Fix elf linker's handling of commons in archive maps
[binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /* ELF linker code. */
21
22 /* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25 struct elf_info_failed
26 {
27 boolean failed;
28 struct bfd_link_info *info;
29 };
30
31 static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33 static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35 static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39 static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41 static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43 static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45 static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49 static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51 static boolean elf_collect_hash_codes
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53 static boolean elf_link_read_relocs_from_section
54 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
55 static void elf_link_output_relocs
56 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
57 static boolean elf_link_size_reloc_section
58 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
59 static void elf_link_adjust_relocs
60 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
61 struct elf_link_hash_entry **));
62
63 /* Given an ELF BFD, add symbols to the global hash table as
64 appropriate. */
65
66 boolean
67 elf_bfd_link_add_symbols (abfd, info)
68 bfd *abfd;
69 struct bfd_link_info *info;
70 {
71 switch (bfd_get_format (abfd))
72 {
73 case bfd_object:
74 return elf_link_add_object_symbols (abfd, info);
75 case bfd_archive:
76 return elf_link_add_archive_symbols (abfd, info);
77 default:
78 bfd_set_error (bfd_error_wrong_format);
79 return false;
80 }
81 }
82 \f
83 /* Search the symbol table of the archive element of the archive ABFD
84 whoes archove map contains a mention of SYMDEF, and determine if
85 the symbol is defined in this element. */
86 static boolean
87 elf_link_is_defined_archive_symbol (abfd, symdef)
88 bfd * abfd;
89 carsym * symdef;
90 {
91 Elf_Internal_Shdr * hdr;
92 Elf_External_Sym * esym;
93 Elf_External_Sym * esymend;
94 Elf_External_Sym * buf = NULL;
95 size_t symcount;
96 size_t extsymcount;
97 size_t extsymoff;
98 boolean result = false;
99
100 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
101 if (abfd == (bfd *) NULL)
102 return false;
103
104 if (! bfd_check_format (abfd, bfd_object))
105 return false;
106
107 /* Select the appropriate symbol table. */
108 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
109 hdr = &elf_tdata (abfd)->symtab_hdr;
110 else
111 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
112
113 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
114
115 /* The sh_info field of the symtab header tells us where the
116 external symbols start. We don't care about the local symbols. */
117 if (elf_bad_symtab (abfd))
118 {
119 extsymcount = symcount;
120 extsymoff = 0;
121 }
122 else
123 {
124 extsymcount = symcount - hdr->sh_info;
125 extsymoff = hdr->sh_info;
126 }
127
128 buf = ((Elf_External_Sym *)
129 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
130 if (buf == NULL && extsymcount != 0)
131 return false;
132
133 /* Read in the symbol table.
134 FIXME: This ought to be cached somewhere. */
135 if (bfd_seek (abfd,
136 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
137 SEEK_SET) != 0
138 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
139 != extsymcount * sizeof (Elf_External_Sym)))
140 {
141 free (buf);
142 return false;
143 }
144
145 /* Scan the symbol table looking for SYMDEF. */
146 esymend = buf + extsymcount;
147 for (esym = buf;
148 esym < esymend;
149 esym++)
150 {
151 Elf_Internal_Sym sym;
152 const char * name;
153
154 elf_swap_symbol_in (abfd, esym, & sym);
155
156 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
157 if (name == (const char *) NULL)
158 break;
159
160 if (strcmp (name, symdef->name) == 0)
161 {
162 result =
163 (ELF_ST_BIND (sym.st_info) == STB_GLOBAL)
164 && (sym.st_shndx != SHN_UNDEF);
165 break;
166 }
167 }
168
169 free (buf);
170
171 return result;
172 }
173 \f
174
175 /* Add symbols from an ELF archive file to the linker hash table. We
176 don't use _bfd_generic_link_add_archive_symbols because of a
177 problem which arises on UnixWare. The UnixWare libc.so is an
178 archive which includes an entry libc.so.1 which defines a bunch of
179 symbols. The libc.so archive also includes a number of other
180 object files, which also define symbols, some of which are the same
181 as those defined in libc.so.1. Correct linking requires that we
182 consider each object file in turn, and include it if it defines any
183 symbols we need. _bfd_generic_link_add_archive_symbols does not do
184 this; it looks through the list of undefined symbols, and includes
185 any object file which defines them. When this algorithm is used on
186 UnixWare, it winds up pulling in libc.so.1 early and defining a
187 bunch of symbols. This means that some of the other objects in the
188 archive are not included in the link, which is incorrect since they
189 precede libc.so.1 in the archive.
190
191 Fortunately, ELF archive handling is simpler than that done by
192 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
193 oddities. In ELF, if we find a symbol in the archive map, and the
194 symbol is currently undefined, we know that we must pull in that
195 object file.
196
197 Unfortunately, we do have to make multiple passes over the symbol
198 table until nothing further is resolved. */
199
200 static boolean
201 elf_link_add_archive_symbols (abfd, info)
202 bfd *abfd;
203 struct bfd_link_info *info;
204 {
205 symindex c;
206 boolean *defined = NULL;
207 boolean *included = NULL;
208 carsym *symdefs;
209 boolean loop;
210
211 if (! bfd_has_map (abfd))
212 {
213 /* An empty archive is a special case. */
214 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
215 return true;
216 bfd_set_error (bfd_error_no_armap);
217 return false;
218 }
219
220 /* Keep track of all symbols we know to be already defined, and all
221 files we know to be already included. This is to speed up the
222 second and subsequent passes. */
223 c = bfd_ardata (abfd)->symdef_count;
224 if (c == 0)
225 return true;
226 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
227 included = (boolean *) bfd_malloc (c * sizeof (boolean));
228 if (defined == (boolean *) NULL || included == (boolean *) NULL)
229 goto error_return;
230 memset (defined, 0, c * sizeof (boolean));
231 memset (included, 0, c * sizeof (boolean));
232
233 symdefs = bfd_ardata (abfd)->symdefs;
234
235 do
236 {
237 file_ptr last;
238 symindex i;
239 carsym *symdef;
240 carsym *symdefend;
241
242 loop = false;
243 last = -1;
244
245 symdef = symdefs;
246 symdefend = symdef + c;
247 for (i = 0; symdef < symdefend; symdef++, i++)
248 {
249 struct elf_link_hash_entry *h;
250 bfd *element;
251 struct bfd_link_hash_entry *undefs_tail;
252 symindex mark;
253
254 if (defined[i] || included[i])
255 continue;
256 if (symdef->file_offset == last)
257 {
258 included[i] = true;
259 continue;
260 }
261
262 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
263 false, false, false);
264
265 if (h == NULL)
266 {
267 char *p, *copy;
268
269 /* If this is a default version (the name contains @@),
270 look up the symbol again without the version. The
271 effect is that references to the symbol without the
272 version will be matched by the default symbol in the
273 archive. */
274
275 p = strchr (symdef->name, ELF_VER_CHR);
276 if (p == NULL || p[1] != ELF_VER_CHR)
277 continue;
278
279 copy = bfd_alloc (abfd, p - symdef->name + 1);
280 if (copy == NULL)
281 goto error_return;
282 memcpy (copy, symdef->name, p - symdef->name);
283 copy[p - symdef->name] = '\0';
284
285 h = elf_link_hash_lookup (elf_hash_table (info), copy,
286 false, false, false);
287
288 bfd_release (abfd, copy);
289 }
290
291 if (h == NULL)
292 continue;
293
294 if (h->root.type == bfd_link_hash_common)
295 {
296 /* We currently have a common symbol. The archive map contains
297 a reference to this symbol, so we may want to include it. We
298 only want to include it however, if this archive element
299 contains a definition of the symbol, not just another common
300 declaration of it.
301
302 Unfortunately some archivers (including GNU ar) will put
303 declarations of common symbols into their archive maps, as
304 well as real definitions, so we cannot just go by the archive
305 map alone. Instead we must read in the element's symbol
306 table and check that to see what kind of symbol definition
307 this is. */
308 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
309 continue;
310 }
311 else if (h->root.type != bfd_link_hash_undefined)
312 {
313 if (h->root.type != bfd_link_hash_undefweak)
314 defined[i] = true;
315 continue;
316 }
317
318 /* We need to include this archive member. */
319
320 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
321 if (element == (bfd *) NULL)
322 goto error_return;
323
324 if (! bfd_check_format (element, bfd_object))
325 goto error_return;
326
327 /* Doublecheck that we have not included this object
328 already--it should be impossible, but there may be
329 something wrong with the archive. */
330 if (element->archive_pass != 0)
331 {
332 bfd_set_error (bfd_error_bad_value);
333 goto error_return;
334 }
335 element->archive_pass = 1;
336
337 undefs_tail = info->hash->undefs_tail;
338
339 if (! (*info->callbacks->add_archive_element) (info, element,
340 symdef->name))
341 goto error_return;
342 if (! elf_link_add_object_symbols (element, info))
343 goto error_return;
344
345 /* If there are any new undefined symbols, we need to make
346 another pass through the archive in order to see whether
347 they can be defined. FIXME: This isn't perfect, because
348 common symbols wind up on undefs_tail and because an
349 undefined symbol which is defined later on in this pass
350 does not require another pass. This isn't a bug, but it
351 does make the code less efficient than it could be. */
352 if (undefs_tail != info->hash->undefs_tail)
353 loop = true;
354
355 /* Look backward to mark all symbols from this object file
356 which we have already seen in this pass. */
357 mark = i;
358 do
359 {
360 included[mark] = true;
361 if (mark == 0)
362 break;
363 --mark;
364 }
365 while (symdefs[mark].file_offset == symdef->file_offset);
366
367 /* We mark subsequent symbols from this object file as we go
368 on through the loop. */
369 last = symdef->file_offset;
370 }
371 }
372 while (loop);
373
374 free (defined);
375 free (included);
376
377 return true;
378
379 error_return:
380 if (defined != (boolean *) NULL)
381 free (defined);
382 if (included != (boolean *) NULL)
383 free (included);
384 return false;
385 }
386
387 /* This function is called when we want to define a new symbol. It
388 handles the various cases which arise when we find a definition in
389 a dynamic object, or when there is already a definition in a
390 dynamic object. The new symbol is described by NAME, SYM, PSEC,
391 and PVALUE. We set SYM_HASH to the hash table entry. We set
392 OVERRIDE if the old symbol is overriding a new definition. We set
393 TYPE_CHANGE_OK if it is OK for the type to change. We set
394 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
395 change, we mean that we shouldn't warn if the type or size does
396 change. */
397
398 static boolean
399 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
400 override, type_change_ok, size_change_ok)
401 bfd *abfd;
402 struct bfd_link_info *info;
403 const char *name;
404 Elf_Internal_Sym *sym;
405 asection **psec;
406 bfd_vma *pvalue;
407 struct elf_link_hash_entry **sym_hash;
408 boolean *override;
409 boolean *type_change_ok;
410 boolean *size_change_ok;
411 {
412 asection *sec;
413 struct elf_link_hash_entry *h;
414 int bind;
415 bfd *oldbfd;
416 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
417
418 *override = false;
419
420 sec = *psec;
421 bind = ELF_ST_BIND (sym->st_info);
422
423 if (! bfd_is_und_section (sec))
424 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
425 else
426 h = ((struct elf_link_hash_entry *)
427 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
428 if (h == NULL)
429 return false;
430 *sym_hash = h;
431
432 /* This code is for coping with dynamic objects, and is only useful
433 if we are doing an ELF link. */
434 if (info->hash->creator != abfd->xvec)
435 return true;
436
437 /* For merging, we only care about real symbols. */
438
439 while (h->root.type == bfd_link_hash_indirect
440 || h->root.type == bfd_link_hash_warning)
441 h = (struct elf_link_hash_entry *) h->root.u.i.link;
442
443 /* If we just created the symbol, mark it as being an ELF symbol.
444 Other than that, there is nothing to do--there is no merge issue
445 with a newly defined symbol--so we just return. */
446
447 if (h->root.type == bfd_link_hash_new)
448 {
449 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
450 return true;
451 }
452
453 /* OLDBFD is a BFD associated with the existing symbol. */
454
455 switch (h->root.type)
456 {
457 default:
458 oldbfd = NULL;
459 break;
460
461 case bfd_link_hash_undefined:
462 case bfd_link_hash_undefweak:
463 oldbfd = h->root.u.undef.abfd;
464 break;
465
466 case bfd_link_hash_defined:
467 case bfd_link_hash_defweak:
468 oldbfd = h->root.u.def.section->owner;
469 break;
470
471 case bfd_link_hash_common:
472 oldbfd = h->root.u.c.p->section->owner;
473 break;
474 }
475
476 /* In cases involving weak versioned symbols, we may wind up trying
477 to merge a symbol with itself. Catch that here, to avoid the
478 confusion that results if we try to override a symbol with
479 itself. The additional tests catch cases like
480 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
481 dynamic object, which we do want to handle here. */
482 if (abfd == oldbfd
483 && ((abfd->flags & DYNAMIC) == 0
484 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
485 return true;
486
487 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
488 respectively, is from a dynamic object. */
489
490 if ((abfd->flags & DYNAMIC) != 0)
491 newdyn = true;
492 else
493 newdyn = false;
494
495 if (oldbfd != NULL)
496 olddyn = (oldbfd->flags & DYNAMIC) != 0;
497 else
498 {
499 asection *hsec;
500
501 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
502 indices used by MIPS ELF. */
503 switch (h->root.type)
504 {
505 default:
506 hsec = NULL;
507 break;
508
509 case bfd_link_hash_defined:
510 case bfd_link_hash_defweak:
511 hsec = h->root.u.def.section;
512 break;
513
514 case bfd_link_hash_common:
515 hsec = h->root.u.c.p->section;
516 break;
517 }
518
519 if (hsec == NULL)
520 olddyn = false;
521 else
522 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
523 }
524
525 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
526 respectively, appear to be a definition rather than reference. */
527
528 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
529 newdef = false;
530 else
531 newdef = true;
532
533 if (h->root.type == bfd_link_hash_undefined
534 || h->root.type == bfd_link_hash_undefweak
535 || h->root.type == bfd_link_hash_common)
536 olddef = false;
537 else
538 olddef = true;
539
540 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
541 symbol, respectively, appears to be a common symbol in a dynamic
542 object. If a symbol appears in an uninitialized section, and is
543 not weak, and is not a function, then it may be a common symbol
544 which was resolved when the dynamic object was created. We want
545 to treat such symbols specially, because they raise special
546 considerations when setting the symbol size: if the symbol
547 appears as a common symbol in a regular object, and the size in
548 the regular object is larger, we must make sure that we use the
549 larger size. This problematic case can always be avoided in C,
550 but it must be handled correctly when using Fortran shared
551 libraries.
552
553 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
554 likewise for OLDDYNCOMMON and OLDDEF.
555
556 Note that this test is just a heuristic, and that it is quite
557 possible to have an uninitialized symbol in a shared object which
558 is really a definition, rather than a common symbol. This could
559 lead to some minor confusion when the symbol really is a common
560 symbol in some regular object. However, I think it will be
561 harmless. */
562
563 if (newdyn
564 && newdef
565 && (sec->flags & SEC_ALLOC) != 0
566 && (sec->flags & SEC_LOAD) == 0
567 && sym->st_size > 0
568 && bind != STB_WEAK
569 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
570 newdyncommon = true;
571 else
572 newdyncommon = false;
573
574 if (olddyn
575 && olddef
576 && h->root.type == bfd_link_hash_defined
577 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
578 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
579 && (h->root.u.def.section->flags & SEC_LOAD) == 0
580 && h->size > 0
581 && h->type != STT_FUNC)
582 olddyncommon = true;
583 else
584 olddyncommon = false;
585
586 /* It's OK to change the type if either the existing symbol or the
587 new symbol is weak. */
588
589 if (h->root.type == bfd_link_hash_defweak
590 || h->root.type == bfd_link_hash_undefweak
591 || bind == STB_WEAK)
592 *type_change_ok = true;
593
594 /* It's OK to change the size if either the existing symbol or the
595 new symbol is weak, or if the old symbol is undefined. */
596
597 if (*type_change_ok
598 || h->root.type == bfd_link_hash_undefined)
599 *size_change_ok = true;
600
601 /* If both the old and the new symbols look like common symbols in a
602 dynamic object, set the size of the symbol to the larger of the
603 two. */
604
605 if (olddyncommon
606 && newdyncommon
607 && sym->st_size != h->size)
608 {
609 /* Since we think we have two common symbols, issue a multiple
610 common warning if desired. Note that we only warn if the
611 size is different. If the size is the same, we simply let
612 the old symbol override the new one as normally happens with
613 symbols defined in dynamic objects. */
614
615 if (! ((*info->callbacks->multiple_common)
616 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
617 h->size, abfd, bfd_link_hash_common, sym->st_size)))
618 return false;
619
620 if (sym->st_size > h->size)
621 h->size = sym->st_size;
622
623 *size_change_ok = true;
624 }
625
626 /* If we are looking at a dynamic object, and we have found a
627 definition, we need to see if the symbol was already defined by
628 some other object. If so, we want to use the existing
629 definition, and we do not want to report a multiple symbol
630 definition error; we do this by clobbering *PSEC to be
631 bfd_und_section_ptr.
632
633 We treat a common symbol as a definition if the symbol in the
634 shared library is a function, since common symbols always
635 represent variables; this can cause confusion in principle, but
636 any such confusion would seem to indicate an erroneous program or
637 shared library. We also permit a common symbol in a regular
638 object to override a weak symbol in a shared object.
639
640 We prefer a non-weak definition in a shared library to a weak
641 definition in the executable. */
642
643 if (newdyn
644 && newdef
645 && (olddef
646 || (h->root.type == bfd_link_hash_common
647 && (bind == STB_WEAK
648 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
649 && (h->root.type != bfd_link_hash_defweak
650 || bind == STB_WEAK))
651 {
652 *override = true;
653 newdef = false;
654 newdyncommon = false;
655
656 *psec = sec = bfd_und_section_ptr;
657 *size_change_ok = true;
658
659 /* If we get here when the old symbol is a common symbol, then
660 we are explicitly letting it override a weak symbol or
661 function in a dynamic object, and we don't want to warn about
662 a type change. If the old symbol is a defined symbol, a type
663 change warning may still be appropriate. */
664
665 if (h->root.type == bfd_link_hash_common)
666 *type_change_ok = true;
667 }
668
669 /* Handle the special case of an old common symbol merging with a
670 new symbol which looks like a common symbol in a shared object.
671 We change *PSEC and *PVALUE to make the new symbol look like a
672 common symbol, and let _bfd_generic_link_add_one_symbol will do
673 the right thing. */
674
675 if (newdyncommon
676 && h->root.type == bfd_link_hash_common)
677 {
678 *override = true;
679 newdef = false;
680 newdyncommon = false;
681 *pvalue = sym->st_size;
682 *psec = sec = bfd_com_section_ptr;
683 *size_change_ok = true;
684 }
685
686 /* If the old symbol is from a dynamic object, and the new symbol is
687 a definition which is not from a dynamic object, then the new
688 symbol overrides the old symbol. Symbols from regular files
689 always take precedence over symbols from dynamic objects, even if
690 they are defined after the dynamic object in the link.
691
692 As above, we again permit a common symbol in a regular object to
693 override a definition in a shared object if the shared object
694 symbol is a function or is weak.
695
696 As above, we permit a non-weak definition in a shared object to
697 override a weak definition in a regular object. */
698
699 if (! newdyn
700 && (newdef
701 || (bfd_is_com_section (sec)
702 && (h->root.type == bfd_link_hash_defweak
703 || h->type == STT_FUNC)))
704 && olddyn
705 && olddef
706 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
707 && (bind != STB_WEAK
708 || h->root.type == bfd_link_hash_defweak))
709 {
710 /* Change the hash table entry to undefined, and let
711 _bfd_generic_link_add_one_symbol do the right thing with the
712 new definition. */
713
714 h->root.type = bfd_link_hash_undefined;
715 h->root.u.undef.abfd = h->root.u.def.section->owner;
716 *size_change_ok = true;
717
718 olddef = false;
719 olddyncommon = false;
720
721 /* We again permit a type change when a common symbol may be
722 overriding a function. */
723
724 if (bfd_is_com_section (sec))
725 *type_change_ok = true;
726
727 /* This union may have been set to be non-NULL when this symbol
728 was seen in a dynamic object. We must force the union to be
729 NULL, so that it is correct for a regular symbol. */
730
731 h->verinfo.vertree = NULL;
732
733 /* In this special case, if H is the target of an indirection,
734 we want the caller to frob with H rather than with the
735 indirect symbol. That will permit the caller to redefine the
736 target of the indirection, rather than the indirect symbol
737 itself. FIXME: This will break the -y option if we store a
738 symbol with a different name. */
739 *sym_hash = h;
740 }
741
742 /* Handle the special case of a new common symbol merging with an
743 old symbol that looks like it might be a common symbol defined in
744 a shared object. Note that we have already handled the case in
745 which a new common symbol should simply override the definition
746 in the shared library. */
747
748 if (! newdyn
749 && bfd_is_com_section (sec)
750 && olddyncommon)
751 {
752 /* It would be best if we could set the hash table entry to a
753 common symbol, but we don't know what to use for the section
754 or the alignment. */
755 if (! ((*info->callbacks->multiple_common)
756 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
757 h->size, abfd, bfd_link_hash_common, sym->st_size)))
758 return false;
759
760 /* If the predumed common symbol in the dynamic object is
761 larger, pretend that the new symbol has its size. */
762
763 if (h->size > *pvalue)
764 *pvalue = h->size;
765
766 /* FIXME: We no longer know the alignment required by the symbol
767 in the dynamic object, so we just wind up using the one from
768 the regular object. */
769
770 olddef = false;
771 olddyncommon = false;
772
773 h->root.type = bfd_link_hash_undefined;
774 h->root.u.undef.abfd = h->root.u.def.section->owner;
775
776 *size_change_ok = true;
777 *type_change_ok = true;
778
779 h->verinfo.vertree = NULL;
780 }
781
782 /* Handle the special case of a weak definition in a regular object
783 followed by a non-weak definition in a shared object. In this
784 case, we prefer the definition in the shared object. */
785 if (olddef
786 && h->root.type == bfd_link_hash_defweak
787 && newdef
788 && newdyn
789 && bind != STB_WEAK)
790 {
791 /* To make this work we have to frob the flags so that the rest
792 of the code does not think we are using the regular
793 definition. */
794 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
795 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
796 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
797 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
798 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
799 | ELF_LINK_HASH_DEF_DYNAMIC);
800
801 /* If H is the target of an indirection, we want the caller to
802 use H rather than the indirect symbol. Otherwise if we are
803 defining a new indirect symbol we will wind up attaching it
804 to the entry we are overriding. */
805 *sym_hash = h;
806 }
807
808 /* Handle the special case of a non-weak definition in a shared
809 object followed by a weak definition in a regular object. In
810 this case we prefer to definition in the shared object. To make
811 this work we have to tell the caller to not treat the new symbol
812 as a definition. */
813 if (olddef
814 && olddyn
815 && h->root.type != bfd_link_hash_defweak
816 && newdef
817 && ! newdyn
818 && bind == STB_WEAK)
819 *override = true;
820
821 return true;
822 }
823
824 /* Add symbols from an ELF object file to the linker hash table. */
825
826 static boolean
827 elf_link_add_object_symbols (abfd, info)
828 bfd *abfd;
829 struct bfd_link_info *info;
830 {
831 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
832 const Elf_Internal_Sym *,
833 const char **, flagword *,
834 asection **, bfd_vma *));
835 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
836 asection *, const Elf_Internal_Rela *));
837 boolean collect;
838 Elf_Internal_Shdr *hdr;
839 size_t symcount;
840 size_t extsymcount;
841 size_t extsymoff;
842 Elf_External_Sym *buf = NULL;
843 struct elf_link_hash_entry **sym_hash;
844 boolean dynamic;
845 bfd_byte *dynver = NULL;
846 Elf_External_Versym *extversym = NULL;
847 Elf_External_Versym *ever;
848 Elf_External_Dyn *dynbuf = NULL;
849 struct elf_link_hash_entry *weaks;
850 Elf_External_Sym *esym;
851 Elf_External_Sym *esymend;
852
853 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
854 collect = get_elf_backend_data (abfd)->collect;
855
856 if ((abfd->flags & DYNAMIC) == 0)
857 dynamic = false;
858 else
859 {
860 dynamic = true;
861
862 /* You can't use -r against a dynamic object. Also, there's no
863 hope of using a dynamic object which does not exactly match
864 the format of the output file. */
865 if (info->relocateable || info->hash->creator != abfd->xvec)
866 {
867 bfd_set_error (bfd_error_invalid_operation);
868 goto error_return;
869 }
870 }
871
872 /* As a GNU extension, any input sections which are named
873 .gnu.warning.SYMBOL are treated as warning symbols for the given
874 symbol. This differs from .gnu.warning sections, which generate
875 warnings when they are included in an output file. */
876 if (! info->shared)
877 {
878 asection *s;
879
880 for (s = abfd->sections; s != NULL; s = s->next)
881 {
882 const char *name;
883
884 name = bfd_get_section_name (abfd, s);
885 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
886 {
887 char *msg;
888 bfd_size_type sz;
889
890 name += sizeof ".gnu.warning." - 1;
891
892 /* If this is a shared object, then look up the symbol
893 in the hash table. If it is there, and it is already
894 been defined, then we will not be using the entry
895 from this shared object, so we don't need to warn.
896 FIXME: If we see the definition in a regular object
897 later on, we will warn, but we shouldn't. The only
898 fix is to keep track of what warnings we are supposed
899 to emit, and then handle them all at the end of the
900 link. */
901 if (dynamic && abfd->xvec == info->hash->creator)
902 {
903 struct elf_link_hash_entry *h;
904
905 h = elf_link_hash_lookup (elf_hash_table (info), name,
906 false, false, true);
907
908 /* FIXME: What about bfd_link_hash_common? */
909 if (h != NULL
910 && (h->root.type == bfd_link_hash_defined
911 || h->root.type == bfd_link_hash_defweak))
912 {
913 /* We don't want to issue this warning. Clobber
914 the section size so that the warning does not
915 get copied into the output file. */
916 s->_raw_size = 0;
917 continue;
918 }
919 }
920
921 sz = bfd_section_size (abfd, s);
922 msg = (char *) bfd_alloc (abfd, sz + 1);
923 if (msg == NULL)
924 goto error_return;
925
926 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
927 goto error_return;
928
929 msg[sz] = '\0';
930
931 if (! (_bfd_generic_link_add_one_symbol
932 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
933 false, collect, (struct bfd_link_hash_entry **) NULL)))
934 goto error_return;
935
936 if (! info->relocateable)
937 {
938 /* Clobber the section size so that the warning does
939 not get copied into the output file. */
940 s->_raw_size = 0;
941 }
942 }
943 }
944 }
945
946 /* If this is a dynamic object, we always link against the .dynsym
947 symbol table, not the .symtab symbol table. The dynamic linker
948 will only see the .dynsym symbol table, so there is no reason to
949 look at .symtab for a dynamic object. */
950
951 if (! dynamic || elf_dynsymtab (abfd) == 0)
952 hdr = &elf_tdata (abfd)->symtab_hdr;
953 else
954 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
955
956 if (dynamic)
957 {
958 /* Read in any version definitions. */
959
960 if (! _bfd_elf_slurp_version_tables (abfd))
961 goto error_return;
962
963 /* Read in the symbol versions, but don't bother to convert them
964 to internal format. */
965 if (elf_dynversym (abfd) != 0)
966 {
967 Elf_Internal_Shdr *versymhdr;
968
969 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
970 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
971 if (extversym == NULL)
972 goto error_return;
973 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
974 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
975 != versymhdr->sh_size))
976 goto error_return;
977 }
978 }
979
980 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
981
982 /* The sh_info field of the symtab header tells us where the
983 external symbols start. We don't care about the local symbols at
984 this point. */
985 if (elf_bad_symtab (abfd))
986 {
987 extsymcount = symcount;
988 extsymoff = 0;
989 }
990 else
991 {
992 extsymcount = symcount - hdr->sh_info;
993 extsymoff = hdr->sh_info;
994 }
995
996 buf = ((Elf_External_Sym *)
997 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
998 if (buf == NULL && extsymcount != 0)
999 goto error_return;
1000
1001 /* We store a pointer to the hash table entry for each external
1002 symbol. */
1003 sym_hash = ((struct elf_link_hash_entry **)
1004 bfd_alloc (abfd,
1005 extsymcount * sizeof (struct elf_link_hash_entry *)));
1006 if (sym_hash == NULL)
1007 goto error_return;
1008 elf_sym_hashes (abfd) = sym_hash;
1009
1010 if (! dynamic)
1011 {
1012 /* If we are creating a shared library, create all the dynamic
1013 sections immediately. We need to attach them to something,
1014 so we attach them to this BFD, provided it is the right
1015 format. FIXME: If there are no input BFD's of the same
1016 format as the output, we can't make a shared library. */
1017 if (info->shared
1018 && ! elf_hash_table (info)->dynamic_sections_created
1019 && abfd->xvec == info->hash->creator)
1020 {
1021 if (! elf_link_create_dynamic_sections (abfd, info))
1022 goto error_return;
1023 }
1024 }
1025 else
1026 {
1027 asection *s;
1028 boolean add_needed;
1029 const char *name;
1030 bfd_size_type oldsize;
1031 bfd_size_type strindex;
1032
1033 /* Find the name to use in a DT_NEEDED entry that refers to this
1034 object. If the object has a DT_SONAME entry, we use it.
1035 Otherwise, if the generic linker stuck something in
1036 elf_dt_name, we use that. Otherwise, we just use the file
1037 name. If the generic linker put a null string into
1038 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1039 there is a DT_SONAME entry. */
1040 add_needed = true;
1041 name = bfd_get_filename (abfd);
1042 if (elf_dt_name (abfd) != NULL)
1043 {
1044 name = elf_dt_name (abfd);
1045 if (*name == '\0')
1046 add_needed = false;
1047 }
1048 s = bfd_get_section_by_name (abfd, ".dynamic");
1049 if (s != NULL)
1050 {
1051 Elf_External_Dyn *extdyn;
1052 Elf_External_Dyn *extdynend;
1053 int elfsec;
1054 unsigned long link;
1055
1056 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
1057 if (dynbuf == NULL)
1058 goto error_return;
1059
1060 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1061 (file_ptr) 0, s->_raw_size))
1062 goto error_return;
1063
1064 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1065 if (elfsec == -1)
1066 goto error_return;
1067 link = elf_elfsections (abfd)[elfsec]->sh_link;
1068
1069 {
1070 /* The shared libraries distributed with hpux11 have a bogus
1071 sh_link field for the ".dynamic" section. This code detects
1072 when LINK refers to a section that is not a string table and
1073 tries to find the string table for the ".dynsym" section
1074 instead. */
1075 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
1076 if (hdr->sh_type != SHT_STRTAB)
1077 {
1078 asection *s = bfd_get_section_by_name (abfd, ".dynsym");
1079 int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1080 if (elfsec == -1)
1081 goto error_return;
1082 link = elf_elfsections (abfd)[elfsec]->sh_link;
1083 }
1084 }
1085
1086 extdyn = dynbuf;
1087 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1088 for (; extdyn < extdynend; extdyn++)
1089 {
1090 Elf_Internal_Dyn dyn;
1091
1092 elf_swap_dyn_in (abfd, extdyn, &dyn);
1093 if (dyn.d_tag == DT_SONAME)
1094 {
1095 name = bfd_elf_string_from_elf_section (abfd, link,
1096 dyn.d_un.d_val);
1097 if (name == NULL)
1098 goto error_return;
1099 }
1100 if (dyn.d_tag == DT_NEEDED)
1101 {
1102 struct bfd_link_needed_list *n, **pn;
1103 char *fnm, *anm;
1104
1105 n = ((struct bfd_link_needed_list *)
1106 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1107 fnm = bfd_elf_string_from_elf_section (abfd, link,
1108 dyn.d_un.d_val);
1109 if (n == NULL || fnm == NULL)
1110 goto error_return;
1111 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1112 if (anm == NULL)
1113 goto error_return;
1114 strcpy (anm, fnm);
1115 n->name = anm;
1116 n->by = abfd;
1117 n->next = NULL;
1118 for (pn = &elf_hash_table (info)->needed;
1119 *pn != NULL;
1120 pn = &(*pn)->next)
1121 ;
1122 *pn = n;
1123 }
1124 }
1125
1126 free (dynbuf);
1127 dynbuf = NULL;
1128 }
1129
1130 /* We do not want to include any of the sections in a dynamic
1131 object in the output file. We hack by simply clobbering the
1132 list of sections in the BFD. This could be handled more
1133 cleanly by, say, a new section flag; the existing
1134 SEC_NEVER_LOAD flag is not the one we want, because that one
1135 still implies that the section takes up space in the output
1136 file. */
1137 abfd->sections = NULL;
1138 abfd->section_count = 0;
1139
1140 /* If this is the first dynamic object found in the link, create
1141 the special sections required for dynamic linking. */
1142 if (! elf_hash_table (info)->dynamic_sections_created)
1143 {
1144 if (! elf_link_create_dynamic_sections (abfd, info))
1145 goto error_return;
1146 }
1147
1148 if (add_needed)
1149 {
1150 /* Add a DT_NEEDED entry for this dynamic object. */
1151 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1152 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1153 true, false);
1154 if (strindex == (bfd_size_type) -1)
1155 goto error_return;
1156
1157 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1158 {
1159 asection *sdyn;
1160 Elf_External_Dyn *dyncon, *dynconend;
1161
1162 /* The hash table size did not change, which means that
1163 the dynamic object name was already entered. If we
1164 have already included this dynamic object in the
1165 link, just ignore it. There is no reason to include
1166 a particular dynamic object more than once. */
1167 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1168 ".dynamic");
1169 BFD_ASSERT (sdyn != NULL);
1170
1171 dyncon = (Elf_External_Dyn *) sdyn->contents;
1172 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1173 sdyn->_raw_size);
1174 for (; dyncon < dynconend; dyncon++)
1175 {
1176 Elf_Internal_Dyn dyn;
1177
1178 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1179 &dyn);
1180 if (dyn.d_tag == DT_NEEDED
1181 && dyn.d_un.d_val == strindex)
1182 {
1183 if (buf != NULL)
1184 free (buf);
1185 if (extversym != NULL)
1186 free (extversym);
1187 return true;
1188 }
1189 }
1190 }
1191
1192 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1193 goto error_return;
1194 }
1195
1196 /* Save the SONAME, if there is one, because sometimes the
1197 linker emulation code will need to know it. */
1198 if (*name == '\0')
1199 name = bfd_get_filename (abfd);
1200 elf_dt_name (abfd) = name;
1201 }
1202
1203 if (bfd_seek (abfd,
1204 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1205 SEEK_SET) != 0
1206 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1207 != extsymcount * sizeof (Elf_External_Sym)))
1208 goto error_return;
1209
1210 weaks = NULL;
1211
1212 ever = extversym != NULL ? extversym + extsymoff : NULL;
1213 esymend = buf + extsymcount;
1214 for (esym = buf;
1215 esym < esymend;
1216 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1217 {
1218 Elf_Internal_Sym sym;
1219 int bind;
1220 bfd_vma value;
1221 asection *sec;
1222 flagword flags;
1223 const char *name;
1224 struct elf_link_hash_entry *h;
1225 boolean definition;
1226 boolean size_change_ok, type_change_ok;
1227 boolean new_weakdef;
1228 unsigned int old_alignment;
1229
1230 elf_swap_symbol_in (abfd, esym, &sym);
1231
1232 flags = BSF_NO_FLAGS;
1233 sec = NULL;
1234 value = sym.st_value;
1235 *sym_hash = NULL;
1236
1237 bind = ELF_ST_BIND (sym.st_info);
1238 if (bind == STB_LOCAL)
1239 {
1240 /* This should be impossible, since ELF requires that all
1241 global symbols follow all local symbols, and that sh_info
1242 point to the first global symbol. Unfortunatealy, Irix 5
1243 screws this up. */
1244 continue;
1245 }
1246 else if (bind == STB_GLOBAL)
1247 {
1248 if (sym.st_shndx != SHN_UNDEF
1249 && sym.st_shndx != SHN_COMMON)
1250 flags = BSF_GLOBAL;
1251 else
1252 flags = 0;
1253 }
1254 else if (bind == STB_WEAK)
1255 flags = BSF_WEAK;
1256 else
1257 {
1258 /* Leave it up to the processor backend. */
1259 }
1260
1261 if (sym.st_shndx == SHN_UNDEF)
1262 sec = bfd_und_section_ptr;
1263 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1264 {
1265 sec = section_from_elf_index (abfd, sym.st_shndx);
1266 if (sec == NULL)
1267 sec = bfd_abs_section_ptr;
1268 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1269 value -= sec->vma;
1270 }
1271 else if (sym.st_shndx == SHN_ABS)
1272 sec = bfd_abs_section_ptr;
1273 else if (sym.st_shndx == SHN_COMMON)
1274 {
1275 sec = bfd_com_section_ptr;
1276 /* What ELF calls the size we call the value. What ELF
1277 calls the value we call the alignment. */
1278 value = sym.st_size;
1279 }
1280 else
1281 {
1282 /* Leave it up to the processor backend. */
1283 }
1284
1285 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1286 if (name == (const char *) NULL)
1287 goto error_return;
1288
1289 if (add_symbol_hook)
1290 {
1291 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1292 &value))
1293 goto error_return;
1294
1295 /* The hook function sets the name to NULL if this symbol
1296 should be skipped for some reason. */
1297 if (name == (const char *) NULL)
1298 continue;
1299 }
1300
1301 /* Sanity check that all possibilities were handled. */
1302 if (sec == (asection *) NULL)
1303 {
1304 bfd_set_error (bfd_error_bad_value);
1305 goto error_return;
1306 }
1307
1308 if (bfd_is_und_section (sec)
1309 || bfd_is_com_section (sec))
1310 definition = false;
1311 else
1312 definition = true;
1313
1314 size_change_ok = false;
1315 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1316 old_alignment = 0;
1317 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1318 {
1319 Elf_Internal_Versym iver;
1320 unsigned int vernum = 0;
1321 boolean override;
1322
1323 if (ever != NULL)
1324 {
1325 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1326 vernum = iver.vs_vers & VERSYM_VERSION;
1327
1328 /* If this is a hidden symbol, or if it is not version
1329 1, we append the version name to the symbol name.
1330 However, we do not modify a non-hidden absolute
1331 symbol, because it might be the version symbol
1332 itself. FIXME: What if it isn't? */
1333 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1334 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1335 {
1336 const char *verstr;
1337 int namelen, newlen;
1338 char *newname, *p;
1339
1340 if (sym.st_shndx != SHN_UNDEF)
1341 {
1342 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1343 {
1344 (*_bfd_error_handler)
1345 (_("%s: %s: invalid version %u (max %d)"),
1346 bfd_get_filename (abfd), name, vernum,
1347 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1348 bfd_set_error (bfd_error_bad_value);
1349 goto error_return;
1350 }
1351 else if (vernum > 1)
1352 verstr =
1353 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1354 else
1355 verstr = "";
1356 }
1357 else
1358 {
1359 /* We cannot simply test for the number of
1360 entries in the VERNEED section since the
1361 numbers for the needed versions do not start
1362 at 0. */
1363 Elf_Internal_Verneed *t;
1364
1365 verstr = NULL;
1366 for (t = elf_tdata (abfd)->verref;
1367 t != NULL;
1368 t = t->vn_nextref)
1369 {
1370 Elf_Internal_Vernaux *a;
1371
1372 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1373 {
1374 if (a->vna_other == vernum)
1375 {
1376 verstr = a->vna_nodename;
1377 break;
1378 }
1379 }
1380 if (a != NULL)
1381 break;
1382 }
1383 if (verstr == NULL)
1384 {
1385 (*_bfd_error_handler)
1386 (_("%s: %s: invalid needed version %d"),
1387 bfd_get_filename (abfd), name, vernum);
1388 bfd_set_error (bfd_error_bad_value);
1389 goto error_return;
1390 }
1391 }
1392
1393 namelen = strlen (name);
1394 newlen = namelen + strlen (verstr) + 2;
1395 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1396 ++newlen;
1397
1398 newname = (char *) bfd_alloc (abfd, newlen);
1399 if (newname == NULL)
1400 goto error_return;
1401 strcpy (newname, name);
1402 p = newname + namelen;
1403 *p++ = ELF_VER_CHR;
1404 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1405 *p++ = ELF_VER_CHR;
1406 strcpy (p, verstr);
1407
1408 name = newname;
1409 }
1410 }
1411
1412 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1413 sym_hash, &override, &type_change_ok,
1414 &size_change_ok))
1415 goto error_return;
1416
1417 if (override)
1418 definition = false;
1419
1420 h = *sym_hash;
1421 while (h->root.type == bfd_link_hash_indirect
1422 || h->root.type == bfd_link_hash_warning)
1423 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1424
1425 /* Remember the old alignment if this is a common symbol, so
1426 that we don't reduce the alignment later on. We can't
1427 check later, because _bfd_generic_link_add_one_symbol
1428 will set a default for the alignment which we want to
1429 override. */
1430 if (h->root.type == bfd_link_hash_common)
1431 old_alignment = h->root.u.c.p->alignment_power;
1432
1433 if (elf_tdata (abfd)->verdef != NULL
1434 && ! override
1435 && vernum > 1
1436 && definition)
1437 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1438 }
1439
1440 if (! (_bfd_generic_link_add_one_symbol
1441 (info, abfd, name, flags, sec, value, (const char *) NULL,
1442 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1443 goto error_return;
1444
1445 h = *sym_hash;
1446 while (h->root.type == bfd_link_hash_indirect
1447 || h->root.type == bfd_link_hash_warning)
1448 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1449 *sym_hash = h;
1450
1451 new_weakdef = false;
1452 if (dynamic
1453 && definition
1454 && (flags & BSF_WEAK) != 0
1455 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1456 && info->hash->creator->flavour == bfd_target_elf_flavour
1457 && h->weakdef == NULL)
1458 {
1459 /* Keep a list of all weak defined non function symbols from
1460 a dynamic object, using the weakdef field. Later in this
1461 function we will set the weakdef field to the correct
1462 value. We only put non-function symbols from dynamic
1463 objects on this list, because that happens to be the only
1464 time we need to know the normal symbol corresponding to a
1465 weak symbol, and the information is time consuming to
1466 figure out. If the weakdef field is not already NULL,
1467 then this symbol was already defined by some previous
1468 dynamic object, and we will be using that previous
1469 definition anyhow. */
1470
1471 h->weakdef = weaks;
1472 weaks = h;
1473 new_weakdef = true;
1474 }
1475
1476 /* Set the alignment of a common symbol. */
1477 if (sym.st_shndx == SHN_COMMON
1478 && h->root.type == bfd_link_hash_common)
1479 {
1480 unsigned int align;
1481
1482 align = bfd_log2 (sym.st_value);
1483 if (align > old_alignment)
1484 h->root.u.c.p->alignment_power = align;
1485 }
1486
1487 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1488 {
1489 int old_flags;
1490 boolean dynsym;
1491 int new_flag;
1492
1493 /* Remember the symbol size and type. */
1494 if (sym.st_size != 0
1495 && (definition || h->size == 0))
1496 {
1497 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1498 (*_bfd_error_handler)
1499 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1500 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1501 bfd_get_filename (abfd));
1502
1503 h->size = sym.st_size;
1504 }
1505
1506 /* If this is a common symbol, then we always want H->SIZE
1507 to be the size of the common symbol. The code just above
1508 won't fix the size if a common symbol becomes larger. We
1509 don't warn about a size change here, because that is
1510 covered by --warn-common. */
1511 if (h->root.type == bfd_link_hash_common)
1512 h->size = h->root.u.c.size;
1513
1514 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1515 && (definition || h->type == STT_NOTYPE))
1516 {
1517 if (h->type != STT_NOTYPE
1518 && h->type != ELF_ST_TYPE (sym.st_info)
1519 && ! type_change_ok)
1520 (*_bfd_error_handler)
1521 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1522 name, h->type, ELF_ST_TYPE (sym.st_info),
1523 bfd_get_filename (abfd));
1524
1525 h->type = ELF_ST_TYPE (sym.st_info);
1526 }
1527
1528 if (sym.st_other != 0
1529 && (definition || h->other == 0))
1530 h->other = sym.st_other;
1531
1532 /* Set a flag in the hash table entry indicating the type of
1533 reference or definition we just found. Keep a count of
1534 the number of dynamic symbols we find. A dynamic symbol
1535 is one which is referenced or defined by both a regular
1536 object and a shared object. */
1537 old_flags = h->elf_link_hash_flags;
1538 dynsym = false;
1539 if (! dynamic)
1540 {
1541 if (! definition)
1542 {
1543 new_flag = ELF_LINK_HASH_REF_REGULAR;
1544 if (bind != STB_WEAK)
1545 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1546 }
1547 else
1548 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1549 if (info->shared
1550 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1551 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1552 dynsym = true;
1553 }
1554 else
1555 {
1556 if (! definition)
1557 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1558 else
1559 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1560 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1561 | ELF_LINK_HASH_REF_REGULAR)) != 0
1562 || (h->weakdef != NULL
1563 && ! new_weakdef
1564 && h->weakdef->dynindx != -1))
1565 dynsym = true;
1566 }
1567
1568 h->elf_link_hash_flags |= new_flag;
1569
1570 /* If this symbol has a version, and it is the default
1571 version, we create an indirect symbol from the default
1572 name to the fully decorated name. This will cause
1573 external references which do not specify a version to be
1574 bound to this version of the symbol. */
1575 if (definition)
1576 {
1577 char *p;
1578
1579 p = strchr (name, ELF_VER_CHR);
1580 if (p != NULL && p[1] == ELF_VER_CHR)
1581 {
1582 char *shortname;
1583 struct elf_link_hash_entry *hi;
1584 boolean override;
1585
1586 shortname = bfd_hash_allocate (&info->hash->table,
1587 p - name + 1);
1588 if (shortname == NULL)
1589 goto error_return;
1590 strncpy (shortname, name, p - name);
1591 shortname[p - name] = '\0';
1592
1593 /* We are going to create a new symbol. Merge it
1594 with any existing symbol with this name. For the
1595 purposes of the merge, act as though we were
1596 defining the symbol we just defined, although we
1597 actually going to define an indirect symbol. */
1598 type_change_ok = false;
1599 size_change_ok = false;
1600 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1601 &value, &hi, &override,
1602 &type_change_ok, &size_change_ok))
1603 goto error_return;
1604
1605 if (! override)
1606 {
1607 if (! (_bfd_generic_link_add_one_symbol
1608 (info, abfd, shortname, BSF_INDIRECT,
1609 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1610 collect, (struct bfd_link_hash_entry **) &hi)))
1611 goto error_return;
1612 }
1613 else
1614 {
1615 /* In this case the symbol named SHORTNAME is
1616 overriding the indirect symbol we want to
1617 add. We were planning on making SHORTNAME an
1618 indirect symbol referring to NAME. SHORTNAME
1619 is the name without a version. NAME is the
1620 fully versioned name, and it is the default
1621 version.
1622
1623 Overriding means that we already saw a
1624 definition for the symbol SHORTNAME in a
1625 regular object, and it is overriding the
1626 symbol defined in the dynamic object.
1627
1628 When this happens, we actually want to change
1629 NAME, the symbol we just added, to refer to
1630 SHORTNAME. This will cause references to
1631 NAME in the shared object to become
1632 references to SHORTNAME in the regular
1633 object. This is what we expect when we
1634 override a function in a shared object: that
1635 the references in the shared object will be
1636 mapped to the definition in the regular
1637 object. */
1638
1639 while (hi->root.type == bfd_link_hash_indirect
1640 || hi->root.type == bfd_link_hash_warning)
1641 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1642
1643 h->root.type = bfd_link_hash_indirect;
1644 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1645 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1646 {
1647 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1648 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1649 if (hi->elf_link_hash_flags
1650 & (ELF_LINK_HASH_REF_REGULAR
1651 | ELF_LINK_HASH_DEF_REGULAR))
1652 {
1653 if (! _bfd_elf_link_record_dynamic_symbol (info,
1654 hi))
1655 goto error_return;
1656 }
1657 }
1658
1659 /* Now set HI to H, so that the following code
1660 will set the other fields correctly. */
1661 hi = h;
1662 }
1663
1664 /* If there is a duplicate definition somewhere,
1665 then HI may not point to an indirect symbol. We
1666 will have reported an error to the user in that
1667 case. */
1668
1669 if (hi->root.type == bfd_link_hash_indirect)
1670 {
1671 struct elf_link_hash_entry *ht;
1672
1673 /* If the symbol became indirect, then we assume
1674 that we have not seen a definition before. */
1675 BFD_ASSERT ((hi->elf_link_hash_flags
1676 & (ELF_LINK_HASH_DEF_DYNAMIC
1677 | ELF_LINK_HASH_DEF_REGULAR))
1678 == 0);
1679
1680 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1681
1682 /* Copy down any references that we may have
1683 already seen to the symbol which just became
1684 indirect. */
1685 ht->elf_link_hash_flags |=
1686 (hi->elf_link_hash_flags
1687 & (ELF_LINK_HASH_REF_DYNAMIC
1688 | ELF_LINK_HASH_REF_REGULAR
1689 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1690 | ELF_LINK_NON_GOT_REF));
1691
1692 /* Copy over the global and procedure linkage table
1693 offset entries. These may have been already set
1694 up by a check_relocs routine. */
1695 if (ht->got.offset == (bfd_vma) -1)
1696 {
1697 ht->got.offset = hi->got.offset;
1698 hi->got.offset = (bfd_vma) -1;
1699 }
1700 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1701
1702 if (ht->plt.offset == (bfd_vma) -1)
1703 {
1704 ht->plt.offset = hi->plt.offset;
1705 hi->plt.offset = (bfd_vma) -1;
1706 }
1707 BFD_ASSERT (hi->plt.offset == (bfd_vma) -1);
1708
1709 if (ht->dynindx == -1)
1710 {
1711 ht->dynindx = hi->dynindx;
1712 ht->dynstr_index = hi->dynstr_index;
1713 hi->dynindx = -1;
1714 hi->dynstr_index = 0;
1715 }
1716 BFD_ASSERT (hi->dynindx == -1);
1717
1718 /* FIXME: There may be other information to copy
1719 over for particular targets. */
1720
1721 /* See if the new flags lead us to realize that
1722 the symbol must be dynamic. */
1723 if (! dynsym)
1724 {
1725 if (! dynamic)
1726 {
1727 if (info->shared
1728 || ((hi->elf_link_hash_flags
1729 & ELF_LINK_HASH_REF_DYNAMIC)
1730 != 0))
1731 dynsym = true;
1732 }
1733 else
1734 {
1735 if ((hi->elf_link_hash_flags
1736 & ELF_LINK_HASH_REF_REGULAR) != 0)
1737 dynsym = true;
1738 }
1739 }
1740 }
1741
1742 /* We also need to define an indirection from the
1743 nondefault version of the symbol. */
1744
1745 shortname = bfd_hash_allocate (&info->hash->table,
1746 strlen (name));
1747 if (shortname == NULL)
1748 goto error_return;
1749 strncpy (shortname, name, p - name);
1750 strcpy (shortname + (p - name), p + 1);
1751
1752 /* Once again, merge with any existing symbol. */
1753 type_change_ok = false;
1754 size_change_ok = false;
1755 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1756 &value, &hi, &override,
1757 &type_change_ok, &size_change_ok))
1758 goto error_return;
1759
1760 if (override)
1761 {
1762 /* Here SHORTNAME is a versioned name, so we
1763 don't expect to see the type of override we
1764 do in the case above. */
1765 (*_bfd_error_handler)
1766 (_("%s: warning: unexpected redefinition of `%s'"),
1767 bfd_get_filename (abfd), shortname);
1768 }
1769 else
1770 {
1771 if (! (_bfd_generic_link_add_one_symbol
1772 (info, abfd, shortname, BSF_INDIRECT,
1773 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1774 collect, (struct bfd_link_hash_entry **) &hi)))
1775 goto error_return;
1776
1777 /* If there is a duplicate definition somewhere,
1778 then HI may not point to an indirect symbol.
1779 We will have reported an error to the user in
1780 that case. */
1781
1782 if (hi->root.type == bfd_link_hash_indirect)
1783 {
1784 /* If the symbol became indirect, then we
1785 assume that we have not seen a definition
1786 before. */
1787 BFD_ASSERT ((hi->elf_link_hash_flags
1788 & (ELF_LINK_HASH_DEF_DYNAMIC
1789 | ELF_LINK_HASH_DEF_REGULAR))
1790 == 0);
1791
1792 /* Copy down any references that we may have
1793 already seen to the symbol which just
1794 became indirect. */
1795 h->elf_link_hash_flags |=
1796 (hi->elf_link_hash_flags
1797 & (ELF_LINK_HASH_REF_DYNAMIC
1798 | ELF_LINK_HASH_REF_REGULAR
1799 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1800 | ELF_LINK_NON_GOT_REF));
1801
1802 /* Copy over the global and procedure linkage
1803 table offset entries. These may have been
1804 already set up by a check_relocs routine. */
1805 if (h->got.offset == (bfd_vma) -1)
1806 {
1807 h->got.offset = hi->got.offset;
1808 hi->got.offset = (bfd_vma) -1;
1809 }
1810 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1811
1812 if (h->plt.offset == (bfd_vma) -1)
1813 {
1814 h->plt.offset = hi->plt.offset;
1815 hi->plt.offset = (bfd_vma) -1;
1816 }
1817 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1818
1819 if (h->dynindx == -1)
1820 {
1821 h->dynindx = hi->dynindx;
1822 h->dynstr_index = hi->dynstr_index;
1823 hi->dynindx = -1;
1824 hi->dynstr_index = 0;
1825 }
1826 BFD_ASSERT (hi->dynindx == -1);
1827
1828 /* FIXME: There may be other information to
1829 copy over for particular targets. */
1830
1831 /* See if the new flags lead us to realize
1832 that the symbol must be dynamic. */
1833 if (! dynsym)
1834 {
1835 if (! dynamic)
1836 {
1837 if (info->shared
1838 || ((hi->elf_link_hash_flags
1839 & ELF_LINK_HASH_REF_DYNAMIC)
1840 != 0))
1841 dynsym = true;
1842 }
1843 else
1844 {
1845 if ((hi->elf_link_hash_flags
1846 & ELF_LINK_HASH_REF_REGULAR) != 0)
1847 dynsym = true;
1848 }
1849 }
1850 }
1851 }
1852 }
1853 }
1854
1855 if (dynsym && h->dynindx == -1)
1856 {
1857 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1858 goto error_return;
1859 if (h->weakdef != NULL
1860 && ! new_weakdef
1861 && h->weakdef->dynindx == -1)
1862 {
1863 if (! _bfd_elf_link_record_dynamic_symbol (info,
1864 h->weakdef))
1865 goto error_return;
1866 }
1867 }
1868 }
1869 }
1870
1871 /* Now set the weakdefs field correctly for all the weak defined
1872 symbols we found. The only way to do this is to search all the
1873 symbols. Since we only need the information for non functions in
1874 dynamic objects, that's the only time we actually put anything on
1875 the list WEAKS. We need this information so that if a regular
1876 object refers to a symbol defined weakly in a dynamic object, the
1877 real symbol in the dynamic object is also put in the dynamic
1878 symbols; we also must arrange for both symbols to point to the
1879 same memory location. We could handle the general case of symbol
1880 aliasing, but a general symbol alias can only be generated in
1881 assembler code, handling it correctly would be very time
1882 consuming, and other ELF linkers don't handle general aliasing
1883 either. */
1884 while (weaks != NULL)
1885 {
1886 struct elf_link_hash_entry *hlook;
1887 asection *slook;
1888 bfd_vma vlook;
1889 struct elf_link_hash_entry **hpp;
1890 struct elf_link_hash_entry **hppend;
1891
1892 hlook = weaks;
1893 weaks = hlook->weakdef;
1894 hlook->weakdef = NULL;
1895
1896 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1897 || hlook->root.type == bfd_link_hash_defweak
1898 || hlook->root.type == bfd_link_hash_common
1899 || hlook->root.type == bfd_link_hash_indirect);
1900 slook = hlook->root.u.def.section;
1901 vlook = hlook->root.u.def.value;
1902
1903 hpp = elf_sym_hashes (abfd);
1904 hppend = hpp + extsymcount;
1905 for (; hpp < hppend; hpp++)
1906 {
1907 struct elf_link_hash_entry *h;
1908
1909 h = *hpp;
1910 if (h != NULL && h != hlook
1911 && h->root.type == bfd_link_hash_defined
1912 && h->root.u.def.section == slook
1913 && h->root.u.def.value == vlook)
1914 {
1915 hlook->weakdef = h;
1916
1917 /* If the weak definition is in the list of dynamic
1918 symbols, make sure the real definition is put there
1919 as well. */
1920 if (hlook->dynindx != -1
1921 && h->dynindx == -1)
1922 {
1923 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1924 goto error_return;
1925 }
1926
1927 /* If the real definition is in the list of dynamic
1928 symbols, make sure the weak definition is put there
1929 as well. If we don't do this, then the dynamic
1930 loader might not merge the entries for the real
1931 definition and the weak definition. */
1932 if (h->dynindx != -1
1933 && hlook->dynindx == -1)
1934 {
1935 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1936 goto error_return;
1937 }
1938
1939 break;
1940 }
1941 }
1942 }
1943
1944 if (buf != NULL)
1945 {
1946 free (buf);
1947 buf = NULL;
1948 }
1949
1950 if (extversym != NULL)
1951 {
1952 free (extversym);
1953 extversym = NULL;
1954 }
1955
1956 /* If this object is the same format as the output object, and it is
1957 not a shared library, then let the backend look through the
1958 relocs.
1959
1960 This is required to build global offset table entries and to
1961 arrange for dynamic relocs. It is not required for the
1962 particular common case of linking non PIC code, even when linking
1963 against shared libraries, but unfortunately there is no way of
1964 knowing whether an object file has been compiled PIC or not.
1965 Looking through the relocs is not particularly time consuming.
1966 The problem is that we must either (1) keep the relocs in memory,
1967 which causes the linker to require additional runtime memory or
1968 (2) read the relocs twice from the input file, which wastes time.
1969 This would be a good case for using mmap.
1970
1971 I have no idea how to handle linking PIC code into a file of a
1972 different format. It probably can't be done. */
1973 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1974 if (! dynamic
1975 && abfd->xvec == info->hash->creator
1976 && check_relocs != NULL)
1977 {
1978 asection *o;
1979
1980 for (o = abfd->sections; o != NULL; o = o->next)
1981 {
1982 Elf_Internal_Rela *internal_relocs;
1983 boolean ok;
1984
1985 if ((o->flags & SEC_RELOC) == 0
1986 || o->reloc_count == 0
1987 || ((info->strip == strip_all || info->strip == strip_debugger)
1988 && (o->flags & SEC_DEBUGGING) != 0)
1989 || bfd_is_abs_section (o->output_section))
1990 continue;
1991
1992 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1993 (abfd, o, (PTR) NULL,
1994 (Elf_Internal_Rela *) NULL,
1995 info->keep_memory));
1996 if (internal_relocs == NULL)
1997 goto error_return;
1998
1999 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2000
2001 if (! info->keep_memory)
2002 free (internal_relocs);
2003
2004 if (! ok)
2005 goto error_return;
2006 }
2007 }
2008
2009 /* If this is a non-traditional, non-relocateable link, try to
2010 optimize the handling of the .stab/.stabstr sections. */
2011 if (! dynamic
2012 && ! info->relocateable
2013 && ! info->traditional_format
2014 && info->hash->creator->flavour == bfd_target_elf_flavour
2015 && (info->strip != strip_all && info->strip != strip_debugger))
2016 {
2017 asection *stab, *stabstr;
2018
2019 stab = bfd_get_section_by_name (abfd, ".stab");
2020 if (stab != NULL)
2021 {
2022 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2023
2024 if (stabstr != NULL)
2025 {
2026 struct bfd_elf_section_data *secdata;
2027
2028 secdata = elf_section_data (stab);
2029 if (! _bfd_link_section_stabs (abfd,
2030 &elf_hash_table (info)->stab_info,
2031 stab, stabstr,
2032 &secdata->stab_info))
2033 goto error_return;
2034 }
2035 }
2036 }
2037
2038 return true;
2039
2040 error_return:
2041 if (buf != NULL)
2042 free (buf);
2043 if (dynbuf != NULL)
2044 free (dynbuf);
2045 if (dynver != NULL)
2046 free (dynver);
2047 if (extversym != NULL)
2048 free (extversym);
2049 return false;
2050 }
2051
2052 /* Create some sections which will be filled in with dynamic linking
2053 information. ABFD is an input file which requires dynamic sections
2054 to be created. The dynamic sections take up virtual memory space
2055 when the final executable is run, so we need to create them before
2056 addresses are assigned to the output sections. We work out the
2057 actual contents and size of these sections later. */
2058
2059 boolean
2060 elf_link_create_dynamic_sections (abfd, info)
2061 bfd *abfd;
2062 struct bfd_link_info *info;
2063 {
2064 flagword flags;
2065 register asection *s;
2066 struct elf_link_hash_entry *h;
2067 struct elf_backend_data *bed;
2068
2069 if (elf_hash_table (info)->dynamic_sections_created)
2070 return true;
2071
2072 /* Make sure that all dynamic sections use the same input BFD. */
2073 if (elf_hash_table (info)->dynobj == NULL)
2074 elf_hash_table (info)->dynobj = abfd;
2075 else
2076 abfd = elf_hash_table (info)->dynobj;
2077
2078 /* Note that we set the SEC_IN_MEMORY flag for all of these
2079 sections. */
2080 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2081 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2082
2083 /* A dynamically linked executable has a .interp section, but a
2084 shared library does not. */
2085 if (! info->shared)
2086 {
2087 s = bfd_make_section (abfd, ".interp");
2088 if (s == NULL
2089 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2090 return false;
2091 }
2092
2093 /* Create sections to hold version informations. These are removed
2094 if they are not needed. */
2095 s = bfd_make_section (abfd, ".gnu.version_d");
2096 if (s == NULL
2097 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2098 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2099 return false;
2100
2101 s = bfd_make_section (abfd, ".gnu.version");
2102 if (s == NULL
2103 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2104 || ! bfd_set_section_alignment (abfd, s, 1))
2105 return false;
2106
2107 s = bfd_make_section (abfd, ".gnu.version_r");
2108 if (s == NULL
2109 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2110 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2111 return false;
2112
2113 s = bfd_make_section (abfd, ".dynsym");
2114 if (s == NULL
2115 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2116 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2117 return false;
2118
2119 s = bfd_make_section (abfd, ".dynstr");
2120 if (s == NULL
2121 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2122 return false;
2123
2124 /* Create a strtab to hold the dynamic symbol names. */
2125 if (elf_hash_table (info)->dynstr == NULL)
2126 {
2127 elf_hash_table (info)->dynstr = elf_stringtab_init ();
2128 if (elf_hash_table (info)->dynstr == NULL)
2129 return false;
2130 }
2131
2132 s = bfd_make_section (abfd, ".dynamic");
2133 if (s == NULL
2134 || ! bfd_set_section_flags (abfd, s, flags)
2135 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2136 return false;
2137
2138 /* The special symbol _DYNAMIC is always set to the start of the
2139 .dynamic section. This call occurs before we have processed the
2140 symbols for any dynamic object, so we don't have to worry about
2141 overriding a dynamic definition. We could set _DYNAMIC in a
2142 linker script, but we only want to define it if we are, in fact,
2143 creating a .dynamic section. We don't want to define it if there
2144 is no .dynamic section, since on some ELF platforms the start up
2145 code examines it to decide how to initialize the process. */
2146 h = NULL;
2147 if (! (_bfd_generic_link_add_one_symbol
2148 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2149 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2150 (struct bfd_link_hash_entry **) &h)))
2151 return false;
2152 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2153 h->type = STT_OBJECT;
2154
2155 if (info->shared
2156 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2157 return false;
2158
2159 bed = get_elf_backend_data (abfd);
2160
2161 s = bfd_make_section (abfd, ".hash");
2162 if (s == NULL
2163 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2164 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2165 return false;
2166 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2167
2168 /* Let the backend create the rest of the sections. This lets the
2169 backend set the right flags. The backend will normally create
2170 the .got and .plt sections. */
2171 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2172 return false;
2173
2174 elf_hash_table (info)->dynamic_sections_created = true;
2175
2176 return true;
2177 }
2178
2179 /* Add an entry to the .dynamic table. */
2180
2181 boolean
2182 elf_add_dynamic_entry (info, tag, val)
2183 struct bfd_link_info *info;
2184 bfd_vma tag;
2185 bfd_vma val;
2186 {
2187 Elf_Internal_Dyn dyn;
2188 bfd *dynobj;
2189 asection *s;
2190 size_t newsize;
2191 bfd_byte *newcontents;
2192
2193 dynobj = elf_hash_table (info)->dynobj;
2194
2195 s = bfd_get_section_by_name (dynobj, ".dynamic");
2196 BFD_ASSERT (s != NULL);
2197
2198 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2199 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2200 if (newcontents == NULL)
2201 return false;
2202
2203 dyn.d_tag = tag;
2204 dyn.d_un.d_val = val;
2205 elf_swap_dyn_out (dynobj, &dyn,
2206 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2207
2208 s->_raw_size = newsize;
2209 s->contents = newcontents;
2210
2211 return true;
2212 }
2213
2214 /* Record a new local dynamic symbol. */
2215
2216 boolean
2217 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2218 struct bfd_link_info *info;
2219 bfd *input_bfd;
2220 long input_indx;
2221 {
2222 struct elf_link_local_dynamic_entry *entry;
2223 struct elf_link_hash_table *eht;
2224 struct bfd_strtab_hash *dynstr;
2225 Elf_External_Sym esym;
2226 unsigned long dynstr_index;
2227 char *name;
2228
2229 /* See if the entry exists already. */
2230 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2231 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2232 return true;
2233
2234 entry = (struct elf_link_local_dynamic_entry *)
2235 bfd_alloc (input_bfd, sizeof (*entry));
2236 if (entry == NULL)
2237 return false;
2238
2239 /* Go find the symbol, so that we can find it's name. */
2240 if (bfd_seek (input_bfd,
2241 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2242 + input_indx * sizeof (Elf_External_Sym)),
2243 SEEK_SET) != 0
2244 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2245 != sizeof (Elf_External_Sym)))
2246 return false;
2247 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2248
2249 name = (bfd_elf_string_from_elf_section
2250 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2251 entry->isym.st_name));
2252
2253 dynstr = elf_hash_table (info)->dynstr;
2254 if (dynstr == NULL)
2255 {
2256 /* Create a strtab to hold the dynamic symbol names. */
2257 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2258 if (dynstr == NULL)
2259 return false;
2260 }
2261
2262 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2263 if (dynstr_index == (unsigned long) -1)
2264 return false;
2265 entry->isym.st_name = dynstr_index;
2266
2267 eht = elf_hash_table (info);
2268
2269 entry->next = eht->dynlocal;
2270 eht->dynlocal = entry;
2271 entry->input_bfd = input_bfd;
2272 entry->input_indx = input_indx;
2273 eht->dynsymcount++;
2274
2275 /* Whatever binding the symbol had before, it's now local. */
2276 entry->isym.st_info
2277 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2278
2279 /* The dynindx will be set at the end of size_dynamic_sections. */
2280
2281 return true;
2282 }
2283 \f
2284
2285 /* Read and swap the relocs from the section indicated by SHDR. This
2286 may be either a REL or a RELA section. The relocations are
2287 translated into RELA relocations and stored in INTERNAL_RELOCS,
2288 which should have already been allocated to contain enough space.
2289 The EXTERNAL_RELOCS are a buffer where the external form of the
2290 relocations should be stored.
2291
2292 Returns false if something goes wrong. */
2293
2294 static boolean
2295 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2296 internal_relocs)
2297 bfd *abfd;
2298 Elf_Internal_Shdr *shdr;
2299 PTR external_relocs;
2300 Elf_Internal_Rela *internal_relocs;
2301 {
2302 struct elf_backend_data *bed;
2303
2304 /* If there aren't any relocations, that's OK. */
2305 if (!shdr)
2306 return true;
2307
2308 /* Position ourselves at the start of the section. */
2309 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2310 return false;
2311
2312 /* Read the relocations. */
2313 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2314 != shdr->sh_size)
2315 return false;
2316
2317 bed = get_elf_backend_data (abfd);
2318
2319 /* Convert the external relocations to the internal format. */
2320 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2321 {
2322 Elf_External_Rel *erel;
2323 Elf_External_Rel *erelend;
2324 Elf_Internal_Rela *irela;
2325 Elf_Internal_Rel *irel;
2326
2327 erel = (Elf_External_Rel *) external_relocs;
2328 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2329 irela = internal_relocs;
2330 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2331 * sizeof (Elf_Internal_Rel)));
2332 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2333 {
2334 unsigned char i;
2335
2336 if (bed->s->swap_reloc_in)
2337 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2338 else
2339 elf_swap_reloc_in (abfd, erel, irel);
2340
2341 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2342 {
2343 irela[i].r_offset = irel[i].r_offset;
2344 irela[i].r_info = irel[i].r_info;
2345 irela[i].r_addend = 0;
2346 }
2347 }
2348 }
2349 else
2350 {
2351 Elf_External_Rela *erela;
2352 Elf_External_Rela *erelaend;
2353 Elf_Internal_Rela *irela;
2354
2355 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2356
2357 erela = (Elf_External_Rela *) external_relocs;
2358 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2359 irela = internal_relocs;
2360 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2361 {
2362 if (bed->s->swap_reloca_in)
2363 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2364 else
2365 elf_swap_reloca_in (abfd, erela, irela);
2366 }
2367 }
2368
2369 return true;
2370 }
2371
2372 /* Read and swap the relocs for a section O. They may have been
2373 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2374 not NULL, they are used as buffers to read into. They are known to
2375 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2376 the return value is allocated using either malloc or bfd_alloc,
2377 according to the KEEP_MEMORY argument. If O has two relocation
2378 sections (both REL and RELA relocations), then the REL_HDR
2379 relocations will appear first in INTERNAL_RELOCS, followed by the
2380 REL_HDR2 relocations. */
2381
2382 Elf_Internal_Rela *
2383 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2384 keep_memory)
2385 bfd *abfd;
2386 asection *o;
2387 PTR external_relocs;
2388 Elf_Internal_Rela *internal_relocs;
2389 boolean keep_memory;
2390 {
2391 Elf_Internal_Shdr *rel_hdr;
2392 PTR alloc1 = NULL;
2393 Elf_Internal_Rela *alloc2 = NULL;
2394 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2395
2396 if (elf_section_data (o)->relocs != NULL)
2397 return elf_section_data (o)->relocs;
2398
2399 if (o->reloc_count == 0)
2400 return NULL;
2401
2402 rel_hdr = &elf_section_data (o)->rel_hdr;
2403
2404 if (internal_relocs == NULL)
2405 {
2406 size_t size;
2407
2408 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2409 * sizeof (Elf_Internal_Rela));
2410 if (keep_memory)
2411 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2412 else
2413 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2414 if (internal_relocs == NULL)
2415 goto error_return;
2416 }
2417
2418 if (external_relocs == NULL)
2419 {
2420 size_t size = (size_t) rel_hdr->sh_size;
2421
2422 if (elf_section_data (o)->rel_hdr2)
2423 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2424 alloc1 = (PTR) bfd_malloc (size);
2425 if (alloc1 == NULL)
2426 goto error_return;
2427 external_relocs = alloc1;
2428 }
2429
2430 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2431 external_relocs,
2432 internal_relocs))
2433 goto error_return;
2434 if (!elf_link_read_relocs_from_section
2435 (abfd,
2436 elf_section_data (o)->rel_hdr2,
2437 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2438 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2439 * bed->s->int_rels_per_ext_rel)))
2440 goto error_return;
2441
2442 /* Cache the results for next time, if we can. */
2443 if (keep_memory)
2444 elf_section_data (o)->relocs = internal_relocs;
2445
2446 if (alloc1 != NULL)
2447 free (alloc1);
2448
2449 /* Don't free alloc2, since if it was allocated we are passing it
2450 back (under the name of internal_relocs). */
2451
2452 return internal_relocs;
2453
2454 error_return:
2455 if (alloc1 != NULL)
2456 free (alloc1);
2457 if (alloc2 != NULL)
2458 free (alloc2);
2459 return NULL;
2460 }
2461 \f
2462
2463 /* Record an assignment to a symbol made by a linker script. We need
2464 this in case some dynamic object refers to this symbol. */
2465
2466 /*ARGSUSED*/
2467 boolean
2468 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2469 bfd *output_bfd ATTRIBUTE_UNUSED;
2470 struct bfd_link_info *info;
2471 const char *name;
2472 boolean provide;
2473 {
2474 struct elf_link_hash_entry *h;
2475
2476 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2477 return true;
2478
2479 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2480 if (h == NULL)
2481 return false;
2482
2483 if (h->root.type == bfd_link_hash_new)
2484 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2485
2486 /* If this symbol is being provided by the linker script, and it is
2487 currently defined by a dynamic object, but not by a regular
2488 object, then mark it as undefined so that the generic linker will
2489 force the correct value. */
2490 if (provide
2491 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2492 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2493 h->root.type = bfd_link_hash_undefined;
2494
2495 /* If this symbol is not being provided by the linker script, and it is
2496 currently defined by a dynamic object, but not by a regular object,
2497 then clear out any version information because the symbol will not be
2498 associated with the dynamic object any more. */
2499 if (!provide
2500 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2501 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2502 h->verinfo.verdef = NULL;
2503
2504 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2505
2506 /* When possible, keep the original type of the symbol */
2507 if (h->type == STT_NOTYPE)
2508 h->type = STT_OBJECT;
2509
2510 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2511 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2512 || info->shared)
2513 && h->dynindx == -1)
2514 {
2515 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2516 return false;
2517
2518 /* If this is a weak defined symbol, and we know a corresponding
2519 real symbol from the same dynamic object, make sure the real
2520 symbol is also made into a dynamic symbol. */
2521 if (h->weakdef != NULL
2522 && h->weakdef->dynindx == -1)
2523 {
2524 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2525 return false;
2526 }
2527 }
2528
2529 return true;
2530 }
2531 \f
2532 /* This structure is used to pass information to
2533 elf_link_assign_sym_version. */
2534
2535 struct elf_assign_sym_version_info
2536 {
2537 /* Output BFD. */
2538 bfd *output_bfd;
2539 /* General link information. */
2540 struct bfd_link_info *info;
2541 /* Version tree. */
2542 struct bfd_elf_version_tree *verdefs;
2543 /* Whether we are exporting all dynamic symbols. */
2544 boolean export_dynamic;
2545 /* Whether we had a failure. */
2546 boolean failed;
2547 };
2548
2549 /* This structure is used to pass information to
2550 elf_link_find_version_dependencies. */
2551
2552 struct elf_find_verdep_info
2553 {
2554 /* Output BFD. */
2555 bfd *output_bfd;
2556 /* General link information. */
2557 struct bfd_link_info *info;
2558 /* The number of dependencies. */
2559 unsigned int vers;
2560 /* Whether we had a failure. */
2561 boolean failed;
2562 };
2563
2564 /* Array used to determine the number of hash table buckets to use
2565 based on the number of symbols there are. If there are fewer than
2566 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2567 fewer than 37 we use 17 buckets, and so forth. We never use more
2568 than 32771 buckets. */
2569
2570 static const size_t elf_buckets[] =
2571 {
2572 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2573 16411, 32771, 0
2574 };
2575
2576 /* Compute bucket count for hashing table. We do not use a static set
2577 of possible tables sizes anymore. Instead we determine for all
2578 possible reasonable sizes of the table the outcome (i.e., the
2579 number of collisions etc) and choose the best solution. The
2580 weighting functions are not too simple to allow the table to grow
2581 without bounds. Instead one of the weighting factors is the size.
2582 Therefore the result is always a good payoff between few collisions
2583 (= short chain lengths) and table size. */
2584 static size_t
2585 compute_bucket_count (info)
2586 struct bfd_link_info *info;
2587 {
2588 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2589 size_t best_size = 0;
2590 unsigned long int *hashcodes;
2591 unsigned long int *hashcodesp;
2592 unsigned long int i;
2593
2594 /* Compute the hash values for all exported symbols. At the same
2595 time store the values in an array so that we could use them for
2596 optimizations. */
2597 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2598 * sizeof (unsigned long int));
2599 if (hashcodes == NULL)
2600 return 0;
2601 hashcodesp = hashcodes;
2602
2603 /* Put all hash values in HASHCODES. */
2604 elf_link_hash_traverse (elf_hash_table (info),
2605 elf_collect_hash_codes, &hashcodesp);
2606
2607 /* We have a problem here. The following code to optimize the table
2608 size requires an integer type with more the 32 bits. If
2609 BFD_HOST_U_64_BIT is set we know about such a type. */
2610 #ifdef BFD_HOST_U_64_BIT
2611 if (info->optimize == true)
2612 {
2613 unsigned long int nsyms = hashcodesp - hashcodes;
2614 size_t minsize;
2615 size_t maxsize;
2616 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2617 unsigned long int *counts ;
2618
2619 /* Possible optimization parameters: if we have NSYMS symbols we say
2620 that the hashing table must at least have NSYMS/4 and at most
2621 2*NSYMS buckets. */
2622 minsize = nsyms / 4;
2623 if (minsize == 0)
2624 minsize = 1;
2625 best_size = maxsize = nsyms * 2;
2626
2627 /* Create array where we count the collisions in. We must use bfd_malloc
2628 since the size could be large. */
2629 counts = (unsigned long int *) bfd_malloc (maxsize
2630 * sizeof (unsigned long int));
2631 if (counts == NULL)
2632 {
2633 free (hashcodes);
2634 return 0;
2635 }
2636
2637 /* Compute the "optimal" size for the hash table. The criteria is a
2638 minimal chain length. The minor criteria is (of course) the size
2639 of the table. */
2640 for (i = minsize; i < maxsize; ++i)
2641 {
2642 /* Walk through the array of hashcodes and count the collisions. */
2643 BFD_HOST_U_64_BIT max;
2644 unsigned long int j;
2645 unsigned long int fact;
2646
2647 memset (counts, '\0', i * sizeof (unsigned long int));
2648
2649 /* Determine how often each hash bucket is used. */
2650 for (j = 0; j < nsyms; ++j)
2651 ++counts[hashcodes[j] % i];
2652
2653 /* For the weight function we need some information about the
2654 pagesize on the target. This is information need not be 100%
2655 accurate. Since this information is not available (so far) we
2656 define it here to a reasonable default value. If it is crucial
2657 to have a better value some day simply define this value. */
2658 # ifndef BFD_TARGET_PAGESIZE
2659 # define BFD_TARGET_PAGESIZE (4096)
2660 # endif
2661
2662 /* We in any case need 2 + NSYMS entries for the size values and
2663 the chains. */
2664 max = (2 + nsyms) * (ARCH_SIZE / 8);
2665
2666 # if 1
2667 /* Variant 1: optimize for short chains. We add the squares
2668 of all the chain lengths (which favous many small chain
2669 over a few long chains). */
2670 for (j = 0; j < i; ++j)
2671 max += counts[j] * counts[j];
2672
2673 /* This adds penalties for the overall size of the table. */
2674 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2675 max *= fact * fact;
2676 # else
2677 /* Variant 2: Optimize a lot more for small table. Here we
2678 also add squares of the size but we also add penalties for
2679 empty slots (the +1 term). */
2680 for (j = 0; j < i; ++j)
2681 max += (1 + counts[j]) * (1 + counts[j]);
2682
2683 /* The overall size of the table is considered, but not as
2684 strong as in variant 1, where it is squared. */
2685 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2686 max *= fact;
2687 # endif
2688
2689 /* Compare with current best results. */
2690 if (max < best_chlen)
2691 {
2692 best_chlen = max;
2693 best_size = i;
2694 }
2695 }
2696
2697 free (counts);
2698 }
2699 else
2700 #endif /* defined (BFD_HOST_U_64_BIT) */
2701 {
2702 /* This is the fallback solution if no 64bit type is available or if we
2703 are not supposed to spend much time on optimizations. We select the
2704 bucket count using a fixed set of numbers. */
2705 for (i = 0; elf_buckets[i] != 0; i++)
2706 {
2707 best_size = elf_buckets[i];
2708 if (dynsymcount < elf_buckets[i + 1])
2709 break;
2710 }
2711 }
2712
2713 /* Free the arrays we needed. */
2714 free (hashcodes);
2715
2716 return best_size;
2717 }
2718
2719 /* Set up the sizes and contents of the ELF dynamic sections. This is
2720 called by the ELF linker emulation before_allocation routine. We
2721 must set the sizes of the sections before the linker sets the
2722 addresses of the various sections. */
2723
2724 boolean
2725 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2726 export_dynamic, filter_shlib,
2727 auxiliary_filters, info, sinterpptr,
2728 verdefs)
2729 bfd *output_bfd;
2730 const char *soname;
2731 const char *rpath;
2732 boolean export_dynamic;
2733 const char *filter_shlib;
2734 const char * const *auxiliary_filters;
2735 struct bfd_link_info *info;
2736 asection **sinterpptr;
2737 struct bfd_elf_version_tree *verdefs;
2738 {
2739 bfd_size_type soname_indx;
2740 bfd *dynobj;
2741 struct elf_backend_data *bed;
2742 struct elf_assign_sym_version_info asvinfo;
2743
2744 *sinterpptr = NULL;
2745
2746 soname_indx = (bfd_size_type) -1;
2747
2748 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2749 return true;
2750
2751 /* The backend may have to create some sections regardless of whether
2752 we're dynamic or not. */
2753 bed = get_elf_backend_data (output_bfd);
2754 if (bed->elf_backend_always_size_sections
2755 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2756 return false;
2757
2758 dynobj = elf_hash_table (info)->dynobj;
2759
2760 /* If there were no dynamic objects in the link, there is nothing to
2761 do here. */
2762 if (dynobj == NULL)
2763 return true;
2764
2765 /* If we are supposed to export all symbols into the dynamic symbol
2766 table (this is not the normal case), then do so. */
2767 if (export_dynamic)
2768 {
2769 struct elf_info_failed eif;
2770
2771 eif.failed = false;
2772 eif.info = info;
2773 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2774 (PTR) &eif);
2775 if (eif.failed)
2776 return false;
2777 }
2778
2779 if (elf_hash_table (info)->dynamic_sections_created)
2780 {
2781 struct elf_info_failed eif;
2782 struct elf_link_hash_entry *h;
2783 bfd_size_type strsize;
2784
2785 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2786 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2787
2788 if (soname != NULL)
2789 {
2790 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2791 soname, true, true);
2792 if (soname_indx == (bfd_size_type) -1
2793 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2794 return false;
2795 }
2796
2797 if (info->symbolic)
2798 {
2799 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2800 return false;
2801 }
2802
2803 if (rpath != NULL)
2804 {
2805 bfd_size_type indx;
2806
2807 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2808 true, true);
2809 if (indx == (bfd_size_type) -1
2810 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2811 return false;
2812 }
2813
2814 if (filter_shlib != NULL)
2815 {
2816 bfd_size_type indx;
2817
2818 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2819 filter_shlib, true, true);
2820 if (indx == (bfd_size_type) -1
2821 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2822 return false;
2823 }
2824
2825 if (auxiliary_filters != NULL)
2826 {
2827 const char * const *p;
2828
2829 for (p = auxiliary_filters; *p != NULL; p++)
2830 {
2831 bfd_size_type indx;
2832
2833 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2834 *p, true, true);
2835 if (indx == (bfd_size_type) -1
2836 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2837 return false;
2838 }
2839 }
2840
2841 /* Attach all the symbols to their version information. */
2842 asvinfo.output_bfd = output_bfd;
2843 asvinfo.info = info;
2844 asvinfo.verdefs = verdefs;
2845 asvinfo.export_dynamic = export_dynamic;
2846 asvinfo.failed = false;
2847
2848 elf_link_hash_traverse (elf_hash_table (info),
2849 elf_link_assign_sym_version,
2850 (PTR) &asvinfo);
2851 if (asvinfo.failed)
2852 return false;
2853
2854 /* Find all symbols which were defined in a dynamic object and make
2855 the backend pick a reasonable value for them. */
2856 eif.failed = false;
2857 eif.info = info;
2858 elf_link_hash_traverse (elf_hash_table (info),
2859 elf_adjust_dynamic_symbol,
2860 (PTR) &eif);
2861 if (eif.failed)
2862 return false;
2863
2864 /* Add some entries to the .dynamic section. We fill in some of the
2865 values later, in elf_bfd_final_link, but we must add the entries
2866 now so that we know the final size of the .dynamic section. */
2867
2868 /* If there are initialization and/or finalization functions to
2869 call then add the corresponding DT_INIT/DT_FINI entries. */
2870 h = (info->init_function
2871 ? elf_link_hash_lookup (elf_hash_table (info),
2872 info->init_function, false,
2873 false, false)
2874 : NULL);
2875 if (h != NULL
2876 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2877 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2878 {
2879 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2880 return false;
2881 }
2882 h = (info->fini_function
2883 ? elf_link_hash_lookup (elf_hash_table (info),
2884 info->fini_function, false,
2885 false, false)
2886 : NULL);
2887 if (h != NULL
2888 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2889 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2890 {
2891 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2892 return false;
2893 }
2894
2895 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2896 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2897 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2898 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2899 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2900 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2901 sizeof (Elf_External_Sym)))
2902 return false;
2903 }
2904
2905 /* The backend must work out the sizes of all the other dynamic
2906 sections. */
2907 if (bed->elf_backend_size_dynamic_sections
2908 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2909 return false;
2910
2911 if (elf_hash_table (info)->dynamic_sections_created)
2912 {
2913 size_t dynsymcount;
2914 asection *s;
2915 size_t bucketcount = 0;
2916 Elf_Internal_Sym isym;
2917 size_t hash_entry_size;
2918
2919 /* Set up the version definition section. */
2920 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2921 BFD_ASSERT (s != NULL);
2922
2923 /* We may have created additional version definitions if we are
2924 just linking a regular application. */
2925 verdefs = asvinfo.verdefs;
2926
2927 if (verdefs == NULL)
2928 _bfd_strip_section_from_output (s);
2929 else
2930 {
2931 unsigned int cdefs;
2932 bfd_size_type size;
2933 struct bfd_elf_version_tree *t;
2934 bfd_byte *p;
2935 Elf_Internal_Verdef def;
2936 Elf_Internal_Verdaux defaux;
2937
2938 cdefs = 0;
2939 size = 0;
2940
2941 /* Make space for the base version. */
2942 size += sizeof (Elf_External_Verdef);
2943 size += sizeof (Elf_External_Verdaux);
2944 ++cdefs;
2945
2946 for (t = verdefs; t != NULL; t = t->next)
2947 {
2948 struct bfd_elf_version_deps *n;
2949
2950 size += sizeof (Elf_External_Verdef);
2951 size += sizeof (Elf_External_Verdaux);
2952 ++cdefs;
2953
2954 for (n = t->deps; n != NULL; n = n->next)
2955 size += sizeof (Elf_External_Verdaux);
2956 }
2957
2958 s->_raw_size = size;
2959 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2960 if (s->contents == NULL && s->_raw_size != 0)
2961 return false;
2962
2963 /* Fill in the version definition section. */
2964
2965 p = s->contents;
2966
2967 def.vd_version = VER_DEF_CURRENT;
2968 def.vd_flags = VER_FLG_BASE;
2969 def.vd_ndx = 1;
2970 def.vd_cnt = 1;
2971 def.vd_aux = sizeof (Elf_External_Verdef);
2972 def.vd_next = (sizeof (Elf_External_Verdef)
2973 + sizeof (Elf_External_Verdaux));
2974
2975 if (soname_indx != (bfd_size_type) -1)
2976 {
2977 def.vd_hash = bfd_elf_hash (soname);
2978 defaux.vda_name = soname_indx;
2979 }
2980 else
2981 {
2982 const char *name;
2983 bfd_size_type indx;
2984
2985 name = output_bfd->filename;
2986 def.vd_hash = bfd_elf_hash (name);
2987 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2988 name, true, false);
2989 if (indx == (bfd_size_type) -1)
2990 return false;
2991 defaux.vda_name = indx;
2992 }
2993 defaux.vda_next = 0;
2994
2995 _bfd_elf_swap_verdef_out (output_bfd, &def,
2996 (Elf_External_Verdef *)p);
2997 p += sizeof (Elf_External_Verdef);
2998 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2999 (Elf_External_Verdaux *) p);
3000 p += sizeof (Elf_External_Verdaux);
3001
3002 for (t = verdefs; t != NULL; t = t->next)
3003 {
3004 unsigned int cdeps;
3005 struct bfd_elf_version_deps *n;
3006 struct elf_link_hash_entry *h;
3007
3008 cdeps = 0;
3009 for (n = t->deps; n != NULL; n = n->next)
3010 ++cdeps;
3011
3012 /* Add a symbol representing this version. */
3013 h = NULL;
3014 if (! (_bfd_generic_link_add_one_symbol
3015 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3016 (bfd_vma) 0, (const char *) NULL, false,
3017 get_elf_backend_data (dynobj)->collect,
3018 (struct bfd_link_hash_entry **) &h)))
3019 return false;
3020 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3021 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3022 h->type = STT_OBJECT;
3023 h->verinfo.vertree = t;
3024
3025 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3026 return false;
3027
3028 def.vd_version = VER_DEF_CURRENT;
3029 def.vd_flags = 0;
3030 if (t->globals == NULL && t->locals == NULL && ! t->used)
3031 def.vd_flags |= VER_FLG_WEAK;
3032 def.vd_ndx = t->vernum + 1;
3033 def.vd_cnt = cdeps + 1;
3034 def.vd_hash = bfd_elf_hash (t->name);
3035 def.vd_aux = sizeof (Elf_External_Verdef);
3036 if (t->next != NULL)
3037 def.vd_next = (sizeof (Elf_External_Verdef)
3038 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3039 else
3040 def.vd_next = 0;
3041
3042 _bfd_elf_swap_verdef_out (output_bfd, &def,
3043 (Elf_External_Verdef *) p);
3044 p += sizeof (Elf_External_Verdef);
3045
3046 defaux.vda_name = h->dynstr_index;
3047 if (t->deps == NULL)
3048 defaux.vda_next = 0;
3049 else
3050 defaux.vda_next = sizeof (Elf_External_Verdaux);
3051 t->name_indx = defaux.vda_name;
3052
3053 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3054 (Elf_External_Verdaux *) p);
3055 p += sizeof (Elf_External_Verdaux);
3056
3057 for (n = t->deps; n != NULL; n = n->next)
3058 {
3059 if (n->version_needed == NULL)
3060 {
3061 /* This can happen if there was an error in the
3062 version script. */
3063 defaux.vda_name = 0;
3064 }
3065 else
3066 defaux.vda_name = n->version_needed->name_indx;
3067 if (n->next == NULL)
3068 defaux.vda_next = 0;
3069 else
3070 defaux.vda_next = sizeof (Elf_External_Verdaux);
3071
3072 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3073 (Elf_External_Verdaux *) p);
3074 p += sizeof (Elf_External_Verdaux);
3075 }
3076 }
3077
3078 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
3079 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
3080 return false;
3081
3082 elf_tdata (output_bfd)->cverdefs = cdefs;
3083 }
3084
3085 /* Work out the size of the version reference section. */
3086
3087 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3088 BFD_ASSERT (s != NULL);
3089 {
3090 struct elf_find_verdep_info sinfo;
3091
3092 sinfo.output_bfd = output_bfd;
3093 sinfo.info = info;
3094 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3095 if (sinfo.vers == 0)
3096 sinfo.vers = 1;
3097 sinfo.failed = false;
3098
3099 elf_link_hash_traverse (elf_hash_table (info),
3100 elf_link_find_version_dependencies,
3101 (PTR) &sinfo);
3102
3103 if (elf_tdata (output_bfd)->verref == NULL)
3104 _bfd_strip_section_from_output (s);
3105 else
3106 {
3107 Elf_Internal_Verneed *t;
3108 unsigned int size;
3109 unsigned int crefs;
3110 bfd_byte *p;
3111
3112 /* Build the version definition section. */
3113 size = 0;
3114 crefs = 0;
3115 for (t = elf_tdata (output_bfd)->verref;
3116 t != NULL;
3117 t = t->vn_nextref)
3118 {
3119 Elf_Internal_Vernaux *a;
3120
3121 size += sizeof (Elf_External_Verneed);
3122 ++crefs;
3123 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3124 size += sizeof (Elf_External_Vernaux);
3125 }
3126
3127 s->_raw_size = size;
3128 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3129 if (s->contents == NULL)
3130 return false;
3131
3132 p = s->contents;
3133 for (t = elf_tdata (output_bfd)->verref;
3134 t != NULL;
3135 t = t->vn_nextref)
3136 {
3137 unsigned int caux;
3138 Elf_Internal_Vernaux *a;
3139 bfd_size_type indx;
3140
3141 caux = 0;
3142 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3143 ++caux;
3144
3145 t->vn_version = VER_NEED_CURRENT;
3146 t->vn_cnt = caux;
3147 if (elf_dt_name (t->vn_bfd) != NULL)
3148 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3149 elf_dt_name (t->vn_bfd),
3150 true, false);
3151 else
3152 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3153 t->vn_bfd->filename, true, false);
3154 if (indx == (bfd_size_type) -1)
3155 return false;
3156 t->vn_file = indx;
3157 t->vn_aux = sizeof (Elf_External_Verneed);
3158 if (t->vn_nextref == NULL)
3159 t->vn_next = 0;
3160 else
3161 t->vn_next = (sizeof (Elf_External_Verneed)
3162 + caux * sizeof (Elf_External_Vernaux));
3163
3164 _bfd_elf_swap_verneed_out (output_bfd, t,
3165 (Elf_External_Verneed *) p);
3166 p += sizeof (Elf_External_Verneed);
3167
3168 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3169 {
3170 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3171 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3172 a->vna_nodename, true, false);
3173 if (indx == (bfd_size_type) -1)
3174 return false;
3175 a->vna_name = indx;
3176 if (a->vna_nextptr == NULL)
3177 a->vna_next = 0;
3178 else
3179 a->vna_next = sizeof (Elf_External_Vernaux);
3180
3181 _bfd_elf_swap_vernaux_out (output_bfd, a,
3182 (Elf_External_Vernaux *) p);
3183 p += sizeof (Elf_External_Vernaux);
3184 }
3185 }
3186
3187 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3188 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3189 return false;
3190
3191 elf_tdata (output_bfd)->cverrefs = crefs;
3192 }
3193 }
3194
3195 /* Assign dynsym indicies. In a shared library we generate a
3196 section symbol for each output section, which come first.
3197 Next come all of the back-end allocated local dynamic syms,
3198 followed by the rest of the global symbols. */
3199
3200 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3201
3202 /* Work out the size of the symbol version section. */
3203 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3204 BFD_ASSERT (s != NULL);
3205 if (dynsymcount == 0
3206 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3207 {
3208 _bfd_strip_section_from_output (s);
3209 /* The DYNSYMCOUNT might have changed if we were going to
3210 output a dynamic symbol table entry for S. */
3211 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3212 }
3213 else
3214 {
3215 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3216 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3217 if (s->contents == NULL)
3218 return false;
3219
3220 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3221 return false;
3222 }
3223
3224 /* Set the size of the .dynsym and .hash sections. We counted
3225 the number of dynamic symbols in elf_link_add_object_symbols.
3226 We will build the contents of .dynsym and .hash when we build
3227 the final symbol table, because until then we do not know the
3228 correct value to give the symbols. We built the .dynstr
3229 section as we went along in elf_link_add_object_symbols. */
3230 s = bfd_get_section_by_name (dynobj, ".dynsym");
3231 BFD_ASSERT (s != NULL);
3232 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3233 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3234 if (s->contents == NULL && s->_raw_size != 0)
3235 return false;
3236
3237 /* The first entry in .dynsym is a dummy symbol. */
3238 isym.st_value = 0;
3239 isym.st_size = 0;
3240 isym.st_name = 0;
3241 isym.st_info = 0;
3242 isym.st_other = 0;
3243 isym.st_shndx = 0;
3244 elf_swap_symbol_out (output_bfd, &isym,
3245 (PTR) (Elf_External_Sym *) s->contents);
3246
3247 /* Compute the size of the hashing table. As a side effect this
3248 computes the hash values for all the names we export. */
3249 bucketcount = compute_bucket_count (info);
3250
3251 s = bfd_get_section_by_name (dynobj, ".hash");
3252 BFD_ASSERT (s != NULL);
3253 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3254 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3255 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3256 if (s->contents == NULL)
3257 return false;
3258 memset (s->contents, 0, (size_t) s->_raw_size);
3259
3260 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3261 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3262 s->contents + hash_entry_size);
3263
3264 elf_hash_table (info)->bucketcount = bucketcount;
3265
3266 s = bfd_get_section_by_name (dynobj, ".dynstr");
3267 BFD_ASSERT (s != NULL);
3268 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3269
3270 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3271 return false;
3272 }
3273
3274 return true;
3275 }
3276 \f
3277 /* Fix up the flags for a symbol. This handles various cases which
3278 can only be fixed after all the input files are seen. This is
3279 currently called by both adjust_dynamic_symbol and
3280 assign_sym_version, which is unnecessary but perhaps more robust in
3281 the face of future changes. */
3282
3283 static boolean
3284 elf_fix_symbol_flags (h, eif)
3285 struct elf_link_hash_entry *h;
3286 struct elf_info_failed *eif;
3287 {
3288 /* If this symbol was mentioned in a non-ELF file, try to set
3289 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3290 permit a non-ELF file to correctly refer to a symbol defined in
3291 an ELF dynamic object. */
3292 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3293 {
3294 if (h->root.type != bfd_link_hash_defined
3295 && h->root.type != bfd_link_hash_defweak)
3296 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3297 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3298 else
3299 {
3300 if (h->root.u.def.section->owner != NULL
3301 && (bfd_get_flavour (h->root.u.def.section->owner)
3302 == bfd_target_elf_flavour))
3303 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3304 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3305 else
3306 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3307 }
3308
3309 if (h->dynindx == -1
3310 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3311 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3312 {
3313 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3314 {
3315 eif->failed = true;
3316 return false;
3317 }
3318 }
3319 }
3320 else
3321 {
3322 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3323 was first seen in a non-ELF file. Fortunately, if the symbol
3324 was first seen in an ELF file, we're probably OK unless the
3325 symbol was defined in a non-ELF file. Catch that case here.
3326 FIXME: We're still in trouble if the symbol was first seen in
3327 a dynamic object, and then later in a non-ELF regular object. */
3328 if ((h->root.type == bfd_link_hash_defined
3329 || h->root.type == bfd_link_hash_defweak)
3330 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3331 && (h->root.u.def.section->owner != NULL
3332 ? (bfd_get_flavour (h->root.u.def.section->owner)
3333 != bfd_target_elf_flavour)
3334 : (bfd_is_abs_section (h->root.u.def.section)
3335 && (h->elf_link_hash_flags
3336 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3337 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3338 }
3339
3340 /* If this is a final link, and the symbol was defined as a common
3341 symbol in a regular object file, and there was no definition in
3342 any dynamic object, then the linker will have allocated space for
3343 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3344 flag will not have been set. */
3345 if (h->root.type == bfd_link_hash_defined
3346 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3347 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3348 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3349 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3350 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3351
3352 /* If -Bsymbolic was used (which means to bind references to global
3353 symbols to the definition within the shared object), and this
3354 symbol was defined in a regular object, then it actually doesn't
3355 need a PLT entry. */
3356 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3357 && eif->info->shared
3358 && eif->info->symbolic
3359 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3360 {
3361 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3362 h->plt.offset = (bfd_vma) -1;
3363 }
3364
3365 /* If this is a weak defined symbol in a dynamic object, and we know
3366 the real definition in the dynamic object, copy interesting flags
3367 over to the real definition. */
3368 if (h->weakdef != NULL)
3369 {
3370 struct elf_link_hash_entry *weakdef;
3371
3372 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3373 || h->root.type == bfd_link_hash_defweak);
3374 weakdef = h->weakdef;
3375 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3376 || weakdef->root.type == bfd_link_hash_defweak);
3377 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3378
3379 /* If the real definition is defined by a regular object file,
3380 don't do anything special. See the longer description in
3381 elf_adjust_dynamic_symbol, below. */
3382 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3383 h->weakdef = NULL;
3384 else
3385 weakdef->elf_link_hash_flags |=
3386 (h->elf_link_hash_flags
3387 & (ELF_LINK_HASH_REF_REGULAR
3388 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3389 | ELF_LINK_NON_GOT_REF));
3390 }
3391
3392 return true;
3393 }
3394
3395 /* Make the backend pick a good value for a dynamic symbol. This is
3396 called via elf_link_hash_traverse, and also calls itself
3397 recursively. */
3398
3399 static boolean
3400 elf_adjust_dynamic_symbol (h, data)
3401 struct elf_link_hash_entry *h;
3402 PTR data;
3403 {
3404 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3405 bfd *dynobj;
3406 struct elf_backend_data *bed;
3407
3408 /* Ignore indirect symbols. These are added by the versioning code. */
3409 if (h->root.type == bfd_link_hash_indirect)
3410 return true;
3411
3412 /* Fix the symbol flags. */
3413 if (! elf_fix_symbol_flags (h, eif))
3414 return false;
3415
3416 /* If this symbol does not require a PLT entry, and it is not
3417 defined by a dynamic object, or is not referenced by a regular
3418 object, ignore it. We do have to handle a weak defined symbol,
3419 even if no regular object refers to it, if we decided to add it
3420 to the dynamic symbol table. FIXME: Do we normally need to worry
3421 about symbols which are defined by one dynamic object and
3422 referenced by another one? */
3423 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3424 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3425 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3426 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3427 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3428 {
3429 h->plt.offset = (bfd_vma) -1;
3430 return true;
3431 }
3432
3433 /* If we've already adjusted this symbol, don't do it again. This
3434 can happen via a recursive call. */
3435 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3436 return true;
3437
3438 /* Don't look at this symbol again. Note that we must set this
3439 after checking the above conditions, because we may look at a
3440 symbol once, decide not to do anything, and then get called
3441 recursively later after REF_REGULAR is set below. */
3442 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3443
3444 /* If this is a weak definition, and we know a real definition, and
3445 the real symbol is not itself defined by a regular object file,
3446 then get a good value for the real definition. We handle the
3447 real symbol first, for the convenience of the backend routine.
3448
3449 Note that there is a confusing case here. If the real definition
3450 is defined by a regular object file, we don't get the real symbol
3451 from the dynamic object, but we do get the weak symbol. If the
3452 processor backend uses a COPY reloc, then if some routine in the
3453 dynamic object changes the real symbol, we will not see that
3454 change in the corresponding weak symbol. This is the way other
3455 ELF linkers work as well, and seems to be a result of the shared
3456 library model.
3457
3458 I will clarify this issue. Most SVR4 shared libraries define the
3459 variable _timezone and define timezone as a weak synonym. The
3460 tzset call changes _timezone. If you write
3461 extern int timezone;
3462 int _timezone = 5;
3463 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3464 you might expect that, since timezone is a synonym for _timezone,
3465 the same number will print both times. However, if the processor
3466 backend uses a COPY reloc, then actually timezone will be copied
3467 into your process image, and, since you define _timezone
3468 yourself, _timezone will not. Thus timezone and _timezone will
3469 wind up at different memory locations. The tzset call will set
3470 _timezone, leaving timezone unchanged. */
3471
3472 if (h->weakdef != NULL)
3473 {
3474 /* If we get to this point, we know there is an implicit
3475 reference by a regular object file via the weak symbol H.
3476 FIXME: Is this really true? What if the traversal finds
3477 H->WEAKDEF before it finds H? */
3478 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3479
3480 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3481 return false;
3482 }
3483
3484 /* If a symbol has no type and no size and does not require a PLT
3485 entry, then we are probably about to do the wrong thing here: we
3486 are probably going to create a COPY reloc for an empty object.
3487 This case can arise when a shared object is built with assembly
3488 code, and the assembly code fails to set the symbol type. */
3489 if (h->size == 0
3490 && h->type == STT_NOTYPE
3491 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3492 (*_bfd_error_handler)
3493 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3494 h->root.root.string);
3495
3496 dynobj = elf_hash_table (eif->info)->dynobj;
3497 bed = get_elf_backend_data (dynobj);
3498 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3499 {
3500 eif->failed = true;
3501 return false;
3502 }
3503
3504 return true;
3505 }
3506 \f
3507 /* This routine is used to export all defined symbols into the dynamic
3508 symbol table. It is called via elf_link_hash_traverse. */
3509
3510 static boolean
3511 elf_export_symbol (h, data)
3512 struct elf_link_hash_entry *h;
3513 PTR data;
3514 {
3515 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3516
3517 /* Ignore indirect symbols. These are added by the versioning code. */
3518 if (h->root.type == bfd_link_hash_indirect)
3519 return true;
3520
3521 if (h->dynindx == -1
3522 && (h->elf_link_hash_flags
3523 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3524 {
3525 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3526 {
3527 eif->failed = true;
3528 return false;
3529 }
3530 }
3531
3532 return true;
3533 }
3534 \f
3535 /* Look through the symbols which are defined in other shared
3536 libraries and referenced here. Update the list of version
3537 dependencies. This will be put into the .gnu.version_r section.
3538 This function is called via elf_link_hash_traverse. */
3539
3540 static boolean
3541 elf_link_find_version_dependencies (h, data)
3542 struct elf_link_hash_entry *h;
3543 PTR data;
3544 {
3545 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3546 Elf_Internal_Verneed *t;
3547 Elf_Internal_Vernaux *a;
3548
3549 /* We only care about symbols defined in shared objects with version
3550 information. */
3551 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3552 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3553 || h->dynindx == -1
3554 || h->verinfo.verdef == NULL)
3555 return true;
3556
3557 /* See if we already know about this version. */
3558 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3559 {
3560 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3561 continue;
3562
3563 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3564 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3565 return true;
3566
3567 break;
3568 }
3569
3570 /* This is a new version. Add it to tree we are building. */
3571
3572 if (t == NULL)
3573 {
3574 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3575 if (t == NULL)
3576 {
3577 rinfo->failed = true;
3578 return false;
3579 }
3580
3581 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3582 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3583 elf_tdata (rinfo->output_bfd)->verref = t;
3584 }
3585
3586 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3587
3588 /* Note that we are copying a string pointer here, and testing it
3589 above. If bfd_elf_string_from_elf_section is ever changed to
3590 discard the string data when low in memory, this will have to be
3591 fixed. */
3592 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3593
3594 a->vna_flags = h->verinfo.verdef->vd_flags;
3595 a->vna_nextptr = t->vn_auxptr;
3596
3597 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3598 ++rinfo->vers;
3599
3600 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3601
3602 t->vn_auxptr = a;
3603
3604 return true;
3605 }
3606
3607 /* Figure out appropriate versions for all the symbols. We may not
3608 have the version number script until we have read all of the input
3609 files, so until that point we don't know which symbols should be
3610 local. This function is called via elf_link_hash_traverse. */
3611
3612 static boolean
3613 elf_link_assign_sym_version (h, data)
3614 struct elf_link_hash_entry *h;
3615 PTR data;
3616 {
3617 struct elf_assign_sym_version_info *sinfo =
3618 (struct elf_assign_sym_version_info *) data;
3619 struct bfd_link_info *info = sinfo->info;
3620 struct elf_info_failed eif;
3621 char *p;
3622
3623 /* Fix the symbol flags. */
3624 eif.failed = false;
3625 eif.info = info;
3626 if (! elf_fix_symbol_flags (h, &eif))
3627 {
3628 if (eif.failed)
3629 sinfo->failed = true;
3630 return false;
3631 }
3632
3633 /* We only need version numbers for symbols defined in regular
3634 objects. */
3635 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3636 return true;
3637
3638 p = strchr (h->root.root.string, ELF_VER_CHR);
3639 if (p != NULL && h->verinfo.vertree == NULL)
3640 {
3641 struct bfd_elf_version_tree *t;
3642 boolean hidden;
3643
3644 hidden = true;
3645
3646 /* There are two consecutive ELF_VER_CHR characters if this is
3647 not a hidden symbol. */
3648 ++p;
3649 if (*p == ELF_VER_CHR)
3650 {
3651 hidden = false;
3652 ++p;
3653 }
3654
3655 /* If there is no version string, we can just return out. */
3656 if (*p == '\0')
3657 {
3658 if (hidden)
3659 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3660 return true;
3661 }
3662
3663 /* Look for the version. If we find it, it is no longer weak. */
3664 for (t = sinfo->verdefs; t != NULL; t = t->next)
3665 {
3666 if (strcmp (t->name, p) == 0)
3667 {
3668 int len;
3669 char *alc;
3670 struct bfd_elf_version_expr *d;
3671
3672 len = p - h->root.root.string;
3673 alc = bfd_alloc (sinfo->output_bfd, len);
3674 if (alc == NULL)
3675 return false;
3676 strncpy (alc, h->root.root.string, len - 1);
3677 alc[len - 1] = '\0';
3678 if (alc[len - 2] == ELF_VER_CHR)
3679 alc[len - 2] = '\0';
3680
3681 h->verinfo.vertree = t;
3682 t->used = true;
3683 d = NULL;
3684
3685 if (t->globals != NULL)
3686 {
3687 for (d = t->globals; d != NULL; d = d->next)
3688 if ((*d->match) (d, alc))
3689 break;
3690 }
3691
3692 /* See if there is anything to force this symbol to
3693 local scope. */
3694 if (d == NULL && t->locals != NULL)
3695 {
3696 for (d = t->locals; d != NULL; d = d->next)
3697 {
3698 if ((*d->match) (d, alc))
3699 {
3700 if (h->dynindx != -1
3701 && info->shared
3702 && ! sinfo->export_dynamic)
3703 {
3704 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3705 h->elf_link_hash_flags &=~
3706 ELF_LINK_HASH_NEEDS_PLT;
3707 h->dynindx = -1;
3708 h->plt.offset = (bfd_vma) -1;
3709 /* FIXME: The name of the symbol has
3710 already been recorded in the dynamic
3711 string table section. */
3712 }
3713
3714 break;
3715 }
3716 }
3717 }
3718
3719 bfd_release (sinfo->output_bfd, alc);
3720 break;
3721 }
3722 }
3723
3724 /* If we are building an application, we need to create a
3725 version node for this version. */
3726 if (t == NULL && ! info->shared)
3727 {
3728 struct bfd_elf_version_tree **pp;
3729 int version_index;
3730
3731 /* If we aren't going to export this symbol, we don't need
3732 to worry about it. */
3733 if (h->dynindx == -1)
3734 return true;
3735
3736 t = ((struct bfd_elf_version_tree *)
3737 bfd_alloc (sinfo->output_bfd, sizeof *t));
3738 if (t == NULL)
3739 {
3740 sinfo->failed = true;
3741 return false;
3742 }
3743
3744 t->next = NULL;
3745 t->name = p;
3746 t->globals = NULL;
3747 t->locals = NULL;
3748 t->deps = NULL;
3749 t->name_indx = (unsigned int) -1;
3750 t->used = true;
3751
3752 version_index = 1;
3753 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3754 ++version_index;
3755 t->vernum = version_index;
3756
3757 *pp = t;
3758
3759 h->verinfo.vertree = t;
3760 }
3761 else if (t == NULL)
3762 {
3763 /* We could not find the version for a symbol when
3764 generating a shared archive. Return an error. */
3765 (*_bfd_error_handler)
3766 (_("%s: undefined versioned symbol name %s"),
3767 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3768 bfd_set_error (bfd_error_bad_value);
3769 sinfo->failed = true;
3770 return false;
3771 }
3772
3773 if (hidden)
3774 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3775 }
3776
3777 /* If we don't have a version for this symbol, see if we can find
3778 something. */
3779 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3780 {
3781 struct bfd_elf_version_tree *t;
3782 struct bfd_elf_version_tree *deflt;
3783 struct bfd_elf_version_expr *d;
3784
3785 /* See if can find what version this symbol is in. If the
3786 symbol is supposed to be local, then don't actually register
3787 it. */
3788 deflt = NULL;
3789 for (t = sinfo->verdefs; t != NULL; t = t->next)
3790 {
3791 if (t->globals != NULL)
3792 {
3793 for (d = t->globals; d != NULL; d = d->next)
3794 {
3795 if ((*d->match) (d, h->root.root.string))
3796 {
3797 h->verinfo.vertree = t;
3798 break;
3799 }
3800 }
3801
3802 if (d != NULL)
3803 break;
3804 }
3805
3806 if (t->locals != NULL)
3807 {
3808 for (d = t->locals; d != NULL; d = d->next)
3809 {
3810 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3811 deflt = t;
3812 else if ((*d->match) (d, h->root.root.string))
3813 {
3814 h->verinfo.vertree = t;
3815 if (h->dynindx != -1
3816 && info->shared
3817 && ! sinfo->export_dynamic)
3818 {
3819 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3820 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3821 h->dynindx = -1;
3822 h->plt.offset = (bfd_vma) -1;
3823 /* FIXME: The name of the symbol has already
3824 been recorded in the dynamic string table
3825 section. */
3826 }
3827 break;
3828 }
3829 }
3830
3831 if (d != NULL)
3832 break;
3833 }
3834 }
3835
3836 if (deflt != NULL && h->verinfo.vertree == NULL)
3837 {
3838 h->verinfo.vertree = deflt;
3839 if (h->dynindx != -1
3840 && info->shared
3841 && ! sinfo->export_dynamic)
3842 {
3843 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3844 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3845 h->dynindx = -1;
3846 h->plt.offset = (bfd_vma) -1;
3847 /* FIXME: The name of the symbol has already been
3848 recorded in the dynamic string table section. */
3849 }
3850 }
3851 }
3852
3853 return true;
3854 }
3855 \f
3856 /* Final phase of ELF linker. */
3857
3858 /* A structure we use to avoid passing large numbers of arguments. */
3859
3860 struct elf_final_link_info
3861 {
3862 /* General link information. */
3863 struct bfd_link_info *info;
3864 /* Output BFD. */
3865 bfd *output_bfd;
3866 /* Symbol string table. */
3867 struct bfd_strtab_hash *symstrtab;
3868 /* .dynsym section. */
3869 asection *dynsym_sec;
3870 /* .hash section. */
3871 asection *hash_sec;
3872 /* symbol version section (.gnu.version). */
3873 asection *symver_sec;
3874 /* Buffer large enough to hold contents of any section. */
3875 bfd_byte *contents;
3876 /* Buffer large enough to hold external relocs of any section. */
3877 PTR external_relocs;
3878 /* Buffer large enough to hold internal relocs of any section. */
3879 Elf_Internal_Rela *internal_relocs;
3880 /* Buffer large enough to hold external local symbols of any input
3881 BFD. */
3882 Elf_External_Sym *external_syms;
3883 /* Buffer large enough to hold internal local symbols of any input
3884 BFD. */
3885 Elf_Internal_Sym *internal_syms;
3886 /* Array large enough to hold a symbol index for each local symbol
3887 of any input BFD. */
3888 long *indices;
3889 /* Array large enough to hold a section pointer for each local
3890 symbol of any input BFD. */
3891 asection **sections;
3892 /* Buffer to hold swapped out symbols. */
3893 Elf_External_Sym *symbuf;
3894 /* Number of swapped out symbols in buffer. */
3895 size_t symbuf_count;
3896 /* Number of symbols which fit in symbuf. */
3897 size_t symbuf_size;
3898 };
3899
3900 static boolean elf_link_output_sym
3901 PARAMS ((struct elf_final_link_info *, const char *,
3902 Elf_Internal_Sym *, asection *));
3903 static boolean elf_link_flush_output_syms
3904 PARAMS ((struct elf_final_link_info *));
3905 static boolean elf_link_output_extsym
3906 PARAMS ((struct elf_link_hash_entry *, PTR));
3907 static boolean elf_link_input_bfd
3908 PARAMS ((struct elf_final_link_info *, bfd *));
3909 static boolean elf_reloc_link_order
3910 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3911 struct bfd_link_order *));
3912
3913 /* This struct is used to pass information to elf_link_output_extsym. */
3914
3915 struct elf_outext_info
3916 {
3917 boolean failed;
3918 boolean localsyms;
3919 struct elf_final_link_info *finfo;
3920 };
3921
3922 /* Compute the size of, and allocate space for, REL_HDR which is the
3923 section header for a section containing relocations for O. */
3924
3925 static boolean
3926 elf_link_size_reloc_section (abfd, rel_hdr, o)
3927 bfd *abfd;
3928 Elf_Internal_Shdr *rel_hdr;
3929 asection *o;
3930 {
3931 register struct elf_link_hash_entry **p, **pend;
3932 unsigned reloc_count;
3933
3934 /* Figure out how many relocations there will be. */
3935 if (rel_hdr == &elf_section_data (o)->rel_hdr)
3936 reloc_count = elf_section_data (o)->rel_count;
3937 else
3938 reloc_count = elf_section_data (o)->rel_count2;
3939
3940 /* That allows us to calculate the size of the section. */
3941 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
3942
3943 /* The contents field must last into write_object_contents, so we
3944 allocate it with bfd_alloc rather than malloc. */
3945 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3946 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3947 return false;
3948
3949 /* We only allocate one set of hash entries, so we only do it the
3950 first time we are called. */
3951 if (elf_section_data (o)->rel_hashes == NULL)
3952 {
3953 p = ((struct elf_link_hash_entry **)
3954 bfd_malloc (o->reloc_count
3955 * sizeof (struct elf_link_hash_entry *)));
3956 if (p == NULL && o->reloc_count != 0)
3957 return false;
3958
3959 elf_section_data (o)->rel_hashes = p;
3960 pend = p + o->reloc_count;
3961 for (; p < pend; p++)
3962 *p = NULL;
3963 }
3964
3965 return true;
3966 }
3967
3968 /* When performing a relocateable link, the input relocations are
3969 preserved. But, if they reference global symbols, the indices
3970 referenced must be updated. Update all the relocations in
3971 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
3972
3973 static void
3974 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
3975 bfd *abfd;
3976 Elf_Internal_Shdr *rel_hdr;
3977 unsigned int count;
3978 struct elf_link_hash_entry **rel_hash;
3979 {
3980 unsigned int i;
3981
3982 for (i = 0; i < count; i++, rel_hash++)
3983 {
3984 if (*rel_hash == NULL)
3985 continue;
3986
3987 BFD_ASSERT ((*rel_hash)->indx >= 0);
3988
3989 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
3990 {
3991 Elf_External_Rel *erel;
3992 Elf_Internal_Rel irel;
3993
3994 erel = (Elf_External_Rel *) rel_hdr->contents + i;
3995 elf_swap_reloc_in (abfd, erel, &irel);
3996 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
3997 ELF_R_TYPE (irel.r_info));
3998 elf_swap_reloc_out (abfd, &irel, erel);
3999 }
4000 else
4001 {
4002 Elf_External_Rela *erela;
4003 Elf_Internal_Rela irela;
4004
4005 BFD_ASSERT (rel_hdr->sh_entsize
4006 == sizeof (Elf_External_Rela));
4007
4008 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4009 elf_swap_reloca_in (abfd, erela, &irela);
4010 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4011 ELF_R_TYPE (irela.r_info));
4012 elf_swap_reloca_out (abfd, &irela, erela);
4013 }
4014 }
4015 }
4016
4017 /* Do the final step of an ELF link. */
4018
4019 boolean
4020 elf_bfd_final_link (abfd, info)
4021 bfd *abfd;
4022 struct bfd_link_info *info;
4023 {
4024 boolean dynamic;
4025 bfd *dynobj;
4026 struct elf_final_link_info finfo;
4027 register asection *o;
4028 register struct bfd_link_order *p;
4029 register bfd *sub;
4030 size_t max_contents_size;
4031 size_t max_external_reloc_size;
4032 size_t max_internal_reloc_count;
4033 size_t max_sym_count;
4034 file_ptr off;
4035 Elf_Internal_Sym elfsym;
4036 unsigned int i;
4037 Elf_Internal_Shdr *symtab_hdr;
4038 Elf_Internal_Shdr *symstrtab_hdr;
4039 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4040 struct elf_outext_info eoinfo;
4041
4042 if (info->shared)
4043 abfd->flags |= DYNAMIC;
4044
4045 dynamic = elf_hash_table (info)->dynamic_sections_created;
4046 dynobj = elf_hash_table (info)->dynobj;
4047
4048 finfo.info = info;
4049 finfo.output_bfd = abfd;
4050 finfo.symstrtab = elf_stringtab_init ();
4051 if (finfo.symstrtab == NULL)
4052 return false;
4053
4054 if (! dynamic)
4055 {
4056 finfo.dynsym_sec = NULL;
4057 finfo.hash_sec = NULL;
4058 finfo.symver_sec = NULL;
4059 }
4060 else
4061 {
4062 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4063 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4064 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4065 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4066 /* Note that it is OK if symver_sec is NULL. */
4067 }
4068
4069 finfo.contents = NULL;
4070 finfo.external_relocs = NULL;
4071 finfo.internal_relocs = NULL;
4072 finfo.external_syms = NULL;
4073 finfo.internal_syms = NULL;
4074 finfo.indices = NULL;
4075 finfo.sections = NULL;
4076 finfo.symbuf = NULL;
4077 finfo.symbuf_count = 0;
4078
4079 /* Count up the number of relocations we will output for each output
4080 section, so that we know the sizes of the reloc sections. We
4081 also figure out some maximum sizes. */
4082 max_contents_size = 0;
4083 max_external_reloc_size = 0;
4084 max_internal_reloc_count = 0;
4085 max_sym_count = 0;
4086 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4087 {
4088 o->reloc_count = 0;
4089
4090 for (p = o->link_order_head; p != NULL; p = p->next)
4091 {
4092 if (p->type == bfd_section_reloc_link_order
4093 || p->type == bfd_symbol_reloc_link_order)
4094 ++o->reloc_count;
4095 else if (p->type == bfd_indirect_link_order)
4096 {
4097 asection *sec;
4098
4099 sec = p->u.indirect.section;
4100
4101 /* Mark all sections which are to be included in the
4102 link. This will normally be every section. We need
4103 to do this so that we can identify any sections which
4104 the linker has decided to not include. */
4105 sec->linker_mark = true;
4106
4107 if (info->relocateable)
4108 o->reloc_count += sec->reloc_count;
4109
4110 if (sec->_raw_size > max_contents_size)
4111 max_contents_size = sec->_raw_size;
4112 if (sec->_cooked_size > max_contents_size)
4113 max_contents_size = sec->_cooked_size;
4114
4115 /* We are interested in just local symbols, not all
4116 symbols. */
4117 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4118 && (sec->owner->flags & DYNAMIC) == 0)
4119 {
4120 size_t sym_count;
4121
4122 if (elf_bad_symtab (sec->owner))
4123 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4124 / sizeof (Elf_External_Sym));
4125 else
4126 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4127
4128 if (sym_count > max_sym_count)
4129 max_sym_count = sym_count;
4130
4131 if ((sec->flags & SEC_RELOC) != 0)
4132 {
4133 size_t ext_size;
4134
4135 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4136 if (ext_size > max_external_reloc_size)
4137 max_external_reloc_size = ext_size;
4138 if (sec->reloc_count > max_internal_reloc_count)
4139 max_internal_reloc_count = sec->reloc_count;
4140 }
4141 }
4142 }
4143 }
4144
4145 if (o->reloc_count > 0)
4146 o->flags |= SEC_RELOC;
4147 else
4148 {
4149 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4150 set it (this is probably a bug) and if it is set
4151 assign_section_numbers will create a reloc section. */
4152 o->flags &=~ SEC_RELOC;
4153 }
4154
4155 /* If the SEC_ALLOC flag is not set, force the section VMA to
4156 zero. This is done in elf_fake_sections as well, but forcing
4157 the VMA to 0 here will ensure that relocs against these
4158 sections are handled correctly. */
4159 if ((o->flags & SEC_ALLOC) == 0
4160 && ! o->user_set_vma)
4161 o->vma = 0;
4162 }
4163
4164 /* Figure out the file positions for everything but the symbol table
4165 and the relocs. We set symcount to force assign_section_numbers
4166 to create a symbol table. */
4167 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4168 BFD_ASSERT (! abfd->output_has_begun);
4169 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4170 goto error_return;
4171
4172 /* Figure out how many relocations we will have in each section.
4173 Just using RELOC_COUNT isn't good enough since that doesn't
4174 maintain a separate value for REL vs. RELA relocations. */
4175 if (info->relocateable)
4176 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4177 for (o = sub->sections; o != NULL; o = o->next)
4178 {
4179 asection *output_section;
4180
4181 if (! o->linker_mark)
4182 {
4183 /* This section was omitted from the link. */
4184 continue;
4185 }
4186
4187 output_section = o->output_section;
4188
4189 if (output_section != NULL
4190 && (o->flags & SEC_RELOC) != 0)
4191 {
4192 struct bfd_elf_section_data *esdi
4193 = elf_section_data (o);
4194 struct bfd_elf_section_data *esdo
4195 = elf_section_data (output_section);
4196 unsigned int *rel_count;
4197 unsigned int *rel_count2;
4198
4199 /* We must be careful to add the relocation froms the
4200 input section to the right output count. */
4201 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4202 {
4203 rel_count = &esdo->rel_count;
4204 rel_count2 = &esdo->rel_count2;
4205 }
4206 else
4207 {
4208 rel_count = &esdo->rel_count2;
4209 rel_count2 = &esdo->rel_count;
4210 }
4211
4212 *rel_count += (esdi->rel_hdr.sh_size
4213 / esdi->rel_hdr.sh_entsize);
4214 if (esdi->rel_hdr2)
4215 *rel_count2 += (esdi->rel_hdr2->sh_size
4216 / esdi->rel_hdr2->sh_entsize);
4217 }
4218 }
4219
4220 /* That created the reloc sections. Set their sizes, and assign
4221 them file positions, and allocate some buffers. */
4222 for (o = abfd->sections; o != NULL; o = o->next)
4223 {
4224 if ((o->flags & SEC_RELOC) != 0)
4225 {
4226 if (!elf_link_size_reloc_section (abfd,
4227 &elf_section_data (o)->rel_hdr,
4228 o))
4229 goto error_return;
4230
4231 if (elf_section_data (o)->rel_hdr2
4232 && !elf_link_size_reloc_section (abfd,
4233 elf_section_data (o)->rel_hdr2,
4234 o))
4235 goto error_return;
4236 }
4237
4238 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4239 to count upwards while actually outputting the relocations. */
4240 elf_section_data (o)->rel_count = 0;
4241 elf_section_data (o)->rel_count2 = 0;
4242 }
4243
4244 _bfd_elf_assign_file_positions_for_relocs (abfd);
4245
4246 /* We have now assigned file positions for all the sections except
4247 .symtab and .strtab. We start the .symtab section at the current
4248 file position, and write directly to it. We build the .strtab
4249 section in memory. */
4250 bfd_get_symcount (abfd) = 0;
4251 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4252 /* sh_name is set in prep_headers. */
4253 symtab_hdr->sh_type = SHT_SYMTAB;
4254 symtab_hdr->sh_flags = 0;
4255 symtab_hdr->sh_addr = 0;
4256 symtab_hdr->sh_size = 0;
4257 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4258 /* sh_link is set in assign_section_numbers. */
4259 /* sh_info is set below. */
4260 /* sh_offset is set just below. */
4261 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
4262
4263 off = elf_tdata (abfd)->next_file_pos;
4264 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4265
4266 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4267 incorrect. We do not yet know the size of the .symtab section.
4268 We correct next_file_pos below, after we do know the size. */
4269
4270 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4271 continuously seeking to the right position in the file. */
4272 if (! info->keep_memory || max_sym_count < 20)
4273 finfo.symbuf_size = 20;
4274 else
4275 finfo.symbuf_size = max_sym_count;
4276 finfo.symbuf = ((Elf_External_Sym *)
4277 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4278 if (finfo.symbuf == NULL)
4279 goto error_return;
4280
4281 /* Start writing out the symbol table. The first symbol is always a
4282 dummy symbol. */
4283 if (info->strip != strip_all || info->relocateable)
4284 {
4285 elfsym.st_value = 0;
4286 elfsym.st_size = 0;
4287 elfsym.st_info = 0;
4288 elfsym.st_other = 0;
4289 elfsym.st_shndx = SHN_UNDEF;
4290 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4291 &elfsym, bfd_und_section_ptr))
4292 goto error_return;
4293 }
4294
4295 #if 0
4296 /* Some standard ELF linkers do this, but we don't because it causes
4297 bootstrap comparison failures. */
4298 /* Output a file symbol for the output file as the second symbol.
4299 We output this even if we are discarding local symbols, although
4300 I'm not sure if this is correct. */
4301 elfsym.st_value = 0;
4302 elfsym.st_size = 0;
4303 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4304 elfsym.st_other = 0;
4305 elfsym.st_shndx = SHN_ABS;
4306 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4307 &elfsym, bfd_abs_section_ptr))
4308 goto error_return;
4309 #endif
4310
4311 /* Output a symbol for each section. We output these even if we are
4312 discarding local symbols, since they are used for relocs. These
4313 symbols have no names. We store the index of each one in the
4314 index field of the section, so that we can find it again when
4315 outputting relocs. */
4316 if (info->strip != strip_all || info->relocateable)
4317 {
4318 elfsym.st_size = 0;
4319 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4320 elfsym.st_other = 0;
4321 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4322 {
4323 o = section_from_elf_index (abfd, i);
4324 if (o != NULL)
4325 o->target_index = bfd_get_symcount (abfd);
4326 elfsym.st_shndx = i;
4327 if (info->relocateable || o == NULL)
4328 elfsym.st_value = 0;
4329 else
4330 elfsym.st_value = o->vma;
4331 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4332 &elfsym, o))
4333 goto error_return;
4334 }
4335 }
4336
4337 /* Allocate some memory to hold information read in from the input
4338 files. */
4339 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4340 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4341 finfo.internal_relocs = ((Elf_Internal_Rela *)
4342 bfd_malloc (max_internal_reloc_count
4343 * sizeof (Elf_Internal_Rela)
4344 * bed->s->int_rels_per_ext_rel));
4345 finfo.external_syms = ((Elf_External_Sym *)
4346 bfd_malloc (max_sym_count
4347 * sizeof (Elf_External_Sym)));
4348 finfo.internal_syms = ((Elf_Internal_Sym *)
4349 bfd_malloc (max_sym_count
4350 * sizeof (Elf_Internal_Sym)));
4351 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4352 finfo.sections = ((asection **)
4353 bfd_malloc (max_sym_count * sizeof (asection *)));
4354 if ((finfo.contents == NULL && max_contents_size != 0)
4355 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4356 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4357 || (finfo.external_syms == NULL && max_sym_count != 0)
4358 || (finfo.internal_syms == NULL && max_sym_count != 0)
4359 || (finfo.indices == NULL && max_sym_count != 0)
4360 || (finfo.sections == NULL && max_sym_count != 0))
4361 goto error_return;
4362
4363 /* Since ELF permits relocations to be against local symbols, we
4364 must have the local symbols available when we do the relocations.
4365 Since we would rather only read the local symbols once, and we
4366 would rather not keep them in memory, we handle all the
4367 relocations for a single input file at the same time.
4368
4369 Unfortunately, there is no way to know the total number of local
4370 symbols until we have seen all of them, and the local symbol
4371 indices precede the global symbol indices. This means that when
4372 we are generating relocateable output, and we see a reloc against
4373 a global symbol, we can not know the symbol index until we have
4374 finished examining all the local symbols to see which ones we are
4375 going to output. To deal with this, we keep the relocations in
4376 memory, and don't output them until the end of the link. This is
4377 an unfortunate waste of memory, but I don't see a good way around
4378 it. Fortunately, it only happens when performing a relocateable
4379 link, which is not the common case. FIXME: If keep_memory is set
4380 we could write the relocs out and then read them again; I don't
4381 know how bad the memory loss will be. */
4382
4383 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4384 sub->output_has_begun = false;
4385 for (o = abfd->sections; o != NULL; o = o->next)
4386 {
4387 for (p = o->link_order_head; p != NULL; p = p->next)
4388 {
4389 if (p->type == bfd_indirect_link_order
4390 && (bfd_get_flavour (p->u.indirect.section->owner)
4391 == bfd_target_elf_flavour))
4392 {
4393 sub = p->u.indirect.section->owner;
4394 if (! sub->output_has_begun)
4395 {
4396 if (! elf_link_input_bfd (&finfo, sub))
4397 goto error_return;
4398 sub->output_has_begun = true;
4399 }
4400 }
4401 else if (p->type == bfd_section_reloc_link_order
4402 || p->type == bfd_symbol_reloc_link_order)
4403 {
4404 if (! elf_reloc_link_order (abfd, info, o, p))
4405 goto error_return;
4406 }
4407 else
4408 {
4409 if (! _bfd_default_link_order (abfd, info, o, p))
4410 goto error_return;
4411 }
4412 }
4413 }
4414
4415 /* That wrote out all the local symbols. Finish up the symbol table
4416 with the global symbols. */
4417
4418 if (info->strip != strip_all && info->shared)
4419 {
4420 /* Output any global symbols that got converted to local in a
4421 version script. We do this in a separate step since ELF
4422 requires all local symbols to appear prior to any global
4423 symbols. FIXME: We should only do this if some global
4424 symbols were, in fact, converted to become local. FIXME:
4425 Will this work correctly with the Irix 5 linker? */
4426 eoinfo.failed = false;
4427 eoinfo.finfo = &finfo;
4428 eoinfo.localsyms = true;
4429 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4430 (PTR) &eoinfo);
4431 if (eoinfo.failed)
4432 return false;
4433 }
4434
4435 /* The sh_info field records the index of the first non local symbol. */
4436 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4437
4438 if (dynamic)
4439 {
4440 Elf_Internal_Sym sym;
4441 Elf_External_Sym *dynsym =
4442 (Elf_External_Sym *)finfo.dynsym_sec->contents;
4443 long last_local = 0;
4444
4445 /* Write out the section symbols for the output sections. */
4446 if (info->shared)
4447 {
4448 asection *s;
4449
4450 sym.st_size = 0;
4451 sym.st_name = 0;
4452 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4453 sym.st_other = 0;
4454
4455 for (s = abfd->sections; s != NULL; s = s->next)
4456 {
4457 int indx;
4458 indx = elf_section_data (s)->this_idx;
4459 BFD_ASSERT (indx > 0);
4460 sym.st_shndx = indx;
4461 sym.st_value = s->vma;
4462
4463 elf_swap_symbol_out (abfd, &sym,
4464 dynsym + elf_section_data (s)->dynindx);
4465 }
4466
4467 last_local = bfd_count_sections (abfd);
4468 }
4469
4470 /* Write out the local dynsyms. */
4471 if (elf_hash_table (info)->dynlocal)
4472 {
4473 struct elf_link_local_dynamic_entry *e;
4474 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4475 {
4476 asection *s;
4477
4478 sym.st_size = e->isym.st_size;
4479 sym.st_other = e->isym.st_other;
4480
4481 /* Copy the internal symbol as is.
4482 Note that we saved a word of storage and overwrote
4483 the original st_name with the dynstr_index. */
4484 sym = e->isym;
4485
4486 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
4487 {
4488 s = bfd_section_from_elf_index (e->input_bfd,
4489 e->isym.st_shndx);
4490
4491 sym.st_shndx =
4492 elf_section_data (s->output_section)->this_idx;
4493 sym.st_value = (s->output_section->vma
4494 + s->output_offset
4495 + e->isym.st_value);
4496 }
4497
4498 if (last_local < e->dynindx)
4499 last_local = e->dynindx;
4500
4501 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4502 }
4503 }
4504
4505 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
4506 last_local + 1;
4507 }
4508
4509 /* We get the global symbols from the hash table. */
4510 eoinfo.failed = false;
4511 eoinfo.localsyms = false;
4512 eoinfo.finfo = &finfo;
4513 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4514 (PTR) &eoinfo);
4515 if (eoinfo.failed)
4516 return false;
4517
4518 /* If backend needs to output some symbols not present in the hash
4519 table, do it now. */
4520 if (bed->elf_backend_output_arch_syms)
4521 {
4522 if (! (*bed->elf_backend_output_arch_syms)
4523 (abfd, info, (PTR) &finfo,
4524 (boolean (*) PARAMS ((PTR, const char *,
4525 Elf_Internal_Sym *, asection *)))
4526 elf_link_output_sym))
4527 return false;
4528 }
4529
4530 /* Flush all symbols to the file. */
4531 if (! elf_link_flush_output_syms (&finfo))
4532 return false;
4533
4534 /* Now we know the size of the symtab section. */
4535 off += symtab_hdr->sh_size;
4536
4537 /* Finish up and write out the symbol string table (.strtab)
4538 section. */
4539 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4540 /* sh_name was set in prep_headers. */
4541 symstrtab_hdr->sh_type = SHT_STRTAB;
4542 symstrtab_hdr->sh_flags = 0;
4543 symstrtab_hdr->sh_addr = 0;
4544 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4545 symstrtab_hdr->sh_entsize = 0;
4546 symstrtab_hdr->sh_link = 0;
4547 symstrtab_hdr->sh_info = 0;
4548 /* sh_offset is set just below. */
4549 symstrtab_hdr->sh_addralign = 1;
4550
4551 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4552 elf_tdata (abfd)->next_file_pos = off;
4553
4554 if (bfd_get_symcount (abfd) > 0)
4555 {
4556 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4557 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4558 return false;
4559 }
4560
4561 /* Adjust the relocs to have the correct symbol indices. */
4562 for (o = abfd->sections; o != NULL; o = o->next)
4563 {
4564 if ((o->flags & SEC_RELOC) == 0)
4565 continue;
4566
4567 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4568 elf_section_data (o)->rel_count,
4569 elf_section_data (o)->rel_hashes);
4570 if (elf_section_data (o)->rel_hdr2 != NULL)
4571 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4572 elf_section_data (o)->rel_count2,
4573 (elf_section_data (o)->rel_hashes
4574 + elf_section_data (o)->rel_count));
4575
4576 /* Set the reloc_count field to 0 to prevent write_relocs from
4577 trying to swap the relocs out itself. */
4578 o->reloc_count = 0;
4579 }
4580
4581 /* If we are linking against a dynamic object, or generating a
4582 shared library, finish up the dynamic linking information. */
4583 if (dynamic)
4584 {
4585 Elf_External_Dyn *dyncon, *dynconend;
4586
4587 /* Fix up .dynamic entries. */
4588 o = bfd_get_section_by_name (dynobj, ".dynamic");
4589 BFD_ASSERT (o != NULL);
4590
4591 dyncon = (Elf_External_Dyn *) o->contents;
4592 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4593 for (; dyncon < dynconend; dyncon++)
4594 {
4595 Elf_Internal_Dyn dyn;
4596 const char *name;
4597 unsigned int type;
4598
4599 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4600
4601 switch (dyn.d_tag)
4602 {
4603 default:
4604 break;
4605 case DT_INIT:
4606 name = info->init_function;
4607 goto get_sym;
4608 case DT_FINI:
4609 name = info->fini_function;
4610 get_sym:
4611 {
4612 struct elf_link_hash_entry *h;
4613
4614 h = elf_link_hash_lookup (elf_hash_table (info), name,
4615 false, false, true);
4616 if (h != NULL
4617 && (h->root.type == bfd_link_hash_defined
4618 || h->root.type == bfd_link_hash_defweak))
4619 {
4620 dyn.d_un.d_val = h->root.u.def.value;
4621 o = h->root.u.def.section;
4622 if (o->output_section != NULL)
4623 dyn.d_un.d_val += (o->output_section->vma
4624 + o->output_offset);
4625 else
4626 {
4627 /* The symbol is imported from another shared
4628 library and does not apply to this one. */
4629 dyn.d_un.d_val = 0;
4630 }
4631
4632 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4633 }
4634 }
4635 break;
4636
4637 case DT_HASH:
4638 name = ".hash";
4639 goto get_vma;
4640 case DT_STRTAB:
4641 name = ".dynstr";
4642 goto get_vma;
4643 case DT_SYMTAB:
4644 name = ".dynsym";
4645 goto get_vma;
4646 case DT_VERDEF:
4647 name = ".gnu.version_d";
4648 goto get_vma;
4649 case DT_VERNEED:
4650 name = ".gnu.version_r";
4651 goto get_vma;
4652 case DT_VERSYM:
4653 name = ".gnu.version";
4654 get_vma:
4655 o = bfd_get_section_by_name (abfd, name);
4656 BFD_ASSERT (o != NULL);
4657 dyn.d_un.d_ptr = o->vma;
4658 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4659 break;
4660
4661 case DT_REL:
4662 case DT_RELA:
4663 case DT_RELSZ:
4664 case DT_RELASZ:
4665 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4666 type = SHT_REL;
4667 else
4668 type = SHT_RELA;
4669 dyn.d_un.d_val = 0;
4670 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4671 {
4672 Elf_Internal_Shdr *hdr;
4673
4674 hdr = elf_elfsections (abfd)[i];
4675 if (hdr->sh_type == type
4676 && (hdr->sh_flags & SHF_ALLOC) != 0)
4677 {
4678 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4679 dyn.d_un.d_val += hdr->sh_size;
4680 else
4681 {
4682 if (dyn.d_un.d_val == 0
4683 || hdr->sh_addr < dyn.d_un.d_val)
4684 dyn.d_un.d_val = hdr->sh_addr;
4685 }
4686 }
4687 }
4688 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4689 break;
4690 }
4691 }
4692 }
4693
4694 /* If we have created any dynamic sections, then output them. */
4695 if (dynobj != NULL)
4696 {
4697 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4698 goto error_return;
4699
4700 for (o = dynobj->sections; o != NULL; o = o->next)
4701 {
4702 if ((o->flags & SEC_HAS_CONTENTS) == 0
4703 || o->_raw_size == 0)
4704 continue;
4705 if ((o->flags & SEC_LINKER_CREATED) == 0)
4706 {
4707 /* At this point, we are only interested in sections
4708 created by elf_link_create_dynamic_sections. */
4709 continue;
4710 }
4711 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4712 != SHT_STRTAB)
4713 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4714 {
4715 if (! bfd_set_section_contents (abfd, o->output_section,
4716 o->contents, o->output_offset,
4717 o->_raw_size))
4718 goto error_return;
4719 }
4720 else
4721 {
4722 file_ptr off;
4723
4724 /* The contents of the .dynstr section are actually in a
4725 stringtab. */
4726 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4727 if (bfd_seek (abfd, off, SEEK_SET) != 0
4728 || ! _bfd_stringtab_emit (abfd,
4729 elf_hash_table (info)->dynstr))
4730 goto error_return;
4731 }
4732 }
4733 }
4734
4735 /* If we have optimized stabs strings, output them. */
4736 if (elf_hash_table (info)->stab_info != NULL)
4737 {
4738 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4739 goto error_return;
4740 }
4741
4742 if (finfo.symstrtab != NULL)
4743 _bfd_stringtab_free (finfo.symstrtab);
4744 if (finfo.contents != NULL)
4745 free (finfo.contents);
4746 if (finfo.external_relocs != NULL)
4747 free (finfo.external_relocs);
4748 if (finfo.internal_relocs != NULL)
4749 free (finfo.internal_relocs);
4750 if (finfo.external_syms != NULL)
4751 free (finfo.external_syms);
4752 if (finfo.internal_syms != NULL)
4753 free (finfo.internal_syms);
4754 if (finfo.indices != NULL)
4755 free (finfo.indices);
4756 if (finfo.sections != NULL)
4757 free (finfo.sections);
4758 if (finfo.symbuf != NULL)
4759 free (finfo.symbuf);
4760 for (o = abfd->sections; o != NULL; o = o->next)
4761 {
4762 if ((o->flags & SEC_RELOC) != 0
4763 && elf_section_data (o)->rel_hashes != NULL)
4764 free (elf_section_data (o)->rel_hashes);
4765 }
4766
4767 elf_tdata (abfd)->linker = true;
4768
4769 return true;
4770
4771 error_return:
4772 if (finfo.symstrtab != NULL)
4773 _bfd_stringtab_free (finfo.symstrtab);
4774 if (finfo.contents != NULL)
4775 free (finfo.contents);
4776 if (finfo.external_relocs != NULL)
4777 free (finfo.external_relocs);
4778 if (finfo.internal_relocs != NULL)
4779 free (finfo.internal_relocs);
4780 if (finfo.external_syms != NULL)
4781 free (finfo.external_syms);
4782 if (finfo.internal_syms != NULL)
4783 free (finfo.internal_syms);
4784 if (finfo.indices != NULL)
4785 free (finfo.indices);
4786 if (finfo.sections != NULL)
4787 free (finfo.sections);
4788 if (finfo.symbuf != NULL)
4789 free (finfo.symbuf);
4790 for (o = abfd->sections; o != NULL; o = o->next)
4791 {
4792 if ((o->flags & SEC_RELOC) != 0
4793 && elf_section_data (o)->rel_hashes != NULL)
4794 free (elf_section_data (o)->rel_hashes);
4795 }
4796
4797 return false;
4798 }
4799
4800 /* Add a symbol to the output symbol table. */
4801
4802 static boolean
4803 elf_link_output_sym (finfo, name, elfsym, input_sec)
4804 struct elf_final_link_info *finfo;
4805 const char *name;
4806 Elf_Internal_Sym *elfsym;
4807 asection *input_sec;
4808 {
4809 boolean (*output_symbol_hook) PARAMS ((bfd *,
4810 struct bfd_link_info *info,
4811 const char *,
4812 Elf_Internal_Sym *,
4813 asection *));
4814
4815 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4816 elf_backend_link_output_symbol_hook;
4817 if (output_symbol_hook != NULL)
4818 {
4819 if (! ((*output_symbol_hook)
4820 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4821 return false;
4822 }
4823
4824 if (name == (const char *) NULL || *name == '\0')
4825 elfsym->st_name = 0;
4826 else if (input_sec->flags & SEC_EXCLUDE)
4827 elfsym->st_name = 0;
4828 else
4829 {
4830 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4831 name, true,
4832 false);
4833 if (elfsym->st_name == (unsigned long) -1)
4834 return false;
4835 }
4836
4837 if (finfo->symbuf_count >= finfo->symbuf_size)
4838 {
4839 if (! elf_link_flush_output_syms (finfo))
4840 return false;
4841 }
4842
4843 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4844 (PTR) (finfo->symbuf + finfo->symbuf_count));
4845 ++finfo->symbuf_count;
4846
4847 ++ bfd_get_symcount (finfo->output_bfd);
4848
4849 return true;
4850 }
4851
4852 /* Flush the output symbols to the file. */
4853
4854 static boolean
4855 elf_link_flush_output_syms (finfo)
4856 struct elf_final_link_info *finfo;
4857 {
4858 if (finfo->symbuf_count > 0)
4859 {
4860 Elf_Internal_Shdr *symtab;
4861
4862 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4863
4864 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4865 SEEK_SET) != 0
4866 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4867 sizeof (Elf_External_Sym), finfo->output_bfd)
4868 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4869 return false;
4870
4871 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4872
4873 finfo->symbuf_count = 0;
4874 }
4875
4876 return true;
4877 }
4878
4879 /* Add an external symbol to the symbol table. This is called from
4880 the hash table traversal routine. When generating a shared object,
4881 we go through the symbol table twice. The first time we output
4882 anything that might have been forced to local scope in a version
4883 script. The second time we output the symbols that are still
4884 global symbols. */
4885
4886 static boolean
4887 elf_link_output_extsym (h, data)
4888 struct elf_link_hash_entry *h;
4889 PTR data;
4890 {
4891 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4892 struct elf_final_link_info *finfo = eoinfo->finfo;
4893 boolean strip;
4894 Elf_Internal_Sym sym;
4895 asection *input_sec;
4896
4897 /* Decide whether to output this symbol in this pass. */
4898 if (eoinfo->localsyms)
4899 {
4900 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4901 return true;
4902 }
4903 else
4904 {
4905 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4906 return true;
4907 }
4908
4909 /* If we are not creating a shared library, and this symbol is
4910 referenced by a shared library but is not defined anywhere, then
4911 warn that it is undefined. If we do not do this, the runtime
4912 linker will complain that the symbol is undefined when the
4913 program is run. We don't have to worry about symbols that are
4914 referenced by regular files, because we will already have issued
4915 warnings for them. */
4916 if (! finfo->info->relocateable
4917 && ! (finfo->info->shared
4918 && !finfo->info->no_undefined)
4919 && h->root.type == bfd_link_hash_undefined
4920 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4921 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4922 {
4923 if (! ((*finfo->info->callbacks->undefined_symbol)
4924 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4925 (asection *) NULL, 0)))
4926 {
4927 eoinfo->failed = true;
4928 return false;
4929 }
4930 }
4931
4932 /* We don't want to output symbols that have never been mentioned by
4933 a regular file, or that we have been told to strip. However, if
4934 h->indx is set to -2, the symbol is used by a reloc and we must
4935 output it. */
4936 if (h->indx == -2)
4937 strip = false;
4938 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4939 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4940 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4941 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4942 strip = true;
4943 else if (finfo->info->strip == strip_all
4944 || (finfo->info->strip == strip_some
4945 && bfd_hash_lookup (finfo->info->keep_hash,
4946 h->root.root.string,
4947 false, false) == NULL))
4948 strip = true;
4949 else
4950 strip = false;
4951
4952 /* If we're stripping it, and it's not a dynamic symbol, there's
4953 nothing else to do. */
4954 if (strip && h->dynindx == -1)
4955 return true;
4956
4957 sym.st_value = 0;
4958 sym.st_size = h->size;
4959 sym.st_other = h->other;
4960 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4961 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4962 else if (h->root.type == bfd_link_hash_undefweak
4963 || h->root.type == bfd_link_hash_defweak)
4964 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4965 else
4966 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4967
4968 switch (h->root.type)
4969 {
4970 default:
4971 case bfd_link_hash_new:
4972 abort ();
4973 return false;
4974
4975 case bfd_link_hash_undefined:
4976 input_sec = bfd_und_section_ptr;
4977 sym.st_shndx = SHN_UNDEF;
4978 break;
4979
4980 case bfd_link_hash_undefweak:
4981 input_sec = bfd_und_section_ptr;
4982 sym.st_shndx = SHN_UNDEF;
4983 break;
4984
4985 case bfd_link_hash_defined:
4986 case bfd_link_hash_defweak:
4987 {
4988 input_sec = h->root.u.def.section;
4989 if (input_sec->output_section != NULL)
4990 {
4991 sym.st_shndx =
4992 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4993 input_sec->output_section);
4994 if (sym.st_shndx == (unsigned short) -1)
4995 {
4996 (*_bfd_error_handler)
4997 (_("%s: could not find output section %s for input section %s"),
4998 bfd_get_filename (finfo->output_bfd),
4999 input_sec->output_section->name,
5000 input_sec->name);
5001 eoinfo->failed = true;
5002 return false;
5003 }
5004
5005 /* ELF symbols in relocateable files are section relative,
5006 but in nonrelocateable files they are virtual
5007 addresses. */
5008 sym.st_value = h->root.u.def.value + input_sec->output_offset;
5009 if (! finfo->info->relocateable)
5010 sym.st_value += input_sec->output_section->vma;
5011 }
5012 else
5013 {
5014 BFD_ASSERT (input_sec->owner == NULL
5015 || (input_sec->owner->flags & DYNAMIC) != 0);
5016 sym.st_shndx = SHN_UNDEF;
5017 input_sec = bfd_und_section_ptr;
5018 }
5019 }
5020 break;
5021
5022 case bfd_link_hash_common:
5023 input_sec = h->root.u.c.p->section;
5024 sym.st_shndx = SHN_COMMON;
5025 sym.st_value = 1 << h->root.u.c.p->alignment_power;
5026 break;
5027
5028 case bfd_link_hash_indirect:
5029 /* These symbols are created by symbol versioning. They point
5030 to the decorated version of the name. For example, if the
5031 symbol foo@@GNU_1.2 is the default, which should be used when
5032 foo is used with no version, then we add an indirect symbol
5033 foo which points to foo@@GNU_1.2. We ignore these symbols,
5034 since the indirected symbol is already in the hash table. If
5035 the indirect symbol is non-ELF, fall through and output it. */
5036 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
5037 return true;
5038
5039 /* Fall through. */
5040 case bfd_link_hash_warning:
5041 /* We can't represent these symbols in ELF, although a warning
5042 symbol may have come from a .gnu.warning.SYMBOL section. We
5043 just put the target symbol in the hash table. If the target
5044 symbol does not really exist, don't do anything. */
5045 if (h->root.u.i.link->type == bfd_link_hash_new)
5046 return true;
5047 return (elf_link_output_extsym
5048 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
5049 }
5050
5051 /* Give the processor backend a chance to tweak the symbol value,
5052 and also to finish up anything that needs to be done for this
5053 symbol. */
5054 if ((h->dynindx != -1
5055 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5056 && elf_hash_table (finfo->info)->dynamic_sections_created)
5057 {
5058 struct elf_backend_data *bed;
5059
5060 bed = get_elf_backend_data (finfo->output_bfd);
5061 if (! ((*bed->elf_backend_finish_dynamic_symbol)
5062 (finfo->output_bfd, finfo->info, h, &sym)))
5063 {
5064 eoinfo->failed = true;
5065 return false;
5066 }
5067 }
5068
5069 /* If we are marking the symbol as undefined, and there are no
5070 non-weak references to this symbol from a regular object, then
5071 mark the symbol as weak undefined; if there are non-weak
5072 references, mark the symbol as strong. We can't do this earlier,
5073 because it might not be marked as undefined until the
5074 finish_dynamic_symbol routine gets through with it. */
5075 if (sym.st_shndx == SHN_UNDEF
5076 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
5077 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
5078 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
5079 {
5080 int bindtype;
5081
5082 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
5083 bindtype = STB_GLOBAL;
5084 else
5085 bindtype = STB_WEAK;
5086 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
5087 }
5088
5089 /* If this symbol should be put in the .dynsym section, then put it
5090 there now. We have already know the symbol index. We also fill
5091 in the entry in the .hash section. */
5092 if (h->dynindx != -1
5093 && elf_hash_table (finfo->info)->dynamic_sections_created)
5094 {
5095 size_t bucketcount;
5096 size_t bucket;
5097 size_t hash_entry_size;
5098 bfd_byte *bucketpos;
5099 bfd_vma chain;
5100
5101 sym.st_name = h->dynstr_index;
5102
5103 elf_swap_symbol_out (finfo->output_bfd, &sym,
5104 (PTR) (((Elf_External_Sym *)
5105 finfo->dynsym_sec->contents)
5106 + h->dynindx));
5107
5108 bucketcount = elf_hash_table (finfo->info)->bucketcount;
5109 bucket = h->elf_hash_value % bucketcount;
5110 hash_entry_size
5111 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
5112 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
5113 + (bucket + 2) * hash_entry_size);
5114 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
5115 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
5116 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
5117 ((bfd_byte *) finfo->hash_sec->contents
5118 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
5119
5120 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5121 {
5122 Elf_Internal_Versym iversym;
5123
5124 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5125 {
5126 if (h->verinfo.verdef == NULL)
5127 iversym.vs_vers = 0;
5128 else
5129 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5130 }
5131 else
5132 {
5133 if (h->verinfo.vertree == NULL)
5134 iversym.vs_vers = 1;
5135 else
5136 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5137 }
5138
5139 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5140 iversym.vs_vers |= VERSYM_HIDDEN;
5141
5142 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5143 (((Elf_External_Versym *)
5144 finfo->symver_sec->contents)
5145 + h->dynindx));
5146 }
5147 }
5148
5149 /* If we're stripping it, then it was just a dynamic symbol, and
5150 there's nothing else to do. */
5151 if (strip)
5152 return true;
5153
5154 h->indx = bfd_get_symcount (finfo->output_bfd);
5155
5156 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5157 {
5158 eoinfo->failed = true;
5159 return false;
5160 }
5161
5162 return true;
5163 }
5164
5165 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
5166 originated from the section given by INPUT_REL_HDR) to the
5167 OUTPUT_BFD. */
5168
5169 static void
5170 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
5171 internal_relocs)
5172 bfd *output_bfd;
5173 asection *input_section;
5174 Elf_Internal_Shdr *input_rel_hdr;
5175 Elf_Internal_Rela *internal_relocs;
5176 {
5177 Elf_Internal_Rela *irela;
5178 Elf_Internal_Rela *irelaend;
5179 Elf_Internal_Shdr *output_rel_hdr;
5180 asection *output_section;
5181 unsigned int *rel_countp = NULL;
5182
5183 output_section = input_section->output_section;
5184 output_rel_hdr = NULL;
5185
5186 if (elf_section_data (output_section)->rel_hdr.sh_entsize
5187 == input_rel_hdr->sh_entsize)
5188 {
5189 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5190 rel_countp = &elf_section_data (output_section)->rel_count;
5191 }
5192 else if (elf_section_data (output_section)->rel_hdr2
5193 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5194 == input_rel_hdr->sh_entsize))
5195 {
5196 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5197 rel_countp = &elf_section_data (output_section)->rel_count2;
5198 }
5199
5200 BFD_ASSERT (output_rel_hdr != NULL);
5201
5202 irela = internal_relocs;
5203 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5204 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5205 {
5206 Elf_External_Rel *erel;
5207
5208 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5209 for (; irela < irelaend; irela++, erel++)
5210 {
5211 Elf_Internal_Rel irel;
5212
5213 irel.r_offset = irela->r_offset;
5214 irel.r_info = irela->r_info;
5215 BFD_ASSERT (irela->r_addend == 0);
5216 elf_swap_reloc_out (output_bfd, &irel, erel);
5217 }
5218 }
5219 else
5220 {
5221 Elf_External_Rela *erela;
5222
5223 BFD_ASSERT (input_rel_hdr->sh_entsize
5224 == sizeof (Elf_External_Rela));
5225 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5226 for (; irela < irelaend; irela++, erela++)
5227 elf_swap_reloca_out (output_bfd, irela, erela);
5228 }
5229
5230 /* Bump the counter, so that we know where to add the next set of
5231 relocations. */
5232 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5233 }
5234
5235 /* Link an input file into the linker output file. This function
5236 handles all the sections and relocations of the input file at once.
5237 This is so that we only have to read the local symbols once, and
5238 don't have to keep them in memory. */
5239
5240 static boolean
5241 elf_link_input_bfd (finfo, input_bfd)
5242 struct elf_final_link_info *finfo;
5243 bfd *input_bfd;
5244 {
5245 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5246 bfd *, asection *, bfd_byte *,
5247 Elf_Internal_Rela *,
5248 Elf_Internal_Sym *, asection **));
5249 bfd *output_bfd;
5250 Elf_Internal_Shdr *symtab_hdr;
5251 size_t locsymcount;
5252 size_t extsymoff;
5253 Elf_External_Sym *external_syms;
5254 Elf_External_Sym *esym;
5255 Elf_External_Sym *esymend;
5256 Elf_Internal_Sym *isym;
5257 long *pindex;
5258 asection **ppsection;
5259 asection *o;
5260 struct elf_backend_data *bed;
5261
5262 output_bfd = finfo->output_bfd;
5263 bed = get_elf_backend_data (output_bfd);
5264 relocate_section = bed->elf_backend_relocate_section;
5265
5266 /* If this is a dynamic object, we don't want to do anything here:
5267 we don't want the local symbols, and we don't want the section
5268 contents. */
5269 if ((input_bfd->flags & DYNAMIC) != 0)
5270 return true;
5271
5272 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5273 if (elf_bad_symtab (input_bfd))
5274 {
5275 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5276 extsymoff = 0;
5277 }
5278 else
5279 {
5280 locsymcount = symtab_hdr->sh_info;
5281 extsymoff = symtab_hdr->sh_info;
5282 }
5283
5284 /* Read the local symbols. */
5285 if (symtab_hdr->contents != NULL)
5286 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5287 else if (locsymcount == 0)
5288 external_syms = NULL;
5289 else
5290 {
5291 external_syms = finfo->external_syms;
5292 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5293 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5294 locsymcount, input_bfd)
5295 != locsymcount * sizeof (Elf_External_Sym)))
5296 return false;
5297 }
5298
5299 /* Swap in the local symbols and write out the ones which we know
5300 are going into the output file. */
5301 esym = external_syms;
5302 esymend = esym + locsymcount;
5303 isym = finfo->internal_syms;
5304 pindex = finfo->indices;
5305 ppsection = finfo->sections;
5306 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5307 {
5308 asection *isec;
5309 const char *name;
5310 Elf_Internal_Sym osym;
5311
5312 elf_swap_symbol_in (input_bfd, esym, isym);
5313 *pindex = -1;
5314
5315 if (elf_bad_symtab (input_bfd))
5316 {
5317 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5318 {
5319 *ppsection = NULL;
5320 continue;
5321 }
5322 }
5323
5324 if (isym->st_shndx == SHN_UNDEF)
5325 isec = bfd_und_section_ptr;
5326 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5327 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5328 else if (isym->st_shndx == SHN_ABS)
5329 isec = bfd_abs_section_ptr;
5330 else if (isym->st_shndx == SHN_COMMON)
5331 isec = bfd_com_section_ptr;
5332 else
5333 {
5334 /* Who knows? */
5335 isec = NULL;
5336 }
5337
5338 *ppsection = isec;
5339
5340 /* Don't output the first, undefined, symbol. */
5341 if (esym == external_syms)
5342 continue;
5343
5344 /* If we are stripping all symbols, we don't want to output this
5345 one. */
5346 if (finfo->info->strip == strip_all)
5347 continue;
5348
5349 /* We never output section symbols. Instead, we use the section
5350 symbol of the corresponding section in the output file. */
5351 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5352 continue;
5353
5354 /* If we are discarding all local symbols, we don't want to
5355 output this one. If we are generating a relocateable output
5356 file, then some of the local symbols may be required by
5357 relocs; we output them below as we discover that they are
5358 needed. */
5359 if (finfo->info->discard == discard_all)
5360 continue;
5361
5362 /* If this symbol is defined in a section which we are
5363 discarding, we don't need to keep it, but note that
5364 linker_mark is only reliable for sections that have contents.
5365 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5366 as well as linker_mark. */
5367 if (isym->st_shndx > 0
5368 && isym->st_shndx < SHN_LORESERVE
5369 && isec != NULL
5370 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5371 || (! finfo->info->relocateable
5372 && (isec->flags & SEC_EXCLUDE) != 0)))
5373 continue;
5374
5375 /* Get the name of the symbol. */
5376 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5377 isym->st_name);
5378 if (name == NULL)
5379 return false;
5380
5381 /* See if we are discarding symbols with this name. */
5382 if ((finfo->info->strip == strip_some
5383 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5384 == NULL))
5385 || (finfo->info->discard == discard_l
5386 && bfd_is_local_label_name (input_bfd, name)))
5387 continue;
5388
5389 /* If we get here, we are going to output this symbol. */
5390
5391 osym = *isym;
5392
5393 /* Adjust the section index for the output file. */
5394 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5395 isec->output_section);
5396 if (osym.st_shndx == (unsigned short) -1)
5397 return false;
5398
5399 *pindex = bfd_get_symcount (output_bfd);
5400
5401 /* ELF symbols in relocateable files are section relative, but
5402 in executable files they are virtual addresses. Note that
5403 this code assumes that all ELF sections have an associated
5404 BFD section with a reasonable value for output_offset; below
5405 we assume that they also have a reasonable value for
5406 output_section. Any special sections must be set up to meet
5407 these requirements. */
5408 osym.st_value += isec->output_offset;
5409 if (! finfo->info->relocateable)
5410 osym.st_value += isec->output_section->vma;
5411
5412 if (! elf_link_output_sym (finfo, name, &osym, isec))
5413 return false;
5414 }
5415
5416 /* Relocate the contents of each section. */
5417 for (o = input_bfd->sections; o != NULL; o = o->next)
5418 {
5419 bfd_byte *contents;
5420
5421 if (! o->linker_mark)
5422 {
5423 /* This section was omitted from the link. */
5424 continue;
5425 }
5426
5427 if ((o->flags & SEC_HAS_CONTENTS) == 0
5428 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5429 continue;
5430
5431 if ((o->flags & SEC_LINKER_CREATED) != 0)
5432 {
5433 /* Section was created by elf_link_create_dynamic_sections
5434 or somesuch. */
5435 continue;
5436 }
5437
5438 /* Get the contents of the section. They have been cached by a
5439 relaxation routine. Note that o is a section in an input
5440 file, so the contents field will not have been set by any of
5441 the routines which work on output files. */
5442 if (elf_section_data (o)->this_hdr.contents != NULL)
5443 contents = elf_section_data (o)->this_hdr.contents;
5444 else
5445 {
5446 contents = finfo->contents;
5447 if (! bfd_get_section_contents (input_bfd, o, contents,
5448 (file_ptr) 0, o->_raw_size))
5449 return false;
5450 }
5451
5452 if ((o->flags & SEC_RELOC) != 0)
5453 {
5454 Elf_Internal_Rela *internal_relocs;
5455
5456 /* Get the swapped relocs. */
5457 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5458 (input_bfd, o, finfo->external_relocs,
5459 finfo->internal_relocs, false));
5460 if (internal_relocs == NULL
5461 && o->reloc_count > 0)
5462 return false;
5463
5464 /* Relocate the section by invoking a back end routine.
5465
5466 The back end routine is responsible for adjusting the
5467 section contents as necessary, and (if using Rela relocs
5468 and generating a relocateable output file) adjusting the
5469 reloc addend as necessary.
5470
5471 The back end routine does not have to worry about setting
5472 the reloc address or the reloc symbol index.
5473
5474 The back end routine is given a pointer to the swapped in
5475 internal symbols, and can access the hash table entries
5476 for the external symbols via elf_sym_hashes (input_bfd).
5477
5478 When generating relocateable output, the back end routine
5479 must handle STB_LOCAL/STT_SECTION symbols specially. The
5480 output symbol is going to be a section symbol
5481 corresponding to the output section, which will require
5482 the addend to be adjusted. */
5483
5484 if (! (*relocate_section) (output_bfd, finfo->info,
5485 input_bfd, o, contents,
5486 internal_relocs,
5487 finfo->internal_syms,
5488 finfo->sections))
5489 return false;
5490
5491 if (finfo->info->relocateable)
5492 {
5493 Elf_Internal_Rela *irela;
5494 Elf_Internal_Rela *irelaend;
5495 struct elf_link_hash_entry **rel_hash;
5496 Elf_Internal_Shdr *input_rel_hdr;
5497
5498 /* Adjust the reloc addresses and symbol indices. */
5499
5500 irela = internal_relocs;
5501 irelaend =
5502 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
5503 rel_hash = (elf_section_data (o->output_section)->rel_hashes
5504 + elf_section_data (o->output_section)->rel_count
5505 + elf_section_data (o->output_section)->rel_count2);
5506 for (; irela < irelaend; irela++, rel_hash++)
5507 {
5508 unsigned long r_symndx;
5509 Elf_Internal_Sym *isym;
5510 asection *sec;
5511
5512 irela->r_offset += o->output_offset;
5513
5514 r_symndx = ELF_R_SYM (irela->r_info);
5515
5516 if (r_symndx == 0)
5517 continue;
5518
5519 if (r_symndx >= locsymcount
5520 || (elf_bad_symtab (input_bfd)
5521 && finfo->sections[r_symndx] == NULL))
5522 {
5523 struct elf_link_hash_entry *rh;
5524 long indx;
5525
5526 /* This is a reloc against a global symbol. We
5527 have not yet output all the local symbols, so
5528 we do not know the symbol index of any global
5529 symbol. We set the rel_hash entry for this
5530 reloc to point to the global hash table entry
5531 for this symbol. The symbol index is then
5532 set at the end of elf_bfd_final_link. */
5533 indx = r_symndx - extsymoff;
5534 rh = elf_sym_hashes (input_bfd)[indx];
5535 while (rh->root.type == bfd_link_hash_indirect
5536 || rh->root.type == bfd_link_hash_warning)
5537 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5538
5539 /* Setting the index to -2 tells
5540 elf_link_output_extsym that this symbol is
5541 used by a reloc. */
5542 BFD_ASSERT (rh->indx < 0);
5543 rh->indx = -2;
5544
5545 *rel_hash = rh;
5546
5547 continue;
5548 }
5549
5550 /* This is a reloc against a local symbol. */
5551
5552 *rel_hash = NULL;
5553 isym = finfo->internal_syms + r_symndx;
5554 sec = finfo->sections[r_symndx];
5555 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5556 {
5557 /* I suppose the backend ought to fill in the
5558 section of any STT_SECTION symbol against a
5559 processor specific section. If we have
5560 discarded a section, the output_section will
5561 be the absolute section. */
5562 if (sec != NULL
5563 && (bfd_is_abs_section (sec)
5564 || (sec->output_section != NULL
5565 && bfd_is_abs_section (sec->output_section))))
5566 r_symndx = 0;
5567 else if (sec == NULL || sec->owner == NULL)
5568 {
5569 bfd_set_error (bfd_error_bad_value);
5570 return false;
5571 }
5572 else
5573 {
5574 r_symndx = sec->output_section->target_index;
5575 BFD_ASSERT (r_symndx != 0);
5576 }
5577 }
5578 else
5579 {
5580 if (finfo->indices[r_symndx] == -1)
5581 {
5582 unsigned long link;
5583 const char *name;
5584 asection *osec;
5585
5586 if (finfo->info->strip == strip_all)
5587 {
5588 /* You can't do ld -r -s. */
5589 bfd_set_error (bfd_error_invalid_operation);
5590 return false;
5591 }
5592
5593 /* This symbol was skipped earlier, but
5594 since it is needed by a reloc, we
5595 must output it now. */
5596 link = symtab_hdr->sh_link;
5597 name = bfd_elf_string_from_elf_section (input_bfd,
5598 link,
5599 isym->st_name);
5600 if (name == NULL)
5601 return false;
5602
5603 osec = sec->output_section;
5604 isym->st_shndx =
5605 _bfd_elf_section_from_bfd_section (output_bfd,
5606 osec);
5607 if (isym->st_shndx == (unsigned short) -1)
5608 return false;
5609
5610 isym->st_value += sec->output_offset;
5611 if (! finfo->info->relocateable)
5612 isym->st_value += osec->vma;
5613
5614 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5615
5616 if (! elf_link_output_sym (finfo, name, isym, sec))
5617 return false;
5618 }
5619
5620 r_symndx = finfo->indices[r_symndx];
5621 }
5622
5623 irela->r_info = ELF_R_INFO (r_symndx,
5624 ELF_R_TYPE (irela->r_info));
5625 }
5626
5627 /* Swap out the relocs. */
5628 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5629 elf_link_output_relocs (output_bfd, o,
5630 input_rel_hdr,
5631 internal_relocs);
5632 internal_relocs
5633 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5634 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5635 if (input_rel_hdr)
5636 elf_link_output_relocs (output_bfd, o,
5637 input_rel_hdr,
5638 internal_relocs);
5639 }
5640 }
5641
5642 /* Write out the modified section contents. */
5643 if (elf_section_data (o)->stab_info == NULL)
5644 {
5645 if (! (o->flags & SEC_EXCLUDE) &&
5646 ! bfd_set_section_contents (output_bfd, o->output_section,
5647 contents, o->output_offset,
5648 (o->_cooked_size != 0
5649 ? o->_cooked_size
5650 : o->_raw_size)))
5651 return false;
5652 }
5653 else
5654 {
5655 if (! (_bfd_write_section_stabs
5656 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5657 o, &elf_section_data (o)->stab_info, contents)))
5658 return false;
5659 }
5660 }
5661
5662 return true;
5663 }
5664
5665 /* Generate a reloc when linking an ELF file. This is a reloc
5666 requested by the linker, and does come from any input file. This
5667 is used to build constructor and destructor tables when linking
5668 with -Ur. */
5669
5670 static boolean
5671 elf_reloc_link_order (output_bfd, info, output_section, link_order)
5672 bfd *output_bfd;
5673 struct bfd_link_info *info;
5674 asection *output_section;
5675 struct bfd_link_order *link_order;
5676 {
5677 reloc_howto_type *howto;
5678 long indx;
5679 bfd_vma offset;
5680 bfd_vma addend;
5681 struct elf_link_hash_entry **rel_hash_ptr;
5682 Elf_Internal_Shdr *rel_hdr;
5683
5684 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5685 if (howto == NULL)
5686 {
5687 bfd_set_error (bfd_error_bad_value);
5688 return false;
5689 }
5690
5691 addend = link_order->u.reloc.p->addend;
5692
5693 /* Figure out the symbol index. */
5694 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5695 + elf_section_data (output_section)->rel_count
5696 + elf_section_data (output_section)->rel_count2);
5697 if (link_order->type == bfd_section_reloc_link_order)
5698 {
5699 indx = link_order->u.reloc.p->u.section->target_index;
5700 BFD_ASSERT (indx != 0);
5701 *rel_hash_ptr = NULL;
5702 }
5703 else
5704 {
5705 struct elf_link_hash_entry *h;
5706
5707 /* Treat a reloc against a defined symbol as though it were
5708 actually against the section. */
5709 h = ((struct elf_link_hash_entry *)
5710 bfd_wrapped_link_hash_lookup (output_bfd, info,
5711 link_order->u.reloc.p->u.name,
5712 false, false, true));
5713 if (h != NULL
5714 && (h->root.type == bfd_link_hash_defined
5715 || h->root.type == bfd_link_hash_defweak))
5716 {
5717 asection *section;
5718
5719 section = h->root.u.def.section;
5720 indx = section->output_section->target_index;
5721 *rel_hash_ptr = NULL;
5722 /* It seems that we ought to add the symbol value to the
5723 addend here, but in practice it has already been added
5724 because it was passed to constructor_callback. */
5725 addend += section->output_section->vma + section->output_offset;
5726 }
5727 else if (h != NULL)
5728 {
5729 /* Setting the index to -2 tells elf_link_output_extsym that
5730 this symbol is used by a reloc. */
5731 h->indx = -2;
5732 *rel_hash_ptr = h;
5733 indx = 0;
5734 }
5735 else
5736 {
5737 if (! ((*info->callbacks->unattached_reloc)
5738 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5739 (asection *) NULL, (bfd_vma) 0)))
5740 return false;
5741 indx = 0;
5742 }
5743 }
5744
5745 /* If this is an inplace reloc, we must write the addend into the
5746 object file. */
5747 if (howto->partial_inplace && addend != 0)
5748 {
5749 bfd_size_type size;
5750 bfd_reloc_status_type rstat;
5751 bfd_byte *buf;
5752 boolean ok;
5753
5754 size = bfd_get_reloc_size (howto);
5755 buf = (bfd_byte *) bfd_zmalloc (size);
5756 if (buf == (bfd_byte *) NULL)
5757 return false;
5758 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5759 switch (rstat)
5760 {
5761 case bfd_reloc_ok:
5762 break;
5763 default:
5764 case bfd_reloc_outofrange:
5765 abort ();
5766 case bfd_reloc_overflow:
5767 if (! ((*info->callbacks->reloc_overflow)
5768 (info,
5769 (link_order->type == bfd_section_reloc_link_order
5770 ? bfd_section_name (output_bfd,
5771 link_order->u.reloc.p->u.section)
5772 : link_order->u.reloc.p->u.name),
5773 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5774 (bfd_vma) 0)))
5775 {
5776 free (buf);
5777 return false;
5778 }
5779 break;
5780 }
5781 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5782 (file_ptr) link_order->offset, size);
5783 free (buf);
5784 if (! ok)
5785 return false;
5786 }
5787
5788 /* The address of a reloc is relative to the section in a
5789 relocateable file, and is a virtual address in an executable
5790 file. */
5791 offset = link_order->offset;
5792 if (! info->relocateable)
5793 offset += output_section->vma;
5794
5795 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5796
5797 if (rel_hdr->sh_type == SHT_REL)
5798 {
5799 Elf_Internal_Rel irel;
5800 Elf_External_Rel *erel;
5801
5802 irel.r_offset = offset;
5803 irel.r_info = ELF_R_INFO (indx, howto->type);
5804 erel = ((Elf_External_Rel *) rel_hdr->contents
5805 + elf_section_data (output_section)->rel_count);
5806 elf_swap_reloc_out (output_bfd, &irel, erel);
5807 }
5808 else
5809 {
5810 Elf_Internal_Rela irela;
5811 Elf_External_Rela *erela;
5812
5813 irela.r_offset = offset;
5814 irela.r_info = ELF_R_INFO (indx, howto->type);
5815 irela.r_addend = addend;
5816 erela = ((Elf_External_Rela *) rel_hdr->contents
5817 + elf_section_data (output_section)->rel_count);
5818 elf_swap_reloca_out (output_bfd, &irela, erela);
5819 }
5820
5821 ++elf_section_data (output_section)->rel_count;
5822
5823 return true;
5824 }
5825
5826 \f
5827 /* Allocate a pointer to live in a linker created section. */
5828
5829 boolean
5830 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5831 bfd *abfd;
5832 struct bfd_link_info *info;
5833 elf_linker_section_t *lsect;
5834 struct elf_link_hash_entry *h;
5835 const Elf_Internal_Rela *rel;
5836 {
5837 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5838 elf_linker_section_pointers_t *linker_section_ptr;
5839 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5840
5841 BFD_ASSERT (lsect != NULL);
5842
5843 /* Is this a global symbol? */
5844 if (h != NULL)
5845 {
5846 /* Has this symbol already been allocated, if so, our work is done */
5847 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5848 rel->r_addend,
5849 lsect->which))
5850 return true;
5851
5852 ptr_linker_section_ptr = &h->linker_section_pointer;
5853 /* Make sure this symbol is output as a dynamic symbol. */
5854 if (h->dynindx == -1)
5855 {
5856 if (! elf_link_record_dynamic_symbol (info, h))
5857 return false;
5858 }
5859
5860 if (lsect->rel_section)
5861 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5862 }
5863
5864 else /* Allocation of a pointer to a local symbol */
5865 {
5866 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5867
5868 /* Allocate a table to hold the local symbols if first time */
5869 if (!ptr)
5870 {
5871 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5872 register unsigned int i;
5873
5874 ptr = (elf_linker_section_pointers_t **)
5875 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5876
5877 if (!ptr)
5878 return false;
5879
5880 elf_local_ptr_offsets (abfd) = ptr;
5881 for (i = 0; i < num_symbols; i++)
5882 ptr[i] = (elf_linker_section_pointers_t *)0;
5883 }
5884
5885 /* Has this symbol already been allocated, if so, our work is done */
5886 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5887 rel->r_addend,
5888 lsect->which))
5889 return true;
5890
5891 ptr_linker_section_ptr = &ptr[r_symndx];
5892
5893 if (info->shared)
5894 {
5895 /* If we are generating a shared object, we need to
5896 output a R_<xxx>_RELATIVE reloc so that the
5897 dynamic linker can adjust this GOT entry. */
5898 BFD_ASSERT (lsect->rel_section != NULL);
5899 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5900 }
5901 }
5902
5903 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5904 from internal memory. */
5905 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5906 linker_section_ptr = (elf_linker_section_pointers_t *)
5907 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5908
5909 if (!linker_section_ptr)
5910 return false;
5911
5912 linker_section_ptr->next = *ptr_linker_section_ptr;
5913 linker_section_ptr->addend = rel->r_addend;
5914 linker_section_ptr->which = lsect->which;
5915 linker_section_ptr->written_address_p = false;
5916 *ptr_linker_section_ptr = linker_section_ptr;
5917
5918 #if 0
5919 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5920 {
5921 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5922 lsect->hole_offset += ARCH_SIZE / 8;
5923 lsect->sym_offset += ARCH_SIZE / 8;
5924 if (lsect->sym_hash) /* Bump up symbol value if needed */
5925 {
5926 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5927 #ifdef DEBUG
5928 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5929 lsect->sym_hash->root.root.string,
5930 (long)ARCH_SIZE / 8,
5931 (long)lsect->sym_hash->root.u.def.value);
5932 #endif
5933 }
5934 }
5935 else
5936 #endif
5937 linker_section_ptr->offset = lsect->section->_raw_size;
5938
5939 lsect->section->_raw_size += ARCH_SIZE / 8;
5940
5941 #ifdef DEBUG
5942 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5943 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5944 #endif
5945
5946 return true;
5947 }
5948
5949 \f
5950 #if ARCH_SIZE==64
5951 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5952 #endif
5953 #if ARCH_SIZE==32
5954 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5955 #endif
5956
5957 /* Fill in the address for a pointer generated in alinker section. */
5958
5959 bfd_vma
5960 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5961 bfd *output_bfd;
5962 bfd *input_bfd;
5963 struct bfd_link_info *info;
5964 elf_linker_section_t *lsect;
5965 struct elf_link_hash_entry *h;
5966 bfd_vma relocation;
5967 const Elf_Internal_Rela *rel;
5968 int relative_reloc;
5969 {
5970 elf_linker_section_pointers_t *linker_section_ptr;
5971
5972 BFD_ASSERT (lsect != NULL);
5973
5974 if (h != NULL) /* global symbol */
5975 {
5976 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5977 rel->r_addend,
5978 lsect->which);
5979
5980 BFD_ASSERT (linker_section_ptr != NULL);
5981
5982 if (! elf_hash_table (info)->dynamic_sections_created
5983 || (info->shared
5984 && info->symbolic
5985 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5986 {
5987 /* This is actually a static link, or it is a
5988 -Bsymbolic link and the symbol is defined
5989 locally. We must initialize this entry in the
5990 global section.
5991
5992 When doing a dynamic link, we create a .rela.<xxx>
5993 relocation entry to initialize the value. This
5994 is done in the finish_dynamic_symbol routine. */
5995 if (!linker_section_ptr->written_address_p)
5996 {
5997 linker_section_ptr->written_address_p = true;
5998 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5999 lsect->section->contents + linker_section_ptr->offset);
6000 }
6001 }
6002 }
6003 else /* local symbol */
6004 {
6005 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6006 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
6007 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
6008 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
6009 rel->r_addend,
6010 lsect->which);
6011
6012 BFD_ASSERT (linker_section_ptr != NULL);
6013
6014 /* Write out pointer if it hasn't been rewritten out before */
6015 if (!linker_section_ptr->written_address_p)
6016 {
6017 linker_section_ptr->written_address_p = true;
6018 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6019 lsect->section->contents + linker_section_ptr->offset);
6020
6021 if (info->shared)
6022 {
6023 asection *srel = lsect->rel_section;
6024 Elf_Internal_Rela outrel;
6025
6026 /* We need to generate a relative reloc for the dynamic linker. */
6027 if (!srel)
6028 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
6029 lsect->rel_name);
6030
6031 BFD_ASSERT (srel != NULL);
6032
6033 outrel.r_offset = (lsect->section->output_section->vma
6034 + lsect->section->output_offset
6035 + linker_section_ptr->offset);
6036 outrel.r_info = ELF_R_INFO (0, relative_reloc);
6037 outrel.r_addend = 0;
6038 elf_swap_reloca_out (output_bfd, &outrel,
6039 (((Elf_External_Rela *)
6040 lsect->section->contents)
6041 + elf_section_data (lsect->section)->rel_count));
6042 ++elf_section_data (lsect->section)->rel_count;
6043 }
6044 }
6045 }
6046
6047 relocation = (lsect->section->output_offset
6048 + linker_section_ptr->offset
6049 - lsect->hole_offset
6050 - lsect->sym_offset);
6051
6052 #ifdef DEBUG
6053 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6054 lsect->name, (long)relocation, (long)relocation);
6055 #endif
6056
6057 /* Subtract out the addend, because it will get added back in by the normal
6058 processing. */
6059 return relocation - linker_section_ptr->addend;
6060 }
6061 \f
6062 /* Garbage collect unused sections. */
6063
6064 static boolean elf_gc_mark
6065 PARAMS ((struct bfd_link_info *info, asection *sec,
6066 asection * (*gc_mark_hook)
6067 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6068 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
6069
6070 static boolean elf_gc_sweep
6071 PARAMS ((struct bfd_link_info *info,
6072 boolean (*gc_sweep_hook)
6073 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6074 const Elf_Internal_Rela *relocs))));
6075
6076 static boolean elf_gc_sweep_symbol
6077 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
6078
6079 static boolean elf_gc_allocate_got_offsets
6080 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
6081
6082 static boolean elf_gc_propagate_vtable_entries_used
6083 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6084
6085 static boolean elf_gc_smash_unused_vtentry_relocs
6086 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6087
6088 /* The mark phase of garbage collection. For a given section, mark
6089 it, and all the sections which define symbols to which it refers. */
6090
6091 static boolean
6092 elf_gc_mark (info, sec, gc_mark_hook)
6093 struct bfd_link_info *info;
6094 asection *sec;
6095 asection * (*gc_mark_hook)
6096 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6097 struct elf_link_hash_entry *, Elf_Internal_Sym *));
6098 {
6099 boolean ret = true;
6100
6101 sec->gc_mark = 1;
6102
6103 /* Look through the section relocs. */
6104
6105 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
6106 {
6107 Elf_Internal_Rela *relstart, *rel, *relend;
6108 Elf_Internal_Shdr *symtab_hdr;
6109 struct elf_link_hash_entry **sym_hashes;
6110 size_t nlocsyms;
6111 size_t extsymoff;
6112 Elf_External_Sym *locsyms, *freesyms = NULL;
6113 bfd *input_bfd = sec->owner;
6114 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
6115
6116 /* GCFIXME: how to arrange so that relocs and symbols are not
6117 reread continually? */
6118
6119 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6120 sym_hashes = elf_sym_hashes (input_bfd);
6121
6122 /* Read the local symbols. */
6123 if (elf_bad_symtab (input_bfd))
6124 {
6125 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6126 extsymoff = 0;
6127 }
6128 else
6129 extsymoff = nlocsyms = symtab_hdr->sh_info;
6130 if (symtab_hdr->contents)
6131 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6132 else if (nlocsyms == 0)
6133 locsyms = NULL;
6134 else
6135 {
6136 locsyms = freesyms =
6137 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6138 if (freesyms == NULL
6139 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6140 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6141 nlocsyms, input_bfd)
6142 != nlocsyms * sizeof (Elf_External_Sym)))
6143 {
6144 ret = false;
6145 goto out1;
6146 }
6147 }
6148
6149 /* Read the relocations. */
6150 relstart = (NAME(_bfd_elf,link_read_relocs)
6151 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6152 info->keep_memory));
6153 if (relstart == NULL)
6154 {
6155 ret = false;
6156 goto out1;
6157 }
6158 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6159
6160 for (rel = relstart; rel < relend; rel++)
6161 {
6162 unsigned long r_symndx;
6163 asection *rsec;
6164 struct elf_link_hash_entry *h;
6165 Elf_Internal_Sym s;
6166
6167 r_symndx = ELF_R_SYM (rel->r_info);
6168 if (r_symndx == 0)
6169 continue;
6170
6171 if (elf_bad_symtab (sec->owner))
6172 {
6173 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6174 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
6175 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6176 else
6177 {
6178 h = sym_hashes[r_symndx - extsymoff];
6179 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6180 }
6181 }
6182 else if (r_symndx >= nlocsyms)
6183 {
6184 h = sym_hashes[r_symndx - extsymoff];
6185 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6186 }
6187 else
6188 {
6189 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6190 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6191 }
6192
6193 if (rsec && !rsec->gc_mark)
6194 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6195 {
6196 ret = false;
6197 goto out2;
6198 }
6199 }
6200
6201 out2:
6202 if (!info->keep_memory)
6203 free (relstart);
6204 out1:
6205 if (freesyms)
6206 free (freesyms);
6207 }
6208
6209 return ret;
6210 }
6211
6212 /* The sweep phase of garbage collection. Remove all garbage sections. */
6213
6214 static boolean
6215 elf_gc_sweep (info, gc_sweep_hook)
6216 struct bfd_link_info *info;
6217 boolean (*gc_sweep_hook)
6218 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6219 const Elf_Internal_Rela *relocs));
6220 {
6221 bfd *sub;
6222
6223 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6224 {
6225 asection *o;
6226
6227 for (o = sub->sections; o != NULL; o = o->next)
6228 {
6229 /* Keep special sections. Keep .debug sections. */
6230 if ((o->flags & SEC_LINKER_CREATED)
6231 || (o->flags & SEC_DEBUGGING))
6232 o->gc_mark = 1;
6233
6234 if (o->gc_mark)
6235 continue;
6236
6237 /* Skip sweeping sections already excluded. */
6238 if (o->flags & SEC_EXCLUDE)
6239 continue;
6240
6241 /* Since this is early in the link process, it is simple
6242 to remove a section from the output. */
6243 o->flags |= SEC_EXCLUDE;
6244
6245 /* But we also have to update some of the relocation
6246 info we collected before. */
6247 if (gc_sweep_hook
6248 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6249 {
6250 Elf_Internal_Rela *internal_relocs;
6251 boolean r;
6252
6253 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6254 (o->owner, o, NULL, NULL, info->keep_memory));
6255 if (internal_relocs == NULL)
6256 return false;
6257
6258 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
6259
6260 if (!info->keep_memory)
6261 free (internal_relocs);
6262
6263 if (!r)
6264 return false;
6265 }
6266 }
6267 }
6268
6269 /* Remove the symbols that were in the swept sections from the dynamic
6270 symbol table. GCFIXME: Anyone know how to get them out of the
6271 static symbol table as well? */
6272 {
6273 int i = 0;
6274
6275 elf_link_hash_traverse (elf_hash_table (info),
6276 elf_gc_sweep_symbol,
6277 (PTR) &i);
6278
6279 elf_hash_table (info)->dynsymcount = i;
6280 }
6281
6282 return true;
6283 }
6284
6285 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6286
6287 static boolean
6288 elf_gc_sweep_symbol (h, idxptr)
6289 struct elf_link_hash_entry *h;
6290 PTR idxptr;
6291 {
6292 int *idx = (int *) idxptr;
6293
6294 if (h->dynindx != -1
6295 && ((h->root.type != bfd_link_hash_defined
6296 && h->root.type != bfd_link_hash_defweak)
6297 || h->root.u.def.section->gc_mark))
6298 h->dynindx = (*idx)++;
6299
6300 return true;
6301 }
6302
6303 /* Propogate collected vtable information. This is called through
6304 elf_link_hash_traverse. */
6305
6306 static boolean
6307 elf_gc_propagate_vtable_entries_used (h, okp)
6308 struct elf_link_hash_entry *h;
6309 PTR okp;
6310 {
6311 /* Those that are not vtables. */
6312 if (h->vtable_parent == NULL)
6313 return true;
6314
6315 /* Those vtables that do not have parents, we cannot merge. */
6316 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6317 return true;
6318
6319 /* If we've already been done, exit. */
6320 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6321 return true;
6322
6323 /* Make sure the parent's table is up to date. */
6324 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6325
6326 if (h->vtable_entries_used == NULL)
6327 {
6328 /* None of this table's entries were referenced. Re-use the
6329 parent's table. */
6330 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6331 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6332 }
6333 else
6334 {
6335 size_t n;
6336 boolean *cu, *pu;
6337
6338 /* Or the parent's entries into ours. */
6339 cu = h->vtable_entries_used;
6340 cu[-1] = true;
6341 pu = h->vtable_parent->vtable_entries_used;
6342 if (pu != NULL)
6343 {
6344 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6345 while (--n != 0)
6346 {
6347 if (*pu) *cu = true;
6348 pu++, cu++;
6349 }
6350 }
6351 }
6352
6353 return true;
6354 }
6355
6356 static boolean
6357 elf_gc_smash_unused_vtentry_relocs (h, okp)
6358 struct elf_link_hash_entry *h;
6359 PTR okp;
6360 {
6361 asection *sec;
6362 bfd_vma hstart, hend;
6363 Elf_Internal_Rela *relstart, *relend, *rel;
6364 struct elf_backend_data *bed;
6365
6366 /* Take care of both those symbols that do not describe vtables as
6367 well as those that are not loaded. */
6368 if (h->vtable_parent == NULL)
6369 return true;
6370
6371 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6372 || h->root.type == bfd_link_hash_defweak);
6373
6374 sec = h->root.u.def.section;
6375 hstart = h->root.u.def.value;
6376 hend = hstart + h->size;
6377
6378 relstart = (NAME(_bfd_elf,link_read_relocs)
6379 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6380 if (!relstart)
6381 return *(boolean *)okp = false;
6382 bed = get_elf_backend_data (sec->owner);
6383 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6384
6385 for (rel = relstart; rel < relend; ++rel)
6386 if (rel->r_offset >= hstart && rel->r_offset < hend)
6387 {
6388 /* If the entry is in use, do nothing. */
6389 if (h->vtable_entries_used
6390 && (rel->r_offset - hstart) < h->vtable_entries_size)
6391 {
6392 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6393 if (h->vtable_entries_used[entry])
6394 continue;
6395 }
6396 /* Otherwise, kill it. */
6397 rel->r_offset = rel->r_info = rel->r_addend = 0;
6398 }
6399
6400 return true;
6401 }
6402
6403 /* Do mark and sweep of unused sections. */
6404
6405 boolean
6406 elf_gc_sections (abfd, info)
6407 bfd *abfd;
6408 struct bfd_link_info *info;
6409 {
6410 boolean ok = true;
6411 bfd *sub;
6412 asection * (*gc_mark_hook)
6413 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6414 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6415
6416 if (!get_elf_backend_data (abfd)->can_gc_sections
6417 || info->relocateable
6418 || elf_hash_table (info)->dynamic_sections_created)
6419 return true;
6420
6421 /* Apply transitive closure to the vtable entry usage info. */
6422 elf_link_hash_traverse (elf_hash_table (info),
6423 elf_gc_propagate_vtable_entries_used,
6424 (PTR) &ok);
6425 if (!ok)
6426 return false;
6427
6428 /* Kill the vtable relocations that were not used. */
6429 elf_link_hash_traverse (elf_hash_table (info),
6430 elf_gc_smash_unused_vtentry_relocs,
6431 (PTR) &ok);
6432 if (!ok)
6433 return false;
6434
6435 /* Grovel through relocs to find out who stays ... */
6436
6437 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6438 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6439 {
6440 asection *o;
6441 for (o = sub->sections; o != NULL; o = o->next)
6442 {
6443 if (o->flags & SEC_KEEP)
6444 if (!elf_gc_mark (info, o, gc_mark_hook))
6445 return false;
6446 }
6447 }
6448
6449 /* ... and mark SEC_EXCLUDE for those that go. */
6450 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6451 return false;
6452
6453 return true;
6454 }
6455 \f
6456 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6457
6458 boolean
6459 elf_gc_record_vtinherit (abfd, sec, h, offset)
6460 bfd *abfd;
6461 asection *sec;
6462 struct elf_link_hash_entry *h;
6463 bfd_vma offset;
6464 {
6465 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6466 struct elf_link_hash_entry **search, *child;
6467 bfd_size_type extsymcount;
6468
6469 /* The sh_info field of the symtab header tells us where the
6470 external symbols start. We don't care about the local symbols at
6471 this point. */
6472 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6473 if (!elf_bad_symtab (abfd))
6474 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6475
6476 sym_hashes = elf_sym_hashes (abfd);
6477 sym_hashes_end = sym_hashes + extsymcount;
6478
6479 /* Hunt down the child symbol, which is in this section at the same
6480 offset as the relocation. */
6481 for (search = sym_hashes; search != sym_hashes_end; ++search)
6482 {
6483 if ((child = *search) != NULL
6484 && (child->root.type == bfd_link_hash_defined
6485 || child->root.type == bfd_link_hash_defweak)
6486 && child->root.u.def.section == sec
6487 && child->root.u.def.value == offset)
6488 goto win;
6489 }
6490
6491 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6492 bfd_get_filename (abfd), sec->name,
6493 (unsigned long)offset);
6494 bfd_set_error (bfd_error_invalid_operation);
6495 return false;
6496
6497 win:
6498 if (!h)
6499 {
6500 /* This *should* only be the absolute section. It could potentially
6501 be that someone has defined a non-global vtable though, which
6502 would be bad. It isn't worth paging in the local symbols to be
6503 sure though; that case should simply be handled by the assembler. */
6504
6505 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6506 }
6507 else
6508 child->vtable_parent = h;
6509
6510 return true;
6511 }
6512
6513 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
6514
6515 boolean
6516 elf_gc_record_vtentry (abfd, sec, h, addend)
6517 bfd *abfd ATTRIBUTE_UNUSED;
6518 asection *sec ATTRIBUTE_UNUSED;
6519 struct elf_link_hash_entry *h;
6520 bfd_vma addend;
6521 {
6522 if (addend >= h->vtable_entries_size)
6523 {
6524 size_t size, bytes;
6525 boolean *ptr = h->vtable_entries_used;
6526
6527 /* While the symbol is undefined, we have to be prepared to handle
6528 a zero size. */
6529 if (h->root.type == bfd_link_hash_undefined)
6530 size = addend;
6531 else
6532 {
6533 size = h->size;
6534 if (size < addend)
6535 {
6536 /* Oops! We've got a reference past the defined end of
6537 the table. This is probably a bug -- shall we warn? */
6538 size = addend;
6539 }
6540 }
6541
6542 /* Allocate one extra entry for use as a "done" flag for the
6543 consolidation pass. */
6544 bytes = (size / FILE_ALIGN + 1) * sizeof (boolean);
6545
6546 if (ptr)
6547 {
6548 ptr = bfd_realloc (ptr - 1, bytes);
6549
6550 if (ptr != NULL)
6551 {
6552 size_t oldbytes;
6553
6554 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean);
6555 memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
6556 }
6557 }
6558 else
6559 ptr = bfd_zmalloc (bytes);
6560
6561 if (ptr == NULL)
6562 return false;
6563
6564 /* And arrange for that done flag to be at index -1. */
6565 h->vtable_entries_used = ptr + 1;
6566 h->vtable_entries_size = size;
6567 }
6568
6569 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6570
6571 return true;
6572 }
6573
6574 /* And an accompanying bit to work out final got entry offsets once
6575 we're done. Should be called from final_link. */
6576
6577 boolean
6578 elf_gc_common_finalize_got_offsets (abfd, info)
6579 bfd *abfd;
6580 struct bfd_link_info *info;
6581 {
6582 bfd *i;
6583 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6584 bfd_vma gotoff;
6585
6586 /* The GOT offset is relative to the .got section, but the GOT header is
6587 put into the .got.plt section, if the backend uses it. */
6588 if (bed->want_got_plt)
6589 gotoff = 0;
6590 else
6591 gotoff = bed->got_header_size;
6592
6593 /* Do the local .got entries first. */
6594 for (i = info->input_bfds; i; i = i->link_next)
6595 {
6596 bfd_signed_vma *local_got = elf_local_got_refcounts (i);
6597 bfd_size_type j, locsymcount;
6598 Elf_Internal_Shdr *symtab_hdr;
6599
6600 if (!local_got)
6601 continue;
6602
6603 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6604 if (elf_bad_symtab (i))
6605 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6606 else
6607 locsymcount = symtab_hdr->sh_info;
6608
6609 for (j = 0; j < locsymcount; ++j)
6610 {
6611 if (local_got[j] > 0)
6612 {
6613 local_got[j] = gotoff;
6614 gotoff += ARCH_SIZE / 8;
6615 }
6616 else
6617 local_got[j] = (bfd_vma) -1;
6618 }
6619 }
6620
6621 /* Then the global .got and .plt entries. */
6622 elf_link_hash_traverse (elf_hash_table (info),
6623 elf_gc_allocate_got_offsets,
6624 (PTR) &gotoff);
6625 return true;
6626 }
6627
6628 /* We need a special top-level link routine to convert got reference counts
6629 to real got offsets. */
6630
6631 static boolean
6632 elf_gc_allocate_got_offsets (h, offarg)
6633 struct elf_link_hash_entry *h;
6634 PTR offarg;
6635 {
6636 bfd_vma *off = (bfd_vma *) offarg;
6637
6638 if (h->got.refcount > 0)
6639 {
6640 h->got.offset = off[0];
6641 off[0] += ARCH_SIZE / 8;
6642 }
6643 else
6644 h->got.offset = (bfd_vma) -1;
6645
6646 return true;
6647 }
6648
6649 /* Many folk need no more in the way of final link than this, once
6650 got entry reference counting is enabled. */
6651
6652 boolean
6653 elf_gc_common_final_link (abfd, info)
6654 bfd *abfd;
6655 struct bfd_link_info *info;
6656 {
6657 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6658 return false;
6659
6660 /* Invoke the regular ELF backend linker to do all the work. */
6661 return elf_bfd_final_link (abfd, info);
6662 }
6663
6664 /* This function will be called though elf_link_hash_traverse to store
6665 all hash value of the exported symbols in an array. */
6666
6667 static boolean
6668 elf_collect_hash_codes (h, data)
6669 struct elf_link_hash_entry *h;
6670 PTR data;
6671 {
6672 unsigned long **valuep = (unsigned long **) data;
6673 const char *name;
6674 char *p;
6675 unsigned long ha;
6676 char *alc = NULL;
6677
6678 /* Ignore indirect symbols. These are added by the versioning code. */
6679 if (h->dynindx == -1)
6680 return true;
6681
6682 name = h->root.root.string;
6683 p = strchr (name, ELF_VER_CHR);
6684 if (p != NULL)
6685 {
6686 alc = bfd_malloc (p - name + 1);
6687 memcpy (alc, name, p - name);
6688 alc[p - name] = '\0';
6689 name = alc;
6690 }
6691
6692 /* Compute the hash value. */
6693 ha = bfd_elf_hash (name);
6694
6695 /* Store the found hash value in the array given as the argument. */
6696 *(*valuep)++ = ha;
6697
6698 /* And store it in the struct so that we can put it in the hash table
6699 later. */
6700 h->elf_hash_value = ha;
6701
6702 if (alc != NULL)
6703 free (alc);
6704
6705 return true;
6706 }