* elf-bfd.h (struct elf_link_hash_entry): Delete dynamic_weak.
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* This function is called when we want to define a new symbol. It
899 handles the various cases which arise when we find a definition in
900 a dynamic object, or when there is already a definition in a
901 dynamic object. The new symbol is described by NAME, SYM, PSEC,
902 and PVALUE. We set SYM_HASH to the hash table entry. We set
903 OVERRIDE if the old symbol is overriding a new definition. We set
904 TYPE_CHANGE_OK if it is OK for the type to change. We set
905 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
906 change, we mean that we shouldn't warn if the type or size does
907 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
908 object is overridden by a regular object. */
909
910 bfd_boolean
911 _bfd_elf_merge_symbol (bfd *abfd,
912 struct bfd_link_info *info,
913 const char *name,
914 Elf_Internal_Sym *sym,
915 asection **psec,
916 bfd_vma *pvalue,
917 bfd_boolean *pold_weak,
918 unsigned int *pold_alignment,
919 struct elf_link_hash_entry **sym_hash,
920 bfd_boolean *skip,
921 bfd_boolean *override,
922 bfd_boolean *type_change_ok,
923 bfd_boolean *size_change_ok)
924 {
925 asection *sec, *oldsec;
926 struct elf_link_hash_entry *h;
927 struct elf_link_hash_entry *hi;
928 struct elf_link_hash_entry *flip;
929 int bind;
930 bfd *oldbfd;
931 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
932 bfd_boolean newweak, oldweak, newfunc, oldfunc;
933 const struct elf_backend_data *bed;
934
935 *skip = FALSE;
936 *override = FALSE;
937
938 sec = *psec;
939 bind = ELF_ST_BIND (sym->st_info);
940
941 /* Silently discard TLS symbols from --just-syms. There's no way to
942 combine a static TLS block with a new TLS block for this executable. */
943 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
944 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
945 {
946 *skip = TRUE;
947 return TRUE;
948 }
949
950 if (! bfd_is_und_section (sec))
951 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
952 else
953 h = ((struct elf_link_hash_entry *)
954 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
955 if (h == NULL)
956 return FALSE;
957 *sym_hash = h;
958
959 bed = get_elf_backend_data (abfd);
960
961 /* This code is for coping with dynamic objects, and is only useful
962 if we are doing an ELF link. */
963 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
964 return TRUE;
965
966 /* For merging, we only care about real symbols. But we need to make
967 sure that indirect symbol dynamic flags are updated. */
968 hi = h;
969 while (h->root.type == bfd_link_hash_indirect
970 || h->root.type == bfd_link_hash_warning)
971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
972
973 /* We have to check it for every instance since the first few may be
974 references and not all compilers emit symbol type for undefined
975 symbols. */
976 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
977
978 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
979 respectively, is from a dynamic object. */
980
981 newdyn = (abfd->flags & DYNAMIC) != 0;
982
983 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
984 syms and defined syms in dynamic libraries respectively.
985 ref_dynamic on the other hand can be set for a symbol defined in
986 a dynamic library, and def_dynamic may not be set; When the
987 definition in a dynamic lib is overridden by a definition in the
988 executable use of the symbol in the dynamic lib becomes a
989 reference to the executable symbol. */
990 if (newdyn)
991 {
992 if (bfd_is_und_section (sec))
993 {
994 if (bind != STB_WEAK)
995 {
996 h->ref_dynamic_nonweak = 1;
997 hi->ref_dynamic_nonweak = 1;
998 }
999 }
1000 else
1001 {
1002 h->dynamic_def = 1;
1003 hi->dynamic_def = 1;
1004 }
1005 }
1006
1007 /* If we just created the symbol, mark it as being an ELF symbol.
1008 Other than that, there is nothing to do--there is no merge issue
1009 with a newly defined symbol--so we just return. */
1010
1011 if (h->root.type == bfd_link_hash_new)
1012 {
1013 h->non_elf = 0;
1014 return TRUE;
1015 }
1016
1017 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1018 existing symbol. */
1019
1020 switch (h->root.type)
1021 {
1022 default:
1023 oldbfd = NULL;
1024 oldsec = NULL;
1025 break;
1026
1027 case bfd_link_hash_undefined:
1028 case bfd_link_hash_undefweak:
1029 oldbfd = h->root.u.undef.abfd;
1030 oldsec = NULL;
1031 break;
1032
1033 case bfd_link_hash_defined:
1034 case bfd_link_hash_defweak:
1035 oldbfd = h->root.u.def.section->owner;
1036 oldsec = h->root.u.def.section;
1037 break;
1038
1039 case bfd_link_hash_common:
1040 oldbfd = h->root.u.c.p->section->owner;
1041 oldsec = h->root.u.c.p->section;
1042 break;
1043 }
1044
1045 /* Differentiate strong and weak symbols. */
1046 newweak = bind == STB_WEAK;
1047 oldweak = (h->root.type == bfd_link_hash_defweak
1048 || h->root.type == bfd_link_hash_undefweak);
1049 if (pold_weak)
1050 *pold_weak = oldweak;
1051
1052 /* In cases involving weak versioned symbols, we may wind up trying
1053 to merge a symbol with itself. Catch that here, to avoid the
1054 confusion that results if we try to override a symbol with
1055 itself. The additional tests catch cases like
1056 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1057 dynamic object, which we do want to handle here. */
1058 if (abfd == oldbfd
1059 && (newweak || oldweak)
1060 && ((abfd->flags & DYNAMIC) == 0
1061 || !h->def_regular))
1062 return TRUE;
1063
1064 olddyn = FALSE;
1065 if (oldbfd != NULL)
1066 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1067 else if (oldsec != NULL)
1068 {
1069 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1070 indices used by MIPS ELF. */
1071 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1072 }
1073
1074 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1075 respectively, appear to be a definition rather than reference. */
1076
1077 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1078
1079 olddef = (h->root.type != bfd_link_hash_undefined
1080 && h->root.type != bfd_link_hash_undefweak
1081 && h->root.type != bfd_link_hash_common);
1082
1083 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1084 respectively, appear to be a function. */
1085
1086 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1087 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1088
1089 oldfunc = (h->type != STT_NOTYPE
1090 && bed->is_function_type (h->type));
1091
1092 /* When we try to create a default indirect symbol from the dynamic
1093 definition with the default version, we skip it if its type and
1094 the type of existing regular definition mismatch. We only do it
1095 if the existing regular definition won't be dynamic. */
1096 if (pold_alignment == NULL
1097 && !info->shared
1098 && !info->export_dynamic
1099 && !h->ref_dynamic
1100 && newdyn
1101 && newdef
1102 && !olddyn
1103 && (olddef || h->root.type == bfd_link_hash_common)
1104 && ELF_ST_TYPE (sym->st_info) != h->type
1105 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1106 && h->type != STT_NOTYPE
1107 && !(newfunc && oldfunc))
1108 {
1109 *skip = TRUE;
1110 return TRUE;
1111 }
1112
1113 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1114 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1115 *type_change_ok = TRUE;
1116
1117 /* Check TLS symbol. We don't check undefined symbol introduced by
1118 "ld -u". */
1119 else if (oldbfd != NULL
1120 && ELF_ST_TYPE (sym->st_info) != h->type
1121 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1122 {
1123 bfd *ntbfd, *tbfd;
1124 bfd_boolean ntdef, tdef;
1125 asection *ntsec, *tsec;
1126
1127 if (h->type == STT_TLS)
1128 {
1129 ntbfd = abfd;
1130 ntsec = sec;
1131 ntdef = newdef;
1132 tbfd = oldbfd;
1133 tsec = oldsec;
1134 tdef = olddef;
1135 }
1136 else
1137 {
1138 ntbfd = oldbfd;
1139 ntsec = oldsec;
1140 ntdef = olddef;
1141 tbfd = abfd;
1142 tsec = sec;
1143 tdef = newdef;
1144 }
1145
1146 if (tdef && ntdef)
1147 (*_bfd_error_handler)
1148 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1149 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1150 else if (!tdef && !ntdef)
1151 (*_bfd_error_handler)
1152 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1153 tbfd, ntbfd, h->root.root.string);
1154 else if (tdef)
1155 (*_bfd_error_handler)
1156 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1157 tbfd, tsec, ntbfd, h->root.root.string);
1158 else
1159 (*_bfd_error_handler)
1160 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1161 tbfd, ntbfd, ntsec, h->root.root.string);
1162
1163 bfd_set_error (bfd_error_bad_value);
1164 return FALSE;
1165 }
1166
1167 /* If the old symbol has non-default visibility, we ignore the new
1168 definition from a dynamic object. */
1169 if (newdyn
1170 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1171 && !bfd_is_und_section (sec))
1172 {
1173 *skip = TRUE;
1174 /* Make sure this symbol is dynamic. */
1175 h->ref_dynamic = 1;
1176 hi->ref_dynamic = 1;
1177 /* A protected symbol has external availability. Make sure it is
1178 recorded as dynamic.
1179
1180 FIXME: Should we check type and size for protected symbol? */
1181 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1182 return bfd_elf_link_record_dynamic_symbol (info, h);
1183 else
1184 return TRUE;
1185 }
1186 else if (!newdyn
1187 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1188 && h->def_dynamic)
1189 {
1190 /* If the new symbol with non-default visibility comes from a
1191 relocatable file and the old definition comes from a dynamic
1192 object, we remove the old definition. */
1193 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1194 {
1195 /* Handle the case where the old dynamic definition is
1196 default versioned. We need to copy the symbol info from
1197 the symbol with default version to the normal one if it
1198 was referenced before. */
1199 if (h->ref_regular)
1200 {
1201 struct elf_link_hash_entry *vh = *sym_hash;
1202
1203 vh->root.type = h->root.type;
1204 h->root.type = bfd_link_hash_indirect;
1205 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1206
1207 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1208 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1209 {
1210 /* If the new symbol is hidden or internal, completely undo
1211 any dynamic link state. */
1212 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1213 h->forced_local = 0;
1214 h->ref_dynamic = 0;
1215 }
1216 else
1217 h->ref_dynamic = 1;
1218
1219 h->def_dynamic = 0;
1220 /* FIXME: Should we check type and size for protected symbol? */
1221 h->size = 0;
1222 h->type = 0;
1223
1224 h = vh;
1225 }
1226 else
1227 h = *sym_hash;
1228 }
1229
1230 /* If the old symbol was undefined before, then it will still be
1231 on the undefs list. If the new symbol is undefined or
1232 common, we can't make it bfd_link_hash_new here, because new
1233 undefined or common symbols will be added to the undefs list
1234 by _bfd_generic_link_add_one_symbol. Symbols may not be
1235 added twice to the undefs list. Also, if the new symbol is
1236 undefweak then we don't want to lose the strong undef. */
1237 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1238 {
1239 h->root.type = bfd_link_hash_undefined;
1240 h->root.u.undef.abfd = abfd;
1241 }
1242 else
1243 {
1244 h->root.type = bfd_link_hash_new;
1245 h->root.u.undef.abfd = NULL;
1246 }
1247
1248 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1249 {
1250 /* If the new symbol is hidden or internal, completely undo
1251 any dynamic link state. */
1252 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1253 h->forced_local = 0;
1254 h->ref_dynamic = 0;
1255 }
1256 else
1257 h->ref_dynamic = 1;
1258 h->def_dynamic = 0;
1259 /* FIXME: Should we check type and size for protected symbol? */
1260 h->size = 0;
1261 h->type = 0;
1262 return TRUE;
1263 }
1264
1265 if (bind == STB_GNU_UNIQUE)
1266 h->unique_global = 1;
1267
1268 /* If a new weak symbol definition comes from a regular file and the
1269 old symbol comes from a dynamic library, we treat the new one as
1270 strong. Similarly, an old weak symbol definition from a regular
1271 file is treated as strong when the new symbol comes from a dynamic
1272 library. Further, an old weak symbol from a dynamic library is
1273 treated as strong if the new symbol is from a dynamic library.
1274 This reflects the way glibc's ld.so works.
1275
1276 Do this before setting *type_change_ok or *size_change_ok so that
1277 we warn properly when dynamic library symbols are overridden. */
1278
1279 if (newdef && !newdyn && olddyn)
1280 newweak = FALSE;
1281 if (olddef && newdyn)
1282 oldweak = FALSE;
1283
1284 /* Allow changes between different types of function symbol. */
1285 if (newfunc && oldfunc)
1286 *type_change_ok = TRUE;
1287
1288 /* It's OK to change the type if either the existing symbol or the
1289 new symbol is weak. A type change is also OK if the old symbol
1290 is undefined and the new symbol is defined. */
1291
1292 if (oldweak
1293 || newweak
1294 || (newdef
1295 && h->root.type == bfd_link_hash_undefined))
1296 *type_change_ok = TRUE;
1297
1298 /* It's OK to change the size if either the existing symbol or the
1299 new symbol is weak, or if the old symbol is undefined. */
1300
1301 if (*type_change_ok
1302 || h->root.type == bfd_link_hash_undefined)
1303 *size_change_ok = TRUE;
1304
1305 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1306 symbol, respectively, appears to be a common symbol in a dynamic
1307 object. If a symbol appears in an uninitialized section, and is
1308 not weak, and is not a function, then it may be a common symbol
1309 which was resolved when the dynamic object was created. We want
1310 to treat such symbols specially, because they raise special
1311 considerations when setting the symbol size: if the symbol
1312 appears as a common symbol in a regular object, and the size in
1313 the regular object is larger, we must make sure that we use the
1314 larger size. This problematic case can always be avoided in C,
1315 but it must be handled correctly when using Fortran shared
1316 libraries.
1317
1318 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1319 likewise for OLDDYNCOMMON and OLDDEF.
1320
1321 Note that this test is just a heuristic, and that it is quite
1322 possible to have an uninitialized symbol in a shared object which
1323 is really a definition, rather than a common symbol. This could
1324 lead to some minor confusion when the symbol really is a common
1325 symbol in some regular object. However, I think it will be
1326 harmless. */
1327
1328 if (newdyn
1329 && newdef
1330 && !newweak
1331 && (sec->flags & SEC_ALLOC) != 0
1332 && (sec->flags & SEC_LOAD) == 0
1333 && sym->st_size > 0
1334 && !newfunc)
1335 newdyncommon = TRUE;
1336 else
1337 newdyncommon = FALSE;
1338
1339 if (olddyn
1340 && olddef
1341 && h->root.type == bfd_link_hash_defined
1342 && h->def_dynamic
1343 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1344 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1345 && h->size > 0
1346 && !oldfunc)
1347 olddyncommon = TRUE;
1348 else
1349 olddyncommon = FALSE;
1350
1351 /* We now know everything about the old and new symbols. We ask the
1352 backend to check if we can merge them. */
1353 if (bed->merge_symbol
1354 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1355 pold_alignment, skip, override,
1356 type_change_ok, size_change_ok,
1357 &newdyn, &newdef, &newdyncommon, &newweak,
1358 abfd, &sec,
1359 &olddyn, &olddef, &olddyncommon, &oldweak,
1360 oldbfd, &oldsec))
1361 return FALSE;
1362
1363 /* If both the old and the new symbols look like common symbols in a
1364 dynamic object, set the size of the symbol to the larger of the
1365 two. */
1366
1367 if (olddyncommon
1368 && newdyncommon
1369 && sym->st_size != h->size)
1370 {
1371 /* Since we think we have two common symbols, issue a multiple
1372 common warning if desired. Note that we only warn if the
1373 size is different. If the size is the same, we simply let
1374 the old symbol override the new one as normally happens with
1375 symbols defined in dynamic objects. */
1376
1377 if (! ((*info->callbacks->multiple_common)
1378 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1379 return FALSE;
1380
1381 if (sym->st_size > h->size)
1382 h->size = sym->st_size;
1383
1384 *size_change_ok = TRUE;
1385 }
1386
1387 /* If we are looking at a dynamic object, and we have found a
1388 definition, we need to see if the symbol was already defined by
1389 some other object. If so, we want to use the existing
1390 definition, and we do not want to report a multiple symbol
1391 definition error; we do this by clobbering *PSEC to be
1392 bfd_und_section_ptr.
1393
1394 We treat a common symbol as a definition if the symbol in the
1395 shared library is a function, since common symbols always
1396 represent variables; this can cause confusion in principle, but
1397 any such confusion would seem to indicate an erroneous program or
1398 shared library. We also permit a common symbol in a regular
1399 object to override a weak symbol in a shared object. */
1400
1401 if (newdyn
1402 && newdef
1403 && (olddef
1404 || (h->root.type == bfd_link_hash_common
1405 && (newweak || newfunc))))
1406 {
1407 *override = TRUE;
1408 newdef = FALSE;
1409 newdyncommon = FALSE;
1410
1411 *psec = sec = bfd_und_section_ptr;
1412 *size_change_ok = TRUE;
1413
1414 /* If we get here when the old symbol is a common symbol, then
1415 we are explicitly letting it override a weak symbol or
1416 function in a dynamic object, and we don't want to warn about
1417 a type change. If the old symbol is a defined symbol, a type
1418 change warning may still be appropriate. */
1419
1420 if (h->root.type == bfd_link_hash_common)
1421 *type_change_ok = TRUE;
1422 }
1423
1424 /* Handle the special case of an old common symbol merging with a
1425 new symbol which looks like a common symbol in a shared object.
1426 We change *PSEC and *PVALUE to make the new symbol look like a
1427 common symbol, and let _bfd_generic_link_add_one_symbol do the
1428 right thing. */
1429
1430 if (newdyncommon
1431 && h->root.type == bfd_link_hash_common)
1432 {
1433 *override = TRUE;
1434 newdef = FALSE;
1435 newdyncommon = FALSE;
1436 *pvalue = sym->st_size;
1437 *psec = sec = bed->common_section (oldsec);
1438 *size_change_ok = TRUE;
1439 }
1440
1441 /* Skip weak definitions of symbols that are already defined. */
1442 if (newdef && olddef && newweak)
1443 {
1444 /* Don't skip new non-IR weak syms. */
1445 if (!(oldbfd != NULL
1446 && (oldbfd->flags & BFD_PLUGIN) != 0
1447 && (abfd->flags & BFD_PLUGIN) == 0))
1448 *skip = TRUE;
1449
1450 /* Merge st_other. If the symbol already has a dynamic index,
1451 but visibility says it should not be visible, turn it into a
1452 local symbol. */
1453 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1454 if (h->dynindx != -1)
1455 switch (ELF_ST_VISIBILITY (h->other))
1456 {
1457 case STV_INTERNAL:
1458 case STV_HIDDEN:
1459 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1460 break;
1461 }
1462 }
1463
1464 /* If the old symbol is from a dynamic object, and the new symbol is
1465 a definition which is not from a dynamic object, then the new
1466 symbol overrides the old symbol. Symbols from regular files
1467 always take precedence over symbols from dynamic objects, even if
1468 they are defined after the dynamic object in the link.
1469
1470 As above, we again permit a common symbol in a regular object to
1471 override a definition in a shared object if the shared object
1472 symbol is a function or is weak. */
1473
1474 flip = NULL;
1475 if (!newdyn
1476 && (newdef
1477 || (bfd_is_com_section (sec)
1478 && (oldweak || oldfunc)))
1479 && olddyn
1480 && olddef
1481 && h->def_dynamic)
1482 {
1483 /* Change the hash table entry to undefined, and let
1484 _bfd_generic_link_add_one_symbol do the right thing with the
1485 new definition. */
1486
1487 h->root.type = bfd_link_hash_undefined;
1488 h->root.u.undef.abfd = h->root.u.def.section->owner;
1489 *size_change_ok = TRUE;
1490
1491 olddef = FALSE;
1492 olddyncommon = FALSE;
1493
1494 /* We again permit a type change when a common symbol may be
1495 overriding a function. */
1496
1497 if (bfd_is_com_section (sec))
1498 {
1499 if (oldfunc)
1500 {
1501 /* If a common symbol overrides a function, make sure
1502 that it isn't defined dynamically nor has type
1503 function. */
1504 h->def_dynamic = 0;
1505 h->type = STT_NOTYPE;
1506 }
1507 *type_change_ok = TRUE;
1508 }
1509
1510 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1511 flip = *sym_hash;
1512 else
1513 /* This union may have been set to be non-NULL when this symbol
1514 was seen in a dynamic object. We must force the union to be
1515 NULL, so that it is correct for a regular symbol. */
1516 h->verinfo.vertree = NULL;
1517 }
1518
1519 /* Handle the special case of a new common symbol merging with an
1520 old symbol that looks like it might be a common symbol defined in
1521 a shared object. Note that we have already handled the case in
1522 which a new common symbol should simply override the definition
1523 in the shared library. */
1524
1525 if (! newdyn
1526 && bfd_is_com_section (sec)
1527 && olddyncommon)
1528 {
1529 /* It would be best if we could set the hash table entry to a
1530 common symbol, but we don't know what to use for the section
1531 or the alignment. */
1532 if (! ((*info->callbacks->multiple_common)
1533 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1534 return FALSE;
1535
1536 /* If the presumed common symbol in the dynamic object is
1537 larger, pretend that the new symbol has its size. */
1538
1539 if (h->size > *pvalue)
1540 *pvalue = h->size;
1541
1542 /* We need to remember the alignment required by the symbol
1543 in the dynamic object. */
1544 BFD_ASSERT (pold_alignment);
1545 *pold_alignment = h->root.u.def.section->alignment_power;
1546
1547 olddef = FALSE;
1548 olddyncommon = FALSE;
1549
1550 h->root.type = bfd_link_hash_undefined;
1551 h->root.u.undef.abfd = h->root.u.def.section->owner;
1552
1553 *size_change_ok = TRUE;
1554 *type_change_ok = TRUE;
1555
1556 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1557 flip = *sym_hash;
1558 else
1559 h->verinfo.vertree = NULL;
1560 }
1561
1562 if (flip != NULL)
1563 {
1564 /* Handle the case where we had a versioned symbol in a dynamic
1565 library and now find a definition in a normal object. In this
1566 case, we make the versioned symbol point to the normal one. */
1567 flip->root.type = h->root.type;
1568 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1569 h->root.type = bfd_link_hash_indirect;
1570 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1571 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1572 if (h->def_dynamic)
1573 {
1574 h->def_dynamic = 0;
1575 flip->ref_dynamic = 1;
1576 }
1577 }
1578
1579 return TRUE;
1580 }
1581
1582 /* This function is called to create an indirect symbol from the
1583 default for the symbol with the default version if needed. The
1584 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1585 set DYNSYM if the new indirect symbol is dynamic. */
1586
1587 static bfd_boolean
1588 _bfd_elf_add_default_symbol (bfd *abfd,
1589 struct bfd_link_info *info,
1590 struct elf_link_hash_entry *h,
1591 const char *name,
1592 Elf_Internal_Sym *sym,
1593 asection **psec,
1594 bfd_vma *value,
1595 bfd_boolean *dynsym,
1596 bfd_boolean override)
1597 {
1598 bfd_boolean type_change_ok;
1599 bfd_boolean size_change_ok;
1600 bfd_boolean skip;
1601 char *shortname;
1602 struct elf_link_hash_entry *hi;
1603 struct bfd_link_hash_entry *bh;
1604 const struct elf_backend_data *bed;
1605 bfd_boolean collect;
1606 bfd_boolean dynamic;
1607 char *p;
1608 size_t len, shortlen;
1609 asection *sec;
1610
1611 /* If this symbol has a version, and it is the default version, we
1612 create an indirect symbol from the default name to the fully
1613 decorated name. This will cause external references which do not
1614 specify a version to be bound to this version of the symbol. */
1615 p = strchr (name, ELF_VER_CHR);
1616 if (p == NULL || p[1] != ELF_VER_CHR)
1617 return TRUE;
1618
1619 if (override)
1620 {
1621 /* We are overridden by an old definition. We need to check if we
1622 need to create the indirect symbol from the default name. */
1623 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1624 FALSE, FALSE);
1625 BFD_ASSERT (hi != NULL);
1626 if (hi == h)
1627 return TRUE;
1628 while (hi->root.type == bfd_link_hash_indirect
1629 || hi->root.type == bfd_link_hash_warning)
1630 {
1631 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1632 if (hi == h)
1633 return TRUE;
1634 }
1635 }
1636
1637 bed = get_elf_backend_data (abfd);
1638 collect = bed->collect;
1639 dynamic = (abfd->flags & DYNAMIC) != 0;
1640
1641 shortlen = p - name;
1642 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1643 if (shortname == NULL)
1644 return FALSE;
1645 memcpy (shortname, name, shortlen);
1646 shortname[shortlen] = '\0';
1647
1648 /* We are going to create a new symbol. Merge it with any existing
1649 symbol with this name. For the purposes of the merge, act as
1650 though we were defining the symbol we just defined, although we
1651 actually going to define an indirect symbol. */
1652 type_change_ok = FALSE;
1653 size_change_ok = FALSE;
1654 sec = *psec;
1655 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1656 NULL, NULL, &hi, &skip, &override,
1657 &type_change_ok, &size_change_ok))
1658 return FALSE;
1659
1660 if (skip)
1661 goto nondefault;
1662
1663 if (! override)
1664 {
1665 bh = &hi->root;
1666 if (! (_bfd_generic_link_add_one_symbol
1667 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1668 0, name, FALSE, collect, &bh)))
1669 return FALSE;
1670 hi = (struct elf_link_hash_entry *) bh;
1671 }
1672 else
1673 {
1674 /* In this case the symbol named SHORTNAME is overriding the
1675 indirect symbol we want to add. We were planning on making
1676 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1677 is the name without a version. NAME is the fully versioned
1678 name, and it is the default version.
1679
1680 Overriding means that we already saw a definition for the
1681 symbol SHORTNAME in a regular object, and it is overriding
1682 the symbol defined in the dynamic object.
1683
1684 When this happens, we actually want to change NAME, the
1685 symbol we just added, to refer to SHORTNAME. This will cause
1686 references to NAME in the shared object to become references
1687 to SHORTNAME in the regular object. This is what we expect
1688 when we override a function in a shared object: that the
1689 references in the shared object will be mapped to the
1690 definition in the regular object. */
1691
1692 while (hi->root.type == bfd_link_hash_indirect
1693 || hi->root.type == bfd_link_hash_warning)
1694 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1695
1696 h->root.type = bfd_link_hash_indirect;
1697 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1698 if (h->def_dynamic)
1699 {
1700 h->def_dynamic = 0;
1701 hi->ref_dynamic = 1;
1702 if (hi->ref_regular
1703 || hi->def_regular)
1704 {
1705 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1706 return FALSE;
1707 }
1708 }
1709
1710 /* Now set HI to H, so that the following code will set the
1711 other fields correctly. */
1712 hi = h;
1713 }
1714
1715 /* Check if HI is a warning symbol. */
1716 if (hi->root.type == bfd_link_hash_warning)
1717 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1718
1719 /* If there is a duplicate definition somewhere, then HI may not
1720 point to an indirect symbol. We will have reported an error to
1721 the user in that case. */
1722
1723 if (hi->root.type == bfd_link_hash_indirect)
1724 {
1725 struct elf_link_hash_entry *ht;
1726
1727 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1728 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1729
1730 /* See if the new flags lead us to realize that the symbol must
1731 be dynamic. */
1732 if (! *dynsym)
1733 {
1734 if (! dynamic)
1735 {
1736 if (! info->executable
1737 || hi->def_dynamic
1738 || hi->ref_dynamic)
1739 *dynsym = TRUE;
1740 }
1741 else
1742 {
1743 if (hi->ref_regular)
1744 *dynsym = TRUE;
1745 }
1746 }
1747 }
1748
1749 /* We also need to define an indirection from the nondefault version
1750 of the symbol. */
1751
1752 nondefault:
1753 len = strlen (name);
1754 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1755 if (shortname == NULL)
1756 return FALSE;
1757 memcpy (shortname, name, shortlen);
1758 memcpy (shortname + shortlen, p + 1, len - shortlen);
1759
1760 /* Once again, merge with any existing symbol. */
1761 type_change_ok = FALSE;
1762 size_change_ok = FALSE;
1763 sec = *psec;
1764 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1765 NULL, NULL, &hi, &skip, &override,
1766 &type_change_ok, &size_change_ok))
1767 return FALSE;
1768
1769 if (skip)
1770 return TRUE;
1771
1772 if (override)
1773 {
1774 /* Here SHORTNAME is a versioned name, so we don't expect to see
1775 the type of override we do in the case above unless it is
1776 overridden by a versioned definition. */
1777 if (hi->root.type != bfd_link_hash_defined
1778 && hi->root.type != bfd_link_hash_defweak)
1779 (*_bfd_error_handler)
1780 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1781 abfd, shortname);
1782 }
1783 else
1784 {
1785 bh = &hi->root;
1786 if (! (_bfd_generic_link_add_one_symbol
1787 (info, abfd, shortname, BSF_INDIRECT,
1788 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1789 return FALSE;
1790 hi = (struct elf_link_hash_entry *) bh;
1791
1792 /* If there is a duplicate definition somewhere, then HI may not
1793 point to an indirect symbol. We will have reported an error
1794 to the user in that case. */
1795
1796 if (hi->root.type == bfd_link_hash_indirect)
1797 {
1798 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1799
1800 /* See if the new flags lead us to realize that the symbol
1801 must be dynamic. */
1802 if (! *dynsym)
1803 {
1804 if (! dynamic)
1805 {
1806 if (! info->executable
1807 || hi->ref_dynamic)
1808 *dynsym = TRUE;
1809 }
1810 else
1811 {
1812 if (hi->ref_regular)
1813 *dynsym = TRUE;
1814 }
1815 }
1816 }
1817 }
1818
1819 return TRUE;
1820 }
1821 \f
1822 /* This routine is used to export all defined symbols into the dynamic
1823 symbol table. It is called via elf_link_hash_traverse. */
1824
1825 static bfd_boolean
1826 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1827 {
1828 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1829
1830 /* Ignore indirect symbols. These are added by the versioning code. */
1831 if (h->root.type == bfd_link_hash_indirect)
1832 return TRUE;
1833
1834 /* Ignore this if we won't export it. */
1835 if (!eif->info->export_dynamic && !h->dynamic)
1836 return TRUE;
1837
1838 if (h->dynindx == -1
1839 && (h->def_regular || h->ref_regular)
1840 && ! bfd_hide_sym_by_version (eif->info->version_info,
1841 h->root.root.string))
1842 {
1843 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1844 {
1845 eif->failed = TRUE;
1846 return FALSE;
1847 }
1848 }
1849
1850 return TRUE;
1851 }
1852 \f
1853 /* Look through the symbols which are defined in other shared
1854 libraries and referenced here. Update the list of version
1855 dependencies. This will be put into the .gnu.version_r section.
1856 This function is called via elf_link_hash_traverse. */
1857
1858 static bfd_boolean
1859 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1860 void *data)
1861 {
1862 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1863 Elf_Internal_Verneed *t;
1864 Elf_Internal_Vernaux *a;
1865 bfd_size_type amt;
1866
1867 /* We only care about symbols defined in shared objects with version
1868 information. */
1869 if (!h->def_dynamic
1870 || h->def_regular
1871 || h->dynindx == -1
1872 || h->verinfo.verdef == NULL)
1873 return TRUE;
1874
1875 /* See if we already know about this version. */
1876 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1877 t != NULL;
1878 t = t->vn_nextref)
1879 {
1880 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1881 continue;
1882
1883 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1884 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1885 return TRUE;
1886
1887 break;
1888 }
1889
1890 /* This is a new version. Add it to tree we are building. */
1891
1892 if (t == NULL)
1893 {
1894 amt = sizeof *t;
1895 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1896 if (t == NULL)
1897 {
1898 rinfo->failed = TRUE;
1899 return FALSE;
1900 }
1901
1902 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1903 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1904 elf_tdata (rinfo->info->output_bfd)->verref = t;
1905 }
1906
1907 amt = sizeof *a;
1908 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1909 if (a == NULL)
1910 {
1911 rinfo->failed = TRUE;
1912 return FALSE;
1913 }
1914
1915 /* Note that we are copying a string pointer here, and testing it
1916 above. If bfd_elf_string_from_elf_section is ever changed to
1917 discard the string data when low in memory, this will have to be
1918 fixed. */
1919 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1920
1921 a->vna_flags = h->verinfo.verdef->vd_flags;
1922 a->vna_nextptr = t->vn_auxptr;
1923
1924 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1925 ++rinfo->vers;
1926
1927 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1928
1929 t->vn_auxptr = a;
1930
1931 return TRUE;
1932 }
1933
1934 /* Figure out appropriate versions for all the symbols. We may not
1935 have the version number script until we have read all of the input
1936 files, so until that point we don't know which symbols should be
1937 local. This function is called via elf_link_hash_traverse. */
1938
1939 static bfd_boolean
1940 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1941 {
1942 struct elf_info_failed *sinfo;
1943 struct bfd_link_info *info;
1944 const struct elf_backend_data *bed;
1945 struct elf_info_failed eif;
1946 char *p;
1947 bfd_size_type amt;
1948
1949 sinfo = (struct elf_info_failed *) data;
1950 info = sinfo->info;
1951
1952 /* Fix the symbol flags. */
1953 eif.failed = FALSE;
1954 eif.info = info;
1955 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1956 {
1957 if (eif.failed)
1958 sinfo->failed = TRUE;
1959 return FALSE;
1960 }
1961
1962 /* We only need version numbers for symbols defined in regular
1963 objects. */
1964 if (!h->def_regular)
1965 return TRUE;
1966
1967 bed = get_elf_backend_data (info->output_bfd);
1968 p = strchr (h->root.root.string, ELF_VER_CHR);
1969 if (p != NULL && h->verinfo.vertree == NULL)
1970 {
1971 struct bfd_elf_version_tree *t;
1972 bfd_boolean hidden;
1973
1974 hidden = TRUE;
1975
1976 /* There are two consecutive ELF_VER_CHR characters if this is
1977 not a hidden symbol. */
1978 ++p;
1979 if (*p == ELF_VER_CHR)
1980 {
1981 hidden = FALSE;
1982 ++p;
1983 }
1984
1985 /* If there is no version string, we can just return out. */
1986 if (*p == '\0')
1987 {
1988 if (hidden)
1989 h->hidden = 1;
1990 return TRUE;
1991 }
1992
1993 /* Look for the version. If we find it, it is no longer weak. */
1994 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1995 {
1996 if (strcmp (t->name, p) == 0)
1997 {
1998 size_t len;
1999 char *alc;
2000 struct bfd_elf_version_expr *d;
2001
2002 len = p - h->root.root.string;
2003 alc = (char *) bfd_malloc (len);
2004 if (alc == NULL)
2005 {
2006 sinfo->failed = TRUE;
2007 return FALSE;
2008 }
2009 memcpy (alc, h->root.root.string, len - 1);
2010 alc[len - 1] = '\0';
2011 if (alc[len - 2] == ELF_VER_CHR)
2012 alc[len - 2] = '\0';
2013
2014 h->verinfo.vertree = t;
2015 t->used = TRUE;
2016 d = NULL;
2017
2018 if (t->globals.list != NULL)
2019 d = (*t->match) (&t->globals, NULL, alc);
2020
2021 /* See if there is anything to force this symbol to
2022 local scope. */
2023 if (d == NULL && t->locals.list != NULL)
2024 {
2025 d = (*t->match) (&t->locals, NULL, alc);
2026 if (d != NULL
2027 && h->dynindx != -1
2028 && ! info->export_dynamic)
2029 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2030 }
2031
2032 free (alc);
2033 break;
2034 }
2035 }
2036
2037 /* If we are building an application, we need to create a
2038 version node for this version. */
2039 if (t == NULL && info->executable)
2040 {
2041 struct bfd_elf_version_tree **pp;
2042 int version_index;
2043
2044 /* If we aren't going to export this symbol, we don't need
2045 to worry about it. */
2046 if (h->dynindx == -1)
2047 return TRUE;
2048
2049 amt = sizeof *t;
2050 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2051 if (t == NULL)
2052 {
2053 sinfo->failed = TRUE;
2054 return FALSE;
2055 }
2056
2057 t->name = p;
2058 t->name_indx = (unsigned int) -1;
2059 t->used = TRUE;
2060
2061 version_index = 1;
2062 /* Don't count anonymous version tag. */
2063 if (sinfo->info->version_info != NULL
2064 && sinfo->info->version_info->vernum == 0)
2065 version_index = 0;
2066 for (pp = &sinfo->info->version_info;
2067 *pp != NULL;
2068 pp = &(*pp)->next)
2069 ++version_index;
2070 t->vernum = version_index;
2071
2072 *pp = t;
2073
2074 h->verinfo.vertree = t;
2075 }
2076 else if (t == NULL)
2077 {
2078 /* We could not find the version for a symbol when
2079 generating a shared archive. Return an error. */
2080 (*_bfd_error_handler)
2081 (_("%B: version node not found for symbol %s"),
2082 info->output_bfd, h->root.root.string);
2083 bfd_set_error (bfd_error_bad_value);
2084 sinfo->failed = TRUE;
2085 return FALSE;
2086 }
2087
2088 if (hidden)
2089 h->hidden = 1;
2090 }
2091
2092 /* If we don't have a version for this symbol, see if we can find
2093 something. */
2094 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2095 {
2096 bfd_boolean hide;
2097
2098 h->verinfo.vertree
2099 = bfd_find_version_for_sym (sinfo->info->version_info,
2100 h->root.root.string, &hide);
2101 if (h->verinfo.vertree != NULL && hide)
2102 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2103 }
2104
2105 return TRUE;
2106 }
2107 \f
2108 /* Read and swap the relocs from the section indicated by SHDR. This
2109 may be either a REL or a RELA section. The relocations are
2110 translated into RELA relocations and stored in INTERNAL_RELOCS,
2111 which should have already been allocated to contain enough space.
2112 The EXTERNAL_RELOCS are a buffer where the external form of the
2113 relocations should be stored.
2114
2115 Returns FALSE if something goes wrong. */
2116
2117 static bfd_boolean
2118 elf_link_read_relocs_from_section (bfd *abfd,
2119 asection *sec,
2120 Elf_Internal_Shdr *shdr,
2121 void *external_relocs,
2122 Elf_Internal_Rela *internal_relocs)
2123 {
2124 const struct elf_backend_data *bed;
2125 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2126 const bfd_byte *erela;
2127 const bfd_byte *erelaend;
2128 Elf_Internal_Rela *irela;
2129 Elf_Internal_Shdr *symtab_hdr;
2130 size_t nsyms;
2131
2132 /* Position ourselves at the start of the section. */
2133 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2134 return FALSE;
2135
2136 /* Read the relocations. */
2137 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2138 return FALSE;
2139
2140 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2141 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2142
2143 bed = get_elf_backend_data (abfd);
2144
2145 /* Convert the external relocations to the internal format. */
2146 if (shdr->sh_entsize == bed->s->sizeof_rel)
2147 swap_in = bed->s->swap_reloc_in;
2148 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2149 swap_in = bed->s->swap_reloca_in;
2150 else
2151 {
2152 bfd_set_error (bfd_error_wrong_format);
2153 return FALSE;
2154 }
2155
2156 erela = (const bfd_byte *) external_relocs;
2157 erelaend = erela + shdr->sh_size;
2158 irela = internal_relocs;
2159 while (erela < erelaend)
2160 {
2161 bfd_vma r_symndx;
2162
2163 (*swap_in) (abfd, erela, irela);
2164 r_symndx = ELF32_R_SYM (irela->r_info);
2165 if (bed->s->arch_size == 64)
2166 r_symndx >>= 24;
2167 if (nsyms > 0)
2168 {
2169 if ((size_t) r_symndx >= nsyms)
2170 {
2171 (*_bfd_error_handler)
2172 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2173 " for offset 0x%lx in section `%A'"),
2174 abfd, sec,
2175 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2176 bfd_set_error (bfd_error_bad_value);
2177 return FALSE;
2178 }
2179 }
2180 else if (r_symndx != STN_UNDEF)
2181 {
2182 (*_bfd_error_handler)
2183 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2184 " when the object file has no symbol table"),
2185 abfd, sec,
2186 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2187 bfd_set_error (bfd_error_bad_value);
2188 return FALSE;
2189 }
2190 irela += bed->s->int_rels_per_ext_rel;
2191 erela += shdr->sh_entsize;
2192 }
2193
2194 return TRUE;
2195 }
2196
2197 /* Read and swap the relocs for a section O. They may have been
2198 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2199 not NULL, they are used as buffers to read into. They are known to
2200 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2201 the return value is allocated using either malloc or bfd_alloc,
2202 according to the KEEP_MEMORY argument. If O has two relocation
2203 sections (both REL and RELA relocations), then the REL_HDR
2204 relocations will appear first in INTERNAL_RELOCS, followed by the
2205 RELA_HDR relocations. */
2206
2207 Elf_Internal_Rela *
2208 _bfd_elf_link_read_relocs (bfd *abfd,
2209 asection *o,
2210 void *external_relocs,
2211 Elf_Internal_Rela *internal_relocs,
2212 bfd_boolean keep_memory)
2213 {
2214 void *alloc1 = NULL;
2215 Elf_Internal_Rela *alloc2 = NULL;
2216 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2217 struct bfd_elf_section_data *esdo = elf_section_data (o);
2218 Elf_Internal_Rela *internal_rela_relocs;
2219
2220 if (esdo->relocs != NULL)
2221 return esdo->relocs;
2222
2223 if (o->reloc_count == 0)
2224 return NULL;
2225
2226 if (internal_relocs == NULL)
2227 {
2228 bfd_size_type size;
2229
2230 size = o->reloc_count;
2231 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2232 if (keep_memory)
2233 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2234 else
2235 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2236 if (internal_relocs == NULL)
2237 goto error_return;
2238 }
2239
2240 if (external_relocs == NULL)
2241 {
2242 bfd_size_type size = 0;
2243
2244 if (esdo->rel.hdr)
2245 size += esdo->rel.hdr->sh_size;
2246 if (esdo->rela.hdr)
2247 size += esdo->rela.hdr->sh_size;
2248
2249 alloc1 = bfd_malloc (size);
2250 if (alloc1 == NULL)
2251 goto error_return;
2252 external_relocs = alloc1;
2253 }
2254
2255 internal_rela_relocs = internal_relocs;
2256 if (esdo->rel.hdr)
2257 {
2258 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2259 external_relocs,
2260 internal_relocs))
2261 goto error_return;
2262 external_relocs = (((bfd_byte *) external_relocs)
2263 + esdo->rel.hdr->sh_size);
2264 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2265 * bed->s->int_rels_per_ext_rel);
2266 }
2267
2268 if (esdo->rela.hdr
2269 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2270 external_relocs,
2271 internal_rela_relocs)))
2272 goto error_return;
2273
2274 /* Cache the results for next time, if we can. */
2275 if (keep_memory)
2276 esdo->relocs = internal_relocs;
2277
2278 if (alloc1 != NULL)
2279 free (alloc1);
2280
2281 /* Don't free alloc2, since if it was allocated we are passing it
2282 back (under the name of internal_relocs). */
2283
2284 return internal_relocs;
2285
2286 error_return:
2287 if (alloc1 != NULL)
2288 free (alloc1);
2289 if (alloc2 != NULL)
2290 {
2291 if (keep_memory)
2292 bfd_release (abfd, alloc2);
2293 else
2294 free (alloc2);
2295 }
2296 return NULL;
2297 }
2298
2299 /* Compute the size of, and allocate space for, REL_HDR which is the
2300 section header for a section containing relocations for O. */
2301
2302 static bfd_boolean
2303 _bfd_elf_link_size_reloc_section (bfd *abfd,
2304 struct bfd_elf_section_reloc_data *reldata)
2305 {
2306 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2307
2308 /* That allows us to calculate the size of the section. */
2309 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2310
2311 /* The contents field must last into write_object_contents, so we
2312 allocate it with bfd_alloc rather than malloc. Also since we
2313 cannot be sure that the contents will actually be filled in,
2314 we zero the allocated space. */
2315 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2316 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2317 return FALSE;
2318
2319 if (reldata->hashes == NULL && reldata->count)
2320 {
2321 struct elf_link_hash_entry **p;
2322
2323 p = (struct elf_link_hash_entry **)
2324 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2325 if (p == NULL)
2326 return FALSE;
2327
2328 reldata->hashes = p;
2329 }
2330
2331 return TRUE;
2332 }
2333
2334 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2335 originated from the section given by INPUT_REL_HDR) to the
2336 OUTPUT_BFD. */
2337
2338 bfd_boolean
2339 _bfd_elf_link_output_relocs (bfd *output_bfd,
2340 asection *input_section,
2341 Elf_Internal_Shdr *input_rel_hdr,
2342 Elf_Internal_Rela *internal_relocs,
2343 struct elf_link_hash_entry **rel_hash
2344 ATTRIBUTE_UNUSED)
2345 {
2346 Elf_Internal_Rela *irela;
2347 Elf_Internal_Rela *irelaend;
2348 bfd_byte *erel;
2349 struct bfd_elf_section_reloc_data *output_reldata;
2350 asection *output_section;
2351 const struct elf_backend_data *bed;
2352 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2353 struct bfd_elf_section_data *esdo;
2354
2355 output_section = input_section->output_section;
2356
2357 bed = get_elf_backend_data (output_bfd);
2358 esdo = elf_section_data (output_section);
2359 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2360 {
2361 output_reldata = &esdo->rel;
2362 swap_out = bed->s->swap_reloc_out;
2363 }
2364 else if (esdo->rela.hdr
2365 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2366 {
2367 output_reldata = &esdo->rela;
2368 swap_out = bed->s->swap_reloca_out;
2369 }
2370 else
2371 {
2372 (*_bfd_error_handler)
2373 (_("%B: relocation size mismatch in %B section %A"),
2374 output_bfd, input_section->owner, input_section);
2375 bfd_set_error (bfd_error_wrong_format);
2376 return FALSE;
2377 }
2378
2379 erel = output_reldata->hdr->contents;
2380 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2381 irela = internal_relocs;
2382 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2383 * bed->s->int_rels_per_ext_rel);
2384 while (irela < irelaend)
2385 {
2386 (*swap_out) (output_bfd, irela, erel);
2387 irela += bed->s->int_rels_per_ext_rel;
2388 erel += input_rel_hdr->sh_entsize;
2389 }
2390
2391 /* Bump the counter, so that we know where to add the next set of
2392 relocations. */
2393 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2394
2395 return TRUE;
2396 }
2397 \f
2398 /* Make weak undefined symbols in PIE dynamic. */
2399
2400 bfd_boolean
2401 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2402 struct elf_link_hash_entry *h)
2403 {
2404 if (info->pie
2405 && h->dynindx == -1
2406 && h->root.type == bfd_link_hash_undefweak)
2407 return bfd_elf_link_record_dynamic_symbol (info, h);
2408
2409 return TRUE;
2410 }
2411
2412 /* Fix up the flags for a symbol. This handles various cases which
2413 can only be fixed after all the input files are seen. This is
2414 currently called by both adjust_dynamic_symbol and
2415 assign_sym_version, which is unnecessary but perhaps more robust in
2416 the face of future changes. */
2417
2418 static bfd_boolean
2419 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2420 struct elf_info_failed *eif)
2421 {
2422 const struct elf_backend_data *bed;
2423
2424 /* If this symbol was mentioned in a non-ELF file, try to set
2425 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2426 permit a non-ELF file to correctly refer to a symbol defined in
2427 an ELF dynamic object. */
2428 if (h->non_elf)
2429 {
2430 while (h->root.type == bfd_link_hash_indirect)
2431 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2432
2433 if (h->root.type != bfd_link_hash_defined
2434 && h->root.type != bfd_link_hash_defweak)
2435 {
2436 h->ref_regular = 1;
2437 h->ref_regular_nonweak = 1;
2438 }
2439 else
2440 {
2441 if (h->root.u.def.section->owner != NULL
2442 && (bfd_get_flavour (h->root.u.def.section->owner)
2443 == bfd_target_elf_flavour))
2444 {
2445 h->ref_regular = 1;
2446 h->ref_regular_nonweak = 1;
2447 }
2448 else
2449 h->def_regular = 1;
2450 }
2451
2452 if (h->dynindx == -1
2453 && (h->def_dynamic
2454 || h->ref_dynamic))
2455 {
2456 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2457 {
2458 eif->failed = TRUE;
2459 return FALSE;
2460 }
2461 }
2462 }
2463 else
2464 {
2465 /* Unfortunately, NON_ELF is only correct if the symbol
2466 was first seen in a non-ELF file. Fortunately, if the symbol
2467 was first seen in an ELF file, we're probably OK unless the
2468 symbol was defined in a non-ELF file. Catch that case here.
2469 FIXME: We're still in trouble if the symbol was first seen in
2470 a dynamic object, and then later in a non-ELF regular object. */
2471 if ((h->root.type == bfd_link_hash_defined
2472 || h->root.type == bfd_link_hash_defweak)
2473 && !h->def_regular
2474 && (h->root.u.def.section->owner != NULL
2475 ? (bfd_get_flavour (h->root.u.def.section->owner)
2476 != bfd_target_elf_flavour)
2477 : (bfd_is_abs_section (h->root.u.def.section)
2478 && !h->def_dynamic)))
2479 h->def_regular = 1;
2480 }
2481
2482 /* Backend specific symbol fixup. */
2483 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2484 if (bed->elf_backend_fixup_symbol
2485 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2486 return FALSE;
2487
2488 /* If this is a final link, and the symbol was defined as a common
2489 symbol in a regular object file, and there was no definition in
2490 any dynamic object, then the linker will have allocated space for
2491 the symbol in a common section but the DEF_REGULAR
2492 flag will not have been set. */
2493 if (h->root.type == bfd_link_hash_defined
2494 && !h->def_regular
2495 && h->ref_regular
2496 && !h->def_dynamic
2497 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2498 h->def_regular = 1;
2499
2500 /* If -Bsymbolic was used (which means to bind references to global
2501 symbols to the definition within the shared object), and this
2502 symbol was defined in a regular object, then it actually doesn't
2503 need a PLT entry. Likewise, if the symbol has non-default
2504 visibility. If the symbol has hidden or internal visibility, we
2505 will force it local. */
2506 if (h->needs_plt
2507 && eif->info->shared
2508 && is_elf_hash_table (eif->info->hash)
2509 && (SYMBOLIC_BIND (eif->info, h)
2510 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2511 && h->def_regular)
2512 {
2513 bfd_boolean force_local;
2514
2515 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2516 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2517 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2518 }
2519
2520 /* If a weak undefined symbol has non-default visibility, we also
2521 hide it from the dynamic linker. */
2522 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2523 && h->root.type == bfd_link_hash_undefweak)
2524 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2525
2526 /* If this is a weak defined symbol in a dynamic object, and we know
2527 the real definition in the dynamic object, copy interesting flags
2528 over to the real definition. */
2529 if (h->u.weakdef != NULL)
2530 {
2531 /* If the real definition is defined by a regular object file,
2532 don't do anything special. See the longer description in
2533 _bfd_elf_adjust_dynamic_symbol, below. */
2534 if (h->u.weakdef->def_regular)
2535 h->u.weakdef = NULL;
2536 else
2537 {
2538 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2539
2540 while (h->root.type == bfd_link_hash_indirect)
2541 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2542
2543 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2544 || h->root.type == bfd_link_hash_defweak);
2545 BFD_ASSERT (weakdef->def_dynamic);
2546 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2547 || weakdef->root.type == bfd_link_hash_defweak);
2548 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2549 }
2550 }
2551
2552 return TRUE;
2553 }
2554
2555 /* Make the backend pick a good value for a dynamic symbol. This is
2556 called via elf_link_hash_traverse, and also calls itself
2557 recursively. */
2558
2559 static bfd_boolean
2560 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2561 {
2562 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2563 bfd *dynobj;
2564 const struct elf_backend_data *bed;
2565
2566 if (! is_elf_hash_table (eif->info->hash))
2567 return FALSE;
2568
2569 /* Ignore indirect symbols. These are added by the versioning code. */
2570 if (h->root.type == bfd_link_hash_indirect)
2571 return TRUE;
2572
2573 /* Fix the symbol flags. */
2574 if (! _bfd_elf_fix_symbol_flags (h, eif))
2575 return FALSE;
2576
2577 /* If this symbol does not require a PLT entry, and it is not
2578 defined by a dynamic object, or is not referenced by a regular
2579 object, ignore it. We do have to handle a weak defined symbol,
2580 even if no regular object refers to it, if we decided to add it
2581 to the dynamic symbol table. FIXME: Do we normally need to worry
2582 about symbols which are defined by one dynamic object and
2583 referenced by another one? */
2584 if (!h->needs_plt
2585 && h->type != STT_GNU_IFUNC
2586 && (h->def_regular
2587 || !h->def_dynamic
2588 || (!h->ref_regular
2589 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2590 {
2591 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2592 return TRUE;
2593 }
2594
2595 /* If we've already adjusted this symbol, don't do it again. This
2596 can happen via a recursive call. */
2597 if (h->dynamic_adjusted)
2598 return TRUE;
2599
2600 /* Don't look at this symbol again. Note that we must set this
2601 after checking the above conditions, because we may look at a
2602 symbol once, decide not to do anything, and then get called
2603 recursively later after REF_REGULAR is set below. */
2604 h->dynamic_adjusted = 1;
2605
2606 /* If this is a weak definition, and we know a real definition, and
2607 the real symbol is not itself defined by a regular object file,
2608 then get a good value for the real definition. We handle the
2609 real symbol first, for the convenience of the backend routine.
2610
2611 Note that there is a confusing case here. If the real definition
2612 is defined by a regular object file, we don't get the real symbol
2613 from the dynamic object, but we do get the weak symbol. If the
2614 processor backend uses a COPY reloc, then if some routine in the
2615 dynamic object changes the real symbol, we will not see that
2616 change in the corresponding weak symbol. This is the way other
2617 ELF linkers work as well, and seems to be a result of the shared
2618 library model.
2619
2620 I will clarify this issue. Most SVR4 shared libraries define the
2621 variable _timezone and define timezone as a weak synonym. The
2622 tzset call changes _timezone. If you write
2623 extern int timezone;
2624 int _timezone = 5;
2625 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2626 you might expect that, since timezone is a synonym for _timezone,
2627 the same number will print both times. However, if the processor
2628 backend uses a COPY reloc, then actually timezone will be copied
2629 into your process image, and, since you define _timezone
2630 yourself, _timezone will not. Thus timezone and _timezone will
2631 wind up at different memory locations. The tzset call will set
2632 _timezone, leaving timezone unchanged. */
2633
2634 if (h->u.weakdef != NULL)
2635 {
2636 /* If we get to this point, there is an implicit reference to
2637 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2638 h->u.weakdef->ref_regular = 1;
2639
2640 /* Ensure that the backend adjust_dynamic_symbol function sees
2641 H->U.WEAKDEF before H by recursively calling ourselves. */
2642 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2643 return FALSE;
2644 }
2645
2646 /* If a symbol has no type and no size and does not require a PLT
2647 entry, then we are probably about to do the wrong thing here: we
2648 are probably going to create a COPY reloc for an empty object.
2649 This case can arise when a shared object is built with assembly
2650 code, and the assembly code fails to set the symbol type. */
2651 if (h->size == 0
2652 && h->type == STT_NOTYPE
2653 && !h->needs_plt)
2654 (*_bfd_error_handler)
2655 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2656 h->root.root.string);
2657
2658 dynobj = elf_hash_table (eif->info)->dynobj;
2659 bed = get_elf_backend_data (dynobj);
2660
2661 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2662 {
2663 eif->failed = TRUE;
2664 return FALSE;
2665 }
2666
2667 return TRUE;
2668 }
2669
2670 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2671 DYNBSS. */
2672
2673 bfd_boolean
2674 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2675 asection *dynbss)
2676 {
2677 unsigned int power_of_two;
2678 bfd_vma mask;
2679 asection *sec = h->root.u.def.section;
2680
2681 /* The section aligment of definition is the maximum alignment
2682 requirement of symbols defined in the section. Since we don't
2683 know the symbol alignment requirement, we start with the
2684 maximum alignment and check low bits of the symbol address
2685 for the minimum alignment. */
2686 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2687 mask = ((bfd_vma) 1 << power_of_two) - 1;
2688 while ((h->root.u.def.value & mask) != 0)
2689 {
2690 mask >>= 1;
2691 --power_of_two;
2692 }
2693
2694 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2695 dynbss))
2696 {
2697 /* Adjust the section alignment if needed. */
2698 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2699 power_of_two))
2700 return FALSE;
2701 }
2702
2703 /* We make sure that the symbol will be aligned properly. */
2704 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2705
2706 /* Define the symbol as being at this point in DYNBSS. */
2707 h->root.u.def.section = dynbss;
2708 h->root.u.def.value = dynbss->size;
2709
2710 /* Increment the size of DYNBSS to make room for the symbol. */
2711 dynbss->size += h->size;
2712
2713 return TRUE;
2714 }
2715
2716 /* Adjust all external symbols pointing into SEC_MERGE sections
2717 to reflect the object merging within the sections. */
2718
2719 static bfd_boolean
2720 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2721 {
2722 asection *sec;
2723
2724 if ((h->root.type == bfd_link_hash_defined
2725 || h->root.type == bfd_link_hash_defweak)
2726 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2727 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2728 {
2729 bfd *output_bfd = (bfd *) data;
2730
2731 h->root.u.def.value =
2732 _bfd_merged_section_offset (output_bfd,
2733 &h->root.u.def.section,
2734 elf_section_data (sec)->sec_info,
2735 h->root.u.def.value);
2736 }
2737
2738 return TRUE;
2739 }
2740
2741 /* Returns false if the symbol referred to by H should be considered
2742 to resolve local to the current module, and true if it should be
2743 considered to bind dynamically. */
2744
2745 bfd_boolean
2746 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2747 struct bfd_link_info *info,
2748 bfd_boolean not_local_protected)
2749 {
2750 bfd_boolean binding_stays_local_p;
2751 const struct elf_backend_data *bed;
2752 struct elf_link_hash_table *hash_table;
2753
2754 if (h == NULL)
2755 return FALSE;
2756
2757 while (h->root.type == bfd_link_hash_indirect
2758 || h->root.type == bfd_link_hash_warning)
2759 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2760
2761 /* If it was forced local, then clearly it's not dynamic. */
2762 if (h->dynindx == -1)
2763 return FALSE;
2764 if (h->forced_local)
2765 return FALSE;
2766
2767 /* Identify the cases where name binding rules say that a
2768 visible symbol resolves locally. */
2769 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2770
2771 switch (ELF_ST_VISIBILITY (h->other))
2772 {
2773 case STV_INTERNAL:
2774 case STV_HIDDEN:
2775 return FALSE;
2776
2777 case STV_PROTECTED:
2778 hash_table = elf_hash_table (info);
2779 if (!is_elf_hash_table (hash_table))
2780 return FALSE;
2781
2782 bed = get_elf_backend_data (hash_table->dynobj);
2783
2784 /* Proper resolution for function pointer equality may require
2785 that these symbols perhaps be resolved dynamically, even though
2786 we should be resolving them to the current module. */
2787 if (!not_local_protected || !bed->is_function_type (h->type))
2788 binding_stays_local_p = TRUE;
2789 break;
2790
2791 default:
2792 break;
2793 }
2794
2795 /* If it isn't defined locally, then clearly it's dynamic. */
2796 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2797 return TRUE;
2798
2799 /* Otherwise, the symbol is dynamic if binding rules don't tell
2800 us that it remains local. */
2801 return !binding_stays_local_p;
2802 }
2803
2804 /* Return true if the symbol referred to by H should be considered
2805 to resolve local to the current module, and false otherwise. Differs
2806 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2807 undefined symbols. The two functions are virtually identical except
2808 for the place where forced_local and dynindx == -1 are tested. If
2809 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2810 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2811 the symbol is local only for defined symbols.
2812 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2813 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2814 treatment of undefined weak symbols. For those that do not make
2815 undefined weak symbols dynamic, both functions may return false. */
2816
2817 bfd_boolean
2818 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2819 struct bfd_link_info *info,
2820 bfd_boolean local_protected)
2821 {
2822 const struct elf_backend_data *bed;
2823 struct elf_link_hash_table *hash_table;
2824
2825 /* If it's a local sym, of course we resolve locally. */
2826 if (h == NULL)
2827 return TRUE;
2828
2829 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2830 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2831 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2832 return TRUE;
2833
2834 /* Common symbols that become definitions don't get the DEF_REGULAR
2835 flag set, so test it first, and don't bail out. */
2836 if (ELF_COMMON_DEF_P (h))
2837 /* Do nothing. */;
2838 /* If we don't have a definition in a regular file, then we can't
2839 resolve locally. The sym is either undefined or dynamic. */
2840 else if (!h->def_regular)
2841 return FALSE;
2842
2843 /* Forced local symbols resolve locally. */
2844 if (h->forced_local)
2845 return TRUE;
2846
2847 /* As do non-dynamic symbols. */
2848 if (h->dynindx == -1)
2849 return TRUE;
2850
2851 /* At this point, we know the symbol is defined and dynamic. In an
2852 executable it must resolve locally, likewise when building symbolic
2853 shared libraries. */
2854 if (info->executable || SYMBOLIC_BIND (info, h))
2855 return TRUE;
2856
2857 /* Now deal with defined dynamic symbols in shared libraries. Ones
2858 with default visibility might not resolve locally. */
2859 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2860 return FALSE;
2861
2862 hash_table = elf_hash_table (info);
2863 if (!is_elf_hash_table (hash_table))
2864 return TRUE;
2865
2866 bed = get_elf_backend_data (hash_table->dynobj);
2867
2868 /* STV_PROTECTED non-function symbols are local. */
2869 if (!bed->is_function_type (h->type))
2870 return TRUE;
2871
2872 /* Function pointer equality tests may require that STV_PROTECTED
2873 symbols be treated as dynamic symbols. If the address of a
2874 function not defined in an executable is set to that function's
2875 plt entry in the executable, then the address of the function in
2876 a shared library must also be the plt entry in the executable. */
2877 return local_protected;
2878 }
2879
2880 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2881 aligned. Returns the first TLS output section. */
2882
2883 struct bfd_section *
2884 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2885 {
2886 struct bfd_section *sec, *tls;
2887 unsigned int align = 0;
2888
2889 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2890 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2891 break;
2892 tls = sec;
2893
2894 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2895 if (sec->alignment_power > align)
2896 align = sec->alignment_power;
2897
2898 elf_hash_table (info)->tls_sec = tls;
2899
2900 /* Ensure the alignment of the first section is the largest alignment,
2901 so that the tls segment starts aligned. */
2902 if (tls != NULL)
2903 tls->alignment_power = align;
2904
2905 return tls;
2906 }
2907
2908 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2909 static bfd_boolean
2910 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2911 Elf_Internal_Sym *sym)
2912 {
2913 const struct elf_backend_data *bed;
2914
2915 /* Local symbols do not count, but target specific ones might. */
2916 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2917 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2918 return FALSE;
2919
2920 bed = get_elf_backend_data (abfd);
2921 /* Function symbols do not count. */
2922 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2923 return FALSE;
2924
2925 /* If the section is undefined, then so is the symbol. */
2926 if (sym->st_shndx == SHN_UNDEF)
2927 return FALSE;
2928
2929 /* If the symbol is defined in the common section, then
2930 it is a common definition and so does not count. */
2931 if (bed->common_definition (sym))
2932 return FALSE;
2933
2934 /* If the symbol is in a target specific section then we
2935 must rely upon the backend to tell us what it is. */
2936 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2937 /* FIXME - this function is not coded yet:
2938
2939 return _bfd_is_global_symbol_definition (abfd, sym);
2940
2941 Instead for now assume that the definition is not global,
2942 Even if this is wrong, at least the linker will behave
2943 in the same way that it used to do. */
2944 return FALSE;
2945
2946 return TRUE;
2947 }
2948
2949 /* Search the symbol table of the archive element of the archive ABFD
2950 whose archive map contains a mention of SYMDEF, and determine if
2951 the symbol is defined in this element. */
2952 static bfd_boolean
2953 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2954 {
2955 Elf_Internal_Shdr * hdr;
2956 bfd_size_type symcount;
2957 bfd_size_type extsymcount;
2958 bfd_size_type extsymoff;
2959 Elf_Internal_Sym *isymbuf;
2960 Elf_Internal_Sym *isym;
2961 Elf_Internal_Sym *isymend;
2962 bfd_boolean result;
2963
2964 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2965 if (abfd == NULL)
2966 return FALSE;
2967
2968 if (! bfd_check_format (abfd, bfd_object))
2969 return FALSE;
2970
2971 /* If we have already included the element containing this symbol in the
2972 link then we do not need to include it again. Just claim that any symbol
2973 it contains is not a definition, so that our caller will not decide to
2974 (re)include this element. */
2975 if (abfd->archive_pass)
2976 return FALSE;
2977
2978 /* Select the appropriate symbol table. */
2979 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2980 hdr = &elf_tdata (abfd)->symtab_hdr;
2981 else
2982 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2983
2984 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2985
2986 /* The sh_info field of the symtab header tells us where the
2987 external symbols start. We don't care about the local symbols. */
2988 if (elf_bad_symtab (abfd))
2989 {
2990 extsymcount = symcount;
2991 extsymoff = 0;
2992 }
2993 else
2994 {
2995 extsymcount = symcount - hdr->sh_info;
2996 extsymoff = hdr->sh_info;
2997 }
2998
2999 if (extsymcount == 0)
3000 return FALSE;
3001
3002 /* Read in the symbol table. */
3003 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3004 NULL, NULL, NULL);
3005 if (isymbuf == NULL)
3006 return FALSE;
3007
3008 /* Scan the symbol table looking for SYMDEF. */
3009 result = FALSE;
3010 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3011 {
3012 const char *name;
3013
3014 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3015 isym->st_name);
3016 if (name == NULL)
3017 break;
3018
3019 if (strcmp (name, symdef->name) == 0)
3020 {
3021 result = is_global_data_symbol_definition (abfd, isym);
3022 break;
3023 }
3024 }
3025
3026 free (isymbuf);
3027
3028 return result;
3029 }
3030 \f
3031 /* Add an entry to the .dynamic table. */
3032
3033 bfd_boolean
3034 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3035 bfd_vma tag,
3036 bfd_vma val)
3037 {
3038 struct elf_link_hash_table *hash_table;
3039 const struct elf_backend_data *bed;
3040 asection *s;
3041 bfd_size_type newsize;
3042 bfd_byte *newcontents;
3043 Elf_Internal_Dyn dyn;
3044
3045 hash_table = elf_hash_table (info);
3046 if (! is_elf_hash_table (hash_table))
3047 return FALSE;
3048
3049 bed = get_elf_backend_data (hash_table->dynobj);
3050 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3051 BFD_ASSERT (s != NULL);
3052
3053 newsize = s->size + bed->s->sizeof_dyn;
3054 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3055 if (newcontents == NULL)
3056 return FALSE;
3057
3058 dyn.d_tag = tag;
3059 dyn.d_un.d_val = val;
3060 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3061
3062 s->size = newsize;
3063 s->contents = newcontents;
3064
3065 return TRUE;
3066 }
3067
3068 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3069 otherwise just check whether one already exists. Returns -1 on error,
3070 1 if a DT_NEEDED tag already exists, and 0 on success. */
3071
3072 static int
3073 elf_add_dt_needed_tag (bfd *abfd,
3074 struct bfd_link_info *info,
3075 const char *soname,
3076 bfd_boolean do_it)
3077 {
3078 struct elf_link_hash_table *hash_table;
3079 bfd_size_type strindex;
3080
3081 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3082 return -1;
3083
3084 hash_table = elf_hash_table (info);
3085 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3086 if (strindex == (bfd_size_type) -1)
3087 return -1;
3088
3089 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3090 {
3091 asection *sdyn;
3092 const struct elf_backend_data *bed;
3093 bfd_byte *extdyn;
3094
3095 bed = get_elf_backend_data (hash_table->dynobj);
3096 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3097 if (sdyn != NULL)
3098 for (extdyn = sdyn->contents;
3099 extdyn < sdyn->contents + sdyn->size;
3100 extdyn += bed->s->sizeof_dyn)
3101 {
3102 Elf_Internal_Dyn dyn;
3103
3104 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3105 if (dyn.d_tag == DT_NEEDED
3106 && dyn.d_un.d_val == strindex)
3107 {
3108 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3109 return 1;
3110 }
3111 }
3112 }
3113
3114 if (do_it)
3115 {
3116 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3117 return -1;
3118
3119 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3120 return -1;
3121 }
3122 else
3123 /* We were just checking for existence of the tag. */
3124 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3125
3126 return 0;
3127 }
3128
3129 static bfd_boolean
3130 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3131 {
3132 for (; needed != NULL; needed = needed->next)
3133 if (strcmp (soname, needed->name) == 0)
3134 return TRUE;
3135
3136 return FALSE;
3137 }
3138
3139 /* Sort symbol by value, section, and size. */
3140 static int
3141 elf_sort_symbol (const void *arg1, const void *arg2)
3142 {
3143 const struct elf_link_hash_entry *h1;
3144 const struct elf_link_hash_entry *h2;
3145 bfd_signed_vma vdiff;
3146
3147 h1 = *(const struct elf_link_hash_entry **) arg1;
3148 h2 = *(const struct elf_link_hash_entry **) arg2;
3149 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3150 if (vdiff != 0)
3151 return vdiff > 0 ? 1 : -1;
3152 else
3153 {
3154 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3155 if (sdiff != 0)
3156 return sdiff > 0 ? 1 : -1;
3157 }
3158 vdiff = h1->size - h2->size;
3159 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3160 }
3161
3162 /* This function is used to adjust offsets into .dynstr for
3163 dynamic symbols. This is called via elf_link_hash_traverse. */
3164
3165 static bfd_boolean
3166 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3167 {
3168 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3169
3170 if (h->dynindx != -1)
3171 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3172 return TRUE;
3173 }
3174
3175 /* Assign string offsets in .dynstr, update all structures referencing
3176 them. */
3177
3178 static bfd_boolean
3179 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3180 {
3181 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3182 struct elf_link_local_dynamic_entry *entry;
3183 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3184 bfd *dynobj = hash_table->dynobj;
3185 asection *sdyn;
3186 bfd_size_type size;
3187 const struct elf_backend_data *bed;
3188 bfd_byte *extdyn;
3189
3190 _bfd_elf_strtab_finalize (dynstr);
3191 size = _bfd_elf_strtab_size (dynstr);
3192
3193 bed = get_elf_backend_data (dynobj);
3194 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3195 BFD_ASSERT (sdyn != NULL);
3196
3197 /* Update all .dynamic entries referencing .dynstr strings. */
3198 for (extdyn = sdyn->contents;
3199 extdyn < sdyn->contents + sdyn->size;
3200 extdyn += bed->s->sizeof_dyn)
3201 {
3202 Elf_Internal_Dyn dyn;
3203
3204 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3205 switch (dyn.d_tag)
3206 {
3207 case DT_STRSZ:
3208 dyn.d_un.d_val = size;
3209 break;
3210 case DT_NEEDED:
3211 case DT_SONAME:
3212 case DT_RPATH:
3213 case DT_RUNPATH:
3214 case DT_FILTER:
3215 case DT_AUXILIARY:
3216 case DT_AUDIT:
3217 case DT_DEPAUDIT:
3218 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3219 break;
3220 default:
3221 continue;
3222 }
3223 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3224 }
3225
3226 /* Now update local dynamic symbols. */
3227 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3228 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3229 entry->isym.st_name);
3230
3231 /* And the rest of dynamic symbols. */
3232 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3233
3234 /* Adjust version definitions. */
3235 if (elf_tdata (output_bfd)->cverdefs)
3236 {
3237 asection *s;
3238 bfd_byte *p;
3239 bfd_size_type i;
3240 Elf_Internal_Verdef def;
3241 Elf_Internal_Verdaux defaux;
3242
3243 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3244 p = s->contents;
3245 do
3246 {
3247 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3248 &def);
3249 p += sizeof (Elf_External_Verdef);
3250 if (def.vd_aux != sizeof (Elf_External_Verdef))
3251 continue;
3252 for (i = 0; i < def.vd_cnt; ++i)
3253 {
3254 _bfd_elf_swap_verdaux_in (output_bfd,
3255 (Elf_External_Verdaux *) p, &defaux);
3256 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3257 defaux.vda_name);
3258 _bfd_elf_swap_verdaux_out (output_bfd,
3259 &defaux, (Elf_External_Verdaux *) p);
3260 p += sizeof (Elf_External_Verdaux);
3261 }
3262 }
3263 while (def.vd_next);
3264 }
3265
3266 /* Adjust version references. */
3267 if (elf_tdata (output_bfd)->verref)
3268 {
3269 asection *s;
3270 bfd_byte *p;
3271 bfd_size_type i;
3272 Elf_Internal_Verneed need;
3273 Elf_Internal_Vernaux needaux;
3274
3275 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3276 p = s->contents;
3277 do
3278 {
3279 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3280 &need);
3281 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3282 _bfd_elf_swap_verneed_out (output_bfd, &need,
3283 (Elf_External_Verneed *) p);
3284 p += sizeof (Elf_External_Verneed);
3285 for (i = 0; i < need.vn_cnt; ++i)
3286 {
3287 _bfd_elf_swap_vernaux_in (output_bfd,
3288 (Elf_External_Vernaux *) p, &needaux);
3289 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3290 needaux.vna_name);
3291 _bfd_elf_swap_vernaux_out (output_bfd,
3292 &needaux,
3293 (Elf_External_Vernaux *) p);
3294 p += sizeof (Elf_External_Vernaux);
3295 }
3296 }
3297 while (need.vn_next);
3298 }
3299
3300 return TRUE;
3301 }
3302 \f
3303 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3304 The default is to only match when the INPUT and OUTPUT are exactly
3305 the same target. */
3306
3307 bfd_boolean
3308 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3309 const bfd_target *output)
3310 {
3311 return input == output;
3312 }
3313
3314 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3315 This version is used when different targets for the same architecture
3316 are virtually identical. */
3317
3318 bfd_boolean
3319 _bfd_elf_relocs_compatible (const bfd_target *input,
3320 const bfd_target *output)
3321 {
3322 const struct elf_backend_data *obed, *ibed;
3323
3324 if (input == output)
3325 return TRUE;
3326
3327 ibed = xvec_get_elf_backend_data (input);
3328 obed = xvec_get_elf_backend_data (output);
3329
3330 if (ibed->arch != obed->arch)
3331 return FALSE;
3332
3333 /* If both backends are using this function, deem them compatible. */
3334 return ibed->relocs_compatible == obed->relocs_compatible;
3335 }
3336
3337 /* Add symbols from an ELF object file to the linker hash table. */
3338
3339 static bfd_boolean
3340 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3341 {
3342 Elf_Internal_Ehdr *ehdr;
3343 Elf_Internal_Shdr *hdr;
3344 bfd_size_type symcount;
3345 bfd_size_type extsymcount;
3346 bfd_size_type extsymoff;
3347 struct elf_link_hash_entry **sym_hash;
3348 bfd_boolean dynamic;
3349 Elf_External_Versym *extversym = NULL;
3350 Elf_External_Versym *ever;
3351 struct elf_link_hash_entry *weaks;
3352 struct elf_link_hash_entry **nondeflt_vers = NULL;
3353 bfd_size_type nondeflt_vers_cnt = 0;
3354 Elf_Internal_Sym *isymbuf = NULL;
3355 Elf_Internal_Sym *isym;
3356 Elf_Internal_Sym *isymend;
3357 const struct elf_backend_data *bed;
3358 bfd_boolean add_needed;
3359 struct elf_link_hash_table *htab;
3360 bfd_size_type amt;
3361 void *alloc_mark = NULL;
3362 struct bfd_hash_entry **old_table = NULL;
3363 unsigned int old_size = 0;
3364 unsigned int old_count = 0;
3365 void *old_tab = NULL;
3366 void *old_hash;
3367 void *old_ent;
3368 struct bfd_link_hash_entry *old_undefs = NULL;
3369 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3370 long old_dynsymcount = 0;
3371 bfd_size_type old_dynstr_size = 0;
3372 size_t tabsize = 0;
3373 size_t hashsize = 0;
3374
3375 htab = elf_hash_table (info);
3376 bed = get_elf_backend_data (abfd);
3377
3378 if ((abfd->flags & DYNAMIC) == 0)
3379 dynamic = FALSE;
3380 else
3381 {
3382 dynamic = TRUE;
3383
3384 /* You can't use -r against a dynamic object. Also, there's no
3385 hope of using a dynamic object which does not exactly match
3386 the format of the output file. */
3387 if (info->relocatable
3388 || !is_elf_hash_table (htab)
3389 || info->output_bfd->xvec != abfd->xvec)
3390 {
3391 if (info->relocatable)
3392 bfd_set_error (bfd_error_invalid_operation);
3393 else
3394 bfd_set_error (bfd_error_wrong_format);
3395 goto error_return;
3396 }
3397 }
3398
3399 ehdr = elf_elfheader (abfd);
3400 if (info->warn_alternate_em
3401 && bed->elf_machine_code != ehdr->e_machine
3402 && ((bed->elf_machine_alt1 != 0
3403 && ehdr->e_machine == bed->elf_machine_alt1)
3404 || (bed->elf_machine_alt2 != 0
3405 && ehdr->e_machine == bed->elf_machine_alt2)))
3406 info->callbacks->einfo
3407 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3408 ehdr->e_machine, abfd, bed->elf_machine_code);
3409
3410 /* As a GNU extension, any input sections which are named
3411 .gnu.warning.SYMBOL are treated as warning symbols for the given
3412 symbol. This differs from .gnu.warning sections, which generate
3413 warnings when they are included in an output file. */
3414 /* PR 12761: Also generate this warning when building shared libraries. */
3415 if (info->executable || info->shared)
3416 {
3417 asection *s;
3418
3419 for (s = abfd->sections; s != NULL; s = s->next)
3420 {
3421 const char *name;
3422
3423 name = bfd_get_section_name (abfd, s);
3424 if (CONST_STRNEQ (name, ".gnu.warning."))
3425 {
3426 char *msg;
3427 bfd_size_type sz;
3428
3429 name += sizeof ".gnu.warning." - 1;
3430
3431 /* If this is a shared object, then look up the symbol
3432 in the hash table. If it is there, and it is already
3433 been defined, then we will not be using the entry
3434 from this shared object, so we don't need to warn.
3435 FIXME: If we see the definition in a regular object
3436 later on, we will warn, but we shouldn't. The only
3437 fix is to keep track of what warnings we are supposed
3438 to emit, and then handle them all at the end of the
3439 link. */
3440 if (dynamic)
3441 {
3442 struct elf_link_hash_entry *h;
3443
3444 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3445
3446 /* FIXME: What about bfd_link_hash_common? */
3447 if (h != NULL
3448 && (h->root.type == bfd_link_hash_defined
3449 || h->root.type == bfd_link_hash_defweak))
3450 {
3451 /* We don't want to issue this warning. Clobber
3452 the section size so that the warning does not
3453 get copied into the output file. */
3454 s->size = 0;
3455 continue;
3456 }
3457 }
3458
3459 sz = s->size;
3460 msg = (char *) bfd_alloc (abfd, sz + 1);
3461 if (msg == NULL)
3462 goto error_return;
3463
3464 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3465 goto error_return;
3466
3467 msg[sz] = '\0';
3468
3469 if (! (_bfd_generic_link_add_one_symbol
3470 (info, abfd, name, BSF_WARNING, s, 0, msg,
3471 FALSE, bed->collect, NULL)))
3472 goto error_return;
3473
3474 if (! info->relocatable)
3475 {
3476 /* Clobber the section size so that the warning does
3477 not get copied into the output file. */
3478 s->size = 0;
3479
3480 /* Also set SEC_EXCLUDE, so that symbols defined in
3481 the warning section don't get copied to the output. */
3482 s->flags |= SEC_EXCLUDE;
3483 }
3484 }
3485 }
3486 }
3487
3488 add_needed = TRUE;
3489 if (! dynamic)
3490 {
3491 /* If we are creating a shared library, create all the dynamic
3492 sections immediately. We need to attach them to something,
3493 so we attach them to this BFD, provided it is the right
3494 format. FIXME: If there are no input BFD's of the same
3495 format as the output, we can't make a shared library. */
3496 if (info->shared
3497 && is_elf_hash_table (htab)
3498 && info->output_bfd->xvec == abfd->xvec
3499 && !htab->dynamic_sections_created)
3500 {
3501 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3502 goto error_return;
3503 }
3504 }
3505 else if (!is_elf_hash_table (htab))
3506 goto error_return;
3507 else
3508 {
3509 asection *s;
3510 const char *soname = NULL;
3511 char *audit = NULL;
3512 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3513 int ret;
3514
3515 /* ld --just-symbols and dynamic objects don't mix very well.
3516 ld shouldn't allow it. */
3517 if ((s = abfd->sections) != NULL
3518 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3519 abort ();
3520
3521 /* If this dynamic lib was specified on the command line with
3522 --as-needed in effect, then we don't want to add a DT_NEEDED
3523 tag unless the lib is actually used. Similary for libs brought
3524 in by another lib's DT_NEEDED. When --no-add-needed is used
3525 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3526 any dynamic library in DT_NEEDED tags in the dynamic lib at
3527 all. */
3528 add_needed = (elf_dyn_lib_class (abfd)
3529 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3530 | DYN_NO_NEEDED)) == 0;
3531
3532 s = bfd_get_section_by_name (abfd, ".dynamic");
3533 if (s != NULL)
3534 {
3535 bfd_byte *dynbuf;
3536 bfd_byte *extdyn;
3537 unsigned int elfsec;
3538 unsigned long shlink;
3539
3540 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3541 {
3542 error_free_dyn:
3543 free (dynbuf);
3544 goto error_return;
3545 }
3546
3547 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3548 if (elfsec == SHN_BAD)
3549 goto error_free_dyn;
3550 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3551
3552 for (extdyn = dynbuf;
3553 extdyn < dynbuf + s->size;
3554 extdyn += bed->s->sizeof_dyn)
3555 {
3556 Elf_Internal_Dyn dyn;
3557
3558 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3559 if (dyn.d_tag == DT_SONAME)
3560 {
3561 unsigned int tagv = dyn.d_un.d_val;
3562 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3563 if (soname == NULL)
3564 goto error_free_dyn;
3565 }
3566 if (dyn.d_tag == DT_NEEDED)
3567 {
3568 struct bfd_link_needed_list *n, **pn;
3569 char *fnm, *anm;
3570 unsigned int tagv = dyn.d_un.d_val;
3571
3572 amt = sizeof (struct bfd_link_needed_list);
3573 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3574 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3575 if (n == NULL || fnm == NULL)
3576 goto error_free_dyn;
3577 amt = strlen (fnm) + 1;
3578 anm = (char *) bfd_alloc (abfd, amt);
3579 if (anm == NULL)
3580 goto error_free_dyn;
3581 memcpy (anm, fnm, amt);
3582 n->name = anm;
3583 n->by = abfd;
3584 n->next = NULL;
3585 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3586 ;
3587 *pn = n;
3588 }
3589 if (dyn.d_tag == DT_RUNPATH)
3590 {
3591 struct bfd_link_needed_list *n, **pn;
3592 char *fnm, *anm;
3593 unsigned int tagv = dyn.d_un.d_val;
3594
3595 amt = sizeof (struct bfd_link_needed_list);
3596 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3597 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3598 if (n == NULL || fnm == NULL)
3599 goto error_free_dyn;
3600 amt = strlen (fnm) + 1;
3601 anm = (char *) bfd_alloc (abfd, amt);
3602 if (anm == NULL)
3603 goto error_free_dyn;
3604 memcpy (anm, fnm, amt);
3605 n->name = anm;
3606 n->by = abfd;
3607 n->next = NULL;
3608 for (pn = & runpath;
3609 *pn != NULL;
3610 pn = &(*pn)->next)
3611 ;
3612 *pn = n;
3613 }
3614 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3615 if (!runpath && dyn.d_tag == DT_RPATH)
3616 {
3617 struct bfd_link_needed_list *n, **pn;
3618 char *fnm, *anm;
3619 unsigned int tagv = dyn.d_un.d_val;
3620
3621 amt = sizeof (struct bfd_link_needed_list);
3622 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3623 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3624 if (n == NULL || fnm == NULL)
3625 goto error_free_dyn;
3626 amt = strlen (fnm) + 1;
3627 anm = (char *) bfd_alloc (abfd, amt);
3628 if (anm == NULL)
3629 goto error_free_dyn;
3630 memcpy (anm, fnm, amt);
3631 n->name = anm;
3632 n->by = abfd;
3633 n->next = NULL;
3634 for (pn = & rpath;
3635 *pn != NULL;
3636 pn = &(*pn)->next)
3637 ;
3638 *pn = n;
3639 }
3640 if (dyn.d_tag == DT_AUDIT)
3641 {
3642 unsigned int tagv = dyn.d_un.d_val;
3643 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3644 }
3645 }
3646
3647 free (dynbuf);
3648 }
3649
3650 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3651 frees all more recently bfd_alloc'd blocks as well. */
3652 if (runpath)
3653 rpath = runpath;
3654
3655 if (rpath)
3656 {
3657 struct bfd_link_needed_list **pn;
3658 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3659 ;
3660 *pn = rpath;
3661 }
3662
3663 /* We do not want to include any of the sections in a dynamic
3664 object in the output file. We hack by simply clobbering the
3665 list of sections in the BFD. This could be handled more
3666 cleanly by, say, a new section flag; the existing
3667 SEC_NEVER_LOAD flag is not the one we want, because that one
3668 still implies that the section takes up space in the output
3669 file. */
3670 bfd_section_list_clear (abfd);
3671
3672 /* Find the name to use in a DT_NEEDED entry that refers to this
3673 object. If the object has a DT_SONAME entry, we use it.
3674 Otherwise, if the generic linker stuck something in
3675 elf_dt_name, we use that. Otherwise, we just use the file
3676 name. */
3677 if (soname == NULL || *soname == '\0')
3678 {
3679 soname = elf_dt_name (abfd);
3680 if (soname == NULL || *soname == '\0')
3681 soname = bfd_get_filename (abfd);
3682 }
3683
3684 /* Save the SONAME because sometimes the linker emulation code
3685 will need to know it. */
3686 elf_dt_name (abfd) = soname;
3687
3688 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3689 if (ret < 0)
3690 goto error_return;
3691
3692 /* If we have already included this dynamic object in the
3693 link, just ignore it. There is no reason to include a
3694 particular dynamic object more than once. */
3695 if (ret > 0)
3696 return TRUE;
3697
3698 /* Save the DT_AUDIT entry for the linker emulation code. */
3699 elf_dt_audit (abfd) = audit;
3700 }
3701
3702 /* If this is a dynamic object, we always link against the .dynsym
3703 symbol table, not the .symtab symbol table. The dynamic linker
3704 will only see the .dynsym symbol table, so there is no reason to
3705 look at .symtab for a dynamic object. */
3706
3707 if (! dynamic || elf_dynsymtab (abfd) == 0)
3708 hdr = &elf_tdata (abfd)->symtab_hdr;
3709 else
3710 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3711
3712 symcount = hdr->sh_size / bed->s->sizeof_sym;
3713
3714 /* The sh_info field of the symtab header tells us where the
3715 external symbols start. We don't care about the local symbols at
3716 this point. */
3717 if (elf_bad_symtab (abfd))
3718 {
3719 extsymcount = symcount;
3720 extsymoff = 0;
3721 }
3722 else
3723 {
3724 extsymcount = symcount - hdr->sh_info;
3725 extsymoff = hdr->sh_info;
3726 }
3727
3728 sym_hash = NULL;
3729 if (extsymcount != 0)
3730 {
3731 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3732 NULL, NULL, NULL);
3733 if (isymbuf == NULL)
3734 goto error_return;
3735
3736 /* We store a pointer to the hash table entry for each external
3737 symbol. */
3738 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3739 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3740 if (sym_hash == NULL)
3741 goto error_free_sym;
3742 elf_sym_hashes (abfd) = sym_hash;
3743 }
3744
3745 if (dynamic)
3746 {
3747 /* Read in any version definitions. */
3748 if (!_bfd_elf_slurp_version_tables (abfd,
3749 info->default_imported_symver))
3750 goto error_free_sym;
3751
3752 /* Read in the symbol versions, but don't bother to convert them
3753 to internal format. */
3754 if (elf_dynversym (abfd) != 0)
3755 {
3756 Elf_Internal_Shdr *versymhdr;
3757
3758 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3759 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3760 if (extversym == NULL)
3761 goto error_free_sym;
3762 amt = versymhdr->sh_size;
3763 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3764 || bfd_bread (extversym, amt, abfd) != amt)
3765 goto error_free_vers;
3766 }
3767 }
3768
3769 /* If we are loading an as-needed shared lib, save the symbol table
3770 state before we start adding symbols. If the lib turns out
3771 to be unneeded, restore the state. */
3772 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3773 {
3774 unsigned int i;
3775 size_t entsize;
3776
3777 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3778 {
3779 struct bfd_hash_entry *p;
3780 struct elf_link_hash_entry *h;
3781
3782 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3783 {
3784 h = (struct elf_link_hash_entry *) p;
3785 entsize += htab->root.table.entsize;
3786 if (h->root.type == bfd_link_hash_warning)
3787 entsize += htab->root.table.entsize;
3788 }
3789 }
3790
3791 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3792 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3793 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3794 if (old_tab == NULL)
3795 goto error_free_vers;
3796
3797 /* Remember the current objalloc pointer, so that all mem for
3798 symbols added can later be reclaimed. */
3799 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3800 if (alloc_mark == NULL)
3801 goto error_free_vers;
3802
3803 /* Make a special call to the linker "notice" function to
3804 tell it that we are about to handle an as-needed lib. */
3805 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3806 notice_as_needed, 0, NULL))
3807 goto error_free_vers;
3808
3809 /* Clone the symbol table and sym hashes. Remember some
3810 pointers into the symbol table, and dynamic symbol count. */
3811 old_hash = (char *) old_tab + tabsize;
3812 old_ent = (char *) old_hash + hashsize;
3813 memcpy (old_tab, htab->root.table.table, tabsize);
3814 memcpy (old_hash, sym_hash, hashsize);
3815 old_undefs = htab->root.undefs;
3816 old_undefs_tail = htab->root.undefs_tail;
3817 old_table = htab->root.table.table;
3818 old_size = htab->root.table.size;
3819 old_count = htab->root.table.count;
3820 old_dynsymcount = htab->dynsymcount;
3821 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3822
3823 for (i = 0; i < htab->root.table.size; i++)
3824 {
3825 struct bfd_hash_entry *p;
3826 struct elf_link_hash_entry *h;
3827
3828 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3829 {
3830 memcpy (old_ent, p, htab->root.table.entsize);
3831 old_ent = (char *) old_ent + htab->root.table.entsize;
3832 h = (struct elf_link_hash_entry *) p;
3833 if (h->root.type == bfd_link_hash_warning)
3834 {
3835 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3836 old_ent = (char *) old_ent + htab->root.table.entsize;
3837 }
3838 }
3839 }
3840 }
3841
3842 weaks = NULL;
3843 ever = extversym != NULL ? extversym + extsymoff : NULL;
3844 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3845 isym < isymend;
3846 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3847 {
3848 int bind;
3849 bfd_vma value;
3850 asection *sec, *new_sec;
3851 flagword flags;
3852 const char *name;
3853 struct elf_link_hash_entry *h;
3854 struct elf_link_hash_entry *hi;
3855 bfd_boolean definition;
3856 bfd_boolean size_change_ok;
3857 bfd_boolean type_change_ok;
3858 bfd_boolean new_weakdef;
3859 bfd_boolean new_weak;
3860 bfd_boolean old_weak;
3861 bfd_boolean override;
3862 bfd_boolean common;
3863 unsigned int old_alignment;
3864 bfd *old_bfd;
3865 bfd * undef_bfd = NULL;
3866
3867 override = FALSE;
3868
3869 flags = BSF_NO_FLAGS;
3870 sec = NULL;
3871 value = isym->st_value;
3872 *sym_hash = NULL;
3873 common = bed->common_definition (isym);
3874
3875 bind = ELF_ST_BIND (isym->st_info);
3876 switch (bind)
3877 {
3878 case STB_LOCAL:
3879 /* This should be impossible, since ELF requires that all
3880 global symbols follow all local symbols, and that sh_info
3881 point to the first global symbol. Unfortunately, Irix 5
3882 screws this up. */
3883 continue;
3884
3885 case STB_GLOBAL:
3886 if (isym->st_shndx != SHN_UNDEF && !common)
3887 flags = BSF_GLOBAL;
3888 break;
3889
3890 case STB_WEAK:
3891 flags = BSF_WEAK;
3892 break;
3893
3894 case STB_GNU_UNIQUE:
3895 flags = BSF_GNU_UNIQUE;
3896 break;
3897
3898 default:
3899 /* Leave it up to the processor backend. */
3900 break;
3901 }
3902
3903 if (isym->st_shndx == SHN_UNDEF)
3904 sec = bfd_und_section_ptr;
3905 else if (isym->st_shndx == SHN_ABS)
3906 sec = bfd_abs_section_ptr;
3907 else if (isym->st_shndx == SHN_COMMON)
3908 {
3909 sec = bfd_com_section_ptr;
3910 /* What ELF calls the size we call the value. What ELF
3911 calls the value we call the alignment. */
3912 value = isym->st_size;
3913 }
3914 else
3915 {
3916 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3917 if (sec == NULL)
3918 sec = bfd_abs_section_ptr;
3919 else if (discarded_section (sec))
3920 {
3921 /* Symbols from discarded section are undefined. We keep
3922 its visibility. */
3923 sec = bfd_und_section_ptr;
3924 isym->st_shndx = SHN_UNDEF;
3925 }
3926 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3927 value -= sec->vma;
3928 }
3929
3930 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3931 isym->st_name);
3932 if (name == NULL)
3933 goto error_free_vers;
3934
3935 if (isym->st_shndx == SHN_COMMON
3936 && (abfd->flags & BFD_PLUGIN) != 0)
3937 {
3938 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3939
3940 if (xc == NULL)
3941 {
3942 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3943 | SEC_EXCLUDE);
3944 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3945 if (xc == NULL)
3946 goto error_free_vers;
3947 }
3948 sec = xc;
3949 }
3950 else if (isym->st_shndx == SHN_COMMON
3951 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3952 && !info->relocatable)
3953 {
3954 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3955
3956 if (tcomm == NULL)
3957 {
3958 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3959 | SEC_LINKER_CREATED);
3960 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3961 if (tcomm == NULL)
3962 goto error_free_vers;
3963 }
3964 sec = tcomm;
3965 }
3966 else if (bed->elf_add_symbol_hook)
3967 {
3968 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3969 &sec, &value))
3970 goto error_free_vers;
3971
3972 /* The hook function sets the name to NULL if this symbol
3973 should be skipped for some reason. */
3974 if (name == NULL)
3975 continue;
3976 }
3977
3978 /* Sanity check that all possibilities were handled. */
3979 if (sec == NULL)
3980 {
3981 bfd_set_error (bfd_error_bad_value);
3982 goto error_free_vers;
3983 }
3984
3985 if (bfd_is_und_section (sec)
3986 || bfd_is_com_section (sec))
3987 definition = FALSE;
3988 else
3989 definition = TRUE;
3990
3991 size_change_ok = FALSE;
3992 type_change_ok = bed->type_change_ok;
3993 old_weak = FALSE;
3994 old_alignment = 0;
3995 old_bfd = NULL;
3996 new_sec = sec;
3997
3998 if (is_elf_hash_table (htab))
3999 {
4000 Elf_Internal_Versym iver;
4001 unsigned int vernum = 0;
4002 bfd_boolean skip;
4003
4004 /* If this is a definition of a symbol which was previously
4005 referenced in a non-weak manner then make a note of the bfd
4006 that contained the reference. This is used if we need to
4007 refer to the source of the reference later on. */
4008 if (! bfd_is_und_section (sec))
4009 {
4010 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4011
4012 if (h != NULL
4013 && h->root.type == bfd_link_hash_undefined
4014 && h->root.u.undef.abfd)
4015 undef_bfd = h->root.u.undef.abfd;
4016 }
4017
4018 if (ever == NULL)
4019 {
4020 if (info->default_imported_symver)
4021 /* Use the default symbol version created earlier. */
4022 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4023 else
4024 iver.vs_vers = 0;
4025 }
4026 else
4027 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4028
4029 vernum = iver.vs_vers & VERSYM_VERSION;
4030
4031 /* If this is a hidden symbol, or if it is not version
4032 1, we append the version name to the symbol name.
4033 However, we do not modify a non-hidden absolute symbol
4034 if it is not a function, because it might be the version
4035 symbol itself. FIXME: What if it isn't? */
4036 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4037 || (vernum > 1
4038 && (!bfd_is_abs_section (sec)
4039 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4040 {
4041 const char *verstr;
4042 size_t namelen, verlen, newlen;
4043 char *newname, *p;
4044
4045 if (isym->st_shndx != SHN_UNDEF)
4046 {
4047 if (vernum > elf_tdata (abfd)->cverdefs)
4048 verstr = NULL;
4049 else if (vernum > 1)
4050 verstr =
4051 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4052 else
4053 verstr = "";
4054
4055 if (verstr == NULL)
4056 {
4057 (*_bfd_error_handler)
4058 (_("%B: %s: invalid version %u (max %d)"),
4059 abfd, name, vernum,
4060 elf_tdata (abfd)->cverdefs);
4061 bfd_set_error (bfd_error_bad_value);
4062 goto error_free_vers;
4063 }
4064 }
4065 else
4066 {
4067 /* We cannot simply test for the number of
4068 entries in the VERNEED section since the
4069 numbers for the needed versions do not start
4070 at 0. */
4071 Elf_Internal_Verneed *t;
4072
4073 verstr = NULL;
4074 for (t = elf_tdata (abfd)->verref;
4075 t != NULL;
4076 t = t->vn_nextref)
4077 {
4078 Elf_Internal_Vernaux *a;
4079
4080 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4081 {
4082 if (a->vna_other == vernum)
4083 {
4084 verstr = a->vna_nodename;
4085 break;
4086 }
4087 }
4088 if (a != NULL)
4089 break;
4090 }
4091 if (verstr == NULL)
4092 {
4093 (*_bfd_error_handler)
4094 (_("%B: %s: invalid needed version %d"),
4095 abfd, name, vernum);
4096 bfd_set_error (bfd_error_bad_value);
4097 goto error_free_vers;
4098 }
4099 }
4100
4101 namelen = strlen (name);
4102 verlen = strlen (verstr);
4103 newlen = namelen + verlen + 2;
4104 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4105 && isym->st_shndx != SHN_UNDEF)
4106 ++newlen;
4107
4108 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4109 if (newname == NULL)
4110 goto error_free_vers;
4111 memcpy (newname, name, namelen);
4112 p = newname + namelen;
4113 *p++ = ELF_VER_CHR;
4114 /* If this is a defined non-hidden version symbol,
4115 we add another @ to the name. This indicates the
4116 default version of the symbol. */
4117 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4118 && isym->st_shndx != SHN_UNDEF)
4119 *p++ = ELF_VER_CHR;
4120 memcpy (p, verstr, verlen + 1);
4121
4122 name = newname;
4123 }
4124
4125 /* If necessary, make a second attempt to locate the bfd
4126 containing an unresolved, non-weak reference to the
4127 current symbol. */
4128 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4129 {
4130 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4131
4132 if (h != NULL
4133 && h->root.type == bfd_link_hash_undefined
4134 && h->root.u.undef.abfd)
4135 undef_bfd = h->root.u.undef.abfd;
4136 }
4137
4138 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4139 &value, &old_weak, &old_alignment,
4140 sym_hash, &skip, &override,
4141 &type_change_ok, &size_change_ok))
4142 goto error_free_vers;
4143
4144 if (skip)
4145 continue;
4146
4147 if (override)
4148 definition = FALSE;
4149
4150 h = *sym_hash;
4151 while (h->root.type == bfd_link_hash_indirect
4152 || h->root.type == bfd_link_hash_warning)
4153 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4154
4155 /* Remember the old alignment if this is a common symbol, so
4156 that we don't reduce the alignment later on. We can't
4157 check later, because _bfd_generic_link_add_one_symbol
4158 will set a default for the alignment which we want to
4159 override. We also remember the old bfd where the existing
4160 definition comes from. */
4161 switch (h->root.type)
4162 {
4163 default:
4164 break;
4165
4166 case bfd_link_hash_defined:
4167 case bfd_link_hash_defweak:
4168 old_bfd = h->root.u.def.section->owner;
4169 break;
4170
4171 case bfd_link_hash_common:
4172 old_bfd = h->root.u.c.p->section->owner;
4173 old_alignment = h->root.u.c.p->alignment_power;
4174 break;
4175 }
4176
4177 if (elf_tdata (abfd)->verdef != NULL
4178 && vernum > 1
4179 && definition)
4180 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4181 }
4182
4183 if (! (_bfd_generic_link_add_one_symbol
4184 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4185 (struct bfd_link_hash_entry **) sym_hash)))
4186 goto error_free_vers;
4187
4188 h = *sym_hash;
4189 /* We need to make sure that indirect symbol dynamic flags are
4190 updated. */
4191 hi = h;
4192 while (h->root.type == bfd_link_hash_indirect
4193 || h->root.type == bfd_link_hash_warning)
4194 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4195
4196 *sym_hash = h;
4197 if (is_elf_hash_table (htab))
4198 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4199
4200 new_weak = (flags & BSF_WEAK) != 0;
4201 new_weakdef = FALSE;
4202 if (dynamic
4203 && definition
4204 && new_weak
4205 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4206 && is_elf_hash_table (htab)
4207 && h->u.weakdef == NULL)
4208 {
4209 /* Keep a list of all weak defined non function symbols from
4210 a dynamic object, using the weakdef field. Later in this
4211 function we will set the weakdef field to the correct
4212 value. We only put non-function symbols from dynamic
4213 objects on this list, because that happens to be the only
4214 time we need to know the normal symbol corresponding to a
4215 weak symbol, and the information is time consuming to
4216 figure out. If the weakdef field is not already NULL,
4217 then this symbol was already defined by some previous
4218 dynamic object, and we will be using that previous
4219 definition anyhow. */
4220
4221 h->u.weakdef = weaks;
4222 weaks = h;
4223 new_weakdef = TRUE;
4224 }
4225
4226 /* Set the alignment of a common symbol. */
4227 if ((common || bfd_is_com_section (sec))
4228 && h->root.type == bfd_link_hash_common)
4229 {
4230 unsigned int align;
4231
4232 if (common)
4233 align = bfd_log2 (isym->st_value);
4234 else
4235 {
4236 /* The new symbol is a common symbol in a shared object.
4237 We need to get the alignment from the section. */
4238 align = new_sec->alignment_power;
4239 }
4240 if (align > old_alignment)
4241 h->root.u.c.p->alignment_power = align;
4242 else
4243 h->root.u.c.p->alignment_power = old_alignment;
4244 }
4245
4246 if (is_elf_hash_table (htab))
4247 {
4248 bfd_boolean dynsym;
4249
4250 /* Check the alignment when a common symbol is involved. This
4251 can change when a common symbol is overridden by a normal
4252 definition or a common symbol is ignored due to the old
4253 normal definition. We need to make sure the maximum
4254 alignment is maintained. */
4255 if ((old_alignment || common)
4256 && h->root.type != bfd_link_hash_common)
4257 {
4258 unsigned int common_align;
4259 unsigned int normal_align;
4260 unsigned int symbol_align;
4261 bfd *normal_bfd;
4262 bfd *common_bfd;
4263
4264 symbol_align = ffs (h->root.u.def.value) - 1;
4265 if (h->root.u.def.section->owner != NULL
4266 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4267 {
4268 normal_align = h->root.u.def.section->alignment_power;
4269 if (normal_align > symbol_align)
4270 normal_align = symbol_align;
4271 }
4272 else
4273 normal_align = symbol_align;
4274
4275 if (old_alignment)
4276 {
4277 common_align = old_alignment;
4278 common_bfd = old_bfd;
4279 normal_bfd = abfd;
4280 }
4281 else
4282 {
4283 common_align = bfd_log2 (isym->st_value);
4284 common_bfd = abfd;
4285 normal_bfd = old_bfd;
4286 }
4287
4288 if (normal_align < common_align)
4289 {
4290 /* PR binutils/2735 */
4291 if (normal_bfd == NULL)
4292 (*_bfd_error_handler)
4293 (_("Warning: alignment %u of common symbol `%s' in %B"
4294 " is greater than the alignment (%u) of its section %A"),
4295 common_bfd, h->root.u.def.section,
4296 1 << common_align, name, 1 << normal_align);
4297 else
4298 (*_bfd_error_handler)
4299 (_("Warning: alignment %u of symbol `%s' in %B"
4300 " is smaller than %u in %B"),
4301 normal_bfd, common_bfd,
4302 1 << normal_align, name, 1 << common_align);
4303 }
4304 }
4305
4306 /* Remember the symbol size if it isn't undefined. */
4307 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4308 && (definition || h->size == 0))
4309 {
4310 if (h->size != 0
4311 && h->size != isym->st_size
4312 && ! size_change_ok)
4313 (*_bfd_error_handler)
4314 (_("Warning: size of symbol `%s' changed"
4315 " from %lu in %B to %lu in %B"),
4316 old_bfd, abfd,
4317 name, (unsigned long) h->size,
4318 (unsigned long) isym->st_size);
4319
4320 h->size = isym->st_size;
4321 }
4322
4323 /* If this is a common symbol, then we always want H->SIZE
4324 to be the size of the common symbol. The code just above
4325 won't fix the size if a common symbol becomes larger. We
4326 don't warn about a size change here, because that is
4327 covered by --warn-common. Allow changed between different
4328 function types. */
4329 if (h->root.type == bfd_link_hash_common)
4330 h->size = h->root.u.c.size;
4331
4332 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4333 && ((definition && !new_weak)
4334 || (old_weak && h->root.type == bfd_link_hash_common)
4335 || h->type == STT_NOTYPE))
4336 {
4337 unsigned int type = ELF_ST_TYPE (isym->st_info);
4338
4339 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4340 symbol. */
4341 if (type == STT_GNU_IFUNC
4342 && (abfd->flags & DYNAMIC) != 0)
4343 type = STT_FUNC;
4344
4345 if (h->type != type)
4346 {
4347 if (h->type != STT_NOTYPE && ! type_change_ok)
4348 (*_bfd_error_handler)
4349 (_("Warning: type of symbol `%s' changed"
4350 " from %d to %d in %B"),
4351 abfd, name, h->type, type);
4352
4353 h->type = type;
4354 }
4355 }
4356
4357 /* Merge st_other field. */
4358 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4359
4360 /* Set a flag in the hash table entry indicating the type of
4361 reference or definition we just found. Keep a count of
4362 the number of dynamic symbols we find. A dynamic symbol
4363 is one which is referenced or defined by both a regular
4364 object and a shared object. */
4365 dynsym = FALSE;
4366 if (! dynamic)
4367 {
4368 if (! definition)
4369 {
4370 h->ref_regular = 1;
4371 if (bind != STB_WEAK)
4372 h->ref_regular_nonweak = 1;
4373 }
4374 else
4375 {
4376 h->def_regular = 1;
4377 if (h->def_dynamic)
4378 {
4379 h->def_dynamic = 0;
4380 h->ref_dynamic = 1;
4381 }
4382 }
4383
4384 /* If the indirect symbol has been forced local, don't
4385 make the real symbol dynamic. */
4386 if ((h == hi || !hi->forced_local)
4387 && (! info->executable
4388 || h->def_dynamic
4389 || h->ref_dynamic))
4390 dynsym = TRUE;
4391 }
4392 else
4393 {
4394 if (! definition)
4395 {
4396 h->ref_dynamic = 1;
4397 hi->ref_dynamic = 1;
4398 }
4399 else
4400 {
4401 h->def_dynamic = 1;
4402 hi->def_dynamic = 1;
4403 }
4404
4405 /* If the indirect symbol has been forced local, don't
4406 make the real symbol dynamic. */
4407 if ((h == hi || !hi->forced_local)
4408 && (h->def_regular
4409 || h->ref_regular
4410 || (h->u.weakdef != NULL
4411 && ! new_weakdef
4412 && h->u.weakdef->dynindx != -1)))
4413 dynsym = TRUE;
4414 }
4415
4416 /* We don't want to make debug symbol dynamic. */
4417 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4418 dynsym = FALSE;
4419
4420 /* Nor should we make plugin symbols dynamic. */
4421 if ((abfd->flags & BFD_PLUGIN) != 0)
4422 dynsym = FALSE;
4423
4424 if (definition)
4425 h->target_internal = isym->st_target_internal;
4426
4427 /* Check to see if we need to add an indirect symbol for
4428 the default name. */
4429 if (definition || h->root.type == bfd_link_hash_common)
4430 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4431 &sec, &value, &dynsym,
4432 override))
4433 goto error_free_vers;
4434
4435 if (definition && !dynamic)
4436 {
4437 char *p = strchr (name, ELF_VER_CHR);
4438 if (p != NULL && p[1] != ELF_VER_CHR)
4439 {
4440 /* Queue non-default versions so that .symver x, x@FOO
4441 aliases can be checked. */
4442 if (!nondeflt_vers)
4443 {
4444 amt = ((isymend - isym + 1)
4445 * sizeof (struct elf_link_hash_entry *));
4446 nondeflt_vers =
4447 (struct elf_link_hash_entry **) bfd_malloc (amt);
4448 if (!nondeflt_vers)
4449 goto error_free_vers;
4450 }
4451 nondeflt_vers[nondeflt_vers_cnt++] = h;
4452 }
4453 }
4454
4455 if (dynsym && h->dynindx == -1)
4456 {
4457 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4458 goto error_free_vers;
4459 if (h->u.weakdef != NULL
4460 && ! new_weakdef
4461 && h->u.weakdef->dynindx == -1)
4462 {
4463 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4464 goto error_free_vers;
4465 }
4466 }
4467 else if (dynsym && h->dynindx != -1)
4468 /* If the symbol already has a dynamic index, but
4469 visibility says it should not be visible, turn it into
4470 a local symbol. */
4471 switch (ELF_ST_VISIBILITY (h->other))
4472 {
4473 case STV_INTERNAL:
4474 case STV_HIDDEN:
4475 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4476 dynsym = FALSE;
4477 break;
4478 }
4479
4480 if (!add_needed
4481 && definition
4482 && ((dynsym
4483 && h->ref_regular)
4484 || (h->ref_dynamic
4485 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4486 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4487 {
4488 int ret;
4489 const char *soname = elf_dt_name (abfd);
4490
4491 /* A symbol from a library loaded via DT_NEEDED of some
4492 other library is referenced by a regular object.
4493 Add a DT_NEEDED entry for it. Issue an error if
4494 --no-add-needed is used and the reference was not
4495 a weak one. */
4496 if (undef_bfd != NULL
4497 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4498 {
4499 (*_bfd_error_handler)
4500 (_("%B: undefined reference to symbol '%s'"),
4501 undef_bfd, name);
4502 (*_bfd_error_handler)
4503 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4504 abfd, name);
4505 bfd_set_error (bfd_error_invalid_operation);
4506 goto error_free_vers;
4507 }
4508
4509 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4510 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4511
4512 add_needed = TRUE;
4513 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4514 if (ret < 0)
4515 goto error_free_vers;
4516
4517 BFD_ASSERT (ret == 0);
4518 }
4519 }
4520 }
4521
4522 if (extversym != NULL)
4523 {
4524 free (extversym);
4525 extversym = NULL;
4526 }
4527
4528 if (isymbuf != NULL)
4529 {
4530 free (isymbuf);
4531 isymbuf = NULL;
4532 }
4533
4534 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4535 {
4536 unsigned int i;
4537
4538 /* Restore the symbol table. */
4539 if (bed->as_needed_cleanup)
4540 (*bed->as_needed_cleanup) (abfd, info);
4541 old_hash = (char *) old_tab + tabsize;
4542 old_ent = (char *) old_hash + hashsize;
4543 sym_hash = elf_sym_hashes (abfd);
4544 htab->root.table.table = old_table;
4545 htab->root.table.size = old_size;
4546 htab->root.table.count = old_count;
4547 memcpy (htab->root.table.table, old_tab, tabsize);
4548 memcpy (sym_hash, old_hash, hashsize);
4549 htab->root.undefs = old_undefs;
4550 htab->root.undefs_tail = old_undefs_tail;
4551 _bfd_elf_strtab_clear_refs (htab->dynstr, old_dynstr_size);
4552 for (i = 0; i < htab->root.table.size; i++)
4553 {
4554 struct bfd_hash_entry *p;
4555 struct elf_link_hash_entry *h;
4556 bfd_size_type size;
4557 unsigned int alignment_power;
4558
4559 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4560 {
4561 h = (struct elf_link_hash_entry *) p;
4562 if (h->root.type == bfd_link_hash_warning)
4563 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4564 if (h->dynindx >= old_dynsymcount
4565 && h->dynstr_index < old_dynstr_size)
4566 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4567
4568 /* Preserve the maximum alignment and size for common
4569 symbols even if this dynamic lib isn't on DT_NEEDED
4570 since it can still be loaded at run time by another
4571 dynamic lib. */
4572 if (h->root.type == bfd_link_hash_common)
4573 {
4574 size = h->root.u.c.size;
4575 alignment_power = h->root.u.c.p->alignment_power;
4576 }
4577 else
4578 {
4579 size = 0;
4580 alignment_power = 0;
4581 }
4582 memcpy (p, old_ent, htab->root.table.entsize);
4583 old_ent = (char *) old_ent + htab->root.table.entsize;
4584 h = (struct elf_link_hash_entry *) p;
4585 if (h->root.type == bfd_link_hash_warning)
4586 {
4587 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4588 old_ent = (char *) old_ent + htab->root.table.entsize;
4589 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4590 }
4591 if (h->root.type == bfd_link_hash_common)
4592 {
4593 if (size > h->root.u.c.size)
4594 h->root.u.c.size = size;
4595 if (alignment_power > h->root.u.c.p->alignment_power)
4596 h->root.u.c.p->alignment_power = alignment_power;
4597 }
4598 }
4599 }
4600
4601 /* Make a special call to the linker "notice" function to
4602 tell it that symbols added for crefs may need to be removed. */
4603 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4604 notice_not_needed, 0, NULL))
4605 goto error_free_vers;
4606
4607 free (old_tab);
4608 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4609 alloc_mark);
4610 if (nondeflt_vers != NULL)
4611 free (nondeflt_vers);
4612 return TRUE;
4613 }
4614
4615 if (old_tab != NULL)
4616 {
4617 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4618 notice_needed, 0, NULL))
4619 goto error_free_vers;
4620 free (old_tab);
4621 old_tab = NULL;
4622 }
4623
4624 /* Now that all the symbols from this input file are created, handle
4625 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4626 if (nondeflt_vers != NULL)
4627 {
4628 bfd_size_type cnt, symidx;
4629
4630 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4631 {
4632 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4633 char *shortname, *p;
4634
4635 p = strchr (h->root.root.string, ELF_VER_CHR);
4636 if (p == NULL
4637 || (h->root.type != bfd_link_hash_defined
4638 && h->root.type != bfd_link_hash_defweak))
4639 continue;
4640
4641 amt = p - h->root.root.string;
4642 shortname = (char *) bfd_malloc (amt + 1);
4643 if (!shortname)
4644 goto error_free_vers;
4645 memcpy (shortname, h->root.root.string, amt);
4646 shortname[amt] = '\0';
4647
4648 hi = (struct elf_link_hash_entry *)
4649 bfd_link_hash_lookup (&htab->root, shortname,
4650 FALSE, FALSE, FALSE);
4651 if (hi != NULL
4652 && hi->root.type == h->root.type
4653 && hi->root.u.def.value == h->root.u.def.value
4654 && hi->root.u.def.section == h->root.u.def.section)
4655 {
4656 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4657 hi->root.type = bfd_link_hash_indirect;
4658 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4659 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4660 sym_hash = elf_sym_hashes (abfd);
4661 if (sym_hash)
4662 for (symidx = 0; symidx < extsymcount; ++symidx)
4663 if (sym_hash[symidx] == hi)
4664 {
4665 sym_hash[symidx] = h;
4666 break;
4667 }
4668 }
4669 free (shortname);
4670 }
4671 free (nondeflt_vers);
4672 nondeflt_vers = NULL;
4673 }
4674
4675 /* Now set the weakdefs field correctly for all the weak defined
4676 symbols we found. The only way to do this is to search all the
4677 symbols. Since we only need the information for non functions in
4678 dynamic objects, that's the only time we actually put anything on
4679 the list WEAKS. We need this information so that if a regular
4680 object refers to a symbol defined weakly in a dynamic object, the
4681 real symbol in the dynamic object is also put in the dynamic
4682 symbols; we also must arrange for both symbols to point to the
4683 same memory location. We could handle the general case of symbol
4684 aliasing, but a general symbol alias can only be generated in
4685 assembler code, handling it correctly would be very time
4686 consuming, and other ELF linkers don't handle general aliasing
4687 either. */
4688 if (weaks != NULL)
4689 {
4690 struct elf_link_hash_entry **hpp;
4691 struct elf_link_hash_entry **hppend;
4692 struct elf_link_hash_entry **sorted_sym_hash;
4693 struct elf_link_hash_entry *h;
4694 size_t sym_count;
4695
4696 /* Since we have to search the whole symbol list for each weak
4697 defined symbol, search time for N weak defined symbols will be
4698 O(N^2). Binary search will cut it down to O(NlogN). */
4699 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4700 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4701 if (sorted_sym_hash == NULL)
4702 goto error_return;
4703 sym_hash = sorted_sym_hash;
4704 hpp = elf_sym_hashes (abfd);
4705 hppend = hpp + extsymcount;
4706 sym_count = 0;
4707 for (; hpp < hppend; hpp++)
4708 {
4709 h = *hpp;
4710 if (h != NULL
4711 && h->root.type == bfd_link_hash_defined
4712 && !bed->is_function_type (h->type))
4713 {
4714 *sym_hash = h;
4715 sym_hash++;
4716 sym_count++;
4717 }
4718 }
4719
4720 qsort (sorted_sym_hash, sym_count,
4721 sizeof (struct elf_link_hash_entry *),
4722 elf_sort_symbol);
4723
4724 while (weaks != NULL)
4725 {
4726 struct elf_link_hash_entry *hlook;
4727 asection *slook;
4728 bfd_vma vlook;
4729 size_t i, j, idx;
4730
4731 hlook = weaks;
4732 weaks = hlook->u.weakdef;
4733 hlook->u.weakdef = NULL;
4734
4735 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4736 || hlook->root.type == bfd_link_hash_defweak
4737 || hlook->root.type == bfd_link_hash_common
4738 || hlook->root.type == bfd_link_hash_indirect);
4739 slook = hlook->root.u.def.section;
4740 vlook = hlook->root.u.def.value;
4741
4742 i = 0;
4743 j = sym_count;
4744 while (i != j)
4745 {
4746 bfd_signed_vma vdiff;
4747 idx = (i + j) / 2;
4748 h = sorted_sym_hash[idx];
4749 vdiff = vlook - h->root.u.def.value;
4750 if (vdiff < 0)
4751 j = idx;
4752 else if (vdiff > 0)
4753 i = idx + 1;
4754 else
4755 {
4756 long sdiff = slook->id - h->root.u.def.section->id;
4757 if (sdiff < 0)
4758 j = idx;
4759 else if (sdiff > 0)
4760 i = idx + 1;
4761 else
4762 break;
4763 }
4764 }
4765
4766 /* We didn't find a value/section match. */
4767 if (i == j)
4768 continue;
4769
4770 /* With multiple aliases, or when the weak symbol is already
4771 strongly defined, we have multiple matching symbols and
4772 the binary search above may land on any of them. Step
4773 one past the matching symbol(s). */
4774 while (++idx != j)
4775 {
4776 h = sorted_sym_hash[idx];
4777 if (h->root.u.def.section != slook
4778 || h->root.u.def.value != vlook)
4779 break;
4780 }
4781
4782 /* Now look back over the aliases. Since we sorted by size
4783 as well as value and section, we'll choose the one with
4784 the largest size. */
4785 while (idx-- != i)
4786 {
4787 h = sorted_sym_hash[idx];
4788
4789 /* Stop if value or section doesn't match. */
4790 if (h->root.u.def.section != slook
4791 || h->root.u.def.value != vlook)
4792 break;
4793 else if (h != hlook)
4794 {
4795 hlook->u.weakdef = h;
4796
4797 /* If the weak definition is in the list of dynamic
4798 symbols, make sure the real definition is put
4799 there as well. */
4800 if (hlook->dynindx != -1 && h->dynindx == -1)
4801 {
4802 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4803 {
4804 err_free_sym_hash:
4805 free (sorted_sym_hash);
4806 goto error_return;
4807 }
4808 }
4809
4810 /* If the real definition is in the list of dynamic
4811 symbols, make sure the weak definition is put
4812 there as well. If we don't do this, then the
4813 dynamic loader might not merge the entries for the
4814 real definition and the weak definition. */
4815 if (h->dynindx != -1 && hlook->dynindx == -1)
4816 {
4817 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4818 goto err_free_sym_hash;
4819 }
4820 break;
4821 }
4822 }
4823 }
4824
4825 free (sorted_sym_hash);
4826 }
4827
4828 if (bed->check_directives
4829 && !(*bed->check_directives) (abfd, info))
4830 return FALSE;
4831
4832 /* If this object is the same format as the output object, and it is
4833 not a shared library, then let the backend look through the
4834 relocs.
4835
4836 This is required to build global offset table entries and to
4837 arrange for dynamic relocs. It is not required for the
4838 particular common case of linking non PIC code, even when linking
4839 against shared libraries, but unfortunately there is no way of
4840 knowing whether an object file has been compiled PIC or not.
4841 Looking through the relocs is not particularly time consuming.
4842 The problem is that we must either (1) keep the relocs in memory,
4843 which causes the linker to require additional runtime memory or
4844 (2) read the relocs twice from the input file, which wastes time.
4845 This would be a good case for using mmap.
4846
4847 I have no idea how to handle linking PIC code into a file of a
4848 different format. It probably can't be done. */
4849 if (! dynamic
4850 && is_elf_hash_table (htab)
4851 && bed->check_relocs != NULL
4852 && elf_object_id (abfd) == elf_hash_table_id (htab)
4853 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4854 {
4855 asection *o;
4856
4857 for (o = abfd->sections; o != NULL; o = o->next)
4858 {
4859 Elf_Internal_Rela *internal_relocs;
4860 bfd_boolean ok;
4861
4862 if ((o->flags & SEC_RELOC) == 0
4863 || o->reloc_count == 0
4864 || ((info->strip == strip_all || info->strip == strip_debugger)
4865 && (o->flags & SEC_DEBUGGING) != 0)
4866 || bfd_is_abs_section (o->output_section))
4867 continue;
4868
4869 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4870 info->keep_memory);
4871 if (internal_relocs == NULL)
4872 goto error_return;
4873
4874 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4875
4876 if (elf_section_data (o)->relocs != internal_relocs)
4877 free (internal_relocs);
4878
4879 if (! ok)
4880 goto error_return;
4881 }
4882 }
4883
4884 /* If this is a non-traditional link, try to optimize the handling
4885 of the .stab/.stabstr sections. */
4886 if (! dynamic
4887 && ! info->traditional_format
4888 && is_elf_hash_table (htab)
4889 && (info->strip != strip_all && info->strip != strip_debugger))
4890 {
4891 asection *stabstr;
4892
4893 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4894 if (stabstr != NULL)
4895 {
4896 bfd_size_type string_offset = 0;
4897 asection *stab;
4898
4899 for (stab = abfd->sections; stab; stab = stab->next)
4900 if (CONST_STRNEQ (stab->name, ".stab")
4901 && (!stab->name[5] ||
4902 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4903 && (stab->flags & SEC_MERGE) == 0
4904 && !bfd_is_abs_section (stab->output_section))
4905 {
4906 struct bfd_elf_section_data *secdata;
4907
4908 secdata = elf_section_data (stab);
4909 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4910 stabstr, &secdata->sec_info,
4911 &string_offset))
4912 goto error_return;
4913 if (secdata->sec_info)
4914 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4915 }
4916 }
4917 }
4918
4919 if (is_elf_hash_table (htab) && add_needed)
4920 {
4921 /* Add this bfd to the loaded list. */
4922 struct elf_link_loaded_list *n;
4923
4924 n = (struct elf_link_loaded_list *)
4925 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4926 if (n == NULL)
4927 goto error_return;
4928 n->abfd = abfd;
4929 n->next = htab->loaded;
4930 htab->loaded = n;
4931 }
4932
4933 return TRUE;
4934
4935 error_free_vers:
4936 if (old_tab != NULL)
4937 free (old_tab);
4938 if (nondeflt_vers != NULL)
4939 free (nondeflt_vers);
4940 if (extversym != NULL)
4941 free (extversym);
4942 error_free_sym:
4943 if (isymbuf != NULL)
4944 free (isymbuf);
4945 error_return:
4946 return FALSE;
4947 }
4948
4949 /* Return the linker hash table entry of a symbol that might be
4950 satisfied by an archive symbol. Return -1 on error. */
4951
4952 struct elf_link_hash_entry *
4953 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4954 struct bfd_link_info *info,
4955 const char *name)
4956 {
4957 struct elf_link_hash_entry *h;
4958 char *p, *copy;
4959 size_t len, first;
4960
4961 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4962 if (h != NULL)
4963 return h;
4964
4965 /* If this is a default version (the name contains @@), look up the
4966 symbol again with only one `@' as well as without the version.
4967 The effect is that references to the symbol with and without the
4968 version will be matched by the default symbol in the archive. */
4969
4970 p = strchr (name, ELF_VER_CHR);
4971 if (p == NULL || p[1] != ELF_VER_CHR)
4972 return h;
4973
4974 /* First check with only one `@'. */
4975 len = strlen (name);
4976 copy = (char *) bfd_alloc (abfd, len);
4977 if (copy == NULL)
4978 return (struct elf_link_hash_entry *) 0 - 1;
4979
4980 first = p - name + 1;
4981 memcpy (copy, name, first);
4982 memcpy (copy + first, name + first + 1, len - first);
4983
4984 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4985 if (h == NULL)
4986 {
4987 /* We also need to check references to the symbol without the
4988 version. */
4989 copy[first - 1] = '\0';
4990 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4991 FALSE, FALSE, TRUE);
4992 }
4993
4994 bfd_release (abfd, copy);
4995 return h;
4996 }
4997
4998 /* Add symbols from an ELF archive file to the linker hash table. We
4999 don't use _bfd_generic_link_add_archive_symbols because of a
5000 problem which arises on UnixWare. The UnixWare libc.so is an
5001 archive which includes an entry libc.so.1 which defines a bunch of
5002 symbols. The libc.so archive also includes a number of other
5003 object files, which also define symbols, some of which are the same
5004 as those defined in libc.so.1. Correct linking requires that we
5005 consider each object file in turn, and include it if it defines any
5006 symbols we need. _bfd_generic_link_add_archive_symbols does not do
5007 this; it looks through the list of undefined symbols, and includes
5008 any object file which defines them. When this algorithm is used on
5009 UnixWare, it winds up pulling in libc.so.1 early and defining a
5010 bunch of symbols. This means that some of the other objects in the
5011 archive are not included in the link, which is incorrect since they
5012 precede libc.so.1 in the archive.
5013
5014 Fortunately, ELF archive handling is simpler than that done by
5015 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5016 oddities. In ELF, if we find a symbol in the archive map, and the
5017 symbol is currently undefined, we know that we must pull in that
5018 object file.
5019
5020 Unfortunately, we do have to make multiple passes over the symbol
5021 table until nothing further is resolved. */
5022
5023 static bfd_boolean
5024 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5025 {
5026 symindex c;
5027 bfd_boolean *defined = NULL;
5028 bfd_boolean *included = NULL;
5029 carsym *symdefs;
5030 bfd_boolean loop;
5031 bfd_size_type amt;
5032 const struct elf_backend_data *bed;
5033 struct elf_link_hash_entry * (*archive_symbol_lookup)
5034 (bfd *, struct bfd_link_info *, const char *);
5035
5036 if (! bfd_has_map (abfd))
5037 {
5038 /* An empty archive is a special case. */
5039 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5040 return TRUE;
5041 bfd_set_error (bfd_error_no_armap);
5042 return FALSE;
5043 }
5044
5045 /* Keep track of all symbols we know to be already defined, and all
5046 files we know to be already included. This is to speed up the
5047 second and subsequent passes. */
5048 c = bfd_ardata (abfd)->symdef_count;
5049 if (c == 0)
5050 return TRUE;
5051 amt = c;
5052 amt *= sizeof (bfd_boolean);
5053 defined = (bfd_boolean *) bfd_zmalloc (amt);
5054 included = (bfd_boolean *) bfd_zmalloc (amt);
5055 if (defined == NULL || included == NULL)
5056 goto error_return;
5057
5058 symdefs = bfd_ardata (abfd)->symdefs;
5059 bed = get_elf_backend_data (abfd);
5060 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5061
5062 do
5063 {
5064 file_ptr last;
5065 symindex i;
5066 carsym *symdef;
5067 carsym *symdefend;
5068
5069 loop = FALSE;
5070 last = -1;
5071
5072 symdef = symdefs;
5073 symdefend = symdef + c;
5074 for (i = 0; symdef < symdefend; symdef++, i++)
5075 {
5076 struct elf_link_hash_entry *h;
5077 bfd *element;
5078 struct bfd_link_hash_entry *undefs_tail;
5079 symindex mark;
5080
5081 if (defined[i] || included[i])
5082 continue;
5083 if (symdef->file_offset == last)
5084 {
5085 included[i] = TRUE;
5086 continue;
5087 }
5088
5089 h = archive_symbol_lookup (abfd, info, symdef->name);
5090 if (h == (struct elf_link_hash_entry *) 0 - 1)
5091 goto error_return;
5092
5093 if (h == NULL)
5094 continue;
5095
5096 if (h->root.type == bfd_link_hash_common)
5097 {
5098 /* We currently have a common symbol. The archive map contains
5099 a reference to this symbol, so we may want to include it. We
5100 only want to include it however, if this archive element
5101 contains a definition of the symbol, not just another common
5102 declaration of it.
5103
5104 Unfortunately some archivers (including GNU ar) will put
5105 declarations of common symbols into their archive maps, as
5106 well as real definitions, so we cannot just go by the archive
5107 map alone. Instead we must read in the element's symbol
5108 table and check that to see what kind of symbol definition
5109 this is. */
5110 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5111 continue;
5112 }
5113 else if (h->root.type != bfd_link_hash_undefined)
5114 {
5115 if (h->root.type != bfd_link_hash_undefweak)
5116 defined[i] = TRUE;
5117 continue;
5118 }
5119
5120 /* We need to include this archive member. */
5121 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5122 if (element == NULL)
5123 goto error_return;
5124
5125 if (! bfd_check_format (element, bfd_object))
5126 goto error_return;
5127
5128 /* Doublecheck that we have not included this object
5129 already--it should be impossible, but there may be
5130 something wrong with the archive. */
5131 if (element->archive_pass != 0)
5132 {
5133 bfd_set_error (bfd_error_bad_value);
5134 goto error_return;
5135 }
5136 element->archive_pass = 1;
5137
5138 undefs_tail = info->hash->undefs_tail;
5139
5140 if (!(*info->callbacks
5141 ->add_archive_element) (info, element, symdef->name, &element))
5142 goto error_return;
5143 if (!bfd_link_add_symbols (element, info))
5144 goto error_return;
5145
5146 /* If there are any new undefined symbols, we need to make
5147 another pass through the archive in order to see whether
5148 they can be defined. FIXME: This isn't perfect, because
5149 common symbols wind up on undefs_tail and because an
5150 undefined symbol which is defined later on in this pass
5151 does not require another pass. This isn't a bug, but it
5152 does make the code less efficient than it could be. */
5153 if (undefs_tail != info->hash->undefs_tail)
5154 loop = TRUE;
5155
5156 /* Look backward to mark all symbols from this object file
5157 which we have already seen in this pass. */
5158 mark = i;
5159 do
5160 {
5161 included[mark] = TRUE;
5162 if (mark == 0)
5163 break;
5164 --mark;
5165 }
5166 while (symdefs[mark].file_offset == symdef->file_offset);
5167
5168 /* We mark subsequent symbols from this object file as we go
5169 on through the loop. */
5170 last = symdef->file_offset;
5171 }
5172 }
5173 while (loop);
5174
5175 free (defined);
5176 free (included);
5177
5178 return TRUE;
5179
5180 error_return:
5181 if (defined != NULL)
5182 free (defined);
5183 if (included != NULL)
5184 free (included);
5185 return FALSE;
5186 }
5187
5188 /* Given an ELF BFD, add symbols to the global hash table as
5189 appropriate. */
5190
5191 bfd_boolean
5192 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5193 {
5194 switch (bfd_get_format (abfd))
5195 {
5196 case bfd_object:
5197 return elf_link_add_object_symbols (abfd, info);
5198 case bfd_archive:
5199 return elf_link_add_archive_symbols (abfd, info);
5200 default:
5201 bfd_set_error (bfd_error_wrong_format);
5202 return FALSE;
5203 }
5204 }
5205 \f
5206 struct hash_codes_info
5207 {
5208 unsigned long *hashcodes;
5209 bfd_boolean error;
5210 };
5211
5212 /* This function will be called though elf_link_hash_traverse to store
5213 all hash value of the exported symbols in an array. */
5214
5215 static bfd_boolean
5216 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5217 {
5218 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5219 const char *name;
5220 char *p;
5221 unsigned long ha;
5222 char *alc = NULL;
5223
5224 /* Ignore indirect symbols. These are added by the versioning code. */
5225 if (h->dynindx == -1)
5226 return TRUE;
5227
5228 name = h->root.root.string;
5229 p = strchr (name, ELF_VER_CHR);
5230 if (p != NULL)
5231 {
5232 alc = (char *) bfd_malloc (p - name + 1);
5233 if (alc == NULL)
5234 {
5235 inf->error = TRUE;
5236 return FALSE;
5237 }
5238 memcpy (alc, name, p - name);
5239 alc[p - name] = '\0';
5240 name = alc;
5241 }
5242
5243 /* Compute the hash value. */
5244 ha = bfd_elf_hash (name);
5245
5246 /* Store the found hash value in the array given as the argument. */
5247 *(inf->hashcodes)++ = ha;
5248
5249 /* And store it in the struct so that we can put it in the hash table
5250 later. */
5251 h->u.elf_hash_value = ha;
5252
5253 if (alc != NULL)
5254 free (alc);
5255
5256 return TRUE;
5257 }
5258
5259 struct collect_gnu_hash_codes
5260 {
5261 bfd *output_bfd;
5262 const struct elf_backend_data *bed;
5263 unsigned long int nsyms;
5264 unsigned long int maskbits;
5265 unsigned long int *hashcodes;
5266 unsigned long int *hashval;
5267 unsigned long int *indx;
5268 unsigned long int *counts;
5269 bfd_vma *bitmask;
5270 bfd_byte *contents;
5271 long int min_dynindx;
5272 unsigned long int bucketcount;
5273 unsigned long int symindx;
5274 long int local_indx;
5275 long int shift1, shift2;
5276 unsigned long int mask;
5277 bfd_boolean error;
5278 };
5279
5280 /* This function will be called though elf_link_hash_traverse to store
5281 all hash value of the exported symbols in an array. */
5282
5283 static bfd_boolean
5284 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5285 {
5286 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5287 const char *name;
5288 char *p;
5289 unsigned long ha;
5290 char *alc = NULL;
5291
5292 /* Ignore indirect symbols. These are added by the versioning code. */
5293 if (h->dynindx == -1)
5294 return TRUE;
5295
5296 /* Ignore also local symbols and undefined symbols. */
5297 if (! (*s->bed->elf_hash_symbol) (h))
5298 return TRUE;
5299
5300 name = h->root.root.string;
5301 p = strchr (name, ELF_VER_CHR);
5302 if (p != NULL)
5303 {
5304 alc = (char *) bfd_malloc (p - name + 1);
5305 if (alc == NULL)
5306 {
5307 s->error = TRUE;
5308 return FALSE;
5309 }
5310 memcpy (alc, name, p - name);
5311 alc[p - name] = '\0';
5312 name = alc;
5313 }
5314
5315 /* Compute the hash value. */
5316 ha = bfd_elf_gnu_hash (name);
5317
5318 /* Store the found hash value in the array for compute_bucket_count,
5319 and also for .dynsym reordering purposes. */
5320 s->hashcodes[s->nsyms] = ha;
5321 s->hashval[h->dynindx] = ha;
5322 ++s->nsyms;
5323 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5324 s->min_dynindx = h->dynindx;
5325
5326 if (alc != NULL)
5327 free (alc);
5328
5329 return TRUE;
5330 }
5331
5332 /* This function will be called though elf_link_hash_traverse to do
5333 final dynaminc symbol renumbering. */
5334
5335 static bfd_boolean
5336 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5337 {
5338 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5339 unsigned long int bucket;
5340 unsigned long int val;
5341
5342 /* Ignore indirect symbols. */
5343 if (h->dynindx == -1)
5344 return TRUE;
5345
5346 /* Ignore also local symbols and undefined symbols. */
5347 if (! (*s->bed->elf_hash_symbol) (h))
5348 {
5349 if (h->dynindx >= s->min_dynindx)
5350 h->dynindx = s->local_indx++;
5351 return TRUE;
5352 }
5353
5354 bucket = s->hashval[h->dynindx] % s->bucketcount;
5355 val = (s->hashval[h->dynindx] >> s->shift1)
5356 & ((s->maskbits >> s->shift1) - 1);
5357 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5358 s->bitmask[val]
5359 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5360 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5361 if (s->counts[bucket] == 1)
5362 /* Last element terminates the chain. */
5363 val |= 1;
5364 bfd_put_32 (s->output_bfd, val,
5365 s->contents + (s->indx[bucket] - s->symindx) * 4);
5366 --s->counts[bucket];
5367 h->dynindx = s->indx[bucket]++;
5368 return TRUE;
5369 }
5370
5371 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5372
5373 bfd_boolean
5374 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5375 {
5376 return !(h->forced_local
5377 || h->root.type == bfd_link_hash_undefined
5378 || h->root.type == bfd_link_hash_undefweak
5379 || ((h->root.type == bfd_link_hash_defined
5380 || h->root.type == bfd_link_hash_defweak)
5381 && h->root.u.def.section->output_section == NULL));
5382 }
5383
5384 /* Array used to determine the number of hash table buckets to use
5385 based on the number of symbols there are. If there are fewer than
5386 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5387 fewer than 37 we use 17 buckets, and so forth. We never use more
5388 than 32771 buckets. */
5389
5390 static const size_t elf_buckets[] =
5391 {
5392 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5393 16411, 32771, 0
5394 };
5395
5396 /* Compute bucket count for hashing table. We do not use a static set
5397 of possible tables sizes anymore. Instead we determine for all
5398 possible reasonable sizes of the table the outcome (i.e., the
5399 number of collisions etc) and choose the best solution. The
5400 weighting functions are not too simple to allow the table to grow
5401 without bounds. Instead one of the weighting factors is the size.
5402 Therefore the result is always a good payoff between few collisions
5403 (= short chain lengths) and table size. */
5404 static size_t
5405 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5406 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5407 unsigned long int nsyms,
5408 int gnu_hash)
5409 {
5410 size_t best_size = 0;
5411 unsigned long int i;
5412
5413 /* We have a problem here. The following code to optimize the table
5414 size requires an integer type with more the 32 bits. If
5415 BFD_HOST_U_64_BIT is set we know about such a type. */
5416 #ifdef BFD_HOST_U_64_BIT
5417 if (info->optimize)
5418 {
5419 size_t minsize;
5420 size_t maxsize;
5421 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5422 bfd *dynobj = elf_hash_table (info)->dynobj;
5423 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5424 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5425 unsigned long int *counts;
5426 bfd_size_type amt;
5427 unsigned int no_improvement_count = 0;
5428
5429 /* Possible optimization parameters: if we have NSYMS symbols we say
5430 that the hashing table must at least have NSYMS/4 and at most
5431 2*NSYMS buckets. */
5432 minsize = nsyms / 4;
5433 if (minsize == 0)
5434 minsize = 1;
5435 best_size = maxsize = nsyms * 2;
5436 if (gnu_hash)
5437 {
5438 if (minsize < 2)
5439 minsize = 2;
5440 if ((best_size & 31) == 0)
5441 ++best_size;
5442 }
5443
5444 /* Create array where we count the collisions in. We must use bfd_malloc
5445 since the size could be large. */
5446 amt = maxsize;
5447 amt *= sizeof (unsigned long int);
5448 counts = (unsigned long int *) bfd_malloc (amt);
5449 if (counts == NULL)
5450 return 0;
5451
5452 /* Compute the "optimal" size for the hash table. The criteria is a
5453 minimal chain length. The minor criteria is (of course) the size
5454 of the table. */
5455 for (i = minsize; i < maxsize; ++i)
5456 {
5457 /* Walk through the array of hashcodes and count the collisions. */
5458 BFD_HOST_U_64_BIT max;
5459 unsigned long int j;
5460 unsigned long int fact;
5461
5462 if (gnu_hash && (i & 31) == 0)
5463 continue;
5464
5465 memset (counts, '\0', i * sizeof (unsigned long int));
5466
5467 /* Determine how often each hash bucket is used. */
5468 for (j = 0; j < nsyms; ++j)
5469 ++counts[hashcodes[j] % i];
5470
5471 /* For the weight function we need some information about the
5472 pagesize on the target. This is information need not be 100%
5473 accurate. Since this information is not available (so far) we
5474 define it here to a reasonable default value. If it is crucial
5475 to have a better value some day simply define this value. */
5476 # ifndef BFD_TARGET_PAGESIZE
5477 # define BFD_TARGET_PAGESIZE (4096)
5478 # endif
5479
5480 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5481 and the chains. */
5482 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5483
5484 # if 1
5485 /* Variant 1: optimize for short chains. We add the squares
5486 of all the chain lengths (which favors many small chain
5487 over a few long chains). */
5488 for (j = 0; j < i; ++j)
5489 max += counts[j] * counts[j];
5490
5491 /* This adds penalties for the overall size of the table. */
5492 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5493 max *= fact * fact;
5494 # else
5495 /* Variant 2: Optimize a lot more for small table. Here we
5496 also add squares of the size but we also add penalties for
5497 empty slots (the +1 term). */
5498 for (j = 0; j < i; ++j)
5499 max += (1 + counts[j]) * (1 + counts[j]);
5500
5501 /* The overall size of the table is considered, but not as
5502 strong as in variant 1, where it is squared. */
5503 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5504 max *= fact;
5505 # endif
5506
5507 /* Compare with current best results. */
5508 if (max < best_chlen)
5509 {
5510 best_chlen = max;
5511 best_size = i;
5512 no_improvement_count = 0;
5513 }
5514 /* PR 11843: Avoid futile long searches for the best bucket size
5515 when there are a large number of symbols. */
5516 else if (++no_improvement_count == 100)
5517 break;
5518 }
5519
5520 free (counts);
5521 }
5522 else
5523 #endif /* defined (BFD_HOST_U_64_BIT) */
5524 {
5525 /* This is the fallback solution if no 64bit type is available or if we
5526 are not supposed to spend much time on optimizations. We select the
5527 bucket count using a fixed set of numbers. */
5528 for (i = 0; elf_buckets[i] != 0; i++)
5529 {
5530 best_size = elf_buckets[i];
5531 if (nsyms < elf_buckets[i + 1])
5532 break;
5533 }
5534 if (gnu_hash && best_size < 2)
5535 best_size = 2;
5536 }
5537
5538 return best_size;
5539 }
5540
5541 /* Size any SHT_GROUP section for ld -r. */
5542
5543 bfd_boolean
5544 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5545 {
5546 bfd *ibfd;
5547
5548 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5549 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5550 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5551 return FALSE;
5552 return TRUE;
5553 }
5554
5555 /* Set a default stack segment size. The value in INFO wins. If it
5556 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5557 undefined it is initialized. */
5558
5559 bfd_boolean
5560 bfd_elf_stack_segment_size (bfd *output_bfd,
5561 struct bfd_link_info *info,
5562 const char *legacy_symbol,
5563 bfd_vma default_size)
5564 {
5565 struct elf_link_hash_entry *h = NULL;
5566
5567 /* Look for legacy symbol. */
5568 if (legacy_symbol)
5569 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5570 FALSE, FALSE, FALSE);
5571 if (h && (h->root.type == bfd_link_hash_defined
5572 || h->root.type == bfd_link_hash_defweak)
5573 && h->def_regular
5574 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5575 {
5576 /* The symbol has no type if specified on the command line. */
5577 h->type = STT_OBJECT;
5578 if (info->stacksize)
5579 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5580 output_bfd, legacy_symbol);
5581 else if (h->root.u.def.section != bfd_abs_section_ptr)
5582 (*_bfd_error_handler) (_("%B: %s not absolute"),
5583 output_bfd, legacy_symbol);
5584 else
5585 info->stacksize = h->root.u.def.value;
5586 }
5587
5588 if (!info->stacksize)
5589 /* If the user didn't set a size, or explicitly inhibit the
5590 size, set it now. */
5591 info->stacksize = default_size;
5592
5593 /* Provide the legacy symbol, if it is referenced. */
5594 if (h && (h->root.type == bfd_link_hash_undefined
5595 || h->root.type == bfd_link_hash_undefweak))
5596 {
5597 struct bfd_link_hash_entry *bh = NULL;
5598
5599 if (!(_bfd_generic_link_add_one_symbol
5600 (info, output_bfd, legacy_symbol,
5601 BSF_GLOBAL, bfd_abs_section_ptr,
5602 info->stacksize >= 0 ? info->stacksize : 0,
5603 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5604 return FALSE;
5605
5606 h = (struct elf_link_hash_entry *) bh;
5607 h->def_regular = 1;
5608 h->type = STT_OBJECT;
5609 }
5610
5611 return TRUE;
5612 }
5613
5614 /* Set up the sizes and contents of the ELF dynamic sections. This is
5615 called by the ELF linker emulation before_allocation routine. We
5616 must set the sizes of the sections before the linker sets the
5617 addresses of the various sections. */
5618
5619 bfd_boolean
5620 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5621 const char *soname,
5622 const char *rpath,
5623 const char *filter_shlib,
5624 const char *audit,
5625 const char *depaudit,
5626 const char * const *auxiliary_filters,
5627 struct bfd_link_info *info,
5628 asection **sinterpptr)
5629 {
5630 bfd_size_type soname_indx;
5631 bfd *dynobj;
5632 const struct elf_backend_data *bed;
5633 struct elf_info_failed asvinfo;
5634
5635 *sinterpptr = NULL;
5636
5637 soname_indx = (bfd_size_type) -1;
5638
5639 if (!is_elf_hash_table (info->hash))
5640 return TRUE;
5641
5642 bed = get_elf_backend_data (output_bfd);
5643
5644 /* Any syms created from now on start with -1 in
5645 got.refcount/offset and plt.refcount/offset. */
5646 elf_hash_table (info)->init_got_refcount
5647 = elf_hash_table (info)->init_got_offset;
5648 elf_hash_table (info)->init_plt_refcount
5649 = elf_hash_table (info)->init_plt_offset;
5650
5651 if (info->relocatable
5652 && !_bfd_elf_size_group_sections (info))
5653 return FALSE;
5654
5655 /* The backend may have to create some sections regardless of whether
5656 we're dynamic or not. */
5657 if (bed->elf_backend_always_size_sections
5658 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5659 return FALSE;
5660
5661 /* Determine any GNU_STACK segment requirements, after the backend
5662 has had a chance to set a default segment size. */
5663 if (info->execstack)
5664 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5665 else if (info->noexecstack)
5666 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5667 else
5668 {
5669 bfd *inputobj;
5670 asection *notesec = NULL;
5671 int exec = 0;
5672
5673 for (inputobj = info->input_bfds;
5674 inputobj;
5675 inputobj = inputobj->link_next)
5676 {
5677 asection *s;
5678
5679 if (inputobj->flags
5680 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5681 continue;
5682 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5683 if (s)
5684 {
5685 if (s->flags & SEC_CODE)
5686 exec = PF_X;
5687 notesec = s;
5688 }
5689 else if (bed->default_execstack)
5690 exec = PF_X;
5691 }
5692 if (notesec || info->stacksize > 0)
5693 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5694 if (notesec && exec && info->relocatable
5695 && notesec->output_section != bfd_abs_section_ptr)
5696 notesec->output_section->flags |= SEC_CODE;
5697 }
5698
5699 dynobj = elf_hash_table (info)->dynobj;
5700
5701 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5702 {
5703 struct elf_info_failed eif;
5704 struct elf_link_hash_entry *h;
5705 asection *dynstr;
5706 struct bfd_elf_version_tree *t;
5707 struct bfd_elf_version_expr *d;
5708 asection *s;
5709 bfd_boolean all_defined;
5710
5711 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5712 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5713
5714 if (soname != NULL)
5715 {
5716 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5717 soname, TRUE);
5718 if (soname_indx == (bfd_size_type) -1
5719 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5720 return FALSE;
5721 }
5722
5723 if (info->symbolic)
5724 {
5725 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5726 return FALSE;
5727 info->flags |= DF_SYMBOLIC;
5728 }
5729
5730 if (rpath != NULL)
5731 {
5732 bfd_size_type indx;
5733
5734 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5735 TRUE);
5736 if (indx == (bfd_size_type) -1
5737 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5738 return FALSE;
5739
5740 if (info->new_dtags)
5741 {
5742 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5743 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5744 return FALSE;
5745 }
5746 }
5747
5748 if (filter_shlib != NULL)
5749 {
5750 bfd_size_type indx;
5751
5752 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5753 filter_shlib, TRUE);
5754 if (indx == (bfd_size_type) -1
5755 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5756 return FALSE;
5757 }
5758
5759 if (auxiliary_filters != NULL)
5760 {
5761 const char * const *p;
5762
5763 for (p = auxiliary_filters; *p != NULL; p++)
5764 {
5765 bfd_size_type indx;
5766
5767 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5768 *p, TRUE);
5769 if (indx == (bfd_size_type) -1
5770 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5771 return FALSE;
5772 }
5773 }
5774
5775 if (audit != NULL)
5776 {
5777 bfd_size_type indx;
5778
5779 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5780 TRUE);
5781 if (indx == (bfd_size_type) -1
5782 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5783 return FALSE;
5784 }
5785
5786 if (depaudit != NULL)
5787 {
5788 bfd_size_type indx;
5789
5790 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5791 TRUE);
5792 if (indx == (bfd_size_type) -1
5793 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5794 return FALSE;
5795 }
5796
5797 eif.info = info;
5798 eif.failed = FALSE;
5799
5800 /* If we are supposed to export all symbols into the dynamic symbol
5801 table (this is not the normal case), then do so. */
5802 if (info->export_dynamic
5803 || (info->executable && info->dynamic))
5804 {
5805 elf_link_hash_traverse (elf_hash_table (info),
5806 _bfd_elf_export_symbol,
5807 &eif);
5808 if (eif.failed)
5809 return FALSE;
5810 }
5811
5812 /* Make all global versions with definition. */
5813 for (t = info->version_info; t != NULL; t = t->next)
5814 for (d = t->globals.list; d != NULL; d = d->next)
5815 if (!d->symver && d->literal)
5816 {
5817 const char *verstr, *name;
5818 size_t namelen, verlen, newlen;
5819 char *newname, *p, leading_char;
5820 struct elf_link_hash_entry *newh;
5821
5822 leading_char = bfd_get_symbol_leading_char (output_bfd);
5823 name = d->pattern;
5824 namelen = strlen (name) + (leading_char != '\0');
5825 verstr = t->name;
5826 verlen = strlen (verstr);
5827 newlen = namelen + verlen + 3;
5828
5829 newname = (char *) bfd_malloc (newlen);
5830 if (newname == NULL)
5831 return FALSE;
5832 newname[0] = leading_char;
5833 memcpy (newname + (leading_char != '\0'), name, namelen);
5834
5835 /* Check the hidden versioned definition. */
5836 p = newname + namelen;
5837 *p++ = ELF_VER_CHR;
5838 memcpy (p, verstr, verlen + 1);
5839 newh = elf_link_hash_lookup (elf_hash_table (info),
5840 newname, FALSE, FALSE,
5841 FALSE);
5842 if (newh == NULL
5843 || (newh->root.type != bfd_link_hash_defined
5844 && newh->root.type != bfd_link_hash_defweak))
5845 {
5846 /* Check the default versioned definition. */
5847 *p++ = ELF_VER_CHR;
5848 memcpy (p, verstr, verlen + 1);
5849 newh = elf_link_hash_lookup (elf_hash_table (info),
5850 newname, FALSE, FALSE,
5851 FALSE);
5852 }
5853 free (newname);
5854
5855 /* Mark this version if there is a definition and it is
5856 not defined in a shared object. */
5857 if (newh != NULL
5858 && !newh->def_dynamic
5859 && (newh->root.type == bfd_link_hash_defined
5860 || newh->root.type == bfd_link_hash_defweak))
5861 d->symver = 1;
5862 }
5863
5864 /* Attach all the symbols to their version information. */
5865 asvinfo.info = info;
5866 asvinfo.failed = FALSE;
5867
5868 elf_link_hash_traverse (elf_hash_table (info),
5869 _bfd_elf_link_assign_sym_version,
5870 &asvinfo);
5871 if (asvinfo.failed)
5872 return FALSE;
5873
5874 if (!info->allow_undefined_version)
5875 {
5876 /* Check if all global versions have a definition. */
5877 all_defined = TRUE;
5878 for (t = info->version_info; t != NULL; t = t->next)
5879 for (d = t->globals.list; d != NULL; d = d->next)
5880 if (d->literal && !d->symver && !d->script)
5881 {
5882 (*_bfd_error_handler)
5883 (_("%s: undefined version: %s"),
5884 d->pattern, t->name);
5885 all_defined = FALSE;
5886 }
5887
5888 if (!all_defined)
5889 {
5890 bfd_set_error (bfd_error_bad_value);
5891 return FALSE;
5892 }
5893 }
5894
5895 /* Find all symbols which were defined in a dynamic object and make
5896 the backend pick a reasonable value for them. */
5897 elf_link_hash_traverse (elf_hash_table (info),
5898 _bfd_elf_adjust_dynamic_symbol,
5899 &eif);
5900 if (eif.failed)
5901 return FALSE;
5902
5903 /* Add some entries to the .dynamic section. We fill in some of the
5904 values later, in bfd_elf_final_link, but we must add the entries
5905 now so that we know the final size of the .dynamic section. */
5906
5907 /* If there are initialization and/or finalization functions to
5908 call then add the corresponding DT_INIT/DT_FINI entries. */
5909 h = (info->init_function
5910 ? elf_link_hash_lookup (elf_hash_table (info),
5911 info->init_function, FALSE,
5912 FALSE, FALSE)
5913 : NULL);
5914 if (h != NULL
5915 && (h->ref_regular
5916 || h->def_regular))
5917 {
5918 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5919 return FALSE;
5920 }
5921 h = (info->fini_function
5922 ? elf_link_hash_lookup (elf_hash_table (info),
5923 info->fini_function, FALSE,
5924 FALSE, FALSE)
5925 : NULL);
5926 if (h != NULL
5927 && (h->ref_regular
5928 || h->def_regular))
5929 {
5930 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5931 return FALSE;
5932 }
5933
5934 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5935 if (s != NULL && s->linker_has_input)
5936 {
5937 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5938 if (! info->executable)
5939 {
5940 bfd *sub;
5941 asection *o;
5942
5943 for (sub = info->input_bfds; sub != NULL;
5944 sub = sub->link_next)
5945 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5946 for (o = sub->sections; o != NULL; o = o->next)
5947 if (elf_section_data (o)->this_hdr.sh_type
5948 == SHT_PREINIT_ARRAY)
5949 {
5950 (*_bfd_error_handler)
5951 (_("%B: .preinit_array section is not allowed in DSO"),
5952 sub);
5953 break;
5954 }
5955
5956 bfd_set_error (bfd_error_nonrepresentable_section);
5957 return FALSE;
5958 }
5959
5960 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5961 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5962 return FALSE;
5963 }
5964 s = bfd_get_section_by_name (output_bfd, ".init_array");
5965 if (s != NULL && s->linker_has_input)
5966 {
5967 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5968 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5969 return FALSE;
5970 }
5971 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5972 if (s != NULL && s->linker_has_input)
5973 {
5974 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5975 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5976 return FALSE;
5977 }
5978
5979 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5980 /* If .dynstr is excluded from the link, we don't want any of
5981 these tags. Strictly, we should be checking each section
5982 individually; This quick check covers for the case where
5983 someone does a /DISCARD/ : { *(*) }. */
5984 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5985 {
5986 bfd_size_type strsize;
5987
5988 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5989 if ((info->emit_hash
5990 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5991 || (info->emit_gnu_hash
5992 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5993 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5994 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5995 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5996 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5997 bed->s->sizeof_sym))
5998 return FALSE;
5999 }
6000 }
6001
6002 /* The backend must work out the sizes of all the other dynamic
6003 sections. */
6004 if (dynobj != NULL
6005 && bed->elf_backend_size_dynamic_sections != NULL
6006 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6007 return FALSE;
6008
6009 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6010 return FALSE;
6011
6012 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6013 {
6014 unsigned long section_sym_count;
6015 struct bfd_elf_version_tree *verdefs;
6016 asection *s;
6017
6018 /* Set up the version definition section. */
6019 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6020 BFD_ASSERT (s != NULL);
6021
6022 /* We may have created additional version definitions if we are
6023 just linking a regular application. */
6024 verdefs = info->version_info;
6025
6026 /* Skip anonymous version tag. */
6027 if (verdefs != NULL && verdefs->vernum == 0)
6028 verdefs = verdefs->next;
6029
6030 if (verdefs == NULL && !info->create_default_symver)
6031 s->flags |= SEC_EXCLUDE;
6032 else
6033 {
6034 unsigned int cdefs;
6035 bfd_size_type size;
6036 struct bfd_elf_version_tree *t;
6037 bfd_byte *p;
6038 Elf_Internal_Verdef def;
6039 Elf_Internal_Verdaux defaux;
6040 struct bfd_link_hash_entry *bh;
6041 struct elf_link_hash_entry *h;
6042 const char *name;
6043
6044 cdefs = 0;
6045 size = 0;
6046
6047 /* Make space for the base version. */
6048 size += sizeof (Elf_External_Verdef);
6049 size += sizeof (Elf_External_Verdaux);
6050 ++cdefs;
6051
6052 /* Make space for the default version. */
6053 if (info->create_default_symver)
6054 {
6055 size += sizeof (Elf_External_Verdef);
6056 ++cdefs;
6057 }
6058
6059 for (t = verdefs; t != NULL; t = t->next)
6060 {
6061 struct bfd_elf_version_deps *n;
6062
6063 /* Don't emit base version twice. */
6064 if (t->vernum == 0)
6065 continue;
6066
6067 size += sizeof (Elf_External_Verdef);
6068 size += sizeof (Elf_External_Verdaux);
6069 ++cdefs;
6070
6071 for (n = t->deps; n != NULL; n = n->next)
6072 size += sizeof (Elf_External_Verdaux);
6073 }
6074
6075 s->size = size;
6076 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6077 if (s->contents == NULL && s->size != 0)
6078 return FALSE;
6079
6080 /* Fill in the version definition section. */
6081
6082 p = s->contents;
6083
6084 def.vd_version = VER_DEF_CURRENT;
6085 def.vd_flags = VER_FLG_BASE;
6086 def.vd_ndx = 1;
6087 def.vd_cnt = 1;
6088 if (info->create_default_symver)
6089 {
6090 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6091 def.vd_next = sizeof (Elf_External_Verdef);
6092 }
6093 else
6094 {
6095 def.vd_aux = sizeof (Elf_External_Verdef);
6096 def.vd_next = (sizeof (Elf_External_Verdef)
6097 + sizeof (Elf_External_Verdaux));
6098 }
6099
6100 if (soname_indx != (bfd_size_type) -1)
6101 {
6102 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6103 soname_indx);
6104 def.vd_hash = bfd_elf_hash (soname);
6105 defaux.vda_name = soname_indx;
6106 name = soname;
6107 }
6108 else
6109 {
6110 bfd_size_type indx;
6111
6112 name = lbasename (output_bfd->filename);
6113 def.vd_hash = bfd_elf_hash (name);
6114 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6115 name, FALSE);
6116 if (indx == (bfd_size_type) -1)
6117 return FALSE;
6118 defaux.vda_name = indx;
6119 }
6120 defaux.vda_next = 0;
6121
6122 _bfd_elf_swap_verdef_out (output_bfd, &def,
6123 (Elf_External_Verdef *) p);
6124 p += sizeof (Elf_External_Verdef);
6125 if (info->create_default_symver)
6126 {
6127 /* Add a symbol representing this version. */
6128 bh = NULL;
6129 if (! (_bfd_generic_link_add_one_symbol
6130 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6131 0, NULL, FALSE,
6132 get_elf_backend_data (dynobj)->collect, &bh)))
6133 return FALSE;
6134 h = (struct elf_link_hash_entry *) bh;
6135 h->non_elf = 0;
6136 h->def_regular = 1;
6137 h->type = STT_OBJECT;
6138 h->verinfo.vertree = NULL;
6139
6140 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6141 return FALSE;
6142
6143 /* Create a duplicate of the base version with the same
6144 aux block, but different flags. */
6145 def.vd_flags = 0;
6146 def.vd_ndx = 2;
6147 def.vd_aux = sizeof (Elf_External_Verdef);
6148 if (verdefs)
6149 def.vd_next = (sizeof (Elf_External_Verdef)
6150 + sizeof (Elf_External_Verdaux));
6151 else
6152 def.vd_next = 0;
6153 _bfd_elf_swap_verdef_out (output_bfd, &def,
6154 (Elf_External_Verdef *) p);
6155 p += sizeof (Elf_External_Verdef);
6156 }
6157 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6158 (Elf_External_Verdaux *) p);
6159 p += sizeof (Elf_External_Verdaux);
6160
6161 for (t = verdefs; t != NULL; t = t->next)
6162 {
6163 unsigned int cdeps;
6164 struct bfd_elf_version_deps *n;
6165
6166 /* Don't emit the base version twice. */
6167 if (t->vernum == 0)
6168 continue;
6169
6170 cdeps = 0;
6171 for (n = t->deps; n != NULL; n = n->next)
6172 ++cdeps;
6173
6174 /* Add a symbol representing this version. */
6175 bh = NULL;
6176 if (! (_bfd_generic_link_add_one_symbol
6177 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6178 0, NULL, FALSE,
6179 get_elf_backend_data (dynobj)->collect, &bh)))
6180 return FALSE;
6181 h = (struct elf_link_hash_entry *) bh;
6182 h->non_elf = 0;
6183 h->def_regular = 1;
6184 h->type = STT_OBJECT;
6185 h->verinfo.vertree = t;
6186
6187 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6188 return FALSE;
6189
6190 def.vd_version = VER_DEF_CURRENT;
6191 def.vd_flags = 0;
6192 if (t->globals.list == NULL
6193 && t->locals.list == NULL
6194 && ! t->used)
6195 def.vd_flags |= VER_FLG_WEAK;
6196 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6197 def.vd_cnt = cdeps + 1;
6198 def.vd_hash = bfd_elf_hash (t->name);
6199 def.vd_aux = sizeof (Elf_External_Verdef);
6200 def.vd_next = 0;
6201
6202 /* If a basever node is next, it *must* be the last node in
6203 the chain, otherwise Verdef construction breaks. */
6204 if (t->next != NULL && t->next->vernum == 0)
6205 BFD_ASSERT (t->next->next == NULL);
6206
6207 if (t->next != NULL && t->next->vernum != 0)
6208 def.vd_next = (sizeof (Elf_External_Verdef)
6209 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6210
6211 _bfd_elf_swap_verdef_out (output_bfd, &def,
6212 (Elf_External_Verdef *) p);
6213 p += sizeof (Elf_External_Verdef);
6214
6215 defaux.vda_name = h->dynstr_index;
6216 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6217 h->dynstr_index);
6218 defaux.vda_next = 0;
6219 if (t->deps != NULL)
6220 defaux.vda_next = sizeof (Elf_External_Verdaux);
6221 t->name_indx = defaux.vda_name;
6222
6223 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6224 (Elf_External_Verdaux *) p);
6225 p += sizeof (Elf_External_Verdaux);
6226
6227 for (n = t->deps; n != NULL; n = n->next)
6228 {
6229 if (n->version_needed == NULL)
6230 {
6231 /* This can happen if there was an error in the
6232 version script. */
6233 defaux.vda_name = 0;
6234 }
6235 else
6236 {
6237 defaux.vda_name = n->version_needed->name_indx;
6238 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6239 defaux.vda_name);
6240 }
6241 if (n->next == NULL)
6242 defaux.vda_next = 0;
6243 else
6244 defaux.vda_next = sizeof (Elf_External_Verdaux);
6245
6246 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6247 (Elf_External_Verdaux *) p);
6248 p += sizeof (Elf_External_Verdaux);
6249 }
6250 }
6251
6252 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6253 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6254 return FALSE;
6255
6256 elf_tdata (output_bfd)->cverdefs = cdefs;
6257 }
6258
6259 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6260 {
6261 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6262 return FALSE;
6263 }
6264 else if (info->flags & DF_BIND_NOW)
6265 {
6266 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6267 return FALSE;
6268 }
6269
6270 if (info->flags_1)
6271 {
6272 if (info->executable)
6273 info->flags_1 &= ~ (DF_1_INITFIRST
6274 | DF_1_NODELETE
6275 | DF_1_NOOPEN);
6276 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6277 return FALSE;
6278 }
6279
6280 /* Work out the size of the version reference section. */
6281
6282 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6283 BFD_ASSERT (s != NULL);
6284 {
6285 struct elf_find_verdep_info sinfo;
6286
6287 sinfo.info = info;
6288 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6289 if (sinfo.vers == 0)
6290 sinfo.vers = 1;
6291 sinfo.failed = FALSE;
6292
6293 elf_link_hash_traverse (elf_hash_table (info),
6294 _bfd_elf_link_find_version_dependencies,
6295 &sinfo);
6296 if (sinfo.failed)
6297 return FALSE;
6298
6299 if (elf_tdata (output_bfd)->verref == NULL)
6300 s->flags |= SEC_EXCLUDE;
6301 else
6302 {
6303 Elf_Internal_Verneed *t;
6304 unsigned int size;
6305 unsigned int crefs;
6306 bfd_byte *p;
6307
6308 /* Build the version dependency section. */
6309 size = 0;
6310 crefs = 0;
6311 for (t = elf_tdata (output_bfd)->verref;
6312 t != NULL;
6313 t = t->vn_nextref)
6314 {
6315 Elf_Internal_Vernaux *a;
6316
6317 size += sizeof (Elf_External_Verneed);
6318 ++crefs;
6319 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6320 size += sizeof (Elf_External_Vernaux);
6321 }
6322
6323 s->size = size;
6324 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6325 if (s->contents == NULL)
6326 return FALSE;
6327
6328 p = s->contents;
6329 for (t = elf_tdata (output_bfd)->verref;
6330 t != NULL;
6331 t = t->vn_nextref)
6332 {
6333 unsigned int caux;
6334 Elf_Internal_Vernaux *a;
6335 bfd_size_type indx;
6336
6337 caux = 0;
6338 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6339 ++caux;
6340
6341 t->vn_version = VER_NEED_CURRENT;
6342 t->vn_cnt = caux;
6343 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6344 elf_dt_name (t->vn_bfd) != NULL
6345 ? elf_dt_name (t->vn_bfd)
6346 : lbasename (t->vn_bfd->filename),
6347 FALSE);
6348 if (indx == (bfd_size_type) -1)
6349 return FALSE;
6350 t->vn_file = indx;
6351 t->vn_aux = sizeof (Elf_External_Verneed);
6352 if (t->vn_nextref == NULL)
6353 t->vn_next = 0;
6354 else
6355 t->vn_next = (sizeof (Elf_External_Verneed)
6356 + caux * sizeof (Elf_External_Vernaux));
6357
6358 _bfd_elf_swap_verneed_out (output_bfd, t,
6359 (Elf_External_Verneed *) p);
6360 p += sizeof (Elf_External_Verneed);
6361
6362 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6363 {
6364 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6365 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6366 a->vna_nodename, FALSE);
6367 if (indx == (bfd_size_type) -1)
6368 return FALSE;
6369 a->vna_name = indx;
6370 if (a->vna_nextptr == NULL)
6371 a->vna_next = 0;
6372 else
6373 a->vna_next = sizeof (Elf_External_Vernaux);
6374
6375 _bfd_elf_swap_vernaux_out (output_bfd, a,
6376 (Elf_External_Vernaux *) p);
6377 p += sizeof (Elf_External_Vernaux);
6378 }
6379 }
6380
6381 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6382 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6383 return FALSE;
6384
6385 elf_tdata (output_bfd)->cverrefs = crefs;
6386 }
6387 }
6388
6389 if ((elf_tdata (output_bfd)->cverrefs == 0
6390 && elf_tdata (output_bfd)->cverdefs == 0)
6391 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6392 &section_sym_count) == 0)
6393 {
6394 s = bfd_get_linker_section (dynobj, ".gnu.version");
6395 s->flags |= SEC_EXCLUDE;
6396 }
6397 }
6398 return TRUE;
6399 }
6400
6401 /* Find the first non-excluded output section. We'll use its
6402 section symbol for some emitted relocs. */
6403 void
6404 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6405 {
6406 asection *s;
6407
6408 for (s = output_bfd->sections; s != NULL; s = s->next)
6409 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6410 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6411 {
6412 elf_hash_table (info)->text_index_section = s;
6413 break;
6414 }
6415 }
6416
6417 /* Find two non-excluded output sections, one for code, one for data.
6418 We'll use their section symbols for some emitted relocs. */
6419 void
6420 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6421 {
6422 asection *s;
6423
6424 /* Data first, since setting text_index_section changes
6425 _bfd_elf_link_omit_section_dynsym. */
6426 for (s = output_bfd->sections; s != NULL; s = s->next)
6427 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6428 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6429 {
6430 elf_hash_table (info)->data_index_section = s;
6431 break;
6432 }
6433
6434 for (s = output_bfd->sections; s != NULL; s = s->next)
6435 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6436 == (SEC_ALLOC | SEC_READONLY))
6437 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6438 {
6439 elf_hash_table (info)->text_index_section = s;
6440 break;
6441 }
6442
6443 if (elf_hash_table (info)->text_index_section == NULL)
6444 elf_hash_table (info)->text_index_section
6445 = elf_hash_table (info)->data_index_section;
6446 }
6447
6448 bfd_boolean
6449 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6450 {
6451 const struct elf_backend_data *bed;
6452
6453 if (!is_elf_hash_table (info->hash))
6454 return TRUE;
6455
6456 bed = get_elf_backend_data (output_bfd);
6457 (*bed->elf_backend_init_index_section) (output_bfd, info);
6458
6459 if (elf_hash_table (info)->dynamic_sections_created)
6460 {
6461 bfd *dynobj;
6462 asection *s;
6463 bfd_size_type dynsymcount;
6464 unsigned long section_sym_count;
6465 unsigned int dtagcount;
6466
6467 dynobj = elf_hash_table (info)->dynobj;
6468
6469 /* Assign dynsym indicies. In a shared library we generate a
6470 section symbol for each output section, which come first.
6471 Next come all of the back-end allocated local dynamic syms,
6472 followed by the rest of the global symbols. */
6473
6474 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6475 &section_sym_count);
6476
6477 /* Work out the size of the symbol version section. */
6478 s = bfd_get_linker_section (dynobj, ".gnu.version");
6479 BFD_ASSERT (s != NULL);
6480 if (dynsymcount != 0
6481 && (s->flags & SEC_EXCLUDE) == 0)
6482 {
6483 s->size = dynsymcount * sizeof (Elf_External_Versym);
6484 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6485 if (s->contents == NULL)
6486 return FALSE;
6487
6488 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6489 return FALSE;
6490 }
6491
6492 /* Set the size of the .dynsym and .hash sections. We counted
6493 the number of dynamic symbols in elf_link_add_object_symbols.
6494 We will build the contents of .dynsym and .hash when we build
6495 the final symbol table, because until then we do not know the
6496 correct value to give the symbols. We built the .dynstr
6497 section as we went along in elf_link_add_object_symbols. */
6498 s = bfd_get_linker_section (dynobj, ".dynsym");
6499 BFD_ASSERT (s != NULL);
6500 s->size = dynsymcount * bed->s->sizeof_sym;
6501
6502 if (dynsymcount != 0)
6503 {
6504 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6505 if (s->contents == NULL)
6506 return FALSE;
6507
6508 /* The first entry in .dynsym is a dummy symbol.
6509 Clear all the section syms, in case we don't output them all. */
6510 ++section_sym_count;
6511 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6512 }
6513
6514 elf_hash_table (info)->bucketcount = 0;
6515
6516 /* Compute the size of the hashing table. As a side effect this
6517 computes the hash values for all the names we export. */
6518 if (info->emit_hash)
6519 {
6520 unsigned long int *hashcodes;
6521 struct hash_codes_info hashinf;
6522 bfd_size_type amt;
6523 unsigned long int nsyms;
6524 size_t bucketcount;
6525 size_t hash_entry_size;
6526
6527 /* Compute the hash values for all exported symbols. At the same
6528 time store the values in an array so that we could use them for
6529 optimizations. */
6530 amt = dynsymcount * sizeof (unsigned long int);
6531 hashcodes = (unsigned long int *) bfd_malloc (amt);
6532 if (hashcodes == NULL)
6533 return FALSE;
6534 hashinf.hashcodes = hashcodes;
6535 hashinf.error = FALSE;
6536
6537 /* Put all hash values in HASHCODES. */
6538 elf_link_hash_traverse (elf_hash_table (info),
6539 elf_collect_hash_codes, &hashinf);
6540 if (hashinf.error)
6541 {
6542 free (hashcodes);
6543 return FALSE;
6544 }
6545
6546 nsyms = hashinf.hashcodes - hashcodes;
6547 bucketcount
6548 = compute_bucket_count (info, hashcodes, nsyms, 0);
6549 free (hashcodes);
6550
6551 if (bucketcount == 0)
6552 return FALSE;
6553
6554 elf_hash_table (info)->bucketcount = bucketcount;
6555
6556 s = bfd_get_linker_section (dynobj, ".hash");
6557 BFD_ASSERT (s != NULL);
6558 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6559 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6560 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6561 if (s->contents == NULL)
6562 return FALSE;
6563
6564 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6565 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6566 s->contents + hash_entry_size);
6567 }
6568
6569 if (info->emit_gnu_hash)
6570 {
6571 size_t i, cnt;
6572 unsigned char *contents;
6573 struct collect_gnu_hash_codes cinfo;
6574 bfd_size_type amt;
6575 size_t bucketcount;
6576
6577 memset (&cinfo, 0, sizeof (cinfo));
6578
6579 /* Compute the hash values for all exported symbols. At the same
6580 time store the values in an array so that we could use them for
6581 optimizations. */
6582 amt = dynsymcount * 2 * sizeof (unsigned long int);
6583 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6584 if (cinfo.hashcodes == NULL)
6585 return FALSE;
6586
6587 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6588 cinfo.min_dynindx = -1;
6589 cinfo.output_bfd = output_bfd;
6590 cinfo.bed = bed;
6591
6592 /* Put all hash values in HASHCODES. */
6593 elf_link_hash_traverse (elf_hash_table (info),
6594 elf_collect_gnu_hash_codes, &cinfo);
6595 if (cinfo.error)
6596 {
6597 free (cinfo.hashcodes);
6598 return FALSE;
6599 }
6600
6601 bucketcount
6602 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6603
6604 if (bucketcount == 0)
6605 {
6606 free (cinfo.hashcodes);
6607 return FALSE;
6608 }
6609
6610 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6611 BFD_ASSERT (s != NULL);
6612
6613 if (cinfo.nsyms == 0)
6614 {
6615 /* Empty .gnu.hash section is special. */
6616 BFD_ASSERT (cinfo.min_dynindx == -1);
6617 free (cinfo.hashcodes);
6618 s->size = 5 * 4 + bed->s->arch_size / 8;
6619 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6620 if (contents == NULL)
6621 return FALSE;
6622 s->contents = contents;
6623 /* 1 empty bucket. */
6624 bfd_put_32 (output_bfd, 1, contents);
6625 /* SYMIDX above the special symbol 0. */
6626 bfd_put_32 (output_bfd, 1, contents + 4);
6627 /* Just one word for bitmask. */
6628 bfd_put_32 (output_bfd, 1, contents + 8);
6629 /* Only hash fn bloom filter. */
6630 bfd_put_32 (output_bfd, 0, contents + 12);
6631 /* No hashes are valid - empty bitmask. */
6632 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6633 /* No hashes in the only bucket. */
6634 bfd_put_32 (output_bfd, 0,
6635 contents + 16 + bed->s->arch_size / 8);
6636 }
6637 else
6638 {
6639 unsigned long int maskwords, maskbitslog2, x;
6640 BFD_ASSERT (cinfo.min_dynindx != -1);
6641
6642 x = cinfo.nsyms;
6643 maskbitslog2 = 1;
6644 while ((x >>= 1) != 0)
6645 ++maskbitslog2;
6646 if (maskbitslog2 < 3)
6647 maskbitslog2 = 5;
6648 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6649 maskbitslog2 = maskbitslog2 + 3;
6650 else
6651 maskbitslog2 = maskbitslog2 + 2;
6652 if (bed->s->arch_size == 64)
6653 {
6654 if (maskbitslog2 == 5)
6655 maskbitslog2 = 6;
6656 cinfo.shift1 = 6;
6657 }
6658 else
6659 cinfo.shift1 = 5;
6660 cinfo.mask = (1 << cinfo.shift1) - 1;
6661 cinfo.shift2 = maskbitslog2;
6662 cinfo.maskbits = 1 << maskbitslog2;
6663 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6664 amt = bucketcount * sizeof (unsigned long int) * 2;
6665 amt += maskwords * sizeof (bfd_vma);
6666 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6667 if (cinfo.bitmask == NULL)
6668 {
6669 free (cinfo.hashcodes);
6670 return FALSE;
6671 }
6672
6673 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6674 cinfo.indx = cinfo.counts + bucketcount;
6675 cinfo.symindx = dynsymcount - cinfo.nsyms;
6676 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6677
6678 /* Determine how often each hash bucket is used. */
6679 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6680 for (i = 0; i < cinfo.nsyms; ++i)
6681 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6682
6683 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6684 if (cinfo.counts[i] != 0)
6685 {
6686 cinfo.indx[i] = cnt;
6687 cnt += cinfo.counts[i];
6688 }
6689 BFD_ASSERT (cnt == dynsymcount);
6690 cinfo.bucketcount = bucketcount;
6691 cinfo.local_indx = cinfo.min_dynindx;
6692
6693 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6694 s->size += cinfo.maskbits / 8;
6695 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6696 if (contents == NULL)
6697 {
6698 free (cinfo.bitmask);
6699 free (cinfo.hashcodes);
6700 return FALSE;
6701 }
6702
6703 s->contents = contents;
6704 bfd_put_32 (output_bfd, bucketcount, contents);
6705 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6706 bfd_put_32 (output_bfd, maskwords, contents + 8);
6707 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6708 contents += 16 + cinfo.maskbits / 8;
6709
6710 for (i = 0; i < bucketcount; ++i)
6711 {
6712 if (cinfo.counts[i] == 0)
6713 bfd_put_32 (output_bfd, 0, contents);
6714 else
6715 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6716 contents += 4;
6717 }
6718
6719 cinfo.contents = contents;
6720
6721 /* Renumber dynamic symbols, populate .gnu.hash section. */
6722 elf_link_hash_traverse (elf_hash_table (info),
6723 elf_renumber_gnu_hash_syms, &cinfo);
6724
6725 contents = s->contents + 16;
6726 for (i = 0; i < maskwords; ++i)
6727 {
6728 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6729 contents);
6730 contents += bed->s->arch_size / 8;
6731 }
6732
6733 free (cinfo.bitmask);
6734 free (cinfo.hashcodes);
6735 }
6736 }
6737
6738 s = bfd_get_linker_section (dynobj, ".dynstr");
6739 BFD_ASSERT (s != NULL);
6740
6741 elf_finalize_dynstr (output_bfd, info);
6742
6743 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6744
6745 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6746 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6747 return FALSE;
6748 }
6749
6750 return TRUE;
6751 }
6752 \f
6753 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6754
6755 static void
6756 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6757 asection *sec)
6758 {
6759 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6760 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6761 }
6762
6763 /* Finish SHF_MERGE section merging. */
6764
6765 bfd_boolean
6766 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6767 {
6768 bfd *ibfd;
6769 asection *sec;
6770
6771 if (!is_elf_hash_table (info->hash))
6772 return FALSE;
6773
6774 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6775 if ((ibfd->flags & DYNAMIC) == 0)
6776 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6777 if ((sec->flags & SEC_MERGE) != 0
6778 && !bfd_is_abs_section (sec->output_section))
6779 {
6780 struct bfd_elf_section_data *secdata;
6781
6782 secdata = elf_section_data (sec);
6783 if (! _bfd_add_merge_section (abfd,
6784 &elf_hash_table (info)->merge_info,
6785 sec, &secdata->sec_info))
6786 return FALSE;
6787 else if (secdata->sec_info)
6788 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6789 }
6790
6791 if (elf_hash_table (info)->merge_info != NULL)
6792 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6793 merge_sections_remove_hook);
6794 return TRUE;
6795 }
6796
6797 /* Create an entry in an ELF linker hash table. */
6798
6799 struct bfd_hash_entry *
6800 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6801 struct bfd_hash_table *table,
6802 const char *string)
6803 {
6804 /* Allocate the structure if it has not already been allocated by a
6805 subclass. */
6806 if (entry == NULL)
6807 {
6808 entry = (struct bfd_hash_entry *)
6809 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6810 if (entry == NULL)
6811 return entry;
6812 }
6813
6814 /* Call the allocation method of the superclass. */
6815 entry = _bfd_link_hash_newfunc (entry, table, string);
6816 if (entry != NULL)
6817 {
6818 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6819 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6820
6821 /* Set local fields. */
6822 ret->indx = -1;
6823 ret->dynindx = -1;
6824 ret->got = htab->init_got_refcount;
6825 ret->plt = htab->init_plt_refcount;
6826 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6827 - offsetof (struct elf_link_hash_entry, size)));
6828 /* Assume that we have been called by a non-ELF symbol reader.
6829 This flag is then reset by the code which reads an ELF input
6830 file. This ensures that a symbol created by a non-ELF symbol
6831 reader will have the flag set correctly. */
6832 ret->non_elf = 1;
6833 }
6834
6835 return entry;
6836 }
6837
6838 /* Copy data from an indirect symbol to its direct symbol, hiding the
6839 old indirect symbol. Also used for copying flags to a weakdef. */
6840
6841 void
6842 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6843 struct elf_link_hash_entry *dir,
6844 struct elf_link_hash_entry *ind)
6845 {
6846 struct elf_link_hash_table *htab;
6847
6848 /* Copy down any references that we may have already seen to the
6849 symbol which just became indirect. */
6850
6851 dir->ref_dynamic |= ind->ref_dynamic;
6852 dir->ref_regular |= ind->ref_regular;
6853 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6854 dir->non_got_ref |= ind->non_got_ref;
6855 dir->needs_plt |= ind->needs_plt;
6856 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6857
6858 if (ind->root.type != bfd_link_hash_indirect)
6859 return;
6860
6861 /* Copy over the global and procedure linkage table refcount entries.
6862 These may have been already set up by a check_relocs routine. */
6863 htab = elf_hash_table (info);
6864 if (ind->got.refcount > htab->init_got_refcount.refcount)
6865 {
6866 if (dir->got.refcount < 0)
6867 dir->got.refcount = 0;
6868 dir->got.refcount += ind->got.refcount;
6869 ind->got.refcount = htab->init_got_refcount.refcount;
6870 }
6871
6872 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6873 {
6874 if (dir->plt.refcount < 0)
6875 dir->plt.refcount = 0;
6876 dir->plt.refcount += ind->plt.refcount;
6877 ind->plt.refcount = htab->init_plt_refcount.refcount;
6878 }
6879
6880 if (ind->dynindx != -1)
6881 {
6882 if (dir->dynindx != -1)
6883 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6884 dir->dynindx = ind->dynindx;
6885 dir->dynstr_index = ind->dynstr_index;
6886 ind->dynindx = -1;
6887 ind->dynstr_index = 0;
6888 }
6889 }
6890
6891 void
6892 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6893 struct elf_link_hash_entry *h,
6894 bfd_boolean force_local)
6895 {
6896 /* STT_GNU_IFUNC symbol must go through PLT. */
6897 if (h->type != STT_GNU_IFUNC)
6898 {
6899 h->plt = elf_hash_table (info)->init_plt_offset;
6900 h->needs_plt = 0;
6901 }
6902 if (force_local)
6903 {
6904 h->forced_local = 1;
6905 if (h->dynindx != -1)
6906 {
6907 h->dynindx = -1;
6908 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6909 h->dynstr_index);
6910 }
6911 }
6912 }
6913
6914 /* Initialize an ELF linker hash table. */
6915
6916 bfd_boolean
6917 _bfd_elf_link_hash_table_init
6918 (struct elf_link_hash_table *table,
6919 bfd *abfd,
6920 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6921 struct bfd_hash_table *,
6922 const char *),
6923 unsigned int entsize,
6924 enum elf_target_id target_id)
6925 {
6926 bfd_boolean ret;
6927 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6928
6929 memset (table, 0, sizeof * table);
6930 table->init_got_refcount.refcount = can_refcount - 1;
6931 table->init_plt_refcount.refcount = can_refcount - 1;
6932 table->init_got_offset.offset = -(bfd_vma) 1;
6933 table->init_plt_offset.offset = -(bfd_vma) 1;
6934 /* The first dynamic symbol is a dummy. */
6935 table->dynsymcount = 1;
6936
6937 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6938
6939 table->root.type = bfd_link_elf_hash_table;
6940 table->hash_table_id = target_id;
6941
6942 return ret;
6943 }
6944
6945 /* Create an ELF linker hash table. */
6946
6947 struct bfd_link_hash_table *
6948 _bfd_elf_link_hash_table_create (bfd *abfd)
6949 {
6950 struct elf_link_hash_table *ret;
6951 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6952
6953 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6954 if (ret == NULL)
6955 return NULL;
6956
6957 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6958 sizeof (struct elf_link_hash_entry),
6959 GENERIC_ELF_DATA))
6960 {
6961 free (ret);
6962 return NULL;
6963 }
6964
6965 return &ret->root;
6966 }
6967
6968 /* This is a hook for the ELF emulation code in the generic linker to
6969 tell the backend linker what file name to use for the DT_NEEDED
6970 entry for a dynamic object. */
6971
6972 void
6973 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6974 {
6975 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6976 && bfd_get_format (abfd) == bfd_object)
6977 elf_dt_name (abfd) = name;
6978 }
6979
6980 int
6981 bfd_elf_get_dyn_lib_class (bfd *abfd)
6982 {
6983 int lib_class;
6984 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6985 && bfd_get_format (abfd) == bfd_object)
6986 lib_class = elf_dyn_lib_class (abfd);
6987 else
6988 lib_class = 0;
6989 return lib_class;
6990 }
6991
6992 void
6993 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6994 {
6995 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6996 && bfd_get_format (abfd) == bfd_object)
6997 elf_dyn_lib_class (abfd) = lib_class;
6998 }
6999
7000 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7001 the linker ELF emulation code. */
7002
7003 struct bfd_link_needed_list *
7004 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7005 struct bfd_link_info *info)
7006 {
7007 if (! is_elf_hash_table (info->hash))
7008 return NULL;
7009 return elf_hash_table (info)->needed;
7010 }
7011
7012 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7013 hook for the linker ELF emulation code. */
7014
7015 struct bfd_link_needed_list *
7016 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7017 struct bfd_link_info *info)
7018 {
7019 if (! is_elf_hash_table (info->hash))
7020 return NULL;
7021 return elf_hash_table (info)->runpath;
7022 }
7023
7024 /* Get the name actually used for a dynamic object for a link. This
7025 is the SONAME entry if there is one. Otherwise, it is the string
7026 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7027
7028 const char *
7029 bfd_elf_get_dt_soname (bfd *abfd)
7030 {
7031 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7032 && bfd_get_format (abfd) == bfd_object)
7033 return elf_dt_name (abfd);
7034 return NULL;
7035 }
7036
7037 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7038 the ELF linker emulation code. */
7039
7040 bfd_boolean
7041 bfd_elf_get_bfd_needed_list (bfd *abfd,
7042 struct bfd_link_needed_list **pneeded)
7043 {
7044 asection *s;
7045 bfd_byte *dynbuf = NULL;
7046 unsigned int elfsec;
7047 unsigned long shlink;
7048 bfd_byte *extdyn, *extdynend;
7049 size_t extdynsize;
7050 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7051
7052 *pneeded = NULL;
7053
7054 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7055 || bfd_get_format (abfd) != bfd_object)
7056 return TRUE;
7057
7058 s = bfd_get_section_by_name (abfd, ".dynamic");
7059 if (s == NULL || s->size == 0)
7060 return TRUE;
7061
7062 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7063 goto error_return;
7064
7065 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7066 if (elfsec == SHN_BAD)
7067 goto error_return;
7068
7069 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7070
7071 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7072 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7073
7074 extdyn = dynbuf;
7075 extdynend = extdyn + s->size;
7076 for (; extdyn < extdynend; extdyn += extdynsize)
7077 {
7078 Elf_Internal_Dyn dyn;
7079
7080 (*swap_dyn_in) (abfd, extdyn, &dyn);
7081
7082 if (dyn.d_tag == DT_NULL)
7083 break;
7084
7085 if (dyn.d_tag == DT_NEEDED)
7086 {
7087 const char *string;
7088 struct bfd_link_needed_list *l;
7089 unsigned int tagv = dyn.d_un.d_val;
7090 bfd_size_type amt;
7091
7092 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7093 if (string == NULL)
7094 goto error_return;
7095
7096 amt = sizeof *l;
7097 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7098 if (l == NULL)
7099 goto error_return;
7100
7101 l->by = abfd;
7102 l->name = string;
7103 l->next = *pneeded;
7104 *pneeded = l;
7105 }
7106 }
7107
7108 free (dynbuf);
7109
7110 return TRUE;
7111
7112 error_return:
7113 if (dynbuf != NULL)
7114 free (dynbuf);
7115 return FALSE;
7116 }
7117
7118 struct elf_symbuf_symbol
7119 {
7120 unsigned long st_name; /* Symbol name, index in string tbl */
7121 unsigned char st_info; /* Type and binding attributes */
7122 unsigned char st_other; /* Visibilty, and target specific */
7123 };
7124
7125 struct elf_symbuf_head
7126 {
7127 struct elf_symbuf_symbol *ssym;
7128 bfd_size_type count;
7129 unsigned int st_shndx;
7130 };
7131
7132 struct elf_symbol
7133 {
7134 union
7135 {
7136 Elf_Internal_Sym *isym;
7137 struct elf_symbuf_symbol *ssym;
7138 } u;
7139 const char *name;
7140 };
7141
7142 /* Sort references to symbols by ascending section number. */
7143
7144 static int
7145 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7146 {
7147 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7148 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7149
7150 return s1->st_shndx - s2->st_shndx;
7151 }
7152
7153 static int
7154 elf_sym_name_compare (const void *arg1, const void *arg2)
7155 {
7156 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7157 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7158 return strcmp (s1->name, s2->name);
7159 }
7160
7161 static struct elf_symbuf_head *
7162 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7163 {
7164 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7165 struct elf_symbuf_symbol *ssym;
7166 struct elf_symbuf_head *ssymbuf, *ssymhead;
7167 bfd_size_type i, shndx_count, total_size;
7168
7169 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7170 if (indbuf == NULL)
7171 return NULL;
7172
7173 for (ind = indbuf, i = 0; i < symcount; i++)
7174 if (isymbuf[i].st_shndx != SHN_UNDEF)
7175 *ind++ = &isymbuf[i];
7176 indbufend = ind;
7177
7178 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7179 elf_sort_elf_symbol);
7180
7181 shndx_count = 0;
7182 if (indbufend > indbuf)
7183 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7184 if (ind[0]->st_shndx != ind[1]->st_shndx)
7185 shndx_count++;
7186
7187 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7188 + (indbufend - indbuf) * sizeof (*ssym));
7189 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7190 if (ssymbuf == NULL)
7191 {
7192 free (indbuf);
7193 return NULL;
7194 }
7195
7196 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7197 ssymbuf->ssym = NULL;
7198 ssymbuf->count = shndx_count;
7199 ssymbuf->st_shndx = 0;
7200 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7201 {
7202 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7203 {
7204 ssymhead++;
7205 ssymhead->ssym = ssym;
7206 ssymhead->count = 0;
7207 ssymhead->st_shndx = (*ind)->st_shndx;
7208 }
7209 ssym->st_name = (*ind)->st_name;
7210 ssym->st_info = (*ind)->st_info;
7211 ssym->st_other = (*ind)->st_other;
7212 ssymhead->count++;
7213 }
7214 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7215 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7216 == total_size));
7217
7218 free (indbuf);
7219 return ssymbuf;
7220 }
7221
7222 /* Check if 2 sections define the same set of local and global
7223 symbols. */
7224
7225 static bfd_boolean
7226 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7227 struct bfd_link_info *info)
7228 {
7229 bfd *bfd1, *bfd2;
7230 const struct elf_backend_data *bed1, *bed2;
7231 Elf_Internal_Shdr *hdr1, *hdr2;
7232 bfd_size_type symcount1, symcount2;
7233 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7234 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7235 Elf_Internal_Sym *isym, *isymend;
7236 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7237 bfd_size_type count1, count2, i;
7238 unsigned int shndx1, shndx2;
7239 bfd_boolean result;
7240
7241 bfd1 = sec1->owner;
7242 bfd2 = sec2->owner;
7243
7244 /* Both sections have to be in ELF. */
7245 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7246 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7247 return FALSE;
7248
7249 if (elf_section_type (sec1) != elf_section_type (sec2))
7250 return FALSE;
7251
7252 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7253 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7254 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7255 return FALSE;
7256
7257 bed1 = get_elf_backend_data (bfd1);
7258 bed2 = get_elf_backend_data (bfd2);
7259 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7260 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7261 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7262 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7263
7264 if (symcount1 == 0 || symcount2 == 0)
7265 return FALSE;
7266
7267 result = FALSE;
7268 isymbuf1 = NULL;
7269 isymbuf2 = NULL;
7270 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7271 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7272
7273 if (ssymbuf1 == NULL)
7274 {
7275 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7276 NULL, NULL, NULL);
7277 if (isymbuf1 == NULL)
7278 goto done;
7279
7280 if (!info->reduce_memory_overheads)
7281 elf_tdata (bfd1)->symbuf = ssymbuf1
7282 = elf_create_symbuf (symcount1, isymbuf1);
7283 }
7284
7285 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7286 {
7287 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7288 NULL, NULL, NULL);
7289 if (isymbuf2 == NULL)
7290 goto done;
7291
7292 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7293 elf_tdata (bfd2)->symbuf = ssymbuf2
7294 = elf_create_symbuf (symcount2, isymbuf2);
7295 }
7296
7297 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7298 {
7299 /* Optimized faster version. */
7300 bfd_size_type lo, hi, mid;
7301 struct elf_symbol *symp;
7302 struct elf_symbuf_symbol *ssym, *ssymend;
7303
7304 lo = 0;
7305 hi = ssymbuf1->count;
7306 ssymbuf1++;
7307 count1 = 0;
7308 while (lo < hi)
7309 {
7310 mid = (lo + hi) / 2;
7311 if (shndx1 < ssymbuf1[mid].st_shndx)
7312 hi = mid;
7313 else if (shndx1 > ssymbuf1[mid].st_shndx)
7314 lo = mid + 1;
7315 else
7316 {
7317 count1 = ssymbuf1[mid].count;
7318 ssymbuf1 += mid;
7319 break;
7320 }
7321 }
7322
7323 lo = 0;
7324 hi = ssymbuf2->count;
7325 ssymbuf2++;
7326 count2 = 0;
7327 while (lo < hi)
7328 {
7329 mid = (lo + hi) / 2;
7330 if (shndx2 < ssymbuf2[mid].st_shndx)
7331 hi = mid;
7332 else if (shndx2 > ssymbuf2[mid].st_shndx)
7333 lo = mid + 1;
7334 else
7335 {
7336 count2 = ssymbuf2[mid].count;
7337 ssymbuf2 += mid;
7338 break;
7339 }
7340 }
7341
7342 if (count1 == 0 || count2 == 0 || count1 != count2)
7343 goto done;
7344
7345 symtable1 = (struct elf_symbol *)
7346 bfd_malloc (count1 * sizeof (struct elf_symbol));
7347 symtable2 = (struct elf_symbol *)
7348 bfd_malloc (count2 * sizeof (struct elf_symbol));
7349 if (symtable1 == NULL || symtable2 == NULL)
7350 goto done;
7351
7352 symp = symtable1;
7353 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7354 ssym < ssymend; ssym++, symp++)
7355 {
7356 symp->u.ssym = ssym;
7357 symp->name = bfd_elf_string_from_elf_section (bfd1,
7358 hdr1->sh_link,
7359 ssym->st_name);
7360 }
7361
7362 symp = symtable2;
7363 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7364 ssym < ssymend; ssym++, symp++)
7365 {
7366 symp->u.ssym = ssym;
7367 symp->name = bfd_elf_string_from_elf_section (bfd2,
7368 hdr2->sh_link,
7369 ssym->st_name);
7370 }
7371
7372 /* Sort symbol by name. */
7373 qsort (symtable1, count1, sizeof (struct elf_symbol),
7374 elf_sym_name_compare);
7375 qsort (symtable2, count1, sizeof (struct elf_symbol),
7376 elf_sym_name_compare);
7377
7378 for (i = 0; i < count1; i++)
7379 /* Two symbols must have the same binding, type and name. */
7380 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7381 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7382 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7383 goto done;
7384
7385 result = TRUE;
7386 goto done;
7387 }
7388
7389 symtable1 = (struct elf_symbol *)
7390 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7391 symtable2 = (struct elf_symbol *)
7392 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7393 if (symtable1 == NULL || symtable2 == NULL)
7394 goto done;
7395
7396 /* Count definitions in the section. */
7397 count1 = 0;
7398 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7399 if (isym->st_shndx == shndx1)
7400 symtable1[count1++].u.isym = isym;
7401
7402 count2 = 0;
7403 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7404 if (isym->st_shndx == shndx2)
7405 symtable2[count2++].u.isym = isym;
7406
7407 if (count1 == 0 || count2 == 0 || count1 != count2)
7408 goto done;
7409
7410 for (i = 0; i < count1; i++)
7411 symtable1[i].name
7412 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7413 symtable1[i].u.isym->st_name);
7414
7415 for (i = 0; i < count2; i++)
7416 symtable2[i].name
7417 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7418 symtable2[i].u.isym->st_name);
7419
7420 /* Sort symbol by name. */
7421 qsort (symtable1, count1, sizeof (struct elf_symbol),
7422 elf_sym_name_compare);
7423 qsort (symtable2, count1, sizeof (struct elf_symbol),
7424 elf_sym_name_compare);
7425
7426 for (i = 0; i < count1; i++)
7427 /* Two symbols must have the same binding, type and name. */
7428 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7429 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7430 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7431 goto done;
7432
7433 result = TRUE;
7434
7435 done:
7436 if (symtable1)
7437 free (symtable1);
7438 if (symtable2)
7439 free (symtable2);
7440 if (isymbuf1)
7441 free (isymbuf1);
7442 if (isymbuf2)
7443 free (isymbuf2);
7444
7445 return result;
7446 }
7447
7448 /* Return TRUE if 2 section types are compatible. */
7449
7450 bfd_boolean
7451 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7452 bfd *bbfd, const asection *bsec)
7453 {
7454 if (asec == NULL
7455 || bsec == NULL
7456 || abfd->xvec->flavour != bfd_target_elf_flavour
7457 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7458 return TRUE;
7459
7460 return elf_section_type (asec) == elf_section_type (bsec);
7461 }
7462 \f
7463 /* Final phase of ELF linker. */
7464
7465 /* A structure we use to avoid passing large numbers of arguments. */
7466
7467 struct elf_final_link_info
7468 {
7469 /* General link information. */
7470 struct bfd_link_info *info;
7471 /* Output BFD. */
7472 bfd *output_bfd;
7473 /* Symbol string table. */
7474 struct bfd_strtab_hash *symstrtab;
7475 /* .dynsym section. */
7476 asection *dynsym_sec;
7477 /* .hash section. */
7478 asection *hash_sec;
7479 /* symbol version section (.gnu.version). */
7480 asection *symver_sec;
7481 /* Buffer large enough to hold contents of any section. */
7482 bfd_byte *contents;
7483 /* Buffer large enough to hold external relocs of any section. */
7484 void *external_relocs;
7485 /* Buffer large enough to hold internal relocs of any section. */
7486 Elf_Internal_Rela *internal_relocs;
7487 /* Buffer large enough to hold external local symbols of any input
7488 BFD. */
7489 bfd_byte *external_syms;
7490 /* And a buffer for symbol section indices. */
7491 Elf_External_Sym_Shndx *locsym_shndx;
7492 /* Buffer large enough to hold internal local symbols of any input
7493 BFD. */
7494 Elf_Internal_Sym *internal_syms;
7495 /* Array large enough to hold a symbol index for each local symbol
7496 of any input BFD. */
7497 long *indices;
7498 /* Array large enough to hold a section pointer for each local
7499 symbol of any input BFD. */
7500 asection **sections;
7501 /* Buffer to hold swapped out symbols. */
7502 bfd_byte *symbuf;
7503 /* And one for symbol section indices. */
7504 Elf_External_Sym_Shndx *symshndxbuf;
7505 /* Number of swapped out symbols in buffer. */
7506 size_t symbuf_count;
7507 /* Number of symbols which fit in symbuf. */
7508 size_t symbuf_size;
7509 /* And same for symshndxbuf. */
7510 size_t shndxbuf_size;
7511 /* Number of STT_FILE syms seen. */
7512 size_t filesym_count;
7513 };
7514
7515 /* This struct is used to pass information to elf_link_output_extsym. */
7516
7517 struct elf_outext_info
7518 {
7519 bfd_boolean failed;
7520 bfd_boolean localsyms;
7521 bfd_boolean need_second_pass;
7522 bfd_boolean second_pass;
7523 struct elf_final_link_info *flinfo;
7524 };
7525
7526
7527 /* Support for evaluating a complex relocation.
7528
7529 Complex relocations are generalized, self-describing relocations. The
7530 implementation of them consists of two parts: complex symbols, and the
7531 relocations themselves.
7532
7533 The relocations are use a reserved elf-wide relocation type code (R_RELC
7534 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7535 information (start bit, end bit, word width, etc) into the addend. This
7536 information is extracted from CGEN-generated operand tables within gas.
7537
7538 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7539 internal) representing prefix-notation expressions, including but not
7540 limited to those sorts of expressions normally encoded as addends in the
7541 addend field. The symbol mangling format is:
7542
7543 <node> := <literal>
7544 | <unary-operator> ':' <node>
7545 | <binary-operator> ':' <node> ':' <node>
7546 ;
7547
7548 <literal> := 's' <digits=N> ':' <N character symbol name>
7549 | 'S' <digits=N> ':' <N character section name>
7550 | '#' <hexdigits>
7551 ;
7552
7553 <binary-operator> := as in C
7554 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7555
7556 static void
7557 set_symbol_value (bfd *bfd_with_globals,
7558 Elf_Internal_Sym *isymbuf,
7559 size_t locsymcount,
7560 size_t symidx,
7561 bfd_vma val)
7562 {
7563 struct elf_link_hash_entry **sym_hashes;
7564 struct elf_link_hash_entry *h;
7565 size_t extsymoff = locsymcount;
7566
7567 if (symidx < locsymcount)
7568 {
7569 Elf_Internal_Sym *sym;
7570
7571 sym = isymbuf + symidx;
7572 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7573 {
7574 /* It is a local symbol: move it to the
7575 "absolute" section and give it a value. */
7576 sym->st_shndx = SHN_ABS;
7577 sym->st_value = val;
7578 return;
7579 }
7580 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7581 extsymoff = 0;
7582 }
7583
7584 /* It is a global symbol: set its link type
7585 to "defined" and give it a value. */
7586
7587 sym_hashes = elf_sym_hashes (bfd_with_globals);
7588 h = sym_hashes [symidx - extsymoff];
7589 while (h->root.type == bfd_link_hash_indirect
7590 || h->root.type == bfd_link_hash_warning)
7591 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7592 h->root.type = bfd_link_hash_defined;
7593 h->root.u.def.value = val;
7594 h->root.u.def.section = bfd_abs_section_ptr;
7595 }
7596
7597 static bfd_boolean
7598 resolve_symbol (const char *name,
7599 bfd *input_bfd,
7600 struct elf_final_link_info *flinfo,
7601 bfd_vma *result,
7602 Elf_Internal_Sym *isymbuf,
7603 size_t locsymcount)
7604 {
7605 Elf_Internal_Sym *sym;
7606 struct bfd_link_hash_entry *global_entry;
7607 const char *candidate = NULL;
7608 Elf_Internal_Shdr *symtab_hdr;
7609 size_t i;
7610
7611 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7612
7613 for (i = 0; i < locsymcount; ++ i)
7614 {
7615 sym = isymbuf + i;
7616
7617 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7618 continue;
7619
7620 candidate = bfd_elf_string_from_elf_section (input_bfd,
7621 symtab_hdr->sh_link,
7622 sym->st_name);
7623 #ifdef DEBUG
7624 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7625 name, candidate, (unsigned long) sym->st_value);
7626 #endif
7627 if (candidate && strcmp (candidate, name) == 0)
7628 {
7629 asection *sec = flinfo->sections [i];
7630
7631 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7632 *result += sec->output_offset + sec->output_section->vma;
7633 #ifdef DEBUG
7634 printf ("Found symbol with value %8.8lx\n",
7635 (unsigned long) *result);
7636 #endif
7637 return TRUE;
7638 }
7639 }
7640
7641 /* Hmm, haven't found it yet. perhaps it is a global. */
7642 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7643 FALSE, FALSE, TRUE);
7644 if (!global_entry)
7645 return FALSE;
7646
7647 if (global_entry->type == bfd_link_hash_defined
7648 || global_entry->type == bfd_link_hash_defweak)
7649 {
7650 *result = (global_entry->u.def.value
7651 + global_entry->u.def.section->output_section->vma
7652 + global_entry->u.def.section->output_offset);
7653 #ifdef DEBUG
7654 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7655 global_entry->root.string, (unsigned long) *result);
7656 #endif
7657 return TRUE;
7658 }
7659
7660 return FALSE;
7661 }
7662
7663 static bfd_boolean
7664 resolve_section (const char *name,
7665 asection *sections,
7666 bfd_vma *result)
7667 {
7668 asection *curr;
7669 unsigned int len;
7670
7671 for (curr = sections; curr; curr = curr->next)
7672 if (strcmp (curr->name, name) == 0)
7673 {
7674 *result = curr->vma;
7675 return TRUE;
7676 }
7677
7678 /* Hmm. still haven't found it. try pseudo-section names. */
7679 for (curr = sections; curr; curr = curr->next)
7680 {
7681 len = strlen (curr->name);
7682 if (len > strlen (name))
7683 continue;
7684
7685 if (strncmp (curr->name, name, len) == 0)
7686 {
7687 if (strncmp (".end", name + len, 4) == 0)
7688 {
7689 *result = curr->vma + curr->size;
7690 return TRUE;
7691 }
7692
7693 /* Insert more pseudo-section names here, if you like. */
7694 }
7695 }
7696
7697 return FALSE;
7698 }
7699
7700 static void
7701 undefined_reference (const char *reftype, const char *name)
7702 {
7703 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7704 reftype, name);
7705 }
7706
7707 static bfd_boolean
7708 eval_symbol (bfd_vma *result,
7709 const char **symp,
7710 bfd *input_bfd,
7711 struct elf_final_link_info *flinfo,
7712 bfd_vma dot,
7713 Elf_Internal_Sym *isymbuf,
7714 size_t locsymcount,
7715 int signed_p)
7716 {
7717 size_t len;
7718 size_t symlen;
7719 bfd_vma a;
7720 bfd_vma b;
7721 char symbuf[4096];
7722 const char *sym = *symp;
7723 const char *symend;
7724 bfd_boolean symbol_is_section = FALSE;
7725
7726 len = strlen (sym);
7727 symend = sym + len;
7728
7729 if (len < 1 || len > sizeof (symbuf))
7730 {
7731 bfd_set_error (bfd_error_invalid_operation);
7732 return FALSE;
7733 }
7734
7735 switch (* sym)
7736 {
7737 case '.':
7738 *result = dot;
7739 *symp = sym + 1;
7740 return TRUE;
7741
7742 case '#':
7743 ++sym;
7744 *result = strtoul (sym, (char **) symp, 16);
7745 return TRUE;
7746
7747 case 'S':
7748 symbol_is_section = TRUE;
7749 case 's':
7750 ++sym;
7751 symlen = strtol (sym, (char **) symp, 10);
7752 sym = *symp + 1; /* Skip the trailing ':'. */
7753
7754 if (symend < sym || symlen + 1 > sizeof (symbuf))
7755 {
7756 bfd_set_error (bfd_error_invalid_operation);
7757 return FALSE;
7758 }
7759
7760 memcpy (symbuf, sym, symlen);
7761 symbuf[symlen] = '\0';
7762 *symp = sym + symlen;
7763
7764 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7765 the symbol as a section, or vice-versa. so we're pretty liberal in our
7766 interpretation here; section means "try section first", not "must be a
7767 section", and likewise with symbol. */
7768
7769 if (symbol_is_section)
7770 {
7771 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7772 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7773 isymbuf, locsymcount))
7774 {
7775 undefined_reference ("section", symbuf);
7776 return FALSE;
7777 }
7778 }
7779 else
7780 {
7781 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7782 isymbuf, locsymcount)
7783 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7784 result))
7785 {
7786 undefined_reference ("symbol", symbuf);
7787 return FALSE;
7788 }
7789 }
7790
7791 return TRUE;
7792
7793 /* All that remains are operators. */
7794
7795 #define UNARY_OP(op) \
7796 if (strncmp (sym, #op, strlen (#op)) == 0) \
7797 { \
7798 sym += strlen (#op); \
7799 if (*sym == ':') \
7800 ++sym; \
7801 *symp = sym; \
7802 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7803 isymbuf, locsymcount, signed_p)) \
7804 return FALSE; \
7805 if (signed_p) \
7806 *result = op ((bfd_signed_vma) a); \
7807 else \
7808 *result = op a; \
7809 return TRUE; \
7810 }
7811
7812 #define BINARY_OP(op) \
7813 if (strncmp (sym, #op, strlen (#op)) == 0) \
7814 { \
7815 sym += strlen (#op); \
7816 if (*sym == ':') \
7817 ++sym; \
7818 *symp = sym; \
7819 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7820 isymbuf, locsymcount, signed_p)) \
7821 return FALSE; \
7822 ++*symp; \
7823 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7824 isymbuf, locsymcount, signed_p)) \
7825 return FALSE; \
7826 if (signed_p) \
7827 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7828 else \
7829 *result = a op b; \
7830 return TRUE; \
7831 }
7832
7833 default:
7834 UNARY_OP (0-);
7835 BINARY_OP (<<);
7836 BINARY_OP (>>);
7837 BINARY_OP (==);
7838 BINARY_OP (!=);
7839 BINARY_OP (<=);
7840 BINARY_OP (>=);
7841 BINARY_OP (&&);
7842 BINARY_OP (||);
7843 UNARY_OP (~);
7844 UNARY_OP (!);
7845 BINARY_OP (*);
7846 BINARY_OP (/);
7847 BINARY_OP (%);
7848 BINARY_OP (^);
7849 BINARY_OP (|);
7850 BINARY_OP (&);
7851 BINARY_OP (+);
7852 BINARY_OP (-);
7853 BINARY_OP (<);
7854 BINARY_OP (>);
7855 #undef UNARY_OP
7856 #undef BINARY_OP
7857 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7858 bfd_set_error (bfd_error_invalid_operation);
7859 return FALSE;
7860 }
7861 }
7862
7863 static void
7864 put_value (bfd_vma size,
7865 unsigned long chunksz,
7866 bfd *input_bfd,
7867 bfd_vma x,
7868 bfd_byte *location)
7869 {
7870 location += (size - chunksz);
7871
7872 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7873 {
7874 switch (chunksz)
7875 {
7876 default:
7877 case 0:
7878 abort ();
7879 case 1:
7880 bfd_put_8 (input_bfd, x, location);
7881 break;
7882 case 2:
7883 bfd_put_16 (input_bfd, x, location);
7884 break;
7885 case 4:
7886 bfd_put_32 (input_bfd, x, location);
7887 break;
7888 case 8:
7889 #ifdef BFD64
7890 bfd_put_64 (input_bfd, x, location);
7891 #else
7892 abort ();
7893 #endif
7894 break;
7895 }
7896 }
7897 }
7898
7899 static bfd_vma
7900 get_value (bfd_vma size,
7901 unsigned long chunksz,
7902 bfd *input_bfd,
7903 bfd_byte *location)
7904 {
7905 int shift;
7906 bfd_vma x = 0;
7907
7908 /* Sanity checks. */
7909 BFD_ASSERT (chunksz <= sizeof (x)
7910 && size >= chunksz
7911 && chunksz != 0
7912 && (size % chunksz) == 0
7913 && input_bfd != NULL
7914 && location != NULL);
7915
7916 if (chunksz == sizeof (x))
7917 {
7918 BFD_ASSERT (size == chunksz);
7919
7920 /* Make sure that we do not perform an undefined shift operation.
7921 We know that size == chunksz so there will only be one iteration
7922 of the loop below. */
7923 shift = 0;
7924 }
7925 else
7926 shift = 8 * chunksz;
7927
7928 for (; size; size -= chunksz, location += chunksz)
7929 {
7930 switch (chunksz)
7931 {
7932 case 1:
7933 x = (x << shift) | bfd_get_8 (input_bfd, location);
7934 break;
7935 case 2:
7936 x = (x << shift) | bfd_get_16 (input_bfd, location);
7937 break;
7938 case 4:
7939 x = (x << shift) | bfd_get_32 (input_bfd, location);
7940 break;
7941 #ifdef BFD64
7942 case 8:
7943 x = (x << shift) | bfd_get_64 (input_bfd, location);
7944 break;
7945 #endif
7946 default:
7947 abort ();
7948 }
7949 }
7950 return x;
7951 }
7952
7953 static void
7954 decode_complex_addend (unsigned long *start, /* in bits */
7955 unsigned long *oplen, /* in bits */
7956 unsigned long *len, /* in bits */
7957 unsigned long *wordsz, /* in bytes */
7958 unsigned long *chunksz, /* in bytes */
7959 unsigned long *lsb0_p,
7960 unsigned long *signed_p,
7961 unsigned long *trunc_p,
7962 unsigned long encoded)
7963 {
7964 * start = encoded & 0x3F;
7965 * len = (encoded >> 6) & 0x3F;
7966 * oplen = (encoded >> 12) & 0x3F;
7967 * wordsz = (encoded >> 18) & 0xF;
7968 * chunksz = (encoded >> 22) & 0xF;
7969 * lsb0_p = (encoded >> 27) & 1;
7970 * signed_p = (encoded >> 28) & 1;
7971 * trunc_p = (encoded >> 29) & 1;
7972 }
7973
7974 bfd_reloc_status_type
7975 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7976 asection *input_section ATTRIBUTE_UNUSED,
7977 bfd_byte *contents,
7978 Elf_Internal_Rela *rel,
7979 bfd_vma relocation)
7980 {
7981 bfd_vma shift, x, mask;
7982 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7983 bfd_reloc_status_type r;
7984
7985 /* Perform this reloc, since it is complex.
7986 (this is not to say that it necessarily refers to a complex
7987 symbol; merely that it is a self-describing CGEN based reloc.
7988 i.e. the addend has the complete reloc information (bit start, end,
7989 word size, etc) encoded within it.). */
7990
7991 decode_complex_addend (&start, &oplen, &len, &wordsz,
7992 &chunksz, &lsb0_p, &signed_p,
7993 &trunc_p, rel->r_addend);
7994
7995 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7996
7997 if (lsb0_p)
7998 shift = (start + 1) - len;
7999 else
8000 shift = (8 * wordsz) - (start + len);
8001
8002 /* FIXME: octets_per_byte. */
8003 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8004
8005 #ifdef DEBUG
8006 printf ("Doing complex reloc: "
8007 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8008 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8009 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8010 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8011 oplen, (unsigned long) x, (unsigned long) mask,
8012 (unsigned long) relocation);
8013 #endif
8014
8015 r = bfd_reloc_ok;
8016 if (! trunc_p)
8017 /* Now do an overflow check. */
8018 r = bfd_check_overflow ((signed_p
8019 ? complain_overflow_signed
8020 : complain_overflow_unsigned),
8021 len, 0, (8 * wordsz),
8022 relocation);
8023
8024 /* Do the deed. */
8025 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8026
8027 #ifdef DEBUG
8028 printf (" relocation: %8.8lx\n"
8029 " shifted mask: %8.8lx\n"
8030 " shifted/masked reloc: %8.8lx\n"
8031 " result: %8.8lx\n",
8032 (unsigned long) relocation, (unsigned long) (mask << shift),
8033 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8034 #endif
8035 /* FIXME: octets_per_byte. */
8036 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8037 return r;
8038 }
8039
8040 /* When performing a relocatable link, the input relocations are
8041 preserved. But, if they reference global symbols, the indices
8042 referenced must be updated. Update all the relocations found in
8043 RELDATA. */
8044
8045 static void
8046 elf_link_adjust_relocs (bfd *abfd,
8047 struct bfd_elf_section_reloc_data *reldata)
8048 {
8049 unsigned int i;
8050 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8051 bfd_byte *erela;
8052 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8053 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8054 bfd_vma r_type_mask;
8055 int r_sym_shift;
8056 unsigned int count = reldata->count;
8057 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8058
8059 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8060 {
8061 swap_in = bed->s->swap_reloc_in;
8062 swap_out = bed->s->swap_reloc_out;
8063 }
8064 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8065 {
8066 swap_in = bed->s->swap_reloca_in;
8067 swap_out = bed->s->swap_reloca_out;
8068 }
8069 else
8070 abort ();
8071
8072 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8073 abort ();
8074
8075 if (bed->s->arch_size == 32)
8076 {
8077 r_type_mask = 0xff;
8078 r_sym_shift = 8;
8079 }
8080 else
8081 {
8082 r_type_mask = 0xffffffff;
8083 r_sym_shift = 32;
8084 }
8085
8086 erela = reldata->hdr->contents;
8087 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8088 {
8089 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8090 unsigned int j;
8091
8092 if (*rel_hash == NULL)
8093 continue;
8094
8095 BFD_ASSERT ((*rel_hash)->indx >= 0);
8096
8097 (*swap_in) (abfd, erela, irela);
8098 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8099 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8100 | (irela[j].r_info & r_type_mask));
8101 (*swap_out) (abfd, irela, erela);
8102 }
8103 }
8104
8105 struct elf_link_sort_rela
8106 {
8107 union {
8108 bfd_vma offset;
8109 bfd_vma sym_mask;
8110 } u;
8111 enum elf_reloc_type_class type;
8112 /* We use this as an array of size int_rels_per_ext_rel. */
8113 Elf_Internal_Rela rela[1];
8114 };
8115
8116 static int
8117 elf_link_sort_cmp1 (const void *A, const void *B)
8118 {
8119 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8120 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8121 int relativea, relativeb;
8122
8123 relativea = a->type == reloc_class_relative;
8124 relativeb = b->type == reloc_class_relative;
8125
8126 if (relativea < relativeb)
8127 return 1;
8128 if (relativea > relativeb)
8129 return -1;
8130 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8131 return -1;
8132 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8133 return 1;
8134 if (a->rela->r_offset < b->rela->r_offset)
8135 return -1;
8136 if (a->rela->r_offset > b->rela->r_offset)
8137 return 1;
8138 return 0;
8139 }
8140
8141 static int
8142 elf_link_sort_cmp2 (const void *A, const void *B)
8143 {
8144 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8145 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8146 int copya, copyb;
8147
8148 if (a->u.offset < b->u.offset)
8149 return -1;
8150 if (a->u.offset > b->u.offset)
8151 return 1;
8152 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8153 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8154 if (copya < copyb)
8155 return -1;
8156 if (copya > copyb)
8157 return 1;
8158 if (a->rela->r_offset < b->rela->r_offset)
8159 return -1;
8160 if (a->rela->r_offset > b->rela->r_offset)
8161 return 1;
8162 return 0;
8163 }
8164
8165 static size_t
8166 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8167 {
8168 asection *dynamic_relocs;
8169 asection *rela_dyn;
8170 asection *rel_dyn;
8171 bfd_size_type count, size;
8172 size_t i, ret, sort_elt, ext_size;
8173 bfd_byte *sort, *s_non_relative, *p;
8174 struct elf_link_sort_rela *sq;
8175 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8176 int i2e = bed->s->int_rels_per_ext_rel;
8177 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8178 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8179 struct bfd_link_order *lo;
8180 bfd_vma r_sym_mask;
8181 bfd_boolean use_rela;
8182
8183 /* Find a dynamic reloc section. */
8184 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8185 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8186 if (rela_dyn != NULL && rela_dyn->size > 0
8187 && rel_dyn != NULL && rel_dyn->size > 0)
8188 {
8189 bfd_boolean use_rela_initialised = FALSE;
8190
8191 /* This is just here to stop gcc from complaining.
8192 It's initialization checking code is not perfect. */
8193 use_rela = TRUE;
8194
8195 /* Both sections are present. Examine the sizes
8196 of the indirect sections to help us choose. */
8197 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8198 if (lo->type == bfd_indirect_link_order)
8199 {
8200 asection *o = lo->u.indirect.section;
8201
8202 if ((o->size % bed->s->sizeof_rela) == 0)
8203 {
8204 if ((o->size % bed->s->sizeof_rel) == 0)
8205 /* Section size is divisible by both rel and rela sizes.
8206 It is of no help to us. */
8207 ;
8208 else
8209 {
8210 /* Section size is only divisible by rela. */
8211 if (use_rela_initialised && (use_rela == FALSE))
8212 {
8213 _bfd_error_handler
8214 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8215 bfd_set_error (bfd_error_invalid_operation);
8216 return 0;
8217 }
8218 else
8219 {
8220 use_rela = TRUE;
8221 use_rela_initialised = TRUE;
8222 }
8223 }
8224 }
8225 else if ((o->size % bed->s->sizeof_rel) == 0)
8226 {
8227 /* Section size is only divisible by rel. */
8228 if (use_rela_initialised && (use_rela == TRUE))
8229 {
8230 _bfd_error_handler
8231 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8232 bfd_set_error (bfd_error_invalid_operation);
8233 return 0;
8234 }
8235 else
8236 {
8237 use_rela = FALSE;
8238 use_rela_initialised = TRUE;
8239 }
8240 }
8241 else
8242 {
8243 /* The section size is not divisible by either - something is wrong. */
8244 _bfd_error_handler
8245 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8246 bfd_set_error (bfd_error_invalid_operation);
8247 return 0;
8248 }
8249 }
8250
8251 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8252 if (lo->type == bfd_indirect_link_order)
8253 {
8254 asection *o = lo->u.indirect.section;
8255
8256 if ((o->size % bed->s->sizeof_rela) == 0)
8257 {
8258 if ((o->size % bed->s->sizeof_rel) == 0)
8259 /* Section size is divisible by both rel and rela sizes.
8260 It is of no help to us. */
8261 ;
8262 else
8263 {
8264 /* Section size is only divisible by rela. */
8265 if (use_rela_initialised && (use_rela == FALSE))
8266 {
8267 _bfd_error_handler
8268 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8269 bfd_set_error (bfd_error_invalid_operation);
8270 return 0;
8271 }
8272 else
8273 {
8274 use_rela = TRUE;
8275 use_rela_initialised = TRUE;
8276 }
8277 }
8278 }
8279 else if ((o->size % bed->s->sizeof_rel) == 0)
8280 {
8281 /* Section size is only divisible by rel. */
8282 if (use_rela_initialised && (use_rela == TRUE))
8283 {
8284 _bfd_error_handler
8285 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8286 bfd_set_error (bfd_error_invalid_operation);
8287 return 0;
8288 }
8289 else
8290 {
8291 use_rela = FALSE;
8292 use_rela_initialised = TRUE;
8293 }
8294 }
8295 else
8296 {
8297 /* The section size is not divisible by either - something is wrong. */
8298 _bfd_error_handler
8299 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8300 bfd_set_error (bfd_error_invalid_operation);
8301 return 0;
8302 }
8303 }
8304
8305 if (! use_rela_initialised)
8306 /* Make a guess. */
8307 use_rela = TRUE;
8308 }
8309 else if (rela_dyn != NULL && rela_dyn->size > 0)
8310 use_rela = TRUE;
8311 else if (rel_dyn != NULL && rel_dyn->size > 0)
8312 use_rela = FALSE;
8313 else
8314 return 0;
8315
8316 if (use_rela)
8317 {
8318 dynamic_relocs = rela_dyn;
8319 ext_size = bed->s->sizeof_rela;
8320 swap_in = bed->s->swap_reloca_in;
8321 swap_out = bed->s->swap_reloca_out;
8322 }
8323 else
8324 {
8325 dynamic_relocs = rel_dyn;
8326 ext_size = bed->s->sizeof_rel;
8327 swap_in = bed->s->swap_reloc_in;
8328 swap_out = bed->s->swap_reloc_out;
8329 }
8330
8331 size = 0;
8332 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8333 if (lo->type == bfd_indirect_link_order)
8334 size += lo->u.indirect.section->size;
8335
8336 if (size != dynamic_relocs->size)
8337 return 0;
8338
8339 sort_elt = (sizeof (struct elf_link_sort_rela)
8340 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8341
8342 count = dynamic_relocs->size / ext_size;
8343 if (count == 0)
8344 return 0;
8345 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8346
8347 if (sort == NULL)
8348 {
8349 (*info->callbacks->warning)
8350 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8351 return 0;
8352 }
8353
8354 if (bed->s->arch_size == 32)
8355 r_sym_mask = ~(bfd_vma) 0xff;
8356 else
8357 r_sym_mask = ~(bfd_vma) 0xffffffff;
8358
8359 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8360 if (lo->type == bfd_indirect_link_order)
8361 {
8362 bfd_byte *erel, *erelend;
8363 asection *o = lo->u.indirect.section;
8364
8365 if (o->contents == NULL && o->size != 0)
8366 {
8367 /* This is a reloc section that is being handled as a normal
8368 section. See bfd_section_from_shdr. We can't combine
8369 relocs in this case. */
8370 free (sort);
8371 return 0;
8372 }
8373 erel = o->contents;
8374 erelend = o->contents + o->size;
8375 /* FIXME: octets_per_byte. */
8376 p = sort + o->output_offset / ext_size * sort_elt;
8377
8378 while (erel < erelend)
8379 {
8380 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8381
8382 (*swap_in) (abfd, erel, s->rela);
8383 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8384 s->u.sym_mask = r_sym_mask;
8385 p += sort_elt;
8386 erel += ext_size;
8387 }
8388 }
8389
8390 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8391
8392 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8393 {
8394 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8395 if (s->type != reloc_class_relative)
8396 break;
8397 }
8398 ret = i;
8399 s_non_relative = p;
8400
8401 sq = (struct elf_link_sort_rela *) s_non_relative;
8402 for (; i < count; i++, p += sort_elt)
8403 {
8404 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8405 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8406 sq = sp;
8407 sp->u.offset = sq->rela->r_offset;
8408 }
8409
8410 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8411
8412 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8413 if (lo->type == bfd_indirect_link_order)
8414 {
8415 bfd_byte *erel, *erelend;
8416 asection *o = lo->u.indirect.section;
8417
8418 erel = o->contents;
8419 erelend = o->contents + o->size;
8420 /* FIXME: octets_per_byte. */
8421 p = sort + o->output_offset / ext_size * sort_elt;
8422 while (erel < erelend)
8423 {
8424 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8425 (*swap_out) (abfd, s->rela, erel);
8426 p += sort_elt;
8427 erel += ext_size;
8428 }
8429 }
8430
8431 free (sort);
8432 *psec = dynamic_relocs;
8433 return ret;
8434 }
8435
8436 /* Flush the output symbols to the file. */
8437
8438 static bfd_boolean
8439 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8440 const struct elf_backend_data *bed)
8441 {
8442 if (flinfo->symbuf_count > 0)
8443 {
8444 Elf_Internal_Shdr *hdr;
8445 file_ptr pos;
8446 bfd_size_type amt;
8447
8448 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8449 pos = hdr->sh_offset + hdr->sh_size;
8450 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8451 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8452 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8453 return FALSE;
8454
8455 hdr->sh_size += amt;
8456 flinfo->symbuf_count = 0;
8457 }
8458
8459 return TRUE;
8460 }
8461
8462 /* Add a symbol to the output symbol table. */
8463
8464 static int
8465 elf_link_output_sym (struct elf_final_link_info *flinfo,
8466 const char *name,
8467 Elf_Internal_Sym *elfsym,
8468 asection *input_sec,
8469 struct elf_link_hash_entry *h)
8470 {
8471 bfd_byte *dest;
8472 Elf_External_Sym_Shndx *destshndx;
8473 int (*output_symbol_hook)
8474 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8475 struct elf_link_hash_entry *);
8476 const struct elf_backend_data *bed;
8477
8478 bed = get_elf_backend_data (flinfo->output_bfd);
8479 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8480 if (output_symbol_hook != NULL)
8481 {
8482 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8483 if (ret != 1)
8484 return ret;
8485 }
8486
8487 if (name == NULL || *name == '\0')
8488 elfsym->st_name = 0;
8489 else if (input_sec->flags & SEC_EXCLUDE)
8490 elfsym->st_name = 0;
8491 else
8492 {
8493 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8494 name, TRUE, FALSE);
8495 if (elfsym->st_name == (unsigned long) -1)
8496 return 0;
8497 }
8498
8499 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8500 {
8501 if (! elf_link_flush_output_syms (flinfo, bed))
8502 return 0;
8503 }
8504
8505 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8506 destshndx = flinfo->symshndxbuf;
8507 if (destshndx != NULL)
8508 {
8509 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8510 {
8511 bfd_size_type amt;
8512
8513 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8514 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8515 amt * 2);
8516 if (destshndx == NULL)
8517 return 0;
8518 flinfo->symshndxbuf = destshndx;
8519 memset ((char *) destshndx + amt, 0, amt);
8520 flinfo->shndxbuf_size *= 2;
8521 }
8522 destshndx += bfd_get_symcount (flinfo->output_bfd);
8523 }
8524
8525 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8526 flinfo->symbuf_count += 1;
8527 bfd_get_symcount (flinfo->output_bfd) += 1;
8528
8529 return 1;
8530 }
8531
8532 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8533
8534 static bfd_boolean
8535 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8536 {
8537 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8538 && sym->st_shndx < SHN_LORESERVE)
8539 {
8540 /* The gABI doesn't support dynamic symbols in output sections
8541 beyond 64k. */
8542 (*_bfd_error_handler)
8543 (_("%B: Too many sections: %d (>= %d)"),
8544 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8545 bfd_set_error (bfd_error_nonrepresentable_section);
8546 return FALSE;
8547 }
8548 return TRUE;
8549 }
8550
8551 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8552 allowing an unsatisfied unversioned symbol in the DSO to match a
8553 versioned symbol that would normally require an explicit version.
8554 We also handle the case that a DSO references a hidden symbol
8555 which may be satisfied by a versioned symbol in another DSO. */
8556
8557 static bfd_boolean
8558 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8559 const struct elf_backend_data *bed,
8560 struct elf_link_hash_entry *h)
8561 {
8562 bfd *abfd;
8563 struct elf_link_loaded_list *loaded;
8564
8565 if (!is_elf_hash_table (info->hash))
8566 return FALSE;
8567
8568 /* Check indirect symbol. */
8569 while (h->root.type == bfd_link_hash_indirect)
8570 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8571
8572 switch (h->root.type)
8573 {
8574 default:
8575 abfd = NULL;
8576 break;
8577
8578 case bfd_link_hash_undefined:
8579 case bfd_link_hash_undefweak:
8580 abfd = h->root.u.undef.abfd;
8581 if ((abfd->flags & DYNAMIC) == 0
8582 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8583 return FALSE;
8584 break;
8585
8586 case bfd_link_hash_defined:
8587 case bfd_link_hash_defweak:
8588 abfd = h->root.u.def.section->owner;
8589 break;
8590
8591 case bfd_link_hash_common:
8592 abfd = h->root.u.c.p->section->owner;
8593 break;
8594 }
8595 BFD_ASSERT (abfd != NULL);
8596
8597 for (loaded = elf_hash_table (info)->loaded;
8598 loaded != NULL;
8599 loaded = loaded->next)
8600 {
8601 bfd *input;
8602 Elf_Internal_Shdr *hdr;
8603 bfd_size_type symcount;
8604 bfd_size_type extsymcount;
8605 bfd_size_type extsymoff;
8606 Elf_Internal_Shdr *versymhdr;
8607 Elf_Internal_Sym *isym;
8608 Elf_Internal_Sym *isymend;
8609 Elf_Internal_Sym *isymbuf;
8610 Elf_External_Versym *ever;
8611 Elf_External_Versym *extversym;
8612
8613 input = loaded->abfd;
8614
8615 /* We check each DSO for a possible hidden versioned definition. */
8616 if (input == abfd
8617 || (input->flags & DYNAMIC) == 0
8618 || elf_dynversym (input) == 0)
8619 continue;
8620
8621 hdr = &elf_tdata (input)->dynsymtab_hdr;
8622
8623 symcount = hdr->sh_size / bed->s->sizeof_sym;
8624 if (elf_bad_symtab (input))
8625 {
8626 extsymcount = symcount;
8627 extsymoff = 0;
8628 }
8629 else
8630 {
8631 extsymcount = symcount - hdr->sh_info;
8632 extsymoff = hdr->sh_info;
8633 }
8634
8635 if (extsymcount == 0)
8636 continue;
8637
8638 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8639 NULL, NULL, NULL);
8640 if (isymbuf == NULL)
8641 return FALSE;
8642
8643 /* Read in any version definitions. */
8644 versymhdr = &elf_tdata (input)->dynversym_hdr;
8645 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8646 if (extversym == NULL)
8647 goto error_ret;
8648
8649 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8650 || (bfd_bread (extversym, versymhdr->sh_size, input)
8651 != versymhdr->sh_size))
8652 {
8653 free (extversym);
8654 error_ret:
8655 free (isymbuf);
8656 return FALSE;
8657 }
8658
8659 ever = extversym + extsymoff;
8660 isymend = isymbuf + extsymcount;
8661 for (isym = isymbuf; isym < isymend; isym++, ever++)
8662 {
8663 const char *name;
8664 Elf_Internal_Versym iver;
8665 unsigned short version_index;
8666
8667 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8668 || isym->st_shndx == SHN_UNDEF)
8669 continue;
8670
8671 name = bfd_elf_string_from_elf_section (input,
8672 hdr->sh_link,
8673 isym->st_name);
8674 if (strcmp (name, h->root.root.string) != 0)
8675 continue;
8676
8677 _bfd_elf_swap_versym_in (input, ever, &iver);
8678
8679 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8680 && !(h->def_regular
8681 && h->forced_local))
8682 {
8683 /* If we have a non-hidden versioned sym, then it should
8684 have provided a definition for the undefined sym unless
8685 it is defined in a non-shared object and forced local.
8686 */
8687 abort ();
8688 }
8689
8690 version_index = iver.vs_vers & VERSYM_VERSION;
8691 if (version_index == 1 || version_index == 2)
8692 {
8693 /* This is the base or first version. We can use it. */
8694 free (extversym);
8695 free (isymbuf);
8696 return TRUE;
8697 }
8698 }
8699
8700 free (extversym);
8701 free (isymbuf);
8702 }
8703
8704 return FALSE;
8705 }
8706
8707 /* Add an external symbol to the symbol table. This is called from
8708 the hash table traversal routine. When generating a shared object,
8709 we go through the symbol table twice. The first time we output
8710 anything that might have been forced to local scope in a version
8711 script. The second time we output the symbols that are still
8712 global symbols. */
8713
8714 static bfd_boolean
8715 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8716 {
8717 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8718 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8719 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8720 bfd_boolean strip;
8721 Elf_Internal_Sym sym;
8722 asection *input_sec;
8723 const struct elf_backend_data *bed;
8724 long indx;
8725 int ret;
8726
8727 if (h->root.type == bfd_link_hash_warning)
8728 {
8729 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8730 if (h->root.type == bfd_link_hash_new)
8731 return TRUE;
8732 }
8733
8734 /* Decide whether to output this symbol in this pass. */
8735 if (eoinfo->localsyms)
8736 {
8737 if (!h->forced_local)
8738 return TRUE;
8739 if (eoinfo->second_pass
8740 && !((h->root.type == bfd_link_hash_defined
8741 || h->root.type == bfd_link_hash_defweak)
8742 && h->root.u.def.section->output_section != NULL))
8743 return TRUE;
8744 }
8745 else
8746 {
8747 if (h->forced_local)
8748 return TRUE;
8749 }
8750
8751 bed = get_elf_backend_data (flinfo->output_bfd);
8752
8753 if (h->root.type == bfd_link_hash_undefined)
8754 {
8755 /* If we have an undefined symbol reference here then it must have
8756 come from a shared library that is being linked in. (Undefined
8757 references in regular files have already been handled unless
8758 they are in unreferenced sections which are removed by garbage
8759 collection). */
8760 bfd_boolean ignore_undef = FALSE;
8761
8762 /* Some symbols may be special in that the fact that they're
8763 undefined can be safely ignored - let backend determine that. */
8764 if (bed->elf_backend_ignore_undef_symbol)
8765 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8766
8767 /* If we are reporting errors for this situation then do so now. */
8768 if (!ignore_undef
8769 && h->ref_dynamic
8770 && (!h->ref_regular || flinfo->info->gc_sections)
8771 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8772 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8773 {
8774 if (!(flinfo->info->callbacks->undefined_symbol
8775 (flinfo->info, h->root.root.string,
8776 h->ref_regular ? NULL : h->root.u.undef.abfd,
8777 NULL, 0,
8778 (flinfo->info->unresolved_syms_in_shared_libs
8779 == RM_GENERATE_ERROR))))
8780 {
8781 bfd_set_error (bfd_error_bad_value);
8782 eoinfo->failed = TRUE;
8783 return FALSE;
8784 }
8785 }
8786 }
8787
8788 /* We should also warn if a forced local symbol is referenced from
8789 shared libraries. */
8790 if (!flinfo->info->relocatable
8791 && flinfo->info->executable
8792 && h->forced_local
8793 && h->ref_dynamic
8794 && h->def_regular
8795 && !h->dynamic_def
8796 && h->ref_dynamic_nonweak
8797 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8798 {
8799 bfd *def_bfd;
8800 const char *msg;
8801 struct elf_link_hash_entry *hi = h;
8802
8803 /* Check indirect symbol. */
8804 while (hi->root.type == bfd_link_hash_indirect)
8805 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8806
8807 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8808 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8809 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8810 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8811 else
8812 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8813 def_bfd = flinfo->output_bfd;
8814 if (hi->root.u.def.section != bfd_abs_section_ptr)
8815 def_bfd = hi->root.u.def.section->owner;
8816 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8817 h->root.root.string);
8818 bfd_set_error (bfd_error_bad_value);
8819 eoinfo->failed = TRUE;
8820 return FALSE;
8821 }
8822
8823 /* We don't want to output symbols that have never been mentioned by
8824 a regular file, or that we have been told to strip. However, if
8825 h->indx is set to -2, the symbol is used by a reloc and we must
8826 output it. */
8827 if (h->indx == -2)
8828 strip = FALSE;
8829 else if ((h->def_dynamic
8830 || h->ref_dynamic
8831 || h->root.type == bfd_link_hash_new)
8832 && !h->def_regular
8833 && !h->ref_regular)
8834 strip = TRUE;
8835 else if (flinfo->info->strip == strip_all)
8836 strip = TRUE;
8837 else if (flinfo->info->strip == strip_some
8838 && bfd_hash_lookup (flinfo->info->keep_hash,
8839 h->root.root.string, FALSE, FALSE) == NULL)
8840 strip = TRUE;
8841 else if ((h->root.type == bfd_link_hash_defined
8842 || h->root.type == bfd_link_hash_defweak)
8843 && ((flinfo->info->strip_discarded
8844 && discarded_section (h->root.u.def.section))
8845 || (h->root.u.def.section->owner != NULL
8846 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8847 strip = TRUE;
8848 else if ((h->root.type == bfd_link_hash_undefined
8849 || h->root.type == bfd_link_hash_undefweak)
8850 && h->root.u.undef.abfd != NULL
8851 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8852 strip = TRUE;
8853 else
8854 strip = FALSE;
8855
8856 /* If we're stripping it, and it's not a dynamic symbol, there's
8857 nothing else to do unless it is a forced local symbol or a
8858 STT_GNU_IFUNC symbol. */
8859 if (strip
8860 && h->dynindx == -1
8861 && h->type != STT_GNU_IFUNC
8862 && !h->forced_local)
8863 return TRUE;
8864
8865 sym.st_value = 0;
8866 sym.st_size = h->size;
8867 sym.st_other = h->other;
8868 if (h->forced_local)
8869 {
8870 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8871 /* Turn off visibility on local symbol. */
8872 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8873 }
8874 else if (h->unique_global)
8875 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8876 else if (h->root.type == bfd_link_hash_undefweak
8877 || h->root.type == bfd_link_hash_defweak)
8878 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8879 else
8880 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8881 sym.st_target_internal = h->target_internal;
8882
8883 switch (h->root.type)
8884 {
8885 default:
8886 case bfd_link_hash_new:
8887 case bfd_link_hash_warning:
8888 abort ();
8889 return FALSE;
8890
8891 case bfd_link_hash_undefined:
8892 case bfd_link_hash_undefweak:
8893 input_sec = bfd_und_section_ptr;
8894 sym.st_shndx = SHN_UNDEF;
8895 break;
8896
8897 case bfd_link_hash_defined:
8898 case bfd_link_hash_defweak:
8899 {
8900 input_sec = h->root.u.def.section;
8901 if (input_sec->output_section != NULL)
8902 {
8903 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8904 {
8905 bfd_boolean second_pass_sym
8906 = (input_sec->owner == flinfo->output_bfd
8907 || input_sec->owner == NULL
8908 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8909 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8910
8911 eoinfo->need_second_pass |= second_pass_sym;
8912 if (eoinfo->second_pass != second_pass_sym)
8913 return TRUE;
8914 }
8915
8916 sym.st_shndx =
8917 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8918 input_sec->output_section);
8919 if (sym.st_shndx == SHN_BAD)
8920 {
8921 (*_bfd_error_handler)
8922 (_("%B: could not find output section %A for input section %A"),
8923 flinfo->output_bfd, input_sec->output_section, input_sec);
8924 bfd_set_error (bfd_error_nonrepresentable_section);
8925 eoinfo->failed = TRUE;
8926 return FALSE;
8927 }
8928
8929 /* ELF symbols in relocatable files are section relative,
8930 but in nonrelocatable files they are virtual
8931 addresses. */
8932 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8933 if (!flinfo->info->relocatable)
8934 {
8935 sym.st_value += input_sec->output_section->vma;
8936 if (h->type == STT_TLS)
8937 {
8938 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8939 if (tls_sec != NULL)
8940 sym.st_value -= tls_sec->vma;
8941 else
8942 {
8943 /* The TLS section may have been garbage collected. */
8944 BFD_ASSERT (flinfo->info->gc_sections
8945 && !input_sec->gc_mark);
8946 }
8947 }
8948 }
8949 }
8950 else
8951 {
8952 BFD_ASSERT (input_sec->owner == NULL
8953 || (input_sec->owner->flags & DYNAMIC) != 0);
8954 sym.st_shndx = SHN_UNDEF;
8955 input_sec = bfd_und_section_ptr;
8956 }
8957 }
8958 break;
8959
8960 case bfd_link_hash_common:
8961 input_sec = h->root.u.c.p->section;
8962 sym.st_shndx = bed->common_section_index (input_sec);
8963 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8964 break;
8965
8966 case bfd_link_hash_indirect:
8967 /* These symbols are created by symbol versioning. They point
8968 to the decorated version of the name. For example, if the
8969 symbol foo@@GNU_1.2 is the default, which should be used when
8970 foo is used with no version, then we add an indirect symbol
8971 foo which points to foo@@GNU_1.2. We ignore these symbols,
8972 since the indirected symbol is already in the hash table. */
8973 return TRUE;
8974 }
8975
8976 /* Give the processor backend a chance to tweak the symbol value,
8977 and also to finish up anything that needs to be done for this
8978 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8979 forced local syms when non-shared is due to a historical quirk.
8980 STT_GNU_IFUNC symbol must go through PLT. */
8981 if ((h->type == STT_GNU_IFUNC
8982 && h->def_regular
8983 && !flinfo->info->relocatable)
8984 || ((h->dynindx != -1
8985 || h->forced_local)
8986 && ((flinfo->info->shared
8987 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8988 || h->root.type != bfd_link_hash_undefweak))
8989 || !h->forced_local)
8990 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8991 {
8992 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8993 (flinfo->output_bfd, flinfo->info, h, &sym)))
8994 {
8995 eoinfo->failed = TRUE;
8996 return FALSE;
8997 }
8998 }
8999
9000 /* If we are marking the symbol as undefined, and there are no
9001 non-weak references to this symbol from a regular object, then
9002 mark the symbol as weak undefined; if there are non-weak
9003 references, mark the symbol as strong. We can't do this earlier,
9004 because it might not be marked as undefined until the
9005 finish_dynamic_symbol routine gets through with it. */
9006 if (sym.st_shndx == SHN_UNDEF
9007 && h->ref_regular
9008 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9009 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9010 {
9011 int bindtype;
9012 unsigned int type = ELF_ST_TYPE (sym.st_info);
9013
9014 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9015 if (type == STT_GNU_IFUNC)
9016 type = STT_FUNC;
9017
9018 if (h->ref_regular_nonweak)
9019 bindtype = STB_GLOBAL;
9020 else
9021 bindtype = STB_WEAK;
9022 sym.st_info = ELF_ST_INFO (bindtype, type);
9023 }
9024
9025 /* If this is a symbol defined in a dynamic library, don't use the
9026 symbol size from the dynamic library. Relinking an executable
9027 against a new library may introduce gratuitous changes in the
9028 executable's symbols if we keep the size. */
9029 if (sym.st_shndx == SHN_UNDEF
9030 && !h->def_regular
9031 && h->def_dynamic)
9032 sym.st_size = 0;
9033
9034 /* If a non-weak symbol with non-default visibility is not defined
9035 locally, it is a fatal error. */
9036 if (!flinfo->info->relocatable
9037 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9038 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9039 && h->root.type == bfd_link_hash_undefined
9040 && !h->def_regular)
9041 {
9042 const char *msg;
9043
9044 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9045 msg = _("%B: protected symbol `%s' isn't defined");
9046 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9047 msg = _("%B: internal symbol `%s' isn't defined");
9048 else
9049 msg = _("%B: hidden symbol `%s' isn't defined");
9050 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9051 bfd_set_error (bfd_error_bad_value);
9052 eoinfo->failed = TRUE;
9053 return FALSE;
9054 }
9055
9056 /* If this symbol should be put in the .dynsym section, then put it
9057 there now. We already know the symbol index. We also fill in
9058 the entry in the .hash section. */
9059 if (flinfo->dynsym_sec != NULL
9060 && h->dynindx != -1
9061 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9062 {
9063 bfd_byte *esym;
9064
9065 /* Since there is no version information in the dynamic string,
9066 if there is no version info in symbol version section, we will
9067 have a run-time problem. */
9068 if (h->verinfo.verdef == NULL)
9069 {
9070 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9071
9072 if (p && p [1] != '\0')
9073 {
9074 (*_bfd_error_handler)
9075 (_("%B: No symbol version section for versioned symbol `%s'"),
9076 flinfo->output_bfd, h->root.root.string);
9077 eoinfo->failed = TRUE;
9078 return FALSE;
9079 }
9080 }
9081
9082 sym.st_name = h->dynstr_index;
9083 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9084 if (!check_dynsym (flinfo->output_bfd, &sym))
9085 {
9086 eoinfo->failed = TRUE;
9087 return FALSE;
9088 }
9089 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9090
9091 if (flinfo->hash_sec != NULL)
9092 {
9093 size_t hash_entry_size;
9094 bfd_byte *bucketpos;
9095 bfd_vma chain;
9096 size_t bucketcount;
9097 size_t bucket;
9098
9099 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9100 bucket = h->u.elf_hash_value % bucketcount;
9101
9102 hash_entry_size
9103 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9104 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9105 + (bucket + 2) * hash_entry_size);
9106 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9107 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9108 bucketpos);
9109 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9110 ((bfd_byte *) flinfo->hash_sec->contents
9111 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9112 }
9113
9114 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9115 {
9116 Elf_Internal_Versym iversym;
9117 Elf_External_Versym *eversym;
9118
9119 if (!h->def_regular)
9120 {
9121 if (h->verinfo.verdef == NULL)
9122 iversym.vs_vers = 0;
9123 else
9124 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9125 }
9126 else
9127 {
9128 if (h->verinfo.vertree == NULL)
9129 iversym.vs_vers = 1;
9130 else
9131 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9132 if (flinfo->info->create_default_symver)
9133 iversym.vs_vers++;
9134 }
9135
9136 if (h->hidden)
9137 iversym.vs_vers |= VERSYM_HIDDEN;
9138
9139 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9140 eversym += h->dynindx;
9141 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9142 }
9143 }
9144
9145 /* If we're stripping it, then it was just a dynamic symbol, and
9146 there's nothing else to do. */
9147 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9148 return TRUE;
9149
9150 indx = bfd_get_symcount (flinfo->output_bfd);
9151 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9152 if (ret == 0)
9153 {
9154 eoinfo->failed = TRUE;
9155 return FALSE;
9156 }
9157 else if (ret == 1)
9158 h->indx = indx;
9159 else if (h->indx == -2)
9160 abort();
9161
9162 return TRUE;
9163 }
9164
9165 /* Return TRUE if special handling is done for relocs in SEC against
9166 symbols defined in discarded sections. */
9167
9168 static bfd_boolean
9169 elf_section_ignore_discarded_relocs (asection *sec)
9170 {
9171 const struct elf_backend_data *bed;
9172
9173 switch (sec->sec_info_type)
9174 {
9175 case SEC_INFO_TYPE_STABS:
9176 case SEC_INFO_TYPE_EH_FRAME:
9177 return TRUE;
9178 default:
9179 break;
9180 }
9181
9182 bed = get_elf_backend_data (sec->owner);
9183 if (bed->elf_backend_ignore_discarded_relocs != NULL
9184 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9185 return TRUE;
9186
9187 return FALSE;
9188 }
9189
9190 /* Return a mask saying how ld should treat relocations in SEC against
9191 symbols defined in discarded sections. If this function returns
9192 COMPLAIN set, ld will issue a warning message. If this function
9193 returns PRETEND set, and the discarded section was link-once and the
9194 same size as the kept link-once section, ld will pretend that the
9195 symbol was actually defined in the kept section. Otherwise ld will
9196 zero the reloc (at least that is the intent, but some cooperation by
9197 the target dependent code is needed, particularly for REL targets). */
9198
9199 unsigned int
9200 _bfd_elf_default_action_discarded (asection *sec)
9201 {
9202 if (sec->flags & SEC_DEBUGGING)
9203 return PRETEND;
9204
9205 if (strcmp (".eh_frame", sec->name) == 0)
9206 return 0;
9207
9208 if (strcmp (".gcc_except_table", sec->name) == 0)
9209 return 0;
9210
9211 return COMPLAIN | PRETEND;
9212 }
9213
9214 /* Find a match between a section and a member of a section group. */
9215
9216 static asection *
9217 match_group_member (asection *sec, asection *group,
9218 struct bfd_link_info *info)
9219 {
9220 asection *first = elf_next_in_group (group);
9221 asection *s = first;
9222
9223 while (s != NULL)
9224 {
9225 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9226 return s;
9227
9228 s = elf_next_in_group (s);
9229 if (s == first)
9230 break;
9231 }
9232
9233 return NULL;
9234 }
9235
9236 /* Check if the kept section of a discarded section SEC can be used
9237 to replace it. Return the replacement if it is OK. Otherwise return
9238 NULL. */
9239
9240 asection *
9241 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9242 {
9243 asection *kept;
9244
9245 kept = sec->kept_section;
9246 if (kept != NULL)
9247 {
9248 if ((kept->flags & SEC_GROUP) != 0)
9249 kept = match_group_member (sec, kept, info);
9250 if (kept != NULL
9251 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9252 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9253 kept = NULL;
9254 sec->kept_section = kept;
9255 }
9256 return kept;
9257 }
9258
9259 /* Link an input file into the linker output file. This function
9260 handles all the sections and relocations of the input file at once.
9261 This is so that we only have to read the local symbols once, and
9262 don't have to keep them in memory. */
9263
9264 static bfd_boolean
9265 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9266 {
9267 int (*relocate_section)
9268 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9269 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9270 bfd *output_bfd;
9271 Elf_Internal_Shdr *symtab_hdr;
9272 size_t locsymcount;
9273 size_t extsymoff;
9274 Elf_Internal_Sym *isymbuf;
9275 Elf_Internal_Sym *isym;
9276 Elf_Internal_Sym *isymend;
9277 long *pindex;
9278 asection **ppsection;
9279 asection *o;
9280 const struct elf_backend_data *bed;
9281 struct elf_link_hash_entry **sym_hashes;
9282 bfd_size_type address_size;
9283 bfd_vma r_type_mask;
9284 int r_sym_shift;
9285 bfd_boolean have_file_sym = FALSE;
9286
9287 output_bfd = flinfo->output_bfd;
9288 bed = get_elf_backend_data (output_bfd);
9289 relocate_section = bed->elf_backend_relocate_section;
9290
9291 /* If this is a dynamic object, we don't want to do anything here:
9292 we don't want the local symbols, and we don't want the section
9293 contents. */
9294 if ((input_bfd->flags & DYNAMIC) != 0)
9295 return TRUE;
9296
9297 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9298 if (elf_bad_symtab (input_bfd))
9299 {
9300 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9301 extsymoff = 0;
9302 }
9303 else
9304 {
9305 locsymcount = symtab_hdr->sh_info;
9306 extsymoff = symtab_hdr->sh_info;
9307 }
9308
9309 /* Read the local symbols. */
9310 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9311 if (isymbuf == NULL && locsymcount != 0)
9312 {
9313 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9314 flinfo->internal_syms,
9315 flinfo->external_syms,
9316 flinfo->locsym_shndx);
9317 if (isymbuf == NULL)
9318 return FALSE;
9319 }
9320
9321 /* Find local symbol sections and adjust values of symbols in
9322 SEC_MERGE sections. Write out those local symbols we know are
9323 going into the output file. */
9324 isymend = isymbuf + locsymcount;
9325 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9326 isym < isymend;
9327 isym++, pindex++, ppsection++)
9328 {
9329 asection *isec;
9330 const char *name;
9331 Elf_Internal_Sym osym;
9332 long indx;
9333 int ret;
9334
9335 *pindex = -1;
9336
9337 if (elf_bad_symtab (input_bfd))
9338 {
9339 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9340 {
9341 *ppsection = NULL;
9342 continue;
9343 }
9344 }
9345
9346 if (isym->st_shndx == SHN_UNDEF)
9347 isec = bfd_und_section_ptr;
9348 else if (isym->st_shndx == SHN_ABS)
9349 isec = bfd_abs_section_ptr;
9350 else if (isym->st_shndx == SHN_COMMON)
9351 isec = bfd_com_section_ptr;
9352 else
9353 {
9354 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9355 if (isec == NULL)
9356 {
9357 /* Don't attempt to output symbols with st_shnx in the
9358 reserved range other than SHN_ABS and SHN_COMMON. */
9359 *ppsection = NULL;
9360 continue;
9361 }
9362 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9363 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9364 isym->st_value =
9365 _bfd_merged_section_offset (output_bfd, &isec,
9366 elf_section_data (isec)->sec_info,
9367 isym->st_value);
9368 }
9369
9370 *ppsection = isec;
9371
9372 /* Don't output the first, undefined, symbol. */
9373 if (ppsection == flinfo->sections)
9374 continue;
9375
9376 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9377 {
9378 /* We never output section symbols. Instead, we use the
9379 section symbol of the corresponding section in the output
9380 file. */
9381 continue;
9382 }
9383
9384 /* If we are stripping all symbols, we don't want to output this
9385 one. */
9386 if (flinfo->info->strip == strip_all)
9387 continue;
9388
9389 /* If we are discarding all local symbols, we don't want to
9390 output this one. If we are generating a relocatable output
9391 file, then some of the local symbols may be required by
9392 relocs; we output them below as we discover that they are
9393 needed. */
9394 if (flinfo->info->discard == discard_all)
9395 continue;
9396
9397 /* If this symbol is defined in a section which we are
9398 discarding, we don't need to keep it. */
9399 if (isym->st_shndx != SHN_UNDEF
9400 && isym->st_shndx < SHN_LORESERVE
9401 && bfd_section_removed_from_list (output_bfd,
9402 isec->output_section))
9403 continue;
9404
9405 /* Get the name of the symbol. */
9406 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9407 isym->st_name);
9408 if (name == NULL)
9409 return FALSE;
9410
9411 /* See if we are discarding symbols with this name. */
9412 if ((flinfo->info->strip == strip_some
9413 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9414 == NULL))
9415 || (((flinfo->info->discard == discard_sec_merge
9416 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9417 || flinfo->info->discard == discard_l)
9418 && bfd_is_local_label_name (input_bfd, name)))
9419 continue;
9420
9421 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9422 {
9423 have_file_sym = TRUE;
9424 flinfo->filesym_count += 1;
9425 }
9426 if (!have_file_sym)
9427 {
9428 /* In the absence of debug info, bfd_find_nearest_line uses
9429 FILE symbols to determine the source file for local
9430 function symbols. Provide a FILE symbol here if input
9431 files lack such, so that their symbols won't be
9432 associated with a previous input file. It's not the
9433 source file, but the best we can do. */
9434 have_file_sym = TRUE;
9435 flinfo->filesym_count += 1;
9436 memset (&osym, 0, sizeof (osym));
9437 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9438 osym.st_shndx = SHN_ABS;
9439 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9440 bfd_abs_section_ptr, NULL))
9441 return FALSE;
9442 }
9443
9444 osym = *isym;
9445
9446 /* Adjust the section index for the output file. */
9447 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9448 isec->output_section);
9449 if (osym.st_shndx == SHN_BAD)
9450 return FALSE;
9451
9452 /* ELF symbols in relocatable files are section relative, but
9453 in executable files they are virtual addresses. Note that
9454 this code assumes that all ELF sections have an associated
9455 BFD section with a reasonable value for output_offset; below
9456 we assume that they also have a reasonable value for
9457 output_section. Any special sections must be set up to meet
9458 these requirements. */
9459 osym.st_value += isec->output_offset;
9460 if (!flinfo->info->relocatable)
9461 {
9462 osym.st_value += isec->output_section->vma;
9463 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9464 {
9465 /* STT_TLS symbols are relative to PT_TLS segment base. */
9466 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9467 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9468 }
9469 }
9470
9471 indx = bfd_get_symcount (output_bfd);
9472 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9473 if (ret == 0)
9474 return FALSE;
9475 else if (ret == 1)
9476 *pindex = indx;
9477 }
9478
9479 if (bed->s->arch_size == 32)
9480 {
9481 r_type_mask = 0xff;
9482 r_sym_shift = 8;
9483 address_size = 4;
9484 }
9485 else
9486 {
9487 r_type_mask = 0xffffffff;
9488 r_sym_shift = 32;
9489 address_size = 8;
9490 }
9491
9492 /* Relocate the contents of each section. */
9493 sym_hashes = elf_sym_hashes (input_bfd);
9494 for (o = input_bfd->sections; o != NULL; o = o->next)
9495 {
9496 bfd_byte *contents;
9497
9498 if (! o->linker_mark)
9499 {
9500 /* This section was omitted from the link. */
9501 continue;
9502 }
9503
9504 if (flinfo->info->relocatable
9505 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9506 {
9507 /* Deal with the group signature symbol. */
9508 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9509 unsigned long symndx = sec_data->this_hdr.sh_info;
9510 asection *osec = o->output_section;
9511
9512 if (symndx >= locsymcount
9513 || (elf_bad_symtab (input_bfd)
9514 && flinfo->sections[symndx] == NULL))
9515 {
9516 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9517 while (h->root.type == bfd_link_hash_indirect
9518 || h->root.type == bfd_link_hash_warning)
9519 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9520 /* Arrange for symbol to be output. */
9521 h->indx = -2;
9522 elf_section_data (osec)->this_hdr.sh_info = -2;
9523 }
9524 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9525 {
9526 /* We'll use the output section target_index. */
9527 asection *sec = flinfo->sections[symndx]->output_section;
9528 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9529 }
9530 else
9531 {
9532 if (flinfo->indices[symndx] == -1)
9533 {
9534 /* Otherwise output the local symbol now. */
9535 Elf_Internal_Sym sym = isymbuf[symndx];
9536 asection *sec = flinfo->sections[symndx]->output_section;
9537 const char *name;
9538 long indx;
9539 int ret;
9540
9541 name = bfd_elf_string_from_elf_section (input_bfd,
9542 symtab_hdr->sh_link,
9543 sym.st_name);
9544 if (name == NULL)
9545 return FALSE;
9546
9547 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9548 sec);
9549 if (sym.st_shndx == SHN_BAD)
9550 return FALSE;
9551
9552 sym.st_value += o->output_offset;
9553
9554 indx = bfd_get_symcount (output_bfd);
9555 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9556 if (ret == 0)
9557 return FALSE;
9558 else if (ret == 1)
9559 flinfo->indices[symndx] = indx;
9560 else
9561 abort ();
9562 }
9563 elf_section_data (osec)->this_hdr.sh_info
9564 = flinfo->indices[symndx];
9565 }
9566 }
9567
9568 if ((o->flags & SEC_HAS_CONTENTS) == 0
9569 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9570 continue;
9571
9572 if ((o->flags & SEC_LINKER_CREATED) != 0)
9573 {
9574 /* Section was created by _bfd_elf_link_create_dynamic_sections
9575 or somesuch. */
9576 continue;
9577 }
9578
9579 /* Get the contents of the section. They have been cached by a
9580 relaxation routine. Note that o is a section in an input
9581 file, so the contents field will not have been set by any of
9582 the routines which work on output files. */
9583 if (elf_section_data (o)->this_hdr.contents != NULL)
9584 contents = elf_section_data (o)->this_hdr.contents;
9585 else
9586 {
9587 contents = flinfo->contents;
9588 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9589 return FALSE;
9590 }
9591
9592 if ((o->flags & SEC_RELOC) != 0)
9593 {
9594 Elf_Internal_Rela *internal_relocs;
9595 Elf_Internal_Rela *rel, *relend;
9596 int action_discarded;
9597 int ret;
9598
9599 /* Get the swapped relocs. */
9600 internal_relocs
9601 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9602 flinfo->internal_relocs, FALSE);
9603 if (internal_relocs == NULL
9604 && o->reloc_count > 0)
9605 return FALSE;
9606
9607 /* We need to reverse-copy input .ctors/.dtors sections if
9608 they are placed in .init_array/.finit_array for output. */
9609 if (o->size > address_size
9610 && ((strncmp (o->name, ".ctors", 6) == 0
9611 && strcmp (o->output_section->name,
9612 ".init_array") == 0)
9613 || (strncmp (o->name, ".dtors", 6) == 0
9614 && strcmp (o->output_section->name,
9615 ".fini_array") == 0))
9616 && (o->name[6] == 0 || o->name[6] == '.'))
9617 {
9618 if (o->size != o->reloc_count * address_size)
9619 {
9620 (*_bfd_error_handler)
9621 (_("error: %B: size of section %A is not "
9622 "multiple of address size"),
9623 input_bfd, o);
9624 bfd_set_error (bfd_error_on_input);
9625 return FALSE;
9626 }
9627 o->flags |= SEC_ELF_REVERSE_COPY;
9628 }
9629
9630 action_discarded = -1;
9631 if (!elf_section_ignore_discarded_relocs (o))
9632 action_discarded = (*bed->action_discarded) (o);
9633
9634 /* Run through the relocs evaluating complex reloc symbols and
9635 looking for relocs against symbols from discarded sections
9636 or section symbols from removed link-once sections.
9637 Complain about relocs against discarded sections. Zero
9638 relocs against removed link-once sections. */
9639
9640 rel = internal_relocs;
9641 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9642 for ( ; rel < relend; rel++)
9643 {
9644 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9645 unsigned int s_type;
9646 asection **ps, *sec;
9647 struct elf_link_hash_entry *h = NULL;
9648 const char *sym_name;
9649
9650 if (r_symndx == STN_UNDEF)
9651 continue;
9652
9653 if (r_symndx >= locsymcount
9654 || (elf_bad_symtab (input_bfd)
9655 && flinfo->sections[r_symndx] == NULL))
9656 {
9657 h = sym_hashes[r_symndx - extsymoff];
9658
9659 /* Badly formatted input files can contain relocs that
9660 reference non-existant symbols. Check here so that
9661 we do not seg fault. */
9662 if (h == NULL)
9663 {
9664 char buffer [32];
9665
9666 sprintf_vma (buffer, rel->r_info);
9667 (*_bfd_error_handler)
9668 (_("error: %B contains a reloc (0x%s) for section %A "
9669 "that references a non-existent global symbol"),
9670 input_bfd, o, buffer);
9671 bfd_set_error (bfd_error_bad_value);
9672 return FALSE;
9673 }
9674
9675 while (h->root.type == bfd_link_hash_indirect
9676 || h->root.type == bfd_link_hash_warning)
9677 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9678
9679 s_type = h->type;
9680
9681 ps = NULL;
9682 if (h->root.type == bfd_link_hash_defined
9683 || h->root.type == bfd_link_hash_defweak)
9684 ps = &h->root.u.def.section;
9685
9686 sym_name = h->root.root.string;
9687 }
9688 else
9689 {
9690 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9691
9692 s_type = ELF_ST_TYPE (sym->st_info);
9693 ps = &flinfo->sections[r_symndx];
9694 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9695 sym, *ps);
9696 }
9697
9698 if ((s_type == STT_RELC || s_type == STT_SRELC)
9699 && !flinfo->info->relocatable)
9700 {
9701 bfd_vma val;
9702 bfd_vma dot = (rel->r_offset
9703 + o->output_offset + o->output_section->vma);
9704 #ifdef DEBUG
9705 printf ("Encountered a complex symbol!");
9706 printf (" (input_bfd %s, section %s, reloc %ld\n",
9707 input_bfd->filename, o->name,
9708 (long) (rel - internal_relocs));
9709 printf (" symbol: idx %8.8lx, name %s\n",
9710 r_symndx, sym_name);
9711 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9712 (unsigned long) rel->r_info,
9713 (unsigned long) rel->r_offset);
9714 #endif
9715 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9716 isymbuf, locsymcount, s_type == STT_SRELC))
9717 return FALSE;
9718
9719 /* Symbol evaluated OK. Update to absolute value. */
9720 set_symbol_value (input_bfd, isymbuf, locsymcount,
9721 r_symndx, val);
9722 continue;
9723 }
9724
9725 if (action_discarded != -1 && ps != NULL)
9726 {
9727 /* Complain if the definition comes from a
9728 discarded section. */
9729 if ((sec = *ps) != NULL && discarded_section (sec))
9730 {
9731 BFD_ASSERT (r_symndx != STN_UNDEF);
9732 if (action_discarded & COMPLAIN)
9733 (*flinfo->info->callbacks->einfo)
9734 (_("%X`%s' referenced in section `%A' of %B: "
9735 "defined in discarded section `%A' of %B\n"),
9736 sym_name, o, input_bfd, sec, sec->owner);
9737
9738 /* Try to do the best we can to support buggy old
9739 versions of gcc. Pretend that the symbol is
9740 really defined in the kept linkonce section.
9741 FIXME: This is quite broken. Modifying the
9742 symbol here means we will be changing all later
9743 uses of the symbol, not just in this section. */
9744 if (action_discarded & PRETEND)
9745 {
9746 asection *kept;
9747
9748 kept = _bfd_elf_check_kept_section (sec,
9749 flinfo->info);
9750 if (kept != NULL)
9751 {
9752 *ps = kept;
9753 continue;
9754 }
9755 }
9756 }
9757 }
9758 }
9759
9760 /* Relocate the section by invoking a back end routine.
9761
9762 The back end routine is responsible for adjusting the
9763 section contents as necessary, and (if using Rela relocs
9764 and generating a relocatable output file) adjusting the
9765 reloc addend as necessary.
9766
9767 The back end routine does not have to worry about setting
9768 the reloc address or the reloc symbol index.
9769
9770 The back end routine is given a pointer to the swapped in
9771 internal symbols, and can access the hash table entries
9772 for the external symbols via elf_sym_hashes (input_bfd).
9773
9774 When generating relocatable output, the back end routine
9775 must handle STB_LOCAL/STT_SECTION symbols specially. The
9776 output symbol is going to be a section symbol
9777 corresponding to the output section, which will require
9778 the addend to be adjusted. */
9779
9780 ret = (*relocate_section) (output_bfd, flinfo->info,
9781 input_bfd, o, contents,
9782 internal_relocs,
9783 isymbuf,
9784 flinfo->sections);
9785 if (!ret)
9786 return FALSE;
9787
9788 if (ret == 2
9789 || flinfo->info->relocatable
9790 || flinfo->info->emitrelocations)
9791 {
9792 Elf_Internal_Rela *irela;
9793 Elf_Internal_Rela *irelaend, *irelamid;
9794 bfd_vma last_offset;
9795 struct elf_link_hash_entry **rel_hash;
9796 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9797 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9798 unsigned int next_erel;
9799 bfd_boolean rela_normal;
9800 struct bfd_elf_section_data *esdi, *esdo;
9801
9802 esdi = elf_section_data (o);
9803 esdo = elf_section_data (o->output_section);
9804 rela_normal = FALSE;
9805
9806 /* Adjust the reloc addresses and symbol indices. */
9807
9808 irela = internal_relocs;
9809 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9810 rel_hash = esdo->rel.hashes + esdo->rel.count;
9811 /* We start processing the REL relocs, if any. When we reach
9812 IRELAMID in the loop, we switch to the RELA relocs. */
9813 irelamid = irela;
9814 if (esdi->rel.hdr != NULL)
9815 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9816 * bed->s->int_rels_per_ext_rel);
9817 rel_hash_list = rel_hash;
9818 rela_hash_list = NULL;
9819 last_offset = o->output_offset;
9820 if (!flinfo->info->relocatable)
9821 last_offset += o->output_section->vma;
9822 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9823 {
9824 unsigned long r_symndx;
9825 asection *sec;
9826 Elf_Internal_Sym sym;
9827
9828 if (next_erel == bed->s->int_rels_per_ext_rel)
9829 {
9830 rel_hash++;
9831 next_erel = 0;
9832 }
9833
9834 if (irela == irelamid)
9835 {
9836 rel_hash = esdo->rela.hashes + esdo->rela.count;
9837 rela_hash_list = rel_hash;
9838 rela_normal = bed->rela_normal;
9839 }
9840
9841 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9842 flinfo->info, o,
9843 irela->r_offset);
9844 if (irela->r_offset >= (bfd_vma) -2)
9845 {
9846 /* This is a reloc for a deleted entry or somesuch.
9847 Turn it into an R_*_NONE reloc, at the same
9848 offset as the last reloc. elf_eh_frame.c and
9849 bfd_elf_discard_info rely on reloc offsets
9850 being ordered. */
9851 irela->r_offset = last_offset;
9852 irela->r_info = 0;
9853 irela->r_addend = 0;
9854 continue;
9855 }
9856
9857 irela->r_offset += o->output_offset;
9858
9859 /* Relocs in an executable have to be virtual addresses. */
9860 if (!flinfo->info->relocatable)
9861 irela->r_offset += o->output_section->vma;
9862
9863 last_offset = irela->r_offset;
9864
9865 r_symndx = irela->r_info >> r_sym_shift;
9866 if (r_symndx == STN_UNDEF)
9867 continue;
9868
9869 if (r_symndx >= locsymcount
9870 || (elf_bad_symtab (input_bfd)
9871 && flinfo->sections[r_symndx] == NULL))
9872 {
9873 struct elf_link_hash_entry *rh;
9874 unsigned long indx;
9875
9876 /* This is a reloc against a global symbol. We
9877 have not yet output all the local symbols, so
9878 we do not know the symbol index of any global
9879 symbol. We set the rel_hash entry for this
9880 reloc to point to the global hash table entry
9881 for this symbol. The symbol index is then
9882 set at the end of bfd_elf_final_link. */
9883 indx = r_symndx - extsymoff;
9884 rh = elf_sym_hashes (input_bfd)[indx];
9885 while (rh->root.type == bfd_link_hash_indirect
9886 || rh->root.type == bfd_link_hash_warning)
9887 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9888
9889 /* Setting the index to -2 tells
9890 elf_link_output_extsym that this symbol is
9891 used by a reloc. */
9892 BFD_ASSERT (rh->indx < 0);
9893 rh->indx = -2;
9894
9895 *rel_hash = rh;
9896
9897 continue;
9898 }
9899
9900 /* This is a reloc against a local symbol. */
9901
9902 *rel_hash = NULL;
9903 sym = isymbuf[r_symndx];
9904 sec = flinfo->sections[r_symndx];
9905 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9906 {
9907 /* I suppose the backend ought to fill in the
9908 section of any STT_SECTION symbol against a
9909 processor specific section. */
9910 r_symndx = STN_UNDEF;
9911 if (bfd_is_abs_section (sec))
9912 ;
9913 else if (sec == NULL || sec->owner == NULL)
9914 {
9915 bfd_set_error (bfd_error_bad_value);
9916 return FALSE;
9917 }
9918 else
9919 {
9920 asection *osec = sec->output_section;
9921
9922 /* If we have discarded a section, the output
9923 section will be the absolute section. In
9924 case of discarded SEC_MERGE sections, use
9925 the kept section. relocate_section should
9926 have already handled discarded linkonce
9927 sections. */
9928 if (bfd_is_abs_section (osec)
9929 && sec->kept_section != NULL
9930 && sec->kept_section->output_section != NULL)
9931 {
9932 osec = sec->kept_section->output_section;
9933 irela->r_addend -= osec->vma;
9934 }
9935
9936 if (!bfd_is_abs_section (osec))
9937 {
9938 r_symndx = osec->target_index;
9939 if (r_symndx == STN_UNDEF)
9940 {
9941 irela->r_addend += osec->vma;
9942 osec = _bfd_nearby_section (output_bfd, osec,
9943 osec->vma);
9944 irela->r_addend -= osec->vma;
9945 r_symndx = osec->target_index;
9946 }
9947 }
9948 }
9949
9950 /* Adjust the addend according to where the
9951 section winds up in the output section. */
9952 if (rela_normal)
9953 irela->r_addend += sec->output_offset;
9954 }
9955 else
9956 {
9957 if (flinfo->indices[r_symndx] == -1)
9958 {
9959 unsigned long shlink;
9960 const char *name;
9961 asection *osec;
9962 long indx;
9963
9964 if (flinfo->info->strip == strip_all)
9965 {
9966 /* You can't do ld -r -s. */
9967 bfd_set_error (bfd_error_invalid_operation);
9968 return FALSE;
9969 }
9970
9971 /* This symbol was skipped earlier, but
9972 since it is needed by a reloc, we
9973 must output it now. */
9974 shlink = symtab_hdr->sh_link;
9975 name = (bfd_elf_string_from_elf_section
9976 (input_bfd, shlink, sym.st_name));
9977 if (name == NULL)
9978 return FALSE;
9979
9980 osec = sec->output_section;
9981 sym.st_shndx =
9982 _bfd_elf_section_from_bfd_section (output_bfd,
9983 osec);
9984 if (sym.st_shndx == SHN_BAD)
9985 return FALSE;
9986
9987 sym.st_value += sec->output_offset;
9988 if (!flinfo->info->relocatable)
9989 {
9990 sym.st_value += osec->vma;
9991 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9992 {
9993 /* STT_TLS symbols are relative to PT_TLS
9994 segment base. */
9995 BFD_ASSERT (elf_hash_table (flinfo->info)
9996 ->tls_sec != NULL);
9997 sym.st_value -= (elf_hash_table (flinfo->info)
9998 ->tls_sec->vma);
9999 }
10000 }
10001
10002 indx = bfd_get_symcount (output_bfd);
10003 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10004 NULL);
10005 if (ret == 0)
10006 return FALSE;
10007 else if (ret == 1)
10008 flinfo->indices[r_symndx] = indx;
10009 else
10010 abort ();
10011 }
10012
10013 r_symndx = flinfo->indices[r_symndx];
10014 }
10015
10016 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10017 | (irela->r_info & r_type_mask));
10018 }
10019
10020 /* Swap out the relocs. */
10021 input_rel_hdr = esdi->rel.hdr;
10022 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10023 {
10024 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10025 input_rel_hdr,
10026 internal_relocs,
10027 rel_hash_list))
10028 return FALSE;
10029 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10030 * bed->s->int_rels_per_ext_rel);
10031 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10032 }
10033
10034 input_rela_hdr = esdi->rela.hdr;
10035 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10036 {
10037 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10038 input_rela_hdr,
10039 internal_relocs,
10040 rela_hash_list))
10041 return FALSE;
10042 }
10043 }
10044 }
10045
10046 /* Write out the modified section contents. */
10047 if (bed->elf_backend_write_section
10048 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10049 contents))
10050 {
10051 /* Section written out. */
10052 }
10053 else switch (o->sec_info_type)
10054 {
10055 case SEC_INFO_TYPE_STABS:
10056 if (! (_bfd_write_section_stabs
10057 (output_bfd,
10058 &elf_hash_table (flinfo->info)->stab_info,
10059 o, &elf_section_data (o)->sec_info, contents)))
10060 return FALSE;
10061 break;
10062 case SEC_INFO_TYPE_MERGE:
10063 if (! _bfd_write_merged_section (output_bfd, o,
10064 elf_section_data (o)->sec_info))
10065 return FALSE;
10066 break;
10067 case SEC_INFO_TYPE_EH_FRAME:
10068 {
10069 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10070 o, contents))
10071 return FALSE;
10072 }
10073 break;
10074 default:
10075 {
10076 /* FIXME: octets_per_byte. */
10077 if (! (o->flags & SEC_EXCLUDE))
10078 {
10079 file_ptr offset = (file_ptr) o->output_offset;
10080 bfd_size_type todo = o->size;
10081 if ((o->flags & SEC_ELF_REVERSE_COPY))
10082 {
10083 /* Reverse-copy input section to output. */
10084 do
10085 {
10086 todo -= address_size;
10087 if (! bfd_set_section_contents (output_bfd,
10088 o->output_section,
10089 contents + todo,
10090 offset,
10091 address_size))
10092 return FALSE;
10093 if (todo == 0)
10094 break;
10095 offset += address_size;
10096 }
10097 while (1);
10098 }
10099 else if (! bfd_set_section_contents (output_bfd,
10100 o->output_section,
10101 contents,
10102 offset, todo))
10103 return FALSE;
10104 }
10105 }
10106 break;
10107 }
10108 }
10109
10110 return TRUE;
10111 }
10112
10113 /* Generate a reloc when linking an ELF file. This is a reloc
10114 requested by the linker, and does not come from any input file. This
10115 is used to build constructor and destructor tables when linking
10116 with -Ur. */
10117
10118 static bfd_boolean
10119 elf_reloc_link_order (bfd *output_bfd,
10120 struct bfd_link_info *info,
10121 asection *output_section,
10122 struct bfd_link_order *link_order)
10123 {
10124 reloc_howto_type *howto;
10125 long indx;
10126 bfd_vma offset;
10127 bfd_vma addend;
10128 struct bfd_elf_section_reloc_data *reldata;
10129 struct elf_link_hash_entry **rel_hash_ptr;
10130 Elf_Internal_Shdr *rel_hdr;
10131 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10132 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10133 bfd_byte *erel;
10134 unsigned int i;
10135 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10136
10137 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10138 if (howto == NULL)
10139 {
10140 bfd_set_error (bfd_error_bad_value);
10141 return FALSE;
10142 }
10143
10144 addend = link_order->u.reloc.p->addend;
10145
10146 if (esdo->rel.hdr)
10147 reldata = &esdo->rel;
10148 else if (esdo->rela.hdr)
10149 reldata = &esdo->rela;
10150 else
10151 {
10152 reldata = NULL;
10153 BFD_ASSERT (0);
10154 }
10155
10156 /* Figure out the symbol index. */
10157 rel_hash_ptr = reldata->hashes + reldata->count;
10158 if (link_order->type == bfd_section_reloc_link_order)
10159 {
10160 indx = link_order->u.reloc.p->u.section->target_index;
10161 BFD_ASSERT (indx != 0);
10162 *rel_hash_ptr = NULL;
10163 }
10164 else
10165 {
10166 struct elf_link_hash_entry *h;
10167
10168 /* Treat a reloc against a defined symbol as though it were
10169 actually against the section. */
10170 h = ((struct elf_link_hash_entry *)
10171 bfd_wrapped_link_hash_lookup (output_bfd, info,
10172 link_order->u.reloc.p->u.name,
10173 FALSE, FALSE, TRUE));
10174 if (h != NULL
10175 && (h->root.type == bfd_link_hash_defined
10176 || h->root.type == bfd_link_hash_defweak))
10177 {
10178 asection *section;
10179
10180 section = h->root.u.def.section;
10181 indx = section->output_section->target_index;
10182 *rel_hash_ptr = NULL;
10183 /* It seems that we ought to add the symbol value to the
10184 addend here, but in practice it has already been added
10185 because it was passed to constructor_callback. */
10186 addend += section->output_section->vma + section->output_offset;
10187 }
10188 else if (h != NULL)
10189 {
10190 /* Setting the index to -2 tells elf_link_output_extsym that
10191 this symbol is used by a reloc. */
10192 h->indx = -2;
10193 *rel_hash_ptr = h;
10194 indx = 0;
10195 }
10196 else
10197 {
10198 if (! ((*info->callbacks->unattached_reloc)
10199 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10200 return FALSE;
10201 indx = 0;
10202 }
10203 }
10204
10205 /* If this is an inplace reloc, we must write the addend into the
10206 object file. */
10207 if (howto->partial_inplace && addend != 0)
10208 {
10209 bfd_size_type size;
10210 bfd_reloc_status_type rstat;
10211 bfd_byte *buf;
10212 bfd_boolean ok;
10213 const char *sym_name;
10214
10215 size = (bfd_size_type) bfd_get_reloc_size (howto);
10216 buf = (bfd_byte *) bfd_zmalloc (size);
10217 if (buf == NULL)
10218 return FALSE;
10219 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10220 switch (rstat)
10221 {
10222 case bfd_reloc_ok:
10223 break;
10224
10225 default:
10226 case bfd_reloc_outofrange:
10227 abort ();
10228
10229 case bfd_reloc_overflow:
10230 if (link_order->type == bfd_section_reloc_link_order)
10231 sym_name = bfd_section_name (output_bfd,
10232 link_order->u.reloc.p->u.section);
10233 else
10234 sym_name = link_order->u.reloc.p->u.name;
10235 if (! ((*info->callbacks->reloc_overflow)
10236 (info, NULL, sym_name, howto->name, addend, NULL,
10237 NULL, (bfd_vma) 0)))
10238 {
10239 free (buf);
10240 return FALSE;
10241 }
10242 break;
10243 }
10244 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10245 link_order->offset, size);
10246 free (buf);
10247 if (! ok)
10248 return FALSE;
10249 }
10250
10251 /* The address of a reloc is relative to the section in a
10252 relocatable file, and is a virtual address in an executable
10253 file. */
10254 offset = link_order->offset;
10255 if (! info->relocatable)
10256 offset += output_section->vma;
10257
10258 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10259 {
10260 irel[i].r_offset = offset;
10261 irel[i].r_info = 0;
10262 irel[i].r_addend = 0;
10263 }
10264 if (bed->s->arch_size == 32)
10265 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10266 else
10267 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10268
10269 rel_hdr = reldata->hdr;
10270 erel = rel_hdr->contents;
10271 if (rel_hdr->sh_type == SHT_REL)
10272 {
10273 erel += reldata->count * bed->s->sizeof_rel;
10274 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10275 }
10276 else
10277 {
10278 irel[0].r_addend = addend;
10279 erel += reldata->count * bed->s->sizeof_rela;
10280 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10281 }
10282
10283 ++reldata->count;
10284
10285 return TRUE;
10286 }
10287
10288
10289 /* Get the output vma of the section pointed to by the sh_link field. */
10290
10291 static bfd_vma
10292 elf_get_linked_section_vma (struct bfd_link_order *p)
10293 {
10294 Elf_Internal_Shdr **elf_shdrp;
10295 asection *s;
10296 int elfsec;
10297
10298 s = p->u.indirect.section;
10299 elf_shdrp = elf_elfsections (s->owner);
10300 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10301 elfsec = elf_shdrp[elfsec]->sh_link;
10302 /* PR 290:
10303 The Intel C compiler generates SHT_IA_64_UNWIND with
10304 SHF_LINK_ORDER. But it doesn't set the sh_link or
10305 sh_info fields. Hence we could get the situation
10306 where elfsec is 0. */
10307 if (elfsec == 0)
10308 {
10309 const struct elf_backend_data *bed
10310 = get_elf_backend_data (s->owner);
10311 if (bed->link_order_error_handler)
10312 bed->link_order_error_handler
10313 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10314 return 0;
10315 }
10316 else
10317 {
10318 s = elf_shdrp[elfsec]->bfd_section;
10319 return s->output_section->vma + s->output_offset;
10320 }
10321 }
10322
10323
10324 /* Compare two sections based on the locations of the sections they are
10325 linked to. Used by elf_fixup_link_order. */
10326
10327 static int
10328 compare_link_order (const void * a, const void * b)
10329 {
10330 bfd_vma apos;
10331 bfd_vma bpos;
10332
10333 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10334 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10335 if (apos < bpos)
10336 return -1;
10337 return apos > bpos;
10338 }
10339
10340
10341 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10342 order as their linked sections. Returns false if this could not be done
10343 because an output section includes both ordered and unordered
10344 sections. Ideally we'd do this in the linker proper. */
10345
10346 static bfd_boolean
10347 elf_fixup_link_order (bfd *abfd, asection *o)
10348 {
10349 int seen_linkorder;
10350 int seen_other;
10351 int n;
10352 struct bfd_link_order *p;
10353 bfd *sub;
10354 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10355 unsigned elfsec;
10356 struct bfd_link_order **sections;
10357 asection *s, *other_sec, *linkorder_sec;
10358 bfd_vma offset;
10359
10360 other_sec = NULL;
10361 linkorder_sec = NULL;
10362 seen_other = 0;
10363 seen_linkorder = 0;
10364 for (p = o->map_head.link_order; p != NULL; p = p->next)
10365 {
10366 if (p->type == bfd_indirect_link_order)
10367 {
10368 s = p->u.indirect.section;
10369 sub = s->owner;
10370 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10371 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10372 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10373 && elfsec < elf_numsections (sub)
10374 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10375 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10376 {
10377 seen_linkorder++;
10378 linkorder_sec = s;
10379 }
10380 else
10381 {
10382 seen_other++;
10383 other_sec = s;
10384 }
10385 }
10386 else
10387 seen_other++;
10388
10389 if (seen_other && seen_linkorder)
10390 {
10391 if (other_sec && linkorder_sec)
10392 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10393 o, linkorder_sec,
10394 linkorder_sec->owner, other_sec,
10395 other_sec->owner);
10396 else
10397 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10398 o);
10399 bfd_set_error (bfd_error_bad_value);
10400 return FALSE;
10401 }
10402 }
10403
10404 if (!seen_linkorder)
10405 return TRUE;
10406
10407 sections = (struct bfd_link_order **)
10408 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10409 if (sections == NULL)
10410 return FALSE;
10411 seen_linkorder = 0;
10412
10413 for (p = o->map_head.link_order; p != NULL; p = p->next)
10414 {
10415 sections[seen_linkorder++] = p;
10416 }
10417 /* Sort the input sections in the order of their linked section. */
10418 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10419 compare_link_order);
10420
10421 /* Change the offsets of the sections. */
10422 offset = 0;
10423 for (n = 0; n < seen_linkorder; n++)
10424 {
10425 s = sections[n]->u.indirect.section;
10426 offset &= ~(bfd_vma) 0 << s->alignment_power;
10427 s->output_offset = offset;
10428 sections[n]->offset = offset;
10429 /* FIXME: octets_per_byte. */
10430 offset += sections[n]->size;
10431 }
10432
10433 free (sections);
10434 return TRUE;
10435 }
10436
10437
10438 /* Do the final step of an ELF link. */
10439
10440 bfd_boolean
10441 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10442 {
10443 bfd_boolean dynamic;
10444 bfd_boolean emit_relocs;
10445 bfd *dynobj;
10446 struct elf_final_link_info flinfo;
10447 asection *o;
10448 struct bfd_link_order *p;
10449 bfd *sub;
10450 bfd_size_type max_contents_size;
10451 bfd_size_type max_external_reloc_size;
10452 bfd_size_type max_internal_reloc_count;
10453 bfd_size_type max_sym_count;
10454 bfd_size_type max_sym_shndx_count;
10455 file_ptr off;
10456 Elf_Internal_Sym elfsym;
10457 unsigned int i;
10458 Elf_Internal_Shdr *symtab_hdr;
10459 Elf_Internal_Shdr *symtab_shndx_hdr;
10460 Elf_Internal_Shdr *symstrtab_hdr;
10461 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10462 struct elf_outext_info eoinfo;
10463 bfd_boolean merged;
10464 size_t relativecount = 0;
10465 asection *reldyn = 0;
10466 bfd_size_type amt;
10467 asection *attr_section = NULL;
10468 bfd_vma attr_size = 0;
10469 const char *std_attrs_section;
10470
10471 if (! is_elf_hash_table (info->hash))
10472 return FALSE;
10473
10474 if (info->shared)
10475 abfd->flags |= DYNAMIC;
10476
10477 dynamic = elf_hash_table (info)->dynamic_sections_created;
10478 dynobj = elf_hash_table (info)->dynobj;
10479
10480 emit_relocs = (info->relocatable
10481 || info->emitrelocations);
10482
10483 flinfo.info = info;
10484 flinfo.output_bfd = abfd;
10485 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10486 if (flinfo.symstrtab == NULL)
10487 return FALSE;
10488
10489 if (! dynamic)
10490 {
10491 flinfo.dynsym_sec = NULL;
10492 flinfo.hash_sec = NULL;
10493 flinfo.symver_sec = NULL;
10494 }
10495 else
10496 {
10497 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10498 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10499 /* Note that dynsym_sec can be NULL (on VMS). */
10500 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10501 /* Note that it is OK if symver_sec is NULL. */
10502 }
10503
10504 flinfo.contents = NULL;
10505 flinfo.external_relocs = NULL;
10506 flinfo.internal_relocs = NULL;
10507 flinfo.external_syms = NULL;
10508 flinfo.locsym_shndx = NULL;
10509 flinfo.internal_syms = NULL;
10510 flinfo.indices = NULL;
10511 flinfo.sections = NULL;
10512 flinfo.symbuf = NULL;
10513 flinfo.symshndxbuf = NULL;
10514 flinfo.symbuf_count = 0;
10515 flinfo.shndxbuf_size = 0;
10516 flinfo.filesym_count = 0;
10517
10518 /* The object attributes have been merged. Remove the input
10519 sections from the link, and set the contents of the output
10520 secton. */
10521 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10522 for (o = abfd->sections; o != NULL; o = o->next)
10523 {
10524 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10525 || strcmp (o->name, ".gnu.attributes") == 0)
10526 {
10527 for (p = o->map_head.link_order; p != NULL; p = p->next)
10528 {
10529 asection *input_section;
10530
10531 if (p->type != bfd_indirect_link_order)
10532 continue;
10533 input_section = p->u.indirect.section;
10534 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10535 elf_link_input_bfd ignores this section. */
10536 input_section->flags &= ~SEC_HAS_CONTENTS;
10537 }
10538
10539 attr_size = bfd_elf_obj_attr_size (abfd);
10540 if (attr_size)
10541 {
10542 bfd_set_section_size (abfd, o, attr_size);
10543 attr_section = o;
10544 /* Skip this section later on. */
10545 o->map_head.link_order = NULL;
10546 }
10547 else
10548 o->flags |= SEC_EXCLUDE;
10549 }
10550 }
10551
10552 /* Count up the number of relocations we will output for each output
10553 section, so that we know the sizes of the reloc sections. We
10554 also figure out some maximum sizes. */
10555 max_contents_size = 0;
10556 max_external_reloc_size = 0;
10557 max_internal_reloc_count = 0;
10558 max_sym_count = 0;
10559 max_sym_shndx_count = 0;
10560 merged = FALSE;
10561 for (o = abfd->sections; o != NULL; o = o->next)
10562 {
10563 struct bfd_elf_section_data *esdo = elf_section_data (o);
10564 o->reloc_count = 0;
10565
10566 for (p = o->map_head.link_order; p != NULL; p = p->next)
10567 {
10568 unsigned int reloc_count = 0;
10569 struct bfd_elf_section_data *esdi = NULL;
10570
10571 if (p->type == bfd_section_reloc_link_order
10572 || p->type == bfd_symbol_reloc_link_order)
10573 reloc_count = 1;
10574 else if (p->type == bfd_indirect_link_order)
10575 {
10576 asection *sec;
10577
10578 sec = p->u.indirect.section;
10579 esdi = elf_section_data (sec);
10580
10581 /* Mark all sections which are to be included in the
10582 link. This will normally be every section. We need
10583 to do this so that we can identify any sections which
10584 the linker has decided to not include. */
10585 sec->linker_mark = TRUE;
10586
10587 if (sec->flags & SEC_MERGE)
10588 merged = TRUE;
10589
10590 if (esdo->this_hdr.sh_type == SHT_REL
10591 || esdo->this_hdr.sh_type == SHT_RELA)
10592 /* Some backends use reloc_count in relocation sections
10593 to count particular types of relocs. Of course,
10594 reloc sections themselves can't have relocations. */
10595 reloc_count = 0;
10596 else if (info->relocatable || info->emitrelocations)
10597 reloc_count = sec->reloc_count;
10598 else if (bed->elf_backend_count_relocs)
10599 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10600
10601 if (sec->rawsize > max_contents_size)
10602 max_contents_size = sec->rawsize;
10603 if (sec->size > max_contents_size)
10604 max_contents_size = sec->size;
10605
10606 /* We are interested in just local symbols, not all
10607 symbols. */
10608 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10609 && (sec->owner->flags & DYNAMIC) == 0)
10610 {
10611 size_t sym_count;
10612
10613 if (elf_bad_symtab (sec->owner))
10614 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10615 / bed->s->sizeof_sym);
10616 else
10617 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10618
10619 if (sym_count > max_sym_count)
10620 max_sym_count = sym_count;
10621
10622 if (sym_count > max_sym_shndx_count
10623 && elf_symtab_shndx (sec->owner) != 0)
10624 max_sym_shndx_count = sym_count;
10625
10626 if ((sec->flags & SEC_RELOC) != 0)
10627 {
10628 size_t ext_size = 0;
10629
10630 if (esdi->rel.hdr != NULL)
10631 ext_size = esdi->rel.hdr->sh_size;
10632 if (esdi->rela.hdr != NULL)
10633 ext_size += esdi->rela.hdr->sh_size;
10634
10635 if (ext_size > max_external_reloc_size)
10636 max_external_reloc_size = ext_size;
10637 if (sec->reloc_count > max_internal_reloc_count)
10638 max_internal_reloc_count = sec->reloc_count;
10639 }
10640 }
10641 }
10642
10643 if (reloc_count == 0)
10644 continue;
10645
10646 o->reloc_count += reloc_count;
10647
10648 if (p->type == bfd_indirect_link_order
10649 && (info->relocatable || info->emitrelocations))
10650 {
10651 if (esdi->rel.hdr)
10652 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10653 if (esdi->rela.hdr)
10654 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10655 }
10656 else
10657 {
10658 if (o->use_rela_p)
10659 esdo->rela.count += reloc_count;
10660 else
10661 esdo->rel.count += reloc_count;
10662 }
10663 }
10664
10665 if (o->reloc_count > 0)
10666 o->flags |= SEC_RELOC;
10667 else
10668 {
10669 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10670 set it (this is probably a bug) and if it is set
10671 assign_section_numbers will create a reloc section. */
10672 o->flags &=~ SEC_RELOC;
10673 }
10674
10675 /* If the SEC_ALLOC flag is not set, force the section VMA to
10676 zero. This is done in elf_fake_sections as well, but forcing
10677 the VMA to 0 here will ensure that relocs against these
10678 sections are handled correctly. */
10679 if ((o->flags & SEC_ALLOC) == 0
10680 && ! o->user_set_vma)
10681 o->vma = 0;
10682 }
10683
10684 if (! info->relocatable && merged)
10685 elf_link_hash_traverse (elf_hash_table (info),
10686 _bfd_elf_link_sec_merge_syms, abfd);
10687
10688 /* Figure out the file positions for everything but the symbol table
10689 and the relocs. We set symcount to force assign_section_numbers
10690 to create a symbol table. */
10691 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10692 BFD_ASSERT (! abfd->output_has_begun);
10693 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10694 goto error_return;
10695
10696 /* Set sizes, and assign file positions for reloc sections. */
10697 for (o = abfd->sections; o != NULL; o = o->next)
10698 {
10699 struct bfd_elf_section_data *esdo = elf_section_data (o);
10700 if ((o->flags & SEC_RELOC) != 0)
10701 {
10702 if (esdo->rel.hdr
10703 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10704 goto error_return;
10705
10706 if (esdo->rela.hdr
10707 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10708 goto error_return;
10709 }
10710
10711 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10712 to count upwards while actually outputting the relocations. */
10713 esdo->rel.count = 0;
10714 esdo->rela.count = 0;
10715 }
10716
10717 _bfd_elf_assign_file_positions_for_relocs (abfd);
10718
10719 /* We have now assigned file positions for all the sections except
10720 .symtab and .strtab. We start the .symtab section at the current
10721 file position, and write directly to it. We build the .strtab
10722 section in memory. */
10723 bfd_get_symcount (abfd) = 0;
10724 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10725 /* sh_name is set in prep_headers. */
10726 symtab_hdr->sh_type = SHT_SYMTAB;
10727 /* sh_flags, sh_addr and sh_size all start off zero. */
10728 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10729 /* sh_link is set in assign_section_numbers. */
10730 /* sh_info is set below. */
10731 /* sh_offset is set just below. */
10732 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10733
10734 off = elf_tdata (abfd)->next_file_pos;
10735 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10736
10737 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10738 incorrect. We do not yet know the size of the .symtab section.
10739 We correct next_file_pos below, after we do know the size. */
10740
10741 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10742 continuously seeking to the right position in the file. */
10743 if (! info->keep_memory || max_sym_count < 20)
10744 flinfo.symbuf_size = 20;
10745 else
10746 flinfo.symbuf_size = max_sym_count;
10747 amt = flinfo.symbuf_size;
10748 amt *= bed->s->sizeof_sym;
10749 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10750 if (flinfo.symbuf == NULL)
10751 goto error_return;
10752 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10753 {
10754 /* Wild guess at number of output symbols. realloc'd as needed. */
10755 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10756 flinfo.shndxbuf_size = amt;
10757 amt *= sizeof (Elf_External_Sym_Shndx);
10758 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10759 if (flinfo.symshndxbuf == NULL)
10760 goto error_return;
10761 }
10762
10763 /* Start writing out the symbol table. The first symbol is always a
10764 dummy symbol. */
10765 if (info->strip != strip_all
10766 || emit_relocs)
10767 {
10768 elfsym.st_value = 0;
10769 elfsym.st_size = 0;
10770 elfsym.st_info = 0;
10771 elfsym.st_other = 0;
10772 elfsym.st_shndx = SHN_UNDEF;
10773 elfsym.st_target_internal = 0;
10774 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10775 NULL) != 1)
10776 goto error_return;
10777 }
10778
10779 /* Output a symbol for each section. We output these even if we are
10780 discarding local symbols, since they are used for relocs. These
10781 symbols have no names. We store the index of each one in the
10782 index field of the section, so that we can find it again when
10783 outputting relocs. */
10784 if (info->strip != strip_all
10785 || emit_relocs)
10786 {
10787 elfsym.st_size = 0;
10788 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10789 elfsym.st_other = 0;
10790 elfsym.st_value = 0;
10791 elfsym.st_target_internal = 0;
10792 for (i = 1; i < elf_numsections (abfd); i++)
10793 {
10794 o = bfd_section_from_elf_index (abfd, i);
10795 if (o != NULL)
10796 {
10797 o->target_index = bfd_get_symcount (abfd);
10798 elfsym.st_shndx = i;
10799 if (!info->relocatable)
10800 elfsym.st_value = o->vma;
10801 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10802 goto error_return;
10803 }
10804 }
10805 }
10806
10807 /* Allocate some memory to hold information read in from the input
10808 files. */
10809 if (max_contents_size != 0)
10810 {
10811 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10812 if (flinfo.contents == NULL)
10813 goto error_return;
10814 }
10815
10816 if (max_external_reloc_size != 0)
10817 {
10818 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10819 if (flinfo.external_relocs == NULL)
10820 goto error_return;
10821 }
10822
10823 if (max_internal_reloc_count != 0)
10824 {
10825 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10826 amt *= sizeof (Elf_Internal_Rela);
10827 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10828 if (flinfo.internal_relocs == NULL)
10829 goto error_return;
10830 }
10831
10832 if (max_sym_count != 0)
10833 {
10834 amt = max_sym_count * bed->s->sizeof_sym;
10835 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10836 if (flinfo.external_syms == NULL)
10837 goto error_return;
10838
10839 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10840 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10841 if (flinfo.internal_syms == NULL)
10842 goto error_return;
10843
10844 amt = max_sym_count * sizeof (long);
10845 flinfo.indices = (long int *) bfd_malloc (amt);
10846 if (flinfo.indices == NULL)
10847 goto error_return;
10848
10849 amt = max_sym_count * sizeof (asection *);
10850 flinfo.sections = (asection **) bfd_malloc (amt);
10851 if (flinfo.sections == NULL)
10852 goto error_return;
10853 }
10854
10855 if (max_sym_shndx_count != 0)
10856 {
10857 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10858 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10859 if (flinfo.locsym_shndx == NULL)
10860 goto error_return;
10861 }
10862
10863 if (elf_hash_table (info)->tls_sec)
10864 {
10865 bfd_vma base, end = 0;
10866 asection *sec;
10867
10868 for (sec = elf_hash_table (info)->tls_sec;
10869 sec && (sec->flags & SEC_THREAD_LOCAL);
10870 sec = sec->next)
10871 {
10872 bfd_size_type size = sec->size;
10873
10874 if (size == 0
10875 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10876 {
10877 struct bfd_link_order *ord = sec->map_tail.link_order;
10878
10879 if (ord != NULL)
10880 size = ord->offset + ord->size;
10881 }
10882 end = sec->vma + size;
10883 }
10884 base = elf_hash_table (info)->tls_sec->vma;
10885 /* Only align end of TLS section if static TLS doesn't have special
10886 alignment requirements. */
10887 if (bed->static_tls_alignment == 1)
10888 end = align_power (end,
10889 elf_hash_table (info)->tls_sec->alignment_power);
10890 elf_hash_table (info)->tls_size = end - base;
10891 }
10892
10893 /* Reorder SHF_LINK_ORDER sections. */
10894 for (o = abfd->sections; o != NULL; o = o->next)
10895 {
10896 if (!elf_fixup_link_order (abfd, o))
10897 return FALSE;
10898 }
10899
10900 /* Since ELF permits relocations to be against local symbols, we
10901 must have the local symbols available when we do the relocations.
10902 Since we would rather only read the local symbols once, and we
10903 would rather not keep them in memory, we handle all the
10904 relocations for a single input file at the same time.
10905
10906 Unfortunately, there is no way to know the total number of local
10907 symbols until we have seen all of them, and the local symbol
10908 indices precede the global symbol indices. This means that when
10909 we are generating relocatable output, and we see a reloc against
10910 a global symbol, we can not know the symbol index until we have
10911 finished examining all the local symbols to see which ones we are
10912 going to output. To deal with this, we keep the relocations in
10913 memory, and don't output them until the end of the link. This is
10914 an unfortunate waste of memory, but I don't see a good way around
10915 it. Fortunately, it only happens when performing a relocatable
10916 link, which is not the common case. FIXME: If keep_memory is set
10917 we could write the relocs out and then read them again; I don't
10918 know how bad the memory loss will be. */
10919
10920 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10921 sub->output_has_begun = FALSE;
10922 for (o = abfd->sections; o != NULL; o = o->next)
10923 {
10924 for (p = o->map_head.link_order; p != NULL; p = p->next)
10925 {
10926 if (p->type == bfd_indirect_link_order
10927 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10928 == bfd_target_elf_flavour)
10929 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10930 {
10931 if (! sub->output_has_begun)
10932 {
10933 if (! elf_link_input_bfd (&flinfo, sub))
10934 goto error_return;
10935 sub->output_has_begun = TRUE;
10936 }
10937 }
10938 else if (p->type == bfd_section_reloc_link_order
10939 || p->type == bfd_symbol_reloc_link_order)
10940 {
10941 if (! elf_reloc_link_order (abfd, info, o, p))
10942 goto error_return;
10943 }
10944 else
10945 {
10946 if (! _bfd_default_link_order (abfd, info, o, p))
10947 {
10948 if (p->type == bfd_indirect_link_order
10949 && (bfd_get_flavour (sub)
10950 == bfd_target_elf_flavour)
10951 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10952 != bed->s->elfclass))
10953 {
10954 const char *iclass, *oclass;
10955
10956 if (bed->s->elfclass == ELFCLASS64)
10957 {
10958 iclass = "ELFCLASS32";
10959 oclass = "ELFCLASS64";
10960 }
10961 else
10962 {
10963 iclass = "ELFCLASS64";
10964 oclass = "ELFCLASS32";
10965 }
10966
10967 bfd_set_error (bfd_error_wrong_format);
10968 (*_bfd_error_handler)
10969 (_("%B: file class %s incompatible with %s"),
10970 sub, iclass, oclass);
10971 }
10972
10973 goto error_return;
10974 }
10975 }
10976 }
10977 }
10978
10979 /* Free symbol buffer if needed. */
10980 if (!info->reduce_memory_overheads)
10981 {
10982 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10983 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10984 && elf_tdata (sub)->symbuf)
10985 {
10986 free (elf_tdata (sub)->symbuf);
10987 elf_tdata (sub)->symbuf = NULL;
10988 }
10989 }
10990
10991 /* Output a FILE symbol so that following locals are not associated
10992 with the wrong input file. */
10993 memset (&elfsym, 0, sizeof (elfsym));
10994 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10995 elfsym.st_shndx = SHN_ABS;
10996
10997 if (flinfo.filesym_count > 1
10998 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
10999 bfd_und_section_ptr, NULL))
11000 return FALSE;
11001
11002 /* Output any global symbols that got converted to local in a
11003 version script or due to symbol visibility. We do this in a
11004 separate step since ELF requires all local symbols to appear
11005 prior to any global symbols. FIXME: We should only do this if
11006 some global symbols were, in fact, converted to become local.
11007 FIXME: Will this work correctly with the Irix 5 linker? */
11008 eoinfo.failed = FALSE;
11009 eoinfo.flinfo = &flinfo;
11010 eoinfo.localsyms = TRUE;
11011 eoinfo.need_second_pass = FALSE;
11012 eoinfo.second_pass = FALSE;
11013 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11014 if (eoinfo.failed)
11015 return FALSE;
11016
11017 if (flinfo.filesym_count == 1
11018 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11019 bfd_und_section_ptr, NULL))
11020 return FALSE;
11021
11022 if (eoinfo.need_second_pass)
11023 {
11024 eoinfo.second_pass = TRUE;
11025 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11026 if (eoinfo.failed)
11027 return FALSE;
11028 }
11029
11030 /* If backend needs to output some local symbols not present in the hash
11031 table, do it now. */
11032 if (bed->elf_backend_output_arch_local_syms)
11033 {
11034 typedef int (*out_sym_func)
11035 (void *, const char *, Elf_Internal_Sym *, asection *,
11036 struct elf_link_hash_entry *);
11037
11038 if (! ((*bed->elf_backend_output_arch_local_syms)
11039 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11040 return FALSE;
11041 }
11042
11043 /* That wrote out all the local symbols. Finish up the symbol table
11044 with the global symbols. Even if we want to strip everything we
11045 can, we still need to deal with those global symbols that got
11046 converted to local in a version script. */
11047
11048 /* The sh_info field records the index of the first non local symbol. */
11049 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11050
11051 if (dynamic
11052 && flinfo.dynsym_sec != NULL
11053 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11054 {
11055 Elf_Internal_Sym sym;
11056 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11057 long last_local = 0;
11058
11059 /* Write out the section symbols for the output sections. */
11060 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11061 {
11062 asection *s;
11063
11064 sym.st_size = 0;
11065 sym.st_name = 0;
11066 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11067 sym.st_other = 0;
11068 sym.st_target_internal = 0;
11069
11070 for (s = abfd->sections; s != NULL; s = s->next)
11071 {
11072 int indx;
11073 bfd_byte *dest;
11074 long dynindx;
11075
11076 dynindx = elf_section_data (s)->dynindx;
11077 if (dynindx <= 0)
11078 continue;
11079 indx = elf_section_data (s)->this_idx;
11080 BFD_ASSERT (indx > 0);
11081 sym.st_shndx = indx;
11082 if (! check_dynsym (abfd, &sym))
11083 return FALSE;
11084 sym.st_value = s->vma;
11085 dest = dynsym + dynindx * bed->s->sizeof_sym;
11086 if (last_local < dynindx)
11087 last_local = dynindx;
11088 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11089 }
11090 }
11091
11092 /* Write out the local dynsyms. */
11093 if (elf_hash_table (info)->dynlocal)
11094 {
11095 struct elf_link_local_dynamic_entry *e;
11096 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11097 {
11098 asection *s;
11099 bfd_byte *dest;
11100
11101 /* Copy the internal symbol and turn off visibility.
11102 Note that we saved a word of storage and overwrote
11103 the original st_name with the dynstr_index. */
11104 sym = e->isym;
11105 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11106
11107 s = bfd_section_from_elf_index (e->input_bfd,
11108 e->isym.st_shndx);
11109 if (s != NULL)
11110 {
11111 sym.st_shndx =
11112 elf_section_data (s->output_section)->this_idx;
11113 if (! check_dynsym (abfd, &sym))
11114 return FALSE;
11115 sym.st_value = (s->output_section->vma
11116 + s->output_offset
11117 + e->isym.st_value);
11118 }
11119
11120 if (last_local < e->dynindx)
11121 last_local = e->dynindx;
11122
11123 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11124 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11125 }
11126 }
11127
11128 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11129 last_local + 1;
11130 }
11131
11132 /* We get the global symbols from the hash table. */
11133 eoinfo.failed = FALSE;
11134 eoinfo.localsyms = FALSE;
11135 eoinfo.flinfo = &flinfo;
11136 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11137 if (eoinfo.failed)
11138 return FALSE;
11139
11140 /* If backend needs to output some symbols not present in the hash
11141 table, do it now. */
11142 if (bed->elf_backend_output_arch_syms)
11143 {
11144 typedef int (*out_sym_func)
11145 (void *, const char *, Elf_Internal_Sym *, asection *,
11146 struct elf_link_hash_entry *);
11147
11148 if (! ((*bed->elf_backend_output_arch_syms)
11149 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11150 return FALSE;
11151 }
11152
11153 /* Flush all symbols to the file. */
11154 if (! elf_link_flush_output_syms (&flinfo, bed))
11155 return FALSE;
11156
11157 /* Now we know the size of the symtab section. */
11158 off += symtab_hdr->sh_size;
11159
11160 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11161 if (symtab_shndx_hdr->sh_name != 0)
11162 {
11163 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11164 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11165 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11166 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11167 symtab_shndx_hdr->sh_size = amt;
11168
11169 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11170 off, TRUE);
11171
11172 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11173 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11174 return FALSE;
11175 }
11176
11177
11178 /* Finish up and write out the symbol string table (.strtab)
11179 section. */
11180 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11181 /* sh_name was set in prep_headers. */
11182 symstrtab_hdr->sh_type = SHT_STRTAB;
11183 symstrtab_hdr->sh_flags = 0;
11184 symstrtab_hdr->sh_addr = 0;
11185 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11186 symstrtab_hdr->sh_entsize = 0;
11187 symstrtab_hdr->sh_link = 0;
11188 symstrtab_hdr->sh_info = 0;
11189 /* sh_offset is set just below. */
11190 symstrtab_hdr->sh_addralign = 1;
11191
11192 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11193 elf_tdata (abfd)->next_file_pos = off;
11194
11195 if (bfd_get_symcount (abfd) > 0)
11196 {
11197 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11198 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11199 return FALSE;
11200 }
11201
11202 /* Adjust the relocs to have the correct symbol indices. */
11203 for (o = abfd->sections; o != NULL; o = o->next)
11204 {
11205 struct bfd_elf_section_data *esdo = elf_section_data (o);
11206 if ((o->flags & SEC_RELOC) == 0)
11207 continue;
11208
11209 if (esdo->rel.hdr != NULL)
11210 elf_link_adjust_relocs (abfd, &esdo->rel);
11211 if (esdo->rela.hdr != NULL)
11212 elf_link_adjust_relocs (abfd, &esdo->rela);
11213
11214 /* Set the reloc_count field to 0 to prevent write_relocs from
11215 trying to swap the relocs out itself. */
11216 o->reloc_count = 0;
11217 }
11218
11219 if (dynamic && info->combreloc && dynobj != NULL)
11220 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11221
11222 /* If we are linking against a dynamic object, or generating a
11223 shared library, finish up the dynamic linking information. */
11224 if (dynamic)
11225 {
11226 bfd_byte *dyncon, *dynconend;
11227
11228 /* Fix up .dynamic entries. */
11229 o = bfd_get_linker_section (dynobj, ".dynamic");
11230 BFD_ASSERT (o != NULL);
11231
11232 dyncon = o->contents;
11233 dynconend = o->contents + o->size;
11234 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11235 {
11236 Elf_Internal_Dyn dyn;
11237 const char *name;
11238 unsigned int type;
11239
11240 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11241
11242 switch (dyn.d_tag)
11243 {
11244 default:
11245 continue;
11246 case DT_NULL:
11247 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11248 {
11249 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11250 {
11251 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11252 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11253 default: continue;
11254 }
11255 dyn.d_un.d_val = relativecount;
11256 relativecount = 0;
11257 break;
11258 }
11259 continue;
11260
11261 case DT_INIT:
11262 name = info->init_function;
11263 goto get_sym;
11264 case DT_FINI:
11265 name = info->fini_function;
11266 get_sym:
11267 {
11268 struct elf_link_hash_entry *h;
11269
11270 h = elf_link_hash_lookup (elf_hash_table (info), name,
11271 FALSE, FALSE, TRUE);
11272 if (h != NULL
11273 && (h->root.type == bfd_link_hash_defined
11274 || h->root.type == bfd_link_hash_defweak))
11275 {
11276 dyn.d_un.d_ptr = h->root.u.def.value;
11277 o = h->root.u.def.section;
11278 if (o->output_section != NULL)
11279 dyn.d_un.d_ptr += (o->output_section->vma
11280 + o->output_offset);
11281 else
11282 {
11283 /* The symbol is imported from another shared
11284 library and does not apply to this one. */
11285 dyn.d_un.d_ptr = 0;
11286 }
11287 break;
11288 }
11289 }
11290 continue;
11291
11292 case DT_PREINIT_ARRAYSZ:
11293 name = ".preinit_array";
11294 goto get_size;
11295 case DT_INIT_ARRAYSZ:
11296 name = ".init_array";
11297 goto get_size;
11298 case DT_FINI_ARRAYSZ:
11299 name = ".fini_array";
11300 get_size:
11301 o = bfd_get_section_by_name (abfd, name);
11302 if (o == NULL)
11303 {
11304 (*_bfd_error_handler)
11305 (_("%B: could not find output section %s"), abfd, name);
11306 goto error_return;
11307 }
11308 if (o->size == 0)
11309 (*_bfd_error_handler)
11310 (_("warning: %s section has zero size"), name);
11311 dyn.d_un.d_val = o->size;
11312 break;
11313
11314 case DT_PREINIT_ARRAY:
11315 name = ".preinit_array";
11316 goto get_vma;
11317 case DT_INIT_ARRAY:
11318 name = ".init_array";
11319 goto get_vma;
11320 case DT_FINI_ARRAY:
11321 name = ".fini_array";
11322 goto get_vma;
11323
11324 case DT_HASH:
11325 name = ".hash";
11326 goto get_vma;
11327 case DT_GNU_HASH:
11328 name = ".gnu.hash";
11329 goto get_vma;
11330 case DT_STRTAB:
11331 name = ".dynstr";
11332 goto get_vma;
11333 case DT_SYMTAB:
11334 name = ".dynsym";
11335 goto get_vma;
11336 case DT_VERDEF:
11337 name = ".gnu.version_d";
11338 goto get_vma;
11339 case DT_VERNEED:
11340 name = ".gnu.version_r";
11341 goto get_vma;
11342 case DT_VERSYM:
11343 name = ".gnu.version";
11344 get_vma:
11345 o = bfd_get_section_by_name (abfd, name);
11346 if (o == NULL)
11347 {
11348 (*_bfd_error_handler)
11349 (_("%B: could not find output section %s"), abfd, name);
11350 goto error_return;
11351 }
11352 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11353 {
11354 (*_bfd_error_handler)
11355 (_("warning: section '%s' is being made into a note"), name);
11356 bfd_set_error (bfd_error_nonrepresentable_section);
11357 goto error_return;
11358 }
11359 dyn.d_un.d_ptr = o->vma;
11360 break;
11361
11362 case DT_REL:
11363 case DT_RELA:
11364 case DT_RELSZ:
11365 case DT_RELASZ:
11366 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11367 type = SHT_REL;
11368 else
11369 type = SHT_RELA;
11370 dyn.d_un.d_val = 0;
11371 dyn.d_un.d_ptr = 0;
11372 for (i = 1; i < elf_numsections (abfd); i++)
11373 {
11374 Elf_Internal_Shdr *hdr;
11375
11376 hdr = elf_elfsections (abfd)[i];
11377 if (hdr->sh_type == type
11378 && (hdr->sh_flags & SHF_ALLOC) != 0)
11379 {
11380 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11381 dyn.d_un.d_val += hdr->sh_size;
11382 else
11383 {
11384 if (dyn.d_un.d_ptr == 0
11385 || hdr->sh_addr < dyn.d_un.d_ptr)
11386 dyn.d_un.d_ptr = hdr->sh_addr;
11387 }
11388 }
11389 }
11390 break;
11391 }
11392 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11393 }
11394 }
11395
11396 /* If we have created any dynamic sections, then output them. */
11397 if (dynobj != NULL)
11398 {
11399 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11400 goto error_return;
11401
11402 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11403 if (((info->warn_shared_textrel && info->shared)
11404 || info->error_textrel)
11405 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11406 {
11407 bfd_byte *dyncon, *dynconend;
11408
11409 dyncon = o->contents;
11410 dynconend = o->contents + o->size;
11411 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11412 {
11413 Elf_Internal_Dyn dyn;
11414
11415 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11416
11417 if (dyn.d_tag == DT_TEXTREL)
11418 {
11419 if (info->error_textrel)
11420 info->callbacks->einfo
11421 (_("%P%X: read-only segment has dynamic relocations.\n"));
11422 else
11423 info->callbacks->einfo
11424 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11425 break;
11426 }
11427 }
11428 }
11429
11430 for (o = dynobj->sections; o != NULL; o = o->next)
11431 {
11432 if ((o->flags & SEC_HAS_CONTENTS) == 0
11433 || o->size == 0
11434 || o->output_section == bfd_abs_section_ptr)
11435 continue;
11436 if ((o->flags & SEC_LINKER_CREATED) == 0)
11437 {
11438 /* At this point, we are only interested in sections
11439 created by _bfd_elf_link_create_dynamic_sections. */
11440 continue;
11441 }
11442 if (elf_hash_table (info)->stab_info.stabstr == o)
11443 continue;
11444 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11445 continue;
11446 if (strcmp (o->name, ".dynstr") != 0)
11447 {
11448 /* FIXME: octets_per_byte. */
11449 if (! bfd_set_section_contents (abfd, o->output_section,
11450 o->contents,
11451 (file_ptr) o->output_offset,
11452 o->size))
11453 goto error_return;
11454 }
11455 else
11456 {
11457 /* The contents of the .dynstr section are actually in a
11458 stringtab. */
11459 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11460 if (bfd_seek (abfd, off, SEEK_SET) != 0
11461 || ! _bfd_elf_strtab_emit (abfd,
11462 elf_hash_table (info)->dynstr))
11463 goto error_return;
11464 }
11465 }
11466 }
11467
11468 if (info->relocatable)
11469 {
11470 bfd_boolean failed = FALSE;
11471
11472 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11473 if (failed)
11474 goto error_return;
11475 }
11476
11477 /* If we have optimized stabs strings, output them. */
11478 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11479 {
11480 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11481 goto error_return;
11482 }
11483
11484 if (info->eh_frame_hdr)
11485 {
11486 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11487 goto error_return;
11488 }
11489
11490 if (flinfo.symstrtab != NULL)
11491 _bfd_stringtab_free (flinfo.symstrtab);
11492 if (flinfo.contents != NULL)
11493 free (flinfo.contents);
11494 if (flinfo.external_relocs != NULL)
11495 free (flinfo.external_relocs);
11496 if (flinfo.internal_relocs != NULL)
11497 free (flinfo.internal_relocs);
11498 if (flinfo.external_syms != NULL)
11499 free (flinfo.external_syms);
11500 if (flinfo.locsym_shndx != NULL)
11501 free (flinfo.locsym_shndx);
11502 if (flinfo.internal_syms != NULL)
11503 free (flinfo.internal_syms);
11504 if (flinfo.indices != NULL)
11505 free (flinfo.indices);
11506 if (flinfo.sections != NULL)
11507 free (flinfo.sections);
11508 if (flinfo.symbuf != NULL)
11509 free (flinfo.symbuf);
11510 if (flinfo.symshndxbuf != NULL)
11511 free (flinfo.symshndxbuf);
11512 for (o = abfd->sections; o != NULL; o = o->next)
11513 {
11514 struct bfd_elf_section_data *esdo = elf_section_data (o);
11515 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11516 free (esdo->rel.hashes);
11517 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11518 free (esdo->rela.hashes);
11519 }
11520
11521 elf_tdata (abfd)->linker = TRUE;
11522
11523 if (attr_section)
11524 {
11525 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11526 if (contents == NULL)
11527 return FALSE; /* Bail out and fail. */
11528 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11529 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11530 free (contents);
11531 }
11532
11533 return TRUE;
11534
11535 error_return:
11536 if (flinfo.symstrtab != NULL)
11537 _bfd_stringtab_free (flinfo.symstrtab);
11538 if (flinfo.contents != NULL)
11539 free (flinfo.contents);
11540 if (flinfo.external_relocs != NULL)
11541 free (flinfo.external_relocs);
11542 if (flinfo.internal_relocs != NULL)
11543 free (flinfo.internal_relocs);
11544 if (flinfo.external_syms != NULL)
11545 free (flinfo.external_syms);
11546 if (flinfo.locsym_shndx != NULL)
11547 free (flinfo.locsym_shndx);
11548 if (flinfo.internal_syms != NULL)
11549 free (flinfo.internal_syms);
11550 if (flinfo.indices != NULL)
11551 free (flinfo.indices);
11552 if (flinfo.sections != NULL)
11553 free (flinfo.sections);
11554 if (flinfo.symbuf != NULL)
11555 free (flinfo.symbuf);
11556 if (flinfo.symshndxbuf != NULL)
11557 free (flinfo.symshndxbuf);
11558 for (o = abfd->sections; o != NULL; o = o->next)
11559 {
11560 struct bfd_elf_section_data *esdo = elf_section_data (o);
11561 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11562 free (esdo->rel.hashes);
11563 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11564 free (esdo->rela.hashes);
11565 }
11566
11567 return FALSE;
11568 }
11569 \f
11570 /* Initialize COOKIE for input bfd ABFD. */
11571
11572 static bfd_boolean
11573 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11574 struct bfd_link_info *info, bfd *abfd)
11575 {
11576 Elf_Internal_Shdr *symtab_hdr;
11577 const struct elf_backend_data *bed;
11578
11579 bed = get_elf_backend_data (abfd);
11580 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11581
11582 cookie->abfd = abfd;
11583 cookie->sym_hashes = elf_sym_hashes (abfd);
11584 cookie->bad_symtab = elf_bad_symtab (abfd);
11585 if (cookie->bad_symtab)
11586 {
11587 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11588 cookie->extsymoff = 0;
11589 }
11590 else
11591 {
11592 cookie->locsymcount = symtab_hdr->sh_info;
11593 cookie->extsymoff = symtab_hdr->sh_info;
11594 }
11595
11596 if (bed->s->arch_size == 32)
11597 cookie->r_sym_shift = 8;
11598 else
11599 cookie->r_sym_shift = 32;
11600
11601 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11602 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11603 {
11604 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11605 cookie->locsymcount, 0,
11606 NULL, NULL, NULL);
11607 if (cookie->locsyms == NULL)
11608 {
11609 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11610 return FALSE;
11611 }
11612 if (info->keep_memory)
11613 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11614 }
11615 return TRUE;
11616 }
11617
11618 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11619
11620 static void
11621 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11622 {
11623 Elf_Internal_Shdr *symtab_hdr;
11624
11625 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11626 if (cookie->locsyms != NULL
11627 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11628 free (cookie->locsyms);
11629 }
11630
11631 /* Initialize the relocation information in COOKIE for input section SEC
11632 of input bfd ABFD. */
11633
11634 static bfd_boolean
11635 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11636 struct bfd_link_info *info, bfd *abfd,
11637 asection *sec)
11638 {
11639 const struct elf_backend_data *bed;
11640
11641 if (sec->reloc_count == 0)
11642 {
11643 cookie->rels = NULL;
11644 cookie->relend = NULL;
11645 }
11646 else
11647 {
11648 bed = get_elf_backend_data (abfd);
11649
11650 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11651 info->keep_memory);
11652 if (cookie->rels == NULL)
11653 return FALSE;
11654 cookie->rel = cookie->rels;
11655 cookie->relend = (cookie->rels
11656 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11657 }
11658 cookie->rel = cookie->rels;
11659 return TRUE;
11660 }
11661
11662 /* Free the memory allocated by init_reloc_cookie_rels,
11663 if appropriate. */
11664
11665 static void
11666 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11667 asection *sec)
11668 {
11669 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11670 free (cookie->rels);
11671 }
11672
11673 /* Initialize the whole of COOKIE for input section SEC. */
11674
11675 static bfd_boolean
11676 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11677 struct bfd_link_info *info,
11678 asection *sec)
11679 {
11680 if (!init_reloc_cookie (cookie, info, sec->owner))
11681 goto error1;
11682 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11683 goto error2;
11684 return TRUE;
11685
11686 error2:
11687 fini_reloc_cookie (cookie, sec->owner);
11688 error1:
11689 return FALSE;
11690 }
11691
11692 /* Free the memory allocated by init_reloc_cookie_for_section,
11693 if appropriate. */
11694
11695 static void
11696 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11697 asection *sec)
11698 {
11699 fini_reloc_cookie_rels (cookie, sec);
11700 fini_reloc_cookie (cookie, sec->owner);
11701 }
11702 \f
11703 /* Garbage collect unused sections. */
11704
11705 /* Default gc_mark_hook. */
11706
11707 asection *
11708 _bfd_elf_gc_mark_hook (asection *sec,
11709 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11710 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11711 struct elf_link_hash_entry *h,
11712 Elf_Internal_Sym *sym)
11713 {
11714 const char *sec_name;
11715
11716 if (h != NULL)
11717 {
11718 switch (h->root.type)
11719 {
11720 case bfd_link_hash_defined:
11721 case bfd_link_hash_defweak:
11722 return h->root.u.def.section;
11723
11724 case bfd_link_hash_common:
11725 return h->root.u.c.p->section;
11726
11727 case bfd_link_hash_undefined:
11728 case bfd_link_hash_undefweak:
11729 /* To work around a glibc bug, keep all XXX input sections
11730 when there is an as yet undefined reference to __start_XXX
11731 or __stop_XXX symbols. The linker will later define such
11732 symbols for orphan input sections that have a name
11733 representable as a C identifier. */
11734 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11735 sec_name = h->root.root.string + 8;
11736 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11737 sec_name = h->root.root.string + 7;
11738 else
11739 sec_name = NULL;
11740
11741 if (sec_name && *sec_name != '\0')
11742 {
11743 bfd *i;
11744
11745 for (i = info->input_bfds; i; i = i->link_next)
11746 {
11747 sec = bfd_get_section_by_name (i, sec_name);
11748 if (sec)
11749 sec->flags |= SEC_KEEP;
11750 }
11751 }
11752 break;
11753
11754 default:
11755 break;
11756 }
11757 }
11758 else
11759 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11760
11761 return NULL;
11762 }
11763
11764 /* COOKIE->rel describes a relocation against section SEC, which is
11765 a section we've decided to keep. Return the section that contains
11766 the relocation symbol, or NULL if no section contains it. */
11767
11768 asection *
11769 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11770 elf_gc_mark_hook_fn gc_mark_hook,
11771 struct elf_reloc_cookie *cookie)
11772 {
11773 unsigned long r_symndx;
11774 struct elf_link_hash_entry *h;
11775
11776 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11777 if (r_symndx == STN_UNDEF)
11778 return NULL;
11779
11780 if (r_symndx >= cookie->locsymcount
11781 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11782 {
11783 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11784 while (h->root.type == bfd_link_hash_indirect
11785 || h->root.type == bfd_link_hash_warning)
11786 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11787 h->mark = 1;
11788 /* If this symbol is weak and there is a non-weak definition, we
11789 keep the non-weak definition because many backends put
11790 dynamic reloc info on the non-weak definition for code
11791 handling copy relocs. */
11792 if (h->u.weakdef != NULL)
11793 h->u.weakdef->mark = 1;
11794 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11795 }
11796
11797 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11798 &cookie->locsyms[r_symndx]);
11799 }
11800
11801 /* COOKIE->rel describes a relocation against section SEC, which is
11802 a section we've decided to keep. Mark the section that contains
11803 the relocation symbol. */
11804
11805 bfd_boolean
11806 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11807 asection *sec,
11808 elf_gc_mark_hook_fn gc_mark_hook,
11809 struct elf_reloc_cookie *cookie)
11810 {
11811 asection *rsec;
11812
11813 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11814 if (rsec && !rsec->gc_mark)
11815 {
11816 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11817 || (rsec->owner->flags & DYNAMIC) != 0)
11818 rsec->gc_mark = 1;
11819 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11820 return FALSE;
11821 }
11822 return TRUE;
11823 }
11824
11825 /* The mark phase of garbage collection. For a given section, mark
11826 it and any sections in this section's group, and all the sections
11827 which define symbols to which it refers. */
11828
11829 bfd_boolean
11830 _bfd_elf_gc_mark (struct bfd_link_info *info,
11831 asection *sec,
11832 elf_gc_mark_hook_fn gc_mark_hook)
11833 {
11834 bfd_boolean ret;
11835 asection *group_sec, *eh_frame;
11836
11837 sec->gc_mark = 1;
11838
11839 /* Mark all the sections in the group. */
11840 group_sec = elf_section_data (sec)->next_in_group;
11841 if (group_sec && !group_sec->gc_mark)
11842 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11843 return FALSE;
11844
11845 /* Look through the section relocs. */
11846 ret = TRUE;
11847 eh_frame = elf_eh_frame_section (sec->owner);
11848 if ((sec->flags & SEC_RELOC) != 0
11849 && sec->reloc_count > 0
11850 && sec != eh_frame)
11851 {
11852 struct elf_reloc_cookie cookie;
11853
11854 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11855 ret = FALSE;
11856 else
11857 {
11858 for (; cookie.rel < cookie.relend; cookie.rel++)
11859 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11860 {
11861 ret = FALSE;
11862 break;
11863 }
11864 fini_reloc_cookie_for_section (&cookie, sec);
11865 }
11866 }
11867
11868 if (ret && eh_frame && elf_fde_list (sec))
11869 {
11870 struct elf_reloc_cookie cookie;
11871
11872 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11873 ret = FALSE;
11874 else
11875 {
11876 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11877 gc_mark_hook, &cookie))
11878 ret = FALSE;
11879 fini_reloc_cookie_for_section (&cookie, eh_frame);
11880 }
11881 }
11882
11883 return ret;
11884 }
11885
11886 /* Keep debug and special sections. */
11887
11888 bfd_boolean
11889 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11890 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11891 {
11892 bfd *ibfd;
11893
11894 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11895 {
11896 asection *isec;
11897 bfd_boolean some_kept;
11898
11899 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11900 continue;
11901
11902 /* Ensure all linker created sections are kept, and see whether
11903 any other section is already marked. */
11904 some_kept = FALSE;
11905 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11906 {
11907 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11908 isec->gc_mark = 1;
11909 else if (isec->gc_mark)
11910 some_kept = TRUE;
11911 }
11912
11913 /* If no section in this file will be kept, then we can
11914 toss out debug sections. */
11915 if (!some_kept)
11916 continue;
11917
11918 /* Keep debug and special sections like .comment when they are
11919 not part of a group, or when we have single-member groups. */
11920 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11921 if ((elf_next_in_group (isec) == NULL
11922 || elf_next_in_group (isec) == isec)
11923 && ((isec->flags & SEC_DEBUGGING) != 0
11924 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11925 isec->gc_mark = 1;
11926 }
11927 return TRUE;
11928 }
11929
11930 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11931
11932 struct elf_gc_sweep_symbol_info
11933 {
11934 struct bfd_link_info *info;
11935 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11936 bfd_boolean);
11937 };
11938
11939 static bfd_boolean
11940 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11941 {
11942 if (!h->mark
11943 && (((h->root.type == bfd_link_hash_defined
11944 || h->root.type == bfd_link_hash_defweak)
11945 && !(h->def_regular
11946 && h->root.u.def.section->gc_mark))
11947 || h->root.type == bfd_link_hash_undefined
11948 || h->root.type == bfd_link_hash_undefweak))
11949 {
11950 struct elf_gc_sweep_symbol_info *inf;
11951
11952 inf = (struct elf_gc_sweep_symbol_info *) data;
11953 (*inf->hide_symbol) (inf->info, h, TRUE);
11954 h->def_regular = 0;
11955 h->ref_regular = 0;
11956 h->ref_regular_nonweak = 0;
11957 }
11958
11959 return TRUE;
11960 }
11961
11962 /* The sweep phase of garbage collection. Remove all garbage sections. */
11963
11964 typedef bfd_boolean (*gc_sweep_hook_fn)
11965 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11966
11967 static bfd_boolean
11968 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11969 {
11970 bfd *sub;
11971 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11972 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11973 unsigned long section_sym_count;
11974 struct elf_gc_sweep_symbol_info sweep_info;
11975
11976 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11977 {
11978 asection *o;
11979
11980 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11981 continue;
11982
11983 for (o = sub->sections; o != NULL; o = o->next)
11984 {
11985 /* When any section in a section group is kept, we keep all
11986 sections in the section group. If the first member of
11987 the section group is excluded, we will also exclude the
11988 group section. */
11989 if (o->flags & SEC_GROUP)
11990 {
11991 asection *first = elf_next_in_group (o);
11992 o->gc_mark = first->gc_mark;
11993 }
11994
11995 if (o->gc_mark)
11996 continue;
11997
11998 /* Skip sweeping sections already excluded. */
11999 if (o->flags & SEC_EXCLUDE)
12000 continue;
12001
12002 /* Since this is early in the link process, it is simple
12003 to remove a section from the output. */
12004 o->flags |= SEC_EXCLUDE;
12005
12006 if (info->print_gc_sections && o->size != 0)
12007 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12008
12009 /* But we also have to update some of the relocation
12010 info we collected before. */
12011 if (gc_sweep_hook
12012 && (o->flags & SEC_RELOC) != 0
12013 && o->reloc_count > 0
12014 && !bfd_is_abs_section (o->output_section))
12015 {
12016 Elf_Internal_Rela *internal_relocs;
12017 bfd_boolean r;
12018
12019 internal_relocs
12020 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12021 info->keep_memory);
12022 if (internal_relocs == NULL)
12023 return FALSE;
12024
12025 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12026
12027 if (elf_section_data (o)->relocs != internal_relocs)
12028 free (internal_relocs);
12029
12030 if (!r)
12031 return FALSE;
12032 }
12033 }
12034 }
12035
12036 /* Remove the symbols that were in the swept sections from the dynamic
12037 symbol table. GCFIXME: Anyone know how to get them out of the
12038 static symbol table as well? */
12039 sweep_info.info = info;
12040 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12041 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12042 &sweep_info);
12043
12044 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12045 return TRUE;
12046 }
12047
12048 /* Propagate collected vtable information. This is called through
12049 elf_link_hash_traverse. */
12050
12051 static bfd_boolean
12052 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12053 {
12054 /* Those that are not vtables. */
12055 if (h->vtable == NULL || h->vtable->parent == NULL)
12056 return TRUE;
12057
12058 /* Those vtables that do not have parents, we cannot merge. */
12059 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12060 return TRUE;
12061
12062 /* If we've already been done, exit. */
12063 if (h->vtable->used && h->vtable->used[-1])
12064 return TRUE;
12065
12066 /* Make sure the parent's table is up to date. */
12067 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12068
12069 if (h->vtable->used == NULL)
12070 {
12071 /* None of this table's entries were referenced. Re-use the
12072 parent's table. */
12073 h->vtable->used = h->vtable->parent->vtable->used;
12074 h->vtable->size = h->vtable->parent->vtable->size;
12075 }
12076 else
12077 {
12078 size_t n;
12079 bfd_boolean *cu, *pu;
12080
12081 /* Or the parent's entries into ours. */
12082 cu = h->vtable->used;
12083 cu[-1] = TRUE;
12084 pu = h->vtable->parent->vtable->used;
12085 if (pu != NULL)
12086 {
12087 const struct elf_backend_data *bed;
12088 unsigned int log_file_align;
12089
12090 bed = get_elf_backend_data (h->root.u.def.section->owner);
12091 log_file_align = bed->s->log_file_align;
12092 n = h->vtable->parent->vtable->size >> log_file_align;
12093 while (n--)
12094 {
12095 if (*pu)
12096 *cu = TRUE;
12097 pu++;
12098 cu++;
12099 }
12100 }
12101 }
12102
12103 return TRUE;
12104 }
12105
12106 static bfd_boolean
12107 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12108 {
12109 asection *sec;
12110 bfd_vma hstart, hend;
12111 Elf_Internal_Rela *relstart, *relend, *rel;
12112 const struct elf_backend_data *bed;
12113 unsigned int log_file_align;
12114
12115 /* Take care of both those symbols that do not describe vtables as
12116 well as those that are not loaded. */
12117 if (h->vtable == NULL || h->vtable->parent == NULL)
12118 return TRUE;
12119
12120 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12121 || h->root.type == bfd_link_hash_defweak);
12122
12123 sec = h->root.u.def.section;
12124 hstart = h->root.u.def.value;
12125 hend = hstart + h->size;
12126
12127 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12128 if (!relstart)
12129 return *(bfd_boolean *) okp = FALSE;
12130 bed = get_elf_backend_data (sec->owner);
12131 log_file_align = bed->s->log_file_align;
12132
12133 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12134
12135 for (rel = relstart; rel < relend; ++rel)
12136 if (rel->r_offset >= hstart && rel->r_offset < hend)
12137 {
12138 /* If the entry is in use, do nothing. */
12139 if (h->vtable->used
12140 && (rel->r_offset - hstart) < h->vtable->size)
12141 {
12142 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12143 if (h->vtable->used[entry])
12144 continue;
12145 }
12146 /* Otherwise, kill it. */
12147 rel->r_offset = rel->r_info = rel->r_addend = 0;
12148 }
12149
12150 return TRUE;
12151 }
12152
12153 /* Mark sections containing dynamically referenced symbols. When
12154 building shared libraries, we must assume that any visible symbol is
12155 referenced. */
12156
12157 bfd_boolean
12158 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12159 {
12160 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12161
12162 if ((h->root.type == bfd_link_hash_defined
12163 || h->root.type == bfd_link_hash_defweak)
12164 && (h->ref_dynamic
12165 || ((!info->executable || info->export_dynamic)
12166 && h->def_regular
12167 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12168 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12169 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12170 || !bfd_hide_sym_by_version (info->version_info,
12171 h->root.root.string)))))
12172 h->root.u.def.section->flags |= SEC_KEEP;
12173
12174 return TRUE;
12175 }
12176
12177 /* Keep all sections containing symbols undefined on the command-line,
12178 and the section containing the entry symbol. */
12179
12180 void
12181 _bfd_elf_gc_keep (struct bfd_link_info *info)
12182 {
12183 struct bfd_sym_chain *sym;
12184
12185 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12186 {
12187 struct elf_link_hash_entry *h;
12188
12189 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12190 FALSE, FALSE, FALSE);
12191
12192 if (h != NULL
12193 && (h->root.type == bfd_link_hash_defined
12194 || h->root.type == bfd_link_hash_defweak)
12195 && !bfd_is_abs_section (h->root.u.def.section))
12196 h->root.u.def.section->flags |= SEC_KEEP;
12197 }
12198 }
12199
12200 /* Do mark and sweep of unused sections. */
12201
12202 bfd_boolean
12203 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12204 {
12205 bfd_boolean ok = TRUE;
12206 bfd *sub;
12207 elf_gc_mark_hook_fn gc_mark_hook;
12208 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12209
12210 if (!bed->can_gc_sections
12211 || !is_elf_hash_table (info->hash))
12212 {
12213 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12214 return TRUE;
12215 }
12216
12217 bed->gc_keep (info);
12218
12219 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12220 at the .eh_frame section if we can mark the FDEs individually. */
12221 _bfd_elf_begin_eh_frame_parsing (info);
12222 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12223 {
12224 asection *sec;
12225 struct elf_reloc_cookie cookie;
12226
12227 sec = bfd_get_section_by_name (sub, ".eh_frame");
12228 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12229 {
12230 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12231 if (elf_section_data (sec)->sec_info
12232 && (sec->flags & SEC_LINKER_CREATED) == 0)
12233 elf_eh_frame_section (sub) = sec;
12234 fini_reloc_cookie_for_section (&cookie, sec);
12235 sec = bfd_get_next_section_by_name (sec);
12236 }
12237 }
12238 _bfd_elf_end_eh_frame_parsing (info);
12239
12240 /* Apply transitive closure to the vtable entry usage info. */
12241 elf_link_hash_traverse (elf_hash_table (info),
12242 elf_gc_propagate_vtable_entries_used,
12243 &ok);
12244 if (!ok)
12245 return FALSE;
12246
12247 /* Kill the vtable relocations that were not used. */
12248 elf_link_hash_traverse (elf_hash_table (info),
12249 elf_gc_smash_unused_vtentry_relocs,
12250 &ok);
12251 if (!ok)
12252 return FALSE;
12253
12254 /* Mark dynamically referenced symbols. */
12255 if (elf_hash_table (info)->dynamic_sections_created)
12256 elf_link_hash_traverse (elf_hash_table (info),
12257 bed->gc_mark_dynamic_ref,
12258 info);
12259
12260 /* Grovel through relocs to find out who stays ... */
12261 gc_mark_hook = bed->gc_mark_hook;
12262 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12263 {
12264 asection *o;
12265
12266 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12267 continue;
12268
12269 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12270 Also treat note sections as a root, if the section is not part
12271 of a group. */
12272 for (o = sub->sections; o != NULL; o = o->next)
12273 if (!o->gc_mark
12274 && (o->flags & SEC_EXCLUDE) == 0
12275 && ((o->flags & SEC_KEEP) != 0
12276 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12277 && elf_next_in_group (o) == NULL )))
12278 {
12279 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12280 return FALSE;
12281 }
12282 }
12283
12284 /* Allow the backend to mark additional target specific sections. */
12285 bed->gc_mark_extra_sections (info, gc_mark_hook);
12286
12287 /* ... and mark SEC_EXCLUDE for those that go. */
12288 return elf_gc_sweep (abfd, info);
12289 }
12290 \f
12291 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12292
12293 bfd_boolean
12294 bfd_elf_gc_record_vtinherit (bfd *abfd,
12295 asection *sec,
12296 struct elf_link_hash_entry *h,
12297 bfd_vma offset)
12298 {
12299 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12300 struct elf_link_hash_entry **search, *child;
12301 bfd_size_type extsymcount;
12302 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12303
12304 /* The sh_info field of the symtab header tells us where the
12305 external symbols start. We don't care about the local symbols at
12306 this point. */
12307 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12308 if (!elf_bad_symtab (abfd))
12309 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12310
12311 sym_hashes = elf_sym_hashes (abfd);
12312 sym_hashes_end = sym_hashes + extsymcount;
12313
12314 /* Hunt down the child symbol, which is in this section at the same
12315 offset as the relocation. */
12316 for (search = sym_hashes; search != sym_hashes_end; ++search)
12317 {
12318 if ((child = *search) != NULL
12319 && (child->root.type == bfd_link_hash_defined
12320 || child->root.type == bfd_link_hash_defweak)
12321 && child->root.u.def.section == sec
12322 && child->root.u.def.value == offset)
12323 goto win;
12324 }
12325
12326 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12327 abfd, sec, (unsigned long) offset);
12328 bfd_set_error (bfd_error_invalid_operation);
12329 return FALSE;
12330
12331 win:
12332 if (!child->vtable)
12333 {
12334 child->vtable = (struct elf_link_virtual_table_entry *)
12335 bfd_zalloc (abfd, sizeof (*child->vtable));
12336 if (!child->vtable)
12337 return FALSE;
12338 }
12339 if (!h)
12340 {
12341 /* This *should* only be the absolute section. It could potentially
12342 be that someone has defined a non-global vtable though, which
12343 would be bad. It isn't worth paging in the local symbols to be
12344 sure though; that case should simply be handled by the assembler. */
12345
12346 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12347 }
12348 else
12349 child->vtable->parent = h;
12350
12351 return TRUE;
12352 }
12353
12354 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12355
12356 bfd_boolean
12357 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12358 asection *sec ATTRIBUTE_UNUSED,
12359 struct elf_link_hash_entry *h,
12360 bfd_vma addend)
12361 {
12362 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12363 unsigned int log_file_align = bed->s->log_file_align;
12364
12365 if (!h->vtable)
12366 {
12367 h->vtable = (struct elf_link_virtual_table_entry *)
12368 bfd_zalloc (abfd, sizeof (*h->vtable));
12369 if (!h->vtable)
12370 return FALSE;
12371 }
12372
12373 if (addend >= h->vtable->size)
12374 {
12375 size_t size, bytes, file_align;
12376 bfd_boolean *ptr = h->vtable->used;
12377
12378 /* While the symbol is undefined, we have to be prepared to handle
12379 a zero size. */
12380 file_align = 1 << log_file_align;
12381 if (h->root.type == bfd_link_hash_undefined)
12382 size = addend + file_align;
12383 else
12384 {
12385 size = h->size;
12386 if (addend >= size)
12387 {
12388 /* Oops! We've got a reference past the defined end of
12389 the table. This is probably a bug -- shall we warn? */
12390 size = addend + file_align;
12391 }
12392 }
12393 size = (size + file_align - 1) & -file_align;
12394
12395 /* Allocate one extra entry for use as a "done" flag for the
12396 consolidation pass. */
12397 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12398
12399 if (ptr)
12400 {
12401 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12402
12403 if (ptr != NULL)
12404 {
12405 size_t oldbytes;
12406
12407 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12408 * sizeof (bfd_boolean));
12409 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12410 }
12411 }
12412 else
12413 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12414
12415 if (ptr == NULL)
12416 return FALSE;
12417
12418 /* And arrange for that done flag to be at index -1. */
12419 h->vtable->used = ptr + 1;
12420 h->vtable->size = size;
12421 }
12422
12423 h->vtable->used[addend >> log_file_align] = TRUE;
12424
12425 return TRUE;
12426 }
12427
12428 /* Map an ELF section header flag to its corresponding string. */
12429 typedef struct
12430 {
12431 char *flag_name;
12432 flagword flag_value;
12433 } elf_flags_to_name_table;
12434
12435 static elf_flags_to_name_table elf_flags_to_names [] =
12436 {
12437 { "SHF_WRITE", SHF_WRITE },
12438 { "SHF_ALLOC", SHF_ALLOC },
12439 { "SHF_EXECINSTR", SHF_EXECINSTR },
12440 { "SHF_MERGE", SHF_MERGE },
12441 { "SHF_STRINGS", SHF_STRINGS },
12442 { "SHF_INFO_LINK", SHF_INFO_LINK},
12443 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12444 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12445 { "SHF_GROUP", SHF_GROUP },
12446 { "SHF_TLS", SHF_TLS },
12447 { "SHF_MASKOS", SHF_MASKOS },
12448 { "SHF_EXCLUDE", SHF_EXCLUDE },
12449 };
12450
12451 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12452 bfd_boolean
12453 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12454 struct flag_info *flaginfo,
12455 asection *section)
12456 {
12457 const bfd_vma sh_flags = elf_section_flags (section);
12458
12459 if (!flaginfo->flags_initialized)
12460 {
12461 bfd *obfd = info->output_bfd;
12462 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12463 struct flag_info_list *tf = flaginfo->flag_list;
12464 int with_hex = 0;
12465 int without_hex = 0;
12466
12467 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12468 {
12469 unsigned i;
12470 flagword (*lookup) (char *);
12471
12472 lookup = bed->elf_backend_lookup_section_flags_hook;
12473 if (lookup != NULL)
12474 {
12475 flagword hexval = (*lookup) ((char *) tf->name);
12476
12477 if (hexval != 0)
12478 {
12479 if (tf->with == with_flags)
12480 with_hex |= hexval;
12481 else if (tf->with == without_flags)
12482 without_hex |= hexval;
12483 tf->valid = TRUE;
12484 continue;
12485 }
12486 }
12487 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12488 {
12489 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12490 {
12491 if (tf->with == with_flags)
12492 with_hex |= elf_flags_to_names[i].flag_value;
12493 else if (tf->with == without_flags)
12494 without_hex |= elf_flags_to_names[i].flag_value;
12495 tf->valid = TRUE;
12496 break;
12497 }
12498 }
12499 if (!tf->valid)
12500 {
12501 info->callbacks->einfo
12502 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12503 return FALSE;
12504 }
12505 }
12506 flaginfo->flags_initialized = TRUE;
12507 flaginfo->only_with_flags |= with_hex;
12508 flaginfo->not_with_flags |= without_hex;
12509 }
12510
12511 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12512 return FALSE;
12513
12514 if ((flaginfo->not_with_flags & sh_flags) != 0)
12515 return FALSE;
12516
12517 return TRUE;
12518 }
12519
12520 struct alloc_got_off_arg {
12521 bfd_vma gotoff;
12522 struct bfd_link_info *info;
12523 };
12524
12525 /* We need a special top-level link routine to convert got reference counts
12526 to real got offsets. */
12527
12528 static bfd_boolean
12529 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12530 {
12531 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12532 bfd *obfd = gofarg->info->output_bfd;
12533 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12534
12535 if (h->got.refcount > 0)
12536 {
12537 h->got.offset = gofarg->gotoff;
12538 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12539 }
12540 else
12541 h->got.offset = (bfd_vma) -1;
12542
12543 return TRUE;
12544 }
12545
12546 /* And an accompanying bit to work out final got entry offsets once
12547 we're done. Should be called from final_link. */
12548
12549 bfd_boolean
12550 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12551 struct bfd_link_info *info)
12552 {
12553 bfd *i;
12554 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12555 bfd_vma gotoff;
12556 struct alloc_got_off_arg gofarg;
12557
12558 BFD_ASSERT (abfd == info->output_bfd);
12559
12560 if (! is_elf_hash_table (info->hash))
12561 return FALSE;
12562
12563 /* The GOT offset is relative to the .got section, but the GOT header is
12564 put into the .got.plt section, if the backend uses it. */
12565 if (bed->want_got_plt)
12566 gotoff = 0;
12567 else
12568 gotoff = bed->got_header_size;
12569
12570 /* Do the local .got entries first. */
12571 for (i = info->input_bfds; i; i = i->link_next)
12572 {
12573 bfd_signed_vma *local_got;
12574 bfd_size_type j, locsymcount;
12575 Elf_Internal_Shdr *symtab_hdr;
12576
12577 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12578 continue;
12579
12580 local_got = elf_local_got_refcounts (i);
12581 if (!local_got)
12582 continue;
12583
12584 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12585 if (elf_bad_symtab (i))
12586 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12587 else
12588 locsymcount = symtab_hdr->sh_info;
12589
12590 for (j = 0; j < locsymcount; ++j)
12591 {
12592 if (local_got[j] > 0)
12593 {
12594 local_got[j] = gotoff;
12595 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12596 }
12597 else
12598 local_got[j] = (bfd_vma) -1;
12599 }
12600 }
12601
12602 /* Then the global .got entries. .plt refcounts are handled by
12603 adjust_dynamic_symbol */
12604 gofarg.gotoff = gotoff;
12605 gofarg.info = info;
12606 elf_link_hash_traverse (elf_hash_table (info),
12607 elf_gc_allocate_got_offsets,
12608 &gofarg);
12609 return TRUE;
12610 }
12611
12612 /* Many folk need no more in the way of final link than this, once
12613 got entry reference counting is enabled. */
12614
12615 bfd_boolean
12616 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12617 {
12618 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12619 return FALSE;
12620
12621 /* Invoke the regular ELF backend linker to do all the work. */
12622 return bfd_elf_final_link (abfd, info);
12623 }
12624
12625 bfd_boolean
12626 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12627 {
12628 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12629
12630 if (rcookie->bad_symtab)
12631 rcookie->rel = rcookie->rels;
12632
12633 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12634 {
12635 unsigned long r_symndx;
12636
12637 if (! rcookie->bad_symtab)
12638 if (rcookie->rel->r_offset > offset)
12639 return FALSE;
12640 if (rcookie->rel->r_offset != offset)
12641 continue;
12642
12643 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12644 if (r_symndx == STN_UNDEF)
12645 return TRUE;
12646
12647 if (r_symndx >= rcookie->locsymcount
12648 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12649 {
12650 struct elf_link_hash_entry *h;
12651
12652 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12653
12654 while (h->root.type == bfd_link_hash_indirect
12655 || h->root.type == bfd_link_hash_warning)
12656 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12657
12658 if ((h->root.type == bfd_link_hash_defined
12659 || h->root.type == bfd_link_hash_defweak)
12660 && discarded_section (h->root.u.def.section))
12661 return TRUE;
12662 else
12663 return FALSE;
12664 }
12665 else
12666 {
12667 /* It's not a relocation against a global symbol,
12668 but it could be a relocation against a local
12669 symbol for a discarded section. */
12670 asection *isec;
12671 Elf_Internal_Sym *isym;
12672
12673 /* Need to: get the symbol; get the section. */
12674 isym = &rcookie->locsyms[r_symndx];
12675 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12676 if (isec != NULL && discarded_section (isec))
12677 return TRUE;
12678 }
12679 return FALSE;
12680 }
12681 return FALSE;
12682 }
12683
12684 /* Discard unneeded references to discarded sections.
12685 Returns TRUE if any section's size was changed. */
12686 /* This function assumes that the relocations are in sorted order,
12687 which is true for all known assemblers. */
12688
12689 bfd_boolean
12690 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12691 {
12692 struct elf_reloc_cookie cookie;
12693 asection *stab, *eh;
12694 const struct elf_backend_data *bed;
12695 bfd *abfd;
12696 bfd_boolean ret = FALSE;
12697
12698 if (info->traditional_format
12699 || !is_elf_hash_table (info->hash))
12700 return FALSE;
12701
12702 _bfd_elf_begin_eh_frame_parsing (info);
12703 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12704 {
12705 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12706 continue;
12707
12708 bed = get_elf_backend_data (abfd);
12709
12710 eh = NULL;
12711 if (!info->relocatable)
12712 {
12713 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12714 while (eh != NULL
12715 && (eh->size == 0
12716 || bfd_is_abs_section (eh->output_section)))
12717 eh = bfd_get_next_section_by_name (eh);
12718 }
12719
12720 stab = bfd_get_section_by_name (abfd, ".stab");
12721 if (stab != NULL
12722 && (stab->size == 0
12723 || bfd_is_abs_section (stab->output_section)
12724 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12725 stab = NULL;
12726
12727 if (stab == NULL
12728 && eh == NULL
12729 && bed->elf_backend_discard_info == NULL)
12730 continue;
12731
12732 if (!init_reloc_cookie (&cookie, info, abfd))
12733 return FALSE;
12734
12735 if (stab != NULL
12736 && stab->reloc_count > 0
12737 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12738 {
12739 if (_bfd_discard_section_stabs (abfd, stab,
12740 elf_section_data (stab)->sec_info,
12741 bfd_elf_reloc_symbol_deleted_p,
12742 &cookie))
12743 ret = TRUE;
12744 fini_reloc_cookie_rels (&cookie, stab);
12745 }
12746
12747 while (eh != NULL
12748 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12749 {
12750 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12751 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12752 bfd_elf_reloc_symbol_deleted_p,
12753 &cookie))
12754 ret = TRUE;
12755 fini_reloc_cookie_rels (&cookie, eh);
12756 eh = bfd_get_next_section_by_name (eh);
12757 }
12758
12759 if (bed->elf_backend_discard_info != NULL
12760 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12761 ret = TRUE;
12762
12763 fini_reloc_cookie (&cookie, abfd);
12764 }
12765 _bfd_elf_end_eh_frame_parsing (info);
12766
12767 if (info->eh_frame_hdr
12768 && !info->relocatable
12769 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12770 ret = TRUE;
12771
12772 return ret;
12773 }
12774
12775 bfd_boolean
12776 _bfd_elf_section_already_linked (bfd *abfd,
12777 asection *sec,
12778 struct bfd_link_info *info)
12779 {
12780 flagword flags;
12781 const char *name, *key;
12782 struct bfd_section_already_linked *l;
12783 struct bfd_section_already_linked_hash_entry *already_linked_list;
12784
12785 if (sec->output_section == bfd_abs_section_ptr)
12786 return FALSE;
12787
12788 flags = sec->flags;
12789
12790 /* Return if it isn't a linkonce section. A comdat group section
12791 also has SEC_LINK_ONCE set. */
12792 if ((flags & SEC_LINK_ONCE) == 0)
12793 return FALSE;
12794
12795 /* Don't put group member sections on our list of already linked
12796 sections. They are handled as a group via their group section. */
12797 if (elf_sec_group (sec) != NULL)
12798 return FALSE;
12799
12800 /* For a SHT_GROUP section, use the group signature as the key. */
12801 name = sec->name;
12802 if ((flags & SEC_GROUP) != 0
12803 && elf_next_in_group (sec) != NULL
12804 && elf_group_name (elf_next_in_group (sec)) != NULL)
12805 key = elf_group_name (elf_next_in_group (sec));
12806 else
12807 {
12808 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12809 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12810 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12811 key++;
12812 else
12813 /* Must be a user linkonce section that doesn't follow gcc's
12814 naming convention. In this case we won't be matching
12815 single member groups. */
12816 key = name;
12817 }
12818
12819 already_linked_list = bfd_section_already_linked_table_lookup (key);
12820
12821 for (l = already_linked_list->entry; l != NULL; l = l->next)
12822 {
12823 /* We may have 2 different types of sections on the list: group
12824 sections with a signature of <key> (<key> is some string),
12825 and linkonce sections named .gnu.linkonce.<type>.<key>.
12826 Match like sections. LTO plugin sections are an exception.
12827 They are always named .gnu.linkonce.t.<key> and match either
12828 type of section. */
12829 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12830 && ((flags & SEC_GROUP) != 0
12831 || strcmp (name, l->sec->name) == 0))
12832 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12833 {
12834 /* The section has already been linked. See if we should
12835 issue a warning. */
12836 if (!_bfd_handle_already_linked (sec, l, info))
12837 return FALSE;
12838
12839 if (flags & SEC_GROUP)
12840 {
12841 asection *first = elf_next_in_group (sec);
12842 asection *s = first;
12843
12844 while (s != NULL)
12845 {
12846 s->output_section = bfd_abs_section_ptr;
12847 /* Record which group discards it. */
12848 s->kept_section = l->sec;
12849 s = elf_next_in_group (s);
12850 /* These lists are circular. */
12851 if (s == first)
12852 break;
12853 }
12854 }
12855
12856 return TRUE;
12857 }
12858 }
12859
12860 /* A single member comdat group section may be discarded by a
12861 linkonce section and vice versa. */
12862 if ((flags & SEC_GROUP) != 0)
12863 {
12864 asection *first = elf_next_in_group (sec);
12865
12866 if (first != NULL && elf_next_in_group (first) == first)
12867 /* Check this single member group against linkonce sections. */
12868 for (l = already_linked_list->entry; l != NULL; l = l->next)
12869 if ((l->sec->flags & SEC_GROUP) == 0
12870 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12871 {
12872 first->output_section = bfd_abs_section_ptr;
12873 first->kept_section = l->sec;
12874 sec->output_section = bfd_abs_section_ptr;
12875 break;
12876 }
12877 }
12878 else
12879 /* Check this linkonce section against single member groups. */
12880 for (l = already_linked_list->entry; l != NULL; l = l->next)
12881 if (l->sec->flags & SEC_GROUP)
12882 {
12883 asection *first = elf_next_in_group (l->sec);
12884
12885 if (first != NULL
12886 && elf_next_in_group (first) == first
12887 && bfd_elf_match_symbols_in_sections (first, sec, info))
12888 {
12889 sec->output_section = bfd_abs_section_ptr;
12890 sec->kept_section = first;
12891 break;
12892 }
12893 }
12894
12895 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12896 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12897 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12898 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12899 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12900 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12901 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12902 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12903 The reverse order cannot happen as there is never a bfd with only the
12904 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12905 matter as here were are looking only for cross-bfd sections. */
12906
12907 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12908 for (l = already_linked_list->entry; l != NULL; l = l->next)
12909 if ((l->sec->flags & SEC_GROUP) == 0
12910 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12911 {
12912 if (abfd != l->sec->owner)
12913 sec->output_section = bfd_abs_section_ptr;
12914 break;
12915 }
12916
12917 /* This is the first section with this name. Record it. */
12918 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12919 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12920 return sec->output_section == bfd_abs_section_ptr;
12921 }
12922
12923 bfd_boolean
12924 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12925 {
12926 return sym->st_shndx == SHN_COMMON;
12927 }
12928
12929 unsigned int
12930 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12931 {
12932 return SHN_COMMON;
12933 }
12934
12935 asection *
12936 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12937 {
12938 return bfd_com_section_ptr;
12939 }
12940
12941 bfd_vma
12942 _bfd_elf_default_got_elt_size (bfd *abfd,
12943 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12944 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12945 bfd *ibfd ATTRIBUTE_UNUSED,
12946 unsigned long symndx ATTRIBUTE_UNUSED)
12947 {
12948 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12949 return bed->s->arch_size / 8;
12950 }
12951
12952 /* Routines to support the creation of dynamic relocs. */
12953
12954 /* Returns the name of the dynamic reloc section associated with SEC. */
12955
12956 static const char *
12957 get_dynamic_reloc_section_name (bfd * abfd,
12958 asection * sec,
12959 bfd_boolean is_rela)
12960 {
12961 char *name;
12962 const char *old_name = bfd_get_section_name (NULL, sec);
12963 const char *prefix = is_rela ? ".rela" : ".rel";
12964
12965 if (old_name == NULL)
12966 return NULL;
12967
12968 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12969 sprintf (name, "%s%s", prefix, old_name);
12970
12971 return name;
12972 }
12973
12974 /* Returns the dynamic reloc section associated with SEC.
12975 If necessary compute the name of the dynamic reloc section based
12976 on SEC's name (looked up in ABFD's string table) and the setting
12977 of IS_RELA. */
12978
12979 asection *
12980 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12981 asection * sec,
12982 bfd_boolean is_rela)
12983 {
12984 asection * reloc_sec = elf_section_data (sec)->sreloc;
12985
12986 if (reloc_sec == NULL)
12987 {
12988 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12989
12990 if (name != NULL)
12991 {
12992 reloc_sec = bfd_get_linker_section (abfd, name);
12993
12994 if (reloc_sec != NULL)
12995 elf_section_data (sec)->sreloc = reloc_sec;
12996 }
12997 }
12998
12999 return reloc_sec;
13000 }
13001
13002 /* Returns the dynamic reloc section associated with SEC. If the
13003 section does not exist it is created and attached to the DYNOBJ
13004 bfd and stored in the SRELOC field of SEC's elf_section_data
13005 structure.
13006
13007 ALIGNMENT is the alignment for the newly created section and
13008 IS_RELA defines whether the name should be .rela.<SEC's name>
13009 or .rel.<SEC's name>. The section name is looked up in the
13010 string table associated with ABFD. */
13011
13012 asection *
13013 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13014 bfd * dynobj,
13015 unsigned int alignment,
13016 bfd * abfd,
13017 bfd_boolean is_rela)
13018 {
13019 asection * reloc_sec = elf_section_data (sec)->sreloc;
13020
13021 if (reloc_sec == NULL)
13022 {
13023 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13024
13025 if (name == NULL)
13026 return NULL;
13027
13028 reloc_sec = bfd_get_linker_section (dynobj, name);
13029
13030 if (reloc_sec == NULL)
13031 {
13032 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13033 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13034 if ((sec->flags & SEC_ALLOC) != 0)
13035 flags |= SEC_ALLOC | SEC_LOAD;
13036
13037 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13038 if (reloc_sec != NULL)
13039 {
13040 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13041 reloc_sec = NULL;
13042 }
13043 }
13044
13045 elf_section_data (sec)->sreloc = reloc_sec;
13046 }
13047
13048 return reloc_sec;
13049 }
13050
13051 /* Copy the ELF symbol type associated with a linker hash entry. */
13052 void
13053 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13054 struct bfd_link_hash_entry * hdest,
13055 struct bfd_link_hash_entry * hsrc)
13056 {
13057 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13058 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13059
13060 ehdest->type = ehsrc->type;
13061 ehdest->target_internal = ehsrc->target_internal;
13062 }
13063
13064 /* Append a RELA relocation REL to section S in BFD. */
13065
13066 void
13067 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13068 {
13069 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13070 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13071 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13072 bed->s->swap_reloca_out (abfd, rel, loc);
13073 }
13074
13075 /* Append a REL relocation REL to section S in BFD. */
13076
13077 void
13078 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13079 {
13080 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13081 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13082 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13083 bed->s->swap_reloc_out (abfd, rel, loc);
13084 }