2000-05-03 Martin v. Löwis <loewis@informatik.hu-berlin.de>
[binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /* ELF linker code. */
21
22 /* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25 struct elf_info_failed
26 {
27 boolean failed;
28 struct bfd_link_info *info;
29 };
30
31 static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33 static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35 static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39 static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41 static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43 static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45 static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49 static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51 static boolean elf_collect_hash_codes
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53 static boolean elf_link_read_relocs_from_section
54 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
55 static void elf_link_output_relocs
56 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
57 static boolean elf_link_size_reloc_section
58 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
59 static void elf_link_adjust_relocs
60 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
61 struct elf_link_hash_entry **));
62
63 /* Given an ELF BFD, add symbols to the global hash table as
64 appropriate. */
65
66 boolean
67 elf_bfd_link_add_symbols (abfd, info)
68 bfd *abfd;
69 struct bfd_link_info *info;
70 {
71 switch (bfd_get_format (abfd))
72 {
73 case bfd_object:
74 return elf_link_add_object_symbols (abfd, info);
75 case bfd_archive:
76 return elf_link_add_archive_symbols (abfd, info);
77 default:
78 bfd_set_error (bfd_error_wrong_format);
79 return false;
80 }
81 }
82 \f
83 /* Return true iff this is a non-common definition of a symbol. */
84 static boolean
85 is_global_symbol_definition (abfd, sym)
86 bfd * abfd ATTRIBUTE_UNUSED;
87 Elf_Internal_Sym * sym;
88 {
89 /* Local symbols do not count, but target specific ones might. */
90 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
91 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
92 return false;
93
94 /* If the section is undefined, then so is the symbol. */
95 if (sym->st_shndx == SHN_UNDEF)
96 return false;
97
98 /* If the symbol is defined in the common section, then
99 it is a common definition and so does not count. */
100 if (sym->st_shndx == SHN_COMMON)
101 return false;
102
103 /* If the symbol is in a target specific section then we
104 must rely upon the backend to tell us what it is. */
105 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
106 /* FIXME - this function is not coded yet:
107
108 return _bfd_is_global_symbol_definition (abfd, sym);
109
110 Instead for now assume that the definition is not global,
111 Even if this is wrong, at least the linker will behave
112 in the same way that it used to do. */
113 return false;
114
115 return true;
116 }
117
118
119 /* Search the symbol table of the archive element of the archive ABFD
120 whoes archove map contains a mention of SYMDEF, and determine if
121 the symbol is defined in this element. */
122 static boolean
123 elf_link_is_defined_archive_symbol (abfd, symdef)
124 bfd * abfd;
125 carsym * symdef;
126 {
127 Elf_Internal_Shdr * hdr;
128 Elf_External_Sym * esym;
129 Elf_External_Sym * esymend;
130 Elf_External_Sym * buf = NULL;
131 size_t symcount;
132 size_t extsymcount;
133 size_t extsymoff;
134 boolean result = false;
135
136 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
137 if (abfd == (bfd *) NULL)
138 return false;
139
140 if (! bfd_check_format (abfd, bfd_object))
141 return false;
142
143 /* If we have already included the element containing this symbol in the
144 link then we do not need to include it again. Just claim that any symbol
145 it contains is not a definition, so that our caller will not decide to
146 (re)include this element. */
147 if (abfd->archive_pass)
148 return false;
149
150 /* Select the appropriate symbol table. */
151 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
152 hdr = &elf_tdata (abfd)->symtab_hdr;
153 else
154 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
155
156 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
157
158 /* The sh_info field of the symtab header tells us where the
159 external symbols start. We don't care about the local symbols. */
160 if (elf_bad_symtab (abfd))
161 {
162 extsymcount = symcount;
163 extsymoff = 0;
164 }
165 else
166 {
167 extsymcount = symcount - hdr->sh_info;
168 extsymoff = hdr->sh_info;
169 }
170
171 buf = ((Elf_External_Sym *)
172 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
173 if (buf == NULL && extsymcount != 0)
174 return false;
175
176 /* Read in the symbol table.
177 FIXME: This ought to be cached somewhere. */
178 if (bfd_seek (abfd,
179 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
180 SEEK_SET) != 0
181 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
182 != extsymcount * sizeof (Elf_External_Sym)))
183 {
184 free (buf);
185 return false;
186 }
187
188 /* Scan the symbol table looking for SYMDEF. */
189 esymend = buf + extsymcount;
190 for (esym = buf;
191 esym < esymend;
192 esym++)
193 {
194 Elf_Internal_Sym sym;
195 const char * name;
196
197 elf_swap_symbol_in (abfd, esym, & sym);
198
199 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
200 if (name == (const char *) NULL)
201 break;
202
203 if (strcmp (name, symdef->name) == 0)
204 {
205 result = is_global_symbol_definition (abfd, & sym);
206 break;
207 }
208 }
209
210 free (buf);
211
212 return result;
213 }
214 \f
215
216 /* Add symbols from an ELF archive file to the linker hash table. We
217 don't use _bfd_generic_link_add_archive_symbols because of a
218 problem which arises on UnixWare. The UnixWare libc.so is an
219 archive which includes an entry libc.so.1 which defines a bunch of
220 symbols. The libc.so archive also includes a number of other
221 object files, which also define symbols, some of which are the same
222 as those defined in libc.so.1. Correct linking requires that we
223 consider each object file in turn, and include it if it defines any
224 symbols we need. _bfd_generic_link_add_archive_symbols does not do
225 this; it looks through the list of undefined symbols, and includes
226 any object file which defines them. When this algorithm is used on
227 UnixWare, it winds up pulling in libc.so.1 early and defining a
228 bunch of symbols. This means that some of the other objects in the
229 archive are not included in the link, which is incorrect since they
230 precede libc.so.1 in the archive.
231
232 Fortunately, ELF archive handling is simpler than that done by
233 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
234 oddities. In ELF, if we find a symbol in the archive map, and the
235 symbol is currently undefined, we know that we must pull in that
236 object file.
237
238 Unfortunately, we do have to make multiple passes over the symbol
239 table until nothing further is resolved. */
240
241 static boolean
242 elf_link_add_archive_symbols (abfd, info)
243 bfd *abfd;
244 struct bfd_link_info *info;
245 {
246 symindex c;
247 boolean *defined = NULL;
248 boolean *included = NULL;
249 carsym *symdefs;
250 boolean loop;
251
252 if (! bfd_has_map (abfd))
253 {
254 /* An empty archive is a special case. */
255 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
256 return true;
257 bfd_set_error (bfd_error_no_armap);
258 return false;
259 }
260
261 /* Keep track of all symbols we know to be already defined, and all
262 files we know to be already included. This is to speed up the
263 second and subsequent passes. */
264 c = bfd_ardata (abfd)->symdef_count;
265 if (c == 0)
266 return true;
267 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
268 included = (boolean *) bfd_malloc (c * sizeof (boolean));
269 if (defined == (boolean *) NULL || included == (boolean *) NULL)
270 goto error_return;
271 memset (defined, 0, c * sizeof (boolean));
272 memset (included, 0, c * sizeof (boolean));
273
274 symdefs = bfd_ardata (abfd)->symdefs;
275
276 do
277 {
278 file_ptr last;
279 symindex i;
280 carsym *symdef;
281 carsym *symdefend;
282
283 loop = false;
284 last = -1;
285
286 symdef = symdefs;
287 symdefend = symdef + c;
288 for (i = 0; symdef < symdefend; symdef++, i++)
289 {
290 struct elf_link_hash_entry *h;
291 bfd *element;
292 struct bfd_link_hash_entry *undefs_tail;
293 symindex mark;
294
295 if (defined[i] || included[i])
296 continue;
297 if (symdef->file_offset == last)
298 {
299 included[i] = true;
300 continue;
301 }
302
303 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
304 false, false, false);
305
306 if (h == NULL)
307 {
308 char *p, *copy;
309
310 /* If this is a default version (the name contains @@),
311 look up the symbol again without the version. The
312 effect is that references to the symbol without the
313 version will be matched by the default symbol in the
314 archive. */
315
316 p = strchr (symdef->name, ELF_VER_CHR);
317 if (p == NULL || p[1] != ELF_VER_CHR)
318 continue;
319
320 copy = bfd_alloc (abfd, p - symdef->name + 1);
321 if (copy == NULL)
322 goto error_return;
323 memcpy (copy, symdef->name, p - symdef->name);
324 copy[p - symdef->name] = '\0';
325
326 h = elf_link_hash_lookup (elf_hash_table (info), copy,
327 false, false, false);
328
329 bfd_release (abfd, copy);
330 }
331
332 if (h == NULL)
333 continue;
334
335 if (h->root.type == bfd_link_hash_common)
336 {
337 /* We currently have a common symbol. The archive map contains
338 a reference to this symbol, so we may want to include it. We
339 only want to include it however, if this archive element
340 contains a definition of the symbol, not just another common
341 declaration of it.
342
343 Unfortunately some archivers (including GNU ar) will put
344 declarations of common symbols into their archive maps, as
345 well as real definitions, so we cannot just go by the archive
346 map alone. Instead we must read in the element's symbol
347 table and check that to see what kind of symbol definition
348 this is. */
349 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
350 continue;
351 }
352 else if (h->root.type != bfd_link_hash_undefined)
353 {
354 if (h->root.type != bfd_link_hash_undefweak)
355 defined[i] = true;
356 continue;
357 }
358
359 /* We need to include this archive member. */
360
361 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
362 if (element == (bfd *) NULL)
363 goto error_return;
364
365 if (! bfd_check_format (element, bfd_object))
366 goto error_return;
367
368 /* Doublecheck that we have not included this object
369 already--it should be impossible, but there may be
370 something wrong with the archive. */
371 if (element->archive_pass != 0)
372 {
373 bfd_set_error (bfd_error_bad_value);
374 goto error_return;
375 }
376 element->archive_pass = 1;
377
378 undefs_tail = info->hash->undefs_tail;
379
380 if (! (*info->callbacks->add_archive_element) (info, element,
381 symdef->name))
382 goto error_return;
383 if (! elf_link_add_object_symbols (element, info))
384 goto error_return;
385
386 /* If there are any new undefined symbols, we need to make
387 another pass through the archive in order to see whether
388 they can be defined. FIXME: This isn't perfect, because
389 common symbols wind up on undefs_tail and because an
390 undefined symbol which is defined later on in this pass
391 does not require another pass. This isn't a bug, but it
392 does make the code less efficient than it could be. */
393 if (undefs_tail != info->hash->undefs_tail)
394 loop = true;
395
396 /* Look backward to mark all symbols from this object file
397 which we have already seen in this pass. */
398 mark = i;
399 do
400 {
401 included[mark] = true;
402 if (mark == 0)
403 break;
404 --mark;
405 }
406 while (symdefs[mark].file_offset == symdef->file_offset);
407
408 /* We mark subsequent symbols from this object file as we go
409 on through the loop. */
410 last = symdef->file_offset;
411 }
412 }
413 while (loop);
414
415 free (defined);
416 free (included);
417
418 return true;
419
420 error_return:
421 if (defined != (boolean *) NULL)
422 free (defined);
423 if (included != (boolean *) NULL)
424 free (included);
425 return false;
426 }
427
428 /* This function is called when we want to define a new symbol. It
429 handles the various cases which arise when we find a definition in
430 a dynamic object, or when there is already a definition in a
431 dynamic object. The new symbol is described by NAME, SYM, PSEC,
432 and PVALUE. We set SYM_HASH to the hash table entry. We set
433 OVERRIDE if the old symbol is overriding a new definition. We set
434 TYPE_CHANGE_OK if it is OK for the type to change. We set
435 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
436 change, we mean that we shouldn't warn if the type or size does
437 change. */
438
439 static boolean
440 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
441 override, type_change_ok, size_change_ok)
442 bfd *abfd;
443 struct bfd_link_info *info;
444 const char *name;
445 Elf_Internal_Sym *sym;
446 asection **psec;
447 bfd_vma *pvalue;
448 struct elf_link_hash_entry **sym_hash;
449 boolean *override;
450 boolean *type_change_ok;
451 boolean *size_change_ok;
452 {
453 asection *sec;
454 struct elf_link_hash_entry *h;
455 int bind;
456 bfd *oldbfd;
457 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
458
459 *override = false;
460
461 sec = *psec;
462 bind = ELF_ST_BIND (sym->st_info);
463
464 if (! bfd_is_und_section (sec))
465 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
466 else
467 h = ((struct elf_link_hash_entry *)
468 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
469 if (h == NULL)
470 return false;
471 *sym_hash = h;
472
473 /* This code is for coping with dynamic objects, and is only useful
474 if we are doing an ELF link. */
475 if (info->hash->creator != abfd->xvec)
476 return true;
477
478 /* For merging, we only care about real symbols. */
479
480 while (h->root.type == bfd_link_hash_indirect
481 || h->root.type == bfd_link_hash_warning)
482 h = (struct elf_link_hash_entry *) h->root.u.i.link;
483
484 /* If we just created the symbol, mark it as being an ELF symbol.
485 Other than that, there is nothing to do--there is no merge issue
486 with a newly defined symbol--so we just return. */
487
488 if (h->root.type == bfd_link_hash_new)
489 {
490 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
491 return true;
492 }
493
494 /* OLDBFD is a BFD associated with the existing symbol. */
495
496 switch (h->root.type)
497 {
498 default:
499 oldbfd = NULL;
500 break;
501
502 case bfd_link_hash_undefined:
503 case bfd_link_hash_undefweak:
504 oldbfd = h->root.u.undef.abfd;
505 break;
506
507 case bfd_link_hash_defined:
508 case bfd_link_hash_defweak:
509 oldbfd = h->root.u.def.section->owner;
510 break;
511
512 case bfd_link_hash_common:
513 oldbfd = h->root.u.c.p->section->owner;
514 break;
515 }
516
517 /* In cases involving weak versioned symbols, we may wind up trying
518 to merge a symbol with itself. Catch that here, to avoid the
519 confusion that results if we try to override a symbol with
520 itself. The additional tests catch cases like
521 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
522 dynamic object, which we do want to handle here. */
523 if (abfd == oldbfd
524 && ((abfd->flags & DYNAMIC) == 0
525 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
526 return true;
527
528 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
529 respectively, is from a dynamic object. */
530
531 if ((abfd->flags & DYNAMIC) != 0)
532 newdyn = true;
533 else
534 newdyn = false;
535
536 if (oldbfd != NULL)
537 olddyn = (oldbfd->flags & DYNAMIC) != 0;
538 else
539 {
540 asection *hsec;
541
542 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
543 indices used by MIPS ELF. */
544 switch (h->root.type)
545 {
546 default:
547 hsec = NULL;
548 break;
549
550 case bfd_link_hash_defined:
551 case bfd_link_hash_defweak:
552 hsec = h->root.u.def.section;
553 break;
554
555 case bfd_link_hash_common:
556 hsec = h->root.u.c.p->section;
557 break;
558 }
559
560 if (hsec == NULL)
561 olddyn = false;
562 else
563 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
564 }
565
566 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
567 respectively, appear to be a definition rather than reference. */
568
569 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
570 newdef = false;
571 else
572 newdef = true;
573
574 if (h->root.type == bfd_link_hash_undefined
575 || h->root.type == bfd_link_hash_undefweak
576 || h->root.type == bfd_link_hash_common)
577 olddef = false;
578 else
579 olddef = true;
580
581 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
582 symbol, respectively, appears to be a common symbol in a dynamic
583 object. If a symbol appears in an uninitialized section, and is
584 not weak, and is not a function, then it may be a common symbol
585 which was resolved when the dynamic object was created. We want
586 to treat such symbols specially, because they raise special
587 considerations when setting the symbol size: if the symbol
588 appears as a common symbol in a regular object, and the size in
589 the regular object is larger, we must make sure that we use the
590 larger size. This problematic case can always be avoided in C,
591 but it must be handled correctly when using Fortran shared
592 libraries.
593
594 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
595 likewise for OLDDYNCOMMON and OLDDEF.
596
597 Note that this test is just a heuristic, and that it is quite
598 possible to have an uninitialized symbol in a shared object which
599 is really a definition, rather than a common symbol. This could
600 lead to some minor confusion when the symbol really is a common
601 symbol in some regular object. However, I think it will be
602 harmless. */
603
604 if (newdyn
605 && newdef
606 && (sec->flags & SEC_ALLOC) != 0
607 && (sec->flags & SEC_LOAD) == 0
608 && sym->st_size > 0
609 && bind != STB_WEAK
610 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
611 newdyncommon = true;
612 else
613 newdyncommon = false;
614
615 if (olddyn
616 && olddef
617 && h->root.type == bfd_link_hash_defined
618 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
619 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
620 && (h->root.u.def.section->flags & SEC_LOAD) == 0
621 && h->size > 0
622 && h->type != STT_FUNC)
623 olddyncommon = true;
624 else
625 olddyncommon = false;
626
627 /* It's OK to change the type if either the existing symbol or the
628 new symbol is weak. */
629
630 if (h->root.type == bfd_link_hash_defweak
631 || h->root.type == bfd_link_hash_undefweak
632 || bind == STB_WEAK)
633 *type_change_ok = true;
634
635 /* It's OK to change the size if either the existing symbol or the
636 new symbol is weak, or if the old symbol is undefined. */
637
638 if (*type_change_ok
639 || h->root.type == bfd_link_hash_undefined)
640 *size_change_ok = true;
641
642 /* If both the old and the new symbols look like common symbols in a
643 dynamic object, set the size of the symbol to the larger of the
644 two. */
645
646 if (olddyncommon
647 && newdyncommon
648 && sym->st_size != h->size)
649 {
650 /* Since we think we have two common symbols, issue a multiple
651 common warning if desired. Note that we only warn if the
652 size is different. If the size is the same, we simply let
653 the old symbol override the new one as normally happens with
654 symbols defined in dynamic objects. */
655
656 if (! ((*info->callbacks->multiple_common)
657 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
658 h->size, abfd, bfd_link_hash_common, sym->st_size)))
659 return false;
660
661 if (sym->st_size > h->size)
662 h->size = sym->st_size;
663
664 *size_change_ok = true;
665 }
666
667 /* If we are looking at a dynamic object, and we have found a
668 definition, we need to see if the symbol was already defined by
669 some other object. If so, we want to use the existing
670 definition, and we do not want to report a multiple symbol
671 definition error; we do this by clobbering *PSEC to be
672 bfd_und_section_ptr.
673
674 We treat a common symbol as a definition if the symbol in the
675 shared library is a function, since common symbols always
676 represent variables; this can cause confusion in principle, but
677 any such confusion would seem to indicate an erroneous program or
678 shared library. We also permit a common symbol in a regular
679 object to override a weak symbol in a shared object.
680
681 We prefer a non-weak definition in a shared library to a weak
682 definition in the executable. */
683
684 if (newdyn
685 && newdef
686 && (olddef
687 || (h->root.type == bfd_link_hash_common
688 && (bind == STB_WEAK
689 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
690 && (h->root.type != bfd_link_hash_defweak
691 || bind == STB_WEAK))
692 {
693 *override = true;
694 newdef = false;
695 newdyncommon = false;
696
697 *psec = sec = bfd_und_section_ptr;
698 *size_change_ok = true;
699
700 /* If we get here when the old symbol is a common symbol, then
701 we are explicitly letting it override a weak symbol or
702 function in a dynamic object, and we don't want to warn about
703 a type change. If the old symbol is a defined symbol, a type
704 change warning may still be appropriate. */
705
706 if (h->root.type == bfd_link_hash_common)
707 *type_change_ok = true;
708 }
709
710 /* Handle the special case of an old common symbol merging with a
711 new symbol which looks like a common symbol in a shared object.
712 We change *PSEC and *PVALUE to make the new symbol look like a
713 common symbol, and let _bfd_generic_link_add_one_symbol will do
714 the right thing. */
715
716 if (newdyncommon
717 && h->root.type == bfd_link_hash_common)
718 {
719 *override = true;
720 newdef = false;
721 newdyncommon = false;
722 *pvalue = sym->st_size;
723 *psec = sec = bfd_com_section_ptr;
724 *size_change_ok = true;
725 }
726
727 /* If the old symbol is from a dynamic object, and the new symbol is
728 a definition which is not from a dynamic object, then the new
729 symbol overrides the old symbol. Symbols from regular files
730 always take precedence over symbols from dynamic objects, even if
731 they are defined after the dynamic object in the link.
732
733 As above, we again permit a common symbol in a regular object to
734 override a definition in a shared object if the shared object
735 symbol is a function or is weak.
736
737 As above, we permit a non-weak definition in a shared object to
738 override a weak definition in a regular object. */
739
740 if (! newdyn
741 && (newdef
742 || (bfd_is_com_section (sec)
743 && (h->root.type == bfd_link_hash_defweak
744 || h->type == STT_FUNC)))
745 && olddyn
746 && olddef
747 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
748 && (bind != STB_WEAK
749 || h->root.type == bfd_link_hash_defweak))
750 {
751 /* Change the hash table entry to undefined, and let
752 _bfd_generic_link_add_one_symbol do the right thing with the
753 new definition. */
754
755 h->root.type = bfd_link_hash_undefined;
756 h->root.u.undef.abfd = h->root.u.def.section->owner;
757 *size_change_ok = true;
758
759 olddef = false;
760 olddyncommon = false;
761
762 /* We again permit a type change when a common symbol may be
763 overriding a function. */
764
765 if (bfd_is_com_section (sec))
766 *type_change_ok = true;
767
768 /* This union may have been set to be non-NULL when this symbol
769 was seen in a dynamic object. We must force the union to be
770 NULL, so that it is correct for a regular symbol. */
771
772 h->verinfo.vertree = NULL;
773
774 /* In this special case, if H is the target of an indirection,
775 we want the caller to frob with H rather than with the
776 indirect symbol. That will permit the caller to redefine the
777 target of the indirection, rather than the indirect symbol
778 itself. FIXME: This will break the -y option if we store a
779 symbol with a different name. */
780 *sym_hash = h;
781 }
782
783 /* Handle the special case of a new common symbol merging with an
784 old symbol that looks like it might be a common symbol defined in
785 a shared object. Note that we have already handled the case in
786 which a new common symbol should simply override the definition
787 in the shared library. */
788
789 if (! newdyn
790 && bfd_is_com_section (sec)
791 && olddyncommon)
792 {
793 /* It would be best if we could set the hash table entry to a
794 common symbol, but we don't know what to use for the section
795 or the alignment. */
796 if (! ((*info->callbacks->multiple_common)
797 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
798 h->size, abfd, bfd_link_hash_common, sym->st_size)))
799 return false;
800
801 /* If the predumed common symbol in the dynamic object is
802 larger, pretend that the new symbol has its size. */
803
804 if (h->size > *pvalue)
805 *pvalue = h->size;
806
807 /* FIXME: We no longer know the alignment required by the symbol
808 in the dynamic object, so we just wind up using the one from
809 the regular object. */
810
811 olddef = false;
812 olddyncommon = false;
813
814 h->root.type = bfd_link_hash_undefined;
815 h->root.u.undef.abfd = h->root.u.def.section->owner;
816
817 *size_change_ok = true;
818 *type_change_ok = true;
819
820 h->verinfo.vertree = NULL;
821 }
822
823 /* Handle the special case of a weak definition in a regular object
824 followed by a non-weak definition in a shared object. In this
825 case, we prefer the definition in the shared object. */
826 if (olddef
827 && h->root.type == bfd_link_hash_defweak
828 && newdef
829 && newdyn
830 && bind != STB_WEAK)
831 {
832 /* To make this work we have to frob the flags so that the rest
833 of the code does not think we are using the regular
834 definition. */
835 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
836 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
837 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
838 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
839 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
840 | ELF_LINK_HASH_DEF_DYNAMIC);
841
842 /* If H is the target of an indirection, we want the caller to
843 use H rather than the indirect symbol. Otherwise if we are
844 defining a new indirect symbol we will wind up attaching it
845 to the entry we are overriding. */
846 *sym_hash = h;
847 }
848
849 /* Handle the special case of a non-weak definition in a shared
850 object followed by a weak definition in a regular object. In
851 this case we prefer to definition in the shared object. To make
852 this work we have to tell the caller to not treat the new symbol
853 as a definition. */
854 if (olddef
855 && olddyn
856 && h->root.type != bfd_link_hash_defweak
857 && newdef
858 && ! newdyn
859 && bind == STB_WEAK)
860 *override = true;
861
862 return true;
863 }
864
865 /* Add symbols from an ELF object file to the linker hash table. */
866
867 static boolean
868 elf_link_add_object_symbols (abfd, info)
869 bfd *abfd;
870 struct bfd_link_info *info;
871 {
872 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
873 const Elf_Internal_Sym *,
874 const char **, flagword *,
875 asection **, bfd_vma *));
876 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
877 asection *, const Elf_Internal_Rela *));
878 boolean collect;
879 Elf_Internal_Shdr *hdr;
880 size_t symcount;
881 size_t extsymcount;
882 size_t extsymoff;
883 Elf_External_Sym *buf = NULL;
884 struct elf_link_hash_entry **sym_hash;
885 boolean dynamic;
886 bfd_byte *dynver = NULL;
887 Elf_External_Versym *extversym = NULL;
888 Elf_External_Versym *ever;
889 Elf_External_Dyn *dynbuf = NULL;
890 struct elf_link_hash_entry *weaks;
891 Elf_External_Sym *esym;
892 Elf_External_Sym *esymend;
893 struct elf_backend_data *bed;
894 boolean visibility_changed = false;
895
896 bed = get_elf_backend_data (abfd);
897 add_symbol_hook = bed->elf_add_symbol_hook;
898 collect = bed->collect;
899
900 if ((abfd->flags & DYNAMIC) == 0)
901 dynamic = false;
902 else
903 {
904 dynamic = true;
905
906 /* You can't use -r against a dynamic object. Also, there's no
907 hope of using a dynamic object which does not exactly match
908 the format of the output file. */
909 if (info->relocateable || info->hash->creator != abfd->xvec)
910 {
911 bfd_set_error (bfd_error_invalid_operation);
912 goto error_return;
913 }
914 }
915
916 /* As a GNU extension, any input sections which are named
917 .gnu.warning.SYMBOL are treated as warning symbols for the given
918 symbol. This differs from .gnu.warning sections, which generate
919 warnings when they are included in an output file. */
920 if (! info->shared)
921 {
922 asection *s;
923
924 for (s = abfd->sections; s != NULL; s = s->next)
925 {
926 const char *name;
927
928 name = bfd_get_section_name (abfd, s);
929 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
930 {
931 char *msg;
932 bfd_size_type sz;
933
934 name += sizeof ".gnu.warning." - 1;
935
936 /* If this is a shared object, then look up the symbol
937 in the hash table. If it is there, and it is already
938 been defined, then we will not be using the entry
939 from this shared object, so we don't need to warn.
940 FIXME: If we see the definition in a regular object
941 later on, we will warn, but we shouldn't. The only
942 fix is to keep track of what warnings we are supposed
943 to emit, and then handle them all at the end of the
944 link. */
945 if (dynamic && abfd->xvec == info->hash->creator)
946 {
947 struct elf_link_hash_entry *h;
948
949 h = elf_link_hash_lookup (elf_hash_table (info), name,
950 false, false, true);
951
952 /* FIXME: What about bfd_link_hash_common? */
953 if (h != NULL
954 && (h->root.type == bfd_link_hash_defined
955 || h->root.type == bfd_link_hash_defweak))
956 {
957 /* We don't want to issue this warning. Clobber
958 the section size so that the warning does not
959 get copied into the output file. */
960 s->_raw_size = 0;
961 continue;
962 }
963 }
964
965 sz = bfd_section_size (abfd, s);
966 msg = (char *) bfd_alloc (abfd, sz + 1);
967 if (msg == NULL)
968 goto error_return;
969
970 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
971 goto error_return;
972
973 msg[sz] = '\0';
974
975 if (! (_bfd_generic_link_add_one_symbol
976 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
977 false, collect, (struct bfd_link_hash_entry **) NULL)))
978 goto error_return;
979
980 if (! info->relocateable)
981 {
982 /* Clobber the section size so that the warning does
983 not get copied into the output file. */
984 s->_raw_size = 0;
985 }
986 }
987 }
988 }
989
990 /* If this is a dynamic object, we always link against the .dynsym
991 symbol table, not the .symtab symbol table. The dynamic linker
992 will only see the .dynsym symbol table, so there is no reason to
993 look at .symtab for a dynamic object. */
994
995 if (! dynamic || elf_dynsymtab (abfd) == 0)
996 hdr = &elf_tdata (abfd)->symtab_hdr;
997 else
998 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
999
1000 if (dynamic)
1001 {
1002 /* Read in any version definitions. */
1003
1004 if (! _bfd_elf_slurp_version_tables (abfd))
1005 goto error_return;
1006
1007 /* Read in the symbol versions, but don't bother to convert them
1008 to internal format. */
1009 if (elf_dynversym (abfd) != 0)
1010 {
1011 Elf_Internal_Shdr *versymhdr;
1012
1013 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1014 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
1015 if (extversym == NULL)
1016 goto error_return;
1017 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1018 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
1019 != versymhdr->sh_size))
1020 goto error_return;
1021 }
1022 }
1023
1024 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1025
1026 /* The sh_info field of the symtab header tells us where the
1027 external symbols start. We don't care about the local symbols at
1028 this point. */
1029 if (elf_bad_symtab (abfd))
1030 {
1031 extsymcount = symcount;
1032 extsymoff = 0;
1033 }
1034 else
1035 {
1036 extsymcount = symcount - hdr->sh_info;
1037 extsymoff = hdr->sh_info;
1038 }
1039
1040 buf = ((Elf_External_Sym *)
1041 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
1042 if (buf == NULL && extsymcount != 0)
1043 goto error_return;
1044
1045 /* We store a pointer to the hash table entry for each external
1046 symbol. */
1047 sym_hash = ((struct elf_link_hash_entry **)
1048 bfd_alloc (abfd,
1049 extsymcount * sizeof (struct elf_link_hash_entry *)));
1050 if (sym_hash == NULL)
1051 goto error_return;
1052 elf_sym_hashes (abfd) = sym_hash;
1053
1054 if (! dynamic)
1055 {
1056 /* If we are creating a shared library, create all the dynamic
1057 sections immediately. We need to attach them to something,
1058 so we attach them to this BFD, provided it is the right
1059 format. FIXME: If there are no input BFD's of the same
1060 format as the output, we can't make a shared library. */
1061 if (info->shared
1062 && ! elf_hash_table (info)->dynamic_sections_created
1063 && abfd->xvec == info->hash->creator)
1064 {
1065 if (! elf_link_create_dynamic_sections (abfd, info))
1066 goto error_return;
1067 }
1068 }
1069 else
1070 {
1071 asection *s;
1072 boolean add_needed;
1073 const char *name;
1074 bfd_size_type oldsize;
1075 bfd_size_type strindex;
1076
1077 /* Find the name to use in a DT_NEEDED entry that refers to this
1078 object. If the object has a DT_SONAME entry, we use it.
1079 Otherwise, if the generic linker stuck something in
1080 elf_dt_name, we use that. Otherwise, we just use the file
1081 name. If the generic linker put a null string into
1082 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1083 there is a DT_SONAME entry. */
1084 add_needed = true;
1085 name = bfd_get_filename (abfd);
1086 if (elf_dt_name (abfd) != NULL)
1087 {
1088 name = elf_dt_name (abfd);
1089 if (*name == '\0')
1090 add_needed = false;
1091 }
1092 s = bfd_get_section_by_name (abfd, ".dynamic");
1093 if (s != NULL)
1094 {
1095 Elf_External_Dyn *extdyn;
1096 Elf_External_Dyn *extdynend;
1097 int elfsec;
1098 unsigned long link;
1099
1100 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
1101 if (dynbuf == NULL)
1102 goto error_return;
1103
1104 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1105 (file_ptr) 0, s->_raw_size))
1106 goto error_return;
1107
1108 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1109 if (elfsec == -1)
1110 goto error_return;
1111 link = elf_elfsections (abfd)[elfsec]->sh_link;
1112
1113 {
1114 /* The shared libraries distributed with hpux11 have a bogus
1115 sh_link field for the ".dynamic" section. This code detects
1116 when LINK refers to a section that is not a string table and
1117 tries to find the string table for the ".dynsym" section
1118 instead. */
1119 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
1120 if (hdr->sh_type != SHT_STRTAB)
1121 {
1122 asection *s = bfd_get_section_by_name (abfd, ".dynsym");
1123 int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1124 if (elfsec == -1)
1125 goto error_return;
1126 link = elf_elfsections (abfd)[elfsec]->sh_link;
1127 }
1128 }
1129
1130 extdyn = dynbuf;
1131 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1132 for (; extdyn < extdynend; extdyn++)
1133 {
1134 Elf_Internal_Dyn dyn;
1135
1136 elf_swap_dyn_in (abfd, extdyn, &dyn);
1137 if (dyn.d_tag == DT_SONAME)
1138 {
1139 name = bfd_elf_string_from_elf_section (abfd, link,
1140 dyn.d_un.d_val);
1141 if (name == NULL)
1142 goto error_return;
1143 }
1144 if (dyn.d_tag == DT_NEEDED)
1145 {
1146 struct bfd_link_needed_list *n, **pn;
1147 char *fnm, *anm;
1148
1149 n = ((struct bfd_link_needed_list *)
1150 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1151 fnm = bfd_elf_string_from_elf_section (abfd, link,
1152 dyn.d_un.d_val);
1153 if (n == NULL || fnm == NULL)
1154 goto error_return;
1155 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1156 if (anm == NULL)
1157 goto error_return;
1158 strcpy (anm, fnm);
1159 n->name = anm;
1160 n->by = abfd;
1161 n->next = NULL;
1162 for (pn = &elf_hash_table (info)->needed;
1163 *pn != NULL;
1164 pn = &(*pn)->next)
1165 ;
1166 *pn = n;
1167 }
1168 }
1169
1170 free (dynbuf);
1171 dynbuf = NULL;
1172 }
1173
1174 /* We do not want to include any of the sections in a dynamic
1175 object in the output file. We hack by simply clobbering the
1176 list of sections in the BFD. This could be handled more
1177 cleanly by, say, a new section flag; the existing
1178 SEC_NEVER_LOAD flag is not the one we want, because that one
1179 still implies that the section takes up space in the output
1180 file. */
1181 abfd->sections = NULL;
1182 abfd->section_count = 0;
1183
1184 /* If this is the first dynamic object found in the link, create
1185 the special sections required for dynamic linking. */
1186 if (! elf_hash_table (info)->dynamic_sections_created)
1187 {
1188 if (! elf_link_create_dynamic_sections (abfd, info))
1189 goto error_return;
1190 }
1191
1192 if (add_needed)
1193 {
1194 /* Add a DT_NEEDED entry for this dynamic object. */
1195 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1196 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1197 true, false);
1198 if (strindex == (bfd_size_type) -1)
1199 goto error_return;
1200
1201 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1202 {
1203 asection *sdyn;
1204 Elf_External_Dyn *dyncon, *dynconend;
1205
1206 /* The hash table size did not change, which means that
1207 the dynamic object name was already entered. If we
1208 have already included this dynamic object in the
1209 link, just ignore it. There is no reason to include
1210 a particular dynamic object more than once. */
1211 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1212 ".dynamic");
1213 BFD_ASSERT (sdyn != NULL);
1214
1215 dyncon = (Elf_External_Dyn *) sdyn->contents;
1216 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1217 sdyn->_raw_size);
1218 for (; dyncon < dynconend; dyncon++)
1219 {
1220 Elf_Internal_Dyn dyn;
1221
1222 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1223 &dyn);
1224 if (dyn.d_tag == DT_NEEDED
1225 && dyn.d_un.d_val == strindex)
1226 {
1227 if (buf != NULL)
1228 free (buf);
1229 if (extversym != NULL)
1230 free (extversym);
1231 return true;
1232 }
1233 }
1234 }
1235
1236 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1237 goto error_return;
1238 }
1239
1240 /* Save the SONAME, if there is one, because sometimes the
1241 linker emulation code will need to know it. */
1242 if (*name == '\0')
1243 name = bfd_get_filename (abfd);
1244 elf_dt_name (abfd) = name;
1245 }
1246
1247 if (bfd_seek (abfd,
1248 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1249 SEEK_SET) != 0
1250 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1251 != extsymcount * sizeof (Elf_External_Sym)))
1252 goto error_return;
1253
1254 weaks = NULL;
1255
1256 ever = extversym != NULL ? extversym + extsymoff : NULL;
1257 esymend = buf + extsymcount;
1258 for (esym = buf;
1259 esym < esymend;
1260 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1261 {
1262 Elf_Internal_Sym sym;
1263 int bind;
1264 bfd_vma value;
1265 asection *sec;
1266 flagword flags;
1267 const char *name;
1268 struct elf_link_hash_entry *h;
1269 boolean definition;
1270 boolean size_change_ok, type_change_ok;
1271 boolean new_weakdef;
1272 unsigned int old_alignment;
1273
1274 elf_swap_symbol_in (abfd, esym, &sym);
1275
1276 flags = BSF_NO_FLAGS;
1277 sec = NULL;
1278 value = sym.st_value;
1279 *sym_hash = NULL;
1280
1281 bind = ELF_ST_BIND (sym.st_info);
1282 if (bind == STB_LOCAL)
1283 {
1284 /* This should be impossible, since ELF requires that all
1285 global symbols follow all local symbols, and that sh_info
1286 point to the first global symbol. Unfortunatealy, Irix 5
1287 screws this up. */
1288 continue;
1289 }
1290 else if (bind == STB_GLOBAL)
1291 {
1292 if (sym.st_shndx != SHN_UNDEF
1293 && sym.st_shndx != SHN_COMMON)
1294 flags = BSF_GLOBAL;
1295 else
1296 flags = 0;
1297 }
1298 else if (bind == STB_WEAK)
1299 flags = BSF_WEAK;
1300 else
1301 {
1302 /* Leave it up to the processor backend. */
1303 }
1304
1305 if (sym.st_shndx == SHN_UNDEF)
1306 sec = bfd_und_section_ptr;
1307 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1308 {
1309 sec = section_from_elf_index (abfd, sym.st_shndx);
1310 if (sec == NULL)
1311 sec = bfd_abs_section_ptr;
1312 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1313 value -= sec->vma;
1314 }
1315 else if (sym.st_shndx == SHN_ABS)
1316 sec = bfd_abs_section_ptr;
1317 else if (sym.st_shndx == SHN_COMMON)
1318 {
1319 sec = bfd_com_section_ptr;
1320 /* What ELF calls the size we call the value. What ELF
1321 calls the value we call the alignment. */
1322 value = sym.st_size;
1323 }
1324 else
1325 {
1326 /* Leave it up to the processor backend. */
1327 }
1328
1329 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1330 if (name == (const char *) NULL)
1331 goto error_return;
1332
1333 if (add_symbol_hook)
1334 {
1335 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1336 &value))
1337 goto error_return;
1338
1339 /* The hook function sets the name to NULL if this symbol
1340 should be skipped for some reason. */
1341 if (name == (const char *) NULL)
1342 continue;
1343 }
1344
1345 /* Sanity check that all possibilities were handled. */
1346 if (sec == (asection *) NULL)
1347 {
1348 bfd_set_error (bfd_error_bad_value);
1349 goto error_return;
1350 }
1351
1352 if (bfd_is_und_section (sec)
1353 || bfd_is_com_section (sec))
1354 definition = false;
1355 else
1356 definition = true;
1357
1358 size_change_ok = false;
1359 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1360 old_alignment = 0;
1361 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1362 {
1363 Elf_Internal_Versym iver;
1364 unsigned int vernum = 0;
1365 boolean override;
1366
1367 if (ever != NULL)
1368 {
1369 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1370 vernum = iver.vs_vers & VERSYM_VERSION;
1371
1372 /* If this is a hidden symbol, or if it is not version
1373 1, we append the version name to the symbol name.
1374 However, we do not modify a non-hidden absolute
1375 symbol, because it might be the version symbol
1376 itself. FIXME: What if it isn't? */
1377 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1378 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1379 {
1380 const char *verstr;
1381 int namelen, newlen;
1382 char *newname, *p;
1383
1384 if (sym.st_shndx != SHN_UNDEF)
1385 {
1386 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1387 {
1388 (*_bfd_error_handler)
1389 (_("%s: %s: invalid version %u (max %d)"),
1390 bfd_get_filename (abfd), name, vernum,
1391 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1392 bfd_set_error (bfd_error_bad_value);
1393 goto error_return;
1394 }
1395 else if (vernum > 1)
1396 verstr =
1397 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1398 else
1399 verstr = "";
1400 }
1401 else
1402 {
1403 /* We cannot simply test for the number of
1404 entries in the VERNEED section since the
1405 numbers for the needed versions do not start
1406 at 0. */
1407 Elf_Internal_Verneed *t;
1408
1409 verstr = NULL;
1410 for (t = elf_tdata (abfd)->verref;
1411 t != NULL;
1412 t = t->vn_nextref)
1413 {
1414 Elf_Internal_Vernaux *a;
1415
1416 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1417 {
1418 if (a->vna_other == vernum)
1419 {
1420 verstr = a->vna_nodename;
1421 break;
1422 }
1423 }
1424 if (a != NULL)
1425 break;
1426 }
1427 if (verstr == NULL)
1428 {
1429 (*_bfd_error_handler)
1430 (_("%s: %s: invalid needed version %d"),
1431 bfd_get_filename (abfd), name, vernum);
1432 bfd_set_error (bfd_error_bad_value);
1433 goto error_return;
1434 }
1435 }
1436
1437 namelen = strlen (name);
1438 newlen = namelen + strlen (verstr) + 2;
1439 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1440 ++newlen;
1441
1442 newname = (char *) bfd_alloc (abfd, newlen);
1443 if (newname == NULL)
1444 goto error_return;
1445 strcpy (newname, name);
1446 p = newname + namelen;
1447 *p++ = ELF_VER_CHR;
1448 /* If this is a defined non-hidden version symbol,
1449 we add another @ to the name. This indicates the
1450 default version of the symbol. */
1451 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1452 && sym.st_shndx != SHN_UNDEF)
1453 *p++ = ELF_VER_CHR;
1454 strcpy (p, verstr);
1455
1456 name = newname;
1457 }
1458 }
1459
1460 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1461 sym_hash, &override, &type_change_ok,
1462 &size_change_ok))
1463 goto error_return;
1464
1465 if (override)
1466 definition = false;
1467
1468 h = *sym_hash;
1469 while (h->root.type == bfd_link_hash_indirect
1470 || h->root.type == bfd_link_hash_warning)
1471 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1472
1473 /* Remember the old alignment if this is a common symbol, so
1474 that we don't reduce the alignment later on. We can't
1475 check later, because _bfd_generic_link_add_one_symbol
1476 will set a default for the alignment which we want to
1477 override. */
1478 if (h->root.type == bfd_link_hash_common)
1479 old_alignment = h->root.u.c.p->alignment_power;
1480
1481 if (elf_tdata (abfd)->verdef != NULL
1482 && ! override
1483 && vernum > 1
1484 && definition)
1485 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1486 }
1487
1488 if (! (_bfd_generic_link_add_one_symbol
1489 (info, abfd, name, flags, sec, value, (const char *) NULL,
1490 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1491 goto error_return;
1492
1493 h = *sym_hash;
1494 while (h->root.type == bfd_link_hash_indirect
1495 || h->root.type == bfd_link_hash_warning)
1496 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1497 *sym_hash = h;
1498
1499 new_weakdef = false;
1500 if (dynamic
1501 && definition
1502 && (flags & BSF_WEAK) != 0
1503 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1504 && info->hash->creator->flavour == bfd_target_elf_flavour
1505 && h->weakdef == NULL)
1506 {
1507 /* Keep a list of all weak defined non function symbols from
1508 a dynamic object, using the weakdef field. Later in this
1509 function we will set the weakdef field to the correct
1510 value. We only put non-function symbols from dynamic
1511 objects on this list, because that happens to be the only
1512 time we need to know the normal symbol corresponding to a
1513 weak symbol, and the information is time consuming to
1514 figure out. If the weakdef field is not already NULL,
1515 then this symbol was already defined by some previous
1516 dynamic object, and we will be using that previous
1517 definition anyhow. */
1518
1519 h->weakdef = weaks;
1520 weaks = h;
1521 new_weakdef = true;
1522 }
1523
1524 /* Set the alignment of a common symbol. */
1525 if (sym.st_shndx == SHN_COMMON
1526 && h->root.type == bfd_link_hash_common)
1527 {
1528 unsigned int align;
1529
1530 align = bfd_log2 (sym.st_value);
1531 if (align > old_alignment)
1532 h->root.u.c.p->alignment_power = align;
1533 }
1534
1535 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1536 {
1537 int old_flags;
1538 boolean dynsym;
1539 int new_flag;
1540
1541 /* Remember the symbol size and type. */
1542 if (sym.st_size != 0
1543 && (definition || h->size == 0))
1544 {
1545 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1546 (*_bfd_error_handler)
1547 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1548 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1549 bfd_get_filename (abfd));
1550
1551 h->size = sym.st_size;
1552 }
1553
1554 /* If this is a common symbol, then we always want H->SIZE
1555 to be the size of the common symbol. The code just above
1556 won't fix the size if a common symbol becomes larger. We
1557 don't warn about a size change here, because that is
1558 covered by --warn-common. */
1559 if (h->root.type == bfd_link_hash_common)
1560 h->size = h->root.u.c.size;
1561
1562 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1563 && (definition || h->type == STT_NOTYPE))
1564 {
1565 if (h->type != STT_NOTYPE
1566 && h->type != ELF_ST_TYPE (sym.st_info)
1567 && ! type_change_ok)
1568 (*_bfd_error_handler)
1569 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1570 name, h->type, ELF_ST_TYPE (sym.st_info),
1571 bfd_get_filename (abfd));
1572
1573 h->type = ELF_ST_TYPE (sym.st_info);
1574 }
1575
1576 /* If st_other has a processor-specific meaning, specific code
1577 might be needed here. */
1578 if (sym.st_other != 0)
1579 {
1580 /* Combine visibilities, using the most constraining one. */
1581 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1582 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
1583
1584 if (symvis && (hvis > symvis || hvis == 0))
1585 {
1586 visibility_changed = true;
1587 h->other = sym.st_other;
1588 }
1589
1590 /* If neither has visibility, use the st_other of the
1591 definition. This is an arbitrary choice, since the
1592 other bits have no general meaning. */
1593 if (!symvis && !hvis
1594 && (definition || h->other == 0))
1595 h->other = sym.st_other;
1596 }
1597
1598 /* Set a flag in the hash table entry indicating the type of
1599 reference or definition we just found. Keep a count of
1600 the number of dynamic symbols we find. A dynamic symbol
1601 is one which is referenced or defined by both a regular
1602 object and a shared object. */
1603 old_flags = h->elf_link_hash_flags;
1604 dynsym = false;
1605 if (! dynamic)
1606 {
1607 if (! definition)
1608 {
1609 new_flag = ELF_LINK_HASH_REF_REGULAR;
1610 if (bind != STB_WEAK)
1611 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1612 }
1613 else
1614 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1615 if (info->shared
1616 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1617 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1618 dynsym = true;
1619 }
1620 else
1621 {
1622 if (! definition)
1623 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1624 else
1625 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1626 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1627 | ELF_LINK_HASH_REF_REGULAR)) != 0
1628 || (h->weakdef != NULL
1629 && ! new_weakdef
1630 && h->weakdef->dynindx != -1))
1631 dynsym = true;
1632 }
1633
1634 h->elf_link_hash_flags |= new_flag;
1635
1636 /* If this symbol has a version, and it is the default
1637 version, we create an indirect symbol from the default
1638 name to the fully decorated name. This will cause
1639 external references which do not specify a version to be
1640 bound to this version of the symbol. */
1641 if (definition)
1642 {
1643 char *p;
1644
1645 p = strchr (name, ELF_VER_CHR);
1646 if (p != NULL && p[1] == ELF_VER_CHR)
1647 {
1648 char *shortname;
1649 struct elf_link_hash_entry *hi;
1650 boolean override;
1651
1652 shortname = bfd_hash_allocate (&info->hash->table,
1653 p - name + 1);
1654 if (shortname == NULL)
1655 goto error_return;
1656 strncpy (shortname, name, p - name);
1657 shortname[p - name] = '\0';
1658
1659 /* We are going to create a new symbol. Merge it
1660 with any existing symbol with this name. For the
1661 purposes of the merge, act as though we were
1662 defining the symbol we just defined, although we
1663 actually going to define an indirect symbol. */
1664 type_change_ok = false;
1665 size_change_ok = false;
1666 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1667 &value, &hi, &override,
1668 &type_change_ok, &size_change_ok))
1669 goto error_return;
1670
1671 if (! override)
1672 {
1673 if (! (_bfd_generic_link_add_one_symbol
1674 (info, abfd, shortname, BSF_INDIRECT,
1675 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1676 collect, (struct bfd_link_hash_entry **) &hi)))
1677 goto error_return;
1678 }
1679 else
1680 {
1681 /* In this case the symbol named SHORTNAME is
1682 overriding the indirect symbol we want to
1683 add. We were planning on making SHORTNAME an
1684 indirect symbol referring to NAME. SHORTNAME
1685 is the name without a version. NAME is the
1686 fully versioned name, and it is the default
1687 version.
1688
1689 Overriding means that we already saw a
1690 definition for the symbol SHORTNAME in a
1691 regular object, and it is overriding the
1692 symbol defined in the dynamic object.
1693
1694 When this happens, we actually want to change
1695 NAME, the symbol we just added, to refer to
1696 SHORTNAME. This will cause references to
1697 NAME in the shared object to become
1698 references to SHORTNAME in the regular
1699 object. This is what we expect when we
1700 override a function in a shared object: that
1701 the references in the shared object will be
1702 mapped to the definition in the regular
1703 object. */
1704
1705 while (hi->root.type == bfd_link_hash_indirect
1706 || hi->root.type == bfd_link_hash_warning)
1707 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1708
1709 h->root.type = bfd_link_hash_indirect;
1710 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1711 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1712 {
1713 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1714 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1715 if (hi->elf_link_hash_flags
1716 & (ELF_LINK_HASH_REF_REGULAR
1717 | ELF_LINK_HASH_DEF_REGULAR))
1718 {
1719 if (! _bfd_elf_link_record_dynamic_symbol (info,
1720 hi))
1721 goto error_return;
1722 }
1723 }
1724
1725 /* Now set HI to H, so that the following code
1726 will set the other fields correctly. */
1727 hi = h;
1728 }
1729
1730 /* If there is a duplicate definition somewhere,
1731 then HI may not point to an indirect symbol. We
1732 will have reported an error to the user in that
1733 case. */
1734
1735 if (hi->root.type == bfd_link_hash_indirect)
1736 {
1737 struct elf_link_hash_entry *ht;
1738
1739 /* If the symbol became indirect, then we assume
1740 that we have not seen a definition before. */
1741 BFD_ASSERT ((hi->elf_link_hash_flags
1742 & (ELF_LINK_HASH_DEF_DYNAMIC
1743 | ELF_LINK_HASH_DEF_REGULAR))
1744 == 0);
1745
1746 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1747 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
1748
1749 /* See if the new flags lead us to realize that
1750 the symbol must be dynamic. */
1751 if (! dynsym)
1752 {
1753 if (! dynamic)
1754 {
1755 if (info->shared
1756 || ((hi->elf_link_hash_flags
1757 & ELF_LINK_HASH_REF_DYNAMIC)
1758 != 0))
1759 dynsym = true;
1760 }
1761 else
1762 {
1763 if ((hi->elf_link_hash_flags
1764 & ELF_LINK_HASH_REF_REGULAR) != 0)
1765 dynsym = true;
1766 }
1767 }
1768 }
1769
1770 /* We also need to define an indirection from the
1771 nondefault version of the symbol. */
1772
1773 shortname = bfd_hash_allocate (&info->hash->table,
1774 strlen (name));
1775 if (shortname == NULL)
1776 goto error_return;
1777 strncpy (shortname, name, p - name);
1778 strcpy (shortname + (p - name), p + 1);
1779
1780 /* Once again, merge with any existing symbol. */
1781 type_change_ok = false;
1782 size_change_ok = false;
1783 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1784 &value, &hi, &override,
1785 &type_change_ok, &size_change_ok))
1786 goto error_return;
1787
1788 if (override)
1789 {
1790 /* Here SHORTNAME is a versioned name, so we
1791 don't expect to see the type of override we
1792 do in the case above. */
1793 (*_bfd_error_handler)
1794 (_("%s: warning: unexpected redefinition of `%s'"),
1795 bfd_get_filename (abfd), shortname);
1796 }
1797 else
1798 {
1799 if (! (_bfd_generic_link_add_one_symbol
1800 (info, abfd, shortname, BSF_INDIRECT,
1801 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1802 collect, (struct bfd_link_hash_entry **) &hi)))
1803 goto error_return;
1804
1805 /* If there is a duplicate definition somewhere,
1806 then HI may not point to an indirect symbol.
1807 We will have reported an error to the user in
1808 that case. */
1809
1810 if (hi->root.type == bfd_link_hash_indirect)
1811 {
1812 /* If the symbol became indirect, then we
1813 assume that we have not seen a definition
1814 before. */
1815 BFD_ASSERT ((hi->elf_link_hash_flags
1816 & (ELF_LINK_HASH_DEF_DYNAMIC
1817 | ELF_LINK_HASH_DEF_REGULAR))
1818 == 0);
1819
1820 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
1821
1822 /* See if the new flags lead us to realize
1823 that the symbol must be dynamic. */
1824 if (! dynsym)
1825 {
1826 if (! dynamic)
1827 {
1828 if (info->shared
1829 || ((hi->elf_link_hash_flags
1830 & ELF_LINK_HASH_REF_DYNAMIC)
1831 != 0))
1832 dynsym = true;
1833 }
1834 else
1835 {
1836 if ((hi->elf_link_hash_flags
1837 & ELF_LINK_HASH_REF_REGULAR) != 0)
1838 dynsym = true;
1839 }
1840 }
1841 }
1842 }
1843 }
1844 }
1845
1846 if (dynsym && h->dynindx == -1)
1847 {
1848 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1849 goto error_return;
1850 if (h->weakdef != NULL
1851 && ! new_weakdef
1852 && h->weakdef->dynindx == -1)
1853 {
1854 if (! _bfd_elf_link_record_dynamic_symbol (info,
1855 h->weakdef))
1856 goto error_return;
1857 }
1858 }
1859 else if (dynsym && h->dynindx != -1 && visibility_changed)
1860 /* If the symbol already has a dynamic index, but
1861 visibility says it should not be visible, turn it into
1862 a local symbol. */
1863 switch (ELF_ST_VISIBILITY (h->other))
1864 {
1865 case STV_INTERNAL:
1866 case STV_HIDDEN:
1867 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1868 (*bed->elf_backend_hide_symbol) (h);
1869 break;
1870 }
1871 }
1872 }
1873
1874 /* Now set the weakdefs field correctly for all the weak defined
1875 symbols we found. The only way to do this is to search all the
1876 symbols. Since we only need the information for non functions in
1877 dynamic objects, that's the only time we actually put anything on
1878 the list WEAKS. We need this information so that if a regular
1879 object refers to a symbol defined weakly in a dynamic object, the
1880 real symbol in the dynamic object is also put in the dynamic
1881 symbols; we also must arrange for both symbols to point to the
1882 same memory location. We could handle the general case of symbol
1883 aliasing, but a general symbol alias can only be generated in
1884 assembler code, handling it correctly would be very time
1885 consuming, and other ELF linkers don't handle general aliasing
1886 either. */
1887 while (weaks != NULL)
1888 {
1889 struct elf_link_hash_entry *hlook;
1890 asection *slook;
1891 bfd_vma vlook;
1892 struct elf_link_hash_entry **hpp;
1893 struct elf_link_hash_entry **hppend;
1894
1895 hlook = weaks;
1896 weaks = hlook->weakdef;
1897 hlook->weakdef = NULL;
1898
1899 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1900 || hlook->root.type == bfd_link_hash_defweak
1901 || hlook->root.type == bfd_link_hash_common
1902 || hlook->root.type == bfd_link_hash_indirect);
1903 slook = hlook->root.u.def.section;
1904 vlook = hlook->root.u.def.value;
1905
1906 hpp = elf_sym_hashes (abfd);
1907 hppend = hpp + extsymcount;
1908 for (; hpp < hppend; hpp++)
1909 {
1910 struct elf_link_hash_entry *h;
1911
1912 h = *hpp;
1913 if (h != NULL && h != hlook
1914 && h->root.type == bfd_link_hash_defined
1915 && h->root.u.def.section == slook
1916 && h->root.u.def.value == vlook)
1917 {
1918 hlook->weakdef = h;
1919
1920 /* If the weak definition is in the list of dynamic
1921 symbols, make sure the real definition is put there
1922 as well. */
1923 if (hlook->dynindx != -1
1924 && h->dynindx == -1)
1925 {
1926 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1927 goto error_return;
1928 }
1929
1930 /* If the real definition is in the list of dynamic
1931 symbols, make sure the weak definition is put there
1932 as well. If we don't do this, then the dynamic
1933 loader might not merge the entries for the real
1934 definition and the weak definition. */
1935 if (h->dynindx != -1
1936 && hlook->dynindx == -1)
1937 {
1938 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1939 goto error_return;
1940 }
1941
1942 break;
1943 }
1944 }
1945 }
1946
1947 if (buf != NULL)
1948 {
1949 free (buf);
1950 buf = NULL;
1951 }
1952
1953 if (extversym != NULL)
1954 {
1955 free (extversym);
1956 extversym = NULL;
1957 }
1958
1959 /* If this object is the same format as the output object, and it is
1960 not a shared library, then let the backend look through the
1961 relocs.
1962
1963 This is required to build global offset table entries and to
1964 arrange for dynamic relocs. It is not required for the
1965 particular common case of linking non PIC code, even when linking
1966 against shared libraries, but unfortunately there is no way of
1967 knowing whether an object file has been compiled PIC or not.
1968 Looking through the relocs is not particularly time consuming.
1969 The problem is that we must either (1) keep the relocs in memory,
1970 which causes the linker to require additional runtime memory or
1971 (2) read the relocs twice from the input file, which wastes time.
1972 This would be a good case for using mmap.
1973
1974 I have no idea how to handle linking PIC code into a file of a
1975 different format. It probably can't be done. */
1976 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1977 if (! dynamic
1978 && abfd->xvec == info->hash->creator
1979 && check_relocs != NULL)
1980 {
1981 asection *o;
1982
1983 for (o = abfd->sections; o != NULL; o = o->next)
1984 {
1985 Elf_Internal_Rela *internal_relocs;
1986 boolean ok;
1987
1988 if ((o->flags & SEC_RELOC) == 0
1989 || o->reloc_count == 0
1990 || ((info->strip == strip_all || info->strip == strip_debugger)
1991 && (o->flags & SEC_DEBUGGING) != 0)
1992 || bfd_is_abs_section (o->output_section))
1993 continue;
1994
1995 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1996 (abfd, o, (PTR) NULL,
1997 (Elf_Internal_Rela *) NULL,
1998 info->keep_memory));
1999 if (internal_relocs == NULL)
2000 goto error_return;
2001
2002 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2003
2004 if (! info->keep_memory)
2005 free (internal_relocs);
2006
2007 if (! ok)
2008 goto error_return;
2009 }
2010 }
2011
2012 /* If this is a non-traditional, non-relocateable link, try to
2013 optimize the handling of the .stab/.stabstr sections. */
2014 if (! dynamic
2015 && ! info->relocateable
2016 && ! info->traditional_format
2017 && info->hash->creator->flavour == bfd_target_elf_flavour
2018 && (info->strip != strip_all && info->strip != strip_debugger))
2019 {
2020 asection *stab, *stabstr;
2021
2022 stab = bfd_get_section_by_name (abfd, ".stab");
2023 if (stab != NULL)
2024 {
2025 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2026
2027 if (stabstr != NULL)
2028 {
2029 struct bfd_elf_section_data *secdata;
2030
2031 secdata = elf_section_data (stab);
2032 if (! _bfd_link_section_stabs (abfd,
2033 &elf_hash_table (info)->stab_info,
2034 stab, stabstr,
2035 &secdata->stab_info))
2036 goto error_return;
2037 }
2038 }
2039 }
2040
2041 return true;
2042
2043 error_return:
2044 if (buf != NULL)
2045 free (buf);
2046 if (dynbuf != NULL)
2047 free (dynbuf);
2048 if (dynver != NULL)
2049 free (dynver);
2050 if (extversym != NULL)
2051 free (extversym);
2052 return false;
2053 }
2054
2055 /* Create some sections which will be filled in with dynamic linking
2056 information. ABFD is an input file which requires dynamic sections
2057 to be created. The dynamic sections take up virtual memory space
2058 when the final executable is run, so we need to create them before
2059 addresses are assigned to the output sections. We work out the
2060 actual contents and size of these sections later. */
2061
2062 boolean
2063 elf_link_create_dynamic_sections (abfd, info)
2064 bfd *abfd;
2065 struct bfd_link_info *info;
2066 {
2067 flagword flags;
2068 register asection *s;
2069 struct elf_link_hash_entry *h;
2070 struct elf_backend_data *bed;
2071
2072 if (elf_hash_table (info)->dynamic_sections_created)
2073 return true;
2074
2075 /* Make sure that all dynamic sections use the same input BFD. */
2076 if (elf_hash_table (info)->dynobj == NULL)
2077 elf_hash_table (info)->dynobj = abfd;
2078 else
2079 abfd = elf_hash_table (info)->dynobj;
2080
2081 /* Note that we set the SEC_IN_MEMORY flag for all of these
2082 sections. */
2083 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2084 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2085
2086 /* A dynamically linked executable has a .interp section, but a
2087 shared library does not. */
2088 if (! info->shared)
2089 {
2090 s = bfd_make_section (abfd, ".interp");
2091 if (s == NULL
2092 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2093 return false;
2094 }
2095
2096 /* Create sections to hold version informations. These are removed
2097 if they are not needed. */
2098 s = bfd_make_section (abfd, ".gnu.version_d");
2099 if (s == NULL
2100 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2101 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2102 return false;
2103
2104 s = bfd_make_section (abfd, ".gnu.version");
2105 if (s == NULL
2106 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2107 || ! bfd_set_section_alignment (abfd, s, 1))
2108 return false;
2109
2110 s = bfd_make_section (abfd, ".gnu.version_r");
2111 if (s == NULL
2112 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2113 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2114 return false;
2115
2116 s = bfd_make_section (abfd, ".dynsym");
2117 if (s == NULL
2118 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2119 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2120 return false;
2121
2122 s = bfd_make_section (abfd, ".dynstr");
2123 if (s == NULL
2124 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2125 return false;
2126
2127 /* Create a strtab to hold the dynamic symbol names. */
2128 if (elf_hash_table (info)->dynstr == NULL)
2129 {
2130 elf_hash_table (info)->dynstr = elf_stringtab_init ();
2131 if (elf_hash_table (info)->dynstr == NULL)
2132 return false;
2133 }
2134
2135 s = bfd_make_section (abfd, ".dynamic");
2136 if (s == NULL
2137 || ! bfd_set_section_flags (abfd, s, flags)
2138 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2139 return false;
2140
2141 /* The special symbol _DYNAMIC is always set to the start of the
2142 .dynamic section. This call occurs before we have processed the
2143 symbols for any dynamic object, so we don't have to worry about
2144 overriding a dynamic definition. We could set _DYNAMIC in a
2145 linker script, but we only want to define it if we are, in fact,
2146 creating a .dynamic section. We don't want to define it if there
2147 is no .dynamic section, since on some ELF platforms the start up
2148 code examines it to decide how to initialize the process. */
2149 h = NULL;
2150 if (! (_bfd_generic_link_add_one_symbol
2151 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2152 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2153 (struct bfd_link_hash_entry **) &h)))
2154 return false;
2155 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2156 h->type = STT_OBJECT;
2157
2158 if (info->shared
2159 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2160 return false;
2161
2162 bed = get_elf_backend_data (abfd);
2163
2164 s = bfd_make_section (abfd, ".hash");
2165 if (s == NULL
2166 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2167 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2168 return false;
2169 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2170
2171 /* Let the backend create the rest of the sections. This lets the
2172 backend set the right flags. The backend will normally create
2173 the .got and .plt sections. */
2174 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2175 return false;
2176
2177 elf_hash_table (info)->dynamic_sections_created = true;
2178
2179 return true;
2180 }
2181
2182 /* Add an entry to the .dynamic table. */
2183
2184 boolean
2185 elf_add_dynamic_entry (info, tag, val)
2186 struct bfd_link_info *info;
2187 bfd_vma tag;
2188 bfd_vma val;
2189 {
2190 Elf_Internal_Dyn dyn;
2191 bfd *dynobj;
2192 asection *s;
2193 size_t newsize;
2194 bfd_byte *newcontents;
2195
2196 dynobj = elf_hash_table (info)->dynobj;
2197
2198 s = bfd_get_section_by_name (dynobj, ".dynamic");
2199 BFD_ASSERT (s != NULL);
2200
2201 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2202 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2203 if (newcontents == NULL)
2204 return false;
2205
2206 dyn.d_tag = tag;
2207 dyn.d_un.d_val = val;
2208 elf_swap_dyn_out (dynobj, &dyn,
2209 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2210
2211 s->_raw_size = newsize;
2212 s->contents = newcontents;
2213
2214 return true;
2215 }
2216
2217 /* Record a new local dynamic symbol. */
2218
2219 boolean
2220 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2221 struct bfd_link_info *info;
2222 bfd *input_bfd;
2223 long input_indx;
2224 {
2225 struct elf_link_local_dynamic_entry *entry;
2226 struct elf_link_hash_table *eht;
2227 struct bfd_strtab_hash *dynstr;
2228 Elf_External_Sym esym;
2229 unsigned long dynstr_index;
2230 char *name;
2231
2232 /* See if the entry exists already. */
2233 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2234 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2235 return true;
2236
2237 entry = (struct elf_link_local_dynamic_entry *)
2238 bfd_alloc (input_bfd, sizeof (*entry));
2239 if (entry == NULL)
2240 return false;
2241
2242 /* Go find the symbol, so that we can find it's name. */
2243 if (bfd_seek (input_bfd,
2244 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2245 + input_indx * sizeof (Elf_External_Sym)),
2246 SEEK_SET) != 0
2247 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2248 != sizeof (Elf_External_Sym)))
2249 return false;
2250 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2251
2252 name = (bfd_elf_string_from_elf_section
2253 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2254 entry->isym.st_name));
2255
2256 dynstr = elf_hash_table (info)->dynstr;
2257 if (dynstr == NULL)
2258 {
2259 /* Create a strtab to hold the dynamic symbol names. */
2260 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2261 if (dynstr == NULL)
2262 return false;
2263 }
2264
2265 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2266 if (dynstr_index == (unsigned long) -1)
2267 return false;
2268 entry->isym.st_name = dynstr_index;
2269
2270 eht = elf_hash_table (info);
2271
2272 entry->next = eht->dynlocal;
2273 eht->dynlocal = entry;
2274 entry->input_bfd = input_bfd;
2275 entry->input_indx = input_indx;
2276 eht->dynsymcount++;
2277
2278 /* Whatever binding the symbol had before, it's now local. */
2279 entry->isym.st_info
2280 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2281
2282 /* The dynindx will be set at the end of size_dynamic_sections. */
2283
2284 return true;
2285 }
2286 \f
2287
2288 /* Read and swap the relocs from the section indicated by SHDR. This
2289 may be either a REL or a RELA section. The relocations are
2290 translated into RELA relocations and stored in INTERNAL_RELOCS,
2291 which should have already been allocated to contain enough space.
2292 The EXTERNAL_RELOCS are a buffer where the external form of the
2293 relocations should be stored.
2294
2295 Returns false if something goes wrong. */
2296
2297 static boolean
2298 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2299 internal_relocs)
2300 bfd *abfd;
2301 Elf_Internal_Shdr *shdr;
2302 PTR external_relocs;
2303 Elf_Internal_Rela *internal_relocs;
2304 {
2305 struct elf_backend_data *bed;
2306
2307 /* If there aren't any relocations, that's OK. */
2308 if (!shdr)
2309 return true;
2310
2311 /* Position ourselves at the start of the section. */
2312 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2313 return false;
2314
2315 /* Read the relocations. */
2316 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2317 != shdr->sh_size)
2318 return false;
2319
2320 bed = get_elf_backend_data (abfd);
2321
2322 /* Convert the external relocations to the internal format. */
2323 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2324 {
2325 Elf_External_Rel *erel;
2326 Elf_External_Rel *erelend;
2327 Elf_Internal_Rela *irela;
2328 Elf_Internal_Rel *irel;
2329
2330 erel = (Elf_External_Rel *) external_relocs;
2331 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2332 irela = internal_relocs;
2333 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2334 * sizeof (Elf_Internal_Rel)));
2335 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2336 {
2337 unsigned char i;
2338
2339 if (bed->s->swap_reloc_in)
2340 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2341 else
2342 elf_swap_reloc_in (abfd, erel, irel);
2343
2344 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2345 {
2346 irela[i].r_offset = irel[i].r_offset;
2347 irela[i].r_info = irel[i].r_info;
2348 irela[i].r_addend = 0;
2349 }
2350 }
2351 }
2352 else
2353 {
2354 Elf_External_Rela *erela;
2355 Elf_External_Rela *erelaend;
2356 Elf_Internal_Rela *irela;
2357
2358 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2359
2360 erela = (Elf_External_Rela *) external_relocs;
2361 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2362 irela = internal_relocs;
2363 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2364 {
2365 if (bed->s->swap_reloca_in)
2366 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2367 else
2368 elf_swap_reloca_in (abfd, erela, irela);
2369 }
2370 }
2371
2372 return true;
2373 }
2374
2375 /* Read and swap the relocs for a section O. They may have been
2376 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2377 not NULL, they are used as buffers to read into. They are known to
2378 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2379 the return value is allocated using either malloc or bfd_alloc,
2380 according to the KEEP_MEMORY argument. If O has two relocation
2381 sections (both REL and RELA relocations), then the REL_HDR
2382 relocations will appear first in INTERNAL_RELOCS, followed by the
2383 REL_HDR2 relocations. */
2384
2385 Elf_Internal_Rela *
2386 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2387 keep_memory)
2388 bfd *abfd;
2389 asection *o;
2390 PTR external_relocs;
2391 Elf_Internal_Rela *internal_relocs;
2392 boolean keep_memory;
2393 {
2394 Elf_Internal_Shdr *rel_hdr;
2395 PTR alloc1 = NULL;
2396 Elf_Internal_Rela *alloc2 = NULL;
2397 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2398
2399 if (elf_section_data (o)->relocs != NULL)
2400 return elf_section_data (o)->relocs;
2401
2402 if (o->reloc_count == 0)
2403 return NULL;
2404
2405 rel_hdr = &elf_section_data (o)->rel_hdr;
2406
2407 if (internal_relocs == NULL)
2408 {
2409 size_t size;
2410
2411 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2412 * sizeof (Elf_Internal_Rela));
2413 if (keep_memory)
2414 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2415 else
2416 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2417 if (internal_relocs == NULL)
2418 goto error_return;
2419 }
2420
2421 if (external_relocs == NULL)
2422 {
2423 size_t size = (size_t) rel_hdr->sh_size;
2424
2425 if (elf_section_data (o)->rel_hdr2)
2426 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2427 alloc1 = (PTR) bfd_malloc (size);
2428 if (alloc1 == NULL)
2429 goto error_return;
2430 external_relocs = alloc1;
2431 }
2432
2433 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2434 external_relocs,
2435 internal_relocs))
2436 goto error_return;
2437 if (!elf_link_read_relocs_from_section
2438 (abfd,
2439 elf_section_data (o)->rel_hdr2,
2440 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2441 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2442 * bed->s->int_rels_per_ext_rel)))
2443 goto error_return;
2444
2445 /* Cache the results for next time, if we can. */
2446 if (keep_memory)
2447 elf_section_data (o)->relocs = internal_relocs;
2448
2449 if (alloc1 != NULL)
2450 free (alloc1);
2451
2452 /* Don't free alloc2, since if it was allocated we are passing it
2453 back (under the name of internal_relocs). */
2454
2455 return internal_relocs;
2456
2457 error_return:
2458 if (alloc1 != NULL)
2459 free (alloc1);
2460 if (alloc2 != NULL)
2461 free (alloc2);
2462 return NULL;
2463 }
2464 \f
2465
2466 /* Record an assignment to a symbol made by a linker script. We need
2467 this in case some dynamic object refers to this symbol. */
2468
2469 /*ARGSUSED*/
2470 boolean
2471 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2472 bfd *output_bfd ATTRIBUTE_UNUSED;
2473 struct bfd_link_info *info;
2474 const char *name;
2475 boolean provide;
2476 {
2477 struct elf_link_hash_entry *h;
2478
2479 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2480 return true;
2481
2482 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2483 if (h == NULL)
2484 return false;
2485
2486 if (h->root.type == bfd_link_hash_new)
2487 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2488
2489 /* If this symbol is being provided by the linker script, and it is
2490 currently defined by a dynamic object, but not by a regular
2491 object, then mark it as undefined so that the generic linker will
2492 force the correct value. */
2493 if (provide
2494 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2495 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2496 h->root.type = bfd_link_hash_undefined;
2497
2498 /* If this symbol is not being provided by the linker script, and it is
2499 currently defined by a dynamic object, but not by a regular object,
2500 then clear out any version information because the symbol will not be
2501 associated with the dynamic object any more. */
2502 if (!provide
2503 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2504 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2505 h->verinfo.verdef = NULL;
2506
2507 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2508
2509 /* When possible, keep the original type of the symbol */
2510 if (h->type == STT_NOTYPE)
2511 h->type = STT_OBJECT;
2512
2513 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2514 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2515 || info->shared)
2516 && h->dynindx == -1)
2517 {
2518 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2519 return false;
2520
2521 /* If this is a weak defined symbol, and we know a corresponding
2522 real symbol from the same dynamic object, make sure the real
2523 symbol is also made into a dynamic symbol. */
2524 if (h->weakdef != NULL
2525 && h->weakdef->dynindx == -1)
2526 {
2527 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2528 return false;
2529 }
2530 }
2531
2532 return true;
2533 }
2534 \f
2535 /* This structure is used to pass information to
2536 elf_link_assign_sym_version. */
2537
2538 struct elf_assign_sym_version_info
2539 {
2540 /* Output BFD. */
2541 bfd *output_bfd;
2542 /* General link information. */
2543 struct bfd_link_info *info;
2544 /* Version tree. */
2545 struct bfd_elf_version_tree *verdefs;
2546 /* Whether we are exporting all dynamic symbols. */
2547 boolean export_dynamic;
2548 /* Whether we had a failure. */
2549 boolean failed;
2550 };
2551
2552 /* This structure is used to pass information to
2553 elf_link_find_version_dependencies. */
2554
2555 struct elf_find_verdep_info
2556 {
2557 /* Output BFD. */
2558 bfd *output_bfd;
2559 /* General link information. */
2560 struct bfd_link_info *info;
2561 /* The number of dependencies. */
2562 unsigned int vers;
2563 /* Whether we had a failure. */
2564 boolean failed;
2565 };
2566
2567 /* Array used to determine the number of hash table buckets to use
2568 based on the number of symbols there are. If there are fewer than
2569 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2570 fewer than 37 we use 17 buckets, and so forth. We never use more
2571 than 32771 buckets. */
2572
2573 static const size_t elf_buckets[] =
2574 {
2575 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2576 16411, 32771, 0
2577 };
2578
2579 /* Compute bucket count for hashing table. We do not use a static set
2580 of possible tables sizes anymore. Instead we determine for all
2581 possible reasonable sizes of the table the outcome (i.e., the
2582 number of collisions etc) and choose the best solution. The
2583 weighting functions are not too simple to allow the table to grow
2584 without bounds. Instead one of the weighting factors is the size.
2585 Therefore the result is always a good payoff between few collisions
2586 (= short chain lengths) and table size. */
2587 static size_t
2588 compute_bucket_count (info)
2589 struct bfd_link_info *info;
2590 {
2591 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2592 size_t best_size = 0;
2593 unsigned long int *hashcodes;
2594 unsigned long int *hashcodesp;
2595 unsigned long int i;
2596
2597 /* Compute the hash values for all exported symbols. At the same
2598 time store the values in an array so that we could use them for
2599 optimizations. */
2600 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2601 * sizeof (unsigned long int));
2602 if (hashcodes == NULL)
2603 return 0;
2604 hashcodesp = hashcodes;
2605
2606 /* Put all hash values in HASHCODES. */
2607 elf_link_hash_traverse (elf_hash_table (info),
2608 elf_collect_hash_codes, &hashcodesp);
2609
2610 /* We have a problem here. The following code to optimize the table
2611 size requires an integer type with more the 32 bits. If
2612 BFD_HOST_U_64_BIT is set we know about such a type. */
2613 #ifdef BFD_HOST_U_64_BIT
2614 if (info->optimize == true)
2615 {
2616 unsigned long int nsyms = hashcodesp - hashcodes;
2617 size_t minsize;
2618 size_t maxsize;
2619 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2620 unsigned long int *counts ;
2621
2622 /* Possible optimization parameters: if we have NSYMS symbols we say
2623 that the hashing table must at least have NSYMS/4 and at most
2624 2*NSYMS buckets. */
2625 minsize = nsyms / 4;
2626 if (minsize == 0)
2627 minsize = 1;
2628 best_size = maxsize = nsyms * 2;
2629
2630 /* Create array where we count the collisions in. We must use bfd_malloc
2631 since the size could be large. */
2632 counts = (unsigned long int *) bfd_malloc (maxsize
2633 * sizeof (unsigned long int));
2634 if (counts == NULL)
2635 {
2636 free (hashcodes);
2637 return 0;
2638 }
2639
2640 /* Compute the "optimal" size for the hash table. The criteria is a
2641 minimal chain length. The minor criteria is (of course) the size
2642 of the table. */
2643 for (i = minsize; i < maxsize; ++i)
2644 {
2645 /* Walk through the array of hashcodes and count the collisions. */
2646 BFD_HOST_U_64_BIT max;
2647 unsigned long int j;
2648 unsigned long int fact;
2649
2650 memset (counts, '\0', i * sizeof (unsigned long int));
2651
2652 /* Determine how often each hash bucket is used. */
2653 for (j = 0; j < nsyms; ++j)
2654 ++counts[hashcodes[j] % i];
2655
2656 /* For the weight function we need some information about the
2657 pagesize on the target. This is information need not be 100%
2658 accurate. Since this information is not available (so far) we
2659 define it here to a reasonable default value. If it is crucial
2660 to have a better value some day simply define this value. */
2661 # ifndef BFD_TARGET_PAGESIZE
2662 # define BFD_TARGET_PAGESIZE (4096)
2663 # endif
2664
2665 /* We in any case need 2 + NSYMS entries for the size values and
2666 the chains. */
2667 max = (2 + nsyms) * (ARCH_SIZE / 8);
2668
2669 # if 1
2670 /* Variant 1: optimize for short chains. We add the squares
2671 of all the chain lengths (which favous many small chain
2672 over a few long chains). */
2673 for (j = 0; j < i; ++j)
2674 max += counts[j] * counts[j];
2675
2676 /* This adds penalties for the overall size of the table. */
2677 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2678 max *= fact * fact;
2679 # else
2680 /* Variant 2: Optimize a lot more for small table. Here we
2681 also add squares of the size but we also add penalties for
2682 empty slots (the +1 term). */
2683 for (j = 0; j < i; ++j)
2684 max += (1 + counts[j]) * (1 + counts[j]);
2685
2686 /* The overall size of the table is considered, but not as
2687 strong as in variant 1, where it is squared. */
2688 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2689 max *= fact;
2690 # endif
2691
2692 /* Compare with current best results. */
2693 if (max < best_chlen)
2694 {
2695 best_chlen = max;
2696 best_size = i;
2697 }
2698 }
2699
2700 free (counts);
2701 }
2702 else
2703 #endif /* defined (BFD_HOST_U_64_BIT) */
2704 {
2705 /* This is the fallback solution if no 64bit type is available or if we
2706 are not supposed to spend much time on optimizations. We select the
2707 bucket count using a fixed set of numbers. */
2708 for (i = 0; elf_buckets[i] != 0; i++)
2709 {
2710 best_size = elf_buckets[i];
2711 if (dynsymcount < elf_buckets[i + 1])
2712 break;
2713 }
2714 }
2715
2716 /* Free the arrays we needed. */
2717 free (hashcodes);
2718
2719 return best_size;
2720 }
2721
2722 /* Set up the sizes and contents of the ELF dynamic sections. This is
2723 called by the ELF linker emulation before_allocation routine. We
2724 must set the sizes of the sections before the linker sets the
2725 addresses of the various sections. */
2726
2727 boolean
2728 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2729 export_dynamic, filter_shlib,
2730 auxiliary_filters, info, sinterpptr,
2731 verdefs)
2732 bfd *output_bfd;
2733 const char *soname;
2734 const char *rpath;
2735 boolean export_dynamic;
2736 const char *filter_shlib;
2737 const char * const *auxiliary_filters;
2738 struct bfd_link_info *info;
2739 asection **sinterpptr;
2740 struct bfd_elf_version_tree *verdefs;
2741 {
2742 bfd_size_type soname_indx;
2743 bfd *dynobj;
2744 struct elf_backend_data *bed;
2745 struct elf_assign_sym_version_info asvinfo;
2746
2747 *sinterpptr = NULL;
2748
2749 soname_indx = (bfd_size_type) -1;
2750
2751 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2752 return true;
2753
2754 /* The backend may have to create some sections regardless of whether
2755 we're dynamic or not. */
2756 bed = get_elf_backend_data (output_bfd);
2757 if (bed->elf_backend_always_size_sections
2758 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2759 return false;
2760
2761 dynobj = elf_hash_table (info)->dynobj;
2762
2763 /* If there were no dynamic objects in the link, there is nothing to
2764 do here. */
2765 if (dynobj == NULL)
2766 return true;
2767
2768 if (elf_hash_table (info)->dynamic_sections_created)
2769 {
2770 struct elf_info_failed eif;
2771 struct elf_link_hash_entry *h;
2772 bfd_size_type strsize;
2773
2774 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2775 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2776
2777 if (soname != NULL)
2778 {
2779 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2780 soname, true, true);
2781 if (soname_indx == (bfd_size_type) -1
2782 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2783 return false;
2784 }
2785
2786 if (info->symbolic)
2787 {
2788 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2789 return false;
2790 }
2791
2792 if (rpath != NULL)
2793 {
2794 bfd_size_type indx;
2795
2796 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2797 true, true);
2798 if (indx == (bfd_size_type) -1
2799 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2800 return false;
2801 }
2802
2803 if (filter_shlib != NULL)
2804 {
2805 bfd_size_type indx;
2806
2807 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2808 filter_shlib, true, true);
2809 if (indx == (bfd_size_type) -1
2810 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2811 return false;
2812 }
2813
2814 if (auxiliary_filters != NULL)
2815 {
2816 const char * const *p;
2817
2818 for (p = auxiliary_filters; *p != NULL; p++)
2819 {
2820 bfd_size_type indx;
2821
2822 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2823 *p, true, true);
2824 if (indx == (bfd_size_type) -1
2825 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2826 return false;
2827 }
2828 }
2829
2830 /* If we are supposed to export all symbols into the dynamic symbol
2831 table (this is not the normal case), then do so. */
2832 if (export_dynamic)
2833 {
2834 struct elf_info_failed eif;
2835
2836 eif.failed = false;
2837 eif.info = info;
2838 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2839 (PTR) &eif);
2840 if (eif.failed)
2841 return false;
2842 }
2843
2844 /* Attach all the symbols to their version information. */
2845 asvinfo.output_bfd = output_bfd;
2846 asvinfo.info = info;
2847 asvinfo.verdefs = verdefs;
2848 asvinfo.export_dynamic = export_dynamic;
2849 asvinfo.failed = false;
2850
2851 elf_link_hash_traverse (elf_hash_table (info),
2852 elf_link_assign_sym_version,
2853 (PTR) &asvinfo);
2854 if (asvinfo.failed)
2855 return false;
2856
2857 /* Find all symbols which were defined in a dynamic object and make
2858 the backend pick a reasonable value for them. */
2859 eif.failed = false;
2860 eif.info = info;
2861 elf_link_hash_traverse (elf_hash_table (info),
2862 elf_adjust_dynamic_symbol,
2863 (PTR) &eif);
2864 if (eif.failed)
2865 return false;
2866
2867 /* Add some entries to the .dynamic section. We fill in some of the
2868 values later, in elf_bfd_final_link, but we must add the entries
2869 now so that we know the final size of the .dynamic section. */
2870
2871 /* If there are initialization and/or finalization functions to
2872 call then add the corresponding DT_INIT/DT_FINI entries. */
2873 h = (info->init_function
2874 ? elf_link_hash_lookup (elf_hash_table (info),
2875 info->init_function, false,
2876 false, false)
2877 : NULL);
2878 if (h != NULL
2879 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2880 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2881 {
2882 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2883 return false;
2884 }
2885 h = (info->fini_function
2886 ? elf_link_hash_lookup (elf_hash_table (info),
2887 info->fini_function, false,
2888 false, false)
2889 : NULL);
2890 if (h != NULL
2891 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2892 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2893 {
2894 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2895 return false;
2896 }
2897
2898 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2899 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2900 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2901 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2902 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2903 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2904 sizeof (Elf_External_Sym)))
2905 return false;
2906 }
2907
2908 /* The backend must work out the sizes of all the other dynamic
2909 sections. */
2910 if (bed->elf_backend_size_dynamic_sections
2911 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2912 return false;
2913
2914 if (elf_hash_table (info)->dynamic_sections_created)
2915 {
2916 size_t dynsymcount;
2917 asection *s;
2918 size_t bucketcount = 0;
2919 Elf_Internal_Sym isym;
2920 size_t hash_entry_size;
2921
2922 /* Set up the version definition section. */
2923 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2924 BFD_ASSERT (s != NULL);
2925
2926 /* We may have created additional version definitions if we are
2927 just linking a regular application. */
2928 verdefs = asvinfo.verdefs;
2929
2930 if (verdefs == NULL)
2931 _bfd_strip_section_from_output (info, s);
2932 else
2933 {
2934 unsigned int cdefs;
2935 bfd_size_type size;
2936 struct bfd_elf_version_tree *t;
2937 bfd_byte *p;
2938 Elf_Internal_Verdef def;
2939 Elf_Internal_Verdaux defaux;
2940
2941 cdefs = 0;
2942 size = 0;
2943
2944 /* Make space for the base version. */
2945 size += sizeof (Elf_External_Verdef);
2946 size += sizeof (Elf_External_Verdaux);
2947 ++cdefs;
2948
2949 for (t = verdefs; t != NULL; t = t->next)
2950 {
2951 struct bfd_elf_version_deps *n;
2952
2953 size += sizeof (Elf_External_Verdef);
2954 size += sizeof (Elf_External_Verdaux);
2955 ++cdefs;
2956
2957 for (n = t->deps; n != NULL; n = n->next)
2958 size += sizeof (Elf_External_Verdaux);
2959 }
2960
2961 s->_raw_size = size;
2962 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2963 if (s->contents == NULL && s->_raw_size != 0)
2964 return false;
2965
2966 /* Fill in the version definition section. */
2967
2968 p = s->contents;
2969
2970 def.vd_version = VER_DEF_CURRENT;
2971 def.vd_flags = VER_FLG_BASE;
2972 def.vd_ndx = 1;
2973 def.vd_cnt = 1;
2974 def.vd_aux = sizeof (Elf_External_Verdef);
2975 def.vd_next = (sizeof (Elf_External_Verdef)
2976 + sizeof (Elf_External_Verdaux));
2977
2978 if (soname_indx != (bfd_size_type) -1)
2979 {
2980 def.vd_hash = bfd_elf_hash (soname);
2981 defaux.vda_name = soname_indx;
2982 }
2983 else
2984 {
2985 const char *name;
2986 bfd_size_type indx;
2987
2988 name = output_bfd->filename;
2989 def.vd_hash = bfd_elf_hash (name);
2990 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2991 name, true, false);
2992 if (indx == (bfd_size_type) -1)
2993 return false;
2994 defaux.vda_name = indx;
2995 }
2996 defaux.vda_next = 0;
2997
2998 _bfd_elf_swap_verdef_out (output_bfd, &def,
2999 (Elf_External_Verdef *)p);
3000 p += sizeof (Elf_External_Verdef);
3001 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3002 (Elf_External_Verdaux *) p);
3003 p += sizeof (Elf_External_Verdaux);
3004
3005 for (t = verdefs; t != NULL; t = t->next)
3006 {
3007 unsigned int cdeps;
3008 struct bfd_elf_version_deps *n;
3009 struct elf_link_hash_entry *h;
3010
3011 cdeps = 0;
3012 for (n = t->deps; n != NULL; n = n->next)
3013 ++cdeps;
3014
3015 /* Add a symbol representing this version. */
3016 h = NULL;
3017 if (! (_bfd_generic_link_add_one_symbol
3018 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3019 (bfd_vma) 0, (const char *) NULL, false,
3020 get_elf_backend_data (dynobj)->collect,
3021 (struct bfd_link_hash_entry **) &h)))
3022 return false;
3023 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3024 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3025 h->type = STT_OBJECT;
3026 h->verinfo.vertree = t;
3027
3028 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3029 return false;
3030
3031 def.vd_version = VER_DEF_CURRENT;
3032 def.vd_flags = 0;
3033 if (t->globals == NULL && t->locals == NULL && ! t->used)
3034 def.vd_flags |= VER_FLG_WEAK;
3035 def.vd_ndx = t->vernum + 1;
3036 def.vd_cnt = cdeps + 1;
3037 def.vd_hash = bfd_elf_hash (t->name);
3038 def.vd_aux = sizeof (Elf_External_Verdef);
3039 if (t->next != NULL)
3040 def.vd_next = (sizeof (Elf_External_Verdef)
3041 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3042 else
3043 def.vd_next = 0;
3044
3045 _bfd_elf_swap_verdef_out (output_bfd, &def,
3046 (Elf_External_Verdef *) p);
3047 p += sizeof (Elf_External_Verdef);
3048
3049 defaux.vda_name = h->dynstr_index;
3050 if (t->deps == NULL)
3051 defaux.vda_next = 0;
3052 else
3053 defaux.vda_next = sizeof (Elf_External_Verdaux);
3054 t->name_indx = defaux.vda_name;
3055
3056 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3057 (Elf_External_Verdaux *) p);
3058 p += sizeof (Elf_External_Verdaux);
3059
3060 for (n = t->deps; n != NULL; n = n->next)
3061 {
3062 if (n->version_needed == NULL)
3063 {
3064 /* This can happen if there was an error in the
3065 version script. */
3066 defaux.vda_name = 0;
3067 }
3068 else
3069 defaux.vda_name = n->version_needed->name_indx;
3070 if (n->next == NULL)
3071 defaux.vda_next = 0;
3072 else
3073 defaux.vda_next = sizeof (Elf_External_Verdaux);
3074
3075 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3076 (Elf_External_Verdaux *) p);
3077 p += sizeof (Elf_External_Verdaux);
3078 }
3079 }
3080
3081 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
3082 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
3083 return false;
3084
3085 elf_tdata (output_bfd)->cverdefs = cdefs;
3086 }
3087
3088 /* Work out the size of the version reference section. */
3089
3090 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3091 BFD_ASSERT (s != NULL);
3092 {
3093 struct elf_find_verdep_info sinfo;
3094
3095 sinfo.output_bfd = output_bfd;
3096 sinfo.info = info;
3097 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3098 if (sinfo.vers == 0)
3099 sinfo.vers = 1;
3100 sinfo.failed = false;
3101
3102 elf_link_hash_traverse (elf_hash_table (info),
3103 elf_link_find_version_dependencies,
3104 (PTR) &sinfo);
3105
3106 if (elf_tdata (output_bfd)->verref == NULL)
3107 _bfd_strip_section_from_output (info, s);
3108 else
3109 {
3110 Elf_Internal_Verneed *t;
3111 unsigned int size;
3112 unsigned int crefs;
3113 bfd_byte *p;
3114
3115 /* Build the version definition section. */
3116 size = 0;
3117 crefs = 0;
3118 for (t = elf_tdata (output_bfd)->verref;
3119 t != NULL;
3120 t = t->vn_nextref)
3121 {
3122 Elf_Internal_Vernaux *a;
3123
3124 size += sizeof (Elf_External_Verneed);
3125 ++crefs;
3126 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3127 size += sizeof (Elf_External_Vernaux);
3128 }
3129
3130 s->_raw_size = size;
3131 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3132 if (s->contents == NULL)
3133 return false;
3134
3135 p = s->contents;
3136 for (t = elf_tdata (output_bfd)->verref;
3137 t != NULL;
3138 t = t->vn_nextref)
3139 {
3140 unsigned int caux;
3141 Elf_Internal_Vernaux *a;
3142 bfd_size_type indx;
3143
3144 caux = 0;
3145 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3146 ++caux;
3147
3148 t->vn_version = VER_NEED_CURRENT;
3149 t->vn_cnt = caux;
3150 if (elf_dt_name (t->vn_bfd) != NULL)
3151 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3152 elf_dt_name (t->vn_bfd),
3153 true, false);
3154 else
3155 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3156 t->vn_bfd->filename, true, false);
3157 if (indx == (bfd_size_type) -1)
3158 return false;
3159 t->vn_file = indx;
3160 t->vn_aux = sizeof (Elf_External_Verneed);
3161 if (t->vn_nextref == NULL)
3162 t->vn_next = 0;
3163 else
3164 t->vn_next = (sizeof (Elf_External_Verneed)
3165 + caux * sizeof (Elf_External_Vernaux));
3166
3167 _bfd_elf_swap_verneed_out (output_bfd, t,
3168 (Elf_External_Verneed *) p);
3169 p += sizeof (Elf_External_Verneed);
3170
3171 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3172 {
3173 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3174 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3175 a->vna_nodename, true, false);
3176 if (indx == (bfd_size_type) -1)
3177 return false;
3178 a->vna_name = indx;
3179 if (a->vna_nextptr == NULL)
3180 a->vna_next = 0;
3181 else
3182 a->vna_next = sizeof (Elf_External_Vernaux);
3183
3184 _bfd_elf_swap_vernaux_out (output_bfd, a,
3185 (Elf_External_Vernaux *) p);
3186 p += sizeof (Elf_External_Vernaux);
3187 }
3188 }
3189
3190 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3191 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3192 return false;
3193
3194 elf_tdata (output_bfd)->cverrefs = crefs;
3195 }
3196 }
3197
3198 /* Assign dynsym indicies. In a shared library we generate a
3199 section symbol for each output section, which come first.
3200 Next come all of the back-end allocated local dynamic syms,
3201 followed by the rest of the global symbols. */
3202
3203 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3204
3205 /* Work out the size of the symbol version section. */
3206 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3207 BFD_ASSERT (s != NULL);
3208 if (dynsymcount == 0
3209 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3210 {
3211 _bfd_strip_section_from_output (info, s);
3212 /* The DYNSYMCOUNT might have changed if we were going to
3213 output a dynamic symbol table entry for S. */
3214 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3215 }
3216 else
3217 {
3218 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3219 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3220 if (s->contents == NULL)
3221 return false;
3222
3223 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3224 return false;
3225 }
3226
3227 /* Set the size of the .dynsym and .hash sections. We counted
3228 the number of dynamic symbols in elf_link_add_object_symbols.
3229 We will build the contents of .dynsym and .hash when we build
3230 the final symbol table, because until then we do not know the
3231 correct value to give the symbols. We built the .dynstr
3232 section as we went along in elf_link_add_object_symbols. */
3233 s = bfd_get_section_by_name (dynobj, ".dynsym");
3234 BFD_ASSERT (s != NULL);
3235 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3236 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3237 if (s->contents == NULL && s->_raw_size != 0)
3238 return false;
3239
3240 /* The first entry in .dynsym is a dummy symbol. */
3241 isym.st_value = 0;
3242 isym.st_size = 0;
3243 isym.st_name = 0;
3244 isym.st_info = 0;
3245 isym.st_other = 0;
3246 isym.st_shndx = 0;
3247 elf_swap_symbol_out (output_bfd, &isym,
3248 (PTR) (Elf_External_Sym *) s->contents);
3249
3250 /* Compute the size of the hashing table. As a side effect this
3251 computes the hash values for all the names we export. */
3252 bucketcount = compute_bucket_count (info);
3253
3254 s = bfd_get_section_by_name (dynobj, ".hash");
3255 BFD_ASSERT (s != NULL);
3256 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3257 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3258 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3259 if (s->contents == NULL)
3260 return false;
3261 memset (s->contents, 0, (size_t) s->_raw_size);
3262
3263 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3264 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3265 s->contents + hash_entry_size);
3266
3267 elf_hash_table (info)->bucketcount = bucketcount;
3268
3269 s = bfd_get_section_by_name (dynobj, ".dynstr");
3270 BFD_ASSERT (s != NULL);
3271 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3272
3273 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3274 return false;
3275 }
3276
3277 return true;
3278 }
3279 \f
3280 /* Fix up the flags for a symbol. This handles various cases which
3281 can only be fixed after all the input files are seen. This is
3282 currently called by both adjust_dynamic_symbol and
3283 assign_sym_version, which is unnecessary but perhaps more robust in
3284 the face of future changes. */
3285
3286 static boolean
3287 elf_fix_symbol_flags (h, eif)
3288 struct elf_link_hash_entry *h;
3289 struct elf_info_failed *eif;
3290 {
3291 /* If this symbol was mentioned in a non-ELF file, try to set
3292 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3293 permit a non-ELF file to correctly refer to a symbol defined in
3294 an ELF dynamic object. */
3295 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3296 {
3297 if (h->root.type != bfd_link_hash_defined
3298 && h->root.type != bfd_link_hash_defweak)
3299 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3300 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3301 else
3302 {
3303 if (h->root.u.def.section->owner != NULL
3304 && (bfd_get_flavour (h->root.u.def.section->owner)
3305 == bfd_target_elf_flavour))
3306 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3307 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3308 else
3309 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3310 }
3311
3312 if (h->dynindx == -1
3313 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3314 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3315 {
3316 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3317 {
3318 eif->failed = true;
3319 return false;
3320 }
3321 }
3322 }
3323 else
3324 {
3325 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3326 was first seen in a non-ELF file. Fortunately, if the symbol
3327 was first seen in an ELF file, we're probably OK unless the
3328 symbol was defined in a non-ELF file. Catch that case here.
3329 FIXME: We're still in trouble if the symbol was first seen in
3330 a dynamic object, and then later in a non-ELF regular object. */
3331 if ((h->root.type == bfd_link_hash_defined
3332 || h->root.type == bfd_link_hash_defweak)
3333 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3334 && (h->root.u.def.section->owner != NULL
3335 ? (bfd_get_flavour (h->root.u.def.section->owner)
3336 != bfd_target_elf_flavour)
3337 : (bfd_is_abs_section (h->root.u.def.section)
3338 && (h->elf_link_hash_flags
3339 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3340 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3341 }
3342
3343 /* If this is a final link, and the symbol was defined as a common
3344 symbol in a regular object file, and there was no definition in
3345 any dynamic object, then the linker will have allocated space for
3346 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3347 flag will not have been set. */
3348 if (h->root.type == bfd_link_hash_defined
3349 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3350 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3351 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3352 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3353 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3354
3355 /* If -Bsymbolic was used (which means to bind references to global
3356 symbols to the definition within the shared object), and this
3357 symbol was defined in a regular object, then it actually doesn't
3358 need a PLT entry. Likewise, if the symbol has any kind of
3359 visibility (internal, hidden, or protected), it doesn't need a
3360 PLT. */
3361 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3362 && eif->info->shared
3363 && (eif->info->symbolic || ELF_ST_VISIBILITY (h->other))
3364 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3365 {
3366 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3367 h->plt.offset = (bfd_vma) -1;
3368 }
3369
3370 /* If this is a weak defined symbol in a dynamic object, and we know
3371 the real definition in the dynamic object, copy interesting flags
3372 over to the real definition. */
3373 if (h->weakdef != NULL)
3374 {
3375 struct elf_link_hash_entry *weakdef;
3376
3377 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3378 || h->root.type == bfd_link_hash_defweak);
3379 weakdef = h->weakdef;
3380 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3381 || weakdef->root.type == bfd_link_hash_defweak);
3382 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3383
3384 /* If the real definition is defined by a regular object file,
3385 don't do anything special. See the longer description in
3386 elf_adjust_dynamic_symbol, below. */
3387 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3388 h->weakdef = NULL;
3389 else
3390 weakdef->elf_link_hash_flags |=
3391 (h->elf_link_hash_flags
3392 & (ELF_LINK_HASH_REF_REGULAR
3393 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3394 | ELF_LINK_NON_GOT_REF));
3395 }
3396
3397 return true;
3398 }
3399
3400 /* Make the backend pick a good value for a dynamic symbol. This is
3401 called via elf_link_hash_traverse, and also calls itself
3402 recursively. */
3403
3404 static boolean
3405 elf_adjust_dynamic_symbol (h, data)
3406 struct elf_link_hash_entry *h;
3407 PTR data;
3408 {
3409 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3410 bfd *dynobj;
3411 struct elf_backend_data *bed;
3412
3413 /* Ignore indirect symbols. These are added by the versioning code. */
3414 if (h->root.type == bfd_link_hash_indirect)
3415 return true;
3416
3417 /* Fix the symbol flags. */
3418 if (! elf_fix_symbol_flags (h, eif))
3419 return false;
3420
3421 /* If this symbol does not require a PLT entry, and it is not
3422 defined by a dynamic object, or is not referenced by a regular
3423 object, ignore it. We do have to handle a weak defined symbol,
3424 even if no regular object refers to it, if we decided to add it
3425 to the dynamic symbol table. FIXME: Do we normally need to worry
3426 about symbols which are defined by one dynamic object and
3427 referenced by another one? */
3428 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3429 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3430 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3431 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3432 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3433 {
3434 h->plt.offset = (bfd_vma) -1;
3435 return true;
3436 }
3437
3438 /* If we've already adjusted this symbol, don't do it again. This
3439 can happen via a recursive call. */
3440 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3441 return true;
3442
3443 /* Don't look at this symbol again. Note that we must set this
3444 after checking the above conditions, because we may look at a
3445 symbol once, decide not to do anything, and then get called
3446 recursively later after REF_REGULAR is set below. */
3447 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3448
3449 /* If this is a weak definition, and we know a real definition, and
3450 the real symbol is not itself defined by a regular object file,
3451 then get a good value for the real definition. We handle the
3452 real symbol first, for the convenience of the backend routine.
3453
3454 Note that there is a confusing case here. If the real definition
3455 is defined by a regular object file, we don't get the real symbol
3456 from the dynamic object, but we do get the weak symbol. If the
3457 processor backend uses a COPY reloc, then if some routine in the
3458 dynamic object changes the real symbol, we will not see that
3459 change in the corresponding weak symbol. This is the way other
3460 ELF linkers work as well, and seems to be a result of the shared
3461 library model.
3462
3463 I will clarify this issue. Most SVR4 shared libraries define the
3464 variable _timezone and define timezone as a weak synonym. The
3465 tzset call changes _timezone. If you write
3466 extern int timezone;
3467 int _timezone = 5;
3468 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3469 you might expect that, since timezone is a synonym for _timezone,
3470 the same number will print both times. However, if the processor
3471 backend uses a COPY reloc, then actually timezone will be copied
3472 into your process image, and, since you define _timezone
3473 yourself, _timezone will not. Thus timezone and _timezone will
3474 wind up at different memory locations. The tzset call will set
3475 _timezone, leaving timezone unchanged. */
3476
3477 if (h->weakdef != NULL)
3478 {
3479 /* If we get to this point, we know there is an implicit
3480 reference by a regular object file via the weak symbol H.
3481 FIXME: Is this really true? What if the traversal finds
3482 H->WEAKDEF before it finds H? */
3483 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3484
3485 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3486 return false;
3487 }
3488
3489 /* If a symbol has no type and no size and does not require a PLT
3490 entry, then we are probably about to do the wrong thing here: we
3491 are probably going to create a COPY reloc for an empty object.
3492 This case can arise when a shared object is built with assembly
3493 code, and the assembly code fails to set the symbol type. */
3494 if (h->size == 0
3495 && h->type == STT_NOTYPE
3496 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3497 (*_bfd_error_handler)
3498 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3499 h->root.root.string);
3500
3501 dynobj = elf_hash_table (eif->info)->dynobj;
3502 bed = get_elf_backend_data (dynobj);
3503 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3504 {
3505 eif->failed = true;
3506 return false;
3507 }
3508
3509 return true;
3510 }
3511 \f
3512 /* This routine is used to export all defined symbols into the dynamic
3513 symbol table. It is called via elf_link_hash_traverse. */
3514
3515 static boolean
3516 elf_export_symbol (h, data)
3517 struct elf_link_hash_entry *h;
3518 PTR data;
3519 {
3520 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3521
3522 /* Ignore indirect symbols. These are added by the versioning code. */
3523 if (h->root.type == bfd_link_hash_indirect)
3524 return true;
3525
3526 if (h->dynindx == -1
3527 && (h->elf_link_hash_flags
3528 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3529 {
3530 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3531 {
3532 eif->failed = true;
3533 return false;
3534 }
3535 }
3536
3537 return true;
3538 }
3539 \f
3540 /* Look through the symbols which are defined in other shared
3541 libraries and referenced here. Update the list of version
3542 dependencies. This will be put into the .gnu.version_r section.
3543 This function is called via elf_link_hash_traverse. */
3544
3545 static boolean
3546 elf_link_find_version_dependencies (h, data)
3547 struct elf_link_hash_entry *h;
3548 PTR data;
3549 {
3550 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3551 Elf_Internal_Verneed *t;
3552 Elf_Internal_Vernaux *a;
3553
3554 /* We only care about symbols defined in shared objects with version
3555 information. */
3556 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3557 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3558 || h->dynindx == -1
3559 || h->verinfo.verdef == NULL)
3560 return true;
3561
3562 /* See if we already know about this version. */
3563 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3564 {
3565 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3566 continue;
3567
3568 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3569 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3570 return true;
3571
3572 break;
3573 }
3574
3575 /* This is a new version. Add it to tree we are building. */
3576
3577 if (t == NULL)
3578 {
3579 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3580 if (t == NULL)
3581 {
3582 rinfo->failed = true;
3583 return false;
3584 }
3585
3586 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3587 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3588 elf_tdata (rinfo->output_bfd)->verref = t;
3589 }
3590
3591 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3592
3593 /* Note that we are copying a string pointer here, and testing it
3594 above. If bfd_elf_string_from_elf_section is ever changed to
3595 discard the string data when low in memory, this will have to be
3596 fixed. */
3597 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3598
3599 a->vna_flags = h->verinfo.verdef->vd_flags;
3600 a->vna_nextptr = t->vn_auxptr;
3601
3602 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3603 ++rinfo->vers;
3604
3605 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3606
3607 t->vn_auxptr = a;
3608
3609 return true;
3610 }
3611
3612 /* Figure out appropriate versions for all the symbols. We may not
3613 have the version number script until we have read all of the input
3614 files, so until that point we don't know which symbols should be
3615 local. This function is called via elf_link_hash_traverse. */
3616
3617 static boolean
3618 elf_link_assign_sym_version (h, data)
3619 struct elf_link_hash_entry *h;
3620 PTR data;
3621 {
3622 struct elf_assign_sym_version_info *sinfo =
3623 (struct elf_assign_sym_version_info *) data;
3624 struct bfd_link_info *info = sinfo->info;
3625 struct elf_backend_data *bed;
3626 struct elf_info_failed eif;
3627 char *p;
3628
3629 /* Fix the symbol flags. */
3630 eif.failed = false;
3631 eif.info = info;
3632 if (! elf_fix_symbol_flags (h, &eif))
3633 {
3634 if (eif.failed)
3635 sinfo->failed = true;
3636 return false;
3637 }
3638
3639 /* We only need version numbers for symbols defined in regular
3640 objects. */
3641 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3642 return true;
3643
3644 bed = get_elf_backend_data (sinfo->output_bfd);
3645 p = strchr (h->root.root.string, ELF_VER_CHR);
3646 if (p != NULL && h->verinfo.vertree == NULL)
3647 {
3648 struct bfd_elf_version_tree *t;
3649 boolean hidden;
3650
3651 hidden = true;
3652
3653 /* There are two consecutive ELF_VER_CHR characters if this is
3654 not a hidden symbol. */
3655 ++p;
3656 if (*p == ELF_VER_CHR)
3657 {
3658 hidden = false;
3659 ++p;
3660 }
3661
3662 /* If there is no version string, we can just return out. */
3663 if (*p == '\0')
3664 {
3665 if (hidden)
3666 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3667 return true;
3668 }
3669
3670 /* Look for the version. If we find it, it is no longer weak. */
3671 for (t = sinfo->verdefs; t != NULL; t = t->next)
3672 {
3673 if (strcmp (t->name, p) == 0)
3674 {
3675 int len;
3676 char *alc;
3677 struct bfd_elf_version_expr *d;
3678
3679 len = p - h->root.root.string;
3680 alc = bfd_alloc (sinfo->output_bfd, len);
3681 if (alc == NULL)
3682 return false;
3683 strncpy (alc, h->root.root.string, len - 1);
3684 alc[len - 1] = '\0';
3685 if (alc[len - 2] == ELF_VER_CHR)
3686 alc[len - 2] = '\0';
3687
3688 h->verinfo.vertree = t;
3689 t->used = true;
3690 d = NULL;
3691
3692 if (t->globals != NULL)
3693 {
3694 for (d = t->globals; d != NULL; d = d->next)
3695 if ((*d->match) (d, alc))
3696 break;
3697 }
3698
3699 /* See if there is anything to force this symbol to
3700 local scope. */
3701 if (d == NULL && t->locals != NULL)
3702 {
3703 for (d = t->locals; d != NULL; d = d->next)
3704 {
3705 if ((*d->match) (d, alc))
3706 {
3707 if (h->dynindx != -1
3708 && info->shared
3709 && ! sinfo->export_dynamic)
3710 {
3711 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3712 (*bed->elf_backend_hide_symbol) (h);
3713 /* FIXME: The name of the symbol has
3714 already been recorded in the dynamic
3715 string table section. */
3716 }
3717
3718 break;
3719 }
3720 }
3721 }
3722
3723 bfd_release (sinfo->output_bfd, alc);
3724 break;
3725 }
3726 }
3727
3728 /* If we are building an application, we need to create a
3729 version node for this version. */
3730 if (t == NULL && ! info->shared)
3731 {
3732 struct bfd_elf_version_tree **pp;
3733 int version_index;
3734
3735 /* If we aren't going to export this symbol, we don't need
3736 to worry about it. */
3737 if (h->dynindx == -1)
3738 return true;
3739
3740 t = ((struct bfd_elf_version_tree *)
3741 bfd_alloc (sinfo->output_bfd, sizeof *t));
3742 if (t == NULL)
3743 {
3744 sinfo->failed = true;
3745 return false;
3746 }
3747
3748 t->next = NULL;
3749 t->name = p;
3750 t->globals = NULL;
3751 t->locals = NULL;
3752 t->deps = NULL;
3753 t->name_indx = (unsigned int) -1;
3754 t->used = true;
3755
3756 version_index = 1;
3757 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3758 ++version_index;
3759 t->vernum = version_index;
3760
3761 *pp = t;
3762
3763 h->verinfo.vertree = t;
3764 }
3765 else if (t == NULL)
3766 {
3767 /* We could not find the version for a symbol when
3768 generating a shared archive. Return an error. */
3769 (*_bfd_error_handler)
3770 (_("%s: undefined versioned symbol name %s"),
3771 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3772 bfd_set_error (bfd_error_bad_value);
3773 sinfo->failed = true;
3774 return false;
3775 }
3776
3777 if (hidden)
3778 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3779 }
3780
3781 /* If we don't have a version for this symbol, see if we can find
3782 something. */
3783 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3784 {
3785 struct bfd_elf_version_tree *t;
3786 struct bfd_elf_version_tree *deflt;
3787 struct bfd_elf_version_expr *d;
3788
3789 /* See if can find what version this symbol is in. If the
3790 symbol is supposed to be local, then don't actually register
3791 it. */
3792 deflt = NULL;
3793 for (t = sinfo->verdefs; t != NULL; t = t->next)
3794 {
3795 if (t->globals != NULL)
3796 {
3797 for (d = t->globals; d != NULL; d = d->next)
3798 {
3799 if ((*d->match) (d, h->root.root.string))
3800 {
3801 h->verinfo.vertree = t;
3802 break;
3803 }
3804 }
3805
3806 if (d != NULL)
3807 break;
3808 }
3809
3810 if (t->locals != NULL)
3811 {
3812 for (d = t->locals; d != NULL; d = d->next)
3813 {
3814 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3815 deflt = t;
3816 else if ((*d->match) (d, h->root.root.string))
3817 {
3818 h->verinfo.vertree = t;
3819 if (h->dynindx != -1
3820 && info->shared
3821 && ! sinfo->export_dynamic)
3822 {
3823 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3824 (*bed->elf_backend_hide_symbol) (h);
3825 /* FIXME: The name of the symbol has already
3826 been recorded in the dynamic string table
3827 section. */
3828 }
3829 break;
3830 }
3831 }
3832
3833 if (d != NULL)
3834 break;
3835 }
3836 }
3837
3838 if (deflt != NULL && h->verinfo.vertree == NULL)
3839 {
3840 h->verinfo.vertree = deflt;
3841 if (h->dynindx != -1
3842 && info->shared
3843 && ! sinfo->export_dynamic)
3844 {
3845 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3846 (*bed->elf_backend_hide_symbol) (h);
3847 /* FIXME: The name of the symbol has already been
3848 recorded in the dynamic string table section. */
3849 }
3850 }
3851 }
3852
3853 return true;
3854 }
3855 \f
3856 /* Final phase of ELF linker. */
3857
3858 /* A structure we use to avoid passing large numbers of arguments. */
3859
3860 struct elf_final_link_info
3861 {
3862 /* General link information. */
3863 struct bfd_link_info *info;
3864 /* Output BFD. */
3865 bfd *output_bfd;
3866 /* Symbol string table. */
3867 struct bfd_strtab_hash *symstrtab;
3868 /* .dynsym section. */
3869 asection *dynsym_sec;
3870 /* .hash section. */
3871 asection *hash_sec;
3872 /* symbol version section (.gnu.version). */
3873 asection *symver_sec;
3874 /* Buffer large enough to hold contents of any section. */
3875 bfd_byte *contents;
3876 /* Buffer large enough to hold external relocs of any section. */
3877 PTR external_relocs;
3878 /* Buffer large enough to hold internal relocs of any section. */
3879 Elf_Internal_Rela *internal_relocs;
3880 /* Buffer large enough to hold external local symbols of any input
3881 BFD. */
3882 Elf_External_Sym *external_syms;
3883 /* Buffer large enough to hold internal local symbols of any input
3884 BFD. */
3885 Elf_Internal_Sym *internal_syms;
3886 /* Array large enough to hold a symbol index for each local symbol
3887 of any input BFD. */
3888 long *indices;
3889 /* Array large enough to hold a section pointer for each local
3890 symbol of any input BFD. */
3891 asection **sections;
3892 /* Buffer to hold swapped out symbols. */
3893 Elf_External_Sym *symbuf;
3894 /* Number of swapped out symbols in buffer. */
3895 size_t symbuf_count;
3896 /* Number of symbols which fit in symbuf. */
3897 size_t symbuf_size;
3898 };
3899
3900 static boolean elf_link_output_sym
3901 PARAMS ((struct elf_final_link_info *, const char *,
3902 Elf_Internal_Sym *, asection *));
3903 static boolean elf_link_flush_output_syms
3904 PARAMS ((struct elf_final_link_info *));
3905 static boolean elf_link_output_extsym
3906 PARAMS ((struct elf_link_hash_entry *, PTR));
3907 static boolean elf_link_input_bfd
3908 PARAMS ((struct elf_final_link_info *, bfd *));
3909 static boolean elf_reloc_link_order
3910 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3911 struct bfd_link_order *));
3912
3913 /* This struct is used to pass information to elf_link_output_extsym. */
3914
3915 struct elf_outext_info
3916 {
3917 boolean failed;
3918 boolean localsyms;
3919 struct elf_final_link_info *finfo;
3920 };
3921
3922 /* Compute the size of, and allocate space for, REL_HDR which is the
3923 section header for a section containing relocations for O. */
3924
3925 static boolean
3926 elf_link_size_reloc_section (abfd, rel_hdr, o)
3927 bfd *abfd;
3928 Elf_Internal_Shdr *rel_hdr;
3929 asection *o;
3930 {
3931 register struct elf_link_hash_entry **p, **pend;
3932 unsigned reloc_count;
3933
3934 /* Figure out how many relocations there will be. */
3935 if (rel_hdr == &elf_section_data (o)->rel_hdr)
3936 reloc_count = elf_section_data (o)->rel_count;
3937 else
3938 reloc_count = elf_section_data (o)->rel_count2;
3939
3940 /* That allows us to calculate the size of the section. */
3941 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
3942
3943 /* The contents field must last into write_object_contents, so we
3944 allocate it with bfd_alloc rather than malloc. */
3945 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3946 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3947 return false;
3948
3949 /* We only allocate one set of hash entries, so we only do it the
3950 first time we are called. */
3951 if (elf_section_data (o)->rel_hashes == NULL)
3952 {
3953 p = ((struct elf_link_hash_entry **)
3954 bfd_malloc (o->reloc_count
3955 * sizeof (struct elf_link_hash_entry *)));
3956 if (p == NULL && o->reloc_count != 0)
3957 return false;
3958
3959 elf_section_data (o)->rel_hashes = p;
3960 pend = p + o->reloc_count;
3961 for (; p < pend; p++)
3962 *p = NULL;
3963 }
3964
3965 return true;
3966 }
3967
3968 /* When performing a relocateable link, the input relocations are
3969 preserved. But, if they reference global symbols, the indices
3970 referenced must be updated. Update all the relocations in
3971 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
3972
3973 static void
3974 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
3975 bfd *abfd;
3976 Elf_Internal_Shdr *rel_hdr;
3977 unsigned int count;
3978 struct elf_link_hash_entry **rel_hash;
3979 {
3980 unsigned int i;
3981
3982 for (i = 0; i < count; i++, rel_hash++)
3983 {
3984 if (*rel_hash == NULL)
3985 continue;
3986
3987 BFD_ASSERT ((*rel_hash)->indx >= 0);
3988
3989 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
3990 {
3991 Elf_External_Rel *erel;
3992 Elf_Internal_Rel irel;
3993
3994 erel = (Elf_External_Rel *) rel_hdr->contents + i;
3995 elf_swap_reloc_in (abfd, erel, &irel);
3996 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
3997 ELF_R_TYPE (irel.r_info));
3998 elf_swap_reloc_out (abfd, &irel, erel);
3999 }
4000 else
4001 {
4002 Elf_External_Rela *erela;
4003 Elf_Internal_Rela irela;
4004
4005 BFD_ASSERT (rel_hdr->sh_entsize
4006 == sizeof (Elf_External_Rela));
4007
4008 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4009 elf_swap_reloca_in (abfd, erela, &irela);
4010 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4011 ELF_R_TYPE (irela.r_info));
4012 elf_swap_reloca_out (abfd, &irela, erela);
4013 }
4014 }
4015 }
4016
4017 /* Do the final step of an ELF link. */
4018
4019 boolean
4020 elf_bfd_final_link (abfd, info)
4021 bfd *abfd;
4022 struct bfd_link_info *info;
4023 {
4024 boolean dynamic;
4025 bfd *dynobj;
4026 struct elf_final_link_info finfo;
4027 register asection *o;
4028 register struct bfd_link_order *p;
4029 register bfd *sub;
4030 size_t max_contents_size;
4031 size_t max_external_reloc_size;
4032 size_t max_internal_reloc_count;
4033 size_t max_sym_count;
4034 file_ptr off;
4035 Elf_Internal_Sym elfsym;
4036 unsigned int i;
4037 Elf_Internal_Shdr *symtab_hdr;
4038 Elf_Internal_Shdr *symstrtab_hdr;
4039 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4040 struct elf_outext_info eoinfo;
4041
4042 if (info->shared)
4043 abfd->flags |= DYNAMIC;
4044
4045 dynamic = elf_hash_table (info)->dynamic_sections_created;
4046 dynobj = elf_hash_table (info)->dynobj;
4047
4048 finfo.info = info;
4049 finfo.output_bfd = abfd;
4050 finfo.symstrtab = elf_stringtab_init ();
4051 if (finfo.symstrtab == NULL)
4052 return false;
4053
4054 if (! dynamic)
4055 {
4056 finfo.dynsym_sec = NULL;
4057 finfo.hash_sec = NULL;
4058 finfo.symver_sec = NULL;
4059 }
4060 else
4061 {
4062 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4063 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4064 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4065 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4066 /* Note that it is OK if symver_sec is NULL. */
4067 }
4068
4069 finfo.contents = NULL;
4070 finfo.external_relocs = NULL;
4071 finfo.internal_relocs = NULL;
4072 finfo.external_syms = NULL;
4073 finfo.internal_syms = NULL;
4074 finfo.indices = NULL;
4075 finfo.sections = NULL;
4076 finfo.symbuf = NULL;
4077 finfo.symbuf_count = 0;
4078
4079 /* Count up the number of relocations we will output for each output
4080 section, so that we know the sizes of the reloc sections. We
4081 also figure out some maximum sizes. */
4082 max_contents_size = 0;
4083 max_external_reloc_size = 0;
4084 max_internal_reloc_count = 0;
4085 max_sym_count = 0;
4086 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4087 {
4088 o->reloc_count = 0;
4089
4090 for (p = o->link_order_head; p != NULL; p = p->next)
4091 {
4092 if (p->type == bfd_section_reloc_link_order
4093 || p->type == bfd_symbol_reloc_link_order)
4094 ++o->reloc_count;
4095 else if (p->type == bfd_indirect_link_order)
4096 {
4097 asection *sec;
4098
4099 sec = p->u.indirect.section;
4100
4101 /* Mark all sections which are to be included in the
4102 link. This will normally be every section. We need
4103 to do this so that we can identify any sections which
4104 the linker has decided to not include. */
4105 sec->linker_mark = true;
4106
4107 if (info->relocateable)
4108 o->reloc_count += sec->reloc_count;
4109
4110 if (sec->_raw_size > max_contents_size)
4111 max_contents_size = sec->_raw_size;
4112 if (sec->_cooked_size > max_contents_size)
4113 max_contents_size = sec->_cooked_size;
4114
4115 /* We are interested in just local symbols, not all
4116 symbols. */
4117 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4118 && (sec->owner->flags & DYNAMIC) == 0)
4119 {
4120 size_t sym_count;
4121
4122 if (elf_bad_symtab (sec->owner))
4123 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4124 / sizeof (Elf_External_Sym));
4125 else
4126 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4127
4128 if (sym_count > max_sym_count)
4129 max_sym_count = sym_count;
4130
4131 if ((sec->flags & SEC_RELOC) != 0)
4132 {
4133 size_t ext_size;
4134
4135 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4136 if (ext_size > max_external_reloc_size)
4137 max_external_reloc_size = ext_size;
4138 if (sec->reloc_count > max_internal_reloc_count)
4139 max_internal_reloc_count = sec->reloc_count;
4140 }
4141 }
4142 }
4143 }
4144
4145 if (o->reloc_count > 0)
4146 o->flags |= SEC_RELOC;
4147 else
4148 {
4149 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4150 set it (this is probably a bug) and if it is set
4151 assign_section_numbers will create a reloc section. */
4152 o->flags &=~ SEC_RELOC;
4153 }
4154
4155 /* If the SEC_ALLOC flag is not set, force the section VMA to
4156 zero. This is done in elf_fake_sections as well, but forcing
4157 the VMA to 0 here will ensure that relocs against these
4158 sections are handled correctly. */
4159 if ((o->flags & SEC_ALLOC) == 0
4160 && ! o->user_set_vma)
4161 o->vma = 0;
4162 }
4163
4164 /* Figure out the file positions for everything but the symbol table
4165 and the relocs. We set symcount to force assign_section_numbers
4166 to create a symbol table. */
4167 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4168 BFD_ASSERT (! abfd->output_has_begun);
4169 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4170 goto error_return;
4171
4172 /* Figure out how many relocations we will have in each section.
4173 Just using RELOC_COUNT isn't good enough since that doesn't
4174 maintain a separate value for REL vs. RELA relocations. */
4175 if (info->relocateable)
4176 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4177 for (o = sub->sections; o != NULL; o = o->next)
4178 {
4179 asection *output_section;
4180
4181 if (! o->linker_mark)
4182 {
4183 /* This section was omitted from the link. */
4184 continue;
4185 }
4186
4187 output_section = o->output_section;
4188
4189 if (output_section != NULL
4190 && (o->flags & SEC_RELOC) != 0)
4191 {
4192 struct bfd_elf_section_data *esdi
4193 = elf_section_data (o);
4194 struct bfd_elf_section_data *esdo
4195 = elf_section_data (output_section);
4196 unsigned int *rel_count;
4197 unsigned int *rel_count2;
4198
4199 /* We must be careful to add the relocation froms the
4200 input section to the right output count. */
4201 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4202 {
4203 rel_count = &esdo->rel_count;
4204 rel_count2 = &esdo->rel_count2;
4205 }
4206 else
4207 {
4208 rel_count = &esdo->rel_count2;
4209 rel_count2 = &esdo->rel_count;
4210 }
4211
4212 *rel_count += (esdi->rel_hdr.sh_size
4213 / esdi->rel_hdr.sh_entsize);
4214 if (esdi->rel_hdr2)
4215 *rel_count2 += (esdi->rel_hdr2->sh_size
4216 / esdi->rel_hdr2->sh_entsize);
4217 }
4218 }
4219
4220 /* That created the reloc sections. Set their sizes, and assign
4221 them file positions, and allocate some buffers. */
4222 for (o = abfd->sections; o != NULL; o = o->next)
4223 {
4224 if ((o->flags & SEC_RELOC) != 0)
4225 {
4226 if (!elf_link_size_reloc_section (abfd,
4227 &elf_section_data (o)->rel_hdr,
4228 o))
4229 goto error_return;
4230
4231 if (elf_section_data (o)->rel_hdr2
4232 && !elf_link_size_reloc_section (abfd,
4233 elf_section_data (o)->rel_hdr2,
4234 o))
4235 goto error_return;
4236 }
4237
4238 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4239 to count upwards while actually outputting the relocations. */
4240 elf_section_data (o)->rel_count = 0;
4241 elf_section_data (o)->rel_count2 = 0;
4242 }
4243
4244 _bfd_elf_assign_file_positions_for_relocs (abfd);
4245
4246 /* We have now assigned file positions for all the sections except
4247 .symtab and .strtab. We start the .symtab section at the current
4248 file position, and write directly to it. We build the .strtab
4249 section in memory. */
4250 bfd_get_symcount (abfd) = 0;
4251 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4252 /* sh_name is set in prep_headers. */
4253 symtab_hdr->sh_type = SHT_SYMTAB;
4254 symtab_hdr->sh_flags = 0;
4255 symtab_hdr->sh_addr = 0;
4256 symtab_hdr->sh_size = 0;
4257 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4258 /* sh_link is set in assign_section_numbers. */
4259 /* sh_info is set below. */
4260 /* sh_offset is set just below. */
4261 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
4262
4263 off = elf_tdata (abfd)->next_file_pos;
4264 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4265
4266 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4267 incorrect. We do not yet know the size of the .symtab section.
4268 We correct next_file_pos below, after we do know the size. */
4269
4270 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4271 continuously seeking to the right position in the file. */
4272 if (! info->keep_memory || max_sym_count < 20)
4273 finfo.symbuf_size = 20;
4274 else
4275 finfo.symbuf_size = max_sym_count;
4276 finfo.symbuf = ((Elf_External_Sym *)
4277 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4278 if (finfo.symbuf == NULL)
4279 goto error_return;
4280
4281 /* Start writing out the symbol table. The first symbol is always a
4282 dummy symbol. */
4283 if (info->strip != strip_all || info->relocateable)
4284 {
4285 elfsym.st_value = 0;
4286 elfsym.st_size = 0;
4287 elfsym.st_info = 0;
4288 elfsym.st_other = 0;
4289 elfsym.st_shndx = SHN_UNDEF;
4290 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4291 &elfsym, bfd_und_section_ptr))
4292 goto error_return;
4293 }
4294
4295 #if 0
4296 /* Some standard ELF linkers do this, but we don't because it causes
4297 bootstrap comparison failures. */
4298 /* Output a file symbol for the output file as the second symbol.
4299 We output this even if we are discarding local symbols, although
4300 I'm not sure if this is correct. */
4301 elfsym.st_value = 0;
4302 elfsym.st_size = 0;
4303 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4304 elfsym.st_other = 0;
4305 elfsym.st_shndx = SHN_ABS;
4306 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4307 &elfsym, bfd_abs_section_ptr))
4308 goto error_return;
4309 #endif
4310
4311 /* Output a symbol for each section. We output these even if we are
4312 discarding local symbols, since they are used for relocs. These
4313 symbols have no names. We store the index of each one in the
4314 index field of the section, so that we can find it again when
4315 outputting relocs. */
4316 if (info->strip != strip_all || info->relocateable)
4317 {
4318 elfsym.st_size = 0;
4319 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4320 elfsym.st_other = 0;
4321 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4322 {
4323 o = section_from_elf_index (abfd, i);
4324 if (o != NULL)
4325 o->target_index = bfd_get_symcount (abfd);
4326 elfsym.st_shndx = i;
4327 if (info->relocateable || o == NULL)
4328 elfsym.st_value = 0;
4329 else
4330 elfsym.st_value = o->vma;
4331 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4332 &elfsym, o))
4333 goto error_return;
4334 }
4335 }
4336
4337 /* Allocate some memory to hold information read in from the input
4338 files. */
4339 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4340 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4341 finfo.internal_relocs = ((Elf_Internal_Rela *)
4342 bfd_malloc (max_internal_reloc_count
4343 * sizeof (Elf_Internal_Rela)
4344 * bed->s->int_rels_per_ext_rel));
4345 finfo.external_syms = ((Elf_External_Sym *)
4346 bfd_malloc (max_sym_count
4347 * sizeof (Elf_External_Sym)));
4348 finfo.internal_syms = ((Elf_Internal_Sym *)
4349 bfd_malloc (max_sym_count
4350 * sizeof (Elf_Internal_Sym)));
4351 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4352 finfo.sections = ((asection **)
4353 bfd_malloc (max_sym_count * sizeof (asection *)));
4354 if ((finfo.contents == NULL && max_contents_size != 0)
4355 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4356 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4357 || (finfo.external_syms == NULL && max_sym_count != 0)
4358 || (finfo.internal_syms == NULL && max_sym_count != 0)
4359 || (finfo.indices == NULL && max_sym_count != 0)
4360 || (finfo.sections == NULL && max_sym_count != 0))
4361 goto error_return;
4362
4363 /* Since ELF permits relocations to be against local symbols, we
4364 must have the local symbols available when we do the relocations.
4365 Since we would rather only read the local symbols once, and we
4366 would rather not keep them in memory, we handle all the
4367 relocations for a single input file at the same time.
4368
4369 Unfortunately, there is no way to know the total number of local
4370 symbols until we have seen all of them, and the local symbol
4371 indices precede the global symbol indices. This means that when
4372 we are generating relocateable output, and we see a reloc against
4373 a global symbol, we can not know the symbol index until we have
4374 finished examining all the local symbols to see which ones we are
4375 going to output. To deal with this, we keep the relocations in
4376 memory, and don't output them until the end of the link. This is
4377 an unfortunate waste of memory, but I don't see a good way around
4378 it. Fortunately, it only happens when performing a relocateable
4379 link, which is not the common case. FIXME: If keep_memory is set
4380 we could write the relocs out and then read them again; I don't
4381 know how bad the memory loss will be. */
4382
4383 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4384 sub->output_has_begun = false;
4385 for (o = abfd->sections; o != NULL; o = o->next)
4386 {
4387 for (p = o->link_order_head; p != NULL; p = p->next)
4388 {
4389 if (p->type == bfd_indirect_link_order
4390 && (bfd_get_flavour (p->u.indirect.section->owner)
4391 == bfd_target_elf_flavour))
4392 {
4393 sub = p->u.indirect.section->owner;
4394 if (! sub->output_has_begun)
4395 {
4396 if (! elf_link_input_bfd (&finfo, sub))
4397 goto error_return;
4398 sub->output_has_begun = true;
4399 }
4400 }
4401 else if (p->type == bfd_section_reloc_link_order
4402 || p->type == bfd_symbol_reloc_link_order)
4403 {
4404 if (! elf_reloc_link_order (abfd, info, o, p))
4405 goto error_return;
4406 }
4407 else
4408 {
4409 if (! _bfd_default_link_order (abfd, info, o, p))
4410 goto error_return;
4411 }
4412 }
4413 }
4414
4415 /* That wrote out all the local symbols. Finish up the symbol table
4416 with the global symbols. Even if we want to strip everything we
4417 can, we still need to deal with those global symbols that got
4418 converted to local in a version script. */
4419
4420 if (info->shared)
4421 {
4422 /* Output any global symbols that got converted to local in a
4423 version script. We do this in a separate step since ELF
4424 requires all local symbols to appear prior to any global
4425 symbols. FIXME: We should only do this if some global
4426 symbols were, in fact, converted to become local. FIXME:
4427 Will this work correctly with the Irix 5 linker? */
4428 eoinfo.failed = false;
4429 eoinfo.finfo = &finfo;
4430 eoinfo.localsyms = true;
4431 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4432 (PTR) &eoinfo);
4433 if (eoinfo.failed)
4434 return false;
4435 }
4436
4437 /* The sh_info field records the index of the first non local symbol. */
4438 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4439
4440 if (dynamic)
4441 {
4442 Elf_Internal_Sym sym;
4443 Elf_External_Sym *dynsym =
4444 (Elf_External_Sym *)finfo.dynsym_sec->contents;
4445 long last_local = 0;
4446
4447 /* Write out the section symbols for the output sections. */
4448 if (info->shared)
4449 {
4450 asection *s;
4451
4452 sym.st_size = 0;
4453 sym.st_name = 0;
4454 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4455 sym.st_other = 0;
4456
4457 for (s = abfd->sections; s != NULL; s = s->next)
4458 {
4459 int indx;
4460 indx = elf_section_data (s)->this_idx;
4461 BFD_ASSERT (indx > 0);
4462 sym.st_shndx = indx;
4463 sym.st_value = s->vma;
4464
4465 elf_swap_symbol_out (abfd, &sym,
4466 dynsym + elf_section_data (s)->dynindx);
4467 }
4468
4469 last_local = bfd_count_sections (abfd);
4470 }
4471
4472 /* Write out the local dynsyms. */
4473 if (elf_hash_table (info)->dynlocal)
4474 {
4475 struct elf_link_local_dynamic_entry *e;
4476 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4477 {
4478 asection *s;
4479
4480 sym.st_size = e->isym.st_size;
4481 sym.st_other = e->isym.st_other;
4482
4483 /* Copy the internal symbol as is.
4484 Note that we saved a word of storage and overwrote
4485 the original st_name with the dynstr_index. */
4486 sym = e->isym;
4487
4488 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
4489 {
4490 s = bfd_section_from_elf_index (e->input_bfd,
4491 e->isym.st_shndx);
4492
4493 sym.st_shndx =
4494 elf_section_data (s->output_section)->this_idx;
4495 sym.st_value = (s->output_section->vma
4496 + s->output_offset
4497 + e->isym.st_value);
4498 }
4499
4500 if (last_local < e->dynindx)
4501 last_local = e->dynindx;
4502
4503 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4504 }
4505 }
4506
4507 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
4508 last_local + 1;
4509 }
4510
4511 /* We get the global symbols from the hash table. */
4512 eoinfo.failed = false;
4513 eoinfo.localsyms = false;
4514 eoinfo.finfo = &finfo;
4515 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4516 (PTR) &eoinfo);
4517 if (eoinfo.failed)
4518 return false;
4519
4520 /* If backend needs to output some symbols not present in the hash
4521 table, do it now. */
4522 if (bed->elf_backend_output_arch_syms)
4523 {
4524 if (! (*bed->elf_backend_output_arch_syms)
4525 (abfd, info, (PTR) &finfo,
4526 (boolean (*) PARAMS ((PTR, const char *,
4527 Elf_Internal_Sym *, asection *)))
4528 elf_link_output_sym))
4529 return false;
4530 }
4531
4532 /* Flush all symbols to the file. */
4533 if (! elf_link_flush_output_syms (&finfo))
4534 return false;
4535
4536 /* Now we know the size of the symtab section. */
4537 off += symtab_hdr->sh_size;
4538
4539 /* Finish up and write out the symbol string table (.strtab)
4540 section. */
4541 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4542 /* sh_name was set in prep_headers. */
4543 symstrtab_hdr->sh_type = SHT_STRTAB;
4544 symstrtab_hdr->sh_flags = 0;
4545 symstrtab_hdr->sh_addr = 0;
4546 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4547 symstrtab_hdr->sh_entsize = 0;
4548 symstrtab_hdr->sh_link = 0;
4549 symstrtab_hdr->sh_info = 0;
4550 /* sh_offset is set just below. */
4551 symstrtab_hdr->sh_addralign = 1;
4552
4553 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4554 elf_tdata (abfd)->next_file_pos = off;
4555
4556 if (bfd_get_symcount (abfd) > 0)
4557 {
4558 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4559 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4560 return false;
4561 }
4562
4563 /* Adjust the relocs to have the correct symbol indices. */
4564 for (o = abfd->sections; o != NULL; o = o->next)
4565 {
4566 if ((o->flags & SEC_RELOC) == 0)
4567 continue;
4568
4569 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4570 elf_section_data (o)->rel_count,
4571 elf_section_data (o)->rel_hashes);
4572 if (elf_section_data (o)->rel_hdr2 != NULL)
4573 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4574 elf_section_data (o)->rel_count2,
4575 (elf_section_data (o)->rel_hashes
4576 + elf_section_data (o)->rel_count));
4577
4578 /* Set the reloc_count field to 0 to prevent write_relocs from
4579 trying to swap the relocs out itself. */
4580 o->reloc_count = 0;
4581 }
4582
4583 /* If we are linking against a dynamic object, or generating a
4584 shared library, finish up the dynamic linking information. */
4585 if (dynamic)
4586 {
4587 Elf_External_Dyn *dyncon, *dynconend;
4588
4589 /* Fix up .dynamic entries. */
4590 o = bfd_get_section_by_name (dynobj, ".dynamic");
4591 BFD_ASSERT (o != NULL);
4592
4593 dyncon = (Elf_External_Dyn *) o->contents;
4594 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4595 for (; dyncon < dynconend; dyncon++)
4596 {
4597 Elf_Internal_Dyn dyn;
4598 const char *name;
4599 unsigned int type;
4600
4601 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4602
4603 switch (dyn.d_tag)
4604 {
4605 default:
4606 break;
4607 case DT_INIT:
4608 name = info->init_function;
4609 goto get_sym;
4610 case DT_FINI:
4611 name = info->fini_function;
4612 get_sym:
4613 {
4614 struct elf_link_hash_entry *h;
4615
4616 h = elf_link_hash_lookup (elf_hash_table (info), name,
4617 false, false, true);
4618 if (h != NULL
4619 && (h->root.type == bfd_link_hash_defined
4620 || h->root.type == bfd_link_hash_defweak))
4621 {
4622 dyn.d_un.d_val = h->root.u.def.value;
4623 o = h->root.u.def.section;
4624 if (o->output_section != NULL)
4625 dyn.d_un.d_val += (o->output_section->vma
4626 + o->output_offset);
4627 else
4628 {
4629 /* The symbol is imported from another shared
4630 library and does not apply to this one. */
4631 dyn.d_un.d_val = 0;
4632 }
4633
4634 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4635 }
4636 }
4637 break;
4638
4639 case DT_HASH:
4640 name = ".hash";
4641 goto get_vma;
4642 case DT_STRTAB:
4643 name = ".dynstr";
4644 goto get_vma;
4645 case DT_SYMTAB:
4646 name = ".dynsym";
4647 goto get_vma;
4648 case DT_VERDEF:
4649 name = ".gnu.version_d";
4650 goto get_vma;
4651 case DT_VERNEED:
4652 name = ".gnu.version_r";
4653 goto get_vma;
4654 case DT_VERSYM:
4655 name = ".gnu.version";
4656 get_vma:
4657 o = bfd_get_section_by_name (abfd, name);
4658 BFD_ASSERT (o != NULL);
4659 dyn.d_un.d_ptr = o->vma;
4660 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4661 break;
4662
4663 case DT_REL:
4664 case DT_RELA:
4665 case DT_RELSZ:
4666 case DT_RELASZ:
4667 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4668 type = SHT_REL;
4669 else
4670 type = SHT_RELA;
4671 dyn.d_un.d_val = 0;
4672 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4673 {
4674 Elf_Internal_Shdr *hdr;
4675
4676 hdr = elf_elfsections (abfd)[i];
4677 if (hdr->sh_type == type
4678 && (hdr->sh_flags & SHF_ALLOC) != 0)
4679 {
4680 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4681 dyn.d_un.d_val += hdr->sh_size;
4682 else
4683 {
4684 if (dyn.d_un.d_val == 0
4685 || hdr->sh_addr < dyn.d_un.d_val)
4686 dyn.d_un.d_val = hdr->sh_addr;
4687 }
4688 }
4689 }
4690 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4691 break;
4692 }
4693 }
4694 }
4695
4696 /* If we have created any dynamic sections, then output them. */
4697 if (dynobj != NULL)
4698 {
4699 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4700 goto error_return;
4701
4702 for (o = dynobj->sections; o != NULL; o = o->next)
4703 {
4704 if ((o->flags & SEC_HAS_CONTENTS) == 0
4705 || o->_raw_size == 0)
4706 continue;
4707 if ((o->flags & SEC_LINKER_CREATED) == 0)
4708 {
4709 /* At this point, we are only interested in sections
4710 created by elf_link_create_dynamic_sections. */
4711 continue;
4712 }
4713 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4714 != SHT_STRTAB)
4715 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4716 {
4717 if (! bfd_set_section_contents (abfd, o->output_section,
4718 o->contents, o->output_offset,
4719 o->_raw_size))
4720 goto error_return;
4721 }
4722 else
4723 {
4724 file_ptr off;
4725
4726 /* The contents of the .dynstr section are actually in a
4727 stringtab. */
4728 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4729 if (bfd_seek (abfd, off, SEEK_SET) != 0
4730 || ! _bfd_stringtab_emit (abfd,
4731 elf_hash_table (info)->dynstr))
4732 goto error_return;
4733 }
4734 }
4735 }
4736
4737 /* If we have optimized stabs strings, output them. */
4738 if (elf_hash_table (info)->stab_info != NULL)
4739 {
4740 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4741 goto error_return;
4742 }
4743
4744 if (finfo.symstrtab != NULL)
4745 _bfd_stringtab_free (finfo.symstrtab);
4746 if (finfo.contents != NULL)
4747 free (finfo.contents);
4748 if (finfo.external_relocs != NULL)
4749 free (finfo.external_relocs);
4750 if (finfo.internal_relocs != NULL)
4751 free (finfo.internal_relocs);
4752 if (finfo.external_syms != NULL)
4753 free (finfo.external_syms);
4754 if (finfo.internal_syms != NULL)
4755 free (finfo.internal_syms);
4756 if (finfo.indices != NULL)
4757 free (finfo.indices);
4758 if (finfo.sections != NULL)
4759 free (finfo.sections);
4760 if (finfo.symbuf != NULL)
4761 free (finfo.symbuf);
4762 for (o = abfd->sections; o != NULL; o = o->next)
4763 {
4764 if ((o->flags & SEC_RELOC) != 0
4765 && elf_section_data (o)->rel_hashes != NULL)
4766 free (elf_section_data (o)->rel_hashes);
4767 }
4768
4769 elf_tdata (abfd)->linker = true;
4770
4771 return true;
4772
4773 error_return:
4774 if (finfo.symstrtab != NULL)
4775 _bfd_stringtab_free (finfo.symstrtab);
4776 if (finfo.contents != NULL)
4777 free (finfo.contents);
4778 if (finfo.external_relocs != NULL)
4779 free (finfo.external_relocs);
4780 if (finfo.internal_relocs != NULL)
4781 free (finfo.internal_relocs);
4782 if (finfo.external_syms != NULL)
4783 free (finfo.external_syms);
4784 if (finfo.internal_syms != NULL)
4785 free (finfo.internal_syms);
4786 if (finfo.indices != NULL)
4787 free (finfo.indices);
4788 if (finfo.sections != NULL)
4789 free (finfo.sections);
4790 if (finfo.symbuf != NULL)
4791 free (finfo.symbuf);
4792 for (o = abfd->sections; o != NULL; o = o->next)
4793 {
4794 if ((o->flags & SEC_RELOC) != 0
4795 && elf_section_data (o)->rel_hashes != NULL)
4796 free (elf_section_data (o)->rel_hashes);
4797 }
4798
4799 return false;
4800 }
4801
4802 /* Add a symbol to the output symbol table. */
4803
4804 static boolean
4805 elf_link_output_sym (finfo, name, elfsym, input_sec)
4806 struct elf_final_link_info *finfo;
4807 const char *name;
4808 Elf_Internal_Sym *elfsym;
4809 asection *input_sec;
4810 {
4811 boolean (*output_symbol_hook) PARAMS ((bfd *,
4812 struct bfd_link_info *info,
4813 const char *,
4814 Elf_Internal_Sym *,
4815 asection *));
4816
4817 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4818 elf_backend_link_output_symbol_hook;
4819 if (output_symbol_hook != NULL)
4820 {
4821 if (! ((*output_symbol_hook)
4822 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4823 return false;
4824 }
4825
4826 if (name == (const char *) NULL || *name == '\0')
4827 elfsym->st_name = 0;
4828 else if (input_sec->flags & SEC_EXCLUDE)
4829 elfsym->st_name = 0;
4830 else
4831 {
4832 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4833 name, true,
4834 false);
4835 if (elfsym->st_name == (unsigned long) -1)
4836 return false;
4837 }
4838
4839 if (finfo->symbuf_count >= finfo->symbuf_size)
4840 {
4841 if (! elf_link_flush_output_syms (finfo))
4842 return false;
4843 }
4844
4845 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4846 (PTR) (finfo->symbuf + finfo->symbuf_count));
4847 ++finfo->symbuf_count;
4848
4849 ++ bfd_get_symcount (finfo->output_bfd);
4850
4851 return true;
4852 }
4853
4854 /* Flush the output symbols to the file. */
4855
4856 static boolean
4857 elf_link_flush_output_syms (finfo)
4858 struct elf_final_link_info *finfo;
4859 {
4860 if (finfo->symbuf_count > 0)
4861 {
4862 Elf_Internal_Shdr *symtab;
4863
4864 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4865
4866 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4867 SEEK_SET) != 0
4868 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4869 sizeof (Elf_External_Sym), finfo->output_bfd)
4870 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4871 return false;
4872
4873 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4874
4875 finfo->symbuf_count = 0;
4876 }
4877
4878 return true;
4879 }
4880
4881 /* Add an external symbol to the symbol table. This is called from
4882 the hash table traversal routine. When generating a shared object,
4883 we go through the symbol table twice. The first time we output
4884 anything that might have been forced to local scope in a version
4885 script. The second time we output the symbols that are still
4886 global symbols. */
4887
4888 static boolean
4889 elf_link_output_extsym (h, data)
4890 struct elf_link_hash_entry *h;
4891 PTR data;
4892 {
4893 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4894 struct elf_final_link_info *finfo = eoinfo->finfo;
4895 boolean strip;
4896 Elf_Internal_Sym sym;
4897 asection *input_sec;
4898
4899 /* Decide whether to output this symbol in this pass. */
4900 if (eoinfo->localsyms)
4901 {
4902 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4903 return true;
4904 }
4905 else
4906 {
4907 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4908 return true;
4909 }
4910
4911 /* If we are not creating a shared library, and this symbol is
4912 referenced by a shared library but is not defined anywhere, then
4913 warn that it is undefined. If we do not do this, the runtime
4914 linker will complain that the symbol is undefined when the
4915 program is run. We don't have to worry about symbols that are
4916 referenced by regular files, because we will already have issued
4917 warnings for them. */
4918 if (! finfo->info->relocateable
4919 && ! (finfo->info->shared
4920 && !finfo->info->no_undefined)
4921 && h->root.type == bfd_link_hash_undefined
4922 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4923 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4924 {
4925 if (! ((*finfo->info->callbacks->undefined_symbol)
4926 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4927 (asection *) NULL, 0, true)))
4928 {
4929 eoinfo->failed = true;
4930 return false;
4931 }
4932 }
4933
4934 /* We don't want to output symbols that have never been mentioned by
4935 a regular file, or that we have been told to strip. However, if
4936 h->indx is set to -2, the symbol is used by a reloc and we must
4937 output it. */
4938 if (h->indx == -2)
4939 strip = false;
4940 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4941 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4942 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4943 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4944 strip = true;
4945 else if (finfo->info->strip == strip_all
4946 || (finfo->info->strip == strip_some
4947 && bfd_hash_lookup (finfo->info->keep_hash,
4948 h->root.root.string,
4949 false, false) == NULL))
4950 strip = true;
4951 else
4952 strip = false;
4953
4954 /* If we're stripping it, and it's not a dynamic symbol, there's
4955 nothing else to do unless it is a forced local symbol. */
4956 if (strip
4957 && h->dynindx == -1
4958 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4959 return true;
4960
4961 sym.st_value = 0;
4962 sym.st_size = h->size;
4963 sym.st_other = h->other;
4964 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4965 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4966 else if (h->root.type == bfd_link_hash_undefweak
4967 || h->root.type == bfd_link_hash_defweak)
4968 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4969 else
4970 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4971
4972 switch (h->root.type)
4973 {
4974 default:
4975 case bfd_link_hash_new:
4976 abort ();
4977 return false;
4978
4979 case bfd_link_hash_undefined:
4980 input_sec = bfd_und_section_ptr;
4981 sym.st_shndx = SHN_UNDEF;
4982 break;
4983
4984 case bfd_link_hash_undefweak:
4985 input_sec = bfd_und_section_ptr;
4986 sym.st_shndx = SHN_UNDEF;
4987 break;
4988
4989 case bfd_link_hash_defined:
4990 case bfd_link_hash_defweak:
4991 {
4992 input_sec = h->root.u.def.section;
4993 if (input_sec->output_section != NULL)
4994 {
4995 sym.st_shndx =
4996 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4997 input_sec->output_section);
4998 if (sym.st_shndx == (unsigned short) -1)
4999 {
5000 (*_bfd_error_handler)
5001 (_("%s: could not find output section %s for input section %s"),
5002 bfd_get_filename (finfo->output_bfd),
5003 input_sec->output_section->name,
5004 input_sec->name);
5005 eoinfo->failed = true;
5006 return false;
5007 }
5008
5009 /* ELF symbols in relocateable files are section relative,
5010 but in nonrelocateable files they are virtual
5011 addresses. */
5012 sym.st_value = h->root.u.def.value + input_sec->output_offset;
5013 if (! finfo->info->relocateable)
5014 sym.st_value += input_sec->output_section->vma;
5015 }
5016 else
5017 {
5018 BFD_ASSERT (input_sec->owner == NULL
5019 || (input_sec->owner->flags & DYNAMIC) != 0);
5020 sym.st_shndx = SHN_UNDEF;
5021 input_sec = bfd_und_section_ptr;
5022 }
5023 }
5024 break;
5025
5026 case bfd_link_hash_common:
5027 input_sec = h->root.u.c.p->section;
5028 sym.st_shndx = SHN_COMMON;
5029 sym.st_value = 1 << h->root.u.c.p->alignment_power;
5030 break;
5031
5032 case bfd_link_hash_indirect:
5033 /* These symbols are created by symbol versioning. They point
5034 to the decorated version of the name. For example, if the
5035 symbol foo@@GNU_1.2 is the default, which should be used when
5036 foo is used with no version, then we add an indirect symbol
5037 foo which points to foo@@GNU_1.2. We ignore these symbols,
5038 since the indirected symbol is already in the hash table. If
5039 the indirect symbol is non-ELF, fall through and output it. */
5040 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
5041 return true;
5042
5043 /* Fall through. */
5044 case bfd_link_hash_warning:
5045 /* We can't represent these symbols in ELF, although a warning
5046 symbol may have come from a .gnu.warning.SYMBOL section. We
5047 just put the target symbol in the hash table. If the target
5048 symbol does not really exist, don't do anything. */
5049 if (h->root.u.i.link->type == bfd_link_hash_new)
5050 return true;
5051 return (elf_link_output_extsym
5052 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
5053 }
5054
5055 /* Give the processor backend a chance to tweak the symbol value,
5056 and also to finish up anything that needs to be done for this
5057 symbol. */
5058 if ((h->dynindx != -1
5059 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5060 && elf_hash_table (finfo->info)->dynamic_sections_created)
5061 {
5062 struct elf_backend_data *bed;
5063
5064 bed = get_elf_backend_data (finfo->output_bfd);
5065 if (! ((*bed->elf_backend_finish_dynamic_symbol)
5066 (finfo->output_bfd, finfo->info, h, &sym)))
5067 {
5068 eoinfo->failed = true;
5069 return false;
5070 }
5071 }
5072
5073 /* If we are marking the symbol as undefined, and there are no
5074 non-weak references to this symbol from a regular object, then
5075 mark the symbol as weak undefined; if there are non-weak
5076 references, mark the symbol as strong. We can't do this earlier,
5077 because it might not be marked as undefined until the
5078 finish_dynamic_symbol routine gets through with it. */
5079 if (sym.st_shndx == SHN_UNDEF
5080 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
5081 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
5082 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
5083 {
5084 int bindtype;
5085
5086 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
5087 bindtype = STB_GLOBAL;
5088 else
5089 bindtype = STB_WEAK;
5090 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
5091 }
5092
5093 /* If this symbol should be put in the .dynsym section, then put it
5094 there now. We have already know the symbol index. We also fill
5095 in the entry in the .hash section. */
5096 if (h->dynindx != -1
5097 && elf_hash_table (finfo->info)->dynamic_sections_created)
5098 {
5099 size_t bucketcount;
5100 size_t bucket;
5101 size_t hash_entry_size;
5102 bfd_byte *bucketpos;
5103 bfd_vma chain;
5104
5105 sym.st_name = h->dynstr_index;
5106
5107 elf_swap_symbol_out (finfo->output_bfd, &sym,
5108 (PTR) (((Elf_External_Sym *)
5109 finfo->dynsym_sec->contents)
5110 + h->dynindx));
5111
5112 bucketcount = elf_hash_table (finfo->info)->bucketcount;
5113 bucket = h->elf_hash_value % bucketcount;
5114 hash_entry_size
5115 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
5116 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
5117 + (bucket + 2) * hash_entry_size);
5118 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
5119 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
5120 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
5121 ((bfd_byte *) finfo->hash_sec->contents
5122 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
5123
5124 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5125 {
5126 Elf_Internal_Versym iversym;
5127
5128 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5129 {
5130 if (h->verinfo.verdef == NULL)
5131 iversym.vs_vers = 0;
5132 else
5133 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5134 }
5135 else
5136 {
5137 if (h->verinfo.vertree == NULL)
5138 iversym.vs_vers = 1;
5139 else
5140 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5141 }
5142
5143 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5144 iversym.vs_vers |= VERSYM_HIDDEN;
5145
5146 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5147 (((Elf_External_Versym *)
5148 finfo->symver_sec->contents)
5149 + h->dynindx));
5150 }
5151 }
5152
5153 /* If we're stripping it, then it was just a dynamic symbol, and
5154 there's nothing else to do. */
5155 if (strip)
5156 return true;
5157
5158 h->indx = bfd_get_symcount (finfo->output_bfd);
5159
5160 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5161 {
5162 eoinfo->failed = true;
5163 return false;
5164 }
5165
5166 return true;
5167 }
5168
5169 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
5170 originated from the section given by INPUT_REL_HDR) to the
5171 OUTPUT_BFD. */
5172
5173 static void
5174 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
5175 internal_relocs)
5176 bfd *output_bfd;
5177 asection *input_section;
5178 Elf_Internal_Shdr *input_rel_hdr;
5179 Elf_Internal_Rela *internal_relocs;
5180 {
5181 Elf_Internal_Rela *irela;
5182 Elf_Internal_Rela *irelaend;
5183 Elf_Internal_Shdr *output_rel_hdr;
5184 asection *output_section;
5185 unsigned int *rel_countp = NULL;
5186
5187 output_section = input_section->output_section;
5188 output_rel_hdr = NULL;
5189
5190 if (elf_section_data (output_section)->rel_hdr.sh_entsize
5191 == input_rel_hdr->sh_entsize)
5192 {
5193 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5194 rel_countp = &elf_section_data (output_section)->rel_count;
5195 }
5196 else if (elf_section_data (output_section)->rel_hdr2
5197 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5198 == input_rel_hdr->sh_entsize))
5199 {
5200 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5201 rel_countp = &elf_section_data (output_section)->rel_count2;
5202 }
5203
5204 BFD_ASSERT (output_rel_hdr != NULL);
5205
5206 irela = internal_relocs;
5207 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5208 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5209 {
5210 Elf_External_Rel *erel;
5211
5212 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5213 for (; irela < irelaend; irela++, erel++)
5214 {
5215 Elf_Internal_Rel irel;
5216
5217 irel.r_offset = irela->r_offset;
5218 irel.r_info = irela->r_info;
5219 BFD_ASSERT (irela->r_addend == 0);
5220 elf_swap_reloc_out (output_bfd, &irel, erel);
5221 }
5222 }
5223 else
5224 {
5225 Elf_External_Rela *erela;
5226
5227 BFD_ASSERT (input_rel_hdr->sh_entsize
5228 == sizeof (Elf_External_Rela));
5229 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5230 for (; irela < irelaend; irela++, erela++)
5231 elf_swap_reloca_out (output_bfd, irela, erela);
5232 }
5233
5234 /* Bump the counter, so that we know where to add the next set of
5235 relocations. */
5236 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5237 }
5238
5239 /* Link an input file into the linker output file. This function
5240 handles all the sections and relocations of the input file at once.
5241 This is so that we only have to read the local symbols once, and
5242 don't have to keep them in memory. */
5243
5244 static boolean
5245 elf_link_input_bfd (finfo, input_bfd)
5246 struct elf_final_link_info *finfo;
5247 bfd *input_bfd;
5248 {
5249 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5250 bfd *, asection *, bfd_byte *,
5251 Elf_Internal_Rela *,
5252 Elf_Internal_Sym *, asection **));
5253 bfd *output_bfd;
5254 Elf_Internal_Shdr *symtab_hdr;
5255 size_t locsymcount;
5256 size_t extsymoff;
5257 Elf_External_Sym *external_syms;
5258 Elf_External_Sym *esym;
5259 Elf_External_Sym *esymend;
5260 Elf_Internal_Sym *isym;
5261 long *pindex;
5262 asection **ppsection;
5263 asection *o;
5264 struct elf_backend_data *bed;
5265
5266 output_bfd = finfo->output_bfd;
5267 bed = get_elf_backend_data (output_bfd);
5268 relocate_section = bed->elf_backend_relocate_section;
5269
5270 /* If this is a dynamic object, we don't want to do anything here:
5271 we don't want the local symbols, and we don't want the section
5272 contents. */
5273 if ((input_bfd->flags & DYNAMIC) != 0)
5274 return true;
5275
5276 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5277 if (elf_bad_symtab (input_bfd))
5278 {
5279 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5280 extsymoff = 0;
5281 }
5282 else
5283 {
5284 locsymcount = symtab_hdr->sh_info;
5285 extsymoff = symtab_hdr->sh_info;
5286 }
5287
5288 /* Read the local symbols. */
5289 if (symtab_hdr->contents != NULL)
5290 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5291 else if (locsymcount == 0)
5292 external_syms = NULL;
5293 else
5294 {
5295 external_syms = finfo->external_syms;
5296 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5297 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5298 locsymcount, input_bfd)
5299 != locsymcount * sizeof (Elf_External_Sym)))
5300 return false;
5301 }
5302
5303 /* Swap in the local symbols and write out the ones which we know
5304 are going into the output file. */
5305 esym = external_syms;
5306 esymend = esym + locsymcount;
5307 isym = finfo->internal_syms;
5308 pindex = finfo->indices;
5309 ppsection = finfo->sections;
5310 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5311 {
5312 asection *isec;
5313 const char *name;
5314 Elf_Internal_Sym osym;
5315
5316 elf_swap_symbol_in (input_bfd, esym, isym);
5317 *pindex = -1;
5318
5319 if (elf_bad_symtab (input_bfd))
5320 {
5321 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5322 {
5323 *ppsection = NULL;
5324 continue;
5325 }
5326 }
5327
5328 if (isym->st_shndx == SHN_UNDEF)
5329 isec = bfd_und_section_ptr;
5330 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5331 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5332 else if (isym->st_shndx == SHN_ABS)
5333 isec = bfd_abs_section_ptr;
5334 else if (isym->st_shndx == SHN_COMMON)
5335 isec = bfd_com_section_ptr;
5336 else
5337 {
5338 /* Who knows? */
5339 isec = NULL;
5340 }
5341
5342 *ppsection = isec;
5343
5344 /* Don't output the first, undefined, symbol. */
5345 if (esym == external_syms)
5346 continue;
5347
5348 /* If we are stripping all symbols, we don't want to output this
5349 one. */
5350 if (finfo->info->strip == strip_all)
5351 continue;
5352
5353 /* We never output section symbols. Instead, we use the section
5354 symbol of the corresponding section in the output file. */
5355 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5356 continue;
5357
5358 /* If we are discarding all local symbols, we don't want to
5359 output this one. If we are generating a relocateable output
5360 file, then some of the local symbols may be required by
5361 relocs; we output them below as we discover that they are
5362 needed. */
5363 if (finfo->info->discard == discard_all)
5364 continue;
5365
5366 /* If this symbol is defined in a section which we are
5367 discarding, we don't need to keep it, but note that
5368 linker_mark is only reliable for sections that have contents.
5369 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5370 as well as linker_mark. */
5371 if (isym->st_shndx > 0
5372 && isym->st_shndx < SHN_LORESERVE
5373 && isec != NULL
5374 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5375 || (! finfo->info->relocateable
5376 && (isec->flags & SEC_EXCLUDE) != 0)))
5377 continue;
5378
5379 /* Get the name of the symbol. */
5380 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5381 isym->st_name);
5382 if (name == NULL)
5383 return false;
5384
5385 /* See if we are discarding symbols with this name. */
5386 if ((finfo->info->strip == strip_some
5387 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5388 == NULL))
5389 || (finfo->info->discard == discard_l
5390 && bfd_is_local_label_name (input_bfd, name)))
5391 continue;
5392
5393 /* If we get here, we are going to output this symbol. */
5394
5395 osym = *isym;
5396
5397 /* Adjust the section index for the output file. */
5398 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5399 isec->output_section);
5400 if (osym.st_shndx == (unsigned short) -1)
5401 return false;
5402
5403 *pindex = bfd_get_symcount (output_bfd);
5404
5405 /* ELF symbols in relocateable files are section relative, but
5406 in executable files they are virtual addresses. Note that
5407 this code assumes that all ELF sections have an associated
5408 BFD section with a reasonable value for output_offset; below
5409 we assume that they also have a reasonable value for
5410 output_section. Any special sections must be set up to meet
5411 these requirements. */
5412 osym.st_value += isec->output_offset;
5413 if (! finfo->info->relocateable)
5414 osym.st_value += isec->output_section->vma;
5415
5416 if (! elf_link_output_sym (finfo, name, &osym, isec))
5417 return false;
5418 }
5419
5420 /* Relocate the contents of each section. */
5421 for (o = input_bfd->sections; o != NULL; o = o->next)
5422 {
5423 bfd_byte *contents;
5424
5425 if (! o->linker_mark)
5426 {
5427 /* This section was omitted from the link. */
5428 continue;
5429 }
5430
5431 if ((o->flags & SEC_HAS_CONTENTS) == 0
5432 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5433 continue;
5434
5435 if ((o->flags & SEC_LINKER_CREATED) != 0)
5436 {
5437 /* Section was created by elf_link_create_dynamic_sections
5438 or somesuch. */
5439 continue;
5440 }
5441
5442 /* Get the contents of the section. They have been cached by a
5443 relaxation routine. Note that o is a section in an input
5444 file, so the contents field will not have been set by any of
5445 the routines which work on output files. */
5446 if (elf_section_data (o)->this_hdr.contents != NULL)
5447 contents = elf_section_data (o)->this_hdr.contents;
5448 else
5449 {
5450 contents = finfo->contents;
5451 if (! bfd_get_section_contents (input_bfd, o, contents,
5452 (file_ptr) 0, o->_raw_size))
5453 return false;
5454 }
5455
5456 if ((o->flags & SEC_RELOC) != 0)
5457 {
5458 Elf_Internal_Rela *internal_relocs;
5459
5460 /* Get the swapped relocs. */
5461 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5462 (input_bfd, o, finfo->external_relocs,
5463 finfo->internal_relocs, false));
5464 if (internal_relocs == NULL
5465 && o->reloc_count > 0)
5466 return false;
5467
5468 /* Relocate the section by invoking a back end routine.
5469
5470 The back end routine is responsible for adjusting the
5471 section contents as necessary, and (if using Rela relocs
5472 and generating a relocateable output file) adjusting the
5473 reloc addend as necessary.
5474
5475 The back end routine does not have to worry about setting
5476 the reloc address or the reloc symbol index.
5477
5478 The back end routine is given a pointer to the swapped in
5479 internal symbols, and can access the hash table entries
5480 for the external symbols via elf_sym_hashes (input_bfd).
5481
5482 When generating relocateable output, the back end routine
5483 must handle STB_LOCAL/STT_SECTION symbols specially. The
5484 output symbol is going to be a section symbol
5485 corresponding to the output section, which will require
5486 the addend to be adjusted. */
5487
5488 if (! (*relocate_section) (output_bfd, finfo->info,
5489 input_bfd, o, contents,
5490 internal_relocs,
5491 finfo->internal_syms,
5492 finfo->sections))
5493 return false;
5494
5495 if (finfo->info->relocateable)
5496 {
5497 Elf_Internal_Rela *irela;
5498 Elf_Internal_Rela *irelaend;
5499 struct elf_link_hash_entry **rel_hash;
5500 Elf_Internal_Shdr *input_rel_hdr;
5501
5502 /* Adjust the reloc addresses and symbol indices. */
5503
5504 irela = internal_relocs;
5505 irelaend =
5506 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
5507 rel_hash = (elf_section_data (o->output_section)->rel_hashes
5508 + elf_section_data (o->output_section)->rel_count
5509 + elf_section_data (o->output_section)->rel_count2);
5510 for (; irela < irelaend; irela++, rel_hash++)
5511 {
5512 unsigned long r_symndx;
5513 Elf_Internal_Sym *isym;
5514 asection *sec;
5515
5516 irela->r_offset += o->output_offset;
5517
5518 r_symndx = ELF_R_SYM (irela->r_info);
5519
5520 if (r_symndx == 0)
5521 continue;
5522
5523 if (r_symndx >= locsymcount
5524 || (elf_bad_symtab (input_bfd)
5525 && finfo->sections[r_symndx] == NULL))
5526 {
5527 struct elf_link_hash_entry *rh;
5528 long indx;
5529
5530 /* This is a reloc against a global symbol. We
5531 have not yet output all the local symbols, so
5532 we do not know the symbol index of any global
5533 symbol. We set the rel_hash entry for this
5534 reloc to point to the global hash table entry
5535 for this symbol. The symbol index is then
5536 set at the end of elf_bfd_final_link. */
5537 indx = r_symndx - extsymoff;
5538 rh = elf_sym_hashes (input_bfd)[indx];
5539 while (rh->root.type == bfd_link_hash_indirect
5540 || rh->root.type == bfd_link_hash_warning)
5541 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5542
5543 /* Setting the index to -2 tells
5544 elf_link_output_extsym that this symbol is
5545 used by a reloc. */
5546 BFD_ASSERT (rh->indx < 0);
5547 rh->indx = -2;
5548
5549 *rel_hash = rh;
5550
5551 continue;
5552 }
5553
5554 /* This is a reloc against a local symbol. */
5555
5556 *rel_hash = NULL;
5557 isym = finfo->internal_syms + r_symndx;
5558 sec = finfo->sections[r_symndx];
5559 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5560 {
5561 /* I suppose the backend ought to fill in the
5562 section of any STT_SECTION symbol against a
5563 processor specific section. If we have
5564 discarded a section, the output_section will
5565 be the absolute section. */
5566 if (sec != NULL
5567 && (bfd_is_abs_section (sec)
5568 || (sec->output_section != NULL
5569 && bfd_is_abs_section (sec->output_section))))
5570 r_symndx = 0;
5571 else if (sec == NULL || sec->owner == NULL)
5572 {
5573 bfd_set_error (bfd_error_bad_value);
5574 return false;
5575 }
5576 else
5577 {
5578 r_symndx = sec->output_section->target_index;
5579 BFD_ASSERT (r_symndx != 0);
5580 }
5581 }
5582 else
5583 {
5584 if (finfo->indices[r_symndx] == -1)
5585 {
5586 unsigned long link;
5587 const char *name;
5588 asection *osec;
5589
5590 if (finfo->info->strip == strip_all)
5591 {
5592 /* You can't do ld -r -s. */
5593 bfd_set_error (bfd_error_invalid_operation);
5594 return false;
5595 }
5596
5597 /* This symbol was skipped earlier, but
5598 since it is needed by a reloc, we
5599 must output it now. */
5600 link = symtab_hdr->sh_link;
5601 name = bfd_elf_string_from_elf_section (input_bfd,
5602 link,
5603 isym->st_name);
5604 if (name == NULL)
5605 return false;
5606
5607 osec = sec->output_section;
5608 isym->st_shndx =
5609 _bfd_elf_section_from_bfd_section (output_bfd,
5610 osec);
5611 if (isym->st_shndx == (unsigned short) -1)
5612 return false;
5613
5614 isym->st_value += sec->output_offset;
5615 if (! finfo->info->relocateable)
5616 isym->st_value += osec->vma;
5617
5618 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5619
5620 if (! elf_link_output_sym (finfo, name, isym, sec))
5621 return false;
5622 }
5623
5624 r_symndx = finfo->indices[r_symndx];
5625 }
5626
5627 irela->r_info = ELF_R_INFO (r_symndx,
5628 ELF_R_TYPE (irela->r_info));
5629 }
5630
5631 /* Swap out the relocs. */
5632 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5633 elf_link_output_relocs (output_bfd, o,
5634 input_rel_hdr,
5635 internal_relocs);
5636 internal_relocs
5637 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5638 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5639 if (input_rel_hdr)
5640 elf_link_output_relocs (output_bfd, o,
5641 input_rel_hdr,
5642 internal_relocs);
5643 }
5644 }
5645
5646 /* Write out the modified section contents. */
5647 if (elf_section_data (o)->stab_info == NULL)
5648 {
5649 if (! (o->flags & SEC_EXCLUDE) &&
5650 ! bfd_set_section_contents (output_bfd, o->output_section,
5651 contents, o->output_offset,
5652 (o->_cooked_size != 0
5653 ? o->_cooked_size
5654 : o->_raw_size)))
5655 return false;
5656 }
5657 else
5658 {
5659 if (! (_bfd_write_section_stabs
5660 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5661 o, &elf_section_data (o)->stab_info, contents)))
5662 return false;
5663 }
5664 }
5665
5666 return true;
5667 }
5668
5669 /* Generate a reloc when linking an ELF file. This is a reloc
5670 requested by the linker, and does come from any input file. This
5671 is used to build constructor and destructor tables when linking
5672 with -Ur. */
5673
5674 static boolean
5675 elf_reloc_link_order (output_bfd, info, output_section, link_order)
5676 bfd *output_bfd;
5677 struct bfd_link_info *info;
5678 asection *output_section;
5679 struct bfd_link_order *link_order;
5680 {
5681 reloc_howto_type *howto;
5682 long indx;
5683 bfd_vma offset;
5684 bfd_vma addend;
5685 struct elf_link_hash_entry **rel_hash_ptr;
5686 Elf_Internal_Shdr *rel_hdr;
5687
5688 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5689 if (howto == NULL)
5690 {
5691 bfd_set_error (bfd_error_bad_value);
5692 return false;
5693 }
5694
5695 addend = link_order->u.reloc.p->addend;
5696
5697 /* Figure out the symbol index. */
5698 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5699 + elf_section_data (output_section)->rel_count
5700 + elf_section_data (output_section)->rel_count2);
5701 if (link_order->type == bfd_section_reloc_link_order)
5702 {
5703 indx = link_order->u.reloc.p->u.section->target_index;
5704 BFD_ASSERT (indx != 0);
5705 *rel_hash_ptr = NULL;
5706 }
5707 else
5708 {
5709 struct elf_link_hash_entry *h;
5710
5711 /* Treat a reloc against a defined symbol as though it were
5712 actually against the section. */
5713 h = ((struct elf_link_hash_entry *)
5714 bfd_wrapped_link_hash_lookup (output_bfd, info,
5715 link_order->u.reloc.p->u.name,
5716 false, false, true));
5717 if (h != NULL
5718 && (h->root.type == bfd_link_hash_defined
5719 || h->root.type == bfd_link_hash_defweak))
5720 {
5721 asection *section;
5722
5723 section = h->root.u.def.section;
5724 indx = section->output_section->target_index;
5725 *rel_hash_ptr = NULL;
5726 /* It seems that we ought to add the symbol value to the
5727 addend here, but in practice it has already been added
5728 because it was passed to constructor_callback. */
5729 addend += section->output_section->vma + section->output_offset;
5730 }
5731 else if (h != NULL)
5732 {
5733 /* Setting the index to -2 tells elf_link_output_extsym that
5734 this symbol is used by a reloc. */
5735 h->indx = -2;
5736 *rel_hash_ptr = h;
5737 indx = 0;
5738 }
5739 else
5740 {
5741 if (! ((*info->callbacks->unattached_reloc)
5742 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5743 (asection *) NULL, (bfd_vma) 0)))
5744 return false;
5745 indx = 0;
5746 }
5747 }
5748
5749 /* If this is an inplace reloc, we must write the addend into the
5750 object file. */
5751 if (howto->partial_inplace && addend != 0)
5752 {
5753 bfd_size_type size;
5754 bfd_reloc_status_type rstat;
5755 bfd_byte *buf;
5756 boolean ok;
5757
5758 size = bfd_get_reloc_size (howto);
5759 buf = (bfd_byte *) bfd_zmalloc (size);
5760 if (buf == (bfd_byte *) NULL)
5761 return false;
5762 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5763 switch (rstat)
5764 {
5765 case bfd_reloc_ok:
5766 break;
5767 default:
5768 case bfd_reloc_outofrange:
5769 abort ();
5770 case bfd_reloc_overflow:
5771 if (! ((*info->callbacks->reloc_overflow)
5772 (info,
5773 (link_order->type == bfd_section_reloc_link_order
5774 ? bfd_section_name (output_bfd,
5775 link_order->u.reloc.p->u.section)
5776 : link_order->u.reloc.p->u.name),
5777 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5778 (bfd_vma) 0)))
5779 {
5780 free (buf);
5781 return false;
5782 }
5783 break;
5784 }
5785 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5786 (file_ptr) link_order->offset, size);
5787 free (buf);
5788 if (! ok)
5789 return false;
5790 }
5791
5792 /* The address of a reloc is relative to the section in a
5793 relocateable file, and is a virtual address in an executable
5794 file. */
5795 offset = link_order->offset;
5796 if (! info->relocateable)
5797 offset += output_section->vma;
5798
5799 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5800
5801 if (rel_hdr->sh_type == SHT_REL)
5802 {
5803 Elf_Internal_Rel irel;
5804 Elf_External_Rel *erel;
5805
5806 irel.r_offset = offset;
5807 irel.r_info = ELF_R_INFO (indx, howto->type);
5808 erel = ((Elf_External_Rel *) rel_hdr->contents
5809 + elf_section_data (output_section)->rel_count);
5810 elf_swap_reloc_out (output_bfd, &irel, erel);
5811 }
5812 else
5813 {
5814 Elf_Internal_Rela irela;
5815 Elf_External_Rela *erela;
5816
5817 irela.r_offset = offset;
5818 irela.r_info = ELF_R_INFO (indx, howto->type);
5819 irela.r_addend = addend;
5820 erela = ((Elf_External_Rela *) rel_hdr->contents
5821 + elf_section_data (output_section)->rel_count);
5822 elf_swap_reloca_out (output_bfd, &irela, erela);
5823 }
5824
5825 ++elf_section_data (output_section)->rel_count;
5826
5827 return true;
5828 }
5829
5830 \f
5831 /* Allocate a pointer to live in a linker created section. */
5832
5833 boolean
5834 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5835 bfd *abfd;
5836 struct bfd_link_info *info;
5837 elf_linker_section_t *lsect;
5838 struct elf_link_hash_entry *h;
5839 const Elf_Internal_Rela *rel;
5840 {
5841 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5842 elf_linker_section_pointers_t *linker_section_ptr;
5843 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5844
5845 BFD_ASSERT (lsect != NULL);
5846
5847 /* Is this a global symbol? */
5848 if (h != NULL)
5849 {
5850 /* Has this symbol already been allocated, if so, our work is done */
5851 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5852 rel->r_addend,
5853 lsect->which))
5854 return true;
5855
5856 ptr_linker_section_ptr = &h->linker_section_pointer;
5857 /* Make sure this symbol is output as a dynamic symbol. */
5858 if (h->dynindx == -1)
5859 {
5860 if (! elf_link_record_dynamic_symbol (info, h))
5861 return false;
5862 }
5863
5864 if (lsect->rel_section)
5865 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5866 }
5867
5868 else /* Allocation of a pointer to a local symbol */
5869 {
5870 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5871
5872 /* Allocate a table to hold the local symbols if first time */
5873 if (!ptr)
5874 {
5875 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5876 register unsigned int i;
5877
5878 ptr = (elf_linker_section_pointers_t **)
5879 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5880
5881 if (!ptr)
5882 return false;
5883
5884 elf_local_ptr_offsets (abfd) = ptr;
5885 for (i = 0; i < num_symbols; i++)
5886 ptr[i] = (elf_linker_section_pointers_t *)0;
5887 }
5888
5889 /* Has this symbol already been allocated, if so, our work is done */
5890 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5891 rel->r_addend,
5892 lsect->which))
5893 return true;
5894
5895 ptr_linker_section_ptr = &ptr[r_symndx];
5896
5897 if (info->shared)
5898 {
5899 /* If we are generating a shared object, we need to
5900 output a R_<xxx>_RELATIVE reloc so that the
5901 dynamic linker can adjust this GOT entry. */
5902 BFD_ASSERT (lsect->rel_section != NULL);
5903 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5904 }
5905 }
5906
5907 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5908 from internal memory. */
5909 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5910 linker_section_ptr = (elf_linker_section_pointers_t *)
5911 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5912
5913 if (!linker_section_ptr)
5914 return false;
5915
5916 linker_section_ptr->next = *ptr_linker_section_ptr;
5917 linker_section_ptr->addend = rel->r_addend;
5918 linker_section_ptr->which = lsect->which;
5919 linker_section_ptr->written_address_p = false;
5920 *ptr_linker_section_ptr = linker_section_ptr;
5921
5922 #if 0
5923 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5924 {
5925 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5926 lsect->hole_offset += ARCH_SIZE / 8;
5927 lsect->sym_offset += ARCH_SIZE / 8;
5928 if (lsect->sym_hash) /* Bump up symbol value if needed */
5929 {
5930 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5931 #ifdef DEBUG
5932 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5933 lsect->sym_hash->root.root.string,
5934 (long)ARCH_SIZE / 8,
5935 (long)lsect->sym_hash->root.u.def.value);
5936 #endif
5937 }
5938 }
5939 else
5940 #endif
5941 linker_section_ptr->offset = lsect->section->_raw_size;
5942
5943 lsect->section->_raw_size += ARCH_SIZE / 8;
5944
5945 #ifdef DEBUG
5946 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5947 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5948 #endif
5949
5950 return true;
5951 }
5952
5953 \f
5954 #if ARCH_SIZE==64
5955 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5956 #endif
5957 #if ARCH_SIZE==32
5958 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5959 #endif
5960
5961 /* Fill in the address for a pointer generated in alinker section. */
5962
5963 bfd_vma
5964 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5965 bfd *output_bfd;
5966 bfd *input_bfd;
5967 struct bfd_link_info *info;
5968 elf_linker_section_t *lsect;
5969 struct elf_link_hash_entry *h;
5970 bfd_vma relocation;
5971 const Elf_Internal_Rela *rel;
5972 int relative_reloc;
5973 {
5974 elf_linker_section_pointers_t *linker_section_ptr;
5975
5976 BFD_ASSERT (lsect != NULL);
5977
5978 if (h != NULL) /* global symbol */
5979 {
5980 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5981 rel->r_addend,
5982 lsect->which);
5983
5984 BFD_ASSERT (linker_section_ptr != NULL);
5985
5986 if (! elf_hash_table (info)->dynamic_sections_created
5987 || (info->shared
5988 && info->symbolic
5989 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5990 {
5991 /* This is actually a static link, or it is a
5992 -Bsymbolic link and the symbol is defined
5993 locally. We must initialize this entry in the
5994 global section.
5995
5996 When doing a dynamic link, we create a .rela.<xxx>
5997 relocation entry to initialize the value. This
5998 is done in the finish_dynamic_symbol routine. */
5999 if (!linker_section_ptr->written_address_p)
6000 {
6001 linker_section_ptr->written_address_p = true;
6002 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6003 lsect->section->contents + linker_section_ptr->offset);
6004 }
6005 }
6006 }
6007 else /* local symbol */
6008 {
6009 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6010 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
6011 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
6012 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
6013 rel->r_addend,
6014 lsect->which);
6015
6016 BFD_ASSERT (linker_section_ptr != NULL);
6017
6018 /* Write out pointer if it hasn't been rewritten out before */
6019 if (!linker_section_ptr->written_address_p)
6020 {
6021 linker_section_ptr->written_address_p = true;
6022 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6023 lsect->section->contents + linker_section_ptr->offset);
6024
6025 if (info->shared)
6026 {
6027 asection *srel = lsect->rel_section;
6028 Elf_Internal_Rela outrel;
6029
6030 /* We need to generate a relative reloc for the dynamic linker. */
6031 if (!srel)
6032 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
6033 lsect->rel_name);
6034
6035 BFD_ASSERT (srel != NULL);
6036
6037 outrel.r_offset = (lsect->section->output_section->vma
6038 + lsect->section->output_offset
6039 + linker_section_ptr->offset);
6040 outrel.r_info = ELF_R_INFO (0, relative_reloc);
6041 outrel.r_addend = 0;
6042 elf_swap_reloca_out (output_bfd, &outrel,
6043 (((Elf_External_Rela *)
6044 lsect->section->contents)
6045 + elf_section_data (lsect->section)->rel_count));
6046 ++elf_section_data (lsect->section)->rel_count;
6047 }
6048 }
6049 }
6050
6051 relocation = (lsect->section->output_offset
6052 + linker_section_ptr->offset
6053 - lsect->hole_offset
6054 - lsect->sym_offset);
6055
6056 #ifdef DEBUG
6057 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6058 lsect->name, (long)relocation, (long)relocation);
6059 #endif
6060
6061 /* Subtract out the addend, because it will get added back in by the normal
6062 processing. */
6063 return relocation - linker_section_ptr->addend;
6064 }
6065 \f
6066 /* Garbage collect unused sections. */
6067
6068 static boolean elf_gc_mark
6069 PARAMS ((struct bfd_link_info *info, asection *sec,
6070 asection * (*gc_mark_hook)
6071 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6072 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
6073
6074 static boolean elf_gc_sweep
6075 PARAMS ((struct bfd_link_info *info,
6076 boolean (*gc_sweep_hook)
6077 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6078 const Elf_Internal_Rela *relocs))));
6079
6080 static boolean elf_gc_sweep_symbol
6081 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
6082
6083 static boolean elf_gc_allocate_got_offsets
6084 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
6085
6086 static boolean elf_gc_propagate_vtable_entries_used
6087 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6088
6089 static boolean elf_gc_smash_unused_vtentry_relocs
6090 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6091
6092 /* The mark phase of garbage collection. For a given section, mark
6093 it, and all the sections which define symbols to which it refers. */
6094
6095 static boolean
6096 elf_gc_mark (info, sec, gc_mark_hook)
6097 struct bfd_link_info *info;
6098 asection *sec;
6099 asection * (*gc_mark_hook)
6100 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6101 struct elf_link_hash_entry *, Elf_Internal_Sym *));
6102 {
6103 boolean ret = true;
6104
6105 sec->gc_mark = 1;
6106
6107 /* Look through the section relocs. */
6108
6109 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
6110 {
6111 Elf_Internal_Rela *relstart, *rel, *relend;
6112 Elf_Internal_Shdr *symtab_hdr;
6113 struct elf_link_hash_entry **sym_hashes;
6114 size_t nlocsyms;
6115 size_t extsymoff;
6116 Elf_External_Sym *locsyms, *freesyms = NULL;
6117 bfd *input_bfd = sec->owner;
6118 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
6119
6120 /* GCFIXME: how to arrange so that relocs and symbols are not
6121 reread continually? */
6122
6123 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6124 sym_hashes = elf_sym_hashes (input_bfd);
6125
6126 /* Read the local symbols. */
6127 if (elf_bad_symtab (input_bfd))
6128 {
6129 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6130 extsymoff = 0;
6131 }
6132 else
6133 extsymoff = nlocsyms = symtab_hdr->sh_info;
6134 if (symtab_hdr->contents)
6135 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6136 else if (nlocsyms == 0)
6137 locsyms = NULL;
6138 else
6139 {
6140 locsyms = freesyms =
6141 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6142 if (freesyms == NULL
6143 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6144 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6145 nlocsyms, input_bfd)
6146 != nlocsyms * sizeof (Elf_External_Sym)))
6147 {
6148 ret = false;
6149 goto out1;
6150 }
6151 }
6152
6153 /* Read the relocations. */
6154 relstart = (NAME(_bfd_elf,link_read_relocs)
6155 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6156 info->keep_memory));
6157 if (relstart == NULL)
6158 {
6159 ret = false;
6160 goto out1;
6161 }
6162 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6163
6164 for (rel = relstart; rel < relend; rel++)
6165 {
6166 unsigned long r_symndx;
6167 asection *rsec;
6168 struct elf_link_hash_entry *h;
6169 Elf_Internal_Sym s;
6170
6171 r_symndx = ELF_R_SYM (rel->r_info);
6172 if (r_symndx == 0)
6173 continue;
6174
6175 if (elf_bad_symtab (sec->owner))
6176 {
6177 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6178 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
6179 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6180 else
6181 {
6182 h = sym_hashes[r_symndx - extsymoff];
6183 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6184 }
6185 }
6186 else if (r_symndx >= nlocsyms)
6187 {
6188 h = sym_hashes[r_symndx - extsymoff];
6189 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6190 }
6191 else
6192 {
6193 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6194 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6195 }
6196
6197 if (rsec && !rsec->gc_mark)
6198 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6199 {
6200 ret = false;
6201 goto out2;
6202 }
6203 }
6204
6205 out2:
6206 if (!info->keep_memory)
6207 free (relstart);
6208 out1:
6209 if (freesyms)
6210 free (freesyms);
6211 }
6212
6213 return ret;
6214 }
6215
6216 /* The sweep phase of garbage collection. Remove all garbage sections. */
6217
6218 static boolean
6219 elf_gc_sweep (info, gc_sweep_hook)
6220 struct bfd_link_info *info;
6221 boolean (*gc_sweep_hook)
6222 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6223 const Elf_Internal_Rela *relocs));
6224 {
6225 bfd *sub;
6226
6227 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6228 {
6229 asection *o;
6230
6231 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6232 continue;
6233
6234 for (o = sub->sections; o != NULL; o = o->next)
6235 {
6236 /* Keep special sections. Keep .debug sections. */
6237 if ((o->flags & SEC_LINKER_CREATED)
6238 || (o->flags & SEC_DEBUGGING))
6239 o->gc_mark = 1;
6240
6241 if (o->gc_mark)
6242 continue;
6243
6244 /* Skip sweeping sections already excluded. */
6245 if (o->flags & SEC_EXCLUDE)
6246 continue;
6247
6248 /* Since this is early in the link process, it is simple
6249 to remove a section from the output. */
6250 o->flags |= SEC_EXCLUDE;
6251
6252 /* But we also have to update some of the relocation
6253 info we collected before. */
6254 if (gc_sweep_hook
6255 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6256 {
6257 Elf_Internal_Rela *internal_relocs;
6258 boolean r;
6259
6260 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6261 (o->owner, o, NULL, NULL, info->keep_memory));
6262 if (internal_relocs == NULL)
6263 return false;
6264
6265 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
6266
6267 if (!info->keep_memory)
6268 free (internal_relocs);
6269
6270 if (!r)
6271 return false;
6272 }
6273 }
6274 }
6275
6276 /* Remove the symbols that were in the swept sections from the dynamic
6277 symbol table. GCFIXME: Anyone know how to get them out of the
6278 static symbol table as well? */
6279 {
6280 int i = 0;
6281
6282 elf_link_hash_traverse (elf_hash_table (info),
6283 elf_gc_sweep_symbol,
6284 (PTR) &i);
6285
6286 elf_hash_table (info)->dynsymcount = i;
6287 }
6288
6289 return true;
6290 }
6291
6292 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6293
6294 static boolean
6295 elf_gc_sweep_symbol (h, idxptr)
6296 struct elf_link_hash_entry *h;
6297 PTR idxptr;
6298 {
6299 int *idx = (int *) idxptr;
6300
6301 if (h->dynindx != -1
6302 && ((h->root.type != bfd_link_hash_defined
6303 && h->root.type != bfd_link_hash_defweak)
6304 || h->root.u.def.section->gc_mark))
6305 h->dynindx = (*idx)++;
6306
6307 return true;
6308 }
6309
6310 /* Propogate collected vtable information. This is called through
6311 elf_link_hash_traverse. */
6312
6313 static boolean
6314 elf_gc_propagate_vtable_entries_used (h, okp)
6315 struct elf_link_hash_entry *h;
6316 PTR okp;
6317 {
6318 /* Those that are not vtables. */
6319 if (h->vtable_parent == NULL)
6320 return true;
6321
6322 /* Those vtables that do not have parents, we cannot merge. */
6323 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6324 return true;
6325
6326 /* If we've already been done, exit. */
6327 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6328 return true;
6329
6330 /* Make sure the parent's table is up to date. */
6331 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6332
6333 if (h->vtable_entries_used == NULL)
6334 {
6335 /* None of this table's entries were referenced. Re-use the
6336 parent's table. */
6337 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6338 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6339 }
6340 else
6341 {
6342 size_t n;
6343 boolean *cu, *pu;
6344
6345 /* Or the parent's entries into ours. */
6346 cu = h->vtable_entries_used;
6347 cu[-1] = true;
6348 pu = h->vtable_parent->vtable_entries_used;
6349 if (pu != NULL)
6350 {
6351 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6352 while (--n != 0)
6353 {
6354 if (*pu) *cu = true;
6355 pu++, cu++;
6356 }
6357 }
6358 }
6359
6360 return true;
6361 }
6362
6363 static boolean
6364 elf_gc_smash_unused_vtentry_relocs (h, okp)
6365 struct elf_link_hash_entry *h;
6366 PTR okp;
6367 {
6368 asection *sec;
6369 bfd_vma hstart, hend;
6370 Elf_Internal_Rela *relstart, *relend, *rel;
6371 struct elf_backend_data *bed;
6372
6373 /* Take care of both those symbols that do not describe vtables as
6374 well as those that are not loaded. */
6375 if (h->vtable_parent == NULL)
6376 return true;
6377
6378 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6379 || h->root.type == bfd_link_hash_defweak);
6380
6381 sec = h->root.u.def.section;
6382 hstart = h->root.u.def.value;
6383 hend = hstart + h->size;
6384
6385 relstart = (NAME(_bfd_elf,link_read_relocs)
6386 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6387 if (!relstart)
6388 return *(boolean *)okp = false;
6389 bed = get_elf_backend_data (sec->owner);
6390 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6391
6392 for (rel = relstart; rel < relend; ++rel)
6393 if (rel->r_offset >= hstart && rel->r_offset < hend)
6394 {
6395 /* If the entry is in use, do nothing. */
6396 if (h->vtable_entries_used
6397 && (rel->r_offset - hstart) < h->vtable_entries_size)
6398 {
6399 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6400 if (h->vtable_entries_used[entry])
6401 continue;
6402 }
6403 /* Otherwise, kill it. */
6404 rel->r_offset = rel->r_info = rel->r_addend = 0;
6405 }
6406
6407 return true;
6408 }
6409
6410 /* Do mark and sweep of unused sections. */
6411
6412 boolean
6413 elf_gc_sections (abfd, info)
6414 bfd *abfd;
6415 struct bfd_link_info *info;
6416 {
6417 boolean ok = true;
6418 bfd *sub;
6419 asection * (*gc_mark_hook)
6420 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6421 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6422
6423 if (!get_elf_backend_data (abfd)->can_gc_sections
6424 || info->relocateable
6425 || elf_hash_table (info)->dynamic_sections_created)
6426 return true;
6427
6428 /* Apply transitive closure to the vtable entry usage info. */
6429 elf_link_hash_traverse (elf_hash_table (info),
6430 elf_gc_propagate_vtable_entries_used,
6431 (PTR) &ok);
6432 if (!ok)
6433 return false;
6434
6435 /* Kill the vtable relocations that were not used. */
6436 elf_link_hash_traverse (elf_hash_table (info),
6437 elf_gc_smash_unused_vtentry_relocs,
6438 (PTR) &ok);
6439 if (!ok)
6440 return false;
6441
6442 /* Grovel through relocs to find out who stays ... */
6443
6444 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6445 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6446 {
6447 asection *o;
6448
6449 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6450 continue;
6451
6452 for (o = sub->sections; o != NULL; o = o->next)
6453 {
6454 if (o->flags & SEC_KEEP)
6455 if (!elf_gc_mark (info, o, gc_mark_hook))
6456 return false;
6457 }
6458 }
6459
6460 /* ... and mark SEC_EXCLUDE for those that go. */
6461 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6462 return false;
6463
6464 return true;
6465 }
6466 \f
6467 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6468
6469 boolean
6470 elf_gc_record_vtinherit (abfd, sec, h, offset)
6471 bfd *abfd;
6472 asection *sec;
6473 struct elf_link_hash_entry *h;
6474 bfd_vma offset;
6475 {
6476 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6477 struct elf_link_hash_entry **search, *child;
6478 bfd_size_type extsymcount;
6479
6480 /* The sh_info field of the symtab header tells us where the
6481 external symbols start. We don't care about the local symbols at
6482 this point. */
6483 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6484 if (!elf_bad_symtab (abfd))
6485 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6486
6487 sym_hashes = elf_sym_hashes (abfd);
6488 sym_hashes_end = sym_hashes + extsymcount;
6489
6490 /* Hunt down the child symbol, which is in this section at the same
6491 offset as the relocation. */
6492 for (search = sym_hashes; search != sym_hashes_end; ++search)
6493 {
6494 if ((child = *search) != NULL
6495 && (child->root.type == bfd_link_hash_defined
6496 || child->root.type == bfd_link_hash_defweak)
6497 && child->root.u.def.section == sec
6498 && child->root.u.def.value == offset)
6499 goto win;
6500 }
6501
6502 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6503 bfd_get_filename (abfd), sec->name,
6504 (unsigned long)offset);
6505 bfd_set_error (bfd_error_invalid_operation);
6506 return false;
6507
6508 win:
6509 if (!h)
6510 {
6511 /* This *should* only be the absolute section. It could potentially
6512 be that someone has defined a non-global vtable though, which
6513 would be bad. It isn't worth paging in the local symbols to be
6514 sure though; that case should simply be handled by the assembler. */
6515
6516 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6517 }
6518 else
6519 child->vtable_parent = h;
6520
6521 return true;
6522 }
6523
6524 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
6525
6526 boolean
6527 elf_gc_record_vtentry (abfd, sec, h, addend)
6528 bfd *abfd ATTRIBUTE_UNUSED;
6529 asection *sec ATTRIBUTE_UNUSED;
6530 struct elf_link_hash_entry *h;
6531 bfd_vma addend;
6532 {
6533 if (addend >= h->vtable_entries_size)
6534 {
6535 size_t size, bytes;
6536 boolean *ptr = h->vtable_entries_used;
6537
6538 /* While the symbol is undefined, we have to be prepared to handle
6539 a zero size. */
6540 if (h->root.type == bfd_link_hash_undefined)
6541 size = addend;
6542 else
6543 {
6544 size = h->size;
6545 if (size < addend)
6546 {
6547 /* Oops! We've got a reference past the defined end of
6548 the table. This is probably a bug -- shall we warn? */
6549 size = addend;
6550 }
6551 }
6552
6553 /* Allocate one extra entry for use as a "done" flag for the
6554 consolidation pass. */
6555 bytes = (size / FILE_ALIGN + 1) * sizeof (boolean);
6556
6557 if (ptr)
6558 {
6559 ptr = bfd_realloc (ptr - 1, bytes);
6560
6561 if (ptr != NULL)
6562 {
6563 size_t oldbytes;
6564
6565 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean);
6566 memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
6567 }
6568 }
6569 else
6570 ptr = bfd_zmalloc (bytes);
6571
6572 if (ptr == NULL)
6573 return false;
6574
6575 /* And arrange for that done flag to be at index -1. */
6576 h->vtable_entries_used = ptr + 1;
6577 h->vtable_entries_size = size;
6578 }
6579
6580 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6581
6582 return true;
6583 }
6584
6585 /* And an accompanying bit to work out final got entry offsets once
6586 we're done. Should be called from final_link. */
6587
6588 boolean
6589 elf_gc_common_finalize_got_offsets (abfd, info)
6590 bfd *abfd;
6591 struct bfd_link_info *info;
6592 {
6593 bfd *i;
6594 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6595 bfd_vma gotoff;
6596
6597 /* The GOT offset is relative to the .got section, but the GOT header is
6598 put into the .got.plt section, if the backend uses it. */
6599 if (bed->want_got_plt)
6600 gotoff = 0;
6601 else
6602 gotoff = bed->got_header_size;
6603
6604 /* Do the local .got entries first. */
6605 for (i = info->input_bfds; i; i = i->link_next)
6606 {
6607 bfd_signed_vma *local_got;
6608 bfd_size_type j, locsymcount;
6609 Elf_Internal_Shdr *symtab_hdr;
6610
6611 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
6612 continue;
6613
6614 local_got = elf_local_got_refcounts (i);
6615 if (!local_got)
6616 continue;
6617
6618 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6619 if (elf_bad_symtab (i))
6620 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6621 else
6622 locsymcount = symtab_hdr->sh_info;
6623
6624 for (j = 0; j < locsymcount; ++j)
6625 {
6626 if (local_got[j] > 0)
6627 {
6628 local_got[j] = gotoff;
6629 gotoff += ARCH_SIZE / 8;
6630 }
6631 else
6632 local_got[j] = (bfd_vma) -1;
6633 }
6634 }
6635
6636 /* Then the global .got entries. .plt refcounts are handled by
6637 adjust_dynamic_symbol */
6638 elf_link_hash_traverse (elf_hash_table (info),
6639 elf_gc_allocate_got_offsets,
6640 (PTR) &gotoff);
6641 return true;
6642 }
6643
6644 /* We need a special top-level link routine to convert got reference counts
6645 to real got offsets. */
6646
6647 static boolean
6648 elf_gc_allocate_got_offsets (h, offarg)
6649 struct elf_link_hash_entry *h;
6650 PTR offarg;
6651 {
6652 bfd_vma *off = (bfd_vma *) offarg;
6653
6654 if (h->got.refcount > 0)
6655 {
6656 h->got.offset = off[0];
6657 off[0] += ARCH_SIZE / 8;
6658 }
6659 else
6660 h->got.offset = (bfd_vma) -1;
6661
6662 return true;
6663 }
6664
6665 /* Many folk need no more in the way of final link than this, once
6666 got entry reference counting is enabled. */
6667
6668 boolean
6669 elf_gc_common_final_link (abfd, info)
6670 bfd *abfd;
6671 struct bfd_link_info *info;
6672 {
6673 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6674 return false;
6675
6676 /* Invoke the regular ELF backend linker to do all the work. */
6677 return elf_bfd_final_link (abfd, info);
6678 }
6679
6680 /* This function will be called though elf_link_hash_traverse to store
6681 all hash value of the exported symbols in an array. */
6682
6683 static boolean
6684 elf_collect_hash_codes (h, data)
6685 struct elf_link_hash_entry *h;
6686 PTR data;
6687 {
6688 unsigned long **valuep = (unsigned long **) data;
6689 const char *name;
6690 char *p;
6691 unsigned long ha;
6692 char *alc = NULL;
6693
6694 /* Ignore indirect symbols. These are added by the versioning code. */
6695 if (h->dynindx == -1)
6696 return true;
6697
6698 name = h->root.root.string;
6699 p = strchr (name, ELF_VER_CHR);
6700 if (p != NULL)
6701 {
6702 alc = bfd_malloc (p - name + 1);
6703 memcpy (alc, name, p - name);
6704 alc[p - name] = '\0';
6705 name = alc;
6706 }
6707
6708 /* Compute the hash value. */
6709 ha = bfd_elf_hash (name);
6710
6711 /* Store the found hash value in the array given as the argument. */
6712 *(*valuep)++ = ha;
6713
6714 /* And store it in the struct so that we can put it in the hash table
6715 later. */
6716 h->elf_hash_value = ha;
6717
6718 if (alc != NULL)
6719 free (alc);
6720
6721 return true;
6722 }