PR ld/15762
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995-2013 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30
31 /* This struct is used to pass information to routines called via
32 elf_link_hash_traverse which must return failure. */
33
34 struct elf_info_failed
35 {
36 struct bfd_link_info *info;
37 bfd_boolean failed;
38 };
39
40 /* This structure is used to pass information to
41 _bfd_elf_link_find_version_dependencies. */
42
43 struct elf_find_verdep_info
44 {
45 /* General link information. */
46 struct bfd_link_info *info;
47 /* The number of dependencies. */
48 unsigned int vers;
49 /* Whether we had a failure. */
50 bfd_boolean failed;
51 };
52
53 static bfd_boolean _bfd_elf_fix_symbol_flags
54 (struct elf_link_hash_entry *, struct elf_info_failed *);
55
56 /* Define a symbol in a dynamic linkage section. */
57
58 struct elf_link_hash_entry *
59 _bfd_elf_define_linkage_sym (bfd *abfd,
60 struct bfd_link_info *info,
61 asection *sec,
62 const char *name)
63 {
64 struct elf_link_hash_entry *h;
65 struct bfd_link_hash_entry *bh;
66 const struct elf_backend_data *bed;
67
68 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
69 if (h != NULL)
70 {
71 /* Zap symbol defined in an as-needed lib that wasn't linked.
72 This is a symptom of a larger problem: Absolute symbols
73 defined in shared libraries can't be overridden, because we
74 lose the link to the bfd which is via the symbol section. */
75 h->root.type = bfd_link_hash_new;
76 }
77
78 bh = &h->root;
79 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
80 sec, 0, NULL, FALSE,
81 get_elf_backend_data (abfd)->collect,
82 &bh))
83 return NULL;
84 h = (struct elf_link_hash_entry *) bh;
85 h->def_regular = 1;
86 h->non_elf = 0;
87 h->type = STT_OBJECT;
88 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
89
90 bed = get_elf_backend_data (abfd);
91 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
92 return h;
93 }
94
95 bfd_boolean
96 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
97 {
98 flagword flags;
99 asection *s;
100 struct elf_link_hash_entry *h;
101 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
102 struct elf_link_hash_table *htab = elf_hash_table (info);
103
104 /* This function may be called more than once. */
105 s = bfd_get_linker_section (abfd, ".got");
106 if (s != NULL)
107 return TRUE;
108
109 flags = bed->dynamic_sec_flags;
110
111 s = bfd_make_section_anyway_with_flags (abfd,
112 (bed->rela_plts_and_copies_p
113 ? ".rela.got" : ".rel.got"),
114 (bed->dynamic_sec_flags
115 | SEC_READONLY));
116 if (s == NULL
117 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
118 return FALSE;
119 htab->srelgot = s;
120
121 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
122 if (s == NULL
123 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
124 return FALSE;
125 htab->sgot = s;
126
127 if (bed->want_got_plt)
128 {
129 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
130 if (s == NULL
131 || !bfd_set_section_alignment (abfd, s,
132 bed->s->log_file_align))
133 return FALSE;
134 htab->sgotplt = s;
135 }
136
137 /* The first bit of the global offset table is the header. */
138 s->size += bed->got_header_size;
139
140 if (bed->want_got_sym)
141 {
142 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
143 (or .got.plt) section. We don't do this in the linker script
144 because we don't want to define the symbol if we are not creating
145 a global offset table. */
146 h = _bfd_elf_define_linkage_sym (abfd, info, s,
147 "_GLOBAL_OFFSET_TABLE_");
148 elf_hash_table (info)->hgot = h;
149 if (h == NULL)
150 return FALSE;
151 }
152
153 return TRUE;
154 }
155 \f
156 /* Create a strtab to hold the dynamic symbol names. */
157 static bfd_boolean
158 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
159 {
160 struct elf_link_hash_table *hash_table;
161
162 hash_table = elf_hash_table (info);
163 if (hash_table->dynobj == NULL)
164 hash_table->dynobj = abfd;
165
166 if (hash_table->dynstr == NULL)
167 {
168 hash_table->dynstr = _bfd_elf_strtab_init ();
169 if (hash_table->dynstr == NULL)
170 return FALSE;
171 }
172 return TRUE;
173 }
174
175 /* Create some sections which will be filled in with dynamic linking
176 information. ABFD is an input file which requires dynamic sections
177 to be created. The dynamic sections take up virtual memory space
178 when the final executable is run, so we need to create them before
179 addresses are assigned to the output sections. We work out the
180 actual contents and size of these sections later. */
181
182 bfd_boolean
183 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
184 {
185 flagword flags;
186 asection *s;
187 const struct elf_backend_data *bed;
188 struct elf_link_hash_entry *h;
189
190 if (! is_elf_hash_table (info->hash))
191 return FALSE;
192
193 if (elf_hash_table (info)->dynamic_sections_created)
194 return TRUE;
195
196 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
197 return FALSE;
198
199 abfd = elf_hash_table (info)->dynobj;
200 bed = get_elf_backend_data (abfd);
201
202 flags = bed->dynamic_sec_flags;
203
204 /* A dynamically linked executable has a .interp section, but a
205 shared library does not. */
206 if (info->executable)
207 {
208 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
209 flags | SEC_READONLY);
210 if (s == NULL)
211 return FALSE;
212 }
213
214 /* Create sections to hold version informations. These are removed
215 if they are not needed. */
216 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
217 flags | SEC_READONLY);
218 if (s == NULL
219 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
220 return FALSE;
221
222 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
223 flags | SEC_READONLY);
224 if (s == NULL
225 || ! bfd_set_section_alignment (abfd, s, 1))
226 return FALSE;
227
228 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
229 flags | SEC_READONLY);
230 if (s == NULL
231 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
232 return FALSE;
233
234 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
235 flags | SEC_READONLY);
236 if (s == NULL
237 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
238 return FALSE;
239
240 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
241 flags | SEC_READONLY);
242 if (s == NULL)
243 return FALSE;
244
245 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
246 if (s == NULL
247 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
248 return FALSE;
249
250 /* The special symbol _DYNAMIC is always set to the start of the
251 .dynamic section. We could set _DYNAMIC in a linker script, but we
252 only want to define it if we are, in fact, creating a .dynamic
253 section. We don't want to define it if there is no .dynamic
254 section, since on some ELF platforms the start up code examines it
255 to decide how to initialize the process. */
256 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
257 elf_hash_table (info)->hdynamic = h;
258 if (h == NULL)
259 return FALSE;
260
261 if (info->emit_hash)
262 {
263 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
264 flags | SEC_READONLY);
265 if (s == NULL
266 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
267 return FALSE;
268 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
269 }
270
271 if (info->emit_gnu_hash)
272 {
273 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
274 flags | SEC_READONLY);
275 if (s == NULL
276 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
277 return FALSE;
278 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
279 4 32-bit words followed by variable count of 64-bit words, then
280 variable count of 32-bit words. */
281 if (bed->s->arch_size == 64)
282 elf_section_data (s)->this_hdr.sh_entsize = 0;
283 else
284 elf_section_data (s)->this_hdr.sh_entsize = 4;
285 }
286
287 /* Let the backend create the rest of the sections. This lets the
288 backend set the right flags. The backend will normally create
289 the .got and .plt sections. */
290 if (bed->elf_backend_create_dynamic_sections == NULL
291 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
292 return FALSE;
293
294 elf_hash_table (info)->dynamic_sections_created = TRUE;
295
296 return TRUE;
297 }
298
299 /* Create dynamic sections when linking against a dynamic object. */
300
301 bfd_boolean
302 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
303 {
304 flagword flags, pltflags;
305 struct elf_link_hash_entry *h;
306 asection *s;
307 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
308 struct elf_link_hash_table *htab = elf_hash_table (info);
309
310 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
311 .rel[a].bss sections. */
312 flags = bed->dynamic_sec_flags;
313
314 pltflags = flags;
315 if (bed->plt_not_loaded)
316 /* We do not clear SEC_ALLOC here because we still want the OS to
317 allocate space for the section; it's just that there's nothing
318 to read in from the object file. */
319 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
320 else
321 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
322 if (bed->plt_readonly)
323 pltflags |= SEC_READONLY;
324
325 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
326 if (s == NULL
327 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
328 return FALSE;
329 htab->splt = s;
330
331 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
332 .plt section. */
333 if (bed->want_plt_sym)
334 {
335 h = _bfd_elf_define_linkage_sym (abfd, info, s,
336 "_PROCEDURE_LINKAGE_TABLE_");
337 elf_hash_table (info)->hplt = h;
338 if (h == NULL)
339 return FALSE;
340 }
341
342 s = bfd_make_section_anyway_with_flags (abfd,
343 (bed->rela_plts_and_copies_p
344 ? ".rela.plt" : ".rel.plt"),
345 flags | SEC_READONLY);
346 if (s == NULL
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
348 return FALSE;
349 htab->srelplt = s;
350
351 if (! _bfd_elf_create_got_section (abfd, info))
352 return FALSE;
353
354 if (bed->want_dynbss)
355 {
356 /* The .dynbss section is a place to put symbols which are defined
357 by dynamic objects, are referenced by regular objects, and are
358 not functions. We must allocate space for them in the process
359 image and use a R_*_COPY reloc to tell the dynamic linker to
360 initialize them at run time. The linker script puts the .dynbss
361 section into the .bss section of the final image. */
362 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
363 (SEC_ALLOC | SEC_LINKER_CREATED));
364 if (s == NULL)
365 return FALSE;
366
367 /* The .rel[a].bss section holds copy relocs. This section is not
368 normally needed. We need to create it here, though, so that the
369 linker will map it to an output section. We can't just create it
370 only if we need it, because we will not know whether we need it
371 until we have seen all the input files, and the first time the
372 main linker code calls BFD after examining all the input files
373 (size_dynamic_sections) the input sections have already been
374 mapped to the output sections. If the section turns out not to
375 be needed, we can discard it later. We will never need this
376 section when generating a shared object, since they do not use
377 copy relocs. */
378 if (! info->shared)
379 {
380 s = bfd_make_section_anyway_with_flags (abfd,
381 (bed->rela_plts_and_copies_p
382 ? ".rela.bss" : ".rel.bss"),
383 flags | SEC_READONLY);
384 if (s == NULL
385 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
386 return FALSE;
387 }
388 }
389
390 return TRUE;
391 }
392 \f
393 /* Record a new dynamic symbol. We record the dynamic symbols as we
394 read the input files, since we need to have a list of all of them
395 before we can determine the final sizes of the output sections.
396 Note that we may actually call this function even though we are not
397 going to output any dynamic symbols; in some cases we know that a
398 symbol should be in the dynamic symbol table, but only if there is
399 one. */
400
401 bfd_boolean
402 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
403 struct elf_link_hash_entry *h)
404 {
405 if (h->dynindx == -1)
406 {
407 struct elf_strtab_hash *dynstr;
408 char *p;
409 const char *name;
410 bfd_size_type indx;
411
412 /* XXX: The ABI draft says the linker must turn hidden and
413 internal symbols into STB_LOCAL symbols when producing the
414 DSO. However, if ld.so honors st_other in the dynamic table,
415 this would not be necessary. */
416 switch (ELF_ST_VISIBILITY (h->other))
417 {
418 case STV_INTERNAL:
419 case STV_HIDDEN:
420 if (h->root.type != bfd_link_hash_undefined
421 && h->root.type != bfd_link_hash_undefweak)
422 {
423 h->forced_local = 1;
424 if (!elf_hash_table (info)->is_relocatable_executable)
425 return TRUE;
426 }
427
428 default:
429 break;
430 }
431
432 h->dynindx = elf_hash_table (info)->dynsymcount;
433 ++elf_hash_table (info)->dynsymcount;
434
435 dynstr = elf_hash_table (info)->dynstr;
436 if (dynstr == NULL)
437 {
438 /* Create a strtab to hold the dynamic symbol names. */
439 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
440 if (dynstr == NULL)
441 return FALSE;
442 }
443
444 /* We don't put any version information in the dynamic string
445 table. */
446 name = h->root.root.string;
447 p = strchr (name, ELF_VER_CHR);
448 if (p != NULL)
449 /* We know that the p points into writable memory. In fact,
450 there are only a few symbols that have read-only names, being
451 those like _GLOBAL_OFFSET_TABLE_ that are created specially
452 by the backends. Most symbols will have names pointing into
453 an ELF string table read from a file, or to objalloc memory. */
454 *p = 0;
455
456 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
457
458 if (p != NULL)
459 *p = ELF_VER_CHR;
460
461 if (indx == (bfd_size_type) -1)
462 return FALSE;
463 h->dynstr_index = indx;
464 }
465
466 return TRUE;
467 }
468 \f
469 /* Mark a symbol dynamic. */
470
471 static void
472 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
473 struct elf_link_hash_entry *h,
474 Elf_Internal_Sym *sym)
475 {
476 struct bfd_elf_dynamic_list *d = info->dynamic_list;
477
478 /* It may be called more than once on the same H. */
479 if(h->dynamic || info->relocatable)
480 return;
481
482 if ((info->dynamic_data
483 && (h->type == STT_OBJECT
484 || (sym != NULL
485 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
486 || (d != NULL
487 && h->root.type == bfd_link_hash_new
488 && (*d->match) (&d->head, NULL, h->root.root.string)))
489 h->dynamic = 1;
490 }
491
492 /* Record an assignment to a symbol made by a linker script. We need
493 this in case some dynamic object refers to this symbol. */
494
495 bfd_boolean
496 bfd_elf_record_link_assignment (bfd *output_bfd,
497 struct bfd_link_info *info,
498 const char *name,
499 bfd_boolean provide,
500 bfd_boolean hidden)
501 {
502 struct elf_link_hash_entry *h, *hv;
503 struct elf_link_hash_table *htab;
504 const struct elf_backend_data *bed;
505
506 if (!is_elf_hash_table (info->hash))
507 return TRUE;
508
509 htab = elf_hash_table (info);
510 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
511 if (h == NULL)
512 return provide;
513
514 switch (h->root.type)
515 {
516 case bfd_link_hash_defined:
517 case bfd_link_hash_defweak:
518 case bfd_link_hash_common:
519 break;
520 case bfd_link_hash_undefweak:
521 case bfd_link_hash_undefined:
522 /* Since we're defining the symbol, don't let it seem to have not
523 been defined. record_dynamic_symbol and size_dynamic_sections
524 may depend on this. */
525 h->root.type = bfd_link_hash_new;
526 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
527 bfd_link_repair_undef_list (&htab->root);
528 break;
529 case bfd_link_hash_new:
530 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
531 h->non_elf = 0;
532 break;
533 case bfd_link_hash_indirect:
534 /* We had a versioned symbol in a dynamic library. We make the
535 the versioned symbol point to this one. */
536 bed = get_elf_backend_data (output_bfd);
537 hv = h;
538 while (hv->root.type == bfd_link_hash_indirect
539 || hv->root.type == bfd_link_hash_warning)
540 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
541 /* We don't need to update h->root.u since linker will set them
542 later. */
543 h->root.type = bfd_link_hash_undefined;
544 hv->root.type = bfd_link_hash_indirect;
545 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
546 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
547 break;
548 case bfd_link_hash_warning:
549 abort ();
550 break;
551 }
552
553 /* If this symbol is being provided by the linker script, and it is
554 currently defined by a dynamic object, but not by a regular
555 object, then mark it as undefined so that the generic linker will
556 force the correct value. */
557 if (provide
558 && h->def_dynamic
559 && !h->def_regular)
560 h->root.type = bfd_link_hash_undefined;
561
562 /* If this symbol is not being provided by the linker script, and it is
563 currently defined by a dynamic object, but not by a regular object,
564 then clear out any version information because the symbol will not be
565 associated with the dynamic object any more. */
566 if (!provide
567 && h->def_dynamic
568 && !h->def_regular)
569 h->verinfo.verdef = NULL;
570
571 h->def_regular = 1;
572
573 if (hidden)
574 {
575 bed = get_elf_backend_data (output_bfd);
576 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
577 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
578 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
579 }
580
581 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
582 and executables. */
583 if (!info->relocatable
584 && h->dynindx != -1
585 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
586 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
587 h->forced_local = 1;
588
589 if ((h->def_dynamic
590 || h->ref_dynamic
591 || info->shared
592 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
593 && h->dynindx == -1)
594 {
595 if (! bfd_elf_link_record_dynamic_symbol (info, h))
596 return FALSE;
597
598 /* If this is a weak defined symbol, and we know a corresponding
599 real symbol from the same dynamic object, make sure the real
600 symbol is also made into a dynamic symbol. */
601 if (h->u.weakdef != NULL
602 && h->u.weakdef->dynindx == -1)
603 {
604 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
605 return FALSE;
606 }
607 }
608
609 return TRUE;
610 }
611
612 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
613 success, and 2 on a failure caused by attempting to record a symbol
614 in a discarded section, eg. a discarded link-once section symbol. */
615
616 int
617 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
618 bfd *input_bfd,
619 long input_indx)
620 {
621 bfd_size_type amt;
622 struct elf_link_local_dynamic_entry *entry;
623 struct elf_link_hash_table *eht;
624 struct elf_strtab_hash *dynstr;
625 unsigned long dynstr_index;
626 char *name;
627 Elf_External_Sym_Shndx eshndx;
628 char esym[sizeof (Elf64_External_Sym)];
629
630 if (! is_elf_hash_table (info->hash))
631 return 0;
632
633 /* See if the entry exists already. */
634 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
635 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
636 return 1;
637
638 amt = sizeof (*entry);
639 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
640 if (entry == NULL)
641 return 0;
642
643 /* Go find the symbol, so that we can find it's name. */
644 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
645 1, input_indx, &entry->isym, esym, &eshndx))
646 {
647 bfd_release (input_bfd, entry);
648 return 0;
649 }
650
651 if (entry->isym.st_shndx != SHN_UNDEF
652 && entry->isym.st_shndx < SHN_LORESERVE)
653 {
654 asection *s;
655
656 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
657 if (s == NULL || bfd_is_abs_section (s->output_section))
658 {
659 /* We can still bfd_release here as nothing has done another
660 bfd_alloc. We can't do this later in this function. */
661 bfd_release (input_bfd, entry);
662 return 2;
663 }
664 }
665
666 name = (bfd_elf_string_from_elf_section
667 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
668 entry->isym.st_name));
669
670 dynstr = elf_hash_table (info)->dynstr;
671 if (dynstr == NULL)
672 {
673 /* Create a strtab to hold the dynamic symbol names. */
674 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
675 if (dynstr == NULL)
676 return 0;
677 }
678
679 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
680 if (dynstr_index == (unsigned long) -1)
681 return 0;
682 entry->isym.st_name = dynstr_index;
683
684 eht = elf_hash_table (info);
685
686 entry->next = eht->dynlocal;
687 eht->dynlocal = entry;
688 entry->input_bfd = input_bfd;
689 entry->input_indx = input_indx;
690 eht->dynsymcount++;
691
692 /* Whatever binding the symbol had before, it's now local. */
693 entry->isym.st_info
694 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
695
696 /* The dynindx will be set at the end of size_dynamic_sections. */
697
698 return 1;
699 }
700
701 /* Return the dynindex of a local dynamic symbol. */
702
703 long
704 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
705 bfd *input_bfd,
706 long input_indx)
707 {
708 struct elf_link_local_dynamic_entry *e;
709
710 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
711 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
712 return e->dynindx;
713 return -1;
714 }
715
716 /* This function is used to renumber the dynamic symbols, if some of
717 them are removed because they are marked as local. This is called
718 via elf_link_hash_traverse. */
719
720 static bfd_boolean
721 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
722 void *data)
723 {
724 size_t *count = (size_t *) data;
725
726 if (h->forced_local)
727 return TRUE;
728
729 if (h->dynindx != -1)
730 h->dynindx = ++(*count);
731
732 return TRUE;
733 }
734
735
736 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
737 STB_LOCAL binding. */
738
739 static bfd_boolean
740 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
741 void *data)
742 {
743 size_t *count = (size_t *) data;
744
745 if (!h->forced_local)
746 return TRUE;
747
748 if (h->dynindx != -1)
749 h->dynindx = ++(*count);
750
751 return TRUE;
752 }
753
754 /* Return true if the dynamic symbol for a given section should be
755 omitted when creating a shared library. */
756 bfd_boolean
757 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
758 struct bfd_link_info *info,
759 asection *p)
760 {
761 struct elf_link_hash_table *htab;
762
763 switch (elf_section_data (p)->this_hdr.sh_type)
764 {
765 case SHT_PROGBITS:
766 case SHT_NOBITS:
767 /* If sh_type is yet undecided, assume it could be
768 SHT_PROGBITS/SHT_NOBITS. */
769 case SHT_NULL:
770 htab = elf_hash_table (info);
771 if (p == htab->tls_sec)
772 return FALSE;
773
774 if (htab->text_index_section != NULL)
775 return p != htab->text_index_section && p != htab->data_index_section;
776
777 if (strcmp (p->name, ".got") == 0
778 || strcmp (p->name, ".got.plt") == 0
779 || strcmp (p->name, ".plt") == 0)
780 {
781 asection *ip;
782
783 if (htab->dynobj != NULL
784 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
785 && ip->output_section == p)
786 return TRUE;
787 }
788 return FALSE;
789
790 /* There shouldn't be section relative relocations
791 against any other section. */
792 default:
793 return TRUE;
794 }
795 }
796
797 /* Assign dynsym indices. In a shared library we generate a section
798 symbol for each output section, which come first. Next come symbols
799 which have been forced to local binding. Then all of the back-end
800 allocated local dynamic syms, followed by the rest of the global
801 symbols. */
802
803 static unsigned long
804 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
805 struct bfd_link_info *info,
806 unsigned long *section_sym_count)
807 {
808 unsigned long dynsymcount = 0;
809
810 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
811 {
812 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
813 asection *p;
814 for (p = output_bfd->sections; p ; p = p->next)
815 if ((p->flags & SEC_EXCLUDE) == 0
816 && (p->flags & SEC_ALLOC) != 0
817 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
818 elf_section_data (p)->dynindx = ++dynsymcount;
819 else
820 elf_section_data (p)->dynindx = 0;
821 }
822 *section_sym_count = dynsymcount;
823
824 elf_link_hash_traverse (elf_hash_table (info),
825 elf_link_renumber_local_hash_table_dynsyms,
826 &dynsymcount);
827
828 if (elf_hash_table (info)->dynlocal)
829 {
830 struct elf_link_local_dynamic_entry *p;
831 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
832 p->dynindx = ++dynsymcount;
833 }
834
835 elf_link_hash_traverse (elf_hash_table (info),
836 elf_link_renumber_hash_table_dynsyms,
837 &dynsymcount);
838
839 /* There is an unused NULL entry at the head of the table which
840 we must account for in our count. Unless there weren't any
841 symbols, which means we'll have no table at all. */
842 if (dynsymcount != 0)
843 ++dynsymcount;
844
845 elf_hash_table (info)->dynsymcount = dynsymcount;
846 return dynsymcount;
847 }
848
849 /* Merge st_other field. */
850
851 static void
852 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
853 Elf_Internal_Sym *isym, bfd_boolean definition,
854 bfd_boolean dynamic)
855 {
856 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
857
858 /* If st_other has a processor-specific meaning, specific
859 code might be needed here. We never merge the visibility
860 attribute with the one from a dynamic object. */
861 if (bed->elf_backend_merge_symbol_attribute)
862 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
863 dynamic);
864
865 /* If this symbol has default visibility and the user has requested
866 we not re-export it, then mark it as hidden. */
867 if (definition
868 && !dynamic
869 && (abfd->no_export
870 || (abfd->my_archive && abfd->my_archive->no_export))
871 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
872 isym->st_other = (STV_HIDDEN
873 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
874
875 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
876 {
877 unsigned char hvis, symvis, other, nvis;
878
879 /* Only merge the visibility. Leave the remainder of the
880 st_other field to elf_backend_merge_symbol_attribute. */
881 other = h->other & ~ELF_ST_VISIBILITY (-1);
882
883 /* Combine visibilities, using the most constraining one. */
884 hvis = ELF_ST_VISIBILITY (h->other);
885 symvis = ELF_ST_VISIBILITY (isym->st_other);
886 if (! hvis)
887 nvis = symvis;
888 else if (! symvis)
889 nvis = hvis;
890 else
891 nvis = hvis < symvis ? hvis : symvis;
892
893 h->other = other | nvis;
894 }
895 }
896
897 /* This function is called when we want to merge a new symbol with an
898 existing symbol. It handles the various cases which arise when we
899 find a definition in a dynamic object, or when there is already a
900 definition in a dynamic object. The new symbol is described by
901 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
902 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
903 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
904 of an old common symbol. We set OVERRIDE if the old symbol is
905 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
906 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
907 to change. By OK to change, we mean that we shouldn't warn if the
908 type or size does change. */
909
910 static bfd_boolean
911 _bfd_elf_merge_symbol (bfd *abfd,
912 struct bfd_link_info *info,
913 const char *name,
914 Elf_Internal_Sym *sym,
915 asection **psec,
916 bfd_vma *pvalue,
917 struct elf_link_hash_entry **sym_hash,
918 bfd **poldbfd,
919 bfd_boolean *pold_weak,
920 unsigned int *pold_alignment,
921 bfd_boolean *skip,
922 bfd_boolean *override,
923 bfd_boolean *type_change_ok,
924 bfd_boolean *size_change_ok)
925 {
926 asection *sec, *oldsec;
927 struct elf_link_hash_entry *h;
928 struct elf_link_hash_entry *hi;
929 struct elf_link_hash_entry *flip;
930 int bind;
931 bfd *oldbfd;
932 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
933 bfd_boolean newweak, oldweak, newfunc, oldfunc;
934 const struct elf_backend_data *bed;
935
936 *skip = FALSE;
937 *override = FALSE;
938
939 sec = *psec;
940 bind = ELF_ST_BIND (sym->st_info);
941
942 if (! bfd_is_und_section (sec))
943 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
944 else
945 h = ((struct elf_link_hash_entry *)
946 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
947 if (h == NULL)
948 return FALSE;
949 *sym_hash = h;
950
951 bed = get_elf_backend_data (abfd);
952
953 /* This code is for coping with dynamic objects, and is only useful
954 if we are doing an ELF link. */
955 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
956 return TRUE;
957
958 /* For merging, we only care about real symbols. But we need to make
959 sure that indirect symbol dynamic flags are updated. */
960 hi = h;
961 while (h->root.type == bfd_link_hash_indirect
962 || h->root.type == bfd_link_hash_warning)
963 h = (struct elf_link_hash_entry *) h->root.u.i.link;
964
965 /* We have to check it for every instance since the first few may be
966 references and not all compilers emit symbol type for undefined
967 symbols. */
968 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
969
970 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
971 respectively, is from a dynamic object. */
972
973 newdyn = (abfd->flags & DYNAMIC) != 0;
974
975 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
976 syms and defined syms in dynamic libraries respectively.
977 ref_dynamic on the other hand can be set for a symbol defined in
978 a dynamic library, and def_dynamic may not be set; When the
979 definition in a dynamic lib is overridden by a definition in the
980 executable use of the symbol in the dynamic lib becomes a
981 reference to the executable symbol. */
982 if (newdyn)
983 {
984 if (bfd_is_und_section (sec))
985 {
986 if (bind != STB_WEAK)
987 {
988 h->ref_dynamic_nonweak = 1;
989 hi->ref_dynamic_nonweak = 1;
990 }
991 }
992 else
993 {
994 h->dynamic_def = 1;
995 hi->dynamic_def = 1;
996 }
997 }
998
999 /* If we just created the symbol, mark it as being an ELF symbol.
1000 Other than that, there is nothing to do--there is no merge issue
1001 with a newly defined symbol--so we just return. */
1002
1003 if (h->root.type == bfd_link_hash_new)
1004 {
1005 h->non_elf = 0;
1006 return TRUE;
1007 }
1008
1009 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1010 existing symbol. */
1011
1012 switch (h->root.type)
1013 {
1014 default:
1015 oldbfd = NULL;
1016 oldsec = NULL;
1017 break;
1018
1019 case bfd_link_hash_undefined:
1020 case bfd_link_hash_undefweak:
1021 oldbfd = h->root.u.undef.abfd;
1022 oldsec = NULL;
1023 break;
1024
1025 case bfd_link_hash_defined:
1026 case bfd_link_hash_defweak:
1027 oldbfd = h->root.u.def.section->owner;
1028 oldsec = h->root.u.def.section;
1029 break;
1030
1031 case bfd_link_hash_common:
1032 oldbfd = h->root.u.c.p->section->owner;
1033 oldsec = h->root.u.c.p->section;
1034 if (pold_alignment)
1035 *pold_alignment = h->root.u.c.p->alignment_power;
1036 break;
1037 }
1038 if (poldbfd && *poldbfd == NULL)
1039 *poldbfd = oldbfd;
1040
1041 /* Differentiate strong and weak symbols. */
1042 newweak = bind == STB_WEAK;
1043 oldweak = (h->root.type == bfd_link_hash_defweak
1044 || h->root.type == bfd_link_hash_undefweak);
1045 if (pold_weak)
1046 *pold_weak = oldweak;
1047
1048 /* In cases involving weak versioned symbols, we may wind up trying
1049 to merge a symbol with itself. Catch that here, to avoid the
1050 confusion that results if we try to override a symbol with
1051 itself. The additional tests catch cases like
1052 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1053 dynamic object, which we do want to handle here. */
1054 if (abfd == oldbfd
1055 && (newweak || oldweak)
1056 && ((abfd->flags & DYNAMIC) == 0
1057 || !h->def_regular))
1058 return TRUE;
1059
1060 olddyn = FALSE;
1061 if (oldbfd != NULL)
1062 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1063 else if (oldsec != NULL)
1064 {
1065 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1066 indices used by MIPS ELF. */
1067 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1068 }
1069
1070 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1071 respectively, appear to be a definition rather than reference. */
1072
1073 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1074
1075 olddef = (h->root.type != bfd_link_hash_undefined
1076 && h->root.type != bfd_link_hash_undefweak
1077 && h->root.type != bfd_link_hash_common);
1078
1079 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1080 respectively, appear to be a function. */
1081
1082 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1083 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1084
1085 oldfunc = (h->type != STT_NOTYPE
1086 && bed->is_function_type (h->type));
1087
1088 /* When we try to create a default indirect symbol from the dynamic
1089 definition with the default version, we skip it if its type and
1090 the type of existing regular definition mismatch. We only do it
1091 if the existing regular definition won't be dynamic. */
1092 if (pold_alignment == NULL
1093 && !info->shared
1094 && !info->export_dynamic
1095 && !h->ref_dynamic
1096 && newdyn
1097 && newdef
1098 && !olddyn
1099 && (olddef || h->root.type == bfd_link_hash_common)
1100 && ELF_ST_TYPE (sym->st_info) != h->type
1101 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1102 && h->type != STT_NOTYPE
1103 && !(newfunc && oldfunc))
1104 {
1105 *skip = TRUE;
1106 return TRUE;
1107 }
1108
1109 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1110 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1111 *type_change_ok = TRUE;
1112
1113 /* Check TLS symbol. We don't check undefined symbol introduced by
1114 "ld -u". */
1115 else if (oldbfd != NULL
1116 && ELF_ST_TYPE (sym->st_info) != h->type
1117 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1118 {
1119 bfd *ntbfd, *tbfd;
1120 bfd_boolean ntdef, tdef;
1121 asection *ntsec, *tsec;
1122
1123 if (h->type == STT_TLS)
1124 {
1125 ntbfd = abfd;
1126 ntsec = sec;
1127 ntdef = newdef;
1128 tbfd = oldbfd;
1129 tsec = oldsec;
1130 tdef = olddef;
1131 }
1132 else
1133 {
1134 ntbfd = oldbfd;
1135 ntsec = oldsec;
1136 ntdef = olddef;
1137 tbfd = abfd;
1138 tsec = sec;
1139 tdef = newdef;
1140 }
1141
1142 if (tdef && ntdef)
1143 (*_bfd_error_handler)
1144 (_("%s: TLS definition in %B section %A "
1145 "mismatches non-TLS definition in %B section %A"),
1146 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1147 else if (!tdef && !ntdef)
1148 (*_bfd_error_handler)
1149 (_("%s: TLS reference in %B "
1150 "mismatches non-TLS reference in %B"),
1151 tbfd, ntbfd, h->root.root.string);
1152 else if (tdef)
1153 (*_bfd_error_handler)
1154 (_("%s: TLS definition in %B section %A "
1155 "mismatches non-TLS reference in %B"),
1156 tbfd, tsec, ntbfd, h->root.root.string);
1157 else
1158 (*_bfd_error_handler)
1159 (_("%s: TLS reference in %B "
1160 "mismatches non-TLS definition in %B section %A"),
1161 tbfd, ntbfd, ntsec, h->root.root.string);
1162
1163 bfd_set_error (bfd_error_bad_value);
1164 return FALSE;
1165 }
1166
1167 /* If the old symbol has non-default visibility, we ignore the new
1168 definition from a dynamic object. */
1169 if (newdyn
1170 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1171 && !bfd_is_und_section (sec))
1172 {
1173 *skip = TRUE;
1174 /* Make sure this symbol is dynamic. */
1175 h->ref_dynamic = 1;
1176 hi->ref_dynamic = 1;
1177 /* A protected symbol has external availability. Make sure it is
1178 recorded as dynamic.
1179
1180 FIXME: Should we check type and size for protected symbol? */
1181 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1182 return bfd_elf_link_record_dynamic_symbol (info, h);
1183 else
1184 return TRUE;
1185 }
1186 else if (!newdyn
1187 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1188 && h->def_dynamic)
1189 {
1190 /* If the new symbol with non-default visibility comes from a
1191 relocatable file and the old definition comes from a dynamic
1192 object, we remove the old definition. */
1193 if (hi->root.type == bfd_link_hash_indirect)
1194 {
1195 /* Handle the case where the old dynamic definition is
1196 default versioned. We need to copy the symbol info from
1197 the symbol with default version to the normal one if it
1198 was referenced before. */
1199 if (h->ref_regular)
1200 {
1201 hi->root.type = h->root.type;
1202 h->root.type = bfd_link_hash_indirect;
1203 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1204
1205 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1206 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1207 {
1208 /* If the new symbol is hidden or internal, completely undo
1209 any dynamic link state. */
1210 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1211 h->forced_local = 0;
1212 h->ref_dynamic = 0;
1213 }
1214 else
1215 h->ref_dynamic = 1;
1216
1217 h->def_dynamic = 0;
1218 /* FIXME: Should we check type and size for protected symbol? */
1219 h->size = 0;
1220 h->type = 0;
1221
1222 h = hi;
1223 }
1224 else
1225 h = hi;
1226 }
1227
1228 /* If the old symbol was undefined before, then it will still be
1229 on the undefs list. If the new symbol is undefined or
1230 common, we can't make it bfd_link_hash_new here, because new
1231 undefined or common symbols will be added to the undefs list
1232 by _bfd_generic_link_add_one_symbol. Symbols may not be
1233 added twice to the undefs list. Also, if the new symbol is
1234 undefweak then we don't want to lose the strong undef. */
1235 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1236 {
1237 h->root.type = bfd_link_hash_undefined;
1238 h->root.u.undef.abfd = abfd;
1239 }
1240 else
1241 {
1242 h->root.type = bfd_link_hash_new;
1243 h->root.u.undef.abfd = NULL;
1244 }
1245
1246 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1247 {
1248 /* If the new symbol is hidden or internal, completely undo
1249 any dynamic link state. */
1250 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1251 h->forced_local = 0;
1252 h->ref_dynamic = 0;
1253 }
1254 else
1255 h->ref_dynamic = 1;
1256 h->def_dynamic = 0;
1257 /* FIXME: Should we check type and size for protected symbol? */
1258 h->size = 0;
1259 h->type = 0;
1260 return TRUE;
1261 }
1262
1263 /* If a new weak symbol definition comes from a regular file and the
1264 old symbol comes from a dynamic library, we treat the new one as
1265 strong. Similarly, an old weak symbol definition from a regular
1266 file is treated as strong when the new symbol comes from a dynamic
1267 library. Further, an old weak symbol from a dynamic library is
1268 treated as strong if the new symbol is from a dynamic library.
1269 This reflects the way glibc's ld.so works.
1270
1271 Do this before setting *type_change_ok or *size_change_ok so that
1272 we warn properly when dynamic library symbols are overridden. */
1273
1274 if (newdef && !newdyn && olddyn)
1275 newweak = FALSE;
1276 if (olddef && newdyn)
1277 oldweak = FALSE;
1278
1279 /* Allow changes between different types of function symbol. */
1280 if (newfunc && oldfunc)
1281 *type_change_ok = TRUE;
1282
1283 /* It's OK to change the type if either the existing symbol or the
1284 new symbol is weak. A type change is also OK if the old symbol
1285 is undefined and the new symbol is defined. */
1286
1287 if (oldweak
1288 || newweak
1289 || (newdef
1290 && h->root.type == bfd_link_hash_undefined))
1291 *type_change_ok = TRUE;
1292
1293 /* It's OK to change the size if either the existing symbol or the
1294 new symbol is weak, or if the old symbol is undefined. */
1295
1296 if (*type_change_ok
1297 || h->root.type == bfd_link_hash_undefined)
1298 *size_change_ok = TRUE;
1299
1300 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1301 symbol, respectively, appears to be a common symbol in a dynamic
1302 object. If a symbol appears in an uninitialized section, and is
1303 not weak, and is not a function, then it may be a common symbol
1304 which was resolved when the dynamic object was created. We want
1305 to treat such symbols specially, because they raise special
1306 considerations when setting the symbol size: if the symbol
1307 appears as a common symbol in a regular object, and the size in
1308 the regular object is larger, we must make sure that we use the
1309 larger size. This problematic case can always be avoided in C,
1310 but it must be handled correctly when using Fortran shared
1311 libraries.
1312
1313 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1314 likewise for OLDDYNCOMMON and OLDDEF.
1315
1316 Note that this test is just a heuristic, and that it is quite
1317 possible to have an uninitialized symbol in a shared object which
1318 is really a definition, rather than a common symbol. This could
1319 lead to some minor confusion when the symbol really is a common
1320 symbol in some regular object. However, I think it will be
1321 harmless. */
1322
1323 if (newdyn
1324 && newdef
1325 && !newweak
1326 && (sec->flags & SEC_ALLOC) != 0
1327 && (sec->flags & SEC_LOAD) == 0
1328 && sym->st_size > 0
1329 && !newfunc)
1330 newdyncommon = TRUE;
1331 else
1332 newdyncommon = FALSE;
1333
1334 if (olddyn
1335 && olddef
1336 && h->root.type == bfd_link_hash_defined
1337 && h->def_dynamic
1338 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1339 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1340 && h->size > 0
1341 && !oldfunc)
1342 olddyncommon = TRUE;
1343 else
1344 olddyncommon = FALSE;
1345
1346 /* We now know everything about the old and new symbols. We ask the
1347 backend to check if we can merge them. */
1348 if (bed->merge_symbol != NULL)
1349 {
1350 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1351 return FALSE;
1352 sec = *psec;
1353 }
1354
1355 /* If both the old and the new symbols look like common symbols in a
1356 dynamic object, set the size of the symbol to the larger of the
1357 two. */
1358
1359 if (olddyncommon
1360 && newdyncommon
1361 && sym->st_size != h->size)
1362 {
1363 /* Since we think we have two common symbols, issue a multiple
1364 common warning if desired. Note that we only warn if the
1365 size is different. If the size is the same, we simply let
1366 the old symbol override the new one as normally happens with
1367 symbols defined in dynamic objects. */
1368
1369 if (! ((*info->callbacks->multiple_common)
1370 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1371 return FALSE;
1372
1373 if (sym->st_size > h->size)
1374 h->size = sym->st_size;
1375
1376 *size_change_ok = TRUE;
1377 }
1378
1379 /* If we are looking at a dynamic object, and we have found a
1380 definition, we need to see if the symbol was already defined by
1381 some other object. If so, we want to use the existing
1382 definition, and we do not want to report a multiple symbol
1383 definition error; we do this by clobbering *PSEC to be
1384 bfd_und_section_ptr.
1385
1386 We treat a common symbol as a definition if the symbol in the
1387 shared library is a function, since common symbols always
1388 represent variables; this can cause confusion in principle, but
1389 any such confusion would seem to indicate an erroneous program or
1390 shared library. We also permit a common symbol in a regular
1391 object to override a weak symbol in a shared object. */
1392
1393 if (newdyn
1394 && newdef
1395 && (olddef
1396 || (h->root.type == bfd_link_hash_common
1397 && (newweak || newfunc))))
1398 {
1399 *override = TRUE;
1400 newdef = FALSE;
1401 newdyncommon = FALSE;
1402
1403 *psec = sec = bfd_und_section_ptr;
1404 *size_change_ok = TRUE;
1405
1406 /* If we get here when the old symbol is a common symbol, then
1407 we are explicitly letting it override a weak symbol or
1408 function in a dynamic object, and we don't want to warn about
1409 a type change. If the old symbol is a defined symbol, a type
1410 change warning may still be appropriate. */
1411
1412 if (h->root.type == bfd_link_hash_common)
1413 *type_change_ok = TRUE;
1414 }
1415
1416 /* Handle the special case of an old common symbol merging with a
1417 new symbol which looks like a common symbol in a shared object.
1418 We change *PSEC and *PVALUE to make the new symbol look like a
1419 common symbol, and let _bfd_generic_link_add_one_symbol do the
1420 right thing. */
1421
1422 if (newdyncommon
1423 && h->root.type == bfd_link_hash_common)
1424 {
1425 *override = TRUE;
1426 newdef = FALSE;
1427 newdyncommon = FALSE;
1428 *pvalue = sym->st_size;
1429 *psec = sec = bed->common_section (oldsec);
1430 *size_change_ok = TRUE;
1431 }
1432
1433 /* Skip weak definitions of symbols that are already defined. */
1434 if (newdef && olddef && newweak)
1435 {
1436 /* Don't skip new non-IR weak syms. */
1437 if (!(oldbfd != NULL
1438 && (oldbfd->flags & BFD_PLUGIN) != 0
1439 && (abfd->flags & BFD_PLUGIN) == 0))
1440 *skip = TRUE;
1441
1442 /* Merge st_other. If the symbol already has a dynamic index,
1443 but visibility says it should not be visible, turn it into a
1444 local symbol. */
1445 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1446 if (h->dynindx != -1)
1447 switch (ELF_ST_VISIBILITY (h->other))
1448 {
1449 case STV_INTERNAL:
1450 case STV_HIDDEN:
1451 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1452 break;
1453 }
1454 }
1455
1456 /* If the old symbol is from a dynamic object, and the new symbol is
1457 a definition which is not from a dynamic object, then the new
1458 symbol overrides the old symbol. Symbols from regular files
1459 always take precedence over symbols from dynamic objects, even if
1460 they are defined after the dynamic object in the link.
1461
1462 As above, we again permit a common symbol in a regular object to
1463 override a definition in a shared object if the shared object
1464 symbol is a function or is weak. */
1465
1466 flip = NULL;
1467 if (!newdyn
1468 && (newdef
1469 || (bfd_is_com_section (sec)
1470 && (oldweak || oldfunc)))
1471 && olddyn
1472 && olddef
1473 && h->def_dynamic)
1474 {
1475 /* Change the hash table entry to undefined, and let
1476 _bfd_generic_link_add_one_symbol do the right thing with the
1477 new definition. */
1478
1479 h->root.type = bfd_link_hash_undefined;
1480 h->root.u.undef.abfd = h->root.u.def.section->owner;
1481 *size_change_ok = TRUE;
1482
1483 olddef = FALSE;
1484 olddyncommon = FALSE;
1485
1486 /* We again permit a type change when a common symbol may be
1487 overriding a function. */
1488
1489 if (bfd_is_com_section (sec))
1490 {
1491 if (oldfunc)
1492 {
1493 /* If a common symbol overrides a function, make sure
1494 that it isn't defined dynamically nor has type
1495 function. */
1496 h->def_dynamic = 0;
1497 h->type = STT_NOTYPE;
1498 }
1499 *type_change_ok = TRUE;
1500 }
1501
1502 if (hi->root.type == bfd_link_hash_indirect)
1503 flip = hi;
1504 else
1505 /* This union may have been set to be non-NULL when this symbol
1506 was seen in a dynamic object. We must force the union to be
1507 NULL, so that it is correct for a regular symbol. */
1508 h->verinfo.vertree = NULL;
1509 }
1510
1511 /* Handle the special case of a new common symbol merging with an
1512 old symbol that looks like it might be a common symbol defined in
1513 a shared object. Note that we have already handled the case in
1514 which a new common symbol should simply override the definition
1515 in the shared library. */
1516
1517 if (! newdyn
1518 && bfd_is_com_section (sec)
1519 && olddyncommon)
1520 {
1521 /* It would be best if we could set the hash table entry to a
1522 common symbol, but we don't know what to use for the section
1523 or the alignment. */
1524 if (! ((*info->callbacks->multiple_common)
1525 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1526 return FALSE;
1527
1528 /* If the presumed common symbol in the dynamic object is
1529 larger, pretend that the new symbol has its size. */
1530
1531 if (h->size > *pvalue)
1532 *pvalue = h->size;
1533
1534 /* We need to remember the alignment required by the symbol
1535 in the dynamic object. */
1536 BFD_ASSERT (pold_alignment);
1537 *pold_alignment = h->root.u.def.section->alignment_power;
1538
1539 olddef = FALSE;
1540 olddyncommon = FALSE;
1541
1542 h->root.type = bfd_link_hash_undefined;
1543 h->root.u.undef.abfd = h->root.u.def.section->owner;
1544
1545 *size_change_ok = TRUE;
1546 *type_change_ok = TRUE;
1547
1548 if (hi->root.type == bfd_link_hash_indirect)
1549 flip = hi;
1550 else
1551 h->verinfo.vertree = NULL;
1552 }
1553
1554 if (flip != NULL)
1555 {
1556 /* Handle the case where we had a versioned symbol in a dynamic
1557 library and now find a definition in a normal object. In this
1558 case, we make the versioned symbol point to the normal one. */
1559 flip->root.type = h->root.type;
1560 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1561 h->root.type = bfd_link_hash_indirect;
1562 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1563 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1564 if (h->def_dynamic)
1565 {
1566 h->def_dynamic = 0;
1567 flip->ref_dynamic = 1;
1568 }
1569 }
1570
1571 return TRUE;
1572 }
1573
1574 /* This function is called to create an indirect symbol from the
1575 default for the symbol with the default version if needed. The
1576 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1577 set DYNSYM if the new indirect symbol is dynamic. */
1578
1579 static bfd_boolean
1580 _bfd_elf_add_default_symbol (bfd *abfd,
1581 struct bfd_link_info *info,
1582 struct elf_link_hash_entry *h,
1583 const char *name,
1584 Elf_Internal_Sym *sym,
1585 asection *sec,
1586 bfd_vma value,
1587 bfd **poldbfd,
1588 bfd_boolean *dynsym)
1589 {
1590 bfd_boolean type_change_ok;
1591 bfd_boolean size_change_ok;
1592 bfd_boolean skip;
1593 char *shortname;
1594 struct elf_link_hash_entry *hi;
1595 struct bfd_link_hash_entry *bh;
1596 const struct elf_backend_data *bed;
1597 bfd_boolean collect;
1598 bfd_boolean dynamic;
1599 bfd_boolean override;
1600 char *p;
1601 size_t len, shortlen;
1602 asection *tmp_sec;
1603
1604 /* If this symbol has a version, and it is the default version, we
1605 create an indirect symbol from the default name to the fully
1606 decorated name. This will cause external references which do not
1607 specify a version to be bound to this version of the symbol. */
1608 p = strchr (name, ELF_VER_CHR);
1609 if (p == NULL || p[1] != ELF_VER_CHR)
1610 return TRUE;
1611
1612 bed = get_elf_backend_data (abfd);
1613 collect = bed->collect;
1614 dynamic = (abfd->flags & DYNAMIC) != 0;
1615
1616 shortlen = p - name;
1617 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1618 if (shortname == NULL)
1619 return FALSE;
1620 memcpy (shortname, name, shortlen);
1621 shortname[shortlen] = '\0';
1622
1623 /* We are going to create a new symbol. Merge it with any existing
1624 symbol with this name. For the purposes of the merge, act as
1625 though we were defining the symbol we just defined, although we
1626 actually going to define an indirect symbol. */
1627 type_change_ok = FALSE;
1628 size_change_ok = FALSE;
1629 tmp_sec = sec;
1630 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1631 &hi, poldbfd, NULL, NULL, &skip, &override,
1632 &type_change_ok, &size_change_ok))
1633 return FALSE;
1634
1635 if (skip)
1636 goto nondefault;
1637
1638 if (! override)
1639 {
1640 bh = &hi->root;
1641 if (! (_bfd_generic_link_add_one_symbol
1642 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1643 0, name, FALSE, collect, &bh)))
1644 return FALSE;
1645 hi = (struct elf_link_hash_entry *) bh;
1646 }
1647 else
1648 {
1649 /* In this case the symbol named SHORTNAME is overriding the
1650 indirect symbol we want to add. We were planning on making
1651 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1652 is the name without a version. NAME is the fully versioned
1653 name, and it is the default version.
1654
1655 Overriding means that we already saw a definition for the
1656 symbol SHORTNAME in a regular object, and it is overriding
1657 the symbol defined in the dynamic object.
1658
1659 When this happens, we actually want to change NAME, the
1660 symbol we just added, to refer to SHORTNAME. This will cause
1661 references to NAME in the shared object to become references
1662 to SHORTNAME in the regular object. This is what we expect
1663 when we override a function in a shared object: that the
1664 references in the shared object will be mapped to the
1665 definition in the regular object. */
1666
1667 while (hi->root.type == bfd_link_hash_indirect
1668 || hi->root.type == bfd_link_hash_warning)
1669 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1670
1671 h->root.type = bfd_link_hash_indirect;
1672 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1673 if (h->def_dynamic)
1674 {
1675 h->def_dynamic = 0;
1676 hi->ref_dynamic = 1;
1677 if (hi->ref_regular
1678 || hi->def_regular)
1679 {
1680 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1681 return FALSE;
1682 }
1683 }
1684
1685 /* Now set HI to H, so that the following code will set the
1686 other fields correctly. */
1687 hi = h;
1688 }
1689
1690 /* Check if HI is a warning symbol. */
1691 if (hi->root.type == bfd_link_hash_warning)
1692 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1693
1694 /* If there is a duplicate definition somewhere, then HI may not
1695 point to an indirect symbol. We will have reported an error to
1696 the user in that case. */
1697
1698 if (hi->root.type == bfd_link_hash_indirect)
1699 {
1700 struct elf_link_hash_entry *ht;
1701
1702 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1703 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1704
1705 /* See if the new flags lead us to realize that the symbol must
1706 be dynamic. */
1707 if (! *dynsym)
1708 {
1709 if (! dynamic)
1710 {
1711 if (! info->executable
1712 || hi->def_dynamic
1713 || hi->ref_dynamic)
1714 *dynsym = TRUE;
1715 }
1716 else
1717 {
1718 if (hi->ref_regular)
1719 *dynsym = TRUE;
1720 }
1721 }
1722 }
1723
1724 /* We also need to define an indirection from the nondefault version
1725 of the symbol. */
1726
1727 nondefault:
1728 len = strlen (name);
1729 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1730 if (shortname == NULL)
1731 return FALSE;
1732 memcpy (shortname, name, shortlen);
1733 memcpy (shortname + shortlen, p + 1, len - shortlen);
1734
1735 /* Once again, merge with any existing symbol. */
1736 type_change_ok = FALSE;
1737 size_change_ok = FALSE;
1738 tmp_sec = sec;
1739 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1740 &hi, NULL, NULL, NULL, &skip, &override,
1741 &type_change_ok, &size_change_ok))
1742 return FALSE;
1743
1744 if (skip)
1745 return TRUE;
1746
1747 if (override)
1748 {
1749 /* Here SHORTNAME is a versioned name, so we don't expect to see
1750 the type of override we do in the case above unless it is
1751 overridden by a versioned definition. */
1752 if (hi->root.type != bfd_link_hash_defined
1753 && hi->root.type != bfd_link_hash_defweak)
1754 (*_bfd_error_handler)
1755 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1756 abfd, shortname);
1757 }
1758 else
1759 {
1760 bh = &hi->root;
1761 if (! (_bfd_generic_link_add_one_symbol
1762 (info, abfd, shortname, BSF_INDIRECT,
1763 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1764 return FALSE;
1765 hi = (struct elf_link_hash_entry *) bh;
1766
1767 /* If there is a duplicate definition somewhere, then HI may not
1768 point to an indirect symbol. We will have reported an error
1769 to the user in that case. */
1770
1771 if (hi->root.type == bfd_link_hash_indirect)
1772 {
1773 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1774
1775 /* See if the new flags lead us to realize that the symbol
1776 must be dynamic. */
1777 if (! *dynsym)
1778 {
1779 if (! dynamic)
1780 {
1781 if (! info->executable
1782 || hi->ref_dynamic)
1783 *dynsym = TRUE;
1784 }
1785 else
1786 {
1787 if (hi->ref_regular)
1788 *dynsym = TRUE;
1789 }
1790 }
1791 }
1792 }
1793
1794 return TRUE;
1795 }
1796 \f
1797 /* This routine is used to export all defined symbols into the dynamic
1798 symbol table. It is called via elf_link_hash_traverse. */
1799
1800 static bfd_boolean
1801 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1802 {
1803 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1804
1805 /* Ignore indirect symbols. These are added by the versioning code. */
1806 if (h->root.type == bfd_link_hash_indirect)
1807 return TRUE;
1808
1809 /* Ignore this if we won't export it. */
1810 if (!eif->info->export_dynamic && !h->dynamic)
1811 return TRUE;
1812
1813 if (h->dynindx == -1
1814 && (h->def_regular || h->ref_regular)
1815 && ! bfd_hide_sym_by_version (eif->info->version_info,
1816 h->root.root.string))
1817 {
1818 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1819 {
1820 eif->failed = TRUE;
1821 return FALSE;
1822 }
1823 }
1824
1825 return TRUE;
1826 }
1827 \f
1828 /* Look through the symbols which are defined in other shared
1829 libraries and referenced here. Update the list of version
1830 dependencies. This will be put into the .gnu.version_r section.
1831 This function is called via elf_link_hash_traverse. */
1832
1833 static bfd_boolean
1834 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1835 void *data)
1836 {
1837 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1838 Elf_Internal_Verneed *t;
1839 Elf_Internal_Vernaux *a;
1840 bfd_size_type amt;
1841
1842 /* We only care about symbols defined in shared objects with version
1843 information. */
1844 if (!h->def_dynamic
1845 || h->def_regular
1846 || h->dynindx == -1
1847 || h->verinfo.verdef == NULL)
1848 return TRUE;
1849
1850 /* See if we already know about this version. */
1851 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1852 t != NULL;
1853 t = t->vn_nextref)
1854 {
1855 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1856 continue;
1857
1858 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1859 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1860 return TRUE;
1861
1862 break;
1863 }
1864
1865 /* This is a new version. Add it to tree we are building. */
1866
1867 if (t == NULL)
1868 {
1869 amt = sizeof *t;
1870 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1871 if (t == NULL)
1872 {
1873 rinfo->failed = TRUE;
1874 return FALSE;
1875 }
1876
1877 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1878 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1879 elf_tdata (rinfo->info->output_bfd)->verref = t;
1880 }
1881
1882 amt = sizeof *a;
1883 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1884 if (a == NULL)
1885 {
1886 rinfo->failed = TRUE;
1887 return FALSE;
1888 }
1889
1890 /* Note that we are copying a string pointer here, and testing it
1891 above. If bfd_elf_string_from_elf_section is ever changed to
1892 discard the string data when low in memory, this will have to be
1893 fixed. */
1894 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1895
1896 a->vna_flags = h->verinfo.verdef->vd_flags;
1897 a->vna_nextptr = t->vn_auxptr;
1898
1899 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1900 ++rinfo->vers;
1901
1902 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1903
1904 t->vn_auxptr = a;
1905
1906 return TRUE;
1907 }
1908
1909 /* Figure out appropriate versions for all the symbols. We may not
1910 have the version number script until we have read all of the input
1911 files, so until that point we don't know which symbols should be
1912 local. This function is called via elf_link_hash_traverse. */
1913
1914 static bfd_boolean
1915 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1916 {
1917 struct elf_info_failed *sinfo;
1918 struct bfd_link_info *info;
1919 const struct elf_backend_data *bed;
1920 struct elf_info_failed eif;
1921 char *p;
1922 bfd_size_type amt;
1923
1924 sinfo = (struct elf_info_failed *) data;
1925 info = sinfo->info;
1926
1927 /* Fix the symbol flags. */
1928 eif.failed = FALSE;
1929 eif.info = info;
1930 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1931 {
1932 if (eif.failed)
1933 sinfo->failed = TRUE;
1934 return FALSE;
1935 }
1936
1937 /* We only need version numbers for symbols defined in regular
1938 objects. */
1939 if (!h->def_regular)
1940 return TRUE;
1941
1942 bed = get_elf_backend_data (info->output_bfd);
1943 p = strchr (h->root.root.string, ELF_VER_CHR);
1944 if (p != NULL && h->verinfo.vertree == NULL)
1945 {
1946 struct bfd_elf_version_tree *t;
1947 bfd_boolean hidden;
1948
1949 hidden = TRUE;
1950
1951 /* There are two consecutive ELF_VER_CHR characters if this is
1952 not a hidden symbol. */
1953 ++p;
1954 if (*p == ELF_VER_CHR)
1955 {
1956 hidden = FALSE;
1957 ++p;
1958 }
1959
1960 /* If there is no version string, we can just return out. */
1961 if (*p == '\0')
1962 {
1963 if (hidden)
1964 h->hidden = 1;
1965 return TRUE;
1966 }
1967
1968 /* Look for the version. If we find it, it is no longer weak. */
1969 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1970 {
1971 if (strcmp (t->name, p) == 0)
1972 {
1973 size_t len;
1974 char *alc;
1975 struct bfd_elf_version_expr *d;
1976
1977 len = p - h->root.root.string;
1978 alc = (char *) bfd_malloc (len);
1979 if (alc == NULL)
1980 {
1981 sinfo->failed = TRUE;
1982 return FALSE;
1983 }
1984 memcpy (alc, h->root.root.string, len - 1);
1985 alc[len - 1] = '\0';
1986 if (alc[len - 2] == ELF_VER_CHR)
1987 alc[len - 2] = '\0';
1988
1989 h->verinfo.vertree = t;
1990 t->used = TRUE;
1991 d = NULL;
1992
1993 if (t->globals.list != NULL)
1994 d = (*t->match) (&t->globals, NULL, alc);
1995
1996 /* See if there is anything to force this symbol to
1997 local scope. */
1998 if (d == NULL && t->locals.list != NULL)
1999 {
2000 d = (*t->match) (&t->locals, NULL, alc);
2001 if (d != NULL
2002 && h->dynindx != -1
2003 && ! info->export_dynamic)
2004 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2005 }
2006
2007 free (alc);
2008 break;
2009 }
2010 }
2011
2012 /* If we are building an application, we need to create a
2013 version node for this version. */
2014 if (t == NULL && info->executable)
2015 {
2016 struct bfd_elf_version_tree **pp;
2017 int version_index;
2018
2019 /* If we aren't going to export this symbol, we don't need
2020 to worry about it. */
2021 if (h->dynindx == -1)
2022 return TRUE;
2023
2024 amt = sizeof *t;
2025 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2026 if (t == NULL)
2027 {
2028 sinfo->failed = TRUE;
2029 return FALSE;
2030 }
2031
2032 t->name = p;
2033 t->name_indx = (unsigned int) -1;
2034 t->used = TRUE;
2035
2036 version_index = 1;
2037 /* Don't count anonymous version tag. */
2038 if (sinfo->info->version_info != NULL
2039 && sinfo->info->version_info->vernum == 0)
2040 version_index = 0;
2041 for (pp = &sinfo->info->version_info;
2042 *pp != NULL;
2043 pp = &(*pp)->next)
2044 ++version_index;
2045 t->vernum = version_index;
2046
2047 *pp = t;
2048
2049 h->verinfo.vertree = t;
2050 }
2051 else if (t == NULL)
2052 {
2053 /* We could not find the version for a symbol when
2054 generating a shared archive. Return an error. */
2055 (*_bfd_error_handler)
2056 (_("%B: version node not found for symbol %s"),
2057 info->output_bfd, h->root.root.string);
2058 bfd_set_error (bfd_error_bad_value);
2059 sinfo->failed = TRUE;
2060 return FALSE;
2061 }
2062
2063 if (hidden)
2064 h->hidden = 1;
2065 }
2066
2067 /* If we don't have a version for this symbol, see if we can find
2068 something. */
2069 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2070 {
2071 bfd_boolean hide;
2072
2073 h->verinfo.vertree
2074 = bfd_find_version_for_sym (sinfo->info->version_info,
2075 h->root.root.string, &hide);
2076 if (h->verinfo.vertree != NULL && hide)
2077 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2078 }
2079
2080 return TRUE;
2081 }
2082 \f
2083 /* Read and swap the relocs from the section indicated by SHDR. This
2084 may be either a REL or a RELA section. The relocations are
2085 translated into RELA relocations and stored in INTERNAL_RELOCS,
2086 which should have already been allocated to contain enough space.
2087 The EXTERNAL_RELOCS are a buffer where the external form of the
2088 relocations should be stored.
2089
2090 Returns FALSE if something goes wrong. */
2091
2092 static bfd_boolean
2093 elf_link_read_relocs_from_section (bfd *abfd,
2094 asection *sec,
2095 Elf_Internal_Shdr *shdr,
2096 void *external_relocs,
2097 Elf_Internal_Rela *internal_relocs)
2098 {
2099 const struct elf_backend_data *bed;
2100 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2101 const bfd_byte *erela;
2102 const bfd_byte *erelaend;
2103 Elf_Internal_Rela *irela;
2104 Elf_Internal_Shdr *symtab_hdr;
2105 size_t nsyms;
2106
2107 /* Position ourselves at the start of the section. */
2108 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2109 return FALSE;
2110
2111 /* Read the relocations. */
2112 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2113 return FALSE;
2114
2115 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2116 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2117
2118 bed = get_elf_backend_data (abfd);
2119
2120 /* Convert the external relocations to the internal format. */
2121 if (shdr->sh_entsize == bed->s->sizeof_rel)
2122 swap_in = bed->s->swap_reloc_in;
2123 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2124 swap_in = bed->s->swap_reloca_in;
2125 else
2126 {
2127 bfd_set_error (bfd_error_wrong_format);
2128 return FALSE;
2129 }
2130
2131 erela = (const bfd_byte *) external_relocs;
2132 erelaend = erela + shdr->sh_size;
2133 irela = internal_relocs;
2134 while (erela < erelaend)
2135 {
2136 bfd_vma r_symndx;
2137
2138 (*swap_in) (abfd, erela, irela);
2139 r_symndx = ELF32_R_SYM (irela->r_info);
2140 if (bed->s->arch_size == 64)
2141 r_symndx >>= 24;
2142 if (nsyms > 0)
2143 {
2144 if ((size_t) r_symndx >= nsyms)
2145 {
2146 (*_bfd_error_handler)
2147 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2148 " for offset 0x%lx in section `%A'"),
2149 abfd, sec,
2150 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2151 bfd_set_error (bfd_error_bad_value);
2152 return FALSE;
2153 }
2154 }
2155 else if (r_symndx != STN_UNDEF)
2156 {
2157 (*_bfd_error_handler)
2158 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2159 " when the object file has no symbol table"),
2160 abfd, sec,
2161 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2162 bfd_set_error (bfd_error_bad_value);
2163 return FALSE;
2164 }
2165 irela += bed->s->int_rels_per_ext_rel;
2166 erela += shdr->sh_entsize;
2167 }
2168
2169 return TRUE;
2170 }
2171
2172 /* Read and swap the relocs for a section O. They may have been
2173 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2174 not NULL, they are used as buffers to read into. They are known to
2175 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2176 the return value is allocated using either malloc or bfd_alloc,
2177 according to the KEEP_MEMORY argument. If O has two relocation
2178 sections (both REL and RELA relocations), then the REL_HDR
2179 relocations will appear first in INTERNAL_RELOCS, followed by the
2180 RELA_HDR relocations. */
2181
2182 Elf_Internal_Rela *
2183 _bfd_elf_link_read_relocs (bfd *abfd,
2184 asection *o,
2185 void *external_relocs,
2186 Elf_Internal_Rela *internal_relocs,
2187 bfd_boolean keep_memory)
2188 {
2189 void *alloc1 = NULL;
2190 Elf_Internal_Rela *alloc2 = NULL;
2191 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2192 struct bfd_elf_section_data *esdo = elf_section_data (o);
2193 Elf_Internal_Rela *internal_rela_relocs;
2194
2195 if (esdo->relocs != NULL)
2196 return esdo->relocs;
2197
2198 if (o->reloc_count == 0)
2199 return NULL;
2200
2201 if (internal_relocs == NULL)
2202 {
2203 bfd_size_type size;
2204
2205 size = o->reloc_count;
2206 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2207 if (keep_memory)
2208 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2209 else
2210 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2211 if (internal_relocs == NULL)
2212 goto error_return;
2213 }
2214
2215 if (external_relocs == NULL)
2216 {
2217 bfd_size_type size = 0;
2218
2219 if (esdo->rel.hdr)
2220 size += esdo->rel.hdr->sh_size;
2221 if (esdo->rela.hdr)
2222 size += esdo->rela.hdr->sh_size;
2223
2224 alloc1 = bfd_malloc (size);
2225 if (alloc1 == NULL)
2226 goto error_return;
2227 external_relocs = alloc1;
2228 }
2229
2230 internal_rela_relocs = internal_relocs;
2231 if (esdo->rel.hdr)
2232 {
2233 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2234 external_relocs,
2235 internal_relocs))
2236 goto error_return;
2237 external_relocs = (((bfd_byte *) external_relocs)
2238 + esdo->rel.hdr->sh_size);
2239 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2240 * bed->s->int_rels_per_ext_rel);
2241 }
2242
2243 if (esdo->rela.hdr
2244 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2245 external_relocs,
2246 internal_rela_relocs)))
2247 goto error_return;
2248
2249 /* Cache the results for next time, if we can. */
2250 if (keep_memory)
2251 esdo->relocs = internal_relocs;
2252
2253 if (alloc1 != NULL)
2254 free (alloc1);
2255
2256 /* Don't free alloc2, since if it was allocated we are passing it
2257 back (under the name of internal_relocs). */
2258
2259 return internal_relocs;
2260
2261 error_return:
2262 if (alloc1 != NULL)
2263 free (alloc1);
2264 if (alloc2 != NULL)
2265 {
2266 if (keep_memory)
2267 bfd_release (abfd, alloc2);
2268 else
2269 free (alloc2);
2270 }
2271 return NULL;
2272 }
2273
2274 /* Compute the size of, and allocate space for, REL_HDR which is the
2275 section header for a section containing relocations for O. */
2276
2277 static bfd_boolean
2278 _bfd_elf_link_size_reloc_section (bfd *abfd,
2279 struct bfd_elf_section_reloc_data *reldata)
2280 {
2281 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2282
2283 /* That allows us to calculate the size of the section. */
2284 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2285
2286 /* The contents field must last into write_object_contents, so we
2287 allocate it with bfd_alloc rather than malloc. Also since we
2288 cannot be sure that the contents will actually be filled in,
2289 we zero the allocated space. */
2290 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2291 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2292 return FALSE;
2293
2294 if (reldata->hashes == NULL && reldata->count)
2295 {
2296 struct elf_link_hash_entry **p;
2297
2298 p = (struct elf_link_hash_entry **)
2299 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2300 if (p == NULL)
2301 return FALSE;
2302
2303 reldata->hashes = p;
2304 }
2305
2306 return TRUE;
2307 }
2308
2309 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2310 originated from the section given by INPUT_REL_HDR) to the
2311 OUTPUT_BFD. */
2312
2313 bfd_boolean
2314 _bfd_elf_link_output_relocs (bfd *output_bfd,
2315 asection *input_section,
2316 Elf_Internal_Shdr *input_rel_hdr,
2317 Elf_Internal_Rela *internal_relocs,
2318 struct elf_link_hash_entry **rel_hash
2319 ATTRIBUTE_UNUSED)
2320 {
2321 Elf_Internal_Rela *irela;
2322 Elf_Internal_Rela *irelaend;
2323 bfd_byte *erel;
2324 struct bfd_elf_section_reloc_data *output_reldata;
2325 asection *output_section;
2326 const struct elf_backend_data *bed;
2327 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2328 struct bfd_elf_section_data *esdo;
2329
2330 output_section = input_section->output_section;
2331
2332 bed = get_elf_backend_data (output_bfd);
2333 esdo = elf_section_data (output_section);
2334 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2335 {
2336 output_reldata = &esdo->rel;
2337 swap_out = bed->s->swap_reloc_out;
2338 }
2339 else if (esdo->rela.hdr
2340 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2341 {
2342 output_reldata = &esdo->rela;
2343 swap_out = bed->s->swap_reloca_out;
2344 }
2345 else
2346 {
2347 (*_bfd_error_handler)
2348 (_("%B: relocation size mismatch in %B section %A"),
2349 output_bfd, input_section->owner, input_section);
2350 bfd_set_error (bfd_error_wrong_format);
2351 return FALSE;
2352 }
2353
2354 erel = output_reldata->hdr->contents;
2355 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2356 irela = internal_relocs;
2357 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2358 * bed->s->int_rels_per_ext_rel);
2359 while (irela < irelaend)
2360 {
2361 (*swap_out) (output_bfd, irela, erel);
2362 irela += bed->s->int_rels_per_ext_rel;
2363 erel += input_rel_hdr->sh_entsize;
2364 }
2365
2366 /* Bump the counter, so that we know where to add the next set of
2367 relocations. */
2368 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2369
2370 return TRUE;
2371 }
2372 \f
2373 /* Make weak undefined symbols in PIE dynamic. */
2374
2375 bfd_boolean
2376 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2377 struct elf_link_hash_entry *h)
2378 {
2379 if (info->pie
2380 && h->dynindx == -1
2381 && h->root.type == bfd_link_hash_undefweak)
2382 return bfd_elf_link_record_dynamic_symbol (info, h);
2383
2384 return TRUE;
2385 }
2386
2387 /* Fix up the flags for a symbol. This handles various cases which
2388 can only be fixed after all the input files are seen. This is
2389 currently called by both adjust_dynamic_symbol and
2390 assign_sym_version, which is unnecessary but perhaps more robust in
2391 the face of future changes. */
2392
2393 static bfd_boolean
2394 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2395 struct elf_info_failed *eif)
2396 {
2397 const struct elf_backend_data *bed;
2398
2399 /* If this symbol was mentioned in a non-ELF file, try to set
2400 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2401 permit a non-ELF file to correctly refer to a symbol defined in
2402 an ELF dynamic object. */
2403 if (h->non_elf)
2404 {
2405 while (h->root.type == bfd_link_hash_indirect)
2406 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2407
2408 if (h->root.type != bfd_link_hash_defined
2409 && h->root.type != bfd_link_hash_defweak)
2410 {
2411 h->ref_regular = 1;
2412 h->ref_regular_nonweak = 1;
2413 }
2414 else
2415 {
2416 if (h->root.u.def.section->owner != NULL
2417 && (bfd_get_flavour (h->root.u.def.section->owner)
2418 == bfd_target_elf_flavour))
2419 {
2420 h->ref_regular = 1;
2421 h->ref_regular_nonweak = 1;
2422 }
2423 else
2424 h->def_regular = 1;
2425 }
2426
2427 if (h->dynindx == -1
2428 && (h->def_dynamic
2429 || h->ref_dynamic))
2430 {
2431 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2432 {
2433 eif->failed = TRUE;
2434 return FALSE;
2435 }
2436 }
2437 }
2438 else
2439 {
2440 /* Unfortunately, NON_ELF is only correct if the symbol
2441 was first seen in a non-ELF file. Fortunately, if the symbol
2442 was first seen in an ELF file, we're probably OK unless the
2443 symbol was defined in a non-ELF file. Catch that case here.
2444 FIXME: We're still in trouble if the symbol was first seen in
2445 a dynamic object, and then later in a non-ELF regular object. */
2446 if ((h->root.type == bfd_link_hash_defined
2447 || h->root.type == bfd_link_hash_defweak)
2448 && !h->def_regular
2449 && (h->root.u.def.section->owner != NULL
2450 ? (bfd_get_flavour (h->root.u.def.section->owner)
2451 != bfd_target_elf_flavour)
2452 : (bfd_is_abs_section (h->root.u.def.section)
2453 && !h->def_dynamic)))
2454 h->def_regular = 1;
2455 }
2456
2457 /* Backend specific symbol fixup. */
2458 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2459 if (bed->elf_backend_fixup_symbol
2460 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2461 return FALSE;
2462
2463 /* If this is a final link, and the symbol was defined as a common
2464 symbol in a regular object file, and there was no definition in
2465 any dynamic object, then the linker will have allocated space for
2466 the symbol in a common section but the DEF_REGULAR
2467 flag will not have been set. */
2468 if (h->root.type == bfd_link_hash_defined
2469 && !h->def_regular
2470 && h->ref_regular
2471 && !h->def_dynamic
2472 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2473 h->def_regular = 1;
2474
2475 /* If -Bsymbolic was used (which means to bind references to global
2476 symbols to the definition within the shared object), and this
2477 symbol was defined in a regular object, then it actually doesn't
2478 need a PLT entry. Likewise, if the symbol has non-default
2479 visibility. If the symbol has hidden or internal visibility, we
2480 will force it local. */
2481 if (h->needs_plt
2482 && eif->info->shared
2483 && is_elf_hash_table (eif->info->hash)
2484 && (SYMBOLIC_BIND (eif->info, h)
2485 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2486 && h->def_regular)
2487 {
2488 bfd_boolean force_local;
2489
2490 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2491 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2492 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2493 }
2494
2495 /* If a weak undefined symbol has non-default visibility, we also
2496 hide it from the dynamic linker. */
2497 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2498 && h->root.type == bfd_link_hash_undefweak)
2499 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2500
2501 /* If this is a weak defined symbol in a dynamic object, and we know
2502 the real definition in the dynamic object, copy interesting flags
2503 over to the real definition. */
2504 if (h->u.weakdef != NULL)
2505 {
2506 /* If the real definition is defined by a regular object file,
2507 don't do anything special. See the longer description in
2508 _bfd_elf_adjust_dynamic_symbol, below. */
2509 if (h->u.weakdef->def_regular)
2510 h->u.weakdef = NULL;
2511 else
2512 {
2513 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2514
2515 while (h->root.type == bfd_link_hash_indirect)
2516 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2517
2518 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2519 || h->root.type == bfd_link_hash_defweak);
2520 BFD_ASSERT (weakdef->def_dynamic);
2521 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2522 || weakdef->root.type == bfd_link_hash_defweak);
2523 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2524 }
2525 }
2526
2527 return TRUE;
2528 }
2529
2530 /* Make the backend pick a good value for a dynamic symbol. This is
2531 called via elf_link_hash_traverse, and also calls itself
2532 recursively. */
2533
2534 static bfd_boolean
2535 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2536 {
2537 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2538 bfd *dynobj;
2539 const struct elf_backend_data *bed;
2540
2541 if (! is_elf_hash_table (eif->info->hash))
2542 return FALSE;
2543
2544 /* Ignore indirect symbols. These are added by the versioning code. */
2545 if (h->root.type == bfd_link_hash_indirect)
2546 return TRUE;
2547
2548 /* Fix the symbol flags. */
2549 if (! _bfd_elf_fix_symbol_flags (h, eif))
2550 return FALSE;
2551
2552 /* If this symbol does not require a PLT entry, and it is not
2553 defined by a dynamic object, or is not referenced by a regular
2554 object, ignore it. We do have to handle a weak defined symbol,
2555 even if no regular object refers to it, if we decided to add it
2556 to the dynamic symbol table. FIXME: Do we normally need to worry
2557 about symbols which are defined by one dynamic object and
2558 referenced by another one? */
2559 if (!h->needs_plt
2560 && h->type != STT_GNU_IFUNC
2561 && (h->def_regular
2562 || !h->def_dynamic
2563 || (!h->ref_regular
2564 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2565 {
2566 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2567 return TRUE;
2568 }
2569
2570 /* If we've already adjusted this symbol, don't do it again. This
2571 can happen via a recursive call. */
2572 if (h->dynamic_adjusted)
2573 return TRUE;
2574
2575 /* Don't look at this symbol again. Note that we must set this
2576 after checking the above conditions, because we may look at a
2577 symbol once, decide not to do anything, and then get called
2578 recursively later after REF_REGULAR is set below. */
2579 h->dynamic_adjusted = 1;
2580
2581 /* If this is a weak definition, and we know a real definition, and
2582 the real symbol is not itself defined by a regular object file,
2583 then get a good value for the real definition. We handle the
2584 real symbol first, for the convenience of the backend routine.
2585
2586 Note that there is a confusing case here. If the real definition
2587 is defined by a regular object file, we don't get the real symbol
2588 from the dynamic object, but we do get the weak symbol. If the
2589 processor backend uses a COPY reloc, then if some routine in the
2590 dynamic object changes the real symbol, we will not see that
2591 change in the corresponding weak symbol. This is the way other
2592 ELF linkers work as well, and seems to be a result of the shared
2593 library model.
2594
2595 I will clarify this issue. Most SVR4 shared libraries define the
2596 variable _timezone and define timezone as a weak synonym. The
2597 tzset call changes _timezone. If you write
2598 extern int timezone;
2599 int _timezone = 5;
2600 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2601 you might expect that, since timezone is a synonym for _timezone,
2602 the same number will print both times. However, if the processor
2603 backend uses a COPY reloc, then actually timezone will be copied
2604 into your process image, and, since you define _timezone
2605 yourself, _timezone will not. Thus timezone and _timezone will
2606 wind up at different memory locations. The tzset call will set
2607 _timezone, leaving timezone unchanged. */
2608
2609 if (h->u.weakdef != NULL)
2610 {
2611 /* If we get to this point, there is an implicit reference to
2612 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2613 h->u.weakdef->ref_regular = 1;
2614
2615 /* Ensure that the backend adjust_dynamic_symbol function sees
2616 H->U.WEAKDEF before H by recursively calling ourselves. */
2617 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2618 return FALSE;
2619 }
2620
2621 /* If a symbol has no type and no size and does not require a PLT
2622 entry, then we are probably about to do the wrong thing here: we
2623 are probably going to create a COPY reloc for an empty object.
2624 This case can arise when a shared object is built with assembly
2625 code, and the assembly code fails to set the symbol type. */
2626 if (h->size == 0
2627 && h->type == STT_NOTYPE
2628 && !h->needs_plt)
2629 (*_bfd_error_handler)
2630 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2631 h->root.root.string);
2632
2633 dynobj = elf_hash_table (eif->info)->dynobj;
2634 bed = get_elf_backend_data (dynobj);
2635
2636 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2637 {
2638 eif->failed = TRUE;
2639 return FALSE;
2640 }
2641
2642 return TRUE;
2643 }
2644
2645 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2646 DYNBSS. */
2647
2648 bfd_boolean
2649 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2650 asection *dynbss)
2651 {
2652 unsigned int power_of_two;
2653 bfd_vma mask;
2654 asection *sec = h->root.u.def.section;
2655
2656 /* The section aligment of definition is the maximum alignment
2657 requirement of symbols defined in the section. Since we don't
2658 know the symbol alignment requirement, we start with the
2659 maximum alignment and check low bits of the symbol address
2660 for the minimum alignment. */
2661 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2662 mask = ((bfd_vma) 1 << power_of_two) - 1;
2663 while ((h->root.u.def.value & mask) != 0)
2664 {
2665 mask >>= 1;
2666 --power_of_two;
2667 }
2668
2669 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2670 dynbss))
2671 {
2672 /* Adjust the section alignment if needed. */
2673 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2674 power_of_two))
2675 return FALSE;
2676 }
2677
2678 /* We make sure that the symbol will be aligned properly. */
2679 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2680
2681 /* Define the symbol as being at this point in DYNBSS. */
2682 h->root.u.def.section = dynbss;
2683 h->root.u.def.value = dynbss->size;
2684
2685 /* Increment the size of DYNBSS to make room for the symbol. */
2686 dynbss->size += h->size;
2687
2688 return TRUE;
2689 }
2690
2691 /* Adjust all external symbols pointing into SEC_MERGE sections
2692 to reflect the object merging within the sections. */
2693
2694 static bfd_boolean
2695 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2696 {
2697 asection *sec;
2698
2699 if ((h->root.type == bfd_link_hash_defined
2700 || h->root.type == bfd_link_hash_defweak)
2701 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2702 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2703 {
2704 bfd *output_bfd = (bfd *) data;
2705
2706 h->root.u.def.value =
2707 _bfd_merged_section_offset (output_bfd,
2708 &h->root.u.def.section,
2709 elf_section_data (sec)->sec_info,
2710 h->root.u.def.value);
2711 }
2712
2713 return TRUE;
2714 }
2715
2716 /* Returns false if the symbol referred to by H should be considered
2717 to resolve local to the current module, and true if it should be
2718 considered to bind dynamically. */
2719
2720 bfd_boolean
2721 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2722 struct bfd_link_info *info,
2723 bfd_boolean not_local_protected)
2724 {
2725 bfd_boolean binding_stays_local_p;
2726 const struct elf_backend_data *bed;
2727 struct elf_link_hash_table *hash_table;
2728
2729 if (h == NULL)
2730 return FALSE;
2731
2732 while (h->root.type == bfd_link_hash_indirect
2733 || h->root.type == bfd_link_hash_warning)
2734 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2735
2736 /* If it was forced local, then clearly it's not dynamic. */
2737 if (h->dynindx == -1)
2738 return FALSE;
2739 if (h->forced_local)
2740 return FALSE;
2741
2742 /* Identify the cases where name binding rules say that a
2743 visible symbol resolves locally. */
2744 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2745
2746 switch (ELF_ST_VISIBILITY (h->other))
2747 {
2748 case STV_INTERNAL:
2749 case STV_HIDDEN:
2750 return FALSE;
2751
2752 case STV_PROTECTED:
2753 hash_table = elf_hash_table (info);
2754 if (!is_elf_hash_table (hash_table))
2755 return FALSE;
2756
2757 bed = get_elf_backend_data (hash_table->dynobj);
2758
2759 /* Proper resolution for function pointer equality may require
2760 that these symbols perhaps be resolved dynamically, even though
2761 we should be resolving them to the current module. */
2762 if (!not_local_protected || !bed->is_function_type (h->type))
2763 binding_stays_local_p = TRUE;
2764 break;
2765
2766 default:
2767 break;
2768 }
2769
2770 /* If it isn't defined locally, then clearly it's dynamic. */
2771 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2772 return TRUE;
2773
2774 /* Otherwise, the symbol is dynamic if binding rules don't tell
2775 us that it remains local. */
2776 return !binding_stays_local_p;
2777 }
2778
2779 /* Return true if the symbol referred to by H should be considered
2780 to resolve local to the current module, and false otherwise. Differs
2781 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2782 undefined symbols. The two functions are virtually identical except
2783 for the place where forced_local and dynindx == -1 are tested. If
2784 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2785 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2786 the symbol is local only for defined symbols.
2787 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2788 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2789 treatment of undefined weak symbols. For those that do not make
2790 undefined weak symbols dynamic, both functions may return false. */
2791
2792 bfd_boolean
2793 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2794 struct bfd_link_info *info,
2795 bfd_boolean local_protected)
2796 {
2797 const struct elf_backend_data *bed;
2798 struct elf_link_hash_table *hash_table;
2799
2800 /* If it's a local sym, of course we resolve locally. */
2801 if (h == NULL)
2802 return TRUE;
2803
2804 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2805 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2806 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2807 return TRUE;
2808
2809 /* Common symbols that become definitions don't get the DEF_REGULAR
2810 flag set, so test it first, and don't bail out. */
2811 if (ELF_COMMON_DEF_P (h))
2812 /* Do nothing. */;
2813 /* If we don't have a definition in a regular file, then we can't
2814 resolve locally. The sym is either undefined or dynamic. */
2815 else if (!h->def_regular)
2816 return FALSE;
2817
2818 /* Forced local symbols resolve locally. */
2819 if (h->forced_local)
2820 return TRUE;
2821
2822 /* As do non-dynamic symbols. */
2823 if (h->dynindx == -1)
2824 return TRUE;
2825
2826 /* At this point, we know the symbol is defined and dynamic. In an
2827 executable it must resolve locally, likewise when building symbolic
2828 shared libraries. */
2829 if (info->executable || SYMBOLIC_BIND (info, h))
2830 return TRUE;
2831
2832 /* Now deal with defined dynamic symbols in shared libraries. Ones
2833 with default visibility might not resolve locally. */
2834 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2835 return FALSE;
2836
2837 hash_table = elf_hash_table (info);
2838 if (!is_elf_hash_table (hash_table))
2839 return TRUE;
2840
2841 bed = get_elf_backend_data (hash_table->dynobj);
2842
2843 /* STV_PROTECTED non-function symbols are local. */
2844 if (!bed->is_function_type (h->type))
2845 return TRUE;
2846
2847 /* Function pointer equality tests may require that STV_PROTECTED
2848 symbols be treated as dynamic symbols. If the address of a
2849 function not defined in an executable is set to that function's
2850 plt entry in the executable, then the address of the function in
2851 a shared library must also be the plt entry in the executable. */
2852 return local_protected;
2853 }
2854
2855 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2856 aligned. Returns the first TLS output section. */
2857
2858 struct bfd_section *
2859 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2860 {
2861 struct bfd_section *sec, *tls;
2862 unsigned int align = 0;
2863
2864 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2865 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2866 break;
2867 tls = sec;
2868
2869 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2870 if (sec->alignment_power > align)
2871 align = sec->alignment_power;
2872
2873 elf_hash_table (info)->tls_sec = tls;
2874
2875 /* Ensure the alignment of the first section is the largest alignment,
2876 so that the tls segment starts aligned. */
2877 if (tls != NULL)
2878 tls->alignment_power = align;
2879
2880 return tls;
2881 }
2882
2883 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2884 static bfd_boolean
2885 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2886 Elf_Internal_Sym *sym)
2887 {
2888 const struct elf_backend_data *bed;
2889
2890 /* Local symbols do not count, but target specific ones might. */
2891 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2892 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2893 return FALSE;
2894
2895 bed = get_elf_backend_data (abfd);
2896 /* Function symbols do not count. */
2897 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2898 return FALSE;
2899
2900 /* If the section is undefined, then so is the symbol. */
2901 if (sym->st_shndx == SHN_UNDEF)
2902 return FALSE;
2903
2904 /* If the symbol is defined in the common section, then
2905 it is a common definition and so does not count. */
2906 if (bed->common_definition (sym))
2907 return FALSE;
2908
2909 /* If the symbol is in a target specific section then we
2910 must rely upon the backend to tell us what it is. */
2911 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2912 /* FIXME - this function is not coded yet:
2913
2914 return _bfd_is_global_symbol_definition (abfd, sym);
2915
2916 Instead for now assume that the definition is not global,
2917 Even if this is wrong, at least the linker will behave
2918 in the same way that it used to do. */
2919 return FALSE;
2920
2921 return TRUE;
2922 }
2923
2924 /* Search the symbol table of the archive element of the archive ABFD
2925 whose archive map contains a mention of SYMDEF, and determine if
2926 the symbol is defined in this element. */
2927 static bfd_boolean
2928 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2929 {
2930 Elf_Internal_Shdr * hdr;
2931 bfd_size_type symcount;
2932 bfd_size_type extsymcount;
2933 bfd_size_type extsymoff;
2934 Elf_Internal_Sym *isymbuf;
2935 Elf_Internal_Sym *isym;
2936 Elf_Internal_Sym *isymend;
2937 bfd_boolean result;
2938
2939 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2940 if (abfd == NULL)
2941 return FALSE;
2942
2943 if (! bfd_check_format (abfd, bfd_object))
2944 return FALSE;
2945
2946 /* If we have already included the element containing this symbol in the
2947 link then we do not need to include it again. Just claim that any symbol
2948 it contains is not a definition, so that our caller will not decide to
2949 (re)include this element. */
2950 if (abfd->archive_pass)
2951 return FALSE;
2952
2953 /* Select the appropriate symbol table. */
2954 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2955 hdr = &elf_tdata (abfd)->symtab_hdr;
2956 else
2957 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2958
2959 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2960
2961 /* The sh_info field of the symtab header tells us where the
2962 external symbols start. We don't care about the local symbols. */
2963 if (elf_bad_symtab (abfd))
2964 {
2965 extsymcount = symcount;
2966 extsymoff = 0;
2967 }
2968 else
2969 {
2970 extsymcount = symcount - hdr->sh_info;
2971 extsymoff = hdr->sh_info;
2972 }
2973
2974 if (extsymcount == 0)
2975 return FALSE;
2976
2977 /* Read in the symbol table. */
2978 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2979 NULL, NULL, NULL);
2980 if (isymbuf == NULL)
2981 return FALSE;
2982
2983 /* Scan the symbol table looking for SYMDEF. */
2984 result = FALSE;
2985 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2986 {
2987 const char *name;
2988
2989 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2990 isym->st_name);
2991 if (name == NULL)
2992 break;
2993
2994 if (strcmp (name, symdef->name) == 0)
2995 {
2996 result = is_global_data_symbol_definition (abfd, isym);
2997 break;
2998 }
2999 }
3000
3001 free (isymbuf);
3002
3003 return result;
3004 }
3005 \f
3006 /* Add an entry to the .dynamic table. */
3007
3008 bfd_boolean
3009 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3010 bfd_vma tag,
3011 bfd_vma val)
3012 {
3013 struct elf_link_hash_table *hash_table;
3014 const struct elf_backend_data *bed;
3015 asection *s;
3016 bfd_size_type newsize;
3017 bfd_byte *newcontents;
3018 Elf_Internal_Dyn dyn;
3019
3020 hash_table = elf_hash_table (info);
3021 if (! is_elf_hash_table (hash_table))
3022 return FALSE;
3023
3024 bed = get_elf_backend_data (hash_table->dynobj);
3025 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3026 BFD_ASSERT (s != NULL);
3027
3028 newsize = s->size + bed->s->sizeof_dyn;
3029 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3030 if (newcontents == NULL)
3031 return FALSE;
3032
3033 dyn.d_tag = tag;
3034 dyn.d_un.d_val = val;
3035 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3036
3037 s->size = newsize;
3038 s->contents = newcontents;
3039
3040 return TRUE;
3041 }
3042
3043 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3044 otherwise just check whether one already exists. Returns -1 on error,
3045 1 if a DT_NEEDED tag already exists, and 0 on success. */
3046
3047 static int
3048 elf_add_dt_needed_tag (bfd *abfd,
3049 struct bfd_link_info *info,
3050 const char *soname,
3051 bfd_boolean do_it)
3052 {
3053 struct elf_link_hash_table *hash_table;
3054 bfd_size_type strindex;
3055
3056 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3057 return -1;
3058
3059 hash_table = elf_hash_table (info);
3060 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3061 if (strindex == (bfd_size_type) -1)
3062 return -1;
3063
3064 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3065 {
3066 asection *sdyn;
3067 const struct elf_backend_data *bed;
3068 bfd_byte *extdyn;
3069
3070 bed = get_elf_backend_data (hash_table->dynobj);
3071 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3072 if (sdyn != NULL)
3073 for (extdyn = sdyn->contents;
3074 extdyn < sdyn->contents + sdyn->size;
3075 extdyn += bed->s->sizeof_dyn)
3076 {
3077 Elf_Internal_Dyn dyn;
3078
3079 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3080 if (dyn.d_tag == DT_NEEDED
3081 && dyn.d_un.d_val == strindex)
3082 {
3083 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3084 return 1;
3085 }
3086 }
3087 }
3088
3089 if (do_it)
3090 {
3091 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3092 return -1;
3093
3094 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3095 return -1;
3096 }
3097 else
3098 /* We were just checking for existence of the tag. */
3099 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3100
3101 return 0;
3102 }
3103
3104 static bfd_boolean
3105 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3106 {
3107 for (; needed != NULL; needed = needed->next)
3108 if (strcmp (soname, needed->name) == 0)
3109 return TRUE;
3110
3111 return FALSE;
3112 }
3113
3114 /* Sort symbol by value, section, and size. */
3115 static int
3116 elf_sort_symbol (const void *arg1, const void *arg2)
3117 {
3118 const struct elf_link_hash_entry *h1;
3119 const struct elf_link_hash_entry *h2;
3120 bfd_signed_vma vdiff;
3121
3122 h1 = *(const struct elf_link_hash_entry **) arg1;
3123 h2 = *(const struct elf_link_hash_entry **) arg2;
3124 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3125 if (vdiff != 0)
3126 return vdiff > 0 ? 1 : -1;
3127 else
3128 {
3129 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3130 if (sdiff != 0)
3131 return sdiff > 0 ? 1 : -1;
3132 }
3133 vdiff = h1->size - h2->size;
3134 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3135 }
3136
3137 /* This function is used to adjust offsets into .dynstr for
3138 dynamic symbols. This is called via elf_link_hash_traverse. */
3139
3140 static bfd_boolean
3141 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3142 {
3143 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3144
3145 if (h->dynindx != -1)
3146 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3147 return TRUE;
3148 }
3149
3150 /* Assign string offsets in .dynstr, update all structures referencing
3151 them. */
3152
3153 static bfd_boolean
3154 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3155 {
3156 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3157 struct elf_link_local_dynamic_entry *entry;
3158 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3159 bfd *dynobj = hash_table->dynobj;
3160 asection *sdyn;
3161 bfd_size_type size;
3162 const struct elf_backend_data *bed;
3163 bfd_byte *extdyn;
3164
3165 _bfd_elf_strtab_finalize (dynstr);
3166 size = _bfd_elf_strtab_size (dynstr);
3167
3168 bed = get_elf_backend_data (dynobj);
3169 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3170 BFD_ASSERT (sdyn != NULL);
3171
3172 /* Update all .dynamic entries referencing .dynstr strings. */
3173 for (extdyn = sdyn->contents;
3174 extdyn < sdyn->contents + sdyn->size;
3175 extdyn += bed->s->sizeof_dyn)
3176 {
3177 Elf_Internal_Dyn dyn;
3178
3179 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3180 switch (dyn.d_tag)
3181 {
3182 case DT_STRSZ:
3183 dyn.d_un.d_val = size;
3184 break;
3185 case DT_NEEDED:
3186 case DT_SONAME:
3187 case DT_RPATH:
3188 case DT_RUNPATH:
3189 case DT_FILTER:
3190 case DT_AUXILIARY:
3191 case DT_AUDIT:
3192 case DT_DEPAUDIT:
3193 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3194 break;
3195 default:
3196 continue;
3197 }
3198 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3199 }
3200
3201 /* Now update local dynamic symbols. */
3202 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3203 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3204 entry->isym.st_name);
3205
3206 /* And the rest of dynamic symbols. */
3207 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3208
3209 /* Adjust version definitions. */
3210 if (elf_tdata (output_bfd)->cverdefs)
3211 {
3212 asection *s;
3213 bfd_byte *p;
3214 bfd_size_type i;
3215 Elf_Internal_Verdef def;
3216 Elf_Internal_Verdaux defaux;
3217
3218 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3219 p = s->contents;
3220 do
3221 {
3222 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3223 &def);
3224 p += sizeof (Elf_External_Verdef);
3225 if (def.vd_aux != sizeof (Elf_External_Verdef))
3226 continue;
3227 for (i = 0; i < def.vd_cnt; ++i)
3228 {
3229 _bfd_elf_swap_verdaux_in (output_bfd,
3230 (Elf_External_Verdaux *) p, &defaux);
3231 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3232 defaux.vda_name);
3233 _bfd_elf_swap_verdaux_out (output_bfd,
3234 &defaux, (Elf_External_Verdaux *) p);
3235 p += sizeof (Elf_External_Verdaux);
3236 }
3237 }
3238 while (def.vd_next);
3239 }
3240
3241 /* Adjust version references. */
3242 if (elf_tdata (output_bfd)->verref)
3243 {
3244 asection *s;
3245 bfd_byte *p;
3246 bfd_size_type i;
3247 Elf_Internal_Verneed need;
3248 Elf_Internal_Vernaux needaux;
3249
3250 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3251 p = s->contents;
3252 do
3253 {
3254 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3255 &need);
3256 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3257 _bfd_elf_swap_verneed_out (output_bfd, &need,
3258 (Elf_External_Verneed *) p);
3259 p += sizeof (Elf_External_Verneed);
3260 for (i = 0; i < need.vn_cnt; ++i)
3261 {
3262 _bfd_elf_swap_vernaux_in (output_bfd,
3263 (Elf_External_Vernaux *) p, &needaux);
3264 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3265 needaux.vna_name);
3266 _bfd_elf_swap_vernaux_out (output_bfd,
3267 &needaux,
3268 (Elf_External_Vernaux *) p);
3269 p += sizeof (Elf_External_Vernaux);
3270 }
3271 }
3272 while (need.vn_next);
3273 }
3274
3275 return TRUE;
3276 }
3277 \f
3278 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3279 The default is to only match when the INPUT and OUTPUT are exactly
3280 the same target. */
3281
3282 bfd_boolean
3283 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3284 const bfd_target *output)
3285 {
3286 return input == output;
3287 }
3288
3289 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3290 This version is used when different targets for the same architecture
3291 are virtually identical. */
3292
3293 bfd_boolean
3294 _bfd_elf_relocs_compatible (const bfd_target *input,
3295 const bfd_target *output)
3296 {
3297 const struct elf_backend_data *obed, *ibed;
3298
3299 if (input == output)
3300 return TRUE;
3301
3302 ibed = xvec_get_elf_backend_data (input);
3303 obed = xvec_get_elf_backend_data (output);
3304
3305 if (ibed->arch != obed->arch)
3306 return FALSE;
3307
3308 /* If both backends are using this function, deem them compatible. */
3309 return ibed->relocs_compatible == obed->relocs_compatible;
3310 }
3311
3312 /* Add symbols from an ELF object file to the linker hash table. */
3313
3314 static bfd_boolean
3315 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3316 {
3317 Elf_Internal_Ehdr *ehdr;
3318 Elf_Internal_Shdr *hdr;
3319 bfd_size_type symcount;
3320 bfd_size_type extsymcount;
3321 bfd_size_type extsymoff;
3322 struct elf_link_hash_entry **sym_hash;
3323 bfd_boolean dynamic;
3324 Elf_External_Versym *extversym = NULL;
3325 Elf_External_Versym *ever;
3326 struct elf_link_hash_entry *weaks;
3327 struct elf_link_hash_entry **nondeflt_vers = NULL;
3328 bfd_size_type nondeflt_vers_cnt = 0;
3329 Elf_Internal_Sym *isymbuf = NULL;
3330 Elf_Internal_Sym *isym;
3331 Elf_Internal_Sym *isymend;
3332 const struct elf_backend_data *bed;
3333 bfd_boolean add_needed;
3334 struct elf_link_hash_table *htab;
3335 bfd_size_type amt;
3336 void *alloc_mark = NULL;
3337 struct bfd_hash_entry **old_table = NULL;
3338 unsigned int old_size = 0;
3339 unsigned int old_count = 0;
3340 void *old_tab = NULL;
3341 void *old_ent;
3342 struct bfd_link_hash_entry *old_undefs = NULL;
3343 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3344 long old_dynsymcount = 0;
3345 bfd_size_type old_dynstr_size = 0;
3346 size_t tabsize = 0;
3347 asection *s;
3348
3349 htab = elf_hash_table (info);
3350 bed = get_elf_backend_data (abfd);
3351
3352 if ((abfd->flags & DYNAMIC) == 0)
3353 dynamic = FALSE;
3354 else
3355 {
3356 dynamic = TRUE;
3357
3358 /* You can't use -r against a dynamic object. Also, there's no
3359 hope of using a dynamic object which does not exactly match
3360 the format of the output file. */
3361 if (info->relocatable
3362 || !is_elf_hash_table (htab)
3363 || info->output_bfd->xvec != abfd->xvec)
3364 {
3365 if (info->relocatable)
3366 bfd_set_error (bfd_error_invalid_operation);
3367 else
3368 bfd_set_error (bfd_error_wrong_format);
3369 goto error_return;
3370 }
3371 }
3372
3373 ehdr = elf_elfheader (abfd);
3374 if (info->warn_alternate_em
3375 && bed->elf_machine_code != ehdr->e_machine
3376 && ((bed->elf_machine_alt1 != 0
3377 && ehdr->e_machine == bed->elf_machine_alt1)
3378 || (bed->elf_machine_alt2 != 0
3379 && ehdr->e_machine == bed->elf_machine_alt2)))
3380 info->callbacks->einfo
3381 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3382 ehdr->e_machine, abfd, bed->elf_machine_code);
3383
3384 /* As a GNU extension, any input sections which are named
3385 .gnu.warning.SYMBOL are treated as warning symbols for the given
3386 symbol. This differs from .gnu.warning sections, which generate
3387 warnings when they are included in an output file. */
3388 /* PR 12761: Also generate this warning when building shared libraries. */
3389 for (s = abfd->sections; s != NULL; s = s->next)
3390 {
3391 const char *name;
3392
3393 name = bfd_get_section_name (abfd, s);
3394 if (CONST_STRNEQ (name, ".gnu.warning."))
3395 {
3396 char *msg;
3397 bfd_size_type sz;
3398
3399 name += sizeof ".gnu.warning." - 1;
3400
3401 /* If this is a shared object, then look up the symbol
3402 in the hash table. If it is there, and it is already
3403 been defined, then we will not be using the entry
3404 from this shared object, so we don't need to warn.
3405 FIXME: If we see the definition in a regular object
3406 later on, we will warn, but we shouldn't. The only
3407 fix is to keep track of what warnings we are supposed
3408 to emit, and then handle them all at the end of the
3409 link. */
3410 if (dynamic)
3411 {
3412 struct elf_link_hash_entry *h;
3413
3414 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3415
3416 /* FIXME: What about bfd_link_hash_common? */
3417 if (h != NULL
3418 && (h->root.type == bfd_link_hash_defined
3419 || h->root.type == bfd_link_hash_defweak))
3420 continue;
3421 }
3422
3423 sz = s->size;
3424 msg = (char *) bfd_alloc (abfd, sz + 1);
3425 if (msg == NULL)
3426 goto error_return;
3427
3428 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3429 goto error_return;
3430
3431 msg[sz] = '\0';
3432
3433 if (! (_bfd_generic_link_add_one_symbol
3434 (info, abfd, name, BSF_WARNING, s, 0, msg,
3435 FALSE, bed->collect, NULL)))
3436 goto error_return;
3437
3438 if (!info->relocatable && info->executable)
3439 {
3440 /* Clobber the section size so that the warning does
3441 not get copied into the output file. */
3442 s->size = 0;
3443
3444 /* Also set SEC_EXCLUDE, so that symbols defined in
3445 the warning section don't get copied to the output. */
3446 s->flags |= SEC_EXCLUDE;
3447 }
3448 }
3449 }
3450
3451 add_needed = TRUE;
3452 if (! dynamic)
3453 {
3454 /* If we are creating a shared library, create all the dynamic
3455 sections immediately. We need to attach them to something,
3456 so we attach them to this BFD, provided it is the right
3457 format. FIXME: If there are no input BFD's of the same
3458 format as the output, we can't make a shared library. */
3459 if (info->shared
3460 && is_elf_hash_table (htab)
3461 && info->output_bfd->xvec == abfd->xvec
3462 && !htab->dynamic_sections_created)
3463 {
3464 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3465 goto error_return;
3466 }
3467 }
3468 else if (!is_elf_hash_table (htab))
3469 goto error_return;
3470 else
3471 {
3472 const char *soname = NULL;
3473 char *audit = NULL;
3474 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3475 int ret;
3476
3477 /* ld --just-symbols and dynamic objects don't mix very well.
3478 ld shouldn't allow it. */
3479 if ((s = abfd->sections) != NULL
3480 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3481 abort ();
3482
3483 /* If this dynamic lib was specified on the command line with
3484 --as-needed in effect, then we don't want to add a DT_NEEDED
3485 tag unless the lib is actually used. Similary for libs brought
3486 in by another lib's DT_NEEDED. When --no-add-needed is used
3487 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3488 any dynamic library in DT_NEEDED tags in the dynamic lib at
3489 all. */
3490 add_needed = (elf_dyn_lib_class (abfd)
3491 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3492 | DYN_NO_NEEDED)) == 0;
3493
3494 s = bfd_get_section_by_name (abfd, ".dynamic");
3495 if (s != NULL)
3496 {
3497 bfd_byte *dynbuf;
3498 bfd_byte *extdyn;
3499 unsigned int elfsec;
3500 unsigned long shlink;
3501
3502 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3503 {
3504 error_free_dyn:
3505 free (dynbuf);
3506 goto error_return;
3507 }
3508
3509 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3510 if (elfsec == SHN_BAD)
3511 goto error_free_dyn;
3512 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3513
3514 for (extdyn = dynbuf;
3515 extdyn < dynbuf + s->size;
3516 extdyn += bed->s->sizeof_dyn)
3517 {
3518 Elf_Internal_Dyn dyn;
3519
3520 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3521 if (dyn.d_tag == DT_SONAME)
3522 {
3523 unsigned int tagv = dyn.d_un.d_val;
3524 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3525 if (soname == NULL)
3526 goto error_free_dyn;
3527 }
3528 if (dyn.d_tag == DT_NEEDED)
3529 {
3530 struct bfd_link_needed_list *n, **pn;
3531 char *fnm, *anm;
3532 unsigned int tagv = dyn.d_un.d_val;
3533
3534 amt = sizeof (struct bfd_link_needed_list);
3535 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3536 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3537 if (n == NULL || fnm == NULL)
3538 goto error_free_dyn;
3539 amt = strlen (fnm) + 1;
3540 anm = (char *) bfd_alloc (abfd, amt);
3541 if (anm == NULL)
3542 goto error_free_dyn;
3543 memcpy (anm, fnm, amt);
3544 n->name = anm;
3545 n->by = abfd;
3546 n->next = NULL;
3547 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3548 ;
3549 *pn = n;
3550 }
3551 if (dyn.d_tag == DT_RUNPATH)
3552 {
3553 struct bfd_link_needed_list *n, **pn;
3554 char *fnm, *anm;
3555 unsigned int tagv = dyn.d_un.d_val;
3556
3557 amt = sizeof (struct bfd_link_needed_list);
3558 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3559 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3560 if (n == NULL || fnm == NULL)
3561 goto error_free_dyn;
3562 amt = strlen (fnm) + 1;
3563 anm = (char *) bfd_alloc (abfd, amt);
3564 if (anm == NULL)
3565 goto error_free_dyn;
3566 memcpy (anm, fnm, amt);
3567 n->name = anm;
3568 n->by = abfd;
3569 n->next = NULL;
3570 for (pn = & runpath;
3571 *pn != NULL;
3572 pn = &(*pn)->next)
3573 ;
3574 *pn = n;
3575 }
3576 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3577 if (!runpath && dyn.d_tag == DT_RPATH)
3578 {
3579 struct bfd_link_needed_list *n, **pn;
3580 char *fnm, *anm;
3581 unsigned int tagv = dyn.d_un.d_val;
3582
3583 amt = sizeof (struct bfd_link_needed_list);
3584 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3585 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3586 if (n == NULL || fnm == NULL)
3587 goto error_free_dyn;
3588 amt = strlen (fnm) + 1;
3589 anm = (char *) bfd_alloc (abfd, amt);
3590 if (anm == NULL)
3591 goto error_free_dyn;
3592 memcpy (anm, fnm, amt);
3593 n->name = anm;
3594 n->by = abfd;
3595 n->next = NULL;
3596 for (pn = & rpath;
3597 *pn != NULL;
3598 pn = &(*pn)->next)
3599 ;
3600 *pn = n;
3601 }
3602 if (dyn.d_tag == DT_AUDIT)
3603 {
3604 unsigned int tagv = dyn.d_un.d_val;
3605 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3606 }
3607 }
3608
3609 free (dynbuf);
3610 }
3611
3612 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3613 frees all more recently bfd_alloc'd blocks as well. */
3614 if (runpath)
3615 rpath = runpath;
3616
3617 if (rpath)
3618 {
3619 struct bfd_link_needed_list **pn;
3620 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3621 ;
3622 *pn = rpath;
3623 }
3624
3625 /* We do not want to include any of the sections in a dynamic
3626 object in the output file. We hack by simply clobbering the
3627 list of sections in the BFD. This could be handled more
3628 cleanly by, say, a new section flag; the existing
3629 SEC_NEVER_LOAD flag is not the one we want, because that one
3630 still implies that the section takes up space in the output
3631 file. */
3632 bfd_section_list_clear (abfd);
3633
3634 /* Find the name to use in a DT_NEEDED entry that refers to this
3635 object. If the object has a DT_SONAME entry, we use it.
3636 Otherwise, if the generic linker stuck something in
3637 elf_dt_name, we use that. Otherwise, we just use the file
3638 name. */
3639 if (soname == NULL || *soname == '\0')
3640 {
3641 soname = elf_dt_name (abfd);
3642 if (soname == NULL || *soname == '\0')
3643 soname = bfd_get_filename (abfd);
3644 }
3645
3646 /* Save the SONAME because sometimes the linker emulation code
3647 will need to know it. */
3648 elf_dt_name (abfd) = soname;
3649
3650 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3651 if (ret < 0)
3652 goto error_return;
3653
3654 /* If we have already included this dynamic object in the
3655 link, just ignore it. There is no reason to include a
3656 particular dynamic object more than once. */
3657 if (ret > 0)
3658 return TRUE;
3659
3660 /* Save the DT_AUDIT entry for the linker emulation code. */
3661 elf_dt_audit (abfd) = audit;
3662 }
3663
3664 /* If this is a dynamic object, we always link against the .dynsym
3665 symbol table, not the .symtab symbol table. The dynamic linker
3666 will only see the .dynsym symbol table, so there is no reason to
3667 look at .symtab for a dynamic object. */
3668
3669 if (! dynamic || elf_dynsymtab (abfd) == 0)
3670 hdr = &elf_tdata (abfd)->symtab_hdr;
3671 else
3672 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3673
3674 symcount = hdr->sh_size / bed->s->sizeof_sym;
3675
3676 /* The sh_info field of the symtab header tells us where the
3677 external symbols start. We don't care about the local symbols at
3678 this point. */
3679 if (elf_bad_symtab (abfd))
3680 {
3681 extsymcount = symcount;
3682 extsymoff = 0;
3683 }
3684 else
3685 {
3686 extsymcount = symcount - hdr->sh_info;
3687 extsymoff = hdr->sh_info;
3688 }
3689
3690 sym_hash = elf_sym_hashes (abfd);
3691 if (extsymcount != 0)
3692 {
3693 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3694 NULL, NULL, NULL);
3695 if (isymbuf == NULL)
3696 goto error_return;
3697
3698 if (sym_hash == NULL)
3699 {
3700 /* We store a pointer to the hash table entry for each
3701 external symbol. */
3702 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3703 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3704 if (sym_hash == NULL)
3705 goto error_free_sym;
3706 elf_sym_hashes (abfd) = sym_hash;
3707 }
3708 }
3709
3710 if (dynamic)
3711 {
3712 /* Read in any version definitions. */
3713 if (!_bfd_elf_slurp_version_tables (abfd,
3714 info->default_imported_symver))
3715 goto error_free_sym;
3716
3717 /* Read in the symbol versions, but don't bother to convert them
3718 to internal format. */
3719 if (elf_dynversym (abfd) != 0)
3720 {
3721 Elf_Internal_Shdr *versymhdr;
3722
3723 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3724 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3725 if (extversym == NULL)
3726 goto error_free_sym;
3727 amt = versymhdr->sh_size;
3728 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3729 || bfd_bread (extversym, amt, abfd) != amt)
3730 goto error_free_vers;
3731 }
3732 }
3733
3734 /* If we are loading an as-needed shared lib, save the symbol table
3735 state before we start adding symbols. If the lib turns out
3736 to be unneeded, restore the state. */
3737 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3738 {
3739 unsigned int i;
3740 size_t entsize;
3741
3742 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3743 {
3744 struct bfd_hash_entry *p;
3745 struct elf_link_hash_entry *h;
3746
3747 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3748 {
3749 h = (struct elf_link_hash_entry *) p;
3750 entsize += htab->root.table.entsize;
3751 if (h->root.type == bfd_link_hash_warning)
3752 entsize += htab->root.table.entsize;
3753 }
3754 }
3755
3756 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3757 old_tab = bfd_malloc (tabsize + entsize);
3758 if (old_tab == NULL)
3759 goto error_free_vers;
3760
3761 /* Remember the current objalloc pointer, so that all mem for
3762 symbols added can later be reclaimed. */
3763 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3764 if (alloc_mark == NULL)
3765 goto error_free_vers;
3766
3767 /* Make a special call to the linker "notice" function to
3768 tell it that we are about to handle an as-needed lib. */
3769 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3770 notice_as_needed, 0, NULL))
3771 goto error_free_vers;
3772
3773 /* Clone the symbol table. Remember some pointers into the
3774 symbol table, and dynamic symbol count. */
3775 old_ent = (char *) old_tab + tabsize;
3776 memcpy (old_tab, htab->root.table.table, tabsize);
3777 old_undefs = htab->root.undefs;
3778 old_undefs_tail = htab->root.undefs_tail;
3779 old_table = htab->root.table.table;
3780 old_size = htab->root.table.size;
3781 old_count = htab->root.table.count;
3782 old_dynsymcount = htab->dynsymcount;
3783 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3784
3785 for (i = 0; i < htab->root.table.size; i++)
3786 {
3787 struct bfd_hash_entry *p;
3788 struct elf_link_hash_entry *h;
3789
3790 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3791 {
3792 memcpy (old_ent, p, htab->root.table.entsize);
3793 old_ent = (char *) old_ent + htab->root.table.entsize;
3794 h = (struct elf_link_hash_entry *) p;
3795 if (h->root.type == bfd_link_hash_warning)
3796 {
3797 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3798 old_ent = (char *) old_ent + htab->root.table.entsize;
3799 }
3800 }
3801 }
3802 }
3803
3804 weaks = NULL;
3805 ever = extversym != NULL ? extversym + extsymoff : NULL;
3806 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3807 isym < isymend;
3808 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3809 {
3810 int bind;
3811 bfd_vma value;
3812 asection *sec, *new_sec;
3813 flagword flags;
3814 const char *name;
3815 struct elf_link_hash_entry *h;
3816 struct elf_link_hash_entry *hi;
3817 bfd_boolean definition;
3818 bfd_boolean size_change_ok;
3819 bfd_boolean type_change_ok;
3820 bfd_boolean new_weakdef;
3821 bfd_boolean new_weak;
3822 bfd_boolean old_weak;
3823 bfd_boolean override;
3824 bfd_boolean common;
3825 unsigned int old_alignment;
3826 bfd *old_bfd;
3827
3828 override = FALSE;
3829
3830 flags = BSF_NO_FLAGS;
3831 sec = NULL;
3832 value = isym->st_value;
3833 common = bed->common_definition (isym);
3834
3835 bind = ELF_ST_BIND (isym->st_info);
3836 switch (bind)
3837 {
3838 case STB_LOCAL:
3839 /* This should be impossible, since ELF requires that all
3840 global symbols follow all local symbols, and that sh_info
3841 point to the first global symbol. Unfortunately, Irix 5
3842 screws this up. */
3843 continue;
3844
3845 case STB_GLOBAL:
3846 if (isym->st_shndx != SHN_UNDEF && !common)
3847 flags = BSF_GLOBAL;
3848 break;
3849
3850 case STB_WEAK:
3851 flags = BSF_WEAK;
3852 break;
3853
3854 case STB_GNU_UNIQUE:
3855 flags = BSF_GNU_UNIQUE;
3856 break;
3857
3858 default:
3859 /* Leave it up to the processor backend. */
3860 break;
3861 }
3862
3863 if (isym->st_shndx == SHN_UNDEF)
3864 sec = bfd_und_section_ptr;
3865 else if (isym->st_shndx == SHN_ABS)
3866 sec = bfd_abs_section_ptr;
3867 else if (isym->st_shndx == SHN_COMMON)
3868 {
3869 sec = bfd_com_section_ptr;
3870 /* What ELF calls the size we call the value. What ELF
3871 calls the value we call the alignment. */
3872 value = isym->st_size;
3873 }
3874 else
3875 {
3876 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3877 if (sec == NULL)
3878 sec = bfd_abs_section_ptr;
3879 else if (discarded_section (sec))
3880 {
3881 /* Symbols from discarded section are undefined. We keep
3882 its visibility. */
3883 sec = bfd_und_section_ptr;
3884 isym->st_shndx = SHN_UNDEF;
3885 }
3886 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3887 value -= sec->vma;
3888 }
3889
3890 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3891 isym->st_name);
3892 if (name == NULL)
3893 goto error_free_vers;
3894
3895 if (isym->st_shndx == SHN_COMMON
3896 && (abfd->flags & BFD_PLUGIN) != 0)
3897 {
3898 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3899
3900 if (xc == NULL)
3901 {
3902 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3903 | SEC_EXCLUDE);
3904 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3905 if (xc == NULL)
3906 goto error_free_vers;
3907 }
3908 sec = xc;
3909 }
3910 else if (isym->st_shndx == SHN_COMMON
3911 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3912 && !info->relocatable)
3913 {
3914 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3915
3916 if (tcomm == NULL)
3917 {
3918 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3919 | SEC_LINKER_CREATED);
3920 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3921 if (tcomm == NULL)
3922 goto error_free_vers;
3923 }
3924 sec = tcomm;
3925 }
3926 else if (bed->elf_add_symbol_hook)
3927 {
3928 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3929 &sec, &value))
3930 goto error_free_vers;
3931
3932 /* The hook function sets the name to NULL if this symbol
3933 should be skipped for some reason. */
3934 if (name == NULL)
3935 continue;
3936 }
3937
3938 /* Sanity check that all possibilities were handled. */
3939 if (sec == NULL)
3940 {
3941 bfd_set_error (bfd_error_bad_value);
3942 goto error_free_vers;
3943 }
3944
3945 /* Silently discard TLS symbols from --just-syms. There's
3946 no way to combine a static TLS block with a new TLS block
3947 for this executable. */
3948 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3949 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3950 continue;
3951
3952 if (bfd_is_und_section (sec)
3953 || bfd_is_com_section (sec))
3954 definition = FALSE;
3955 else
3956 definition = TRUE;
3957
3958 size_change_ok = FALSE;
3959 type_change_ok = bed->type_change_ok;
3960 old_weak = FALSE;
3961 old_alignment = 0;
3962 old_bfd = NULL;
3963 new_sec = sec;
3964
3965 if (is_elf_hash_table (htab))
3966 {
3967 Elf_Internal_Versym iver;
3968 unsigned int vernum = 0;
3969 bfd_boolean skip;
3970
3971 if (ever == NULL)
3972 {
3973 if (info->default_imported_symver)
3974 /* Use the default symbol version created earlier. */
3975 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3976 else
3977 iver.vs_vers = 0;
3978 }
3979 else
3980 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3981
3982 vernum = iver.vs_vers & VERSYM_VERSION;
3983
3984 /* If this is a hidden symbol, or if it is not version
3985 1, we append the version name to the symbol name.
3986 However, we do not modify a non-hidden absolute symbol
3987 if it is not a function, because it might be the version
3988 symbol itself. FIXME: What if it isn't? */
3989 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3990 || (vernum > 1
3991 && (!bfd_is_abs_section (sec)
3992 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3993 {
3994 const char *verstr;
3995 size_t namelen, verlen, newlen;
3996 char *newname, *p;
3997
3998 if (isym->st_shndx != SHN_UNDEF)
3999 {
4000 if (vernum > elf_tdata (abfd)->cverdefs)
4001 verstr = NULL;
4002 else if (vernum > 1)
4003 verstr =
4004 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4005 else
4006 verstr = "";
4007
4008 if (verstr == NULL)
4009 {
4010 (*_bfd_error_handler)
4011 (_("%B: %s: invalid version %u (max %d)"),
4012 abfd, name, vernum,
4013 elf_tdata (abfd)->cverdefs);
4014 bfd_set_error (bfd_error_bad_value);
4015 goto error_free_vers;
4016 }
4017 }
4018 else
4019 {
4020 /* We cannot simply test for the number of
4021 entries in the VERNEED section since the
4022 numbers for the needed versions do not start
4023 at 0. */
4024 Elf_Internal_Verneed *t;
4025
4026 verstr = NULL;
4027 for (t = elf_tdata (abfd)->verref;
4028 t != NULL;
4029 t = t->vn_nextref)
4030 {
4031 Elf_Internal_Vernaux *a;
4032
4033 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4034 {
4035 if (a->vna_other == vernum)
4036 {
4037 verstr = a->vna_nodename;
4038 break;
4039 }
4040 }
4041 if (a != NULL)
4042 break;
4043 }
4044 if (verstr == NULL)
4045 {
4046 (*_bfd_error_handler)
4047 (_("%B: %s: invalid needed version %d"),
4048 abfd, name, vernum);
4049 bfd_set_error (bfd_error_bad_value);
4050 goto error_free_vers;
4051 }
4052 }
4053
4054 namelen = strlen (name);
4055 verlen = strlen (verstr);
4056 newlen = namelen + verlen + 2;
4057 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4058 && isym->st_shndx != SHN_UNDEF)
4059 ++newlen;
4060
4061 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4062 if (newname == NULL)
4063 goto error_free_vers;
4064 memcpy (newname, name, namelen);
4065 p = newname + namelen;
4066 *p++ = ELF_VER_CHR;
4067 /* If this is a defined non-hidden version symbol,
4068 we add another @ to the name. This indicates the
4069 default version of the symbol. */
4070 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4071 && isym->st_shndx != SHN_UNDEF)
4072 *p++ = ELF_VER_CHR;
4073 memcpy (p, verstr, verlen + 1);
4074
4075 name = newname;
4076 }
4077
4078 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4079 sym_hash, &old_bfd, &old_weak,
4080 &old_alignment, &skip, &override,
4081 &type_change_ok, &size_change_ok))
4082 goto error_free_vers;
4083
4084 if (skip)
4085 continue;
4086
4087 if (override)
4088 definition = FALSE;
4089
4090 h = *sym_hash;
4091 while (h->root.type == bfd_link_hash_indirect
4092 || h->root.type == bfd_link_hash_warning)
4093 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4094
4095 if (elf_tdata (abfd)->verdef != NULL
4096 && vernum > 1
4097 && definition)
4098 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4099 }
4100
4101 if (! (_bfd_generic_link_add_one_symbol
4102 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4103 (struct bfd_link_hash_entry **) sym_hash)))
4104 goto error_free_vers;
4105
4106 h = *sym_hash;
4107 /* We need to make sure that indirect symbol dynamic flags are
4108 updated. */
4109 hi = h;
4110 while (h->root.type == bfd_link_hash_indirect
4111 || h->root.type == bfd_link_hash_warning)
4112 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4113
4114 *sym_hash = h;
4115
4116 new_weak = (flags & BSF_WEAK) != 0;
4117 new_weakdef = FALSE;
4118 if (dynamic
4119 && definition
4120 && new_weak
4121 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4122 && is_elf_hash_table (htab)
4123 && h->u.weakdef == NULL)
4124 {
4125 /* Keep a list of all weak defined non function symbols from
4126 a dynamic object, using the weakdef field. Later in this
4127 function we will set the weakdef field to the correct
4128 value. We only put non-function symbols from dynamic
4129 objects on this list, because that happens to be the only
4130 time we need to know the normal symbol corresponding to a
4131 weak symbol, and the information is time consuming to
4132 figure out. If the weakdef field is not already NULL,
4133 then this symbol was already defined by some previous
4134 dynamic object, and we will be using that previous
4135 definition anyhow. */
4136
4137 h->u.weakdef = weaks;
4138 weaks = h;
4139 new_weakdef = TRUE;
4140 }
4141
4142 /* Set the alignment of a common symbol. */
4143 if ((common || bfd_is_com_section (sec))
4144 && h->root.type == bfd_link_hash_common)
4145 {
4146 unsigned int align;
4147
4148 if (common)
4149 align = bfd_log2 (isym->st_value);
4150 else
4151 {
4152 /* The new symbol is a common symbol in a shared object.
4153 We need to get the alignment from the section. */
4154 align = new_sec->alignment_power;
4155 }
4156 if (align > old_alignment)
4157 h->root.u.c.p->alignment_power = align;
4158 else
4159 h->root.u.c.p->alignment_power = old_alignment;
4160 }
4161
4162 if (is_elf_hash_table (htab))
4163 {
4164 /* Set a flag in the hash table entry indicating the type of
4165 reference or definition we just found. A dynamic symbol
4166 is one which is referenced or defined by both a regular
4167 object and a shared object. */
4168 bfd_boolean dynsym = FALSE;
4169
4170 /* Plugin symbols aren't normal. Don't set def_regular or
4171 ref_regular for them, or make them dynamic. */
4172 if ((abfd->flags & BFD_PLUGIN) != 0)
4173 ;
4174 else if (! dynamic)
4175 {
4176 if (! definition)
4177 {
4178 h->ref_regular = 1;
4179 if (bind != STB_WEAK)
4180 h->ref_regular_nonweak = 1;
4181 }
4182 else
4183 {
4184 h->def_regular = 1;
4185 if (h->def_dynamic)
4186 {
4187 h->def_dynamic = 0;
4188 h->ref_dynamic = 1;
4189 }
4190 }
4191
4192 /* If the indirect symbol has been forced local, don't
4193 make the real symbol dynamic. */
4194 if ((h == hi || !hi->forced_local)
4195 && (! info->executable
4196 || h->def_dynamic
4197 || h->ref_dynamic))
4198 dynsym = TRUE;
4199 }
4200 else
4201 {
4202 if (! definition)
4203 {
4204 h->ref_dynamic = 1;
4205 hi->ref_dynamic = 1;
4206 }
4207 else
4208 {
4209 h->def_dynamic = 1;
4210 hi->def_dynamic = 1;
4211 }
4212
4213 /* If the indirect symbol has been forced local, don't
4214 make the real symbol dynamic. */
4215 if ((h == hi || !hi->forced_local)
4216 && (h->def_regular
4217 || h->ref_regular
4218 || (h->u.weakdef != NULL
4219 && ! new_weakdef
4220 && h->u.weakdef->dynindx != -1)))
4221 dynsym = TRUE;
4222 }
4223
4224 /* Check to see if we need to add an indirect symbol for
4225 the default name. */
4226 if (definition
4227 || (!override && h->root.type == bfd_link_hash_common))
4228 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4229 sec, value, &old_bfd, &dynsym))
4230 goto error_free_vers;
4231
4232 /* Check the alignment when a common symbol is involved. This
4233 can change when a common symbol is overridden by a normal
4234 definition or a common symbol is ignored due to the old
4235 normal definition. We need to make sure the maximum
4236 alignment is maintained. */
4237 if ((old_alignment || common)
4238 && h->root.type != bfd_link_hash_common)
4239 {
4240 unsigned int common_align;
4241 unsigned int normal_align;
4242 unsigned int symbol_align;
4243 bfd *normal_bfd;
4244 bfd *common_bfd;
4245
4246 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4247 || h->root.type == bfd_link_hash_defweak);
4248
4249 symbol_align = ffs (h->root.u.def.value) - 1;
4250 if (h->root.u.def.section->owner != NULL
4251 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4252 {
4253 normal_align = h->root.u.def.section->alignment_power;
4254 if (normal_align > symbol_align)
4255 normal_align = symbol_align;
4256 }
4257 else
4258 normal_align = symbol_align;
4259
4260 if (old_alignment)
4261 {
4262 common_align = old_alignment;
4263 common_bfd = old_bfd;
4264 normal_bfd = abfd;
4265 }
4266 else
4267 {
4268 common_align = bfd_log2 (isym->st_value);
4269 common_bfd = abfd;
4270 normal_bfd = old_bfd;
4271 }
4272
4273 if (normal_align < common_align)
4274 {
4275 /* PR binutils/2735 */
4276 if (normal_bfd == NULL)
4277 (*_bfd_error_handler)
4278 (_("Warning: alignment %u of common symbol `%s' in %B is"
4279 " greater than the alignment (%u) of its section %A"),
4280 common_bfd, h->root.u.def.section,
4281 1 << common_align, name, 1 << normal_align);
4282 else
4283 (*_bfd_error_handler)
4284 (_("Warning: alignment %u of symbol `%s' in %B"
4285 " is smaller than %u in %B"),
4286 normal_bfd, common_bfd,
4287 1 << normal_align, name, 1 << common_align);
4288 }
4289 }
4290
4291 /* Remember the symbol size if it isn't undefined. */
4292 if (isym->st_size != 0
4293 && isym->st_shndx != SHN_UNDEF
4294 && (definition || h->size == 0))
4295 {
4296 if (h->size != 0
4297 && h->size != isym->st_size
4298 && ! size_change_ok)
4299 (*_bfd_error_handler)
4300 (_("Warning: size of symbol `%s' changed"
4301 " from %lu in %B to %lu in %B"),
4302 old_bfd, abfd,
4303 name, (unsigned long) h->size,
4304 (unsigned long) isym->st_size);
4305
4306 h->size = isym->st_size;
4307 }
4308
4309 /* If this is a common symbol, then we always want H->SIZE
4310 to be the size of the common symbol. The code just above
4311 won't fix the size if a common symbol becomes larger. We
4312 don't warn about a size change here, because that is
4313 covered by --warn-common. Allow changes between different
4314 function types. */
4315 if (h->root.type == bfd_link_hash_common)
4316 h->size = h->root.u.c.size;
4317
4318 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4319 && ((definition && !new_weak)
4320 || (old_weak && h->root.type == bfd_link_hash_common)
4321 || h->type == STT_NOTYPE))
4322 {
4323 unsigned int type = ELF_ST_TYPE (isym->st_info);
4324
4325 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4326 symbol. */
4327 if (type == STT_GNU_IFUNC
4328 && (abfd->flags & DYNAMIC) != 0)
4329 type = STT_FUNC;
4330
4331 if (h->type != type)
4332 {
4333 if (h->type != STT_NOTYPE && ! type_change_ok)
4334 (*_bfd_error_handler)
4335 (_("Warning: type of symbol `%s' changed"
4336 " from %d to %d in %B"),
4337 abfd, name, h->type, type);
4338
4339 h->type = type;
4340 }
4341 }
4342
4343 /* Merge st_other field. */
4344 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4345
4346 /* We don't want to make debug symbol dynamic. */
4347 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4348 dynsym = FALSE;
4349
4350 /* Nor should we make plugin symbols dynamic. */
4351 if ((abfd->flags & BFD_PLUGIN) != 0)
4352 dynsym = FALSE;
4353
4354 if (definition)
4355 {
4356 h->target_internal = isym->st_target_internal;
4357 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4358 }
4359
4360 if (definition && !dynamic)
4361 {
4362 char *p = strchr (name, ELF_VER_CHR);
4363 if (p != NULL && p[1] != ELF_VER_CHR)
4364 {
4365 /* Queue non-default versions so that .symver x, x@FOO
4366 aliases can be checked. */
4367 if (!nondeflt_vers)
4368 {
4369 amt = ((isymend - isym + 1)
4370 * sizeof (struct elf_link_hash_entry *));
4371 nondeflt_vers =
4372 (struct elf_link_hash_entry **) bfd_malloc (amt);
4373 if (!nondeflt_vers)
4374 goto error_free_vers;
4375 }
4376 nondeflt_vers[nondeflt_vers_cnt++] = h;
4377 }
4378 }
4379
4380 if (dynsym && h->dynindx == -1)
4381 {
4382 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4383 goto error_free_vers;
4384 if (h->u.weakdef != NULL
4385 && ! new_weakdef
4386 && h->u.weakdef->dynindx == -1)
4387 {
4388 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4389 goto error_free_vers;
4390 }
4391 }
4392 else if (dynsym && h->dynindx != -1)
4393 /* If the symbol already has a dynamic index, but
4394 visibility says it should not be visible, turn it into
4395 a local symbol. */
4396 switch (ELF_ST_VISIBILITY (h->other))
4397 {
4398 case STV_INTERNAL:
4399 case STV_HIDDEN:
4400 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4401 dynsym = FALSE;
4402 break;
4403 }
4404
4405 /* Don't add DT_NEEDED for references from the dummy bfd. */
4406 if (!add_needed
4407 && definition
4408 && ((dynsym
4409 && h->ref_regular_nonweak
4410 && (old_bfd == NULL
4411 || (old_bfd->flags & BFD_PLUGIN) == 0))
4412 || (h->ref_dynamic_nonweak
4413 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4414 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4415 {
4416 int ret;
4417 const char *soname = elf_dt_name (abfd);
4418
4419 /* A symbol from a library loaded via DT_NEEDED of some
4420 other library is referenced by a regular object.
4421 Add a DT_NEEDED entry for it. Issue an error if
4422 --no-add-needed is used and the reference was not
4423 a weak one. */
4424 if (old_bfd != NULL
4425 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4426 {
4427 (*_bfd_error_handler)
4428 (_("%B: undefined reference to symbol '%s'"),
4429 old_bfd, name);
4430 bfd_set_error (bfd_error_missing_dso);
4431 goto error_free_vers;
4432 }
4433
4434 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4435 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4436
4437 add_needed = TRUE;
4438 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4439 if (ret < 0)
4440 goto error_free_vers;
4441
4442 BFD_ASSERT (ret == 0);
4443 }
4444 }
4445 }
4446
4447 if (extversym != NULL)
4448 {
4449 free (extversym);
4450 extversym = NULL;
4451 }
4452
4453 if (isymbuf != NULL)
4454 {
4455 free (isymbuf);
4456 isymbuf = NULL;
4457 }
4458
4459 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4460 {
4461 unsigned int i;
4462
4463 /* Restore the symbol table. */
4464 if (bed->as_needed_cleanup)
4465 (*bed->as_needed_cleanup) (abfd, info);
4466 old_ent = (char *) old_tab + tabsize;
4467 memset (elf_sym_hashes (abfd), 0,
4468 extsymcount * sizeof (struct elf_link_hash_entry *));
4469 htab->root.table.table = old_table;
4470 htab->root.table.size = old_size;
4471 htab->root.table.count = old_count;
4472 memcpy (htab->root.table.table, old_tab, tabsize);
4473 htab->root.undefs = old_undefs;
4474 htab->root.undefs_tail = old_undefs_tail;
4475 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4476 for (i = 0; i < htab->root.table.size; i++)
4477 {
4478 struct bfd_hash_entry *p;
4479 struct elf_link_hash_entry *h;
4480 bfd_size_type size;
4481 unsigned int alignment_power;
4482
4483 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4484 {
4485 h = (struct elf_link_hash_entry *) p;
4486 if (h->root.type == bfd_link_hash_warning)
4487 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4488 if (h->dynindx >= old_dynsymcount
4489 && h->dynstr_index < old_dynstr_size)
4490 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4491
4492 /* Preserve the maximum alignment and size for common
4493 symbols even if this dynamic lib isn't on DT_NEEDED
4494 since it can still be loaded at run time by another
4495 dynamic lib. */
4496 if (h->root.type == bfd_link_hash_common)
4497 {
4498 size = h->root.u.c.size;
4499 alignment_power = h->root.u.c.p->alignment_power;
4500 }
4501 else
4502 {
4503 size = 0;
4504 alignment_power = 0;
4505 }
4506 memcpy (p, old_ent, htab->root.table.entsize);
4507 old_ent = (char *) old_ent + htab->root.table.entsize;
4508 h = (struct elf_link_hash_entry *) p;
4509 if (h->root.type == bfd_link_hash_warning)
4510 {
4511 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4512 old_ent = (char *) old_ent + htab->root.table.entsize;
4513 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4514 }
4515 if (h->root.type == bfd_link_hash_common)
4516 {
4517 if (size > h->root.u.c.size)
4518 h->root.u.c.size = size;
4519 if (alignment_power > h->root.u.c.p->alignment_power)
4520 h->root.u.c.p->alignment_power = alignment_power;
4521 }
4522 }
4523 }
4524
4525 /* Make a special call to the linker "notice" function to
4526 tell it that symbols added for crefs may need to be removed. */
4527 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4528 notice_not_needed, 0, NULL))
4529 goto error_free_vers;
4530
4531 free (old_tab);
4532 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4533 alloc_mark);
4534 if (nondeflt_vers != NULL)
4535 free (nondeflt_vers);
4536 return TRUE;
4537 }
4538
4539 if (old_tab != NULL)
4540 {
4541 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4542 notice_needed, 0, NULL))
4543 goto error_free_vers;
4544 free (old_tab);
4545 old_tab = NULL;
4546 }
4547
4548 /* Now that all the symbols from this input file are created, handle
4549 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4550 if (nondeflt_vers != NULL)
4551 {
4552 bfd_size_type cnt, symidx;
4553
4554 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4555 {
4556 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4557 char *shortname, *p;
4558
4559 p = strchr (h->root.root.string, ELF_VER_CHR);
4560 if (p == NULL
4561 || (h->root.type != bfd_link_hash_defined
4562 && h->root.type != bfd_link_hash_defweak))
4563 continue;
4564
4565 amt = p - h->root.root.string;
4566 shortname = (char *) bfd_malloc (amt + 1);
4567 if (!shortname)
4568 goto error_free_vers;
4569 memcpy (shortname, h->root.root.string, amt);
4570 shortname[amt] = '\0';
4571
4572 hi = (struct elf_link_hash_entry *)
4573 bfd_link_hash_lookup (&htab->root, shortname,
4574 FALSE, FALSE, FALSE);
4575 if (hi != NULL
4576 && hi->root.type == h->root.type
4577 && hi->root.u.def.value == h->root.u.def.value
4578 && hi->root.u.def.section == h->root.u.def.section)
4579 {
4580 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4581 hi->root.type = bfd_link_hash_indirect;
4582 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4583 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4584 sym_hash = elf_sym_hashes (abfd);
4585 if (sym_hash)
4586 for (symidx = 0; symidx < extsymcount; ++symidx)
4587 if (sym_hash[symidx] == hi)
4588 {
4589 sym_hash[symidx] = h;
4590 break;
4591 }
4592 }
4593 free (shortname);
4594 }
4595 free (nondeflt_vers);
4596 nondeflt_vers = NULL;
4597 }
4598
4599 /* Now set the weakdefs field correctly for all the weak defined
4600 symbols we found. The only way to do this is to search all the
4601 symbols. Since we only need the information for non functions in
4602 dynamic objects, that's the only time we actually put anything on
4603 the list WEAKS. We need this information so that if a regular
4604 object refers to a symbol defined weakly in a dynamic object, the
4605 real symbol in the dynamic object is also put in the dynamic
4606 symbols; we also must arrange for both symbols to point to the
4607 same memory location. We could handle the general case of symbol
4608 aliasing, but a general symbol alias can only be generated in
4609 assembler code, handling it correctly would be very time
4610 consuming, and other ELF linkers don't handle general aliasing
4611 either. */
4612 if (weaks != NULL)
4613 {
4614 struct elf_link_hash_entry **hpp;
4615 struct elf_link_hash_entry **hppend;
4616 struct elf_link_hash_entry **sorted_sym_hash;
4617 struct elf_link_hash_entry *h;
4618 size_t sym_count;
4619
4620 /* Since we have to search the whole symbol list for each weak
4621 defined symbol, search time for N weak defined symbols will be
4622 O(N^2). Binary search will cut it down to O(NlogN). */
4623 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4624 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4625 if (sorted_sym_hash == NULL)
4626 goto error_return;
4627 sym_hash = sorted_sym_hash;
4628 hpp = elf_sym_hashes (abfd);
4629 hppend = hpp + extsymcount;
4630 sym_count = 0;
4631 for (; hpp < hppend; hpp++)
4632 {
4633 h = *hpp;
4634 if (h != NULL
4635 && h->root.type == bfd_link_hash_defined
4636 && !bed->is_function_type (h->type))
4637 {
4638 *sym_hash = h;
4639 sym_hash++;
4640 sym_count++;
4641 }
4642 }
4643
4644 qsort (sorted_sym_hash, sym_count,
4645 sizeof (struct elf_link_hash_entry *),
4646 elf_sort_symbol);
4647
4648 while (weaks != NULL)
4649 {
4650 struct elf_link_hash_entry *hlook;
4651 asection *slook;
4652 bfd_vma vlook;
4653 size_t i, j, idx = 0;
4654
4655 hlook = weaks;
4656 weaks = hlook->u.weakdef;
4657 hlook->u.weakdef = NULL;
4658
4659 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4660 || hlook->root.type == bfd_link_hash_defweak
4661 || hlook->root.type == bfd_link_hash_common
4662 || hlook->root.type == bfd_link_hash_indirect);
4663 slook = hlook->root.u.def.section;
4664 vlook = hlook->root.u.def.value;
4665
4666 i = 0;
4667 j = sym_count;
4668 while (i != j)
4669 {
4670 bfd_signed_vma vdiff;
4671 idx = (i + j) / 2;
4672 h = sorted_sym_hash[idx];
4673 vdiff = vlook - h->root.u.def.value;
4674 if (vdiff < 0)
4675 j = idx;
4676 else if (vdiff > 0)
4677 i = idx + 1;
4678 else
4679 {
4680 long sdiff = slook->id - h->root.u.def.section->id;
4681 if (sdiff < 0)
4682 j = idx;
4683 else if (sdiff > 0)
4684 i = idx + 1;
4685 else
4686 break;
4687 }
4688 }
4689
4690 /* We didn't find a value/section match. */
4691 if (i == j)
4692 continue;
4693
4694 /* With multiple aliases, or when the weak symbol is already
4695 strongly defined, we have multiple matching symbols and
4696 the binary search above may land on any of them. Step
4697 one past the matching symbol(s). */
4698 while (++idx != j)
4699 {
4700 h = sorted_sym_hash[idx];
4701 if (h->root.u.def.section != slook
4702 || h->root.u.def.value != vlook)
4703 break;
4704 }
4705
4706 /* Now look back over the aliases. Since we sorted by size
4707 as well as value and section, we'll choose the one with
4708 the largest size. */
4709 while (idx-- != i)
4710 {
4711 h = sorted_sym_hash[idx];
4712
4713 /* Stop if value or section doesn't match. */
4714 if (h->root.u.def.section != slook
4715 || h->root.u.def.value != vlook)
4716 break;
4717 else if (h != hlook)
4718 {
4719 hlook->u.weakdef = h;
4720
4721 /* If the weak definition is in the list of dynamic
4722 symbols, make sure the real definition is put
4723 there as well. */
4724 if (hlook->dynindx != -1 && h->dynindx == -1)
4725 {
4726 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4727 {
4728 err_free_sym_hash:
4729 free (sorted_sym_hash);
4730 goto error_return;
4731 }
4732 }
4733
4734 /* If the real definition is in the list of dynamic
4735 symbols, make sure the weak definition is put
4736 there as well. If we don't do this, then the
4737 dynamic loader might not merge the entries for the
4738 real definition and the weak definition. */
4739 if (h->dynindx != -1 && hlook->dynindx == -1)
4740 {
4741 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4742 goto err_free_sym_hash;
4743 }
4744 break;
4745 }
4746 }
4747 }
4748
4749 free (sorted_sym_hash);
4750 }
4751
4752 if (bed->check_directives
4753 && !(*bed->check_directives) (abfd, info))
4754 return FALSE;
4755
4756 /* If this object is the same format as the output object, and it is
4757 not a shared library, then let the backend look through the
4758 relocs.
4759
4760 This is required to build global offset table entries and to
4761 arrange for dynamic relocs. It is not required for the
4762 particular common case of linking non PIC code, even when linking
4763 against shared libraries, but unfortunately there is no way of
4764 knowing whether an object file has been compiled PIC or not.
4765 Looking through the relocs is not particularly time consuming.
4766 The problem is that we must either (1) keep the relocs in memory,
4767 which causes the linker to require additional runtime memory or
4768 (2) read the relocs twice from the input file, which wastes time.
4769 This would be a good case for using mmap.
4770
4771 I have no idea how to handle linking PIC code into a file of a
4772 different format. It probably can't be done. */
4773 if (! dynamic
4774 && is_elf_hash_table (htab)
4775 && bed->check_relocs != NULL
4776 && elf_object_id (abfd) == elf_hash_table_id (htab)
4777 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4778 {
4779 asection *o;
4780
4781 for (o = abfd->sections; o != NULL; o = o->next)
4782 {
4783 Elf_Internal_Rela *internal_relocs;
4784 bfd_boolean ok;
4785
4786 if ((o->flags & SEC_RELOC) == 0
4787 || o->reloc_count == 0
4788 || ((info->strip == strip_all || info->strip == strip_debugger)
4789 && (o->flags & SEC_DEBUGGING) != 0)
4790 || bfd_is_abs_section (o->output_section))
4791 continue;
4792
4793 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4794 info->keep_memory);
4795 if (internal_relocs == NULL)
4796 goto error_return;
4797
4798 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4799
4800 if (elf_section_data (o)->relocs != internal_relocs)
4801 free (internal_relocs);
4802
4803 if (! ok)
4804 goto error_return;
4805 }
4806 }
4807
4808 /* If this is a non-traditional link, try to optimize the handling
4809 of the .stab/.stabstr sections. */
4810 if (! dynamic
4811 && ! info->traditional_format
4812 && is_elf_hash_table (htab)
4813 && (info->strip != strip_all && info->strip != strip_debugger))
4814 {
4815 asection *stabstr;
4816
4817 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4818 if (stabstr != NULL)
4819 {
4820 bfd_size_type string_offset = 0;
4821 asection *stab;
4822
4823 for (stab = abfd->sections; stab; stab = stab->next)
4824 if (CONST_STRNEQ (stab->name, ".stab")
4825 && (!stab->name[5] ||
4826 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4827 && (stab->flags & SEC_MERGE) == 0
4828 && !bfd_is_abs_section (stab->output_section))
4829 {
4830 struct bfd_elf_section_data *secdata;
4831
4832 secdata = elf_section_data (stab);
4833 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4834 stabstr, &secdata->sec_info,
4835 &string_offset))
4836 goto error_return;
4837 if (secdata->sec_info)
4838 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4839 }
4840 }
4841 }
4842
4843 if (is_elf_hash_table (htab) && add_needed)
4844 {
4845 /* Add this bfd to the loaded list. */
4846 struct elf_link_loaded_list *n;
4847
4848 n = (struct elf_link_loaded_list *)
4849 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4850 if (n == NULL)
4851 goto error_return;
4852 n->abfd = abfd;
4853 n->next = htab->loaded;
4854 htab->loaded = n;
4855 }
4856
4857 return TRUE;
4858
4859 error_free_vers:
4860 if (old_tab != NULL)
4861 free (old_tab);
4862 if (nondeflt_vers != NULL)
4863 free (nondeflt_vers);
4864 if (extversym != NULL)
4865 free (extversym);
4866 error_free_sym:
4867 if (isymbuf != NULL)
4868 free (isymbuf);
4869 error_return:
4870 return FALSE;
4871 }
4872
4873 /* Return the linker hash table entry of a symbol that might be
4874 satisfied by an archive symbol. Return -1 on error. */
4875
4876 struct elf_link_hash_entry *
4877 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4878 struct bfd_link_info *info,
4879 const char *name)
4880 {
4881 struct elf_link_hash_entry *h;
4882 char *p, *copy;
4883 size_t len, first;
4884
4885 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4886 if (h != NULL)
4887 return h;
4888
4889 /* If this is a default version (the name contains @@), look up the
4890 symbol again with only one `@' as well as without the version.
4891 The effect is that references to the symbol with and without the
4892 version will be matched by the default symbol in the archive. */
4893
4894 p = strchr (name, ELF_VER_CHR);
4895 if (p == NULL || p[1] != ELF_VER_CHR)
4896 return h;
4897
4898 /* First check with only one `@'. */
4899 len = strlen (name);
4900 copy = (char *) bfd_alloc (abfd, len);
4901 if (copy == NULL)
4902 return (struct elf_link_hash_entry *) 0 - 1;
4903
4904 first = p - name + 1;
4905 memcpy (copy, name, first);
4906 memcpy (copy + first, name + first + 1, len - first);
4907
4908 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4909 if (h == NULL)
4910 {
4911 /* We also need to check references to the symbol without the
4912 version. */
4913 copy[first - 1] = '\0';
4914 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4915 FALSE, FALSE, TRUE);
4916 }
4917
4918 bfd_release (abfd, copy);
4919 return h;
4920 }
4921
4922 /* Add symbols from an ELF archive file to the linker hash table. We
4923 don't use _bfd_generic_link_add_archive_symbols because of a
4924 problem which arises on UnixWare. The UnixWare libc.so is an
4925 archive which includes an entry libc.so.1 which defines a bunch of
4926 symbols. The libc.so archive also includes a number of other
4927 object files, which also define symbols, some of which are the same
4928 as those defined in libc.so.1. Correct linking requires that we
4929 consider each object file in turn, and include it if it defines any
4930 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4931 this; it looks through the list of undefined symbols, and includes
4932 any object file which defines them. When this algorithm is used on
4933 UnixWare, it winds up pulling in libc.so.1 early and defining a
4934 bunch of symbols. This means that some of the other objects in the
4935 archive are not included in the link, which is incorrect since they
4936 precede libc.so.1 in the archive.
4937
4938 Fortunately, ELF archive handling is simpler than that done by
4939 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4940 oddities. In ELF, if we find a symbol in the archive map, and the
4941 symbol is currently undefined, we know that we must pull in that
4942 object file.
4943
4944 Unfortunately, we do have to make multiple passes over the symbol
4945 table until nothing further is resolved. */
4946
4947 static bfd_boolean
4948 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4949 {
4950 symindex c;
4951 bfd_boolean *defined = NULL;
4952 bfd_boolean *included = NULL;
4953 carsym *symdefs;
4954 bfd_boolean loop;
4955 bfd_size_type amt;
4956 const struct elf_backend_data *bed;
4957 struct elf_link_hash_entry * (*archive_symbol_lookup)
4958 (bfd *, struct bfd_link_info *, const char *);
4959
4960 if (! bfd_has_map (abfd))
4961 {
4962 /* An empty archive is a special case. */
4963 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4964 return TRUE;
4965 bfd_set_error (bfd_error_no_armap);
4966 return FALSE;
4967 }
4968
4969 /* Keep track of all symbols we know to be already defined, and all
4970 files we know to be already included. This is to speed up the
4971 second and subsequent passes. */
4972 c = bfd_ardata (abfd)->symdef_count;
4973 if (c == 0)
4974 return TRUE;
4975 amt = c;
4976 amt *= sizeof (bfd_boolean);
4977 defined = (bfd_boolean *) bfd_zmalloc (amt);
4978 included = (bfd_boolean *) bfd_zmalloc (amt);
4979 if (defined == NULL || included == NULL)
4980 goto error_return;
4981
4982 symdefs = bfd_ardata (abfd)->symdefs;
4983 bed = get_elf_backend_data (abfd);
4984 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4985
4986 do
4987 {
4988 file_ptr last;
4989 symindex i;
4990 carsym *symdef;
4991 carsym *symdefend;
4992
4993 loop = FALSE;
4994 last = -1;
4995
4996 symdef = symdefs;
4997 symdefend = symdef + c;
4998 for (i = 0; symdef < symdefend; symdef++, i++)
4999 {
5000 struct elf_link_hash_entry *h;
5001 bfd *element;
5002 struct bfd_link_hash_entry *undefs_tail;
5003 symindex mark;
5004
5005 if (defined[i] || included[i])
5006 continue;
5007 if (symdef->file_offset == last)
5008 {
5009 included[i] = TRUE;
5010 continue;
5011 }
5012
5013 h = archive_symbol_lookup (abfd, info, symdef->name);
5014 if (h == (struct elf_link_hash_entry *) 0 - 1)
5015 goto error_return;
5016
5017 if (h == NULL)
5018 continue;
5019
5020 if (h->root.type == bfd_link_hash_common)
5021 {
5022 /* We currently have a common symbol. The archive map contains
5023 a reference to this symbol, so we may want to include it. We
5024 only want to include it however, if this archive element
5025 contains a definition of the symbol, not just another common
5026 declaration of it.
5027
5028 Unfortunately some archivers (including GNU ar) will put
5029 declarations of common symbols into their archive maps, as
5030 well as real definitions, so we cannot just go by the archive
5031 map alone. Instead we must read in the element's symbol
5032 table and check that to see what kind of symbol definition
5033 this is. */
5034 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5035 continue;
5036 }
5037 else if (h->root.type != bfd_link_hash_undefined)
5038 {
5039 if (h->root.type != bfd_link_hash_undefweak)
5040 defined[i] = TRUE;
5041 continue;
5042 }
5043
5044 /* We need to include this archive member. */
5045 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5046 if (element == NULL)
5047 goto error_return;
5048
5049 if (! bfd_check_format (element, bfd_object))
5050 goto error_return;
5051
5052 /* Doublecheck that we have not included this object
5053 already--it should be impossible, but there may be
5054 something wrong with the archive. */
5055 if (element->archive_pass != 0)
5056 {
5057 bfd_set_error (bfd_error_bad_value);
5058 goto error_return;
5059 }
5060 element->archive_pass = 1;
5061
5062 undefs_tail = info->hash->undefs_tail;
5063
5064 if (!(*info->callbacks
5065 ->add_archive_element) (info, element, symdef->name, &element))
5066 goto error_return;
5067 if (!bfd_link_add_symbols (element, info))
5068 goto error_return;
5069
5070 /* If there are any new undefined symbols, we need to make
5071 another pass through the archive in order to see whether
5072 they can be defined. FIXME: This isn't perfect, because
5073 common symbols wind up on undefs_tail and because an
5074 undefined symbol which is defined later on in this pass
5075 does not require another pass. This isn't a bug, but it
5076 does make the code less efficient than it could be. */
5077 if (undefs_tail != info->hash->undefs_tail)
5078 loop = TRUE;
5079
5080 /* Look backward to mark all symbols from this object file
5081 which we have already seen in this pass. */
5082 mark = i;
5083 do
5084 {
5085 included[mark] = TRUE;
5086 if (mark == 0)
5087 break;
5088 --mark;
5089 }
5090 while (symdefs[mark].file_offset == symdef->file_offset);
5091
5092 /* We mark subsequent symbols from this object file as we go
5093 on through the loop. */
5094 last = symdef->file_offset;
5095 }
5096 }
5097 while (loop);
5098
5099 free (defined);
5100 free (included);
5101
5102 return TRUE;
5103
5104 error_return:
5105 if (defined != NULL)
5106 free (defined);
5107 if (included != NULL)
5108 free (included);
5109 return FALSE;
5110 }
5111
5112 /* Given an ELF BFD, add symbols to the global hash table as
5113 appropriate. */
5114
5115 bfd_boolean
5116 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5117 {
5118 switch (bfd_get_format (abfd))
5119 {
5120 case bfd_object:
5121 return elf_link_add_object_symbols (abfd, info);
5122 case bfd_archive:
5123 return elf_link_add_archive_symbols (abfd, info);
5124 default:
5125 bfd_set_error (bfd_error_wrong_format);
5126 return FALSE;
5127 }
5128 }
5129 \f
5130 struct hash_codes_info
5131 {
5132 unsigned long *hashcodes;
5133 bfd_boolean error;
5134 };
5135
5136 /* This function will be called though elf_link_hash_traverse to store
5137 all hash value of the exported symbols in an array. */
5138
5139 static bfd_boolean
5140 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5141 {
5142 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5143 const char *name;
5144 char *p;
5145 unsigned long ha;
5146 char *alc = NULL;
5147
5148 /* Ignore indirect symbols. These are added by the versioning code. */
5149 if (h->dynindx == -1)
5150 return TRUE;
5151
5152 name = h->root.root.string;
5153 p = strchr (name, ELF_VER_CHR);
5154 if (p != NULL)
5155 {
5156 alc = (char *) bfd_malloc (p - name + 1);
5157 if (alc == NULL)
5158 {
5159 inf->error = TRUE;
5160 return FALSE;
5161 }
5162 memcpy (alc, name, p - name);
5163 alc[p - name] = '\0';
5164 name = alc;
5165 }
5166
5167 /* Compute the hash value. */
5168 ha = bfd_elf_hash (name);
5169
5170 /* Store the found hash value in the array given as the argument. */
5171 *(inf->hashcodes)++ = ha;
5172
5173 /* And store it in the struct so that we can put it in the hash table
5174 later. */
5175 h->u.elf_hash_value = ha;
5176
5177 if (alc != NULL)
5178 free (alc);
5179
5180 return TRUE;
5181 }
5182
5183 struct collect_gnu_hash_codes
5184 {
5185 bfd *output_bfd;
5186 const struct elf_backend_data *bed;
5187 unsigned long int nsyms;
5188 unsigned long int maskbits;
5189 unsigned long int *hashcodes;
5190 unsigned long int *hashval;
5191 unsigned long int *indx;
5192 unsigned long int *counts;
5193 bfd_vma *bitmask;
5194 bfd_byte *contents;
5195 long int min_dynindx;
5196 unsigned long int bucketcount;
5197 unsigned long int symindx;
5198 long int local_indx;
5199 long int shift1, shift2;
5200 unsigned long int mask;
5201 bfd_boolean error;
5202 };
5203
5204 /* This function will be called though elf_link_hash_traverse to store
5205 all hash value of the exported symbols in an array. */
5206
5207 static bfd_boolean
5208 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5209 {
5210 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5211 const char *name;
5212 char *p;
5213 unsigned long ha;
5214 char *alc = NULL;
5215
5216 /* Ignore indirect symbols. These are added by the versioning code. */
5217 if (h->dynindx == -1)
5218 return TRUE;
5219
5220 /* Ignore also local symbols and undefined symbols. */
5221 if (! (*s->bed->elf_hash_symbol) (h))
5222 return TRUE;
5223
5224 name = h->root.root.string;
5225 p = strchr (name, ELF_VER_CHR);
5226 if (p != NULL)
5227 {
5228 alc = (char *) bfd_malloc (p - name + 1);
5229 if (alc == NULL)
5230 {
5231 s->error = TRUE;
5232 return FALSE;
5233 }
5234 memcpy (alc, name, p - name);
5235 alc[p - name] = '\0';
5236 name = alc;
5237 }
5238
5239 /* Compute the hash value. */
5240 ha = bfd_elf_gnu_hash (name);
5241
5242 /* Store the found hash value in the array for compute_bucket_count,
5243 and also for .dynsym reordering purposes. */
5244 s->hashcodes[s->nsyms] = ha;
5245 s->hashval[h->dynindx] = ha;
5246 ++s->nsyms;
5247 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5248 s->min_dynindx = h->dynindx;
5249
5250 if (alc != NULL)
5251 free (alc);
5252
5253 return TRUE;
5254 }
5255
5256 /* This function will be called though elf_link_hash_traverse to do
5257 final dynaminc symbol renumbering. */
5258
5259 static bfd_boolean
5260 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5261 {
5262 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5263 unsigned long int bucket;
5264 unsigned long int val;
5265
5266 /* Ignore indirect symbols. */
5267 if (h->dynindx == -1)
5268 return TRUE;
5269
5270 /* Ignore also local symbols and undefined symbols. */
5271 if (! (*s->bed->elf_hash_symbol) (h))
5272 {
5273 if (h->dynindx >= s->min_dynindx)
5274 h->dynindx = s->local_indx++;
5275 return TRUE;
5276 }
5277
5278 bucket = s->hashval[h->dynindx] % s->bucketcount;
5279 val = (s->hashval[h->dynindx] >> s->shift1)
5280 & ((s->maskbits >> s->shift1) - 1);
5281 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5282 s->bitmask[val]
5283 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5284 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5285 if (s->counts[bucket] == 1)
5286 /* Last element terminates the chain. */
5287 val |= 1;
5288 bfd_put_32 (s->output_bfd, val,
5289 s->contents + (s->indx[bucket] - s->symindx) * 4);
5290 --s->counts[bucket];
5291 h->dynindx = s->indx[bucket]++;
5292 return TRUE;
5293 }
5294
5295 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5296
5297 bfd_boolean
5298 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5299 {
5300 return !(h->forced_local
5301 || h->root.type == bfd_link_hash_undefined
5302 || h->root.type == bfd_link_hash_undefweak
5303 || ((h->root.type == bfd_link_hash_defined
5304 || h->root.type == bfd_link_hash_defweak)
5305 && h->root.u.def.section->output_section == NULL));
5306 }
5307
5308 /* Array used to determine the number of hash table buckets to use
5309 based on the number of symbols there are. If there are fewer than
5310 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5311 fewer than 37 we use 17 buckets, and so forth. We never use more
5312 than 32771 buckets. */
5313
5314 static const size_t elf_buckets[] =
5315 {
5316 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5317 16411, 32771, 0
5318 };
5319
5320 /* Compute bucket count for hashing table. We do not use a static set
5321 of possible tables sizes anymore. Instead we determine for all
5322 possible reasonable sizes of the table the outcome (i.e., the
5323 number of collisions etc) and choose the best solution. The
5324 weighting functions are not too simple to allow the table to grow
5325 without bounds. Instead one of the weighting factors is the size.
5326 Therefore the result is always a good payoff between few collisions
5327 (= short chain lengths) and table size. */
5328 static size_t
5329 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5330 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5331 unsigned long int nsyms,
5332 int gnu_hash)
5333 {
5334 size_t best_size = 0;
5335 unsigned long int i;
5336
5337 /* We have a problem here. The following code to optimize the table
5338 size requires an integer type with more the 32 bits. If
5339 BFD_HOST_U_64_BIT is set we know about such a type. */
5340 #ifdef BFD_HOST_U_64_BIT
5341 if (info->optimize)
5342 {
5343 size_t minsize;
5344 size_t maxsize;
5345 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5346 bfd *dynobj = elf_hash_table (info)->dynobj;
5347 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5348 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5349 unsigned long int *counts;
5350 bfd_size_type amt;
5351 unsigned int no_improvement_count = 0;
5352
5353 /* Possible optimization parameters: if we have NSYMS symbols we say
5354 that the hashing table must at least have NSYMS/4 and at most
5355 2*NSYMS buckets. */
5356 minsize = nsyms / 4;
5357 if (minsize == 0)
5358 minsize = 1;
5359 best_size = maxsize = nsyms * 2;
5360 if (gnu_hash)
5361 {
5362 if (minsize < 2)
5363 minsize = 2;
5364 if ((best_size & 31) == 0)
5365 ++best_size;
5366 }
5367
5368 /* Create array where we count the collisions in. We must use bfd_malloc
5369 since the size could be large. */
5370 amt = maxsize;
5371 amt *= sizeof (unsigned long int);
5372 counts = (unsigned long int *) bfd_malloc (amt);
5373 if (counts == NULL)
5374 return 0;
5375
5376 /* Compute the "optimal" size for the hash table. The criteria is a
5377 minimal chain length. The minor criteria is (of course) the size
5378 of the table. */
5379 for (i = minsize; i < maxsize; ++i)
5380 {
5381 /* Walk through the array of hashcodes and count the collisions. */
5382 BFD_HOST_U_64_BIT max;
5383 unsigned long int j;
5384 unsigned long int fact;
5385
5386 if (gnu_hash && (i & 31) == 0)
5387 continue;
5388
5389 memset (counts, '\0', i * sizeof (unsigned long int));
5390
5391 /* Determine how often each hash bucket is used. */
5392 for (j = 0; j < nsyms; ++j)
5393 ++counts[hashcodes[j] % i];
5394
5395 /* For the weight function we need some information about the
5396 pagesize on the target. This is information need not be 100%
5397 accurate. Since this information is not available (so far) we
5398 define it here to a reasonable default value. If it is crucial
5399 to have a better value some day simply define this value. */
5400 # ifndef BFD_TARGET_PAGESIZE
5401 # define BFD_TARGET_PAGESIZE (4096)
5402 # endif
5403
5404 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5405 and the chains. */
5406 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5407
5408 # if 1
5409 /* Variant 1: optimize for short chains. We add the squares
5410 of all the chain lengths (which favors many small chain
5411 over a few long chains). */
5412 for (j = 0; j < i; ++j)
5413 max += counts[j] * counts[j];
5414
5415 /* This adds penalties for the overall size of the table. */
5416 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5417 max *= fact * fact;
5418 # else
5419 /* Variant 2: Optimize a lot more for small table. Here we
5420 also add squares of the size but we also add penalties for
5421 empty slots (the +1 term). */
5422 for (j = 0; j < i; ++j)
5423 max += (1 + counts[j]) * (1 + counts[j]);
5424
5425 /* The overall size of the table is considered, but not as
5426 strong as in variant 1, where it is squared. */
5427 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5428 max *= fact;
5429 # endif
5430
5431 /* Compare with current best results. */
5432 if (max < best_chlen)
5433 {
5434 best_chlen = max;
5435 best_size = i;
5436 no_improvement_count = 0;
5437 }
5438 /* PR 11843: Avoid futile long searches for the best bucket size
5439 when there are a large number of symbols. */
5440 else if (++no_improvement_count == 100)
5441 break;
5442 }
5443
5444 free (counts);
5445 }
5446 else
5447 #endif /* defined (BFD_HOST_U_64_BIT) */
5448 {
5449 /* This is the fallback solution if no 64bit type is available or if we
5450 are not supposed to spend much time on optimizations. We select the
5451 bucket count using a fixed set of numbers. */
5452 for (i = 0; elf_buckets[i] != 0; i++)
5453 {
5454 best_size = elf_buckets[i];
5455 if (nsyms < elf_buckets[i + 1])
5456 break;
5457 }
5458 if (gnu_hash && best_size < 2)
5459 best_size = 2;
5460 }
5461
5462 return best_size;
5463 }
5464
5465 /* Size any SHT_GROUP section for ld -r. */
5466
5467 bfd_boolean
5468 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5469 {
5470 bfd *ibfd;
5471
5472 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5473 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5474 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5475 return FALSE;
5476 return TRUE;
5477 }
5478
5479 /* Set a default stack segment size. The value in INFO wins. If it
5480 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5481 undefined it is initialized. */
5482
5483 bfd_boolean
5484 bfd_elf_stack_segment_size (bfd *output_bfd,
5485 struct bfd_link_info *info,
5486 const char *legacy_symbol,
5487 bfd_vma default_size)
5488 {
5489 struct elf_link_hash_entry *h = NULL;
5490
5491 /* Look for legacy symbol. */
5492 if (legacy_symbol)
5493 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5494 FALSE, FALSE, FALSE);
5495 if (h && (h->root.type == bfd_link_hash_defined
5496 || h->root.type == bfd_link_hash_defweak)
5497 && h->def_regular
5498 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5499 {
5500 /* The symbol has no type if specified on the command line. */
5501 h->type = STT_OBJECT;
5502 if (info->stacksize)
5503 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5504 output_bfd, legacy_symbol);
5505 else if (h->root.u.def.section != bfd_abs_section_ptr)
5506 (*_bfd_error_handler) (_("%B: %s not absolute"),
5507 output_bfd, legacy_symbol);
5508 else
5509 info->stacksize = h->root.u.def.value;
5510 }
5511
5512 if (!info->stacksize)
5513 /* If the user didn't set a size, or explicitly inhibit the
5514 size, set it now. */
5515 info->stacksize = default_size;
5516
5517 /* Provide the legacy symbol, if it is referenced. */
5518 if (h && (h->root.type == bfd_link_hash_undefined
5519 || h->root.type == bfd_link_hash_undefweak))
5520 {
5521 struct bfd_link_hash_entry *bh = NULL;
5522
5523 if (!(_bfd_generic_link_add_one_symbol
5524 (info, output_bfd, legacy_symbol,
5525 BSF_GLOBAL, bfd_abs_section_ptr,
5526 info->stacksize >= 0 ? info->stacksize : 0,
5527 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5528 return FALSE;
5529
5530 h = (struct elf_link_hash_entry *) bh;
5531 h->def_regular = 1;
5532 h->type = STT_OBJECT;
5533 }
5534
5535 return TRUE;
5536 }
5537
5538 /* Set up the sizes and contents of the ELF dynamic sections. This is
5539 called by the ELF linker emulation before_allocation routine. We
5540 must set the sizes of the sections before the linker sets the
5541 addresses of the various sections. */
5542
5543 bfd_boolean
5544 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5545 const char *soname,
5546 const char *rpath,
5547 const char *filter_shlib,
5548 const char *audit,
5549 const char *depaudit,
5550 const char * const *auxiliary_filters,
5551 struct bfd_link_info *info,
5552 asection **sinterpptr)
5553 {
5554 bfd_size_type soname_indx;
5555 bfd *dynobj;
5556 const struct elf_backend_data *bed;
5557 struct elf_info_failed asvinfo;
5558
5559 *sinterpptr = NULL;
5560
5561 soname_indx = (bfd_size_type) -1;
5562
5563 if (!is_elf_hash_table (info->hash))
5564 return TRUE;
5565
5566 bed = get_elf_backend_data (output_bfd);
5567
5568 /* Any syms created from now on start with -1 in
5569 got.refcount/offset and plt.refcount/offset. */
5570 elf_hash_table (info)->init_got_refcount
5571 = elf_hash_table (info)->init_got_offset;
5572 elf_hash_table (info)->init_plt_refcount
5573 = elf_hash_table (info)->init_plt_offset;
5574
5575 if (info->relocatable
5576 && !_bfd_elf_size_group_sections (info))
5577 return FALSE;
5578
5579 /* The backend may have to create some sections regardless of whether
5580 we're dynamic or not. */
5581 if (bed->elf_backend_always_size_sections
5582 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5583 return FALSE;
5584
5585 /* Determine any GNU_STACK segment requirements, after the backend
5586 has had a chance to set a default segment size. */
5587 if (info->execstack)
5588 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5589 else if (info->noexecstack)
5590 elf_stack_flags (output_bfd) = PF_R | PF_W;
5591 else
5592 {
5593 bfd *inputobj;
5594 asection *notesec = NULL;
5595 int exec = 0;
5596
5597 for (inputobj = info->input_bfds;
5598 inputobj;
5599 inputobj = inputobj->link_next)
5600 {
5601 asection *s;
5602
5603 if (inputobj->flags
5604 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5605 continue;
5606 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5607 if (s)
5608 {
5609 if (s->flags & SEC_CODE)
5610 exec = PF_X;
5611 notesec = s;
5612 }
5613 else if (bed->default_execstack)
5614 exec = PF_X;
5615 }
5616 if (notesec || info->stacksize > 0)
5617 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5618 if (notesec && exec && info->relocatable
5619 && notesec->output_section != bfd_abs_section_ptr)
5620 notesec->output_section->flags |= SEC_CODE;
5621 }
5622
5623 dynobj = elf_hash_table (info)->dynobj;
5624
5625 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5626 {
5627 struct elf_info_failed eif;
5628 struct elf_link_hash_entry *h;
5629 asection *dynstr;
5630 struct bfd_elf_version_tree *t;
5631 struct bfd_elf_version_expr *d;
5632 asection *s;
5633 bfd_boolean all_defined;
5634
5635 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5636 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5637
5638 if (soname != NULL)
5639 {
5640 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5641 soname, TRUE);
5642 if (soname_indx == (bfd_size_type) -1
5643 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5644 return FALSE;
5645 }
5646
5647 if (info->symbolic)
5648 {
5649 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5650 return FALSE;
5651 info->flags |= DF_SYMBOLIC;
5652 }
5653
5654 if (rpath != NULL)
5655 {
5656 bfd_size_type indx;
5657 bfd_vma tag;
5658
5659 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5660 TRUE);
5661 if (indx == (bfd_size_type) -1)
5662 return FALSE;
5663
5664 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5665 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5666 return FALSE;
5667 }
5668
5669 if (filter_shlib != NULL)
5670 {
5671 bfd_size_type indx;
5672
5673 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5674 filter_shlib, TRUE);
5675 if (indx == (bfd_size_type) -1
5676 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5677 return FALSE;
5678 }
5679
5680 if (auxiliary_filters != NULL)
5681 {
5682 const char * const *p;
5683
5684 for (p = auxiliary_filters; *p != NULL; p++)
5685 {
5686 bfd_size_type indx;
5687
5688 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5689 *p, TRUE);
5690 if (indx == (bfd_size_type) -1
5691 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5692 return FALSE;
5693 }
5694 }
5695
5696 if (audit != NULL)
5697 {
5698 bfd_size_type indx;
5699
5700 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5701 TRUE);
5702 if (indx == (bfd_size_type) -1
5703 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5704 return FALSE;
5705 }
5706
5707 if (depaudit != NULL)
5708 {
5709 bfd_size_type indx;
5710
5711 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5712 TRUE);
5713 if (indx == (bfd_size_type) -1
5714 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5715 return FALSE;
5716 }
5717
5718 eif.info = info;
5719 eif.failed = FALSE;
5720
5721 /* If we are supposed to export all symbols into the dynamic symbol
5722 table (this is not the normal case), then do so. */
5723 if (info->export_dynamic
5724 || (info->executable && info->dynamic))
5725 {
5726 elf_link_hash_traverse (elf_hash_table (info),
5727 _bfd_elf_export_symbol,
5728 &eif);
5729 if (eif.failed)
5730 return FALSE;
5731 }
5732
5733 /* Make all global versions with definition. */
5734 for (t = info->version_info; t != NULL; t = t->next)
5735 for (d = t->globals.list; d != NULL; d = d->next)
5736 if (!d->symver && d->literal)
5737 {
5738 const char *verstr, *name;
5739 size_t namelen, verlen, newlen;
5740 char *newname, *p, leading_char;
5741 struct elf_link_hash_entry *newh;
5742
5743 leading_char = bfd_get_symbol_leading_char (output_bfd);
5744 name = d->pattern;
5745 namelen = strlen (name) + (leading_char != '\0');
5746 verstr = t->name;
5747 verlen = strlen (verstr);
5748 newlen = namelen + verlen + 3;
5749
5750 newname = (char *) bfd_malloc (newlen);
5751 if (newname == NULL)
5752 return FALSE;
5753 newname[0] = leading_char;
5754 memcpy (newname + (leading_char != '\0'), name, namelen);
5755
5756 /* Check the hidden versioned definition. */
5757 p = newname + namelen;
5758 *p++ = ELF_VER_CHR;
5759 memcpy (p, verstr, verlen + 1);
5760 newh = elf_link_hash_lookup (elf_hash_table (info),
5761 newname, FALSE, FALSE,
5762 FALSE);
5763 if (newh == NULL
5764 || (newh->root.type != bfd_link_hash_defined
5765 && newh->root.type != bfd_link_hash_defweak))
5766 {
5767 /* Check the default versioned definition. */
5768 *p++ = ELF_VER_CHR;
5769 memcpy (p, verstr, verlen + 1);
5770 newh = elf_link_hash_lookup (elf_hash_table (info),
5771 newname, FALSE, FALSE,
5772 FALSE);
5773 }
5774 free (newname);
5775
5776 /* Mark this version if there is a definition and it is
5777 not defined in a shared object. */
5778 if (newh != NULL
5779 && !newh->def_dynamic
5780 && (newh->root.type == bfd_link_hash_defined
5781 || newh->root.type == bfd_link_hash_defweak))
5782 d->symver = 1;
5783 }
5784
5785 /* Attach all the symbols to their version information. */
5786 asvinfo.info = info;
5787 asvinfo.failed = FALSE;
5788
5789 elf_link_hash_traverse (elf_hash_table (info),
5790 _bfd_elf_link_assign_sym_version,
5791 &asvinfo);
5792 if (asvinfo.failed)
5793 return FALSE;
5794
5795 if (!info->allow_undefined_version)
5796 {
5797 /* Check if all global versions have a definition. */
5798 all_defined = TRUE;
5799 for (t = info->version_info; t != NULL; t = t->next)
5800 for (d = t->globals.list; d != NULL; d = d->next)
5801 if (d->literal && !d->symver && !d->script)
5802 {
5803 (*_bfd_error_handler)
5804 (_("%s: undefined version: %s"),
5805 d->pattern, t->name);
5806 all_defined = FALSE;
5807 }
5808
5809 if (!all_defined)
5810 {
5811 bfd_set_error (bfd_error_bad_value);
5812 return FALSE;
5813 }
5814 }
5815
5816 /* Find all symbols which were defined in a dynamic object and make
5817 the backend pick a reasonable value for them. */
5818 elf_link_hash_traverse (elf_hash_table (info),
5819 _bfd_elf_adjust_dynamic_symbol,
5820 &eif);
5821 if (eif.failed)
5822 return FALSE;
5823
5824 /* Add some entries to the .dynamic section. We fill in some of the
5825 values later, in bfd_elf_final_link, but we must add the entries
5826 now so that we know the final size of the .dynamic section. */
5827
5828 /* If there are initialization and/or finalization functions to
5829 call then add the corresponding DT_INIT/DT_FINI entries. */
5830 h = (info->init_function
5831 ? elf_link_hash_lookup (elf_hash_table (info),
5832 info->init_function, FALSE,
5833 FALSE, FALSE)
5834 : NULL);
5835 if (h != NULL
5836 && (h->ref_regular
5837 || h->def_regular))
5838 {
5839 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5840 return FALSE;
5841 }
5842 h = (info->fini_function
5843 ? elf_link_hash_lookup (elf_hash_table (info),
5844 info->fini_function, FALSE,
5845 FALSE, FALSE)
5846 : NULL);
5847 if (h != NULL
5848 && (h->ref_regular
5849 || h->def_regular))
5850 {
5851 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5852 return FALSE;
5853 }
5854
5855 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5856 if (s != NULL && s->linker_has_input)
5857 {
5858 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5859 if (! info->executable)
5860 {
5861 bfd *sub;
5862 asection *o;
5863
5864 for (sub = info->input_bfds; sub != NULL;
5865 sub = sub->link_next)
5866 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5867 for (o = sub->sections; o != NULL; o = o->next)
5868 if (elf_section_data (o)->this_hdr.sh_type
5869 == SHT_PREINIT_ARRAY)
5870 {
5871 (*_bfd_error_handler)
5872 (_("%B: .preinit_array section is not allowed in DSO"),
5873 sub);
5874 break;
5875 }
5876
5877 bfd_set_error (bfd_error_nonrepresentable_section);
5878 return FALSE;
5879 }
5880
5881 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5882 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5883 return FALSE;
5884 }
5885 s = bfd_get_section_by_name (output_bfd, ".init_array");
5886 if (s != NULL && s->linker_has_input)
5887 {
5888 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5889 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5890 return FALSE;
5891 }
5892 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5893 if (s != NULL && s->linker_has_input)
5894 {
5895 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5896 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5897 return FALSE;
5898 }
5899
5900 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5901 /* If .dynstr is excluded from the link, we don't want any of
5902 these tags. Strictly, we should be checking each section
5903 individually; This quick check covers for the case where
5904 someone does a /DISCARD/ : { *(*) }. */
5905 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5906 {
5907 bfd_size_type strsize;
5908
5909 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5910 if ((info->emit_hash
5911 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5912 || (info->emit_gnu_hash
5913 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5914 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5915 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5916 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5917 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5918 bed->s->sizeof_sym))
5919 return FALSE;
5920 }
5921 }
5922
5923 /* The backend must work out the sizes of all the other dynamic
5924 sections. */
5925 if (dynobj != NULL
5926 && bed->elf_backend_size_dynamic_sections != NULL
5927 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5928 return FALSE;
5929
5930 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5931 return FALSE;
5932
5933 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5934 {
5935 unsigned long section_sym_count;
5936 struct bfd_elf_version_tree *verdefs;
5937 asection *s;
5938
5939 /* Set up the version definition section. */
5940 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5941 BFD_ASSERT (s != NULL);
5942
5943 /* We may have created additional version definitions if we are
5944 just linking a regular application. */
5945 verdefs = info->version_info;
5946
5947 /* Skip anonymous version tag. */
5948 if (verdefs != NULL && verdefs->vernum == 0)
5949 verdefs = verdefs->next;
5950
5951 if (verdefs == NULL && !info->create_default_symver)
5952 s->flags |= SEC_EXCLUDE;
5953 else
5954 {
5955 unsigned int cdefs;
5956 bfd_size_type size;
5957 struct bfd_elf_version_tree *t;
5958 bfd_byte *p;
5959 Elf_Internal_Verdef def;
5960 Elf_Internal_Verdaux defaux;
5961 struct bfd_link_hash_entry *bh;
5962 struct elf_link_hash_entry *h;
5963 const char *name;
5964
5965 cdefs = 0;
5966 size = 0;
5967
5968 /* Make space for the base version. */
5969 size += sizeof (Elf_External_Verdef);
5970 size += sizeof (Elf_External_Verdaux);
5971 ++cdefs;
5972
5973 /* Make space for the default version. */
5974 if (info->create_default_symver)
5975 {
5976 size += sizeof (Elf_External_Verdef);
5977 ++cdefs;
5978 }
5979
5980 for (t = verdefs; t != NULL; t = t->next)
5981 {
5982 struct bfd_elf_version_deps *n;
5983
5984 /* Don't emit base version twice. */
5985 if (t->vernum == 0)
5986 continue;
5987
5988 size += sizeof (Elf_External_Verdef);
5989 size += sizeof (Elf_External_Verdaux);
5990 ++cdefs;
5991
5992 for (n = t->deps; n != NULL; n = n->next)
5993 size += sizeof (Elf_External_Verdaux);
5994 }
5995
5996 s->size = size;
5997 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5998 if (s->contents == NULL && s->size != 0)
5999 return FALSE;
6000
6001 /* Fill in the version definition section. */
6002
6003 p = s->contents;
6004
6005 def.vd_version = VER_DEF_CURRENT;
6006 def.vd_flags = VER_FLG_BASE;
6007 def.vd_ndx = 1;
6008 def.vd_cnt = 1;
6009 if (info->create_default_symver)
6010 {
6011 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6012 def.vd_next = sizeof (Elf_External_Verdef);
6013 }
6014 else
6015 {
6016 def.vd_aux = sizeof (Elf_External_Verdef);
6017 def.vd_next = (sizeof (Elf_External_Verdef)
6018 + sizeof (Elf_External_Verdaux));
6019 }
6020
6021 if (soname_indx != (bfd_size_type) -1)
6022 {
6023 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6024 soname_indx);
6025 def.vd_hash = bfd_elf_hash (soname);
6026 defaux.vda_name = soname_indx;
6027 name = soname;
6028 }
6029 else
6030 {
6031 bfd_size_type indx;
6032
6033 name = lbasename (output_bfd->filename);
6034 def.vd_hash = bfd_elf_hash (name);
6035 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6036 name, FALSE);
6037 if (indx == (bfd_size_type) -1)
6038 return FALSE;
6039 defaux.vda_name = indx;
6040 }
6041 defaux.vda_next = 0;
6042
6043 _bfd_elf_swap_verdef_out (output_bfd, &def,
6044 (Elf_External_Verdef *) p);
6045 p += sizeof (Elf_External_Verdef);
6046 if (info->create_default_symver)
6047 {
6048 /* Add a symbol representing this version. */
6049 bh = NULL;
6050 if (! (_bfd_generic_link_add_one_symbol
6051 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6052 0, NULL, FALSE,
6053 get_elf_backend_data (dynobj)->collect, &bh)))
6054 return FALSE;
6055 h = (struct elf_link_hash_entry *) bh;
6056 h->non_elf = 0;
6057 h->def_regular = 1;
6058 h->type = STT_OBJECT;
6059 h->verinfo.vertree = NULL;
6060
6061 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6062 return FALSE;
6063
6064 /* Create a duplicate of the base version with the same
6065 aux block, but different flags. */
6066 def.vd_flags = 0;
6067 def.vd_ndx = 2;
6068 def.vd_aux = sizeof (Elf_External_Verdef);
6069 if (verdefs)
6070 def.vd_next = (sizeof (Elf_External_Verdef)
6071 + sizeof (Elf_External_Verdaux));
6072 else
6073 def.vd_next = 0;
6074 _bfd_elf_swap_verdef_out (output_bfd, &def,
6075 (Elf_External_Verdef *) p);
6076 p += sizeof (Elf_External_Verdef);
6077 }
6078 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6079 (Elf_External_Verdaux *) p);
6080 p += sizeof (Elf_External_Verdaux);
6081
6082 for (t = verdefs; t != NULL; t = t->next)
6083 {
6084 unsigned int cdeps;
6085 struct bfd_elf_version_deps *n;
6086
6087 /* Don't emit the base version twice. */
6088 if (t->vernum == 0)
6089 continue;
6090
6091 cdeps = 0;
6092 for (n = t->deps; n != NULL; n = n->next)
6093 ++cdeps;
6094
6095 /* Add a symbol representing this version. */
6096 bh = NULL;
6097 if (! (_bfd_generic_link_add_one_symbol
6098 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6099 0, NULL, FALSE,
6100 get_elf_backend_data (dynobj)->collect, &bh)))
6101 return FALSE;
6102 h = (struct elf_link_hash_entry *) bh;
6103 h->non_elf = 0;
6104 h->def_regular = 1;
6105 h->type = STT_OBJECT;
6106 h->verinfo.vertree = t;
6107
6108 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6109 return FALSE;
6110
6111 def.vd_version = VER_DEF_CURRENT;
6112 def.vd_flags = 0;
6113 if (t->globals.list == NULL
6114 && t->locals.list == NULL
6115 && ! t->used)
6116 def.vd_flags |= VER_FLG_WEAK;
6117 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6118 def.vd_cnt = cdeps + 1;
6119 def.vd_hash = bfd_elf_hash (t->name);
6120 def.vd_aux = sizeof (Elf_External_Verdef);
6121 def.vd_next = 0;
6122
6123 /* If a basever node is next, it *must* be the last node in
6124 the chain, otherwise Verdef construction breaks. */
6125 if (t->next != NULL && t->next->vernum == 0)
6126 BFD_ASSERT (t->next->next == NULL);
6127
6128 if (t->next != NULL && t->next->vernum != 0)
6129 def.vd_next = (sizeof (Elf_External_Verdef)
6130 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6131
6132 _bfd_elf_swap_verdef_out (output_bfd, &def,
6133 (Elf_External_Verdef *) p);
6134 p += sizeof (Elf_External_Verdef);
6135
6136 defaux.vda_name = h->dynstr_index;
6137 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6138 h->dynstr_index);
6139 defaux.vda_next = 0;
6140 if (t->deps != NULL)
6141 defaux.vda_next = sizeof (Elf_External_Verdaux);
6142 t->name_indx = defaux.vda_name;
6143
6144 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6145 (Elf_External_Verdaux *) p);
6146 p += sizeof (Elf_External_Verdaux);
6147
6148 for (n = t->deps; n != NULL; n = n->next)
6149 {
6150 if (n->version_needed == NULL)
6151 {
6152 /* This can happen if there was an error in the
6153 version script. */
6154 defaux.vda_name = 0;
6155 }
6156 else
6157 {
6158 defaux.vda_name = n->version_needed->name_indx;
6159 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6160 defaux.vda_name);
6161 }
6162 if (n->next == NULL)
6163 defaux.vda_next = 0;
6164 else
6165 defaux.vda_next = sizeof (Elf_External_Verdaux);
6166
6167 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6168 (Elf_External_Verdaux *) p);
6169 p += sizeof (Elf_External_Verdaux);
6170 }
6171 }
6172
6173 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6174 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6175 return FALSE;
6176
6177 elf_tdata (output_bfd)->cverdefs = cdefs;
6178 }
6179
6180 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6181 {
6182 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6183 return FALSE;
6184 }
6185 else if (info->flags & DF_BIND_NOW)
6186 {
6187 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6188 return FALSE;
6189 }
6190
6191 if (info->flags_1)
6192 {
6193 if (info->executable)
6194 info->flags_1 &= ~ (DF_1_INITFIRST
6195 | DF_1_NODELETE
6196 | DF_1_NOOPEN);
6197 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6198 return FALSE;
6199 }
6200
6201 /* Work out the size of the version reference section. */
6202
6203 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6204 BFD_ASSERT (s != NULL);
6205 {
6206 struct elf_find_verdep_info sinfo;
6207
6208 sinfo.info = info;
6209 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6210 if (sinfo.vers == 0)
6211 sinfo.vers = 1;
6212 sinfo.failed = FALSE;
6213
6214 elf_link_hash_traverse (elf_hash_table (info),
6215 _bfd_elf_link_find_version_dependencies,
6216 &sinfo);
6217 if (sinfo.failed)
6218 return FALSE;
6219
6220 if (elf_tdata (output_bfd)->verref == NULL)
6221 s->flags |= SEC_EXCLUDE;
6222 else
6223 {
6224 Elf_Internal_Verneed *t;
6225 unsigned int size;
6226 unsigned int crefs;
6227 bfd_byte *p;
6228
6229 /* Build the version dependency section. */
6230 size = 0;
6231 crefs = 0;
6232 for (t = elf_tdata (output_bfd)->verref;
6233 t != NULL;
6234 t = t->vn_nextref)
6235 {
6236 Elf_Internal_Vernaux *a;
6237
6238 size += sizeof (Elf_External_Verneed);
6239 ++crefs;
6240 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6241 size += sizeof (Elf_External_Vernaux);
6242 }
6243
6244 s->size = size;
6245 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6246 if (s->contents == NULL)
6247 return FALSE;
6248
6249 p = s->contents;
6250 for (t = elf_tdata (output_bfd)->verref;
6251 t != NULL;
6252 t = t->vn_nextref)
6253 {
6254 unsigned int caux;
6255 Elf_Internal_Vernaux *a;
6256 bfd_size_type indx;
6257
6258 caux = 0;
6259 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6260 ++caux;
6261
6262 t->vn_version = VER_NEED_CURRENT;
6263 t->vn_cnt = caux;
6264 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6265 elf_dt_name (t->vn_bfd) != NULL
6266 ? elf_dt_name (t->vn_bfd)
6267 : lbasename (t->vn_bfd->filename),
6268 FALSE);
6269 if (indx == (bfd_size_type) -1)
6270 return FALSE;
6271 t->vn_file = indx;
6272 t->vn_aux = sizeof (Elf_External_Verneed);
6273 if (t->vn_nextref == NULL)
6274 t->vn_next = 0;
6275 else
6276 t->vn_next = (sizeof (Elf_External_Verneed)
6277 + caux * sizeof (Elf_External_Vernaux));
6278
6279 _bfd_elf_swap_verneed_out (output_bfd, t,
6280 (Elf_External_Verneed *) p);
6281 p += sizeof (Elf_External_Verneed);
6282
6283 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6284 {
6285 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6286 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6287 a->vna_nodename, FALSE);
6288 if (indx == (bfd_size_type) -1)
6289 return FALSE;
6290 a->vna_name = indx;
6291 if (a->vna_nextptr == NULL)
6292 a->vna_next = 0;
6293 else
6294 a->vna_next = sizeof (Elf_External_Vernaux);
6295
6296 _bfd_elf_swap_vernaux_out (output_bfd, a,
6297 (Elf_External_Vernaux *) p);
6298 p += sizeof (Elf_External_Vernaux);
6299 }
6300 }
6301
6302 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6303 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6304 return FALSE;
6305
6306 elf_tdata (output_bfd)->cverrefs = crefs;
6307 }
6308 }
6309
6310 if ((elf_tdata (output_bfd)->cverrefs == 0
6311 && elf_tdata (output_bfd)->cverdefs == 0)
6312 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6313 &section_sym_count) == 0)
6314 {
6315 s = bfd_get_linker_section (dynobj, ".gnu.version");
6316 s->flags |= SEC_EXCLUDE;
6317 }
6318 }
6319 return TRUE;
6320 }
6321
6322 /* Find the first non-excluded output section. We'll use its
6323 section symbol for some emitted relocs. */
6324 void
6325 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6326 {
6327 asection *s;
6328
6329 for (s = output_bfd->sections; s != NULL; s = s->next)
6330 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6331 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6332 {
6333 elf_hash_table (info)->text_index_section = s;
6334 break;
6335 }
6336 }
6337
6338 /* Find two non-excluded output sections, one for code, one for data.
6339 We'll use their section symbols for some emitted relocs. */
6340 void
6341 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6342 {
6343 asection *s;
6344
6345 /* Data first, since setting text_index_section changes
6346 _bfd_elf_link_omit_section_dynsym. */
6347 for (s = output_bfd->sections; s != NULL; s = s->next)
6348 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6349 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6350 {
6351 elf_hash_table (info)->data_index_section = s;
6352 break;
6353 }
6354
6355 for (s = output_bfd->sections; s != NULL; s = s->next)
6356 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6357 == (SEC_ALLOC | SEC_READONLY))
6358 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6359 {
6360 elf_hash_table (info)->text_index_section = s;
6361 break;
6362 }
6363
6364 if (elf_hash_table (info)->text_index_section == NULL)
6365 elf_hash_table (info)->text_index_section
6366 = elf_hash_table (info)->data_index_section;
6367 }
6368
6369 bfd_boolean
6370 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6371 {
6372 const struct elf_backend_data *bed;
6373
6374 if (!is_elf_hash_table (info->hash))
6375 return TRUE;
6376
6377 bed = get_elf_backend_data (output_bfd);
6378 (*bed->elf_backend_init_index_section) (output_bfd, info);
6379
6380 if (elf_hash_table (info)->dynamic_sections_created)
6381 {
6382 bfd *dynobj;
6383 asection *s;
6384 bfd_size_type dynsymcount;
6385 unsigned long section_sym_count;
6386 unsigned int dtagcount;
6387
6388 dynobj = elf_hash_table (info)->dynobj;
6389
6390 /* Assign dynsym indicies. In a shared library we generate a
6391 section symbol for each output section, which come first.
6392 Next come all of the back-end allocated local dynamic syms,
6393 followed by the rest of the global symbols. */
6394
6395 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6396 &section_sym_count);
6397
6398 /* Work out the size of the symbol version section. */
6399 s = bfd_get_linker_section (dynobj, ".gnu.version");
6400 BFD_ASSERT (s != NULL);
6401 if (dynsymcount != 0
6402 && (s->flags & SEC_EXCLUDE) == 0)
6403 {
6404 s->size = dynsymcount * sizeof (Elf_External_Versym);
6405 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6406 if (s->contents == NULL)
6407 return FALSE;
6408
6409 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6410 return FALSE;
6411 }
6412
6413 /* Set the size of the .dynsym and .hash sections. We counted
6414 the number of dynamic symbols in elf_link_add_object_symbols.
6415 We will build the contents of .dynsym and .hash when we build
6416 the final symbol table, because until then we do not know the
6417 correct value to give the symbols. We built the .dynstr
6418 section as we went along in elf_link_add_object_symbols. */
6419 s = bfd_get_linker_section (dynobj, ".dynsym");
6420 BFD_ASSERT (s != NULL);
6421 s->size = dynsymcount * bed->s->sizeof_sym;
6422
6423 if (dynsymcount != 0)
6424 {
6425 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6426 if (s->contents == NULL)
6427 return FALSE;
6428
6429 /* The first entry in .dynsym is a dummy symbol.
6430 Clear all the section syms, in case we don't output them all. */
6431 ++section_sym_count;
6432 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6433 }
6434
6435 elf_hash_table (info)->bucketcount = 0;
6436
6437 /* Compute the size of the hashing table. As a side effect this
6438 computes the hash values for all the names we export. */
6439 if (info->emit_hash)
6440 {
6441 unsigned long int *hashcodes;
6442 struct hash_codes_info hashinf;
6443 bfd_size_type amt;
6444 unsigned long int nsyms;
6445 size_t bucketcount;
6446 size_t hash_entry_size;
6447
6448 /* Compute the hash values for all exported symbols. At the same
6449 time store the values in an array so that we could use them for
6450 optimizations. */
6451 amt = dynsymcount * sizeof (unsigned long int);
6452 hashcodes = (unsigned long int *) bfd_malloc (amt);
6453 if (hashcodes == NULL)
6454 return FALSE;
6455 hashinf.hashcodes = hashcodes;
6456 hashinf.error = FALSE;
6457
6458 /* Put all hash values in HASHCODES. */
6459 elf_link_hash_traverse (elf_hash_table (info),
6460 elf_collect_hash_codes, &hashinf);
6461 if (hashinf.error)
6462 {
6463 free (hashcodes);
6464 return FALSE;
6465 }
6466
6467 nsyms = hashinf.hashcodes - hashcodes;
6468 bucketcount
6469 = compute_bucket_count (info, hashcodes, nsyms, 0);
6470 free (hashcodes);
6471
6472 if (bucketcount == 0)
6473 return FALSE;
6474
6475 elf_hash_table (info)->bucketcount = bucketcount;
6476
6477 s = bfd_get_linker_section (dynobj, ".hash");
6478 BFD_ASSERT (s != NULL);
6479 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6480 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6481 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6482 if (s->contents == NULL)
6483 return FALSE;
6484
6485 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6486 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6487 s->contents + hash_entry_size);
6488 }
6489
6490 if (info->emit_gnu_hash)
6491 {
6492 size_t i, cnt;
6493 unsigned char *contents;
6494 struct collect_gnu_hash_codes cinfo;
6495 bfd_size_type amt;
6496 size_t bucketcount;
6497
6498 memset (&cinfo, 0, sizeof (cinfo));
6499
6500 /* Compute the hash values for all exported symbols. At the same
6501 time store the values in an array so that we could use them for
6502 optimizations. */
6503 amt = dynsymcount * 2 * sizeof (unsigned long int);
6504 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6505 if (cinfo.hashcodes == NULL)
6506 return FALSE;
6507
6508 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6509 cinfo.min_dynindx = -1;
6510 cinfo.output_bfd = output_bfd;
6511 cinfo.bed = bed;
6512
6513 /* Put all hash values in HASHCODES. */
6514 elf_link_hash_traverse (elf_hash_table (info),
6515 elf_collect_gnu_hash_codes, &cinfo);
6516 if (cinfo.error)
6517 {
6518 free (cinfo.hashcodes);
6519 return FALSE;
6520 }
6521
6522 bucketcount
6523 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6524
6525 if (bucketcount == 0)
6526 {
6527 free (cinfo.hashcodes);
6528 return FALSE;
6529 }
6530
6531 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6532 BFD_ASSERT (s != NULL);
6533
6534 if (cinfo.nsyms == 0)
6535 {
6536 /* Empty .gnu.hash section is special. */
6537 BFD_ASSERT (cinfo.min_dynindx == -1);
6538 free (cinfo.hashcodes);
6539 s->size = 5 * 4 + bed->s->arch_size / 8;
6540 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6541 if (contents == NULL)
6542 return FALSE;
6543 s->contents = contents;
6544 /* 1 empty bucket. */
6545 bfd_put_32 (output_bfd, 1, contents);
6546 /* SYMIDX above the special symbol 0. */
6547 bfd_put_32 (output_bfd, 1, contents + 4);
6548 /* Just one word for bitmask. */
6549 bfd_put_32 (output_bfd, 1, contents + 8);
6550 /* Only hash fn bloom filter. */
6551 bfd_put_32 (output_bfd, 0, contents + 12);
6552 /* No hashes are valid - empty bitmask. */
6553 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6554 /* No hashes in the only bucket. */
6555 bfd_put_32 (output_bfd, 0,
6556 contents + 16 + bed->s->arch_size / 8);
6557 }
6558 else
6559 {
6560 unsigned long int maskwords, maskbitslog2, x;
6561 BFD_ASSERT (cinfo.min_dynindx != -1);
6562
6563 x = cinfo.nsyms;
6564 maskbitslog2 = 1;
6565 while ((x >>= 1) != 0)
6566 ++maskbitslog2;
6567 if (maskbitslog2 < 3)
6568 maskbitslog2 = 5;
6569 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6570 maskbitslog2 = maskbitslog2 + 3;
6571 else
6572 maskbitslog2 = maskbitslog2 + 2;
6573 if (bed->s->arch_size == 64)
6574 {
6575 if (maskbitslog2 == 5)
6576 maskbitslog2 = 6;
6577 cinfo.shift1 = 6;
6578 }
6579 else
6580 cinfo.shift1 = 5;
6581 cinfo.mask = (1 << cinfo.shift1) - 1;
6582 cinfo.shift2 = maskbitslog2;
6583 cinfo.maskbits = 1 << maskbitslog2;
6584 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6585 amt = bucketcount * sizeof (unsigned long int) * 2;
6586 amt += maskwords * sizeof (bfd_vma);
6587 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6588 if (cinfo.bitmask == NULL)
6589 {
6590 free (cinfo.hashcodes);
6591 return FALSE;
6592 }
6593
6594 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6595 cinfo.indx = cinfo.counts + bucketcount;
6596 cinfo.symindx = dynsymcount - cinfo.nsyms;
6597 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6598
6599 /* Determine how often each hash bucket is used. */
6600 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6601 for (i = 0; i < cinfo.nsyms; ++i)
6602 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6603
6604 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6605 if (cinfo.counts[i] != 0)
6606 {
6607 cinfo.indx[i] = cnt;
6608 cnt += cinfo.counts[i];
6609 }
6610 BFD_ASSERT (cnt == dynsymcount);
6611 cinfo.bucketcount = bucketcount;
6612 cinfo.local_indx = cinfo.min_dynindx;
6613
6614 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6615 s->size += cinfo.maskbits / 8;
6616 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6617 if (contents == NULL)
6618 {
6619 free (cinfo.bitmask);
6620 free (cinfo.hashcodes);
6621 return FALSE;
6622 }
6623
6624 s->contents = contents;
6625 bfd_put_32 (output_bfd, bucketcount, contents);
6626 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6627 bfd_put_32 (output_bfd, maskwords, contents + 8);
6628 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6629 contents += 16 + cinfo.maskbits / 8;
6630
6631 for (i = 0; i < bucketcount; ++i)
6632 {
6633 if (cinfo.counts[i] == 0)
6634 bfd_put_32 (output_bfd, 0, contents);
6635 else
6636 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6637 contents += 4;
6638 }
6639
6640 cinfo.contents = contents;
6641
6642 /* Renumber dynamic symbols, populate .gnu.hash section. */
6643 elf_link_hash_traverse (elf_hash_table (info),
6644 elf_renumber_gnu_hash_syms, &cinfo);
6645
6646 contents = s->contents + 16;
6647 for (i = 0; i < maskwords; ++i)
6648 {
6649 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6650 contents);
6651 contents += bed->s->arch_size / 8;
6652 }
6653
6654 free (cinfo.bitmask);
6655 free (cinfo.hashcodes);
6656 }
6657 }
6658
6659 s = bfd_get_linker_section (dynobj, ".dynstr");
6660 BFD_ASSERT (s != NULL);
6661
6662 elf_finalize_dynstr (output_bfd, info);
6663
6664 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6665
6666 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6667 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6668 return FALSE;
6669 }
6670
6671 return TRUE;
6672 }
6673 \f
6674 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6675
6676 static void
6677 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6678 asection *sec)
6679 {
6680 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6681 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6682 }
6683
6684 /* Finish SHF_MERGE section merging. */
6685
6686 bfd_boolean
6687 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6688 {
6689 bfd *ibfd;
6690 asection *sec;
6691
6692 if (!is_elf_hash_table (info->hash))
6693 return FALSE;
6694
6695 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6696 if ((ibfd->flags & DYNAMIC) == 0)
6697 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6698 if ((sec->flags & SEC_MERGE) != 0
6699 && !bfd_is_abs_section (sec->output_section))
6700 {
6701 struct bfd_elf_section_data *secdata;
6702
6703 secdata = elf_section_data (sec);
6704 if (! _bfd_add_merge_section (abfd,
6705 &elf_hash_table (info)->merge_info,
6706 sec, &secdata->sec_info))
6707 return FALSE;
6708 else if (secdata->sec_info)
6709 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6710 }
6711
6712 if (elf_hash_table (info)->merge_info != NULL)
6713 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6714 merge_sections_remove_hook);
6715 return TRUE;
6716 }
6717
6718 /* Create an entry in an ELF linker hash table. */
6719
6720 struct bfd_hash_entry *
6721 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6722 struct bfd_hash_table *table,
6723 const char *string)
6724 {
6725 /* Allocate the structure if it has not already been allocated by a
6726 subclass. */
6727 if (entry == NULL)
6728 {
6729 entry = (struct bfd_hash_entry *)
6730 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6731 if (entry == NULL)
6732 return entry;
6733 }
6734
6735 /* Call the allocation method of the superclass. */
6736 entry = _bfd_link_hash_newfunc (entry, table, string);
6737 if (entry != NULL)
6738 {
6739 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6740 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6741
6742 /* Set local fields. */
6743 ret->indx = -1;
6744 ret->dynindx = -1;
6745 ret->got = htab->init_got_refcount;
6746 ret->plt = htab->init_plt_refcount;
6747 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6748 - offsetof (struct elf_link_hash_entry, size)));
6749 /* Assume that we have been called by a non-ELF symbol reader.
6750 This flag is then reset by the code which reads an ELF input
6751 file. This ensures that a symbol created by a non-ELF symbol
6752 reader will have the flag set correctly. */
6753 ret->non_elf = 1;
6754 }
6755
6756 return entry;
6757 }
6758
6759 /* Copy data from an indirect symbol to its direct symbol, hiding the
6760 old indirect symbol. Also used for copying flags to a weakdef. */
6761
6762 void
6763 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6764 struct elf_link_hash_entry *dir,
6765 struct elf_link_hash_entry *ind)
6766 {
6767 struct elf_link_hash_table *htab;
6768
6769 /* Copy down any references that we may have already seen to the
6770 symbol which just became indirect. */
6771
6772 dir->ref_dynamic |= ind->ref_dynamic;
6773 dir->ref_regular |= ind->ref_regular;
6774 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6775 dir->non_got_ref |= ind->non_got_ref;
6776 dir->needs_plt |= ind->needs_plt;
6777 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6778
6779 if (ind->root.type != bfd_link_hash_indirect)
6780 return;
6781
6782 /* Copy over the global and procedure linkage table refcount entries.
6783 These may have been already set up by a check_relocs routine. */
6784 htab = elf_hash_table (info);
6785 if (ind->got.refcount > htab->init_got_refcount.refcount)
6786 {
6787 if (dir->got.refcount < 0)
6788 dir->got.refcount = 0;
6789 dir->got.refcount += ind->got.refcount;
6790 ind->got.refcount = htab->init_got_refcount.refcount;
6791 }
6792
6793 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6794 {
6795 if (dir->plt.refcount < 0)
6796 dir->plt.refcount = 0;
6797 dir->plt.refcount += ind->plt.refcount;
6798 ind->plt.refcount = htab->init_plt_refcount.refcount;
6799 }
6800
6801 if (ind->dynindx != -1)
6802 {
6803 if (dir->dynindx != -1)
6804 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6805 dir->dynindx = ind->dynindx;
6806 dir->dynstr_index = ind->dynstr_index;
6807 ind->dynindx = -1;
6808 ind->dynstr_index = 0;
6809 }
6810 }
6811
6812 void
6813 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6814 struct elf_link_hash_entry *h,
6815 bfd_boolean force_local)
6816 {
6817 /* STT_GNU_IFUNC symbol must go through PLT. */
6818 if (h->type != STT_GNU_IFUNC)
6819 {
6820 h->plt = elf_hash_table (info)->init_plt_offset;
6821 h->needs_plt = 0;
6822 }
6823 if (force_local)
6824 {
6825 h->forced_local = 1;
6826 if (h->dynindx != -1)
6827 {
6828 h->dynindx = -1;
6829 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6830 h->dynstr_index);
6831 }
6832 }
6833 }
6834
6835 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6836 caller. */
6837
6838 bfd_boolean
6839 _bfd_elf_link_hash_table_init
6840 (struct elf_link_hash_table *table,
6841 bfd *abfd,
6842 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6843 struct bfd_hash_table *,
6844 const char *),
6845 unsigned int entsize,
6846 enum elf_target_id target_id)
6847 {
6848 bfd_boolean ret;
6849 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6850
6851 table->init_got_refcount.refcount = can_refcount - 1;
6852 table->init_plt_refcount.refcount = can_refcount - 1;
6853 table->init_got_offset.offset = -(bfd_vma) 1;
6854 table->init_plt_offset.offset = -(bfd_vma) 1;
6855 /* The first dynamic symbol is a dummy. */
6856 table->dynsymcount = 1;
6857
6858 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6859
6860 table->root.type = bfd_link_elf_hash_table;
6861 table->hash_table_id = target_id;
6862
6863 return ret;
6864 }
6865
6866 /* Create an ELF linker hash table. */
6867
6868 struct bfd_link_hash_table *
6869 _bfd_elf_link_hash_table_create (bfd *abfd)
6870 {
6871 struct elf_link_hash_table *ret;
6872 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6873
6874 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6875 if (ret == NULL)
6876 return NULL;
6877
6878 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6879 sizeof (struct elf_link_hash_entry),
6880 GENERIC_ELF_DATA))
6881 {
6882 free (ret);
6883 return NULL;
6884 }
6885
6886 return &ret->root;
6887 }
6888
6889 /* Destroy an ELF linker hash table. */
6890
6891 void
6892 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6893 {
6894 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6895 if (htab->dynstr != NULL)
6896 _bfd_elf_strtab_free (htab->dynstr);
6897 _bfd_merge_sections_free (htab->merge_info);
6898 _bfd_generic_link_hash_table_free (hash);
6899 }
6900
6901 /* This is a hook for the ELF emulation code in the generic linker to
6902 tell the backend linker what file name to use for the DT_NEEDED
6903 entry for a dynamic object. */
6904
6905 void
6906 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6907 {
6908 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6909 && bfd_get_format (abfd) == bfd_object)
6910 elf_dt_name (abfd) = name;
6911 }
6912
6913 int
6914 bfd_elf_get_dyn_lib_class (bfd *abfd)
6915 {
6916 int lib_class;
6917 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6918 && bfd_get_format (abfd) == bfd_object)
6919 lib_class = elf_dyn_lib_class (abfd);
6920 else
6921 lib_class = 0;
6922 return lib_class;
6923 }
6924
6925 void
6926 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6927 {
6928 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6929 && bfd_get_format (abfd) == bfd_object)
6930 elf_dyn_lib_class (abfd) = lib_class;
6931 }
6932
6933 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6934 the linker ELF emulation code. */
6935
6936 struct bfd_link_needed_list *
6937 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6938 struct bfd_link_info *info)
6939 {
6940 if (! is_elf_hash_table (info->hash))
6941 return NULL;
6942 return elf_hash_table (info)->needed;
6943 }
6944
6945 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6946 hook for the linker ELF emulation code. */
6947
6948 struct bfd_link_needed_list *
6949 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6950 struct bfd_link_info *info)
6951 {
6952 if (! is_elf_hash_table (info->hash))
6953 return NULL;
6954 return elf_hash_table (info)->runpath;
6955 }
6956
6957 /* Get the name actually used for a dynamic object for a link. This
6958 is the SONAME entry if there is one. Otherwise, it is the string
6959 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6960
6961 const char *
6962 bfd_elf_get_dt_soname (bfd *abfd)
6963 {
6964 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6965 && bfd_get_format (abfd) == bfd_object)
6966 return elf_dt_name (abfd);
6967 return NULL;
6968 }
6969
6970 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6971 the ELF linker emulation code. */
6972
6973 bfd_boolean
6974 bfd_elf_get_bfd_needed_list (bfd *abfd,
6975 struct bfd_link_needed_list **pneeded)
6976 {
6977 asection *s;
6978 bfd_byte *dynbuf = NULL;
6979 unsigned int elfsec;
6980 unsigned long shlink;
6981 bfd_byte *extdyn, *extdynend;
6982 size_t extdynsize;
6983 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6984
6985 *pneeded = NULL;
6986
6987 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6988 || bfd_get_format (abfd) != bfd_object)
6989 return TRUE;
6990
6991 s = bfd_get_section_by_name (abfd, ".dynamic");
6992 if (s == NULL || s->size == 0)
6993 return TRUE;
6994
6995 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6996 goto error_return;
6997
6998 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6999 if (elfsec == SHN_BAD)
7000 goto error_return;
7001
7002 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7003
7004 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7005 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7006
7007 extdyn = dynbuf;
7008 extdynend = extdyn + s->size;
7009 for (; extdyn < extdynend; extdyn += extdynsize)
7010 {
7011 Elf_Internal_Dyn dyn;
7012
7013 (*swap_dyn_in) (abfd, extdyn, &dyn);
7014
7015 if (dyn.d_tag == DT_NULL)
7016 break;
7017
7018 if (dyn.d_tag == DT_NEEDED)
7019 {
7020 const char *string;
7021 struct bfd_link_needed_list *l;
7022 unsigned int tagv = dyn.d_un.d_val;
7023 bfd_size_type amt;
7024
7025 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7026 if (string == NULL)
7027 goto error_return;
7028
7029 amt = sizeof *l;
7030 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7031 if (l == NULL)
7032 goto error_return;
7033
7034 l->by = abfd;
7035 l->name = string;
7036 l->next = *pneeded;
7037 *pneeded = l;
7038 }
7039 }
7040
7041 free (dynbuf);
7042
7043 return TRUE;
7044
7045 error_return:
7046 if (dynbuf != NULL)
7047 free (dynbuf);
7048 return FALSE;
7049 }
7050
7051 struct elf_symbuf_symbol
7052 {
7053 unsigned long st_name; /* Symbol name, index in string tbl */
7054 unsigned char st_info; /* Type and binding attributes */
7055 unsigned char st_other; /* Visibilty, and target specific */
7056 };
7057
7058 struct elf_symbuf_head
7059 {
7060 struct elf_symbuf_symbol *ssym;
7061 bfd_size_type count;
7062 unsigned int st_shndx;
7063 };
7064
7065 struct elf_symbol
7066 {
7067 union
7068 {
7069 Elf_Internal_Sym *isym;
7070 struct elf_symbuf_symbol *ssym;
7071 } u;
7072 const char *name;
7073 };
7074
7075 /* Sort references to symbols by ascending section number. */
7076
7077 static int
7078 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7079 {
7080 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7081 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7082
7083 return s1->st_shndx - s2->st_shndx;
7084 }
7085
7086 static int
7087 elf_sym_name_compare (const void *arg1, const void *arg2)
7088 {
7089 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7090 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7091 return strcmp (s1->name, s2->name);
7092 }
7093
7094 static struct elf_symbuf_head *
7095 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7096 {
7097 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7098 struct elf_symbuf_symbol *ssym;
7099 struct elf_symbuf_head *ssymbuf, *ssymhead;
7100 bfd_size_type i, shndx_count, total_size;
7101
7102 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7103 if (indbuf == NULL)
7104 return NULL;
7105
7106 for (ind = indbuf, i = 0; i < symcount; i++)
7107 if (isymbuf[i].st_shndx != SHN_UNDEF)
7108 *ind++ = &isymbuf[i];
7109 indbufend = ind;
7110
7111 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7112 elf_sort_elf_symbol);
7113
7114 shndx_count = 0;
7115 if (indbufend > indbuf)
7116 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7117 if (ind[0]->st_shndx != ind[1]->st_shndx)
7118 shndx_count++;
7119
7120 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7121 + (indbufend - indbuf) * sizeof (*ssym));
7122 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7123 if (ssymbuf == NULL)
7124 {
7125 free (indbuf);
7126 return NULL;
7127 }
7128
7129 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7130 ssymbuf->ssym = NULL;
7131 ssymbuf->count = shndx_count;
7132 ssymbuf->st_shndx = 0;
7133 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7134 {
7135 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7136 {
7137 ssymhead++;
7138 ssymhead->ssym = ssym;
7139 ssymhead->count = 0;
7140 ssymhead->st_shndx = (*ind)->st_shndx;
7141 }
7142 ssym->st_name = (*ind)->st_name;
7143 ssym->st_info = (*ind)->st_info;
7144 ssym->st_other = (*ind)->st_other;
7145 ssymhead->count++;
7146 }
7147 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7148 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7149 == total_size));
7150
7151 free (indbuf);
7152 return ssymbuf;
7153 }
7154
7155 /* Check if 2 sections define the same set of local and global
7156 symbols. */
7157
7158 static bfd_boolean
7159 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7160 struct bfd_link_info *info)
7161 {
7162 bfd *bfd1, *bfd2;
7163 const struct elf_backend_data *bed1, *bed2;
7164 Elf_Internal_Shdr *hdr1, *hdr2;
7165 bfd_size_type symcount1, symcount2;
7166 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7167 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7168 Elf_Internal_Sym *isym, *isymend;
7169 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7170 bfd_size_type count1, count2, i;
7171 unsigned int shndx1, shndx2;
7172 bfd_boolean result;
7173
7174 bfd1 = sec1->owner;
7175 bfd2 = sec2->owner;
7176
7177 /* Both sections have to be in ELF. */
7178 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7179 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7180 return FALSE;
7181
7182 if (elf_section_type (sec1) != elf_section_type (sec2))
7183 return FALSE;
7184
7185 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7186 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7187 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7188 return FALSE;
7189
7190 bed1 = get_elf_backend_data (bfd1);
7191 bed2 = get_elf_backend_data (bfd2);
7192 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7193 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7194 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7195 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7196
7197 if (symcount1 == 0 || symcount2 == 0)
7198 return FALSE;
7199
7200 result = FALSE;
7201 isymbuf1 = NULL;
7202 isymbuf2 = NULL;
7203 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7204 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7205
7206 if (ssymbuf1 == NULL)
7207 {
7208 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7209 NULL, NULL, NULL);
7210 if (isymbuf1 == NULL)
7211 goto done;
7212
7213 if (!info->reduce_memory_overheads)
7214 elf_tdata (bfd1)->symbuf = ssymbuf1
7215 = elf_create_symbuf (symcount1, isymbuf1);
7216 }
7217
7218 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7219 {
7220 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7221 NULL, NULL, NULL);
7222 if (isymbuf2 == NULL)
7223 goto done;
7224
7225 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7226 elf_tdata (bfd2)->symbuf = ssymbuf2
7227 = elf_create_symbuf (symcount2, isymbuf2);
7228 }
7229
7230 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7231 {
7232 /* Optimized faster version. */
7233 bfd_size_type lo, hi, mid;
7234 struct elf_symbol *symp;
7235 struct elf_symbuf_symbol *ssym, *ssymend;
7236
7237 lo = 0;
7238 hi = ssymbuf1->count;
7239 ssymbuf1++;
7240 count1 = 0;
7241 while (lo < hi)
7242 {
7243 mid = (lo + hi) / 2;
7244 if (shndx1 < ssymbuf1[mid].st_shndx)
7245 hi = mid;
7246 else if (shndx1 > ssymbuf1[mid].st_shndx)
7247 lo = mid + 1;
7248 else
7249 {
7250 count1 = ssymbuf1[mid].count;
7251 ssymbuf1 += mid;
7252 break;
7253 }
7254 }
7255
7256 lo = 0;
7257 hi = ssymbuf2->count;
7258 ssymbuf2++;
7259 count2 = 0;
7260 while (lo < hi)
7261 {
7262 mid = (lo + hi) / 2;
7263 if (shndx2 < ssymbuf2[mid].st_shndx)
7264 hi = mid;
7265 else if (shndx2 > ssymbuf2[mid].st_shndx)
7266 lo = mid + 1;
7267 else
7268 {
7269 count2 = ssymbuf2[mid].count;
7270 ssymbuf2 += mid;
7271 break;
7272 }
7273 }
7274
7275 if (count1 == 0 || count2 == 0 || count1 != count2)
7276 goto done;
7277
7278 symtable1 = (struct elf_symbol *)
7279 bfd_malloc (count1 * sizeof (struct elf_symbol));
7280 symtable2 = (struct elf_symbol *)
7281 bfd_malloc (count2 * sizeof (struct elf_symbol));
7282 if (symtable1 == NULL || symtable2 == NULL)
7283 goto done;
7284
7285 symp = symtable1;
7286 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7287 ssym < ssymend; ssym++, symp++)
7288 {
7289 symp->u.ssym = ssym;
7290 symp->name = bfd_elf_string_from_elf_section (bfd1,
7291 hdr1->sh_link,
7292 ssym->st_name);
7293 }
7294
7295 symp = symtable2;
7296 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7297 ssym < ssymend; ssym++, symp++)
7298 {
7299 symp->u.ssym = ssym;
7300 symp->name = bfd_elf_string_from_elf_section (bfd2,
7301 hdr2->sh_link,
7302 ssym->st_name);
7303 }
7304
7305 /* Sort symbol by name. */
7306 qsort (symtable1, count1, sizeof (struct elf_symbol),
7307 elf_sym_name_compare);
7308 qsort (symtable2, count1, sizeof (struct elf_symbol),
7309 elf_sym_name_compare);
7310
7311 for (i = 0; i < count1; i++)
7312 /* Two symbols must have the same binding, type and name. */
7313 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7314 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7315 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7316 goto done;
7317
7318 result = TRUE;
7319 goto done;
7320 }
7321
7322 symtable1 = (struct elf_symbol *)
7323 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7324 symtable2 = (struct elf_symbol *)
7325 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7326 if (symtable1 == NULL || symtable2 == NULL)
7327 goto done;
7328
7329 /* Count definitions in the section. */
7330 count1 = 0;
7331 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7332 if (isym->st_shndx == shndx1)
7333 symtable1[count1++].u.isym = isym;
7334
7335 count2 = 0;
7336 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7337 if (isym->st_shndx == shndx2)
7338 symtable2[count2++].u.isym = isym;
7339
7340 if (count1 == 0 || count2 == 0 || count1 != count2)
7341 goto done;
7342
7343 for (i = 0; i < count1; i++)
7344 symtable1[i].name
7345 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7346 symtable1[i].u.isym->st_name);
7347
7348 for (i = 0; i < count2; i++)
7349 symtable2[i].name
7350 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7351 symtable2[i].u.isym->st_name);
7352
7353 /* Sort symbol by name. */
7354 qsort (symtable1, count1, sizeof (struct elf_symbol),
7355 elf_sym_name_compare);
7356 qsort (symtable2, count1, sizeof (struct elf_symbol),
7357 elf_sym_name_compare);
7358
7359 for (i = 0; i < count1; i++)
7360 /* Two symbols must have the same binding, type and name. */
7361 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7362 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7363 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7364 goto done;
7365
7366 result = TRUE;
7367
7368 done:
7369 if (symtable1)
7370 free (symtable1);
7371 if (symtable2)
7372 free (symtable2);
7373 if (isymbuf1)
7374 free (isymbuf1);
7375 if (isymbuf2)
7376 free (isymbuf2);
7377
7378 return result;
7379 }
7380
7381 /* Return TRUE if 2 section types are compatible. */
7382
7383 bfd_boolean
7384 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7385 bfd *bbfd, const asection *bsec)
7386 {
7387 if (asec == NULL
7388 || bsec == NULL
7389 || abfd->xvec->flavour != bfd_target_elf_flavour
7390 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7391 return TRUE;
7392
7393 return elf_section_type (asec) == elf_section_type (bsec);
7394 }
7395 \f
7396 /* Final phase of ELF linker. */
7397
7398 /* A structure we use to avoid passing large numbers of arguments. */
7399
7400 struct elf_final_link_info
7401 {
7402 /* General link information. */
7403 struct bfd_link_info *info;
7404 /* Output BFD. */
7405 bfd *output_bfd;
7406 /* Symbol string table. */
7407 struct bfd_strtab_hash *symstrtab;
7408 /* .dynsym section. */
7409 asection *dynsym_sec;
7410 /* .hash section. */
7411 asection *hash_sec;
7412 /* symbol version section (.gnu.version). */
7413 asection *symver_sec;
7414 /* Buffer large enough to hold contents of any section. */
7415 bfd_byte *contents;
7416 /* Buffer large enough to hold external relocs of any section. */
7417 void *external_relocs;
7418 /* Buffer large enough to hold internal relocs of any section. */
7419 Elf_Internal_Rela *internal_relocs;
7420 /* Buffer large enough to hold external local symbols of any input
7421 BFD. */
7422 bfd_byte *external_syms;
7423 /* And a buffer for symbol section indices. */
7424 Elf_External_Sym_Shndx *locsym_shndx;
7425 /* Buffer large enough to hold internal local symbols of any input
7426 BFD. */
7427 Elf_Internal_Sym *internal_syms;
7428 /* Array large enough to hold a symbol index for each local symbol
7429 of any input BFD. */
7430 long *indices;
7431 /* Array large enough to hold a section pointer for each local
7432 symbol of any input BFD. */
7433 asection **sections;
7434 /* Buffer to hold swapped out symbols. */
7435 bfd_byte *symbuf;
7436 /* And one for symbol section indices. */
7437 Elf_External_Sym_Shndx *symshndxbuf;
7438 /* Number of swapped out symbols in buffer. */
7439 size_t symbuf_count;
7440 /* Number of symbols which fit in symbuf. */
7441 size_t symbuf_size;
7442 /* And same for symshndxbuf. */
7443 size_t shndxbuf_size;
7444 /* Number of STT_FILE syms seen. */
7445 size_t filesym_count;
7446 };
7447
7448 /* This struct is used to pass information to elf_link_output_extsym. */
7449
7450 struct elf_outext_info
7451 {
7452 bfd_boolean failed;
7453 bfd_boolean localsyms;
7454 bfd_boolean need_second_pass;
7455 bfd_boolean second_pass;
7456 struct elf_final_link_info *flinfo;
7457 };
7458
7459
7460 /* Support for evaluating a complex relocation.
7461
7462 Complex relocations are generalized, self-describing relocations. The
7463 implementation of them consists of two parts: complex symbols, and the
7464 relocations themselves.
7465
7466 The relocations are use a reserved elf-wide relocation type code (R_RELC
7467 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7468 information (start bit, end bit, word width, etc) into the addend. This
7469 information is extracted from CGEN-generated operand tables within gas.
7470
7471 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7472 internal) representing prefix-notation expressions, including but not
7473 limited to those sorts of expressions normally encoded as addends in the
7474 addend field. The symbol mangling format is:
7475
7476 <node> := <literal>
7477 | <unary-operator> ':' <node>
7478 | <binary-operator> ':' <node> ':' <node>
7479 ;
7480
7481 <literal> := 's' <digits=N> ':' <N character symbol name>
7482 | 'S' <digits=N> ':' <N character section name>
7483 | '#' <hexdigits>
7484 ;
7485
7486 <binary-operator> := as in C
7487 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7488
7489 static void
7490 set_symbol_value (bfd *bfd_with_globals,
7491 Elf_Internal_Sym *isymbuf,
7492 size_t locsymcount,
7493 size_t symidx,
7494 bfd_vma val)
7495 {
7496 struct elf_link_hash_entry **sym_hashes;
7497 struct elf_link_hash_entry *h;
7498 size_t extsymoff = locsymcount;
7499
7500 if (symidx < locsymcount)
7501 {
7502 Elf_Internal_Sym *sym;
7503
7504 sym = isymbuf + symidx;
7505 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7506 {
7507 /* It is a local symbol: move it to the
7508 "absolute" section and give it a value. */
7509 sym->st_shndx = SHN_ABS;
7510 sym->st_value = val;
7511 return;
7512 }
7513 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7514 extsymoff = 0;
7515 }
7516
7517 /* It is a global symbol: set its link type
7518 to "defined" and give it a value. */
7519
7520 sym_hashes = elf_sym_hashes (bfd_with_globals);
7521 h = sym_hashes [symidx - extsymoff];
7522 while (h->root.type == bfd_link_hash_indirect
7523 || h->root.type == bfd_link_hash_warning)
7524 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7525 h->root.type = bfd_link_hash_defined;
7526 h->root.u.def.value = val;
7527 h->root.u.def.section = bfd_abs_section_ptr;
7528 }
7529
7530 static bfd_boolean
7531 resolve_symbol (const char *name,
7532 bfd *input_bfd,
7533 struct elf_final_link_info *flinfo,
7534 bfd_vma *result,
7535 Elf_Internal_Sym *isymbuf,
7536 size_t locsymcount)
7537 {
7538 Elf_Internal_Sym *sym;
7539 struct bfd_link_hash_entry *global_entry;
7540 const char *candidate = NULL;
7541 Elf_Internal_Shdr *symtab_hdr;
7542 size_t i;
7543
7544 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7545
7546 for (i = 0; i < locsymcount; ++ i)
7547 {
7548 sym = isymbuf + i;
7549
7550 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7551 continue;
7552
7553 candidate = bfd_elf_string_from_elf_section (input_bfd,
7554 symtab_hdr->sh_link,
7555 sym->st_name);
7556 #ifdef DEBUG
7557 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7558 name, candidate, (unsigned long) sym->st_value);
7559 #endif
7560 if (candidate && strcmp (candidate, name) == 0)
7561 {
7562 asection *sec = flinfo->sections [i];
7563
7564 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7565 *result += sec->output_offset + sec->output_section->vma;
7566 #ifdef DEBUG
7567 printf ("Found symbol with value %8.8lx\n",
7568 (unsigned long) *result);
7569 #endif
7570 return TRUE;
7571 }
7572 }
7573
7574 /* Hmm, haven't found it yet. perhaps it is a global. */
7575 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7576 FALSE, FALSE, TRUE);
7577 if (!global_entry)
7578 return FALSE;
7579
7580 if (global_entry->type == bfd_link_hash_defined
7581 || global_entry->type == bfd_link_hash_defweak)
7582 {
7583 *result = (global_entry->u.def.value
7584 + global_entry->u.def.section->output_section->vma
7585 + global_entry->u.def.section->output_offset);
7586 #ifdef DEBUG
7587 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7588 global_entry->root.string, (unsigned long) *result);
7589 #endif
7590 return TRUE;
7591 }
7592
7593 return FALSE;
7594 }
7595
7596 static bfd_boolean
7597 resolve_section (const char *name,
7598 asection *sections,
7599 bfd_vma *result)
7600 {
7601 asection *curr;
7602 unsigned int len;
7603
7604 for (curr = sections; curr; curr = curr->next)
7605 if (strcmp (curr->name, name) == 0)
7606 {
7607 *result = curr->vma;
7608 return TRUE;
7609 }
7610
7611 /* Hmm. still haven't found it. try pseudo-section names. */
7612 for (curr = sections; curr; curr = curr->next)
7613 {
7614 len = strlen (curr->name);
7615 if (len > strlen (name))
7616 continue;
7617
7618 if (strncmp (curr->name, name, len) == 0)
7619 {
7620 if (strncmp (".end", name + len, 4) == 0)
7621 {
7622 *result = curr->vma + curr->size;
7623 return TRUE;
7624 }
7625
7626 /* Insert more pseudo-section names here, if you like. */
7627 }
7628 }
7629
7630 return FALSE;
7631 }
7632
7633 static void
7634 undefined_reference (const char *reftype, const char *name)
7635 {
7636 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7637 reftype, name);
7638 }
7639
7640 static bfd_boolean
7641 eval_symbol (bfd_vma *result,
7642 const char **symp,
7643 bfd *input_bfd,
7644 struct elf_final_link_info *flinfo,
7645 bfd_vma dot,
7646 Elf_Internal_Sym *isymbuf,
7647 size_t locsymcount,
7648 int signed_p)
7649 {
7650 size_t len;
7651 size_t symlen;
7652 bfd_vma a;
7653 bfd_vma b;
7654 char symbuf[4096];
7655 const char *sym = *symp;
7656 const char *symend;
7657 bfd_boolean symbol_is_section = FALSE;
7658
7659 len = strlen (sym);
7660 symend = sym + len;
7661
7662 if (len < 1 || len > sizeof (symbuf))
7663 {
7664 bfd_set_error (bfd_error_invalid_operation);
7665 return FALSE;
7666 }
7667
7668 switch (* sym)
7669 {
7670 case '.':
7671 *result = dot;
7672 *symp = sym + 1;
7673 return TRUE;
7674
7675 case '#':
7676 ++sym;
7677 *result = strtoul (sym, (char **) symp, 16);
7678 return TRUE;
7679
7680 case 'S':
7681 symbol_is_section = TRUE;
7682 case 's':
7683 ++sym;
7684 symlen = strtol (sym, (char **) symp, 10);
7685 sym = *symp + 1; /* Skip the trailing ':'. */
7686
7687 if (symend < sym || symlen + 1 > sizeof (symbuf))
7688 {
7689 bfd_set_error (bfd_error_invalid_operation);
7690 return FALSE;
7691 }
7692
7693 memcpy (symbuf, sym, symlen);
7694 symbuf[symlen] = '\0';
7695 *symp = sym + symlen;
7696
7697 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7698 the symbol as a section, or vice-versa. so we're pretty liberal in our
7699 interpretation here; section means "try section first", not "must be a
7700 section", and likewise with symbol. */
7701
7702 if (symbol_is_section)
7703 {
7704 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7705 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7706 isymbuf, locsymcount))
7707 {
7708 undefined_reference ("section", symbuf);
7709 return FALSE;
7710 }
7711 }
7712 else
7713 {
7714 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7715 isymbuf, locsymcount)
7716 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7717 result))
7718 {
7719 undefined_reference ("symbol", symbuf);
7720 return FALSE;
7721 }
7722 }
7723
7724 return TRUE;
7725
7726 /* All that remains are operators. */
7727
7728 #define UNARY_OP(op) \
7729 if (strncmp (sym, #op, strlen (#op)) == 0) \
7730 { \
7731 sym += strlen (#op); \
7732 if (*sym == ':') \
7733 ++sym; \
7734 *symp = sym; \
7735 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7736 isymbuf, locsymcount, signed_p)) \
7737 return FALSE; \
7738 if (signed_p) \
7739 *result = op ((bfd_signed_vma) a); \
7740 else \
7741 *result = op a; \
7742 return TRUE; \
7743 }
7744
7745 #define BINARY_OP(op) \
7746 if (strncmp (sym, #op, strlen (#op)) == 0) \
7747 { \
7748 sym += strlen (#op); \
7749 if (*sym == ':') \
7750 ++sym; \
7751 *symp = sym; \
7752 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7753 isymbuf, locsymcount, signed_p)) \
7754 return FALSE; \
7755 ++*symp; \
7756 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7757 isymbuf, locsymcount, signed_p)) \
7758 return FALSE; \
7759 if (signed_p) \
7760 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7761 else \
7762 *result = a op b; \
7763 return TRUE; \
7764 }
7765
7766 default:
7767 UNARY_OP (0-);
7768 BINARY_OP (<<);
7769 BINARY_OP (>>);
7770 BINARY_OP (==);
7771 BINARY_OP (!=);
7772 BINARY_OP (<=);
7773 BINARY_OP (>=);
7774 BINARY_OP (&&);
7775 BINARY_OP (||);
7776 UNARY_OP (~);
7777 UNARY_OP (!);
7778 BINARY_OP (*);
7779 BINARY_OP (/);
7780 BINARY_OP (%);
7781 BINARY_OP (^);
7782 BINARY_OP (|);
7783 BINARY_OP (&);
7784 BINARY_OP (+);
7785 BINARY_OP (-);
7786 BINARY_OP (<);
7787 BINARY_OP (>);
7788 #undef UNARY_OP
7789 #undef BINARY_OP
7790 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7791 bfd_set_error (bfd_error_invalid_operation);
7792 return FALSE;
7793 }
7794 }
7795
7796 static void
7797 put_value (bfd_vma size,
7798 unsigned long chunksz,
7799 bfd *input_bfd,
7800 bfd_vma x,
7801 bfd_byte *location)
7802 {
7803 location += (size - chunksz);
7804
7805 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7806 {
7807 switch (chunksz)
7808 {
7809 default:
7810 case 0:
7811 abort ();
7812 case 1:
7813 bfd_put_8 (input_bfd, x, location);
7814 break;
7815 case 2:
7816 bfd_put_16 (input_bfd, x, location);
7817 break;
7818 case 4:
7819 bfd_put_32 (input_bfd, x, location);
7820 break;
7821 case 8:
7822 #ifdef BFD64
7823 bfd_put_64 (input_bfd, x, location);
7824 #else
7825 abort ();
7826 #endif
7827 break;
7828 }
7829 }
7830 }
7831
7832 static bfd_vma
7833 get_value (bfd_vma size,
7834 unsigned long chunksz,
7835 bfd *input_bfd,
7836 bfd_byte *location)
7837 {
7838 int shift;
7839 bfd_vma x = 0;
7840
7841 /* Sanity checks. */
7842 BFD_ASSERT (chunksz <= sizeof (x)
7843 && size >= chunksz
7844 && chunksz != 0
7845 && (size % chunksz) == 0
7846 && input_bfd != NULL
7847 && location != NULL);
7848
7849 if (chunksz == sizeof (x))
7850 {
7851 BFD_ASSERT (size == chunksz);
7852
7853 /* Make sure that we do not perform an undefined shift operation.
7854 We know that size == chunksz so there will only be one iteration
7855 of the loop below. */
7856 shift = 0;
7857 }
7858 else
7859 shift = 8 * chunksz;
7860
7861 for (; size; size -= chunksz, location += chunksz)
7862 {
7863 switch (chunksz)
7864 {
7865 case 1:
7866 x = (x << shift) | bfd_get_8 (input_bfd, location);
7867 break;
7868 case 2:
7869 x = (x << shift) | bfd_get_16 (input_bfd, location);
7870 break;
7871 case 4:
7872 x = (x << shift) | bfd_get_32 (input_bfd, location);
7873 break;
7874 #ifdef BFD64
7875 case 8:
7876 x = (x << shift) | bfd_get_64 (input_bfd, location);
7877 break;
7878 #endif
7879 default:
7880 abort ();
7881 }
7882 }
7883 return x;
7884 }
7885
7886 static void
7887 decode_complex_addend (unsigned long *start, /* in bits */
7888 unsigned long *oplen, /* in bits */
7889 unsigned long *len, /* in bits */
7890 unsigned long *wordsz, /* in bytes */
7891 unsigned long *chunksz, /* in bytes */
7892 unsigned long *lsb0_p,
7893 unsigned long *signed_p,
7894 unsigned long *trunc_p,
7895 unsigned long encoded)
7896 {
7897 * start = encoded & 0x3F;
7898 * len = (encoded >> 6) & 0x3F;
7899 * oplen = (encoded >> 12) & 0x3F;
7900 * wordsz = (encoded >> 18) & 0xF;
7901 * chunksz = (encoded >> 22) & 0xF;
7902 * lsb0_p = (encoded >> 27) & 1;
7903 * signed_p = (encoded >> 28) & 1;
7904 * trunc_p = (encoded >> 29) & 1;
7905 }
7906
7907 bfd_reloc_status_type
7908 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7909 asection *input_section ATTRIBUTE_UNUSED,
7910 bfd_byte *contents,
7911 Elf_Internal_Rela *rel,
7912 bfd_vma relocation)
7913 {
7914 bfd_vma shift, x, mask;
7915 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7916 bfd_reloc_status_type r;
7917
7918 /* Perform this reloc, since it is complex.
7919 (this is not to say that it necessarily refers to a complex
7920 symbol; merely that it is a self-describing CGEN based reloc.
7921 i.e. the addend has the complete reloc information (bit start, end,
7922 word size, etc) encoded within it.). */
7923
7924 decode_complex_addend (&start, &oplen, &len, &wordsz,
7925 &chunksz, &lsb0_p, &signed_p,
7926 &trunc_p, rel->r_addend);
7927
7928 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7929
7930 if (lsb0_p)
7931 shift = (start + 1) - len;
7932 else
7933 shift = (8 * wordsz) - (start + len);
7934
7935 /* FIXME: octets_per_byte. */
7936 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7937
7938 #ifdef DEBUG
7939 printf ("Doing complex reloc: "
7940 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7941 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7942 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7943 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7944 oplen, (unsigned long) x, (unsigned long) mask,
7945 (unsigned long) relocation);
7946 #endif
7947
7948 r = bfd_reloc_ok;
7949 if (! trunc_p)
7950 /* Now do an overflow check. */
7951 r = bfd_check_overflow ((signed_p
7952 ? complain_overflow_signed
7953 : complain_overflow_unsigned),
7954 len, 0, (8 * wordsz),
7955 relocation);
7956
7957 /* Do the deed. */
7958 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7959
7960 #ifdef DEBUG
7961 printf (" relocation: %8.8lx\n"
7962 " shifted mask: %8.8lx\n"
7963 " shifted/masked reloc: %8.8lx\n"
7964 " result: %8.8lx\n",
7965 (unsigned long) relocation, (unsigned long) (mask << shift),
7966 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7967 #endif
7968 /* FIXME: octets_per_byte. */
7969 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7970 return r;
7971 }
7972
7973 /* When performing a relocatable link, the input relocations are
7974 preserved. But, if they reference global symbols, the indices
7975 referenced must be updated. Update all the relocations found in
7976 RELDATA. */
7977
7978 static void
7979 elf_link_adjust_relocs (bfd *abfd,
7980 struct bfd_elf_section_reloc_data *reldata)
7981 {
7982 unsigned int i;
7983 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7984 bfd_byte *erela;
7985 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7986 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7987 bfd_vma r_type_mask;
7988 int r_sym_shift;
7989 unsigned int count = reldata->count;
7990 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7991
7992 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7993 {
7994 swap_in = bed->s->swap_reloc_in;
7995 swap_out = bed->s->swap_reloc_out;
7996 }
7997 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7998 {
7999 swap_in = bed->s->swap_reloca_in;
8000 swap_out = bed->s->swap_reloca_out;
8001 }
8002 else
8003 abort ();
8004
8005 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8006 abort ();
8007
8008 if (bed->s->arch_size == 32)
8009 {
8010 r_type_mask = 0xff;
8011 r_sym_shift = 8;
8012 }
8013 else
8014 {
8015 r_type_mask = 0xffffffff;
8016 r_sym_shift = 32;
8017 }
8018
8019 erela = reldata->hdr->contents;
8020 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8021 {
8022 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8023 unsigned int j;
8024
8025 if (*rel_hash == NULL)
8026 continue;
8027
8028 BFD_ASSERT ((*rel_hash)->indx >= 0);
8029
8030 (*swap_in) (abfd, erela, irela);
8031 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8032 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8033 | (irela[j].r_info & r_type_mask));
8034 (*swap_out) (abfd, irela, erela);
8035 }
8036 }
8037
8038 struct elf_link_sort_rela
8039 {
8040 union {
8041 bfd_vma offset;
8042 bfd_vma sym_mask;
8043 } u;
8044 enum elf_reloc_type_class type;
8045 /* We use this as an array of size int_rels_per_ext_rel. */
8046 Elf_Internal_Rela rela[1];
8047 };
8048
8049 static int
8050 elf_link_sort_cmp1 (const void *A, const void *B)
8051 {
8052 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8053 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8054 int relativea, relativeb;
8055
8056 relativea = a->type == reloc_class_relative;
8057 relativeb = b->type == reloc_class_relative;
8058
8059 if (relativea < relativeb)
8060 return 1;
8061 if (relativea > relativeb)
8062 return -1;
8063 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8064 return -1;
8065 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8066 return 1;
8067 if (a->rela->r_offset < b->rela->r_offset)
8068 return -1;
8069 if (a->rela->r_offset > b->rela->r_offset)
8070 return 1;
8071 return 0;
8072 }
8073
8074 static int
8075 elf_link_sort_cmp2 (const void *A, const void *B)
8076 {
8077 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8078 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8079
8080 if (a->type < b->type)
8081 return -1;
8082 if (a->type > b->type)
8083 return 1;
8084 if (a->u.offset < b->u.offset)
8085 return -1;
8086 if (a->u.offset > b->u.offset)
8087 return 1;
8088 if (a->rela->r_offset < b->rela->r_offset)
8089 return -1;
8090 if (a->rela->r_offset > b->rela->r_offset)
8091 return 1;
8092 return 0;
8093 }
8094
8095 static size_t
8096 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8097 {
8098 asection *dynamic_relocs;
8099 asection *rela_dyn;
8100 asection *rel_dyn;
8101 bfd_size_type count, size;
8102 size_t i, ret, sort_elt, ext_size;
8103 bfd_byte *sort, *s_non_relative, *p;
8104 struct elf_link_sort_rela *sq;
8105 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8106 int i2e = bed->s->int_rels_per_ext_rel;
8107 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8108 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8109 struct bfd_link_order *lo;
8110 bfd_vma r_sym_mask;
8111 bfd_boolean use_rela;
8112
8113 /* Find a dynamic reloc section. */
8114 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8115 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8116 if (rela_dyn != NULL && rela_dyn->size > 0
8117 && rel_dyn != NULL && rel_dyn->size > 0)
8118 {
8119 bfd_boolean use_rela_initialised = FALSE;
8120
8121 /* This is just here to stop gcc from complaining.
8122 It's initialization checking code is not perfect. */
8123 use_rela = TRUE;
8124
8125 /* Both sections are present. Examine the sizes
8126 of the indirect sections to help us choose. */
8127 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8128 if (lo->type == bfd_indirect_link_order)
8129 {
8130 asection *o = lo->u.indirect.section;
8131
8132 if ((o->size % bed->s->sizeof_rela) == 0)
8133 {
8134 if ((o->size % bed->s->sizeof_rel) == 0)
8135 /* Section size is divisible by both rel and rela sizes.
8136 It is of no help to us. */
8137 ;
8138 else
8139 {
8140 /* Section size is only divisible by rela. */
8141 if (use_rela_initialised && (use_rela == FALSE))
8142 {
8143 _bfd_error_handler
8144 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8145 bfd_set_error (bfd_error_invalid_operation);
8146 return 0;
8147 }
8148 else
8149 {
8150 use_rela = TRUE;
8151 use_rela_initialised = TRUE;
8152 }
8153 }
8154 }
8155 else if ((o->size % bed->s->sizeof_rel) == 0)
8156 {
8157 /* Section size is only divisible by rel. */
8158 if (use_rela_initialised && (use_rela == TRUE))
8159 {
8160 _bfd_error_handler
8161 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8162 bfd_set_error (bfd_error_invalid_operation);
8163 return 0;
8164 }
8165 else
8166 {
8167 use_rela = FALSE;
8168 use_rela_initialised = TRUE;
8169 }
8170 }
8171 else
8172 {
8173 /* The section size is not divisible by either - something is wrong. */
8174 _bfd_error_handler
8175 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8176 bfd_set_error (bfd_error_invalid_operation);
8177 return 0;
8178 }
8179 }
8180
8181 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8182 if (lo->type == bfd_indirect_link_order)
8183 {
8184 asection *o = lo->u.indirect.section;
8185
8186 if ((o->size % bed->s->sizeof_rela) == 0)
8187 {
8188 if ((o->size % bed->s->sizeof_rel) == 0)
8189 /* Section size is divisible by both rel and rela sizes.
8190 It is of no help to us. */
8191 ;
8192 else
8193 {
8194 /* Section size is only divisible by rela. */
8195 if (use_rela_initialised && (use_rela == FALSE))
8196 {
8197 _bfd_error_handler
8198 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8199 bfd_set_error (bfd_error_invalid_operation);
8200 return 0;
8201 }
8202 else
8203 {
8204 use_rela = TRUE;
8205 use_rela_initialised = TRUE;
8206 }
8207 }
8208 }
8209 else if ((o->size % bed->s->sizeof_rel) == 0)
8210 {
8211 /* Section size is only divisible by rel. */
8212 if (use_rela_initialised && (use_rela == TRUE))
8213 {
8214 _bfd_error_handler
8215 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8216 bfd_set_error (bfd_error_invalid_operation);
8217 return 0;
8218 }
8219 else
8220 {
8221 use_rela = FALSE;
8222 use_rela_initialised = TRUE;
8223 }
8224 }
8225 else
8226 {
8227 /* The section size is not divisible by either - something is wrong. */
8228 _bfd_error_handler
8229 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8230 bfd_set_error (bfd_error_invalid_operation);
8231 return 0;
8232 }
8233 }
8234
8235 if (! use_rela_initialised)
8236 /* Make a guess. */
8237 use_rela = TRUE;
8238 }
8239 else if (rela_dyn != NULL && rela_dyn->size > 0)
8240 use_rela = TRUE;
8241 else if (rel_dyn != NULL && rel_dyn->size > 0)
8242 use_rela = FALSE;
8243 else
8244 return 0;
8245
8246 if (use_rela)
8247 {
8248 dynamic_relocs = rela_dyn;
8249 ext_size = bed->s->sizeof_rela;
8250 swap_in = bed->s->swap_reloca_in;
8251 swap_out = bed->s->swap_reloca_out;
8252 }
8253 else
8254 {
8255 dynamic_relocs = rel_dyn;
8256 ext_size = bed->s->sizeof_rel;
8257 swap_in = bed->s->swap_reloc_in;
8258 swap_out = bed->s->swap_reloc_out;
8259 }
8260
8261 size = 0;
8262 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8263 if (lo->type == bfd_indirect_link_order)
8264 size += lo->u.indirect.section->size;
8265
8266 if (size != dynamic_relocs->size)
8267 return 0;
8268
8269 sort_elt = (sizeof (struct elf_link_sort_rela)
8270 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8271
8272 count = dynamic_relocs->size / ext_size;
8273 if (count == 0)
8274 return 0;
8275 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8276
8277 if (sort == NULL)
8278 {
8279 (*info->callbacks->warning)
8280 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8281 return 0;
8282 }
8283
8284 if (bed->s->arch_size == 32)
8285 r_sym_mask = ~(bfd_vma) 0xff;
8286 else
8287 r_sym_mask = ~(bfd_vma) 0xffffffff;
8288
8289 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8290 if (lo->type == bfd_indirect_link_order)
8291 {
8292 bfd_byte *erel, *erelend;
8293 asection *o = lo->u.indirect.section;
8294
8295 if (o->contents == NULL && o->size != 0)
8296 {
8297 /* This is a reloc section that is being handled as a normal
8298 section. See bfd_section_from_shdr. We can't combine
8299 relocs in this case. */
8300 free (sort);
8301 return 0;
8302 }
8303 erel = o->contents;
8304 erelend = o->contents + o->size;
8305 /* FIXME: octets_per_byte. */
8306 p = sort + o->output_offset / ext_size * sort_elt;
8307
8308 while (erel < erelend)
8309 {
8310 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8311
8312 (*swap_in) (abfd, erel, s->rela);
8313 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8314 s->u.sym_mask = r_sym_mask;
8315 p += sort_elt;
8316 erel += ext_size;
8317 }
8318 }
8319
8320 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8321
8322 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8323 {
8324 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8325 if (s->type != reloc_class_relative)
8326 break;
8327 }
8328 ret = i;
8329 s_non_relative = p;
8330
8331 sq = (struct elf_link_sort_rela *) s_non_relative;
8332 for (; i < count; i++, p += sort_elt)
8333 {
8334 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8335 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8336 sq = sp;
8337 sp->u.offset = sq->rela->r_offset;
8338 }
8339
8340 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8341
8342 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8343 if (lo->type == bfd_indirect_link_order)
8344 {
8345 bfd_byte *erel, *erelend;
8346 asection *o = lo->u.indirect.section;
8347
8348 erel = o->contents;
8349 erelend = o->contents + o->size;
8350 /* FIXME: octets_per_byte. */
8351 p = sort + o->output_offset / ext_size * sort_elt;
8352 while (erel < erelend)
8353 {
8354 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8355 (*swap_out) (abfd, s->rela, erel);
8356 p += sort_elt;
8357 erel += ext_size;
8358 }
8359 }
8360
8361 free (sort);
8362 *psec = dynamic_relocs;
8363 return ret;
8364 }
8365
8366 /* Flush the output symbols to the file. */
8367
8368 static bfd_boolean
8369 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8370 const struct elf_backend_data *bed)
8371 {
8372 if (flinfo->symbuf_count > 0)
8373 {
8374 Elf_Internal_Shdr *hdr;
8375 file_ptr pos;
8376 bfd_size_type amt;
8377
8378 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8379 pos = hdr->sh_offset + hdr->sh_size;
8380 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8381 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8382 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8383 return FALSE;
8384
8385 hdr->sh_size += amt;
8386 flinfo->symbuf_count = 0;
8387 }
8388
8389 return TRUE;
8390 }
8391
8392 /* Add a symbol to the output symbol table. */
8393
8394 static int
8395 elf_link_output_sym (struct elf_final_link_info *flinfo,
8396 const char *name,
8397 Elf_Internal_Sym *elfsym,
8398 asection *input_sec,
8399 struct elf_link_hash_entry *h)
8400 {
8401 bfd_byte *dest;
8402 Elf_External_Sym_Shndx *destshndx;
8403 int (*output_symbol_hook)
8404 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8405 struct elf_link_hash_entry *);
8406 const struct elf_backend_data *bed;
8407
8408 bed = get_elf_backend_data (flinfo->output_bfd);
8409 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8410 if (output_symbol_hook != NULL)
8411 {
8412 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8413 if (ret != 1)
8414 return ret;
8415 }
8416
8417 if (name == NULL || *name == '\0')
8418 elfsym->st_name = 0;
8419 else if (input_sec->flags & SEC_EXCLUDE)
8420 elfsym->st_name = 0;
8421 else
8422 {
8423 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8424 name, TRUE, FALSE);
8425 if (elfsym->st_name == (unsigned long) -1)
8426 return 0;
8427 }
8428
8429 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8430 {
8431 if (! elf_link_flush_output_syms (flinfo, bed))
8432 return 0;
8433 }
8434
8435 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8436 destshndx = flinfo->symshndxbuf;
8437 if (destshndx != NULL)
8438 {
8439 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8440 {
8441 bfd_size_type amt;
8442
8443 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8444 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8445 amt * 2);
8446 if (destshndx == NULL)
8447 return 0;
8448 flinfo->symshndxbuf = destshndx;
8449 memset ((char *) destshndx + amt, 0, amt);
8450 flinfo->shndxbuf_size *= 2;
8451 }
8452 destshndx += bfd_get_symcount (flinfo->output_bfd);
8453 }
8454
8455 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8456 flinfo->symbuf_count += 1;
8457 bfd_get_symcount (flinfo->output_bfd) += 1;
8458
8459 return 1;
8460 }
8461
8462 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8463
8464 static bfd_boolean
8465 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8466 {
8467 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8468 && sym->st_shndx < SHN_LORESERVE)
8469 {
8470 /* The gABI doesn't support dynamic symbols in output sections
8471 beyond 64k. */
8472 (*_bfd_error_handler)
8473 (_("%B: Too many sections: %d (>= %d)"),
8474 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8475 bfd_set_error (bfd_error_nonrepresentable_section);
8476 return FALSE;
8477 }
8478 return TRUE;
8479 }
8480
8481 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8482 allowing an unsatisfied unversioned symbol in the DSO to match a
8483 versioned symbol that would normally require an explicit version.
8484 We also handle the case that a DSO references a hidden symbol
8485 which may be satisfied by a versioned symbol in another DSO. */
8486
8487 static bfd_boolean
8488 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8489 const struct elf_backend_data *bed,
8490 struct elf_link_hash_entry *h)
8491 {
8492 bfd *abfd;
8493 struct elf_link_loaded_list *loaded;
8494
8495 if (!is_elf_hash_table (info->hash))
8496 return FALSE;
8497
8498 /* Check indirect symbol. */
8499 while (h->root.type == bfd_link_hash_indirect)
8500 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8501
8502 switch (h->root.type)
8503 {
8504 default:
8505 abfd = NULL;
8506 break;
8507
8508 case bfd_link_hash_undefined:
8509 case bfd_link_hash_undefweak:
8510 abfd = h->root.u.undef.abfd;
8511 if ((abfd->flags & DYNAMIC) == 0
8512 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8513 return FALSE;
8514 break;
8515
8516 case bfd_link_hash_defined:
8517 case bfd_link_hash_defweak:
8518 abfd = h->root.u.def.section->owner;
8519 break;
8520
8521 case bfd_link_hash_common:
8522 abfd = h->root.u.c.p->section->owner;
8523 break;
8524 }
8525 BFD_ASSERT (abfd != NULL);
8526
8527 for (loaded = elf_hash_table (info)->loaded;
8528 loaded != NULL;
8529 loaded = loaded->next)
8530 {
8531 bfd *input;
8532 Elf_Internal_Shdr *hdr;
8533 bfd_size_type symcount;
8534 bfd_size_type extsymcount;
8535 bfd_size_type extsymoff;
8536 Elf_Internal_Shdr *versymhdr;
8537 Elf_Internal_Sym *isym;
8538 Elf_Internal_Sym *isymend;
8539 Elf_Internal_Sym *isymbuf;
8540 Elf_External_Versym *ever;
8541 Elf_External_Versym *extversym;
8542
8543 input = loaded->abfd;
8544
8545 /* We check each DSO for a possible hidden versioned definition. */
8546 if (input == abfd
8547 || (input->flags & DYNAMIC) == 0
8548 || elf_dynversym (input) == 0)
8549 continue;
8550
8551 hdr = &elf_tdata (input)->dynsymtab_hdr;
8552
8553 symcount = hdr->sh_size / bed->s->sizeof_sym;
8554 if (elf_bad_symtab (input))
8555 {
8556 extsymcount = symcount;
8557 extsymoff = 0;
8558 }
8559 else
8560 {
8561 extsymcount = symcount - hdr->sh_info;
8562 extsymoff = hdr->sh_info;
8563 }
8564
8565 if (extsymcount == 0)
8566 continue;
8567
8568 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8569 NULL, NULL, NULL);
8570 if (isymbuf == NULL)
8571 return FALSE;
8572
8573 /* Read in any version definitions. */
8574 versymhdr = &elf_tdata (input)->dynversym_hdr;
8575 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8576 if (extversym == NULL)
8577 goto error_ret;
8578
8579 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8580 || (bfd_bread (extversym, versymhdr->sh_size, input)
8581 != versymhdr->sh_size))
8582 {
8583 free (extversym);
8584 error_ret:
8585 free (isymbuf);
8586 return FALSE;
8587 }
8588
8589 ever = extversym + extsymoff;
8590 isymend = isymbuf + extsymcount;
8591 for (isym = isymbuf; isym < isymend; isym++, ever++)
8592 {
8593 const char *name;
8594 Elf_Internal_Versym iver;
8595 unsigned short version_index;
8596
8597 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8598 || isym->st_shndx == SHN_UNDEF)
8599 continue;
8600
8601 name = bfd_elf_string_from_elf_section (input,
8602 hdr->sh_link,
8603 isym->st_name);
8604 if (strcmp (name, h->root.root.string) != 0)
8605 continue;
8606
8607 _bfd_elf_swap_versym_in (input, ever, &iver);
8608
8609 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8610 && !(h->def_regular
8611 && h->forced_local))
8612 {
8613 /* If we have a non-hidden versioned sym, then it should
8614 have provided a definition for the undefined sym unless
8615 it is defined in a non-shared object and forced local.
8616 */
8617 abort ();
8618 }
8619
8620 version_index = iver.vs_vers & VERSYM_VERSION;
8621 if (version_index == 1 || version_index == 2)
8622 {
8623 /* This is the base or first version. We can use it. */
8624 free (extversym);
8625 free (isymbuf);
8626 return TRUE;
8627 }
8628 }
8629
8630 free (extversym);
8631 free (isymbuf);
8632 }
8633
8634 return FALSE;
8635 }
8636
8637 /* Add an external symbol to the symbol table. This is called from
8638 the hash table traversal routine. When generating a shared object,
8639 we go through the symbol table twice. The first time we output
8640 anything that might have been forced to local scope in a version
8641 script. The second time we output the symbols that are still
8642 global symbols. */
8643
8644 static bfd_boolean
8645 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8646 {
8647 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8648 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8649 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8650 bfd_boolean strip;
8651 Elf_Internal_Sym sym;
8652 asection *input_sec;
8653 const struct elf_backend_data *bed;
8654 long indx;
8655 int ret;
8656
8657 if (h->root.type == bfd_link_hash_warning)
8658 {
8659 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8660 if (h->root.type == bfd_link_hash_new)
8661 return TRUE;
8662 }
8663
8664 /* Decide whether to output this symbol in this pass. */
8665 if (eoinfo->localsyms)
8666 {
8667 if (!h->forced_local)
8668 return TRUE;
8669 if (eoinfo->second_pass
8670 && !((h->root.type == bfd_link_hash_defined
8671 || h->root.type == bfd_link_hash_defweak)
8672 && h->root.u.def.section->output_section != NULL))
8673 return TRUE;
8674 }
8675 else
8676 {
8677 if (h->forced_local)
8678 return TRUE;
8679 }
8680
8681 bed = get_elf_backend_data (flinfo->output_bfd);
8682
8683 if (h->root.type == bfd_link_hash_undefined)
8684 {
8685 /* If we have an undefined symbol reference here then it must have
8686 come from a shared library that is being linked in. (Undefined
8687 references in regular files have already been handled unless
8688 they are in unreferenced sections which are removed by garbage
8689 collection). */
8690 bfd_boolean ignore_undef = FALSE;
8691
8692 /* Some symbols may be special in that the fact that they're
8693 undefined can be safely ignored - let backend determine that. */
8694 if (bed->elf_backend_ignore_undef_symbol)
8695 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8696
8697 /* If we are reporting errors for this situation then do so now. */
8698 if (!ignore_undef
8699 && h->ref_dynamic
8700 && (!h->ref_regular || flinfo->info->gc_sections)
8701 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8702 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8703 {
8704 if (!(flinfo->info->callbacks->undefined_symbol
8705 (flinfo->info, h->root.root.string,
8706 h->ref_regular ? NULL : h->root.u.undef.abfd,
8707 NULL, 0,
8708 (flinfo->info->unresolved_syms_in_shared_libs
8709 == RM_GENERATE_ERROR))))
8710 {
8711 bfd_set_error (bfd_error_bad_value);
8712 eoinfo->failed = TRUE;
8713 return FALSE;
8714 }
8715 }
8716 }
8717
8718 /* We should also warn if a forced local symbol is referenced from
8719 shared libraries. */
8720 if (!flinfo->info->relocatable
8721 && flinfo->info->executable
8722 && h->forced_local
8723 && h->ref_dynamic
8724 && h->def_regular
8725 && !h->dynamic_def
8726 && h->ref_dynamic_nonweak
8727 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8728 {
8729 bfd *def_bfd;
8730 const char *msg;
8731 struct elf_link_hash_entry *hi = h;
8732
8733 /* Check indirect symbol. */
8734 while (hi->root.type == bfd_link_hash_indirect)
8735 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8736
8737 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8738 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8739 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8740 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8741 else
8742 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8743 def_bfd = flinfo->output_bfd;
8744 if (hi->root.u.def.section != bfd_abs_section_ptr)
8745 def_bfd = hi->root.u.def.section->owner;
8746 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8747 h->root.root.string);
8748 bfd_set_error (bfd_error_bad_value);
8749 eoinfo->failed = TRUE;
8750 return FALSE;
8751 }
8752
8753 /* We don't want to output symbols that have never been mentioned by
8754 a regular file, or that we have been told to strip. However, if
8755 h->indx is set to -2, the symbol is used by a reloc and we must
8756 output it. */
8757 if (h->indx == -2)
8758 strip = FALSE;
8759 else if ((h->def_dynamic
8760 || h->ref_dynamic
8761 || h->root.type == bfd_link_hash_new)
8762 && !h->def_regular
8763 && !h->ref_regular)
8764 strip = TRUE;
8765 else if (flinfo->info->strip == strip_all)
8766 strip = TRUE;
8767 else if (flinfo->info->strip == strip_some
8768 && bfd_hash_lookup (flinfo->info->keep_hash,
8769 h->root.root.string, FALSE, FALSE) == NULL)
8770 strip = TRUE;
8771 else if ((h->root.type == bfd_link_hash_defined
8772 || h->root.type == bfd_link_hash_defweak)
8773 && ((flinfo->info->strip_discarded
8774 && discarded_section (h->root.u.def.section))
8775 || (h->root.u.def.section->owner != NULL
8776 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8777 strip = TRUE;
8778 else if ((h->root.type == bfd_link_hash_undefined
8779 || h->root.type == bfd_link_hash_undefweak)
8780 && h->root.u.undef.abfd != NULL
8781 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8782 strip = TRUE;
8783 else
8784 strip = FALSE;
8785
8786 /* If we're stripping it, and it's not a dynamic symbol, there's
8787 nothing else to do unless it is a forced local symbol or a
8788 STT_GNU_IFUNC symbol. */
8789 if (strip
8790 && h->dynindx == -1
8791 && h->type != STT_GNU_IFUNC
8792 && !h->forced_local)
8793 return TRUE;
8794
8795 sym.st_value = 0;
8796 sym.st_size = h->size;
8797 sym.st_other = h->other;
8798 if (h->forced_local)
8799 {
8800 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8801 /* Turn off visibility on local symbol. */
8802 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8803 }
8804 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8805 else if (h->unique_global && h->def_regular)
8806 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8807 else if (h->root.type == bfd_link_hash_undefweak
8808 || h->root.type == bfd_link_hash_defweak)
8809 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8810 else
8811 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8812 sym.st_target_internal = h->target_internal;
8813
8814 switch (h->root.type)
8815 {
8816 default:
8817 case bfd_link_hash_new:
8818 case bfd_link_hash_warning:
8819 abort ();
8820 return FALSE;
8821
8822 case bfd_link_hash_undefined:
8823 case bfd_link_hash_undefweak:
8824 input_sec = bfd_und_section_ptr;
8825 sym.st_shndx = SHN_UNDEF;
8826 break;
8827
8828 case bfd_link_hash_defined:
8829 case bfd_link_hash_defweak:
8830 {
8831 input_sec = h->root.u.def.section;
8832 if (input_sec->output_section != NULL)
8833 {
8834 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8835 {
8836 bfd_boolean second_pass_sym
8837 = (input_sec->owner == flinfo->output_bfd
8838 || input_sec->owner == NULL
8839 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8840 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8841
8842 eoinfo->need_second_pass |= second_pass_sym;
8843 if (eoinfo->second_pass != second_pass_sym)
8844 return TRUE;
8845 }
8846
8847 sym.st_shndx =
8848 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8849 input_sec->output_section);
8850 if (sym.st_shndx == SHN_BAD)
8851 {
8852 (*_bfd_error_handler)
8853 (_("%B: could not find output section %A for input section %A"),
8854 flinfo->output_bfd, input_sec->output_section, input_sec);
8855 bfd_set_error (bfd_error_nonrepresentable_section);
8856 eoinfo->failed = TRUE;
8857 return FALSE;
8858 }
8859
8860 /* ELF symbols in relocatable files are section relative,
8861 but in nonrelocatable files they are virtual
8862 addresses. */
8863 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8864 if (!flinfo->info->relocatable)
8865 {
8866 sym.st_value += input_sec->output_section->vma;
8867 if (h->type == STT_TLS)
8868 {
8869 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8870 if (tls_sec != NULL)
8871 sym.st_value -= tls_sec->vma;
8872 else
8873 {
8874 /* The TLS section may have been garbage collected. */
8875 BFD_ASSERT (flinfo->info->gc_sections
8876 && !input_sec->gc_mark);
8877 }
8878 }
8879 }
8880 }
8881 else
8882 {
8883 BFD_ASSERT (input_sec->owner == NULL
8884 || (input_sec->owner->flags & DYNAMIC) != 0);
8885 sym.st_shndx = SHN_UNDEF;
8886 input_sec = bfd_und_section_ptr;
8887 }
8888 }
8889 break;
8890
8891 case bfd_link_hash_common:
8892 input_sec = h->root.u.c.p->section;
8893 sym.st_shndx = bed->common_section_index (input_sec);
8894 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8895 break;
8896
8897 case bfd_link_hash_indirect:
8898 /* These symbols are created by symbol versioning. They point
8899 to the decorated version of the name. For example, if the
8900 symbol foo@@GNU_1.2 is the default, which should be used when
8901 foo is used with no version, then we add an indirect symbol
8902 foo which points to foo@@GNU_1.2. We ignore these symbols,
8903 since the indirected symbol is already in the hash table. */
8904 return TRUE;
8905 }
8906
8907 /* Give the processor backend a chance to tweak the symbol value,
8908 and also to finish up anything that needs to be done for this
8909 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8910 forced local syms when non-shared is due to a historical quirk.
8911 STT_GNU_IFUNC symbol must go through PLT. */
8912 if ((h->type == STT_GNU_IFUNC
8913 && h->def_regular
8914 && !flinfo->info->relocatable)
8915 || ((h->dynindx != -1
8916 || h->forced_local)
8917 && ((flinfo->info->shared
8918 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8919 || h->root.type != bfd_link_hash_undefweak))
8920 || !h->forced_local)
8921 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8922 {
8923 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8924 (flinfo->output_bfd, flinfo->info, h, &sym)))
8925 {
8926 eoinfo->failed = TRUE;
8927 return FALSE;
8928 }
8929 }
8930
8931 /* If we are marking the symbol as undefined, and there are no
8932 non-weak references to this symbol from a regular object, then
8933 mark the symbol as weak undefined; if there are non-weak
8934 references, mark the symbol as strong. We can't do this earlier,
8935 because it might not be marked as undefined until the
8936 finish_dynamic_symbol routine gets through with it. */
8937 if (sym.st_shndx == SHN_UNDEF
8938 && h->ref_regular
8939 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8940 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8941 {
8942 int bindtype;
8943 unsigned int type = ELF_ST_TYPE (sym.st_info);
8944
8945 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8946 if (type == STT_GNU_IFUNC)
8947 type = STT_FUNC;
8948
8949 if (h->ref_regular_nonweak)
8950 bindtype = STB_GLOBAL;
8951 else
8952 bindtype = STB_WEAK;
8953 sym.st_info = ELF_ST_INFO (bindtype, type);
8954 }
8955
8956 /* If this is a symbol defined in a dynamic library, don't use the
8957 symbol size from the dynamic library. Relinking an executable
8958 against a new library may introduce gratuitous changes in the
8959 executable's symbols if we keep the size. */
8960 if (sym.st_shndx == SHN_UNDEF
8961 && !h->def_regular
8962 && h->def_dynamic)
8963 sym.st_size = 0;
8964
8965 /* If a non-weak symbol with non-default visibility is not defined
8966 locally, it is a fatal error. */
8967 if (!flinfo->info->relocatable
8968 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8969 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8970 && h->root.type == bfd_link_hash_undefined
8971 && !h->def_regular)
8972 {
8973 const char *msg;
8974
8975 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8976 msg = _("%B: protected symbol `%s' isn't defined");
8977 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8978 msg = _("%B: internal symbol `%s' isn't defined");
8979 else
8980 msg = _("%B: hidden symbol `%s' isn't defined");
8981 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
8982 bfd_set_error (bfd_error_bad_value);
8983 eoinfo->failed = TRUE;
8984 return FALSE;
8985 }
8986
8987 /* If this symbol should be put in the .dynsym section, then put it
8988 there now. We already know the symbol index. We also fill in
8989 the entry in the .hash section. */
8990 if (flinfo->dynsym_sec != NULL
8991 && h->dynindx != -1
8992 && elf_hash_table (flinfo->info)->dynamic_sections_created)
8993 {
8994 bfd_byte *esym;
8995
8996 /* Since there is no version information in the dynamic string,
8997 if there is no version info in symbol version section, we will
8998 have a run-time problem. */
8999 if (h->verinfo.verdef == NULL)
9000 {
9001 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9002
9003 if (p && p [1] != '\0')
9004 {
9005 (*_bfd_error_handler)
9006 (_("%B: No symbol version section for versioned symbol `%s'"),
9007 flinfo->output_bfd, h->root.root.string);
9008 eoinfo->failed = TRUE;
9009 return FALSE;
9010 }
9011 }
9012
9013 sym.st_name = h->dynstr_index;
9014 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9015 if (!check_dynsym (flinfo->output_bfd, &sym))
9016 {
9017 eoinfo->failed = TRUE;
9018 return FALSE;
9019 }
9020 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9021
9022 if (flinfo->hash_sec != NULL)
9023 {
9024 size_t hash_entry_size;
9025 bfd_byte *bucketpos;
9026 bfd_vma chain;
9027 size_t bucketcount;
9028 size_t bucket;
9029
9030 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9031 bucket = h->u.elf_hash_value % bucketcount;
9032
9033 hash_entry_size
9034 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9035 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9036 + (bucket + 2) * hash_entry_size);
9037 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9038 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9039 bucketpos);
9040 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9041 ((bfd_byte *) flinfo->hash_sec->contents
9042 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9043 }
9044
9045 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9046 {
9047 Elf_Internal_Versym iversym;
9048 Elf_External_Versym *eversym;
9049
9050 if (!h->def_regular)
9051 {
9052 if (h->verinfo.verdef == NULL)
9053 iversym.vs_vers = 0;
9054 else
9055 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9056 }
9057 else
9058 {
9059 if (h->verinfo.vertree == NULL)
9060 iversym.vs_vers = 1;
9061 else
9062 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9063 if (flinfo->info->create_default_symver)
9064 iversym.vs_vers++;
9065 }
9066
9067 if (h->hidden)
9068 iversym.vs_vers |= VERSYM_HIDDEN;
9069
9070 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9071 eversym += h->dynindx;
9072 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9073 }
9074 }
9075
9076 /* If we're stripping it, then it was just a dynamic symbol, and
9077 there's nothing else to do. */
9078 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9079 return TRUE;
9080
9081 indx = bfd_get_symcount (flinfo->output_bfd);
9082 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9083 if (ret == 0)
9084 {
9085 eoinfo->failed = TRUE;
9086 return FALSE;
9087 }
9088 else if (ret == 1)
9089 h->indx = indx;
9090 else if (h->indx == -2)
9091 abort();
9092
9093 return TRUE;
9094 }
9095
9096 /* Return TRUE if special handling is done for relocs in SEC against
9097 symbols defined in discarded sections. */
9098
9099 static bfd_boolean
9100 elf_section_ignore_discarded_relocs (asection *sec)
9101 {
9102 const struct elf_backend_data *bed;
9103
9104 switch (sec->sec_info_type)
9105 {
9106 case SEC_INFO_TYPE_STABS:
9107 case SEC_INFO_TYPE_EH_FRAME:
9108 return TRUE;
9109 default:
9110 break;
9111 }
9112
9113 bed = get_elf_backend_data (sec->owner);
9114 if (bed->elf_backend_ignore_discarded_relocs != NULL
9115 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9116 return TRUE;
9117
9118 return FALSE;
9119 }
9120
9121 /* Return a mask saying how ld should treat relocations in SEC against
9122 symbols defined in discarded sections. If this function returns
9123 COMPLAIN set, ld will issue a warning message. If this function
9124 returns PRETEND set, and the discarded section was link-once and the
9125 same size as the kept link-once section, ld will pretend that the
9126 symbol was actually defined in the kept section. Otherwise ld will
9127 zero the reloc (at least that is the intent, but some cooperation by
9128 the target dependent code is needed, particularly for REL targets). */
9129
9130 unsigned int
9131 _bfd_elf_default_action_discarded (asection *sec)
9132 {
9133 if (sec->flags & SEC_DEBUGGING)
9134 return PRETEND;
9135
9136 if (strcmp (".eh_frame", sec->name) == 0)
9137 return 0;
9138
9139 if (strcmp (".gcc_except_table", sec->name) == 0)
9140 return 0;
9141
9142 return COMPLAIN | PRETEND;
9143 }
9144
9145 /* Find a match between a section and a member of a section group. */
9146
9147 static asection *
9148 match_group_member (asection *sec, asection *group,
9149 struct bfd_link_info *info)
9150 {
9151 asection *first = elf_next_in_group (group);
9152 asection *s = first;
9153
9154 while (s != NULL)
9155 {
9156 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9157 return s;
9158
9159 s = elf_next_in_group (s);
9160 if (s == first)
9161 break;
9162 }
9163
9164 return NULL;
9165 }
9166
9167 /* Check if the kept section of a discarded section SEC can be used
9168 to replace it. Return the replacement if it is OK. Otherwise return
9169 NULL. */
9170
9171 asection *
9172 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9173 {
9174 asection *kept;
9175
9176 kept = sec->kept_section;
9177 if (kept != NULL)
9178 {
9179 if ((kept->flags & SEC_GROUP) != 0)
9180 kept = match_group_member (sec, kept, info);
9181 if (kept != NULL
9182 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9183 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9184 kept = NULL;
9185 sec->kept_section = kept;
9186 }
9187 return kept;
9188 }
9189
9190 /* Link an input file into the linker output file. This function
9191 handles all the sections and relocations of the input file at once.
9192 This is so that we only have to read the local symbols once, and
9193 don't have to keep them in memory. */
9194
9195 static bfd_boolean
9196 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9197 {
9198 int (*relocate_section)
9199 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9200 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9201 bfd *output_bfd;
9202 Elf_Internal_Shdr *symtab_hdr;
9203 size_t locsymcount;
9204 size_t extsymoff;
9205 Elf_Internal_Sym *isymbuf;
9206 Elf_Internal_Sym *isym;
9207 Elf_Internal_Sym *isymend;
9208 long *pindex;
9209 asection **ppsection;
9210 asection *o;
9211 const struct elf_backend_data *bed;
9212 struct elf_link_hash_entry **sym_hashes;
9213 bfd_size_type address_size;
9214 bfd_vma r_type_mask;
9215 int r_sym_shift;
9216 bfd_boolean have_file_sym = FALSE;
9217
9218 output_bfd = flinfo->output_bfd;
9219 bed = get_elf_backend_data (output_bfd);
9220 relocate_section = bed->elf_backend_relocate_section;
9221
9222 /* If this is a dynamic object, we don't want to do anything here:
9223 we don't want the local symbols, and we don't want the section
9224 contents. */
9225 if ((input_bfd->flags & DYNAMIC) != 0)
9226 return TRUE;
9227
9228 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9229 if (elf_bad_symtab (input_bfd))
9230 {
9231 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9232 extsymoff = 0;
9233 }
9234 else
9235 {
9236 locsymcount = symtab_hdr->sh_info;
9237 extsymoff = symtab_hdr->sh_info;
9238 }
9239
9240 /* Read the local symbols. */
9241 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9242 if (isymbuf == NULL && locsymcount != 0)
9243 {
9244 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9245 flinfo->internal_syms,
9246 flinfo->external_syms,
9247 flinfo->locsym_shndx);
9248 if (isymbuf == NULL)
9249 return FALSE;
9250 }
9251
9252 /* Find local symbol sections and adjust values of symbols in
9253 SEC_MERGE sections. Write out those local symbols we know are
9254 going into the output file. */
9255 isymend = isymbuf + locsymcount;
9256 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9257 isym < isymend;
9258 isym++, pindex++, ppsection++)
9259 {
9260 asection *isec;
9261 const char *name;
9262 Elf_Internal_Sym osym;
9263 long indx;
9264 int ret;
9265
9266 *pindex = -1;
9267
9268 if (elf_bad_symtab (input_bfd))
9269 {
9270 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9271 {
9272 *ppsection = NULL;
9273 continue;
9274 }
9275 }
9276
9277 if (isym->st_shndx == SHN_UNDEF)
9278 isec = bfd_und_section_ptr;
9279 else if (isym->st_shndx == SHN_ABS)
9280 isec = bfd_abs_section_ptr;
9281 else if (isym->st_shndx == SHN_COMMON)
9282 isec = bfd_com_section_ptr;
9283 else
9284 {
9285 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9286 if (isec == NULL)
9287 {
9288 /* Don't attempt to output symbols with st_shnx in the
9289 reserved range other than SHN_ABS and SHN_COMMON. */
9290 *ppsection = NULL;
9291 continue;
9292 }
9293 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9294 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9295 isym->st_value =
9296 _bfd_merged_section_offset (output_bfd, &isec,
9297 elf_section_data (isec)->sec_info,
9298 isym->st_value);
9299 }
9300
9301 *ppsection = isec;
9302
9303 /* Don't output the first, undefined, symbol. */
9304 if (ppsection == flinfo->sections)
9305 continue;
9306
9307 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9308 {
9309 /* We never output section symbols. Instead, we use the
9310 section symbol of the corresponding section in the output
9311 file. */
9312 continue;
9313 }
9314
9315 /* If we are stripping all symbols, we don't want to output this
9316 one. */
9317 if (flinfo->info->strip == strip_all)
9318 continue;
9319
9320 /* If we are discarding all local symbols, we don't want to
9321 output this one. If we are generating a relocatable output
9322 file, then some of the local symbols may be required by
9323 relocs; we output them below as we discover that they are
9324 needed. */
9325 if (flinfo->info->discard == discard_all)
9326 continue;
9327
9328 /* If this symbol is defined in a section which we are
9329 discarding, we don't need to keep it. */
9330 if (isym->st_shndx != SHN_UNDEF
9331 && isym->st_shndx < SHN_LORESERVE
9332 && bfd_section_removed_from_list (output_bfd,
9333 isec->output_section))
9334 continue;
9335
9336 /* Get the name of the symbol. */
9337 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9338 isym->st_name);
9339 if (name == NULL)
9340 return FALSE;
9341
9342 /* See if we are discarding symbols with this name. */
9343 if ((flinfo->info->strip == strip_some
9344 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9345 == NULL))
9346 || (((flinfo->info->discard == discard_sec_merge
9347 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9348 || flinfo->info->discard == discard_l)
9349 && bfd_is_local_label_name (input_bfd, name)))
9350 continue;
9351
9352 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9353 {
9354 have_file_sym = TRUE;
9355 flinfo->filesym_count += 1;
9356 }
9357 if (!have_file_sym)
9358 {
9359 /* In the absence of debug info, bfd_find_nearest_line uses
9360 FILE symbols to determine the source file for local
9361 function symbols. Provide a FILE symbol here if input
9362 files lack such, so that their symbols won't be
9363 associated with a previous input file. It's not the
9364 source file, but the best we can do. */
9365 have_file_sym = TRUE;
9366 flinfo->filesym_count += 1;
9367 memset (&osym, 0, sizeof (osym));
9368 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9369 osym.st_shndx = SHN_ABS;
9370 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9371 bfd_abs_section_ptr, NULL))
9372 return FALSE;
9373 }
9374
9375 osym = *isym;
9376
9377 /* Adjust the section index for the output file. */
9378 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9379 isec->output_section);
9380 if (osym.st_shndx == SHN_BAD)
9381 return FALSE;
9382
9383 /* ELF symbols in relocatable files are section relative, but
9384 in executable files they are virtual addresses. Note that
9385 this code assumes that all ELF sections have an associated
9386 BFD section with a reasonable value for output_offset; below
9387 we assume that they also have a reasonable value for
9388 output_section. Any special sections must be set up to meet
9389 these requirements. */
9390 osym.st_value += isec->output_offset;
9391 if (!flinfo->info->relocatable)
9392 {
9393 osym.st_value += isec->output_section->vma;
9394 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9395 {
9396 /* STT_TLS symbols are relative to PT_TLS segment base. */
9397 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9398 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9399 }
9400 }
9401
9402 indx = bfd_get_symcount (output_bfd);
9403 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9404 if (ret == 0)
9405 return FALSE;
9406 else if (ret == 1)
9407 *pindex = indx;
9408 }
9409
9410 if (bed->s->arch_size == 32)
9411 {
9412 r_type_mask = 0xff;
9413 r_sym_shift = 8;
9414 address_size = 4;
9415 }
9416 else
9417 {
9418 r_type_mask = 0xffffffff;
9419 r_sym_shift = 32;
9420 address_size = 8;
9421 }
9422
9423 /* Relocate the contents of each section. */
9424 sym_hashes = elf_sym_hashes (input_bfd);
9425 for (o = input_bfd->sections; o != NULL; o = o->next)
9426 {
9427 bfd_byte *contents;
9428
9429 if (! o->linker_mark)
9430 {
9431 /* This section was omitted from the link. */
9432 continue;
9433 }
9434
9435 if (flinfo->info->relocatable
9436 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9437 {
9438 /* Deal with the group signature symbol. */
9439 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9440 unsigned long symndx = sec_data->this_hdr.sh_info;
9441 asection *osec = o->output_section;
9442
9443 if (symndx >= locsymcount
9444 || (elf_bad_symtab (input_bfd)
9445 && flinfo->sections[symndx] == NULL))
9446 {
9447 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9448 while (h->root.type == bfd_link_hash_indirect
9449 || h->root.type == bfd_link_hash_warning)
9450 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9451 /* Arrange for symbol to be output. */
9452 h->indx = -2;
9453 elf_section_data (osec)->this_hdr.sh_info = -2;
9454 }
9455 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9456 {
9457 /* We'll use the output section target_index. */
9458 asection *sec = flinfo->sections[symndx]->output_section;
9459 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9460 }
9461 else
9462 {
9463 if (flinfo->indices[symndx] == -1)
9464 {
9465 /* Otherwise output the local symbol now. */
9466 Elf_Internal_Sym sym = isymbuf[symndx];
9467 asection *sec = flinfo->sections[symndx]->output_section;
9468 const char *name;
9469 long indx;
9470 int ret;
9471
9472 name = bfd_elf_string_from_elf_section (input_bfd,
9473 symtab_hdr->sh_link,
9474 sym.st_name);
9475 if (name == NULL)
9476 return FALSE;
9477
9478 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9479 sec);
9480 if (sym.st_shndx == SHN_BAD)
9481 return FALSE;
9482
9483 sym.st_value += o->output_offset;
9484
9485 indx = bfd_get_symcount (output_bfd);
9486 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9487 if (ret == 0)
9488 return FALSE;
9489 else if (ret == 1)
9490 flinfo->indices[symndx] = indx;
9491 else
9492 abort ();
9493 }
9494 elf_section_data (osec)->this_hdr.sh_info
9495 = flinfo->indices[symndx];
9496 }
9497 }
9498
9499 if ((o->flags & SEC_HAS_CONTENTS) == 0
9500 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9501 continue;
9502
9503 if ((o->flags & SEC_LINKER_CREATED) != 0)
9504 {
9505 /* Section was created by _bfd_elf_link_create_dynamic_sections
9506 or somesuch. */
9507 continue;
9508 }
9509
9510 /* Get the contents of the section. They have been cached by a
9511 relaxation routine. Note that o is a section in an input
9512 file, so the contents field will not have been set by any of
9513 the routines which work on output files. */
9514 if (elf_section_data (o)->this_hdr.contents != NULL)
9515 contents = elf_section_data (o)->this_hdr.contents;
9516 else
9517 {
9518 contents = flinfo->contents;
9519 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9520 return FALSE;
9521 }
9522
9523 if ((o->flags & SEC_RELOC) != 0)
9524 {
9525 Elf_Internal_Rela *internal_relocs;
9526 Elf_Internal_Rela *rel, *relend;
9527 int action_discarded;
9528 int ret;
9529
9530 /* Get the swapped relocs. */
9531 internal_relocs
9532 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9533 flinfo->internal_relocs, FALSE);
9534 if (internal_relocs == NULL
9535 && o->reloc_count > 0)
9536 return FALSE;
9537
9538 /* We need to reverse-copy input .ctors/.dtors sections if
9539 they are placed in .init_array/.finit_array for output. */
9540 if (o->size > address_size
9541 && ((strncmp (o->name, ".ctors", 6) == 0
9542 && strcmp (o->output_section->name,
9543 ".init_array") == 0)
9544 || (strncmp (o->name, ".dtors", 6) == 0
9545 && strcmp (o->output_section->name,
9546 ".fini_array") == 0))
9547 && (o->name[6] == 0 || o->name[6] == '.'))
9548 {
9549 if (o->size != o->reloc_count * address_size)
9550 {
9551 (*_bfd_error_handler)
9552 (_("error: %B: size of section %A is not "
9553 "multiple of address size"),
9554 input_bfd, o);
9555 bfd_set_error (bfd_error_on_input);
9556 return FALSE;
9557 }
9558 o->flags |= SEC_ELF_REVERSE_COPY;
9559 }
9560
9561 action_discarded = -1;
9562 if (!elf_section_ignore_discarded_relocs (o))
9563 action_discarded = (*bed->action_discarded) (o);
9564
9565 /* Run through the relocs evaluating complex reloc symbols and
9566 looking for relocs against symbols from discarded sections
9567 or section symbols from removed link-once sections.
9568 Complain about relocs against discarded sections. Zero
9569 relocs against removed link-once sections. */
9570
9571 rel = internal_relocs;
9572 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9573 for ( ; rel < relend; rel++)
9574 {
9575 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9576 unsigned int s_type;
9577 asection **ps, *sec;
9578 struct elf_link_hash_entry *h = NULL;
9579 const char *sym_name;
9580
9581 if (r_symndx == STN_UNDEF)
9582 continue;
9583
9584 if (r_symndx >= locsymcount
9585 || (elf_bad_symtab (input_bfd)
9586 && flinfo->sections[r_symndx] == NULL))
9587 {
9588 h = sym_hashes[r_symndx - extsymoff];
9589
9590 /* Badly formatted input files can contain relocs that
9591 reference non-existant symbols. Check here so that
9592 we do not seg fault. */
9593 if (h == NULL)
9594 {
9595 char buffer [32];
9596
9597 sprintf_vma (buffer, rel->r_info);
9598 (*_bfd_error_handler)
9599 (_("error: %B contains a reloc (0x%s) for section %A "
9600 "that references a non-existent global symbol"),
9601 input_bfd, o, buffer);
9602 bfd_set_error (bfd_error_bad_value);
9603 return FALSE;
9604 }
9605
9606 while (h->root.type == bfd_link_hash_indirect
9607 || h->root.type == bfd_link_hash_warning)
9608 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9609
9610 s_type = h->type;
9611
9612 ps = NULL;
9613 if (h->root.type == bfd_link_hash_defined
9614 || h->root.type == bfd_link_hash_defweak)
9615 ps = &h->root.u.def.section;
9616
9617 sym_name = h->root.root.string;
9618 }
9619 else
9620 {
9621 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9622
9623 s_type = ELF_ST_TYPE (sym->st_info);
9624 ps = &flinfo->sections[r_symndx];
9625 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9626 sym, *ps);
9627 }
9628
9629 if ((s_type == STT_RELC || s_type == STT_SRELC)
9630 && !flinfo->info->relocatable)
9631 {
9632 bfd_vma val;
9633 bfd_vma dot = (rel->r_offset
9634 + o->output_offset + o->output_section->vma);
9635 #ifdef DEBUG
9636 printf ("Encountered a complex symbol!");
9637 printf (" (input_bfd %s, section %s, reloc %ld\n",
9638 input_bfd->filename, o->name,
9639 (long) (rel - internal_relocs));
9640 printf (" symbol: idx %8.8lx, name %s\n",
9641 r_symndx, sym_name);
9642 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9643 (unsigned long) rel->r_info,
9644 (unsigned long) rel->r_offset);
9645 #endif
9646 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9647 isymbuf, locsymcount, s_type == STT_SRELC))
9648 return FALSE;
9649
9650 /* Symbol evaluated OK. Update to absolute value. */
9651 set_symbol_value (input_bfd, isymbuf, locsymcount,
9652 r_symndx, val);
9653 continue;
9654 }
9655
9656 if (action_discarded != -1 && ps != NULL)
9657 {
9658 /* Complain if the definition comes from a
9659 discarded section. */
9660 if ((sec = *ps) != NULL && discarded_section (sec))
9661 {
9662 BFD_ASSERT (r_symndx != STN_UNDEF);
9663 if (action_discarded & COMPLAIN)
9664 (*flinfo->info->callbacks->einfo)
9665 (_("%X`%s' referenced in section `%A' of %B: "
9666 "defined in discarded section `%A' of %B\n"),
9667 sym_name, o, input_bfd, sec, sec->owner);
9668
9669 /* Try to do the best we can to support buggy old
9670 versions of gcc. Pretend that the symbol is
9671 really defined in the kept linkonce section.
9672 FIXME: This is quite broken. Modifying the
9673 symbol here means we will be changing all later
9674 uses of the symbol, not just in this section. */
9675 if (action_discarded & PRETEND)
9676 {
9677 asection *kept;
9678
9679 kept = _bfd_elf_check_kept_section (sec,
9680 flinfo->info);
9681 if (kept != NULL)
9682 {
9683 *ps = kept;
9684 continue;
9685 }
9686 }
9687 }
9688 }
9689 }
9690
9691 /* Relocate the section by invoking a back end routine.
9692
9693 The back end routine is responsible for adjusting the
9694 section contents as necessary, and (if using Rela relocs
9695 and generating a relocatable output file) adjusting the
9696 reloc addend as necessary.
9697
9698 The back end routine does not have to worry about setting
9699 the reloc address or the reloc symbol index.
9700
9701 The back end routine is given a pointer to the swapped in
9702 internal symbols, and can access the hash table entries
9703 for the external symbols via elf_sym_hashes (input_bfd).
9704
9705 When generating relocatable output, the back end routine
9706 must handle STB_LOCAL/STT_SECTION symbols specially. The
9707 output symbol is going to be a section symbol
9708 corresponding to the output section, which will require
9709 the addend to be adjusted. */
9710
9711 ret = (*relocate_section) (output_bfd, flinfo->info,
9712 input_bfd, o, contents,
9713 internal_relocs,
9714 isymbuf,
9715 flinfo->sections);
9716 if (!ret)
9717 return FALSE;
9718
9719 if (ret == 2
9720 || flinfo->info->relocatable
9721 || flinfo->info->emitrelocations)
9722 {
9723 Elf_Internal_Rela *irela;
9724 Elf_Internal_Rela *irelaend, *irelamid;
9725 bfd_vma last_offset;
9726 struct elf_link_hash_entry **rel_hash;
9727 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9728 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9729 unsigned int next_erel;
9730 bfd_boolean rela_normal;
9731 struct bfd_elf_section_data *esdi, *esdo;
9732
9733 esdi = elf_section_data (o);
9734 esdo = elf_section_data (o->output_section);
9735 rela_normal = FALSE;
9736
9737 /* Adjust the reloc addresses and symbol indices. */
9738
9739 irela = internal_relocs;
9740 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9741 rel_hash = esdo->rel.hashes + esdo->rel.count;
9742 /* We start processing the REL relocs, if any. When we reach
9743 IRELAMID in the loop, we switch to the RELA relocs. */
9744 irelamid = irela;
9745 if (esdi->rel.hdr != NULL)
9746 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9747 * bed->s->int_rels_per_ext_rel);
9748 rel_hash_list = rel_hash;
9749 rela_hash_list = NULL;
9750 last_offset = o->output_offset;
9751 if (!flinfo->info->relocatable)
9752 last_offset += o->output_section->vma;
9753 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9754 {
9755 unsigned long r_symndx;
9756 asection *sec;
9757 Elf_Internal_Sym sym;
9758
9759 if (next_erel == bed->s->int_rels_per_ext_rel)
9760 {
9761 rel_hash++;
9762 next_erel = 0;
9763 }
9764
9765 if (irela == irelamid)
9766 {
9767 rel_hash = esdo->rela.hashes + esdo->rela.count;
9768 rela_hash_list = rel_hash;
9769 rela_normal = bed->rela_normal;
9770 }
9771
9772 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9773 flinfo->info, o,
9774 irela->r_offset);
9775 if (irela->r_offset >= (bfd_vma) -2)
9776 {
9777 /* This is a reloc for a deleted entry or somesuch.
9778 Turn it into an R_*_NONE reloc, at the same
9779 offset as the last reloc. elf_eh_frame.c and
9780 bfd_elf_discard_info rely on reloc offsets
9781 being ordered. */
9782 irela->r_offset = last_offset;
9783 irela->r_info = 0;
9784 irela->r_addend = 0;
9785 continue;
9786 }
9787
9788 irela->r_offset += o->output_offset;
9789
9790 /* Relocs in an executable have to be virtual addresses. */
9791 if (!flinfo->info->relocatable)
9792 irela->r_offset += o->output_section->vma;
9793
9794 last_offset = irela->r_offset;
9795
9796 r_symndx = irela->r_info >> r_sym_shift;
9797 if (r_symndx == STN_UNDEF)
9798 continue;
9799
9800 if (r_symndx >= locsymcount
9801 || (elf_bad_symtab (input_bfd)
9802 && flinfo->sections[r_symndx] == NULL))
9803 {
9804 struct elf_link_hash_entry *rh;
9805 unsigned long indx;
9806
9807 /* This is a reloc against a global symbol. We
9808 have not yet output all the local symbols, so
9809 we do not know the symbol index of any global
9810 symbol. We set the rel_hash entry for this
9811 reloc to point to the global hash table entry
9812 for this symbol. The symbol index is then
9813 set at the end of bfd_elf_final_link. */
9814 indx = r_symndx - extsymoff;
9815 rh = elf_sym_hashes (input_bfd)[indx];
9816 while (rh->root.type == bfd_link_hash_indirect
9817 || rh->root.type == bfd_link_hash_warning)
9818 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9819
9820 /* Setting the index to -2 tells
9821 elf_link_output_extsym that this symbol is
9822 used by a reloc. */
9823 BFD_ASSERT (rh->indx < 0);
9824 rh->indx = -2;
9825
9826 *rel_hash = rh;
9827
9828 continue;
9829 }
9830
9831 /* This is a reloc against a local symbol. */
9832
9833 *rel_hash = NULL;
9834 sym = isymbuf[r_symndx];
9835 sec = flinfo->sections[r_symndx];
9836 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9837 {
9838 /* I suppose the backend ought to fill in the
9839 section of any STT_SECTION symbol against a
9840 processor specific section. */
9841 r_symndx = STN_UNDEF;
9842 if (bfd_is_abs_section (sec))
9843 ;
9844 else if (sec == NULL || sec->owner == NULL)
9845 {
9846 bfd_set_error (bfd_error_bad_value);
9847 return FALSE;
9848 }
9849 else
9850 {
9851 asection *osec = sec->output_section;
9852
9853 /* If we have discarded a section, the output
9854 section will be the absolute section. In
9855 case of discarded SEC_MERGE sections, use
9856 the kept section. relocate_section should
9857 have already handled discarded linkonce
9858 sections. */
9859 if (bfd_is_abs_section (osec)
9860 && sec->kept_section != NULL
9861 && sec->kept_section->output_section != NULL)
9862 {
9863 osec = sec->kept_section->output_section;
9864 irela->r_addend -= osec->vma;
9865 }
9866
9867 if (!bfd_is_abs_section (osec))
9868 {
9869 r_symndx = osec->target_index;
9870 if (r_symndx == STN_UNDEF)
9871 {
9872 irela->r_addend += osec->vma;
9873 osec = _bfd_nearby_section (output_bfd, osec,
9874 osec->vma);
9875 irela->r_addend -= osec->vma;
9876 r_symndx = osec->target_index;
9877 }
9878 }
9879 }
9880
9881 /* Adjust the addend according to where the
9882 section winds up in the output section. */
9883 if (rela_normal)
9884 irela->r_addend += sec->output_offset;
9885 }
9886 else
9887 {
9888 if (flinfo->indices[r_symndx] == -1)
9889 {
9890 unsigned long shlink;
9891 const char *name;
9892 asection *osec;
9893 long indx;
9894
9895 if (flinfo->info->strip == strip_all)
9896 {
9897 /* You can't do ld -r -s. */
9898 bfd_set_error (bfd_error_invalid_operation);
9899 return FALSE;
9900 }
9901
9902 /* This symbol was skipped earlier, but
9903 since it is needed by a reloc, we
9904 must output it now. */
9905 shlink = symtab_hdr->sh_link;
9906 name = (bfd_elf_string_from_elf_section
9907 (input_bfd, shlink, sym.st_name));
9908 if (name == NULL)
9909 return FALSE;
9910
9911 osec = sec->output_section;
9912 sym.st_shndx =
9913 _bfd_elf_section_from_bfd_section (output_bfd,
9914 osec);
9915 if (sym.st_shndx == SHN_BAD)
9916 return FALSE;
9917
9918 sym.st_value += sec->output_offset;
9919 if (!flinfo->info->relocatable)
9920 {
9921 sym.st_value += osec->vma;
9922 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9923 {
9924 /* STT_TLS symbols are relative to PT_TLS
9925 segment base. */
9926 BFD_ASSERT (elf_hash_table (flinfo->info)
9927 ->tls_sec != NULL);
9928 sym.st_value -= (elf_hash_table (flinfo->info)
9929 ->tls_sec->vma);
9930 }
9931 }
9932
9933 indx = bfd_get_symcount (output_bfd);
9934 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9935 NULL);
9936 if (ret == 0)
9937 return FALSE;
9938 else if (ret == 1)
9939 flinfo->indices[r_symndx] = indx;
9940 else
9941 abort ();
9942 }
9943
9944 r_symndx = flinfo->indices[r_symndx];
9945 }
9946
9947 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9948 | (irela->r_info & r_type_mask));
9949 }
9950
9951 /* Swap out the relocs. */
9952 input_rel_hdr = esdi->rel.hdr;
9953 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9954 {
9955 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9956 input_rel_hdr,
9957 internal_relocs,
9958 rel_hash_list))
9959 return FALSE;
9960 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9961 * bed->s->int_rels_per_ext_rel);
9962 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9963 }
9964
9965 input_rela_hdr = esdi->rela.hdr;
9966 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9967 {
9968 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9969 input_rela_hdr,
9970 internal_relocs,
9971 rela_hash_list))
9972 return FALSE;
9973 }
9974 }
9975 }
9976
9977 /* Write out the modified section contents. */
9978 if (bed->elf_backend_write_section
9979 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
9980 contents))
9981 {
9982 /* Section written out. */
9983 }
9984 else switch (o->sec_info_type)
9985 {
9986 case SEC_INFO_TYPE_STABS:
9987 if (! (_bfd_write_section_stabs
9988 (output_bfd,
9989 &elf_hash_table (flinfo->info)->stab_info,
9990 o, &elf_section_data (o)->sec_info, contents)))
9991 return FALSE;
9992 break;
9993 case SEC_INFO_TYPE_MERGE:
9994 if (! _bfd_write_merged_section (output_bfd, o,
9995 elf_section_data (o)->sec_info))
9996 return FALSE;
9997 break;
9998 case SEC_INFO_TYPE_EH_FRAME:
9999 {
10000 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10001 o, contents))
10002 return FALSE;
10003 }
10004 break;
10005 default:
10006 {
10007 /* FIXME: octets_per_byte. */
10008 if (! (o->flags & SEC_EXCLUDE))
10009 {
10010 file_ptr offset = (file_ptr) o->output_offset;
10011 bfd_size_type todo = o->size;
10012 if ((o->flags & SEC_ELF_REVERSE_COPY))
10013 {
10014 /* Reverse-copy input section to output. */
10015 do
10016 {
10017 todo -= address_size;
10018 if (! bfd_set_section_contents (output_bfd,
10019 o->output_section,
10020 contents + todo,
10021 offset,
10022 address_size))
10023 return FALSE;
10024 if (todo == 0)
10025 break;
10026 offset += address_size;
10027 }
10028 while (1);
10029 }
10030 else if (! bfd_set_section_contents (output_bfd,
10031 o->output_section,
10032 contents,
10033 offset, todo))
10034 return FALSE;
10035 }
10036 }
10037 break;
10038 }
10039 }
10040
10041 return TRUE;
10042 }
10043
10044 /* Generate a reloc when linking an ELF file. This is a reloc
10045 requested by the linker, and does not come from any input file. This
10046 is used to build constructor and destructor tables when linking
10047 with -Ur. */
10048
10049 static bfd_boolean
10050 elf_reloc_link_order (bfd *output_bfd,
10051 struct bfd_link_info *info,
10052 asection *output_section,
10053 struct bfd_link_order *link_order)
10054 {
10055 reloc_howto_type *howto;
10056 long indx;
10057 bfd_vma offset;
10058 bfd_vma addend;
10059 struct bfd_elf_section_reloc_data *reldata;
10060 struct elf_link_hash_entry **rel_hash_ptr;
10061 Elf_Internal_Shdr *rel_hdr;
10062 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10063 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10064 bfd_byte *erel;
10065 unsigned int i;
10066 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10067
10068 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10069 if (howto == NULL)
10070 {
10071 bfd_set_error (bfd_error_bad_value);
10072 return FALSE;
10073 }
10074
10075 addend = link_order->u.reloc.p->addend;
10076
10077 if (esdo->rel.hdr)
10078 reldata = &esdo->rel;
10079 else if (esdo->rela.hdr)
10080 reldata = &esdo->rela;
10081 else
10082 {
10083 reldata = NULL;
10084 BFD_ASSERT (0);
10085 }
10086
10087 /* Figure out the symbol index. */
10088 rel_hash_ptr = reldata->hashes + reldata->count;
10089 if (link_order->type == bfd_section_reloc_link_order)
10090 {
10091 indx = link_order->u.reloc.p->u.section->target_index;
10092 BFD_ASSERT (indx != 0);
10093 *rel_hash_ptr = NULL;
10094 }
10095 else
10096 {
10097 struct elf_link_hash_entry *h;
10098
10099 /* Treat a reloc against a defined symbol as though it were
10100 actually against the section. */
10101 h = ((struct elf_link_hash_entry *)
10102 bfd_wrapped_link_hash_lookup (output_bfd, info,
10103 link_order->u.reloc.p->u.name,
10104 FALSE, FALSE, TRUE));
10105 if (h != NULL
10106 && (h->root.type == bfd_link_hash_defined
10107 || h->root.type == bfd_link_hash_defweak))
10108 {
10109 asection *section;
10110
10111 section = h->root.u.def.section;
10112 indx = section->output_section->target_index;
10113 *rel_hash_ptr = NULL;
10114 /* It seems that we ought to add the symbol value to the
10115 addend here, but in practice it has already been added
10116 because it was passed to constructor_callback. */
10117 addend += section->output_section->vma + section->output_offset;
10118 }
10119 else if (h != NULL)
10120 {
10121 /* Setting the index to -2 tells elf_link_output_extsym that
10122 this symbol is used by a reloc. */
10123 h->indx = -2;
10124 *rel_hash_ptr = h;
10125 indx = 0;
10126 }
10127 else
10128 {
10129 if (! ((*info->callbacks->unattached_reloc)
10130 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10131 return FALSE;
10132 indx = 0;
10133 }
10134 }
10135
10136 /* If this is an inplace reloc, we must write the addend into the
10137 object file. */
10138 if (howto->partial_inplace && addend != 0)
10139 {
10140 bfd_size_type size;
10141 bfd_reloc_status_type rstat;
10142 bfd_byte *buf;
10143 bfd_boolean ok;
10144 const char *sym_name;
10145
10146 size = (bfd_size_type) bfd_get_reloc_size (howto);
10147 buf = (bfd_byte *) bfd_zmalloc (size);
10148 if (buf == NULL)
10149 return FALSE;
10150 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10151 switch (rstat)
10152 {
10153 case bfd_reloc_ok:
10154 break;
10155
10156 default:
10157 case bfd_reloc_outofrange:
10158 abort ();
10159
10160 case bfd_reloc_overflow:
10161 if (link_order->type == bfd_section_reloc_link_order)
10162 sym_name = bfd_section_name (output_bfd,
10163 link_order->u.reloc.p->u.section);
10164 else
10165 sym_name = link_order->u.reloc.p->u.name;
10166 if (! ((*info->callbacks->reloc_overflow)
10167 (info, NULL, sym_name, howto->name, addend, NULL,
10168 NULL, (bfd_vma) 0)))
10169 {
10170 free (buf);
10171 return FALSE;
10172 }
10173 break;
10174 }
10175 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10176 link_order->offset, size);
10177 free (buf);
10178 if (! ok)
10179 return FALSE;
10180 }
10181
10182 /* The address of a reloc is relative to the section in a
10183 relocatable file, and is a virtual address in an executable
10184 file. */
10185 offset = link_order->offset;
10186 if (! info->relocatable)
10187 offset += output_section->vma;
10188
10189 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10190 {
10191 irel[i].r_offset = offset;
10192 irel[i].r_info = 0;
10193 irel[i].r_addend = 0;
10194 }
10195 if (bed->s->arch_size == 32)
10196 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10197 else
10198 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10199
10200 rel_hdr = reldata->hdr;
10201 erel = rel_hdr->contents;
10202 if (rel_hdr->sh_type == SHT_REL)
10203 {
10204 erel += reldata->count * bed->s->sizeof_rel;
10205 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10206 }
10207 else
10208 {
10209 irel[0].r_addend = addend;
10210 erel += reldata->count * bed->s->sizeof_rela;
10211 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10212 }
10213
10214 ++reldata->count;
10215
10216 return TRUE;
10217 }
10218
10219
10220 /* Get the output vma of the section pointed to by the sh_link field. */
10221
10222 static bfd_vma
10223 elf_get_linked_section_vma (struct bfd_link_order *p)
10224 {
10225 Elf_Internal_Shdr **elf_shdrp;
10226 asection *s;
10227 int elfsec;
10228
10229 s = p->u.indirect.section;
10230 elf_shdrp = elf_elfsections (s->owner);
10231 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10232 elfsec = elf_shdrp[elfsec]->sh_link;
10233 /* PR 290:
10234 The Intel C compiler generates SHT_IA_64_UNWIND with
10235 SHF_LINK_ORDER. But it doesn't set the sh_link or
10236 sh_info fields. Hence we could get the situation
10237 where elfsec is 0. */
10238 if (elfsec == 0)
10239 {
10240 const struct elf_backend_data *bed
10241 = get_elf_backend_data (s->owner);
10242 if (bed->link_order_error_handler)
10243 bed->link_order_error_handler
10244 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10245 return 0;
10246 }
10247 else
10248 {
10249 s = elf_shdrp[elfsec]->bfd_section;
10250 return s->output_section->vma + s->output_offset;
10251 }
10252 }
10253
10254
10255 /* Compare two sections based on the locations of the sections they are
10256 linked to. Used by elf_fixup_link_order. */
10257
10258 static int
10259 compare_link_order (const void * a, const void * b)
10260 {
10261 bfd_vma apos;
10262 bfd_vma bpos;
10263
10264 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10265 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10266 if (apos < bpos)
10267 return -1;
10268 return apos > bpos;
10269 }
10270
10271
10272 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10273 order as their linked sections. Returns false if this could not be done
10274 because an output section includes both ordered and unordered
10275 sections. Ideally we'd do this in the linker proper. */
10276
10277 static bfd_boolean
10278 elf_fixup_link_order (bfd *abfd, asection *o)
10279 {
10280 int seen_linkorder;
10281 int seen_other;
10282 int n;
10283 struct bfd_link_order *p;
10284 bfd *sub;
10285 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10286 unsigned elfsec;
10287 struct bfd_link_order **sections;
10288 asection *s, *other_sec, *linkorder_sec;
10289 bfd_vma offset;
10290
10291 other_sec = NULL;
10292 linkorder_sec = NULL;
10293 seen_other = 0;
10294 seen_linkorder = 0;
10295 for (p = o->map_head.link_order; p != NULL; p = p->next)
10296 {
10297 if (p->type == bfd_indirect_link_order)
10298 {
10299 s = p->u.indirect.section;
10300 sub = s->owner;
10301 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10302 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10303 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10304 && elfsec < elf_numsections (sub)
10305 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10306 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10307 {
10308 seen_linkorder++;
10309 linkorder_sec = s;
10310 }
10311 else
10312 {
10313 seen_other++;
10314 other_sec = s;
10315 }
10316 }
10317 else
10318 seen_other++;
10319
10320 if (seen_other && seen_linkorder)
10321 {
10322 if (other_sec && linkorder_sec)
10323 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10324 o, linkorder_sec,
10325 linkorder_sec->owner, other_sec,
10326 other_sec->owner);
10327 else
10328 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10329 o);
10330 bfd_set_error (bfd_error_bad_value);
10331 return FALSE;
10332 }
10333 }
10334
10335 if (!seen_linkorder)
10336 return TRUE;
10337
10338 sections = (struct bfd_link_order **)
10339 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10340 if (sections == NULL)
10341 return FALSE;
10342 seen_linkorder = 0;
10343
10344 for (p = o->map_head.link_order; p != NULL; p = p->next)
10345 {
10346 sections[seen_linkorder++] = p;
10347 }
10348 /* Sort the input sections in the order of their linked section. */
10349 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10350 compare_link_order);
10351
10352 /* Change the offsets of the sections. */
10353 offset = 0;
10354 for (n = 0; n < seen_linkorder; n++)
10355 {
10356 s = sections[n]->u.indirect.section;
10357 offset &= ~(bfd_vma) 0 << s->alignment_power;
10358 s->output_offset = offset;
10359 sections[n]->offset = offset;
10360 /* FIXME: octets_per_byte. */
10361 offset += sections[n]->size;
10362 }
10363
10364 free (sections);
10365 return TRUE;
10366 }
10367
10368 static void
10369 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10370 {
10371 asection *o;
10372
10373 if (flinfo->symstrtab != NULL)
10374 _bfd_stringtab_free (flinfo->symstrtab);
10375 if (flinfo->contents != NULL)
10376 free (flinfo->contents);
10377 if (flinfo->external_relocs != NULL)
10378 free (flinfo->external_relocs);
10379 if (flinfo->internal_relocs != NULL)
10380 free (flinfo->internal_relocs);
10381 if (flinfo->external_syms != NULL)
10382 free (flinfo->external_syms);
10383 if (flinfo->locsym_shndx != NULL)
10384 free (flinfo->locsym_shndx);
10385 if (flinfo->internal_syms != NULL)
10386 free (flinfo->internal_syms);
10387 if (flinfo->indices != NULL)
10388 free (flinfo->indices);
10389 if (flinfo->sections != NULL)
10390 free (flinfo->sections);
10391 if (flinfo->symbuf != NULL)
10392 free (flinfo->symbuf);
10393 if (flinfo->symshndxbuf != NULL)
10394 free (flinfo->symshndxbuf);
10395 for (o = obfd->sections; o != NULL; o = o->next)
10396 {
10397 struct bfd_elf_section_data *esdo = elf_section_data (o);
10398 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10399 free (esdo->rel.hashes);
10400 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10401 free (esdo->rela.hashes);
10402 }
10403 }
10404
10405 /* Do the final step of an ELF link. */
10406
10407 bfd_boolean
10408 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10409 {
10410 bfd_boolean dynamic;
10411 bfd_boolean emit_relocs;
10412 bfd *dynobj;
10413 struct elf_final_link_info flinfo;
10414 asection *o;
10415 struct bfd_link_order *p;
10416 bfd *sub;
10417 bfd_size_type max_contents_size;
10418 bfd_size_type max_external_reloc_size;
10419 bfd_size_type max_internal_reloc_count;
10420 bfd_size_type max_sym_count;
10421 bfd_size_type max_sym_shndx_count;
10422 file_ptr off;
10423 Elf_Internal_Sym elfsym;
10424 unsigned int i;
10425 Elf_Internal_Shdr *symtab_hdr;
10426 Elf_Internal_Shdr *symtab_shndx_hdr;
10427 Elf_Internal_Shdr *symstrtab_hdr;
10428 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10429 struct elf_outext_info eoinfo;
10430 bfd_boolean merged;
10431 size_t relativecount = 0;
10432 asection *reldyn = 0;
10433 bfd_size_type amt;
10434 asection *attr_section = NULL;
10435 bfd_vma attr_size = 0;
10436 const char *std_attrs_section;
10437
10438 if (! is_elf_hash_table (info->hash))
10439 return FALSE;
10440
10441 if (info->shared)
10442 abfd->flags |= DYNAMIC;
10443
10444 dynamic = elf_hash_table (info)->dynamic_sections_created;
10445 dynobj = elf_hash_table (info)->dynobj;
10446
10447 emit_relocs = (info->relocatable
10448 || info->emitrelocations);
10449
10450 flinfo.info = info;
10451 flinfo.output_bfd = abfd;
10452 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10453 if (flinfo.symstrtab == NULL)
10454 return FALSE;
10455
10456 if (! dynamic)
10457 {
10458 flinfo.dynsym_sec = NULL;
10459 flinfo.hash_sec = NULL;
10460 flinfo.symver_sec = NULL;
10461 }
10462 else
10463 {
10464 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10465 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10466 /* Note that dynsym_sec can be NULL (on VMS). */
10467 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10468 /* Note that it is OK if symver_sec is NULL. */
10469 }
10470
10471 flinfo.contents = NULL;
10472 flinfo.external_relocs = NULL;
10473 flinfo.internal_relocs = NULL;
10474 flinfo.external_syms = NULL;
10475 flinfo.locsym_shndx = NULL;
10476 flinfo.internal_syms = NULL;
10477 flinfo.indices = NULL;
10478 flinfo.sections = NULL;
10479 flinfo.symbuf = NULL;
10480 flinfo.symshndxbuf = NULL;
10481 flinfo.symbuf_count = 0;
10482 flinfo.shndxbuf_size = 0;
10483 flinfo.filesym_count = 0;
10484
10485 /* The object attributes have been merged. Remove the input
10486 sections from the link, and set the contents of the output
10487 secton. */
10488 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10489 for (o = abfd->sections; o != NULL; o = o->next)
10490 {
10491 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10492 || strcmp (o->name, ".gnu.attributes") == 0)
10493 {
10494 for (p = o->map_head.link_order; p != NULL; p = p->next)
10495 {
10496 asection *input_section;
10497
10498 if (p->type != bfd_indirect_link_order)
10499 continue;
10500 input_section = p->u.indirect.section;
10501 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10502 elf_link_input_bfd ignores this section. */
10503 input_section->flags &= ~SEC_HAS_CONTENTS;
10504 }
10505
10506 attr_size = bfd_elf_obj_attr_size (abfd);
10507 if (attr_size)
10508 {
10509 bfd_set_section_size (abfd, o, attr_size);
10510 attr_section = o;
10511 /* Skip this section later on. */
10512 o->map_head.link_order = NULL;
10513 }
10514 else
10515 o->flags |= SEC_EXCLUDE;
10516 }
10517 }
10518
10519 /* Count up the number of relocations we will output for each output
10520 section, so that we know the sizes of the reloc sections. We
10521 also figure out some maximum sizes. */
10522 max_contents_size = 0;
10523 max_external_reloc_size = 0;
10524 max_internal_reloc_count = 0;
10525 max_sym_count = 0;
10526 max_sym_shndx_count = 0;
10527 merged = FALSE;
10528 for (o = abfd->sections; o != NULL; o = o->next)
10529 {
10530 struct bfd_elf_section_data *esdo = elf_section_data (o);
10531 o->reloc_count = 0;
10532
10533 for (p = o->map_head.link_order; p != NULL; p = p->next)
10534 {
10535 unsigned int reloc_count = 0;
10536 struct bfd_elf_section_data *esdi = NULL;
10537
10538 if (p->type == bfd_section_reloc_link_order
10539 || p->type == bfd_symbol_reloc_link_order)
10540 reloc_count = 1;
10541 else if (p->type == bfd_indirect_link_order)
10542 {
10543 asection *sec;
10544
10545 sec = p->u.indirect.section;
10546 esdi = elf_section_data (sec);
10547
10548 /* Mark all sections which are to be included in the
10549 link. This will normally be every section. We need
10550 to do this so that we can identify any sections which
10551 the linker has decided to not include. */
10552 sec->linker_mark = TRUE;
10553
10554 if (sec->flags & SEC_MERGE)
10555 merged = TRUE;
10556
10557 if (esdo->this_hdr.sh_type == SHT_REL
10558 || esdo->this_hdr.sh_type == SHT_RELA)
10559 /* Some backends use reloc_count in relocation sections
10560 to count particular types of relocs. Of course,
10561 reloc sections themselves can't have relocations. */
10562 reloc_count = 0;
10563 else if (info->relocatable || info->emitrelocations)
10564 reloc_count = sec->reloc_count;
10565 else if (bed->elf_backend_count_relocs)
10566 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10567
10568 if (sec->rawsize > max_contents_size)
10569 max_contents_size = sec->rawsize;
10570 if (sec->size > max_contents_size)
10571 max_contents_size = sec->size;
10572
10573 /* We are interested in just local symbols, not all
10574 symbols. */
10575 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10576 && (sec->owner->flags & DYNAMIC) == 0)
10577 {
10578 size_t sym_count;
10579
10580 if (elf_bad_symtab (sec->owner))
10581 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10582 / bed->s->sizeof_sym);
10583 else
10584 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10585
10586 if (sym_count > max_sym_count)
10587 max_sym_count = sym_count;
10588
10589 if (sym_count > max_sym_shndx_count
10590 && elf_symtab_shndx (sec->owner) != 0)
10591 max_sym_shndx_count = sym_count;
10592
10593 if ((sec->flags & SEC_RELOC) != 0)
10594 {
10595 size_t ext_size = 0;
10596
10597 if (esdi->rel.hdr != NULL)
10598 ext_size = esdi->rel.hdr->sh_size;
10599 if (esdi->rela.hdr != NULL)
10600 ext_size += esdi->rela.hdr->sh_size;
10601
10602 if (ext_size > max_external_reloc_size)
10603 max_external_reloc_size = ext_size;
10604 if (sec->reloc_count > max_internal_reloc_count)
10605 max_internal_reloc_count = sec->reloc_count;
10606 }
10607 }
10608 }
10609
10610 if (reloc_count == 0)
10611 continue;
10612
10613 o->reloc_count += reloc_count;
10614
10615 if (p->type == bfd_indirect_link_order
10616 && (info->relocatable || info->emitrelocations))
10617 {
10618 if (esdi->rel.hdr)
10619 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10620 if (esdi->rela.hdr)
10621 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10622 }
10623 else
10624 {
10625 if (o->use_rela_p)
10626 esdo->rela.count += reloc_count;
10627 else
10628 esdo->rel.count += reloc_count;
10629 }
10630 }
10631
10632 if (o->reloc_count > 0)
10633 o->flags |= SEC_RELOC;
10634 else
10635 {
10636 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10637 set it (this is probably a bug) and if it is set
10638 assign_section_numbers will create a reloc section. */
10639 o->flags &=~ SEC_RELOC;
10640 }
10641
10642 /* If the SEC_ALLOC flag is not set, force the section VMA to
10643 zero. This is done in elf_fake_sections as well, but forcing
10644 the VMA to 0 here will ensure that relocs against these
10645 sections are handled correctly. */
10646 if ((o->flags & SEC_ALLOC) == 0
10647 && ! o->user_set_vma)
10648 o->vma = 0;
10649 }
10650
10651 if (! info->relocatable && merged)
10652 elf_link_hash_traverse (elf_hash_table (info),
10653 _bfd_elf_link_sec_merge_syms, abfd);
10654
10655 /* Figure out the file positions for everything but the symbol table
10656 and the relocs. We set symcount to force assign_section_numbers
10657 to create a symbol table. */
10658 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10659 BFD_ASSERT (! abfd->output_has_begun);
10660 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10661 goto error_return;
10662
10663 /* Set sizes, and assign file positions for reloc sections. */
10664 for (o = abfd->sections; o != NULL; o = o->next)
10665 {
10666 struct bfd_elf_section_data *esdo = elf_section_data (o);
10667 if ((o->flags & SEC_RELOC) != 0)
10668 {
10669 if (esdo->rel.hdr
10670 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10671 goto error_return;
10672
10673 if (esdo->rela.hdr
10674 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10675 goto error_return;
10676 }
10677
10678 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10679 to count upwards while actually outputting the relocations. */
10680 esdo->rel.count = 0;
10681 esdo->rela.count = 0;
10682 }
10683
10684 _bfd_elf_assign_file_positions_for_relocs (abfd);
10685
10686 /* We have now assigned file positions for all the sections except
10687 .symtab and .strtab. We start the .symtab section at the current
10688 file position, and write directly to it. We build the .strtab
10689 section in memory. */
10690 bfd_get_symcount (abfd) = 0;
10691 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10692 /* sh_name is set in prep_headers. */
10693 symtab_hdr->sh_type = SHT_SYMTAB;
10694 /* sh_flags, sh_addr and sh_size all start off zero. */
10695 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10696 /* sh_link is set in assign_section_numbers. */
10697 /* sh_info is set below. */
10698 /* sh_offset is set just below. */
10699 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10700
10701 off = elf_next_file_pos (abfd);
10702 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10703
10704 /* Note that at this point elf_next_file_pos (abfd) is
10705 incorrect. We do not yet know the size of the .symtab section.
10706 We correct next_file_pos below, after we do know the size. */
10707
10708 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10709 continuously seeking to the right position in the file. */
10710 if (! info->keep_memory || max_sym_count < 20)
10711 flinfo.symbuf_size = 20;
10712 else
10713 flinfo.symbuf_size = max_sym_count;
10714 amt = flinfo.symbuf_size;
10715 amt *= bed->s->sizeof_sym;
10716 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10717 if (flinfo.symbuf == NULL)
10718 goto error_return;
10719 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10720 {
10721 /* Wild guess at number of output symbols. realloc'd as needed. */
10722 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10723 flinfo.shndxbuf_size = amt;
10724 amt *= sizeof (Elf_External_Sym_Shndx);
10725 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10726 if (flinfo.symshndxbuf == NULL)
10727 goto error_return;
10728 }
10729
10730 /* Start writing out the symbol table. The first symbol is always a
10731 dummy symbol. */
10732 if (info->strip != strip_all
10733 || emit_relocs)
10734 {
10735 elfsym.st_value = 0;
10736 elfsym.st_size = 0;
10737 elfsym.st_info = 0;
10738 elfsym.st_other = 0;
10739 elfsym.st_shndx = SHN_UNDEF;
10740 elfsym.st_target_internal = 0;
10741 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10742 NULL) != 1)
10743 goto error_return;
10744 }
10745
10746 /* Output a symbol for each section. We output these even if we are
10747 discarding local symbols, since they are used for relocs. These
10748 symbols have no names. We store the index of each one in the
10749 index field of the section, so that we can find it again when
10750 outputting relocs. */
10751 if (info->strip != strip_all
10752 || emit_relocs)
10753 {
10754 elfsym.st_size = 0;
10755 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10756 elfsym.st_other = 0;
10757 elfsym.st_value = 0;
10758 elfsym.st_target_internal = 0;
10759 for (i = 1; i < elf_numsections (abfd); i++)
10760 {
10761 o = bfd_section_from_elf_index (abfd, i);
10762 if (o != NULL)
10763 {
10764 o->target_index = bfd_get_symcount (abfd);
10765 elfsym.st_shndx = i;
10766 if (!info->relocatable)
10767 elfsym.st_value = o->vma;
10768 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10769 goto error_return;
10770 }
10771 }
10772 }
10773
10774 /* Allocate some memory to hold information read in from the input
10775 files. */
10776 if (max_contents_size != 0)
10777 {
10778 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10779 if (flinfo.contents == NULL)
10780 goto error_return;
10781 }
10782
10783 if (max_external_reloc_size != 0)
10784 {
10785 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10786 if (flinfo.external_relocs == NULL)
10787 goto error_return;
10788 }
10789
10790 if (max_internal_reloc_count != 0)
10791 {
10792 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10793 amt *= sizeof (Elf_Internal_Rela);
10794 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10795 if (flinfo.internal_relocs == NULL)
10796 goto error_return;
10797 }
10798
10799 if (max_sym_count != 0)
10800 {
10801 amt = max_sym_count * bed->s->sizeof_sym;
10802 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10803 if (flinfo.external_syms == NULL)
10804 goto error_return;
10805
10806 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10807 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10808 if (flinfo.internal_syms == NULL)
10809 goto error_return;
10810
10811 amt = max_sym_count * sizeof (long);
10812 flinfo.indices = (long int *) bfd_malloc (amt);
10813 if (flinfo.indices == NULL)
10814 goto error_return;
10815
10816 amt = max_sym_count * sizeof (asection *);
10817 flinfo.sections = (asection **) bfd_malloc (amt);
10818 if (flinfo.sections == NULL)
10819 goto error_return;
10820 }
10821
10822 if (max_sym_shndx_count != 0)
10823 {
10824 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10825 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10826 if (flinfo.locsym_shndx == NULL)
10827 goto error_return;
10828 }
10829
10830 if (elf_hash_table (info)->tls_sec)
10831 {
10832 bfd_vma base, end = 0;
10833 asection *sec;
10834
10835 for (sec = elf_hash_table (info)->tls_sec;
10836 sec && (sec->flags & SEC_THREAD_LOCAL);
10837 sec = sec->next)
10838 {
10839 bfd_size_type size = sec->size;
10840
10841 if (size == 0
10842 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10843 {
10844 struct bfd_link_order *ord = sec->map_tail.link_order;
10845
10846 if (ord != NULL)
10847 size = ord->offset + ord->size;
10848 }
10849 end = sec->vma + size;
10850 }
10851 base = elf_hash_table (info)->tls_sec->vma;
10852 /* Only align end of TLS section if static TLS doesn't have special
10853 alignment requirements. */
10854 if (bed->static_tls_alignment == 1)
10855 end = align_power (end,
10856 elf_hash_table (info)->tls_sec->alignment_power);
10857 elf_hash_table (info)->tls_size = end - base;
10858 }
10859
10860 /* Reorder SHF_LINK_ORDER sections. */
10861 for (o = abfd->sections; o != NULL; o = o->next)
10862 {
10863 if (!elf_fixup_link_order (abfd, o))
10864 return FALSE;
10865 }
10866
10867 /* Since ELF permits relocations to be against local symbols, we
10868 must have the local symbols available when we do the relocations.
10869 Since we would rather only read the local symbols once, and we
10870 would rather not keep them in memory, we handle all the
10871 relocations for a single input file at the same time.
10872
10873 Unfortunately, there is no way to know the total number of local
10874 symbols until we have seen all of them, and the local symbol
10875 indices precede the global symbol indices. This means that when
10876 we are generating relocatable output, and we see a reloc against
10877 a global symbol, we can not know the symbol index until we have
10878 finished examining all the local symbols to see which ones we are
10879 going to output. To deal with this, we keep the relocations in
10880 memory, and don't output them until the end of the link. This is
10881 an unfortunate waste of memory, but I don't see a good way around
10882 it. Fortunately, it only happens when performing a relocatable
10883 link, which is not the common case. FIXME: If keep_memory is set
10884 we could write the relocs out and then read them again; I don't
10885 know how bad the memory loss will be. */
10886
10887 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10888 sub->output_has_begun = FALSE;
10889 for (o = abfd->sections; o != NULL; o = o->next)
10890 {
10891 for (p = o->map_head.link_order; p != NULL; p = p->next)
10892 {
10893 if (p->type == bfd_indirect_link_order
10894 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10895 == bfd_target_elf_flavour)
10896 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10897 {
10898 if (! sub->output_has_begun)
10899 {
10900 if (! elf_link_input_bfd (&flinfo, sub))
10901 goto error_return;
10902 sub->output_has_begun = TRUE;
10903 }
10904 }
10905 else if (p->type == bfd_section_reloc_link_order
10906 || p->type == bfd_symbol_reloc_link_order)
10907 {
10908 if (! elf_reloc_link_order (abfd, info, o, p))
10909 goto error_return;
10910 }
10911 else
10912 {
10913 if (! _bfd_default_link_order (abfd, info, o, p))
10914 {
10915 if (p->type == bfd_indirect_link_order
10916 && (bfd_get_flavour (sub)
10917 == bfd_target_elf_flavour)
10918 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10919 != bed->s->elfclass))
10920 {
10921 const char *iclass, *oclass;
10922
10923 if (bed->s->elfclass == ELFCLASS64)
10924 {
10925 iclass = "ELFCLASS32";
10926 oclass = "ELFCLASS64";
10927 }
10928 else
10929 {
10930 iclass = "ELFCLASS64";
10931 oclass = "ELFCLASS32";
10932 }
10933
10934 bfd_set_error (bfd_error_wrong_format);
10935 (*_bfd_error_handler)
10936 (_("%B: file class %s incompatible with %s"),
10937 sub, iclass, oclass);
10938 }
10939
10940 goto error_return;
10941 }
10942 }
10943 }
10944 }
10945
10946 /* Free symbol buffer if needed. */
10947 if (!info->reduce_memory_overheads)
10948 {
10949 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10950 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10951 && elf_tdata (sub)->symbuf)
10952 {
10953 free (elf_tdata (sub)->symbuf);
10954 elf_tdata (sub)->symbuf = NULL;
10955 }
10956 }
10957
10958 /* Output a FILE symbol so that following locals are not associated
10959 with the wrong input file. */
10960 memset (&elfsym, 0, sizeof (elfsym));
10961 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10962 elfsym.st_shndx = SHN_ABS;
10963
10964 if (flinfo.filesym_count > 1
10965 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
10966 bfd_und_section_ptr, NULL))
10967 return FALSE;
10968
10969 /* Output any global symbols that got converted to local in a
10970 version script or due to symbol visibility. We do this in a
10971 separate step since ELF requires all local symbols to appear
10972 prior to any global symbols. FIXME: We should only do this if
10973 some global symbols were, in fact, converted to become local.
10974 FIXME: Will this work correctly with the Irix 5 linker? */
10975 eoinfo.failed = FALSE;
10976 eoinfo.flinfo = &flinfo;
10977 eoinfo.localsyms = TRUE;
10978 eoinfo.need_second_pass = FALSE;
10979 eoinfo.second_pass = FALSE;
10980 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10981 if (eoinfo.failed)
10982 return FALSE;
10983
10984 if (flinfo.filesym_count == 1
10985 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
10986 bfd_und_section_ptr, NULL))
10987 return FALSE;
10988
10989 if (eoinfo.need_second_pass)
10990 {
10991 eoinfo.second_pass = TRUE;
10992 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10993 if (eoinfo.failed)
10994 return FALSE;
10995 }
10996
10997 /* If backend needs to output some local symbols not present in the hash
10998 table, do it now. */
10999 if (bed->elf_backend_output_arch_local_syms)
11000 {
11001 typedef int (*out_sym_func)
11002 (void *, const char *, Elf_Internal_Sym *, asection *,
11003 struct elf_link_hash_entry *);
11004
11005 if (! ((*bed->elf_backend_output_arch_local_syms)
11006 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11007 return FALSE;
11008 }
11009
11010 /* That wrote out all the local symbols. Finish up the symbol table
11011 with the global symbols. Even if we want to strip everything we
11012 can, we still need to deal with those global symbols that got
11013 converted to local in a version script. */
11014
11015 /* The sh_info field records the index of the first non local symbol. */
11016 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11017
11018 if (dynamic
11019 && flinfo.dynsym_sec != NULL
11020 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11021 {
11022 Elf_Internal_Sym sym;
11023 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11024 long last_local = 0;
11025
11026 /* Write out the section symbols for the output sections. */
11027 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11028 {
11029 asection *s;
11030
11031 sym.st_size = 0;
11032 sym.st_name = 0;
11033 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11034 sym.st_other = 0;
11035 sym.st_target_internal = 0;
11036
11037 for (s = abfd->sections; s != NULL; s = s->next)
11038 {
11039 int indx;
11040 bfd_byte *dest;
11041 long dynindx;
11042
11043 dynindx = elf_section_data (s)->dynindx;
11044 if (dynindx <= 0)
11045 continue;
11046 indx = elf_section_data (s)->this_idx;
11047 BFD_ASSERT (indx > 0);
11048 sym.st_shndx = indx;
11049 if (! check_dynsym (abfd, &sym))
11050 return FALSE;
11051 sym.st_value = s->vma;
11052 dest = dynsym + dynindx * bed->s->sizeof_sym;
11053 if (last_local < dynindx)
11054 last_local = dynindx;
11055 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11056 }
11057 }
11058
11059 /* Write out the local dynsyms. */
11060 if (elf_hash_table (info)->dynlocal)
11061 {
11062 struct elf_link_local_dynamic_entry *e;
11063 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11064 {
11065 asection *s;
11066 bfd_byte *dest;
11067
11068 /* Copy the internal symbol and turn off visibility.
11069 Note that we saved a word of storage and overwrote
11070 the original st_name with the dynstr_index. */
11071 sym = e->isym;
11072 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11073
11074 s = bfd_section_from_elf_index (e->input_bfd,
11075 e->isym.st_shndx);
11076 if (s != NULL)
11077 {
11078 sym.st_shndx =
11079 elf_section_data (s->output_section)->this_idx;
11080 if (! check_dynsym (abfd, &sym))
11081 return FALSE;
11082 sym.st_value = (s->output_section->vma
11083 + s->output_offset
11084 + e->isym.st_value);
11085 }
11086
11087 if (last_local < e->dynindx)
11088 last_local = e->dynindx;
11089
11090 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11091 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11092 }
11093 }
11094
11095 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11096 last_local + 1;
11097 }
11098
11099 /* We get the global symbols from the hash table. */
11100 eoinfo.failed = FALSE;
11101 eoinfo.localsyms = FALSE;
11102 eoinfo.flinfo = &flinfo;
11103 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11104 if (eoinfo.failed)
11105 return FALSE;
11106
11107 /* If backend needs to output some symbols not present in the hash
11108 table, do it now. */
11109 if (bed->elf_backend_output_arch_syms)
11110 {
11111 typedef int (*out_sym_func)
11112 (void *, const char *, Elf_Internal_Sym *, asection *,
11113 struct elf_link_hash_entry *);
11114
11115 if (! ((*bed->elf_backend_output_arch_syms)
11116 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11117 return FALSE;
11118 }
11119
11120 /* Flush all symbols to the file. */
11121 if (! elf_link_flush_output_syms (&flinfo, bed))
11122 return FALSE;
11123
11124 /* Now we know the size of the symtab section. */
11125 off += symtab_hdr->sh_size;
11126
11127 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11128 if (symtab_shndx_hdr->sh_name != 0)
11129 {
11130 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11131 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11132 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11133 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11134 symtab_shndx_hdr->sh_size = amt;
11135
11136 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11137 off, TRUE);
11138
11139 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11140 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11141 return FALSE;
11142 }
11143
11144
11145 /* Finish up and write out the symbol string table (.strtab)
11146 section. */
11147 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11148 /* sh_name was set in prep_headers. */
11149 symstrtab_hdr->sh_type = SHT_STRTAB;
11150 symstrtab_hdr->sh_flags = 0;
11151 symstrtab_hdr->sh_addr = 0;
11152 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11153 symstrtab_hdr->sh_entsize = 0;
11154 symstrtab_hdr->sh_link = 0;
11155 symstrtab_hdr->sh_info = 0;
11156 /* sh_offset is set just below. */
11157 symstrtab_hdr->sh_addralign = 1;
11158
11159 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11160 elf_next_file_pos (abfd) = off;
11161
11162 if (bfd_get_symcount (abfd) > 0)
11163 {
11164 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11165 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11166 return FALSE;
11167 }
11168
11169 /* Adjust the relocs to have the correct symbol indices. */
11170 for (o = abfd->sections; o != NULL; o = o->next)
11171 {
11172 struct bfd_elf_section_data *esdo = elf_section_data (o);
11173 if ((o->flags & SEC_RELOC) == 0)
11174 continue;
11175
11176 if (esdo->rel.hdr != NULL)
11177 elf_link_adjust_relocs (abfd, &esdo->rel);
11178 if (esdo->rela.hdr != NULL)
11179 elf_link_adjust_relocs (abfd, &esdo->rela);
11180
11181 /* Set the reloc_count field to 0 to prevent write_relocs from
11182 trying to swap the relocs out itself. */
11183 o->reloc_count = 0;
11184 }
11185
11186 if (dynamic && info->combreloc && dynobj != NULL)
11187 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11188
11189 /* If we are linking against a dynamic object, or generating a
11190 shared library, finish up the dynamic linking information. */
11191 if (dynamic)
11192 {
11193 bfd_byte *dyncon, *dynconend;
11194
11195 /* Fix up .dynamic entries. */
11196 o = bfd_get_linker_section (dynobj, ".dynamic");
11197 BFD_ASSERT (o != NULL);
11198
11199 dyncon = o->contents;
11200 dynconend = o->contents + o->size;
11201 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11202 {
11203 Elf_Internal_Dyn dyn;
11204 const char *name;
11205 unsigned int type;
11206
11207 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11208
11209 switch (dyn.d_tag)
11210 {
11211 default:
11212 continue;
11213 case DT_NULL:
11214 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11215 {
11216 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11217 {
11218 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11219 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11220 default: continue;
11221 }
11222 dyn.d_un.d_val = relativecount;
11223 relativecount = 0;
11224 break;
11225 }
11226 continue;
11227
11228 case DT_INIT:
11229 name = info->init_function;
11230 goto get_sym;
11231 case DT_FINI:
11232 name = info->fini_function;
11233 get_sym:
11234 {
11235 struct elf_link_hash_entry *h;
11236
11237 h = elf_link_hash_lookup (elf_hash_table (info), name,
11238 FALSE, FALSE, TRUE);
11239 if (h != NULL
11240 && (h->root.type == bfd_link_hash_defined
11241 || h->root.type == bfd_link_hash_defweak))
11242 {
11243 dyn.d_un.d_ptr = h->root.u.def.value;
11244 o = h->root.u.def.section;
11245 if (o->output_section != NULL)
11246 dyn.d_un.d_ptr += (o->output_section->vma
11247 + o->output_offset);
11248 else
11249 {
11250 /* The symbol is imported from another shared
11251 library and does not apply to this one. */
11252 dyn.d_un.d_ptr = 0;
11253 }
11254 break;
11255 }
11256 }
11257 continue;
11258
11259 case DT_PREINIT_ARRAYSZ:
11260 name = ".preinit_array";
11261 goto get_size;
11262 case DT_INIT_ARRAYSZ:
11263 name = ".init_array";
11264 goto get_size;
11265 case DT_FINI_ARRAYSZ:
11266 name = ".fini_array";
11267 get_size:
11268 o = bfd_get_section_by_name (abfd, name);
11269 if (o == NULL)
11270 {
11271 (*_bfd_error_handler)
11272 (_("%B: could not find output section %s"), abfd, name);
11273 goto error_return;
11274 }
11275 if (o->size == 0)
11276 (*_bfd_error_handler)
11277 (_("warning: %s section has zero size"), name);
11278 dyn.d_un.d_val = o->size;
11279 break;
11280
11281 case DT_PREINIT_ARRAY:
11282 name = ".preinit_array";
11283 goto get_vma;
11284 case DT_INIT_ARRAY:
11285 name = ".init_array";
11286 goto get_vma;
11287 case DT_FINI_ARRAY:
11288 name = ".fini_array";
11289 goto get_vma;
11290
11291 case DT_HASH:
11292 name = ".hash";
11293 goto get_vma;
11294 case DT_GNU_HASH:
11295 name = ".gnu.hash";
11296 goto get_vma;
11297 case DT_STRTAB:
11298 name = ".dynstr";
11299 goto get_vma;
11300 case DT_SYMTAB:
11301 name = ".dynsym";
11302 goto get_vma;
11303 case DT_VERDEF:
11304 name = ".gnu.version_d";
11305 goto get_vma;
11306 case DT_VERNEED:
11307 name = ".gnu.version_r";
11308 goto get_vma;
11309 case DT_VERSYM:
11310 name = ".gnu.version";
11311 get_vma:
11312 o = bfd_get_section_by_name (abfd, name);
11313 if (o == NULL)
11314 {
11315 (*_bfd_error_handler)
11316 (_("%B: could not find output section %s"), abfd, name);
11317 goto error_return;
11318 }
11319 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11320 {
11321 (*_bfd_error_handler)
11322 (_("warning: section '%s' is being made into a note"), name);
11323 bfd_set_error (bfd_error_nonrepresentable_section);
11324 goto error_return;
11325 }
11326 dyn.d_un.d_ptr = o->vma;
11327 break;
11328
11329 case DT_REL:
11330 case DT_RELA:
11331 case DT_RELSZ:
11332 case DT_RELASZ:
11333 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11334 type = SHT_REL;
11335 else
11336 type = SHT_RELA;
11337 dyn.d_un.d_val = 0;
11338 dyn.d_un.d_ptr = 0;
11339 for (i = 1; i < elf_numsections (abfd); i++)
11340 {
11341 Elf_Internal_Shdr *hdr;
11342
11343 hdr = elf_elfsections (abfd)[i];
11344 if (hdr->sh_type == type
11345 && (hdr->sh_flags & SHF_ALLOC) != 0)
11346 {
11347 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11348 dyn.d_un.d_val += hdr->sh_size;
11349 else
11350 {
11351 if (dyn.d_un.d_ptr == 0
11352 || hdr->sh_addr < dyn.d_un.d_ptr)
11353 dyn.d_un.d_ptr = hdr->sh_addr;
11354 }
11355 }
11356 }
11357 break;
11358 }
11359 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11360 }
11361 }
11362
11363 /* If we have created any dynamic sections, then output them. */
11364 if (dynobj != NULL)
11365 {
11366 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11367 goto error_return;
11368
11369 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11370 if (((info->warn_shared_textrel && info->shared)
11371 || info->error_textrel)
11372 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11373 {
11374 bfd_byte *dyncon, *dynconend;
11375
11376 dyncon = o->contents;
11377 dynconend = o->contents + o->size;
11378 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11379 {
11380 Elf_Internal_Dyn dyn;
11381
11382 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11383
11384 if (dyn.d_tag == DT_TEXTREL)
11385 {
11386 if (info->error_textrel)
11387 info->callbacks->einfo
11388 (_("%P%X: read-only segment has dynamic relocations.\n"));
11389 else
11390 info->callbacks->einfo
11391 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11392 break;
11393 }
11394 }
11395 }
11396
11397 for (o = dynobj->sections; o != NULL; o = o->next)
11398 {
11399 if ((o->flags & SEC_HAS_CONTENTS) == 0
11400 || o->size == 0
11401 || o->output_section == bfd_abs_section_ptr)
11402 continue;
11403 if ((o->flags & SEC_LINKER_CREATED) == 0)
11404 {
11405 /* At this point, we are only interested in sections
11406 created by _bfd_elf_link_create_dynamic_sections. */
11407 continue;
11408 }
11409 if (elf_hash_table (info)->stab_info.stabstr == o)
11410 continue;
11411 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11412 continue;
11413 if (strcmp (o->name, ".dynstr") != 0)
11414 {
11415 /* FIXME: octets_per_byte. */
11416 if (! bfd_set_section_contents (abfd, o->output_section,
11417 o->contents,
11418 (file_ptr) o->output_offset,
11419 o->size))
11420 goto error_return;
11421 }
11422 else
11423 {
11424 /* The contents of the .dynstr section are actually in a
11425 stringtab. */
11426 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11427 if (bfd_seek (abfd, off, SEEK_SET) != 0
11428 || ! _bfd_elf_strtab_emit (abfd,
11429 elf_hash_table (info)->dynstr))
11430 goto error_return;
11431 }
11432 }
11433 }
11434
11435 if (info->relocatable)
11436 {
11437 bfd_boolean failed = FALSE;
11438
11439 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11440 if (failed)
11441 goto error_return;
11442 }
11443
11444 /* If we have optimized stabs strings, output them. */
11445 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11446 {
11447 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11448 goto error_return;
11449 }
11450
11451 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11452 goto error_return;
11453
11454 elf_final_link_free (abfd, &flinfo);
11455
11456 elf_linker (abfd) = TRUE;
11457
11458 if (attr_section)
11459 {
11460 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11461 if (contents == NULL)
11462 return FALSE; /* Bail out and fail. */
11463 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11464 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11465 free (contents);
11466 }
11467
11468 return TRUE;
11469
11470 error_return:
11471 elf_final_link_free (abfd, &flinfo);
11472 return FALSE;
11473 }
11474 \f
11475 /* Initialize COOKIE for input bfd ABFD. */
11476
11477 static bfd_boolean
11478 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11479 struct bfd_link_info *info, bfd *abfd)
11480 {
11481 Elf_Internal_Shdr *symtab_hdr;
11482 const struct elf_backend_data *bed;
11483
11484 bed = get_elf_backend_data (abfd);
11485 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11486
11487 cookie->abfd = abfd;
11488 cookie->sym_hashes = elf_sym_hashes (abfd);
11489 cookie->bad_symtab = elf_bad_symtab (abfd);
11490 if (cookie->bad_symtab)
11491 {
11492 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11493 cookie->extsymoff = 0;
11494 }
11495 else
11496 {
11497 cookie->locsymcount = symtab_hdr->sh_info;
11498 cookie->extsymoff = symtab_hdr->sh_info;
11499 }
11500
11501 if (bed->s->arch_size == 32)
11502 cookie->r_sym_shift = 8;
11503 else
11504 cookie->r_sym_shift = 32;
11505
11506 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11507 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11508 {
11509 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11510 cookie->locsymcount, 0,
11511 NULL, NULL, NULL);
11512 if (cookie->locsyms == NULL)
11513 {
11514 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11515 return FALSE;
11516 }
11517 if (info->keep_memory)
11518 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11519 }
11520 return TRUE;
11521 }
11522
11523 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11524
11525 static void
11526 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11527 {
11528 Elf_Internal_Shdr *symtab_hdr;
11529
11530 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11531 if (cookie->locsyms != NULL
11532 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11533 free (cookie->locsyms);
11534 }
11535
11536 /* Initialize the relocation information in COOKIE for input section SEC
11537 of input bfd ABFD. */
11538
11539 static bfd_boolean
11540 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11541 struct bfd_link_info *info, bfd *abfd,
11542 asection *sec)
11543 {
11544 const struct elf_backend_data *bed;
11545
11546 if (sec->reloc_count == 0)
11547 {
11548 cookie->rels = NULL;
11549 cookie->relend = NULL;
11550 }
11551 else
11552 {
11553 bed = get_elf_backend_data (abfd);
11554
11555 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11556 info->keep_memory);
11557 if (cookie->rels == NULL)
11558 return FALSE;
11559 cookie->rel = cookie->rels;
11560 cookie->relend = (cookie->rels
11561 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11562 }
11563 cookie->rel = cookie->rels;
11564 return TRUE;
11565 }
11566
11567 /* Free the memory allocated by init_reloc_cookie_rels,
11568 if appropriate. */
11569
11570 static void
11571 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11572 asection *sec)
11573 {
11574 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11575 free (cookie->rels);
11576 }
11577
11578 /* Initialize the whole of COOKIE for input section SEC. */
11579
11580 static bfd_boolean
11581 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11582 struct bfd_link_info *info,
11583 asection *sec)
11584 {
11585 if (!init_reloc_cookie (cookie, info, sec->owner))
11586 goto error1;
11587 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11588 goto error2;
11589 return TRUE;
11590
11591 error2:
11592 fini_reloc_cookie (cookie, sec->owner);
11593 error1:
11594 return FALSE;
11595 }
11596
11597 /* Free the memory allocated by init_reloc_cookie_for_section,
11598 if appropriate. */
11599
11600 static void
11601 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11602 asection *sec)
11603 {
11604 fini_reloc_cookie_rels (cookie, sec);
11605 fini_reloc_cookie (cookie, sec->owner);
11606 }
11607 \f
11608 /* Garbage collect unused sections. */
11609
11610 /* Default gc_mark_hook. */
11611
11612 asection *
11613 _bfd_elf_gc_mark_hook (asection *sec,
11614 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11615 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11616 struct elf_link_hash_entry *h,
11617 Elf_Internal_Sym *sym)
11618 {
11619 const char *sec_name;
11620
11621 if (h != NULL)
11622 {
11623 switch (h->root.type)
11624 {
11625 case bfd_link_hash_defined:
11626 case bfd_link_hash_defweak:
11627 return h->root.u.def.section;
11628
11629 case bfd_link_hash_common:
11630 return h->root.u.c.p->section;
11631
11632 case bfd_link_hash_undefined:
11633 case bfd_link_hash_undefweak:
11634 /* To work around a glibc bug, keep all XXX input sections
11635 when there is an as yet undefined reference to __start_XXX
11636 or __stop_XXX symbols. The linker will later define such
11637 symbols for orphan input sections that have a name
11638 representable as a C identifier. */
11639 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11640 sec_name = h->root.root.string + 8;
11641 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11642 sec_name = h->root.root.string + 7;
11643 else
11644 sec_name = NULL;
11645
11646 if (sec_name && *sec_name != '\0')
11647 {
11648 bfd *i;
11649
11650 for (i = info->input_bfds; i; i = i->link_next)
11651 {
11652 sec = bfd_get_section_by_name (i, sec_name);
11653 if (sec)
11654 sec->flags |= SEC_KEEP;
11655 }
11656 }
11657 break;
11658
11659 default:
11660 break;
11661 }
11662 }
11663 else
11664 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11665
11666 return NULL;
11667 }
11668
11669 /* COOKIE->rel describes a relocation against section SEC, which is
11670 a section we've decided to keep. Return the section that contains
11671 the relocation symbol, or NULL if no section contains it. */
11672
11673 asection *
11674 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11675 elf_gc_mark_hook_fn gc_mark_hook,
11676 struct elf_reloc_cookie *cookie)
11677 {
11678 unsigned long r_symndx;
11679 struct elf_link_hash_entry *h;
11680
11681 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11682 if (r_symndx == STN_UNDEF)
11683 return NULL;
11684
11685 if (r_symndx >= cookie->locsymcount
11686 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11687 {
11688 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11689 while (h->root.type == bfd_link_hash_indirect
11690 || h->root.type == bfd_link_hash_warning)
11691 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11692 h->mark = 1;
11693 /* If this symbol is weak and there is a non-weak definition, we
11694 keep the non-weak definition because many backends put
11695 dynamic reloc info on the non-weak definition for code
11696 handling copy relocs. */
11697 if (h->u.weakdef != NULL)
11698 h->u.weakdef->mark = 1;
11699 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11700 }
11701
11702 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11703 &cookie->locsyms[r_symndx]);
11704 }
11705
11706 /* COOKIE->rel describes a relocation against section SEC, which is
11707 a section we've decided to keep. Mark the section that contains
11708 the relocation symbol. */
11709
11710 bfd_boolean
11711 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11712 asection *sec,
11713 elf_gc_mark_hook_fn gc_mark_hook,
11714 struct elf_reloc_cookie *cookie)
11715 {
11716 asection *rsec;
11717
11718 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11719 if (rsec && !rsec->gc_mark)
11720 {
11721 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11722 || (rsec->owner->flags & DYNAMIC) != 0)
11723 rsec->gc_mark = 1;
11724 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11725 return FALSE;
11726 }
11727 return TRUE;
11728 }
11729
11730 /* The mark phase of garbage collection. For a given section, mark
11731 it and any sections in this section's group, and all the sections
11732 which define symbols to which it refers. */
11733
11734 bfd_boolean
11735 _bfd_elf_gc_mark (struct bfd_link_info *info,
11736 asection *sec,
11737 elf_gc_mark_hook_fn gc_mark_hook)
11738 {
11739 bfd_boolean ret;
11740 asection *group_sec, *eh_frame;
11741
11742 sec->gc_mark = 1;
11743
11744 /* Mark all the sections in the group. */
11745 group_sec = elf_section_data (sec)->next_in_group;
11746 if (group_sec && !group_sec->gc_mark)
11747 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11748 return FALSE;
11749
11750 /* Look through the section relocs. */
11751 ret = TRUE;
11752 eh_frame = elf_eh_frame_section (sec->owner);
11753 if ((sec->flags & SEC_RELOC) != 0
11754 && sec->reloc_count > 0
11755 && sec != eh_frame)
11756 {
11757 struct elf_reloc_cookie cookie;
11758
11759 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11760 ret = FALSE;
11761 else
11762 {
11763 for (; cookie.rel < cookie.relend; cookie.rel++)
11764 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11765 {
11766 ret = FALSE;
11767 break;
11768 }
11769 fini_reloc_cookie_for_section (&cookie, sec);
11770 }
11771 }
11772
11773 if (ret && eh_frame && elf_fde_list (sec))
11774 {
11775 struct elf_reloc_cookie cookie;
11776
11777 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11778 ret = FALSE;
11779 else
11780 {
11781 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11782 gc_mark_hook, &cookie))
11783 ret = FALSE;
11784 fini_reloc_cookie_for_section (&cookie, eh_frame);
11785 }
11786 }
11787
11788 return ret;
11789 }
11790
11791 /* Keep debug and special sections. */
11792
11793 bfd_boolean
11794 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11795 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11796 {
11797 bfd *ibfd;
11798
11799 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11800 {
11801 asection *isec;
11802 bfd_boolean some_kept;
11803 bfd_boolean debug_frag_seen;
11804
11805 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11806 continue;
11807
11808 /* Ensure all linker created sections are kept,
11809 see if any other section is already marked,
11810 and note if we have any fragmented debug sections. */
11811 debug_frag_seen = some_kept = FALSE;
11812 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11813 {
11814 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11815 isec->gc_mark = 1;
11816 else if (isec->gc_mark)
11817 some_kept = TRUE;
11818
11819 if (debug_frag_seen == FALSE
11820 && (isec->flags & SEC_DEBUGGING)
11821 && CONST_STRNEQ (isec->name, ".debug_line."))
11822 debug_frag_seen = TRUE;
11823 }
11824
11825 /* If no section in this file will be kept, then we can
11826 toss out the debug and special sections. */
11827 if (!some_kept)
11828 continue;
11829
11830 /* Keep debug and special sections like .comment when they are
11831 not part of a group, or when we have single-member groups. */
11832 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11833 if ((elf_next_in_group (isec) == NULL
11834 || elf_next_in_group (isec) == isec)
11835 && ((isec->flags & SEC_DEBUGGING) != 0
11836 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11837 isec->gc_mark = 1;
11838
11839 if (! debug_frag_seen)
11840 continue;
11841
11842 /* Look for CODE sections which are going to be discarded,
11843 and find and discard any fragmented debug sections which
11844 are associated with that code section. */
11845 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11846 if ((isec->flags & SEC_CODE) != 0
11847 && isec->gc_mark == 0)
11848 {
11849 unsigned int ilen;
11850 asection *dsec;
11851
11852 ilen = strlen (isec->name);
11853
11854 /* Association is determined by the name of the debug section
11855 containing the name of the code section as a suffix. For
11856 example .debug_line.text.foo is a debug section associated
11857 with .text.foo. */
11858 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
11859 {
11860 unsigned int dlen;
11861
11862 if (dsec->gc_mark == 0
11863 || (dsec->flags & SEC_DEBUGGING) == 0)
11864 continue;
11865
11866 dlen = strlen (dsec->name);
11867
11868 if (dlen > ilen
11869 && strncmp (dsec->name + (dlen - ilen),
11870 isec->name, ilen) == 0)
11871 {
11872 dsec->gc_mark = 0;
11873 break;
11874 }
11875 }
11876 }
11877 }
11878 return TRUE;
11879 }
11880
11881 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11882
11883 struct elf_gc_sweep_symbol_info
11884 {
11885 struct bfd_link_info *info;
11886 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11887 bfd_boolean);
11888 };
11889
11890 static bfd_boolean
11891 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11892 {
11893 if (!h->mark
11894 && (((h->root.type == bfd_link_hash_defined
11895 || h->root.type == bfd_link_hash_defweak)
11896 && !(h->def_regular
11897 && h->root.u.def.section->gc_mark))
11898 || h->root.type == bfd_link_hash_undefined
11899 || h->root.type == bfd_link_hash_undefweak))
11900 {
11901 struct elf_gc_sweep_symbol_info *inf;
11902
11903 inf = (struct elf_gc_sweep_symbol_info *) data;
11904 (*inf->hide_symbol) (inf->info, h, TRUE);
11905 h->def_regular = 0;
11906 h->ref_regular = 0;
11907 h->ref_regular_nonweak = 0;
11908 }
11909
11910 return TRUE;
11911 }
11912
11913 /* The sweep phase of garbage collection. Remove all garbage sections. */
11914
11915 typedef bfd_boolean (*gc_sweep_hook_fn)
11916 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11917
11918 static bfd_boolean
11919 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11920 {
11921 bfd *sub;
11922 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11923 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11924 unsigned long section_sym_count;
11925 struct elf_gc_sweep_symbol_info sweep_info;
11926
11927 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11928 {
11929 asection *o;
11930
11931 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11932 continue;
11933
11934 for (o = sub->sections; o != NULL; o = o->next)
11935 {
11936 /* When any section in a section group is kept, we keep all
11937 sections in the section group. If the first member of
11938 the section group is excluded, we will also exclude the
11939 group section. */
11940 if (o->flags & SEC_GROUP)
11941 {
11942 asection *first = elf_next_in_group (o);
11943 o->gc_mark = first->gc_mark;
11944 }
11945
11946 if (o->gc_mark)
11947 continue;
11948
11949 /* Skip sweeping sections already excluded. */
11950 if (o->flags & SEC_EXCLUDE)
11951 continue;
11952
11953 /* Since this is early in the link process, it is simple
11954 to remove a section from the output. */
11955 o->flags |= SEC_EXCLUDE;
11956
11957 if (info->print_gc_sections && o->size != 0)
11958 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11959
11960 /* But we also have to update some of the relocation
11961 info we collected before. */
11962 if (gc_sweep_hook
11963 && (o->flags & SEC_RELOC) != 0
11964 && o->reloc_count > 0
11965 && !bfd_is_abs_section (o->output_section))
11966 {
11967 Elf_Internal_Rela *internal_relocs;
11968 bfd_boolean r;
11969
11970 internal_relocs
11971 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11972 info->keep_memory);
11973 if (internal_relocs == NULL)
11974 return FALSE;
11975
11976 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11977
11978 if (elf_section_data (o)->relocs != internal_relocs)
11979 free (internal_relocs);
11980
11981 if (!r)
11982 return FALSE;
11983 }
11984 }
11985 }
11986
11987 /* Remove the symbols that were in the swept sections from the dynamic
11988 symbol table. GCFIXME: Anyone know how to get them out of the
11989 static symbol table as well? */
11990 sweep_info.info = info;
11991 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11992 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11993 &sweep_info);
11994
11995 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11996 return TRUE;
11997 }
11998
11999 /* Propagate collected vtable information. This is called through
12000 elf_link_hash_traverse. */
12001
12002 static bfd_boolean
12003 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12004 {
12005 /* Those that are not vtables. */
12006 if (h->vtable == NULL || h->vtable->parent == NULL)
12007 return TRUE;
12008
12009 /* Those vtables that do not have parents, we cannot merge. */
12010 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12011 return TRUE;
12012
12013 /* If we've already been done, exit. */
12014 if (h->vtable->used && h->vtable->used[-1])
12015 return TRUE;
12016
12017 /* Make sure the parent's table is up to date. */
12018 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12019
12020 if (h->vtable->used == NULL)
12021 {
12022 /* None of this table's entries were referenced. Re-use the
12023 parent's table. */
12024 h->vtable->used = h->vtable->parent->vtable->used;
12025 h->vtable->size = h->vtable->parent->vtable->size;
12026 }
12027 else
12028 {
12029 size_t n;
12030 bfd_boolean *cu, *pu;
12031
12032 /* Or the parent's entries into ours. */
12033 cu = h->vtable->used;
12034 cu[-1] = TRUE;
12035 pu = h->vtable->parent->vtable->used;
12036 if (pu != NULL)
12037 {
12038 const struct elf_backend_data *bed;
12039 unsigned int log_file_align;
12040
12041 bed = get_elf_backend_data (h->root.u.def.section->owner);
12042 log_file_align = bed->s->log_file_align;
12043 n = h->vtable->parent->vtable->size >> log_file_align;
12044 while (n--)
12045 {
12046 if (*pu)
12047 *cu = TRUE;
12048 pu++;
12049 cu++;
12050 }
12051 }
12052 }
12053
12054 return TRUE;
12055 }
12056
12057 static bfd_boolean
12058 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12059 {
12060 asection *sec;
12061 bfd_vma hstart, hend;
12062 Elf_Internal_Rela *relstart, *relend, *rel;
12063 const struct elf_backend_data *bed;
12064 unsigned int log_file_align;
12065
12066 /* Take care of both those symbols that do not describe vtables as
12067 well as those that are not loaded. */
12068 if (h->vtable == NULL || h->vtable->parent == NULL)
12069 return TRUE;
12070
12071 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12072 || h->root.type == bfd_link_hash_defweak);
12073
12074 sec = h->root.u.def.section;
12075 hstart = h->root.u.def.value;
12076 hend = hstart + h->size;
12077
12078 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12079 if (!relstart)
12080 return *(bfd_boolean *) okp = FALSE;
12081 bed = get_elf_backend_data (sec->owner);
12082 log_file_align = bed->s->log_file_align;
12083
12084 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12085
12086 for (rel = relstart; rel < relend; ++rel)
12087 if (rel->r_offset >= hstart && rel->r_offset < hend)
12088 {
12089 /* If the entry is in use, do nothing. */
12090 if (h->vtable->used
12091 && (rel->r_offset - hstart) < h->vtable->size)
12092 {
12093 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12094 if (h->vtable->used[entry])
12095 continue;
12096 }
12097 /* Otherwise, kill it. */
12098 rel->r_offset = rel->r_info = rel->r_addend = 0;
12099 }
12100
12101 return TRUE;
12102 }
12103
12104 /* Mark sections containing dynamically referenced symbols. When
12105 building shared libraries, we must assume that any visible symbol is
12106 referenced. */
12107
12108 bfd_boolean
12109 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12110 {
12111 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12112
12113 if ((h->root.type == bfd_link_hash_defined
12114 || h->root.type == bfd_link_hash_defweak)
12115 && (h->ref_dynamic
12116 || ((!info->executable || info->export_dynamic)
12117 && h->def_regular
12118 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12119 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12120 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12121 || !bfd_hide_sym_by_version (info->version_info,
12122 h->root.root.string)))))
12123 h->root.u.def.section->flags |= SEC_KEEP;
12124
12125 return TRUE;
12126 }
12127
12128 /* Keep all sections containing symbols undefined on the command-line,
12129 and the section containing the entry symbol. */
12130
12131 void
12132 _bfd_elf_gc_keep (struct bfd_link_info *info)
12133 {
12134 struct bfd_sym_chain *sym;
12135
12136 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12137 {
12138 struct elf_link_hash_entry *h;
12139
12140 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12141 FALSE, FALSE, FALSE);
12142
12143 if (h != NULL
12144 && (h->root.type == bfd_link_hash_defined
12145 || h->root.type == bfd_link_hash_defweak)
12146 && !bfd_is_abs_section (h->root.u.def.section))
12147 h->root.u.def.section->flags |= SEC_KEEP;
12148 }
12149 }
12150
12151 /* Do mark and sweep of unused sections. */
12152
12153 bfd_boolean
12154 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12155 {
12156 bfd_boolean ok = TRUE;
12157 bfd *sub;
12158 elf_gc_mark_hook_fn gc_mark_hook;
12159 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12160
12161 if (!bed->can_gc_sections
12162 || !is_elf_hash_table (info->hash))
12163 {
12164 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12165 return TRUE;
12166 }
12167
12168 bed->gc_keep (info);
12169
12170 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12171 at the .eh_frame section if we can mark the FDEs individually. */
12172 _bfd_elf_begin_eh_frame_parsing (info);
12173 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12174 {
12175 asection *sec;
12176 struct elf_reloc_cookie cookie;
12177
12178 sec = bfd_get_section_by_name (sub, ".eh_frame");
12179 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12180 {
12181 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12182 if (elf_section_data (sec)->sec_info
12183 && (sec->flags & SEC_LINKER_CREATED) == 0)
12184 elf_eh_frame_section (sub) = sec;
12185 fini_reloc_cookie_for_section (&cookie, sec);
12186 sec = bfd_get_next_section_by_name (sec);
12187 }
12188 }
12189 _bfd_elf_end_eh_frame_parsing (info);
12190
12191 /* Apply transitive closure to the vtable entry usage info. */
12192 elf_link_hash_traverse (elf_hash_table (info),
12193 elf_gc_propagate_vtable_entries_used,
12194 &ok);
12195 if (!ok)
12196 return FALSE;
12197
12198 /* Kill the vtable relocations that were not used. */
12199 elf_link_hash_traverse (elf_hash_table (info),
12200 elf_gc_smash_unused_vtentry_relocs,
12201 &ok);
12202 if (!ok)
12203 return FALSE;
12204
12205 /* Mark dynamically referenced symbols. */
12206 if (elf_hash_table (info)->dynamic_sections_created)
12207 elf_link_hash_traverse (elf_hash_table (info),
12208 bed->gc_mark_dynamic_ref,
12209 info);
12210
12211 /* Grovel through relocs to find out who stays ... */
12212 gc_mark_hook = bed->gc_mark_hook;
12213 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12214 {
12215 asection *o;
12216
12217 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12218 continue;
12219
12220 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12221 Also treat note sections as a root, if the section is not part
12222 of a group. */
12223 for (o = sub->sections; o != NULL; o = o->next)
12224 if (!o->gc_mark
12225 && (o->flags & SEC_EXCLUDE) == 0
12226 && ((o->flags & SEC_KEEP) != 0
12227 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12228 && elf_next_in_group (o) == NULL )))
12229 {
12230 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12231 return FALSE;
12232 }
12233 }
12234
12235 /* Allow the backend to mark additional target specific sections. */
12236 bed->gc_mark_extra_sections (info, gc_mark_hook);
12237
12238 /* ... and mark SEC_EXCLUDE for those that go. */
12239 return elf_gc_sweep (abfd, info);
12240 }
12241 \f
12242 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12243
12244 bfd_boolean
12245 bfd_elf_gc_record_vtinherit (bfd *abfd,
12246 asection *sec,
12247 struct elf_link_hash_entry *h,
12248 bfd_vma offset)
12249 {
12250 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12251 struct elf_link_hash_entry **search, *child;
12252 bfd_size_type extsymcount;
12253 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12254
12255 /* The sh_info field of the symtab header tells us where the
12256 external symbols start. We don't care about the local symbols at
12257 this point. */
12258 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12259 if (!elf_bad_symtab (abfd))
12260 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12261
12262 sym_hashes = elf_sym_hashes (abfd);
12263 sym_hashes_end = sym_hashes + extsymcount;
12264
12265 /* Hunt down the child symbol, which is in this section at the same
12266 offset as the relocation. */
12267 for (search = sym_hashes; search != sym_hashes_end; ++search)
12268 {
12269 if ((child = *search) != NULL
12270 && (child->root.type == bfd_link_hash_defined
12271 || child->root.type == bfd_link_hash_defweak)
12272 && child->root.u.def.section == sec
12273 && child->root.u.def.value == offset)
12274 goto win;
12275 }
12276
12277 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12278 abfd, sec, (unsigned long) offset);
12279 bfd_set_error (bfd_error_invalid_operation);
12280 return FALSE;
12281
12282 win:
12283 if (!child->vtable)
12284 {
12285 child->vtable = (struct elf_link_virtual_table_entry *)
12286 bfd_zalloc (abfd, sizeof (*child->vtable));
12287 if (!child->vtable)
12288 return FALSE;
12289 }
12290 if (!h)
12291 {
12292 /* This *should* only be the absolute section. It could potentially
12293 be that someone has defined a non-global vtable though, which
12294 would be bad. It isn't worth paging in the local symbols to be
12295 sure though; that case should simply be handled by the assembler. */
12296
12297 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12298 }
12299 else
12300 child->vtable->parent = h;
12301
12302 return TRUE;
12303 }
12304
12305 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12306
12307 bfd_boolean
12308 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12309 asection *sec ATTRIBUTE_UNUSED,
12310 struct elf_link_hash_entry *h,
12311 bfd_vma addend)
12312 {
12313 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12314 unsigned int log_file_align = bed->s->log_file_align;
12315
12316 if (!h->vtable)
12317 {
12318 h->vtable = (struct elf_link_virtual_table_entry *)
12319 bfd_zalloc (abfd, sizeof (*h->vtable));
12320 if (!h->vtable)
12321 return FALSE;
12322 }
12323
12324 if (addend >= h->vtable->size)
12325 {
12326 size_t size, bytes, file_align;
12327 bfd_boolean *ptr = h->vtable->used;
12328
12329 /* While the symbol is undefined, we have to be prepared to handle
12330 a zero size. */
12331 file_align = 1 << log_file_align;
12332 if (h->root.type == bfd_link_hash_undefined)
12333 size = addend + file_align;
12334 else
12335 {
12336 size = h->size;
12337 if (addend >= size)
12338 {
12339 /* Oops! We've got a reference past the defined end of
12340 the table. This is probably a bug -- shall we warn? */
12341 size = addend + file_align;
12342 }
12343 }
12344 size = (size + file_align - 1) & -file_align;
12345
12346 /* Allocate one extra entry for use as a "done" flag for the
12347 consolidation pass. */
12348 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12349
12350 if (ptr)
12351 {
12352 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12353
12354 if (ptr != NULL)
12355 {
12356 size_t oldbytes;
12357
12358 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12359 * sizeof (bfd_boolean));
12360 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12361 }
12362 }
12363 else
12364 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12365
12366 if (ptr == NULL)
12367 return FALSE;
12368
12369 /* And arrange for that done flag to be at index -1. */
12370 h->vtable->used = ptr + 1;
12371 h->vtable->size = size;
12372 }
12373
12374 h->vtable->used[addend >> log_file_align] = TRUE;
12375
12376 return TRUE;
12377 }
12378
12379 /* Map an ELF section header flag to its corresponding string. */
12380 typedef struct
12381 {
12382 char *flag_name;
12383 flagword flag_value;
12384 } elf_flags_to_name_table;
12385
12386 static elf_flags_to_name_table elf_flags_to_names [] =
12387 {
12388 { "SHF_WRITE", SHF_WRITE },
12389 { "SHF_ALLOC", SHF_ALLOC },
12390 { "SHF_EXECINSTR", SHF_EXECINSTR },
12391 { "SHF_MERGE", SHF_MERGE },
12392 { "SHF_STRINGS", SHF_STRINGS },
12393 { "SHF_INFO_LINK", SHF_INFO_LINK},
12394 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12395 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12396 { "SHF_GROUP", SHF_GROUP },
12397 { "SHF_TLS", SHF_TLS },
12398 { "SHF_MASKOS", SHF_MASKOS },
12399 { "SHF_EXCLUDE", SHF_EXCLUDE },
12400 };
12401
12402 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12403 bfd_boolean
12404 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12405 struct flag_info *flaginfo,
12406 asection *section)
12407 {
12408 const bfd_vma sh_flags = elf_section_flags (section);
12409
12410 if (!flaginfo->flags_initialized)
12411 {
12412 bfd *obfd = info->output_bfd;
12413 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12414 struct flag_info_list *tf = flaginfo->flag_list;
12415 int with_hex = 0;
12416 int without_hex = 0;
12417
12418 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12419 {
12420 unsigned i;
12421 flagword (*lookup) (char *);
12422
12423 lookup = bed->elf_backend_lookup_section_flags_hook;
12424 if (lookup != NULL)
12425 {
12426 flagword hexval = (*lookup) ((char *) tf->name);
12427
12428 if (hexval != 0)
12429 {
12430 if (tf->with == with_flags)
12431 with_hex |= hexval;
12432 else if (tf->with == without_flags)
12433 without_hex |= hexval;
12434 tf->valid = TRUE;
12435 continue;
12436 }
12437 }
12438 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12439 {
12440 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12441 {
12442 if (tf->with == with_flags)
12443 with_hex |= elf_flags_to_names[i].flag_value;
12444 else if (tf->with == without_flags)
12445 without_hex |= elf_flags_to_names[i].flag_value;
12446 tf->valid = TRUE;
12447 break;
12448 }
12449 }
12450 if (!tf->valid)
12451 {
12452 info->callbacks->einfo
12453 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12454 return FALSE;
12455 }
12456 }
12457 flaginfo->flags_initialized = TRUE;
12458 flaginfo->only_with_flags |= with_hex;
12459 flaginfo->not_with_flags |= without_hex;
12460 }
12461
12462 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12463 return FALSE;
12464
12465 if ((flaginfo->not_with_flags & sh_flags) != 0)
12466 return FALSE;
12467
12468 return TRUE;
12469 }
12470
12471 struct alloc_got_off_arg {
12472 bfd_vma gotoff;
12473 struct bfd_link_info *info;
12474 };
12475
12476 /* We need a special top-level link routine to convert got reference counts
12477 to real got offsets. */
12478
12479 static bfd_boolean
12480 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12481 {
12482 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12483 bfd *obfd = gofarg->info->output_bfd;
12484 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12485
12486 if (h->got.refcount > 0)
12487 {
12488 h->got.offset = gofarg->gotoff;
12489 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12490 }
12491 else
12492 h->got.offset = (bfd_vma) -1;
12493
12494 return TRUE;
12495 }
12496
12497 /* And an accompanying bit to work out final got entry offsets once
12498 we're done. Should be called from final_link. */
12499
12500 bfd_boolean
12501 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12502 struct bfd_link_info *info)
12503 {
12504 bfd *i;
12505 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12506 bfd_vma gotoff;
12507 struct alloc_got_off_arg gofarg;
12508
12509 BFD_ASSERT (abfd == info->output_bfd);
12510
12511 if (! is_elf_hash_table (info->hash))
12512 return FALSE;
12513
12514 /* The GOT offset is relative to the .got section, but the GOT header is
12515 put into the .got.plt section, if the backend uses it. */
12516 if (bed->want_got_plt)
12517 gotoff = 0;
12518 else
12519 gotoff = bed->got_header_size;
12520
12521 /* Do the local .got entries first. */
12522 for (i = info->input_bfds; i; i = i->link_next)
12523 {
12524 bfd_signed_vma *local_got;
12525 bfd_size_type j, locsymcount;
12526 Elf_Internal_Shdr *symtab_hdr;
12527
12528 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12529 continue;
12530
12531 local_got = elf_local_got_refcounts (i);
12532 if (!local_got)
12533 continue;
12534
12535 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12536 if (elf_bad_symtab (i))
12537 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12538 else
12539 locsymcount = symtab_hdr->sh_info;
12540
12541 for (j = 0; j < locsymcount; ++j)
12542 {
12543 if (local_got[j] > 0)
12544 {
12545 local_got[j] = gotoff;
12546 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12547 }
12548 else
12549 local_got[j] = (bfd_vma) -1;
12550 }
12551 }
12552
12553 /* Then the global .got entries. .plt refcounts are handled by
12554 adjust_dynamic_symbol */
12555 gofarg.gotoff = gotoff;
12556 gofarg.info = info;
12557 elf_link_hash_traverse (elf_hash_table (info),
12558 elf_gc_allocate_got_offsets,
12559 &gofarg);
12560 return TRUE;
12561 }
12562
12563 /* Many folk need no more in the way of final link than this, once
12564 got entry reference counting is enabled. */
12565
12566 bfd_boolean
12567 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12568 {
12569 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12570 return FALSE;
12571
12572 /* Invoke the regular ELF backend linker to do all the work. */
12573 return bfd_elf_final_link (abfd, info);
12574 }
12575
12576 bfd_boolean
12577 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12578 {
12579 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12580
12581 if (rcookie->bad_symtab)
12582 rcookie->rel = rcookie->rels;
12583
12584 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12585 {
12586 unsigned long r_symndx;
12587
12588 if (! rcookie->bad_symtab)
12589 if (rcookie->rel->r_offset > offset)
12590 return FALSE;
12591 if (rcookie->rel->r_offset != offset)
12592 continue;
12593
12594 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12595 if (r_symndx == STN_UNDEF)
12596 return TRUE;
12597
12598 if (r_symndx >= rcookie->locsymcount
12599 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12600 {
12601 struct elf_link_hash_entry *h;
12602
12603 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12604
12605 while (h->root.type == bfd_link_hash_indirect
12606 || h->root.type == bfd_link_hash_warning)
12607 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12608
12609 if ((h->root.type == bfd_link_hash_defined
12610 || h->root.type == bfd_link_hash_defweak)
12611 && discarded_section (h->root.u.def.section))
12612 return TRUE;
12613 else
12614 return FALSE;
12615 }
12616 else
12617 {
12618 /* It's not a relocation against a global symbol,
12619 but it could be a relocation against a local
12620 symbol for a discarded section. */
12621 asection *isec;
12622 Elf_Internal_Sym *isym;
12623
12624 /* Need to: get the symbol; get the section. */
12625 isym = &rcookie->locsyms[r_symndx];
12626 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12627 if (isec != NULL && discarded_section (isec))
12628 return TRUE;
12629 }
12630 return FALSE;
12631 }
12632 return FALSE;
12633 }
12634
12635 /* Discard unneeded references to discarded sections.
12636 Returns TRUE if any section's size was changed. */
12637 /* This function assumes that the relocations are in sorted order,
12638 which is true for all known assemblers. */
12639
12640 bfd_boolean
12641 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12642 {
12643 struct elf_reloc_cookie cookie;
12644 asection *stab, *eh;
12645 const struct elf_backend_data *bed;
12646 bfd *abfd;
12647 bfd_boolean ret = FALSE;
12648
12649 if (info->traditional_format
12650 || !is_elf_hash_table (info->hash))
12651 return FALSE;
12652
12653 _bfd_elf_begin_eh_frame_parsing (info);
12654 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12655 {
12656 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12657 continue;
12658
12659 bed = get_elf_backend_data (abfd);
12660
12661 eh = NULL;
12662 if (!info->relocatable)
12663 {
12664 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12665 while (eh != NULL
12666 && (eh->size == 0
12667 || bfd_is_abs_section (eh->output_section)))
12668 eh = bfd_get_next_section_by_name (eh);
12669 }
12670
12671 stab = bfd_get_section_by_name (abfd, ".stab");
12672 if (stab != NULL
12673 && (stab->size == 0
12674 || bfd_is_abs_section (stab->output_section)
12675 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12676 stab = NULL;
12677
12678 if (stab == NULL
12679 && eh == NULL
12680 && bed->elf_backend_discard_info == NULL)
12681 continue;
12682
12683 if (!init_reloc_cookie (&cookie, info, abfd))
12684 return FALSE;
12685
12686 if (stab != NULL
12687 && stab->reloc_count > 0
12688 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12689 {
12690 if (_bfd_discard_section_stabs (abfd, stab,
12691 elf_section_data (stab)->sec_info,
12692 bfd_elf_reloc_symbol_deleted_p,
12693 &cookie))
12694 ret = TRUE;
12695 fini_reloc_cookie_rels (&cookie, stab);
12696 }
12697
12698 while (eh != NULL
12699 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12700 {
12701 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12702 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12703 bfd_elf_reloc_symbol_deleted_p,
12704 &cookie))
12705 ret = TRUE;
12706 fini_reloc_cookie_rels (&cookie, eh);
12707 eh = bfd_get_next_section_by_name (eh);
12708 }
12709
12710 if (bed->elf_backend_discard_info != NULL
12711 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12712 ret = TRUE;
12713
12714 fini_reloc_cookie (&cookie, abfd);
12715 }
12716 _bfd_elf_end_eh_frame_parsing (info);
12717
12718 if (info->eh_frame_hdr
12719 && !info->relocatable
12720 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12721 ret = TRUE;
12722
12723 return ret;
12724 }
12725
12726 bfd_boolean
12727 _bfd_elf_section_already_linked (bfd *abfd,
12728 asection *sec,
12729 struct bfd_link_info *info)
12730 {
12731 flagword flags;
12732 const char *name, *key;
12733 struct bfd_section_already_linked *l;
12734 struct bfd_section_already_linked_hash_entry *already_linked_list;
12735
12736 if (sec->output_section == bfd_abs_section_ptr)
12737 return FALSE;
12738
12739 flags = sec->flags;
12740
12741 /* Return if it isn't a linkonce section. A comdat group section
12742 also has SEC_LINK_ONCE set. */
12743 if ((flags & SEC_LINK_ONCE) == 0)
12744 return FALSE;
12745
12746 /* Don't put group member sections on our list of already linked
12747 sections. They are handled as a group via their group section. */
12748 if (elf_sec_group (sec) != NULL)
12749 return FALSE;
12750
12751 /* For a SHT_GROUP section, use the group signature as the key. */
12752 name = sec->name;
12753 if ((flags & SEC_GROUP) != 0
12754 && elf_next_in_group (sec) != NULL
12755 && elf_group_name (elf_next_in_group (sec)) != NULL)
12756 key = elf_group_name (elf_next_in_group (sec));
12757 else
12758 {
12759 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12760 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12761 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12762 key++;
12763 else
12764 /* Must be a user linkonce section that doesn't follow gcc's
12765 naming convention. In this case we won't be matching
12766 single member groups. */
12767 key = name;
12768 }
12769
12770 already_linked_list = bfd_section_already_linked_table_lookup (key);
12771
12772 for (l = already_linked_list->entry; l != NULL; l = l->next)
12773 {
12774 /* We may have 2 different types of sections on the list: group
12775 sections with a signature of <key> (<key> is some string),
12776 and linkonce sections named .gnu.linkonce.<type>.<key>.
12777 Match like sections. LTO plugin sections are an exception.
12778 They are always named .gnu.linkonce.t.<key> and match either
12779 type of section. */
12780 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12781 && ((flags & SEC_GROUP) != 0
12782 || strcmp (name, l->sec->name) == 0))
12783 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12784 {
12785 /* The section has already been linked. See if we should
12786 issue a warning. */
12787 if (!_bfd_handle_already_linked (sec, l, info))
12788 return FALSE;
12789
12790 if (flags & SEC_GROUP)
12791 {
12792 asection *first = elf_next_in_group (sec);
12793 asection *s = first;
12794
12795 while (s != NULL)
12796 {
12797 s->output_section = bfd_abs_section_ptr;
12798 /* Record which group discards it. */
12799 s->kept_section = l->sec;
12800 s = elf_next_in_group (s);
12801 /* These lists are circular. */
12802 if (s == first)
12803 break;
12804 }
12805 }
12806
12807 return TRUE;
12808 }
12809 }
12810
12811 /* A single member comdat group section may be discarded by a
12812 linkonce section and vice versa. */
12813 if ((flags & SEC_GROUP) != 0)
12814 {
12815 asection *first = elf_next_in_group (sec);
12816
12817 if (first != NULL && elf_next_in_group (first) == first)
12818 /* Check this single member group against linkonce sections. */
12819 for (l = already_linked_list->entry; l != NULL; l = l->next)
12820 if ((l->sec->flags & SEC_GROUP) == 0
12821 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12822 {
12823 first->output_section = bfd_abs_section_ptr;
12824 first->kept_section = l->sec;
12825 sec->output_section = bfd_abs_section_ptr;
12826 break;
12827 }
12828 }
12829 else
12830 /* Check this linkonce section against single member groups. */
12831 for (l = already_linked_list->entry; l != NULL; l = l->next)
12832 if (l->sec->flags & SEC_GROUP)
12833 {
12834 asection *first = elf_next_in_group (l->sec);
12835
12836 if (first != NULL
12837 && elf_next_in_group (first) == first
12838 && bfd_elf_match_symbols_in_sections (first, sec, info))
12839 {
12840 sec->output_section = bfd_abs_section_ptr;
12841 sec->kept_section = first;
12842 break;
12843 }
12844 }
12845
12846 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12847 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12848 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12849 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12850 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12851 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12852 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12853 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12854 The reverse order cannot happen as there is never a bfd with only the
12855 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12856 matter as here were are looking only for cross-bfd sections. */
12857
12858 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12859 for (l = already_linked_list->entry; l != NULL; l = l->next)
12860 if ((l->sec->flags & SEC_GROUP) == 0
12861 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12862 {
12863 if (abfd != l->sec->owner)
12864 sec->output_section = bfd_abs_section_ptr;
12865 break;
12866 }
12867
12868 /* This is the first section with this name. Record it. */
12869 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12870 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12871 return sec->output_section == bfd_abs_section_ptr;
12872 }
12873
12874 bfd_boolean
12875 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12876 {
12877 return sym->st_shndx == SHN_COMMON;
12878 }
12879
12880 unsigned int
12881 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12882 {
12883 return SHN_COMMON;
12884 }
12885
12886 asection *
12887 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12888 {
12889 return bfd_com_section_ptr;
12890 }
12891
12892 bfd_vma
12893 _bfd_elf_default_got_elt_size (bfd *abfd,
12894 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12895 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12896 bfd *ibfd ATTRIBUTE_UNUSED,
12897 unsigned long symndx ATTRIBUTE_UNUSED)
12898 {
12899 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12900 return bed->s->arch_size / 8;
12901 }
12902
12903 /* Routines to support the creation of dynamic relocs. */
12904
12905 /* Returns the name of the dynamic reloc section associated with SEC. */
12906
12907 static const char *
12908 get_dynamic_reloc_section_name (bfd * abfd,
12909 asection * sec,
12910 bfd_boolean is_rela)
12911 {
12912 char *name;
12913 const char *old_name = bfd_get_section_name (NULL, sec);
12914 const char *prefix = is_rela ? ".rela" : ".rel";
12915
12916 if (old_name == NULL)
12917 return NULL;
12918
12919 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12920 sprintf (name, "%s%s", prefix, old_name);
12921
12922 return name;
12923 }
12924
12925 /* Returns the dynamic reloc section associated with SEC.
12926 If necessary compute the name of the dynamic reloc section based
12927 on SEC's name (looked up in ABFD's string table) and the setting
12928 of IS_RELA. */
12929
12930 asection *
12931 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12932 asection * sec,
12933 bfd_boolean is_rela)
12934 {
12935 asection * reloc_sec = elf_section_data (sec)->sreloc;
12936
12937 if (reloc_sec == NULL)
12938 {
12939 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12940
12941 if (name != NULL)
12942 {
12943 reloc_sec = bfd_get_linker_section (abfd, name);
12944
12945 if (reloc_sec != NULL)
12946 elf_section_data (sec)->sreloc = reloc_sec;
12947 }
12948 }
12949
12950 return reloc_sec;
12951 }
12952
12953 /* Returns the dynamic reloc section associated with SEC. If the
12954 section does not exist it is created and attached to the DYNOBJ
12955 bfd and stored in the SRELOC field of SEC's elf_section_data
12956 structure.
12957
12958 ALIGNMENT is the alignment for the newly created section and
12959 IS_RELA defines whether the name should be .rela.<SEC's name>
12960 or .rel.<SEC's name>. The section name is looked up in the
12961 string table associated with ABFD. */
12962
12963 asection *
12964 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12965 bfd * dynobj,
12966 unsigned int alignment,
12967 bfd * abfd,
12968 bfd_boolean is_rela)
12969 {
12970 asection * reloc_sec = elf_section_data (sec)->sreloc;
12971
12972 if (reloc_sec == NULL)
12973 {
12974 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12975
12976 if (name == NULL)
12977 return NULL;
12978
12979 reloc_sec = bfd_get_linker_section (dynobj, name);
12980
12981 if (reloc_sec == NULL)
12982 {
12983 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
12984 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12985 if ((sec->flags & SEC_ALLOC) != 0)
12986 flags |= SEC_ALLOC | SEC_LOAD;
12987
12988 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
12989 if (reloc_sec != NULL)
12990 {
12991 /* _bfd_elf_get_sec_type_attr chooses a section type by
12992 name. Override as it may be wrong, eg. for a user
12993 section named "auto" we'll get ".relauto" which is
12994 seen to be a .rela section. */
12995 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
12996 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12997 reloc_sec = NULL;
12998 }
12999 }
13000
13001 elf_section_data (sec)->sreloc = reloc_sec;
13002 }
13003
13004 return reloc_sec;
13005 }
13006
13007 /* Copy the ELF symbol type associated with a linker hash entry. */
13008 void
13009 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13010 struct bfd_link_hash_entry * hdest,
13011 struct bfd_link_hash_entry * hsrc)
13012 {
13013 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13014 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13015
13016 ehdest->type = ehsrc->type;
13017 ehdest->target_internal = ehsrc->target_internal;
13018 }
13019
13020 /* Append a RELA relocation REL to section S in BFD. */
13021
13022 void
13023 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13024 {
13025 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13026 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13027 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13028 bed->s->swap_reloca_out (abfd, rel, loc);
13029 }
13030
13031 /* Append a REL relocation REL to section S in BFD. */
13032
13033 void
13034 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13035 {
13036 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13037 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13038 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13039 bed->s->swap_reloc_out (abfd, rel, loc);
13040 }