* elflink.h (elf_link_add_object_symbols): Don't bfd_release runpath.
[binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /* ELF linker code. */
21
22 /* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25 struct elf_info_failed
26 {
27 boolean failed;
28 struct bfd_link_info *info;
29 };
30
31 static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33 static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35 static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *, boolean));
39 static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41 static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43 static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45 static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49 static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51 static boolean elf_collect_hash_codes
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53 static boolean elf_link_read_relocs_from_section
54 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
55 static void elf_link_output_relocs
56 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
57 static boolean elf_link_size_reloc_section
58 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
59 static void elf_link_adjust_relocs
60 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
61 struct elf_link_hash_entry **));
62
63 /* Given an ELF BFD, add symbols to the global hash table as
64 appropriate. */
65
66 boolean
67 elf_bfd_link_add_symbols (abfd, info)
68 bfd *abfd;
69 struct bfd_link_info *info;
70 {
71 switch (bfd_get_format (abfd))
72 {
73 case bfd_object:
74 return elf_link_add_object_symbols (abfd, info);
75 case bfd_archive:
76 return elf_link_add_archive_symbols (abfd, info);
77 default:
78 bfd_set_error (bfd_error_wrong_format);
79 return false;
80 }
81 }
82 \f
83 /* Return true iff this is a non-common definition of a symbol. */
84 static boolean
85 is_global_symbol_definition (abfd, sym)
86 bfd * abfd ATTRIBUTE_UNUSED;
87 Elf_Internal_Sym * sym;
88 {
89 /* Local symbols do not count, but target specific ones might. */
90 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
91 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
92 return false;
93
94 /* If the section is undefined, then so is the symbol. */
95 if (sym->st_shndx == SHN_UNDEF)
96 return false;
97
98 /* If the symbol is defined in the common section, then
99 it is a common definition and so does not count. */
100 if (sym->st_shndx == SHN_COMMON)
101 return false;
102
103 /* If the symbol is in a target specific section then we
104 must rely upon the backend to tell us what it is. */
105 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
106 /* FIXME - this function is not coded yet:
107
108 return _bfd_is_global_symbol_definition (abfd, sym);
109
110 Instead for now assume that the definition is not global,
111 Even if this is wrong, at least the linker will behave
112 in the same way that it used to do. */
113 return false;
114
115 return true;
116 }
117
118
119 /* Search the symbol table of the archive element of the archive ABFD
120 whoes archove map contains a mention of SYMDEF, and determine if
121 the symbol is defined in this element. */
122 static boolean
123 elf_link_is_defined_archive_symbol (abfd, symdef)
124 bfd * abfd;
125 carsym * symdef;
126 {
127 Elf_Internal_Shdr * hdr;
128 Elf_External_Sym * esym;
129 Elf_External_Sym * esymend;
130 Elf_External_Sym * buf = NULL;
131 size_t symcount;
132 size_t extsymcount;
133 size_t extsymoff;
134 boolean result = false;
135
136 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
137 if (abfd == (bfd *) NULL)
138 return false;
139
140 if (! bfd_check_format (abfd, bfd_object))
141 return false;
142
143 /* If we have already included the element containing this symbol in the
144 link then we do not need to include it again. Just claim that any symbol
145 it contains is not a definition, so that our caller will not decide to
146 (re)include this element. */
147 if (abfd->archive_pass)
148 return false;
149
150 /* Select the appropriate symbol table. */
151 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
152 hdr = &elf_tdata (abfd)->symtab_hdr;
153 else
154 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
155
156 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
157
158 /* The sh_info field of the symtab header tells us where the
159 external symbols start. We don't care about the local symbols. */
160 if (elf_bad_symtab (abfd))
161 {
162 extsymcount = symcount;
163 extsymoff = 0;
164 }
165 else
166 {
167 extsymcount = symcount - hdr->sh_info;
168 extsymoff = hdr->sh_info;
169 }
170
171 buf = ((Elf_External_Sym *)
172 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
173 if (buf == NULL && extsymcount != 0)
174 return false;
175
176 /* Read in the symbol table.
177 FIXME: This ought to be cached somewhere. */
178 if (bfd_seek (abfd,
179 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
180 SEEK_SET) != 0
181 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
182 != extsymcount * sizeof (Elf_External_Sym)))
183 {
184 free (buf);
185 return false;
186 }
187
188 /* Scan the symbol table looking for SYMDEF. */
189 esymend = buf + extsymcount;
190 for (esym = buf;
191 esym < esymend;
192 esym++)
193 {
194 Elf_Internal_Sym sym;
195 const char * name;
196
197 elf_swap_symbol_in (abfd, esym, & sym);
198
199 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
200 if (name == (const char *) NULL)
201 break;
202
203 if (strcmp (name, symdef->name) == 0)
204 {
205 result = is_global_symbol_definition (abfd, & sym);
206 break;
207 }
208 }
209
210 free (buf);
211
212 return result;
213 }
214 \f
215
216 /* Add symbols from an ELF archive file to the linker hash table. We
217 don't use _bfd_generic_link_add_archive_symbols because of a
218 problem which arises on UnixWare. The UnixWare libc.so is an
219 archive which includes an entry libc.so.1 which defines a bunch of
220 symbols. The libc.so archive also includes a number of other
221 object files, which also define symbols, some of which are the same
222 as those defined in libc.so.1. Correct linking requires that we
223 consider each object file in turn, and include it if it defines any
224 symbols we need. _bfd_generic_link_add_archive_symbols does not do
225 this; it looks through the list of undefined symbols, and includes
226 any object file which defines them. When this algorithm is used on
227 UnixWare, it winds up pulling in libc.so.1 early and defining a
228 bunch of symbols. This means that some of the other objects in the
229 archive are not included in the link, which is incorrect since they
230 precede libc.so.1 in the archive.
231
232 Fortunately, ELF archive handling is simpler than that done by
233 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
234 oddities. In ELF, if we find a symbol in the archive map, and the
235 symbol is currently undefined, we know that we must pull in that
236 object file.
237
238 Unfortunately, we do have to make multiple passes over the symbol
239 table until nothing further is resolved. */
240
241 static boolean
242 elf_link_add_archive_symbols (abfd, info)
243 bfd *abfd;
244 struct bfd_link_info *info;
245 {
246 symindex c;
247 boolean *defined = NULL;
248 boolean *included = NULL;
249 carsym *symdefs;
250 boolean loop;
251
252 if (! bfd_has_map (abfd))
253 {
254 /* An empty archive is a special case. */
255 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
256 return true;
257 bfd_set_error (bfd_error_no_armap);
258 return false;
259 }
260
261 /* Keep track of all symbols we know to be already defined, and all
262 files we know to be already included. This is to speed up the
263 second and subsequent passes. */
264 c = bfd_ardata (abfd)->symdef_count;
265 if (c == 0)
266 return true;
267 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
268 included = (boolean *) bfd_malloc (c * sizeof (boolean));
269 if (defined == (boolean *) NULL || included == (boolean *) NULL)
270 goto error_return;
271 memset (defined, 0, c * sizeof (boolean));
272 memset (included, 0, c * sizeof (boolean));
273
274 symdefs = bfd_ardata (abfd)->symdefs;
275
276 do
277 {
278 file_ptr last;
279 symindex i;
280 carsym *symdef;
281 carsym *symdefend;
282
283 loop = false;
284 last = -1;
285
286 symdef = symdefs;
287 symdefend = symdef + c;
288 for (i = 0; symdef < symdefend; symdef++, i++)
289 {
290 struct elf_link_hash_entry *h;
291 bfd *element;
292 struct bfd_link_hash_entry *undefs_tail;
293 symindex mark;
294
295 if (defined[i] || included[i])
296 continue;
297 if (symdef->file_offset == last)
298 {
299 included[i] = true;
300 continue;
301 }
302
303 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
304 false, false, false);
305
306 if (h == NULL)
307 {
308 char *p, *copy;
309
310 /* If this is a default version (the name contains @@),
311 look up the symbol again without the version. The
312 effect is that references to the symbol without the
313 version will be matched by the default symbol in the
314 archive. */
315
316 p = strchr (symdef->name, ELF_VER_CHR);
317 if (p == NULL || p[1] != ELF_VER_CHR)
318 continue;
319
320 copy = bfd_alloc (abfd, p - symdef->name + 1);
321 if (copy == NULL)
322 goto error_return;
323 memcpy (copy, symdef->name, p - symdef->name);
324 copy[p - symdef->name] = '\0';
325
326 h = elf_link_hash_lookup (elf_hash_table (info), copy,
327 false, false, false);
328
329 bfd_release (abfd, copy);
330 }
331
332 if (h == NULL)
333 continue;
334
335 if (h->root.type == bfd_link_hash_common)
336 {
337 /* We currently have a common symbol. The archive map contains
338 a reference to this symbol, so we may want to include it. We
339 only want to include it however, if this archive element
340 contains a definition of the symbol, not just another common
341 declaration of it.
342
343 Unfortunately some archivers (including GNU ar) will put
344 declarations of common symbols into their archive maps, as
345 well as real definitions, so we cannot just go by the archive
346 map alone. Instead we must read in the element's symbol
347 table and check that to see what kind of symbol definition
348 this is. */
349 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
350 continue;
351 }
352 else if (h->root.type != bfd_link_hash_undefined)
353 {
354 if (h->root.type != bfd_link_hash_undefweak)
355 defined[i] = true;
356 continue;
357 }
358
359 /* We need to include this archive member. */
360 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
361 if (element == (bfd *) NULL)
362 goto error_return;
363
364 if (! bfd_check_format (element, bfd_object))
365 goto error_return;
366
367 /* Doublecheck that we have not included this object
368 already--it should be impossible, but there may be
369 something wrong with the archive. */
370 if (element->archive_pass != 0)
371 {
372 bfd_set_error (bfd_error_bad_value);
373 goto error_return;
374 }
375 element->archive_pass = 1;
376
377 undefs_tail = info->hash->undefs_tail;
378
379 if (! (*info->callbacks->add_archive_element) (info, element,
380 symdef->name))
381 goto error_return;
382 if (! elf_link_add_object_symbols (element, info))
383 goto error_return;
384
385 /* If there are any new undefined symbols, we need to make
386 another pass through the archive in order to see whether
387 they can be defined. FIXME: This isn't perfect, because
388 common symbols wind up on undefs_tail and because an
389 undefined symbol which is defined later on in this pass
390 does not require another pass. This isn't a bug, but it
391 does make the code less efficient than it could be. */
392 if (undefs_tail != info->hash->undefs_tail)
393 loop = true;
394
395 /* Look backward to mark all symbols from this object file
396 which we have already seen in this pass. */
397 mark = i;
398 do
399 {
400 included[mark] = true;
401 if (mark == 0)
402 break;
403 --mark;
404 }
405 while (symdefs[mark].file_offset == symdef->file_offset);
406
407 /* We mark subsequent symbols from this object file as we go
408 on through the loop. */
409 last = symdef->file_offset;
410 }
411 }
412 while (loop);
413
414 free (defined);
415 free (included);
416
417 return true;
418
419 error_return:
420 if (defined != (boolean *) NULL)
421 free (defined);
422 if (included != (boolean *) NULL)
423 free (included);
424 return false;
425 }
426
427 /* This function is called when we want to define a new symbol. It
428 handles the various cases which arise when we find a definition in
429 a dynamic object, or when there is already a definition in a
430 dynamic object. The new symbol is described by NAME, SYM, PSEC,
431 and PVALUE. We set SYM_HASH to the hash table entry. We set
432 OVERRIDE if the old symbol is overriding a new definition. We set
433 TYPE_CHANGE_OK if it is OK for the type to change. We set
434 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
435 change, we mean that we shouldn't warn if the type or size does
436 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
437 a shared object. */
438
439 static boolean
440 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
441 override, type_change_ok, size_change_ok, dt_needed)
442 bfd *abfd;
443 struct bfd_link_info *info;
444 const char *name;
445 Elf_Internal_Sym *sym;
446 asection **psec;
447 bfd_vma *pvalue;
448 struct elf_link_hash_entry **sym_hash;
449 boolean *override;
450 boolean *type_change_ok;
451 boolean *size_change_ok;
452 boolean dt_needed;
453 {
454 asection *sec;
455 struct elf_link_hash_entry *h;
456 int bind;
457 bfd *oldbfd;
458 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
459
460 *override = false;
461
462 sec = *psec;
463 bind = ELF_ST_BIND (sym->st_info);
464
465 if (! bfd_is_und_section (sec))
466 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
467 else
468 h = ((struct elf_link_hash_entry *)
469 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
470 if (h == NULL)
471 return false;
472 *sym_hash = h;
473
474 /* This code is for coping with dynamic objects, and is only useful
475 if we are doing an ELF link. */
476 if (info->hash->creator != abfd->xvec)
477 return true;
478
479 /* For merging, we only care about real symbols. */
480
481 while (h->root.type == bfd_link_hash_indirect
482 || h->root.type == bfd_link_hash_warning)
483 h = (struct elf_link_hash_entry *) h->root.u.i.link;
484
485 /* If we just created the symbol, mark it as being an ELF symbol.
486 Other than that, there is nothing to do--there is no merge issue
487 with a newly defined symbol--so we just return. */
488
489 if (h->root.type == bfd_link_hash_new)
490 {
491 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
492 return true;
493 }
494
495 /* OLDBFD is a BFD associated with the existing symbol. */
496
497 switch (h->root.type)
498 {
499 default:
500 oldbfd = NULL;
501 break;
502
503 case bfd_link_hash_undefined:
504 case bfd_link_hash_undefweak:
505 oldbfd = h->root.u.undef.abfd;
506 break;
507
508 case bfd_link_hash_defined:
509 case bfd_link_hash_defweak:
510 oldbfd = h->root.u.def.section->owner;
511 break;
512
513 case bfd_link_hash_common:
514 oldbfd = h->root.u.c.p->section->owner;
515 break;
516 }
517
518 /* In cases involving weak versioned symbols, we may wind up trying
519 to merge a symbol with itself. Catch that here, to avoid the
520 confusion that results if we try to override a symbol with
521 itself. The additional tests catch cases like
522 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
523 dynamic object, which we do want to handle here. */
524 if (abfd == oldbfd
525 && ((abfd->flags & DYNAMIC) == 0
526 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
527 return true;
528
529 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
530 respectively, is from a dynamic object. */
531
532 if ((abfd->flags & DYNAMIC) != 0)
533 newdyn = true;
534 else
535 newdyn = false;
536
537 if (oldbfd != NULL)
538 olddyn = (oldbfd->flags & DYNAMIC) != 0;
539 else
540 {
541 asection *hsec;
542
543 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
544 indices used by MIPS ELF. */
545 switch (h->root.type)
546 {
547 default:
548 hsec = NULL;
549 break;
550
551 case bfd_link_hash_defined:
552 case bfd_link_hash_defweak:
553 hsec = h->root.u.def.section;
554 break;
555
556 case bfd_link_hash_common:
557 hsec = h->root.u.c.p->section;
558 break;
559 }
560
561 if (hsec == NULL)
562 olddyn = false;
563 else
564 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
565 }
566
567 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
568 respectively, appear to be a definition rather than reference. */
569
570 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
571 newdef = false;
572 else
573 newdef = true;
574
575 if (h->root.type == bfd_link_hash_undefined
576 || h->root.type == bfd_link_hash_undefweak
577 || h->root.type == bfd_link_hash_common)
578 olddef = false;
579 else
580 olddef = true;
581
582 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
583 symbol, respectively, appears to be a common symbol in a dynamic
584 object. If a symbol appears in an uninitialized section, and is
585 not weak, and is not a function, then it may be a common symbol
586 which was resolved when the dynamic object was created. We want
587 to treat such symbols specially, because they raise special
588 considerations when setting the symbol size: if the symbol
589 appears as a common symbol in a regular object, and the size in
590 the regular object is larger, we must make sure that we use the
591 larger size. This problematic case can always be avoided in C,
592 but it must be handled correctly when using Fortran shared
593 libraries.
594
595 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
596 likewise for OLDDYNCOMMON and OLDDEF.
597
598 Note that this test is just a heuristic, and that it is quite
599 possible to have an uninitialized symbol in a shared object which
600 is really a definition, rather than a common symbol. This could
601 lead to some minor confusion when the symbol really is a common
602 symbol in some regular object. However, I think it will be
603 harmless. */
604
605 if (newdyn
606 && newdef
607 && (sec->flags & SEC_ALLOC) != 0
608 && (sec->flags & SEC_LOAD) == 0
609 && sym->st_size > 0
610 && bind != STB_WEAK
611 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
612 newdyncommon = true;
613 else
614 newdyncommon = false;
615
616 if (olddyn
617 && olddef
618 && h->root.type == bfd_link_hash_defined
619 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
620 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
621 && (h->root.u.def.section->flags & SEC_LOAD) == 0
622 && h->size > 0
623 && h->type != STT_FUNC)
624 olddyncommon = true;
625 else
626 olddyncommon = false;
627
628 /* It's OK to change the type if either the existing symbol or the
629 new symbol is weak unless it comes from a DT_NEEDED entry of
630 a shared object, in which case, the DT_NEEDED entry may not be
631 required at the run time. */
632
633 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
634 || h->root.type == bfd_link_hash_undefweak
635 || bind == STB_WEAK)
636 *type_change_ok = true;
637
638 /* It's OK to change the size if either the existing symbol or the
639 new symbol is weak, or if the old symbol is undefined. */
640
641 if (*type_change_ok
642 || h->root.type == bfd_link_hash_undefined)
643 *size_change_ok = true;
644
645 /* If both the old and the new symbols look like common symbols in a
646 dynamic object, set the size of the symbol to the larger of the
647 two. */
648
649 if (olddyncommon
650 && newdyncommon
651 && sym->st_size != h->size)
652 {
653 /* Since we think we have two common symbols, issue a multiple
654 common warning if desired. Note that we only warn if the
655 size is different. If the size is the same, we simply let
656 the old symbol override the new one as normally happens with
657 symbols defined in dynamic objects. */
658
659 if (! ((*info->callbacks->multiple_common)
660 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
661 h->size, abfd, bfd_link_hash_common, sym->st_size)))
662 return false;
663
664 if (sym->st_size > h->size)
665 h->size = sym->st_size;
666
667 *size_change_ok = true;
668 }
669
670 /* If we are looking at a dynamic object, and we have found a
671 definition, we need to see if the symbol was already defined by
672 some other object. If so, we want to use the existing
673 definition, and we do not want to report a multiple symbol
674 definition error; we do this by clobbering *PSEC to be
675 bfd_und_section_ptr.
676
677 We treat a common symbol as a definition if the symbol in the
678 shared library is a function, since common symbols always
679 represent variables; this can cause confusion in principle, but
680 any such confusion would seem to indicate an erroneous program or
681 shared library. We also permit a common symbol in a regular
682 object to override a weak symbol in a shared object.
683
684 We prefer a non-weak definition in a shared library to a weak
685 definition in the executable unless it comes from a DT_NEEDED
686 entry of a shared object, in which case, the DT_NEEDED entry
687 may not be required at the run time. */
688
689 if (newdyn
690 && newdef
691 && (olddef
692 || (h->root.type == bfd_link_hash_common
693 && (bind == STB_WEAK
694 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
695 && (h->root.type != bfd_link_hash_defweak
696 || dt_needed
697 || bind == STB_WEAK))
698 {
699 *override = true;
700 newdef = false;
701 newdyncommon = false;
702
703 *psec = sec = bfd_und_section_ptr;
704 *size_change_ok = true;
705
706 /* If we get here when the old symbol is a common symbol, then
707 we are explicitly letting it override a weak symbol or
708 function in a dynamic object, and we don't want to warn about
709 a type change. If the old symbol is a defined symbol, a type
710 change warning may still be appropriate. */
711
712 if (h->root.type == bfd_link_hash_common)
713 *type_change_ok = true;
714 }
715
716 /* Handle the special case of an old common symbol merging with a
717 new symbol which looks like a common symbol in a shared object.
718 We change *PSEC and *PVALUE to make the new symbol look like a
719 common symbol, and let _bfd_generic_link_add_one_symbol will do
720 the right thing. */
721
722 if (newdyncommon
723 && h->root.type == bfd_link_hash_common)
724 {
725 *override = true;
726 newdef = false;
727 newdyncommon = false;
728 *pvalue = sym->st_size;
729 *psec = sec = bfd_com_section_ptr;
730 *size_change_ok = true;
731 }
732
733 /* If the old symbol is from a dynamic object, and the new symbol is
734 a definition which is not from a dynamic object, then the new
735 symbol overrides the old symbol. Symbols from regular files
736 always take precedence over symbols from dynamic objects, even if
737 they are defined after the dynamic object in the link.
738
739 As above, we again permit a common symbol in a regular object to
740 override a definition in a shared object if the shared object
741 symbol is a function or is weak.
742
743 As above, we permit a non-weak definition in a shared object to
744 override a weak definition in a regular object. */
745
746 if (! newdyn
747 && (newdef
748 || (bfd_is_com_section (sec)
749 && (h->root.type == bfd_link_hash_defweak
750 || h->type == STT_FUNC)))
751 && olddyn
752 && olddef
753 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
754 && (bind != STB_WEAK
755 || h->root.type == bfd_link_hash_defweak))
756 {
757 /* Change the hash table entry to undefined, and let
758 _bfd_generic_link_add_one_symbol do the right thing with the
759 new definition. */
760
761 h->root.type = bfd_link_hash_undefined;
762 h->root.u.undef.abfd = h->root.u.def.section->owner;
763 *size_change_ok = true;
764
765 olddef = false;
766 olddyncommon = false;
767
768 /* We again permit a type change when a common symbol may be
769 overriding a function. */
770
771 if (bfd_is_com_section (sec))
772 *type_change_ok = true;
773
774 /* This union may have been set to be non-NULL when this symbol
775 was seen in a dynamic object. We must force the union to be
776 NULL, so that it is correct for a regular symbol. */
777
778 h->verinfo.vertree = NULL;
779
780 /* In this special case, if H is the target of an indirection,
781 we want the caller to frob with H rather than with the
782 indirect symbol. That will permit the caller to redefine the
783 target of the indirection, rather than the indirect symbol
784 itself. FIXME: This will break the -y option if we store a
785 symbol with a different name. */
786 *sym_hash = h;
787 }
788
789 /* Handle the special case of a new common symbol merging with an
790 old symbol that looks like it might be a common symbol defined in
791 a shared object. Note that we have already handled the case in
792 which a new common symbol should simply override the definition
793 in the shared library. */
794
795 if (! newdyn
796 && bfd_is_com_section (sec)
797 && olddyncommon)
798 {
799 /* It would be best if we could set the hash table entry to a
800 common symbol, but we don't know what to use for the section
801 or the alignment. */
802 if (! ((*info->callbacks->multiple_common)
803 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
804 h->size, abfd, bfd_link_hash_common, sym->st_size)))
805 return false;
806
807 /* If the predumed common symbol in the dynamic object is
808 larger, pretend that the new symbol has its size. */
809
810 if (h->size > *pvalue)
811 *pvalue = h->size;
812
813 /* FIXME: We no longer know the alignment required by the symbol
814 in the dynamic object, so we just wind up using the one from
815 the regular object. */
816
817 olddef = false;
818 olddyncommon = false;
819
820 h->root.type = bfd_link_hash_undefined;
821 h->root.u.undef.abfd = h->root.u.def.section->owner;
822
823 *size_change_ok = true;
824 *type_change_ok = true;
825
826 h->verinfo.vertree = NULL;
827 }
828
829 /* Handle the special case of a weak definition in a regular object
830 followed by a non-weak definition in a shared object. In this
831 case, we prefer the definition in the shared object unless it
832 comes from a DT_NEEDED entry of a shared object, in which case,
833 the DT_NEEDED entry may not be required at the run time. */
834 if (olddef
835 && ! dt_needed
836 && h->root.type == bfd_link_hash_defweak
837 && newdef
838 && newdyn
839 && bind != STB_WEAK)
840 {
841 /* To make this work we have to frob the flags so that the rest
842 of the code does not think we are using the regular
843 definition. */
844 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
845 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
846 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
847 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
848 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
849 | ELF_LINK_HASH_DEF_DYNAMIC);
850
851 /* If H is the target of an indirection, we want the caller to
852 use H rather than the indirect symbol. Otherwise if we are
853 defining a new indirect symbol we will wind up attaching it
854 to the entry we are overriding. */
855 *sym_hash = h;
856 }
857
858 /* Handle the special case of a non-weak definition in a shared
859 object followed by a weak definition in a regular object. In
860 this case we prefer to definition in the shared object. To make
861 this work we have to tell the caller to not treat the new symbol
862 as a definition. */
863 if (olddef
864 && olddyn
865 && h->root.type != bfd_link_hash_defweak
866 && newdef
867 && ! newdyn
868 && bind == STB_WEAK)
869 *override = true;
870
871 return true;
872 }
873
874 /* Add symbols from an ELF object file to the linker hash table. */
875
876 static boolean
877 elf_link_add_object_symbols (abfd, info)
878 bfd *abfd;
879 struct bfd_link_info *info;
880 {
881 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
882 const Elf_Internal_Sym *,
883 const char **, flagword *,
884 asection **, bfd_vma *));
885 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
886 asection *, const Elf_Internal_Rela *));
887 boolean collect;
888 Elf_Internal_Shdr *hdr;
889 size_t symcount;
890 size_t extsymcount;
891 size_t extsymoff;
892 Elf_External_Sym *buf = NULL;
893 struct elf_link_hash_entry **sym_hash;
894 boolean dynamic;
895 bfd_byte *dynver = NULL;
896 Elf_External_Versym *extversym = NULL;
897 Elf_External_Versym *ever;
898 Elf_External_Dyn *dynbuf = NULL;
899 struct elf_link_hash_entry *weaks;
900 Elf_External_Sym *esym;
901 Elf_External_Sym *esymend;
902 struct elf_backend_data *bed;
903 boolean dt_needed;
904
905 bed = get_elf_backend_data (abfd);
906 add_symbol_hook = bed->elf_add_symbol_hook;
907 collect = bed->collect;
908
909 if ((abfd->flags & DYNAMIC) == 0)
910 dynamic = false;
911 else
912 {
913 dynamic = true;
914
915 /* You can't use -r against a dynamic object. Also, there's no
916 hope of using a dynamic object which does not exactly match
917 the format of the output file. */
918 if (info->relocateable || info->hash->creator != abfd->xvec)
919 {
920 bfd_set_error (bfd_error_invalid_operation);
921 goto error_return;
922 }
923 }
924
925 /* As a GNU extension, any input sections which are named
926 .gnu.warning.SYMBOL are treated as warning symbols for the given
927 symbol. This differs from .gnu.warning sections, which generate
928 warnings when they are included in an output file. */
929 if (! info->shared)
930 {
931 asection *s;
932
933 for (s = abfd->sections; s != NULL; s = s->next)
934 {
935 const char *name;
936
937 name = bfd_get_section_name (abfd, s);
938 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
939 {
940 char *msg;
941 bfd_size_type sz;
942
943 name += sizeof ".gnu.warning." - 1;
944
945 /* If this is a shared object, then look up the symbol
946 in the hash table. If it is there, and it is already
947 been defined, then we will not be using the entry
948 from this shared object, so we don't need to warn.
949 FIXME: If we see the definition in a regular object
950 later on, we will warn, but we shouldn't. The only
951 fix is to keep track of what warnings we are supposed
952 to emit, and then handle them all at the end of the
953 link. */
954 if (dynamic && abfd->xvec == info->hash->creator)
955 {
956 struct elf_link_hash_entry *h;
957
958 h = elf_link_hash_lookup (elf_hash_table (info), name,
959 false, false, true);
960
961 /* FIXME: What about bfd_link_hash_common? */
962 if (h != NULL
963 && (h->root.type == bfd_link_hash_defined
964 || h->root.type == bfd_link_hash_defweak))
965 {
966 /* We don't want to issue this warning. Clobber
967 the section size so that the warning does not
968 get copied into the output file. */
969 s->_raw_size = 0;
970 continue;
971 }
972 }
973
974 sz = bfd_section_size (abfd, s);
975 msg = (char *) bfd_alloc (abfd, sz + 1);
976 if (msg == NULL)
977 goto error_return;
978
979 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
980 goto error_return;
981
982 msg[sz] = '\0';
983
984 if (! (_bfd_generic_link_add_one_symbol
985 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
986 false, collect, (struct bfd_link_hash_entry **) NULL)))
987 goto error_return;
988
989 if (! info->relocateable)
990 {
991 /* Clobber the section size so that the warning does
992 not get copied into the output file. */
993 s->_raw_size = 0;
994 }
995 }
996 }
997 }
998
999 /* If this is a dynamic object, we always link against the .dynsym
1000 symbol table, not the .symtab symbol table. The dynamic linker
1001 will only see the .dynsym symbol table, so there is no reason to
1002 look at .symtab for a dynamic object. */
1003
1004 if (! dynamic || elf_dynsymtab (abfd) == 0)
1005 hdr = &elf_tdata (abfd)->symtab_hdr;
1006 else
1007 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1008
1009 if (dynamic)
1010 {
1011 /* Read in any version definitions. */
1012
1013 if (! _bfd_elf_slurp_version_tables (abfd))
1014 goto error_return;
1015
1016 /* Read in the symbol versions, but don't bother to convert them
1017 to internal format. */
1018 if (elf_dynversym (abfd) != 0)
1019 {
1020 Elf_Internal_Shdr *versymhdr;
1021
1022 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1023 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
1024 if (extversym == NULL)
1025 goto error_return;
1026 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1027 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
1028 != versymhdr->sh_size))
1029 goto error_return;
1030 }
1031 }
1032
1033 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1034
1035 /* The sh_info field of the symtab header tells us where the
1036 external symbols start. We don't care about the local symbols at
1037 this point. */
1038 if (elf_bad_symtab (abfd))
1039 {
1040 extsymcount = symcount;
1041 extsymoff = 0;
1042 }
1043 else
1044 {
1045 extsymcount = symcount - hdr->sh_info;
1046 extsymoff = hdr->sh_info;
1047 }
1048
1049 buf = ((Elf_External_Sym *)
1050 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
1051 if (buf == NULL && extsymcount != 0)
1052 goto error_return;
1053
1054 /* We store a pointer to the hash table entry for each external
1055 symbol. */
1056 sym_hash = ((struct elf_link_hash_entry **)
1057 bfd_alloc (abfd,
1058 extsymcount * sizeof (struct elf_link_hash_entry *)));
1059 if (sym_hash == NULL)
1060 goto error_return;
1061 elf_sym_hashes (abfd) = sym_hash;
1062
1063 dt_needed = false;
1064
1065 if (! dynamic)
1066 {
1067 /* If we are creating a shared library, create all the dynamic
1068 sections immediately. We need to attach them to something,
1069 so we attach them to this BFD, provided it is the right
1070 format. FIXME: If there are no input BFD's of the same
1071 format as the output, we can't make a shared library. */
1072 if (info->shared
1073 && ! elf_hash_table (info)->dynamic_sections_created
1074 && abfd->xvec == info->hash->creator)
1075 {
1076 if (! elf_link_create_dynamic_sections (abfd, info))
1077 goto error_return;
1078 }
1079 }
1080 else
1081 {
1082 asection *s;
1083 boolean add_needed;
1084 const char *name;
1085 bfd_size_type oldsize;
1086 bfd_size_type strindex;
1087
1088 /* Find the name to use in a DT_NEEDED entry that refers to this
1089 object. If the object has a DT_SONAME entry, we use it.
1090 Otherwise, if the generic linker stuck something in
1091 elf_dt_name, we use that. Otherwise, we just use the file
1092 name. If the generic linker put a null string into
1093 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1094 there is a DT_SONAME entry. */
1095 add_needed = true;
1096 name = bfd_get_filename (abfd);
1097 if (elf_dt_name (abfd) != NULL)
1098 {
1099 name = elf_dt_name (abfd);
1100 if (*name == '\0')
1101 {
1102 if (elf_dt_soname (abfd) != NULL)
1103 dt_needed = true;
1104
1105 add_needed = false;
1106 }
1107 }
1108 s = bfd_get_section_by_name (abfd, ".dynamic");
1109 if (s != NULL)
1110 {
1111 Elf_External_Dyn *extdyn;
1112 Elf_External_Dyn *extdynend;
1113 int elfsec;
1114 unsigned long link;
1115 int rpath;
1116 int runpath;
1117
1118 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
1119 if (dynbuf == NULL)
1120 goto error_return;
1121
1122 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1123 (file_ptr) 0, s->_raw_size))
1124 goto error_return;
1125
1126 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1127 if (elfsec == -1)
1128 goto error_return;
1129 link = elf_elfsections (abfd)[elfsec]->sh_link;
1130
1131 {
1132 /* The shared libraries distributed with hpux11 have a bogus
1133 sh_link field for the ".dynamic" section. This code detects
1134 when LINK refers to a section that is not a string table and
1135 tries to find the string table for the ".dynsym" section
1136 instead. */
1137 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
1138 if (hdr->sh_type != SHT_STRTAB)
1139 {
1140 asection *s = bfd_get_section_by_name (abfd, ".dynsym");
1141 int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1142 if (elfsec == -1)
1143 goto error_return;
1144 link = elf_elfsections (abfd)[elfsec]->sh_link;
1145 }
1146 }
1147
1148 extdyn = dynbuf;
1149 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1150 rpath = 0;
1151 runpath = 0;
1152 for (; extdyn < extdynend; extdyn++)
1153 {
1154 Elf_Internal_Dyn dyn;
1155
1156 elf_swap_dyn_in (abfd, extdyn, &dyn);
1157 if (dyn.d_tag == DT_SONAME)
1158 {
1159 name = bfd_elf_string_from_elf_section (abfd, link,
1160 dyn.d_un.d_val);
1161 if (name == NULL)
1162 goto error_return;
1163 }
1164 if (dyn.d_tag == DT_NEEDED)
1165 {
1166 struct bfd_link_needed_list *n, **pn;
1167 char *fnm, *anm;
1168
1169 n = ((struct bfd_link_needed_list *)
1170 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1171 fnm = bfd_elf_string_from_elf_section (abfd, link,
1172 dyn.d_un.d_val);
1173 if (n == NULL || fnm == NULL)
1174 goto error_return;
1175 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1176 if (anm == NULL)
1177 goto error_return;
1178 strcpy (anm, fnm);
1179 n->name = anm;
1180 n->by = abfd;
1181 n->next = NULL;
1182 for (pn = &elf_hash_table (info)->needed;
1183 *pn != NULL;
1184 pn = &(*pn)->next)
1185 ;
1186 *pn = n;
1187 }
1188 if (dyn.d_tag == DT_RUNPATH)
1189 {
1190 struct bfd_link_needed_list *n, **pn;
1191 char *fnm, *anm;
1192
1193 /* When we see DT_RPATH before DT_RUNPATH, we have
1194 to clear runpath. Do _NOT_ bfd_release, as that
1195 frees all more recently bfd_alloc'd blocks as
1196 well. */
1197 if (rpath && elf_hash_table (info)->runpath)
1198 elf_hash_table (info)->runpath = NULL;
1199
1200 n = ((struct bfd_link_needed_list *)
1201 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1202 fnm = bfd_elf_string_from_elf_section (abfd, link,
1203 dyn.d_un.d_val);
1204 if (n == NULL || fnm == NULL)
1205 goto error_return;
1206 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1207 if (anm == NULL)
1208 goto error_return;
1209 strcpy (anm, fnm);
1210 n->name = anm;
1211 n->by = abfd;
1212 n->next = NULL;
1213 for (pn = &elf_hash_table (info)->runpath;
1214 *pn != NULL;
1215 pn = &(*pn)->next)
1216 ;
1217 *pn = n;
1218 runpath = 1;
1219 rpath = 0;
1220 }
1221 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1222 if (!runpath && dyn.d_tag == DT_RPATH)
1223 {
1224 struct bfd_link_needed_list *n, **pn;
1225 char *fnm, *anm;
1226
1227 n = ((struct bfd_link_needed_list *)
1228 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1229 fnm = bfd_elf_string_from_elf_section (abfd, link,
1230 dyn.d_un.d_val);
1231 if (n == NULL || fnm == NULL)
1232 goto error_return;
1233 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1234 if (anm == NULL)
1235 goto error_return;
1236 strcpy (anm, fnm);
1237 n->name = anm;
1238 n->by = abfd;
1239 n->next = NULL;
1240 for (pn = &elf_hash_table (info)->runpath;
1241 *pn != NULL;
1242 pn = &(*pn)->next)
1243 ;
1244 *pn = n;
1245 rpath = 1;
1246 }
1247 }
1248
1249 free (dynbuf);
1250 dynbuf = NULL;
1251 }
1252
1253 /* We do not want to include any of the sections in a dynamic
1254 object in the output file. We hack by simply clobbering the
1255 list of sections in the BFD. This could be handled more
1256 cleanly by, say, a new section flag; the existing
1257 SEC_NEVER_LOAD flag is not the one we want, because that one
1258 still implies that the section takes up space in the output
1259 file. */
1260 abfd->sections = NULL;
1261 abfd->section_count = 0;
1262
1263 /* If this is the first dynamic object found in the link, create
1264 the special sections required for dynamic linking. */
1265 if (! elf_hash_table (info)->dynamic_sections_created)
1266 {
1267 if (! elf_link_create_dynamic_sections (abfd, info))
1268 goto error_return;
1269 }
1270
1271 if (add_needed)
1272 {
1273 /* Add a DT_NEEDED entry for this dynamic object. */
1274 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1275 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1276 true, false);
1277 if (strindex == (bfd_size_type) -1)
1278 goto error_return;
1279
1280 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1281 {
1282 asection *sdyn;
1283 Elf_External_Dyn *dyncon, *dynconend;
1284
1285 /* The hash table size did not change, which means that
1286 the dynamic object name was already entered. If we
1287 have already included this dynamic object in the
1288 link, just ignore it. There is no reason to include
1289 a particular dynamic object more than once. */
1290 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1291 ".dynamic");
1292 BFD_ASSERT (sdyn != NULL);
1293
1294 dyncon = (Elf_External_Dyn *) sdyn->contents;
1295 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1296 sdyn->_raw_size);
1297 for (; dyncon < dynconend; dyncon++)
1298 {
1299 Elf_Internal_Dyn dyn;
1300
1301 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1302 &dyn);
1303 if (dyn.d_tag == DT_NEEDED
1304 && dyn.d_un.d_val == strindex)
1305 {
1306 if (buf != NULL)
1307 free (buf);
1308 if (extversym != NULL)
1309 free (extversym);
1310 return true;
1311 }
1312 }
1313 }
1314
1315 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1316 goto error_return;
1317 }
1318
1319 /* Save the SONAME, if there is one, because sometimes the
1320 linker emulation code will need to know it. */
1321 if (*name == '\0')
1322 name = bfd_get_filename (abfd);
1323 elf_dt_name (abfd) = name;
1324 }
1325
1326 if (bfd_seek (abfd,
1327 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1328 SEEK_SET) != 0
1329 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1330 != extsymcount * sizeof (Elf_External_Sym)))
1331 goto error_return;
1332
1333 weaks = NULL;
1334
1335 ever = extversym != NULL ? extversym + extsymoff : NULL;
1336 esymend = buf + extsymcount;
1337 for (esym = buf;
1338 esym < esymend;
1339 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1340 {
1341 Elf_Internal_Sym sym;
1342 int bind;
1343 bfd_vma value;
1344 asection *sec;
1345 flagword flags;
1346 const char *name;
1347 struct elf_link_hash_entry *h;
1348 boolean definition;
1349 boolean size_change_ok, type_change_ok;
1350 boolean new_weakdef;
1351 unsigned int old_alignment;
1352
1353 elf_swap_symbol_in (abfd, esym, &sym);
1354
1355 flags = BSF_NO_FLAGS;
1356 sec = NULL;
1357 value = sym.st_value;
1358 *sym_hash = NULL;
1359
1360 bind = ELF_ST_BIND (sym.st_info);
1361 if (bind == STB_LOCAL)
1362 {
1363 /* This should be impossible, since ELF requires that all
1364 global symbols follow all local symbols, and that sh_info
1365 point to the first global symbol. Unfortunatealy, Irix 5
1366 screws this up. */
1367 continue;
1368 }
1369 else if (bind == STB_GLOBAL)
1370 {
1371 if (sym.st_shndx != SHN_UNDEF
1372 && sym.st_shndx != SHN_COMMON)
1373 flags = BSF_GLOBAL;
1374 else
1375 flags = 0;
1376 }
1377 else if (bind == STB_WEAK)
1378 flags = BSF_WEAK;
1379 else
1380 {
1381 /* Leave it up to the processor backend. */
1382 }
1383
1384 if (sym.st_shndx == SHN_UNDEF)
1385 sec = bfd_und_section_ptr;
1386 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1387 {
1388 sec = section_from_elf_index (abfd, sym.st_shndx);
1389 if (sec == NULL)
1390 sec = bfd_abs_section_ptr;
1391 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1392 value -= sec->vma;
1393 }
1394 else if (sym.st_shndx == SHN_ABS)
1395 sec = bfd_abs_section_ptr;
1396 else if (sym.st_shndx == SHN_COMMON)
1397 {
1398 sec = bfd_com_section_ptr;
1399 /* What ELF calls the size we call the value. What ELF
1400 calls the value we call the alignment. */
1401 value = sym.st_size;
1402 }
1403 else
1404 {
1405 /* Leave it up to the processor backend. */
1406 }
1407
1408 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1409 if (name == (const char *) NULL)
1410 goto error_return;
1411
1412 if (add_symbol_hook)
1413 {
1414 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1415 &value))
1416 goto error_return;
1417
1418 /* The hook function sets the name to NULL if this symbol
1419 should be skipped for some reason. */
1420 if (name == (const char *) NULL)
1421 continue;
1422 }
1423
1424 /* Sanity check that all possibilities were handled. */
1425 if (sec == (asection *) NULL)
1426 {
1427 bfd_set_error (bfd_error_bad_value);
1428 goto error_return;
1429 }
1430
1431 if (bfd_is_und_section (sec)
1432 || bfd_is_com_section (sec))
1433 definition = false;
1434 else
1435 definition = true;
1436
1437 size_change_ok = false;
1438 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1439 old_alignment = 0;
1440 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1441 {
1442 Elf_Internal_Versym iver;
1443 unsigned int vernum = 0;
1444 boolean override;
1445
1446 if (ever != NULL)
1447 {
1448 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1449 vernum = iver.vs_vers & VERSYM_VERSION;
1450
1451 /* If this is a hidden symbol, or if it is not version
1452 1, we append the version name to the symbol name.
1453 However, we do not modify a non-hidden absolute
1454 symbol, because it might be the version symbol
1455 itself. FIXME: What if it isn't? */
1456 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1457 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1458 {
1459 const char *verstr;
1460 int namelen, newlen;
1461 char *newname, *p;
1462
1463 if (sym.st_shndx != SHN_UNDEF)
1464 {
1465 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1466 {
1467 (*_bfd_error_handler)
1468 (_("%s: %s: invalid version %u (max %d)"),
1469 bfd_get_filename (abfd), name, vernum,
1470 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1471 bfd_set_error (bfd_error_bad_value);
1472 goto error_return;
1473 }
1474 else if (vernum > 1)
1475 verstr =
1476 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1477 else
1478 verstr = "";
1479 }
1480 else
1481 {
1482 /* We cannot simply test for the number of
1483 entries in the VERNEED section since the
1484 numbers for the needed versions do not start
1485 at 0. */
1486 Elf_Internal_Verneed *t;
1487
1488 verstr = NULL;
1489 for (t = elf_tdata (abfd)->verref;
1490 t != NULL;
1491 t = t->vn_nextref)
1492 {
1493 Elf_Internal_Vernaux *a;
1494
1495 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1496 {
1497 if (a->vna_other == vernum)
1498 {
1499 verstr = a->vna_nodename;
1500 break;
1501 }
1502 }
1503 if (a != NULL)
1504 break;
1505 }
1506 if (verstr == NULL)
1507 {
1508 (*_bfd_error_handler)
1509 (_("%s: %s: invalid needed version %d"),
1510 bfd_get_filename (abfd), name, vernum);
1511 bfd_set_error (bfd_error_bad_value);
1512 goto error_return;
1513 }
1514 }
1515
1516 namelen = strlen (name);
1517 newlen = namelen + strlen (verstr) + 2;
1518 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1519 ++newlen;
1520
1521 newname = (char *) bfd_alloc (abfd, newlen);
1522 if (newname == NULL)
1523 goto error_return;
1524 strcpy (newname, name);
1525 p = newname + namelen;
1526 *p++ = ELF_VER_CHR;
1527 /* If this is a defined non-hidden version symbol,
1528 we add another @ to the name. This indicates the
1529 default version of the symbol. */
1530 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1531 && sym.st_shndx != SHN_UNDEF)
1532 *p++ = ELF_VER_CHR;
1533 strcpy (p, verstr);
1534
1535 name = newname;
1536 }
1537 }
1538
1539 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1540 sym_hash, &override, &type_change_ok,
1541 &size_change_ok, dt_needed))
1542 goto error_return;
1543
1544 if (override)
1545 definition = false;
1546
1547 h = *sym_hash;
1548 while (h->root.type == bfd_link_hash_indirect
1549 || h->root.type == bfd_link_hash_warning)
1550 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1551
1552 /* Remember the old alignment if this is a common symbol, so
1553 that we don't reduce the alignment later on. We can't
1554 check later, because _bfd_generic_link_add_one_symbol
1555 will set a default for the alignment which we want to
1556 override. */
1557 if (h->root.type == bfd_link_hash_common)
1558 old_alignment = h->root.u.c.p->alignment_power;
1559
1560 if (elf_tdata (abfd)->verdef != NULL
1561 && ! override
1562 && vernum > 1
1563 && definition)
1564 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1565 }
1566
1567 if (! (_bfd_generic_link_add_one_symbol
1568 (info, abfd, name, flags, sec, value, (const char *) NULL,
1569 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1570 goto error_return;
1571
1572 h = *sym_hash;
1573 while (h->root.type == bfd_link_hash_indirect
1574 || h->root.type == bfd_link_hash_warning)
1575 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1576 *sym_hash = h;
1577
1578 new_weakdef = false;
1579 if (dynamic
1580 && definition
1581 && (flags & BSF_WEAK) != 0
1582 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1583 && info->hash->creator->flavour == bfd_target_elf_flavour
1584 && h->weakdef == NULL)
1585 {
1586 /* Keep a list of all weak defined non function symbols from
1587 a dynamic object, using the weakdef field. Later in this
1588 function we will set the weakdef field to the correct
1589 value. We only put non-function symbols from dynamic
1590 objects on this list, because that happens to be the only
1591 time we need to know the normal symbol corresponding to a
1592 weak symbol, and the information is time consuming to
1593 figure out. If the weakdef field is not already NULL,
1594 then this symbol was already defined by some previous
1595 dynamic object, and we will be using that previous
1596 definition anyhow. */
1597
1598 h->weakdef = weaks;
1599 weaks = h;
1600 new_weakdef = true;
1601 }
1602
1603 /* Set the alignment of a common symbol. */
1604 if (sym.st_shndx == SHN_COMMON
1605 && h->root.type == bfd_link_hash_common)
1606 {
1607 unsigned int align;
1608
1609 align = bfd_log2 (sym.st_value);
1610 if (align > old_alignment
1611 /* Permit an alignment power of zero if an alignment of one
1612 is specified and no other alignments have been specified. */
1613 || (sym.st_value == 1 && old_alignment == 0))
1614 h->root.u.c.p->alignment_power = align;
1615 }
1616
1617 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1618 {
1619 int old_flags;
1620 boolean dynsym;
1621 int new_flag;
1622
1623 /* Remember the symbol size and type. */
1624 if (sym.st_size != 0
1625 && (definition || h->size == 0))
1626 {
1627 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1628 (*_bfd_error_handler)
1629 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1630 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1631 bfd_get_filename (abfd));
1632
1633 h->size = sym.st_size;
1634 }
1635
1636 /* If this is a common symbol, then we always want H->SIZE
1637 to be the size of the common symbol. The code just above
1638 won't fix the size if a common symbol becomes larger. We
1639 don't warn about a size change here, because that is
1640 covered by --warn-common. */
1641 if (h->root.type == bfd_link_hash_common)
1642 h->size = h->root.u.c.size;
1643
1644 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1645 && (definition || h->type == STT_NOTYPE))
1646 {
1647 if (h->type != STT_NOTYPE
1648 && h->type != ELF_ST_TYPE (sym.st_info)
1649 && ! type_change_ok)
1650 (*_bfd_error_handler)
1651 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1652 name, h->type, ELF_ST_TYPE (sym.st_info),
1653 bfd_get_filename (abfd));
1654
1655 h->type = ELF_ST_TYPE (sym.st_info);
1656 }
1657
1658 /* If st_other has a processor-specific meaning, specific code
1659 might be needed here. */
1660 if (sym.st_other != 0)
1661 {
1662 /* Combine visibilities, using the most constraining one. */
1663 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1664 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
1665
1666 if (symvis && (hvis > symvis || hvis == 0))
1667 h->other = sym.st_other;
1668
1669 /* If neither has visibility, use the st_other of the
1670 definition. This is an arbitrary choice, since the
1671 other bits have no general meaning. */
1672 if (!symvis && !hvis
1673 && (definition || h->other == 0))
1674 h->other = sym.st_other;
1675 }
1676
1677 /* Set a flag in the hash table entry indicating the type of
1678 reference or definition we just found. Keep a count of
1679 the number of dynamic symbols we find. A dynamic symbol
1680 is one which is referenced or defined by both a regular
1681 object and a shared object. */
1682 old_flags = h->elf_link_hash_flags;
1683 dynsym = false;
1684 if (! dynamic)
1685 {
1686 if (! definition)
1687 {
1688 new_flag = ELF_LINK_HASH_REF_REGULAR;
1689 if (bind != STB_WEAK)
1690 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1691 }
1692 else
1693 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1694 if (info->shared
1695 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1696 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1697 dynsym = true;
1698 }
1699 else
1700 {
1701 if (! definition)
1702 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1703 else
1704 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1705 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1706 | ELF_LINK_HASH_REF_REGULAR)) != 0
1707 || (h->weakdef != NULL
1708 && ! new_weakdef
1709 && h->weakdef->dynindx != -1))
1710 dynsym = true;
1711 }
1712
1713 h->elf_link_hash_flags |= new_flag;
1714
1715 /* If this symbol has a version, and it is the default
1716 version, we create an indirect symbol from the default
1717 name to the fully decorated name. This will cause
1718 external references which do not specify a version to be
1719 bound to this version of the symbol. */
1720 if (definition)
1721 {
1722 char *p;
1723
1724 p = strchr (name, ELF_VER_CHR);
1725 if (p != NULL && p[1] == ELF_VER_CHR)
1726 {
1727 char *shortname;
1728 struct elf_link_hash_entry *hi;
1729 boolean override;
1730
1731 shortname = bfd_hash_allocate (&info->hash->table,
1732 p - name + 1);
1733 if (shortname == NULL)
1734 goto error_return;
1735 strncpy (shortname, name, p - name);
1736 shortname[p - name] = '\0';
1737
1738 /* We are going to create a new symbol. Merge it
1739 with any existing symbol with this name. For the
1740 purposes of the merge, act as though we were
1741 defining the symbol we just defined, although we
1742 actually going to define an indirect symbol. */
1743 type_change_ok = false;
1744 size_change_ok = false;
1745 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1746 &value, &hi, &override,
1747 &type_change_ok,
1748 &size_change_ok, dt_needed))
1749 goto error_return;
1750
1751 if (! override)
1752 {
1753 if (! (_bfd_generic_link_add_one_symbol
1754 (info, abfd, shortname, BSF_INDIRECT,
1755 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1756 collect, (struct bfd_link_hash_entry **) &hi)))
1757 goto error_return;
1758 }
1759 else
1760 {
1761 /* In this case the symbol named SHORTNAME is
1762 overriding the indirect symbol we want to
1763 add. We were planning on making SHORTNAME an
1764 indirect symbol referring to NAME. SHORTNAME
1765 is the name without a version. NAME is the
1766 fully versioned name, and it is the default
1767 version.
1768
1769 Overriding means that we already saw a
1770 definition for the symbol SHORTNAME in a
1771 regular object, and it is overriding the
1772 symbol defined in the dynamic object.
1773
1774 When this happens, we actually want to change
1775 NAME, the symbol we just added, to refer to
1776 SHORTNAME. This will cause references to
1777 NAME in the shared object to become
1778 references to SHORTNAME in the regular
1779 object. This is what we expect when we
1780 override a function in a shared object: that
1781 the references in the shared object will be
1782 mapped to the definition in the regular
1783 object. */
1784
1785 while (hi->root.type == bfd_link_hash_indirect
1786 || hi->root.type == bfd_link_hash_warning)
1787 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1788
1789 h->root.type = bfd_link_hash_indirect;
1790 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1791 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1792 {
1793 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1794 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1795 if (hi->elf_link_hash_flags
1796 & (ELF_LINK_HASH_REF_REGULAR
1797 | ELF_LINK_HASH_DEF_REGULAR))
1798 {
1799 if (! _bfd_elf_link_record_dynamic_symbol (info,
1800 hi))
1801 goto error_return;
1802 }
1803 }
1804
1805 /* Now set HI to H, so that the following code
1806 will set the other fields correctly. */
1807 hi = h;
1808 }
1809
1810 /* If there is a duplicate definition somewhere,
1811 then HI may not point to an indirect symbol. We
1812 will have reported an error to the user in that
1813 case. */
1814
1815 if (hi->root.type == bfd_link_hash_indirect)
1816 {
1817 struct elf_link_hash_entry *ht;
1818
1819 /* If the symbol became indirect, then we assume
1820 that we have not seen a definition before. */
1821 BFD_ASSERT ((hi->elf_link_hash_flags
1822 & (ELF_LINK_HASH_DEF_DYNAMIC
1823 | ELF_LINK_HASH_DEF_REGULAR))
1824 == 0);
1825
1826 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1827 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
1828
1829 /* See if the new flags lead us to realize that
1830 the symbol must be dynamic. */
1831 if (! dynsym)
1832 {
1833 if (! dynamic)
1834 {
1835 if (info->shared
1836 || ((hi->elf_link_hash_flags
1837 & ELF_LINK_HASH_REF_DYNAMIC)
1838 != 0))
1839 dynsym = true;
1840 }
1841 else
1842 {
1843 if ((hi->elf_link_hash_flags
1844 & ELF_LINK_HASH_REF_REGULAR) != 0)
1845 dynsym = true;
1846 }
1847 }
1848 }
1849
1850 /* We also need to define an indirection from the
1851 nondefault version of the symbol. */
1852
1853 shortname = bfd_hash_allocate (&info->hash->table,
1854 strlen (name));
1855 if (shortname == NULL)
1856 goto error_return;
1857 strncpy (shortname, name, p - name);
1858 strcpy (shortname + (p - name), p + 1);
1859
1860 /* Once again, merge with any existing symbol. */
1861 type_change_ok = false;
1862 size_change_ok = false;
1863 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1864 &value, &hi, &override,
1865 &type_change_ok,
1866 &size_change_ok, dt_needed))
1867 goto error_return;
1868
1869 if (override)
1870 {
1871 /* Here SHORTNAME is a versioned name, so we
1872 don't expect to see the type of override we
1873 do in the case above. */
1874 (*_bfd_error_handler)
1875 (_("%s: warning: unexpected redefinition of `%s'"),
1876 bfd_get_filename (abfd), shortname);
1877 }
1878 else
1879 {
1880 if (! (_bfd_generic_link_add_one_symbol
1881 (info, abfd, shortname, BSF_INDIRECT,
1882 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1883 collect, (struct bfd_link_hash_entry **) &hi)))
1884 goto error_return;
1885
1886 /* If there is a duplicate definition somewhere,
1887 then HI may not point to an indirect symbol.
1888 We will have reported an error to the user in
1889 that case. */
1890
1891 if (hi->root.type == bfd_link_hash_indirect)
1892 {
1893 /* If the symbol became indirect, then we
1894 assume that we have not seen a definition
1895 before. */
1896 BFD_ASSERT ((hi->elf_link_hash_flags
1897 & (ELF_LINK_HASH_DEF_DYNAMIC
1898 | ELF_LINK_HASH_DEF_REGULAR))
1899 == 0);
1900
1901 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
1902
1903 /* See if the new flags lead us to realize
1904 that the symbol must be dynamic. */
1905 if (! dynsym)
1906 {
1907 if (! dynamic)
1908 {
1909 if (info->shared
1910 || ((hi->elf_link_hash_flags
1911 & ELF_LINK_HASH_REF_DYNAMIC)
1912 != 0))
1913 dynsym = true;
1914 }
1915 else
1916 {
1917 if ((hi->elf_link_hash_flags
1918 & ELF_LINK_HASH_REF_REGULAR) != 0)
1919 dynsym = true;
1920 }
1921 }
1922 }
1923 }
1924 }
1925 }
1926
1927 if (dynsym && h->dynindx == -1)
1928 {
1929 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1930 goto error_return;
1931 if (h->weakdef != NULL
1932 && ! new_weakdef
1933 && h->weakdef->dynindx == -1)
1934 {
1935 if (! _bfd_elf_link_record_dynamic_symbol (info,
1936 h->weakdef))
1937 goto error_return;
1938 }
1939 }
1940 else if (dynsym && h->dynindx != -1)
1941 /* If the symbol already has a dynamic index, but
1942 visibility says it should not be visible, turn it into
1943 a local symbol. */
1944 switch (ELF_ST_VISIBILITY (h->other))
1945 {
1946 case STV_INTERNAL:
1947 case STV_HIDDEN:
1948 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1949 (*bed->elf_backend_hide_symbol) (info, h);
1950 break;
1951 }
1952
1953 if (dt_needed && definition
1954 && (h->elf_link_hash_flags
1955 & ELF_LINK_HASH_REF_REGULAR) != 0)
1956 {
1957 bfd_size_type oldsize;
1958 bfd_size_type strindex;
1959
1960 /* The symbol from a DT_NEEDED object is referenced from
1961 the regular object to create a dynamic executable. We
1962 have to make sure there is a DT_NEEDED entry for it. */
1963
1964 dt_needed = false;
1965 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1966 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
1967 elf_dt_soname (abfd),
1968 true, false);
1969 if (strindex == (bfd_size_type) -1)
1970 goto error_return;
1971
1972 if (oldsize
1973 == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1974 {
1975 asection *sdyn;
1976 Elf_External_Dyn *dyncon, *dynconend;
1977
1978 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1979 ".dynamic");
1980 BFD_ASSERT (sdyn != NULL);
1981
1982 dyncon = (Elf_External_Dyn *) sdyn->contents;
1983 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1984 sdyn->_raw_size);
1985 for (; dyncon < dynconend; dyncon++)
1986 {
1987 Elf_Internal_Dyn dyn;
1988
1989 elf_swap_dyn_in (elf_hash_table (info)->dynobj,
1990 dyncon, &dyn);
1991 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
1992 dyn.d_un.d_val != strindex);
1993 }
1994 }
1995
1996 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1997 goto error_return;
1998 }
1999 }
2000 }
2001
2002 /* Now set the weakdefs field correctly for all the weak defined
2003 symbols we found. The only way to do this is to search all the
2004 symbols. Since we only need the information for non functions in
2005 dynamic objects, that's the only time we actually put anything on
2006 the list WEAKS. We need this information so that if a regular
2007 object refers to a symbol defined weakly in a dynamic object, the
2008 real symbol in the dynamic object is also put in the dynamic
2009 symbols; we also must arrange for both symbols to point to the
2010 same memory location. We could handle the general case of symbol
2011 aliasing, but a general symbol alias can only be generated in
2012 assembler code, handling it correctly would be very time
2013 consuming, and other ELF linkers don't handle general aliasing
2014 either. */
2015 while (weaks != NULL)
2016 {
2017 struct elf_link_hash_entry *hlook;
2018 asection *slook;
2019 bfd_vma vlook;
2020 struct elf_link_hash_entry **hpp;
2021 struct elf_link_hash_entry **hppend;
2022
2023 hlook = weaks;
2024 weaks = hlook->weakdef;
2025 hlook->weakdef = NULL;
2026
2027 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2028 || hlook->root.type == bfd_link_hash_defweak
2029 || hlook->root.type == bfd_link_hash_common
2030 || hlook->root.type == bfd_link_hash_indirect);
2031 slook = hlook->root.u.def.section;
2032 vlook = hlook->root.u.def.value;
2033
2034 hpp = elf_sym_hashes (abfd);
2035 hppend = hpp + extsymcount;
2036 for (; hpp < hppend; hpp++)
2037 {
2038 struct elf_link_hash_entry *h;
2039
2040 h = *hpp;
2041 if (h != NULL && h != hlook
2042 && h->root.type == bfd_link_hash_defined
2043 && h->root.u.def.section == slook
2044 && h->root.u.def.value == vlook)
2045 {
2046 hlook->weakdef = h;
2047
2048 /* If the weak definition is in the list of dynamic
2049 symbols, make sure the real definition is put there
2050 as well. */
2051 if (hlook->dynindx != -1
2052 && h->dynindx == -1)
2053 {
2054 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2055 goto error_return;
2056 }
2057
2058 /* If the real definition is in the list of dynamic
2059 symbols, make sure the weak definition is put there
2060 as well. If we don't do this, then the dynamic
2061 loader might not merge the entries for the real
2062 definition and the weak definition. */
2063 if (h->dynindx != -1
2064 && hlook->dynindx == -1)
2065 {
2066 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2067 goto error_return;
2068 }
2069
2070 break;
2071 }
2072 }
2073 }
2074
2075 if (buf != NULL)
2076 {
2077 free (buf);
2078 buf = NULL;
2079 }
2080
2081 if (extversym != NULL)
2082 {
2083 free (extversym);
2084 extversym = NULL;
2085 }
2086
2087 /* If this object is the same format as the output object, and it is
2088 not a shared library, then let the backend look through the
2089 relocs.
2090
2091 This is required to build global offset table entries and to
2092 arrange for dynamic relocs. It is not required for the
2093 particular common case of linking non PIC code, even when linking
2094 against shared libraries, but unfortunately there is no way of
2095 knowing whether an object file has been compiled PIC or not.
2096 Looking through the relocs is not particularly time consuming.
2097 The problem is that we must either (1) keep the relocs in memory,
2098 which causes the linker to require additional runtime memory or
2099 (2) read the relocs twice from the input file, which wastes time.
2100 This would be a good case for using mmap.
2101
2102 I have no idea how to handle linking PIC code into a file of a
2103 different format. It probably can't be done. */
2104 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2105 if (! dynamic
2106 && abfd->xvec == info->hash->creator
2107 && check_relocs != NULL)
2108 {
2109 asection *o;
2110
2111 for (o = abfd->sections; o != NULL; o = o->next)
2112 {
2113 Elf_Internal_Rela *internal_relocs;
2114 boolean ok;
2115
2116 if ((o->flags & SEC_RELOC) == 0
2117 || o->reloc_count == 0
2118 || ((info->strip == strip_all || info->strip == strip_debugger)
2119 && (o->flags & SEC_DEBUGGING) != 0)
2120 || bfd_is_abs_section (o->output_section))
2121 continue;
2122
2123 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2124 (abfd, o, (PTR) NULL,
2125 (Elf_Internal_Rela *) NULL,
2126 info->keep_memory));
2127 if (internal_relocs == NULL)
2128 goto error_return;
2129
2130 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2131
2132 if (! info->keep_memory)
2133 free (internal_relocs);
2134
2135 if (! ok)
2136 goto error_return;
2137 }
2138 }
2139
2140 /* If this is a non-traditional, non-relocateable link, try to
2141 optimize the handling of the .stab/.stabstr sections. */
2142 if (! dynamic
2143 && ! info->relocateable
2144 && ! info->traditional_format
2145 && info->hash->creator->flavour == bfd_target_elf_flavour
2146 && (info->strip != strip_all && info->strip != strip_debugger))
2147 {
2148 asection *stab, *stabstr;
2149
2150 stab = bfd_get_section_by_name (abfd, ".stab");
2151 if (stab != NULL)
2152 {
2153 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2154
2155 if (stabstr != NULL)
2156 {
2157 struct bfd_elf_section_data *secdata;
2158
2159 secdata = elf_section_data (stab);
2160 if (! _bfd_link_section_stabs (abfd,
2161 &elf_hash_table (info)->stab_info,
2162 stab, stabstr,
2163 &secdata->stab_info))
2164 goto error_return;
2165 }
2166 }
2167 }
2168
2169 return true;
2170
2171 error_return:
2172 if (buf != NULL)
2173 free (buf);
2174 if (dynbuf != NULL)
2175 free (dynbuf);
2176 if (dynver != NULL)
2177 free (dynver);
2178 if (extversym != NULL)
2179 free (extversym);
2180 return false;
2181 }
2182
2183 /* Create some sections which will be filled in with dynamic linking
2184 information. ABFD is an input file which requires dynamic sections
2185 to be created. The dynamic sections take up virtual memory space
2186 when the final executable is run, so we need to create them before
2187 addresses are assigned to the output sections. We work out the
2188 actual contents and size of these sections later. */
2189
2190 boolean
2191 elf_link_create_dynamic_sections (abfd, info)
2192 bfd *abfd;
2193 struct bfd_link_info *info;
2194 {
2195 flagword flags;
2196 register asection *s;
2197 struct elf_link_hash_entry *h;
2198 struct elf_backend_data *bed;
2199
2200 if (elf_hash_table (info)->dynamic_sections_created)
2201 return true;
2202
2203 /* Make sure that all dynamic sections use the same input BFD. */
2204 if (elf_hash_table (info)->dynobj == NULL)
2205 elf_hash_table (info)->dynobj = abfd;
2206 else
2207 abfd = elf_hash_table (info)->dynobj;
2208
2209 /* Note that we set the SEC_IN_MEMORY flag for all of these
2210 sections. */
2211 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2212 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2213
2214 /* A dynamically linked executable has a .interp section, but a
2215 shared library does not. */
2216 if (! info->shared)
2217 {
2218 s = bfd_make_section (abfd, ".interp");
2219 if (s == NULL
2220 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2221 return false;
2222 }
2223
2224 /* Create sections to hold version informations. These are removed
2225 if they are not needed. */
2226 s = bfd_make_section (abfd, ".gnu.version_d");
2227 if (s == NULL
2228 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2229 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2230 return false;
2231
2232 s = bfd_make_section (abfd, ".gnu.version");
2233 if (s == NULL
2234 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2235 || ! bfd_set_section_alignment (abfd, s, 1))
2236 return false;
2237
2238 s = bfd_make_section (abfd, ".gnu.version_r");
2239 if (s == NULL
2240 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2241 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2242 return false;
2243
2244 s = bfd_make_section (abfd, ".dynsym");
2245 if (s == NULL
2246 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2247 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2248 return false;
2249
2250 s = bfd_make_section (abfd, ".dynstr");
2251 if (s == NULL
2252 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2253 return false;
2254
2255 /* Create a strtab to hold the dynamic symbol names. */
2256 if (elf_hash_table (info)->dynstr == NULL)
2257 {
2258 elf_hash_table (info)->dynstr = elf_stringtab_init ();
2259 if (elf_hash_table (info)->dynstr == NULL)
2260 return false;
2261 }
2262
2263 s = bfd_make_section (abfd, ".dynamic");
2264 if (s == NULL
2265 || ! bfd_set_section_flags (abfd, s, flags)
2266 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2267 return false;
2268
2269 /* The special symbol _DYNAMIC is always set to the start of the
2270 .dynamic section. This call occurs before we have processed the
2271 symbols for any dynamic object, so we don't have to worry about
2272 overriding a dynamic definition. We could set _DYNAMIC in a
2273 linker script, but we only want to define it if we are, in fact,
2274 creating a .dynamic section. We don't want to define it if there
2275 is no .dynamic section, since on some ELF platforms the start up
2276 code examines it to decide how to initialize the process. */
2277 h = NULL;
2278 if (! (_bfd_generic_link_add_one_symbol
2279 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2280 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2281 (struct bfd_link_hash_entry **) &h)))
2282 return false;
2283 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2284 h->type = STT_OBJECT;
2285
2286 if (info->shared
2287 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2288 return false;
2289
2290 bed = get_elf_backend_data (abfd);
2291
2292 s = bfd_make_section (abfd, ".hash");
2293 if (s == NULL
2294 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2295 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2296 return false;
2297 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2298
2299 /* Let the backend create the rest of the sections. This lets the
2300 backend set the right flags. The backend will normally create
2301 the .got and .plt sections. */
2302 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2303 return false;
2304
2305 elf_hash_table (info)->dynamic_sections_created = true;
2306
2307 return true;
2308 }
2309
2310 /* Add an entry to the .dynamic table. */
2311
2312 boolean
2313 elf_add_dynamic_entry (info, tag, val)
2314 struct bfd_link_info *info;
2315 bfd_vma tag;
2316 bfd_vma val;
2317 {
2318 Elf_Internal_Dyn dyn;
2319 bfd *dynobj;
2320 asection *s;
2321 size_t newsize;
2322 bfd_byte *newcontents;
2323
2324 dynobj = elf_hash_table (info)->dynobj;
2325
2326 s = bfd_get_section_by_name (dynobj, ".dynamic");
2327 BFD_ASSERT (s != NULL);
2328
2329 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2330 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2331 if (newcontents == NULL)
2332 return false;
2333
2334 dyn.d_tag = tag;
2335 dyn.d_un.d_val = val;
2336 elf_swap_dyn_out (dynobj, &dyn,
2337 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2338
2339 s->_raw_size = newsize;
2340 s->contents = newcontents;
2341
2342 return true;
2343 }
2344
2345 /* Record a new local dynamic symbol. */
2346
2347 boolean
2348 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2349 struct bfd_link_info *info;
2350 bfd *input_bfd;
2351 long input_indx;
2352 {
2353 struct elf_link_local_dynamic_entry *entry;
2354 struct elf_link_hash_table *eht;
2355 struct bfd_strtab_hash *dynstr;
2356 Elf_External_Sym esym;
2357 unsigned long dynstr_index;
2358 char *name;
2359
2360 /* See if the entry exists already. */
2361 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2362 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2363 return true;
2364
2365 entry = (struct elf_link_local_dynamic_entry *)
2366 bfd_alloc (input_bfd, sizeof (*entry));
2367 if (entry == NULL)
2368 return false;
2369
2370 /* Go find the symbol, so that we can find it's name. */
2371 if (bfd_seek (input_bfd,
2372 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2373 + input_indx * sizeof (Elf_External_Sym)),
2374 SEEK_SET) != 0
2375 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2376 != sizeof (Elf_External_Sym)))
2377 return false;
2378 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2379
2380 name = (bfd_elf_string_from_elf_section
2381 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2382 entry->isym.st_name));
2383
2384 dynstr = elf_hash_table (info)->dynstr;
2385 if (dynstr == NULL)
2386 {
2387 /* Create a strtab to hold the dynamic symbol names. */
2388 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2389 if (dynstr == NULL)
2390 return false;
2391 }
2392
2393 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2394 if (dynstr_index == (unsigned long) -1)
2395 return false;
2396 entry->isym.st_name = dynstr_index;
2397
2398 eht = elf_hash_table (info);
2399
2400 entry->next = eht->dynlocal;
2401 eht->dynlocal = entry;
2402 entry->input_bfd = input_bfd;
2403 entry->input_indx = input_indx;
2404 eht->dynsymcount++;
2405
2406 /* Whatever binding the symbol had before, it's now local. */
2407 entry->isym.st_info
2408 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2409
2410 /* The dynindx will be set at the end of size_dynamic_sections. */
2411
2412 return true;
2413 }
2414 \f
2415
2416 /* Read and swap the relocs from the section indicated by SHDR. This
2417 may be either a REL or a RELA section. The relocations are
2418 translated into RELA relocations and stored in INTERNAL_RELOCS,
2419 which should have already been allocated to contain enough space.
2420 The EXTERNAL_RELOCS are a buffer where the external form of the
2421 relocations should be stored.
2422
2423 Returns false if something goes wrong. */
2424
2425 static boolean
2426 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2427 internal_relocs)
2428 bfd *abfd;
2429 Elf_Internal_Shdr *shdr;
2430 PTR external_relocs;
2431 Elf_Internal_Rela *internal_relocs;
2432 {
2433 struct elf_backend_data *bed;
2434
2435 /* If there aren't any relocations, that's OK. */
2436 if (!shdr)
2437 return true;
2438
2439 /* Position ourselves at the start of the section. */
2440 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2441 return false;
2442
2443 /* Read the relocations. */
2444 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2445 != shdr->sh_size)
2446 return false;
2447
2448 bed = get_elf_backend_data (abfd);
2449
2450 /* Convert the external relocations to the internal format. */
2451 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2452 {
2453 Elf_External_Rel *erel;
2454 Elf_External_Rel *erelend;
2455 Elf_Internal_Rela *irela;
2456 Elf_Internal_Rel *irel;
2457
2458 erel = (Elf_External_Rel *) external_relocs;
2459 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2460 irela = internal_relocs;
2461 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2462 * sizeof (Elf_Internal_Rel)));
2463 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2464 {
2465 unsigned char i;
2466
2467 if (bed->s->swap_reloc_in)
2468 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2469 else
2470 elf_swap_reloc_in (abfd, erel, irel);
2471
2472 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2473 {
2474 irela[i].r_offset = irel[i].r_offset;
2475 irela[i].r_info = irel[i].r_info;
2476 irela[i].r_addend = 0;
2477 }
2478 }
2479 }
2480 else
2481 {
2482 Elf_External_Rela *erela;
2483 Elf_External_Rela *erelaend;
2484 Elf_Internal_Rela *irela;
2485
2486 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2487
2488 erela = (Elf_External_Rela *) external_relocs;
2489 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2490 irela = internal_relocs;
2491 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2492 {
2493 if (bed->s->swap_reloca_in)
2494 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2495 else
2496 elf_swap_reloca_in (abfd, erela, irela);
2497 }
2498 }
2499
2500 return true;
2501 }
2502
2503 /* Read and swap the relocs for a section O. They may have been
2504 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2505 not NULL, they are used as buffers to read into. They are known to
2506 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2507 the return value is allocated using either malloc or bfd_alloc,
2508 according to the KEEP_MEMORY argument. If O has two relocation
2509 sections (both REL and RELA relocations), then the REL_HDR
2510 relocations will appear first in INTERNAL_RELOCS, followed by the
2511 REL_HDR2 relocations. */
2512
2513 Elf_Internal_Rela *
2514 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2515 keep_memory)
2516 bfd *abfd;
2517 asection *o;
2518 PTR external_relocs;
2519 Elf_Internal_Rela *internal_relocs;
2520 boolean keep_memory;
2521 {
2522 Elf_Internal_Shdr *rel_hdr;
2523 PTR alloc1 = NULL;
2524 Elf_Internal_Rela *alloc2 = NULL;
2525 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2526
2527 if (elf_section_data (o)->relocs != NULL)
2528 return elf_section_data (o)->relocs;
2529
2530 if (o->reloc_count == 0)
2531 return NULL;
2532
2533 rel_hdr = &elf_section_data (o)->rel_hdr;
2534
2535 if (internal_relocs == NULL)
2536 {
2537 size_t size;
2538
2539 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2540 * sizeof (Elf_Internal_Rela));
2541 if (keep_memory)
2542 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2543 else
2544 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2545 if (internal_relocs == NULL)
2546 goto error_return;
2547 }
2548
2549 if (external_relocs == NULL)
2550 {
2551 size_t size = (size_t) rel_hdr->sh_size;
2552
2553 if (elf_section_data (o)->rel_hdr2)
2554 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2555 alloc1 = (PTR) bfd_malloc (size);
2556 if (alloc1 == NULL)
2557 goto error_return;
2558 external_relocs = alloc1;
2559 }
2560
2561 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2562 external_relocs,
2563 internal_relocs))
2564 goto error_return;
2565 if (!elf_link_read_relocs_from_section
2566 (abfd,
2567 elf_section_data (o)->rel_hdr2,
2568 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2569 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2570 * bed->s->int_rels_per_ext_rel)))
2571 goto error_return;
2572
2573 /* Cache the results for next time, if we can. */
2574 if (keep_memory)
2575 elf_section_data (o)->relocs = internal_relocs;
2576
2577 if (alloc1 != NULL)
2578 free (alloc1);
2579
2580 /* Don't free alloc2, since if it was allocated we are passing it
2581 back (under the name of internal_relocs). */
2582
2583 return internal_relocs;
2584
2585 error_return:
2586 if (alloc1 != NULL)
2587 free (alloc1);
2588 if (alloc2 != NULL)
2589 free (alloc2);
2590 return NULL;
2591 }
2592 \f
2593
2594 /* Record an assignment to a symbol made by a linker script. We need
2595 this in case some dynamic object refers to this symbol. */
2596
2597 /*ARGSUSED*/
2598 boolean
2599 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2600 bfd *output_bfd ATTRIBUTE_UNUSED;
2601 struct bfd_link_info *info;
2602 const char *name;
2603 boolean provide;
2604 {
2605 struct elf_link_hash_entry *h;
2606
2607 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2608 return true;
2609
2610 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2611 if (h == NULL)
2612 return false;
2613
2614 if (h->root.type == bfd_link_hash_new)
2615 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2616
2617 /* If this symbol is being provided by the linker script, and it is
2618 currently defined by a dynamic object, but not by a regular
2619 object, then mark it as undefined so that the generic linker will
2620 force the correct value. */
2621 if (provide
2622 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2623 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2624 h->root.type = bfd_link_hash_undefined;
2625
2626 /* If this symbol is not being provided by the linker script, and it is
2627 currently defined by a dynamic object, but not by a regular object,
2628 then clear out any version information because the symbol will not be
2629 associated with the dynamic object any more. */
2630 if (!provide
2631 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2632 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2633 h->verinfo.verdef = NULL;
2634
2635 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2636
2637 /* When possible, keep the original type of the symbol */
2638 if (h->type == STT_NOTYPE)
2639 h->type = STT_OBJECT;
2640
2641 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2642 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2643 || info->shared)
2644 && h->dynindx == -1)
2645 {
2646 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2647 return false;
2648
2649 /* If this is a weak defined symbol, and we know a corresponding
2650 real symbol from the same dynamic object, make sure the real
2651 symbol is also made into a dynamic symbol. */
2652 if (h->weakdef != NULL
2653 && h->weakdef->dynindx == -1)
2654 {
2655 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2656 return false;
2657 }
2658 }
2659
2660 return true;
2661 }
2662 \f
2663 /* This structure is used to pass information to
2664 elf_link_assign_sym_version. */
2665
2666 struct elf_assign_sym_version_info
2667 {
2668 /* Output BFD. */
2669 bfd *output_bfd;
2670 /* General link information. */
2671 struct bfd_link_info *info;
2672 /* Version tree. */
2673 struct bfd_elf_version_tree *verdefs;
2674 /* Whether we are exporting all dynamic symbols. */
2675 boolean export_dynamic;
2676 /* Whether we had a failure. */
2677 boolean failed;
2678 };
2679
2680 /* This structure is used to pass information to
2681 elf_link_find_version_dependencies. */
2682
2683 struct elf_find_verdep_info
2684 {
2685 /* Output BFD. */
2686 bfd *output_bfd;
2687 /* General link information. */
2688 struct bfd_link_info *info;
2689 /* The number of dependencies. */
2690 unsigned int vers;
2691 /* Whether we had a failure. */
2692 boolean failed;
2693 };
2694
2695 /* Array used to determine the number of hash table buckets to use
2696 based on the number of symbols there are. If there are fewer than
2697 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2698 fewer than 37 we use 17 buckets, and so forth. We never use more
2699 than 32771 buckets. */
2700
2701 static const size_t elf_buckets[] =
2702 {
2703 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2704 16411, 32771, 0
2705 };
2706
2707 /* Compute bucket count for hashing table. We do not use a static set
2708 of possible tables sizes anymore. Instead we determine for all
2709 possible reasonable sizes of the table the outcome (i.e., the
2710 number of collisions etc) and choose the best solution. The
2711 weighting functions are not too simple to allow the table to grow
2712 without bounds. Instead one of the weighting factors is the size.
2713 Therefore the result is always a good payoff between few collisions
2714 (= short chain lengths) and table size. */
2715 static size_t
2716 compute_bucket_count (info)
2717 struct bfd_link_info *info;
2718 {
2719 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2720 size_t best_size = 0;
2721 unsigned long int *hashcodes;
2722 unsigned long int *hashcodesp;
2723 unsigned long int i;
2724
2725 /* Compute the hash values for all exported symbols. At the same
2726 time store the values in an array so that we could use them for
2727 optimizations. */
2728 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2729 * sizeof (unsigned long int));
2730 if (hashcodes == NULL)
2731 return 0;
2732 hashcodesp = hashcodes;
2733
2734 /* Put all hash values in HASHCODES. */
2735 elf_link_hash_traverse (elf_hash_table (info),
2736 elf_collect_hash_codes, &hashcodesp);
2737
2738 /* We have a problem here. The following code to optimize the table
2739 size requires an integer type with more the 32 bits. If
2740 BFD_HOST_U_64_BIT is set we know about such a type. */
2741 #ifdef BFD_HOST_U_64_BIT
2742 if (info->optimize == true)
2743 {
2744 unsigned long int nsyms = hashcodesp - hashcodes;
2745 size_t minsize;
2746 size_t maxsize;
2747 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2748 unsigned long int *counts ;
2749
2750 /* Possible optimization parameters: if we have NSYMS symbols we say
2751 that the hashing table must at least have NSYMS/4 and at most
2752 2*NSYMS buckets. */
2753 minsize = nsyms / 4;
2754 if (minsize == 0)
2755 minsize = 1;
2756 best_size = maxsize = nsyms * 2;
2757
2758 /* Create array where we count the collisions in. We must use bfd_malloc
2759 since the size could be large. */
2760 counts = (unsigned long int *) bfd_malloc (maxsize
2761 * sizeof (unsigned long int));
2762 if (counts == NULL)
2763 {
2764 free (hashcodes);
2765 return 0;
2766 }
2767
2768 /* Compute the "optimal" size for the hash table. The criteria is a
2769 minimal chain length. The minor criteria is (of course) the size
2770 of the table. */
2771 for (i = minsize; i < maxsize; ++i)
2772 {
2773 /* Walk through the array of hashcodes and count the collisions. */
2774 BFD_HOST_U_64_BIT max;
2775 unsigned long int j;
2776 unsigned long int fact;
2777
2778 memset (counts, '\0', i * sizeof (unsigned long int));
2779
2780 /* Determine how often each hash bucket is used. */
2781 for (j = 0; j < nsyms; ++j)
2782 ++counts[hashcodes[j] % i];
2783
2784 /* For the weight function we need some information about the
2785 pagesize on the target. This is information need not be 100%
2786 accurate. Since this information is not available (so far) we
2787 define it here to a reasonable default value. If it is crucial
2788 to have a better value some day simply define this value. */
2789 # ifndef BFD_TARGET_PAGESIZE
2790 # define BFD_TARGET_PAGESIZE (4096)
2791 # endif
2792
2793 /* We in any case need 2 + NSYMS entries for the size values and
2794 the chains. */
2795 max = (2 + nsyms) * (ARCH_SIZE / 8);
2796
2797 # if 1
2798 /* Variant 1: optimize for short chains. We add the squares
2799 of all the chain lengths (which favous many small chain
2800 over a few long chains). */
2801 for (j = 0; j < i; ++j)
2802 max += counts[j] * counts[j];
2803
2804 /* This adds penalties for the overall size of the table. */
2805 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2806 max *= fact * fact;
2807 # else
2808 /* Variant 2: Optimize a lot more for small table. Here we
2809 also add squares of the size but we also add penalties for
2810 empty slots (the +1 term). */
2811 for (j = 0; j < i; ++j)
2812 max += (1 + counts[j]) * (1 + counts[j]);
2813
2814 /* The overall size of the table is considered, but not as
2815 strong as in variant 1, where it is squared. */
2816 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2817 max *= fact;
2818 # endif
2819
2820 /* Compare with current best results. */
2821 if (max < best_chlen)
2822 {
2823 best_chlen = max;
2824 best_size = i;
2825 }
2826 }
2827
2828 free (counts);
2829 }
2830 else
2831 #endif /* defined (BFD_HOST_U_64_BIT) */
2832 {
2833 /* This is the fallback solution if no 64bit type is available or if we
2834 are not supposed to spend much time on optimizations. We select the
2835 bucket count using a fixed set of numbers. */
2836 for (i = 0; elf_buckets[i] != 0; i++)
2837 {
2838 best_size = elf_buckets[i];
2839 if (dynsymcount < elf_buckets[i + 1])
2840 break;
2841 }
2842 }
2843
2844 /* Free the arrays we needed. */
2845 free (hashcodes);
2846
2847 return best_size;
2848 }
2849
2850 /* Set up the sizes and contents of the ELF dynamic sections. This is
2851 called by the ELF linker emulation before_allocation routine. We
2852 must set the sizes of the sections before the linker sets the
2853 addresses of the various sections. */
2854
2855 boolean
2856 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2857 export_dynamic, filter_shlib,
2858 auxiliary_filters, info, sinterpptr,
2859 verdefs)
2860 bfd *output_bfd;
2861 const char *soname;
2862 const char *rpath;
2863 boolean export_dynamic;
2864 const char *filter_shlib;
2865 const char * const *auxiliary_filters;
2866 struct bfd_link_info *info;
2867 asection **sinterpptr;
2868 struct bfd_elf_version_tree *verdefs;
2869 {
2870 bfd_size_type soname_indx;
2871 bfd *dynobj;
2872 struct elf_backend_data *bed;
2873 struct elf_assign_sym_version_info asvinfo;
2874
2875 *sinterpptr = NULL;
2876
2877 soname_indx = (bfd_size_type) -1;
2878
2879 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2880 return true;
2881
2882 /* The backend may have to create some sections regardless of whether
2883 we're dynamic or not. */
2884 bed = get_elf_backend_data (output_bfd);
2885 if (bed->elf_backend_always_size_sections
2886 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2887 return false;
2888
2889 dynobj = elf_hash_table (info)->dynobj;
2890
2891 /* If there were no dynamic objects in the link, there is nothing to
2892 do here. */
2893 if (dynobj == NULL)
2894 return true;
2895
2896 if (elf_hash_table (info)->dynamic_sections_created)
2897 {
2898 struct elf_info_failed eif;
2899 struct elf_link_hash_entry *h;
2900 bfd_size_type strsize;
2901
2902 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2903 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2904
2905 if (soname != NULL)
2906 {
2907 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2908 soname, true, true);
2909 if (soname_indx == (bfd_size_type) -1
2910 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2911 return false;
2912 }
2913
2914 if (info->symbolic)
2915 {
2916 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2917 return false;
2918 info->flags |= DF_SYMBOLIC;
2919 }
2920
2921 if (rpath != NULL)
2922 {
2923 bfd_size_type indx;
2924
2925 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2926 true, true);
2927 if (indx == (bfd_size_type) -1
2928 || ! elf_add_dynamic_entry (info, DT_RPATH, indx)
2929 || (info->new_dtags
2930 && ! elf_add_dynamic_entry (info, DT_RUNPATH, indx)))
2931 return false;
2932 }
2933
2934 if (filter_shlib != NULL)
2935 {
2936 bfd_size_type indx;
2937
2938 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2939 filter_shlib, true, true);
2940 if (indx == (bfd_size_type) -1
2941 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2942 return false;
2943 }
2944
2945 if (auxiliary_filters != NULL)
2946 {
2947 const char * const *p;
2948
2949 for (p = auxiliary_filters; *p != NULL; p++)
2950 {
2951 bfd_size_type indx;
2952
2953 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2954 *p, true, true);
2955 if (indx == (bfd_size_type) -1
2956 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2957 return false;
2958 }
2959 }
2960
2961 /* If we are supposed to export all symbols into the dynamic symbol
2962 table (this is not the normal case), then do so. */
2963 if (export_dynamic)
2964 {
2965 struct elf_info_failed eif;
2966
2967 eif.failed = false;
2968 eif.info = info;
2969 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2970 (PTR) &eif);
2971 if (eif.failed)
2972 return false;
2973 }
2974
2975 /* Attach all the symbols to their version information. */
2976 asvinfo.output_bfd = output_bfd;
2977 asvinfo.info = info;
2978 asvinfo.verdefs = verdefs;
2979 asvinfo.export_dynamic = export_dynamic;
2980 asvinfo.failed = false;
2981
2982 elf_link_hash_traverse (elf_hash_table (info),
2983 elf_link_assign_sym_version,
2984 (PTR) &asvinfo);
2985 if (asvinfo.failed)
2986 return false;
2987
2988 /* Find all symbols which were defined in a dynamic object and make
2989 the backend pick a reasonable value for them. */
2990 eif.failed = false;
2991 eif.info = info;
2992 elf_link_hash_traverse (elf_hash_table (info),
2993 elf_adjust_dynamic_symbol,
2994 (PTR) &eif);
2995 if (eif.failed)
2996 return false;
2997
2998 /* Add some entries to the .dynamic section. We fill in some of the
2999 values later, in elf_bfd_final_link, but we must add the entries
3000 now so that we know the final size of the .dynamic section. */
3001
3002 /* If there are initialization and/or finalization functions to
3003 call then add the corresponding DT_INIT/DT_FINI entries. */
3004 h = (info->init_function
3005 ? elf_link_hash_lookup (elf_hash_table (info),
3006 info->init_function, false,
3007 false, false)
3008 : NULL);
3009 if (h != NULL
3010 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3011 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3012 {
3013 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
3014 return false;
3015 }
3016 h = (info->fini_function
3017 ? elf_link_hash_lookup (elf_hash_table (info),
3018 info->fini_function, false,
3019 false, false)
3020 : NULL);
3021 if (h != NULL
3022 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3023 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3024 {
3025 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
3026 return false;
3027 }
3028
3029 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3030 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
3031 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
3032 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
3033 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
3034 || ! elf_add_dynamic_entry (info, DT_SYMENT,
3035 sizeof (Elf_External_Sym)))
3036 return false;
3037 }
3038
3039 /* The backend must work out the sizes of all the other dynamic
3040 sections. */
3041 if (bed->elf_backend_size_dynamic_sections
3042 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3043 return false;
3044
3045 if (elf_hash_table (info)->dynamic_sections_created)
3046 {
3047 size_t dynsymcount;
3048 asection *s;
3049 size_t bucketcount = 0;
3050 Elf_Internal_Sym isym;
3051 size_t hash_entry_size;
3052
3053 /* Set up the version definition section. */
3054 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3055 BFD_ASSERT (s != NULL);
3056
3057 /* We may have created additional version definitions if we are
3058 just linking a regular application. */
3059 verdefs = asvinfo.verdefs;
3060
3061 if (verdefs == NULL)
3062 _bfd_strip_section_from_output (info, s);
3063 else
3064 {
3065 unsigned int cdefs;
3066 bfd_size_type size;
3067 struct bfd_elf_version_tree *t;
3068 bfd_byte *p;
3069 Elf_Internal_Verdef def;
3070 Elf_Internal_Verdaux defaux;
3071
3072 cdefs = 0;
3073 size = 0;
3074
3075 /* Make space for the base version. */
3076 size += sizeof (Elf_External_Verdef);
3077 size += sizeof (Elf_External_Verdaux);
3078 ++cdefs;
3079
3080 for (t = verdefs; t != NULL; t = t->next)
3081 {
3082 struct bfd_elf_version_deps *n;
3083
3084 size += sizeof (Elf_External_Verdef);
3085 size += sizeof (Elf_External_Verdaux);
3086 ++cdefs;
3087
3088 for (n = t->deps; n != NULL; n = n->next)
3089 size += sizeof (Elf_External_Verdaux);
3090 }
3091
3092 s->_raw_size = size;
3093 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3094 if (s->contents == NULL && s->_raw_size != 0)
3095 return false;
3096
3097 /* Fill in the version definition section. */
3098
3099 p = s->contents;
3100
3101 def.vd_version = VER_DEF_CURRENT;
3102 def.vd_flags = VER_FLG_BASE;
3103 def.vd_ndx = 1;
3104 def.vd_cnt = 1;
3105 def.vd_aux = sizeof (Elf_External_Verdef);
3106 def.vd_next = (sizeof (Elf_External_Verdef)
3107 + sizeof (Elf_External_Verdaux));
3108
3109 if (soname_indx != (bfd_size_type) -1)
3110 {
3111 def.vd_hash = bfd_elf_hash (soname);
3112 defaux.vda_name = soname_indx;
3113 }
3114 else
3115 {
3116 const char *name;
3117 bfd_size_type indx;
3118
3119 name = output_bfd->filename;
3120 def.vd_hash = bfd_elf_hash (name);
3121 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3122 name, true, false);
3123 if (indx == (bfd_size_type) -1)
3124 return false;
3125 defaux.vda_name = indx;
3126 }
3127 defaux.vda_next = 0;
3128
3129 _bfd_elf_swap_verdef_out (output_bfd, &def,
3130 (Elf_External_Verdef *)p);
3131 p += sizeof (Elf_External_Verdef);
3132 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3133 (Elf_External_Verdaux *) p);
3134 p += sizeof (Elf_External_Verdaux);
3135
3136 for (t = verdefs; t != NULL; t = t->next)
3137 {
3138 unsigned int cdeps;
3139 struct bfd_elf_version_deps *n;
3140 struct elf_link_hash_entry *h;
3141
3142 cdeps = 0;
3143 for (n = t->deps; n != NULL; n = n->next)
3144 ++cdeps;
3145
3146 /* Add a symbol representing this version. */
3147 h = NULL;
3148 if (! (_bfd_generic_link_add_one_symbol
3149 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3150 (bfd_vma) 0, (const char *) NULL, false,
3151 get_elf_backend_data (dynobj)->collect,
3152 (struct bfd_link_hash_entry **) &h)))
3153 return false;
3154 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3155 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3156 h->type = STT_OBJECT;
3157 h->verinfo.vertree = t;
3158
3159 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3160 return false;
3161
3162 def.vd_version = VER_DEF_CURRENT;
3163 def.vd_flags = 0;
3164 if (t->globals == NULL && t->locals == NULL && ! t->used)
3165 def.vd_flags |= VER_FLG_WEAK;
3166 def.vd_ndx = t->vernum + 1;
3167 def.vd_cnt = cdeps + 1;
3168 def.vd_hash = bfd_elf_hash (t->name);
3169 def.vd_aux = sizeof (Elf_External_Verdef);
3170 if (t->next != NULL)
3171 def.vd_next = (sizeof (Elf_External_Verdef)
3172 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3173 else
3174 def.vd_next = 0;
3175
3176 _bfd_elf_swap_verdef_out (output_bfd, &def,
3177 (Elf_External_Verdef *) p);
3178 p += sizeof (Elf_External_Verdef);
3179
3180 defaux.vda_name = h->dynstr_index;
3181 if (t->deps == NULL)
3182 defaux.vda_next = 0;
3183 else
3184 defaux.vda_next = sizeof (Elf_External_Verdaux);
3185 t->name_indx = defaux.vda_name;
3186
3187 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3188 (Elf_External_Verdaux *) p);
3189 p += sizeof (Elf_External_Verdaux);
3190
3191 for (n = t->deps; n != NULL; n = n->next)
3192 {
3193 if (n->version_needed == NULL)
3194 {
3195 /* This can happen if there was an error in the
3196 version script. */
3197 defaux.vda_name = 0;
3198 }
3199 else
3200 defaux.vda_name = n->version_needed->name_indx;
3201 if (n->next == NULL)
3202 defaux.vda_next = 0;
3203 else
3204 defaux.vda_next = sizeof (Elf_External_Verdaux);
3205
3206 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3207 (Elf_External_Verdaux *) p);
3208 p += sizeof (Elf_External_Verdaux);
3209 }
3210 }
3211
3212 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
3213 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
3214 return false;
3215
3216 elf_tdata (output_bfd)->cverdefs = cdefs;
3217 }
3218
3219 if (info->new_dtags && info->flags)
3220 {
3221 if (! elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
3222 return false;
3223 }
3224
3225 if (info->flags_1)
3226 {
3227 if (! info->shared)
3228 info->flags_1 &= ~ (DF_1_INITFIRST
3229 | DF_1_NODELETE
3230 | DF_1_NOOPEN);
3231 if (! elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
3232 return false;
3233 }
3234
3235 /* Work out the size of the version reference section. */
3236
3237 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3238 BFD_ASSERT (s != NULL);
3239 {
3240 struct elf_find_verdep_info sinfo;
3241
3242 sinfo.output_bfd = output_bfd;
3243 sinfo.info = info;
3244 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3245 if (sinfo.vers == 0)
3246 sinfo.vers = 1;
3247 sinfo.failed = false;
3248
3249 elf_link_hash_traverse (elf_hash_table (info),
3250 elf_link_find_version_dependencies,
3251 (PTR) &sinfo);
3252
3253 if (elf_tdata (output_bfd)->verref == NULL)
3254 _bfd_strip_section_from_output (info, s);
3255 else
3256 {
3257 Elf_Internal_Verneed *t;
3258 unsigned int size;
3259 unsigned int crefs;
3260 bfd_byte *p;
3261
3262 /* Build the version definition section. */
3263 size = 0;
3264 crefs = 0;
3265 for (t = elf_tdata (output_bfd)->verref;
3266 t != NULL;
3267 t = t->vn_nextref)
3268 {
3269 Elf_Internal_Vernaux *a;
3270
3271 size += sizeof (Elf_External_Verneed);
3272 ++crefs;
3273 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3274 size += sizeof (Elf_External_Vernaux);
3275 }
3276
3277 s->_raw_size = size;
3278 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3279 if (s->contents == NULL)
3280 return false;
3281
3282 p = s->contents;
3283 for (t = elf_tdata (output_bfd)->verref;
3284 t != NULL;
3285 t = t->vn_nextref)
3286 {
3287 unsigned int caux;
3288 Elf_Internal_Vernaux *a;
3289 bfd_size_type indx;
3290
3291 caux = 0;
3292 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3293 ++caux;
3294
3295 t->vn_version = VER_NEED_CURRENT;
3296 t->vn_cnt = caux;
3297 if (elf_dt_name (t->vn_bfd) != NULL)
3298 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3299 elf_dt_name (t->vn_bfd),
3300 true, false);
3301 else
3302 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3303 t->vn_bfd->filename, true, false);
3304 if (indx == (bfd_size_type) -1)
3305 return false;
3306 t->vn_file = indx;
3307 t->vn_aux = sizeof (Elf_External_Verneed);
3308 if (t->vn_nextref == NULL)
3309 t->vn_next = 0;
3310 else
3311 t->vn_next = (sizeof (Elf_External_Verneed)
3312 + caux * sizeof (Elf_External_Vernaux));
3313
3314 _bfd_elf_swap_verneed_out (output_bfd, t,
3315 (Elf_External_Verneed *) p);
3316 p += sizeof (Elf_External_Verneed);
3317
3318 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3319 {
3320 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3321 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3322 a->vna_nodename, true, false);
3323 if (indx == (bfd_size_type) -1)
3324 return false;
3325 a->vna_name = indx;
3326 if (a->vna_nextptr == NULL)
3327 a->vna_next = 0;
3328 else
3329 a->vna_next = sizeof (Elf_External_Vernaux);
3330
3331 _bfd_elf_swap_vernaux_out (output_bfd, a,
3332 (Elf_External_Vernaux *) p);
3333 p += sizeof (Elf_External_Vernaux);
3334 }
3335 }
3336
3337 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3338 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3339 return false;
3340
3341 elf_tdata (output_bfd)->cverrefs = crefs;
3342 }
3343 }
3344
3345 /* Assign dynsym indicies. In a shared library we generate a
3346 section symbol for each output section, which come first.
3347 Next come all of the back-end allocated local dynamic syms,
3348 followed by the rest of the global symbols. */
3349
3350 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3351
3352 /* Work out the size of the symbol version section. */
3353 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3354 BFD_ASSERT (s != NULL);
3355 if (dynsymcount == 0
3356 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3357 {
3358 _bfd_strip_section_from_output (info, s);
3359 /* The DYNSYMCOUNT might have changed if we were going to
3360 output a dynamic symbol table entry for S. */
3361 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3362 }
3363 else
3364 {
3365 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3366 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3367 if (s->contents == NULL)
3368 return false;
3369
3370 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3371 return false;
3372 }
3373
3374 /* Set the size of the .dynsym and .hash sections. We counted
3375 the number of dynamic symbols in elf_link_add_object_symbols.
3376 We will build the contents of .dynsym and .hash when we build
3377 the final symbol table, because until then we do not know the
3378 correct value to give the symbols. We built the .dynstr
3379 section as we went along in elf_link_add_object_symbols. */
3380 s = bfd_get_section_by_name (dynobj, ".dynsym");
3381 BFD_ASSERT (s != NULL);
3382 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3383 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3384 if (s->contents == NULL && s->_raw_size != 0)
3385 return false;
3386
3387 /* The first entry in .dynsym is a dummy symbol. */
3388 isym.st_value = 0;
3389 isym.st_size = 0;
3390 isym.st_name = 0;
3391 isym.st_info = 0;
3392 isym.st_other = 0;
3393 isym.st_shndx = 0;
3394 elf_swap_symbol_out (output_bfd, &isym,
3395 (PTR) (Elf_External_Sym *) s->contents);
3396
3397 /* Compute the size of the hashing table. As a side effect this
3398 computes the hash values for all the names we export. */
3399 bucketcount = compute_bucket_count (info);
3400
3401 s = bfd_get_section_by_name (dynobj, ".hash");
3402 BFD_ASSERT (s != NULL);
3403 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3404 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3405 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3406 if (s->contents == NULL)
3407 return false;
3408 memset (s->contents, 0, (size_t) s->_raw_size);
3409
3410 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3411 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3412 s->contents + hash_entry_size);
3413
3414 elf_hash_table (info)->bucketcount = bucketcount;
3415
3416 s = bfd_get_section_by_name (dynobj, ".dynstr");
3417 BFD_ASSERT (s != NULL);
3418 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3419
3420 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3421 return false;
3422 }
3423
3424 return true;
3425 }
3426 \f
3427 /* Fix up the flags for a symbol. This handles various cases which
3428 can only be fixed after all the input files are seen. This is
3429 currently called by both adjust_dynamic_symbol and
3430 assign_sym_version, which is unnecessary but perhaps more robust in
3431 the face of future changes. */
3432
3433 static boolean
3434 elf_fix_symbol_flags (h, eif)
3435 struct elf_link_hash_entry *h;
3436 struct elf_info_failed *eif;
3437 {
3438 /* If this symbol was mentioned in a non-ELF file, try to set
3439 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3440 permit a non-ELF file to correctly refer to a symbol defined in
3441 an ELF dynamic object. */
3442 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3443 {
3444 while (h->root.type == bfd_link_hash_indirect)
3445 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3446
3447 if (h->root.type != bfd_link_hash_defined
3448 && h->root.type != bfd_link_hash_defweak)
3449 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3450 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3451 else
3452 {
3453 if (h->root.u.def.section->owner != NULL
3454 && (bfd_get_flavour (h->root.u.def.section->owner)
3455 == bfd_target_elf_flavour))
3456 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3457 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3458 else
3459 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3460 }
3461
3462 if (h->dynindx == -1
3463 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3464 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3465 {
3466 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3467 {
3468 eif->failed = true;
3469 return false;
3470 }
3471 }
3472 }
3473 else
3474 {
3475 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3476 was first seen in a non-ELF file. Fortunately, if the symbol
3477 was first seen in an ELF file, we're probably OK unless the
3478 symbol was defined in a non-ELF file. Catch that case here.
3479 FIXME: We're still in trouble if the symbol was first seen in
3480 a dynamic object, and then later in a non-ELF regular object. */
3481 if ((h->root.type == bfd_link_hash_defined
3482 || h->root.type == bfd_link_hash_defweak)
3483 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3484 && (h->root.u.def.section->owner != NULL
3485 ? (bfd_get_flavour (h->root.u.def.section->owner)
3486 != bfd_target_elf_flavour)
3487 : (bfd_is_abs_section (h->root.u.def.section)
3488 && (h->elf_link_hash_flags
3489 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3490 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3491 }
3492
3493 /* If this is a final link, and the symbol was defined as a common
3494 symbol in a regular object file, and there was no definition in
3495 any dynamic object, then the linker will have allocated space for
3496 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3497 flag will not have been set. */
3498 if (h->root.type == bfd_link_hash_defined
3499 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3500 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3501 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3502 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3503 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3504
3505 /* If -Bsymbolic was used (which means to bind references to global
3506 symbols to the definition within the shared object), and this
3507 symbol was defined in a regular object, then it actually doesn't
3508 need a PLT entry. Likewise, if the symbol has any kind of
3509 visibility (internal, hidden, or protected), it doesn't need a
3510 PLT. */
3511 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3512 && eif->info->shared
3513 && (eif->info->symbolic || ELF_ST_VISIBILITY (h->other))
3514 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3515 {
3516 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3517 h->plt.offset = (bfd_vma) -1;
3518 }
3519
3520 /* If this is a weak defined symbol in a dynamic object, and we know
3521 the real definition in the dynamic object, copy interesting flags
3522 over to the real definition. */
3523 if (h->weakdef != NULL)
3524 {
3525 struct elf_link_hash_entry *weakdef;
3526
3527 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3528 || h->root.type == bfd_link_hash_defweak);
3529 weakdef = h->weakdef;
3530 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3531 || weakdef->root.type == bfd_link_hash_defweak);
3532 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3533
3534 /* If the real definition is defined by a regular object file,
3535 don't do anything special. See the longer description in
3536 elf_adjust_dynamic_symbol, below. */
3537 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3538 h->weakdef = NULL;
3539 else
3540 weakdef->elf_link_hash_flags |=
3541 (h->elf_link_hash_flags
3542 & (ELF_LINK_HASH_REF_REGULAR
3543 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3544 | ELF_LINK_NON_GOT_REF));
3545 }
3546
3547 return true;
3548 }
3549
3550 /* Make the backend pick a good value for a dynamic symbol. This is
3551 called via elf_link_hash_traverse, and also calls itself
3552 recursively. */
3553
3554 static boolean
3555 elf_adjust_dynamic_symbol (h, data)
3556 struct elf_link_hash_entry *h;
3557 PTR data;
3558 {
3559 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3560 bfd *dynobj;
3561 struct elf_backend_data *bed;
3562
3563 /* Ignore indirect symbols. These are added by the versioning code. */
3564 if (h->root.type == bfd_link_hash_indirect)
3565 return true;
3566
3567 /* Fix the symbol flags. */
3568 if (! elf_fix_symbol_flags (h, eif))
3569 return false;
3570
3571 /* If this symbol does not require a PLT entry, and it is not
3572 defined by a dynamic object, or is not referenced by a regular
3573 object, ignore it. We do have to handle a weak defined symbol,
3574 even if no regular object refers to it, if we decided to add it
3575 to the dynamic symbol table. FIXME: Do we normally need to worry
3576 about symbols which are defined by one dynamic object and
3577 referenced by another one? */
3578 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3579 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3580 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3581 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3582 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3583 {
3584 h->plt.offset = (bfd_vma) -1;
3585 return true;
3586 }
3587
3588 /* If we've already adjusted this symbol, don't do it again. This
3589 can happen via a recursive call. */
3590 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3591 return true;
3592
3593 /* Don't look at this symbol again. Note that we must set this
3594 after checking the above conditions, because we may look at a
3595 symbol once, decide not to do anything, and then get called
3596 recursively later after REF_REGULAR is set below. */
3597 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3598
3599 /* If this is a weak definition, and we know a real definition, and
3600 the real symbol is not itself defined by a regular object file,
3601 then get a good value for the real definition. We handle the
3602 real symbol first, for the convenience of the backend routine.
3603
3604 Note that there is a confusing case here. If the real definition
3605 is defined by a regular object file, we don't get the real symbol
3606 from the dynamic object, but we do get the weak symbol. If the
3607 processor backend uses a COPY reloc, then if some routine in the
3608 dynamic object changes the real symbol, we will not see that
3609 change in the corresponding weak symbol. This is the way other
3610 ELF linkers work as well, and seems to be a result of the shared
3611 library model.
3612
3613 I will clarify this issue. Most SVR4 shared libraries define the
3614 variable _timezone and define timezone as a weak synonym. The
3615 tzset call changes _timezone. If you write
3616 extern int timezone;
3617 int _timezone = 5;
3618 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3619 you might expect that, since timezone is a synonym for _timezone,
3620 the same number will print both times. However, if the processor
3621 backend uses a COPY reloc, then actually timezone will be copied
3622 into your process image, and, since you define _timezone
3623 yourself, _timezone will not. Thus timezone and _timezone will
3624 wind up at different memory locations. The tzset call will set
3625 _timezone, leaving timezone unchanged. */
3626
3627 if (h->weakdef != NULL)
3628 {
3629 /* If we get to this point, we know there is an implicit
3630 reference by a regular object file via the weak symbol H.
3631 FIXME: Is this really true? What if the traversal finds
3632 H->WEAKDEF before it finds H? */
3633 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3634
3635 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3636 return false;
3637 }
3638
3639 /* If a symbol has no type and no size and does not require a PLT
3640 entry, then we are probably about to do the wrong thing here: we
3641 are probably going to create a COPY reloc for an empty object.
3642 This case can arise when a shared object is built with assembly
3643 code, and the assembly code fails to set the symbol type. */
3644 if (h->size == 0
3645 && h->type == STT_NOTYPE
3646 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3647 (*_bfd_error_handler)
3648 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3649 h->root.root.string);
3650
3651 dynobj = elf_hash_table (eif->info)->dynobj;
3652 bed = get_elf_backend_data (dynobj);
3653 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3654 {
3655 eif->failed = true;
3656 return false;
3657 }
3658
3659 return true;
3660 }
3661 \f
3662 /* This routine is used to export all defined symbols into the dynamic
3663 symbol table. It is called via elf_link_hash_traverse. */
3664
3665 static boolean
3666 elf_export_symbol (h, data)
3667 struct elf_link_hash_entry *h;
3668 PTR data;
3669 {
3670 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3671
3672 /* Ignore indirect symbols. These are added by the versioning code. */
3673 if (h->root.type == bfd_link_hash_indirect)
3674 return true;
3675
3676 if (h->dynindx == -1
3677 && (h->elf_link_hash_flags
3678 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3679 {
3680 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3681 {
3682 eif->failed = true;
3683 return false;
3684 }
3685 }
3686
3687 return true;
3688 }
3689 \f
3690 /* Look through the symbols which are defined in other shared
3691 libraries and referenced here. Update the list of version
3692 dependencies. This will be put into the .gnu.version_r section.
3693 This function is called via elf_link_hash_traverse. */
3694
3695 static boolean
3696 elf_link_find_version_dependencies (h, data)
3697 struct elf_link_hash_entry *h;
3698 PTR data;
3699 {
3700 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3701 Elf_Internal_Verneed *t;
3702 Elf_Internal_Vernaux *a;
3703
3704 /* We only care about symbols defined in shared objects with version
3705 information. */
3706 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3707 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3708 || h->dynindx == -1
3709 || h->verinfo.verdef == NULL)
3710 return true;
3711
3712 /* See if we already know about this version. */
3713 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3714 {
3715 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3716 continue;
3717
3718 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3719 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3720 return true;
3721
3722 break;
3723 }
3724
3725 /* This is a new version. Add it to tree we are building. */
3726
3727 if (t == NULL)
3728 {
3729 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3730 if (t == NULL)
3731 {
3732 rinfo->failed = true;
3733 return false;
3734 }
3735
3736 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3737 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3738 elf_tdata (rinfo->output_bfd)->verref = t;
3739 }
3740
3741 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3742
3743 /* Note that we are copying a string pointer here, and testing it
3744 above. If bfd_elf_string_from_elf_section is ever changed to
3745 discard the string data when low in memory, this will have to be
3746 fixed. */
3747 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3748
3749 a->vna_flags = h->verinfo.verdef->vd_flags;
3750 a->vna_nextptr = t->vn_auxptr;
3751
3752 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3753 ++rinfo->vers;
3754
3755 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3756
3757 t->vn_auxptr = a;
3758
3759 return true;
3760 }
3761
3762 /* Figure out appropriate versions for all the symbols. We may not
3763 have the version number script until we have read all of the input
3764 files, so until that point we don't know which symbols should be
3765 local. This function is called via elf_link_hash_traverse. */
3766
3767 static boolean
3768 elf_link_assign_sym_version (h, data)
3769 struct elf_link_hash_entry *h;
3770 PTR data;
3771 {
3772 struct elf_assign_sym_version_info *sinfo =
3773 (struct elf_assign_sym_version_info *) data;
3774 struct bfd_link_info *info = sinfo->info;
3775 struct elf_backend_data *bed;
3776 struct elf_info_failed eif;
3777 char *p;
3778
3779 /* Fix the symbol flags. */
3780 eif.failed = false;
3781 eif.info = info;
3782 if (! elf_fix_symbol_flags (h, &eif))
3783 {
3784 if (eif.failed)
3785 sinfo->failed = true;
3786 return false;
3787 }
3788
3789 /* We only need version numbers for symbols defined in regular
3790 objects. */
3791 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3792 return true;
3793
3794 bed = get_elf_backend_data (sinfo->output_bfd);
3795 p = strchr (h->root.root.string, ELF_VER_CHR);
3796 if (p != NULL && h->verinfo.vertree == NULL)
3797 {
3798 struct bfd_elf_version_tree *t;
3799 boolean hidden;
3800
3801 hidden = true;
3802
3803 /* There are two consecutive ELF_VER_CHR characters if this is
3804 not a hidden symbol. */
3805 ++p;
3806 if (*p == ELF_VER_CHR)
3807 {
3808 hidden = false;
3809 ++p;
3810 }
3811
3812 /* If there is no version string, we can just return out. */
3813 if (*p == '\0')
3814 {
3815 if (hidden)
3816 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3817 return true;
3818 }
3819
3820 /* Look for the version. If we find it, it is no longer weak. */
3821 for (t = sinfo->verdefs; t != NULL; t = t->next)
3822 {
3823 if (strcmp (t->name, p) == 0)
3824 {
3825 int len;
3826 char *alc;
3827 struct bfd_elf_version_expr *d;
3828
3829 len = p - h->root.root.string;
3830 alc = bfd_alloc (sinfo->output_bfd, len);
3831 if (alc == NULL)
3832 return false;
3833 strncpy (alc, h->root.root.string, len - 1);
3834 alc[len - 1] = '\0';
3835 if (alc[len - 2] == ELF_VER_CHR)
3836 alc[len - 2] = '\0';
3837
3838 h->verinfo.vertree = t;
3839 t->used = true;
3840 d = NULL;
3841
3842 if (t->globals != NULL)
3843 {
3844 for (d = t->globals; d != NULL; d = d->next)
3845 if ((*d->match) (d, alc))
3846 break;
3847 }
3848
3849 /* See if there is anything to force this symbol to
3850 local scope. */
3851 if (d == NULL && t->locals != NULL)
3852 {
3853 for (d = t->locals; d != NULL; d = d->next)
3854 {
3855 if ((*d->match) (d, alc))
3856 {
3857 if (h->dynindx != -1
3858 && info->shared
3859 && ! sinfo->export_dynamic)
3860 {
3861 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3862 (*bed->elf_backend_hide_symbol) (info, h);
3863 /* FIXME: The name of the symbol has
3864 already been recorded in the dynamic
3865 string table section. */
3866 }
3867
3868 break;
3869 }
3870 }
3871 }
3872
3873 bfd_release (sinfo->output_bfd, alc);
3874 break;
3875 }
3876 }
3877
3878 /* If we are building an application, we need to create a
3879 version node for this version. */
3880 if (t == NULL && ! info->shared)
3881 {
3882 struct bfd_elf_version_tree **pp;
3883 int version_index;
3884
3885 /* If we aren't going to export this symbol, we don't need
3886 to worry about it. */
3887 if (h->dynindx == -1)
3888 return true;
3889
3890 t = ((struct bfd_elf_version_tree *)
3891 bfd_alloc (sinfo->output_bfd, sizeof *t));
3892 if (t == NULL)
3893 {
3894 sinfo->failed = true;
3895 return false;
3896 }
3897
3898 t->next = NULL;
3899 t->name = p;
3900 t->globals = NULL;
3901 t->locals = NULL;
3902 t->deps = NULL;
3903 t->name_indx = (unsigned int) -1;
3904 t->used = true;
3905
3906 version_index = 1;
3907 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3908 ++version_index;
3909 t->vernum = version_index;
3910
3911 *pp = t;
3912
3913 h->verinfo.vertree = t;
3914 }
3915 else if (t == NULL)
3916 {
3917 /* We could not find the version for a symbol when
3918 generating a shared archive. Return an error. */
3919 (*_bfd_error_handler)
3920 (_("%s: undefined versioned symbol name %s"),
3921 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3922 bfd_set_error (bfd_error_bad_value);
3923 sinfo->failed = true;
3924 return false;
3925 }
3926
3927 if (hidden)
3928 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3929 }
3930
3931 /* If we don't have a version for this symbol, see if we can find
3932 something. */
3933 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3934 {
3935 struct bfd_elf_version_tree *t;
3936 struct bfd_elf_version_tree *deflt;
3937 struct bfd_elf_version_expr *d;
3938
3939 /* See if can find what version this symbol is in. If the
3940 symbol is supposed to be local, then don't actually register
3941 it. */
3942 deflt = NULL;
3943 for (t = sinfo->verdefs; t != NULL; t = t->next)
3944 {
3945 if (t->globals != NULL)
3946 {
3947 for (d = t->globals; d != NULL; d = d->next)
3948 {
3949 if ((*d->match) (d, h->root.root.string))
3950 {
3951 h->verinfo.vertree = t;
3952 break;
3953 }
3954 }
3955
3956 if (d != NULL)
3957 break;
3958 }
3959
3960 if (t->locals != NULL)
3961 {
3962 for (d = t->locals; d != NULL; d = d->next)
3963 {
3964 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3965 deflt = t;
3966 else if ((*d->match) (d, h->root.root.string))
3967 {
3968 h->verinfo.vertree = t;
3969 if (h->dynindx != -1
3970 && info->shared
3971 && ! sinfo->export_dynamic)
3972 {
3973 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3974 (*bed->elf_backend_hide_symbol) (info, h);
3975 /* FIXME: The name of the symbol has already
3976 been recorded in the dynamic string table
3977 section. */
3978 }
3979 break;
3980 }
3981 }
3982
3983 if (d != NULL)
3984 break;
3985 }
3986 }
3987
3988 if (deflt != NULL && h->verinfo.vertree == NULL)
3989 {
3990 h->verinfo.vertree = deflt;
3991 if (h->dynindx != -1
3992 && info->shared
3993 && ! sinfo->export_dynamic)
3994 {
3995 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3996 (*bed->elf_backend_hide_symbol) (info, h);
3997 /* FIXME: The name of the symbol has already been
3998 recorded in the dynamic string table section. */
3999 }
4000 }
4001 }
4002
4003 return true;
4004 }
4005 \f
4006 /* Final phase of ELF linker. */
4007
4008 /* A structure we use to avoid passing large numbers of arguments. */
4009
4010 struct elf_final_link_info
4011 {
4012 /* General link information. */
4013 struct bfd_link_info *info;
4014 /* Output BFD. */
4015 bfd *output_bfd;
4016 /* Symbol string table. */
4017 struct bfd_strtab_hash *symstrtab;
4018 /* .dynsym section. */
4019 asection *dynsym_sec;
4020 /* .hash section. */
4021 asection *hash_sec;
4022 /* symbol version section (.gnu.version). */
4023 asection *symver_sec;
4024 /* Buffer large enough to hold contents of any section. */
4025 bfd_byte *contents;
4026 /* Buffer large enough to hold external relocs of any section. */
4027 PTR external_relocs;
4028 /* Buffer large enough to hold internal relocs of any section. */
4029 Elf_Internal_Rela *internal_relocs;
4030 /* Buffer large enough to hold external local symbols of any input
4031 BFD. */
4032 Elf_External_Sym *external_syms;
4033 /* Buffer large enough to hold internal local symbols of any input
4034 BFD. */
4035 Elf_Internal_Sym *internal_syms;
4036 /* Array large enough to hold a symbol index for each local symbol
4037 of any input BFD. */
4038 long *indices;
4039 /* Array large enough to hold a section pointer for each local
4040 symbol of any input BFD. */
4041 asection **sections;
4042 /* Buffer to hold swapped out symbols. */
4043 Elf_External_Sym *symbuf;
4044 /* Number of swapped out symbols in buffer. */
4045 size_t symbuf_count;
4046 /* Number of symbols which fit in symbuf. */
4047 size_t symbuf_size;
4048 };
4049
4050 static boolean elf_link_output_sym
4051 PARAMS ((struct elf_final_link_info *, const char *,
4052 Elf_Internal_Sym *, asection *));
4053 static boolean elf_link_flush_output_syms
4054 PARAMS ((struct elf_final_link_info *));
4055 static boolean elf_link_output_extsym
4056 PARAMS ((struct elf_link_hash_entry *, PTR));
4057 static boolean elf_link_input_bfd
4058 PARAMS ((struct elf_final_link_info *, bfd *));
4059 static boolean elf_reloc_link_order
4060 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4061 struct bfd_link_order *));
4062
4063 /* This struct is used to pass information to elf_link_output_extsym. */
4064
4065 struct elf_outext_info
4066 {
4067 boolean failed;
4068 boolean localsyms;
4069 struct elf_final_link_info *finfo;
4070 };
4071
4072 /* Compute the size of, and allocate space for, REL_HDR which is the
4073 section header for a section containing relocations for O. */
4074
4075 static boolean
4076 elf_link_size_reloc_section (abfd, rel_hdr, o)
4077 bfd *abfd;
4078 Elf_Internal_Shdr *rel_hdr;
4079 asection *o;
4080 {
4081 register struct elf_link_hash_entry **p, **pend;
4082 unsigned reloc_count;
4083
4084 /* Figure out how many relocations there will be. */
4085 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4086 reloc_count = elf_section_data (o)->rel_count;
4087 else
4088 reloc_count = elf_section_data (o)->rel_count2;
4089
4090 /* That allows us to calculate the size of the section. */
4091 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
4092
4093 /* The contents field must last into write_object_contents, so we
4094 allocate it with bfd_alloc rather than malloc. Also since we
4095 cannot be sure that the contents will actually be filled in,
4096 we zero the allocated space. */
4097 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
4098 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4099 return false;
4100
4101 /* We only allocate one set of hash entries, so we only do it the
4102 first time we are called. */
4103 if (elf_section_data (o)->rel_hashes == NULL)
4104 {
4105 p = ((struct elf_link_hash_entry **)
4106 bfd_malloc (o->reloc_count
4107 * sizeof (struct elf_link_hash_entry *)));
4108 if (p == NULL && o->reloc_count != 0)
4109 return false;
4110
4111 elf_section_data (o)->rel_hashes = p;
4112 pend = p + o->reloc_count;
4113 for (; p < pend; p++)
4114 *p = NULL;
4115 }
4116
4117 return true;
4118 }
4119
4120 /* When performing a relocateable link, the input relocations are
4121 preserved. But, if they reference global symbols, the indices
4122 referenced must be updated. Update all the relocations in
4123 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4124
4125 static void
4126 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4127 bfd *abfd;
4128 Elf_Internal_Shdr *rel_hdr;
4129 unsigned int count;
4130 struct elf_link_hash_entry **rel_hash;
4131 {
4132 unsigned int i;
4133 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4134
4135 for (i = 0; i < count; i++, rel_hash++)
4136 {
4137 if (*rel_hash == NULL)
4138 continue;
4139
4140 BFD_ASSERT ((*rel_hash)->indx >= 0);
4141
4142 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4143 {
4144 Elf_External_Rel *erel;
4145 Elf_Internal_Rel irel;
4146
4147 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4148 if (bed->s->swap_reloc_in)
4149 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &irel);
4150 else
4151 elf_swap_reloc_in (abfd, erel, &irel);
4152 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
4153 ELF_R_TYPE (irel.r_info));
4154 if (bed->s->swap_reloc_out)
4155 (*bed->s->swap_reloc_out) (abfd, &irel, (bfd_byte *) erel);
4156 else
4157 elf_swap_reloc_out (abfd, &irel, erel);
4158 }
4159 else
4160 {
4161 Elf_External_Rela *erela;
4162 Elf_Internal_Rela irela;
4163
4164 BFD_ASSERT (rel_hdr->sh_entsize
4165 == sizeof (Elf_External_Rela));
4166
4167 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4168 if (bed->s->swap_reloca_in)
4169 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, &irela);
4170 else
4171 elf_swap_reloca_in (abfd, erela, &irela);
4172 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4173 ELF_R_TYPE (irela.r_info));
4174 if (bed->s->swap_reloca_out)
4175 (*bed->s->swap_reloca_out) (abfd, &irela, (bfd_byte *) erela);
4176 else
4177 elf_swap_reloca_out (abfd, &irela, erela);
4178 }
4179 }
4180 }
4181
4182 /* Do the final step of an ELF link. */
4183
4184 boolean
4185 elf_bfd_final_link (abfd, info)
4186 bfd *abfd;
4187 struct bfd_link_info *info;
4188 {
4189 boolean dynamic;
4190 bfd *dynobj;
4191 struct elf_final_link_info finfo;
4192 register asection *o;
4193 register struct bfd_link_order *p;
4194 register bfd *sub;
4195 size_t max_contents_size;
4196 size_t max_external_reloc_size;
4197 size_t max_internal_reloc_count;
4198 size_t max_sym_count;
4199 file_ptr off;
4200 Elf_Internal_Sym elfsym;
4201 unsigned int i;
4202 Elf_Internal_Shdr *symtab_hdr;
4203 Elf_Internal_Shdr *symstrtab_hdr;
4204 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4205 struct elf_outext_info eoinfo;
4206
4207 if (info->shared)
4208 abfd->flags |= DYNAMIC;
4209
4210 dynamic = elf_hash_table (info)->dynamic_sections_created;
4211 dynobj = elf_hash_table (info)->dynobj;
4212
4213 finfo.info = info;
4214 finfo.output_bfd = abfd;
4215 finfo.symstrtab = elf_stringtab_init ();
4216 if (finfo.symstrtab == NULL)
4217 return false;
4218
4219 if (! dynamic)
4220 {
4221 finfo.dynsym_sec = NULL;
4222 finfo.hash_sec = NULL;
4223 finfo.symver_sec = NULL;
4224 }
4225 else
4226 {
4227 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4228 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4229 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4230 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4231 /* Note that it is OK if symver_sec is NULL. */
4232 }
4233
4234 finfo.contents = NULL;
4235 finfo.external_relocs = NULL;
4236 finfo.internal_relocs = NULL;
4237 finfo.external_syms = NULL;
4238 finfo.internal_syms = NULL;
4239 finfo.indices = NULL;
4240 finfo.sections = NULL;
4241 finfo.symbuf = NULL;
4242 finfo.symbuf_count = 0;
4243
4244 /* Count up the number of relocations we will output for each output
4245 section, so that we know the sizes of the reloc sections. We
4246 also figure out some maximum sizes. */
4247 max_contents_size = 0;
4248 max_external_reloc_size = 0;
4249 max_internal_reloc_count = 0;
4250 max_sym_count = 0;
4251 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4252 {
4253 o->reloc_count = 0;
4254
4255 for (p = o->link_order_head; p != NULL; p = p->next)
4256 {
4257 if (p->type == bfd_section_reloc_link_order
4258 || p->type == bfd_symbol_reloc_link_order)
4259 ++o->reloc_count;
4260 else if (p->type == bfd_indirect_link_order)
4261 {
4262 asection *sec;
4263
4264 sec = p->u.indirect.section;
4265
4266 /* Mark all sections which are to be included in the
4267 link. This will normally be every section. We need
4268 to do this so that we can identify any sections which
4269 the linker has decided to not include. */
4270 sec->linker_mark = true;
4271
4272 if (info->relocateable || info->emitrelocations)
4273 o->reloc_count += sec->reloc_count;
4274
4275 if (sec->_raw_size > max_contents_size)
4276 max_contents_size = sec->_raw_size;
4277 if (sec->_cooked_size > max_contents_size)
4278 max_contents_size = sec->_cooked_size;
4279
4280 /* We are interested in just local symbols, not all
4281 symbols. */
4282 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4283 && (sec->owner->flags & DYNAMIC) == 0)
4284 {
4285 size_t sym_count;
4286
4287 if (elf_bad_symtab (sec->owner))
4288 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4289 / sizeof (Elf_External_Sym));
4290 else
4291 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4292
4293 if (sym_count > max_sym_count)
4294 max_sym_count = sym_count;
4295
4296 if ((sec->flags & SEC_RELOC) != 0)
4297 {
4298 size_t ext_size;
4299
4300 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4301 if (ext_size > max_external_reloc_size)
4302 max_external_reloc_size = ext_size;
4303 if (sec->reloc_count > max_internal_reloc_count)
4304 max_internal_reloc_count = sec->reloc_count;
4305 }
4306 }
4307 }
4308 }
4309
4310 if (o->reloc_count > 0)
4311 o->flags |= SEC_RELOC;
4312 else
4313 {
4314 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4315 set it (this is probably a bug) and if it is set
4316 assign_section_numbers will create a reloc section. */
4317 o->flags &=~ SEC_RELOC;
4318 }
4319
4320 /* If the SEC_ALLOC flag is not set, force the section VMA to
4321 zero. This is done in elf_fake_sections as well, but forcing
4322 the VMA to 0 here will ensure that relocs against these
4323 sections are handled correctly. */
4324 if ((o->flags & SEC_ALLOC) == 0
4325 && ! o->user_set_vma)
4326 o->vma = 0;
4327 }
4328
4329 /* Figure out the file positions for everything but the symbol table
4330 and the relocs. We set symcount to force assign_section_numbers
4331 to create a symbol table. */
4332 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4333 BFD_ASSERT (! abfd->output_has_begun);
4334 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4335 goto error_return;
4336
4337 /* Figure out how many relocations we will have in each section.
4338 Just using RELOC_COUNT isn't good enough since that doesn't
4339 maintain a separate value for REL vs. RELA relocations. */
4340 if (info->relocateable || info->emitrelocations)
4341 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4342 for (o = sub->sections; o != NULL; o = o->next)
4343 {
4344 asection *output_section;
4345
4346 if (! o->linker_mark)
4347 {
4348 /* This section was omitted from the link. */
4349 continue;
4350 }
4351
4352 output_section = o->output_section;
4353
4354 if (output_section != NULL
4355 && (o->flags & SEC_RELOC) != 0)
4356 {
4357 struct bfd_elf_section_data *esdi
4358 = elf_section_data (o);
4359 struct bfd_elf_section_data *esdo
4360 = elf_section_data (output_section);
4361 unsigned int *rel_count;
4362 unsigned int *rel_count2;
4363
4364 /* We must be careful to add the relocation froms the
4365 input section to the right output count. */
4366 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4367 {
4368 rel_count = &esdo->rel_count;
4369 rel_count2 = &esdo->rel_count2;
4370 }
4371 else
4372 {
4373 rel_count = &esdo->rel_count2;
4374 rel_count2 = &esdo->rel_count;
4375 }
4376
4377 *rel_count += (esdi->rel_hdr.sh_size
4378 / esdi->rel_hdr.sh_entsize);
4379 if (esdi->rel_hdr2)
4380 *rel_count2 += (esdi->rel_hdr2->sh_size
4381 / esdi->rel_hdr2->sh_entsize);
4382 }
4383 }
4384
4385 /* That created the reloc sections. Set their sizes, and assign
4386 them file positions, and allocate some buffers. */
4387 for (o = abfd->sections; o != NULL; o = o->next)
4388 {
4389 if ((o->flags & SEC_RELOC) != 0)
4390 {
4391 if (!elf_link_size_reloc_section (abfd,
4392 &elf_section_data (o)->rel_hdr,
4393 o))
4394 goto error_return;
4395
4396 if (elf_section_data (o)->rel_hdr2
4397 && !elf_link_size_reloc_section (abfd,
4398 elf_section_data (o)->rel_hdr2,
4399 o))
4400 goto error_return;
4401 }
4402
4403 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4404 to count upwards while actually outputting the relocations. */
4405 elf_section_data (o)->rel_count = 0;
4406 elf_section_data (o)->rel_count2 = 0;
4407 }
4408
4409 _bfd_elf_assign_file_positions_for_relocs (abfd);
4410
4411 /* We have now assigned file positions for all the sections except
4412 .symtab and .strtab. We start the .symtab section at the current
4413 file position, and write directly to it. We build the .strtab
4414 section in memory. */
4415 bfd_get_symcount (abfd) = 0;
4416 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4417 /* sh_name is set in prep_headers. */
4418 symtab_hdr->sh_type = SHT_SYMTAB;
4419 symtab_hdr->sh_flags = 0;
4420 symtab_hdr->sh_addr = 0;
4421 symtab_hdr->sh_size = 0;
4422 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4423 /* sh_link is set in assign_section_numbers. */
4424 /* sh_info is set below. */
4425 /* sh_offset is set just below. */
4426 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
4427
4428 off = elf_tdata (abfd)->next_file_pos;
4429 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4430
4431 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4432 incorrect. We do not yet know the size of the .symtab section.
4433 We correct next_file_pos below, after we do know the size. */
4434
4435 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4436 continuously seeking to the right position in the file. */
4437 if (! info->keep_memory || max_sym_count < 20)
4438 finfo.symbuf_size = 20;
4439 else
4440 finfo.symbuf_size = max_sym_count;
4441 finfo.symbuf = ((Elf_External_Sym *)
4442 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4443 if (finfo.symbuf == NULL)
4444 goto error_return;
4445
4446 /* Start writing out the symbol table. The first symbol is always a
4447 dummy symbol. */
4448 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
4449 {
4450 elfsym.st_value = 0;
4451 elfsym.st_size = 0;
4452 elfsym.st_info = 0;
4453 elfsym.st_other = 0;
4454 elfsym.st_shndx = SHN_UNDEF;
4455 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4456 &elfsym, bfd_und_section_ptr))
4457 goto error_return;
4458 }
4459
4460 #if 0
4461 /* Some standard ELF linkers do this, but we don't because it causes
4462 bootstrap comparison failures. */
4463 /* Output a file symbol for the output file as the second symbol.
4464 We output this even if we are discarding local symbols, although
4465 I'm not sure if this is correct. */
4466 elfsym.st_value = 0;
4467 elfsym.st_size = 0;
4468 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4469 elfsym.st_other = 0;
4470 elfsym.st_shndx = SHN_ABS;
4471 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4472 &elfsym, bfd_abs_section_ptr))
4473 goto error_return;
4474 #endif
4475
4476 /* Output a symbol for each section. We output these even if we are
4477 discarding local symbols, since they are used for relocs. These
4478 symbols have no names. We store the index of each one in the
4479 index field of the section, so that we can find it again when
4480 outputting relocs. */
4481 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
4482 {
4483 elfsym.st_size = 0;
4484 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4485 elfsym.st_other = 0;
4486 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4487 {
4488 o = section_from_elf_index (abfd, i);
4489 if (o != NULL)
4490 o->target_index = bfd_get_symcount (abfd);
4491 elfsym.st_shndx = i;
4492 if (info->relocateable || o == NULL)
4493 elfsym.st_value = 0;
4494 else
4495 elfsym.st_value = o->vma;
4496 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4497 &elfsym, o))
4498 goto error_return;
4499 }
4500 }
4501
4502 /* Allocate some memory to hold information read in from the input
4503 files. */
4504 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4505 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4506 finfo.internal_relocs = ((Elf_Internal_Rela *)
4507 bfd_malloc (max_internal_reloc_count
4508 * sizeof (Elf_Internal_Rela)
4509 * bed->s->int_rels_per_ext_rel));
4510 finfo.external_syms = ((Elf_External_Sym *)
4511 bfd_malloc (max_sym_count
4512 * sizeof (Elf_External_Sym)));
4513 finfo.internal_syms = ((Elf_Internal_Sym *)
4514 bfd_malloc (max_sym_count
4515 * sizeof (Elf_Internal_Sym)));
4516 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4517 finfo.sections = ((asection **)
4518 bfd_malloc (max_sym_count * sizeof (asection *)));
4519 if ((finfo.contents == NULL && max_contents_size != 0)
4520 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4521 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4522 || (finfo.external_syms == NULL && max_sym_count != 0)
4523 || (finfo.internal_syms == NULL && max_sym_count != 0)
4524 || (finfo.indices == NULL && max_sym_count != 0)
4525 || (finfo.sections == NULL && max_sym_count != 0))
4526 goto error_return;
4527
4528 /* Since ELF permits relocations to be against local symbols, we
4529 must have the local symbols available when we do the relocations.
4530 Since we would rather only read the local symbols once, and we
4531 would rather not keep them in memory, we handle all the
4532 relocations for a single input file at the same time.
4533
4534 Unfortunately, there is no way to know the total number of local
4535 symbols until we have seen all of them, and the local symbol
4536 indices precede the global symbol indices. This means that when
4537 we are generating relocateable output, and we see a reloc against
4538 a global symbol, we can not know the symbol index until we have
4539 finished examining all the local symbols to see which ones we are
4540 going to output. To deal with this, we keep the relocations in
4541 memory, and don't output them until the end of the link. This is
4542 an unfortunate waste of memory, but I don't see a good way around
4543 it. Fortunately, it only happens when performing a relocateable
4544 link, which is not the common case. FIXME: If keep_memory is set
4545 we could write the relocs out and then read them again; I don't
4546 know how bad the memory loss will be. */
4547
4548 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4549 sub->output_has_begun = false;
4550 for (o = abfd->sections; o != NULL; o = o->next)
4551 {
4552 for (p = o->link_order_head; p != NULL; p = p->next)
4553 {
4554 if (p->type == bfd_indirect_link_order
4555 && (bfd_get_flavour (p->u.indirect.section->owner)
4556 == bfd_target_elf_flavour))
4557 {
4558 sub = p->u.indirect.section->owner;
4559 if (! sub->output_has_begun)
4560 {
4561 if (! elf_link_input_bfd (&finfo, sub))
4562 goto error_return;
4563 sub->output_has_begun = true;
4564 }
4565 }
4566 else if (p->type == bfd_section_reloc_link_order
4567 || p->type == bfd_symbol_reloc_link_order)
4568 {
4569 if (! elf_reloc_link_order (abfd, info, o, p))
4570 goto error_return;
4571 }
4572 else
4573 {
4574 if (! _bfd_default_link_order (abfd, info, o, p))
4575 goto error_return;
4576 }
4577 }
4578 }
4579
4580 /* That wrote out all the local symbols. Finish up the symbol table
4581 with the global symbols. Even if we want to strip everything we
4582 can, we still need to deal with those global symbols that got
4583 converted to local in a version script. */
4584
4585 if (info->shared)
4586 {
4587 /* Output any global symbols that got converted to local in a
4588 version script. We do this in a separate step since ELF
4589 requires all local symbols to appear prior to any global
4590 symbols. FIXME: We should only do this if some global
4591 symbols were, in fact, converted to become local. FIXME:
4592 Will this work correctly with the Irix 5 linker? */
4593 eoinfo.failed = false;
4594 eoinfo.finfo = &finfo;
4595 eoinfo.localsyms = true;
4596 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4597 (PTR) &eoinfo);
4598 if (eoinfo.failed)
4599 return false;
4600 }
4601
4602 /* The sh_info field records the index of the first non local symbol. */
4603 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4604
4605 if (dynamic)
4606 {
4607 Elf_Internal_Sym sym;
4608 Elf_External_Sym *dynsym =
4609 (Elf_External_Sym *)finfo.dynsym_sec->contents;
4610 long last_local = 0;
4611
4612 /* Write out the section symbols for the output sections. */
4613 if (info->shared)
4614 {
4615 asection *s;
4616
4617 sym.st_size = 0;
4618 sym.st_name = 0;
4619 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4620 sym.st_other = 0;
4621
4622 for (s = abfd->sections; s != NULL; s = s->next)
4623 {
4624 int indx;
4625 indx = elf_section_data (s)->this_idx;
4626 BFD_ASSERT (indx > 0);
4627 sym.st_shndx = indx;
4628 sym.st_value = s->vma;
4629
4630 elf_swap_symbol_out (abfd, &sym,
4631 dynsym + elf_section_data (s)->dynindx);
4632 }
4633
4634 last_local = bfd_count_sections (abfd);
4635 }
4636
4637 /* Write out the local dynsyms. */
4638 if (elf_hash_table (info)->dynlocal)
4639 {
4640 struct elf_link_local_dynamic_entry *e;
4641 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4642 {
4643 asection *s;
4644
4645 sym.st_size = e->isym.st_size;
4646 sym.st_other = e->isym.st_other;
4647
4648 /* Copy the internal symbol as is.
4649 Note that we saved a word of storage and overwrote
4650 the original st_name with the dynstr_index. */
4651 sym = e->isym;
4652
4653 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
4654 {
4655 s = bfd_section_from_elf_index (e->input_bfd,
4656 e->isym.st_shndx);
4657
4658 sym.st_shndx =
4659 elf_section_data (s->output_section)->this_idx;
4660 sym.st_value = (s->output_section->vma
4661 + s->output_offset
4662 + e->isym.st_value);
4663 }
4664
4665 if (last_local < e->dynindx)
4666 last_local = e->dynindx;
4667
4668 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4669 }
4670 }
4671
4672 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
4673 last_local + 1;
4674 }
4675
4676 /* We get the global symbols from the hash table. */
4677 eoinfo.failed = false;
4678 eoinfo.localsyms = false;
4679 eoinfo.finfo = &finfo;
4680 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4681 (PTR) &eoinfo);
4682 if (eoinfo.failed)
4683 return false;
4684
4685 /* If backend needs to output some symbols not present in the hash
4686 table, do it now. */
4687 if (bed->elf_backend_output_arch_syms)
4688 {
4689 if (! (*bed->elf_backend_output_arch_syms)
4690 (abfd, info, (PTR) &finfo,
4691 (boolean (*) PARAMS ((PTR, const char *,
4692 Elf_Internal_Sym *, asection *)))
4693 elf_link_output_sym))
4694 return false;
4695 }
4696
4697 /* Flush all symbols to the file. */
4698 if (! elf_link_flush_output_syms (&finfo))
4699 return false;
4700
4701 /* Now we know the size of the symtab section. */
4702 off += symtab_hdr->sh_size;
4703
4704 /* Finish up and write out the symbol string table (.strtab)
4705 section. */
4706 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4707 /* sh_name was set in prep_headers. */
4708 symstrtab_hdr->sh_type = SHT_STRTAB;
4709 symstrtab_hdr->sh_flags = 0;
4710 symstrtab_hdr->sh_addr = 0;
4711 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4712 symstrtab_hdr->sh_entsize = 0;
4713 symstrtab_hdr->sh_link = 0;
4714 symstrtab_hdr->sh_info = 0;
4715 /* sh_offset is set just below. */
4716 symstrtab_hdr->sh_addralign = 1;
4717
4718 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4719 elf_tdata (abfd)->next_file_pos = off;
4720
4721 if (bfd_get_symcount (abfd) > 0)
4722 {
4723 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4724 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4725 return false;
4726 }
4727
4728 /* Adjust the relocs to have the correct symbol indices. */
4729 for (o = abfd->sections; o != NULL; o = o->next)
4730 {
4731 if ((o->flags & SEC_RELOC) == 0)
4732 continue;
4733
4734 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4735 elf_section_data (o)->rel_count,
4736 elf_section_data (o)->rel_hashes);
4737 if (elf_section_data (o)->rel_hdr2 != NULL)
4738 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4739 elf_section_data (o)->rel_count2,
4740 (elf_section_data (o)->rel_hashes
4741 + elf_section_data (o)->rel_count));
4742
4743 /* Set the reloc_count field to 0 to prevent write_relocs from
4744 trying to swap the relocs out itself. */
4745 o->reloc_count = 0;
4746 }
4747
4748 /* If we are linking against a dynamic object, or generating a
4749 shared library, finish up the dynamic linking information. */
4750 if (dynamic)
4751 {
4752 Elf_External_Dyn *dyncon, *dynconend;
4753
4754 /* Fix up .dynamic entries. */
4755 o = bfd_get_section_by_name (dynobj, ".dynamic");
4756 BFD_ASSERT (o != NULL);
4757
4758 dyncon = (Elf_External_Dyn *) o->contents;
4759 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4760 for (; dyncon < dynconend; dyncon++)
4761 {
4762 Elf_Internal_Dyn dyn;
4763 const char *name;
4764 unsigned int type;
4765
4766 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4767
4768 switch (dyn.d_tag)
4769 {
4770 default:
4771 break;
4772 case DT_INIT:
4773 name = info->init_function;
4774 goto get_sym;
4775 case DT_FINI:
4776 name = info->fini_function;
4777 get_sym:
4778 {
4779 struct elf_link_hash_entry *h;
4780
4781 h = elf_link_hash_lookup (elf_hash_table (info), name,
4782 false, false, true);
4783 if (h != NULL
4784 && (h->root.type == bfd_link_hash_defined
4785 || h->root.type == bfd_link_hash_defweak))
4786 {
4787 dyn.d_un.d_val = h->root.u.def.value;
4788 o = h->root.u.def.section;
4789 if (o->output_section != NULL)
4790 dyn.d_un.d_val += (o->output_section->vma
4791 + o->output_offset);
4792 else
4793 {
4794 /* The symbol is imported from another shared
4795 library and does not apply to this one. */
4796 dyn.d_un.d_val = 0;
4797 }
4798
4799 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4800 }
4801 }
4802 break;
4803
4804 case DT_HASH:
4805 name = ".hash";
4806 goto get_vma;
4807 case DT_STRTAB:
4808 name = ".dynstr";
4809 goto get_vma;
4810 case DT_SYMTAB:
4811 name = ".dynsym";
4812 goto get_vma;
4813 case DT_VERDEF:
4814 name = ".gnu.version_d";
4815 goto get_vma;
4816 case DT_VERNEED:
4817 name = ".gnu.version_r";
4818 goto get_vma;
4819 case DT_VERSYM:
4820 name = ".gnu.version";
4821 get_vma:
4822 o = bfd_get_section_by_name (abfd, name);
4823 BFD_ASSERT (o != NULL);
4824 dyn.d_un.d_ptr = o->vma;
4825 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4826 break;
4827
4828 case DT_REL:
4829 case DT_RELA:
4830 case DT_RELSZ:
4831 case DT_RELASZ:
4832 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4833 type = SHT_REL;
4834 else
4835 type = SHT_RELA;
4836 dyn.d_un.d_val = 0;
4837 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4838 {
4839 Elf_Internal_Shdr *hdr;
4840
4841 hdr = elf_elfsections (abfd)[i];
4842 if (hdr->sh_type == type
4843 && (hdr->sh_flags & SHF_ALLOC) != 0)
4844 {
4845 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4846 dyn.d_un.d_val += hdr->sh_size;
4847 else
4848 {
4849 if (dyn.d_un.d_val == 0
4850 || hdr->sh_addr < dyn.d_un.d_val)
4851 dyn.d_un.d_val = hdr->sh_addr;
4852 }
4853 }
4854 }
4855 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4856 break;
4857 }
4858 }
4859 }
4860
4861 /* If we have created any dynamic sections, then output them. */
4862 if (dynobj != NULL)
4863 {
4864 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4865 goto error_return;
4866
4867 for (o = dynobj->sections; o != NULL; o = o->next)
4868 {
4869 if ((o->flags & SEC_HAS_CONTENTS) == 0
4870 || o->_raw_size == 0)
4871 continue;
4872 if ((o->flags & SEC_LINKER_CREATED) == 0)
4873 {
4874 /* At this point, we are only interested in sections
4875 created by elf_link_create_dynamic_sections. */
4876 continue;
4877 }
4878 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4879 != SHT_STRTAB)
4880 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4881 {
4882 if (! bfd_set_section_contents (abfd, o->output_section,
4883 o->contents, o->output_offset,
4884 o->_raw_size))
4885 goto error_return;
4886 }
4887 else
4888 {
4889 file_ptr off;
4890
4891 /* The contents of the .dynstr section are actually in a
4892 stringtab. */
4893 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4894 if (bfd_seek (abfd, off, SEEK_SET) != 0
4895 || ! _bfd_stringtab_emit (abfd,
4896 elf_hash_table (info)->dynstr))
4897 goto error_return;
4898 }
4899 }
4900 }
4901
4902 /* If we have optimized stabs strings, output them. */
4903 if (elf_hash_table (info)->stab_info != NULL)
4904 {
4905 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4906 goto error_return;
4907 }
4908
4909 if (finfo.symstrtab != NULL)
4910 _bfd_stringtab_free (finfo.symstrtab);
4911 if (finfo.contents != NULL)
4912 free (finfo.contents);
4913 if (finfo.external_relocs != NULL)
4914 free (finfo.external_relocs);
4915 if (finfo.internal_relocs != NULL)
4916 free (finfo.internal_relocs);
4917 if (finfo.external_syms != NULL)
4918 free (finfo.external_syms);
4919 if (finfo.internal_syms != NULL)
4920 free (finfo.internal_syms);
4921 if (finfo.indices != NULL)
4922 free (finfo.indices);
4923 if (finfo.sections != NULL)
4924 free (finfo.sections);
4925 if (finfo.symbuf != NULL)
4926 free (finfo.symbuf);
4927 for (o = abfd->sections; o != NULL; o = o->next)
4928 {
4929 if ((o->flags & SEC_RELOC) != 0
4930 && elf_section_data (o)->rel_hashes != NULL)
4931 free (elf_section_data (o)->rel_hashes);
4932 }
4933
4934 elf_tdata (abfd)->linker = true;
4935
4936 return true;
4937
4938 error_return:
4939 if (finfo.symstrtab != NULL)
4940 _bfd_stringtab_free (finfo.symstrtab);
4941 if (finfo.contents != NULL)
4942 free (finfo.contents);
4943 if (finfo.external_relocs != NULL)
4944 free (finfo.external_relocs);
4945 if (finfo.internal_relocs != NULL)
4946 free (finfo.internal_relocs);
4947 if (finfo.external_syms != NULL)
4948 free (finfo.external_syms);
4949 if (finfo.internal_syms != NULL)
4950 free (finfo.internal_syms);
4951 if (finfo.indices != NULL)
4952 free (finfo.indices);
4953 if (finfo.sections != NULL)
4954 free (finfo.sections);
4955 if (finfo.symbuf != NULL)
4956 free (finfo.symbuf);
4957 for (o = abfd->sections; o != NULL; o = o->next)
4958 {
4959 if ((o->flags & SEC_RELOC) != 0
4960 && elf_section_data (o)->rel_hashes != NULL)
4961 free (elf_section_data (o)->rel_hashes);
4962 }
4963
4964 return false;
4965 }
4966
4967 /* Add a symbol to the output symbol table. */
4968
4969 static boolean
4970 elf_link_output_sym (finfo, name, elfsym, input_sec)
4971 struct elf_final_link_info *finfo;
4972 const char *name;
4973 Elf_Internal_Sym *elfsym;
4974 asection *input_sec;
4975 {
4976 boolean (*output_symbol_hook) PARAMS ((bfd *,
4977 struct bfd_link_info *info,
4978 const char *,
4979 Elf_Internal_Sym *,
4980 asection *));
4981
4982 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4983 elf_backend_link_output_symbol_hook;
4984 if (output_symbol_hook != NULL)
4985 {
4986 if (! ((*output_symbol_hook)
4987 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4988 return false;
4989 }
4990
4991 if (name == (const char *) NULL || *name == '\0')
4992 elfsym->st_name = 0;
4993 else if (input_sec->flags & SEC_EXCLUDE)
4994 elfsym->st_name = 0;
4995 else
4996 {
4997 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4998 name, true,
4999 false);
5000 if (elfsym->st_name == (unsigned long) -1)
5001 return false;
5002 }
5003
5004 if (finfo->symbuf_count >= finfo->symbuf_size)
5005 {
5006 if (! elf_link_flush_output_syms (finfo))
5007 return false;
5008 }
5009
5010 elf_swap_symbol_out (finfo->output_bfd, elfsym,
5011 (PTR) (finfo->symbuf + finfo->symbuf_count));
5012 ++finfo->symbuf_count;
5013
5014 ++ bfd_get_symcount (finfo->output_bfd);
5015
5016 return true;
5017 }
5018
5019 /* Flush the output symbols to the file. */
5020
5021 static boolean
5022 elf_link_flush_output_syms (finfo)
5023 struct elf_final_link_info *finfo;
5024 {
5025 if (finfo->symbuf_count > 0)
5026 {
5027 Elf_Internal_Shdr *symtab;
5028
5029 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5030
5031 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
5032 SEEK_SET) != 0
5033 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
5034 sizeof (Elf_External_Sym), finfo->output_bfd)
5035 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
5036 return false;
5037
5038 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
5039
5040 finfo->symbuf_count = 0;
5041 }
5042
5043 return true;
5044 }
5045
5046 /* Add an external symbol to the symbol table. This is called from
5047 the hash table traversal routine. When generating a shared object,
5048 we go through the symbol table twice. The first time we output
5049 anything that might have been forced to local scope in a version
5050 script. The second time we output the symbols that are still
5051 global symbols. */
5052
5053 static boolean
5054 elf_link_output_extsym (h, data)
5055 struct elf_link_hash_entry *h;
5056 PTR data;
5057 {
5058 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
5059 struct elf_final_link_info *finfo = eoinfo->finfo;
5060 boolean strip;
5061 Elf_Internal_Sym sym;
5062 asection *input_sec;
5063
5064 /* Decide whether to output this symbol in this pass. */
5065 if (eoinfo->localsyms)
5066 {
5067 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5068 return true;
5069 }
5070 else
5071 {
5072 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5073 return true;
5074 }
5075
5076 /* If we are not creating a shared library, and this symbol is
5077 referenced by a shared library but is not defined anywhere, then
5078 warn that it is undefined. If we do not do this, the runtime
5079 linker will complain that the symbol is undefined when the
5080 program is run. We don't have to worry about symbols that are
5081 referenced by regular files, because we will already have issued
5082 warnings for them. */
5083 if (! finfo->info->relocateable
5084 && ! (finfo->info->shared
5085 && !finfo->info->no_undefined)
5086 && h->root.type == bfd_link_hash_undefined
5087 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5088 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5089 {
5090 if (! ((*finfo->info->callbacks->undefined_symbol)
5091 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
5092 (asection *) NULL, 0, true)))
5093 {
5094 eoinfo->failed = true;
5095 return false;
5096 }
5097 }
5098
5099 /* We don't want to output symbols that have never been mentioned by
5100 a regular file, or that we have been told to strip. However, if
5101 h->indx is set to -2, the symbol is used by a reloc and we must
5102 output it. */
5103 if (h->indx == -2)
5104 strip = false;
5105 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5106 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
5107 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5108 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5109 strip = true;
5110 else if (finfo->info->strip == strip_all
5111 || (finfo->info->strip == strip_some
5112 && bfd_hash_lookup (finfo->info->keep_hash,
5113 h->root.root.string,
5114 false, false) == NULL))
5115 strip = true;
5116 else
5117 strip = false;
5118
5119 /* If we're stripping it, and it's not a dynamic symbol, there's
5120 nothing else to do unless it is a forced local symbol. */
5121 if (strip
5122 && h->dynindx == -1
5123 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5124 return true;
5125
5126 sym.st_value = 0;
5127 sym.st_size = h->size;
5128 sym.st_other = h->other;
5129 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5130 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
5131 else if (h->root.type == bfd_link_hash_undefweak
5132 || h->root.type == bfd_link_hash_defweak)
5133 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
5134 else
5135 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
5136
5137 switch (h->root.type)
5138 {
5139 default:
5140 case bfd_link_hash_new:
5141 abort ();
5142 return false;
5143
5144 case bfd_link_hash_undefined:
5145 input_sec = bfd_und_section_ptr;
5146 sym.st_shndx = SHN_UNDEF;
5147 break;
5148
5149 case bfd_link_hash_undefweak:
5150 input_sec = bfd_und_section_ptr;
5151 sym.st_shndx = SHN_UNDEF;
5152 break;
5153
5154 case bfd_link_hash_defined:
5155 case bfd_link_hash_defweak:
5156 {
5157 input_sec = h->root.u.def.section;
5158 if (input_sec->output_section != NULL)
5159 {
5160 sym.st_shndx =
5161 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
5162 input_sec->output_section);
5163 if (sym.st_shndx == (unsigned short) -1)
5164 {
5165 (*_bfd_error_handler)
5166 (_("%s: could not find output section %s for input section %s"),
5167 bfd_get_filename (finfo->output_bfd),
5168 input_sec->output_section->name,
5169 input_sec->name);
5170 eoinfo->failed = true;
5171 return false;
5172 }
5173
5174 /* ELF symbols in relocateable files are section relative,
5175 but in nonrelocateable files they are virtual
5176 addresses. */
5177 sym.st_value = h->root.u.def.value + input_sec->output_offset;
5178 if (! finfo->info->relocateable)
5179 sym.st_value += input_sec->output_section->vma;
5180 }
5181 else
5182 {
5183 BFD_ASSERT (input_sec->owner == NULL
5184 || (input_sec->owner->flags & DYNAMIC) != 0);
5185 sym.st_shndx = SHN_UNDEF;
5186 input_sec = bfd_und_section_ptr;
5187 }
5188 }
5189 break;
5190
5191 case bfd_link_hash_common:
5192 input_sec = h->root.u.c.p->section;
5193 sym.st_shndx = SHN_COMMON;
5194 sym.st_value = 1 << h->root.u.c.p->alignment_power;
5195 break;
5196
5197 case bfd_link_hash_indirect:
5198 /* These symbols are created by symbol versioning. They point
5199 to the decorated version of the name. For example, if the
5200 symbol foo@@GNU_1.2 is the default, which should be used when
5201 foo is used with no version, then we add an indirect symbol
5202 foo which points to foo@@GNU_1.2. We ignore these symbols,
5203 since the indirected symbol is already in the hash table. */
5204 return true;
5205
5206 case bfd_link_hash_warning:
5207 /* We can't represent these symbols in ELF, although a warning
5208 symbol may have come from a .gnu.warning.SYMBOL section. We
5209 just put the target symbol in the hash table. If the target
5210 symbol does not really exist, don't do anything. */
5211 if (h->root.u.i.link->type == bfd_link_hash_new)
5212 return true;
5213 return (elf_link_output_extsym
5214 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
5215 }
5216
5217 /* Give the processor backend a chance to tweak the symbol value,
5218 and also to finish up anything that needs to be done for this
5219 symbol. */
5220 if ((h->dynindx != -1
5221 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5222 && elf_hash_table (finfo->info)->dynamic_sections_created)
5223 {
5224 struct elf_backend_data *bed;
5225
5226 bed = get_elf_backend_data (finfo->output_bfd);
5227 if (! ((*bed->elf_backend_finish_dynamic_symbol)
5228 (finfo->output_bfd, finfo->info, h, &sym)))
5229 {
5230 eoinfo->failed = true;
5231 return false;
5232 }
5233 }
5234
5235 /* If we are marking the symbol as undefined, and there are no
5236 non-weak references to this symbol from a regular object, then
5237 mark the symbol as weak undefined; if there are non-weak
5238 references, mark the symbol as strong. We can't do this earlier,
5239 because it might not be marked as undefined until the
5240 finish_dynamic_symbol routine gets through with it. */
5241 if (sym.st_shndx == SHN_UNDEF
5242 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
5243 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
5244 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
5245 {
5246 int bindtype;
5247
5248 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
5249 bindtype = STB_GLOBAL;
5250 else
5251 bindtype = STB_WEAK;
5252 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
5253 }
5254
5255 /* If a symbol is not defined locally, we clear the visibility
5256 field. */
5257 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5258 sym.st_other ^= ELF_ST_VISIBILITY(sym.st_other);
5259
5260 /* If this symbol should be put in the .dynsym section, then put it
5261 there now. We have already know the symbol index. We also fill
5262 in the entry in the .hash section. */
5263 if (h->dynindx != -1
5264 && elf_hash_table (finfo->info)->dynamic_sections_created)
5265 {
5266 size_t bucketcount;
5267 size_t bucket;
5268 size_t hash_entry_size;
5269 bfd_byte *bucketpos;
5270 bfd_vma chain;
5271
5272 sym.st_name = h->dynstr_index;
5273
5274 elf_swap_symbol_out (finfo->output_bfd, &sym,
5275 (PTR) (((Elf_External_Sym *)
5276 finfo->dynsym_sec->contents)
5277 + h->dynindx));
5278
5279 bucketcount = elf_hash_table (finfo->info)->bucketcount;
5280 bucket = h->elf_hash_value % bucketcount;
5281 hash_entry_size
5282 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
5283 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
5284 + (bucket + 2) * hash_entry_size);
5285 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
5286 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
5287 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
5288 ((bfd_byte *) finfo->hash_sec->contents
5289 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
5290
5291 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5292 {
5293 Elf_Internal_Versym iversym;
5294
5295 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5296 {
5297 if (h->verinfo.verdef == NULL)
5298 iversym.vs_vers = 0;
5299 else
5300 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5301 }
5302 else
5303 {
5304 if (h->verinfo.vertree == NULL)
5305 iversym.vs_vers = 1;
5306 else
5307 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5308 }
5309
5310 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5311 iversym.vs_vers |= VERSYM_HIDDEN;
5312
5313 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5314 (((Elf_External_Versym *)
5315 finfo->symver_sec->contents)
5316 + h->dynindx));
5317 }
5318 }
5319
5320 /* If we're stripping it, then it was just a dynamic symbol, and
5321 there's nothing else to do. */
5322 if (strip)
5323 return true;
5324
5325 h->indx = bfd_get_symcount (finfo->output_bfd);
5326
5327 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5328 {
5329 eoinfo->failed = true;
5330 return false;
5331 }
5332
5333 return true;
5334 }
5335
5336 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
5337 originated from the section given by INPUT_REL_HDR) to the
5338 OUTPUT_BFD. */
5339
5340 static void
5341 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
5342 internal_relocs)
5343 bfd *output_bfd;
5344 asection *input_section;
5345 Elf_Internal_Shdr *input_rel_hdr;
5346 Elf_Internal_Rela *internal_relocs;
5347 {
5348 Elf_Internal_Rela *irela;
5349 Elf_Internal_Rela *irelaend;
5350 Elf_Internal_Shdr *output_rel_hdr;
5351 asection *output_section;
5352 unsigned int *rel_countp = NULL;
5353 struct elf_backend_data *bed;
5354
5355 output_section = input_section->output_section;
5356 output_rel_hdr = NULL;
5357
5358 if (elf_section_data (output_section)->rel_hdr.sh_entsize
5359 == input_rel_hdr->sh_entsize)
5360 {
5361 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5362 rel_countp = &elf_section_data (output_section)->rel_count;
5363 }
5364 else if (elf_section_data (output_section)->rel_hdr2
5365 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5366 == input_rel_hdr->sh_entsize))
5367 {
5368 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5369 rel_countp = &elf_section_data (output_section)->rel_count2;
5370 }
5371
5372 BFD_ASSERT (output_rel_hdr != NULL);
5373
5374 bed = get_elf_backend_data (output_bfd);
5375 irela = internal_relocs;
5376 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5377 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5378 {
5379 Elf_External_Rel *erel;
5380
5381 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5382 for (; irela < irelaend; irela++, erel++)
5383 {
5384 Elf_Internal_Rel irel;
5385
5386 irel.r_offset = irela->r_offset;
5387 irel.r_info = irela->r_info;
5388 BFD_ASSERT (irela->r_addend == 0);
5389 if (bed->s->swap_reloc_out)
5390 (*bed->s->swap_reloc_out) (output_bfd, &irel, (PTR) erel);
5391 else
5392 elf_swap_reloc_out (output_bfd, &irel, erel);
5393 }
5394 }
5395 else
5396 {
5397 Elf_External_Rela *erela;
5398
5399 BFD_ASSERT (input_rel_hdr->sh_entsize
5400 == sizeof (Elf_External_Rela));
5401 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5402 for (; irela < irelaend; irela++, erela++)
5403 if (bed->s->swap_reloca_out)
5404 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
5405 else
5406 elf_swap_reloca_out (output_bfd, irela, erela);
5407 }
5408
5409 /* Bump the counter, so that we know where to add the next set of
5410 relocations. */
5411 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5412 }
5413
5414 /* Link an input file into the linker output file. This function
5415 handles all the sections and relocations of the input file at once.
5416 This is so that we only have to read the local symbols once, and
5417 don't have to keep them in memory. */
5418
5419 static boolean
5420 elf_link_input_bfd (finfo, input_bfd)
5421 struct elf_final_link_info *finfo;
5422 bfd *input_bfd;
5423 {
5424 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5425 bfd *, asection *, bfd_byte *,
5426 Elf_Internal_Rela *,
5427 Elf_Internal_Sym *, asection **));
5428 bfd *output_bfd;
5429 Elf_Internal_Shdr *symtab_hdr;
5430 size_t locsymcount;
5431 size_t extsymoff;
5432 Elf_External_Sym *external_syms;
5433 Elf_External_Sym *esym;
5434 Elf_External_Sym *esymend;
5435 Elf_Internal_Sym *isym;
5436 long *pindex;
5437 asection **ppsection;
5438 asection *o;
5439 struct elf_backend_data *bed;
5440
5441 output_bfd = finfo->output_bfd;
5442 bed = get_elf_backend_data (output_bfd);
5443 relocate_section = bed->elf_backend_relocate_section;
5444
5445 /* If this is a dynamic object, we don't want to do anything here:
5446 we don't want the local symbols, and we don't want the section
5447 contents. */
5448 if ((input_bfd->flags & DYNAMIC) != 0)
5449 return true;
5450
5451 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5452 if (elf_bad_symtab (input_bfd))
5453 {
5454 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5455 extsymoff = 0;
5456 }
5457 else
5458 {
5459 locsymcount = symtab_hdr->sh_info;
5460 extsymoff = symtab_hdr->sh_info;
5461 }
5462
5463 /* Read the local symbols. */
5464 if (symtab_hdr->contents != NULL)
5465 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5466 else if (locsymcount == 0)
5467 external_syms = NULL;
5468 else
5469 {
5470 external_syms = finfo->external_syms;
5471 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5472 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5473 locsymcount, input_bfd)
5474 != locsymcount * sizeof (Elf_External_Sym)))
5475 return false;
5476 }
5477
5478 /* Swap in the local symbols and write out the ones which we know
5479 are going into the output file. */
5480 esym = external_syms;
5481 esymend = esym + locsymcount;
5482 isym = finfo->internal_syms;
5483 pindex = finfo->indices;
5484 ppsection = finfo->sections;
5485 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5486 {
5487 asection *isec;
5488 const char *name;
5489 Elf_Internal_Sym osym;
5490
5491 elf_swap_symbol_in (input_bfd, esym, isym);
5492 *pindex = -1;
5493
5494 if (elf_bad_symtab (input_bfd))
5495 {
5496 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5497 {
5498 *ppsection = NULL;
5499 continue;
5500 }
5501 }
5502
5503 if (isym->st_shndx == SHN_UNDEF)
5504 isec = bfd_und_section_ptr;
5505 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5506 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5507 else if (isym->st_shndx == SHN_ABS)
5508 isec = bfd_abs_section_ptr;
5509 else if (isym->st_shndx == SHN_COMMON)
5510 isec = bfd_com_section_ptr;
5511 else
5512 {
5513 /* Who knows? */
5514 isec = NULL;
5515 }
5516
5517 *ppsection = isec;
5518
5519 /* Don't output the first, undefined, symbol. */
5520 if (esym == external_syms)
5521 continue;
5522
5523 /* If we are stripping all symbols, we don't want to output this
5524 one. */
5525 if (finfo->info->strip == strip_all)
5526 continue;
5527
5528 /* We never output section symbols. Instead, we use the section
5529 symbol of the corresponding section in the output file. */
5530 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5531 continue;
5532
5533 /* If we are discarding all local symbols, we don't want to
5534 output this one. If we are generating a relocateable output
5535 file, then some of the local symbols may be required by
5536 relocs; we output them below as we discover that they are
5537 needed. */
5538 if (finfo->info->discard == discard_all)
5539 continue;
5540
5541 /* If this symbol is defined in a section which we are
5542 discarding, we don't need to keep it, but note that
5543 linker_mark is only reliable for sections that have contents.
5544 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5545 as well as linker_mark. */
5546 if (isym->st_shndx > 0
5547 && isym->st_shndx < SHN_LORESERVE
5548 && isec != NULL
5549 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5550 || (! finfo->info->relocateable
5551 && (isec->flags & SEC_EXCLUDE) != 0)))
5552 continue;
5553
5554 /* Get the name of the symbol. */
5555 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5556 isym->st_name);
5557 if (name == NULL)
5558 return false;
5559
5560 /* See if we are discarding symbols with this name. */
5561 if ((finfo->info->strip == strip_some
5562 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5563 == NULL))
5564 || (finfo->info->discard == discard_l
5565 && bfd_is_local_label_name (input_bfd, name)))
5566 continue;
5567
5568 /* If we get here, we are going to output this symbol. */
5569
5570 osym = *isym;
5571
5572 /* Adjust the section index for the output file. */
5573 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5574 isec->output_section);
5575 if (osym.st_shndx == (unsigned short) -1)
5576 return false;
5577
5578 *pindex = bfd_get_symcount (output_bfd);
5579
5580 /* ELF symbols in relocateable files are section relative, but
5581 in executable files they are virtual addresses. Note that
5582 this code assumes that all ELF sections have an associated
5583 BFD section with a reasonable value for output_offset; below
5584 we assume that they also have a reasonable value for
5585 output_section. Any special sections must be set up to meet
5586 these requirements. */
5587 osym.st_value += isec->output_offset;
5588 if (! finfo->info->relocateable)
5589 osym.st_value += isec->output_section->vma;
5590
5591 if (! elf_link_output_sym (finfo, name, &osym, isec))
5592 return false;
5593 }
5594
5595 /* Relocate the contents of each section. */
5596 for (o = input_bfd->sections; o != NULL; o = o->next)
5597 {
5598 bfd_byte *contents;
5599
5600 if (! o->linker_mark)
5601 {
5602 /* This section was omitted from the link. */
5603 continue;
5604 }
5605
5606 if ((o->flags & SEC_HAS_CONTENTS) == 0
5607 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5608 continue;
5609
5610 if ((o->flags & SEC_LINKER_CREATED) != 0)
5611 {
5612 /* Section was created by elf_link_create_dynamic_sections
5613 or somesuch. */
5614 continue;
5615 }
5616
5617 /* Get the contents of the section. They have been cached by a
5618 relaxation routine. Note that o is a section in an input
5619 file, so the contents field will not have been set by any of
5620 the routines which work on output files. */
5621 if (elf_section_data (o)->this_hdr.contents != NULL)
5622 contents = elf_section_data (o)->this_hdr.contents;
5623 else
5624 {
5625 contents = finfo->contents;
5626 if (! bfd_get_section_contents (input_bfd, o, contents,
5627 (file_ptr) 0, o->_raw_size))
5628 return false;
5629 }
5630
5631 if ((o->flags & SEC_RELOC) != 0)
5632 {
5633 Elf_Internal_Rela *internal_relocs;
5634
5635 /* Get the swapped relocs. */
5636 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5637 (input_bfd, o, finfo->external_relocs,
5638 finfo->internal_relocs, false));
5639 if (internal_relocs == NULL
5640 && o->reloc_count > 0)
5641 return false;
5642
5643 /* Relocate the section by invoking a back end routine.
5644
5645 The back end routine is responsible for adjusting the
5646 section contents as necessary, and (if using Rela relocs
5647 and generating a relocateable output file) adjusting the
5648 reloc addend as necessary.
5649
5650 The back end routine does not have to worry about setting
5651 the reloc address or the reloc symbol index.
5652
5653 The back end routine is given a pointer to the swapped in
5654 internal symbols, and can access the hash table entries
5655 for the external symbols via elf_sym_hashes (input_bfd).
5656
5657 When generating relocateable output, the back end routine
5658 must handle STB_LOCAL/STT_SECTION symbols specially. The
5659 output symbol is going to be a section symbol
5660 corresponding to the output section, which will require
5661 the addend to be adjusted. */
5662
5663 if (! (*relocate_section) (output_bfd, finfo->info,
5664 input_bfd, o, contents,
5665 internal_relocs,
5666 finfo->internal_syms,
5667 finfo->sections))
5668 return false;
5669
5670 if (finfo->info->relocateable || finfo->info->emitrelocations)
5671 {
5672 Elf_Internal_Rela *irela;
5673 Elf_Internal_Rela *irelaend;
5674 struct elf_link_hash_entry **rel_hash;
5675 Elf_Internal_Shdr *input_rel_hdr;
5676
5677 /* Adjust the reloc addresses and symbol indices. */
5678
5679 irela = internal_relocs;
5680 irelaend =
5681 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
5682 rel_hash = (elf_section_data (o->output_section)->rel_hashes
5683 + elf_section_data (o->output_section)->rel_count
5684 + elf_section_data (o->output_section)->rel_count2);
5685 for (; irela < irelaend; irela++, rel_hash++)
5686 {
5687 unsigned long r_symndx;
5688 Elf_Internal_Sym *isym;
5689 asection *sec;
5690
5691 irela->r_offset += o->output_offset;
5692
5693 /* Relocs in an executable have to be virtual addresses. */
5694 if (finfo->info->emitrelocations)
5695 irela->r_offset += o->output_section->vma;
5696
5697 r_symndx = ELF_R_SYM (irela->r_info);
5698
5699 if (r_symndx == 0)
5700 continue;
5701
5702 if (r_symndx >= locsymcount
5703 || (elf_bad_symtab (input_bfd)
5704 && finfo->sections[r_symndx] == NULL))
5705 {
5706 struct elf_link_hash_entry *rh;
5707 long indx;
5708
5709 /* This is a reloc against a global symbol. We
5710 have not yet output all the local symbols, so
5711 we do not know the symbol index of any global
5712 symbol. We set the rel_hash entry for this
5713 reloc to point to the global hash table entry
5714 for this symbol. The symbol index is then
5715 set at the end of elf_bfd_final_link. */
5716 indx = r_symndx - extsymoff;
5717 rh = elf_sym_hashes (input_bfd)[indx];
5718 while (rh->root.type == bfd_link_hash_indirect
5719 || rh->root.type == bfd_link_hash_warning)
5720 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5721
5722 /* Setting the index to -2 tells
5723 elf_link_output_extsym that this symbol is
5724 used by a reloc. */
5725 BFD_ASSERT (rh->indx < 0);
5726 rh->indx = -2;
5727
5728 *rel_hash = rh;
5729
5730 continue;
5731 }
5732
5733 /* This is a reloc against a local symbol. */
5734
5735 *rel_hash = NULL;
5736 isym = finfo->internal_syms + r_symndx;
5737 sec = finfo->sections[r_symndx];
5738 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5739 {
5740 /* I suppose the backend ought to fill in the
5741 section of any STT_SECTION symbol against a
5742 processor specific section. If we have
5743 discarded a section, the output_section will
5744 be the absolute section. */
5745 if (sec != NULL
5746 && (bfd_is_abs_section (sec)
5747 || (sec->output_section != NULL
5748 && bfd_is_abs_section (sec->output_section))))
5749 r_symndx = 0;
5750 else if (sec == NULL || sec->owner == NULL)
5751 {
5752 bfd_set_error (bfd_error_bad_value);
5753 return false;
5754 }
5755 else
5756 {
5757 r_symndx = sec->output_section->target_index;
5758 BFD_ASSERT (r_symndx != 0);
5759 }
5760 }
5761 else
5762 {
5763 if (finfo->indices[r_symndx] == -1)
5764 {
5765 unsigned long link;
5766 const char *name;
5767 asection *osec;
5768
5769 if (finfo->info->strip == strip_all)
5770 {
5771 /* You can't do ld -r -s. */
5772 bfd_set_error (bfd_error_invalid_operation);
5773 return false;
5774 }
5775
5776 /* This symbol was skipped earlier, but
5777 since it is needed by a reloc, we
5778 must output it now. */
5779 link = symtab_hdr->sh_link;
5780 name = bfd_elf_string_from_elf_section (input_bfd,
5781 link,
5782 isym->st_name);
5783 if (name == NULL)
5784 return false;
5785
5786 osec = sec->output_section;
5787 isym->st_shndx =
5788 _bfd_elf_section_from_bfd_section (output_bfd,
5789 osec);
5790 if (isym->st_shndx == (unsigned short) -1)
5791 return false;
5792
5793 isym->st_value += sec->output_offset;
5794 if (! finfo->info->relocateable)
5795 isym->st_value += osec->vma;
5796
5797 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5798
5799 if (! elf_link_output_sym (finfo, name, isym, sec))
5800 return false;
5801 }
5802
5803 r_symndx = finfo->indices[r_symndx];
5804 }
5805
5806 irela->r_info = ELF_R_INFO (r_symndx,
5807 ELF_R_TYPE (irela->r_info));
5808 }
5809
5810 /* Swap out the relocs. */
5811 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5812 elf_link_output_relocs (output_bfd, o,
5813 input_rel_hdr,
5814 internal_relocs);
5815 internal_relocs
5816 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5817 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5818 if (input_rel_hdr)
5819 elf_link_output_relocs (output_bfd, o,
5820 input_rel_hdr,
5821 internal_relocs);
5822 }
5823 }
5824
5825 /* Write out the modified section contents. */
5826 if (elf_section_data (o)->stab_info == NULL)
5827 {
5828 if (! (o->flags & SEC_EXCLUDE) &&
5829 ! bfd_set_section_contents (output_bfd, o->output_section,
5830 contents, o->output_offset,
5831 (o->_cooked_size != 0
5832 ? o->_cooked_size
5833 : o->_raw_size)))
5834 return false;
5835 }
5836 else
5837 {
5838 if (! (_bfd_write_section_stabs
5839 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5840 o, &elf_section_data (o)->stab_info, contents)))
5841 return false;
5842 }
5843 }
5844
5845 return true;
5846 }
5847
5848 /* Generate a reloc when linking an ELF file. This is a reloc
5849 requested by the linker, and does come from any input file. This
5850 is used to build constructor and destructor tables when linking
5851 with -Ur. */
5852
5853 static boolean
5854 elf_reloc_link_order (output_bfd, info, output_section, link_order)
5855 bfd *output_bfd;
5856 struct bfd_link_info *info;
5857 asection *output_section;
5858 struct bfd_link_order *link_order;
5859 {
5860 reloc_howto_type *howto;
5861 long indx;
5862 bfd_vma offset;
5863 bfd_vma addend;
5864 struct elf_link_hash_entry **rel_hash_ptr;
5865 Elf_Internal_Shdr *rel_hdr;
5866 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
5867
5868 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5869 if (howto == NULL)
5870 {
5871 bfd_set_error (bfd_error_bad_value);
5872 return false;
5873 }
5874
5875 addend = link_order->u.reloc.p->addend;
5876
5877 /* Figure out the symbol index. */
5878 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5879 + elf_section_data (output_section)->rel_count
5880 + elf_section_data (output_section)->rel_count2);
5881 if (link_order->type == bfd_section_reloc_link_order)
5882 {
5883 indx = link_order->u.reloc.p->u.section->target_index;
5884 BFD_ASSERT (indx != 0);
5885 *rel_hash_ptr = NULL;
5886 }
5887 else
5888 {
5889 struct elf_link_hash_entry *h;
5890
5891 /* Treat a reloc against a defined symbol as though it were
5892 actually against the section. */
5893 h = ((struct elf_link_hash_entry *)
5894 bfd_wrapped_link_hash_lookup (output_bfd, info,
5895 link_order->u.reloc.p->u.name,
5896 false, false, true));
5897 if (h != NULL
5898 && (h->root.type == bfd_link_hash_defined
5899 || h->root.type == bfd_link_hash_defweak))
5900 {
5901 asection *section;
5902
5903 section = h->root.u.def.section;
5904 indx = section->output_section->target_index;
5905 *rel_hash_ptr = NULL;
5906 /* It seems that we ought to add the symbol value to the
5907 addend here, but in practice it has already been added
5908 because it was passed to constructor_callback. */
5909 addend += section->output_section->vma + section->output_offset;
5910 }
5911 else if (h != NULL)
5912 {
5913 /* Setting the index to -2 tells elf_link_output_extsym that
5914 this symbol is used by a reloc. */
5915 h->indx = -2;
5916 *rel_hash_ptr = h;
5917 indx = 0;
5918 }
5919 else
5920 {
5921 if (! ((*info->callbacks->unattached_reloc)
5922 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5923 (asection *) NULL, (bfd_vma) 0)))
5924 return false;
5925 indx = 0;
5926 }
5927 }
5928
5929 /* If this is an inplace reloc, we must write the addend into the
5930 object file. */
5931 if (howto->partial_inplace && addend != 0)
5932 {
5933 bfd_size_type size;
5934 bfd_reloc_status_type rstat;
5935 bfd_byte *buf;
5936 boolean ok;
5937
5938 size = bfd_get_reloc_size (howto);
5939 buf = (bfd_byte *) bfd_zmalloc (size);
5940 if (buf == (bfd_byte *) NULL)
5941 return false;
5942 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5943 switch (rstat)
5944 {
5945 case bfd_reloc_ok:
5946 break;
5947 default:
5948 case bfd_reloc_outofrange:
5949 abort ();
5950 case bfd_reloc_overflow:
5951 if (! ((*info->callbacks->reloc_overflow)
5952 (info,
5953 (link_order->type == bfd_section_reloc_link_order
5954 ? bfd_section_name (output_bfd,
5955 link_order->u.reloc.p->u.section)
5956 : link_order->u.reloc.p->u.name),
5957 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5958 (bfd_vma) 0)))
5959 {
5960 free (buf);
5961 return false;
5962 }
5963 break;
5964 }
5965 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5966 (file_ptr) link_order->offset, size);
5967 free (buf);
5968 if (! ok)
5969 return false;
5970 }
5971
5972 /* The address of a reloc is relative to the section in a
5973 relocateable file, and is a virtual address in an executable
5974 file. */
5975 offset = link_order->offset;
5976 if (! info->relocateable)
5977 offset += output_section->vma;
5978
5979 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5980
5981 if (rel_hdr->sh_type == SHT_REL)
5982 {
5983 Elf_Internal_Rel irel;
5984 Elf_External_Rel *erel;
5985
5986 irel.r_offset = offset;
5987 irel.r_info = ELF_R_INFO (indx, howto->type);
5988 erel = ((Elf_External_Rel *) rel_hdr->contents
5989 + elf_section_data (output_section)->rel_count);
5990 if (bed->s->swap_reloc_out)
5991 (*bed->s->swap_reloc_out) (output_bfd, &irel, (bfd_byte *) erel);
5992 else
5993 elf_swap_reloc_out (output_bfd, &irel, erel);
5994 }
5995 else
5996 {
5997 Elf_Internal_Rela irela;
5998 Elf_External_Rela *erela;
5999
6000 irela.r_offset = offset;
6001 irela.r_info = ELF_R_INFO (indx, howto->type);
6002 irela.r_addend = addend;
6003 erela = ((Elf_External_Rela *) rel_hdr->contents
6004 + elf_section_data (output_section)->rel_count);
6005 if (bed->s->swap_reloca_out)
6006 (*bed->s->swap_reloca_out) (output_bfd, &irela, (bfd_byte *) erela);
6007 else
6008 elf_swap_reloca_out (output_bfd, &irela, erela);
6009 }
6010
6011 ++elf_section_data (output_section)->rel_count;
6012
6013 return true;
6014 }
6015
6016 \f
6017 /* Allocate a pointer to live in a linker created section. */
6018
6019 boolean
6020 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
6021 bfd *abfd;
6022 struct bfd_link_info *info;
6023 elf_linker_section_t *lsect;
6024 struct elf_link_hash_entry *h;
6025 const Elf_Internal_Rela *rel;
6026 {
6027 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
6028 elf_linker_section_pointers_t *linker_section_ptr;
6029 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
6030
6031 BFD_ASSERT (lsect != NULL);
6032
6033 /* Is this a global symbol? */
6034 if (h != NULL)
6035 {
6036 /* Has this symbol already been allocated, if so, our work is done */
6037 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6038 rel->r_addend,
6039 lsect->which))
6040 return true;
6041
6042 ptr_linker_section_ptr = &h->linker_section_pointer;
6043 /* Make sure this symbol is output as a dynamic symbol. */
6044 if (h->dynindx == -1)
6045 {
6046 if (! elf_link_record_dynamic_symbol (info, h))
6047 return false;
6048 }
6049
6050 if (lsect->rel_section)
6051 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6052 }
6053
6054 else /* Allocation of a pointer to a local symbol */
6055 {
6056 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
6057
6058 /* Allocate a table to hold the local symbols if first time */
6059 if (!ptr)
6060 {
6061 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
6062 register unsigned int i;
6063
6064 ptr = (elf_linker_section_pointers_t **)
6065 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
6066
6067 if (!ptr)
6068 return false;
6069
6070 elf_local_ptr_offsets (abfd) = ptr;
6071 for (i = 0; i < num_symbols; i++)
6072 ptr[i] = (elf_linker_section_pointers_t *)0;
6073 }
6074
6075 /* Has this symbol already been allocated, if so, our work is done */
6076 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
6077 rel->r_addend,
6078 lsect->which))
6079 return true;
6080
6081 ptr_linker_section_ptr = &ptr[r_symndx];
6082
6083 if (info->shared)
6084 {
6085 /* If we are generating a shared object, we need to
6086 output a R_<xxx>_RELATIVE reloc so that the
6087 dynamic linker can adjust this GOT entry. */
6088 BFD_ASSERT (lsect->rel_section != NULL);
6089 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6090 }
6091 }
6092
6093 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
6094 from internal memory. */
6095 BFD_ASSERT (ptr_linker_section_ptr != NULL);
6096 linker_section_ptr = (elf_linker_section_pointers_t *)
6097 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
6098
6099 if (!linker_section_ptr)
6100 return false;
6101
6102 linker_section_ptr->next = *ptr_linker_section_ptr;
6103 linker_section_ptr->addend = rel->r_addend;
6104 linker_section_ptr->which = lsect->which;
6105 linker_section_ptr->written_address_p = false;
6106 *ptr_linker_section_ptr = linker_section_ptr;
6107
6108 #if 0
6109 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
6110 {
6111 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
6112 lsect->hole_offset += ARCH_SIZE / 8;
6113 lsect->sym_offset += ARCH_SIZE / 8;
6114 if (lsect->sym_hash) /* Bump up symbol value if needed */
6115 {
6116 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
6117 #ifdef DEBUG
6118 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
6119 lsect->sym_hash->root.root.string,
6120 (long)ARCH_SIZE / 8,
6121 (long)lsect->sym_hash->root.u.def.value);
6122 #endif
6123 }
6124 }
6125 else
6126 #endif
6127 linker_section_ptr->offset = lsect->section->_raw_size;
6128
6129 lsect->section->_raw_size += ARCH_SIZE / 8;
6130
6131 #ifdef DEBUG
6132 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
6133 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
6134 #endif
6135
6136 return true;
6137 }
6138
6139 \f
6140 #if ARCH_SIZE==64
6141 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
6142 #endif
6143 #if ARCH_SIZE==32
6144 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
6145 #endif
6146
6147 /* Fill in the address for a pointer generated in alinker section. */
6148
6149 bfd_vma
6150 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
6151 bfd *output_bfd;
6152 bfd *input_bfd;
6153 struct bfd_link_info *info;
6154 elf_linker_section_t *lsect;
6155 struct elf_link_hash_entry *h;
6156 bfd_vma relocation;
6157 const Elf_Internal_Rela *rel;
6158 int relative_reloc;
6159 {
6160 elf_linker_section_pointers_t *linker_section_ptr;
6161
6162 BFD_ASSERT (lsect != NULL);
6163
6164 if (h != NULL) /* global symbol */
6165 {
6166 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6167 rel->r_addend,
6168 lsect->which);
6169
6170 BFD_ASSERT (linker_section_ptr != NULL);
6171
6172 if (! elf_hash_table (info)->dynamic_sections_created
6173 || (info->shared
6174 && info->symbolic
6175 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6176 {
6177 /* This is actually a static link, or it is a
6178 -Bsymbolic link and the symbol is defined
6179 locally. We must initialize this entry in the
6180 global section.
6181
6182 When doing a dynamic link, we create a .rela.<xxx>
6183 relocation entry to initialize the value. This
6184 is done in the finish_dynamic_symbol routine. */
6185 if (!linker_section_ptr->written_address_p)
6186 {
6187 linker_section_ptr->written_address_p = true;
6188 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6189 lsect->section->contents + linker_section_ptr->offset);
6190 }
6191 }
6192 }
6193 else /* local symbol */
6194 {
6195 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6196 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
6197 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
6198 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
6199 rel->r_addend,
6200 lsect->which);
6201
6202 BFD_ASSERT (linker_section_ptr != NULL);
6203
6204 /* Write out pointer if it hasn't been rewritten out before */
6205 if (!linker_section_ptr->written_address_p)
6206 {
6207 linker_section_ptr->written_address_p = true;
6208 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6209 lsect->section->contents + linker_section_ptr->offset);
6210
6211 if (info->shared)
6212 {
6213 asection *srel = lsect->rel_section;
6214 Elf_Internal_Rela outrel;
6215
6216 /* We need to generate a relative reloc for the dynamic linker. */
6217 if (!srel)
6218 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
6219 lsect->rel_name);
6220
6221 BFD_ASSERT (srel != NULL);
6222
6223 outrel.r_offset = (lsect->section->output_section->vma
6224 + lsect->section->output_offset
6225 + linker_section_ptr->offset);
6226 outrel.r_info = ELF_R_INFO (0, relative_reloc);
6227 outrel.r_addend = 0;
6228 elf_swap_reloca_out (output_bfd, &outrel,
6229 (((Elf_External_Rela *)
6230 lsect->section->contents)
6231 + elf_section_data (lsect->section)->rel_count));
6232 ++elf_section_data (lsect->section)->rel_count;
6233 }
6234 }
6235 }
6236
6237 relocation = (lsect->section->output_offset
6238 + linker_section_ptr->offset
6239 - lsect->hole_offset
6240 - lsect->sym_offset);
6241
6242 #ifdef DEBUG
6243 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6244 lsect->name, (long)relocation, (long)relocation);
6245 #endif
6246
6247 /* Subtract out the addend, because it will get added back in by the normal
6248 processing. */
6249 return relocation - linker_section_ptr->addend;
6250 }
6251 \f
6252 /* Garbage collect unused sections. */
6253
6254 static boolean elf_gc_mark
6255 PARAMS ((struct bfd_link_info *info, asection *sec,
6256 asection * (*gc_mark_hook)
6257 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6258 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
6259
6260 static boolean elf_gc_sweep
6261 PARAMS ((struct bfd_link_info *info,
6262 boolean (*gc_sweep_hook)
6263 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6264 const Elf_Internal_Rela *relocs))));
6265
6266 static boolean elf_gc_sweep_symbol
6267 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
6268
6269 static boolean elf_gc_allocate_got_offsets
6270 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
6271
6272 static boolean elf_gc_propagate_vtable_entries_used
6273 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6274
6275 static boolean elf_gc_smash_unused_vtentry_relocs
6276 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6277
6278 /* The mark phase of garbage collection. For a given section, mark
6279 it, and all the sections which define symbols to which it refers. */
6280
6281 static boolean
6282 elf_gc_mark (info, sec, gc_mark_hook)
6283 struct bfd_link_info *info;
6284 asection *sec;
6285 asection * (*gc_mark_hook)
6286 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6287 struct elf_link_hash_entry *, Elf_Internal_Sym *));
6288 {
6289 boolean ret = true;
6290
6291 sec->gc_mark = 1;
6292
6293 /* Look through the section relocs. */
6294
6295 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
6296 {
6297 Elf_Internal_Rela *relstart, *rel, *relend;
6298 Elf_Internal_Shdr *symtab_hdr;
6299 struct elf_link_hash_entry **sym_hashes;
6300 size_t nlocsyms;
6301 size_t extsymoff;
6302 Elf_External_Sym *locsyms, *freesyms = NULL;
6303 bfd *input_bfd = sec->owner;
6304 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
6305
6306 /* GCFIXME: how to arrange so that relocs and symbols are not
6307 reread continually? */
6308
6309 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6310 sym_hashes = elf_sym_hashes (input_bfd);
6311
6312 /* Read the local symbols. */
6313 if (elf_bad_symtab (input_bfd))
6314 {
6315 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6316 extsymoff = 0;
6317 }
6318 else
6319 extsymoff = nlocsyms = symtab_hdr->sh_info;
6320 if (symtab_hdr->contents)
6321 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6322 else if (nlocsyms == 0)
6323 locsyms = NULL;
6324 else
6325 {
6326 locsyms = freesyms =
6327 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6328 if (freesyms == NULL
6329 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6330 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6331 nlocsyms, input_bfd)
6332 != nlocsyms * sizeof (Elf_External_Sym)))
6333 {
6334 ret = false;
6335 goto out1;
6336 }
6337 }
6338
6339 /* Read the relocations. */
6340 relstart = (NAME(_bfd_elf,link_read_relocs)
6341 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6342 info->keep_memory));
6343 if (relstart == NULL)
6344 {
6345 ret = false;
6346 goto out1;
6347 }
6348 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6349
6350 for (rel = relstart; rel < relend; rel++)
6351 {
6352 unsigned long r_symndx;
6353 asection *rsec;
6354 struct elf_link_hash_entry *h;
6355 Elf_Internal_Sym s;
6356
6357 r_symndx = ELF_R_SYM (rel->r_info);
6358 if (r_symndx == 0)
6359 continue;
6360
6361 if (elf_bad_symtab (sec->owner))
6362 {
6363 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6364 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
6365 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6366 else
6367 {
6368 h = sym_hashes[r_symndx - extsymoff];
6369 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6370 }
6371 }
6372 else if (r_symndx >= nlocsyms)
6373 {
6374 h = sym_hashes[r_symndx - extsymoff];
6375 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6376 }
6377 else
6378 {
6379 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6380 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6381 }
6382
6383 if (rsec && !rsec->gc_mark)
6384 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6385 {
6386 ret = false;
6387 goto out2;
6388 }
6389 }
6390
6391 out2:
6392 if (!info->keep_memory)
6393 free (relstart);
6394 out1:
6395 if (freesyms)
6396 free (freesyms);
6397 }
6398
6399 return ret;
6400 }
6401
6402 /* The sweep phase of garbage collection. Remove all garbage sections. */
6403
6404 static boolean
6405 elf_gc_sweep (info, gc_sweep_hook)
6406 struct bfd_link_info *info;
6407 boolean (*gc_sweep_hook)
6408 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6409 const Elf_Internal_Rela *relocs));
6410 {
6411 bfd *sub;
6412
6413 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6414 {
6415 asection *o;
6416
6417 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6418 continue;
6419
6420 for (o = sub->sections; o != NULL; o = o->next)
6421 {
6422 /* Keep special sections. Keep .debug sections. */
6423 if ((o->flags & SEC_LINKER_CREATED)
6424 || (o->flags & SEC_DEBUGGING))
6425 o->gc_mark = 1;
6426
6427 if (o->gc_mark)
6428 continue;
6429
6430 /* Skip sweeping sections already excluded. */
6431 if (o->flags & SEC_EXCLUDE)
6432 continue;
6433
6434 /* Since this is early in the link process, it is simple
6435 to remove a section from the output. */
6436 o->flags |= SEC_EXCLUDE;
6437
6438 /* But we also have to update some of the relocation
6439 info we collected before. */
6440 if (gc_sweep_hook
6441 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6442 {
6443 Elf_Internal_Rela *internal_relocs;
6444 boolean r;
6445
6446 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6447 (o->owner, o, NULL, NULL, info->keep_memory));
6448 if (internal_relocs == NULL)
6449 return false;
6450
6451 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
6452
6453 if (!info->keep_memory)
6454 free (internal_relocs);
6455
6456 if (!r)
6457 return false;
6458 }
6459 }
6460 }
6461
6462 /* Remove the symbols that were in the swept sections from the dynamic
6463 symbol table. GCFIXME: Anyone know how to get them out of the
6464 static symbol table as well? */
6465 {
6466 int i = 0;
6467
6468 elf_link_hash_traverse (elf_hash_table (info),
6469 elf_gc_sweep_symbol,
6470 (PTR) &i);
6471
6472 elf_hash_table (info)->dynsymcount = i;
6473 }
6474
6475 return true;
6476 }
6477
6478 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6479
6480 static boolean
6481 elf_gc_sweep_symbol (h, idxptr)
6482 struct elf_link_hash_entry *h;
6483 PTR idxptr;
6484 {
6485 int *idx = (int *) idxptr;
6486
6487 if (h->dynindx != -1
6488 && ((h->root.type != bfd_link_hash_defined
6489 && h->root.type != bfd_link_hash_defweak)
6490 || h->root.u.def.section->gc_mark))
6491 h->dynindx = (*idx)++;
6492
6493 return true;
6494 }
6495
6496 /* Propogate collected vtable information. This is called through
6497 elf_link_hash_traverse. */
6498
6499 static boolean
6500 elf_gc_propagate_vtable_entries_used (h, okp)
6501 struct elf_link_hash_entry *h;
6502 PTR okp;
6503 {
6504 /* Those that are not vtables. */
6505 if (h->vtable_parent == NULL)
6506 return true;
6507
6508 /* Those vtables that do not have parents, we cannot merge. */
6509 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6510 return true;
6511
6512 /* If we've already been done, exit. */
6513 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6514 return true;
6515
6516 /* Make sure the parent's table is up to date. */
6517 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6518
6519 if (h->vtable_entries_used == NULL)
6520 {
6521 /* None of this table's entries were referenced. Re-use the
6522 parent's table. */
6523 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6524 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6525 }
6526 else
6527 {
6528 size_t n;
6529 boolean *cu, *pu;
6530
6531 /* Or the parent's entries into ours. */
6532 cu = h->vtable_entries_used;
6533 cu[-1] = true;
6534 pu = h->vtable_parent->vtable_entries_used;
6535 if (pu != NULL)
6536 {
6537 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6538 while (--n != 0)
6539 {
6540 if (*pu) *cu = true;
6541 pu++, cu++;
6542 }
6543 }
6544 }
6545
6546 return true;
6547 }
6548
6549 static boolean
6550 elf_gc_smash_unused_vtentry_relocs (h, okp)
6551 struct elf_link_hash_entry *h;
6552 PTR okp;
6553 {
6554 asection *sec;
6555 bfd_vma hstart, hend;
6556 Elf_Internal_Rela *relstart, *relend, *rel;
6557 struct elf_backend_data *bed;
6558
6559 /* Take care of both those symbols that do not describe vtables as
6560 well as those that are not loaded. */
6561 if (h->vtable_parent == NULL)
6562 return true;
6563
6564 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6565 || h->root.type == bfd_link_hash_defweak);
6566
6567 sec = h->root.u.def.section;
6568 hstart = h->root.u.def.value;
6569 hend = hstart + h->size;
6570
6571 relstart = (NAME(_bfd_elf,link_read_relocs)
6572 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6573 if (!relstart)
6574 return *(boolean *)okp = false;
6575 bed = get_elf_backend_data (sec->owner);
6576 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6577
6578 for (rel = relstart; rel < relend; ++rel)
6579 if (rel->r_offset >= hstart && rel->r_offset < hend)
6580 {
6581 /* If the entry is in use, do nothing. */
6582 if (h->vtable_entries_used
6583 && (rel->r_offset - hstart) < h->vtable_entries_size)
6584 {
6585 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6586 if (h->vtable_entries_used[entry])
6587 continue;
6588 }
6589 /* Otherwise, kill it. */
6590 rel->r_offset = rel->r_info = rel->r_addend = 0;
6591 }
6592
6593 return true;
6594 }
6595
6596 /* Do mark and sweep of unused sections. */
6597
6598 boolean
6599 elf_gc_sections (abfd, info)
6600 bfd *abfd;
6601 struct bfd_link_info *info;
6602 {
6603 boolean ok = true;
6604 bfd *sub;
6605 asection * (*gc_mark_hook)
6606 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6607 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6608
6609 if (!get_elf_backend_data (abfd)->can_gc_sections
6610 || info->relocateable || info->emitrelocations
6611 || elf_hash_table (info)->dynamic_sections_created)
6612 return true;
6613
6614 /* Apply transitive closure to the vtable entry usage info. */
6615 elf_link_hash_traverse (elf_hash_table (info),
6616 elf_gc_propagate_vtable_entries_used,
6617 (PTR) &ok);
6618 if (!ok)
6619 return false;
6620
6621 /* Kill the vtable relocations that were not used. */
6622 elf_link_hash_traverse (elf_hash_table (info),
6623 elf_gc_smash_unused_vtentry_relocs,
6624 (PTR) &ok);
6625 if (!ok)
6626 return false;
6627
6628 /* Grovel through relocs to find out who stays ... */
6629
6630 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6631 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6632 {
6633 asection *o;
6634
6635 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6636 continue;
6637
6638 for (o = sub->sections; o != NULL; o = o->next)
6639 {
6640 if (o->flags & SEC_KEEP)
6641 if (!elf_gc_mark (info, o, gc_mark_hook))
6642 return false;
6643 }
6644 }
6645
6646 /* ... and mark SEC_EXCLUDE for those that go. */
6647 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6648 return false;
6649
6650 return true;
6651 }
6652 \f
6653 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6654
6655 boolean
6656 elf_gc_record_vtinherit (abfd, sec, h, offset)
6657 bfd *abfd;
6658 asection *sec;
6659 struct elf_link_hash_entry *h;
6660 bfd_vma offset;
6661 {
6662 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6663 struct elf_link_hash_entry **search, *child;
6664 bfd_size_type extsymcount;
6665
6666 /* The sh_info field of the symtab header tells us where the
6667 external symbols start. We don't care about the local symbols at
6668 this point. */
6669 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6670 if (!elf_bad_symtab (abfd))
6671 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6672
6673 sym_hashes = elf_sym_hashes (abfd);
6674 sym_hashes_end = sym_hashes + extsymcount;
6675
6676 /* Hunt down the child symbol, which is in this section at the same
6677 offset as the relocation. */
6678 for (search = sym_hashes; search != sym_hashes_end; ++search)
6679 {
6680 if ((child = *search) != NULL
6681 && (child->root.type == bfd_link_hash_defined
6682 || child->root.type == bfd_link_hash_defweak)
6683 && child->root.u.def.section == sec
6684 && child->root.u.def.value == offset)
6685 goto win;
6686 }
6687
6688 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6689 bfd_get_filename (abfd), sec->name,
6690 (unsigned long)offset);
6691 bfd_set_error (bfd_error_invalid_operation);
6692 return false;
6693
6694 win:
6695 if (!h)
6696 {
6697 /* This *should* only be the absolute section. It could potentially
6698 be that someone has defined a non-global vtable though, which
6699 would be bad. It isn't worth paging in the local symbols to be
6700 sure though; that case should simply be handled by the assembler. */
6701
6702 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6703 }
6704 else
6705 child->vtable_parent = h;
6706
6707 return true;
6708 }
6709
6710 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
6711
6712 boolean
6713 elf_gc_record_vtentry (abfd, sec, h, addend)
6714 bfd *abfd ATTRIBUTE_UNUSED;
6715 asection *sec ATTRIBUTE_UNUSED;
6716 struct elf_link_hash_entry *h;
6717 bfd_vma addend;
6718 {
6719 if (addend >= h->vtable_entries_size)
6720 {
6721 size_t size, bytes;
6722 boolean *ptr = h->vtable_entries_used;
6723
6724 /* While the symbol is undefined, we have to be prepared to handle
6725 a zero size. */
6726 if (h->root.type == bfd_link_hash_undefined)
6727 size = addend;
6728 else
6729 {
6730 size = h->size;
6731 if (size < addend)
6732 {
6733 /* Oops! We've got a reference past the defined end of
6734 the table. This is probably a bug -- shall we warn? */
6735 size = addend;
6736 }
6737 }
6738
6739 /* Allocate one extra entry for use as a "done" flag for the
6740 consolidation pass. */
6741 bytes = (size / FILE_ALIGN + 1) * sizeof (boolean);
6742
6743 if (ptr)
6744 {
6745 ptr = bfd_realloc (ptr - 1, bytes);
6746
6747 if (ptr != NULL)
6748 {
6749 size_t oldbytes;
6750
6751 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean);
6752 memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
6753 }
6754 }
6755 else
6756 ptr = bfd_zmalloc (bytes);
6757
6758 if (ptr == NULL)
6759 return false;
6760
6761 /* And arrange for that done flag to be at index -1. */
6762 h->vtable_entries_used = ptr + 1;
6763 h->vtable_entries_size = size;
6764 }
6765
6766 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6767
6768 return true;
6769 }
6770
6771 /* And an accompanying bit to work out final got entry offsets once
6772 we're done. Should be called from final_link. */
6773
6774 boolean
6775 elf_gc_common_finalize_got_offsets (abfd, info)
6776 bfd *abfd;
6777 struct bfd_link_info *info;
6778 {
6779 bfd *i;
6780 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6781 bfd_vma gotoff;
6782
6783 /* The GOT offset is relative to the .got section, but the GOT header is
6784 put into the .got.plt section, if the backend uses it. */
6785 if (bed->want_got_plt)
6786 gotoff = 0;
6787 else
6788 gotoff = bed->got_header_size;
6789
6790 /* Do the local .got entries first. */
6791 for (i = info->input_bfds; i; i = i->link_next)
6792 {
6793 bfd_signed_vma *local_got;
6794 bfd_size_type j, locsymcount;
6795 Elf_Internal_Shdr *symtab_hdr;
6796
6797 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
6798 continue;
6799
6800 local_got = elf_local_got_refcounts (i);
6801 if (!local_got)
6802 continue;
6803
6804 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6805 if (elf_bad_symtab (i))
6806 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6807 else
6808 locsymcount = symtab_hdr->sh_info;
6809
6810 for (j = 0; j < locsymcount; ++j)
6811 {
6812 if (local_got[j] > 0)
6813 {
6814 local_got[j] = gotoff;
6815 gotoff += ARCH_SIZE / 8;
6816 }
6817 else
6818 local_got[j] = (bfd_vma) -1;
6819 }
6820 }
6821
6822 /* Then the global .got entries. .plt refcounts are handled by
6823 adjust_dynamic_symbol */
6824 elf_link_hash_traverse (elf_hash_table (info),
6825 elf_gc_allocate_got_offsets,
6826 (PTR) &gotoff);
6827 return true;
6828 }
6829
6830 /* We need a special top-level link routine to convert got reference counts
6831 to real got offsets. */
6832
6833 static boolean
6834 elf_gc_allocate_got_offsets (h, offarg)
6835 struct elf_link_hash_entry *h;
6836 PTR offarg;
6837 {
6838 bfd_vma *off = (bfd_vma *) offarg;
6839
6840 if (h->got.refcount > 0)
6841 {
6842 h->got.offset = off[0];
6843 off[0] += ARCH_SIZE / 8;
6844 }
6845 else
6846 h->got.offset = (bfd_vma) -1;
6847
6848 return true;
6849 }
6850
6851 /* Many folk need no more in the way of final link than this, once
6852 got entry reference counting is enabled. */
6853
6854 boolean
6855 elf_gc_common_final_link (abfd, info)
6856 bfd *abfd;
6857 struct bfd_link_info *info;
6858 {
6859 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6860 return false;
6861
6862 /* Invoke the regular ELF backend linker to do all the work. */
6863 return elf_bfd_final_link (abfd, info);
6864 }
6865
6866 /* This function will be called though elf_link_hash_traverse to store
6867 all hash value of the exported symbols in an array. */
6868
6869 static boolean
6870 elf_collect_hash_codes (h, data)
6871 struct elf_link_hash_entry *h;
6872 PTR data;
6873 {
6874 unsigned long **valuep = (unsigned long **) data;
6875 const char *name;
6876 char *p;
6877 unsigned long ha;
6878 char *alc = NULL;
6879
6880 /* Ignore indirect symbols. These are added by the versioning code. */
6881 if (h->dynindx == -1)
6882 return true;
6883
6884 name = h->root.root.string;
6885 p = strchr (name, ELF_VER_CHR);
6886 if (p != NULL)
6887 {
6888 alc = bfd_malloc (p - name + 1);
6889 memcpy (alc, name, p - name);
6890 alc[p - name] = '\0';
6891 name = alc;
6892 }
6893
6894 /* Compute the hash value. */
6895 ha = bfd_elf_hash (name);
6896
6897 /* Store the found hash value in the array given as the argument. */
6898 *(*valuep)++ = ha;
6899
6900 /* And store it in the struct so that we can put it in the hash table
6901 later. */
6902 h->elf_hash_value = ha;
6903
6904 if (alc != NULL)
6905 free (alc);
6906
6907 return true;
6908 }