* elflink.h (elf_link_add_object_symbols): Copy NON_GOT_REF flag
[binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /* ELF linker code. */
21
22 /* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25 struct elf_info_failed
26 {
27 boolean failed;
28 struct bfd_link_info *info;
29 };
30
31 static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33 static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35 static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39 static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41 static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43 static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45 static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49 static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51 static boolean elf_collect_hash_codes
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53 static boolean elf_link_read_relocs_from_section
54 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
55 static void elf_link_output_relocs
56 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
57 static boolean elf_link_size_reloc_section
58 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
59 static void elf_link_adjust_relocs
60 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
61 struct elf_link_hash_entry **));
62
63 /* Given an ELF BFD, add symbols to the global hash table as
64 appropriate. */
65
66 boolean
67 elf_bfd_link_add_symbols (abfd, info)
68 bfd *abfd;
69 struct bfd_link_info *info;
70 {
71 switch (bfd_get_format (abfd))
72 {
73 case bfd_object:
74 return elf_link_add_object_symbols (abfd, info);
75 case bfd_archive:
76 return elf_link_add_archive_symbols (abfd, info);
77 default:
78 bfd_set_error (bfd_error_wrong_format);
79 return false;
80 }
81 }
82 \f
83
84 /* Add symbols from an ELF archive file to the linker hash table. We
85 don't use _bfd_generic_link_add_archive_symbols because of a
86 problem which arises on UnixWare. The UnixWare libc.so is an
87 archive which includes an entry libc.so.1 which defines a bunch of
88 symbols. The libc.so archive also includes a number of other
89 object files, which also define symbols, some of which are the same
90 as those defined in libc.so.1. Correct linking requires that we
91 consider each object file in turn, and include it if it defines any
92 symbols we need. _bfd_generic_link_add_archive_symbols does not do
93 this; it looks through the list of undefined symbols, and includes
94 any object file which defines them. When this algorithm is used on
95 UnixWare, it winds up pulling in libc.so.1 early and defining a
96 bunch of symbols. This means that some of the other objects in the
97 archive are not included in the link, which is incorrect since they
98 precede libc.so.1 in the archive.
99
100 Fortunately, ELF archive handling is simpler than that done by
101 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
102 oddities. In ELF, if we find a symbol in the archive map, and the
103 symbol is currently undefined, we know that we must pull in that
104 object file.
105
106 Unfortunately, we do have to make multiple passes over the symbol
107 table until nothing further is resolved. */
108
109 static boolean
110 elf_link_add_archive_symbols (abfd, info)
111 bfd *abfd;
112 struct bfd_link_info *info;
113 {
114 symindex c;
115 boolean *defined = NULL;
116 boolean *included = NULL;
117 carsym *symdefs;
118 boolean loop;
119
120 if (! bfd_has_map (abfd))
121 {
122 /* An empty archive is a special case. */
123 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
124 return true;
125 bfd_set_error (bfd_error_no_armap);
126 return false;
127 }
128
129 /* Keep track of all symbols we know to be already defined, and all
130 files we know to be already included. This is to speed up the
131 second and subsequent passes. */
132 c = bfd_ardata (abfd)->symdef_count;
133 if (c == 0)
134 return true;
135 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
136 included = (boolean *) bfd_malloc (c * sizeof (boolean));
137 if (defined == (boolean *) NULL || included == (boolean *) NULL)
138 goto error_return;
139 memset (defined, 0, c * sizeof (boolean));
140 memset (included, 0, c * sizeof (boolean));
141
142 symdefs = bfd_ardata (abfd)->symdefs;
143
144 do
145 {
146 file_ptr last;
147 symindex i;
148 carsym *symdef;
149 carsym *symdefend;
150
151 loop = false;
152 last = -1;
153
154 symdef = symdefs;
155 symdefend = symdef + c;
156 for (i = 0; symdef < symdefend; symdef++, i++)
157 {
158 struct elf_link_hash_entry *h;
159 bfd *element;
160 struct bfd_link_hash_entry *undefs_tail;
161 symindex mark;
162
163 if (defined[i] || included[i])
164 continue;
165 if (symdef->file_offset == last)
166 {
167 included[i] = true;
168 continue;
169 }
170
171 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
172 false, false, false);
173
174 if (h == NULL)
175 {
176 char *p, *copy;
177
178 /* If this is a default version (the name contains @@),
179 look up the symbol again without the version. The
180 effect is that references to the symbol without the
181 version will be matched by the default symbol in the
182 archive. */
183
184 p = strchr (symdef->name, ELF_VER_CHR);
185 if (p == NULL || p[1] != ELF_VER_CHR)
186 continue;
187
188 copy = bfd_alloc (abfd, p - symdef->name + 1);
189 if (copy == NULL)
190 goto error_return;
191 memcpy (copy, symdef->name, p - symdef->name);
192 copy[p - symdef->name] = '\0';
193
194 h = elf_link_hash_lookup (elf_hash_table (info), copy,
195 false, false, false);
196
197 bfd_release (abfd, copy);
198 }
199
200 if (h == NULL)
201 continue;
202
203 if (h->root.type != bfd_link_hash_undefined)
204 {
205 if (h->root.type != bfd_link_hash_undefweak)
206 defined[i] = true;
207 continue;
208 }
209
210 /* We need to include this archive member. */
211
212 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
213 if (element == (bfd *) NULL)
214 goto error_return;
215
216 if (! bfd_check_format (element, bfd_object))
217 goto error_return;
218
219 /* Doublecheck that we have not included this object
220 already--it should be impossible, but there may be
221 something wrong with the archive. */
222 if (element->archive_pass != 0)
223 {
224 bfd_set_error (bfd_error_bad_value);
225 goto error_return;
226 }
227 element->archive_pass = 1;
228
229 undefs_tail = info->hash->undefs_tail;
230
231 if (! (*info->callbacks->add_archive_element) (info, element,
232 symdef->name))
233 goto error_return;
234 if (! elf_link_add_object_symbols (element, info))
235 goto error_return;
236
237 /* If there are any new undefined symbols, we need to make
238 another pass through the archive in order to see whether
239 they can be defined. FIXME: This isn't perfect, because
240 common symbols wind up on undefs_tail and because an
241 undefined symbol which is defined later on in this pass
242 does not require another pass. This isn't a bug, but it
243 does make the code less efficient than it could be. */
244 if (undefs_tail != info->hash->undefs_tail)
245 loop = true;
246
247 /* Look backward to mark all symbols from this object file
248 which we have already seen in this pass. */
249 mark = i;
250 do
251 {
252 included[mark] = true;
253 if (mark == 0)
254 break;
255 --mark;
256 }
257 while (symdefs[mark].file_offset == symdef->file_offset);
258
259 /* We mark subsequent symbols from this object file as we go
260 on through the loop. */
261 last = symdef->file_offset;
262 }
263 }
264 while (loop);
265
266 free (defined);
267 free (included);
268
269 return true;
270
271 error_return:
272 if (defined != (boolean *) NULL)
273 free (defined);
274 if (included != (boolean *) NULL)
275 free (included);
276 return false;
277 }
278
279 /* This function is called when we want to define a new symbol. It
280 handles the various cases which arise when we find a definition in
281 a dynamic object, or when there is already a definition in a
282 dynamic object. The new symbol is described by NAME, SYM, PSEC,
283 and PVALUE. We set SYM_HASH to the hash table entry. We set
284 OVERRIDE if the old symbol is overriding a new definition. We set
285 TYPE_CHANGE_OK if it is OK for the type to change. We set
286 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
287 change, we mean that we shouldn't warn if the type or size does
288 change. */
289
290 static boolean
291 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
292 override, type_change_ok, size_change_ok)
293 bfd *abfd;
294 struct bfd_link_info *info;
295 const char *name;
296 Elf_Internal_Sym *sym;
297 asection **psec;
298 bfd_vma *pvalue;
299 struct elf_link_hash_entry **sym_hash;
300 boolean *override;
301 boolean *type_change_ok;
302 boolean *size_change_ok;
303 {
304 asection *sec;
305 struct elf_link_hash_entry *h;
306 int bind;
307 bfd *oldbfd;
308 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
309
310 *override = false;
311
312 sec = *psec;
313 bind = ELF_ST_BIND (sym->st_info);
314
315 if (! bfd_is_und_section (sec))
316 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
317 else
318 h = ((struct elf_link_hash_entry *)
319 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
320 if (h == NULL)
321 return false;
322 *sym_hash = h;
323
324 /* This code is for coping with dynamic objects, and is only useful
325 if we are doing an ELF link. */
326 if (info->hash->creator != abfd->xvec)
327 return true;
328
329 /* For merging, we only care about real symbols. */
330
331 while (h->root.type == bfd_link_hash_indirect
332 || h->root.type == bfd_link_hash_warning)
333 h = (struct elf_link_hash_entry *) h->root.u.i.link;
334
335 /* If we just created the symbol, mark it as being an ELF symbol.
336 Other than that, there is nothing to do--there is no merge issue
337 with a newly defined symbol--so we just return. */
338
339 if (h->root.type == bfd_link_hash_new)
340 {
341 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
342 return true;
343 }
344
345 /* OLDBFD is a BFD associated with the existing symbol. */
346
347 switch (h->root.type)
348 {
349 default:
350 oldbfd = NULL;
351 break;
352
353 case bfd_link_hash_undefined:
354 case bfd_link_hash_undefweak:
355 oldbfd = h->root.u.undef.abfd;
356 break;
357
358 case bfd_link_hash_defined:
359 case bfd_link_hash_defweak:
360 oldbfd = h->root.u.def.section->owner;
361 break;
362
363 case bfd_link_hash_common:
364 oldbfd = h->root.u.c.p->section->owner;
365 break;
366 }
367
368 /* In cases involving weak versioned symbols, we may wind up trying
369 to merge a symbol with itself. Catch that here, to avoid the
370 confusion that results if we try to override a symbol with
371 itself. The additional tests catch cases like
372 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
373 dynamic object, which we do want to handle here. */
374 if (abfd == oldbfd
375 && ((abfd->flags & DYNAMIC) == 0
376 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
377 return true;
378
379 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
380 respectively, is from a dynamic object. */
381
382 if ((abfd->flags & DYNAMIC) != 0)
383 newdyn = true;
384 else
385 newdyn = false;
386
387 if (oldbfd != NULL)
388 olddyn = (oldbfd->flags & DYNAMIC) != 0;
389 else
390 {
391 asection *hsec;
392
393 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
394 indices used by MIPS ELF. */
395 switch (h->root.type)
396 {
397 default:
398 hsec = NULL;
399 break;
400
401 case bfd_link_hash_defined:
402 case bfd_link_hash_defweak:
403 hsec = h->root.u.def.section;
404 break;
405
406 case bfd_link_hash_common:
407 hsec = h->root.u.c.p->section;
408 break;
409 }
410
411 if (hsec == NULL)
412 olddyn = false;
413 else
414 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
415 }
416
417 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
418 respectively, appear to be a definition rather than reference. */
419
420 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
421 newdef = false;
422 else
423 newdef = true;
424
425 if (h->root.type == bfd_link_hash_undefined
426 || h->root.type == bfd_link_hash_undefweak
427 || h->root.type == bfd_link_hash_common)
428 olddef = false;
429 else
430 olddef = true;
431
432 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
433 symbol, respectively, appears to be a common symbol in a dynamic
434 object. If a symbol appears in an uninitialized section, and is
435 not weak, and is not a function, then it may be a common symbol
436 which was resolved when the dynamic object was created. We want
437 to treat such symbols specially, because they raise special
438 considerations when setting the symbol size: if the symbol
439 appears as a common symbol in a regular object, and the size in
440 the regular object is larger, we must make sure that we use the
441 larger size. This problematic case can always be avoided in C,
442 but it must be handled correctly when using Fortran shared
443 libraries.
444
445 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
446 likewise for OLDDYNCOMMON and OLDDEF.
447
448 Note that this test is just a heuristic, and that it is quite
449 possible to have an uninitialized symbol in a shared object which
450 is really a definition, rather than a common symbol. This could
451 lead to some minor confusion when the symbol really is a common
452 symbol in some regular object. However, I think it will be
453 harmless. */
454
455 if (newdyn
456 && newdef
457 && (sec->flags & SEC_ALLOC) != 0
458 && (sec->flags & SEC_LOAD) == 0
459 && sym->st_size > 0
460 && bind != STB_WEAK
461 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
462 newdyncommon = true;
463 else
464 newdyncommon = false;
465
466 if (olddyn
467 && olddef
468 && h->root.type == bfd_link_hash_defined
469 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
470 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
471 && (h->root.u.def.section->flags & SEC_LOAD) == 0
472 && h->size > 0
473 && h->type != STT_FUNC)
474 olddyncommon = true;
475 else
476 olddyncommon = false;
477
478 /* It's OK to change the type if either the existing symbol or the
479 new symbol is weak. */
480
481 if (h->root.type == bfd_link_hash_defweak
482 || h->root.type == bfd_link_hash_undefweak
483 || bind == STB_WEAK)
484 *type_change_ok = true;
485
486 /* It's OK to change the size if either the existing symbol or the
487 new symbol is weak, or if the old symbol is undefined. */
488
489 if (*type_change_ok
490 || h->root.type == bfd_link_hash_undefined)
491 *size_change_ok = true;
492
493 /* If both the old and the new symbols look like common symbols in a
494 dynamic object, set the size of the symbol to the larger of the
495 two. */
496
497 if (olddyncommon
498 && newdyncommon
499 && sym->st_size != h->size)
500 {
501 /* Since we think we have two common symbols, issue a multiple
502 common warning if desired. Note that we only warn if the
503 size is different. If the size is the same, we simply let
504 the old symbol override the new one as normally happens with
505 symbols defined in dynamic objects. */
506
507 if (! ((*info->callbacks->multiple_common)
508 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
509 h->size, abfd, bfd_link_hash_common, sym->st_size)))
510 return false;
511
512 if (sym->st_size > h->size)
513 h->size = sym->st_size;
514
515 *size_change_ok = true;
516 }
517
518 /* If we are looking at a dynamic object, and we have found a
519 definition, we need to see if the symbol was already defined by
520 some other object. If so, we want to use the existing
521 definition, and we do not want to report a multiple symbol
522 definition error; we do this by clobbering *PSEC to be
523 bfd_und_section_ptr.
524
525 We treat a common symbol as a definition if the symbol in the
526 shared library is a function, since common symbols always
527 represent variables; this can cause confusion in principle, but
528 any such confusion would seem to indicate an erroneous program or
529 shared library. We also permit a common symbol in a regular
530 object to override a weak symbol in a shared object.
531
532 We prefer a non-weak definition in a shared library to a weak
533 definition in the executable. */
534
535 if (newdyn
536 && newdef
537 && (olddef
538 || (h->root.type == bfd_link_hash_common
539 && (bind == STB_WEAK
540 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
541 && (h->root.type != bfd_link_hash_defweak
542 || bind == STB_WEAK))
543 {
544 *override = true;
545 newdef = false;
546 newdyncommon = false;
547
548 *psec = sec = bfd_und_section_ptr;
549 *size_change_ok = true;
550
551 /* If we get here when the old symbol is a common symbol, then
552 we are explicitly letting it override a weak symbol or
553 function in a dynamic object, and we don't want to warn about
554 a type change. If the old symbol is a defined symbol, a type
555 change warning may still be appropriate. */
556
557 if (h->root.type == bfd_link_hash_common)
558 *type_change_ok = true;
559 }
560
561 /* Handle the special case of an old common symbol merging with a
562 new symbol which looks like a common symbol in a shared object.
563 We change *PSEC and *PVALUE to make the new symbol look like a
564 common symbol, and let _bfd_generic_link_add_one_symbol will do
565 the right thing. */
566
567 if (newdyncommon
568 && h->root.type == bfd_link_hash_common)
569 {
570 *override = true;
571 newdef = false;
572 newdyncommon = false;
573 *pvalue = sym->st_size;
574 *psec = sec = bfd_com_section_ptr;
575 *size_change_ok = true;
576 }
577
578 /* If the old symbol is from a dynamic object, and the new symbol is
579 a definition which is not from a dynamic object, then the new
580 symbol overrides the old symbol. Symbols from regular files
581 always take precedence over symbols from dynamic objects, even if
582 they are defined after the dynamic object in the link.
583
584 As above, we again permit a common symbol in a regular object to
585 override a definition in a shared object if the shared object
586 symbol is a function or is weak.
587
588 As above, we permit a non-weak definition in a shared object to
589 override a weak definition in a regular object. */
590
591 if (! newdyn
592 && (newdef
593 || (bfd_is_com_section (sec)
594 && (h->root.type == bfd_link_hash_defweak
595 || h->type == STT_FUNC)))
596 && olddyn
597 && olddef
598 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
599 && (bind != STB_WEAK
600 || h->root.type == bfd_link_hash_defweak))
601 {
602 /* Change the hash table entry to undefined, and let
603 _bfd_generic_link_add_one_symbol do the right thing with the
604 new definition. */
605
606 h->root.type = bfd_link_hash_undefined;
607 h->root.u.undef.abfd = h->root.u.def.section->owner;
608 *size_change_ok = true;
609
610 olddef = false;
611 olddyncommon = false;
612
613 /* We again permit a type change when a common symbol may be
614 overriding a function. */
615
616 if (bfd_is_com_section (sec))
617 *type_change_ok = true;
618
619 /* This union may have been set to be non-NULL when this symbol
620 was seen in a dynamic object. We must force the union to be
621 NULL, so that it is correct for a regular symbol. */
622
623 h->verinfo.vertree = NULL;
624
625 /* In this special case, if H is the target of an indirection,
626 we want the caller to frob with H rather than with the
627 indirect symbol. That will permit the caller to redefine the
628 target of the indirection, rather than the indirect symbol
629 itself. FIXME: This will break the -y option if we store a
630 symbol with a different name. */
631 *sym_hash = h;
632 }
633
634 /* Handle the special case of a new common symbol merging with an
635 old symbol that looks like it might be a common symbol defined in
636 a shared object. Note that we have already handled the case in
637 which a new common symbol should simply override the definition
638 in the shared library. */
639
640 if (! newdyn
641 && bfd_is_com_section (sec)
642 && olddyncommon)
643 {
644 /* It would be best if we could set the hash table entry to a
645 common symbol, but we don't know what to use for the section
646 or the alignment. */
647 if (! ((*info->callbacks->multiple_common)
648 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
649 h->size, abfd, bfd_link_hash_common, sym->st_size)))
650 return false;
651
652 /* If the predumed common symbol in the dynamic object is
653 larger, pretend that the new symbol has its size. */
654
655 if (h->size > *pvalue)
656 *pvalue = h->size;
657
658 /* FIXME: We no longer know the alignment required by the symbol
659 in the dynamic object, so we just wind up using the one from
660 the regular object. */
661
662 olddef = false;
663 olddyncommon = false;
664
665 h->root.type = bfd_link_hash_undefined;
666 h->root.u.undef.abfd = h->root.u.def.section->owner;
667
668 *size_change_ok = true;
669 *type_change_ok = true;
670
671 h->verinfo.vertree = NULL;
672 }
673
674 /* Handle the special case of a weak definition in a regular object
675 followed by a non-weak definition in a shared object. In this
676 case, we prefer the definition in the shared object. */
677 if (olddef
678 && h->root.type == bfd_link_hash_defweak
679 && newdef
680 && newdyn
681 && bind != STB_WEAK)
682 {
683 /* To make this work we have to frob the flags so that the rest
684 of the code does not think we are using the regular
685 definition. */
686 h->elf_link_hash_flags &= ~ ELF_LINK_HASH_DEF_REGULAR;
687 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
688
689 /* If H is the target of an indirection, we want the caller to
690 use H rather than the indirect symbol. Otherwise if we are
691 defining a new indirect symbol we will wind up attaching it
692 to the entry we are overriding. */
693 *sym_hash = h;
694 }
695
696 /* Handle the special case of a non-weak definition in a shared
697 object followed by a weak definition in a regular object. In
698 this case we prefer to definition in the shared object. To make
699 this work we have to tell the caller to not treat the new symbol
700 as a definition. */
701 if (olddef
702 && olddyn
703 && h->root.type != bfd_link_hash_defweak
704 && newdef
705 && ! newdyn
706 && bind == STB_WEAK)
707 *override = true;
708
709 return true;
710 }
711
712 /* Add symbols from an ELF object file to the linker hash table. */
713
714 static boolean
715 elf_link_add_object_symbols (abfd, info)
716 bfd *abfd;
717 struct bfd_link_info *info;
718 {
719 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
720 const Elf_Internal_Sym *,
721 const char **, flagword *,
722 asection **, bfd_vma *));
723 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
724 asection *, const Elf_Internal_Rela *));
725 boolean collect;
726 Elf_Internal_Shdr *hdr;
727 size_t symcount;
728 size_t extsymcount;
729 size_t extsymoff;
730 Elf_External_Sym *buf = NULL;
731 struct elf_link_hash_entry **sym_hash;
732 boolean dynamic;
733 bfd_byte *dynver = NULL;
734 Elf_External_Versym *extversym = NULL;
735 Elf_External_Versym *ever;
736 Elf_External_Dyn *dynbuf = NULL;
737 struct elf_link_hash_entry *weaks;
738 Elf_External_Sym *esym;
739 Elf_External_Sym *esymend;
740
741 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
742 collect = get_elf_backend_data (abfd)->collect;
743
744 if ((abfd->flags & DYNAMIC) == 0)
745 dynamic = false;
746 else
747 {
748 dynamic = true;
749
750 /* You can't use -r against a dynamic object. Also, there's no
751 hope of using a dynamic object which does not exactly match
752 the format of the output file. */
753 if (info->relocateable || info->hash->creator != abfd->xvec)
754 {
755 bfd_set_error (bfd_error_invalid_operation);
756 goto error_return;
757 }
758 }
759
760 /* As a GNU extension, any input sections which are named
761 .gnu.warning.SYMBOL are treated as warning symbols for the given
762 symbol. This differs from .gnu.warning sections, which generate
763 warnings when they are included in an output file. */
764 if (! info->shared)
765 {
766 asection *s;
767
768 for (s = abfd->sections; s != NULL; s = s->next)
769 {
770 const char *name;
771
772 name = bfd_get_section_name (abfd, s);
773 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
774 {
775 char *msg;
776 bfd_size_type sz;
777
778 name += sizeof ".gnu.warning." - 1;
779
780 /* If this is a shared object, then look up the symbol
781 in the hash table. If it is there, and it is already
782 been defined, then we will not be using the entry
783 from this shared object, so we don't need to warn.
784 FIXME: If we see the definition in a regular object
785 later on, we will warn, but we shouldn't. The only
786 fix is to keep track of what warnings we are supposed
787 to emit, and then handle them all at the end of the
788 link. */
789 if (dynamic && abfd->xvec == info->hash->creator)
790 {
791 struct elf_link_hash_entry *h;
792
793 h = elf_link_hash_lookup (elf_hash_table (info), name,
794 false, false, true);
795
796 /* FIXME: What about bfd_link_hash_common? */
797 if (h != NULL
798 && (h->root.type == bfd_link_hash_defined
799 || h->root.type == bfd_link_hash_defweak))
800 {
801 /* We don't want to issue this warning. Clobber
802 the section size so that the warning does not
803 get copied into the output file. */
804 s->_raw_size = 0;
805 continue;
806 }
807 }
808
809 sz = bfd_section_size (abfd, s);
810 msg = (char *) bfd_alloc (abfd, sz + 1);
811 if (msg == NULL)
812 goto error_return;
813
814 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
815 goto error_return;
816
817 msg[sz] = '\0';
818
819 if (! (_bfd_generic_link_add_one_symbol
820 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
821 false, collect, (struct bfd_link_hash_entry **) NULL)))
822 goto error_return;
823
824 if (! info->relocateable)
825 {
826 /* Clobber the section size so that the warning does
827 not get copied into the output file. */
828 s->_raw_size = 0;
829 }
830 }
831 }
832 }
833
834 /* If this is a dynamic object, we always link against the .dynsym
835 symbol table, not the .symtab symbol table. The dynamic linker
836 will only see the .dynsym symbol table, so there is no reason to
837 look at .symtab for a dynamic object. */
838
839 if (! dynamic || elf_dynsymtab (abfd) == 0)
840 hdr = &elf_tdata (abfd)->symtab_hdr;
841 else
842 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
843
844 if (dynamic)
845 {
846 /* Read in any version definitions. */
847
848 if (! _bfd_elf_slurp_version_tables (abfd))
849 goto error_return;
850
851 /* Read in the symbol versions, but don't bother to convert them
852 to internal format. */
853 if (elf_dynversym (abfd) != 0)
854 {
855 Elf_Internal_Shdr *versymhdr;
856
857 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
858 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
859 if (extversym == NULL)
860 goto error_return;
861 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
862 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
863 != versymhdr->sh_size))
864 goto error_return;
865 }
866 }
867
868 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
869
870 /* The sh_info field of the symtab header tells us where the
871 external symbols start. We don't care about the local symbols at
872 this point. */
873 if (elf_bad_symtab (abfd))
874 {
875 extsymcount = symcount;
876 extsymoff = 0;
877 }
878 else
879 {
880 extsymcount = symcount - hdr->sh_info;
881 extsymoff = hdr->sh_info;
882 }
883
884 buf = ((Elf_External_Sym *)
885 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
886 if (buf == NULL && extsymcount != 0)
887 goto error_return;
888
889 /* We store a pointer to the hash table entry for each external
890 symbol. */
891 sym_hash = ((struct elf_link_hash_entry **)
892 bfd_alloc (abfd,
893 extsymcount * sizeof (struct elf_link_hash_entry *)));
894 if (sym_hash == NULL)
895 goto error_return;
896 elf_sym_hashes (abfd) = sym_hash;
897
898 if (! dynamic)
899 {
900 /* If we are creating a shared library, create all the dynamic
901 sections immediately. We need to attach them to something,
902 so we attach them to this BFD, provided it is the right
903 format. FIXME: If there are no input BFD's of the same
904 format as the output, we can't make a shared library. */
905 if (info->shared
906 && ! elf_hash_table (info)->dynamic_sections_created
907 && abfd->xvec == info->hash->creator)
908 {
909 if (! elf_link_create_dynamic_sections (abfd, info))
910 goto error_return;
911 }
912 }
913 else
914 {
915 asection *s;
916 boolean add_needed;
917 const char *name;
918 bfd_size_type oldsize;
919 bfd_size_type strindex;
920
921 /* Find the name to use in a DT_NEEDED entry that refers to this
922 object. If the object has a DT_SONAME entry, we use it.
923 Otherwise, if the generic linker stuck something in
924 elf_dt_name, we use that. Otherwise, we just use the file
925 name. If the generic linker put a null string into
926 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
927 there is a DT_SONAME entry. */
928 add_needed = true;
929 name = bfd_get_filename (abfd);
930 if (elf_dt_name (abfd) != NULL)
931 {
932 name = elf_dt_name (abfd);
933 if (*name == '\0')
934 add_needed = false;
935 }
936 s = bfd_get_section_by_name (abfd, ".dynamic");
937 if (s != NULL)
938 {
939 Elf_External_Dyn *extdyn;
940 Elf_External_Dyn *extdynend;
941 int elfsec;
942 unsigned long link;
943
944 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
945 if (dynbuf == NULL)
946 goto error_return;
947
948 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
949 (file_ptr) 0, s->_raw_size))
950 goto error_return;
951
952 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
953 if (elfsec == -1)
954 goto error_return;
955 link = elf_elfsections (abfd)[elfsec]->sh_link;
956
957 {
958 /* The shared libraries distributed with hpux11 have a bogus
959 sh_link field for the ".dynamic" section. This code detects
960 when LINK refers to a section that is not a string table and
961 tries to find the string table for the ".dynsym" section
962 instead. */
963 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
964 if (hdr->sh_type != SHT_STRTAB)
965 {
966 asection *s = bfd_get_section_by_name (abfd, ".dynsym");
967 int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
968 if (elfsec == -1)
969 goto error_return;
970 link = elf_elfsections (abfd)[elfsec]->sh_link;
971 }
972 }
973
974 extdyn = dynbuf;
975 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
976 for (; extdyn < extdynend; extdyn++)
977 {
978 Elf_Internal_Dyn dyn;
979
980 elf_swap_dyn_in (abfd, extdyn, &dyn);
981 if (dyn.d_tag == DT_SONAME)
982 {
983 name = bfd_elf_string_from_elf_section (abfd, link,
984 dyn.d_un.d_val);
985 if (name == NULL)
986 goto error_return;
987 }
988 if (dyn.d_tag == DT_NEEDED)
989 {
990 struct bfd_link_needed_list *n, **pn;
991 char *fnm, *anm;
992
993 n = ((struct bfd_link_needed_list *)
994 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
995 fnm = bfd_elf_string_from_elf_section (abfd, link,
996 dyn.d_un.d_val);
997 if (n == NULL || fnm == NULL)
998 goto error_return;
999 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1000 if (anm == NULL)
1001 goto error_return;
1002 strcpy (anm, fnm);
1003 n->name = anm;
1004 n->by = abfd;
1005 n->next = NULL;
1006 for (pn = &elf_hash_table (info)->needed;
1007 *pn != NULL;
1008 pn = &(*pn)->next)
1009 ;
1010 *pn = n;
1011 }
1012 }
1013
1014 free (dynbuf);
1015 dynbuf = NULL;
1016 }
1017
1018 /* We do not want to include any of the sections in a dynamic
1019 object in the output file. We hack by simply clobbering the
1020 list of sections in the BFD. This could be handled more
1021 cleanly by, say, a new section flag; the existing
1022 SEC_NEVER_LOAD flag is not the one we want, because that one
1023 still implies that the section takes up space in the output
1024 file. */
1025 abfd->sections = NULL;
1026 abfd->section_count = 0;
1027
1028 /* If this is the first dynamic object found in the link, create
1029 the special sections required for dynamic linking. */
1030 if (! elf_hash_table (info)->dynamic_sections_created)
1031 {
1032 if (! elf_link_create_dynamic_sections (abfd, info))
1033 goto error_return;
1034 }
1035
1036 if (add_needed)
1037 {
1038 /* Add a DT_NEEDED entry for this dynamic object. */
1039 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1040 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1041 true, false);
1042 if (strindex == (bfd_size_type) -1)
1043 goto error_return;
1044
1045 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1046 {
1047 asection *sdyn;
1048 Elf_External_Dyn *dyncon, *dynconend;
1049
1050 /* The hash table size did not change, which means that
1051 the dynamic object name was already entered. If we
1052 have already included this dynamic object in the
1053 link, just ignore it. There is no reason to include
1054 a particular dynamic object more than once. */
1055 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1056 ".dynamic");
1057 BFD_ASSERT (sdyn != NULL);
1058
1059 dyncon = (Elf_External_Dyn *) sdyn->contents;
1060 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1061 sdyn->_raw_size);
1062 for (; dyncon < dynconend; dyncon++)
1063 {
1064 Elf_Internal_Dyn dyn;
1065
1066 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1067 &dyn);
1068 if (dyn.d_tag == DT_NEEDED
1069 && dyn.d_un.d_val == strindex)
1070 {
1071 if (buf != NULL)
1072 free (buf);
1073 if (extversym != NULL)
1074 free (extversym);
1075 return true;
1076 }
1077 }
1078 }
1079
1080 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1081 goto error_return;
1082 }
1083
1084 /* Save the SONAME, if there is one, because sometimes the
1085 linker emulation code will need to know it. */
1086 if (*name == '\0')
1087 name = bfd_get_filename (abfd);
1088 elf_dt_name (abfd) = name;
1089 }
1090
1091 if (bfd_seek (abfd,
1092 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1093 SEEK_SET) != 0
1094 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1095 != extsymcount * sizeof (Elf_External_Sym)))
1096 goto error_return;
1097
1098 weaks = NULL;
1099
1100 ever = extversym != NULL ? extversym + extsymoff : NULL;
1101 esymend = buf + extsymcount;
1102 for (esym = buf;
1103 esym < esymend;
1104 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1105 {
1106 Elf_Internal_Sym sym;
1107 int bind;
1108 bfd_vma value;
1109 asection *sec;
1110 flagword flags;
1111 const char *name;
1112 struct elf_link_hash_entry *h;
1113 boolean definition;
1114 boolean size_change_ok, type_change_ok;
1115 boolean new_weakdef;
1116 unsigned int old_alignment;
1117
1118 elf_swap_symbol_in (abfd, esym, &sym);
1119
1120 flags = BSF_NO_FLAGS;
1121 sec = NULL;
1122 value = sym.st_value;
1123 *sym_hash = NULL;
1124
1125 bind = ELF_ST_BIND (sym.st_info);
1126 if (bind == STB_LOCAL)
1127 {
1128 /* This should be impossible, since ELF requires that all
1129 global symbols follow all local symbols, and that sh_info
1130 point to the first global symbol. Unfortunatealy, Irix 5
1131 screws this up. */
1132 continue;
1133 }
1134 else if (bind == STB_GLOBAL)
1135 {
1136 if (sym.st_shndx != SHN_UNDEF
1137 && sym.st_shndx != SHN_COMMON)
1138 flags = BSF_GLOBAL;
1139 else
1140 flags = 0;
1141 }
1142 else if (bind == STB_WEAK)
1143 flags = BSF_WEAK;
1144 else
1145 {
1146 /* Leave it up to the processor backend. */
1147 }
1148
1149 if (sym.st_shndx == SHN_UNDEF)
1150 sec = bfd_und_section_ptr;
1151 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1152 {
1153 sec = section_from_elf_index (abfd, sym.st_shndx);
1154 if (sec == NULL)
1155 sec = bfd_abs_section_ptr;
1156 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1157 value -= sec->vma;
1158 }
1159 else if (sym.st_shndx == SHN_ABS)
1160 sec = bfd_abs_section_ptr;
1161 else if (sym.st_shndx == SHN_COMMON)
1162 {
1163 sec = bfd_com_section_ptr;
1164 /* What ELF calls the size we call the value. What ELF
1165 calls the value we call the alignment. */
1166 value = sym.st_size;
1167 }
1168 else
1169 {
1170 /* Leave it up to the processor backend. */
1171 }
1172
1173 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1174 if (name == (const char *) NULL)
1175 goto error_return;
1176
1177 if (add_symbol_hook)
1178 {
1179 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1180 &value))
1181 goto error_return;
1182
1183 /* The hook function sets the name to NULL if this symbol
1184 should be skipped for some reason. */
1185 if (name == (const char *) NULL)
1186 continue;
1187 }
1188
1189 /* Sanity check that all possibilities were handled. */
1190 if (sec == (asection *) NULL)
1191 {
1192 bfd_set_error (bfd_error_bad_value);
1193 goto error_return;
1194 }
1195
1196 if (bfd_is_und_section (sec)
1197 || bfd_is_com_section (sec))
1198 definition = false;
1199 else
1200 definition = true;
1201
1202 size_change_ok = false;
1203 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1204 old_alignment = 0;
1205 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1206 {
1207 Elf_Internal_Versym iver;
1208 unsigned int vernum = 0;
1209 boolean override;
1210
1211 if (ever != NULL)
1212 {
1213 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1214 vernum = iver.vs_vers & VERSYM_VERSION;
1215
1216 /* If this is a hidden symbol, or if it is not version
1217 1, we append the version name to the symbol name.
1218 However, we do not modify a non-hidden absolute
1219 symbol, because it might be the version symbol
1220 itself. FIXME: What if it isn't? */
1221 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1222 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1223 {
1224 const char *verstr;
1225 int namelen, newlen;
1226 char *newname, *p;
1227
1228 if (sym.st_shndx != SHN_UNDEF)
1229 {
1230 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1231 {
1232 (*_bfd_error_handler)
1233 (_("%s: %s: invalid version %u (max %d)"),
1234 bfd_get_filename (abfd), name, vernum,
1235 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1236 bfd_set_error (bfd_error_bad_value);
1237 goto error_return;
1238 }
1239 else if (vernum > 1)
1240 verstr =
1241 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1242 else
1243 verstr = "";
1244 }
1245 else
1246 {
1247 /* We cannot simply test for the number of
1248 entries in the VERNEED section since the
1249 numbers for the needed versions do not start
1250 at 0. */
1251 Elf_Internal_Verneed *t;
1252
1253 verstr = NULL;
1254 for (t = elf_tdata (abfd)->verref;
1255 t != NULL;
1256 t = t->vn_nextref)
1257 {
1258 Elf_Internal_Vernaux *a;
1259
1260 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1261 {
1262 if (a->vna_other == vernum)
1263 {
1264 verstr = a->vna_nodename;
1265 break;
1266 }
1267 }
1268 if (a != NULL)
1269 break;
1270 }
1271 if (verstr == NULL)
1272 {
1273 (*_bfd_error_handler)
1274 (_("%s: %s: invalid needed version %d"),
1275 bfd_get_filename (abfd), name, vernum);
1276 bfd_set_error (bfd_error_bad_value);
1277 goto error_return;
1278 }
1279 }
1280
1281 namelen = strlen (name);
1282 newlen = namelen + strlen (verstr) + 2;
1283 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1284 ++newlen;
1285
1286 newname = (char *) bfd_alloc (abfd, newlen);
1287 if (newname == NULL)
1288 goto error_return;
1289 strcpy (newname, name);
1290 p = newname + namelen;
1291 *p++ = ELF_VER_CHR;
1292 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1293 *p++ = ELF_VER_CHR;
1294 strcpy (p, verstr);
1295
1296 name = newname;
1297 }
1298 }
1299
1300 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1301 sym_hash, &override, &type_change_ok,
1302 &size_change_ok))
1303 goto error_return;
1304
1305 if (override)
1306 definition = false;
1307
1308 h = *sym_hash;
1309 while (h->root.type == bfd_link_hash_indirect
1310 || h->root.type == bfd_link_hash_warning)
1311 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1312
1313 /* Remember the old alignment if this is a common symbol, so
1314 that we don't reduce the alignment later on. We can't
1315 check later, because _bfd_generic_link_add_one_symbol
1316 will set a default for the alignment which we want to
1317 override. */
1318 if (h->root.type == bfd_link_hash_common)
1319 old_alignment = h->root.u.c.p->alignment_power;
1320
1321 if (elf_tdata (abfd)->verdef != NULL
1322 && ! override
1323 && vernum > 1
1324 && definition)
1325 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1326 }
1327
1328 if (! (_bfd_generic_link_add_one_symbol
1329 (info, abfd, name, flags, sec, value, (const char *) NULL,
1330 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1331 goto error_return;
1332
1333 h = *sym_hash;
1334 while (h->root.type == bfd_link_hash_indirect
1335 || h->root.type == bfd_link_hash_warning)
1336 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1337 *sym_hash = h;
1338
1339 new_weakdef = false;
1340 if (dynamic
1341 && definition
1342 && (flags & BSF_WEAK) != 0
1343 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1344 && info->hash->creator->flavour == bfd_target_elf_flavour
1345 && h->weakdef == NULL)
1346 {
1347 /* Keep a list of all weak defined non function symbols from
1348 a dynamic object, using the weakdef field. Later in this
1349 function we will set the weakdef field to the correct
1350 value. We only put non-function symbols from dynamic
1351 objects on this list, because that happens to be the only
1352 time we need to know the normal symbol corresponding to a
1353 weak symbol, and the information is time consuming to
1354 figure out. If the weakdef field is not already NULL,
1355 then this symbol was already defined by some previous
1356 dynamic object, and we will be using that previous
1357 definition anyhow. */
1358
1359 h->weakdef = weaks;
1360 weaks = h;
1361 new_weakdef = true;
1362 }
1363
1364 /* Set the alignment of a common symbol. */
1365 if (sym.st_shndx == SHN_COMMON
1366 && h->root.type == bfd_link_hash_common)
1367 {
1368 unsigned int align;
1369
1370 align = bfd_log2 (sym.st_value);
1371 if (align > old_alignment)
1372 h->root.u.c.p->alignment_power = align;
1373 }
1374
1375 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1376 {
1377 int old_flags;
1378 boolean dynsym;
1379 int new_flag;
1380
1381 /* Remember the symbol size and type. */
1382 if (sym.st_size != 0
1383 && (definition || h->size == 0))
1384 {
1385 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1386 (*_bfd_error_handler)
1387 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1388 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1389 bfd_get_filename (abfd));
1390
1391 h->size = sym.st_size;
1392 }
1393
1394 /* If this is a common symbol, then we always want H->SIZE
1395 to be the size of the common symbol. The code just above
1396 won't fix the size if a common symbol becomes larger. We
1397 don't warn about a size change here, because that is
1398 covered by --warn-common. */
1399 if (h->root.type == bfd_link_hash_common)
1400 h->size = h->root.u.c.size;
1401
1402 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1403 && (definition || h->type == STT_NOTYPE))
1404 {
1405 if (h->type != STT_NOTYPE
1406 && h->type != ELF_ST_TYPE (sym.st_info)
1407 && ! type_change_ok)
1408 (*_bfd_error_handler)
1409 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1410 name, h->type, ELF_ST_TYPE (sym.st_info),
1411 bfd_get_filename (abfd));
1412
1413 h->type = ELF_ST_TYPE (sym.st_info);
1414 }
1415
1416 if (sym.st_other != 0
1417 && (definition || h->other == 0))
1418 h->other = sym.st_other;
1419
1420 /* Set a flag in the hash table entry indicating the type of
1421 reference or definition we just found. Keep a count of
1422 the number of dynamic symbols we find. A dynamic symbol
1423 is one which is referenced or defined by both a regular
1424 object and a shared object. */
1425 old_flags = h->elf_link_hash_flags;
1426 dynsym = false;
1427 if (! dynamic)
1428 {
1429 if (! definition)
1430 {
1431 new_flag = ELF_LINK_HASH_REF_REGULAR;
1432 if (bind != STB_WEAK)
1433 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1434 }
1435 else
1436 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1437 if (info->shared
1438 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1439 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1440 dynsym = true;
1441 }
1442 else
1443 {
1444 if (! definition)
1445 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1446 else
1447 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1448 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1449 | ELF_LINK_HASH_REF_REGULAR)) != 0
1450 || (h->weakdef != NULL
1451 && ! new_weakdef
1452 && h->weakdef->dynindx != -1))
1453 dynsym = true;
1454 }
1455
1456 h->elf_link_hash_flags |= new_flag;
1457
1458 /* If this symbol has a version, and it is the default
1459 version, we create an indirect symbol from the default
1460 name to the fully decorated name. This will cause
1461 external references which do not specify a version to be
1462 bound to this version of the symbol. */
1463 if (definition)
1464 {
1465 char *p;
1466
1467 p = strchr (name, ELF_VER_CHR);
1468 if (p != NULL && p[1] == ELF_VER_CHR)
1469 {
1470 char *shortname;
1471 struct elf_link_hash_entry *hi;
1472 boolean override;
1473
1474 shortname = bfd_hash_allocate (&info->hash->table,
1475 p - name + 1);
1476 if (shortname == NULL)
1477 goto error_return;
1478 strncpy (shortname, name, p - name);
1479 shortname[p - name] = '\0';
1480
1481 /* We are going to create a new symbol. Merge it
1482 with any existing symbol with this name. For the
1483 purposes of the merge, act as though we were
1484 defining the symbol we just defined, although we
1485 actually going to define an indirect symbol. */
1486 type_change_ok = false;
1487 size_change_ok = false;
1488 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1489 &value, &hi, &override,
1490 &type_change_ok, &size_change_ok))
1491 goto error_return;
1492
1493 if (! override)
1494 {
1495 if (! (_bfd_generic_link_add_one_symbol
1496 (info, abfd, shortname, BSF_INDIRECT,
1497 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1498 collect, (struct bfd_link_hash_entry **) &hi)))
1499 goto error_return;
1500 }
1501 else
1502 {
1503 /* In this case the symbol named SHORTNAME is
1504 overriding the indirect symbol we want to
1505 add. We were planning on making SHORTNAME an
1506 indirect symbol referring to NAME. SHORTNAME
1507 is the name without a version. NAME is the
1508 fully versioned name, and it is the default
1509 version.
1510
1511 Overriding means that we already saw a
1512 definition for the symbol SHORTNAME in a
1513 regular object, and it is overriding the
1514 symbol defined in the dynamic object.
1515
1516 When this happens, we actually want to change
1517 NAME, the symbol we just added, to refer to
1518 SHORTNAME. This will cause references to
1519 NAME in the shared object to become
1520 references to SHORTNAME in the regular
1521 object. This is what we expect when we
1522 override a function in a shared object: that
1523 the references in the shared object will be
1524 mapped to the definition in the regular
1525 object. */
1526
1527 while (hi->root.type == bfd_link_hash_indirect
1528 || hi->root.type == bfd_link_hash_warning)
1529 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1530
1531 h->root.type = bfd_link_hash_indirect;
1532 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1533 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1534 {
1535 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1536 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1537 if (hi->elf_link_hash_flags
1538 & (ELF_LINK_HASH_REF_REGULAR
1539 | ELF_LINK_HASH_DEF_REGULAR))
1540 {
1541 if (! _bfd_elf_link_record_dynamic_symbol (info,
1542 hi))
1543 goto error_return;
1544 }
1545 }
1546
1547 /* Now set HI to H, so that the following code
1548 will set the other fields correctly. */
1549 hi = h;
1550 }
1551
1552 /* If there is a duplicate definition somewhere,
1553 then HI may not point to an indirect symbol. We
1554 will have reported an error to the user in that
1555 case. */
1556
1557 if (hi->root.type == bfd_link_hash_indirect)
1558 {
1559 struct elf_link_hash_entry *ht;
1560
1561 /* If the symbol became indirect, then we assume
1562 that we have not seen a definition before. */
1563 BFD_ASSERT ((hi->elf_link_hash_flags
1564 & (ELF_LINK_HASH_DEF_DYNAMIC
1565 | ELF_LINK_HASH_DEF_REGULAR))
1566 == 0);
1567
1568 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1569
1570 /* Copy down any references that we may have
1571 already seen to the symbol which just became
1572 indirect. */
1573 ht->elf_link_hash_flags |=
1574 (hi->elf_link_hash_flags
1575 & (ELF_LINK_HASH_REF_DYNAMIC
1576 | ELF_LINK_HASH_REF_REGULAR
1577 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1578 | ELF_LINK_NON_GOT_REF));
1579
1580 /* Copy over the global and procedure linkage table
1581 offset entries. These may have been already set
1582 up by a check_relocs routine. */
1583 if (ht->got.offset == (bfd_vma) -1)
1584 {
1585 ht->got.offset = hi->got.offset;
1586 hi->got.offset = (bfd_vma) -1;
1587 }
1588 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1589
1590 if (ht->plt.offset == (bfd_vma) -1)
1591 {
1592 ht->plt.offset = hi->plt.offset;
1593 hi->plt.offset = (bfd_vma) -1;
1594 }
1595 BFD_ASSERT (hi->plt.offset == (bfd_vma) -1);
1596
1597 if (ht->dynindx == -1)
1598 {
1599 ht->dynindx = hi->dynindx;
1600 ht->dynstr_index = hi->dynstr_index;
1601 hi->dynindx = -1;
1602 hi->dynstr_index = 0;
1603 }
1604 BFD_ASSERT (hi->dynindx == -1);
1605
1606 /* FIXME: There may be other information to copy
1607 over for particular targets. */
1608
1609 /* See if the new flags lead us to realize that
1610 the symbol must be dynamic. */
1611 if (! dynsym)
1612 {
1613 if (! dynamic)
1614 {
1615 if (info->shared
1616 || ((hi->elf_link_hash_flags
1617 & ELF_LINK_HASH_REF_DYNAMIC)
1618 != 0))
1619 dynsym = true;
1620 }
1621 else
1622 {
1623 if ((hi->elf_link_hash_flags
1624 & ELF_LINK_HASH_REF_REGULAR) != 0)
1625 dynsym = true;
1626 }
1627 }
1628 }
1629
1630 /* We also need to define an indirection from the
1631 nondefault version of the symbol. */
1632
1633 shortname = bfd_hash_allocate (&info->hash->table,
1634 strlen (name));
1635 if (shortname == NULL)
1636 goto error_return;
1637 strncpy (shortname, name, p - name);
1638 strcpy (shortname + (p - name), p + 1);
1639
1640 /* Once again, merge with any existing symbol. */
1641 type_change_ok = false;
1642 size_change_ok = false;
1643 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1644 &value, &hi, &override,
1645 &type_change_ok, &size_change_ok))
1646 goto error_return;
1647
1648 if (override)
1649 {
1650 /* Here SHORTNAME is a versioned name, so we
1651 don't expect to see the type of override we
1652 do in the case above. */
1653 (*_bfd_error_handler)
1654 (_("%s: warning: unexpected redefinition of `%s'"),
1655 bfd_get_filename (abfd), shortname);
1656 }
1657 else
1658 {
1659 if (! (_bfd_generic_link_add_one_symbol
1660 (info, abfd, shortname, BSF_INDIRECT,
1661 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1662 collect, (struct bfd_link_hash_entry **) &hi)))
1663 goto error_return;
1664
1665 /* If there is a duplicate definition somewhere,
1666 then HI may not point to an indirect symbol.
1667 We will have reported an error to the user in
1668 that case. */
1669
1670 if (hi->root.type == bfd_link_hash_indirect)
1671 {
1672 /* If the symbol became indirect, then we
1673 assume that we have not seen a definition
1674 before. */
1675 BFD_ASSERT ((hi->elf_link_hash_flags
1676 & (ELF_LINK_HASH_DEF_DYNAMIC
1677 | ELF_LINK_HASH_DEF_REGULAR))
1678 == 0);
1679
1680 /* Copy down any references that we may have
1681 already seen to the symbol which just
1682 became indirect. */
1683 h->elf_link_hash_flags |=
1684 (hi->elf_link_hash_flags
1685 & (ELF_LINK_HASH_REF_DYNAMIC
1686 | ELF_LINK_HASH_REF_REGULAR
1687 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1688 | ELF_LINK_NON_GOT_REF));
1689
1690 /* Copy over the global and procedure linkage
1691 table offset entries. These may have been
1692 already set up by a check_relocs routine. */
1693 if (h->got.offset == (bfd_vma) -1)
1694 {
1695 h->got.offset = hi->got.offset;
1696 hi->got.offset = (bfd_vma) -1;
1697 }
1698 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1699
1700 if (h->plt.offset == (bfd_vma) -1)
1701 {
1702 h->plt.offset = hi->plt.offset;
1703 hi->plt.offset = (bfd_vma) -1;
1704 }
1705 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1706
1707 if (h->dynindx == -1)
1708 {
1709 h->dynindx = hi->dynindx;
1710 h->dynstr_index = hi->dynstr_index;
1711 hi->dynindx = -1;
1712 hi->dynstr_index = 0;
1713 }
1714 BFD_ASSERT (hi->dynindx == -1);
1715
1716 /* FIXME: There may be other information to
1717 copy over for particular targets. */
1718
1719 /* See if the new flags lead us to realize
1720 that the symbol must be dynamic. */
1721 if (! dynsym)
1722 {
1723 if (! dynamic)
1724 {
1725 if (info->shared
1726 || ((hi->elf_link_hash_flags
1727 & ELF_LINK_HASH_REF_DYNAMIC)
1728 != 0))
1729 dynsym = true;
1730 }
1731 else
1732 {
1733 if ((hi->elf_link_hash_flags
1734 & ELF_LINK_HASH_REF_REGULAR) != 0)
1735 dynsym = true;
1736 }
1737 }
1738 }
1739 }
1740 }
1741 }
1742
1743 if (dynsym && h->dynindx == -1)
1744 {
1745 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1746 goto error_return;
1747 if (h->weakdef != NULL
1748 && ! new_weakdef
1749 && h->weakdef->dynindx == -1)
1750 {
1751 if (! _bfd_elf_link_record_dynamic_symbol (info,
1752 h->weakdef))
1753 goto error_return;
1754 }
1755 }
1756 }
1757 }
1758
1759 /* Now set the weakdefs field correctly for all the weak defined
1760 symbols we found. The only way to do this is to search all the
1761 symbols. Since we only need the information for non functions in
1762 dynamic objects, that's the only time we actually put anything on
1763 the list WEAKS. We need this information so that if a regular
1764 object refers to a symbol defined weakly in a dynamic object, the
1765 real symbol in the dynamic object is also put in the dynamic
1766 symbols; we also must arrange for both symbols to point to the
1767 same memory location. We could handle the general case of symbol
1768 aliasing, but a general symbol alias can only be generated in
1769 assembler code, handling it correctly would be very time
1770 consuming, and other ELF linkers don't handle general aliasing
1771 either. */
1772 while (weaks != NULL)
1773 {
1774 struct elf_link_hash_entry *hlook;
1775 asection *slook;
1776 bfd_vma vlook;
1777 struct elf_link_hash_entry **hpp;
1778 struct elf_link_hash_entry **hppend;
1779
1780 hlook = weaks;
1781 weaks = hlook->weakdef;
1782 hlook->weakdef = NULL;
1783
1784 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1785 || hlook->root.type == bfd_link_hash_defweak
1786 || hlook->root.type == bfd_link_hash_common
1787 || hlook->root.type == bfd_link_hash_indirect);
1788 slook = hlook->root.u.def.section;
1789 vlook = hlook->root.u.def.value;
1790
1791 hpp = elf_sym_hashes (abfd);
1792 hppend = hpp + extsymcount;
1793 for (; hpp < hppend; hpp++)
1794 {
1795 struct elf_link_hash_entry *h;
1796
1797 h = *hpp;
1798 if (h != NULL && h != hlook
1799 && h->root.type == bfd_link_hash_defined
1800 && h->root.u.def.section == slook
1801 && h->root.u.def.value == vlook)
1802 {
1803 hlook->weakdef = h;
1804
1805 /* If the weak definition is in the list of dynamic
1806 symbols, make sure the real definition is put there
1807 as well. */
1808 if (hlook->dynindx != -1
1809 && h->dynindx == -1)
1810 {
1811 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1812 goto error_return;
1813 }
1814
1815 /* If the real definition is in the list of dynamic
1816 symbols, make sure the weak definition is put there
1817 as well. If we don't do this, then the dynamic
1818 loader might not merge the entries for the real
1819 definition and the weak definition. */
1820 if (h->dynindx != -1
1821 && hlook->dynindx == -1)
1822 {
1823 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1824 goto error_return;
1825 }
1826
1827 break;
1828 }
1829 }
1830 }
1831
1832 if (buf != NULL)
1833 {
1834 free (buf);
1835 buf = NULL;
1836 }
1837
1838 if (extversym != NULL)
1839 {
1840 free (extversym);
1841 extversym = NULL;
1842 }
1843
1844 /* If this object is the same format as the output object, and it is
1845 not a shared library, then let the backend look through the
1846 relocs.
1847
1848 This is required to build global offset table entries and to
1849 arrange for dynamic relocs. It is not required for the
1850 particular common case of linking non PIC code, even when linking
1851 against shared libraries, but unfortunately there is no way of
1852 knowing whether an object file has been compiled PIC or not.
1853 Looking through the relocs is not particularly time consuming.
1854 The problem is that we must either (1) keep the relocs in memory,
1855 which causes the linker to require additional runtime memory or
1856 (2) read the relocs twice from the input file, which wastes time.
1857 This would be a good case for using mmap.
1858
1859 I have no idea how to handle linking PIC code into a file of a
1860 different format. It probably can't be done. */
1861 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1862 if (! dynamic
1863 && abfd->xvec == info->hash->creator
1864 && check_relocs != NULL)
1865 {
1866 asection *o;
1867
1868 for (o = abfd->sections; o != NULL; o = o->next)
1869 {
1870 Elf_Internal_Rela *internal_relocs;
1871 boolean ok;
1872
1873 if ((o->flags & SEC_RELOC) == 0
1874 || o->reloc_count == 0
1875 || ((info->strip == strip_all || info->strip == strip_debugger)
1876 && (o->flags & SEC_DEBUGGING) != 0)
1877 || bfd_is_abs_section (o->output_section))
1878 continue;
1879
1880 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1881 (abfd, o, (PTR) NULL,
1882 (Elf_Internal_Rela *) NULL,
1883 info->keep_memory));
1884 if (internal_relocs == NULL)
1885 goto error_return;
1886
1887 ok = (*check_relocs) (abfd, info, o, internal_relocs);
1888
1889 if (! info->keep_memory)
1890 free (internal_relocs);
1891
1892 if (! ok)
1893 goto error_return;
1894 }
1895 }
1896
1897 /* If this is a non-traditional, non-relocateable link, try to
1898 optimize the handling of the .stab/.stabstr sections. */
1899 if (! dynamic
1900 && ! info->relocateable
1901 && ! info->traditional_format
1902 && info->hash->creator->flavour == bfd_target_elf_flavour
1903 && (info->strip != strip_all && info->strip != strip_debugger))
1904 {
1905 asection *stab, *stabstr;
1906
1907 stab = bfd_get_section_by_name (abfd, ".stab");
1908 if (stab != NULL)
1909 {
1910 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
1911
1912 if (stabstr != NULL)
1913 {
1914 struct bfd_elf_section_data *secdata;
1915
1916 secdata = elf_section_data (stab);
1917 if (! _bfd_link_section_stabs (abfd,
1918 &elf_hash_table (info)->stab_info,
1919 stab, stabstr,
1920 &secdata->stab_info))
1921 goto error_return;
1922 }
1923 }
1924 }
1925
1926 return true;
1927
1928 error_return:
1929 if (buf != NULL)
1930 free (buf);
1931 if (dynbuf != NULL)
1932 free (dynbuf);
1933 if (dynver != NULL)
1934 free (dynver);
1935 if (extversym != NULL)
1936 free (extversym);
1937 return false;
1938 }
1939
1940 /* Create some sections which will be filled in with dynamic linking
1941 information. ABFD is an input file which requires dynamic sections
1942 to be created. The dynamic sections take up virtual memory space
1943 when the final executable is run, so we need to create them before
1944 addresses are assigned to the output sections. We work out the
1945 actual contents and size of these sections later. */
1946
1947 boolean
1948 elf_link_create_dynamic_sections (abfd, info)
1949 bfd *abfd;
1950 struct bfd_link_info *info;
1951 {
1952 flagword flags;
1953 register asection *s;
1954 struct elf_link_hash_entry *h;
1955 struct elf_backend_data *bed;
1956
1957 if (elf_hash_table (info)->dynamic_sections_created)
1958 return true;
1959
1960 /* Make sure that all dynamic sections use the same input BFD. */
1961 if (elf_hash_table (info)->dynobj == NULL)
1962 elf_hash_table (info)->dynobj = abfd;
1963 else
1964 abfd = elf_hash_table (info)->dynobj;
1965
1966 /* Note that we set the SEC_IN_MEMORY flag for all of these
1967 sections. */
1968 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
1969 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1970
1971 /* A dynamically linked executable has a .interp section, but a
1972 shared library does not. */
1973 if (! info->shared)
1974 {
1975 s = bfd_make_section (abfd, ".interp");
1976 if (s == NULL
1977 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1978 return false;
1979 }
1980
1981 /* Create sections to hold version informations. These are removed
1982 if they are not needed. */
1983 s = bfd_make_section (abfd, ".gnu.version_d");
1984 if (s == NULL
1985 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1986 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1987 return false;
1988
1989 s = bfd_make_section (abfd, ".gnu.version");
1990 if (s == NULL
1991 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1992 || ! bfd_set_section_alignment (abfd, s, 1))
1993 return false;
1994
1995 s = bfd_make_section (abfd, ".gnu.version_r");
1996 if (s == NULL
1997 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1998 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1999 return false;
2000
2001 s = bfd_make_section (abfd, ".dynsym");
2002 if (s == NULL
2003 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2004 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2005 return false;
2006
2007 s = bfd_make_section (abfd, ".dynstr");
2008 if (s == NULL
2009 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2010 return false;
2011
2012 /* Create a strtab to hold the dynamic symbol names. */
2013 if (elf_hash_table (info)->dynstr == NULL)
2014 {
2015 elf_hash_table (info)->dynstr = elf_stringtab_init ();
2016 if (elf_hash_table (info)->dynstr == NULL)
2017 return false;
2018 }
2019
2020 s = bfd_make_section (abfd, ".dynamic");
2021 if (s == NULL
2022 || ! bfd_set_section_flags (abfd, s, flags)
2023 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2024 return false;
2025
2026 /* The special symbol _DYNAMIC is always set to the start of the
2027 .dynamic section. This call occurs before we have processed the
2028 symbols for any dynamic object, so we don't have to worry about
2029 overriding a dynamic definition. We could set _DYNAMIC in a
2030 linker script, but we only want to define it if we are, in fact,
2031 creating a .dynamic section. We don't want to define it if there
2032 is no .dynamic section, since on some ELF platforms the start up
2033 code examines it to decide how to initialize the process. */
2034 h = NULL;
2035 if (! (_bfd_generic_link_add_one_symbol
2036 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2037 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2038 (struct bfd_link_hash_entry **) &h)))
2039 return false;
2040 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2041 h->type = STT_OBJECT;
2042
2043 if (info->shared
2044 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2045 return false;
2046
2047 bed = get_elf_backend_data (abfd);
2048
2049 s = bfd_make_section (abfd, ".hash");
2050 if (s == NULL
2051 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2052 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2053 return false;
2054 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2055
2056 /* Let the backend create the rest of the sections. This lets the
2057 backend set the right flags. The backend will normally create
2058 the .got and .plt sections. */
2059 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2060 return false;
2061
2062 elf_hash_table (info)->dynamic_sections_created = true;
2063
2064 return true;
2065 }
2066
2067 /* Add an entry to the .dynamic table. */
2068
2069 boolean
2070 elf_add_dynamic_entry (info, tag, val)
2071 struct bfd_link_info *info;
2072 bfd_vma tag;
2073 bfd_vma val;
2074 {
2075 Elf_Internal_Dyn dyn;
2076 bfd *dynobj;
2077 asection *s;
2078 size_t newsize;
2079 bfd_byte *newcontents;
2080
2081 dynobj = elf_hash_table (info)->dynobj;
2082
2083 s = bfd_get_section_by_name (dynobj, ".dynamic");
2084 BFD_ASSERT (s != NULL);
2085
2086 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2087 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2088 if (newcontents == NULL)
2089 return false;
2090
2091 dyn.d_tag = tag;
2092 dyn.d_un.d_val = val;
2093 elf_swap_dyn_out (dynobj, &dyn,
2094 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2095
2096 s->_raw_size = newsize;
2097 s->contents = newcontents;
2098
2099 return true;
2100 }
2101
2102 /* Record a new local dynamic symbol. */
2103
2104 boolean
2105 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2106 struct bfd_link_info *info;
2107 bfd *input_bfd;
2108 long input_indx;
2109 {
2110 struct elf_link_local_dynamic_entry *entry;
2111 struct elf_link_hash_table *eht;
2112 struct bfd_strtab_hash *dynstr;
2113 Elf_External_Sym esym;
2114 unsigned long dynstr_index;
2115 char *name;
2116
2117 /* See if the entry exists already. */
2118 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2119 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2120 return true;
2121
2122 entry = (struct elf_link_local_dynamic_entry *)
2123 bfd_alloc (input_bfd, sizeof (*entry));
2124 if (entry == NULL)
2125 return false;
2126
2127 /* Go find the symbol, so that we can find it's name. */
2128 if (bfd_seek (input_bfd,
2129 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2130 + input_indx * sizeof (Elf_External_Sym)),
2131 SEEK_SET) != 0
2132 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2133 != sizeof (Elf_External_Sym)))
2134 return false;
2135 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2136
2137 name = (bfd_elf_string_from_elf_section
2138 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2139 entry->isym.st_name));
2140
2141 dynstr = elf_hash_table (info)->dynstr;
2142 if (dynstr == NULL)
2143 {
2144 /* Create a strtab to hold the dynamic symbol names. */
2145 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2146 if (dynstr == NULL)
2147 return false;
2148 }
2149
2150 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2151 if (dynstr_index == (unsigned long) -1)
2152 return false;
2153 entry->isym.st_name = dynstr_index;
2154
2155 eht = elf_hash_table (info);
2156
2157 entry->next = eht->dynlocal;
2158 eht->dynlocal = entry;
2159 entry->input_bfd = input_bfd;
2160 entry->input_indx = input_indx;
2161 eht->dynsymcount++;
2162
2163 /* Whatever binding the symbol had before, it's now local. */
2164 entry->isym.st_info
2165 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2166
2167 /* The dynindx will be set at the end of size_dynamic_sections. */
2168
2169 return true;
2170 }
2171 \f
2172
2173 /* Read and swap the relocs from the section indicated by SHDR. This
2174 may be either a REL or a RELA section. The relocations are
2175 translated into RELA relocations and stored in INTERNAL_RELOCS,
2176 which should have already been allocated to contain enough space.
2177 The EXTERNAL_RELOCS are a buffer where the external form of the
2178 relocations should be stored.
2179
2180 Returns false if something goes wrong. */
2181
2182 static boolean
2183 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2184 internal_relocs)
2185 bfd *abfd;
2186 Elf_Internal_Shdr *shdr;
2187 PTR external_relocs;
2188 Elf_Internal_Rela *internal_relocs;
2189 {
2190 struct elf_backend_data *bed;
2191
2192 /* If there aren't any relocations, that's OK. */
2193 if (!shdr)
2194 return true;
2195
2196 /* Position ourselves at the start of the section. */
2197 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2198 return false;
2199
2200 /* Read the relocations. */
2201 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2202 != shdr->sh_size)
2203 return false;
2204
2205 bed = get_elf_backend_data (abfd);
2206
2207 /* Convert the external relocations to the internal format. */
2208 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2209 {
2210 Elf_External_Rel *erel;
2211 Elf_External_Rel *erelend;
2212 Elf_Internal_Rela *irela;
2213 Elf_Internal_Rel *irel;
2214
2215 erel = (Elf_External_Rel *) external_relocs;
2216 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2217 irela = internal_relocs;
2218 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2219 * sizeof (Elf_Internal_Rel)));
2220 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2221 {
2222 unsigned char i;
2223
2224 if (bed->s->swap_reloc_in)
2225 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2226 else
2227 elf_swap_reloc_in (abfd, erel, irel);
2228
2229 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2230 {
2231 irela[i].r_offset = irel[i].r_offset;
2232 irela[i].r_info = irel[i].r_info;
2233 irela[i].r_addend = 0;
2234 }
2235 }
2236 }
2237 else
2238 {
2239 Elf_External_Rela *erela;
2240 Elf_External_Rela *erelaend;
2241 Elf_Internal_Rela *irela;
2242
2243 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2244
2245 erela = (Elf_External_Rela *) external_relocs;
2246 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2247 irela = internal_relocs;
2248 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2249 {
2250 if (bed->s->swap_reloca_in)
2251 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2252 else
2253 elf_swap_reloca_in (abfd, erela, irela);
2254 }
2255 }
2256
2257 return true;
2258 }
2259
2260 /* Read and swap the relocs for a section O. They may have been
2261 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2262 not NULL, they are used as buffers to read into. They are known to
2263 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2264 the return value is allocated using either malloc or bfd_alloc,
2265 according to the KEEP_MEMORY argument. If O has two relocation
2266 sections (both REL and RELA relocations), then the REL_HDR
2267 relocations will appear first in INTERNAL_RELOCS, followed by the
2268 REL_HDR2 relocations. */
2269
2270 Elf_Internal_Rela *
2271 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2272 keep_memory)
2273 bfd *abfd;
2274 asection *o;
2275 PTR external_relocs;
2276 Elf_Internal_Rela *internal_relocs;
2277 boolean keep_memory;
2278 {
2279 Elf_Internal_Shdr *rel_hdr;
2280 PTR alloc1 = NULL;
2281 Elf_Internal_Rela *alloc2 = NULL;
2282 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2283
2284 if (elf_section_data (o)->relocs != NULL)
2285 return elf_section_data (o)->relocs;
2286
2287 if (o->reloc_count == 0)
2288 return NULL;
2289
2290 rel_hdr = &elf_section_data (o)->rel_hdr;
2291
2292 if (internal_relocs == NULL)
2293 {
2294 size_t size;
2295
2296 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2297 * sizeof (Elf_Internal_Rela));
2298 if (keep_memory)
2299 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2300 else
2301 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2302 if (internal_relocs == NULL)
2303 goto error_return;
2304 }
2305
2306 if (external_relocs == NULL)
2307 {
2308 size_t size = (size_t) rel_hdr->sh_size;
2309
2310 if (elf_section_data (o)->rel_hdr2)
2311 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2312 alloc1 = (PTR) bfd_malloc (size);
2313 if (alloc1 == NULL)
2314 goto error_return;
2315 external_relocs = alloc1;
2316 }
2317
2318 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2319 external_relocs,
2320 internal_relocs))
2321 goto error_return;
2322 if (!elf_link_read_relocs_from_section
2323 (abfd,
2324 elf_section_data (o)->rel_hdr2,
2325 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2326 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2327 * bed->s->int_rels_per_ext_rel)))
2328 goto error_return;
2329
2330 /* Cache the results for next time, if we can. */
2331 if (keep_memory)
2332 elf_section_data (o)->relocs = internal_relocs;
2333
2334 if (alloc1 != NULL)
2335 free (alloc1);
2336
2337 /* Don't free alloc2, since if it was allocated we are passing it
2338 back (under the name of internal_relocs). */
2339
2340 return internal_relocs;
2341
2342 error_return:
2343 if (alloc1 != NULL)
2344 free (alloc1);
2345 if (alloc2 != NULL)
2346 free (alloc2);
2347 return NULL;
2348 }
2349 \f
2350
2351 /* Record an assignment to a symbol made by a linker script. We need
2352 this in case some dynamic object refers to this symbol. */
2353
2354 /*ARGSUSED*/
2355 boolean
2356 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2357 bfd *output_bfd ATTRIBUTE_UNUSED;
2358 struct bfd_link_info *info;
2359 const char *name;
2360 boolean provide;
2361 {
2362 struct elf_link_hash_entry *h;
2363
2364 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2365 return true;
2366
2367 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2368 if (h == NULL)
2369 return false;
2370
2371 if (h->root.type == bfd_link_hash_new)
2372 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2373
2374 /* If this symbol is being provided by the linker script, and it is
2375 currently defined by a dynamic object, but not by a regular
2376 object, then mark it as undefined so that the generic linker will
2377 force the correct value. */
2378 if (provide
2379 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2380 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2381 h->root.type = bfd_link_hash_undefined;
2382
2383 /* If this symbol is not being provided by the linker script, and it is
2384 currently defined by a dynamic object, but not by a regular object,
2385 then clear out any version information because the symbol will not be
2386 associated with the dynamic object any more. */
2387 if (!provide
2388 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2389 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2390 h->verinfo.verdef = NULL;
2391
2392 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2393
2394 /* When possible, keep the original type of the symbol */
2395 if (h->type == STT_NOTYPE)
2396 h->type = STT_OBJECT;
2397
2398 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2399 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2400 || info->shared)
2401 && h->dynindx == -1)
2402 {
2403 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2404 return false;
2405
2406 /* If this is a weak defined symbol, and we know a corresponding
2407 real symbol from the same dynamic object, make sure the real
2408 symbol is also made into a dynamic symbol. */
2409 if (h->weakdef != NULL
2410 && h->weakdef->dynindx == -1)
2411 {
2412 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2413 return false;
2414 }
2415 }
2416
2417 return true;
2418 }
2419 \f
2420 /* This structure is used to pass information to
2421 elf_link_assign_sym_version. */
2422
2423 struct elf_assign_sym_version_info
2424 {
2425 /* Output BFD. */
2426 bfd *output_bfd;
2427 /* General link information. */
2428 struct bfd_link_info *info;
2429 /* Version tree. */
2430 struct bfd_elf_version_tree *verdefs;
2431 /* Whether we are exporting all dynamic symbols. */
2432 boolean export_dynamic;
2433 /* Whether we had a failure. */
2434 boolean failed;
2435 };
2436
2437 /* This structure is used to pass information to
2438 elf_link_find_version_dependencies. */
2439
2440 struct elf_find_verdep_info
2441 {
2442 /* Output BFD. */
2443 bfd *output_bfd;
2444 /* General link information. */
2445 struct bfd_link_info *info;
2446 /* The number of dependencies. */
2447 unsigned int vers;
2448 /* Whether we had a failure. */
2449 boolean failed;
2450 };
2451
2452 /* Array used to determine the number of hash table buckets to use
2453 based on the number of symbols there are. If there are fewer than
2454 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2455 fewer than 37 we use 17 buckets, and so forth. We never use more
2456 than 32771 buckets. */
2457
2458 static const size_t elf_buckets[] =
2459 {
2460 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2461 16411, 32771, 0
2462 };
2463
2464 /* Compute bucket count for hashing table. We do not use a static set
2465 of possible tables sizes anymore. Instead we determine for all
2466 possible reasonable sizes of the table the outcome (i.e., the
2467 number of collisions etc) and choose the best solution. The
2468 weighting functions are not too simple to allow the table to grow
2469 without bounds. Instead one of the weighting factors is the size.
2470 Therefore the result is always a good payoff between few collisions
2471 (= short chain lengths) and table size. */
2472 static size_t
2473 compute_bucket_count (info)
2474 struct bfd_link_info *info;
2475 {
2476 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2477 size_t best_size = 0;
2478 unsigned long int *hashcodes;
2479 unsigned long int *hashcodesp;
2480 unsigned long int i;
2481
2482 /* Compute the hash values for all exported symbols. At the same
2483 time store the values in an array so that we could use them for
2484 optimizations. */
2485 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2486 * sizeof (unsigned long int));
2487 if (hashcodes == NULL)
2488 return 0;
2489 hashcodesp = hashcodes;
2490
2491 /* Put all hash values in HASHCODES. */
2492 elf_link_hash_traverse (elf_hash_table (info),
2493 elf_collect_hash_codes, &hashcodesp);
2494
2495 /* We have a problem here. The following code to optimize the table
2496 size requires an integer type with more the 32 bits. If
2497 BFD_HOST_U_64_BIT is set we know about such a type. */
2498 #ifdef BFD_HOST_U_64_BIT
2499 if (info->optimize == true)
2500 {
2501 unsigned long int nsyms = hashcodesp - hashcodes;
2502 size_t minsize;
2503 size_t maxsize;
2504 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2505 unsigned long int *counts ;
2506
2507 /* Possible optimization parameters: if we have NSYMS symbols we say
2508 that the hashing table must at least have NSYMS/4 and at most
2509 2*NSYMS buckets. */
2510 minsize = nsyms / 4;
2511 if (minsize == 0)
2512 minsize = 1;
2513 best_size = maxsize = nsyms * 2;
2514
2515 /* Create array where we count the collisions in. We must use bfd_malloc
2516 since the size could be large. */
2517 counts = (unsigned long int *) bfd_malloc (maxsize
2518 * sizeof (unsigned long int));
2519 if (counts == NULL)
2520 {
2521 free (hashcodes);
2522 return 0;
2523 }
2524
2525 /* Compute the "optimal" size for the hash table. The criteria is a
2526 minimal chain length. The minor criteria is (of course) the size
2527 of the table. */
2528 for (i = minsize; i < maxsize; ++i)
2529 {
2530 /* Walk through the array of hashcodes and count the collisions. */
2531 BFD_HOST_U_64_BIT max;
2532 unsigned long int j;
2533 unsigned long int fact;
2534
2535 memset (counts, '\0', i * sizeof (unsigned long int));
2536
2537 /* Determine how often each hash bucket is used. */
2538 for (j = 0; j < nsyms; ++j)
2539 ++counts[hashcodes[j] % i];
2540
2541 /* For the weight function we need some information about the
2542 pagesize on the target. This is information need not be 100%
2543 accurate. Since this information is not available (so far) we
2544 define it here to a reasonable default value. If it is crucial
2545 to have a better value some day simply define this value. */
2546 # ifndef BFD_TARGET_PAGESIZE
2547 # define BFD_TARGET_PAGESIZE (4096)
2548 # endif
2549
2550 /* We in any case need 2 + NSYMS entries for the size values and
2551 the chains. */
2552 max = (2 + nsyms) * (ARCH_SIZE / 8);
2553
2554 # if 1
2555 /* Variant 1: optimize for short chains. We add the squares
2556 of all the chain lengths (which favous many small chain
2557 over a few long chains). */
2558 for (j = 0; j < i; ++j)
2559 max += counts[j] * counts[j];
2560
2561 /* This adds penalties for the overall size of the table. */
2562 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2563 max *= fact * fact;
2564 # else
2565 /* Variant 2: Optimize a lot more for small table. Here we
2566 also add squares of the size but we also add penalties for
2567 empty slots (the +1 term). */
2568 for (j = 0; j < i; ++j)
2569 max += (1 + counts[j]) * (1 + counts[j]);
2570
2571 /* The overall size of the table is considered, but not as
2572 strong as in variant 1, where it is squared. */
2573 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2574 max *= fact;
2575 # endif
2576
2577 /* Compare with current best results. */
2578 if (max < best_chlen)
2579 {
2580 best_chlen = max;
2581 best_size = i;
2582 }
2583 }
2584
2585 free (counts);
2586 }
2587 else
2588 #endif /* defined (BFD_HOST_U_64_BIT) */
2589 {
2590 /* This is the fallback solution if no 64bit type is available or if we
2591 are not supposed to spend much time on optimizations. We select the
2592 bucket count using a fixed set of numbers. */
2593 for (i = 0; elf_buckets[i] != 0; i++)
2594 {
2595 best_size = elf_buckets[i];
2596 if (dynsymcount < elf_buckets[i + 1])
2597 break;
2598 }
2599 }
2600
2601 /* Free the arrays we needed. */
2602 free (hashcodes);
2603
2604 return best_size;
2605 }
2606
2607 /* Set up the sizes and contents of the ELF dynamic sections. This is
2608 called by the ELF linker emulation before_allocation routine. We
2609 must set the sizes of the sections before the linker sets the
2610 addresses of the various sections. */
2611
2612 boolean
2613 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2614 export_dynamic, filter_shlib,
2615 auxiliary_filters, info, sinterpptr,
2616 verdefs)
2617 bfd *output_bfd;
2618 const char *soname;
2619 const char *rpath;
2620 boolean export_dynamic;
2621 const char *filter_shlib;
2622 const char * const *auxiliary_filters;
2623 struct bfd_link_info *info;
2624 asection **sinterpptr;
2625 struct bfd_elf_version_tree *verdefs;
2626 {
2627 bfd_size_type soname_indx;
2628 bfd *dynobj;
2629 struct elf_backend_data *bed;
2630 struct elf_assign_sym_version_info asvinfo;
2631
2632 *sinterpptr = NULL;
2633
2634 soname_indx = (bfd_size_type) -1;
2635
2636 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2637 return true;
2638
2639 /* The backend may have to create some sections regardless of whether
2640 we're dynamic or not. */
2641 bed = get_elf_backend_data (output_bfd);
2642 if (bed->elf_backend_always_size_sections
2643 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2644 return false;
2645
2646 dynobj = elf_hash_table (info)->dynobj;
2647
2648 /* If there were no dynamic objects in the link, there is nothing to
2649 do here. */
2650 if (dynobj == NULL)
2651 return true;
2652
2653 /* If we are supposed to export all symbols into the dynamic symbol
2654 table (this is not the normal case), then do so. */
2655 if (export_dynamic)
2656 {
2657 struct elf_info_failed eif;
2658
2659 eif.failed = false;
2660 eif.info = info;
2661 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2662 (PTR) &eif);
2663 if (eif.failed)
2664 return false;
2665 }
2666
2667 if (elf_hash_table (info)->dynamic_sections_created)
2668 {
2669 struct elf_info_failed eif;
2670 struct elf_link_hash_entry *h;
2671 bfd_size_type strsize;
2672
2673 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2674 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2675
2676 if (soname != NULL)
2677 {
2678 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2679 soname, true, true);
2680 if (soname_indx == (bfd_size_type) -1
2681 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2682 return false;
2683 }
2684
2685 if (info->symbolic)
2686 {
2687 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2688 return false;
2689 }
2690
2691 if (rpath != NULL)
2692 {
2693 bfd_size_type indx;
2694
2695 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2696 true, true);
2697 if (indx == (bfd_size_type) -1
2698 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2699 return false;
2700 }
2701
2702 if (filter_shlib != NULL)
2703 {
2704 bfd_size_type indx;
2705
2706 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2707 filter_shlib, true, true);
2708 if (indx == (bfd_size_type) -1
2709 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2710 return false;
2711 }
2712
2713 if (auxiliary_filters != NULL)
2714 {
2715 const char * const *p;
2716
2717 for (p = auxiliary_filters; *p != NULL; p++)
2718 {
2719 bfd_size_type indx;
2720
2721 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2722 *p, true, true);
2723 if (indx == (bfd_size_type) -1
2724 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2725 return false;
2726 }
2727 }
2728
2729 /* Attach all the symbols to their version information. */
2730 asvinfo.output_bfd = output_bfd;
2731 asvinfo.info = info;
2732 asvinfo.verdefs = verdefs;
2733 asvinfo.export_dynamic = export_dynamic;
2734 asvinfo.failed = false;
2735
2736 elf_link_hash_traverse (elf_hash_table (info),
2737 elf_link_assign_sym_version,
2738 (PTR) &asvinfo);
2739 if (asvinfo.failed)
2740 return false;
2741
2742 /* Find all symbols which were defined in a dynamic object and make
2743 the backend pick a reasonable value for them. */
2744 eif.failed = false;
2745 eif.info = info;
2746 elf_link_hash_traverse (elf_hash_table (info),
2747 elf_adjust_dynamic_symbol,
2748 (PTR) &eif);
2749 if (eif.failed)
2750 return false;
2751
2752 /* Add some entries to the .dynamic section. We fill in some of the
2753 values later, in elf_bfd_final_link, but we must add the entries
2754 now so that we know the final size of the .dynamic section. */
2755
2756 /* If there are initialization and/or finalization functions to
2757 call then add the corresponding DT_INIT/DT_FINI entries. */
2758 h = (info->init_function
2759 ? elf_link_hash_lookup (elf_hash_table (info),
2760 info->init_function, false,
2761 false, false)
2762 : NULL);
2763 if (h != NULL
2764 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2765 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2766 {
2767 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2768 return false;
2769 }
2770 h = (info->fini_function
2771 ? elf_link_hash_lookup (elf_hash_table (info),
2772 info->fini_function, false,
2773 false, false)
2774 : NULL);
2775 if (h != NULL
2776 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2777 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2778 {
2779 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2780 return false;
2781 }
2782
2783 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2784 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2785 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2786 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2787 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2788 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2789 sizeof (Elf_External_Sym)))
2790 return false;
2791 }
2792
2793 /* The backend must work out the sizes of all the other dynamic
2794 sections. */
2795 if (bed->elf_backend_size_dynamic_sections
2796 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2797 return false;
2798
2799 if (elf_hash_table (info)->dynamic_sections_created)
2800 {
2801 size_t dynsymcount;
2802 asection *s;
2803 size_t bucketcount = 0;
2804 Elf_Internal_Sym isym;
2805 size_t hash_entry_size;
2806
2807 /* Set up the version definition section. */
2808 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2809 BFD_ASSERT (s != NULL);
2810
2811 /* We may have created additional version definitions if we are
2812 just linking a regular application. */
2813 verdefs = asvinfo.verdefs;
2814
2815 if (verdefs == NULL)
2816 _bfd_strip_section_from_output (s);
2817 else
2818 {
2819 unsigned int cdefs;
2820 bfd_size_type size;
2821 struct bfd_elf_version_tree *t;
2822 bfd_byte *p;
2823 Elf_Internal_Verdef def;
2824 Elf_Internal_Verdaux defaux;
2825
2826 cdefs = 0;
2827 size = 0;
2828
2829 /* Make space for the base version. */
2830 size += sizeof (Elf_External_Verdef);
2831 size += sizeof (Elf_External_Verdaux);
2832 ++cdefs;
2833
2834 for (t = verdefs; t != NULL; t = t->next)
2835 {
2836 struct bfd_elf_version_deps *n;
2837
2838 size += sizeof (Elf_External_Verdef);
2839 size += sizeof (Elf_External_Verdaux);
2840 ++cdefs;
2841
2842 for (n = t->deps; n != NULL; n = n->next)
2843 size += sizeof (Elf_External_Verdaux);
2844 }
2845
2846 s->_raw_size = size;
2847 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2848 if (s->contents == NULL && s->_raw_size != 0)
2849 return false;
2850
2851 /* Fill in the version definition section. */
2852
2853 p = s->contents;
2854
2855 def.vd_version = VER_DEF_CURRENT;
2856 def.vd_flags = VER_FLG_BASE;
2857 def.vd_ndx = 1;
2858 def.vd_cnt = 1;
2859 def.vd_aux = sizeof (Elf_External_Verdef);
2860 def.vd_next = (sizeof (Elf_External_Verdef)
2861 + sizeof (Elf_External_Verdaux));
2862
2863 if (soname_indx != (bfd_size_type) -1)
2864 {
2865 def.vd_hash = bfd_elf_hash (soname);
2866 defaux.vda_name = soname_indx;
2867 }
2868 else
2869 {
2870 const char *name;
2871 bfd_size_type indx;
2872
2873 name = output_bfd->filename;
2874 def.vd_hash = bfd_elf_hash (name);
2875 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2876 name, true, false);
2877 if (indx == (bfd_size_type) -1)
2878 return false;
2879 defaux.vda_name = indx;
2880 }
2881 defaux.vda_next = 0;
2882
2883 _bfd_elf_swap_verdef_out (output_bfd, &def,
2884 (Elf_External_Verdef *)p);
2885 p += sizeof (Elf_External_Verdef);
2886 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2887 (Elf_External_Verdaux *) p);
2888 p += sizeof (Elf_External_Verdaux);
2889
2890 for (t = verdefs; t != NULL; t = t->next)
2891 {
2892 unsigned int cdeps;
2893 struct bfd_elf_version_deps *n;
2894 struct elf_link_hash_entry *h;
2895
2896 cdeps = 0;
2897 for (n = t->deps; n != NULL; n = n->next)
2898 ++cdeps;
2899
2900 /* Add a symbol representing this version. */
2901 h = NULL;
2902 if (! (_bfd_generic_link_add_one_symbol
2903 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
2904 (bfd_vma) 0, (const char *) NULL, false,
2905 get_elf_backend_data (dynobj)->collect,
2906 (struct bfd_link_hash_entry **) &h)))
2907 return false;
2908 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
2909 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2910 h->type = STT_OBJECT;
2911 h->verinfo.vertree = t;
2912
2913 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2914 return false;
2915
2916 def.vd_version = VER_DEF_CURRENT;
2917 def.vd_flags = 0;
2918 if (t->globals == NULL && t->locals == NULL && ! t->used)
2919 def.vd_flags |= VER_FLG_WEAK;
2920 def.vd_ndx = t->vernum + 1;
2921 def.vd_cnt = cdeps + 1;
2922 def.vd_hash = bfd_elf_hash (t->name);
2923 def.vd_aux = sizeof (Elf_External_Verdef);
2924 if (t->next != NULL)
2925 def.vd_next = (sizeof (Elf_External_Verdef)
2926 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
2927 else
2928 def.vd_next = 0;
2929
2930 _bfd_elf_swap_verdef_out (output_bfd, &def,
2931 (Elf_External_Verdef *) p);
2932 p += sizeof (Elf_External_Verdef);
2933
2934 defaux.vda_name = h->dynstr_index;
2935 if (t->deps == NULL)
2936 defaux.vda_next = 0;
2937 else
2938 defaux.vda_next = sizeof (Elf_External_Verdaux);
2939 t->name_indx = defaux.vda_name;
2940
2941 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2942 (Elf_External_Verdaux *) p);
2943 p += sizeof (Elf_External_Verdaux);
2944
2945 for (n = t->deps; n != NULL; n = n->next)
2946 {
2947 if (n->version_needed == NULL)
2948 {
2949 /* This can happen if there was an error in the
2950 version script. */
2951 defaux.vda_name = 0;
2952 }
2953 else
2954 defaux.vda_name = n->version_needed->name_indx;
2955 if (n->next == NULL)
2956 defaux.vda_next = 0;
2957 else
2958 defaux.vda_next = sizeof (Elf_External_Verdaux);
2959
2960 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2961 (Elf_External_Verdaux *) p);
2962 p += sizeof (Elf_External_Verdaux);
2963 }
2964 }
2965
2966 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
2967 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
2968 return false;
2969
2970 elf_tdata (output_bfd)->cverdefs = cdefs;
2971 }
2972
2973 /* Work out the size of the version reference section. */
2974
2975 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2976 BFD_ASSERT (s != NULL);
2977 {
2978 struct elf_find_verdep_info sinfo;
2979
2980 sinfo.output_bfd = output_bfd;
2981 sinfo.info = info;
2982 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
2983 if (sinfo.vers == 0)
2984 sinfo.vers = 1;
2985 sinfo.failed = false;
2986
2987 elf_link_hash_traverse (elf_hash_table (info),
2988 elf_link_find_version_dependencies,
2989 (PTR) &sinfo);
2990
2991 if (elf_tdata (output_bfd)->verref == NULL)
2992 _bfd_strip_section_from_output (s);
2993 else
2994 {
2995 Elf_Internal_Verneed *t;
2996 unsigned int size;
2997 unsigned int crefs;
2998 bfd_byte *p;
2999
3000 /* Build the version definition section. */
3001 size = 0;
3002 crefs = 0;
3003 for (t = elf_tdata (output_bfd)->verref;
3004 t != NULL;
3005 t = t->vn_nextref)
3006 {
3007 Elf_Internal_Vernaux *a;
3008
3009 size += sizeof (Elf_External_Verneed);
3010 ++crefs;
3011 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3012 size += sizeof (Elf_External_Vernaux);
3013 }
3014
3015 s->_raw_size = size;
3016 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3017 if (s->contents == NULL)
3018 return false;
3019
3020 p = s->contents;
3021 for (t = elf_tdata (output_bfd)->verref;
3022 t != NULL;
3023 t = t->vn_nextref)
3024 {
3025 unsigned int caux;
3026 Elf_Internal_Vernaux *a;
3027 bfd_size_type indx;
3028
3029 caux = 0;
3030 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3031 ++caux;
3032
3033 t->vn_version = VER_NEED_CURRENT;
3034 t->vn_cnt = caux;
3035 if (elf_dt_name (t->vn_bfd) != NULL)
3036 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3037 elf_dt_name (t->vn_bfd),
3038 true, false);
3039 else
3040 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3041 t->vn_bfd->filename, true, false);
3042 if (indx == (bfd_size_type) -1)
3043 return false;
3044 t->vn_file = indx;
3045 t->vn_aux = sizeof (Elf_External_Verneed);
3046 if (t->vn_nextref == NULL)
3047 t->vn_next = 0;
3048 else
3049 t->vn_next = (sizeof (Elf_External_Verneed)
3050 + caux * sizeof (Elf_External_Vernaux));
3051
3052 _bfd_elf_swap_verneed_out (output_bfd, t,
3053 (Elf_External_Verneed *) p);
3054 p += sizeof (Elf_External_Verneed);
3055
3056 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3057 {
3058 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3059 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3060 a->vna_nodename, true, false);
3061 if (indx == (bfd_size_type) -1)
3062 return false;
3063 a->vna_name = indx;
3064 if (a->vna_nextptr == NULL)
3065 a->vna_next = 0;
3066 else
3067 a->vna_next = sizeof (Elf_External_Vernaux);
3068
3069 _bfd_elf_swap_vernaux_out (output_bfd, a,
3070 (Elf_External_Vernaux *) p);
3071 p += sizeof (Elf_External_Vernaux);
3072 }
3073 }
3074
3075 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3076 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3077 return false;
3078
3079 elf_tdata (output_bfd)->cverrefs = crefs;
3080 }
3081 }
3082
3083 /* Assign dynsym indicies. In a shared library we generate a
3084 section symbol for each output section, which come first.
3085 Next come all of the back-end allocated local dynamic syms,
3086 followed by the rest of the global symbols. */
3087
3088 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3089
3090 /* Work out the size of the symbol version section. */
3091 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3092 BFD_ASSERT (s != NULL);
3093 if (dynsymcount == 0
3094 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3095 {
3096 _bfd_strip_section_from_output (s);
3097 /* The DYNSYMCOUNT might have changed if we were going to
3098 output a dynamic symbol table entry for S. */
3099 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3100 }
3101 else
3102 {
3103 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3104 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3105 if (s->contents == NULL)
3106 return false;
3107
3108 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3109 return false;
3110 }
3111
3112 /* Set the size of the .dynsym and .hash sections. We counted
3113 the number of dynamic symbols in elf_link_add_object_symbols.
3114 We will build the contents of .dynsym and .hash when we build
3115 the final symbol table, because until then we do not know the
3116 correct value to give the symbols. We built the .dynstr
3117 section as we went along in elf_link_add_object_symbols. */
3118 s = bfd_get_section_by_name (dynobj, ".dynsym");
3119 BFD_ASSERT (s != NULL);
3120 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3121 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3122 if (s->contents == NULL && s->_raw_size != 0)
3123 return false;
3124
3125 /* The first entry in .dynsym is a dummy symbol. */
3126 isym.st_value = 0;
3127 isym.st_size = 0;
3128 isym.st_name = 0;
3129 isym.st_info = 0;
3130 isym.st_other = 0;
3131 isym.st_shndx = 0;
3132 elf_swap_symbol_out (output_bfd, &isym,
3133 (PTR) (Elf_External_Sym *) s->contents);
3134
3135 /* Compute the size of the hashing table. As a side effect this
3136 computes the hash values for all the names we export. */
3137 bucketcount = compute_bucket_count (info);
3138
3139 s = bfd_get_section_by_name (dynobj, ".hash");
3140 BFD_ASSERT (s != NULL);
3141 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3142 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3143 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3144 if (s->contents == NULL)
3145 return false;
3146 memset (s->contents, 0, (size_t) s->_raw_size);
3147
3148 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3149 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3150 s->contents + hash_entry_size);
3151
3152 elf_hash_table (info)->bucketcount = bucketcount;
3153
3154 s = bfd_get_section_by_name (dynobj, ".dynstr");
3155 BFD_ASSERT (s != NULL);
3156 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3157
3158 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3159 return false;
3160 }
3161
3162 return true;
3163 }
3164 \f
3165 /* Fix up the flags for a symbol. This handles various cases which
3166 can only be fixed after all the input files are seen. This is
3167 currently called by both adjust_dynamic_symbol and
3168 assign_sym_version, which is unnecessary but perhaps more robust in
3169 the face of future changes. */
3170
3171 static boolean
3172 elf_fix_symbol_flags (h, eif)
3173 struct elf_link_hash_entry *h;
3174 struct elf_info_failed *eif;
3175 {
3176 /* If this symbol was mentioned in a non-ELF file, try to set
3177 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3178 permit a non-ELF file to correctly refer to a symbol defined in
3179 an ELF dynamic object. */
3180 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3181 {
3182 if (h->root.type != bfd_link_hash_defined
3183 && h->root.type != bfd_link_hash_defweak)
3184 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3185 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3186 else
3187 {
3188 if (h->root.u.def.section->owner != NULL
3189 && (bfd_get_flavour (h->root.u.def.section->owner)
3190 == bfd_target_elf_flavour))
3191 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3192 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3193 else
3194 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3195 }
3196
3197 if (h->dynindx == -1
3198 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3199 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3200 {
3201 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3202 {
3203 eif->failed = true;
3204 return false;
3205 }
3206 }
3207 }
3208 else
3209 {
3210 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3211 was first seen in a non-ELF file. Fortunately, if the symbol
3212 was first seen in an ELF file, we're probably OK unless the
3213 symbol was defined in a non-ELF file. Catch that case here.
3214 FIXME: We're still in trouble if the symbol was first seen in
3215 a dynamic object, and then later in a non-ELF regular object. */
3216 if ((h->root.type == bfd_link_hash_defined
3217 || h->root.type == bfd_link_hash_defweak)
3218 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3219 && (h->root.u.def.section->owner != NULL
3220 ? (bfd_get_flavour (h->root.u.def.section->owner)
3221 != bfd_target_elf_flavour)
3222 : (bfd_is_abs_section (h->root.u.def.section)
3223 && (h->elf_link_hash_flags
3224 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3225 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3226 }
3227
3228 /* If this is a final link, and the symbol was defined as a common
3229 symbol in a regular object file, and there was no definition in
3230 any dynamic object, then the linker will have allocated space for
3231 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3232 flag will not have been set. */
3233 if (h->root.type == bfd_link_hash_defined
3234 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3235 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3236 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3237 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3238 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3239
3240 /* If -Bsymbolic was used (which means to bind references to global
3241 symbols to the definition within the shared object), and this
3242 symbol was defined in a regular object, then it actually doesn't
3243 need a PLT entry. */
3244 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3245 && eif->info->shared
3246 && eif->info->symbolic
3247 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3248 {
3249 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3250 h->plt.offset = (bfd_vma) -1;
3251 }
3252
3253 return true;
3254 }
3255
3256 /* Make the backend pick a good value for a dynamic symbol. This is
3257 called via elf_link_hash_traverse, and also calls itself
3258 recursively. */
3259
3260 static boolean
3261 elf_adjust_dynamic_symbol (h, data)
3262 struct elf_link_hash_entry *h;
3263 PTR data;
3264 {
3265 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3266 bfd *dynobj;
3267 struct elf_backend_data *bed;
3268
3269 /* Ignore indirect symbols. These are added by the versioning code. */
3270 if (h->root.type == bfd_link_hash_indirect)
3271 return true;
3272
3273 /* Fix the symbol flags. */
3274 if (! elf_fix_symbol_flags (h, eif))
3275 return false;
3276
3277 /* If this symbol does not require a PLT entry, and it is not
3278 defined by a dynamic object, or is not referenced by a regular
3279 object, ignore it. We do have to handle a weak defined symbol,
3280 even if no regular object refers to it, if we decided to add it
3281 to the dynamic symbol table. FIXME: Do we normally need to worry
3282 about symbols which are defined by one dynamic object and
3283 referenced by another one? */
3284 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3285 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3286 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3287 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3288 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3289 {
3290 h->plt.offset = (bfd_vma) -1;
3291 return true;
3292 }
3293
3294 /* If we've already adjusted this symbol, don't do it again. This
3295 can happen via a recursive call. */
3296 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3297 return true;
3298
3299 /* Don't look at this symbol again. Note that we must set this
3300 after checking the above conditions, because we may look at a
3301 symbol once, decide not to do anything, and then get called
3302 recursively later after REF_REGULAR is set below. */
3303 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3304
3305 /* If this is a weak definition, and we know a real definition, and
3306 the real symbol is not itself defined by a regular object file,
3307 then get a good value for the real definition. We handle the
3308 real symbol first, for the convenience of the backend routine.
3309
3310 Note that there is a confusing case here. If the real definition
3311 is defined by a regular object file, we don't get the real symbol
3312 from the dynamic object, but we do get the weak symbol. If the
3313 processor backend uses a COPY reloc, then if some routine in the
3314 dynamic object changes the real symbol, we will not see that
3315 change in the corresponding weak symbol. This is the way other
3316 ELF linkers work as well, and seems to be a result of the shared
3317 library model.
3318
3319 I will clarify this issue. Most SVR4 shared libraries define the
3320 variable _timezone and define timezone as a weak synonym. The
3321 tzset call changes _timezone. If you write
3322 extern int timezone;
3323 int _timezone = 5;
3324 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3325 you might expect that, since timezone is a synonym for _timezone,
3326 the same number will print both times. However, if the processor
3327 backend uses a COPY reloc, then actually timezone will be copied
3328 into your process image, and, since you define _timezone
3329 yourself, _timezone will not. Thus timezone and _timezone will
3330 wind up at different memory locations. The tzset call will set
3331 _timezone, leaving timezone unchanged. */
3332
3333 if (h->weakdef != NULL)
3334 {
3335 struct elf_link_hash_entry *weakdef;
3336
3337 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3338 || h->root.type == bfd_link_hash_defweak);
3339 weakdef = h->weakdef;
3340 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3341 || weakdef->root.type == bfd_link_hash_defweak);
3342 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3343 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3344 {
3345 /* This symbol is defined by a regular object file, so we
3346 will not do anything special. Clear weakdef for the
3347 convenience of the processor backend. */
3348 h->weakdef = NULL;
3349 }
3350 else
3351 {
3352 /* There is an implicit reference by a regular object file
3353 via the weak symbol. */
3354 weakdef->elf_link_hash_flags |=
3355 (ELF_LINK_HASH_REF_REGULAR
3356 | (h->elf_link_hash_flags
3357 & (ELF_LINK_HASH_REF_REGULAR_NONWEAK
3358 | ELF_LINK_NON_GOT_REF)));
3359 if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
3360 return false;
3361 }
3362 }
3363
3364 /* If a symbol has no type and no size and does not require a PLT
3365 entry, then we are probably about to do the wrong thing here: we
3366 are probably going to create a COPY reloc for an empty object.
3367 This case can arise when a shared object is built with assembly
3368 code, and the assembly code fails to set the symbol type. */
3369 if (h->size == 0
3370 && h->type == STT_NOTYPE
3371 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3372 (*_bfd_error_handler)
3373 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3374 h->root.root.string);
3375
3376 dynobj = elf_hash_table (eif->info)->dynobj;
3377 bed = get_elf_backend_data (dynobj);
3378 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3379 {
3380 eif->failed = true;
3381 return false;
3382 }
3383
3384 return true;
3385 }
3386 \f
3387 /* This routine is used to export all defined symbols into the dynamic
3388 symbol table. It is called via elf_link_hash_traverse. */
3389
3390 static boolean
3391 elf_export_symbol (h, data)
3392 struct elf_link_hash_entry *h;
3393 PTR data;
3394 {
3395 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3396
3397 /* Ignore indirect symbols. These are added by the versioning code. */
3398 if (h->root.type == bfd_link_hash_indirect)
3399 return true;
3400
3401 if (h->dynindx == -1
3402 && (h->elf_link_hash_flags
3403 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3404 {
3405 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3406 {
3407 eif->failed = true;
3408 return false;
3409 }
3410 }
3411
3412 return true;
3413 }
3414 \f
3415 /* Look through the symbols which are defined in other shared
3416 libraries and referenced here. Update the list of version
3417 dependencies. This will be put into the .gnu.version_r section.
3418 This function is called via elf_link_hash_traverse. */
3419
3420 static boolean
3421 elf_link_find_version_dependencies (h, data)
3422 struct elf_link_hash_entry *h;
3423 PTR data;
3424 {
3425 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3426 Elf_Internal_Verneed *t;
3427 Elf_Internal_Vernaux *a;
3428
3429 /* We only care about symbols defined in shared objects with version
3430 information. */
3431 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3432 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3433 || h->dynindx == -1
3434 || h->verinfo.verdef == NULL)
3435 return true;
3436
3437 /* See if we already know about this version. */
3438 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3439 {
3440 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3441 continue;
3442
3443 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3444 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3445 return true;
3446
3447 break;
3448 }
3449
3450 /* This is a new version. Add it to tree we are building. */
3451
3452 if (t == NULL)
3453 {
3454 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3455 if (t == NULL)
3456 {
3457 rinfo->failed = true;
3458 return false;
3459 }
3460
3461 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3462 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3463 elf_tdata (rinfo->output_bfd)->verref = t;
3464 }
3465
3466 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3467
3468 /* Note that we are copying a string pointer here, and testing it
3469 above. If bfd_elf_string_from_elf_section is ever changed to
3470 discard the string data when low in memory, this will have to be
3471 fixed. */
3472 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3473
3474 a->vna_flags = h->verinfo.verdef->vd_flags;
3475 a->vna_nextptr = t->vn_auxptr;
3476
3477 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3478 ++rinfo->vers;
3479
3480 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3481
3482 t->vn_auxptr = a;
3483
3484 return true;
3485 }
3486
3487 /* Figure out appropriate versions for all the symbols. We may not
3488 have the version number script until we have read all of the input
3489 files, so until that point we don't know which symbols should be
3490 local. This function is called via elf_link_hash_traverse. */
3491
3492 static boolean
3493 elf_link_assign_sym_version (h, data)
3494 struct elf_link_hash_entry *h;
3495 PTR data;
3496 {
3497 struct elf_assign_sym_version_info *sinfo =
3498 (struct elf_assign_sym_version_info *) data;
3499 struct bfd_link_info *info = sinfo->info;
3500 struct elf_info_failed eif;
3501 char *p;
3502
3503 /* Fix the symbol flags. */
3504 eif.failed = false;
3505 eif.info = info;
3506 if (! elf_fix_symbol_flags (h, &eif))
3507 {
3508 if (eif.failed)
3509 sinfo->failed = true;
3510 return false;
3511 }
3512
3513 /* We only need version numbers for symbols defined in regular
3514 objects. */
3515 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3516 return true;
3517
3518 p = strchr (h->root.root.string, ELF_VER_CHR);
3519 if (p != NULL && h->verinfo.vertree == NULL)
3520 {
3521 struct bfd_elf_version_tree *t;
3522 boolean hidden;
3523
3524 hidden = true;
3525
3526 /* There are two consecutive ELF_VER_CHR characters if this is
3527 not a hidden symbol. */
3528 ++p;
3529 if (*p == ELF_VER_CHR)
3530 {
3531 hidden = false;
3532 ++p;
3533 }
3534
3535 /* If there is no version string, we can just return out. */
3536 if (*p == '\0')
3537 {
3538 if (hidden)
3539 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3540 return true;
3541 }
3542
3543 /* Look for the version. If we find it, it is no longer weak. */
3544 for (t = sinfo->verdefs; t != NULL; t = t->next)
3545 {
3546 if (strcmp (t->name, p) == 0)
3547 {
3548 int len;
3549 char *alc;
3550 struct bfd_elf_version_expr *d;
3551
3552 len = p - h->root.root.string;
3553 alc = bfd_alloc (sinfo->output_bfd, len);
3554 if (alc == NULL)
3555 return false;
3556 strncpy (alc, h->root.root.string, len - 1);
3557 alc[len - 1] = '\0';
3558 if (alc[len - 2] == ELF_VER_CHR)
3559 alc[len - 2] = '\0';
3560
3561 h->verinfo.vertree = t;
3562 t->used = true;
3563 d = NULL;
3564
3565 if (t->globals != NULL)
3566 {
3567 for (d = t->globals; d != NULL; d = d->next)
3568 if ((*d->match) (d, alc))
3569 break;
3570 }
3571
3572 /* See if there is anything to force this symbol to
3573 local scope. */
3574 if (d == NULL && t->locals != NULL)
3575 {
3576 for (d = t->locals; d != NULL; d = d->next)
3577 {
3578 if ((*d->match) (d, alc))
3579 {
3580 if (h->dynindx != -1
3581 && info->shared
3582 && ! sinfo->export_dynamic)
3583 {
3584 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3585 h->elf_link_hash_flags &=~
3586 ELF_LINK_HASH_NEEDS_PLT;
3587 h->dynindx = -1;
3588 h->plt.offset = (bfd_vma) -1;
3589 /* FIXME: The name of the symbol has
3590 already been recorded in the dynamic
3591 string table section. */
3592 }
3593
3594 break;
3595 }
3596 }
3597 }
3598
3599 bfd_release (sinfo->output_bfd, alc);
3600 break;
3601 }
3602 }
3603
3604 /* If we are building an application, we need to create a
3605 version node for this version. */
3606 if (t == NULL && ! info->shared)
3607 {
3608 struct bfd_elf_version_tree **pp;
3609 int version_index;
3610
3611 /* If we aren't going to export this symbol, we don't need
3612 to worry about it. */
3613 if (h->dynindx == -1)
3614 return true;
3615
3616 t = ((struct bfd_elf_version_tree *)
3617 bfd_alloc (sinfo->output_bfd, sizeof *t));
3618 if (t == NULL)
3619 {
3620 sinfo->failed = true;
3621 return false;
3622 }
3623
3624 t->next = NULL;
3625 t->name = p;
3626 t->globals = NULL;
3627 t->locals = NULL;
3628 t->deps = NULL;
3629 t->name_indx = (unsigned int) -1;
3630 t->used = true;
3631
3632 version_index = 1;
3633 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3634 ++version_index;
3635 t->vernum = version_index;
3636
3637 *pp = t;
3638
3639 h->verinfo.vertree = t;
3640 }
3641 else if (t == NULL)
3642 {
3643 /* We could not find the version for a symbol when
3644 generating a shared archive. Return an error. */
3645 (*_bfd_error_handler)
3646 (_("%s: undefined versioned symbol name %s"),
3647 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3648 bfd_set_error (bfd_error_bad_value);
3649 sinfo->failed = true;
3650 return false;
3651 }
3652
3653 if (hidden)
3654 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3655 }
3656
3657 /* If we don't have a version for this symbol, see if we can find
3658 something. */
3659 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3660 {
3661 struct bfd_elf_version_tree *t;
3662 struct bfd_elf_version_tree *deflt;
3663 struct bfd_elf_version_expr *d;
3664
3665 /* See if can find what version this symbol is in. If the
3666 symbol is supposed to be local, then don't actually register
3667 it. */
3668 deflt = NULL;
3669 for (t = sinfo->verdefs; t != NULL; t = t->next)
3670 {
3671 if (t->globals != NULL)
3672 {
3673 for (d = t->globals; d != NULL; d = d->next)
3674 {
3675 if ((*d->match) (d, h->root.root.string))
3676 {
3677 h->verinfo.vertree = t;
3678 break;
3679 }
3680 }
3681
3682 if (d != NULL)
3683 break;
3684 }
3685
3686 if (t->locals != NULL)
3687 {
3688 for (d = t->locals; d != NULL; d = d->next)
3689 {
3690 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3691 deflt = t;
3692 else if ((*d->match) (d, h->root.root.string))
3693 {
3694 h->verinfo.vertree = t;
3695 if (h->dynindx != -1
3696 && info->shared
3697 && ! sinfo->export_dynamic)
3698 {
3699 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3700 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3701 h->dynindx = -1;
3702 h->plt.offset = (bfd_vma) -1;
3703 /* FIXME: The name of the symbol has already
3704 been recorded in the dynamic string table
3705 section. */
3706 }
3707 break;
3708 }
3709 }
3710
3711 if (d != NULL)
3712 break;
3713 }
3714 }
3715
3716 if (deflt != NULL && h->verinfo.vertree == NULL)
3717 {
3718 h->verinfo.vertree = deflt;
3719 if (h->dynindx != -1
3720 && info->shared
3721 && ! sinfo->export_dynamic)
3722 {
3723 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3724 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3725 h->dynindx = -1;
3726 h->plt.offset = (bfd_vma) -1;
3727 /* FIXME: The name of the symbol has already been
3728 recorded in the dynamic string table section. */
3729 }
3730 }
3731 }
3732
3733 return true;
3734 }
3735 \f
3736 /* Final phase of ELF linker. */
3737
3738 /* A structure we use to avoid passing large numbers of arguments. */
3739
3740 struct elf_final_link_info
3741 {
3742 /* General link information. */
3743 struct bfd_link_info *info;
3744 /* Output BFD. */
3745 bfd *output_bfd;
3746 /* Symbol string table. */
3747 struct bfd_strtab_hash *symstrtab;
3748 /* .dynsym section. */
3749 asection *dynsym_sec;
3750 /* .hash section. */
3751 asection *hash_sec;
3752 /* symbol version section (.gnu.version). */
3753 asection *symver_sec;
3754 /* Buffer large enough to hold contents of any section. */
3755 bfd_byte *contents;
3756 /* Buffer large enough to hold external relocs of any section. */
3757 PTR external_relocs;
3758 /* Buffer large enough to hold internal relocs of any section. */
3759 Elf_Internal_Rela *internal_relocs;
3760 /* Buffer large enough to hold external local symbols of any input
3761 BFD. */
3762 Elf_External_Sym *external_syms;
3763 /* Buffer large enough to hold internal local symbols of any input
3764 BFD. */
3765 Elf_Internal_Sym *internal_syms;
3766 /* Array large enough to hold a symbol index for each local symbol
3767 of any input BFD. */
3768 long *indices;
3769 /* Array large enough to hold a section pointer for each local
3770 symbol of any input BFD. */
3771 asection **sections;
3772 /* Buffer to hold swapped out symbols. */
3773 Elf_External_Sym *symbuf;
3774 /* Number of swapped out symbols in buffer. */
3775 size_t symbuf_count;
3776 /* Number of symbols which fit in symbuf. */
3777 size_t symbuf_size;
3778 };
3779
3780 static boolean elf_link_output_sym
3781 PARAMS ((struct elf_final_link_info *, const char *,
3782 Elf_Internal_Sym *, asection *));
3783 static boolean elf_link_flush_output_syms
3784 PARAMS ((struct elf_final_link_info *));
3785 static boolean elf_link_output_extsym
3786 PARAMS ((struct elf_link_hash_entry *, PTR));
3787 static boolean elf_link_input_bfd
3788 PARAMS ((struct elf_final_link_info *, bfd *));
3789 static boolean elf_reloc_link_order
3790 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3791 struct bfd_link_order *));
3792
3793 /* This struct is used to pass information to elf_link_output_extsym. */
3794
3795 struct elf_outext_info
3796 {
3797 boolean failed;
3798 boolean localsyms;
3799 struct elf_final_link_info *finfo;
3800 };
3801
3802 /* Compute the size of, and allocate space for, REL_HDR which is the
3803 section header for a section containing relocations for O. */
3804
3805 static boolean
3806 elf_link_size_reloc_section (abfd, rel_hdr, o)
3807 bfd *abfd;
3808 Elf_Internal_Shdr *rel_hdr;
3809 asection *o;
3810 {
3811 register struct elf_link_hash_entry **p, **pend;
3812 unsigned reloc_count;
3813
3814 /* Figure out how many relocations there will be. */
3815 if (rel_hdr == &elf_section_data (o)->rel_hdr)
3816 reloc_count = elf_section_data (o)->rel_count;
3817 else
3818 reloc_count = elf_section_data (o)->rel_count2;
3819
3820 /* That allows us to calculate the size of the section. */
3821 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
3822
3823 /* The contents field must last into write_object_contents, so we
3824 allocate it with bfd_alloc rather than malloc. */
3825 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3826 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3827 return false;
3828
3829 /* We only allocate one set of hash entries, so we only do it the
3830 first time we are called. */
3831 if (elf_section_data (o)->rel_hashes == NULL)
3832 {
3833 p = ((struct elf_link_hash_entry **)
3834 bfd_malloc (o->reloc_count
3835 * sizeof (struct elf_link_hash_entry *)));
3836 if (p == NULL && o->reloc_count != 0)
3837 return false;
3838
3839 elf_section_data (o)->rel_hashes = p;
3840 pend = p + o->reloc_count;
3841 for (; p < pend; p++)
3842 *p = NULL;
3843 }
3844
3845 return true;
3846 }
3847
3848 /* When performing a relocateable link, the input relocations are
3849 preserved. But, if they reference global symbols, the indices
3850 referenced must be updated. Update all the relocations in
3851 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
3852
3853 static void
3854 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
3855 bfd *abfd;
3856 Elf_Internal_Shdr *rel_hdr;
3857 unsigned int count;
3858 struct elf_link_hash_entry **rel_hash;
3859 {
3860 unsigned int i;
3861
3862 for (i = 0; i < count; i++, rel_hash++)
3863 {
3864 if (*rel_hash == NULL)
3865 continue;
3866
3867 BFD_ASSERT ((*rel_hash)->indx >= 0);
3868
3869 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
3870 {
3871 Elf_External_Rel *erel;
3872 Elf_Internal_Rel irel;
3873
3874 erel = (Elf_External_Rel *) rel_hdr->contents + i;
3875 elf_swap_reloc_in (abfd, erel, &irel);
3876 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
3877 ELF_R_TYPE (irel.r_info));
3878 elf_swap_reloc_out (abfd, &irel, erel);
3879 }
3880 else
3881 {
3882 Elf_External_Rela *erela;
3883 Elf_Internal_Rela irela;
3884
3885 BFD_ASSERT (rel_hdr->sh_entsize
3886 == sizeof (Elf_External_Rela));
3887
3888 erela = (Elf_External_Rela *) rel_hdr->contents + i;
3889 elf_swap_reloca_in (abfd, erela, &irela);
3890 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
3891 ELF_R_TYPE (irela.r_info));
3892 elf_swap_reloca_out (abfd, &irela, erela);
3893 }
3894 }
3895 }
3896
3897 /* Do the final step of an ELF link. */
3898
3899 boolean
3900 elf_bfd_final_link (abfd, info)
3901 bfd *abfd;
3902 struct bfd_link_info *info;
3903 {
3904 boolean dynamic;
3905 bfd *dynobj;
3906 struct elf_final_link_info finfo;
3907 register asection *o;
3908 register struct bfd_link_order *p;
3909 register bfd *sub;
3910 size_t max_contents_size;
3911 size_t max_external_reloc_size;
3912 size_t max_internal_reloc_count;
3913 size_t max_sym_count;
3914 file_ptr off;
3915 Elf_Internal_Sym elfsym;
3916 unsigned int i;
3917 Elf_Internal_Shdr *symtab_hdr;
3918 Elf_Internal_Shdr *symstrtab_hdr;
3919 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3920 struct elf_outext_info eoinfo;
3921
3922 if (info->shared)
3923 abfd->flags |= DYNAMIC;
3924
3925 dynamic = elf_hash_table (info)->dynamic_sections_created;
3926 dynobj = elf_hash_table (info)->dynobj;
3927
3928 finfo.info = info;
3929 finfo.output_bfd = abfd;
3930 finfo.symstrtab = elf_stringtab_init ();
3931 if (finfo.symstrtab == NULL)
3932 return false;
3933
3934 if (! dynamic)
3935 {
3936 finfo.dynsym_sec = NULL;
3937 finfo.hash_sec = NULL;
3938 finfo.symver_sec = NULL;
3939 }
3940 else
3941 {
3942 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
3943 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
3944 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
3945 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
3946 /* Note that it is OK if symver_sec is NULL. */
3947 }
3948
3949 finfo.contents = NULL;
3950 finfo.external_relocs = NULL;
3951 finfo.internal_relocs = NULL;
3952 finfo.external_syms = NULL;
3953 finfo.internal_syms = NULL;
3954 finfo.indices = NULL;
3955 finfo.sections = NULL;
3956 finfo.symbuf = NULL;
3957 finfo.symbuf_count = 0;
3958
3959 /* Count up the number of relocations we will output for each output
3960 section, so that we know the sizes of the reloc sections. We
3961 also figure out some maximum sizes. */
3962 max_contents_size = 0;
3963 max_external_reloc_size = 0;
3964 max_internal_reloc_count = 0;
3965 max_sym_count = 0;
3966 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
3967 {
3968 o->reloc_count = 0;
3969
3970 for (p = o->link_order_head; p != NULL; p = p->next)
3971 {
3972 if (p->type == bfd_section_reloc_link_order
3973 || p->type == bfd_symbol_reloc_link_order)
3974 ++o->reloc_count;
3975 else if (p->type == bfd_indirect_link_order)
3976 {
3977 asection *sec;
3978
3979 sec = p->u.indirect.section;
3980
3981 /* Mark all sections which are to be included in the
3982 link. This will normally be every section. We need
3983 to do this so that we can identify any sections which
3984 the linker has decided to not include. */
3985 sec->linker_mark = true;
3986
3987 if (info->relocateable)
3988 o->reloc_count += sec->reloc_count;
3989
3990 if (sec->_raw_size > max_contents_size)
3991 max_contents_size = sec->_raw_size;
3992 if (sec->_cooked_size > max_contents_size)
3993 max_contents_size = sec->_cooked_size;
3994
3995 /* We are interested in just local symbols, not all
3996 symbols. */
3997 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
3998 && (sec->owner->flags & DYNAMIC) == 0)
3999 {
4000 size_t sym_count;
4001
4002 if (elf_bad_symtab (sec->owner))
4003 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4004 / sizeof (Elf_External_Sym));
4005 else
4006 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4007
4008 if (sym_count > max_sym_count)
4009 max_sym_count = sym_count;
4010
4011 if ((sec->flags & SEC_RELOC) != 0)
4012 {
4013 size_t ext_size;
4014
4015 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4016 if (ext_size > max_external_reloc_size)
4017 max_external_reloc_size = ext_size;
4018 if (sec->reloc_count > max_internal_reloc_count)
4019 max_internal_reloc_count = sec->reloc_count;
4020 }
4021 }
4022 }
4023 }
4024
4025 if (o->reloc_count > 0)
4026 o->flags |= SEC_RELOC;
4027 else
4028 {
4029 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4030 set it (this is probably a bug) and if it is set
4031 assign_section_numbers will create a reloc section. */
4032 o->flags &=~ SEC_RELOC;
4033 }
4034
4035 /* If the SEC_ALLOC flag is not set, force the section VMA to
4036 zero. This is done in elf_fake_sections as well, but forcing
4037 the VMA to 0 here will ensure that relocs against these
4038 sections are handled correctly. */
4039 if ((o->flags & SEC_ALLOC) == 0
4040 && ! o->user_set_vma)
4041 o->vma = 0;
4042 }
4043
4044 /* Figure out the file positions for everything but the symbol table
4045 and the relocs. We set symcount to force assign_section_numbers
4046 to create a symbol table. */
4047 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4048 BFD_ASSERT (! abfd->output_has_begun);
4049 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4050 goto error_return;
4051
4052 /* Figure out how many relocations we will have in each section.
4053 Just using RELOC_COUNT isn't good enough since that doesn't
4054 maintain a separate value for REL vs. RELA relocations. */
4055 if (info->relocateable)
4056 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4057 for (o = sub->sections; o != NULL; o = o->next)
4058 {
4059 asection *output_section;
4060
4061 if (! o->linker_mark)
4062 {
4063 /* This section was omitted from the link. */
4064 continue;
4065 }
4066
4067 output_section = o->output_section;
4068
4069 if (output_section != NULL
4070 && (o->flags & SEC_RELOC) != 0)
4071 {
4072 struct bfd_elf_section_data *esdi
4073 = elf_section_data (o);
4074 struct bfd_elf_section_data *esdo
4075 = elf_section_data (output_section);
4076 unsigned int *rel_count;
4077 unsigned int *rel_count2;
4078
4079 /* We must be careful to add the relocation froms the
4080 input section to the right output count. */
4081 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4082 {
4083 rel_count = &esdo->rel_count;
4084 rel_count2 = &esdo->rel_count2;
4085 }
4086 else
4087 {
4088 rel_count = &esdo->rel_count2;
4089 rel_count2 = &esdo->rel_count;
4090 }
4091
4092 *rel_count += (esdi->rel_hdr.sh_size
4093 / esdi->rel_hdr.sh_entsize);
4094 if (esdi->rel_hdr2)
4095 *rel_count2 += (esdi->rel_hdr2->sh_size
4096 / esdi->rel_hdr2->sh_entsize);
4097 }
4098 }
4099
4100 /* That created the reloc sections. Set their sizes, and assign
4101 them file positions, and allocate some buffers. */
4102 for (o = abfd->sections; o != NULL; o = o->next)
4103 {
4104 if ((o->flags & SEC_RELOC) != 0)
4105 {
4106 if (!elf_link_size_reloc_section (abfd,
4107 &elf_section_data (o)->rel_hdr,
4108 o))
4109 goto error_return;
4110
4111 if (elf_section_data (o)->rel_hdr2
4112 && !elf_link_size_reloc_section (abfd,
4113 elf_section_data (o)->rel_hdr2,
4114 o))
4115 goto error_return;
4116 }
4117
4118 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4119 to count upwards while actually outputting the relocations. */
4120 elf_section_data (o)->rel_count = 0;
4121 elf_section_data (o)->rel_count2 = 0;
4122 }
4123
4124 _bfd_elf_assign_file_positions_for_relocs (abfd);
4125
4126 /* We have now assigned file positions for all the sections except
4127 .symtab and .strtab. We start the .symtab section at the current
4128 file position, and write directly to it. We build the .strtab
4129 section in memory. */
4130 bfd_get_symcount (abfd) = 0;
4131 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4132 /* sh_name is set in prep_headers. */
4133 symtab_hdr->sh_type = SHT_SYMTAB;
4134 symtab_hdr->sh_flags = 0;
4135 symtab_hdr->sh_addr = 0;
4136 symtab_hdr->sh_size = 0;
4137 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4138 /* sh_link is set in assign_section_numbers. */
4139 /* sh_info is set below. */
4140 /* sh_offset is set just below. */
4141 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
4142
4143 off = elf_tdata (abfd)->next_file_pos;
4144 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4145
4146 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4147 incorrect. We do not yet know the size of the .symtab section.
4148 We correct next_file_pos below, after we do know the size. */
4149
4150 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4151 continuously seeking to the right position in the file. */
4152 if (! info->keep_memory || max_sym_count < 20)
4153 finfo.symbuf_size = 20;
4154 else
4155 finfo.symbuf_size = max_sym_count;
4156 finfo.symbuf = ((Elf_External_Sym *)
4157 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4158 if (finfo.symbuf == NULL)
4159 goto error_return;
4160
4161 /* Start writing out the symbol table. The first symbol is always a
4162 dummy symbol. */
4163 if (info->strip != strip_all || info->relocateable)
4164 {
4165 elfsym.st_value = 0;
4166 elfsym.st_size = 0;
4167 elfsym.st_info = 0;
4168 elfsym.st_other = 0;
4169 elfsym.st_shndx = SHN_UNDEF;
4170 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4171 &elfsym, bfd_und_section_ptr))
4172 goto error_return;
4173 }
4174
4175 #if 0
4176 /* Some standard ELF linkers do this, but we don't because it causes
4177 bootstrap comparison failures. */
4178 /* Output a file symbol for the output file as the second symbol.
4179 We output this even if we are discarding local symbols, although
4180 I'm not sure if this is correct. */
4181 elfsym.st_value = 0;
4182 elfsym.st_size = 0;
4183 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4184 elfsym.st_other = 0;
4185 elfsym.st_shndx = SHN_ABS;
4186 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4187 &elfsym, bfd_abs_section_ptr))
4188 goto error_return;
4189 #endif
4190
4191 /* Output a symbol for each section. We output these even if we are
4192 discarding local symbols, since they are used for relocs. These
4193 symbols have no names. We store the index of each one in the
4194 index field of the section, so that we can find it again when
4195 outputting relocs. */
4196 if (info->strip != strip_all || info->relocateable)
4197 {
4198 elfsym.st_size = 0;
4199 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4200 elfsym.st_other = 0;
4201 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4202 {
4203 o = section_from_elf_index (abfd, i);
4204 if (o != NULL)
4205 o->target_index = bfd_get_symcount (abfd);
4206 elfsym.st_shndx = i;
4207 if (info->relocateable || o == NULL)
4208 elfsym.st_value = 0;
4209 else
4210 elfsym.st_value = o->vma;
4211 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4212 &elfsym, o))
4213 goto error_return;
4214 }
4215 }
4216
4217 /* Allocate some memory to hold information read in from the input
4218 files. */
4219 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4220 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4221 finfo.internal_relocs = ((Elf_Internal_Rela *)
4222 bfd_malloc (max_internal_reloc_count
4223 * sizeof (Elf_Internal_Rela)
4224 * bed->s->int_rels_per_ext_rel));
4225 finfo.external_syms = ((Elf_External_Sym *)
4226 bfd_malloc (max_sym_count
4227 * sizeof (Elf_External_Sym)));
4228 finfo.internal_syms = ((Elf_Internal_Sym *)
4229 bfd_malloc (max_sym_count
4230 * sizeof (Elf_Internal_Sym)));
4231 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4232 finfo.sections = ((asection **)
4233 bfd_malloc (max_sym_count * sizeof (asection *)));
4234 if ((finfo.contents == NULL && max_contents_size != 0)
4235 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4236 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4237 || (finfo.external_syms == NULL && max_sym_count != 0)
4238 || (finfo.internal_syms == NULL && max_sym_count != 0)
4239 || (finfo.indices == NULL && max_sym_count != 0)
4240 || (finfo.sections == NULL && max_sym_count != 0))
4241 goto error_return;
4242
4243 /* Since ELF permits relocations to be against local symbols, we
4244 must have the local symbols available when we do the relocations.
4245 Since we would rather only read the local symbols once, and we
4246 would rather not keep them in memory, we handle all the
4247 relocations for a single input file at the same time.
4248
4249 Unfortunately, there is no way to know the total number of local
4250 symbols until we have seen all of them, and the local symbol
4251 indices precede the global symbol indices. This means that when
4252 we are generating relocateable output, and we see a reloc against
4253 a global symbol, we can not know the symbol index until we have
4254 finished examining all the local symbols to see which ones we are
4255 going to output. To deal with this, we keep the relocations in
4256 memory, and don't output them until the end of the link. This is
4257 an unfortunate waste of memory, but I don't see a good way around
4258 it. Fortunately, it only happens when performing a relocateable
4259 link, which is not the common case. FIXME: If keep_memory is set
4260 we could write the relocs out and then read them again; I don't
4261 know how bad the memory loss will be. */
4262
4263 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4264 sub->output_has_begun = false;
4265 for (o = abfd->sections; o != NULL; o = o->next)
4266 {
4267 for (p = o->link_order_head; p != NULL; p = p->next)
4268 {
4269 if (p->type == bfd_indirect_link_order
4270 && (bfd_get_flavour (p->u.indirect.section->owner)
4271 == bfd_target_elf_flavour))
4272 {
4273 sub = p->u.indirect.section->owner;
4274 if (! sub->output_has_begun)
4275 {
4276 if (! elf_link_input_bfd (&finfo, sub))
4277 goto error_return;
4278 sub->output_has_begun = true;
4279 }
4280 }
4281 else if (p->type == bfd_section_reloc_link_order
4282 || p->type == bfd_symbol_reloc_link_order)
4283 {
4284 if (! elf_reloc_link_order (abfd, info, o, p))
4285 goto error_return;
4286 }
4287 else
4288 {
4289 if (! _bfd_default_link_order (abfd, info, o, p))
4290 goto error_return;
4291 }
4292 }
4293 }
4294
4295 /* That wrote out all the local symbols. Finish up the symbol table
4296 with the global symbols. */
4297
4298 if (info->strip != strip_all && info->shared)
4299 {
4300 /* Output any global symbols that got converted to local in a
4301 version script. We do this in a separate step since ELF
4302 requires all local symbols to appear prior to any global
4303 symbols. FIXME: We should only do this if some global
4304 symbols were, in fact, converted to become local. FIXME:
4305 Will this work correctly with the Irix 5 linker? */
4306 eoinfo.failed = false;
4307 eoinfo.finfo = &finfo;
4308 eoinfo.localsyms = true;
4309 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4310 (PTR) &eoinfo);
4311 if (eoinfo.failed)
4312 return false;
4313 }
4314
4315 /* The sh_info field records the index of the first non local symbol. */
4316 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4317
4318 if (dynamic)
4319 {
4320 Elf_Internal_Sym sym;
4321 Elf_External_Sym *dynsym =
4322 (Elf_External_Sym *)finfo.dynsym_sec->contents;
4323 unsigned long last_local = 0;
4324
4325 /* Write out the section symbols for the output sections. */
4326 if (info->shared)
4327 {
4328 asection *s;
4329
4330 sym.st_size = 0;
4331 sym.st_name = 0;
4332 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4333 sym.st_other = 0;
4334
4335 for (s = abfd->sections; s != NULL; s = s->next)
4336 {
4337 int indx;
4338 indx = elf_section_data (s)->this_idx;
4339 BFD_ASSERT (indx > 0);
4340 sym.st_shndx = indx;
4341 sym.st_value = s->vma;
4342
4343 elf_swap_symbol_out (abfd, &sym,
4344 dynsym + elf_section_data (s)->dynindx);
4345 }
4346
4347 last_local = bfd_count_sections (abfd);
4348 }
4349
4350 /* Write out the local dynsyms. */
4351 if (elf_hash_table (info)->dynlocal)
4352 {
4353 struct elf_link_local_dynamic_entry *e;
4354 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4355 {
4356 asection *s;
4357
4358 sym.st_size = e->isym.st_size;
4359 sym.st_other = e->isym.st_other;
4360
4361 /* Copy the internal symbol as is.
4362 Note that we saved a word of storage and overwrote
4363 the original st_name with the dynstr_index. */
4364 sym = e->isym;
4365
4366 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
4367 {
4368 s = bfd_section_from_elf_index (e->input_bfd,
4369 e->isym.st_shndx);
4370
4371 sym.st_shndx =
4372 elf_section_data (s->output_section)->this_idx;
4373 sym.st_value = (s->output_section->vma
4374 + s->output_offset
4375 + e->isym.st_value);
4376 }
4377
4378 if (last_local < e->dynindx)
4379 last_local = e->dynindx;
4380
4381 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4382 }
4383 }
4384
4385 elf_section_data (finfo.dynsym_sec->output_section)
4386 ->this_hdr.sh_info = last_local + 1;
4387 }
4388
4389 /* We get the global symbols from the hash table. */
4390 eoinfo.failed = false;
4391 eoinfo.localsyms = false;
4392 eoinfo.finfo = &finfo;
4393 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4394 (PTR) &eoinfo);
4395 if (eoinfo.failed)
4396 return false;
4397
4398 /* If backend needs to output some symbols not present in the hash
4399 table, do it now. */
4400 if (bed->elf_backend_output_arch_syms)
4401 {
4402 if (! (*bed->elf_backend_output_arch_syms)
4403 (abfd, info, (PTR) &finfo,
4404 (boolean (*) PARAMS ((PTR, const char *,
4405 Elf_Internal_Sym *, asection *)))
4406 elf_link_output_sym))
4407 return false;
4408 }
4409
4410 /* Flush all symbols to the file. */
4411 if (! elf_link_flush_output_syms (&finfo))
4412 return false;
4413
4414 /* Now we know the size of the symtab section. */
4415 off += symtab_hdr->sh_size;
4416
4417 /* Finish up and write out the symbol string table (.strtab)
4418 section. */
4419 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4420 /* sh_name was set in prep_headers. */
4421 symstrtab_hdr->sh_type = SHT_STRTAB;
4422 symstrtab_hdr->sh_flags = 0;
4423 symstrtab_hdr->sh_addr = 0;
4424 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4425 symstrtab_hdr->sh_entsize = 0;
4426 symstrtab_hdr->sh_link = 0;
4427 symstrtab_hdr->sh_info = 0;
4428 /* sh_offset is set just below. */
4429 symstrtab_hdr->sh_addralign = 1;
4430
4431 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4432 elf_tdata (abfd)->next_file_pos = off;
4433
4434 if (bfd_get_symcount (abfd) > 0)
4435 {
4436 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4437 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4438 return false;
4439 }
4440
4441 /* Adjust the relocs to have the correct symbol indices. */
4442 for (o = abfd->sections; o != NULL; o = o->next)
4443 {
4444 if ((o->flags & SEC_RELOC) == 0)
4445 continue;
4446
4447 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4448 elf_section_data (o)->rel_count,
4449 elf_section_data (o)->rel_hashes);
4450 if (elf_section_data (o)->rel_hdr2 != NULL)
4451 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4452 elf_section_data (o)->rel_count2,
4453 (elf_section_data (o)->rel_hashes
4454 + elf_section_data (o)->rel_count));
4455
4456 /* Set the reloc_count field to 0 to prevent write_relocs from
4457 trying to swap the relocs out itself. */
4458 o->reloc_count = 0;
4459 }
4460
4461 /* If we are linking against a dynamic object, or generating a
4462 shared library, finish up the dynamic linking information. */
4463 if (dynamic)
4464 {
4465 Elf_External_Dyn *dyncon, *dynconend;
4466
4467 /* Fix up .dynamic entries. */
4468 o = bfd_get_section_by_name (dynobj, ".dynamic");
4469 BFD_ASSERT (o != NULL);
4470
4471 dyncon = (Elf_External_Dyn *) o->contents;
4472 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4473 for (; dyncon < dynconend; dyncon++)
4474 {
4475 Elf_Internal_Dyn dyn;
4476 const char *name;
4477 unsigned int type;
4478
4479 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4480
4481 switch (dyn.d_tag)
4482 {
4483 default:
4484 break;
4485 case DT_INIT:
4486 name = info->init_function;
4487 goto get_sym;
4488 case DT_FINI:
4489 name = info->fini_function;
4490 get_sym:
4491 {
4492 struct elf_link_hash_entry *h;
4493
4494 h = elf_link_hash_lookup (elf_hash_table (info), name,
4495 false, false, true);
4496 if (h != NULL
4497 && (h->root.type == bfd_link_hash_defined
4498 || h->root.type == bfd_link_hash_defweak))
4499 {
4500 dyn.d_un.d_val = h->root.u.def.value;
4501 o = h->root.u.def.section;
4502 if (o->output_section != NULL)
4503 dyn.d_un.d_val += (o->output_section->vma
4504 + o->output_offset);
4505 else
4506 {
4507 /* The symbol is imported from another shared
4508 library and does not apply to this one. */
4509 dyn.d_un.d_val = 0;
4510 }
4511
4512 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4513 }
4514 }
4515 break;
4516
4517 case DT_HASH:
4518 name = ".hash";
4519 goto get_vma;
4520 case DT_STRTAB:
4521 name = ".dynstr";
4522 goto get_vma;
4523 case DT_SYMTAB:
4524 name = ".dynsym";
4525 goto get_vma;
4526 case DT_VERDEF:
4527 name = ".gnu.version_d";
4528 goto get_vma;
4529 case DT_VERNEED:
4530 name = ".gnu.version_r";
4531 goto get_vma;
4532 case DT_VERSYM:
4533 name = ".gnu.version";
4534 get_vma:
4535 o = bfd_get_section_by_name (abfd, name);
4536 BFD_ASSERT (o != NULL);
4537 dyn.d_un.d_ptr = o->vma;
4538 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4539 break;
4540
4541 case DT_REL:
4542 case DT_RELA:
4543 case DT_RELSZ:
4544 case DT_RELASZ:
4545 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4546 type = SHT_REL;
4547 else
4548 type = SHT_RELA;
4549 dyn.d_un.d_val = 0;
4550 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4551 {
4552 Elf_Internal_Shdr *hdr;
4553
4554 hdr = elf_elfsections (abfd)[i];
4555 if (hdr->sh_type == type
4556 && (hdr->sh_flags & SHF_ALLOC) != 0)
4557 {
4558 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4559 dyn.d_un.d_val += hdr->sh_size;
4560 else
4561 {
4562 if (dyn.d_un.d_val == 0
4563 || hdr->sh_addr < dyn.d_un.d_val)
4564 dyn.d_un.d_val = hdr->sh_addr;
4565 }
4566 }
4567 }
4568 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4569 break;
4570 }
4571 }
4572 }
4573
4574 /* If we have created any dynamic sections, then output them. */
4575 if (dynobj != NULL)
4576 {
4577 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4578 goto error_return;
4579
4580 for (o = dynobj->sections; o != NULL; o = o->next)
4581 {
4582 if ((o->flags & SEC_HAS_CONTENTS) == 0
4583 || o->_raw_size == 0)
4584 continue;
4585 if ((o->flags & SEC_LINKER_CREATED) == 0)
4586 {
4587 /* At this point, we are only interested in sections
4588 created by elf_link_create_dynamic_sections. */
4589 continue;
4590 }
4591 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4592 != SHT_STRTAB)
4593 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4594 {
4595 if (! bfd_set_section_contents (abfd, o->output_section,
4596 o->contents, o->output_offset,
4597 o->_raw_size))
4598 goto error_return;
4599 }
4600 else
4601 {
4602 file_ptr off;
4603
4604 /* The contents of the .dynstr section are actually in a
4605 stringtab. */
4606 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4607 if (bfd_seek (abfd, off, SEEK_SET) != 0
4608 || ! _bfd_stringtab_emit (abfd,
4609 elf_hash_table (info)->dynstr))
4610 goto error_return;
4611 }
4612 }
4613 }
4614
4615 /* If we have optimized stabs strings, output them. */
4616 if (elf_hash_table (info)->stab_info != NULL)
4617 {
4618 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4619 goto error_return;
4620 }
4621
4622 if (finfo.symstrtab != NULL)
4623 _bfd_stringtab_free (finfo.symstrtab);
4624 if (finfo.contents != NULL)
4625 free (finfo.contents);
4626 if (finfo.external_relocs != NULL)
4627 free (finfo.external_relocs);
4628 if (finfo.internal_relocs != NULL)
4629 free (finfo.internal_relocs);
4630 if (finfo.external_syms != NULL)
4631 free (finfo.external_syms);
4632 if (finfo.internal_syms != NULL)
4633 free (finfo.internal_syms);
4634 if (finfo.indices != NULL)
4635 free (finfo.indices);
4636 if (finfo.sections != NULL)
4637 free (finfo.sections);
4638 if (finfo.symbuf != NULL)
4639 free (finfo.symbuf);
4640 for (o = abfd->sections; o != NULL; o = o->next)
4641 {
4642 if ((o->flags & SEC_RELOC) != 0
4643 && elf_section_data (o)->rel_hashes != NULL)
4644 free (elf_section_data (o)->rel_hashes);
4645 }
4646
4647 elf_tdata (abfd)->linker = true;
4648
4649 return true;
4650
4651 error_return:
4652 if (finfo.symstrtab != NULL)
4653 _bfd_stringtab_free (finfo.symstrtab);
4654 if (finfo.contents != NULL)
4655 free (finfo.contents);
4656 if (finfo.external_relocs != NULL)
4657 free (finfo.external_relocs);
4658 if (finfo.internal_relocs != NULL)
4659 free (finfo.internal_relocs);
4660 if (finfo.external_syms != NULL)
4661 free (finfo.external_syms);
4662 if (finfo.internal_syms != NULL)
4663 free (finfo.internal_syms);
4664 if (finfo.indices != NULL)
4665 free (finfo.indices);
4666 if (finfo.sections != NULL)
4667 free (finfo.sections);
4668 if (finfo.symbuf != NULL)
4669 free (finfo.symbuf);
4670 for (o = abfd->sections; o != NULL; o = o->next)
4671 {
4672 if ((o->flags & SEC_RELOC) != 0
4673 && elf_section_data (o)->rel_hashes != NULL)
4674 free (elf_section_data (o)->rel_hashes);
4675 }
4676
4677 return false;
4678 }
4679
4680 /* Add a symbol to the output symbol table. */
4681
4682 static boolean
4683 elf_link_output_sym (finfo, name, elfsym, input_sec)
4684 struct elf_final_link_info *finfo;
4685 const char *name;
4686 Elf_Internal_Sym *elfsym;
4687 asection *input_sec;
4688 {
4689 boolean (*output_symbol_hook) PARAMS ((bfd *,
4690 struct bfd_link_info *info,
4691 const char *,
4692 Elf_Internal_Sym *,
4693 asection *));
4694
4695 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4696 elf_backend_link_output_symbol_hook;
4697 if (output_symbol_hook != NULL)
4698 {
4699 if (! ((*output_symbol_hook)
4700 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4701 return false;
4702 }
4703
4704 if (name == (const char *) NULL || *name == '\0')
4705 elfsym->st_name = 0;
4706 else if (input_sec->flags & SEC_EXCLUDE)
4707 elfsym->st_name = 0;
4708 else
4709 {
4710 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4711 name, true,
4712 false);
4713 if (elfsym->st_name == (unsigned long) -1)
4714 return false;
4715 }
4716
4717 if (finfo->symbuf_count >= finfo->symbuf_size)
4718 {
4719 if (! elf_link_flush_output_syms (finfo))
4720 return false;
4721 }
4722
4723 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4724 (PTR) (finfo->symbuf + finfo->symbuf_count));
4725 ++finfo->symbuf_count;
4726
4727 ++ bfd_get_symcount (finfo->output_bfd);
4728
4729 return true;
4730 }
4731
4732 /* Flush the output symbols to the file. */
4733
4734 static boolean
4735 elf_link_flush_output_syms (finfo)
4736 struct elf_final_link_info *finfo;
4737 {
4738 if (finfo->symbuf_count > 0)
4739 {
4740 Elf_Internal_Shdr *symtab;
4741
4742 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4743
4744 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4745 SEEK_SET) != 0
4746 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4747 sizeof (Elf_External_Sym), finfo->output_bfd)
4748 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4749 return false;
4750
4751 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4752
4753 finfo->symbuf_count = 0;
4754 }
4755
4756 return true;
4757 }
4758
4759 /* Add an external symbol to the symbol table. This is called from
4760 the hash table traversal routine. When generating a shared object,
4761 we go through the symbol table twice. The first time we output
4762 anything that might have been forced to local scope in a version
4763 script. The second time we output the symbols that are still
4764 global symbols. */
4765
4766 static boolean
4767 elf_link_output_extsym (h, data)
4768 struct elf_link_hash_entry *h;
4769 PTR data;
4770 {
4771 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4772 struct elf_final_link_info *finfo = eoinfo->finfo;
4773 boolean strip;
4774 Elf_Internal_Sym sym;
4775 asection *input_sec;
4776
4777 /* Decide whether to output this symbol in this pass. */
4778 if (eoinfo->localsyms)
4779 {
4780 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4781 return true;
4782 }
4783 else
4784 {
4785 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4786 return true;
4787 }
4788
4789 /* If we are not creating a shared library, and this symbol is
4790 referenced by a shared library but is not defined anywhere, then
4791 warn that it is undefined. If we do not do this, the runtime
4792 linker will complain that the symbol is undefined when the
4793 program is run. We don't have to worry about symbols that are
4794 referenced by regular files, because we will already have issued
4795 warnings for them. */
4796 if (! finfo->info->relocateable
4797 && ! (finfo->info->shared
4798 && !finfo->info->no_undefined)
4799 && h->root.type == bfd_link_hash_undefined
4800 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4801 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4802 {
4803 if (! ((*finfo->info->callbacks->undefined_symbol)
4804 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4805 (asection *) NULL, 0)))
4806 {
4807 eoinfo->failed = true;
4808 return false;
4809 }
4810 }
4811
4812 /* We don't want to output symbols that have never been mentioned by
4813 a regular file, or that we have been told to strip. However, if
4814 h->indx is set to -2, the symbol is used by a reloc and we must
4815 output it. */
4816 if (h->indx == -2)
4817 strip = false;
4818 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4819 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4820 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4821 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4822 strip = true;
4823 else if (finfo->info->strip == strip_all
4824 || (finfo->info->strip == strip_some
4825 && bfd_hash_lookup (finfo->info->keep_hash,
4826 h->root.root.string,
4827 false, false) == NULL))
4828 strip = true;
4829 else
4830 strip = false;
4831
4832 /* If we're stripping it, and it's not a dynamic symbol, there's
4833 nothing else to do. */
4834 if (strip && h->dynindx == -1)
4835 return true;
4836
4837 sym.st_value = 0;
4838 sym.st_size = h->size;
4839 sym.st_other = h->other;
4840 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4841 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4842 else if (h->root.type == bfd_link_hash_undefweak
4843 || h->root.type == bfd_link_hash_defweak)
4844 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4845 else
4846 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4847
4848 switch (h->root.type)
4849 {
4850 default:
4851 case bfd_link_hash_new:
4852 abort ();
4853 return false;
4854
4855 case bfd_link_hash_undefined:
4856 input_sec = bfd_und_section_ptr;
4857 sym.st_shndx = SHN_UNDEF;
4858 break;
4859
4860 case bfd_link_hash_undefweak:
4861 input_sec = bfd_und_section_ptr;
4862 sym.st_shndx = SHN_UNDEF;
4863 break;
4864
4865 case bfd_link_hash_defined:
4866 case bfd_link_hash_defweak:
4867 {
4868 input_sec = h->root.u.def.section;
4869 if (input_sec->output_section != NULL)
4870 {
4871 sym.st_shndx =
4872 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4873 input_sec->output_section);
4874 if (sym.st_shndx == (unsigned short) -1)
4875 {
4876 (*_bfd_error_handler)
4877 (_("%s: could not find output section %s for input section %s"),
4878 bfd_get_filename (finfo->output_bfd),
4879 input_sec->output_section->name,
4880 input_sec->name);
4881 eoinfo->failed = true;
4882 return false;
4883 }
4884
4885 /* ELF symbols in relocateable files are section relative,
4886 but in nonrelocateable files they are virtual
4887 addresses. */
4888 sym.st_value = h->root.u.def.value + input_sec->output_offset;
4889 if (! finfo->info->relocateable)
4890 sym.st_value += input_sec->output_section->vma;
4891 }
4892 else
4893 {
4894 BFD_ASSERT (input_sec->owner == NULL
4895 || (input_sec->owner->flags & DYNAMIC) != 0);
4896 sym.st_shndx = SHN_UNDEF;
4897 input_sec = bfd_und_section_ptr;
4898 }
4899 }
4900 break;
4901
4902 case bfd_link_hash_common:
4903 input_sec = h->root.u.c.p->section;
4904 sym.st_shndx = SHN_COMMON;
4905 sym.st_value = 1 << h->root.u.c.p->alignment_power;
4906 break;
4907
4908 case bfd_link_hash_indirect:
4909 /* These symbols are created by symbol versioning. They point
4910 to the decorated version of the name. For example, if the
4911 symbol foo@@GNU_1.2 is the default, which should be used when
4912 foo is used with no version, then we add an indirect symbol
4913 foo which points to foo@@GNU_1.2. We ignore these symbols,
4914 since the indirected symbol is already in the hash table. If
4915 the indirect symbol is non-ELF, fall through and output it. */
4916 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
4917 return true;
4918
4919 /* Fall through. */
4920 case bfd_link_hash_warning:
4921 /* We can't represent these symbols in ELF, although a warning
4922 symbol may have come from a .gnu.warning.SYMBOL section. We
4923 just put the target symbol in the hash table. If the target
4924 symbol does not really exist, don't do anything. */
4925 if (h->root.u.i.link->type == bfd_link_hash_new)
4926 return true;
4927 return (elf_link_output_extsym
4928 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
4929 }
4930
4931 /* Give the processor backend a chance to tweak the symbol value,
4932 and also to finish up anything that needs to be done for this
4933 symbol. */
4934 if ((h->dynindx != -1
4935 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4936 && elf_hash_table (finfo->info)->dynamic_sections_created)
4937 {
4938 struct elf_backend_data *bed;
4939
4940 bed = get_elf_backend_data (finfo->output_bfd);
4941 if (! ((*bed->elf_backend_finish_dynamic_symbol)
4942 (finfo->output_bfd, finfo->info, h, &sym)))
4943 {
4944 eoinfo->failed = true;
4945 return false;
4946 }
4947 }
4948
4949 /* If we are marking the symbol as undefined, and there are no
4950 non-weak references to this symbol from a regular object, then
4951 mark the symbol as weak undefined; if there are non-weak
4952 references, mark the symbol as strong. We can't do this earlier,
4953 because it might not be marked as undefined until the
4954 finish_dynamic_symbol routine gets through with it. */
4955 if (sym.st_shndx == SHN_UNDEF
4956 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
4957 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
4958 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
4959 {
4960 int bindtype;
4961
4962 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
4963 bindtype = STB_GLOBAL;
4964 else
4965 bindtype = STB_WEAK;
4966 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
4967 }
4968
4969 /* If this symbol should be put in the .dynsym section, then put it
4970 there now. We have already know the symbol index. We also fill
4971 in the entry in the .hash section. */
4972 if (h->dynindx != -1
4973 && elf_hash_table (finfo->info)->dynamic_sections_created)
4974 {
4975 size_t bucketcount;
4976 size_t bucket;
4977 size_t hash_entry_size;
4978 bfd_byte *bucketpos;
4979 bfd_vma chain;
4980
4981 sym.st_name = h->dynstr_index;
4982
4983 elf_swap_symbol_out (finfo->output_bfd, &sym,
4984 (PTR) (((Elf_External_Sym *)
4985 finfo->dynsym_sec->contents)
4986 + h->dynindx));
4987
4988 bucketcount = elf_hash_table (finfo->info)->bucketcount;
4989 bucket = h->elf_hash_value % bucketcount;
4990 hash_entry_size
4991 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
4992 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
4993 + (bucket + 2) * hash_entry_size);
4994 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
4995 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
4996 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
4997 ((bfd_byte *) finfo->hash_sec->contents
4998 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
4999
5000 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5001 {
5002 Elf_Internal_Versym iversym;
5003
5004 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5005 {
5006 if (h->verinfo.verdef == NULL)
5007 iversym.vs_vers = 0;
5008 else
5009 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5010 }
5011 else
5012 {
5013 if (h->verinfo.vertree == NULL)
5014 iversym.vs_vers = 1;
5015 else
5016 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5017 }
5018
5019 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5020 iversym.vs_vers |= VERSYM_HIDDEN;
5021
5022 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5023 (((Elf_External_Versym *)
5024 finfo->symver_sec->contents)
5025 + h->dynindx));
5026 }
5027 }
5028
5029 /* If we're stripping it, then it was just a dynamic symbol, and
5030 there's nothing else to do. */
5031 if (strip)
5032 return true;
5033
5034 h->indx = bfd_get_symcount (finfo->output_bfd);
5035
5036 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5037 {
5038 eoinfo->failed = true;
5039 return false;
5040 }
5041
5042 return true;
5043 }
5044
5045 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
5046 originated from the section given by INPUT_REL_HDR) to the
5047 OUTPUT_BFD. */
5048
5049 static void
5050 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
5051 internal_relocs)
5052 bfd *output_bfd;
5053 asection *input_section;
5054 Elf_Internal_Shdr *input_rel_hdr;
5055 Elf_Internal_Rela *internal_relocs;
5056 {
5057 Elf_Internal_Rela *irela;
5058 Elf_Internal_Rela *irelaend;
5059 Elf_Internal_Shdr *output_rel_hdr;
5060 asection *output_section;
5061 unsigned int *rel_countp = NULL;
5062
5063 output_section = input_section->output_section;
5064 output_rel_hdr = NULL;
5065
5066 if (elf_section_data (output_section)->rel_hdr.sh_entsize
5067 == input_rel_hdr->sh_entsize)
5068 {
5069 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5070 rel_countp = &elf_section_data (output_section)->rel_count;
5071 }
5072 else if (elf_section_data (output_section)->rel_hdr2
5073 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5074 == input_rel_hdr->sh_entsize))
5075 {
5076 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5077 rel_countp = &elf_section_data (output_section)->rel_count2;
5078 }
5079
5080 BFD_ASSERT (output_rel_hdr != NULL);
5081
5082 irela = internal_relocs;
5083 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5084 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5085 {
5086 Elf_External_Rel *erel;
5087
5088 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5089 for (; irela < irelaend; irela++, erel++)
5090 {
5091 Elf_Internal_Rel irel;
5092
5093 irel.r_offset = irela->r_offset;
5094 irel.r_info = irela->r_info;
5095 BFD_ASSERT (irela->r_addend == 0);
5096 elf_swap_reloc_out (output_bfd, &irel, erel);
5097 }
5098 }
5099 else
5100 {
5101 Elf_External_Rela *erela;
5102
5103 BFD_ASSERT (input_rel_hdr->sh_entsize
5104 == sizeof (Elf_External_Rela));
5105 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5106 for (; irela < irelaend; irela++, erela++)
5107 elf_swap_reloca_out (output_bfd, irela, erela);
5108 }
5109
5110 /* Bump the counter, so that we know where to add the next set of
5111 relocations. */
5112 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5113 }
5114
5115 /* Link an input file into the linker output file. This function
5116 handles all the sections and relocations of the input file at once.
5117 This is so that we only have to read the local symbols once, and
5118 don't have to keep them in memory. */
5119
5120 static boolean
5121 elf_link_input_bfd (finfo, input_bfd)
5122 struct elf_final_link_info *finfo;
5123 bfd *input_bfd;
5124 {
5125 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5126 bfd *, asection *, bfd_byte *,
5127 Elf_Internal_Rela *,
5128 Elf_Internal_Sym *, asection **));
5129 bfd *output_bfd;
5130 Elf_Internal_Shdr *symtab_hdr;
5131 size_t locsymcount;
5132 size_t extsymoff;
5133 Elf_External_Sym *external_syms;
5134 Elf_External_Sym *esym;
5135 Elf_External_Sym *esymend;
5136 Elf_Internal_Sym *isym;
5137 long *pindex;
5138 asection **ppsection;
5139 asection *o;
5140 struct elf_backend_data *bed;
5141
5142 output_bfd = finfo->output_bfd;
5143 bed = get_elf_backend_data (output_bfd);
5144 relocate_section = bed->elf_backend_relocate_section;
5145
5146 /* If this is a dynamic object, we don't want to do anything here:
5147 we don't want the local symbols, and we don't want the section
5148 contents. */
5149 if ((input_bfd->flags & DYNAMIC) != 0)
5150 return true;
5151
5152 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5153 if (elf_bad_symtab (input_bfd))
5154 {
5155 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5156 extsymoff = 0;
5157 }
5158 else
5159 {
5160 locsymcount = symtab_hdr->sh_info;
5161 extsymoff = symtab_hdr->sh_info;
5162 }
5163
5164 /* Read the local symbols. */
5165 if (symtab_hdr->contents != NULL)
5166 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5167 else if (locsymcount == 0)
5168 external_syms = NULL;
5169 else
5170 {
5171 external_syms = finfo->external_syms;
5172 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5173 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5174 locsymcount, input_bfd)
5175 != locsymcount * sizeof (Elf_External_Sym)))
5176 return false;
5177 }
5178
5179 /* Swap in the local symbols and write out the ones which we know
5180 are going into the output file. */
5181 esym = external_syms;
5182 esymend = esym + locsymcount;
5183 isym = finfo->internal_syms;
5184 pindex = finfo->indices;
5185 ppsection = finfo->sections;
5186 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5187 {
5188 asection *isec;
5189 const char *name;
5190 Elf_Internal_Sym osym;
5191
5192 elf_swap_symbol_in (input_bfd, esym, isym);
5193 *pindex = -1;
5194
5195 if (elf_bad_symtab (input_bfd))
5196 {
5197 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5198 {
5199 *ppsection = NULL;
5200 continue;
5201 }
5202 }
5203
5204 if (isym->st_shndx == SHN_UNDEF)
5205 isec = bfd_und_section_ptr;
5206 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5207 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5208 else if (isym->st_shndx == SHN_ABS)
5209 isec = bfd_abs_section_ptr;
5210 else if (isym->st_shndx == SHN_COMMON)
5211 isec = bfd_com_section_ptr;
5212 else
5213 {
5214 /* Who knows? */
5215 isec = NULL;
5216 }
5217
5218 *ppsection = isec;
5219
5220 /* Don't output the first, undefined, symbol. */
5221 if (esym == external_syms)
5222 continue;
5223
5224 /* If we are stripping all symbols, we don't want to output this
5225 one. */
5226 if (finfo->info->strip == strip_all)
5227 continue;
5228
5229 /* We never output section symbols. Instead, we use the section
5230 symbol of the corresponding section in the output file. */
5231 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5232 continue;
5233
5234 /* If we are discarding all local symbols, we don't want to
5235 output this one. If we are generating a relocateable output
5236 file, then some of the local symbols may be required by
5237 relocs; we output them below as we discover that they are
5238 needed. */
5239 if (finfo->info->discard == discard_all)
5240 continue;
5241
5242 /* If this symbol is defined in a section which we are
5243 discarding, we don't need to keep it, but note that
5244 linker_mark is only reliable for sections that have contents.
5245 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5246 as well as linker_mark. */
5247 if (isym->st_shndx > 0
5248 && isym->st_shndx < SHN_LORESERVE
5249 && isec != NULL
5250 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5251 || (! finfo->info->relocateable
5252 && (isec->flags & SEC_EXCLUDE) != 0)))
5253 continue;
5254
5255 /* Get the name of the symbol. */
5256 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5257 isym->st_name);
5258 if (name == NULL)
5259 return false;
5260
5261 /* See if we are discarding symbols with this name. */
5262 if ((finfo->info->strip == strip_some
5263 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5264 == NULL))
5265 || (finfo->info->discard == discard_l
5266 && bfd_is_local_label_name (input_bfd, name)))
5267 continue;
5268
5269 /* If we get here, we are going to output this symbol. */
5270
5271 osym = *isym;
5272
5273 /* Adjust the section index for the output file. */
5274 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5275 isec->output_section);
5276 if (osym.st_shndx == (unsigned short) -1)
5277 return false;
5278
5279 *pindex = bfd_get_symcount (output_bfd);
5280
5281 /* ELF symbols in relocateable files are section relative, but
5282 in executable files they are virtual addresses. Note that
5283 this code assumes that all ELF sections have an associated
5284 BFD section with a reasonable value for output_offset; below
5285 we assume that they also have a reasonable value for
5286 output_section. Any special sections must be set up to meet
5287 these requirements. */
5288 osym.st_value += isec->output_offset;
5289 if (! finfo->info->relocateable)
5290 osym.st_value += isec->output_section->vma;
5291
5292 if (! elf_link_output_sym (finfo, name, &osym, isec))
5293 return false;
5294 }
5295
5296 /* Relocate the contents of each section. */
5297 for (o = input_bfd->sections; o != NULL; o = o->next)
5298 {
5299 bfd_byte *contents;
5300
5301 if (! o->linker_mark)
5302 {
5303 /* This section was omitted from the link. */
5304 continue;
5305 }
5306
5307 if ((o->flags & SEC_HAS_CONTENTS) == 0
5308 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5309 continue;
5310
5311 if ((o->flags & SEC_LINKER_CREATED) != 0)
5312 {
5313 /* Section was created by elf_link_create_dynamic_sections
5314 or somesuch. */
5315 continue;
5316 }
5317
5318 /* Get the contents of the section. They have been cached by a
5319 relaxation routine. Note that o is a section in an input
5320 file, so the contents field will not have been set by any of
5321 the routines which work on output files. */
5322 if (elf_section_data (o)->this_hdr.contents != NULL)
5323 contents = elf_section_data (o)->this_hdr.contents;
5324 else
5325 {
5326 contents = finfo->contents;
5327 if (! bfd_get_section_contents (input_bfd, o, contents,
5328 (file_ptr) 0, o->_raw_size))
5329 return false;
5330 }
5331
5332 if ((o->flags & SEC_RELOC) != 0)
5333 {
5334 Elf_Internal_Rela *internal_relocs;
5335
5336 /* Get the swapped relocs. */
5337 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5338 (input_bfd, o, finfo->external_relocs,
5339 finfo->internal_relocs, false));
5340 if (internal_relocs == NULL
5341 && o->reloc_count > 0)
5342 return false;
5343
5344 /* Relocate the section by invoking a back end routine.
5345
5346 The back end routine is responsible for adjusting the
5347 section contents as necessary, and (if using Rela relocs
5348 and generating a relocateable output file) adjusting the
5349 reloc addend as necessary.
5350
5351 The back end routine does not have to worry about setting
5352 the reloc address or the reloc symbol index.
5353
5354 The back end routine is given a pointer to the swapped in
5355 internal symbols, and can access the hash table entries
5356 for the external symbols via elf_sym_hashes (input_bfd).
5357
5358 When generating relocateable output, the back end routine
5359 must handle STB_LOCAL/STT_SECTION symbols specially. The
5360 output symbol is going to be a section symbol
5361 corresponding to the output section, which will require
5362 the addend to be adjusted. */
5363
5364 if (! (*relocate_section) (output_bfd, finfo->info,
5365 input_bfd, o, contents,
5366 internal_relocs,
5367 finfo->internal_syms,
5368 finfo->sections))
5369 return false;
5370
5371 if (finfo->info->relocateable)
5372 {
5373 Elf_Internal_Rela *irela;
5374 Elf_Internal_Rela *irelaend;
5375 struct elf_link_hash_entry **rel_hash;
5376 Elf_Internal_Shdr *input_rel_hdr;
5377
5378 /* Adjust the reloc addresses and symbol indices. */
5379
5380 irela = internal_relocs;
5381 irelaend =
5382 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
5383 rel_hash = (elf_section_data (o->output_section)->rel_hashes
5384 + elf_section_data (o->output_section)->rel_count
5385 + elf_section_data (o->output_section)->rel_count2);
5386 for (; irela < irelaend; irela++, rel_hash++)
5387 {
5388 unsigned long r_symndx;
5389 Elf_Internal_Sym *isym;
5390 asection *sec;
5391
5392 irela->r_offset += o->output_offset;
5393
5394 r_symndx = ELF_R_SYM (irela->r_info);
5395
5396 if (r_symndx == 0)
5397 continue;
5398
5399 if (r_symndx >= locsymcount
5400 || (elf_bad_symtab (input_bfd)
5401 && finfo->sections[r_symndx] == NULL))
5402 {
5403 struct elf_link_hash_entry *rh;
5404 long indx;
5405
5406 /* This is a reloc against a global symbol. We
5407 have not yet output all the local symbols, so
5408 we do not know the symbol index of any global
5409 symbol. We set the rel_hash entry for this
5410 reloc to point to the global hash table entry
5411 for this symbol. The symbol index is then
5412 set at the end of elf_bfd_final_link. */
5413 indx = r_symndx - extsymoff;
5414 rh = elf_sym_hashes (input_bfd)[indx];
5415 while (rh->root.type == bfd_link_hash_indirect
5416 || rh->root.type == bfd_link_hash_warning)
5417 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5418
5419 /* Setting the index to -2 tells
5420 elf_link_output_extsym that this symbol is
5421 used by a reloc. */
5422 BFD_ASSERT (rh->indx < 0);
5423 rh->indx = -2;
5424
5425 *rel_hash = rh;
5426
5427 continue;
5428 }
5429
5430 /* This is a reloc against a local symbol. */
5431
5432 *rel_hash = NULL;
5433 isym = finfo->internal_syms + r_symndx;
5434 sec = finfo->sections[r_symndx];
5435 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5436 {
5437 /* I suppose the backend ought to fill in the
5438 section of any STT_SECTION symbol against a
5439 processor specific section. If we have
5440 discarded a section, the output_section will
5441 be the absolute section. */
5442 if (sec != NULL
5443 && (bfd_is_abs_section (sec)
5444 || (sec->output_section != NULL
5445 && bfd_is_abs_section (sec->output_section))))
5446 r_symndx = 0;
5447 else if (sec == NULL || sec->owner == NULL)
5448 {
5449 bfd_set_error (bfd_error_bad_value);
5450 return false;
5451 }
5452 else
5453 {
5454 r_symndx = sec->output_section->target_index;
5455 BFD_ASSERT (r_symndx != 0);
5456 }
5457 }
5458 else
5459 {
5460 if (finfo->indices[r_symndx] == -1)
5461 {
5462 unsigned long link;
5463 const char *name;
5464 asection *osec;
5465
5466 if (finfo->info->strip == strip_all)
5467 {
5468 /* You can't do ld -r -s. */
5469 bfd_set_error (bfd_error_invalid_operation);
5470 return false;
5471 }
5472
5473 /* This symbol was skipped earlier, but
5474 since it is needed by a reloc, we
5475 must output it now. */
5476 link = symtab_hdr->sh_link;
5477 name = bfd_elf_string_from_elf_section (input_bfd,
5478 link,
5479 isym->st_name);
5480 if (name == NULL)
5481 return false;
5482
5483 osec = sec->output_section;
5484 isym->st_shndx =
5485 _bfd_elf_section_from_bfd_section (output_bfd,
5486 osec);
5487 if (isym->st_shndx == (unsigned short) -1)
5488 return false;
5489
5490 isym->st_value += sec->output_offset;
5491 if (! finfo->info->relocateable)
5492 isym->st_value += osec->vma;
5493
5494 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5495
5496 if (! elf_link_output_sym (finfo, name, isym, sec))
5497 return false;
5498 }
5499
5500 r_symndx = finfo->indices[r_symndx];
5501 }
5502
5503 irela->r_info = ELF_R_INFO (r_symndx,
5504 ELF_R_TYPE (irela->r_info));
5505 }
5506
5507 /* Swap out the relocs. */
5508 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5509 elf_link_output_relocs (output_bfd, o,
5510 input_rel_hdr,
5511 internal_relocs);
5512 internal_relocs
5513 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5514 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5515 if (input_rel_hdr)
5516 elf_link_output_relocs (output_bfd, o,
5517 input_rel_hdr,
5518 internal_relocs);
5519 }
5520 }
5521
5522 /* Write out the modified section contents. */
5523 if (elf_section_data (o)->stab_info == NULL)
5524 {
5525 if (! (o->flags & SEC_EXCLUDE) &&
5526 ! bfd_set_section_contents (output_bfd, o->output_section,
5527 contents, o->output_offset,
5528 (o->_cooked_size != 0
5529 ? o->_cooked_size
5530 : o->_raw_size)))
5531 return false;
5532 }
5533 else
5534 {
5535 if (! (_bfd_write_section_stabs
5536 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5537 o, &elf_section_data (o)->stab_info, contents)))
5538 return false;
5539 }
5540 }
5541
5542 return true;
5543 }
5544
5545 /* Generate a reloc when linking an ELF file. This is a reloc
5546 requested by the linker, and does come from any input file. This
5547 is used to build constructor and destructor tables when linking
5548 with -Ur. */
5549
5550 static boolean
5551 elf_reloc_link_order (output_bfd, info, output_section, link_order)
5552 bfd *output_bfd;
5553 struct bfd_link_info *info;
5554 asection *output_section;
5555 struct bfd_link_order *link_order;
5556 {
5557 reloc_howto_type *howto;
5558 long indx;
5559 bfd_vma offset;
5560 bfd_vma addend;
5561 struct elf_link_hash_entry **rel_hash_ptr;
5562 Elf_Internal_Shdr *rel_hdr;
5563
5564 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5565 if (howto == NULL)
5566 {
5567 bfd_set_error (bfd_error_bad_value);
5568 return false;
5569 }
5570
5571 addend = link_order->u.reloc.p->addend;
5572
5573 /* Figure out the symbol index. */
5574 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5575 + elf_section_data (output_section)->rel_count
5576 + elf_section_data (output_section)->rel_count2);
5577 if (link_order->type == bfd_section_reloc_link_order)
5578 {
5579 indx = link_order->u.reloc.p->u.section->target_index;
5580 BFD_ASSERT (indx != 0);
5581 *rel_hash_ptr = NULL;
5582 }
5583 else
5584 {
5585 struct elf_link_hash_entry *h;
5586
5587 /* Treat a reloc against a defined symbol as though it were
5588 actually against the section. */
5589 h = ((struct elf_link_hash_entry *)
5590 bfd_wrapped_link_hash_lookup (output_bfd, info,
5591 link_order->u.reloc.p->u.name,
5592 false, false, true));
5593 if (h != NULL
5594 && (h->root.type == bfd_link_hash_defined
5595 || h->root.type == bfd_link_hash_defweak))
5596 {
5597 asection *section;
5598
5599 section = h->root.u.def.section;
5600 indx = section->output_section->target_index;
5601 *rel_hash_ptr = NULL;
5602 /* It seems that we ought to add the symbol value to the
5603 addend here, but in practice it has already been added
5604 because it was passed to constructor_callback. */
5605 addend += section->output_section->vma + section->output_offset;
5606 }
5607 else if (h != NULL)
5608 {
5609 /* Setting the index to -2 tells elf_link_output_extsym that
5610 this symbol is used by a reloc. */
5611 h->indx = -2;
5612 *rel_hash_ptr = h;
5613 indx = 0;
5614 }
5615 else
5616 {
5617 if (! ((*info->callbacks->unattached_reloc)
5618 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5619 (asection *) NULL, (bfd_vma) 0)))
5620 return false;
5621 indx = 0;
5622 }
5623 }
5624
5625 /* If this is an inplace reloc, we must write the addend into the
5626 object file. */
5627 if (howto->partial_inplace && addend != 0)
5628 {
5629 bfd_size_type size;
5630 bfd_reloc_status_type rstat;
5631 bfd_byte *buf;
5632 boolean ok;
5633
5634 size = bfd_get_reloc_size (howto);
5635 buf = (bfd_byte *) bfd_zmalloc (size);
5636 if (buf == (bfd_byte *) NULL)
5637 return false;
5638 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5639 switch (rstat)
5640 {
5641 case bfd_reloc_ok:
5642 break;
5643 default:
5644 case bfd_reloc_outofrange:
5645 abort ();
5646 case bfd_reloc_overflow:
5647 if (! ((*info->callbacks->reloc_overflow)
5648 (info,
5649 (link_order->type == bfd_section_reloc_link_order
5650 ? bfd_section_name (output_bfd,
5651 link_order->u.reloc.p->u.section)
5652 : link_order->u.reloc.p->u.name),
5653 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5654 (bfd_vma) 0)))
5655 {
5656 free (buf);
5657 return false;
5658 }
5659 break;
5660 }
5661 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5662 (file_ptr) link_order->offset, size);
5663 free (buf);
5664 if (! ok)
5665 return false;
5666 }
5667
5668 /* The address of a reloc is relative to the section in a
5669 relocateable file, and is a virtual address in an executable
5670 file. */
5671 offset = link_order->offset;
5672 if (! info->relocateable)
5673 offset += output_section->vma;
5674
5675 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5676
5677 if (rel_hdr->sh_type == SHT_REL)
5678 {
5679 Elf_Internal_Rel irel;
5680 Elf_External_Rel *erel;
5681
5682 irel.r_offset = offset;
5683 irel.r_info = ELF_R_INFO (indx, howto->type);
5684 erel = ((Elf_External_Rel *) rel_hdr->contents
5685 + elf_section_data (output_section)->rel_count);
5686 elf_swap_reloc_out (output_bfd, &irel, erel);
5687 }
5688 else
5689 {
5690 Elf_Internal_Rela irela;
5691 Elf_External_Rela *erela;
5692
5693 irela.r_offset = offset;
5694 irela.r_info = ELF_R_INFO (indx, howto->type);
5695 irela.r_addend = addend;
5696 erela = ((Elf_External_Rela *) rel_hdr->contents
5697 + elf_section_data (output_section)->rel_count);
5698 elf_swap_reloca_out (output_bfd, &irela, erela);
5699 }
5700
5701 ++elf_section_data (output_section)->rel_count;
5702
5703 return true;
5704 }
5705
5706 \f
5707 /* Allocate a pointer to live in a linker created section. */
5708
5709 boolean
5710 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5711 bfd *abfd;
5712 struct bfd_link_info *info;
5713 elf_linker_section_t *lsect;
5714 struct elf_link_hash_entry *h;
5715 const Elf_Internal_Rela *rel;
5716 {
5717 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5718 elf_linker_section_pointers_t *linker_section_ptr;
5719 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5720
5721 BFD_ASSERT (lsect != NULL);
5722
5723 /* Is this a global symbol? */
5724 if (h != NULL)
5725 {
5726 /* Has this symbol already been allocated, if so, our work is done */
5727 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5728 rel->r_addend,
5729 lsect->which))
5730 return true;
5731
5732 ptr_linker_section_ptr = &h->linker_section_pointer;
5733 /* Make sure this symbol is output as a dynamic symbol. */
5734 if (h->dynindx == -1)
5735 {
5736 if (! elf_link_record_dynamic_symbol (info, h))
5737 return false;
5738 }
5739
5740 if (lsect->rel_section)
5741 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5742 }
5743
5744 else /* Allocation of a pointer to a local symbol */
5745 {
5746 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5747
5748 /* Allocate a table to hold the local symbols if first time */
5749 if (!ptr)
5750 {
5751 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5752 register unsigned int i;
5753
5754 ptr = (elf_linker_section_pointers_t **)
5755 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5756
5757 if (!ptr)
5758 return false;
5759
5760 elf_local_ptr_offsets (abfd) = ptr;
5761 for (i = 0; i < num_symbols; i++)
5762 ptr[i] = (elf_linker_section_pointers_t *)0;
5763 }
5764
5765 /* Has this symbol already been allocated, if so, our work is done */
5766 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5767 rel->r_addend,
5768 lsect->which))
5769 return true;
5770
5771 ptr_linker_section_ptr = &ptr[r_symndx];
5772
5773 if (info->shared)
5774 {
5775 /* If we are generating a shared object, we need to
5776 output a R_<xxx>_RELATIVE reloc so that the
5777 dynamic linker can adjust this GOT entry. */
5778 BFD_ASSERT (lsect->rel_section != NULL);
5779 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5780 }
5781 }
5782
5783 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5784 from internal memory. */
5785 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5786 linker_section_ptr = (elf_linker_section_pointers_t *)
5787 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5788
5789 if (!linker_section_ptr)
5790 return false;
5791
5792 linker_section_ptr->next = *ptr_linker_section_ptr;
5793 linker_section_ptr->addend = rel->r_addend;
5794 linker_section_ptr->which = lsect->which;
5795 linker_section_ptr->written_address_p = false;
5796 *ptr_linker_section_ptr = linker_section_ptr;
5797
5798 #if 0
5799 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5800 {
5801 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5802 lsect->hole_offset += ARCH_SIZE / 8;
5803 lsect->sym_offset += ARCH_SIZE / 8;
5804 if (lsect->sym_hash) /* Bump up symbol value if needed */
5805 {
5806 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5807 #ifdef DEBUG
5808 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5809 lsect->sym_hash->root.root.string,
5810 (long)ARCH_SIZE / 8,
5811 (long)lsect->sym_hash->root.u.def.value);
5812 #endif
5813 }
5814 }
5815 else
5816 #endif
5817 linker_section_ptr->offset = lsect->section->_raw_size;
5818
5819 lsect->section->_raw_size += ARCH_SIZE / 8;
5820
5821 #ifdef DEBUG
5822 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5823 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5824 #endif
5825
5826 return true;
5827 }
5828
5829 \f
5830 #if ARCH_SIZE==64
5831 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5832 #endif
5833 #if ARCH_SIZE==32
5834 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5835 #endif
5836
5837 /* Fill in the address for a pointer generated in alinker section. */
5838
5839 bfd_vma
5840 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5841 bfd *output_bfd;
5842 bfd *input_bfd;
5843 struct bfd_link_info *info;
5844 elf_linker_section_t *lsect;
5845 struct elf_link_hash_entry *h;
5846 bfd_vma relocation;
5847 const Elf_Internal_Rela *rel;
5848 int relative_reloc;
5849 {
5850 elf_linker_section_pointers_t *linker_section_ptr;
5851
5852 BFD_ASSERT (lsect != NULL);
5853
5854 if (h != NULL) /* global symbol */
5855 {
5856 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5857 rel->r_addend,
5858 lsect->which);
5859
5860 BFD_ASSERT (linker_section_ptr != NULL);
5861
5862 if (! elf_hash_table (info)->dynamic_sections_created
5863 || (info->shared
5864 && info->symbolic
5865 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5866 {
5867 /* This is actually a static link, or it is a
5868 -Bsymbolic link and the symbol is defined
5869 locally. We must initialize this entry in the
5870 global section.
5871
5872 When doing a dynamic link, we create a .rela.<xxx>
5873 relocation entry to initialize the value. This
5874 is done in the finish_dynamic_symbol routine. */
5875 if (!linker_section_ptr->written_address_p)
5876 {
5877 linker_section_ptr->written_address_p = true;
5878 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5879 lsect->section->contents + linker_section_ptr->offset);
5880 }
5881 }
5882 }
5883 else /* local symbol */
5884 {
5885 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
5886 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
5887 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
5888 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
5889 rel->r_addend,
5890 lsect->which);
5891
5892 BFD_ASSERT (linker_section_ptr != NULL);
5893
5894 /* Write out pointer if it hasn't been rewritten out before */
5895 if (!linker_section_ptr->written_address_p)
5896 {
5897 linker_section_ptr->written_address_p = true;
5898 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5899 lsect->section->contents + linker_section_ptr->offset);
5900
5901 if (info->shared)
5902 {
5903 asection *srel = lsect->rel_section;
5904 Elf_Internal_Rela outrel;
5905
5906 /* We need to generate a relative reloc for the dynamic linker. */
5907 if (!srel)
5908 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5909 lsect->rel_name);
5910
5911 BFD_ASSERT (srel != NULL);
5912
5913 outrel.r_offset = (lsect->section->output_section->vma
5914 + lsect->section->output_offset
5915 + linker_section_ptr->offset);
5916 outrel.r_info = ELF_R_INFO (0, relative_reloc);
5917 outrel.r_addend = 0;
5918 elf_swap_reloca_out (output_bfd, &outrel,
5919 (((Elf_External_Rela *)
5920 lsect->section->contents)
5921 + elf_section_data (lsect->section)->rel_count));
5922 ++elf_section_data (lsect->section)->rel_count;
5923 }
5924 }
5925 }
5926
5927 relocation = (lsect->section->output_offset
5928 + linker_section_ptr->offset
5929 - lsect->hole_offset
5930 - lsect->sym_offset);
5931
5932 #ifdef DEBUG
5933 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
5934 lsect->name, (long)relocation, (long)relocation);
5935 #endif
5936
5937 /* Subtract out the addend, because it will get added back in by the normal
5938 processing. */
5939 return relocation - linker_section_ptr->addend;
5940 }
5941 \f
5942 /* Garbage collect unused sections. */
5943
5944 static boolean elf_gc_mark
5945 PARAMS ((struct bfd_link_info *info, asection *sec,
5946 asection * (*gc_mark_hook)
5947 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5948 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
5949
5950 static boolean elf_gc_sweep
5951 PARAMS ((struct bfd_link_info *info,
5952 boolean (*gc_sweep_hook)
5953 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5954 const Elf_Internal_Rela *relocs))));
5955
5956 static boolean elf_gc_sweep_symbol
5957 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
5958
5959 static boolean elf_gc_allocate_got_offsets
5960 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
5961
5962 static boolean elf_gc_propagate_vtable_entries_used
5963 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5964
5965 static boolean elf_gc_smash_unused_vtentry_relocs
5966 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5967
5968 /* The mark phase of garbage collection. For a given section, mark
5969 it, and all the sections which define symbols to which it refers. */
5970
5971 static boolean
5972 elf_gc_mark (info, sec, gc_mark_hook)
5973 struct bfd_link_info *info;
5974 asection *sec;
5975 asection * (*gc_mark_hook)
5976 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5977 struct elf_link_hash_entry *, Elf_Internal_Sym *));
5978 {
5979 boolean ret = true;
5980
5981 sec->gc_mark = 1;
5982
5983 /* Look through the section relocs. */
5984
5985 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
5986 {
5987 Elf_Internal_Rela *relstart, *rel, *relend;
5988 Elf_Internal_Shdr *symtab_hdr;
5989 struct elf_link_hash_entry **sym_hashes;
5990 size_t nlocsyms;
5991 size_t extsymoff;
5992 Elf_External_Sym *locsyms, *freesyms = NULL;
5993 bfd *input_bfd = sec->owner;
5994 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
5995
5996 /* GCFIXME: how to arrange so that relocs and symbols are not
5997 reread continually? */
5998
5999 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6000 sym_hashes = elf_sym_hashes (input_bfd);
6001
6002 /* Read the local symbols. */
6003 if (elf_bad_symtab (input_bfd))
6004 {
6005 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6006 extsymoff = 0;
6007 }
6008 else
6009 extsymoff = nlocsyms = symtab_hdr->sh_info;
6010 if (symtab_hdr->contents)
6011 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6012 else if (nlocsyms == 0)
6013 locsyms = NULL;
6014 else
6015 {
6016 locsyms = freesyms =
6017 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6018 if (freesyms == NULL
6019 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6020 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6021 nlocsyms, input_bfd)
6022 != nlocsyms * sizeof (Elf_External_Sym)))
6023 {
6024 ret = false;
6025 goto out1;
6026 }
6027 }
6028
6029 /* Read the relocations. */
6030 relstart = (NAME(_bfd_elf,link_read_relocs)
6031 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6032 info->keep_memory));
6033 if (relstart == NULL)
6034 {
6035 ret = false;
6036 goto out1;
6037 }
6038 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6039
6040 for (rel = relstart; rel < relend; rel++)
6041 {
6042 unsigned long r_symndx;
6043 asection *rsec;
6044 struct elf_link_hash_entry *h;
6045 Elf_Internal_Sym s;
6046
6047 r_symndx = ELF_R_SYM (rel->r_info);
6048 if (r_symndx == 0)
6049 continue;
6050
6051 if (elf_bad_symtab (sec->owner))
6052 {
6053 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6054 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
6055 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6056 else
6057 {
6058 h = sym_hashes[r_symndx - extsymoff];
6059 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6060 }
6061 }
6062 else if (r_symndx >= nlocsyms)
6063 {
6064 h = sym_hashes[r_symndx - extsymoff];
6065 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6066 }
6067 else
6068 {
6069 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6070 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6071 }
6072
6073 if (rsec && !rsec->gc_mark)
6074 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6075 {
6076 ret = false;
6077 goto out2;
6078 }
6079 }
6080
6081 out2:
6082 if (!info->keep_memory)
6083 free (relstart);
6084 out1:
6085 if (freesyms)
6086 free (freesyms);
6087 }
6088
6089 return ret;
6090 }
6091
6092 /* The sweep phase of garbage collection. Remove all garbage sections. */
6093
6094 static boolean
6095 elf_gc_sweep (info, gc_sweep_hook)
6096 struct bfd_link_info *info;
6097 boolean (*gc_sweep_hook)
6098 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6099 const Elf_Internal_Rela *relocs));
6100 {
6101 bfd *sub;
6102
6103 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6104 {
6105 asection *o;
6106
6107 for (o = sub->sections; o != NULL; o = o->next)
6108 {
6109 /* Keep special sections. Keep .debug sections. */
6110 if ((o->flags & SEC_LINKER_CREATED)
6111 || (o->flags & SEC_DEBUGGING))
6112 o->gc_mark = 1;
6113
6114 if (o->gc_mark)
6115 continue;
6116
6117 /* Skip sweeping sections already excluded. */
6118 if (o->flags & SEC_EXCLUDE)
6119 continue;
6120
6121 /* Since this is early in the link process, it is simple
6122 to remove a section from the output. */
6123 o->flags |= SEC_EXCLUDE;
6124
6125 /* But we also have to update some of the relocation
6126 info we collected before. */
6127 if (gc_sweep_hook
6128 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6129 {
6130 Elf_Internal_Rela *internal_relocs;
6131 boolean r;
6132
6133 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6134 (o->owner, o, NULL, NULL, info->keep_memory));
6135 if (internal_relocs == NULL)
6136 return false;
6137
6138 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
6139
6140 if (!info->keep_memory)
6141 free (internal_relocs);
6142
6143 if (!r)
6144 return false;
6145 }
6146 }
6147 }
6148
6149 /* Remove the symbols that were in the swept sections from the dynamic
6150 symbol table. GCFIXME: Anyone know how to get them out of the
6151 static symbol table as well? */
6152 {
6153 int i = 0;
6154
6155 elf_link_hash_traverse (elf_hash_table (info),
6156 elf_gc_sweep_symbol,
6157 (PTR) &i);
6158
6159 elf_hash_table (info)->dynsymcount = i;
6160 }
6161
6162 return true;
6163 }
6164
6165 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6166
6167 static boolean
6168 elf_gc_sweep_symbol (h, idxptr)
6169 struct elf_link_hash_entry *h;
6170 PTR idxptr;
6171 {
6172 int *idx = (int *) idxptr;
6173
6174 if (h->dynindx != -1
6175 && ((h->root.type != bfd_link_hash_defined
6176 && h->root.type != bfd_link_hash_defweak)
6177 || h->root.u.def.section->gc_mark))
6178 h->dynindx = (*idx)++;
6179
6180 return true;
6181 }
6182
6183 /* Propogate collected vtable information. This is called through
6184 elf_link_hash_traverse. */
6185
6186 static boolean
6187 elf_gc_propagate_vtable_entries_used (h, okp)
6188 struct elf_link_hash_entry *h;
6189 PTR okp;
6190 {
6191 /* Those that are not vtables. */
6192 if (h->vtable_parent == NULL)
6193 return true;
6194
6195 /* Those vtables that do not have parents, we cannot merge. */
6196 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6197 return true;
6198
6199 /* If we've already been done, exit. */
6200 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6201 return true;
6202
6203 /* Make sure the parent's table is up to date. */
6204 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6205
6206 if (h->vtable_entries_used == NULL)
6207 {
6208 /* None of this table's entries were referenced. Re-use the
6209 parent's table. */
6210 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6211 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6212 }
6213 else
6214 {
6215 size_t n;
6216 boolean *cu, *pu;
6217
6218 /* Or the parent's entries into ours. */
6219 cu = h->vtable_entries_used;
6220 cu[-1] = true;
6221 pu = h->vtable_parent->vtable_entries_used;
6222 if (pu != NULL)
6223 {
6224 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6225 while (--n != 0)
6226 {
6227 if (*pu) *cu = true;
6228 pu++, cu++;
6229 }
6230 }
6231 }
6232
6233 return true;
6234 }
6235
6236 static boolean
6237 elf_gc_smash_unused_vtentry_relocs (h, okp)
6238 struct elf_link_hash_entry *h;
6239 PTR okp;
6240 {
6241 asection *sec;
6242 bfd_vma hstart, hend;
6243 Elf_Internal_Rela *relstart, *relend, *rel;
6244 struct elf_backend_data *bed;
6245
6246 /* Take care of both those symbols that do not describe vtables as
6247 well as those that are not loaded. */
6248 if (h->vtable_parent == NULL)
6249 return true;
6250
6251 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6252 || h->root.type == bfd_link_hash_defweak);
6253
6254 sec = h->root.u.def.section;
6255 hstart = h->root.u.def.value;
6256 hend = hstart + h->size;
6257
6258 relstart = (NAME(_bfd_elf,link_read_relocs)
6259 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6260 if (!relstart)
6261 return *(boolean *)okp = false;
6262 bed = get_elf_backend_data (sec->owner);
6263 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6264
6265 for (rel = relstart; rel < relend; ++rel)
6266 if (rel->r_offset >= hstart && rel->r_offset < hend)
6267 {
6268 /* If the entry is in use, do nothing. */
6269 if (h->vtable_entries_used
6270 && (rel->r_offset - hstart) < h->vtable_entries_size)
6271 {
6272 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6273 if (h->vtable_entries_used[entry])
6274 continue;
6275 }
6276 /* Otherwise, kill it. */
6277 rel->r_offset = rel->r_info = rel->r_addend = 0;
6278 }
6279
6280 return true;
6281 }
6282
6283 /* Do mark and sweep of unused sections. */
6284
6285 boolean
6286 elf_gc_sections (abfd, info)
6287 bfd *abfd;
6288 struct bfd_link_info *info;
6289 {
6290 boolean ok = true;
6291 bfd *sub;
6292 asection * (*gc_mark_hook)
6293 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6294 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6295
6296 if (!get_elf_backend_data (abfd)->can_gc_sections
6297 || info->relocateable
6298 || elf_hash_table (info)->dynamic_sections_created)
6299 return true;
6300
6301 /* Apply transitive closure to the vtable entry usage info. */
6302 elf_link_hash_traverse (elf_hash_table (info),
6303 elf_gc_propagate_vtable_entries_used,
6304 (PTR) &ok);
6305 if (!ok)
6306 return false;
6307
6308 /* Kill the vtable relocations that were not used. */
6309 elf_link_hash_traverse (elf_hash_table (info),
6310 elf_gc_smash_unused_vtentry_relocs,
6311 (PTR) &ok);
6312 if (!ok)
6313 return false;
6314
6315 /* Grovel through relocs to find out who stays ... */
6316
6317 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6318 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6319 {
6320 asection *o;
6321 for (o = sub->sections; o != NULL; o = o->next)
6322 {
6323 if (o->flags & SEC_KEEP)
6324 if (!elf_gc_mark (info, o, gc_mark_hook))
6325 return false;
6326 }
6327 }
6328
6329 /* ... and mark SEC_EXCLUDE for those that go. */
6330 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6331 return false;
6332
6333 return true;
6334 }
6335 \f
6336 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6337
6338 boolean
6339 elf_gc_record_vtinherit (abfd, sec, h, offset)
6340 bfd *abfd;
6341 asection *sec;
6342 struct elf_link_hash_entry *h;
6343 bfd_vma offset;
6344 {
6345 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6346 struct elf_link_hash_entry **search, *child;
6347 bfd_size_type extsymcount;
6348
6349 /* The sh_info field of the symtab header tells us where the
6350 external symbols start. We don't care about the local symbols at
6351 this point. */
6352 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6353 if (!elf_bad_symtab (abfd))
6354 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6355
6356 sym_hashes = elf_sym_hashes (abfd);
6357 sym_hashes_end = sym_hashes + extsymcount;
6358
6359 /* Hunt down the child symbol, which is in this section at the same
6360 offset as the relocation. */
6361 for (search = sym_hashes; search != sym_hashes_end; ++search)
6362 {
6363 if ((child = *search) != NULL
6364 && (child->root.type == bfd_link_hash_defined
6365 || child->root.type == bfd_link_hash_defweak)
6366 && child->root.u.def.section == sec
6367 && child->root.u.def.value == offset)
6368 goto win;
6369 }
6370
6371 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6372 bfd_get_filename (abfd), sec->name,
6373 (unsigned long)offset);
6374 bfd_set_error (bfd_error_invalid_operation);
6375 return false;
6376
6377 win:
6378 if (!h)
6379 {
6380 /* This *should* only be the absolute section. It could potentially
6381 be that someone has defined a non-global vtable though, which
6382 would be bad. It isn't worth paging in the local symbols to be
6383 sure though; that case should simply be handled by the assembler. */
6384
6385 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6386 }
6387 else
6388 child->vtable_parent = h;
6389
6390 return true;
6391 }
6392
6393 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
6394
6395 boolean
6396 elf_gc_record_vtentry (abfd, sec, h, addend)
6397 bfd *abfd ATTRIBUTE_UNUSED;
6398 asection *sec ATTRIBUTE_UNUSED;
6399 struct elf_link_hash_entry *h;
6400 bfd_vma addend;
6401 {
6402 if (addend >= h->vtable_entries_size)
6403 {
6404 size_t size, bytes;
6405 boolean *ptr = h->vtable_entries_used;
6406
6407 /* While the symbol is undefined, we have to be prepared to handle
6408 a zero size. */
6409 if (h->root.type == bfd_link_hash_undefined)
6410 size = addend;
6411 else
6412 {
6413 size = h->size;
6414 if (size < addend)
6415 {
6416 /* Oops! We've got a reference past the defined end of
6417 the table. This is probably a bug -- shall we warn? */
6418 size = addend;
6419 }
6420 }
6421
6422 /* Allocate one extra entry for use as a "done" flag for the
6423 consolidation pass. */
6424 bytes = (size / FILE_ALIGN + 1) * sizeof (boolean);
6425
6426 if (ptr)
6427 {
6428 ptr = bfd_realloc (ptr - 1, bytes);
6429
6430 if (ptr != NULL)
6431 {
6432 size_t oldbytes;
6433
6434 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean);
6435 memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
6436 }
6437 }
6438 else
6439 ptr = bfd_zmalloc (bytes);
6440
6441 if (ptr == NULL)
6442 return false;
6443
6444 /* And arrange for that done flag to be at index -1. */
6445 h->vtable_entries_used = ptr + 1;
6446 h->vtable_entries_size = size;
6447 }
6448
6449 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6450
6451 return true;
6452 }
6453
6454 /* And an accompanying bit to work out final got entry offsets once
6455 we're done. Should be called from final_link. */
6456
6457 boolean
6458 elf_gc_common_finalize_got_offsets (abfd, info)
6459 bfd *abfd;
6460 struct bfd_link_info *info;
6461 {
6462 bfd *i;
6463 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6464 bfd_vma gotoff;
6465
6466 /* The GOT offset is relative to the .got section, but the GOT header is
6467 put into the .got.plt section, if the backend uses it. */
6468 if (bed->want_got_plt)
6469 gotoff = 0;
6470 else
6471 gotoff = bed->got_header_size;
6472
6473 /* Do the local .got entries first. */
6474 for (i = info->input_bfds; i; i = i->link_next)
6475 {
6476 bfd_signed_vma *local_got = elf_local_got_refcounts (i);
6477 bfd_size_type j, locsymcount;
6478 Elf_Internal_Shdr *symtab_hdr;
6479
6480 if (!local_got)
6481 continue;
6482
6483 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6484 if (elf_bad_symtab (i))
6485 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6486 else
6487 locsymcount = symtab_hdr->sh_info;
6488
6489 for (j = 0; j < locsymcount; ++j)
6490 {
6491 if (local_got[j] > 0)
6492 {
6493 local_got[j] = gotoff;
6494 gotoff += ARCH_SIZE / 8;
6495 }
6496 else
6497 local_got[j] = (bfd_vma) -1;
6498 }
6499 }
6500
6501 /* Then the global .got and .plt entries. */
6502 elf_link_hash_traverse (elf_hash_table (info),
6503 elf_gc_allocate_got_offsets,
6504 (PTR) &gotoff);
6505 return true;
6506 }
6507
6508 /* We need a special top-level link routine to convert got reference counts
6509 to real got offsets. */
6510
6511 static boolean
6512 elf_gc_allocate_got_offsets (h, offarg)
6513 struct elf_link_hash_entry *h;
6514 PTR offarg;
6515 {
6516 bfd_vma *off = (bfd_vma *) offarg;
6517
6518 if (h->got.refcount > 0)
6519 {
6520 h->got.offset = off[0];
6521 off[0] += ARCH_SIZE / 8;
6522 }
6523 else
6524 h->got.offset = (bfd_vma) -1;
6525
6526 return true;
6527 }
6528
6529 /* Many folk need no more in the way of final link than this, once
6530 got entry reference counting is enabled. */
6531
6532 boolean
6533 elf_gc_common_final_link (abfd, info)
6534 bfd *abfd;
6535 struct bfd_link_info *info;
6536 {
6537 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6538 return false;
6539
6540 /* Invoke the regular ELF backend linker to do all the work. */
6541 return elf_bfd_final_link (abfd, info);
6542 }
6543
6544 /* This function will be called though elf_link_hash_traverse to store
6545 all hash value of the exported symbols in an array. */
6546
6547 static boolean
6548 elf_collect_hash_codes (h, data)
6549 struct elf_link_hash_entry *h;
6550 PTR data;
6551 {
6552 unsigned long **valuep = (unsigned long **) data;
6553 const char *name;
6554 char *p;
6555 unsigned long ha;
6556 char *alc = NULL;
6557
6558 /* Ignore indirect symbols. These are added by the versioning code. */
6559 if (h->dynindx == -1)
6560 return true;
6561
6562 name = h->root.root.string;
6563 p = strchr (name, ELF_VER_CHR);
6564 if (p != NULL)
6565 {
6566 alc = bfd_malloc (p - name + 1);
6567 memcpy (alc, name, p - name);
6568 alc[p - name] = '\0';
6569 name = alc;
6570 }
6571
6572 /* Compute the hash value. */
6573 ha = bfd_elf_hash (name);
6574
6575 /* Store the found hash value in the array given as the argument. */
6576 *(*valuep)++ = ha;
6577
6578 /* And store it in the struct so that we can put it in the hash table
6579 later. */
6580 h->elf_hash_value = ha;
6581
6582 if (alc != NULL)
6583 free (alc);
6584
6585 return true;
6586 }