* elflink.h (elf_fix_symbol_flags): Call elf_backend_hide_symbol
[binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* ELF linker code. */
22
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
25
26 struct elf_info_failed
27 {
28 boolean failed;
29 struct bfd_link_info *info;
30 };
31
32 static boolean elf_link_add_object_symbols
33 PARAMS ((bfd *, struct bfd_link_info *));
34 static boolean elf_link_add_archive_symbols
35 PARAMS ((bfd *, struct bfd_link_info *));
36 static boolean elf_merge_symbol
37 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
38 asection **, bfd_vma *, struct elf_link_hash_entry **,
39 boolean *, boolean *, boolean *, boolean));
40 static boolean elf_export_symbol
41 PARAMS ((struct elf_link_hash_entry *, PTR));
42 static boolean elf_fix_symbol_flags
43 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
44 static boolean elf_adjust_dynamic_symbol
45 PARAMS ((struct elf_link_hash_entry *, PTR));
46 static boolean elf_link_find_version_dependencies
47 PARAMS ((struct elf_link_hash_entry *, PTR));
48 static boolean elf_link_find_version_dependencies
49 PARAMS ((struct elf_link_hash_entry *, PTR));
50 static boolean elf_link_assign_sym_version
51 PARAMS ((struct elf_link_hash_entry *, PTR));
52 static boolean elf_collect_hash_codes
53 PARAMS ((struct elf_link_hash_entry *, PTR));
54 static boolean elf_link_read_relocs_from_section
55 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
56 static void elf_link_output_relocs
57 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
58 static boolean elf_link_size_reloc_section
59 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
60 static void elf_link_adjust_relocs
61 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
62 struct elf_link_hash_entry **));
63
64 /* Given an ELF BFD, add symbols to the global hash table as
65 appropriate. */
66
67 boolean
68 elf_bfd_link_add_symbols (abfd, info)
69 bfd *abfd;
70 struct bfd_link_info *info;
71 {
72 switch (bfd_get_format (abfd))
73 {
74 case bfd_object:
75 return elf_link_add_object_symbols (abfd, info);
76 case bfd_archive:
77 return elf_link_add_archive_symbols (abfd, info);
78 default:
79 bfd_set_error (bfd_error_wrong_format);
80 return false;
81 }
82 }
83 \f
84 /* Return true iff this is a non-common, definition of a non-function symbol. */
85 static boolean
86 is_global_data_symbol_definition (abfd, sym)
87 bfd * abfd ATTRIBUTE_UNUSED;
88 Elf_Internal_Sym * sym;
89 {
90 /* Local symbols do not count, but target specific ones might. */
91 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
92 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
93 return false;
94
95 /* Function symbols do not count. */
96 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
97 return false;
98
99 /* If the section is undefined, then so is the symbol. */
100 if (sym->st_shndx == SHN_UNDEF)
101 return false;
102
103 /* If the symbol is defined in the common section, then
104 it is a common definition and so does not count. */
105 if (sym->st_shndx == SHN_COMMON)
106 return false;
107
108 /* If the symbol is in a target specific section then we
109 must rely upon the backend to tell us what it is. */
110 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
111 /* FIXME - this function is not coded yet:
112
113 return _bfd_is_global_symbol_definition (abfd, sym);
114
115 Instead for now assume that the definition is not global,
116 Even if this is wrong, at least the linker will behave
117 in the same way that it used to do. */
118 return false;
119
120 return true;
121 }
122
123 /* Search the symbol table of the archive element of the archive ABFD
124 whoes archive map contains a mention of SYMDEF, and determine if
125 the symbol is defined in this element. */
126 static boolean
127 elf_link_is_defined_archive_symbol (abfd, symdef)
128 bfd * abfd;
129 carsym * symdef;
130 {
131 Elf_Internal_Shdr * hdr;
132 Elf_External_Sym * esym;
133 Elf_External_Sym * esymend;
134 Elf_External_Sym * buf = NULL;
135 size_t symcount;
136 size_t extsymcount;
137 size_t extsymoff;
138 boolean result = false;
139
140 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
141 if (abfd == (bfd *) NULL)
142 return false;
143
144 if (! bfd_check_format (abfd, bfd_object))
145 return false;
146
147 /* If we have already included the element containing this symbol in the
148 link then we do not need to include it again. Just claim that any symbol
149 it contains is not a definition, so that our caller will not decide to
150 (re)include this element. */
151 if (abfd->archive_pass)
152 return false;
153
154 /* Select the appropriate symbol table. */
155 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
156 hdr = &elf_tdata (abfd)->symtab_hdr;
157 else
158 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
159
160 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
161
162 /* The sh_info field of the symtab header tells us where the
163 external symbols start. We don't care about the local symbols. */
164 if (elf_bad_symtab (abfd))
165 {
166 extsymcount = symcount;
167 extsymoff = 0;
168 }
169 else
170 {
171 extsymcount = symcount - hdr->sh_info;
172 extsymoff = hdr->sh_info;
173 }
174
175 buf = ((Elf_External_Sym *)
176 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
177 if (buf == NULL && extsymcount != 0)
178 return false;
179
180 /* Read in the symbol table.
181 FIXME: This ought to be cached somewhere. */
182 if (bfd_seek (abfd,
183 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
184 SEEK_SET) != 0
185 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
186 != extsymcount * sizeof (Elf_External_Sym)))
187 {
188 free (buf);
189 return false;
190 }
191
192 /* Scan the symbol table looking for SYMDEF. */
193 esymend = buf + extsymcount;
194 for (esym = buf;
195 esym < esymend;
196 esym++)
197 {
198 Elf_Internal_Sym sym;
199 const char * name;
200
201 elf_swap_symbol_in (abfd, esym, & sym);
202
203 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
204 if (name == (const char *) NULL)
205 break;
206
207 if (strcmp (name, symdef->name) == 0)
208 {
209 result = is_global_data_symbol_definition (abfd, & sym);
210 break;
211 }
212 }
213
214 free (buf);
215
216 return result;
217 }
218 \f
219 /* Add symbols from an ELF archive file to the linker hash table. We
220 don't use _bfd_generic_link_add_archive_symbols because of a
221 problem which arises on UnixWare. The UnixWare libc.so is an
222 archive which includes an entry libc.so.1 which defines a bunch of
223 symbols. The libc.so archive also includes a number of other
224 object files, which also define symbols, some of which are the same
225 as those defined in libc.so.1. Correct linking requires that we
226 consider each object file in turn, and include it if it defines any
227 symbols we need. _bfd_generic_link_add_archive_symbols does not do
228 this; it looks through the list of undefined symbols, and includes
229 any object file which defines them. When this algorithm is used on
230 UnixWare, it winds up pulling in libc.so.1 early and defining a
231 bunch of symbols. This means that some of the other objects in the
232 archive are not included in the link, which is incorrect since they
233 precede libc.so.1 in the archive.
234
235 Fortunately, ELF archive handling is simpler than that done by
236 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
237 oddities. In ELF, if we find a symbol in the archive map, and the
238 symbol is currently undefined, we know that we must pull in that
239 object file.
240
241 Unfortunately, we do have to make multiple passes over the symbol
242 table until nothing further is resolved. */
243
244 static boolean
245 elf_link_add_archive_symbols (abfd, info)
246 bfd *abfd;
247 struct bfd_link_info *info;
248 {
249 symindex c;
250 boolean *defined = NULL;
251 boolean *included = NULL;
252 carsym *symdefs;
253 boolean loop;
254
255 if (! bfd_has_map (abfd))
256 {
257 /* An empty archive is a special case. */
258 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
259 return true;
260 bfd_set_error (bfd_error_no_armap);
261 return false;
262 }
263
264 /* Keep track of all symbols we know to be already defined, and all
265 files we know to be already included. This is to speed up the
266 second and subsequent passes. */
267 c = bfd_ardata (abfd)->symdef_count;
268 if (c == 0)
269 return true;
270 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
271 included = (boolean *) bfd_malloc (c * sizeof (boolean));
272 if (defined == (boolean *) NULL || included == (boolean *) NULL)
273 goto error_return;
274 memset (defined, 0, c * sizeof (boolean));
275 memset (included, 0, c * sizeof (boolean));
276
277 symdefs = bfd_ardata (abfd)->symdefs;
278
279 do
280 {
281 file_ptr last;
282 symindex i;
283 carsym *symdef;
284 carsym *symdefend;
285
286 loop = false;
287 last = -1;
288
289 symdef = symdefs;
290 symdefend = symdef + c;
291 for (i = 0; symdef < symdefend; symdef++, i++)
292 {
293 struct elf_link_hash_entry *h;
294 bfd *element;
295 struct bfd_link_hash_entry *undefs_tail;
296 symindex mark;
297
298 if (defined[i] || included[i])
299 continue;
300 if (symdef->file_offset == last)
301 {
302 included[i] = true;
303 continue;
304 }
305
306 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
307 false, false, false);
308
309 if (h == NULL)
310 {
311 char *p, *copy;
312
313 /* If this is a default version (the name contains @@),
314 look up the symbol again without the version. The
315 effect is that references to the symbol without the
316 version will be matched by the default symbol in the
317 archive. */
318
319 p = strchr (symdef->name, ELF_VER_CHR);
320 if (p == NULL || p[1] != ELF_VER_CHR)
321 continue;
322
323 copy = bfd_alloc (abfd, p - symdef->name + 1);
324 if (copy == NULL)
325 goto error_return;
326 memcpy (copy, symdef->name, p - symdef->name);
327 copy[p - symdef->name] = '\0';
328
329 h = elf_link_hash_lookup (elf_hash_table (info), copy,
330 false, false, false);
331
332 bfd_release (abfd, copy);
333 }
334
335 if (h == NULL)
336 continue;
337
338 if (h->root.type == bfd_link_hash_common)
339 {
340 /* We currently have a common symbol. The archive map contains
341 a reference to this symbol, so we may want to include it. We
342 only want to include it however, if this archive element
343 contains a definition of the symbol, not just another common
344 declaration of it.
345
346 Unfortunately some archivers (including GNU ar) will put
347 declarations of common symbols into their archive maps, as
348 well as real definitions, so we cannot just go by the archive
349 map alone. Instead we must read in the element's symbol
350 table and check that to see what kind of symbol definition
351 this is. */
352 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
353 continue;
354 }
355 else if (h->root.type != bfd_link_hash_undefined)
356 {
357 if (h->root.type != bfd_link_hash_undefweak)
358 defined[i] = true;
359 continue;
360 }
361
362 /* We need to include this archive member. */
363 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
364 if (element == (bfd *) NULL)
365 goto error_return;
366
367 if (! bfd_check_format (element, bfd_object))
368 goto error_return;
369
370 /* Doublecheck that we have not included this object
371 already--it should be impossible, but there may be
372 something wrong with the archive. */
373 if (element->archive_pass != 0)
374 {
375 bfd_set_error (bfd_error_bad_value);
376 goto error_return;
377 }
378 element->archive_pass = 1;
379
380 undefs_tail = info->hash->undefs_tail;
381
382 if (! (*info->callbacks->add_archive_element) (info, element,
383 symdef->name))
384 goto error_return;
385 if (! elf_link_add_object_symbols (element, info))
386 goto error_return;
387
388 /* If there are any new undefined symbols, we need to make
389 another pass through the archive in order to see whether
390 they can be defined. FIXME: This isn't perfect, because
391 common symbols wind up on undefs_tail and because an
392 undefined symbol which is defined later on in this pass
393 does not require another pass. This isn't a bug, but it
394 does make the code less efficient than it could be. */
395 if (undefs_tail != info->hash->undefs_tail)
396 loop = true;
397
398 /* Look backward to mark all symbols from this object file
399 which we have already seen in this pass. */
400 mark = i;
401 do
402 {
403 included[mark] = true;
404 if (mark == 0)
405 break;
406 --mark;
407 }
408 while (symdefs[mark].file_offset == symdef->file_offset);
409
410 /* We mark subsequent symbols from this object file as we go
411 on through the loop. */
412 last = symdef->file_offset;
413 }
414 }
415 while (loop);
416
417 free (defined);
418 free (included);
419
420 return true;
421
422 error_return:
423 if (defined != (boolean *) NULL)
424 free (defined);
425 if (included != (boolean *) NULL)
426 free (included);
427 return false;
428 }
429
430 /* This function is called when we want to define a new symbol. It
431 handles the various cases which arise when we find a definition in
432 a dynamic object, or when there is already a definition in a
433 dynamic object. The new symbol is described by NAME, SYM, PSEC,
434 and PVALUE. We set SYM_HASH to the hash table entry. We set
435 OVERRIDE if the old symbol is overriding a new definition. We set
436 TYPE_CHANGE_OK if it is OK for the type to change. We set
437 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
438 change, we mean that we shouldn't warn if the type or size does
439 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
440 a shared object. */
441
442 static boolean
443 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
444 override, type_change_ok, size_change_ok, dt_needed)
445 bfd *abfd;
446 struct bfd_link_info *info;
447 const char *name;
448 Elf_Internal_Sym *sym;
449 asection **psec;
450 bfd_vma *pvalue;
451 struct elf_link_hash_entry **sym_hash;
452 boolean *override;
453 boolean *type_change_ok;
454 boolean *size_change_ok;
455 boolean dt_needed;
456 {
457 asection *sec;
458 struct elf_link_hash_entry *h;
459 int bind;
460 bfd *oldbfd;
461 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
462
463 *override = false;
464
465 sec = *psec;
466 bind = ELF_ST_BIND (sym->st_info);
467
468 if (! bfd_is_und_section (sec))
469 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
470 else
471 h = ((struct elf_link_hash_entry *)
472 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
473 if (h == NULL)
474 return false;
475 *sym_hash = h;
476
477 /* This code is for coping with dynamic objects, and is only useful
478 if we are doing an ELF link. */
479 if (info->hash->creator != abfd->xvec)
480 return true;
481
482 /* For merging, we only care about real symbols. */
483
484 while (h->root.type == bfd_link_hash_indirect
485 || h->root.type == bfd_link_hash_warning)
486 h = (struct elf_link_hash_entry *) h->root.u.i.link;
487
488 /* If we just created the symbol, mark it as being an ELF symbol.
489 Other than that, there is nothing to do--there is no merge issue
490 with a newly defined symbol--so we just return. */
491
492 if (h->root.type == bfd_link_hash_new)
493 {
494 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
495 return true;
496 }
497
498 /* OLDBFD is a BFD associated with the existing symbol. */
499
500 switch (h->root.type)
501 {
502 default:
503 oldbfd = NULL;
504 break;
505
506 case bfd_link_hash_undefined:
507 case bfd_link_hash_undefweak:
508 oldbfd = h->root.u.undef.abfd;
509 break;
510
511 case bfd_link_hash_defined:
512 case bfd_link_hash_defweak:
513 oldbfd = h->root.u.def.section->owner;
514 break;
515
516 case bfd_link_hash_common:
517 oldbfd = h->root.u.c.p->section->owner;
518 break;
519 }
520
521 /* In cases involving weak versioned symbols, we may wind up trying
522 to merge a symbol with itself. Catch that here, to avoid the
523 confusion that results if we try to override a symbol with
524 itself. The additional tests catch cases like
525 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
526 dynamic object, which we do want to handle here. */
527 if (abfd == oldbfd
528 && ((abfd->flags & DYNAMIC) == 0
529 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
530 return true;
531
532 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
533 respectively, is from a dynamic object. */
534
535 if ((abfd->flags & DYNAMIC) != 0)
536 newdyn = true;
537 else
538 newdyn = false;
539
540 if (oldbfd != NULL)
541 olddyn = (oldbfd->flags & DYNAMIC) != 0;
542 else
543 {
544 asection *hsec;
545
546 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
547 indices used by MIPS ELF. */
548 switch (h->root.type)
549 {
550 default:
551 hsec = NULL;
552 break;
553
554 case bfd_link_hash_defined:
555 case bfd_link_hash_defweak:
556 hsec = h->root.u.def.section;
557 break;
558
559 case bfd_link_hash_common:
560 hsec = h->root.u.c.p->section;
561 break;
562 }
563
564 if (hsec == NULL)
565 olddyn = false;
566 else
567 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
568 }
569
570 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
571 respectively, appear to be a definition rather than reference. */
572
573 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
574 newdef = false;
575 else
576 newdef = true;
577
578 if (h->root.type == bfd_link_hash_undefined
579 || h->root.type == bfd_link_hash_undefweak
580 || h->root.type == bfd_link_hash_common)
581 olddef = false;
582 else
583 olddef = true;
584
585 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
586 symbol, respectively, appears to be a common symbol in a dynamic
587 object. If a symbol appears in an uninitialized section, and is
588 not weak, and is not a function, then it may be a common symbol
589 which was resolved when the dynamic object was created. We want
590 to treat such symbols specially, because they raise special
591 considerations when setting the symbol size: if the symbol
592 appears as a common symbol in a regular object, and the size in
593 the regular object is larger, we must make sure that we use the
594 larger size. This problematic case can always be avoided in C,
595 but it must be handled correctly when using Fortran shared
596 libraries.
597
598 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
599 likewise for OLDDYNCOMMON and OLDDEF.
600
601 Note that this test is just a heuristic, and that it is quite
602 possible to have an uninitialized symbol in a shared object which
603 is really a definition, rather than a common symbol. This could
604 lead to some minor confusion when the symbol really is a common
605 symbol in some regular object. However, I think it will be
606 harmless. */
607
608 if (newdyn
609 && newdef
610 && (sec->flags & SEC_ALLOC) != 0
611 && (sec->flags & SEC_LOAD) == 0
612 && sym->st_size > 0
613 && bind != STB_WEAK
614 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
615 newdyncommon = true;
616 else
617 newdyncommon = false;
618
619 if (olddyn
620 && olddef
621 && h->root.type == bfd_link_hash_defined
622 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
623 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
624 && (h->root.u.def.section->flags & SEC_LOAD) == 0
625 && h->size > 0
626 && h->type != STT_FUNC)
627 olddyncommon = true;
628 else
629 olddyncommon = false;
630
631 /* It's OK to change the type if either the existing symbol or the
632 new symbol is weak unless it comes from a DT_NEEDED entry of
633 a shared object, in which case, the DT_NEEDED entry may not be
634 required at the run time. */
635
636 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
637 || h->root.type == bfd_link_hash_undefweak
638 || bind == STB_WEAK)
639 *type_change_ok = true;
640
641 /* It's OK to change the size if either the existing symbol or the
642 new symbol is weak, or if the old symbol is undefined. */
643
644 if (*type_change_ok
645 || h->root.type == bfd_link_hash_undefined)
646 *size_change_ok = true;
647
648 /* If both the old and the new symbols look like common symbols in a
649 dynamic object, set the size of the symbol to the larger of the
650 two. */
651
652 if (olddyncommon
653 && newdyncommon
654 && sym->st_size != h->size)
655 {
656 /* Since we think we have two common symbols, issue a multiple
657 common warning if desired. Note that we only warn if the
658 size is different. If the size is the same, we simply let
659 the old symbol override the new one as normally happens with
660 symbols defined in dynamic objects. */
661
662 if (! ((*info->callbacks->multiple_common)
663 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
664 h->size, abfd, bfd_link_hash_common, sym->st_size)))
665 return false;
666
667 if (sym->st_size > h->size)
668 h->size = sym->st_size;
669
670 *size_change_ok = true;
671 }
672
673 /* If we are looking at a dynamic object, and we have found a
674 definition, we need to see if the symbol was already defined by
675 some other object. If so, we want to use the existing
676 definition, and we do not want to report a multiple symbol
677 definition error; we do this by clobbering *PSEC to be
678 bfd_und_section_ptr.
679
680 We treat a common symbol as a definition if the symbol in the
681 shared library is a function, since common symbols always
682 represent variables; this can cause confusion in principle, but
683 any such confusion would seem to indicate an erroneous program or
684 shared library. We also permit a common symbol in a regular
685 object to override a weak symbol in a shared object.
686
687 We prefer a non-weak definition in a shared library to a weak
688 definition in the executable unless it comes from a DT_NEEDED
689 entry of a shared object, in which case, the DT_NEEDED entry
690 may not be required at the run time. */
691
692 if (newdyn
693 && newdef
694 && (olddef
695 || (h->root.type == bfd_link_hash_common
696 && (bind == STB_WEAK
697 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
698 && (h->root.type != bfd_link_hash_defweak
699 || dt_needed
700 || bind == STB_WEAK))
701 {
702 *override = true;
703 newdef = false;
704 newdyncommon = false;
705
706 *psec = sec = bfd_und_section_ptr;
707 *size_change_ok = true;
708
709 /* If we get here when the old symbol is a common symbol, then
710 we are explicitly letting it override a weak symbol or
711 function in a dynamic object, and we don't want to warn about
712 a type change. If the old symbol is a defined symbol, a type
713 change warning may still be appropriate. */
714
715 if (h->root.type == bfd_link_hash_common)
716 *type_change_ok = true;
717 }
718
719 /* Handle the special case of an old common symbol merging with a
720 new symbol which looks like a common symbol in a shared object.
721 We change *PSEC and *PVALUE to make the new symbol look like a
722 common symbol, and let _bfd_generic_link_add_one_symbol will do
723 the right thing. */
724
725 if (newdyncommon
726 && h->root.type == bfd_link_hash_common)
727 {
728 *override = true;
729 newdef = false;
730 newdyncommon = false;
731 *pvalue = sym->st_size;
732 *psec = sec = bfd_com_section_ptr;
733 *size_change_ok = true;
734 }
735
736 /* If the old symbol is from a dynamic object, and the new symbol is
737 a definition which is not from a dynamic object, then the new
738 symbol overrides the old symbol. Symbols from regular files
739 always take precedence over symbols from dynamic objects, even if
740 they are defined after the dynamic object in the link.
741
742 As above, we again permit a common symbol in a regular object to
743 override a definition in a shared object if the shared object
744 symbol is a function or is weak.
745
746 As above, we permit a non-weak definition in a shared object to
747 override a weak definition in a regular object. */
748
749 if (! newdyn
750 && (newdef
751 || (bfd_is_com_section (sec)
752 && (h->root.type == bfd_link_hash_defweak
753 || h->type == STT_FUNC)))
754 && olddyn
755 && olddef
756 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
757 && (bind != STB_WEAK
758 || h->root.type == bfd_link_hash_defweak))
759 {
760 /* Change the hash table entry to undefined, and let
761 _bfd_generic_link_add_one_symbol do the right thing with the
762 new definition. */
763
764 h->root.type = bfd_link_hash_undefined;
765 h->root.u.undef.abfd = h->root.u.def.section->owner;
766 *size_change_ok = true;
767
768 olddef = false;
769 olddyncommon = false;
770
771 /* We again permit a type change when a common symbol may be
772 overriding a function. */
773
774 if (bfd_is_com_section (sec))
775 *type_change_ok = true;
776
777 /* This union may have been set to be non-NULL when this symbol
778 was seen in a dynamic object. We must force the union to be
779 NULL, so that it is correct for a regular symbol. */
780
781 h->verinfo.vertree = NULL;
782
783 /* In this special case, if H is the target of an indirection,
784 we want the caller to frob with H rather than with the
785 indirect symbol. That will permit the caller to redefine the
786 target of the indirection, rather than the indirect symbol
787 itself. FIXME: This will break the -y option if we store a
788 symbol with a different name. */
789 *sym_hash = h;
790 }
791
792 /* Handle the special case of a new common symbol merging with an
793 old symbol that looks like it might be a common symbol defined in
794 a shared object. Note that we have already handled the case in
795 which a new common symbol should simply override the definition
796 in the shared library. */
797
798 if (! newdyn
799 && bfd_is_com_section (sec)
800 && olddyncommon)
801 {
802 /* It would be best if we could set the hash table entry to a
803 common symbol, but we don't know what to use for the section
804 or the alignment. */
805 if (! ((*info->callbacks->multiple_common)
806 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
807 h->size, abfd, bfd_link_hash_common, sym->st_size)))
808 return false;
809
810 /* If the predumed common symbol in the dynamic object is
811 larger, pretend that the new symbol has its size. */
812
813 if (h->size > *pvalue)
814 *pvalue = h->size;
815
816 /* FIXME: We no longer know the alignment required by the symbol
817 in the dynamic object, so we just wind up using the one from
818 the regular object. */
819
820 olddef = false;
821 olddyncommon = false;
822
823 h->root.type = bfd_link_hash_undefined;
824 h->root.u.undef.abfd = h->root.u.def.section->owner;
825
826 *size_change_ok = true;
827 *type_change_ok = true;
828
829 h->verinfo.vertree = NULL;
830 }
831
832 /* Handle the special case of a weak definition in a regular object
833 followed by a non-weak definition in a shared object. In this
834 case, we prefer the definition in the shared object unless it
835 comes from a DT_NEEDED entry of a shared object, in which case,
836 the DT_NEEDED entry may not be required at the run time. */
837 if (olddef
838 && ! dt_needed
839 && h->root.type == bfd_link_hash_defweak
840 && newdef
841 && newdyn
842 && bind != STB_WEAK)
843 {
844 /* To make this work we have to frob the flags so that the rest
845 of the code does not think we are using the regular
846 definition. */
847 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
848 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
849 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
850 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
851 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
852 | ELF_LINK_HASH_DEF_DYNAMIC);
853
854 /* If H is the target of an indirection, we want the caller to
855 use H rather than the indirect symbol. Otherwise if we are
856 defining a new indirect symbol we will wind up attaching it
857 to the entry we are overriding. */
858 *sym_hash = h;
859 }
860
861 /* Handle the special case of a non-weak definition in a shared
862 object followed by a weak definition in a regular object. In
863 this case we prefer to definition in the shared object. To make
864 this work we have to tell the caller to not treat the new symbol
865 as a definition. */
866 if (olddef
867 && olddyn
868 && h->root.type != bfd_link_hash_defweak
869 && newdef
870 && ! newdyn
871 && bind == STB_WEAK)
872 *override = true;
873
874 return true;
875 }
876
877 /* Add symbols from an ELF object file to the linker hash table. */
878
879 static boolean
880 elf_link_add_object_symbols (abfd, info)
881 bfd *abfd;
882 struct bfd_link_info *info;
883 {
884 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
885 const Elf_Internal_Sym *,
886 const char **, flagword *,
887 asection **, bfd_vma *));
888 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
889 asection *, const Elf_Internal_Rela *));
890 boolean collect;
891 Elf_Internal_Shdr *hdr;
892 size_t symcount;
893 size_t extsymcount;
894 size_t extsymoff;
895 Elf_External_Sym *buf = NULL;
896 struct elf_link_hash_entry **sym_hash;
897 boolean dynamic;
898 bfd_byte *dynver = NULL;
899 Elf_External_Versym *extversym = NULL;
900 Elf_External_Versym *ever;
901 Elf_External_Dyn *dynbuf = NULL;
902 struct elf_link_hash_entry *weaks;
903 Elf_External_Sym *esym;
904 Elf_External_Sym *esymend;
905 struct elf_backend_data *bed;
906 boolean dt_needed;
907
908 bed = get_elf_backend_data (abfd);
909 add_symbol_hook = bed->elf_add_symbol_hook;
910 collect = bed->collect;
911
912 if ((abfd->flags & DYNAMIC) == 0)
913 dynamic = false;
914 else
915 {
916 dynamic = true;
917
918 /* You can't use -r against a dynamic object. Also, there's no
919 hope of using a dynamic object which does not exactly match
920 the format of the output file. */
921 if (info->relocateable || info->hash->creator != abfd->xvec)
922 {
923 bfd_set_error (bfd_error_invalid_operation);
924 goto error_return;
925 }
926 }
927
928 /* As a GNU extension, any input sections which are named
929 .gnu.warning.SYMBOL are treated as warning symbols for the given
930 symbol. This differs from .gnu.warning sections, which generate
931 warnings when they are included in an output file. */
932 if (! info->shared)
933 {
934 asection *s;
935
936 for (s = abfd->sections; s != NULL; s = s->next)
937 {
938 const char *name;
939
940 name = bfd_get_section_name (abfd, s);
941 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
942 {
943 char *msg;
944 bfd_size_type sz;
945
946 name += sizeof ".gnu.warning." - 1;
947
948 /* If this is a shared object, then look up the symbol
949 in the hash table. If it is there, and it is already
950 been defined, then we will not be using the entry
951 from this shared object, so we don't need to warn.
952 FIXME: If we see the definition in a regular object
953 later on, we will warn, but we shouldn't. The only
954 fix is to keep track of what warnings we are supposed
955 to emit, and then handle them all at the end of the
956 link. */
957 if (dynamic && abfd->xvec == info->hash->creator)
958 {
959 struct elf_link_hash_entry *h;
960
961 h = elf_link_hash_lookup (elf_hash_table (info), name,
962 false, false, true);
963
964 /* FIXME: What about bfd_link_hash_common? */
965 if (h != NULL
966 && (h->root.type == bfd_link_hash_defined
967 || h->root.type == bfd_link_hash_defweak))
968 {
969 /* We don't want to issue this warning. Clobber
970 the section size so that the warning does not
971 get copied into the output file. */
972 s->_raw_size = 0;
973 continue;
974 }
975 }
976
977 sz = bfd_section_size (abfd, s);
978 msg = (char *) bfd_alloc (abfd, sz + 1);
979 if (msg == NULL)
980 goto error_return;
981
982 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
983 goto error_return;
984
985 msg[sz] = '\0';
986
987 if (! (_bfd_generic_link_add_one_symbol
988 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
989 false, collect, (struct bfd_link_hash_entry **) NULL)))
990 goto error_return;
991
992 if (! info->relocateable)
993 {
994 /* Clobber the section size so that the warning does
995 not get copied into the output file. */
996 s->_raw_size = 0;
997 }
998 }
999 }
1000 }
1001
1002 /* If this is a dynamic object, we always link against the .dynsym
1003 symbol table, not the .symtab symbol table. The dynamic linker
1004 will only see the .dynsym symbol table, so there is no reason to
1005 look at .symtab for a dynamic object. */
1006
1007 if (! dynamic || elf_dynsymtab (abfd) == 0)
1008 hdr = &elf_tdata (abfd)->symtab_hdr;
1009 else
1010 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1011
1012 if (dynamic)
1013 {
1014 /* Read in any version definitions. */
1015
1016 if (! _bfd_elf_slurp_version_tables (abfd))
1017 goto error_return;
1018
1019 /* Read in the symbol versions, but don't bother to convert them
1020 to internal format. */
1021 if (elf_dynversym (abfd) != 0)
1022 {
1023 Elf_Internal_Shdr *versymhdr;
1024
1025 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1026 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
1027 if (extversym == NULL)
1028 goto error_return;
1029 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1030 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
1031 != versymhdr->sh_size))
1032 goto error_return;
1033 }
1034 }
1035
1036 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1037
1038 /* The sh_info field of the symtab header tells us where the
1039 external symbols start. We don't care about the local symbols at
1040 this point. */
1041 if (elf_bad_symtab (abfd))
1042 {
1043 extsymcount = symcount;
1044 extsymoff = 0;
1045 }
1046 else
1047 {
1048 extsymcount = symcount - hdr->sh_info;
1049 extsymoff = hdr->sh_info;
1050 }
1051
1052 buf = ((Elf_External_Sym *)
1053 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
1054 if (buf == NULL && extsymcount != 0)
1055 goto error_return;
1056
1057 /* We store a pointer to the hash table entry for each external
1058 symbol. */
1059 sym_hash = ((struct elf_link_hash_entry **)
1060 bfd_alloc (abfd,
1061 extsymcount * sizeof (struct elf_link_hash_entry *)));
1062 if (sym_hash == NULL)
1063 goto error_return;
1064 elf_sym_hashes (abfd) = sym_hash;
1065
1066 dt_needed = false;
1067
1068 if (! dynamic)
1069 {
1070 /* If we are creating a shared library, create all the dynamic
1071 sections immediately. We need to attach them to something,
1072 so we attach them to this BFD, provided it is the right
1073 format. FIXME: If there are no input BFD's of the same
1074 format as the output, we can't make a shared library. */
1075 if (info->shared
1076 && ! elf_hash_table (info)->dynamic_sections_created
1077 && abfd->xvec == info->hash->creator)
1078 {
1079 if (! elf_link_create_dynamic_sections (abfd, info))
1080 goto error_return;
1081 }
1082 }
1083 else
1084 {
1085 asection *s;
1086 boolean add_needed;
1087 const char *name;
1088 bfd_size_type oldsize;
1089 bfd_size_type strindex;
1090
1091 /* Find the name to use in a DT_NEEDED entry that refers to this
1092 object. If the object has a DT_SONAME entry, we use it.
1093 Otherwise, if the generic linker stuck something in
1094 elf_dt_name, we use that. Otherwise, we just use the file
1095 name. If the generic linker put a null string into
1096 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1097 there is a DT_SONAME entry. */
1098 add_needed = true;
1099 name = bfd_get_filename (abfd);
1100 if (elf_dt_name (abfd) != NULL)
1101 {
1102 name = elf_dt_name (abfd);
1103 if (*name == '\0')
1104 {
1105 if (elf_dt_soname (abfd) != NULL)
1106 dt_needed = true;
1107
1108 add_needed = false;
1109 }
1110 }
1111 s = bfd_get_section_by_name (abfd, ".dynamic");
1112 if (s != NULL)
1113 {
1114 Elf_External_Dyn *extdyn;
1115 Elf_External_Dyn *extdynend;
1116 int elfsec;
1117 unsigned long link;
1118 int rpath;
1119 int runpath;
1120
1121 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
1122 if (dynbuf == NULL)
1123 goto error_return;
1124
1125 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1126 (file_ptr) 0, s->_raw_size))
1127 goto error_return;
1128
1129 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1130 if (elfsec == -1)
1131 goto error_return;
1132 link = elf_elfsections (abfd)[elfsec]->sh_link;
1133
1134 {
1135 /* The shared libraries distributed with hpux11 have a bogus
1136 sh_link field for the ".dynamic" section. This code detects
1137 when LINK refers to a section that is not a string table and
1138 tries to find the string table for the ".dynsym" section
1139 instead. */
1140 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
1141 if (hdr->sh_type != SHT_STRTAB)
1142 {
1143 asection *s = bfd_get_section_by_name (abfd, ".dynsym");
1144 int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1145 if (elfsec == -1)
1146 goto error_return;
1147 link = elf_elfsections (abfd)[elfsec]->sh_link;
1148 }
1149 }
1150
1151 extdyn = dynbuf;
1152 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1153 rpath = 0;
1154 runpath = 0;
1155 for (; extdyn < extdynend; extdyn++)
1156 {
1157 Elf_Internal_Dyn dyn;
1158
1159 elf_swap_dyn_in (abfd, extdyn, &dyn);
1160 if (dyn.d_tag == DT_SONAME)
1161 {
1162 name = bfd_elf_string_from_elf_section (abfd, link,
1163 dyn.d_un.d_val);
1164 if (name == NULL)
1165 goto error_return;
1166 }
1167 if (dyn.d_tag == DT_NEEDED)
1168 {
1169 struct bfd_link_needed_list *n, **pn;
1170 char *fnm, *anm;
1171
1172 n = ((struct bfd_link_needed_list *)
1173 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1174 fnm = bfd_elf_string_from_elf_section (abfd, link,
1175 dyn.d_un.d_val);
1176 if (n == NULL || fnm == NULL)
1177 goto error_return;
1178 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1179 if (anm == NULL)
1180 goto error_return;
1181 strcpy (anm, fnm);
1182 n->name = anm;
1183 n->by = abfd;
1184 n->next = NULL;
1185 for (pn = &elf_hash_table (info)->needed;
1186 *pn != NULL;
1187 pn = &(*pn)->next)
1188 ;
1189 *pn = n;
1190 }
1191 if (dyn.d_tag == DT_RUNPATH)
1192 {
1193 struct bfd_link_needed_list *n, **pn;
1194 char *fnm, *anm;
1195
1196 /* When we see DT_RPATH before DT_RUNPATH, we have
1197 to clear runpath. Do _NOT_ bfd_release, as that
1198 frees all more recently bfd_alloc'd blocks as
1199 well. */
1200 if (rpath && elf_hash_table (info)->runpath)
1201 elf_hash_table (info)->runpath = NULL;
1202
1203 n = ((struct bfd_link_needed_list *)
1204 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1205 fnm = bfd_elf_string_from_elf_section (abfd, link,
1206 dyn.d_un.d_val);
1207 if (n == NULL || fnm == NULL)
1208 goto error_return;
1209 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1210 if (anm == NULL)
1211 goto error_return;
1212 strcpy (anm, fnm);
1213 n->name = anm;
1214 n->by = abfd;
1215 n->next = NULL;
1216 for (pn = &elf_hash_table (info)->runpath;
1217 *pn != NULL;
1218 pn = &(*pn)->next)
1219 ;
1220 *pn = n;
1221 runpath = 1;
1222 rpath = 0;
1223 }
1224 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1225 if (!runpath && dyn.d_tag == DT_RPATH)
1226 {
1227 struct bfd_link_needed_list *n, **pn;
1228 char *fnm, *anm;
1229
1230 n = ((struct bfd_link_needed_list *)
1231 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1232 fnm = bfd_elf_string_from_elf_section (abfd, link,
1233 dyn.d_un.d_val);
1234 if (n == NULL || fnm == NULL)
1235 goto error_return;
1236 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1237 if (anm == NULL)
1238 goto error_return;
1239 strcpy (anm, fnm);
1240 n->name = anm;
1241 n->by = abfd;
1242 n->next = NULL;
1243 for (pn = &elf_hash_table (info)->runpath;
1244 *pn != NULL;
1245 pn = &(*pn)->next)
1246 ;
1247 *pn = n;
1248 rpath = 1;
1249 }
1250 }
1251
1252 free (dynbuf);
1253 dynbuf = NULL;
1254 }
1255
1256 /* We do not want to include any of the sections in a dynamic
1257 object in the output file. We hack by simply clobbering the
1258 list of sections in the BFD. This could be handled more
1259 cleanly by, say, a new section flag; the existing
1260 SEC_NEVER_LOAD flag is not the one we want, because that one
1261 still implies that the section takes up space in the output
1262 file. */
1263 abfd->sections = NULL;
1264 abfd->section_count = 0;
1265
1266 /* If this is the first dynamic object found in the link, create
1267 the special sections required for dynamic linking. */
1268 if (! elf_hash_table (info)->dynamic_sections_created)
1269 {
1270 if (! elf_link_create_dynamic_sections (abfd, info))
1271 goto error_return;
1272 }
1273
1274 if (add_needed)
1275 {
1276 /* Add a DT_NEEDED entry for this dynamic object. */
1277 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1278 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1279 true, false);
1280 if (strindex == (bfd_size_type) -1)
1281 goto error_return;
1282
1283 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1284 {
1285 asection *sdyn;
1286 Elf_External_Dyn *dyncon, *dynconend;
1287
1288 /* The hash table size did not change, which means that
1289 the dynamic object name was already entered. If we
1290 have already included this dynamic object in the
1291 link, just ignore it. There is no reason to include
1292 a particular dynamic object more than once. */
1293 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1294 ".dynamic");
1295 BFD_ASSERT (sdyn != NULL);
1296
1297 dyncon = (Elf_External_Dyn *) sdyn->contents;
1298 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1299 sdyn->_raw_size);
1300 for (; dyncon < dynconend; dyncon++)
1301 {
1302 Elf_Internal_Dyn dyn;
1303
1304 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1305 &dyn);
1306 if (dyn.d_tag == DT_NEEDED
1307 && dyn.d_un.d_val == strindex)
1308 {
1309 if (buf != NULL)
1310 free (buf);
1311 if (extversym != NULL)
1312 free (extversym);
1313 return true;
1314 }
1315 }
1316 }
1317
1318 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1319 goto error_return;
1320 }
1321
1322 /* Save the SONAME, if there is one, because sometimes the
1323 linker emulation code will need to know it. */
1324 if (*name == '\0')
1325 name = bfd_get_filename (abfd);
1326 elf_dt_name (abfd) = name;
1327 }
1328
1329 if (bfd_seek (abfd,
1330 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1331 SEEK_SET) != 0
1332 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1333 != extsymcount * sizeof (Elf_External_Sym)))
1334 goto error_return;
1335
1336 weaks = NULL;
1337
1338 ever = extversym != NULL ? extversym + extsymoff : NULL;
1339 esymend = buf + extsymcount;
1340 for (esym = buf;
1341 esym < esymend;
1342 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1343 {
1344 Elf_Internal_Sym sym;
1345 int bind;
1346 bfd_vma value;
1347 asection *sec;
1348 flagword flags;
1349 const char *name;
1350 struct elf_link_hash_entry *h;
1351 boolean definition;
1352 boolean size_change_ok, type_change_ok;
1353 boolean new_weakdef;
1354 unsigned int old_alignment;
1355
1356 elf_swap_symbol_in (abfd, esym, &sym);
1357
1358 flags = BSF_NO_FLAGS;
1359 sec = NULL;
1360 value = sym.st_value;
1361 *sym_hash = NULL;
1362
1363 bind = ELF_ST_BIND (sym.st_info);
1364 if (bind == STB_LOCAL)
1365 {
1366 /* This should be impossible, since ELF requires that all
1367 global symbols follow all local symbols, and that sh_info
1368 point to the first global symbol. Unfortunatealy, Irix 5
1369 screws this up. */
1370 continue;
1371 }
1372 else if (bind == STB_GLOBAL)
1373 {
1374 if (sym.st_shndx != SHN_UNDEF
1375 && sym.st_shndx != SHN_COMMON)
1376 flags = BSF_GLOBAL;
1377 }
1378 else if (bind == STB_WEAK)
1379 flags = BSF_WEAK;
1380 else
1381 {
1382 /* Leave it up to the processor backend. */
1383 }
1384
1385 if (sym.st_shndx == SHN_UNDEF)
1386 sec = bfd_und_section_ptr;
1387 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1388 {
1389 sec = section_from_elf_index (abfd, sym.st_shndx);
1390 if (sec == NULL)
1391 sec = bfd_abs_section_ptr;
1392 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1393 value -= sec->vma;
1394 }
1395 else if (sym.st_shndx == SHN_ABS)
1396 sec = bfd_abs_section_ptr;
1397 else if (sym.st_shndx == SHN_COMMON)
1398 {
1399 sec = bfd_com_section_ptr;
1400 /* What ELF calls the size we call the value. What ELF
1401 calls the value we call the alignment. */
1402 value = sym.st_size;
1403 }
1404 else
1405 {
1406 /* Leave it up to the processor backend. */
1407 }
1408
1409 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1410 if (name == (const char *) NULL)
1411 goto error_return;
1412
1413 if (add_symbol_hook)
1414 {
1415 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1416 &value))
1417 goto error_return;
1418
1419 /* The hook function sets the name to NULL if this symbol
1420 should be skipped for some reason. */
1421 if (name == (const char *) NULL)
1422 continue;
1423 }
1424
1425 /* Sanity check that all possibilities were handled. */
1426 if (sec == (asection *) NULL)
1427 {
1428 bfd_set_error (bfd_error_bad_value);
1429 goto error_return;
1430 }
1431
1432 if (bfd_is_und_section (sec)
1433 || bfd_is_com_section (sec))
1434 definition = false;
1435 else
1436 definition = true;
1437
1438 size_change_ok = false;
1439 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1440 old_alignment = 0;
1441 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1442 {
1443 Elf_Internal_Versym iver;
1444 unsigned int vernum = 0;
1445 boolean override;
1446
1447 if (ever != NULL)
1448 {
1449 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1450 vernum = iver.vs_vers & VERSYM_VERSION;
1451
1452 /* If this is a hidden symbol, or if it is not version
1453 1, we append the version name to the symbol name.
1454 However, we do not modify a non-hidden absolute
1455 symbol, because it might be the version symbol
1456 itself. FIXME: What if it isn't? */
1457 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1458 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1459 {
1460 const char *verstr;
1461 int namelen, newlen;
1462 char *newname, *p;
1463
1464 if (sym.st_shndx != SHN_UNDEF)
1465 {
1466 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1467 {
1468 (*_bfd_error_handler)
1469 (_("%s: %s: invalid version %u (max %d)"),
1470 bfd_get_filename (abfd), name, vernum,
1471 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1472 bfd_set_error (bfd_error_bad_value);
1473 goto error_return;
1474 }
1475 else if (vernum > 1)
1476 verstr =
1477 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1478 else
1479 verstr = "";
1480 }
1481 else
1482 {
1483 /* We cannot simply test for the number of
1484 entries in the VERNEED section since the
1485 numbers for the needed versions do not start
1486 at 0. */
1487 Elf_Internal_Verneed *t;
1488
1489 verstr = NULL;
1490 for (t = elf_tdata (abfd)->verref;
1491 t != NULL;
1492 t = t->vn_nextref)
1493 {
1494 Elf_Internal_Vernaux *a;
1495
1496 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1497 {
1498 if (a->vna_other == vernum)
1499 {
1500 verstr = a->vna_nodename;
1501 break;
1502 }
1503 }
1504 if (a != NULL)
1505 break;
1506 }
1507 if (verstr == NULL)
1508 {
1509 (*_bfd_error_handler)
1510 (_("%s: %s: invalid needed version %d"),
1511 bfd_get_filename (abfd), name, vernum);
1512 bfd_set_error (bfd_error_bad_value);
1513 goto error_return;
1514 }
1515 }
1516
1517 namelen = strlen (name);
1518 newlen = namelen + strlen (verstr) + 2;
1519 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1520 ++newlen;
1521
1522 newname = (char *) bfd_alloc (abfd, newlen);
1523 if (newname == NULL)
1524 goto error_return;
1525 strcpy (newname, name);
1526 p = newname + namelen;
1527 *p++ = ELF_VER_CHR;
1528 /* If this is a defined non-hidden version symbol,
1529 we add another @ to the name. This indicates the
1530 default version of the symbol. */
1531 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1532 && sym.st_shndx != SHN_UNDEF)
1533 *p++ = ELF_VER_CHR;
1534 strcpy (p, verstr);
1535
1536 name = newname;
1537 }
1538 }
1539
1540 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1541 sym_hash, &override, &type_change_ok,
1542 &size_change_ok, dt_needed))
1543 goto error_return;
1544
1545 if (override)
1546 definition = false;
1547
1548 h = *sym_hash;
1549 while (h->root.type == bfd_link_hash_indirect
1550 || h->root.type == bfd_link_hash_warning)
1551 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1552
1553 /* Remember the old alignment if this is a common symbol, so
1554 that we don't reduce the alignment later on. We can't
1555 check later, because _bfd_generic_link_add_one_symbol
1556 will set a default for the alignment which we want to
1557 override. */
1558 if (h->root.type == bfd_link_hash_common)
1559 old_alignment = h->root.u.c.p->alignment_power;
1560
1561 if (elf_tdata (abfd)->verdef != NULL
1562 && ! override
1563 && vernum > 1
1564 && definition)
1565 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1566 }
1567
1568 if (! (_bfd_generic_link_add_one_symbol
1569 (info, abfd, name, flags, sec, value, (const char *) NULL,
1570 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1571 goto error_return;
1572
1573 h = *sym_hash;
1574 while (h->root.type == bfd_link_hash_indirect
1575 || h->root.type == bfd_link_hash_warning)
1576 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1577 *sym_hash = h;
1578
1579 new_weakdef = false;
1580 if (dynamic
1581 && definition
1582 && (flags & BSF_WEAK) != 0
1583 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1584 && info->hash->creator->flavour == bfd_target_elf_flavour
1585 && h->weakdef == NULL)
1586 {
1587 /* Keep a list of all weak defined non function symbols from
1588 a dynamic object, using the weakdef field. Later in this
1589 function we will set the weakdef field to the correct
1590 value. We only put non-function symbols from dynamic
1591 objects on this list, because that happens to be the only
1592 time we need to know the normal symbol corresponding to a
1593 weak symbol, and the information is time consuming to
1594 figure out. If the weakdef field is not already NULL,
1595 then this symbol was already defined by some previous
1596 dynamic object, and we will be using that previous
1597 definition anyhow. */
1598
1599 h->weakdef = weaks;
1600 weaks = h;
1601 new_weakdef = true;
1602 }
1603
1604 /* Set the alignment of a common symbol. */
1605 if (sym.st_shndx == SHN_COMMON
1606 && h->root.type == bfd_link_hash_common)
1607 {
1608 unsigned int align;
1609
1610 align = bfd_log2 (sym.st_value);
1611 if (align > old_alignment
1612 /* Permit an alignment power of zero if an alignment of one
1613 is specified and no other alignments have been specified. */
1614 || (sym.st_value == 1 && old_alignment == 0))
1615 h->root.u.c.p->alignment_power = align;
1616 }
1617
1618 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1619 {
1620 int old_flags;
1621 boolean dynsym;
1622 int new_flag;
1623
1624 /* Remember the symbol size and type. */
1625 if (sym.st_size != 0
1626 && (definition || h->size == 0))
1627 {
1628 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1629 (*_bfd_error_handler)
1630 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1631 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1632 bfd_get_filename (abfd));
1633
1634 h->size = sym.st_size;
1635 }
1636
1637 /* If this is a common symbol, then we always want H->SIZE
1638 to be the size of the common symbol. The code just above
1639 won't fix the size if a common symbol becomes larger. We
1640 don't warn about a size change here, because that is
1641 covered by --warn-common. */
1642 if (h->root.type == bfd_link_hash_common)
1643 h->size = h->root.u.c.size;
1644
1645 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1646 && (definition || h->type == STT_NOTYPE))
1647 {
1648 if (h->type != STT_NOTYPE
1649 && h->type != ELF_ST_TYPE (sym.st_info)
1650 && ! type_change_ok)
1651 (*_bfd_error_handler)
1652 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1653 name, h->type, ELF_ST_TYPE (sym.st_info),
1654 bfd_get_filename (abfd));
1655
1656 h->type = ELF_ST_TYPE (sym.st_info);
1657 }
1658
1659 /* If st_other has a processor-specific meaning, specific code
1660 might be needed here. */
1661 if (sym.st_other != 0)
1662 {
1663 /* Combine visibilities, using the most constraining one. */
1664 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1665 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
1666
1667 if (symvis && (hvis > symvis || hvis == 0))
1668 h->other = sym.st_other;
1669
1670 /* If neither has visibility, use the st_other of the
1671 definition. This is an arbitrary choice, since the
1672 other bits have no general meaning. */
1673 if (!symvis && !hvis
1674 && (definition || h->other == 0))
1675 h->other = sym.st_other;
1676 }
1677
1678 /* Set a flag in the hash table entry indicating the type of
1679 reference or definition we just found. Keep a count of
1680 the number of dynamic symbols we find. A dynamic symbol
1681 is one which is referenced or defined by both a regular
1682 object and a shared object. */
1683 old_flags = h->elf_link_hash_flags;
1684 dynsym = false;
1685 if (! dynamic)
1686 {
1687 if (! definition)
1688 {
1689 new_flag = ELF_LINK_HASH_REF_REGULAR;
1690 if (bind != STB_WEAK)
1691 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1692 }
1693 else
1694 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1695 if (info->shared
1696 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1697 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1698 dynsym = true;
1699 }
1700 else
1701 {
1702 if (! definition)
1703 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1704 else
1705 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1706 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1707 | ELF_LINK_HASH_REF_REGULAR)) != 0
1708 || (h->weakdef != NULL
1709 && ! new_weakdef
1710 && h->weakdef->dynindx != -1))
1711 dynsym = true;
1712 }
1713
1714 h->elf_link_hash_flags |= new_flag;
1715
1716 /* If this symbol has a version, and it is the default
1717 version, we create an indirect symbol from the default
1718 name to the fully decorated name. This will cause
1719 external references which do not specify a version to be
1720 bound to this version of the symbol. */
1721 if (definition || h->root.type == bfd_link_hash_common)
1722 {
1723 char *p;
1724
1725 p = strchr (name, ELF_VER_CHR);
1726 if (p != NULL && p[1] == ELF_VER_CHR)
1727 {
1728 char *shortname;
1729 struct elf_link_hash_entry *hi;
1730 boolean override;
1731
1732 shortname = bfd_hash_allocate (&info->hash->table,
1733 p - name + 1);
1734 if (shortname == NULL)
1735 goto error_return;
1736 strncpy (shortname, name, p - name);
1737 shortname[p - name] = '\0';
1738
1739 /* We are going to create a new symbol. Merge it
1740 with any existing symbol with this name. For the
1741 purposes of the merge, act as though we were
1742 defining the symbol we just defined, although we
1743 actually going to define an indirect symbol. */
1744 type_change_ok = false;
1745 size_change_ok = false;
1746 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1747 &value, &hi, &override,
1748 &type_change_ok,
1749 &size_change_ok, dt_needed))
1750 goto error_return;
1751
1752 if (! override)
1753 {
1754 if (! (_bfd_generic_link_add_one_symbol
1755 (info, abfd, shortname, BSF_INDIRECT,
1756 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1757 collect, (struct bfd_link_hash_entry **) &hi)))
1758 goto error_return;
1759 }
1760 else
1761 {
1762 /* In this case the symbol named SHORTNAME is
1763 overriding the indirect symbol we want to
1764 add. We were planning on making SHORTNAME an
1765 indirect symbol referring to NAME. SHORTNAME
1766 is the name without a version. NAME is the
1767 fully versioned name, and it is the default
1768 version.
1769
1770 Overriding means that we already saw a
1771 definition for the symbol SHORTNAME in a
1772 regular object, and it is overriding the
1773 symbol defined in the dynamic object.
1774
1775 When this happens, we actually want to change
1776 NAME, the symbol we just added, to refer to
1777 SHORTNAME. This will cause references to
1778 NAME in the shared object to become
1779 references to SHORTNAME in the regular
1780 object. This is what we expect when we
1781 override a function in a shared object: that
1782 the references in the shared object will be
1783 mapped to the definition in the regular
1784 object. */
1785
1786 while (hi->root.type == bfd_link_hash_indirect
1787 || hi->root.type == bfd_link_hash_warning)
1788 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1789
1790 h->root.type = bfd_link_hash_indirect;
1791 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1792 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1793 {
1794 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1795 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1796 if (hi->elf_link_hash_flags
1797 & (ELF_LINK_HASH_REF_REGULAR
1798 | ELF_LINK_HASH_DEF_REGULAR))
1799 {
1800 if (! _bfd_elf_link_record_dynamic_symbol (info,
1801 hi))
1802 goto error_return;
1803 }
1804 }
1805
1806 /* Now set HI to H, so that the following code
1807 will set the other fields correctly. */
1808 hi = h;
1809 }
1810
1811 /* If there is a duplicate definition somewhere,
1812 then HI may not point to an indirect symbol. We
1813 will have reported an error to the user in that
1814 case. */
1815
1816 if (hi->root.type == bfd_link_hash_indirect)
1817 {
1818 struct elf_link_hash_entry *ht;
1819
1820 /* If the symbol became indirect, then we assume
1821 that we have not seen a definition before. */
1822 BFD_ASSERT ((hi->elf_link_hash_flags
1823 & (ELF_LINK_HASH_DEF_DYNAMIC
1824 | ELF_LINK_HASH_DEF_REGULAR))
1825 == 0);
1826
1827 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1828 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
1829
1830 /* See if the new flags lead us to realize that
1831 the symbol must be dynamic. */
1832 if (! dynsym)
1833 {
1834 if (! dynamic)
1835 {
1836 if (info->shared
1837 || ((hi->elf_link_hash_flags
1838 & ELF_LINK_HASH_REF_DYNAMIC)
1839 != 0))
1840 dynsym = true;
1841 }
1842 else
1843 {
1844 if ((hi->elf_link_hash_flags
1845 & ELF_LINK_HASH_REF_REGULAR) != 0)
1846 dynsym = true;
1847 }
1848 }
1849 }
1850
1851 /* We also need to define an indirection from the
1852 nondefault version of the symbol. */
1853
1854 shortname = bfd_hash_allocate (&info->hash->table,
1855 strlen (name));
1856 if (shortname == NULL)
1857 goto error_return;
1858 strncpy (shortname, name, p - name);
1859 strcpy (shortname + (p - name), p + 1);
1860
1861 /* Once again, merge with any existing symbol. */
1862 type_change_ok = false;
1863 size_change_ok = false;
1864 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1865 &value, &hi, &override,
1866 &type_change_ok,
1867 &size_change_ok, dt_needed))
1868 goto error_return;
1869
1870 if (override)
1871 {
1872 /* Here SHORTNAME is a versioned name, so we
1873 don't expect to see the type of override we
1874 do in the case above. */
1875 (*_bfd_error_handler)
1876 (_("%s: warning: unexpected redefinition of `%s'"),
1877 bfd_get_filename (abfd), shortname);
1878 }
1879 else
1880 {
1881 if (! (_bfd_generic_link_add_one_symbol
1882 (info, abfd, shortname, BSF_INDIRECT,
1883 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1884 collect, (struct bfd_link_hash_entry **) &hi)))
1885 goto error_return;
1886
1887 /* If there is a duplicate definition somewhere,
1888 then HI may not point to an indirect symbol.
1889 We will have reported an error to the user in
1890 that case. */
1891
1892 if (hi->root.type == bfd_link_hash_indirect)
1893 {
1894 /* If the symbol became indirect, then we
1895 assume that we have not seen a definition
1896 before. */
1897 BFD_ASSERT ((hi->elf_link_hash_flags
1898 & (ELF_LINK_HASH_DEF_DYNAMIC
1899 | ELF_LINK_HASH_DEF_REGULAR))
1900 == 0);
1901
1902 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
1903
1904 /* See if the new flags lead us to realize
1905 that the symbol must be dynamic. */
1906 if (! dynsym)
1907 {
1908 if (! dynamic)
1909 {
1910 if (info->shared
1911 || ((hi->elf_link_hash_flags
1912 & ELF_LINK_HASH_REF_DYNAMIC)
1913 != 0))
1914 dynsym = true;
1915 }
1916 else
1917 {
1918 if ((hi->elf_link_hash_flags
1919 & ELF_LINK_HASH_REF_REGULAR) != 0)
1920 dynsym = true;
1921 }
1922 }
1923 }
1924 }
1925 }
1926 }
1927
1928 if (dynsym && h->dynindx == -1)
1929 {
1930 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1931 goto error_return;
1932 if (h->weakdef != NULL
1933 && ! new_weakdef
1934 && h->weakdef->dynindx == -1)
1935 {
1936 if (! _bfd_elf_link_record_dynamic_symbol (info,
1937 h->weakdef))
1938 goto error_return;
1939 }
1940 }
1941 else if (dynsym && h->dynindx != -1)
1942 /* If the symbol already has a dynamic index, but
1943 visibility says it should not be visible, turn it into
1944 a local symbol. */
1945 switch (ELF_ST_VISIBILITY (h->other))
1946 {
1947 case STV_INTERNAL:
1948 case STV_HIDDEN:
1949 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1950 (*bed->elf_backend_hide_symbol) (info, h);
1951 break;
1952 }
1953
1954 if (dt_needed && definition
1955 && (h->elf_link_hash_flags
1956 & ELF_LINK_HASH_REF_REGULAR) != 0)
1957 {
1958 bfd_size_type oldsize;
1959 bfd_size_type strindex;
1960
1961 /* The symbol from a DT_NEEDED object is referenced from
1962 the regular object to create a dynamic executable. We
1963 have to make sure there is a DT_NEEDED entry for it. */
1964
1965 dt_needed = false;
1966 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1967 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
1968 elf_dt_soname (abfd),
1969 true, false);
1970 if (strindex == (bfd_size_type) -1)
1971 goto error_return;
1972
1973 if (oldsize
1974 == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1975 {
1976 asection *sdyn;
1977 Elf_External_Dyn *dyncon, *dynconend;
1978
1979 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1980 ".dynamic");
1981 BFD_ASSERT (sdyn != NULL);
1982
1983 dyncon = (Elf_External_Dyn *) sdyn->contents;
1984 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1985 sdyn->_raw_size);
1986 for (; dyncon < dynconend; dyncon++)
1987 {
1988 Elf_Internal_Dyn dyn;
1989
1990 elf_swap_dyn_in (elf_hash_table (info)->dynobj,
1991 dyncon, &dyn);
1992 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
1993 dyn.d_un.d_val != strindex);
1994 }
1995 }
1996
1997 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1998 goto error_return;
1999 }
2000 }
2001 }
2002
2003 /* Now set the weakdefs field correctly for all the weak defined
2004 symbols we found. The only way to do this is to search all the
2005 symbols. Since we only need the information for non functions in
2006 dynamic objects, that's the only time we actually put anything on
2007 the list WEAKS. We need this information so that if a regular
2008 object refers to a symbol defined weakly in a dynamic object, the
2009 real symbol in the dynamic object is also put in the dynamic
2010 symbols; we also must arrange for both symbols to point to the
2011 same memory location. We could handle the general case of symbol
2012 aliasing, but a general symbol alias can only be generated in
2013 assembler code, handling it correctly would be very time
2014 consuming, and other ELF linkers don't handle general aliasing
2015 either. */
2016 while (weaks != NULL)
2017 {
2018 struct elf_link_hash_entry *hlook;
2019 asection *slook;
2020 bfd_vma vlook;
2021 struct elf_link_hash_entry **hpp;
2022 struct elf_link_hash_entry **hppend;
2023
2024 hlook = weaks;
2025 weaks = hlook->weakdef;
2026 hlook->weakdef = NULL;
2027
2028 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2029 || hlook->root.type == bfd_link_hash_defweak
2030 || hlook->root.type == bfd_link_hash_common
2031 || hlook->root.type == bfd_link_hash_indirect);
2032 slook = hlook->root.u.def.section;
2033 vlook = hlook->root.u.def.value;
2034
2035 hpp = elf_sym_hashes (abfd);
2036 hppend = hpp + extsymcount;
2037 for (; hpp < hppend; hpp++)
2038 {
2039 struct elf_link_hash_entry *h;
2040
2041 h = *hpp;
2042 if (h != NULL && h != hlook
2043 && h->root.type == bfd_link_hash_defined
2044 && h->root.u.def.section == slook
2045 && h->root.u.def.value == vlook)
2046 {
2047 hlook->weakdef = h;
2048
2049 /* If the weak definition is in the list of dynamic
2050 symbols, make sure the real definition is put there
2051 as well. */
2052 if (hlook->dynindx != -1
2053 && h->dynindx == -1)
2054 {
2055 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2056 goto error_return;
2057 }
2058
2059 /* If the real definition is in the list of dynamic
2060 symbols, make sure the weak definition is put there
2061 as well. If we don't do this, then the dynamic
2062 loader might not merge the entries for the real
2063 definition and the weak definition. */
2064 if (h->dynindx != -1
2065 && hlook->dynindx == -1)
2066 {
2067 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2068 goto error_return;
2069 }
2070
2071 break;
2072 }
2073 }
2074 }
2075
2076 if (buf != NULL)
2077 {
2078 free (buf);
2079 buf = NULL;
2080 }
2081
2082 if (extversym != NULL)
2083 {
2084 free (extversym);
2085 extversym = NULL;
2086 }
2087
2088 /* If this object is the same format as the output object, and it is
2089 not a shared library, then let the backend look through the
2090 relocs.
2091
2092 This is required to build global offset table entries and to
2093 arrange for dynamic relocs. It is not required for the
2094 particular common case of linking non PIC code, even when linking
2095 against shared libraries, but unfortunately there is no way of
2096 knowing whether an object file has been compiled PIC or not.
2097 Looking through the relocs is not particularly time consuming.
2098 The problem is that we must either (1) keep the relocs in memory,
2099 which causes the linker to require additional runtime memory or
2100 (2) read the relocs twice from the input file, which wastes time.
2101 This would be a good case for using mmap.
2102
2103 I have no idea how to handle linking PIC code into a file of a
2104 different format. It probably can't be done. */
2105 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2106 if (! dynamic
2107 && abfd->xvec == info->hash->creator
2108 && check_relocs != NULL)
2109 {
2110 asection *o;
2111
2112 for (o = abfd->sections; o != NULL; o = o->next)
2113 {
2114 Elf_Internal_Rela *internal_relocs;
2115 boolean ok;
2116
2117 if ((o->flags & SEC_RELOC) == 0
2118 || o->reloc_count == 0
2119 || ((info->strip == strip_all || info->strip == strip_debugger)
2120 && (o->flags & SEC_DEBUGGING) != 0)
2121 || bfd_is_abs_section (o->output_section))
2122 continue;
2123
2124 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2125 (abfd, o, (PTR) NULL,
2126 (Elf_Internal_Rela *) NULL,
2127 info->keep_memory));
2128 if (internal_relocs == NULL)
2129 goto error_return;
2130
2131 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2132
2133 if (! info->keep_memory)
2134 free (internal_relocs);
2135
2136 if (! ok)
2137 goto error_return;
2138 }
2139 }
2140
2141 /* If this is a non-traditional, non-relocateable link, try to
2142 optimize the handling of the .stab/.stabstr sections. */
2143 if (! dynamic
2144 && ! info->relocateable
2145 && ! info->traditional_format
2146 && info->hash->creator->flavour == bfd_target_elf_flavour
2147 && (info->strip != strip_all && info->strip != strip_debugger))
2148 {
2149 asection *stab, *stabstr;
2150
2151 stab = bfd_get_section_by_name (abfd, ".stab");
2152 if (stab != NULL)
2153 {
2154 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2155
2156 if (stabstr != NULL)
2157 {
2158 struct bfd_elf_section_data *secdata;
2159
2160 secdata = elf_section_data (stab);
2161 if (! _bfd_link_section_stabs (abfd,
2162 &elf_hash_table (info)->stab_info,
2163 stab, stabstr,
2164 &secdata->stab_info))
2165 goto error_return;
2166 }
2167 }
2168 }
2169
2170 return true;
2171
2172 error_return:
2173 if (buf != NULL)
2174 free (buf);
2175 if (dynbuf != NULL)
2176 free (dynbuf);
2177 if (dynver != NULL)
2178 free (dynver);
2179 if (extversym != NULL)
2180 free (extversym);
2181 return false;
2182 }
2183
2184 /* Create some sections which will be filled in with dynamic linking
2185 information. ABFD is an input file which requires dynamic sections
2186 to be created. The dynamic sections take up virtual memory space
2187 when the final executable is run, so we need to create them before
2188 addresses are assigned to the output sections. We work out the
2189 actual contents and size of these sections later. */
2190
2191 boolean
2192 elf_link_create_dynamic_sections (abfd, info)
2193 bfd *abfd;
2194 struct bfd_link_info *info;
2195 {
2196 flagword flags;
2197 register asection *s;
2198 struct elf_link_hash_entry *h;
2199 struct elf_backend_data *bed;
2200
2201 if (elf_hash_table (info)->dynamic_sections_created)
2202 return true;
2203
2204 /* Make sure that all dynamic sections use the same input BFD. */
2205 if (elf_hash_table (info)->dynobj == NULL)
2206 elf_hash_table (info)->dynobj = abfd;
2207 else
2208 abfd = elf_hash_table (info)->dynobj;
2209
2210 /* Note that we set the SEC_IN_MEMORY flag for all of these
2211 sections. */
2212 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2213 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2214
2215 /* A dynamically linked executable has a .interp section, but a
2216 shared library does not. */
2217 if (! info->shared)
2218 {
2219 s = bfd_make_section (abfd, ".interp");
2220 if (s == NULL
2221 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2222 return false;
2223 }
2224
2225 /* Create sections to hold version informations. These are removed
2226 if they are not needed. */
2227 s = bfd_make_section (abfd, ".gnu.version_d");
2228 if (s == NULL
2229 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2230 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2231 return false;
2232
2233 s = bfd_make_section (abfd, ".gnu.version");
2234 if (s == NULL
2235 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2236 || ! bfd_set_section_alignment (abfd, s, 1))
2237 return false;
2238
2239 s = bfd_make_section (abfd, ".gnu.version_r");
2240 if (s == NULL
2241 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2242 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2243 return false;
2244
2245 s = bfd_make_section (abfd, ".dynsym");
2246 if (s == NULL
2247 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2248 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2249 return false;
2250
2251 s = bfd_make_section (abfd, ".dynstr");
2252 if (s == NULL
2253 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2254 return false;
2255
2256 /* Create a strtab to hold the dynamic symbol names. */
2257 if (elf_hash_table (info)->dynstr == NULL)
2258 {
2259 elf_hash_table (info)->dynstr = elf_stringtab_init ();
2260 if (elf_hash_table (info)->dynstr == NULL)
2261 return false;
2262 }
2263
2264 s = bfd_make_section (abfd, ".dynamic");
2265 if (s == NULL
2266 || ! bfd_set_section_flags (abfd, s, flags)
2267 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2268 return false;
2269
2270 /* The special symbol _DYNAMIC is always set to the start of the
2271 .dynamic section. This call occurs before we have processed the
2272 symbols for any dynamic object, so we don't have to worry about
2273 overriding a dynamic definition. We could set _DYNAMIC in a
2274 linker script, but we only want to define it if we are, in fact,
2275 creating a .dynamic section. We don't want to define it if there
2276 is no .dynamic section, since on some ELF platforms the start up
2277 code examines it to decide how to initialize the process. */
2278 h = NULL;
2279 if (! (_bfd_generic_link_add_one_symbol
2280 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2281 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2282 (struct bfd_link_hash_entry **) &h)))
2283 return false;
2284 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2285 h->type = STT_OBJECT;
2286
2287 if (info->shared
2288 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2289 return false;
2290
2291 bed = get_elf_backend_data (abfd);
2292
2293 s = bfd_make_section (abfd, ".hash");
2294 if (s == NULL
2295 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2296 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2297 return false;
2298 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2299
2300 /* Let the backend create the rest of the sections. This lets the
2301 backend set the right flags. The backend will normally create
2302 the .got and .plt sections. */
2303 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2304 return false;
2305
2306 elf_hash_table (info)->dynamic_sections_created = true;
2307
2308 return true;
2309 }
2310
2311 /* Add an entry to the .dynamic table. */
2312
2313 boolean
2314 elf_add_dynamic_entry (info, tag, val)
2315 struct bfd_link_info *info;
2316 bfd_vma tag;
2317 bfd_vma val;
2318 {
2319 Elf_Internal_Dyn dyn;
2320 bfd *dynobj;
2321 asection *s;
2322 size_t newsize;
2323 bfd_byte *newcontents;
2324
2325 dynobj = elf_hash_table (info)->dynobj;
2326
2327 s = bfd_get_section_by_name (dynobj, ".dynamic");
2328 BFD_ASSERT (s != NULL);
2329
2330 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2331 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2332 if (newcontents == NULL)
2333 return false;
2334
2335 dyn.d_tag = tag;
2336 dyn.d_un.d_val = val;
2337 elf_swap_dyn_out (dynobj, &dyn,
2338 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2339
2340 s->_raw_size = newsize;
2341 s->contents = newcontents;
2342
2343 return true;
2344 }
2345
2346 /* Record a new local dynamic symbol. */
2347
2348 boolean
2349 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2350 struct bfd_link_info *info;
2351 bfd *input_bfd;
2352 long input_indx;
2353 {
2354 struct elf_link_local_dynamic_entry *entry;
2355 struct elf_link_hash_table *eht;
2356 struct bfd_strtab_hash *dynstr;
2357 Elf_External_Sym esym;
2358 unsigned long dynstr_index;
2359 char *name;
2360
2361 /* See if the entry exists already. */
2362 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2363 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2364 return true;
2365
2366 entry = (struct elf_link_local_dynamic_entry *)
2367 bfd_alloc (input_bfd, sizeof (*entry));
2368 if (entry == NULL)
2369 return false;
2370
2371 /* Go find the symbol, so that we can find it's name. */
2372 if (bfd_seek (input_bfd,
2373 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2374 + input_indx * sizeof (Elf_External_Sym)),
2375 SEEK_SET) != 0
2376 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2377 != sizeof (Elf_External_Sym)))
2378 return false;
2379 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2380
2381 name = (bfd_elf_string_from_elf_section
2382 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2383 entry->isym.st_name));
2384
2385 dynstr = elf_hash_table (info)->dynstr;
2386 if (dynstr == NULL)
2387 {
2388 /* Create a strtab to hold the dynamic symbol names. */
2389 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2390 if (dynstr == NULL)
2391 return false;
2392 }
2393
2394 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2395 if (dynstr_index == (unsigned long) -1)
2396 return false;
2397 entry->isym.st_name = dynstr_index;
2398
2399 eht = elf_hash_table (info);
2400
2401 entry->next = eht->dynlocal;
2402 eht->dynlocal = entry;
2403 entry->input_bfd = input_bfd;
2404 entry->input_indx = input_indx;
2405 eht->dynsymcount++;
2406
2407 /* Whatever binding the symbol had before, it's now local. */
2408 entry->isym.st_info
2409 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2410
2411 /* The dynindx will be set at the end of size_dynamic_sections. */
2412
2413 return true;
2414 }
2415 \f
2416 /* Read and swap the relocs from the section indicated by SHDR. This
2417 may be either a REL or a RELA section. The relocations are
2418 translated into RELA relocations and stored in INTERNAL_RELOCS,
2419 which should have already been allocated to contain enough space.
2420 The EXTERNAL_RELOCS are a buffer where the external form of the
2421 relocations should be stored.
2422
2423 Returns false if something goes wrong. */
2424
2425 static boolean
2426 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2427 internal_relocs)
2428 bfd *abfd;
2429 Elf_Internal_Shdr *shdr;
2430 PTR external_relocs;
2431 Elf_Internal_Rela *internal_relocs;
2432 {
2433 struct elf_backend_data *bed;
2434
2435 /* If there aren't any relocations, that's OK. */
2436 if (!shdr)
2437 return true;
2438
2439 /* Position ourselves at the start of the section. */
2440 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2441 return false;
2442
2443 /* Read the relocations. */
2444 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2445 != shdr->sh_size)
2446 return false;
2447
2448 bed = get_elf_backend_data (abfd);
2449
2450 /* Convert the external relocations to the internal format. */
2451 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2452 {
2453 Elf_External_Rel *erel;
2454 Elf_External_Rel *erelend;
2455 Elf_Internal_Rela *irela;
2456 Elf_Internal_Rel *irel;
2457
2458 erel = (Elf_External_Rel *) external_relocs;
2459 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2460 irela = internal_relocs;
2461 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2462 * sizeof (Elf_Internal_Rel)));
2463 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2464 {
2465 unsigned char i;
2466
2467 if (bed->s->swap_reloc_in)
2468 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2469 else
2470 elf_swap_reloc_in (abfd, erel, irel);
2471
2472 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2473 {
2474 irela[i].r_offset = irel[i].r_offset;
2475 irela[i].r_info = irel[i].r_info;
2476 irela[i].r_addend = 0;
2477 }
2478 }
2479 }
2480 else
2481 {
2482 Elf_External_Rela *erela;
2483 Elf_External_Rela *erelaend;
2484 Elf_Internal_Rela *irela;
2485
2486 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2487
2488 erela = (Elf_External_Rela *) external_relocs;
2489 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2490 irela = internal_relocs;
2491 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2492 {
2493 if (bed->s->swap_reloca_in)
2494 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2495 else
2496 elf_swap_reloca_in (abfd, erela, irela);
2497 }
2498 }
2499
2500 return true;
2501 }
2502
2503 /* Read and swap the relocs for a section O. They may have been
2504 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2505 not NULL, they are used as buffers to read into. They are known to
2506 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2507 the return value is allocated using either malloc or bfd_alloc,
2508 according to the KEEP_MEMORY argument. If O has two relocation
2509 sections (both REL and RELA relocations), then the REL_HDR
2510 relocations will appear first in INTERNAL_RELOCS, followed by the
2511 REL_HDR2 relocations. */
2512
2513 Elf_Internal_Rela *
2514 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2515 keep_memory)
2516 bfd *abfd;
2517 asection *o;
2518 PTR external_relocs;
2519 Elf_Internal_Rela *internal_relocs;
2520 boolean keep_memory;
2521 {
2522 Elf_Internal_Shdr *rel_hdr;
2523 PTR alloc1 = NULL;
2524 Elf_Internal_Rela *alloc2 = NULL;
2525 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2526
2527 if (elf_section_data (o)->relocs != NULL)
2528 return elf_section_data (o)->relocs;
2529
2530 if (o->reloc_count == 0)
2531 return NULL;
2532
2533 rel_hdr = &elf_section_data (o)->rel_hdr;
2534
2535 if (internal_relocs == NULL)
2536 {
2537 size_t size;
2538
2539 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2540 * sizeof (Elf_Internal_Rela));
2541 if (keep_memory)
2542 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2543 else
2544 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2545 if (internal_relocs == NULL)
2546 goto error_return;
2547 }
2548
2549 if (external_relocs == NULL)
2550 {
2551 size_t size = (size_t) rel_hdr->sh_size;
2552
2553 if (elf_section_data (o)->rel_hdr2)
2554 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2555 alloc1 = (PTR) bfd_malloc (size);
2556 if (alloc1 == NULL)
2557 goto error_return;
2558 external_relocs = alloc1;
2559 }
2560
2561 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2562 external_relocs,
2563 internal_relocs))
2564 goto error_return;
2565 if (!elf_link_read_relocs_from_section
2566 (abfd,
2567 elf_section_data (o)->rel_hdr2,
2568 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2569 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2570 * bed->s->int_rels_per_ext_rel)))
2571 goto error_return;
2572
2573 /* Cache the results for next time, if we can. */
2574 if (keep_memory)
2575 elf_section_data (o)->relocs = internal_relocs;
2576
2577 if (alloc1 != NULL)
2578 free (alloc1);
2579
2580 /* Don't free alloc2, since if it was allocated we are passing it
2581 back (under the name of internal_relocs). */
2582
2583 return internal_relocs;
2584
2585 error_return:
2586 if (alloc1 != NULL)
2587 free (alloc1);
2588 if (alloc2 != NULL)
2589 free (alloc2);
2590 return NULL;
2591 }
2592 \f
2593 /* Record an assignment to a symbol made by a linker script. We need
2594 this in case some dynamic object refers to this symbol. */
2595
2596 /*ARGSUSED*/
2597 boolean
2598 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2599 bfd *output_bfd ATTRIBUTE_UNUSED;
2600 struct bfd_link_info *info;
2601 const char *name;
2602 boolean provide;
2603 {
2604 struct elf_link_hash_entry *h;
2605
2606 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2607 return true;
2608
2609 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2610 if (h == NULL)
2611 return false;
2612
2613 if (h->root.type == bfd_link_hash_new)
2614 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2615
2616 /* If this symbol is being provided by the linker script, and it is
2617 currently defined by a dynamic object, but not by a regular
2618 object, then mark it as undefined so that the generic linker will
2619 force the correct value. */
2620 if (provide
2621 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2622 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2623 h->root.type = bfd_link_hash_undefined;
2624
2625 /* If this symbol is not being provided by the linker script, and it is
2626 currently defined by a dynamic object, but not by a regular object,
2627 then clear out any version information because the symbol will not be
2628 associated with the dynamic object any more. */
2629 if (!provide
2630 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2631 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2632 h->verinfo.verdef = NULL;
2633
2634 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2635
2636 /* When possible, keep the original type of the symbol */
2637 if (h->type == STT_NOTYPE)
2638 h->type = STT_OBJECT;
2639
2640 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2641 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2642 || info->shared)
2643 && h->dynindx == -1)
2644 {
2645 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2646 return false;
2647
2648 /* If this is a weak defined symbol, and we know a corresponding
2649 real symbol from the same dynamic object, make sure the real
2650 symbol is also made into a dynamic symbol. */
2651 if (h->weakdef != NULL
2652 && h->weakdef->dynindx == -1)
2653 {
2654 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2655 return false;
2656 }
2657 }
2658
2659 return true;
2660 }
2661 \f
2662 /* This structure is used to pass information to
2663 elf_link_assign_sym_version. */
2664
2665 struct elf_assign_sym_version_info
2666 {
2667 /* Output BFD. */
2668 bfd *output_bfd;
2669 /* General link information. */
2670 struct bfd_link_info *info;
2671 /* Version tree. */
2672 struct bfd_elf_version_tree *verdefs;
2673 /* Whether we are exporting all dynamic symbols. */
2674 boolean export_dynamic;
2675 /* Whether we had a failure. */
2676 boolean failed;
2677 };
2678
2679 /* This structure is used to pass information to
2680 elf_link_find_version_dependencies. */
2681
2682 struct elf_find_verdep_info
2683 {
2684 /* Output BFD. */
2685 bfd *output_bfd;
2686 /* General link information. */
2687 struct bfd_link_info *info;
2688 /* The number of dependencies. */
2689 unsigned int vers;
2690 /* Whether we had a failure. */
2691 boolean failed;
2692 };
2693
2694 /* Array used to determine the number of hash table buckets to use
2695 based on the number of symbols there are. If there are fewer than
2696 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2697 fewer than 37 we use 17 buckets, and so forth. We never use more
2698 than 32771 buckets. */
2699
2700 static const size_t elf_buckets[] =
2701 {
2702 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2703 16411, 32771, 0
2704 };
2705
2706 /* Compute bucket count for hashing table. We do not use a static set
2707 of possible tables sizes anymore. Instead we determine for all
2708 possible reasonable sizes of the table the outcome (i.e., the
2709 number of collisions etc) and choose the best solution. The
2710 weighting functions are not too simple to allow the table to grow
2711 without bounds. Instead one of the weighting factors is the size.
2712 Therefore the result is always a good payoff between few collisions
2713 (= short chain lengths) and table size. */
2714 static size_t
2715 compute_bucket_count (info)
2716 struct bfd_link_info *info;
2717 {
2718 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2719 size_t best_size = 0;
2720 unsigned long int *hashcodes;
2721 unsigned long int *hashcodesp;
2722 unsigned long int i;
2723
2724 /* Compute the hash values for all exported symbols. At the same
2725 time store the values in an array so that we could use them for
2726 optimizations. */
2727 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2728 * sizeof (unsigned long int));
2729 if (hashcodes == NULL)
2730 return 0;
2731 hashcodesp = hashcodes;
2732
2733 /* Put all hash values in HASHCODES. */
2734 elf_link_hash_traverse (elf_hash_table (info),
2735 elf_collect_hash_codes, &hashcodesp);
2736
2737 /* We have a problem here. The following code to optimize the table
2738 size requires an integer type with more the 32 bits. If
2739 BFD_HOST_U_64_BIT is set we know about such a type. */
2740 #ifdef BFD_HOST_U_64_BIT
2741 if (info->optimize == true)
2742 {
2743 unsigned long int nsyms = hashcodesp - hashcodes;
2744 size_t minsize;
2745 size_t maxsize;
2746 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2747 unsigned long int *counts ;
2748
2749 /* Possible optimization parameters: if we have NSYMS symbols we say
2750 that the hashing table must at least have NSYMS/4 and at most
2751 2*NSYMS buckets. */
2752 minsize = nsyms / 4;
2753 if (minsize == 0)
2754 minsize = 1;
2755 best_size = maxsize = nsyms * 2;
2756
2757 /* Create array where we count the collisions in. We must use bfd_malloc
2758 since the size could be large. */
2759 counts = (unsigned long int *) bfd_malloc (maxsize
2760 * sizeof (unsigned long int));
2761 if (counts == NULL)
2762 {
2763 free (hashcodes);
2764 return 0;
2765 }
2766
2767 /* Compute the "optimal" size for the hash table. The criteria is a
2768 minimal chain length. The minor criteria is (of course) the size
2769 of the table. */
2770 for (i = minsize; i < maxsize; ++i)
2771 {
2772 /* Walk through the array of hashcodes and count the collisions. */
2773 BFD_HOST_U_64_BIT max;
2774 unsigned long int j;
2775 unsigned long int fact;
2776
2777 memset (counts, '\0', i * sizeof (unsigned long int));
2778
2779 /* Determine how often each hash bucket is used. */
2780 for (j = 0; j < nsyms; ++j)
2781 ++counts[hashcodes[j] % i];
2782
2783 /* For the weight function we need some information about the
2784 pagesize on the target. This is information need not be 100%
2785 accurate. Since this information is not available (so far) we
2786 define it here to a reasonable default value. If it is crucial
2787 to have a better value some day simply define this value. */
2788 # ifndef BFD_TARGET_PAGESIZE
2789 # define BFD_TARGET_PAGESIZE (4096)
2790 # endif
2791
2792 /* We in any case need 2 + NSYMS entries for the size values and
2793 the chains. */
2794 max = (2 + nsyms) * (ARCH_SIZE / 8);
2795
2796 # if 1
2797 /* Variant 1: optimize for short chains. We add the squares
2798 of all the chain lengths (which favous many small chain
2799 over a few long chains). */
2800 for (j = 0; j < i; ++j)
2801 max += counts[j] * counts[j];
2802
2803 /* This adds penalties for the overall size of the table. */
2804 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2805 max *= fact * fact;
2806 # else
2807 /* Variant 2: Optimize a lot more for small table. Here we
2808 also add squares of the size but we also add penalties for
2809 empty slots (the +1 term). */
2810 for (j = 0; j < i; ++j)
2811 max += (1 + counts[j]) * (1 + counts[j]);
2812
2813 /* The overall size of the table is considered, but not as
2814 strong as in variant 1, where it is squared. */
2815 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2816 max *= fact;
2817 # endif
2818
2819 /* Compare with current best results. */
2820 if (max < best_chlen)
2821 {
2822 best_chlen = max;
2823 best_size = i;
2824 }
2825 }
2826
2827 free (counts);
2828 }
2829 else
2830 #endif /* defined (BFD_HOST_U_64_BIT) */
2831 {
2832 /* This is the fallback solution if no 64bit type is available or if we
2833 are not supposed to spend much time on optimizations. We select the
2834 bucket count using a fixed set of numbers. */
2835 for (i = 0; elf_buckets[i] != 0; i++)
2836 {
2837 best_size = elf_buckets[i];
2838 if (dynsymcount < elf_buckets[i + 1])
2839 break;
2840 }
2841 }
2842
2843 /* Free the arrays we needed. */
2844 free (hashcodes);
2845
2846 return best_size;
2847 }
2848
2849 /* Set up the sizes and contents of the ELF dynamic sections. This is
2850 called by the ELF linker emulation before_allocation routine. We
2851 must set the sizes of the sections before the linker sets the
2852 addresses of the various sections. */
2853
2854 boolean
2855 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2856 export_dynamic, filter_shlib,
2857 auxiliary_filters, info, sinterpptr,
2858 verdefs)
2859 bfd *output_bfd;
2860 const char *soname;
2861 const char *rpath;
2862 boolean export_dynamic;
2863 const char *filter_shlib;
2864 const char * const *auxiliary_filters;
2865 struct bfd_link_info *info;
2866 asection **sinterpptr;
2867 struct bfd_elf_version_tree *verdefs;
2868 {
2869 bfd_size_type soname_indx;
2870 bfd *dynobj;
2871 struct elf_backend_data *bed;
2872 struct elf_assign_sym_version_info asvinfo;
2873
2874 *sinterpptr = NULL;
2875
2876 soname_indx = (bfd_size_type) -1;
2877
2878 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2879 return true;
2880
2881 /* The backend may have to create some sections regardless of whether
2882 we're dynamic or not. */
2883 bed = get_elf_backend_data (output_bfd);
2884 if (bed->elf_backend_always_size_sections
2885 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2886 return false;
2887
2888 dynobj = elf_hash_table (info)->dynobj;
2889
2890 /* If there were no dynamic objects in the link, there is nothing to
2891 do here. */
2892 if (dynobj == NULL)
2893 return true;
2894
2895 if (elf_hash_table (info)->dynamic_sections_created)
2896 {
2897 struct elf_info_failed eif;
2898 struct elf_link_hash_entry *h;
2899 asection *dynstr;
2900
2901 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2902 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2903
2904 if (soname != NULL)
2905 {
2906 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2907 soname, true, true);
2908 if (soname_indx == (bfd_size_type) -1
2909 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2910 return false;
2911 }
2912
2913 if (info->symbolic)
2914 {
2915 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2916 return false;
2917 info->flags |= DF_SYMBOLIC;
2918 }
2919
2920 if (rpath != NULL)
2921 {
2922 bfd_size_type indx;
2923
2924 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2925 true, true);
2926 if (indx == (bfd_size_type) -1
2927 || ! elf_add_dynamic_entry (info, DT_RPATH, indx)
2928 || (info->new_dtags
2929 && ! elf_add_dynamic_entry (info, DT_RUNPATH, indx)))
2930 return false;
2931 }
2932
2933 if (filter_shlib != NULL)
2934 {
2935 bfd_size_type indx;
2936
2937 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2938 filter_shlib, true, true);
2939 if (indx == (bfd_size_type) -1
2940 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2941 return false;
2942 }
2943
2944 if (auxiliary_filters != NULL)
2945 {
2946 const char * const *p;
2947
2948 for (p = auxiliary_filters; *p != NULL; p++)
2949 {
2950 bfd_size_type indx;
2951
2952 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2953 *p, true, true);
2954 if (indx == (bfd_size_type) -1
2955 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2956 return false;
2957 }
2958 }
2959
2960 eif.info = info;
2961 eif.failed = false;
2962
2963 /* If we are supposed to export all symbols into the dynamic symbol
2964 table (this is not the normal case), then do so. */
2965 if (export_dynamic)
2966 {
2967 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2968 (PTR) &eif);
2969 if (eif.failed)
2970 return false;
2971 }
2972
2973 /* Attach all the symbols to their version information. */
2974 asvinfo.output_bfd = output_bfd;
2975 asvinfo.info = info;
2976 asvinfo.verdefs = verdefs;
2977 asvinfo.export_dynamic = export_dynamic;
2978 asvinfo.failed = false;
2979
2980 elf_link_hash_traverse (elf_hash_table (info),
2981 elf_link_assign_sym_version,
2982 (PTR) &asvinfo);
2983 if (asvinfo.failed)
2984 return false;
2985
2986 /* Find all symbols which were defined in a dynamic object and make
2987 the backend pick a reasonable value for them. */
2988 elf_link_hash_traverse (elf_hash_table (info),
2989 elf_adjust_dynamic_symbol,
2990 (PTR) &eif);
2991 if (eif.failed)
2992 return false;
2993
2994 /* Add some entries to the .dynamic section. We fill in some of the
2995 values later, in elf_bfd_final_link, but we must add the entries
2996 now so that we know the final size of the .dynamic section. */
2997
2998 /* If there are initialization and/or finalization functions to
2999 call then add the corresponding DT_INIT/DT_FINI entries. */
3000 h = (info->init_function
3001 ? elf_link_hash_lookup (elf_hash_table (info),
3002 info->init_function, false,
3003 false, false)
3004 : NULL);
3005 if (h != NULL
3006 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3007 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3008 {
3009 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
3010 return false;
3011 }
3012 h = (info->fini_function
3013 ? elf_link_hash_lookup (elf_hash_table (info),
3014 info->fini_function, false,
3015 false, false)
3016 : NULL);
3017 if (h != NULL
3018 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3019 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3020 {
3021 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
3022 return false;
3023 }
3024
3025 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3026 /* If .dynstr is excluded from the link, we don't want any of
3027 these tags. Strictly, we should be checking each section
3028 individually; This quick check covers for the case where
3029 someone does a /DISCARD/ : { *(*) }. */
3030 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3031 {
3032 bfd_size_type strsize;
3033
3034 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3035 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
3036 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
3037 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
3038 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
3039 || ! elf_add_dynamic_entry (info, DT_SYMENT,
3040 sizeof (Elf_External_Sym)))
3041 return false;
3042 }
3043 }
3044
3045 /* The backend must work out the sizes of all the other dynamic
3046 sections. */
3047 if (bed->elf_backend_size_dynamic_sections
3048 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3049 return false;
3050
3051 if (elf_hash_table (info)->dynamic_sections_created)
3052 {
3053 size_t dynsymcount;
3054 asection *s;
3055 size_t bucketcount = 0;
3056 size_t hash_entry_size;
3057
3058 /* Set up the version definition section. */
3059 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3060 BFD_ASSERT (s != NULL);
3061
3062 /* We may have created additional version definitions if we are
3063 just linking a regular application. */
3064 verdefs = asvinfo.verdefs;
3065
3066 if (verdefs == NULL)
3067 _bfd_strip_section_from_output (info, s);
3068 else
3069 {
3070 unsigned int cdefs;
3071 bfd_size_type size;
3072 struct bfd_elf_version_tree *t;
3073 bfd_byte *p;
3074 Elf_Internal_Verdef def;
3075 Elf_Internal_Verdaux defaux;
3076
3077 cdefs = 0;
3078 size = 0;
3079
3080 /* Make space for the base version. */
3081 size += sizeof (Elf_External_Verdef);
3082 size += sizeof (Elf_External_Verdaux);
3083 ++cdefs;
3084
3085 for (t = verdefs; t != NULL; t = t->next)
3086 {
3087 struct bfd_elf_version_deps *n;
3088
3089 size += sizeof (Elf_External_Verdef);
3090 size += sizeof (Elf_External_Verdaux);
3091 ++cdefs;
3092
3093 for (n = t->deps; n != NULL; n = n->next)
3094 size += sizeof (Elf_External_Verdaux);
3095 }
3096
3097 s->_raw_size = size;
3098 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3099 if (s->contents == NULL && s->_raw_size != 0)
3100 return false;
3101
3102 /* Fill in the version definition section. */
3103
3104 p = s->contents;
3105
3106 def.vd_version = VER_DEF_CURRENT;
3107 def.vd_flags = VER_FLG_BASE;
3108 def.vd_ndx = 1;
3109 def.vd_cnt = 1;
3110 def.vd_aux = sizeof (Elf_External_Verdef);
3111 def.vd_next = (sizeof (Elf_External_Verdef)
3112 + sizeof (Elf_External_Verdaux));
3113
3114 if (soname_indx != (bfd_size_type) -1)
3115 {
3116 def.vd_hash = bfd_elf_hash (soname);
3117 defaux.vda_name = soname_indx;
3118 }
3119 else
3120 {
3121 const char *name;
3122 bfd_size_type indx;
3123
3124 name = output_bfd->filename;
3125 def.vd_hash = bfd_elf_hash (name);
3126 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3127 name, true, false);
3128 if (indx == (bfd_size_type) -1)
3129 return false;
3130 defaux.vda_name = indx;
3131 }
3132 defaux.vda_next = 0;
3133
3134 _bfd_elf_swap_verdef_out (output_bfd, &def,
3135 (Elf_External_Verdef *)p);
3136 p += sizeof (Elf_External_Verdef);
3137 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3138 (Elf_External_Verdaux *) p);
3139 p += sizeof (Elf_External_Verdaux);
3140
3141 for (t = verdefs; t != NULL; t = t->next)
3142 {
3143 unsigned int cdeps;
3144 struct bfd_elf_version_deps *n;
3145 struct elf_link_hash_entry *h;
3146
3147 cdeps = 0;
3148 for (n = t->deps; n != NULL; n = n->next)
3149 ++cdeps;
3150
3151 /* Add a symbol representing this version. */
3152 h = NULL;
3153 if (! (_bfd_generic_link_add_one_symbol
3154 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3155 (bfd_vma) 0, (const char *) NULL, false,
3156 get_elf_backend_data (dynobj)->collect,
3157 (struct bfd_link_hash_entry **) &h)))
3158 return false;
3159 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3160 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3161 h->type = STT_OBJECT;
3162 h->verinfo.vertree = t;
3163
3164 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3165 return false;
3166
3167 def.vd_version = VER_DEF_CURRENT;
3168 def.vd_flags = 0;
3169 if (t->globals == NULL && t->locals == NULL && ! t->used)
3170 def.vd_flags |= VER_FLG_WEAK;
3171 def.vd_ndx = t->vernum + 1;
3172 def.vd_cnt = cdeps + 1;
3173 def.vd_hash = bfd_elf_hash (t->name);
3174 def.vd_aux = sizeof (Elf_External_Verdef);
3175 if (t->next != NULL)
3176 def.vd_next = (sizeof (Elf_External_Verdef)
3177 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3178 else
3179 def.vd_next = 0;
3180
3181 _bfd_elf_swap_verdef_out (output_bfd, &def,
3182 (Elf_External_Verdef *) p);
3183 p += sizeof (Elf_External_Verdef);
3184
3185 defaux.vda_name = h->dynstr_index;
3186 if (t->deps == NULL)
3187 defaux.vda_next = 0;
3188 else
3189 defaux.vda_next = sizeof (Elf_External_Verdaux);
3190 t->name_indx = defaux.vda_name;
3191
3192 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3193 (Elf_External_Verdaux *) p);
3194 p += sizeof (Elf_External_Verdaux);
3195
3196 for (n = t->deps; n != NULL; n = n->next)
3197 {
3198 if (n->version_needed == NULL)
3199 {
3200 /* This can happen if there was an error in the
3201 version script. */
3202 defaux.vda_name = 0;
3203 }
3204 else
3205 defaux.vda_name = n->version_needed->name_indx;
3206 if (n->next == NULL)
3207 defaux.vda_next = 0;
3208 else
3209 defaux.vda_next = sizeof (Elf_External_Verdaux);
3210
3211 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3212 (Elf_External_Verdaux *) p);
3213 p += sizeof (Elf_External_Verdaux);
3214 }
3215 }
3216
3217 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
3218 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
3219 return false;
3220
3221 elf_tdata (output_bfd)->cverdefs = cdefs;
3222 }
3223
3224 if (info->new_dtags && info->flags)
3225 {
3226 if (! elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
3227 return false;
3228 }
3229
3230 if (info->flags_1)
3231 {
3232 if (! info->shared)
3233 info->flags_1 &= ~ (DF_1_INITFIRST
3234 | DF_1_NODELETE
3235 | DF_1_NOOPEN);
3236 if (! elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
3237 return false;
3238 }
3239
3240 /* Work out the size of the version reference section. */
3241
3242 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3243 BFD_ASSERT (s != NULL);
3244 {
3245 struct elf_find_verdep_info sinfo;
3246
3247 sinfo.output_bfd = output_bfd;
3248 sinfo.info = info;
3249 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3250 if (sinfo.vers == 0)
3251 sinfo.vers = 1;
3252 sinfo.failed = false;
3253
3254 elf_link_hash_traverse (elf_hash_table (info),
3255 elf_link_find_version_dependencies,
3256 (PTR) &sinfo);
3257
3258 if (elf_tdata (output_bfd)->verref == NULL)
3259 _bfd_strip_section_from_output (info, s);
3260 else
3261 {
3262 Elf_Internal_Verneed *t;
3263 unsigned int size;
3264 unsigned int crefs;
3265 bfd_byte *p;
3266
3267 /* Build the version definition section. */
3268 size = 0;
3269 crefs = 0;
3270 for (t = elf_tdata (output_bfd)->verref;
3271 t != NULL;
3272 t = t->vn_nextref)
3273 {
3274 Elf_Internal_Vernaux *a;
3275
3276 size += sizeof (Elf_External_Verneed);
3277 ++crefs;
3278 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3279 size += sizeof (Elf_External_Vernaux);
3280 }
3281
3282 s->_raw_size = size;
3283 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3284 if (s->contents == NULL)
3285 return false;
3286
3287 p = s->contents;
3288 for (t = elf_tdata (output_bfd)->verref;
3289 t != NULL;
3290 t = t->vn_nextref)
3291 {
3292 unsigned int caux;
3293 Elf_Internal_Vernaux *a;
3294 bfd_size_type indx;
3295
3296 caux = 0;
3297 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3298 ++caux;
3299
3300 t->vn_version = VER_NEED_CURRENT;
3301 t->vn_cnt = caux;
3302 if (elf_dt_name (t->vn_bfd) != NULL)
3303 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3304 elf_dt_name (t->vn_bfd),
3305 true, false);
3306 else
3307 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3308 t->vn_bfd->filename, true, false);
3309 if (indx == (bfd_size_type) -1)
3310 return false;
3311 t->vn_file = indx;
3312 t->vn_aux = sizeof (Elf_External_Verneed);
3313 if (t->vn_nextref == NULL)
3314 t->vn_next = 0;
3315 else
3316 t->vn_next = (sizeof (Elf_External_Verneed)
3317 + caux * sizeof (Elf_External_Vernaux));
3318
3319 _bfd_elf_swap_verneed_out (output_bfd, t,
3320 (Elf_External_Verneed *) p);
3321 p += sizeof (Elf_External_Verneed);
3322
3323 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3324 {
3325 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3326 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3327 a->vna_nodename, true, false);
3328 if (indx == (bfd_size_type) -1)
3329 return false;
3330 a->vna_name = indx;
3331 if (a->vna_nextptr == NULL)
3332 a->vna_next = 0;
3333 else
3334 a->vna_next = sizeof (Elf_External_Vernaux);
3335
3336 _bfd_elf_swap_vernaux_out (output_bfd, a,
3337 (Elf_External_Vernaux *) p);
3338 p += sizeof (Elf_External_Vernaux);
3339 }
3340 }
3341
3342 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3343 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3344 return false;
3345
3346 elf_tdata (output_bfd)->cverrefs = crefs;
3347 }
3348 }
3349
3350 /* Assign dynsym indicies. In a shared library we generate a
3351 section symbol for each output section, which come first.
3352 Next come all of the back-end allocated local dynamic syms,
3353 followed by the rest of the global symbols. */
3354
3355 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3356
3357 /* Work out the size of the symbol version section. */
3358 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3359 BFD_ASSERT (s != NULL);
3360 if (dynsymcount == 0
3361 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3362 {
3363 _bfd_strip_section_from_output (info, s);
3364 /* The DYNSYMCOUNT might have changed if we were going to
3365 output a dynamic symbol table entry for S. */
3366 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3367 }
3368 else
3369 {
3370 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3371 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3372 if (s->contents == NULL)
3373 return false;
3374
3375 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3376 return false;
3377 }
3378
3379 /* Set the size of the .dynsym and .hash sections. We counted
3380 the number of dynamic symbols in elf_link_add_object_symbols.
3381 We will build the contents of .dynsym and .hash when we build
3382 the final symbol table, because until then we do not know the
3383 correct value to give the symbols. We built the .dynstr
3384 section as we went along in elf_link_add_object_symbols. */
3385 s = bfd_get_section_by_name (dynobj, ".dynsym");
3386 BFD_ASSERT (s != NULL);
3387 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3388 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3389 if (s->contents == NULL && s->_raw_size != 0)
3390 return false;
3391
3392 if (dynsymcount != 0)
3393 {
3394 Elf_Internal_Sym isym;
3395
3396 /* The first entry in .dynsym is a dummy symbol. */
3397 isym.st_value = 0;
3398 isym.st_size = 0;
3399 isym.st_name = 0;
3400 isym.st_info = 0;
3401 isym.st_other = 0;
3402 isym.st_shndx = 0;
3403 elf_swap_symbol_out (output_bfd, &isym,
3404 (PTR) (Elf_External_Sym *) s->contents);
3405 }
3406
3407 /* Compute the size of the hashing table. As a side effect this
3408 computes the hash values for all the names we export. */
3409 bucketcount = compute_bucket_count (info);
3410
3411 s = bfd_get_section_by_name (dynobj, ".hash");
3412 BFD_ASSERT (s != NULL);
3413 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3414 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3415 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3416 if (s->contents == NULL)
3417 return false;
3418 memset (s->contents, 0, (size_t) s->_raw_size);
3419
3420 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3421 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3422 s->contents + hash_entry_size);
3423
3424 elf_hash_table (info)->bucketcount = bucketcount;
3425
3426 s = bfd_get_section_by_name (dynobj, ".dynstr");
3427 BFD_ASSERT (s != NULL);
3428 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3429
3430 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3431 return false;
3432 }
3433
3434 return true;
3435 }
3436 \f
3437 /* Fix up the flags for a symbol. This handles various cases which
3438 can only be fixed after all the input files are seen. This is
3439 currently called by both adjust_dynamic_symbol and
3440 assign_sym_version, which is unnecessary but perhaps more robust in
3441 the face of future changes. */
3442
3443 static boolean
3444 elf_fix_symbol_flags (h, eif)
3445 struct elf_link_hash_entry *h;
3446 struct elf_info_failed *eif;
3447 {
3448 /* If this symbol was mentioned in a non-ELF file, try to set
3449 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3450 permit a non-ELF file to correctly refer to a symbol defined in
3451 an ELF dynamic object. */
3452 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3453 {
3454 while (h->root.type == bfd_link_hash_indirect)
3455 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3456
3457 if (h->root.type != bfd_link_hash_defined
3458 && h->root.type != bfd_link_hash_defweak)
3459 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3460 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3461 else
3462 {
3463 if (h->root.u.def.section->owner != NULL
3464 && (bfd_get_flavour (h->root.u.def.section->owner)
3465 == bfd_target_elf_flavour))
3466 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3467 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3468 else
3469 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3470 }
3471
3472 if (h->dynindx == -1
3473 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3474 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3475 {
3476 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3477 {
3478 eif->failed = true;
3479 return false;
3480 }
3481 }
3482 }
3483 else
3484 {
3485 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3486 was first seen in a non-ELF file. Fortunately, if the symbol
3487 was first seen in an ELF file, we're probably OK unless the
3488 symbol was defined in a non-ELF file. Catch that case here.
3489 FIXME: We're still in trouble if the symbol was first seen in
3490 a dynamic object, and then later in a non-ELF regular object. */
3491 if ((h->root.type == bfd_link_hash_defined
3492 || h->root.type == bfd_link_hash_defweak)
3493 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3494 && (h->root.u.def.section->owner != NULL
3495 ? (bfd_get_flavour (h->root.u.def.section->owner)
3496 != bfd_target_elf_flavour)
3497 : (bfd_is_abs_section (h->root.u.def.section)
3498 && (h->elf_link_hash_flags
3499 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3500 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3501 }
3502
3503 /* If this is a final link, and the symbol was defined as a common
3504 symbol in a regular object file, and there was no definition in
3505 any dynamic object, then the linker will have allocated space for
3506 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3507 flag will not have been set. */
3508 if (h->root.type == bfd_link_hash_defined
3509 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3510 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3511 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3512 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3513 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3514
3515 /* If -Bsymbolic was used (which means to bind references to global
3516 symbols to the definition within the shared object), and this
3517 symbol was defined in a regular object, then it actually doesn't
3518 need a PLT entry. Likewise, if the symbol has any kind of
3519 visibility (internal, hidden, or protected), it doesn't need a
3520 PLT. */
3521 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3522 && eif->info->shared
3523 && (eif->info->symbolic || ELF_ST_VISIBILITY (h->other))
3524 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3525 {
3526 struct elf_backend_data *bed;
3527 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3528 (*bed->elf_backend_hide_symbol) (eif->info, h);
3529 }
3530
3531 /* If this is a weak defined symbol in a dynamic object, and we know
3532 the real definition in the dynamic object, copy interesting flags
3533 over to the real definition. */
3534 if (h->weakdef != NULL)
3535 {
3536 struct elf_link_hash_entry *weakdef;
3537
3538 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3539 || h->root.type == bfd_link_hash_defweak);
3540 weakdef = h->weakdef;
3541 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3542 || weakdef->root.type == bfd_link_hash_defweak);
3543 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3544
3545 /* If the real definition is defined by a regular object file,
3546 don't do anything special. See the longer description in
3547 elf_adjust_dynamic_symbol, below. */
3548 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3549 h->weakdef = NULL;
3550 else
3551 weakdef->elf_link_hash_flags |=
3552 (h->elf_link_hash_flags
3553 & (ELF_LINK_HASH_REF_REGULAR
3554 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3555 | ELF_LINK_NON_GOT_REF));
3556 }
3557
3558 return true;
3559 }
3560
3561 /* Make the backend pick a good value for a dynamic symbol. This is
3562 called via elf_link_hash_traverse, and also calls itself
3563 recursively. */
3564
3565 static boolean
3566 elf_adjust_dynamic_symbol (h, data)
3567 struct elf_link_hash_entry *h;
3568 PTR data;
3569 {
3570 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3571 bfd *dynobj;
3572 struct elf_backend_data *bed;
3573
3574 /* Ignore indirect symbols. These are added by the versioning code. */
3575 if (h->root.type == bfd_link_hash_indirect)
3576 return true;
3577
3578 /* Fix the symbol flags. */
3579 if (! elf_fix_symbol_flags (h, eif))
3580 return false;
3581
3582 /* If this symbol does not require a PLT entry, and it is not
3583 defined by a dynamic object, or is not referenced by a regular
3584 object, ignore it. We do have to handle a weak defined symbol,
3585 even if no regular object refers to it, if we decided to add it
3586 to the dynamic symbol table. FIXME: Do we normally need to worry
3587 about symbols which are defined by one dynamic object and
3588 referenced by another one? */
3589 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3590 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3591 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3592 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3593 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3594 {
3595 h->plt.offset = (bfd_vma) -1;
3596 return true;
3597 }
3598
3599 /* If we've already adjusted this symbol, don't do it again. This
3600 can happen via a recursive call. */
3601 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3602 return true;
3603
3604 /* Don't look at this symbol again. Note that we must set this
3605 after checking the above conditions, because we may look at a
3606 symbol once, decide not to do anything, and then get called
3607 recursively later after REF_REGULAR is set below. */
3608 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3609
3610 /* If this is a weak definition, and we know a real definition, and
3611 the real symbol is not itself defined by a regular object file,
3612 then get a good value for the real definition. We handle the
3613 real symbol first, for the convenience of the backend routine.
3614
3615 Note that there is a confusing case here. If the real definition
3616 is defined by a regular object file, we don't get the real symbol
3617 from the dynamic object, but we do get the weak symbol. If the
3618 processor backend uses a COPY reloc, then if some routine in the
3619 dynamic object changes the real symbol, we will not see that
3620 change in the corresponding weak symbol. This is the way other
3621 ELF linkers work as well, and seems to be a result of the shared
3622 library model.
3623
3624 I will clarify this issue. Most SVR4 shared libraries define the
3625 variable _timezone and define timezone as a weak synonym. The
3626 tzset call changes _timezone. If you write
3627 extern int timezone;
3628 int _timezone = 5;
3629 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3630 you might expect that, since timezone is a synonym for _timezone,
3631 the same number will print both times. However, if the processor
3632 backend uses a COPY reloc, then actually timezone will be copied
3633 into your process image, and, since you define _timezone
3634 yourself, _timezone will not. Thus timezone and _timezone will
3635 wind up at different memory locations. The tzset call will set
3636 _timezone, leaving timezone unchanged. */
3637
3638 if (h->weakdef != NULL)
3639 {
3640 /* If we get to this point, we know there is an implicit
3641 reference by a regular object file via the weak symbol H.
3642 FIXME: Is this really true? What if the traversal finds
3643 H->WEAKDEF before it finds H? */
3644 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3645
3646 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3647 return false;
3648 }
3649
3650 /* If a symbol has no type and no size and does not require a PLT
3651 entry, then we are probably about to do the wrong thing here: we
3652 are probably going to create a COPY reloc for an empty object.
3653 This case can arise when a shared object is built with assembly
3654 code, and the assembly code fails to set the symbol type. */
3655 if (h->size == 0
3656 && h->type == STT_NOTYPE
3657 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3658 (*_bfd_error_handler)
3659 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3660 h->root.root.string);
3661
3662 dynobj = elf_hash_table (eif->info)->dynobj;
3663 bed = get_elf_backend_data (dynobj);
3664 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3665 {
3666 eif->failed = true;
3667 return false;
3668 }
3669
3670 return true;
3671 }
3672 \f
3673 /* This routine is used to export all defined symbols into the dynamic
3674 symbol table. It is called via elf_link_hash_traverse. */
3675
3676 static boolean
3677 elf_export_symbol (h, data)
3678 struct elf_link_hash_entry *h;
3679 PTR data;
3680 {
3681 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3682
3683 /* Ignore indirect symbols. These are added by the versioning code. */
3684 if (h->root.type == bfd_link_hash_indirect)
3685 return true;
3686
3687 if (h->dynindx == -1
3688 && (h->elf_link_hash_flags
3689 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3690 {
3691 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3692 {
3693 eif->failed = true;
3694 return false;
3695 }
3696 }
3697
3698 return true;
3699 }
3700 \f
3701 /* Look through the symbols which are defined in other shared
3702 libraries and referenced here. Update the list of version
3703 dependencies. This will be put into the .gnu.version_r section.
3704 This function is called via elf_link_hash_traverse. */
3705
3706 static boolean
3707 elf_link_find_version_dependencies (h, data)
3708 struct elf_link_hash_entry *h;
3709 PTR data;
3710 {
3711 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3712 Elf_Internal_Verneed *t;
3713 Elf_Internal_Vernaux *a;
3714
3715 /* We only care about symbols defined in shared objects with version
3716 information. */
3717 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3718 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3719 || h->dynindx == -1
3720 || h->verinfo.verdef == NULL)
3721 return true;
3722
3723 /* See if we already know about this version. */
3724 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3725 {
3726 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3727 continue;
3728
3729 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3730 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3731 return true;
3732
3733 break;
3734 }
3735
3736 /* This is a new version. Add it to tree we are building. */
3737
3738 if (t == NULL)
3739 {
3740 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3741 if (t == NULL)
3742 {
3743 rinfo->failed = true;
3744 return false;
3745 }
3746
3747 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3748 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3749 elf_tdata (rinfo->output_bfd)->verref = t;
3750 }
3751
3752 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3753
3754 /* Note that we are copying a string pointer here, and testing it
3755 above. If bfd_elf_string_from_elf_section is ever changed to
3756 discard the string data when low in memory, this will have to be
3757 fixed. */
3758 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3759
3760 a->vna_flags = h->verinfo.verdef->vd_flags;
3761 a->vna_nextptr = t->vn_auxptr;
3762
3763 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3764 ++rinfo->vers;
3765
3766 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3767
3768 t->vn_auxptr = a;
3769
3770 return true;
3771 }
3772
3773 /* Figure out appropriate versions for all the symbols. We may not
3774 have the version number script until we have read all of the input
3775 files, so until that point we don't know which symbols should be
3776 local. This function is called via elf_link_hash_traverse. */
3777
3778 static boolean
3779 elf_link_assign_sym_version (h, data)
3780 struct elf_link_hash_entry *h;
3781 PTR data;
3782 {
3783 struct elf_assign_sym_version_info *sinfo =
3784 (struct elf_assign_sym_version_info *) data;
3785 struct bfd_link_info *info = sinfo->info;
3786 struct elf_backend_data *bed;
3787 struct elf_info_failed eif;
3788 char *p;
3789
3790 /* Fix the symbol flags. */
3791 eif.failed = false;
3792 eif.info = info;
3793 if (! elf_fix_symbol_flags (h, &eif))
3794 {
3795 if (eif.failed)
3796 sinfo->failed = true;
3797 return false;
3798 }
3799
3800 /* We only need version numbers for symbols defined in regular
3801 objects. */
3802 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3803 return true;
3804
3805 bed = get_elf_backend_data (sinfo->output_bfd);
3806 p = strchr (h->root.root.string, ELF_VER_CHR);
3807 if (p != NULL && h->verinfo.vertree == NULL)
3808 {
3809 struct bfd_elf_version_tree *t;
3810 boolean hidden;
3811
3812 hidden = true;
3813
3814 /* There are two consecutive ELF_VER_CHR characters if this is
3815 not a hidden symbol. */
3816 ++p;
3817 if (*p == ELF_VER_CHR)
3818 {
3819 hidden = false;
3820 ++p;
3821 }
3822
3823 /* If there is no version string, we can just return out. */
3824 if (*p == '\0')
3825 {
3826 if (hidden)
3827 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3828 return true;
3829 }
3830
3831 /* Look for the version. If we find it, it is no longer weak. */
3832 for (t = sinfo->verdefs; t != NULL; t = t->next)
3833 {
3834 if (strcmp (t->name, p) == 0)
3835 {
3836 int len;
3837 char *alc;
3838 struct bfd_elf_version_expr *d;
3839
3840 len = p - h->root.root.string;
3841 alc = bfd_alloc (sinfo->output_bfd, len);
3842 if (alc == NULL)
3843 return false;
3844 strncpy (alc, h->root.root.string, len - 1);
3845 alc[len - 1] = '\0';
3846 if (alc[len - 2] == ELF_VER_CHR)
3847 alc[len - 2] = '\0';
3848
3849 h->verinfo.vertree = t;
3850 t->used = true;
3851 d = NULL;
3852
3853 if (t->globals != NULL)
3854 {
3855 for (d = t->globals; d != NULL; d = d->next)
3856 if ((*d->match) (d, alc))
3857 break;
3858 }
3859
3860 /* See if there is anything to force this symbol to
3861 local scope. */
3862 if (d == NULL && t->locals != NULL)
3863 {
3864 for (d = t->locals; d != NULL; d = d->next)
3865 {
3866 if ((*d->match) (d, alc))
3867 {
3868 if (h->dynindx != -1
3869 && info->shared
3870 && ! sinfo->export_dynamic)
3871 {
3872 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3873 (*bed->elf_backend_hide_symbol) (info, h);
3874 /* FIXME: The name of the symbol has
3875 already been recorded in the dynamic
3876 string table section. */
3877 }
3878
3879 break;
3880 }
3881 }
3882 }
3883
3884 bfd_release (sinfo->output_bfd, alc);
3885 break;
3886 }
3887 }
3888
3889 /* If we are building an application, we need to create a
3890 version node for this version. */
3891 if (t == NULL && ! info->shared)
3892 {
3893 struct bfd_elf_version_tree **pp;
3894 int version_index;
3895
3896 /* If we aren't going to export this symbol, we don't need
3897 to worry about it. */
3898 if (h->dynindx == -1)
3899 return true;
3900
3901 t = ((struct bfd_elf_version_tree *)
3902 bfd_alloc (sinfo->output_bfd, sizeof *t));
3903 if (t == NULL)
3904 {
3905 sinfo->failed = true;
3906 return false;
3907 }
3908
3909 t->next = NULL;
3910 t->name = p;
3911 t->globals = NULL;
3912 t->locals = NULL;
3913 t->deps = NULL;
3914 t->name_indx = (unsigned int) -1;
3915 t->used = true;
3916
3917 version_index = 1;
3918 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3919 ++version_index;
3920 t->vernum = version_index;
3921
3922 *pp = t;
3923
3924 h->verinfo.vertree = t;
3925 }
3926 else if (t == NULL)
3927 {
3928 /* We could not find the version for a symbol when
3929 generating a shared archive. Return an error. */
3930 (*_bfd_error_handler)
3931 (_("%s: undefined versioned symbol name %s"),
3932 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3933 bfd_set_error (bfd_error_bad_value);
3934 sinfo->failed = true;
3935 return false;
3936 }
3937
3938 if (hidden)
3939 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3940 }
3941
3942 /* If we don't have a version for this symbol, see if we can find
3943 something. */
3944 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3945 {
3946 struct bfd_elf_version_tree *t;
3947 struct bfd_elf_version_tree *deflt;
3948 struct bfd_elf_version_expr *d;
3949
3950 /* See if can find what version this symbol is in. If the
3951 symbol is supposed to be local, then don't actually register
3952 it. */
3953 deflt = NULL;
3954 for (t = sinfo->verdefs; t != NULL; t = t->next)
3955 {
3956 if (t->globals != NULL)
3957 {
3958 for (d = t->globals; d != NULL; d = d->next)
3959 {
3960 if ((*d->match) (d, h->root.root.string))
3961 {
3962 h->verinfo.vertree = t;
3963 break;
3964 }
3965 }
3966
3967 if (d != NULL)
3968 break;
3969 }
3970
3971 if (t->locals != NULL)
3972 {
3973 for (d = t->locals; d != NULL; d = d->next)
3974 {
3975 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3976 deflt = t;
3977 else if ((*d->match) (d, h->root.root.string))
3978 {
3979 h->verinfo.vertree = t;
3980 if (h->dynindx != -1
3981 && info->shared
3982 && ! sinfo->export_dynamic)
3983 {
3984 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3985 (*bed->elf_backend_hide_symbol) (info, h);
3986 /* FIXME: The name of the symbol has already
3987 been recorded in the dynamic string table
3988 section. */
3989 }
3990 break;
3991 }
3992 }
3993
3994 if (d != NULL)
3995 break;
3996 }
3997 }
3998
3999 if (deflt != NULL && h->verinfo.vertree == NULL)
4000 {
4001 h->verinfo.vertree = deflt;
4002 if (h->dynindx != -1
4003 && info->shared
4004 && ! sinfo->export_dynamic)
4005 {
4006 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
4007 (*bed->elf_backend_hide_symbol) (info, h);
4008 /* FIXME: The name of the symbol has already been
4009 recorded in the dynamic string table section. */
4010 }
4011 }
4012 }
4013
4014 return true;
4015 }
4016 \f
4017 /* Final phase of ELF linker. */
4018
4019 /* A structure we use to avoid passing large numbers of arguments. */
4020
4021 struct elf_final_link_info
4022 {
4023 /* General link information. */
4024 struct bfd_link_info *info;
4025 /* Output BFD. */
4026 bfd *output_bfd;
4027 /* Symbol string table. */
4028 struct bfd_strtab_hash *symstrtab;
4029 /* .dynsym section. */
4030 asection *dynsym_sec;
4031 /* .hash section. */
4032 asection *hash_sec;
4033 /* symbol version section (.gnu.version). */
4034 asection *symver_sec;
4035 /* Buffer large enough to hold contents of any section. */
4036 bfd_byte *contents;
4037 /* Buffer large enough to hold external relocs of any section. */
4038 PTR external_relocs;
4039 /* Buffer large enough to hold internal relocs of any section. */
4040 Elf_Internal_Rela *internal_relocs;
4041 /* Buffer large enough to hold external local symbols of any input
4042 BFD. */
4043 Elf_External_Sym *external_syms;
4044 /* Buffer large enough to hold internal local symbols of any input
4045 BFD. */
4046 Elf_Internal_Sym *internal_syms;
4047 /* Array large enough to hold a symbol index for each local symbol
4048 of any input BFD. */
4049 long *indices;
4050 /* Array large enough to hold a section pointer for each local
4051 symbol of any input BFD. */
4052 asection **sections;
4053 /* Buffer to hold swapped out symbols. */
4054 Elf_External_Sym *symbuf;
4055 /* Number of swapped out symbols in buffer. */
4056 size_t symbuf_count;
4057 /* Number of symbols which fit in symbuf. */
4058 size_t symbuf_size;
4059 };
4060
4061 static boolean elf_link_output_sym
4062 PARAMS ((struct elf_final_link_info *, const char *,
4063 Elf_Internal_Sym *, asection *));
4064 static boolean elf_link_flush_output_syms
4065 PARAMS ((struct elf_final_link_info *));
4066 static boolean elf_link_output_extsym
4067 PARAMS ((struct elf_link_hash_entry *, PTR));
4068 static boolean elf_link_input_bfd
4069 PARAMS ((struct elf_final_link_info *, bfd *));
4070 static boolean elf_reloc_link_order
4071 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4072 struct bfd_link_order *));
4073
4074 /* This struct is used to pass information to elf_link_output_extsym. */
4075
4076 struct elf_outext_info
4077 {
4078 boolean failed;
4079 boolean localsyms;
4080 struct elf_final_link_info *finfo;
4081 };
4082
4083 /* Compute the size of, and allocate space for, REL_HDR which is the
4084 section header for a section containing relocations for O. */
4085
4086 static boolean
4087 elf_link_size_reloc_section (abfd, rel_hdr, o)
4088 bfd *abfd;
4089 Elf_Internal_Shdr *rel_hdr;
4090 asection *o;
4091 {
4092 register struct elf_link_hash_entry **p, **pend;
4093 unsigned reloc_count;
4094
4095 /* Figure out how many relocations there will be. */
4096 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4097 reloc_count = elf_section_data (o)->rel_count;
4098 else
4099 reloc_count = elf_section_data (o)->rel_count2;
4100
4101 /* That allows us to calculate the size of the section. */
4102 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
4103
4104 /* The contents field must last into write_object_contents, so we
4105 allocate it with bfd_alloc rather than malloc. Also since we
4106 cannot be sure that the contents will actually be filled in,
4107 we zero the allocated space. */
4108 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
4109 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4110 return false;
4111
4112 /* We only allocate one set of hash entries, so we only do it the
4113 first time we are called. */
4114 if (elf_section_data (o)->rel_hashes == NULL)
4115 {
4116 p = ((struct elf_link_hash_entry **)
4117 bfd_malloc (o->reloc_count
4118 * sizeof (struct elf_link_hash_entry *)));
4119 if (p == NULL && o->reloc_count != 0)
4120 return false;
4121
4122 elf_section_data (o)->rel_hashes = p;
4123 pend = p + o->reloc_count;
4124 for (; p < pend; p++)
4125 *p = NULL;
4126 }
4127
4128 return true;
4129 }
4130
4131 /* When performing a relocateable link, the input relocations are
4132 preserved. But, if they reference global symbols, the indices
4133 referenced must be updated. Update all the relocations in
4134 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4135
4136 static void
4137 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4138 bfd *abfd;
4139 Elf_Internal_Shdr *rel_hdr;
4140 unsigned int count;
4141 struct elf_link_hash_entry **rel_hash;
4142 {
4143 unsigned int i;
4144 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4145
4146 for (i = 0; i < count; i++, rel_hash++)
4147 {
4148 if (*rel_hash == NULL)
4149 continue;
4150
4151 BFD_ASSERT ((*rel_hash)->indx >= 0);
4152
4153 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4154 {
4155 Elf_External_Rel *erel;
4156 Elf_Internal_Rel irel;
4157
4158 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4159 if (bed->s->swap_reloc_in)
4160 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &irel);
4161 else
4162 elf_swap_reloc_in (abfd, erel, &irel);
4163 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
4164 ELF_R_TYPE (irel.r_info));
4165 if (bed->s->swap_reloc_out)
4166 (*bed->s->swap_reloc_out) (abfd, &irel, (bfd_byte *) erel);
4167 else
4168 elf_swap_reloc_out (abfd, &irel, erel);
4169 }
4170 else
4171 {
4172 Elf_External_Rela *erela;
4173 Elf_Internal_Rela irela;
4174
4175 BFD_ASSERT (rel_hdr->sh_entsize
4176 == sizeof (Elf_External_Rela));
4177
4178 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4179 if (bed->s->swap_reloca_in)
4180 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, &irela);
4181 else
4182 elf_swap_reloca_in (abfd, erela, &irela);
4183 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4184 ELF_R_TYPE (irela.r_info));
4185 if (bed->s->swap_reloca_out)
4186 (*bed->s->swap_reloca_out) (abfd, &irela, (bfd_byte *) erela);
4187 else
4188 elf_swap_reloca_out (abfd, &irela, erela);
4189 }
4190 }
4191 }
4192
4193 /* Do the final step of an ELF link. */
4194
4195 boolean
4196 elf_bfd_final_link (abfd, info)
4197 bfd *abfd;
4198 struct bfd_link_info *info;
4199 {
4200 boolean dynamic;
4201 bfd *dynobj;
4202 struct elf_final_link_info finfo;
4203 register asection *o;
4204 register struct bfd_link_order *p;
4205 register bfd *sub;
4206 size_t max_contents_size;
4207 size_t max_external_reloc_size;
4208 size_t max_internal_reloc_count;
4209 size_t max_sym_count;
4210 file_ptr off;
4211 Elf_Internal_Sym elfsym;
4212 unsigned int i;
4213 Elf_Internal_Shdr *symtab_hdr;
4214 Elf_Internal_Shdr *symstrtab_hdr;
4215 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4216 struct elf_outext_info eoinfo;
4217
4218 if (info->shared)
4219 abfd->flags |= DYNAMIC;
4220
4221 dynamic = elf_hash_table (info)->dynamic_sections_created;
4222 dynobj = elf_hash_table (info)->dynobj;
4223
4224 finfo.info = info;
4225 finfo.output_bfd = abfd;
4226 finfo.symstrtab = elf_stringtab_init ();
4227 if (finfo.symstrtab == NULL)
4228 return false;
4229
4230 if (! dynamic)
4231 {
4232 finfo.dynsym_sec = NULL;
4233 finfo.hash_sec = NULL;
4234 finfo.symver_sec = NULL;
4235 }
4236 else
4237 {
4238 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4239 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4240 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4241 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4242 /* Note that it is OK if symver_sec is NULL. */
4243 }
4244
4245 finfo.contents = NULL;
4246 finfo.external_relocs = NULL;
4247 finfo.internal_relocs = NULL;
4248 finfo.external_syms = NULL;
4249 finfo.internal_syms = NULL;
4250 finfo.indices = NULL;
4251 finfo.sections = NULL;
4252 finfo.symbuf = NULL;
4253 finfo.symbuf_count = 0;
4254
4255 /* Count up the number of relocations we will output for each output
4256 section, so that we know the sizes of the reloc sections. We
4257 also figure out some maximum sizes. */
4258 max_contents_size = 0;
4259 max_external_reloc_size = 0;
4260 max_internal_reloc_count = 0;
4261 max_sym_count = 0;
4262 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4263 {
4264 o->reloc_count = 0;
4265
4266 for (p = o->link_order_head; p != NULL; p = p->next)
4267 {
4268 if (p->type == bfd_section_reloc_link_order
4269 || p->type == bfd_symbol_reloc_link_order)
4270 ++o->reloc_count;
4271 else if (p->type == bfd_indirect_link_order)
4272 {
4273 asection *sec;
4274
4275 sec = p->u.indirect.section;
4276
4277 /* Mark all sections which are to be included in the
4278 link. This will normally be every section. We need
4279 to do this so that we can identify any sections which
4280 the linker has decided to not include. */
4281 sec->linker_mark = true;
4282
4283 if (info->relocateable || info->emitrelocations)
4284 o->reloc_count += sec->reloc_count;
4285
4286 if (sec->_raw_size > max_contents_size)
4287 max_contents_size = sec->_raw_size;
4288 if (sec->_cooked_size > max_contents_size)
4289 max_contents_size = sec->_cooked_size;
4290
4291 /* We are interested in just local symbols, not all
4292 symbols. */
4293 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4294 && (sec->owner->flags & DYNAMIC) == 0)
4295 {
4296 size_t sym_count;
4297
4298 if (elf_bad_symtab (sec->owner))
4299 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4300 / sizeof (Elf_External_Sym));
4301 else
4302 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4303
4304 if (sym_count > max_sym_count)
4305 max_sym_count = sym_count;
4306
4307 if ((sec->flags & SEC_RELOC) != 0)
4308 {
4309 size_t ext_size;
4310
4311 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4312 if (ext_size > max_external_reloc_size)
4313 max_external_reloc_size = ext_size;
4314 if (sec->reloc_count > max_internal_reloc_count)
4315 max_internal_reloc_count = sec->reloc_count;
4316 }
4317 }
4318 }
4319 }
4320
4321 if (o->reloc_count > 0)
4322 o->flags |= SEC_RELOC;
4323 else
4324 {
4325 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4326 set it (this is probably a bug) and if it is set
4327 assign_section_numbers will create a reloc section. */
4328 o->flags &=~ SEC_RELOC;
4329 }
4330
4331 /* If the SEC_ALLOC flag is not set, force the section VMA to
4332 zero. This is done in elf_fake_sections as well, but forcing
4333 the VMA to 0 here will ensure that relocs against these
4334 sections are handled correctly. */
4335 if ((o->flags & SEC_ALLOC) == 0
4336 && ! o->user_set_vma)
4337 o->vma = 0;
4338 }
4339
4340 /* Figure out the file positions for everything but the symbol table
4341 and the relocs. We set symcount to force assign_section_numbers
4342 to create a symbol table. */
4343 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4344 BFD_ASSERT (! abfd->output_has_begun);
4345 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4346 goto error_return;
4347
4348 /* Figure out how many relocations we will have in each section.
4349 Just using RELOC_COUNT isn't good enough since that doesn't
4350 maintain a separate value for REL vs. RELA relocations. */
4351 if (info->relocateable || info->emitrelocations)
4352 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4353 for (o = sub->sections; o != NULL; o = o->next)
4354 {
4355 asection *output_section;
4356
4357 if (! o->linker_mark)
4358 {
4359 /* This section was omitted from the link. */
4360 continue;
4361 }
4362
4363 output_section = o->output_section;
4364
4365 if (output_section != NULL
4366 && (o->flags & SEC_RELOC) != 0)
4367 {
4368 struct bfd_elf_section_data *esdi
4369 = elf_section_data (o);
4370 struct bfd_elf_section_data *esdo
4371 = elf_section_data (output_section);
4372 unsigned int *rel_count;
4373 unsigned int *rel_count2;
4374
4375 /* We must be careful to add the relocation froms the
4376 input section to the right output count. */
4377 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4378 {
4379 rel_count = &esdo->rel_count;
4380 rel_count2 = &esdo->rel_count2;
4381 }
4382 else
4383 {
4384 rel_count = &esdo->rel_count2;
4385 rel_count2 = &esdo->rel_count;
4386 }
4387
4388 *rel_count += (esdi->rel_hdr.sh_size
4389 / esdi->rel_hdr.sh_entsize);
4390 if (esdi->rel_hdr2)
4391 *rel_count2 += (esdi->rel_hdr2->sh_size
4392 / esdi->rel_hdr2->sh_entsize);
4393 }
4394 }
4395
4396 /* That created the reloc sections. Set their sizes, and assign
4397 them file positions, and allocate some buffers. */
4398 for (o = abfd->sections; o != NULL; o = o->next)
4399 {
4400 if ((o->flags & SEC_RELOC) != 0)
4401 {
4402 if (!elf_link_size_reloc_section (abfd,
4403 &elf_section_data (o)->rel_hdr,
4404 o))
4405 goto error_return;
4406
4407 if (elf_section_data (o)->rel_hdr2
4408 && !elf_link_size_reloc_section (abfd,
4409 elf_section_data (o)->rel_hdr2,
4410 o))
4411 goto error_return;
4412 }
4413
4414 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4415 to count upwards while actually outputting the relocations. */
4416 elf_section_data (o)->rel_count = 0;
4417 elf_section_data (o)->rel_count2 = 0;
4418 }
4419
4420 _bfd_elf_assign_file_positions_for_relocs (abfd);
4421
4422 /* We have now assigned file positions for all the sections except
4423 .symtab and .strtab. We start the .symtab section at the current
4424 file position, and write directly to it. We build the .strtab
4425 section in memory. */
4426 bfd_get_symcount (abfd) = 0;
4427 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4428 /* sh_name is set in prep_headers. */
4429 symtab_hdr->sh_type = SHT_SYMTAB;
4430 symtab_hdr->sh_flags = 0;
4431 symtab_hdr->sh_addr = 0;
4432 symtab_hdr->sh_size = 0;
4433 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4434 /* sh_link is set in assign_section_numbers. */
4435 /* sh_info is set below. */
4436 /* sh_offset is set just below. */
4437 symtab_hdr->sh_addralign = bed->s->file_align;
4438
4439 off = elf_tdata (abfd)->next_file_pos;
4440 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4441
4442 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4443 incorrect. We do not yet know the size of the .symtab section.
4444 We correct next_file_pos below, after we do know the size. */
4445
4446 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4447 continuously seeking to the right position in the file. */
4448 if (! info->keep_memory || max_sym_count < 20)
4449 finfo.symbuf_size = 20;
4450 else
4451 finfo.symbuf_size = max_sym_count;
4452 finfo.symbuf = ((Elf_External_Sym *)
4453 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4454 if (finfo.symbuf == NULL)
4455 goto error_return;
4456
4457 /* Start writing out the symbol table. The first symbol is always a
4458 dummy symbol. */
4459 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
4460 {
4461 elfsym.st_value = 0;
4462 elfsym.st_size = 0;
4463 elfsym.st_info = 0;
4464 elfsym.st_other = 0;
4465 elfsym.st_shndx = SHN_UNDEF;
4466 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4467 &elfsym, bfd_und_section_ptr))
4468 goto error_return;
4469 }
4470
4471 #if 0
4472 /* Some standard ELF linkers do this, but we don't because it causes
4473 bootstrap comparison failures. */
4474 /* Output a file symbol for the output file as the second symbol.
4475 We output this even if we are discarding local symbols, although
4476 I'm not sure if this is correct. */
4477 elfsym.st_value = 0;
4478 elfsym.st_size = 0;
4479 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4480 elfsym.st_other = 0;
4481 elfsym.st_shndx = SHN_ABS;
4482 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4483 &elfsym, bfd_abs_section_ptr))
4484 goto error_return;
4485 #endif
4486
4487 /* Output a symbol for each section. We output these even if we are
4488 discarding local symbols, since they are used for relocs. These
4489 symbols have no names. We store the index of each one in the
4490 index field of the section, so that we can find it again when
4491 outputting relocs. */
4492 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
4493 {
4494 elfsym.st_size = 0;
4495 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4496 elfsym.st_other = 0;
4497 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4498 {
4499 o = section_from_elf_index (abfd, i);
4500 if (o != NULL)
4501 o->target_index = bfd_get_symcount (abfd);
4502 elfsym.st_shndx = i;
4503 if (info->relocateable || o == NULL)
4504 elfsym.st_value = 0;
4505 else
4506 elfsym.st_value = o->vma;
4507 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4508 &elfsym, o))
4509 goto error_return;
4510 }
4511 }
4512
4513 /* Allocate some memory to hold information read in from the input
4514 files. */
4515 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4516 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4517 finfo.internal_relocs = ((Elf_Internal_Rela *)
4518 bfd_malloc (max_internal_reloc_count
4519 * sizeof (Elf_Internal_Rela)
4520 * bed->s->int_rels_per_ext_rel));
4521 finfo.external_syms = ((Elf_External_Sym *)
4522 bfd_malloc (max_sym_count
4523 * sizeof (Elf_External_Sym)));
4524 finfo.internal_syms = ((Elf_Internal_Sym *)
4525 bfd_malloc (max_sym_count
4526 * sizeof (Elf_Internal_Sym)));
4527 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4528 finfo.sections = ((asection **)
4529 bfd_malloc (max_sym_count * sizeof (asection *)));
4530 if ((finfo.contents == NULL && max_contents_size != 0)
4531 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4532 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4533 || (finfo.external_syms == NULL && max_sym_count != 0)
4534 || (finfo.internal_syms == NULL && max_sym_count != 0)
4535 || (finfo.indices == NULL && max_sym_count != 0)
4536 || (finfo.sections == NULL && max_sym_count != 0))
4537 goto error_return;
4538
4539 /* Since ELF permits relocations to be against local symbols, we
4540 must have the local symbols available when we do the relocations.
4541 Since we would rather only read the local symbols once, and we
4542 would rather not keep them in memory, we handle all the
4543 relocations for a single input file at the same time.
4544
4545 Unfortunately, there is no way to know the total number of local
4546 symbols until we have seen all of them, and the local symbol
4547 indices precede the global symbol indices. This means that when
4548 we are generating relocateable output, and we see a reloc against
4549 a global symbol, we can not know the symbol index until we have
4550 finished examining all the local symbols to see which ones we are
4551 going to output. To deal with this, we keep the relocations in
4552 memory, and don't output them until the end of the link. This is
4553 an unfortunate waste of memory, but I don't see a good way around
4554 it. Fortunately, it only happens when performing a relocateable
4555 link, which is not the common case. FIXME: If keep_memory is set
4556 we could write the relocs out and then read them again; I don't
4557 know how bad the memory loss will be. */
4558
4559 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4560 sub->output_has_begun = false;
4561 for (o = abfd->sections; o != NULL; o = o->next)
4562 {
4563 for (p = o->link_order_head; p != NULL; p = p->next)
4564 {
4565 if (p->type == bfd_indirect_link_order
4566 && (bfd_get_flavour (p->u.indirect.section->owner)
4567 == bfd_target_elf_flavour))
4568 {
4569 sub = p->u.indirect.section->owner;
4570 if (! sub->output_has_begun)
4571 {
4572 if (! elf_link_input_bfd (&finfo, sub))
4573 goto error_return;
4574 sub->output_has_begun = true;
4575 }
4576 }
4577 else if (p->type == bfd_section_reloc_link_order
4578 || p->type == bfd_symbol_reloc_link_order)
4579 {
4580 if (! elf_reloc_link_order (abfd, info, o, p))
4581 goto error_return;
4582 }
4583 else
4584 {
4585 if (! _bfd_default_link_order (abfd, info, o, p))
4586 goto error_return;
4587 }
4588 }
4589 }
4590
4591 /* That wrote out all the local symbols. Finish up the symbol table
4592 with the global symbols. Even if we want to strip everything we
4593 can, we still need to deal with those global symbols that got
4594 converted to local in a version script. */
4595
4596 if (info->shared)
4597 {
4598 /* Output any global symbols that got converted to local in a
4599 version script. We do this in a separate step since ELF
4600 requires all local symbols to appear prior to any global
4601 symbols. FIXME: We should only do this if some global
4602 symbols were, in fact, converted to become local. FIXME:
4603 Will this work correctly with the Irix 5 linker? */
4604 eoinfo.failed = false;
4605 eoinfo.finfo = &finfo;
4606 eoinfo.localsyms = true;
4607 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4608 (PTR) &eoinfo);
4609 if (eoinfo.failed)
4610 return false;
4611 }
4612
4613 /* The sh_info field records the index of the first non local symbol. */
4614 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4615
4616 if (dynamic
4617 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
4618 {
4619 Elf_Internal_Sym sym;
4620 Elf_External_Sym *dynsym =
4621 (Elf_External_Sym *)finfo.dynsym_sec->contents;
4622 long last_local = 0;
4623
4624 /* Write out the section symbols for the output sections. */
4625 if (info->shared)
4626 {
4627 asection *s;
4628
4629 sym.st_size = 0;
4630 sym.st_name = 0;
4631 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4632 sym.st_other = 0;
4633
4634 for (s = abfd->sections; s != NULL; s = s->next)
4635 {
4636 int indx;
4637 indx = elf_section_data (s)->this_idx;
4638 BFD_ASSERT (indx > 0);
4639 sym.st_shndx = indx;
4640 sym.st_value = s->vma;
4641
4642 elf_swap_symbol_out (abfd, &sym,
4643 dynsym + elf_section_data (s)->dynindx);
4644 }
4645
4646 last_local = bfd_count_sections (abfd);
4647 }
4648
4649 /* Write out the local dynsyms. */
4650 if (elf_hash_table (info)->dynlocal)
4651 {
4652 struct elf_link_local_dynamic_entry *e;
4653 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4654 {
4655 asection *s;
4656
4657 sym.st_size = e->isym.st_size;
4658 sym.st_other = e->isym.st_other;
4659
4660 /* Copy the internal symbol as is.
4661 Note that we saved a word of storage and overwrote
4662 the original st_name with the dynstr_index. */
4663 sym = e->isym;
4664
4665 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
4666 {
4667 s = bfd_section_from_elf_index (e->input_bfd,
4668 e->isym.st_shndx);
4669
4670 sym.st_shndx =
4671 elf_section_data (s->output_section)->this_idx;
4672 sym.st_value = (s->output_section->vma
4673 + s->output_offset
4674 + e->isym.st_value);
4675 }
4676
4677 if (last_local < e->dynindx)
4678 last_local = e->dynindx;
4679
4680 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4681 }
4682 }
4683
4684 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
4685 last_local + 1;
4686 }
4687
4688 /* We get the global symbols from the hash table. */
4689 eoinfo.failed = false;
4690 eoinfo.localsyms = false;
4691 eoinfo.finfo = &finfo;
4692 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4693 (PTR) &eoinfo);
4694 if (eoinfo.failed)
4695 return false;
4696
4697 /* If backend needs to output some symbols not present in the hash
4698 table, do it now. */
4699 if (bed->elf_backend_output_arch_syms)
4700 {
4701 if (! (*bed->elf_backend_output_arch_syms)
4702 (abfd, info, (PTR) &finfo,
4703 (boolean (*) PARAMS ((PTR, const char *,
4704 Elf_Internal_Sym *, asection *)))
4705 elf_link_output_sym))
4706 return false;
4707 }
4708
4709 /* Flush all symbols to the file. */
4710 if (! elf_link_flush_output_syms (&finfo))
4711 return false;
4712
4713 /* Now we know the size of the symtab section. */
4714 off += symtab_hdr->sh_size;
4715
4716 /* Finish up and write out the symbol string table (.strtab)
4717 section. */
4718 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4719 /* sh_name was set in prep_headers. */
4720 symstrtab_hdr->sh_type = SHT_STRTAB;
4721 symstrtab_hdr->sh_flags = 0;
4722 symstrtab_hdr->sh_addr = 0;
4723 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4724 symstrtab_hdr->sh_entsize = 0;
4725 symstrtab_hdr->sh_link = 0;
4726 symstrtab_hdr->sh_info = 0;
4727 /* sh_offset is set just below. */
4728 symstrtab_hdr->sh_addralign = 1;
4729
4730 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4731 elf_tdata (abfd)->next_file_pos = off;
4732
4733 if (bfd_get_symcount (abfd) > 0)
4734 {
4735 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4736 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4737 return false;
4738 }
4739
4740 /* Adjust the relocs to have the correct symbol indices. */
4741 for (o = abfd->sections; o != NULL; o = o->next)
4742 {
4743 if ((o->flags & SEC_RELOC) == 0)
4744 continue;
4745
4746 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4747 elf_section_data (o)->rel_count,
4748 elf_section_data (o)->rel_hashes);
4749 if (elf_section_data (o)->rel_hdr2 != NULL)
4750 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4751 elf_section_data (o)->rel_count2,
4752 (elf_section_data (o)->rel_hashes
4753 + elf_section_data (o)->rel_count));
4754
4755 /* Set the reloc_count field to 0 to prevent write_relocs from
4756 trying to swap the relocs out itself. */
4757 o->reloc_count = 0;
4758 }
4759
4760 /* If we are linking against a dynamic object, or generating a
4761 shared library, finish up the dynamic linking information. */
4762 if (dynamic)
4763 {
4764 Elf_External_Dyn *dyncon, *dynconend;
4765
4766 /* Fix up .dynamic entries. */
4767 o = bfd_get_section_by_name (dynobj, ".dynamic");
4768 BFD_ASSERT (o != NULL);
4769
4770 dyncon = (Elf_External_Dyn *) o->contents;
4771 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4772 for (; dyncon < dynconend; dyncon++)
4773 {
4774 Elf_Internal_Dyn dyn;
4775 const char *name;
4776 unsigned int type;
4777
4778 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4779
4780 switch (dyn.d_tag)
4781 {
4782 default:
4783 break;
4784 case DT_INIT:
4785 name = info->init_function;
4786 goto get_sym;
4787 case DT_FINI:
4788 name = info->fini_function;
4789 get_sym:
4790 {
4791 struct elf_link_hash_entry *h;
4792
4793 h = elf_link_hash_lookup (elf_hash_table (info), name,
4794 false, false, true);
4795 if (h != NULL
4796 && (h->root.type == bfd_link_hash_defined
4797 || h->root.type == bfd_link_hash_defweak))
4798 {
4799 dyn.d_un.d_val = h->root.u.def.value;
4800 o = h->root.u.def.section;
4801 if (o->output_section != NULL)
4802 dyn.d_un.d_val += (o->output_section->vma
4803 + o->output_offset);
4804 else
4805 {
4806 /* The symbol is imported from another shared
4807 library and does not apply to this one. */
4808 dyn.d_un.d_val = 0;
4809 }
4810
4811 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4812 }
4813 }
4814 break;
4815
4816 case DT_HASH:
4817 name = ".hash";
4818 goto get_vma;
4819 case DT_STRTAB:
4820 name = ".dynstr";
4821 goto get_vma;
4822 case DT_SYMTAB:
4823 name = ".dynsym";
4824 goto get_vma;
4825 case DT_VERDEF:
4826 name = ".gnu.version_d";
4827 goto get_vma;
4828 case DT_VERNEED:
4829 name = ".gnu.version_r";
4830 goto get_vma;
4831 case DT_VERSYM:
4832 name = ".gnu.version";
4833 get_vma:
4834 o = bfd_get_section_by_name (abfd, name);
4835 BFD_ASSERT (o != NULL);
4836 dyn.d_un.d_ptr = o->vma;
4837 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4838 break;
4839
4840 case DT_REL:
4841 case DT_RELA:
4842 case DT_RELSZ:
4843 case DT_RELASZ:
4844 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4845 type = SHT_REL;
4846 else
4847 type = SHT_RELA;
4848 dyn.d_un.d_val = 0;
4849 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4850 {
4851 Elf_Internal_Shdr *hdr;
4852
4853 hdr = elf_elfsections (abfd)[i];
4854 if (hdr->sh_type == type
4855 && (hdr->sh_flags & SHF_ALLOC) != 0)
4856 {
4857 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4858 dyn.d_un.d_val += hdr->sh_size;
4859 else
4860 {
4861 if (dyn.d_un.d_val == 0
4862 || hdr->sh_addr < dyn.d_un.d_val)
4863 dyn.d_un.d_val = hdr->sh_addr;
4864 }
4865 }
4866 }
4867 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4868 break;
4869 }
4870 }
4871 }
4872
4873 /* If we have created any dynamic sections, then output them. */
4874 if (dynobj != NULL)
4875 {
4876 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4877 goto error_return;
4878
4879 for (o = dynobj->sections; o != NULL; o = o->next)
4880 {
4881 if ((o->flags & SEC_HAS_CONTENTS) == 0
4882 || o->_raw_size == 0
4883 || o->output_section == bfd_abs_section_ptr)
4884 continue;
4885 if ((o->flags & SEC_LINKER_CREATED) == 0)
4886 {
4887 /* At this point, we are only interested in sections
4888 created by elf_link_create_dynamic_sections. */
4889 continue;
4890 }
4891 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4892 != SHT_STRTAB)
4893 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4894 {
4895 if (! bfd_set_section_contents (abfd, o->output_section,
4896 o->contents, o->output_offset,
4897 o->_raw_size))
4898 goto error_return;
4899 }
4900 else
4901 {
4902 file_ptr off;
4903
4904 /* The contents of the .dynstr section are actually in a
4905 stringtab. */
4906 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4907 if (bfd_seek (abfd, off, SEEK_SET) != 0
4908 || ! _bfd_stringtab_emit (abfd,
4909 elf_hash_table (info)->dynstr))
4910 goto error_return;
4911 }
4912 }
4913 }
4914
4915 /* If we have optimized stabs strings, output them. */
4916 if (elf_hash_table (info)->stab_info != NULL)
4917 {
4918 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4919 goto error_return;
4920 }
4921
4922 if (finfo.symstrtab != NULL)
4923 _bfd_stringtab_free (finfo.symstrtab);
4924 if (finfo.contents != NULL)
4925 free (finfo.contents);
4926 if (finfo.external_relocs != NULL)
4927 free (finfo.external_relocs);
4928 if (finfo.internal_relocs != NULL)
4929 free (finfo.internal_relocs);
4930 if (finfo.external_syms != NULL)
4931 free (finfo.external_syms);
4932 if (finfo.internal_syms != NULL)
4933 free (finfo.internal_syms);
4934 if (finfo.indices != NULL)
4935 free (finfo.indices);
4936 if (finfo.sections != NULL)
4937 free (finfo.sections);
4938 if (finfo.symbuf != NULL)
4939 free (finfo.symbuf);
4940 for (o = abfd->sections; o != NULL; o = o->next)
4941 {
4942 if ((o->flags & SEC_RELOC) != 0
4943 && elf_section_data (o)->rel_hashes != NULL)
4944 free (elf_section_data (o)->rel_hashes);
4945 }
4946
4947 elf_tdata (abfd)->linker = true;
4948
4949 return true;
4950
4951 error_return:
4952 if (finfo.symstrtab != NULL)
4953 _bfd_stringtab_free (finfo.symstrtab);
4954 if (finfo.contents != NULL)
4955 free (finfo.contents);
4956 if (finfo.external_relocs != NULL)
4957 free (finfo.external_relocs);
4958 if (finfo.internal_relocs != NULL)
4959 free (finfo.internal_relocs);
4960 if (finfo.external_syms != NULL)
4961 free (finfo.external_syms);
4962 if (finfo.internal_syms != NULL)
4963 free (finfo.internal_syms);
4964 if (finfo.indices != NULL)
4965 free (finfo.indices);
4966 if (finfo.sections != NULL)
4967 free (finfo.sections);
4968 if (finfo.symbuf != NULL)
4969 free (finfo.symbuf);
4970 for (o = abfd->sections; o != NULL; o = o->next)
4971 {
4972 if ((o->flags & SEC_RELOC) != 0
4973 && elf_section_data (o)->rel_hashes != NULL)
4974 free (elf_section_data (o)->rel_hashes);
4975 }
4976
4977 return false;
4978 }
4979
4980 /* Add a symbol to the output symbol table. */
4981
4982 static boolean
4983 elf_link_output_sym (finfo, name, elfsym, input_sec)
4984 struct elf_final_link_info *finfo;
4985 const char *name;
4986 Elf_Internal_Sym *elfsym;
4987 asection *input_sec;
4988 {
4989 boolean (*output_symbol_hook) PARAMS ((bfd *,
4990 struct bfd_link_info *info,
4991 const char *,
4992 Elf_Internal_Sym *,
4993 asection *));
4994
4995 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4996 elf_backend_link_output_symbol_hook;
4997 if (output_symbol_hook != NULL)
4998 {
4999 if (! ((*output_symbol_hook)
5000 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5001 return false;
5002 }
5003
5004 if (name == (const char *) NULL || *name == '\0')
5005 elfsym->st_name = 0;
5006 else if (input_sec->flags & SEC_EXCLUDE)
5007 elfsym->st_name = 0;
5008 else
5009 {
5010 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5011 name, true,
5012 false);
5013 if (elfsym->st_name == (unsigned long) -1)
5014 return false;
5015 }
5016
5017 if (finfo->symbuf_count >= finfo->symbuf_size)
5018 {
5019 if (! elf_link_flush_output_syms (finfo))
5020 return false;
5021 }
5022
5023 elf_swap_symbol_out (finfo->output_bfd, elfsym,
5024 (PTR) (finfo->symbuf + finfo->symbuf_count));
5025 ++finfo->symbuf_count;
5026
5027 ++ bfd_get_symcount (finfo->output_bfd);
5028
5029 return true;
5030 }
5031
5032 /* Flush the output symbols to the file. */
5033
5034 static boolean
5035 elf_link_flush_output_syms (finfo)
5036 struct elf_final_link_info *finfo;
5037 {
5038 if (finfo->symbuf_count > 0)
5039 {
5040 Elf_Internal_Shdr *symtab;
5041
5042 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5043
5044 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
5045 SEEK_SET) != 0
5046 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
5047 sizeof (Elf_External_Sym), finfo->output_bfd)
5048 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
5049 return false;
5050
5051 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
5052
5053 finfo->symbuf_count = 0;
5054 }
5055
5056 return true;
5057 }
5058
5059 /* Add an external symbol to the symbol table. This is called from
5060 the hash table traversal routine. When generating a shared object,
5061 we go through the symbol table twice. The first time we output
5062 anything that might have been forced to local scope in a version
5063 script. The second time we output the symbols that are still
5064 global symbols. */
5065
5066 static boolean
5067 elf_link_output_extsym (h, data)
5068 struct elf_link_hash_entry *h;
5069 PTR data;
5070 {
5071 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
5072 struct elf_final_link_info *finfo = eoinfo->finfo;
5073 boolean strip;
5074 Elf_Internal_Sym sym;
5075 asection *input_sec;
5076
5077 /* Decide whether to output this symbol in this pass. */
5078 if (eoinfo->localsyms)
5079 {
5080 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5081 return true;
5082 }
5083 else
5084 {
5085 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5086 return true;
5087 }
5088
5089 /* If we are not creating a shared library, and this symbol is
5090 referenced by a shared library but is not defined anywhere, then
5091 warn that it is undefined. If we do not do this, the runtime
5092 linker will complain that the symbol is undefined when the
5093 program is run. We don't have to worry about symbols that are
5094 referenced by regular files, because we will already have issued
5095 warnings for them. */
5096 if (! finfo->info->relocateable
5097 && ! finfo->info->allow_shlib_undefined
5098 && ! (finfo->info->shared
5099 && !finfo->info->no_undefined)
5100 && h->root.type == bfd_link_hash_undefined
5101 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5102 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5103 {
5104 if (! ((*finfo->info->callbacks->undefined_symbol)
5105 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
5106 (asection *) NULL, 0, true)))
5107 {
5108 eoinfo->failed = true;
5109 return false;
5110 }
5111 }
5112
5113 /* We don't want to output symbols that have never been mentioned by
5114 a regular file, or that we have been told to strip. However, if
5115 h->indx is set to -2, the symbol is used by a reloc and we must
5116 output it. */
5117 if (h->indx == -2)
5118 strip = false;
5119 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5120 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
5121 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5122 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5123 strip = true;
5124 else if (finfo->info->strip == strip_all
5125 || (finfo->info->strip == strip_some
5126 && bfd_hash_lookup (finfo->info->keep_hash,
5127 h->root.root.string,
5128 false, false) == NULL))
5129 strip = true;
5130 else
5131 strip = false;
5132
5133 /* If we're stripping it, and it's not a dynamic symbol, there's
5134 nothing else to do unless it is a forced local symbol. */
5135 if (strip
5136 && h->dynindx == -1
5137 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5138 return true;
5139
5140 sym.st_value = 0;
5141 sym.st_size = h->size;
5142 sym.st_other = h->other;
5143 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5144 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
5145 else if (h->root.type == bfd_link_hash_undefweak
5146 || h->root.type == bfd_link_hash_defweak)
5147 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
5148 else
5149 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
5150
5151 switch (h->root.type)
5152 {
5153 default:
5154 case bfd_link_hash_new:
5155 abort ();
5156 return false;
5157
5158 case bfd_link_hash_undefined:
5159 input_sec = bfd_und_section_ptr;
5160 sym.st_shndx = SHN_UNDEF;
5161 break;
5162
5163 case bfd_link_hash_undefweak:
5164 input_sec = bfd_und_section_ptr;
5165 sym.st_shndx = SHN_UNDEF;
5166 break;
5167
5168 case bfd_link_hash_defined:
5169 case bfd_link_hash_defweak:
5170 {
5171 input_sec = h->root.u.def.section;
5172 if (input_sec->output_section != NULL)
5173 {
5174 sym.st_shndx =
5175 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
5176 input_sec->output_section);
5177 if (sym.st_shndx == (unsigned short) -1)
5178 {
5179 (*_bfd_error_handler)
5180 (_("%s: could not find output section %s for input section %s"),
5181 bfd_get_filename (finfo->output_bfd),
5182 input_sec->output_section->name,
5183 input_sec->name);
5184 eoinfo->failed = true;
5185 return false;
5186 }
5187
5188 /* ELF symbols in relocateable files are section relative,
5189 but in nonrelocateable files they are virtual
5190 addresses. */
5191 sym.st_value = h->root.u.def.value + input_sec->output_offset;
5192 if (! finfo->info->relocateable)
5193 sym.st_value += input_sec->output_section->vma;
5194 }
5195 else
5196 {
5197 BFD_ASSERT (input_sec->owner == NULL
5198 || (input_sec->owner->flags & DYNAMIC) != 0);
5199 sym.st_shndx = SHN_UNDEF;
5200 input_sec = bfd_und_section_ptr;
5201 }
5202 }
5203 break;
5204
5205 case bfd_link_hash_common:
5206 input_sec = h->root.u.c.p->section;
5207 sym.st_shndx = SHN_COMMON;
5208 sym.st_value = 1 << h->root.u.c.p->alignment_power;
5209 break;
5210
5211 case bfd_link_hash_indirect:
5212 /* These symbols are created by symbol versioning. They point
5213 to the decorated version of the name. For example, if the
5214 symbol foo@@GNU_1.2 is the default, which should be used when
5215 foo is used with no version, then we add an indirect symbol
5216 foo which points to foo@@GNU_1.2. We ignore these symbols,
5217 since the indirected symbol is already in the hash table. */
5218 return true;
5219
5220 case bfd_link_hash_warning:
5221 /* We can't represent these symbols in ELF, although a warning
5222 symbol may have come from a .gnu.warning.SYMBOL section. We
5223 just put the target symbol in the hash table. If the target
5224 symbol does not really exist, don't do anything. */
5225 if (h->root.u.i.link->type == bfd_link_hash_new)
5226 return true;
5227 return (elf_link_output_extsym
5228 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
5229 }
5230
5231 /* Give the processor backend a chance to tweak the symbol value,
5232 and also to finish up anything that needs to be done for this
5233 symbol. */
5234 if ((h->dynindx != -1
5235 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5236 && elf_hash_table (finfo->info)->dynamic_sections_created)
5237 {
5238 struct elf_backend_data *bed;
5239
5240 bed = get_elf_backend_data (finfo->output_bfd);
5241 if (! ((*bed->elf_backend_finish_dynamic_symbol)
5242 (finfo->output_bfd, finfo->info, h, &sym)))
5243 {
5244 eoinfo->failed = true;
5245 return false;
5246 }
5247 }
5248
5249 /* If we are marking the symbol as undefined, and there are no
5250 non-weak references to this symbol from a regular object, then
5251 mark the symbol as weak undefined; if there are non-weak
5252 references, mark the symbol as strong. We can't do this earlier,
5253 because it might not be marked as undefined until the
5254 finish_dynamic_symbol routine gets through with it. */
5255 if (sym.st_shndx == SHN_UNDEF
5256 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
5257 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
5258 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
5259 {
5260 int bindtype;
5261
5262 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
5263 bindtype = STB_GLOBAL;
5264 else
5265 bindtype = STB_WEAK;
5266 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
5267 }
5268
5269 /* If a symbol is not defined locally, we clear the visibility
5270 field. */
5271 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5272 sym.st_other ^= ELF_ST_VISIBILITY(sym.st_other);
5273
5274 /* If this symbol should be put in the .dynsym section, then put it
5275 there now. We have already know the symbol index. We also fill
5276 in the entry in the .hash section. */
5277 if (h->dynindx != -1
5278 && elf_hash_table (finfo->info)->dynamic_sections_created)
5279 {
5280 size_t bucketcount;
5281 size_t bucket;
5282 size_t hash_entry_size;
5283 bfd_byte *bucketpos;
5284 bfd_vma chain;
5285
5286 sym.st_name = h->dynstr_index;
5287
5288 elf_swap_symbol_out (finfo->output_bfd, &sym,
5289 (PTR) (((Elf_External_Sym *)
5290 finfo->dynsym_sec->contents)
5291 + h->dynindx));
5292
5293 bucketcount = elf_hash_table (finfo->info)->bucketcount;
5294 bucket = h->elf_hash_value % bucketcount;
5295 hash_entry_size
5296 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
5297 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
5298 + (bucket + 2) * hash_entry_size);
5299 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
5300 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
5301 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
5302 ((bfd_byte *) finfo->hash_sec->contents
5303 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
5304
5305 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5306 {
5307 Elf_Internal_Versym iversym;
5308
5309 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5310 {
5311 if (h->verinfo.verdef == NULL)
5312 iversym.vs_vers = 0;
5313 else
5314 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5315 }
5316 else
5317 {
5318 if (h->verinfo.vertree == NULL)
5319 iversym.vs_vers = 1;
5320 else
5321 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5322 }
5323
5324 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5325 iversym.vs_vers |= VERSYM_HIDDEN;
5326
5327 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5328 (((Elf_External_Versym *)
5329 finfo->symver_sec->contents)
5330 + h->dynindx));
5331 }
5332 }
5333
5334 /* If we're stripping it, then it was just a dynamic symbol, and
5335 there's nothing else to do. */
5336 if (strip)
5337 return true;
5338
5339 h->indx = bfd_get_symcount (finfo->output_bfd);
5340
5341 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5342 {
5343 eoinfo->failed = true;
5344 return false;
5345 }
5346
5347 return true;
5348 }
5349
5350 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
5351 originated from the section given by INPUT_REL_HDR) to the
5352 OUTPUT_BFD. */
5353
5354 static void
5355 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
5356 internal_relocs)
5357 bfd *output_bfd;
5358 asection *input_section;
5359 Elf_Internal_Shdr *input_rel_hdr;
5360 Elf_Internal_Rela *internal_relocs;
5361 {
5362 Elf_Internal_Rela *irela;
5363 Elf_Internal_Rela *irelaend;
5364 Elf_Internal_Shdr *output_rel_hdr;
5365 asection *output_section;
5366 unsigned int *rel_countp = NULL;
5367 struct elf_backend_data *bed;
5368
5369 output_section = input_section->output_section;
5370 output_rel_hdr = NULL;
5371
5372 if (elf_section_data (output_section)->rel_hdr.sh_entsize
5373 == input_rel_hdr->sh_entsize)
5374 {
5375 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5376 rel_countp = &elf_section_data (output_section)->rel_count;
5377 }
5378 else if (elf_section_data (output_section)->rel_hdr2
5379 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5380 == input_rel_hdr->sh_entsize))
5381 {
5382 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5383 rel_countp = &elf_section_data (output_section)->rel_count2;
5384 }
5385
5386 BFD_ASSERT (output_rel_hdr != NULL);
5387
5388 bed = get_elf_backend_data (output_bfd);
5389 irela = internal_relocs;
5390 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5391 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5392 {
5393 Elf_External_Rel *erel;
5394
5395 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5396 for (; irela < irelaend; irela++, erel++)
5397 {
5398 Elf_Internal_Rel irel;
5399
5400 irel.r_offset = irela->r_offset;
5401 irel.r_info = irela->r_info;
5402 BFD_ASSERT (irela->r_addend == 0);
5403 if (bed->s->swap_reloc_out)
5404 (*bed->s->swap_reloc_out) (output_bfd, &irel, (PTR) erel);
5405 else
5406 elf_swap_reloc_out (output_bfd, &irel, erel);
5407 }
5408 }
5409 else
5410 {
5411 Elf_External_Rela *erela;
5412
5413 BFD_ASSERT (input_rel_hdr->sh_entsize
5414 == sizeof (Elf_External_Rela));
5415 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5416 for (; irela < irelaend; irela++, erela++)
5417 if (bed->s->swap_reloca_out)
5418 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
5419 else
5420 elf_swap_reloca_out (output_bfd, irela, erela);
5421 }
5422
5423 /* Bump the counter, so that we know where to add the next set of
5424 relocations. */
5425 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5426 }
5427
5428 /* Link an input file into the linker output file. This function
5429 handles all the sections and relocations of the input file at once.
5430 This is so that we only have to read the local symbols once, and
5431 don't have to keep them in memory. */
5432
5433 static boolean
5434 elf_link_input_bfd (finfo, input_bfd)
5435 struct elf_final_link_info *finfo;
5436 bfd *input_bfd;
5437 {
5438 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5439 bfd *, asection *, bfd_byte *,
5440 Elf_Internal_Rela *,
5441 Elf_Internal_Sym *, asection **));
5442 bfd *output_bfd;
5443 Elf_Internal_Shdr *symtab_hdr;
5444 size_t locsymcount;
5445 size_t extsymoff;
5446 Elf_External_Sym *external_syms;
5447 Elf_External_Sym *esym;
5448 Elf_External_Sym *esymend;
5449 Elf_Internal_Sym *isym;
5450 long *pindex;
5451 asection **ppsection;
5452 asection *o;
5453 struct elf_backend_data *bed;
5454
5455 output_bfd = finfo->output_bfd;
5456 bed = get_elf_backend_data (output_bfd);
5457 relocate_section = bed->elf_backend_relocate_section;
5458
5459 /* If this is a dynamic object, we don't want to do anything here:
5460 we don't want the local symbols, and we don't want the section
5461 contents. */
5462 if ((input_bfd->flags & DYNAMIC) != 0)
5463 return true;
5464
5465 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5466 if (elf_bad_symtab (input_bfd))
5467 {
5468 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5469 extsymoff = 0;
5470 }
5471 else
5472 {
5473 locsymcount = symtab_hdr->sh_info;
5474 extsymoff = symtab_hdr->sh_info;
5475 }
5476
5477 /* Read the local symbols. */
5478 if (symtab_hdr->contents != NULL)
5479 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5480 else if (locsymcount == 0)
5481 external_syms = NULL;
5482 else
5483 {
5484 external_syms = finfo->external_syms;
5485 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5486 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5487 locsymcount, input_bfd)
5488 != locsymcount * sizeof (Elf_External_Sym)))
5489 return false;
5490 }
5491
5492 /* Swap in the local symbols and write out the ones which we know
5493 are going into the output file. */
5494 esym = external_syms;
5495 esymend = esym + locsymcount;
5496 isym = finfo->internal_syms;
5497 pindex = finfo->indices;
5498 ppsection = finfo->sections;
5499 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5500 {
5501 asection *isec;
5502 const char *name;
5503 Elf_Internal_Sym osym;
5504
5505 elf_swap_symbol_in (input_bfd, esym, isym);
5506 *pindex = -1;
5507
5508 if (elf_bad_symtab (input_bfd))
5509 {
5510 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5511 {
5512 *ppsection = NULL;
5513 continue;
5514 }
5515 }
5516
5517 name = NULL;
5518 if (isym->st_shndx == SHN_UNDEF)
5519 {
5520 isec = bfd_und_section_ptr;
5521 name = isec->name;
5522 }
5523 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5524 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5525 else if (isym->st_shndx == SHN_ABS)
5526 {
5527 isec = bfd_abs_section_ptr;
5528 name = isec->name;
5529 }
5530 else if (isym->st_shndx == SHN_COMMON)
5531 {
5532 isec = bfd_com_section_ptr;
5533 name = isec->name;
5534 }
5535 else
5536 {
5537 /* Who knows? */
5538 isec = NULL;
5539 }
5540
5541 *ppsection = isec;
5542
5543 /* Don't output the first, undefined, symbol. */
5544 if (esym == external_syms)
5545 continue;
5546
5547 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5548 {
5549 asection *ksec;
5550
5551 /* Save away all section symbol values. */
5552 if (isec != NULL)
5553 {
5554 if (name)
5555 {
5556 if (isec->symbol->value != isym->st_value)
5557 (*_bfd_error_handler)
5558 (_("%s: invalid section symbol index 0x%x (%s) ingored"),
5559 bfd_get_filename (input_bfd), isym->st_shndx,
5560 name);
5561 continue;
5562 }
5563 isec->symbol->value = isym->st_value;
5564 }
5565
5566 /* If this is a discarded link-once section symbol, update
5567 it's value to that of the kept section symbol. The
5568 linker will keep the first of any matching link-once
5569 sections, so we should have already seen it's section
5570 symbol. I trust no-one will have the bright idea of
5571 re-ordering the bfd list... */
5572 if (isec != NULL
5573 && (bfd_get_section_flags (input_bfd, isec) & SEC_LINK_ONCE) != 0
5574 && (ksec = isec->kept_section) != NULL)
5575 {
5576 isym->st_value = ksec->symbol->value;
5577
5578 /* That put the value right, but the section info is all
5579 wrong. I hope this works. */
5580 isec->output_offset = ksec->output_offset;
5581 isec->output_section = ksec->output_section;
5582 }
5583
5584 /* We never output section symbols. Instead, we use the
5585 section symbol of the corresponding section in the output
5586 file. */
5587 continue;
5588 }
5589
5590 /* If we are stripping all symbols, we don't want to output this
5591 one. */
5592 if (finfo->info->strip == strip_all)
5593 continue;
5594
5595 /* If we are discarding all local symbols, we don't want to
5596 output this one. If we are generating a relocateable output
5597 file, then some of the local symbols may be required by
5598 relocs; we output them below as we discover that they are
5599 needed. */
5600 if (finfo->info->discard == discard_all)
5601 continue;
5602
5603 /* If this symbol is defined in a section which we are
5604 discarding, we don't need to keep it, but note that
5605 linker_mark is only reliable for sections that have contents.
5606 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5607 as well as linker_mark. */
5608 if (isym->st_shndx > 0
5609 && isym->st_shndx < SHN_LORESERVE
5610 && isec != NULL
5611 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5612 || (! finfo->info->relocateable
5613 && (isec->flags & SEC_EXCLUDE) != 0)))
5614 continue;
5615
5616 /* Get the name of the symbol. */
5617 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5618 isym->st_name);
5619 if (name == NULL)
5620 return false;
5621
5622 /* See if we are discarding symbols with this name. */
5623 if ((finfo->info->strip == strip_some
5624 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5625 == NULL))
5626 || (finfo->info->discard == discard_l
5627 && bfd_is_local_label_name (input_bfd, name)))
5628 continue;
5629
5630 /* If we get here, we are going to output this symbol. */
5631
5632 osym = *isym;
5633
5634 /* Adjust the section index for the output file. */
5635 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5636 isec->output_section);
5637 if (osym.st_shndx == (unsigned short) -1)
5638 return false;
5639
5640 *pindex = bfd_get_symcount (output_bfd);
5641
5642 /* ELF symbols in relocateable files are section relative, but
5643 in executable files they are virtual addresses. Note that
5644 this code assumes that all ELF sections have an associated
5645 BFD section with a reasonable value for output_offset; below
5646 we assume that they also have a reasonable value for
5647 output_section. Any special sections must be set up to meet
5648 these requirements. */
5649 osym.st_value += isec->output_offset;
5650 if (! finfo->info->relocateable)
5651 osym.st_value += isec->output_section->vma;
5652
5653 if (! elf_link_output_sym (finfo, name, &osym, isec))
5654 return false;
5655 }
5656
5657 /* Relocate the contents of each section. */
5658 for (o = input_bfd->sections; o != NULL; o = o->next)
5659 {
5660 bfd_byte *contents;
5661
5662 if (! o->linker_mark)
5663 {
5664 /* This section was omitted from the link. */
5665 continue;
5666 }
5667
5668 if ((o->flags & SEC_HAS_CONTENTS) == 0
5669 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5670 continue;
5671
5672 if ((o->flags & SEC_LINKER_CREATED) != 0)
5673 {
5674 /* Section was created by elf_link_create_dynamic_sections
5675 or somesuch. */
5676 continue;
5677 }
5678
5679 /* Get the contents of the section. They have been cached by a
5680 relaxation routine. Note that o is a section in an input
5681 file, so the contents field will not have been set by any of
5682 the routines which work on output files. */
5683 if (elf_section_data (o)->this_hdr.contents != NULL)
5684 contents = elf_section_data (o)->this_hdr.contents;
5685 else
5686 {
5687 contents = finfo->contents;
5688 if (! bfd_get_section_contents (input_bfd, o, contents,
5689 (file_ptr) 0, o->_raw_size))
5690 return false;
5691 }
5692
5693 if ((o->flags & SEC_RELOC) != 0)
5694 {
5695 Elf_Internal_Rela *internal_relocs;
5696
5697 /* Get the swapped relocs. */
5698 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5699 (input_bfd, o, finfo->external_relocs,
5700 finfo->internal_relocs, false));
5701 if (internal_relocs == NULL
5702 && o->reloc_count > 0)
5703 return false;
5704
5705 /* Relocate the section by invoking a back end routine.
5706
5707 The back end routine is responsible for adjusting the
5708 section contents as necessary, and (if using Rela relocs
5709 and generating a relocateable output file) adjusting the
5710 reloc addend as necessary.
5711
5712 The back end routine does not have to worry about setting
5713 the reloc address or the reloc symbol index.
5714
5715 The back end routine is given a pointer to the swapped in
5716 internal symbols, and can access the hash table entries
5717 for the external symbols via elf_sym_hashes (input_bfd).
5718
5719 When generating relocateable output, the back end routine
5720 must handle STB_LOCAL/STT_SECTION symbols specially. The
5721 output symbol is going to be a section symbol
5722 corresponding to the output section, which will require
5723 the addend to be adjusted. */
5724
5725 if (! (*relocate_section) (output_bfd, finfo->info,
5726 input_bfd, o, contents,
5727 internal_relocs,
5728 finfo->internal_syms,
5729 finfo->sections))
5730 return false;
5731
5732 if (finfo->info->relocateable || finfo->info->emitrelocations)
5733 {
5734 Elf_Internal_Rela *irela;
5735 Elf_Internal_Rela *irelaend;
5736 struct elf_link_hash_entry **rel_hash;
5737 Elf_Internal_Shdr *input_rel_hdr;
5738
5739 /* Adjust the reloc addresses and symbol indices. */
5740
5741 irela = internal_relocs;
5742 irelaend =
5743 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
5744 rel_hash = (elf_section_data (o->output_section)->rel_hashes
5745 + elf_section_data (o->output_section)->rel_count
5746 + elf_section_data (o->output_section)->rel_count2);
5747 for (; irela < irelaend; irela++, rel_hash++)
5748 {
5749 unsigned long r_symndx;
5750 Elf_Internal_Sym *isym;
5751 asection *sec;
5752
5753 irela->r_offset += o->output_offset;
5754
5755 /* Relocs in an executable have to be virtual addresses. */
5756 if (finfo->info->emitrelocations)
5757 irela->r_offset += o->output_section->vma;
5758
5759 r_symndx = ELF_R_SYM (irela->r_info);
5760
5761 if (r_symndx == 0)
5762 continue;
5763
5764 if (r_symndx >= locsymcount
5765 || (elf_bad_symtab (input_bfd)
5766 && finfo->sections[r_symndx] == NULL))
5767 {
5768 struct elf_link_hash_entry *rh;
5769 long indx;
5770
5771 /* This is a reloc against a global symbol. We
5772 have not yet output all the local symbols, so
5773 we do not know the symbol index of any global
5774 symbol. We set the rel_hash entry for this
5775 reloc to point to the global hash table entry
5776 for this symbol. The symbol index is then
5777 set at the end of elf_bfd_final_link. */
5778 indx = r_symndx - extsymoff;
5779 rh = elf_sym_hashes (input_bfd)[indx];
5780 while (rh->root.type == bfd_link_hash_indirect
5781 || rh->root.type == bfd_link_hash_warning)
5782 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5783
5784 /* Setting the index to -2 tells
5785 elf_link_output_extsym that this symbol is
5786 used by a reloc. */
5787 BFD_ASSERT (rh->indx < 0);
5788 rh->indx = -2;
5789
5790 *rel_hash = rh;
5791
5792 continue;
5793 }
5794
5795 /* This is a reloc against a local symbol. */
5796
5797 *rel_hash = NULL;
5798 isym = finfo->internal_syms + r_symndx;
5799 sec = finfo->sections[r_symndx];
5800 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5801 {
5802 /* I suppose the backend ought to fill in the
5803 section of any STT_SECTION symbol against a
5804 processor specific section. If we have
5805 discarded a section, the output_section will
5806 be the absolute section. */
5807 if (sec != NULL
5808 && (bfd_is_abs_section (sec)
5809 || (sec->output_section != NULL
5810 && bfd_is_abs_section (sec->output_section))))
5811 r_symndx = 0;
5812 else if (sec == NULL || sec->owner == NULL)
5813 {
5814 bfd_set_error (bfd_error_bad_value);
5815 return false;
5816 }
5817 else
5818 {
5819 r_symndx = sec->output_section->target_index;
5820 BFD_ASSERT (r_symndx != 0);
5821 }
5822 }
5823 else
5824 {
5825 if (finfo->indices[r_symndx] == -1)
5826 {
5827 unsigned long link;
5828 const char *name;
5829 asection *osec;
5830
5831 if (finfo->info->strip == strip_all)
5832 {
5833 /* You can't do ld -r -s. */
5834 bfd_set_error (bfd_error_invalid_operation);
5835 return false;
5836 }
5837
5838 /* This symbol was skipped earlier, but
5839 since it is needed by a reloc, we
5840 must output it now. */
5841 link = symtab_hdr->sh_link;
5842 name = bfd_elf_string_from_elf_section (input_bfd,
5843 link,
5844 isym->st_name);
5845 if (name == NULL)
5846 return false;
5847
5848 osec = sec->output_section;
5849 isym->st_shndx =
5850 _bfd_elf_section_from_bfd_section (output_bfd,
5851 osec);
5852 if (isym->st_shndx == (unsigned short) -1)
5853 return false;
5854
5855 isym->st_value += sec->output_offset;
5856 if (! finfo->info->relocateable)
5857 isym->st_value += osec->vma;
5858
5859 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5860
5861 if (! elf_link_output_sym (finfo, name, isym, sec))
5862 return false;
5863 }
5864
5865 r_symndx = finfo->indices[r_symndx];
5866 }
5867
5868 irela->r_info = ELF_R_INFO (r_symndx,
5869 ELF_R_TYPE (irela->r_info));
5870 }
5871
5872 /* Swap out the relocs. */
5873 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5874 elf_link_output_relocs (output_bfd, o,
5875 input_rel_hdr,
5876 internal_relocs);
5877 internal_relocs
5878 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5879 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5880 if (input_rel_hdr)
5881 elf_link_output_relocs (output_bfd, o,
5882 input_rel_hdr,
5883 internal_relocs);
5884 }
5885 }
5886
5887 /* Write out the modified section contents. */
5888 if (elf_section_data (o)->stab_info == NULL)
5889 {
5890 if (! (o->flags & SEC_EXCLUDE) &&
5891 ! bfd_set_section_contents (output_bfd, o->output_section,
5892 contents, o->output_offset,
5893 (o->_cooked_size != 0
5894 ? o->_cooked_size
5895 : o->_raw_size)))
5896 return false;
5897 }
5898 else
5899 {
5900 if (! (_bfd_write_section_stabs
5901 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5902 o, &elf_section_data (o)->stab_info, contents)))
5903 return false;
5904 }
5905 }
5906
5907 return true;
5908 }
5909
5910 /* Generate a reloc when linking an ELF file. This is a reloc
5911 requested by the linker, and does come from any input file. This
5912 is used to build constructor and destructor tables when linking
5913 with -Ur. */
5914
5915 static boolean
5916 elf_reloc_link_order (output_bfd, info, output_section, link_order)
5917 bfd *output_bfd;
5918 struct bfd_link_info *info;
5919 asection *output_section;
5920 struct bfd_link_order *link_order;
5921 {
5922 reloc_howto_type *howto;
5923 long indx;
5924 bfd_vma offset;
5925 bfd_vma addend;
5926 struct elf_link_hash_entry **rel_hash_ptr;
5927 Elf_Internal_Shdr *rel_hdr;
5928 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
5929
5930 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5931 if (howto == NULL)
5932 {
5933 bfd_set_error (bfd_error_bad_value);
5934 return false;
5935 }
5936
5937 addend = link_order->u.reloc.p->addend;
5938
5939 /* Figure out the symbol index. */
5940 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5941 + elf_section_data (output_section)->rel_count
5942 + elf_section_data (output_section)->rel_count2);
5943 if (link_order->type == bfd_section_reloc_link_order)
5944 {
5945 indx = link_order->u.reloc.p->u.section->target_index;
5946 BFD_ASSERT (indx != 0);
5947 *rel_hash_ptr = NULL;
5948 }
5949 else
5950 {
5951 struct elf_link_hash_entry *h;
5952
5953 /* Treat a reloc against a defined symbol as though it were
5954 actually against the section. */
5955 h = ((struct elf_link_hash_entry *)
5956 bfd_wrapped_link_hash_lookup (output_bfd, info,
5957 link_order->u.reloc.p->u.name,
5958 false, false, true));
5959 if (h != NULL
5960 && (h->root.type == bfd_link_hash_defined
5961 || h->root.type == bfd_link_hash_defweak))
5962 {
5963 asection *section;
5964
5965 section = h->root.u.def.section;
5966 indx = section->output_section->target_index;
5967 *rel_hash_ptr = NULL;
5968 /* It seems that we ought to add the symbol value to the
5969 addend here, but in practice it has already been added
5970 because it was passed to constructor_callback. */
5971 addend += section->output_section->vma + section->output_offset;
5972 }
5973 else if (h != NULL)
5974 {
5975 /* Setting the index to -2 tells elf_link_output_extsym that
5976 this symbol is used by a reloc. */
5977 h->indx = -2;
5978 *rel_hash_ptr = h;
5979 indx = 0;
5980 }
5981 else
5982 {
5983 if (! ((*info->callbacks->unattached_reloc)
5984 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5985 (asection *) NULL, (bfd_vma) 0)))
5986 return false;
5987 indx = 0;
5988 }
5989 }
5990
5991 /* If this is an inplace reloc, we must write the addend into the
5992 object file. */
5993 if (howto->partial_inplace && addend != 0)
5994 {
5995 bfd_size_type size;
5996 bfd_reloc_status_type rstat;
5997 bfd_byte *buf;
5998 boolean ok;
5999
6000 size = bfd_get_reloc_size (howto);
6001 buf = (bfd_byte *) bfd_zmalloc (size);
6002 if (buf == (bfd_byte *) NULL)
6003 return false;
6004 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
6005 switch (rstat)
6006 {
6007 case bfd_reloc_ok:
6008 break;
6009 default:
6010 case bfd_reloc_outofrange:
6011 abort ();
6012 case bfd_reloc_overflow:
6013 if (! ((*info->callbacks->reloc_overflow)
6014 (info,
6015 (link_order->type == bfd_section_reloc_link_order
6016 ? bfd_section_name (output_bfd,
6017 link_order->u.reloc.p->u.section)
6018 : link_order->u.reloc.p->u.name),
6019 howto->name, addend, (bfd *) NULL, (asection *) NULL,
6020 (bfd_vma) 0)))
6021 {
6022 free (buf);
6023 return false;
6024 }
6025 break;
6026 }
6027 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
6028 (file_ptr) link_order->offset, size);
6029 free (buf);
6030 if (! ok)
6031 return false;
6032 }
6033
6034 /* The address of a reloc is relative to the section in a
6035 relocateable file, and is a virtual address in an executable
6036 file. */
6037 offset = link_order->offset;
6038 if (! info->relocateable)
6039 offset += output_section->vma;
6040
6041 rel_hdr = &elf_section_data (output_section)->rel_hdr;
6042
6043 if (rel_hdr->sh_type == SHT_REL)
6044 {
6045 Elf_Internal_Rel irel;
6046 Elf_External_Rel *erel;
6047
6048 irel.r_offset = offset;
6049 irel.r_info = ELF_R_INFO (indx, howto->type);
6050 erel = ((Elf_External_Rel *) rel_hdr->contents
6051 + elf_section_data (output_section)->rel_count);
6052 if (bed->s->swap_reloc_out)
6053 (*bed->s->swap_reloc_out) (output_bfd, &irel, (bfd_byte *) erel);
6054 else
6055 elf_swap_reloc_out (output_bfd, &irel, erel);
6056 }
6057 else
6058 {
6059 Elf_Internal_Rela irela;
6060 Elf_External_Rela *erela;
6061
6062 irela.r_offset = offset;
6063 irela.r_info = ELF_R_INFO (indx, howto->type);
6064 irela.r_addend = addend;
6065 erela = ((Elf_External_Rela *) rel_hdr->contents
6066 + elf_section_data (output_section)->rel_count);
6067 if (bed->s->swap_reloca_out)
6068 (*bed->s->swap_reloca_out) (output_bfd, &irela, (bfd_byte *) erela);
6069 else
6070 elf_swap_reloca_out (output_bfd, &irela, erela);
6071 }
6072
6073 ++elf_section_data (output_section)->rel_count;
6074
6075 return true;
6076 }
6077 \f
6078 /* Allocate a pointer to live in a linker created section. */
6079
6080 boolean
6081 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
6082 bfd *abfd;
6083 struct bfd_link_info *info;
6084 elf_linker_section_t *lsect;
6085 struct elf_link_hash_entry *h;
6086 const Elf_Internal_Rela *rel;
6087 {
6088 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
6089 elf_linker_section_pointers_t *linker_section_ptr;
6090 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
6091
6092 BFD_ASSERT (lsect != NULL);
6093
6094 /* Is this a global symbol? */
6095 if (h != NULL)
6096 {
6097 /* Has this symbol already been allocated, if so, our work is done */
6098 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6099 rel->r_addend,
6100 lsect->which))
6101 return true;
6102
6103 ptr_linker_section_ptr = &h->linker_section_pointer;
6104 /* Make sure this symbol is output as a dynamic symbol. */
6105 if (h->dynindx == -1)
6106 {
6107 if (! elf_link_record_dynamic_symbol (info, h))
6108 return false;
6109 }
6110
6111 if (lsect->rel_section)
6112 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6113 }
6114
6115 else /* Allocation of a pointer to a local symbol */
6116 {
6117 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
6118
6119 /* Allocate a table to hold the local symbols if first time */
6120 if (!ptr)
6121 {
6122 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
6123 register unsigned int i;
6124
6125 ptr = (elf_linker_section_pointers_t **)
6126 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
6127
6128 if (!ptr)
6129 return false;
6130
6131 elf_local_ptr_offsets (abfd) = ptr;
6132 for (i = 0; i < num_symbols; i++)
6133 ptr[i] = (elf_linker_section_pointers_t *)0;
6134 }
6135
6136 /* Has this symbol already been allocated, if so, our work is done */
6137 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
6138 rel->r_addend,
6139 lsect->which))
6140 return true;
6141
6142 ptr_linker_section_ptr = &ptr[r_symndx];
6143
6144 if (info->shared)
6145 {
6146 /* If we are generating a shared object, we need to
6147 output a R_<xxx>_RELATIVE reloc so that the
6148 dynamic linker can adjust this GOT entry. */
6149 BFD_ASSERT (lsect->rel_section != NULL);
6150 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6151 }
6152 }
6153
6154 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
6155 from internal memory. */
6156 BFD_ASSERT (ptr_linker_section_ptr != NULL);
6157 linker_section_ptr = (elf_linker_section_pointers_t *)
6158 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
6159
6160 if (!linker_section_ptr)
6161 return false;
6162
6163 linker_section_ptr->next = *ptr_linker_section_ptr;
6164 linker_section_ptr->addend = rel->r_addend;
6165 linker_section_ptr->which = lsect->which;
6166 linker_section_ptr->written_address_p = false;
6167 *ptr_linker_section_ptr = linker_section_ptr;
6168
6169 #if 0
6170 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
6171 {
6172 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
6173 lsect->hole_offset += ARCH_SIZE / 8;
6174 lsect->sym_offset += ARCH_SIZE / 8;
6175 if (lsect->sym_hash) /* Bump up symbol value if needed */
6176 {
6177 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
6178 #ifdef DEBUG
6179 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
6180 lsect->sym_hash->root.root.string,
6181 (long)ARCH_SIZE / 8,
6182 (long)lsect->sym_hash->root.u.def.value);
6183 #endif
6184 }
6185 }
6186 else
6187 #endif
6188 linker_section_ptr->offset = lsect->section->_raw_size;
6189
6190 lsect->section->_raw_size += ARCH_SIZE / 8;
6191
6192 #ifdef DEBUG
6193 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
6194 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
6195 #endif
6196
6197 return true;
6198 }
6199 \f
6200 #if ARCH_SIZE==64
6201 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
6202 #endif
6203 #if ARCH_SIZE==32
6204 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
6205 #endif
6206
6207 /* Fill in the address for a pointer generated in alinker section. */
6208
6209 bfd_vma
6210 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
6211 bfd *output_bfd;
6212 bfd *input_bfd;
6213 struct bfd_link_info *info;
6214 elf_linker_section_t *lsect;
6215 struct elf_link_hash_entry *h;
6216 bfd_vma relocation;
6217 const Elf_Internal_Rela *rel;
6218 int relative_reloc;
6219 {
6220 elf_linker_section_pointers_t *linker_section_ptr;
6221
6222 BFD_ASSERT (lsect != NULL);
6223
6224 if (h != NULL) /* global symbol */
6225 {
6226 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6227 rel->r_addend,
6228 lsect->which);
6229
6230 BFD_ASSERT (linker_section_ptr != NULL);
6231
6232 if (! elf_hash_table (info)->dynamic_sections_created
6233 || (info->shared
6234 && info->symbolic
6235 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6236 {
6237 /* This is actually a static link, or it is a
6238 -Bsymbolic link and the symbol is defined
6239 locally. We must initialize this entry in the
6240 global section.
6241
6242 When doing a dynamic link, we create a .rela.<xxx>
6243 relocation entry to initialize the value. This
6244 is done in the finish_dynamic_symbol routine. */
6245 if (!linker_section_ptr->written_address_p)
6246 {
6247 linker_section_ptr->written_address_p = true;
6248 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6249 lsect->section->contents + linker_section_ptr->offset);
6250 }
6251 }
6252 }
6253 else /* local symbol */
6254 {
6255 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6256 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
6257 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
6258 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
6259 rel->r_addend,
6260 lsect->which);
6261
6262 BFD_ASSERT (linker_section_ptr != NULL);
6263
6264 /* Write out pointer if it hasn't been rewritten out before */
6265 if (!linker_section_ptr->written_address_p)
6266 {
6267 linker_section_ptr->written_address_p = true;
6268 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6269 lsect->section->contents + linker_section_ptr->offset);
6270
6271 if (info->shared)
6272 {
6273 asection *srel = lsect->rel_section;
6274 Elf_Internal_Rela outrel;
6275
6276 /* We need to generate a relative reloc for the dynamic linker. */
6277 if (!srel)
6278 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
6279 lsect->rel_name);
6280
6281 BFD_ASSERT (srel != NULL);
6282
6283 outrel.r_offset = (lsect->section->output_section->vma
6284 + lsect->section->output_offset
6285 + linker_section_ptr->offset);
6286 outrel.r_info = ELF_R_INFO (0, relative_reloc);
6287 outrel.r_addend = 0;
6288 elf_swap_reloca_out (output_bfd, &outrel,
6289 (((Elf_External_Rela *)
6290 lsect->section->contents)
6291 + elf_section_data (lsect->section)->rel_count));
6292 ++elf_section_data (lsect->section)->rel_count;
6293 }
6294 }
6295 }
6296
6297 relocation = (lsect->section->output_offset
6298 + linker_section_ptr->offset
6299 - lsect->hole_offset
6300 - lsect->sym_offset);
6301
6302 #ifdef DEBUG
6303 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6304 lsect->name, (long)relocation, (long)relocation);
6305 #endif
6306
6307 /* Subtract out the addend, because it will get added back in by the normal
6308 processing. */
6309 return relocation - linker_section_ptr->addend;
6310 }
6311 \f
6312 /* Garbage collect unused sections. */
6313
6314 static boolean elf_gc_mark
6315 PARAMS ((struct bfd_link_info *info, asection *sec,
6316 asection * (*gc_mark_hook)
6317 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6318 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
6319
6320 static boolean elf_gc_sweep
6321 PARAMS ((struct bfd_link_info *info,
6322 boolean (*gc_sweep_hook)
6323 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6324 const Elf_Internal_Rela *relocs))));
6325
6326 static boolean elf_gc_sweep_symbol
6327 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
6328
6329 static boolean elf_gc_allocate_got_offsets
6330 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
6331
6332 static boolean elf_gc_propagate_vtable_entries_used
6333 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6334
6335 static boolean elf_gc_smash_unused_vtentry_relocs
6336 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6337
6338 /* The mark phase of garbage collection. For a given section, mark
6339 it, and all the sections which define symbols to which it refers. */
6340
6341 static boolean
6342 elf_gc_mark (info, sec, gc_mark_hook)
6343 struct bfd_link_info *info;
6344 asection *sec;
6345 asection * (*gc_mark_hook)
6346 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6347 struct elf_link_hash_entry *, Elf_Internal_Sym *));
6348 {
6349 boolean ret = true;
6350
6351 sec->gc_mark = 1;
6352
6353 /* Look through the section relocs. */
6354
6355 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
6356 {
6357 Elf_Internal_Rela *relstart, *rel, *relend;
6358 Elf_Internal_Shdr *symtab_hdr;
6359 struct elf_link_hash_entry **sym_hashes;
6360 size_t nlocsyms;
6361 size_t extsymoff;
6362 Elf_External_Sym *locsyms, *freesyms = NULL;
6363 bfd *input_bfd = sec->owner;
6364 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
6365
6366 /* GCFIXME: how to arrange so that relocs and symbols are not
6367 reread continually? */
6368
6369 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6370 sym_hashes = elf_sym_hashes (input_bfd);
6371
6372 /* Read the local symbols. */
6373 if (elf_bad_symtab (input_bfd))
6374 {
6375 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6376 extsymoff = 0;
6377 }
6378 else
6379 extsymoff = nlocsyms = symtab_hdr->sh_info;
6380 if (symtab_hdr->contents)
6381 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6382 else if (nlocsyms == 0)
6383 locsyms = NULL;
6384 else
6385 {
6386 locsyms = freesyms =
6387 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6388 if (freesyms == NULL
6389 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6390 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6391 nlocsyms, input_bfd)
6392 != nlocsyms * sizeof (Elf_External_Sym)))
6393 {
6394 ret = false;
6395 goto out1;
6396 }
6397 }
6398
6399 /* Read the relocations. */
6400 relstart = (NAME(_bfd_elf,link_read_relocs)
6401 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6402 info->keep_memory));
6403 if (relstart == NULL)
6404 {
6405 ret = false;
6406 goto out1;
6407 }
6408 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6409
6410 for (rel = relstart; rel < relend; rel++)
6411 {
6412 unsigned long r_symndx;
6413 asection *rsec;
6414 struct elf_link_hash_entry *h;
6415 Elf_Internal_Sym s;
6416
6417 r_symndx = ELF_R_SYM (rel->r_info);
6418 if (r_symndx == 0)
6419 continue;
6420
6421 if (elf_bad_symtab (sec->owner))
6422 {
6423 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6424 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
6425 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
6426 else
6427 {
6428 h = sym_hashes[r_symndx - extsymoff];
6429 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
6430 }
6431 }
6432 else if (r_symndx >= nlocsyms)
6433 {
6434 h = sym_hashes[r_symndx - extsymoff];
6435 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
6436 }
6437 else
6438 {
6439 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6440 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
6441 }
6442
6443 if (rsec && !rsec->gc_mark)
6444 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6445 {
6446 ret = false;
6447 goto out2;
6448 }
6449 }
6450
6451 out2:
6452 if (!info->keep_memory)
6453 free (relstart);
6454 out1:
6455 if (freesyms)
6456 free (freesyms);
6457 }
6458
6459 return ret;
6460 }
6461
6462 /* The sweep phase of garbage collection. Remove all garbage sections. */
6463
6464 static boolean
6465 elf_gc_sweep (info, gc_sweep_hook)
6466 struct bfd_link_info *info;
6467 boolean (*gc_sweep_hook)
6468 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6469 const Elf_Internal_Rela *relocs));
6470 {
6471 bfd *sub;
6472
6473 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6474 {
6475 asection *o;
6476
6477 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6478 continue;
6479
6480 for (o = sub->sections; o != NULL; o = o->next)
6481 {
6482 /* Keep special sections. Keep .debug sections. */
6483 if ((o->flags & SEC_LINKER_CREATED)
6484 || (o->flags & SEC_DEBUGGING))
6485 o->gc_mark = 1;
6486
6487 if (o->gc_mark)
6488 continue;
6489
6490 /* Skip sweeping sections already excluded. */
6491 if (o->flags & SEC_EXCLUDE)
6492 continue;
6493
6494 /* Since this is early in the link process, it is simple
6495 to remove a section from the output. */
6496 o->flags |= SEC_EXCLUDE;
6497
6498 /* But we also have to update some of the relocation
6499 info we collected before. */
6500 if (gc_sweep_hook
6501 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6502 {
6503 Elf_Internal_Rela *internal_relocs;
6504 boolean r;
6505
6506 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6507 (o->owner, o, NULL, NULL, info->keep_memory));
6508 if (internal_relocs == NULL)
6509 return false;
6510
6511 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
6512
6513 if (!info->keep_memory)
6514 free (internal_relocs);
6515
6516 if (!r)
6517 return false;
6518 }
6519 }
6520 }
6521
6522 /* Remove the symbols that were in the swept sections from the dynamic
6523 symbol table. GCFIXME: Anyone know how to get them out of the
6524 static symbol table as well? */
6525 {
6526 int i = 0;
6527
6528 elf_link_hash_traverse (elf_hash_table (info),
6529 elf_gc_sweep_symbol,
6530 (PTR) &i);
6531
6532 elf_hash_table (info)->dynsymcount = i;
6533 }
6534
6535 return true;
6536 }
6537
6538 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6539
6540 static boolean
6541 elf_gc_sweep_symbol (h, idxptr)
6542 struct elf_link_hash_entry *h;
6543 PTR idxptr;
6544 {
6545 int *idx = (int *) idxptr;
6546
6547 if (h->dynindx != -1
6548 && ((h->root.type != bfd_link_hash_defined
6549 && h->root.type != bfd_link_hash_defweak)
6550 || h->root.u.def.section->gc_mark))
6551 h->dynindx = (*idx)++;
6552
6553 return true;
6554 }
6555
6556 /* Propogate collected vtable information. This is called through
6557 elf_link_hash_traverse. */
6558
6559 static boolean
6560 elf_gc_propagate_vtable_entries_used (h, okp)
6561 struct elf_link_hash_entry *h;
6562 PTR okp;
6563 {
6564 /* Those that are not vtables. */
6565 if (h->vtable_parent == NULL)
6566 return true;
6567
6568 /* Those vtables that do not have parents, we cannot merge. */
6569 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6570 return true;
6571
6572 /* If we've already been done, exit. */
6573 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6574 return true;
6575
6576 /* Make sure the parent's table is up to date. */
6577 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6578
6579 if (h->vtable_entries_used == NULL)
6580 {
6581 /* None of this table's entries were referenced. Re-use the
6582 parent's table. */
6583 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6584 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6585 }
6586 else
6587 {
6588 size_t n;
6589 boolean *cu, *pu;
6590
6591 /* Or the parent's entries into ours. */
6592 cu = h->vtable_entries_used;
6593 cu[-1] = true;
6594 pu = h->vtable_parent->vtable_entries_used;
6595 if (pu != NULL)
6596 {
6597 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6598 while (--n != 0)
6599 {
6600 if (*pu) *cu = true;
6601 pu++, cu++;
6602 }
6603 }
6604 }
6605
6606 return true;
6607 }
6608
6609 static boolean
6610 elf_gc_smash_unused_vtentry_relocs (h, okp)
6611 struct elf_link_hash_entry *h;
6612 PTR okp;
6613 {
6614 asection *sec;
6615 bfd_vma hstart, hend;
6616 Elf_Internal_Rela *relstart, *relend, *rel;
6617 struct elf_backend_data *bed;
6618
6619 /* Take care of both those symbols that do not describe vtables as
6620 well as those that are not loaded. */
6621 if (h->vtable_parent == NULL)
6622 return true;
6623
6624 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6625 || h->root.type == bfd_link_hash_defweak);
6626
6627 sec = h->root.u.def.section;
6628 hstart = h->root.u.def.value;
6629 hend = hstart + h->size;
6630
6631 relstart = (NAME(_bfd_elf,link_read_relocs)
6632 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6633 if (!relstart)
6634 return *(boolean *)okp = false;
6635 bed = get_elf_backend_data (sec->owner);
6636 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6637
6638 for (rel = relstart; rel < relend; ++rel)
6639 if (rel->r_offset >= hstart && rel->r_offset < hend)
6640 {
6641 /* If the entry is in use, do nothing. */
6642 if (h->vtable_entries_used
6643 && (rel->r_offset - hstart) < h->vtable_entries_size)
6644 {
6645 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6646 if (h->vtable_entries_used[entry])
6647 continue;
6648 }
6649 /* Otherwise, kill it. */
6650 rel->r_offset = rel->r_info = rel->r_addend = 0;
6651 }
6652
6653 return true;
6654 }
6655
6656 /* Do mark and sweep of unused sections. */
6657
6658 boolean
6659 elf_gc_sections (abfd, info)
6660 bfd *abfd;
6661 struct bfd_link_info *info;
6662 {
6663 boolean ok = true;
6664 bfd *sub;
6665 asection * (*gc_mark_hook)
6666 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6667 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6668
6669 if (!get_elf_backend_data (abfd)->can_gc_sections
6670 || info->relocateable || info->emitrelocations
6671 || elf_hash_table (info)->dynamic_sections_created)
6672 return true;
6673
6674 /* Apply transitive closure to the vtable entry usage info. */
6675 elf_link_hash_traverse (elf_hash_table (info),
6676 elf_gc_propagate_vtable_entries_used,
6677 (PTR) &ok);
6678 if (!ok)
6679 return false;
6680
6681 /* Kill the vtable relocations that were not used. */
6682 elf_link_hash_traverse (elf_hash_table (info),
6683 elf_gc_smash_unused_vtentry_relocs,
6684 (PTR) &ok);
6685 if (!ok)
6686 return false;
6687
6688 /* Grovel through relocs to find out who stays ... */
6689
6690 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6691 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6692 {
6693 asection *o;
6694
6695 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6696 continue;
6697
6698 for (o = sub->sections; o != NULL; o = o->next)
6699 {
6700 if (o->flags & SEC_KEEP)
6701 if (!elf_gc_mark (info, o, gc_mark_hook))
6702 return false;
6703 }
6704 }
6705
6706 /* ... and mark SEC_EXCLUDE for those that go. */
6707 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6708 return false;
6709
6710 return true;
6711 }
6712 \f
6713 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6714
6715 boolean
6716 elf_gc_record_vtinherit (abfd, sec, h, offset)
6717 bfd *abfd;
6718 asection *sec;
6719 struct elf_link_hash_entry *h;
6720 bfd_vma offset;
6721 {
6722 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6723 struct elf_link_hash_entry **search, *child;
6724 bfd_size_type extsymcount;
6725
6726 /* The sh_info field of the symtab header tells us where the
6727 external symbols start. We don't care about the local symbols at
6728 this point. */
6729 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6730 if (!elf_bad_symtab (abfd))
6731 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6732
6733 sym_hashes = elf_sym_hashes (abfd);
6734 sym_hashes_end = sym_hashes + extsymcount;
6735
6736 /* Hunt down the child symbol, which is in this section at the same
6737 offset as the relocation. */
6738 for (search = sym_hashes; search != sym_hashes_end; ++search)
6739 {
6740 if ((child = *search) != NULL
6741 && (child->root.type == bfd_link_hash_defined
6742 || child->root.type == bfd_link_hash_defweak)
6743 && child->root.u.def.section == sec
6744 && child->root.u.def.value == offset)
6745 goto win;
6746 }
6747
6748 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6749 bfd_get_filename (abfd), sec->name,
6750 (unsigned long)offset);
6751 bfd_set_error (bfd_error_invalid_operation);
6752 return false;
6753
6754 win:
6755 if (!h)
6756 {
6757 /* This *should* only be the absolute section. It could potentially
6758 be that someone has defined a non-global vtable though, which
6759 would be bad. It isn't worth paging in the local symbols to be
6760 sure though; that case should simply be handled by the assembler. */
6761
6762 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6763 }
6764 else
6765 child->vtable_parent = h;
6766
6767 return true;
6768 }
6769
6770 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
6771
6772 boolean
6773 elf_gc_record_vtentry (abfd, sec, h, addend)
6774 bfd *abfd ATTRIBUTE_UNUSED;
6775 asection *sec ATTRIBUTE_UNUSED;
6776 struct elf_link_hash_entry *h;
6777 bfd_vma addend;
6778 {
6779 if (addend >= h->vtable_entries_size)
6780 {
6781 size_t size, bytes;
6782 boolean *ptr = h->vtable_entries_used;
6783
6784 /* While the symbol is undefined, we have to be prepared to handle
6785 a zero size. */
6786 if (h->root.type == bfd_link_hash_undefined)
6787 size = addend;
6788 else
6789 {
6790 size = h->size;
6791 if (size < addend)
6792 {
6793 /* Oops! We've got a reference past the defined end of
6794 the table. This is probably a bug -- shall we warn? */
6795 size = addend;
6796 }
6797 }
6798
6799 /* Allocate one extra entry for use as a "done" flag for the
6800 consolidation pass. */
6801 bytes = (size / FILE_ALIGN + 1) * sizeof (boolean);
6802
6803 if (ptr)
6804 {
6805 ptr = bfd_realloc (ptr - 1, bytes);
6806
6807 if (ptr != NULL)
6808 {
6809 size_t oldbytes;
6810
6811 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean);
6812 memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
6813 }
6814 }
6815 else
6816 ptr = bfd_zmalloc (bytes);
6817
6818 if (ptr == NULL)
6819 return false;
6820
6821 /* And arrange for that done flag to be at index -1. */
6822 h->vtable_entries_used = ptr + 1;
6823 h->vtable_entries_size = size;
6824 }
6825
6826 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6827
6828 return true;
6829 }
6830
6831 /* And an accompanying bit to work out final got entry offsets once
6832 we're done. Should be called from final_link. */
6833
6834 boolean
6835 elf_gc_common_finalize_got_offsets (abfd, info)
6836 bfd *abfd;
6837 struct bfd_link_info *info;
6838 {
6839 bfd *i;
6840 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6841 bfd_vma gotoff;
6842
6843 /* The GOT offset is relative to the .got section, but the GOT header is
6844 put into the .got.plt section, if the backend uses it. */
6845 if (bed->want_got_plt)
6846 gotoff = 0;
6847 else
6848 gotoff = bed->got_header_size;
6849
6850 /* Do the local .got entries first. */
6851 for (i = info->input_bfds; i; i = i->link_next)
6852 {
6853 bfd_signed_vma *local_got;
6854 bfd_size_type j, locsymcount;
6855 Elf_Internal_Shdr *symtab_hdr;
6856
6857 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
6858 continue;
6859
6860 local_got = elf_local_got_refcounts (i);
6861 if (!local_got)
6862 continue;
6863
6864 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6865 if (elf_bad_symtab (i))
6866 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6867 else
6868 locsymcount = symtab_hdr->sh_info;
6869
6870 for (j = 0; j < locsymcount; ++j)
6871 {
6872 if (local_got[j] > 0)
6873 {
6874 local_got[j] = gotoff;
6875 gotoff += ARCH_SIZE / 8;
6876 }
6877 else
6878 local_got[j] = (bfd_vma) -1;
6879 }
6880 }
6881
6882 /* Then the global .got entries. .plt refcounts are handled by
6883 adjust_dynamic_symbol */
6884 elf_link_hash_traverse (elf_hash_table (info),
6885 elf_gc_allocate_got_offsets,
6886 (PTR) &gotoff);
6887 return true;
6888 }
6889
6890 /* We need a special top-level link routine to convert got reference counts
6891 to real got offsets. */
6892
6893 static boolean
6894 elf_gc_allocate_got_offsets (h, offarg)
6895 struct elf_link_hash_entry *h;
6896 PTR offarg;
6897 {
6898 bfd_vma *off = (bfd_vma *) offarg;
6899
6900 if (h->got.refcount > 0)
6901 {
6902 h->got.offset = off[0];
6903 off[0] += ARCH_SIZE / 8;
6904 }
6905 else
6906 h->got.offset = (bfd_vma) -1;
6907
6908 return true;
6909 }
6910
6911 /* Many folk need no more in the way of final link than this, once
6912 got entry reference counting is enabled. */
6913
6914 boolean
6915 elf_gc_common_final_link (abfd, info)
6916 bfd *abfd;
6917 struct bfd_link_info *info;
6918 {
6919 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6920 return false;
6921
6922 /* Invoke the regular ELF backend linker to do all the work. */
6923 return elf_bfd_final_link (abfd, info);
6924 }
6925
6926 /* This function will be called though elf_link_hash_traverse to store
6927 all hash value of the exported symbols in an array. */
6928
6929 static boolean
6930 elf_collect_hash_codes (h, data)
6931 struct elf_link_hash_entry *h;
6932 PTR data;
6933 {
6934 unsigned long **valuep = (unsigned long **) data;
6935 const char *name;
6936 char *p;
6937 unsigned long ha;
6938 char *alc = NULL;
6939
6940 /* Ignore indirect symbols. These are added by the versioning code. */
6941 if (h->dynindx == -1)
6942 return true;
6943
6944 name = h->root.root.string;
6945 p = strchr (name, ELF_VER_CHR);
6946 if (p != NULL)
6947 {
6948 alc = bfd_malloc (p - name + 1);
6949 memcpy (alc, name, p - name);
6950 alc[p - name] = '\0';
6951 name = alc;
6952 }
6953
6954 /* Compute the hash value. */
6955 ha = bfd_elf_hash (name);
6956
6957 /* Store the found hash value in the array given as the argument. */
6958 *(*valuep)++ = ha;
6959
6960 /* And store it in the struct so that we can put it in the hash table
6961 later. */
6962 h->elf_hash_value = ha;
6963
6964 if (alc != NULL)
6965 free (alc);
6966
6967 return true;
6968 }