function or is weak. */
1440
1441 flip = NULL;
1442 if (!newdyn
1443 && (newdef
1444 || (bfd_is_com_section (sec)
1445 && (oldweak || oldfunc)))
1446 && olddyn
1447 && olddef
1448 && h->def_dynamic)
1449 {
1450 /* Change the hash table entry to undefined, and let
1451 _bfd_generic_link_add_one_symbol do the right thing with the
1452 new definition. */
1453
1454 h->root.type = bfd_link_hash_undefined;
1455 h->root.u.undef.abfd = h->root.u.def.section->owner;
1456 *size_change_ok = TRUE;
1457
1458 olddef = FALSE;
1459 olddyncommon = FALSE;
1460
1461 /* We again permit a type change when a common symbol may be
1462 overriding a function. */
1463
1464 if (bfd_is_com_section (sec))
1465 {
1466 if (oldfunc)
1467 {
1468 /* If a common symbol overrides a function, make sure
1469 that it isn't defined dynamically nor has type
1470 function. */
1471 h->def_dynamic = 0;
1472 h->type = STT_NOTYPE;
1473 }
1474 *type_change_ok = TRUE;
1475 }
1476
1477 if (hi->root.type == bfd_link_hash_indirect)
1478 flip = hi;
1479 else
1480 /* This union may have been set to be non-NULL when this symbol
1481 was seen in a dynamic object. We must force the union to be
1482 NULL, so that it is correct for a regular symbol. */
1483 h->verinfo.vertree = NULL;
1484 }
1485
1486 /* Handle the special case of a new common symbol merging with an
1487 old symbol that looks like it might be a common symbol defined in
1488 a shared object. Note that we have already handled the case in
1489 which a new common symbol should simply override the definition
1490 in the shared library. */
1491
1492 if (! newdyn
1493 && bfd_is_com_section (sec)
1494 && olddyncommon)
1495 {
1496 /* It would be best if we could set the hash table entry to a
1497 common symbol, but we don't know what to use for the section
1498 or the alignment. */
1499 if (! ((*info->callbacks->multiple_common)
1500 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1501 return FALSE;
1502
1503 /* If the presumed common symbol in the dynamic object is
1504 larger, pretend that the new symbol has its size. */
1505
1506 if (h->size > *pvalue)
1507 *pvalue = h->size;
1508
1509 /* We need to remember the alignment required by the symbol
1510 in the dynamic object. */
1511 BFD_ASSERT (pold_alignment);
1512 *pold_alignment = h->root.u.def.section->alignment_power;
1513
1514 olddef = FALSE;
1515 olddyncommon = FALSE;
1516
1517 h->root.type = bfd_link_hash_undefined;
1518 h->root.u.undef.abfd = h->root.u.def.section->owner;
1519
1520 *size_change_ok = TRUE;
1521 *type_change_ok = TRUE;
1522
1523 if (hi->root.type == bfd_link_hash_indirect)
1524 flip = hi;
1525 else
1526 h->verinfo.vertree = NULL;
1527 }
1528
1529 if (flip != NULL)
1530 {
1531 /* Handle the case where we had a versioned symbol in a dynamic
1532 library and now find a definition in a normal object. In this
1533 case, we make the versioned symbol point to the normal one. */
1534 flip->root.type = h->root.type;
1535 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1536 h->root.type = bfd_link_hash_indirect;
1537 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1538 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1539 if (h->def_dynamic)
1540 {
1541 h->def_dynamic = 0;
1542 flip->ref_dynamic = 1;
1543 }
1544 }
1545
1546 return TRUE;
1547 }
1548
1549 /* This function is called to create an indirect symbol from the
1550 default for the symbol with the default version if needed. The
1551 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1552 set DYNSYM if the new indirect symbol is dynamic. */
1553
1554 static bfd_boolean
1555 _bfd_elf_add_default_symbol (bfd *abfd,
1556 struct bfd_link_info *info,
1557 struct elf_link_hash_entry *h,
1558 const char *name,
1559 Elf_Internal_Sym *sym,
1560 asection *sec,
1561 bfd_vma value,
1562 bfd **poldbfd,
1563 bfd_boolean *dynsym)
1564 {
1565 bfd_boolean type_change_ok;
1566 bfd_boolean size_change_ok;
1567 bfd_boolean skip;
1568 char *shortname;
1569 struct elf_link_hash_entry *hi;
1570 struct bfd_link_hash_entry *bh;
1571 const struct elf_backend_data *bed;
1572 bfd_boolean collect;
1573 bfd_boolean dynamic;
1574 bfd_boolean override;
1575 char *p;
1576 size_t len, shortlen;
1577 asection *tmp_sec;
1578
1579 /* If this symbol has a version, and it is the default version, we
1580 create an indirect symbol from the default name to the fully
1581 decorated name. This will cause external references which do not
1582 specify a version to be bound to this version of the symbol. */
1583 p = strchr (name, ELF_VER_CHR);
1584 if (p == NULL || p[1] != ELF_VER_CHR)
1585 return TRUE;
1586
1587 bed = get_elf_backend_data (abfd);
1588 collect = bed->collect;
1589 dynamic = (abfd->flags & DYNAMIC) != 0;
1590
1591 shortlen = p - name;
1592 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1593 if (shortname == NULL)
1594 return FALSE;
1595 memcpy (shortname, name, shortlen);
1596 shortname[shortlen] = '\0';
1597
1598 /* We are going to create a new symbol. Merge it with any existing
1599 symbol with this name. For the purposes of the merge, act as
1600 though we were defining the symbol we just defined, although we
1601 actually going to define an indirect symbol. */
1602 type_change_ok = FALSE;
1603 size_change_ok = FALSE;
1604 tmp_sec = sec;
1605 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1606 &hi, poldbfd, NULL, NULL, &skip, &override,
1607 &type_change_ok, &size_change_ok))
1608 return FALSE;
1609
1610 if (skip)
1611 goto nondefault;
1612
1613 if (! override)
1614 {
1615 bh = &hi->root;
1616 if (! (_bfd_generic_link_add_one_symbol
1617 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1618 0, name, FALSE, collect, &bh)))
1619 return FALSE;
1620 hi = (struct elf_link_hash_entry *) bh;
1621 }
1622 else
1623 {
1624 /* In this case the symbol named SHORTNAME is overriding the
1625 indirect symbol we want to add. We were planning on making
1626 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1627 is the name without a version. NAME is the fully versioned
1628 name, and it is the default version.
1629
1630 Overriding means that we already saw a definition for the
1631 symbol SHORTNAME in a regular object, and it is overriding
1632 the symbol defined in the dynamic object.
1633
1634 When this happens, we actually want to change NAME, the
1635 symbol we just added, to refer to SHORTNAME. This will cause
1636 references to NAME in the shared object to become references
1637 to SHORTNAME in the regular object. This is what we expect
1638 when we override a function in a shared object: that the
1639 references in the shared object will be mapped to the
1640 definition in the regular object. */
1641
1642 while (hi->root.type == bfd_link_hash_indirect
1643 || hi->root.type == bfd_link_hash_warning)
1644 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1645
1646 h->root.type = bfd_link_hash_indirect;
1647 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1648 if (h->def_dynamic)
1649 {
1650 h->def_dynamic = 0;
1651 hi->ref_dynamic = 1;
1652 if (hi->ref_regular
1653 || hi->def_regular)
1654 {
1655 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1656 return FALSE;
1657 }
1658 }
1659
1660 /* Now set HI to H, so that the following code will set the
1661 other fields correctly. */
1662 hi = h;
1663 }
1664
1665 /* Check if HI is a warning symbol. */
1666 if (hi->root.type == bfd_link_hash_warning)
1667 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1668
1669 /* If there is a duplicate definition somewhere, then HI may not
1670 point to an indirect symbol. We will have reported an error to
1671 the user in that case. */
1672
1673 if (hi->root.type == bfd_link_hash_indirect)
1674 {
1675 struct elf_link_hash_entry *ht;
1676
1677 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1678 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1679
1680 /* A reference to the SHORTNAME symbol from a dynamic library
1681 will be satisfied by the versioned symbol at runtime. In
1682 effect, we have a reference to the versioned symbol. */
1683 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1684 hi->dynamic_def |= ht->dynamic_def;
1685
1686 /* See if the new flags lead us to realize that the symbol must
1687 be dynamic. */
1688 if (! *dynsym)
1689 {
1690 if (! dynamic)
1691 {
1692 if (! info->executable
1693 || hi->def_dynamic
1694 || hi->ref_dynamic)
1695 *dynsym = TRUE;
1696 }
1697 else
1698 {
1699 if (hi->ref_regular)
1700 *dynsym = TRUE;
1701 }
1702 }
1703 }
1704
1705 /* We also need to define an indirection from the nondefault version
1706 of the symbol. */
1707
1708 nondefault:
1709 len = strlen (name);
1710 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1711 if (shortname == NULL)
1712 return FALSE;
1713 memcpy (shortname, name, shortlen);
1714 memcpy (shortname + shortlen, p + 1, len - shortlen);
1715
1716 /* Once again, merge with any existing symbol. */
1717 type_change_ok = FALSE;
1718 size_change_ok = FALSE;
1719 tmp_sec = sec;
1720 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1721 &hi, poldbfd, NULL, NULL, &skip, &override,
1722 &type_change_ok, &size_change_ok))
1723 return FALSE;
1724
1725 if (skip)
1726 return TRUE;
1727
1728 if (override)
1729 {
1730 /* Here SHORTNAME is a versioned name, so we don't expect to see
1731 the type of override we do in the case above unless it is
1732 overridden by a versioned definition. */
1733 if (hi->root.type != bfd_link_hash_defined
1734 && hi->root.type != bfd_link_hash_defweak)
1735 (*_bfd_error_handler)
1736 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1737 abfd, shortname);
1738 }
1739 else
1740 {
1741 bh = &hi->root;
1742 if (! (_bfd_generic_link_add_one_symbol
1743 (info, abfd, shortname, BSF_INDIRECT,
1744 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1745 return FALSE;
1746 hi = (struct elf_link_hash_entry *) bh;
1747
1748 /* If there is a duplicate definition somewhere, then HI may not
1749 point to an indirect symbol. We will have reported an error
1750 to the user in that case. */
1751
1752 if (hi->root.type == bfd_link_hash_indirect)
1753 {
1754 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1755 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1756 hi->dynamic_def |= h->dynamic_def;
1757
1758 /* See if the new flags lead us to realize that the symbol
1759 must be dynamic. */
1760 if (! *dynsym)
1761 {
1762 if (! dynamic)
1763 {
1764 if (! info->executable
1765 || hi->ref_dynamic)
1766 *dynsym = TRUE;
1767 }
1768 else
1769 {
1770 if (hi->ref_regular)
1771 *dynsym = TRUE;
1772 }
1773 }
1774 }
1775 }
1776
1777 return TRUE;
1778 }
1779 \f
1780 /* This routine is used to export all defined symbols into the dynamic
1781 symbol table. It is called via elf_link_hash_traverse. */
1782
1783 static bfd_boolean
1784 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1785 {
1786 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1787
1788 /* Ignore indirect symbols. These are added by the versioning code. */
1789 if (h->root.type == bfd_link_hash_indirect)
1790 return TRUE;
1791
1792 /* Ignore this if we won't export it. */
1793 if (!eif->info->export_dynamic && !h->dynamic)
1794 return TRUE;
1795
1796 if (h->dynindx == -1
1797 && (h->def_regular || h->ref_regular)
1798 && ! bfd_hide_sym_by_version (eif->info->version_info,
1799 h->root.root.string))
1800 {
1801 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1802 {
1803 eif->failed = TRUE;
1804 return FALSE;
1805 }
1806 }
1807
1808 return TRUE;
1809 }
1810 \f
1811 /* Look through the symbols which are defined in other shared
1812 libraries and referenced here. Update the list of version
1813 dependencies. This will be put into the .gnu.version_r section.
1814 This function is called via elf_link_hash_traverse. */
1815
1816 static bfd_boolean
1817 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1818 void *data)
1819 {
1820 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1821 Elf_Internal_Verneed *t;
1822 Elf_Internal_Vernaux *a;
1823 bfd_size_type amt;
1824
1825 /* We only care about symbols defined in shared objects with version
1826 information. */
1827 if (!h->def_dynamic
1828 || h->def_regular
1829 || h->dynindx == -1
1830 || h->verinfo.verdef == NULL
1831 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1832 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1833 return TRUE;
1834
1835 /* See if we already know about this version. */
1836 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1837 t != NULL;
1838 t = t->vn_nextref)
1839 {
1840 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1841 continue;
1842
1843 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1844 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1845 return TRUE;
1846
1847 break;
1848 }
1849
1850 /* This is a new version. Add it to tree we are building. */
1851
1852 if (t == NULL)
1853 {
1854 amt = sizeof *t;
1855 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1856 if (t == NULL)
1857 {
1858 rinfo->failed = TRUE;
1859 return FALSE;
1860 }
1861
1862 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1863 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1864 elf_tdata (rinfo->info->output_bfd)->verref = t;
1865 }
1866
1867 amt = sizeof *a;
1868 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1869 if (a == NULL)
1870 {
1871 rinfo->failed = TRUE;
1872 return FALSE;
1873 }
1874
1875 /* Note that we are copying a string pointer here, and testing it
1876 above. If bfd_elf_string_from_elf_section is ever changed to
1877 discard the string data when low in memory, this will have to be
1878 fixed. */
1879 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1880
1881 a->vna_flags = h->verinfo.verdef->vd_flags;
1882 a->vna_nextptr = t->vn_auxptr;
1883
1884 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1885 ++rinfo->vers;
1886
1887 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1888
1889 t->vn_auxptr = a;
1890
1891 return TRUE;
1892 }
1893
1894 /* Figure out appropriate versions for all the symbols. We may not
1895 have the version number script until we have read all of the input
1896 files, so until that point we don't know which symbols should be
1897 local. This function is called via elf_link_hash_traverse. */
1898
1899 static bfd_boolean
1900 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1901 {
1902 struct elf_info_failed *sinfo;
1903 struct bfd_link_info *info;
1904 const struct elf_backend_data *bed;
1905 struct elf_info_failed eif;
1906 char *p;
1907 bfd_size_type amt;
1908
1909 sinfo = (struct elf_info_failed *) data;
1910 info = sinfo->info;
1911
1912 /* Fix the symbol flags. */
1913 eif.failed = FALSE;
1914 eif.info = info;
1915 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1916 {
1917 if (eif.failed)
1918 sinfo->failed = TRUE;
1919 return FALSE;
1920 }
1921
1922 /* We only need version numbers for symbols defined in regular
1923 objects. */
1924 if (!h->def_regular)
1925 return TRUE;
1926
1927 bed = get_elf_backend_data (info->output_bfd);
1928 p = strchr (h->root.root.string, ELF_VER_CHR);
1929 if (p != NULL && h->verinfo.vertree == NULL)
1930 {
1931 struct bfd_elf_version_tree *t;
1932 bfd_boolean hidden;
1933
1934 hidden = TRUE;
1935
1936 /* There are two consecutive ELF_VER_CHR characters if this is
1937 not a hidden symbol. */
1938 ++p;
1939 if (*p == ELF_VER_CHR)
1940 {
1941 hidden = FALSE;
1942 ++p;
1943 }
1944
1945 /* If there is no version string, we can just return out. */
1946 if (*p == '\0')
1947 {
1948 if (hidden)
1949 h->hidden = 1;
1950 return TRUE;
1951 }
1952
1953 /* Look for the version. If we find it, it is no longer weak. */
1954 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1955 {
1956 if (strcmp (t->name, p) == 0)
1957 {
1958 size_t len;
1959 char *alc;
1960 struct bfd_elf_version_expr *d;
1961
1962 len = p - h->root.root.string;
1963 alc = (char *) bfd_malloc (len);
1964 if (alc == NULL)
1965 {
1966 sinfo->failed = TRUE;
1967 return FALSE;
1968 }
1969 memcpy (alc, h->root.root.string, len - 1);
1970 alc[len - 1] = '\0';
1971 if (alc[len - 2] == ELF_VER_CHR)
1972 alc[len - 2] = '\0';
1973
1974 h->verinfo.vertree = t;
1975 t->used = TRUE;
1976 d = NULL;
1977
1978 if (t->globals.list != NULL)
1979 d = (*t->match) (&t->globals, NULL, alc);
1980
1981 /* See if there is anything to force this symbol to
1982 local scope. */
1983 if (d == NULL && t->locals.list != NULL)
1984 {
1985 d = (*t->match) (&t->locals, NULL, alc);
1986 if (d != NULL
1987 && h->dynindx != -1
1988 && ! info->export_dynamic)
1989 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1990 }
1991
1992 free (alc);
1993 break;
1994 }
1995 }
1996
1997 /* If we are building an application, we need to create a
1998 version node for this version. */
1999 if (t == NULL && info->executable)
2000 {
2001 struct bfd_elf_version_tree **pp;
2002 int version_index;
2003
2004 /* If we aren't going to export this symbol, we don't need
2005 to worry about it. */
2006 if (h->dynindx == -1)
2007 return TRUE;
2008
2009 amt = sizeof *t;
2010 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2011 if (t == NULL)
2012 {
2013 sinfo->failed = TRUE;
2014 return FALSE;
2015 }
2016
2017 t->name = p;
2018 t->name_indx = (unsigned int) -1;
2019 t->used = TRUE;
2020
2021 version_index = 1;
2022 /* Don't count anonymous version tag. */
2023 if (sinfo->info->version_info != NULL
2024 && sinfo->info->version_info->vernum == 0)
2025 version_index = 0;
2026 for (pp = &sinfo->info->version_info;
2027 *pp != NULL;
2028 pp = &(*pp)->next)
2029 ++version_index;
2030 t->vernum = version_index;
2031
2032 *pp = t;
2033
2034 h->verinfo.vertree = t;
2035 }
2036 else if (t == NULL)
2037 {
2038 /* We could not find the version for a symbol when
2039 generating a shared archive. Return an error. */
2040 (*_bfd_error_handler)
2041 (_("%B: version node not found for symbol %s"),
2042 info->output_bfd, h->root.root.string);
2043 bfd_set_error (bfd_error_bad_value);
2044 sinfo->failed = TRUE;
2045 return FALSE;
2046 }
2047
2048 if (hidden)
2049 h->hidden = 1;
2050 }
2051
2052 /* If we don't have a version for this symbol, see if we can find
2053 something. */
2054 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2055 {
2056 bfd_boolean hide;
2057
2058 h->verinfo.vertree
2059 = bfd_find_version_for_sym (sinfo->info->version_info,
2060 h->root.root.string, &hide);
2061 if (h->verinfo.vertree != NULL && hide)
2062 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2063 }
2064
2065 return TRUE;
2066 }
2067 \f
2068 /* Read and swap the relocs from the section indicated by SHDR. This
2069 may be either a REL or a RELA section. The relocations are
2070 translated into RELA relocations and stored in INTERNAL_RELOCS,
2071 which should have already been allocated to contain enough space.
2072 The EXTERNAL_RELOCS are a buffer where the external form of the
2073 relocations should be stored.
2074
2075 Returns FALSE if something goes wrong. */
2076
2077 static bfd_boolean
2078 elf_link_read_relocs_from_section (bfd *abfd,
2079 asection *sec,
2080 Elf_Internal_Shdr *shdr,
2081 void *external_relocs,
2082 Elf_Internal_Rela *internal_relocs)
2083 {
2084 const struct elf_backend_data *bed;
2085 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2086 const bfd_byte *erela;
2087 const bfd_byte *erelaend;
2088 Elf_Internal_Rela *irela;
2089 Elf_Internal_Shdr *symtab_hdr;
2090 size_t nsyms;
2091
2092 /* Position ourselves at the start of the section. */
2093 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2094 return FALSE;
2095
2096 /* Read the relocations. */
2097 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2098 return FALSE;
2099
2100 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2101 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2102
2103 bed = get_elf_backend_data (abfd);
2104
2105 /* Convert the external relocations to the internal format. */
2106 if (shdr->sh_entsize == bed->s->sizeof_rel)
2107 swap_in = bed->s->swap_reloc_in;
2108 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2109 swap_in = bed->s->swap_reloca_in;
2110 else
2111 {
2112 bfd_set_error (bfd_error_wrong_format);
2113 return FALSE;
2114 }
2115
2116 erela = (const bfd_byte *) external_relocs;
2117 erelaend = erela + shdr->sh_size;
2118 irela = internal_relocs;
2119 while (erela < erelaend)
2120 {
2121 bfd_vma r_symndx;
2122
2123 (*swap_in) (abfd, erela, irela);
2124 r_symndx = ELF32_R_SYM (irela->r_info);
2125 if (bed->s->arch_size == 64)
2126 r_symndx >>= 24;
2127 if (nsyms > 0)
2128 {
2129 if ((size_t) r_symndx >= nsyms)
2130 {
2131 (*_bfd_error_handler)
2132 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2133 " for offset 0x%lx in section `%A'"),
2134 abfd, sec,
2135 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2136 bfd_set_error (bfd_error_bad_value);
2137 return FALSE;
2138 }
2139 }
2140 else if (r_symndx != STN_UNDEF)
2141 {
2142 (*_bfd_error_handler)
2143 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2144 " when the object file has no symbol table"),
2145 abfd, sec,
2146 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2147 bfd_set_error (bfd_error_bad_value);
2148 return FALSE;
2149 }
2150 irela += bed->s->int_rels_per_ext_rel;
2151 erela += shdr->sh_entsize;
2152 }
2153
2154 return TRUE;
2155 }
2156
2157 /* Read and swap the relocs for a section O. They may have been
2158 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2159 not NULL, they are used as buffers to read into. They are known to
2160 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2161 the return value is allocated using either malloc or bfd_alloc,
2162 according to the KEEP_MEMORY argument. If O has two relocation
2163 sections (both REL and RELA relocations), then the REL_HDR
2164 relocations will appear first in INTERNAL_RELOCS, followed by the
2165 RELA_HDR relocations. */
2166
2167 Elf_Internal_Rela *
2168 _bfd_elf_link_read_relocs (bfd *abfd,
2169 asection *o,
2170 void *external_relocs,
2171 Elf_Internal_Rela *internal_relocs,
2172 bfd_boolean keep_memory)
2173 {
2174 void *alloc1 = NULL;
2175 Elf_Internal_Rela *alloc2 = NULL;
2176 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2177 struct bfd_elf_section_data *esdo = elf_section_data (o);
2178 Elf_Internal_Rela *internal_rela_relocs;
2179
2180 if (esdo->relocs != NULL)
2181 return esdo->relocs;
2182
2183 if (o->reloc_count == 0)
2184 return NULL;
2185
2186 if (internal_relocs == NULL)
2187 {
2188 bfd_size_type size;
2189
2190 size = o->reloc_count;
2191 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2192 if (keep_memory)
2193 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2194 else
2195 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2196 if (internal_relocs == NULL)
2197 goto error_return;
2198 }
2199
2200 if (external_relocs == NULL)
2201 {
2202 bfd_size_type size = 0;
2203
2204 if (esdo->rel.hdr)
2205 size += esdo->rel.hdr->sh_size;
2206 if (esdo->rela.hdr)
2207 size += esdo->rela.hdr->sh_size;
2208
2209 alloc1 = bfd_malloc (size);
2210 if (alloc1 == NULL)
2211 goto error_return;
2212 external_relocs = alloc1;
2213 }
2214
2215 internal_rela_relocs = internal_relocs;
2216 if (esdo->rel.hdr)
2217 {
2218 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2219 external_relocs,
2220 internal_relocs))
2221 goto error_return;
2222 external_relocs = (((bfd_byte *) external_relocs)
2223 + esdo->rel.hdr->sh_size);
2224 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2225 * bed->s->int_rels_per_ext_rel);
2226 }
2227
2228 if (esdo->rela.hdr
2229 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2230 external_relocs,
2231 internal_rela_relocs)))
2232 goto error_return;
2233
2234 /* Cache the results for next time, if we can. */
2235 if (keep_memory)
2236 esdo->relocs = internal_relocs;
2237
2238 if (alloc1 != NULL)
2239 free (alloc1);
2240
2241 /* Don't free alloc2, since if it was allocated we are passing it
2242 back (under the name of internal_relocs). */
2243
2244 return internal_relocs;
2245
2246 error_return:
2247 if (alloc1 != NULL)
2248 free (alloc1);
2249 if (alloc2 != NULL)
2250 {
2251 if (keep_memory)
2252 bfd_release (abfd, alloc2);
2253 else
2254 free (alloc2);
2255 }
2256 return NULL;
2257 }
2258
2259 /* Compute the size of, and allocate space for, REL_HDR which is the
2260 section header for a section containing relocations for O. */
2261
2262 static bfd_boolean
2263 _bfd_elf_link_size_reloc_section (bfd *abfd,
2264 struct bfd_elf_section_reloc_data *reldata)
2265 {
2266 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2267
2268 /* That allows us to calculate the size of the section. */
2269 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2270
2271 /* The contents field must last into write_object_contents, so we
2272 allocate it with bfd_alloc rather than malloc. Also since we
2273 cannot be sure that the contents will actually be filled in,
2274 we zero the allocated space. */
2275 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2276 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2277 return FALSE;
2278
2279 if (reldata->hashes == NULL && reldata->count)
2280 {
2281 struct elf_link_hash_entry **p;
2282
2283 p = ((struct elf_link_hash_entry **)
2284 bfd_zmalloc (reldata->count * sizeof (*p)));
2285 if (p == NULL)
2286 return FALSE;
2287
2288 reldata->hashes = p;
2289 }
2290
2291 return TRUE;
2292 }
2293
2294 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2295 originated from the section given by INPUT_REL_HDR) to the
2296 OUTPUT_BFD. */
2297
2298 bfd_boolean
2299 _bfd_elf_link_output_relocs (bfd *output_bfd,
2300 asection *input_section,
2301 Elf_Internal_Shdr *input_rel_hdr,
2302 Elf_Internal_Rela *internal_relocs,
2303 struct elf_link_hash_entry **rel_hash
2304 ATTRIBUTE_UNUSED)
2305 {
2306 Elf_Internal_Rela *irela;
2307 Elf_Internal_Rela *irelaend;
2308 bfd_byte *erel;
2309 struct bfd_elf_section_reloc_data *output_reldata;
2310 asection *output_section;
2311 const struct elf_backend_data *bed;
2312 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2313 struct bfd_elf_section_data *esdo;
2314
2315 output_section = input_section->output_section;
2316
2317 bed = get_elf_backend_data (output_bfd);
2318 esdo = elf_section_data (output_section);
2319 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2320 {
2321 output_reldata = &esdo->rel;
2322 swap_out = bed->s->swap_reloc_out;
2323 }
2324 else if (esdo->rela.hdr
2325 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2326 {
2327 output_reldata = &esdo->rela;
2328 swap_out = bed->s->swap_reloca_out;
2329 }
2330 else
2331 {
2332 (*_bfd_error_handler)
2333 (_("%B: relocation size mismatch in %B section %A"),
2334 output_bfd, input_section->owner, input_section);
2335 bfd_set_error (bfd_error_wrong_format);
2336 return FALSE;
2337 }
2338
2339 erel = output_reldata->hdr->contents;
2340 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2341 irela = internal_relocs;
2342 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2343 * bed->s->int_rels_per_ext_rel);
2344 while (irela < irelaend)
2345 {
2346 (*swap_out) (output_bfd, irela, erel);
2347 irela += bed->s->int_rels_per_ext_rel;
2348 erel += input_rel_hdr->sh_entsize;
2349 }
2350
2351 /* Bump the counter, so that we know where to add the next set of
2352 relocations. */
2353 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2354
2355 return TRUE;
2356 }
2357 \f
2358 /* Make weak undefined symbols in PIE dynamic. */
2359
2360 bfd_boolean
2361 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2362 struct elf_link_hash_entry *h)
2363 {
2364 if (info->pie
2365 && h->dynindx == -1
2366 && h->root.type == bfd_link_hash_undefweak)
2367 return bfd_elf_link_record_dynamic_symbol (info, h);
2368
2369 return TRUE;
2370 }
2371
2372 /* Fix up the flags for a symbol. This handles various cases which
2373 can only be fixed after all the input files are seen. This is
2374 currently called by both adjust_dynamic_symbol and
2375 assign_sym_version, which is unnecessary but perhaps more robust in
2376 the face of future changes. */
2377
2378 static bfd_boolean
2379 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2380 struct elf_info_failed *eif)
2381 {
2382 const struct elf_backend_data *bed;
2383
2384 /* If this symbol was mentioned in a non-ELF file, try to set
2385 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2386 permit a non-ELF file to correctly refer to a symbol defined in
2387 an ELF dynamic object. */
2388 if (h->non_elf)
2389 {
2390 while (h->root.type == bfd_link_hash_indirect)
2391 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2392
2393 if (h->root.type != bfd_link_hash_defined
2394 && h->root.type != bfd_link_hash_defweak)
2395 {
2396 h->ref_regular = 1;
2397 h->ref_regular_nonweak = 1;
2398 }
2399 else
2400 {
2401 if (h->root.u.def.section->owner != NULL
2402 && (bfd_get_flavour (h->root.u.def.section->owner)
2403 == bfd_target_elf_flavour))
2404 {
2405 h->ref_regular = 1;
2406 h->ref_regular_nonweak = 1;
2407 }
2408 else
2409 h->def_regular = 1;
2410 }
2411
2412 if (h->dynindx == -1
2413 && (h->def_dynamic
2414 || h->ref_dynamic))
2415 {
2416 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2417 {
2418 eif->failed = TRUE;
2419 return FALSE;
2420 }
2421 }
2422 }
2423 else
2424 {
2425 /* Unfortunately, NON_ELF is only correct if the symbol
2426 was first seen in a non-ELF file. Fortunately, if the symbol
2427 was first seen in an ELF file, we're probably OK unless the
2428 symbol was defined in a non-ELF file. Catch that case here.
2429 FIXME: We're still in trouble if the symbol was first seen in
2430 a dynamic object, and then later in a non-ELF regular object. */
2431 if ((h->root.type == bfd_link_hash_defined
2432 || h->root.type == bfd_link_hash_defweak)
2433 && !h->def_regular
2434 && (h->root.u.def.section->owner != NULL
2435 ? (bfd_get_flavour (h->root.u.def.section->owner)
2436 != bfd_target_elf_flavour)
2437 : (bfd_is_abs_section (h->root.u.def.section)
2438 && !h->def_dynamic)))
2439 h->def_regular = 1;
2440 }
2441
2442 /* Backend specific symbol fixup. */
2443 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2444 if (bed->elf_backend_fixup_symbol
2445 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2446 return FALSE;
2447
2448 /* If this is a final link, and the symbol was defined as a common
2449 symbol in a regular object file, and there was no definition in
2450 any dynamic object, then the linker will have allocated space for
2451 the symbol in a common section but the DEF_REGULAR
2452 flag will not have been set. */
2453 if (h->root.type == bfd_link_hash_defined
2454 && !h->def_regular
2455 && h->ref_regular
2456 && !h->def_dynamic
2457 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2458 h->def_regular = 1;
2459
2460 /* If -Bsymbolic was used (which means to bind references to global
2461 symbols to the definition within the shared object), and this
2462 symbol was defined in a regular object, then it actually doesn't
2463 need a PLT entry. Likewise, if the symbol has non-default
2464 visibility. If the symbol has hidden or internal visibility, we
2465 will force it local. */
2466 if (h->needs_plt
2467 && eif->info->shared
2468 && is_elf_hash_table (eif->info->hash)
2469 && (SYMBOLIC_BIND (eif->info, h)
2470 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2471 && h->def_regular)
2472 {
2473 bfd_boolean force_local;
2474
2475 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2476 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2477 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2478 }
2479
2480 /* If a weak undefined symbol has non-default visibility, we also
2481 hide it from the dynamic linker. */
2482 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2483 && h->root.type == bfd_link_hash_undefweak)
2484 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2485
2486 /* If this is a weak defined symbol in a dynamic object, and we know
2487 the real definition in the dynamic object, copy interesting flags
2488 over to the real definition. */
2489 if (h->u.weakdef != NULL)
2490 {
2491 /* If the real definition is defined by a regular object file,
2492 don't do anything special. See the longer description in
2493 _bfd_elf_adjust_dynamic_symbol, below. */
2494 if (h->u.weakdef->def_regular)
2495 h->u.weakdef = NULL;
2496 else
2497 {
2498 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2499
2500 while (h->root.type == bfd_link_hash_indirect)
2501 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2502
2503 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2504 || h->root.type == bfd_link_hash_defweak);
2505 BFD_ASSERT (weakdef->def_dynamic);
2506 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2507 || weakdef->root.type == bfd_link_hash_defweak);
2508 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2509 }
2510 }
2511
2512 return TRUE;
2513 }
2514
2515 /* Make the backend pick a good value for a dynamic symbol. This is
2516 called via elf_link_hash_traverse, and also calls itself
2517 recursively. */
2518
2519 static bfd_boolean
2520 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2521 {
2522 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2523 bfd *dynobj;
2524 const struct elf_backend_data *bed;
2525
2526 if (! is_elf_hash_table (eif->info->hash))
2527 return FALSE;
2528
2529 /* Ignore indirect symbols. These are added by the versioning code. */
2530 if (h->root.type == bfd_link_hash_indirect)
2531 return TRUE;
2532
2533 /* Fix the symbol flags. */
2534 if (! _bfd_elf_fix_symbol_flags (h, eif))
2535 return FALSE;
2536
2537 /* If this symbol does not require a PLT entry, and it is not
2538 defined by a dynamic object, or is not referenced by a regular
2539 object, ignore it. We do have to handle a weak defined symbol,
2540 even if no regular object refers to it, if we decided to add it
2541 to the dynamic symbol table. FIXME: Do we normally need to worry
2542 about symbols which are defined by one dynamic object and
2543 referenced by another one? */
2544 if (!h->needs_plt
2545 && h->type != STT_GNU_IFUNC
2546 && (h->def_regular
2547 || !h->def_dynamic
2548 || (!h->ref_regular
2549 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2550 {
2551 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2552 return TRUE;
2553 }
2554
2555 /* If we've already adjusted this symbol, don't do it again. This
2556 can happen via a recursive call. */
2557 if (h->dynamic_adjusted)
2558 return TRUE;
2559
2560 /* Don't look at this symbol again. Note that we must set this
2561 after checking the above conditions, because we may look at a
2562 symbol once, decide not to do anything, and then get called
2563 recursively later after REF_REGULAR is set below. */
2564 h->dynamic_adjusted = 1;
2565
2566 /* If this is a weak definition, and we know a real definition, and
2567 the real symbol is not itself defined by a regular object file,
2568 then get a good value for the real definition. We handle the
2569 real symbol first, for the convenience of the backend routine.
2570
2571 Note that there is a confusing case here. If the real definition
2572 is defined by a regular object file, we don't get the real symbol
2573 from the dynamic object, but we do get the weak symbol. If the
2574 processor backend uses a COPY reloc, then if some routine in the
2575 dynamic object changes the real symbol, we will not see that
2576 change in the corresponding weak symbol. This is the way other
2577 ELF linkers work as well, and seems to be a result of the shared
2578 library model.
2579
2580 I will clarify this issue. Most SVR4 shared libraries define the
2581 variable _timezone and define timezone as a weak synonym. The
2582 tzset call changes _timezone. If you write
2583 extern int timezone;
2584 int _timezone = 5;
2585 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2586 you might expect that, since timezone is a synonym for _timezone,
2587 the same number will print both times. However, if the processor
2588 backend uses a COPY reloc, then actually timezone will be copied
2589 into your process image, and, since you define _timezone
2590 yourself, _timezone will not. Thus timezone and _timezone will
2591 wind up at different memory locations. The tzset call will set
2592 _timezone, leaving timezone unchanged. */
2593
2594 if (h->u.weakdef != NULL)
2595 {
2596 /* If we get to this point, there is an implicit reference to
2597 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2598 h->u.weakdef->ref_regular = 1;
2599
2600 /* Ensure that the backend adjust_dynamic_symbol function sees
2601 H->U.WEAKDEF before H by recursively calling ourselves. */
2602 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2603 return FALSE;
2604 }
2605
2606 /* If a symbol has no type and no size and does not require a PLT
2607 entry, then we are probably about to do the wrong thing here: we
2608 are probably going to create a COPY reloc for an empty object.
2609 This case can arise when a shared object is built with assembly
2610 code, and the assembly code fails to set the symbol type. */
2611 if (h->size == 0
2612 && h->type == STT_NOTYPE
2613 && !h->needs_plt)
2614 (*_bfd_error_handler)
2615 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2616 h->root.root.string);
2617
2618 dynobj = elf_hash_table (eif->info)->dynobj;
2619 bed = get_elf_backend_data (dynobj);
2620
2621 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2622 {
2623 eif->failed = TRUE;
2624 return FALSE;
2625 }
2626
2627 return TRUE;
2628 }
2629
2630 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2631 DYNBSS. */
2632
2633 bfd_boolean
2634 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2635 struct elf_link_hash_entry *h,
2636 asection *dynbss)
2637 {
2638 unsigned int power_of_two;
2639 bfd_vma mask;
2640 asection *sec = h->root.u.def.section;
2641
2642 /* The section aligment of definition is the maximum alignment
2643 requirement of symbols defined in the section. Since we don't
2644 know the symbol alignment requirement, we start with the
2645 maximum alignment and check low bits of the symbol address
2646 for the minimum alignment. */
2647 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2648 mask = ((bfd_vma) 1 << power_of_two) - 1;
2649 while ((h->root.u.def.value & mask) != 0)
2650 {
2651 mask >>= 1;
2652 --power_of_two;
2653 }
2654
2655 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2656 dynbss))
2657 {
2658 /* Adjust the section alignment if needed. */
2659 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2660 power_of_two))
2661 return FALSE;
2662 }
2663
2664 /* We make sure that the symbol will be aligned properly. */
2665 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2666
2667 /* Define the symbol as being at this point in DYNBSS. */
2668 h->root.u.def.section = dynbss;
2669 h->root.u.def.value = dynbss->size;
2670
2671 /* Increment the size of DYNBSS to make room for the symbol. */
2672 dynbss->size += h->size;
2673
2674 /* No error if extern_protected_data is true. */
2675 if (h->protected_def
2676 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)
2677 {
2678 info->callbacks->einfo
2679 (_("%P: copy reloc against protected `%T' is invalid\n"),
2680 h->root.root.string);
2681 bfd_set_error (bfd_error_bad_value);
2682 return FALSE;
2683 }
2684
2685 return TRUE;
2686 }
2687
2688 /* Adjust all external symbols pointing into SEC_MERGE sections
2689 to reflect the object merging within the sections. */
2690
2691 static bfd_boolean
2692 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2693 {
2694 asection *sec;
2695
2696 if ((h->root.type == bfd_link_hash_defined
2697 || h->root.type == bfd_link_hash_defweak)
2698 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2699 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2700 {
2701 bfd *output_bfd = (bfd *) data;
2702
2703 h->root.u.def.value =
2704 _bfd_merged_section_offset (output_bfd,
2705 &h->root.u.def.section,
2706 elf_section_data (sec)->sec_info,
2707 h->root.u.def.value);
2708 }
2709
2710 return TRUE;
2711 }
2712
2713 /* Returns false if the symbol referred to by H should be considered
2714 to resolve local to the current module, and true if it should be
2715 considered to bind dynamically. */
2716
2717 bfd_boolean
2718 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2719 struct bfd_link_info *info,
2720 bfd_boolean not_local_protected)
2721 {
2722 bfd_boolean binding_stays_local_p;
2723 const struct elf_backend_data *bed;
2724 struct elf_link_hash_table *hash_table;
2725
2726 if (h == NULL)
2727 return FALSE;
2728
2729 while (h->root.type == bfd_link_hash_indirect
2730 || h->root.type == bfd_link_hash_warning)
2731 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2732
2733 /* If it was forced local, then clearly it's not dynamic. */
2734 if (h->dynindx == -1)
2735 return FALSE;
2736 if (h->forced_local)
2737 return FALSE;
2738
2739 /* Identify the cases where name binding rules say that a
2740 visible symbol resolves locally. */
2741 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2742
2743 switch (ELF_ST_VISIBILITY (h->other))
2744 {
2745 case STV_INTERNAL:
2746 case STV_HIDDEN:
2747 return FALSE;
2748
2749 case STV_PROTECTED:
2750 hash_table = elf_hash_table (info);
2751 if (!is_elf_hash_table (hash_table))
2752 return FALSE;
2753
2754 bed = get_elf_backend_data (hash_table->dynobj);
2755
2756 /* Proper resolution for function pointer equality may require
2757 that these symbols perhaps be resolved dynamically, even though
2758 we should be resolving them to the current module. */
2759 if (!not_local_protected || !bed->is_function_type (h->type))
2760 binding_stays_local_p = TRUE;
2761 break;
2762
2763 default:
2764 break;
2765 }
2766
2767 /* If it isn't defined locally, then clearly it's dynamic. */
2768 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2769 return TRUE;
2770
2771 /* Otherwise, the symbol is dynamic if binding rules don't tell
2772 us that it remains local. */
2773 return !binding_stays_local_p;
2774 }
2775
2776 /* Return true if the symbol referred to by H should be considered
2777 to resolve local to the current module, and false otherwise. Differs
2778 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2779 undefined symbols. The two functions are virtually identical except
2780 for the place where forced_local and dynindx == -1 are tested. If
2781 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2782 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2783 the symbol is local only for defined symbols.
2784 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2785 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2786 treatment of undefined weak symbols. For those that do not make
2787 undefined weak symbols dynamic, both functions may return false. */
2788
2789 bfd_boolean
2790 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2791 struct bfd_link_info *info,
2792 bfd_boolean local_protected)
2793 {
2794 const struct elf_backend_data *bed;
2795 struct elf_link_hash_table *hash_table;
2796
2797 /* If it's a local sym, of course we resolve locally. */
2798 if (h == NULL)
2799 return TRUE;
2800
2801 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2802 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2803 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2804 return TRUE;
2805
2806 /* Common symbols that become definitions don't get the DEF_REGULAR
2807 flag set, so test it first, and don't bail out. */
2808 if (ELF_COMMON_DEF_P (h))
2809 /* Do nothing. */;
2810 /* If we don't have a definition in a regular file, then we can't
2811 resolve locally. The sym is either undefined or dynamic. */
2812 else if (!h->def_regular)
2813 return FALSE;
2814
2815 /* Forced local symbols resolve locally. */
2816 if (h->forced_local)
2817 return TRUE;
2818
2819 /* As do non-dynamic symbols. */
2820 if (h->dynindx == -1)
2821 return TRUE;
2822
2823 /* At this point, we know the symbol is defined and dynamic. In an
2824 executable it must resolve locally, likewise when building symbolic
2825 shared libraries. */
2826 if (info->executable || SYMBOLIC_BIND (info, h))
2827 return TRUE;
2828
2829 /* Now deal with defined dynamic symbols in shared libraries. Ones
2830 with default visibility might not resolve locally. */
2831 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2832 return FALSE;
2833
2834 hash_table = elf_hash_table (info);
2835 if (!is_elf_hash_table (hash_table))
2836 return TRUE;
2837
2838 bed = get_elf_backend_data (hash_table->dynobj);
2839
2840 /* If extern_protected_data is false, STV_PROTECTED non-function
2841 symbols are local. */
2842 if (!bed->extern_protected_data && !bed->is_function_type (h->type))
2843 return TRUE;
2844
2845 /* Function pointer equality tests may require that STV_PROTECTED
2846 symbols be treated as dynamic symbols. If the address of a
2847 function not defined in an executable is set to that function's
2848 plt entry in the executable, then the address of the function in
2849 a shared library must also be the plt entry in the executable. */
2850 return local_protected;
2851 }
2852
2853 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2854 aligned. Returns the first TLS output section. */
2855
2856 struct bfd_section *
2857 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2858 {
2859 struct bfd_section *sec, *tls;
2860 unsigned int align = 0;
2861
2862 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2863 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2864 break;
2865 tls = sec;
2866
2867 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2868 if (sec->alignment_power > align)
2869 align = sec->alignment_power;
2870
2871 elf_hash_table (info)->tls_sec = tls;
2872
2873 /* Ensure the alignment of the first section is the largest alignment,
2874 so that the tls segment starts aligned. */
2875 if (tls != NULL)
2876 tls->alignment_power = align;
2877
2878 return tls;
2879 }
2880
2881 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2882 static bfd_boolean
2883 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2884 Elf_Internal_Sym *sym)
2885 {
2886 const struct elf_backend_data *bed;
2887
2888 /* Local symbols do not count, but target specific ones might. */
2889 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2890 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2891 return FALSE;
2892
2893 bed = get_elf_backend_data (abfd);
2894 /* Function symbols do not count. */
2895 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2896 return FALSE;
2897
2898 /* If the section is undefined, then so is the symbol. */
2899 if (sym->st_shndx == SHN_UNDEF)
2900 return FALSE;
2901
2902 /* If the symbol is defined in the common section, then
2903 it is a common definition and so does not count. */
2904 if (bed->common_definition (sym))
2905 return FALSE;
2906
2907 /* If the symbol is in a target specific section then we
2908 must rely upon the backend to tell us what it is. */
2909 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2910 /* FIXME - this function is not coded yet:
2911
2912 return _bfd_is_global_symbol_definition (abfd, sym);
2913
2914 Instead for now assume that the definition is not global,
2915 Even if this is wrong, at least the linker will behave
2916 in the same way that it used to do. */
2917 return FALSE;
2918
2919 return TRUE;
2920 }
2921
2922 /* Search the symbol table of the archive element of the archive ABFD
2923 whose archive map contains a mention of SYMDEF, and determine if
2924 the symbol is defined in this element. */
2925 static bfd_boolean
2926 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2927 {
2928 Elf_Internal_Shdr * hdr;
2929 bfd_size_type symcount;
2930 bfd_size_type extsymcount;
2931 bfd_size_type extsymoff;
2932 Elf_Internal_Sym *isymbuf;
2933 Elf_Internal_Sym *isym;
2934 Elf_Internal_Sym *isymend;
2935 bfd_boolean result;
2936
2937 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2938 if (abfd == NULL)
2939 return FALSE;
2940
2941 if (! bfd_check_format (abfd, bfd_object))
2942 return FALSE;
2943
2944 /* Select the appropriate symbol table. */
2945 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2946 hdr = &elf_tdata (abfd)->symtab_hdr;
2947 else
2948 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2949
2950 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2951
2952 /* The sh_info field of the symtab header tells us where the
2953 external symbols start. We don't care about the local symbols. */
2954 if (elf_bad_symtab (abfd))
2955 {
2956 extsymcount = symcount;
2957 extsymoff = 0;
2958 }
2959 else
2960 {
2961 extsymcount = symcount - hdr->sh_info;
2962 extsymoff = hdr->sh_info;
2963 }
2964
2965 if (extsymcount == 0)
2966 return FALSE;
2967
2968 /* Read in the symbol table. */
2969 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2970 NULL, NULL, NULL);
2971 if (isymbuf == NULL)
2972 return FALSE;
2973
2974 /* Scan the symbol table looking for SYMDEF. */
2975 result = FALSE;
2976 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2977 {
2978 const char *name;
2979
2980 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2981 isym->st_name);
2982 if (name == NULL)
2983 break;
2984
2985 if (strcmp (name, symdef->name) == 0)
2986 {
2987 result = is_global_data_symbol_definition (abfd, isym);
2988 break;
2989 }
2990 }
2991
2992 free (isymbuf);
2993
2994 return result;
2995 }
2996 \f
2997 /* Add an entry to the .dynamic table. */
2998
2999 bfd_boolean
3000 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3001 bfd_vma tag,
3002 bfd_vma val)
3003 {
3004 struct elf_link_hash_table *hash_table;
3005 const struct elf_backend_data *bed;
3006 asection *s;
3007 bfd_size_type newsize;
3008 bfd_byte *newcontents;
3009 Elf_Internal_Dyn dyn;
3010
3011 hash_table = elf_hash_table (info);
3012 if (! is_elf_hash_table (hash_table))
3013 return FALSE;
3014
3015 bed = get_elf_backend_data (hash_table->dynobj);
3016 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3017 BFD_ASSERT (s != NULL);
3018
3019 newsize = s->size + bed->s->sizeof_dyn;
3020 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3021 if (newcontents == NULL)
3022 return FALSE;
3023
3024 dyn.d_tag = tag;
3025 dyn.d_un.d_val = val;
3026 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3027
3028 s->size = newsize;
3029 s->contents = newcontents;
3030
3031 return TRUE;
3032 }
3033
3034 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3035 otherwise just check whether one already exists. Returns -1 on error,
3036 1 if a DT_NEEDED tag already exists, and 0 on success. */
3037
3038 static int
3039 elf_add_dt_needed_tag (bfd *abfd,
3040 struct bfd_link_info *info,
3041 const char *soname,
3042 bfd_boolean do_it)
3043 {
3044 struct elf_link_hash_table *hash_table;
3045 bfd_size_type strindex;
3046
3047 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3048 return -1;
3049
3050 hash_table = elf_hash_table (info);
3051 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3052 if (strindex == (bfd_size_type) -1)
3053 return -1;
3054
3055 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3056 {
3057 asection *sdyn;
3058 const struct elf_backend_data *bed;
3059 bfd_byte *extdyn;
3060
3061 bed = get_elf_backend_data (hash_table->dynobj);
3062 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3063 if (sdyn != NULL)
3064 for (extdyn = sdyn->contents;
3065 extdyn < sdyn->contents + sdyn->size;
3066 extdyn += bed->s->sizeof_dyn)
3067 {
3068 Elf_Internal_Dyn dyn;
3069
3070 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3071 if (dyn.d_tag == DT_NEEDED
3072 && dyn.d_un.d_val == strindex)
3073 {
3074 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3075 return 1;
3076 }
3077 }
3078 }
3079
3080 if (do_it)
3081 {
3082 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3083 return -1;
3084
3085 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3086 return -1;
3087 }
3088 else
3089 /* We were just checking for existence of the tag. */
3090 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3091
3092 return 0;
3093 }
3094
3095 static bfd_boolean
3096 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3097 {
3098 for (; needed != NULL; needed = needed->next)
3099 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3100 && strcmp (soname, needed->name) == 0)
3101 return TRUE;
3102
3103 return FALSE;
3104 }
3105
3106 /* Sort symbol by value, section, and size. */
3107 static int
3108 elf_sort_symbol (const void *arg1, const void *arg2)
3109 {
3110 const struct elf_link_hash_entry *h1;
3111 const struct elf_link_hash_entry *h2;
3112 bfd_signed_vma vdiff;
3113
3114 h1 = *(const struct elf_link_hash_entry **) arg1;
3115 h2 = *(const struct elf_link_hash_entry **) arg2;
3116 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3117 if (vdiff != 0)
3118 return vdiff > 0 ? 1 : -1;
3119 else
3120 {
3121 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3122 if (sdiff != 0)
3123 return sdiff > 0 ? 1 : -1;
3124 }
3125 vdiff = h1->size - h2->size;
3126 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3127 }
3128
3129 /* This function is used to adjust offsets into .dynstr for
3130 dynamic symbols. This is called via elf_link_hash_traverse. */
3131
3132 static bfd_boolean
3133 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3134 {
3135 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3136
3137 if (h->dynindx != -1)
3138 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3139 return TRUE;
3140 }
3141
3142 /* Assign string offsets in .dynstr, update all structures referencing
3143 them. */
3144
3145 static bfd_boolean
3146 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3147 {
3148 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3149 struct elf_link_local_dynamic_entry *entry;
3150 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3151 bfd *dynobj = hash_table->dynobj;
3152 asection *sdyn;
3153 bfd_size_type size;
3154 const struct elf_backend_data *bed;
3155 bfd_byte *extdyn;
3156
3157 _bfd_elf_strtab_finalize (dynstr);
3158 size = _bfd_elf_strtab_size (dynstr);
3159
3160 bed = get_elf_backend_data (dynobj);
3161 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3162 BFD_ASSERT (sdyn != NULL);
3163
3164 /* Update all .dynamic entries referencing .dynstr strings. */
3165 for (extdyn = sdyn->contents;
3166 extdyn < sdyn->contents + sdyn->size;
3167 extdyn += bed->s->sizeof_dyn)
3168 {
3169 Elf_Internal_Dyn dyn;
3170
3171 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3172 switch (dyn.d_tag)
3173 {
3174 case DT_STRSZ:
3175 dyn.d_un.d_val = size;
3176 break;
3177 case DT_NEEDED:
3178 case DT_SONAME:
3179 case DT_RPATH:
3180 case DT_RUNPATH:
3181 case DT_FILTER:
3182 case DT_AUXILIARY:
3183 case DT_AUDIT:
3184 case DT_DEPAUDIT:
3185 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3186 break;
3187 default:
3188 continue;
3189 }
3190 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3191 }
3192
3193 /* Now update local dynamic symbols. */
3194 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3195 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3196 entry->isym.st_name);
3197
3198 /* And the rest of dynamic symbols. */
3199 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3200
3201 /* Adjust version definitions. */
3202 if (elf_tdata (output_bfd)->cverdefs)
3203 {
3204 asection *s;
3205 bfd_byte *p;
3206 bfd_size_type i;
3207 Elf_Internal_Verdef def;
3208 Elf_Internal_Verdaux defaux;
3209
3210 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3211 p = s->contents;
3212 do
3213 {
3214 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3215 &def);
3216 p += sizeof (Elf_External_Verdef);
3217 if (def.vd_aux != sizeof (Elf_External_Verdef))
3218 continue;
3219 for (i = 0; i < def.vd_cnt; ++i)
3220 {
3221 _bfd_elf_swap_verdaux_in (output_bfd,
3222 (Elf_External_Verdaux *) p, &defaux);
3223 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3224 defaux.vda_name);
3225 _bfd_elf_swap_verdaux_out (output_bfd,
3226 &defaux, (Elf_External_Verdaux *) p);
3227 p += sizeof (Elf_External_Verdaux);
3228 }
3229 }
3230 while (def.vd_next);
3231 }
3232
3233 /* Adjust version references. */
3234 if (elf_tdata (output_bfd)->verref)
3235 {
3236 asection *s;
3237 bfd_byte *p;
3238 bfd_size_type i;
3239 Elf_Internal_Verneed need;
3240 Elf_Internal_Vernaux needaux;
3241
3242 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3243 p = s->contents;
3244 do
3245 {
3246 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3247 &need);
3248 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3249 _bfd_elf_swap_verneed_out (output_bfd, &need,
3250 (Elf_External_Verneed *) p);
3251 p += sizeof (Elf_External_Verneed);
3252 for (i = 0; i < need.vn_cnt; ++i)
3253 {
3254 _bfd_elf_swap_vernaux_in (output_bfd,
3255 (Elf_External_Vernaux *) p, &needaux);
3256 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3257 needaux.vna_name);
3258 _bfd_elf_swap_vernaux_out (output_bfd,
3259 &needaux,
3260 (Elf_External_Vernaux *) p);
3261 p += sizeof (Elf_External_Vernaux);
3262 }
3263 }
3264 while (need.vn_next);
3265 }
3266
3267 return TRUE;
3268 }
3269 \f
3270 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3271 The default is to only match when the INPUT and OUTPUT are exactly
3272 the same target. */
3273
3274 bfd_boolean
3275 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3276 const bfd_target *output)
3277 {
3278 return input == output;
3279 }
3280
3281 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3282 This version is used when different targets for the same architecture
3283 are virtually identical. */
3284
3285 bfd_boolean
3286 _bfd_elf_relocs_compatible (const bfd_target *input,
3287 const bfd_target *output)
3288 {
3289 const struct elf_backend_data *obed, *ibed;
3290
3291 if (input == output)
3292 return TRUE;
3293
3294 ibed = xvec_get_elf_backend_data (input);
3295 obed = xvec_get_elf_backend_data (output);
3296
3297 if (ibed->arch != obed->arch)
3298 return FALSE;
3299
3300 /* If both backends are using this function, deem them compatible. */
3301 return ibed->relocs_compatible == obed->relocs_compatible;
3302 }
3303
3304 /* Make a special call to the linker "notice" function to tell it that
3305 we are about to handle an as-needed lib, or have finished
3306 processing the lib. */
3307
3308 bfd_boolean
3309 _bfd_elf_notice_as_needed (bfd *ibfd,
3310 struct bfd_link_info *info,
3311 enum notice_asneeded_action act)
3312 {
3313 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3314 }
3315
3316 /* Add symbols from an ELF object file to the linker hash table. */
3317
3318 static bfd_boolean
3319 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3320 {
3321 Elf_Internal_Ehdr *ehdr;
3322 Elf_Internal_Shdr *hdr;
3323 bfd_size_type symcount;
3324 bfd_size_type extsymcount;
3325 bfd_size_type extsymoff;
3326 struct elf_link_hash_entry **sym_hash;
3327 bfd_boolean dynamic;
3328 Elf_External_Versym *extversym = NULL;
3329 Elf_External_Versym *ever;
3330 struct elf_link_hash_entry *weaks;
3331 struct elf_link_hash_entry **nondeflt_vers = NULL;
3332 bfd_size_type nondeflt_vers_cnt = 0;
3333 Elf_Internal_Sym *isymbuf = NULL;
3334 Elf_Internal_Sym *isym;
3335 Elf_Internal_Sym *isymend;
3336 const struct elf_backend_data *bed;
3337 bfd_boolean add_needed;
3338 struct elf_link_hash_table *htab;
3339 bfd_size_type amt;
3340 void *alloc_mark = NULL;
3341 struct bfd_hash_entry **old_table = NULL;
3342 unsigned int old_size = 0;
3343 unsigned int old_count = 0;
3344 void *old_tab = NULL;
3345 void *old_ent;
3346 struct bfd_link_hash_entry *old_undefs = NULL;
3347 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3348 long old_dynsymcount = 0;
3349 bfd_size_type old_dynstr_size = 0;
3350 size_t tabsize = 0;
3351 asection *s;
3352 bfd_boolean just_syms;
3353
3354 htab = elf_hash_table (info);
3355 bed = get_elf_backend_data (abfd);
3356
3357 if ((abfd->flags & DYNAMIC) == 0)
3358 dynamic = FALSE;
3359 else
3360 {
3361 dynamic = TRUE;
3362
3363 /* You can't use -r against a dynamic object. Also, there's no
3364 hope of using a dynamic object which does not exactly match
3365 the format of the output file. */
3366 if (info->relocatable
3367 || !is_elf_hash_table (htab)
3368 || info->output_bfd->xvec != abfd->xvec)
3369 {
3370 if (info->relocatable)
3371 bfd_set_error (bfd_error_invalid_operation);
3372 else
3373 bfd_set_error (bfd_error_wrong_format);
3374 goto error_return;
3375 }
3376 }
3377
3378 ehdr = elf_elfheader (abfd);
3379 if (info->warn_alternate_em
3380 && bed->elf_machine_code != ehdr->e_machine
3381 && ((bed->elf_machine_alt1 != 0
3382 && ehdr->e_machine == bed->elf_machine_alt1)
3383 || (bed->elf_machine_alt2 != 0
3384 && ehdr->e_machine == bed->elf_machine_alt2)))
3385 info->callbacks->einfo
3386 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3387 ehdr->e_machine, abfd, bed->elf_machine_code);
3388
3389 /* As a GNU extension, any input sections which are named
3390 .gnu.warning.SYMBOL are treated as warning symbols for the given
3391 symbol. This differs from .gnu.warning sections, which generate
3392 warnings when they are included in an output file. */
3393 /* PR 12761: Also generate this warning when building shared libraries. */
3394 for (s = abfd->sections; s != NULL; s = s->next)
3395 {
3396 const char *name;
3397
3398 name = bfd_get_section_name (abfd, s);
3399 if (CONST_STRNEQ (name, ".gnu.warning."))
3400 {
3401 char *msg;
3402 bfd_size_type sz;
3403
3404 name += sizeof ".gnu.warning." - 1;
3405
3406 /* If this is a shared object, then look up the symbol
3407 in the hash table. If it is there, and it is already
3408 been defined, then we will not be using the entry
3409 from this shared object, so we don't need to warn.
3410 FIXME: If we see the definition in a regular object
3411 later on, we will warn, but we shouldn't. The only
3412 fix is to keep track of what warnings we are supposed
3413 to emit, and then handle them all at the end of the
3414 link. */
3415 if (dynamic)
3416 {
3417 struct elf_link_hash_entry *h;
3418
3419 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3420
3421 /* FIXME: What about bfd_link_hash_common? */
3422 if (h != NULL
3423 && (h->root.type == bfd_link_hash_defined
3424 || h->root.type == bfd_link_hash_defweak))
3425 continue;
3426 }
3427
3428 sz = s->size;
3429 msg = (char *) bfd_alloc (abfd, sz + 1);
3430 if (msg == NULL)
3431 goto error_return;
3432
3433 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3434 goto error_return;
3435
3436 msg[sz] = '\0';
3437
3438 if (! (_bfd_generic_link_add_one_symbol
3439 (info, abfd, name, BSF_WARNING, s, 0, msg,
3440 FALSE, bed->collect, NULL)))
3441 goto error_return;
3442
3443 if (!info->relocatable && info->executable)
3444 {
3445 /* Clobber the section size so that the warning does
3446 not get copied into the output file. */
3447 s->size = 0;
3448
3449 /* Also set SEC_EXCLUDE, so that symbols defined in
3450 the warning section don't get copied to the output. */
3451 s->flags |= SEC_EXCLUDE;
3452 }
3453 }
3454 }
3455
3456 just_syms = ((s = abfd->sections) != NULL
3457 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3458
3459 add_needed = TRUE;
3460 if (! dynamic)
3461 {
3462 /* If we are creating a shared library, create all the dynamic
3463 sections immediately. We need to attach them to something,
3464 so we attach them to this BFD, provided it is the right
3465 format and is not from ld --just-symbols. FIXME: If there
3466 are no input BFD's of the same format as the output, we can't
3467 make a shared library. */
3468 if (!just_syms
3469 && info->shared
3470 && is_elf_hash_table (htab)
3471 && info->output_bfd->xvec == abfd->xvec
3472 && !htab->dynamic_sections_created)
3473 {
3474 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3475 goto error_return;
3476 }
3477 }
3478 else if (!is_elf_hash_table (htab))
3479 goto error_return;
3480 else
3481 {
3482 const char *soname = NULL;
3483 char *audit = NULL;
3484 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3485 int ret;
3486
3487 /* ld --just-symbols and dynamic objects don't mix very well.
3488 ld shouldn't allow it. */
3489 if (just_syms)
3490 abort ();
3491
3492 /* If this dynamic lib was specified on the command line with
3493 --as-needed in effect, then we don't want to add a DT_NEEDED
3494 tag unless the lib is actually used. Similary for libs brought
3495 in by another lib's DT_NEEDED. When --no-add-needed is used
3496 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3497 any dynamic library in DT_NEEDED tags in the dynamic lib at
3498 all. */
3499 add_needed = (elf_dyn_lib_class (abfd)
3500 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3501 | DYN_NO_NEEDED)) == 0;
3502
3503 s = bfd_get_section_by_name (abfd, ".dynamic");
3504 if (s != NULL)
3505 {
3506 bfd_byte *dynbuf;
3507 bfd_byte *extdyn;
3508 unsigned int elfsec;
3509 unsigned long shlink;
3510
3511 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3512 {
3513 error_free_dyn:
3514 free (dynbuf);
3515 goto error_return;
3516 }
3517
3518 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3519 if (elfsec == SHN_BAD)
3520 goto error_free_dyn;
3521 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3522
3523 for (extdyn = dynbuf;
3524 extdyn < dynbuf + s->size;
3525 extdyn += bed->s->sizeof_dyn)
3526 {
3527 Elf_Internal_Dyn dyn;
3528
3529 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3530 if (dyn.d_tag == DT_SONAME)
3531 {
3532 unsigned int tagv = dyn.d_un.d_val;
3533 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3534 if (soname == NULL)
3535 goto error_free_dyn;
3536 }
3537 if (dyn.d_tag == DT_NEEDED)
3538 {
3539 struct bfd_link_needed_list *n, **pn;
3540 char *fnm, *anm;
3541 unsigned int tagv = dyn.d_un.d_val;
3542
3543 amt = sizeof (struct bfd_link_needed_list);
3544 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3545 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3546 if (n == NULL || fnm == NULL)
3547 goto error_free_dyn;
3548 amt = strlen (fnm) + 1;
3549 anm = (char *) bfd_alloc (abfd, amt);
3550 if (anm == NULL)
3551 goto error_free_dyn;
3552 memcpy (anm, fnm, amt);
3553 n->name = anm;
3554 n->by = abfd;
3555 n->next = NULL;
3556 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3557 ;
3558 *pn = n;
3559 }
3560 if (dyn.d_tag == DT_RUNPATH)
3561 {
3562 struct bfd_link_needed_list *n, **pn;
3563 char *fnm, *anm;
3564 unsigned int tagv = dyn.d_un.d_val;
3565
3566 amt = sizeof (struct bfd_link_needed_list);
3567 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3568 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3569 if (n == NULL || fnm == NULL)
3570 goto error_free_dyn;
3571 amt = strlen (fnm) + 1;
3572 anm = (char *) bfd_alloc (abfd, amt);
3573 if (anm == NULL)
3574 goto error_free_dyn;
3575 memcpy (anm, fnm, amt);
3576 n->name = anm;
3577 n->by = abfd;
3578 n->next = NULL;
3579 for (pn = & runpath;
3580 *pn != NULL;
3581 pn = &(*pn)->next)
3582 ;
3583 *pn = n;
3584 }
3585 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3586 if (!runpath && dyn.d_tag == DT_RPATH)
3587 {
3588 struct bfd_link_needed_list *n, **pn;
3589 char *fnm, *anm;
3590 unsigned int tagv = dyn.d_un.d_val;
3591
3592 amt = sizeof (struct bfd_link_needed_list);
3593 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3594 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3595 if (n == NULL || fnm == NULL)
3596 goto error_free_dyn;
3597 amt = strlen (fnm) + 1;
3598 anm = (char *) bfd_alloc (abfd, amt);
3599 if (anm == NULL)
3600 goto error_free_dyn;
3601 memcpy (anm, fnm, amt);
3602 n->name = anm;
3603 n->by = abfd;
3604 n->next = NULL;
3605 for (pn = & rpath;
3606 *pn != NULL;
3607 pn = &(*pn)->next)
3608 ;
3609 *pn = n;
3610 }
3611 if (dyn.d_tag == DT_AUDIT)
3612 {
3613 unsigned int tagv = dyn.d_un.d_val;
3614 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3615 }
3616 }
3617
3618 free (dynbuf);
3619 }
3620
3621 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3622 frees all more recently bfd_alloc'd blocks as well. */
3623 if (runpath)
3624 rpath = runpath;
3625
3626 if (rpath)
3627 {
3628 struct bfd_link_needed_list **pn;
3629 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3630 ;
3631 *pn = rpath;
3632 }
3633
3634 /* We do not want to include any of the sections in a dynamic
3635 object in the output file. We hack by simply clobbering the
3636 list of sections in the BFD. This could be handled more
3637 cleanly by, say, a new section flag; the existing
3638 SEC_NEVER_LOAD flag is not the one we want, because that one
3639 still implies that the section takes up space in the output
3640 file. */
3641 bfd_section_list_clear (abfd);
3642
3643 /* Find the name to use in a DT_NEEDED entry that refers to this
3644 object. If the object has a DT_SONAME entry, we use it.
3645 Otherwise, if the generic linker stuck something in
3646 elf_dt_name, we use that. Otherwise, we just use the file
3647 name. */
3648 if (soname == NULL || *soname == '\0')
3649 {
3650 soname = elf_dt_name (abfd);
3651 if (soname == NULL || *soname == '\0')
3652 soname = bfd_get_filename (abfd);
3653 }
3654
3655 /* Save the SONAME because sometimes the linker emulation code
3656 will need to know it. */
3657 elf_dt_name (abfd) = soname;
3658
3659 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3660 if (ret < 0)
3661 goto error_return;
3662
3663 /* If we have already included this dynamic object in the
3664 link, just ignore it. There is no reason to include a
3665 particular dynamic object more than once. */
3666 if (ret > 0)
3667 return TRUE;
3668
3669 /* Save the DT_AUDIT entry for the linker emulation code. */
3670 elf_dt_audit (abfd) = audit;
3671 }
3672
3673 /* If this is a dynamic object, we always link against the .dynsym
3674 symbol table, not the .symtab symbol table. The dynamic linker
3675 will only see the .dynsym symbol table, so there is no reason to
3676 look at .symtab for a dynamic object. */
3677
3678 if (! dynamic || elf_dynsymtab (abfd) == 0)
3679 hdr = &elf_tdata (abfd)->symtab_hdr;
3680 else
3681 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3682
3683 symcount = hdr->sh_size / bed->s->sizeof_sym;
3684
3685 /* The sh_info field of the symtab header tells us where the
3686 external symbols start. We don't care about the local symbols at
3687 this point. */
3688 if (elf_bad_symtab (abfd))
3689 {
3690 extsymcount = symcount;
3691 extsymoff = 0;
3692 }
3693 else
3694 {
3695 extsymcount = symcount - hdr->sh_info;
3696 extsymoff = hdr->sh_info;
3697 }
3698
3699 sym_hash = elf_sym_hashes (abfd);
3700 if (extsymcount != 0)
3701 {
3702 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3703 NULL, NULL, NULL);
3704 if (isymbuf == NULL)
3705 goto error_return;
3706
3707 if (sym_hash == NULL)
3708 {
3709 /* We store a pointer to the hash table entry for each
3710 external symbol. */
3711 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3712 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3713 if (sym_hash == NULL)
3714 goto error_free_sym;
3715 elf_sym_hashes (abfd) = sym_hash;
3716 }
3717 }
3718
3719 if (dynamic)
3720 {
3721 /* Read in any version definitions. */
3722 if (!_bfd_elf_slurp_version_tables (abfd,
3723 info->default_imported_symver))
3724 goto error_free_sym;
3725
3726 /* Read in the symbol versions, but don't bother to convert them
3727 to internal format. */
3728 if (elf_dynversym (abfd) != 0)
3729 {
3730 Elf_Internal_Shdr *versymhdr;
3731
3732 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3733 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3734 if (extversym == NULL)
3735 goto error_free_sym;
3736 amt = versymhdr->sh_size;
3737 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3738 || bfd_bread (extversym, amt, abfd) != amt)
3739 goto error_free_vers;
3740 }
3741 }
3742
3743 /* If we are loading an as-needed shared lib, save the symbol table
3744 state before we start adding symbols. If the lib turns out
3745 to be unneeded, restore the state. */
3746 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3747 {
3748 unsigned int i;
3749 size_t entsize;
3750
3751 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3752 {
3753 struct bfd_hash_entry *p;
3754 struct elf_link_hash_entry *h;
3755
3756 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3757 {
3758 h = (struct elf_link_hash_entry *) p;
3759 entsize += htab->root.table.entsize;
3760 if (h->root.type == bfd_link_hash_warning)
3761 entsize += htab->root.table.entsize;
3762 }
3763 }
3764
3765 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3766 old_tab = bfd_malloc (tabsize + entsize);
3767 if (old_tab == NULL)
3768 goto error_free_vers;
3769
3770 /* Remember the current objalloc pointer, so that all mem for
3771 symbols added can later be reclaimed. */
3772 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3773 if (alloc_mark == NULL)
3774 goto error_free_vers;
3775
3776 /* Make a special call to the linker "notice" function to
3777 tell it that we are about to handle an as-needed lib. */
3778 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3779 goto error_free_vers;
3780
3781 /* Clone the symbol table. Remember some pointers into the
3782 symbol table, and dynamic symbol count. */
3783 old_ent = (char *) old_tab + tabsize;
3784 memcpy (old_tab, htab->root.table.table, tabsize);
3785 old_undefs = htab->root.undefs;
3786 old_undefs_tail = htab->root.undefs_tail;
3787 old_table = htab->root.table.table;
3788 old_size = htab->root.table.size;
3789 old_count = htab->root.table.count;
3790 old_dynsymcount = htab->dynsymcount;
3791 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3792
3793 for (i = 0; i < htab->root.table.size; i++)
3794 {
3795 struct bfd_hash_entry *p;
3796 struct elf_link_hash_entry *h;
3797
3798 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3799 {
3800 memcpy (old_ent, p, htab->root.table.entsize);
3801 old_ent = (char *) old_ent + htab->root.table.entsize;
3802 h = (struct elf_link_hash_entry *) p;
3803 if (h->root.type == bfd_link_hash_warning)
3804 {
3805 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3806 old_ent = (char *) old_ent + htab->root.table.entsize;
3807 }
3808 }
3809 }
3810 }
3811
3812 weaks = NULL;
3813 ever = extversym != NULL ? extversym + extsymoff : NULL;
3814 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3815 isym < isymend;
3816 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3817 {
3818 int bind;
3819 bfd_vma value;
3820 asection *sec, *new_sec;
3821 flagword flags;
3822 const char *name;
3823 struct elf_link_hash_entry *h;
3824 struct elf_link_hash_entry *hi;
3825 bfd_boolean definition;
3826 bfd_boolean size_change_ok;
3827 bfd_boolean type_change_ok;
3828 bfd_boolean new_weakdef;
3829 bfd_boolean new_weak;
3830 bfd_boolean old_weak;
3831 bfd_boolean override;
3832 bfd_boolean common;
3833 unsigned int old_alignment;
3834 bfd *old_bfd;
3835
3836 override = FALSE;
3837
3838 flags = BSF_NO_FLAGS;
3839 sec = NULL;
3840 value = isym->st_value;
3841 common = bed->common_definition (isym);
3842
3843 bind = ELF_ST_BIND (isym->st_info);
3844 switch (bind)
3845 {
3846 case STB_LOCAL:
3847 /* This should be impossible, since ELF requires that all
3848 global symbols follow all local symbols, and that sh_info
3849 point to the first global symbol. Unfortunately, Irix 5
3850 screws this up. */
3851 continue;
3852
3853 case STB_GLOBAL:
3854 if (isym->st_shndx != SHN_UNDEF && !common)
3855 flags = BSF_GLOBAL;
3856 break;
3857
3858 case STB_WEAK:
3859 flags = BSF_WEAK;
3860 break;
3861
3862 case STB_GNU_UNIQUE:
3863 flags = BSF_GNU_UNIQUE;
3864 break;
3865
3866 default:
3867 /* Leave it up to the processor backend. */
3868 break;
3869 }
3870
3871 if (isym->st_shndx == SHN_UNDEF)
3872 sec = bfd_und_section_ptr;
3873 else if (isym->st_shndx == SHN_ABS)
3874 sec = bfd_abs_section_ptr;
3875 else if (isym->st_shndx == SHN_COMMON)
3876 {
3877 sec = bfd_com_section_ptr;
3878 /* What ELF calls the size we call the value. What ELF
3879 calls the value we call the alignment. */
3880 value = isym->st_size;
3881 }
3882 else
3883 {
3884 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3885 if (sec == NULL)
3886 sec = bfd_abs_section_ptr;
3887 else if (discarded_section (sec))
3888 {
3889 /* Symbols from discarded section are undefined. We keep
3890 its visibility. */
3891 sec = bfd_und_section_ptr;
3892 isym->st_shndx = SHN_UNDEF;
3893 }
3894 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3895 value -= sec->vma;
3896 }
3897
3898 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3899 isym->st_name);
3900 if (name == NULL)
3901 goto error_free_vers;
3902
3903 if (isym->st_shndx == SHN_COMMON
3904 && (abfd->flags & BFD_PLUGIN) != 0)
3905 {
3906 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3907
3908 if (xc == NULL)
3909 {
3910 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3911 | SEC_EXCLUDE);
3912 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3913 if (xc == NULL)
3914 goto error_free_vers;
3915 }
3916 sec = xc;
3917 }
3918 else if (isym->st_shndx == SHN_COMMON
3919 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3920 && !info->relocatable)
3921 {
3922 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3923
3924 if (tcomm == NULL)
3925 {
3926 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3927 | SEC_LINKER_CREATED);
3928 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3929 if (tcomm == NULL)
3930 goto error_free_vers;
3931 }
3932 sec = tcomm;
3933 }
3934 else if (bed->elf_add_symbol_hook)
3935 {
3936 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3937 &sec, &value))
3938 goto error_free_vers;
3939
3940 /* The hook function sets the name to NULL if this symbol
3941 should be skipped for some reason. */
3942 if (name == NULL)
3943 continue;
3944 }
3945
3946 /* Sanity check that all possibilities were handled. */
3947 if (sec == NULL)
3948 {
3949 bfd_set_error (bfd_error_bad_value);
3950 goto error_free_vers;
3951 }
3952
3953 /* Silently discard TLS symbols from --just-syms. There's
3954 no way to combine a static TLS block with a new TLS block
3955 for this executable. */
3956 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3957 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3958 continue;
3959
3960 if (bfd_is_und_section (sec)
3961 || bfd_is_com_section (sec))
3962 definition = FALSE;
3963 else
3964 definition = TRUE;
3965
3966 size_change_ok = FALSE;
3967 type_change_ok = bed->type_change_ok;
3968 old_weak = FALSE;
3969 old_alignment = 0;
3970 old_bfd = NULL;
3971 new_sec = sec;
3972
3973 if (is_elf_hash_table (htab))
3974 {
3975 Elf_Internal_Versym iver;
3976 unsigned int vernum = 0;
3977 bfd_boolean skip;
3978
3979 if (ever == NULL)
3980 {
3981 if (info->default_imported_symver)
3982 /* Use the default symbol version created earlier. */
3983 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3984 else
3985 iver.vs_vers = 0;
3986 }
3987 else
3988 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3989
3990 vernum = iver.vs_vers & VERSYM_VERSION;
3991
3992 /* If this is a hidden symbol, or if it is not version
3993 1, we append the version name to the symbol name.
3994 However, we do not modify a non-hidden absolute symbol
3995 if it is not a function, because it might be the version
3996 symbol itself. FIXME: What if it isn't? */
3997 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3998 || (vernum > 1
3999 && (!bfd_is_abs_section (sec)
4000 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4001 {
4002 const char *verstr;
4003 size_t namelen, verlen, newlen;
4004 char *newname, *p;
4005
4006 if (isym->st_shndx != SHN_UNDEF)
4007 {
4008 if (vernum > elf_tdata (abfd)->cverdefs)
4009 verstr = NULL;
4010 else if (vernum > 1)
4011 verstr =
4012 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4013 else
4014 verstr = "";
4015
4016 if (verstr == NULL)
4017 {
4018 (*_bfd_error_handler)
4019 (_("%B: %s: invalid version %u (max %d)"),
4020 abfd, name, vernum,
4021 elf_tdata (abfd)->cverdefs);
4022 bfd_set_error (bfd_error_bad_value);
4023 goto error_free_vers;
4024 }
4025 }
4026 else
4027 {
4028 /* We cannot simply test for the number of
4029 entries in the VERNEED section since the
4030 numbers for the needed versions do not start
4031 at 0. */
4032 Elf_Internal_Verneed *t;
4033
4034 verstr = NULL;
4035 for (t = elf_tdata (abfd)->verref;
4036 t != NULL;
4037 t = t->vn_nextref)
4038 {
4039 Elf_Internal_Vernaux *a;
4040
4041 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4042 {
4043 if (a->vna_other == vernum)
4044 {
4045 verstr = a->vna_nodename;
4046 break;
4047 }
4048 }
4049 if (a != NULL)
4050 break;
4051 }
4052 if (verstr == NULL)
4053 {
4054 (*_bfd_error_handler)
4055 (_("%B: %s: invalid needed version %d"),
4056 abfd, name, vernum);
4057 bfd_set_error (bfd_error_bad_value);
4058 goto error_free_vers;
4059 }
4060 }
4061
4062 namelen = strlen (name);
4063 verlen = strlen (verstr);
4064 newlen = namelen + verlen + 2;
4065 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4066 && isym->st_shndx != SHN_UNDEF)
4067 ++newlen;
4068
4069 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4070 if (newname == NULL)
4071 goto error_free_vers;
4072 memcpy (newname, name, namelen);
4073 p = newname + namelen;
4074 *p++ = ELF_VER_CHR;
4075 /* If this is a defined non-hidden version symbol,
4076 we add another @ to the name. This indicates the
4077 default version of the symbol. */
4078 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4079 && isym->st_shndx != SHN_UNDEF)
4080 *p++ = ELF_VER_CHR;
4081 memcpy (p, verstr, verlen + 1);
4082
4083 name = newname;
4084 }
4085
4086 /* If this symbol has default visibility and the user has
4087 requested we not re-export it, then mark it as hidden. */
4088 if (definition
4089 && !dynamic
4090 && abfd->no_export
4091 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4092 isym->st_other = (STV_HIDDEN
4093 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4094
4095 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4096 sym_hash, &old_bfd, &old_weak,
4097 &old_alignment, &skip, &override,
4098 &type_change_ok, &size_change_ok))
4099 goto error_free_vers;
4100
4101 if (skip)
4102 continue;
4103
4104 if (override)
4105 definition = FALSE;
4106
4107 h = *sym_hash;
4108 while (h->root.type == bfd_link_hash_indirect
4109 || h->root.type == bfd_link_hash_warning)
4110 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4111
4112 if (elf_tdata (abfd)->verdef != NULL
4113 && vernum > 1
4114 && definition)
4115 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4116 }
4117
4118 if (! (_bfd_generic_link_add_one_symbol
4119 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4120 (struct bfd_link_hash_entry **) sym_hash)))
4121 goto error_free_vers;
4122
4123 h = *sym_hash;
4124 /* We need to make sure that indirect symbol dynamic flags are
4125 updated. */
4126 hi = h;
4127 while (h->root.type == bfd_link_hash_indirect
4128 || h->root.type == bfd_link_hash_warning)
4129 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4130
4131 *sym_hash = h;
4132
4133 new_weak = (flags & BSF_WEAK) != 0;
4134 new_weakdef = FALSE;
4135 if (dynamic
4136 && definition
4137 && new_weak
4138 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4139 && is_elf_hash_table (htab)
4140 && h->u.weakdef == NULL)
4141 {
4142 /* Keep a list of all weak defined non function symbols from
4143 a dynamic object, using the weakdef field. Later in this
4144 function we will set the weakdef field to the correct
4145 value. We only put non-function symbols from dynamic
4146 objects on this list, because that happens to be the only
4147 time we need to know the normal symbol corresponding to a
4148 weak symbol, and the information is time consuming to
4149 figure out. If the weakdef field is not already NULL,
4150 then this symbol was already defined by some previous
4151 dynamic object, and we will be using that previous
4152 definition anyhow. */
4153
4154 h->u.weakdef = weaks;
4155 weaks = h;
4156 new_weakdef = TRUE;
4157 }
4158
4159 /* Set the alignment of a common symbol. */
4160 if ((common || bfd_is_com_section (sec))
4161 && h->root.type == bfd_link_hash_common)
4162 {
4163 unsigned int align;
4164
4165 if (common)
4166 align = bfd_log2 (isym->st_value);
4167 else
4168 {
4169 /* The new symbol is a common symbol in a shared object.
4170 We need to get the alignment from the section. */
4171 align = new_sec->alignment_power;
4172 }
4173 if (align > old_alignment)
4174 h->root.u.c.p->alignment_power = align;
4175 else
4176 h->root.u.c.p->alignment_power = old_alignment;
4177 }
4178
4179 if (is_elf_hash_table (htab))
4180 {
4181 /* Set a flag in the hash table entry indicating the type of
4182 reference or definition we just found. A dynamic symbol
4183 is one which is referenced or defined by both a regular
4184 object and a shared object. */
4185 bfd_boolean dynsym = FALSE;
4186
4187 /* Plugin symbols aren't normal. Don't set def_regular or
4188 ref_regular for them, or make them dynamic. */
4189 if ((abfd->flags & BFD_PLUGIN) != 0)
4190 ;
4191 else if (! dynamic)
4192 {
4193 if (! definition)
4194 {
4195 h->ref_regular = 1;
4196 if (bind != STB_WEAK)
4197 h->ref_regular_nonweak = 1;
4198 }
4199 else
4200 {
4201 h->def_regular = 1;
4202 if (h->def_dynamic)
4203 {
4204 h->def_dynamic = 0;
4205 h->ref_dynamic = 1;
4206 }
4207 }
4208
4209 /* If the indirect symbol has been forced local, don't
4210 make the real symbol dynamic. */
4211 if ((h == hi || !hi->forced_local)
4212 && (! info->executable
4213 || h->def_dynamic
4214 || h->ref_dynamic))
4215 dynsym = TRUE;
4216 }
4217 else
4218 {
4219 if (! definition)
4220 {
4221 h->ref_dynamic = 1;
4222 hi->ref_dynamic = 1;
4223 }
4224 else
4225 {
4226 h->def_dynamic = 1;
4227 hi->def_dynamic = 1;
4228 }
4229
4230 /* If the indirect symbol has been forced local, don't
4231 make the real symbol dynamic. */
4232 if ((h == hi || !hi->forced_local)
4233 && (h->def_regular
4234 || h->ref_regular
4235 || (h->u.weakdef != NULL
4236 && ! new_weakdef
4237 && h->u.weakdef->dynindx != -1)))
4238 dynsym = TRUE;
4239 }
4240
4241 /* Check to see if we need to add an indirect symbol for
4242 the default name. */
4243 if (definition
4244 || (!override && h->root.type == bfd_link_hash_common))
4245 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4246 sec, value, &old_bfd, &dynsym))
4247 goto error_free_vers;
4248
4249 /* Check the alignment when a common symbol is involved. This
4250 can change when a common symbol is overridden by a normal
4251 definition or a common symbol is ignored due to the old
4252 normal definition. We need to make sure the maximum
4253 alignment is maintained. */
4254 if ((old_alignment || common)
4255 && h->root.type != bfd_link_hash_common)
4256 {
4257 unsigned int common_align;
4258 unsigned int normal_align;
4259 unsigned int symbol_align;
4260 bfd *normal_bfd;
4261 bfd *common_bfd;
4262
4263 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4264 || h->root.type == bfd_link_hash_defweak);
4265
4266 symbol_align = ffs (h->root.u.def.value) - 1;
4267 if (h->root.u.def.section->owner != NULL
4268 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4269 {
4270 normal_align = h->root.u.def.section->alignment_power;
4271 if (normal_align > symbol_align)
4272 normal_align = symbol_align;
4273 }
4274 else
4275 normal_align = symbol_align;
4276
4277 if (old_alignment)
4278 {
4279 common_align = old_alignment;
4280 common_bfd = old_bfd;
4281 normal_bfd = abfd;
4282 }
4283 else
4284 {
4285 common_align = bfd_log2 (isym->st_value);
4286 common_bfd = abfd;
4287 normal_bfd = old_bfd;
4288 }
4289
4290 if (normal_align < common_align)
4291 {
4292 /* PR binutils/2735 */
4293 if (normal_bfd == NULL)
4294 (*_bfd_error_handler)
4295 (_("Warning: alignment %u of common symbol `%s' in %B is"
4296 " greater than the alignment (%u) of its section %A"),
4297 common_bfd, h->root.u.def.section,
4298 1 << common_align, name, 1 << normal_align);
4299 else
4300 (*_bfd_error_handler)
4301 (_("Warning: alignment %u of symbol `%s' in %B"
4302 " is smaller than %u in %B"),
4303 normal_bfd, common_bfd,
4304 1 << normal_align, name, 1 << common_align);
4305 }
4306 }
4307
4308 /* Remember the symbol size if it isn't undefined. */
4309 if (isym->st_size != 0
4310 && isym->st_shndx != SHN_UNDEF
4311 && (definition || h->size == 0))
4312 {
4313 if (h->size != 0
4314 && h->size != isym->st_size
4315 && ! size_change_ok)
4316 (*_bfd_error_handler)
4317 (_("Warning: size of symbol `%s' changed"
4318 " from %lu in %B to %lu in %B"),
4319 old_bfd, abfd,
4320 name, (unsigned long) h->size,
4321 (unsigned long) isym->st_size);
4322
4323 h->size = isym->st_size;
4324 }
4325
4326 /* If this is a common symbol, then we always want H->SIZE
4327 to be the size of the common symbol. The code just above
4328 won't fix the size if a common symbol becomes larger. We
4329 don't warn about a size change here, because that is
4330 covered by --warn-common. Allow changes between different
4331 function types. */
4332 if (h->root.type == bfd_link_hash_common)
4333 h->size = h->root.u.c.size;
4334
4335 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4336 && ((definition && !new_weak)
4337 || (old_weak && h->root.type == bfd_link_hash_common)
4338 || h->type == STT_NOTYPE))
4339 {
4340 unsigned int type = ELF_ST_TYPE (isym->st_info);
4341
4342 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4343 symbol. */
4344 if (type == STT_GNU_IFUNC
4345 && (abfd->flags & DYNAMIC) != 0)
4346 type = STT_FUNC;
4347
4348 if (h->type != type)
4349 {
4350 if (h->type != STT_NOTYPE && ! type_change_ok)
4351 (*_bfd_error_handler)
4352 (_("Warning: type of symbol `%s' changed"
4353 " from %d to %d in %B"),
4354 abfd, name, h->type, type);
4355
4356 h->type = type;
4357 }
4358 }
4359
4360 /* Merge st_other field. */
4361 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4362
4363 /* We don't want to make debug symbol dynamic. */
4364 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4365 dynsym = FALSE;
4366
4367 /* Nor should we make plugin symbols dynamic. */
4368 if ((abfd->flags & BFD_PLUGIN) != 0)
4369 dynsym = FALSE;
4370
4371 if (definition)
4372 {
4373 h->target_internal = isym->st_target_internal;
4374 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4375 }
4376
4377 if (definition && !dynamic)
4378 {
4379 char *p = strchr (name, ELF_VER_CHR);
4380 if (p != NULL && p[1] != ELF_VER_CHR)
4381 {
4382 /* Queue non-default versions so that .symver x, x@FOO
4383 aliases can be checked. */
4384 if (!nondeflt_vers)
4385 {
4386 amt = ((isymend - isym + 1)
4387 * sizeof (struct elf_link_hash_entry *));
4388 nondeflt_vers
4389 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4390 if (!nondeflt_vers)
4391 goto error_free_vers;
4392 }
4393 nondeflt_vers[nondeflt_vers_cnt++] = h;
4394 }
4395 }
4396
4397 if (dynsym && h->dynindx == -1)
4398 {
4399 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4400 goto error_free_vers;
4401 if (h->u.weakdef != NULL
4402 && ! new_weakdef
4403 && h->u.weakdef->dynindx == -1)
4404 {
4405 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4406 goto error_free_vers;
4407 }
4408 }
4409 else if (dynsym && h->dynindx != -1)
4410 /* If the symbol already has a dynamic index, but
4411 visibility says it should not be visible, turn it into
4412 a local symbol. */
4413 switch (ELF_ST_VISIBILITY (h->other))
4414 {
4415 case STV_INTERNAL:
4416 case STV_HIDDEN:
4417 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4418 dynsym = FALSE;
4419 break;
4420 }
4421
4422 /* Don't add DT_NEEDED for references from the dummy bfd. */
4423 if (!add_needed
4424 && definition
4425 && ((dynsym
4426 && h->ref_regular_nonweak
4427 && (old_bfd == NULL
4428 || (old_bfd->flags & BFD_PLUGIN) == 0))
4429 || (h->ref_dynamic_nonweak
4430 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4431 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4432 {
4433 int ret;
4434 const char *soname = elf_dt_name (abfd);
4435
4436 info->callbacks->minfo ("%!", soname, old_bfd,
4437 h->root.root.string);
4438
4439 /* A symbol from a library loaded via DT_NEEDED of some
4440 other library is referenced by a regular object.
4441 Add a DT_NEEDED entry for it. Issue an error if
4442 --no-add-needed is used and the reference was not
4443 a weak one. */
4444 if (old_bfd != NULL
4445 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4446 {
4447 (*_bfd_error_handler)
4448 (_("%B: undefined reference to symbol '%s'"),
4449 old_bfd, name);
4450 bfd_set_error (bfd_error_missing_dso);
4451 goto error_free_vers;
4452 }
4453
4454 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4455 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4456
4457 add_needed = TRUE;
4458 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4459 if (ret < 0)
4460 goto error_free_vers;
4461
4462 BFD_ASSERT (ret == 0);
4463 }
4464 }
4465 }
4466
4467 if (extversym != NULL)
4468 {
4469 free (extversym);
4470 extversym = NULL;
4471 }
4472
4473 if (isymbuf != NULL)
4474 {
4475 free (isymbuf);
4476 isymbuf = NULL;
4477 }
4478
4479 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4480 {
4481 unsigned int i;
4482
4483 /* Restore the symbol table. */
4484 old_ent = (char *) old_tab + tabsize;
4485 memset (elf_sym_hashes (abfd), 0,
4486 extsymcount * sizeof (struct elf_link_hash_entry *));
4487 htab->root.table.table = old_table;
4488 htab->root.table.size = old_size;
4489 htab->root.table.count = old_count;
4490 memcpy (htab->root.table.table, old_tab, tabsize);
4491 htab->root.undefs = old_undefs;
4492 htab->root.undefs_tail = old_undefs_tail;
4493 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4494 for (i = 0; i < htab->root.table.size; i++)
4495 {
4496 struct bfd_hash_entry *p;
4497 struct elf_link_hash_entry *h;
4498 bfd_size_type size;
4499 unsigned int alignment_power;
4500
4501 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4502 {
4503 h = (struct elf_link_hash_entry *) p;
4504 if (h->root.type == bfd_link_hash_warning)
4505 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4506 if (h->dynindx >= old_dynsymcount
4507 && h->dynstr_index < old_dynstr_size)
4508 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4509
4510 /* Preserve the maximum alignment and size for common
4511 symbols even if this dynamic lib isn't on DT_NEEDED
4512 since it can still be loaded at run time by another
4513 dynamic lib. */
4514 if (h->root.type == bfd_link_hash_common)
4515 {
4516 size = h->root.u.c.size;
4517 alignment_power = h->root.u.c.p->alignment_power;
4518 }
4519 else
4520 {
4521 size = 0;
4522 alignment_power = 0;
4523 }
4524 memcpy (p, old_ent, htab->root.table.entsize);
4525 old_ent = (char *) old_ent + htab->root.table.entsize;
4526 h = (struct elf_link_hash_entry *) p;
4527 if (h->root.type == bfd_link_hash_warning)
4528 {
4529 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4530 old_ent = (char *) old_ent + htab->root.table.entsize;
4531 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4532 }
4533 if (h->root.type == bfd_link_hash_common)
4534 {
4535 if (size > h->root.u.c.size)
4536 h->root.u.c.size = size;
4537 if (alignment_power > h->root.u.c.p->alignment_power)
4538 h->root.u.c.p->alignment_power = alignment_power;
4539 }
4540 }
4541 }
4542
4543 /* Make a special call to the linker "notice" function to
4544 tell it that symbols added for crefs may need to be removed. */
4545 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4546 goto error_free_vers;
4547
4548 free (old_tab);
4549 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4550 alloc_mark);
4551 if (nondeflt_vers != NULL)
4552 free (nondeflt_vers);
4553 return TRUE;
4554 }
4555
4556 if (old_tab != NULL)
4557 {
4558 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4559 goto error_free_vers;
4560 free (old_tab);
4561 old_tab = NULL;
4562 }
4563
4564 /* Now that all the symbols from this input file are created, handle
4565 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4566 if (nondeflt_vers != NULL)
4567 {
4568 bfd_size_type cnt, symidx;
4569
4570 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4571 {
4572 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4573 char *shortname, *p;
4574
4575 p = strchr (h->root.root.string, ELF_VER_CHR);
4576 if (p == NULL
4577 || (h->root.type != bfd_link_hash_defined
4578 && h->root.type != bfd_link_hash_defweak))
4579 continue;
4580
4581 amt = p - h->root.root.string;
4582 shortname = (char *) bfd_malloc (amt + 1);
4583 if (!shortname)
4584 goto error_free_vers;
4585 memcpy (shortname, h->root.root.string, amt);
4586 shortname[amt] = '\0';
4587
4588 hi = (struct elf_link_hash_entry *)
4589 bfd_link_hash_lookup (&htab->root, shortname,
4590 FALSE, FALSE, FALSE);
4591 if (hi != NULL
4592 && hi->root.type == h->root.type
4593 && hi->root.u.def.value == h->root.u.def.value
4594 && hi->root.u.def.section == h->root.u.def.section)
4595 {
4596 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4597 hi->root.type = bfd_link_hash_indirect;
4598 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4599 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4600 sym_hash = elf_sym_hashes (abfd);
4601 if (sym_hash)
4602 for (symidx = 0; symidx < extsymcount; ++symidx)
4603 if (sym_hash[symidx] == hi)
4604 {
4605 sym_hash[symidx] = h;
4606 break;
4607 }
4608 }
4609 free (shortname);
4610 }
4611 free (nondeflt_vers);
4612 nondeflt_vers = NULL;
4613 }
4614
4615 /* Now set the weakdefs field correctly for all the weak defined
4616 symbols we found. The only way to do this is to search all the
4617 symbols. Since we only need the information for non functions in
4618 dynamic objects, that's the only time we actually put anything on
4619 the list WEAKS. We need this information so that if a regular
4620 object refers to a symbol defined weakly in a dynamic object, the
4621 real symbol in the dynamic object is also put in the dynamic
4622 symbols; we also must arrange for both symbols to point to the
4623 same memory location. We could handle the general case of symbol
4624 aliasing, but a general symbol alias can only be generated in
4625 assembler code, handling it correctly would be very time
4626 consuming, and other ELF linkers don't handle general aliasing
4627 either. */
4628 if (weaks != NULL)
4629 {
4630 struct elf_link_hash_entry **hpp;
4631 struct elf_link_hash_entry **hppend;
4632 struct elf_link_hash_entry **sorted_sym_hash;
4633 struct elf_link_hash_entry *h;
4634 size_t sym_count;
4635
4636 /* Since we have to search the whole symbol list for each weak
4637 defined symbol, search time for N weak defined symbols will be
4638 O(N^2). Binary search will cut it down to O(NlogN). */
4639 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4640 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4641 if (sorted_sym_hash == NULL)
4642 goto error_return;
4643 sym_hash = sorted_sym_hash;
4644 hpp = elf_sym_hashes (abfd);
4645 hppend = hpp + extsymcount;
4646 sym_count = 0;
4647 for (; hpp < hppend; hpp++)
4648 {
4649 h = *hpp;
4650 if (h != NULL
4651 && h->root.type == bfd_link_hash_defined
4652 && !bed->is_function_type (h->type))
4653 {
4654 *sym_hash = h;
4655 sym_hash++;
4656 sym_count++;
4657 }
4658 }
4659
4660 qsort (sorted_sym_hash, sym_count,
4661 sizeof (struct elf_link_hash_entry *),
4662 elf_sort_symbol);
4663
4664 while (weaks != NULL)
4665 {
4666 struct elf_link_hash_entry *hlook;
4667 asection *slook;
4668 bfd_vma vlook;
4669 size_t i, j, idx = 0;
4670
4671 hlook = weaks;
4672 weaks = hlook->u.weakdef;
4673 hlook->u.weakdef = NULL;
4674
4675 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4676 || hlook->root.type == bfd_link_hash_defweak
4677 || hlook->root.type == bfd_link_hash_common
4678 || hlook->root.type == bfd_link_hash_indirect);
4679 slook = hlook->root.u.def.section;
4680 vlook = hlook->root.u.def.value;
4681
4682 i = 0;
4683 j = sym_count;
4684 while (i != j)
4685 {
4686 bfd_signed_vma vdiff;
4687 idx = (i + j) / 2;
4688 h = sorted_sym_hash[idx];
4689 vdiff = vlook - h->root.u.def.value;
4690 if (vdiff < 0)
4691 j = idx;
4692 else if (vdiff > 0)
4693 i = idx + 1;
4694 else
4695 {
4696 long sdiff = slook->id - h->root.u.def.section->id;
4697 if (sdiff < 0)
4698 j = idx;
4699 else if (sdiff > 0)
4700 i = idx + 1;
4701 else
4702 break;
4703 }
4704 }
4705
4706 /* We didn't find a value/section match. */
4707 if (i == j)
4708 continue;
4709
4710 /* With multiple aliases, or when the weak symbol is already
4711 strongly defined, we have multiple matching symbols and
4712 the binary search above may land on any of them. Step
4713 one past the matching symbol(s). */
4714 while (++idx != j)
4715 {
4716 h = sorted_sym_hash[idx];
4717 if (h->root.u.def.section != slook
4718 || h->root.u.def.value != vlook)
4719 break;
4720 }
4721
4722 /* Now look back over the aliases. Since we sorted by size
4723 as well as value and section, we'll choose the one with
4724 the largest size. */
4725 while (idx-- != i)
4726 {
4727 h = sorted_sym_hash[idx];
4728
4729 /* Stop if value or section doesn't match. */
4730 if (h->root.u.def.section != slook
4731 || h->root.u.def.value != vlook)
4732 break;
4733 else if (h != hlook)
4734 {
4735 hlook->u.weakdef = h;
4736
4737 /* If the weak definition is in the list of dynamic
4738 symbols, make sure the real definition is put
4739 there as well. */
4740 if (hlook->dynindx != -1 && h->dynindx == -1)
4741 {
4742 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4743 {
4744 err_free_sym_hash:
4745 free (sorted_sym_hash);
4746 goto error_return;
4747 }
4748 }
4749
4750 /* If the real definition is in the list of dynamic
4751 symbols, make sure the weak definition is put
4752 there as well. If we don't do this, then the
4753 dynamic loader might not merge the entries for the
4754 real definition and the weak definition. */
4755 if (h->dynindx != -1 && hlook->dynindx == -1)
4756 {
4757 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4758 goto err_free_sym_hash;
4759 }
4760 break;
4761 }
4762 }
4763 }
4764
4765 free (sorted_sym_hash);
4766 }
4767
4768 if (bed->check_directives
4769 && !(*bed->check_directives) (abfd, info))
4770 return FALSE;
4771
4772 /* If this object is the same format as the output object, and it is
4773 not a shared library, then let the backend look through the
4774 relocs.
4775
4776 This is required to build global offset table entries and to
4777 arrange for dynamic relocs. It is not required for the
4778 particular common case of linking non PIC code, even when linking
4779 against shared libraries, but unfortunately there is no way of
4780 knowing whether an object file has been compiled PIC or not.
4781 Looking through the relocs is not particularly time consuming.
4782 The problem is that we must either (1) keep the relocs in memory,
4783 which causes the linker to require additional runtime memory or
4784 (2) read the relocs twice from the input file, which wastes time.
4785 This would be a good case for using mmap.
4786
4787 I have no idea how to handle linking PIC code into a file of a
4788 different format. It probably can't be done. */
4789 if (! dynamic
4790 && is_elf_hash_table (htab)
4791 && bed->check_relocs != NULL
4792 && elf_object_id (abfd) == elf_hash_table_id (htab)
4793 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4794 {
4795 asection *o;
4796
4797 for (o = abfd->sections; o != NULL; o = o->next)
4798 {
4799 Elf_Internal_Rela *internal_relocs;
4800 bfd_boolean ok;
4801
4802 if ((o->flags & SEC_RELOC) == 0
4803 || o->reloc_count == 0
4804 || ((info->strip == strip_all || info->strip == strip_debugger)
4805 && (o->flags & SEC_DEBUGGING) != 0)
4806 || bfd_is_abs_section (o->output_section))
4807 continue;
4808
4809 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4810 info->keep_memory);
4811 if (internal_relocs == NULL)
4812 goto error_return;
4813
4814 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4815
4816 if (elf_section_data (o)->relocs != internal_relocs)
4817 free (internal_relocs);
4818
4819 if (! ok)
4820 goto error_return;
4821 }
4822 }
4823
4824 /* If this is a non-traditional link, try to optimize the handling
4825 of the .stab/.stabstr sections. */
4826 if (! dynamic
4827 && ! info->traditional_format
4828 && is_elf_hash_table (htab)
4829 && (info->strip != strip_all && info->strip != strip_debugger))
4830 {
4831 asection *stabstr;
4832
4833 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4834 if (stabstr != NULL)
4835 {
4836 bfd_size_type string_offset = 0;
4837 asection *stab;
4838
4839 for (stab = abfd->sections; stab; stab = stab->next)
4840 if (CONST_STRNEQ (stab->name, ".stab")
4841 && (!stab->name[5] ||
4842 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4843 && (stab->flags & SEC_MERGE) == 0
4844 && !bfd_is_abs_section (stab->output_section))
4845 {
4846 struct bfd_elf_section_data *secdata;
4847
4848 secdata = elf_section_data (stab);
4849 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4850 stabstr, &secdata->sec_info,
4851 &string_offset))
4852 goto error_return;
4853 if (secdata->sec_info)
4854 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4855 }
4856 }
4857 }
4858
4859 if (is_elf_hash_table (htab) && add_needed)
4860 {
4861 /* Add this bfd to the loaded list. */
4862 struct elf_link_loaded_list *n;
4863
4864 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
4865 if (n == NULL)
4866 goto error_return;
4867 n->abfd = abfd;
4868 n->next = htab->loaded;
4869 htab->loaded = n;
4870 }
4871
4872 return TRUE;
4873
4874 error_free_vers:
4875 if (old_tab != NULL)
4876 free (old_tab);
4877 if (nondeflt_vers != NULL)
4878 free (nondeflt_vers);
4879 if (extversym != NULL)
4880 free (extversym);
4881 error_free_sym:
4882 if (isymbuf != NULL)
4883 free (isymbuf);
4884 error_return:
4885 return FALSE;
4886 }
4887
4888 /* Return the linker hash table entry of a symbol that might be
4889 satisfied by an archive symbol. Return -1 on error. */
4890
4891 struct elf_link_hash_entry *
4892 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4893 struct bfd_link_info *info,
4894 const char *name)
4895 {
4896 struct elf_link_hash_entry *h;
4897 char *p, *copy;
4898 size_t len, first;
4899
4900 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4901 if (h != NULL)
4902 return h;
4903
4904 /* If this is a default version (the name contains @@), look up the
4905 symbol again with only one `@' as well as without the version.
4906 The effect is that references to the symbol with and without the
4907 version will be matched by the default symbol in the archive. */
4908
4909 p = strchr (name, ELF_VER_CHR);
4910 if (p == NULL || p[1] != ELF_VER_CHR)
4911 return h;
4912
4913 /* First check with only one `@'. */
4914 len = strlen (name);
4915 copy = (char *) bfd_alloc (abfd, len);
4916 if (copy == NULL)
4917 return (struct elf_link_hash_entry *) 0 - 1;
4918
4919 first = p - name + 1;
4920 memcpy (copy, name, first);
4921 memcpy (copy + first, name + first + 1, len - first);
4922
4923 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4924 if (h == NULL)
4925 {
4926 /* We also need to check references to the symbol without the
4927 version. */
4928 copy[first - 1] = '\0';
4929 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4930 FALSE, FALSE, TRUE);
4931 }
4932
4933 bfd_release (abfd, copy);
4934 return h;
4935 }
4936
4937 /* Add symbols from an ELF archive file to the linker hash table. We
4938 don't use _bfd_generic_link_add_archive_symbols because we need to
4939 handle versioned symbols.
4940
4941 Fortunately, ELF archive handling is simpler than that done by
4942 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4943 oddities. In ELF, if we find a symbol in the archive map, and the
4944 symbol is currently undefined, we know that we must pull in that
4945 object file.
4946
4947 Unfortunately, we do have to make multiple passes over the symbol
4948 table until nothing further is resolved. */
4949
4950 static bfd_boolean
4951 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4952 {
4953 symindex c;
4954 unsigned char *included = NULL;
4955 carsym *symdefs;
4956 bfd_boolean loop;
4957 bfd_size_type amt;
4958 const struct elf_backend_data *bed;
4959 struct elf_link_hash_entry * (*archive_symbol_lookup)
4960 (bfd *, struct bfd_link_info *, const char *);
4961
4962 if (! bfd_has_map (abfd))
4963 {
4964 /* An empty archive is a special case. */
4965 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4966 return TRUE;
4967 bfd_set_error (bfd_error_no_armap);
4968 return FALSE;
4969 }
4970
4971 /* Keep track of all symbols we know to be already defined, and all
4972 files we know to be already included. This is to speed up the
4973 second and subsequent passes. */
4974 c = bfd_ardata (abfd)->symdef_count;
4975 if (c == 0)
4976 return TRUE;
4977 amt = c;
4978 amt *= sizeof (*included);
4979 included = (unsigned char *) bfd_zmalloc (amt);
4980 if (included == NULL)
4981 return FALSE;
4982
4983 symdefs = bfd_ardata (abfd)->symdefs;
4984 bed = get_elf_backend_data (abfd);
4985 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4986
4987 do
4988 {
4989 file_ptr last;
4990 symindex i;
4991 carsym *symdef;
4992 carsym *symdefend;
4993
4994 loop = FALSE;
4995 last = -1;
4996
4997 symdef = symdefs;
4998 symdefend = symdef + c;
4999 for (i = 0; symdef < symdefend; symdef++, i++)
5000 {
5001 struct elf_link_hash_entry *h;
5002 bfd *element;
5003 struct bfd_link_hash_entry *undefs_tail;
5004 symindex mark;
5005
5006 if (included[i])
5007 continue;
5008 if (symdef->file_offset == last)
5009 {
5010 included[i] = TRUE;
5011 continue;
5012 }
5013
5014 h = archive_symbol_lookup (abfd, info, symdef->name);
5015 if (h == (struct elf_link_hash_entry *) 0 - 1)
5016 goto error_return;
5017
5018 if (h == NULL)
5019 continue;
5020
5021 if (h->root.type == bfd_link_hash_common)
5022 {
5023 /* We currently have a common symbol. The archive map contains
5024 a reference to this symbol, so we may want to include it. We
5025 only want to include it however, if this archive element
5026 contains a definition of the symbol, not just another common
5027 declaration of it.
5028
5029 Unfortunately some archivers (including GNU ar) will put
5030 declarations of common symbols into their archive maps, as
5031 well as real definitions, so we cannot just go by the archive
5032 map alone. Instead we must read in the element's symbol
5033 table and check that to see what kind of symbol definition
5034 this is. */
5035 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5036 continue;
5037 }
5038 else if (h->root.type != bfd_link_hash_undefined)
5039 {
5040 if (h->root.type != bfd_link_hash_undefweak)
5041 /* Symbol must be defined. Don't check it again. */
5042 included[i] = TRUE;
5043 continue;
5044 }
5045
5046 /* We need to include this archive member. */
5047 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5048 if (element == NULL)
5049 goto error_return;
5050
5051 if (! bfd_check_format (element, bfd_object))
5052 goto error_return;
5053
5054 undefs_tail = info->hash->undefs_tail;
5055
5056 if (!(*info->callbacks
5057 ->add_archive_element) (info, element, symdef->name, &element))
5058 goto error_return;
5059 if (!bfd_link_add_symbols (element, info))
5060 goto error_return;
5061
5062 /* If there are any new undefined symbols, we need to make
5063 another pass through the archive in order to see whether
5064 they can be defined. FIXME: This isn't perfect, because
5065 common symbols wind up on undefs_tail and because an
5066 undefined symbol which is defined later on in this pass
5067 does not require another pass. This isn't a bug, but it
5068 does make the code less efficient than it could be. */
5069 if (undefs_tail != info->hash->undefs_tail)
5070 loop = TRUE;
5071
5072 /* Look backward to mark all symbols from this object file
5073 which we have already seen in this pass. */
5074 mark = i;
5075 do
5076 {
5077 included[mark] = TRUE;
5078 if (mark == 0)
5079 break;
5080 --mark;
5081 }
5082 while (symdefs[mark].file_offset == symdef->file_offset);
5083
5084 /* We mark subsequent symbols from this object file as we go
5085 on through the loop. */
5086 last = symdef->file_offset;
5087 }
5088 }
5089 while (loop);
5090
5091 free (included);
5092
5093 return TRUE;
5094
5095 error_return:
5096 if (included != NULL)
5097 free (included);
5098 return FALSE;
5099 }
5100
5101 /* Given an ELF BFD, add symbols to the global hash table as
5102 appropriate. */
5103
5104 bfd_boolean
5105 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5106 {
5107 switch (bfd_get_format (abfd))
5108 {
5109 case bfd_object:
5110 return elf_link_add_object_symbols (abfd, info);
5111 case bfd_archive:
5112 return elf_link_add_archive_symbols (abfd, info);
5113 default:
5114 bfd_set_error (bfd_error_wrong_format);
5115 return FALSE;
5116 }
5117 }
5118 \f
5119 struct hash_codes_info
5120 {
5121 unsigned long *hashcodes;
5122 bfd_boolean error;
5123 };
5124
5125 /* This function will be called though elf_link_hash_traverse to store
5126 all hash value of the exported symbols in an array. */
5127
5128 static bfd_boolean
5129 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5130 {
5131 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5132 const char *name;
5133 char *p;
5134 unsigned long ha;
5135 char *alc = NULL;
5136
5137 /* Ignore indirect symbols. These are added by the versioning code. */
5138 if (h->dynindx == -1)
5139 return TRUE;
5140
5141 name = h->root.root.string;
5142 p = strchr (name, ELF_VER_CHR);
5143 if (p != NULL)
5144 {
5145 alc = (char *) bfd_malloc (p - name + 1);
5146 if (alc == NULL)
5147 {
5148 inf->error = TRUE;
5149 return FALSE;
5150 }
5151 memcpy (alc, name, p - name);
5152 alc[p - name] = '\0';
5153 name = alc;
5154 }
5155
5156 /* Compute the hash value. */
5157 ha = bfd_elf_hash (name);
5158
5159 /* Store the found hash value in the array given as the argument. */
5160 *(inf->hashcodes)++ = ha;
5161
5162 /* And store it in the struct so that we can put it in the hash table
5163 later. */
5164 h->u.elf_hash_value = ha;
5165
5166 if (alc != NULL)
5167 free (alc);
5168
5169 return TRUE;
5170 }
5171
5172 struct collect_gnu_hash_codes
5173 {
5174 bfd *output_bfd;
5175 const struct elf_backend_data *bed;
5176 unsigned long int nsyms;
5177 unsigned long int maskbits;
5178 unsigned long int *hashcodes;
5179 unsigned long int *hashval;
5180 unsigned long int *indx;
5181 unsigned long int *counts;
5182 bfd_vma *bitmask;
5183 bfd_byte *contents;
5184 long int min_dynindx;
5185 unsigned long int bucketcount;
5186 unsigned long int symindx;
5187 long int local_indx;
5188 long int shift1, shift2;
5189 unsigned long int mask;
5190 bfd_boolean error;
5191 };
5192
5193 /* This function will be called though elf_link_hash_traverse to store
5194 all hash value of the exported symbols in an array. */
5195
5196 static bfd_boolean
5197 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5198 {
5199 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5200 const char *name;
5201 char *p;
5202 unsigned long ha;
5203 char *alc = NULL;
5204
5205 /* Ignore indirect symbols. These are added by the versioning code. */
5206 if (h->dynindx == -1)
5207 return TRUE;
5208
5209 /* Ignore also local symbols and undefined symbols. */
5210 if (! (*s->bed->elf_hash_symbol) (h))
5211 return TRUE;
5212
5213 name = h->root.root.string;
5214 p = strchr (name, ELF_VER_CHR);
5215 if (p != NULL)
5216 {
5217 alc = (char *) bfd_malloc (p - name + 1);
5218 if (alc == NULL)
5219 {
5220 s->error = TRUE;
5221 return FALSE;
5222 }
5223 memcpy (alc, name, p - name);
5224 alc[p - name] = '\0';
5225 name = alc;
5226 }
5227
5228 /* Compute the hash value. */
5229 ha = bfd_elf_gnu_hash (name);
5230
5231 /* Store the found hash value in the array for compute_bucket_count,
5232 and also for .dynsym reordering purposes. */
5233 s->hashcodes[s->nsyms] = ha;
5234 s->hashval[h->dynindx] = ha;
5235 ++s->nsyms;
5236 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5237 s->min_dynindx = h->dynindx;
5238
5239 if (alc != NULL)
5240 free (alc);
5241
5242 return TRUE;
5243 }
5244
5245 /* This function will be called though elf_link_hash_traverse to do
5246 final dynaminc symbol renumbering. */
5247
5248 static bfd_boolean
5249 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5250 {
5251 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5252 unsigned long int bucket;
5253 unsigned long int val;
5254
5255 /* Ignore indirect symbols. */
5256 if (h->dynindx == -1)
5257 return TRUE;
5258
5259 /* Ignore also local symbols and undefined symbols. */
5260 if (! (*s->bed->elf_hash_symbol) (h))
5261 {
5262 if (h->dynindx >= s->min_dynindx)
5263 h->dynindx = s->local_indx++;
5264 return TRUE;
5265 }
5266
5267 bucket = s->hashval[h->dynindx] % s->bucketcount;
5268 val = (s->hashval[h->dynindx] >> s->shift1)
5269 & ((s->maskbits >> s->shift1) - 1);
5270 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5271 s->bitmask[val]
5272 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5273 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5274 if (s->counts[bucket] == 1)
5275 /* Last element terminates the chain. */
5276 val |= 1;
5277 bfd_put_32 (s->output_bfd, val,
5278 s->contents + (s->indx[bucket] - s->symindx) * 4);
5279 --s->counts[bucket];
5280 h->dynindx = s->indx[bucket]++;
5281 return TRUE;
5282 }
5283
5284 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5285
5286 bfd_boolean
5287 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5288 {
5289 return !(h->forced_local
5290 || h->root.type == bfd_link_hash_undefined
5291 || h->root.type == bfd_link_hash_undefweak
5292 || ((h->root.type == bfd_link_hash_defined
5293 || h->root.type == bfd_link_hash_defweak)
5294 && h->root.u.def.section->output_section == NULL));
5295 }
5296
5297 /* Array used to determine the number of hash table buckets to use
5298 based on the number of symbols there are. If there are fewer than
5299 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5300 fewer than 37 we use 17 buckets, and so forth. We never use more
5301 than 32771 buckets. */
5302
5303 static const size_t elf_buckets[] =
5304 {
5305 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5306 16411, 32771, 0
5307 };
5308
5309 /* Compute bucket count for hashing table. We do not use a static set
5310 of possible tables sizes anymore. Instead we determine for all
5311 possible reasonable sizes of the table the outcome (i.e., the
5312 number of collisions etc) and choose the best solution. The
5313 weighting functions are not too simple to allow the table to grow
5314 without bounds. Instead one of the weighting factors is the size.
5315 Therefore the result is always a good payoff between few collisions
5316 (= short chain lengths) and table size. */
5317 static size_t
5318 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5319 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5320 unsigned long int nsyms,
5321 int gnu_hash)
5322 {
5323 size_t best_size = 0;
5324 unsigned long int i;
5325
5326 /* We have a problem here. The following code to optimize the table
5327 size requires an integer type with more the 32 bits. If
5328 BFD_HOST_U_64_BIT is set we know about such a type. */
5329 #ifdef BFD_HOST_U_64_BIT
5330 if (info->optimize)
5331 {
5332 size_t minsize;
5333 size_t maxsize;
5334 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5335 bfd *dynobj = elf_hash_table (info)->dynobj;
5336 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5337 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5338 unsigned long int *counts;
5339 bfd_size_type amt;
5340 unsigned int no_improvement_count = 0;
5341
5342 /* Possible optimization parameters: if we have NSYMS symbols we say
5343 that the hashing table must at least have NSYMS/4 and at most
5344 2*NSYMS buckets. */
5345 minsize = nsyms / 4;
5346 if (minsize == 0)
5347 minsize = 1;
5348 best_size = maxsize = nsyms * 2;
5349 if (gnu_hash)
5350 {
5351 if (minsize < 2)
5352 minsize = 2;
5353 if ((best_size & 31) == 0)
5354 ++best_size;
5355 }
5356
5357 /* Create array where we count the collisions in. We must use bfd_malloc
5358 since the size could be large. */
5359 amt = maxsize;
5360 amt *= sizeof (unsigned long int);
5361 counts = (unsigned long int *) bfd_malloc (amt);
5362 if (counts == NULL)
5363 return 0;
5364
5365 /* Compute the "optimal" size for the hash table. The criteria is a
5366 minimal chain length. The minor criteria is (of course) the size
5367 of the table. */
5368 for (i = minsize; i < maxsize; ++i)
5369 {
5370 /* Walk through the array of hashcodes and count the collisions. */
5371 BFD_HOST_U_64_BIT max;
5372 unsigned long int j;
5373 unsigned long int fact;
5374
5375 if (gnu_hash && (i & 31) == 0)
5376 continue;
5377
5378 memset (counts, '\0', i * sizeof (unsigned long int));
5379
5380 /* Determine how often each hash bucket is used. */
5381 for (j = 0; j < nsyms; ++j)
5382 ++counts[hashcodes[j] % i];
5383
5384 /* For the weight function we need some information about the
5385 pagesize on the target. This is information need not be 100%
5386 accurate. Since this information is not available (so far) we
5387 define it here to a reasonable default value. If it is crucial
5388 to have a better value some day simply define this value. */
5389 # ifndef BFD_TARGET_PAGESIZE
5390 # define BFD_TARGET_PAGESIZE (4096)
5391 # endif
5392
5393 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5394 and the chains. */
5395 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5396
5397 # if 1
5398 /* Variant 1: optimize for short chains. We add the squares
5399 of all the chain lengths (which favors many small chain
5400 over a few long chains). */
5401 for (j = 0; j < i; ++j)
5402 max += counts[j] * counts[j];
5403
5404 /* This adds penalties for the overall size of the table. */
5405 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5406 max *= fact * fact;
5407 # else
5408 /* Variant 2: Optimize a lot more for small table. Here we
5409 also add squares of the size but we also add penalties for
5410 empty slots (the +1 term). */
5411 for (j = 0; j < i; ++j)
5412 max += (1 + counts[j]) * (1 + counts[j]);
5413
5414 /* The overall size of the table is considered, but not as
5415 strong as in variant 1, where it is squared. */
5416 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5417 max *= fact;
5418 # endif
5419
5420 /* Compare with current best results. */
5421 if (max < best_chlen)
5422 {
5423 best_chlen = max;
5424 best_size = i;
5425 no_improvement_count = 0;
5426 }
5427 /* PR 11843: Avoid futile long searches for the best bucket size
5428 when there are a large number of symbols. */
5429 else if (++no_improvement_count == 100)
5430 break;
5431 }
5432
5433 free (counts);
5434 }
5435 else
5436 #endif /* defined (BFD_HOST_U_64_BIT) */
5437 {
5438 /* This is the fallback solution if no 64bit type is available or if we
5439 are not supposed to spend much time on optimizations. We select the
5440 bucket count using a fixed set of numbers. */
5441 for (i = 0; elf_buckets[i] != 0; i++)
5442 {
5443 best_size = elf_buckets[i];
5444 if (nsyms < elf_buckets[i + 1])
5445 break;
5446 }
5447 if (gnu_hash && best_size < 2)
5448 best_size = 2;
5449 }
5450
5451 return best_size;
5452 }
5453
5454 /* Size any SHT_GROUP section for ld -r. */
5455
5456 bfd_boolean
5457 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5458 {
5459 bfd *ibfd;
5460
5461 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5462 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5463 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5464 return FALSE;
5465 return TRUE;
5466 }
5467
5468 /* Set a default stack segment size. The value in INFO wins. If it
5469 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5470 undefined it is initialized. */
5471
5472 bfd_boolean
5473 bfd_elf_stack_segment_size (bfd *output_bfd,
5474 struct bfd_link_info *info,
5475 const char *legacy_symbol,
5476 bfd_vma default_size)
5477 {
5478 struct elf_link_hash_entry *h = NULL;
5479
5480 /* Look for legacy symbol. */
5481 if (legacy_symbol)
5482 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5483 FALSE, FALSE, FALSE);
5484 if (h && (h->root.type == bfd_link_hash_defined
5485 || h->root.type == bfd_link_hash_defweak)
5486 && h->def_regular
5487 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5488 {
5489 /* The symbol has no type if specified on the command line. */
5490 h->type = STT_OBJECT;
5491 if (info->stacksize)
5492 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5493 output_bfd, legacy_symbol);
5494 else if (h->root.u.def.section != bfd_abs_section_ptr)
5495 (*_bfd_error_handler) (_("%B: %s not absolute"),
5496 output_bfd, legacy_symbol);
5497 else
5498 info->stacksize = h->root.u.def.value;
5499 }
5500
5501 if (!info->stacksize)
5502 /* If the user didn't set a size, or explicitly inhibit the
5503 size, set it now. */
5504 info->stacksize = default_size;
5505
5506 /* Provide the legacy symbol, if it is referenced. */
5507 if (h && (h->root.type == bfd_link_hash_undefined
5508 || h->root.type == bfd_link_hash_undefweak))
5509 {
5510 struct bfd_link_hash_entry *bh = NULL;
5511
5512 if (!(_bfd_generic_link_add_one_symbol
5513 (info, output_bfd, legacy_symbol,
5514 BSF_GLOBAL, bfd_abs_section_ptr,
5515 info->stacksize >= 0 ? info->stacksize : 0,
5516 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5517 return FALSE;
5518
5519 h = (struct elf_link_hash_entry *) bh;
5520 h->def_regular = 1;
5521 h->type = STT_OBJECT;
5522 }
5523
5524 return TRUE;
5525 }
5526
5527 /* Set up the sizes and contents of the ELF dynamic sections. This is
5528 called by the ELF linker emulation before_allocation routine. We
5529 must set the sizes of the sections before the linker sets the
5530 addresses of the various sections. */
5531
5532 bfd_boolean
5533 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5534 const char *soname,
5535 const char *rpath,
5536 const char *filter_shlib,
5537 const char *audit,
5538 const char *depaudit,
5539 const char * const *auxiliary_filters,
5540 struct bfd_link_info *info,
5541 asection **sinterpptr)
5542 {
5543 bfd_size_type soname_indx;
5544 bfd *dynobj;
5545 const struct elf_backend_data *bed;
5546 struct elf_info_failed asvinfo;
5547
5548 *sinterpptr = NULL;
5549
5550 soname_indx = (bfd_size_type) -1;
5551
5552 if (!is_elf_hash_table (info->hash))
5553 return TRUE;
5554
5555 bed = get_elf_backend_data (output_bfd);
5556
5557 /* Any syms created from now on start with -1 in
5558 got.refcount/offset and plt.refcount/offset. */
5559 elf_hash_table (info)->init_got_refcount
5560 = elf_hash_table (info)->init_got_offset;
5561 elf_hash_table (info)->init_plt_refcount
5562 = elf_hash_table (info)->init_plt_offset;
5563
5564 if (info->relocatable
5565 && !_bfd_elf_size_group_sections (info))
5566 return FALSE;
5567
5568 /* The backend may have to create some sections regardless of whether
5569 we're dynamic or not. */
5570 if (bed->elf_backend_always_size_sections
5571 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5572 return FALSE;
5573
5574 /* Determine any GNU_STACK segment requirements, after the backend
5575 has had a chance to set a default segment size. */
5576 if (info->execstack)
5577 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5578 else if (info->noexecstack)
5579 elf_stack_flags (output_bfd) = PF_R | PF_W;
5580 else
5581 {
5582 bfd *inputobj;
5583 asection *notesec = NULL;
5584 int exec = 0;
5585
5586 for (inputobj = info->input_bfds;
5587 inputobj;
5588 inputobj = inputobj->link.next)
5589 {
5590 asection *s;
5591
5592 if (inputobj->flags
5593 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5594 continue;
5595 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5596 if (s)
5597 {
5598 if (s->flags & SEC_CODE)
5599 exec = PF_X;
5600 notesec = s;
5601 }
5602 else if (bed->default_execstack)
5603 exec = PF_X;
5604 }
5605 if (notesec || info->stacksize > 0)
5606 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5607 if (notesec && exec && info->relocatable
5608 && notesec->output_section != bfd_abs_section_ptr)
5609 notesec->output_section->flags |= SEC_CODE;
5610 }
5611
5612 dynobj = elf_hash_table (info)->dynobj;
5613
5614 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5615 {
5616 struct elf_info_failed eif;
5617 struct elf_link_hash_entry *h;
5618 asection *dynstr;
5619 struct bfd_elf_version_tree *t;
5620 struct bfd_elf_version_expr *d;
5621 asection *s;
5622 bfd_boolean all_defined;
5623
5624 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5625 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5626
5627 if (soname != NULL)
5628 {
5629 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5630 soname, TRUE);
5631 if (soname_indx == (bfd_size_type) -1
5632 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5633 return FALSE;
5634 }
5635
5636 if (info->symbolic)
5637 {
5638 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5639 return FALSE;
5640 info->flags |= DF_SYMBOLIC;
5641 }
5642
5643 if (rpath != NULL)
5644 {
5645 bfd_size_type indx;
5646 bfd_vma tag;
5647
5648 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5649 TRUE);
5650 if (indx == (bfd_size_type) -1)
5651 return FALSE;
5652
5653 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5654 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5655 return FALSE;
5656 }
5657
5658 if (filter_shlib != NULL)
5659 {
5660 bfd_size_type indx;
5661
5662 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5663 filter_shlib, TRUE);
5664 if (indx == (bfd_size_type) -1
5665 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5666 return FALSE;
5667 }
5668
5669 if (auxiliary_filters != NULL)
5670 {
5671 const char * const *p;
5672
5673 for (p = auxiliary_filters; *p != NULL; p++)
5674 {
5675 bfd_size_type indx;
5676
5677 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5678 *p, TRUE);
5679 if (indx == (bfd_size_type) -1
5680 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5681 return FALSE;
5682 }
5683 }
5684
5685 if (audit != NULL)
5686 {
5687 bfd_size_type indx;
5688
5689 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5690 TRUE);
5691 if (indx == (bfd_size_type) -1
5692 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5693 return FALSE;
5694 }
5695
5696 if (depaudit != NULL)
5697 {
5698 bfd_size_type indx;
5699
5700 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5701 TRUE);
5702 if (indx == (bfd_size_type) -1
5703 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5704 return FALSE;
5705 }
5706
5707 eif.info = info;
5708 eif.failed = FALSE;
5709
5710 /* If we are supposed to export all symbols into the dynamic symbol
5711 table (this is not the normal case), then do so. */
5712 if (info->export_dynamic
5713 || (info->executable && info->dynamic))
5714 {
5715 elf_link_hash_traverse (elf_hash_table (info),
5716 _bfd_elf_export_symbol,
5717 &eif);
5718 if (eif.failed)
5719 return FALSE;
5720 }
5721
5722 /* Make all global versions with definition. */
5723 for (t = info->version_info; t != NULL; t = t->next)
5724 for (d = t->globals.list; d != NULL; d = d->next)
5725 if (!d->symver && d->literal)
5726 {
5727 const char *verstr, *name;
5728 size_t namelen, verlen, newlen;
5729 char *newname, *p, leading_char;
5730 struct elf_link_hash_entry *newh;
5731
5732 leading_char = bfd_get_symbol_leading_char (output_bfd);
5733 name = d->pattern;
5734 namelen = strlen (name) + (leading_char != '\0');
5735 verstr = t->name;
5736 verlen = strlen (verstr);
5737 newlen = namelen + verlen + 3;
5738
5739 newname = (char *) bfd_malloc (newlen);
5740 if (newname == NULL)
5741 return FALSE;
5742 newname[0] = leading_char;
5743 memcpy (newname + (leading_char != '\0'), name, namelen);
5744
5745 /* Check the hidden versioned definition. */
5746 p = newname + namelen;
5747 *p++ = ELF_VER_CHR;
5748 memcpy (p, verstr, verlen + 1);
5749 newh = elf_link_hash_lookup (elf_hash_table (info),
5750 newname, FALSE, FALSE,
5751 FALSE);
5752 if (newh == NULL
5753 || (newh->root.type != bfd_link_hash_defined
5754 && newh->root.type != bfd_link_hash_defweak))
5755 {
5756 /* Check the default versioned definition. */
5757 *p++ = ELF_VER_CHR;
5758 memcpy (p, verstr, verlen + 1);
5759 newh = elf_link_hash_lookup (elf_hash_table (info),
5760 newname, FALSE, FALSE,
5761 FALSE);
5762 }
5763 free (newname);
5764
5765 /* Mark this version if there is a definition and it is
5766 not defined in a shared object. */
5767 if (newh != NULL
5768 && !newh->def_dynamic
5769 && (newh->root.type == bfd_link_hash_defined
5770 || newh->root.type == bfd_link_hash_defweak))
5771 d->symver = 1;
5772 }
5773
5774 /* Attach all the symbols to their version information. */
5775 asvinfo.info = info;
5776 asvinfo.failed = FALSE;
5777
5778 elf_link_hash_traverse (elf_hash_table (info),
5779 _bfd_elf_link_assign_sym_version,
5780 &asvinfo);
5781 if (asvinfo.failed)
5782 return FALSE;
5783
5784 if (!info->allow_undefined_version)
5785 {
5786 /* Check if all global versions have a definition. */
5787 all_defined = TRUE;
5788 for (t = info->version_info; t != NULL; t = t->next)
5789 for (d = t->globals.list; d != NULL; d = d->next)
5790 if (d->literal && !d->symver && !d->script)
5791 {
5792 (*_bfd_error_handler)
5793 (_("%s: undefined version: %s"),
5794 d->pattern, t->name);
5795 all_defined = FALSE;
5796 }
5797
5798 if (!all_defined)
5799 {
5800 bfd_set_error (bfd_error_bad_value);
5801 return FALSE;
5802 }
5803 }
5804
5805 /* Find all symbols which were defined in a dynamic object and make
5806 the backend pick a reasonable value for them. */
5807 elf_link_hash_traverse (elf_hash_table (info),
5808 _bfd_elf_adjust_dynamic_symbol,
5809 &eif);
5810 if (eif.failed)
5811 return FALSE;
5812
5813 /* Add some entries to the .dynamic section. We fill in some of the
5814 values later, in bfd_elf_final_link, but we must add the entries
5815 now so that we know the final size of the .dynamic section. */
5816
5817 /* If there are initialization and/or finalization functions to
5818 call then add the corresponding DT_INIT/DT_FINI entries. */
5819 h = (info->init_function
5820 ? elf_link_hash_lookup (elf_hash_table (info),
5821 info->init_function, FALSE,
5822 FALSE, FALSE)
5823 : NULL);
5824 if (h != NULL
5825 && (h->ref_regular
5826 || h->def_regular))
5827 {
5828 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5829 return FALSE;
5830 }
5831 h = (info->fini_function
5832 ? elf_link_hash_lookup (elf_hash_table (info),
5833 info->fini_function, FALSE,
5834 FALSE, FALSE)
5835 : NULL);
5836 if (h != NULL
5837 && (h->ref_regular
5838 || h->def_regular))
5839 {
5840 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5841 return FALSE;
5842 }
5843
5844 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5845 if (s != NULL && s->linker_has_input)
5846 {
5847 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5848 if (! info->executable)
5849 {
5850 bfd *sub;
5851 asection *o;
5852
5853 for (sub = info->input_bfds; sub != NULL;
5854 sub = sub->link.next)
5855 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5856 for (o = sub->sections; o != NULL; o = o->next)
5857 if (elf_section_data (o)->this_hdr.sh_type
5858 == SHT_PREINIT_ARRAY)
5859 {
5860 (*_bfd_error_handler)
5861 (_("%B: .preinit_array section is not allowed in DSO"),
5862 sub);
5863 break;
5864 }
5865
5866 bfd_set_error (bfd_error_nonrepresentable_section);
5867 return FALSE;
5868 }
5869
5870 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5871 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5872 return FALSE;
5873 }
5874 s = bfd_get_section_by_name (output_bfd, ".init_array");
5875 if (s != NULL && s->linker_has_input)
5876 {
5877 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5878 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5879 return FALSE;
5880 }
5881 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5882 if (s != NULL && s->linker_has_input)
5883 {
5884 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5885 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5886 return FALSE;
5887 }
5888
5889 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5890 /* If .dynstr is excluded from the link, we don't want any of
5891 these tags. Strictly, we should be checking each section
5892 individually; This quick check covers for the case where
5893 someone does a /DISCARD/ : { *(*) }. */
5894 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5895 {
5896 bfd_size_type strsize;
5897
5898 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5899 if ((info->emit_hash
5900 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5901 || (info->emit_gnu_hash
5902 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5903 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5904 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5905 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5906 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5907 bed->s->sizeof_sym))
5908 return FALSE;
5909 }
5910 }
5911
5912 /* The backend must work out the sizes of all the other dynamic
5913 sections. */
5914 if (dynobj != NULL
5915 && bed->elf_backend_size_dynamic_sections != NULL
5916 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5917 return FALSE;
5918
5919 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5920 return FALSE;
5921
5922 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5923 {
5924 unsigned long section_sym_count;
5925 struct bfd_elf_version_tree *verdefs;
5926 asection *s;
5927
5928 /* Set up the version definition section. */
5929 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5930 BFD_ASSERT (s != NULL);
5931
5932 /* We may have created additional version definitions if we are
5933 just linking a regular application. */
5934 verdefs = info->version_info;
5935
5936 /* Skip anonymous version tag. */
5937 if (verdefs != NULL && verdefs->vernum == 0)
5938 verdefs = verdefs->next;
5939
5940 if (verdefs == NULL && !info->create_default_symver)
5941 s->flags |= SEC_EXCLUDE;
5942 else
5943 {
5944 unsigned int cdefs;
5945 bfd_size_type size;
5946 struct bfd_elf_version_tree *t;
5947 bfd_byte *p;
5948 Elf_Internal_Verdef def;
5949 Elf_Internal_Verdaux defaux;
5950 struct bfd_link_hash_entry *bh;
5951 struct elf_link_hash_entry *h;
5952 const char *name;
5953
5954 cdefs = 0;
5955 size = 0;
5956
5957 /* Make space for the base version. */
5958 size += sizeof (Elf_External_Verdef);
5959 size += sizeof (Elf_External_Verdaux);
5960 ++cdefs;
5961
5962 /* Make space for the default version. */
5963 if (info->create_default_symver)
5964 {
5965 size += sizeof (Elf_External_Verdef);
5966 ++cdefs;
5967 }
5968
5969 for (t = verdefs; t != NULL; t = t->next)
5970 {
5971 struct bfd_elf_version_deps *n;
5972
5973 /* Don't emit base version twice. */
5974 if (t->vernum == 0)
5975 continue;
5976
5977 size += sizeof (Elf_External_Verdef);
5978 size += sizeof (Elf_External_Verdaux);
5979 ++cdefs;
5980
5981 for (n = t->deps; n != NULL; n = n->next)
5982 size += sizeof (Elf_External_Verdaux);
5983 }
5984
5985 s->size = size;
5986 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5987 if (s->contents == NULL && s->size != 0)
5988 return FALSE;
5989
5990 /* Fill in the version definition section. */
5991
5992 p = s->contents;
5993
5994 def.vd_version = VER_DEF_CURRENT;
5995 def.vd_flags = VER_FLG_BASE;
5996 def.vd_ndx = 1;
5997 def.vd_cnt = 1;
5998 if (info->create_default_symver)
5999 {
6000 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6001 def.vd_next = sizeof (Elf_External_Verdef);
6002 }
6003 else
6004 {
6005 def.vd_aux = sizeof (Elf_External_Verdef);
6006 def.vd_next = (sizeof (Elf_External_Verdef)
6007 + sizeof (Elf_External_Verdaux));
6008 }
6009
6010 if (soname_indx != (bfd_size_type) -1)
6011 {
6012 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6013 soname_indx);
6014 def.vd_hash = bfd_elf_hash (soname);
6015 defaux.vda_name = soname_indx;
6016 name = soname;
6017 }
6018 else
6019 {
6020 bfd_size_type indx;
6021
6022 name = lbasename (output_bfd->filename);
6023 def.vd_hash = bfd_elf_hash (name);
6024 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6025 name, FALSE);
6026 if (indx == (bfd_size_type) -1)
6027 return FALSE;
6028 defaux.vda_name = indx;
6029 }
6030 defaux.vda_next = 0;
6031
6032 _bfd_elf_swap_verdef_out (output_bfd, &def,
6033 (Elf_External_Verdef *) p);
6034 p += sizeof (Elf_External_Verdef);
6035 if (info->create_default_symver)
6036 {
6037 /* Add a symbol representing this version. */
6038 bh = NULL;
6039 if (! (_bfd_generic_link_add_one_symbol
6040 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6041 0, NULL, FALSE,
6042 get_elf_backend_data (dynobj)->collect, &bh)))
6043 return FALSE;
6044 h = (struct elf_link_hash_entry *) bh;
6045 h->non_elf = 0;
6046 h->def_regular = 1;
6047 h->type = STT_OBJECT;
6048 h->verinfo.vertree = NULL;
6049
6050 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6051 return FALSE;
6052
6053 /* Create a duplicate of the base version with the same
6054 aux block, but different flags. */
6055 def.vd_flags = 0;
6056 def.vd_ndx = 2;
6057 def.vd_aux = sizeof (Elf_External_Verdef);
6058 if (verdefs)
6059 def.vd_next = (sizeof (Elf_External_Verdef)
6060 + sizeof (Elf_External_Verdaux));
6061 else
6062 def.vd_next = 0;
6063 _bfd_elf_swap_verdef_out (output_bfd, &def,
6064 (Elf_External_Verdef *) p);
6065 p += sizeof (Elf_External_Verdef);
6066 }
6067 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6068 (Elf_External_Verdaux *) p);
6069 p += sizeof (Elf_External_Verdaux);
6070
6071 for (t = verdefs; t != NULL; t = t->next)
6072 {
6073 unsigned int cdeps;
6074 struct bfd_elf_version_deps *n;
6075
6076 /* Don't emit the base version twice. */
6077 if (t->vernum == 0)
6078 continue;
6079
6080 cdeps = 0;
6081 for (n = t->deps; n != NULL; n = n->next)
6082 ++cdeps;
6083
6084 /* Add a symbol representing this version. */
6085 bh = NULL;
6086 if (! (_bfd_generic_link_add_one_symbol
6087 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6088 0, NULL, FALSE,
6089 get_elf_backend_data (dynobj)->collect, &bh)))
6090 return FALSE;
6091 h = (struct elf_link_hash_entry *) bh;
6092 h->non_elf = 0;
6093 h->def_regular = 1;
6094 h->type = STT_OBJECT;
6095 h->verinfo.vertree = t;
6096
6097 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6098 return FALSE;
6099
6100 def.vd_version = VER_DEF_CURRENT;
6101 def.vd_flags = 0;
6102 if (t->globals.list == NULL
6103 && t->locals.list == NULL
6104 && ! t->used)
6105 def.vd_flags |= VER_FLG_WEAK;
6106 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6107 def.vd_cnt = cdeps + 1;
6108 def.vd_hash = bfd_elf_hash (t->name);
6109 def.vd_aux = sizeof (Elf_External_Verdef);
6110 def.vd_next = 0;
6111
6112 /* If a basever node is next, it *must* be the last node in
6113 the chain, otherwise Verdef construction breaks. */
6114 if (t->next != NULL && t->next->vernum == 0)
6115 BFD_ASSERT (t->next->next == NULL);
6116
6117 if (t->next != NULL && t->next->vernum != 0)
6118 def.vd_next = (sizeof (Elf_External_Verdef)
6119 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6120
6121 _bfd_elf_swap_verdef_out (output_bfd, &def,
6122 (Elf_External_Verdef *) p);
6123 p += sizeof (Elf_External_Verdef);
6124
6125 defaux.vda_name = h->dynstr_index;
6126 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6127 h->dynstr_index);
6128 defaux.vda_next = 0;
6129 if (t->deps != NULL)
6130 defaux.vda_next = sizeof (Elf_External_Verdaux);
6131 t->name_indx = defaux.vda_name;
6132
6133 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6134 (Elf_External_Verdaux *) p);
6135 p += sizeof (Elf_External_Verdaux);
6136
6137 for (n = t->deps; n != NULL; n = n->next)
6138 {
6139 if (n->version_needed == NULL)
6140 {
6141 /* This can happen if there was an error in the
6142 version script. */
6143 defaux.vda_name = 0;
6144 }
6145 else
6146 {
6147 defaux.vda_name = n->version_needed->name_indx;
6148 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6149 defaux.vda_name);
6150 }
6151 if (n->next == NULL)
6152 defaux.vda_next = 0;
6153 else
6154 defaux.vda_next = sizeof (Elf_External_Verdaux);
6155
6156 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6157 (Elf_External_Verdaux *) p);
6158 p += sizeof (Elf_External_Verdaux);
6159 }
6160 }
6161
6162 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6163 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6164 return FALSE;
6165
6166 elf_tdata (output_bfd)->cverdefs = cdefs;
6167 }
6168
6169 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6170 {
6171 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6172 return FALSE;
6173 }
6174 else if (info->flags & DF_BIND_NOW)
6175 {
6176 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6177 return FALSE;
6178 }
6179
6180 if (info->flags_1)
6181 {
6182 if (info->executable)
6183 info->flags_1 &= ~ (DF_1_INITFIRST
6184 | DF_1_NODELETE
6185 | DF_1_NOOPEN);
6186 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6187 return FALSE;
6188 }
6189
6190 /* Work out the size of the version reference section. */
6191
6192 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6193 BFD_ASSERT (s != NULL);
6194 {
6195 struct elf_find_verdep_info sinfo;
6196
6197 sinfo.info = info;
6198 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6199 if (sinfo.vers == 0)
6200 sinfo.vers = 1;
6201 sinfo.failed = FALSE;
6202
6203 elf_link_hash_traverse (elf_hash_table (info),
6204 _bfd_elf_link_find_version_dependencies,
6205 &sinfo);
6206 if (sinfo.failed)
6207 return FALSE;
6208
6209 if (elf_tdata (output_bfd)->verref == NULL)
6210 s->flags |= SEC_EXCLUDE;
6211 else
6212 {
6213 Elf_Internal_Verneed *t;
6214 unsigned int size;
6215 unsigned int crefs;
6216 bfd_byte *p;
6217
6218 /* Build the version dependency section. */
6219 size = 0;
6220 crefs = 0;
6221 for (t = elf_tdata (output_bfd)->verref;
6222 t != NULL;
6223 t = t->vn_nextref)
6224 {
6225 Elf_Internal_Vernaux *a;
6226
6227 size += sizeof (Elf_External_Verneed);
6228 ++crefs;
6229 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6230 size += sizeof (Elf_External_Vernaux);
6231 }
6232
6233 s->size = size;
6234 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6235 if (s->contents == NULL)
6236 return FALSE;
6237
6238 p = s->contents;
6239 for (t = elf_tdata (output_bfd)->verref;
6240 t != NULL;
6241 t = t->vn_nextref)
6242 {
6243 unsigned int caux;
6244 Elf_Internal_Vernaux *a;
6245 bfd_size_type indx;
6246
6247 caux = 0;
6248 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6249 ++caux;
6250
6251 t->vn_version = VER_NEED_CURRENT;
6252 t->vn_cnt = caux;
6253 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6254 elf_dt_name (t->vn_bfd) != NULL
6255 ? elf_dt_name (t->vn_bfd)
6256 : lbasename (t->vn_bfd->filename),
6257 FALSE);
6258 if (indx == (bfd_size_type) -1)
6259 return FALSE;
6260 t->vn_file = indx;
6261 t->vn_aux = sizeof (Elf_External_Verneed);
6262 if (t->vn_nextref == NULL)
6263 t->vn_next = 0;
6264 else
6265 t->vn_next = (sizeof (Elf_External_Verneed)
6266 + caux * sizeof (Elf_External_Vernaux));
6267
6268 _bfd_elf_swap_verneed_out (output_bfd, t,
6269 (Elf_External_Verneed *) p);
6270 p += sizeof (Elf_External_Verneed);
6271
6272 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6273 {
6274 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6275 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6276 a->vna_nodename, FALSE);
6277 if (indx == (bfd_size_type) -1)
6278 return FALSE;
6279 a->vna_name = indx;
6280 if (a->vna_nextptr == NULL)
6281 a->vna_next = 0;
6282 else
6283 a->vna_next = sizeof (Elf_External_Vernaux);
6284
6285 _bfd_elf_swap_vernaux_out (output_bfd, a,
6286 (Elf_External_Vernaux *) p);
6287 p += sizeof (Elf_External_Vernaux);
6288 }
6289 }
6290
6291 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6292 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6293 return FALSE;
6294
6295 elf_tdata (output_bfd)->cverrefs = crefs;
6296 }
6297 }
6298
6299 if ((elf_tdata (output_bfd)->cverrefs == 0
6300 && elf_tdata (output_bfd)->cverdefs == 0)
6301 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6302 &section_sym_count) == 0)
6303 {
6304 s = bfd_get_linker_section (dynobj, ".gnu.version");
6305 s->flags |= SEC_EXCLUDE;
6306 }
6307 }
6308 return TRUE;
6309 }
6310
6311 /* Find the first non-excluded output section. We'll use its
6312 section symbol for some emitted relocs. */
6313 void
6314 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6315 {
6316 asection *s;
6317
6318 for (s = output_bfd->sections; s != NULL; s = s->next)
6319 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6320 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6321 {
6322 elf_hash_table (info)->text_index_section = s;
6323 break;
6324 }
6325 }
6326
6327 /* Find two non-excluded output sections, one for code, one for data.
6328 We'll use their section symbols for some emitted relocs. */
6329 void
6330 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6331 {
6332 asection *s;
6333
6334 /* Data first, since setting text_index_section changes
6335 _bfd_elf_link_omit_section_dynsym. */
6336 for (s = output_bfd->sections; s != NULL; s = s->next)
6337 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6338 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6339 {
6340 elf_hash_table (info)->data_index_section = s;
6341 break;
6342 }
6343
6344 for (s = output_bfd->sections; s != NULL; s = s->next)
6345 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6346 == (SEC_ALLOC | SEC_READONLY))
6347 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6348 {
6349 elf_hash_table (info)->text_index_section = s;
6350 break;
6351 }
6352
6353 if (elf_hash_table (info)->text_index_section == NULL)
6354 elf_hash_table (info)->text_index_section
6355 = elf_hash_table (info)->data_index_section;
6356 }
6357
6358 bfd_boolean
6359 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6360 {
6361 const struct elf_backend_data *bed;
6362
6363 if (!is_elf_hash_table (info->hash))
6364 return TRUE;
6365
6366 bed = get_elf_backend_data (output_bfd);
6367 (*bed->elf_backend_init_index_section) (output_bfd, info);
6368
6369 if (elf_hash_table (info)->dynamic_sections_created)
6370 {
6371 bfd *dynobj;
6372 asection *s;
6373 bfd_size_type dynsymcount;
6374 unsigned long section_sym_count;
6375 unsigned int dtagcount;
6376
6377 dynobj = elf_hash_table (info)->dynobj;
6378
6379 /* Assign dynsym indicies. In a shared library we generate a
6380 section symbol for each output section, which come first.
6381 Next come all of the back-end allocated local dynamic syms,
6382 followed by the rest of the global symbols. */
6383
6384 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6385 &section_sym_count);
6386
6387 /* Work out the size of the symbol version section. */
6388 s = bfd_get_linker_section (dynobj, ".gnu.version");
6389 BFD_ASSERT (s != NULL);
6390 if (dynsymcount != 0
6391 && (s->flags & SEC_EXCLUDE) == 0)
6392 {
6393 s->size = dynsymcount * sizeof (Elf_External_Versym);
6394 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6395 if (s->contents == NULL)
6396 return FALSE;
6397
6398 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6399 return FALSE;
6400 }
6401
6402 /* Set the size of the .dynsym and .hash sections. We counted
6403 the number of dynamic symbols in elf_link_add_object_symbols.
6404 We will build the contents of .dynsym and .hash when we build
6405 the final symbol table, because until then we do not know the
6406 correct value to give the symbols. We built the .dynstr
6407 section as we went along in elf_link_add_object_symbols. */
6408 s = bfd_get_linker_section (dynobj, ".dynsym");
6409 BFD_ASSERT (s != NULL);
6410 s->size = dynsymcount * bed->s->sizeof_sym;
6411
6412 if (dynsymcount != 0)
6413 {
6414 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6415 if (s->contents == NULL)
6416 return FALSE;
6417
6418 /* The first entry in .dynsym is a dummy symbol.
6419 Clear all the section syms, in case we don't output them all. */
6420 ++section_sym_count;
6421 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6422 }
6423
6424 elf_hash_table (info)->bucketcount = 0;
6425
6426 /* Compute the size of the hashing table. As a side effect this
6427 computes the hash values for all the names we export. */
6428 if (info->emit_hash)
6429 {
6430 unsigned long int *hashcodes;
6431 struct hash_codes_info hashinf;
6432 bfd_size_type amt;
6433 unsigned long int nsyms;
6434 size_t bucketcount;
6435 size_t hash_entry_size;
6436
6437 /* Compute the hash values for all exported symbols. At the same
6438 time store the values in an array so that we could use them for
6439 optimizations. */
6440 amt = dynsymcount * sizeof (unsigned long int);
6441 hashcodes = (unsigned long int *) bfd_malloc (amt);
6442 if (hashcodes == NULL)
6443 return FALSE;
6444 hashinf.hashcodes = hashcodes;
6445 hashinf.error = FALSE;
6446
6447 /* Put all hash values in HASHCODES. */
6448 elf_link_hash_traverse (elf_hash_table (info),
6449 elf_collect_hash_codes, &hashinf);
6450 if (hashinf.error)
6451 {
6452 free (hashcodes);
6453 return FALSE;
6454 }
6455
6456 nsyms = hashinf.hashcodes - hashcodes;
6457 bucketcount
6458 = compute_bucket_count (info, hashcodes, nsyms, 0);
6459 free (hashcodes);
6460
6461 if (bucketcount == 0)
6462 return FALSE;
6463
6464 elf_hash_table (info)->bucketcount = bucketcount;
6465
6466 s = bfd_get_linker_section (dynobj, ".hash");
6467 BFD_ASSERT (s != NULL);
6468 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6469 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6470 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6471 if (s->contents == NULL)
6472 return FALSE;
6473
6474 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6475 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6476 s->contents + hash_entry_size);
6477 }
6478
6479 if (info->emit_gnu_hash)
6480 {
6481 size_t i, cnt;
6482 unsigned char *contents;
6483 struct collect_gnu_hash_codes cinfo;
6484 bfd_size_type amt;
6485 size_t bucketcount;
6486
6487 memset (&cinfo, 0, sizeof (cinfo));
6488
6489 /* Compute the hash values for all exported symbols. At the same
6490 time store the values in an array so that we could use them for
6491 optimizations. */
6492 amt = dynsymcount * 2 * sizeof (unsigned long int);
6493 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6494 if (cinfo.hashcodes == NULL)
6495 return FALSE;
6496
6497 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6498 cinfo.min_dynindx = -1;
6499 cinfo.output_bfd = output_bfd;
6500 cinfo.bed = bed;
6501
6502 /* Put all hash values in HASHCODES. */
6503 elf_link_hash_traverse (elf_hash_table (info),
6504 elf_collect_gnu_hash_codes, &cinfo);
6505 if (cinfo.error)
6506 {
6507 free (cinfo.hashcodes);
6508 return FALSE;
6509 }
6510
6511 bucketcount
6512 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6513
6514 if (bucketcount == 0)
6515 {
6516 free (cinfo.hashcodes);
6517 return FALSE;
6518 }
6519
6520 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6521 BFD_ASSERT (s != NULL);
6522
6523 if (cinfo.nsyms == 0)
6524 {
6525 /* Empty .gnu.hash section is special. */
6526 BFD_ASSERT (cinfo.min_dynindx == -1);
6527 free (cinfo.hashcodes);
6528 s->size = 5 * 4 + bed->s->arch_size / 8;
6529 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6530 if (contents == NULL)
6531 return FALSE;
6532 s->contents = contents;
6533 /* 1 empty bucket. */
6534 bfd_put_32 (output_bfd, 1, contents);
6535 /* SYMIDX above the special symbol 0. */
6536 bfd_put_32 (output_bfd, 1, contents + 4);
6537 /* Just one word for bitmask. */
6538 bfd_put_32 (output_bfd, 1, contents + 8);
6539 /* Only hash fn bloom filter. */
6540 bfd_put_32 (output_bfd, 0, contents + 12);
6541 /* No hashes are valid - empty bitmask. */
6542 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6543 /* No hashes in the only bucket. */
6544 bfd_put_32 (output_bfd, 0,
6545 contents + 16 + bed->s->arch_size / 8);
6546 }
6547 else
6548 {
6549 unsigned long int maskwords, maskbitslog2, x;
6550 BFD_ASSERT (cinfo.min_dynindx != -1);
6551
6552 x = cinfo.nsyms;
6553 maskbitslog2 = 1;
6554 while ((x >>= 1) != 0)
6555 ++maskbitslog2;
6556 if (maskbitslog2 < 3)
6557 maskbitslog2 = 5;
6558 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6559 maskbitslog2 = maskbitslog2 + 3;
6560 else
6561 maskbitslog2 = maskbitslog2 + 2;
6562 if (bed->s->arch_size == 64)
6563 {
6564 if (maskbitslog2 == 5)
6565 maskbitslog2 = 6;
6566 cinfo.shift1 = 6;
6567 }
6568 else
6569 cinfo.shift1 = 5;
6570 cinfo.mask = (1 << cinfo.shift1) - 1;
6571 cinfo.shift2 = maskbitslog2;
6572 cinfo.maskbits = 1 << maskbitslog2;
6573 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6574 amt = bucketcount * sizeof (unsigned long int) * 2;
6575 amt += maskwords * sizeof (bfd_vma);
6576 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6577 if (cinfo.bitmask == NULL)
6578 {
6579 free (cinfo.hashcodes);
6580 return FALSE;
6581 }
6582
6583 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6584 cinfo.indx = cinfo.counts + bucketcount;
6585 cinfo.symindx = dynsymcount - cinfo.nsyms;
6586 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6587
6588 /* Determine how often each hash bucket is used. */
6589 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6590 for (i = 0; i < cinfo.nsyms; ++i)
6591 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6592
6593 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6594 if (cinfo.counts[i] != 0)
6595 {
6596 cinfo.indx[i] = cnt;
6597 cnt += cinfo.counts[i];
6598 }
6599 BFD_ASSERT (cnt == dynsymcount);
6600 cinfo.bucketcount = bucketcount;
6601 cinfo.local_indx = cinfo.min_dynindx;
6602
6603 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6604 s->size += cinfo.maskbits / 8;
6605 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6606 if (contents == NULL)
6607 {
6608 free (cinfo.bitmask);
6609 free (cinfo.hashcodes);
6610 return FALSE;
6611 }
6612
6613 s->contents = contents;
6614 bfd_put_32 (output_bfd, bucketcount, contents);
6615 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6616 bfd_put_32 (output_bfd, maskwords, contents + 8);
6617 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6618 contents += 16 + cinfo.maskbits / 8;
6619
6620 for (i = 0; i < bucketcount; ++i)
6621 {
6622 if (cinfo.counts[i] == 0)
6623 bfd_put_32 (output_bfd, 0, contents);
6624 else
6625 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6626 contents += 4;
6627 }
6628
6629 cinfo.contents = contents;
6630
6631 /* Renumber dynamic symbols, populate .gnu.hash section. */
6632 elf_link_hash_traverse (elf_hash_table (info),
6633 elf_renumber_gnu_hash_syms, &cinfo);
6634
6635 contents = s->contents + 16;
6636 for (i = 0; i < maskwords; ++i)
6637 {
6638 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6639 contents);
6640 contents += bed->s->arch_size / 8;
6641 }
6642
6643 free (cinfo.bitmask);
6644 free (cinfo.hashcodes);
6645 }
6646 }
6647
6648 s = bfd_get_linker_section (dynobj, ".dynstr");
6649 BFD_ASSERT (s != NULL);
6650
6651 elf_finalize_dynstr (output_bfd, info);
6652
6653 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6654
6655 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6656 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6657 return FALSE;
6658 }
6659
6660 return TRUE;
6661 }
6662 \f
6663 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6664
6665 static void
6666 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6667 asection *sec)
6668 {
6669 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6670 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6671 }
6672
6673 /* Finish SHF_MERGE section merging. */
6674
6675 bfd_boolean
6676 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6677 {
6678 bfd *ibfd;
6679 asection *sec;
6680
6681 if (!is_elf_hash_table (info->hash))
6682 return FALSE;
6683
6684 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6685 if ((ibfd->flags & DYNAMIC) == 0)
6686 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6687 if ((sec->flags & SEC_MERGE) != 0
6688 && !bfd_is_abs_section (sec->output_section))
6689 {
6690 struct bfd_elf_section_data *secdata;
6691
6692 secdata = elf_section_data (sec);
6693 if (! _bfd_add_merge_section (abfd,
6694 &elf_hash_table (info)->merge_info,
6695 sec, &secdata->sec_info))
6696 return FALSE;
6697 else if (secdata->sec_info)
6698 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6699 }
6700
6701 if (elf_hash_table (info)->merge_info != NULL)
6702 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6703 merge_sections_remove_hook);
6704 return TRUE;
6705 }
6706
6707 /* Create an entry in an ELF linker hash table. */
6708
6709 struct bfd_hash_entry *
6710 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6711 struct bfd_hash_table *table,
6712 const char *string)
6713 {
6714 /* Allocate the structure if it has not already been allocated by a
6715 subclass. */
6716 if (entry == NULL)
6717 {
6718 entry = (struct bfd_hash_entry *)
6719 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6720 if (entry == NULL)
6721 return entry;
6722 }
6723
6724 /* Call the allocation method of the superclass. */
6725 entry = _bfd_link_hash_newfunc (entry, table, string);
6726 if (entry != NULL)
6727 {
6728 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6729 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6730
6731 /* Set local fields. */
6732 ret->indx = -1;
6733 ret->dynindx = -1;
6734 ret->got = htab->init_got_refcount;
6735 ret->plt = htab->init_plt_refcount;
6736 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6737 - offsetof (struct elf_link_hash_entry, size)));
6738 /* Assume that we have been called by a non-ELF symbol reader.
6739 This flag is then reset by the code which reads an ELF input
6740 file. This ensures that a symbol created by a non-ELF symbol
6741 reader will have the flag set correctly. */
6742 ret->non_elf = 1;
6743 }
6744
6745 return entry;
6746 }
6747
6748 /* Copy data from an indirect symbol to its direct symbol, hiding the
6749 old indirect symbol. Also used for copying flags to a weakdef. */
6750
6751 void
6752 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6753 struct elf_link_hash_entry *dir,
6754 struct elf_link_hash_entry *ind)
6755 {
6756 struct elf_link_hash_table *htab;
6757
6758 /* Copy down any references that we may have already seen to the
6759 symbol which just became indirect. */
6760
6761 dir->ref_dynamic |= ind->ref_dynamic;
6762 dir->ref_regular |= ind->ref_regular;
6763 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6764 dir->non_got_ref |= ind->non_got_ref;
6765 dir->needs_plt |= ind->needs_plt;
6766 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6767
6768 if (ind->root.type != bfd_link_hash_indirect)
6769 return;
6770
6771 /* Copy over the global and procedure linkage table refcount entries.
6772 These may have been already set up by a check_relocs routine. */
6773 htab = elf_hash_table (info);
6774 if (ind->got.refcount > htab->init_got_refcount.refcount)
6775 {
6776 if (dir->got.refcount < 0)
6777 dir->got.refcount = 0;
6778 dir->got.refcount += ind->got.refcount;
6779 ind->got.refcount = htab->init_got_refcount.refcount;
6780 }
6781
6782 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6783 {
6784 if (dir->plt.refcount < 0)
6785 dir->plt.refcount = 0;
6786 dir->plt.refcount += ind->plt.refcount;
6787 ind->plt.refcount = htab->init_plt_refcount.refcount;
6788 }
6789
6790 if (ind->dynindx != -1)
6791 {
6792 if (dir->dynindx != -1)
6793 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6794 dir->dynindx = ind->dynindx;
6795 dir->dynstr_index = ind->dynstr_index;
6796 ind->dynindx = -1;
6797 ind->dynstr_index = 0;
6798 }
6799 }
6800
6801 void
6802 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6803 struct elf_link_hash_entry *h,
6804 bfd_boolean force_local)
6805 {
6806 /* STT_GNU_IFUNC symbol must go through PLT. */
6807 if (h->type != STT_GNU_IFUNC)
6808 {
6809 h->plt = elf_hash_table (info)->init_plt_offset;
6810 h->needs_plt = 0;
6811 }
6812 if (force_local)
6813 {
6814 h->forced_local = 1;
6815 if (h->dynindx != -1)
6816 {
6817 h->dynindx = -1;
6818 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6819 h->dynstr_index);
6820 }
6821 }
6822 }
6823
6824 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6825 caller. */
6826
6827 bfd_boolean
6828 _bfd_elf_link_hash_table_init
6829 (struct elf_link_hash_table *table,
6830 bfd *abfd,
6831 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6832 struct bfd_hash_table *,
6833 const char *),
6834 unsigned int entsize,
6835 enum elf_target_id target_id)
6836 {
6837 bfd_boolean ret;
6838 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6839
6840 table->init_got_refcount.refcount = can_refcount - 1;
6841 table->init_plt_refcount.refcount = can_refcount - 1;
6842 table->init_got_offset.offset = -(bfd_vma) 1;
6843 table->init_plt_offset.offset = -(bfd_vma) 1;
6844 /* The first dynamic symbol is a dummy. */
6845 table->dynsymcount = 1;
6846
6847 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6848
6849 table->root.type = bfd_link_elf_hash_table;
6850 table->hash_table_id = target_id;
6851
6852 return ret;
6853 }
6854
6855 /* Create an ELF linker hash table. */
6856
6857 struct bfd_link_hash_table *
6858 _bfd_elf_link_hash_table_create (bfd *abfd)
6859 {
6860 struct elf_link_hash_table *ret;
6861 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6862
6863 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6864 if (ret == NULL)
6865 return NULL;
6866
6867 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6868 sizeof (struct elf_link_hash_entry),
6869 GENERIC_ELF_DATA))
6870 {
6871 free (ret);
6872 return NULL;
6873 }
6874 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6875
6876 return &ret->root;
6877 }
6878
6879 /* Destroy an ELF linker hash table. */
6880
6881 void
6882 _bfd_elf_link_hash_table_free (bfd *obfd)
6883 {
6884 struct elf_link_hash_table *htab;
6885
6886 htab = (struct elf_link_hash_table *) obfd->link.hash;
6887 if (htab->dynstr != NULL)
6888 _bfd_elf_strtab_free (htab->dynstr);
6889 _bfd_merge_sections_free (htab->merge_info);
6890 _bfd_generic_link_hash_table_free (obfd);
6891 }
6892
6893 /* This is a hook for the ELF emulation code in the generic linker to
6894 tell the backend linker what file name to use for the DT_NEEDED
6895 entry for a dynamic object. */
6896
6897 void
6898 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6899 {
6900 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6901 && bfd_get_format (abfd) == bfd_object)
6902 elf_dt_name (abfd) = name;
6903 }
6904
6905 int
6906 bfd_elf_get_dyn_lib_class (bfd *abfd)
6907 {
6908 int lib_class;
6909 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6910 && bfd_get_format (abfd) == bfd_object)
6911 lib_class = elf_dyn_lib_class (abfd);
6912 else
6913 lib_class = 0;
6914 return lib_class;
6915 }
6916
6917 void
6918 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6919 {
6920 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6921 && bfd_get_format (abfd) == bfd_object)
6922 elf_dyn_lib_class (abfd) = lib_class;
6923 }
6924
6925 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6926 the linker ELF emulation code. */
6927
6928 struct bfd_link_needed_list *
6929 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6930 struct bfd_link_info *info)
6931 {
6932 if (! is_elf_hash_table (info->hash))
6933 return NULL;
6934 return elf_hash_table (info)->needed;
6935 }
6936
6937 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6938 hook for the linker ELF emulation code. */
6939
6940 struct bfd_link_needed_list *
6941 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6942 struct bfd_link_info *info)
6943 {
6944 if (! is_elf_hash_table (info->hash))
6945 return NULL;
6946 return elf_hash_table (info)->runpath;
6947 }
6948
6949 /* Get the name actually used for a dynamic object for a link. This
6950 is the SONAME entry if there is one. Otherwise, it is the string
6951 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6952
6953 const char *
6954 bfd_elf_get_dt_soname (bfd *abfd)
6955 {
6956 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6957 && bfd_get_format (abfd) == bfd_object)
6958 return elf_dt_name (abfd);
6959 return NULL;
6960 }
6961
6962 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6963 the ELF linker emulation code. */
6964
6965 bfd_boolean
6966 bfd_elf_get_bfd_needed_list (bfd *abfd,
6967 struct bfd_link_needed_list **pneeded)
6968 {
6969 asection *s;
6970 bfd_byte *dynbuf = NULL;
6971 unsigned int elfsec;
6972 unsigned long shlink;
6973 bfd_byte *extdyn, *extdynend;
6974 size_t extdynsize;
6975 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6976
6977 *pneeded = NULL;
6978
6979 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6980 || bfd_get_format (abfd) != bfd_object)
6981 return TRUE;
6982
6983 s = bfd_get_section_by_name (abfd, ".dynamic");
6984 if (s == NULL || s->size == 0)
6985 return TRUE;
6986
6987 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6988 goto error_return;
6989
6990 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6991 if (elfsec == SHN_BAD)
6992 goto error_return;
6993
6994 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6995
6996 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6997 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6998
6999 extdyn = dynbuf;
7000 extdynend = extdyn + s->size;
7001 for (; extdyn < extdynend; extdyn += extdynsize)
7002 {
7003 Elf_Internal_Dyn dyn;
7004
7005 (*swap_dyn_in) (abfd, extdyn, &dyn);
7006
7007 if (dyn.d_tag == DT_NULL)
7008 break;
7009
7010 if (dyn.d_tag == DT_NEEDED)
7011 {
7012 const char *string;
7013 struct bfd_link_needed_list *l;
7014 unsigned int tagv = dyn.d_un.d_val;
7015 bfd_size_type amt;
7016
7017 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7018 if (string == NULL)
7019 goto error_return;
7020
7021 amt = sizeof *l;
7022 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7023 if (l == NULL)
7024 goto error_return;
7025
7026 l->by = abfd;
7027 l->name = string;
7028 l->next = *pneeded;
7029 *pneeded = l;
7030 }
7031 }
7032
7033 free (dynbuf);
7034
7035 return TRUE;
7036
7037 error_return:
7038 if (dynbuf != NULL)
7039 free (dynbuf);
7040 return FALSE;
7041 }
7042
7043 struct elf_symbuf_symbol
7044 {
7045 unsigned long st_name; /* Symbol name, index in string tbl */
7046 unsigned char st_info; /* Type and binding attributes */
7047 unsigned char st_other; /* Visibilty, and target specific */
7048 };
7049
7050 struct elf_symbuf_head
7051 {
7052 struct elf_symbuf_symbol *ssym;
7053 bfd_size_type count;
7054 unsigned int st_shndx;
7055 };
7056
7057 struct elf_symbol
7058 {
7059 union
7060 {
7061 Elf_Internal_Sym *isym;
7062 struct elf_symbuf_symbol *ssym;
7063 } u;
7064 const char *name;
7065 };
7066
7067 /* Sort references to symbols by ascending section number. */
7068
7069 static int
7070 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7071 {
7072 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7073 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7074
7075 return s1->st_shndx - s2->st_shndx;
7076 }
7077
7078 static int
7079 elf_sym_name_compare (const void *arg1, const void *arg2)
7080 {
7081 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7082 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7083 return strcmp (s1->name, s2->name);
7084 }
7085
7086 static struct elf_symbuf_head *
7087 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7088 {
7089 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7090 struct elf_symbuf_symbol *ssym;
7091 struct elf_symbuf_head *ssymbuf, *ssymhead;
7092 bfd_size_type i, shndx_count, total_size;
7093
7094 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7095 if (indbuf == NULL)
7096 return NULL;
7097
7098 for (ind = indbuf, i = 0; i < symcount; i++)
7099 if (isymbuf[i].st_shndx != SHN_UNDEF)
7100 *ind++ = &isymbuf[i];
7101 indbufend = ind;
7102
7103 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7104 elf_sort_elf_symbol);
7105
7106 shndx_count = 0;
7107 if (indbufend > indbuf)
7108 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7109 if (ind[0]->st_shndx != ind[1]->st_shndx)
7110 shndx_count++;
7111
7112 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7113 + (indbufend - indbuf) * sizeof (*ssym));
7114 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7115 if (ssymbuf == NULL)
7116 {
7117 free (indbuf);
7118 return NULL;
7119 }
7120
7121 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7122 ssymbuf->ssym = NULL;
7123 ssymbuf->count = shndx_count;
7124 ssymbuf->st_shndx = 0;
7125 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7126 {
7127 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7128 {
7129 ssymhead++;
7130 ssymhead->ssym = ssym;
7131 ssymhead->count = 0;
7132 ssymhead->st_shndx = (*ind)->st_shndx;
7133 }
7134 ssym->st_name = (*ind)->st_name;
7135 ssym->st_info = (*ind)->st_info;
7136 ssym->st_other = (*ind)->st_other;
7137 ssymhead->count++;
7138 }
7139 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7140 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7141 == total_size));
7142
7143 free (indbuf);
7144 return ssymbuf;
7145 }
7146
7147 /* Check if 2 sections define the same set of local and global
7148 symbols. */
7149
7150 static bfd_boolean
7151 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7152 struct bfd_link_info *info)
7153 {
7154 bfd *bfd1, *bfd2;
7155 const struct elf_backend_data *bed1, *bed2;
7156 Elf_Internal_Shdr *hdr1, *hdr2;
7157 bfd_size_type symcount1, symcount2;
7158 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7159 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7160 Elf_Internal_Sym *isym, *isymend;
7161 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7162 bfd_size_type count1, count2, i;
7163 unsigned int shndx1, shndx2;
7164 bfd_boolean result;
7165
7166 bfd1 = sec1->owner;
7167 bfd2 = sec2->owner;
7168
7169 /* Both sections have to be in ELF. */
7170 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7171 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7172 return FALSE;
7173
7174 if (elf_section_type (sec1) != elf_section_type (sec2))
7175 return FALSE;
7176
7177 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7178 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7179 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7180 return FALSE;
7181
7182 bed1 = get_elf_backend_data (bfd1);
7183 bed2 = get_elf_backend_data (bfd2);
7184 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7185 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7186 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7187 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7188
7189 if (symcount1 == 0 || symcount2 == 0)
7190 return FALSE;
7191
7192 result = FALSE;
7193 isymbuf1 = NULL;
7194 isymbuf2 = NULL;
7195 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7196 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7197
7198 if (ssymbuf1 == NULL)
7199 {
7200 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7201 NULL, NULL, NULL);
7202 if (isymbuf1 == NULL)
7203 goto done;
7204
7205 if (!info->reduce_memory_overheads)
7206 elf_tdata (bfd1)->symbuf = ssymbuf1
7207 = elf_create_symbuf (symcount1, isymbuf1);
7208 }
7209
7210 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7211 {
7212 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7213 NULL, NULL, NULL);
7214 if (isymbuf2 == NULL)
7215 goto done;
7216
7217 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7218 elf_tdata (bfd2)->symbuf = ssymbuf2
7219 = elf_create_symbuf (symcount2, isymbuf2);
7220 }
7221
7222 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7223 {
7224 /* Optimized faster version. */
7225 bfd_size_type lo, hi, mid;
7226 struct elf_symbol *symp;
7227 struct elf_symbuf_symbol *ssym, *ssymend;
7228
7229 lo = 0;
7230 hi = ssymbuf1->count;
7231 ssymbuf1++;
7232 count1 = 0;
7233 while (lo < hi)
7234 {
7235 mid = (lo + hi) / 2;
7236 if (shndx1 < ssymbuf1[mid].st_shndx)
7237 hi = mid;
7238 else if (shndx1 > ssymbuf1[mid].st_shndx)
7239 lo = mid + 1;
7240 else
7241 {
7242 count1 = ssymbuf1[mid].count;
7243 ssymbuf1 += mid;
7244 break;
7245 }
7246 }
7247
7248 lo = 0;
7249 hi = ssymbuf2->count;
7250 ssymbuf2++;
7251 count2 = 0;
7252 while (lo < hi)
7253 {
7254 mid = (lo + hi) / 2;
7255 if (shndx2 < ssymbuf2[mid].st_shndx)
7256 hi = mid;
7257 else if (shndx2 > ssymbuf2[mid].st_shndx)
7258 lo = mid + 1;
7259 else
7260 {
7261 count2 = ssymbuf2[mid].count;
7262 ssymbuf2 += mid;
7263 break;
7264 }
7265 }
7266
7267 if (count1 == 0 || count2 == 0 || count1 != count2)
7268 goto done;
7269
7270 symtable1
7271 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7272 symtable2
7273 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7274 if (symtable1 == NULL || symtable2 == NULL)
7275 goto done;
7276
7277 symp = symtable1;
7278 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7279 ssym < ssymend; ssym++, symp++)
7280 {
7281 symp->u.ssym = ssym;
7282 symp->name = bfd_elf_string_from_elf_section (bfd1,
7283 hdr1->sh_link,
7284 ssym->st_name);
7285 }
7286
7287 symp = symtable2;
7288 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7289 ssym < ssymend; ssym++, symp++)
7290 {
7291 symp->u.ssym = ssym;
7292 symp->name = bfd_elf_string_from_elf_section (bfd2,
7293 hdr2->sh_link,
7294 ssym->st_name);
7295 }
7296
7297 /* Sort symbol by name. */
7298 qsort (symtable1, count1, sizeof (struct elf_symbol),
7299 elf_sym_name_compare);
7300 qsort (symtable2, count1, sizeof (struct elf_symbol),
7301 elf_sym_name_compare);
7302
7303 for (i = 0; i < count1; i++)
7304 /* Two symbols must have the same binding, type and name. */
7305 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7306 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7307 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7308 goto done;
7309
7310 result = TRUE;
7311 goto done;
7312 }
7313
7314 symtable1 = (struct elf_symbol *)
7315 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7316 symtable2 = (struct elf_symbol *)
7317 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7318 if (symtable1 == NULL || symtable2 == NULL)
7319 goto done;
7320
7321 /* Count definitions in the section. */
7322 count1 = 0;
7323 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7324 if (isym->st_shndx == shndx1)
7325 symtable1[count1++].u.isym = isym;
7326
7327 count2 = 0;
7328 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7329 if (isym->st_shndx == shndx2)
7330 symtable2[count2++].u.isym = isym;
7331
7332 if (count1 == 0 || count2 == 0 || count1 != count2)
7333 goto done;
7334
7335 for (i = 0; i < count1; i++)
7336 symtable1[i].name
7337 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7338 symtable1[i].u.isym->st_name);
7339
7340 for (i = 0; i < count2; i++)
7341 symtable2[i].name
7342 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7343 symtable2[i].u.isym->st_name);
7344
7345 /* Sort symbol by name. */
7346 qsort (symtable1, count1, sizeof (struct elf_symbol),
7347 elf_sym_name_compare);
7348 qsort (symtable2, count1, sizeof (struct elf_symbol),
7349 elf_sym_name_compare);
7350
7351 for (i = 0; i < count1; i++)
7352 /* Two symbols must have the same binding, type and name. */
7353 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7354 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7355 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7356 goto done;
7357
7358 result = TRUE;
7359
7360 done:
7361 if (symtable1)
7362 free (symtable1);
7363 if (symtable2)
7364 free (symtable2);
7365 if (isymbuf1)
7366 free (isymbuf1);
7367 if (isymbuf2)
7368 free (isymbuf2);
7369
7370 return result;
7371 }
7372
7373 /* Return TRUE if 2 section types are compatible. */
7374
7375 bfd_boolean
7376 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7377 bfd *bbfd, const asection *bsec)
7378 {
7379 if (asec == NULL
7380 || bsec == NULL
7381 || abfd->xvec->flavour != bfd_target_elf_flavour
7382 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7383 return TRUE;
7384
7385 return elf_section_type (asec) == elf_section_type (bsec);
7386 }
7387 \f
7388 /* Final phase of ELF linker. */
7389
7390 /* A structure we use to avoid passing large numbers of arguments. */
7391
7392 struct elf_final_link_info
7393 {
7394 /* General link information. */
7395 struct bfd_link_info *info;
7396 /* Output BFD. */
7397 bfd *output_bfd;
7398 /* Symbol string table. */
7399 struct bfd_strtab_hash *symstrtab;
7400 /* .dynsym section. */
7401 asection *dynsym_sec;
7402 /* .hash section. */
7403 asection *hash_sec;
7404 /* symbol version section (.gnu.version). */
7405 asection *symver_sec;
7406 /* Buffer large enough to hold contents of any section. */
7407 bfd_byte *contents;
7408 /* Buffer large enough to hold external relocs of any section. */
7409 void *external_relocs;
7410 /* Buffer large enough to hold internal relocs of any section. */
7411 Elf_Internal_Rela *internal_relocs;
7412 /* Buffer large enough to hold external local symbols of any input
7413 BFD. */
7414 bfd_byte *external_syms;
7415 /* And a buffer for symbol section indices. */
7416 Elf_External_Sym_Shndx *locsym_shndx;
7417 /* Buffer large enough to hold internal local symbols of any input
7418 BFD. */
7419 Elf_Internal_Sym *internal_syms;
7420 /* Array large enough to hold a symbol index for each local symbol
7421 of any input BFD. */
7422 long *indices;
7423 /* Array large enough to hold a section pointer for each local
7424 symbol of any input BFD. */
7425 asection **sections;
7426 /* Buffer to hold swapped out symbols. */
7427 bfd_byte *symbuf;
7428 /* And one for symbol section indices. */
7429 Elf_External_Sym_Shndx *symshndxbuf;
7430 /* Number of swapped out symbols in buffer. */
7431 size_t symbuf_count;
7432 /* Number of symbols which fit in symbuf. */
7433 size_t symbuf_size;
7434 /* And same for symshndxbuf. */
7435 size_t shndxbuf_size;
7436 /* Number of STT_FILE syms seen. */
7437 size_t filesym_count;
7438 };
7439
7440 /* This struct is used to pass information to elf_link_output_extsym. */
7441
7442 struct elf_outext_info
7443 {
7444 bfd_boolean failed;
7445 bfd_boolean localsyms;
7446 bfd_boolean file_sym_done;
7447 struct elf_final_link_info *flinfo;
7448 };
7449
7450
7451 /* Support for evaluating a complex relocation.
7452
7453 Complex relocations are generalized, self-describing relocations. The
7454 implementation of them consists of two parts: complex symbols, and the
7455 relocations themselves.
7456
7457 The relocations are use a reserved elf-wide relocation type code (R_RELC
7458 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7459 information (start bit, end bit, word width, etc) into the addend. This
7460 information is extracted from CGEN-generated operand tables within gas.
7461
7462 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7463 internal) representing prefix-notation expressions, including but not
7464 limited to those sorts of expressions normally encoded as addends in the
7465 addend field. The symbol mangling format is:
7466
7467 <node> := <literal>
7468 | <unary-operator> ':' <node>
7469 | <binary-operator> ':' <node> ':' <node>
7470 ;
7471
7472 <literal> := 's' <digits=N> ':' <N character symbol name>
7473 | 'S' <digits=N> ':' <N character section name>
7474 | '#' <hexdigits>
7475 ;
7476
7477 <binary-operator> := as in C
7478 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7479
7480 static void
7481 set_symbol_value (bfd *bfd_with_globals,
7482 Elf_Internal_Sym *isymbuf,
7483 size_t locsymcount,
7484 size_t symidx,
7485 bfd_vma val)
7486 {
7487 struct elf_link_hash_entry **sym_hashes;
7488 struct elf_link_hash_entry *h;
7489 size_t extsymoff = locsymcount;
7490
7491 if (symidx < locsymcount)
7492 {
7493 Elf_Internal_Sym *sym;
7494
7495 sym = isymbuf + symidx;
7496 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7497 {
7498 /* It is a local symbol: move it to the
7499 "absolute" section and give it a value. */
7500 sym->st_shndx = SHN_ABS;
7501 sym->st_value = val;
7502 return;
7503 }
7504 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7505 extsymoff = 0;
7506 }
7507
7508 /* It is a global symbol: set its link type
7509 to "defined" and give it a value. */
7510
7511 sym_hashes = elf_sym_hashes (bfd_with_globals);
7512 h = sym_hashes [symidx - extsymoff];
7513 while (h->root.type == bfd_link_hash_indirect
7514 || h->root.type == bfd_link_hash_warning)
7515 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7516 h->root.type = bfd_link_hash_defined;
7517 h->root.u.def.value = val;
7518 h->root.u.def.section = bfd_abs_section_ptr;
7519 }
7520
7521 static bfd_boolean
7522 resolve_symbol (const char *name,
7523 bfd *input_bfd,
7524 struct elf_final_link_info *flinfo,
7525 bfd_vma *result,
7526 Elf_Internal_Sym *isymbuf,
7527 size_t locsymcount)
7528 {
7529 Elf_Internal_Sym *sym;
7530 struct bfd_link_hash_entry *global_entry;
7531 const char *candidate = NULL;
7532 Elf_Internal_Shdr *symtab_hdr;
7533 size_t i;
7534
7535 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7536
7537 for (i = 0; i < locsymcount; ++ i)
7538 {
7539 sym = isymbuf + i;
7540
7541 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7542 continue;
7543
7544 candidate = bfd_elf_string_from_elf_section (input_bfd,
7545 symtab_hdr->sh_link,
7546 sym->st_name);
7547 #ifdef DEBUG
7548 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7549 name, candidate, (unsigned long) sym->st_value);
7550 #endif
7551 if (candidate && strcmp (candidate, name) == 0)
7552 {
7553 asection *sec = flinfo->sections [i];
7554
7555 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7556 *result += sec->output_offset + sec->output_section->vma;
7557 #ifdef DEBUG
7558 printf ("Found symbol with value %8.8lx\n",
7559 (unsigned long) *result);
7560 #endif
7561 return TRUE;
7562 }
7563 }
7564
7565 /* Hmm, haven't found it yet. perhaps it is a global. */
7566 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7567 FALSE, FALSE, TRUE);
7568 if (!global_entry)
7569 return FALSE;
7570
7571 if (global_entry->type == bfd_link_hash_defined
7572 || global_entry->type == bfd_link_hash_defweak)
7573 {
7574 *result = (global_entry->u.def.value
7575 + global_entry->u.def.section->output_section->vma
7576 + global_entry->u.def.section->output_offset);
7577 #ifdef DEBUG
7578 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7579 global_entry->root.string, (unsigned long) *result);
7580 #endif
7581 return TRUE;
7582 }
7583
7584 return FALSE;
7585 }
7586
7587 static bfd_boolean
7588 resolve_section (const char *name,
7589 asection *sections,
7590 bfd_vma *result)
7591 {
7592 asection *curr;
7593 unsigned int len;
7594
7595 for (curr = sections; curr; curr = curr->next)
7596 if (strcmp (curr->name, name) == 0)
7597 {
7598 *result = curr->vma;
7599 return TRUE;
7600 }
7601
7602 /* Hmm. still haven't found it. try pseudo-section names. */
7603 for (curr = sections; curr; curr = curr->next)
7604 {
7605 len = strlen (curr->name);
7606 if (len > strlen (name))
7607 continue;
7608
7609 if (strncmp (curr->name, name, len) == 0)
7610 {
7611 if (strncmp (".end", name + len, 4) == 0)
7612 {
7613 *result = curr->vma + curr->size;
7614 return TRUE;
7615 }
7616
7617 /* Insert more pseudo-section names here, if you like. */
7618 }
7619 }
7620
7621 return FALSE;
7622 }
7623
7624 static void
7625 undefined_reference (const char *reftype, const char *name)
7626 {
7627 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7628 reftype, name);
7629 }
7630
7631 static bfd_boolean
7632 eval_symbol (bfd_vma *result,
7633 const char **symp,
7634 bfd *input_bfd,
7635 struct elf_final_link_info *flinfo,
7636 bfd_vma dot,
7637 Elf_Internal_Sym *isymbuf,
7638 size_t locsymcount,
7639 int signed_p)
7640 {
7641 size_t len;
7642 size_t symlen;
7643 bfd_vma a;
7644 bfd_vma b;
7645 char symbuf[4096];
7646 const char *sym = *symp;
7647 const char *symend;
7648 bfd_boolean symbol_is_section = FALSE;
7649
7650 len = strlen (sym);
7651 symend = sym + len;
7652
7653 if (len < 1 || len > sizeof (symbuf))
7654 {
7655 bfd_set_error (bfd_error_invalid_operation);
7656 return FALSE;
7657 }
7658
7659 switch (* sym)
7660 {
7661 case '.':
7662 *result = dot;
7663 *symp = sym + 1;
7664 return TRUE;
7665
7666 case '#':
7667 ++sym;
7668 *result = strtoul (sym, (char **) symp, 16);
7669 return TRUE;
7670
7671 case 'S':
7672 symbol_is_section = TRUE;
7673 case 's':
7674 ++sym;
7675 symlen = strtol (sym, (char **) symp, 10);
7676 sym = *symp + 1; /* Skip the trailing ':'. */
7677
7678 if (symend < sym || symlen + 1 > sizeof (symbuf))
7679 {
7680 bfd_set_error (bfd_error_invalid_operation);
7681 return FALSE;
7682 }
7683
7684 memcpy (symbuf, sym, symlen);
7685 symbuf[symlen] = '\0';
7686 *symp = sym + symlen;
7687
7688 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7689 the symbol as a section, or vice-versa. so we're pretty liberal in our
7690 interpretation here; section means "try section first", not "must be a
7691 section", and likewise with symbol. */
7692
7693 if (symbol_is_section)
7694 {
7695 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7696 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7697 isymbuf, locsymcount))
7698 {
7699 undefined_reference ("section", symbuf);
7700 return FALSE;
7701 }
7702 }
7703 else
7704 {
7705 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7706 isymbuf, locsymcount)
7707 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7708 result))
7709 {
7710 undefined_reference ("symbol", symbuf);
7711 return FALSE;
7712 }
7713 }
7714
7715 return TRUE;
7716
7717 /* All that remains are operators. */
7718
7719 #define UNARY_OP(op) \
7720 if (strncmp (sym, #op, strlen (#op)) == 0) \
7721 { \
7722 sym += strlen (#op); \
7723 if (*sym == ':') \
7724 ++sym; \
7725 *symp = sym; \
7726 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7727 isymbuf, locsymcount, signed_p)) \
7728 return FALSE; \
7729 if (signed_p) \
7730 *result = op ((bfd_signed_vma) a); \
7731 else \
7732 *result = op a; \
7733 return TRUE; \
7734 }
7735
7736 #define BINARY_OP(op) \
7737 if (strncmp (sym, #op, strlen (#op)) == 0) \
7738 { \
7739 sym += strlen (#op); \
7740 if (*sym == ':') \
7741 ++sym; \
7742 *symp = sym; \
7743 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7744 isymbuf, locsymcount, signed_p)) \
7745 return FALSE; \
7746 ++*symp; \
7747 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7748 isymbuf, locsymcount, signed_p)) \
7749 return FALSE; \
7750 if (signed_p) \
7751 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7752 else \
7753 *result = a op b; \
7754 return TRUE; \
7755 }
7756
7757 default:
7758 UNARY_OP (0-);
7759 BINARY_OP (<<);
7760 BINARY_OP (>>);
7761 BINARY_OP (==);
7762 BINARY_OP (!=);
7763 BINARY_OP (<=);
7764 BINARY_OP (>=);
7765 BINARY_OP (&&);
7766 BINARY_OP (||);
7767 UNARY_OP (~);
7768 UNARY_OP (!);
7769 BINARY_OP (*);
7770 BINARY_OP (/);
7771 BINARY_OP (%);
7772 BINARY_OP (^);
7773 BINARY_OP (|);
7774 BINARY_OP (&);
7775 BINARY_OP (+);
7776 BINARY_OP (-);
7777 BINARY_OP (<);
7778 BINARY_OP (>);
7779 #undef UNARY_OP
7780 #undef BINARY_OP
7781 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7782 bfd_set_error (bfd_error_invalid_operation);
7783 return FALSE;
7784 }
7785 }
7786
7787 static void
7788 put_value (bfd_vma size,
7789 unsigned long chunksz,
7790 bfd *input_bfd,
7791 bfd_vma x,
7792 bfd_byte *location)
7793 {
7794 location += (size - chunksz);
7795
7796 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7797 {
7798 switch (chunksz)
7799 {
7800 default:
7801 case 0:
7802 abort ();
7803 case 1:
7804 bfd_put_8 (input_bfd, x, location);
7805 break;
7806 case 2:
7807 bfd_put_16 (input_bfd, x, location);
7808 break;
7809 case 4:
7810 bfd_put_32 (input_bfd, x, location);
7811 break;
7812 case 8:
7813 #ifdef BFD64
7814 bfd_put_64 (input_bfd, x, location);
7815 #else
7816 abort ();
7817 #endif
7818 break;
7819 }
7820 }
7821 }
7822
7823 static bfd_vma
7824 get_value (bfd_vma size,
7825 unsigned long chunksz,
7826 bfd *input_bfd,
7827 bfd_byte *location)
7828 {
7829 int shift;
7830 bfd_vma x = 0;
7831
7832 /* Sanity checks. */
7833 BFD_ASSERT (chunksz <= sizeof (x)
7834 && size >= chunksz
7835 && chunksz != 0
7836 && (size % chunksz) == 0
7837 && input_bfd != NULL
7838 && location != NULL);
7839
7840 if (chunksz == sizeof (x))
7841 {
7842 BFD_ASSERT (size == chunksz);
7843
7844 /* Make sure that we do not perform an undefined shift operation.
7845 We know that size == chunksz so there will only be one iteration
7846 of the loop below. */
7847 shift = 0;
7848 }
7849 else
7850 shift = 8 * chunksz;
7851
7852 for (; size; size -= chunksz, location += chunksz)
7853 {
7854 switch (chunksz)
7855 {
7856 case 1:
7857 x = (x << shift) | bfd_get_8 (input_bfd, location);
7858 break;
7859 case 2:
7860 x = (x << shift) | bfd_get_16 (input_bfd, location);
7861 break;
7862 case 4:
7863 x = (x << shift) | bfd_get_32 (input_bfd, location);
7864 break;
7865 #ifdef BFD64
7866 case 8:
7867 x = (x << shift) | bfd_get_64 (input_bfd, location);
7868 break;
7869 #endif
7870 default:
7871 abort ();
7872 }
7873 }
7874 return x;
7875 }
7876
7877 static void
7878 decode_complex_addend (unsigned long *start, /* in bits */
7879 unsigned long *oplen, /* in bits */
7880 unsigned long *len, /* in bits */
7881 unsigned long *wordsz, /* in bytes */
7882 unsigned long *chunksz, /* in bytes */
7883 unsigned long *lsb0_p,
7884 unsigned long *signed_p,
7885 unsigned long *trunc_p,
7886 unsigned long encoded)
7887 {
7888 * start = encoded & 0x3F;
7889 * len = (encoded >> 6) & 0x3F;
7890 * oplen = (encoded >> 12) & 0x3F;
7891 * wordsz = (encoded >> 18) & 0xF;
7892 * chunksz = (encoded >> 22) & 0xF;
7893 * lsb0_p = (encoded >> 27) & 1;
7894 * signed_p = (encoded >> 28) & 1;
7895 * trunc_p = (encoded >> 29) & 1;
7896 }
7897
7898 bfd_reloc_status_type
7899 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7900 asection *input_section ATTRIBUTE_UNUSED,
7901 bfd_byte *contents,
7902 Elf_Internal_Rela *rel,
7903 bfd_vma relocation)
7904 {
7905 bfd_vma shift, x, mask;
7906 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7907 bfd_reloc_status_type r;
7908
7909 /* Perform this reloc, since it is complex.
7910 (this is not to say that it necessarily refers to a complex
7911 symbol; merely that it is a self-describing CGEN based reloc.
7912 i.e. the addend has the complete reloc information (bit start, end,
7913 word size, etc) encoded within it.). */
7914
7915 decode_complex_addend (&start, &oplen, &len, &wordsz,
7916 &chunksz, &lsb0_p, &signed_p,
7917 &trunc_p, rel->r_addend);
7918
7919 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7920
7921 if (lsb0_p)
7922 shift = (start + 1) - len;
7923 else
7924 shift = (8 * wordsz) - (start + len);
7925
7926 /* FIXME: octets_per_byte. */
7927 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7928
7929 #ifdef DEBUG
7930 printf ("Doing complex reloc: "
7931 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7932 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7933 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7934 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7935 oplen, (unsigned long) x, (unsigned long) mask,
7936 (unsigned long) relocation);
7937 #endif
7938
7939 r = bfd_reloc_ok;
7940 if (! trunc_p)
7941 /* Now do an overflow check. */
7942 r = bfd_check_overflow ((signed_p
7943 ? complain_overflow_signed
7944 : complain_overflow_unsigned),
7945 len, 0, (8 * wordsz),
7946 relocation);
7947
7948 /* Do the deed. */
7949 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7950
7951 #ifdef DEBUG
7952 printf (" relocation: %8.8lx\n"
7953 " shifted mask: %8.8lx\n"
7954 " shifted/masked reloc: %8.8lx\n"
7955 " result: %8.8lx\n",
7956 (unsigned long) relocation, (unsigned long) (mask << shift),
7957 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7958 #endif
7959 /* FIXME: octets_per_byte. */
7960 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7961 return r;
7962 }
7963
7964 /* qsort comparison functions sorting external relocs by r_offset. */
7965
7966 static int
7967 cmp_ext32l_r_offset (const void *p, const void *q)
7968 {
7969 union aligned32
7970 {
7971 uint32_t v;
7972 unsigned char c[4];
7973 };
7974 const union aligned32 *a
7975 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
7976 const union aligned32 *b
7977 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
7978
7979 uint32_t aval = ( (uint32_t) a->c[0]
7980 | (uint32_t) a->c[1] << 8
7981 | (uint32_t) a->c[2] << 16
7982 | (uint32_t) a->c[3] << 24);
7983 uint32_t bval = ( (uint32_t) b->c[0]
7984 | (uint32_t) b->c[1] << 8
7985 | (uint32_t) b->c[2] << 16
7986 | (uint32_t) b->c[3] << 24);
7987 if (aval < bval)
7988 return -1;
7989 else if (aval > bval)
7990 return 1;
7991 return 0;
7992 }
7993
7994 static int
7995 cmp_ext32b_r_offset (const void *p, const void *q)
7996 {
7997 union aligned32
7998 {
7999 uint32_t v;
8000 unsigned char c[4];
8001 };
8002 const union aligned32 *a
8003 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8004 const union aligned32 *b
8005 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8006
8007 uint32_t aval = ( (uint32_t) a->c[0] << 24
8008 | (uint32_t) a->c[1] << 16
8009 | (uint32_t) a->c[2] << 8
8010 | (uint32_t) a->c[3]);
8011 uint32_t bval = ( (uint32_t) b->c[0] << 24
8012 | (uint32_t) b->c[1] << 16
8013 | (uint32_t) b->c[2] << 8
8014 | (uint32_t) b->c[3]);
8015 if (aval < bval)
8016 return -1;
8017 else if (aval > bval)
8018 return 1;
8019 return 0;
8020 }
8021
8022 #ifdef BFD_HOST_64_BIT
8023 static int
8024 cmp_ext64l_r_offset (const void *p, const void *q)
8025 {
8026 union aligned64
8027 {
8028 uint64_t v;
8029 unsigned char c[8];
8030 };
8031 const union aligned64 *a
8032 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8033 const union aligned64 *b
8034 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8035
8036 uint64_t aval = ( (uint64_t) a->c[0]
8037 | (uint64_t) a->c[1] << 8
8038 | (uint64_t) a->c[2] << 16
8039 | (uint64_t) a->c[3] << 24
8040 | (uint64_t) a->c[4] << 32
8041 | (uint64_t) a->c[5] << 40
8042 | (uint64_t) a->c[6] << 48
8043 | (uint64_t) a->c[7] << 56);
8044 uint64_t bval = ( (uint64_t) b->c[0]
8045 | (uint64_t) b->c[1] << 8
8046 | (uint64_t) b->c[2] << 16
8047 | (uint64_t) b->c[3] << 24
8048 | (uint64_t) b->c[4] << 32
8049 | (uint64_t) b->c[5] << 40
8050 | (uint64_t) b->c[6] << 48
8051 | (uint64_t) b->c[7] << 56);
8052 if (aval < bval)
8053 return -1;
8054 else if (aval > bval)
8055 return 1;
8056 return 0;
8057 }
8058
8059 static int
8060 cmp_ext64b_r_offset (const void *p, const void *q)
8061 {
8062 union aligned64
8063 {
8064 uint64_t v;
8065 unsigned char c[8];
8066 };
8067 const union aligned64 *a
8068 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8069 const union aligned64 *b
8070 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8071
8072 uint64_t aval = ( (uint64_t) a->c[0] << 56
8073 | (uint64_t) a->c[1] << 48
8074 | (uint64_t) a->c[2] << 40
8075 | (uint64_t) a->c[3] << 32
8076 | (uint64_t) a->c[4] << 24
8077 | (uint64_t) a->c[5] << 16
8078 | (uint64_t) a->c[6] << 8
8079 | (uint64_t) a->c[7]);
8080 uint64_t bval = ( (uint64_t) b->c[0] << 56
8081 | (uint64_t) b->c[1] << 48
8082 | (uint64_t) b->c[2] << 40
8083 | (uint64_t) b->c[3] << 32
8084 | (uint64_t) b->c[4] << 24
8085 | (uint64_t) b->c[5] << 16
8086 | (uint64_t) b->c[6] << 8
8087 | (uint64_t) b->c[7]);
8088 if (aval < bval)
8089 return -1;
8090 else if (aval > bval)
8091 return 1;
8092 return 0;
8093 }
8094 #endif
8095
8096 /* When performing a relocatable link, the input relocations are
8097 preserved. But, if they reference global symbols, the indices
8098 referenced must be updated. Update all the relocations found in
8099 RELDATA. */
8100
8101 static void
8102 elf_link_adjust_relocs (bfd *abfd,
8103 struct bfd_elf_section_reloc_data *reldata,
8104 bfd_boolean sort)
8105 {
8106 unsigned int i;
8107 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8108 bfd_byte *erela;
8109 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8110 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8111 bfd_vma r_type_mask;
8112 int r_sym_shift;
8113 unsigned int count = reldata->count;
8114 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8115
8116 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8117 {
8118 swap_in = bed->s->swap_reloc_in;
8119 swap_out = bed->s->swap_reloc_out;
8120 }
8121 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8122 {
8123 swap_in = bed->s->swap_reloca_in;
8124 swap_out = bed->s->swap_reloca_out;
8125 }
8126 else
8127 abort ();
8128
8129 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8130 abort ();
8131
8132 if (bed->s->arch_size == 32)
8133 {
8134 r_type_mask = 0xff;
8135 r_sym_shift = 8;
8136 }
8137 else
8138 {
8139 r_type_mask = 0xffffffff;
8140 r_sym_shift = 32;
8141 }
8142
8143 erela = reldata->hdr->contents;
8144 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8145 {
8146 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8147 unsigned int j;
8148
8149 if (*rel_hash == NULL)
8150 continue;
8151
8152 BFD_ASSERT ((*rel_hash)->indx >= 0);
8153
8154 (*swap_in) (abfd, erela, irela);
8155 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8156 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8157 | (irela[j].r_info & r_type_mask));
8158 (*swap_out) (abfd, irela, erela);
8159 }
8160
8161 if (sort)
8162 {
8163 int (*compare) (const void *, const void *);
8164
8165 if (bed->s->arch_size == 32)
8166 {
8167 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8168 compare = cmp_ext32l_r_offset;
8169 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8170 compare = cmp_ext32b_r_offset;
8171 else
8172 abort ();
8173 }
8174 else
8175 {
8176 #ifdef BFD_HOST_64_BIT
8177 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8178 compare = cmp_ext64l_r_offset;
8179 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8180 compare = cmp_ext64b_r_offset;
8181 else
8182 #endif
8183 abort ();
8184 }
8185 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8186 free (reldata->hashes);
8187 reldata->hashes = NULL;
8188 }
8189 }
8190
8191 struct elf_link_sort_rela
8192 {
8193 union {
8194 bfd_vma offset;
8195 bfd_vma sym_mask;
8196 } u;
8197 enum elf_reloc_type_class type;
8198 /* We use this as an array of size int_rels_per_ext_rel. */
8199 Elf_Internal_Rela rela[1];
8200 };
8201
8202 static int
8203 elf_link_sort_cmp1 (const void *A, const void *B)
8204 {
8205 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8206 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8207 int relativea, relativeb;
8208
8209 relativea = a->type == reloc_class_relative;
8210 relativeb = b->type == reloc_class_relative;
8211
8212 if (relativea < relativeb)
8213 return 1;
8214 if (relativea > relativeb)
8215 return -1;
8216 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8217 return -1;
8218 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8219 return 1;
8220 if (a->rela->r_offset < b->rela->r_offset)
8221 return -1;
8222 if (a->rela->r_offset > b->rela->r_offset)
8223 return 1;
8224 return 0;
8225 }
8226
8227 static int
8228 elf_link_sort_cmp2 (const void *A, const void *B)
8229 {
8230 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8231 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8232
8233 if (a->type < b->type)
8234 return -1;
8235 if (a->type > b->type)
8236 return 1;
8237 if (a->u.offset < b->u.offset)
8238 return -1;
8239 if (a->u.offset > b->u.offset)
8240 return 1;
8241 if (a->rela->r_offset < b->rela->r_offset)
8242 return -1;
8243 if (a->rela->r_offset > b->rela->r_offset)
8244 return 1;
8245 return 0;
8246 }
8247
8248 static size_t
8249 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8250 {
8251 asection *dynamic_relocs;
8252 asection *rela_dyn;
8253 asection *rel_dyn;
8254 bfd_size_type count, size;
8255 size_t i, ret, sort_elt, ext_size;
8256 bfd_byte *sort, *s_non_relative, *p;
8257 struct elf_link_sort_rela *sq;
8258 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8259 int i2e = bed->s->int_rels_per_ext_rel;
8260 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8261 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8262 struct bfd_link_order *lo;
8263 bfd_vma r_sym_mask;
8264 bfd_boolean use_rela;
8265
8266 /* Find a dynamic reloc section. */
8267 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8268 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8269 if (rela_dyn != NULL && rela_dyn->size > 0
8270 && rel_dyn != NULL && rel_dyn->size > 0)
8271 {
8272 bfd_boolean use_rela_initialised = FALSE;
8273
8274 /* This is just here to stop gcc from complaining.
8275 It's initialization checking code is not perfect. */
8276 use_rela = TRUE;
8277
8278 /* Both sections are present. Examine the sizes
8279 of the indirect sections to help us choose. */
8280 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8281 if (lo->type == bfd_indirect_link_order)
8282 {
8283 asection *o = lo->u.indirect.section;
8284
8285 if ((o->size % bed->s->sizeof_rela) == 0)
8286 {
8287 if ((o->size % bed->s->sizeof_rel) == 0)
8288 /* Section size is divisible by both rel and rela sizes.
8289 It is of no help to us. */
8290 ;
8291 else
8292 {
8293 /* Section size is only divisible by rela. */
8294 if (use_rela_initialised && (use_rela == FALSE))
8295 {
8296 _bfd_error_handler
8297 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8298 bfd_set_error (bfd_error_invalid_operation);
8299 return 0;
8300 }
8301 else
8302 {
8303 use_rela = TRUE;
8304 use_rela_initialised = TRUE;
8305 }
8306 }
8307 }
8308 else if ((o->size % bed->s->sizeof_rel) == 0)
8309 {
8310 /* Section size is only divisible by rel. */
8311 if (use_rela_initialised && (use_rela == TRUE))
8312 {
8313 _bfd_error_handler
8314 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8315 bfd_set_error (bfd_error_invalid_operation);
8316 return 0;
8317 }
8318 else
8319 {
8320 use_rela = FALSE;
8321 use_rela_initialised = TRUE;
8322 }
8323 }
8324 else
8325 {
8326 /* The section size is not divisible by either - something is wrong. */
8327 _bfd_error_handler
8328 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8329 bfd_set_error (bfd_error_invalid_operation);
8330 return 0;
8331 }
8332 }
8333
8334 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8335 if (lo->type == bfd_indirect_link_order)
8336 {
8337 asection *o = lo->u.indirect.section;
8338
8339 if ((o->size % bed->s->sizeof_rela) == 0)
8340 {
8341 if ((o->size % bed->s->sizeof_rel) == 0)
8342 /* Section size is divisible by both rel and rela sizes.
8343 It is of no help to us. */
8344 ;
8345 else
8346 {
8347 /* Section size is only divisible by rela. */
8348 if (use_rela_initialised && (use_rela == FALSE))
8349 {
8350 _bfd_error_handler
8351 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8352 bfd_set_error (bfd_error_invalid_operation);
8353 return 0;
8354 }
8355 else
8356 {
8357 use_rela = TRUE;
8358 use_rela_initialised = TRUE;
8359 }
8360 }
8361 }
8362 else if ((o->size % bed->s->sizeof_rel) == 0)
8363 {
8364 /* Section size is only divisible by rel. */
8365 if (use_rela_initialised && (use_rela == TRUE))
8366 {
8367 _bfd_error_handler
8368 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8369 bfd_set_error (bfd_error_invalid_operation);
8370 return 0;
8371 }
8372 else
8373 {
8374 use_rela = FALSE;
8375 use_rela_initialised = TRUE;
8376 }
8377 }
8378 else
8379 {
8380 /* The section size is not divisible by either - something is wrong. */
8381 _bfd_error_handler
8382 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8383 bfd_set_error (bfd_error_invalid_operation);
8384 return 0;
8385 }
8386 }
8387
8388 if (! use_rela_initialised)
8389 /* Make a guess. */
8390 use_rela = TRUE;
8391 }
8392 else if (rela_dyn != NULL && rela_dyn->size > 0)
8393 use_rela = TRUE;
8394 else if (rel_dyn != NULL && rel_dyn->size > 0)
8395 use_rela = FALSE;
8396 else
8397 return 0;
8398
8399 if (use_rela)
8400 {
8401 dynamic_relocs = rela_dyn;
8402 ext_size = bed->s->sizeof_rela;
8403 swap_in = bed->s->swap_reloca_in;
8404 swap_out = bed->s->swap_reloca_out;
8405 }
8406 else
8407 {
8408 dynamic_relocs = rel_dyn;
8409 ext_size = bed->s->sizeof_rel;
8410 swap_in = bed->s->swap_reloc_in;
8411 swap_out = bed->s->swap_reloc_out;
8412 }
8413
8414 size = 0;
8415 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8416 if (lo->type == bfd_indirect_link_order)
8417 size += lo->u.indirect.section->size;
8418
8419 if (size != dynamic_relocs->size)
8420 return 0;
8421
8422 sort_elt = (sizeof (struct elf_link_sort_rela)
8423 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8424
8425 count = dynamic_relocs->size / ext_size;
8426 if (count == 0)
8427 return 0;
8428 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8429
8430 if (sort == NULL)
8431 {
8432 (*info->callbacks->warning)
8433 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8434 return 0;
8435 }
8436
8437 if (bed->s->arch_size == 32)
8438 r_sym_mask = ~(bfd_vma) 0xff;
8439 else
8440 r_sym_mask = ~(bfd_vma) 0xffffffff;
8441
8442 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8443 if (lo->type == bfd_indirect_link_order)
8444 {
8445 bfd_byte *erel, *erelend;
8446 asection *o = lo->u.indirect.section;
8447
8448 if (o->contents == NULL && o->size != 0)
8449 {
8450 /* This is a reloc section that is being handled as a normal
8451 section. See bfd_section_from_shdr. We can't combine
8452 relocs in this case. */
8453 free (sort);
8454 return 0;
8455 }
8456 erel = o->contents;
8457 erelend = o->contents + o->size;
8458 /* FIXME: octets_per_byte. */
8459 p = sort + o->output_offset / ext_size * sort_elt;
8460
8461 while (erel < erelend)
8462 {
8463 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8464
8465 (*swap_in) (abfd, erel, s->rela);
8466 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8467 s->u.sym_mask = r_sym_mask;
8468 p += sort_elt;
8469 erel += ext_size;
8470 }
8471 }
8472
8473 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8474
8475 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8476 {
8477 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8478 if (s->type != reloc_class_relative)
8479 break;
8480 }
8481 ret = i;
8482 s_non_relative = p;
8483
8484 sq = (struct elf_link_sort_rela *) s_non_relative;
8485 for (; i < count; i++, p += sort_elt)
8486 {
8487 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8488 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8489 sq = sp;
8490 sp->u.offset = sq->rela->r_offset;
8491 }
8492
8493 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8494
8495 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8496 if (lo->type == bfd_indirect_link_order)
8497 {
8498 bfd_byte *erel, *erelend;
8499 asection *o = lo->u.indirect.section;
8500
8501 erel = o->contents;
8502 erelend = o->contents + o->size;
8503 /* FIXME: octets_per_byte. */
8504 p = sort + o->output_offset / ext_size * sort_elt;
8505 while (erel < erelend)
8506 {
8507 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8508 (*swap_out) (abfd, s->rela, erel);
8509 p += sort_elt;
8510 erel += ext_size;
8511 }
8512 }
8513
8514 free (sort);
8515 *psec = dynamic_relocs;
8516 return ret;
8517 }
8518
8519 /* Flush the output symbols to the file. */
8520
8521 static bfd_boolean
8522 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8523 const struct elf_backend_data *bed)
8524 {
8525 if (flinfo->symbuf_count > 0)
8526 {
8527 Elf_Internal_Shdr *hdr;
8528 file_ptr pos;
8529 bfd_size_type amt;
8530
8531 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8532 pos = hdr->sh_offset + hdr->sh_size;
8533 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8534 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8535 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8536 return FALSE;
8537
8538 hdr->sh_size += amt;
8539 flinfo->symbuf_count = 0;
8540 }
8541
8542 return TRUE;
8543 }
8544
8545 /* Add a symbol to the output symbol table. */
8546
8547 static int
8548 elf_link_output_sym (struct elf_final_link_info *flinfo,
8549 const char *name,
8550 Elf_Internal_Sym *elfsym,
8551 asection *input_sec,
8552 struct elf_link_hash_entry *h)
8553 {
8554 bfd_byte *dest;
8555 Elf_External_Sym_Shndx *destshndx;
8556 int (*output_symbol_hook)
8557 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8558 struct elf_link_hash_entry *);
8559 const struct elf_backend_data *bed;
8560
8561 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8562
8563 bed = get_elf_backend_data (flinfo->output_bfd);
8564 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8565 if (output_symbol_hook != NULL)
8566 {
8567 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8568 if (ret != 1)
8569 return ret;
8570 }
8571
8572 if (name == NULL || *name == '\0')
8573 elfsym->st_name = 0;
8574 else if (input_sec->flags & SEC_EXCLUDE)
8575 elfsym->st_name = 0;
8576 else
8577 {
8578 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8579 name, TRUE, FALSE);
8580 if (elfsym->st_name == (unsigned long) -1)
8581 return 0;
8582 }
8583
8584 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8585 {
8586 if (! elf_link_flush_output_syms (flinfo, bed))
8587 return 0;
8588 }
8589
8590 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8591 destshndx = flinfo->symshndxbuf;
8592 if (destshndx != NULL)
8593 {
8594 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8595 {
8596 bfd_size_type amt;
8597
8598 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8599 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8600 amt * 2);
8601 if (destshndx == NULL)
8602 return 0;
8603 flinfo->symshndxbuf = destshndx;
8604 memset ((char *) destshndx + amt, 0, amt);
8605 flinfo->shndxbuf_size *= 2;
8606 }
8607 destshndx += bfd_get_symcount (flinfo->output_bfd);
8608 }
8609
8610 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8611 flinfo->symbuf_count += 1;
8612 bfd_get_symcount (flinfo->output_bfd) += 1;
8613
8614 return 1;
8615 }
8616
8617 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8618
8619 static bfd_boolean
8620 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8621 {
8622 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8623 && sym->st_shndx < SHN_LORESERVE)
8624 {
8625 /* The gABI doesn't support dynamic symbols in output sections
8626 beyond 64k. */
8627 (*_bfd_error_handler)
8628 (_("%B: Too many sections: %d (>= %d)"),
8629 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8630 bfd_set_error (bfd_error_nonrepresentable_section);
8631 return FALSE;
8632 }
8633 return TRUE;
8634 }
8635
8636 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8637 allowing an unsatisfied unversioned symbol in the DSO to match a
8638 versioned symbol that would normally require an explicit version.
8639 We also handle the case that a DSO references a hidden symbol
8640 which may be satisfied by a versioned symbol in another DSO. */
8641
8642 static bfd_boolean
8643 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8644 const struct elf_backend_data *bed,
8645 struct elf_link_hash_entry *h)
8646 {
8647 bfd *abfd;
8648 struct elf_link_loaded_list *loaded;
8649
8650 if (!is_elf_hash_table (info->hash))
8651 return FALSE;
8652
8653 /* Check indirect symbol. */
8654 while (h->root.type == bfd_link_hash_indirect)
8655 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8656
8657 switch (h->root.type)
8658 {
8659 default:
8660 abfd = NULL;
8661 break;
8662
8663 case bfd_link_hash_undefined:
8664 case bfd_link_hash_undefweak:
8665 abfd = h->root.u.undef.abfd;
8666 if ((abfd->flags & DYNAMIC) == 0
8667 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8668 return FALSE;
8669 break;
8670
8671 case bfd_link_hash_defined:
8672 case bfd_link_hash_defweak:
8673 abfd = h->root.u.def.section->owner;
8674 break;
8675
8676 case bfd_link_hash_common:
8677 abfd = h->root.u.c.p->section->owner;
8678 break;
8679 }
8680 BFD_ASSERT (abfd != NULL);
8681
8682 for (loaded = elf_hash_table (info)->loaded;
8683 loaded != NULL;
8684 loaded = loaded->next)
8685 {
8686 bfd *input;
8687 Elf_Internal_Shdr *hdr;
8688 bfd_size_type symcount;
8689 bfd_size_type extsymcount;
8690 bfd_size_type extsymoff;
8691 Elf_Internal_Shdr *versymhdr;
8692 Elf_Internal_Sym *isym;
8693 Elf_Internal_Sym *isymend;
8694 Elf_Internal_Sym *isymbuf;
8695 Elf_External_Versym *ever;
8696 Elf_External_Versym *extversym;
8697
8698 input = loaded->abfd;
8699
8700 /* We check each DSO for a possible hidden versioned definition. */
8701 if (input == abfd
8702 || (input->flags & DYNAMIC) == 0
8703 || elf_dynversym (input) == 0)
8704 continue;
8705
8706 hdr = &elf_tdata (input)->dynsymtab_hdr;
8707
8708 symcount = hdr->sh_size / bed->s->sizeof_sym;
8709 if (elf_bad_symtab (input))
8710 {
8711 extsymcount = symcount;
8712 extsymoff = 0;
8713 }
8714 else
8715 {
8716 extsymcount = symcount - hdr->sh_info;
8717 extsymoff = hdr->sh_info;
8718 }
8719
8720 if (extsymcount == 0)
8721 continue;
8722
8723 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8724 NULL, NULL, NULL);
8725 if (isymbuf == NULL)
8726 return FALSE;
8727
8728 /* Read in any version definitions. */
8729 versymhdr = &elf_tdata (input)->dynversym_hdr;
8730 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8731 if (extversym == NULL)
8732 goto error_ret;
8733
8734 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8735 || (bfd_bread (extversym, versymhdr->sh_size, input)
8736 != versymhdr->sh_size))
8737 {
8738 free (extversym);
8739 error_ret:
8740 free (isymbuf);
8741 return FALSE;
8742 }
8743
8744 ever = extversym + extsymoff;
8745 isymend = isymbuf + extsymcount;
8746 for (isym = isymbuf; isym < isymend; isym++, ever++)
8747 {
8748 const char *name;
8749 Elf_Internal_Versym iver;
8750 unsigned short version_index;
8751
8752 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8753 || isym->st_shndx == SHN_UNDEF)
8754 continue;
8755
8756 name = bfd_elf_string_from_elf_section (input,
8757 hdr->sh_link,
8758 isym->st_name);
8759 if (strcmp (name, h->root.root.string) != 0)
8760 continue;
8761
8762 _bfd_elf_swap_versym_in (input, ever, &iver);
8763
8764 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8765 && !(h->def_regular
8766 && h->forced_local))
8767 {
8768 /* If we have a non-hidden versioned sym, then it should
8769 have provided a definition for the undefined sym unless
8770 it is defined in a non-shared object and forced local.
8771 */
8772 abort ();
8773 }
8774
8775 version_index = iver.vs_vers & VERSYM_VERSION;
8776 if (version_index == 1 || version_index == 2)
8777 {
8778 /* This is the base or first version. We can use it. */
8779 free (extversym);
8780 free (isymbuf);
8781 return TRUE;
8782 }
8783 }
8784
8785 free (extversym);
8786 free (isymbuf);
8787 }
8788
8789 return FALSE;
8790 }
8791
8792 /* Add an external symbol to the symbol table. This is called from
8793 the hash table traversal routine. When generating a shared object,
8794 we go through the symbol table twice. The first time we output
8795 anything that might have been forced to local scope in a version
8796 script. The second time we output the symbols that are still
8797 global symbols. */
8798
8799 static bfd_boolean
8800 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8801 {
8802 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8803 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8804 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8805 bfd_boolean strip;
8806 Elf_Internal_Sym sym;
8807 asection *input_sec;
8808 const struct elf_backend_data *bed;
8809 long indx;
8810 int ret;
8811
8812 if (h->root.type == bfd_link_hash_warning)
8813 {
8814 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8815 if (h->root.type == bfd_link_hash_new)
8816 return TRUE;
8817 }
8818
8819 /* Decide whether to output this symbol in this pass. */
8820 if (eoinfo->localsyms)
8821 {
8822 if (!h->forced_local)
8823 return TRUE;
8824 }
8825 else
8826 {
8827 if (h->forced_local)
8828 return TRUE;
8829 }
8830
8831 bed = get_elf_backend_data (flinfo->output_bfd);
8832
8833 if (h->root.type == bfd_link_hash_undefined)
8834 {
8835 /* If we have an undefined symbol reference here then it must have
8836 come from a shared library that is being linked in. (Undefined
8837 references in regular files have already been handled unless
8838 they are in unreferenced sections which are removed by garbage
8839 collection). */
8840 bfd_boolean ignore_undef = FALSE;
8841
8842 /* Some symbols may be special in that the fact that they're
8843 undefined can be safely ignored - let backend determine that. */
8844 if (bed->elf_backend_ignore_undef_symbol)
8845 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8846
8847 /* If we are reporting errors for this situation then do so now. */
8848 if (!ignore_undef
8849 && h->ref_dynamic
8850 && (!h->ref_regular || flinfo->info->gc_sections)
8851 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8852 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8853 {
8854 if (!(flinfo->info->callbacks->undefined_symbol
8855 (flinfo->info, h->root.root.string,
8856 h->ref_regular ? NULL : h->root.u.undef.abfd,
8857 NULL, 0,
8858 (flinfo->info->unresolved_syms_in_shared_libs
8859 == RM_GENERATE_ERROR))))
8860 {
8861 bfd_set_error (bfd_error_bad_value);
8862 eoinfo->failed = TRUE;
8863 return FALSE;
8864 }
8865 }
8866 }
8867
8868 /* We should also warn if a forced local symbol is referenced from
8869 shared libraries. */
8870 if (!flinfo->info->relocatable
8871 && flinfo->info->executable
8872 && h->forced_local
8873 && h->ref_dynamic
8874 && h->def_regular
8875 && !h->dynamic_def
8876 && h->ref_dynamic_nonweak
8877 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8878 {
8879 bfd *def_bfd;
8880 const char *msg;
8881 struct elf_link_hash_entry *hi = h;
8882
8883 /* Check indirect symbol. */
8884 while (hi->root.type == bfd_link_hash_indirect)
8885 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8886
8887 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8888 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8889 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8890 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8891 else
8892 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8893 def_bfd = flinfo->output_bfd;
8894 if (hi->root.u.def.section != bfd_abs_section_ptr)
8895 def_bfd = hi->root.u.def.section->owner;
8896 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8897 h->root.root.string);
8898 bfd_set_error (bfd_error_bad_value);
8899 eoinfo->failed = TRUE;
8900 return FALSE;
8901 }
8902
8903 /* We don't want to output symbols that have never been mentioned by
8904 a regular file, or that we have been told to strip. However, if
8905 h->indx is set to -2, the symbol is used by a reloc and we must
8906 output it. */
8907 strip = FALSE;
8908 if (h->indx == -2)
8909 ;
8910 else if ((h->def_dynamic
8911 || h->ref_dynamic
8912 || h->root.type == bfd_link_hash_new)
8913 && !h->def_regular
8914 && !h->ref_regular)
8915 strip = TRUE;
8916 else if (flinfo->info->strip == strip_all)
8917 strip = TRUE;
8918 else if (flinfo->info->strip == strip_some
8919 && bfd_hash_lookup (flinfo->info->keep_hash,
8920 h->root.root.string, FALSE, FALSE) == NULL)
8921 strip = TRUE;
8922 else if ((h->root.type == bfd_link_hash_defined
8923 || h->root.type == bfd_link_hash_defweak)
8924 && ((flinfo->info->strip_discarded
8925 && discarded_section (h->root.u.def.section))
8926 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
8927 && h->root.u.def.section->owner != NULL
8928 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8929 strip = TRUE;
8930 else if ((h->root.type == bfd_link_hash_undefined
8931 || h->root.type == bfd_link_hash_undefweak)
8932 && h->root.u.undef.abfd != NULL
8933 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8934 strip = TRUE;
8935
8936 /* If we're stripping it, and it's not a dynamic symbol, there's
8937 nothing else to do. However, if it is a forced local symbol or
8938 an ifunc symbol we need to give the backend finish_dynamic_symbol
8939 function a chance to make it dynamic. */
8940 if (strip
8941 && h->dynindx == -1
8942 && h->type != STT_GNU_IFUNC
8943 && !h->forced_local)
8944 return TRUE;
8945
8946 sym.st_value = 0;
8947 sym.st_size = h->size;
8948 sym.st_other = h->other;
8949 if (h->forced_local)
8950 {
8951 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8952 /* Turn off visibility on local symbol. */
8953 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8954 }
8955 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8956 else if (h->unique_global && h->def_regular)
8957 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8958 else if (h->root.type == bfd_link_hash_undefweak
8959 || h->root.type == bfd_link_hash_defweak)
8960 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8961 else
8962 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8963 sym.st_target_internal = h->target_internal;
8964
8965 switch (h->root.type)
8966 {
8967 default:
8968 case bfd_link_hash_new:
8969 case bfd_link_hash_warning:
8970 abort ();
8971 return FALSE;
8972
8973 case bfd_link_hash_undefined:
8974 case bfd_link_hash_undefweak:
8975 input_sec = bfd_und_section_ptr;
8976 sym.st_shndx = SHN_UNDEF;
8977 break;
8978
8979 case bfd_link_hash_defined:
8980 case bfd_link_hash_defweak:
8981 {
8982 input_sec = h->root.u.def.section;
8983 if (input_sec->output_section != NULL)
8984 {
8985 sym.st_shndx =
8986 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8987 input_sec->output_section);
8988 if (sym.st_shndx == SHN_BAD)
8989 {
8990 (*_bfd_error_handler)
8991 (_("%B: could not find output section %A for input section %A"),
8992 flinfo->output_bfd, input_sec->output_section, input_sec);
8993 bfd_set_error (bfd_error_nonrepresentable_section);
8994 eoinfo->failed = TRUE;
8995 return FALSE;
8996 }
8997
8998 /* ELF symbols in relocatable files are section relative,
8999 but in nonrelocatable files they are virtual
9000 addresses. */
9001 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9002 if (!flinfo->info->relocatable)
9003 {
9004 sym.st_value += input_sec->output_section->vma;
9005 if (h->type == STT_TLS)
9006 {
9007 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9008 if (tls_sec != NULL)
9009 sym.st_value -= tls_sec->vma;
9010 }
9011 }
9012 }
9013 else
9014 {
9015 BFD_ASSERT (input_sec->owner == NULL
9016 || (input_sec->owner->flags & DYNAMIC) != 0);
9017 sym.st_shndx = SHN_UNDEF;
9018 input_sec = bfd_und_section_ptr;
9019 }
9020 }
9021 break;
9022
9023 case bfd_link_hash_common:
9024 input_sec = h->root.u.c.p->section;
9025 sym.st_shndx = bed->common_section_index (input_sec);
9026 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9027 break;
9028
9029 case bfd_link_hash_indirect:
9030 /* These symbols are created by symbol versioning. They point
9031 to the decorated version of the name. For example, if the
9032 symbol foo@@GNU_1.2 is the default, which should be used when
9033 foo is used with no version, then we add an indirect symbol
9034 foo which points to foo@@GNU_1.2. We ignore these symbols,
9035 since the indirected symbol is already in the hash table. */
9036 return TRUE;
9037 }
9038
9039 /* Give the processor backend a chance to tweak the symbol value,
9040 and also to finish up anything that needs to be done for this
9041 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9042 forced local syms when non-shared is due to a historical quirk.
9043 STT_GNU_IFUNC symbol must go through PLT. */
9044 if ((h->type == STT_GNU_IFUNC
9045 && h->def_regular
9046 && !flinfo->info->relocatable)
9047 || ((h->dynindx != -1
9048 || h->forced_local)
9049 && ((flinfo->info->shared
9050 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9051 || h->root.type != bfd_link_hash_undefweak))
9052 || !h->forced_local)
9053 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9054 {
9055 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9056 (flinfo->output_bfd, flinfo->info, h, &sym)))
9057 {
9058 eoinfo->failed = TRUE;
9059 return FALSE;
9060 }
9061 }
9062
9063 /* If we are marking the symbol as undefined, and there are no
9064 non-weak references to this symbol from a regular object, then
9065 mark the symbol as weak undefined; if there are non-weak
9066 references, mark the symbol as strong. We can't do this earlier,
9067 because it might not be marked as undefined until the
9068 finish_dynamic_symbol routine gets through with it. */
9069 if (sym.st_shndx == SHN_UNDEF
9070 && h->ref_regular
9071 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9072 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9073 {
9074 int bindtype;
9075 unsigned int type = ELF_ST_TYPE (sym.st_info);
9076
9077 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9078 if (type == STT_GNU_IFUNC)
9079 type = STT_FUNC;
9080
9081 if (h->ref_regular_nonweak)
9082 bindtype = STB_GLOBAL;
9083 else
9084 bindtype = STB_WEAK;
9085 sym.st_info = ELF_ST_INFO (bindtype, type);
9086 }
9087
9088 /* If this is a symbol defined in a dynamic library, don't use the
9089 symbol size from the dynamic library. Relinking an executable
9090 against a new library may introduce gratuitous changes in the
9091 executable's symbols if we keep the size. */
9092 if (sym.st_shndx == SHN_UNDEF
9093 && !h->def_regular
9094 && h->def_dynamic)
9095 sym.st_size = 0;
9096
9097 /* If a non-weak symbol with non-default visibility is not defined
9098 locally, it is a fatal error. */
9099 if (!flinfo->info->relocatable
9100 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9101 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9102 && h->root.type == bfd_link_hash_undefined
9103 && !h->def_regular)
9104 {
9105 const char *msg;
9106
9107 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9108 msg = _("%B: protected symbol `%s' isn't defined");
9109 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9110 msg = _("%B: internal symbol `%s' isn't defined");
9111 else
9112 msg = _("%B: hidden symbol `%s' isn't defined");
9113 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9114 bfd_set_error (bfd_error_bad_value);
9115 eoinfo->failed = TRUE;
9116 return FALSE;
9117 }
9118
9119 /* If this symbol should be put in the .dynsym section, then put it
9120 there now. We already know the symbol index. We also fill in
9121 the entry in the .hash section. */
9122 if (flinfo->dynsym_sec != NULL
9123 && h->dynindx != -1
9124 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9125 {
9126 bfd_byte *esym;
9127
9128 /* Since there is no version information in the dynamic string,
9129 if there is no version info in symbol version section, we will
9130 have a run-time problem. */
9131 if (h->verinfo.verdef == NULL)
9132 {
9133 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9134
9135 if (p && p [1] != '\0')
9136 {
9137 (*_bfd_error_handler)
9138 (_("%B: No symbol version section for versioned symbol `%s'"),
9139 flinfo->output_bfd, h->root.root.string);
9140 eoinfo->failed = TRUE;
9141 return FALSE;
9142 }
9143 }
9144
9145 sym.st_name = h->dynstr_index;
9146 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9147 if (!check_dynsym (flinfo->output_bfd, &sym))
9148 {
9149 eoinfo->failed = TRUE;
9150 return FALSE;
9151 }
9152 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9153
9154 if (flinfo->hash_sec != NULL)
9155 {
9156 size_t hash_entry_size;
9157 bfd_byte *bucketpos;
9158 bfd_vma chain;
9159 size_t bucketcount;
9160 size_t bucket;
9161
9162 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9163 bucket = h->u.elf_hash_value % bucketcount;
9164
9165 hash_entry_size
9166 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9167 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9168 + (bucket + 2) * hash_entry_size);
9169 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9170 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9171 bucketpos);
9172 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9173 ((bfd_byte *) flinfo->hash_sec->contents
9174 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9175 }
9176
9177 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9178 {
9179 Elf_Internal_Versym iversym;
9180 Elf_External_Versym *eversym;
9181
9182 if (!h->def_regular)
9183 {
9184 if (h->verinfo.verdef == NULL
9185 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9186 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9187 iversym.vs_vers = 0;
9188 else
9189 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9190 }
9191 else
9192 {
9193 if (h->verinfo.vertree == NULL)
9194 iversym.vs_vers = 1;
9195 else
9196 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9197 if (flinfo->info->create_default_symver)
9198 iversym.vs_vers++;
9199 }
9200
9201 if (h->hidden)
9202 iversym.vs_vers |= VERSYM_HIDDEN;
9203
9204 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9205 eversym += h->dynindx;
9206 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9207 }
9208 }
9209
9210 /* If the symbol is undefined, and we didn't output it to .dynsym,
9211 strip it from .symtab too. Obviously we can't do this for
9212 relocatable output or when needed for --emit-relocs. */
9213 else if (input_sec == bfd_und_section_ptr
9214 && h->indx != -2
9215 && !flinfo->info->relocatable)
9216 return TRUE;
9217 /* Also strip others that we couldn't earlier due to dynamic symbol
9218 processing. */
9219 if (strip)
9220 return TRUE;
9221 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9222 return TRUE;
9223
9224 /* Output a FILE symbol so that following locals are not associated
9225 with the wrong input file. We need one for forced local symbols
9226 if we've seen more than one FILE symbol or when we have exactly
9227 one FILE symbol but global symbols are present in a file other
9228 than the one with the FILE symbol. We also need one if linker
9229 defined symbols are present. In practice these conditions are
9230 always met, so just emit the FILE symbol unconditionally. */
9231 if (eoinfo->localsyms
9232 && !eoinfo->file_sym_done
9233 && eoinfo->flinfo->filesym_count != 0)
9234 {
9235 Elf_Internal_Sym fsym;
9236
9237 memset (&fsym, 0, sizeof (fsym));
9238 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9239 fsym.st_shndx = SHN_ABS;
9240 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &fsym,
9241 bfd_und_section_ptr, NULL))
9242 return FALSE;
9243
9244 eoinfo->file_sym_done = TRUE;
9245 }
9246
9247 indx = bfd_get_symcount (flinfo->output_bfd);
9248 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9249 if (ret == 0)
9250 {
9251 eoinfo->failed = TRUE;
9252 return FALSE;
9253 }
9254 else if (ret == 1)
9255 h->indx = indx;
9256 else if (h->indx == -2)
9257 abort();
9258
9259 return TRUE;
9260 }
9261
9262 /* Return TRUE if special handling is done for relocs in SEC against
9263 symbols defined in discarded sections. */
9264
9265 static bfd_boolean
9266 elf_section_ignore_discarded_relocs (asection *sec)
9267 {
9268 const struct elf_backend_data *bed;
9269
9270 switch (sec->sec_info_type)
9271 {
9272 case SEC_INFO_TYPE_STABS:
9273 case SEC_INFO_TYPE_EH_FRAME:
9274 return TRUE;
9275 default:
9276 break;
9277 }
9278
9279 bed = get_elf_backend_data (sec->owner);
9280 if (bed->elf_backend_ignore_discarded_relocs != NULL
9281 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9282 return TRUE;
9283
9284 return FALSE;
9285 }
9286
9287 /* Return a mask saying how ld should treat relocations in SEC against
9288 symbols defined in discarded sections. If this function returns
9289 COMPLAIN set, ld will issue a warning message. If this function
9290 returns PRETEND set, and the discarded section was link-once and the
9291 same size as the kept link-once section, ld will pretend that the
9292 symbol was actually defined in the kept section. Otherwise ld will
9293 zero the reloc (at least that is the intent, but some cooperation by
9294 the target dependent code is needed, particularly for REL targets). */
9295
9296 unsigned int
9297 _bfd_elf_default_action_discarded (asection *sec)
9298 {
9299 if (sec->flags & SEC_DEBUGGING)
9300 return PRETEND;
9301
9302 if (strcmp (".eh_frame", sec->name) == 0)
9303 return 0;
9304
9305 if (strcmp (".gcc_except_table", sec->name) == 0)
9306 return 0;
9307
9308 return COMPLAIN | PRETEND;
9309 }
9310
9311 /* Find a match between a section and a member of a section group. */
9312
9313 static asection *
9314 match_group_member (asection *sec, asection *group,
9315 struct bfd_link_info *info)
9316 {
9317 asection *first = elf_next_in_group (group);
9318 asection *s = first;
9319
9320 while (s != NULL)
9321 {
9322 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9323 return s;
9324
9325 s = elf_next_in_group (s);
9326 if (s == first)
9327 break;
9328 }
9329
9330 return NULL;
9331 }
9332
9333 /* Check if the kept section of a discarded section SEC can be used
9334 to replace it. Return the replacement if it is OK. Otherwise return
9335 NULL. */
9336
9337 asection *
9338 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9339 {
9340 asection *kept;
9341
9342 kept = sec->kept_section;
9343 if (kept != NULL)
9344 {
9345 if ((kept->flags & SEC_GROUP) != 0)
9346 kept = match_group_member (sec, kept, info);
9347 if (kept != NULL
9348 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9349 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9350 kept = NULL;
9351 sec->kept_section = kept;
9352 }
9353 return kept;
9354 }
9355
9356 /* Link an input file into the linker output file. This function
9357 handles all the sections and relocations of the input file at once.
9358 This is so that we only have to read the local symbols once, and
9359 don't have to keep them in memory. */
9360
9361 static bfd_boolean
9362 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9363 {
9364 int (*relocate_section)
9365 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9366 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9367 bfd *output_bfd;
9368 Elf_Internal_Shdr *symtab_hdr;
9369 size_t locsymcount;
9370 size_t extsymoff;
9371 Elf_Internal_Sym *isymbuf;
9372 Elf_Internal_Sym *isym;
9373 Elf_Internal_Sym *isymend;
9374 long *pindex;
9375 asection **ppsection;
9376 asection *o;
9377 const struct elf_backend_data *bed;
9378 struct elf_link_hash_entry **sym_hashes;
9379 bfd_size_type address_size;
9380 bfd_vma r_type_mask;
9381 int r_sym_shift;
9382 bfd_boolean have_file_sym = FALSE;
9383
9384 output_bfd = flinfo->output_bfd;
9385 bed = get_elf_backend_data (output_bfd);
9386 relocate_section = bed->elf_backend_relocate_section;
9387
9388 /* If this is a dynamic object, we don't want to do anything here:
9389 we don't want the local symbols, and we don't want the section
9390 contents. */
9391 if ((input_bfd->flags & DYNAMIC) != 0)
9392 return TRUE;
9393
9394 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9395 if (elf_bad_symtab (input_bfd))
9396 {
9397 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9398 extsymoff = 0;
9399 }
9400 else
9401 {
9402 locsymcount = symtab_hdr->sh_info;
9403 extsymoff = symtab_hdr->sh_info;
9404 }
9405
9406 /* Read the local symbols. */
9407 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9408 if (isymbuf == NULL && locsymcount != 0)
9409 {
9410 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9411 flinfo->internal_syms,
9412 flinfo->external_syms,
9413 flinfo->locsym_shndx);
9414 if (isymbuf == NULL)
9415 return FALSE;
9416 }
9417
9418 /* Find local symbol sections and adjust values of symbols in
9419 SEC_MERGE sections. Write out those local symbols we know are
9420 going into the output file. */
9421 isymend = isymbuf + locsymcount;
9422 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9423 isym < isymend;
9424 isym++, pindex++, ppsection++)
9425 {
9426 asection *isec;
9427 const char *name;
9428 Elf_Internal_Sym osym;
9429 long indx;
9430 int ret;
9431
9432 *pindex = -1;
9433
9434 if (elf_bad_symtab (input_bfd))
9435 {
9436 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9437 {
9438 *ppsection = NULL;
9439 continue;
9440 }
9441 }
9442
9443 if (isym->st_shndx == SHN_UNDEF)
9444 isec = bfd_und_section_ptr;
9445 else if (isym->st_shndx == SHN_ABS)
9446 isec = bfd_abs_section_ptr;
9447 else if (isym->st_shndx == SHN_COMMON)
9448 isec = bfd_com_section_ptr;
9449 else
9450 {
9451 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9452 if (isec == NULL)
9453 {
9454 /* Don't attempt to output symbols with st_shnx in the
9455 reserved range other than SHN_ABS and SHN_COMMON. */
9456 *ppsection = NULL;
9457 continue;
9458 }
9459 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9460 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9461 isym->st_value =
9462 _bfd_merged_section_offset (output_bfd, &isec,
9463 elf_section_data (isec)->sec_info,
9464 isym->st_value);
9465 }
9466
9467 *ppsection = isec;
9468
9469 /* Don't output the first, undefined, symbol. In fact, don't
9470 output any undefined local symbol. */
9471 if (isec == bfd_und_section_ptr)
9472 continue;
9473
9474 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9475 {
9476 /* We never output section symbols. Instead, we use the
9477 section symbol of the corresponding section in the output
9478 file. */
9479 continue;
9480 }
9481
9482 /* If we are stripping all symbols, we don't want to output this
9483 one. */
9484 if (flinfo->info->strip == strip_all)
9485 continue;
9486
9487 /* If we are discarding all local symbols, we don't want to
9488 output this one. If we are generating a relocatable output
9489 file, then some of the local symbols may be required by
9490 relocs; we output them below as we discover that they are
9491 needed. */
9492 if (flinfo->info->discard == discard_all)
9493 continue;
9494
9495 /* If this symbol is defined in a section which we are
9496 discarding, we don't need to keep it. */
9497 if (isym->st_shndx != SHN_UNDEF
9498 && isym->st_shndx < SHN_LORESERVE
9499 && bfd_section_removed_from_list (output_bfd,
9500 isec->output_section))
9501 continue;
9502
9503 /* Get the name of the symbol. */
9504 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9505 isym->st_name);
9506 if (name == NULL)
9507 return FALSE;
9508
9509 /* See if we are discarding symbols with this name. */
9510 if ((flinfo->info->strip == strip_some
9511 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9512 == NULL))
9513 || (((flinfo->info->discard == discard_sec_merge
9514 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9515 || flinfo->info->discard == discard_l)
9516 && bfd_is_local_label_name (input_bfd, name)))
9517 continue;
9518
9519 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9520 {
9521 if (input_bfd->lto_output)
9522 /* -flto puts a temp file name here. This means builds
9523 are not reproducible. Discard the symbol. */
9524 continue;
9525 have_file_sym = TRUE;
9526 flinfo->filesym_count += 1;
9527 }
9528 if (!have_file_sym)
9529 {
9530 /* In the absence of debug info, bfd_find_nearest_line uses
9531 FILE symbols to determine the source file for local
9532 function symbols. Provide a FILE symbol here if input
9533 files lack such, so that their symbols won't be
9534 associated with a previous input file. It's not the
9535 source file, but the best we can do. */
9536 have_file_sym = TRUE;
9537 flinfo->filesym_count += 1;
9538 memset (&osym, 0, sizeof (osym));
9539 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9540 osym.st_shndx = SHN_ABS;
9541 if (!elf_link_output_sym (flinfo,
9542 (input_bfd->lto_output ? NULL
9543 : input_bfd->filename),
9544 &osym, bfd_abs_section_ptr, NULL))
9545 return FALSE;
9546 }
9547
9548 osym = *isym;
9549
9550 /* Adjust the section index for the output file. */
9551 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9552 isec->output_section);
9553 if (osym.st_shndx == SHN_BAD)
9554 return FALSE;
9555
9556 /* ELF symbols in relocatable files are section relative, but
9557 in executable files they are virtual addresses. Note that
9558 this code assumes that all ELF sections have an associated
9559 BFD section with a reasonable value for output_offset; below
9560 we assume that they also have a reasonable value for
9561 output_section. Any special sections must be set up to meet
9562 these requirements. */
9563 osym.st_value += isec->output_offset;
9564 if (!flinfo->info->relocatable)
9565 {
9566 osym.st_value += isec->output_section->vma;
9567 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9568 {
9569 /* STT_TLS symbols are relative to PT_TLS segment base. */
9570 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9571 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9572 }
9573 }
9574
9575 indx = bfd_get_symcount (output_bfd);
9576 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9577 if (ret == 0)
9578 return FALSE;
9579 else if (ret == 1)
9580 *pindex = indx;
9581 }
9582
9583 if (bed->s->arch_size == 32)
9584 {
9585 r_type_mask = 0xff;
9586 r_sym_shift = 8;
9587 address_size = 4;
9588 }
9589 else
9590 {
9591 r_type_mask = 0xffffffff;
9592 r_sym_shift = 32;
9593 address_size = 8;
9594 }
9595
9596 /* Relocate the contents of each section. */
9597 sym_hashes = elf_sym_hashes (input_bfd);
9598 for (o = input_bfd->sections; o != NULL; o = o->next)
9599 {
9600 bfd_byte *contents;
9601
9602 if (! o->linker_mark)
9603 {
9604 /* This section was omitted from the link. */
9605 continue;
9606 }
9607
9608 if (flinfo->info->relocatable
9609 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9610 {
9611 /* Deal with the group signature symbol. */
9612 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9613 unsigned long symndx = sec_data->this_hdr.sh_info;
9614 asection *osec = o->output_section;
9615
9616 if (symndx >= locsymcount
9617 || (elf_bad_symtab (input_bfd)
9618 && flinfo->sections[symndx] == NULL))
9619 {
9620 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9621 while (h->root.type == bfd_link_hash_indirect
9622 || h->root.type == bfd_link_hash_warning)
9623 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9624 /* Arrange for symbol to be output. */
9625 h->indx = -2;
9626 elf_section_data (osec)->this_hdr.sh_info = -2;
9627 }
9628 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9629 {
9630 /* We'll use the output section target_index. */
9631 asection *sec = flinfo->sections[symndx]->output_section;
9632 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9633 }
9634 else
9635 {
9636 if (flinfo->indices[symndx] == -1)
9637 {
9638 /* Otherwise output the local symbol now. */
9639 Elf_Internal_Sym sym = isymbuf[symndx];
9640 asection *sec = flinfo->sections[symndx]->output_section;
9641 const char *name;
9642 long indx;
9643 int ret;
9644
9645 name = bfd_elf_string_from_elf_section (input_bfd,
9646 symtab_hdr->sh_link,
9647 sym.st_name);
9648 if (name == NULL)
9649 return FALSE;
9650
9651 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9652 sec);
9653 if (sym.st_shndx == SHN_BAD)
9654 return FALSE;
9655
9656 sym.st_value += o->output_offset;
9657
9658 indx = bfd_get_symcount (output_bfd);
9659 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9660 if (ret == 0)
9661 return FALSE;
9662 else if (ret == 1)
9663 flinfo->indices[symndx] = indx;
9664 else
9665 abort ();
9666 }
9667 elf_section_data (osec)->this_hdr.sh_info
9668 = flinfo->indices[symndx];
9669 }
9670 }
9671
9672 if ((o->flags & SEC_HAS_CONTENTS) == 0
9673 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9674 continue;
9675
9676 if ((o->flags & SEC_LINKER_CREATED) != 0)
9677 {
9678 /* Section was created by _bfd_elf_link_create_dynamic_sections
9679 or somesuch. */
9680 continue;
9681 }
9682
9683 /* Get the contents of the section. They have been cached by a
9684 relaxation routine. Note that o is a section in an input
9685 file, so the contents field will not have been set by any of
9686 the routines which work on output files. */
9687 if (elf_section_data (o)->this_hdr.contents != NULL)
9688 {
9689 contents = elf_section_data (o)->this_hdr.contents;
9690 if (bed->caches_rawsize
9691 && o->rawsize != 0
9692 && o->rawsize < o->size)
9693 {
9694 memcpy (flinfo->contents, contents, o->rawsize);
9695 contents = flinfo->contents;
9696 }
9697 }
9698 else
9699 {
9700 contents = flinfo->contents;
9701 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9702 return FALSE;
9703 }
9704
9705 if ((o->flags & SEC_RELOC) != 0)
9706 {
9707 Elf_Internal_Rela *internal_relocs;
9708 Elf_Internal_Rela *rel, *relend;
9709 int action_discarded;
9710 int ret;
9711
9712 /* Get the swapped relocs. */
9713 internal_relocs
9714 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9715 flinfo->internal_relocs, FALSE);
9716 if (internal_relocs == NULL
9717 && o->reloc_count > 0)
9718 return FALSE;
9719
9720 /* We need to reverse-copy input .ctors/.dtors sections if
9721 they are placed in .init_array/.finit_array for output. */
9722 if (o->size > address_size
9723 && ((strncmp (o->name, ".ctors", 6) == 0
9724 && strcmp (o->output_section->name,
9725 ".init_array") == 0)
9726 || (strncmp (o->name, ".dtors", 6) == 0
9727 && strcmp (o->output_section->name,
9728 ".fini_array") == 0))
9729 && (o->name[6] == 0 || o->name[6] == '.'))
9730 {
9731 if (o->size != o->reloc_count * address_size)
9732 {
9733 (*_bfd_error_handler)
9734 (_("error: %B: size of section %A is not "
9735 "multiple of address size"),
9736 input_bfd, o);
9737 bfd_set_error (bfd_error_on_input);
9738 return FALSE;
9739 }
9740 o->flags |= SEC_ELF_REVERSE_COPY;
9741 }
9742
9743 action_discarded = -1;
9744 if (!elf_section_ignore_discarded_relocs (o))
9745 action_discarded = (*bed->action_discarded) (o);
9746
9747 /* Run through the relocs evaluating complex reloc symbols and
9748 looking for relocs against symbols from discarded sections
9749 or section symbols from removed link-once sections.
9750 Complain about relocs against discarded sections. Zero
9751 relocs against removed link-once sections. */
9752
9753 rel = internal_relocs;
9754 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9755 for ( ; rel < relend; rel++)
9756 {
9757 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9758 unsigned int s_type;
9759 asection **ps, *sec;
9760 struct elf_link_hash_entry *h = NULL;
9761 const char *sym_name;
9762
9763 if (r_symndx == STN_UNDEF)
9764 continue;
9765
9766 if (r_symndx >= locsymcount
9767 || (elf_bad_symtab (input_bfd)
9768 && flinfo->sections[r_symndx] == NULL))
9769 {
9770 h = sym_hashes[r_symndx - extsymoff];
9771
9772 /* Badly formatted input files can contain relocs that
9773 reference non-existant symbols. Check here so that
9774 we do not seg fault. */
9775 if (h == NULL)
9776 {
9777 char buffer [32];
9778
9779 sprintf_vma (buffer, rel->r_info);
9780 (*_bfd_error_handler)
9781 (_("error: %B contains a reloc (0x%s) for section %A "
9782 "that references a non-existent global symbol"),
9783 input_bfd, o, buffer);
9784 bfd_set_error (bfd_error_bad_value);
9785 return FALSE;
9786 }
9787
9788 while (h->root.type == bfd_link_hash_indirect
9789 || h->root.type == bfd_link_hash_warning)
9790 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9791
9792 s_type = h->type;
9793
9794 /* If a plugin symbol is referenced from a non-IR file,
9795 mark the symbol as undefined. Note that the
9796 linker may attach linker created dynamic sections
9797 to the plugin bfd. Symbols defined in linker
9798 created sections are not plugin symbols. */
9799 if (h->root.non_ir_ref
9800 && (h->root.type == bfd_link_hash_defined
9801 || h->root.type == bfd_link_hash_defweak)
9802 && (h->root.u.def.section->flags
9803 & SEC_LINKER_CREATED) == 0
9804 && h->root.u.def.section->owner != NULL
9805 && (h->root.u.def.section->owner->flags
9806 & BFD_PLUGIN) != 0)
9807 {
9808 h->root.type = bfd_link_hash_undefined;
9809 h->root.u.undef.abfd = h->root.u.def.section->owner;
9810 }
9811
9812 ps = NULL;
9813 if (h->root.type == bfd_link_hash_defined
9814 || h->root.type == bfd_link_hash_defweak)
9815 ps = &h->root.u.def.section;
9816
9817 sym_name = h->root.root.string;
9818 }
9819 else
9820 {
9821 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9822
9823 s_type = ELF_ST_TYPE (sym->st_info);
9824 ps = &flinfo->sections[r_symndx];
9825 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9826 sym, *ps);
9827 }
9828
9829 if ((s_type == STT_RELC || s_type == STT_SRELC)
9830 && !flinfo->info->relocatable)
9831 {
9832 bfd_vma val;
9833 bfd_vma dot = (rel->r_offset
9834 + o->output_offset + o->output_section->vma);
9835 #ifdef DEBUG
9836 printf ("Encountered a complex symbol!");
9837 printf (" (input_bfd %s, section %s, reloc %ld\n",
9838 input_bfd->filename, o->name,
9839 (long) (rel - internal_relocs));
9840 printf (" symbol: idx %8.8lx, name %s\n",
9841 r_symndx, sym_name);
9842 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9843 (unsigned long) rel->r_info,
9844 (unsigned long) rel->r_offset);
9845 #endif
9846 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9847 isymbuf, locsymcount, s_type == STT_SRELC))
9848 return FALSE;
9849
9850 /* Symbol evaluated OK. Update to absolute value. */
9851 set_symbol_value (input_bfd, isymbuf, locsymcount,
9852 r_symndx, val);
9853 continue;
9854 }
9855
9856 if (action_discarded != -1 && ps != NULL)
9857 {
9858 /* Complain if the definition comes from a
9859 discarded section. */
9860 if ((sec = *ps) != NULL && discarded_section (sec))
9861 {
9862 BFD_ASSERT (r_symndx != STN_UNDEF);
9863 if (action_discarded & COMPLAIN)
9864 (*flinfo->info->callbacks->einfo)
9865 (_("%X`%s' referenced in section `%A' of %B: "
9866 "defined in discarded section `%A' of %B\n"),
9867 sym_name, o, input_bfd, sec, sec->owner);
9868
9869 /* Try to do the best we can to support buggy old
9870 versions of gcc. Pretend that the symbol is
9871 really defined in the kept linkonce section.
9872 FIXME: This is quite broken. Modifying the
9873 symbol here means we will be changing all later
9874 uses of the symbol, not just in this section. */
9875 if (action_discarded & PRETEND)
9876 {
9877 asection *kept;
9878
9879 kept = _bfd_elf_check_kept_section (sec,
9880 flinfo->info);
9881 if (kept != NULL)
9882 {
9883 *ps = kept;
9884 continue;
9885 }
9886 }
9887 }
9888 }
9889 }
9890
9891 /* Relocate the section by invoking a back end routine.
9892
9893 The back end routine is responsible for adjusting the
9894 section contents as necessary, and (if using Rela relocs
9895 and generating a relocatable output file) adjusting the
9896 reloc addend as necessary.
9897
9898 The back end routine does not have to worry about setting
9899 the reloc address or the reloc symbol index.
9900
9901 The back end routine is given a pointer to the swapped in
9902 internal symbols, and can access the hash table entries
9903 for the external symbols via elf_sym_hashes (input_bfd).
9904
9905 When generating relocatable output, the back end routine
9906 must handle STB_LOCAL/STT_SECTION symbols specially. The
9907 output symbol is going to be a section symbol
9908 corresponding to the output section, which will require
9909 the addend to be adjusted. */
9910
9911 ret = (*relocate_section) (output_bfd, flinfo->info,
9912 input_bfd, o, contents,
9913 internal_relocs,
9914 isymbuf,
9915 flinfo->sections);
9916 if (!ret)
9917 return FALSE;
9918
9919 if (ret == 2
9920 || flinfo->info->relocatable
9921 || flinfo->info->emitrelocations)
9922 {
9923 Elf_Internal_Rela *irela;
9924 Elf_Internal_Rela *irelaend, *irelamid;
9925 bfd_vma last_offset;
9926 struct elf_link_hash_entry **rel_hash;
9927 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9928 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9929 unsigned int next_erel;
9930 bfd_boolean rela_normal;
9931 struct bfd_elf_section_data *esdi, *esdo;
9932
9933 esdi = elf_section_data (o);
9934 esdo = elf_section_data (o->output_section);
9935 rela_normal = FALSE;
9936
9937 /* Adjust the reloc addresses and symbol indices. */
9938
9939 irela = internal_relocs;
9940 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9941 rel_hash = esdo->rel.hashes + esdo->rel.count;
9942 /* We start processing the REL relocs, if any. When we reach
9943 IRELAMID in the loop, we switch to the RELA relocs. */
9944 irelamid = irela;
9945 if (esdi->rel.hdr != NULL)
9946 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9947 * bed->s->int_rels_per_ext_rel);
9948 rel_hash_list = rel_hash;
9949 rela_hash_list = NULL;
9950 last_offset = o->output_offset;
9951 if (!flinfo->info->relocatable)
9952 last_offset += o->output_section->vma;
9953 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9954 {
9955 unsigned long r_symndx;
9956 asection *sec;
9957 Elf_Internal_Sym sym;
9958
9959 if (next_erel == bed->s->int_rels_per_ext_rel)
9960 {
9961 rel_hash++;
9962 next_erel = 0;
9963 }
9964
9965 if (irela == irelamid)
9966 {
9967 rel_hash = esdo->rela.hashes + esdo->rela.count;
9968 rela_hash_list = rel_hash;
9969 rela_normal = bed->rela_normal;
9970 }
9971
9972 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9973 flinfo->info, o,
9974 irela->r_offset);
9975 if (irela->r_offset >= (bfd_vma) -2)
9976 {
9977 /* This is a reloc for a deleted entry or somesuch.
9978 Turn it into an R_*_NONE reloc, at the same
9979 offset as the last reloc. elf_eh_frame.c and
9980 bfd_elf_discard_info rely on reloc offsets
9981 being ordered. */
9982 irela->r_offset = last_offset;
9983 irela->r_info = 0;
9984 irela->r_addend = 0;
9985 continue;
9986 }
9987
9988 irela->r_offset += o->output_offset;
9989
9990 /* Relocs in an executable have to be virtual addresses. */
9991 if (!flinfo->info->relocatable)
9992 irela->r_offset += o->output_section->vma;
9993
9994 last_offset = irela->r_offset;
9995
9996 r_symndx = irela->r_info >> r_sym_shift;
9997 if (r_symndx == STN_UNDEF)
9998 continue;
9999
10000 if (r_symndx >= locsymcount
10001 || (elf_bad_symtab (input_bfd)
10002 && flinfo->sections[r_symndx] == NULL))
10003 {
10004 struct elf_link_hash_entry *rh;
10005 unsigned long indx;
10006
10007 /* This is a reloc against a global symbol. We
10008 have not yet output all the local symbols, so
10009 we do not know the symbol index of any global
10010 symbol. We set the rel_hash entry for this
10011 reloc to point to the global hash table entry
10012 for this symbol. The symbol index is then
10013 set at the end of bfd_elf_final_link. */
10014 indx = r_symndx - extsymoff;
10015 rh = elf_sym_hashes (input_bfd)[indx];
10016 while (rh->root.type == bfd_link_hash_indirect
10017 || rh->root.type == bfd_link_hash_warning)
10018 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10019
10020 /* Setting the index to -2 tells
10021 elf_link_output_extsym that this symbol is
10022 used by a reloc. */
10023 BFD_ASSERT (rh->indx < 0);
10024 rh->indx = -2;
10025
10026 *rel_hash = rh;
10027
10028 continue;
10029 }
10030
10031 /* This is a reloc against a local symbol. */
10032
10033 *rel_hash = NULL;
10034 sym = isymbuf[r_symndx];
10035 sec = flinfo->sections[r_symndx];
10036 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10037 {
10038 /* I suppose the backend ought to fill in the
10039 section of any STT_SECTION symbol against a
10040 processor specific section. */
10041 r_symndx = STN_UNDEF;
10042 if (bfd_is_abs_section (sec))
10043 ;
10044 else if (sec == NULL || sec->owner == NULL)
10045 {
10046 bfd_set_error (bfd_error_bad_value);
10047 return FALSE;
10048 }
10049 else
10050 {
10051 asection *osec = sec->output_section;
10052
10053 /* If we have discarded a section, the output
10054 section will be the absolute section. In
10055 case of discarded SEC_MERGE sections, use
10056 the kept section. relocate_section should
10057 have already handled discarded linkonce
10058 sections. */
10059 if (bfd_is_abs_section (osec)
10060 && sec->kept_section != NULL
10061 && sec->kept_section->output_section != NULL)
10062 {
10063 osec = sec->kept_section->output_section;
10064 irela->r_addend -= osec->vma;
10065 }
10066
10067 if (!bfd_is_abs_section (osec))
10068 {
10069 r_symndx = osec->target_index;
10070 if (r_symndx == STN_UNDEF)
10071 {
10072 irela->r_addend += osec->vma;
10073 osec = _bfd_nearby_section (output_bfd, osec,
10074 osec->vma);
10075 irela->r_addend -= osec->vma;
10076 r_symndx = osec->target_index;
10077 }
10078 }
10079 }
10080
10081 /* Adjust the addend according to where the
10082 section winds up in the output section. */
10083 if (rela_normal)
10084 irela->r_addend += sec->output_offset;
10085 }
10086 else
10087 {
10088 if (flinfo->indices[r_symndx] == -1)
10089 {
10090 unsigned long shlink;
10091 const char *name;
10092 asection *osec;
10093 long indx;
10094
10095 if (flinfo->info->strip == strip_all)
10096 {
10097 /* You can't do ld -r -s. */
10098 bfd_set_error (bfd_error_invalid_operation);
10099 return FALSE;
10100 }
10101
10102 /* This symbol was skipped earlier, but
10103 since it is needed by a reloc, we
10104 must output it now. */
10105 shlink = symtab_hdr->sh_link;
10106 name = (bfd_elf_string_from_elf_section
10107 (input_bfd, shlink, sym.st_name));
10108 if (name == NULL)
10109 return FALSE;
10110
10111 osec = sec->output_section;
10112 sym.st_shndx =
10113 _bfd_elf_section_from_bfd_section (output_bfd,
10114 osec);
10115 if (sym.st_shndx == SHN_BAD)
10116 return FALSE;
10117
10118 sym.st_value += sec->output_offset;
10119 if (!flinfo->info->relocatable)
10120 {
10121 sym.st_value += osec->vma;
10122 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10123 {
10124 /* STT_TLS symbols are relative to PT_TLS
10125 segment base. */
10126 BFD_ASSERT (elf_hash_table (flinfo->info)
10127 ->tls_sec != NULL);
10128 sym.st_value -= (elf_hash_table (flinfo->info)
10129 ->tls_sec->vma);
10130 }
10131 }
10132
10133 indx = bfd_get_symcount (output_bfd);
10134 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10135 NULL);
10136 if (ret == 0)
10137 return FALSE;
10138 else if (ret == 1)
10139 flinfo->indices[r_symndx] = indx;
10140 else
10141 abort ();
10142 }
10143
10144 r_symndx = flinfo->indices[r_symndx];
10145 }
10146
10147 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10148 | (irela->r_info & r_type_mask));
10149 }
10150
10151 /* Swap out the relocs. */
10152 input_rel_hdr = esdi->rel.hdr;
10153 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10154 {
10155 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10156 input_rel_hdr,
10157 internal_relocs,
10158 rel_hash_list))
10159 return FALSE;
10160 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10161 * bed->s->int_rels_per_ext_rel);
10162 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10163 }
10164
10165 input_rela_hdr = esdi->rela.hdr;
10166 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10167 {
10168 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10169 input_rela_hdr,
10170 internal_relocs,
10171 rela_hash_list))
10172 return FALSE;
10173 }
10174 }
10175 }
10176
10177 /* Write out the modified section contents. */
10178 if (bed->elf_backend_write_section
10179 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10180 contents))
10181 {
10182 /* Section written out. */
10183 }
10184 else switch (o->sec_info_type)
10185 {
10186 case SEC_INFO_TYPE_STABS:
10187 if (! (_bfd_write_section_stabs
10188 (output_bfd,
10189 &elf_hash_table (flinfo->info)->stab_info,
10190 o, &elf_section_data (o)->sec_info, contents)))
10191 return FALSE;
10192 break;
10193 case SEC_INFO_TYPE_MERGE:
10194 if (! _bfd_write_merged_section (output_bfd, o,
10195 elf_section_data (o)->sec_info))
10196 return FALSE;
10197 break;
10198 case SEC_INFO_TYPE_EH_FRAME:
10199 {
10200 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10201 o, contents))
10202 return FALSE;
10203 }
10204 break;
10205 default:
10206 {
10207 /* FIXME: octets_per_byte. */
10208 if (! (o->flags & SEC_EXCLUDE))
10209 {
10210 file_ptr offset = (file_ptr) o->output_offset;
10211 bfd_size_type todo = o->size;
10212 if ((o->flags & SEC_ELF_REVERSE_COPY))
10213 {
10214 /* Reverse-copy input section to output. */
10215 do
10216 {
10217 todo -= address_size;
10218 if (! bfd_set_section_contents (output_bfd,
10219 o->output_section,
10220 contents + todo,
10221 offset,
10222 address_size))
10223 return FALSE;
10224 if (todo == 0)
10225 break;
10226 offset += address_size;
10227 }
10228 while (1);
10229 }
10230 else if (! bfd_set_section_contents (output_bfd,
10231 o->output_section,
10232 contents,
10233 offset, todo))
10234 return FALSE;
10235 }
10236 }
10237 break;
10238 }
10239 }
10240
10241 return TRUE;
10242 }
10243
10244 /* Generate a reloc when linking an ELF file. This is a reloc
10245 requested by the linker, and does not come from any input file. This
10246 is used to build constructor and destructor tables when linking
10247 with -Ur. */
10248
10249 static bfd_boolean
10250 elf_reloc_link_order (bfd *output_bfd,
10251 struct bfd_link_info *info,
10252 asection *output_section,
10253 struct bfd_link_order *link_order)
10254 {
10255 reloc_howto_type *howto;
10256 long indx;
10257 bfd_vma offset;
10258 bfd_vma addend;
10259 struct bfd_elf_section_reloc_data *reldata;
10260 struct elf_link_hash_entry **rel_hash_ptr;
10261 Elf_Internal_Shdr *rel_hdr;
10262 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10263 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10264 bfd_byte *erel;
10265 unsigned int i;
10266 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10267
10268 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10269 if (howto == NULL)
10270 {
10271 bfd_set_error (bfd_error_bad_value);
10272 return FALSE;
10273 }
10274
10275 addend = link_order->u.reloc.p->addend;
10276
10277 if (esdo->rel.hdr)
10278 reldata = &esdo->rel;
10279 else if (esdo->rela.hdr)
10280 reldata = &esdo->rela;
10281 else
10282 {
10283 reldata = NULL;
10284 BFD_ASSERT (0);
10285 }
10286
10287 /* Figure out the symbol index. */
10288 rel_hash_ptr = reldata->hashes + reldata->count;
10289 if (link_order->type == bfd_section_reloc_link_order)
10290 {
10291 indx = link_order->u.reloc.p->u.section->target_index;
10292 BFD_ASSERT (indx != 0);
10293 *rel_hash_ptr = NULL;
10294 }
10295 else
10296 {
10297 struct elf_link_hash_entry *h;
10298
10299 /* Treat a reloc against a defined symbol as though it were
10300 actually against the section. */
10301 h = ((struct elf_link_hash_entry *)
10302 bfd_wrapped_link_hash_lookup (output_bfd, info,
10303 link_order->u.reloc.p->u.name,
10304 FALSE, FALSE, TRUE));
10305 if (h != NULL
10306 && (h->root.type == bfd_link_hash_defined
10307 || h->root.type == bfd_link_hash_defweak))
10308 {
10309 asection *section;
10310
10311 section = h->root.u.def.section;
10312 indx = section->output_section->target_index;
10313 *rel_hash_ptr = NULL;
10314 /* It seems that we ought to add the symbol value to the
10315 addend here, but in practice it has already been added
10316 because it was passed to constructor_callback. */
10317 addend += section->output_section->vma + section->output_offset;
10318 }
10319 else if (h != NULL)
10320 {
10321 /* Setting the index to -2 tells elf_link_output_extsym that
10322 this symbol is used by a reloc. */
10323 h->indx = -2;
10324 *rel_hash_ptr = h;
10325 indx = 0;
10326 }
10327 else
10328 {
10329 if (! ((*info->callbacks->unattached_reloc)
10330 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10331 return FALSE;
10332 indx = 0;
10333 }
10334 }
10335
10336 /* If this is an inplace reloc, we must write the addend into the
10337 object file. */
10338 if (howto->partial_inplace && addend != 0)
10339 {
10340 bfd_size_type size;
10341 bfd_reloc_status_type rstat;
10342 bfd_byte *buf;
10343 bfd_boolean ok;
10344 const char *sym_name;
10345
10346 size = (bfd_size_type) bfd_get_reloc_size (howto);
10347 buf = (bfd_byte *) bfd_zmalloc (size);
10348 if (buf == NULL && size != 0)
10349 return FALSE;
10350 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10351 switch (rstat)
10352 {
10353 case bfd_reloc_ok:
10354 break;
10355
10356 default:
10357 case bfd_reloc_outofrange:
10358 abort ();
10359
10360 case bfd_reloc_overflow:
10361 if (link_order->type == bfd_section_reloc_link_order)
10362 sym_name = bfd_section_name (output_bfd,
10363 link_order->u.reloc.p->u.section);
10364 else
10365 sym_name = link_order->u.reloc.p->u.name;
10366 if (! ((*info->callbacks->reloc_overflow)
10367 (info, NULL, sym_name, howto->name, addend, NULL,
10368 NULL, (bfd_vma) 0)))
10369 {
10370 free (buf);
10371 return FALSE;
10372 }
10373 break;
10374 }
10375 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10376 link_order->offset, size);
10377 free (buf);
10378 if (! ok)
10379 return FALSE;
10380 }
10381
10382 /* The address of a reloc is relative to the section in a
10383 relocatable file, and is a virtual address in an executable
10384 file. */
10385 offset = link_order->offset;
10386 if (! info->relocatable)
10387 offset += output_section->vma;
10388
10389 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10390 {
10391 irel[i].r_offset = offset;
10392 irel[i].r_info = 0;
10393 irel[i].r_addend = 0;
10394 }
10395 if (bed->s->arch_size == 32)
10396 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10397 else
10398 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10399
10400 rel_hdr = reldata->hdr;
10401 erel = rel_hdr->contents;
10402 if (rel_hdr->sh_type == SHT_REL)
10403 {
10404 erel += reldata->count * bed->s->sizeof_rel;
10405 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10406 }
10407 else
10408 {
10409 irel[0].r_addend = addend;
10410 erel += reldata->count * bed->s->sizeof_rela;
10411 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10412 }
10413
10414 ++reldata->count;
10415
10416 return TRUE;
10417 }
10418
10419
10420 /* Get the output vma of the section pointed to by the sh_link field. */
10421
10422 static bfd_vma
10423 elf_get_linked_section_vma (struct bfd_link_order *p)
10424 {
10425 Elf_Internal_Shdr **elf_shdrp;
10426 asection *s;
10427 int elfsec;
10428
10429 s = p->u.indirect.section;
10430 elf_shdrp = elf_elfsections (s->owner);
10431 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10432 elfsec = elf_shdrp[elfsec]->sh_link;
10433 /* PR 290:
10434 The Intel C compiler generates SHT_IA_64_UNWIND with
10435 SHF_LINK_ORDER. But it doesn't set the sh_link or
10436 sh_info fields. Hence we could get the situation
10437 where elfsec is 0. */
10438 if (elfsec == 0)
10439 {
10440 const struct elf_backend_data *bed
10441 = get_elf_backend_data (s->owner);
10442 if (bed->link_order_error_handler)
10443 bed->link_order_error_handler
10444 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10445 return 0;
10446 }
10447 else
10448 {
10449 s = elf_shdrp[elfsec]->bfd_section;
10450 return s->output_section->vma + s->output_offset;
10451 }
10452 }
10453
10454
10455 /* Compare two sections based on the locations of the sections they are
10456 linked to. Used by elf_fixup_link_order. */
10457
10458 static int
10459 compare_link_order (const void * a, const void * b)
10460 {
10461 bfd_vma apos;
10462 bfd_vma bpos;
10463
10464 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10465 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10466 if (apos < bpos)
10467 return -1;
10468 return apos > bpos;
10469 }
10470
10471
10472 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10473 order as their linked sections. Returns false if this could not be done
10474 because an output section includes both ordered and unordered
10475 sections. Ideally we'd do this in the linker proper. */
10476
10477 static bfd_boolean
10478 elf_fixup_link_order (bfd *abfd, asection *o)
10479 {
10480 int seen_linkorder;
10481 int seen_other;
10482 int n;
10483 struct bfd_link_order *p;
10484 bfd *sub;
10485 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10486 unsigned elfsec;
10487 struct bfd_link_order **sections;
10488 asection *s, *other_sec, *linkorder_sec;
10489 bfd_vma offset;
10490
10491 other_sec = NULL;
10492 linkorder_sec = NULL;
10493 seen_other = 0;
10494 seen_linkorder = 0;
10495 for (p = o->map_head.link_order; p != NULL; p = p->next)
10496 {
10497 if (p->type == bfd_indirect_link_order)
10498 {
10499 s = p->u.indirect.section;
10500 sub = s->owner;
10501 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10502 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10503 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10504 && elfsec < elf_numsections (sub)
10505 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10506 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10507 {
10508 seen_linkorder++;
10509 linkorder_sec = s;
10510 }
10511 else
10512 {
10513 seen_other++;
10514 other_sec = s;
10515 }
10516 }
10517 else
10518 seen_other++;
10519
10520 if (seen_other && seen_linkorder)
10521 {
10522 if (other_sec && linkorder_sec)
10523 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10524 o, linkorder_sec,
10525 linkorder_sec->owner, other_sec,
10526 other_sec->owner);
10527 else
10528 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10529 o);
10530 bfd_set_error (bfd_error_bad_value);
10531 return FALSE;
10532 }
10533 }
10534
10535 if (!seen_linkorder)
10536 return TRUE;
10537
10538 sections = (struct bfd_link_order **)
10539 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10540 if (sections == NULL)
10541 return FALSE;
10542 seen_linkorder = 0;
10543
10544 for (p = o->map_head.link_order; p != NULL; p = p->next)
10545 {
10546 sections[seen_linkorder++] = p;
10547 }
10548 /* Sort the input sections in the order of their linked section. */
10549 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10550 compare_link_order);
10551
10552 /* Change the offsets of the sections. */
10553 offset = 0;
10554 for (n = 0; n < seen_linkorder; n++)
10555 {
10556 s = sections[n]->u.indirect.section;
10557 offset &= ~(bfd_vma) 0 << s->alignment_power;
10558 s->output_offset = offset;
10559 sections[n]->offset = offset;
10560 /* FIXME: octets_per_byte. */
10561 offset += sections[n]->size;
10562 }
10563
10564 free (sections);
10565 return TRUE;
10566 }
10567
10568 static void
10569 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10570 {
10571 asection *o;
10572
10573 if (flinfo->symstrtab != NULL)
10574 _bfd_stringtab_free (flinfo->symstrtab);
10575 if (flinfo->contents != NULL)
10576 free (flinfo->contents);
10577 if (flinfo->external_relocs != NULL)
10578 free (flinfo->external_relocs);
10579 if (flinfo->internal_relocs != NULL)
10580 free (flinfo->internal_relocs);
10581 if (flinfo->external_syms != NULL)
10582 free (flinfo->external_syms);
10583 if (flinfo->locsym_shndx != NULL)
10584 free (flinfo->locsym_shndx);
10585 if (flinfo->internal_syms != NULL)
10586 free (flinfo->internal_syms);
10587 if (flinfo->indices != NULL)
10588 free (flinfo->indices);
10589 if (flinfo->sections != NULL)
10590 free (flinfo->sections);
10591 if (flinfo->symbuf != NULL)
10592 free (flinfo->symbuf);
10593 if (flinfo->symshndxbuf != NULL)
10594 free (flinfo->symshndxbuf);
10595 for (o = obfd->sections; o != NULL; o = o->next)
10596 {
10597 struct bfd_elf_section_data *esdo = elf_section_data (o);
10598 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10599 free (esdo->rel.hashes);
10600 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10601 free (esdo->rela.hashes);
10602 }
10603 }
10604
10605 /* Do the final step of an ELF link. */
10606
10607 bfd_boolean
10608 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10609 {
10610 bfd_boolean dynamic;
10611 bfd_boolean emit_relocs;
10612 bfd *dynobj;
10613 struct elf_final_link_info flinfo;
10614 asection *o;
10615 struct bfd_link_order *p;
10616 bfd *sub;
10617 bfd_size_type max_contents_size;
10618 bfd_size_type max_external_reloc_size;
10619 bfd_size_type max_internal_reloc_count;
10620 bfd_size_type max_sym_count;
10621 bfd_size_type max_sym_shndx_count;
10622 Elf_Internal_Sym elfsym;
10623 unsigned int i;
10624 Elf_Internal_Shdr *symtab_hdr;
10625 Elf_Internal_Shdr *symtab_shndx_hdr;
10626 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10627 struct elf_outext_info eoinfo;
10628 bfd_boolean merged;
10629 size_t relativecount = 0;
10630 asection *reldyn = 0;
10631 bfd_size_type amt;
10632 asection *attr_section = NULL;
10633 bfd_vma attr_size = 0;
10634 const char *std_attrs_section;
10635
10636 if (! is_elf_hash_table (info->hash))
10637 return FALSE;
10638
10639 if (info->shared)
10640 abfd->flags |= DYNAMIC;
10641
10642 dynamic = elf_hash_table (info)->dynamic_sections_created;
10643 dynobj = elf_hash_table (info)->dynobj;
10644
10645 emit_relocs = (info->relocatable
10646 || info->emitrelocations);
10647
10648 flinfo.info = info;
10649 flinfo.output_bfd = abfd;
10650 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10651 if (flinfo.symstrtab == NULL)
10652 return FALSE;
10653
10654 if (! dynamic)
10655 {
10656 flinfo.dynsym_sec = NULL;
10657 flinfo.hash_sec = NULL;
10658 flinfo.symver_sec = NULL;
10659 }
10660 else
10661 {
10662 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10663 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10664 /* Note that dynsym_sec can be NULL (on VMS). */
10665 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10666 /* Note that it is OK if symver_sec is NULL. */
10667 }
10668
10669 flinfo.contents = NULL;
10670 flinfo.external_relocs = NULL;
10671 flinfo.internal_relocs = NULL;
10672 flinfo.external_syms = NULL;
10673 flinfo.locsym_shndx = NULL;
10674 flinfo.internal_syms = NULL;
10675 flinfo.indices = NULL;
10676 flinfo.sections = NULL;
10677 flinfo.symbuf = NULL;
10678 flinfo.symshndxbuf = NULL;
10679 flinfo.symbuf_count = 0;
10680 flinfo.shndxbuf_size = 0;
10681 flinfo.filesym_count = 0;
10682
10683 /* The object attributes have been merged. Remove the input
10684 sections from the link, and set the contents of the output
10685 secton. */
10686 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10687 for (o = abfd->sections; o != NULL; o = o->next)
10688 {
10689 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10690 || strcmp (o->name, ".gnu.attributes") == 0)
10691 {
10692 for (p = o->map_head.link_order; p != NULL; p = p->next)
10693 {
10694 asection *input_section;
10695
10696 if (p->type != bfd_indirect_link_order)
10697 continue;
10698 input_section = p->u.indirect.section;
10699 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10700 elf_link_input_bfd ignores this section. */
10701 input_section->flags &= ~SEC_HAS_CONTENTS;
10702 }
10703
10704 attr_size = bfd_elf_obj_attr_size (abfd);
10705 if (attr_size)
10706 {
10707 bfd_set_section_size (abfd, o, attr_size);
10708 attr_section = o;
10709 /* Skip this section later on. */
10710 o->map_head.link_order = NULL;
10711 }
10712 else
10713 o->flags |= SEC_EXCLUDE;
10714 }
10715 }
10716
10717 /* Count up the number of relocations we will output for each output
10718 section, so that we know the sizes of the reloc sections. We
10719 also figure out some maximum sizes. */
10720 max_contents_size = 0;
10721 max_external_reloc_size = 0;
10722 max_internal_reloc_count = 0;
10723 max_sym_count = 0;
10724 max_sym_shndx_count = 0;
10725 merged = FALSE;
10726 for (o = abfd->sections; o != NULL; o = o->next)
10727 {
10728 struct bfd_elf_section_data *esdo = elf_section_data (o);
10729 o->reloc_count = 0;
10730
10731 for (p = o->map_head.link_order; p != NULL; p = p->next)
10732 {
10733 unsigned int reloc_count = 0;
10734 struct bfd_elf_section_data *esdi = NULL;
10735
10736 if (p->type == bfd_section_reloc_link_order
10737 || p->type == bfd_symbol_reloc_link_order)
10738 reloc_count = 1;
10739 else if (p->type == bfd_indirect_link_order)
10740 {
10741 asection *sec;
10742
10743 sec = p->u.indirect.section;
10744 esdi = elf_section_data (sec);
10745
10746 /* Mark all sections which are to be included in the
10747 link. This will normally be every section. We need
10748 to do this so that we can identify any sections which
10749 the linker has decided to not include. */
10750 sec->linker_mark = TRUE;
10751
10752 if (sec->flags & SEC_MERGE)
10753 merged = TRUE;
10754
10755 if (esdo->this_hdr.sh_type == SHT_REL
10756 || esdo->this_hdr.sh_type == SHT_RELA)
10757 /* Some backends use reloc_count in relocation sections
10758 to count particular types of relocs. Of course,
10759 reloc sections themselves can't have relocations. */
10760 reloc_count = 0;
10761 else if (info->relocatable || info->emitrelocations)
10762 reloc_count = sec->reloc_count;
10763 else if (bed->elf_backend_count_relocs)
10764 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10765
10766 if (sec->rawsize > max_contents_size)
10767 max_contents_size = sec->rawsize;
10768 if (sec->size > max_contents_size)
10769 max_contents_size = sec->size;
10770
10771 /* We are interested in just local symbols, not all
10772 symbols. */
10773 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10774 && (sec->owner->flags & DYNAMIC) == 0)
10775 {
10776 size_t sym_count;
10777
10778 if (elf_bad_symtab (sec->owner))
10779 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10780 / bed->s->sizeof_sym);
10781 else
10782 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10783
10784 if (sym_count > max_sym_count)
10785 max_sym_count = sym_count;
10786
10787 if (sym_count > max_sym_shndx_count
10788 && elf_symtab_shndx (sec->owner) != 0)
10789 max_sym_shndx_count = sym_count;
10790
10791 if ((sec->flags & SEC_RELOC) != 0)
10792 {
10793 size_t ext_size = 0;
10794
10795 if (esdi->rel.hdr != NULL)
10796 ext_size = esdi->rel.hdr->sh_size;
10797 if (esdi->rela.hdr != NULL)
10798 ext_size += esdi->rela.hdr->sh_size;
10799
10800 if (ext_size > max_external_reloc_size)
10801 max_external_reloc_size = ext_size;
10802 if (sec->reloc_count > max_internal_reloc_count)
10803 max_internal_reloc_count = sec->reloc_count;
10804 }
10805 }
10806 }
10807
10808 if (reloc_count == 0)
10809 continue;
10810
10811 o->reloc_count += reloc_count;
10812
10813 if (p->type == bfd_indirect_link_order
10814 && (info->relocatable || info->emitrelocations))
10815 {
10816 if (esdi->rel.hdr)
10817 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10818 if (esdi->rela.hdr)
10819 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10820 }
10821 else
10822 {
10823 if (o->use_rela_p)
10824 esdo->rela.count += reloc_count;
10825 else
10826 esdo->rel.count += reloc_count;
10827 }
10828 }
10829
10830 if (o->reloc_count > 0)
10831 o->flags |= SEC_RELOC;
10832 else
10833 {
10834 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10835 set it (this is probably a bug) and if it is set
10836 assign_section_numbers will create a reloc section. */
10837 o->flags &=~ SEC_RELOC;
10838 }
10839
10840 /* If the SEC_ALLOC flag is not set, force the section VMA to
10841 zero. This is done in elf_fake_sections as well, but forcing
10842 the VMA to 0 here will ensure that relocs against these
10843 sections are handled correctly. */
10844 if ((o->flags & SEC_ALLOC) == 0
10845 && ! o->user_set_vma)
10846 o->vma = 0;
10847 }
10848
10849 if (! info->relocatable && merged)
10850 elf_link_hash_traverse (elf_hash_table (info),
10851 _bfd_elf_link_sec_merge_syms, abfd);
10852
10853 /* Figure out the file positions for everything but the symbol table
10854 and the relocs. We set symcount to force assign_section_numbers
10855 to create a symbol table. */
10856 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
10857 BFD_ASSERT (! abfd->output_has_begun);
10858 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10859 goto error_return;
10860
10861 /* Set sizes, and assign file positions for reloc sections. */
10862 for (o = abfd->sections; o != NULL; o = o->next)
10863 {
10864 struct bfd_elf_section_data *esdo = elf_section_data (o);
10865 if ((o->flags & SEC_RELOC) != 0)
10866 {
10867 if (esdo->rel.hdr
10868 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10869 goto error_return;
10870
10871 if (esdo->rela.hdr
10872 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10873 goto error_return;
10874 }
10875
10876 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10877 to count upwards while actually outputting the relocations. */
10878 esdo->rel.count = 0;
10879 esdo->rela.count = 0;
10880 }
10881
10882 /* We have now assigned file positions for all the sections except
10883 .symtab, .strtab, and non-loaded reloc sections. We start the
10884 .symtab section at the current file position, and write directly
10885 to it. We build the .strtab section in memory. */
10886 bfd_get_symcount (abfd) = 0;
10887 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10888 /* sh_name is set in prep_headers. */
10889 symtab_hdr->sh_type = SHT_SYMTAB;
10890 /* sh_flags, sh_addr and sh_size all start off zero. */
10891 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10892 /* sh_link is set in assign_section_numbers. */
10893 /* sh_info is set below. */
10894 /* sh_offset is set just below. */
10895 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10896
10897 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10898 continuously seeking to the right position in the file. */
10899 if (! info->keep_memory || max_sym_count < 20)
10900 flinfo.symbuf_size = 20;
10901 else
10902 flinfo.symbuf_size = max_sym_count;
10903 amt = flinfo.symbuf_size;
10904 amt *= bed->s->sizeof_sym;
10905 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10906 if (flinfo.symbuf == NULL)
10907 goto error_return;
10908 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10909 {
10910 /* Wild guess at number of output symbols. realloc'd as needed. */
10911 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10912 flinfo.shndxbuf_size = amt;
10913 amt *= sizeof (Elf_External_Sym_Shndx);
10914 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10915 if (flinfo.symshndxbuf == NULL)
10916 goto error_return;
10917 }
10918
10919 if (info->strip != strip_all || emit_relocs)
10920 {
10921 file_ptr off = elf_next_file_pos (abfd);
10922
10923 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10924
10925 /* Note that at this point elf_next_file_pos (abfd) is
10926 incorrect. We do not yet know the size of the .symtab section.
10927 We correct next_file_pos below, after we do know the size. */
10928
10929 /* Start writing out the symbol table. The first symbol is always a
10930 dummy symbol. */
10931 elfsym.st_value = 0;
10932 elfsym.st_size = 0;
10933 elfsym.st_info = 0;
10934 elfsym.st_other = 0;
10935 elfsym.st_shndx = SHN_UNDEF;
10936 elfsym.st_target_internal = 0;
10937 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10938 NULL) != 1)
10939 goto error_return;
10940
10941 /* Output a symbol for each section. We output these even if we are
10942 discarding local symbols, since they are used for relocs. These
10943 symbols have no names. We store the index of each one in the
10944 index field of the section, so that we can find it again when
10945 outputting relocs. */
10946
10947 elfsym.st_size = 0;
10948 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10949 elfsym.st_other = 0;
10950 elfsym.st_value = 0;
10951 elfsym.st_target_internal = 0;
10952 for (i = 1; i < elf_numsections (abfd); i++)
10953 {
10954 o = bfd_section_from_elf_index (abfd, i);
10955 if (o != NULL)
10956 {
10957 o->target_index = bfd_get_symcount (abfd);
10958 elfsym.st_shndx = i;
10959 if (!info->relocatable)
10960 elfsym.st_value = o->vma;
10961 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10962 goto error_return;
10963 }
10964 }
10965 }
10966
10967 /* Allocate some memory to hold information read in from the input
10968 files. */
10969 if (max_contents_size != 0)
10970 {
10971 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10972 if (flinfo.contents == NULL)
10973 goto error_return;
10974 }
10975
10976 if (max_external_reloc_size != 0)
10977 {
10978 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10979 if (flinfo.external_relocs == NULL)
10980 goto error_return;
10981 }
10982
10983 if (max_internal_reloc_count != 0)
10984 {
10985 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10986 amt *= sizeof (Elf_Internal_Rela);
10987 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10988 if (flinfo.internal_relocs == NULL)
10989 goto error_return;
10990 }
10991
10992 if (max_sym_count != 0)
10993 {
10994 amt = max_sym_count * bed->s->sizeof_sym;
10995 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10996 if (flinfo.external_syms == NULL)
10997 goto error_return;
10998
10999 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11000 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11001 if (flinfo.internal_syms == NULL)
11002 goto error_return;
11003
11004 amt = max_sym_count * sizeof (long);
11005 flinfo.indices = (long int *) bfd_malloc (amt);
11006 if (flinfo.indices == NULL)
11007 goto error_return;
11008
11009 amt = max_sym_count * sizeof (asection *);
11010 flinfo.sections = (asection **) bfd_malloc (amt);
11011 if (flinfo.sections == NULL)
11012 goto error_return;
11013 }
11014
11015 if (max_sym_shndx_count != 0)
11016 {
11017 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11018 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11019 if (flinfo.locsym_shndx == NULL)
11020 goto error_return;
11021 }
11022
11023 if (elf_hash_table (info)->tls_sec)
11024 {
11025 bfd_vma base, end = 0;
11026 asection *sec;
11027
11028 for (sec = elf_hash_table (info)->tls_sec;
11029 sec && (sec->flags & SEC_THREAD_LOCAL);
11030 sec = sec->next)
11031 {
11032 bfd_size_type size = sec->size;
11033
11034 if (size == 0
11035 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11036 {
11037 struct bfd_link_order *ord = sec->map_tail.link_order;
11038
11039 if (ord != NULL)
11040 size = ord->offset + ord->size;
11041 }
11042 end = sec->vma + size;
11043 }
11044 base = elf_hash_table (info)->tls_sec->vma;
11045 /* Only align end of TLS section if static TLS doesn't have special
11046 alignment requirements. */
11047 if (bed->static_tls_alignment == 1)
11048 end = align_power (end,
11049 elf_hash_table (info)->tls_sec->alignment_power);
11050 elf_hash_table (info)->tls_size = end - base;
11051 }
11052
11053 /* Reorder SHF_LINK_ORDER sections. */
11054 for (o = abfd->sections; o != NULL; o = o->next)
11055 {
11056 if (!elf_fixup_link_order (abfd, o))
11057 return FALSE;
11058 }
11059
11060 /* Since ELF permits relocations to be against local symbols, we
11061 must have the local symbols available when we do the relocations.
11062 Since we would rather only read the local symbols once, and we
11063 would rather not keep them in memory, we handle all the
11064 relocations for a single input file at the same time.
11065
11066 Unfortunately, there is no way to know the total number of local
11067 symbols until we have seen all of them, and the local symbol
11068 indices precede the global symbol indices. This means that when
11069 we are generating relocatable output, and we see a reloc against
11070 a global symbol, we can not know the symbol index until we have
11071 finished examining all the local symbols to see which ones we are
11072 going to output. To deal with this, we keep the relocations in
11073 memory, and don't output them until the end of the link. This is
11074 an unfortunate waste of memory, but I don't see a good way around
11075 it. Fortunately, it only happens when performing a relocatable
11076 link, which is not the common case. FIXME: If keep_memory is set
11077 we could write the relocs out and then read them again; I don't
11078 know how bad the memory loss will be. */
11079
11080 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11081 sub->output_has_begun = FALSE;
11082 for (o = abfd->sections; o != NULL; o = o->next)
11083 {
11084 for (p = o->map_head.link_order; p != NULL; p = p->next)
11085 {
11086 if (p->type == bfd_indirect_link_order
11087 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11088 == bfd_target_elf_flavour)
11089 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11090 {
11091 if (! sub->output_has_begun)
11092 {
11093 if (! elf_link_input_bfd (&flinfo, sub))
11094 goto error_return;
11095 sub->output_has_begun = TRUE;
11096 }
11097 }
11098 else if (p->type == bfd_section_reloc_link_order
11099 || p->type == bfd_symbol_reloc_link_order)
11100 {
11101 if (! elf_reloc_link_order (abfd, info, o, p))
11102 goto error_return;
11103 }
11104 else
11105 {
11106 if (! _bfd_default_link_order (abfd, info, o, p))
11107 {
11108 if (p->type == bfd_indirect_link_order
11109 && (bfd_get_flavour (sub)
11110 == bfd_target_elf_flavour)
11111 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11112 != bed->s->elfclass))
11113 {
11114 const char *iclass, *oclass;
11115
11116 if (bed->s->elfclass == ELFCLASS64)
11117 {
11118 iclass = "ELFCLASS32";
11119 oclass = "ELFCLASS64";
11120 }
11121 else
11122 {
11123 iclass = "ELFCLASS64";
11124 oclass = "ELFCLASS32";
11125 }
11126
11127 bfd_set_error (bfd_error_wrong_format);
11128 (*_bfd_error_handler)
11129 (_("%B: file class %s incompatible with %s"),
11130 sub, iclass, oclass);
11131 }
11132
11133 goto error_return;
11134 }
11135 }
11136 }
11137 }
11138
11139 /* Free symbol buffer if needed. */
11140 if (!info->reduce_memory_overheads)
11141 {
11142 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11143 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11144 && elf_tdata (sub)->symbuf)
11145 {
11146 free (elf_tdata (sub)->symbuf);
11147 elf_tdata (sub)->symbuf = NULL;
11148 }
11149 }
11150
11151 /* Output any global symbols that got converted to local in a
11152 version script or due to symbol visibility. We do this in a
11153 separate step since ELF requires all local symbols to appear
11154 prior to any global symbols. FIXME: We should only do this if
11155 some global symbols were, in fact, converted to become local.
11156 FIXME: Will this work correctly with the Irix 5 linker? */
11157 eoinfo.failed = FALSE;
11158 eoinfo.flinfo = &flinfo;
11159 eoinfo.localsyms = TRUE;
11160 eoinfo.file_sym_done = FALSE;
11161 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11162 if (eoinfo.failed)
11163 return FALSE;
11164
11165 /* If backend needs to output some local symbols not present in the hash
11166 table, do it now. */
11167 if (bed->elf_backend_output_arch_local_syms
11168 && (info->strip != strip_all || emit_relocs))
11169 {
11170 typedef int (*out_sym_func)
11171 (void *, const char *, Elf_Internal_Sym *, asection *,
11172 struct elf_link_hash_entry *);
11173
11174 if (! ((*bed->elf_backend_output_arch_local_syms)
11175 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11176 return FALSE;
11177 }
11178
11179 /* That wrote out all the local symbols. Finish up the symbol table
11180 with the global symbols. Even if we want to strip everything we
11181 can, we still need to deal with those global symbols that got
11182 converted to local in a version script. */
11183
11184 /* The sh_info field records the index of the first non local symbol. */
11185 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11186
11187 if (dynamic
11188 && flinfo.dynsym_sec != NULL
11189 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11190 {
11191 Elf_Internal_Sym sym;
11192 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11193 long last_local = 0;
11194
11195 /* Write out the section symbols for the output sections. */
11196 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11197 {
11198 asection *s;
11199
11200 sym.st_size = 0;
11201 sym.st_name = 0;
11202 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11203 sym.st_other = 0;
11204 sym.st_target_internal = 0;
11205
11206 for (s = abfd->sections; s != NULL; s = s->next)
11207 {
11208 int indx;
11209 bfd_byte *dest;
11210 long dynindx;
11211
11212 dynindx = elf_section_data (s)->dynindx;
11213 if (dynindx <= 0)
11214 continue;
11215 indx = elf_section_data (s)->this_idx;
11216 BFD_ASSERT (indx > 0);
11217 sym.st_shndx = indx;
11218 if (! check_dynsym (abfd, &sym))
11219 return FALSE;
11220 sym.st_value = s->vma;
11221 dest = dynsym + dynindx * bed->s->sizeof_sym;
11222 if (last_local < dynindx)
11223 last_local = dynindx;
11224 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11225 }
11226 }
11227
11228 /* Write out the local dynsyms. */
11229 if (elf_hash_table (info)->dynlocal)
11230 {
11231 struct elf_link_local_dynamic_entry *e;
11232 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11233 {
11234 asection *s;
11235 bfd_byte *dest;
11236
11237 /* Copy the internal symbol and turn off visibility.
11238 Note that we saved a word of storage and overwrote
11239 the original st_name with the dynstr_index. */
11240 sym = e->isym;
11241 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11242
11243 s = bfd_section_from_elf_index (e->input_bfd,
11244 e->isym.st_shndx);
11245 if (s != NULL)
11246 {
11247 sym.st_shndx =
11248 elf_section_data (s->output_section)->this_idx;
11249 if (! check_dynsym (abfd, &sym))
11250 return FALSE;
11251 sym.st_value = (s->output_section->vma
11252 + s->output_offset
11253 + e->isym.st_value);
11254 }
11255
11256 if (last_local < e->dynindx)
11257 last_local = e->dynindx;
11258
11259 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11260 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11261 }
11262 }
11263
11264 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11265 last_local + 1;
11266 }
11267
11268 /* We get the global symbols from the hash table. */
11269 eoinfo.failed = FALSE;
11270 eoinfo.localsyms = FALSE;
11271 eoinfo.flinfo = &flinfo;
11272 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11273 if (eoinfo.failed)
11274 return FALSE;
11275
11276 /* If backend needs to output some symbols not present in the hash
11277 table, do it now. */
11278 if (bed->elf_backend_output_arch_syms
11279 && (info->strip != strip_all || emit_relocs))
11280 {
11281 typedef int (*out_sym_func)
11282 (void *, const char *, Elf_Internal_Sym *, asection *,
11283 struct elf_link_hash_entry *);
11284
11285 if (! ((*bed->elf_backend_output_arch_syms)
11286 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11287 return FALSE;
11288 }
11289
11290 /* Flush all symbols to the file. */
11291 if (! elf_link_flush_output_syms (&flinfo, bed))
11292 return FALSE;
11293
11294 /* Now we know the size of the symtab section. */
11295 if (bfd_get_symcount (abfd) > 0)
11296 {
11297 /* Finish up and write out the symbol string table (.strtab)
11298 section. */
11299 Elf_Internal_Shdr *symstrtab_hdr;
11300 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11301
11302 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11303 if (symtab_shndx_hdr->sh_name != 0)
11304 {
11305 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11306 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11307 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11308 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11309 symtab_shndx_hdr->sh_size = amt;
11310
11311 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11312 off, TRUE);
11313
11314 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11315 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11316 return FALSE;
11317 }
11318
11319 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11320 /* sh_name was set in prep_headers. */
11321 symstrtab_hdr->sh_type = SHT_STRTAB;
11322 symstrtab_hdr->sh_flags = 0;
11323 symstrtab_hdr->sh_addr = 0;
11324 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11325 symstrtab_hdr->sh_entsize = 0;
11326 symstrtab_hdr->sh_link = 0;
11327 symstrtab_hdr->sh_info = 0;
11328 /* sh_offset is set just below. */
11329 symstrtab_hdr->sh_addralign = 1;
11330
11331 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11332 off, TRUE);
11333 elf_next_file_pos (abfd) = off;
11334
11335 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11336 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11337 return FALSE;
11338 }
11339
11340 /* Adjust the relocs to have the correct symbol indices. */
11341 for (o = abfd->sections; o != NULL; o = o->next)
11342 {
11343 struct bfd_elf_section_data *esdo = elf_section_data (o);
11344 bfd_boolean sort;
11345 if ((o->flags & SEC_RELOC) == 0)
11346 continue;
11347
11348 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11349 if (esdo->rel.hdr != NULL)
11350 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11351 if (esdo->rela.hdr != NULL)
11352 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11353
11354 /* Set the reloc_count field to 0 to prevent write_relocs from
11355 trying to swap the relocs out itself. */
11356 o->reloc_count = 0;
11357 }
11358
11359 if (dynamic && info->combreloc && dynobj != NULL)
11360 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11361
11362 /* If we are linking against a dynamic object, or generating a
11363 shared library, finish up the dynamic linking information. */
11364 if (dynamic)
11365 {
11366 bfd_byte *dyncon, *dynconend;
11367
11368 /* Fix up .dynamic entries. */
11369 o = bfd_get_linker_section (dynobj, ".dynamic");
11370 BFD_ASSERT (o != NULL);
11371
11372 dyncon = o->contents;
11373 dynconend = o->contents + o->size;
11374 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11375 {
11376 Elf_Internal_Dyn dyn;
11377 const char *name;
11378 unsigned int type;
11379
11380 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11381
11382 switch (dyn.d_tag)
11383 {
11384 default:
11385 continue;
11386 case DT_NULL:
11387 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11388 {
11389 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11390 {
11391 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11392 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11393 default: continue;
11394 }
11395 dyn.d_un.d_val = relativecount;
11396 relativecount = 0;
11397 break;
11398 }
11399 continue;
11400
11401 case DT_INIT:
11402 name = info->init_function;
11403 goto get_sym;
11404 case DT_FINI:
11405 name = info->fini_function;
11406 get_sym:
11407 {
11408 struct elf_link_hash_entry *h;
11409
11410 h = elf_link_hash_lookup (elf_hash_table (info), name,
11411 FALSE, FALSE, TRUE);
11412 if (h != NULL
11413 && (h->root.type == bfd_link_hash_defined
11414 || h->root.type == bfd_link_hash_defweak))
11415 {
11416 dyn.d_un.d_ptr = h->root.u.def.value;
11417 o = h->root.u.def.section;
11418 if (o->output_section != NULL)
11419 dyn.d_un.d_ptr += (o->output_section->vma
11420 + o->output_offset);
11421 else
11422 {
11423 /* The symbol is imported from another shared
11424 library and does not apply to this one. */
11425 dyn.d_un.d_ptr = 0;
11426 }
11427 break;
11428 }
11429 }
11430 continue;
11431
11432 case DT_PREINIT_ARRAYSZ:
11433 name = ".preinit_array";
11434 goto get_size;
11435 case DT_INIT_ARRAYSZ:
11436 name = ".init_array";
11437 goto get_size;
11438 case DT_FINI_ARRAYSZ:
11439 name = ".fini_array";
11440 get_size:
11441 o = bfd_get_section_by_name (abfd, name);
11442 if (o == NULL)
11443 {
11444 (*_bfd_error_handler)
11445 (_("%B: could not find output section %s"), abfd, name);
11446 goto error_return;
11447 }
11448 if (o->size == 0)
11449 (*_bfd_error_handler)
11450 (_("warning: %s section has zero size"), name);
11451 dyn.d_un.d_val = o->size;
11452 break;
11453
11454 case DT_PREINIT_ARRAY:
11455 name = ".preinit_array";
11456 goto get_vma;
11457 case DT_INIT_ARRAY:
11458 name = ".init_array";
11459 goto get_vma;
11460 case DT_FINI_ARRAY:
11461 name = ".fini_array";
11462 goto get_vma;
11463
11464 case DT_HASH:
11465 name = ".hash";
11466 goto get_vma;
11467 case DT_GNU_HASH:
11468 name = ".gnu.hash";
11469 goto get_vma;
11470 case DT_STRTAB:
11471 name = ".dynstr";
11472 goto get_vma;
11473 case DT_SYMTAB:
11474 name = ".dynsym";
11475 goto get_vma;
11476 case DT_VERDEF:
11477 name = ".gnu.version_d";
11478 goto get_vma;
11479 case DT_VERNEED:
11480 name = ".gnu.version_r";
11481 goto get_vma;
11482 case DT_VERSYM:
11483 name = ".gnu.version";
11484 get_vma:
11485 o = bfd_get_section_by_name (abfd, name);
11486 if (o == NULL)
11487 {
11488 (*_bfd_error_handler)
11489 (_("%B: could not find output section %s"), abfd, name);
11490 goto error_return;
11491 }
11492 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11493 {
11494 (*_bfd_error_handler)
11495 (_("warning: section '%s' is being made into a note"), name);
11496 bfd_set_error (bfd_error_nonrepresentable_section);
11497 goto error_return;
11498 }
11499 dyn.d_un.d_ptr = o->vma;
11500 break;
11501
11502 case DT_REL:
11503 case DT_RELA:
11504 case DT_RELSZ:
11505 case DT_RELASZ:
11506 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11507 type = SHT_REL;
11508 else
11509 type = SHT_RELA;
11510 dyn.d_un.d_val = 0;
11511 dyn.d_un.d_ptr = 0;
11512 for (i = 1; i < elf_numsections (abfd); i++)
11513 {
11514 Elf_Internal_Shdr *hdr;
11515
11516 hdr = elf_elfsections (abfd)[i];
11517 if (hdr->sh_type == type
11518 && (hdr->sh_flags & SHF_ALLOC) != 0)
11519 {
11520 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11521 dyn.d_un.d_val += hdr->sh_size;
11522 else
11523 {
11524 if (dyn.d_un.d_ptr == 0
11525 || hdr->sh_addr < dyn.d_un.d_ptr)
11526 dyn.d_un.d_ptr = hdr->sh_addr;
11527 }
11528 }
11529 }
11530 break;
11531 }
11532 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11533 }
11534 }
11535
11536 /* If we have created any dynamic sections, then output them. */
11537 if (dynobj != NULL)
11538 {
11539 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11540 goto error_return;
11541
11542 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11543 if (((info->warn_shared_textrel && info->shared)
11544 || info->error_textrel)
11545 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11546 {
11547 bfd_byte *dyncon, *dynconend;
11548
11549 dyncon = o->contents;
11550 dynconend = o->contents + o->size;
11551 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11552 {
11553 Elf_Internal_Dyn dyn;
11554
11555 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11556
11557 if (dyn.d_tag == DT_TEXTREL)
11558 {
11559 if (info->error_textrel)
11560 info->callbacks->einfo
11561 (_("%P%X: read-only segment has dynamic relocations.\n"));
11562 else
11563 info->callbacks->einfo
11564 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11565 break;
11566 }
11567 }
11568 }
11569
11570 for (o = dynobj->sections; o != NULL; o = o->next)
11571 {
11572 if ((o->flags & SEC_HAS_CONTENTS) == 0
11573 || o->size == 0
11574 || o->output_section == bfd_abs_section_ptr)
11575 continue;
11576 if ((o->flags & SEC_LINKER_CREATED) == 0)
11577 {
11578 /* At this point, we are only interested in sections
11579 created by _bfd_elf_link_create_dynamic_sections. */
11580 continue;
11581 }
11582 if (elf_hash_table (info)->stab_info.stabstr == o)
11583 continue;
11584 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11585 continue;
11586 if (strcmp (o->name, ".dynstr") != 0)
11587 {
11588 /* FIXME: octets_per_byte. */
11589 if (! bfd_set_section_contents (abfd, o->output_section,
11590 o->contents,
11591 (file_ptr) o->output_offset,
11592 o->size))
11593 goto error_return;
11594 }
11595 else
11596 {
11597 /* The contents of the .dynstr section are actually in a
11598 stringtab. */
11599 file_ptr off;
11600
11601 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11602 if (bfd_seek (abfd, off, SEEK_SET) != 0
11603 || ! _bfd_elf_strtab_emit (abfd,
11604 elf_hash_table (info)->dynstr))
11605 goto error_return;
11606 }
11607 }
11608 }
11609
11610 if (info->relocatable)
11611 {
11612 bfd_boolean failed = FALSE;
11613
11614 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11615 if (failed)
11616 goto error_return;
11617 }
11618
11619 /* If we have optimized stabs strings, output them. */
11620 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11621 {
11622 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11623 goto error_return;
11624 }
11625
11626 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11627 goto error_return;
11628
11629 elf_final_link_free (abfd, &flinfo);
11630
11631 elf_linker (abfd) = TRUE;
11632
11633 if (attr_section)
11634 {
11635 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11636 if (contents == NULL)
11637 return FALSE; /* Bail out and fail. */
11638 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11639 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11640 free (contents);
11641 }
11642
11643 return TRUE;
11644
11645 error_return:
11646 elf_final_link_free (abfd, &flinfo);
11647 return FALSE;
11648 }
11649 \f
11650 /* Initialize COOKIE for input bfd ABFD. */
11651
11652 static bfd_boolean
11653 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11654 struct bfd_link_info *info, bfd *abfd)
11655 {
11656 Elf_Internal_Shdr *symtab_hdr;
11657 const struct elf_backend_data *bed;
11658
11659 bed = get_elf_backend_data (abfd);
11660 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11661
11662 cookie->abfd = abfd;
11663 cookie->sym_hashes = elf_sym_hashes (abfd);
11664 cookie->bad_symtab = elf_bad_symtab (abfd);
11665 if (cookie->bad_symtab)
11666 {
11667 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11668 cookie->extsymoff = 0;
11669 }
11670 else
11671 {
11672 cookie->locsymcount = symtab_hdr->sh_info;
11673 cookie->extsymoff = symtab_hdr->sh_info;
11674 }
11675
11676 if (bed->s->arch_size == 32)
11677 cookie->r_sym_shift = 8;
11678 else
11679 cookie->r_sym_shift = 32;
11680
11681 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11682 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11683 {
11684 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11685 cookie->locsymcount, 0,
11686 NULL, NULL, NULL);
11687 if (cookie->locsyms == NULL)
11688 {
11689 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11690 return FALSE;
11691 }
11692 if (info->keep_memory)
11693 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11694 }
11695 return TRUE;
11696 }
11697
11698 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11699
11700 static void
11701 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11702 {
11703 Elf_Internal_Shdr *symtab_hdr;
11704
11705 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11706 if (cookie->locsyms != NULL
11707 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11708 free (cookie->locsyms);
11709 }
11710
11711 /* Initialize the relocation information in COOKIE for input section SEC
11712 of input bfd ABFD. */
11713
11714 static bfd_boolean
11715 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11716 struct bfd_link_info *info, bfd *abfd,
11717 asection *sec)
11718 {
11719 const struct elf_backend_data *bed;
11720
11721 if (sec->reloc_count == 0)
11722 {
11723 cookie->rels = NULL;
11724 cookie->relend = NULL;
11725 }
11726 else
11727 {
11728 bed = get_elf_backend_data (abfd);
11729
11730 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11731 info->keep_memory);
11732 if (cookie->rels == NULL)
11733 return FALSE;
11734 cookie->rel = cookie->rels;
11735 cookie->relend = (cookie->rels
11736 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11737 }
11738 cookie->rel = cookie->rels;
11739 return TRUE;
11740 }
11741
11742 /* Free the memory allocated by init_reloc_cookie_rels,
11743 if appropriate. */
11744
11745 static void
11746 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11747 asection *sec)
11748 {
11749 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11750 free (cookie->rels);
11751 }
11752
11753 /* Initialize the whole of COOKIE for input section SEC. */
11754
11755 static bfd_boolean
11756 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11757 struct bfd_link_info *info,
11758 asection *sec)
11759 {
11760 if (!init_reloc_cookie (cookie, info, sec->owner))
11761 goto error1;
11762 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11763 goto error2;
11764 return TRUE;
11765
11766 error2:
11767 fini_reloc_cookie (cookie, sec->owner);
11768 error1:
11769 return FALSE;
11770 }
11771
11772 /* Free the memory allocated by init_reloc_cookie_for_section,
11773 if appropriate. */
11774
11775 static void
11776 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11777 asection *sec)
11778 {
11779 fini_reloc_cookie_rels (cookie, sec);
11780 fini_reloc_cookie (cookie, sec->owner);
11781 }
11782 \f
11783 /* Garbage collect unused sections. */
11784
11785 /* Default gc_mark_hook. */
11786
11787 asection *
11788 _bfd_elf_gc_mark_hook (asection *sec,
11789 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11790 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11791 struct elf_link_hash_entry *h,
11792 Elf_Internal_Sym *sym)
11793 {
11794 const char *sec_name;
11795
11796 if (h != NULL)
11797 {
11798 switch (h->root.type)
11799 {
11800 case bfd_link_hash_defined:
11801 case bfd_link_hash_defweak:
11802 return h->root.u.def.section;
11803
11804 case bfd_link_hash_common:
11805 return h->root.u.c.p->section;
11806
11807 case bfd_link_hash_undefined:
11808 case bfd_link_hash_undefweak:
11809 /* To work around a glibc bug, keep all XXX input sections
11810 when there is an as yet undefined reference to __start_XXX
11811 or __stop_XXX symbols. The linker will later define such
11812 symbols for orphan input sections that have a name
11813 representable as a C identifier. */
11814 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11815 sec_name = h->root.root.string + 8;
11816 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11817 sec_name = h->root.root.string + 7;
11818 else
11819 sec_name = NULL;
11820
11821 if (sec_name && *sec_name != '\0')
11822 {
11823 bfd *i;
11824
11825 for (i = info->input_bfds; i; i = i->link.next)
11826 {
11827 sec = bfd_get_section_by_name (i, sec_name);
11828 if (sec)
11829 sec->flags |= SEC_KEEP;
11830 }
11831 }
11832 break;
11833
11834 default:
11835 break;
11836 }
11837 }
11838 else
11839 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11840
11841 return NULL;
11842 }
11843
11844 /* COOKIE->rel describes a relocation against section SEC, which is
11845 a section we've decided to keep. Return the section that contains
11846 the relocation symbol, or NULL if no section contains it. */
11847
11848 asection *
11849 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11850 elf_gc_mark_hook_fn gc_mark_hook,
11851 struct elf_reloc_cookie *cookie)
11852 {
11853 unsigned long r_symndx;
11854 struct elf_link_hash_entry *h;
11855
11856 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11857 if (r_symndx == STN_UNDEF)
11858 return NULL;
11859
11860 if (r_symndx >= cookie->locsymcount
11861 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11862 {
11863 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11864 if (h == NULL)
11865 {
11866 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
11867 sec->owner);
11868 return NULL;
11869 }
11870 while (h->root.type == bfd_link_hash_indirect
11871 || h->root.type == bfd_link_hash_warning)
11872 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11873 h->mark = 1;
11874 /* If this symbol is weak and there is a non-weak definition, we
11875 keep the non-weak definition because many backends put
11876 dynamic reloc info on the non-weak definition for code
11877 handling copy relocs. */
11878 if (h->u.weakdef != NULL)
11879 h->u.weakdef->mark = 1;
11880 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11881 }
11882
11883 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11884 &cookie->locsyms[r_symndx]);
11885 }
11886
11887 /* COOKIE->rel describes a relocation against section SEC, which is
11888 a section we've decided to keep. Mark the section that contains
11889 the relocation symbol. */
11890
11891 bfd_boolean
11892 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11893 asection *sec,
11894 elf_gc_mark_hook_fn gc_mark_hook,
11895 struct elf_reloc_cookie *cookie)
11896 {
11897 asection *rsec;
11898
11899 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11900 if (rsec && !rsec->gc_mark)
11901 {
11902 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11903 || (rsec->owner->flags & DYNAMIC) != 0)
11904 rsec->gc_mark = 1;
11905 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11906 return FALSE;
11907 }
11908 return TRUE;
11909 }
11910
11911 /* The mark phase of garbage collection. For a given section, mark
11912 it and any sections in this section's group, and all the sections
11913 which define symbols to which it refers. */
11914
11915 bfd_boolean
11916 _bfd_elf_gc_mark (struct bfd_link_info *info,
11917 asection *sec,
11918 elf_gc_mark_hook_fn gc_mark_hook)
11919 {
11920 bfd_boolean ret;
11921 asection *group_sec, *eh_frame;
11922
11923 sec->gc_mark = 1;
11924
11925 /* Mark all the sections in the group. */
11926 group_sec = elf_section_data (sec)->next_in_group;
11927 if (group_sec && !group_sec->gc_mark)
11928 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11929 return FALSE;
11930
11931 /* Look through the section relocs. */
11932 ret = TRUE;
11933 eh_frame = elf_eh_frame_section (sec->owner);
11934 if ((sec->flags & SEC_RELOC) != 0
11935 && sec->reloc_count > 0
11936 && sec != eh_frame)
11937 {
11938 struct elf_reloc_cookie cookie;
11939
11940 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11941 ret = FALSE;
11942 else
11943 {
11944 for (; cookie.rel < cookie.relend; cookie.rel++)
11945 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11946 {
11947 ret = FALSE;
11948 break;
11949 }
11950 fini_reloc_cookie_for_section (&cookie, sec);
11951 }
11952 }
11953
11954 if (ret && eh_frame && elf_fde_list (sec))
11955 {
11956 struct elf_reloc_cookie cookie;
11957
11958 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11959 ret = FALSE;
11960 else
11961 {
11962 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11963 gc_mark_hook, &cookie))
11964 ret = FALSE;
11965 fini_reloc_cookie_for_section (&cookie, eh_frame);
11966 }
11967 }
11968
11969 return ret;
11970 }
11971
11972 /* Scan and mark sections in a special or debug section group. */
11973
11974 static void
11975 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
11976 {
11977 /* Point to first section of section group. */
11978 asection *ssec;
11979 /* Used to iterate the section group. */
11980 asection *msec;
11981
11982 bfd_boolean is_special_grp = TRUE;
11983 bfd_boolean is_debug_grp = TRUE;
11984
11985 /* First scan to see if group contains any section other than debug
11986 and special section. */
11987 ssec = msec = elf_next_in_group (grp);
11988 do
11989 {
11990 if ((msec->flags & SEC_DEBUGGING) == 0)
11991 is_debug_grp = FALSE;
11992
11993 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
11994 is_special_grp = FALSE;
11995
11996 msec = elf_next_in_group (msec);
11997 }
11998 while (msec != ssec);
11999
12000 /* If this is a pure debug section group or pure special section group,
12001 keep all sections in this group. */
12002 if (is_debug_grp || is_special_grp)
12003 {
12004 do
12005 {
12006 msec->gc_mark = 1;
12007 msec = elf_next_in_group (msec);
12008 }
12009 while (msec != ssec);
12010 }
12011 }
12012
12013 /* Keep debug and special sections. */
12014
12015 bfd_boolean
12016 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12017 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12018 {
12019 bfd *ibfd;
12020
12021 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12022 {
12023 asection *isec;
12024 bfd_boolean some_kept;
12025 bfd_boolean debug_frag_seen;
12026
12027 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12028 continue;
12029
12030 /* Ensure all linker created sections are kept,
12031 see if any other section is already marked,
12032 and note if we have any fragmented debug sections. */
12033 debug_frag_seen = some_kept = FALSE;
12034 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12035 {
12036 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12037 isec->gc_mark = 1;
12038 else if (isec->gc_mark)
12039 some_kept = TRUE;
12040
12041 if (debug_frag_seen == FALSE
12042 && (isec->flags & SEC_DEBUGGING)
12043 && CONST_STRNEQ (isec->name, ".debug_line."))
12044 debug_frag_seen = TRUE;
12045 }
12046
12047 /* If no section in this file will be kept, then we can
12048 toss out the debug and special sections. */
12049 if (!some_kept)
12050 continue;
12051
12052 /* Keep debug and special sections like .comment when they are
12053 not part of a group. Also keep section groups that contain
12054 just debug sections or special sections. */
12055 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12056 {
12057 if ((isec->flags & SEC_GROUP) != 0)
12058 _bfd_elf_gc_mark_debug_special_section_group (isec);
12059 else if (((isec->flags & SEC_DEBUGGING) != 0
12060 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12061 && elf_next_in_group (isec) == NULL)
12062 isec->gc_mark = 1;
12063 }
12064
12065 if (! debug_frag_seen)
12066 continue;
12067
12068 /* Look for CODE sections which are going to be discarded,
12069 and find and discard any fragmented debug sections which
12070 are associated with that code section. */
12071 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12072 if ((isec->flags & SEC_CODE) != 0
12073 && isec->gc_mark == 0)
12074 {
12075 unsigned int ilen;
12076 asection *dsec;
12077
12078 ilen = strlen (isec->name);
12079
12080 /* Association is determined by the name of the debug section
12081 containing the name of the code section as a suffix. For
12082 example .debug_line.text.foo is a debug section associated
12083 with .text.foo. */
12084 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12085 {
12086 unsigned int dlen;
12087
12088 if (dsec->gc_mark == 0
12089 || (dsec->flags & SEC_DEBUGGING) == 0)
12090 continue;
12091
12092 dlen = strlen (dsec->name);
12093
12094 if (dlen > ilen
12095 && strncmp (dsec->name + (dlen - ilen),
12096 isec->name, ilen) == 0)
12097 {
12098 dsec->gc_mark = 0;
12099 break;
12100 }
12101 }
12102 }
12103 }
12104 return TRUE;
12105 }
12106
12107 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12108
12109 struct elf_gc_sweep_symbol_info
12110 {
12111 struct bfd_link_info *info;
12112 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12113 bfd_boolean);
12114 };
12115
12116 static bfd_boolean
12117 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12118 {
12119 if (!h->mark
12120 && (((h->root.type == bfd_link_hash_defined
12121 || h->root.type == bfd_link_hash_defweak)
12122 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12123 && h->root.u.def.section->gc_mark))
12124 || h->root.type == bfd_link_hash_undefined
12125 || h->root.type == bfd_link_hash_undefweak))
12126 {
12127 struct elf_gc_sweep_symbol_info *inf;
12128
12129 inf = (struct elf_gc_sweep_symbol_info *) data;
12130 (*inf->hide_symbol) (inf->info, h, TRUE);
12131 h->def_regular = 0;
12132 h->ref_regular = 0;
12133 h->ref_regular_nonweak = 0;
12134 }
12135
12136 return TRUE;
12137 }
12138
12139 /* The sweep phase of garbage collection. Remove all garbage sections. */
12140
12141 typedef bfd_boolean (*gc_sweep_hook_fn)
12142 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12143
12144 static bfd_boolean
12145 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12146 {
12147 bfd *sub;
12148 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12149 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12150 unsigned long section_sym_count;
12151 struct elf_gc_sweep_symbol_info sweep_info;
12152
12153 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12154 {
12155 asection *o;
12156
12157 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12158 continue;
12159
12160 for (o = sub->sections; o != NULL; o = o->next)
12161 {
12162 /* When any section in a section group is kept, we keep all
12163 sections in the section group. If the first member of
12164 the section group is excluded, we will also exclude the
12165 group section. */
12166 if (o->flags & SEC_GROUP)
12167 {
12168 asection *first = elf_next_in_group (o);
12169 o->gc_mark = first->gc_mark;
12170 }
12171
12172 if (o->gc_mark)
12173 continue;
12174
12175 /* Skip sweeping sections already excluded. */
12176 if (o->flags & SEC_EXCLUDE)
12177 continue;
12178
12179 /* Since this is early in the link process, it is simple
12180 to remove a section from the output. */
12181 o->flags |= SEC_EXCLUDE;
12182
12183 if (info->print_gc_sections && o->size != 0)
12184 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12185
12186 /* But we also have to update some of the relocation
12187 info we collected before. */
12188 if (gc_sweep_hook
12189 && (o->flags & SEC_RELOC) != 0
12190 && o->reloc_count != 0
12191 && !((info->strip == strip_all || info->strip == strip_debugger)
12192 && (o->flags & SEC_DEBUGGING) != 0)
12193 && !bfd_is_abs_section (o->output_section))
12194 {
12195 Elf_Internal_Rela *internal_relocs;
12196 bfd_boolean r;
12197
12198 internal_relocs
12199 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12200 info->keep_memory);
12201 if (internal_relocs == NULL)
12202 return FALSE;
12203
12204 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12205
12206 if (elf_section_data (o)->relocs != internal_relocs)
12207 free (internal_relocs);
12208
12209 if (!r)
12210 return FALSE;
12211 }
12212 }
12213 }
12214
12215 /* Remove the symbols that were in the swept sections from the dynamic
12216 symbol table. GCFIXME: Anyone know how to get them out of the
12217 static symbol table as well? */
12218 sweep_info.info = info;
12219 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12220 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12221 &sweep_info);
12222
12223 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12224 return TRUE;
12225 }
12226
12227 /* Propagate collected vtable information. This is called through
12228 elf_link_hash_traverse. */
12229
12230 static bfd_boolean
12231 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12232 {
12233 /* Those that are not vtables. */
12234 if (h->vtable == NULL || h->vtable->parent == NULL)
12235 return TRUE;
12236
12237 /* Those vtables that do not have parents, we cannot merge. */
12238 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12239 return TRUE;
12240
12241 /* If we've already been done, exit. */
12242 if (h->vtable->used && h->vtable->used[-1])
12243 return TRUE;
12244
12245 /* Make sure the parent's table is up to date. */
12246 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12247
12248 if (h->vtable->used == NULL)
12249 {
12250 /* None of this table's entries were referenced. Re-use the
12251 parent's table. */
12252 h->vtable->used = h->vtable->parent->vtable->used;
12253 h->vtable->size = h->vtable->parent->vtable->size;
12254 }
12255 else
12256 {
12257 size_t n;
12258 bfd_boolean *cu, *pu;
12259
12260 /* Or the parent's entries into ours. */
12261 cu = h->vtable->used;
12262 cu[-1] = TRUE;
12263 pu = h->vtable->parent->vtable->used;
12264 if (pu != NULL)
12265 {
12266 const struct elf_backend_data *bed;
12267 unsigned int log_file_align;
12268
12269 bed = get_elf_backend_data (h->root.u.def.section->owner);
12270 log_file_align = bed->s->log_file_align;
12271 n = h->vtable->parent->vtable->size >> log_file_align;
12272 while (n--)
12273 {
12274 if (*pu)
12275 *cu = TRUE;
12276 pu++;
12277 cu++;
12278 }
12279 }
12280 }
12281
12282 return TRUE;
12283 }
12284
12285 static bfd_boolean
12286 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12287 {
12288 asection *sec;
12289 bfd_vma hstart, hend;
12290 Elf_Internal_Rela *relstart, *relend, *rel;
12291 const struct elf_backend_data *bed;
12292 unsigned int log_file_align;
12293
12294 /* Take care of both those symbols that do not describe vtables as
12295 well as those that are not loaded. */
12296 if (h->vtable == NULL || h->vtable->parent == NULL)
12297 return TRUE;
12298
12299 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12300 || h->root.type == bfd_link_hash_defweak);
12301
12302 sec = h->root.u.def.section;
12303 hstart = h->root.u.def.value;
12304 hend = hstart + h->size;
12305
12306 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12307 if (!relstart)
12308 return *(bfd_boolean *) okp = FALSE;
12309 bed = get_elf_backend_data (sec->owner);
12310 log_file_align = bed->s->log_file_align;
12311
12312 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12313
12314 for (rel = relstart; rel < relend; ++rel)
12315 if (rel->r_offset >= hstart && rel->r_offset < hend)
12316 {
12317 /* If the entry is in use, do nothing. */
12318 if (h->vtable->used
12319 && (rel->r_offset - hstart) < h->vtable->size)
12320 {
12321 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12322 if (h->vtable->used[entry])
12323 continue;
12324 }
12325 /* Otherwise, kill it. */
12326 rel->r_offset = rel->r_info = rel->r_addend = 0;
12327 }
12328
12329 return TRUE;
12330 }
12331
12332 /* Mark sections containing dynamically referenced symbols. When
12333 building shared libraries, we must assume that any visible symbol is
12334 referenced. */
12335
12336 bfd_boolean
12337 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12338 {
12339 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12340 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12341
12342 if ((h->root.type == bfd_link_hash_defined
12343 || h->root.type == bfd_link_hash_defweak)
12344 && (h->ref_dynamic
12345 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12346 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12347 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12348 && (!info->executable
12349 || info->export_dynamic
12350 || (h->dynamic
12351 && d != NULL
12352 && (*d->match) (&d->head, NULL, h->root.root.string)))
12353 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12354 || !bfd_hide_sym_by_version (info->version_info,
12355 h->root.root.string)))))
12356 h->root.u.def.section->flags |= SEC_KEEP;
12357
12358 return TRUE;
12359 }
12360
12361 /* Keep all sections containing symbols undefined on the command-line,
12362 and the section containing the entry symbol. */
12363
12364 void
12365 _bfd_elf_gc_keep (struct bfd_link_info *info)
12366 {
12367 struct bfd_sym_chain *sym;
12368
12369 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12370 {
12371 struct elf_link_hash_entry *h;
12372
12373 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12374 FALSE, FALSE, FALSE);
12375
12376 if (h != NULL
12377 && (h->root.type == bfd_link_hash_defined
12378 || h->root.type == bfd_link_hash_defweak)
12379 && !bfd_is_abs_section (h->root.u.def.section))
12380 h->root.u.def.section->flags |= SEC_KEEP;
12381 }
12382 }
12383
12384 /* Do mark and sweep of unused sections. */
12385
12386 bfd_boolean
12387 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12388 {
12389 bfd_boolean ok = TRUE;
12390 bfd *sub;
12391 elf_gc_mark_hook_fn gc_mark_hook;
12392 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12393 struct elf_link_hash_table *htab;
12394
12395 if (!bed->can_gc_sections
12396 || !is_elf_hash_table (info->hash))
12397 {
12398 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12399 return TRUE;
12400 }
12401
12402 bed->gc_keep (info);
12403 htab = elf_hash_table (info);
12404
12405 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12406 at the .eh_frame section if we can mark the FDEs individually. */
12407 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12408 {
12409 asection *sec;
12410 struct elf_reloc_cookie cookie;
12411
12412 sec = bfd_get_section_by_name (sub, ".eh_frame");
12413 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12414 {
12415 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12416 if (elf_section_data (sec)->sec_info
12417 && (sec->flags & SEC_LINKER_CREATED) == 0)
12418 elf_eh_frame_section (sub) = sec;
12419 fini_reloc_cookie_for_section (&cookie, sec);
12420 sec = bfd_get_next_section_by_name (sec);
12421 }
12422 }
12423
12424 /* Apply transitive closure to the vtable entry usage info. */
12425 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12426 if (!ok)
12427 return FALSE;
12428
12429 /* Kill the vtable relocations that were not used. */
12430 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12431 if (!ok)
12432 return FALSE;
12433
12434 /* Mark dynamically referenced symbols. */
12435 if (htab->dynamic_sections_created)
12436 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12437
12438 /* Grovel through relocs to find out who stays ... */
12439 gc_mark_hook = bed->gc_mark_hook;
12440 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12441 {
12442 asection *o;
12443
12444 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12445 continue;
12446
12447 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12448 Also treat note sections as a root, if the section is not part
12449 of a group. */
12450 for (o = sub->sections; o != NULL; o = o->next)
12451 if (!o->gc_mark
12452 && (o->flags & SEC_EXCLUDE) == 0
12453 && ((o->flags & SEC_KEEP) != 0
12454 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12455 && elf_next_in_group (o) == NULL )))
12456 {
12457 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12458 return FALSE;
12459 }
12460 }
12461
12462 /* Allow the backend to mark additional target specific sections. */
12463 bed->gc_mark_extra_sections (info, gc_mark_hook);
12464
12465 /* ... and mark SEC_EXCLUDE for those that go. */
12466 return elf_gc_sweep (abfd, info);
12467 }
12468 \f
12469 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12470
12471 bfd_boolean
12472 bfd_elf_gc_record_vtinherit (bfd *abfd,
12473 asection *sec,
12474 struct elf_link_hash_entry *h,
12475 bfd_vma offset)
12476 {
12477 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12478 struct elf_link_hash_entry **search, *child;
12479 bfd_size_type extsymcount;
12480 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12481
12482 /* The sh_info field of the symtab header tells us where the
12483 external symbols start. We don't care about the local symbols at
12484 this point. */
12485 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12486 if (!elf_bad_symtab (abfd))
12487 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12488
12489 sym_hashes = elf_sym_hashes (abfd);
12490 sym_hashes_end = sym_hashes + extsymcount;
12491
12492 /* Hunt down the child symbol, which is in this section at the same
12493 offset as the relocation. */
12494 for (search = sym_hashes; search != sym_hashes_end; ++search)
12495 {
12496 if ((child = *search) != NULL
12497 && (child->root.type == bfd_link_hash_defined
12498 || child->root.type == bfd_link_hash_defweak)
12499 && child->root.u.def.section == sec
12500 && child->root.u.def.value == offset)
12501 goto win;
12502 }
12503
12504 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12505 abfd, sec, (unsigned long) offset);
12506 bfd_set_error (bfd_error_invalid_operation);
12507 return FALSE;
12508
12509 win:
12510 if (!child->vtable)
12511 {
12512 child->vtable = ((struct elf_link_virtual_table_entry *)
12513 bfd_zalloc (abfd, sizeof (*child->vtable)));
12514 if (!child->vtable)
12515 return FALSE;
12516 }
12517 if (!h)
12518 {
12519 /* This *should* only be the absolute section. It could potentially
12520 be that someone has defined a non-global vtable though, which
12521 would be bad. It isn't worth paging in the local symbols to be
12522 sure though; that case should simply be handled by the assembler. */
12523
12524 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12525 }
12526 else
12527 child->vtable->parent = h;
12528
12529 return TRUE;
12530 }
12531
12532 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12533
12534 bfd_boolean
12535 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12536 asection *sec ATTRIBUTE_UNUSED,
12537 struct elf_link_hash_entry *h,
12538 bfd_vma addend)
12539 {
12540 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12541 unsigned int log_file_align = bed->s->log_file_align;
12542
12543 if (!h->vtable)
12544 {
12545 h->vtable = ((struct elf_link_virtual_table_entry *)
12546 bfd_zalloc (abfd, sizeof (*h->vtable)));
12547 if (!h->vtable)
12548 return FALSE;
12549 }
12550
12551 if (addend >= h->vtable->size)
12552 {
12553 size_t size, bytes, file_align;
12554 bfd_boolean *ptr = h->vtable->used;
12555
12556 /* While the symbol is undefined, we have to be prepared to handle
12557 a zero size. */
12558 file_align = 1 << log_file_align;
12559 if (h->root.type == bfd_link_hash_undefined)
12560 size = addend + file_align;
12561 else
12562 {
12563 size = h->size;
12564 if (addend >= size)
12565 {
12566 /* Oops! We've got a reference past the defined end of
12567 the table. This is probably a bug -- shall we warn? */
12568 size = addend + file_align;
12569 }
12570 }
12571 size = (size + file_align - 1) & -file_align;
12572
12573 /* Allocate one extra entry for use as a "done" flag for the
12574 consolidation pass. */
12575 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12576
12577 if (ptr)
12578 {
12579 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12580
12581 if (ptr != NULL)
12582 {
12583 size_t oldbytes;
12584
12585 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12586 * sizeof (bfd_boolean));
12587 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12588 }
12589 }
12590 else
12591 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12592
12593 if (ptr == NULL)
12594 return FALSE;
12595
12596 /* And arrange for that done flag to be at index -1. */
12597 h->vtable->used = ptr + 1;
12598 h->vtable->size = size;
12599 }
12600
12601 h->vtable->used[addend >> log_file_align] = TRUE;
12602
12603 return TRUE;
12604 }
12605
12606 /* Map an ELF section header flag to its corresponding string. */
12607 typedef struct
12608 {
12609 char *flag_name;
12610 flagword flag_value;
12611 } elf_flags_to_name_table;
12612
12613 static elf_flags_to_name_table elf_flags_to_names [] =
12614 {
12615 { "SHF_WRITE", SHF_WRITE },
12616 { "SHF_ALLOC", SHF_ALLOC },
12617 { "SHF_EXECINSTR", SHF_EXECINSTR },
12618 { "SHF_MERGE", SHF_MERGE },
12619 { "SHF_STRINGS", SHF_STRINGS },
12620 { "SHF_INFO_LINK", SHF_INFO_LINK},
12621 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12622 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12623 { "SHF_GROUP", SHF_GROUP },
12624 { "SHF_TLS", SHF_TLS },
12625 { "SHF_MASKOS", SHF_MASKOS },
12626 { "SHF_EXCLUDE", SHF_EXCLUDE },
12627 };
12628
12629 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12630 bfd_boolean
12631 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12632 struct flag_info *flaginfo,
12633 asection *section)
12634 {
12635 const bfd_vma sh_flags = elf_section_flags (section);
12636
12637 if (!flaginfo->flags_initialized)
12638 {
12639 bfd *obfd = info->output_bfd;
12640 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12641 struct flag_info_list *tf = flaginfo->flag_list;
12642 int with_hex = 0;
12643 int without_hex = 0;
12644
12645 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12646 {
12647 unsigned i;
12648 flagword (*lookup) (char *);
12649
12650 lookup = bed->elf_backend_lookup_section_flags_hook;
12651 if (lookup != NULL)
12652 {
12653 flagword hexval = (*lookup) ((char *) tf->name);
12654
12655 if (hexval != 0)
12656 {
12657 if (tf->with == with_flags)
12658 with_hex |= hexval;
12659 else if (tf->with == without_flags)
12660 without_hex |= hexval;
12661 tf->valid = TRUE;
12662 continue;
12663 }
12664 }
12665 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12666 {
12667 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12668 {
12669 if (tf->with == with_flags)
12670 with_hex |= elf_flags_to_names[i].flag_value;
12671 else if (tf->with == without_flags)
12672 without_hex |= elf_flags_to_names[i].flag_value;
12673 tf->valid = TRUE;
12674 break;
12675 }
12676 }
12677 if (!tf->valid)
12678 {
12679 info->callbacks->einfo
12680 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12681 return FALSE;
12682 }
12683 }
12684 flaginfo->flags_initialized = TRUE;
12685 flaginfo->only_with_flags |= with_hex;
12686 flaginfo->not_with_flags |= without_hex;
12687 }
12688
12689 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12690 return FALSE;
12691
12692 if ((flaginfo->not_with_flags & sh_flags) != 0)
12693 return FALSE;
12694
12695 return TRUE;
12696 }
12697
12698 struct alloc_got_off_arg {
12699 bfd_vma gotoff;
12700 struct bfd_link_info *info;
12701 };
12702
12703 /* We need a special top-level link routine to convert got reference counts
12704 to real got offsets. */
12705
12706 static bfd_boolean
12707 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12708 {
12709 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12710 bfd *obfd = gofarg->info->output_bfd;
12711 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12712
12713 if (h->got.refcount > 0)
12714 {
12715 h->got.offset = gofarg->gotoff;
12716 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12717 }
12718 else
12719 h->got.offset = (bfd_vma) -1;
12720
12721 return TRUE;
12722 }
12723
12724 /* And an accompanying bit to work out final got entry offsets once
12725 we're done. Should be called from final_link. */
12726
12727 bfd_boolean
12728 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12729 struct bfd_link_info *info)
12730 {
12731 bfd *i;
12732 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12733 bfd_vma gotoff;
12734 struct alloc_got_off_arg gofarg;
12735
12736 BFD_ASSERT (abfd == info->output_bfd);
12737
12738 if (! is_elf_hash_table (info->hash))
12739 return FALSE;
12740
12741 /* The GOT offset is relative to the .got section, but the GOT header is
12742 put into the .got.plt section, if the backend uses it. */
12743 if (bed->want_got_plt)
12744 gotoff = 0;
12745 else
12746 gotoff = bed->got_header_size;
12747
12748 /* Do the local .got entries first. */
12749 for (i = info->input_bfds; i; i = i->link.next)
12750 {
12751 bfd_signed_vma *local_got;
12752 bfd_size_type j, locsymcount;
12753 Elf_Internal_Shdr *symtab_hdr;
12754
12755 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12756 continue;
12757
12758 local_got = elf_local_got_refcounts (i);
12759 if (!local_got)
12760 continue;
12761
12762 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12763 if (elf_bad_symtab (i))
12764 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12765 else
12766 locsymcount = symtab_hdr->sh_info;
12767
12768 for (j = 0; j < locsymcount; ++j)
12769 {
12770 if (local_got[j] > 0)
12771 {
12772 local_got[j] = gotoff;
12773 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12774 }
12775 else
12776 local_got[j] = (bfd_vma) -1;
12777 }
12778 }
12779
12780 /* Then the global .got entries. .plt refcounts are handled by
12781 adjust_dynamic_symbol */
12782 gofarg.gotoff = gotoff;
12783 gofarg.info = info;
12784 elf_link_hash_traverse (elf_hash_table (info),
12785 elf_gc_allocate_got_offsets,
12786 &gofarg);
12787 return TRUE;
12788 }
12789
12790 /* Many folk need no more in the way of final link than this, once
12791 got entry reference counting is enabled. */
12792
12793 bfd_boolean
12794 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12795 {
12796 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12797 return FALSE;
12798
12799 /* Invoke the regular ELF backend linker to do all the work. */
12800 return bfd_elf_final_link (abfd, info);
12801 }
12802
12803 bfd_boolean
12804 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12805 {
12806 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12807
12808 if (rcookie->bad_symtab)
12809 rcookie->rel = rcookie->rels;
12810
12811 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12812 {
12813 unsigned long r_symndx;
12814
12815 if (! rcookie->bad_symtab)
12816 if (rcookie->rel->r_offset > offset)
12817 return FALSE;
12818 if (rcookie->rel->r_offset != offset)
12819 continue;
12820
12821 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12822 if (r_symndx == STN_UNDEF)
12823 return TRUE;
12824
12825 if (r_symndx >= rcookie->locsymcount
12826 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12827 {
12828 struct elf_link_hash_entry *h;
12829
12830 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12831
12832 while (h->root.type == bfd_link_hash_indirect
12833 || h->root.type == bfd_link_hash_warning)
12834 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12835
12836 if ((h->root.type == bfd_link_hash_defined
12837 || h->root.type == bfd_link_hash_defweak)
12838 && (h->root.u.def.section->owner != rcookie->abfd
12839 || h->root.u.def.section->kept_section != NULL
12840 || discarded_section (h->root.u.def.section)))
12841 return TRUE;
12842 }
12843 else
12844 {
12845 /* It's not a relocation against a global symbol,
12846 but it could be a relocation against a local
12847 symbol for a discarded section. */
12848 asection *isec;
12849 Elf_Internal_Sym *isym;
12850
12851 /* Need to: get the symbol; get the section. */
12852 isym = &rcookie->locsyms[r_symndx];
12853 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12854 if (isec != NULL
12855 && (isec->kept_section != NULL
12856 || discarded_section (isec)))
12857 return TRUE;
12858 }
12859 return FALSE;
12860 }
12861 return FALSE;
12862 }
12863
12864 /* Discard unneeded references to discarded sections.
12865 Returns -1 on error, 1 if any section's size was changed, 0 if
12866 nothing changed. This function assumes that the relocations are in
12867 sorted order, which is true for all known assemblers. */
12868
12869 int
12870 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12871 {
12872 struct elf_reloc_cookie cookie;
12873 asection *o;
12874 bfd *abfd;
12875 int changed = 0;
12876
12877 if (info->traditional_format
12878 || !is_elf_hash_table (info->hash))
12879 return 0;
12880
12881 o = bfd_get_section_by_name (output_bfd, ".stab");
12882 if (o != NULL)
12883 {
12884 asection *i;
12885
12886 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12887 {
12888 if (i->size == 0
12889 || i->reloc_count == 0
12890 || i->sec_info_type != SEC_INFO_TYPE_STABS)
12891 continue;
12892
12893 abfd = i->owner;
12894 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12895 continue;
12896
12897 if (!init_reloc_cookie_for_section (&cookie, info, i))
12898 return -1;
12899
12900 if (_bfd_discard_section_stabs (abfd, i,
12901 elf_section_data (i)->sec_info,
12902 bfd_elf_reloc_symbol_deleted_p,
12903 &cookie))
12904 changed = 1;
12905
12906 fini_reloc_cookie_for_section (&cookie, i);
12907 }
12908 }
12909
12910 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
12911 if (o != NULL)
12912 {
12913 asection *i;
12914
12915 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12916 {
12917 if (i->size == 0)
12918 continue;
12919
12920 abfd = i->owner;
12921 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12922 continue;
12923
12924 if (!init_reloc_cookie_for_section (&cookie, info, i))
12925 return -1;
12926
12927 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
12928 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
12929 bfd_elf_reloc_symbol_deleted_p,
12930 &cookie))
12931 changed = 1;
12932
12933 fini_reloc_cookie_for_section (&cookie, i);
12934 }
12935 }
12936
12937 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12938 {
12939 const struct elf_backend_data *bed;
12940
12941 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12942 continue;
12943
12944 bed = get_elf_backend_data (abfd);
12945
12946 if (bed->elf_backend_discard_info != NULL)
12947 {
12948 if (!init_reloc_cookie (&cookie, info, abfd))
12949 return -1;
12950
12951 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
12952 changed = 1;
12953
12954 fini_reloc_cookie (&cookie, abfd);
12955 }
12956 }
12957
12958 if (info->eh_frame_hdr
12959 && !info->relocatable
12960 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12961 changed = 1;
12962
12963 return changed;
12964 }
12965
12966 bfd_boolean
12967 _bfd_elf_section_already_linked (bfd *abfd,
12968 asection *sec,
12969 struct bfd_link_info *info)
12970 {
12971 flagword flags;
12972 const char *name, *key;
12973 struct bfd_section_already_linked *l;
12974 struct bfd_section_already_linked_hash_entry *already_linked_list;
12975
12976 if (sec->output_section == bfd_abs_section_ptr)
12977 return FALSE;
12978
12979 flags = sec->flags;
12980
12981 /* Return if it isn't a linkonce section. A comdat group section
12982 also has SEC_LINK_ONCE set. */
12983 if ((flags & SEC_LINK_ONCE) == 0)
12984 return FALSE;
12985
12986 /* Don't put group member sections on our list of already linked
12987 sections. They are handled as a group via their group section. */
12988 if (elf_sec_group (sec) != NULL)
12989 return FALSE;
12990
12991 /* For a SHT_GROUP section, use the group signature as the key. */
12992 name = sec->name;
12993 if ((flags & SEC_GROUP) != 0
12994 && elf_next_in_group (sec) != NULL
12995 && elf_group_name (elf_next_in_group (sec)) != NULL)
12996 key = elf_group_name (elf_next_in_group (sec));
12997 else
12998 {
12999 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13000 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13001 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13002 key++;
13003 else
13004 /* Must be a user linkonce section that doesn't follow gcc's
13005 naming convention. In this case we won't be matching
13006 single member groups. */
13007 key = name;
13008 }
13009
13010 already_linked_list = bfd_section_already_linked_table_lookup (key);
13011
13012 for (l = already_linked_list->entry; l != NULL; l = l->next)
13013 {
13014 /* We may have 2 different types of sections on the list: group
13015 sections with a signature of <key> (<key> is some string),
13016 and linkonce sections named .gnu.linkonce.<type>.<key>.
13017 Match like sections. LTO plugin sections are an exception.
13018 They are always named .gnu.linkonce.t.<key> and match either
13019 type of section. */
13020 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13021 && ((flags & SEC_GROUP) != 0
13022 || strcmp (name, l->sec->name) == 0))
13023 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13024 {
13025 /* The section has already been linked. See if we should
13026 issue a warning. */
13027 if (!_bfd_handle_already_linked (sec, l, info))
13028 return FALSE;
13029
13030 if (flags & SEC_GROUP)
13031 {
13032 asection *first = elf_next_in_group (sec);
13033 asection *s = first;
13034
13035 while (s != NULL)
13036 {
13037 s->output_section = bfd_abs_section_ptr;
13038 /* Record which group discards it. */
13039 s->kept_section = l->sec;
13040 s = elf_next_in_group (s);
13041 /* These lists are circular. */
13042 if (s == first)
13043 break;
13044 }
13045 }
13046
13047 return TRUE;
13048 }
13049 }
13050
13051 /* A single member comdat group section may be discarded by a
13052 linkonce section and vice versa. */
13053 if ((flags & SEC_GROUP) != 0)
13054 {
13055 asection *first = elf_next_in_group (sec);
13056
13057 if (first != NULL && elf_next_in_group (first) == first)
13058 /* Check this single member group against linkonce sections. */
13059 for (l = already_linked_list->entry; l != NULL; l = l->next)
13060 if ((l->sec->flags & SEC_GROUP) == 0
13061 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13062 {
13063 first->output_section = bfd_abs_section_ptr;
13064 first->kept_section = l->sec;
13065 sec->output_section = bfd_abs_section_ptr;
13066 break;
13067 }
13068 }
13069 else
13070 /* Check this linkonce section against single member groups. */
13071 for (l = already_linked_list->entry; l != NULL; l = l->next)
13072 if (l->sec->flags & SEC_GROUP)
13073 {
13074 asection *first = elf_next_in_group (l->sec);
13075
13076 if (first != NULL
13077 && elf_next_in_group (first) == first
13078 && bfd_elf_match_symbols_in_sections (first, sec, info))
13079 {
13080 sec->output_section = bfd_abs_section_ptr;
13081 sec->kept_section = first;
13082 break;
13083 }
13084 }
13085
13086 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13087 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13088 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13089 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13090 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13091 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13092 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13093 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13094 The reverse order cannot happen as there is never a bfd with only the
13095 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13096 matter as here were are looking only for cross-bfd sections. */
13097
13098 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13099 for (l = already_linked_list->entry; l != NULL; l = l->next)
13100 if ((l->sec->flags & SEC_GROUP) == 0
13101 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13102 {
13103 if (abfd != l->sec->owner)
13104 sec->output_section = bfd_abs_section_ptr;
13105 break;
13106 }
13107
13108 /* This is the first section with this name. Record it. */
13109 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13110 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13111 return sec->output_section == bfd_abs_section_ptr;
13112 }
13113
13114 bfd_boolean
13115 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13116 {
13117 return sym->st_shndx == SHN_COMMON;
13118 }
13119
13120 unsigned int
13121 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13122 {
13123 return SHN_COMMON;
13124 }
13125
13126 asection *
13127 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13128 {
13129 return bfd_com_section_ptr;
13130 }
13131
13132 bfd_vma
13133 _bfd_elf_default_got_elt_size (bfd *abfd,
13134 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13135 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13136 bfd *ibfd ATTRIBUTE_UNUSED,
13137 unsigned long symndx ATTRIBUTE_UNUSED)
13138 {
13139 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13140 return bed->s->arch_size / 8;
13141 }
13142
13143 /* Routines to support the creation of dynamic relocs. */
13144
13145 /* Returns the name of the dynamic reloc section associated with SEC. */
13146
13147 static const char *
13148 get_dynamic_reloc_section_name (bfd * abfd,
13149 asection * sec,
13150 bfd_boolean is_rela)
13151 {
13152 char *name;
13153 const char *old_name = bfd_get_section_name (NULL, sec);
13154 const char *prefix = is_rela ? ".rela" : ".rel";
13155
13156 if (old_name == NULL)
13157 return NULL;
13158
13159 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13160 sprintf (name, "%s%s", prefix, old_name);
13161
13162 return name;
13163 }
13164
13165 /* Returns the dynamic reloc section associated with SEC.
13166 If necessary compute the name of the dynamic reloc section based
13167 on SEC's name (looked up in ABFD's string table) and the setting
13168 of IS_RELA. */
13169
13170 asection *
13171 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13172 asection * sec,
13173 bfd_boolean is_rela)
13174 {
13175 asection * reloc_sec = elf_section_data (sec)->sreloc;
13176
13177 if (reloc_sec == NULL)
13178 {
13179 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13180
13181 if (name != NULL)
13182 {
13183 reloc_sec = bfd_get_linker_section (abfd, name);
13184
13185 if (reloc_sec != NULL)
13186 elf_section_data (sec)->sreloc = reloc_sec;
13187 }
13188 }
13189
13190 return reloc_sec;
13191 }
13192
13193 /* Returns the dynamic reloc section associated with SEC. If the
13194 section does not exist it is created and attached to the DYNOBJ
13195 bfd and stored in the SRELOC field of SEC's elf_section_data
13196 structure.
13197
13198 ALIGNMENT is the alignment for the newly created section and
13199 IS_RELA defines whether the name should be .rela.<SEC's name>
13200 or .rel.<SEC's name>. The section name is looked up in the
13201 string table associated with ABFD. */
13202
13203 asection *
13204 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13205 bfd *dynobj,
13206 unsigned int alignment,
13207 bfd *abfd,
13208 bfd_boolean is_rela)
13209 {
13210 asection * reloc_sec = elf_section_data (sec)->sreloc;
13211
13212 if (reloc_sec == NULL)
13213 {
13214 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13215
13216 if (name == NULL)
13217 return NULL;
13218
13219 reloc_sec = bfd_get_linker_section (dynobj, name);
13220
13221 if (reloc_sec == NULL)
13222 {
13223 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13224 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13225 if ((sec->flags & SEC_ALLOC) != 0)
13226 flags |= SEC_ALLOC | SEC_LOAD;
13227
13228 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13229 if (reloc_sec != NULL)
13230 {
13231 /* _bfd_elf_get_sec_type_attr chooses a section type by
13232 name. Override as it may be wrong, eg. for a user
13233 section named "auto" we'll get ".relauto" which is
13234 seen to be a .rela section. */
13235 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13236 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13237 reloc_sec = NULL;
13238 }
13239 }
13240
13241 elf_section_data (sec)->sreloc = reloc_sec;
13242 }
13243
13244 return reloc_sec;
13245 }
13246
13247 /* Copy the ELF symbol type and other attributes for a linker script
13248 assignment from HSRC to HDEST. Generally this should be treated as
13249 if we found a strong non-dynamic definition for HDEST (except that
13250 ld ignores multiple definition errors). */
13251 void
13252 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13253 struct bfd_link_hash_entry *hdest,
13254 struct bfd_link_hash_entry *hsrc)
13255 {
13256 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13257 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13258 Elf_Internal_Sym isym;
13259
13260 ehdest->type = ehsrc->type;
13261 ehdest->target_internal = ehsrc->target_internal;
13262
13263 isym.st_other = ehsrc->other;
13264 elf_merge_st_other (abfd, ehdest, &isym, TRUE, FALSE);
13265 }
13266
13267 /* Append a RELA relocation REL to section S in BFD. */
13268
13269 void
13270 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13271 {
13272 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13273 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13274 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13275 bed->s->swap_reloca_out (abfd, rel, loc);
13276 }
13277
13278 /* Append a REL relocation REL to section S in BFD. */
13279
13280 void
13281 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13282 {
13283 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13284 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13285 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13286 bed->s->swap_reloc_out (abfd, rel, loc);
13287 }