* bfd-in.h: Always define BFD_HOST_64_BIT and BFD_HOST_U_64_BIT if
[binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /* ELF linker code. */
21
22 /* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25 struct elf_info_failed
26 {
27 boolean failed;
28 struct bfd_link_info *info;
29 };
30
31 static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33 static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35 static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39 static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41 static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43 static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45 static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49 static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51 static boolean elf_link_renumber_dynsyms
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53 static boolean elf_collect_hash_codes
54 PARAMS ((struct elf_link_hash_entry *, PTR));
55
56 /* Given an ELF BFD, add symbols to the global hash table as
57 appropriate. */
58
59 boolean
60 elf_bfd_link_add_symbols (abfd, info)
61 bfd *abfd;
62 struct bfd_link_info *info;
63 {
64 switch (bfd_get_format (abfd))
65 {
66 case bfd_object:
67 return elf_link_add_object_symbols (abfd, info);
68 case bfd_archive:
69 return elf_link_add_archive_symbols (abfd, info);
70 default:
71 bfd_set_error (bfd_error_wrong_format);
72 return false;
73 }
74 }
75 \f
76
77 /* Add symbols from an ELF archive file to the linker hash table. We
78 don't use _bfd_generic_link_add_archive_symbols because of a
79 problem which arises on UnixWare. The UnixWare libc.so is an
80 archive which includes an entry libc.so.1 which defines a bunch of
81 symbols. The libc.so archive also includes a number of other
82 object files, which also define symbols, some of which are the same
83 as those defined in libc.so.1. Correct linking requires that we
84 consider each object file in turn, and include it if it defines any
85 symbols we need. _bfd_generic_link_add_archive_symbols does not do
86 this; it looks through the list of undefined symbols, and includes
87 any object file which defines them. When this algorithm is used on
88 UnixWare, it winds up pulling in libc.so.1 early and defining a
89 bunch of symbols. This means that some of the other objects in the
90 archive are not included in the link, which is incorrect since they
91 precede libc.so.1 in the archive.
92
93 Fortunately, ELF archive handling is simpler than that done by
94 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
95 oddities. In ELF, if we find a symbol in the archive map, and the
96 symbol is currently undefined, we know that we must pull in that
97 object file.
98
99 Unfortunately, we do have to make multiple passes over the symbol
100 table until nothing further is resolved. */
101
102 static boolean
103 elf_link_add_archive_symbols (abfd, info)
104 bfd *abfd;
105 struct bfd_link_info *info;
106 {
107 symindex c;
108 boolean *defined = NULL;
109 boolean *included = NULL;
110 carsym *symdefs;
111 boolean loop;
112
113 if (! bfd_has_map (abfd))
114 {
115 /* An empty archive is a special case. */
116 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
117 return true;
118 bfd_set_error (bfd_error_no_armap);
119 return false;
120 }
121
122 /* Keep track of all symbols we know to be already defined, and all
123 files we know to be already included. This is to speed up the
124 second and subsequent passes. */
125 c = bfd_ardata (abfd)->symdef_count;
126 if (c == 0)
127 return true;
128 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
129 included = (boolean *) bfd_malloc (c * sizeof (boolean));
130 if (defined == (boolean *) NULL || included == (boolean *) NULL)
131 goto error_return;
132 memset (defined, 0, c * sizeof (boolean));
133 memset (included, 0, c * sizeof (boolean));
134
135 symdefs = bfd_ardata (abfd)->symdefs;
136
137 do
138 {
139 file_ptr last;
140 symindex i;
141 carsym *symdef;
142 carsym *symdefend;
143
144 loop = false;
145 last = -1;
146
147 symdef = symdefs;
148 symdefend = symdef + c;
149 for (i = 0; symdef < symdefend; symdef++, i++)
150 {
151 struct elf_link_hash_entry *h;
152 bfd *element;
153 struct bfd_link_hash_entry *undefs_tail;
154 symindex mark;
155
156 if (defined[i] || included[i])
157 continue;
158 if (symdef->file_offset == last)
159 {
160 included[i] = true;
161 continue;
162 }
163
164 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
165 false, false, false);
166
167 if (h == NULL)
168 {
169 char *p, *copy;
170
171 /* If this is a default version (the name contains @@),
172 look up the symbol again without the version. The
173 effect is that references to the symbol without the
174 version will be matched by the default symbol in the
175 archive. */
176
177 p = strchr (symdef->name, ELF_VER_CHR);
178 if (p == NULL || p[1] != ELF_VER_CHR)
179 continue;
180
181 copy = bfd_alloc (abfd, p - symdef->name + 1);
182 if (copy == NULL)
183 goto error_return;
184 memcpy (copy, symdef->name, p - symdef->name);
185 copy[p - symdef->name] = '\0';
186
187 h = elf_link_hash_lookup (elf_hash_table (info), copy,
188 false, false, false);
189
190 bfd_release (abfd, copy);
191 }
192
193 if (h == NULL)
194 continue;
195
196 if (h->root.type != bfd_link_hash_undefined)
197 {
198 if (h->root.type != bfd_link_hash_undefweak)
199 defined[i] = true;
200 continue;
201 }
202
203 /* We need to include this archive member. */
204
205 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
206 if (element == (bfd *) NULL)
207 goto error_return;
208
209 if (! bfd_check_format (element, bfd_object))
210 goto error_return;
211
212 /* Doublecheck that we have not included this object
213 already--it should be impossible, but there may be
214 something wrong with the archive. */
215 if (element->archive_pass != 0)
216 {
217 bfd_set_error (bfd_error_bad_value);
218 goto error_return;
219 }
220 element->archive_pass = 1;
221
222 undefs_tail = info->hash->undefs_tail;
223
224 if (! (*info->callbacks->add_archive_element) (info, element,
225 symdef->name))
226 goto error_return;
227 if (! elf_link_add_object_symbols (element, info))
228 goto error_return;
229
230 /* If there are any new undefined symbols, we need to make
231 another pass through the archive in order to see whether
232 they can be defined. FIXME: This isn't perfect, because
233 common symbols wind up on undefs_tail and because an
234 undefined symbol which is defined later on in this pass
235 does not require another pass. This isn't a bug, but it
236 does make the code less efficient than it could be. */
237 if (undefs_tail != info->hash->undefs_tail)
238 loop = true;
239
240 /* Look backward to mark all symbols from this object file
241 which we have already seen in this pass. */
242 mark = i;
243 do
244 {
245 included[mark] = true;
246 if (mark == 0)
247 break;
248 --mark;
249 }
250 while (symdefs[mark].file_offset == symdef->file_offset);
251
252 /* We mark subsequent symbols from this object file as we go
253 on through the loop. */
254 last = symdef->file_offset;
255 }
256 }
257 while (loop);
258
259 free (defined);
260 free (included);
261
262 return true;
263
264 error_return:
265 if (defined != (boolean *) NULL)
266 free (defined);
267 if (included != (boolean *) NULL)
268 free (included);
269 return false;
270 }
271
272 /* This function is called when we want to define a new symbol. It
273 handles the various cases which arise when we find a definition in
274 a dynamic object, or when there is already a definition in a
275 dynamic object. The new symbol is described by NAME, SYM, PSEC,
276 and PVALUE. We set SYM_HASH to the hash table entry. We set
277 OVERRIDE if the old symbol is overriding a new definition. We set
278 TYPE_CHANGE_OK if it is OK for the type to change. We set
279 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
280 change, we mean that we shouldn't warn if the type or size does
281 change. */
282
283 static boolean
284 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
285 override, type_change_ok, size_change_ok)
286 bfd *abfd;
287 struct bfd_link_info *info;
288 const char *name;
289 Elf_Internal_Sym *sym;
290 asection **psec;
291 bfd_vma *pvalue;
292 struct elf_link_hash_entry **sym_hash;
293 boolean *override;
294 boolean *type_change_ok;
295 boolean *size_change_ok;
296 {
297 asection *sec;
298 struct elf_link_hash_entry *h;
299 int bind;
300 bfd *oldbfd;
301 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
302
303 *override = false;
304
305 sec = *psec;
306 bind = ELF_ST_BIND (sym->st_info);
307
308 if (! bfd_is_und_section (sec))
309 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
310 else
311 h = ((struct elf_link_hash_entry *)
312 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
313 if (h == NULL)
314 return false;
315 *sym_hash = h;
316
317 /* This code is for coping with dynamic objects, and is only useful
318 if we are doing an ELF link. */
319 if (info->hash->creator != abfd->xvec)
320 return true;
321
322 /* For merging, we only care about real symbols. */
323
324 while (h->root.type == bfd_link_hash_indirect
325 || h->root.type == bfd_link_hash_warning)
326 h = (struct elf_link_hash_entry *) h->root.u.i.link;
327
328 /* If we just created the symbol, mark it as being an ELF symbol.
329 Other than that, there is nothing to do--there is no merge issue
330 with a newly defined symbol--so we just return. */
331
332 if (h->root.type == bfd_link_hash_new)
333 {
334 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
335 return true;
336 }
337
338 /* OLDBFD is a BFD associated with the existing symbol. */
339
340 switch (h->root.type)
341 {
342 default:
343 oldbfd = NULL;
344 break;
345
346 case bfd_link_hash_undefined:
347 case bfd_link_hash_undefweak:
348 oldbfd = h->root.u.undef.abfd;
349 break;
350
351 case bfd_link_hash_defined:
352 case bfd_link_hash_defweak:
353 oldbfd = h->root.u.def.section->owner;
354 break;
355
356 case bfd_link_hash_common:
357 oldbfd = h->root.u.c.p->section->owner;
358 break;
359 }
360
361 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
362 respectively, is from a dynamic object. */
363
364 if ((abfd->flags & DYNAMIC) != 0)
365 newdyn = true;
366 else
367 newdyn = false;
368
369 if (oldbfd == NULL || (oldbfd->flags & DYNAMIC) == 0)
370 olddyn = false;
371 else
372 olddyn = true;
373
374 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
375 respectively, appear to be a definition rather than reference. */
376
377 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
378 newdef = false;
379 else
380 newdef = true;
381
382 if (h->root.type == bfd_link_hash_undefined
383 || h->root.type == bfd_link_hash_undefweak
384 || h->root.type == bfd_link_hash_common)
385 olddef = false;
386 else
387 olddef = true;
388
389 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
390 symbol, respectively, appears to be a common symbol in a dynamic
391 object. If a symbol appears in an uninitialized section, and is
392 not weak, and is not a function, then it may be a common symbol
393 which was resolved when the dynamic object was created. We want
394 to treat such symbols specially, because they raise special
395 considerations when setting the symbol size: if the symbol
396 appears as a common symbol in a regular object, and the size in
397 the regular object is larger, we must make sure that we use the
398 larger size. This problematic case can always be avoided in C,
399 but it must be handled correctly when using Fortran shared
400 libraries.
401
402 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
403 likewise for OLDDYNCOMMON and OLDDEF.
404
405 Note that this test is just a heuristic, and that it is quite
406 possible to have an uninitialized symbol in a shared object which
407 is really a definition, rather than a common symbol. This could
408 lead to some minor confusion when the symbol really is a common
409 symbol in some regular object. However, I think it will be
410 harmless. */
411
412 if (newdyn
413 && newdef
414 && (sec->flags & SEC_ALLOC) != 0
415 && (sec->flags & SEC_LOAD) == 0
416 && sym->st_size > 0
417 && bind != STB_WEAK
418 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
419 newdyncommon = true;
420 else
421 newdyncommon = false;
422
423 if (olddyn
424 && olddef
425 && h->root.type == bfd_link_hash_defined
426 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
427 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
428 && (h->root.u.def.section->flags & SEC_LOAD) == 0
429 && h->size > 0
430 && h->type != STT_FUNC)
431 olddyncommon = true;
432 else
433 olddyncommon = false;
434
435 /* It's OK to change the type if either the existing symbol or the
436 new symbol is weak. */
437
438 if (h->root.type == bfd_link_hash_defweak
439 || h->root.type == bfd_link_hash_undefweak
440 || bind == STB_WEAK)
441 *type_change_ok = true;
442
443 /* It's OK to change the size if either the existing symbol or the
444 new symbol is weak, or if the old symbol is undefined. */
445
446 if (*type_change_ok
447 || h->root.type == bfd_link_hash_undefined)
448 *size_change_ok = true;
449
450 /* If both the old and the new symbols look like common symbols in a
451 dynamic object, set the size of the symbol to the larger of the
452 two. */
453
454 if (olddyncommon
455 && newdyncommon
456 && sym->st_size != h->size)
457 {
458 /* Since we think we have two common symbols, issue a multiple
459 common warning if desired. Note that we only warn if the
460 size is different. If the size is the same, we simply let
461 the old symbol override the new one as normally happens with
462 symbols defined in dynamic objects. */
463
464 if (! ((*info->callbacks->multiple_common)
465 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
466 h->size, abfd, bfd_link_hash_common, sym->st_size)))
467 return false;
468
469 if (sym->st_size > h->size)
470 h->size = sym->st_size;
471
472 *size_change_ok = true;
473 }
474
475 /* If we are looking at a dynamic object, and we have found a
476 definition, we need to see if the symbol was already defined by
477 some other object. If so, we want to use the existing
478 definition, and we do not want to report a multiple symbol
479 definition error; we do this by clobbering *PSEC to be
480 bfd_und_section_ptr.
481
482 We treat a common symbol as a definition if the symbol in the
483 shared library is a function, since common symbols always
484 represent variables; this can cause confusion in principle, but
485 any such confusion would seem to indicate an erroneous program or
486 shared library. We also permit a common symbol in a regular
487 object to override a weak symbol in a shared object. */
488
489 if (newdyn
490 && newdef
491 && (olddef
492 || (h->root.type == bfd_link_hash_common
493 && (bind == STB_WEAK
494 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
495 {
496 *override = true;
497 newdef = false;
498 newdyncommon = false;
499
500 *psec = sec = bfd_und_section_ptr;
501 *size_change_ok = true;
502
503 /* If we get here when the old symbol is a common symbol, then
504 we are explicitly letting it override a weak symbol or
505 function in a dynamic object, and we don't want to warn about
506 a type change. If the old symbol is a defined symbol, a type
507 change warning may still be appropriate. */
508
509 if (h->root.type == bfd_link_hash_common)
510 *type_change_ok = true;
511 }
512
513 /* Handle the special case of an old common symbol merging with a
514 new symbol which looks like a common symbol in a shared object.
515 We change *PSEC and *PVALUE to make the new symbol look like a
516 common symbol, and let _bfd_generic_link_add_one_symbol will do
517 the right thing. */
518
519 if (newdyncommon
520 && h->root.type == bfd_link_hash_common)
521 {
522 *override = true;
523 newdef = false;
524 newdyncommon = false;
525 *pvalue = sym->st_size;
526 *psec = sec = bfd_com_section_ptr;
527 *size_change_ok = true;
528 }
529
530 /* If the old symbol is from a dynamic object, and the new symbol is
531 a definition which is not from a dynamic object, then the new
532 symbol overrides the old symbol. Symbols from regular files
533 always take precedence over symbols from dynamic objects, even if
534 they are defined after the dynamic object in the link.
535
536 As above, we again permit a common symbol in a regular object to
537 override a definition in a shared object if the shared object
538 symbol is a function or is weak. */
539
540 if (! newdyn
541 && (newdef
542 || (bfd_is_com_section (sec)
543 && (h->root.type == bfd_link_hash_defweak
544 || h->type == STT_FUNC)))
545 && olddyn
546 && olddef
547 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
548 {
549 /* Change the hash table entry to undefined, and let
550 _bfd_generic_link_add_one_symbol do the right thing with the
551 new definition. */
552
553 h->root.type = bfd_link_hash_undefined;
554 h->root.u.undef.abfd = h->root.u.def.section->owner;
555 *size_change_ok = true;
556
557 olddef = false;
558 olddyncommon = false;
559
560 /* We again permit a type change when a common symbol may be
561 overriding a function. */
562
563 if (bfd_is_com_section (sec))
564 *type_change_ok = true;
565
566 /* This union may have been set to be non-NULL when this symbol
567 was seen in a dynamic object. We must force the union to be
568 NULL, so that it is correct for a regular symbol. */
569
570 h->verinfo.vertree = NULL;
571
572 /* In this special case, if H is the target of an indirection,
573 we want the caller to frob with H rather than with the
574 indirect symbol. That will permit the caller to redefine the
575 target of the indirection, rather than the indirect symbol
576 itself. FIXME: This will break the -y option if we store a
577 symbol with a different name. */
578 *sym_hash = h;
579 }
580
581 /* Handle the special case of a new common symbol merging with an
582 old symbol that looks like it might be a common symbol defined in
583 a shared object. Note that we have already handled the case in
584 which a new common symbol should simply override the definition
585 in the shared library. */
586
587 if (! newdyn
588 && bfd_is_com_section (sec)
589 && olddyncommon)
590 {
591 /* It would be best if we could set the hash table entry to a
592 common symbol, but we don't know what to use for the section
593 or the alignment. */
594 if (! ((*info->callbacks->multiple_common)
595 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
596 h->size, abfd, bfd_link_hash_common, sym->st_size)))
597 return false;
598
599 /* If the predumed common symbol in the dynamic object is
600 larger, pretend that the new symbol has its size. */
601
602 if (h->size > *pvalue)
603 *pvalue = h->size;
604
605 /* FIXME: We no longer know the alignment required by the symbol
606 in the dynamic object, so we just wind up using the one from
607 the regular object. */
608
609 olddef = false;
610 olddyncommon = false;
611
612 h->root.type = bfd_link_hash_undefined;
613 h->root.u.undef.abfd = h->root.u.def.section->owner;
614
615 *size_change_ok = true;
616 *type_change_ok = true;
617
618 h->verinfo.vertree = NULL;
619 }
620
621 return true;
622 }
623
624 /* Add symbols from an ELF object file to the linker hash table. */
625
626 static boolean
627 elf_link_add_object_symbols (abfd, info)
628 bfd *abfd;
629 struct bfd_link_info *info;
630 {
631 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
632 const Elf_Internal_Sym *,
633 const char **, flagword *,
634 asection **, bfd_vma *));
635 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
636 asection *, const Elf_Internal_Rela *));
637 boolean collect;
638 Elf_Internal_Shdr *hdr;
639 size_t symcount;
640 size_t extsymcount;
641 size_t extsymoff;
642 Elf_External_Sym *buf = NULL;
643 struct elf_link_hash_entry **sym_hash;
644 boolean dynamic;
645 bfd_byte *dynver = NULL;
646 Elf_External_Versym *extversym = NULL;
647 Elf_External_Versym *ever;
648 Elf_External_Dyn *dynbuf = NULL;
649 struct elf_link_hash_entry *weaks;
650 Elf_External_Sym *esym;
651 Elf_External_Sym *esymend;
652
653 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
654 collect = get_elf_backend_data (abfd)->collect;
655
656 if ((abfd->flags & DYNAMIC) == 0)
657 dynamic = false;
658 else
659 {
660 dynamic = true;
661
662 /* You can't use -r against a dynamic object. Also, there's no
663 hope of using a dynamic object which does not exactly match
664 the format of the output file. */
665 if (info->relocateable || info->hash->creator != abfd->xvec)
666 {
667 bfd_set_error (bfd_error_invalid_operation);
668 goto error_return;
669 }
670 }
671
672 /* As a GNU extension, any input sections which are named
673 .gnu.warning.SYMBOL are treated as warning symbols for the given
674 symbol. This differs from .gnu.warning sections, which generate
675 warnings when they are included in an output file. */
676 if (! info->shared)
677 {
678 asection *s;
679
680 for (s = abfd->sections; s != NULL; s = s->next)
681 {
682 const char *name;
683
684 name = bfd_get_section_name (abfd, s);
685 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
686 {
687 char *msg;
688 bfd_size_type sz;
689
690 name += sizeof ".gnu.warning." - 1;
691
692 /* If this is a shared object, then look up the symbol
693 in the hash table. If it is there, and it is already
694 been defined, then we will not be using the entry
695 from this shared object, so we don't need to warn.
696 FIXME: If we see the definition in a regular object
697 later on, we will warn, but we shouldn't. The only
698 fix is to keep track of what warnings we are supposed
699 to emit, and then handle them all at the end of the
700 link. */
701 if (dynamic && abfd->xvec == info->hash->creator)
702 {
703 struct elf_link_hash_entry *h;
704
705 h = elf_link_hash_lookup (elf_hash_table (info), name,
706 false, false, true);
707
708 /* FIXME: What about bfd_link_hash_common? */
709 if (h != NULL
710 && (h->root.type == bfd_link_hash_defined
711 || h->root.type == bfd_link_hash_defweak))
712 {
713 /* We don't want to issue this warning. Clobber
714 the section size so that the warning does not
715 get copied into the output file. */
716 s->_raw_size = 0;
717 continue;
718 }
719 }
720
721 sz = bfd_section_size (abfd, s);
722 msg = (char *) bfd_alloc (abfd, sz + 1);
723 if (msg == NULL)
724 goto error_return;
725
726 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
727 goto error_return;
728
729 msg[sz] = '\0';
730
731 if (! (_bfd_generic_link_add_one_symbol
732 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
733 false, collect, (struct bfd_link_hash_entry **) NULL)))
734 goto error_return;
735
736 if (! info->relocateable)
737 {
738 /* Clobber the section size so that the warning does
739 not get copied into the output file. */
740 s->_raw_size = 0;
741 }
742 }
743 }
744 }
745
746 /* If this is a dynamic object, we always link against the .dynsym
747 symbol table, not the .symtab symbol table. The dynamic linker
748 will only see the .dynsym symbol table, so there is no reason to
749 look at .symtab for a dynamic object. */
750
751 if (! dynamic || elf_dynsymtab (abfd) == 0)
752 hdr = &elf_tdata (abfd)->symtab_hdr;
753 else
754 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
755
756 if (dynamic)
757 {
758 /* Read in any version definitions. */
759
760 if (! _bfd_elf_slurp_version_tables (abfd))
761 goto error_return;
762
763 /* Read in the symbol versions, but don't bother to convert them
764 to internal format. */
765 if (elf_dynversym (abfd) != 0)
766 {
767 Elf_Internal_Shdr *versymhdr;
768
769 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
770 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
771 if (extversym == NULL)
772 goto error_return;
773 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
774 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
775 != versymhdr->sh_size))
776 goto error_return;
777 }
778 }
779
780 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
781
782 /* The sh_info field of the symtab header tells us where the
783 external symbols start. We don't care about the local symbols at
784 this point. */
785 if (elf_bad_symtab (abfd))
786 {
787 extsymcount = symcount;
788 extsymoff = 0;
789 }
790 else
791 {
792 extsymcount = symcount - hdr->sh_info;
793 extsymoff = hdr->sh_info;
794 }
795
796 buf = ((Elf_External_Sym *)
797 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
798 if (buf == NULL && extsymcount != 0)
799 goto error_return;
800
801 /* We store a pointer to the hash table entry for each external
802 symbol. */
803 sym_hash = ((struct elf_link_hash_entry **)
804 bfd_alloc (abfd,
805 extsymcount * sizeof (struct elf_link_hash_entry *)));
806 if (sym_hash == NULL)
807 goto error_return;
808 elf_sym_hashes (abfd) = sym_hash;
809
810 if (! dynamic)
811 {
812 /* If we are creating a shared library, create all the dynamic
813 sections immediately. We need to attach them to something,
814 so we attach them to this BFD, provided it is the right
815 format. FIXME: If there are no input BFD's of the same
816 format as the output, we can't make a shared library. */
817 if (info->shared
818 && ! elf_hash_table (info)->dynamic_sections_created
819 && abfd->xvec == info->hash->creator)
820 {
821 if (! elf_link_create_dynamic_sections (abfd, info))
822 goto error_return;
823 }
824 }
825 else
826 {
827 asection *s;
828 boolean add_needed;
829 const char *name;
830 bfd_size_type oldsize;
831 bfd_size_type strindex;
832
833 /* Find the name to use in a DT_NEEDED entry that refers to this
834 object. If the object has a DT_SONAME entry, we use it.
835 Otherwise, if the generic linker stuck something in
836 elf_dt_name, we use that. Otherwise, we just use the file
837 name. If the generic linker put a null string into
838 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
839 there is a DT_SONAME entry. */
840 add_needed = true;
841 name = bfd_get_filename (abfd);
842 if (elf_dt_name (abfd) != NULL)
843 {
844 name = elf_dt_name (abfd);
845 if (*name == '\0')
846 add_needed = false;
847 }
848 s = bfd_get_section_by_name (abfd, ".dynamic");
849 if (s != NULL)
850 {
851 Elf_External_Dyn *extdyn;
852 Elf_External_Dyn *extdynend;
853 int elfsec;
854 unsigned long link;
855
856 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
857 if (dynbuf == NULL)
858 goto error_return;
859
860 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
861 (file_ptr) 0, s->_raw_size))
862 goto error_return;
863
864 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
865 if (elfsec == -1)
866 goto error_return;
867 link = elf_elfsections (abfd)[elfsec]->sh_link;
868
869 extdyn = dynbuf;
870 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
871 for (; extdyn < extdynend; extdyn++)
872 {
873 Elf_Internal_Dyn dyn;
874
875 elf_swap_dyn_in (abfd, extdyn, &dyn);
876 if (dyn.d_tag == DT_SONAME)
877 {
878 name = bfd_elf_string_from_elf_section (abfd, link,
879 dyn.d_un.d_val);
880 if (name == NULL)
881 goto error_return;
882 }
883 if (dyn.d_tag == DT_NEEDED)
884 {
885 struct bfd_link_needed_list *n, **pn;
886 char *fnm, *anm;
887
888 n = ((struct bfd_link_needed_list *)
889 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
890 fnm = bfd_elf_string_from_elf_section (abfd, link,
891 dyn.d_un.d_val);
892 if (n == NULL || fnm == NULL)
893 goto error_return;
894 anm = bfd_alloc (abfd, strlen (fnm) + 1);
895 if (anm == NULL)
896 goto error_return;
897 strcpy (anm, fnm);
898 n->name = anm;
899 n->by = abfd;
900 n->next = NULL;
901 for (pn = &elf_hash_table (info)->needed;
902 *pn != NULL;
903 pn = &(*pn)->next)
904 ;
905 *pn = n;
906 }
907 }
908
909 free (dynbuf);
910 dynbuf = NULL;
911 }
912
913 /* We do not want to include any of the sections in a dynamic
914 object in the output file. We hack by simply clobbering the
915 list of sections in the BFD. This could be handled more
916 cleanly by, say, a new section flag; the existing
917 SEC_NEVER_LOAD flag is not the one we want, because that one
918 still implies that the section takes up space in the output
919 file. */
920 abfd->sections = NULL;
921 abfd->section_count = 0;
922
923 /* If this is the first dynamic object found in the link, create
924 the special sections required for dynamic linking. */
925 if (! elf_hash_table (info)->dynamic_sections_created)
926 {
927 if (! elf_link_create_dynamic_sections (abfd, info))
928 goto error_return;
929 }
930
931 if (add_needed)
932 {
933 /* Add a DT_NEEDED entry for this dynamic object. */
934 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
935 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
936 true, false);
937 if (strindex == (bfd_size_type) -1)
938 goto error_return;
939
940 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
941 {
942 asection *sdyn;
943 Elf_External_Dyn *dyncon, *dynconend;
944
945 /* The hash table size did not change, which means that
946 the dynamic object name was already entered. If we
947 have already included this dynamic object in the
948 link, just ignore it. There is no reason to include
949 a particular dynamic object more than once. */
950 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
951 ".dynamic");
952 BFD_ASSERT (sdyn != NULL);
953
954 dyncon = (Elf_External_Dyn *) sdyn->contents;
955 dynconend = (Elf_External_Dyn *) (sdyn->contents +
956 sdyn->_raw_size);
957 for (; dyncon < dynconend; dyncon++)
958 {
959 Elf_Internal_Dyn dyn;
960
961 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
962 &dyn);
963 if (dyn.d_tag == DT_NEEDED
964 && dyn.d_un.d_val == strindex)
965 {
966 if (buf != NULL)
967 free (buf);
968 if (extversym != NULL)
969 free (extversym);
970 return true;
971 }
972 }
973 }
974
975 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
976 goto error_return;
977 }
978
979 /* Save the SONAME, if there is one, because sometimes the
980 linker emulation code will need to know it. */
981 if (*name == '\0')
982 name = bfd_get_filename (abfd);
983 elf_dt_name (abfd) = name;
984 }
985
986 if (bfd_seek (abfd,
987 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
988 SEEK_SET) != 0
989 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
990 != extsymcount * sizeof (Elf_External_Sym)))
991 goto error_return;
992
993 weaks = NULL;
994
995 ever = extversym != NULL ? extversym + extsymoff : NULL;
996 esymend = buf + extsymcount;
997 for (esym = buf;
998 esym < esymend;
999 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1000 {
1001 Elf_Internal_Sym sym;
1002 int bind;
1003 bfd_vma value;
1004 asection *sec;
1005 flagword flags;
1006 const char *name;
1007 struct elf_link_hash_entry *h;
1008 boolean definition;
1009 boolean size_change_ok, type_change_ok;
1010 boolean new_weakdef;
1011 unsigned int old_alignment;
1012
1013 elf_swap_symbol_in (abfd, esym, &sym);
1014
1015 flags = BSF_NO_FLAGS;
1016 sec = NULL;
1017 value = sym.st_value;
1018 *sym_hash = NULL;
1019
1020 bind = ELF_ST_BIND (sym.st_info);
1021 if (bind == STB_LOCAL)
1022 {
1023 /* This should be impossible, since ELF requires that all
1024 global symbols follow all local symbols, and that sh_info
1025 point to the first global symbol. Unfortunatealy, Irix 5
1026 screws this up. */
1027 continue;
1028 }
1029 else if (bind == STB_GLOBAL)
1030 {
1031 if (sym.st_shndx != SHN_UNDEF
1032 && sym.st_shndx != SHN_COMMON)
1033 flags = BSF_GLOBAL;
1034 else
1035 flags = 0;
1036 }
1037 else if (bind == STB_WEAK)
1038 flags = BSF_WEAK;
1039 else
1040 {
1041 /* Leave it up to the processor backend. */
1042 }
1043
1044 if (sym.st_shndx == SHN_UNDEF)
1045 sec = bfd_und_section_ptr;
1046 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1047 {
1048 sec = section_from_elf_index (abfd, sym.st_shndx);
1049 if (sec == NULL)
1050 sec = bfd_abs_section_ptr;
1051 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1052 value -= sec->vma;
1053 }
1054 else if (sym.st_shndx == SHN_ABS)
1055 sec = bfd_abs_section_ptr;
1056 else if (sym.st_shndx == SHN_COMMON)
1057 {
1058 sec = bfd_com_section_ptr;
1059 /* What ELF calls the size we call the value. What ELF
1060 calls the value we call the alignment. */
1061 value = sym.st_size;
1062 }
1063 else
1064 {
1065 /* Leave it up to the processor backend. */
1066 }
1067
1068 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1069 if (name == (const char *) NULL)
1070 goto error_return;
1071
1072 if (add_symbol_hook)
1073 {
1074 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1075 &value))
1076 goto error_return;
1077
1078 /* The hook function sets the name to NULL if this symbol
1079 should be skipped for some reason. */
1080 if (name == (const char *) NULL)
1081 continue;
1082 }
1083
1084 /* Sanity check that all possibilities were handled. */
1085 if (sec == (asection *) NULL)
1086 {
1087 bfd_set_error (bfd_error_bad_value);
1088 goto error_return;
1089 }
1090
1091 if (bfd_is_und_section (sec)
1092 || bfd_is_com_section (sec))
1093 definition = false;
1094 else
1095 definition = true;
1096
1097 size_change_ok = false;
1098 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1099 old_alignment = 0;
1100 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1101 {
1102 Elf_Internal_Versym iver;
1103 unsigned int vernum = 0;
1104 boolean override;
1105
1106 if (ever != NULL)
1107 {
1108 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1109 vernum = iver.vs_vers & VERSYM_VERSION;
1110
1111 /* If this is a hidden symbol, or if it is not version
1112 1, we append the version name to the symbol name.
1113 However, we do not modify a non-hidden absolute
1114 symbol, because it might be the version symbol
1115 itself. FIXME: What if it isn't? */
1116 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1117 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1118 {
1119 const char *verstr;
1120 int namelen, newlen;
1121 char *newname, *p;
1122
1123 if (sym.st_shndx != SHN_UNDEF)
1124 {
1125 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1126 {
1127 (*_bfd_error_handler)
1128 (_("%s: %s: invalid version %u (max %d)"),
1129 abfd->filename, name, vernum,
1130 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1131 bfd_set_error (bfd_error_bad_value);
1132 goto error_return;
1133 }
1134 else if (vernum > 1)
1135 verstr =
1136 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1137 else
1138 verstr = "";
1139 }
1140 else
1141 {
1142 /* We cannot simply test for the number of
1143 entries in the VERNEED section since the
1144 numbers for the needed versions do not start
1145 at 0. */
1146 Elf_Internal_Verneed *t;
1147
1148 verstr = NULL;
1149 for (t = elf_tdata (abfd)->verref;
1150 t != NULL;
1151 t = t->vn_nextref)
1152 {
1153 Elf_Internal_Vernaux *a;
1154
1155 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1156 {
1157 if (a->vna_other == vernum)
1158 {
1159 verstr = a->vna_nodename;
1160 break;
1161 }
1162 }
1163 if (a != NULL)
1164 break;
1165 }
1166 if (verstr == NULL)
1167 {
1168 (*_bfd_error_handler)
1169 (_("%s: %s: invalid needed version %d"),
1170 abfd->filename, name, vernum);
1171 bfd_set_error (bfd_error_bad_value);
1172 goto error_return;
1173 }
1174 }
1175
1176 namelen = strlen (name);
1177 newlen = namelen + strlen (verstr) + 2;
1178 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1179 ++newlen;
1180
1181 newname = (char *) bfd_alloc (abfd, newlen);
1182 if (newname == NULL)
1183 goto error_return;
1184 strcpy (newname, name);
1185 p = newname + namelen;
1186 *p++ = ELF_VER_CHR;
1187 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1188 *p++ = ELF_VER_CHR;
1189 strcpy (p, verstr);
1190
1191 name = newname;
1192 }
1193 }
1194
1195 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1196 sym_hash, &override, &type_change_ok,
1197 &size_change_ok))
1198 goto error_return;
1199
1200 if (override)
1201 definition = false;
1202
1203 h = *sym_hash;
1204 while (h->root.type == bfd_link_hash_indirect
1205 || h->root.type == bfd_link_hash_warning)
1206 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1207
1208 /* Remember the old alignment if this is a common symbol, so
1209 that we don't reduce the alignment later on. We can't
1210 check later, because _bfd_generic_link_add_one_symbol
1211 will set a default for the alignment which we want to
1212 override. */
1213 if (h->root.type == bfd_link_hash_common)
1214 old_alignment = h->root.u.c.p->alignment_power;
1215
1216 if (elf_tdata (abfd)->verdef != NULL
1217 && ! override
1218 && vernum > 1
1219 && definition)
1220 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1221 }
1222
1223 if (! (_bfd_generic_link_add_one_symbol
1224 (info, abfd, name, flags, sec, value, (const char *) NULL,
1225 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1226 goto error_return;
1227
1228 h = *sym_hash;
1229 while (h->root.type == bfd_link_hash_indirect
1230 || h->root.type == bfd_link_hash_warning)
1231 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1232 *sym_hash = h;
1233
1234 new_weakdef = false;
1235 if (dynamic
1236 && definition
1237 && (flags & BSF_WEAK) != 0
1238 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1239 && info->hash->creator->flavour == bfd_target_elf_flavour
1240 && h->weakdef == NULL)
1241 {
1242 /* Keep a list of all weak defined non function symbols from
1243 a dynamic object, using the weakdef field. Later in this
1244 function we will set the weakdef field to the correct
1245 value. We only put non-function symbols from dynamic
1246 objects on this list, because that happens to be the only
1247 time we need to know the normal symbol corresponding to a
1248 weak symbol, and the information is time consuming to
1249 figure out. If the weakdef field is not already NULL,
1250 then this symbol was already defined by some previous
1251 dynamic object, and we will be using that previous
1252 definition anyhow. */
1253
1254 h->weakdef = weaks;
1255 weaks = h;
1256 new_weakdef = true;
1257 }
1258
1259 /* Set the alignment of a common symbol. */
1260 if (sym.st_shndx == SHN_COMMON
1261 && h->root.type == bfd_link_hash_common)
1262 {
1263 unsigned int align;
1264
1265 align = bfd_log2 (sym.st_value);
1266 if (align > old_alignment)
1267 h->root.u.c.p->alignment_power = align;
1268 }
1269
1270 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1271 {
1272 int old_flags;
1273 boolean dynsym;
1274 int new_flag;
1275
1276 /* Remember the symbol size and type. */
1277 if (sym.st_size != 0
1278 && (definition || h->size == 0))
1279 {
1280 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1281 (*_bfd_error_handler)
1282 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1283 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1284 bfd_get_filename (abfd));
1285
1286 h->size = sym.st_size;
1287 }
1288
1289 /* If this is a common symbol, then we always want H->SIZE
1290 to be the size of the common symbol. The code just above
1291 won't fix the size if a common symbol becomes larger. We
1292 don't warn about a size change here, because that is
1293 covered by --warn-common. */
1294 if (h->root.type == bfd_link_hash_common)
1295 h->size = h->root.u.c.size;
1296
1297 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1298 && (definition || h->type == STT_NOTYPE))
1299 {
1300 if (h->type != STT_NOTYPE
1301 && h->type != ELF_ST_TYPE (sym.st_info)
1302 && ! type_change_ok)
1303 (*_bfd_error_handler)
1304 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1305 name, h->type, ELF_ST_TYPE (sym.st_info),
1306 bfd_get_filename (abfd));
1307
1308 h->type = ELF_ST_TYPE (sym.st_info);
1309 }
1310
1311 if (sym.st_other != 0
1312 && (definition || h->other == 0))
1313 h->other = sym.st_other;
1314
1315 /* Set a flag in the hash table entry indicating the type of
1316 reference or definition we just found. Keep a count of
1317 the number of dynamic symbols we find. A dynamic symbol
1318 is one which is referenced or defined by both a regular
1319 object and a shared object. */
1320 old_flags = h->elf_link_hash_flags;
1321 dynsym = false;
1322 if (! dynamic)
1323 {
1324 if (! definition)
1325 new_flag = ELF_LINK_HASH_REF_REGULAR;
1326 else
1327 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1328 if (info->shared
1329 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1330 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1331 dynsym = true;
1332 }
1333 else
1334 {
1335 if (! definition)
1336 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1337 else
1338 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1339 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1340 | ELF_LINK_HASH_REF_REGULAR)) != 0
1341 || (h->weakdef != NULL
1342 && ! new_weakdef
1343 && h->weakdef->dynindx != -1))
1344 dynsym = true;
1345 }
1346
1347 h->elf_link_hash_flags |= new_flag;
1348
1349 /* If this symbol has a version, and it is the default
1350 version, we create an indirect symbol from the default
1351 name to the fully decorated name. This will cause
1352 external references which do not specify a version to be
1353 bound to this version of the symbol. */
1354 if (definition)
1355 {
1356 char *p;
1357
1358 p = strchr (name, ELF_VER_CHR);
1359 if (p != NULL && p[1] == ELF_VER_CHR)
1360 {
1361 char *shortname;
1362 struct elf_link_hash_entry *hi;
1363 boolean override;
1364
1365 shortname = bfd_hash_allocate (&info->hash->table,
1366 p - name + 1);
1367 if (shortname == NULL)
1368 goto error_return;
1369 strncpy (shortname, name, p - name);
1370 shortname[p - name] = '\0';
1371
1372 /* We are going to create a new symbol. Merge it
1373 with any existing symbol with this name. For the
1374 purposes of the merge, act as though we were
1375 defining the symbol we just defined, although we
1376 actually going to define an indirect symbol. */
1377 type_change_ok = false;
1378 size_change_ok = false;
1379 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1380 &value, &hi, &override,
1381 &type_change_ok, &size_change_ok))
1382 goto error_return;
1383
1384 if (! override)
1385 {
1386 if (! (_bfd_generic_link_add_one_symbol
1387 (info, abfd, shortname, BSF_INDIRECT,
1388 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1389 collect, (struct bfd_link_hash_entry **) &hi)))
1390 goto error_return;
1391 }
1392 else
1393 {
1394 /* In this case the symbol named SHORTNAME is
1395 overriding the indirect symbol we want to
1396 add. We were planning on making SHORTNAME an
1397 indirect symbol referring to NAME. SHORTNAME
1398 is the name without a version. NAME is the
1399 fully versioned name, and it is the default
1400 version.
1401
1402 Overriding means that we already saw a
1403 definition for the symbol SHORTNAME in a
1404 regular object, and it is overriding the
1405 symbol defined in the dynamic object.
1406
1407 When this happens, we actually want to change
1408 NAME, the symbol we just added, to refer to
1409 SHORTNAME. This will cause references to
1410 NAME in the shared object to become
1411 references to SHORTNAME in the regular
1412 object. This is what we expect when we
1413 override a function in a shared object: that
1414 the references in the shared object will be
1415 mapped to the definition in the regular
1416 object. */
1417
1418 while (hi->root.type == bfd_link_hash_indirect
1419 || hi->root.type == bfd_link_hash_warning)
1420 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1421
1422 h->root.type = bfd_link_hash_indirect;
1423 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1424 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1425 {
1426 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1427 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1428 if (hi->elf_link_hash_flags
1429 & (ELF_LINK_HASH_REF_REGULAR
1430 | ELF_LINK_HASH_DEF_REGULAR))
1431 {
1432 if (! _bfd_elf_link_record_dynamic_symbol (info,
1433 hi))
1434 goto error_return;
1435 }
1436 }
1437
1438 /* Now set HI to H, so that the following code
1439 will set the other fields correctly. */
1440 hi = h;
1441 }
1442
1443 /* If there is a duplicate definition somewhere,
1444 then HI may not point to an indirect symbol. We
1445 will have reported an error to the user in that
1446 case. */
1447
1448 if (hi->root.type == bfd_link_hash_indirect)
1449 {
1450 struct elf_link_hash_entry *ht;
1451
1452 /* If the symbol became indirect, then we assume
1453 that we have not seen a definition before. */
1454 BFD_ASSERT ((hi->elf_link_hash_flags
1455 & (ELF_LINK_HASH_DEF_DYNAMIC
1456 | ELF_LINK_HASH_DEF_REGULAR))
1457 == 0);
1458
1459 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1460
1461 /* Copy down any references that we may have
1462 already seen to the symbol which just became
1463 indirect. */
1464 ht->elf_link_hash_flags |=
1465 (hi->elf_link_hash_flags
1466 & (ELF_LINK_HASH_REF_DYNAMIC
1467 | ELF_LINK_HASH_REF_REGULAR));
1468
1469 /* Copy over the global and procedure linkage table
1470 offset entries. These may have been already set
1471 up by a check_relocs routine. */
1472 if (ht->got.offset == (bfd_vma) -1)
1473 {
1474 ht->got.offset = hi->got.offset;
1475 hi->got.offset = (bfd_vma) -1;
1476 }
1477 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1478
1479 if (ht->plt.offset == (bfd_vma) -1)
1480 {
1481 ht->plt.offset = hi->plt.offset;
1482 hi->plt.offset = (bfd_vma) -1;
1483 }
1484 BFD_ASSERT (hi->plt.offset == (bfd_vma) -1);
1485
1486 if (ht->dynindx == -1)
1487 {
1488 ht->dynindx = hi->dynindx;
1489 ht->dynstr_index = hi->dynstr_index;
1490 hi->dynindx = -1;
1491 hi->dynstr_index = 0;
1492 }
1493 BFD_ASSERT (hi->dynindx == -1);
1494
1495 /* FIXME: There may be other information to copy
1496 over for particular targets. */
1497
1498 /* See if the new flags lead us to realize that
1499 the symbol must be dynamic. */
1500 if (! dynsym)
1501 {
1502 if (! dynamic)
1503 {
1504 if (info->shared
1505 || ((hi->elf_link_hash_flags
1506 & ELF_LINK_HASH_REF_DYNAMIC)
1507 != 0))
1508 dynsym = true;
1509 }
1510 else
1511 {
1512 if ((hi->elf_link_hash_flags
1513 & ELF_LINK_HASH_REF_REGULAR) != 0)
1514 dynsym = true;
1515 }
1516 }
1517 }
1518
1519 /* We also need to define an indirection from the
1520 nondefault version of the symbol. */
1521
1522 shortname = bfd_hash_allocate (&info->hash->table,
1523 strlen (name));
1524 if (shortname == NULL)
1525 goto error_return;
1526 strncpy (shortname, name, p - name);
1527 strcpy (shortname + (p - name), p + 1);
1528
1529 /* Once again, merge with any existing symbol. */
1530 type_change_ok = false;
1531 size_change_ok = false;
1532 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1533 &value, &hi, &override,
1534 &type_change_ok, &size_change_ok))
1535 goto error_return;
1536
1537 if (override)
1538 {
1539 /* Here SHORTNAME is a versioned name, so we
1540 don't expect to see the type of override we
1541 do in the case above. */
1542 (*_bfd_error_handler)
1543 (_("%s: warning: unexpected redefinition of `%s'"),
1544 bfd_get_filename (abfd), shortname);
1545 }
1546 else
1547 {
1548 if (! (_bfd_generic_link_add_one_symbol
1549 (info, abfd, shortname, BSF_INDIRECT,
1550 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1551 collect, (struct bfd_link_hash_entry **) &hi)))
1552 goto error_return;
1553
1554 /* If there is a duplicate definition somewhere,
1555 then HI may not point to an indirect symbol.
1556 We will have reported an error to the user in
1557 that case. */
1558
1559 if (hi->root.type == bfd_link_hash_indirect)
1560 {
1561 /* If the symbol became indirect, then we
1562 assume that we have not seen a definition
1563 before. */
1564 BFD_ASSERT ((hi->elf_link_hash_flags
1565 & (ELF_LINK_HASH_DEF_DYNAMIC
1566 | ELF_LINK_HASH_DEF_REGULAR))
1567 == 0);
1568
1569 /* Copy down any references that we may have
1570 already seen to the symbol which just
1571 became indirect. */
1572 h->elf_link_hash_flags |=
1573 (hi->elf_link_hash_flags
1574 & (ELF_LINK_HASH_REF_DYNAMIC
1575 | ELF_LINK_HASH_REF_REGULAR));
1576
1577 /* Copy over the global and procedure linkage
1578 table offset entries. These may have been
1579 already set up by a check_relocs routine. */
1580 if (h->got.offset == (bfd_vma) -1)
1581 {
1582 h->got.offset = hi->got.offset;
1583 hi->got.offset = (bfd_vma) -1;
1584 }
1585 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1586
1587 if (h->plt.offset == (bfd_vma) -1)
1588 {
1589 h->plt.offset = hi->plt.offset;
1590 hi->plt.offset = (bfd_vma) -1;
1591 }
1592 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1593
1594 if (h->dynindx == -1)
1595 {
1596 h->dynindx = hi->dynindx;
1597 h->dynstr_index = hi->dynstr_index;
1598 hi->dynindx = -1;
1599 hi->dynstr_index = 0;
1600 }
1601 BFD_ASSERT (hi->dynindx == -1);
1602
1603 /* FIXME: There may be other information to
1604 copy over for particular targets. */
1605
1606 /* See if the new flags lead us to realize
1607 that the symbol must be dynamic. */
1608 if (! dynsym)
1609 {
1610 if (! dynamic)
1611 {
1612 if (info->shared
1613 || ((hi->elf_link_hash_flags
1614 & ELF_LINK_HASH_REF_DYNAMIC)
1615 != 0))
1616 dynsym = true;
1617 }
1618 else
1619 {
1620 if ((hi->elf_link_hash_flags
1621 & ELF_LINK_HASH_REF_REGULAR) != 0)
1622 dynsym = true;
1623 }
1624 }
1625 }
1626 }
1627 }
1628 }
1629
1630 if (dynsym && h->dynindx == -1)
1631 {
1632 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1633 goto error_return;
1634 if (h->weakdef != NULL
1635 && ! new_weakdef
1636 && h->weakdef->dynindx == -1)
1637 {
1638 if (! _bfd_elf_link_record_dynamic_symbol (info,
1639 h->weakdef))
1640 goto error_return;
1641 }
1642 }
1643 }
1644 }
1645
1646 /* Now set the weakdefs field correctly for all the weak defined
1647 symbols we found. The only way to do this is to search all the
1648 symbols. Since we only need the information for non functions in
1649 dynamic objects, that's the only time we actually put anything on
1650 the list WEAKS. We need this information so that if a regular
1651 object refers to a symbol defined weakly in a dynamic object, the
1652 real symbol in the dynamic object is also put in the dynamic
1653 symbols; we also must arrange for both symbols to point to the
1654 same memory location. We could handle the general case of symbol
1655 aliasing, but a general symbol alias can only be generated in
1656 assembler code, handling it correctly would be very time
1657 consuming, and other ELF linkers don't handle general aliasing
1658 either. */
1659 while (weaks != NULL)
1660 {
1661 struct elf_link_hash_entry *hlook;
1662 asection *slook;
1663 bfd_vma vlook;
1664 struct elf_link_hash_entry **hpp;
1665 struct elf_link_hash_entry **hppend;
1666
1667 hlook = weaks;
1668 weaks = hlook->weakdef;
1669 hlook->weakdef = NULL;
1670
1671 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1672 || hlook->root.type == bfd_link_hash_defweak
1673 || hlook->root.type == bfd_link_hash_common
1674 || hlook->root.type == bfd_link_hash_indirect);
1675 slook = hlook->root.u.def.section;
1676 vlook = hlook->root.u.def.value;
1677
1678 hpp = elf_sym_hashes (abfd);
1679 hppend = hpp + extsymcount;
1680 for (; hpp < hppend; hpp++)
1681 {
1682 struct elf_link_hash_entry *h;
1683
1684 h = *hpp;
1685 if (h != NULL && h != hlook
1686 && h->root.type == bfd_link_hash_defined
1687 && h->root.u.def.section == slook
1688 && h->root.u.def.value == vlook)
1689 {
1690 hlook->weakdef = h;
1691
1692 /* If the weak definition is in the list of dynamic
1693 symbols, make sure the real definition is put there
1694 as well. */
1695 if (hlook->dynindx != -1
1696 && h->dynindx == -1)
1697 {
1698 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1699 goto error_return;
1700 }
1701
1702 /* If the real definition is in the list of dynamic
1703 symbols, make sure the weak definition is put there
1704 as well. If we don't do this, then the dynamic
1705 loader might not merge the entries for the real
1706 definition and the weak definition. */
1707 if (h->dynindx != -1
1708 && hlook->dynindx == -1)
1709 {
1710 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1711 goto error_return;
1712 }
1713
1714 break;
1715 }
1716 }
1717 }
1718
1719 if (buf != NULL)
1720 {
1721 free (buf);
1722 buf = NULL;
1723 }
1724
1725 if (extversym != NULL)
1726 {
1727 free (extversym);
1728 extversym = NULL;
1729 }
1730
1731 /* If this object is the same format as the output object, and it is
1732 not a shared library, then let the backend look through the
1733 relocs.
1734
1735 This is required to build global offset table entries and to
1736 arrange for dynamic relocs. It is not required for the
1737 particular common case of linking non PIC code, even when linking
1738 against shared libraries, but unfortunately there is no way of
1739 knowing whether an object file has been compiled PIC or not.
1740 Looking through the relocs is not particularly time consuming.
1741 The problem is that we must either (1) keep the relocs in memory,
1742 which causes the linker to require additional runtime memory or
1743 (2) read the relocs twice from the input file, which wastes time.
1744 This would be a good case for using mmap.
1745
1746 I have no idea how to handle linking PIC code into a file of a
1747 different format. It probably can't be done. */
1748 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1749 if (! dynamic
1750 && abfd->xvec == info->hash->creator
1751 && check_relocs != NULL)
1752 {
1753 asection *o;
1754
1755 for (o = abfd->sections; o != NULL; o = o->next)
1756 {
1757 Elf_Internal_Rela *internal_relocs;
1758 boolean ok;
1759
1760 if ((o->flags & SEC_RELOC) == 0
1761 || o->reloc_count == 0
1762 || ((info->strip == strip_all || info->strip == strip_debugger)
1763 && (o->flags & SEC_DEBUGGING) != 0)
1764 || bfd_is_abs_section (o->output_section))
1765 continue;
1766
1767 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1768 (abfd, o, (PTR) NULL,
1769 (Elf_Internal_Rela *) NULL,
1770 info->keep_memory));
1771 if (internal_relocs == NULL)
1772 goto error_return;
1773
1774 ok = (*check_relocs) (abfd, info, o, internal_relocs);
1775
1776 if (! info->keep_memory)
1777 free (internal_relocs);
1778
1779 if (! ok)
1780 goto error_return;
1781 }
1782 }
1783
1784 /* If this is a non-traditional, non-relocateable link, try to
1785 optimize the handling of the .stab/.stabstr sections. */
1786 if (! dynamic
1787 && ! info->relocateable
1788 && ! info->traditional_format
1789 && info->hash->creator->flavour == bfd_target_elf_flavour
1790 && (info->strip != strip_all && info->strip != strip_debugger))
1791 {
1792 asection *stab, *stabstr;
1793
1794 stab = bfd_get_section_by_name (abfd, ".stab");
1795 if (stab != NULL)
1796 {
1797 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
1798
1799 if (stabstr != NULL)
1800 {
1801 struct bfd_elf_section_data *secdata;
1802
1803 secdata = elf_section_data (stab);
1804 if (! _bfd_link_section_stabs (abfd,
1805 &elf_hash_table (info)->stab_info,
1806 stab, stabstr,
1807 &secdata->stab_info))
1808 goto error_return;
1809 }
1810 }
1811 }
1812
1813 return true;
1814
1815 error_return:
1816 if (buf != NULL)
1817 free (buf);
1818 if (dynbuf != NULL)
1819 free (dynbuf);
1820 if (dynver != NULL)
1821 free (dynver);
1822 if (extversym != NULL)
1823 free (extversym);
1824 return false;
1825 }
1826
1827 /* Create some sections which will be filled in with dynamic linking
1828 information. ABFD is an input file which requires dynamic sections
1829 to be created. The dynamic sections take up virtual memory space
1830 when the final executable is run, so we need to create them before
1831 addresses are assigned to the output sections. We work out the
1832 actual contents and size of these sections later. */
1833
1834 boolean
1835 elf_link_create_dynamic_sections (abfd, info)
1836 bfd *abfd;
1837 struct bfd_link_info *info;
1838 {
1839 flagword flags;
1840 register asection *s;
1841 struct elf_link_hash_entry *h;
1842 struct elf_backend_data *bed;
1843
1844 if (elf_hash_table (info)->dynamic_sections_created)
1845 return true;
1846
1847 /* Make sure that all dynamic sections use the same input BFD. */
1848 if (elf_hash_table (info)->dynobj == NULL)
1849 elf_hash_table (info)->dynobj = abfd;
1850 else
1851 abfd = elf_hash_table (info)->dynobj;
1852
1853 /* Note that we set the SEC_IN_MEMORY flag for all of these
1854 sections. */
1855 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
1856 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1857
1858 /* A dynamically linked executable has a .interp section, but a
1859 shared library does not. */
1860 if (! info->shared)
1861 {
1862 s = bfd_make_section (abfd, ".interp");
1863 if (s == NULL
1864 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1865 return false;
1866 }
1867
1868 /* Create sections to hold version informations. These are removed
1869 if they are not needed. */
1870 s = bfd_make_section (abfd, ".gnu.version_d");
1871 if (s == NULL
1872 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1873 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1874 return false;
1875
1876 s = bfd_make_section (abfd, ".gnu.version");
1877 if (s == NULL
1878 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1879 || ! bfd_set_section_alignment (abfd, s, 1))
1880 return false;
1881
1882 s = bfd_make_section (abfd, ".gnu.version_r");
1883 if (s == NULL
1884 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1885 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1886 return false;
1887
1888 s = bfd_make_section (abfd, ".dynsym");
1889 if (s == NULL
1890 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1891 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1892 return false;
1893
1894 s = bfd_make_section (abfd, ".dynstr");
1895 if (s == NULL
1896 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1897 return false;
1898
1899 /* Create a strtab to hold the dynamic symbol names. */
1900 if (elf_hash_table (info)->dynstr == NULL)
1901 {
1902 elf_hash_table (info)->dynstr = elf_stringtab_init ();
1903 if (elf_hash_table (info)->dynstr == NULL)
1904 return false;
1905 }
1906
1907 s = bfd_make_section (abfd, ".dynamic");
1908 if (s == NULL
1909 || ! bfd_set_section_flags (abfd, s, flags)
1910 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1911 return false;
1912
1913 /* The special symbol _DYNAMIC is always set to the start of the
1914 .dynamic section. This call occurs before we have processed the
1915 symbols for any dynamic object, so we don't have to worry about
1916 overriding a dynamic definition. We could set _DYNAMIC in a
1917 linker script, but we only want to define it if we are, in fact,
1918 creating a .dynamic section. We don't want to define it if there
1919 is no .dynamic section, since on some ELF platforms the start up
1920 code examines it to decide how to initialize the process. */
1921 h = NULL;
1922 if (! (_bfd_generic_link_add_one_symbol
1923 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
1924 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
1925 (struct bfd_link_hash_entry **) &h)))
1926 return false;
1927 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1928 h->type = STT_OBJECT;
1929
1930 if (info->shared
1931 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
1932 return false;
1933
1934 s = bfd_make_section (abfd, ".hash");
1935 if (s == NULL
1936 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1937 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1938 return false;
1939
1940 /* Let the backend create the rest of the sections. This lets the
1941 backend set the right flags. The backend will normally create
1942 the .got and .plt sections. */
1943 bed = get_elf_backend_data (abfd);
1944 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
1945 return false;
1946
1947 elf_hash_table (info)->dynamic_sections_created = true;
1948
1949 return true;
1950 }
1951
1952 /* Add an entry to the .dynamic table. */
1953
1954 boolean
1955 elf_add_dynamic_entry (info, tag, val)
1956 struct bfd_link_info *info;
1957 bfd_vma tag;
1958 bfd_vma val;
1959 {
1960 Elf_Internal_Dyn dyn;
1961 bfd *dynobj;
1962 asection *s;
1963 size_t newsize;
1964 bfd_byte *newcontents;
1965
1966 dynobj = elf_hash_table (info)->dynobj;
1967
1968 s = bfd_get_section_by_name (dynobj, ".dynamic");
1969 BFD_ASSERT (s != NULL);
1970
1971 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
1972 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
1973 if (newcontents == NULL)
1974 return false;
1975
1976 dyn.d_tag = tag;
1977 dyn.d_un.d_val = val;
1978 elf_swap_dyn_out (dynobj, &dyn,
1979 (Elf_External_Dyn *) (newcontents + s->_raw_size));
1980
1981 s->_raw_size = newsize;
1982 s->contents = newcontents;
1983
1984 return true;
1985 }
1986 \f
1987
1988 /* Read and swap the relocs for a section. They may have been cached.
1989 If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL,
1990 they are used as buffers to read into. They are known to be large
1991 enough. If the INTERNAL_RELOCS relocs argument is NULL, the return
1992 value is allocated using either malloc or bfd_alloc, according to
1993 the KEEP_MEMORY argument. */
1994
1995 Elf_Internal_Rela *
1996 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
1997 keep_memory)
1998 bfd *abfd;
1999 asection *o;
2000 PTR external_relocs;
2001 Elf_Internal_Rela *internal_relocs;
2002 boolean keep_memory;
2003 {
2004 Elf_Internal_Shdr *rel_hdr;
2005 PTR alloc1 = NULL;
2006 Elf_Internal_Rela *alloc2 = NULL;
2007
2008 if (elf_section_data (o)->relocs != NULL)
2009 return elf_section_data (o)->relocs;
2010
2011 if (o->reloc_count == 0)
2012 return NULL;
2013
2014 rel_hdr = &elf_section_data (o)->rel_hdr;
2015
2016 if (internal_relocs == NULL)
2017 {
2018 size_t size;
2019
2020 size = o->reloc_count * sizeof (Elf_Internal_Rela);
2021 if (keep_memory)
2022 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2023 else
2024 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2025 if (internal_relocs == NULL)
2026 goto error_return;
2027 }
2028
2029 if (external_relocs == NULL)
2030 {
2031 alloc1 = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
2032 if (alloc1 == NULL)
2033 goto error_return;
2034 external_relocs = alloc1;
2035 }
2036
2037 if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0)
2038 || (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd)
2039 != rel_hdr->sh_size))
2040 goto error_return;
2041
2042 /* Swap in the relocs. For convenience, we always produce an
2043 Elf_Internal_Rela array; if the relocs are Rel, we set the addend
2044 to 0. */
2045 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
2046 {
2047 Elf_External_Rel *erel;
2048 Elf_External_Rel *erelend;
2049 Elf_Internal_Rela *irela;
2050
2051 erel = (Elf_External_Rel *) external_relocs;
2052 erelend = erel + o->reloc_count;
2053 irela = internal_relocs;
2054 for (; erel < erelend; erel++, irela++)
2055 {
2056 Elf_Internal_Rel irel;
2057
2058 elf_swap_reloc_in (abfd, erel, &irel);
2059 irela->r_offset = irel.r_offset;
2060 irela->r_info = irel.r_info;
2061 irela->r_addend = 0;
2062 }
2063 }
2064 else
2065 {
2066 Elf_External_Rela *erela;
2067 Elf_External_Rela *erelaend;
2068 Elf_Internal_Rela *irela;
2069
2070 BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
2071
2072 erela = (Elf_External_Rela *) external_relocs;
2073 erelaend = erela + o->reloc_count;
2074 irela = internal_relocs;
2075 for (; erela < erelaend; erela++, irela++)
2076 elf_swap_reloca_in (abfd, erela, irela);
2077 }
2078
2079 /* Cache the results for next time, if we can. */
2080 if (keep_memory)
2081 elf_section_data (o)->relocs = internal_relocs;
2082
2083 if (alloc1 != NULL)
2084 free (alloc1);
2085
2086 /* Don't free alloc2, since if it was allocated we are passing it
2087 back (under the name of internal_relocs). */
2088
2089 return internal_relocs;
2090
2091 error_return:
2092 if (alloc1 != NULL)
2093 free (alloc1);
2094 if (alloc2 != NULL)
2095 free (alloc2);
2096 return NULL;
2097 }
2098 \f
2099
2100 /* Record an assignment to a symbol made by a linker script. We need
2101 this in case some dynamic object refers to this symbol. */
2102
2103 /*ARGSUSED*/
2104 boolean
2105 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2106 bfd *output_bfd;
2107 struct bfd_link_info *info;
2108 const char *name;
2109 boolean provide;
2110 {
2111 struct elf_link_hash_entry *h;
2112
2113 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2114 return true;
2115
2116 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2117 if (h == NULL)
2118 return false;
2119
2120 if (h->root.type == bfd_link_hash_new)
2121 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2122
2123 /* If this symbol is being provided by the linker script, and it is
2124 currently defined by a dynamic object, but not by a regular
2125 object, then mark it as undefined so that the generic linker will
2126 force the correct value. */
2127 if (provide
2128 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2129 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2130 h->root.type = bfd_link_hash_undefined;
2131
2132 /* If this symbol is not being provided by the linker script, and it is
2133 currently defined by a dynamic object, but not by a regular object,
2134 then clear out any version information because the symbol will not be
2135 associated with the dynamic object any more. */
2136 if (!provide
2137 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2138 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2139 h->verinfo.verdef = NULL;
2140
2141 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2142 h->type = STT_OBJECT;
2143
2144 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2145 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2146 || info->shared)
2147 && h->dynindx == -1)
2148 {
2149 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2150 return false;
2151
2152 /* If this is a weak defined symbol, and we know a corresponding
2153 real symbol from the same dynamic object, make sure the real
2154 symbol is also made into a dynamic symbol. */
2155 if (h->weakdef != NULL
2156 && h->weakdef->dynindx == -1)
2157 {
2158 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2159 return false;
2160 }
2161 }
2162
2163 return true;
2164 }
2165 \f
2166 /* This structure is used to pass information to
2167 elf_link_assign_sym_version. */
2168
2169 struct elf_assign_sym_version_info
2170 {
2171 /* Output BFD. */
2172 bfd *output_bfd;
2173 /* General link information. */
2174 struct bfd_link_info *info;
2175 /* Version tree. */
2176 struct bfd_elf_version_tree *verdefs;
2177 /* Whether we are exporting all dynamic symbols. */
2178 boolean export_dynamic;
2179 /* Whether we removed any symbols from the dynamic symbol table. */
2180 boolean removed_dynamic;
2181 /* Whether we had a failure. */
2182 boolean failed;
2183 };
2184
2185 /* This structure is used to pass information to
2186 elf_link_find_version_dependencies. */
2187
2188 struct elf_find_verdep_info
2189 {
2190 /* Output BFD. */
2191 bfd *output_bfd;
2192 /* General link information. */
2193 struct bfd_link_info *info;
2194 /* The number of dependencies. */
2195 unsigned int vers;
2196 /* Whether we had a failure. */
2197 boolean failed;
2198 };
2199
2200 /* Array used to determine the number of hash table buckets to use
2201 based on the number of symbols there are. If there are fewer than
2202 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2203 fewer than 37 we use 17 buckets, and so forth. We never use more
2204 than 32771 buckets. */
2205
2206 static const size_t elf_buckets[] =
2207 {
2208 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2209 16411, 32771, 0
2210 };
2211
2212 /* Compute bucket count for hashing table. We do not use a static set
2213 of possible tables sizes anymore. Instead we determine for all
2214 possible reasonable sizes of the table the outcome (i.e., the
2215 number of collisions etc) and choose the best solution. The
2216 weighting functions are not too simple to allow the table to grow
2217 without bounds. Instead one of the weighting factors is the size.
2218 Therefore the result is always a good payoff between few collisions
2219 (= short chain lengths) and table size. */
2220 static size_t
2221 compute_bucket_count (info)
2222 struct bfd_link_info *info;
2223 {
2224 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2225 size_t best_size;
2226 unsigned long int *hashcodes;
2227 unsigned long int *hashcodesp;
2228 unsigned long int i;
2229
2230 /* Compute the hash values for all exported symbols. At the same
2231 time store the values in an array so that we could use them for
2232 optimizations. */
2233 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2234 * sizeof (unsigned long int));
2235 if (hashcodes == NULL)
2236 return 0;
2237 hashcodesp = hashcodes;
2238
2239 /* Put all hash values in HASHCODES. */
2240 elf_link_hash_traverse (elf_hash_table (info),
2241 elf_collect_hash_codes, &hashcodesp);
2242
2243 /* We have a problem here. The following code to optimize the table
2244 size requires an integer type with more the 32 bits. If
2245 BFD_HOST_U_64_BIT is set we know about such a type. */
2246 #ifdef BFD_HOST_U_64_BIT
2247 if (info->optimize == true)
2248 {
2249 unsigned long int nsyms = hashcodesp - hashcodes;
2250 size_t minsize;
2251 size_t maxsize;
2252 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2253 unsigned long int *counts ;
2254
2255 /* Possible optimization parameters: if we have NSYMS symbols we say
2256 that the hashing table must at least have NSYMS/4 and at most
2257 2*NSYMS buckets. */
2258 minsize = nsyms / 4;
2259 if (minsize == 0)
2260 minsize = 1;
2261 best_size = maxsize = nsyms * 2;
2262
2263 /* Create array where we count the collisions in. We must use bfd_malloc
2264 since the size could be large. */
2265 counts = (unsigned long int *) bfd_malloc (maxsize
2266 * sizeof (unsigned long int));
2267 if (counts == NULL)
2268 {
2269 free (hashcodes);
2270 return 0;
2271 }
2272
2273 /* Compute the "optimal" size for the hash table. The criteria is a
2274 minimal chain length. The minor criteria is (of course) the size
2275 of the table. */
2276 for (i = minsize; i < maxsize; ++i)
2277 {
2278 /* Walk through the array of hashcodes and count the collisions. */
2279 BFD_HOST_U_64_BIT max;
2280 unsigned long int j;
2281 unsigned long int fact;
2282
2283 memset (counts, '\0', i * sizeof (unsigned long int));
2284
2285 /* Determine how often each hash bucket is used. */
2286 for (j = 0; j < nsyms; ++j)
2287 ++counts[hashcodes[j] % i];
2288
2289 /* For the weight function we need some information about the
2290 pagesize on the target. This is information need not be 100%
2291 accurate. Since this information is not available (so far) we
2292 define it here to a reasonable default value. If it is crucial
2293 to have a better value some day simply define this value. */
2294 # ifndef BFD_TARGET_PAGESIZE
2295 # define BFD_TARGET_PAGESIZE (4096)
2296 # endif
2297
2298 /* We in any case need 2 + NSYMS entries for the size values and
2299 the chains. */
2300 max = (2 + nsyms) * (ARCH_SIZE / 8);
2301
2302 # if 1
2303 /* Variant 1: optimize for short chains. We add the squares
2304 of all the chain lengths (which favous many small chain
2305 over a few long chains). */
2306 for (j = 0; j < i; ++j)
2307 max += counts[j] * counts[j];
2308
2309 /* This adds penalties for the overall size of the table. */
2310 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2311 max *= fact * fact;
2312 # else
2313 /* Variant 2: Optimize a lot more for small table. Here we
2314 also add squares of the size but we also add penalties for
2315 empty slots (the +1 term). */
2316 for (j = 0; j < i; ++j)
2317 max += (1 + counts[j]) * (1 + counts[j]);
2318
2319 /* The overall size of the table is considered, but not as
2320 strong as in variant 1, where it is squared. */
2321 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2322 max *= fact;
2323 # endif
2324
2325 /* Compare with current best results. */
2326 if (max < best_chlen)
2327 {
2328 best_chlen = max;
2329 best_size = i;
2330 }
2331 }
2332
2333 free (counts);
2334 }
2335 else
2336 #endif /* defined (BFD_HOST_U_64_BIT) */
2337 {
2338 /* This is the fallback solution if no 64bit type is available or if we
2339 are not supposed to spend much time on optimizations. We select the
2340 bucket count using a fixed set of numbers. */
2341 for (i = 0; elf_buckets[i] != 0; i++)
2342 {
2343 best_size = elf_buckets[i];
2344 if (dynsymcount < elf_buckets[i + 1])
2345 break;
2346 }
2347 }
2348
2349 /* Free the arrays we needed. */
2350 free (hashcodes);
2351
2352 return best_size;
2353 }
2354
2355 /* Set up the sizes and contents of the ELF dynamic sections. This is
2356 called by the ELF linker emulation before_allocation routine. We
2357 must set the sizes of the sections before the linker sets the
2358 addresses of the various sections. */
2359
2360 boolean
2361 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2362 export_dynamic, filter_shlib,
2363 auxiliary_filters, info, sinterpptr,
2364 verdefs)
2365 bfd *output_bfd;
2366 const char *soname;
2367 const char *rpath;
2368 boolean export_dynamic;
2369 const char *filter_shlib;
2370 const char * const *auxiliary_filters;
2371 struct bfd_link_info *info;
2372 asection **sinterpptr;
2373 struct bfd_elf_version_tree *verdefs;
2374 {
2375 bfd_size_type soname_indx;
2376 bfd *dynobj;
2377 struct elf_backend_data *bed;
2378 bfd_size_type old_dynsymcount;
2379 struct elf_assign_sym_version_info asvinfo;
2380
2381 *sinterpptr = NULL;
2382
2383 soname_indx = (bfd_size_type) -1;
2384
2385 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2386 return true;
2387
2388 /* The backend may have to create some sections regardless of whether
2389 we're dynamic or not. */
2390 bed = get_elf_backend_data (output_bfd);
2391 if (bed->elf_backend_always_size_sections
2392 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2393 return false;
2394
2395 dynobj = elf_hash_table (info)->dynobj;
2396
2397 /* If there were no dynamic objects in the link, there is nothing to
2398 do here. */
2399 if (dynobj == NULL)
2400 return true;
2401
2402 /* If we are supposed to export all symbols into the dynamic symbol
2403 table (this is not the normal case), then do so. */
2404 if (export_dynamic)
2405 {
2406 struct elf_info_failed eif;
2407
2408 eif.failed = false;
2409 eif.info = info;
2410 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2411 (PTR) &eif);
2412 if (eif.failed)
2413 return false;
2414 }
2415
2416 if (elf_hash_table (info)->dynamic_sections_created)
2417 {
2418 struct elf_info_failed eif;
2419 struct elf_link_hash_entry *h;
2420 bfd_size_type strsize;
2421
2422 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2423 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2424
2425 if (soname != NULL)
2426 {
2427 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2428 soname, true, true);
2429 if (soname_indx == (bfd_size_type) -1
2430 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2431 return false;
2432 }
2433
2434 if (info->symbolic)
2435 {
2436 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2437 return false;
2438 }
2439
2440 if (rpath != NULL)
2441 {
2442 bfd_size_type indx;
2443
2444 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2445 true, true);
2446 if (indx == (bfd_size_type) -1
2447 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2448 return false;
2449 }
2450
2451 if (filter_shlib != NULL)
2452 {
2453 bfd_size_type indx;
2454
2455 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2456 filter_shlib, true, true);
2457 if (indx == (bfd_size_type) -1
2458 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2459 return false;
2460 }
2461
2462 if (auxiliary_filters != NULL)
2463 {
2464 const char * const *p;
2465
2466 for (p = auxiliary_filters; *p != NULL; p++)
2467 {
2468 bfd_size_type indx;
2469
2470 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2471 *p, true, true);
2472 if (indx == (bfd_size_type) -1
2473 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2474 return false;
2475 }
2476 }
2477
2478 /* Attach all the symbols to their version information. */
2479 asvinfo.output_bfd = output_bfd;
2480 asvinfo.info = info;
2481 asvinfo.verdefs = verdefs;
2482 asvinfo.export_dynamic = export_dynamic;
2483 asvinfo.removed_dynamic = false;
2484 asvinfo.failed = false;
2485
2486 elf_link_hash_traverse (elf_hash_table (info),
2487 elf_link_assign_sym_version,
2488 (PTR) &asvinfo);
2489 if (asvinfo.failed)
2490 return false;
2491
2492 /* Find all symbols which were defined in a dynamic object and make
2493 the backend pick a reasonable value for them. */
2494 eif.failed = false;
2495 eif.info = info;
2496 elf_link_hash_traverse (elf_hash_table (info),
2497 elf_adjust_dynamic_symbol,
2498 (PTR) &eif);
2499 if (eif.failed)
2500 return false;
2501
2502 /* Add some entries to the .dynamic section. We fill in some of the
2503 values later, in elf_bfd_final_link, but we must add the entries
2504 now so that we know the final size of the .dynamic section. */
2505 h = elf_link_hash_lookup (elf_hash_table (info), "_init", false,
2506 false, false);
2507 if (h != NULL
2508 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2509 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2510 {
2511 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2512 return false;
2513 }
2514 h = elf_link_hash_lookup (elf_hash_table (info), "_fini", false,
2515 false, false);
2516 if (h != NULL
2517 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2518 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2519 {
2520 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2521 return false;
2522 }
2523 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2524 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2525 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2526 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2527 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2528 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2529 sizeof (Elf_External_Sym)))
2530 return false;
2531 }
2532
2533 /* The backend must work out the sizes of all the other dynamic
2534 sections. */
2535 old_dynsymcount = elf_hash_table (info)->dynsymcount;
2536 if (bed->elf_backend_size_dynamic_sections
2537 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2538 return false;
2539
2540 if (elf_hash_table (info)->dynamic_sections_created)
2541 {
2542 size_t dynsymcount;
2543 asection *s;
2544 size_t i;
2545 size_t bucketcount = 0;
2546 Elf_Internal_Sym isym;
2547
2548 /* Set up the version definition section. */
2549 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2550 BFD_ASSERT (s != NULL);
2551
2552 /* We may have created additional version definitions if we are
2553 just linking a regular application. */
2554 verdefs = asvinfo.verdefs;
2555
2556 if (verdefs == NULL)
2557 {
2558 asection **spp;
2559
2560 /* Don't include this section in the output file. */
2561 for (spp = &output_bfd->sections;
2562 *spp != s->output_section;
2563 spp = &(*spp)->next)
2564 ;
2565 *spp = s->output_section->next;
2566 --output_bfd->section_count;
2567 }
2568 else
2569 {
2570 unsigned int cdefs;
2571 bfd_size_type size;
2572 struct bfd_elf_version_tree *t;
2573 bfd_byte *p;
2574 Elf_Internal_Verdef def;
2575 Elf_Internal_Verdaux defaux;
2576
2577 if (asvinfo.removed_dynamic)
2578 {
2579 /* Some dynamic symbols were changed to be local
2580 symbols. In this case, we renumber all of the
2581 dynamic symbols, so that we don't have a hole. If
2582 the backend changed dynsymcount, then assume that the
2583 new symbols are at the start. This is the case on
2584 the MIPS. FIXME: The names of the removed symbols
2585 will still be in the dynamic string table, wasting
2586 space. */
2587 elf_hash_table (info)->dynsymcount =
2588 1 + (elf_hash_table (info)->dynsymcount - old_dynsymcount);
2589 elf_link_hash_traverse (elf_hash_table (info),
2590 elf_link_renumber_dynsyms,
2591 (PTR) info);
2592 }
2593
2594 cdefs = 0;
2595 size = 0;
2596
2597 /* Make space for the base version. */
2598 size += sizeof (Elf_External_Verdef);
2599 size += sizeof (Elf_External_Verdaux);
2600 ++cdefs;
2601
2602 for (t = verdefs; t != NULL; t = t->next)
2603 {
2604 struct bfd_elf_version_deps *n;
2605
2606 size += sizeof (Elf_External_Verdef);
2607 size += sizeof (Elf_External_Verdaux);
2608 ++cdefs;
2609
2610 for (n = t->deps; n != NULL; n = n->next)
2611 size += sizeof (Elf_External_Verdaux);
2612 }
2613
2614 s->_raw_size = size;
2615 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2616 if (s->contents == NULL && s->_raw_size != 0)
2617 return false;
2618
2619 /* Fill in the version definition section. */
2620
2621 p = s->contents;
2622
2623 def.vd_version = VER_DEF_CURRENT;
2624 def.vd_flags = VER_FLG_BASE;
2625 def.vd_ndx = 1;
2626 def.vd_cnt = 1;
2627 def.vd_aux = sizeof (Elf_External_Verdef);
2628 def.vd_next = (sizeof (Elf_External_Verdef)
2629 + sizeof (Elf_External_Verdaux));
2630
2631 if (soname_indx != (bfd_size_type) -1)
2632 {
2633 def.vd_hash = bfd_elf_hash ((const unsigned char *) soname);
2634 defaux.vda_name = soname_indx;
2635 }
2636 else
2637 {
2638 const char *name;
2639 bfd_size_type indx;
2640
2641 name = output_bfd->filename;
2642 def.vd_hash = bfd_elf_hash ((const unsigned char *) name);
2643 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2644 name, true, false);
2645 if (indx == (bfd_size_type) -1)
2646 return false;
2647 defaux.vda_name = indx;
2648 }
2649 defaux.vda_next = 0;
2650
2651 _bfd_elf_swap_verdef_out (output_bfd, &def,
2652 (Elf_External_Verdef *)p);
2653 p += sizeof (Elf_External_Verdef);
2654 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2655 (Elf_External_Verdaux *) p);
2656 p += sizeof (Elf_External_Verdaux);
2657
2658 for (t = verdefs; t != NULL; t = t->next)
2659 {
2660 unsigned int cdeps;
2661 struct bfd_elf_version_deps *n;
2662 struct elf_link_hash_entry *h;
2663
2664 cdeps = 0;
2665 for (n = t->deps; n != NULL; n = n->next)
2666 ++cdeps;
2667
2668 /* Add a symbol representing this version. */
2669 h = NULL;
2670 if (! (_bfd_generic_link_add_one_symbol
2671 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
2672 (bfd_vma) 0, (const char *) NULL, false,
2673 get_elf_backend_data (dynobj)->collect,
2674 (struct bfd_link_hash_entry **) &h)))
2675 return false;
2676 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
2677 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2678 h->type = STT_OBJECT;
2679 h->verinfo.vertree = t;
2680
2681 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2682 return false;
2683
2684 def.vd_version = VER_DEF_CURRENT;
2685 def.vd_flags = 0;
2686 if (t->globals == NULL && t->locals == NULL && ! t->used)
2687 def.vd_flags |= VER_FLG_WEAK;
2688 def.vd_ndx = t->vernum + 1;
2689 def.vd_cnt = cdeps + 1;
2690 def.vd_hash = bfd_elf_hash ((const unsigned char *) t->name);
2691 def.vd_aux = sizeof (Elf_External_Verdef);
2692 if (t->next != NULL)
2693 def.vd_next = (sizeof (Elf_External_Verdef)
2694 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
2695 else
2696 def.vd_next = 0;
2697
2698 _bfd_elf_swap_verdef_out (output_bfd, &def,
2699 (Elf_External_Verdef *) p);
2700 p += sizeof (Elf_External_Verdef);
2701
2702 defaux.vda_name = h->dynstr_index;
2703 if (t->deps == NULL)
2704 defaux.vda_next = 0;
2705 else
2706 defaux.vda_next = sizeof (Elf_External_Verdaux);
2707 t->name_indx = defaux.vda_name;
2708
2709 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2710 (Elf_External_Verdaux *) p);
2711 p += sizeof (Elf_External_Verdaux);
2712
2713 for (n = t->deps; n != NULL; n = n->next)
2714 {
2715 if (n->version_needed == NULL)
2716 {
2717 /* This can happen if there was an error in the
2718 version script. */
2719 defaux.vda_name = 0;
2720 }
2721 else
2722 defaux.vda_name = n->version_needed->name_indx;
2723 if (n->next == NULL)
2724 defaux.vda_next = 0;
2725 else
2726 defaux.vda_next = sizeof (Elf_External_Verdaux);
2727
2728 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2729 (Elf_External_Verdaux *) p);
2730 p += sizeof (Elf_External_Verdaux);
2731 }
2732 }
2733
2734 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
2735 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
2736 return false;
2737
2738 elf_tdata (output_bfd)->cverdefs = cdefs;
2739 }
2740
2741 /* Work out the size of the version reference section. */
2742
2743 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2744 BFD_ASSERT (s != NULL);
2745 {
2746 struct elf_find_verdep_info sinfo;
2747
2748 sinfo.output_bfd = output_bfd;
2749 sinfo.info = info;
2750 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
2751 if (sinfo.vers == 0)
2752 sinfo.vers = 1;
2753 sinfo.failed = false;
2754
2755 elf_link_hash_traverse (elf_hash_table (info),
2756 elf_link_find_version_dependencies,
2757 (PTR) &sinfo);
2758
2759 if (elf_tdata (output_bfd)->verref == NULL)
2760 {
2761 asection **spp;
2762
2763 /* We don't have any version definitions, so we can just
2764 remove the section. */
2765
2766 for (spp = &output_bfd->sections;
2767 *spp != s->output_section;
2768 spp = &(*spp)->next)
2769 ;
2770 *spp = s->output_section->next;
2771 --output_bfd->section_count;
2772 }
2773 else
2774 {
2775 Elf_Internal_Verneed *t;
2776 unsigned int size;
2777 unsigned int crefs;
2778 bfd_byte *p;
2779
2780 /* Build the version definition section. */
2781 size = 0;
2782 crefs = 0;
2783 for (t = elf_tdata (output_bfd)->verref;
2784 t != NULL;
2785 t = t->vn_nextref)
2786 {
2787 Elf_Internal_Vernaux *a;
2788
2789 size += sizeof (Elf_External_Verneed);
2790 ++crefs;
2791 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2792 size += sizeof (Elf_External_Vernaux);
2793 }
2794
2795 s->_raw_size = size;
2796 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
2797 if (s->contents == NULL)
2798 return false;
2799
2800 p = s->contents;
2801 for (t = elf_tdata (output_bfd)->verref;
2802 t != NULL;
2803 t = t->vn_nextref)
2804 {
2805 unsigned int caux;
2806 Elf_Internal_Vernaux *a;
2807 bfd_size_type indx;
2808
2809 caux = 0;
2810 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2811 ++caux;
2812
2813 t->vn_version = VER_NEED_CURRENT;
2814 t->vn_cnt = caux;
2815 if (elf_dt_name (t->vn_bfd) != NULL)
2816 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2817 elf_dt_name (t->vn_bfd),
2818 true, false);
2819 else
2820 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2821 t->vn_bfd->filename, true, false);
2822 if (indx == (bfd_size_type) -1)
2823 return false;
2824 t->vn_file = indx;
2825 t->vn_aux = sizeof (Elf_External_Verneed);
2826 if (t->vn_nextref == NULL)
2827 t->vn_next = 0;
2828 else
2829 t->vn_next = (sizeof (Elf_External_Verneed)
2830 + caux * sizeof (Elf_External_Vernaux));
2831
2832 _bfd_elf_swap_verneed_out (output_bfd, t,
2833 (Elf_External_Verneed *) p);
2834 p += sizeof (Elf_External_Verneed);
2835
2836 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2837 {
2838 a->vna_hash = bfd_elf_hash ((const unsigned char *)
2839 a->vna_nodename);
2840 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2841 a->vna_nodename, true, false);
2842 if (indx == (bfd_size_type) -1)
2843 return false;
2844 a->vna_name = indx;
2845 if (a->vna_nextptr == NULL)
2846 a->vna_next = 0;
2847 else
2848 a->vna_next = sizeof (Elf_External_Vernaux);
2849
2850 _bfd_elf_swap_vernaux_out (output_bfd, a,
2851 (Elf_External_Vernaux *) p);
2852 p += sizeof (Elf_External_Vernaux);
2853 }
2854 }
2855
2856 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
2857 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
2858 return false;
2859
2860 elf_tdata (output_bfd)->cverrefs = crefs;
2861 }
2862 }
2863
2864 dynsymcount = elf_hash_table (info)->dynsymcount;
2865
2866 /* Work out the size of the symbol version section. */
2867 s = bfd_get_section_by_name (dynobj, ".gnu.version");
2868 BFD_ASSERT (s != NULL);
2869 if (dynsymcount == 0
2870 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
2871 {
2872 asection **spp;
2873
2874 /* We don't need any symbol versions; just discard the
2875 section. */
2876 for (spp = &output_bfd->sections;
2877 *spp != s->output_section;
2878 spp = &(*spp)->next)
2879 ;
2880 *spp = s->output_section->next;
2881 --output_bfd->section_count;
2882 }
2883 else
2884 {
2885 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
2886 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
2887 if (s->contents == NULL)
2888 return false;
2889
2890 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
2891 return false;
2892 }
2893
2894 /* Set the size of the .dynsym and .hash sections. We counted
2895 the number of dynamic symbols in elf_link_add_object_symbols.
2896 We will build the contents of .dynsym and .hash when we build
2897 the final symbol table, because until then we do not know the
2898 correct value to give the symbols. We built the .dynstr
2899 section as we went along in elf_link_add_object_symbols. */
2900 s = bfd_get_section_by_name (dynobj, ".dynsym");
2901 BFD_ASSERT (s != NULL);
2902 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
2903 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2904 if (s->contents == NULL && s->_raw_size != 0)
2905 return false;
2906
2907 /* The first entry in .dynsym is a dummy symbol. */
2908 isym.st_value = 0;
2909 isym.st_size = 0;
2910 isym.st_name = 0;
2911 isym.st_info = 0;
2912 isym.st_other = 0;
2913 isym.st_shndx = 0;
2914 elf_swap_symbol_out (output_bfd, &isym,
2915 (PTR) (Elf_External_Sym *) s->contents);
2916
2917 /* Compute the size of the hashing table. As a side effect this
2918 computes the hash values for all the names we export. */
2919 bucketcount = compute_bucket_count (info);
2920
2921 s = bfd_get_section_by_name (dynobj, ".hash");
2922 BFD_ASSERT (s != NULL);
2923 s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8);
2924 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2925 if (s->contents == NULL)
2926 return false;
2927 memset (s->contents, 0, (size_t) s->_raw_size);
2928
2929 put_word (output_bfd, bucketcount, s->contents);
2930 put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8));
2931
2932 elf_hash_table (info)->bucketcount = bucketcount;
2933
2934 s = bfd_get_section_by_name (dynobj, ".dynstr");
2935 BFD_ASSERT (s != NULL);
2936 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2937
2938 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
2939 return false;
2940 }
2941
2942 return true;
2943 }
2944 \f
2945 /* Fix up the flags for a symbol. This handles various cases which
2946 can only be fixed after all the input files are seen. This is
2947 currently called by both adjust_dynamic_symbol and
2948 assign_sym_version, which is unnecessary but perhaps more robust in
2949 the face of future changes. */
2950
2951 static boolean
2952 elf_fix_symbol_flags (h, eif)
2953 struct elf_link_hash_entry *h;
2954 struct elf_info_failed *eif;
2955 {
2956 /* If this symbol was mentioned in a non-ELF file, try to set
2957 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2958 permit a non-ELF file to correctly refer to a symbol defined in
2959 an ELF dynamic object. */
2960 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
2961 {
2962 if (h->root.type != bfd_link_hash_defined
2963 && h->root.type != bfd_link_hash_defweak)
2964 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2965 else
2966 {
2967 if (h->root.u.def.section->owner != NULL
2968 && (bfd_get_flavour (h->root.u.def.section->owner)
2969 == bfd_target_elf_flavour))
2970 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2971 else
2972 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2973 }
2974
2975 if (h->dynindx == -1
2976 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2977 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
2978 {
2979 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
2980 {
2981 eif->failed = true;
2982 return false;
2983 }
2984 }
2985 }
2986
2987 /* If this is a final link, and the symbol was defined as a common
2988 symbol in a regular object file, and there was no definition in
2989 any dynamic object, then the linker will have allocated space for
2990 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
2991 flag will not have been set. */
2992 if (h->root.type == bfd_link_hash_defined
2993 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2994 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
2995 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2996 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2997 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2998
2999 /* If -Bsymbolic was used (which means to bind references to global
3000 symbols to the definition within the shared object), and this
3001 symbol was defined in a regular object, then it actually doesn't
3002 need a PLT entry. */
3003 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3004 && eif->info->shared
3005 && eif->info->symbolic
3006 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3007 {
3008 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3009 h->plt.offset = (bfd_vma) -1;
3010 }
3011
3012 return true;
3013 }
3014
3015 /* Make the backend pick a good value for a dynamic symbol. This is
3016 called via elf_link_hash_traverse, and also calls itself
3017 recursively. */
3018
3019 static boolean
3020 elf_adjust_dynamic_symbol (h, data)
3021 struct elf_link_hash_entry *h;
3022 PTR data;
3023 {
3024 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3025 bfd *dynobj;
3026 struct elf_backend_data *bed;
3027
3028 /* Ignore indirect symbols. These are added by the versioning code. */
3029 if (h->root.type == bfd_link_hash_indirect)
3030 return true;
3031
3032 /* Fix the symbol flags. */
3033 if (! elf_fix_symbol_flags (h, eif))
3034 return false;
3035
3036 /* If this symbol does not require a PLT entry, and it is not
3037 defined by a dynamic object, or is not referenced by a regular
3038 object, ignore it. We do have to handle a weak defined symbol,
3039 even if no regular object refers to it, if we decided to add it
3040 to the dynamic symbol table. FIXME: Do we normally need to worry
3041 about symbols which are defined by one dynamic object and
3042 referenced by another one? */
3043 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3044 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3045 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3046 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3047 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3048 {
3049 h->plt.offset = (bfd_vma) -1;
3050 return true;
3051 }
3052
3053 /* If we've already adjusted this symbol, don't do it again. This
3054 can happen via a recursive call. */
3055 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3056 return true;
3057
3058 /* Don't look at this symbol again. Note that we must set this
3059 after checking the above conditions, because we may look at a
3060 symbol once, decide not to do anything, and then get called
3061 recursively later after REF_REGULAR is set below. */
3062 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3063
3064 /* If this is a weak definition, and we know a real definition, and
3065 the real symbol is not itself defined by a regular object file,
3066 then get a good value for the real definition. We handle the
3067 real symbol first, for the convenience of the backend routine.
3068
3069 Note that there is a confusing case here. If the real definition
3070 is defined by a regular object file, we don't get the real symbol
3071 from the dynamic object, but we do get the weak symbol. If the
3072 processor backend uses a COPY reloc, then if some routine in the
3073 dynamic object changes the real symbol, we will not see that
3074 change in the corresponding weak symbol. This is the way other
3075 ELF linkers work as well, and seems to be a result of the shared
3076 library model.
3077
3078 I will clarify this issue. Most SVR4 shared libraries define the
3079 variable _timezone and define timezone as a weak synonym. The
3080 tzset call changes _timezone. If you write
3081 extern int timezone;
3082 int _timezone = 5;
3083 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3084 you might expect that, since timezone is a synonym for _timezone,
3085 the same number will print both times. However, if the processor
3086 backend uses a COPY reloc, then actually timezone will be copied
3087 into your process image, and, since you define _timezone
3088 yourself, _timezone will not. Thus timezone and _timezone will
3089 wind up at different memory locations. The tzset call will set
3090 _timezone, leaving timezone unchanged. */
3091
3092 if (h->weakdef != NULL)
3093 {
3094 struct elf_link_hash_entry *weakdef;
3095
3096 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3097 || h->root.type == bfd_link_hash_defweak);
3098 weakdef = h->weakdef;
3099 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3100 || weakdef->root.type == bfd_link_hash_defweak);
3101 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3102 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3103 {
3104 /* This symbol is defined by a regular object file, so we
3105 will not do anything special. Clear weakdef for the
3106 convenience of the processor backend. */
3107 h->weakdef = NULL;
3108 }
3109 else
3110 {
3111 /* There is an implicit reference by a regular object file
3112 via the weak symbol. */
3113 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3114 if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
3115 return false;
3116 }
3117 }
3118
3119 /* If a symbol has no type and no size and does not require a PLT
3120 entry, then we are probably about to do the wrong thing here: we
3121 are probably going to create a COPY reloc for an empty object.
3122 This case can arise when a shared object is built with assembly
3123 code, and the assembly code fails to set the symbol type. */
3124 if (h->size == 0
3125 && h->type == STT_NOTYPE
3126 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3127 (*_bfd_error_handler)
3128 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3129 h->root.root.string);
3130
3131 dynobj = elf_hash_table (eif->info)->dynobj;
3132 bed = get_elf_backend_data (dynobj);
3133 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3134 {
3135 eif->failed = true;
3136 return false;
3137 }
3138
3139 return true;
3140 }
3141 \f
3142 /* This routine is used to export all defined symbols into the dynamic
3143 symbol table. It is called via elf_link_hash_traverse. */
3144
3145 static boolean
3146 elf_export_symbol (h, data)
3147 struct elf_link_hash_entry *h;
3148 PTR data;
3149 {
3150 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3151
3152 /* Ignore indirect symbols. These are added by the versioning code. */
3153 if (h->root.type == bfd_link_hash_indirect)
3154 return true;
3155
3156 if (h->dynindx == -1
3157 && (h->elf_link_hash_flags
3158 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3159 {
3160 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3161 {
3162 eif->failed = true;
3163 return false;
3164 }
3165 }
3166
3167 return true;
3168 }
3169 \f
3170 /* Look through the symbols which are defined in other shared
3171 libraries and referenced here. Update the list of version
3172 dependencies. This will be put into the .gnu.version_r section.
3173 This function is called via elf_link_hash_traverse. */
3174
3175 static boolean
3176 elf_link_find_version_dependencies (h, data)
3177 struct elf_link_hash_entry *h;
3178 PTR data;
3179 {
3180 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3181 Elf_Internal_Verneed *t;
3182 Elf_Internal_Vernaux *a;
3183
3184 /* We only care about symbols defined in shared objects with version
3185 information. */
3186 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3187 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3188 || h->dynindx == -1
3189 || h->verinfo.verdef == NULL)
3190 return true;
3191
3192 /* See if we already know about this version. */
3193 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3194 {
3195 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3196 continue;
3197
3198 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3199 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3200 return true;
3201
3202 break;
3203 }
3204
3205 /* This is a new version. Add it to tree we are building. */
3206
3207 if (t == NULL)
3208 {
3209 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3210 if (t == NULL)
3211 {
3212 rinfo->failed = true;
3213 return false;
3214 }
3215
3216 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3217 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3218 elf_tdata (rinfo->output_bfd)->verref = t;
3219 }
3220
3221 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3222
3223 /* Note that we are copying a string pointer here, and testing it
3224 above. If bfd_elf_string_from_elf_section is ever changed to
3225 discard the string data when low in memory, this will have to be
3226 fixed. */
3227 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3228
3229 a->vna_flags = h->verinfo.verdef->vd_flags;
3230 a->vna_nextptr = t->vn_auxptr;
3231
3232 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3233 ++rinfo->vers;
3234
3235 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3236
3237 t->vn_auxptr = a;
3238
3239 return true;
3240 }
3241
3242 /* Figure out appropriate versions for all the symbols. We may not
3243 have the version number script until we have read all of the input
3244 files, so until that point we don't know which symbols should be
3245 local. This function is called via elf_link_hash_traverse. */
3246
3247 static boolean
3248 elf_link_assign_sym_version (h, data)
3249 struct elf_link_hash_entry *h;
3250 PTR data;
3251 {
3252 struct elf_assign_sym_version_info *sinfo =
3253 (struct elf_assign_sym_version_info *) data;
3254 struct bfd_link_info *info = sinfo->info;
3255 struct elf_info_failed eif;
3256 char *p;
3257
3258 /* Fix the symbol flags. */
3259 eif.failed = false;
3260 eif.info = info;
3261 if (! elf_fix_symbol_flags (h, &eif))
3262 {
3263 if (eif.failed)
3264 sinfo->failed = true;
3265 return false;
3266 }
3267
3268 /* We only need version numbers for symbols defined in regular
3269 objects. */
3270 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3271 return true;
3272
3273 p = strchr (h->root.root.string, ELF_VER_CHR);
3274 if (p != NULL && h->verinfo.vertree == NULL)
3275 {
3276 struct bfd_elf_version_tree *t;
3277 boolean hidden;
3278
3279 hidden = true;
3280
3281 /* There are two consecutive ELF_VER_CHR characters if this is
3282 not a hidden symbol. */
3283 ++p;
3284 if (*p == ELF_VER_CHR)
3285 {
3286 hidden = false;
3287 ++p;
3288 }
3289
3290 /* If there is no version string, we can just return out. */
3291 if (*p == '\0')
3292 {
3293 if (hidden)
3294 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3295 return true;
3296 }
3297
3298 /* Look for the version. If we find it, it is no longer weak. */
3299 for (t = sinfo->verdefs; t != NULL; t = t->next)
3300 {
3301 if (strcmp (t->name, p) == 0)
3302 {
3303 int len;
3304 char *alc;
3305 struct bfd_elf_version_expr *d;
3306
3307 len = p - h->root.root.string;
3308 alc = bfd_alloc (sinfo->output_bfd, len);
3309 if (alc == NULL)
3310 return false;
3311 strncpy (alc, h->root.root.string, len - 1);
3312 alc[len - 1] = '\0';
3313 if (alc[len - 2] == ELF_VER_CHR)
3314 alc[len - 2] = '\0';
3315
3316 h->verinfo.vertree = t;
3317 t->used = true;
3318 d = NULL;
3319
3320 if (t->globals != NULL)
3321 {
3322 for (d = t->globals; d != NULL; d = d->next)
3323 {
3324 if ((d->match[0] == '*' && d->match[1] == '\0')
3325 || fnmatch (d->match, alc, 0) == 0)
3326 break;
3327 }
3328 }
3329
3330 /* See if there is anything to force this symbol to
3331 local scope. */
3332 if (d == NULL && t->locals != NULL)
3333 {
3334 for (d = t->locals; d != NULL; d = d->next)
3335 {
3336 if ((d->match[0] == '*' && d->match[1] == '\0')
3337 || fnmatch (d->match, alc, 0) == 0)
3338 {
3339 if (h->dynindx != -1
3340 && info->shared
3341 && ! sinfo->export_dynamic)
3342 {
3343 sinfo->removed_dynamic = true;
3344 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3345 h->elf_link_hash_flags &=~
3346 ELF_LINK_HASH_NEEDS_PLT;
3347 h->dynindx = -1;
3348 h->plt.offset = (bfd_vma) -1;
3349 /* FIXME: The name of the symbol has
3350 already been recorded in the dynamic
3351 string table section. */
3352 }
3353
3354 break;
3355 }
3356 }
3357 }
3358
3359 bfd_release (sinfo->output_bfd, alc);
3360 break;
3361 }
3362 }
3363
3364 /* If we are building an application, we need to create a
3365 version node for this version. */
3366 if (t == NULL && ! info->shared)
3367 {
3368 struct bfd_elf_version_tree **pp;
3369 int version_index;
3370
3371 /* If we aren't going to export this symbol, we don't need
3372 to worry about it. */
3373 if (h->dynindx == -1)
3374 return true;
3375
3376 t = ((struct bfd_elf_version_tree *)
3377 bfd_alloc (sinfo->output_bfd, sizeof *t));
3378 if (t == NULL)
3379 {
3380 sinfo->failed = true;
3381 return false;
3382 }
3383
3384 t->next = NULL;
3385 t->name = p;
3386 t->globals = NULL;
3387 t->locals = NULL;
3388 t->deps = NULL;
3389 t->name_indx = (unsigned int) -1;
3390 t->used = true;
3391
3392 version_index = 1;
3393 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3394 ++version_index;
3395 t->vernum = version_index;
3396
3397 *pp = t;
3398
3399 h->verinfo.vertree = t;
3400 }
3401 else if (t == NULL)
3402 {
3403 /* We could not find the version for a symbol when
3404 generating a shared archive. Return an error. */
3405 (*_bfd_error_handler)
3406 (_("%s: undefined versioned symbol name %s"),
3407 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3408 bfd_set_error (bfd_error_bad_value);
3409 sinfo->failed = true;
3410 return false;
3411 }
3412
3413 if (hidden)
3414 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3415 }
3416
3417 /* If we don't have a version for this symbol, see if we can find
3418 something. */
3419 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3420 {
3421 struct bfd_elf_version_tree *t;
3422 struct bfd_elf_version_tree *deflt;
3423 struct bfd_elf_version_expr *d;
3424
3425 /* See if can find what version this symbol is in. If the
3426 symbol is supposed to be local, then don't actually register
3427 it. */
3428 deflt = NULL;
3429 for (t = sinfo->verdefs; t != NULL; t = t->next)
3430 {
3431 if (t->globals != NULL)
3432 {
3433 for (d = t->globals; d != NULL; d = d->next)
3434 {
3435 if (fnmatch (d->match, h->root.root.string, 0) == 0)
3436 {
3437 h->verinfo.vertree = t;
3438 break;
3439 }
3440 }
3441
3442 if (d != NULL)
3443 break;
3444 }
3445
3446 if (t->locals != NULL)
3447 {
3448 for (d = t->locals; d != NULL; d = d->next)
3449 {
3450 if (d->match[0] == '*' && d->match[1] == '\0')
3451 deflt = t;
3452 else if (fnmatch (d->match, h->root.root.string, 0) == 0)
3453 {
3454 h->verinfo.vertree = t;
3455 if (h->dynindx != -1
3456 && info->shared
3457 && ! sinfo->export_dynamic)
3458 {
3459 sinfo->removed_dynamic = true;
3460 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3461 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3462 h->dynindx = -1;
3463 h->plt.offset = (bfd_vma) -1;
3464 /* FIXME: The name of the symbol has already
3465 been recorded in the dynamic string table
3466 section. */
3467 }
3468 break;
3469 }
3470 }
3471
3472 if (d != NULL)
3473 break;
3474 }
3475 }
3476
3477 if (deflt != NULL && h->verinfo.vertree == NULL)
3478 {
3479 h->verinfo.vertree = deflt;
3480 if (h->dynindx != -1
3481 && info->shared
3482 && ! sinfo->export_dynamic)
3483 {
3484 sinfo->removed_dynamic = true;
3485 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3486 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3487 h->dynindx = -1;
3488 h->plt.offset = (bfd_vma) -1;
3489 /* FIXME: The name of the symbol has already been
3490 recorded in the dynamic string table section. */
3491 }
3492 }
3493 }
3494
3495 return true;
3496 }
3497
3498 /* This function is used to renumber the dynamic symbols, if some of
3499 them are removed because they are marked as local. This is called
3500 via elf_link_hash_traverse. */
3501
3502 static boolean
3503 elf_link_renumber_dynsyms (h, data)
3504 struct elf_link_hash_entry *h;
3505 PTR data;
3506 {
3507 struct bfd_link_info *info = (struct bfd_link_info *) data;
3508
3509 if (h->dynindx != -1)
3510 {
3511 h->dynindx = elf_hash_table (info)->dynsymcount;
3512 ++elf_hash_table (info)->dynsymcount;
3513 }
3514
3515 return true;
3516 }
3517 \f
3518 /* Final phase of ELF linker. */
3519
3520 /* A structure we use to avoid passing large numbers of arguments. */
3521
3522 struct elf_final_link_info
3523 {
3524 /* General link information. */
3525 struct bfd_link_info *info;
3526 /* Output BFD. */
3527 bfd *output_bfd;
3528 /* Symbol string table. */
3529 struct bfd_strtab_hash *symstrtab;
3530 /* .dynsym section. */
3531 asection *dynsym_sec;
3532 /* .hash section. */
3533 asection *hash_sec;
3534 /* symbol version section (.gnu.version). */
3535 asection *symver_sec;
3536 /* Buffer large enough to hold contents of any section. */
3537 bfd_byte *contents;
3538 /* Buffer large enough to hold external relocs of any section. */
3539 PTR external_relocs;
3540 /* Buffer large enough to hold internal relocs of any section. */
3541 Elf_Internal_Rela *internal_relocs;
3542 /* Buffer large enough to hold external local symbols of any input
3543 BFD. */
3544 Elf_External_Sym *external_syms;
3545 /* Buffer large enough to hold internal local symbols of any input
3546 BFD. */
3547 Elf_Internal_Sym *internal_syms;
3548 /* Array large enough to hold a symbol index for each local symbol
3549 of any input BFD. */
3550 long *indices;
3551 /* Array large enough to hold a section pointer for each local
3552 symbol of any input BFD. */
3553 asection **sections;
3554 /* Buffer to hold swapped out symbols. */
3555 Elf_External_Sym *symbuf;
3556 /* Number of swapped out symbols in buffer. */
3557 size_t symbuf_count;
3558 /* Number of symbols which fit in symbuf. */
3559 size_t symbuf_size;
3560 };
3561
3562 static boolean elf_link_output_sym
3563 PARAMS ((struct elf_final_link_info *, const char *,
3564 Elf_Internal_Sym *, asection *));
3565 static boolean elf_link_flush_output_syms
3566 PARAMS ((struct elf_final_link_info *));
3567 static boolean elf_link_output_extsym
3568 PARAMS ((struct elf_link_hash_entry *, PTR));
3569 static boolean elf_link_input_bfd
3570 PARAMS ((struct elf_final_link_info *, bfd *));
3571 static boolean elf_reloc_link_order
3572 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3573 struct bfd_link_order *));
3574
3575 /* This struct is used to pass information to elf_link_output_extsym. */
3576
3577 struct elf_outext_info
3578 {
3579 boolean failed;
3580 boolean localsyms;
3581 struct elf_final_link_info *finfo;
3582 };
3583
3584 /* Do the final step of an ELF link. */
3585
3586 boolean
3587 elf_bfd_final_link (abfd, info)
3588 bfd *abfd;
3589 struct bfd_link_info *info;
3590 {
3591 boolean dynamic;
3592 bfd *dynobj;
3593 struct elf_final_link_info finfo;
3594 register asection *o;
3595 register struct bfd_link_order *p;
3596 register bfd *sub;
3597 size_t max_contents_size;
3598 size_t max_external_reloc_size;
3599 size_t max_internal_reloc_count;
3600 size_t max_sym_count;
3601 file_ptr off;
3602 Elf_Internal_Sym elfsym;
3603 unsigned int i;
3604 Elf_Internal_Shdr *symtab_hdr;
3605 Elf_Internal_Shdr *symstrtab_hdr;
3606 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3607 struct elf_outext_info eoinfo;
3608
3609 if (info->shared)
3610 abfd->flags |= DYNAMIC;
3611
3612 dynamic = elf_hash_table (info)->dynamic_sections_created;
3613 dynobj = elf_hash_table (info)->dynobj;
3614
3615 finfo.info = info;
3616 finfo.output_bfd = abfd;
3617 finfo.symstrtab = elf_stringtab_init ();
3618 if (finfo.symstrtab == NULL)
3619 return false;
3620
3621 if (! dynamic)
3622 {
3623 finfo.dynsym_sec = NULL;
3624 finfo.hash_sec = NULL;
3625 finfo.symver_sec = NULL;
3626 }
3627 else
3628 {
3629 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
3630 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
3631 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
3632 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
3633 /* Note that it is OK if symver_sec is NULL. */
3634 }
3635
3636 finfo.contents = NULL;
3637 finfo.external_relocs = NULL;
3638 finfo.internal_relocs = NULL;
3639 finfo.external_syms = NULL;
3640 finfo.internal_syms = NULL;
3641 finfo.indices = NULL;
3642 finfo.sections = NULL;
3643 finfo.symbuf = NULL;
3644 finfo.symbuf_count = 0;
3645
3646 /* Count up the number of relocations we will output for each output
3647 section, so that we know the sizes of the reloc sections. We
3648 also figure out some maximum sizes. */
3649 max_contents_size = 0;
3650 max_external_reloc_size = 0;
3651 max_internal_reloc_count = 0;
3652 max_sym_count = 0;
3653 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
3654 {
3655 o->reloc_count = 0;
3656
3657 for (p = o->link_order_head; p != NULL; p = p->next)
3658 {
3659 if (p->type == bfd_section_reloc_link_order
3660 || p->type == bfd_symbol_reloc_link_order)
3661 ++o->reloc_count;
3662 else if (p->type == bfd_indirect_link_order)
3663 {
3664 asection *sec;
3665
3666 sec = p->u.indirect.section;
3667
3668 /* Mark all sections which are to be included in the
3669 link. This will normally be every section. We need
3670 to do this so that we can identify any sections which
3671 the linker has decided to not include. */
3672 sec->linker_mark = true;
3673
3674 if (info->relocateable)
3675 o->reloc_count += sec->reloc_count;
3676
3677 if (sec->_raw_size > max_contents_size)
3678 max_contents_size = sec->_raw_size;
3679 if (sec->_cooked_size > max_contents_size)
3680 max_contents_size = sec->_cooked_size;
3681
3682 /* We are interested in just local symbols, not all
3683 symbols. */
3684 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
3685 && (sec->owner->flags & DYNAMIC) == 0)
3686 {
3687 size_t sym_count;
3688
3689 if (elf_bad_symtab (sec->owner))
3690 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
3691 / sizeof (Elf_External_Sym));
3692 else
3693 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
3694
3695 if (sym_count > max_sym_count)
3696 max_sym_count = sym_count;
3697
3698 if ((sec->flags & SEC_RELOC) != 0)
3699 {
3700 size_t ext_size;
3701
3702 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
3703 if (ext_size > max_external_reloc_size)
3704 max_external_reloc_size = ext_size;
3705 if (sec->reloc_count > max_internal_reloc_count)
3706 max_internal_reloc_count = sec->reloc_count;
3707 }
3708 }
3709 }
3710 }
3711
3712 if (o->reloc_count > 0)
3713 o->flags |= SEC_RELOC;
3714 else
3715 {
3716 /* Explicitly clear the SEC_RELOC flag. The linker tends to
3717 set it (this is probably a bug) and if it is set
3718 assign_section_numbers will create a reloc section. */
3719 o->flags &=~ SEC_RELOC;
3720 }
3721
3722 /* If the SEC_ALLOC flag is not set, force the section VMA to
3723 zero. This is done in elf_fake_sections as well, but forcing
3724 the VMA to 0 here will ensure that relocs against these
3725 sections are handled correctly. */
3726 if ((o->flags & SEC_ALLOC) == 0
3727 && ! o->user_set_vma)
3728 o->vma = 0;
3729 }
3730
3731 /* Figure out the file positions for everything but the symbol table
3732 and the relocs. We set symcount to force assign_section_numbers
3733 to create a symbol table. */
3734 abfd->symcount = info->strip == strip_all ? 0 : 1;
3735 BFD_ASSERT (! abfd->output_has_begun);
3736 if (! _bfd_elf_compute_section_file_positions (abfd, info))
3737 goto error_return;
3738
3739 /* That created the reloc sections. Set their sizes, and assign
3740 them file positions, and allocate some buffers. */
3741 for (o = abfd->sections; o != NULL; o = o->next)
3742 {
3743 if ((o->flags & SEC_RELOC) != 0)
3744 {
3745 Elf_Internal_Shdr *rel_hdr;
3746 register struct elf_link_hash_entry **p, **pend;
3747
3748 rel_hdr = &elf_section_data (o)->rel_hdr;
3749
3750 rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count;
3751
3752 /* The contents field must last into write_object_contents,
3753 so we allocate it with bfd_alloc rather than malloc. */
3754 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3755 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3756 goto error_return;
3757
3758 p = ((struct elf_link_hash_entry **)
3759 bfd_malloc (o->reloc_count
3760 * sizeof (struct elf_link_hash_entry *)));
3761 if (p == NULL && o->reloc_count != 0)
3762 goto error_return;
3763 elf_section_data (o)->rel_hashes = p;
3764 pend = p + o->reloc_count;
3765 for (; p < pend; p++)
3766 *p = NULL;
3767
3768 /* Use the reloc_count field as an index when outputting the
3769 relocs. */
3770 o->reloc_count = 0;
3771 }
3772 }
3773
3774 _bfd_elf_assign_file_positions_for_relocs (abfd);
3775
3776 /* We have now assigned file positions for all the sections except
3777 .symtab and .strtab. We start the .symtab section at the current
3778 file position, and write directly to it. We build the .strtab
3779 section in memory. */
3780 abfd->symcount = 0;
3781 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3782 /* sh_name is set in prep_headers. */
3783 symtab_hdr->sh_type = SHT_SYMTAB;
3784 symtab_hdr->sh_flags = 0;
3785 symtab_hdr->sh_addr = 0;
3786 symtab_hdr->sh_size = 0;
3787 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
3788 /* sh_link is set in assign_section_numbers. */
3789 /* sh_info is set below. */
3790 /* sh_offset is set just below. */
3791 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
3792
3793 off = elf_tdata (abfd)->next_file_pos;
3794 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
3795
3796 /* Note that at this point elf_tdata (abfd)->next_file_pos is
3797 incorrect. We do not yet know the size of the .symtab section.
3798 We correct next_file_pos below, after we do know the size. */
3799
3800 /* Allocate a buffer to hold swapped out symbols. This is to avoid
3801 continuously seeking to the right position in the file. */
3802 if (! info->keep_memory || max_sym_count < 20)
3803 finfo.symbuf_size = 20;
3804 else
3805 finfo.symbuf_size = max_sym_count;
3806 finfo.symbuf = ((Elf_External_Sym *)
3807 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
3808 if (finfo.symbuf == NULL)
3809 goto error_return;
3810
3811 /* Start writing out the symbol table. The first symbol is always a
3812 dummy symbol. */
3813 if (info->strip != strip_all || info->relocateable)
3814 {
3815 elfsym.st_value = 0;
3816 elfsym.st_size = 0;
3817 elfsym.st_info = 0;
3818 elfsym.st_other = 0;
3819 elfsym.st_shndx = SHN_UNDEF;
3820 if (! elf_link_output_sym (&finfo, (const char *) NULL,
3821 &elfsym, bfd_und_section_ptr))
3822 goto error_return;
3823 }
3824
3825 #if 0
3826 /* Some standard ELF linkers do this, but we don't because it causes
3827 bootstrap comparison failures. */
3828 /* Output a file symbol for the output file as the second symbol.
3829 We output this even if we are discarding local symbols, although
3830 I'm not sure if this is correct. */
3831 elfsym.st_value = 0;
3832 elfsym.st_size = 0;
3833 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
3834 elfsym.st_other = 0;
3835 elfsym.st_shndx = SHN_ABS;
3836 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
3837 &elfsym, bfd_abs_section_ptr))
3838 goto error_return;
3839 #endif
3840
3841 /* Output a symbol for each section. We output these even if we are
3842 discarding local symbols, since they are used for relocs. These
3843 symbols have no names. We store the index of each one in the
3844 index field of the section, so that we can find it again when
3845 outputting relocs. */
3846 if (info->strip != strip_all || info->relocateable)
3847 {
3848 elfsym.st_size = 0;
3849 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
3850 elfsym.st_other = 0;
3851 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
3852 {
3853 o = section_from_elf_index (abfd, i);
3854 if (o != NULL)
3855 o->target_index = abfd->symcount;
3856 elfsym.st_shndx = i;
3857 if (info->relocateable || o == NULL)
3858 elfsym.st_value = 0;
3859 else
3860 elfsym.st_value = o->vma;
3861 if (! elf_link_output_sym (&finfo, (const char *) NULL,
3862 &elfsym, o))
3863 goto error_return;
3864 }
3865 }
3866
3867 /* Allocate some memory to hold information read in from the input
3868 files. */
3869 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
3870 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
3871 finfo.internal_relocs = ((Elf_Internal_Rela *)
3872 bfd_malloc (max_internal_reloc_count
3873 * sizeof (Elf_Internal_Rela)));
3874 finfo.external_syms = ((Elf_External_Sym *)
3875 bfd_malloc (max_sym_count
3876 * sizeof (Elf_External_Sym)));
3877 finfo.internal_syms = ((Elf_Internal_Sym *)
3878 bfd_malloc (max_sym_count
3879 * sizeof (Elf_Internal_Sym)));
3880 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
3881 finfo.sections = ((asection **)
3882 bfd_malloc (max_sym_count * sizeof (asection *)));
3883 if ((finfo.contents == NULL && max_contents_size != 0)
3884 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
3885 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
3886 || (finfo.external_syms == NULL && max_sym_count != 0)
3887 || (finfo.internal_syms == NULL && max_sym_count != 0)
3888 || (finfo.indices == NULL && max_sym_count != 0)
3889 || (finfo.sections == NULL && max_sym_count != 0))
3890 goto error_return;
3891
3892 /* Since ELF permits relocations to be against local symbols, we
3893 must have the local symbols available when we do the relocations.
3894 Since we would rather only read the local symbols once, and we
3895 would rather not keep them in memory, we handle all the
3896 relocations for a single input file at the same time.
3897
3898 Unfortunately, there is no way to know the total number of local
3899 symbols until we have seen all of them, and the local symbol
3900 indices precede the global symbol indices. This means that when
3901 we are generating relocateable output, and we see a reloc against
3902 a global symbol, we can not know the symbol index until we have
3903 finished examining all the local symbols to see which ones we are
3904 going to output. To deal with this, we keep the relocations in
3905 memory, and don't output them until the end of the link. This is
3906 an unfortunate waste of memory, but I don't see a good way around
3907 it. Fortunately, it only happens when performing a relocateable
3908 link, which is not the common case. FIXME: If keep_memory is set
3909 we could write the relocs out and then read them again; I don't
3910 know how bad the memory loss will be. */
3911
3912 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
3913 sub->output_has_begun = false;
3914 for (o = abfd->sections; o != NULL; o = o->next)
3915 {
3916 for (p = o->link_order_head; p != NULL; p = p->next)
3917 {
3918 if (p->type == bfd_indirect_link_order
3919 && (bfd_get_flavour (p->u.indirect.section->owner)
3920 == bfd_target_elf_flavour))
3921 {
3922 sub = p->u.indirect.section->owner;
3923 if (! sub->output_has_begun)
3924 {
3925 if (! elf_link_input_bfd (&finfo, sub))
3926 goto error_return;
3927 sub->output_has_begun = true;
3928 }
3929 }
3930 else if (p->type == bfd_section_reloc_link_order
3931 || p->type == bfd_symbol_reloc_link_order)
3932 {
3933 if (! elf_reloc_link_order (abfd, info, o, p))
3934 goto error_return;
3935 }
3936 else
3937 {
3938 if (! _bfd_default_link_order (abfd, info, o, p))
3939 goto error_return;
3940 }
3941 }
3942 }
3943
3944 /* That wrote out all the local symbols. Finish up the symbol table
3945 with the global symbols. */
3946
3947 if (info->strip != strip_all && info->shared)
3948 {
3949 /* Output any global symbols that got converted to local in a
3950 version script. We do this in a separate step since ELF
3951 requires all local symbols to appear prior to any global
3952 symbols. FIXME: We should only do this if some global
3953 symbols were, in fact, converted to become local. FIXME:
3954 Will this work correctly with the Irix 5 linker? */
3955 eoinfo.failed = false;
3956 eoinfo.finfo = &finfo;
3957 eoinfo.localsyms = true;
3958 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
3959 (PTR) &eoinfo);
3960 if (eoinfo.failed)
3961 return false;
3962 }
3963
3964 /* The sh_info field records the index of the first non local
3965 symbol. */
3966 symtab_hdr->sh_info = abfd->symcount;
3967 if (dynamic)
3968 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1;
3969
3970 /* We get the global symbols from the hash table. */
3971 eoinfo.failed = false;
3972 eoinfo.localsyms = false;
3973 eoinfo.finfo = &finfo;
3974 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
3975 (PTR) &eoinfo);
3976 if (eoinfo.failed)
3977 return false;
3978
3979 /* Flush all symbols to the file. */
3980 if (! elf_link_flush_output_syms (&finfo))
3981 return false;
3982
3983 /* Now we know the size of the symtab section. */
3984 off += symtab_hdr->sh_size;
3985
3986 /* Finish up and write out the symbol string table (.strtab)
3987 section. */
3988 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
3989 /* sh_name was set in prep_headers. */
3990 symstrtab_hdr->sh_type = SHT_STRTAB;
3991 symstrtab_hdr->sh_flags = 0;
3992 symstrtab_hdr->sh_addr = 0;
3993 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
3994 symstrtab_hdr->sh_entsize = 0;
3995 symstrtab_hdr->sh_link = 0;
3996 symstrtab_hdr->sh_info = 0;
3997 /* sh_offset is set just below. */
3998 symstrtab_hdr->sh_addralign = 1;
3999
4000 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4001 elf_tdata (abfd)->next_file_pos = off;
4002
4003 if (abfd->symcount > 0)
4004 {
4005 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4006 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4007 return false;
4008 }
4009
4010 /* Adjust the relocs to have the correct symbol indices. */
4011 for (o = abfd->sections; o != NULL; o = o->next)
4012 {
4013 struct elf_link_hash_entry **rel_hash;
4014 Elf_Internal_Shdr *rel_hdr;
4015
4016 if ((o->flags & SEC_RELOC) == 0)
4017 continue;
4018
4019 rel_hash = elf_section_data (o)->rel_hashes;
4020 rel_hdr = &elf_section_data (o)->rel_hdr;
4021 for (i = 0; i < o->reloc_count; i++, rel_hash++)
4022 {
4023 if (*rel_hash == NULL)
4024 continue;
4025
4026 BFD_ASSERT ((*rel_hash)->indx >= 0);
4027
4028 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4029 {
4030 Elf_External_Rel *erel;
4031 Elf_Internal_Rel irel;
4032
4033 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4034 elf_swap_reloc_in (abfd, erel, &irel);
4035 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
4036 ELF_R_TYPE (irel.r_info));
4037 elf_swap_reloc_out (abfd, &irel, erel);
4038 }
4039 else
4040 {
4041 Elf_External_Rela *erela;
4042 Elf_Internal_Rela irela;
4043
4044 BFD_ASSERT (rel_hdr->sh_entsize
4045 == sizeof (Elf_External_Rela));
4046
4047 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4048 elf_swap_reloca_in (abfd, erela, &irela);
4049 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4050 ELF_R_TYPE (irela.r_info));
4051 elf_swap_reloca_out (abfd, &irela, erela);
4052 }
4053 }
4054
4055 /* Set the reloc_count field to 0 to prevent write_relocs from
4056 trying to swap the relocs out itself. */
4057 o->reloc_count = 0;
4058 }
4059
4060 /* If we are linking against a dynamic object, or generating a
4061 shared library, finish up the dynamic linking information. */
4062 if (dynamic)
4063 {
4064 Elf_External_Dyn *dyncon, *dynconend;
4065
4066 /* Fix up .dynamic entries. */
4067 o = bfd_get_section_by_name (dynobj, ".dynamic");
4068 BFD_ASSERT (o != NULL);
4069
4070 dyncon = (Elf_External_Dyn *) o->contents;
4071 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4072 for (; dyncon < dynconend; dyncon++)
4073 {
4074 Elf_Internal_Dyn dyn;
4075 const char *name;
4076 unsigned int type;
4077
4078 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4079
4080 switch (dyn.d_tag)
4081 {
4082 default:
4083 break;
4084
4085 /* SVR4 linkers seem to set DT_INIT and DT_FINI based on
4086 magic _init and _fini symbols. This is pretty ugly,
4087 but we are compatible. */
4088 case DT_INIT:
4089 name = "_init";
4090 goto get_sym;
4091 case DT_FINI:
4092 name = "_fini";
4093 get_sym:
4094 {
4095 struct elf_link_hash_entry *h;
4096
4097 h = elf_link_hash_lookup (elf_hash_table (info), name,
4098 false, false, true);
4099 if (h != NULL
4100 && (h->root.type == bfd_link_hash_defined
4101 || h->root.type == bfd_link_hash_defweak))
4102 {
4103 dyn.d_un.d_val = h->root.u.def.value;
4104 o = h->root.u.def.section;
4105 if (o->output_section != NULL)
4106 dyn.d_un.d_val += (o->output_section->vma
4107 + o->output_offset);
4108 else
4109 {
4110 /* The symbol is imported from another shared
4111 library and does not apply to this one. */
4112 dyn.d_un.d_val = 0;
4113 }
4114
4115 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4116 }
4117 }
4118 break;
4119
4120 case DT_HASH:
4121 name = ".hash";
4122 goto get_vma;
4123 case DT_STRTAB:
4124 name = ".dynstr";
4125 goto get_vma;
4126 case DT_SYMTAB:
4127 name = ".dynsym";
4128 goto get_vma;
4129 case DT_VERDEF:
4130 name = ".gnu.version_d";
4131 goto get_vma;
4132 case DT_VERNEED:
4133 name = ".gnu.version_r";
4134 goto get_vma;
4135 case DT_VERSYM:
4136 name = ".gnu.version";
4137 get_vma:
4138 o = bfd_get_section_by_name (abfd, name);
4139 BFD_ASSERT (o != NULL);
4140 dyn.d_un.d_ptr = o->vma;
4141 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4142 break;
4143
4144 case DT_REL:
4145 case DT_RELA:
4146 case DT_RELSZ:
4147 case DT_RELASZ:
4148 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4149 type = SHT_REL;
4150 else
4151 type = SHT_RELA;
4152 dyn.d_un.d_val = 0;
4153 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4154 {
4155 Elf_Internal_Shdr *hdr;
4156
4157 hdr = elf_elfsections (abfd)[i];
4158 if (hdr->sh_type == type
4159 && (hdr->sh_flags & SHF_ALLOC) != 0)
4160 {
4161 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4162 dyn.d_un.d_val += hdr->sh_size;
4163 else
4164 {
4165 if (dyn.d_un.d_val == 0
4166 || hdr->sh_addr < dyn.d_un.d_val)
4167 dyn.d_un.d_val = hdr->sh_addr;
4168 }
4169 }
4170 }
4171 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4172 break;
4173 }
4174 }
4175 }
4176
4177 /* If we have created any dynamic sections, then output them. */
4178 if (dynobj != NULL)
4179 {
4180 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4181 goto error_return;
4182
4183 for (o = dynobj->sections; o != NULL; o = o->next)
4184 {
4185 if ((o->flags & SEC_HAS_CONTENTS) == 0
4186 || o->_raw_size == 0)
4187 continue;
4188 if ((o->flags & SEC_LINKER_CREATED) == 0)
4189 {
4190 /* At this point, we are only interested in sections
4191 created by elf_link_create_dynamic_sections. */
4192 continue;
4193 }
4194 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4195 != SHT_STRTAB)
4196 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4197 {
4198 if (! bfd_set_section_contents (abfd, o->output_section,
4199 o->contents, o->output_offset,
4200 o->_raw_size))
4201 goto error_return;
4202 }
4203 else
4204 {
4205 file_ptr off;
4206
4207 /* The contents of the .dynstr section are actually in a
4208 stringtab. */
4209 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4210 if (bfd_seek (abfd, off, SEEK_SET) != 0
4211 || ! _bfd_stringtab_emit (abfd,
4212 elf_hash_table (info)->dynstr))
4213 goto error_return;
4214 }
4215 }
4216 }
4217
4218 /* If we have optimized stabs strings, output them. */
4219 if (elf_hash_table (info)->stab_info != NULL)
4220 {
4221 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4222 goto error_return;
4223 }
4224
4225 if (finfo.symstrtab != NULL)
4226 _bfd_stringtab_free (finfo.symstrtab);
4227 if (finfo.contents != NULL)
4228 free (finfo.contents);
4229 if (finfo.external_relocs != NULL)
4230 free (finfo.external_relocs);
4231 if (finfo.internal_relocs != NULL)
4232 free (finfo.internal_relocs);
4233 if (finfo.external_syms != NULL)
4234 free (finfo.external_syms);
4235 if (finfo.internal_syms != NULL)
4236 free (finfo.internal_syms);
4237 if (finfo.indices != NULL)
4238 free (finfo.indices);
4239 if (finfo.sections != NULL)
4240 free (finfo.sections);
4241 if (finfo.symbuf != NULL)
4242 free (finfo.symbuf);
4243 for (o = abfd->sections; o != NULL; o = o->next)
4244 {
4245 if ((o->flags & SEC_RELOC) != 0
4246 && elf_section_data (o)->rel_hashes != NULL)
4247 free (elf_section_data (o)->rel_hashes);
4248 }
4249
4250 elf_tdata (abfd)->linker = true;
4251
4252 return true;
4253
4254 error_return:
4255 if (finfo.symstrtab != NULL)
4256 _bfd_stringtab_free (finfo.symstrtab);
4257 if (finfo.contents != NULL)
4258 free (finfo.contents);
4259 if (finfo.external_relocs != NULL)
4260 free (finfo.external_relocs);
4261 if (finfo.internal_relocs != NULL)
4262 free (finfo.internal_relocs);
4263 if (finfo.external_syms != NULL)
4264 free (finfo.external_syms);
4265 if (finfo.internal_syms != NULL)
4266 free (finfo.internal_syms);
4267 if (finfo.indices != NULL)
4268 free (finfo.indices);
4269 if (finfo.sections != NULL)
4270 free (finfo.sections);
4271 if (finfo.symbuf != NULL)
4272 free (finfo.symbuf);
4273 for (o = abfd->sections; o != NULL; o = o->next)
4274 {
4275 if ((o->flags & SEC_RELOC) != 0
4276 && elf_section_data (o)->rel_hashes != NULL)
4277 free (elf_section_data (o)->rel_hashes);
4278 }
4279
4280 return false;
4281 }
4282
4283 /* Add a symbol to the output symbol table. */
4284
4285 static boolean
4286 elf_link_output_sym (finfo, name, elfsym, input_sec)
4287 struct elf_final_link_info *finfo;
4288 const char *name;
4289 Elf_Internal_Sym *elfsym;
4290 asection *input_sec;
4291 {
4292 boolean (*output_symbol_hook) PARAMS ((bfd *,
4293 struct bfd_link_info *info,
4294 const char *,
4295 Elf_Internal_Sym *,
4296 asection *));
4297
4298 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4299 elf_backend_link_output_symbol_hook;
4300 if (output_symbol_hook != NULL)
4301 {
4302 if (! ((*output_symbol_hook)
4303 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4304 return false;
4305 }
4306
4307 if (name == (const char *) NULL || *name == '\0')
4308 elfsym->st_name = 0;
4309 else
4310 {
4311 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4312 name, true,
4313 false);
4314 if (elfsym->st_name == (unsigned long) -1)
4315 return false;
4316 }
4317
4318 if (finfo->symbuf_count >= finfo->symbuf_size)
4319 {
4320 if (! elf_link_flush_output_syms (finfo))
4321 return false;
4322 }
4323
4324 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4325 (PTR) (finfo->symbuf + finfo->symbuf_count));
4326 ++finfo->symbuf_count;
4327
4328 ++finfo->output_bfd->symcount;
4329
4330 return true;
4331 }
4332
4333 /* Flush the output symbols to the file. */
4334
4335 static boolean
4336 elf_link_flush_output_syms (finfo)
4337 struct elf_final_link_info *finfo;
4338 {
4339 if (finfo->symbuf_count > 0)
4340 {
4341 Elf_Internal_Shdr *symtab;
4342
4343 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4344
4345 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4346 SEEK_SET) != 0
4347 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4348 sizeof (Elf_External_Sym), finfo->output_bfd)
4349 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4350 return false;
4351
4352 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4353
4354 finfo->symbuf_count = 0;
4355 }
4356
4357 return true;
4358 }
4359
4360 /* Add an external symbol to the symbol table. This is called from
4361 the hash table traversal routine. When generating a shared object,
4362 we go through the symbol table twice. The first time we output
4363 anything that might have been forced to local scope in a version
4364 script. The second time we output the symbols that are still
4365 global symbols. */
4366
4367 static boolean
4368 elf_link_output_extsym (h, data)
4369 struct elf_link_hash_entry *h;
4370 PTR data;
4371 {
4372 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4373 struct elf_final_link_info *finfo = eoinfo->finfo;
4374 boolean strip;
4375 Elf_Internal_Sym sym;
4376 asection *input_sec;
4377
4378 /* Decide whether to output this symbol in this pass. */
4379 if (eoinfo->localsyms)
4380 {
4381 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4382 return true;
4383 }
4384 else
4385 {
4386 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4387 return true;
4388 }
4389
4390 /* If we are not creating a shared library, and this symbol is
4391 referenced by a shared library but is not defined anywhere, then
4392 warn that it is undefined. If we do not do this, the runtime
4393 linker will complain that the symbol is undefined when the
4394 program is run. We don't have to worry about symbols that are
4395 referenced by regular files, because we will already have issued
4396 warnings for them. */
4397 if (! finfo->info->relocateable
4398 && ! finfo->info->shared
4399 && h->root.type == bfd_link_hash_undefined
4400 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4401 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4402 {
4403 if (! ((*finfo->info->callbacks->undefined_symbol)
4404 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4405 (asection *) NULL, 0)))
4406 {
4407 eoinfo->failed = true;
4408 return false;
4409 }
4410 }
4411
4412 /* We don't want to output symbols that have never been mentioned by
4413 a regular file, or that we have been told to strip. However, if
4414 h->indx is set to -2, the symbol is used by a reloc and we must
4415 output it. */
4416 if (h->indx == -2)
4417 strip = false;
4418 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4419 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4420 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4421 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4422 strip = true;
4423 else if (finfo->info->strip == strip_all
4424 || (finfo->info->strip == strip_some
4425 && bfd_hash_lookup (finfo->info->keep_hash,
4426 h->root.root.string,
4427 false, false) == NULL))
4428 strip = true;
4429 else
4430 strip = false;
4431
4432 /* If we're stripping it, and it's not a dynamic symbol, there's
4433 nothing else to do. */
4434 if (strip && h->dynindx == -1)
4435 return true;
4436
4437 sym.st_value = 0;
4438 sym.st_size = h->size;
4439 sym.st_other = h->other;
4440 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4441 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4442 else if (h->root.type == bfd_link_hash_undefweak
4443 || h->root.type == bfd_link_hash_defweak)
4444 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4445 else
4446 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4447
4448 switch (h->root.type)
4449 {
4450 default:
4451 case bfd_link_hash_new:
4452 abort ();
4453 return false;
4454
4455 case bfd_link_hash_undefined:
4456 input_sec = bfd_und_section_ptr;
4457 sym.st_shndx = SHN_UNDEF;
4458 break;
4459
4460 case bfd_link_hash_undefweak:
4461 input_sec = bfd_und_section_ptr;
4462 sym.st_shndx = SHN_UNDEF;
4463 break;
4464
4465 case bfd_link_hash_defined:
4466 case bfd_link_hash_defweak:
4467 {
4468 input_sec = h->root.u.def.section;
4469 if (input_sec->output_section != NULL)
4470 {
4471 sym.st_shndx =
4472 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4473 input_sec->output_section);
4474 if (sym.st_shndx == (unsigned short) -1)
4475 {
4476 (*_bfd_error_handler)
4477 (_("%s: could not find output section %s for input section %s"),
4478 bfd_get_filename (finfo->output_bfd),
4479 input_sec->output_section->name,
4480 input_sec->name);
4481 eoinfo->failed = true;
4482 return false;
4483 }
4484
4485 /* ELF symbols in relocateable files are section relative,
4486 but in nonrelocateable files they are virtual
4487 addresses. */
4488 sym.st_value = h->root.u.def.value + input_sec->output_offset;
4489 if (! finfo->info->relocateable)
4490 sym.st_value += input_sec->output_section->vma;
4491 }
4492 else
4493 {
4494 BFD_ASSERT (input_sec->owner == NULL
4495 || (input_sec->owner->flags & DYNAMIC) != 0);
4496 sym.st_shndx = SHN_UNDEF;
4497 input_sec = bfd_und_section_ptr;
4498 }
4499 }
4500 break;
4501
4502 case bfd_link_hash_common:
4503 input_sec = h->root.u.c.p->section;
4504 sym.st_shndx = SHN_COMMON;
4505 sym.st_value = 1 << h->root.u.c.p->alignment_power;
4506 break;
4507
4508 case bfd_link_hash_indirect:
4509 /* These symbols are created by symbol versioning. They point
4510 to the decorated version of the name. For example, if the
4511 symbol foo@@GNU_1.2 is the default, which should be used when
4512 foo is used with no version, then we add an indirect symbol
4513 foo which points to foo@@GNU_1.2. We ignore these symbols,
4514 since the indirected symbol is already in the hash table. If
4515 the indirect symbol is non-ELF, fall through and output it. */
4516 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
4517 return true;
4518
4519 /* Fall through. */
4520 case bfd_link_hash_warning:
4521 /* We can't represent these symbols in ELF, although a warning
4522 symbol may have come from a .gnu.warning.SYMBOL section. We
4523 just put the target symbol in the hash table. If the target
4524 symbol does not really exist, don't do anything. */
4525 if (h->root.u.i.link->type == bfd_link_hash_new)
4526 return true;
4527 return (elf_link_output_extsym
4528 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
4529 }
4530
4531 /* Give the processor backend a chance to tweak the symbol value,
4532 and also to finish up anything that needs to be done for this
4533 symbol. */
4534 if ((h->dynindx != -1
4535 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4536 && elf_hash_table (finfo->info)->dynamic_sections_created)
4537 {
4538 struct elf_backend_data *bed;
4539
4540 bed = get_elf_backend_data (finfo->output_bfd);
4541 if (! ((*bed->elf_backend_finish_dynamic_symbol)
4542 (finfo->output_bfd, finfo->info, h, &sym)))
4543 {
4544 eoinfo->failed = true;
4545 return false;
4546 }
4547 }
4548
4549 /* If this symbol should be put in the .dynsym section, then put it
4550 there now. We have already know the symbol index. We also fill
4551 in the entry in the .hash section. */
4552 if (h->dynindx != -1
4553 && elf_hash_table (finfo->info)->dynamic_sections_created)
4554 {
4555 size_t bucketcount;
4556 size_t bucket;
4557 bfd_byte *bucketpos;
4558 bfd_vma chain;
4559
4560 sym.st_name = h->dynstr_index;
4561
4562 elf_swap_symbol_out (finfo->output_bfd, &sym,
4563 (PTR) (((Elf_External_Sym *)
4564 finfo->dynsym_sec->contents)
4565 + h->dynindx));
4566
4567 bucketcount = elf_hash_table (finfo->info)->bucketcount;
4568 bucket = h->elf_hash_value % bucketcount;
4569 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
4570 + (bucket + 2) * (ARCH_SIZE / 8));
4571 chain = get_word (finfo->output_bfd, bucketpos);
4572 put_word (finfo->output_bfd, h->dynindx, bucketpos);
4573 put_word (finfo->output_bfd, chain,
4574 ((bfd_byte *) finfo->hash_sec->contents
4575 + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8)));
4576
4577 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
4578 {
4579 Elf_Internal_Versym iversym;
4580
4581 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4582 {
4583 if (h->verinfo.verdef == NULL)
4584 iversym.vs_vers = 0;
4585 else
4586 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
4587 }
4588 else
4589 {
4590 if (h->verinfo.vertree == NULL)
4591 iversym.vs_vers = 1;
4592 else
4593 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
4594 }
4595
4596 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
4597 iversym.vs_vers |= VERSYM_HIDDEN;
4598
4599 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
4600 (((Elf_External_Versym *)
4601 finfo->symver_sec->contents)
4602 + h->dynindx));
4603 }
4604 }
4605
4606 /* If we're stripping it, then it was just a dynamic symbol, and
4607 there's nothing else to do. */
4608 if (strip)
4609 return true;
4610
4611 h->indx = finfo->output_bfd->symcount;
4612
4613 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
4614 {
4615 eoinfo->failed = true;
4616 return false;
4617 }
4618
4619 return true;
4620 }
4621
4622 /* Link an input file into the linker output file. This function
4623 handles all the sections and relocations of the input file at once.
4624 This is so that we only have to read the local symbols once, and
4625 don't have to keep them in memory. */
4626
4627 static boolean
4628 elf_link_input_bfd (finfo, input_bfd)
4629 struct elf_final_link_info *finfo;
4630 bfd *input_bfd;
4631 {
4632 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
4633 bfd *, asection *, bfd_byte *,
4634 Elf_Internal_Rela *,
4635 Elf_Internal_Sym *, asection **));
4636 bfd *output_bfd;
4637 Elf_Internal_Shdr *symtab_hdr;
4638 size_t locsymcount;
4639 size_t extsymoff;
4640 Elf_External_Sym *external_syms;
4641 Elf_External_Sym *esym;
4642 Elf_External_Sym *esymend;
4643 Elf_Internal_Sym *isym;
4644 long *pindex;
4645 asection **ppsection;
4646 asection *o;
4647
4648 output_bfd = finfo->output_bfd;
4649 relocate_section =
4650 get_elf_backend_data (output_bfd)->elf_backend_relocate_section;
4651
4652 /* If this is a dynamic object, we don't want to do anything here:
4653 we don't want the local symbols, and we don't want the section
4654 contents. */
4655 if ((input_bfd->flags & DYNAMIC) != 0)
4656 return true;
4657
4658 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4659 if (elf_bad_symtab (input_bfd))
4660 {
4661 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
4662 extsymoff = 0;
4663 }
4664 else
4665 {
4666 locsymcount = symtab_hdr->sh_info;
4667 extsymoff = symtab_hdr->sh_info;
4668 }
4669
4670 /* Read the local symbols. */
4671 if (symtab_hdr->contents != NULL)
4672 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
4673 else if (locsymcount == 0)
4674 external_syms = NULL;
4675 else
4676 {
4677 external_syms = finfo->external_syms;
4678 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
4679 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
4680 locsymcount, input_bfd)
4681 != locsymcount * sizeof (Elf_External_Sym)))
4682 return false;
4683 }
4684
4685 /* Swap in the local symbols and write out the ones which we know
4686 are going into the output file. */
4687 esym = external_syms;
4688 esymend = esym + locsymcount;
4689 isym = finfo->internal_syms;
4690 pindex = finfo->indices;
4691 ppsection = finfo->sections;
4692 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
4693 {
4694 asection *isec;
4695 const char *name;
4696 Elf_Internal_Sym osym;
4697
4698 elf_swap_symbol_in (input_bfd, esym, isym);
4699 *pindex = -1;
4700
4701 if (elf_bad_symtab (input_bfd))
4702 {
4703 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
4704 {
4705 *ppsection = NULL;
4706 continue;
4707 }
4708 }
4709
4710 if (isym->st_shndx == SHN_UNDEF)
4711 isec = bfd_und_section_ptr;
4712 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
4713 isec = section_from_elf_index (input_bfd, isym->st_shndx);
4714 else if (isym->st_shndx == SHN_ABS)
4715 isec = bfd_abs_section_ptr;
4716 else if (isym->st_shndx == SHN_COMMON)
4717 isec = bfd_com_section_ptr;
4718 else
4719 {
4720 /* Who knows? */
4721 isec = NULL;
4722 }
4723
4724 *ppsection = isec;
4725
4726 /* Don't output the first, undefined, symbol. */
4727 if (esym == external_syms)
4728 continue;
4729
4730 /* If we are stripping all symbols, we don't want to output this
4731 one. */
4732 if (finfo->info->strip == strip_all)
4733 continue;
4734
4735 /* We never output section symbols. Instead, we use the section
4736 symbol of the corresponding section in the output file. */
4737 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4738 continue;
4739
4740 /* If we are discarding all local symbols, we don't want to
4741 output this one. If we are generating a relocateable output
4742 file, then some of the local symbols may be required by
4743 relocs; we output them below as we discover that they are
4744 needed. */
4745 if (finfo->info->discard == discard_all)
4746 continue;
4747
4748 /* If this symbol is defined in a section which we are
4749 discarding, we don't need to keep it, but note that
4750 linker_mark is only reliable for sections that have contents.
4751 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
4752 as well as linker_mark. */
4753 if (isym->st_shndx > 0
4754 && isym->st_shndx < SHN_LORESERVE
4755 && isec != NULL
4756 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
4757 || (! finfo->info->relocateable
4758 && (isec->flags & SEC_EXCLUDE) != 0)))
4759 continue;
4760
4761 /* Get the name of the symbol. */
4762 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
4763 isym->st_name);
4764 if (name == NULL)
4765 return false;
4766
4767 /* See if we are discarding symbols with this name. */
4768 if ((finfo->info->strip == strip_some
4769 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
4770 == NULL))
4771 || (finfo->info->discard == discard_l
4772 && bfd_is_local_label_name (input_bfd, name)))
4773 continue;
4774
4775 /* If we get here, we are going to output this symbol. */
4776
4777 osym = *isym;
4778
4779 /* Adjust the section index for the output file. */
4780 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
4781 isec->output_section);
4782 if (osym.st_shndx == (unsigned short) -1)
4783 return false;
4784
4785 *pindex = output_bfd->symcount;
4786
4787 /* ELF symbols in relocateable files are section relative, but
4788 in executable files they are virtual addresses. Note that
4789 this code assumes that all ELF sections have an associated
4790 BFD section with a reasonable value for output_offset; below
4791 we assume that they also have a reasonable value for
4792 output_section. Any special sections must be set up to meet
4793 these requirements. */
4794 osym.st_value += isec->output_offset;
4795 if (! finfo->info->relocateable)
4796 osym.st_value += isec->output_section->vma;
4797
4798 if (! elf_link_output_sym (finfo, name, &osym, isec))
4799 return false;
4800 }
4801
4802 /* Relocate the contents of each section. */
4803 for (o = input_bfd->sections; o != NULL; o = o->next)
4804 {
4805 bfd_byte *contents;
4806
4807 if (! o->linker_mark)
4808 {
4809 /* This section was omitted from the link. */
4810 continue;
4811 }
4812
4813 if ((o->flags & SEC_HAS_CONTENTS) == 0
4814 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
4815 continue;
4816
4817 if ((o->flags & SEC_LINKER_CREATED) != 0)
4818 {
4819 /* Section was created by elf_link_create_dynamic_sections
4820 or somesuch. */
4821 continue;
4822 }
4823
4824 /* Get the contents of the section. They have been cached by a
4825 relaxation routine. Note that o is a section in an input
4826 file, so the contents field will not have been set by any of
4827 the routines which work on output files. */
4828 if (elf_section_data (o)->this_hdr.contents != NULL)
4829 contents = elf_section_data (o)->this_hdr.contents;
4830 else
4831 {
4832 contents = finfo->contents;
4833 if (! bfd_get_section_contents (input_bfd, o, contents,
4834 (file_ptr) 0, o->_raw_size))
4835 return false;
4836 }
4837
4838 if ((o->flags & SEC_RELOC) != 0)
4839 {
4840 Elf_Internal_Rela *internal_relocs;
4841
4842 /* Get the swapped relocs. */
4843 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
4844 (input_bfd, o, finfo->external_relocs,
4845 finfo->internal_relocs, false));
4846 if (internal_relocs == NULL
4847 && o->reloc_count > 0)
4848 return false;
4849
4850 /* Relocate the section by invoking a back end routine.
4851
4852 The back end routine is responsible for adjusting the
4853 section contents as necessary, and (if using Rela relocs
4854 and generating a relocateable output file) adjusting the
4855 reloc addend as necessary.
4856
4857 The back end routine does not have to worry about setting
4858 the reloc address or the reloc symbol index.
4859
4860 The back end routine is given a pointer to the swapped in
4861 internal symbols, and can access the hash table entries
4862 for the external symbols via elf_sym_hashes (input_bfd).
4863
4864 When generating relocateable output, the back end routine
4865 must handle STB_LOCAL/STT_SECTION symbols specially. The
4866 output symbol is going to be a section symbol
4867 corresponding to the output section, which will require
4868 the addend to be adjusted. */
4869
4870 if (! (*relocate_section) (output_bfd, finfo->info,
4871 input_bfd, o, contents,
4872 internal_relocs,
4873 finfo->internal_syms,
4874 finfo->sections))
4875 return false;
4876
4877 if (finfo->info->relocateable)
4878 {
4879 Elf_Internal_Rela *irela;
4880 Elf_Internal_Rela *irelaend;
4881 struct elf_link_hash_entry **rel_hash;
4882 Elf_Internal_Shdr *input_rel_hdr;
4883 Elf_Internal_Shdr *output_rel_hdr;
4884
4885 /* Adjust the reloc addresses and symbol indices. */
4886
4887 irela = internal_relocs;
4888 irelaend = irela + o->reloc_count;
4889 rel_hash = (elf_section_data (o->output_section)->rel_hashes
4890 + o->output_section->reloc_count);
4891 for (; irela < irelaend; irela++, rel_hash++)
4892 {
4893 unsigned long r_symndx;
4894 Elf_Internal_Sym *isym;
4895 asection *sec;
4896
4897 irela->r_offset += o->output_offset;
4898
4899 r_symndx = ELF_R_SYM (irela->r_info);
4900
4901 if (r_symndx == 0)
4902 continue;
4903
4904 if (r_symndx >= locsymcount
4905 || (elf_bad_symtab (input_bfd)
4906 && finfo->sections[r_symndx] == NULL))
4907 {
4908 struct elf_link_hash_entry *rh;
4909 long indx;
4910
4911 /* This is a reloc against a global symbol. We
4912 have not yet output all the local symbols, so
4913 we do not know the symbol index of any global
4914 symbol. We set the rel_hash entry for this
4915 reloc to point to the global hash table entry
4916 for this symbol. The symbol index is then
4917 set at the end of elf_bfd_final_link. */
4918 indx = r_symndx - extsymoff;
4919 rh = elf_sym_hashes (input_bfd)[indx];
4920 while (rh->root.type == bfd_link_hash_indirect
4921 || rh->root.type == bfd_link_hash_warning)
4922 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
4923
4924 /* Setting the index to -2 tells
4925 elf_link_output_extsym that this symbol is
4926 used by a reloc. */
4927 BFD_ASSERT (rh->indx < 0);
4928 rh->indx = -2;
4929
4930 *rel_hash = rh;
4931
4932 continue;
4933 }
4934
4935 /* This is a reloc against a local symbol. */
4936
4937 *rel_hash = NULL;
4938 isym = finfo->internal_syms + r_symndx;
4939 sec = finfo->sections[r_symndx];
4940 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4941 {
4942 /* I suppose the backend ought to fill in the
4943 section of any STT_SECTION symbol against a
4944 processor specific section. If we have
4945 discarded a section, the output_section will
4946 be the absolute section. */
4947 if (sec != NULL
4948 && (bfd_is_abs_section (sec)
4949 || (sec->output_section != NULL
4950 && bfd_is_abs_section (sec->output_section))))
4951 r_symndx = 0;
4952 else if (sec == NULL || sec->owner == NULL)
4953 {
4954 bfd_set_error (bfd_error_bad_value);
4955 return false;
4956 }
4957 else
4958 {
4959 r_symndx = sec->output_section->target_index;
4960 BFD_ASSERT (r_symndx != 0);
4961 }
4962 }
4963 else
4964 {
4965 if (finfo->indices[r_symndx] == -1)
4966 {
4967 unsigned long link;
4968 const char *name;
4969 asection *osec;
4970
4971 if (finfo->info->strip == strip_all)
4972 {
4973 /* You can't do ld -r -s. */
4974 bfd_set_error (bfd_error_invalid_operation);
4975 return false;
4976 }
4977
4978 /* This symbol was skipped earlier, but
4979 since it is needed by a reloc, we
4980 must output it now. */
4981 link = symtab_hdr->sh_link;
4982 name = bfd_elf_string_from_elf_section (input_bfd,
4983 link,
4984 isym->st_name);
4985 if (name == NULL)
4986 return false;
4987
4988 osec = sec->output_section;
4989 isym->st_shndx =
4990 _bfd_elf_section_from_bfd_section (output_bfd,
4991 osec);
4992 if (isym->st_shndx == (unsigned short) -1)
4993 return false;
4994
4995 isym->st_value += sec->output_offset;
4996 if (! finfo->info->relocateable)
4997 isym->st_value += osec->vma;
4998
4999 finfo->indices[r_symndx] = output_bfd->symcount;
5000
5001 if (! elf_link_output_sym (finfo, name, isym, sec))
5002 return false;
5003 }
5004
5005 r_symndx = finfo->indices[r_symndx];
5006 }
5007
5008 irela->r_info = ELF_R_INFO (r_symndx,
5009 ELF_R_TYPE (irela->r_info));
5010 }
5011
5012 /* Swap out the relocs. */
5013 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5014 output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr;
5015 BFD_ASSERT (output_rel_hdr->sh_entsize
5016 == input_rel_hdr->sh_entsize);
5017 irela = internal_relocs;
5018 irelaend = irela + o->reloc_count;
5019 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5020 {
5021 Elf_External_Rel *erel;
5022
5023 erel = ((Elf_External_Rel *) output_rel_hdr->contents
5024 + o->output_section->reloc_count);
5025 for (; irela < irelaend; irela++, erel++)
5026 {
5027 Elf_Internal_Rel irel;
5028
5029 irel.r_offset = irela->r_offset;
5030 irel.r_info = irela->r_info;
5031 BFD_ASSERT (irela->r_addend == 0);
5032 elf_swap_reloc_out (output_bfd, &irel, erel);
5033 }
5034 }
5035 else
5036 {
5037 Elf_External_Rela *erela;
5038
5039 BFD_ASSERT (input_rel_hdr->sh_entsize
5040 == sizeof (Elf_External_Rela));
5041 erela = ((Elf_External_Rela *) output_rel_hdr->contents
5042 + o->output_section->reloc_count);
5043 for (; irela < irelaend; irela++, erela++)
5044 elf_swap_reloca_out (output_bfd, irela, erela);
5045 }
5046
5047 o->output_section->reloc_count += o->reloc_count;
5048 }
5049 }
5050
5051 /* Write out the modified section contents. */
5052 if (elf_section_data (o)->stab_info == NULL)
5053 {
5054 if (! (o->flags & SEC_EXCLUDE) &&
5055 ! bfd_set_section_contents (output_bfd, o->output_section,
5056 contents, o->output_offset,
5057 (o->_cooked_size != 0
5058 ? o->_cooked_size
5059 : o->_raw_size)))
5060 return false;
5061 }
5062 else
5063 {
5064 if (! (_bfd_write_section_stabs
5065 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5066 o, &elf_section_data (o)->stab_info, contents)))
5067 return false;
5068 }
5069 }
5070
5071 return true;
5072 }
5073
5074 /* Generate a reloc when linking an ELF file. This is a reloc
5075 requested by the linker, and does come from any input file. This
5076 is used to build constructor and destructor tables when linking
5077 with -Ur. */
5078
5079 static boolean
5080 elf_reloc_link_order (output_bfd, info, output_section, link_order)
5081 bfd *output_bfd;
5082 struct bfd_link_info *info;
5083 asection *output_section;
5084 struct bfd_link_order *link_order;
5085 {
5086 reloc_howto_type *howto;
5087 long indx;
5088 bfd_vma offset;
5089 bfd_vma addend;
5090 struct elf_link_hash_entry **rel_hash_ptr;
5091 Elf_Internal_Shdr *rel_hdr;
5092
5093 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5094 if (howto == NULL)
5095 {
5096 bfd_set_error (bfd_error_bad_value);
5097 return false;
5098 }
5099
5100 addend = link_order->u.reloc.p->addend;
5101
5102 /* Figure out the symbol index. */
5103 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5104 + output_section->reloc_count);
5105 if (link_order->type == bfd_section_reloc_link_order)
5106 {
5107 indx = link_order->u.reloc.p->u.section->target_index;
5108 BFD_ASSERT (indx != 0);
5109 *rel_hash_ptr = NULL;
5110 }
5111 else
5112 {
5113 struct elf_link_hash_entry *h;
5114
5115 /* Treat a reloc against a defined symbol as though it were
5116 actually against the section. */
5117 h = ((struct elf_link_hash_entry *)
5118 bfd_wrapped_link_hash_lookup (output_bfd, info,
5119 link_order->u.reloc.p->u.name,
5120 false, false, true));
5121 if (h != NULL
5122 && (h->root.type == bfd_link_hash_defined
5123 || h->root.type == bfd_link_hash_defweak))
5124 {
5125 asection *section;
5126
5127 section = h->root.u.def.section;
5128 indx = section->output_section->target_index;
5129 *rel_hash_ptr = NULL;
5130 /* It seems that we ought to add the symbol value to the
5131 addend here, but in practice it has already been added
5132 because it was passed to constructor_callback. */
5133 addend += section->output_section->vma + section->output_offset;
5134 }
5135 else if (h != NULL)
5136 {
5137 /* Setting the index to -2 tells elf_link_output_extsym that
5138 this symbol is used by a reloc. */
5139 h->indx = -2;
5140 *rel_hash_ptr = h;
5141 indx = 0;
5142 }
5143 else
5144 {
5145 if (! ((*info->callbacks->unattached_reloc)
5146 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5147 (asection *) NULL, (bfd_vma) 0)))
5148 return false;
5149 indx = 0;
5150 }
5151 }
5152
5153 /* If this is an inplace reloc, we must write the addend into the
5154 object file. */
5155 if (howto->partial_inplace && addend != 0)
5156 {
5157 bfd_size_type size;
5158 bfd_reloc_status_type rstat;
5159 bfd_byte *buf;
5160 boolean ok;
5161
5162 size = bfd_get_reloc_size (howto);
5163 buf = (bfd_byte *) bfd_zmalloc (size);
5164 if (buf == (bfd_byte *) NULL)
5165 return false;
5166 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5167 switch (rstat)
5168 {
5169 case bfd_reloc_ok:
5170 break;
5171 default:
5172 case bfd_reloc_outofrange:
5173 abort ();
5174 case bfd_reloc_overflow:
5175 if (! ((*info->callbacks->reloc_overflow)
5176 (info,
5177 (link_order->type == bfd_section_reloc_link_order
5178 ? bfd_section_name (output_bfd,
5179 link_order->u.reloc.p->u.section)
5180 : link_order->u.reloc.p->u.name),
5181 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5182 (bfd_vma) 0)))
5183 {
5184 free (buf);
5185 return false;
5186 }
5187 break;
5188 }
5189 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5190 (file_ptr) link_order->offset, size);
5191 free (buf);
5192 if (! ok)
5193 return false;
5194 }
5195
5196 /* The address of a reloc is relative to the section in a
5197 relocateable file, and is a virtual address in an executable
5198 file. */
5199 offset = link_order->offset;
5200 if (! info->relocateable)
5201 offset += output_section->vma;
5202
5203 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5204
5205 if (rel_hdr->sh_type == SHT_REL)
5206 {
5207 Elf_Internal_Rel irel;
5208 Elf_External_Rel *erel;
5209
5210 irel.r_offset = offset;
5211 irel.r_info = ELF_R_INFO (indx, howto->type);
5212 erel = ((Elf_External_Rel *) rel_hdr->contents
5213 + output_section->reloc_count);
5214 elf_swap_reloc_out (output_bfd, &irel, erel);
5215 }
5216 else
5217 {
5218 Elf_Internal_Rela irela;
5219 Elf_External_Rela *erela;
5220
5221 irela.r_offset = offset;
5222 irela.r_info = ELF_R_INFO (indx, howto->type);
5223 irela.r_addend = addend;
5224 erela = ((Elf_External_Rela *) rel_hdr->contents
5225 + output_section->reloc_count);
5226 elf_swap_reloca_out (output_bfd, &irela, erela);
5227 }
5228
5229 ++output_section->reloc_count;
5230
5231 return true;
5232 }
5233
5234 \f
5235 /* Allocate a pointer to live in a linker created section. */
5236
5237 boolean
5238 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5239 bfd *abfd;
5240 struct bfd_link_info *info;
5241 elf_linker_section_t *lsect;
5242 struct elf_link_hash_entry *h;
5243 const Elf_Internal_Rela *rel;
5244 {
5245 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5246 elf_linker_section_pointers_t *linker_section_ptr;
5247 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5248
5249 BFD_ASSERT (lsect != NULL);
5250
5251 /* Is this a global symbol? */
5252 if (h != NULL)
5253 {
5254 /* Has this symbol already been allocated, if so, our work is done */
5255 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5256 rel->r_addend,
5257 lsect->which))
5258 return true;
5259
5260 ptr_linker_section_ptr = &h->linker_section_pointer;
5261 /* Make sure this symbol is output as a dynamic symbol. */
5262 if (h->dynindx == -1)
5263 {
5264 if (! elf_link_record_dynamic_symbol (info, h))
5265 return false;
5266 }
5267
5268 if (lsect->rel_section)
5269 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5270 }
5271
5272 else /* Allocation of a pointer to a local symbol */
5273 {
5274 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5275
5276 /* Allocate a table to hold the local symbols if first time */
5277 if (!ptr)
5278 {
5279 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5280 register unsigned int i;
5281
5282 ptr = (elf_linker_section_pointers_t **)
5283 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5284
5285 if (!ptr)
5286 return false;
5287
5288 elf_local_ptr_offsets (abfd) = ptr;
5289 for (i = 0; i < num_symbols; i++)
5290 ptr[i] = (elf_linker_section_pointers_t *)0;
5291 }
5292
5293 /* Has this symbol already been allocated, if so, our work is done */
5294 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5295 rel->r_addend,
5296 lsect->which))
5297 return true;
5298
5299 ptr_linker_section_ptr = &ptr[r_symndx];
5300
5301 if (info->shared)
5302 {
5303 /* If we are generating a shared object, we need to
5304 output a R_<xxx>_RELATIVE reloc so that the
5305 dynamic linker can adjust this GOT entry. */
5306 BFD_ASSERT (lsect->rel_section != NULL);
5307 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5308 }
5309 }
5310
5311 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5312 from internal memory. */
5313 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5314 linker_section_ptr = (elf_linker_section_pointers_t *)
5315 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5316
5317 if (!linker_section_ptr)
5318 return false;
5319
5320 linker_section_ptr->next = *ptr_linker_section_ptr;
5321 linker_section_ptr->addend = rel->r_addend;
5322 linker_section_ptr->which = lsect->which;
5323 linker_section_ptr->written_address_p = false;
5324 *ptr_linker_section_ptr = linker_section_ptr;
5325
5326 #if 0
5327 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5328 {
5329 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5330 lsect->hole_offset += ARCH_SIZE / 8;
5331 lsect->sym_offset += ARCH_SIZE / 8;
5332 if (lsect->sym_hash) /* Bump up symbol value if needed */
5333 {
5334 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5335 #ifdef DEBUG
5336 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5337 lsect->sym_hash->root.root.string,
5338 (long)ARCH_SIZE / 8,
5339 (long)lsect->sym_hash->root.u.def.value);
5340 #endif
5341 }
5342 }
5343 else
5344 #endif
5345 linker_section_ptr->offset = lsect->section->_raw_size;
5346
5347 lsect->section->_raw_size += ARCH_SIZE / 8;
5348
5349 #ifdef DEBUG
5350 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5351 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5352 #endif
5353
5354 return true;
5355 }
5356
5357 \f
5358 #if ARCH_SIZE==64
5359 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5360 #endif
5361 #if ARCH_SIZE==32
5362 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5363 #endif
5364
5365 /* Fill in the address for a pointer generated in alinker section. */
5366
5367 bfd_vma
5368 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5369 bfd *output_bfd;
5370 bfd *input_bfd;
5371 struct bfd_link_info *info;
5372 elf_linker_section_t *lsect;
5373 struct elf_link_hash_entry *h;
5374 bfd_vma relocation;
5375 const Elf_Internal_Rela *rel;
5376 int relative_reloc;
5377 {
5378 elf_linker_section_pointers_t *linker_section_ptr;
5379
5380 BFD_ASSERT (lsect != NULL);
5381
5382 if (h != NULL) /* global symbol */
5383 {
5384 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5385 rel->r_addend,
5386 lsect->which);
5387
5388 BFD_ASSERT (linker_section_ptr != NULL);
5389
5390 if (! elf_hash_table (info)->dynamic_sections_created
5391 || (info->shared
5392 && info->symbolic
5393 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5394 {
5395 /* This is actually a static link, or it is a
5396 -Bsymbolic link and the symbol is defined
5397 locally. We must initialize this entry in the
5398 global section.
5399
5400 When doing a dynamic link, we create a .rela.<xxx>
5401 relocation entry to initialize the value. This
5402 is done in the finish_dynamic_symbol routine. */
5403 if (!linker_section_ptr->written_address_p)
5404 {
5405 linker_section_ptr->written_address_p = true;
5406 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5407 lsect->section->contents + linker_section_ptr->offset);
5408 }
5409 }
5410 }
5411 else /* local symbol */
5412 {
5413 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
5414 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
5415 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
5416 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
5417 rel->r_addend,
5418 lsect->which);
5419
5420 BFD_ASSERT (linker_section_ptr != NULL);
5421
5422 /* Write out pointer if it hasn't been rewritten out before */
5423 if (!linker_section_ptr->written_address_p)
5424 {
5425 linker_section_ptr->written_address_p = true;
5426 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5427 lsect->section->contents + linker_section_ptr->offset);
5428
5429 if (info->shared)
5430 {
5431 asection *srel = lsect->rel_section;
5432 Elf_Internal_Rela outrel;
5433
5434 /* We need to generate a relative reloc for the dynamic linker. */
5435 if (!srel)
5436 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5437 lsect->rel_name);
5438
5439 BFD_ASSERT (srel != NULL);
5440
5441 outrel.r_offset = (lsect->section->output_section->vma
5442 + lsect->section->output_offset
5443 + linker_section_ptr->offset);
5444 outrel.r_info = ELF_R_INFO (0, relative_reloc);
5445 outrel.r_addend = 0;
5446 elf_swap_reloca_out (output_bfd, &outrel,
5447 (((Elf_External_Rela *)
5448 lsect->section->contents)
5449 + lsect->section->reloc_count));
5450 ++lsect->section->reloc_count;
5451 }
5452 }
5453 }
5454
5455 relocation = (lsect->section->output_offset
5456 + linker_section_ptr->offset
5457 - lsect->hole_offset
5458 - lsect->sym_offset);
5459
5460 #ifdef DEBUG
5461 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
5462 lsect->name, (long)relocation, (long)relocation);
5463 #endif
5464
5465 /* Subtract out the addend, because it will get added back in by the normal
5466 processing. */
5467 return relocation - linker_section_ptr->addend;
5468 }
5469 \f
5470 /* Garbage collect unused sections. */
5471
5472 static boolean elf_gc_mark
5473 PARAMS ((struct bfd_link_info *info, asection *sec,
5474 asection * (*gc_mark_hook)
5475 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5476 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
5477
5478 static boolean elf_gc_sweep
5479 PARAMS ((struct bfd_link_info *info,
5480 boolean (*gc_sweep_hook)
5481 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5482 const Elf_Internal_Rela *relocs))));
5483
5484 static boolean elf_gc_sweep_symbol
5485 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
5486
5487 static boolean elf_gc_allocate_got_offsets
5488 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
5489
5490 static boolean elf_gc_propagate_vtable_entries_used
5491 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5492
5493 static boolean elf_gc_smash_unused_vtentry_relocs
5494 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5495
5496 /* The mark phase of garbage collection. For a given section, mark
5497 it, and all the sections which define symbols to which it refers. */
5498
5499 static boolean
5500 elf_gc_mark (info, sec, gc_mark_hook)
5501 struct bfd_link_info *info;
5502 asection *sec;
5503 asection * (*gc_mark_hook)
5504 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5505 struct elf_link_hash_entry *, Elf_Internal_Sym *));
5506 {
5507 boolean ret = true;
5508
5509 sec->gc_mark = 1;
5510
5511 /* Look through the section relocs. */
5512
5513 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
5514 {
5515 Elf_Internal_Rela *relstart, *rel, *relend;
5516 Elf_Internal_Shdr *symtab_hdr;
5517 struct elf_link_hash_entry **sym_hashes;
5518 size_t nlocsyms;
5519 size_t extsymoff;
5520 Elf_External_Sym *locsyms, *freesyms = NULL;
5521 bfd *input_bfd = sec->owner;
5522
5523 /* GCFIXME: how to arrange so that relocs and symbols are not
5524 reread continually? */
5525
5526 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5527 sym_hashes = elf_sym_hashes (input_bfd);
5528
5529 /* Read the local symbols. */
5530 if (elf_bad_symtab (input_bfd))
5531 {
5532 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5533 extsymoff = 0;
5534 }
5535 else
5536 extsymoff = nlocsyms = symtab_hdr->sh_info;
5537 if (symtab_hdr->contents)
5538 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
5539 else if (nlocsyms == 0)
5540 locsyms = NULL;
5541 else
5542 {
5543 locsyms = freesyms =
5544 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
5545 if (freesyms == NULL
5546 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5547 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
5548 nlocsyms, input_bfd)
5549 != nlocsyms * sizeof (Elf_External_Sym)))
5550 {
5551 ret = false;
5552 goto out1;
5553 }
5554 }
5555
5556 /* Read the relocations. */
5557 relstart = (NAME(_bfd_elf,link_read_relocs)
5558 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
5559 info->keep_memory));
5560 if (relstart == NULL)
5561 {
5562 ret = false;
5563 goto out1;
5564 }
5565 relend = relstart + sec->reloc_count;
5566
5567 for (rel = relstart; rel < relend; rel++)
5568 {
5569 unsigned long r_symndx;
5570 asection *rsec;
5571 struct elf_link_hash_entry *h;
5572 Elf_Internal_Sym s;
5573
5574 r_symndx = ELF_R_SYM (rel->r_info);
5575 if (r_symndx == 0)
5576 continue;
5577
5578 if (elf_bad_symtab (sec->owner))
5579 {
5580 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5581 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
5582 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5583 else
5584 {
5585 h = sym_hashes[r_symndx - extsymoff];
5586 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5587 }
5588 }
5589 else if (r_symndx >= nlocsyms)
5590 {
5591 h = sym_hashes[r_symndx - extsymoff];
5592 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5593 }
5594 else
5595 {
5596 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5597 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5598 }
5599
5600 if (rsec && !rsec->gc_mark)
5601 if (!elf_gc_mark (info, rsec, gc_mark_hook))
5602 {
5603 ret = false;
5604 goto out2;
5605 }
5606 }
5607
5608 out2:
5609 if (!info->keep_memory)
5610 free (relstart);
5611 out1:
5612 if (freesyms)
5613 free (freesyms);
5614 }
5615
5616 return ret;
5617 }
5618
5619 /* The sweep phase of garbage collection. Remove all garbage sections. */
5620
5621 static boolean
5622 elf_gc_sweep (info, gc_sweep_hook)
5623 struct bfd_link_info *info;
5624 boolean (*gc_sweep_hook)
5625 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5626 const Elf_Internal_Rela *relocs));
5627 {
5628 bfd *sub;
5629
5630 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5631 {
5632 asection *o;
5633
5634 for (o = sub->sections; o != NULL; o = o->next)
5635 {
5636 /* Keep special sections. Keep .debug sections. */
5637 if ((o->flags & SEC_LINKER_CREATED)
5638 || (o->flags & SEC_DEBUGGING))
5639 o->gc_mark = 1;
5640
5641 if (o->gc_mark)
5642 continue;
5643
5644 /* Skip sweeping sections already excluded. */
5645 if (o->flags & SEC_EXCLUDE)
5646 continue;
5647
5648 /* Since this is early in the link process, it is simple
5649 to remove a section from the output. */
5650 o->flags |= SEC_EXCLUDE;
5651
5652 /* But we also have to update some of the relocation
5653 info we collected before. */
5654 if (gc_sweep_hook
5655 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
5656 {
5657 Elf_Internal_Rela *internal_relocs;
5658 boolean r;
5659
5660 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5661 (o->owner, o, NULL, NULL, info->keep_memory));
5662 if (internal_relocs == NULL)
5663 return false;
5664
5665 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
5666
5667 if (!info->keep_memory)
5668 free (internal_relocs);
5669
5670 if (!r)
5671 return false;
5672 }
5673 }
5674 }
5675
5676 /* Remove the symbols that were in the swept sections from the dynamic
5677 symbol table. GCFIXME: Anyone know how to get them out of the
5678 static symbol table as well? */
5679 {
5680 int i = 0;
5681
5682 elf_link_hash_traverse (elf_hash_table (info),
5683 elf_gc_sweep_symbol,
5684 (PTR) &i);
5685
5686 elf_hash_table (info)->dynsymcount = i;
5687 }
5688
5689 return true;
5690 }
5691
5692 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5693
5694 static boolean
5695 elf_gc_sweep_symbol (h, idxptr)
5696 struct elf_link_hash_entry *h;
5697 PTR idxptr;
5698 {
5699 int *idx = (int *) idxptr;
5700
5701 if (h->dynindx != -1
5702 && ((h->root.type != bfd_link_hash_defined
5703 && h->root.type != bfd_link_hash_defweak)
5704 || h->root.u.def.section->gc_mark))
5705 h->dynindx = (*idx)++;
5706
5707 return true;
5708 }
5709
5710 /* Propogate collected vtable information. This is called through
5711 elf_link_hash_traverse. */
5712
5713 static boolean
5714 elf_gc_propagate_vtable_entries_used (h, okp)
5715 struct elf_link_hash_entry *h;
5716 PTR okp;
5717 {
5718 /* Those that are not vtables. */
5719 if (h->vtable_parent == NULL)
5720 return true;
5721
5722 /* Those vtables that do not have parents, we cannot merge. */
5723 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
5724 return true;
5725
5726 /* If we've already been done, exit. */
5727 if (h->vtable_entries_used && h->vtable_entries_used[-1])
5728 return true;
5729
5730 /* Make sure the parent's table is up to date. */
5731 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
5732
5733 if (h->vtable_entries_used == NULL)
5734 {
5735 /* None of this table's entries were referenced. Re-use the
5736 parent's table. */
5737 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
5738 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
5739 }
5740 else
5741 {
5742 size_t n;
5743 boolean *cu, *pu;
5744
5745 /* Or the parent's entries into ours. */
5746 cu = h->vtable_entries_used;
5747 cu[-1] = true;
5748 pu = h->vtable_parent->vtable_entries_used;
5749 if (pu != NULL)
5750 {
5751 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
5752 while (--n != 0)
5753 {
5754 if (*pu) *cu = true;
5755 pu++, cu++;
5756 }
5757 }
5758 }
5759
5760 return true;
5761 }
5762
5763 static boolean
5764 elf_gc_smash_unused_vtentry_relocs (h, okp)
5765 struct elf_link_hash_entry *h;
5766 PTR okp;
5767 {
5768 asection *sec;
5769 bfd_vma hstart, hend;
5770 Elf_Internal_Rela *relstart, *relend, *rel;
5771
5772 /* Take care of both those symbols that do not describe vtables as
5773 well as those that are not loaded. */
5774 if (h->vtable_parent == NULL)
5775 return true;
5776
5777 BFD_ASSERT (h->root.type == bfd_link_hash_defined
5778 || h->root.type == bfd_link_hash_defweak);
5779
5780 sec = h->root.u.def.section;
5781 hstart = h->root.u.def.value;
5782 hend = hstart + h->size;
5783
5784 relstart = (NAME(_bfd_elf,link_read_relocs)
5785 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
5786 if (!relstart)
5787 return *(boolean *)okp = false;
5788 relend = relstart + sec->reloc_count;
5789
5790 for (rel = relstart; rel < relend; ++rel)
5791 if (rel->r_offset >= hstart && rel->r_offset < hend)
5792 {
5793 /* If the entry is in use, do nothing. */
5794 if (h->vtable_entries_used
5795 && (rel->r_offset - hstart) < h->vtable_entries_size)
5796 {
5797 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
5798 if (h->vtable_entries_used[entry])
5799 continue;
5800 }
5801 /* Otherwise, kill it. */
5802 rel->r_offset = rel->r_info = rel->r_addend = 0;
5803 }
5804
5805 return true;
5806 }
5807
5808 /* Do mark and sweep of unused sections. */
5809
5810 boolean
5811 elf_gc_sections (abfd, info)
5812 bfd *abfd;
5813 struct bfd_link_info *info;
5814 {
5815 boolean ok = true;
5816 bfd *sub;
5817 asection * (*gc_mark_hook)
5818 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
5819 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
5820
5821 if (!get_elf_backend_data (abfd)->can_gc_sections
5822 || info->relocateable
5823 || elf_hash_table (info)->dynamic_sections_created)
5824 return true;
5825
5826 /* Apply transitive closure to the vtable entry usage info. */
5827 elf_link_hash_traverse (elf_hash_table (info),
5828 elf_gc_propagate_vtable_entries_used,
5829 (PTR) &ok);
5830 if (!ok)
5831 return false;
5832
5833 /* Kill the vtable relocations that were not used. */
5834 elf_link_hash_traverse (elf_hash_table (info),
5835 elf_gc_smash_unused_vtentry_relocs,
5836 (PTR) &ok);
5837 if (!ok)
5838 return false;
5839
5840 /* Grovel through relocs to find out who stays ... */
5841
5842 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
5843 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5844 {
5845 asection *o;
5846 for (o = sub->sections; o != NULL; o = o->next)
5847 {
5848 if (o->flags & SEC_KEEP)
5849 if (!elf_gc_mark (info, o, gc_mark_hook))
5850 return false;
5851 }
5852 }
5853
5854 /* ... and mark SEC_EXCLUDE for those that go. */
5855 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
5856 return false;
5857
5858 return true;
5859 }
5860 \f
5861 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
5862
5863 boolean
5864 elf_gc_record_vtinherit (abfd, sec, h, offset)
5865 bfd *abfd;
5866 asection *sec;
5867 struct elf_link_hash_entry *h;
5868 bfd_vma offset;
5869 {
5870 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
5871 struct elf_link_hash_entry **search, *child;
5872 bfd_size_type extsymcount;
5873
5874 /* The sh_info field of the symtab header tells us where the
5875 external symbols start. We don't care about the local symbols at
5876 this point. */
5877 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
5878 if (!elf_bad_symtab (abfd))
5879 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
5880
5881 sym_hashes = elf_sym_hashes (abfd);
5882 sym_hashes_end = sym_hashes + extsymcount;
5883
5884 /* Hunt down the child symbol, which is in this section at the same
5885 offset as the relocation. */
5886 for (search = sym_hashes; search != sym_hashes_end; ++search)
5887 {
5888 if ((child = *search) != NULL
5889 && (child->root.type == bfd_link_hash_defined
5890 || child->root.type == bfd_link_hash_defweak)
5891 && child->root.u.def.section == sec
5892 && child->root.u.def.value == offset)
5893 goto win;
5894 }
5895
5896 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
5897 bfd_get_filename (abfd), sec->name,
5898 (unsigned long)offset);
5899 bfd_set_error (bfd_error_invalid_operation);
5900 return false;
5901
5902 win:
5903 if (!h)
5904 {
5905 /* This *should* only be the absolute section. It could potentially
5906 be that someone has defined a non-global vtable though, which
5907 would be bad. It isn't worth paging in the local symbols to be
5908 sure though; that case should simply be handled by the assembler. */
5909
5910 child->vtable_parent = (struct elf_link_hash_entry *) -1;
5911 }
5912 else
5913 child->vtable_parent = h;
5914
5915 return true;
5916 }
5917
5918 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
5919
5920 boolean
5921 elf_gc_record_vtentry (abfd, sec, h, addend)
5922 bfd *abfd;
5923 asection *sec;
5924 struct elf_link_hash_entry *h;
5925 bfd_vma addend;
5926 {
5927 if (addend >= h->vtable_entries_size)
5928 {
5929 size_t size, bytes;
5930 boolean *ptr = h->vtable_entries_used;
5931
5932 /* While the symbol is undefined, we have to be prepared to handle
5933 a zero size. */
5934 if (h->root.type == bfd_link_hash_undefined)
5935 size = addend;
5936 else
5937 {
5938 size = h->size;
5939 if (size < addend)
5940 {
5941 /* Oops! We've got a reference past the defined end of
5942 the table. This is probably a bug -- shall we warn? */
5943 size = addend;
5944 }
5945 }
5946
5947 /* Allocate one extra entry for use as a "done" flag for the
5948 consolidation pass. */
5949 bytes = (size / FILE_ALIGN + 1) * sizeof(boolean);
5950
5951 if (ptr)
5952 {
5953 size_t oldbytes;
5954
5955 ptr = realloc (ptr-1, bytes);
5956 if (ptr == NULL)
5957 return false;
5958
5959 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof(boolean);
5960 memset (ptr + oldbytes, 0, bytes - oldbytes);
5961 }
5962 else
5963 {
5964 ptr = calloc (1, bytes);
5965 if (ptr == NULL)
5966 return false;
5967 }
5968
5969 /* And arrange for that done flag to be at index -1. */
5970 h->vtable_entries_used = ptr+1;
5971 h->vtable_entries_size = size;
5972 }
5973 h->vtable_entries_used[addend / FILE_ALIGN] = true;
5974
5975 return true;
5976 }
5977
5978 /* And an accompanying bit to work out final got entry offsets once
5979 we're done. Should be called from final_link. */
5980
5981 boolean
5982 elf_gc_common_finalize_got_offsets (abfd, info)
5983 bfd *abfd;
5984 struct bfd_link_info *info;
5985 {
5986 bfd *i;
5987 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5988 bfd_vma gotoff;
5989
5990 /* The GOT offset is relative to the .got section, but the GOT header is
5991 put into the .got.plt section, if the backend uses it. */
5992 if (bed->want_got_plt)
5993 gotoff = 0;
5994 else
5995 gotoff = bed->got_header_size;
5996
5997 /* Do the local .got entries first. */
5998 for (i = info->input_bfds; i; i = i->link_next)
5999 {
6000 bfd_signed_vma *local_got = elf_local_got_refcounts (i);
6001 bfd_size_type j, locsymcount;
6002 Elf_Internal_Shdr *symtab_hdr;
6003
6004 if (!local_got)
6005 continue;
6006
6007 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6008 if (elf_bad_symtab (i))
6009 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6010 else
6011 locsymcount = symtab_hdr->sh_info;
6012
6013 for (j = 0; j < locsymcount; ++j)
6014 {
6015 if (local_got[j] > 0)
6016 {
6017 local_got[j] = gotoff;
6018 gotoff += ARCH_SIZE / 8;
6019 }
6020 else
6021 local_got[j] = (bfd_vma) -1;
6022 }
6023 }
6024
6025 /* Then the global .got and .plt entries. */
6026 elf_link_hash_traverse (elf_hash_table (info),
6027 elf_gc_allocate_got_offsets,
6028 (PTR) &gotoff);
6029 return true;
6030 }
6031
6032 /* We need a special top-level link routine to convert got reference counts
6033 to real got offsets. */
6034
6035 static boolean
6036 elf_gc_allocate_got_offsets (h, offarg)
6037 struct elf_link_hash_entry *h;
6038 PTR offarg;
6039 {
6040 bfd_vma *off = (bfd_vma *) offarg;
6041
6042 if (h->got.refcount > 0)
6043 {
6044 h->got.offset = off[0];
6045 off[0] += ARCH_SIZE / 8;
6046 }
6047 else
6048 h->got.offset = (bfd_vma) -1;
6049
6050 return true;
6051 }
6052
6053 /* Many folk need no more in the way of final link than this, once
6054 got entry reference counting is enabled. */
6055
6056 boolean
6057 elf_gc_common_final_link (abfd, info)
6058 bfd *abfd;
6059 struct bfd_link_info *info;
6060 {
6061 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6062 return false;
6063
6064 /* Invoke the regular ELF backend linker to do all the work. */
6065 return elf_bfd_final_link (abfd, info);
6066 }
6067
6068 /* This function will be called though elf_link_hash_traverse to store
6069 all hash value of the exported symbols in an array. */
6070
6071 static boolean
6072 elf_collect_hash_codes (h, data)
6073 struct elf_link_hash_entry *h;
6074 PTR data;
6075 {
6076 unsigned long **valuep = (unsigned long **) data;
6077 const char *name;
6078 char *p;
6079 unsigned long ha;
6080 char *alc = NULL;
6081
6082 /* Ignore indirect symbols. These are added by the versioning code. */
6083 if (h->dynindx == -1)
6084 return true;
6085
6086 name = h->root.root.string;
6087 p = strchr (name, ELF_VER_CHR);
6088 if (p != NULL)
6089 {
6090 alc = bfd_malloc (p - name + 1);
6091 memcpy (alc, name, p - name);
6092 alc[p - name] = '\0';
6093 name = alc;
6094 }
6095
6096 /* Compute the hash value. */
6097 ha = bfd_elf_hash (name);
6098
6099 /* Store the found hash value in the array given as the argument. */
6100 *(*valuep)++ = ha;
6101
6102 /* And store it in the struct so that we can put it in the hash table
6103 later. */
6104 h->elf_hash_value = ha;
6105
6106 if (alc != NULL)
6107 free (alc);
6108
6109 return true;
6110 }