* elflink.c (_bfd_elf_add_default_symbol): Preserve section
[binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 bfd_boolean failed;
40 };
41
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
44
45 struct elf_find_verdep_info
46 {
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
50 unsigned int vers;
51 /* Whether we had a failure. */
52 bfd_boolean failed;
53 };
54
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
57
58 /* Define a symbol in a dynamic linkage section. */
59
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
63 asection *sec,
64 const char *name)
65 {
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
69
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
71 if (h != NULL)
72 {
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
78 }
79
80 bh = &h->root;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE,
83 get_elf_backend_data (abfd)->collect,
84 &bh))
85 return NULL;
86 h = (struct elf_link_hash_entry *) bh;
87 h->def_regular = 1;
88 h->non_elf = 0;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* This function is called when we want to merge a new symbol with an
899 existing symbol. It handles the various cases which arise when we
900 find a definition in a dynamic object, or when there is already a
901 definition in a dynamic object. The new symbol is described by
902 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
903 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
904 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
905 of an old common symbol. We set OVERRIDE if the old symbol is
906 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
907 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
908 to change. By OK to change, we mean that we shouldn't warn if the
909 type or size does change. */
910
911 static bfd_boolean
912 _bfd_elf_merge_symbol (bfd *abfd,
913 struct bfd_link_info *info,
914 const char *name,
915 Elf_Internal_Sym *sym,
916 asection **psec,
917 bfd_vma *pvalue,
918 struct elf_link_hash_entry **sym_hash,
919 bfd **poldbfd,
920 bfd_boolean *pold_weak,
921 unsigned int *pold_alignment,
922 bfd_boolean *skip,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
926 {
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *hi;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 if (! bfd_is_und_section (sec))
944 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
945 else
946 h = ((struct elf_link_hash_entry *)
947 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
948 if (h == NULL)
949 return FALSE;
950 *sym_hash = h;
951
952 bed = get_elf_backend_data (abfd);
953
954 /* This code is for coping with dynamic objects, and is only useful
955 if we are doing an ELF link. */
956 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
957 return TRUE;
958
959 /* For merging, we only care about real symbols. But we need to make
960 sure that indirect symbol dynamic flags are updated. */
961 hi = h;
962 while (h->root.type == bfd_link_hash_indirect
963 || h->root.type == bfd_link_hash_warning)
964 h = (struct elf_link_hash_entry *) h->root.u.i.link;
965
966 /* We have to check it for every instance since the first few may be
967 references and not all compilers emit symbol type for undefined
968 symbols. */
969 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
970
971 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
972 respectively, is from a dynamic object. */
973
974 newdyn = (abfd->flags & DYNAMIC) != 0;
975
976 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
977 syms and defined syms in dynamic libraries respectively.
978 ref_dynamic on the other hand can be set for a symbol defined in
979 a dynamic library, and def_dynamic may not be set; When the
980 definition in a dynamic lib is overridden by a definition in the
981 executable use of the symbol in the dynamic lib becomes a
982 reference to the executable symbol. */
983 if (newdyn)
984 {
985 if (bfd_is_und_section (sec))
986 {
987 if (bind != STB_WEAK)
988 {
989 h->ref_dynamic_nonweak = 1;
990 hi->ref_dynamic_nonweak = 1;
991 }
992 }
993 else
994 {
995 h->dynamic_def = 1;
996 hi->dynamic_def = 1;
997 }
998 }
999
1000 /* If we just created the symbol, mark it as being an ELF symbol.
1001 Other than that, there is nothing to do--there is no merge issue
1002 with a newly defined symbol--so we just return. */
1003
1004 if (h->root.type == bfd_link_hash_new)
1005 {
1006 h->non_elf = 0;
1007 return TRUE;
1008 }
1009
1010 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1011 existing symbol. */
1012
1013 switch (h->root.type)
1014 {
1015 default:
1016 oldbfd = NULL;
1017 oldsec = NULL;
1018 break;
1019
1020 case bfd_link_hash_undefined:
1021 case bfd_link_hash_undefweak:
1022 oldbfd = h->root.u.undef.abfd;
1023 oldsec = NULL;
1024 break;
1025
1026 case bfd_link_hash_defined:
1027 case bfd_link_hash_defweak:
1028 oldbfd = h->root.u.def.section->owner;
1029 oldsec = h->root.u.def.section;
1030 break;
1031
1032 case bfd_link_hash_common:
1033 oldbfd = h->root.u.c.p->section->owner;
1034 oldsec = h->root.u.c.p->section;
1035 if (pold_alignment)
1036 *pold_alignment = h->root.u.c.p->alignment_power;
1037 break;
1038 }
1039 if (poldbfd && *poldbfd == NULL)
1040 *poldbfd = oldbfd;
1041
1042 /* Differentiate strong and weak symbols. */
1043 newweak = bind == STB_WEAK;
1044 oldweak = (h->root.type == bfd_link_hash_defweak
1045 || h->root.type == bfd_link_hash_undefweak);
1046 if (pold_weak)
1047 *pold_weak = oldweak;
1048
1049 /* In cases involving weak versioned symbols, we may wind up trying
1050 to merge a symbol with itself. Catch that here, to avoid the
1051 confusion that results if we try to override a symbol with
1052 itself. The additional tests catch cases like
1053 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1054 dynamic object, which we do want to handle here. */
1055 if (abfd == oldbfd
1056 && (newweak || oldweak)
1057 && ((abfd->flags & DYNAMIC) == 0
1058 || !h->def_regular))
1059 return TRUE;
1060
1061 olddyn = FALSE;
1062 if (oldbfd != NULL)
1063 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1064 else if (oldsec != NULL)
1065 {
1066 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1067 indices used by MIPS ELF. */
1068 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1069 }
1070
1071 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1072 respectively, appear to be a definition rather than reference. */
1073
1074 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1075
1076 olddef = (h->root.type != bfd_link_hash_undefined
1077 && h->root.type != bfd_link_hash_undefweak
1078 && h->root.type != bfd_link_hash_common);
1079
1080 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1081 respectively, appear to be a function. */
1082
1083 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1084 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1085
1086 oldfunc = (h->type != STT_NOTYPE
1087 && bed->is_function_type (h->type));
1088
1089 /* When we try to create a default indirect symbol from the dynamic
1090 definition with the default version, we skip it if its type and
1091 the type of existing regular definition mismatch. We only do it
1092 if the existing regular definition won't be dynamic. */
1093 if (pold_alignment == NULL
1094 && !info->shared
1095 && !info->export_dynamic
1096 && !h->ref_dynamic
1097 && newdyn
1098 && newdef
1099 && !olddyn
1100 && (olddef || h->root.type == bfd_link_hash_common)
1101 && ELF_ST_TYPE (sym->st_info) != h->type
1102 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1103 && h->type != STT_NOTYPE
1104 && !(newfunc && oldfunc))
1105 {
1106 *skip = TRUE;
1107 return TRUE;
1108 }
1109
1110 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1111 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1112 *type_change_ok = TRUE;
1113
1114 /* Check TLS symbol. We don't check undefined symbol introduced by
1115 "ld -u". */
1116 else if (oldbfd != NULL
1117 && ELF_ST_TYPE (sym->st_info) != h->type
1118 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1119 {
1120 bfd *ntbfd, *tbfd;
1121 bfd_boolean ntdef, tdef;
1122 asection *ntsec, *tsec;
1123
1124 if (h->type == STT_TLS)
1125 {
1126 ntbfd = abfd;
1127 ntsec = sec;
1128 ntdef = newdef;
1129 tbfd = oldbfd;
1130 tsec = oldsec;
1131 tdef = olddef;
1132 }
1133 else
1134 {
1135 ntbfd = oldbfd;
1136 ntsec = oldsec;
1137 ntdef = olddef;
1138 tbfd = abfd;
1139 tsec = sec;
1140 tdef = newdef;
1141 }
1142
1143 if (tdef && ntdef)
1144 (*_bfd_error_handler)
1145 (_("%s: TLS definition in %B section %A "
1146 "mismatches non-TLS definition in %B section %A"),
1147 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1148 else if (!tdef && !ntdef)
1149 (*_bfd_error_handler)
1150 (_("%s: TLS reference in %B "
1151 "mismatches non-TLS reference in %B"),
1152 tbfd, ntbfd, h->root.root.string);
1153 else if (tdef)
1154 (*_bfd_error_handler)
1155 (_("%s: TLS definition in %B section %A "
1156 "mismatches non-TLS reference in %B"),
1157 tbfd, tsec, ntbfd, h->root.root.string);
1158 else
1159 (*_bfd_error_handler)
1160 (_("%s: TLS reference in %B "
1161 "mismatches non-TLS definition in %B section %A"),
1162 tbfd, ntbfd, ntsec, h->root.root.string);
1163
1164 bfd_set_error (bfd_error_bad_value);
1165 return FALSE;
1166 }
1167
1168 /* If the old symbol has non-default visibility, we ignore the new
1169 definition from a dynamic object. */
1170 if (newdyn
1171 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1172 && !bfd_is_und_section (sec))
1173 {
1174 *skip = TRUE;
1175 /* Make sure this symbol is dynamic. */
1176 h->ref_dynamic = 1;
1177 hi->ref_dynamic = 1;
1178 /* A protected symbol has external availability. Make sure it is
1179 recorded as dynamic.
1180
1181 FIXME: Should we check type and size for protected symbol? */
1182 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1183 return bfd_elf_link_record_dynamic_symbol (info, h);
1184 else
1185 return TRUE;
1186 }
1187 else if (!newdyn
1188 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1189 && h->def_dynamic)
1190 {
1191 /* If the new symbol with non-default visibility comes from a
1192 relocatable file and the old definition comes from a dynamic
1193 object, we remove the old definition. */
1194 if (hi->root.type == bfd_link_hash_indirect)
1195 {
1196 /* Handle the case where the old dynamic definition is
1197 default versioned. We need to copy the symbol info from
1198 the symbol with default version to the normal one if it
1199 was referenced before. */
1200 if (h->ref_regular)
1201 {
1202 hi->root.type = h->root.type;
1203 h->root.type = bfd_link_hash_indirect;
1204 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1205
1206 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1207 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1208 {
1209 /* If the new symbol is hidden or internal, completely undo
1210 any dynamic link state. */
1211 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1212 h->forced_local = 0;
1213 h->ref_dynamic = 0;
1214 }
1215 else
1216 h->ref_dynamic = 1;
1217
1218 h->def_dynamic = 0;
1219 /* FIXME: Should we check type and size for protected symbol? */
1220 h->size = 0;
1221 h->type = 0;
1222
1223 h = hi;
1224 }
1225 else
1226 h = hi;
1227 }
1228
1229 /* If the old symbol was undefined before, then it will still be
1230 on the undefs list. If the new symbol is undefined or
1231 common, we can't make it bfd_link_hash_new here, because new
1232 undefined or common symbols will be added to the undefs list
1233 by _bfd_generic_link_add_one_symbol. Symbols may not be
1234 added twice to the undefs list. Also, if the new symbol is
1235 undefweak then we don't want to lose the strong undef. */
1236 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1237 {
1238 h->root.type = bfd_link_hash_undefined;
1239 h->root.u.undef.abfd = abfd;
1240 }
1241 else
1242 {
1243 h->root.type = bfd_link_hash_new;
1244 h->root.u.undef.abfd = NULL;
1245 }
1246
1247 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1248 {
1249 /* If the new symbol is hidden or internal, completely undo
1250 any dynamic link state. */
1251 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1252 h->forced_local = 0;
1253 h->ref_dynamic = 0;
1254 }
1255 else
1256 h->ref_dynamic = 1;
1257 h->def_dynamic = 0;
1258 /* FIXME: Should we check type and size for protected symbol? */
1259 h->size = 0;
1260 h->type = 0;
1261 return TRUE;
1262 }
1263
1264 /* If a new weak symbol definition comes from a regular file and the
1265 old symbol comes from a dynamic library, we treat the new one as
1266 strong. Similarly, an old weak symbol definition from a regular
1267 file is treated as strong when the new symbol comes from a dynamic
1268 library. Further, an old weak symbol from a dynamic library is
1269 treated as strong if the new symbol is from a dynamic library.
1270 This reflects the way glibc's ld.so works.
1271
1272 Do this before setting *type_change_ok or *size_change_ok so that
1273 we warn properly when dynamic library symbols are overridden. */
1274
1275 if (newdef && !newdyn && olddyn)
1276 newweak = FALSE;
1277 if (olddef && newdyn)
1278 oldweak = FALSE;
1279
1280 /* Allow changes between different types of function symbol. */
1281 if (newfunc && oldfunc)
1282 *type_change_ok = TRUE;
1283
1284 /* It's OK to change the type if either the existing symbol or the
1285 new symbol is weak. A type change is also OK if the old symbol
1286 is undefined and the new symbol is defined. */
1287
1288 if (oldweak
1289 || newweak
1290 || (newdef
1291 && h->root.type == bfd_link_hash_undefined))
1292 *type_change_ok = TRUE;
1293
1294 /* It's OK to change the size if either the existing symbol or the
1295 new symbol is weak, or if the old symbol is undefined. */
1296
1297 if (*type_change_ok
1298 || h->root.type == bfd_link_hash_undefined)
1299 *size_change_ok = TRUE;
1300
1301 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1302 symbol, respectively, appears to be a common symbol in a dynamic
1303 object. If a symbol appears in an uninitialized section, and is
1304 not weak, and is not a function, then it may be a common symbol
1305 which was resolved when the dynamic object was created. We want
1306 to treat such symbols specially, because they raise special
1307 considerations when setting the symbol size: if the symbol
1308 appears as a common symbol in a regular object, and the size in
1309 the regular object is larger, we must make sure that we use the
1310 larger size. This problematic case can always be avoided in C,
1311 but it must be handled correctly when using Fortran shared
1312 libraries.
1313
1314 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1315 likewise for OLDDYNCOMMON and OLDDEF.
1316
1317 Note that this test is just a heuristic, and that it is quite
1318 possible to have an uninitialized symbol in a shared object which
1319 is really a definition, rather than a common symbol. This could
1320 lead to some minor confusion when the symbol really is a common
1321 symbol in some regular object. However, I think it will be
1322 harmless. */
1323
1324 if (newdyn
1325 && newdef
1326 && !newweak
1327 && (sec->flags & SEC_ALLOC) != 0
1328 && (sec->flags & SEC_LOAD) == 0
1329 && sym->st_size > 0
1330 && !newfunc)
1331 newdyncommon = TRUE;
1332 else
1333 newdyncommon = FALSE;
1334
1335 if (olddyn
1336 && olddef
1337 && h->root.type == bfd_link_hash_defined
1338 && h->def_dynamic
1339 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1340 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1341 && h->size > 0
1342 && !oldfunc)
1343 olddyncommon = TRUE;
1344 else
1345 olddyncommon = FALSE;
1346
1347 /* We now know everything about the old and new symbols. We ask the
1348 backend to check if we can merge them. */
1349 if (bed->merge_symbol != NULL)
1350 {
1351 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1352 return FALSE;
1353 sec = *psec;
1354 }
1355
1356 /* If both the old and the new symbols look like common symbols in a
1357 dynamic object, set the size of the symbol to the larger of the
1358 two. */
1359
1360 if (olddyncommon
1361 && newdyncommon
1362 && sym->st_size != h->size)
1363 {
1364 /* Since we think we have two common symbols, issue a multiple
1365 common warning if desired. Note that we only warn if the
1366 size is different. If the size is the same, we simply let
1367 the old symbol override the new one as normally happens with
1368 symbols defined in dynamic objects. */
1369
1370 if (! ((*info->callbacks->multiple_common)
1371 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1372 return FALSE;
1373
1374 if (sym->st_size > h->size)
1375 h->size = sym->st_size;
1376
1377 *size_change_ok = TRUE;
1378 }
1379
1380 /* If we are looking at a dynamic object, and we have found a
1381 definition, we need to see if the symbol was already defined by
1382 some other object. If so, we want to use the existing
1383 definition, and we do not want to report a multiple symbol
1384 definition error; we do this by clobbering *PSEC to be
1385 bfd_und_section_ptr.
1386
1387 We treat a common symbol as a definition if the symbol in the
1388 shared library is a function, since common symbols always
1389 represent variables; this can cause confusion in principle, but
1390 any such confusion would seem to indicate an erroneous program or
1391 shared library. We also permit a common symbol in a regular
1392 object to override a weak symbol in a shared object. */
1393
1394 if (newdyn
1395 && newdef
1396 && (olddef
1397 || (h->root.type == bfd_link_hash_common
1398 && (newweak || newfunc))))
1399 {
1400 *override = TRUE;
1401 newdef = FALSE;
1402 newdyncommon = FALSE;
1403
1404 *psec = sec = bfd_und_section_ptr;
1405 *size_change_ok = TRUE;
1406
1407 /* If we get here when the old symbol is a common symbol, then
1408 we are explicitly letting it override a weak symbol or
1409 function in a dynamic object, and we don't want to warn about
1410 a type change. If the old symbol is a defined symbol, a type
1411 change warning may still be appropriate. */
1412
1413 if (h->root.type == bfd_link_hash_common)
1414 *type_change_ok = TRUE;
1415 }
1416
1417 /* Handle the special case of an old common symbol merging with a
1418 new symbol which looks like a common symbol in a shared object.
1419 We change *PSEC and *PVALUE to make the new symbol look like a
1420 common symbol, and let _bfd_generic_link_add_one_symbol do the
1421 right thing. */
1422
1423 if (newdyncommon
1424 && h->root.type == bfd_link_hash_common)
1425 {
1426 *override = TRUE;
1427 newdef = FALSE;
1428 newdyncommon = FALSE;
1429 *pvalue = sym->st_size;
1430 *psec = sec = bed->common_section (oldsec);
1431 *size_change_ok = TRUE;
1432 }
1433
1434 /* Skip weak definitions of symbols that are already defined. */
1435 if (newdef && olddef && newweak)
1436 {
1437 /* Don't skip new non-IR weak syms. */
1438 if (!(oldbfd != NULL
1439 && (oldbfd->flags & BFD_PLUGIN) != 0
1440 && (abfd->flags & BFD_PLUGIN) == 0))
1441 *skip = TRUE;
1442
1443 /* Merge st_other. If the symbol already has a dynamic index,
1444 but visibility says it should not be visible, turn it into a
1445 local symbol. */
1446 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1447 if (h->dynindx != -1)
1448 switch (ELF_ST_VISIBILITY (h->other))
1449 {
1450 case STV_INTERNAL:
1451 case STV_HIDDEN:
1452 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1453 break;
1454 }
1455 }
1456
1457 /* If the old symbol is from a dynamic object, and the new symbol is
1458 a definition which is not from a dynamic object, then the new
1459 symbol overrides the old symbol. Symbols from regular files
1460 always take precedence over symbols from dynamic objects, even if
1461 they are defined after the dynamic object in the link.
1462
1463 As above, we again permit a common symbol in a regular object to
1464 override a definition in a shared object if the shared object
1465 symbol is a function or is weak. */
1466
1467 flip = NULL;
1468 if (!newdyn
1469 && (newdef
1470 || (bfd_is_com_section (sec)
1471 && (oldweak || oldfunc)))
1472 && olddyn
1473 && olddef
1474 && h->def_dynamic)
1475 {
1476 /* Change the hash table entry to undefined, and let
1477 _bfd_generic_link_add_one_symbol do the right thing with the
1478 new definition. */
1479
1480 h->root.type = bfd_link_hash_undefined;
1481 h->root.u.undef.abfd = h->root.u.def.section->owner;
1482 *size_change_ok = TRUE;
1483
1484 olddef = FALSE;
1485 olddyncommon = FALSE;
1486
1487 /* We again permit a type change when a common symbol may be
1488 overriding a function. */
1489
1490 if (bfd_is_com_section (sec))
1491 {
1492 if (oldfunc)
1493 {
1494 /* If a common symbol overrides a function, make sure
1495 that it isn't defined dynamically nor has type
1496 function. */
1497 h->def_dynamic = 0;
1498 h->type = STT_NOTYPE;
1499 }
1500 *type_change_ok = TRUE;
1501 }
1502
1503 if (hi->root.type == bfd_link_hash_indirect)
1504 flip = hi;
1505 else
1506 /* This union may have been set to be non-NULL when this symbol
1507 was seen in a dynamic object. We must force the union to be
1508 NULL, so that it is correct for a regular symbol. */
1509 h->verinfo.vertree = NULL;
1510 }
1511
1512 /* Handle the special case of a new common symbol merging with an
1513 old symbol that looks like it might be a common symbol defined in
1514 a shared object. Note that we have already handled the case in
1515 which a new common symbol should simply override the definition
1516 in the shared library. */
1517
1518 if (! newdyn
1519 && bfd_is_com_section (sec)
1520 && olddyncommon)
1521 {
1522 /* It would be best if we could set the hash table entry to a
1523 common symbol, but we don't know what to use for the section
1524 or the alignment. */
1525 if (! ((*info->callbacks->multiple_common)
1526 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1527 return FALSE;
1528
1529 /* If the presumed common symbol in the dynamic object is
1530 larger, pretend that the new symbol has its size. */
1531
1532 if (h->size > *pvalue)
1533 *pvalue = h->size;
1534
1535 /* We need to remember the alignment required by the symbol
1536 in the dynamic object. */
1537 BFD_ASSERT (pold_alignment);
1538 *pold_alignment = h->root.u.def.section->alignment_power;
1539
1540 olddef = FALSE;
1541 olddyncommon = FALSE;
1542
1543 h->root.type = bfd_link_hash_undefined;
1544 h->root.u.undef.abfd = h->root.u.def.section->owner;
1545
1546 *size_change_ok = TRUE;
1547 *type_change_ok = TRUE;
1548
1549 if (hi->root.type == bfd_link_hash_indirect)
1550 flip = hi;
1551 else
1552 h->verinfo.vertree = NULL;
1553 }
1554
1555 if (flip != NULL)
1556 {
1557 /* Handle the case where we had a versioned symbol in a dynamic
1558 library and now find a definition in a normal object. In this
1559 case, we make the versioned symbol point to the normal one. */
1560 flip->root.type = h->root.type;
1561 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1562 h->root.type = bfd_link_hash_indirect;
1563 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1564 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1565 if (h->def_dynamic)
1566 {
1567 h->def_dynamic = 0;
1568 flip->ref_dynamic = 1;
1569 }
1570 }
1571
1572 return TRUE;
1573 }
1574
1575 /* This function is called to create an indirect symbol from the
1576 default for the symbol with the default version if needed. The
1577 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1578 set DYNSYM if the new indirect symbol is dynamic. */
1579
1580 static bfd_boolean
1581 _bfd_elf_add_default_symbol (bfd *abfd,
1582 struct bfd_link_info *info,
1583 struct elf_link_hash_entry *h,
1584 const char *name,
1585 Elf_Internal_Sym *sym,
1586 asection *sec,
1587 bfd_vma value,
1588 bfd **poldbfd,
1589 bfd_boolean *dynsym)
1590 {
1591 bfd_boolean type_change_ok;
1592 bfd_boolean size_change_ok;
1593 bfd_boolean skip;
1594 char *shortname;
1595 struct elf_link_hash_entry *hi;
1596 struct bfd_link_hash_entry *bh;
1597 const struct elf_backend_data *bed;
1598 bfd_boolean collect;
1599 bfd_boolean dynamic;
1600 bfd_boolean override;
1601 char *p;
1602 size_t len, shortlen;
1603 asection *tmp_sec;
1604
1605 /* If this symbol has a version, and it is the default version, we
1606 create an indirect symbol from the default name to the fully
1607 decorated name. This will cause external references which do not
1608 specify a version to be bound to this version of the symbol. */
1609 p = strchr (name, ELF_VER_CHR);
1610 if (p == NULL || p[1] != ELF_VER_CHR)
1611 return TRUE;
1612
1613 bed = get_elf_backend_data (abfd);
1614 collect = bed->collect;
1615 dynamic = (abfd->flags & DYNAMIC) != 0;
1616
1617 shortlen = p - name;
1618 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1619 if (shortname == NULL)
1620 return FALSE;
1621 memcpy (shortname, name, shortlen);
1622 shortname[shortlen] = '\0';
1623
1624 /* We are going to create a new symbol. Merge it with any existing
1625 symbol with this name. For the purposes of the merge, act as
1626 though we were defining the symbol we just defined, although we
1627 actually going to define an indirect symbol. */
1628 type_change_ok = FALSE;
1629 size_change_ok = FALSE;
1630 tmp_sec = sec;
1631 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1632 &hi, poldbfd, NULL, NULL, &skip, &override,
1633 &type_change_ok, &size_change_ok))
1634 return FALSE;
1635
1636 if (skip)
1637 goto nondefault;
1638
1639 if (! override)
1640 {
1641 bh = &hi->root;
1642 if (! (_bfd_generic_link_add_one_symbol
1643 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1644 0, name, FALSE, collect, &bh)))
1645 return FALSE;
1646 hi = (struct elf_link_hash_entry *) bh;
1647 }
1648 else
1649 {
1650 /* In this case the symbol named SHORTNAME is overriding the
1651 indirect symbol we want to add. We were planning on making
1652 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1653 is the name without a version. NAME is the fully versioned
1654 name, and it is the default version.
1655
1656 Overriding means that we already saw a definition for the
1657 symbol SHORTNAME in a regular object, and it is overriding
1658 the symbol defined in the dynamic object.
1659
1660 When this happens, we actually want to change NAME, the
1661 symbol we just added, to refer to SHORTNAME. This will cause
1662 references to NAME in the shared object to become references
1663 to SHORTNAME in the regular object. This is what we expect
1664 when we override a function in a shared object: that the
1665 references in the shared object will be mapped to the
1666 definition in the regular object. */
1667
1668 while (hi->root.type == bfd_link_hash_indirect
1669 || hi->root.type == bfd_link_hash_warning)
1670 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1671
1672 h->root.type = bfd_link_hash_indirect;
1673 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1674 if (h->def_dynamic)
1675 {
1676 h->def_dynamic = 0;
1677 hi->ref_dynamic = 1;
1678 if (hi->ref_regular
1679 || hi->def_regular)
1680 {
1681 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1682 return FALSE;
1683 }
1684 }
1685
1686 /* Now set HI to H, so that the following code will set the
1687 other fields correctly. */
1688 hi = h;
1689 }
1690
1691 /* Check if HI is a warning symbol. */
1692 if (hi->root.type == bfd_link_hash_warning)
1693 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1694
1695 /* If there is a duplicate definition somewhere, then HI may not
1696 point to an indirect symbol. We will have reported an error to
1697 the user in that case. */
1698
1699 if (hi->root.type == bfd_link_hash_indirect)
1700 {
1701 struct elf_link_hash_entry *ht;
1702
1703 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1704 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1705
1706 /* See if the new flags lead us to realize that the symbol must
1707 be dynamic. */
1708 if (! *dynsym)
1709 {
1710 if (! dynamic)
1711 {
1712 if (! info->executable
1713 || hi->def_dynamic
1714 || hi->ref_dynamic)
1715 *dynsym = TRUE;
1716 }
1717 else
1718 {
1719 if (hi->ref_regular)
1720 *dynsym = TRUE;
1721 }
1722 }
1723 }
1724
1725 /* We also need to define an indirection from the nondefault version
1726 of the symbol. */
1727
1728 nondefault:
1729 len = strlen (name);
1730 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1731 if (shortname == NULL)
1732 return FALSE;
1733 memcpy (shortname, name, shortlen);
1734 memcpy (shortname + shortlen, p + 1, len - shortlen);
1735
1736 /* Once again, merge with any existing symbol. */
1737 type_change_ok = FALSE;
1738 size_change_ok = FALSE;
1739 tmp_sec = sec;
1740 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1741 &hi, NULL, NULL, NULL, &skip, &override,
1742 &type_change_ok, &size_change_ok))
1743 return FALSE;
1744
1745 if (skip)
1746 return TRUE;
1747
1748 if (override)
1749 {
1750 /* Here SHORTNAME is a versioned name, so we don't expect to see
1751 the type of override we do in the case above unless it is
1752 overridden by a versioned definition. */
1753 if (hi->root.type != bfd_link_hash_defined
1754 && hi->root.type != bfd_link_hash_defweak)
1755 (*_bfd_error_handler)
1756 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1757 abfd, shortname);
1758 }
1759 else
1760 {
1761 bh = &hi->root;
1762 if (! (_bfd_generic_link_add_one_symbol
1763 (info, abfd, shortname, BSF_INDIRECT,
1764 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1765 return FALSE;
1766 hi = (struct elf_link_hash_entry *) bh;
1767
1768 /* If there is a duplicate definition somewhere, then HI may not
1769 point to an indirect symbol. We will have reported an error
1770 to the user in that case. */
1771
1772 if (hi->root.type == bfd_link_hash_indirect)
1773 {
1774 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1775
1776 /* See if the new flags lead us to realize that the symbol
1777 must be dynamic. */
1778 if (! *dynsym)
1779 {
1780 if (! dynamic)
1781 {
1782 if (! info->executable
1783 || hi->ref_dynamic)
1784 *dynsym = TRUE;
1785 }
1786 else
1787 {
1788 if (hi->ref_regular)
1789 *dynsym = TRUE;
1790 }
1791 }
1792 }
1793 }
1794
1795 return TRUE;
1796 }
1797 \f
1798 /* This routine is used to export all defined symbols into the dynamic
1799 symbol table. It is called via elf_link_hash_traverse. */
1800
1801 static bfd_boolean
1802 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1803 {
1804 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1805
1806 /* Ignore indirect symbols. These are added by the versioning code. */
1807 if (h->root.type == bfd_link_hash_indirect)
1808 return TRUE;
1809
1810 /* Ignore this if we won't export it. */
1811 if (!eif->info->export_dynamic && !h->dynamic)
1812 return TRUE;
1813
1814 if (h->dynindx == -1
1815 && (h->def_regular || h->ref_regular)
1816 && ! bfd_hide_sym_by_version (eif->info->version_info,
1817 h->root.root.string))
1818 {
1819 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1820 {
1821 eif->failed = TRUE;
1822 return FALSE;
1823 }
1824 }
1825
1826 return TRUE;
1827 }
1828 \f
1829 /* Look through the symbols which are defined in other shared
1830 libraries and referenced here. Update the list of version
1831 dependencies. This will be put into the .gnu.version_r section.
1832 This function is called via elf_link_hash_traverse. */
1833
1834 static bfd_boolean
1835 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1836 void *data)
1837 {
1838 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1839 Elf_Internal_Verneed *t;
1840 Elf_Internal_Vernaux *a;
1841 bfd_size_type amt;
1842
1843 /* We only care about symbols defined in shared objects with version
1844 information. */
1845 if (!h->def_dynamic
1846 || h->def_regular
1847 || h->dynindx == -1
1848 || h->verinfo.verdef == NULL)
1849 return TRUE;
1850
1851 /* See if we already know about this version. */
1852 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1853 t != NULL;
1854 t = t->vn_nextref)
1855 {
1856 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1857 continue;
1858
1859 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1860 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1861 return TRUE;
1862
1863 break;
1864 }
1865
1866 /* This is a new version. Add it to tree we are building. */
1867
1868 if (t == NULL)
1869 {
1870 amt = sizeof *t;
1871 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1872 if (t == NULL)
1873 {
1874 rinfo->failed = TRUE;
1875 return FALSE;
1876 }
1877
1878 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1879 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1880 elf_tdata (rinfo->info->output_bfd)->verref = t;
1881 }
1882
1883 amt = sizeof *a;
1884 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1885 if (a == NULL)
1886 {
1887 rinfo->failed = TRUE;
1888 return FALSE;
1889 }
1890
1891 /* Note that we are copying a string pointer here, and testing it
1892 above. If bfd_elf_string_from_elf_section is ever changed to
1893 discard the string data when low in memory, this will have to be
1894 fixed. */
1895 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1896
1897 a->vna_flags = h->verinfo.verdef->vd_flags;
1898 a->vna_nextptr = t->vn_auxptr;
1899
1900 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1901 ++rinfo->vers;
1902
1903 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1904
1905 t->vn_auxptr = a;
1906
1907 return TRUE;
1908 }
1909
1910 /* Figure out appropriate versions for all the symbols. We may not
1911 have the version number script until we have read all of the input
1912 files, so until that point we don't know which symbols should be
1913 local. This function is called via elf_link_hash_traverse. */
1914
1915 static bfd_boolean
1916 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1917 {
1918 struct elf_info_failed *sinfo;
1919 struct bfd_link_info *info;
1920 const struct elf_backend_data *bed;
1921 struct elf_info_failed eif;
1922 char *p;
1923 bfd_size_type amt;
1924
1925 sinfo = (struct elf_info_failed *) data;
1926 info = sinfo->info;
1927
1928 /* Fix the symbol flags. */
1929 eif.failed = FALSE;
1930 eif.info = info;
1931 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1932 {
1933 if (eif.failed)
1934 sinfo->failed = TRUE;
1935 return FALSE;
1936 }
1937
1938 /* We only need version numbers for symbols defined in regular
1939 objects. */
1940 if (!h->def_regular)
1941 return TRUE;
1942
1943 bed = get_elf_backend_data (info->output_bfd);
1944 p = strchr (h->root.root.string, ELF_VER_CHR);
1945 if (p != NULL && h->verinfo.vertree == NULL)
1946 {
1947 struct bfd_elf_version_tree *t;
1948 bfd_boolean hidden;
1949
1950 hidden = TRUE;
1951
1952 /* There are two consecutive ELF_VER_CHR characters if this is
1953 not a hidden symbol. */
1954 ++p;
1955 if (*p == ELF_VER_CHR)
1956 {
1957 hidden = FALSE;
1958 ++p;
1959 }
1960
1961 /* If there is no version string, we can just return out. */
1962 if (*p == '\0')
1963 {
1964 if (hidden)
1965 h->hidden = 1;
1966 return TRUE;
1967 }
1968
1969 /* Look for the version. If we find it, it is no longer weak. */
1970 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1971 {
1972 if (strcmp (t->name, p) == 0)
1973 {
1974 size_t len;
1975 char *alc;
1976 struct bfd_elf_version_expr *d;
1977
1978 len = p - h->root.root.string;
1979 alc = (char *) bfd_malloc (len);
1980 if (alc == NULL)
1981 {
1982 sinfo->failed = TRUE;
1983 return FALSE;
1984 }
1985 memcpy (alc, h->root.root.string, len - 1);
1986 alc[len - 1] = '\0';
1987 if (alc[len - 2] == ELF_VER_CHR)
1988 alc[len - 2] = '\0';
1989
1990 h->verinfo.vertree = t;
1991 t->used = TRUE;
1992 d = NULL;
1993
1994 if (t->globals.list != NULL)
1995 d = (*t->match) (&t->globals, NULL, alc);
1996
1997 /* See if there is anything to force this symbol to
1998 local scope. */
1999 if (d == NULL && t->locals.list != NULL)
2000 {
2001 d = (*t->match) (&t->locals, NULL, alc);
2002 if (d != NULL
2003 && h->dynindx != -1
2004 && ! info->export_dynamic)
2005 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2006 }
2007
2008 free (alc);
2009 break;
2010 }
2011 }
2012
2013 /* If we are building an application, we need to create a
2014 version node for this version. */
2015 if (t == NULL && info->executable)
2016 {
2017 struct bfd_elf_version_tree **pp;
2018 int version_index;
2019
2020 /* If we aren't going to export this symbol, we don't need
2021 to worry about it. */
2022 if (h->dynindx == -1)
2023 return TRUE;
2024
2025 amt = sizeof *t;
2026 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2027 if (t == NULL)
2028 {
2029 sinfo->failed = TRUE;
2030 return FALSE;
2031 }
2032
2033 t->name = p;
2034 t->name_indx = (unsigned int) -1;
2035 t->used = TRUE;
2036
2037 version_index = 1;
2038 /* Don't count anonymous version tag. */
2039 if (sinfo->info->version_info != NULL
2040 && sinfo->info->version_info->vernum == 0)
2041 version_index = 0;
2042 for (pp = &sinfo->info->version_info;
2043 *pp != NULL;
2044 pp = &(*pp)->next)
2045 ++version_index;
2046 t->vernum = version_index;
2047
2048 *pp = t;
2049
2050 h->verinfo.vertree = t;
2051 }
2052 else if (t == NULL)
2053 {
2054 /* We could not find the version for a symbol when
2055 generating a shared archive. Return an error. */
2056 (*_bfd_error_handler)
2057 (_("%B: version node not found for symbol %s"),
2058 info->output_bfd, h->root.root.string);
2059 bfd_set_error (bfd_error_bad_value);
2060 sinfo->failed = TRUE;
2061 return FALSE;
2062 }
2063
2064 if (hidden)
2065 h->hidden = 1;
2066 }
2067
2068 /* If we don't have a version for this symbol, see if we can find
2069 something. */
2070 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2071 {
2072 bfd_boolean hide;
2073
2074 h->verinfo.vertree
2075 = bfd_find_version_for_sym (sinfo->info->version_info,
2076 h->root.root.string, &hide);
2077 if (h->verinfo.vertree != NULL && hide)
2078 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2079 }
2080
2081 return TRUE;
2082 }
2083 \f
2084 /* Read and swap the relocs from the section indicated by SHDR. This
2085 may be either a REL or a RELA section. The relocations are
2086 translated into RELA relocations and stored in INTERNAL_RELOCS,
2087 which should have already been allocated to contain enough space.
2088 The EXTERNAL_RELOCS are a buffer where the external form of the
2089 relocations should be stored.
2090
2091 Returns FALSE if something goes wrong. */
2092
2093 static bfd_boolean
2094 elf_link_read_relocs_from_section (bfd *abfd,
2095 asection *sec,
2096 Elf_Internal_Shdr *shdr,
2097 void *external_relocs,
2098 Elf_Internal_Rela *internal_relocs)
2099 {
2100 const struct elf_backend_data *bed;
2101 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2102 const bfd_byte *erela;
2103 const bfd_byte *erelaend;
2104 Elf_Internal_Rela *irela;
2105 Elf_Internal_Shdr *symtab_hdr;
2106 size_t nsyms;
2107
2108 /* Position ourselves at the start of the section. */
2109 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2110 return FALSE;
2111
2112 /* Read the relocations. */
2113 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2114 return FALSE;
2115
2116 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2117 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2118
2119 bed = get_elf_backend_data (abfd);
2120
2121 /* Convert the external relocations to the internal format. */
2122 if (shdr->sh_entsize == bed->s->sizeof_rel)
2123 swap_in = bed->s->swap_reloc_in;
2124 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2125 swap_in = bed->s->swap_reloca_in;
2126 else
2127 {
2128 bfd_set_error (bfd_error_wrong_format);
2129 return FALSE;
2130 }
2131
2132 erela = (const bfd_byte *) external_relocs;
2133 erelaend = erela + shdr->sh_size;
2134 irela = internal_relocs;
2135 while (erela < erelaend)
2136 {
2137 bfd_vma r_symndx;
2138
2139 (*swap_in) (abfd, erela, irela);
2140 r_symndx = ELF32_R_SYM (irela->r_info);
2141 if (bed->s->arch_size == 64)
2142 r_symndx >>= 24;
2143 if (nsyms > 0)
2144 {
2145 if ((size_t) r_symndx >= nsyms)
2146 {
2147 (*_bfd_error_handler)
2148 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2149 " for offset 0x%lx in section `%A'"),
2150 abfd, sec,
2151 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2152 bfd_set_error (bfd_error_bad_value);
2153 return FALSE;
2154 }
2155 }
2156 else if (r_symndx != STN_UNDEF)
2157 {
2158 (*_bfd_error_handler)
2159 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2160 " when the object file has no symbol table"),
2161 abfd, sec,
2162 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2163 bfd_set_error (bfd_error_bad_value);
2164 return FALSE;
2165 }
2166 irela += bed->s->int_rels_per_ext_rel;
2167 erela += shdr->sh_entsize;
2168 }
2169
2170 return TRUE;
2171 }
2172
2173 /* Read and swap the relocs for a section O. They may have been
2174 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2175 not NULL, they are used as buffers to read into. They are known to
2176 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2177 the return value is allocated using either malloc or bfd_alloc,
2178 according to the KEEP_MEMORY argument. If O has two relocation
2179 sections (both REL and RELA relocations), then the REL_HDR
2180 relocations will appear first in INTERNAL_RELOCS, followed by the
2181 RELA_HDR relocations. */
2182
2183 Elf_Internal_Rela *
2184 _bfd_elf_link_read_relocs (bfd *abfd,
2185 asection *o,
2186 void *external_relocs,
2187 Elf_Internal_Rela *internal_relocs,
2188 bfd_boolean keep_memory)
2189 {
2190 void *alloc1 = NULL;
2191 Elf_Internal_Rela *alloc2 = NULL;
2192 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2193 struct bfd_elf_section_data *esdo = elf_section_data (o);
2194 Elf_Internal_Rela *internal_rela_relocs;
2195
2196 if (esdo->relocs != NULL)
2197 return esdo->relocs;
2198
2199 if (o->reloc_count == 0)
2200 return NULL;
2201
2202 if (internal_relocs == NULL)
2203 {
2204 bfd_size_type size;
2205
2206 size = o->reloc_count;
2207 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2208 if (keep_memory)
2209 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2210 else
2211 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2212 if (internal_relocs == NULL)
2213 goto error_return;
2214 }
2215
2216 if (external_relocs == NULL)
2217 {
2218 bfd_size_type size = 0;
2219
2220 if (esdo->rel.hdr)
2221 size += esdo->rel.hdr->sh_size;
2222 if (esdo->rela.hdr)
2223 size += esdo->rela.hdr->sh_size;
2224
2225 alloc1 = bfd_malloc (size);
2226 if (alloc1 == NULL)
2227 goto error_return;
2228 external_relocs = alloc1;
2229 }
2230
2231 internal_rela_relocs = internal_relocs;
2232 if (esdo->rel.hdr)
2233 {
2234 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2235 external_relocs,
2236 internal_relocs))
2237 goto error_return;
2238 external_relocs = (((bfd_byte *) external_relocs)
2239 + esdo->rel.hdr->sh_size);
2240 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2241 * bed->s->int_rels_per_ext_rel);
2242 }
2243
2244 if (esdo->rela.hdr
2245 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2246 external_relocs,
2247 internal_rela_relocs)))
2248 goto error_return;
2249
2250 /* Cache the results for next time, if we can. */
2251 if (keep_memory)
2252 esdo->relocs = internal_relocs;
2253
2254 if (alloc1 != NULL)
2255 free (alloc1);
2256
2257 /* Don't free alloc2, since if it was allocated we are passing it
2258 back (under the name of internal_relocs). */
2259
2260 return internal_relocs;
2261
2262 error_return:
2263 if (alloc1 != NULL)
2264 free (alloc1);
2265 if (alloc2 != NULL)
2266 {
2267 if (keep_memory)
2268 bfd_release (abfd, alloc2);
2269 else
2270 free (alloc2);
2271 }
2272 return NULL;
2273 }
2274
2275 /* Compute the size of, and allocate space for, REL_HDR which is the
2276 section header for a section containing relocations for O. */
2277
2278 static bfd_boolean
2279 _bfd_elf_link_size_reloc_section (bfd *abfd,
2280 struct bfd_elf_section_reloc_data *reldata)
2281 {
2282 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2283
2284 /* That allows us to calculate the size of the section. */
2285 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2286
2287 /* The contents field must last into write_object_contents, so we
2288 allocate it with bfd_alloc rather than malloc. Also since we
2289 cannot be sure that the contents will actually be filled in,
2290 we zero the allocated space. */
2291 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2292 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2293 return FALSE;
2294
2295 if (reldata->hashes == NULL && reldata->count)
2296 {
2297 struct elf_link_hash_entry **p;
2298
2299 p = (struct elf_link_hash_entry **)
2300 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2301 if (p == NULL)
2302 return FALSE;
2303
2304 reldata->hashes = p;
2305 }
2306
2307 return TRUE;
2308 }
2309
2310 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2311 originated from the section given by INPUT_REL_HDR) to the
2312 OUTPUT_BFD. */
2313
2314 bfd_boolean
2315 _bfd_elf_link_output_relocs (bfd *output_bfd,
2316 asection *input_section,
2317 Elf_Internal_Shdr *input_rel_hdr,
2318 Elf_Internal_Rela *internal_relocs,
2319 struct elf_link_hash_entry **rel_hash
2320 ATTRIBUTE_UNUSED)
2321 {
2322 Elf_Internal_Rela *irela;
2323 Elf_Internal_Rela *irelaend;
2324 bfd_byte *erel;
2325 struct bfd_elf_section_reloc_data *output_reldata;
2326 asection *output_section;
2327 const struct elf_backend_data *bed;
2328 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2329 struct bfd_elf_section_data *esdo;
2330
2331 output_section = input_section->output_section;
2332
2333 bed = get_elf_backend_data (output_bfd);
2334 esdo = elf_section_data (output_section);
2335 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2336 {
2337 output_reldata = &esdo->rel;
2338 swap_out = bed->s->swap_reloc_out;
2339 }
2340 else if (esdo->rela.hdr
2341 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2342 {
2343 output_reldata = &esdo->rela;
2344 swap_out = bed->s->swap_reloca_out;
2345 }
2346 else
2347 {
2348 (*_bfd_error_handler)
2349 (_("%B: relocation size mismatch in %B section %A"),
2350 output_bfd, input_section->owner, input_section);
2351 bfd_set_error (bfd_error_wrong_format);
2352 return FALSE;
2353 }
2354
2355 erel = output_reldata->hdr->contents;
2356 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2357 irela = internal_relocs;
2358 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2359 * bed->s->int_rels_per_ext_rel);
2360 while (irela < irelaend)
2361 {
2362 (*swap_out) (output_bfd, irela, erel);
2363 irela += bed->s->int_rels_per_ext_rel;
2364 erel += input_rel_hdr->sh_entsize;
2365 }
2366
2367 /* Bump the counter, so that we know where to add the next set of
2368 relocations. */
2369 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2370
2371 return TRUE;
2372 }
2373 \f
2374 /* Make weak undefined symbols in PIE dynamic. */
2375
2376 bfd_boolean
2377 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2378 struct elf_link_hash_entry *h)
2379 {
2380 if (info->pie
2381 && h->dynindx == -1
2382 && h->root.type == bfd_link_hash_undefweak)
2383 return bfd_elf_link_record_dynamic_symbol (info, h);
2384
2385 return TRUE;
2386 }
2387
2388 /* Fix up the flags for a symbol. This handles various cases which
2389 can only be fixed after all the input files are seen. This is
2390 currently called by both adjust_dynamic_symbol and
2391 assign_sym_version, which is unnecessary but perhaps more robust in
2392 the face of future changes. */
2393
2394 static bfd_boolean
2395 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2396 struct elf_info_failed *eif)
2397 {
2398 const struct elf_backend_data *bed;
2399
2400 /* If this symbol was mentioned in a non-ELF file, try to set
2401 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2402 permit a non-ELF file to correctly refer to a symbol defined in
2403 an ELF dynamic object. */
2404 if (h->non_elf)
2405 {
2406 while (h->root.type == bfd_link_hash_indirect)
2407 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2408
2409 if (h->root.type != bfd_link_hash_defined
2410 && h->root.type != bfd_link_hash_defweak)
2411 {
2412 h->ref_regular = 1;
2413 h->ref_regular_nonweak = 1;
2414 }
2415 else
2416 {
2417 if (h->root.u.def.section->owner != NULL
2418 && (bfd_get_flavour (h->root.u.def.section->owner)
2419 == bfd_target_elf_flavour))
2420 {
2421 h->ref_regular = 1;
2422 h->ref_regular_nonweak = 1;
2423 }
2424 else
2425 h->def_regular = 1;
2426 }
2427
2428 if (h->dynindx == -1
2429 && (h->def_dynamic
2430 || h->ref_dynamic))
2431 {
2432 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2433 {
2434 eif->failed = TRUE;
2435 return FALSE;
2436 }
2437 }
2438 }
2439 else
2440 {
2441 /* Unfortunately, NON_ELF is only correct if the symbol
2442 was first seen in a non-ELF file. Fortunately, if the symbol
2443 was first seen in an ELF file, we're probably OK unless the
2444 symbol was defined in a non-ELF file. Catch that case here.
2445 FIXME: We're still in trouble if the symbol was first seen in
2446 a dynamic object, and then later in a non-ELF regular object. */
2447 if ((h->root.type == bfd_link_hash_defined
2448 || h->root.type == bfd_link_hash_defweak)
2449 && !h->def_regular
2450 && (h->root.u.def.section->owner != NULL
2451 ? (bfd_get_flavour (h->root.u.def.section->owner)
2452 != bfd_target_elf_flavour)
2453 : (bfd_is_abs_section (h->root.u.def.section)
2454 && !h->def_dynamic)))
2455 h->def_regular = 1;
2456 }
2457
2458 /* Backend specific symbol fixup. */
2459 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2460 if (bed->elf_backend_fixup_symbol
2461 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2462 return FALSE;
2463
2464 /* If this is a final link, and the symbol was defined as a common
2465 symbol in a regular object file, and there was no definition in
2466 any dynamic object, then the linker will have allocated space for
2467 the symbol in a common section but the DEF_REGULAR
2468 flag will not have been set. */
2469 if (h->root.type == bfd_link_hash_defined
2470 && !h->def_regular
2471 && h->ref_regular
2472 && !h->def_dynamic
2473 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2474 h->def_regular = 1;
2475
2476 /* If -Bsymbolic was used (which means to bind references to global
2477 symbols to the definition within the shared object), and this
2478 symbol was defined in a regular object, then it actually doesn't
2479 need a PLT entry. Likewise, if the symbol has non-default
2480 visibility. If the symbol has hidden or internal visibility, we
2481 will force it local. */
2482 if (h->needs_plt
2483 && eif->info->shared
2484 && is_elf_hash_table (eif->info->hash)
2485 && (SYMBOLIC_BIND (eif->info, h)
2486 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2487 && h->def_regular)
2488 {
2489 bfd_boolean force_local;
2490
2491 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2492 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2493 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2494 }
2495
2496 /* If a weak undefined symbol has non-default visibility, we also
2497 hide it from the dynamic linker. */
2498 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2499 && h->root.type == bfd_link_hash_undefweak)
2500 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2501
2502 /* If this is a weak defined symbol in a dynamic object, and we know
2503 the real definition in the dynamic object, copy interesting flags
2504 over to the real definition. */
2505 if (h->u.weakdef != NULL)
2506 {
2507 /* If the real definition is defined by a regular object file,
2508 don't do anything special. See the longer description in
2509 _bfd_elf_adjust_dynamic_symbol, below. */
2510 if (h->u.weakdef->def_regular)
2511 h->u.weakdef = NULL;
2512 else
2513 {
2514 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2515
2516 while (h->root.type == bfd_link_hash_indirect)
2517 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2518
2519 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2520 || h->root.type == bfd_link_hash_defweak);
2521 BFD_ASSERT (weakdef->def_dynamic);
2522 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2523 || weakdef->root.type == bfd_link_hash_defweak);
2524 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2525 }
2526 }
2527
2528 return TRUE;
2529 }
2530
2531 /* Make the backend pick a good value for a dynamic symbol. This is
2532 called via elf_link_hash_traverse, and also calls itself
2533 recursively. */
2534
2535 static bfd_boolean
2536 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2537 {
2538 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2539 bfd *dynobj;
2540 const struct elf_backend_data *bed;
2541
2542 if (! is_elf_hash_table (eif->info->hash))
2543 return FALSE;
2544
2545 /* Ignore indirect symbols. These are added by the versioning code. */
2546 if (h->root.type == bfd_link_hash_indirect)
2547 return TRUE;
2548
2549 /* Fix the symbol flags. */
2550 if (! _bfd_elf_fix_symbol_flags (h, eif))
2551 return FALSE;
2552
2553 /* If this symbol does not require a PLT entry, and it is not
2554 defined by a dynamic object, or is not referenced by a regular
2555 object, ignore it. We do have to handle a weak defined symbol,
2556 even if no regular object refers to it, if we decided to add it
2557 to the dynamic symbol table. FIXME: Do we normally need to worry
2558 about symbols which are defined by one dynamic object and
2559 referenced by another one? */
2560 if (!h->needs_plt
2561 && h->type != STT_GNU_IFUNC
2562 && (h->def_regular
2563 || !h->def_dynamic
2564 || (!h->ref_regular
2565 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2566 {
2567 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2568 return TRUE;
2569 }
2570
2571 /* If we've already adjusted this symbol, don't do it again. This
2572 can happen via a recursive call. */
2573 if (h->dynamic_adjusted)
2574 return TRUE;
2575
2576 /* Don't look at this symbol again. Note that we must set this
2577 after checking the above conditions, because we may look at a
2578 symbol once, decide not to do anything, and then get called
2579 recursively later after REF_REGULAR is set below. */
2580 h->dynamic_adjusted = 1;
2581
2582 /* If this is a weak definition, and we know a real definition, and
2583 the real symbol is not itself defined by a regular object file,
2584 then get a good value for the real definition. We handle the
2585 real symbol first, for the convenience of the backend routine.
2586
2587 Note that there is a confusing case here. If the real definition
2588 is defined by a regular object file, we don't get the real symbol
2589 from the dynamic object, but we do get the weak symbol. If the
2590 processor backend uses a COPY reloc, then if some routine in the
2591 dynamic object changes the real symbol, we will not see that
2592 change in the corresponding weak symbol. This is the way other
2593 ELF linkers work as well, and seems to be a result of the shared
2594 library model.
2595
2596 I will clarify this issue. Most SVR4 shared libraries define the
2597 variable _timezone and define timezone as a weak synonym. The
2598 tzset call changes _timezone. If you write
2599 extern int timezone;
2600 int _timezone = 5;
2601 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2602 you might expect that, since timezone is a synonym for _timezone,
2603 the same number will print both times. However, if the processor
2604 backend uses a COPY reloc, then actually timezone will be copied
2605 into your process image, and, since you define _timezone
2606 yourself, _timezone will not. Thus timezone and _timezone will
2607 wind up at different memory locations. The tzset call will set
2608 _timezone, leaving timezone unchanged. */
2609
2610 if (h->u.weakdef != NULL)
2611 {
2612 /* If we get to this point, there is an implicit reference to
2613 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2614 h->u.weakdef->ref_regular = 1;
2615
2616 /* Ensure that the backend adjust_dynamic_symbol function sees
2617 H->U.WEAKDEF before H by recursively calling ourselves. */
2618 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2619 return FALSE;
2620 }
2621
2622 /* If a symbol has no type and no size and does not require a PLT
2623 entry, then we are probably about to do the wrong thing here: we
2624 are probably going to create a COPY reloc for an empty object.
2625 This case can arise when a shared object is built with assembly
2626 code, and the assembly code fails to set the symbol type. */
2627 if (h->size == 0
2628 && h->type == STT_NOTYPE
2629 && !h->needs_plt)
2630 (*_bfd_error_handler)
2631 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2632 h->root.root.string);
2633
2634 dynobj = elf_hash_table (eif->info)->dynobj;
2635 bed = get_elf_backend_data (dynobj);
2636
2637 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2638 {
2639 eif->failed = TRUE;
2640 return FALSE;
2641 }
2642
2643 return TRUE;
2644 }
2645
2646 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2647 DYNBSS. */
2648
2649 bfd_boolean
2650 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2651 asection *dynbss)
2652 {
2653 unsigned int power_of_two;
2654 bfd_vma mask;
2655 asection *sec = h->root.u.def.section;
2656
2657 /* The section aligment of definition is the maximum alignment
2658 requirement of symbols defined in the section. Since we don't
2659 know the symbol alignment requirement, we start with the
2660 maximum alignment and check low bits of the symbol address
2661 for the minimum alignment. */
2662 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2663 mask = ((bfd_vma) 1 << power_of_two) - 1;
2664 while ((h->root.u.def.value & mask) != 0)
2665 {
2666 mask >>= 1;
2667 --power_of_two;
2668 }
2669
2670 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2671 dynbss))
2672 {
2673 /* Adjust the section alignment if needed. */
2674 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2675 power_of_two))
2676 return FALSE;
2677 }
2678
2679 /* We make sure that the symbol will be aligned properly. */
2680 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2681
2682 /* Define the symbol as being at this point in DYNBSS. */
2683 h->root.u.def.section = dynbss;
2684 h->root.u.def.value = dynbss->size;
2685
2686 /* Increment the size of DYNBSS to make room for the symbol. */
2687 dynbss->size += h->size;
2688
2689 return TRUE;
2690 }
2691
2692 /* Adjust all external symbols pointing into SEC_MERGE sections
2693 to reflect the object merging within the sections. */
2694
2695 static bfd_boolean
2696 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2697 {
2698 asection *sec;
2699
2700 if ((h->root.type == bfd_link_hash_defined
2701 || h->root.type == bfd_link_hash_defweak)
2702 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2703 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2704 {
2705 bfd *output_bfd = (bfd *) data;
2706
2707 h->root.u.def.value =
2708 _bfd_merged_section_offset (output_bfd,
2709 &h->root.u.def.section,
2710 elf_section_data (sec)->sec_info,
2711 h->root.u.def.value);
2712 }
2713
2714 return TRUE;
2715 }
2716
2717 /* Returns false if the symbol referred to by H should be considered
2718 to resolve local to the current module, and true if it should be
2719 considered to bind dynamically. */
2720
2721 bfd_boolean
2722 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2723 struct bfd_link_info *info,
2724 bfd_boolean not_local_protected)
2725 {
2726 bfd_boolean binding_stays_local_p;
2727 const struct elf_backend_data *bed;
2728 struct elf_link_hash_table *hash_table;
2729
2730 if (h == NULL)
2731 return FALSE;
2732
2733 while (h->root.type == bfd_link_hash_indirect
2734 || h->root.type == bfd_link_hash_warning)
2735 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2736
2737 /* If it was forced local, then clearly it's not dynamic. */
2738 if (h->dynindx == -1)
2739 return FALSE;
2740 if (h->forced_local)
2741 return FALSE;
2742
2743 /* Identify the cases where name binding rules say that a
2744 visible symbol resolves locally. */
2745 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2746
2747 switch (ELF_ST_VISIBILITY (h->other))
2748 {
2749 case STV_INTERNAL:
2750 case STV_HIDDEN:
2751 return FALSE;
2752
2753 case STV_PROTECTED:
2754 hash_table = elf_hash_table (info);
2755 if (!is_elf_hash_table (hash_table))
2756 return FALSE;
2757
2758 bed = get_elf_backend_data (hash_table->dynobj);
2759
2760 /* Proper resolution for function pointer equality may require
2761 that these symbols perhaps be resolved dynamically, even though
2762 we should be resolving them to the current module. */
2763 if (!not_local_protected || !bed->is_function_type (h->type))
2764 binding_stays_local_p = TRUE;
2765 break;
2766
2767 default:
2768 break;
2769 }
2770
2771 /* If it isn't defined locally, then clearly it's dynamic. */
2772 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2773 return TRUE;
2774
2775 /* Otherwise, the symbol is dynamic if binding rules don't tell
2776 us that it remains local. */
2777 return !binding_stays_local_p;
2778 }
2779
2780 /* Return true if the symbol referred to by H should be considered
2781 to resolve local to the current module, and false otherwise. Differs
2782 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2783 undefined symbols. The two functions are virtually identical except
2784 for the place where forced_local and dynindx == -1 are tested. If
2785 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2786 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2787 the symbol is local only for defined symbols.
2788 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2789 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2790 treatment of undefined weak symbols. For those that do not make
2791 undefined weak symbols dynamic, both functions may return false. */
2792
2793 bfd_boolean
2794 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2795 struct bfd_link_info *info,
2796 bfd_boolean local_protected)
2797 {
2798 const struct elf_backend_data *bed;
2799 struct elf_link_hash_table *hash_table;
2800
2801 /* If it's a local sym, of course we resolve locally. */
2802 if (h == NULL)
2803 return TRUE;
2804
2805 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2806 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2807 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2808 return TRUE;
2809
2810 /* Common symbols that become definitions don't get the DEF_REGULAR
2811 flag set, so test it first, and don't bail out. */
2812 if (ELF_COMMON_DEF_P (h))
2813 /* Do nothing. */;
2814 /* If we don't have a definition in a regular file, then we can't
2815 resolve locally. The sym is either undefined or dynamic. */
2816 else if (!h->def_regular)
2817 return FALSE;
2818
2819 /* Forced local symbols resolve locally. */
2820 if (h->forced_local)
2821 return TRUE;
2822
2823 /* As do non-dynamic symbols. */
2824 if (h->dynindx == -1)
2825 return TRUE;
2826
2827 /* At this point, we know the symbol is defined and dynamic. In an
2828 executable it must resolve locally, likewise when building symbolic
2829 shared libraries. */
2830 if (info->executable || SYMBOLIC_BIND (info, h))
2831 return TRUE;
2832
2833 /* Now deal with defined dynamic symbols in shared libraries. Ones
2834 with default visibility might not resolve locally. */
2835 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2836 return FALSE;
2837
2838 hash_table = elf_hash_table (info);
2839 if (!is_elf_hash_table (hash_table))
2840 return TRUE;
2841
2842 bed = get_elf_backend_data (hash_table->dynobj);
2843
2844 /* STV_PROTECTED non-function symbols are local. */
2845 if (!bed->is_function_type (h->type))
2846 return TRUE;
2847
2848 /* Function pointer equality tests may require that STV_PROTECTED
2849 symbols be treated as dynamic symbols. If the address of a
2850 function not defined in an executable is set to that function's
2851 plt entry in the executable, then the address of the function in
2852 a shared library must also be the plt entry in the executable. */
2853 return local_protected;
2854 }
2855
2856 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2857 aligned. Returns the first TLS output section. */
2858
2859 struct bfd_section *
2860 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2861 {
2862 struct bfd_section *sec, *tls;
2863 unsigned int align = 0;
2864
2865 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2866 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2867 break;
2868 tls = sec;
2869
2870 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2871 if (sec->alignment_power > align)
2872 align = sec->alignment_power;
2873
2874 elf_hash_table (info)->tls_sec = tls;
2875
2876 /* Ensure the alignment of the first section is the largest alignment,
2877 so that the tls segment starts aligned. */
2878 if (tls != NULL)
2879 tls->alignment_power = align;
2880
2881 return tls;
2882 }
2883
2884 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2885 static bfd_boolean
2886 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2887 Elf_Internal_Sym *sym)
2888 {
2889 const struct elf_backend_data *bed;
2890
2891 /* Local symbols do not count, but target specific ones might. */
2892 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2893 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2894 return FALSE;
2895
2896 bed = get_elf_backend_data (abfd);
2897 /* Function symbols do not count. */
2898 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2899 return FALSE;
2900
2901 /* If the section is undefined, then so is the symbol. */
2902 if (sym->st_shndx == SHN_UNDEF)
2903 return FALSE;
2904
2905 /* If the symbol is defined in the common section, then
2906 it is a common definition and so does not count. */
2907 if (bed->common_definition (sym))
2908 return FALSE;
2909
2910 /* If the symbol is in a target specific section then we
2911 must rely upon the backend to tell us what it is. */
2912 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2913 /* FIXME - this function is not coded yet:
2914
2915 return _bfd_is_global_symbol_definition (abfd, sym);
2916
2917 Instead for now assume that the definition is not global,
2918 Even if this is wrong, at least the linker will behave
2919 in the same way that it used to do. */
2920 return FALSE;
2921
2922 return TRUE;
2923 }
2924
2925 /* Search the symbol table of the archive element of the archive ABFD
2926 whose archive map contains a mention of SYMDEF, and determine if
2927 the symbol is defined in this element. */
2928 static bfd_boolean
2929 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2930 {
2931 Elf_Internal_Shdr * hdr;
2932 bfd_size_type symcount;
2933 bfd_size_type extsymcount;
2934 bfd_size_type extsymoff;
2935 Elf_Internal_Sym *isymbuf;
2936 Elf_Internal_Sym *isym;
2937 Elf_Internal_Sym *isymend;
2938 bfd_boolean result;
2939
2940 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2941 if (abfd == NULL)
2942 return FALSE;
2943
2944 if (! bfd_check_format (abfd, bfd_object))
2945 return FALSE;
2946
2947 /* If we have already included the element containing this symbol in the
2948 link then we do not need to include it again. Just claim that any symbol
2949 it contains is not a definition, so that our caller will not decide to
2950 (re)include this element. */
2951 if (abfd->archive_pass)
2952 return FALSE;
2953
2954 /* Select the appropriate symbol table. */
2955 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2956 hdr = &elf_tdata (abfd)->symtab_hdr;
2957 else
2958 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2959
2960 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2961
2962 /* The sh_info field of the symtab header tells us where the
2963 external symbols start. We don't care about the local symbols. */
2964 if (elf_bad_symtab (abfd))
2965 {
2966 extsymcount = symcount;
2967 extsymoff = 0;
2968 }
2969 else
2970 {
2971 extsymcount = symcount - hdr->sh_info;
2972 extsymoff = hdr->sh_info;
2973 }
2974
2975 if (extsymcount == 0)
2976 return FALSE;
2977
2978 /* Read in the symbol table. */
2979 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2980 NULL, NULL, NULL);
2981 if (isymbuf == NULL)
2982 return FALSE;
2983
2984 /* Scan the symbol table looking for SYMDEF. */
2985 result = FALSE;
2986 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2987 {
2988 const char *name;
2989
2990 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2991 isym->st_name);
2992 if (name == NULL)
2993 break;
2994
2995 if (strcmp (name, symdef->name) == 0)
2996 {
2997 result = is_global_data_symbol_definition (abfd, isym);
2998 break;
2999 }
3000 }
3001
3002 free (isymbuf);
3003
3004 return result;
3005 }
3006 \f
3007 /* Add an entry to the .dynamic table. */
3008
3009 bfd_boolean
3010 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3011 bfd_vma tag,
3012 bfd_vma val)
3013 {
3014 struct elf_link_hash_table *hash_table;
3015 const struct elf_backend_data *bed;
3016 asection *s;
3017 bfd_size_type newsize;
3018 bfd_byte *newcontents;
3019 Elf_Internal_Dyn dyn;
3020
3021 hash_table = elf_hash_table (info);
3022 if (! is_elf_hash_table (hash_table))
3023 return FALSE;
3024
3025 bed = get_elf_backend_data (hash_table->dynobj);
3026 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3027 BFD_ASSERT (s != NULL);
3028
3029 newsize = s->size + bed->s->sizeof_dyn;
3030 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3031 if (newcontents == NULL)
3032 return FALSE;
3033
3034 dyn.d_tag = tag;
3035 dyn.d_un.d_val = val;
3036 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3037
3038 s->size = newsize;
3039 s->contents = newcontents;
3040
3041 return TRUE;
3042 }
3043
3044 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3045 otherwise just check whether one already exists. Returns -1 on error,
3046 1 if a DT_NEEDED tag already exists, and 0 on success. */
3047
3048 static int
3049 elf_add_dt_needed_tag (bfd *abfd,
3050 struct bfd_link_info *info,
3051 const char *soname,
3052 bfd_boolean do_it)
3053 {
3054 struct elf_link_hash_table *hash_table;
3055 bfd_size_type strindex;
3056
3057 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3058 return -1;
3059
3060 hash_table = elf_hash_table (info);
3061 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3062 if (strindex == (bfd_size_type) -1)
3063 return -1;
3064
3065 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3066 {
3067 asection *sdyn;
3068 const struct elf_backend_data *bed;
3069 bfd_byte *extdyn;
3070
3071 bed = get_elf_backend_data (hash_table->dynobj);
3072 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3073 if (sdyn != NULL)
3074 for (extdyn = sdyn->contents;
3075 extdyn < sdyn->contents + sdyn->size;
3076 extdyn += bed->s->sizeof_dyn)
3077 {
3078 Elf_Internal_Dyn dyn;
3079
3080 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3081 if (dyn.d_tag == DT_NEEDED
3082 && dyn.d_un.d_val == strindex)
3083 {
3084 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3085 return 1;
3086 }
3087 }
3088 }
3089
3090 if (do_it)
3091 {
3092 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3093 return -1;
3094
3095 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3096 return -1;
3097 }
3098 else
3099 /* We were just checking for existence of the tag. */
3100 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3101
3102 return 0;
3103 }
3104
3105 static bfd_boolean
3106 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3107 {
3108 for (; needed != NULL; needed = needed->next)
3109 if (strcmp (soname, needed->name) == 0)
3110 return TRUE;
3111
3112 return FALSE;
3113 }
3114
3115 /* Sort symbol by value, section, and size. */
3116 static int
3117 elf_sort_symbol (const void *arg1, const void *arg2)
3118 {
3119 const struct elf_link_hash_entry *h1;
3120 const struct elf_link_hash_entry *h2;
3121 bfd_signed_vma vdiff;
3122
3123 h1 = *(const struct elf_link_hash_entry **) arg1;
3124 h2 = *(const struct elf_link_hash_entry **) arg2;
3125 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3126 if (vdiff != 0)
3127 return vdiff > 0 ? 1 : -1;
3128 else
3129 {
3130 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3131 if (sdiff != 0)
3132 return sdiff > 0 ? 1 : -1;
3133 }
3134 vdiff = h1->size - h2->size;
3135 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3136 }
3137
3138 /* This function is used to adjust offsets into .dynstr for
3139 dynamic symbols. This is called via elf_link_hash_traverse. */
3140
3141 static bfd_boolean
3142 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3143 {
3144 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3145
3146 if (h->dynindx != -1)
3147 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3148 return TRUE;
3149 }
3150
3151 /* Assign string offsets in .dynstr, update all structures referencing
3152 them. */
3153
3154 static bfd_boolean
3155 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3156 {
3157 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3158 struct elf_link_local_dynamic_entry *entry;
3159 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3160 bfd *dynobj = hash_table->dynobj;
3161 asection *sdyn;
3162 bfd_size_type size;
3163 const struct elf_backend_data *bed;
3164 bfd_byte *extdyn;
3165
3166 _bfd_elf_strtab_finalize (dynstr);
3167 size = _bfd_elf_strtab_size (dynstr);
3168
3169 bed = get_elf_backend_data (dynobj);
3170 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3171 BFD_ASSERT (sdyn != NULL);
3172
3173 /* Update all .dynamic entries referencing .dynstr strings. */
3174 for (extdyn = sdyn->contents;
3175 extdyn < sdyn->contents + sdyn->size;
3176 extdyn += bed->s->sizeof_dyn)
3177 {
3178 Elf_Internal_Dyn dyn;
3179
3180 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3181 switch (dyn.d_tag)
3182 {
3183 case DT_STRSZ:
3184 dyn.d_un.d_val = size;
3185 break;
3186 case DT_NEEDED:
3187 case DT_SONAME:
3188 case DT_RPATH:
3189 case DT_RUNPATH:
3190 case DT_FILTER:
3191 case DT_AUXILIARY:
3192 case DT_AUDIT:
3193 case DT_DEPAUDIT:
3194 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3195 break;
3196 default:
3197 continue;
3198 }
3199 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3200 }
3201
3202 /* Now update local dynamic symbols. */
3203 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3204 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3205 entry->isym.st_name);
3206
3207 /* And the rest of dynamic symbols. */
3208 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3209
3210 /* Adjust version definitions. */
3211 if (elf_tdata (output_bfd)->cverdefs)
3212 {
3213 asection *s;
3214 bfd_byte *p;
3215 bfd_size_type i;
3216 Elf_Internal_Verdef def;
3217 Elf_Internal_Verdaux defaux;
3218
3219 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3220 p = s->contents;
3221 do
3222 {
3223 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3224 &def);
3225 p += sizeof (Elf_External_Verdef);
3226 if (def.vd_aux != sizeof (Elf_External_Verdef))
3227 continue;
3228 for (i = 0; i < def.vd_cnt; ++i)
3229 {
3230 _bfd_elf_swap_verdaux_in (output_bfd,
3231 (Elf_External_Verdaux *) p, &defaux);
3232 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3233 defaux.vda_name);
3234 _bfd_elf_swap_verdaux_out (output_bfd,
3235 &defaux, (Elf_External_Verdaux *) p);
3236 p += sizeof (Elf_External_Verdaux);
3237 }
3238 }
3239 while (def.vd_next);
3240 }
3241
3242 /* Adjust version references. */
3243 if (elf_tdata (output_bfd)->verref)
3244 {
3245 asection *s;
3246 bfd_byte *p;
3247 bfd_size_type i;
3248 Elf_Internal_Verneed need;
3249 Elf_Internal_Vernaux needaux;
3250
3251 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3252 p = s->contents;
3253 do
3254 {
3255 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3256 &need);
3257 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3258 _bfd_elf_swap_verneed_out (output_bfd, &need,
3259 (Elf_External_Verneed *) p);
3260 p += sizeof (Elf_External_Verneed);
3261 for (i = 0; i < need.vn_cnt; ++i)
3262 {
3263 _bfd_elf_swap_vernaux_in (output_bfd,
3264 (Elf_External_Vernaux *) p, &needaux);
3265 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3266 needaux.vna_name);
3267 _bfd_elf_swap_vernaux_out (output_bfd,
3268 &needaux,
3269 (Elf_External_Vernaux *) p);
3270 p += sizeof (Elf_External_Vernaux);
3271 }
3272 }
3273 while (need.vn_next);
3274 }
3275
3276 return TRUE;
3277 }
3278 \f
3279 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3280 The default is to only match when the INPUT and OUTPUT are exactly
3281 the same target. */
3282
3283 bfd_boolean
3284 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3285 const bfd_target *output)
3286 {
3287 return input == output;
3288 }
3289
3290 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3291 This version is used when different targets for the same architecture
3292 are virtually identical. */
3293
3294 bfd_boolean
3295 _bfd_elf_relocs_compatible (const bfd_target *input,
3296 const bfd_target *output)
3297 {
3298 const struct elf_backend_data *obed, *ibed;
3299
3300 if (input == output)
3301 return TRUE;
3302
3303 ibed = xvec_get_elf_backend_data (input);
3304 obed = xvec_get_elf_backend_data (output);
3305
3306 if (ibed->arch != obed->arch)
3307 return FALSE;
3308
3309 /* If both backends are using this function, deem them compatible. */
3310 return ibed->relocs_compatible == obed->relocs_compatible;
3311 }
3312
3313 /* Add symbols from an ELF object file to the linker hash table. */
3314
3315 static bfd_boolean
3316 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3317 {
3318 Elf_Internal_Ehdr *ehdr;
3319 Elf_Internal_Shdr *hdr;
3320 bfd_size_type symcount;
3321 bfd_size_type extsymcount;
3322 bfd_size_type extsymoff;
3323 struct elf_link_hash_entry **sym_hash;
3324 bfd_boolean dynamic;
3325 Elf_External_Versym *extversym = NULL;
3326 Elf_External_Versym *ever;
3327 struct elf_link_hash_entry *weaks;
3328 struct elf_link_hash_entry **nondeflt_vers = NULL;
3329 bfd_size_type nondeflt_vers_cnt = 0;
3330 Elf_Internal_Sym *isymbuf = NULL;
3331 Elf_Internal_Sym *isym;
3332 Elf_Internal_Sym *isymend;
3333 const struct elf_backend_data *bed;
3334 bfd_boolean add_needed;
3335 struct elf_link_hash_table *htab;
3336 bfd_size_type amt;
3337 void *alloc_mark = NULL;
3338 struct bfd_hash_entry **old_table = NULL;
3339 unsigned int old_size = 0;
3340 unsigned int old_count = 0;
3341 void *old_tab = NULL;
3342 void *old_hash;
3343 void *old_ent;
3344 struct bfd_link_hash_entry *old_undefs = NULL;
3345 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3346 long old_dynsymcount = 0;
3347 bfd_size_type old_dynstr_size = 0;
3348 size_t tabsize = 0;
3349 size_t hashsize = 0;
3350
3351 htab = elf_hash_table (info);
3352 bed = get_elf_backend_data (abfd);
3353
3354 if ((abfd->flags & DYNAMIC) == 0)
3355 dynamic = FALSE;
3356 else
3357 {
3358 dynamic = TRUE;
3359
3360 /* You can't use -r against a dynamic object. Also, there's no
3361 hope of using a dynamic object which does not exactly match
3362 the format of the output file. */
3363 if (info->relocatable
3364 || !is_elf_hash_table (htab)
3365 || info->output_bfd->xvec != abfd->xvec)
3366 {
3367 if (info->relocatable)
3368 bfd_set_error (bfd_error_invalid_operation);
3369 else
3370 bfd_set_error (bfd_error_wrong_format);
3371 goto error_return;
3372 }
3373 }
3374
3375 ehdr = elf_elfheader (abfd);
3376 if (info->warn_alternate_em
3377 && bed->elf_machine_code != ehdr->e_machine
3378 && ((bed->elf_machine_alt1 != 0
3379 && ehdr->e_machine == bed->elf_machine_alt1)
3380 || (bed->elf_machine_alt2 != 0
3381 && ehdr->e_machine == bed->elf_machine_alt2)))
3382 info->callbacks->einfo
3383 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3384 ehdr->e_machine, abfd, bed->elf_machine_code);
3385
3386 /* As a GNU extension, any input sections which are named
3387 .gnu.warning.SYMBOL are treated as warning symbols for the given
3388 symbol. This differs from .gnu.warning sections, which generate
3389 warnings when they are included in an output file. */
3390 /* PR 12761: Also generate this warning when building shared libraries. */
3391 if (info->executable || info->shared)
3392 {
3393 asection *s;
3394
3395 for (s = abfd->sections; s != NULL; s = s->next)
3396 {
3397 const char *name;
3398
3399 name = bfd_get_section_name (abfd, s);
3400 if (CONST_STRNEQ (name, ".gnu.warning."))
3401 {
3402 char *msg;
3403 bfd_size_type sz;
3404
3405 name += sizeof ".gnu.warning." - 1;
3406
3407 /* If this is a shared object, then look up the symbol
3408 in the hash table. If it is there, and it is already
3409 been defined, then we will not be using the entry
3410 from this shared object, so we don't need to warn.
3411 FIXME: If we see the definition in a regular object
3412 later on, we will warn, but we shouldn't. The only
3413 fix is to keep track of what warnings we are supposed
3414 to emit, and then handle them all at the end of the
3415 link. */
3416 if (dynamic)
3417 {
3418 struct elf_link_hash_entry *h;
3419
3420 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3421
3422 /* FIXME: What about bfd_link_hash_common? */
3423 if (h != NULL
3424 && (h->root.type == bfd_link_hash_defined
3425 || h->root.type == bfd_link_hash_defweak))
3426 {
3427 /* We don't want to issue this warning. Clobber
3428 the section size so that the warning does not
3429 get copied into the output file. */
3430 s->size = 0;
3431 continue;
3432 }
3433 }
3434
3435 sz = s->size;
3436 msg = (char *) bfd_alloc (abfd, sz + 1);
3437 if (msg == NULL)
3438 goto error_return;
3439
3440 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3441 goto error_return;
3442
3443 msg[sz] = '\0';
3444
3445 if (! (_bfd_generic_link_add_one_symbol
3446 (info, abfd, name, BSF_WARNING, s, 0, msg,
3447 FALSE, bed->collect, NULL)))
3448 goto error_return;
3449
3450 if (! info->relocatable)
3451 {
3452 /* Clobber the section size so that the warning does
3453 not get copied into the output file. */
3454 s->size = 0;
3455
3456 /* Also set SEC_EXCLUDE, so that symbols defined in
3457 the warning section don't get copied to the output. */
3458 s->flags |= SEC_EXCLUDE;
3459 }
3460 }
3461 }
3462 }
3463
3464 add_needed = TRUE;
3465 if (! dynamic)
3466 {
3467 /* If we are creating a shared library, create all the dynamic
3468 sections immediately. We need to attach them to something,
3469 so we attach them to this BFD, provided it is the right
3470 format. FIXME: If there are no input BFD's of the same
3471 format as the output, we can't make a shared library. */
3472 if (info->shared
3473 && is_elf_hash_table (htab)
3474 && info->output_bfd->xvec == abfd->xvec
3475 && !htab->dynamic_sections_created)
3476 {
3477 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3478 goto error_return;
3479 }
3480 }
3481 else if (!is_elf_hash_table (htab))
3482 goto error_return;
3483 else
3484 {
3485 asection *s;
3486 const char *soname = NULL;
3487 char *audit = NULL;
3488 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3489 int ret;
3490
3491 /* ld --just-symbols and dynamic objects don't mix very well.
3492 ld shouldn't allow it. */
3493 if ((s = abfd->sections) != NULL
3494 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3495 abort ();
3496
3497 /* If this dynamic lib was specified on the command line with
3498 --as-needed in effect, then we don't want to add a DT_NEEDED
3499 tag unless the lib is actually used. Similary for libs brought
3500 in by another lib's DT_NEEDED. When --no-add-needed is used
3501 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3502 any dynamic library in DT_NEEDED tags in the dynamic lib at
3503 all. */
3504 add_needed = (elf_dyn_lib_class (abfd)
3505 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3506 | DYN_NO_NEEDED)) == 0;
3507
3508 s = bfd_get_section_by_name (abfd, ".dynamic");
3509 if (s != NULL)
3510 {
3511 bfd_byte *dynbuf;
3512 bfd_byte *extdyn;
3513 unsigned int elfsec;
3514 unsigned long shlink;
3515
3516 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3517 {
3518 error_free_dyn:
3519 free (dynbuf);
3520 goto error_return;
3521 }
3522
3523 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3524 if (elfsec == SHN_BAD)
3525 goto error_free_dyn;
3526 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3527
3528 for (extdyn = dynbuf;
3529 extdyn < dynbuf + s->size;
3530 extdyn += bed->s->sizeof_dyn)
3531 {
3532 Elf_Internal_Dyn dyn;
3533
3534 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3535 if (dyn.d_tag == DT_SONAME)
3536 {
3537 unsigned int tagv = dyn.d_un.d_val;
3538 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3539 if (soname == NULL)
3540 goto error_free_dyn;
3541 }
3542 if (dyn.d_tag == DT_NEEDED)
3543 {
3544 struct bfd_link_needed_list *n, **pn;
3545 char *fnm, *anm;
3546 unsigned int tagv = dyn.d_un.d_val;
3547
3548 amt = sizeof (struct bfd_link_needed_list);
3549 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3550 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3551 if (n == NULL || fnm == NULL)
3552 goto error_free_dyn;
3553 amt = strlen (fnm) + 1;
3554 anm = (char *) bfd_alloc (abfd, amt);
3555 if (anm == NULL)
3556 goto error_free_dyn;
3557 memcpy (anm, fnm, amt);
3558 n->name = anm;
3559 n->by = abfd;
3560 n->next = NULL;
3561 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3562 ;
3563 *pn = n;
3564 }
3565 if (dyn.d_tag == DT_RUNPATH)
3566 {
3567 struct bfd_link_needed_list *n, **pn;
3568 char *fnm, *anm;
3569 unsigned int tagv = dyn.d_un.d_val;
3570
3571 amt = sizeof (struct bfd_link_needed_list);
3572 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3573 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3574 if (n == NULL || fnm == NULL)
3575 goto error_free_dyn;
3576 amt = strlen (fnm) + 1;
3577 anm = (char *) bfd_alloc (abfd, amt);
3578 if (anm == NULL)
3579 goto error_free_dyn;
3580 memcpy (anm, fnm, amt);
3581 n->name = anm;
3582 n->by = abfd;
3583 n->next = NULL;
3584 for (pn = & runpath;
3585 *pn != NULL;
3586 pn = &(*pn)->next)
3587 ;
3588 *pn = n;
3589 }
3590 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3591 if (!runpath && dyn.d_tag == DT_RPATH)
3592 {
3593 struct bfd_link_needed_list *n, **pn;
3594 char *fnm, *anm;
3595 unsigned int tagv = dyn.d_un.d_val;
3596
3597 amt = sizeof (struct bfd_link_needed_list);
3598 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3599 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3600 if (n == NULL || fnm == NULL)
3601 goto error_free_dyn;
3602 amt = strlen (fnm) + 1;
3603 anm = (char *) bfd_alloc (abfd, amt);
3604 if (anm == NULL)
3605 goto error_free_dyn;
3606 memcpy (anm, fnm, amt);
3607 n->name = anm;
3608 n->by = abfd;
3609 n->next = NULL;
3610 for (pn = & rpath;
3611 *pn != NULL;
3612 pn = &(*pn)->next)
3613 ;
3614 *pn = n;
3615 }
3616 if (dyn.d_tag == DT_AUDIT)
3617 {
3618 unsigned int tagv = dyn.d_un.d_val;
3619 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3620 }
3621 }
3622
3623 free (dynbuf);
3624 }
3625
3626 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3627 frees all more recently bfd_alloc'd blocks as well. */
3628 if (runpath)
3629 rpath = runpath;
3630
3631 if (rpath)
3632 {
3633 struct bfd_link_needed_list **pn;
3634 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3635 ;
3636 *pn = rpath;
3637 }
3638
3639 /* We do not want to include any of the sections in a dynamic
3640 object in the output file. We hack by simply clobbering the
3641 list of sections in the BFD. This could be handled more
3642 cleanly by, say, a new section flag; the existing
3643 SEC_NEVER_LOAD flag is not the one we want, because that one
3644 still implies that the section takes up space in the output
3645 file. */
3646 bfd_section_list_clear (abfd);
3647
3648 /* Find the name to use in a DT_NEEDED entry that refers to this
3649 object. If the object has a DT_SONAME entry, we use it.
3650 Otherwise, if the generic linker stuck something in
3651 elf_dt_name, we use that. Otherwise, we just use the file
3652 name. */
3653 if (soname == NULL || *soname == '\0')
3654 {
3655 soname = elf_dt_name (abfd);
3656 if (soname == NULL || *soname == '\0')
3657 soname = bfd_get_filename (abfd);
3658 }
3659
3660 /* Save the SONAME because sometimes the linker emulation code
3661 will need to know it. */
3662 elf_dt_name (abfd) = soname;
3663
3664 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3665 if (ret < 0)
3666 goto error_return;
3667
3668 /* If we have already included this dynamic object in the
3669 link, just ignore it. There is no reason to include a
3670 particular dynamic object more than once. */
3671 if (ret > 0)
3672 return TRUE;
3673
3674 /* Save the DT_AUDIT entry for the linker emulation code. */
3675 elf_dt_audit (abfd) = audit;
3676 }
3677
3678 /* If this is a dynamic object, we always link against the .dynsym
3679 symbol table, not the .symtab symbol table. The dynamic linker
3680 will only see the .dynsym symbol table, so there is no reason to
3681 look at .symtab for a dynamic object. */
3682
3683 if (! dynamic || elf_dynsymtab (abfd) == 0)
3684 hdr = &elf_tdata (abfd)->symtab_hdr;
3685 else
3686 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3687
3688 symcount = hdr->sh_size / bed->s->sizeof_sym;
3689
3690 /* The sh_info field of the symtab header tells us where the
3691 external symbols start. We don't care about the local symbols at
3692 this point. */
3693 if (elf_bad_symtab (abfd))
3694 {
3695 extsymcount = symcount;
3696 extsymoff = 0;
3697 }
3698 else
3699 {
3700 extsymcount = symcount - hdr->sh_info;
3701 extsymoff = hdr->sh_info;
3702 }
3703
3704 sym_hash = NULL;
3705 if (extsymcount != 0)
3706 {
3707 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3708 NULL, NULL, NULL);
3709 if (isymbuf == NULL)
3710 goto error_return;
3711
3712 /* We store a pointer to the hash table entry for each external
3713 symbol. */
3714 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3715 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3716 if (sym_hash == NULL)
3717 goto error_free_sym;
3718 elf_sym_hashes (abfd) = sym_hash;
3719 }
3720
3721 if (dynamic)
3722 {
3723 /* Read in any version definitions. */
3724 if (!_bfd_elf_slurp_version_tables (abfd,
3725 info->default_imported_symver))
3726 goto error_free_sym;
3727
3728 /* Read in the symbol versions, but don't bother to convert them
3729 to internal format. */
3730 if (elf_dynversym (abfd) != 0)
3731 {
3732 Elf_Internal_Shdr *versymhdr;
3733
3734 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3735 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3736 if (extversym == NULL)
3737 goto error_free_sym;
3738 amt = versymhdr->sh_size;
3739 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3740 || bfd_bread (extversym, amt, abfd) != amt)
3741 goto error_free_vers;
3742 }
3743 }
3744
3745 /* If we are loading an as-needed shared lib, save the symbol table
3746 state before we start adding symbols. If the lib turns out
3747 to be unneeded, restore the state. */
3748 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3749 {
3750 unsigned int i;
3751 size_t entsize;
3752
3753 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3754 {
3755 struct bfd_hash_entry *p;
3756 struct elf_link_hash_entry *h;
3757
3758 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3759 {
3760 h = (struct elf_link_hash_entry *) p;
3761 entsize += htab->root.table.entsize;
3762 if (h->root.type == bfd_link_hash_warning)
3763 entsize += htab->root.table.entsize;
3764 }
3765 }
3766
3767 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3768 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3769 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3770 if (old_tab == NULL)
3771 goto error_free_vers;
3772
3773 /* Remember the current objalloc pointer, so that all mem for
3774 symbols added can later be reclaimed. */
3775 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3776 if (alloc_mark == NULL)
3777 goto error_free_vers;
3778
3779 /* Make a special call to the linker "notice" function to
3780 tell it that we are about to handle an as-needed lib. */
3781 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3782 notice_as_needed, 0, NULL))
3783 goto error_free_vers;
3784
3785 /* Clone the symbol table and sym hashes. Remember some
3786 pointers into the symbol table, and dynamic symbol count. */
3787 old_hash = (char *) old_tab + tabsize;
3788 old_ent = (char *) old_hash + hashsize;
3789 memcpy (old_tab, htab->root.table.table, tabsize);
3790 memcpy (old_hash, sym_hash, hashsize);
3791 old_undefs = htab->root.undefs;
3792 old_undefs_tail = htab->root.undefs_tail;
3793 old_table = htab->root.table.table;
3794 old_size = htab->root.table.size;
3795 old_count = htab->root.table.count;
3796 old_dynsymcount = htab->dynsymcount;
3797 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3798
3799 for (i = 0; i < htab->root.table.size; i++)
3800 {
3801 struct bfd_hash_entry *p;
3802 struct elf_link_hash_entry *h;
3803
3804 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3805 {
3806 memcpy (old_ent, p, htab->root.table.entsize);
3807 old_ent = (char *) old_ent + htab->root.table.entsize;
3808 h = (struct elf_link_hash_entry *) p;
3809 if (h->root.type == bfd_link_hash_warning)
3810 {
3811 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3812 old_ent = (char *) old_ent + htab->root.table.entsize;
3813 }
3814 }
3815 }
3816 }
3817
3818 weaks = NULL;
3819 ever = extversym != NULL ? extversym + extsymoff : NULL;
3820 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3821 isym < isymend;
3822 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3823 {
3824 int bind;
3825 bfd_vma value;
3826 asection *sec, *new_sec;
3827 flagword flags;
3828 const char *name;
3829 struct elf_link_hash_entry *h;
3830 struct elf_link_hash_entry *hi;
3831 bfd_boolean definition;
3832 bfd_boolean size_change_ok;
3833 bfd_boolean type_change_ok;
3834 bfd_boolean new_weakdef;
3835 bfd_boolean new_weak;
3836 bfd_boolean old_weak;
3837 bfd_boolean override;
3838 bfd_boolean common;
3839 unsigned int old_alignment;
3840 bfd *old_bfd;
3841
3842 override = FALSE;
3843
3844 flags = BSF_NO_FLAGS;
3845 sec = NULL;
3846 value = isym->st_value;
3847 *sym_hash = NULL;
3848 common = bed->common_definition (isym);
3849
3850 bind = ELF_ST_BIND (isym->st_info);
3851 switch (bind)
3852 {
3853 case STB_LOCAL:
3854 /* This should be impossible, since ELF requires that all
3855 global symbols follow all local symbols, and that sh_info
3856 point to the first global symbol. Unfortunately, Irix 5
3857 screws this up. */
3858 continue;
3859
3860 case STB_GLOBAL:
3861 if (isym->st_shndx != SHN_UNDEF && !common)
3862 flags = BSF_GLOBAL;
3863 break;
3864
3865 case STB_WEAK:
3866 flags = BSF_WEAK;
3867 break;
3868
3869 case STB_GNU_UNIQUE:
3870 flags = BSF_GNU_UNIQUE;
3871 break;
3872
3873 default:
3874 /* Leave it up to the processor backend. */
3875 break;
3876 }
3877
3878 if (isym->st_shndx == SHN_UNDEF)
3879 sec = bfd_und_section_ptr;
3880 else if (isym->st_shndx == SHN_ABS)
3881 sec = bfd_abs_section_ptr;
3882 else if (isym->st_shndx == SHN_COMMON)
3883 {
3884 sec = bfd_com_section_ptr;
3885 /* What ELF calls the size we call the value. What ELF
3886 calls the value we call the alignment. */
3887 value = isym->st_size;
3888 }
3889 else
3890 {
3891 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3892 if (sec == NULL)
3893 sec = bfd_abs_section_ptr;
3894 else if (discarded_section (sec))
3895 {
3896 /* Symbols from discarded section are undefined. We keep
3897 its visibility. */
3898 sec = bfd_und_section_ptr;
3899 isym->st_shndx = SHN_UNDEF;
3900 }
3901 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3902 value -= sec->vma;
3903 }
3904
3905 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3906 isym->st_name);
3907 if (name == NULL)
3908 goto error_free_vers;
3909
3910 if (isym->st_shndx == SHN_COMMON
3911 && (abfd->flags & BFD_PLUGIN) != 0)
3912 {
3913 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3914
3915 if (xc == NULL)
3916 {
3917 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3918 | SEC_EXCLUDE);
3919 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3920 if (xc == NULL)
3921 goto error_free_vers;
3922 }
3923 sec = xc;
3924 }
3925 else if (isym->st_shndx == SHN_COMMON
3926 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3927 && !info->relocatable)
3928 {
3929 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3930
3931 if (tcomm == NULL)
3932 {
3933 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3934 | SEC_LINKER_CREATED);
3935 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3936 if (tcomm == NULL)
3937 goto error_free_vers;
3938 }
3939 sec = tcomm;
3940 }
3941 else if (bed->elf_add_symbol_hook)
3942 {
3943 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3944 &sec, &value))
3945 goto error_free_vers;
3946
3947 /* The hook function sets the name to NULL if this symbol
3948 should be skipped for some reason. */
3949 if (name == NULL)
3950 continue;
3951 }
3952
3953 /* Sanity check that all possibilities were handled. */
3954 if (sec == NULL)
3955 {
3956 bfd_set_error (bfd_error_bad_value);
3957 goto error_free_vers;
3958 }
3959
3960 /* Silently discard TLS symbols from --just-syms. There's
3961 no way to combine a static TLS block with a new TLS block
3962 for this executable. */
3963 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3964 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3965 continue;
3966
3967 if (bfd_is_und_section (sec)
3968 || bfd_is_com_section (sec))
3969 definition = FALSE;
3970 else
3971 definition = TRUE;
3972
3973 size_change_ok = FALSE;
3974 type_change_ok = bed->type_change_ok;
3975 old_weak = FALSE;
3976 old_alignment = 0;
3977 old_bfd = NULL;
3978 new_sec = sec;
3979
3980 if (is_elf_hash_table (htab))
3981 {
3982 Elf_Internal_Versym iver;
3983 unsigned int vernum = 0;
3984 bfd_boolean skip;
3985
3986 if (ever == NULL)
3987 {
3988 if (info->default_imported_symver)
3989 /* Use the default symbol version created earlier. */
3990 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3991 else
3992 iver.vs_vers = 0;
3993 }
3994 else
3995 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3996
3997 vernum = iver.vs_vers & VERSYM_VERSION;
3998
3999 /* If this is a hidden symbol, or if it is not version
4000 1, we append the version name to the symbol name.
4001 However, we do not modify a non-hidden absolute symbol
4002 if it is not a function, because it might be the version
4003 symbol itself. FIXME: What if it isn't? */
4004 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4005 || (vernum > 1
4006 && (!bfd_is_abs_section (sec)
4007 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4008 {
4009 const char *verstr;
4010 size_t namelen, verlen, newlen;
4011 char *newname, *p;
4012
4013 if (isym->st_shndx != SHN_UNDEF)
4014 {
4015 if (vernum > elf_tdata (abfd)->cverdefs)
4016 verstr = NULL;
4017 else if (vernum > 1)
4018 verstr =
4019 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4020 else
4021 verstr = "";
4022
4023 if (verstr == NULL)
4024 {
4025 (*_bfd_error_handler)
4026 (_("%B: %s: invalid version %u (max %d)"),
4027 abfd, name, vernum,
4028 elf_tdata (abfd)->cverdefs);
4029 bfd_set_error (bfd_error_bad_value);
4030 goto error_free_vers;
4031 }
4032 }
4033 else
4034 {
4035 /* We cannot simply test for the number of
4036 entries in the VERNEED section since the
4037 numbers for the needed versions do not start
4038 at 0. */
4039 Elf_Internal_Verneed *t;
4040
4041 verstr = NULL;
4042 for (t = elf_tdata (abfd)->verref;
4043 t != NULL;
4044 t = t->vn_nextref)
4045 {
4046 Elf_Internal_Vernaux *a;
4047
4048 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4049 {
4050 if (a->vna_other == vernum)
4051 {
4052 verstr = a->vna_nodename;
4053 break;
4054 }
4055 }
4056 if (a != NULL)
4057 break;
4058 }
4059 if (verstr == NULL)
4060 {
4061 (*_bfd_error_handler)
4062 (_("%B: %s: invalid needed version %d"),
4063 abfd, name, vernum);
4064 bfd_set_error (bfd_error_bad_value);
4065 goto error_free_vers;
4066 }
4067 }
4068
4069 namelen = strlen (name);
4070 verlen = strlen (verstr);
4071 newlen = namelen + verlen + 2;
4072 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4073 && isym->st_shndx != SHN_UNDEF)
4074 ++newlen;
4075
4076 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4077 if (newname == NULL)
4078 goto error_free_vers;
4079 memcpy (newname, name, namelen);
4080 p = newname + namelen;
4081 *p++ = ELF_VER_CHR;
4082 /* If this is a defined non-hidden version symbol,
4083 we add another @ to the name. This indicates the
4084 default version of the symbol. */
4085 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4086 && isym->st_shndx != SHN_UNDEF)
4087 *p++ = ELF_VER_CHR;
4088 memcpy (p, verstr, verlen + 1);
4089
4090 name = newname;
4091 }
4092
4093 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4094 sym_hash, &old_bfd, &old_weak,
4095 &old_alignment, &skip, &override,
4096 &type_change_ok, &size_change_ok))
4097 goto error_free_vers;
4098
4099 if (skip)
4100 continue;
4101
4102 if (override)
4103 definition = FALSE;
4104
4105 h = *sym_hash;
4106 while (h->root.type == bfd_link_hash_indirect
4107 || h->root.type == bfd_link_hash_warning)
4108 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4109
4110 if (elf_tdata (abfd)->verdef != NULL
4111 && vernum > 1
4112 && definition)
4113 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4114 }
4115
4116 if (! (_bfd_generic_link_add_one_symbol
4117 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4118 (struct bfd_link_hash_entry **) sym_hash)))
4119 goto error_free_vers;
4120
4121 h = *sym_hash;
4122 /* We need to make sure that indirect symbol dynamic flags are
4123 updated. */
4124 hi = h;
4125 while (h->root.type == bfd_link_hash_indirect
4126 || h->root.type == bfd_link_hash_warning)
4127 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4128
4129 *sym_hash = h;
4130
4131 new_weak = (flags & BSF_WEAK) != 0;
4132 new_weakdef = FALSE;
4133 if (dynamic
4134 && definition
4135 && new_weak
4136 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4137 && is_elf_hash_table (htab)
4138 && h->u.weakdef == NULL)
4139 {
4140 /* Keep a list of all weak defined non function symbols from
4141 a dynamic object, using the weakdef field. Later in this
4142 function we will set the weakdef field to the correct
4143 value. We only put non-function symbols from dynamic
4144 objects on this list, because that happens to be the only
4145 time we need to know the normal symbol corresponding to a
4146 weak symbol, and the information is time consuming to
4147 figure out. If the weakdef field is not already NULL,
4148 then this symbol was already defined by some previous
4149 dynamic object, and we will be using that previous
4150 definition anyhow. */
4151
4152 h->u.weakdef = weaks;
4153 weaks = h;
4154 new_weakdef = TRUE;
4155 }
4156
4157 /* Set the alignment of a common symbol. */
4158 if ((common || bfd_is_com_section (sec))
4159 && h->root.type == bfd_link_hash_common)
4160 {
4161 unsigned int align;
4162
4163 if (common)
4164 align = bfd_log2 (isym->st_value);
4165 else
4166 {
4167 /* The new symbol is a common symbol in a shared object.
4168 We need to get the alignment from the section. */
4169 align = new_sec->alignment_power;
4170 }
4171 if (align > old_alignment)
4172 h->root.u.c.p->alignment_power = align;
4173 else
4174 h->root.u.c.p->alignment_power = old_alignment;
4175 }
4176
4177 if (is_elf_hash_table (htab))
4178 {
4179 /* Set a flag in the hash table entry indicating the type of
4180 reference or definition we just found. A dynamic symbol
4181 is one which is referenced or defined by both a regular
4182 object and a shared object. */
4183 bfd_boolean dynsym = FALSE;
4184
4185 /* Plugin symbols aren't normal. Don't set def_regular or
4186 ref_regular for them, or make them dynamic. */
4187 if ((abfd->flags & BFD_PLUGIN) != 0)
4188 ;
4189 else if (! dynamic)
4190 {
4191 if (! definition)
4192 {
4193 h->ref_regular = 1;
4194 if (bind != STB_WEAK)
4195 h->ref_regular_nonweak = 1;
4196 }
4197 else
4198 {
4199 h->def_regular = 1;
4200 if (h->def_dynamic)
4201 {
4202 h->def_dynamic = 0;
4203 h->ref_dynamic = 1;
4204 }
4205 }
4206
4207 /* If the indirect symbol has been forced local, don't
4208 make the real symbol dynamic. */
4209 if ((h == hi || !hi->forced_local)
4210 && (! info->executable
4211 || h->def_dynamic
4212 || h->ref_dynamic))
4213 dynsym = TRUE;
4214 }
4215 else
4216 {
4217 if (! definition)
4218 {
4219 h->ref_dynamic = 1;
4220 hi->ref_dynamic = 1;
4221 }
4222 else
4223 {
4224 h->def_dynamic = 1;
4225 hi->def_dynamic = 1;
4226 }
4227
4228 /* If the indirect symbol has been forced local, don't
4229 make the real symbol dynamic. */
4230 if ((h == hi || !hi->forced_local)
4231 && (h->def_regular
4232 || h->ref_regular
4233 || (h->u.weakdef != NULL
4234 && ! new_weakdef
4235 && h->u.weakdef->dynindx != -1)))
4236 dynsym = TRUE;
4237 }
4238
4239 /* Check to see if we need to add an indirect symbol for
4240 the default name. */
4241 if (definition
4242 || (!override && h->root.type == bfd_link_hash_common))
4243 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4244 sec, value, &old_bfd, &dynsym))
4245 goto error_free_vers;
4246
4247 /* Check the alignment when a common symbol is involved. This
4248 can change when a common symbol is overridden by a normal
4249 definition or a common symbol is ignored due to the old
4250 normal definition. We need to make sure the maximum
4251 alignment is maintained. */
4252 if ((old_alignment || common)
4253 && h->root.type != bfd_link_hash_common)
4254 {
4255 unsigned int common_align;
4256 unsigned int normal_align;
4257 unsigned int symbol_align;
4258 bfd *normal_bfd;
4259 bfd *common_bfd;
4260
4261 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4262 || h->root.type == bfd_link_hash_defweak);
4263
4264 symbol_align = ffs (h->root.u.def.value) - 1;
4265 if (h->root.u.def.section->owner != NULL
4266 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4267 {
4268 normal_align = h->root.u.def.section->alignment_power;
4269 if (normal_align > symbol_align)
4270 normal_align = symbol_align;
4271 }
4272 else
4273 normal_align = symbol_align;
4274
4275 if (old_alignment)
4276 {
4277 common_align = old_alignment;
4278 common_bfd = old_bfd;
4279 normal_bfd = abfd;
4280 }
4281 else
4282 {
4283 common_align = bfd_log2 (isym->st_value);
4284 common_bfd = abfd;
4285 normal_bfd = old_bfd;
4286 }
4287
4288 if (normal_align < common_align)
4289 {
4290 /* PR binutils/2735 */
4291 if (normal_bfd == NULL)
4292 (*_bfd_error_handler)
4293 (_("Warning: alignment %u of common symbol `%s' in %B is"
4294 " greater than the alignment (%u) of its section %A"),
4295 common_bfd, h->root.u.def.section,
4296 1 << common_align, name, 1 << normal_align);
4297 else
4298 (*_bfd_error_handler)
4299 (_("Warning: alignment %u of symbol `%s' in %B"
4300 " is smaller than %u in %B"),
4301 normal_bfd, common_bfd,
4302 1 << normal_align, name, 1 << common_align);
4303 }
4304 }
4305
4306 /* Remember the symbol size if it isn't undefined. */
4307 if (isym->st_size != 0
4308 && isym->st_shndx != SHN_UNDEF
4309 && (definition || h->size == 0))
4310 {
4311 if (h->size != 0
4312 && h->size != isym->st_size
4313 && ! size_change_ok)
4314 (*_bfd_error_handler)
4315 (_("Warning: size of symbol `%s' changed"
4316 " from %lu in %B to %lu in %B"),
4317 old_bfd, abfd,
4318 name, (unsigned long) h->size,
4319 (unsigned long) isym->st_size);
4320
4321 h->size = isym->st_size;
4322 }
4323
4324 /* If this is a common symbol, then we always want H->SIZE
4325 to be the size of the common symbol. The code just above
4326 won't fix the size if a common symbol becomes larger. We
4327 don't warn about a size change here, because that is
4328 covered by --warn-common. Allow changes between different
4329 function types. */
4330 if (h->root.type == bfd_link_hash_common)
4331 h->size = h->root.u.c.size;
4332
4333 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4334 && ((definition && !new_weak)
4335 || (old_weak && h->root.type == bfd_link_hash_common)
4336 || h->type == STT_NOTYPE))
4337 {
4338 unsigned int type = ELF_ST_TYPE (isym->st_info);
4339
4340 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4341 symbol. */
4342 if (type == STT_GNU_IFUNC
4343 && (abfd->flags & DYNAMIC) != 0)
4344 type = STT_FUNC;
4345
4346 if (h->type != type)
4347 {
4348 if (h->type != STT_NOTYPE && ! type_change_ok)
4349 (*_bfd_error_handler)
4350 (_("Warning: type of symbol `%s' changed"
4351 " from %d to %d in %B"),
4352 abfd, name, h->type, type);
4353
4354 h->type = type;
4355 }
4356 }
4357
4358 /* Merge st_other field. */
4359 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4360
4361 /* We don't want to make debug symbol dynamic. */
4362 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4363 dynsym = FALSE;
4364
4365 /* Nor should we make plugin symbols dynamic. */
4366 if ((abfd->flags & BFD_PLUGIN) != 0)
4367 dynsym = FALSE;
4368
4369 if (definition)
4370 {
4371 h->target_internal = isym->st_target_internal;
4372 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4373 }
4374
4375 if (definition && !dynamic)
4376 {
4377 char *p = strchr (name, ELF_VER_CHR);
4378 if (p != NULL && p[1] != ELF_VER_CHR)
4379 {
4380 /* Queue non-default versions so that .symver x, x@FOO
4381 aliases can be checked. */
4382 if (!nondeflt_vers)
4383 {
4384 amt = ((isymend - isym + 1)
4385 * sizeof (struct elf_link_hash_entry *));
4386 nondeflt_vers =
4387 (struct elf_link_hash_entry **) bfd_malloc (amt);
4388 if (!nondeflt_vers)
4389 goto error_free_vers;
4390 }
4391 nondeflt_vers[nondeflt_vers_cnt++] = h;
4392 }
4393 }
4394
4395 if (dynsym && h->dynindx == -1)
4396 {
4397 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4398 goto error_free_vers;
4399 if (h->u.weakdef != NULL
4400 && ! new_weakdef
4401 && h->u.weakdef->dynindx == -1)
4402 {
4403 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4404 goto error_free_vers;
4405 }
4406 }
4407 else if (dynsym && h->dynindx != -1)
4408 /* If the symbol already has a dynamic index, but
4409 visibility says it should not be visible, turn it into
4410 a local symbol. */
4411 switch (ELF_ST_VISIBILITY (h->other))
4412 {
4413 case STV_INTERNAL:
4414 case STV_HIDDEN:
4415 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4416 dynsym = FALSE;
4417 break;
4418 }
4419
4420 /* Don't add DT_NEEDED for references from the dummy bfd. */
4421 if (!add_needed
4422 && definition
4423 && ((dynsym
4424 && h->ref_regular_nonweak
4425 && (old_bfd == NULL
4426 || (old_bfd->flags & BFD_PLUGIN) == 0))
4427 || (h->ref_dynamic_nonweak
4428 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4429 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4430 {
4431 int ret;
4432 const char *soname = elf_dt_name (abfd);
4433
4434 /* A symbol from a library loaded via DT_NEEDED of some
4435 other library is referenced by a regular object.
4436 Add a DT_NEEDED entry for it. Issue an error if
4437 --no-add-needed is used and the reference was not
4438 a weak one. */
4439 if (old_bfd != NULL
4440 && h->ref_regular_nonweak
4441 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4442 {
4443 (*_bfd_error_handler)
4444 (_("%B: undefined reference to symbol '%s'"),
4445 old_bfd, name);
4446 (*_bfd_error_handler)
4447 (_("note: '%s' is defined in DSO %B"
4448 " so try adding it to the linker command line"),
4449 abfd, name);
4450 bfd_set_error (bfd_error_invalid_operation);
4451 goto error_free_vers;
4452 }
4453
4454 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4455 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4456
4457 add_needed = TRUE;
4458 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4459 if (ret < 0)
4460 goto error_free_vers;
4461
4462 BFD_ASSERT (ret == 0);
4463 }
4464 }
4465 }
4466
4467 if (extversym != NULL)
4468 {
4469 free (extversym);
4470 extversym = NULL;
4471 }
4472
4473 if (isymbuf != NULL)
4474 {
4475 free (isymbuf);
4476 isymbuf = NULL;
4477 }
4478
4479 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4480 {
4481 unsigned int i;
4482
4483 /* Restore the symbol table. */
4484 if (bed->as_needed_cleanup)
4485 (*bed->as_needed_cleanup) (abfd, info);
4486 old_hash = (char *) old_tab + tabsize;
4487 old_ent = (char *) old_hash + hashsize;
4488 sym_hash = elf_sym_hashes (abfd);
4489 htab->root.table.table = old_table;
4490 htab->root.table.size = old_size;
4491 htab->root.table.count = old_count;
4492 memcpy (htab->root.table.table, old_tab, tabsize);
4493 memcpy (sym_hash, old_hash, hashsize);
4494 htab->root.undefs = old_undefs;
4495 htab->root.undefs_tail = old_undefs_tail;
4496 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4497 for (i = 0; i < htab->root.table.size; i++)
4498 {
4499 struct bfd_hash_entry *p;
4500 struct elf_link_hash_entry *h;
4501 bfd_size_type size;
4502 unsigned int alignment_power;
4503
4504 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4505 {
4506 h = (struct elf_link_hash_entry *) p;
4507 if (h->root.type == bfd_link_hash_warning)
4508 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4509 if (h->dynindx >= old_dynsymcount
4510 && h->dynstr_index < old_dynstr_size)
4511 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4512
4513 /* Preserve the maximum alignment and size for common
4514 symbols even if this dynamic lib isn't on DT_NEEDED
4515 since it can still be loaded at run time by another
4516 dynamic lib. */
4517 if (h->root.type == bfd_link_hash_common)
4518 {
4519 size = h->root.u.c.size;
4520 alignment_power = h->root.u.c.p->alignment_power;
4521 }
4522 else
4523 {
4524 size = 0;
4525 alignment_power = 0;
4526 }
4527 memcpy (p, old_ent, htab->root.table.entsize);
4528 old_ent = (char *) old_ent + htab->root.table.entsize;
4529 h = (struct elf_link_hash_entry *) p;
4530 if (h->root.type == bfd_link_hash_warning)
4531 {
4532 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4533 old_ent = (char *) old_ent + htab->root.table.entsize;
4534 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4535 }
4536 if (h->root.type == bfd_link_hash_common)
4537 {
4538 if (size > h->root.u.c.size)
4539 h->root.u.c.size = size;
4540 if (alignment_power > h->root.u.c.p->alignment_power)
4541 h->root.u.c.p->alignment_power = alignment_power;
4542 }
4543 }
4544 }
4545
4546 /* Make a special call to the linker "notice" function to
4547 tell it that symbols added for crefs may need to be removed. */
4548 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4549 notice_not_needed, 0, NULL))
4550 goto error_free_vers;
4551
4552 free (old_tab);
4553 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4554 alloc_mark);
4555 if (nondeflt_vers != NULL)
4556 free (nondeflt_vers);
4557 return TRUE;
4558 }
4559
4560 if (old_tab != NULL)
4561 {
4562 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4563 notice_needed, 0, NULL))
4564 goto error_free_vers;
4565 free (old_tab);
4566 old_tab = NULL;
4567 }
4568
4569 /* Now that all the symbols from this input file are created, handle
4570 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4571 if (nondeflt_vers != NULL)
4572 {
4573 bfd_size_type cnt, symidx;
4574
4575 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4576 {
4577 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4578 char *shortname, *p;
4579
4580 p = strchr (h->root.root.string, ELF_VER_CHR);
4581 if (p == NULL
4582 || (h->root.type != bfd_link_hash_defined
4583 && h->root.type != bfd_link_hash_defweak))
4584 continue;
4585
4586 amt = p - h->root.root.string;
4587 shortname = (char *) bfd_malloc (amt + 1);
4588 if (!shortname)
4589 goto error_free_vers;
4590 memcpy (shortname, h->root.root.string, amt);
4591 shortname[amt] = '\0';
4592
4593 hi = (struct elf_link_hash_entry *)
4594 bfd_link_hash_lookup (&htab->root, shortname,
4595 FALSE, FALSE, FALSE);
4596 if (hi != NULL
4597 && hi->root.type == h->root.type
4598 && hi->root.u.def.value == h->root.u.def.value
4599 && hi->root.u.def.section == h->root.u.def.section)
4600 {
4601 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4602 hi->root.type = bfd_link_hash_indirect;
4603 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4604 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4605 sym_hash = elf_sym_hashes (abfd);
4606 if (sym_hash)
4607 for (symidx = 0; symidx < extsymcount; ++symidx)
4608 if (sym_hash[symidx] == hi)
4609 {
4610 sym_hash[symidx] = h;
4611 break;
4612 }
4613 }
4614 free (shortname);
4615 }
4616 free (nondeflt_vers);
4617 nondeflt_vers = NULL;
4618 }
4619
4620 /* Now set the weakdefs field correctly for all the weak defined
4621 symbols we found. The only way to do this is to search all the
4622 symbols. Since we only need the information for non functions in
4623 dynamic objects, that's the only time we actually put anything on
4624 the list WEAKS. We need this information so that if a regular
4625 object refers to a symbol defined weakly in a dynamic object, the
4626 real symbol in the dynamic object is also put in the dynamic
4627 symbols; we also must arrange for both symbols to point to the
4628 same memory location. We could handle the general case of symbol
4629 aliasing, but a general symbol alias can only be generated in
4630 assembler code, handling it correctly would be very time
4631 consuming, and other ELF linkers don't handle general aliasing
4632 either. */
4633 if (weaks != NULL)
4634 {
4635 struct elf_link_hash_entry **hpp;
4636 struct elf_link_hash_entry **hppend;
4637 struct elf_link_hash_entry **sorted_sym_hash;
4638 struct elf_link_hash_entry *h;
4639 size_t sym_count;
4640
4641 /* Since we have to search the whole symbol list for each weak
4642 defined symbol, search time for N weak defined symbols will be
4643 O(N^2). Binary search will cut it down to O(NlogN). */
4644 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4645 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4646 if (sorted_sym_hash == NULL)
4647 goto error_return;
4648 sym_hash = sorted_sym_hash;
4649 hpp = elf_sym_hashes (abfd);
4650 hppend = hpp + extsymcount;
4651 sym_count = 0;
4652 for (; hpp < hppend; hpp++)
4653 {
4654 h = *hpp;
4655 if (h != NULL
4656 && h->root.type == bfd_link_hash_defined
4657 && !bed->is_function_type (h->type))
4658 {
4659 *sym_hash = h;
4660 sym_hash++;
4661 sym_count++;
4662 }
4663 }
4664
4665 qsort (sorted_sym_hash, sym_count,
4666 sizeof (struct elf_link_hash_entry *),
4667 elf_sort_symbol);
4668
4669 while (weaks != NULL)
4670 {
4671 struct elf_link_hash_entry *hlook;
4672 asection *slook;
4673 bfd_vma vlook;
4674 size_t i, j, idx;
4675
4676 hlook = weaks;
4677 weaks = hlook->u.weakdef;
4678 hlook->u.weakdef = NULL;
4679
4680 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4681 || hlook->root.type == bfd_link_hash_defweak
4682 || hlook->root.type == bfd_link_hash_common
4683 || hlook->root.type == bfd_link_hash_indirect);
4684 slook = hlook->root.u.def.section;
4685 vlook = hlook->root.u.def.value;
4686
4687 i = 0;
4688 j = sym_count;
4689 while (i != j)
4690 {
4691 bfd_signed_vma vdiff;
4692 idx = (i + j) / 2;
4693 h = sorted_sym_hash[idx];
4694 vdiff = vlook - h->root.u.def.value;
4695 if (vdiff < 0)
4696 j = idx;
4697 else if (vdiff > 0)
4698 i = idx + 1;
4699 else
4700 {
4701 long sdiff = slook->id - h->root.u.def.section->id;
4702 if (sdiff < 0)
4703 j = idx;
4704 else if (sdiff > 0)
4705 i = idx + 1;
4706 else
4707 break;
4708 }
4709 }
4710
4711 /* We didn't find a value/section match. */
4712 if (i == j)
4713 continue;
4714
4715 /* With multiple aliases, or when the weak symbol is already
4716 strongly defined, we have multiple matching symbols and
4717 the binary search above may land on any of them. Step
4718 one past the matching symbol(s). */
4719 while (++idx != j)
4720 {
4721 h = sorted_sym_hash[idx];
4722 if (h->root.u.def.section != slook
4723 || h->root.u.def.value != vlook)
4724 break;
4725 }
4726
4727 /* Now look back over the aliases. Since we sorted by size
4728 as well as value and section, we'll choose the one with
4729 the largest size. */
4730 while (idx-- != i)
4731 {
4732 h = sorted_sym_hash[idx];
4733
4734 /* Stop if value or section doesn't match. */
4735 if (h->root.u.def.section != slook
4736 || h->root.u.def.value != vlook)
4737 break;
4738 else if (h != hlook)
4739 {
4740 hlook->u.weakdef = h;
4741
4742 /* If the weak definition is in the list of dynamic
4743 symbols, make sure the real definition is put
4744 there as well. */
4745 if (hlook->dynindx != -1 && h->dynindx == -1)
4746 {
4747 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4748 {
4749 err_free_sym_hash:
4750 free (sorted_sym_hash);
4751 goto error_return;
4752 }
4753 }
4754
4755 /* If the real definition is in the list of dynamic
4756 symbols, make sure the weak definition is put
4757 there as well. If we don't do this, then the
4758 dynamic loader might not merge the entries for the
4759 real definition and the weak definition. */
4760 if (h->dynindx != -1 && hlook->dynindx == -1)
4761 {
4762 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4763 goto err_free_sym_hash;
4764 }
4765 break;
4766 }
4767 }
4768 }
4769
4770 free (sorted_sym_hash);
4771 }
4772
4773 if (bed->check_directives
4774 && !(*bed->check_directives) (abfd, info))
4775 return FALSE;
4776
4777 /* If this object is the same format as the output object, and it is
4778 not a shared library, then let the backend look through the
4779 relocs.
4780
4781 This is required to build global offset table entries and to
4782 arrange for dynamic relocs. It is not required for the
4783 particular common case of linking non PIC code, even when linking
4784 against shared libraries, but unfortunately there is no way of
4785 knowing whether an object file has been compiled PIC or not.
4786 Looking through the relocs is not particularly time consuming.
4787 The problem is that we must either (1) keep the relocs in memory,
4788 which causes the linker to require additional runtime memory or
4789 (2) read the relocs twice from the input file, which wastes time.
4790 This would be a good case for using mmap.
4791
4792 I have no idea how to handle linking PIC code into a file of a
4793 different format. It probably can't be done. */
4794 if (! dynamic
4795 && is_elf_hash_table (htab)
4796 && bed->check_relocs != NULL
4797 && elf_object_id (abfd) == elf_hash_table_id (htab)
4798 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4799 {
4800 asection *o;
4801
4802 for (o = abfd->sections; o != NULL; o = o->next)
4803 {
4804 Elf_Internal_Rela *internal_relocs;
4805 bfd_boolean ok;
4806
4807 if ((o->flags & SEC_RELOC) == 0
4808 || o->reloc_count == 0
4809 || ((info->strip == strip_all || info->strip == strip_debugger)
4810 && (o->flags & SEC_DEBUGGING) != 0)
4811 || bfd_is_abs_section (o->output_section))
4812 continue;
4813
4814 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4815 info->keep_memory);
4816 if (internal_relocs == NULL)
4817 goto error_return;
4818
4819 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4820
4821 if (elf_section_data (o)->relocs != internal_relocs)
4822 free (internal_relocs);
4823
4824 if (! ok)
4825 goto error_return;
4826 }
4827 }
4828
4829 /* If this is a non-traditional link, try to optimize the handling
4830 of the .stab/.stabstr sections. */
4831 if (! dynamic
4832 && ! info->traditional_format
4833 && is_elf_hash_table (htab)
4834 && (info->strip != strip_all && info->strip != strip_debugger))
4835 {
4836 asection *stabstr;
4837
4838 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4839 if (stabstr != NULL)
4840 {
4841 bfd_size_type string_offset = 0;
4842 asection *stab;
4843
4844 for (stab = abfd->sections; stab; stab = stab->next)
4845 if (CONST_STRNEQ (stab->name, ".stab")
4846 && (!stab->name[5] ||
4847 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4848 && (stab->flags & SEC_MERGE) == 0
4849 && !bfd_is_abs_section (stab->output_section))
4850 {
4851 struct bfd_elf_section_data *secdata;
4852
4853 secdata = elf_section_data (stab);
4854 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4855 stabstr, &secdata->sec_info,
4856 &string_offset))
4857 goto error_return;
4858 if (secdata->sec_info)
4859 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4860 }
4861 }
4862 }
4863
4864 if (is_elf_hash_table (htab) && add_needed)
4865 {
4866 /* Add this bfd to the loaded list. */
4867 struct elf_link_loaded_list *n;
4868
4869 n = (struct elf_link_loaded_list *)
4870 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4871 if (n == NULL)
4872 goto error_return;
4873 n->abfd = abfd;
4874 n->next = htab->loaded;
4875 htab->loaded = n;
4876 }
4877
4878 return TRUE;
4879
4880 error_free_vers:
4881 if (old_tab != NULL)
4882 free (old_tab);
4883 if (nondeflt_vers != NULL)
4884 free (nondeflt_vers);
4885 if (extversym != NULL)
4886 free (extversym);
4887 error_free_sym:
4888 if (isymbuf != NULL)
4889 free (isymbuf);
4890 error_return:
4891 return FALSE;
4892 }
4893
4894 /* Return the linker hash table entry of a symbol that might be
4895 satisfied by an archive symbol. Return -1 on error. */
4896
4897 struct elf_link_hash_entry *
4898 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4899 struct bfd_link_info *info,
4900 const char *name)
4901 {
4902 struct elf_link_hash_entry *h;
4903 char *p, *copy;
4904 size_t len, first;
4905
4906 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4907 if (h != NULL)
4908 return h;
4909
4910 /* If this is a default version (the name contains @@), look up the
4911 symbol again with only one `@' as well as without the version.
4912 The effect is that references to the symbol with and without the
4913 version will be matched by the default symbol in the archive. */
4914
4915 p = strchr (name, ELF_VER_CHR);
4916 if (p == NULL || p[1] != ELF_VER_CHR)
4917 return h;
4918
4919 /* First check with only one `@'. */
4920 len = strlen (name);
4921 copy = (char *) bfd_alloc (abfd, len);
4922 if (copy == NULL)
4923 return (struct elf_link_hash_entry *) 0 - 1;
4924
4925 first = p - name + 1;
4926 memcpy (copy, name, first);
4927 memcpy (copy + first, name + first + 1, len - first);
4928
4929 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4930 if (h == NULL)
4931 {
4932 /* We also need to check references to the symbol without the
4933 version. */
4934 copy[first - 1] = '\0';
4935 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4936 FALSE, FALSE, TRUE);
4937 }
4938
4939 bfd_release (abfd, copy);
4940 return h;
4941 }
4942
4943 /* Add symbols from an ELF archive file to the linker hash table. We
4944 don't use _bfd_generic_link_add_archive_symbols because of a
4945 problem which arises on UnixWare. The UnixWare libc.so is an
4946 archive which includes an entry libc.so.1 which defines a bunch of
4947 symbols. The libc.so archive also includes a number of other
4948 object files, which also define symbols, some of which are the same
4949 as those defined in libc.so.1. Correct linking requires that we
4950 consider each object file in turn, and include it if it defines any
4951 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4952 this; it looks through the list of undefined symbols, and includes
4953 any object file which defines them. When this algorithm is used on
4954 UnixWare, it winds up pulling in libc.so.1 early and defining a
4955 bunch of symbols. This means that some of the other objects in the
4956 archive are not included in the link, which is incorrect since they
4957 precede libc.so.1 in the archive.
4958
4959 Fortunately, ELF archive handling is simpler than that done by
4960 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4961 oddities. In ELF, if we find a symbol in the archive map, and the
4962 symbol is currently undefined, we know that we must pull in that
4963 object file.
4964
4965 Unfortunately, we do have to make multiple passes over the symbol
4966 table until nothing further is resolved. */
4967
4968 static bfd_boolean
4969 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4970 {
4971 symindex c;
4972 bfd_boolean *defined = NULL;
4973 bfd_boolean *included = NULL;
4974 carsym *symdefs;
4975 bfd_boolean loop;
4976 bfd_size_type amt;
4977 const struct elf_backend_data *bed;
4978 struct elf_link_hash_entry * (*archive_symbol_lookup)
4979 (bfd *, struct bfd_link_info *, const char *);
4980
4981 if (! bfd_has_map (abfd))
4982 {
4983 /* An empty archive is a special case. */
4984 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4985 return TRUE;
4986 bfd_set_error (bfd_error_no_armap);
4987 return FALSE;
4988 }
4989
4990 /* Keep track of all symbols we know to be already defined, and all
4991 files we know to be already included. This is to speed up the
4992 second and subsequent passes. */
4993 c = bfd_ardata (abfd)->symdef_count;
4994 if (c == 0)
4995 return TRUE;
4996 amt = c;
4997 amt *= sizeof (bfd_boolean);
4998 defined = (bfd_boolean *) bfd_zmalloc (amt);
4999 included = (bfd_boolean *) bfd_zmalloc (amt);
5000 if (defined == NULL || included == NULL)
5001 goto error_return;
5002
5003 symdefs = bfd_ardata (abfd)->symdefs;
5004 bed = get_elf_backend_data (abfd);
5005 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5006
5007 do
5008 {
5009 file_ptr last;
5010 symindex i;
5011 carsym *symdef;
5012 carsym *symdefend;
5013
5014 loop = FALSE;
5015 last = -1;
5016
5017 symdef = symdefs;
5018 symdefend = symdef + c;
5019 for (i = 0; symdef < symdefend; symdef++, i++)
5020 {
5021 struct elf_link_hash_entry *h;
5022 bfd *element;
5023 struct bfd_link_hash_entry *undefs_tail;
5024 symindex mark;
5025
5026 if (defined[i] || included[i])
5027 continue;
5028 if (symdef->file_offset == last)
5029 {
5030 included[i] = TRUE;
5031 continue;
5032 }
5033
5034 h = archive_symbol_lookup (abfd, info, symdef->name);
5035 if (h == (struct elf_link_hash_entry *) 0 - 1)
5036 goto error_return;
5037
5038 if (h == NULL)
5039 continue;
5040
5041 if (h->root.type == bfd_link_hash_common)
5042 {
5043 /* We currently have a common symbol. The archive map contains
5044 a reference to this symbol, so we may want to include it. We
5045 only want to include it however, if this archive element
5046 contains a definition of the symbol, not just another common
5047 declaration of it.
5048
5049 Unfortunately some archivers (including GNU ar) will put
5050 declarations of common symbols into their archive maps, as
5051 well as real definitions, so we cannot just go by the archive
5052 map alone. Instead we must read in the element's symbol
5053 table and check that to see what kind of symbol definition
5054 this is. */
5055 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5056 continue;
5057 }
5058 else if (h->root.type != bfd_link_hash_undefined)
5059 {
5060 if (h->root.type != bfd_link_hash_undefweak)
5061 defined[i] = TRUE;
5062 continue;
5063 }
5064
5065 /* We need to include this archive member. */
5066 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5067 if (element == NULL)
5068 goto error_return;
5069
5070 if (! bfd_check_format (element, bfd_object))
5071 goto error_return;
5072
5073 /* Doublecheck that we have not included this object
5074 already--it should be impossible, but there may be
5075 something wrong with the archive. */
5076 if (element->archive_pass != 0)
5077 {
5078 bfd_set_error (bfd_error_bad_value);
5079 goto error_return;
5080 }
5081 element->archive_pass = 1;
5082
5083 undefs_tail = info->hash->undefs_tail;
5084
5085 if (!(*info->callbacks
5086 ->add_archive_element) (info, element, symdef->name, &element))
5087 goto error_return;
5088 if (!bfd_link_add_symbols (element, info))
5089 goto error_return;
5090
5091 /* If there are any new undefined symbols, we need to make
5092 another pass through the archive in order to see whether
5093 they can be defined. FIXME: This isn't perfect, because
5094 common symbols wind up on undefs_tail and because an
5095 undefined symbol which is defined later on in this pass
5096 does not require another pass. This isn't a bug, but it
5097 does make the code less efficient than it could be. */
5098 if (undefs_tail != info->hash->undefs_tail)
5099 loop = TRUE;
5100
5101 /* Look backward to mark all symbols from this object file
5102 which we have already seen in this pass. */
5103 mark = i;
5104 do
5105 {
5106 included[mark] = TRUE;
5107 if (mark == 0)
5108 break;
5109 --mark;
5110 }
5111 while (symdefs[mark].file_offset == symdef->file_offset);
5112
5113 /* We mark subsequent symbols from this object file as we go
5114 on through the loop. */
5115 last = symdef->file_offset;
5116 }
5117 }
5118 while (loop);
5119
5120 free (defined);
5121 free (included);
5122
5123 return TRUE;
5124
5125 error_return:
5126 if (defined != NULL)
5127 free (defined);
5128 if (included != NULL)
5129 free (included);
5130 return FALSE;
5131 }
5132
5133 /* Given an ELF BFD, add symbols to the global hash table as
5134 appropriate. */
5135
5136 bfd_boolean
5137 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5138 {
5139 switch (bfd_get_format (abfd))
5140 {
5141 case bfd_object:
5142 return elf_link_add_object_symbols (abfd, info);
5143 case bfd_archive:
5144 return elf_link_add_archive_symbols (abfd, info);
5145 default:
5146 bfd_set_error (bfd_error_wrong_format);
5147 return FALSE;
5148 }
5149 }
5150 \f
5151 struct hash_codes_info
5152 {
5153 unsigned long *hashcodes;
5154 bfd_boolean error;
5155 };
5156
5157 /* This function will be called though elf_link_hash_traverse to store
5158 all hash value of the exported symbols in an array. */
5159
5160 static bfd_boolean
5161 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5162 {
5163 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5164 const char *name;
5165 char *p;
5166 unsigned long ha;
5167 char *alc = NULL;
5168
5169 /* Ignore indirect symbols. These are added by the versioning code. */
5170 if (h->dynindx == -1)
5171 return TRUE;
5172
5173 name = h->root.root.string;
5174 p = strchr (name, ELF_VER_CHR);
5175 if (p != NULL)
5176 {
5177 alc = (char *) bfd_malloc (p - name + 1);
5178 if (alc == NULL)
5179 {
5180 inf->error = TRUE;
5181 return FALSE;
5182 }
5183 memcpy (alc, name, p - name);
5184 alc[p - name] = '\0';
5185 name = alc;
5186 }
5187
5188 /* Compute the hash value. */
5189 ha = bfd_elf_hash (name);
5190
5191 /* Store the found hash value in the array given as the argument. */
5192 *(inf->hashcodes)++ = ha;
5193
5194 /* And store it in the struct so that we can put it in the hash table
5195 later. */
5196 h->u.elf_hash_value = ha;
5197
5198 if (alc != NULL)
5199 free (alc);
5200
5201 return TRUE;
5202 }
5203
5204 struct collect_gnu_hash_codes
5205 {
5206 bfd *output_bfd;
5207 const struct elf_backend_data *bed;
5208 unsigned long int nsyms;
5209 unsigned long int maskbits;
5210 unsigned long int *hashcodes;
5211 unsigned long int *hashval;
5212 unsigned long int *indx;
5213 unsigned long int *counts;
5214 bfd_vma *bitmask;
5215 bfd_byte *contents;
5216 long int min_dynindx;
5217 unsigned long int bucketcount;
5218 unsigned long int symindx;
5219 long int local_indx;
5220 long int shift1, shift2;
5221 unsigned long int mask;
5222 bfd_boolean error;
5223 };
5224
5225 /* This function will be called though elf_link_hash_traverse to store
5226 all hash value of the exported symbols in an array. */
5227
5228 static bfd_boolean
5229 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5230 {
5231 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5232 const char *name;
5233 char *p;
5234 unsigned long ha;
5235 char *alc = NULL;
5236
5237 /* Ignore indirect symbols. These are added by the versioning code. */
5238 if (h->dynindx == -1)
5239 return TRUE;
5240
5241 /* Ignore also local symbols and undefined symbols. */
5242 if (! (*s->bed->elf_hash_symbol) (h))
5243 return TRUE;
5244
5245 name = h->root.root.string;
5246 p = strchr (name, ELF_VER_CHR);
5247 if (p != NULL)
5248 {
5249 alc = (char *) bfd_malloc (p - name + 1);
5250 if (alc == NULL)
5251 {
5252 s->error = TRUE;
5253 return FALSE;
5254 }
5255 memcpy (alc, name, p - name);
5256 alc[p - name] = '\0';
5257 name = alc;
5258 }
5259
5260 /* Compute the hash value. */
5261 ha = bfd_elf_gnu_hash (name);
5262
5263 /* Store the found hash value in the array for compute_bucket_count,
5264 and also for .dynsym reordering purposes. */
5265 s->hashcodes[s->nsyms] = ha;
5266 s->hashval[h->dynindx] = ha;
5267 ++s->nsyms;
5268 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5269 s->min_dynindx = h->dynindx;
5270
5271 if (alc != NULL)
5272 free (alc);
5273
5274 return TRUE;
5275 }
5276
5277 /* This function will be called though elf_link_hash_traverse to do
5278 final dynaminc symbol renumbering. */
5279
5280 static bfd_boolean
5281 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5282 {
5283 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5284 unsigned long int bucket;
5285 unsigned long int val;
5286
5287 /* Ignore indirect symbols. */
5288 if (h->dynindx == -1)
5289 return TRUE;
5290
5291 /* Ignore also local symbols and undefined symbols. */
5292 if (! (*s->bed->elf_hash_symbol) (h))
5293 {
5294 if (h->dynindx >= s->min_dynindx)
5295 h->dynindx = s->local_indx++;
5296 return TRUE;
5297 }
5298
5299 bucket = s->hashval[h->dynindx] % s->bucketcount;
5300 val = (s->hashval[h->dynindx] >> s->shift1)
5301 & ((s->maskbits >> s->shift1) - 1);
5302 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5303 s->bitmask[val]
5304 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5305 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5306 if (s->counts[bucket] == 1)
5307 /* Last element terminates the chain. */
5308 val |= 1;
5309 bfd_put_32 (s->output_bfd, val,
5310 s->contents + (s->indx[bucket] - s->symindx) * 4);
5311 --s->counts[bucket];
5312 h->dynindx = s->indx[bucket]++;
5313 return TRUE;
5314 }
5315
5316 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5317
5318 bfd_boolean
5319 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5320 {
5321 return !(h->forced_local
5322 || h->root.type == bfd_link_hash_undefined
5323 || h->root.type == bfd_link_hash_undefweak
5324 || ((h->root.type == bfd_link_hash_defined
5325 || h->root.type == bfd_link_hash_defweak)
5326 && h->root.u.def.section->output_section == NULL));
5327 }
5328
5329 /* Array used to determine the number of hash table buckets to use
5330 based on the number of symbols there are. If there are fewer than
5331 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5332 fewer than 37 we use 17 buckets, and so forth. We never use more
5333 than 32771 buckets. */
5334
5335 static const size_t elf_buckets[] =
5336 {
5337 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5338 16411, 32771, 0
5339 };
5340
5341 /* Compute bucket count for hashing table. We do not use a static set
5342 of possible tables sizes anymore. Instead we determine for all
5343 possible reasonable sizes of the table the outcome (i.e., the
5344 number of collisions etc) and choose the best solution. The
5345 weighting functions are not too simple to allow the table to grow
5346 without bounds. Instead one of the weighting factors is the size.
5347 Therefore the result is always a good payoff between few collisions
5348 (= short chain lengths) and table size. */
5349 static size_t
5350 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5351 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5352 unsigned long int nsyms,
5353 int gnu_hash)
5354 {
5355 size_t best_size = 0;
5356 unsigned long int i;
5357
5358 /* We have a problem here. The following code to optimize the table
5359 size requires an integer type with more the 32 bits. If
5360 BFD_HOST_U_64_BIT is set we know about such a type. */
5361 #ifdef BFD_HOST_U_64_BIT
5362 if (info->optimize)
5363 {
5364 size_t minsize;
5365 size_t maxsize;
5366 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5367 bfd *dynobj = elf_hash_table (info)->dynobj;
5368 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5369 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5370 unsigned long int *counts;
5371 bfd_size_type amt;
5372 unsigned int no_improvement_count = 0;
5373
5374 /* Possible optimization parameters: if we have NSYMS symbols we say
5375 that the hashing table must at least have NSYMS/4 and at most
5376 2*NSYMS buckets. */
5377 minsize = nsyms / 4;
5378 if (minsize == 0)
5379 minsize = 1;
5380 best_size = maxsize = nsyms * 2;
5381 if (gnu_hash)
5382 {
5383 if (minsize < 2)
5384 minsize = 2;
5385 if ((best_size & 31) == 0)
5386 ++best_size;
5387 }
5388
5389 /* Create array where we count the collisions in. We must use bfd_malloc
5390 since the size could be large. */
5391 amt = maxsize;
5392 amt *= sizeof (unsigned long int);
5393 counts = (unsigned long int *) bfd_malloc (amt);
5394 if (counts == NULL)
5395 return 0;
5396
5397 /* Compute the "optimal" size for the hash table. The criteria is a
5398 minimal chain length. The minor criteria is (of course) the size
5399 of the table. */
5400 for (i = minsize; i < maxsize; ++i)
5401 {
5402 /* Walk through the array of hashcodes and count the collisions. */
5403 BFD_HOST_U_64_BIT max;
5404 unsigned long int j;
5405 unsigned long int fact;
5406
5407 if (gnu_hash && (i & 31) == 0)
5408 continue;
5409
5410 memset (counts, '\0', i * sizeof (unsigned long int));
5411
5412 /* Determine how often each hash bucket is used. */
5413 for (j = 0; j < nsyms; ++j)
5414 ++counts[hashcodes[j] % i];
5415
5416 /* For the weight function we need some information about the
5417 pagesize on the target. This is information need not be 100%
5418 accurate. Since this information is not available (so far) we
5419 define it here to a reasonable default value. If it is crucial
5420 to have a better value some day simply define this value. */
5421 # ifndef BFD_TARGET_PAGESIZE
5422 # define BFD_TARGET_PAGESIZE (4096)
5423 # endif
5424
5425 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5426 and the chains. */
5427 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5428
5429 # if 1
5430 /* Variant 1: optimize for short chains. We add the squares
5431 of all the chain lengths (which favors many small chain
5432 over a few long chains). */
5433 for (j = 0; j < i; ++j)
5434 max += counts[j] * counts[j];
5435
5436 /* This adds penalties for the overall size of the table. */
5437 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5438 max *= fact * fact;
5439 # else
5440 /* Variant 2: Optimize a lot more for small table. Here we
5441 also add squares of the size but we also add penalties for
5442 empty slots (the +1 term). */
5443 for (j = 0; j < i; ++j)
5444 max += (1 + counts[j]) * (1 + counts[j]);
5445
5446 /* The overall size of the table is considered, but not as
5447 strong as in variant 1, where it is squared. */
5448 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5449 max *= fact;
5450 # endif
5451
5452 /* Compare with current best results. */
5453 if (max < best_chlen)
5454 {
5455 best_chlen = max;
5456 best_size = i;
5457 no_improvement_count = 0;
5458 }
5459 /* PR 11843: Avoid futile long searches for the best bucket size
5460 when there are a large number of symbols. */
5461 else if (++no_improvement_count == 100)
5462 break;
5463 }
5464
5465 free (counts);
5466 }
5467 else
5468 #endif /* defined (BFD_HOST_U_64_BIT) */
5469 {
5470 /* This is the fallback solution if no 64bit type is available or if we
5471 are not supposed to spend much time on optimizations. We select the
5472 bucket count using a fixed set of numbers. */
5473 for (i = 0; elf_buckets[i] != 0; i++)
5474 {
5475 best_size = elf_buckets[i];
5476 if (nsyms < elf_buckets[i + 1])
5477 break;
5478 }
5479 if (gnu_hash && best_size < 2)
5480 best_size = 2;
5481 }
5482
5483 return best_size;
5484 }
5485
5486 /* Size any SHT_GROUP section for ld -r. */
5487
5488 bfd_boolean
5489 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5490 {
5491 bfd *ibfd;
5492
5493 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5494 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5495 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5496 return FALSE;
5497 return TRUE;
5498 }
5499
5500 /* Set a default stack segment size. The value in INFO wins. If it
5501 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5502 undefined it is initialized. */
5503
5504 bfd_boolean
5505 bfd_elf_stack_segment_size (bfd *output_bfd,
5506 struct bfd_link_info *info,
5507 const char *legacy_symbol,
5508 bfd_vma default_size)
5509 {
5510 struct elf_link_hash_entry *h = NULL;
5511
5512 /* Look for legacy symbol. */
5513 if (legacy_symbol)
5514 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5515 FALSE, FALSE, FALSE);
5516 if (h && (h->root.type == bfd_link_hash_defined
5517 || h->root.type == bfd_link_hash_defweak)
5518 && h->def_regular
5519 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5520 {
5521 /* The symbol has no type if specified on the command line. */
5522 h->type = STT_OBJECT;
5523 if (info->stacksize)
5524 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5525 output_bfd, legacy_symbol);
5526 else if (h->root.u.def.section != bfd_abs_section_ptr)
5527 (*_bfd_error_handler) (_("%B: %s not absolute"),
5528 output_bfd, legacy_symbol);
5529 else
5530 info->stacksize = h->root.u.def.value;
5531 }
5532
5533 if (!info->stacksize)
5534 /* If the user didn't set a size, or explicitly inhibit the
5535 size, set it now. */
5536 info->stacksize = default_size;
5537
5538 /* Provide the legacy symbol, if it is referenced. */
5539 if (h && (h->root.type == bfd_link_hash_undefined
5540 || h->root.type == bfd_link_hash_undefweak))
5541 {
5542 struct bfd_link_hash_entry *bh = NULL;
5543
5544 if (!(_bfd_generic_link_add_one_symbol
5545 (info, output_bfd, legacy_symbol,
5546 BSF_GLOBAL, bfd_abs_section_ptr,
5547 info->stacksize >= 0 ? info->stacksize : 0,
5548 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5549 return FALSE;
5550
5551 h = (struct elf_link_hash_entry *) bh;
5552 h->def_regular = 1;
5553 h->type = STT_OBJECT;
5554 }
5555
5556 return TRUE;
5557 }
5558
5559 /* Set up the sizes and contents of the ELF dynamic sections. This is
5560 called by the ELF linker emulation before_allocation routine. We
5561 must set the sizes of the sections before the linker sets the
5562 addresses of the various sections. */
5563
5564 bfd_boolean
5565 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5566 const char *soname,
5567 const char *rpath,
5568 const char *filter_shlib,
5569 const char *audit,
5570 const char *depaudit,
5571 const char * const *auxiliary_filters,
5572 struct bfd_link_info *info,
5573 asection **sinterpptr)
5574 {
5575 bfd_size_type soname_indx;
5576 bfd *dynobj;
5577 const struct elf_backend_data *bed;
5578 struct elf_info_failed asvinfo;
5579
5580 *sinterpptr = NULL;
5581
5582 soname_indx = (bfd_size_type) -1;
5583
5584 if (!is_elf_hash_table (info->hash))
5585 return TRUE;
5586
5587 bed = get_elf_backend_data (output_bfd);
5588
5589 /* Any syms created from now on start with -1 in
5590 got.refcount/offset and plt.refcount/offset. */
5591 elf_hash_table (info)->init_got_refcount
5592 = elf_hash_table (info)->init_got_offset;
5593 elf_hash_table (info)->init_plt_refcount
5594 = elf_hash_table (info)->init_plt_offset;
5595
5596 if (info->relocatable
5597 && !_bfd_elf_size_group_sections (info))
5598 return FALSE;
5599
5600 /* The backend may have to create some sections regardless of whether
5601 we're dynamic or not. */
5602 if (bed->elf_backend_always_size_sections
5603 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5604 return FALSE;
5605
5606 /* Determine any GNU_STACK segment requirements, after the backend
5607 has had a chance to set a default segment size. */
5608 if (info->execstack)
5609 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5610 else if (info->noexecstack)
5611 elf_stack_flags (output_bfd) = PF_R | PF_W;
5612 else
5613 {
5614 bfd *inputobj;
5615 asection *notesec = NULL;
5616 int exec = 0;
5617
5618 for (inputobj = info->input_bfds;
5619 inputobj;
5620 inputobj = inputobj->link_next)
5621 {
5622 asection *s;
5623
5624 if (inputobj->flags
5625 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5626 continue;
5627 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5628 if (s)
5629 {
5630 if (s->flags & SEC_CODE)
5631 exec = PF_X;
5632 notesec = s;
5633 }
5634 else if (bed->default_execstack)
5635 exec = PF_X;
5636 }
5637 if (notesec || info->stacksize > 0)
5638 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5639 if (notesec && exec && info->relocatable
5640 && notesec->output_section != bfd_abs_section_ptr)
5641 notesec->output_section->flags |= SEC_CODE;
5642 }
5643
5644 dynobj = elf_hash_table (info)->dynobj;
5645
5646 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5647 {
5648 struct elf_info_failed eif;
5649 struct elf_link_hash_entry *h;
5650 asection *dynstr;
5651 struct bfd_elf_version_tree *t;
5652 struct bfd_elf_version_expr *d;
5653 asection *s;
5654 bfd_boolean all_defined;
5655
5656 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5657 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5658
5659 if (soname != NULL)
5660 {
5661 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5662 soname, TRUE);
5663 if (soname_indx == (bfd_size_type) -1
5664 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5665 return FALSE;
5666 }
5667
5668 if (info->symbolic)
5669 {
5670 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5671 return FALSE;
5672 info->flags |= DF_SYMBOLIC;
5673 }
5674
5675 if (rpath != NULL)
5676 {
5677 bfd_size_type indx;
5678 bfd_vma tag;
5679
5680 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5681 TRUE);
5682 if (indx == (bfd_size_type) -1)
5683 return FALSE;
5684
5685 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5686 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5687 return FALSE;
5688 }
5689
5690 if (filter_shlib != NULL)
5691 {
5692 bfd_size_type indx;
5693
5694 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5695 filter_shlib, TRUE);
5696 if (indx == (bfd_size_type) -1
5697 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5698 return FALSE;
5699 }
5700
5701 if (auxiliary_filters != NULL)
5702 {
5703 const char * const *p;
5704
5705 for (p = auxiliary_filters; *p != NULL; p++)
5706 {
5707 bfd_size_type indx;
5708
5709 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5710 *p, TRUE);
5711 if (indx == (bfd_size_type) -1
5712 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5713 return FALSE;
5714 }
5715 }
5716
5717 if (audit != NULL)
5718 {
5719 bfd_size_type indx;
5720
5721 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5722 TRUE);
5723 if (indx == (bfd_size_type) -1
5724 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5725 return FALSE;
5726 }
5727
5728 if (depaudit != NULL)
5729 {
5730 bfd_size_type indx;
5731
5732 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5733 TRUE);
5734 if (indx == (bfd_size_type) -1
5735 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5736 return FALSE;
5737 }
5738
5739 eif.info = info;
5740 eif.failed = FALSE;
5741
5742 /* If we are supposed to export all symbols into the dynamic symbol
5743 table (this is not the normal case), then do so. */
5744 if (info->export_dynamic
5745 || (info->executable && info->dynamic))
5746 {
5747 elf_link_hash_traverse (elf_hash_table (info),
5748 _bfd_elf_export_symbol,
5749 &eif);
5750 if (eif.failed)
5751 return FALSE;
5752 }
5753
5754 /* Make all global versions with definition. */
5755 for (t = info->version_info; t != NULL; t = t->next)
5756 for (d = t->globals.list; d != NULL; d = d->next)
5757 if (!d->symver && d->literal)
5758 {
5759 const char *verstr, *name;
5760 size_t namelen, verlen, newlen;
5761 char *newname, *p, leading_char;
5762 struct elf_link_hash_entry *newh;
5763
5764 leading_char = bfd_get_symbol_leading_char (output_bfd);
5765 name = d->pattern;
5766 namelen = strlen (name) + (leading_char != '\0');
5767 verstr = t->name;
5768 verlen = strlen (verstr);
5769 newlen = namelen + verlen + 3;
5770
5771 newname = (char *) bfd_malloc (newlen);
5772 if (newname == NULL)
5773 return FALSE;
5774 newname[0] = leading_char;
5775 memcpy (newname + (leading_char != '\0'), name, namelen);
5776
5777 /* Check the hidden versioned definition. */
5778 p = newname + namelen;
5779 *p++ = ELF_VER_CHR;
5780 memcpy (p, verstr, verlen + 1);
5781 newh = elf_link_hash_lookup (elf_hash_table (info),
5782 newname, FALSE, FALSE,
5783 FALSE);
5784 if (newh == NULL
5785 || (newh->root.type != bfd_link_hash_defined
5786 && newh->root.type != bfd_link_hash_defweak))
5787 {
5788 /* Check the default versioned definition. */
5789 *p++ = ELF_VER_CHR;
5790 memcpy (p, verstr, verlen + 1);
5791 newh = elf_link_hash_lookup (elf_hash_table (info),
5792 newname, FALSE, FALSE,
5793 FALSE);
5794 }
5795 free (newname);
5796
5797 /* Mark this version if there is a definition and it is
5798 not defined in a shared object. */
5799 if (newh != NULL
5800 && !newh->def_dynamic
5801 && (newh->root.type == bfd_link_hash_defined
5802 || newh->root.type == bfd_link_hash_defweak))
5803 d->symver = 1;
5804 }
5805
5806 /* Attach all the symbols to their version information. */
5807 asvinfo.info = info;
5808 asvinfo.failed = FALSE;
5809
5810 elf_link_hash_traverse (elf_hash_table (info),
5811 _bfd_elf_link_assign_sym_version,
5812 &asvinfo);
5813 if (asvinfo.failed)
5814 return FALSE;
5815
5816 if (!info->allow_undefined_version)
5817 {
5818 /* Check if all global versions have a definition. */
5819 all_defined = TRUE;
5820 for (t = info->version_info; t != NULL; t = t->next)
5821 for (d = t->globals.list; d != NULL; d = d->next)
5822 if (d->literal && !d->symver && !d->script)
5823 {
5824 (*_bfd_error_handler)
5825 (_("%s: undefined version: %s"),
5826 d->pattern, t->name);
5827 all_defined = FALSE;
5828 }
5829
5830 if (!all_defined)
5831 {
5832 bfd_set_error (bfd_error_bad_value);
5833 return FALSE;
5834 }
5835 }
5836
5837 /* Find all symbols which were defined in a dynamic object and make
5838 the backend pick a reasonable value for them. */
5839 elf_link_hash_traverse (elf_hash_table (info),
5840 _bfd_elf_adjust_dynamic_symbol,
5841 &eif);
5842 if (eif.failed)
5843 return FALSE;
5844
5845 /* Add some entries to the .dynamic section. We fill in some of the
5846 values later, in bfd_elf_final_link, but we must add the entries
5847 now so that we know the final size of the .dynamic section. */
5848
5849 /* If there are initialization and/or finalization functions to
5850 call then add the corresponding DT_INIT/DT_FINI entries. */
5851 h = (info->init_function
5852 ? elf_link_hash_lookup (elf_hash_table (info),
5853 info->init_function, FALSE,
5854 FALSE, FALSE)
5855 : NULL);
5856 if (h != NULL
5857 && (h->ref_regular
5858 || h->def_regular))
5859 {
5860 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5861 return FALSE;
5862 }
5863 h = (info->fini_function
5864 ? elf_link_hash_lookup (elf_hash_table (info),
5865 info->fini_function, FALSE,
5866 FALSE, FALSE)
5867 : NULL);
5868 if (h != NULL
5869 && (h->ref_regular
5870 || h->def_regular))
5871 {
5872 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5873 return FALSE;
5874 }
5875
5876 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5877 if (s != NULL && s->linker_has_input)
5878 {
5879 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5880 if (! info->executable)
5881 {
5882 bfd *sub;
5883 asection *o;
5884
5885 for (sub = info->input_bfds; sub != NULL;
5886 sub = sub->link_next)
5887 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5888 for (o = sub->sections; o != NULL; o = o->next)
5889 if (elf_section_data (o)->this_hdr.sh_type
5890 == SHT_PREINIT_ARRAY)
5891 {
5892 (*_bfd_error_handler)
5893 (_("%B: .preinit_array section is not allowed in DSO"),
5894 sub);
5895 break;
5896 }
5897
5898 bfd_set_error (bfd_error_nonrepresentable_section);
5899 return FALSE;
5900 }
5901
5902 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5903 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5904 return FALSE;
5905 }
5906 s = bfd_get_section_by_name (output_bfd, ".init_array");
5907 if (s != NULL && s->linker_has_input)
5908 {
5909 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5910 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5911 return FALSE;
5912 }
5913 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5914 if (s != NULL && s->linker_has_input)
5915 {
5916 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5917 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5918 return FALSE;
5919 }
5920
5921 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5922 /* If .dynstr is excluded from the link, we don't want any of
5923 these tags. Strictly, we should be checking each section
5924 individually; This quick check covers for the case where
5925 someone does a /DISCARD/ : { *(*) }. */
5926 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5927 {
5928 bfd_size_type strsize;
5929
5930 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5931 if ((info->emit_hash
5932 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5933 || (info->emit_gnu_hash
5934 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5935 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5936 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5937 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5938 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5939 bed->s->sizeof_sym))
5940 return FALSE;
5941 }
5942 }
5943
5944 /* The backend must work out the sizes of all the other dynamic
5945 sections. */
5946 if (dynobj != NULL
5947 && bed->elf_backend_size_dynamic_sections != NULL
5948 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5949 return FALSE;
5950
5951 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5952 return FALSE;
5953
5954 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5955 {
5956 unsigned long section_sym_count;
5957 struct bfd_elf_version_tree *verdefs;
5958 asection *s;
5959
5960 /* Set up the version definition section. */
5961 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5962 BFD_ASSERT (s != NULL);
5963
5964 /* We may have created additional version definitions if we are
5965 just linking a regular application. */
5966 verdefs = info->version_info;
5967
5968 /* Skip anonymous version tag. */
5969 if (verdefs != NULL && verdefs->vernum == 0)
5970 verdefs = verdefs->next;
5971
5972 if (verdefs == NULL && !info->create_default_symver)
5973 s->flags |= SEC_EXCLUDE;
5974 else
5975 {
5976 unsigned int cdefs;
5977 bfd_size_type size;
5978 struct bfd_elf_version_tree *t;
5979 bfd_byte *p;
5980 Elf_Internal_Verdef def;
5981 Elf_Internal_Verdaux defaux;
5982 struct bfd_link_hash_entry *bh;
5983 struct elf_link_hash_entry *h;
5984 const char *name;
5985
5986 cdefs = 0;
5987 size = 0;
5988
5989 /* Make space for the base version. */
5990 size += sizeof (Elf_External_Verdef);
5991 size += sizeof (Elf_External_Verdaux);
5992 ++cdefs;
5993
5994 /* Make space for the default version. */
5995 if (info->create_default_symver)
5996 {
5997 size += sizeof (Elf_External_Verdef);
5998 ++cdefs;
5999 }
6000
6001 for (t = verdefs; t != NULL; t = t->next)
6002 {
6003 struct bfd_elf_version_deps *n;
6004
6005 /* Don't emit base version twice. */
6006 if (t->vernum == 0)
6007 continue;
6008
6009 size += sizeof (Elf_External_Verdef);
6010 size += sizeof (Elf_External_Verdaux);
6011 ++cdefs;
6012
6013 for (n = t->deps; n != NULL; n = n->next)
6014 size += sizeof (Elf_External_Verdaux);
6015 }
6016
6017 s->size = size;
6018 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6019 if (s->contents == NULL && s->size != 0)
6020 return FALSE;
6021
6022 /* Fill in the version definition section. */
6023
6024 p = s->contents;
6025
6026 def.vd_version = VER_DEF_CURRENT;
6027 def.vd_flags = VER_FLG_BASE;
6028 def.vd_ndx = 1;
6029 def.vd_cnt = 1;
6030 if (info->create_default_symver)
6031 {
6032 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6033 def.vd_next = sizeof (Elf_External_Verdef);
6034 }
6035 else
6036 {
6037 def.vd_aux = sizeof (Elf_External_Verdef);
6038 def.vd_next = (sizeof (Elf_External_Verdef)
6039 + sizeof (Elf_External_Verdaux));
6040 }
6041
6042 if (soname_indx != (bfd_size_type) -1)
6043 {
6044 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6045 soname_indx);
6046 def.vd_hash = bfd_elf_hash (soname);
6047 defaux.vda_name = soname_indx;
6048 name = soname;
6049 }
6050 else
6051 {
6052 bfd_size_type indx;
6053
6054 name = lbasename (output_bfd->filename);
6055 def.vd_hash = bfd_elf_hash (name);
6056 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6057 name, FALSE);
6058 if (indx == (bfd_size_type) -1)
6059 return FALSE;
6060 defaux.vda_name = indx;
6061 }
6062 defaux.vda_next = 0;
6063
6064 _bfd_elf_swap_verdef_out (output_bfd, &def,
6065 (Elf_External_Verdef *) p);
6066 p += sizeof (Elf_External_Verdef);
6067 if (info->create_default_symver)
6068 {
6069 /* Add a symbol representing this version. */
6070 bh = NULL;
6071 if (! (_bfd_generic_link_add_one_symbol
6072 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6073 0, NULL, FALSE,
6074 get_elf_backend_data (dynobj)->collect, &bh)))
6075 return FALSE;
6076 h = (struct elf_link_hash_entry *) bh;
6077 h->non_elf = 0;
6078 h->def_regular = 1;
6079 h->type = STT_OBJECT;
6080 h->verinfo.vertree = NULL;
6081
6082 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6083 return FALSE;
6084
6085 /* Create a duplicate of the base version with the same
6086 aux block, but different flags. */
6087 def.vd_flags = 0;
6088 def.vd_ndx = 2;
6089 def.vd_aux = sizeof (Elf_External_Verdef);
6090 if (verdefs)
6091 def.vd_next = (sizeof (Elf_External_Verdef)
6092 + sizeof (Elf_External_Verdaux));
6093 else
6094 def.vd_next = 0;
6095 _bfd_elf_swap_verdef_out (output_bfd, &def,
6096 (Elf_External_Verdef *) p);
6097 p += sizeof (Elf_External_Verdef);
6098 }
6099 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6100 (Elf_External_Verdaux *) p);
6101 p += sizeof (Elf_External_Verdaux);
6102
6103 for (t = verdefs; t != NULL; t = t->next)
6104 {
6105 unsigned int cdeps;
6106 struct bfd_elf_version_deps *n;
6107
6108 /* Don't emit the base version twice. */
6109 if (t->vernum == 0)
6110 continue;
6111
6112 cdeps = 0;
6113 for (n = t->deps; n != NULL; n = n->next)
6114 ++cdeps;
6115
6116 /* Add a symbol representing this version. */
6117 bh = NULL;
6118 if (! (_bfd_generic_link_add_one_symbol
6119 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6120 0, NULL, FALSE,
6121 get_elf_backend_data (dynobj)->collect, &bh)))
6122 return FALSE;
6123 h = (struct elf_link_hash_entry *) bh;
6124 h->non_elf = 0;
6125 h->def_regular = 1;
6126 h->type = STT_OBJECT;
6127 h->verinfo.vertree = t;
6128
6129 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6130 return FALSE;
6131
6132 def.vd_version = VER_DEF_CURRENT;
6133 def.vd_flags = 0;
6134 if (t->globals.list == NULL
6135 && t->locals.list == NULL
6136 && ! t->used)
6137 def.vd_flags |= VER_FLG_WEAK;
6138 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6139 def.vd_cnt = cdeps + 1;
6140 def.vd_hash = bfd_elf_hash (t->name);
6141 def.vd_aux = sizeof (Elf_External_Verdef);
6142 def.vd_next = 0;
6143
6144 /* If a basever node is next, it *must* be the last node in
6145 the chain, otherwise Verdef construction breaks. */
6146 if (t->next != NULL && t->next->vernum == 0)
6147 BFD_ASSERT (t->next->next == NULL);
6148
6149 if (t->next != NULL && t->next->vernum != 0)
6150 def.vd_next = (sizeof (Elf_External_Verdef)
6151 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6152
6153 _bfd_elf_swap_verdef_out (output_bfd, &def,
6154 (Elf_External_Verdef *) p);
6155 p += sizeof (Elf_External_Verdef);
6156
6157 defaux.vda_name = h->dynstr_index;
6158 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6159 h->dynstr_index);
6160 defaux.vda_next = 0;
6161 if (t->deps != NULL)
6162 defaux.vda_next = sizeof (Elf_External_Verdaux);
6163 t->name_indx = defaux.vda_name;
6164
6165 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6166 (Elf_External_Verdaux *) p);
6167 p += sizeof (Elf_External_Verdaux);
6168
6169 for (n = t->deps; n != NULL; n = n->next)
6170 {
6171 if (n->version_needed == NULL)
6172 {
6173 /* This can happen if there was an error in the
6174 version script. */
6175 defaux.vda_name = 0;
6176 }
6177 else
6178 {
6179 defaux.vda_name = n->version_needed->name_indx;
6180 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6181 defaux.vda_name);
6182 }
6183 if (n->next == NULL)
6184 defaux.vda_next = 0;
6185 else
6186 defaux.vda_next = sizeof (Elf_External_Verdaux);
6187
6188 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6189 (Elf_External_Verdaux *) p);
6190 p += sizeof (Elf_External_Verdaux);
6191 }
6192 }
6193
6194 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6195 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6196 return FALSE;
6197
6198 elf_tdata (output_bfd)->cverdefs = cdefs;
6199 }
6200
6201 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6202 {
6203 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6204 return FALSE;
6205 }
6206 else if (info->flags & DF_BIND_NOW)
6207 {
6208 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6209 return FALSE;
6210 }
6211
6212 if (info->flags_1)
6213 {
6214 if (info->executable)
6215 info->flags_1 &= ~ (DF_1_INITFIRST
6216 | DF_1_NODELETE
6217 | DF_1_NOOPEN);
6218 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6219 return FALSE;
6220 }
6221
6222 /* Work out the size of the version reference section. */
6223
6224 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6225 BFD_ASSERT (s != NULL);
6226 {
6227 struct elf_find_verdep_info sinfo;
6228
6229 sinfo.info = info;
6230 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6231 if (sinfo.vers == 0)
6232 sinfo.vers = 1;
6233 sinfo.failed = FALSE;
6234
6235 elf_link_hash_traverse (elf_hash_table (info),
6236 _bfd_elf_link_find_version_dependencies,
6237 &sinfo);
6238 if (sinfo.failed)
6239 return FALSE;
6240
6241 if (elf_tdata (output_bfd)->verref == NULL)
6242 s->flags |= SEC_EXCLUDE;
6243 else
6244 {
6245 Elf_Internal_Verneed *t;
6246 unsigned int size;
6247 unsigned int crefs;
6248 bfd_byte *p;
6249
6250 /* Build the version dependency section. */
6251 size = 0;
6252 crefs = 0;
6253 for (t = elf_tdata (output_bfd)->verref;
6254 t != NULL;
6255 t = t->vn_nextref)
6256 {
6257 Elf_Internal_Vernaux *a;
6258
6259 size += sizeof (Elf_External_Verneed);
6260 ++crefs;
6261 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6262 size += sizeof (Elf_External_Vernaux);
6263 }
6264
6265 s->size = size;
6266 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6267 if (s->contents == NULL)
6268 return FALSE;
6269
6270 p = s->contents;
6271 for (t = elf_tdata (output_bfd)->verref;
6272 t != NULL;
6273 t = t->vn_nextref)
6274 {
6275 unsigned int caux;
6276 Elf_Internal_Vernaux *a;
6277 bfd_size_type indx;
6278
6279 caux = 0;
6280 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6281 ++caux;
6282
6283 t->vn_version = VER_NEED_CURRENT;
6284 t->vn_cnt = caux;
6285 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6286 elf_dt_name (t->vn_bfd) != NULL
6287 ? elf_dt_name (t->vn_bfd)
6288 : lbasename (t->vn_bfd->filename),
6289 FALSE);
6290 if (indx == (bfd_size_type) -1)
6291 return FALSE;
6292 t->vn_file = indx;
6293 t->vn_aux = sizeof (Elf_External_Verneed);
6294 if (t->vn_nextref == NULL)
6295 t->vn_next = 0;
6296 else
6297 t->vn_next = (sizeof (Elf_External_Verneed)
6298 + caux * sizeof (Elf_External_Vernaux));
6299
6300 _bfd_elf_swap_verneed_out (output_bfd, t,
6301 (Elf_External_Verneed *) p);
6302 p += sizeof (Elf_External_Verneed);
6303
6304 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6305 {
6306 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6307 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6308 a->vna_nodename, FALSE);
6309 if (indx == (bfd_size_type) -1)
6310 return FALSE;
6311 a->vna_name = indx;
6312 if (a->vna_nextptr == NULL)
6313 a->vna_next = 0;
6314 else
6315 a->vna_next = sizeof (Elf_External_Vernaux);
6316
6317 _bfd_elf_swap_vernaux_out (output_bfd, a,
6318 (Elf_External_Vernaux *) p);
6319 p += sizeof (Elf_External_Vernaux);
6320 }
6321 }
6322
6323 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6324 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6325 return FALSE;
6326
6327 elf_tdata (output_bfd)->cverrefs = crefs;
6328 }
6329 }
6330
6331 if ((elf_tdata (output_bfd)->cverrefs == 0
6332 && elf_tdata (output_bfd)->cverdefs == 0)
6333 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6334 &section_sym_count) == 0)
6335 {
6336 s = bfd_get_linker_section (dynobj, ".gnu.version");
6337 s->flags |= SEC_EXCLUDE;
6338 }
6339 }
6340 return TRUE;
6341 }
6342
6343 /* Find the first non-excluded output section. We'll use its
6344 section symbol for some emitted relocs. */
6345 void
6346 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6347 {
6348 asection *s;
6349
6350 for (s = output_bfd->sections; s != NULL; s = s->next)
6351 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6352 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6353 {
6354 elf_hash_table (info)->text_index_section = s;
6355 break;
6356 }
6357 }
6358
6359 /* Find two non-excluded output sections, one for code, one for data.
6360 We'll use their section symbols for some emitted relocs. */
6361 void
6362 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6363 {
6364 asection *s;
6365
6366 /* Data first, since setting text_index_section changes
6367 _bfd_elf_link_omit_section_dynsym. */
6368 for (s = output_bfd->sections; s != NULL; s = s->next)
6369 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6370 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6371 {
6372 elf_hash_table (info)->data_index_section = s;
6373 break;
6374 }
6375
6376 for (s = output_bfd->sections; s != NULL; s = s->next)
6377 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6378 == (SEC_ALLOC | SEC_READONLY))
6379 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6380 {
6381 elf_hash_table (info)->text_index_section = s;
6382 break;
6383 }
6384
6385 if (elf_hash_table (info)->text_index_section == NULL)
6386 elf_hash_table (info)->text_index_section
6387 = elf_hash_table (info)->data_index_section;
6388 }
6389
6390 bfd_boolean
6391 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6392 {
6393 const struct elf_backend_data *bed;
6394
6395 if (!is_elf_hash_table (info->hash))
6396 return TRUE;
6397
6398 bed = get_elf_backend_data (output_bfd);
6399 (*bed->elf_backend_init_index_section) (output_bfd, info);
6400
6401 if (elf_hash_table (info)->dynamic_sections_created)
6402 {
6403 bfd *dynobj;
6404 asection *s;
6405 bfd_size_type dynsymcount;
6406 unsigned long section_sym_count;
6407 unsigned int dtagcount;
6408
6409 dynobj = elf_hash_table (info)->dynobj;
6410
6411 /* Assign dynsym indicies. In a shared library we generate a
6412 section symbol for each output section, which come first.
6413 Next come all of the back-end allocated local dynamic syms,
6414 followed by the rest of the global symbols. */
6415
6416 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6417 &section_sym_count);
6418
6419 /* Work out the size of the symbol version section. */
6420 s = bfd_get_linker_section (dynobj, ".gnu.version");
6421 BFD_ASSERT (s != NULL);
6422 if (dynsymcount != 0
6423 && (s->flags & SEC_EXCLUDE) == 0)
6424 {
6425 s->size = dynsymcount * sizeof (Elf_External_Versym);
6426 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6427 if (s->contents == NULL)
6428 return FALSE;
6429
6430 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6431 return FALSE;
6432 }
6433
6434 /* Set the size of the .dynsym and .hash sections. We counted
6435 the number of dynamic symbols in elf_link_add_object_symbols.
6436 We will build the contents of .dynsym and .hash when we build
6437 the final symbol table, because until then we do not know the
6438 correct value to give the symbols. We built the .dynstr
6439 section as we went along in elf_link_add_object_symbols. */
6440 s = bfd_get_linker_section (dynobj, ".dynsym");
6441 BFD_ASSERT (s != NULL);
6442 s->size = dynsymcount * bed->s->sizeof_sym;
6443
6444 if (dynsymcount != 0)
6445 {
6446 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6447 if (s->contents == NULL)
6448 return FALSE;
6449
6450 /* The first entry in .dynsym is a dummy symbol.
6451 Clear all the section syms, in case we don't output them all. */
6452 ++section_sym_count;
6453 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6454 }
6455
6456 elf_hash_table (info)->bucketcount = 0;
6457
6458 /* Compute the size of the hashing table. As a side effect this
6459 computes the hash values for all the names we export. */
6460 if (info->emit_hash)
6461 {
6462 unsigned long int *hashcodes;
6463 struct hash_codes_info hashinf;
6464 bfd_size_type amt;
6465 unsigned long int nsyms;
6466 size_t bucketcount;
6467 size_t hash_entry_size;
6468
6469 /* Compute the hash values for all exported symbols. At the same
6470 time store the values in an array so that we could use them for
6471 optimizations. */
6472 amt = dynsymcount * sizeof (unsigned long int);
6473 hashcodes = (unsigned long int *) bfd_malloc (amt);
6474 if (hashcodes == NULL)
6475 return FALSE;
6476 hashinf.hashcodes = hashcodes;
6477 hashinf.error = FALSE;
6478
6479 /* Put all hash values in HASHCODES. */
6480 elf_link_hash_traverse (elf_hash_table (info),
6481 elf_collect_hash_codes, &hashinf);
6482 if (hashinf.error)
6483 {
6484 free (hashcodes);
6485 return FALSE;
6486 }
6487
6488 nsyms = hashinf.hashcodes - hashcodes;
6489 bucketcount
6490 = compute_bucket_count (info, hashcodes, nsyms, 0);
6491 free (hashcodes);
6492
6493 if (bucketcount == 0)
6494 return FALSE;
6495
6496 elf_hash_table (info)->bucketcount = bucketcount;
6497
6498 s = bfd_get_linker_section (dynobj, ".hash");
6499 BFD_ASSERT (s != NULL);
6500 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6501 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6502 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6503 if (s->contents == NULL)
6504 return FALSE;
6505
6506 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6507 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6508 s->contents + hash_entry_size);
6509 }
6510
6511 if (info->emit_gnu_hash)
6512 {
6513 size_t i, cnt;
6514 unsigned char *contents;
6515 struct collect_gnu_hash_codes cinfo;
6516 bfd_size_type amt;
6517 size_t bucketcount;
6518
6519 memset (&cinfo, 0, sizeof (cinfo));
6520
6521 /* Compute the hash values for all exported symbols. At the same
6522 time store the values in an array so that we could use them for
6523 optimizations. */
6524 amt = dynsymcount * 2 * sizeof (unsigned long int);
6525 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6526 if (cinfo.hashcodes == NULL)
6527 return FALSE;
6528
6529 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6530 cinfo.min_dynindx = -1;
6531 cinfo.output_bfd = output_bfd;
6532 cinfo.bed = bed;
6533
6534 /* Put all hash values in HASHCODES. */
6535 elf_link_hash_traverse (elf_hash_table (info),
6536 elf_collect_gnu_hash_codes, &cinfo);
6537 if (cinfo.error)
6538 {
6539 free (cinfo.hashcodes);
6540 return FALSE;
6541 }
6542
6543 bucketcount
6544 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6545
6546 if (bucketcount == 0)
6547 {
6548 free (cinfo.hashcodes);
6549 return FALSE;
6550 }
6551
6552 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6553 BFD_ASSERT (s != NULL);
6554
6555 if (cinfo.nsyms == 0)
6556 {
6557 /* Empty .gnu.hash section is special. */
6558 BFD_ASSERT (cinfo.min_dynindx == -1);
6559 free (cinfo.hashcodes);
6560 s->size = 5 * 4 + bed->s->arch_size / 8;
6561 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6562 if (contents == NULL)
6563 return FALSE;
6564 s->contents = contents;
6565 /* 1 empty bucket. */
6566 bfd_put_32 (output_bfd, 1, contents);
6567 /* SYMIDX above the special symbol 0. */
6568 bfd_put_32 (output_bfd, 1, contents + 4);
6569 /* Just one word for bitmask. */
6570 bfd_put_32 (output_bfd, 1, contents + 8);
6571 /* Only hash fn bloom filter. */
6572 bfd_put_32 (output_bfd, 0, contents + 12);
6573 /* No hashes are valid - empty bitmask. */
6574 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6575 /* No hashes in the only bucket. */
6576 bfd_put_32 (output_bfd, 0,
6577 contents + 16 + bed->s->arch_size / 8);
6578 }
6579 else
6580 {
6581 unsigned long int maskwords, maskbitslog2, x;
6582 BFD_ASSERT (cinfo.min_dynindx != -1);
6583
6584 x = cinfo.nsyms;
6585 maskbitslog2 = 1;
6586 while ((x >>= 1) != 0)
6587 ++maskbitslog2;
6588 if (maskbitslog2 < 3)
6589 maskbitslog2 = 5;
6590 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6591 maskbitslog2 = maskbitslog2 + 3;
6592 else
6593 maskbitslog2 = maskbitslog2 + 2;
6594 if (bed->s->arch_size == 64)
6595 {
6596 if (maskbitslog2 == 5)
6597 maskbitslog2 = 6;
6598 cinfo.shift1 = 6;
6599 }
6600 else
6601 cinfo.shift1 = 5;
6602 cinfo.mask = (1 << cinfo.shift1) - 1;
6603 cinfo.shift2 = maskbitslog2;
6604 cinfo.maskbits = 1 << maskbitslog2;
6605 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6606 amt = bucketcount * sizeof (unsigned long int) * 2;
6607 amt += maskwords * sizeof (bfd_vma);
6608 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6609 if (cinfo.bitmask == NULL)
6610 {
6611 free (cinfo.hashcodes);
6612 return FALSE;
6613 }
6614
6615 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6616 cinfo.indx = cinfo.counts + bucketcount;
6617 cinfo.symindx = dynsymcount - cinfo.nsyms;
6618 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6619
6620 /* Determine how often each hash bucket is used. */
6621 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6622 for (i = 0; i < cinfo.nsyms; ++i)
6623 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6624
6625 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6626 if (cinfo.counts[i] != 0)
6627 {
6628 cinfo.indx[i] = cnt;
6629 cnt += cinfo.counts[i];
6630 }
6631 BFD_ASSERT (cnt == dynsymcount);
6632 cinfo.bucketcount = bucketcount;
6633 cinfo.local_indx = cinfo.min_dynindx;
6634
6635 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6636 s->size += cinfo.maskbits / 8;
6637 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6638 if (contents == NULL)
6639 {
6640 free (cinfo.bitmask);
6641 free (cinfo.hashcodes);
6642 return FALSE;
6643 }
6644
6645 s->contents = contents;
6646 bfd_put_32 (output_bfd, bucketcount, contents);
6647 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6648 bfd_put_32 (output_bfd, maskwords, contents + 8);
6649 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6650 contents += 16 + cinfo.maskbits / 8;
6651
6652 for (i = 0; i < bucketcount; ++i)
6653 {
6654 if (cinfo.counts[i] == 0)
6655 bfd_put_32 (output_bfd, 0, contents);
6656 else
6657 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6658 contents += 4;
6659 }
6660
6661 cinfo.contents = contents;
6662
6663 /* Renumber dynamic symbols, populate .gnu.hash section. */
6664 elf_link_hash_traverse (elf_hash_table (info),
6665 elf_renumber_gnu_hash_syms, &cinfo);
6666
6667 contents = s->contents + 16;
6668 for (i = 0; i < maskwords; ++i)
6669 {
6670 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6671 contents);
6672 contents += bed->s->arch_size / 8;
6673 }
6674
6675 free (cinfo.bitmask);
6676 free (cinfo.hashcodes);
6677 }
6678 }
6679
6680 s = bfd_get_linker_section (dynobj, ".dynstr");
6681 BFD_ASSERT (s != NULL);
6682
6683 elf_finalize_dynstr (output_bfd, info);
6684
6685 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6686
6687 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6688 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6689 return FALSE;
6690 }
6691
6692 return TRUE;
6693 }
6694 \f
6695 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6696
6697 static void
6698 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6699 asection *sec)
6700 {
6701 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6702 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6703 }
6704
6705 /* Finish SHF_MERGE section merging. */
6706
6707 bfd_boolean
6708 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6709 {
6710 bfd *ibfd;
6711 asection *sec;
6712
6713 if (!is_elf_hash_table (info->hash))
6714 return FALSE;
6715
6716 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6717 if ((ibfd->flags & DYNAMIC) == 0)
6718 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6719 if ((sec->flags & SEC_MERGE) != 0
6720 && !bfd_is_abs_section (sec->output_section))
6721 {
6722 struct bfd_elf_section_data *secdata;
6723
6724 secdata = elf_section_data (sec);
6725 if (! _bfd_add_merge_section (abfd,
6726 &elf_hash_table (info)->merge_info,
6727 sec, &secdata->sec_info))
6728 return FALSE;
6729 else if (secdata->sec_info)
6730 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6731 }
6732
6733 if (elf_hash_table (info)->merge_info != NULL)
6734 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6735 merge_sections_remove_hook);
6736 return TRUE;
6737 }
6738
6739 /* Create an entry in an ELF linker hash table. */
6740
6741 struct bfd_hash_entry *
6742 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6743 struct bfd_hash_table *table,
6744 const char *string)
6745 {
6746 /* Allocate the structure if it has not already been allocated by a
6747 subclass. */
6748 if (entry == NULL)
6749 {
6750 entry = (struct bfd_hash_entry *)
6751 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6752 if (entry == NULL)
6753 return entry;
6754 }
6755
6756 /* Call the allocation method of the superclass. */
6757 entry = _bfd_link_hash_newfunc (entry, table, string);
6758 if (entry != NULL)
6759 {
6760 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6761 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6762
6763 /* Set local fields. */
6764 ret->indx = -1;
6765 ret->dynindx = -1;
6766 ret->got = htab->init_got_refcount;
6767 ret->plt = htab->init_plt_refcount;
6768 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6769 - offsetof (struct elf_link_hash_entry, size)));
6770 /* Assume that we have been called by a non-ELF symbol reader.
6771 This flag is then reset by the code which reads an ELF input
6772 file. This ensures that a symbol created by a non-ELF symbol
6773 reader will have the flag set correctly. */
6774 ret->non_elf = 1;
6775 }
6776
6777 return entry;
6778 }
6779
6780 /* Copy data from an indirect symbol to its direct symbol, hiding the
6781 old indirect symbol. Also used for copying flags to a weakdef. */
6782
6783 void
6784 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6785 struct elf_link_hash_entry *dir,
6786 struct elf_link_hash_entry *ind)
6787 {
6788 struct elf_link_hash_table *htab;
6789
6790 /* Copy down any references that we may have already seen to the
6791 symbol which just became indirect. */
6792
6793 dir->ref_dynamic |= ind->ref_dynamic;
6794 dir->ref_regular |= ind->ref_regular;
6795 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6796 dir->non_got_ref |= ind->non_got_ref;
6797 dir->needs_plt |= ind->needs_plt;
6798 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6799
6800 if (ind->root.type != bfd_link_hash_indirect)
6801 return;
6802
6803 /* Copy over the global and procedure linkage table refcount entries.
6804 These may have been already set up by a check_relocs routine. */
6805 htab = elf_hash_table (info);
6806 if (ind->got.refcount > htab->init_got_refcount.refcount)
6807 {
6808 if (dir->got.refcount < 0)
6809 dir->got.refcount = 0;
6810 dir->got.refcount += ind->got.refcount;
6811 ind->got.refcount = htab->init_got_refcount.refcount;
6812 }
6813
6814 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6815 {
6816 if (dir->plt.refcount < 0)
6817 dir->plt.refcount = 0;
6818 dir->plt.refcount += ind->plt.refcount;
6819 ind->plt.refcount = htab->init_plt_refcount.refcount;
6820 }
6821
6822 if (ind->dynindx != -1)
6823 {
6824 if (dir->dynindx != -1)
6825 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6826 dir->dynindx = ind->dynindx;
6827 dir->dynstr_index = ind->dynstr_index;
6828 ind->dynindx = -1;
6829 ind->dynstr_index = 0;
6830 }
6831 }
6832
6833 void
6834 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6835 struct elf_link_hash_entry *h,
6836 bfd_boolean force_local)
6837 {
6838 /* STT_GNU_IFUNC symbol must go through PLT. */
6839 if (h->type != STT_GNU_IFUNC)
6840 {
6841 h->plt = elf_hash_table (info)->init_plt_offset;
6842 h->needs_plt = 0;
6843 }
6844 if (force_local)
6845 {
6846 h->forced_local = 1;
6847 if (h->dynindx != -1)
6848 {
6849 h->dynindx = -1;
6850 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6851 h->dynstr_index);
6852 }
6853 }
6854 }
6855
6856 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6857 caller. */
6858
6859 bfd_boolean
6860 _bfd_elf_link_hash_table_init
6861 (struct elf_link_hash_table *table,
6862 bfd *abfd,
6863 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6864 struct bfd_hash_table *,
6865 const char *),
6866 unsigned int entsize,
6867 enum elf_target_id target_id)
6868 {
6869 bfd_boolean ret;
6870 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6871
6872 table->init_got_refcount.refcount = can_refcount - 1;
6873 table->init_plt_refcount.refcount = can_refcount - 1;
6874 table->init_got_offset.offset = -(bfd_vma) 1;
6875 table->init_plt_offset.offset = -(bfd_vma) 1;
6876 /* The first dynamic symbol is a dummy. */
6877 table->dynsymcount = 1;
6878
6879 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6880
6881 table->root.type = bfd_link_elf_hash_table;
6882 table->hash_table_id = target_id;
6883
6884 return ret;
6885 }
6886
6887 /* Create an ELF linker hash table. */
6888
6889 struct bfd_link_hash_table *
6890 _bfd_elf_link_hash_table_create (bfd *abfd)
6891 {
6892 struct elf_link_hash_table *ret;
6893 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6894
6895 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6896 if (ret == NULL)
6897 return NULL;
6898
6899 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6900 sizeof (struct elf_link_hash_entry),
6901 GENERIC_ELF_DATA))
6902 {
6903 free (ret);
6904 return NULL;
6905 }
6906
6907 return &ret->root;
6908 }
6909
6910 /* Destroy an ELF linker hash table. */
6911
6912 void
6913 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6914 {
6915 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6916 if (htab->dynstr != NULL)
6917 _bfd_elf_strtab_free (htab->dynstr);
6918 _bfd_merge_sections_free (htab->merge_info);
6919 _bfd_generic_link_hash_table_free (hash);
6920 }
6921
6922 /* This is a hook for the ELF emulation code in the generic linker to
6923 tell the backend linker what file name to use for the DT_NEEDED
6924 entry for a dynamic object. */
6925
6926 void
6927 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6928 {
6929 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6930 && bfd_get_format (abfd) == bfd_object)
6931 elf_dt_name (abfd) = name;
6932 }
6933
6934 int
6935 bfd_elf_get_dyn_lib_class (bfd *abfd)
6936 {
6937 int lib_class;
6938 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6939 && bfd_get_format (abfd) == bfd_object)
6940 lib_class = elf_dyn_lib_class (abfd);
6941 else
6942 lib_class = 0;
6943 return lib_class;
6944 }
6945
6946 void
6947 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6948 {
6949 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6950 && bfd_get_format (abfd) == bfd_object)
6951 elf_dyn_lib_class (abfd) = lib_class;
6952 }
6953
6954 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6955 the linker ELF emulation code. */
6956
6957 struct bfd_link_needed_list *
6958 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6959 struct bfd_link_info *info)
6960 {
6961 if (! is_elf_hash_table (info->hash))
6962 return NULL;
6963 return elf_hash_table (info)->needed;
6964 }
6965
6966 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6967 hook for the linker ELF emulation code. */
6968
6969 struct bfd_link_needed_list *
6970 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6971 struct bfd_link_info *info)
6972 {
6973 if (! is_elf_hash_table (info->hash))
6974 return NULL;
6975 return elf_hash_table (info)->runpath;
6976 }
6977
6978 /* Get the name actually used for a dynamic object for a link. This
6979 is the SONAME entry if there is one. Otherwise, it is the string
6980 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6981
6982 const char *
6983 bfd_elf_get_dt_soname (bfd *abfd)
6984 {
6985 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6986 && bfd_get_format (abfd) == bfd_object)
6987 return elf_dt_name (abfd);
6988 return NULL;
6989 }
6990
6991 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6992 the ELF linker emulation code. */
6993
6994 bfd_boolean
6995 bfd_elf_get_bfd_needed_list (bfd *abfd,
6996 struct bfd_link_needed_list **pneeded)
6997 {
6998 asection *s;
6999 bfd_byte *dynbuf = NULL;
7000 unsigned int elfsec;
7001 unsigned long shlink;
7002 bfd_byte *extdyn, *extdynend;
7003 size_t extdynsize;
7004 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7005
7006 *pneeded = NULL;
7007
7008 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7009 || bfd_get_format (abfd) != bfd_object)
7010 return TRUE;
7011
7012 s = bfd_get_section_by_name (abfd, ".dynamic");
7013 if (s == NULL || s->size == 0)
7014 return TRUE;
7015
7016 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7017 goto error_return;
7018
7019 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7020 if (elfsec == SHN_BAD)
7021 goto error_return;
7022
7023 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7024
7025 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7026 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7027
7028 extdyn = dynbuf;
7029 extdynend = extdyn + s->size;
7030 for (; extdyn < extdynend; extdyn += extdynsize)
7031 {
7032 Elf_Internal_Dyn dyn;
7033
7034 (*swap_dyn_in) (abfd, extdyn, &dyn);
7035
7036 if (dyn.d_tag == DT_NULL)
7037 break;
7038
7039 if (dyn.d_tag == DT_NEEDED)
7040 {
7041 const char *string;
7042 struct bfd_link_needed_list *l;
7043 unsigned int tagv = dyn.d_un.d_val;
7044 bfd_size_type amt;
7045
7046 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7047 if (string == NULL)
7048 goto error_return;
7049
7050 amt = sizeof *l;
7051 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7052 if (l == NULL)
7053 goto error_return;
7054
7055 l->by = abfd;
7056 l->name = string;
7057 l->next = *pneeded;
7058 *pneeded = l;
7059 }
7060 }
7061
7062 free (dynbuf);
7063
7064 return TRUE;
7065
7066 error_return:
7067 if (dynbuf != NULL)
7068 free (dynbuf);
7069 return FALSE;
7070 }
7071
7072 struct elf_symbuf_symbol
7073 {
7074 unsigned long st_name; /* Symbol name, index in string tbl */
7075 unsigned char st_info; /* Type and binding attributes */
7076 unsigned char st_other; /* Visibilty, and target specific */
7077 };
7078
7079 struct elf_symbuf_head
7080 {
7081 struct elf_symbuf_symbol *ssym;
7082 bfd_size_type count;
7083 unsigned int st_shndx;
7084 };
7085
7086 struct elf_symbol
7087 {
7088 union
7089 {
7090 Elf_Internal_Sym *isym;
7091 struct elf_symbuf_symbol *ssym;
7092 } u;
7093 const char *name;
7094 };
7095
7096 /* Sort references to symbols by ascending section number. */
7097
7098 static int
7099 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7100 {
7101 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7102 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7103
7104 return s1->st_shndx - s2->st_shndx;
7105 }
7106
7107 static int
7108 elf_sym_name_compare (const void *arg1, const void *arg2)
7109 {
7110 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7111 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7112 return strcmp (s1->name, s2->name);
7113 }
7114
7115 static struct elf_symbuf_head *
7116 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7117 {
7118 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7119 struct elf_symbuf_symbol *ssym;
7120 struct elf_symbuf_head *ssymbuf, *ssymhead;
7121 bfd_size_type i, shndx_count, total_size;
7122
7123 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7124 if (indbuf == NULL)
7125 return NULL;
7126
7127 for (ind = indbuf, i = 0; i < symcount; i++)
7128 if (isymbuf[i].st_shndx != SHN_UNDEF)
7129 *ind++ = &isymbuf[i];
7130 indbufend = ind;
7131
7132 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7133 elf_sort_elf_symbol);
7134
7135 shndx_count = 0;
7136 if (indbufend > indbuf)
7137 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7138 if (ind[0]->st_shndx != ind[1]->st_shndx)
7139 shndx_count++;
7140
7141 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7142 + (indbufend - indbuf) * sizeof (*ssym));
7143 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7144 if (ssymbuf == NULL)
7145 {
7146 free (indbuf);
7147 return NULL;
7148 }
7149
7150 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7151 ssymbuf->ssym = NULL;
7152 ssymbuf->count = shndx_count;
7153 ssymbuf->st_shndx = 0;
7154 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7155 {
7156 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7157 {
7158 ssymhead++;
7159 ssymhead->ssym = ssym;
7160 ssymhead->count = 0;
7161 ssymhead->st_shndx = (*ind)->st_shndx;
7162 }
7163 ssym->st_name = (*ind)->st_name;
7164 ssym->st_info = (*ind)->st_info;
7165 ssym->st_other = (*ind)->st_other;
7166 ssymhead->count++;
7167 }
7168 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7169 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7170 == total_size));
7171
7172 free (indbuf);
7173 return ssymbuf;
7174 }
7175
7176 /* Check if 2 sections define the same set of local and global
7177 symbols. */
7178
7179 static bfd_boolean
7180 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7181 struct bfd_link_info *info)
7182 {
7183 bfd *bfd1, *bfd2;
7184 const struct elf_backend_data *bed1, *bed2;
7185 Elf_Internal_Shdr *hdr1, *hdr2;
7186 bfd_size_type symcount1, symcount2;
7187 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7188 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7189 Elf_Internal_Sym *isym, *isymend;
7190 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7191 bfd_size_type count1, count2, i;
7192 unsigned int shndx1, shndx2;
7193 bfd_boolean result;
7194
7195 bfd1 = sec1->owner;
7196 bfd2 = sec2->owner;
7197
7198 /* Both sections have to be in ELF. */
7199 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7200 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7201 return FALSE;
7202
7203 if (elf_section_type (sec1) != elf_section_type (sec2))
7204 return FALSE;
7205
7206 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7207 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7208 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7209 return FALSE;
7210
7211 bed1 = get_elf_backend_data (bfd1);
7212 bed2 = get_elf_backend_data (bfd2);
7213 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7214 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7215 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7216 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7217
7218 if (symcount1 == 0 || symcount2 == 0)
7219 return FALSE;
7220
7221 result = FALSE;
7222 isymbuf1 = NULL;
7223 isymbuf2 = NULL;
7224 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7225 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7226
7227 if (ssymbuf1 == NULL)
7228 {
7229 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7230 NULL, NULL, NULL);
7231 if (isymbuf1 == NULL)
7232 goto done;
7233
7234 if (!info->reduce_memory_overheads)
7235 elf_tdata (bfd1)->symbuf = ssymbuf1
7236 = elf_create_symbuf (symcount1, isymbuf1);
7237 }
7238
7239 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7240 {
7241 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7242 NULL, NULL, NULL);
7243 if (isymbuf2 == NULL)
7244 goto done;
7245
7246 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7247 elf_tdata (bfd2)->symbuf = ssymbuf2
7248 = elf_create_symbuf (symcount2, isymbuf2);
7249 }
7250
7251 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7252 {
7253 /* Optimized faster version. */
7254 bfd_size_type lo, hi, mid;
7255 struct elf_symbol *symp;
7256 struct elf_symbuf_symbol *ssym, *ssymend;
7257
7258 lo = 0;
7259 hi = ssymbuf1->count;
7260 ssymbuf1++;
7261 count1 = 0;
7262 while (lo < hi)
7263 {
7264 mid = (lo + hi) / 2;
7265 if (shndx1 < ssymbuf1[mid].st_shndx)
7266 hi = mid;
7267 else if (shndx1 > ssymbuf1[mid].st_shndx)
7268 lo = mid + 1;
7269 else
7270 {
7271 count1 = ssymbuf1[mid].count;
7272 ssymbuf1 += mid;
7273 break;
7274 }
7275 }
7276
7277 lo = 0;
7278 hi = ssymbuf2->count;
7279 ssymbuf2++;
7280 count2 = 0;
7281 while (lo < hi)
7282 {
7283 mid = (lo + hi) / 2;
7284 if (shndx2 < ssymbuf2[mid].st_shndx)
7285 hi = mid;
7286 else if (shndx2 > ssymbuf2[mid].st_shndx)
7287 lo = mid + 1;
7288 else
7289 {
7290 count2 = ssymbuf2[mid].count;
7291 ssymbuf2 += mid;
7292 break;
7293 }
7294 }
7295
7296 if (count1 == 0 || count2 == 0 || count1 != count2)
7297 goto done;
7298
7299 symtable1 = (struct elf_symbol *)
7300 bfd_malloc (count1 * sizeof (struct elf_symbol));
7301 symtable2 = (struct elf_symbol *)
7302 bfd_malloc (count2 * sizeof (struct elf_symbol));
7303 if (symtable1 == NULL || symtable2 == NULL)
7304 goto done;
7305
7306 symp = symtable1;
7307 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7308 ssym < ssymend; ssym++, symp++)
7309 {
7310 symp->u.ssym = ssym;
7311 symp->name = bfd_elf_string_from_elf_section (bfd1,
7312 hdr1->sh_link,
7313 ssym->st_name);
7314 }
7315
7316 symp = symtable2;
7317 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7318 ssym < ssymend; ssym++, symp++)
7319 {
7320 symp->u.ssym = ssym;
7321 symp->name = bfd_elf_string_from_elf_section (bfd2,
7322 hdr2->sh_link,
7323 ssym->st_name);
7324 }
7325
7326 /* Sort symbol by name. */
7327 qsort (symtable1, count1, sizeof (struct elf_symbol),
7328 elf_sym_name_compare);
7329 qsort (symtable2, count1, sizeof (struct elf_symbol),
7330 elf_sym_name_compare);
7331
7332 for (i = 0; i < count1; i++)
7333 /* Two symbols must have the same binding, type and name. */
7334 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7335 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7336 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7337 goto done;
7338
7339 result = TRUE;
7340 goto done;
7341 }
7342
7343 symtable1 = (struct elf_symbol *)
7344 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7345 symtable2 = (struct elf_symbol *)
7346 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7347 if (symtable1 == NULL || symtable2 == NULL)
7348 goto done;
7349
7350 /* Count definitions in the section. */
7351 count1 = 0;
7352 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7353 if (isym->st_shndx == shndx1)
7354 symtable1[count1++].u.isym = isym;
7355
7356 count2 = 0;
7357 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7358 if (isym->st_shndx == shndx2)
7359 symtable2[count2++].u.isym = isym;
7360
7361 if (count1 == 0 || count2 == 0 || count1 != count2)
7362 goto done;
7363
7364 for (i = 0; i < count1; i++)
7365 symtable1[i].name
7366 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7367 symtable1[i].u.isym->st_name);
7368
7369 for (i = 0; i < count2; i++)
7370 symtable2[i].name
7371 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7372 symtable2[i].u.isym->st_name);
7373
7374 /* Sort symbol by name. */
7375 qsort (symtable1, count1, sizeof (struct elf_symbol),
7376 elf_sym_name_compare);
7377 qsort (symtable2, count1, sizeof (struct elf_symbol),
7378 elf_sym_name_compare);
7379
7380 for (i = 0; i < count1; i++)
7381 /* Two symbols must have the same binding, type and name. */
7382 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7383 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7384 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7385 goto done;
7386
7387 result = TRUE;
7388
7389 done:
7390 if (symtable1)
7391 free (symtable1);
7392 if (symtable2)
7393 free (symtable2);
7394 if (isymbuf1)
7395 free (isymbuf1);
7396 if (isymbuf2)
7397 free (isymbuf2);
7398
7399 return result;
7400 }
7401
7402 /* Return TRUE if 2 section types are compatible. */
7403
7404 bfd_boolean
7405 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7406 bfd *bbfd, const asection *bsec)
7407 {
7408 if (asec == NULL
7409 || bsec == NULL
7410 || abfd->xvec->flavour != bfd_target_elf_flavour
7411 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7412 return TRUE;
7413
7414 return elf_section_type (asec) == elf_section_type (bsec);
7415 }
7416 \f
7417 /* Final phase of ELF linker. */
7418
7419 /* A structure we use to avoid passing large numbers of arguments. */
7420
7421 struct elf_final_link_info
7422 {
7423 /* General link information. */
7424 struct bfd_link_info *info;
7425 /* Output BFD. */
7426 bfd *output_bfd;
7427 /* Symbol string table. */
7428 struct bfd_strtab_hash *symstrtab;
7429 /* .dynsym section. */
7430 asection *dynsym_sec;
7431 /* .hash section. */
7432 asection *hash_sec;
7433 /* symbol version section (.gnu.version). */
7434 asection *symver_sec;
7435 /* Buffer large enough to hold contents of any section. */
7436 bfd_byte *contents;
7437 /* Buffer large enough to hold external relocs of any section. */
7438 void *external_relocs;
7439 /* Buffer large enough to hold internal relocs of any section. */
7440 Elf_Internal_Rela *internal_relocs;
7441 /* Buffer large enough to hold external local symbols of any input
7442 BFD. */
7443 bfd_byte *external_syms;
7444 /* And a buffer for symbol section indices. */
7445 Elf_External_Sym_Shndx *locsym_shndx;
7446 /* Buffer large enough to hold internal local symbols of any input
7447 BFD. */
7448 Elf_Internal_Sym *internal_syms;
7449 /* Array large enough to hold a symbol index for each local symbol
7450 of any input BFD. */
7451 long *indices;
7452 /* Array large enough to hold a section pointer for each local
7453 symbol of any input BFD. */
7454 asection **sections;
7455 /* Buffer to hold swapped out symbols. */
7456 bfd_byte *symbuf;
7457 /* And one for symbol section indices. */
7458 Elf_External_Sym_Shndx *symshndxbuf;
7459 /* Number of swapped out symbols in buffer. */
7460 size_t symbuf_count;
7461 /* Number of symbols which fit in symbuf. */
7462 size_t symbuf_size;
7463 /* And same for symshndxbuf. */
7464 size_t shndxbuf_size;
7465 /* Number of STT_FILE syms seen. */
7466 size_t filesym_count;
7467 };
7468
7469 /* This struct is used to pass information to elf_link_output_extsym. */
7470
7471 struct elf_outext_info
7472 {
7473 bfd_boolean failed;
7474 bfd_boolean localsyms;
7475 bfd_boolean need_second_pass;
7476 bfd_boolean second_pass;
7477 struct elf_final_link_info *flinfo;
7478 };
7479
7480
7481 /* Support for evaluating a complex relocation.
7482
7483 Complex relocations are generalized, self-describing relocations. The
7484 implementation of them consists of two parts: complex symbols, and the
7485 relocations themselves.
7486
7487 The relocations are use a reserved elf-wide relocation type code (R_RELC
7488 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7489 information (start bit, end bit, word width, etc) into the addend. This
7490 information is extracted from CGEN-generated operand tables within gas.
7491
7492 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7493 internal) representing prefix-notation expressions, including but not
7494 limited to those sorts of expressions normally encoded as addends in the
7495 addend field. The symbol mangling format is:
7496
7497 <node> := <literal>
7498 | <unary-operator> ':' <node>
7499 | <binary-operator> ':' <node> ':' <node>
7500 ;
7501
7502 <literal> := 's' <digits=N> ':' <N character symbol name>
7503 | 'S' <digits=N> ':' <N character section name>
7504 | '#' <hexdigits>
7505 ;
7506
7507 <binary-operator> := as in C
7508 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7509
7510 static void
7511 set_symbol_value (bfd *bfd_with_globals,
7512 Elf_Internal_Sym *isymbuf,
7513 size_t locsymcount,
7514 size_t symidx,
7515 bfd_vma val)
7516 {
7517 struct elf_link_hash_entry **sym_hashes;
7518 struct elf_link_hash_entry *h;
7519 size_t extsymoff = locsymcount;
7520
7521 if (symidx < locsymcount)
7522 {
7523 Elf_Internal_Sym *sym;
7524
7525 sym = isymbuf + symidx;
7526 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7527 {
7528 /* It is a local symbol: move it to the
7529 "absolute" section and give it a value. */
7530 sym->st_shndx = SHN_ABS;
7531 sym->st_value = val;
7532 return;
7533 }
7534 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7535 extsymoff = 0;
7536 }
7537
7538 /* It is a global symbol: set its link type
7539 to "defined" and give it a value. */
7540
7541 sym_hashes = elf_sym_hashes (bfd_with_globals);
7542 h = sym_hashes [symidx - extsymoff];
7543 while (h->root.type == bfd_link_hash_indirect
7544 || h->root.type == bfd_link_hash_warning)
7545 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7546 h->root.type = bfd_link_hash_defined;
7547 h->root.u.def.value = val;
7548 h->root.u.def.section = bfd_abs_section_ptr;
7549 }
7550
7551 static bfd_boolean
7552 resolve_symbol (const char *name,
7553 bfd *input_bfd,
7554 struct elf_final_link_info *flinfo,
7555 bfd_vma *result,
7556 Elf_Internal_Sym *isymbuf,
7557 size_t locsymcount)
7558 {
7559 Elf_Internal_Sym *sym;
7560 struct bfd_link_hash_entry *global_entry;
7561 const char *candidate = NULL;
7562 Elf_Internal_Shdr *symtab_hdr;
7563 size_t i;
7564
7565 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7566
7567 for (i = 0; i < locsymcount; ++ i)
7568 {
7569 sym = isymbuf + i;
7570
7571 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7572 continue;
7573
7574 candidate = bfd_elf_string_from_elf_section (input_bfd,
7575 symtab_hdr->sh_link,
7576 sym->st_name);
7577 #ifdef DEBUG
7578 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7579 name, candidate, (unsigned long) sym->st_value);
7580 #endif
7581 if (candidate && strcmp (candidate, name) == 0)
7582 {
7583 asection *sec = flinfo->sections [i];
7584
7585 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7586 *result += sec->output_offset + sec->output_section->vma;
7587 #ifdef DEBUG
7588 printf ("Found symbol with value %8.8lx\n",
7589 (unsigned long) *result);
7590 #endif
7591 return TRUE;
7592 }
7593 }
7594
7595 /* Hmm, haven't found it yet. perhaps it is a global. */
7596 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7597 FALSE, FALSE, TRUE);
7598 if (!global_entry)
7599 return FALSE;
7600
7601 if (global_entry->type == bfd_link_hash_defined
7602 || global_entry->type == bfd_link_hash_defweak)
7603 {
7604 *result = (global_entry->u.def.value
7605 + global_entry->u.def.section->output_section->vma
7606 + global_entry->u.def.section->output_offset);
7607 #ifdef DEBUG
7608 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7609 global_entry->root.string, (unsigned long) *result);
7610 #endif
7611 return TRUE;
7612 }
7613
7614 return FALSE;
7615 }
7616
7617 static bfd_boolean
7618 resolve_section (const char *name,
7619 asection *sections,
7620 bfd_vma *result)
7621 {
7622 asection *curr;
7623 unsigned int len;
7624
7625 for (curr = sections; curr; curr = curr->next)
7626 if (strcmp (curr->name, name) == 0)
7627 {
7628 *result = curr->vma;
7629 return TRUE;
7630 }
7631
7632 /* Hmm. still haven't found it. try pseudo-section names. */
7633 for (curr = sections; curr; curr = curr->next)
7634 {
7635 len = strlen (curr->name);
7636 if (len > strlen (name))
7637 continue;
7638
7639 if (strncmp (curr->name, name, len) == 0)
7640 {
7641 if (strncmp (".end", name + len, 4) == 0)
7642 {
7643 *result = curr->vma + curr->size;
7644 return TRUE;
7645 }
7646
7647 /* Insert more pseudo-section names here, if you like. */
7648 }
7649 }
7650
7651 return FALSE;
7652 }
7653
7654 static void
7655 undefined_reference (const char *reftype, const char *name)
7656 {
7657 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7658 reftype, name);
7659 }
7660
7661 static bfd_boolean
7662 eval_symbol (bfd_vma *result,
7663 const char **symp,
7664 bfd *input_bfd,
7665 struct elf_final_link_info *flinfo,
7666 bfd_vma dot,
7667 Elf_Internal_Sym *isymbuf,
7668 size_t locsymcount,
7669 int signed_p)
7670 {
7671 size_t len;
7672 size_t symlen;
7673 bfd_vma a;
7674 bfd_vma b;
7675 char symbuf[4096];
7676 const char *sym = *symp;
7677 const char *symend;
7678 bfd_boolean symbol_is_section = FALSE;
7679
7680 len = strlen (sym);
7681 symend = sym + len;
7682
7683 if (len < 1 || len > sizeof (symbuf))
7684 {
7685 bfd_set_error (bfd_error_invalid_operation);
7686 return FALSE;
7687 }
7688
7689 switch (* sym)
7690 {
7691 case '.':
7692 *result = dot;
7693 *symp = sym + 1;
7694 return TRUE;
7695
7696 case '#':
7697 ++sym;
7698 *result = strtoul (sym, (char **) symp, 16);
7699 return TRUE;
7700
7701 case 'S':
7702 symbol_is_section = TRUE;
7703 case 's':
7704 ++sym;
7705 symlen = strtol (sym, (char **) symp, 10);
7706 sym = *symp + 1; /* Skip the trailing ':'. */
7707
7708 if (symend < sym || symlen + 1 > sizeof (symbuf))
7709 {
7710 bfd_set_error (bfd_error_invalid_operation);
7711 return FALSE;
7712 }
7713
7714 memcpy (symbuf, sym, symlen);
7715 symbuf[symlen] = '\0';
7716 *symp = sym + symlen;
7717
7718 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7719 the symbol as a section, or vice-versa. so we're pretty liberal in our
7720 interpretation here; section means "try section first", not "must be a
7721 section", and likewise with symbol. */
7722
7723 if (symbol_is_section)
7724 {
7725 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7726 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7727 isymbuf, locsymcount))
7728 {
7729 undefined_reference ("section", symbuf);
7730 return FALSE;
7731 }
7732 }
7733 else
7734 {
7735 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7736 isymbuf, locsymcount)
7737 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7738 result))
7739 {
7740 undefined_reference ("symbol", symbuf);
7741 return FALSE;
7742 }
7743 }
7744
7745 return TRUE;
7746
7747 /* All that remains are operators. */
7748
7749 #define UNARY_OP(op) \
7750 if (strncmp (sym, #op, strlen (#op)) == 0) \
7751 { \
7752 sym += strlen (#op); \
7753 if (*sym == ':') \
7754 ++sym; \
7755 *symp = sym; \
7756 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7757 isymbuf, locsymcount, signed_p)) \
7758 return FALSE; \
7759 if (signed_p) \
7760 *result = op ((bfd_signed_vma) a); \
7761 else \
7762 *result = op a; \
7763 return TRUE; \
7764 }
7765
7766 #define BINARY_OP(op) \
7767 if (strncmp (sym, #op, strlen (#op)) == 0) \
7768 { \
7769 sym += strlen (#op); \
7770 if (*sym == ':') \
7771 ++sym; \
7772 *symp = sym; \
7773 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7774 isymbuf, locsymcount, signed_p)) \
7775 return FALSE; \
7776 ++*symp; \
7777 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7778 isymbuf, locsymcount, signed_p)) \
7779 return FALSE; \
7780 if (signed_p) \
7781 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7782 else \
7783 *result = a op b; \
7784 return TRUE; \
7785 }
7786
7787 default:
7788 UNARY_OP (0-);
7789 BINARY_OP (<<);
7790 BINARY_OP (>>);
7791 BINARY_OP (==);
7792 BINARY_OP (!=);
7793 BINARY_OP (<=);
7794 BINARY_OP (>=);
7795 BINARY_OP (&&);
7796 BINARY_OP (||);
7797 UNARY_OP (~);
7798 UNARY_OP (!);
7799 BINARY_OP (*);
7800 BINARY_OP (/);
7801 BINARY_OP (%);
7802 BINARY_OP (^);
7803 BINARY_OP (|);
7804 BINARY_OP (&);
7805 BINARY_OP (+);
7806 BINARY_OP (-);
7807 BINARY_OP (<);
7808 BINARY_OP (>);
7809 #undef UNARY_OP
7810 #undef BINARY_OP
7811 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7812 bfd_set_error (bfd_error_invalid_operation);
7813 return FALSE;
7814 }
7815 }
7816
7817 static void
7818 put_value (bfd_vma size,
7819 unsigned long chunksz,
7820 bfd *input_bfd,
7821 bfd_vma x,
7822 bfd_byte *location)
7823 {
7824 location += (size - chunksz);
7825
7826 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7827 {
7828 switch (chunksz)
7829 {
7830 default:
7831 case 0:
7832 abort ();
7833 case 1:
7834 bfd_put_8 (input_bfd, x, location);
7835 break;
7836 case 2:
7837 bfd_put_16 (input_bfd, x, location);
7838 break;
7839 case 4:
7840 bfd_put_32 (input_bfd, x, location);
7841 break;
7842 case 8:
7843 #ifdef BFD64
7844 bfd_put_64 (input_bfd, x, location);
7845 #else
7846 abort ();
7847 #endif
7848 break;
7849 }
7850 }
7851 }
7852
7853 static bfd_vma
7854 get_value (bfd_vma size,
7855 unsigned long chunksz,
7856 bfd *input_bfd,
7857 bfd_byte *location)
7858 {
7859 int shift;
7860 bfd_vma x = 0;
7861
7862 /* Sanity checks. */
7863 BFD_ASSERT (chunksz <= sizeof (x)
7864 && size >= chunksz
7865 && chunksz != 0
7866 && (size % chunksz) == 0
7867 && input_bfd != NULL
7868 && location != NULL);
7869
7870 if (chunksz == sizeof (x))
7871 {
7872 BFD_ASSERT (size == chunksz);
7873
7874 /* Make sure that we do not perform an undefined shift operation.
7875 We know that size == chunksz so there will only be one iteration
7876 of the loop below. */
7877 shift = 0;
7878 }
7879 else
7880 shift = 8 * chunksz;
7881
7882 for (; size; size -= chunksz, location += chunksz)
7883 {
7884 switch (chunksz)
7885 {
7886 case 1:
7887 x = (x << shift) | bfd_get_8 (input_bfd, location);
7888 break;
7889 case 2:
7890 x = (x << shift) | bfd_get_16 (input_bfd, location);
7891 break;
7892 case 4:
7893 x = (x << shift) | bfd_get_32 (input_bfd, location);
7894 break;
7895 #ifdef BFD64
7896 case 8:
7897 x = (x << shift) | bfd_get_64 (input_bfd, location);
7898 break;
7899 #endif
7900 default:
7901 abort ();
7902 }
7903 }
7904 return x;
7905 }
7906
7907 static void
7908 decode_complex_addend (unsigned long *start, /* in bits */
7909 unsigned long *oplen, /* in bits */
7910 unsigned long *len, /* in bits */
7911 unsigned long *wordsz, /* in bytes */
7912 unsigned long *chunksz, /* in bytes */
7913 unsigned long *lsb0_p,
7914 unsigned long *signed_p,
7915 unsigned long *trunc_p,
7916 unsigned long encoded)
7917 {
7918 * start = encoded & 0x3F;
7919 * len = (encoded >> 6) & 0x3F;
7920 * oplen = (encoded >> 12) & 0x3F;
7921 * wordsz = (encoded >> 18) & 0xF;
7922 * chunksz = (encoded >> 22) & 0xF;
7923 * lsb0_p = (encoded >> 27) & 1;
7924 * signed_p = (encoded >> 28) & 1;
7925 * trunc_p = (encoded >> 29) & 1;
7926 }
7927
7928 bfd_reloc_status_type
7929 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7930 asection *input_section ATTRIBUTE_UNUSED,
7931 bfd_byte *contents,
7932 Elf_Internal_Rela *rel,
7933 bfd_vma relocation)
7934 {
7935 bfd_vma shift, x, mask;
7936 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7937 bfd_reloc_status_type r;
7938
7939 /* Perform this reloc, since it is complex.
7940 (this is not to say that it necessarily refers to a complex
7941 symbol; merely that it is a self-describing CGEN based reloc.
7942 i.e. the addend has the complete reloc information (bit start, end,
7943 word size, etc) encoded within it.). */
7944
7945 decode_complex_addend (&start, &oplen, &len, &wordsz,
7946 &chunksz, &lsb0_p, &signed_p,
7947 &trunc_p, rel->r_addend);
7948
7949 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7950
7951 if (lsb0_p)
7952 shift = (start + 1) - len;
7953 else
7954 shift = (8 * wordsz) - (start + len);
7955
7956 /* FIXME: octets_per_byte. */
7957 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7958
7959 #ifdef DEBUG
7960 printf ("Doing complex reloc: "
7961 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7962 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7963 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7964 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7965 oplen, (unsigned long) x, (unsigned long) mask,
7966 (unsigned long) relocation);
7967 #endif
7968
7969 r = bfd_reloc_ok;
7970 if (! trunc_p)
7971 /* Now do an overflow check. */
7972 r = bfd_check_overflow ((signed_p
7973 ? complain_overflow_signed
7974 : complain_overflow_unsigned),
7975 len, 0, (8 * wordsz),
7976 relocation);
7977
7978 /* Do the deed. */
7979 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7980
7981 #ifdef DEBUG
7982 printf (" relocation: %8.8lx\n"
7983 " shifted mask: %8.8lx\n"
7984 " shifted/masked reloc: %8.8lx\n"
7985 " result: %8.8lx\n",
7986 (unsigned long) relocation, (unsigned long) (mask << shift),
7987 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7988 #endif
7989 /* FIXME: octets_per_byte. */
7990 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7991 return r;
7992 }
7993
7994 /* When performing a relocatable link, the input relocations are
7995 preserved. But, if they reference global symbols, the indices
7996 referenced must be updated. Update all the relocations found in
7997 RELDATA. */
7998
7999 static void
8000 elf_link_adjust_relocs (bfd *abfd,
8001 struct bfd_elf_section_reloc_data *reldata)
8002 {
8003 unsigned int i;
8004 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8005 bfd_byte *erela;
8006 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8007 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8008 bfd_vma r_type_mask;
8009 int r_sym_shift;
8010 unsigned int count = reldata->count;
8011 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8012
8013 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8014 {
8015 swap_in = bed->s->swap_reloc_in;
8016 swap_out = bed->s->swap_reloc_out;
8017 }
8018 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8019 {
8020 swap_in = bed->s->swap_reloca_in;
8021 swap_out = bed->s->swap_reloca_out;
8022 }
8023 else
8024 abort ();
8025
8026 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8027 abort ();
8028
8029 if (bed->s->arch_size == 32)
8030 {
8031 r_type_mask = 0xff;
8032 r_sym_shift = 8;
8033 }
8034 else
8035 {
8036 r_type_mask = 0xffffffff;
8037 r_sym_shift = 32;
8038 }
8039
8040 erela = reldata->hdr->contents;
8041 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8042 {
8043 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8044 unsigned int j;
8045
8046 if (*rel_hash == NULL)
8047 continue;
8048
8049 BFD_ASSERT ((*rel_hash)->indx >= 0);
8050
8051 (*swap_in) (abfd, erela, irela);
8052 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8053 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8054 | (irela[j].r_info & r_type_mask));
8055 (*swap_out) (abfd, irela, erela);
8056 }
8057 }
8058
8059 struct elf_link_sort_rela
8060 {
8061 union {
8062 bfd_vma offset;
8063 bfd_vma sym_mask;
8064 } u;
8065 enum elf_reloc_type_class type;
8066 /* We use this as an array of size int_rels_per_ext_rel. */
8067 Elf_Internal_Rela rela[1];
8068 };
8069
8070 static int
8071 elf_link_sort_cmp1 (const void *A, const void *B)
8072 {
8073 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8074 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8075 int relativea, relativeb;
8076
8077 relativea = a->type == reloc_class_relative;
8078 relativeb = b->type == reloc_class_relative;
8079
8080 if (relativea < relativeb)
8081 return 1;
8082 if (relativea > relativeb)
8083 return -1;
8084 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8085 return -1;
8086 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8087 return 1;
8088 if (a->rela->r_offset < b->rela->r_offset)
8089 return -1;
8090 if (a->rela->r_offset > b->rela->r_offset)
8091 return 1;
8092 return 0;
8093 }
8094
8095 static int
8096 elf_link_sort_cmp2 (const void *A, const void *B)
8097 {
8098 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8099 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8100 int copya, copyb;
8101
8102 if (a->u.offset < b->u.offset)
8103 return -1;
8104 if (a->u.offset > b->u.offset)
8105 return 1;
8106 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8107 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8108 if (copya < copyb)
8109 return -1;
8110 if (copya > copyb)
8111 return 1;
8112 if (a->rela->r_offset < b->rela->r_offset)
8113 return -1;
8114 if (a->rela->r_offset > b->rela->r_offset)
8115 return 1;
8116 return 0;
8117 }
8118
8119 static size_t
8120 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8121 {
8122 asection *dynamic_relocs;
8123 asection *rela_dyn;
8124 asection *rel_dyn;
8125 bfd_size_type count, size;
8126 size_t i, ret, sort_elt, ext_size;
8127 bfd_byte *sort, *s_non_relative, *p;
8128 struct elf_link_sort_rela *sq;
8129 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8130 int i2e = bed->s->int_rels_per_ext_rel;
8131 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8132 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8133 struct bfd_link_order *lo;
8134 bfd_vma r_sym_mask;
8135 bfd_boolean use_rela;
8136
8137 /* Find a dynamic reloc section. */
8138 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8139 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8140 if (rela_dyn != NULL && rela_dyn->size > 0
8141 && rel_dyn != NULL && rel_dyn->size > 0)
8142 {
8143 bfd_boolean use_rela_initialised = FALSE;
8144
8145 /* This is just here to stop gcc from complaining.
8146 It's initialization checking code is not perfect. */
8147 use_rela = TRUE;
8148
8149 /* Both sections are present. Examine the sizes
8150 of the indirect sections to help us choose. */
8151 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8152 if (lo->type == bfd_indirect_link_order)
8153 {
8154 asection *o = lo->u.indirect.section;
8155
8156 if ((o->size % bed->s->sizeof_rela) == 0)
8157 {
8158 if ((o->size % bed->s->sizeof_rel) == 0)
8159 /* Section size is divisible by both rel and rela sizes.
8160 It is of no help to us. */
8161 ;
8162 else
8163 {
8164 /* Section size is only divisible by rela. */
8165 if (use_rela_initialised && (use_rela == FALSE))
8166 {
8167 _bfd_error_handler
8168 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8169 bfd_set_error (bfd_error_invalid_operation);
8170 return 0;
8171 }
8172 else
8173 {
8174 use_rela = TRUE;
8175 use_rela_initialised = TRUE;
8176 }
8177 }
8178 }
8179 else if ((o->size % bed->s->sizeof_rel) == 0)
8180 {
8181 /* Section size is only divisible by rel. */
8182 if (use_rela_initialised && (use_rela == TRUE))
8183 {
8184 _bfd_error_handler
8185 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8186 bfd_set_error (bfd_error_invalid_operation);
8187 return 0;
8188 }
8189 else
8190 {
8191 use_rela = FALSE;
8192 use_rela_initialised = TRUE;
8193 }
8194 }
8195 else
8196 {
8197 /* The section size is not divisible by either - something is wrong. */
8198 _bfd_error_handler
8199 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8200 bfd_set_error (bfd_error_invalid_operation);
8201 return 0;
8202 }
8203 }
8204
8205 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8206 if (lo->type == bfd_indirect_link_order)
8207 {
8208 asection *o = lo->u.indirect.section;
8209
8210 if ((o->size % bed->s->sizeof_rela) == 0)
8211 {
8212 if ((o->size % bed->s->sizeof_rel) == 0)
8213 /* Section size is divisible by both rel and rela sizes.
8214 It is of no help to us. */
8215 ;
8216 else
8217 {
8218 /* Section size is only divisible by rela. */
8219 if (use_rela_initialised && (use_rela == FALSE))
8220 {
8221 _bfd_error_handler
8222 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8223 bfd_set_error (bfd_error_invalid_operation);
8224 return 0;
8225 }
8226 else
8227 {
8228 use_rela = TRUE;
8229 use_rela_initialised = TRUE;
8230 }
8231 }
8232 }
8233 else if ((o->size % bed->s->sizeof_rel) == 0)
8234 {
8235 /* Section size is only divisible by rel. */
8236 if (use_rela_initialised && (use_rela == TRUE))
8237 {
8238 _bfd_error_handler
8239 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8240 bfd_set_error (bfd_error_invalid_operation);
8241 return 0;
8242 }
8243 else
8244 {
8245 use_rela = FALSE;
8246 use_rela_initialised = TRUE;
8247 }
8248 }
8249 else
8250 {
8251 /* The section size is not divisible by either - something is wrong. */
8252 _bfd_error_handler
8253 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8254 bfd_set_error (bfd_error_invalid_operation);
8255 return 0;
8256 }
8257 }
8258
8259 if (! use_rela_initialised)
8260 /* Make a guess. */
8261 use_rela = TRUE;
8262 }
8263 else if (rela_dyn != NULL && rela_dyn->size > 0)
8264 use_rela = TRUE;
8265 else if (rel_dyn != NULL && rel_dyn->size > 0)
8266 use_rela = FALSE;
8267 else
8268 return 0;
8269
8270 if (use_rela)
8271 {
8272 dynamic_relocs = rela_dyn;
8273 ext_size = bed->s->sizeof_rela;
8274 swap_in = bed->s->swap_reloca_in;
8275 swap_out = bed->s->swap_reloca_out;
8276 }
8277 else
8278 {
8279 dynamic_relocs = rel_dyn;
8280 ext_size = bed->s->sizeof_rel;
8281 swap_in = bed->s->swap_reloc_in;
8282 swap_out = bed->s->swap_reloc_out;
8283 }
8284
8285 size = 0;
8286 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8287 if (lo->type == bfd_indirect_link_order)
8288 size += lo->u.indirect.section->size;
8289
8290 if (size != dynamic_relocs->size)
8291 return 0;
8292
8293 sort_elt = (sizeof (struct elf_link_sort_rela)
8294 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8295
8296 count = dynamic_relocs->size / ext_size;
8297 if (count == 0)
8298 return 0;
8299 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8300
8301 if (sort == NULL)
8302 {
8303 (*info->callbacks->warning)
8304 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8305 return 0;
8306 }
8307
8308 if (bed->s->arch_size == 32)
8309 r_sym_mask = ~(bfd_vma) 0xff;
8310 else
8311 r_sym_mask = ~(bfd_vma) 0xffffffff;
8312
8313 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8314 if (lo->type == bfd_indirect_link_order)
8315 {
8316 bfd_byte *erel, *erelend;
8317 asection *o = lo->u.indirect.section;
8318
8319 if (o->contents == NULL && o->size != 0)
8320 {
8321 /* This is a reloc section that is being handled as a normal
8322 section. See bfd_section_from_shdr. We can't combine
8323 relocs in this case. */
8324 free (sort);
8325 return 0;
8326 }
8327 erel = o->contents;
8328 erelend = o->contents + o->size;
8329 /* FIXME: octets_per_byte. */
8330 p = sort + o->output_offset / ext_size * sort_elt;
8331
8332 while (erel < erelend)
8333 {
8334 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8335
8336 (*swap_in) (abfd, erel, s->rela);
8337 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8338 s->u.sym_mask = r_sym_mask;
8339 p += sort_elt;
8340 erel += ext_size;
8341 }
8342 }
8343
8344 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8345
8346 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8347 {
8348 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8349 if (s->type != reloc_class_relative)
8350 break;
8351 }
8352 ret = i;
8353 s_non_relative = p;
8354
8355 sq = (struct elf_link_sort_rela *) s_non_relative;
8356 for (; i < count; i++, p += sort_elt)
8357 {
8358 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8359 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8360 sq = sp;
8361 sp->u.offset = sq->rela->r_offset;
8362 }
8363
8364 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8365
8366 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8367 if (lo->type == bfd_indirect_link_order)
8368 {
8369 bfd_byte *erel, *erelend;
8370 asection *o = lo->u.indirect.section;
8371
8372 erel = o->contents;
8373 erelend = o->contents + o->size;
8374 /* FIXME: octets_per_byte. */
8375 p = sort + o->output_offset / ext_size * sort_elt;
8376 while (erel < erelend)
8377 {
8378 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8379 (*swap_out) (abfd, s->rela, erel);
8380 p += sort_elt;
8381 erel += ext_size;
8382 }
8383 }
8384
8385 free (sort);
8386 *psec = dynamic_relocs;
8387 return ret;
8388 }
8389
8390 /* Flush the output symbols to the file. */
8391
8392 static bfd_boolean
8393 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8394 const struct elf_backend_data *bed)
8395 {
8396 if (flinfo->symbuf_count > 0)
8397 {
8398 Elf_Internal_Shdr *hdr;
8399 file_ptr pos;
8400 bfd_size_type amt;
8401
8402 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8403 pos = hdr->sh_offset + hdr->sh_size;
8404 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8405 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8406 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8407 return FALSE;
8408
8409 hdr->sh_size += amt;
8410 flinfo->symbuf_count = 0;
8411 }
8412
8413 return TRUE;
8414 }
8415
8416 /* Add a symbol to the output symbol table. */
8417
8418 static int
8419 elf_link_output_sym (struct elf_final_link_info *flinfo,
8420 const char *name,
8421 Elf_Internal_Sym *elfsym,
8422 asection *input_sec,
8423 struct elf_link_hash_entry *h)
8424 {
8425 bfd_byte *dest;
8426 Elf_External_Sym_Shndx *destshndx;
8427 int (*output_symbol_hook)
8428 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8429 struct elf_link_hash_entry *);
8430 const struct elf_backend_data *bed;
8431
8432 bed = get_elf_backend_data (flinfo->output_bfd);
8433 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8434 if (output_symbol_hook != NULL)
8435 {
8436 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8437 if (ret != 1)
8438 return ret;
8439 }
8440
8441 if (name == NULL || *name == '\0')
8442 elfsym->st_name = 0;
8443 else if (input_sec->flags & SEC_EXCLUDE)
8444 elfsym->st_name = 0;
8445 else
8446 {
8447 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8448 name, TRUE, FALSE);
8449 if (elfsym->st_name == (unsigned long) -1)
8450 return 0;
8451 }
8452
8453 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8454 {
8455 if (! elf_link_flush_output_syms (flinfo, bed))
8456 return 0;
8457 }
8458
8459 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8460 destshndx = flinfo->symshndxbuf;
8461 if (destshndx != NULL)
8462 {
8463 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8464 {
8465 bfd_size_type amt;
8466
8467 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8468 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8469 amt * 2);
8470 if (destshndx == NULL)
8471 return 0;
8472 flinfo->symshndxbuf = destshndx;
8473 memset ((char *) destshndx + amt, 0, amt);
8474 flinfo->shndxbuf_size *= 2;
8475 }
8476 destshndx += bfd_get_symcount (flinfo->output_bfd);
8477 }
8478
8479 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8480 flinfo->symbuf_count += 1;
8481 bfd_get_symcount (flinfo->output_bfd) += 1;
8482
8483 return 1;
8484 }
8485
8486 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8487
8488 static bfd_boolean
8489 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8490 {
8491 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8492 && sym->st_shndx < SHN_LORESERVE)
8493 {
8494 /* The gABI doesn't support dynamic symbols in output sections
8495 beyond 64k. */
8496 (*_bfd_error_handler)
8497 (_("%B: Too many sections: %d (>= %d)"),
8498 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8499 bfd_set_error (bfd_error_nonrepresentable_section);
8500 return FALSE;
8501 }
8502 return TRUE;
8503 }
8504
8505 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8506 allowing an unsatisfied unversioned symbol in the DSO to match a
8507 versioned symbol that would normally require an explicit version.
8508 We also handle the case that a DSO references a hidden symbol
8509 which may be satisfied by a versioned symbol in another DSO. */
8510
8511 static bfd_boolean
8512 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8513 const struct elf_backend_data *bed,
8514 struct elf_link_hash_entry *h)
8515 {
8516 bfd *abfd;
8517 struct elf_link_loaded_list *loaded;
8518
8519 if (!is_elf_hash_table (info->hash))
8520 return FALSE;
8521
8522 /* Check indirect symbol. */
8523 while (h->root.type == bfd_link_hash_indirect)
8524 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8525
8526 switch (h->root.type)
8527 {
8528 default:
8529 abfd = NULL;
8530 break;
8531
8532 case bfd_link_hash_undefined:
8533 case bfd_link_hash_undefweak:
8534 abfd = h->root.u.undef.abfd;
8535 if ((abfd->flags & DYNAMIC) == 0
8536 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8537 return FALSE;
8538 break;
8539
8540 case bfd_link_hash_defined:
8541 case bfd_link_hash_defweak:
8542 abfd = h->root.u.def.section->owner;
8543 break;
8544
8545 case bfd_link_hash_common:
8546 abfd = h->root.u.c.p->section->owner;
8547 break;
8548 }
8549 BFD_ASSERT (abfd != NULL);
8550
8551 for (loaded = elf_hash_table (info)->loaded;
8552 loaded != NULL;
8553 loaded = loaded->next)
8554 {
8555 bfd *input;
8556 Elf_Internal_Shdr *hdr;
8557 bfd_size_type symcount;
8558 bfd_size_type extsymcount;
8559 bfd_size_type extsymoff;
8560 Elf_Internal_Shdr *versymhdr;
8561 Elf_Internal_Sym *isym;
8562 Elf_Internal_Sym *isymend;
8563 Elf_Internal_Sym *isymbuf;
8564 Elf_External_Versym *ever;
8565 Elf_External_Versym *extversym;
8566
8567 input = loaded->abfd;
8568
8569 /* We check each DSO for a possible hidden versioned definition. */
8570 if (input == abfd
8571 || (input->flags & DYNAMIC) == 0
8572 || elf_dynversym (input) == 0)
8573 continue;
8574
8575 hdr = &elf_tdata (input)->dynsymtab_hdr;
8576
8577 symcount = hdr->sh_size / bed->s->sizeof_sym;
8578 if (elf_bad_symtab (input))
8579 {
8580 extsymcount = symcount;
8581 extsymoff = 0;
8582 }
8583 else
8584 {
8585 extsymcount = symcount - hdr->sh_info;
8586 extsymoff = hdr->sh_info;
8587 }
8588
8589 if (extsymcount == 0)
8590 continue;
8591
8592 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8593 NULL, NULL, NULL);
8594 if (isymbuf == NULL)
8595 return FALSE;
8596
8597 /* Read in any version definitions. */
8598 versymhdr = &elf_tdata (input)->dynversym_hdr;
8599 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8600 if (extversym == NULL)
8601 goto error_ret;
8602
8603 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8604 || (bfd_bread (extversym, versymhdr->sh_size, input)
8605 != versymhdr->sh_size))
8606 {
8607 free (extversym);
8608 error_ret:
8609 free (isymbuf);
8610 return FALSE;
8611 }
8612
8613 ever = extversym + extsymoff;
8614 isymend = isymbuf + extsymcount;
8615 for (isym = isymbuf; isym < isymend; isym++, ever++)
8616 {
8617 const char *name;
8618 Elf_Internal_Versym iver;
8619 unsigned short version_index;
8620
8621 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8622 || isym->st_shndx == SHN_UNDEF)
8623 continue;
8624
8625 name = bfd_elf_string_from_elf_section (input,
8626 hdr->sh_link,
8627 isym->st_name);
8628 if (strcmp (name, h->root.root.string) != 0)
8629 continue;
8630
8631 _bfd_elf_swap_versym_in (input, ever, &iver);
8632
8633 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8634 && !(h->def_regular
8635 && h->forced_local))
8636 {
8637 /* If we have a non-hidden versioned sym, then it should
8638 have provided a definition for the undefined sym unless
8639 it is defined in a non-shared object and forced local.
8640 */
8641 abort ();
8642 }
8643
8644 version_index = iver.vs_vers & VERSYM_VERSION;
8645 if (version_index == 1 || version_index == 2)
8646 {
8647 /* This is the base or first version. We can use it. */
8648 free (extversym);
8649 free (isymbuf);
8650 return TRUE;
8651 }
8652 }
8653
8654 free (extversym);
8655 free (isymbuf);
8656 }
8657
8658 return FALSE;
8659 }
8660
8661 /* Add an external symbol to the symbol table. This is called from
8662 the hash table traversal routine. When generating a shared object,
8663 we go through the symbol table twice. The first time we output
8664 anything that might have been forced to local scope in a version
8665 script. The second time we output the symbols that are still
8666 global symbols. */
8667
8668 static bfd_boolean
8669 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8670 {
8671 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8672 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8673 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8674 bfd_boolean strip;
8675 Elf_Internal_Sym sym;
8676 asection *input_sec;
8677 const struct elf_backend_data *bed;
8678 long indx;
8679 int ret;
8680
8681 if (h->root.type == bfd_link_hash_warning)
8682 {
8683 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8684 if (h->root.type == bfd_link_hash_new)
8685 return TRUE;
8686 }
8687
8688 /* Decide whether to output this symbol in this pass. */
8689 if (eoinfo->localsyms)
8690 {
8691 if (!h->forced_local)
8692 return TRUE;
8693 if (eoinfo->second_pass
8694 && !((h->root.type == bfd_link_hash_defined
8695 || h->root.type == bfd_link_hash_defweak)
8696 && h->root.u.def.section->output_section != NULL))
8697 return TRUE;
8698 }
8699 else
8700 {
8701 if (h->forced_local)
8702 return TRUE;
8703 }
8704
8705 bed = get_elf_backend_data (flinfo->output_bfd);
8706
8707 if (h->root.type == bfd_link_hash_undefined)
8708 {
8709 /* If we have an undefined symbol reference here then it must have
8710 come from a shared library that is being linked in. (Undefined
8711 references in regular files have already been handled unless
8712 they are in unreferenced sections which are removed by garbage
8713 collection). */
8714 bfd_boolean ignore_undef = FALSE;
8715
8716 /* Some symbols may be special in that the fact that they're
8717 undefined can be safely ignored - let backend determine that. */
8718 if (bed->elf_backend_ignore_undef_symbol)
8719 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8720
8721 /* If we are reporting errors for this situation then do so now. */
8722 if (!ignore_undef
8723 && h->ref_dynamic
8724 && (!h->ref_regular || flinfo->info->gc_sections)
8725 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8726 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8727 {
8728 if (!(flinfo->info->callbacks->undefined_symbol
8729 (flinfo->info, h->root.root.string,
8730 h->ref_regular ? NULL : h->root.u.undef.abfd,
8731 NULL, 0,
8732 (flinfo->info->unresolved_syms_in_shared_libs
8733 == RM_GENERATE_ERROR))))
8734 {
8735 bfd_set_error (bfd_error_bad_value);
8736 eoinfo->failed = TRUE;
8737 return FALSE;
8738 }
8739 }
8740 }
8741
8742 /* We should also warn if a forced local symbol is referenced from
8743 shared libraries. */
8744 if (!flinfo->info->relocatable
8745 && flinfo->info->executable
8746 && h->forced_local
8747 && h->ref_dynamic
8748 && h->def_regular
8749 && !h->dynamic_def
8750 && h->ref_dynamic_nonweak
8751 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8752 {
8753 bfd *def_bfd;
8754 const char *msg;
8755 struct elf_link_hash_entry *hi = h;
8756
8757 /* Check indirect symbol. */
8758 while (hi->root.type == bfd_link_hash_indirect)
8759 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8760
8761 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8762 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8763 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8764 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8765 else
8766 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8767 def_bfd = flinfo->output_bfd;
8768 if (hi->root.u.def.section != bfd_abs_section_ptr)
8769 def_bfd = hi->root.u.def.section->owner;
8770 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8771 h->root.root.string);
8772 bfd_set_error (bfd_error_bad_value);
8773 eoinfo->failed = TRUE;
8774 return FALSE;
8775 }
8776
8777 /* We don't want to output symbols that have never been mentioned by
8778 a regular file, or that we have been told to strip. However, if
8779 h->indx is set to -2, the symbol is used by a reloc and we must
8780 output it. */
8781 if (h->indx == -2)
8782 strip = FALSE;
8783 else if ((h->def_dynamic
8784 || h->ref_dynamic
8785 || h->root.type == bfd_link_hash_new)
8786 && !h->def_regular
8787 && !h->ref_regular)
8788 strip = TRUE;
8789 else if (flinfo->info->strip == strip_all)
8790 strip = TRUE;
8791 else if (flinfo->info->strip == strip_some
8792 && bfd_hash_lookup (flinfo->info->keep_hash,
8793 h->root.root.string, FALSE, FALSE) == NULL)
8794 strip = TRUE;
8795 else if ((h->root.type == bfd_link_hash_defined
8796 || h->root.type == bfd_link_hash_defweak)
8797 && ((flinfo->info->strip_discarded
8798 && discarded_section (h->root.u.def.section))
8799 || (h->root.u.def.section->owner != NULL
8800 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8801 strip = TRUE;
8802 else if ((h->root.type == bfd_link_hash_undefined
8803 || h->root.type == bfd_link_hash_undefweak)
8804 && h->root.u.undef.abfd != NULL
8805 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8806 strip = TRUE;
8807 else
8808 strip = FALSE;
8809
8810 /* If we're stripping it, and it's not a dynamic symbol, there's
8811 nothing else to do unless it is a forced local symbol or a
8812 STT_GNU_IFUNC symbol. */
8813 if (strip
8814 && h->dynindx == -1
8815 && h->type != STT_GNU_IFUNC
8816 && !h->forced_local)
8817 return TRUE;
8818
8819 sym.st_value = 0;
8820 sym.st_size = h->size;
8821 sym.st_other = h->other;
8822 if (h->forced_local)
8823 {
8824 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8825 /* Turn off visibility on local symbol. */
8826 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8827 }
8828 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8829 else if (h->unique_global && h->def_regular)
8830 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8831 else if (h->root.type == bfd_link_hash_undefweak
8832 || h->root.type == bfd_link_hash_defweak)
8833 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8834 else
8835 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8836 sym.st_target_internal = h->target_internal;
8837
8838 switch (h->root.type)
8839 {
8840 default:
8841 case bfd_link_hash_new:
8842 case bfd_link_hash_warning:
8843 abort ();
8844 return FALSE;
8845
8846 case bfd_link_hash_undefined:
8847 case bfd_link_hash_undefweak:
8848 input_sec = bfd_und_section_ptr;
8849 sym.st_shndx = SHN_UNDEF;
8850 break;
8851
8852 case bfd_link_hash_defined:
8853 case bfd_link_hash_defweak:
8854 {
8855 input_sec = h->root.u.def.section;
8856 if (input_sec->output_section != NULL)
8857 {
8858 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8859 {
8860 bfd_boolean second_pass_sym
8861 = (input_sec->owner == flinfo->output_bfd
8862 || input_sec->owner == NULL
8863 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8864 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8865
8866 eoinfo->need_second_pass |= second_pass_sym;
8867 if (eoinfo->second_pass != second_pass_sym)
8868 return TRUE;
8869 }
8870
8871 sym.st_shndx =
8872 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8873 input_sec->output_section);
8874 if (sym.st_shndx == SHN_BAD)
8875 {
8876 (*_bfd_error_handler)
8877 (_("%B: could not find output section %A for input section %A"),
8878 flinfo->output_bfd, input_sec->output_section, input_sec);
8879 bfd_set_error (bfd_error_nonrepresentable_section);
8880 eoinfo->failed = TRUE;
8881 return FALSE;
8882 }
8883
8884 /* ELF symbols in relocatable files are section relative,
8885 but in nonrelocatable files they are virtual
8886 addresses. */
8887 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8888 if (!flinfo->info->relocatable)
8889 {
8890 sym.st_value += input_sec->output_section->vma;
8891 if (h->type == STT_TLS)
8892 {
8893 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8894 if (tls_sec != NULL)
8895 sym.st_value -= tls_sec->vma;
8896 else
8897 {
8898 /* The TLS section may have been garbage collected. */
8899 BFD_ASSERT (flinfo->info->gc_sections
8900 && !input_sec->gc_mark);
8901 }
8902 }
8903 }
8904 }
8905 else
8906 {
8907 BFD_ASSERT (input_sec->owner == NULL
8908 || (input_sec->owner->flags & DYNAMIC) != 0);
8909 sym.st_shndx = SHN_UNDEF;
8910 input_sec = bfd_und_section_ptr;
8911 }
8912 }
8913 break;
8914
8915 case bfd_link_hash_common:
8916 input_sec = h->root.u.c.p->section;
8917 sym.st_shndx = bed->common_section_index (input_sec);
8918 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8919 break;
8920
8921 case bfd_link_hash_indirect:
8922 /* These symbols are created by symbol versioning. They point
8923 to the decorated version of the name. For example, if the
8924 symbol foo@@GNU_1.2 is the default, which should be used when
8925 foo is used with no version, then we add an indirect symbol
8926 foo which points to foo@@GNU_1.2. We ignore these symbols,
8927 since the indirected symbol is already in the hash table. */
8928 return TRUE;
8929 }
8930
8931 /* Give the processor backend a chance to tweak the symbol value,
8932 and also to finish up anything that needs to be done for this
8933 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8934 forced local syms when non-shared is due to a historical quirk.
8935 STT_GNU_IFUNC symbol must go through PLT. */
8936 if ((h->type == STT_GNU_IFUNC
8937 && h->def_regular
8938 && !flinfo->info->relocatable)
8939 || ((h->dynindx != -1
8940 || h->forced_local)
8941 && ((flinfo->info->shared
8942 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8943 || h->root.type != bfd_link_hash_undefweak))
8944 || !h->forced_local)
8945 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8946 {
8947 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8948 (flinfo->output_bfd, flinfo->info, h, &sym)))
8949 {
8950 eoinfo->failed = TRUE;
8951 return FALSE;
8952 }
8953 }
8954
8955 /* If we are marking the symbol as undefined, and there are no
8956 non-weak references to this symbol from a regular object, then
8957 mark the symbol as weak undefined; if there are non-weak
8958 references, mark the symbol as strong. We can't do this earlier,
8959 because it might not be marked as undefined until the
8960 finish_dynamic_symbol routine gets through with it. */
8961 if (sym.st_shndx == SHN_UNDEF
8962 && h->ref_regular
8963 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8964 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8965 {
8966 int bindtype;
8967 unsigned int type = ELF_ST_TYPE (sym.st_info);
8968
8969 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8970 if (type == STT_GNU_IFUNC)
8971 type = STT_FUNC;
8972
8973 if (h->ref_regular_nonweak)
8974 bindtype = STB_GLOBAL;
8975 else
8976 bindtype = STB_WEAK;
8977 sym.st_info = ELF_ST_INFO (bindtype, type);
8978 }
8979
8980 /* If this is a symbol defined in a dynamic library, don't use the
8981 symbol size from the dynamic library. Relinking an executable
8982 against a new library may introduce gratuitous changes in the
8983 executable's symbols if we keep the size. */
8984 if (sym.st_shndx == SHN_UNDEF
8985 && !h->def_regular
8986 && h->def_dynamic)
8987 sym.st_size = 0;
8988
8989 /* If a non-weak symbol with non-default visibility is not defined
8990 locally, it is a fatal error. */
8991 if (!flinfo->info->relocatable
8992 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8993 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8994 && h->root.type == bfd_link_hash_undefined
8995 && !h->def_regular)
8996 {
8997 const char *msg;
8998
8999 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9000 msg = _("%B: protected symbol `%s' isn't defined");
9001 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9002 msg = _("%B: internal symbol `%s' isn't defined");
9003 else
9004 msg = _("%B: hidden symbol `%s' isn't defined");
9005 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9006 bfd_set_error (bfd_error_bad_value);
9007 eoinfo->failed = TRUE;
9008 return FALSE;
9009 }
9010
9011 /* If this symbol should be put in the .dynsym section, then put it
9012 there now. We already know the symbol index. We also fill in
9013 the entry in the .hash section. */
9014 if (flinfo->dynsym_sec != NULL
9015 && h->dynindx != -1
9016 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9017 {
9018 bfd_byte *esym;
9019
9020 /* Since there is no version information in the dynamic string,
9021 if there is no version info in symbol version section, we will
9022 have a run-time problem. */
9023 if (h->verinfo.verdef == NULL)
9024 {
9025 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9026
9027 if (p && p [1] != '\0')
9028 {
9029 (*_bfd_error_handler)
9030 (_("%B: No symbol version section for versioned symbol `%s'"),
9031 flinfo->output_bfd, h->root.root.string);
9032 eoinfo->failed = TRUE;
9033 return FALSE;
9034 }
9035 }
9036
9037 sym.st_name = h->dynstr_index;
9038 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9039 if (!check_dynsym (flinfo->output_bfd, &sym))
9040 {
9041 eoinfo->failed = TRUE;
9042 return FALSE;
9043 }
9044 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9045
9046 if (flinfo->hash_sec != NULL)
9047 {
9048 size_t hash_entry_size;
9049 bfd_byte *bucketpos;
9050 bfd_vma chain;
9051 size_t bucketcount;
9052 size_t bucket;
9053
9054 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9055 bucket = h->u.elf_hash_value % bucketcount;
9056
9057 hash_entry_size
9058 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9059 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9060 + (bucket + 2) * hash_entry_size);
9061 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9062 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9063 bucketpos);
9064 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9065 ((bfd_byte *) flinfo->hash_sec->contents
9066 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9067 }
9068
9069 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9070 {
9071 Elf_Internal_Versym iversym;
9072 Elf_External_Versym *eversym;
9073
9074 if (!h->def_regular)
9075 {
9076 if (h->verinfo.verdef == NULL)
9077 iversym.vs_vers = 0;
9078 else
9079 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9080 }
9081 else
9082 {
9083 if (h->verinfo.vertree == NULL)
9084 iversym.vs_vers = 1;
9085 else
9086 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9087 if (flinfo->info->create_default_symver)
9088 iversym.vs_vers++;
9089 }
9090
9091 if (h->hidden)
9092 iversym.vs_vers |= VERSYM_HIDDEN;
9093
9094 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9095 eversym += h->dynindx;
9096 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9097 }
9098 }
9099
9100 /* If we're stripping it, then it was just a dynamic symbol, and
9101 there's nothing else to do. */
9102 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9103 return TRUE;
9104
9105 indx = bfd_get_symcount (flinfo->output_bfd);
9106 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9107 if (ret == 0)
9108 {
9109 eoinfo->failed = TRUE;
9110 return FALSE;
9111 }
9112 else if (ret == 1)
9113 h->indx = indx;
9114 else if (h->indx == -2)
9115 abort();
9116
9117 return TRUE;
9118 }
9119
9120 /* Return TRUE if special handling is done for relocs in SEC against
9121 symbols defined in discarded sections. */
9122
9123 static bfd_boolean
9124 elf_section_ignore_discarded_relocs (asection *sec)
9125 {
9126 const struct elf_backend_data *bed;
9127
9128 switch (sec->sec_info_type)
9129 {
9130 case SEC_INFO_TYPE_STABS:
9131 case SEC_INFO_TYPE_EH_FRAME:
9132 return TRUE;
9133 default:
9134 break;
9135 }
9136
9137 bed = get_elf_backend_data (sec->owner);
9138 if (bed->elf_backend_ignore_discarded_relocs != NULL
9139 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9140 return TRUE;
9141
9142 return FALSE;
9143 }
9144
9145 /* Return a mask saying how ld should treat relocations in SEC against
9146 symbols defined in discarded sections. If this function returns
9147 COMPLAIN set, ld will issue a warning message. If this function
9148 returns PRETEND set, and the discarded section was link-once and the
9149 same size as the kept link-once section, ld will pretend that the
9150 symbol was actually defined in the kept section. Otherwise ld will
9151 zero the reloc (at least that is the intent, but some cooperation by
9152 the target dependent code is needed, particularly for REL targets). */
9153
9154 unsigned int
9155 _bfd_elf_default_action_discarded (asection *sec)
9156 {
9157 if (sec->flags & SEC_DEBUGGING)
9158 return PRETEND;
9159
9160 if (strcmp (".eh_frame", sec->name) == 0)
9161 return 0;
9162
9163 if (strcmp (".gcc_except_table", sec->name) == 0)
9164 return 0;
9165
9166 return COMPLAIN | PRETEND;
9167 }
9168
9169 /* Find a match between a section and a member of a section group. */
9170
9171 static asection *
9172 match_group_member (asection *sec, asection *group,
9173 struct bfd_link_info *info)
9174 {
9175 asection *first = elf_next_in_group (group);
9176 asection *s = first;
9177
9178 while (s != NULL)
9179 {
9180 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9181 return s;
9182
9183 s = elf_next_in_group (s);
9184 if (s == first)
9185 break;
9186 }
9187
9188 return NULL;
9189 }
9190
9191 /* Check if the kept section of a discarded section SEC can be used
9192 to replace it. Return the replacement if it is OK. Otherwise return
9193 NULL. */
9194
9195 asection *
9196 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9197 {
9198 asection *kept;
9199
9200 kept = sec->kept_section;
9201 if (kept != NULL)
9202 {
9203 if ((kept->flags & SEC_GROUP) != 0)
9204 kept = match_group_member (sec, kept, info);
9205 if (kept != NULL
9206 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9207 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9208 kept = NULL;
9209 sec->kept_section = kept;
9210 }
9211 return kept;
9212 }
9213
9214 /* Link an input file into the linker output file. This function
9215 handles all the sections and relocations of the input file at once.
9216 This is so that we only have to read the local symbols once, and
9217 don't have to keep them in memory. */
9218
9219 static bfd_boolean
9220 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9221 {
9222 int (*relocate_section)
9223 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9224 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9225 bfd *output_bfd;
9226 Elf_Internal_Shdr *symtab_hdr;
9227 size_t locsymcount;
9228 size_t extsymoff;
9229 Elf_Internal_Sym *isymbuf;
9230 Elf_Internal_Sym *isym;
9231 Elf_Internal_Sym *isymend;
9232 long *pindex;
9233 asection **ppsection;
9234 asection *o;
9235 const struct elf_backend_data *bed;
9236 struct elf_link_hash_entry **sym_hashes;
9237 bfd_size_type address_size;
9238 bfd_vma r_type_mask;
9239 int r_sym_shift;
9240 bfd_boolean have_file_sym = FALSE;
9241
9242 output_bfd = flinfo->output_bfd;
9243 bed = get_elf_backend_data (output_bfd);
9244 relocate_section = bed->elf_backend_relocate_section;
9245
9246 /* If this is a dynamic object, we don't want to do anything here:
9247 we don't want the local symbols, and we don't want the section
9248 contents. */
9249 if ((input_bfd->flags & DYNAMIC) != 0)
9250 return TRUE;
9251
9252 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9253 if (elf_bad_symtab (input_bfd))
9254 {
9255 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9256 extsymoff = 0;
9257 }
9258 else
9259 {
9260 locsymcount = symtab_hdr->sh_info;
9261 extsymoff = symtab_hdr->sh_info;
9262 }
9263
9264 /* Read the local symbols. */
9265 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9266 if (isymbuf == NULL && locsymcount != 0)
9267 {
9268 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9269 flinfo->internal_syms,
9270 flinfo->external_syms,
9271 flinfo->locsym_shndx);
9272 if (isymbuf == NULL)
9273 return FALSE;
9274 }
9275
9276 /* Find local symbol sections and adjust values of symbols in
9277 SEC_MERGE sections. Write out those local symbols we know are
9278 going into the output file. */
9279 isymend = isymbuf + locsymcount;
9280 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9281 isym < isymend;
9282 isym++, pindex++, ppsection++)
9283 {
9284 asection *isec;
9285 const char *name;
9286 Elf_Internal_Sym osym;
9287 long indx;
9288 int ret;
9289
9290 *pindex = -1;
9291
9292 if (elf_bad_symtab (input_bfd))
9293 {
9294 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9295 {
9296 *ppsection = NULL;
9297 continue;
9298 }
9299 }
9300
9301 if (isym->st_shndx == SHN_UNDEF)
9302 isec = bfd_und_section_ptr;
9303 else if (isym->st_shndx == SHN_ABS)
9304 isec = bfd_abs_section_ptr;
9305 else if (isym->st_shndx == SHN_COMMON)
9306 isec = bfd_com_section_ptr;
9307 else
9308 {
9309 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9310 if (isec == NULL)
9311 {
9312 /* Don't attempt to output symbols with st_shnx in the
9313 reserved range other than SHN_ABS and SHN_COMMON. */
9314 *ppsection = NULL;
9315 continue;
9316 }
9317 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9318 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9319 isym->st_value =
9320 _bfd_merged_section_offset (output_bfd, &isec,
9321 elf_section_data (isec)->sec_info,
9322 isym->st_value);
9323 }
9324
9325 *ppsection = isec;
9326
9327 /* Don't output the first, undefined, symbol. */
9328 if (ppsection == flinfo->sections)
9329 continue;
9330
9331 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9332 {
9333 /* We never output section symbols. Instead, we use the
9334 section symbol of the corresponding section in the output
9335 file. */
9336 continue;
9337 }
9338
9339 /* If we are stripping all symbols, we don't want to output this
9340 one. */
9341 if (flinfo->info->strip == strip_all)
9342 continue;
9343
9344 /* If we are discarding all local symbols, we don't want to
9345 output this one. If we are generating a relocatable output
9346 file, then some of the local symbols may be required by
9347 relocs; we output them below as we discover that they are
9348 needed. */
9349 if (flinfo->info->discard == discard_all)
9350 continue;
9351
9352 /* If this symbol is defined in a section which we are
9353 discarding, we don't need to keep it. */
9354 if (isym->st_shndx != SHN_UNDEF
9355 && isym->st_shndx < SHN_LORESERVE
9356 && bfd_section_removed_from_list (output_bfd,
9357 isec->output_section))
9358 continue;
9359
9360 /* Get the name of the symbol. */
9361 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9362 isym->st_name);
9363 if (name == NULL)
9364 return FALSE;
9365
9366 /* See if we are discarding symbols with this name. */
9367 if ((flinfo->info->strip == strip_some
9368 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9369 == NULL))
9370 || (((flinfo->info->discard == discard_sec_merge
9371 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9372 || flinfo->info->discard == discard_l)
9373 && bfd_is_local_label_name (input_bfd, name)))
9374 continue;
9375
9376 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9377 {
9378 have_file_sym = TRUE;
9379 flinfo->filesym_count += 1;
9380 }
9381 if (!have_file_sym)
9382 {
9383 /* In the absence of debug info, bfd_find_nearest_line uses
9384 FILE symbols to determine the source file for local
9385 function symbols. Provide a FILE symbol here if input
9386 files lack such, so that their symbols won't be
9387 associated with a previous input file. It's not the
9388 source file, but the best we can do. */
9389 have_file_sym = TRUE;
9390 flinfo->filesym_count += 1;
9391 memset (&osym, 0, sizeof (osym));
9392 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9393 osym.st_shndx = SHN_ABS;
9394 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9395 bfd_abs_section_ptr, NULL))
9396 return FALSE;
9397 }
9398
9399 osym = *isym;
9400
9401 /* Adjust the section index for the output file. */
9402 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9403 isec->output_section);
9404 if (osym.st_shndx == SHN_BAD)
9405 return FALSE;
9406
9407 /* ELF symbols in relocatable files are section relative, but
9408 in executable files they are virtual addresses. Note that
9409 this code assumes that all ELF sections have an associated
9410 BFD section with a reasonable value for output_offset; below
9411 we assume that they also have a reasonable value for
9412 output_section. Any special sections must be set up to meet
9413 these requirements. */
9414 osym.st_value += isec->output_offset;
9415 if (!flinfo->info->relocatable)
9416 {
9417 osym.st_value += isec->output_section->vma;
9418 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9419 {
9420 /* STT_TLS symbols are relative to PT_TLS segment base. */
9421 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9422 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9423 }
9424 }
9425
9426 indx = bfd_get_symcount (output_bfd);
9427 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9428 if (ret == 0)
9429 return FALSE;
9430 else if (ret == 1)
9431 *pindex = indx;
9432 }
9433
9434 if (bed->s->arch_size == 32)
9435 {
9436 r_type_mask = 0xff;
9437 r_sym_shift = 8;
9438 address_size = 4;
9439 }
9440 else
9441 {
9442 r_type_mask = 0xffffffff;
9443 r_sym_shift = 32;
9444 address_size = 8;
9445 }
9446
9447 /* Relocate the contents of each section. */
9448 sym_hashes = elf_sym_hashes (input_bfd);
9449 for (o = input_bfd->sections; o != NULL; o = o->next)
9450 {
9451 bfd_byte *contents;
9452
9453 if (! o->linker_mark)
9454 {
9455 /* This section was omitted from the link. */
9456 continue;
9457 }
9458
9459 if (flinfo->info->relocatable
9460 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9461 {
9462 /* Deal with the group signature symbol. */
9463 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9464 unsigned long symndx = sec_data->this_hdr.sh_info;
9465 asection *osec = o->output_section;
9466
9467 if (symndx >= locsymcount
9468 || (elf_bad_symtab (input_bfd)
9469 && flinfo->sections[symndx] == NULL))
9470 {
9471 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9472 while (h->root.type == bfd_link_hash_indirect
9473 || h->root.type == bfd_link_hash_warning)
9474 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9475 /* Arrange for symbol to be output. */
9476 h->indx = -2;
9477 elf_section_data (osec)->this_hdr.sh_info = -2;
9478 }
9479 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9480 {
9481 /* We'll use the output section target_index. */
9482 asection *sec = flinfo->sections[symndx]->output_section;
9483 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9484 }
9485 else
9486 {
9487 if (flinfo->indices[symndx] == -1)
9488 {
9489 /* Otherwise output the local symbol now. */
9490 Elf_Internal_Sym sym = isymbuf[symndx];
9491 asection *sec = flinfo->sections[symndx]->output_section;
9492 const char *name;
9493 long indx;
9494 int ret;
9495
9496 name = bfd_elf_string_from_elf_section (input_bfd,
9497 symtab_hdr->sh_link,
9498 sym.st_name);
9499 if (name == NULL)
9500 return FALSE;
9501
9502 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9503 sec);
9504 if (sym.st_shndx == SHN_BAD)
9505 return FALSE;
9506
9507 sym.st_value += o->output_offset;
9508
9509 indx = bfd_get_symcount (output_bfd);
9510 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9511 if (ret == 0)
9512 return FALSE;
9513 else if (ret == 1)
9514 flinfo->indices[symndx] = indx;
9515 else
9516 abort ();
9517 }
9518 elf_section_data (osec)->this_hdr.sh_info
9519 = flinfo->indices[symndx];
9520 }
9521 }
9522
9523 if ((o->flags & SEC_HAS_CONTENTS) == 0
9524 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9525 continue;
9526
9527 if ((o->flags & SEC_LINKER_CREATED) != 0)
9528 {
9529 /* Section was created by _bfd_elf_link_create_dynamic_sections
9530 or somesuch. */
9531 continue;
9532 }
9533
9534 /* Get the contents of the section. They have been cached by a
9535 relaxation routine. Note that o is a section in an input
9536 file, so the contents field will not have been set by any of
9537 the routines which work on output files. */
9538 if (elf_section_data (o)->this_hdr.contents != NULL)
9539 contents = elf_section_data (o)->this_hdr.contents;
9540 else
9541 {
9542 contents = flinfo->contents;
9543 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9544 return FALSE;
9545 }
9546
9547 if ((o->flags & SEC_RELOC) != 0)
9548 {
9549 Elf_Internal_Rela *internal_relocs;
9550 Elf_Internal_Rela *rel, *relend;
9551 int action_discarded;
9552 int ret;
9553
9554 /* Get the swapped relocs. */
9555 internal_relocs
9556 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9557 flinfo->internal_relocs, FALSE);
9558 if (internal_relocs == NULL
9559 && o->reloc_count > 0)
9560 return FALSE;
9561
9562 /* We need to reverse-copy input .ctors/.dtors sections if
9563 they are placed in .init_array/.finit_array for output. */
9564 if (o->size > address_size
9565 && ((strncmp (o->name, ".ctors", 6) == 0
9566 && strcmp (o->output_section->name,
9567 ".init_array") == 0)
9568 || (strncmp (o->name, ".dtors", 6) == 0
9569 && strcmp (o->output_section->name,
9570 ".fini_array") == 0))
9571 && (o->name[6] == 0 || o->name[6] == '.'))
9572 {
9573 if (o->size != o->reloc_count * address_size)
9574 {
9575 (*_bfd_error_handler)
9576 (_("error: %B: size of section %A is not "
9577 "multiple of address size"),
9578 input_bfd, o);
9579 bfd_set_error (bfd_error_on_input);
9580 return FALSE;
9581 }
9582 o->flags |= SEC_ELF_REVERSE_COPY;
9583 }
9584
9585 action_discarded = -1;
9586 if (!elf_section_ignore_discarded_relocs (o))
9587 action_discarded = (*bed->action_discarded) (o);
9588
9589 /* Run through the relocs evaluating complex reloc symbols and
9590 looking for relocs against symbols from discarded sections
9591 or section symbols from removed link-once sections.
9592 Complain about relocs against discarded sections. Zero
9593 relocs against removed link-once sections. */
9594
9595 rel = internal_relocs;
9596 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9597 for ( ; rel < relend; rel++)
9598 {
9599 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9600 unsigned int s_type;
9601 asection **ps, *sec;
9602 struct elf_link_hash_entry *h = NULL;
9603 const char *sym_name;
9604
9605 if (r_symndx == STN_UNDEF)
9606 continue;
9607
9608 if (r_symndx >= locsymcount
9609 || (elf_bad_symtab (input_bfd)
9610 && flinfo->sections[r_symndx] == NULL))
9611 {
9612 h = sym_hashes[r_symndx - extsymoff];
9613
9614 /* Badly formatted input files can contain relocs that
9615 reference non-existant symbols. Check here so that
9616 we do not seg fault. */
9617 if (h == NULL)
9618 {
9619 char buffer [32];
9620
9621 sprintf_vma (buffer, rel->r_info);
9622 (*_bfd_error_handler)
9623 (_("error: %B contains a reloc (0x%s) for section %A "
9624 "that references a non-existent global symbol"),
9625 input_bfd, o, buffer);
9626 bfd_set_error (bfd_error_bad_value);
9627 return FALSE;
9628 }
9629
9630 while (h->root.type == bfd_link_hash_indirect
9631 || h->root.type == bfd_link_hash_warning)
9632 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9633
9634 s_type = h->type;
9635
9636 ps = NULL;
9637 if (h->root.type == bfd_link_hash_defined
9638 || h->root.type == bfd_link_hash_defweak)
9639 ps = &h->root.u.def.section;
9640
9641 sym_name = h->root.root.string;
9642 }
9643 else
9644 {
9645 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9646
9647 s_type = ELF_ST_TYPE (sym->st_info);
9648 ps = &flinfo->sections[r_symndx];
9649 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9650 sym, *ps);
9651 }
9652
9653 if ((s_type == STT_RELC || s_type == STT_SRELC)
9654 && !flinfo->info->relocatable)
9655 {
9656 bfd_vma val;
9657 bfd_vma dot = (rel->r_offset
9658 + o->output_offset + o->output_section->vma);
9659 #ifdef DEBUG
9660 printf ("Encountered a complex symbol!");
9661 printf (" (input_bfd %s, section %s, reloc %ld\n",
9662 input_bfd->filename, o->name,
9663 (long) (rel - internal_relocs));
9664 printf (" symbol: idx %8.8lx, name %s\n",
9665 r_symndx, sym_name);
9666 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9667 (unsigned long) rel->r_info,
9668 (unsigned long) rel->r_offset);
9669 #endif
9670 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9671 isymbuf, locsymcount, s_type == STT_SRELC))
9672 return FALSE;
9673
9674 /* Symbol evaluated OK. Update to absolute value. */
9675 set_symbol_value (input_bfd, isymbuf, locsymcount,
9676 r_symndx, val);
9677 continue;
9678 }
9679
9680 if (action_discarded != -1 && ps != NULL)
9681 {
9682 /* Complain if the definition comes from a
9683 discarded section. */
9684 if ((sec = *ps) != NULL && discarded_section (sec))
9685 {
9686 BFD_ASSERT (r_symndx != STN_UNDEF);
9687 if (action_discarded & COMPLAIN)
9688 (*flinfo->info->callbacks->einfo)
9689 (_("%X`%s' referenced in section `%A' of %B: "
9690 "defined in discarded section `%A' of %B\n"),
9691 sym_name, o, input_bfd, sec, sec->owner);
9692
9693 /* Try to do the best we can to support buggy old
9694 versions of gcc. Pretend that the symbol is
9695 really defined in the kept linkonce section.
9696 FIXME: This is quite broken. Modifying the
9697 symbol here means we will be changing all later
9698 uses of the symbol, not just in this section. */
9699 if (action_discarded & PRETEND)
9700 {
9701 asection *kept;
9702
9703 kept = _bfd_elf_check_kept_section (sec,
9704 flinfo->info);
9705 if (kept != NULL)
9706 {
9707 *ps = kept;
9708 continue;
9709 }
9710 }
9711 }
9712 }
9713 }
9714
9715 /* Relocate the section by invoking a back end routine.
9716
9717 The back end routine is responsible for adjusting the
9718 section contents as necessary, and (if using Rela relocs
9719 and generating a relocatable output file) adjusting the
9720 reloc addend as necessary.
9721
9722 The back end routine does not have to worry about setting
9723 the reloc address or the reloc symbol index.
9724
9725 The back end routine is given a pointer to the swapped in
9726 internal symbols, and can access the hash table entries
9727 for the external symbols via elf_sym_hashes (input_bfd).
9728
9729 When generating relocatable output, the back end routine
9730 must handle STB_LOCAL/STT_SECTION symbols specially. The
9731 output symbol is going to be a section symbol
9732 corresponding to the output section, which will require
9733 the addend to be adjusted. */
9734
9735 ret = (*relocate_section) (output_bfd, flinfo->info,
9736 input_bfd, o, contents,
9737 internal_relocs,
9738 isymbuf,
9739 flinfo->sections);
9740 if (!ret)
9741 return FALSE;
9742
9743 if (ret == 2
9744 || flinfo->info->relocatable
9745 || flinfo->info->emitrelocations)
9746 {
9747 Elf_Internal_Rela *irela;
9748 Elf_Internal_Rela *irelaend, *irelamid;
9749 bfd_vma last_offset;
9750 struct elf_link_hash_entry **rel_hash;
9751 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9752 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9753 unsigned int next_erel;
9754 bfd_boolean rela_normal;
9755 struct bfd_elf_section_data *esdi, *esdo;
9756
9757 esdi = elf_section_data (o);
9758 esdo = elf_section_data (o->output_section);
9759 rela_normal = FALSE;
9760
9761 /* Adjust the reloc addresses and symbol indices. */
9762
9763 irela = internal_relocs;
9764 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9765 rel_hash = esdo->rel.hashes + esdo->rel.count;
9766 /* We start processing the REL relocs, if any. When we reach
9767 IRELAMID in the loop, we switch to the RELA relocs. */
9768 irelamid = irela;
9769 if (esdi->rel.hdr != NULL)
9770 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9771 * bed->s->int_rels_per_ext_rel);
9772 rel_hash_list = rel_hash;
9773 rela_hash_list = NULL;
9774 last_offset = o->output_offset;
9775 if (!flinfo->info->relocatable)
9776 last_offset += o->output_section->vma;
9777 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9778 {
9779 unsigned long r_symndx;
9780 asection *sec;
9781 Elf_Internal_Sym sym;
9782
9783 if (next_erel == bed->s->int_rels_per_ext_rel)
9784 {
9785 rel_hash++;
9786 next_erel = 0;
9787 }
9788
9789 if (irela == irelamid)
9790 {
9791 rel_hash = esdo->rela.hashes + esdo->rela.count;
9792 rela_hash_list = rel_hash;
9793 rela_normal = bed->rela_normal;
9794 }
9795
9796 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9797 flinfo->info, o,
9798 irela->r_offset);
9799 if (irela->r_offset >= (bfd_vma) -2)
9800 {
9801 /* This is a reloc for a deleted entry or somesuch.
9802 Turn it into an R_*_NONE reloc, at the same
9803 offset as the last reloc. elf_eh_frame.c and
9804 bfd_elf_discard_info rely on reloc offsets
9805 being ordered. */
9806 irela->r_offset = last_offset;
9807 irela->r_info = 0;
9808 irela->r_addend = 0;
9809 continue;
9810 }
9811
9812 irela->r_offset += o->output_offset;
9813
9814 /* Relocs in an executable have to be virtual addresses. */
9815 if (!flinfo->info->relocatable)
9816 irela->r_offset += o->output_section->vma;
9817
9818 last_offset = irela->r_offset;
9819
9820 r_symndx = irela->r_info >> r_sym_shift;
9821 if (r_symndx == STN_UNDEF)
9822 continue;
9823
9824 if (r_symndx >= locsymcount
9825 || (elf_bad_symtab (input_bfd)
9826 && flinfo->sections[r_symndx] == NULL))
9827 {
9828 struct elf_link_hash_entry *rh;
9829 unsigned long indx;
9830
9831 /* This is a reloc against a global symbol. We
9832 have not yet output all the local symbols, so
9833 we do not know the symbol index of any global
9834 symbol. We set the rel_hash entry for this
9835 reloc to point to the global hash table entry
9836 for this symbol. The symbol index is then
9837 set at the end of bfd_elf_final_link. */
9838 indx = r_symndx - extsymoff;
9839 rh = elf_sym_hashes (input_bfd)[indx];
9840 while (rh->root.type == bfd_link_hash_indirect
9841 || rh->root.type == bfd_link_hash_warning)
9842 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9843
9844 /* Setting the index to -2 tells
9845 elf_link_output_extsym that this symbol is
9846 used by a reloc. */
9847 BFD_ASSERT (rh->indx < 0);
9848 rh->indx = -2;
9849
9850 *rel_hash = rh;
9851
9852 continue;
9853 }
9854
9855 /* This is a reloc against a local symbol. */
9856
9857 *rel_hash = NULL;
9858 sym = isymbuf[r_symndx];
9859 sec = flinfo->sections[r_symndx];
9860 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9861 {
9862 /* I suppose the backend ought to fill in the
9863 section of any STT_SECTION symbol against a
9864 processor specific section. */
9865 r_symndx = STN_UNDEF;
9866 if (bfd_is_abs_section (sec))
9867 ;
9868 else if (sec == NULL || sec->owner == NULL)
9869 {
9870 bfd_set_error (bfd_error_bad_value);
9871 return FALSE;
9872 }
9873 else
9874 {
9875 asection *osec = sec->output_section;
9876
9877 /* If we have discarded a section, the output
9878 section will be the absolute section. In
9879 case of discarded SEC_MERGE sections, use
9880 the kept section. relocate_section should
9881 have already handled discarded linkonce
9882 sections. */
9883 if (bfd_is_abs_section (osec)
9884 && sec->kept_section != NULL
9885 && sec->kept_section->output_section != NULL)
9886 {
9887 osec = sec->kept_section->output_section;
9888 irela->r_addend -= osec->vma;
9889 }
9890
9891 if (!bfd_is_abs_section (osec))
9892 {
9893 r_symndx = osec->target_index;
9894 if (r_symndx == STN_UNDEF)
9895 {
9896 irela->r_addend += osec->vma;
9897 osec = _bfd_nearby_section (output_bfd, osec,
9898 osec->vma);
9899 irela->r_addend -= osec->vma;
9900 r_symndx = osec->target_index;
9901 }
9902 }
9903 }
9904
9905 /* Adjust the addend according to where the
9906 section winds up in the output section. */
9907 if (rela_normal)
9908 irela->r_addend += sec->output_offset;
9909 }
9910 else
9911 {
9912 if (flinfo->indices[r_symndx] == -1)
9913 {
9914 unsigned long shlink;
9915 const char *name;
9916 asection *osec;
9917 long indx;
9918
9919 if (flinfo->info->strip == strip_all)
9920 {
9921 /* You can't do ld -r -s. */
9922 bfd_set_error (bfd_error_invalid_operation);
9923 return FALSE;
9924 }
9925
9926 /* This symbol was skipped earlier, but
9927 since it is needed by a reloc, we
9928 must output it now. */
9929 shlink = symtab_hdr->sh_link;
9930 name = (bfd_elf_string_from_elf_section
9931 (input_bfd, shlink, sym.st_name));
9932 if (name == NULL)
9933 return FALSE;
9934
9935 osec = sec->output_section;
9936 sym.st_shndx =
9937 _bfd_elf_section_from_bfd_section (output_bfd,
9938 osec);
9939 if (sym.st_shndx == SHN_BAD)
9940 return FALSE;
9941
9942 sym.st_value += sec->output_offset;
9943 if (!flinfo->info->relocatable)
9944 {
9945 sym.st_value += osec->vma;
9946 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9947 {
9948 /* STT_TLS symbols are relative to PT_TLS
9949 segment base. */
9950 BFD_ASSERT (elf_hash_table (flinfo->info)
9951 ->tls_sec != NULL);
9952 sym.st_value -= (elf_hash_table (flinfo->info)
9953 ->tls_sec->vma);
9954 }
9955 }
9956
9957 indx = bfd_get_symcount (output_bfd);
9958 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9959 NULL);
9960 if (ret == 0)
9961 return FALSE;
9962 else if (ret == 1)
9963 flinfo->indices[r_symndx] = indx;
9964 else
9965 abort ();
9966 }
9967
9968 r_symndx = flinfo->indices[r_symndx];
9969 }
9970
9971 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9972 | (irela->r_info & r_type_mask));
9973 }
9974
9975 /* Swap out the relocs. */
9976 input_rel_hdr = esdi->rel.hdr;
9977 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9978 {
9979 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9980 input_rel_hdr,
9981 internal_relocs,
9982 rel_hash_list))
9983 return FALSE;
9984 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9985 * bed->s->int_rels_per_ext_rel);
9986 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9987 }
9988
9989 input_rela_hdr = esdi->rela.hdr;
9990 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9991 {
9992 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9993 input_rela_hdr,
9994 internal_relocs,
9995 rela_hash_list))
9996 return FALSE;
9997 }
9998 }
9999 }
10000
10001 /* Write out the modified section contents. */
10002 if (bed->elf_backend_write_section
10003 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10004 contents))
10005 {
10006 /* Section written out. */
10007 }
10008 else switch (o->sec_info_type)
10009 {
10010 case SEC_INFO_TYPE_STABS:
10011 if (! (_bfd_write_section_stabs
10012 (output_bfd,
10013 &elf_hash_table (flinfo->info)->stab_info,
10014 o, &elf_section_data (o)->sec_info, contents)))
10015 return FALSE;
10016 break;
10017 case SEC_INFO_TYPE_MERGE:
10018 if (! _bfd_write_merged_section (output_bfd, o,
10019 elf_section_data (o)->sec_info))
10020 return FALSE;
10021 break;
10022 case SEC_INFO_TYPE_EH_FRAME:
10023 {
10024 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10025 o, contents))
10026 return FALSE;
10027 }
10028 break;
10029 default:
10030 {
10031 /* FIXME: octets_per_byte. */
10032 if (! (o->flags & SEC_EXCLUDE))
10033 {
10034 file_ptr offset = (file_ptr) o->output_offset;
10035 bfd_size_type todo = o->size;
10036 if ((o->flags & SEC_ELF_REVERSE_COPY))
10037 {
10038 /* Reverse-copy input section to output. */
10039 do
10040 {
10041 todo -= address_size;
10042 if (! bfd_set_section_contents (output_bfd,
10043 o->output_section,
10044 contents + todo,
10045 offset,
10046 address_size))
10047 return FALSE;
10048 if (todo == 0)
10049 break;
10050 offset += address_size;
10051 }
10052 while (1);
10053 }
10054 else if (! bfd_set_section_contents (output_bfd,
10055 o->output_section,
10056 contents,
10057 offset, todo))
10058 return FALSE;
10059 }
10060 }
10061 break;
10062 }
10063 }
10064
10065 return TRUE;
10066 }
10067
10068 /* Generate a reloc when linking an ELF file. This is a reloc
10069 requested by the linker, and does not come from any input file. This
10070 is used to build constructor and destructor tables when linking
10071 with -Ur. */
10072
10073 static bfd_boolean
10074 elf_reloc_link_order (bfd *output_bfd,
10075 struct bfd_link_info *info,
10076 asection *output_section,
10077 struct bfd_link_order *link_order)
10078 {
10079 reloc_howto_type *howto;
10080 long indx;
10081 bfd_vma offset;
10082 bfd_vma addend;
10083 struct bfd_elf_section_reloc_data *reldata;
10084 struct elf_link_hash_entry **rel_hash_ptr;
10085 Elf_Internal_Shdr *rel_hdr;
10086 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10087 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10088 bfd_byte *erel;
10089 unsigned int i;
10090 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10091
10092 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10093 if (howto == NULL)
10094 {
10095 bfd_set_error (bfd_error_bad_value);
10096 return FALSE;
10097 }
10098
10099 addend = link_order->u.reloc.p->addend;
10100
10101 if (esdo->rel.hdr)
10102 reldata = &esdo->rel;
10103 else if (esdo->rela.hdr)
10104 reldata = &esdo->rela;
10105 else
10106 {
10107 reldata = NULL;
10108 BFD_ASSERT (0);
10109 }
10110
10111 /* Figure out the symbol index. */
10112 rel_hash_ptr = reldata->hashes + reldata->count;
10113 if (link_order->type == bfd_section_reloc_link_order)
10114 {
10115 indx = link_order->u.reloc.p->u.section->target_index;
10116 BFD_ASSERT (indx != 0);
10117 *rel_hash_ptr = NULL;
10118 }
10119 else
10120 {
10121 struct elf_link_hash_entry *h;
10122
10123 /* Treat a reloc against a defined symbol as though it were
10124 actually against the section. */
10125 h = ((struct elf_link_hash_entry *)
10126 bfd_wrapped_link_hash_lookup (output_bfd, info,
10127 link_order->u.reloc.p->u.name,
10128 FALSE, FALSE, TRUE));
10129 if (h != NULL
10130 && (h->root.type == bfd_link_hash_defined
10131 || h->root.type == bfd_link_hash_defweak))
10132 {
10133 asection *section;
10134
10135 section = h->root.u.def.section;
10136 indx = section->output_section->target_index;
10137 *rel_hash_ptr = NULL;
10138 /* It seems that we ought to add the symbol value to the
10139 addend here, but in practice it has already been added
10140 because it was passed to constructor_callback. */
10141 addend += section->output_section->vma + section->output_offset;
10142 }
10143 else if (h != NULL)
10144 {
10145 /* Setting the index to -2 tells elf_link_output_extsym that
10146 this symbol is used by a reloc. */
10147 h->indx = -2;
10148 *rel_hash_ptr = h;
10149 indx = 0;
10150 }
10151 else
10152 {
10153 if (! ((*info->callbacks->unattached_reloc)
10154 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10155 return FALSE;
10156 indx = 0;
10157 }
10158 }
10159
10160 /* If this is an inplace reloc, we must write the addend into the
10161 object file. */
10162 if (howto->partial_inplace && addend != 0)
10163 {
10164 bfd_size_type size;
10165 bfd_reloc_status_type rstat;
10166 bfd_byte *buf;
10167 bfd_boolean ok;
10168 const char *sym_name;
10169
10170 size = (bfd_size_type) bfd_get_reloc_size (howto);
10171 buf = (bfd_byte *) bfd_zmalloc (size);
10172 if (buf == NULL)
10173 return FALSE;
10174 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10175 switch (rstat)
10176 {
10177 case bfd_reloc_ok:
10178 break;
10179
10180 default:
10181 case bfd_reloc_outofrange:
10182 abort ();
10183
10184 case bfd_reloc_overflow:
10185 if (link_order->type == bfd_section_reloc_link_order)
10186 sym_name = bfd_section_name (output_bfd,
10187 link_order->u.reloc.p->u.section);
10188 else
10189 sym_name = link_order->u.reloc.p->u.name;
10190 if (! ((*info->callbacks->reloc_overflow)
10191 (info, NULL, sym_name, howto->name, addend, NULL,
10192 NULL, (bfd_vma) 0)))
10193 {
10194 free (buf);
10195 return FALSE;
10196 }
10197 break;
10198 }
10199 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10200 link_order->offset, size);
10201 free (buf);
10202 if (! ok)
10203 return FALSE;
10204 }
10205
10206 /* The address of a reloc is relative to the section in a
10207 relocatable file, and is a virtual address in an executable
10208 file. */
10209 offset = link_order->offset;
10210 if (! info->relocatable)
10211 offset += output_section->vma;
10212
10213 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10214 {
10215 irel[i].r_offset = offset;
10216 irel[i].r_info = 0;
10217 irel[i].r_addend = 0;
10218 }
10219 if (bed->s->arch_size == 32)
10220 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10221 else
10222 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10223
10224 rel_hdr = reldata->hdr;
10225 erel = rel_hdr->contents;
10226 if (rel_hdr->sh_type == SHT_REL)
10227 {
10228 erel += reldata->count * bed->s->sizeof_rel;
10229 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10230 }
10231 else
10232 {
10233 irel[0].r_addend = addend;
10234 erel += reldata->count * bed->s->sizeof_rela;
10235 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10236 }
10237
10238 ++reldata->count;
10239
10240 return TRUE;
10241 }
10242
10243
10244 /* Get the output vma of the section pointed to by the sh_link field. */
10245
10246 static bfd_vma
10247 elf_get_linked_section_vma (struct bfd_link_order *p)
10248 {
10249 Elf_Internal_Shdr **elf_shdrp;
10250 asection *s;
10251 int elfsec;
10252
10253 s = p->u.indirect.section;
10254 elf_shdrp = elf_elfsections (s->owner);
10255 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10256 elfsec = elf_shdrp[elfsec]->sh_link;
10257 /* PR 290:
10258 The Intel C compiler generates SHT_IA_64_UNWIND with
10259 SHF_LINK_ORDER. But it doesn't set the sh_link or
10260 sh_info fields. Hence we could get the situation
10261 where elfsec is 0. */
10262 if (elfsec == 0)
10263 {
10264 const struct elf_backend_data *bed
10265 = get_elf_backend_data (s->owner);
10266 if (bed->link_order_error_handler)
10267 bed->link_order_error_handler
10268 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10269 return 0;
10270 }
10271 else
10272 {
10273 s = elf_shdrp[elfsec]->bfd_section;
10274 return s->output_section->vma + s->output_offset;
10275 }
10276 }
10277
10278
10279 /* Compare two sections based on the locations of the sections they are
10280 linked to. Used by elf_fixup_link_order. */
10281
10282 static int
10283 compare_link_order (const void * a, const void * b)
10284 {
10285 bfd_vma apos;
10286 bfd_vma bpos;
10287
10288 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10289 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10290 if (apos < bpos)
10291 return -1;
10292 return apos > bpos;
10293 }
10294
10295
10296 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10297 order as their linked sections. Returns false if this could not be done
10298 because an output section includes both ordered and unordered
10299 sections. Ideally we'd do this in the linker proper. */
10300
10301 static bfd_boolean
10302 elf_fixup_link_order (bfd *abfd, asection *o)
10303 {
10304 int seen_linkorder;
10305 int seen_other;
10306 int n;
10307 struct bfd_link_order *p;
10308 bfd *sub;
10309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10310 unsigned elfsec;
10311 struct bfd_link_order **sections;
10312 asection *s, *other_sec, *linkorder_sec;
10313 bfd_vma offset;
10314
10315 other_sec = NULL;
10316 linkorder_sec = NULL;
10317 seen_other = 0;
10318 seen_linkorder = 0;
10319 for (p = o->map_head.link_order; p != NULL; p = p->next)
10320 {
10321 if (p->type == bfd_indirect_link_order)
10322 {
10323 s = p->u.indirect.section;
10324 sub = s->owner;
10325 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10326 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10327 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10328 && elfsec < elf_numsections (sub)
10329 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10330 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10331 {
10332 seen_linkorder++;
10333 linkorder_sec = s;
10334 }
10335 else
10336 {
10337 seen_other++;
10338 other_sec = s;
10339 }
10340 }
10341 else
10342 seen_other++;
10343
10344 if (seen_other && seen_linkorder)
10345 {
10346 if (other_sec && linkorder_sec)
10347 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10348 o, linkorder_sec,
10349 linkorder_sec->owner, other_sec,
10350 other_sec->owner);
10351 else
10352 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10353 o);
10354 bfd_set_error (bfd_error_bad_value);
10355 return FALSE;
10356 }
10357 }
10358
10359 if (!seen_linkorder)
10360 return TRUE;
10361
10362 sections = (struct bfd_link_order **)
10363 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10364 if (sections == NULL)
10365 return FALSE;
10366 seen_linkorder = 0;
10367
10368 for (p = o->map_head.link_order; p != NULL; p = p->next)
10369 {
10370 sections[seen_linkorder++] = p;
10371 }
10372 /* Sort the input sections in the order of their linked section. */
10373 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10374 compare_link_order);
10375
10376 /* Change the offsets of the sections. */
10377 offset = 0;
10378 for (n = 0; n < seen_linkorder; n++)
10379 {
10380 s = sections[n]->u.indirect.section;
10381 offset &= ~(bfd_vma) 0 << s->alignment_power;
10382 s->output_offset = offset;
10383 sections[n]->offset = offset;
10384 /* FIXME: octets_per_byte. */
10385 offset += sections[n]->size;
10386 }
10387
10388 free (sections);
10389 return TRUE;
10390 }
10391
10392 static void
10393 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10394 {
10395 asection *o;
10396
10397 if (flinfo->symstrtab != NULL)
10398 _bfd_stringtab_free (flinfo->symstrtab);
10399 if (flinfo->contents != NULL)
10400 free (flinfo->contents);
10401 if (flinfo->external_relocs != NULL)
10402 free (flinfo->external_relocs);
10403 if (flinfo->internal_relocs != NULL)
10404 free (flinfo->internal_relocs);
10405 if (flinfo->external_syms != NULL)
10406 free (flinfo->external_syms);
10407 if (flinfo->locsym_shndx != NULL)
10408 free (flinfo->locsym_shndx);
10409 if (flinfo->internal_syms != NULL)
10410 free (flinfo->internal_syms);
10411 if (flinfo->indices != NULL)
10412 free (flinfo->indices);
10413 if (flinfo->sections != NULL)
10414 free (flinfo->sections);
10415 if (flinfo->symbuf != NULL)
10416 free (flinfo->symbuf);
10417 if (flinfo->symshndxbuf != NULL)
10418 free (flinfo->symshndxbuf);
10419 for (o = obfd->sections; o != NULL; o = o->next)
10420 {
10421 struct bfd_elf_section_data *esdo = elf_section_data (o);
10422 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10423 free (esdo->rel.hashes);
10424 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10425 free (esdo->rela.hashes);
10426 }
10427 }
10428
10429 /* Do the final step of an ELF link. */
10430
10431 bfd_boolean
10432 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10433 {
10434 bfd_boolean dynamic;
10435 bfd_boolean emit_relocs;
10436 bfd *dynobj;
10437 struct elf_final_link_info flinfo;
10438 asection *o;
10439 struct bfd_link_order *p;
10440 bfd *sub;
10441 bfd_size_type max_contents_size;
10442 bfd_size_type max_external_reloc_size;
10443 bfd_size_type max_internal_reloc_count;
10444 bfd_size_type max_sym_count;
10445 bfd_size_type max_sym_shndx_count;
10446 file_ptr off;
10447 Elf_Internal_Sym elfsym;
10448 unsigned int i;
10449 Elf_Internal_Shdr *symtab_hdr;
10450 Elf_Internal_Shdr *symtab_shndx_hdr;
10451 Elf_Internal_Shdr *symstrtab_hdr;
10452 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10453 struct elf_outext_info eoinfo;
10454 bfd_boolean merged;
10455 size_t relativecount = 0;
10456 asection *reldyn = 0;
10457 bfd_size_type amt;
10458 asection *attr_section = NULL;
10459 bfd_vma attr_size = 0;
10460 const char *std_attrs_section;
10461
10462 if (! is_elf_hash_table (info->hash))
10463 return FALSE;
10464
10465 if (info->shared)
10466 abfd->flags |= DYNAMIC;
10467
10468 dynamic = elf_hash_table (info)->dynamic_sections_created;
10469 dynobj = elf_hash_table (info)->dynobj;
10470
10471 emit_relocs = (info->relocatable
10472 || info->emitrelocations);
10473
10474 flinfo.info = info;
10475 flinfo.output_bfd = abfd;
10476 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10477 if (flinfo.symstrtab == NULL)
10478 return FALSE;
10479
10480 if (! dynamic)
10481 {
10482 flinfo.dynsym_sec = NULL;
10483 flinfo.hash_sec = NULL;
10484 flinfo.symver_sec = NULL;
10485 }
10486 else
10487 {
10488 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10489 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10490 /* Note that dynsym_sec can be NULL (on VMS). */
10491 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10492 /* Note that it is OK if symver_sec is NULL. */
10493 }
10494
10495 flinfo.contents = NULL;
10496 flinfo.external_relocs = NULL;
10497 flinfo.internal_relocs = NULL;
10498 flinfo.external_syms = NULL;
10499 flinfo.locsym_shndx = NULL;
10500 flinfo.internal_syms = NULL;
10501 flinfo.indices = NULL;
10502 flinfo.sections = NULL;
10503 flinfo.symbuf = NULL;
10504 flinfo.symshndxbuf = NULL;
10505 flinfo.symbuf_count = 0;
10506 flinfo.shndxbuf_size = 0;
10507 flinfo.filesym_count = 0;
10508
10509 /* The object attributes have been merged. Remove the input
10510 sections from the link, and set the contents of the output
10511 secton. */
10512 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10513 for (o = abfd->sections; o != NULL; o = o->next)
10514 {
10515 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10516 || strcmp (o->name, ".gnu.attributes") == 0)
10517 {
10518 for (p = o->map_head.link_order; p != NULL; p = p->next)
10519 {
10520 asection *input_section;
10521
10522 if (p->type != bfd_indirect_link_order)
10523 continue;
10524 input_section = p->u.indirect.section;
10525 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10526 elf_link_input_bfd ignores this section. */
10527 input_section->flags &= ~SEC_HAS_CONTENTS;
10528 }
10529
10530 attr_size = bfd_elf_obj_attr_size (abfd);
10531 if (attr_size)
10532 {
10533 bfd_set_section_size (abfd, o, attr_size);
10534 attr_section = o;
10535 /* Skip this section later on. */
10536 o->map_head.link_order = NULL;
10537 }
10538 else
10539 o->flags |= SEC_EXCLUDE;
10540 }
10541 }
10542
10543 /* Count up the number of relocations we will output for each output
10544 section, so that we know the sizes of the reloc sections. We
10545 also figure out some maximum sizes. */
10546 max_contents_size = 0;
10547 max_external_reloc_size = 0;
10548 max_internal_reloc_count = 0;
10549 max_sym_count = 0;
10550 max_sym_shndx_count = 0;
10551 merged = FALSE;
10552 for (o = abfd->sections; o != NULL; o = o->next)
10553 {
10554 struct bfd_elf_section_data *esdo = elf_section_data (o);
10555 o->reloc_count = 0;
10556
10557 for (p = o->map_head.link_order; p != NULL; p = p->next)
10558 {
10559 unsigned int reloc_count = 0;
10560 struct bfd_elf_section_data *esdi = NULL;
10561
10562 if (p->type == bfd_section_reloc_link_order
10563 || p->type == bfd_symbol_reloc_link_order)
10564 reloc_count = 1;
10565 else if (p->type == bfd_indirect_link_order)
10566 {
10567 asection *sec;
10568
10569 sec = p->u.indirect.section;
10570 esdi = elf_section_data (sec);
10571
10572 /* Mark all sections which are to be included in the
10573 link. This will normally be every section. We need
10574 to do this so that we can identify any sections which
10575 the linker has decided to not include. */
10576 sec->linker_mark = TRUE;
10577
10578 if (sec->flags & SEC_MERGE)
10579 merged = TRUE;
10580
10581 if (esdo->this_hdr.sh_type == SHT_REL
10582 || esdo->this_hdr.sh_type == SHT_RELA)
10583 /* Some backends use reloc_count in relocation sections
10584 to count particular types of relocs. Of course,
10585 reloc sections themselves can't have relocations. */
10586 reloc_count = 0;
10587 else if (info->relocatable || info->emitrelocations)
10588 reloc_count = sec->reloc_count;
10589 else if (bed->elf_backend_count_relocs)
10590 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10591
10592 if (sec->rawsize > max_contents_size)
10593 max_contents_size = sec->rawsize;
10594 if (sec->size > max_contents_size)
10595 max_contents_size = sec->size;
10596
10597 /* We are interested in just local symbols, not all
10598 symbols. */
10599 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10600 && (sec->owner->flags & DYNAMIC) == 0)
10601 {
10602 size_t sym_count;
10603
10604 if (elf_bad_symtab (sec->owner))
10605 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10606 / bed->s->sizeof_sym);
10607 else
10608 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10609
10610 if (sym_count > max_sym_count)
10611 max_sym_count = sym_count;
10612
10613 if (sym_count > max_sym_shndx_count
10614 && elf_symtab_shndx (sec->owner) != 0)
10615 max_sym_shndx_count = sym_count;
10616
10617 if ((sec->flags & SEC_RELOC) != 0)
10618 {
10619 size_t ext_size = 0;
10620
10621 if (esdi->rel.hdr != NULL)
10622 ext_size = esdi->rel.hdr->sh_size;
10623 if (esdi->rela.hdr != NULL)
10624 ext_size += esdi->rela.hdr->sh_size;
10625
10626 if (ext_size > max_external_reloc_size)
10627 max_external_reloc_size = ext_size;
10628 if (sec->reloc_count > max_internal_reloc_count)
10629 max_internal_reloc_count = sec->reloc_count;
10630 }
10631 }
10632 }
10633
10634 if (reloc_count == 0)
10635 continue;
10636
10637 o->reloc_count += reloc_count;
10638
10639 if (p->type == bfd_indirect_link_order
10640 && (info->relocatable || info->emitrelocations))
10641 {
10642 if (esdi->rel.hdr)
10643 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10644 if (esdi->rela.hdr)
10645 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10646 }
10647 else
10648 {
10649 if (o->use_rela_p)
10650 esdo->rela.count += reloc_count;
10651 else
10652 esdo->rel.count += reloc_count;
10653 }
10654 }
10655
10656 if (o->reloc_count > 0)
10657 o->flags |= SEC_RELOC;
10658 else
10659 {
10660 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10661 set it (this is probably a bug) and if it is set
10662 assign_section_numbers will create a reloc section. */
10663 o->flags &=~ SEC_RELOC;
10664 }
10665
10666 /* If the SEC_ALLOC flag is not set, force the section VMA to
10667 zero. This is done in elf_fake_sections as well, but forcing
10668 the VMA to 0 here will ensure that relocs against these
10669 sections are handled correctly. */
10670 if ((o->flags & SEC_ALLOC) == 0
10671 && ! o->user_set_vma)
10672 o->vma = 0;
10673 }
10674
10675 if (! info->relocatable && merged)
10676 elf_link_hash_traverse (elf_hash_table (info),
10677 _bfd_elf_link_sec_merge_syms, abfd);
10678
10679 /* Figure out the file positions for everything but the symbol table
10680 and the relocs. We set symcount to force assign_section_numbers
10681 to create a symbol table. */
10682 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10683 BFD_ASSERT (! abfd->output_has_begun);
10684 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10685 goto error_return;
10686
10687 /* Set sizes, and assign file positions for reloc sections. */
10688 for (o = abfd->sections; o != NULL; o = o->next)
10689 {
10690 struct bfd_elf_section_data *esdo = elf_section_data (o);
10691 if ((o->flags & SEC_RELOC) != 0)
10692 {
10693 if (esdo->rel.hdr
10694 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10695 goto error_return;
10696
10697 if (esdo->rela.hdr
10698 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10699 goto error_return;
10700 }
10701
10702 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10703 to count upwards while actually outputting the relocations. */
10704 esdo->rel.count = 0;
10705 esdo->rela.count = 0;
10706 }
10707
10708 _bfd_elf_assign_file_positions_for_relocs (abfd);
10709
10710 /* We have now assigned file positions for all the sections except
10711 .symtab and .strtab. We start the .symtab section at the current
10712 file position, and write directly to it. We build the .strtab
10713 section in memory. */
10714 bfd_get_symcount (abfd) = 0;
10715 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10716 /* sh_name is set in prep_headers. */
10717 symtab_hdr->sh_type = SHT_SYMTAB;
10718 /* sh_flags, sh_addr and sh_size all start off zero. */
10719 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10720 /* sh_link is set in assign_section_numbers. */
10721 /* sh_info is set below. */
10722 /* sh_offset is set just below. */
10723 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10724
10725 off = elf_next_file_pos (abfd);
10726 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10727
10728 /* Note that at this point elf_next_file_pos (abfd) is
10729 incorrect. We do not yet know the size of the .symtab section.
10730 We correct next_file_pos below, after we do know the size. */
10731
10732 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10733 continuously seeking to the right position in the file. */
10734 if (! info->keep_memory || max_sym_count < 20)
10735 flinfo.symbuf_size = 20;
10736 else
10737 flinfo.symbuf_size = max_sym_count;
10738 amt = flinfo.symbuf_size;
10739 amt *= bed->s->sizeof_sym;
10740 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10741 if (flinfo.symbuf == NULL)
10742 goto error_return;
10743 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10744 {
10745 /* Wild guess at number of output symbols. realloc'd as needed. */
10746 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10747 flinfo.shndxbuf_size = amt;
10748 amt *= sizeof (Elf_External_Sym_Shndx);
10749 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10750 if (flinfo.symshndxbuf == NULL)
10751 goto error_return;
10752 }
10753
10754 /* Start writing out the symbol table. The first symbol is always a
10755 dummy symbol. */
10756 if (info->strip != strip_all
10757 || emit_relocs)
10758 {
10759 elfsym.st_value = 0;
10760 elfsym.st_size = 0;
10761 elfsym.st_info = 0;
10762 elfsym.st_other = 0;
10763 elfsym.st_shndx = SHN_UNDEF;
10764 elfsym.st_target_internal = 0;
10765 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10766 NULL) != 1)
10767 goto error_return;
10768 }
10769
10770 /* Output a symbol for each section. We output these even if we are
10771 discarding local symbols, since they are used for relocs. These
10772 symbols have no names. We store the index of each one in the
10773 index field of the section, so that we can find it again when
10774 outputting relocs. */
10775 if (info->strip != strip_all
10776 || emit_relocs)
10777 {
10778 elfsym.st_size = 0;
10779 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10780 elfsym.st_other = 0;
10781 elfsym.st_value = 0;
10782 elfsym.st_target_internal = 0;
10783 for (i = 1; i < elf_numsections (abfd); i++)
10784 {
10785 o = bfd_section_from_elf_index (abfd, i);
10786 if (o != NULL)
10787 {
10788 o->target_index = bfd_get_symcount (abfd);
10789 elfsym.st_shndx = i;
10790 if (!info->relocatable)
10791 elfsym.st_value = o->vma;
10792 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10793 goto error_return;
10794 }
10795 }
10796 }
10797
10798 /* Allocate some memory to hold information read in from the input
10799 files. */
10800 if (max_contents_size != 0)
10801 {
10802 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10803 if (flinfo.contents == NULL)
10804 goto error_return;
10805 }
10806
10807 if (max_external_reloc_size != 0)
10808 {
10809 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10810 if (flinfo.external_relocs == NULL)
10811 goto error_return;
10812 }
10813
10814 if (max_internal_reloc_count != 0)
10815 {
10816 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10817 amt *= sizeof (Elf_Internal_Rela);
10818 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10819 if (flinfo.internal_relocs == NULL)
10820 goto error_return;
10821 }
10822
10823 if (max_sym_count != 0)
10824 {
10825 amt = max_sym_count * bed->s->sizeof_sym;
10826 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10827 if (flinfo.external_syms == NULL)
10828 goto error_return;
10829
10830 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10831 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10832 if (flinfo.internal_syms == NULL)
10833 goto error_return;
10834
10835 amt = max_sym_count * sizeof (long);
10836 flinfo.indices = (long int *) bfd_malloc (amt);
10837 if (flinfo.indices == NULL)
10838 goto error_return;
10839
10840 amt = max_sym_count * sizeof (asection *);
10841 flinfo.sections = (asection **) bfd_malloc (amt);
10842 if (flinfo.sections == NULL)
10843 goto error_return;
10844 }
10845
10846 if (max_sym_shndx_count != 0)
10847 {
10848 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10849 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10850 if (flinfo.locsym_shndx == NULL)
10851 goto error_return;
10852 }
10853
10854 if (elf_hash_table (info)->tls_sec)
10855 {
10856 bfd_vma base, end = 0;
10857 asection *sec;
10858
10859 for (sec = elf_hash_table (info)->tls_sec;
10860 sec && (sec->flags & SEC_THREAD_LOCAL);
10861 sec = sec->next)
10862 {
10863 bfd_size_type size = sec->size;
10864
10865 if (size == 0
10866 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10867 {
10868 struct bfd_link_order *ord = sec->map_tail.link_order;
10869
10870 if (ord != NULL)
10871 size = ord->offset + ord->size;
10872 }
10873 end = sec->vma + size;
10874 }
10875 base = elf_hash_table (info)->tls_sec->vma;
10876 /* Only align end of TLS section if static TLS doesn't have special
10877 alignment requirements. */
10878 if (bed->static_tls_alignment == 1)
10879 end = align_power (end,
10880 elf_hash_table (info)->tls_sec->alignment_power);
10881 elf_hash_table (info)->tls_size = end - base;
10882 }
10883
10884 /* Reorder SHF_LINK_ORDER sections. */
10885 for (o = abfd->sections; o != NULL; o = o->next)
10886 {
10887 if (!elf_fixup_link_order (abfd, o))
10888 return FALSE;
10889 }
10890
10891 /* Since ELF permits relocations to be against local symbols, we
10892 must have the local symbols available when we do the relocations.
10893 Since we would rather only read the local symbols once, and we
10894 would rather not keep them in memory, we handle all the
10895 relocations for a single input file at the same time.
10896
10897 Unfortunately, there is no way to know the total number of local
10898 symbols until we have seen all of them, and the local symbol
10899 indices precede the global symbol indices. This means that when
10900 we are generating relocatable output, and we see a reloc against
10901 a global symbol, we can not know the symbol index until we have
10902 finished examining all the local symbols to see which ones we are
10903 going to output. To deal with this, we keep the relocations in
10904 memory, and don't output them until the end of the link. This is
10905 an unfortunate waste of memory, but I don't see a good way around
10906 it. Fortunately, it only happens when performing a relocatable
10907 link, which is not the common case. FIXME: If keep_memory is set
10908 we could write the relocs out and then read them again; I don't
10909 know how bad the memory loss will be. */
10910
10911 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10912 sub->output_has_begun = FALSE;
10913 for (o = abfd->sections; o != NULL; o = o->next)
10914 {
10915 for (p = o->map_head.link_order; p != NULL; p = p->next)
10916 {
10917 if (p->type == bfd_indirect_link_order
10918 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10919 == bfd_target_elf_flavour)
10920 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10921 {
10922 if (! sub->output_has_begun)
10923 {
10924 if (! elf_link_input_bfd (&flinfo, sub))
10925 goto error_return;
10926 sub->output_has_begun = TRUE;
10927 }
10928 }
10929 else if (p->type == bfd_section_reloc_link_order
10930 || p->type == bfd_symbol_reloc_link_order)
10931 {
10932 if (! elf_reloc_link_order (abfd, info, o, p))
10933 goto error_return;
10934 }
10935 else
10936 {
10937 if (! _bfd_default_link_order (abfd, info, o, p))
10938 {
10939 if (p->type == bfd_indirect_link_order
10940 && (bfd_get_flavour (sub)
10941 == bfd_target_elf_flavour)
10942 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10943 != bed->s->elfclass))
10944 {
10945 const char *iclass, *oclass;
10946
10947 if (bed->s->elfclass == ELFCLASS64)
10948 {
10949 iclass = "ELFCLASS32";
10950 oclass = "ELFCLASS64";
10951 }
10952 else
10953 {
10954 iclass = "ELFCLASS64";
10955 oclass = "ELFCLASS32";
10956 }
10957
10958 bfd_set_error (bfd_error_wrong_format);
10959 (*_bfd_error_handler)
10960 (_("%B: file class %s incompatible with %s"),
10961 sub, iclass, oclass);
10962 }
10963
10964 goto error_return;
10965 }
10966 }
10967 }
10968 }
10969
10970 /* Free symbol buffer if needed. */
10971 if (!info->reduce_memory_overheads)
10972 {
10973 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10974 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10975 && elf_tdata (sub)->symbuf)
10976 {
10977 free (elf_tdata (sub)->symbuf);
10978 elf_tdata (sub)->symbuf = NULL;
10979 }
10980 }
10981
10982 /* Output a FILE symbol so that following locals are not associated
10983 with the wrong input file. */
10984 memset (&elfsym, 0, sizeof (elfsym));
10985 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10986 elfsym.st_shndx = SHN_ABS;
10987
10988 if (flinfo.filesym_count > 1
10989 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
10990 bfd_und_section_ptr, NULL))
10991 return FALSE;
10992
10993 /* Output any global symbols that got converted to local in a
10994 version script or due to symbol visibility. We do this in a
10995 separate step since ELF requires all local symbols to appear
10996 prior to any global symbols. FIXME: We should only do this if
10997 some global symbols were, in fact, converted to become local.
10998 FIXME: Will this work correctly with the Irix 5 linker? */
10999 eoinfo.failed = FALSE;
11000 eoinfo.flinfo = &flinfo;
11001 eoinfo.localsyms = TRUE;
11002 eoinfo.need_second_pass = FALSE;
11003 eoinfo.second_pass = FALSE;
11004 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11005 if (eoinfo.failed)
11006 return FALSE;
11007
11008 if (flinfo.filesym_count == 1
11009 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11010 bfd_und_section_ptr, NULL))
11011 return FALSE;
11012
11013 if (eoinfo.need_second_pass)
11014 {
11015 eoinfo.second_pass = TRUE;
11016 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11017 if (eoinfo.failed)
11018 return FALSE;
11019 }
11020
11021 /* If backend needs to output some local symbols not present in the hash
11022 table, do it now. */
11023 if (bed->elf_backend_output_arch_local_syms)
11024 {
11025 typedef int (*out_sym_func)
11026 (void *, const char *, Elf_Internal_Sym *, asection *,
11027 struct elf_link_hash_entry *);
11028
11029 if (! ((*bed->elf_backend_output_arch_local_syms)
11030 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11031 return FALSE;
11032 }
11033
11034 /* That wrote out all the local symbols. Finish up the symbol table
11035 with the global symbols. Even if we want to strip everything we
11036 can, we still need to deal with those global symbols that got
11037 converted to local in a version script. */
11038
11039 /* The sh_info field records the index of the first non local symbol. */
11040 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11041
11042 if (dynamic
11043 && flinfo.dynsym_sec != NULL
11044 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11045 {
11046 Elf_Internal_Sym sym;
11047 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11048 long last_local = 0;
11049
11050 /* Write out the section symbols for the output sections. */
11051 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11052 {
11053 asection *s;
11054
11055 sym.st_size = 0;
11056 sym.st_name = 0;
11057 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11058 sym.st_other = 0;
11059 sym.st_target_internal = 0;
11060
11061 for (s = abfd->sections; s != NULL; s = s->next)
11062 {
11063 int indx;
11064 bfd_byte *dest;
11065 long dynindx;
11066
11067 dynindx = elf_section_data (s)->dynindx;
11068 if (dynindx <= 0)
11069 continue;
11070 indx = elf_section_data (s)->this_idx;
11071 BFD_ASSERT (indx > 0);
11072 sym.st_shndx = indx;
11073 if (! check_dynsym (abfd, &sym))
11074 return FALSE;
11075 sym.st_value = s->vma;
11076 dest = dynsym + dynindx * bed->s->sizeof_sym;
11077 if (last_local < dynindx)
11078 last_local = dynindx;
11079 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11080 }
11081 }
11082
11083 /* Write out the local dynsyms. */
11084 if (elf_hash_table (info)->dynlocal)
11085 {
11086 struct elf_link_local_dynamic_entry *e;
11087 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11088 {
11089 asection *s;
11090 bfd_byte *dest;
11091
11092 /* Copy the internal symbol and turn off visibility.
11093 Note that we saved a word of storage and overwrote
11094 the original st_name with the dynstr_index. */
11095 sym = e->isym;
11096 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11097
11098 s = bfd_section_from_elf_index (e->input_bfd,
11099 e->isym.st_shndx);
11100 if (s != NULL)
11101 {
11102 sym.st_shndx =
11103 elf_section_data (s->output_section)->this_idx;
11104 if (! check_dynsym (abfd, &sym))
11105 return FALSE;
11106 sym.st_value = (s->output_section->vma
11107 + s->output_offset
11108 + e->isym.st_value);
11109 }
11110
11111 if (last_local < e->dynindx)
11112 last_local = e->dynindx;
11113
11114 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11115 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11116 }
11117 }
11118
11119 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11120 last_local + 1;
11121 }
11122
11123 /* We get the global symbols from the hash table. */
11124 eoinfo.failed = FALSE;
11125 eoinfo.localsyms = FALSE;
11126 eoinfo.flinfo = &flinfo;
11127 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11128 if (eoinfo.failed)
11129 return FALSE;
11130
11131 /* If backend needs to output some symbols not present in the hash
11132 table, do it now. */
11133 if (bed->elf_backend_output_arch_syms)
11134 {
11135 typedef int (*out_sym_func)
11136 (void *, const char *, Elf_Internal_Sym *, asection *,
11137 struct elf_link_hash_entry *);
11138
11139 if (! ((*bed->elf_backend_output_arch_syms)
11140 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11141 return FALSE;
11142 }
11143
11144 /* Flush all symbols to the file. */
11145 if (! elf_link_flush_output_syms (&flinfo, bed))
11146 return FALSE;
11147
11148 /* Now we know the size of the symtab section. */
11149 off += symtab_hdr->sh_size;
11150
11151 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11152 if (symtab_shndx_hdr->sh_name != 0)
11153 {
11154 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11155 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11156 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11157 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11158 symtab_shndx_hdr->sh_size = amt;
11159
11160 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11161 off, TRUE);
11162
11163 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11164 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11165 return FALSE;
11166 }
11167
11168
11169 /* Finish up and write out the symbol string table (.strtab)
11170 section. */
11171 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11172 /* sh_name was set in prep_headers. */
11173 symstrtab_hdr->sh_type = SHT_STRTAB;
11174 symstrtab_hdr->sh_flags = 0;
11175 symstrtab_hdr->sh_addr = 0;
11176 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11177 symstrtab_hdr->sh_entsize = 0;
11178 symstrtab_hdr->sh_link = 0;
11179 symstrtab_hdr->sh_info = 0;
11180 /* sh_offset is set just below. */
11181 symstrtab_hdr->sh_addralign = 1;
11182
11183 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11184 elf_next_file_pos (abfd) = off;
11185
11186 if (bfd_get_symcount (abfd) > 0)
11187 {
11188 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11189 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11190 return FALSE;
11191 }
11192
11193 /* Adjust the relocs to have the correct symbol indices. */
11194 for (o = abfd->sections; o != NULL; o = o->next)
11195 {
11196 struct bfd_elf_section_data *esdo = elf_section_data (o);
11197 if ((o->flags & SEC_RELOC) == 0)
11198 continue;
11199
11200 if (esdo->rel.hdr != NULL)
11201 elf_link_adjust_relocs (abfd, &esdo->rel);
11202 if (esdo->rela.hdr != NULL)
11203 elf_link_adjust_relocs (abfd, &esdo->rela);
11204
11205 /* Set the reloc_count field to 0 to prevent write_relocs from
11206 trying to swap the relocs out itself. */
11207 o->reloc_count = 0;
11208 }
11209
11210 if (dynamic && info->combreloc && dynobj != NULL)
11211 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11212
11213 /* If we are linking against a dynamic object, or generating a
11214 shared library, finish up the dynamic linking information. */
11215 if (dynamic)
11216 {
11217 bfd_byte *dyncon, *dynconend;
11218
11219 /* Fix up .dynamic entries. */
11220 o = bfd_get_linker_section (dynobj, ".dynamic");
11221 BFD_ASSERT (o != NULL);
11222
11223 dyncon = o->contents;
11224 dynconend = o->contents + o->size;
11225 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11226 {
11227 Elf_Internal_Dyn dyn;
11228 const char *name;
11229 unsigned int type;
11230
11231 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11232
11233 switch (dyn.d_tag)
11234 {
11235 default:
11236 continue;
11237 case DT_NULL:
11238 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11239 {
11240 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11241 {
11242 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11243 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11244 default: continue;
11245 }
11246 dyn.d_un.d_val = relativecount;
11247 relativecount = 0;
11248 break;
11249 }
11250 continue;
11251
11252 case DT_INIT:
11253 name = info->init_function;
11254 goto get_sym;
11255 case DT_FINI:
11256 name = info->fini_function;
11257 get_sym:
11258 {
11259 struct elf_link_hash_entry *h;
11260
11261 h = elf_link_hash_lookup (elf_hash_table (info), name,
11262 FALSE, FALSE, TRUE);
11263 if (h != NULL
11264 && (h->root.type == bfd_link_hash_defined
11265 || h->root.type == bfd_link_hash_defweak))
11266 {
11267 dyn.d_un.d_ptr = h->root.u.def.value;
11268 o = h->root.u.def.section;
11269 if (o->output_section != NULL)
11270 dyn.d_un.d_ptr += (o->output_section->vma
11271 + o->output_offset);
11272 else
11273 {
11274 /* The symbol is imported from another shared
11275 library and does not apply to this one. */
11276 dyn.d_un.d_ptr = 0;
11277 }
11278 break;
11279 }
11280 }
11281 continue;
11282
11283 case DT_PREINIT_ARRAYSZ:
11284 name = ".preinit_array";
11285 goto get_size;
11286 case DT_INIT_ARRAYSZ:
11287 name = ".init_array";
11288 goto get_size;
11289 case DT_FINI_ARRAYSZ:
11290 name = ".fini_array";
11291 get_size:
11292 o = bfd_get_section_by_name (abfd, name);
11293 if (o == NULL)
11294 {
11295 (*_bfd_error_handler)
11296 (_("%B: could not find output section %s"), abfd, name);
11297 goto error_return;
11298 }
11299 if (o->size == 0)
11300 (*_bfd_error_handler)
11301 (_("warning: %s section has zero size"), name);
11302 dyn.d_un.d_val = o->size;
11303 break;
11304
11305 case DT_PREINIT_ARRAY:
11306 name = ".preinit_array";
11307 goto get_vma;
11308 case DT_INIT_ARRAY:
11309 name = ".init_array";
11310 goto get_vma;
11311 case DT_FINI_ARRAY:
11312 name = ".fini_array";
11313 goto get_vma;
11314
11315 case DT_HASH:
11316 name = ".hash";
11317 goto get_vma;
11318 case DT_GNU_HASH:
11319 name = ".gnu.hash";
11320 goto get_vma;
11321 case DT_STRTAB:
11322 name = ".dynstr";
11323 goto get_vma;
11324 case DT_SYMTAB:
11325 name = ".dynsym";
11326 goto get_vma;
11327 case DT_VERDEF:
11328 name = ".gnu.version_d";
11329 goto get_vma;
11330 case DT_VERNEED:
11331 name = ".gnu.version_r";
11332 goto get_vma;
11333 case DT_VERSYM:
11334 name = ".gnu.version";
11335 get_vma:
11336 o = bfd_get_section_by_name (abfd, name);
11337 if (o == NULL)
11338 {
11339 (*_bfd_error_handler)
11340 (_("%B: could not find output section %s"), abfd, name);
11341 goto error_return;
11342 }
11343 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11344 {
11345 (*_bfd_error_handler)
11346 (_("warning: section '%s' is being made into a note"), name);
11347 bfd_set_error (bfd_error_nonrepresentable_section);
11348 goto error_return;
11349 }
11350 dyn.d_un.d_ptr = o->vma;
11351 break;
11352
11353 case DT_REL:
11354 case DT_RELA:
11355 case DT_RELSZ:
11356 case DT_RELASZ:
11357 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11358 type = SHT_REL;
11359 else
11360 type = SHT_RELA;
11361 dyn.d_un.d_val = 0;
11362 dyn.d_un.d_ptr = 0;
11363 for (i = 1; i < elf_numsections (abfd); i++)
11364 {
11365 Elf_Internal_Shdr *hdr;
11366
11367 hdr = elf_elfsections (abfd)[i];
11368 if (hdr->sh_type == type
11369 && (hdr->sh_flags & SHF_ALLOC) != 0)
11370 {
11371 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11372 dyn.d_un.d_val += hdr->sh_size;
11373 else
11374 {
11375 if (dyn.d_un.d_ptr == 0
11376 || hdr->sh_addr < dyn.d_un.d_ptr)
11377 dyn.d_un.d_ptr = hdr->sh_addr;
11378 }
11379 }
11380 }
11381 break;
11382 }
11383 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11384 }
11385 }
11386
11387 /* If we have created any dynamic sections, then output them. */
11388 if (dynobj != NULL)
11389 {
11390 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11391 goto error_return;
11392
11393 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11394 if (((info->warn_shared_textrel && info->shared)
11395 || info->error_textrel)
11396 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11397 {
11398 bfd_byte *dyncon, *dynconend;
11399
11400 dyncon = o->contents;
11401 dynconend = o->contents + o->size;
11402 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11403 {
11404 Elf_Internal_Dyn dyn;
11405
11406 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11407
11408 if (dyn.d_tag == DT_TEXTREL)
11409 {
11410 if (info->error_textrel)
11411 info->callbacks->einfo
11412 (_("%P%X: read-only segment has dynamic relocations.\n"));
11413 else
11414 info->callbacks->einfo
11415 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11416 break;
11417 }
11418 }
11419 }
11420
11421 for (o = dynobj->sections; o != NULL; o = o->next)
11422 {
11423 if ((o->flags & SEC_HAS_CONTENTS) == 0
11424 || o->size == 0
11425 || o->output_section == bfd_abs_section_ptr)
11426 continue;
11427 if ((o->flags & SEC_LINKER_CREATED) == 0)
11428 {
11429 /* At this point, we are only interested in sections
11430 created by _bfd_elf_link_create_dynamic_sections. */
11431 continue;
11432 }
11433 if (elf_hash_table (info)->stab_info.stabstr == o)
11434 continue;
11435 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11436 continue;
11437 if (strcmp (o->name, ".dynstr") != 0)
11438 {
11439 /* FIXME: octets_per_byte. */
11440 if (! bfd_set_section_contents (abfd, o->output_section,
11441 o->contents,
11442 (file_ptr) o->output_offset,
11443 o->size))
11444 goto error_return;
11445 }
11446 else
11447 {
11448 /* The contents of the .dynstr section are actually in a
11449 stringtab. */
11450 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11451 if (bfd_seek (abfd, off, SEEK_SET) != 0
11452 || ! _bfd_elf_strtab_emit (abfd,
11453 elf_hash_table (info)->dynstr))
11454 goto error_return;
11455 }
11456 }
11457 }
11458
11459 if (info->relocatable)
11460 {
11461 bfd_boolean failed = FALSE;
11462
11463 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11464 if (failed)
11465 goto error_return;
11466 }
11467
11468 /* If we have optimized stabs strings, output them. */
11469 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11470 {
11471 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11472 goto error_return;
11473 }
11474
11475 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11476 goto error_return;
11477
11478 elf_final_link_free (abfd, &flinfo);
11479
11480 elf_linker (abfd) = TRUE;
11481
11482 if (attr_section)
11483 {
11484 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11485 if (contents == NULL)
11486 return FALSE; /* Bail out and fail. */
11487 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11488 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11489 free (contents);
11490 }
11491
11492 return TRUE;
11493
11494 error_return:
11495 elf_final_link_free (abfd, &flinfo);
11496 return FALSE;
11497 }
11498 \f
11499 /* Initialize COOKIE for input bfd ABFD. */
11500
11501 static bfd_boolean
11502 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11503 struct bfd_link_info *info, bfd *abfd)
11504 {
11505 Elf_Internal_Shdr *symtab_hdr;
11506 const struct elf_backend_data *bed;
11507
11508 bed = get_elf_backend_data (abfd);
11509 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11510
11511 cookie->abfd = abfd;
11512 cookie->sym_hashes = elf_sym_hashes (abfd);
11513 cookie->bad_symtab = elf_bad_symtab (abfd);
11514 if (cookie->bad_symtab)
11515 {
11516 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11517 cookie->extsymoff = 0;
11518 }
11519 else
11520 {
11521 cookie->locsymcount = symtab_hdr->sh_info;
11522 cookie->extsymoff = symtab_hdr->sh_info;
11523 }
11524
11525 if (bed->s->arch_size == 32)
11526 cookie->r_sym_shift = 8;
11527 else
11528 cookie->r_sym_shift = 32;
11529
11530 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11531 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11532 {
11533 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11534 cookie->locsymcount, 0,
11535 NULL, NULL, NULL);
11536 if (cookie->locsyms == NULL)
11537 {
11538 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11539 return FALSE;
11540 }
11541 if (info->keep_memory)
11542 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11543 }
11544 return TRUE;
11545 }
11546
11547 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11548
11549 static void
11550 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11551 {
11552 Elf_Internal_Shdr *symtab_hdr;
11553
11554 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11555 if (cookie->locsyms != NULL
11556 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11557 free (cookie->locsyms);
11558 }
11559
11560 /* Initialize the relocation information in COOKIE for input section SEC
11561 of input bfd ABFD. */
11562
11563 static bfd_boolean
11564 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11565 struct bfd_link_info *info, bfd *abfd,
11566 asection *sec)
11567 {
11568 const struct elf_backend_data *bed;
11569
11570 if (sec->reloc_count == 0)
11571 {
11572 cookie->rels = NULL;
11573 cookie->relend = NULL;
11574 }
11575 else
11576 {
11577 bed = get_elf_backend_data (abfd);
11578
11579 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11580 info->keep_memory);
11581 if (cookie->rels == NULL)
11582 return FALSE;
11583 cookie->rel = cookie->rels;
11584 cookie->relend = (cookie->rels
11585 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11586 }
11587 cookie->rel = cookie->rels;
11588 return TRUE;
11589 }
11590
11591 /* Free the memory allocated by init_reloc_cookie_rels,
11592 if appropriate. */
11593
11594 static void
11595 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11596 asection *sec)
11597 {
11598 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11599 free (cookie->rels);
11600 }
11601
11602 /* Initialize the whole of COOKIE for input section SEC. */
11603
11604 static bfd_boolean
11605 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11606 struct bfd_link_info *info,
11607 asection *sec)
11608 {
11609 if (!init_reloc_cookie (cookie, info, sec->owner))
11610 goto error1;
11611 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11612 goto error2;
11613 return TRUE;
11614
11615 error2:
11616 fini_reloc_cookie (cookie, sec->owner);
11617 error1:
11618 return FALSE;
11619 }
11620
11621 /* Free the memory allocated by init_reloc_cookie_for_section,
11622 if appropriate. */
11623
11624 static void
11625 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11626 asection *sec)
11627 {
11628 fini_reloc_cookie_rels (cookie, sec);
11629 fini_reloc_cookie (cookie, sec->owner);
11630 }
11631 \f
11632 /* Garbage collect unused sections. */
11633
11634 /* Default gc_mark_hook. */
11635
11636 asection *
11637 _bfd_elf_gc_mark_hook (asection *sec,
11638 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11639 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11640 struct elf_link_hash_entry *h,
11641 Elf_Internal_Sym *sym)
11642 {
11643 const char *sec_name;
11644
11645 if (h != NULL)
11646 {
11647 switch (h->root.type)
11648 {
11649 case bfd_link_hash_defined:
11650 case bfd_link_hash_defweak:
11651 return h->root.u.def.section;
11652
11653 case bfd_link_hash_common:
11654 return h->root.u.c.p->section;
11655
11656 case bfd_link_hash_undefined:
11657 case bfd_link_hash_undefweak:
11658 /* To work around a glibc bug, keep all XXX input sections
11659 when there is an as yet undefined reference to __start_XXX
11660 or __stop_XXX symbols. The linker will later define such
11661 symbols for orphan input sections that have a name
11662 representable as a C identifier. */
11663 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11664 sec_name = h->root.root.string + 8;
11665 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11666 sec_name = h->root.root.string + 7;
11667 else
11668 sec_name = NULL;
11669
11670 if (sec_name && *sec_name != '\0')
11671 {
11672 bfd *i;
11673
11674 for (i = info->input_bfds; i; i = i->link_next)
11675 {
11676 sec = bfd_get_section_by_name (i, sec_name);
11677 if (sec)
11678 sec->flags |= SEC_KEEP;
11679 }
11680 }
11681 break;
11682
11683 default:
11684 break;
11685 }
11686 }
11687 else
11688 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11689
11690 return NULL;
11691 }
11692
11693 /* COOKIE->rel describes a relocation against section SEC, which is
11694 a section we've decided to keep. Return the section that contains
11695 the relocation symbol, or NULL if no section contains it. */
11696
11697 asection *
11698 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11699 elf_gc_mark_hook_fn gc_mark_hook,
11700 struct elf_reloc_cookie *cookie)
11701 {
11702 unsigned long r_symndx;
11703 struct elf_link_hash_entry *h;
11704
11705 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11706 if (r_symndx == STN_UNDEF)
11707 return NULL;
11708
11709 if (r_symndx >= cookie->locsymcount
11710 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11711 {
11712 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11713 while (h->root.type == bfd_link_hash_indirect
11714 || h->root.type == bfd_link_hash_warning)
11715 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11716 h->mark = 1;
11717 /* If this symbol is weak and there is a non-weak definition, we
11718 keep the non-weak definition because many backends put
11719 dynamic reloc info on the non-weak definition for code
11720 handling copy relocs. */
11721 if (h->u.weakdef != NULL)
11722 h->u.weakdef->mark = 1;
11723 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11724 }
11725
11726 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11727 &cookie->locsyms[r_symndx]);
11728 }
11729
11730 /* COOKIE->rel describes a relocation against section SEC, which is
11731 a section we've decided to keep. Mark the section that contains
11732 the relocation symbol. */
11733
11734 bfd_boolean
11735 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11736 asection *sec,
11737 elf_gc_mark_hook_fn gc_mark_hook,
11738 struct elf_reloc_cookie *cookie)
11739 {
11740 asection *rsec;
11741
11742 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11743 if (rsec && !rsec->gc_mark)
11744 {
11745 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11746 || (rsec->owner->flags & DYNAMIC) != 0)
11747 rsec->gc_mark = 1;
11748 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11749 return FALSE;
11750 }
11751 return TRUE;
11752 }
11753
11754 /* The mark phase of garbage collection. For a given section, mark
11755 it and any sections in this section's group, and all the sections
11756 which define symbols to which it refers. */
11757
11758 bfd_boolean
11759 _bfd_elf_gc_mark (struct bfd_link_info *info,
11760 asection *sec,
11761 elf_gc_mark_hook_fn gc_mark_hook)
11762 {
11763 bfd_boolean ret;
11764 asection *group_sec, *eh_frame;
11765
11766 sec->gc_mark = 1;
11767
11768 /* Mark all the sections in the group. */
11769 group_sec = elf_section_data (sec)->next_in_group;
11770 if (group_sec && !group_sec->gc_mark)
11771 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11772 return FALSE;
11773
11774 /* Look through the section relocs. */
11775 ret = TRUE;
11776 eh_frame = elf_eh_frame_section (sec->owner);
11777 if ((sec->flags & SEC_RELOC) != 0
11778 && sec->reloc_count > 0
11779 && sec != eh_frame)
11780 {
11781 struct elf_reloc_cookie cookie;
11782
11783 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11784 ret = FALSE;
11785 else
11786 {
11787 for (; cookie.rel < cookie.relend; cookie.rel++)
11788 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11789 {
11790 ret = FALSE;
11791 break;
11792 }
11793 fini_reloc_cookie_for_section (&cookie, sec);
11794 }
11795 }
11796
11797 if (ret && eh_frame && elf_fde_list (sec))
11798 {
11799 struct elf_reloc_cookie cookie;
11800
11801 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11802 ret = FALSE;
11803 else
11804 {
11805 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11806 gc_mark_hook, &cookie))
11807 ret = FALSE;
11808 fini_reloc_cookie_for_section (&cookie, eh_frame);
11809 }
11810 }
11811
11812 return ret;
11813 }
11814
11815 /* Keep debug and special sections. */
11816
11817 bfd_boolean
11818 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11819 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11820 {
11821 bfd *ibfd;
11822
11823 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11824 {
11825 asection *isec;
11826 bfd_boolean some_kept;
11827
11828 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11829 continue;
11830
11831 /* Ensure all linker created sections are kept, and see whether
11832 any other section is already marked. */
11833 some_kept = FALSE;
11834 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11835 {
11836 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11837 isec->gc_mark = 1;
11838 else if (isec->gc_mark)
11839 some_kept = TRUE;
11840 }
11841
11842 /* If no section in this file will be kept, then we can
11843 toss out debug sections. */
11844 if (!some_kept)
11845 continue;
11846
11847 /* Keep debug and special sections like .comment when they are
11848 not part of a group, or when we have single-member groups. */
11849 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11850 if ((elf_next_in_group (isec) == NULL
11851 || elf_next_in_group (isec) == isec)
11852 && ((isec->flags & SEC_DEBUGGING) != 0
11853 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11854 isec->gc_mark = 1;
11855 }
11856 return TRUE;
11857 }
11858
11859 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11860
11861 struct elf_gc_sweep_symbol_info
11862 {
11863 struct bfd_link_info *info;
11864 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11865 bfd_boolean);
11866 };
11867
11868 static bfd_boolean
11869 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11870 {
11871 if (!h->mark
11872 && (((h->root.type == bfd_link_hash_defined
11873 || h->root.type == bfd_link_hash_defweak)
11874 && !(h->def_regular
11875 && h->root.u.def.section->gc_mark))
11876 || h->root.type == bfd_link_hash_undefined
11877 || h->root.type == bfd_link_hash_undefweak))
11878 {
11879 struct elf_gc_sweep_symbol_info *inf;
11880
11881 inf = (struct elf_gc_sweep_symbol_info *) data;
11882 (*inf->hide_symbol) (inf->info, h, TRUE);
11883 h->def_regular = 0;
11884 h->ref_regular = 0;
11885 h->ref_regular_nonweak = 0;
11886 }
11887
11888 return TRUE;
11889 }
11890
11891 /* The sweep phase of garbage collection. Remove all garbage sections. */
11892
11893 typedef bfd_boolean (*gc_sweep_hook_fn)
11894 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11895
11896 static bfd_boolean
11897 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11898 {
11899 bfd *sub;
11900 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11901 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11902 unsigned long section_sym_count;
11903 struct elf_gc_sweep_symbol_info sweep_info;
11904
11905 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11906 {
11907 asection *o;
11908
11909 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11910 continue;
11911
11912 for (o = sub->sections; o != NULL; o = o->next)
11913 {
11914 /* When any section in a section group is kept, we keep all
11915 sections in the section group. If the first member of
11916 the section group is excluded, we will also exclude the
11917 group section. */
11918 if (o->flags & SEC_GROUP)
11919 {
11920 asection *first = elf_next_in_group (o);
11921 o->gc_mark = first->gc_mark;
11922 }
11923
11924 if (o->gc_mark)
11925 continue;
11926
11927 /* Skip sweeping sections already excluded. */
11928 if (o->flags & SEC_EXCLUDE)
11929 continue;
11930
11931 /* Since this is early in the link process, it is simple
11932 to remove a section from the output. */
11933 o->flags |= SEC_EXCLUDE;
11934
11935 if (info->print_gc_sections && o->size != 0)
11936 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11937
11938 /* But we also have to update some of the relocation
11939 info we collected before. */
11940 if (gc_sweep_hook
11941 && (o->flags & SEC_RELOC) != 0
11942 && o->reloc_count > 0
11943 && !bfd_is_abs_section (o->output_section))
11944 {
11945 Elf_Internal_Rela *internal_relocs;
11946 bfd_boolean r;
11947
11948 internal_relocs
11949 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11950 info->keep_memory);
11951 if (internal_relocs == NULL)
11952 return FALSE;
11953
11954 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11955
11956 if (elf_section_data (o)->relocs != internal_relocs)
11957 free (internal_relocs);
11958
11959 if (!r)
11960 return FALSE;
11961 }
11962 }
11963 }
11964
11965 /* Remove the symbols that were in the swept sections from the dynamic
11966 symbol table. GCFIXME: Anyone know how to get them out of the
11967 static symbol table as well? */
11968 sweep_info.info = info;
11969 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11970 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11971 &sweep_info);
11972
11973 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11974 return TRUE;
11975 }
11976
11977 /* Propagate collected vtable information. This is called through
11978 elf_link_hash_traverse. */
11979
11980 static bfd_boolean
11981 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11982 {
11983 /* Those that are not vtables. */
11984 if (h->vtable == NULL || h->vtable->parent == NULL)
11985 return TRUE;
11986
11987 /* Those vtables that do not have parents, we cannot merge. */
11988 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11989 return TRUE;
11990
11991 /* If we've already been done, exit. */
11992 if (h->vtable->used && h->vtable->used[-1])
11993 return TRUE;
11994
11995 /* Make sure the parent's table is up to date. */
11996 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11997
11998 if (h->vtable->used == NULL)
11999 {
12000 /* None of this table's entries were referenced. Re-use the
12001 parent's table. */
12002 h->vtable->used = h->vtable->parent->vtable->used;
12003 h->vtable->size = h->vtable->parent->vtable->size;
12004 }
12005 else
12006 {
12007 size_t n;
12008 bfd_boolean *cu, *pu;
12009
12010 /* Or the parent's entries into ours. */
12011 cu = h->vtable->used;
12012 cu[-1] = TRUE;
12013 pu = h->vtable->parent->vtable->used;
12014 if (pu != NULL)
12015 {
12016 const struct elf_backend_data *bed;
12017 unsigned int log_file_align;
12018
12019 bed = get_elf_backend_data (h->root.u.def.section->owner);
12020 log_file_align = bed->s->log_file_align;
12021 n = h->vtable->parent->vtable->size >> log_file_align;
12022 while (n--)
12023 {
12024 if (*pu)
12025 *cu = TRUE;
12026 pu++;
12027 cu++;
12028 }
12029 }
12030 }
12031
12032 return TRUE;
12033 }
12034
12035 static bfd_boolean
12036 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12037 {
12038 asection *sec;
12039 bfd_vma hstart, hend;
12040 Elf_Internal_Rela *relstart, *relend, *rel;
12041 const struct elf_backend_data *bed;
12042 unsigned int log_file_align;
12043
12044 /* Take care of both those symbols that do not describe vtables as
12045 well as those that are not loaded. */
12046 if (h->vtable == NULL || h->vtable->parent == NULL)
12047 return TRUE;
12048
12049 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12050 || h->root.type == bfd_link_hash_defweak);
12051
12052 sec = h->root.u.def.section;
12053 hstart = h->root.u.def.value;
12054 hend = hstart + h->size;
12055
12056 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12057 if (!relstart)
12058 return *(bfd_boolean *) okp = FALSE;
12059 bed = get_elf_backend_data (sec->owner);
12060 log_file_align = bed->s->log_file_align;
12061
12062 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12063
12064 for (rel = relstart; rel < relend; ++rel)
12065 if (rel->r_offset >= hstart && rel->r_offset < hend)
12066 {
12067 /* If the entry is in use, do nothing. */
12068 if (h->vtable->used
12069 && (rel->r_offset - hstart) < h->vtable->size)
12070 {
12071 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12072 if (h->vtable->used[entry])
12073 continue;
12074 }
12075 /* Otherwise, kill it. */
12076 rel->r_offset = rel->r_info = rel->r_addend = 0;
12077 }
12078
12079 return TRUE;
12080 }
12081
12082 /* Mark sections containing dynamically referenced symbols. When
12083 building shared libraries, we must assume that any visible symbol is
12084 referenced. */
12085
12086 bfd_boolean
12087 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12088 {
12089 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12090
12091 if ((h->root.type == bfd_link_hash_defined
12092 || h->root.type == bfd_link_hash_defweak)
12093 && (h->ref_dynamic
12094 || ((!info->executable || info->export_dynamic)
12095 && h->def_regular
12096 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12097 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12098 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12099 || !bfd_hide_sym_by_version (info->version_info,
12100 h->root.root.string)))))
12101 h->root.u.def.section->flags |= SEC_KEEP;
12102
12103 return TRUE;
12104 }
12105
12106 /* Keep all sections containing symbols undefined on the command-line,
12107 and the section containing the entry symbol. */
12108
12109 void
12110 _bfd_elf_gc_keep (struct bfd_link_info *info)
12111 {
12112 struct bfd_sym_chain *sym;
12113
12114 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12115 {
12116 struct elf_link_hash_entry *h;
12117
12118 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12119 FALSE, FALSE, FALSE);
12120
12121 if (h != NULL
12122 && (h->root.type == bfd_link_hash_defined
12123 || h->root.type == bfd_link_hash_defweak)
12124 && !bfd_is_abs_section (h->root.u.def.section))
12125 h->root.u.def.section->flags |= SEC_KEEP;
12126 }
12127 }
12128
12129 /* Do mark and sweep of unused sections. */
12130
12131 bfd_boolean
12132 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12133 {
12134 bfd_boolean ok = TRUE;
12135 bfd *sub;
12136 elf_gc_mark_hook_fn gc_mark_hook;
12137 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12138
12139 if (!bed->can_gc_sections
12140 || !is_elf_hash_table (info->hash))
12141 {
12142 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12143 return TRUE;
12144 }
12145
12146 bed->gc_keep (info);
12147
12148 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12149 at the .eh_frame section if we can mark the FDEs individually. */
12150 _bfd_elf_begin_eh_frame_parsing (info);
12151 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12152 {
12153 asection *sec;
12154 struct elf_reloc_cookie cookie;
12155
12156 sec = bfd_get_section_by_name (sub, ".eh_frame");
12157 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12158 {
12159 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12160 if (elf_section_data (sec)->sec_info
12161 && (sec->flags & SEC_LINKER_CREATED) == 0)
12162 elf_eh_frame_section (sub) = sec;
12163 fini_reloc_cookie_for_section (&cookie, sec);
12164 sec = bfd_get_next_section_by_name (sec);
12165 }
12166 }
12167 _bfd_elf_end_eh_frame_parsing (info);
12168
12169 /* Apply transitive closure to the vtable entry usage info. */
12170 elf_link_hash_traverse (elf_hash_table (info),
12171 elf_gc_propagate_vtable_entries_used,
12172 &ok);
12173 if (!ok)
12174 return FALSE;
12175
12176 /* Kill the vtable relocations that were not used. */
12177 elf_link_hash_traverse (elf_hash_table (info),
12178 elf_gc_smash_unused_vtentry_relocs,
12179 &ok);
12180 if (!ok)
12181 return FALSE;
12182
12183 /* Mark dynamically referenced symbols. */
12184 if (elf_hash_table (info)->dynamic_sections_created)
12185 elf_link_hash_traverse (elf_hash_table (info),
12186 bed->gc_mark_dynamic_ref,
12187 info);
12188
12189 /* Grovel through relocs to find out who stays ... */
12190 gc_mark_hook = bed->gc_mark_hook;
12191 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12192 {
12193 asection *o;
12194
12195 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12196 continue;
12197
12198 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12199 Also treat note sections as a root, if the section is not part
12200 of a group. */
12201 for (o = sub->sections; o != NULL; o = o->next)
12202 if (!o->gc_mark
12203 && (o->flags & SEC_EXCLUDE) == 0
12204 && ((o->flags & SEC_KEEP) != 0
12205 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12206 && elf_next_in_group (o) == NULL )))
12207 {
12208 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12209 return FALSE;
12210 }
12211 }
12212
12213 /* Allow the backend to mark additional target specific sections. */
12214 bed->gc_mark_extra_sections (info, gc_mark_hook);
12215
12216 /* ... and mark SEC_EXCLUDE for those that go. */
12217 return elf_gc_sweep (abfd, info);
12218 }
12219 \f
12220 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12221
12222 bfd_boolean
12223 bfd_elf_gc_record_vtinherit (bfd *abfd,
12224 asection *sec,
12225 struct elf_link_hash_entry *h,
12226 bfd_vma offset)
12227 {
12228 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12229 struct elf_link_hash_entry **search, *child;
12230 bfd_size_type extsymcount;
12231 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12232
12233 /* The sh_info field of the symtab header tells us where the
12234 external symbols start. We don't care about the local symbols at
12235 this point. */
12236 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12237 if (!elf_bad_symtab (abfd))
12238 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12239
12240 sym_hashes = elf_sym_hashes (abfd);
12241 sym_hashes_end = sym_hashes + extsymcount;
12242
12243 /* Hunt down the child symbol, which is in this section at the same
12244 offset as the relocation. */
12245 for (search = sym_hashes; search != sym_hashes_end; ++search)
12246 {
12247 if ((child = *search) != NULL
12248 && (child->root.type == bfd_link_hash_defined
12249 || child->root.type == bfd_link_hash_defweak)
12250 && child->root.u.def.section == sec
12251 && child->root.u.def.value == offset)
12252 goto win;
12253 }
12254
12255 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12256 abfd, sec, (unsigned long) offset);
12257 bfd_set_error (bfd_error_invalid_operation);
12258 return FALSE;
12259
12260 win:
12261 if (!child->vtable)
12262 {
12263 child->vtable = (struct elf_link_virtual_table_entry *)
12264 bfd_zalloc (abfd, sizeof (*child->vtable));
12265 if (!child->vtable)
12266 return FALSE;
12267 }
12268 if (!h)
12269 {
12270 /* This *should* only be the absolute section. It could potentially
12271 be that someone has defined a non-global vtable though, which
12272 would be bad. It isn't worth paging in the local symbols to be
12273 sure though; that case should simply be handled by the assembler. */
12274
12275 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12276 }
12277 else
12278 child->vtable->parent = h;
12279
12280 return TRUE;
12281 }
12282
12283 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12284
12285 bfd_boolean
12286 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12287 asection *sec ATTRIBUTE_UNUSED,
12288 struct elf_link_hash_entry *h,
12289 bfd_vma addend)
12290 {
12291 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12292 unsigned int log_file_align = bed->s->log_file_align;
12293
12294 if (!h->vtable)
12295 {
12296 h->vtable = (struct elf_link_virtual_table_entry *)
12297 bfd_zalloc (abfd, sizeof (*h->vtable));
12298 if (!h->vtable)
12299 return FALSE;
12300 }
12301
12302 if (addend >= h->vtable->size)
12303 {
12304 size_t size, bytes, file_align;
12305 bfd_boolean *ptr = h->vtable->used;
12306
12307 /* While the symbol is undefined, we have to be prepared to handle
12308 a zero size. */
12309 file_align = 1 << log_file_align;
12310 if (h->root.type == bfd_link_hash_undefined)
12311 size = addend + file_align;
12312 else
12313 {
12314 size = h->size;
12315 if (addend >= size)
12316 {
12317 /* Oops! We've got a reference past the defined end of
12318 the table. This is probably a bug -- shall we warn? */
12319 size = addend + file_align;
12320 }
12321 }
12322 size = (size + file_align - 1) & -file_align;
12323
12324 /* Allocate one extra entry for use as a "done" flag for the
12325 consolidation pass. */
12326 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12327
12328 if (ptr)
12329 {
12330 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12331
12332 if (ptr != NULL)
12333 {
12334 size_t oldbytes;
12335
12336 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12337 * sizeof (bfd_boolean));
12338 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12339 }
12340 }
12341 else
12342 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12343
12344 if (ptr == NULL)
12345 return FALSE;
12346
12347 /* And arrange for that done flag to be at index -1. */
12348 h->vtable->used = ptr + 1;
12349 h->vtable->size = size;
12350 }
12351
12352 h->vtable->used[addend >> log_file_align] = TRUE;
12353
12354 return TRUE;
12355 }
12356
12357 /* Map an ELF section header flag to its corresponding string. */
12358 typedef struct
12359 {
12360 char *flag_name;
12361 flagword flag_value;
12362 } elf_flags_to_name_table;
12363
12364 static elf_flags_to_name_table elf_flags_to_names [] =
12365 {
12366 { "SHF_WRITE", SHF_WRITE },
12367 { "SHF_ALLOC", SHF_ALLOC },
12368 { "SHF_EXECINSTR", SHF_EXECINSTR },
12369 { "SHF_MERGE", SHF_MERGE },
12370 { "SHF_STRINGS", SHF_STRINGS },
12371 { "SHF_INFO_LINK", SHF_INFO_LINK},
12372 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12373 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12374 { "SHF_GROUP", SHF_GROUP },
12375 { "SHF_TLS", SHF_TLS },
12376 { "SHF_MASKOS", SHF_MASKOS },
12377 { "SHF_EXCLUDE", SHF_EXCLUDE },
12378 };
12379
12380 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12381 bfd_boolean
12382 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12383 struct flag_info *flaginfo,
12384 asection *section)
12385 {
12386 const bfd_vma sh_flags = elf_section_flags (section);
12387
12388 if (!flaginfo->flags_initialized)
12389 {
12390 bfd *obfd = info->output_bfd;
12391 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12392 struct flag_info_list *tf = flaginfo->flag_list;
12393 int with_hex = 0;
12394 int without_hex = 0;
12395
12396 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12397 {
12398 unsigned i;
12399 flagword (*lookup) (char *);
12400
12401 lookup = bed->elf_backend_lookup_section_flags_hook;
12402 if (lookup != NULL)
12403 {
12404 flagword hexval = (*lookup) ((char *) tf->name);
12405
12406 if (hexval != 0)
12407 {
12408 if (tf->with == with_flags)
12409 with_hex |= hexval;
12410 else if (tf->with == without_flags)
12411 without_hex |= hexval;
12412 tf->valid = TRUE;
12413 continue;
12414 }
12415 }
12416 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12417 {
12418 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12419 {
12420 if (tf->with == with_flags)
12421 with_hex |= elf_flags_to_names[i].flag_value;
12422 else if (tf->with == without_flags)
12423 without_hex |= elf_flags_to_names[i].flag_value;
12424 tf->valid = TRUE;
12425 break;
12426 }
12427 }
12428 if (!tf->valid)
12429 {
12430 info->callbacks->einfo
12431 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12432 return FALSE;
12433 }
12434 }
12435 flaginfo->flags_initialized = TRUE;
12436 flaginfo->only_with_flags |= with_hex;
12437 flaginfo->not_with_flags |= without_hex;
12438 }
12439
12440 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12441 return FALSE;
12442
12443 if ((flaginfo->not_with_flags & sh_flags) != 0)
12444 return FALSE;
12445
12446 return TRUE;
12447 }
12448
12449 struct alloc_got_off_arg {
12450 bfd_vma gotoff;
12451 struct bfd_link_info *info;
12452 };
12453
12454 /* We need a special top-level link routine to convert got reference counts
12455 to real got offsets. */
12456
12457 static bfd_boolean
12458 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12459 {
12460 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12461 bfd *obfd = gofarg->info->output_bfd;
12462 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12463
12464 if (h->got.refcount > 0)
12465 {
12466 h->got.offset = gofarg->gotoff;
12467 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12468 }
12469 else
12470 h->got.offset = (bfd_vma) -1;
12471
12472 return TRUE;
12473 }
12474
12475 /* And an accompanying bit to work out final got entry offsets once
12476 we're done. Should be called from final_link. */
12477
12478 bfd_boolean
12479 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12480 struct bfd_link_info *info)
12481 {
12482 bfd *i;
12483 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12484 bfd_vma gotoff;
12485 struct alloc_got_off_arg gofarg;
12486
12487 BFD_ASSERT (abfd == info->output_bfd);
12488
12489 if (! is_elf_hash_table (info->hash))
12490 return FALSE;
12491
12492 /* The GOT offset is relative to the .got section, but the GOT header is
12493 put into the .got.plt section, if the backend uses it. */
12494 if (bed->want_got_plt)
12495 gotoff = 0;
12496 else
12497 gotoff = bed->got_header_size;
12498
12499 /* Do the local .got entries first. */
12500 for (i = info->input_bfds; i; i = i->link_next)
12501 {
12502 bfd_signed_vma *local_got;
12503 bfd_size_type j, locsymcount;
12504 Elf_Internal_Shdr *symtab_hdr;
12505
12506 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12507 continue;
12508
12509 local_got = elf_local_got_refcounts (i);
12510 if (!local_got)
12511 continue;
12512
12513 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12514 if (elf_bad_symtab (i))
12515 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12516 else
12517 locsymcount = symtab_hdr->sh_info;
12518
12519 for (j = 0; j < locsymcount; ++j)
12520 {
12521 if (local_got[j] > 0)
12522 {
12523 local_got[j] = gotoff;
12524 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12525 }
12526 else
12527 local_got[j] = (bfd_vma) -1;
12528 }
12529 }
12530
12531 /* Then the global .got entries. .plt refcounts are handled by
12532 adjust_dynamic_symbol */
12533 gofarg.gotoff = gotoff;
12534 gofarg.info = info;
12535 elf_link_hash_traverse (elf_hash_table (info),
12536 elf_gc_allocate_got_offsets,
12537 &gofarg);
12538 return TRUE;
12539 }
12540
12541 /* Many folk need no more in the way of final link than this, once
12542 got entry reference counting is enabled. */
12543
12544 bfd_boolean
12545 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12546 {
12547 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12548 return FALSE;
12549
12550 /* Invoke the regular ELF backend linker to do all the work. */
12551 return bfd_elf_final_link (abfd, info);
12552 }
12553
12554 bfd_boolean
12555 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12556 {
12557 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12558
12559 if (rcookie->bad_symtab)
12560 rcookie->rel = rcookie->rels;
12561
12562 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12563 {
12564 unsigned long r_symndx;
12565
12566 if (! rcookie->bad_symtab)
12567 if (rcookie->rel->r_offset > offset)
12568 return FALSE;
12569 if (rcookie->rel->r_offset != offset)
12570 continue;
12571
12572 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12573 if (r_symndx == STN_UNDEF)
12574 return TRUE;
12575
12576 if (r_symndx >= rcookie->locsymcount
12577 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12578 {
12579 struct elf_link_hash_entry *h;
12580
12581 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12582
12583 while (h->root.type == bfd_link_hash_indirect
12584 || h->root.type == bfd_link_hash_warning)
12585 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12586
12587 if ((h->root.type == bfd_link_hash_defined
12588 || h->root.type == bfd_link_hash_defweak)
12589 && discarded_section (h->root.u.def.section))
12590 return TRUE;
12591 else
12592 return FALSE;
12593 }
12594 else
12595 {
12596 /* It's not a relocation against a global symbol,
12597 but it could be a relocation against a local
12598 symbol for a discarded section. */
12599 asection *isec;
12600 Elf_Internal_Sym *isym;
12601
12602 /* Need to: get the symbol; get the section. */
12603 isym = &rcookie->locsyms[r_symndx];
12604 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12605 if (isec != NULL && discarded_section (isec))
12606 return TRUE;
12607 }
12608 return FALSE;
12609 }
12610 return FALSE;
12611 }
12612
12613 /* Discard unneeded references to discarded sections.
12614 Returns TRUE if any section's size was changed. */
12615 /* This function assumes that the relocations are in sorted order,
12616 which is true for all known assemblers. */
12617
12618 bfd_boolean
12619 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12620 {
12621 struct elf_reloc_cookie cookie;
12622 asection *stab, *eh;
12623 const struct elf_backend_data *bed;
12624 bfd *abfd;
12625 bfd_boolean ret = FALSE;
12626
12627 if (info->traditional_format
12628 || !is_elf_hash_table (info->hash))
12629 return FALSE;
12630
12631 _bfd_elf_begin_eh_frame_parsing (info);
12632 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12633 {
12634 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12635 continue;
12636
12637 bed = get_elf_backend_data (abfd);
12638
12639 eh = NULL;
12640 if (!info->relocatable)
12641 {
12642 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12643 while (eh != NULL
12644 && (eh->size == 0
12645 || bfd_is_abs_section (eh->output_section)))
12646 eh = bfd_get_next_section_by_name (eh);
12647 }
12648
12649 stab = bfd_get_section_by_name (abfd, ".stab");
12650 if (stab != NULL
12651 && (stab->size == 0
12652 || bfd_is_abs_section (stab->output_section)
12653 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12654 stab = NULL;
12655
12656 if (stab == NULL
12657 && eh == NULL
12658 && bed->elf_backend_discard_info == NULL)
12659 continue;
12660
12661 if (!init_reloc_cookie (&cookie, info, abfd))
12662 return FALSE;
12663
12664 if (stab != NULL
12665 && stab->reloc_count > 0
12666 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12667 {
12668 if (_bfd_discard_section_stabs (abfd, stab,
12669 elf_section_data (stab)->sec_info,
12670 bfd_elf_reloc_symbol_deleted_p,
12671 &cookie))
12672 ret = TRUE;
12673 fini_reloc_cookie_rels (&cookie, stab);
12674 }
12675
12676 while (eh != NULL
12677 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12678 {
12679 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12680 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12681 bfd_elf_reloc_symbol_deleted_p,
12682 &cookie))
12683 ret = TRUE;
12684 fini_reloc_cookie_rels (&cookie, eh);
12685 eh = bfd_get_next_section_by_name (eh);
12686 }
12687
12688 if (bed->elf_backend_discard_info != NULL
12689 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12690 ret = TRUE;
12691
12692 fini_reloc_cookie (&cookie, abfd);
12693 }
12694 _bfd_elf_end_eh_frame_parsing (info);
12695
12696 if (info->eh_frame_hdr
12697 && !info->relocatable
12698 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12699 ret = TRUE;
12700
12701 return ret;
12702 }
12703
12704 bfd_boolean
12705 _bfd_elf_section_already_linked (bfd *abfd,
12706 asection *sec,
12707 struct bfd_link_info *info)
12708 {
12709 flagword flags;
12710 const char *name, *key;
12711 struct bfd_section_already_linked *l;
12712 struct bfd_section_already_linked_hash_entry *already_linked_list;
12713
12714 if (sec->output_section == bfd_abs_section_ptr)
12715 return FALSE;
12716
12717 flags = sec->flags;
12718
12719 /* Return if it isn't a linkonce section. A comdat group section
12720 also has SEC_LINK_ONCE set. */
12721 if ((flags & SEC_LINK_ONCE) == 0)
12722 return FALSE;
12723
12724 /* Don't put group member sections on our list of already linked
12725 sections. They are handled as a group via their group section. */
12726 if (elf_sec_group (sec) != NULL)
12727 return FALSE;
12728
12729 /* For a SHT_GROUP section, use the group signature as the key. */
12730 name = sec->name;
12731 if ((flags & SEC_GROUP) != 0
12732 && elf_next_in_group (sec) != NULL
12733 && elf_group_name (elf_next_in_group (sec)) != NULL)
12734 key = elf_group_name (elf_next_in_group (sec));
12735 else
12736 {
12737 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12738 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12739 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12740 key++;
12741 else
12742 /* Must be a user linkonce section that doesn't follow gcc's
12743 naming convention. In this case we won't be matching
12744 single member groups. */
12745 key = name;
12746 }
12747
12748 already_linked_list = bfd_section_already_linked_table_lookup (key);
12749
12750 for (l = already_linked_list->entry; l != NULL; l = l->next)
12751 {
12752 /* We may have 2 different types of sections on the list: group
12753 sections with a signature of <key> (<key> is some string),
12754 and linkonce sections named .gnu.linkonce.<type>.<key>.
12755 Match like sections. LTO plugin sections are an exception.
12756 They are always named .gnu.linkonce.t.<key> and match either
12757 type of section. */
12758 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12759 && ((flags & SEC_GROUP) != 0
12760 || strcmp (name, l->sec->name) == 0))
12761 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12762 {
12763 /* The section has already been linked. See if we should
12764 issue a warning. */
12765 if (!_bfd_handle_already_linked (sec, l, info))
12766 return FALSE;
12767
12768 if (flags & SEC_GROUP)
12769 {
12770 asection *first = elf_next_in_group (sec);
12771 asection *s = first;
12772
12773 while (s != NULL)
12774 {
12775 s->output_section = bfd_abs_section_ptr;
12776 /* Record which group discards it. */
12777 s->kept_section = l->sec;
12778 s = elf_next_in_group (s);
12779 /* These lists are circular. */
12780 if (s == first)
12781 break;
12782 }
12783 }
12784
12785 return TRUE;
12786 }
12787 }
12788
12789 /* A single member comdat group section may be discarded by a
12790 linkonce section and vice versa. */
12791 if ((flags & SEC_GROUP) != 0)
12792 {
12793 asection *first = elf_next_in_group (sec);
12794
12795 if (first != NULL && elf_next_in_group (first) == first)
12796 /* Check this single member group against linkonce sections. */
12797 for (l = already_linked_list->entry; l != NULL; l = l->next)
12798 if ((l->sec->flags & SEC_GROUP) == 0
12799 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12800 {
12801 first->output_section = bfd_abs_section_ptr;
12802 first->kept_section = l->sec;
12803 sec->output_section = bfd_abs_section_ptr;
12804 break;
12805 }
12806 }
12807 else
12808 /* Check this linkonce section against single member groups. */
12809 for (l = already_linked_list->entry; l != NULL; l = l->next)
12810 if (l->sec->flags & SEC_GROUP)
12811 {
12812 asection *first = elf_next_in_group (l->sec);
12813
12814 if (first != NULL
12815 && elf_next_in_group (first) == first
12816 && bfd_elf_match_symbols_in_sections (first, sec, info))
12817 {
12818 sec->output_section = bfd_abs_section_ptr;
12819 sec->kept_section = first;
12820 break;
12821 }
12822 }
12823
12824 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12825 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12826 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12827 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12828 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12829 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12830 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12831 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12832 The reverse order cannot happen as there is never a bfd with only the
12833 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12834 matter as here were are looking only for cross-bfd sections. */
12835
12836 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12837 for (l = already_linked_list->entry; l != NULL; l = l->next)
12838 if ((l->sec->flags & SEC_GROUP) == 0
12839 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12840 {
12841 if (abfd != l->sec->owner)
12842 sec->output_section = bfd_abs_section_ptr;
12843 break;
12844 }
12845
12846 /* This is the first section with this name. Record it. */
12847 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12848 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12849 return sec->output_section == bfd_abs_section_ptr;
12850 }
12851
12852 bfd_boolean
12853 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12854 {
12855 return sym->st_shndx == SHN_COMMON;
12856 }
12857
12858 unsigned int
12859 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12860 {
12861 return SHN_COMMON;
12862 }
12863
12864 asection *
12865 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12866 {
12867 return bfd_com_section_ptr;
12868 }
12869
12870 bfd_vma
12871 _bfd_elf_default_got_elt_size (bfd *abfd,
12872 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12873 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12874 bfd *ibfd ATTRIBUTE_UNUSED,
12875 unsigned long symndx ATTRIBUTE_UNUSED)
12876 {
12877 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12878 return bed->s->arch_size / 8;
12879 }
12880
12881 /* Routines to support the creation of dynamic relocs. */
12882
12883 /* Returns the name of the dynamic reloc section associated with SEC. */
12884
12885 static const char *
12886 get_dynamic_reloc_section_name (bfd * abfd,
12887 asection * sec,
12888 bfd_boolean is_rela)
12889 {
12890 char *name;
12891 const char *old_name = bfd_get_section_name (NULL, sec);
12892 const char *prefix = is_rela ? ".rela" : ".rel";
12893
12894 if (old_name == NULL)
12895 return NULL;
12896
12897 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12898 sprintf (name, "%s%s", prefix, old_name);
12899
12900 return name;
12901 }
12902
12903 /* Returns the dynamic reloc section associated with SEC.
12904 If necessary compute the name of the dynamic reloc section based
12905 on SEC's name (looked up in ABFD's string table) and the setting
12906 of IS_RELA. */
12907
12908 asection *
12909 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12910 asection * sec,
12911 bfd_boolean is_rela)
12912 {
12913 asection * reloc_sec = elf_section_data (sec)->sreloc;
12914
12915 if (reloc_sec == NULL)
12916 {
12917 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12918
12919 if (name != NULL)
12920 {
12921 reloc_sec = bfd_get_linker_section (abfd, name);
12922
12923 if (reloc_sec != NULL)
12924 elf_section_data (sec)->sreloc = reloc_sec;
12925 }
12926 }
12927
12928 return reloc_sec;
12929 }
12930
12931 /* Returns the dynamic reloc section associated with SEC. If the
12932 section does not exist it is created and attached to the DYNOBJ
12933 bfd and stored in the SRELOC field of SEC's elf_section_data
12934 structure.
12935
12936 ALIGNMENT is the alignment for the newly created section and
12937 IS_RELA defines whether the name should be .rela.<SEC's name>
12938 or .rel.<SEC's name>. The section name is looked up in the
12939 string table associated with ABFD. */
12940
12941 asection *
12942 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12943 bfd * dynobj,
12944 unsigned int alignment,
12945 bfd * abfd,
12946 bfd_boolean is_rela)
12947 {
12948 asection * reloc_sec = elf_section_data (sec)->sreloc;
12949
12950 if (reloc_sec == NULL)
12951 {
12952 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12953
12954 if (name == NULL)
12955 return NULL;
12956
12957 reloc_sec = bfd_get_linker_section (dynobj, name);
12958
12959 if (reloc_sec == NULL)
12960 {
12961 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
12962 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12963 if ((sec->flags & SEC_ALLOC) != 0)
12964 flags |= SEC_ALLOC | SEC_LOAD;
12965
12966 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
12967 if (reloc_sec != NULL)
12968 {
12969 /* _bfd_elf_get_sec_type_attr chooses a section type by
12970 name. Override as it may be wrong, eg. for a user
12971 section named "auto" we'll get ".relauto" which is
12972 seen to be a .rela section. */
12973 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
12974 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12975 reloc_sec = NULL;
12976 }
12977 }
12978
12979 elf_section_data (sec)->sreloc = reloc_sec;
12980 }
12981
12982 return reloc_sec;
12983 }
12984
12985 /* Copy the ELF symbol type associated with a linker hash entry. */
12986 void
12987 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12988 struct bfd_link_hash_entry * hdest,
12989 struct bfd_link_hash_entry * hsrc)
12990 {
12991 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12992 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12993
12994 ehdest->type = ehsrc->type;
12995 ehdest->target_internal = ehsrc->target_internal;
12996 }
12997
12998 /* Append a RELA relocation REL to section S in BFD. */
12999
13000 void
13001 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13002 {
13003 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13004 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13005 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13006 bed->s->swap_reloca_out (abfd, rel, loc);
13007 }
13008
13009 /* Append a REL relocation REL to section S in BFD. */
13010
13011 void
13012 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13013 {
13014 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13015 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13016 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13017 bed->s->swap_reloc_out (abfd, rel, loc);
13018 }