2002-09-18 Michael Snyder <msnyder@redhat.com>
[binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* ELF linker code. */
22
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
25
26 struct elf_info_failed
27 {
28 boolean failed;
29 struct bfd_link_info *info;
30 struct bfd_elf_version_tree *verdefs;
31 };
32
33 static boolean is_global_data_symbol_definition
34 PARAMS ((bfd *, Elf_Internal_Sym *));
35 static boolean elf_link_is_defined_archive_symbol
36 PARAMS ((bfd *, carsym *));
37 static boolean elf_link_add_object_symbols
38 PARAMS ((bfd *, struct bfd_link_info *));
39 static boolean elf_link_add_archive_symbols
40 PARAMS ((bfd *, struct bfd_link_info *));
41 static boolean elf_merge_symbol
42 PARAMS ((bfd *, struct bfd_link_info *, const char *,
43 Elf_Internal_Sym *, asection **, bfd_vma *,
44 struct elf_link_hash_entry **, boolean *, boolean *,
45 boolean *, boolean));
46 static boolean elf_add_default_symbol
47 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
48 const char *, Elf_Internal_Sym *, asection **, bfd_vma *,
49 boolean *, boolean, boolean));
50 static boolean elf_export_symbol
51 PARAMS ((struct elf_link_hash_entry *, PTR));
52 static boolean elf_finalize_dynstr
53 PARAMS ((bfd *, struct bfd_link_info *));
54 static boolean elf_fix_symbol_flags
55 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
56 static boolean elf_adjust_dynamic_symbol
57 PARAMS ((struct elf_link_hash_entry *, PTR));
58 static boolean elf_link_find_version_dependencies
59 PARAMS ((struct elf_link_hash_entry *, PTR));
60 static boolean elf_link_assign_sym_version
61 PARAMS ((struct elf_link_hash_entry *, PTR));
62 static boolean elf_collect_hash_codes
63 PARAMS ((struct elf_link_hash_entry *, PTR));
64 static boolean elf_link_read_relocs_from_section
65 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
66 static size_t compute_bucket_count
67 PARAMS ((struct bfd_link_info *));
68 static boolean elf_link_output_relocs
69 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
70 static boolean elf_link_size_reloc_section
71 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
72 static void elf_link_adjust_relocs
73 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
74 struct elf_link_hash_entry **));
75 static int elf_link_sort_cmp1
76 PARAMS ((const void *, const void *));
77 static int elf_link_sort_cmp2
78 PARAMS ((const void *, const void *));
79 static size_t elf_link_sort_relocs
80 PARAMS ((bfd *, struct bfd_link_info *, asection **));
81 static boolean elf_section_ignore_discarded_relocs
82 PARAMS ((asection *));
83
84 /* Given an ELF BFD, add symbols to the global hash table as
85 appropriate. */
86
87 boolean
88 elf_bfd_link_add_symbols (abfd, info)
89 bfd *abfd;
90 struct bfd_link_info *info;
91 {
92 switch (bfd_get_format (abfd))
93 {
94 case bfd_object:
95 return elf_link_add_object_symbols (abfd, info);
96 case bfd_archive:
97 return elf_link_add_archive_symbols (abfd, info);
98 default:
99 bfd_set_error (bfd_error_wrong_format);
100 return false;
101 }
102 }
103 \f
104 /* Return true iff this is a non-common, definition of a non-function symbol. */
105 static boolean
106 is_global_data_symbol_definition (abfd, sym)
107 bfd * abfd ATTRIBUTE_UNUSED;
108 Elf_Internal_Sym * sym;
109 {
110 /* Local symbols do not count, but target specific ones might. */
111 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
112 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
113 return false;
114
115 /* Function symbols do not count. */
116 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
117 return false;
118
119 /* If the section is undefined, then so is the symbol. */
120 if (sym->st_shndx == SHN_UNDEF)
121 return false;
122
123 /* If the symbol is defined in the common section, then
124 it is a common definition and so does not count. */
125 if (sym->st_shndx == SHN_COMMON)
126 return false;
127
128 /* If the symbol is in a target specific section then we
129 must rely upon the backend to tell us what it is. */
130 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
131 /* FIXME - this function is not coded yet:
132
133 return _bfd_is_global_symbol_definition (abfd, sym);
134
135 Instead for now assume that the definition is not global,
136 Even if this is wrong, at least the linker will behave
137 in the same way that it used to do. */
138 return false;
139
140 return true;
141 }
142
143 /* Search the symbol table of the archive element of the archive ABFD
144 whose archive map contains a mention of SYMDEF, and determine if
145 the symbol is defined in this element. */
146 static boolean
147 elf_link_is_defined_archive_symbol (abfd, symdef)
148 bfd * abfd;
149 carsym * symdef;
150 {
151 Elf_Internal_Shdr * hdr;
152 bfd_size_type symcount;
153 bfd_size_type extsymcount;
154 bfd_size_type extsymoff;
155 Elf_Internal_Sym *isymbuf;
156 Elf_Internal_Sym *isym;
157 Elf_Internal_Sym *isymend;
158 boolean result;
159
160 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
161 if (abfd == (bfd *) NULL)
162 return false;
163
164 if (! bfd_check_format (abfd, bfd_object))
165 return false;
166
167 /* If we have already included the element containing this symbol in the
168 link then we do not need to include it again. Just claim that any symbol
169 it contains is not a definition, so that our caller will not decide to
170 (re)include this element. */
171 if (abfd->archive_pass)
172 return false;
173
174 /* Select the appropriate symbol table. */
175 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
176 hdr = &elf_tdata (abfd)->symtab_hdr;
177 else
178 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
179
180 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
181
182 /* The sh_info field of the symtab header tells us where the
183 external symbols start. We don't care about the local symbols. */
184 if (elf_bad_symtab (abfd))
185 {
186 extsymcount = symcount;
187 extsymoff = 0;
188 }
189 else
190 {
191 extsymcount = symcount - hdr->sh_info;
192 extsymoff = hdr->sh_info;
193 }
194
195 if (extsymcount == 0)
196 return false;
197
198 /* Read in the symbol table. */
199 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
200 NULL, NULL, NULL);
201 if (isymbuf == NULL)
202 return false;
203
204 /* Scan the symbol table looking for SYMDEF. */
205 result = false;
206 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
207 {
208 const char *name;
209
210 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
211 isym->st_name);
212 if (name == (const char *) NULL)
213 break;
214
215 if (strcmp (name, symdef->name) == 0)
216 {
217 result = is_global_data_symbol_definition (abfd, isym);
218 break;
219 }
220 }
221
222 free (isymbuf);
223
224 return result;
225 }
226 \f
227 /* Add symbols from an ELF archive file to the linker hash table. We
228 don't use _bfd_generic_link_add_archive_symbols because of a
229 problem which arises on UnixWare. The UnixWare libc.so is an
230 archive which includes an entry libc.so.1 which defines a bunch of
231 symbols. The libc.so archive also includes a number of other
232 object files, which also define symbols, some of which are the same
233 as those defined in libc.so.1. Correct linking requires that we
234 consider each object file in turn, and include it if it defines any
235 symbols we need. _bfd_generic_link_add_archive_symbols does not do
236 this; it looks through the list of undefined symbols, and includes
237 any object file which defines them. When this algorithm is used on
238 UnixWare, it winds up pulling in libc.so.1 early and defining a
239 bunch of symbols. This means that some of the other objects in the
240 archive are not included in the link, which is incorrect since they
241 precede libc.so.1 in the archive.
242
243 Fortunately, ELF archive handling is simpler than that done by
244 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
245 oddities. In ELF, if we find a symbol in the archive map, and the
246 symbol is currently undefined, we know that we must pull in that
247 object file.
248
249 Unfortunately, we do have to make multiple passes over the symbol
250 table until nothing further is resolved. */
251
252 static boolean
253 elf_link_add_archive_symbols (abfd, info)
254 bfd *abfd;
255 struct bfd_link_info *info;
256 {
257 symindex c;
258 boolean *defined = NULL;
259 boolean *included = NULL;
260 carsym *symdefs;
261 boolean loop;
262 bfd_size_type amt;
263
264 if (! bfd_has_map (abfd))
265 {
266 /* An empty archive is a special case. */
267 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
268 return true;
269 bfd_set_error (bfd_error_no_armap);
270 return false;
271 }
272
273 /* Keep track of all symbols we know to be already defined, and all
274 files we know to be already included. This is to speed up the
275 second and subsequent passes. */
276 c = bfd_ardata (abfd)->symdef_count;
277 if (c == 0)
278 return true;
279 amt = c;
280 amt *= sizeof (boolean);
281 defined = (boolean *) bfd_zmalloc (amt);
282 included = (boolean *) bfd_zmalloc (amt);
283 if (defined == (boolean *) NULL || included == (boolean *) NULL)
284 goto error_return;
285
286 symdefs = bfd_ardata (abfd)->symdefs;
287
288 do
289 {
290 file_ptr last;
291 symindex i;
292 carsym *symdef;
293 carsym *symdefend;
294
295 loop = false;
296 last = -1;
297
298 symdef = symdefs;
299 symdefend = symdef + c;
300 for (i = 0; symdef < symdefend; symdef++, i++)
301 {
302 struct elf_link_hash_entry *h;
303 bfd *element;
304 struct bfd_link_hash_entry *undefs_tail;
305 symindex mark;
306
307 if (defined[i] || included[i])
308 continue;
309 if (symdef->file_offset == last)
310 {
311 included[i] = true;
312 continue;
313 }
314
315 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
316 false, false, false);
317
318 if (h == NULL)
319 {
320 char *p, *copy;
321 size_t len, first;
322
323 /* If this is a default version (the name contains @@),
324 look up the symbol again with only one `@' as well
325 as without the version. The effect is that references
326 to the symbol with and without the version will be
327 matched by the default symbol in the archive. */
328
329 p = strchr (symdef->name, ELF_VER_CHR);
330 if (p == NULL || p[1] != ELF_VER_CHR)
331 continue;
332
333 /* First check with only one `@'. */
334 len = strlen (symdef->name);
335 copy = bfd_alloc (abfd, (bfd_size_type) len);
336 if (copy == NULL)
337 goto error_return;
338 first = p - symdef->name + 1;
339 memcpy (copy, symdef->name, first);
340 memcpy (copy + first, symdef->name + first + 1, len - first);
341
342 h = elf_link_hash_lookup (elf_hash_table (info), copy,
343 false, false, false);
344
345 if (h == NULL)
346 {
347 /* We also need to check references to the symbol
348 without the version. */
349
350 copy[first - 1] = '\0';
351 h = elf_link_hash_lookup (elf_hash_table (info),
352 copy, false, false, false);
353 }
354
355 bfd_release (abfd, copy);
356 }
357
358 if (h == NULL)
359 continue;
360
361 if (h->root.type == bfd_link_hash_common)
362 {
363 /* We currently have a common symbol. The archive map contains
364 a reference to this symbol, so we may want to include it. We
365 only want to include it however, if this archive element
366 contains a definition of the symbol, not just another common
367 declaration of it.
368
369 Unfortunately some archivers (including GNU ar) will put
370 declarations of common symbols into their archive maps, as
371 well as real definitions, so we cannot just go by the archive
372 map alone. Instead we must read in the element's symbol
373 table and check that to see what kind of symbol definition
374 this is. */
375 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
376 continue;
377 }
378 else if (h->root.type != bfd_link_hash_undefined)
379 {
380 if (h->root.type != bfd_link_hash_undefweak)
381 defined[i] = true;
382 continue;
383 }
384
385 /* We need to include this archive member. */
386 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
387 if (element == (bfd *) NULL)
388 goto error_return;
389
390 if (! bfd_check_format (element, bfd_object))
391 goto error_return;
392
393 /* Doublecheck that we have not included this object
394 already--it should be impossible, but there may be
395 something wrong with the archive. */
396 if (element->archive_pass != 0)
397 {
398 bfd_set_error (bfd_error_bad_value);
399 goto error_return;
400 }
401 element->archive_pass = 1;
402
403 undefs_tail = info->hash->undefs_tail;
404
405 if (! (*info->callbacks->add_archive_element) (info, element,
406 symdef->name))
407 goto error_return;
408 if (! elf_link_add_object_symbols (element, info))
409 goto error_return;
410
411 /* If there are any new undefined symbols, we need to make
412 another pass through the archive in order to see whether
413 they can be defined. FIXME: This isn't perfect, because
414 common symbols wind up on undefs_tail and because an
415 undefined symbol which is defined later on in this pass
416 does not require another pass. This isn't a bug, but it
417 does make the code less efficient than it could be. */
418 if (undefs_tail != info->hash->undefs_tail)
419 loop = true;
420
421 /* Look backward to mark all symbols from this object file
422 which we have already seen in this pass. */
423 mark = i;
424 do
425 {
426 included[mark] = true;
427 if (mark == 0)
428 break;
429 --mark;
430 }
431 while (symdefs[mark].file_offset == symdef->file_offset);
432
433 /* We mark subsequent symbols from this object file as we go
434 on through the loop. */
435 last = symdef->file_offset;
436 }
437 }
438 while (loop);
439
440 free (defined);
441 free (included);
442
443 return true;
444
445 error_return:
446 if (defined != (boolean *) NULL)
447 free (defined);
448 if (included != (boolean *) NULL)
449 free (included);
450 return false;
451 }
452
453 /* This function is called when we want to define a new symbol. It
454 handles the various cases which arise when we find a definition in
455 a dynamic object, or when there is already a definition in a
456 dynamic object. The new symbol is described by NAME, SYM, PSEC,
457 and PVALUE. We set SYM_HASH to the hash table entry. We set
458 OVERRIDE if the old symbol is overriding a new definition. We set
459 TYPE_CHANGE_OK if it is OK for the type to change. We set
460 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
461 change, we mean that we shouldn't warn if the type or size does
462 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
463 a shared object. */
464
465 static boolean
466 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
467 override, type_change_ok, size_change_ok, dt_needed)
468 bfd *abfd;
469 struct bfd_link_info *info;
470 const char *name;
471 Elf_Internal_Sym *sym;
472 asection **psec;
473 bfd_vma *pvalue;
474 struct elf_link_hash_entry **sym_hash;
475 boolean *override;
476 boolean *type_change_ok;
477 boolean *size_change_ok;
478 boolean dt_needed;
479 {
480 asection *sec;
481 struct elf_link_hash_entry *h;
482 int bind;
483 bfd *oldbfd;
484 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
485
486 *override = false;
487
488 sec = *psec;
489 bind = ELF_ST_BIND (sym->st_info);
490
491 if (! bfd_is_und_section (sec))
492 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
493 else
494 h = ((struct elf_link_hash_entry *)
495 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
496 if (h == NULL)
497 return false;
498 *sym_hash = h;
499
500 /* This code is for coping with dynamic objects, and is only useful
501 if we are doing an ELF link. */
502 if (info->hash->creator != abfd->xvec)
503 return true;
504
505 /* For merging, we only care about real symbols. */
506
507 while (h->root.type == bfd_link_hash_indirect
508 || h->root.type == bfd_link_hash_warning)
509 h = (struct elf_link_hash_entry *) h->root.u.i.link;
510
511 /* If we just created the symbol, mark it as being an ELF symbol.
512 Other than that, there is nothing to do--there is no merge issue
513 with a newly defined symbol--so we just return. */
514
515 if (h->root.type == bfd_link_hash_new)
516 {
517 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
518 return true;
519 }
520
521 /* OLDBFD is a BFD associated with the existing symbol. */
522
523 switch (h->root.type)
524 {
525 default:
526 oldbfd = NULL;
527 break;
528
529 case bfd_link_hash_undefined:
530 case bfd_link_hash_undefweak:
531 oldbfd = h->root.u.undef.abfd;
532 break;
533
534 case bfd_link_hash_defined:
535 case bfd_link_hash_defweak:
536 oldbfd = h->root.u.def.section->owner;
537 break;
538
539 case bfd_link_hash_common:
540 oldbfd = h->root.u.c.p->section->owner;
541 break;
542 }
543
544 /* In cases involving weak versioned symbols, we may wind up trying
545 to merge a symbol with itself. Catch that here, to avoid the
546 confusion that results if we try to override a symbol with
547 itself. The additional tests catch cases like
548 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
549 dynamic object, which we do want to handle here. */
550 if (abfd == oldbfd
551 && ((abfd->flags & DYNAMIC) == 0
552 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
553 return true;
554
555 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
556 respectively, is from a dynamic object. */
557
558 if ((abfd->flags & DYNAMIC) != 0)
559 newdyn = true;
560 else
561 newdyn = false;
562
563 if (oldbfd != NULL)
564 olddyn = (oldbfd->flags & DYNAMIC) != 0;
565 else
566 {
567 asection *hsec;
568
569 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
570 indices used by MIPS ELF. */
571 switch (h->root.type)
572 {
573 default:
574 hsec = NULL;
575 break;
576
577 case bfd_link_hash_defined:
578 case bfd_link_hash_defweak:
579 hsec = h->root.u.def.section;
580 break;
581
582 case bfd_link_hash_common:
583 hsec = h->root.u.c.p->section;
584 break;
585 }
586
587 if (hsec == NULL)
588 olddyn = false;
589 else
590 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
591 }
592
593 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
594 respectively, appear to be a definition rather than reference. */
595
596 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
597 newdef = false;
598 else
599 newdef = true;
600
601 if (h->root.type == bfd_link_hash_undefined
602 || h->root.type == bfd_link_hash_undefweak
603 || h->root.type == bfd_link_hash_common)
604 olddef = false;
605 else
606 olddef = true;
607
608 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
609 symbol, respectively, appears to be a common symbol in a dynamic
610 object. If a symbol appears in an uninitialized section, and is
611 not weak, and is not a function, then it may be a common symbol
612 which was resolved when the dynamic object was created. We want
613 to treat such symbols specially, because they raise special
614 considerations when setting the symbol size: if the symbol
615 appears as a common symbol in a regular object, and the size in
616 the regular object is larger, we must make sure that we use the
617 larger size. This problematic case can always be avoided in C,
618 but it must be handled correctly when using Fortran shared
619 libraries.
620
621 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
622 likewise for OLDDYNCOMMON and OLDDEF.
623
624 Note that this test is just a heuristic, and that it is quite
625 possible to have an uninitialized symbol in a shared object which
626 is really a definition, rather than a common symbol. This could
627 lead to some minor confusion when the symbol really is a common
628 symbol in some regular object. However, I think it will be
629 harmless. */
630
631 if (newdyn
632 && newdef
633 && (sec->flags & SEC_ALLOC) != 0
634 && (sec->flags & SEC_LOAD) == 0
635 && sym->st_size > 0
636 && bind != STB_WEAK
637 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
638 newdyncommon = true;
639 else
640 newdyncommon = false;
641
642 if (olddyn
643 && olddef
644 && h->root.type == bfd_link_hash_defined
645 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
646 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
647 && (h->root.u.def.section->flags & SEC_LOAD) == 0
648 && h->size > 0
649 && h->type != STT_FUNC)
650 olddyncommon = true;
651 else
652 olddyncommon = false;
653
654 /* It's OK to change the type if either the existing symbol or the
655 new symbol is weak unless it comes from a DT_NEEDED entry of
656 a shared object, in which case, the DT_NEEDED entry may not be
657 required at the run time. */
658
659 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
660 || h->root.type == bfd_link_hash_undefweak
661 || bind == STB_WEAK)
662 *type_change_ok = true;
663
664 /* It's OK to change the size if either the existing symbol or the
665 new symbol is weak, or if the old symbol is undefined. */
666
667 if (*type_change_ok
668 || h->root.type == bfd_link_hash_undefined)
669 *size_change_ok = true;
670
671 /* If both the old and the new symbols look like common symbols in a
672 dynamic object, set the size of the symbol to the larger of the
673 two. */
674
675 if (olddyncommon
676 && newdyncommon
677 && sym->st_size != h->size)
678 {
679 /* Since we think we have two common symbols, issue a multiple
680 common warning if desired. Note that we only warn if the
681 size is different. If the size is the same, we simply let
682 the old symbol override the new one as normally happens with
683 symbols defined in dynamic objects. */
684
685 if (! ((*info->callbacks->multiple_common)
686 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
687 h->size, abfd, bfd_link_hash_common, sym->st_size)))
688 return false;
689
690 if (sym->st_size > h->size)
691 h->size = sym->st_size;
692
693 *size_change_ok = true;
694 }
695
696 /* If we are looking at a dynamic object, and we have found a
697 definition, we need to see if the symbol was already defined by
698 some other object. If so, we want to use the existing
699 definition, and we do not want to report a multiple symbol
700 definition error; we do this by clobbering *PSEC to be
701 bfd_und_section_ptr.
702
703 We treat a common symbol as a definition if the symbol in the
704 shared library is a function, since common symbols always
705 represent variables; this can cause confusion in principle, but
706 any such confusion would seem to indicate an erroneous program or
707 shared library. We also permit a common symbol in a regular
708 object to override a weak symbol in a shared object.
709
710 We prefer a non-weak definition in a shared library to a weak
711 definition in the executable unless it comes from a DT_NEEDED
712 entry of a shared object, in which case, the DT_NEEDED entry
713 may not be required at the run time. */
714
715 if (newdyn
716 && newdef
717 && (olddef
718 || (h->root.type == bfd_link_hash_common
719 && (bind == STB_WEAK
720 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
721 && (h->root.type != bfd_link_hash_defweak
722 || dt_needed
723 || bind == STB_WEAK))
724 {
725 *override = true;
726 newdef = false;
727 newdyncommon = false;
728
729 *psec = sec = bfd_und_section_ptr;
730 *size_change_ok = true;
731
732 /* If we get here when the old symbol is a common symbol, then
733 we are explicitly letting it override a weak symbol or
734 function in a dynamic object, and we don't want to warn about
735 a type change. If the old symbol is a defined symbol, a type
736 change warning may still be appropriate. */
737
738 if (h->root.type == bfd_link_hash_common)
739 *type_change_ok = true;
740 }
741
742 /* Handle the special case of an old common symbol merging with a
743 new symbol which looks like a common symbol in a shared object.
744 We change *PSEC and *PVALUE to make the new symbol look like a
745 common symbol, and let _bfd_generic_link_add_one_symbol will do
746 the right thing. */
747
748 if (newdyncommon
749 && h->root.type == bfd_link_hash_common)
750 {
751 *override = true;
752 newdef = false;
753 newdyncommon = false;
754 *pvalue = sym->st_size;
755 *psec = sec = bfd_com_section_ptr;
756 *size_change_ok = true;
757 }
758
759 /* If the old symbol is from a dynamic object, and the new symbol is
760 a definition which is not from a dynamic object, then the new
761 symbol overrides the old symbol. Symbols from regular files
762 always take precedence over symbols from dynamic objects, even if
763 they are defined after the dynamic object in the link.
764
765 As above, we again permit a common symbol in a regular object to
766 override a definition in a shared object if the shared object
767 symbol is a function or is weak.
768
769 As above, we permit a non-weak definition in a shared object to
770 override a weak definition in a regular object. */
771
772 if (! newdyn
773 && (newdef
774 || (bfd_is_com_section (sec)
775 && (h->root.type == bfd_link_hash_defweak
776 || h->type == STT_FUNC)))
777 && olddyn
778 && olddef
779 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
780 && (bind != STB_WEAK
781 || h->root.type == bfd_link_hash_defweak))
782 {
783 /* Change the hash table entry to undefined, and let
784 _bfd_generic_link_add_one_symbol do the right thing with the
785 new definition. */
786
787 h->root.type = bfd_link_hash_undefined;
788 h->root.u.undef.abfd = h->root.u.def.section->owner;
789 *size_change_ok = true;
790
791 olddef = false;
792 olddyncommon = false;
793
794 /* We again permit a type change when a common symbol may be
795 overriding a function. */
796
797 if (bfd_is_com_section (sec))
798 *type_change_ok = true;
799
800 /* This union may have been set to be non-NULL when this symbol
801 was seen in a dynamic object. We must force the union to be
802 NULL, so that it is correct for a regular symbol. */
803
804 h->verinfo.vertree = NULL;
805
806 /* In this special case, if H is the target of an indirection,
807 we want the caller to frob with H rather than with the
808 indirect symbol. That will permit the caller to redefine the
809 target of the indirection, rather than the indirect symbol
810 itself. FIXME: This will break the -y option if we store a
811 symbol with a different name. */
812 *sym_hash = h;
813 }
814
815 /* Handle the special case of a new common symbol merging with an
816 old symbol that looks like it might be a common symbol defined in
817 a shared object. Note that we have already handled the case in
818 which a new common symbol should simply override the definition
819 in the shared library. */
820
821 if (! newdyn
822 && bfd_is_com_section (sec)
823 && olddyncommon)
824 {
825 /* It would be best if we could set the hash table entry to a
826 common symbol, but we don't know what to use for the section
827 or the alignment. */
828 if (! ((*info->callbacks->multiple_common)
829 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
830 h->size, abfd, bfd_link_hash_common, sym->st_size)))
831 return false;
832
833 /* If the predumed common symbol in the dynamic object is
834 larger, pretend that the new symbol has its size. */
835
836 if (h->size > *pvalue)
837 *pvalue = h->size;
838
839 /* FIXME: We no longer know the alignment required by the symbol
840 in the dynamic object, so we just wind up using the one from
841 the regular object. */
842
843 olddef = false;
844 olddyncommon = false;
845
846 h->root.type = bfd_link_hash_undefined;
847 h->root.u.undef.abfd = h->root.u.def.section->owner;
848
849 *size_change_ok = true;
850 *type_change_ok = true;
851
852 h->verinfo.vertree = NULL;
853 }
854
855 /* Handle the special case of a weak definition in a regular object
856 followed by a non-weak definition in a shared object. In this
857 case, we prefer the definition in the shared object unless it
858 comes from a DT_NEEDED entry of a shared object, in which case,
859 the DT_NEEDED entry may not be required at the run time. */
860 if (olddef
861 && ! dt_needed
862 && h->root.type == bfd_link_hash_defweak
863 && newdef
864 && newdyn
865 && bind != STB_WEAK)
866 {
867 /* To make this work we have to frob the flags so that the rest
868 of the code does not think we are using the regular
869 definition. */
870 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
871 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
872 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
873 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
874 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
875 | ELF_LINK_HASH_DEF_DYNAMIC);
876
877 /* If H is the target of an indirection, we want the caller to
878 use H rather than the indirect symbol. Otherwise if we are
879 defining a new indirect symbol we will wind up attaching it
880 to the entry we are overriding. */
881 *sym_hash = h;
882 }
883
884 /* Handle the special case of a non-weak definition in a shared
885 object followed by a weak definition in a regular object. In
886 this case we prefer to definition in the shared object. To make
887 this work we have to tell the caller to not treat the new symbol
888 as a definition. */
889 if (olddef
890 && olddyn
891 && h->root.type != bfd_link_hash_defweak
892 && newdef
893 && ! newdyn
894 && bind == STB_WEAK)
895 *override = true;
896
897 return true;
898 }
899
900 /* This function is called to create an indirect symbol from the
901 default for the symbol with the default version if needed. The
902 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
903 set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
904 indicates if it comes from a DT_NEEDED entry of a shared object. */
905
906 static boolean
907 elf_add_default_symbol (abfd, info, h, name, sym, psec, value,
908 dynsym, override, dt_needed)
909 bfd *abfd;
910 struct bfd_link_info *info;
911 struct elf_link_hash_entry *h;
912 const char *name;
913 Elf_Internal_Sym *sym;
914 asection **psec;
915 bfd_vma *value;
916 boolean *dynsym;
917 boolean override;
918 boolean dt_needed;
919 {
920 boolean type_change_ok;
921 boolean size_change_ok;
922 char *shortname;
923 struct elf_link_hash_entry *hi;
924 struct elf_backend_data *bed;
925 boolean collect;
926 boolean dynamic;
927 char *p;
928 size_t len, shortlen;
929 asection *sec;
930
931 /* If this symbol has a version, and it is the default version, we
932 create an indirect symbol from the default name to the fully
933 decorated name. This will cause external references which do not
934 specify a version to be bound to this version of the symbol. */
935 p = strchr (name, ELF_VER_CHR);
936 if (p == NULL || p[1] != ELF_VER_CHR)
937 return true;
938
939 if (override)
940 {
941 /* We are overridden by an old defition. We need to check if we
942 need to create the indirect symbol from the default name. */
943 hi = elf_link_hash_lookup (elf_hash_table (info), name, true,
944 false, false);
945 BFD_ASSERT (hi != NULL);
946 if (hi == h)
947 return true;
948 while (hi->root.type == bfd_link_hash_indirect
949 || hi->root.type == bfd_link_hash_warning)
950 {
951 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
952 if (hi == h)
953 return true;
954 }
955 }
956
957 bed = get_elf_backend_data (abfd);
958 collect = bed->collect;
959 dynamic = (abfd->flags & DYNAMIC) != 0;
960
961 shortlen = p - name;
962 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
963 if (shortname == NULL)
964 return false;
965 memcpy (shortname, name, shortlen);
966 shortname[shortlen] = '\0';
967
968 /* We are going to create a new symbol. Merge it with any existing
969 symbol with this name. For the purposes of the merge, act as
970 though we were defining the symbol we just defined, although we
971 actually going to define an indirect symbol. */
972 type_change_ok = false;
973 size_change_ok = false;
974 sec = *psec;
975 if (! elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
976 &hi, &override, &type_change_ok,
977 &size_change_ok, dt_needed))
978 return false;
979
980 if (! override)
981 {
982 if (! (_bfd_generic_link_add_one_symbol
983 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
984 (bfd_vma) 0, name, false, collect,
985 (struct bfd_link_hash_entry **) &hi)))
986 return false;
987 }
988 else
989 {
990 /* In this case the symbol named SHORTNAME is overriding the
991 indirect symbol we want to add. We were planning on making
992 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
993 is the name without a version. NAME is the fully versioned
994 name, and it is the default version.
995
996 Overriding means that we already saw a definition for the
997 symbol SHORTNAME in a regular object, and it is overriding
998 the symbol defined in the dynamic object.
999
1000 When this happens, we actually want to change NAME, the
1001 symbol we just added, to refer to SHORTNAME. This will cause
1002 references to NAME in the shared object to become references
1003 to SHORTNAME in the regular object. This is what we expect
1004 when we override a function in a shared object: that the
1005 references in the shared object will be mapped to the
1006 definition in the regular object. */
1007
1008 while (hi->root.type == bfd_link_hash_indirect
1009 || hi->root.type == bfd_link_hash_warning)
1010 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1011
1012 h->root.type = bfd_link_hash_indirect;
1013 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1014 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1015 {
1016 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1017 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1018 if (hi->elf_link_hash_flags
1019 & (ELF_LINK_HASH_REF_REGULAR
1020 | ELF_LINK_HASH_DEF_REGULAR))
1021 {
1022 if (! _bfd_elf_link_record_dynamic_symbol (info, hi))
1023 return false;
1024 }
1025 }
1026
1027 /* Now set HI to H, so that the following code will set the
1028 other fields correctly. */
1029 hi = h;
1030 }
1031
1032 /* If there is a duplicate definition somewhere, then HI may not
1033 point to an indirect symbol. We will have reported an error to
1034 the user in that case. */
1035
1036 if (hi->root.type == bfd_link_hash_indirect)
1037 {
1038 struct elf_link_hash_entry *ht;
1039
1040 /* If the symbol became indirect, then we assume that we have
1041 not seen a definition before. */
1042 BFD_ASSERT ((hi->elf_link_hash_flags
1043 & (ELF_LINK_HASH_DEF_DYNAMIC
1044 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1045
1046 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1047 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1048
1049 /* See if the new flags lead us to realize that the symbol must
1050 be dynamic. */
1051 if (! *dynsym)
1052 {
1053 if (! dynamic)
1054 {
1055 if (info->shared
1056 || ((hi->elf_link_hash_flags
1057 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1058 *dynsym = true;
1059 }
1060 else
1061 {
1062 if ((hi->elf_link_hash_flags
1063 & ELF_LINK_HASH_REF_REGULAR) != 0)
1064 *dynsym = true;
1065 }
1066 }
1067 }
1068
1069 /* We also need to define an indirection from the nondefault version
1070 of the symbol. */
1071
1072 len = strlen (name);
1073 shortname = bfd_hash_allocate (&info->hash->table, len);
1074 if (shortname == NULL)
1075 return false;
1076 memcpy (shortname, name, shortlen);
1077 memcpy (shortname + shortlen, p + 1, len - shortlen);
1078
1079 /* Once again, merge with any existing symbol. */
1080 type_change_ok = false;
1081 size_change_ok = false;
1082 sec = *psec;
1083 if (! elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1084 &hi, &override, &type_change_ok,
1085 &size_change_ok, dt_needed))
1086 return false;
1087
1088 if (override)
1089 {
1090 /* Here SHORTNAME is a versioned name, so we don't expect to see
1091 the type of override we do in the case above unless it is
1092 overridden by a versioned definiton. */
1093 if (hi->root.type != bfd_link_hash_defined
1094 && hi->root.type != bfd_link_hash_defweak)
1095 (*_bfd_error_handler)
1096 (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"),
1097 bfd_archive_filename (abfd), shortname);
1098 }
1099 else
1100 {
1101 if (! (_bfd_generic_link_add_one_symbol
1102 (info, abfd, shortname, BSF_INDIRECT,
1103 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1104 collect, (struct bfd_link_hash_entry **) &hi)))
1105 return false;
1106
1107 /* If there is a duplicate definition somewhere, then HI may not
1108 point to an indirect symbol. We will have reported an error
1109 to the user in that case. */
1110
1111 if (hi->root.type == bfd_link_hash_indirect)
1112 {
1113 /* If the symbol became indirect, then we assume that we have
1114 not seen a definition before. */
1115 BFD_ASSERT ((hi->elf_link_hash_flags
1116 & (ELF_LINK_HASH_DEF_DYNAMIC
1117 | ELF_LINK_HASH_DEF_REGULAR)) == 0);
1118
1119 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1120
1121 /* See if the new flags lead us to realize that the symbol
1122 must be dynamic. */
1123 if (! *dynsym)
1124 {
1125 if (! dynamic)
1126 {
1127 if (info->shared
1128 || ((hi->elf_link_hash_flags
1129 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1130 *dynsym = true;
1131 }
1132 else
1133 {
1134 if ((hi->elf_link_hash_flags
1135 & ELF_LINK_HASH_REF_REGULAR) != 0)
1136 *dynsym = true;
1137 }
1138 }
1139 }
1140 }
1141
1142 return true;
1143 }
1144
1145 /* Add symbols from an ELF object file to the linker hash table. */
1146
1147 static boolean
1148 elf_link_add_object_symbols (abfd, info)
1149 bfd *abfd;
1150 struct bfd_link_info *info;
1151 {
1152 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
1153 const Elf_Internal_Sym *,
1154 const char **, flagword *,
1155 asection **, bfd_vma *));
1156 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
1157 asection *, const Elf_Internal_Rela *));
1158 boolean collect;
1159 Elf_Internal_Shdr *hdr;
1160 bfd_size_type symcount;
1161 bfd_size_type extsymcount;
1162 bfd_size_type extsymoff;
1163 struct elf_link_hash_entry **sym_hash;
1164 boolean dynamic;
1165 Elf_External_Versym *extversym = NULL;
1166 Elf_External_Versym *ever;
1167 struct elf_link_hash_entry *weaks;
1168 Elf_Internal_Sym *isymbuf = NULL;
1169 Elf_Internal_Sym *isym;
1170 Elf_Internal_Sym *isymend;
1171 struct elf_backend_data *bed;
1172 boolean dt_needed;
1173 struct elf_link_hash_table * hash_table;
1174 bfd_size_type amt;
1175
1176 hash_table = elf_hash_table (info);
1177
1178 bed = get_elf_backend_data (abfd);
1179 add_symbol_hook = bed->elf_add_symbol_hook;
1180 collect = bed->collect;
1181
1182 if ((abfd->flags & DYNAMIC) == 0)
1183 dynamic = false;
1184 else
1185 {
1186 dynamic = true;
1187
1188 /* You can't use -r against a dynamic object. Also, there's no
1189 hope of using a dynamic object which does not exactly match
1190 the format of the output file. */
1191 if (info->relocateable || info->hash->creator != abfd->xvec)
1192 {
1193 bfd_set_error (bfd_error_invalid_operation);
1194 goto error_return;
1195 }
1196 }
1197
1198 /* As a GNU extension, any input sections which are named
1199 .gnu.warning.SYMBOL are treated as warning symbols for the given
1200 symbol. This differs from .gnu.warning sections, which generate
1201 warnings when they are included in an output file. */
1202 if (! info->shared)
1203 {
1204 asection *s;
1205
1206 for (s = abfd->sections; s != NULL; s = s->next)
1207 {
1208 const char *name;
1209
1210 name = bfd_get_section_name (abfd, s);
1211 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
1212 {
1213 char *msg;
1214 bfd_size_type sz;
1215
1216 name += sizeof ".gnu.warning." - 1;
1217
1218 /* If this is a shared object, then look up the symbol
1219 in the hash table. If it is there, and it is already
1220 been defined, then we will not be using the entry
1221 from this shared object, so we don't need to warn.
1222 FIXME: If we see the definition in a regular object
1223 later on, we will warn, but we shouldn't. The only
1224 fix is to keep track of what warnings we are supposed
1225 to emit, and then handle them all at the end of the
1226 link. */
1227 if (dynamic && abfd->xvec == info->hash->creator)
1228 {
1229 struct elf_link_hash_entry *h;
1230
1231 h = elf_link_hash_lookup (hash_table, name,
1232 false, false, true);
1233
1234 /* FIXME: What about bfd_link_hash_common? */
1235 if (h != NULL
1236 && (h->root.type == bfd_link_hash_defined
1237 || h->root.type == bfd_link_hash_defweak))
1238 {
1239 /* We don't want to issue this warning. Clobber
1240 the section size so that the warning does not
1241 get copied into the output file. */
1242 s->_raw_size = 0;
1243 continue;
1244 }
1245 }
1246
1247 sz = bfd_section_size (abfd, s);
1248 msg = (char *) bfd_alloc (abfd, sz + 1);
1249 if (msg == NULL)
1250 goto error_return;
1251
1252 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
1253 goto error_return;
1254
1255 msg[sz] = '\0';
1256
1257 if (! (_bfd_generic_link_add_one_symbol
1258 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
1259 false, collect, (struct bfd_link_hash_entry **) NULL)))
1260 goto error_return;
1261
1262 if (! info->relocateable)
1263 {
1264 /* Clobber the section size so that the warning does
1265 not get copied into the output file. */
1266 s->_raw_size = 0;
1267 }
1268 }
1269 }
1270 }
1271
1272 dt_needed = false;
1273 if (! dynamic)
1274 {
1275 /* If we are creating a shared library, create all the dynamic
1276 sections immediately. We need to attach them to something,
1277 so we attach them to this BFD, provided it is the right
1278 format. FIXME: If there are no input BFD's of the same
1279 format as the output, we can't make a shared library. */
1280 if (info->shared
1281 && is_elf_hash_table (info)
1282 && ! hash_table->dynamic_sections_created
1283 && abfd->xvec == info->hash->creator)
1284 {
1285 if (! elf_link_create_dynamic_sections (abfd, info))
1286 goto error_return;
1287 }
1288 }
1289 else if (! is_elf_hash_table (info))
1290 goto error_return;
1291 else
1292 {
1293 asection *s;
1294 boolean add_needed;
1295 const char *name;
1296 bfd_size_type oldsize;
1297 bfd_size_type strindex;
1298
1299 /* Find the name to use in a DT_NEEDED entry that refers to this
1300 object. If the object has a DT_SONAME entry, we use it.
1301 Otherwise, if the generic linker stuck something in
1302 elf_dt_name, we use that. Otherwise, we just use the file
1303 name. If the generic linker put a null string into
1304 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1305 there is a DT_SONAME entry. */
1306 add_needed = true;
1307 name = bfd_get_filename (abfd);
1308 if (elf_dt_name (abfd) != NULL)
1309 {
1310 name = elf_dt_name (abfd);
1311 if (*name == '\0')
1312 {
1313 if (elf_dt_soname (abfd) != NULL)
1314 dt_needed = true;
1315
1316 add_needed = false;
1317 }
1318 }
1319 s = bfd_get_section_by_name (abfd, ".dynamic");
1320 if (s != NULL)
1321 {
1322 Elf_External_Dyn *dynbuf = NULL;
1323 Elf_External_Dyn *extdyn;
1324 Elf_External_Dyn *extdynend;
1325 int elfsec;
1326 unsigned long shlink;
1327 int rpath;
1328 int runpath;
1329
1330 dynbuf = (Elf_External_Dyn *) bfd_malloc (s->_raw_size);
1331 if (dynbuf == NULL)
1332 goto error_return;
1333
1334 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1335 (file_ptr) 0, s->_raw_size))
1336 goto error_free_dyn;
1337
1338 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1339 if (elfsec == -1)
1340 goto error_free_dyn;
1341 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1342
1343 extdyn = dynbuf;
1344 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1345 rpath = 0;
1346 runpath = 0;
1347 for (; extdyn < extdynend; extdyn++)
1348 {
1349 Elf_Internal_Dyn dyn;
1350
1351 elf_swap_dyn_in (abfd, extdyn, &dyn);
1352 if (dyn.d_tag == DT_SONAME)
1353 {
1354 unsigned int tagv = dyn.d_un.d_val;
1355 name = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1356 if (name == NULL)
1357 goto error_free_dyn;
1358 }
1359 if (dyn.d_tag == DT_NEEDED)
1360 {
1361 struct bfd_link_needed_list *n, **pn;
1362 char *fnm, *anm;
1363 unsigned int tagv = dyn.d_un.d_val;
1364
1365 amt = sizeof (struct bfd_link_needed_list);
1366 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1367 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1368 if (n == NULL || fnm == NULL)
1369 goto error_free_dyn;
1370 amt = strlen (fnm) + 1;
1371 anm = bfd_alloc (abfd, amt);
1372 if (anm == NULL)
1373 goto error_free_dyn;
1374 memcpy (anm, fnm, (size_t) amt);
1375 n->name = anm;
1376 n->by = abfd;
1377 n->next = NULL;
1378 for (pn = & hash_table->needed;
1379 *pn != NULL;
1380 pn = &(*pn)->next)
1381 ;
1382 *pn = n;
1383 }
1384 if (dyn.d_tag == DT_RUNPATH)
1385 {
1386 struct bfd_link_needed_list *n, **pn;
1387 char *fnm, *anm;
1388 unsigned int tagv = dyn.d_un.d_val;
1389
1390 /* When we see DT_RPATH before DT_RUNPATH, we have
1391 to clear runpath. Do _NOT_ bfd_release, as that
1392 frees all more recently bfd_alloc'd blocks as
1393 well. */
1394 if (rpath && hash_table->runpath)
1395 hash_table->runpath = NULL;
1396
1397 amt = sizeof (struct bfd_link_needed_list);
1398 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1399 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1400 if (n == NULL || fnm == NULL)
1401 goto error_free_dyn;
1402 amt = strlen (fnm) + 1;
1403 anm = bfd_alloc (abfd, amt);
1404 if (anm == NULL)
1405 goto error_free_dyn;
1406 memcpy (anm, fnm, (size_t) amt);
1407 n->name = anm;
1408 n->by = abfd;
1409 n->next = NULL;
1410 for (pn = & hash_table->runpath;
1411 *pn != NULL;
1412 pn = &(*pn)->next)
1413 ;
1414 *pn = n;
1415 runpath = 1;
1416 rpath = 0;
1417 }
1418 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1419 if (!runpath && dyn.d_tag == DT_RPATH)
1420 {
1421 struct bfd_link_needed_list *n, **pn;
1422 char *fnm, *anm;
1423 unsigned int tagv = dyn.d_un.d_val;
1424
1425 amt = sizeof (struct bfd_link_needed_list);
1426 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1427 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1428 if (n == NULL || fnm == NULL)
1429 goto error_free_dyn;
1430 amt = strlen (fnm) + 1;
1431 anm = bfd_alloc (abfd, amt);
1432 if (anm == NULL)
1433 {
1434 error_free_dyn:
1435 free (dynbuf);
1436 goto error_return;
1437 }
1438 memcpy (anm, fnm, (size_t) amt);
1439 n->name = anm;
1440 n->by = abfd;
1441 n->next = NULL;
1442 for (pn = & hash_table->runpath;
1443 *pn != NULL;
1444 pn = &(*pn)->next)
1445 ;
1446 *pn = n;
1447 rpath = 1;
1448 }
1449 }
1450
1451 free (dynbuf);
1452 }
1453
1454 /* We do not want to include any of the sections in a dynamic
1455 object in the output file. We hack by simply clobbering the
1456 list of sections in the BFD. This could be handled more
1457 cleanly by, say, a new section flag; the existing
1458 SEC_NEVER_LOAD flag is not the one we want, because that one
1459 still implies that the section takes up space in the output
1460 file. */
1461 bfd_section_list_clear (abfd);
1462
1463 /* If this is the first dynamic object found in the link, create
1464 the special sections required for dynamic linking. */
1465 if (! hash_table->dynamic_sections_created)
1466 if (! elf_link_create_dynamic_sections (abfd, info))
1467 goto error_return;
1468
1469 if (add_needed)
1470 {
1471 /* Add a DT_NEEDED entry for this dynamic object. */
1472 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
1473 strindex = _bfd_elf_strtab_add (hash_table->dynstr, name, false);
1474 if (strindex == (bfd_size_type) -1)
1475 goto error_return;
1476
1477 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
1478 {
1479 asection *sdyn;
1480 Elf_External_Dyn *dyncon, *dynconend;
1481
1482 /* The hash table size did not change, which means that
1483 the dynamic object name was already entered. If we
1484 have already included this dynamic object in the
1485 link, just ignore it. There is no reason to include
1486 a particular dynamic object more than once. */
1487 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
1488 BFD_ASSERT (sdyn != NULL);
1489
1490 dyncon = (Elf_External_Dyn *) sdyn->contents;
1491 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1492 sdyn->_raw_size);
1493 for (; dyncon < dynconend; dyncon++)
1494 {
1495 Elf_Internal_Dyn dyn;
1496
1497 elf_swap_dyn_in (hash_table->dynobj, dyncon, & dyn);
1498 if (dyn.d_tag == DT_NEEDED
1499 && dyn.d_un.d_val == strindex)
1500 {
1501 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
1502 return true;
1503 }
1504 }
1505 }
1506
1507 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
1508 goto error_return;
1509 }
1510
1511 /* Save the SONAME, if there is one, because sometimes the
1512 linker emulation code will need to know it. */
1513 if (*name == '\0')
1514 name = basename (bfd_get_filename (abfd));
1515 elf_dt_name (abfd) = name;
1516 }
1517
1518 /* If this is a dynamic object, we always link against the .dynsym
1519 symbol table, not the .symtab symbol table. The dynamic linker
1520 will only see the .dynsym symbol table, so there is no reason to
1521 look at .symtab for a dynamic object. */
1522
1523 if (! dynamic || elf_dynsymtab (abfd) == 0)
1524 hdr = &elf_tdata (abfd)->symtab_hdr;
1525 else
1526 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1527
1528 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1529
1530 /* The sh_info field of the symtab header tells us where the
1531 external symbols start. We don't care about the local symbols at
1532 this point. */
1533 if (elf_bad_symtab (abfd))
1534 {
1535 extsymcount = symcount;
1536 extsymoff = 0;
1537 }
1538 else
1539 {
1540 extsymcount = symcount - hdr->sh_info;
1541 extsymoff = hdr->sh_info;
1542 }
1543
1544 sym_hash = NULL;
1545 if (extsymcount != 0)
1546 {
1547 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
1548 NULL, NULL, NULL);
1549 if (isymbuf == NULL)
1550 goto error_return;
1551
1552 /* We store a pointer to the hash table entry for each external
1553 symbol. */
1554 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
1555 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
1556 if (sym_hash == NULL)
1557 goto error_free_sym;
1558 elf_sym_hashes (abfd) = sym_hash;
1559 }
1560
1561 if (dynamic)
1562 {
1563 /* Read in any version definitions. */
1564 if (! _bfd_elf_slurp_version_tables (abfd))
1565 goto error_free_sym;
1566
1567 /* Read in the symbol versions, but don't bother to convert them
1568 to internal format. */
1569 if (elf_dynversym (abfd) != 0)
1570 {
1571 Elf_Internal_Shdr *versymhdr;
1572
1573 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1574 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
1575 if (extversym == NULL)
1576 goto error_free_sym;
1577 amt = versymhdr->sh_size;
1578 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1579 || bfd_bread ((PTR) extversym, amt, abfd) != amt)
1580 goto error_free_vers;
1581 }
1582 }
1583
1584 weaks = NULL;
1585
1586 ever = extversym != NULL ? extversym + extsymoff : NULL;
1587 for (isym = isymbuf, isymend = isymbuf + extsymcount;
1588 isym < isymend;
1589 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1590 {
1591 int bind;
1592 bfd_vma value;
1593 asection *sec;
1594 flagword flags;
1595 const char *name;
1596 struct elf_link_hash_entry *h;
1597 boolean definition;
1598 boolean size_change_ok, type_change_ok;
1599 boolean new_weakdef;
1600 unsigned int old_alignment;
1601 boolean override;
1602
1603 override = false;
1604
1605 flags = BSF_NO_FLAGS;
1606 sec = NULL;
1607 value = isym->st_value;
1608 *sym_hash = NULL;
1609
1610 bind = ELF_ST_BIND (isym->st_info);
1611 if (bind == STB_LOCAL)
1612 {
1613 /* This should be impossible, since ELF requires that all
1614 global symbols follow all local symbols, and that sh_info
1615 point to the first global symbol. Unfortunatealy, Irix 5
1616 screws this up. */
1617 continue;
1618 }
1619 else if (bind == STB_GLOBAL)
1620 {
1621 if (isym->st_shndx != SHN_UNDEF
1622 && isym->st_shndx != SHN_COMMON)
1623 flags = BSF_GLOBAL;
1624 }
1625 else if (bind == STB_WEAK)
1626 flags = BSF_WEAK;
1627 else
1628 {
1629 /* Leave it up to the processor backend. */
1630 }
1631
1632 if (isym->st_shndx == SHN_UNDEF)
1633 sec = bfd_und_section_ptr;
1634 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
1635 {
1636 sec = section_from_elf_index (abfd, isym->st_shndx);
1637 if (sec == NULL)
1638 sec = bfd_abs_section_ptr;
1639 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1640 value -= sec->vma;
1641 }
1642 else if (isym->st_shndx == SHN_ABS)
1643 sec = bfd_abs_section_ptr;
1644 else if (isym->st_shndx == SHN_COMMON)
1645 {
1646 sec = bfd_com_section_ptr;
1647 /* What ELF calls the size we call the value. What ELF
1648 calls the value we call the alignment. */
1649 value = isym->st_size;
1650 }
1651 else
1652 {
1653 /* Leave it up to the processor backend. */
1654 }
1655
1656 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
1657 isym->st_name);
1658 if (name == (const char *) NULL)
1659 goto error_free_vers;
1660
1661 if (isym->st_shndx == SHN_COMMON
1662 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
1663 {
1664 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
1665
1666 if (tcomm == NULL)
1667 {
1668 tcomm = bfd_make_section (abfd, ".tcommon");
1669 if (tcomm == NULL
1670 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
1671 | SEC_IS_COMMON
1672 | SEC_LINKER_CREATED
1673 | SEC_THREAD_LOCAL)))
1674 goto error_free_vers;
1675 }
1676 sec = tcomm;
1677 }
1678 else if (add_symbol_hook)
1679 {
1680 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
1681 &value))
1682 goto error_free_vers;
1683
1684 /* The hook function sets the name to NULL if this symbol
1685 should be skipped for some reason. */
1686 if (name == (const char *) NULL)
1687 continue;
1688 }
1689
1690 /* Sanity check that all possibilities were handled. */
1691 if (sec == (asection *) NULL)
1692 {
1693 bfd_set_error (bfd_error_bad_value);
1694 goto error_free_vers;
1695 }
1696
1697 if (bfd_is_und_section (sec)
1698 || bfd_is_com_section (sec))
1699 definition = false;
1700 else
1701 definition = true;
1702
1703 size_change_ok = false;
1704 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1705 old_alignment = 0;
1706 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1707 {
1708 Elf_Internal_Versym iver;
1709 unsigned int vernum = 0;
1710
1711 if (ever != NULL)
1712 {
1713 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1714 vernum = iver.vs_vers & VERSYM_VERSION;
1715
1716 /* If this is a hidden symbol, or if it is not version
1717 1, we append the version name to the symbol name.
1718 However, we do not modify a non-hidden absolute
1719 symbol, because it might be the version symbol
1720 itself. FIXME: What if it isn't? */
1721 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1722 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1723 {
1724 const char *verstr;
1725 size_t namelen, verlen, newlen;
1726 char *newname, *p;
1727
1728 if (isym->st_shndx != SHN_UNDEF)
1729 {
1730 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1731 {
1732 (*_bfd_error_handler)
1733 (_("%s: %s: invalid version %u (max %d)"),
1734 bfd_archive_filename (abfd), name, vernum,
1735 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1736 bfd_set_error (bfd_error_bad_value);
1737 goto error_free_vers;
1738 }
1739 else if (vernum > 1)
1740 verstr =
1741 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1742 else
1743 verstr = "";
1744 }
1745 else
1746 {
1747 /* We cannot simply test for the number of
1748 entries in the VERNEED section since the
1749 numbers for the needed versions do not start
1750 at 0. */
1751 Elf_Internal_Verneed *t;
1752
1753 verstr = NULL;
1754 for (t = elf_tdata (abfd)->verref;
1755 t != NULL;
1756 t = t->vn_nextref)
1757 {
1758 Elf_Internal_Vernaux *a;
1759
1760 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1761 {
1762 if (a->vna_other == vernum)
1763 {
1764 verstr = a->vna_nodename;
1765 break;
1766 }
1767 }
1768 if (a != NULL)
1769 break;
1770 }
1771 if (verstr == NULL)
1772 {
1773 (*_bfd_error_handler)
1774 (_("%s: %s: invalid needed version %d"),
1775 bfd_archive_filename (abfd), name, vernum);
1776 bfd_set_error (bfd_error_bad_value);
1777 goto error_free_vers;
1778 }
1779 }
1780
1781 namelen = strlen (name);
1782 verlen = strlen (verstr);
1783 newlen = namelen + verlen + 2;
1784 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1785 && isym->st_shndx != SHN_UNDEF)
1786 ++newlen;
1787
1788 newname = (char *) bfd_alloc (abfd, (bfd_size_type) newlen);
1789 if (newname == NULL)
1790 goto error_free_vers;
1791 memcpy (newname, name, namelen);
1792 p = newname + namelen;
1793 *p++ = ELF_VER_CHR;
1794 /* If this is a defined non-hidden version symbol,
1795 we add another @ to the name. This indicates the
1796 default version of the symbol. */
1797 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1798 && isym->st_shndx != SHN_UNDEF)
1799 *p++ = ELF_VER_CHR;
1800 memcpy (p, verstr, verlen + 1);
1801
1802 name = newname;
1803 }
1804 }
1805
1806 if (! elf_merge_symbol (abfd, info, name, isym, &sec, &value,
1807 sym_hash, &override, &type_change_ok,
1808 &size_change_ok, dt_needed))
1809 goto error_free_vers;
1810
1811 if (override)
1812 definition = false;
1813
1814 h = *sym_hash;
1815 while (h->root.type == bfd_link_hash_indirect
1816 || h->root.type == bfd_link_hash_warning)
1817 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1818
1819 /* Remember the old alignment if this is a common symbol, so
1820 that we don't reduce the alignment later on. We can't
1821 check later, because _bfd_generic_link_add_one_symbol
1822 will set a default for the alignment which we want to
1823 override. */
1824 if (h->root.type == bfd_link_hash_common)
1825 old_alignment = h->root.u.c.p->alignment_power;
1826
1827 if (elf_tdata (abfd)->verdef != NULL
1828 && ! override
1829 && vernum > 1
1830 && definition)
1831 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1832 }
1833
1834 if (! (_bfd_generic_link_add_one_symbol
1835 (info, abfd, name, flags, sec, value, (const char *) NULL,
1836 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1837 goto error_free_vers;
1838
1839 h = *sym_hash;
1840 while (h->root.type == bfd_link_hash_indirect
1841 || h->root.type == bfd_link_hash_warning)
1842 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1843 *sym_hash = h;
1844
1845 new_weakdef = false;
1846 if (dynamic
1847 && definition
1848 && (flags & BSF_WEAK) != 0
1849 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
1850 && info->hash->creator->flavour == bfd_target_elf_flavour
1851 && h->weakdef == NULL)
1852 {
1853 /* Keep a list of all weak defined non function symbols from
1854 a dynamic object, using the weakdef field. Later in this
1855 function we will set the weakdef field to the correct
1856 value. We only put non-function symbols from dynamic
1857 objects on this list, because that happens to be the only
1858 time we need to know the normal symbol corresponding to a
1859 weak symbol, and the information is time consuming to
1860 figure out. If the weakdef field is not already NULL,
1861 then this symbol was already defined by some previous
1862 dynamic object, and we will be using that previous
1863 definition anyhow. */
1864
1865 h->weakdef = weaks;
1866 weaks = h;
1867 new_weakdef = true;
1868 }
1869
1870 /* Set the alignment of a common symbol. */
1871 if (isym->st_shndx == SHN_COMMON
1872 && h->root.type == bfd_link_hash_common)
1873 {
1874 unsigned int align;
1875
1876 align = bfd_log2 (isym->st_value);
1877 if (align > old_alignment
1878 /* Permit an alignment power of zero if an alignment of one
1879 is specified and no other alignments have been specified. */
1880 || (isym->st_value == 1 && old_alignment == 0))
1881 h->root.u.c.p->alignment_power = align;
1882 }
1883
1884 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1885 {
1886 int old_flags;
1887 boolean dynsym;
1888 int new_flag;
1889
1890 /* Remember the symbol size and type. */
1891 if (isym->st_size != 0
1892 && (definition || h->size == 0))
1893 {
1894 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
1895 (*_bfd_error_handler)
1896 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1897 name, (unsigned long) h->size,
1898 (unsigned long) isym->st_size, bfd_archive_filename (abfd));
1899
1900 h->size = isym->st_size;
1901 }
1902
1903 /* If this is a common symbol, then we always want H->SIZE
1904 to be the size of the common symbol. The code just above
1905 won't fix the size if a common symbol becomes larger. We
1906 don't warn about a size change here, because that is
1907 covered by --warn-common. */
1908 if (h->root.type == bfd_link_hash_common)
1909 h->size = h->root.u.c.size;
1910
1911 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
1912 && (definition || h->type == STT_NOTYPE))
1913 {
1914 if (h->type != STT_NOTYPE
1915 && h->type != ELF_ST_TYPE (isym->st_info)
1916 && ! type_change_ok)
1917 (*_bfd_error_handler)
1918 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1919 name, h->type, ELF_ST_TYPE (isym->st_info),
1920 bfd_archive_filename (abfd));
1921
1922 h->type = ELF_ST_TYPE (isym->st_info);
1923 }
1924
1925 /* If st_other has a processor-specific meaning, specific code
1926 might be needed here. */
1927 if (isym->st_other != 0)
1928 {
1929 /* Combine visibilities, using the most constraining one. */
1930 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1931 unsigned char symvis = ELF_ST_VISIBILITY (isym->st_other);
1932
1933 if (symvis && (hvis > symvis || hvis == 0))
1934 h->other = isym->st_other;
1935
1936 /* If neither has visibility, use the st_other of the
1937 definition. This is an arbitrary choice, since the
1938 other bits have no general meaning. */
1939 if (!symvis && !hvis
1940 && (definition || h->other == 0))
1941 h->other = isym->st_other;
1942 }
1943
1944 /* Set a flag in the hash table entry indicating the type of
1945 reference or definition we just found. Keep a count of
1946 the number of dynamic symbols we find. A dynamic symbol
1947 is one which is referenced or defined by both a regular
1948 object and a shared object. */
1949 old_flags = h->elf_link_hash_flags;
1950 dynsym = false;
1951 if (! dynamic)
1952 {
1953 if (! definition)
1954 {
1955 new_flag = ELF_LINK_HASH_REF_REGULAR;
1956 if (bind != STB_WEAK)
1957 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1958 }
1959 else
1960 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1961 if (info->shared
1962 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1963 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1964 dynsym = true;
1965 }
1966 else
1967 {
1968 if (! definition)
1969 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1970 else
1971 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1972 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1973 | ELF_LINK_HASH_REF_REGULAR)) != 0
1974 || (h->weakdef != NULL
1975 && ! new_weakdef
1976 && h->weakdef->dynindx != -1))
1977 dynsym = true;
1978 }
1979
1980 h->elf_link_hash_flags |= new_flag;
1981
1982 /* Check to see if we need to add an indirect symbol for
1983 the default name. */
1984 if (definition || h->root.type == bfd_link_hash_common)
1985 if (! elf_add_default_symbol (abfd, info, h, name, isym,
1986 &sec, &value, &dynsym,
1987 override, dt_needed))
1988 goto error_free_vers;
1989
1990 if (dynsym && h->dynindx == -1)
1991 {
1992 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1993 goto error_free_vers;
1994 if (h->weakdef != NULL
1995 && ! new_weakdef
1996 && h->weakdef->dynindx == -1)
1997 {
1998 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
1999 goto error_free_vers;
2000 }
2001 }
2002 else if (dynsym && h->dynindx != -1)
2003 /* If the symbol already has a dynamic index, but
2004 visibility says it should not be visible, turn it into
2005 a local symbol. */
2006 switch (ELF_ST_VISIBILITY (h->other))
2007 {
2008 case STV_INTERNAL:
2009 case STV_HIDDEN:
2010 (*bed->elf_backend_hide_symbol) (info, h, true);
2011 break;
2012 }
2013
2014 if (dt_needed && definition
2015 && (h->elf_link_hash_flags
2016 & ELF_LINK_HASH_REF_REGULAR) != 0)
2017 {
2018 bfd_size_type oldsize;
2019 bfd_size_type strindex;
2020
2021 if (! is_elf_hash_table (info))
2022 goto error_free_vers;
2023
2024 /* The symbol from a DT_NEEDED object is referenced from
2025 the regular object to create a dynamic executable. We
2026 have to make sure there is a DT_NEEDED entry for it. */
2027
2028 dt_needed = false;
2029 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2030 strindex = _bfd_elf_strtab_add (hash_table->dynstr,
2031 elf_dt_soname (abfd), false);
2032 if (strindex == (bfd_size_type) -1)
2033 goto error_free_vers;
2034
2035 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2036 {
2037 asection *sdyn;
2038 Elf_External_Dyn *dyncon, *dynconend;
2039
2040 sdyn = bfd_get_section_by_name (hash_table->dynobj,
2041 ".dynamic");
2042 BFD_ASSERT (sdyn != NULL);
2043
2044 dyncon = (Elf_External_Dyn *) sdyn->contents;
2045 dynconend = (Elf_External_Dyn *) (sdyn->contents +
2046 sdyn->_raw_size);
2047 for (; dyncon < dynconend; dyncon++)
2048 {
2049 Elf_Internal_Dyn dyn;
2050
2051 elf_swap_dyn_in (hash_table->dynobj,
2052 dyncon, &dyn);
2053 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
2054 dyn.d_un.d_val != strindex);
2055 }
2056 }
2057
2058 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NEEDED, strindex))
2059 goto error_free_vers;
2060 }
2061 }
2062 }
2063
2064 if (extversym != NULL)
2065 {
2066 free (extversym);
2067 extversym = NULL;
2068 }
2069
2070 if (isymbuf != NULL)
2071 free (isymbuf);
2072 isymbuf = NULL;
2073
2074 /* Now set the weakdefs field correctly for all the weak defined
2075 symbols we found. The only way to do this is to search all the
2076 symbols. Since we only need the information for non functions in
2077 dynamic objects, that's the only time we actually put anything on
2078 the list WEAKS. We need this information so that if a regular
2079 object refers to a symbol defined weakly in a dynamic object, the
2080 real symbol in the dynamic object is also put in the dynamic
2081 symbols; we also must arrange for both symbols to point to the
2082 same memory location. We could handle the general case of symbol
2083 aliasing, but a general symbol alias can only be generated in
2084 assembler code, handling it correctly would be very time
2085 consuming, and other ELF linkers don't handle general aliasing
2086 either. */
2087 while (weaks != NULL)
2088 {
2089 struct elf_link_hash_entry *hlook;
2090 asection *slook;
2091 bfd_vma vlook;
2092 struct elf_link_hash_entry **hpp;
2093 struct elf_link_hash_entry **hppend;
2094
2095 hlook = weaks;
2096 weaks = hlook->weakdef;
2097 hlook->weakdef = NULL;
2098
2099 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2100 || hlook->root.type == bfd_link_hash_defweak
2101 || hlook->root.type == bfd_link_hash_common
2102 || hlook->root.type == bfd_link_hash_indirect);
2103 slook = hlook->root.u.def.section;
2104 vlook = hlook->root.u.def.value;
2105
2106 hpp = elf_sym_hashes (abfd);
2107 hppend = hpp + extsymcount;
2108 for (; hpp < hppend; hpp++)
2109 {
2110 struct elf_link_hash_entry *h;
2111
2112 h = *hpp;
2113 if (h != NULL && h != hlook
2114 && h->root.type == bfd_link_hash_defined
2115 && h->root.u.def.section == slook
2116 && h->root.u.def.value == vlook)
2117 {
2118 hlook->weakdef = h;
2119
2120 /* If the weak definition is in the list of dynamic
2121 symbols, make sure the real definition is put there
2122 as well. */
2123 if (hlook->dynindx != -1
2124 && h->dynindx == -1)
2125 {
2126 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2127 goto error_return;
2128 }
2129
2130 /* If the real definition is in the list of dynamic
2131 symbols, make sure the weak definition is put there
2132 as well. If we don't do this, then the dynamic
2133 loader might not merge the entries for the real
2134 definition and the weak definition. */
2135 if (h->dynindx != -1
2136 && hlook->dynindx == -1)
2137 {
2138 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2139 goto error_return;
2140 }
2141 break;
2142 }
2143 }
2144 }
2145
2146 /* If this object is the same format as the output object, and it is
2147 not a shared library, then let the backend look through the
2148 relocs.
2149
2150 This is required to build global offset table entries and to
2151 arrange for dynamic relocs. It is not required for the
2152 particular common case of linking non PIC code, even when linking
2153 against shared libraries, but unfortunately there is no way of
2154 knowing whether an object file has been compiled PIC or not.
2155 Looking through the relocs is not particularly time consuming.
2156 The problem is that we must either (1) keep the relocs in memory,
2157 which causes the linker to require additional runtime memory or
2158 (2) read the relocs twice from the input file, which wastes time.
2159 This would be a good case for using mmap.
2160
2161 I have no idea how to handle linking PIC code into a file of a
2162 different format. It probably can't be done. */
2163 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2164 if (! dynamic
2165 && abfd->xvec == info->hash->creator
2166 && check_relocs != NULL)
2167 {
2168 asection *o;
2169
2170 for (o = abfd->sections; o != NULL; o = o->next)
2171 {
2172 Elf_Internal_Rela *internal_relocs;
2173 boolean ok;
2174
2175 if ((o->flags & SEC_RELOC) == 0
2176 || o->reloc_count == 0
2177 || ((info->strip == strip_all || info->strip == strip_debugger)
2178 && (o->flags & SEC_DEBUGGING) != 0)
2179 || bfd_is_abs_section (o->output_section))
2180 continue;
2181
2182 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2183 (abfd, o, (PTR) NULL,
2184 (Elf_Internal_Rela *) NULL,
2185 info->keep_memory));
2186 if (internal_relocs == NULL)
2187 goto error_return;
2188
2189 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2190
2191 if (elf_section_data (o)->relocs != internal_relocs)
2192 free (internal_relocs);
2193
2194 if (! ok)
2195 goto error_return;
2196 }
2197 }
2198
2199 /* If this is a non-traditional, non-relocateable link, try to
2200 optimize the handling of the .stab/.stabstr sections. */
2201 if (! dynamic
2202 && ! info->relocateable
2203 && ! info->traditional_format
2204 && info->hash->creator->flavour == bfd_target_elf_flavour
2205 && is_elf_hash_table (info)
2206 && (info->strip != strip_all && info->strip != strip_debugger))
2207 {
2208 asection *stab, *stabstr;
2209
2210 stab = bfd_get_section_by_name (abfd, ".stab");
2211 if (stab != NULL
2212 && (stab->flags & SEC_MERGE) == 0
2213 && !bfd_is_abs_section (stab->output_section))
2214 {
2215 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2216
2217 if (stabstr != NULL)
2218 {
2219 struct bfd_elf_section_data *secdata;
2220
2221 secdata = elf_section_data (stab);
2222 if (! _bfd_link_section_stabs (abfd,
2223 & hash_table->stab_info,
2224 stab, stabstr,
2225 &secdata->sec_info))
2226 goto error_return;
2227 if (secdata->sec_info)
2228 secdata->sec_info_type = ELF_INFO_TYPE_STABS;
2229 }
2230 }
2231 }
2232
2233 if (! info->relocateable && ! dynamic
2234 && is_elf_hash_table (info))
2235 {
2236 asection *s;
2237
2238 for (s = abfd->sections; s != NULL; s = s->next)
2239 if ((s->flags & SEC_MERGE) != 0
2240 && !bfd_is_abs_section (s->output_section))
2241 {
2242 struct bfd_elf_section_data *secdata;
2243
2244 secdata = elf_section_data (s);
2245 if (! _bfd_merge_section (abfd,
2246 & hash_table->merge_info,
2247 s, &secdata->sec_info))
2248 goto error_return;
2249 else if (secdata->sec_info)
2250 secdata->sec_info_type = ELF_INFO_TYPE_MERGE;
2251 }
2252 }
2253
2254 if (is_elf_hash_table (info))
2255 {
2256 /* Add this bfd to the loaded list. */
2257 struct elf_link_loaded_list *n;
2258
2259 n = ((struct elf_link_loaded_list *)
2260 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list)));
2261 if (n == NULL)
2262 goto error_return;
2263 n->abfd = abfd;
2264 n->next = hash_table->loaded;
2265 hash_table->loaded = n;
2266 }
2267
2268 return true;
2269
2270 error_free_vers:
2271 if (extversym != NULL)
2272 free (extversym);
2273 error_free_sym:
2274 if (isymbuf != NULL)
2275 free (isymbuf);
2276 error_return:
2277 return false;
2278 }
2279
2280 /* Create some sections which will be filled in with dynamic linking
2281 information. ABFD is an input file which requires dynamic sections
2282 to be created. The dynamic sections take up virtual memory space
2283 when the final executable is run, so we need to create them before
2284 addresses are assigned to the output sections. We work out the
2285 actual contents and size of these sections later. */
2286
2287 boolean
2288 elf_link_create_dynamic_sections (abfd, info)
2289 bfd *abfd;
2290 struct bfd_link_info *info;
2291 {
2292 flagword flags;
2293 register asection *s;
2294 struct elf_link_hash_entry *h;
2295 struct elf_backend_data *bed;
2296
2297 if (! is_elf_hash_table (info))
2298 return false;
2299
2300 if (elf_hash_table (info)->dynamic_sections_created)
2301 return true;
2302
2303 /* Make sure that all dynamic sections use the same input BFD. */
2304 if (elf_hash_table (info)->dynobj == NULL)
2305 elf_hash_table (info)->dynobj = abfd;
2306 else
2307 abfd = elf_hash_table (info)->dynobj;
2308
2309 /* Note that we set the SEC_IN_MEMORY flag for all of these
2310 sections. */
2311 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2312 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2313
2314 /* A dynamically linked executable has a .interp section, but a
2315 shared library does not. */
2316 if (! info->shared)
2317 {
2318 s = bfd_make_section (abfd, ".interp");
2319 if (s == NULL
2320 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2321 return false;
2322 }
2323
2324 if (! info->traditional_format
2325 && info->hash->creator->flavour == bfd_target_elf_flavour)
2326 {
2327 s = bfd_make_section (abfd, ".eh_frame_hdr");
2328 if (s == NULL
2329 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2330 || ! bfd_set_section_alignment (abfd, s, 2))
2331 return false;
2332 }
2333
2334 /* Create sections to hold version informations. These are removed
2335 if they are not needed. */
2336 s = bfd_make_section (abfd, ".gnu.version_d");
2337 if (s == NULL
2338 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2339 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2340 return false;
2341
2342 s = bfd_make_section (abfd, ".gnu.version");
2343 if (s == NULL
2344 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2345 || ! bfd_set_section_alignment (abfd, s, 1))
2346 return false;
2347
2348 s = bfd_make_section (abfd, ".gnu.version_r");
2349 if (s == NULL
2350 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2351 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2352 return false;
2353
2354 s = bfd_make_section (abfd, ".dynsym");
2355 if (s == NULL
2356 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2357 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2358 return false;
2359
2360 s = bfd_make_section (abfd, ".dynstr");
2361 if (s == NULL
2362 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2363 return false;
2364
2365 /* Create a strtab to hold the dynamic symbol names. */
2366 if (elf_hash_table (info)->dynstr == NULL)
2367 {
2368 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
2369 if (elf_hash_table (info)->dynstr == NULL)
2370 return false;
2371 }
2372
2373 s = bfd_make_section (abfd, ".dynamic");
2374 if (s == NULL
2375 || ! bfd_set_section_flags (abfd, s, flags)
2376 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2377 return false;
2378
2379 /* The special symbol _DYNAMIC is always set to the start of the
2380 .dynamic section. This call occurs before we have processed the
2381 symbols for any dynamic object, so we don't have to worry about
2382 overriding a dynamic definition. We could set _DYNAMIC in a
2383 linker script, but we only want to define it if we are, in fact,
2384 creating a .dynamic section. We don't want to define it if there
2385 is no .dynamic section, since on some ELF platforms the start up
2386 code examines it to decide how to initialize the process. */
2387 h = NULL;
2388 if (! (_bfd_generic_link_add_one_symbol
2389 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2390 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2391 (struct bfd_link_hash_entry **) &h)))
2392 return false;
2393 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2394 h->type = STT_OBJECT;
2395
2396 if (info->shared
2397 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2398 return false;
2399
2400 bed = get_elf_backend_data (abfd);
2401
2402 s = bfd_make_section (abfd, ".hash");
2403 if (s == NULL
2404 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2405 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2406 return false;
2407 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2408
2409 /* Let the backend create the rest of the sections. This lets the
2410 backend set the right flags. The backend will normally create
2411 the .got and .plt sections. */
2412 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2413 return false;
2414
2415 elf_hash_table (info)->dynamic_sections_created = true;
2416
2417 return true;
2418 }
2419
2420 /* Add an entry to the .dynamic table. */
2421
2422 boolean
2423 elf_add_dynamic_entry (info, tag, val)
2424 struct bfd_link_info *info;
2425 bfd_vma tag;
2426 bfd_vma val;
2427 {
2428 Elf_Internal_Dyn dyn;
2429 bfd *dynobj;
2430 asection *s;
2431 bfd_size_type newsize;
2432 bfd_byte *newcontents;
2433
2434 if (! is_elf_hash_table (info))
2435 return false;
2436
2437 dynobj = elf_hash_table (info)->dynobj;
2438
2439 s = bfd_get_section_by_name (dynobj, ".dynamic");
2440 BFD_ASSERT (s != NULL);
2441
2442 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2443 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2444 if (newcontents == NULL)
2445 return false;
2446
2447 dyn.d_tag = tag;
2448 dyn.d_un.d_val = val;
2449 elf_swap_dyn_out (dynobj, &dyn,
2450 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2451
2452 s->_raw_size = newsize;
2453 s->contents = newcontents;
2454
2455 return true;
2456 }
2457 \f
2458 /* Read and swap the relocs from the section indicated by SHDR. This
2459 may be either a REL or a RELA section. The relocations are
2460 translated into RELA relocations and stored in INTERNAL_RELOCS,
2461 which should have already been allocated to contain enough space.
2462 The EXTERNAL_RELOCS are a buffer where the external form of the
2463 relocations should be stored.
2464
2465 Returns false if something goes wrong. */
2466
2467 static boolean
2468 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2469 internal_relocs)
2470 bfd *abfd;
2471 Elf_Internal_Shdr *shdr;
2472 PTR external_relocs;
2473 Elf_Internal_Rela *internal_relocs;
2474 {
2475 struct elf_backend_data *bed;
2476 bfd_size_type amt;
2477
2478 /* If there aren't any relocations, that's OK. */
2479 if (!shdr)
2480 return true;
2481
2482 /* Position ourselves at the start of the section. */
2483 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2484 return false;
2485
2486 /* Read the relocations. */
2487 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2488 return false;
2489
2490 bed = get_elf_backend_data (abfd);
2491
2492 /* Convert the external relocations to the internal format. */
2493 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2494 {
2495 Elf_External_Rel *erel;
2496 Elf_External_Rel *erelend;
2497 Elf_Internal_Rela *irela;
2498 Elf_Internal_Rel *irel;
2499
2500 erel = (Elf_External_Rel *) external_relocs;
2501 erelend = erel + NUM_SHDR_ENTRIES (shdr);
2502 irela = internal_relocs;
2503 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
2504 irel = bfd_alloc (abfd, amt);
2505 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2506 {
2507 unsigned int i;
2508
2509 if (bed->s->swap_reloc_in)
2510 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2511 else
2512 elf_swap_reloc_in (abfd, erel, irel);
2513
2514 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2515 {
2516 irela[i].r_offset = irel[i].r_offset;
2517 irela[i].r_info = irel[i].r_info;
2518 irela[i].r_addend = 0;
2519 }
2520 }
2521 }
2522 else
2523 {
2524 Elf_External_Rela *erela;
2525 Elf_External_Rela *erelaend;
2526 Elf_Internal_Rela *irela;
2527
2528 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2529
2530 erela = (Elf_External_Rela *) external_relocs;
2531 erelaend = erela + NUM_SHDR_ENTRIES (shdr);
2532 irela = internal_relocs;
2533 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2534 {
2535 if (bed->s->swap_reloca_in)
2536 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2537 else
2538 elf_swap_reloca_in (abfd, erela, irela);
2539 }
2540 }
2541
2542 return true;
2543 }
2544
2545 /* Read and swap the relocs for a section O. They may have been
2546 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2547 not NULL, they are used as buffers to read into. They are known to
2548 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2549 the return value is allocated using either malloc or bfd_alloc,
2550 according to the KEEP_MEMORY argument. If O has two relocation
2551 sections (both REL and RELA relocations), then the REL_HDR
2552 relocations will appear first in INTERNAL_RELOCS, followed by the
2553 REL_HDR2 relocations. */
2554
2555 Elf_Internal_Rela *
2556 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2557 keep_memory)
2558 bfd *abfd;
2559 asection *o;
2560 PTR external_relocs;
2561 Elf_Internal_Rela *internal_relocs;
2562 boolean keep_memory;
2563 {
2564 Elf_Internal_Shdr *rel_hdr;
2565 PTR alloc1 = NULL;
2566 Elf_Internal_Rela *alloc2 = NULL;
2567 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2568
2569 if (elf_section_data (o)->relocs != NULL)
2570 return elf_section_data (o)->relocs;
2571
2572 if (o->reloc_count == 0)
2573 return NULL;
2574
2575 rel_hdr = &elf_section_data (o)->rel_hdr;
2576
2577 if (internal_relocs == NULL)
2578 {
2579 bfd_size_type size;
2580
2581 size = o->reloc_count;
2582 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2583 if (keep_memory)
2584 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2585 else
2586 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2587 if (internal_relocs == NULL)
2588 goto error_return;
2589 }
2590
2591 if (external_relocs == NULL)
2592 {
2593 bfd_size_type size = rel_hdr->sh_size;
2594
2595 if (elf_section_data (o)->rel_hdr2)
2596 size += elf_section_data (o)->rel_hdr2->sh_size;
2597 alloc1 = (PTR) bfd_malloc (size);
2598 if (alloc1 == NULL)
2599 goto error_return;
2600 external_relocs = alloc1;
2601 }
2602
2603 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2604 external_relocs,
2605 internal_relocs))
2606 goto error_return;
2607 if (!elf_link_read_relocs_from_section
2608 (abfd,
2609 elf_section_data (o)->rel_hdr2,
2610 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2611 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2612 * bed->s->int_rels_per_ext_rel)))
2613 goto error_return;
2614
2615 /* Cache the results for next time, if we can. */
2616 if (keep_memory)
2617 elf_section_data (o)->relocs = internal_relocs;
2618
2619 if (alloc1 != NULL)
2620 free (alloc1);
2621
2622 /* Don't free alloc2, since if it was allocated we are passing it
2623 back (under the name of internal_relocs). */
2624
2625 return internal_relocs;
2626
2627 error_return:
2628 if (alloc1 != NULL)
2629 free (alloc1);
2630 if (alloc2 != NULL)
2631 free (alloc2);
2632 return NULL;
2633 }
2634 \f
2635 /* Record an assignment to a symbol made by a linker script. We need
2636 this in case some dynamic object refers to this symbol. */
2637
2638 boolean
2639 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2640 bfd *output_bfd ATTRIBUTE_UNUSED;
2641 struct bfd_link_info *info;
2642 const char *name;
2643 boolean provide;
2644 {
2645 struct elf_link_hash_entry *h;
2646
2647 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2648 return true;
2649
2650 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2651 if (h == NULL)
2652 return false;
2653
2654 if (h->root.type == bfd_link_hash_new)
2655 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2656
2657 /* If this symbol is being provided by the linker script, and it is
2658 currently defined by a dynamic object, but not by a regular
2659 object, then mark it as undefined so that the generic linker will
2660 force the correct value. */
2661 if (provide
2662 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2663 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2664 h->root.type = bfd_link_hash_undefined;
2665
2666 /* If this symbol is not being provided by the linker script, and it is
2667 currently defined by a dynamic object, but not by a regular object,
2668 then clear out any version information because the symbol will not be
2669 associated with the dynamic object any more. */
2670 if (!provide
2671 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2672 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2673 h->verinfo.verdef = NULL;
2674
2675 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2676
2677 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2678 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2679 || info->shared)
2680 && h->dynindx == -1)
2681 {
2682 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2683 return false;
2684
2685 /* If this is a weak defined symbol, and we know a corresponding
2686 real symbol from the same dynamic object, make sure the real
2687 symbol is also made into a dynamic symbol. */
2688 if (h->weakdef != NULL
2689 && h->weakdef->dynindx == -1)
2690 {
2691 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2692 return false;
2693 }
2694 }
2695
2696 return true;
2697 }
2698 \f
2699 /* This structure is used to pass information to
2700 elf_link_assign_sym_version. */
2701
2702 struct elf_assign_sym_version_info
2703 {
2704 /* Output BFD. */
2705 bfd *output_bfd;
2706 /* General link information. */
2707 struct bfd_link_info *info;
2708 /* Version tree. */
2709 struct bfd_elf_version_tree *verdefs;
2710 /* Whether we had a failure. */
2711 boolean failed;
2712 };
2713
2714 /* This structure is used to pass information to
2715 elf_link_find_version_dependencies. */
2716
2717 struct elf_find_verdep_info
2718 {
2719 /* Output BFD. */
2720 bfd *output_bfd;
2721 /* General link information. */
2722 struct bfd_link_info *info;
2723 /* The number of dependencies. */
2724 unsigned int vers;
2725 /* Whether we had a failure. */
2726 boolean failed;
2727 };
2728
2729 /* Array used to determine the number of hash table buckets to use
2730 based on the number of symbols there are. If there are fewer than
2731 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2732 fewer than 37 we use 17 buckets, and so forth. We never use more
2733 than 32771 buckets. */
2734
2735 static const size_t elf_buckets[] =
2736 {
2737 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2738 16411, 32771, 0
2739 };
2740
2741 /* Compute bucket count for hashing table. We do not use a static set
2742 of possible tables sizes anymore. Instead we determine for all
2743 possible reasonable sizes of the table the outcome (i.e., the
2744 number of collisions etc) and choose the best solution. The
2745 weighting functions are not too simple to allow the table to grow
2746 without bounds. Instead one of the weighting factors is the size.
2747 Therefore the result is always a good payoff between few collisions
2748 (= short chain lengths) and table size. */
2749 static size_t
2750 compute_bucket_count (info)
2751 struct bfd_link_info *info;
2752 {
2753 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2754 size_t best_size = 0;
2755 unsigned long int *hashcodes;
2756 unsigned long int *hashcodesp;
2757 unsigned long int i;
2758 bfd_size_type amt;
2759
2760 /* Compute the hash values for all exported symbols. At the same
2761 time store the values in an array so that we could use them for
2762 optimizations. */
2763 amt = dynsymcount;
2764 amt *= sizeof (unsigned long int);
2765 hashcodes = (unsigned long int *) bfd_malloc (amt);
2766 if (hashcodes == NULL)
2767 return 0;
2768 hashcodesp = hashcodes;
2769
2770 /* Put all hash values in HASHCODES. */
2771 elf_link_hash_traverse (elf_hash_table (info),
2772 elf_collect_hash_codes, &hashcodesp);
2773
2774 /* We have a problem here. The following code to optimize the table
2775 size requires an integer type with more the 32 bits. If
2776 BFD_HOST_U_64_BIT is set we know about such a type. */
2777 #ifdef BFD_HOST_U_64_BIT
2778 if (info->optimize)
2779 {
2780 unsigned long int nsyms = hashcodesp - hashcodes;
2781 size_t minsize;
2782 size_t maxsize;
2783 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2784 unsigned long int *counts ;
2785
2786 /* Possible optimization parameters: if we have NSYMS symbols we say
2787 that the hashing table must at least have NSYMS/4 and at most
2788 2*NSYMS buckets. */
2789 minsize = nsyms / 4;
2790 if (minsize == 0)
2791 minsize = 1;
2792 best_size = maxsize = nsyms * 2;
2793
2794 /* Create array where we count the collisions in. We must use bfd_malloc
2795 since the size could be large. */
2796 amt = maxsize;
2797 amt *= sizeof (unsigned long int);
2798 counts = (unsigned long int *) bfd_malloc (amt);
2799 if (counts == NULL)
2800 {
2801 free (hashcodes);
2802 return 0;
2803 }
2804
2805 /* Compute the "optimal" size for the hash table. The criteria is a
2806 minimal chain length. The minor criteria is (of course) the size
2807 of the table. */
2808 for (i = minsize; i < maxsize; ++i)
2809 {
2810 /* Walk through the array of hashcodes and count the collisions. */
2811 BFD_HOST_U_64_BIT max;
2812 unsigned long int j;
2813 unsigned long int fact;
2814
2815 memset (counts, '\0', i * sizeof (unsigned long int));
2816
2817 /* Determine how often each hash bucket is used. */
2818 for (j = 0; j < nsyms; ++j)
2819 ++counts[hashcodes[j] % i];
2820
2821 /* For the weight function we need some information about the
2822 pagesize on the target. This is information need not be 100%
2823 accurate. Since this information is not available (so far) we
2824 define it here to a reasonable default value. If it is crucial
2825 to have a better value some day simply define this value. */
2826 # ifndef BFD_TARGET_PAGESIZE
2827 # define BFD_TARGET_PAGESIZE (4096)
2828 # endif
2829
2830 /* We in any case need 2 + NSYMS entries for the size values and
2831 the chains. */
2832 max = (2 + nsyms) * (ARCH_SIZE / 8);
2833
2834 # if 1
2835 /* Variant 1: optimize for short chains. We add the squares
2836 of all the chain lengths (which favous many small chain
2837 over a few long chains). */
2838 for (j = 0; j < i; ++j)
2839 max += counts[j] * counts[j];
2840
2841 /* This adds penalties for the overall size of the table. */
2842 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2843 max *= fact * fact;
2844 # else
2845 /* Variant 2: Optimize a lot more for small table. Here we
2846 also add squares of the size but we also add penalties for
2847 empty slots (the +1 term). */
2848 for (j = 0; j < i; ++j)
2849 max += (1 + counts[j]) * (1 + counts[j]);
2850
2851 /* The overall size of the table is considered, but not as
2852 strong as in variant 1, where it is squared. */
2853 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2854 max *= fact;
2855 # endif
2856
2857 /* Compare with current best results. */
2858 if (max < best_chlen)
2859 {
2860 best_chlen = max;
2861 best_size = i;
2862 }
2863 }
2864
2865 free (counts);
2866 }
2867 else
2868 #endif /* defined (BFD_HOST_U_64_BIT) */
2869 {
2870 /* This is the fallback solution if no 64bit type is available or if we
2871 are not supposed to spend much time on optimizations. We select the
2872 bucket count using a fixed set of numbers. */
2873 for (i = 0; elf_buckets[i] != 0; i++)
2874 {
2875 best_size = elf_buckets[i];
2876 if (dynsymcount < elf_buckets[i + 1])
2877 break;
2878 }
2879 }
2880
2881 /* Free the arrays we needed. */
2882 free (hashcodes);
2883
2884 return best_size;
2885 }
2886
2887 /* Set up the sizes and contents of the ELF dynamic sections. This is
2888 called by the ELF linker emulation before_allocation routine. We
2889 must set the sizes of the sections before the linker sets the
2890 addresses of the various sections. */
2891
2892 boolean
2893 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2894 filter_shlib,
2895 auxiliary_filters, info, sinterpptr,
2896 verdefs)
2897 bfd *output_bfd;
2898 const char *soname;
2899 const char *rpath;
2900 const char *filter_shlib;
2901 const char * const *auxiliary_filters;
2902 struct bfd_link_info *info;
2903 asection **sinterpptr;
2904 struct bfd_elf_version_tree *verdefs;
2905 {
2906 bfd_size_type soname_indx;
2907 bfd *dynobj;
2908 struct elf_backend_data *bed;
2909 struct elf_assign_sym_version_info asvinfo;
2910
2911 *sinterpptr = NULL;
2912
2913 soname_indx = (bfd_size_type) -1;
2914
2915 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2916 return true;
2917
2918 if (! is_elf_hash_table (info))
2919 return true;
2920
2921 /* Any syms created from now on start with -1 in
2922 got.refcount/offset and plt.refcount/offset. */
2923 elf_hash_table (info)->init_refcount = -1;
2924
2925 /* The backend may have to create some sections regardless of whether
2926 we're dynamic or not. */
2927 bed = get_elf_backend_data (output_bfd);
2928 if (bed->elf_backend_always_size_sections
2929 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2930 return false;
2931
2932 dynobj = elf_hash_table (info)->dynobj;
2933
2934 /* If there were no dynamic objects in the link, there is nothing to
2935 do here. */
2936 if (dynobj == NULL)
2937 return true;
2938
2939 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
2940 return false;
2941
2942 if (elf_hash_table (info)->dynamic_sections_created)
2943 {
2944 struct elf_info_failed eif;
2945 struct elf_link_hash_entry *h;
2946 asection *dynstr;
2947 struct bfd_elf_version_tree *t;
2948 struct bfd_elf_version_expr *d;
2949 boolean all_defined;
2950
2951 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2952 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2953
2954 if (soname != NULL)
2955 {
2956 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
2957 soname, true);
2958 if (soname_indx == (bfd_size_type) -1
2959 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SONAME,
2960 soname_indx))
2961 return false;
2962 }
2963
2964 if (info->symbolic)
2965 {
2966 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMBOLIC,
2967 (bfd_vma) 0))
2968 return false;
2969 info->flags |= DF_SYMBOLIC;
2970 }
2971
2972 if (rpath != NULL)
2973 {
2974 bfd_size_type indx;
2975
2976 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
2977 true);
2978 if (info->new_dtags)
2979 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
2980 if (indx == (bfd_size_type) -1
2981 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_RPATH, indx)
2982 || (info->new_dtags
2983 && ! elf_add_dynamic_entry (info, (bfd_vma) DT_RUNPATH,
2984 indx)))
2985 return false;
2986 }
2987
2988 if (filter_shlib != NULL)
2989 {
2990 bfd_size_type indx;
2991
2992 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
2993 filter_shlib, true);
2994 if (indx == (bfd_size_type) -1
2995 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_FILTER, indx))
2996 return false;
2997 }
2998
2999 if (auxiliary_filters != NULL)
3000 {
3001 const char * const *p;
3002
3003 for (p = auxiliary_filters; *p != NULL; p++)
3004 {
3005 bfd_size_type indx;
3006
3007 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3008 *p, true);
3009 if (indx == (bfd_size_type) -1
3010 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_AUXILIARY,
3011 indx))
3012 return false;
3013 }
3014 }
3015
3016 eif.info = info;
3017 eif.verdefs = verdefs;
3018 eif.failed = false;
3019
3020 /* If we are supposed to export all symbols into the dynamic symbol
3021 table (this is not the normal case), then do so. */
3022 if (info->export_dynamic)
3023 {
3024 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
3025 (PTR) &eif);
3026 if (eif.failed)
3027 return false;
3028 }
3029
3030 /* Make all global versions with definiton. */
3031 for (t = verdefs; t != NULL; t = t->next)
3032 for (d = t->globals; d != NULL; d = d->next)
3033 if (!d->symver && strchr (d->pattern, '*') == NULL)
3034 {
3035 const char *verstr, *name;
3036 size_t namelen, verlen, newlen;
3037 char *newname, *p;
3038 struct elf_link_hash_entry *newh;
3039
3040 name = d->pattern;
3041 namelen = strlen (name);
3042 verstr = t->name;
3043 verlen = strlen (verstr);
3044 newlen = namelen + verlen + 3;
3045
3046 newname = (char *) bfd_malloc ((bfd_size_type) newlen);
3047 if (newname == NULL)
3048 return false;
3049 memcpy (newname, name, namelen);
3050
3051 /* Check the hidden versioned definition. */
3052 p = newname + namelen;
3053 *p++ = ELF_VER_CHR;
3054 memcpy (p, verstr, verlen + 1);
3055 newh = elf_link_hash_lookup (elf_hash_table (info),
3056 newname, false, false,
3057 false);
3058 if (newh == NULL
3059 || (newh->root.type != bfd_link_hash_defined
3060 && newh->root.type != bfd_link_hash_defweak))
3061 {
3062 /* Check the default versioned definition. */
3063 *p++ = ELF_VER_CHR;
3064 memcpy (p, verstr, verlen + 1);
3065 newh = elf_link_hash_lookup (elf_hash_table (info),
3066 newname, false, false,
3067 false);
3068 }
3069 free (newname);
3070
3071 /* Mark this version if there is a definition and it is
3072 not defined in a shared object. */
3073 if (newh != NULL
3074 && ((newh->elf_link_hash_flags
3075 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
3076 && (newh->root.type == bfd_link_hash_defined
3077 || newh->root.type == bfd_link_hash_defweak))
3078 d->symver = 1;
3079 }
3080
3081 /* Attach all the symbols to their version information. */
3082 asvinfo.output_bfd = output_bfd;
3083 asvinfo.info = info;
3084 asvinfo.verdefs = verdefs;
3085 asvinfo.failed = false;
3086
3087 elf_link_hash_traverse (elf_hash_table (info),
3088 elf_link_assign_sym_version,
3089 (PTR) &asvinfo);
3090 if (asvinfo.failed)
3091 return false;
3092
3093 if (!info->allow_undefined_version)
3094 {
3095 /* Check if all global versions have a definiton. */
3096 all_defined = true;
3097 for (t = verdefs; t != NULL; t = t->next)
3098 for (d = t->globals; d != NULL; d = d->next)
3099 if (!d->symver && !d->script
3100 && strchr (d->pattern, '*') == NULL)
3101 {
3102 (*_bfd_error_handler)
3103 (_("%s: undefined version: %s"),
3104 d->pattern, t->name);
3105 all_defined = false;
3106 }
3107
3108 if (!all_defined)
3109 {
3110 bfd_set_error (bfd_error_bad_value);
3111 return false;
3112 }
3113 }
3114
3115 /* Find all symbols which were defined in a dynamic object and make
3116 the backend pick a reasonable value for them. */
3117 elf_link_hash_traverse (elf_hash_table (info),
3118 elf_adjust_dynamic_symbol,
3119 (PTR) &eif);
3120 if (eif.failed)
3121 return false;
3122
3123 /* Add some entries to the .dynamic section. We fill in some of the
3124 values later, in elf_bfd_final_link, but we must add the entries
3125 now so that we know the final size of the .dynamic section. */
3126
3127 /* If there are initialization and/or finalization functions to
3128 call then add the corresponding DT_INIT/DT_FINI entries. */
3129 h = (info->init_function
3130 ? elf_link_hash_lookup (elf_hash_table (info),
3131 info->init_function, false,
3132 false, false)
3133 : NULL);
3134 if (h != NULL
3135 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3136 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3137 {
3138 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_INIT, (bfd_vma) 0))
3139 return false;
3140 }
3141 h = (info->fini_function
3142 ? elf_link_hash_lookup (elf_hash_table (info),
3143 info->fini_function, false,
3144 false, false)
3145 : NULL);
3146 if (h != NULL
3147 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3148 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3149 {
3150 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FINI, (bfd_vma) 0))
3151 return false;
3152 }
3153
3154 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
3155 {
3156 /* DT_PREINIT_ARRAY is not allowed in shared library. */
3157 if (info->shared)
3158 {
3159 bfd *sub;
3160 asection *o;
3161
3162 for (sub = info->input_bfds; sub != NULL;
3163 sub = sub->link_next)
3164 for (o = sub->sections; o != NULL; o = o->next)
3165 if (elf_section_data (o)->this_hdr.sh_type
3166 == SHT_PREINIT_ARRAY)
3167 {
3168 (*_bfd_error_handler)
3169 (_("%s: .preinit_array section is not allowed in DSO"),
3170 bfd_archive_filename (sub));
3171 break;
3172 }
3173
3174 bfd_set_error (bfd_error_nonrepresentable_section);
3175 return false;
3176 }
3177
3178 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAY,
3179 (bfd_vma) 0)
3180 || !elf_add_dynamic_entry (info, (bfd_vma) DT_PREINIT_ARRAYSZ,
3181 (bfd_vma) 0))
3182 return false;
3183 }
3184 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
3185 {
3186 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAY,
3187 (bfd_vma) 0)
3188 || !elf_add_dynamic_entry (info, (bfd_vma) DT_INIT_ARRAYSZ,
3189 (bfd_vma) 0))
3190 return false;
3191 }
3192 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
3193 {
3194 if (!elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAY,
3195 (bfd_vma) 0)
3196 || !elf_add_dynamic_entry (info, (bfd_vma) DT_FINI_ARRAYSZ,
3197 (bfd_vma) 0))
3198 return false;
3199 }
3200
3201 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3202 /* If .dynstr is excluded from the link, we don't want any of
3203 these tags. Strictly, we should be checking each section
3204 individually; This quick check covers for the case where
3205 someone does a /DISCARD/ : { *(*) }. */
3206 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3207 {
3208 bfd_size_type strsize;
3209
3210 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3211 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_HASH, (bfd_vma) 0)
3212 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRTAB, (bfd_vma) 0)
3213 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMTAB, (bfd_vma) 0)
3214 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_STRSZ, strsize)
3215 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_SYMENT,
3216 (bfd_vma) sizeof (Elf_External_Sym)))
3217 return false;
3218 }
3219 }
3220
3221 /* The backend must work out the sizes of all the other dynamic
3222 sections. */
3223 if (bed->elf_backend_size_dynamic_sections
3224 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3225 return false;
3226
3227 if (elf_hash_table (info)->dynamic_sections_created)
3228 {
3229 bfd_size_type dynsymcount;
3230 asection *s;
3231 size_t bucketcount = 0;
3232 size_t hash_entry_size;
3233 unsigned int dtagcount;
3234
3235 /* Set up the version definition section. */
3236 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3237 BFD_ASSERT (s != NULL);
3238
3239 /* We may have created additional version definitions if we are
3240 just linking a regular application. */
3241 verdefs = asvinfo.verdefs;
3242
3243 /* Skip anonymous version tag. */
3244 if (verdefs != NULL && verdefs->vernum == 0)
3245 verdefs = verdefs->next;
3246
3247 if (verdefs == NULL)
3248 _bfd_strip_section_from_output (info, s);
3249 else
3250 {
3251 unsigned int cdefs;
3252 bfd_size_type size;
3253 struct bfd_elf_version_tree *t;
3254 bfd_byte *p;
3255 Elf_Internal_Verdef def;
3256 Elf_Internal_Verdaux defaux;
3257
3258 cdefs = 0;
3259 size = 0;
3260
3261 /* Make space for the base version. */
3262 size += sizeof (Elf_External_Verdef);
3263 size += sizeof (Elf_External_Verdaux);
3264 ++cdefs;
3265
3266 for (t = verdefs; t != NULL; t = t->next)
3267 {
3268 struct bfd_elf_version_deps *n;
3269
3270 size += sizeof (Elf_External_Verdef);
3271 size += sizeof (Elf_External_Verdaux);
3272 ++cdefs;
3273
3274 for (n = t->deps; n != NULL; n = n->next)
3275 size += sizeof (Elf_External_Verdaux);
3276 }
3277
3278 s->_raw_size = size;
3279 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3280 if (s->contents == NULL && s->_raw_size != 0)
3281 return false;
3282
3283 /* Fill in the version definition section. */
3284
3285 p = s->contents;
3286
3287 def.vd_version = VER_DEF_CURRENT;
3288 def.vd_flags = VER_FLG_BASE;
3289 def.vd_ndx = 1;
3290 def.vd_cnt = 1;
3291 def.vd_aux = sizeof (Elf_External_Verdef);
3292 def.vd_next = (sizeof (Elf_External_Verdef)
3293 + sizeof (Elf_External_Verdaux));
3294
3295 if (soname_indx != (bfd_size_type) -1)
3296 {
3297 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3298 soname_indx);
3299 def.vd_hash = bfd_elf_hash (soname);
3300 defaux.vda_name = soname_indx;
3301 }
3302 else
3303 {
3304 const char *name;
3305 bfd_size_type indx;
3306
3307 name = basename (output_bfd->filename);
3308 def.vd_hash = bfd_elf_hash (name);
3309 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3310 name, false);
3311 if (indx == (bfd_size_type) -1)
3312 return false;
3313 defaux.vda_name = indx;
3314 }
3315 defaux.vda_next = 0;
3316
3317 _bfd_elf_swap_verdef_out (output_bfd, &def,
3318 (Elf_External_Verdef *) p);
3319 p += sizeof (Elf_External_Verdef);
3320 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3321 (Elf_External_Verdaux *) p);
3322 p += sizeof (Elf_External_Verdaux);
3323
3324 for (t = verdefs; t != NULL; t = t->next)
3325 {
3326 unsigned int cdeps;
3327 struct bfd_elf_version_deps *n;
3328 struct elf_link_hash_entry *h;
3329
3330 cdeps = 0;
3331 for (n = t->deps; n != NULL; n = n->next)
3332 ++cdeps;
3333
3334 /* Add a symbol representing this version. */
3335 h = NULL;
3336 if (! (_bfd_generic_link_add_one_symbol
3337 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3338 (bfd_vma) 0, (const char *) NULL, false,
3339 get_elf_backend_data (dynobj)->collect,
3340 (struct bfd_link_hash_entry **) &h)))
3341 return false;
3342 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3343 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3344 h->type = STT_OBJECT;
3345 h->verinfo.vertree = t;
3346
3347 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3348 return false;
3349
3350 def.vd_version = VER_DEF_CURRENT;
3351 def.vd_flags = 0;
3352 if (t->globals == NULL && t->locals == NULL && ! t->used)
3353 def.vd_flags |= VER_FLG_WEAK;
3354 def.vd_ndx = t->vernum + 1;
3355 def.vd_cnt = cdeps + 1;
3356 def.vd_hash = bfd_elf_hash (t->name);
3357 def.vd_aux = sizeof (Elf_External_Verdef);
3358 if (t->next != NULL)
3359 def.vd_next = (sizeof (Elf_External_Verdef)
3360 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3361 else
3362 def.vd_next = 0;
3363
3364 _bfd_elf_swap_verdef_out (output_bfd, &def,
3365 (Elf_External_Verdef *) p);
3366 p += sizeof (Elf_External_Verdef);
3367
3368 defaux.vda_name = h->dynstr_index;
3369 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3370 h->dynstr_index);
3371 if (t->deps == NULL)
3372 defaux.vda_next = 0;
3373 else
3374 defaux.vda_next = sizeof (Elf_External_Verdaux);
3375 t->name_indx = defaux.vda_name;
3376
3377 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3378 (Elf_External_Verdaux *) p);
3379 p += sizeof (Elf_External_Verdaux);
3380
3381 for (n = t->deps; n != NULL; n = n->next)
3382 {
3383 if (n->version_needed == NULL)
3384 {
3385 /* This can happen if there was an error in the
3386 version script. */
3387 defaux.vda_name = 0;
3388 }
3389 else
3390 {
3391 defaux.vda_name = n->version_needed->name_indx;
3392 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
3393 defaux.vda_name);
3394 }
3395 if (n->next == NULL)
3396 defaux.vda_next = 0;
3397 else
3398 defaux.vda_next = sizeof (Elf_External_Verdaux);
3399
3400 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3401 (Elf_External_Verdaux *) p);
3402 p += sizeof (Elf_External_Verdaux);
3403 }
3404 }
3405
3406 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEF, (bfd_vma) 0)
3407 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERDEFNUM,
3408 (bfd_vma) cdefs))
3409 return false;
3410
3411 elf_tdata (output_bfd)->cverdefs = cdefs;
3412 }
3413
3414 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
3415 {
3416 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS, info->flags))
3417 return false;
3418 }
3419
3420 if (info->flags_1)
3421 {
3422 if (! info->shared)
3423 info->flags_1 &= ~ (DF_1_INITFIRST
3424 | DF_1_NODELETE
3425 | DF_1_NOOPEN);
3426 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_FLAGS_1,
3427 info->flags_1))
3428 return false;
3429 }
3430
3431 /* Work out the size of the version reference section. */
3432
3433 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3434 BFD_ASSERT (s != NULL);
3435 {
3436 struct elf_find_verdep_info sinfo;
3437
3438 sinfo.output_bfd = output_bfd;
3439 sinfo.info = info;
3440 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3441 if (sinfo.vers == 0)
3442 sinfo.vers = 1;
3443 sinfo.failed = false;
3444
3445 elf_link_hash_traverse (elf_hash_table (info),
3446 elf_link_find_version_dependencies,
3447 (PTR) &sinfo);
3448
3449 if (elf_tdata (output_bfd)->verref == NULL)
3450 _bfd_strip_section_from_output (info, s);
3451 else
3452 {
3453 Elf_Internal_Verneed *t;
3454 unsigned int size;
3455 unsigned int crefs;
3456 bfd_byte *p;
3457
3458 /* Build the version definition section. */
3459 size = 0;
3460 crefs = 0;
3461 for (t = elf_tdata (output_bfd)->verref;
3462 t != NULL;
3463 t = t->vn_nextref)
3464 {
3465 Elf_Internal_Vernaux *a;
3466
3467 size += sizeof (Elf_External_Verneed);
3468 ++crefs;
3469 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3470 size += sizeof (Elf_External_Vernaux);
3471 }
3472
3473 s->_raw_size = size;
3474 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3475 if (s->contents == NULL)
3476 return false;
3477
3478 p = s->contents;
3479 for (t = elf_tdata (output_bfd)->verref;
3480 t != NULL;
3481 t = t->vn_nextref)
3482 {
3483 unsigned int caux;
3484 Elf_Internal_Vernaux *a;
3485 bfd_size_type indx;
3486
3487 caux = 0;
3488 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3489 ++caux;
3490
3491 t->vn_version = VER_NEED_CURRENT;
3492 t->vn_cnt = caux;
3493 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3494 elf_dt_name (t->vn_bfd) != NULL
3495 ? elf_dt_name (t->vn_bfd)
3496 : basename (t->vn_bfd->filename),
3497 false);
3498 if (indx == (bfd_size_type) -1)
3499 return false;
3500 t->vn_file = indx;
3501 t->vn_aux = sizeof (Elf_External_Verneed);
3502 if (t->vn_nextref == NULL)
3503 t->vn_next = 0;
3504 else
3505 t->vn_next = (sizeof (Elf_External_Verneed)
3506 + caux * sizeof (Elf_External_Vernaux));
3507
3508 _bfd_elf_swap_verneed_out (output_bfd, t,
3509 (Elf_External_Verneed *) p);
3510 p += sizeof (Elf_External_Verneed);
3511
3512 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3513 {
3514 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3515 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
3516 a->vna_nodename, false);
3517 if (indx == (bfd_size_type) -1)
3518 return false;
3519 a->vna_name = indx;
3520 if (a->vna_nextptr == NULL)
3521 a->vna_next = 0;
3522 else
3523 a->vna_next = sizeof (Elf_External_Vernaux);
3524
3525 _bfd_elf_swap_vernaux_out (output_bfd, a,
3526 (Elf_External_Vernaux *) p);
3527 p += sizeof (Elf_External_Vernaux);
3528 }
3529 }
3530
3531 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEED,
3532 (bfd_vma) 0)
3533 || ! elf_add_dynamic_entry (info, (bfd_vma) DT_VERNEEDNUM,
3534 (bfd_vma) crefs))
3535 return false;
3536
3537 elf_tdata (output_bfd)->cverrefs = crefs;
3538 }
3539 }
3540
3541 /* Assign dynsym indicies. In a shared library we generate a
3542 section symbol for each output section, which come first.
3543 Next come all of the back-end allocated local dynamic syms,
3544 followed by the rest of the global symbols. */
3545
3546 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3547
3548 /* Work out the size of the symbol version section. */
3549 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3550 BFD_ASSERT (s != NULL);
3551 if (dynsymcount == 0
3552 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3553 {
3554 _bfd_strip_section_from_output (info, s);
3555 /* The DYNSYMCOUNT might have changed if we were going to
3556 output a dynamic symbol table entry for S. */
3557 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3558 }
3559 else
3560 {
3561 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3562 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3563 if (s->contents == NULL)
3564 return false;
3565
3566 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_VERSYM, (bfd_vma) 0))
3567 return false;
3568 }
3569
3570 /* Set the size of the .dynsym and .hash sections. We counted
3571 the number of dynamic symbols in elf_link_add_object_symbols.
3572 We will build the contents of .dynsym and .hash when we build
3573 the final symbol table, because until then we do not know the
3574 correct value to give the symbols. We built the .dynstr
3575 section as we went along in elf_link_add_object_symbols. */
3576 s = bfd_get_section_by_name (dynobj, ".dynsym");
3577 BFD_ASSERT (s != NULL);
3578 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3579 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3580 if (s->contents == NULL && s->_raw_size != 0)
3581 return false;
3582
3583 if (dynsymcount != 0)
3584 {
3585 Elf_Internal_Sym isym;
3586
3587 /* The first entry in .dynsym is a dummy symbol. */
3588 isym.st_value = 0;
3589 isym.st_size = 0;
3590 isym.st_name = 0;
3591 isym.st_info = 0;
3592 isym.st_other = 0;
3593 isym.st_shndx = 0;
3594 elf_swap_symbol_out (output_bfd, &isym, (PTR) s->contents, (PTR) 0);
3595 }
3596
3597 /* Compute the size of the hashing table. As a side effect this
3598 computes the hash values for all the names we export. */
3599 bucketcount = compute_bucket_count (info);
3600
3601 s = bfd_get_section_by_name (dynobj, ".hash");
3602 BFD_ASSERT (s != NULL);
3603 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3604 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3605 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3606 if (s->contents == NULL)
3607 return false;
3608
3609 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) bucketcount,
3610 s->contents);
3611 bfd_put (8 * hash_entry_size, output_bfd, (bfd_vma) dynsymcount,
3612 s->contents + hash_entry_size);
3613
3614 elf_hash_table (info)->bucketcount = bucketcount;
3615
3616 s = bfd_get_section_by_name (dynobj, ".dynstr");
3617 BFD_ASSERT (s != NULL);
3618
3619 elf_finalize_dynstr (output_bfd, info);
3620
3621 s->_raw_size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
3622
3623 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
3624 if (! elf_add_dynamic_entry (info, (bfd_vma) DT_NULL, (bfd_vma) 0))
3625 return false;
3626 }
3627
3628 return true;
3629 }
3630 \f
3631 /* This function is used to adjust offsets into .dynstr for
3632 dynamic symbols. This is called via elf_link_hash_traverse. */
3633
3634 static boolean elf_adjust_dynstr_offsets
3635 PARAMS ((struct elf_link_hash_entry *, PTR));
3636
3637 static boolean
3638 elf_adjust_dynstr_offsets (h, data)
3639 struct elf_link_hash_entry *h;
3640 PTR data;
3641 {
3642 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3643
3644 if (h->root.type == bfd_link_hash_warning)
3645 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3646
3647 if (h->dynindx != -1)
3648 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3649 return true;
3650 }
3651
3652 /* Assign string offsets in .dynstr, update all structures referencing
3653 them. */
3654
3655 static boolean
3656 elf_finalize_dynstr (output_bfd, info)
3657 bfd *output_bfd;
3658 struct bfd_link_info *info;
3659 {
3660 struct elf_link_local_dynamic_entry *entry;
3661 struct elf_strtab_hash *dynstr = elf_hash_table (info)->dynstr;
3662 bfd *dynobj = elf_hash_table (info)->dynobj;
3663 asection *sdyn;
3664 bfd_size_type size;
3665 Elf_External_Dyn *dyncon, *dynconend;
3666
3667 _bfd_elf_strtab_finalize (dynstr);
3668 size = _bfd_elf_strtab_size (dynstr);
3669
3670 /* Update all .dynamic entries referencing .dynstr strings. */
3671 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3672 BFD_ASSERT (sdyn != NULL);
3673
3674 dyncon = (Elf_External_Dyn *) sdyn->contents;
3675 dynconend = (Elf_External_Dyn *) (sdyn->contents +
3676 sdyn->_raw_size);
3677 for (; dyncon < dynconend; dyncon++)
3678 {
3679 Elf_Internal_Dyn dyn;
3680
3681 elf_swap_dyn_in (dynobj, dyncon, & dyn);
3682 switch (dyn.d_tag)
3683 {
3684 case DT_STRSZ:
3685 dyn.d_un.d_val = size;
3686 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3687 break;
3688 case DT_NEEDED:
3689 case DT_SONAME:
3690 case DT_RPATH:
3691 case DT_RUNPATH:
3692 case DT_FILTER:
3693 case DT_AUXILIARY:
3694 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3695 elf_swap_dyn_out (dynobj, & dyn, dyncon);
3696 break;
3697 default:
3698 break;
3699 }
3700 }
3701
3702 /* Now update local dynamic symbols. */
3703 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
3704 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3705 entry->isym.st_name);
3706
3707 /* And the rest of dynamic symbols. */
3708 elf_link_hash_traverse (elf_hash_table (info),
3709 elf_adjust_dynstr_offsets, dynstr);
3710
3711 /* Adjust version definitions. */
3712 if (elf_tdata (output_bfd)->cverdefs)
3713 {
3714 asection *s;
3715 bfd_byte *p;
3716 bfd_size_type i;
3717 Elf_Internal_Verdef def;
3718 Elf_Internal_Verdaux defaux;
3719
3720 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3721 p = (bfd_byte *) s->contents;
3722 do
3723 {
3724 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3725 &def);
3726 p += sizeof (Elf_External_Verdef);
3727 for (i = 0; i < def.vd_cnt; ++i)
3728 {
3729 _bfd_elf_swap_verdaux_in (output_bfd,
3730 (Elf_External_Verdaux *) p, &defaux);
3731 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3732 defaux.vda_name);
3733 _bfd_elf_swap_verdaux_out (output_bfd,
3734 &defaux, (Elf_External_Verdaux *) p);
3735 p += sizeof (Elf_External_Verdaux);
3736 }
3737 }
3738 while (def.vd_next);
3739 }
3740
3741 /* Adjust version references. */
3742 if (elf_tdata (output_bfd)->verref)
3743 {
3744 asection *s;
3745 bfd_byte *p;
3746 bfd_size_type i;
3747 Elf_Internal_Verneed need;
3748 Elf_Internal_Vernaux needaux;
3749
3750 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3751 p = (bfd_byte *) s->contents;
3752 do
3753 {
3754 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3755 &need);
3756 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3757 _bfd_elf_swap_verneed_out (output_bfd, &need,
3758 (Elf_External_Verneed *) p);
3759 p += sizeof (Elf_External_Verneed);
3760 for (i = 0; i < need.vn_cnt; ++i)
3761 {
3762 _bfd_elf_swap_vernaux_in (output_bfd,
3763 (Elf_External_Vernaux *) p, &needaux);
3764 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3765 needaux.vna_name);
3766 _bfd_elf_swap_vernaux_out (output_bfd,
3767 &needaux,
3768 (Elf_External_Vernaux *) p);
3769 p += sizeof (Elf_External_Vernaux);
3770 }
3771 }
3772 while (need.vn_next);
3773 }
3774
3775 return true;
3776 }
3777
3778 /* Fix up the flags for a symbol. This handles various cases which
3779 can only be fixed after all the input files are seen. This is
3780 currently called by both adjust_dynamic_symbol and
3781 assign_sym_version, which is unnecessary but perhaps more robust in
3782 the face of future changes. */
3783
3784 static boolean
3785 elf_fix_symbol_flags (h, eif)
3786 struct elf_link_hash_entry *h;
3787 struct elf_info_failed *eif;
3788 {
3789 /* If this symbol was mentioned in a non-ELF file, try to set
3790 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3791 permit a non-ELF file to correctly refer to a symbol defined in
3792 an ELF dynamic object. */
3793 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3794 {
3795 while (h->root.type == bfd_link_hash_indirect)
3796 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3797
3798 if (h->root.type != bfd_link_hash_defined
3799 && h->root.type != bfd_link_hash_defweak)
3800 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3801 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3802 else
3803 {
3804 if (h->root.u.def.section->owner != NULL
3805 && (bfd_get_flavour (h->root.u.def.section->owner)
3806 == bfd_target_elf_flavour))
3807 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3808 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3809 else
3810 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3811 }
3812
3813 if (h->dynindx == -1
3814 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3815 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3816 {
3817 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3818 {
3819 eif->failed = true;
3820 return false;
3821 }
3822 }
3823 }
3824 else
3825 {
3826 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3827 was first seen in a non-ELF file. Fortunately, if the symbol
3828 was first seen in an ELF file, we're probably OK unless the
3829 symbol was defined in a non-ELF file. Catch that case here.
3830 FIXME: We're still in trouble if the symbol was first seen in
3831 a dynamic object, and then later in a non-ELF regular object. */
3832 if ((h->root.type == bfd_link_hash_defined
3833 || h->root.type == bfd_link_hash_defweak)
3834 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3835 && (h->root.u.def.section->owner != NULL
3836 ? (bfd_get_flavour (h->root.u.def.section->owner)
3837 != bfd_target_elf_flavour)
3838 : (bfd_is_abs_section (h->root.u.def.section)
3839 && (h->elf_link_hash_flags
3840 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3841 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3842 }
3843
3844 /* If this is a final link, and the symbol was defined as a common
3845 symbol in a regular object file, and there was no definition in
3846 any dynamic object, then the linker will have allocated space for
3847 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3848 flag will not have been set. */
3849 if (h->root.type == bfd_link_hash_defined
3850 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3851 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3852 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3853 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3854 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3855
3856 /* If -Bsymbolic was used (which means to bind references to global
3857 symbols to the definition within the shared object), and this
3858 symbol was defined in a regular object, then it actually doesn't
3859 need a PLT entry, and we can accomplish that by forcing it local.
3860 Likewise, if the symbol has hidden or internal visibility.
3861 FIXME: It might be that we also do not need a PLT for other
3862 non-hidden visibilities, but we would have to tell that to the
3863 backend specifically; we can't just clear PLT-related data here. */
3864 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3865 && eif->info->shared
3866 && is_elf_hash_table (eif->info)
3867 && (eif->info->symbolic
3868 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3869 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
3870 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3871 {
3872 struct elf_backend_data *bed;
3873 boolean force_local;
3874
3875 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3876
3877 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3878 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
3879 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
3880 }
3881
3882 /* If this is a weak defined symbol in a dynamic object, and we know
3883 the real definition in the dynamic object, copy interesting flags
3884 over to the real definition. */
3885 if (h->weakdef != NULL)
3886 {
3887 struct elf_link_hash_entry *weakdef;
3888
3889 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3890 || h->root.type == bfd_link_hash_defweak);
3891 weakdef = h->weakdef;
3892 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3893 || weakdef->root.type == bfd_link_hash_defweak);
3894 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3895
3896 /* If the real definition is defined by a regular object file,
3897 don't do anything special. See the longer description in
3898 elf_adjust_dynamic_symbol, below. */
3899 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3900 h->weakdef = NULL;
3901 else
3902 {
3903 struct elf_backend_data *bed;
3904
3905 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3906 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
3907 }
3908 }
3909
3910 return true;
3911 }
3912
3913 /* Make the backend pick a good value for a dynamic symbol. This is
3914 called via elf_link_hash_traverse, and also calls itself
3915 recursively. */
3916
3917 static boolean
3918 elf_adjust_dynamic_symbol (h, data)
3919 struct elf_link_hash_entry *h;
3920 PTR data;
3921 {
3922 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3923 bfd *dynobj;
3924 struct elf_backend_data *bed;
3925
3926 if (h->root.type == bfd_link_hash_warning)
3927 {
3928 h->plt.offset = (bfd_vma) -1;
3929 h->got.offset = (bfd_vma) -1;
3930
3931 /* When warning symbols are created, they **replace** the "real"
3932 entry in the hash table, thus we never get to see the real
3933 symbol in a hash traversal. So look at it now. */
3934 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3935 }
3936
3937 /* Ignore indirect symbols. These are added by the versioning code. */
3938 if (h->root.type == bfd_link_hash_indirect)
3939 return true;
3940
3941 if (! is_elf_hash_table (eif->info))
3942 return false;
3943
3944 /* Fix the symbol flags. */
3945 if (! elf_fix_symbol_flags (h, eif))
3946 return false;
3947
3948 /* If this symbol does not require a PLT entry, and it is not
3949 defined by a dynamic object, or is not referenced by a regular
3950 object, ignore it. We do have to handle a weak defined symbol,
3951 even if no regular object refers to it, if we decided to add it
3952 to the dynamic symbol table. FIXME: Do we normally need to worry
3953 about symbols which are defined by one dynamic object and
3954 referenced by another one? */
3955 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3956 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3957 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3958 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3959 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3960 {
3961 h->plt.offset = (bfd_vma) -1;
3962 return true;
3963 }
3964
3965 /* If we've already adjusted this symbol, don't do it again. This
3966 can happen via a recursive call. */
3967 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3968 return true;
3969
3970 /* Don't look at this symbol again. Note that we must set this
3971 after checking the above conditions, because we may look at a
3972 symbol once, decide not to do anything, and then get called
3973 recursively later after REF_REGULAR is set below. */
3974 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3975
3976 /* If this is a weak definition, and we know a real definition, and
3977 the real symbol is not itself defined by a regular object file,
3978 then get a good value for the real definition. We handle the
3979 real symbol first, for the convenience of the backend routine.
3980
3981 Note that there is a confusing case here. If the real definition
3982 is defined by a regular object file, we don't get the real symbol
3983 from the dynamic object, but we do get the weak symbol. If the
3984 processor backend uses a COPY reloc, then if some routine in the
3985 dynamic object changes the real symbol, we will not see that
3986 change in the corresponding weak symbol. This is the way other
3987 ELF linkers work as well, and seems to be a result of the shared
3988 library model.
3989
3990 I will clarify this issue. Most SVR4 shared libraries define the
3991 variable _timezone and define timezone as a weak synonym. The
3992 tzset call changes _timezone. If you write
3993 extern int timezone;
3994 int _timezone = 5;
3995 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3996 you might expect that, since timezone is a synonym for _timezone,
3997 the same number will print both times. However, if the processor
3998 backend uses a COPY reloc, then actually timezone will be copied
3999 into your process image, and, since you define _timezone
4000 yourself, _timezone will not. Thus timezone and _timezone will
4001 wind up at different memory locations. The tzset call will set
4002 _timezone, leaving timezone unchanged. */
4003
4004 if (h->weakdef != NULL)
4005 {
4006 /* If we get to this point, we know there is an implicit
4007 reference by a regular object file via the weak symbol H.
4008 FIXME: Is this really true? What if the traversal finds
4009 H->WEAKDEF before it finds H? */
4010 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
4011
4012 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
4013 return false;
4014 }
4015
4016 /* If a symbol has no type and no size and does not require a PLT
4017 entry, then we are probably about to do the wrong thing here: we
4018 are probably going to create a COPY reloc for an empty object.
4019 This case can arise when a shared object is built with assembly
4020 code, and the assembly code fails to set the symbol type. */
4021 if (h->size == 0
4022 && h->type == STT_NOTYPE
4023 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
4024 (*_bfd_error_handler)
4025 (_("warning: type and size of dynamic symbol `%s' are not defined"),
4026 h->root.root.string);
4027
4028 dynobj = elf_hash_table (eif->info)->dynobj;
4029 bed = get_elf_backend_data (dynobj);
4030 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
4031 {
4032 eif->failed = true;
4033 return false;
4034 }
4035
4036 return true;
4037 }
4038 \f
4039 /* This routine is used to export all defined symbols into the dynamic
4040 symbol table. It is called via elf_link_hash_traverse. */
4041
4042 static boolean
4043 elf_export_symbol (h, data)
4044 struct elf_link_hash_entry *h;
4045 PTR data;
4046 {
4047 struct elf_info_failed *eif = (struct elf_info_failed *) data;
4048
4049 /* Ignore indirect symbols. These are added by the versioning code. */
4050 if (h->root.type == bfd_link_hash_indirect)
4051 return true;
4052
4053 if (h->root.type == bfd_link_hash_warning)
4054 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4055
4056 if (h->dynindx == -1
4057 && (h->elf_link_hash_flags
4058 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
4059 {
4060 struct bfd_elf_version_tree *t;
4061 struct bfd_elf_version_expr *d;
4062
4063 for (t = eif->verdefs; t != NULL; t = t->next)
4064 {
4065 if (t->globals != NULL)
4066 {
4067 for (d = t->globals; d != NULL; d = d->next)
4068 {
4069 if ((*d->match) (d, h->root.root.string))
4070 goto doit;
4071 }
4072 }
4073
4074 if (t->locals != NULL)
4075 {
4076 for (d = t->locals ; d != NULL; d = d->next)
4077 {
4078 if ((*d->match) (d, h->root.root.string))
4079 return true;
4080 }
4081 }
4082 }
4083
4084 if (!eif->verdefs)
4085 {
4086 doit:
4087 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
4088 {
4089 eif->failed = true;
4090 return false;
4091 }
4092 }
4093 }
4094
4095 return true;
4096 }
4097 \f
4098 /* Look through the symbols which are defined in other shared
4099 libraries and referenced here. Update the list of version
4100 dependencies. This will be put into the .gnu.version_r section.
4101 This function is called via elf_link_hash_traverse. */
4102
4103 static boolean
4104 elf_link_find_version_dependencies (h, data)
4105 struct elf_link_hash_entry *h;
4106 PTR data;
4107 {
4108 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
4109 Elf_Internal_Verneed *t;
4110 Elf_Internal_Vernaux *a;
4111 bfd_size_type amt;
4112
4113 if (h->root.type == bfd_link_hash_warning)
4114 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4115
4116 /* We only care about symbols defined in shared objects with version
4117 information. */
4118 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
4119 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
4120 || h->dynindx == -1
4121 || h->verinfo.verdef == NULL)
4122 return true;
4123
4124 /* See if we already know about this version. */
4125 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
4126 {
4127 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
4128 continue;
4129
4130 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4131 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
4132 return true;
4133
4134 break;
4135 }
4136
4137 /* This is a new version. Add it to tree we are building. */
4138
4139 if (t == NULL)
4140 {
4141 amt = sizeof *t;
4142 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, amt);
4143 if (t == NULL)
4144 {
4145 rinfo->failed = true;
4146 return false;
4147 }
4148
4149 t->vn_bfd = h->verinfo.verdef->vd_bfd;
4150 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
4151 elf_tdata (rinfo->output_bfd)->verref = t;
4152 }
4153
4154 amt = sizeof *a;
4155 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, amt);
4156
4157 /* Note that we are copying a string pointer here, and testing it
4158 above. If bfd_elf_string_from_elf_section is ever changed to
4159 discard the string data when low in memory, this will have to be
4160 fixed. */
4161 a->vna_nodename = h->verinfo.verdef->vd_nodename;
4162
4163 a->vna_flags = h->verinfo.verdef->vd_flags;
4164 a->vna_nextptr = t->vn_auxptr;
4165
4166 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
4167 ++rinfo->vers;
4168
4169 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
4170
4171 t->vn_auxptr = a;
4172
4173 return true;
4174 }
4175
4176 /* Figure out appropriate versions for all the symbols. We may not
4177 have the version number script until we have read all of the input
4178 files, so until that point we don't know which symbols should be
4179 local. This function is called via elf_link_hash_traverse. */
4180
4181 static boolean
4182 elf_link_assign_sym_version (h, data)
4183 struct elf_link_hash_entry *h;
4184 PTR data;
4185 {
4186 struct elf_assign_sym_version_info *sinfo;
4187 struct bfd_link_info *info;
4188 struct elf_backend_data *bed;
4189 struct elf_info_failed eif;
4190 char *p;
4191 bfd_size_type amt;
4192
4193 sinfo = (struct elf_assign_sym_version_info *) data;
4194 info = sinfo->info;
4195
4196 if (h->root.type == bfd_link_hash_warning)
4197 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4198
4199 /* Fix the symbol flags. */
4200 eif.failed = false;
4201 eif.info = info;
4202 if (! elf_fix_symbol_flags (h, &eif))
4203 {
4204 if (eif.failed)
4205 sinfo->failed = true;
4206 return false;
4207 }
4208
4209 /* We only need version numbers for symbols defined in regular
4210 objects. */
4211 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4212 return true;
4213
4214 bed = get_elf_backend_data (sinfo->output_bfd);
4215 p = strchr (h->root.root.string, ELF_VER_CHR);
4216 if (p != NULL && h->verinfo.vertree == NULL)
4217 {
4218 struct bfd_elf_version_tree *t;
4219 boolean hidden;
4220
4221 hidden = true;
4222
4223 /* There are two consecutive ELF_VER_CHR characters if this is
4224 not a hidden symbol. */
4225 ++p;
4226 if (*p == ELF_VER_CHR)
4227 {
4228 hidden = false;
4229 ++p;
4230 }
4231
4232 /* If there is no version string, we can just return out. */
4233 if (*p == '\0')
4234 {
4235 if (hidden)
4236 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4237 return true;
4238 }
4239
4240 /* Look for the version. If we find it, it is no longer weak. */
4241 for (t = sinfo->verdefs; t != NULL; t = t->next)
4242 {
4243 if (strcmp (t->name, p) == 0)
4244 {
4245 size_t len;
4246 char *alc;
4247 struct bfd_elf_version_expr *d;
4248
4249 len = p - h->root.root.string;
4250 alc = bfd_malloc ((bfd_size_type) len);
4251 if (alc == NULL)
4252 return false;
4253 memcpy (alc, h->root.root.string, len - 1);
4254 alc[len - 1] = '\0';
4255 if (alc[len - 2] == ELF_VER_CHR)
4256 alc[len - 2] = '\0';
4257
4258 h->verinfo.vertree = t;
4259 t->used = true;
4260 d = NULL;
4261
4262 if (t->globals != NULL)
4263 {
4264 for (d = t->globals; d != NULL; d = d->next)
4265 if ((*d->match) (d, alc))
4266 break;
4267 }
4268
4269 /* See if there is anything to force this symbol to
4270 local scope. */
4271 if (d == NULL && t->locals != NULL)
4272 {
4273 for (d = t->locals; d != NULL; d = d->next)
4274 {
4275 if ((*d->match) (d, alc))
4276 {
4277 if (h->dynindx != -1
4278 && info->shared
4279 && ! info->export_dynamic)
4280 {
4281 (*bed->elf_backend_hide_symbol) (info, h, true);
4282 }
4283
4284 break;
4285 }
4286 }
4287 }
4288
4289 free (alc);
4290 break;
4291 }
4292 }
4293
4294 /* If we are building an application, we need to create a
4295 version node for this version. */
4296 if (t == NULL && ! info->shared)
4297 {
4298 struct bfd_elf_version_tree **pp;
4299 int version_index;
4300
4301 /* If we aren't going to export this symbol, we don't need
4302 to worry about it. */
4303 if (h->dynindx == -1)
4304 return true;
4305
4306 amt = sizeof *t;
4307 t = ((struct bfd_elf_version_tree *)
4308 bfd_alloc (sinfo->output_bfd, amt));
4309 if (t == NULL)
4310 {
4311 sinfo->failed = true;
4312 return false;
4313 }
4314
4315 t->next = NULL;
4316 t->name = p;
4317 t->globals = NULL;
4318 t->locals = NULL;
4319 t->deps = NULL;
4320 t->name_indx = (unsigned int) -1;
4321 t->used = true;
4322
4323 version_index = 1;
4324 /* Don't count anonymous version tag. */
4325 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
4326 version_index = 0;
4327 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
4328 ++version_index;
4329 t->vernum = version_index;
4330
4331 *pp = t;
4332
4333 h->verinfo.vertree = t;
4334 }
4335 else if (t == NULL)
4336 {
4337 /* We could not find the version for a symbol when
4338 generating a shared archive. Return an error. */
4339 (*_bfd_error_handler)
4340 (_("%s: undefined versioned symbol name %s"),
4341 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
4342 bfd_set_error (bfd_error_bad_value);
4343 sinfo->failed = true;
4344 return false;
4345 }
4346
4347 if (hidden)
4348 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
4349 }
4350
4351 /* If we don't have a version for this symbol, see if we can find
4352 something. */
4353 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
4354 {
4355 struct bfd_elf_version_tree *t;
4356 struct bfd_elf_version_tree *local_ver;
4357 struct bfd_elf_version_expr *d;
4358
4359 /* See if can find what version this symbol is in. If the
4360 symbol is supposed to be local, then don't actually register
4361 it. */
4362 local_ver = NULL;
4363 for (t = sinfo->verdefs; t != NULL; t = t->next)
4364 {
4365 if (t->globals != NULL)
4366 {
4367 boolean matched;
4368
4369 matched = false;
4370 for (d = t->globals; d != NULL; d = d->next)
4371 {
4372 if ((*d->match) (d, h->root.root.string))
4373 {
4374 if (d->symver)
4375 matched = true;
4376 else
4377 {
4378 /* There is a version without definition. Make
4379 the symbol the default definition for this
4380 version. */
4381 h->verinfo.vertree = t;
4382 local_ver = NULL;
4383 d->script = 1;
4384 break;
4385 }
4386 }
4387 }
4388
4389 if (d != NULL)
4390 break;
4391 else if (matched)
4392 /* There is no undefined version for this symbol. Hide the
4393 default one. */
4394 (*bed->elf_backend_hide_symbol) (info, h, true);
4395 }
4396
4397 if (t->locals != NULL)
4398 {
4399 for (d = t->locals; d != NULL; d = d->next)
4400 {
4401 /* If the match is "*", keep looking for a more
4402 explicit, perhaps even global, match. */
4403 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
4404 local_ver = t;
4405 else if ((*d->match) (d, h->root.root.string))
4406 {
4407 local_ver = t;
4408 break;
4409 }
4410 }
4411
4412 if (d != NULL)
4413 break;
4414 }
4415 }
4416
4417 if (local_ver != NULL)
4418 {
4419 h->verinfo.vertree = local_ver;
4420 if (h->dynindx != -1
4421 && info->shared
4422 && ! info->export_dynamic)
4423 {
4424 (*bed->elf_backend_hide_symbol) (info, h, true);
4425 }
4426 }
4427 }
4428
4429 return true;
4430 }
4431 \f
4432 /* Final phase of ELF linker. */
4433
4434 /* A structure we use to avoid passing large numbers of arguments. */
4435
4436 struct elf_final_link_info
4437 {
4438 /* General link information. */
4439 struct bfd_link_info *info;
4440 /* Output BFD. */
4441 bfd *output_bfd;
4442 /* Symbol string table. */
4443 struct bfd_strtab_hash *symstrtab;
4444 /* .dynsym section. */
4445 asection *dynsym_sec;
4446 /* .hash section. */
4447 asection *hash_sec;
4448 /* symbol version section (.gnu.version). */
4449 asection *symver_sec;
4450 /* first SHF_TLS section (if any). */
4451 asection *first_tls_sec;
4452 /* Buffer large enough to hold contents of any section. */
4453 bfd_byte *contents;
4454 /* Buffer large enough to hold external relocs of any section. */
4455 PTR external_relocs;
4456 /* Buffer large enough to hold internal relocs of any section. */
4457 Elf_Internal_Rela *internal_relocs;
4458 /* Buffer large enough to hold external local symbols of any input
4459 BFD. */
4460 Elf_External_Sym *external_syms;
4461 /* And a buffer for symbol section indices. */
4462 Elf_External_Sym_Shndx *locsym_shndx;
4463 /* Buffer large enough to hold internal local symbols of any input
4464 BFD. */
4465 Elf_Internal_Sym *internal_syms;
4466 /* Array large enough to hold a symbol index for each local symbol
4467 of any input BFD. */
4468 long *indices;
4469 /* Array large enough to hold a section pointer for each local
4470 symbol of any input BFD. */
4471 asection **sections;
4472 /* Buffer to hold swapped out symbols. */
4473 Elf_External_Sym *symbuf;
4474 /* And one for symbol section indices. */
4475 Elf_External_Sym_Shndx *symshndxbuf;
4476 /* Number of swapped out symbols in buffer. */
4477 size_t symbuf_count;
4478 /* Number of symbols which fit in symbuf. */
4479 size_t symbuf_size;
4480 };
4481
4482 static boolean elf_link_output_sym
4483 PARAMS ((struct elf_final_link_info *, const char *,
4484 Elf_Internal_Sym *, asection *));
4485 static boolean elf_link_flush_output_syms
4486 PARAMS ((struct elf_final_link_info *));
4487 static boolean elf_link_output_extsym
4488 PARAMS ((struct elf_link_hash_entry *, PTR));
4489 static boolean elf_link_sec_merge_syms
4490 PARAMS ((struct elf_link_hash_entry *, PTR));
4491 static boolean elf_link_check_versioned_symbol
4492 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
4493 static boolean elf_link_input_bfd
4494 PARAMS ((struct elf_final_link_info *, bfd *));
4495 static boolean elf_reloc_link_order
4496 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4497 struct bfd_link_order *));
4498
4499 /* This struct is used to pass information to elf_link_output_extsym. */
4500
4501 struct elf_outext_info
4502 {
4503 boolean failed;
4504 boolean localsyms;
4505 struct elf_final_link_info *finfo;
4506 };
4507
4508 /* Compute the size of, and allocate space for, REL_HDR which is the
4509 section header for a section containing relocations for O. */
4510
4511 static boolean
4512 elf_link_size_reloc_section (abfd, rel_hdr, o)
4513 bfd *abfd;
4514 Elf_Internal_Shdr *rel_hdr;
4515 asection *o;
4516 {
4517 bfd_size_type reloc_count;
4518 bfd_size_type num_rel_hashes;
4519
4520 /* Figure out how many relocations there will be. */
4521 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4522 reloc_count = elf_section_data (o)->rel_count;
4523 else
4524 reloc_count = elf_section_data (o)->rel_count2;
4525
4526 num_rel_hashes = o->reloc_count;
4527 if (num_rel_hashes < reloc_count)
4528 num_rel_hashes = reloc_count;
4529
4530 /* That allows us to calculate the size of the section. */
4531 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
4532
4533 /* The contents field must last into write_object_contents, so we
4534 allocate it with bfd_alloc rather than malloc. Also since we
4535 cannot be sure that the contents will actually be filled in,
4536 we zero the allocated space. */
4537 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
4538 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4539 return false;
4540
4541 /* We only allocate one set of hash entries, so we only do it the
4542 first time we are called. */
4543 if (elf_section_data (o)->rel_hashes == NULL
4544 && num_rel_hashes)
4545 {
4546 struct elf_link_hash_entry **p;
4547
4548 p = ((struct elf_link_hash_entry **)
4549 bfd_zmalloc (num_rel_hashes
4550 * sizeof (struct elf_link_hash_entry *)));
4551 if (p == NULL)
4552 return false;
4553
4554 elf_section_data (o)->rel_hashes = p;
4555 }
4556
4557 return true;
4558 }
4559
4560 /* When performing a relocateable link, the input relocations are
4561 preserved. But, if they reference global symbols, the indices
4562 referenced must be updated. Update all the relocations in
4563 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4564
4565 static void
4566 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4567 bfd *abfd;
4568 Elf_Internal_Shdr *rel_hdr;
4569 unsigned int count;
4570 struct elf_link_hash_entry **rel_hash;
4571 {
4572 unsigned int i;
4573 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4574 Elf_Internal_Rel *irel;
4575 Elf_Internal_Rela *irela;
4576 bfd_size_type amt = sizeof (Elf_Internal_Rel) * bed->s->int_rels_per_ext_rel;
4577
4578 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
4579 if (irel == NULL)
4580 {
4581 (*_bfd_error_handler) (_("Error: out of memory"));
4582 abort ();
4583 }
4584
4585 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
4586 irela = (Elf_Internal_Rela *) bfd_zmalloc (amt);
4587 if (irela == NULL)
4588 {
4589 (*_bfd_error_handler) (_("Error: out of memory"));
4590 abort ();
4591 }
4592
4593 for (i = 0; i < count; i++, rel_hash++)
4594 {
4595 if (*rel_hash == NULL)
4596 continue;
4597
4598 BFD_ASSERT ((*rel_hash)->indx >= 0);
4599
4600 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4601 {
4602 Elf_External_Rel *erel;
4603 unsigned int j;
4604
4605 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4606 if (bed->s->swap_reloc_in)
4607 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
4608 else
4609 elf_swap_reloc_in (abfd, erel, irel);
4610
4611 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4612 irel[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4613 ELF_R_TYPE (irel[j].r_info));
4614
4615 if (bed->s->swap_reloc_out)
4616 (*bed->s->swap_reloc_out) (abfd, irel, (bfd_byte *) erel);
4617 else
4618 elf_swap_reloc_out (abfd, irel, erel);
4619 }
4620 else
4621 {
4622 Elf_External_Rela *erela;
4623 unsigned int j;
4624
4625 BFD_ASSERT (rel_hdr->sh_entsize
4626 == sizeof (Elf_External_Rela));
4627
4628 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4629 if (bed->s->swap_reloca_in)
4630 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
4631 else
4632 elf_swap_reloca_in (abfd, erela, irela);
4633
4634 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4635 irela[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4636 ELF_R_TYPE (irela[j].r_info));
4637
4638 if (bed->s->swap_reloca_out)
4639 (*bed->s->swap_reloca_out) (abfd, irela, (bfd_byte *) erela);
4640 else
4641 elf_swap_reloca_out (abfd, irela, erela);
4642 }
4643 }
4644
4645 free (irel);
4646 free (irela);
4647 }
4648
4649 struct elf_link_sort_rela
4650 {
4651 bfd_vma offset;
4652 enum elf_reloc_type_class type;
4653 union
4654 {
4655 Elf_Internal_Rel rel;
4656 Elf_Internal_Rela rela;
4657 } u;
4658 };
4659
4660 static int
4661 elf_link_sort_cmp1 (A, B)
4662 const PTR A;
4663 const PTR B;
4664 {
4665 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4666 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4667 int relativea, relativeb;
4668
4669 relativea = a->type == reloc_class_relative;
4670 relativeb = b->type == reloc_class_relative;
4671
4672 if (relativea < relativeb)
4673 return 1;
4674 if (relativea > relativeb)
4675 return -1;
4676 if (ELF_R_SYM (a->u.rel.r_info) < ELF_R_SYM (b->u.rel.r_info))
4677 return -1;
4678 if (ELF_R_SYM (a->u.rel.r_info) > ELF_R_SYM (b->u.rel.r_info))
4679 return 1;
4680 if (a->u.rel.r_offset < b->u.rel.r_offset)
4681 return -1;
4682 if (a->u.rel.r_offset > b->u.rel.r_offset)
4683 return 1;
4684 return 0;
4685 }
4686
4687 static int
4688 elf_link_sort_cmp2 (A, B)
4689 const PTR A;
4690 const PTR B;
4691 {
4692 struct elf_link_sort_rela *a = (struct elf_link_sort_rela *) A;
4693 struct elf_link_sort_rela *b = (struct elf_link_sort_rela *) B;
4694 int copya, copyb;
4695
4696 if (a->offset < b->offset)
4697 return -1;
4698 if (a->offset > b->offset)
4699 return 1;
4700 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
4701 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
4702 if (copya < copyb)
4703 return -1;
4704 if (copya > copyb)
4705 return 1;
4706 if (a->u.rel.r_offset < b->u.rel.r_offset)
4707 return -1;
4708 if (a->u.rel.r_offset > b->u.rel.r_offset)
4709 return 1;
4710 return 0;
4711 }
4712
4713 static size_t
4714 elf_link_sort_relocs (abfd, info, psec)
4715 bfd *abfd;
4716 struct bfd_link_info *info;
4717 asection **psec;
4718 {
4719 bfd *dynobj = elf_hash_table (info)->dynobj;
4720 asection *reldyn, *o;
4721 boolean rel = false;
4722 bfd_size_type count, size;
4723 size_t i, j, ret;
4724 struct elf_link_sort_rela *rela;
4725 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4726
4727 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
4728 if (reldyn == NULL || reldyn->_raw_size == 0)
4729 {
4730 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
4731 if (reldyn == NULL || reldyn->_raw_size == 0)
4732 return 0;
4733 rel = true;
4734 count = reldyn->_raw_size / sizeof (Elf_External_Rel);
4735 }
4736 else
4737 count = reldyn->_raw_size / sizeof (Elf_External_Rela);
4738
4739 size = 0;
4740 for (o = dynobj->sections; o != NULL; o = o->next)
4741 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4742 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4743 && o->output_section == reldyn)
4744 size += o->_raw_size;
4745
4746 if (size != reldyn->_raw_size)
4747 return 0;
4748
4749 rela = (struct elf_link_sort_rela *) bfd_zmalloc (sizeof (*rela) * count);
4750 if (rela == NULL)
4751 {
4752 (*info->callbacks->warning)
4753 (info, _("Not enough memory to sort relocations"), 0, abfd, 0,
4754 (bfd_vma) 0);
4755 return 0;
4756 }
4757
4758 for (o = dynobj->sections; o != NULL; o = o->next)
4759 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4760 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4761 && o->output_section == reldyn)
4762 {
4763 if (rel)
4764 {
4765 Elf_External_Rel *erel, *erelend;
4766 struct elf_link_sort_rela *s;
4767
4768 erel = (Elf_External_Rel *) o->contents;
4769 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4770 s = rela + o->output_offset / sizeof (Elf_External_Rel);
4771 for (; erel < erelend; erel++, s++)
4772 {
4773 if (bed->s->swap_reloc_in)
4774 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &s->u.rel);
4775 else
4776 elf_swap_reloc_in (abfd, erel, &s->u.rel);
4777
4778 s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
4779 }
4780 }
4781 else
4782 {
4783 Elf_External_Rela *erela, *erelaend;
4784 struct elf_link_sort_rela *s;
4785
4786 erela = (Elf_External_Rela *) o->contents;
4787 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4788 s = rela + o->output_offset / sizeof (Elf_External_Rela);
4789 for (; erela < erelaend; erela++, s++)
4790 {
4791 if (bed->s->swap_reloca_in)
4792 (*bed->s->swap_reloca_in) (dynobj, (bfd_byte *) erela,
4793 &s->u.rela);
4794 else
4795 elf_swap_reloca_in (dynobj, erela, &s->u.rela);
4796
4797 s->type = (*bed->elf_backend_reloc_type_class) (&s->u.rela);
4798 }
4799 }
4800 }
4801
4802 qsort (rela, (size_t) count, sizeof (*rela), elf_link_sort_cmp1);
4803 for (ret = 0; ret < count && rela[ret].type == reloc_class_relative; ret++)
4804 ;
4805 for (i = ret, j = ret; i < count; i++)
4806 {
4807 if (ELF_R_SYM (rela[i].u.rel.r_info) != ELF_R_SYM (rela[j].u.rel.r_info))
4808 j = i;
4809 rela[i].offset = rela[j].u.rel.r_offset;
4810 }
4811 qsort (rela + ret, (size_t) count - ret, sizeof (*rela), elf_link_sort_cmp2);
4812
4813 for (o = dynobj->sections; o != NULL; o = o->next)
4814 if ((o->flags & (SEC_HAS_CONTENTS|SEC_LINKER_CREATED))
4815 == (SEC_HAS_CONTENTS|SEC_LINKER_CREATED)
4816 && o->output_section == reldyn)
4817 {
4818 if (rel)
4819 {
4820 Elf_External_Rel *erel, *erelend;
4821 struct elf_link_sort_rela *s;
4822
4823 erel = (Elf_External_Rel *) o->contents;
4824 erelend = (Elf_External_Rel *) (o->contents + o->_raw_size);
4825 s = rela + o->output_offset / sizeof (Elf_External_Rel);
4826 for (; erel < erelend; erel++, s++)
4827 {
4828 if (bed->s->swap_reloc_out)
4829 (*bed->s->swap_reloc_out) (abfd, &s->u.rel,
4830 (bfd_byte *) erel);
4831 else
4832 elf_swap_reloc_out (abfd, &s->u.rel, erel);
4833 }
4834 }
4835 else
4836 {
4837 Elf_External_Rela *erela, *erelaend;
4838 struct elf_link_sort_rela *s;
4839
4840 erela = (Elf_External_Rela *) o->contents;
4841 erelaend = (Elf_External_Rela *) (o->contents + o->_raw_size);
4842 s = rela + o->output_offset / sizeof (Elf_External_Rela);
4843 for (; erela < erelaend; erela++, s++)
4844 {
4845 if (bed->s->swap_reloca_out)
4846 (*bed->s->swap_reloca_out) (dynobj, &s->u.rela,
4847 (bfd_byte *) erela);
4848 else
4849 elf_swap_reloca_out (dynobj, &s->u.rela, erela);
4850 }
4851 }
4852 }
4853
4854 free (rela);
4855 *psec = reldyn;
4856 return ret;
4857 }
4858
4859 /* Do the final step of an ELF link. */
4860
4861 boolean
4862 elf_bfd_final_link (abfd, info)
4863 bfd *abfd;
4864 struct bfd_link_info *info;
4865 {
4866 boolean dynamic;
4867 boolean emit_relocs;
4868 bfd *dynobj;
4869 struct elf_final_link_info finfo;
4870 register asection *o;
4871 register struct bfd_link_order *p;
4872 register bfd *sub;
4873 bfd_size_type max_contents_size;
4874 bfd_size_type max_external_reloc_size;
4875 bfd_size_type max_internal_reloc_count;
4876 bfd_size_type max_sym_count;
4877 bfd_size_type max_sym_shndx_count;
4878 file_ptr off;
4879 Elf_Internal_Sym elfsym;
4880 unsigned int i;
4881 Elf_Internal_Shdr *symtab_hdr;
4882 Elf_Internal_Shdr *symstrtab_hdr;
4883 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4884 struct elf_outext_info eoinfo;
4885 boolean merged;
4886 size_t relativecount = 0;
4887 asection *reldyn = 0;
4888 bfd_size_type amt;
4889
4890 if (! is_elf_hash_table (info))
4891 return false;
4892
4893 if (info->shared)
4894 abfd->flags |= DYNAMIC;
4895
4896 dynamic = elf_hash_table (info)->dynamic_sections_created;
4897 dynobj = elf_hash_table (info)->dynobj;
4898
4899 emit_relocs = (info->relocateable
4900 || info->emitrelocations
4901 || bed->elf_backend_emit_relocs);
4902
4903 finfo.info = info;
4904 finfo.output_bfd = abfd;
4905 finfo.symstrtab = elf_stringtab_init ();
4906 if (finfo.symstrtab == NULL)
4907 return false;
4908
4909 if (! dynamic)
4910 {
4911 finfo.dynsym_sec = NULL;
4912 finfo.hash_sec = NULL;
4913 finfo.symver_sec = NULL;
4914 }
4915 else
4916 {
4917 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4918 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4919 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4920 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4921 /* Note that it is OK if symver_sec is NULL. */
4922 }
4923
4924 finfo.contents = NULL;
4925 finfo.external_relocs = NULL;
4926 finfo.internal_relocs = NULL;
4927 finfo.external_syms = NULL;
4928 finfo.locsym_shndx = NULL;
4929 finfo.internal_syms = NULL;
4930 finfo.indices = NULL;
4931 finfo.sections = NULL;
4932 finfo.symbuf = NULL;
4933 finfo.symshndxbuf = NULL;
4934 finfo.symbuf_count = 0;
4935 finfo.first_tls_sec = NULL;
4936 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4937 if ((o->flags & SEC_THREAD_LOCAL) != 0
4938 && (o->flags & SEC_LOAD) != 0)
4939 {
4940 finfo.first_tls_sec = o;
4941 break;
4942 }
4943
4944 /* Count up the number of relocations we will output for each output
4945 section, so that we know the sizes of the reloc sections. We
4946 also figure out some maximum sizes. */
4947 max_contents_size = 0;
4948 max_external_reloc_size = 0;
4949 max_internal_reloc_count = 0;
4950 max_sym_count = 0;
4951 max_sym_shndx_count = 0;
4952 merged = false;
4953 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4954 {
4955 o->reloc_count = 0;
4956
4957 for (p = o->link_order_head; p != NULL; p = p->next)
4958 {
4959 if (p->type == bfd_section_reloc_link_order
4960 || p->type == bfd_symbol_reloc_link_order)
4961 ++o->reloc_count;
4962 else if (p->type == bfd_indirect_link_order)
4963 {
4964 asection *sec;
4965
4966 sec = p->u.indirect.section;
4967
4968 /* Mark all sections which are to be included in the
4969 link. This will normally be every section. We need
4970 to do this so that we can identify any sections which
4971 the linker has decided to not include. */
4972 sec->linker_mark = true;
4973
4974 if (sec->flags & SEC_MERGE)
4975 merged = true;
4976
4977 if (info->relocateable || info->emitrelocations)
4978 o->reloc_count += sec->reloc_count;
4979 else if (bed->elf_backend_count_relocs)
4980 {
4981 Elf_Internal_Rela * relocs;
4982
4983 relocs = (NAME(_bfd_elf,link_read_relocs)
4984 (abfd, sec, (PTR) NULL,
4985 (Elf_Internal_Rela *) NULL, info->keep_memory));
4986
4987 o->reloc_count
4988 += (*bed->elf_backend_count_relocs) (sec, relocs);
4989
4990 if (elf_section_data (o)->relocs != relocs)
4991 free (relocs);
4992 }
4993
4994 if (sec->_raw_size > max_contents_size)
4995 max_contents_size = sec->_raw_size;
4996 if (sec->_cooked_size > max_contents_size)
4997 max_contents_size = sec->_cooked_size;
4998
4999 /* We are interested in just local symbols, not all
5000 symbols. */
5001 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
5002 && (sec->owner->flags & DYNAMIC) == 0)
5003 {
5004 size_t sym_count;
5005
5006 if (elf_bad_symtab (sec->owner))
5007 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
5008 / sizeof (Elf_External_Sym));
5009 else
5010 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
5011
5012 if (sym_count > max_sym_count)
5013 max_sym_count = sym_count;
5014
5015 if (sym_count > max_sym_shndx_count
5016 && elf_symtab_shndx (sec->owner) != 0)
5017 max_sym_shndx_count = sym_count;
5018
5019 if ((sec->flags & SEC_RELOC) != 0)
5020 {
5021 size_t ext_size;
5022
5023 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
5024 if (ext_size > max_external_reloc_size)
5025 max_external_reloc_size = ext_size;
5026 if (sec->reloc_count > max_internal_reloc_count)
5027 max_internal_reloc_count = sec->reloc_count;
5028 }
5029 }
5030 }
5031 }
5032
5033 if (o->reloc_count > 0)
5034 o->flags |= SEC_RELOC;
5035 else
5036 {
5037 /* Explicitly clear the SEC_RELOC flag. The linker tends to
5038 set it (this is probably a bug) and if it is set
5039 assign_section_numbers will create a reloc section. */
5040 o->flags &=~ SEC_RELOC;
5041 }
5042
5043 /* If the SEC_ALLOC flag is not set, force the section VMA to
5044 zero. This is done in elf_fake_sections as well, but forcing
5045 the VMA to 0 here will ensure that relocs against these
5046 sections are handled correctly. */
5047 if ((o->flags & SEC_ALLOC) == 0
5048 && ! o->user_set_vma)
5049 o->vma = 0;
5050 }
5051
5052 if (! info->relocateable && merged)
5053 elf_link_hash_traverse (elf_hash_table (info),
5054 elf_link_sec_merge_syms, (PTR) abfd);
5055
5056 /* Figure out the file positions for everything but the symbol table
5057 and the relocs. We set symcount to force assign_section_numbers
5058 to create a symbol table. */
5059 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
5060 BFD_ASSERT (! abfd->output_has_begun);
5061 if (! _bfd_elf_compute_section_file_positions (abfd, info))
5062 goto error_return;
5063
5064 /* Figure out how many relocations we will have in each section.
5065 Just using RELOC_COUNT isn't good enough since that doesn't
5066 maintain a separate value for REL vs. RELA relocations. */
5067 if (emit_relocs)
5068 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5069 for (o = sub->sections; o != NULL; o = o->next)
5070 {
5071 asection *output_section;
5072
5073 if (! o->linker_mark)
5074 {
5075 /* This section was omitted from the link. */
5076 continue;
5077 }
5078
5079 output_section = o->output_section;
5080
5081 if (output_section != NULL
5082 && (o->flags & SEC_RELOC) != 0)
5083 {
5084 struct bfd_elf_section_data *esdi
5085 = elf_section_data (o);
5086 struct bfd_elf_section_data *esdo
5087 = elf_section_data (output_section);
5088 unsigned int *rel_count;
5089 unsigned int *rel_count2;
5090 bfd_size_type entsize;
5091 bfd_size_type entsize2;
5092
5093 /* We must be careful to add the relocations from the
5094 input section to the right output count. */
5095 entsize = esdi->rel_hdr.sh_entsize;
5096 entsize2 = esdi->rel_hdr2 ? esdi->rel_hdr2->sh_entsize : 0;
5097 BFD_ASSERT ((entsize == sizeof (Elf_External_Rel)
5098 || entsize == sizeof (Elf_External_Rela))
5099 && entsize2 != entsize
5100 && (entsize2 == 0
5101 || entsize2 == sizeof (Elf_External_Rel)
5102 || entsize2 == sizeof (Elf_External_Rela)));
5103 if (entsize == esdo->rel_hdr.sh_entsize)
5104 {
5105 rel_count = &esdo->rel_count;
5106 rel_count2 = &esdo->rel_count2;
5107 }
5108 else
5109 {
5110 rel_count = &esdo->rel_count2;
5111 rel_count2 = &esdo->rel_count;
5112 }
5113
5114 *rel_count += NUM_SHDR_ENTRIES (& esdi->rel_hdr);
5115 if (esdi->rel_hdr2)
5116 *rel_count2 += NUM_SHDR_ENTRIES (esdi->rel_hdr2);
5117 output_section->flags |= SEC_RELOC;
5118 }
5119 }
5120
5121 /* That created the reloc sections. Set their sizes, and assign
5122 them file positions, and allocate some buffers. */
5123 for (o = abfd->sections; o != NULL; o = o->next)
5124 {
5125 if ((o->flags & SEC_RELOC) != 0)
5126 {
5127 if (!elf_link_size_reloc_section (abfd,
5128 &elf_section_data (o)->rel_hdr,
5129 o))
5130 goto error_return;
5131
5132 if (elf_section_data (o)->rel_hdr2
5133 && !elf_link_size_reloc_section (abfd,
5134 elf_section_data (o)->rel_hdr2,
5135 o))
5136 goto error_return;
5137 }
5138
5139 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
5140 to count upwards while actually outputting the relocations. */
5141 elf_section_data (o)->rel_count = 0;
5142 elf_section_data (o)->rel_count2 = 0;
5143 }
5144
5145 _bfd_elf_assign_file_positions_for_relocs (abfd);
5146
5147 /* We have now assigned file positions for all the sections except
5148 .symtab and .strtab. We start the .symtab section at the current
5149 file position, and write directly to it. We build the .strtab
5150 section in memory. */
5151 bfd_get_symcount (abfd) = 0;
5152 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5153 /* sh_name is set in prep_headers. */
5154 symtab_hdr->sh_type = SHT_SYMTAB;
5155 symtab_hdr->sh_flags = 0;
5156 symtab_hdr->sh_addr = 0;
5157 symtab_hdr->sh_size = 0;
5158 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
5159 /* sh_link is set in assign_section_numbers. */
5160 /* sh_info is set below. */
5161 /* sh_offset is set just below. */
5162 symtab_hdr->sh_addralign = bed->s->file_align;
5163
5164 off = elf_tdata (abfd)->next_file_pos;
5165 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
5166
5167 /* Note that at this point elf_tdata (abfd)->next_file_pos is
5168 incorrect. We do not yet know the size of the .symtab section.
5169 We correct next_file_pos below, after we do know the size. */
5170
5171 /* Allocate a buffer to hold swapped out symbols. This is to avoid
5172 continuously seeking to the right position in the file. */
5173 if (! info->keep_memory || max_sym_count < 20)
5174 finfo.symbuf_size = 20;
5175 else
5176 finfo.symbuf_size = max_sym_count;
5177 amt = finfo.symbuf_size;
5178 amt *= sizeof (Elf_External_Sym);
5179 finfo.symbuf = (Elf_External_Sym *) bfd_malloc (amt);
5180 if (finfo.symbuf == NULL)
5181 goto error_return;
5182 if (elf_numsections (abfd) > SHN_LORESERVE)
5183 {
5184 amt = finfo.symbuf_size;
5185 amt *= sizeof (Elf_External_Sym_Shndx);
5186 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5187 if (finfo.symshndxbuf == NULL)
5188 goto error_return;
5189 }
5190
5191 /* Start writing out the symbol table. The first symbol is always a
5192 dummy symbol. */
5193 if (info->strip != strip_all
5194 || emit_relocs)
5195 {
5196 elfsym.st_value = 0;
5197 elfsym.st_size = 0;
5198 elfsym.st_info = 0;
5199 elfsym.st_other = 0;
5200 elfsym.st_shndx = SHN_UNDEF;
5201 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5202 &elfsym, bfd_und_section_ptr))
5203 goto error_return;
5204 }
5205
5206 #if 0
5207 /* Some standard ELF linkers do this, but we don't because it causes
5208 bootstrap comparison failures. */
5209 /* Output a file symbol for the output file as the second symbol.
5210 We output this even if we are discarding local symbols, although
5211 I'm not sure if this is correct. */
5212 elfsym.st_value = 0;
5213 elfsym.st_size = 0;
5214 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5215 elfsym.st_other = 0;
5216 elfsym.st_shndx = SHN_ABS;
5217 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
5218 &elfsym, bfd_abs_section_ptr))
5219 goto error_return;
5220 #endif
5221
5222 /* Output a symbol for each section. We output these even if we are
5223 discarding local symbols, since they are used for relocs. These
5224 symbols have no names. We store the index of each one in the
5225 index field of the section, so that we can find it again when
5226 outputting relocs. */
5227 if (info->strip != strip_all
5228 || emit_relocs)
5229 {
5230 elfsym.st_size = 0;
5231 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5232 elfsym.st_other = 0;
5233 for (i = 1; i < elf_numsections (abfd); i++)
5234 {
5235 o = section_from_elf_index (abfd, i);
5236 if (o != NULL)
5237 o->target_index = bfd_get_symcount (abfd);
5238 elfsym.st_shndx = i;
5239 if (info->relocateable || o == NULL)
5240 elfsym.st_value = 0;
5241 else
5242 elfsym.st_value = o->vma;
5243 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5244 &elfsym, o))
5245 goto error_return;
5246 if (i == SHN_LORESERVE)
5247 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5248 }
5249 }
5250
5251 /* Allocate some memory to hold information read in from the input
5252 files. */
5253 if (max_contents_size != 0)
5254 {
5255 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
5256 if (finfo.contents == NULL)
5257 goto error_return;
5258 }
5259
5260 if (max_external_reloc_size != 0)
5261 {
5262 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
5263 if (finfo.external_relocs == NULL)
5264 goto error_return;
5265 }
5266
5267 if (max_internal_reloc_count != 0)
5268 {
5269 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
5270 amt *= sizeof (Elf_Internal_Rela);
5271 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
5272 if (finfo.internal_relocs == NULL)
5273 goto error_return;
5274 }
5275
5276 if (max_sym_count != 0)
5277 {
5278 amt = max_sym_count * sizeof (Elf_External_Sym);
5279 finfo.external_syms = (Elf_External_Sym *) bfd_malloc (amt);
5280 if (finfo.external_syms == NULL)
5281 goto error_return;
5282
5283 amt = max_sym_count * sizeof (Elf_Internal_Sym);
5284 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
5285 if (finfo.internal_syms == NULL)
5286 goto error_return;
5287
5288 amt = max_sym_count * sizeof (long);
5289 finfo.indices = (long *) bfd_malloc (amt);
5290 if (finfo.indices == NULL)
5291 goto error_return;
5292
5293 amt = max_sym_count * sizeof (asection *);
5294 finfo.sections = (asection **) bfd_malloc (amt);
5295 if (finfo.sections == NULL)
5296 goto error_return;
5297 }
5298
5299 if (max_sym_shndx_count != 0)
5300 {
5301 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
5302 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
5303 if (finfo.locsym_shndx == NULL)
5304 goto error_return;
5305 }
5306
5307 if (finfo.first_tls_sec)
5308 {
5309 unsigned int align = 0;
5310 bfd_vma base = finfo.first_tls_sec->vma, end = 0;
5311 asection *sec;
5312
5313 for (sec = finfo.first_tls_sec;
5314 sec && (sec->flags & SEC_THREAD_LOCAL);
5315 sec = sec->next)
5316 {
5317 bfd_vma size = sec->_raw_size;
5318
5319 if (bfd_get_section_alignment (abfd, sec) > align)
5320 align = bfd_get_section_alignment (abfd, sec);
5321 if (sec->_raw_size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
5322 {
5323 struct bfd_link_order *o;
5324
5325 size = 0;
5326 for (o = sec->link_order_head; o != NULL; o = o->next)
5327 if (size < o->offset + o->size)
5328 size = o->offset + o->size;
5329 }
5330 end = sec->vma + size;
5331 }
5332 elf_hash_table (info)->tls_segment
5333 = bfd_zalloc (abfd, sizeof (struct elf_link_tls_segment));
5334 if (elf_hash_table (info)->tls_segment == NULL)
5335 goto error_return;
5336 elf_hash_table (info)->tls_segment->start = base;
5337 elf_hash_table (info)->tls_segment->size = end - base;
5338 elf_hash_table (info)->tls_segment->align = align;
5339 }
5340
5341 /* Since ELF permits relocations to be against local symbols, we
5342 must have the local symbols available when we do the relocations.
5343 Since we would rather only read the local symbols once, and we
5344 would rather not keep them in memory, we handle all the
5345 relocations for a single input file at the same time.
5346
5347 Unfortunately, there is no way to know the total number of local
5348 symbols until we have seen all of them, and the local symbol
5349 indices precede the global symbol indices. This means that when
5350 we are generating relocateable output, and we see a reloc against
5351 a global symbol, we can not know the symbol index until we have
5352 finished examining all the local symbols to see which ones we are
5353 going to output. To deal with this, we keep the relocations in
5354 memory, and don't output them until the end of the link. This is
5355 an unfortunate waste of memory, but I don't see a good way around
5356 it. Fortunately, it only happens when performing a relocateable
5357 link, which is not the common case. FIXME: If keep_memory is set
5358 we could write the relocs out and then read them again; I don't
5359 know how bad the memory loss will be. */
5360
5361 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5362 sub->output_has_begun = false;
5363 for (o = abfd->sections; o != NULL; o = o->next)
5364 {
5365 for (p = o->link_order_head; p != NULL; p = p->next)
5366 {
5367 if (p->type == bfd_indirect_link_order
5368 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
5369 == bfd_target_elf_flavour)
5370 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
5371 {
5372 if (! sub->output_has_begun)
5373 {
5374 if (! elf_link_input_bfd (&finfo, sub))
5375 goto error_return;
5376 sub->output_has_begun = true;
5377 }
5378 }
5379 else if (p->type == bfd_section_reloc_link_order
5380 || p->type == bfd_symbol_reloc_link_order)
5381 {
5382 if (! elf_reloc_link_order (abfd, info, o, p))
5383 goto error_return;
5384 }
5385 else
5386 {
5387 if (! _bfd_default_link_order (abfd, info, o, p))
5388 goto error_return;
5389 }
5390 }
5391 }
5392
5393 /* Output any global symbols that got converted to local in a
5394 version script or due to symbol visibility. We do this in a
5395 separate step since ELF requires all local symbols to appear
5396 prior to any global symbols. FIXME: We should only do this if
5397 some global symbols were, in fact, converted to become local.
5398 FIXME: Will this work correctly with the Irix 5 linker? */
5399 eoinfo.failed = false;
5400 eoinfo.finfo = &finfo;
5401 eoinfo.localsyms = true;
5402 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5403 (PTR) &eoinfo);
5404 if (eoinfo.failed)
5405 return false;
5406
5407 /* That wrote out all the local symbols. Finish up the symbol table
5408 with the global symbols. Even if we want to strip everything we
5409 can, we still need to deal with those global symbols that got
5410 converted to local in a version script. */
5411
5412 /* The sh_info field records the index of the first non local symbol. */
5413 symtab_hdr->sh_info = bfd_get_symcount (abfd);
5414
5415 if (dynamic
5416 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
5417 {
5418 Elf_Internal_Sym sym;
5419 Elf_External_Sym *dynsym =
5420 (Elf_External_Sym *) finfo.dynsym_sec->contents;
5421 long last_local = 0;
5422
5423 /* Write out the section symbols for the output sections. */
5424 if (info->shared)
5425 {
5426 asection *s;
5427
5428 sym.st_size = 0;
5429 sym.st_name = 0;
5430 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5431 sym.st_other = 0;
5432
5433 for (s = abfd->sections; s != NULL; s = s->next)
5434 {
5435 int indx;
5436 Elf_External_Sym *dest;
5437
5438 indx = elf_section_data (s)->this_idx;
5439 BFD_ASSERT (indx > 0);
5440 sym.st_shndx = indx;
5441 sym.st_value = s->vma;
5442 dest = dynsym + elf_section_data (s)->dynindx;
5443 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5444 }
5445
5446 last_local = bfd_count_sections (abfd);
5447 }
5448
5449 /* Write out the local dynsyms. */
5450 if (elf_hash_table (info)->dynlocal)
5451 {
5452 struct elf_link_local_dynamic_entry *e;
5453 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
5454 {
5455 asection *s;
5456 Elf_External_Sym *dest;
5457
5458 sym.st_size = e->isym.st_size;
5459 sym.st_other = e->isym.st_other;
5460
5461 /* Copy the internal symbol as is.
5462 Note that we saved a word of storage and overwrote
5463 the original st_name with the dynstr_index. */
5464 sym = e->isym;
5465
5466 if (e->isym.st_shndx != SHN_UNDEF
5467 && (e->isym.st_shndx < SHN_LORESERVE
5468 || e->isym.st_shndx > SHN_HIRESERVE))
5469 {
5470 s = bfd_section_from_elf_index (e->input_bfd,
5471 e->isym.st_shndx);
5472
5473 sym.st_shndx =
5474 elf_section_data (s->output_section)->this_idx;
5475 sym.st_value = (s->output_section->vma
5476 + s->output_offset
5477 + e->isym.st_value);
5478 }
5479
5480 if (last_local < e->dynindx)
5481 last_local = e->dynindx;
5482
5483 dest = dynsym + e->dynindx;
5484 elf_swap_symbol_out (abfd, &sym, (PTR) dest, (PTR) 0);
5485 }
5486 }
5487
5488 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
5489 last_local + 1;
5490 }
5491
5492 /* We get the global symbols from the hash table. */
5493 eoinfo.failed = false;
5494 eoinfo.localsyms = false;
5495 eoinfo.finfo = &finfo;
5496 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5497 (PTR) &eoinfo);
5498 if (eoinfo.failed)
5499 return false;
5500
5501 /* If backend needs to output some symbols not present in the hash
5502 table, do it now. */
5503 if (bed->elf_backend_output_arch_syms)
5504 {
5505 typedef boolean (*out_sym_func) PARAMS ((PTR, const char *,
5506 Elf_Internal_Sym *,
5507 asection *));
5508
5509 if (! ((*bed->elf_backend_output_arch_syms)
5510 (abfd, info, (PTR) &finfo, (out_sym_func) elf_link_output_sym)))
5511 return false;
5512 }
5513
5514 /* Flush all symbols to the file. */
5515 if (! elf_link_flush_output_syms (&finfo))
5516 return false;
5517
5518 /* Now we know the size of the symtab section. */
5519 off += symtab_hdr->sh_size;
5520
5521 /* Finish up and write out the symbol string table (.strtab)
5522 section. */
5523 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5524 /* sh_name was set in prep_headers. */
5525 symstrtab_hdr->sh_type = SHT_STRTAB;
5526 symstrtab_hdr->sh_flags = 0;
5527 symstrtab_hdr->sh_addr = 0;
5528 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
5529 symstrtab_hdr->sh_entsize = 0;
5530 symstrtab_hdr->sh_link = 0;
5531 symstrtab_hdr->sh_info = 0;
5532 /* sh_offset is set just below. */
5533 symstrtab_hdr->sh_addralign = 1;
5534
5535 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
5536 elf_tdata (abfd)->next_file_pos = off;
5537
5538 if (bfd_get_symcount (abfd) > 0)
5539 {
5540 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
5541 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
5542 return false;
5543 }
5544
5545 /* Adjust the relocs to have the correct symbol indices. */
5546 for (o = abfd->sections; o != NULL; o = o->next)
5547 {
5548 if ((o->flags & SEC_RELOC) == 0)
5549 continue;
5550
5551 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
5552 elf_section_data (o)->rel_count,
5553 elf_section_data (o)->rel_hashes);
5554 if (elf_section_data (o)->rel_hdr2 != NULL)
5555 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
5556 elf_section_data (o)->rel_count2,
5557 (elf_section_data (o)->rel_hashes
5558 + elf_section_data (o)->rel_count));
5559
5560 /* Set the reloc_count field to 0 to prevent write_relocs from
5561 trying to swap the relocs out itself. */
5562 o->reloc_count = 0;
5563 }
5564
5565 if (dynamic && info->combreloc && dynobj != NULL)
5566 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
5567
5568 /* If we are linking against a dynamic object, or generating a
5569 shared library, finish up the dynamic linking information. */
5570 if (dynamic)
5571 {
5572 Elf_External_Dyn *dyncon, *dynconend;
5573
5574 /* Fix up .dynamic entries. */
5575 o = bfd_get_section_by_name (dynobj, ".dynamic");
5576 BFD_ASSERT (o != NULL);
5577
5578 dyncon = (Elf_External_Dyn *) o->contents;
5579 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
5580 for (; dyncon < dynconend; dyncon++)
5581 {
5582 Elf_Internal_Dyn dyn;
5583 const char *name;
5584 unsigned int type;
5585
5586 elf_swap_dyn_in (dynobj, dyncon, &dyn);
5587
5588 switch (dyn.d_tag)
5589 {
5590 default:
5591 break;
5592 case DT_NULL:
5593 if (relativecount > 0 && dyncon + 1 < dynconend)
5594 {
5595 switch (elf_section_data (reldyn)->this_hdr.sh_type)
5596 {
5597 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
5598 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
5599 default: break;
5600 }
5601 if (dyn.d_tag != DT_NULL)
5602 {
5603 dyn.d_un.d_val = relativecount;
5604 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5605 relativecount = 0;
5606 }
5607 }
5608 break;
5609 case DT_INIT:
5610 name = info->init_function;
5611 goto get_sym;
5612 case DT_FINI:
5613 name = info->fini_function;
5614 get_sym:
5615 {
5616 struct elf_link_hash_entry *h;
5617
5618 h = elf_link_hash_lookup (elf_hash_table (info), name,
5619 false, false, true);
5620 if (h != NULL
5621 && (h->root.type == bfd_link_hash_defined
5622 || h->root.type == bfd_link_hash_defweak))
5623 {
5624 dyn.d_un.d_val = h->root.u.def.value;
5625 o = h->root.u.def.section;
5626 if (o->output_section != NULL)
5627 dyn.d_un.d_val += (o->output_section->vma
5628 + o->output_offset);
5629 else
5630 {
5631 /* The symbol is imported from another shared
5632 library and does not apply to this one. */
5633 dyn.d_un.d_val = 0;
5634 }
5635
5636 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5637 }
5638 }
5639 break;
5640
5641 case DT_PREINIT_ARRAYSZ:
5642 name = ".preinit_array";
5643 goto get_size;
5644 case DT_INIT_ARRAYSZ:
5645 name = ".init_array";
5646 goto get_size;
5647 case DT_FINI_ARRAYSZ:
5648 name = ".fini_array";
5649 get_size:
5650 o = bfd_get_section_by_name (abfd, name);
5651 if (o == NULL)
5652 {
5653 (*_bfd_error_handler)
5654 (_("%s: could not find output section %s"),
5655 bfd_get_filename (abfd), name);
5656 goto error_return;
5657 }
5658 if (o->_raw_size == 0)
5659 (*_bfd_error_handler)
5660 (_("warning: %s section has zero size"), name);
5661 dyn.d_un.d_val = o->_raw_size;
5662 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5663 break;
5664
5665 case DT_PREINIT_ARRAY:
5666 name = ".preinit_array";
5667 goto get_vma;
5668 case DT_INIT_ARRAY:
5669 name = ".init_array";
5670 goto get_vma;
5671 case DT_FINI_ARRAY:
5672 name = ".fini_array";
5673 goto get_vma;
5674
5675 case DT_HASH:
5676 name = ".hash";
5677 goto get_vma;
5678 case DT_STRTAB:
5679 name = ".dynstr";
5680 goto get_vma;
5681 case DT_SYMTAB:
5682 name = ".dynsym";
5683 goto get_vma;
5684 case DT_VERDEF:
5685 name = ".gnu.version_d";
5686 goto get_vma;
5687 case DT_VERNEED:
5688 name = ".gnu.version_r";
5689 goto get_vma;
5690 case DT_VERSYM:
5691 name = ".gnu.version";
5692 get_vma:
5693 o = bfd_get_section_by_name (abfd, name);
5694 if (o == NULL)
5695 {
5696 (*_bfd_error_handler)
5697 (_("%s: could not find output section %s"),
5698 bfd_get_filename (abfd), name);
5699 goto error_return;
5700 }
5701 dyn.d_un.d_ptr = o->vma;
5702 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5703 break;
5704
5705 case DT_REL:
5706 case DT_RELA:
5707 case DT_RELSZ:
5708 case DT_RELASZ:
5709 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
5710 type = SHT_REL;
5711 else
5712 type = SHT_RELA;
5713 dyn.d_un.d_val = 0;
5714 for (i = 1; i < elf_numsections (abfd); i++)
5715 {
5716 Elf_Internal_Shdr *hdr;
5717
5718 hdr = elf_elfsections (abfd)[i];
5719 if (hdr->sh_type == type
5720 && (hdr->sh_flags & SHF_ALLOC) != 0)
5721 {
5722 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
5723 dyn.d_un.d_val += hdr->sh_size;
5724 else
5725 {
5726 if (dyn.d_un.d_val == 0
5727 || hdr->sh_addr < dyn.d_un.d_val)
5728 dyn.d_un.d_val = hdr->sh_addr;
5729 }
5730 }
5731 }
5732 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5733 break;
5734 }
5735 }
5736 }
5737
5738 /* If we have created any dynamic sections, then output them. */
5739 if (dynobj != NULL)
5740 {
5741 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
5742 goto error_return;
5743
5744 for (o = dynobj->sections; o != NULL; o = o->next)
5745 {
5746 if ((o->flags & SEC_HAS_CONTENTS) == 0
5747 || o->_raw_size == 0
5748 || o->output_section == bfd_abs_section_ptr)
5749 continue;
5750 if ((o->flags & SEC_LINKER_CREATED) == 0)
5751 {
5752 /* At this point, we are only interested in sections
5753 created by elf_link_create_dynamic_sections. */
5754 continue;
5755 }
5756 if ((elf_section_data (o->output_section)->this_hdr.sh_type
5757 != SHT_STRTAB)
5758 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
5759 {
5760 if (! bfd_set_section_contents (abfd, o->output_section,
5761 o->contents,
5762 (file_ptr) o->output_offset,
5763 o->_raw_size))
5764 goto error_return;
5765 }
5766 else
5767 {
5768 /* The contents of the .dynstr section are actually in a
5769 stringtab. */
5770 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
5771 if (bfd_seek (abfd, off, SEEK_SET) != 0
5772 || ! _bfd_elf_strtab_emit (abfd,
5773 elf_hash_table (info)->dynstr))
5774 goto error_return;
5775 }
5776 }
5777 }
5778
5779 if (info->relocateable)
5780 {
5781 boolean failed = false;
5782
5783 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
5784 if (failed)
5785 goto error_return;
5786 }
5787
5788 /* If we have optimized stabs strings, output them. */
5789 if (elf_hash_table (info)->stab_info != NULL)
5790 {
5791 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
5792 goto error_return;
5793 }
5794
5795 if (info->eh_frame_hdr && elf_hash_table (info)->dynobj)
5796 {
5797 o = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5798 ".eh_frame_hdr");
5799 if (o
5800 && (elf_section_data (o)->sec_info_type
5801 == ELF_INFO_TYPE_EH_FRAME_HDR))
5802 {
5803 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, o))
5804 goto error_return;
5805 }
5806 }
5807
5808 if (finfo.symstrtab != NULL)
5809 _bfd_stringtab_free (finfo.symstrtab);
5810 if (finfo.contents != NULL)
5811 free (finfo.contents);
5812 if (finfo.external_relocs != NULL)
5813 free (finfo.external_relocs);
5814 if (finfo.internal_relocs != NULL)
5815 free (finfo.internal_relocs);
5816 if (finfo.external_syms != NULL)
5817 free (finfo.external_syms);
5818 if (finfo.locsym_shndx != NULL)
5819 free (finfo.locsym_shndx);
5820 if (finfo.internal_syms != NULL)
5821 free (finfo.internal_syms);
5822 if (finfo.indices != NULL)
5823 free (finfo.indices);
5824 if (finfo.sections != NULL)
5825 free (finfo.sections);
5826 if (finfo.symbuf != NULL)
5827 free (finfo.symbuf);
5828 if (finfo.symshndxbuf != NULL)
5829 free (finfo.symbuf);
5830 for (o = abfd->sections; o != NULL; o = o->next)
5831 {
5832 if ((o->flags & SEC_RELOC) != 0
5833 && elf_section_data (o)->rel_hashes != NULL)
5834 free (elf_section_data (o)->rel_hashes);
5835 }
5836
5837 elf_tdata (abfd)->linker = true;
5838
5839 return true;
5840
5841 error_return:
5842 if (finfo.symstrtab != NULL)
5843 _bfd_stringtab_free (finfo.symstrtab);
5844 if (finfo.contents != NULL)
5845 free (finfo.contents);
5846 if (finfo.external_relocs != NULL)
5847 free (finfo.external_relocs);
5848 if (finfo.internal_relocs != NULL)
5849 free (finfo.internal_relocs);
5850 if (finfo.external_syms != NULL)
5851 free (finfo.external_syms);
5852 if (finfo.locsym_shndx != NULL)
5853 free (finfo.locsym_shndx);
5854 if (finfo.internal_syms != NULL)
5855 free (finfo.internal_syms);
5856 if (finfo.indices != NULL)
5857 free (finfo.indices);
5858 if (finfo.sections != NULL)
5859 free (finfo.sections);
5860 if (finfo.symbuf != NULL)
5861 free (finfo.symbuf);
5862 if (finfo.symshndxbuf != NULL)
5863 free (finfo.symbuf);
5864 for (o = abfd->sections; o != NULL; o = o->next)
5865 {
5866 if ((o->flags & SEC_RELOC) != 0
5867 && elf_section_data (o)->rel_hashes != NULL)
5868 free (elf_section_data (o)->rel_hashes);
5869 }
5870
5871 return false;
5872 }
5873
5874 /* Add a symbol to the output symbol table. */
5875
5876 static boolean
5877 elf_link_output_sym (finfo, name, elfsym, input_sec)
5878 struct elf_final_link_info *finfo;
5879 const char *name;
5880 Elf_Internal_Sym *elfsym;
5881 asection *input_sec;
5882 {
5883 Elf_External_Sym *dest;
5884 Elf_External_Sym_Shndx *destshndx;
5885
5886 boolean (*output_symbol_hook) PARAMS ((bfd *,
5887 struct bfd_link_info *info,
5888 const char *,
5889 Elf_Internal_Sym *,
5890 asection *));
5891
5892 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
5893 elf_backend_link_output_symbol_hook;
5894 if (output_symbol_hook != NULL)
5895 {
5896 if (! ((*output_symbol_hook)
5897 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5898 return false;
5899 }
5900
5901 if (name == (const char *) NULL || *name == '\0')
5902 elfsym->st_name = 0;
5903 else if (input_sec->flags & SEC_EXCLUDE)
5904 elfsym->st_name = 0;
5905 else
5906 {
5907 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5908 name, true, false);
5909 if (elfsym->st_name == (unsigned long) -1)
5910 return false;
5911 }
5912
5913 if (finfo->symbuf_count >= finfo->symbuf_size)
5914 {
5915 if (! elf_link_flush_output_syms (finfo))
5916 return false;
5917 }
5918
5919 dest = finfo->symbuf + finfo->symbuf_count;
5920 destshndx = finfo->symshndxbuf;
5921 if (destshndx != NULL)
5922 destshndx += finfo->symbuf_count;
5923 elf_swap_symbol_out (finfo->output_bfd, elfsym, (PTR) dest, (PTR) destshndx);
5924 ++finfo->symbuf_count;
5925
5926 ++ bfd_get_symcount (finfo->output_bfd);
5927
5928 return true;
5929 }
5930
5931 /* Flush the output symbols to the file. */
5932
5933 static boolean
5934 elf_link_flush_output_syms (finfo)
5935 struct elf_final_link_info *finfo;
5936 {
5937 if (finfo->symbuf_count > 0)
5938 {
5939 Elf_Internal_Shdr *hdr;
5940 file_ptr pos;
5941 bfd_size_type amt;
5942
5943 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5944 pos = hdr->sh_offset + hdr->sh_size;
5945 amt = finfo->symbuf_count * sizeof (Elf_External_Sym);
5946 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5947 || bfd_bwrite ((PTR) finfo->symbuf, amt, finfo->output_bfd) != amt)
5948 return false;
5949
5950 hdr->sh_size += amt;
5951
5952 if (finfo->symshndxbuf != NULL)
5953 {
5954 hdr = &elf_tdata (finfo->output_bfd)->symtab_shndx_hdr;
5955 pos = hdr->sh_offset + hdr->sh_size;
5956 amt = finfo->symbuf_count * sizeof (Elf_External_Sym_Shndx);
5957 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5958 || (bfd_bwrite ((PTR) finfo->symshndxbuf, amt, finfo->output_bfd)
5959 != amt))
5960 return false;
5961
5962 hdr->sh_size += amt;
5963 }
5964
5965 finfo->symbuf_count = 0;
5966 }
5967
5968 return true;
5969 }
5970
5971 /* Adjust all external symbols pointing into SEC_MERGE sections
5972 to reflect the object merging within the sections. */
5973
5974 static boolean
5975 elf_link_sec_merge_syms (h, data)
5976 struct elf_link_hash_entry *h;
5977 PTR data;
5978 {
5979 asection *sec;
5980
5981 if (h->root.type == bfd_link_hash_warning)
5982 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5983
5984 if ((h->root.type == bfd_link_hash_defined
5985 || h->root.type == bfd_link_hash_defweak)
5986 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
5987 && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
5988 {
5989 bfd *output_bfd = (bfd *) data;
5990
5991 h->root.u.def.value =
5992 _bfd_merged_section_offset (output_bfd,
5993 &h->root.u.def.section,
5994 elf_section_data (sec)->sec_info,
5995 h->root.u.def.value, (bfd_vma) 0);
5996 }
5997
5998 return true;
5999 }
6000
6001 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6002 allowing an unsatisfied unversioned symbol in the DSO to match a
6003 versioned symbol that would normally require an explicit version. */
6004
6005 static boolean
6006 elf_link_check_versioned_symbol (info, h)
6007 struct bfd_link_info *info;
6008 struct elf_link_hash_entry *h;
6009 {
6010 bfd *undef_bfd = h->root.u.undef.abfd;
6011 struct elf_link_loaded_list *loaded;
6012
6013 if ((undef_bfd->flags & DYNAMIC) == 0
6014 || info->hash->creator->flavour != bfd_target_elf_flavour
6015 || elf_dt_soname (h->root.u.undef.abfd) == NULL)
6016 return false;
6017
6018 for (loaded = elf_hash_table (info)->loaded;
6019 loaded != NULL;
6020 loaded = loaded->next)
6021 {
6022 bfd *input;
6023 Elf_Internal_Shdr *hdr;
6024 bfd_size_type symcount;
6025 bfd_size_type extsymcount;
6026 bfd_size_type extsymoff;
6027 Elf_Internal_Shdr *versymhdr;
6028 Elf_Internal_Sym *isym;
6029 Elf_Internal_Sym *isymend;
6030 Elf_Internal_Sym *isymbuf;
6031 Elf_External_Versym *ever;
6032 Elf_External_Versym *extversym;
6033
6034 input = loaded->abfd;
6035
6036 /* We check each DSO for a possible hidden versioned definition. */
6037 if (input == undef_bfd
6038 || (input->flags & DYNAMIC) == 0
6039 || elf_dynversym (input) == 0)
6040 continue;
6041
6042 hdr = &elf_tdata (input)->dynsymtab_hdr;
6043
6044 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
6045 if (elf_bad_symtab (input))
6046 {
6047 extsymcount = symcount;
6048 extsymoff = 0;
6049 }
6050 else
6051 {
6052 extsymcount = symcount - hdr->sh_info;
6053 extsymoff = hdr->sh_info;
6054 }
6055
6056 if (extsymcount == 0)
6057 continue;
6058
6059 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6060 NULL, NULL, NULL);
6061 if (isymbuf == NULL)
6062 return false;
6063
6064 /* Read in any version definitions. */
6065 versymhdr = &elf_tdata (input)->dynversym_hdr;
6066 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
6067 if (extversym == NULL)
6068 goto error_ret;
6069
6070 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6071 || (bfd_bread ((PTR) extversym, versymhdr->sh_size, input)
6072 != versymhdr->sh_size))
6073 {
6074 free (extversym);
6075 error_ret:
6076 free (isymbuf);
6077 return false;
6078 }
6079
6080 ever = extversym + extsymoff;
6081 isymend = isymbuf + extsymcount;
6082 for (isym = isymbuf; isym < isymend; isym++, ever++)
6083 {
6084 const char *name;
6085 Elf_Internal_Versym iver;
6086
6087 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6088 || isym->st_shndx == SHN_UNDEF)
6089 continue;
6090
6091 name = bfd_elf_string_from_elf_section (input,
6092 hdr->sh_link,
6093 isym->st_name);
6094 if (strcmp (name, h->root.root.string) != 0)
6095 continue;
6096
6097 _bfd_elf_swap_versym_in (input, ever, &iver);
6098
6099 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6100 {
6101 /* If we have a non-hidden versioned sym, then it should
6102 have provided a definition for the undefined sym. */
6103 abort ();
6104 }
6105
6106 if ((iver.vs_vers & VERSYM_VERSION) == 2)
6107 {
6108 /* This is the oldest (default) sym. We can use it. */
6109 free (extversym);
6110 free (isymbuf);
6111 return true;
6112 }
6113 }
6114
6115 free (extversym);
6116 free (isymbuf);
6117 }
6118
6119 return false;
6120 }
6121
6122 /* Add an external symbol to the symbol table. This is called from
6123 the hash table traversal routine. When generating a shared object,
6124 we go through the symbol table twice. The first time we output
6125 anything that might have been forced to local scope in a version
6126 script. The second time we output the symbols that are still
6127 global symbols. */
6128
6129 static boolean
6130 elf_link_output_extsym (h, data)
6131 struct elf_link_hash_entry *h;
6132 PTR data;
6133 {
6134 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
6135 struct elf_final_link_info *finfo = eoinfo->finfo;
6136 boolean strip;
6137 Elf_Internal_Sym sym;
6138 asection *input_sec;
6139
6140 if (h->root.type == bfd_link_hash_warning)
6141 {
6142 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6143 if (h->root.type == bfd_link_hash_new)
6144 return true;
6145 }
6146
6147 /* Decide whether to output this symbol in this pass. */
6148 if (eoinfo->localsyms)
6149 {
6150 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6151 return true;
6152 }
6153 else
6154 {
6155 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6156 return true;
6157 }
6158
6159 /* If we are not creating a shared library, and this symbol is
6160 referenced by a shared library but is not defined anywhere, then
6161 warn that it is undefined. If we do not do this, the runtime
6162 linker will complain that the symbol is undefined when the
6163 program is run. We don't have to worry about symbols that are
6164 referenced by regular files, because we will already have issued
6165 warnings for them. */
6166 if (! finfo->info->relocateable
6167 && ! finfo->info->allow_shlib_undefined
6168 && ! finfo->info->shared
6169 && h->root.type == bfd_link_hash_undefined
6170 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
6171 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
6172 && ! elf_link_check_versioned_symbol (finfo->info, h))
6173 {
6174 if (! ((*finfo->info->callbacks->undefined_symbol)
6175 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6176 (asection *) NULL, (bfd_vma) 0, true)))
6177 {
6178 eoinfo->failed = true;
6179 return false;
6180 }
6181 }
6182
6183 /* We don't want to output symbols that have never been mentioned by
6184 a regular file, or that we have been told to strip. However, if
6185 h->indx is set to -2, the symbol is used by a reloc and we must
6186 output it. */
6187 if (h->indx == -2)
6188 strip = false;
6189 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6190 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
6191 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
6192 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
6193 strip = true;
6194 else if (finfo->info->strip == strip_all
6195 || (finfo->info->strip == strip_some
6196 && bfd_hash_lookup (finfo->info->keep_hash,
6197 h->root.root.string,
6198 false, false) == NULL))
6199 strip = true;
6200 else
6201 strip = false;
6202
6203 /* If we're stripping it, and it's not a dynamic symbol, there's
6204 nothing else to do unless it is a forced local symbol. */
6205 if (strip
6206 && h->dynindx == -1
6207 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6208 return true;
6209
6210 sym.st_value = 0;
6211 sym.st_size = h->size;
6212 sym.st_other = h->other;
6213 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6214 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6215 else if (h->root.type == bfd_link_hash_undefweak
6216 || h->root.type == bfd_link_hash_defweak)
6217 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6218 else
6219 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6220
6221 switch (h->root.type)
6222 {
6223 default:
6224 case bfd_link_hash_new:
6225 case bfd_link_hash_warning:
6226 abort ();
6227 return false;
6228
6229 case bfd_link_hash_undefined:
6230 case bfd_link_hash_undefweak:
6231 input_sec = bfd_und_section_ptr;
6232 sym.st_shndx = SHN_UNDEF;
6233 break;
6234
6235 case bfd_link_hash_defined:
6236 case bfd_link_hash_defweak:
6237 {
6238 input_sec = h->root.u.def.section;
6239 if (input_sec->output_section != NULL)
6240 {
6241 sym.st_shndx =
6242 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6243 input_sec->output_section);
6244 if (sym.st_shndx == SHN_BAD)
6245 {
6246 (*_bfd_error_handler)
6247 (_("%s: could not find output section %s for input section %s"),
6248 bfd_get_filename (finfo->output_bfd),
6249 input_sec->output_section->name,
6250 input_sec->name);
6251 eoinfo->failed = true;
6252 return false;
6253 }
6254
6255 /* ELF symbols in relocateable files are section relative,
6256 but in nonrelocateable files they are virtual
6257 addresses. */
6258 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6259 if (! finfo->info->relocateable)
6260 {
6261 sym.st_value += input_sec->output_section->vma;
6262 if (h->type == STT_TLS)
6263 {
6264 /* STT_TLS symbols are relative to PT_TLS segment
6265 base. */
6266 BFD_ASSERT (finfo->first_tls_sec != NULL);
6267 sym.st_value -= finfo->first_tls_sec->vma;
6268 }
6269 }
6270 }
6271 else
6272 {
6273 BFD_ASSERT (input_sec->owner == NULL
6274 || (input_sec->owner->flags & DYNAMIC) != 0);
6275 sym.st_shndx = SHN_UNDEF;
6276 input_sec = bfd_und_section_ptr;
6277 }
6278 }
6279 break;
6280
6281 case bfd_link_hash_common:
6282 input_sec = h->root.u.c.p->section;
6283 sym.st_shndx = SHN_COMMON;
6284 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6285 break;
6286
6287 case bfd_link_hash_indirect:
6288 /* These symbols are created by symbol versioning. They point
6289 to the decorated version of the name. For example, if the
6290 symbol foo@@GNU_1.2 is the default, which should be used when
6291 foo is used with no version, then we add an indirect symbol
6292 foo which points to foo@@GNU_1.2. We ignore these symbols,
6293 since the indirected symbol is already in the hash table. */
6294 return true;
6295 }
6296
6297 /* Give the processor backend a chance to tweak the symbol value,
6298 and also to finish up anything that needs to be done for this
6299 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6300 forced local syms when non-shared is due to a historical quirk. */
6301 if ((h->dynindx != -1
6302 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6303 && (finfo->info->shared
6304 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6305 && elf_hash_table (finfo->info)->dynamic_sections_created)
6306 {
6307 struct elf_backend_data *bed;
6308
6309 bed = get_elf_backend_data (finfo->output_bfd);
6310 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6311 (finfo->output_bfd, finfo->info, h, &sym)))
6312 {
6313 eoinfo->failed = true;
6314 return false;
6315 }
6316 }
6317
6318 /* If we are marking the symbol as undefined, and there are no
6319 non-weak references to this symbol from a regular object, then
6320 mark the symbol as weak undefined; if there are non-weak
6321 references, mark the symbol as strong. We can't do this earlier,
6322 because it might not be marked as undefined until the
6323 finish_dynamic_symbol routine gets through with it. */
6324 if (sym.st_shndx == SHN_UNDEF
6325 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
6326 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6327 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6328 {
6329 int bindtype;
6330
6331 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
6332 bindtype = STB_GLOBAL;
6333 else
6334 bindtype = STB_WEAK;
6335 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6336 }
6337
6338 /* If a symbol is not defined locally, we clear the visibility
6339 field. */
6340 if (! finfo->info->relocateable
6341 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6342 sym.st_other ^= ELF_ST_VISIBILITY (sym.st_other);
6343
6344 /* If this symbol should be put in the .dynsym section, then put it
6345 there now. We already know the symbol index. We also fill in
6346 the entry in the .hash section. */
6347 if (h->dynindx != -1
6348 && elf_hash_table (finfo->info)->dynamic_sections_created)
6349 {
6350 size_t bucketcount;
6351 size_t bucket;
6352 size_t hash_entry_size;
6353 bfd_byte *bucketpos;
6354 bfd_vma chain;
6355 Elf_External_Sym *esym;
6356
6357 sym.st_name = h->dynstr_index;
6358 esym = (Elf_External_Sym *) finfo->dynsym_sec->contents + h->dynindx;
6359 elf_swap_symbol_out (finfo->output_bfd, &sym, (PTR) esym, (PTR) 0);
6360
6361 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6362 bucket = h->elf_hash_value % bucketcount;
6363 hash_entry_size
6364 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6365 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6366 + (bucket + 2) * hash_entry_size);
6367 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6368 bfd_put (8 * hash_entry_size, finfo->output_bfd, (bfd_vma) h->dynindx,
6369 bucketpos);
6370 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6371 ((bfd_byte *) finfo->hash_sec->contents
6372 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6373
6374 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6375 {
6376 Elf_Internal_Versym iversym;
6377 Elf_External_Versym *eversym;
6378
6379 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6380 {
6381 if (h->verinfo.verdef == NULL)
6382 iversym.vs_vers = 0;
6383 else
6384 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6385 }
6386 else
6387 {
6388 if (h->verinfo.vertree == NULL)
6389 iversym.vs_vers = 1;
6390 else
6391 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6392 }
6393
6394 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
6395 iversym.vs_vers |= VERSYM_HIDDEN;
6396
6397 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6398 eversym += h->dynindx;
6399 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6400 }
6401 }
6402
6403 /* If we're stripping it, then it was just a dynamic symbol, and
6404 there's nothing else to do. */
6405 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6406 return true;
6407
6408 h->indx = bfd_get_symcount (finfo->output_bfd);
6409
6410 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
6411 {
6412 eoinfo->failed = true;
6413 return false;
6414 }
6415
6416 return true;
6417 }
6418
6419 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
6420 originated from the section given by INPUT_REL_HDR) to the
6421 OUTPUT_BFD. */
6422
6423 static boolean
6424 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
6425 internal_relocs)
6426 bfd *output_bfd;
6427 asection *input_section;
6428 Elf_Internal_Shdr *input_rel_hdr;
6429 Elf_Internal_Rela *internal_relocs;
6430 {
6431 Elf_Internal_Rela *irela;
6432 Elf_Internal_Rela *irelaend;
6433 Elf_Internal_Shdr *output_rel_hdr;
6434 asection *output_section;
6435 unsigned int *rel_countp = NULL;
6436 struct elf_backend_data *bed;
6437 bfd_size_type amt;
6438
6439 output_section = input_section->output_section;
6440 output_rel_hdr = NULL;
6441
6442 if (elf_section_data (output_section)->rel_hdr.sh_entsize
6443 == input_rel_hdr->sh_entsize)
6444 {
6445 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
6446 rel_countp = &elf_section_data (output_section)->rel_count;
6447 }
6448 else if (elf_section_data (output_section)->rel_hdr2
6449 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
6450 == input_rel_hdr->sh_entsize))
6451 {
6452 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
6453 rel_countp = &elf_section_data (output_section)->rel_count2;
6454 }
6455 else
6456 {
6457 (*_bfd_error_handler)
6458 (_("%s: relocation size mismatch in %s section %s"),
6459 bfd_get_filename (output_bfd),
6460 bfd_archive_filename (input_section->owner),
6461 input_section->name);
6462 bfd_set_error (bfd_error_wrong_object_format);
6463 return false;
6464 }
6465
6466 bed = get_elf_backend_data (output_bfd);
6467 irela = internal_relocs;
6468 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
6469 * bed->s->int_rels_per_ext_rel);
6470
6471 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
6472 {
6473 Elf_External_Rel *erel;
6474 Elf_Internal_Rel *irel;
6475
6476 amt = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
6477 irel = (Elf_Internal_Rel *) bfd_zmalloc (amt);
6478 if (irel == NULL)
6479 {
6480 (*_bfd_error_handler) (_("Error: out of memory"));
6481 abort ();
6482 }
6483
6484 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
6485 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erel++)
6486 {
6487 unsigned int i;
6488
6489 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6490 {
6491 irel[i].r_offset = irela[i].r_offset;
6492 irel[i].r_info = irela[i].r_info;
6493 BFD_ASSERT (irela[i].r_addend == 0);
6494 }
6495
6496 if (bed->s->swap_reloc_out)
6497 (*bed->s->swap_reloc_out) (output_bfd, irel, (PTR) erel);
6498 else
6499 elf_swap_reloc_out (output_bfd, irel, erel);
6500 }
6501
6502 free (irel);
6503 }
6504 else
6505 {
6506 Elf_External_Rela *erela;
6507
6508 BFD_ASSERT (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
6509
6510 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
6511 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erela++)
6512 if (bed->s->swap_reloca_out)
6513 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
6514 else
6515 elf_swap_reloca_out (output_bfd, irela, erela);
6516 }
6517
6518 /* Bump the counter, so that we know where to add the next set of
6519 relocations. */
6520 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
6521
6522 return true;
6523 }
6524
6525 /* Link an input file into the linker output file. This function
6526 handles all the sections and relocations of the input file at once.
6527 This is so that we only have to read the local symbols once, and
6528 don't have to keep them in memory. */
6529
6530 static boolean
6531 elf_link_input_bfd (finfo, input_bfd)
6532 struct elf_final_link_info *finfo;
6533 bfd *input_bfd;
6534 {
6535 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
6536 bfd *, asection *, bfd_byte *,
6537 Elf_Internal_Rela *,
6538 Elf_Internal_Sym *, asection **));
6539 bfd *output_bfd;
6540 Elf_Internal_Shdr *symtab_hdr;
6541 size_t locsymcount;
6542 size_t extsymoff;
6543 Elf_Internal_Sym *isymbuf;
6544 Elf_Internal_Sym *isym;
6545 Elf_Internal_Sym *isymend;
6546 long *pindex;
6547 asection **ppsection;
6548 asection *o;
6549 struct elf_backend_data *bed;
6550 boolean emit_relocs;
6551 struct elf_link_hash_entry **sym_hashes;
6552
6553 output_bfd = finfo->output_bfd;
6554 bed = get_elf_backend_data (output_bfd);
6555 relocate_section = bed->elf_backend_relocate_section;
6556
6557 /* If this is a dynamic object, we don't want to do anything here:
6558 we don't want the local symbols, and we don't want the section
6559 contents. */
6560 if ((input_bfd->flags & DYNAMIC) != 0)
6561 return true;
6562
6563 emit_relocs = (finfo->info->relocateable
6564 || finfo->info->emitrelocations
6565 || bed->elf_backend_emit_relocs);
6566
6567 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6568 if (elf_bad_symtab (input_bfd))
6569 {
6570 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6571 extsymoff = 0;
6572 }
6573 else
6574 {
6575 locsymcount = symtab_hdr->sh_info;
6576 extsymoff = symtab_hdr->sh_info;
6577 }
6578
6579 /* Read the local symbols. */
6580 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6581 if (isymbuf == NULL && locsymcount != 0)
6582 {
6583 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6584 finfo->internal_syms,
6585 finfo->external_syms,
6586 finfo->locsym_shndx);
6587 if (isymbuf == NULL)
6588 return false;
6589 }
6590
6591 /* Find local symbol sections and adjust values of symbols in
6592 SEC_MERGE sections. Write out those local symbols we know are
6593 going into the output file. */
6594 isymend = isymbuf + locsymcount;
6595 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6596 isym < isymend;
6597 isym++, pindex++, ppsection++)
6598 {
6599 asection *isec;
6600 const char *name;
6601 Elf_Internal_Sym osym;
6602
6603 *pindex = -1;
6604
6605 if (elf_bad_symtab (input_bfd))
6606 {
6607 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6608 {
6609 *ppsection = NULL;
6610 continue;
6611 }
6612 }
6613
6614 if (isym->st_shndx == SHN_UNDEF)
6615 isec = bfd_und_section_ptr;
6616 else if (isym->st_shndx < SHN_LORESERVE
6617 || isym->st_shndx > SHN_HIRESERVE)
6618 {
6619 isec = section_from_elf_index (input_bfd, isym->st_shndx);
6620 if (isec
6621 && elf_section_data (isec)->sec_info_type == ELF_INFO_TYPE_MERGE
6622 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6623 isym->st_value =
6624 _bfd_merged_section_offset (output_bfd, &isec,
6625 elf_section_data (isec)->sec_info,
6626 isym->st_value, (bfd_vma) 0);
6627 }
6628 else if (isym->st_shndx == SHN_ABS)
6629 isec = bfd_abs_section_ptr;
6630 else if (isym->st_shndx == SHN_COMMON)
6631 isec = bfd_com_section_ptr;
6632 else
6633 {
6634 /* Who knows? */
6635 isec = NULL;
6636 }
6637
6638 *ppsection = isec;
6639
6640 /* Don't output the first, undefined, symbol. */
6641 if (ppsection == finfo->sections)
6642 continue;
6643
6644 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6645 {
6646 /* We never output section symbols. Instead, we use the
6647 section symbol of the corresponding section in the output
6648 file. */
6649 continue;
6650 }
6651
6652 /* If we are stripping all symbols, we don't want to output this
6653 one. */
6654 if (finfo->info->strip == strip_all)
6655 continue;
6656
6657 /* If we are discarding all local symbols, we don't want to
6658 output this one. If we are generating a relocateable output
6659 file, then some of the local symbols may be required by
6660 relocs; we output them below as we discover that they are
6661 needed. */
6662 if (finfo->info->discard == discard_all)
6663 continue;
6664
6665 /* If this symbol is defined in a section which we are
6666 discarding, we don't need to keep it, but note that
6667 linker_mark is only reliable for sections that have contents.
6668 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6669 as well as linker_mark. */
6670 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6671 && isec != NULL
6672 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6673 || (! finfo->info->relocateable
6674 && (isec->flags & SEC_EXCLUDE) != 0)))
6675 continue;
6676
6677 /* Get the name of the symbol. */
6678 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6679 isym->st_name);
6680 if (name == NULL)
6681 return false;
6682
6683 /* See if we are discarding symbols with this name. */
6684 if ((finfo->info->strip == strip_some
6685 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
6686 == NULL))
6687 || (((finfo->info->discard == discard_sec_merge
6688 && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable)
6689 || finfo->info->discard == discard_l)
6690 && bfd_is_local_label_name (input_bfd, name)))
6691 continue;
6692
6693 /* If we get here, we are going to output this symbol. */
6694
6695 osym = *isym;
6696
6697 /* Adjust the section index for the output file. */
6698 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6699 isec->output_section);
6700 if (osym.st_shndx == SHN_BAD)
6701 return false;
6702
6703 *pindex = bfd_get_symcount (output_bfd);
6704
6705 /* ELF symbols in relocateable files are section relative, but
6706 in executable files they are virtual addresses. Note that
6707 this code assumes that all ELF sections have an associated
6708 BFD section with a reasonable value for output_offset; below
6709 we assume that they also have a reasonable value for
6710 output_section. Any special sections must be set up to meet
6711 these requirements. */
6712 osym.st_value += isec->output_offset;
6713 if (! finfo->info->relocateable)
6714 {
6715 osym.st_value += isec->output_section->vma;
6716 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6717 {
6718 /* STT_TLS symbols are relative to PT_TLS segment base. */
6719 BFD_ASSERT (finfo->first_tls_sec != NULL);
6720 osym.st_value -= finfo->first_tls_sec->vma;
6721 }
6722 }
6723
6724 if (! elf_link_output_sym (finfo, name, &osym, isec))
6725 return false;
6726 }
6727
6728 /* Relocate the contents of each section. */
6729 sym_hashes = elf_sym_hashes (input_bfd);
6730 for (o = input_bfd->sections; o != NULL; o = o->next)
6731 {
6732 bfd_byte *contents;
6733
6734 if (! o->linker_mark)
6735 {
6736 /* This section was omitted from the link. */
6737 continue;
6738 }
6739
6740 if ((o->flags & SEC_HAS_CONTENTS) == 0
6741 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
6742 continue;
6743
6744 if ((o->flags & SEC_LINKER_CREATED) != 0)
6745 {
6746 /* Section was created by elf_link_create_dynamic_sections
6747 or somesuch. */
6748 continue;
6749 }
6750
6751 /* Get the contents of the section. They have been cached by a
6752 relaxation routine. Note that o is a section in an input
6753 file, so the contents field will not have been set by any of
6754 the routines which work on output files. */
6755 if (elf_section_data (o)->this_hdr.contents != NULL)
6756 contents = elf_section_data (o)->this_hdr.contents;
6757 else
6758 {
6759 contents = finfo->contents;
6760 if (! bfd_get_section_contents (input_bfd, o, contents,
6761 (file_ptr) 0, o->_raw_size))
6762 return false;
6763 }
6764
6765 if ((o->flags & SEC_RELOC) != 0)
6766 {
6767 Elf_Internal_Rela *internal_relocs;
6768
6769 /* Get the swapped relocs. */
6770 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6771 (input_bfd, o, finfo->external_relocs,
6772 finfo->internal_relocs, false));
6773 if (internal_relocs == NULL
6774 && o->reloc_count > 0)
6775 return false;
6776
6777 /* Run through the relocs looking for any against symbols
6778 from discarded sections and section symbols from
6779 removed link-once sections. Complain about relocs
6780 against discarded sections. Zero relocs against removed
6781 link-once sections. We should really complain if
6782 anything in the final link tries to use it, but
6783 DWARF-based exception handling might have an entry in
6784 .eh_frame to describe a routine in the linkonce section,
6785 and it turns out to be hard to remove the .eh_frame
6786 entry too. FIXME. */
6787 if (!finfo->info->relocateable
6788 && !elf_section_ignore_discarded_relocs (o))
6789 {
6790 Elf_Internal_Rela *rel, *relend;
6791
6792 rel = internal_relocs;
6793 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6794 for ( ; rel < relend; rel++)
6795 {
6796 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6797
6798 if (r_symndx >= locsymcount
6799 || (elf_bad_symtab (input_bfd)
6800 && finfo->sections[r_symndx] == NULL))
6801 {
6802 struct elf_link_hash_entry *h;
6803
6804 h = sym_hashes[r_symndx - extsymoff];
6805 while (h->root.type == bfd_link_hash_indirect
6806 || h->root.type == bfd_link_hash_warning)
6807 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6808
6809 /* Complain if the definition comes from a
6810 discarded section. */
6811 if ((h->root.type == bfd_link_hash_defined
6812 || h->root.type == bfd_link_hash_defweak)
6813 && elf_discarded_section (h->root.u.def.section))
6814 {
6815 #if BFD_VERSION_DATE < 20031005
6816 if ((o->flags & SEC_DEBUGGING) != 0)
6817 {
6818 #if BFD_VERSION_DATE > 20021005
6819 (*finfo->info->callbacks->warning)
6820 (finfo->info,
6821 _("warning: relocation against removed section; zeroing"),
6822 NULL, input_bfd, o, rel->r_offset);
6823 #endif
6824 BFD_ASSERT (r_symndx != 0);
6825 memset (rel, 0, sizeof (*rel));
6826 }
6827 else
6828 #endif
6829 {
6830 if (! ((*finfo->info->callbacks->undefined_symbol)
6831 (finfo->info, h->root.root.string,
6832 input_bfd, o, rel->r_offset,
6833 true)))
6834 return false;
6835 }
6836 }
6837 }
6838 else
6839 {
6840 asection *sec = finfo->sections[r_symndx];
6841
6842 if (sec != NULL && elf_discarded_section (sec))
6843 {
6844 #if BFD_VERSION_DATE < 20031005
6845 if ((o->flags & SEC_DEBUGGING) != 0
6846 || (sec->flags & SEC_LINK_ONCE) != 0)
6847 {
6848 #if BFD_VERSION_DATE > 20021005
6849 (*finfo->info->callbacks->warning)
6850 (finfo->info,
6851 _("warning: relocation against removed section"),
6852 NULL, input_bfd, o, rel->r_offset);
6853 #endif
6854 BFD_ASSERT (r_symndx != 0);
6855 rel->r_info
6856 = ELF_R_INFO (0, ELF_R_TYPE (rel->r_info));
6857 rel->r_addend = 0;
6858 }
6859 else
6860 #endif
6861 {
6862 boolean ok;
6863 const char *msg
6864 = _("local symbols in discarded section %s");
6865 bfd_size_type amt
6866 = strlen (sec->name) + strlen (msg) - 1;
6867 char *buf = (char *) bfd_malloc (amt);
6868
6869 if (buf != NULL)
6870 sprintf (buf, msg, sec->name);
6871 else
6872 buf = (char *) sec->name;
6873 ok = (*finfo->info->callbacks
6874 ->undefined_symbol) (finfo->info, buf,
6875 input_bfd, o,
6876 rel->r_offset,
6877 true);
6878 if (buf != sec->name)
6879 free (buf);
6880 if (!ok)
6881 return false;
6882 }
6883 }
6884 }
6885 }
6886 }
6887
6888 /* Relocate the section by invoking a back end routine.
6889
6890 The back end routine is responsible for adjusting the
6891 section contents as necessary, and (if using Rela relocs
6892 and generating a relocateable output file) adjusting the
6893 reloc addend as necessary.
6894
6895 The back end routine does not have to worry about setting
6896 the reloc address or the reloc symbol index.
6897
6898 The back end routine is given a pointer to the swapped in
6899 internal symbols, and can access the hash table entries
6900 for the external symbols via elf_sym_hashes (input_bfd).
6901
6902 When generating relocateable output, the back end routine
6903 must handle STB_LOCAL/STT_SECTION symbols specially. The
6904 output symbol is going to be a section symbol
6905 corresponding to the output section, which will require
6906 the addend to be adjusted. */
6907
6908 if (! (*relocate_section) (output_bfd, finfo->info,
6909 input_bfd, o, contents,
6910 internal_relocs,
6911 isymbuf,
6912 finfo->sections))
6913 return false;
6914
6915 if (emit_relocs)
6916 {
6917 Elf_Internal_Rela *irela;
6918 Elf_Internal_Rela *irelaend;
6919 struct elf_link_hash_entry **rel_hash;
6920 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
6921 unsigned int next_erel;
6922 boolean (*reloc_emitter) PARAMS ((bfd *, asection *,
6923 Elf_Internal_Shdr *,
6924 Elf_Internal_Rela *));
6925 boolean rela_normal;
6926
6927 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6928 rela_normal = (bed->rela_normal
6929 && (input_rel_hdr->sh_entsize
6930 == sizeof (Elf_External_Rela)));
6931
6932 /* Adjust the reloc addresses and symbol indices. */
6933
6934 irela = internal_relocs;
6935 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6936 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6937 + elf_section_data (o->output_section)->rel_count
6938 + elf_section_data (o->output_section)->rel_count2);
6939 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6940 {
6941 unsigned long r_symndx;
6942 asection *sec;
6943 Elf_Internal_Sym sym;
6944
6945 if (next_erel == bed->s->int_rels_per_ext_rel)
6946 {
6947 rel_hash++;
6948 next_erel = 0;
6949 }
6950
6951 irela->r_offset += o->output_offset;
6952
6953 /* Relocs in an executable have to be virtual addresses. */
6954 if (!finfo->info->relocateable)
6955 irela->r_offset += o->output_section->vma;
6956
6957 r_symndx = ELF_R_SYM (irela->r_info);
6958
6959 if (r_symndx == 0)
6960 continue;
6961
6962 if (r_symndx >= locsymcount
6963 || (elf_bad_symtab (input_bfd)
6964 && finfo->sections[r_symndx] == NULL))
6965 {
6966 struct elf_link_hash_entry *rh;
6967 unsigned long indx;
6968
6969 /* This is a reloc against a global symbol. We
6970 have not yet output all the local symbols, so
6971 we do not know the symbol index of any global
6972 symbol. We set the rel_hash entry for this
6973 reloc to point to the global hash table entry
6974 for this symbol. The symbol index is then
6975 set at the end of elf_bfd_final_link. */
6976 indx = r_symndx - extsymoff;
6977 rh = elf_sym_hashes (input_bfd)[indx];
6978 while (rh->root.type == bfd_link_hash_indirect
6979 || rh->root.type == bfd_link_hash_warning)
6980 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
6981
6982 /* Setting the index to -2 tells
6983 elf_link_output_extsym that this symbol is
6984 used by a reloc. */
6985 BFD_ASSERT (rh->indx < 0);
6986 rh->indx = -2;
6987
6988 *rel_hash = rh;
6989
6990 continue;
6991 }
6992
6993 /* This is a reloc against a local symbol. */
6994
6995 *rel_hash = NULL;
6996 sym = isymbuf[r_symndx];
6997 sec = finfo->sections[r_symndx];
6998 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
6999 {
7000 /* I suppose the backend ought to fill in the
7001 section of any STT_SECTION symbol against a
7002 processor specific section. If we have
7003 discarded a section, the output_section will
7004 be the absolute section. */
7005 if (bfd_is_abs_section (sec)
7006 || (sec != NULL
7007 && bfd_is_abs_section (sec->output_section)))
7008 r_symndx = 0;
7009 else if (sec == NULL || sec->owner == NULL)
7010 {
7011 bfd_set_error (bfd_error_bad_value);
7012 return false;
7013 }
7014 else
7015 {
7016 r_symndx = sec->output_section->target_index;
7017 BFD_ASSERT (r_symndx != 0);
7018 }
7019
7020 /* Adjust the addend according to where the
7021 section winds up in the output section. */
7022 if (rela_normal)
7023 irela->r_addend += sec->output_offset;
7024 }
7025 else
7026 {
7027 if (finfo->indices[r_symndx] == -1)
7028 {
7029 unsigned long shlink;
7030 const char *name;
7031 asection *osec;
7032
7033 if (finfo->info->strip == strip_all)
7034 {
7035 /* You can't do ld -r -s. */
7036 bfd_set_error (bfd_error_invalid_operation);
7037 return false;
7038 }
7039
7040 /* This symbol was skipped earlier, but
7041 since it is needed by a reloc, we
7042 must output it now. */
7043 shlink = symtab_hdr->sh_link;
7044 name = (bfd_elf_string_from_elf_section
7045 (input_bfd, shlink, sym.st_name));
7046 if (name == NULL)
7047 return false;
7048
7049 osec = sec->output_section;
7050 sym.st_shndx =
7051 _bfd_elf_section_from_bfd_section (output_bfd,
7052 osec);
7053 if (sym.st_shndx == SHN_BAD)
7054 return false;
7055
7056 sym.st_value += sec->output_offset;
7057 if (! finfo->info->relocateable)
7058 {
7059 sym.st_value += osec->vma;
7060 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7061 {
7062 /* STT_TLS symbols are relative to PT_TLS
7063 segment base. */
7064 BFD_ASSERT (finfo->first_tls_sec != NULL);
7065 sym.st_value -= finfo->first_tls_sec->vma;
7066 }
7067 }
7068
7069 finfo->indices[r_symndx]
7070 = bfd_get_symcount (output_bfd);
7071
7072 if (! elf_link_output_sym (finfo, name, &sym, sec))
7073 return false;
7074 }
7075
7076 r_symndx = finfo->indices[r_symndx];
7077 }
7078
7079 irela->r_info = ELF_R_INFO (r_symndx,
7080 ELF_R_TYPE (irela->r_info));
7081 }
7082
7083 /* Swap out the relocs. */
7084 if (bed->elf_backend_emit_relocs
7085 && !(finfo->info->relocateable
7086 || finfo->info->emitrelocations))
7087 reloc_emitter = bed->elf_backend_emit_relocs;
7088 else
7089 reloc_emitter = elf_link_output_relocs;
7090
7091 if (input_rel_hdr->sh_size != 0
7092 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
7093 internal_relocs))
7094 return false;
7095
7096 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7097 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7098 {
7099 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7100 * bed->s->int_rels_per_ext_rel);
7101 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
7102 internal_relocs))
7103 return false;
7104 }
7105 }
7106 }
7107
7108 /* Write out the modified section contents. */
7109 if (bed->elf_backend_write_section
7110 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7111 {
7112 /* Section written out. */
7113 }
7114 else switch (elf_section_data (o)->sec_info_type)
7115 {
7116 case ELF_INFO_TYPE_STABS:
7117 if (! (_bfd_write_section_stabs
7118 (output_bfd,
7119 &elf_hash_table (finfo->info)->stab_info,
7120 o, &elf_section_data (o)->sec_info, contents)))
7121 return false;
7122 break;
7123 case ELF_INFO_TYPE_MERGE:
7124 if (! (_bfd_write_merged_section
7125 (output_bfd, o, elf_section_data (o)->sec_info)))
7126 return false;
7127 break;
7128 case ELF_INFO_TYPE_EH_FRAME:
7129 {
7130 asection *ehdrsec;
7131
7132 ehdrsec
7133 = bfd_get_section_by_name (elf_hash_table (finfo->info)->dynobj,
7134 ".eh_frame_hdr");
7135 if (! (_bfd_elf_write_section_eh_frame (output_bfd, o, ehdrsec,
7136 contents)))
7137 return false;
7138 }
7139 break;
7140 default:
7141 {
7142 bfd_size_type sec_size;
7143
7144 sec_size = (o->_cooked_size != 0 ? o->_cooked_size : o->_raw_size);
7145 if (! (o->flags & SEC_EXCLUDE)
7146 && ! bfd_set_section_contents (output_bfd, o->output_section,
7147 contents,
7148 (file_ptr) o->output_offset,
7149 sec_size))
7150 return false;
7151 }
7152 break;
7153 }
7154 }
7155
7156 return true;
7157 }
7158
7159 /* Generate a reloc when linking an ELF file. This is a reloc
7160 requested by the linker, and does come from any input file. This
7161 is used to build constructor and destructor tables when linking
7162 with -Ur. */
7163
7164 static boolean
7165 elf_reloc_link_order (output_bfd, info, output_section, link_order)
7166 bfd *output_bfd;
7167 struct bfd_link_info *info;
7168 asection *output_section;
7169 struct bfd_link_order *link_order;
7170 {
7171 reloc_howto_type *howto;
7172 long indx;
7173 bfd_vma offset;
7174 bfd_vma addend;
7175 struct elf_link_hash_entry **rel_hash_ptr;
7176 Elf_Internal_Shdr *rel_hdr;
7177 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7178
7179 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7180 if (howto == NULL)
7181 {
7182 bfd_set_error (bfd_error_bad_value);
7183 return false;
7184 }
7185
7186 addend = link_order->u.reloc.p->addend;
7187
7188 /* Figure out the symbol index. */
7189 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7190 + elf_section_data (output_section)->rel_count
7191 + elf_section_data (output_section)->rel_count2);
7192 if (link_order->type == bfd_section_reloc_link_order)
7193 {
7194 indx = link_order->u.reloc.p->u.section->target_index;
7195 BFD_ASSERT (indx != 0);
7196 *rel_hash_ptr = NULL;
7197 }
7198 else
7199 {
7200 struct elf_link_hash_entry *h;
7201
7202 /* Treat a reloc against a defined symbol as though it were
7203 actually against the section. */
7204 h = ((struct elf_link_hash_entry *)
7205 bfd_wrapped_link_hash_lookup (output_bfd, info,
7206 link_order->u.reloc.p->u.name,
7207 false, false, true));
7208 if (h != NULL
7209 && (h->root.type == bfd_link_hash_defined
7210 || h->root.type == bfd_link_hash_defweak))
7211 {
7212 asection *section;
7213
7214 section = h->root.u.def.section;
7215 indx = section->output_section->target_index;
7216 *rel_hash_ptr = NULL;
7217 /* It seems that we ought to add the symbol value to the
7218 addend here, but in practice it has already been added
7219 because it was passed to constructor_callback. */
7220 addend += section->output_section->vma + section->output_offset;
7221 }
7222 else if (h != NULL)
7223 {
7224 /* Setting the index to -2 tells elf_link_output_extsym that
7225 this symbol is used by a reloc. */
7226 h->indx = -2;
7227 *rel_hash_ptr = h;
7228 indx = 0;
7229 }
7230 else
7231 {
7232 if (! ((*info->callbacks->unattached_reloc)
7233 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
7234 (asection *) NULL, (bfd_vma) 0)))
7235 return false;
7236 indx = 0;
7237 }
7238 }
7239
7240 /* If this is an inplace reloc, we must write the addend into the
7241 object file. */
7242 if (howto->partial_inplace && addend != 0)
7243 {
7244 bfd_size_type size;
7245 bfd_reloc_status_type rstat;
7246 bfd_byte *buf;
7247 boolean ok;
7248 const char *sym_name;
7249
7250 size = bfd_get_reloc_size (howto);
7251 buf = (bfd_byte *) bfd_zmalloc (size);
7252 if (buf == (bfd_byte *) NULL)
7253 return false;
7254 rstat = _bfd_relocate_contents (howto, output_bfd, (bfd_vma) addend, buf);
7255 switch (rstat)
7256 {
7257 case bfd_reloc_ok:
7258 break;
7259
7260 default:
7261 case bfd_reloc_outofrange:
7262 abort ();
7263
7264 case bfd_reloc_overflow:
7265 if (link_order->type == bfd_section_reloc_link_order)
7266 sym_name = bfd_section_name (output_bfd,
7267 link_order->u.reloc.p->u.section);
7268 else
7269 sym_name = link_order->u.reloc.p->u.name;
7270 if (! ((*info->callbacks->reloc_overflow)
7271 (info, sym_name, howto->name, addend,
7272 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
7273 {
7274 free (buf);
7275 return false;
7276 }
7277 break;
7278 }
7279 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
7280 (file_ptr) link_order->offset, size);
7281 free (buf);
7282 if (! ok)
7283 return false;
7284 }
7285
7286 /* The address of a reloc is relative to the section in a
7287 relocateable file, and is a virtual address in an executable
7288 file. */
7289 offset = link_order->offset;
7290 if (! info->relocateable)
7291 offset += output_section->vma;
7292
7293 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7294
7295 if (rel_hdr->sh_type == SHT_REL)
7296 {
7297 bfd_size_type size;
7298 Elf_Internal_Rel *irel;
7299 Elf_External_Rel *erel;
7300 unsigned int i;
7301
7302 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rel);
7303 irel = (Elf_Internal_Rel *) bfd_zmalloc (size);
7304 if (irel == NULL)
7305 return false;
7306
7307 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7308 irel[i].r_offset = offset;
7309 irel[0].r_info = ELF_R_INFO (indx, howto->type);
7310
7311 erel = ((Elf_External_Rel *) rel_hdr->contents
7312 + elf_section_data (output_section)->rel_count);
7313
7314 if (bed->s->swap_reloc_out)
7315 (*bed->s->swap_reloc_out) (output_bfd, irel, (bfd_byte *) erel);
7316 else
7317 elf_swap_reloc_out (output_bfd, irel, erel);
7318
7319 free (irel);
7320 }
7321 else
7322 {
7323 bfd_size_type size;
7324 Elf_Internal_Rela *irela;
7325 Elf_External_Rela *erela;
7326 unsigned int i;
7327
7328 size = bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
7329 irela = (Elf_Internal_Rela *) bfd_zmalloc (size);
7330 if (irela == NULL)
7331 return false;
7332
7333 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7334 irela[i].r_offset = offset;
7335 irela[0].r_info = ELF_R_INFO (indx, howto->type);
7336 irela[0].r_addend = addend;
7337
7338 erela = ((Elf_External_Rela *) rel_hdr->contents
7339 + elf_section_data (output_section)->rel_count);
7340
7341 if (bed->s->swap_reloca_out)
7342 (*bed->s->swap_reloca_out) (output_bfd, irela, (bfd_byte *) erela);
7343 else
7344 elf_swap_reloca_out (output_bfd, irela, erela);
7345 }
7346
7347 ++elf_section_data (output_section)->rel_count;
7348
7349 return true;
7350 }
7351 \f
7352 /* Allocate a pointer to live in a linker created section. */
7353
7354 boolean
7355 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
7356 bfd *abfd;
7357 struct bfd_link_info *info;
7358 elf_linker_section_t *lsect;
7359 struct elf_link_hash_entry *h;
7360 const Elf_Internal_Rela *rel;
7361 {
7362 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
7363 elf_linker_section_pointers_t *linker_section_ptr;
7364 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7365 bfd_size_type amt;
7366
7367 BFD_ASSERT (lsect != NULL);
7368
7369 /* Is this a global symbol? */
7370 if (h != NULL)
7371 {
7372 /* Has this symbol already been allocated? If so, our work is done. */
7373 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
7374 rel->r_addend,
7375 lsect->which))
7376 return true;
7377
7378 ptr_linker_section_ptr = &h->linker_section_pointer;
7379 /* Make sure this symbol is output as a dynamic symbol. */
7380 if (h->dynindx == -1)
7381 {
7382 if (! elf_link_record_dynamic_symbol (info, h))
7383 return false;
7384 }
7385
7386 if (lsect->rel_section)
7387 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7388 }
7389 else
7390 {
7391 /* Allocation of a pointer to a local symbol. */
7392 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
7393
7394 /* Allocate a table to hold the local symbols if first time. */
7395 if (!ptr)
7396 {
7397 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
7398 register unsigned int i;
7399
7400 amt = num_symbols;
7401 amt *= sizeof (elf_linker_section_pointers_t *);
7402 ptr = (elf_linker_section_pointers_t **) bfd_alloc (abfd, amt);
7403
7404 if (!ptr)
7405 return false;
7406
7407 elf_local_ptr_offsets (abfd) = ptr;
7408 for (i = 0; i < num_symbols; i++)
7409 ptr[i] = (elf_linker_section_pointers_t *) 0;
7410 }
7411
7412 /* Has this symbol already been allocated? If so, our work is done. */
7413 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
7414 rel->r_addend,
7415 lsect->which))
7416 return true;
7417
7418 ptr_linker_section_ptr = &ptr[r_symndx];
7419
7420 if (info->shared)
7421 {
7422 /* If we are generating a shared object, we need to
7423 output a R_<xxx>_RELATIVE reloc so that the
7424 dynamic linker can adjust this GOT entry. */
7425 BFD_ASSERT (lsect->rel_section != NULL);
7426 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
7427 }
7428 }
7429
7430 /* Allocate space for a pointer in the linker section, and allocate
7431 a new pointer record from internal memory. */
7432 BFD_ASSERT (ptr_linker_section_ptr != NULL);
7433 amt = sizeof (elf_linker_section_pointers_t);
7434 linker_section_ptr = (elf_linker_section_pointers_t *) bfd_alloc (abfd, amt);
7435
7436 if (!linker_section_ptr)
7437 return false;
7438
7439 linker_section_ptr->next = *ptr_linker_section_ptr;
7440 linker_section_ptr->addend = rel->r_addend;
7441 linker_section_ptr->which = lsect->which;
7442 linker_section_ptr->written_address_p = false;
7443 *ptr_linker_section_ptr = linker_section_ptr;
7444
7445 #if 0
7446 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
7447 {
7448 linker_section_ptr->offset = (lsect->section->_raw_size
7449 - lsect->hole_size + (ARCH_SIZE / 8));
7450 lsect->hole_offset += ARCH_SIZE / 8;
7451 lsect->sym_offset += ARCH_SIZE / 8;
7452 if (lsect->sym_hash)
7453 {
7454 /* Bump up symbol value if needed. */
7455 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
7456 #ifdef DEBUG
7457 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
7458 lsect->sym_hash->root.root.string,
7459 (long) ARCH_SIZE / 8,
7460 (long) lsect->sym_hash->root.u.def.value);
7461 #endif
7462 }
7463 }
7464 else
7465 #endif
7466 linker_section_ptr->offset = lsect->section->_raw_size;
7467
7468 lsect->section->_raw_size += ARCH_SIZE / 8;
7469
7470 #ifdef DEBUG
7471 fprintf (stderr,
7472 "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
7473 lsect->name, (long) linker_section_ptr->offset,
7474 (long) lsect->section->_raw_size);
7475 #endif
7476
7477 return true;
7478 }
7479 \f
7480 #if ARCH_SIZE==64
7481 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
7482 #endif
7483 #if ARCH_SIZE==32
7484 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
7485 #endif
7486
7487 /* Fill in the address for a pointer generated in a linker section. */
7488
7489 bfd_vma
7490 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h,
7491 relocation, rel, relative_reloc)
7492 bfd *output_bfd;
7493 bfd *input_bfd;
7494 struct bfd_link_info *info;
7495 elf_linker_section_t *lsect;
7496 struct elf_link_hash_entry *h;
7497 bfd_vma relocation;
7498 const Elf_Internal_Rela *rel;
7499 int relative_reloc;
7500 {
7501 elf_linker_section_pointers_t *linker_section_ptr;
7502
7503 BFD_ASSERT (lsect != NULL);
7504
7505 if (h != NULL)
7506 {
7507 /* Handle global symbol. */
7508 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7509 (h->linker_section_pointer,
7510 rel->r_addend,
7511 lsect->which));
7512
7513 BFD_ASSERT (linker_section_ptr != NULL);
7514
7515 if (! elf_hash_table (info)->dynamic_sections_created
7516 || (info->shared
7517 && info->symbolic
7518 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
7519 {
7520 /* This is actually a static link, or it is a
7521 -Bsymbolic link and the symbol is defined
7522 locally. We must initialize this entry in the
7523 global section.
7524
7525 When doing a dynamic link, we create a .rela.<xxx>
7526 relocation entry to initialize the value. This
7527 is done in the finish_dynamic_symbol routine. */
7528 if (!linker_section_ptr->written_address_p)
7529 {
7530 linker_section_ptr->written_address_p = true;
7531 bfd_put_ptr (output_bfd,
7532 relocation + linker_section_ptr->addend,
7533 (lsect->section->contents
7534 + linker_section_ptr->offset));
7535 }
7536 }
7537 }
7538 else
7539 {
7540 /* Handle local symbol. */
7541 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
7542 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
7543 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
7544 linker_section_ptr = (_bfd_elf_find_pointer_linker_section
7545 (elf_local_ptr_offsets (input_bfd)[r_symndx],
7546 rel->r_addend,
7547 lsect->which));
7548
7549 BFD_ASSERT (linker_section_ptr != NULL);
7550
7551 /* Write out pointer if it hasn't been rewritten out before. */
7552 if (!linker_section_ptr->written_address_p)
7553 {
7554 linker_section_ptr->written_address_p = true;
7555 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
7556 lsect->section->contents + linker_section_ptr->offset);
7557
7558 if (info->shared)
7559 {
7560 asection *srel = lsect->rel_section;
7561 Elf_Internal_Rela *outrel;
7562 Elf_External_Rela *erel;
7563 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7564 unsigned int i;
7565 bfd_size_type amt;
7566
7567 amt = sizeof (Elf_Internal_Rela) * bed->s->int_rels_per_ext_rel;
7568 outrel = (Elf_Internal_Rela *) bfd_zmalloc (amt);
7569 if (outrel == NULL)
7570 {
7571 (*_bfd_error_handler) (_("Error: out of memory"));
7572 return 0;
7573 }
7574
7575 /* We need to generate a relative reloc for the dynamic
7576 linker. */
7577 if (!srel)
7578 {
7579 srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
7580 lsect->rel_name);
7581 lsect->rel_section = srel;
7582 }
7583
7584 BFD_ASSERT (srel != NULL);
7585
7586 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7587 outrel[i].r_offset = (lsect->section->output_section->vma
7588 + lsect->section->output_offset
7589 + linker_section_ptr->offset);
7590 outrel[0].r_info = ELF_R_INFO (0, relative_reloc);
7591 outrel[0].r_addend = 0;
7592 erel = (Elf_External_Rela *) lsect->section->contents;
7593 erel += elf_section_data (lsect->section)->rel_count;
7594 elf_swap_reloca_out (output_bfd, outrel, erel);
7595 ++elf_section_data (lsect->section)->rel_count;
7596
7597 free (outrel);
7598 }
7599 }
7600 }
7601
7602 relocation = (lsect->section->output_offset
7603 + linker_section_ptr->offset
7604 - lsect->hole_offset
7605 - lsect->sym_offset);
7606
7607 #ifdef DEBUG
7608 fprintf (stderr,
7609 "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
7610 lsect->name, (long) relocation, (long) relocation);
7611 #endif
7612
7613 /* Subtract out the addend, because it will get added back in by the normal
7614 processing. */
7615 return relocation - linker_section_ptr->addend;
7616 }
7617 \f
7618 /* Garbage collect unused sections. */
7619
7620 static boolean elf_gc_mark
7621 PARAMS ((struct bfd_link_info *, asection *,
7622 asection * (*) (asection *, struct bfd_link_info *,
7623 Elf_Internal_Rela *, struct elf_link_hash_entry *,
7624 Elf_Internal_Sym *)));
7625
7626 static boolean elf_gc_sweep
7627 PARAMS ((struct bfd_link_info *,
7628 boolean (*) (bfd *, struct bfd_link_info *, asection *,
7629 const Elf_Internal_Rela *)));
7630
7631 static boolean elf_gc_sweep_symbol
7632 PARAMS ((struct elf_link_hash_entry *, PTR));
7633
7634 static boolean elf_gc_allocate_got_offsets
7635 PARAMS ((struct elf_link_hash_entry *, PTR));
7636
7637 static boolean elf_gc_propagate_vtable_entries_used
7638 PARAMS ((struct elf_link_hash_entry *, PTR));
7639
7640 static boolean elf_gc_smash_unused_vtentry_relocs
7641 PARAMS ((struct elf_link_hash_entry *, PTR));
7642
7643 /* The mark phase of garbage collection. For a given section, mark
7644 it and any sections in this section's group, and all the sections
7645 which define symbols to which it refers. */
7646
7647 static boolean
7648 elf_gc_mark (info, sec, gc_mark_hook)
7649 struct bfd_link_info *info;
7650 asection *sec;
7651 asection * (*gc_mark_hook) PARAMS ((asection *, struct bfd_link_info *,
7652 Elf_Internal_Rela *,
7653 struct elf_link_hash_entry *,
7654 Elf_Internal_Sym *));
7655 {
7656 boolean ret;
7657 asection *group_sec;
7658
7659 sec->gc_mark = 1;
7660
7661 /* Mark all the sections in the group. */
7662 group_sec = elf_section_data (sec)->next_in_group;
7663 if (group_sec && !group_sec->gc_mark)
7664 if (!elf_gc_mark (info, group_sec, gc_mark_hook))
7665 return false;
7666
7667 /* Look through the section relocs. */
7668 ret = true;
7669 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
7670 {
7671 Elf_Internal_Rela *relstart, *rel, *relend;
7672 Elf_Internal_Shdr *symtab_hdr;
7673 struct elf_link_hash_entry **sym_hashes;
7674 size_t nlocsyms;
7675 size_t extsymoff;
7676 bfd *input_bfd = sec->owner;
7677 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
7678 Elf_Internal_Sym *isym = NULL;
7679
7680 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7681 sym_hashes = elf_sym_hashes (input_bfd);
7682
7683 /* Read the local symbols. */
7684 if (elf_bad_symtab (input_bfd))
7685 {
7686 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
7687 extsymoff = 0;
7688 }
7689 else
7690 extsymoff = nlocsyms = symtab_hdr->sh_info;
7691
7692 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
7693 if (isym == NULL && nlocsyms != 0)
7694 {
7695 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
7696 NULL, NULL, NULL);
7697 if (isym == NULL)
7698 return false;
7699 }
7700
7701 /* Read the relocations. */
7702 relstart = (NAME(_bfd_elf,link_read_relocs)
7703 (input_bfd, sec, NULL, (Elf_Internal_Rela *) NULL,
7704 info->keep_memory));
7705 if (relstart == NULL)
7706 {
7707 ret = false;
7708 goto out1;
7709 }
7710 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7711
7712 for (rel = relstart; rel < relend; rel++)
7713 {
7714 unsigned long r_symndx;
7715 asection *rsec;
7716 struct elf_link_hash_entry *h;
7717
7718 r_symndx = ELF_R_SYM (rel->r_info);
7719 if (r_symndx == 0)
7720 continue;
7721
7722 if (r_symndx >= nlocsyms
7723 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
7724 {
7725 h = sym_hashes[r_symndx - extsymoff];
7726 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
7727 }
7728 else
7729 {
7730 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
7731 }
7732
7733 if (rsec && !rsec->gc_mark)
7734 {
7735 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
7736 rsec->gc_mark = 1;
7737 else if (!elf_gc_mark (info, rsec, gc_mark_hook))
7738 {
7739 ret = false;
7740 goto out2;
7741 }
7742 }
7743 }
7744
7745 out2:
7746 if (elf_section_data (sec)->relocs != relstart)
7747 free (relstart);
7748 out1:
7749 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
7750 {
7751 if (! info->keep_memory)
7752 free (isym);
7753 else
7754 symtab_hdr->contents = (unsigned char *) isym;
7755 }
7756 }
7757
7758 return ret;
7759 }
7760
7761 /* The sweep phase of garbage collection. Remove all garbage sections. */
7762
7763 static boolean
7764 elf_gc_sweep (info, gc_sweep_hook)
7765 struct bfd_link_info *info;
7766 boolean (*gc_sweep_hook) PARAMS ((bfd *, struct bfd_link_info *,
7767 asection *, const Elf_Internal_Rela *));
7768 {
7769 bfd *sub;
7770
7771 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7772 {
7773 asection *o;
7774
7775 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
7776 continue;
7777
7778 for (o = sub->sections; o != NULL; o = o->next)
7779 {
7780 /* Keep special sections. Keep .debug sections. */
7781 if ((o->flags & SEC_LINKER_CREATED)
7782 || (o->flags & SEC_DEBUGGING))
7783 o->gc_mark = 1;
7784
7785 if (o->gc_mark)
7786 continue;
7787
7788 /* Skip sweeping sections already excluded. */
7789 if (o->flags & SEC_EXCLUDE)
7790 continue;
7791
7792 /* Since this is early in the link process, it is simple
7793 to remove a section from the output. */
7794 o->flags |= SEC_EXCLUDE;
7795
7796 /* But we also have to update some of the relocation
7797 info we collected before. */
7798 if (gc_sweep_hook
7799 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
7800 {
7801 Elf_Internal_Rela *internal_relocs;
7802 boolean r;
7803
7804 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
7805 (o->owner, o, NULL, NULL, info->keep_memory));
7806 if (internal_relocs == NULL)
7807 return false;
7808
7809 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
7810
7811 if (elf_section_data (o)->relocs != internal_relocs)
7812 free (internal_relocs);
7813
7814 if (!r)
7815 return false;
7816 }
7817 }
7818 }
7819
7820 /* Remove the symbols that were in the swept sections from the dynamic
7821 symbol table. GCFIXME: Anyone know how to get them out of the
7822 static symbol table as well? */
7823 {
7824 int i = 0;
7825
7826 elf_link_hash_traverse (elf_hash_table (info),
7827 elf_gc_sweep_symbol,
7828 (PTR) &i);
7829
7830 elf_hash_table (info)->dynsymcount = i;
7831 }
7832
7833 return true;
7834 }
7835
7836 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
7837
7838 static boolean
7839 elf_gc_sweep_symbol (h, idxptr)
7840 struct elf_link_hash_entry *h;
7841 PTR idxptr;
7842 {
7843 int *idx = (int *) idxptr;
7844
7845 if (h->root.type == bfd_link_hash_warning)
7846 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7847
7848 if (h->dynindx != -1
7849 && ((h->root.type != bfd_link_hash_defined
7850 && h->root.type != bfd_link_hash_defweak)
7851 || h->root.u.def.section->gc_mark))
7852 h->dynindx = (*idx)++;
7853
7854 return true;
7855 }
7856
7857 /* Propogate collected vtable information. This is called through
7858 elf_link_hash_traverse. */
7859
7860 static boolean
7861 elf_gc_propagate_vtable_entries_used (h, okp)
7862 struct elf_link_hash_entry *h;
7863 PTR okp;
7864 {
7865 if (h->root.type == bfd_link_hash_warning)
7866 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7867
7868 /* Those that are not vtables. */
7869 if (h->vtable_parent == NULL)
7870 return true;
7871
7872 /* Those vtables that do not have parents, we cannot merge. */
7873 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
7874 return true;
7875
7876 /* If we've already been done, exit. */
7877 if (h->vtable_entries_used && h->vtable_entries_used[-1])
7878 return true;
7879
7880 /* Make sure the parent's table is up to date. */
7881 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
7882
7883 if (h->vtable_entries_used == NULL)
7884 {
7885 /* None of this table's entries were referenced. Re-use the
7886 parent's table. */
7887 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
7888 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
7889 }
7890 else
7891 {
7892 size_t n;
7893 boolean *cu, *pu;
7894
7895 /* Or the parent's entries into ours. */
7896 cu = h->vtable_entries_used;
7897 cu[-1] = true;
7898 pu = h->vtable_parent->vtable_entries_used;
7899 if (pu != NULL)
7900 {
7901 asection *sec = h->root.u.def.section;
7902 struct elf_backend_data *bed = get_elf_backend_data (sec->owner);
7903 int file_align = bed->s->file_align;
7904
7905 n = h->vtable_parent->vtable_entries_size / file_align;
7906 while (n--)
7907 {
7908 if (*pu)
7909 *cu = true;
7910 pu++;
7911 cu++;
7912 }
7913 }
7914 }
7915
7916 return true;
7917 }
7918
7919 static boolean
7920 elf_gc_smash_unused_vtentry_relocs (h, okp)
7921 struct elf_link_hash_entry *h;
7922 PTR okp;
7923 {
7924 asection *sec;
7925 bfd_vma hstart, hend;
7926 Elf_Internal_Rela *relstart, *relend, *rel;
7927 struct elf_backend_data *bed;
7928 int file_align;
7929
7930 if (h->root.type == bfd_link_hash_warning)
7931 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7932
7933 /* Take care of both those symbols that do not describe vtables as
7934 well as those that are not loaded. */
7935 if (h->vtable_parent == NULL)
7936 return true;
7937
7938 BFD_ASSERT (h->root.type == bfd_link_hash_defined
7939 || h->root.type == bfd_link_hash_defweak);
7940
7941 sec = h->root.u.def.section;
7942 hstart = h->root.u.def.value;
7943 hend = hstart + h->size;
7944
7945 relstart = (NAME(_bfd_elf,link_read_relocs)
7946 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
7947 if (!relstart)
7948 return *(boolean *) okp = false;
7949 bed = get_elf_backend_data (sec->owner);
7950 file_align = bed->s->file_align;
7951
7952 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7953
7954 for (rel = relstart; rel < relend; ++rel)
7955 if (rel->r_offset >= hstart && rel->r_offset < hend)
7956 {
7957 /* If the entry is in use, do nothing. */
7958 if (h->vtable_entries_used
7959 && (rel->r_offset - hstart) < h->vtable_entries_size)
7960 {
7961 bfd_vma entry = (rel->r_offset - hstart) / file_align;
7962 if (h->vtable_entries_used[entry])
7963 continue;
7964 }
7965 /* Otherwise, kill it. */
7966 rel->r_offset = rel->r_info = rel->r_addend = 0;
7967 }
7968
7969 return true;
7970 }
7971
7972 /* Do mark and sweep of unused sections. */
7973
7974 boolean
7975 elf_gc_sections (abfd, info)
7976 bfd *abfd;
7977 struct bfd_link_info *info;
7978 {
7979 boolean ok = true;
7980 bfd *sub;
7981 asection * (*gc_mark_hook)
7982 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
7983 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
7984
7985 if (!get_elf_backend_data (abfd)->can_gc_sections
7986 || info->relocateable || info->emitrelocations
7987 || elf_hash_table (info)->dynamic_sections_created)
7988 return true;
7989
7990 /* Apply transitive closure to the vtable entry usage info. */
7991 elf_link_hash_traverse (elf_hash_table (info),
7992 elf_gc_propagate_vtable_entries_used,
7993 (PTR) &ok);
7994 if (!ok)
7995 return false;
7996
7997 /* Kill the vtable relocations that were not used. */
7998 elf_link_hash_traverse (elf_hash_table (info),
7999 elf_gc_smash_unused_vtentry_relocs,
8000 (PTR) &ok);
8001 if (!ok)
8002 return false;
8003
8004 /* Grovel through relocs to find out who stays ... */
8005
8006 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
8007 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8008 {
8009 asection *o;
8010
8011 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8012 continue;
8013
8014 for (o = sub->sections; o != NULL; o = o->next)
8015 {
8016 if (o->flags & SEC_KEEP)
8017 if (!elf_gc_mark (info, o, gc_mark_hook))
8018 return false;
8019 }
8020 }
8021
8022 /* ... and mark SEC_EXCLUDE for those that go. */
8023 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
8024 return false;
8025
8026 return true;
8027 }
8028 \f
8029 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
8030
8031 boolean
8032 elf_gc_record_vtinherit (abfd, sec, h, offset)
8033 bfd *abfd;
8034 asection *sec;
8035 struct elf_link_hash_entry *h;
8036 bfd_vma offset;
8037 {
8038 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
8039 struct elf_link_hash_entry **search, *child;
8040 bfd_size_type extsymcount;
8041
8042 /* The sh_info field of the symtab header tells us where the
8043 external symbols start. We don't care about the local symbols at
8044 this point. */
8045 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
8046 if (!elf_bad_symtab (abfd))
8047 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
8048
8049 sym_hashes = elf_sym_hashes (abfd);
8050 sym_hashes_end = sym_hashes + extsymcount;
8051
8052 /* Hunt down the child symbol, which is in this section at the same
8053 offset as the relocation. */
8054 for (search = sym_hashes; search != sym_hashes_end; ++search)
8055 {
8056 if ((child = *search) != NULL
8057 && (child->root.type == bfd_link_hash_defined
8058 || child->root.type == bfd_link_hash_defweak)
8059 && child->root.u.def.section == sec
8060 && child->root.u.def.value == offset)
8061 goto win;
8062 }
8063
8064 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
8065 bfd_archive_filename (abfd), sec->name,
8066 (unsigned long) offset);
8067 bfd_set_error (bfd_error_invalid_operation);
8068 return false;
8069
8070 win:
8071 if (!h)
8072 {
8073 /* This *should* only be the absolute section. It could potentially
8074 be that someone has defined a non-global vtable though, which
8075 would be bad. It isn't worth paging in the local symbols to be
8076 sure though; that case should simply be handled by the assembler. */
8077
8078 child->vtable_parent = (struct elf_link_hash_entry *) -1;
8079 }
8080 else
8081 child->vtable_parent = h;
8082
8083 return true;
8084 }
8085
8086 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
8087
8088 boolean
8089 elf_gc_record_vtentry (abfd, sec, h, addend)
8090 bfd *abfd ATTRIBUTE_UNUSED;
8091 asection *sec ATTRIBUTE_UNUSED;
8092 struct elf_link_hash_entry *h;
8093 bfd_vma addend;
8094 {
8095 struct elf_backend_data *bed = get_elf_backend_data (abfd);
8096 int file_align = bed->s->file_align;
8097
8098 if (addend >= h->vtable_entries_size)
8099 {
8100 size_t size, bytes;
8101 boolean *ptr = h->vtable_entries_used;
8102
8103 /* While the symbol is undefined, we have to be prepared to handle
8104 a zero size. */
8105 if (h->root.type == bfd_link_hash_undefined)
8106 size = addend;
8107 else
8108 {
8109 size = h->size;
8110 if (size < addend)
8111 {
8112 /* Oops! We've got a reference past the defined end of
8113 the table. This is probably a bug -- shall we warn? */
8114 size = addend;
8115 }
8116 }
8117
8118 /* Allocate one extra entry for use as a "done" flag for the
8119 consolidation pass. */
8120 bytes = (size / file_align + 1) * sizeof (boolean);
8121
8122 if (ptr)
8123 {
8124 ptr = bfd_realloc (ptr - 1, (bfd_size_type) bytes);
8125
8126 if (ptr != NULL)
8127 {
8128 size_t oldbytes;
8129
8130 oldbytes = ((h->vtable_entries_size / file_align + 1)
8131 * sizeof (boolean));
8132 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
8133 }
8134 }
8135 else
8136 ptr = bfd_zmalloc ((bfd_size_type) bytes);
8137
8138 if (ptr == NULL)
8139 return false;
8140
8141 /* And arrange for that done flag to be at index -1. */
8142 h->vtable_entries_used = ptr + 1;
8143 h->vtable_entries_size = size;
8144 }
8145
8146 h->vtable_entries_used[addend / file_align] = true;
8147
8148 return true;
8149 }
8150
8151 /* And an accompanying bit to work out final got entry offsets once
8152 we're done. Should be called from final_link. */
8153
8154 boolean
8155 elf_gc_common_finalize_got_offsets (abfd, info)
8156 bfd *abfd;
8157 struct bfd_link_info *info;
8158 {
8159 bfd *i;
8160 struct elf_backend_data *bed = get_elf_backend_data (abfd);
8161 bfd_vma gotoff;
8162
8163 /* The GOT offset is relative to the .got section, but the GOT header is
8164 put into the .got.plt section, if the backend uses it. */
8165 if (bed->want_got_plt)
8166 gotoff = 0;
8167 else
8168 gotoff = bed->got_header_size;
8169
8170 /* Do the local .got entries first. */
8171 for (i = info->input_bfds; i; i = i->link_next)
8172 {
8173 bfd_signed_vma *local_got;
8174 bfd_size_type j, locsymcount;
8175 Elf_Internal_Shdr *symtab_hdr;
8176
8177 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
8178 continue;
8179
8180 local_got = elf_local_got_refcounts (i);
8181 if (!local_got)
8182 continue;
8183
8184 symtab_hdr = &elf_tdata (i)->symtab_hdr;
8185 if (elf_bad_symtab (i))
8186 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8187 else
8188 locsymcount = symtab_hdr->sh_info;
8189
8190 for (j = 0; j < locsymcount; ++j)
8191 {
8192 if (local_got[j] > 0)
8193 {
8194 local_got[j] = gotoff;
8195 gotoff += ARCH_SIZE / 8;
8196 }
8197 else
8198 local_got[j] = (bfd_vma) -1;
8199 }
8200 }
8201
8202 /* Then the global .got entries. .plt refcounts are handled by
8203 adjust_dynamic_symbol */
8204 elf_link_hash_traverse (elf_hash_table (info),
8205 elf_gc_allocate_got_offsets,
8206 (PTR) &gotoff);
8207 return true;
8208 }
8209
8210 /* We need a special top-level link routine to convert got reference counts
8211 to real got offsets. */
8212
8213 static boolean
8214 elf_gc_allocate_got_offsets (h, offarg)
8215 struct elf_link_hash_entry *h;
8216 PTR offarg;
8217 {
8218 bfd_vma *off = (bfd_vma *) offarg;
8219
8220 if (h->root.type == bfd_link_hash_warning)
8221 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8222
8223 if (h->got.refcount > 0)
8224 {
8225 h->got.offset = off[0];
8226 off[0] += ARCH_SIZE / 8;
8227 }
8228 else
8229 h->got.offset = (bfd_vma) -1;
8230
8231 return true;
8232 }
8233
8234 /* Many folk need no more in the way of final link than this, once
8235 got entry reference counting is enabled. */
8236
8237 boolean
8238 elf_gc_common_final_link (abfd, info)
8239 bfd *abfd;
8240 struct bfd_link_info *info;
8241 {
8242 if (!elf_gc_common_finalize_got_offsets (abfd, info))
8243 return false;
8244
8245 /* Invoke the regular ELF backend linker to do all the work. */
8246 return elf_bfd_final_link (abfd, info);
8247 }
8248
8249 /* This function will be called though elf_link_hash_traverse to store
8250 all hash value of the exported symbols in an array. */
8251
8252 static boolean
8253 elf_collect_hash_codes (h, data)
8254 struct elf_link_hash_entry *h;
8255 PTR data;
8256 {
8257 unsigned long **valuep = (unsigned long **) data;
8258 const char *name;
8259 char *p;
8260 unsigned long ha;
8261 char *alc = NULL;
8262
8263 if (h->root.type == bfd_link_hash_warning)
8264 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8265
8266 /* Ignore indirect symbols. These are added by the versioning code. */
8267 if (h->dynindx == -1)
8268 return true;
8269
8270 name = h->root.root.string;
8271 p = strchr (name, ELF_VER_CHR);
8272 if (p != NULL)
8273 {
8274 alc = bfd_malloc ((bfd_size_type) (p - name + 1));
8275 memcpy (alc, name, (size_t) (p - name));
8276 alc[p - name] = '\0';
8277 name = alc;
8278 }
8279
8280 /* Compute the hash value. */
8281 ha = bfd_elf_hash (name);
8282
8283 /* Store the found hash value in the array given as the argument. */
8284 *(*valuep)++ = ha;
8285
8286 /* And store it in the struct so that we can put it in the hash table
8287 later. */
8288 h->elf_hash_value = ha;
8289
8290 if (alc != NULL)
8291 free (alc);
8292
8293 return true;
8294 }
8295
8296 boolean
8297 elf_reloc_symbol_deleted_p (offset, cookie)
8298 bfd_vma offset;
8299 PTR cookie;
8300 {
8301 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
8302
8303 if (rcookie->bad_symtab)
8304 rcookie->rel = rcookie->rels;
8305
8306 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
8307 {
8308 unsigned long r_symndx = ELF_R_SYM (rcookie->rel->r_info);
8309
8310 if (! rcookie->bad_symtab)
8311 if (rcookie->rel->r_offset > offset)
8312 return false;
8313 if (rcookie->rel->r_offset != offset)
8314 continue;
8315
8316 if (r_symndx >= rcookie->locsymcount
8317 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
8318 {
8319 struct elf_link_hash_entry *h;
8320
8321 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
8322
8323 while (h->root.type == bfd_link_hash_indirect
8324 || h->root.type == bfd_link_hash_warning)
8325 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8326
8327 if ((h->root.type == bfd_link_hash_defined
8328 || h->root.type == bfd_link_hash_defweak)
8329 && elf_discarded_section (h->root.u.def.section))
8330 return true;
8331 else
8332 return false;
8333 }
8334 else
8335 {
8336 /* It's not a relocation against a global symbol,
8337 but it could be a relocation against a local
8338 symbol for a discarded section. */
8339 asection *isec;
8340 Elf_Internal_Sym *isym;
8341
8342 /* Need to: get the symbol; get the section. */
8343 isym = &rcookie->locsyms[r_symndx];
8344 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
8345 {
8346 isec = section_from_elf_index (rcookie->abfd, isym->st_shndx);
8347 if (isec != NULL && elf_discarded_section (isec))
8348 return true;
8349 }
8350 }
8351 return false;
8352 }
8353 return false;
8354 }
8355
8356 /* Discard unneeded references to discarded sections.
8357 Returns true if any section's size was changed. */
8358 /* This function assumes that the relocations are in sorted order,
8359 which is true for all known assemblers. */
8360
8361 boolean
8362 elf_bfd_discard_info (output_bfd, info)
8363 bfd *output_bfd;
8364 struct bfd_link_info *info;
8365 {
8366 struct elf_reloc_cookie cookie;
8367 asection *stab, *eh, *ehdr;
8368 Elf_Internal_Shdr *symtab_hdr;
8369 struct elf_backend_data *bed;
8370 bfd *abfd;
8371 boolean ret = false;
8372 boolean strip = info->strip == strip_all || info->strip == strip_debugger;
8373
8374 if (info->relocateable
8375 || info->traditional_format
8376 || info->hash->creator->flavour != bfd_target_elf_flavour
8377 || ! is_elf_hash_table (info))
8378 return false;
8379
8380 ehdr = NULL;
8381 if (elf_hash_table (info)->dynobj != NULL)
8382 ehdr = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
8383 ".eh_frame_hdr");
8384
8385 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
8386 {
8387 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
8388 continue;
8389
8390 bed = get_elf_backend_data (abfd);
8391
8392 if ((abfd->flags & DYNAMIC) != 0)
8393 continue;
8394
8395 eh = NULL;
8396 if (ehdr)
8397 {
8398 eh = bfd_get_section_by_name (abfd, ".eh_frame");
8399 if (eh && (eh->_raw_size == 0
8400 || bfd_is_abs_section (eh->output_section)))
8401 eh = NULL;
8402 }
8403
8404 stab = NULL;
8405 if (!strip)
8406 {
8407 stab = bfd_get_section_by_name (abfd, ".stab");
8408 if (stab && (stab->_raw_size == 0
8409 || bfd_is_abs_section (stab->output_section)))
8410 stab = NULL;
8411 }
8412 if ((! stab
8413 || elf_section_data(stab)->sec_info_type != ELF_INFO_TYPE_STABS)
8414 && ! eh
8415 && (strip || ! bed->elf_backend_discard_info))
8416 continue;
8417
8418 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8419 cookie.abfd = abfd;
8420 cookie.sym_hashes = elf_sym_hashes (abfd);
8421 cookie.bad_symtab = elf_bad_symtab (abfd);
8422 if (cookie.bad_symtab)
8423 {
8424 cookie.locsymcount =
8425 symtab_hdr->sh_size / sizeof (Elf_External_Sym);
8426 cookie.extsymoff = 0;
8427 }
8428 else
8429 {
8430 cookie.locsymcount = symtab_hdr->sh_info;
8431 cookie.extsymoff = symtab_hdr->sh_info;
8432 }
8433
8434 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
8435 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
8436 {
8437 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8438 cookie.locsymcount, 0,
8439 NULL, NULL, NULL);
8440 if (cookie.locsyms == NULL)
8441 return false;
8442 }
8443
8444 if (stab)
8445 {
8446 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8447 (abfd, stab, (PTR) NULL, (Elf_Internal_Rela *) NULL,
8448 info->keep_memory));
8449 if (cookie.rels)
8450 {
8451 cookie.rel = cookie.rels;
8452 cookie.relend =
8453 cookie.rels + stab->reloc_count * bed->s->int_rels_per_ext_rel;
8454 if (_bfd_discard_section_stabs (abfd, stab,
8455 elf_section_data (stab)->sec_info,
8456 elf_reloc_symbol_deleted_p,
8457 &cookie))
8458 ret = true;
8459 if (elf_section_data (stab)->relocs != cookie.rels)
8460 free (cookie.rels);
8461 }
8462 }
8463
8464 if (eh)
8465 {
8466 cookie.rels = NULL;
8467 cookie.rel = NULL;
8468 cookie.relend = NULL;
8469 if (eh->reloc_count)
8470 cookie.rels = (NAME(_bfd_elf,link_read_relocs)
8471 (abfd, eh, (PTR) NULL, (Elf_Internal_Rela *) NULL,
8472 info->keep_memory));
8473 if (cookie.rels)
8474 {
8475 cookie.rel = cookie.rels;
8476 cookie.relend =
8477 cookie.rels + eh->reloc_count * bed->s->int_rels_per_ext_rel;
8478 }
8479 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh, ehdr,
8480 elf_reloc_symbol_deleted_p,
8481 &cookie))
8482 ret = true;
8483 if (cookie.rels && elf_section_data (eh)->relocs != cookie.rels)
8484 free (cookie.rels);
8485 }
8486
8487 if (bed->elf_backend_discard_info)
8488 {
8489 if (bed->elf_backend_discard_info (abfd, &cookie, info))
8490 ret = true;
8491 }
8492
8493 if (cookie.locsyms != NULL
8494 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
8495 {
8496 if (! info->keep_memory)
8497 free (cookie.locsyms);
8498 else
8499 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
8500 }
8501 }
8502
8503 if (ehdr && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info, ehdr))
8504 ret = true;
8505 return ret;
8506 }
8507
8508 static boolean
8509 elf_section_ignore_discarded_relocs (sec)
8510 asection *sec;
8511 {
8512 struct elf_backend_data *bed;
8513
8514 switch (elf_section_data (sec)->sec_info_type)
8515 {
8516 case ELF_INFO_TYPE_STABS:
8517 case ELF_INFO_TYPE_EH_FRAME:
8518 return true;
8519 default:
8520 break;
8521 }
8522
8523 bed = get_elf_backend_data (sec->owner);
8524 if (bed->elf_backend_ignore_discarded_relocs != NULL
8525 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8526 return true;
8527
8528 return false;
8529 }