When possible, keep the original type of the symbol.
[binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /* ELF linker code. */
21
22 /* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25 struct elf_info_failed
26 {
27 boolean failed;
28 struct bfd_link_info *info;
29 };
30
31 static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33 static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35 static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39 static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41 static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43 static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45 static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49 static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51 static boolean elf_collect_hash_codes
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53 static boolean elf_link_read_relocs_from_section
54 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
55 static void elf_link_output_relocs
56 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
57 static boolean elf_link_size_reloc_section
58 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
59 static void elf_link_adjust_relocs
60 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
61 struct elf_link_hash_entry **));
62
63 /* Given an ELF BFD, add symbols to the global hash table as
64 appropriate. */
65
66 boolean
67 elf_bfd_link_add_symbols (abfd, info)
68 bfd *abfd;
69 struct bfd_link_info *info;
70 {
71 switch (bfd_get_format (abfd))
72 {
73 case bfd_object:
74 return elf_link_add_object_symbols (abfd, info);
75 case bfd_archive:
76 return elf_link_add_archive_symbols (abfd, info);
77 default:
78 bfd_set_error (bfd_error_wrong_format);
79 return false;
80 }
81 }
82 \f
83
84 /* Add symbols from an ELF archive file to the linker hash table. We
85 don't use _bfd_generic_link_add_archive_symbols because of a
86 problem which arises on UnixWare. The UnixWare libc.so is an
87 archive which includes an entry libc.so.1 which defines a bunch of
88 symbols. The libc.so archive also includes a number of other
89 object files, which also define symbols, some of which are the same
90 as those defined in libc.so.1. Correct linking requires that we
91 consider each object file in turn, and include it if it defines any
92 symbols we need. _bfd_generic_link_add_archive_symbols does not do
93 this; it looks through the list of undefined symbols, and includes
94 any object file which defines them. When this algorithm is used on
95 UnixWare, it winds up pulling in libc.so.1 early and defining a
96 bunch of symbols. This means that some of the other objects in the
97 archive are not included in the link, which is incorrect since they
98 precede libc.so.1 in the archive.
99
100 Fortunately, ELF archive handling is simpler than that done by
101 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
102 oddities. In ELF, if we find a symbol in the archive map, and the
103 symbol is currently undefined, we know that we must pull in that
104 object file.
105
106 Unfortunately, we do have to make multiple passes over the symbol
107 table until nothing further is resolved. */
108
109 static boolean
110 elf_link_add_archive_symbols (abfd, info)
111 bfd *abfd;
112 struct bfd_link_info *info;
113 {
114 symindex c;
115 boolean *defined = NULL;
116 boolean *included = NULL;
117 carsym *symdefs;
118 boolean loop;
119
120 if (! bfd_has_map (abfd))
121 {
122 /* An empty archive is a special case. */
123 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
124 return true;
125 bfd_set_error (bfd_error_no_armap);
126 return false;
127 }
128
129 /* Keep track of all symbols we know to be already defined, and all
130 files we know to be already included. This is to speed up the
131 second and subsequent passes. */
132 c = bfd_ardata (abfd)->symdef_count;
133 if (c == 0)
134 return true;
135 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
136 included = (boolean *) bfd_malloc (c * sizeof (boolean));
137 if (defined == (boolean *) NULL || included == (boolean *) NULL)
138 goto error_return;
139 memset (defined, 0, c * sizeof (boolean));
140 memset (included, 0, c * sizeof (boolean));
141
142 symdefs = bfd_ardata (abfd)->symdefs;
143
144 do
145 {
146 file_ptr last;
147 symindex i;
148 carsym *symdef;
149 carsym *symdefend;
150
151 loop = false;
152 last = -1;
153
154 symdef = symdefs;
155 symdefend = symdef + c;
156 for (i = 0; symdef < symdefend; symdef++, i++)
157 {
158 struct elf_link_hash_entry *h;
159 bfd *element;
160 struct bfd_link_hash_entry *undefs_tail;
161 symindex mark;
162
163 if (defined[i] || included[i])
164 continue;
165 if (symdef->file_offset == last)
166 {
167 included[i] = true;
168 continue;
169 }
170
171 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
172 false, false, false);
173
174 if (h == NULL)
175 {
176 char *p, *copy;
177
178 /* If this is a default version (the name contains @@),
179 look up the symbol again without the version. The
180 effect is that references to the symbol without the
181 version will be matched by the default symbol in the
182 archive. */
183
184 p = strchr (symdef->name, ELF_VER_CHR);
185 if (p == NULL || p[1] != ELF_VER_CHR)
186 continue;
187
188 copy = bfd_alloc (abfd, p - symdef->name + 1);
189 if (copy == NULL)
190 goto error_return;
191 memcpy (copy, symdef->name, p - symdef->name);
192 copy[p - symdef->name] = '\0';
193
194 h = elf_link_hash_lookup (elf_hash_table (info), copy,
195 false, false, false);
196
197 bfd_release (abfd, copy);
198 }
199
200 if (h == NULL)
201 continue;
202
203 if (h->root.type != bfd_link_hash_undefined)
204 {
205 if (h->root.type != bfd_link_hash_undefweak)
206 defined[i] = true;
207 continue;
208 }
209
210 /* We need to include this archive member. */
211
212 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
213 if (element == (bfd *) NULL)
214 goto error_return;
215
216 if (! bfd_check_format (element, bfd_object))
217 goto error_return;
218
219 /* Doublecheck that we have not included this object
220 already--it should be impossible, but there may be
221 something wrong with the archive. */
222 if (element->archive_pass != 0)
223 {
224 bfd_set_error (bfd_error_bad_value);
225 goto error_return;
226 }
227 element->archive_pass = 1;
228
229 undefs_tail = info->hash->undefs_tail;
230
231 if (! (*info->callbacks->add_archive_element) (info, element,
232 symdef->name))
233 goto error_return;
234 if (! elf_link_add_object_symbols (element, info))
235 goto error_return;
236
237 /* If there are any new undefined symbols, we need to make
238 another pass through the archive in order to see whether
239 they can be defined. FIXME: This isn't perfect, because
240 common symbols wind up on undefs_tail and because an
241 undefined symbol which is defined later on in this pass
242 does not require another pass. This isn't a bug, but it
243 does make the code less efficient than it could be. */
244 if (undefs_tail != info->hash->undefs_tail)
245 loop = true;
246
247 /* Look backward to mark all symbols from this object file
248 which we have already seen in this pass. */
249 mark = i;
250 do
251 {
252 included[mark] = true;
253 if (mark == 0)
254 break;
255 --mark;
256 }
257 while (symdefs[mark].file_offset == symdef->file_offset);
258
259 /* We mark subsequent symbols from this object file as we go
260 on through the loop. */
261 last = symdef->file_offset;
262 }
263 }
264 while (loop);
265
266 free (defined);
267 free (included);
268
269 return true;
270
271 error_return:
272 if (defined != (boolean *) NULL)
273 free (defined);
274 if (included != (boolean *) NULL)
275 free (included);
276 return false;
277 }
278
279 /* This function is called when we want to define a new symbol. It
280 handles the various cases which arise when we find a definition in
281 a dynamic object, or when there is already a definition in a
282 dynamic object. The new symbol is described by NAME, SYM, PSEC,
283 and PVALUE. We set SYM_HASH to the hash table entry. We set
284 OVERRIDE if the old symbol is overriding a new definition. We set
285 TYPE_CHANGE_OK if it is OK for the type to change. We set
286 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
287 change, we mean that we shouldn't warn if the type or size does
288 change. */
289
290 static boolean
291 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
292 override, type_change_ok, size_change_ok)
293 bfd *abfd;
294 struct bfd_link_info *info;
295 const char *name;
296 Elf_Internal_Sym *sym;
297 asection **psec;
298 bfd_vma *pvalue;
299 struct elf_link_hash_entry **sym_hash;
300 boolean *override;
301 boolean *type_change_ok;
302 boolean *size_change_ok;
303 {
304 asection *sec;
305 struct elf_link_hash_entry *h;
306 int bind;
307 bfd *oldbfd;
308 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
309
310 *override = false;
311
312 sec = *psec;
313 bind = ELF_ST_BIND (sym->st_info);
314
315 if (! bfd_is_und_section (sec))
316 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
317 else
318 h = ((struct elf_link_hash_entry *)
319 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
320 if (h == NULL)
321 return false;
322 *sym_hash = h;
323
324 /* This code is for coping with dynamic objects, and is only useful
325 if we are doing an ELF link. */
326 if (info->hash->creator != abfd->xvec)
327 return true;
328
329 /* For merging, we only care about real symbols. */
330
331 while (h->root.type == bfd_link_hash_indirect
332 || h->root.type == bfd_link_hash_warning)
333 h = (struct elf_link_hash_entry *) h->root.u.i.link;
334
335 /* If we just created the symbol, mark it as being an ELF symbol.
336 Other than that, there is nothing to do--there is no merge issue
337 with a newly defined symbol--so we just return. */
338
339 if (h->root.type == bfd_link_hash_new)
340 {
341 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
342 return true;
343 }
344
345 /* OLDBFD is a BFD associated with the existing symbol. */
346
347 switch (h->root.type)
348 {
349 default:
350 oldbfd = NULL;
351 break;
352
353 case bfd_link_hash_undefined:
354 case bfd_link_hash_undefweak:
355 oldbfd = h->root.u.undef.abfd;
356 break;
357
358 case bfd_link_hash_defined:
359 case bfd_link_hash_defweak:
360 oldbfd = h->root.u.def.section->owner;
361 break;
362
363 case bfd_link_hash_common:
364 oldbfd = h->root.u.c.p->section->owner;
365 break;
366 }
367
368 /* In cases involving weak versioned symbols, we may wind up trying
369 to merge a symbol with itself. Catch that here, to avoid the
370 confusion that results if we try to override a symbol with
371 itself. The additional tests catch cases like
372 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
373 dynamic object, which we do want to handle here. */
374 if (abfd == oldbfd
375 && ((abfd->flags & DYNAMIC) == 0
376 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
377 return true;
378
379 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
380 respectively, is from a dynamic object. */
381
382 if ((abfd->flags & DYNAMIC) != 0)
383 newdyn = true;
384 else
385 newdyn = false;
386
387 if (oldbfd != NULL)
388 olddyn = (oldbfd->flags & DYNAMIC) != 0;
389 else
390 {
391 asection *hsec;
392
393 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
394 indices used by MIPS ELF. */
395 switch (h->root.type)
396 {
397 default:
398 hsec = NULL;
399 break;
400
401 case bfd_link_hash_defined:
402 case bfd_link_hash_defweak:
403 hsec = h->root.u.def.section;
404 break;
405
406 case bfd_link_hash_common:
407 hsec = h->root.u.c.p->section;
408 break;
409 }
410
411 if (hsec == NULL)
412 olddyn = false;
413 else
414 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
415 }
416
417 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
418 respectively, appear to be a definition rather than reference. */
419
420 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
421 newdef = false;
422 else
423 newdef = true;
424
425 if (h->root.type == bfd_link_hash_undefined
426 || h->root.type == bfd_link_hash_undefweak
427 || h->root.type == bfd_link_hash_common)
428 olddef = false;
429 else
430 olddef = true;
431
432 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
433 symbol, respectively, appears to be a common symbol in a dynamic
434 object. If a symbol appears in an uninitialized section, and is
435 not weak, and is not a function, then it may be a common symbol
436 which was resolved when the dynamic object was created. We want
437 to treat such symbols specially, because they raise special
438 considerations when setting the symbol size: if the symbol
439 appears as a common symbol in a regular object, and the size in
440 the regular object is larger, we must make sure that we use the
441 larger size. This problematic case can always be avoided in C,
442 but it must be handled correctly when using Fortran shared
443 libraries.
444
445 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
446 likewise for OLDDYNCOMMON and OLDDEF.
447
448 Note that this test is just a heuristic, and that it is quite
449 possible to have an uninitialized symbol in a shared object which
450 is really a definition, rather than a common symbol. This could
451 lead to some minor confusion when the symbol really is a common
452 symbol in some regular object. However, I think it will be
453 harmless. */
454
455 if (newdyn
456 && newdef
457 && (sec->flags & SEC_ALLOC) != 0
458 && (sec->flags & SEC_LOAD) == 0
459 && sym->st_size > 0
460 && bind != STB_WEAK
461 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
462 newdyncommon = true;
463 else
464 newdyncommon = false;
465
466 if (olddyn
467 && olddef
468 && h->root.type == bfd_link_hash_defined
469 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
470 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
471 && (h->root.u.def.section->flags & SEC_LOAD) == 0
472 && h->size > 0
473 && h->type != STT_FUNC)
474 olddyncommon = true;
475 else
476 olddyncommon = false;
477
478 /* It's OK to change the type if either the existing symbol or the
479 new symbol is weak. */
480
481 if (h->root.type == bfd_link_hash_defweak
482 || h->root.type == bfd_link_hash_undefweak
483 || bind == STB_WEAK)
484 *type_change_ok = true;
485
486 /* It's OK to change the size if either the existing symbol or the
487 new symbol is weak, or if the old symbol is undefined. */
488
489 if (*type_change_ok
490 || h->root.type == bfd_link_hash_undefined)
491 *size_change_ok = true;
492
493 /* If both the old and the new symbols look like common symbols in a
494 dynamic object, set the size of the symbol to the larger of the
495 two. */
496
497 if (olddyncommon
498 && newdyncommon
499 && sym->st_size != h->size)
500 {
501 /* Since we think we have two common symbols, issue a multiple
502 common warning if desired. Note that we only warn if the
503 size is different. If the size is the same, we simply let
504 the old symbol override the new one as normally happens with
505 symbols defined in dynamic objects. */
506
507 if (! ((*info->callbacks->multiple_common)
508 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
509 h->size, abfd, bfd_link_hash_common, sym->st_size)))
510 return false;
511
512 if (sym->st_size > h->size)
513 h->size = sym->st_size;
514
515 *size_change_ok = true;
516 }
517
518 /* If we are looking at a dynamic object, and we have found a
519 definition, we need to see if the symbol was already defined by
520 some other object. If so, we want to use the existing
521 definition, and we do not want to report a multiple symbol
522 definition error; we do this by clobbering *PSEC to be
523 bfd_und_section_ptr.
524
525 We treat a common symbol as a definition if the symbol in the
526 shared library is a function, since common symbols always
527 represent variables; this can cause confusion in principle, but
528 any such confusion would seem to indicate an erroneous program or
529 shared library. We also permit a common symbol in a regular
530 object to override a weak symbol in a shared object.
531
532 We prefer a non-weak definition in a shared library to a weak
533 definition in the executable. */
534
535 if (newdyn
536 && newdef
537 && (olddef
538 || (h->root.type == bfd_link_hash_common
539 && (bind == STB_WEAK
540 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
541 && (h->root.type != bfd_link_hash_defweak
542 || bind == STB_WEAK))
543 {
544 *override = true;
545 newdef = false;
546 newdyncommon = false;
547
548 *psec = sec = bfd_und_section_ptr;
549 *size_change_ok = true;
550
551 /* If we get here when the old symbol is a common symbol, then
552 we are explicitly letting it override a weak symbol or
553 function in a dynamic object, and we don't want to warn about
554 a type change. If the old symbol is a defined symbol, a type
555 change warning may still be appropriate. */
556
557 if (h->root.type == bfd_link_hash_common)
558 *type_change_ok = true;
559 }
560
561 /* Handle the special case of an old common symbol merging with a
562 new symbol which looks like a common symbol in a shared object.
563 We change *PSEC and *PVALUE to make the new symbol look like a
564 common symbol, and let _bfd_generic_link_add_one_symbol will do
565 the right thing. */
566
567 if (newdyncommon
568 && h->root.type == bfd_link_hash_common)
569 {
570 *override = true;
571 newdef = false;
572 newdyncommon = false;
573 *pvalue = sym->st_size;
574 *psec = sec = bfd_com_section_ptr;
575 *size_change_ok = true;
576 }
577
578 /* If the old symbol is from a dynamic object, and the new symbol is
579 a definition which is not from a dynamic object, then the new
580 symbol overrides the old symbol. Symbols from regular files
581 always take precedence over symbols from dynamic objects, even if
582 they are defined after the dynamic object in the link.
583
584 As above, we again permit a common symbol in a regular object to
585 override a definition in a shared object if the shared object
586 symbol is a function or is weak.
587
588 As above, we permit a non-weak definition in a shared object to
589 override a weak definition in a regular object. */
590
591 if (! newdyn
592 && (newdef
593 || (bfd_is_com_section (sec)
594 && (h->root.type == bfd_link_hash_defweak
595 || h->type == STT_FUNC)))
596 && olddyn
597 && olddef
598 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
599 && (bind != STB_WEAK
600 || h->root.type == bfd_link_hash_defweak))
601 {
602 /* Change the hash table entry to undefined, and let
603 _bfd_generic_link_add_one_symbol do the right thing with the
604 new definition. */
605
606 h->root.type = bfd_link_hash_undefined;
607 h->root.u.undef.abfd = h->root.u.def.section->owner;
608 *size_change_ok = true;
609
610 olddef = false;
611 olddyncommon = false;
612
613 /* We again permit a type change when a common symbol may be
614 overriding a function. */
615
616 if (bfd_is_com_section (sec))
617 *type_change_ok = true;
618
619 /* This union may have been set to be non-NULL when this symbol
620 was seen in a dynamic object. We must force the union to be
621 NULL, so that it is correct for a regular symbol. */
622
623 h->verinfo.vertree = NULL;
624
625 /* In this special case, if H is the target of an indirection,
626 we want the caller to frob with H rather than with the
627 indirect symbol. That will permit the caller to redefine the
628 target of the indirection, rather than the indirect symbol
629 itself. FIXME: This will break the -y option if we store a
630 symbol with a different name. */
631 *sym_hash = h;
632 }
633
634 /* Handle the special case of a new common symbol merging with an
635 old symbol that looks like it might be a common symbol defined in
636 a shared object. Note that we have already handled the case in
637 which a new common symbol should simply override the definition
638 in the shared library. */
639
640 if (! newdyn
641 && bfd_is_com_section (sec)
642 && olddyncommon)
643 {
644 /* It would be best if we could set the hash table entry to a
645 common symbol, but we don't know what to use for the section
646 or the alignment. */
647 if (! ((*info->callbacks->multiple_common)
648 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
649 h->size, abfd, bfd_link_hash_common, sym->st_size)))
650 return false;
651
652 /* If the predumed common symbol in the dynamic object is
653 larger, pretend that the new symbol has its size. */
654
655 if (h->size > *pvalue)
656 *pvalue = h->size;
657
658 /* FIXME: We no longer know the alignment required by the symbol
659 in the dynamic object, so we just wind up using the one from
660 the regular object. */
661
662 olddef = false;
663 olddyncommon = false;
664
665 h->root.type = bfd_link_hash_undefined;
666 h->root.u.undef.abfd = h->root.u.def.section->owner;
667
668 *size_change_ok = true;
669 *type_change_ok = true;
670
671 h->verinfo.vertree = NULL;
672 }
673
674 /* Handle the special case of a weak definition in a regular object
675 followed by a non-weak definition in a shared object. In this
676 case, we prefer the definition in the shared object. */
677 if (olddef
678 && h->root.type == bfd_link_hash_defweak
679 && newdef
680 && newdyn
681 && bind != STB_WEAK)
682 {
683 /* To make this work we have to frob the flags so that the rest
684 of the code does not think we are using the regular
685 definition. */
686 h->elf_link_hash_flags &= ~ ELF_LINK_HASH_DEF_REGULAR;
687 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
688
689 /* If H is the target of an indirection, we want the caller to
690 use H rather than the indirect symbol. Otherwise if we are
691 defining a new indirect symbol we will wind up attaching it
692 to the entry we are overriding. */
693 *sym_hash = h;
694 }
695
696 /* Handle the special case of a non-weak definition in a shared
697 object followed by a weak definition in a regular object. In
698 this case we prefer to definition in the shared object. To make
699 this work we have to tell the caller to not treat the new symbol
700 as a definition. */
701 if (olddef
702 && olddyn
703 && h->root.type != bfd_link_hash_defweak
704 && newdef
705 && ! newdyn
706 && bind == STB_WEAK)
707 *override = true;
708
709 return true;
710 }
711
712 /* Add symbols from an ELF object file to the linker hash table. */
713
714 static boolean
715 elf_link_add_object_symbols (abfd, info)
716 bfd *abfd;
717 struct bfd_link_info *info;
718 {
719 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
720 const Elf_Internal_Sym *,
721 const char **, flagword *,
722 asection **, bfd_vma *));
723 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
724 asection *, const Elf_Internal_Rela *));
725 boolean collect;
726 Elf_Internal_Shdr *hdr;
727 size_t symcount;
728 size_t extsymcount;
729 size_t extsymoff;
730 Elf_External_Sym *buf = NULL;
731 struct elf_link_hash_entry **sym_hash;
732 boolean dynamic;
733 bfd_byte *dynver = NULL;
734 Elf_External_Versym *extversym = NULL;
735 Elf_External_Versym *ever;
736 Elf_External_Dyn *dynbuf = NULL;
737 struct elf_link_hash_entry *weaks;
738 Elf_External_Sym *esym;
739 Elf_External_Sym *esymend;
740
741 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
742 collect = get_elf_backend_data (abfd)->collect;
743
744 if ((abfd->flags & DYNAMIC) == 0)
745 dynamic = false;
746 else
747 {
748 dynamic = true;
749
750 /* You can't use -r against a dynamic object. Also, there's no
751 hope of using a dynamic object which does not exactly match
752 the format of the output file. */
753 if (info->relocateable || info->hash->creator != abfd->xvec)
754 {
755 bfd_set_error (bfd_error_invalid_operation);
756 goto error_return;
757 }
758 }
759
760 /* As a GNU extension, any input sections which are named
761 .gnu.warning.SYMBOL are treated as warning symbols for the given
762 symbol. This differs from .gnu.warning sections, which generate
763 warnings when they are included in an output file. */
764 if (! info->shared)
765 {
766 asection *s;
767
768 for (s = abfd->sections; s != NULL; s = s->next)
769 {
770 const char *name;
771
772 name = bfd_get_section_name (abfd, s);
773 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
774 {
775 char *msg;
776 bfd_size_type sz;
777
778 name += sizeof ".gnu.warning." - 1;
779
780 /* If this is a shared object, then look up the symbol
781 in the hash table. If it is there, and it is already
782 been defined, then we will not be using the entry
783 from this shared object, so we don't need to warn.
784 FIXME: If we see the definition in a regular object
785 later on, we will warn, but we shouldn't. The only
786 fix is to keep track of what warnings we are supposed
787 to emit, and then handle them all at the end of the
788 link. */
789 if (dynamic && abfd->xvec == info->hash->creator)
790 {
791 struct elf_link_hash_entry *h;
792
793 h = elf_link_hash_lookup (elf_hash_table (info), name,
794 false, false, true);
795
796 /* FIXME: What about bfd_link_hash_common? */
797 if (h != NULL
798 && (h->root.type == bfd_link_hash_defined
799 || h->root.type == bfd_link_hash_defweak))
800 {
801 /* We don't want to issue this warning. Clobber
802 the section size so that the warning does not
803 get copied into the output file. */
804 s->_raw_size = 0;
805 continue;
806 }
807 }
808
809 sz = bfd_section_size (abfd, s);
810 msg = (char *) bfd_alloc (abfd, sz + 1);
811 if (msg == NULL)
812 goto error_return;
813
814 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
815 goto error_return;
816
817 msg[sz] = '\0';
818
819 if (! (_bfd_generic_link_add_one_symbol
820 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
821 false, collect, (struct bfd_link_hash_entry **) NULL)))
822 goto error_return;
823
824 if (! info->relocateable)
825 {
826 /* Clobber the section size so that the warning does
827 not get copied into the output file. */
828 s->_raw_size = 0;
829 }
830 }
831 }
832 }
833
834 /* If this is a dynamic object, we always link against the .dynsym
835 symbol table, not the .symtab symbol table. The dynamic linker
836 will only see the .dynsym symbol table, so there is no reason to
837 look at .symtab for a dynamic object. */
838
839 if (! dynamic || elf_dynsymtab (abfd) == 0)
840 hdr = &elf_tdata (abfd)->symtab_hdr;
841 else
842 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
843
844 if (dynamic)
845 {
846 /* Read in any version definitions. */
847
848 if (! _bfd_elf_slurp_version_tables (abfd))
849 goto error_return;
850
851 /* Read in the symbol versions, but don't bother to convert them
852 to internal format. */
853 if (elf_dynversym (abfd) != 0)
854 {
855 Elf_Internal_Shdr *versymhdr;
856
857 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
858 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
859 if (extversym == NULL)
860 goto error_return;
861 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
862 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
863 != versymhdr->sh_size))
864 goto error_return;
865 }
866 }
867
868 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
869
870 /* The sh_info field of the symtab header tells us where the
871 external symbols start. We don't care about the local symbols at
872 this point. */
873 if (elf_bad_symtab (abfd))
874 {
875 extsymcount = symcount;
876 extsymoff = 0;
877 }
878 else
879 {
880 extsymcount = symcount - hdr->sh_info;
881 extsymoff = hdr->sh_info;
882 }
883
884 buf = ((Elf_External_Sym *)
885 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
886 if (buf == NULL && extsymcount != 0)
887 goto error_return;
888
889 /* We store a pointer to the hash table entry for each external
890 symbol. */
891 sym_hash = ((struct elf_link_hash_entry **)
892 bfd_alloc (abfd,
893 extsymcount * sizeof (struct elf_link_hash_entry *)));
894 if (sym_hash == NULL)
895 goto error_return;
896 elf_sym_hashes (abfd) = sym_hash;
897
898 if (! dynamic)
899 {
900 /* If we are creating a shared library, create all the dynamic
901 sections immediately. We need to attach them to something,
902 so we attach them to this BFD, provided it is the right
903 format. FIXME: If there are no input BFD's of the same
904 format as the output, we can't make a shared library. */
905 if (info->shared
906 && ! elf_hash_table (info)->dynamic_sections_created
907 && abfd->xvec == info->hash->creator)
908 {
909 if (! elf_link_create_dynamic_sections (abfd, info))
910 goto error_return;
911 }
912 }
913 else
914 {
915 asection *s;
916 boolean add_needed;
917 const char *name;
918 bfd_size_type oldsize;
919 bfd_size_type strindex;
920
921 /* Find the name to use in a DT_NEEDED entry that refers to this
922 object. If the object has a DT_SONAME entry, we use it.
923 Otherwise, if the generic linker stuck something in
924 elf_dt_name, we use that. Otherwise, we just use the file
925 name. If the generic linker put a null string into
926 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
927 there is a DT_SONAME entry. */
928 add_needed = true;
929 name = bfd_get_filename (abfd);
930 if (elf_dt_name (abfd) != NULL)
931 {
932 name = elf_dt_name (abfd);
933 if (*name == '\0')
934 add_needed = false;
935 }
936 s = bfd_get_section_by_name (abfd, ".dynamic");
937 if (s != NULL)
938 {
939 Elf_External_Dyn *extdyn;
940 Elf_External_Dyn *extdynend;
941 int elfsec;
942 unsigned long link;
943
944 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
945 if (dynbuf == NULL)
946 goto error_return;
947
948 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
949 (file_ptr) 0, s->_raw_size))
950 goto error_return;
951
952 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
953 if (elfsec == -1)
954 goto error_return;
955 link = elf_elfsections (abfd)[elfsec]->sh_link;
956
957 extdyn = dynbuf;
958 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
959 for (; extdyn < extdynend; extdyn++)
960 {
961 Elf_Internal_Dyn dyn;
962
963 elf_swap_dyn_in (abfd, extdyn, &dyn);
964 if (dyn.d_tag == DT_SONAME)
965 {
966 name = bfd_elf_string_from_elf_section (abfd, link,
967 dyn.d_un.d_val);
968 if (name == NULL)
969 goto error_return;
970 }
971 if (dyn.d_tag == DT_NEEDED)
972 {
973 struct bfd_link_needed_list *n, **pn;
974 char *fnm, *anm;
975
976 n = ((struct bfd_link_needed_list *)
977 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
978 fnm = bfd_elf_string_from_elf_section (abfd, link,
979 dyn.d_un.d_val);
980 if (n == NULL || fnm == NULL)
981 goto error_return;
982 anm = bfd_alloc (abfd, strlen (fnm) + 1);
983 if (anm == NULL)
984 goto error_return;
985 strcpy (anm, fnm);
986 n->name = anm;
987 n->by = abfd;
988 n->next = NULL;
989 for (pn = &elf_hash_table (info)->needed;
990 *pn != NULL;
991 pn = &(*pn)->next)
992 ;
993 *pn = n;
994 }
995 }
996
997 free (dynbuf);
998 dynbuf = NULL;
999 }
1000
1001 /* We do not want to include any of the sections in a dynamic
1002 object in the output file. We hack by simply clobbering the
1003 list of sections in the BFD. This could be handled more
1004 cleanly by, say, a new section flag; the existing
1005 SEC_NEVER_LOAD flag is not the one we want, because that one
1006 still implies that the section takes up space in the output
1007 file. */
1008 abfd->sections = NULL;
1009 abfd->section_count = 0;
1010
1011 /* If this is the first dynamic object found in the link, create
1012 the special sections required for dynamic linking. */
1013 if (! elf_hash_table (info)->dynamic_sections_created)
1014 {
1015 if (! elf_link_create_dynamic_sections (abfd, info))
1016 goto error_return;
1017 }
1018
1019 if (add_needed)
1020 {
1021 /* Add a DT_NEEDED entry for this dynamic object. */
1022 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1023 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1024 true, false);
1025 if (strindex == (bfd_size_type) -1)
1026 goto error_return;
1027
1028 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1029 {
1030 asection *sdyn;
1031 Elf_External_Dyn *dyncon, *dynconend;
1032
1033 /* The hash table size did not change, which means that
1034 the dynamic object name was already entered. If we
1035 have already included this dynamic object in the
1036 link, just ignore it. There is no reason to include
1037 a particular dynamic object more than once. */
1038 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1039 ".dynamic");
1040 BFD_ASSERT (sdyn != NULL);
1041
1042 dyncon = (Elf_External_Dyn *) sdyn->contents;
1043 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1044 sdyn->_raw_size);
1045 for (; dyncon < dynconend; dyncon++)
1046 {
1047 Elf_Internal_Dyn dyn;
1048
1049 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1050 &dyn);
1051 if (dyn.d_tag == DT_NEEDED
1052 && dyn.d_un.d_val == strindex)
1053 {
1054 if (buf != NULL)
1055 free (buf);
1056 if (extversym != NULL)
1057 free (extversym);
1058 return true;
1059 }
1060 }
1061 }
1062
1063 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1064 goto error_return;
1065 }
1066
1067 /* Save the SONAME, if there is one, because sometimes the
1068 linker emulation code will need to know it. */
1069 if (*name == '\0')
1070 name = bfd_get_filename (abfd);
1071 elf_dt_name (abfd) = name;
1072 }
1073
1074 if (bfd_seek (abfd,
1075 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1076 SEEK_SET) != 0
1077 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1078 != extsymcount * sizeof (Elf_External_Sym)))
1079 goto error_return;
1080
1081 weaks = NULL;
1082
1083 ever = extversym != NULL ? extversym + extsymoff : NULL;
1084 esymend = buf + extsymcount;
1085 for (esym = buf;
1086 esym < esymend;
1087 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1088 {
1089 Elf_Internal_Sym sym;
1090 int bind;
1091 bfd_vma value;
1092 asection *sec;
1093 flagword flags;
1094 const char *name;
1095 struct elf_link_hash_entry *h;
1096 boolean definition;
1097 boolean size_change_ok, type_change_ok;
1098 boolean new_weakdef;
1099 unsigned int old_alignment;
1100
1101 elf_swap_symbol_in (abfd, esym, &sym);
1102
1103 flags = BSF_NO_FLAGS;
1104 sec = NULL;
1105 value = sym.st_value;
1106 *sym_hash = NULL;
1107
1108 bind = ELF_ST_BIND (sym.st_info);
1109 if (bind == STB_LOCAL)
1110 {
1111 /* This should be impossible, since ELF requires that all
1112 global symbols follow all local symbols, and that sh_info
1113 point to the first global symbol. Unfortunatealy, Irix 5
1114 screws this up. */
1115 continue;
1116 }
1117 else if (bind == STB_GLOBAL)
1118 {
1119 if (sym.st_shndx != SHN_UNDEF
1120 && sym.st_shndx != SHN_COMMON)
1121 flags = BSF_GLOBAL;
1122 else
1123 flags = 0;
1124 }
1125 else if (bind == STB_WEAK)
1126 flags = BSF_WEAK;
1127 else
1128 {
1129 /* Leave it up to the processor backend. */
1130 }
1131
1132 if (sym.st_shndx == SHN_UNDEF)
1133 sec = bfd_und_section_ptr;
1134 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1135 {
1136 sec = section_from_elf_index (abfd, sym.st_shndx);
1137 if (sec == NULL)
1138 sec = bfd_abs_section_ptr;
1139 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1140 value -= sec->vma;
1141 }
1142 else if (sym.st_shndx == SHN_ABS)
1143 sec = bfd_abs_section_ptr;
1144 else if (sym.st_shndx == SHN_COMMON)
1145 {
1146 sec = bfd_com_section_ptr;
1147 /* What ELF calls the size we call the value. What ELF
1148 calls the value we call the alignment. */
1149 value = sym.st_size;
1150 }
1151 else
1152 {
1153 /* Leave it up to the processor backend. */
1154 }
1155
1156 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1157 if (name == (const char *) NULL)
1158 goto error_return;
1159
1160 if (add_symbol_hook)
1161 {
1162 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1163 &value))
1164 goto error_return;
1165
1166 /* The hook function sets the name to NULL if this symbol
1167 should be skipped for some reason. */
1168 if (name == (const char *) NULL)
1169 continue;
1170 }
1171
1172 /* Sanity check that all possibilities were handled. */
1173 if (sec == (asection *) NULL)
1174 {
1175 bfd_set_error (bfd_error_bad_value);
1176 goto error_return;
1177 }
1178
1179 if (bfd_is_und_section (sec)
1180 || bfd_is_com_section (sec))
1181 definition = false;
1182 else
1183 definition = true;
1184
1185 size_change_ok = false;
1186 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1187 old_alignment = 0;
1188 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1189 {
1190 Elf_Internal_Versym iver;
1191 unsigned int vernum = 0;
1192 boolean override;
1193
1194 if (ever != NULL)
1195 {
1196 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1197 vernum = iver.vs_vers & VERSYM_VERSION;
1198
1199 /* If this is a hidden symbol, or if it is not version
1200 1, we append the version name to the symbol name.
1201 However, we do not modify a non-hidden absolute
1202 symbol, because it might be the version symbol
1203 itself. FIXME: What if it isn't? */
1204 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1205 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1206 {
1207 const char *verstr;
1208 int namelen, newlen;
1209 char *newname, *p;
1210
1211 if (sym.st_shndx != SHN_UNDEF)
1212 {
1213 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1214 {
1215 (*_bfd_error_handler)
1216 (_("%s: %s: invalid version %u (max %d)"),
1217 bfd_get_filename (abfd), name, vernum,
1218 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1219 bfd_set_error (bfd_error_bad_value);
1220 goto error_return;
1221 }
1222 else if (vernum > 1)
1223 verstr =
1224 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1225 else
1226 verstr = "";
1227 }
1228 else
1229 {
1230 /* We cannot simply test for the number of
1231 entries in the VERNEED section since the
1232 numbers for the needed versions do not start
1233 at 0. */
1234 Elf_Internal_Verneed *t;
1235
1236 verstr = NULL;
1237 for (t = elf_tdata (abfd)->verref;
1238 t != NULL;
1239 t = t->vn_nextref)
1240 {
1241 Elf_Internal_Vernaux *a;
1242
1243 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1244 {
1245 if (a->vna_other == vernum)
1246 {
1247 verstr = a->vna_nodename;
1248 break;
1249 }
1250 }
1251 if (a != NULL)
1252 break;
1253 }
1254 if (verstr == NULL)
1255 {
1256 (*_bfd_error_handler)
1257 (_("%s: %s: invalid needed version %d"),
1258 bfd_get_filename (abfd), name, vernum);
1259 bfd_set_error (bfd_error_bad_value);
1260 goto error_return;
1261 }
1262 }
1263
1264 namelen = strlen (name);
1265 newlen = namelen + strlen (verstr) + 2;
1266 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1267 ++newlen;
1268
1269 newname = (char *) bfd_alloc (abfd, newlen);
1270 if (newname == NULL)
1271 goto error_return;
1272 strcpy (newname, name);
1273 p = newname + namelen;
1274 *p++ = ELF_VER_CHR;
1275 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1276 *p++ = ELF_VER_CHR;
1277 strcpy (p, verstr);
1278
1279 name = newname;
1280 }
1281 }
1282
1283 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1284 sym_hash, &override, &type_change_ok,
1285 &size_change_ok))
1286 goto error_return;
1287
1288 if (override)
1289 definition = false;
1290
1291 h = *sym_hash;
1292 while (h->root.type == bfd_link_hash_indirect
1293 || h->root.type == bfd_link_hash_warning)
1294 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1295
1296 /* Remember the old alignment if this is a common symbol, so
1297 that we don't reduce the alignment later on. We can't
1298 check later, because _bfd_generic_link_add_one_symbol
1299 will set a default for the alignment which we want to
1300 override. */
1301 if (h->root.type == bfd_link_hash_common)
1302 old_alignment = h->root.u.c.p->alignment_power;
1303
1304 if (elf_tdata (abfd)->verdef != NULL
1305 && ! override
1306 && vernum > 1
1307 && definition)
1308 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1309 }
1310
1311 if (! (_bfd_generic_link_add_one_symbol
1312 (info, abfd, name, flags, sec, value, (const char *) NULL,
1313 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1314 goto error_return;
1315
1316 h = *sym_hash;
1317 while (h->root.type == bfd_link_hash_indirect
1318 || h->root.type == bfd_link_hash_warning)
1319 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1320 *sym_hash = h;
1321
1322 new_weakdef = false;
1323 if (dynamic
1324 && definition
1325 && (flags & BSF_WEAK) != 0
1326 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1327 && info->hash->creator->flavour == bfd_target_elf_flavour
1328 && h->weakdef == NULL)
1329 {
1330 /* Keep a list of all weak defined non function symbols from
1331 a dynamic object, using the weakdef field. Later in this
1332 function we will set the weakdef field to the correct
1333 value. We only put non-function symbols from dynamic
1334 objects on this list, because that happens to be the only
1335 time we need to know the normal symbol corresponding to a
1336 weak symbol, and the information is time consuming to
1337 figure out. If the weakdef field is not already NULL,
1338 then this symbol was already defined by some previous
1339 dynamic object, and we will be using that previous
1340 definition anyhow. */
1341
1342 h->weakdef = weaks;
1343 weaks = h;
1344 new_weakdef = true;
1345 }
1346
1347 /* Set the alignment of a common symbol. */
1348 if (sym.st_shndx == SHN_COMMON
1349 && h->root.type == bfd_link_hash_common)
1350 {
1351 unsigned int align;
1352
1353 align = bfd_log2 (sym.st_value);
1354 if (align > old_alignment)
1355 h->root.u.c.p->alignment_power = align;
1356 }
1357
1358 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1359 {
1360 int old_flags;
1361 boolean dynsym;
1362 int new_flag;
1363
1364 /* Remember the symbol size and type. */
1365 if (sym.st_size != 0
1366 && (definition || h->size == 0))
1367 {
1368 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1369 (*_bfd_error_handler)
1370 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1371 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1372 bfd_get_filename (abfd));
1373
1374 h->size = sym.st_size;
1375 }
1376
1377 /* If this is a common symbol, then we always want H->SIZE
1378 to be the size of the common symbol. The code just above
1379 won't fix the size if a common symbol becomes larger. We
1380 don't warn about a size change here, because that is
1381 covered by --warn-common. */
1382 if (h->root.type == bfd_link_hash_common)
1383 h->size = h->root.u.c.size;
1384
1385 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1386 && (definition || h->type == STT_NOTYPE))
1387 {
1388 if (h->type != STT_NOTYPE
1389 && h->type != ELF_ST_TYPE (sym.st_info)
1390 && ! type_change_ok)
1391 (*_bfd_error_handler)
1392 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1393 name, h->type, ELF_ST_TYPE (sym.st_info),
1394 bfd_get_filename (abfd));
1395
1396 h->type = ELF_ST_TYPE (sym.st_info);
1397 }
1398
1399 if (sym.st_other != 0
1400 && (definition || h->other == 0))
1401 h->other = sym.st_other;
1402
1403 /* Set a flag in the hash table entry indicating the type of
1404 reference or definition we just found. Keep a count of
1405 the number of dynamic symbols we find. A dynamic symbol
1406 is one which is referenced or defined by both a regular
1407 object and a shared object. */
1408 old_flags = h->elf_link_hash_flags;
1409 dynsym = false;
1410 if (! dynamic)
1411 {
1412 if (! definition)
1413 {
1414 new_flag = ELF_LINK_HASH_REF_REGULAR;
1415 if (bind != STB_WEAK)
1416 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1417 }
1418 else
1419 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1420 if (info->shared
1421 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1422 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1423 dynsym = true;
1424 }
1425 else
1426 {
1427 if (! definition)
1428 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1429 else
1430 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1431 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1432 | ELF_LINK_HASH_REF_REGULAR)) != 0
1433 || (h->weakdef != NULL
1434 && ! new_weakdef
1435 && h->weakdef->dynindx != -1))
1436 dynsym = true;
1437 }
1438
1439 h->elf_link_hash_flags |= new_flag;
1440
1441 /* If this symbol has a version, and it is the default
1442 version, we create an indirect symbol from the default
1443 name to the fully decorated name. This will cause
1444 external references which do not specify a version to be
1445 bound to this version of the symbol. */
1446 if (definition)
1447 {
1448 char *p;
1449
1450 p = strchr (name, ELF_VER_CHR);
1451 if (p != NULL && p[1] == ELF_VER_CHR)
1452 {
1453 char *shortname;
1454 struct elf_link_hash_entry *hi;
1455 boolean override;
1456
1457 shortname = bfd_hash_allocate (&info->hash->table,
1458 p - name + 1);
1459 if (shortname == NULL)
1460 goto error_return;
1461 strncpy (shortname, name, p - name);
1462 shortname[p - name] = '\0';
1463
1464 /* We are going to create a new symbol. Merge it
1465 with any existing symbol with this name. For the
1466 purposes of the merge, act as though we were
1467 defining the symbol we just defined, although we
1468 actually going to define an indirect symbol. */
1469 type_change_ok = false;
1470 size_change_ok = false;
1471 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1472 &value, &hi, &override,
1473 &type_change_ok, &size_change_ok))
1474 goto error_return;
1475
1476 if (! override)
1477 {
1478 if (! (_bfd_generic_link_add_one_symbol
1479 (info, abfd, shortname, BSF_INDIRECT,
1480 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1481 collect, (struct bfd_link_hash_entry **) &hi)))
1482 goto error_return;
1483 }
1484 else
1485 {
1486 /* In this case the symbol named SHORTNAME is
1487 overriding the indirect symbol we want to
1488 add. We were planning on making SHORTNAME an
1489 indirect symbol referring to NAME. SHORTNAME
1490 is the name without a version. NAME is the
1491 fully versioned name, and it is the default
1492 version.
1493
1494 Overriding means that we already saw a
1495 definition for the symbol SHORTNAME in a
1496 regular object, and it is overriding the
1497 symbol defined in the dynamic object.
1498
1499 When this happens, we actually want to change
1500 NAME, the symbol we just added, to refer to
1501 SHORTNAME. This will cause references to
1502 NAME in the shared object to become
1503 references to SHORTNAME in the regular
1504 object. This is what we expect when we
1505 override a function in a shared object: that
1506 the references in the shared object will be
1507 mapped to the definition in the regular
1508 object. */
1509
1510 while (hi->root.type == bfd_link_hash_indirect
1511 || hi->root.type == bfd_link_hash_warning)
1512 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1513
1514 h->root.type = bfd_link_hash_indirect;
1515 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1516 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1517 {
1518 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1519 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1520 if (hi->elf_link_hash_flags
1521 & (ELF_LINK_HASH_REF_REGULAR
1522 | ELF_LINK_HASH_DEF_REGULAR))
1523 {
1524 if (! _bfd_elf_link_record_dynamic_symbol (info,
1525 hi))
1526 goto error_return;
1527 }
1528 }
1529
1530 /* Now set HI to H, so that the following code
1531 will set the other fields correctly. */
1532 hi = h;
1533 }
1534
1535 /* If there is a duplicate definition somewhere,
1536 then HI may not point to an indirect symbol. We
1537 will have reported an error to the user in that
1538 case. */
1539
1540 if (hi->root.type == bfd_link_hash_indirect)
1541 {
1542 struct elf_link_hash_entry *ht;
1543
1544 /* If the symbol became indirect, then we assume
1545 that we have not seen a definition before. */
1546 BFD_ASSERT ((hi->elf_link_hash_flags
1547 & (ELF_LINK_HASH_DEF_DYNAMIC
1548 | ELF_LINK_HASH_DEF_REGULAR))
1549 == 0);
1550
1551 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1552
1553 /* Copy down any references that we may have
1554 already seen to the symbol which just became
1555 indirect. */
1556 ht->elf_link_hash_flags |=
1557 (hi->elf_link_hash_flags
1558 & (ELF_LINK_HASH_REF_DYNAMIC
1559 | ELF_LINK_HASH_REF_REGULAR
1560 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
1561
1562 /* Copy over the global and procedure linkage table
1563 offset entries. These may have been already set
1564 up by a check_relocs routine. */
1565 if (ht->got.offset == (bfd_vma) -1)
1566 {
1567 ht->got.offset = hi->got.offset;
1568 hi->got.offset = (bfd_vma) -1;
1569 }
1570 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1571
1572 if (ht->plt.offset == (bfd_vma) -1)
1573 {
1574 ht->plt.offset = hi->plt.offset;
1575 hi->plt.offset = (bfd_vma) -1;
1576 }
1577 BFD_ASSERT (hi->plt.offset == (bfd_vma) -1);
1578
1579 if (ht->dynindx == -1)
1580 {
1581 ht->dynindx = hi->dynindx;
1582 ht->dynstr_index = hi->dynstr_index;
1583 hi->dynindx = -1;
1584 hi->dynstr_index = 0;
1585 }
1586 BFD_ASSERT (hi->dynindx == -1);
1587
1588 /* FIXME: There may be other information to copy
1589 over for particular targets. */
1590
1591 /* See if the new flags lead us to realize that
1592 the symbol must be dynamic. */
1593 if (! dynsym)
1594 {
1595 if (! dynamic)
1596 {
1597 if (info->shared
1598 || ((hi->elf_link_hash_flags
1599 & ELF_LINK_HASH_REF_DYNAMIC)
1600 != 0))
1601 dynsym = true;
1602 }
1603 else
1604 {
1605 if ((hi->elf_link_hash_flags
1606 & ELF_LINK_HASH_REF_REGULAR) != 0)
1607 dynsym = true;
1608 }
1609 }
1610 }
1611
1612 /* We also need to define an indirection from the
1613 nondefault version of the symbol. */
1614
1615 shortname = bfd_hash_allocate (&info->hash->table,
1616 strlen (name));
1617 if (shortname == NULL)
1618 goto error_return;
1619 strncpy (shortname, name, p - name);
1620 strcpy (shortname + (p - name), p + 1);
1621
1622 /* Once again, merge with any existing symbol. */
1623 type_change_ok = false;
1624 size_change_ok = false;
1625 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1626 &value, &hi, &override,
1627 &type_change_ok, &size_change_ok))
1628 goto error_return;
1629
1630 if (override)
1631 {
1632 /* Here SHORTNAME is a versioned name, so we
1633 don't expect to see the type of override we
1634 do in the case above. */
1635 (*_bfd_error_handler)
1636 (_("%s: warning: unexpected redefinition of `%s'"),
1637 bfd_get_filename (abfd), shortname);
1638 }
1639 else
1640 {
1641 if (! (_bfd_generic_link_add_one_symbol
1642 (info, abfd, shortname, BSF_INDIRECT,
1643 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1644 collect, (struct bfd_link_hash_entry **) &hi)))
1645 goto error_return;
1646
1647 /* If there is a duplicate definition somewhere,
1648 then HI may not point to an indirect symbol.
1649 We will have reported an error to the user in
1650 that case. */
1651
1652 if (hi->root.type == bfd_link_hash_indirect)
1653 {
1654 /* If the symbol became indirect, then we
1655 assume that we have not seen a definition
1656 before. */
1657 BFD_ASSERT ((hi->elf_link_hash_flags
1658 & (ELF_LINK_HASH_DEF_DYNAMIC
1659 | ELF_LINK_HASH_DEF_REGULAR))
1660 == 0);
1661
1662 /* Copy down any references that we may have
1663 already seen to the symbol which just
1664 became indirect. */
1665 h->elf_link_hash_flags |=
1666 (hi->elf_link_hash_flags
1667 & (ELF_LINK_HASH_REF_DYNAMIC
1668 | ELF_LINK_HASH_REF_REGULAR
1669 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
1670
1671 /* Copy over the global and procedure linkage
1672 table offset entries. These may have been
1673 already set up by a check_relocs routine. */
1674 if (h->got.offset == (bfd_vma) -1)
1675 {
1676 h->got.offset = hi->got.offset;
1677 hi->got.offset = (bfd_vma) -1;
1678 }
1679 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1680
1681 if (h->plt.offset == (bfd_vma) -1)
1682 {
1683 h->plt.offset = hi->plt.offset;
1684 hi->plt.offset = (bfd_vma) -1;
1685 }
1686 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1687
1688 if (h->dynindx == -1)
1689 {
1690 h->dynindx = hi->dynindx;
1691 h->dynstr_index = hi->dynstr_index;
1692 hi->dynindx = -1;
1693 hi->dynstr_index = 0;
1694 }
1695 BFD_ASSERT (hi->dynindx == -1);
1696
1697 /* FIXME: There may be other information to
1698 copy over for particular targets. */
1699
1700 /* See if the new flags lead us to realize
1701 that the symbol must be dynamic. */
1702 if (! dynsym)
1703 {
1704 if (! dynamic)
1705 {
1706 if (info->shared
1707 || ((hi->elf_link_hash_flags
1708 & ELF_LINK_HASH_REF_DYNAMIC)
1709 != 0))
1710 dynsym = true;
1711 }
1712 else
1713 {
1714 if ((hi->elf_link_hash_flags
1715 & ELF_LINK_HASH_REF_REGULAR) != 0)
1716 dynsym = true;
1717 }
1718 }
1719 }
1720 }
1721 }
1722 }
1723
1724 if (dynsym && h->dynindx == -1)
1725 {
1726 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1727 goto error_return;
1728 if (h->weakdef != NULL
1729 && ! new_weakdef
1730 && h->weakdef->dynindx == -1)
1731 {
1732 if (! _bfd_elf_link_record_dynamic_symbol (info,
1733 h->weakdef))
1734 goto error_return;
1735 }
1736 }
1737 }
1738 }
1739
1740 /* Now set the weakdefs field correctly for all the weak defined
1741 symbols we found. The only way to do this is to search all the
1742 symbols. Since we only need the information for non functions in
1743 dynamic objects, that's the only time we actually put anything on
1744 the list WEAKS. We need this information so that if a regular
1745 object refers to a symbol defined weakly in a dynamic object, the
1746 real symbol in the dynamic object is also put in the dynamic
1747 symbols; we also must arrange for both symbols to point to the
1748 same memory location. We could handle the general case of symbol
1749 aliasing, but a general symbol alias can only be generated in
1750 assembler code, handling it correctly would be very time
1751 consuming, and other ELF linkers don't handle general aliasing
1752 either. */
1753 while (weaks != NULL)
1754 {
1755 struct elf_link_hash_entry *hlook;
1756 asection *slook;
1757 bfd_vma vlook;
1758 struct elf_link_hash_entry **hpp;
1759 struct elf_link_hash_entry **hppend;
1760
1761 hlook = weaks;
1762 weaks = hlook->weakdef;
1763 hlook->weakdef = NULL;
1764
1765 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1766 || hlook->root.type == bfd_link_hash_defweak
1767 || hlook->root.type == bfd_link_hash_common
1768 || hlook->root.type == bfd_link_hash_indirect);
1769 slook = hlook->root.u.def.section;
1770 vlook = hlook->root.u.def.value;
1771
1772 hpp = elf_sym_hashes (abfd);
1773 hppend = hpp + extsymcount;
1774 for (; hpp < hppend; hpp++)
1775 {
1776 struct elf_link_hash_entry *h;
1777
1778 h = *hpp;
1779 if (h != NULL && h != hlook
1780 && h->root.type == bfd_link_hash_defined
1781 && h->root.u.def.section == slook
1782 && h->root.u.def.value == vlook)
1783 {
1784 hlook->weakdef = h;
1785
1786 /* If the weak definition is in the list of dynamic
1787 symbols, make sure the real definition is put there
1788 as well. */
1789 if (hlook->dynindx != -1
1790 && h->dynindx == -1)
1791 {
1792 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1793 goto error_return;
1794 }
1795
1796 /* If the real definition is in the list of dynamic
1797 symbols, make sure the weak definition is put there
1798 as well. If we don't do this, then the dynamic
1799 loader might not merge the entries for the real
1800 definition and the weak definition. */
1801 if (h->dynindx != -1
1802 && hlook->dynindx == -1)
1803 {
1804 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1805 goto error_return;
1806 }
1807
1808 break;
1809 }
1810 }
1811 }
1812
1813 if (buf != NULL)
1814 {
1815 free (buf);
1816 buf = NULL;
1817 }
1818
1819 if (extversym != NULL)
1820 {
1821 free (extversym);
1822 extversym = NULL;
1823 }
1824
1825 /* If this object is the same format as the output object, and it is
1826 not a shared library, then let the backend look through the
1827 relocs.
1828
1829 This is required to build global offset table entries and to
1830 arrange for dynamic relocs. It is not required for the
1831 particular common case of linking non PIC code, even when linking
1832 against shared libraries, but unfortunately there is no way of
1833 knowing whether an object file has been compiled PIC or not.
1834 Looking through the relocs is not particularly time consuming.
1835 The problem is that we must either (1) keep the relocs in memory,
1836 which causes the linker to require additional runtime memory or
1837 (2) read the relocs twice from the input file, which wastes time.
1838 This would be a good case for using mmap.
1839
1840 I have no idea how to handle linking PIC code into a file of a
1841 different format. It probably can't be done. */
1842 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1843 if (! dynamic
1844 && abfd->xvec == info->hash->creator
1845 && check_relocs != NULL)
1846 {
1847 asection *o;
1848
1849 for (o = abfd->sections; o != NULL; o = o->next)
1850 {
1851 Elf_Internal_Rela *internal_relocs;
1852 boolean ok;
1853
1854 if ((o->flags & SEC_RELOC) == 0
1855 || o->reloc_count == 0
1856 || ((info->strip == strip_all || info->strip == strip_debugger)
1857 && (o->flags & SEC_DEBUGGING) != 0)
1858 || bfd_is_abs_section (o->output_section))
1859 continue;
1860
1861 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1862 (abfd, o, (PTR) NULL,
1863 (Elf_Internal_Rela *) NULL,
1864 info->keep_memory));
1865 if (internal_relocs == NULL)
1866 goto error_return;
1867
1868 ok = (*check_relocs) (abfd, info, o, internal_relocs);
1869
1870 if (! info->keep_memory)
1871 free (internal_relocs);
1872
1873 if (! ok)
1874 goto error_return;
1875 }
1876 }
1877
1878 /* If this is a non-traditional, non-relocateable link, try to
1879 optimize the handling of the .stab/.stabstr sections. */
1880 if (! dynamic
1881 && ! info->relocateable
1882 && ! info->traditional_format
1883 && info->hash->creator->flavour == bfd_target_elf_flavour
1884 && (info->strip != strip_all && info->strip != strip_debugger))
1885 {
1886 asection *stab, *stabstr;
1887
1888 stab = bfd_get_section_by_name (abfd, ".stab");
1889 if (stab != NULL)
1890 {
1891 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
1892
1893 if (stabstr != NULL)
1894 {
1895 struct bfd_elf_section_data *secdata;
1896
1897 secdata = elf_section_data (stab);
1898 if (! _bfd_link_section_stabs (abfd,
1899 &elf_hash_table (info)->stab_info,
1900 stab, stabstr,
1901 &secdata->stab_info))
1902 goto error_return;
1903 }
1904 }
1905 }
1906
1907 return true;
1908
1909 error_return:
1910 if (buf != NULL)
1911 free (buf);
1912 if (dynbuf != NULL)
1913 free (dynbuf);
1914 if (dynver != NULL)
1915 free (dynver);
1916 if (extversym != NULL)
1917 free (extversym);
1918 return false;
1919 }
1920
1921 /* Create some sections which will be filled in with dynamic linking
1922 information. ABFD is an input file which requires dynamic sections
1923 to be created. The dynamic sections take up virtual memory space
1924 when the final executable is run, so we need to create them before
1925 addresses are assigned to the output sections. We work out the
1926 actual contents and size of these sections later. */
1927
1928 boolean
1929 elf_link_create_dynamic_sections (abfd, info)
1930 bfd *abfd;
1931 struct bfd_link_info *info;
1932 {
1933 flagword flags;
1934 register asection *s;
1935 struct elf_link_hash_entry *h;
1936 struct elf_backend_data *bed;
1937
1938 if (elf_hash_table (info)->dynamic_sections_created)
1939 return true;
1940
1941 /* Make sure that all dynamic sections use the same input BFD. */
1942 if (elf_hash_table (info)->dynobj == NULL)
1943 elf_hash_table (info)->dynobj = abfd;
1944 else
1945 abfd = elf_hash_table (info)->dynobj;
1946
1947 /* Note that we set the SEC_IN_MEMORY flag for all of these
1948 sections. */
1949 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
1950 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1951
1952 /* A dynamically linked executable has a .interp section, but a
1953 shared library does not. */
1954 if (! info->shared)
1955 {
1956 s = bfd_make_section (abfd, ".interp");
1957 if (s == NULL
1958 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1959 return false;
1960 }
1961
1962 /* Create sections to hold version informations. These are removed
1963 if they are not needed. */
1964 s = bfd_make_section (abfd, ".gnu.version_d");
1965 if (s == NULL
1966 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1967 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1968 return false;
1969
1970 s = bfd_make_section (abfd, ".gnu.version");
1971 if (s == NULL
1972 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1973 || ! bfd_set_section_alignment (abfd, s, 1))
1974 return false;
1975
1976 s = bfd_make_section (abfd, ".gnu.version_r");
1977 if (s == NULL
1978 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1979 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1980 return false;
1981
1982 s = bfd_make_section (abfd, ".dynsym");
1983 if (s == NULL
1984 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1985 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1986 return false;
1987
1988 s = bfd_make_section (abfd, ".dynstr");
1989 if (s == NULL
1990 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1991 return false;
1992
1993 /* Create a strtab to hold the dynamic symbol names. */
1994 if (elf_hash_table (info)->dynstr == NULL)
1995 {
1996 elf_hash_table (info)->dynstr = elf_stringtab_init ();
1997 if (elf_hash_table (info)->dynstr == NULL)
1998 return false;
1999 }
2000
2001 s = bfd_make_section (abfd, ".dynamic");
2002 if (s == NULL
2003 || ! bfd_set_section_flags (abfd, s, flags)
2004 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2005 return false;
2006
2007 /* The special symbol _DYNAMIC is always set to the start of the
2008 .dynamic section. This call occurs before we have processed the
2009 symbols for any dynamic object, so we don't have to worry about
2010 overriding a dynamic definition. We could set _DYNAMIC in a
2011 linker script, but we only want to define it if we are, in fact,
2012 creating a .dynamic section. We don't want to define it if there
2013 is no .dynamic section, since on some ELF platforms the start up
2014 code examines it to decide how to initialize the process. */
2015 h = NULL;
2016 if (! (_bfd_generic_link_add_one_symbol
2017 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2018 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2019 (struct bfd_link_hash_entry **) &h)))
2020 return false;
2021 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2022 h->type = STT_OBJECT;
2023
2024 if (info->shared
2025 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2026 return false;
2027
2028 bed = get_elf_backend_data (abfd);
2029
2030 s = bfd_make_section (abfd, ".hash");
2031 if (s == NULL
2032 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2033 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2034 return false;
2035 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2036
2037 /* Let the backend create the rest of the sections. This lets the
2038 backend set the right flags. The backend will normally create
2039 the .got and .plt sections. */
2040 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2041 return false;
2042
2043 elf_hash_table (info)->dynamic_sections_created = true;
2044
2045 return true;
2046 }
2047
2048 /* Add an entry to the .dynamic table. */
2049
2050 boolean
2051 elf_add_dynamic_entry (info, tag, val)
2052 struct bfd_link_info *info;
2053 bfd_vma tag;
2054 bfd_vma val;
2055 {
2056 Elf_Internal_Dyn dyn;
2057 bfd *dynobj;
2058 asection *s;
2059 size_t newsize;
2060 bfd_byte *newcontents;
2061
2062 dynobj = elf_hash_table (info)->dynobj;
2063
2064 s = bfd_get_section_by_name (dynobj, ".dynamic");
2065 BFD_ASSERT (s != NULL);
2066
2067 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2068 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2069 if (newcontents == NULL)
2070 return false;
2071
2072 dyn.d_tag = tag;
2073 dyn.d_un.d_val = val;
2074 elf_swap_dyn_out (dynobj, &dyn,
2075 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2076
2077 s->_raw_size = newsize;
2078 s->contents = newcontents;
2079
2080 return true;
2081 }
2082
2083 /* Record a new local dynamic symbol. */
2084
2085 boolean
2086 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2087 struct bfd_link_info *info;
2088 bfd *input_bfd;
2089 long input_indx;
2090 {
2091 struct elf_link_local_dynamic_entry *entry;
2092 struct elf_link_hash_table *eht;
2093 struct bfd_strtab_hash *dynstr;
2094 Elf_External_Sym esym;
2095 unsigned long dynstr_index;
2096 char *name;
2097
2098 /* See if the entry exists already. */
2099 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2100 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2101 return true;
2102
2103 entry = (struct elf_link_local_dynamic_entry *)
2104 bfd_alloc (input_bfd, sizeof (*entry));
2105 if (entry == NULL)
2106 return false;
2107
2108 /* Go find the symbol, so that we can find it's name. */
2109 if (bfd_seek (input_bfd,
2110 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2111 + input_indx * sizeof (Elf_External_Sym)),
2112 SEEK_SET) != 0
2113 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2114 != sizeof (Elf_External_Sym)))
2115 return false;
2116 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2117
2118 name = (bfd_elf_string_from_elf_section
2119 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2120 entry->isym.st_name));
2121
2122 dynstr = elf_hash_table (info)->dynstr;
2123 if (dynstr == NULL)
2124 {
2125 /* Create a strtab to hold the dynamic symbol names. */
2126 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2127 if (dynstr == NULL)
2128 return false;
2129 }
2130
2131 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2132 if (dynstr_index == (unsigned long) -1)
2133 return false;
2134 entry->isym.st_name = dynstr_index;
2135
2136 eht = elf_hash_table (info);
2137
2138 entry->next = eht->dynlocal;
2139 eht->dynlocal = entry;
2140 entry->input_bfd = input_bfd;
2141 entry->input_indx = input_indx;
2142 eht->dynsymcount++;
2143
2144 /* Whatever binding the symbol had before, it's now local. */
2145 entry->isym.st_info
2146 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2147
2148 /* The dynindx will be set at the end of size_dynamic_sections. */
2149
2150 return true;
2151 }
2152 \f
2153
2154 /* Read and swap the relocs from the section indicated by SHDR. This
2155 may be either a REL or a RELA section. The relocations are
2156 translated into RELA relocations and stored in INTERNAL_RELOCS,
2157 which should have already been allocated to contain enough space.
2158 The EXTERNAL_RELOCS are a buffer where the external form of the
2159 relocations should be stored.
2160
2161 Returns false if something goes wrong. */
2162
2163 static boolean
2164 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2165 internal_relocs)
2166 bfd *abfd;
2167 Elf_Internal_Shdr *shdr;
2168 PTR external_relocs;
2169 Elf_Internal_Rela *internal_relocs;
2170 {
2171 struct elf_backend_data *bed;
2172
2173 /* If there aren't any relocations, that's OK. */
2174 if (!shdr)
2175 return true;
2176
2177 /* Position ourselves at the start of the section. */
2178 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2179 return false;
2180
2181 /* Read the relocations. */
2182 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2183 != shdr->sh_size)
2184 return false;
2185
2186 bed = get_elf_backend_data (abfd);
2187
2188 /* Convert the external relocations to the internal format. */
2189 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2190 {
2191 Elf_External_Rel *erel;
2192 Elf_External_Rel *erelend;
2193 Elf_Internal_Rela *irela;
2194 Elf_Internal_Rel *irel;
2195
2196 erel = (Elf_External_Rel *) external_relocs;
2197 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2198 irela = internal_relocs;
2199 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2200 * sizeof (Elf_Internal_Rel)));
2201 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2202 {
2203 unsigned char i;
2204
2205 if (bed->s->swap_reloc_in)
2206 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2207 else
2208 elf_swap_reloc_in (abfd, erel, irel);
2209
2210 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2211 {
2212 irela[i].r_offset = irel[i].r_offset;
2213 irela[i].r_info = irel[i].r_info;
2214 irela[i].r_addend = 0;
2215 }
2216 }
2217 }
2218 else
2219 {
2220 Elf_External_Rela *erela;
2221 Elf_External_Rela *erelaend;
2222 Elf_Internal_Rela *irela;
2223
2224 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2225
2226 erela = (Elf_External_Rela *) external_relocs;
2227 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2228 irela = internal_relocs;
2229 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2230 {
2231 if (bed->s->swap_reloca_in)
2232 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2233 else
2234 elf_swap_reloca_in (abfd, erela, irela);
2235 }
2236 }
2237
2238 return true;
2239 }
2240
2241 /* Read and swap the relocs for a section O. They may have been
2242 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2243 not NULL, they are used as buffers to read into. They are known to
2244 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2245 the return value is allocated using either malloc or bfd_alloc,
2246 according to the KEEP_MEMORY argument. If O has two relocation
2247 sections (both REL and RELA relocations), then the REL_HDR
2248 relocations will appear first in INTERNAL_RELOCS, followed by the
2249 REL_HDR2 relocations. */
2250
2251 Elf_Internal_Rela *
2252 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2253 keep_memory)
2254 bfd *abfd;
2255 asection *o;
2256 PTR external_relocs;
2257 Elf_Internal_Rela *internal_relocs;
2258 boolean keep_memory;
2259 {
2260 Elf_Internal_Shdr *rel_hdr;
2261 PTR alloc1 = NULL;
2262 Elf_Internal_Rela *alloc2 = NULL;
2263 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2264
2265 if (elf_section_data (o)->relocs != NULL)
2266 return elf_section_data (o)->relocs;
2267
2268 if (o->reloc_count == 0)
2269 return NULL;
2270
2271 rel_hdr = &elf_section_data (o)->rel_hdr;
2272
2273 if (internal_relocs == NULL)
2274 {
2275 size_t size;
2276
2277 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2278 * sizeof (Elf_Internal_Rela));
2279 if (keep_memory)
2280 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2281 else
2282 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2283 if (internal_relocs == NULL)
2284 goto error_return;
2285 }
2286
2287 if (external_relocs == NULL)
2288 {
2289 size_t size = (size_t) rel_hdr->sh_size;
2290
2291 if (elf_section_data (o)->rel_hdr2)
2292 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2293 alloc1 = (PTR) bfd_malloc (size);
2294 if (alloc1 == NULL)
2295 goto error_return;
2296 external_relocs = alloc1;
2297 }
2298
2299 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2300 external_relocs,
2301 internal_relocs))
2302 goto error_return;
2303 if (!elf_link_read_relocs_from_section
2304 (abfd,
2305 elf_section_data (o)->rel_hdr2,
2306 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2307 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2308 * bed->s->int_rels_per_ext_rel)))
2309 goto error_return;
2310
2311 /* Cache the results for next time, if we can. */
2312 if (keep_memory)
2313 elf_section_data (o)->relocs = internal_relocs;
2314
2315 if (alloc1 != NULL)
2316 free (alloc1);
2317
2318 /* Don't free alloc2, since if it was allocated we are passing it
2319 back (under the name of internal_relocs). */
2320
2321 return internal_relocs;
2322
2323 error_return:
2324 if (alloc1 != NULL)
2325 free (alloc1);
2326 if (alloc2 != NULL)
2327 free (alloc2);
2328 return NULL;
2329 }
2330 \f
2331
2332 /* Record an assignment to a symbol made by a linker script. We need
2333 this in case some dynamic object refers to this symbol. */
2334
2335 /*ARGSUSED*/
2336 boolean
2337 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2338 bfd *output_bfd ATTRIBUTE_UNUSED;
2339 struct bfd_link_info *info;
2340 const char *name;
2341 boolean provide;
2342 {
2343 struct elf_link_hash_entry *h;
2344
2345 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2346 return true;
2347
2348 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2349 if (h == NULL)
2350 return false;
2351
2352 if (h->root.type == bfd_link_hash_new)
2353 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2354
2355 /* If this symbol is being provided by the linker script, and it is
2356 currently defined by a dynamic object, but not by a regular
2357 object, then mark it as undefined so that the generic linker will
2358 force the correct value. */
2359 if (provide
2360 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2361 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2362 h->root.type = bfd_link_hash_undefined;
2363
2364 /* If this symbol is not being provided by the linker script, and it is
2365 currently defined by a dynamic object, but not by a regular object,
2366 then clear out any version information because the symbol will not be
2367 associated with the dynamic object any more. */
2368 if (!provide
2369 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2370 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2371 h->verinfo.verdef = NULL;
2372
2373 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2374
2375 /* When possible, keep the original type of the symbol */
2376 if (h->type == STT_NOTYPE)
2377 h->type = STT_OBJECT;
2378
2379 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2380 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2381 || info->shared)
2382 && h->dynindx == -1)
2383 {
2384 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2385 return false;
2386
2387 /* If this is a weak defined symbol, and we know a corresponding
2388 real symbol from the same dynamic object, make sure the real
2389 symbol is also made into a dynamic symbol. */
2390 if (h->weakdef != NULL
2391 && h->weakdef->dynindx == -1)
2392 {
2393 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2394 return false;
2395 }
2396 }
2397
2398 return true;
2399 }
2400 \f
2401 /* This structure is used to pass information to
2402 elf_link_assign_sym_version. */
2403
2404 struct elf_assign_sym_version_info
2405 {
2406 /* Output BFD. */
2407 bfd *output_bfd;
2408 /* General link information. */
2409 struct bfd_link_info *info;
2410 /* Version tree. */
2411 struct bfd_elf_version_tree *verdefs;
2412 /* Whether we are exporting all dynamic symbols. */
2413 boolean export_dynamic;
2414 /* Whether we had a failure. */
2415 boolean failed;
2416 };
2417
2418 /* This structure is used to pass information to
2419 elf_link_find_version_dependencies. */
2420
2421 struct elf_find_verdep_info
2422 {
2423 /* Output BFD. */
2424 bfd *output_bfd;
2425 /* General link information. */
2426 struct bfd_link_info *info;
2427 /* The number of dependencies. */
2428 unsigned int vers;
2429 /* Whether we had a failure. */
2430 boolean failed;
2431 };
2432
2433 /* Array used to determine the number of hash table buckets to use
2434 based on the number of symbols there are. If there are fewer than
2435 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2436 fewer than 37 we use 17 buckets, and so forth. We never use more
2437 than 32771 buckets. */
2438
2439 static const size_t elf_buckets[] =
2440 {
2441 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2442 16411, 32771, 0
2443 };
2444
2445 /* Compute bucket count for hashing table. We do not use a static set
2446 of possible tables sizes anymore. Instead we determine for all
2447 possible reasonable sizes of the table the outcome (i.e., the
2448 number of collisions etc) and choose the best solution. The
2449 weighting functions are not too simple to allow the table to grow
2450 without bounds. Instead one of the weighting factors is the size.
2451 Therefore the result is always a good payoff between few collisions
2452 (= short chain lengths) and table size. */
2453 static size_t
2454 compute_bucket_count (info)
2455 struct bfd_link_info *info;
2456 {
2457 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2458 size_t best_size = 0;
2459 unsigned long int *hashcodes;
2460 unsigned long int *hashcodesp;
2461 unsigned long int i;
2462
2463 /* Compute the hash values for all exported symbols. At the same
2464 time store the values in an array so that we could use them for
2465 optimizations. */
2466 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2467 * sizeof (unsigned long int));
2468 if (hashcodes == NULL)
2469 return 0;
2470 hashcodesp = hashcodes;
2471
2472 /* Put all hash values in HASHCODES. */
2473 elf_link_hash_traverse (elf_hash_table (info),
2474 elf_collect_hash_codes, &hashcodesp);
2475
2476 /* We have a problem here. The following code to optimize the table
2477 size requires an integer type with more the 32 bits. If
2478 BFD_HOST_U_64_BIT is set we know about such a type. */
2479 #ifdef BFD_HOST_U_64_BIT
2480 if (info->optimize == true)
2481 {
2482 unsigned long int nsyms = hashcodesp - hashcodes;
2483 size_t minsize;
2484 size_t maxsize;
2485 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2486 unsigned long int *counts ;
2487
2488 /* Possible optimization parameters: if we have NSYMS symbols we say
2489 that the hashing table must at least have NSYMS/4 and at most
2490 2*NSYMS buckets. */
2491 minsize = nsyms / 4;
2492 if (minsize == 0)
2493 minsize = 1;
2494 best_size = maxsize = nsyms * 2;
2495
2496 /* Create array where we count the collisions in. We must use bfd_malloc
2497 since the size could be large. */
2498 counts = (unsigned long int *) bfd_malloc (maxsize
2499 * sizeof (unsigned long int));
2500 if (counts == NULL)
2501 {
2502 free (hashcodes);
2503 return 0;
2504 }
2505
2506 /* Compute the "optimal" size for the hash table. The criteria is a
2507 minimal chain length. The minor criteria is (of course) the size
2508 of the table. */
2509 for (i = minsize; i < maxsize; ++i)
2510 {
2511 /* Walk through the array of hashcodes and count the collisions. */
2512 BFD_HOST_U_64_BIT max;
2513 unsigned long int j;
2514 unsigned long int fact;
2515
2516 memset (counts, '\0', i * sizeof (unsigned long int));
2517
2518 /* Determine how often each hash bucket is used. */
2519 for (j = 0; j < nsyms; ++j)
2520 ++counts[hashcodes[j] % i];
2521
2522 /* For the weight function we need some information about the
2523 pagesize on the target. This is information need not be 100%
2524 accurate. Since this information is not available (so far) we
2525 define it here to a reasonable default value. If it is crucial
2526 to have a better value some day simply define this value. */
2527 # ifndef BFD_TARGET_PAGESIZE
2528 # define BFD_TARGET_PAGESIZE (4096)
2529 # endif
2530
2531 /* We in any case need 2 + NSYMS entries for the size values and
2532 the chains. */
2533 max = (2 + nsyms) * (ARCH_SIZE / 8);
2534
2535 # if 1
2536 /* Variant 1: optimize for short chains. We add the squares
2537 of all the chain lengths (which favous many small chain
2538 over a few long chains). */
2539 for (j = 0; j < i; ++j)
2540 max += counts[j] * counts[j];
2541
2542 /* This adds penalties for the overall size of the table. */
2543 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2544 max *= fact * fact;
2545 # else
2546 /* Variant 2: Optimize a lot more for small table. Here we
2547 also add squares of the size but we also add penalties for
2548 empty slots (the +1 term). */
2549 for (j = 0; j < i; ++j)
2550 max += (1 + counts[j]) * (1 + counts[j]);
2551
2552 /* The overall size of the table is considered, but not as
2553 strong as in variant 1, where it is squared. */
2554 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2555 max *= fact;
2556 # endif
2557
2558 /* Compare with current best results. */
2559 if (max < best_chlen)
2560 {
2561 best_chlen = max;
2562 best_size = i;
2563 }
2564 }
2565
2566 free (counts);
2567 }
2568 else
2569 #endif /* defined (BFD_HOST_U_64_BIT) */
2570 {
2571 /* This is the fallback solution if no 64bit type is available or if we
2572 are not supposed to spend much time on optimizations. We select the
2573 bucket count using a fixed set of numbers. */
2574 for (i = 0; elf_buckets[i] != 0; i++)
2575 {
2576 best_size = elf_buckets[i];
2577 if (dynsymcount < elf_buckets[i + 1])
2578 break;
2579 }
2580 }
2581
2582 /* Free the arrays we needed. */
2583 free (hashcodes);
2584
2585 return best_size;
2586 }
2587
2588 /* Set up the sizes and contents of the ELF dynamic sections. This is
2589 called by the ELF linker emulation before_allocation routine. We
2590 must set the sizes of the sections before the linker sets the
2591 addresses of the various sections. */
2592
2593 boolean
2594 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2595 export_dynamic, filter_shlib,
2596 auxiliary_filters, info, sinterpptr,
2597 verdefs)
2598 bfd *output_bfd;
2599 const char *soname;
2600 const char *rpath;
2601 boolean export_dynamic;
2602 const char *filter_shlib;
2603 const char * const *auxiliary_filters;
2604 struct bfd_link_info *info;
2605 asection **sinterpptr;
2606 struct bfd_elf_version_tree *verdefs;
2607 {
2608 bfd_size_type soname_indx;
2609 bfd *dynobj;
2610 struct elf_backend_data *bed;
2611 struct elf_assign_sym_version_info asvinfo;
2612
2613 *sinterpptr = NULL;
2614
2615 soname_indx = (bfd_size_type) -1;
2616
2617 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2618 return true;
2619
2620 /* The backend may have to create some sections regardless of whether
2621 we're dynamic or not. */
2622 bed = get_elf_backend_data (output_bfd);
2623 if (bed->elf_backend_always_size_sections
2624 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2625 return false;
2626
2627 dynobj = elf_hash_table (info)->dynobj;
2628
2629 /* If there were no dynamic objects in the link, there is nothing to
2630 do here. */
2631 if (dynobj == NULL)
2632 return true;
2633
2634 /* If we are supposed to export all symbols into the dynamic symbol
2635 table (this is not the normal case), then do so. */
2636 if (export_dynamic)
2637 {
2638 struct elf_info_failed eif;
2639
2640 eif.failed = false;
2641 eif.info = info;
2642 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2643 (PTR) &eif);
2644 if (eif.failed)
2645 return false;
2646 }
2647
2648 if (elf_hash_table (info)->dynamic_sections_created)
2649 {
2650 struct elf_info_failed eif;
2651 struct elf_link_hash_entry *h;
2652 bfd_size_type strsize;
2653
2654 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2655 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2656
2657 if (soname != NULL)
2658 {
2659 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2660 soname, true, true);
2661 if (soname_indx == (bfd_size_type) -1
2662 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2663 return false;
2664 }
2665
2666 if (info->symbolic)
2667 {
2668 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2669 return false;
2670 }
2671
2672 if (rpath != NULL)
2673 {
2674 bfd_size_type indx;
2675
2676 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2677 true, true);
2678 if (indx == (bfd_size_type) -1
2679 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2680 return false;
2681 }
2682
2683 if (filter_shlib != NULL)
2684 {
2685 bfd_size_type indx;
2686
2687 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2688 filter_shlib, true, true);
2689 if (indx == (bfd_size_type) -1
2690 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2691 return false;
2692 }
2693
2694 if (auxiliary_filters != NULL)
2695 {
2696 const char * const *p;
2697
2698 for (p = auxiliary_filters; *p != NULL; p++)
2699 {
2700 bfd_size_type indx;
2701
2702 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2703 *p, true, true);
2704 if (indx == (bfd_size_type) -1
2705 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2706 return false;
2707 }
2708 }
2709
2710 /* Attach all the symbols to their version information. */
2711 asvinfo.output_bfd = output_bfd;
2712 asvinfo.info = info;
2713 asvinfo.verdefs = verdefs;
2714 asvinfo.export_dynamic = export_dynamic;
2715 asvinfo.failed = false;
2716
2717 elf_link_hash_traverse (elf_hash_table (info),
2718 elf_link_assign_sym_version,
2719 (PTR) &asvinfo);
2720 if (asvinfo.failed)
2721 return false;
2722
2723 /* Find all symbols which were defined in a dynamic object and make
2724 the backend pick a reasonable value for them. */
2725 eif.failed = false;
2726 eif.info = info;
2727 elf_link_hash_traverse (elf_hash_table (info),
2728 elf_adjust_dynamic_symbol,
2729 (PTR) &eif);
2730 if (eif.failed)
2731 return false;
2732
2733 /* Add some entries to the .dynamic section. We fill in some of the
2734 values later, in elf_bfd_final_link, but we must add the entries
2735 now so that we know the final size of the .dynamic section. */
2736
2737 /* If there are initialization and/or finalization functions to
2738 call then add the corresponding DT_INIT/DT_FINI entries. */
2739 h = (info->init_function
2740 ? elf_link_hash_lookup (elf_hash_table (info),
2741 info->init_function, false,
2742 false, false)
2743 : NULL);
2744 if (h != NULL
2745 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2746 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2747 {
2748 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2749 return false;
2750 }
2751 h = (info->fini_function
2752 ? elf_link_hash_lookup (elf_hash_table (info),
2753 info->fini_function, false,
2754 false, false)
2755 : NULL);
2756 if (h != NULL
2757 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2758 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2759 {
2760 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2761 return false;
2762 }
2763
2764 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2765 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2766 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2767 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2768 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2769 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2770 sizeof (Elf_External_Sym)))
2771 return false;
2772 }
2773
2774 /* The backend must work out the sizes of all the other dynamic
2775 sections. */
2776 if (bed->elf_backend_size_dynamic_sections
2777 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2778 return false;
2779
2780 if (elf_hash_table (info)->dynamic_sections_created)
2781 {
2782 size_t dynsymcount;
2783 asection *s;
2784 size_t bucketcount = 0;
2785 Elf_Internal_Sym isym;
2786 size_t hash_entry_size;
2787
2788 /* Set up the version definition section. */
2789 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2790 BFD_ASSERT (s != NULL);
2791
2792 /* We may have created additional version definitions if we are
2793 just linking a regular application. */
2794 verdefs = asvinfo.verdefs;
2795
2796 if (verdefs == NULL)
2797 _bfd_strip_section_from_output (s);
2798 else
2799 {
2800 unsigned int cdefs;
2801 bfd_size_type size;
2802 struct bfd_elf_version_tree *t;
2803 bfd_byte *p;
2804 Elf_Internal_Verdef def;
2805 Elf_Internal_Verdaux defaux;
2806
2807 cdefs = 0;
2808 size = 0;
2809
2810 /* Make space for the base version. */
2811 size += sizeof (Elf_External_Verdef);
2812 size += sizeof (Elf_External_Verdaux);
2813 ++cdefs;
2814
2815 for (t = verdefs; t != NULL; t = t->next)
2816 {
2817 struct bfd_elf_version_deps *n;
2818
2819 size += sizeof (Elf_External_Verdef);
2820 size += sizeof (Elf_External_Verdaux);
2821 ++cdefs;
2822
2823 for (n = t->deps; n != NULL; n = n->next)
2824 size += sizeof (Elf_External_Verdaux);
2825 }
2826
2827 s->_raw_size = size;
2828 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2829 if (s->contents == NULL && s->_raw_size != 0)
2830 return false;
2831
2832 /* Fill in the version definition section. */
2833
2834 p = s->contents;
2835
2836 def.vd_version = VER_DEF_CURRENT;
2837 def.vd_flags = VER_FLG_BASE;
2838 def.vd_ndx = 1;
2839 def.vd_cnt = 1;
2840 def.vd_aux = sizeof (Elf_External_Verdef);
2841 def.vd_next = (sizeof (Elf_External_Verdef)
2842 + sizeof (Elf_External_Verdaux));
2843
2844 if (soname_indx != (bfd_size_type) -1)
2845 {
2846 def.vd_hash = bfd_elf_hash (soname);
2847 defaux.vda_name = soname_indx;
2848 }
2849 else
2850 {
2851 const char *name;
2852 bfd_size_type indx;
2853
2854 name = output_bfd->filename;
2855 def.vd_hash = bfd_elf_hash (name);
2856 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2857 name, true, false);
2858 if (indx == (bfd_size_type) -1)
2859 return false;
2860 defaux.vda_name = indx;
2861 }
2862 defaux.vda_next = 0;
2863
2864 _bfd_elf_swap_verdef_out (output_bfd, &def,
2865 (Elf_External_Verdef *)p);
2866 p += sizeof (Elf_External_Verdef);
2867 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2868 (Elf_External_Verdaux *) p);
2869 p += sizeof (Elf_External_Verdaux);
2870
2871 for (t = verdefs; t != NULL; t = t->next)
2872 {
2873 unsigned int cdeps;
2874 struct bfd_elf_version_deps *n;
2875 struct elf_link_hash_entry *h;
2876
2877 cdeps = 0;
2878 for (n = t->deps; n != NULL; n = n->next)
2879 ++cdeps;
2880
2881 /* Add a symbol representing this version. */
2882 h = NULL;
2883 if (! (_bfd_generic_link_add_one_symbol
2884 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
2885 (bfd_vma) 0, (const char *) NULL, false,
2886 get_elf_backend_data (dynobj)->collect,
2887 (struct bfd_link_hash_entry **) &h)))
2888 return false;
2889 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
2890 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2891 h->type = STT_OBJECT;
2892 h->verinfo.vertree = t;
2893
2894 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2895 return false;
2896
2897 def.vd_version = VER_DEF_CURRENT;
2898 def.vd_flags = 0;
2899 if (t->globals == NULL && t->locals == NULL && ! t->used)
2900 def.vd_flags |= VER_FLG_WEAK;
2901 def.vd_ndx = t->vernum + 1;
2902 def.vd_cnt = cdeps + 1;
2903 def.vd_hash = bfd_elf_hash (t->name);
2904 def.vd_aux = sizeof (Elf_External_Verdef);
2905 if (t->next != NULL)
2906 def.vd_next = (sizeof (Elf_External_Verdef)
2907 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
2908 else
2909 def.vd_next = 0;
2910
2911 _bfd_elf_swap_verdef_out (output_bfd, &def,
2912 (Elf_External_Verdef *) p);
2913 p += sizeof (Elf_External_Verdef);
2914
2915 defaux.vda_name = h->dynstr_index;
2916 if (t->deps == NULL)
2917 defaux.vda_next = 0;
2918 else
2919 defaux.vda_next = sizeof (Elf_External_Verdaux);
2920 t->name_indx = defaux.vda_name;
2921
2922 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2923 (Elf_External_Verdaux *) p);
2924 p += sizeof (Elf_External_Verdaux);
2925
2926 for (n = t->deps; n != NULL; n = n->next)
2927 {
2928 if (n->version_needed == NULL)
2929 {
2930 /* This can happen if there was an error in the
2931 version script. */
2932 defaux.vda_name = 0;
2933 }
2934 else
2935 defaux.vda_name = n->version_needed->name_indx;
2936 if (n->next == NULL)
2937 defaux.vda_next = 0;
2938 else
2939 defaux.vda_next = sizeof (Elf_External_Verdaux);
2940
2941 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2942 (Elf_External_Verdaux *) p);
2943 p += sizeof (Elf_External_Verdaux);
2944 }
2945 }
2946
2947 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
2948 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
2949 return false;
2950
2951 elf_tdata (output_bfd)->cverdefs = cdefs;
2952 }
2953
2954 /* Work out the size of the version reference section. */
2955
2956 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2957 BFD_ASSERT (s != NULL);
2958 {
2959 struct elf_find_verdep_info sinfo;
2960
2961 sinfo.output_bfd = output_bfd;
2962 sinfo.info = info;
2963 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
2964 if (sinfo.vers == 0)
2965 sinfo.vers = 1;
2966 sinfo.failed = false;
2967
2968 elf_link_hash_traverse (elf_hash_table (info),
2969 elf_link_find_version_dependencies,
2970 (PTR) &sinfo);
2971
2972 if (elf_tdata (output_bfd)->verref == NULL)
2973 _bfd_strip_section_from_output (s);
2974 else
2975 {
2976 Elf_Internal_Verneed *t;
2977 unsigned int size;
2978 unsigned int crefs;
2979 bfd_byte *p;
2980
2981 /* Build the version definition section. */
2982 size = 0;
2983 crefs = 0;
2984 for (t = elf_tdata (output_bfd)->verref;
2985 t != NULL;
2986 t = t->vn_nextref)
2987 {
2988 Elf_Internal_Vernaux *a;
2989
2990 size += sizeof (Elf_External_Verneed);
2991 ++crefs;
2992 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2993 size += sizeof (Elf_External_Vernaux);
2994 }
2995
2996 s->_raw_size = size;
2997 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
2998 if (s->contents == NULL)
2999 return false;
3000
3001 p = s->contents;
3002 for (t = elf_tdata (output_bfd)->verref;
3003 t != NULL;
3004 t = t->vn_nextref)
3005 {
3006 unsigned int caux;
3007 Elf_Internal_Vernaux *a;
3008 bfd_size_type indx;
3009
3010 caux = 0;
3011 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3012 ++caux;
3013
3014 t->vn_version = VER_NEED_CURRENT;
3015 t->vn_cnt = caux;
3016 if (elf_dt_name (t->vn_bfd) != NULL)
3017 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3018 elf_dt_name (t->vn_bfd),
3019 true, false);
3020 else
3021 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3022 t->vn_bfd->filename, true, false);
3023 if (indx == (bfd_size_type) -1)
3024 return false;
3025 t->vn_file = indx;
3026 t->vn_aux = sizeof (Elf_External_Verneed);
3027 if (t->vn_nextref == NULL)
3028 t->vn_next = 0;
3029 else
3030 t->vn_next = (sizeof (Elf_External_Verneed)
3031 + caux * sizeof (Elf_External_Vernaux));
3032
3033 _bfd_elf_swap_verneed_out (output_bfd, t,
3034 (Elf_External_Verneed *) p);
3035 p += sizeof (Elf_External_Verneed);
3036
3037 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3038 {
3039 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3040 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3041 a->vna_nodename, true, false);
3042 if (indx == (bfd_size_type) -1)
3043 return false;
3044 a->vna_name = indx;
3045 if (a->vna_nextptr == NULL)
3046 a->vna_next = 0;
3047 else
3048 a->vna_next = sizeof (Elf_External_Vernaux);
3049
3050 _bfd_elf_swap_vernaux_out (output_bfd, a,
3051 (Elf_External_Vernaux *) p);
3052 p += sizeof (Elf_External_Vernaux);
3053 }
3054 }
3055
3056 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3057 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3058 return false;
3059
3060 elf_tdata (output_bfd)->cverrefs = crefs;
3061 }
3062 }
3063
3064 /* Assign dynsym indicies. In a shared library we generate a
3065 section symbol for each output section, which come first.
3066 Next come all of the back-end allocated local dynamic syms,
3067 followed by the rest of the global symbols. */
3068
3069 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3070
3071 /* Work out the size of the symbol version section. */
3072 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3073 BFD_ASSERT (s != NULL);
3074 if (dynsymcount == 0
3075 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3076 {
3077 _bfd_strip_section_from_output (s);
3078 /* The DYNSYMCOUNT might have changed if we were going to
3079 output a dynamic symbol table entry for S. */
3080 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3081 }
3082 else
3083 {
3084 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3085 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3086 if (s->contents == NULL)
3087 return false;
3088
3089 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3090 return false;
3091 }
3092
3093 /* Set the size of the .dynsym and .hash sections. We counted
3094 the number of dynamic symbols in elf_link_add_object_symbols.
3095 We will build the contents of .dynsym and .hash when we build
3096 the final symbol table, because until then we do not know the
3097 correct value to give the symbols. We built the .dynstr
3098 section as we went along in elf_link_add_object_symbols. */
3099 s = bfd_get_section_by_name (dynobj, ".dynsym");
3100 BFD_ASSERT (s != NULL);
3101 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3102 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3103 if (s->contents == NULL && s->_raw_size != 0)
3104 return false;
3105
3106 /* The first entry in .dynsym is a dummy symbol. */
3107 isym.st_value = 0;
3108 isym.st_size = 0;
3109 isym.st_name = 0;
3110 isym.st_info = 0;
3111 isym.st_other = 0;
3112 isym.st_shndx = 0;
3113 elf_swap_symbol_out (output_bfd, &isym,
3114 (PTR) (Elf_External_Sym *) s->contents);
3115
3116 /* Compute the size of the hashing table. As a side effect this
3117 computes the hash values for all the names we export. */
3118 bucketcount = compute_bucket_count (info);
3119
3120 s = bfd_get_section_by_name (dynobj, ".hash");
3121 BFD_ASSERT (s != NULL);
3122 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3123 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3124 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3125 if (s->contents == NULL)
3126 return false;
3127 memset (s->contents, 0, (size_t) s->_raw_size);
3128
3129 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3130 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3131 s->contents + hash_entry_size);
3132
3133 elf_hash_table (info)->bucketcount = bucketcount;
3134
3135 s = bfd_get_section_by_name (dynobj, ".dynstr");
3136 BFD_ASSERT (s != NULL);
3137 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3138
3139 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3140 return false;
3141 }
3142
3143 return true;
3144 }
3145 \f
3146 /* Fix up the flags for a symbol. This handles various cases which
3147 can only be fixed after all the input files are seen. This is
3148 currently called by both adjust_dynamic_symbol and
3149 assign_sym_version, which is unnecessary but perhaps more robust in
3150 the face of future changes. */
3151
3152 static boolean
3153 elf_fix_symbol_flags (h, eif)
3154 struct elf_link_hash_entry *h;
3155 struct elf_info_failed *eif;
3156 {
3157 /* If this symbol was mentioned in a non-ELF file, try to set
3158 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3159 permit a non-ELF file to correctly refer to a symbol defined in
3160 an ELF dynamic object. */
3161 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3162 {
3163 if (h->root.type != bfd_link_hash_defined
3164 && h->root.type != bfd_link_hash_defweak)
3165 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3166 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3167 else
3168 {
3169 if (h->root.u.def.section->owner != NULL
3170 && (bfd_get_flavour (h->root.u.def.section->owner)
3171 == bfd_target_elf_flavour))
3172 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3173 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3174 else
3175 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3176 }
3177
3178 if (h->dynindx == -1
3179 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3180 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3181 {
3182 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3183 {
3184 eif->failed = true;
3185 return false;
3186 }
3187 }
3188 }
3189 else
3190 {
3191 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3192 was first seen in a non-ELF file. Fortunately, if the symbol
3193 was first seen in an ELF file, we're probably OK unless the
3194 symbol was defined in a non-ELF file. Catch that case here.
3195 FIXME: We're still in trouble if the symbol was first seen in
3196 a dynamic object, and then later in a non-ELF regular object. */
3197 if ((h->root.type == bfd_link_hash_defined
3198 || h->root.type == bfd_link_hash_defweak)
3199 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3200 && (h->root.u.def.section->owner != NULL
3201 ? (bfd_get_flavour (h->root.u.def.section->owner)
3202 != bfd_target_elf_flavour)
3203 : (bfd_is_abs_section (h->root.u.def.section)
3204 && (h->elf_link_hash_flags
3205 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3206 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3207 }
3208
3209 /* If this is a final link, and the symbol was defined as a common
3210 symbol in a regular object file, and there was no definition in
3211 any dynamic object, then the linker will have allocated space for
3212 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3213 flag will not have been set. */
3214 if (h->root.type == bfd_link_hash_defined
3215 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3216 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3217 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3218 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3219 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3220
3221 /* If -Bsymbolic was used (which means to bind references to global
3222 symbols to the definition within the shared object), and this
3223 symbol was defined in a regular object, then it actually doesn't
3224 need a PLT entry. */
3225 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3226 && eif->info->shared
3227 && eif->info->symbolic
3228 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3229 {
3230 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3231 h->plt.offset = (bfd_vma) -1;
3232 }
3233
3234 return true;
3235 }
3236
3237 /* Make the backend pick a good value for a dynamic symbol. This is
3238 called via elf_link_hash_traverse, and also calls itself
3239 recursively. */
3240
3241 static boolean
3242 elf_adjust_dynamic_symbol (h, data)
3243 struct elf_link_hash_entry *h;
3244 PTR data;
3245 {
3246 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3247 bfd *dynobj;
3248 struct elf_backend_data *bed;
3249
3250 /* Ignore indirect symbols. These are added by the versioning code. */
3251 if (h->root.type == bfd_link_hash_indirect)
3252 return true;
3253
3254 /* Fix the symbol flags. */
3255 if (! elf_fix_symbol_flags (h, eif))
3256 return false;
3257
3258 /* If this symbol does not require a PLT entry, and it is not
3259 defined by a dynamic object, or is not referenced by a regular
3260 object, ignore it. We do have to handle a weak defined symbol,
3261 even if no regular object refers to it, if we decided to add it
3262 to the dynamic symbol table. FIXME: Do we normally need to worry
3263 about symbols which are defined by one dynamic object and
3264 referenced by another one? */
3265 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3266 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3267 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3268 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3269 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3270 {
3271 h->plt.offset = (bfd_vma) -1;
3272 return true;
3273 }
3274
3275 /* If we've already adjusted this symbol, don't do it again. This
3276 can happen via a recursive call. */
3277 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3278 return true;
3279
3280 /* Don't look at this symbol again. Note that we must set this
3281 after checking the above conditions, because we may look at a
3282 symbol once, decide not to do anything, and then get called
3283 recursively later after REF_REGULAR is set below. */
3284 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3285
3286 /* If this is a weak definition, and we know a real definition, and
3287 the real symbol is not itself defined by a regular object file,
3288 then get a good value for the real definition. We handle the
3289 real symbol first, for the convenience of the backend routine.
3290
3291 Note that there is a confusing case here. If the real definition
3292 is defined by a regular object file, we don't get the real symbol
3293 from the dynamic object, but we do get the weak symbol. If the
3294 processor backend uses a COPY reloc, then if some routine in the
3295 dynamic object changes the real symbol, we will not see that
3296 change in the corresponding weak symbol. This is the way other
3297 ELF linkers work as well, and seems to be a result of the shared
3298 library model.
3299
3300 I will clarify this issue. Most SVR4 shared libraries define the
3301 variable _timezone and define timezone as a weak synonym. The
3302 tzset call changes _timezone. If you write
3303 extern int timezone;
3304 int _timezone = 5;
3305 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3306 you might expect that, since timezone is a synonym for _timezone,
3307 the same number will print both times. However, if the processor
3308 backend uses a COPY reloc, then actually timezone will be copied
3309 into your process image, and, since you define _timezone
3310 yourself, _timezone will not. Thus timezone and _timezone will
3311 wind up at different memory locations. The tzset call will set
3312 _timezone, leaving timezone unchanged. */
3313
3314 if (h->weakdef != NULL)
3315 {
3316 struct elf_link_hash_entry *weakdef;
3317
3318 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3319 || h->root.type == bfd_link_hash_defweak);
3320 weakdef = h->weakdef;
3321 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3322 || weakdef->root.type == bfd_link_hash_defweak);
3323 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3324 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3325 {
3326 /* This symbol is defined by a regular object file, so we
3327 will not do anything special. Clear weakdef for the
3328 convenience of the processor backend. */
3329 h->weakdef = NULL;
3330 }
3331 else
3332 {
3333 /* There is an implicit reference by a regular object file
3334 via the weak symbol. */
3335 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3336 if (h->weakdef->elf_link_hash_flags
3337 & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3338 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
3339 if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
3340 return false;
3341 }
3342 }
3343
3344 /* If a symbol has no type and no size and does not require a PLT
3345 entry, then we are probably about to do the wrong thing here: we
3346 are probably going to create a COPY reloc for an empty object.
3347 This case can arise when a shared object is built with assembly
3348 code, and the assembly code fails to set the symbol type. */
3349 if (h->size == 0
3350 && h->type == STT_NOTYPE
3351 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3352 (*_bfd_error_handler)
3353 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3354 h->root.root.string);
3355
3356 dynobj = elf_hash_table (eif->info)->dynobj;
3357 bed = get_elf_backend_data (dynobj);
3358 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3359 {
3360 eif->failed = true;
3361 return false;
3362 }
3363
3364 return true;
3365 }
3366 \f
3367 /* This routine is used to export all defined symbols into the dynamic
3368 symbol table. It is called via elf_link_hash_traverse. */
3369
3370 static boolean
3371 elf_export_symbol (h, data)
3372 struct elf_link_hash_entry *h;
3373 PTR data;
3374 {
3375 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3376
3377 /* Ignore indirect symbols. These are added by the versioning code. */
3378 if (h->root.type == bfd_link_hash_indirect)
3379 return true;
3380
3381 if (h->dynindx == -1
3382 && (h->elf_link_hash_flags
3383 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3384 {
3385 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3386 {
3387 eif->failed = true;
3388 return false;
3389 }
3390 }
3391
3392 return true;
3393 }
3394 \f
3395 /* Look through the symbols which are defined in other shared
3396 libraries and referenced here. Update the list of version
3397 dependencies. This will be put into the .gnu.version_r section.
3398 This function is called via elf_link_hash_traverse. */
3399
3400 static boolean
3401 elf_link_find_version_dependencies (h, data)
3402 struct elf_link_hash_entry *h;
3403 PTR data;
3404 {
3405 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3406 Elf_Internal_Verneed *t;
3407 Elf_Internal_Vernaux *a;
3408
3409 /* We only care about symbols defined in shared objects with version
3410 information. */
3411 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3412 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3413 || h->dynindx == -1
3414 || h->verinfo.verdef == NULL)
3415 return true;
3416
3417 /* See if we already know about this version. */
3418 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3419 {
3420 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3421 continue;
3422
3423 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3424 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3425 return true;
3426
3427 break;
3428 }
3429
3430 /* This is a new version. Add it to tree we are building. */
3431
3432 if (t == NULL)
3433 {
3434 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3435 if (t == NULL)
3436 {
3437 rinfo->failed = true;
3438 return false;
3439 }
3440
3441 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3442 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3443 elf_tdata (rinfo->output_bfd)->verref = t;
3444 }
3445
3446 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3447
3448 /* Note that we are copying a string pointer here, and testing it
3449 above. If bfd_elf_string_from_elf_section is ever changed to
3450 discard the string data when low in memory, this will have to be
3451 fixed. */
3452 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3453
3454 a->vna_flags = h->verinfo.verdef->vd_flags;
3455 a->vna_nextptr = t->vn_auxptr;
3456
3457 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3458 ++rinfo->vers;
3459
3460 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3461
3462 t->vn_auxptr = a;
3463
3464 return true;
3465 }
3466
3467 /* Figure out appropriate versions for all the symbols. We may not
3468 have the version number script until we have read all of the input
3469 files, so until that point we don't know which symbols should be
3470 local. This function is called via elf_link_hash_traverse. */
3471
3472 static boolean
3473 elf_link_assign_sym_version (h, data)
3474 struct elf_link_hash_entry *h;
3475 PTR data;
3476 {
3477 struct elf_assign_sym_version_info *sinfo =
3478 (struct elf_assign_sym_version_info *) data;
3479 struct bfd_link_info *info = sinfo->info;
3480 struct elf_info_failed eif;
3481 char *p;
3482
3483 /* Fix the symbol flags. */
3484 eif.failed = false;
3485 eif.info = info;
3486 if (! elf_fix_symbol_flags (h, &eif))
3487 {
3488 if (eif.failed)
3489 sinfo->failed = true;
3490 return false;
3491 }
3492
3493 /* We only need version numbers for symbols defined in regular
3494 objects. */
3495 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3496 return true;
3497
3498 p = strchr (h->root.root.string, ELF_VER_CHR);
3499 if (p != NULL && h->verinfo.vertree == NULL)
3500 {
3501 struct bfd_elf_version_tree *t;
3502 boolean hidden;
3503
3504 hidden = true;
3505
3506 /* There are two consecutive ELF_VER_CHR characters if this is
3507 not a hidden symbol. */
3508 ++p;
3509 if (*p == ELF_VER_CHR)
3510 {
3511 hidden = false;
3512 ++p;
3513 }
3514
3515 /* If there is no version string, we can just return out. */
3516 if (*p == '\0')
3517 {
3518 if (hidden)
3519 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3520 return true;
3521 }
3522
3523 /* Look for the version. If we find it, it is no longer weak. */
3524 for (t = sinfo->verdefs; t != NULL; t = t->next)
3525 {
3526 if (strcmp (t->name, p) == 0)
3527 {
3528 int len;
3529 char *alc;
3530 struct bfd_elf_version_expr *d;
3531
3532 len = p - h->root.root.string;
3533 alc = bfd_alloc (sinfo->output_bfd, len);
3534 if (alc == NULL)
3535 return false;
3536 strncpy (alc, h->root.root.string, len - 1);
3537 alc[len - 1] = '\0';
3538 if (alc[len - 2] == ELF_VER_CHR)
3539 alc[len - 2] = '\0';
3540
3541 h->verinfo.vertree = t;
3542 t->used = true;
3543 d = NULL;
3544
3545 if (t->globals != NULL)
3546 {
3547 for (d = t->globals; d != NULL; d = d->next)
3548 if ((*d->match) (d, alc))
3549 break;
3550 }
3551
3552 /* See if there is anything to force this symbol to
3553 local scope. */
3554 if (d == NULL && t->locals != NULL)
3555 {
3556 for (d = t->locals; d != NULL; d = d->next)
3557 {
3558 if ((*d->match) (d, alc))
3559 {
3560 if (h->dynindx != -1
3561 && info->shared
3562 && ! sinfo->export_dynamic)
3563 {
3564 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3565 h->elf_link_hash_flags &=~
3566 ELF_LINK_HASH_NEEDS_PLT;
3567 h->dynindx = -1;
3568 h->plt.offset = (bfd_vma) -1;
3569 /* FIXME: The name of the symbol has
3570 already been recorded in the dynamic
3571 string table section. */
3572 }
3573
3574 break;
3575 }
3576 }
3577 }
3578
3579 bfd_release (sinfo->output_bfd, alc);
3580 break;
3581 }
3582 }
3583
3584 /* If we are building an application, we need to create a
3585 version node for this version. */
3586 if (t == NULL && ! info->shared)
3587 {
3588 struct bfd_elf_version_tree **pp;
3589 int version_index;
3590
3591 /* If we aren't going to export this symbol, we don't need
3592 to worry about it. */
3593 if (h->dynindx == -1)
3594 return true;
3595
3596 t = ((struct bfd_elf_version_tree *)
3597 bfd_alloc (sinfo->output_bfd, sizeof *t));
3598 if (t == NULL)
3599 {
3600 sinfo->failed = true;
3601 return false;
3602 }
3603
3604 t->next = NULL;
3605 t->name = p;
3606 t->globals = NULL;
3607 t->locals = NULL;
3608 t->deps = NULL;
3609 t->name_indx = (unsigned int) -1;
3610 t->used = true;
3611
3612 version_index = 1;
3613 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3614 ++version_index;
3615 t->vernum = version_index;
3616
3617 *pp = t;
3618
3619 h->verinfo.vertree = t;
3620 }
3621 else if (t == NULL)
3622 {
3623 /* We could not find the version for a symbol when
3624 generating a shared archive. Return an error. */
3625 (*_bfd_error_handler)
3626 (_("%s: undefined versioned symbol name %s"),
3627 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3628 bfd_set_error (bfd_error_bad_value);
3629 sinfo->failed = true;
3630 return false;
3631 }
3632
3633 if (hidden)
3634 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3635 }
3636
3637 /* If we don't have a version for this symbol, see if we can find
3638 something. */
3639 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3640 {
3641 struct bfd_elf_version_tree *t;
3642 struct bfd_elf_version_tree *deflt;
3643 struct bfd_elf_version_expr *d;
3644
3645 /* See if can find what version this symbol is in. If the
3646 symbol is supposed to be local, then don't actually register
3647 it. */
3648 deflt = NULL;
3649 for (t = sinfo->verdefs; t != NULL; t = t->next)
3650 {
3651 if (t->globals != NULL)
3652 {
3653 for (d = t->globals; d != NULL; d = d->next)
3654 {
3655 if ((*d->match) (d, h->root.root.string))
3656 {
3657 h->verinfo.vertree = t;
3658 break;
3659 }
3660 }
3661
3662 if (d != NULL)
3663 break;
3664 }
3665
3666 if (t->locals != NULL)
3667 {
3668 for (d = t->locals; d != NULL; d = d->next)
3669 {
3670 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3671 deflt = t;
3672 else if ((*d->match) (d, h->root.root.string))
3673 {
3674 h->verinfo.vertree = t;
3675 if (h->dynindx != -1
3676 && info->shared
3677 && ! sinfo->export_dynamic)
3678 {
3679 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3680 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3681 h->dynindx = -1;
3682 h->plt.offset = (bfd_vma) -1;
3683 /* FIXME: The name of the symbol has already
3684 been recorded in the dynamic string table
3685 section. */
3686 }
3687 break;
3688 }
3689 }
3690
3691 if (d != NULL)
3692 break;
3693 }
3694 }
3695
3696 if (deflt != NULL && h->verinfo.vertree == NULL)
3697 {
3698 h->verinfo.vertree = deflt;
3699 if (h->dynindx != -1
3700 && info->shared
3701 && ! sinfo->export_dynamic)
3702 {
3703 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3704 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3705 h->dynindx = -1;
3706 h->plt.offset = (bfd_vma) -1;
3707 /* FIXME: The name of the symbol has already been
3708 recorded in the dynamic string table section. */
3709 }
3710 }
3711 }
3712
3713 return true;
3714 }
3715 \f
3716 /* Final phase of ELF linker. */
3717
3718 /* A structure we use to avoid passing large numbers of arguments. */
3719
3720 struct elf_final_link_info
3721 {
3722 /* General link information. */
3723 struct bfd_link_info *info;
3724 /* Output BFD. */
3725 bfd *output_bfd;
3726 /* Symbol string table. */
3727 struct bfd_strtab_hash *symstrtab;
3728 /* .dynsym section. */
3729 asection *dynsym_sec;
3730 /* .hash section. */
3731 asection *hash_sec;
3732 /* symbol version section (.gnu.version). */
3733 asection *symver_sec;
3734 /* Buffer large enough to hold contents of any section. */
3735 bfd_byte *contents;
3736 /* Buffer large enough to hold external relocs of any section. */
3737 PTR external_relocs;
3738 /* Buffer large enough to hold internal relocs of any section. */
3739 Elf_Internal_Rela *internal_relocs;
3740 /* Buffer large enough to hold external local symbols of any input
3741 BFD. */
3742 Elf_External_Sym *external_syms;
3743 /* Buffer large enough to hold internal local symbols of any input
3744 BFD. */
3745 Elf_Internal_Sym *internal_syms;
3746 /* Array large enough to hold a symbol index for each local symbol
3747 of any input BFD. */
3748 long *indices;
3749 /* Array large enough to hold a section pointer for each local
3750 symbol of any input BFD. */
3751 asection **sections;
3752 /* Buffer to hold swapped out symbols. */
3753 Elf_External_Sym *symbuf;
3754 /* Number of swapped out symbols in buffer. */
3755 size_t symbuf_count;
3756 /* Number of symbols which fit in symbuf. */
3757 size_t symbuf_size;
3758 };
3759
3760 static boolean elf_link_output_sym
3761 PARAMS ((struct elf_final_link_info *, const char *,
3762 Elf_Internal_Sym *, asection *));
3763 static boolean elf_link_flush_output_syms
3764 PARAMS ((struct elf_final_link_info *));
3765 static boolean elf_link_output_extsym
3766 PARAMS ((struct elf_link_hash_entry *, PTR));
3767 static boolean elf_link_input_bfd
3768 PARAMS ((struct elf_final_link_info *, bfd *));
3769 static boolean elf_reloc_link_order
3770 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3771 struct bfd_link_order *));
3772
3773 /* This struct is used to pass information to elf_link_output_extsym. */
3774
3775 struct elf_outext_info
3776 {
3777 boolean failed;
3778 boolean localsyms;
3779 struct elf_final_link_info *finfo;
3780 };
3781
3782 /* Compute the size of, and allocate space for, REL_HDR which is the
3783 section header for a section containing relocations for O. */
3784
3785 static boolean
3786 elf_link_size_reloc_section (abfd, rel_hdr, o)
3787 bfd *abfd;
3788 Elf_Internal_Shdr *rel_hdr;
3789 asection *o;
3790 {
3791 register struct elf_link_hash_entry **p, **pend;
3792 unsigned reloc_count;
3793
3794 /* Figure out how many relocations there will be. */
3795 if (rel_hdr == &elf_section_data (o)->rel_hdr)
3796 reloc_count = elf_section_data (o)->rel_count;
3797 else
3798 reloc_count = elf_section_data (o)->rel_count2;
3799
3800 /* That allows us to calculate the size of the section. */
3801 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
3802
3803 /* The contents field must last into write_object_contents, so we
3804 allocate it with bfd_alloc rather than malloc. */
3805 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3806 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3807 return false;
3808
3809 /* We only allocate one set of hash entries, so we only do it the
3810 first time we are called. */
3811 if (elf_section_data (o)->rel_hashes == NULL)
3812 {
3813 p = ((struct elf_link_hash_entry **)
3814 bfd_malloc (o->reloc_count
3815 * sizeof (struct elf_link_hash_entry *)));
3816 if (p == NULL && o->reloc_count != 0)
3817 return false;
3818
3819 elf_section_data (o)->rel_hashes = p;
3820 pend = p + o->reloc_count;
3821 for (; p < pend; p++)
3822 *p = NULL;
3823 }
3824
3825 return true;
3826 }
3827
3828 /* When performing a relocateable link, the input relocations are
3829 preserved. But, if they reference global symbols, the indices
3830 referenced must be updated. Update all the relocations in
3831 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
3832
3833 static void
3834 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
3835 bfd *abfd;
3836 Elf_Internal_Shdr *rel_hdr;
3837 unsigned int count;
3838 struct elf_link_hash_entry **rel_hash;
3839 {
3840 unsigned int i;
3841
3842 for (i = 0; i < count; i++, rel_hash++)
3843 {
3844 if (*rel_hash == NULL)
3845 continue;
3846
3847 BFD_ASSERT ((*rel_hash)->indx >= 0);
3848
3849 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
3850 {
3851 Elf_External_Rel *erel;
3852 Elf_Internal_Rel irel;
3853
3854 erel = (Elf_External_Rel *) rel_hdr->contents + i;
3855 elf_swap_reloc_in (abfd, erel, &irel);
3856 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
3857 ELF_R_TYPE (irel.r_info));
3858 elf_swap_reloc_out (abfd, &irel, erel);
3859 }
3860 else
3861 {
3862 Elf_External_Rela *erela;
3863 Elf_Internal_Rela irela;
3864
3865 BFD_ASSERT (rel_hdr->sh_entsize
3866 == sizeof (Elf_External_Rela));
3867
3868 erela = (Elf_External_Rela *) rel_hdr->contents + i;
3869 elf_swap_reloca_in (abfd, erela, &irela);
3870 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
3871 ELF_R_TYPE (irela.r_info));
3872 elf_swap_reloca_out (abfd, &irela, erela);
3873 }
3874 }
3875 }
3876
3877 /* Do the final step of an ELF link. */
3878
3879 boolean
3880 elf_bfd_final_link (abfd, info)
3881 bfd *abfd;
3882 struct bfd_link_info *info;
3883 {
3884 boolean dynamic;
3885 bfd *dynobj;
3886 struct elf_final_link_info finfo;
3887 register asection *o;
3888 register struct bfd_link_order *p;
3889 register bfd *sub;
3890 size_t max_contents_size;
3891 size_t max_external_reloc_size;
3892 size_t max_internal_reloc_count;
3893 size_t max_sym_count;
3894 file_ptr off;
3895 Elf_Internal_Sym elfsym;
3896 unsigned int i;
3897 Elf_Internal_Shdr *symtab_hdr;
3898 Elf_Internal_Shdr *symstrtab_hdr;
3899 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3900 struct elf_outext_info eoinfo;
3901
3902 if (info->shared)
3903 abfd->flags |= DYNAMIC;
3904
3905 dynamic = elf_hash_table (info)->dynamic_sections_created;
3906 dynobj = elf_hash_table (info)->dynobj;
3907
3908 finfo.info = info;
3909 finfo.output_bfd = abfd;
3910 finfo.symstrtab = elf_stringtab_init ();
3911 if (finfo.symstrtab == NULL)
3912 return false;
3913
3914 if (! dynamic)
3915 {
3916 finfo.dynsym_sec = NULL;
3917 finfo.hash_sec = NULL;
3918 finfo.symver_sec = NULL;
3919 }
3920 else
3921 {
3922 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
3923 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
3924 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
3925 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
3926 /* Note that it is OK if symver_sec is NULL. */
3927 }
3928
3929 finfo.contents = NULL;
3930 finfo.external_relocs = NULL;
3931 finfo.internal_relocs = NULL;
3932 finfo.external_syms = NULL;
3933 finfo.internal_syms = NULL;
3934 finfo.indices = NULL;
3935 finfo.sections = NULL;
3936 finfo.symbuf = NULL;
3937 finfo.symbuf_count = 0;
3938
3939 /* Count up the number of relocations we will output for each output
3940 section, so that we know the sizes of the reloc sections. We
3941 also figure out some maximum sizes. */
3942 max_contents_size = 0;
3943 max_external_reloc_size = 0;
3944 max_internal_reloc_count = 0;
3945 max_sym_count = 0;
3946 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
3947 {
3948 o->reloc_count = 0;
3949
3950 for (p = o->link_order_head; p != NULL; p = p->next)
3951 {
3952 if (p->type == bfd_section_reloc_link_order
3953 || p->type == bfd_symbol_reloc_link_order)
3954 ++o->reloc_count;
3955 else if (p->type == bfd_indirect_link_order)
3956 {
3957 asection *sec;
3958
3959 sec = p->u.indirect.section;
3960
3961 /* Mark all sections which are to be included in the
3962 link. This will normally be every section. We need
3963 to do this so that we can identify any sections which
3964 the linker has decided to not include. */
3965 sec->linker_mark = true;
3966
3967 if (info->relocateable)
3968 o->reloc_count += sec->reloc_count;
3969
3970 if (sec->_raw_size > max_contents_size)
3971 max_contents_size = sec->_raw_size;
3972 if (sec->_cooked_size > max_contents_size)
3973 max_contents_size = sec->_cooked_size;
3974
3975 /* We are interested in just local symbols, not all
3976 symbols. */
3977 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
3978 && (sec->owner->flags & DYNAMIC) == 0)
3979 {
3980 size_t sym_count;
3981
3982 if (elf_bad_symtab (sec->owner))
3983 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
3984 / sizeof (Elf_External_Sym));
3985 else
3986 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
3987
3988 if (sym_count > max_sym_count)
3989 max_sym_count = sym_count;
3990
3991 if ((sec->flags & SEC_RELOC) != 0)
3992 {
3993 size_t ext_size;
3994
3995 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
3996 if (ext_size > max_external_reloc_size)
3997 max_external_reloc_size = ext_size;
3998 if (sec->reloc_count > max_internal_reloc_count)
3999 max_internal_reloc_count = sec->reloc_count;
4000 }
4001 }
4002 }
4003 }
4004
4005 if (o->reloc_count > 0)
4006 o->flags |= SEC_RELOC;
4007 else
4008 {
4009 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4010 set it (this is probably a bug) and if it is set
4011 assign_section_numbers will create a reloc section. */
4012 o->flags &=~ SEC_RELOC;
4013 }
4014
4015 /* If the SEC_ALLOC flag is not set, force the section VMA to
4016 zero. This is done in elf_fake_sections as well, but forcing
4017 the VMA to 0 here will ensure that relocs against these
4018 sections are handled correctly. */
4019 if ((o->flags & SEC_ALLOC) == 0
4020 && ! o->user_set_vma)
4021 o->vma = 0;
4022 }
4023
4024 /* Figure out the file positions for everything but the symbol table
4025 and the relocs. We set symcount to force assign_section_numbers
4026 to create a symbol table. */
4027 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4028 BFD_ASSERT (! abfd->output_has_begun);
4029 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4030 goto error_return;
4031
4032 /* Figure out how many relocations we will have in each section.
4033 Just using RELOC_COUNT isn't good enough since that doesn't
4034 maintain a separate value for REL vs. RELA relocations. */
4035 if (info->relocateable)
4036 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4037 for (o = sub->sections; o != NULL; o = o->next)
4038 {
4039 asection* output_section = o->output_section;
4040
4041 if (output_section && (o->flags & SEC_RELOC) != 0)
4042 {
4043 struct bfd_elf_section_data *esdi
4044 = elf_section_data (o);
4045 struct bfd_elf_section_data *esdo
4046 = elf_section_data (output_section);
4047 unsigned int *rel_count;
4048 unsigned int *rel_count2;
4049
4050 /* We must be careful to add the relocation froms the
4051 input section to the right output count. */
4052 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4053 {
4054 rel_count = &esdo->rel_count;
4055 rel_count2 = &esdo->rel_count2;
4056 }
4057 else
4058 {
4059 rel_count = &esdo->rel_count2;
4060 rel_count2 = &esdo->rel_count;
4061 }
4062
4063 *rel_count += (esdi->rel_hdr.sh_size
4064 / esdi->rel_hdr.sh_entsize);
4065 if (esdi->rel_hdr2)
4066 *rel_count2 += (esdi->rel_hdr2->sh_size
4067 / esdi->rel_hdr2->sh_entsize);
4068 }
4069 }
4070
4071 /* That created the reloc sections. Set their sizes, and assign
4072 them file positions, and allocate some buffers. */
4073 for (o = abfd->sections; o != NULL; o = o->next)
4074 {
4075 if ((o->flags & SEC_RELOC) != 0)
4076 {
4077 if (!elf_link_size_reloc_section (abfd,
4078 &elf_section_data (o)->rel_hdr,
4079 o))
4080 goto error_return;
4081
4082 if (elf_section_data (o)->rel_hdr2
4083 && !elf_link_size_reloc_section (abfd,
4084 elf_section_data (o)->rel_hdr2,
4085 o))
4086 goto error_return;
4087 }
4088
4089 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4090 to count upwards while actually outputting the relocations. */
4091 elf_section_data (o)->rel_count = 0;
4092 elf_section_data (o)->rel_count2 = 0;
4093 }
4094
4095 _bfd_elf_assign_file_positions_for_relocs (abfd);
4096
4097 /* We have now assigned file positions for all the sections except
4098 .symtab and .strtab. We start the .symtab section at the current
4099 file position, and write directly to it. We build the .strtab
4100 section in memory. */
4101 bfd_get_symcount (abfd) = 0;
4102 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4103 /* sh_name is set in prep_headers. */
4104 symtab_hdr->sh_type = SHT_SYMTAB;
4105 symtab_hdr->sh_flags = 0;
4106 symtab_hdr->sh_addr = 0;
4107 symtab_hdr->sh_size = 0;
4108 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4109 /* sh_link is set in assign_section_numbers. */
4110 /* sh_info is set below. */
4111 /* sh_offset is set just below. */
4112 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
4113
4114 off = elf_tdata (abfd)->next_file_pos;
4115 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4116
4117 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4118 incorrect. We do not yet know the size of the .symtab section.
4119 We correct next_file_pos below, after we do know the size. */
4120
4121 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4122 continuously seeking to the right position in the file. */
4123 if (! info->keep_memory || max_sym_count < 20)
4124 finfo.symbuf_size = 20;
4125 else
4126 finfo.symbuf_size = max_sym_count;
4127 finfo.symbuf = ((Elf_External_Sym *)
4128 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4129 if (finfo.symbuf == NULL)
4130 goto error_return;
4131
4132 /* Start writing out the symbol table. The first symbol is always a
4133 dummy symbol. */
4134 if (info->strip != strip_all || info->relocateable)
4135 {
4136 elfsym.st_value = 0;
4137 elfsym.st_size = 0;
4138 elfsym.st_info = 0;
4139 elfsym.st_other = 0;
4140 elfsym.st_shndx = SHN_UNDEF;
4141 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4142 &elfsym, bfd_und_section_ptr))
4143 goto error_return;
4144 }
4145
4146 #if 0
4147 /* Some standard ELF linkers do this, but we don't because it causes
4148 bootstrap comparison failures. */
4149 /* Output a file symbol for the output file as the second symbol.
4150 We output this even if we are discarding local symbols, although
4151 I'm not sure if this is correct. */
4152 elfsym.st_value = 0;
4153 elfsym.st_size = 0;
4154 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4155 elfsym.st_other = 0;
4156 elfsym.st_shndx = SHN_ABS;
4157 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4158 &elfsym, bfd_abs_section_ptr))
4159 goto error_return;
4160 #endif
4161
4162 /* Output a symbol for each section. We output these even if we are
4163 discarding local symbols, since they are used for relocs. These
4164 symbols have no names. We store the index of each one in the
4165 index field of the section, so that we can find it again when
4166 outputting relocs. */
4167 if (info->strip != strip_all || info->relocateable)
4168 {
4169 elfsym.st_size = 0;
4170 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4171 elfsym.st_other = 0;
4172 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4173 {
4174 o = section_from_elf_index (abfd, i);
4175 if (o != NULL)
4176 o->target_index = bfd_get_symcount (abfd);
4177 elfsym.st_shndx = i;
4178 if (info->relocateable || o == NULL)
4179 elfsym.st_value = 0;
4180 else
4181 elfsym.st_value = o->vma;
4182 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4183 &elfsym, o))
4184 goto error_return;
4185 }
4186 }
4187
4188 /* Allocate some memory to hold information read in from the input
4189 files. */
4190 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4191 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4192 finfo.internal_relocs = ((Elf_Internal_Rela *)
4193 bfd_malloc (max_internal_reloc_count
4194 * sizeof (Elf_Internal_Rela)
4195 * bed->s->int_rels_per_ext_rel));
4196 finfo.external_syms = ((Elf_External_Sym *)
4197 bfd_malloc (max_sym_count
4198 * sizeof (Elf_External_Sym)));
4199 finfo.internal_syms = ((Elf_Internal_Sym *)
4200 bfd_malloc (max_sym_count
4201 * sizeof (Elf_Internal_Sym)));
4202 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4203 finfo.sections = ((asection **)
4204 bfd_malloc (max_sym_count * sizeof (asection *)));
4205 if ((finfo.contents == NULL && max_contents_size != 0)
4206 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4207 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4208 || (finfo.external_syms == NULL && max_sym_count != 0)
4209 || (finfo.internal_syms == NULL && max_sym_count != 0)
4210 || (finfo.indices == NULL && max_sym_count != 0)
4211 || (finfo.sections == NULL && max_sym_count != 0))
4212 goto error_return;
4213
4214 /* Since ELF permits relocations to be against local symbols, we
4215 must have the local symbols available when we do the relocations.
4216 Since we would rather only read the local symbols once, and we
4217 would rather not keep them in memory, we handle all the
4218 relocations for a single input file at the same time.
4219
4220 Unfortunately, there is no way to know the total number of local
4221 symbols until we have seen all of them, and the local symbol
4222 indices precede the global symbol indices. This means that when
4223 we are generating relocateable output, and we see a reloc against
4224 a global symbol, we can not know the symbol index until we have
4225 finished examining all the local symbols to see which ones we are
4226 going to output. To deal with this, we keep the relocations in
4227 memory, and don't output them until the end of the link. This is
4228 an unfortunate waste of memory, but I don't see a good way around
4229 it. Fortunately, it only happens when performing a relocateable
4230 link, which is not the common case. FIXME: If keep_memory is set
4231 we could write the relocs out and then read them again; I don't
4232 know how bad the memory loss will be. */
4233
4234 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4235 sub->output_has_begun = false;
4236 for (o = abfd->sections; o != NULL; o = o->next)
4237 {
4238 for (p = o->link_order_head; p != NULL; p = p->next)
4239 {
4240 if (p->type == bfd_indirect_link_order
4241 && (bfd_get_flavour (p->u.indirect.section->owner)
4242 == bfd_target_elf_flavour))
4243 {
4244 sub = p->u.indirect.section->owner;
4245 if (! sub->output_has_begun)
4246 {
4247 if (! elf_link_input_bfd (&finfo, sub))
4248 goto error_return;
4249 sub->output_has_begun = true;
4250 }
4251 }
4252 else if (p->type == bfd_section_reloc_link_order
4253 || p->type == bfd_symbol_reloc_link_order)
4254 {
4255 if (! elf_reloc_link_order (abfd, info, o, p))
4256 goto error_return;
4257 }
4258 else
4259 {
4260 if (! _bfd_default_link_order (abfd, info, o, p))
4261 goto error_return;
4262 }
4263 }
4264 }
4265
4266 /* That wrote out all the local symbols. Finish up the symbol table
4267 with the global symbols. */
4268
4269 if (info->strip != strip_all && info->shared)
4270 {
4271 /* Output any global symbols that got converted to local in a
4272 version script. We do this in a separate step since ELF
4273 requires all local symbols to appear prior to any global
4274 symbols. FIXME: We should only do this if some global
4275 symbols were, in fact, converted to become local. FIXME:
4276 Will this work correctly with the Irix 5 linker? */
4277 eoinfo.failed = false;
4278 eoinfo.finfo = &finfo;
4279 eoinfo.localsyms = true;
4280 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4281 (PTR) &eoinfo);
4282 if (eoinfo.failed)
4283 return false;
4284 }
4285
4286 /* The sh_info field records the index of the first non local symbol. */
4287 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4288
4289 if (dynamic)
4290 {
4291 Elf_Internal_Sym sym;
4292 Elf_External_Sym *dynsym =
4293 (Elf_External_Sym *)finfo.dynsym_sec->contents;
4294 unsigned long last_local = 0;
4295
4296 /* Write out the section symbols for the output sections. */
4297 if (info->shared)
4298 {
4299 asection *s;
4300
4301 sym.st_size = 0;
4302 sym.st_name = 0;
4303 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4304 sym.st_other = 0;
4305
4306 for (s = abfd->sections; s != NULL; s = s->next)
4307 {
4308 int indx;
4309 indx = elf_section_data (s)->this_idx;
4310 BFD_ASSERT (indx > 0);
4311 sym.st_shndx = indx;
4312 sym.st_value = s->vma;
4313
4314 elf_swap_symbol_out (abfd, &sym,
4315 dynsym + elf_section_data (s)->dynindx);
4316 }
4317
4318 last_local = bfd_count_sections (abfd);
4319 }
4320
4321 /* Write out the local dynsyms. */
4322 if (elf_hash_table (info)->dynlocal)
4323 {
4324 struct elf_link_local_dynamic_entry *e;
4325 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4326 {
4327 asection *s;
4328
4329 sym.st_size = e->isym.st_size;
4330 sym.st_other = e->isym.st_other;
4331
4332 /* Copy the internal symbol as is.
4333 Note that we saved a word of storage and overwrote
4334 the original st_name with the dynstr_index. */
4335 sym = e->isym;
4336
4337 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
4338 {
4339 s = bfd_section_from_elf_index (e->input_bfd,
4340 e->isym.st_shndx);
4341
4342 sym.st_shndx =
4343 elf_section_data (s->output_section)->this_idx;
4344 sym.st_value = (s->output_section->vma
4345 + s->output_offset
4346 + e->isym.st_value);
4347 }
4348
4349 if (last_local < e->dynindx)
4350 last_local = e->dynindx;
4351
4352 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4353 }
4354 }
4355
4356 elf_section_data (finfo.dynsym_sec->output_section)
4357 ->this_hdr.sh_info = last_local + 1;
4358 }
4359
4360 /* We get the global symbols from the hash table. */
4361 eoinfo.failed = false;
4362 eoinfo.localsyms = false;
4363 eoinfo.finfo = &finfo;
4364 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4365 (PTR) &eoinfo);
4366 if (eoinfo.failed)
4367 return false;
4368
4369 /* If backend needs to output some symbols not present in the hash
4370 table, do it now. */
4371 if (bed->elf_backend_output_arch_syms)
4372 {
4373 if (! (*bed->elf_backend_output_arch_syms)
4374 (abfd, info, (PTR) &finfo,
4375 (boolean (*) PARAMS ((PTR, const char *,
4376 Elf_Internal_Sym *, asection *)))
4377 elf_link_output_sym))
4378 return false;
4379 }
4380
4381 /* Flush all symbols to the file. */
4382 if (! elf_link_flush_output_syms (&finfo))
4383 return false;
4384
4385 /* Now we know the size of the symtab section. */
4386 off += symtab_hdr->sh_size;
4387
4388 /* Finish up and write out the symbol string table (.strtab)
4389 section. */
4390 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4391 /* sh_name was set in prep_headers. */
4392 symstrtab_hdr->sh_type = SHT_STRTAB;
4393 symstrtab_hdr->sh_flags = 0;
4394 symstrtab_hdr->sh_addr = 0;
4395 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4396 symstrtab_hdr->sh_entsize = 0;
4397 symstrtab_hdr->sh_link = 0;
4398 symstrtab_hdr->sh_info = 0;
4399 /* sh_offset is set just below. */
4400 symstrtab_hdr->sh_addralign = 1;
4401
4402 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4403 elf_tdata (abfd)->next_file_pos = off;
4404
4405 if (bfd_get_symcount (abfd) > 0)
4406 {
4407 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4408 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4409 return false;
4410 }
4411
4412 /* Adjust the relocs to have the correct symbol indices. */
4413 for (o = abfd->sections; o != NULL; o = o->next)
4414 {
4415 if ((o->flags & SEC_RELOC) == 0)
4416 continue;
4417
4418 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4419 elf_section_data (o)->rel_count,
4420 elf_section_data (o)->rel_hashes);
4421 if (elf_section_data (o)->rel_hdr2 != NULL)
4422 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4423 elf_section_data (o)->rel_count2,
4424 (elf_section_data (o)->rel_hashes
4425 + elf_section_data (o)->rel_count));
4426
4427 /* Set the reloc_count field to 0 to prevent write_relocs from
4428 trying to swap the relocs out itself. */
4429 o->reloc_count = 0;
4430 }
4431
4432 /* If we are linking against a dynamic object, or generating a
4433 shared library, finish up the dynamic linking information. */
4434 if (dynamic)
4435 {
4436 Elf_External_Dyn *dyncon, *dynconend;
4437
4438 /* Fix up .dynamic entries. */
4439 o = bfd_get_section_by_name (dynobj, ".dynamic");
4440 BFD_ASSERT (o != NULL);
4441
4442 dyncon = (Elf_External_Dyn *) o->contents;
4443 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4444 for (; dyncon < dynconend; dyncon++)
4445 {
4446 Elf_Internal_Dyn dyn;
4447 const char *name;
4448 unsigned int type;
4449
4450 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4451
4452 switch (dyn.d_tag)
4453 {
4454 default:
4455 break;
4456 case DT_INIT:
4457 name = info->init_function;
4458 goto get_sym;
4459 case DT_FINI:
4460 name = info->fini_function;
4461 get_sym:
4462 {
4463 struct elf_link_hash_entry *h;
4464
4465 h = elf_link_hash_lookup (elf_hash_table (info), name,
4466 false, false, true);
4467 if (h != NULL
4468 && (h->root.type == bfd_link_hash_defined
4469 || h->root.type == bfd_link_hash_defweak))
4470 {
4471 dyn.d_un.d_val = h->root.u.def.value;
4472 o = h->root.u.def.section;
4473 if (o->output_section != NULL)
4474 dyn.d_un.d_val += (o->output_section->vma
4475 + o->output_offset);
4476 else
4477 {
4478 /* The symbol is imported from another shared
4479 library and does not apply to this one. */
4480 dyn.d_un.d_val = 0;
4481 }
4482
4483 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4484 }
4485 }
4486 break;
4487
4488 case DT_HASH:
4489 name = ".hash";
4490 goto get_vma;
4491 case DT_STRTAB:
4492 name = ".dynstr";
4493 goto get_vma;
4494 case DT_SYMTAB:
4495 name = ".dynsym";
4496 goto get_vma;
4497 case DT_VERDEF:
4498 name = ".gnu.version_d";
4499 goto get_vma;
4500 case DT_VERNEED:
4501 name = ".gnu.version_r";
4502 goto get_vma;
4503 case DT_VERSYM:
4504 name = ".gnu.version";
4505 get_vma:
4506 o = bfd_get_section_by_name (abfd, name);
4507 BFD_ASSERT (o != NULL);
4508 dyn.d_un.d_ptr = o->vma;
4509 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4510 break;
4511
4512 case DT_REL:
4513 case DT_RELA:
4514 case DT_RELSZ:
4515 case DT_RELASZ:
4516 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4517 type = SHT_REL;
4518 else
4519 type = SHT_RELA;
4520 dyn.d_un.d_val = 0;
4521 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4522 {
4523 Elf_Internal_Shdr *hdr;
4524
4525 hdr = elf_elfsections (abfd)[i];
4526 if (hdr->sh_type == type
4527 && (hdr->sh_flags & SHF_ALLOC) != 0)
4528 {
4529 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4530 dyn.d_un.d_val += hdr->sh_size;
4531 else
4532 {
4533 if (dyn.d_un.d_val == 0
4534 || hdr->sh_addr < dyn.d_un.d_val)
4535 dyn.d_un.d_val = hdr->sh_addr;
4536 }
4537 }
4538 }
4539 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4540 break;
4541 }
4542 }
4543 }
4544
4545 /* If we have created any dynamic sections, then output them. */
4546 if (dynobj != NULL)
4547 {
4548 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4549 goto error_return;
4550
4551 for (o = dynobj->sections; o != NULL; o = o->next)
4552 {
4553 if ((o->flags & SEC_HAS_CONTENTS) == 0
4554 || o->_raw_size == 0)
4555 continue;
4556 if ((o->flags & SEC_LINKER_CREATED) == 0)
4557 {
4558 /* At this point, we are only interested in sections
4559 created by elf_link_create_dynamic_sections. */
4560 continue;
4561 }
4562 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4563 != SHT_STRTAB)
4564 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4565 {
4566 if (! bfd_set_section_contents (abfd, o->output_section,
4567 o->contents, o->output_offset,
4568 o->_raw_size))
4569 goto error_return;
4570 }
4571 else
4572 {
4573 file_ptr off;
4574
4575 /* The contents of the .dynstr section are actually in a
4576 stringtab. */
4577 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4578 if (bfd_seek (abfd, off, SEEK_SET) != 0
4579 || ! _bfd_stringtab_emit (abfd,
4580 elf_hash_table (info)->dynstr))
4581 goto error_return;
4582 }
4583 }
4584 }
4585
4586 /* If we have optimized stabs strings, output them. */
4587 if (elf_hash_table (info)->stab_info != NULL)
4588 {
4589 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4590 goto error_return;
4591 }
4592
4593 if (finfo.symstrtab != NULL)
4594 _bfd_stringtab_free (finfo.symstrtab);
4595 if (finfo.contents != NULL)
4596 free (finfo.contents);
4597 if (finfo.external_relocs != NULL)
4598 free (finfo.external_relocs);
4599 if (finfo.internal_relocs != NULL)
4600 free (finfo.internal_relocs);
4601 if (finfo.external_syms != NULL)
4602 free (finfo.external_syms);
4603 if (finfo.internal_syms != NULL)
4604 free (finfo.internal_syms);
4605 if (finfo.indices != NULL)
4606 free (finfo.indices);
4607 if (finfo.sections != NULL)
4608 free (finfo.sections);
4609 if (finfo.symbuf != NULL)
4610 free (finfo.symbuf);
4611 for (o = abfd->sections; o != NULL; o = o->next)
4612 {
4613 if ((o->flags & SEC_RELOC) != 0
4614 && elf_section_data (o)->rel_hashes != NULL)
4615 free (elf_section_data (o)->rel_hashes);
4616 }
4617
4618 elf_tdata (abfd)->linker = true;
4619
4620 return true;
4621
4622 error_return:
4623 if (finfo.symstrtab != NULL)
4624 _bfd_stringtab_free (finfo.symstrtab);
4625 if (finfo.contents != NULL)
4626 free (finfo.contents);
4627 if (finfo.external_relocs != NULL)
4628 free (finfo.external_relocs);
4629 if (finfo.internal_relocs != NULL)
4630 free (finfo.internal_relocs);
4631 if (finfo.external_syms != NULL)
4632 free (finfo.external_syms);
4633 if (finfo.internal_syms != NULL)
4634 free (finfo.internal_syms);
4635 if (finfo.indices != NULL)
4636 free (finfo.indices);
4637 if (finfo.sections != NULL)
4638 free (finfo.sections);
4639 if (finfo.symbuf != NULL)
4640 free (finfo.symbuf);
4641 for (o = abfd->sections; o != NULL; o = o->next)
4642 {
4643 if ((o->flags & SEC_RELOC) != 0
4644 && elf_section_data (o)->rel_hashes != NULL)
4645 free (elf_section_data (o)->rel_hashes);
4646 }
4647
4648 return false;
4649 }
4650
4651 /* Add a symbol to the output symbol table. */
4652
4653 static boolean
4654 elf_link_output_sym (finfo, name, elfsym, input_sec)
4655 struct elf_final_link_info *finfo;
4656 const char *name;
4657 Elf_Internal_Sym *elfsym;
4658 asection *input_sec;
4659 {
4660 boolean (*output_symbol_hook) PARAMS ((bfd *,
4661 struct bfd_link_info *info,
4662 const char *,
4663 Elf_Internal_Sym *,
4664 asection *));
4665
4666 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4667 elf_backend_link_output_symbol_hook;
4668 if (output_symbol_hook != NULL)
4669 {
4670 if (! ((*output_symbol_hook)
4671 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4672 return false;
4673 }
4674
4675 if (name == (const char *) NULL || *name == '\0')
4676 elfsym->st_name = 0;
4677 else if (input_sec->flags & SEC_EXCLUDE)
4678 elfsym->st_name = 0;
4679 else
4680 {
4681 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4682 name, true,
4683 false);
4684 if (elfsym->st_name == (unsigned long) -1)
4685 return false;
4686 }
4687
4688 if (finfo->symbuf_count >= finfo->symbuf_size)
4689 {
4690 if (! elf_link_flush_output_syms (finfo))
4691 return false;
4692 }
4693
4694 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4695 (PTR) (finfo->symbuf + finfo->symbuf_count));
4696 ++finfo->symbuf_count;
4697
4698 ++ bfd_get_symcount (finfo->output_bfd);
4699
4700 return true;
4701 }
4702
4703 /* Flush the output symbols to the file. */
4704
4705 static boolean
4706 elf_link_flush_output_syms (finfo)
4707 struct elf_final_link_info *finfo;
4708 {
4709 if (finfo->symbuf_count > 0)
4710 {
4711 Elf_Internal_Shdr *symtab;
4712
4713 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4714
4715 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4716 SEEK_SET) != 0
4717 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4718 sizeof (Elf_External_Sym), finfo->output_bfd)
4719 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4720 return false;
4721
4722 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4723
4724 finfo->symbuf_count = 0;
4725 }
4726
4727 return true;
4728 }
4729
4730 /* Add an external symbol to the symbol table. This is called from
4731 the hash table traversal routine. When generating a shared object,
4732 we go through the symbol table twice. The first time we output
4733 anything that might have been forced to local scope in a version
4734 script. The second time we output the symbols that are still
4735 global symbols. */
4736
4737 static boolean
4738 elf_link_output_extsym (h, data)
4739 struct elf_link_hash_entry *h;
4740 PTR data;
4741 {
4742 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4743 struct elf_final_link_info *finfo = eoinfo->finfo;
4744 boolean strip;
4745 Elf_Internal_Sym sym;
4746 asection *input_sec;
4747
4748 /* Decide whether to output this symbol in this pass. */
4749 if (eoinfo->localsyms)
4750 {
4751 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4752 return true;
4753 }
4754 else
4755 {
4756 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4757 return true;
4758 }
4759
4760 /* If we are not creating a shared library, and this symbol is
4761 referenced by a shared library but is not defined anywhere, then
4762 warn that it is undefined. If we do not do this, the runtime
4763 linker will complain that the symbol is undefined when the
4764 program is run. We don't have to worry about symbols that are
4765 referenced by regular files, because we will already have issued
4766 warnings for them. */
4767 if (! finfo->info->relocateable
4768 && ! (finfo->info->shared
4769 && !finfo->info->no_undefined)
4770 && h->root.type == bfd_link_hash_undefined
4771 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4772 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4773 {
4774 if (! ((*finfo->info->callbacks->undefined_symbol)
4775 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4776 (asection *) NULL, 0)))
4777 {
4778 eoinfo->failed = true;
4779 return false;
4780 }
4781 }
4782
4783 /* We don't want to output symbols that have never been mentioned by
4784 a regular file, or that we have been told to strip. However, if
4785 h->indx is set to -2, the symbol is used by a reloc and we must
4786 output it. */
4787 if (h->indx == -2)
4788 strip = false;
4789 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4790 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4791 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4792 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4793 strip = true;
4794 else if (finfo->info->strip == strip_all
4795 || (finfo->info->strip == strip_some
4796 && bfd_hash_lookup (finfo->info->keep_hash,
4797 h->root.root.string,
4798 false, false) == NULL))
4799 strip = true;
4800 else
4801 strip = false;
4802
4803 /* If we're stripping it, and it's not a dynamic symbol, there's
4804 nothing else to do. */
4805 if (strip && h->dynindx == -1)
4806 return true;
4807
4808 sym.st_value = 0;
4809 sym.st_size = h->size;
4810 sym.st_other = h->other;
4811 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4812 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4813 else if (h->root.type == bfd_link_hash_undefweak
4814 || h->root.type == bfd_link_hash_defweak)
4815 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4816 else
4817 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4818
4819 switch (h->root.type)
4820 {
4821 default:
4822 case bfd_link_hash_new:
4823 abort ();
4824 return false;
4825
4826 case bfd_link_hash_undefined:
4827 input_sec = bfd_und_section_ptr;
4828 sym.st_shndx = SHN_UNDEF;
4829 break;
4830
4831 case bfd_link_hash_undefweak:
4832 input_sec = bfd_und_section_ptr;
4833 sym.st_shndx = SHN_UNDEF;
4834 break;
4835
4836 case bfd_link_hash_defined:
4837 case bfd_link_hash_defweak:
4838 {
4839 input_sec = h->root.u.def.section;
4840 if (input_sec->output_section != NULL)
4841 {
4842 sym.st_shndx =
4843 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4844 input_sec->output_section);
4845 if (sym.st_shndx == (unsigned short) -1)
4846 {
4847 (*_bfd_error_handler)
4848 (_("%s: could not find output section %s for input section %s"),
4849 bfd_get_filename (finfo->output_bfd),
4850 input_sec->output_section->name,
4851 input_sec->name);
4852 eoinfo->failed = true;
4853 return false;
4854 }
4855
4856 /* ELF symbols in relocateable files are section relative,
4857 but in nonrelocateable files they are virtual
4858 addresses. */
4859 sym.st_value = h->root.u.def.value + input_sec->output_offset;
4860 if (! finfo->info->relocateable)
4861 sym.st_value += input_sec->output_section->vma;
4862 }
4863 else
4864 {
4865 BFD_ASSERT (input_sec->owner == NULL
4866 || (input_sec->owner->flags & DYNAMIC) != 0);
4867 sym.st_shndx = SHN_UNDEF;
4868 input_sec = bfd_und_section_ptr;
4869 }
4870 }
4871 break;
4872
4873 case bfd_link_hash_common:
4874 input_sec = h->root.u.c.p->section;
4875 sym.st_shndx = SHN_COMMON;
4876 sym.st_value = 1 << h->root.u.c.p->alignment_power;
4877 break;
4878
4879 case bfd_link_hash_indirect:
4880 /* These symbols are created by symbol versioning. They point
4881 to the decorated version of the name. For example, if the
4882 symbol foo@@GNU_1.2 is the default, which should be used when
4883 foo is used with no version, then we add an indirect symbol
4884 foo which points to foo@@GNU_1.2. We ignore these symbols,
4885 since the indirected symbol is already in the hash table. If
4886 the indirect symbol is non-ELF, fall through and output it. */
4887 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
4888 return true;
4889
4890 /* Fall through. */
4891 case bfd_link_hash_warning:
4892 /* We can't represent these symbols in ELF, although a warning
4893 symbol may have come from a .gnu.warning.SYMBOL section. We
4894 just put the target symbol in the hash table. If the target
4895 symbol does not really exist, don't do anything. */
4896 if (h->root.u.i.link->type == bfd_link_hash_new)
4897 return true;
4898 return (elf_link_output_extsym
4899 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
4900 }
4901
4902 /* Give the processor backend a chance to tweak the symbol value,
4903 and also to finish up anything that needs to be done for this
4904 symbol. */
4905 if ((h->dynindx != -1
4906 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4907 && elf_hash_table (finfo->info)->dynamic_sections_created)
4908 {
4909 struct elf_backend_data *bed;
4910
4911 bed = get_elf_backend_data (finfo->output_bfd);
4912 if (! ((*bed->elf_backend_finish_dynamic_symbol)
4913 (finfo->output_bfd, finfo->info, h, &sym)))
4914 {
4915 eoinfo->failed = true;
4916 return false;
4917 }
4918 }
4919
4920 /* If we are marking the symbol as undefined, and there are no
4921 non-weak references to this symbol from a regular object, then
4922 mark the symbol as weak undefined; if there are non-weak
4923 references, mark the symbol as strong. We can't do this earlier,
4924 because it might not be marked as undefined until the
4925 finish_dynamic_symbol routine gets through with it. */
4926 if (sym.st_shndx == SHN_UNDEF
4927 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
4928 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
4929 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
4930 {
4931 int bindtype;
4932
4933 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
4934 bindtype = STB_GLOBAL;
4935 else
4936 bindtype = STB_WEAK;
4937 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
4938 }
4939
4940 /* If this symbol should be put in the .dynsym section, then put it
4941 there now. We have already know the symbol index. We also fill
4942 in the entry in the .hash section. */
4943 if (h->dynindx != -1
4944 && elf_hash_table (finfo->info)->dynamic_sections_created)
4945 {
4946 size_t bucketcount;
4947 size_t bucket;
4948 size_t hash_entry_size;
4949 bfd_byte *bucketpos;
4950 bfd_vma chain;
4951
4952 sym.st_name = h->dynstr_index;
4953
4954 elf_swap_symbol_out (finfo->output_bfd, &sym,
4955 (PTR) (((Elf_External_Sym *)
4956 finfo->dynsym_sec->contents)
4957 + h->dynindx));
4958
4959 bucketcount = elf_hash_table (finfo->info)->bucketcount;
4960 bucket = h->elf_hash_value % bucketcount;
4961 hash_entry_size
4962 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
4963 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
4964 + (bucket + 2) * hash_entry_size);
4965 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
4966 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
4967 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
4968 ((bfd_byte *) finfo->hash_sec->contents
4969 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
4970
4971 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
4972 {
4973 Elf_Internal_Versym iversym;
4974
4975 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4976 {
4977 if (h->verinfo.verdef == NULL)
4978 iversym.vs_vers = 0;
4979 else
4980 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
4981 }
4982 else
4983 {
4984 if (h->verinfo.vertree == NULL)
4985 iversym.vs_vers = 1;
4986 else
4987 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
4988 }
4989
4990 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
4991 iversym.vs_vers |= VERSYM_HIDDEN;
4992
4993 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
4994 (((Elf_External_Versym *)
4995 finfo->symver_sec->contents)
4996 + h->dynindx));
4997 }
4998 }
4999
5000 /* If we're stripping it, then it was just a dynamic symbol, and
5001 there's nothing else to do. */
5002 if (strip)
5003 return true;
5004
5005 h->indx = bfd_get_symcount (finfo->output_bfd);
5006
5007 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5008 {
5009 eoinfo->failed = true;
5010 return false;
5011 }
5012
5013 return true;
5014 }
5015
5016 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
5017 originated from the section given by INPUT_REL_HDR) to the
5018 OUTPUT_BFD. */
5019
5020 static void
5021 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
5022 internal_relocs)
5023 bfd *output_bfd;
5024 asection *input_section;
5025 Elf_Internal_Shdr *input_rel_hdr;
5026 Elf_Internal_Rela *internal_relocs;
5027 {
5028 Elf_Internal_Rela *irela;
5029 Elf_Internal_Rela *irelaend;
5030 Elf_Internal_Shdr *output_rel_hdr;
5031 asection *output_section;
5032 unsigned int *rel_countp = NULL;
5033
5034 output_section = input_section->output_section;
5035 output_rel_hdr = NULL;
5036
5037 if (elf_section_data (output_section)->rel_hdr.sh_entsize
5038 == input_rel_hdr->sh_entsize)
5039 {
5040 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5041 rel_countp = &elf_section_data (output_section)->rel_count;
5042 }
5043 else if (elf_section_data (output_section)->rel_hdr2
5044 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5045 == input_rel_hdr->sh_entsize))
5046 {
5047 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5048 rel_countp = &elf_section_data (output_section)->rel_count2;
5049 }
5050
5051 BFD_ASSERT (output_rel_hdr != NULL);
5052
5053 irela = internal_relocs;
5054 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5055 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5056 {
5057 Elf_External_Rel *erel;
5058
5059 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5060 for (; irela < irelaend; irela++, erel++)
5061 {
5062 Elf_Internal_Rel irel;
5063
5064 irel.r_offset = irela->r_offset;
5065 irel.r_info = irela->r_info;
5066 BFD_ASSERT (irela->r_addend == 0);
5067 elf_swap_reloc_out (output_bfd, &irel, erel);
5068 }
5069 }
5070 else
5071 {
5072 Elf_External_Rela *erela;
5073
5074 BFD_ASSERT (input_rel_hdr->sh_entsize
5075 == sizeof (Elf_External_Rela));
5076 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5077 for (; irela < irelaend; irela++, erela++)
5078 elf_swap_reloca_out (output_bfd, irela, erela);
5079 }
5080
5081 /* Bump the counter, so that we know where to add the next set of
5082 relocations. */
5083 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5084 }
5085
5086 /* Link an input file into the linker output file. This function
5087 handles all the sections and relocations of the input file at once.
5088 This is so that we only have to read the local symbols once, and
5089 don't have to keep them in memory. */
5090
5091 static boolean
5092 elf_link_input_bfd (finfo, input_bfd)
5093 struct elf_final_link_info *finfo;
5094 bfd *input_bfd;
5095 {
5096 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5097 bfd *, asection *, bfd_byte *,
5098 Elf_Internal_Rela *,
5099 Elf_Internal_Sym *, asection **));
5100 bfd *output_bfd;
5101 Elf_Internal_Shdr *symtab_hdr;
5102 size_t locsymcount;
5103 size_t extsymoff;
5104 Elf_External_Sym *external_syms;
5105 Elf_External_Sym *esym;
5106 Elf_External_Sym *esymend;
5107 Elf_Internal_Sym *isym;
5108 long *pindex;
5109 asection **ppsection;
5110 asection *o;
5111 struct elf_backend_data *bed;
5112
5113 output_bfd = finfo->output_bfd;
5114 bed = get_elf_backend_data (output_bfd);
5115 relocate_section = bed->elf_backend_relocate_section;
5116
5117 /* If this is a dynamic object, we don't want to do anything here:
5118 we don't want the local symbols, and we don't want the section
5119 contents. */
5120 if ((input_bfd->flags & DYNAMIC) != 0)
5121 return true;
5122
5123 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5124 if (elf_bad_symtab (input_bfd))
5125 {
5126 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5127 extsymoff = 0;
5128 }
5129 else
5130 {
5131 locsymcount = symtab_hdr->sh_info;
5132 extsymoff = symtab_hdr->sh_info;
5133 }
5134
5135 /* Read the local symbols. */
5136 if (symtab_hdr->contents != NULL)
5137 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5138 else if (locsymcount == 0)
5139 external_syms = NULL;
5140 else
5141 {
5142 external_syms = finfo->external_syms;
5143 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5144 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5145 locsymcount, input_bfd)
5146 != locsymcount * sizeof (Elf_External_Sym)))
5147 return false;
5148 }
5149
5150 /* Swap in the local symbols and write out the ones which we know
5151 are going into the output file. */
5152 esym = external_syms;
5153 esymend = esym + locsymcount;
5154 isym = finfo->internal_syms;
5155 pindex = finfo->indices;
5156 ppsection = finfo->sections;
5157 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5158 {
5159 asection *isec;
5160 const char *name;
5161 Elf_Internal_Sym osym;
5162
5163 elf_swap_symbol_in (input_bfd, esym, isym);
5164 *pindex = -1;
5165
5166 if (elf_bad_symtab (input_bfd))
5167 {
5168 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5169 {
5170 *ppsection = NULL;
5171 continue;
5172 }
5173 }
5174
5175 if (isym->st_shndx == SHN_UNDEF)
5176 isec = bfd_und_section_ptr;
5177 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5178 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5179 else if (isym->st_shndx == SHN_ABS)
5180 isec = bfd_abs_section_ptr;
5181 else if (isym->st_shndx == SHN_COMMON)
5182 isec = bfd_com_section_ptr;
5183 else
5184 {
5185 /* Who knows? */
5186 isec = NULL;
5187 }
5188
5189 *ppsection = isec;
5190
5191 /* Don't output the first, undefined, symbol. */
5192 if (esym == external_syms)
5193 continue;
5194
5195 /* If we are stripping all symbols, we don't want to output this
5196 one. */
5197 if (finfo->info->strip == strip_all)
5198 continue;
5199
5200 /* We never output section symbols. Instead, we use the section
5201 symbol of the corresponding section in the output file. */
5202 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5203 continue;
5204
5205 /* If we are discarding all local symbols, we don't want to
5206 output this one. If we are generating a relocateable output
5207 file, then some of the local symbols may be required by
5208 relocs; we output them below as we discover that they are
5209 needed. */
5210 if (finfo->info->discard == discard_all)
5211 continue;
5212
5213 /* If this symbol is defined in a section which we are
5214 discarding, we don't need to keep it, but note that
5215 linker_mark is only reliable for sections that have contents.
5216 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5217 as well as linker_mark. */
5218 if (isym->st_shndx > 0
5219 && isym->st_shndx < SHN_LORESERVE
5220 && isec != NULL
5221 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5222 || (! finfo->info->relocateable
5223 && (isec->flags & SEC_EXCLUDE) != 0)))
5224 continue;
5225
5226 /* Get the name of the symbol. */
5227 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5228 isym->st_name);
5229 if (name == NULL)
5230 return false;
5231
5232 /* See if we are discarding symbols with this name. */
5233 if ((finfo->info->strip == strip_some
5234 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5235 == NULL))
5236 || (finfo->info->discard == discard_l
5237 && bfd_is_local_label_name (input_bfd, name)))
5238 continue;
5239
5240 /* If we get here, we are going to output this symbol. */
5241
5242 osym = *isym;
5243
5244 /* Adjust the section index for the output file. */
5245 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5246 isec->output_section);
5247 if (osym.st_shndx == (unsigned short) -1)
5248 return false;
5249
5250 *pindex = bfd_get_symcount (output_bfd);
5251
5252 /* ELF symbols in relocateable files are section relative, but
5253 in executable files they are virtual addresses. Note that
5254 this code assumes that all ELF sections have an associated
5255 BFD section with a reasonable value for output_offset; below
5256 we assume that they also have a reasonable value for
5257 output_section. Any special sections must be set up to meet
5258 these requirements. */
5259 osym.st_value += isec->output_offset;
5260 if (! finfo->info->relocateable)
5261 osym.st_value += isec->output_section->vma;
5262
5263 if (! elf_link_output_sym (finfo, name, &osym, isec))
5264 return false;
5265 }
5266
5267 /* Relocate the contents of each section. */
5268 for (o = input_bfd->sections; o != NULL; o = o->next)
5269 {
5270 bfd_byte *contents;
5271
5272 if (! o->linker_mark)
5273 {
5274 /* This section was omitted from the link. */
5275 continue;
5276 }
5277
5278 if ((o->flags & SEC_HAS_CONTENTS) == 0
5279 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5280 continue;
5281
5282 if ((o->flags & SEC_LINKER_CREATED) != 0)
5283 {
5284 /* Section was created by elf_link_create_dynamic_sections
5285 or somesuch. */
5286 continue;
5287 }
5288
5289 /* Get the contents of the section. They have been cached by a
5290 relaxation routine. Note that o is a section in an input
5291 file, so the contents field will not have been set by any of
5292 the routines which work on output files. */
5293 if (elf_section_data (o)->this_hdr.contents != NULL)
5294 contents = elf_section_data (o)->this_hdr.contents;
5295 else
5296 {
5297 contents = finfo->contents;
5298 if (! bfd_get_section_contents (input_bfd, o, contents,
5299 (file_ptr) 0, o->_raw_size))
5300 return false;
5301 }
5302
5303 if ((o->flags & SEC_RELOC) != 0)
5304 {
5305 Elf_Internal_Rela *internal_relocs;
5306
5307 /* Get the swapped relocs. */
5308 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5309 (input_bfd, o, finfo->external_relocs,
5310 finfo->internal_relocs, false));
5311 if (internal_relocs == NULL
5312 && o->reloc_count > 0)
5313 return false;
5314
5315 /* Relocate the section by invoking a back end routine.
5316
5317 The back end routine is responsible for adjusting the
5318 section contents as necessary, and (if using Rela relocs
5319 and generating a relocateable output file) adjusting the
5320 reloc addend as necessary.
5321
5322 The back end routine does not have to worry about setting
5323 the reloc address or the reloc symbol index.
5324
5325 The back end routine is given a pointer to the swapped in
5326 internal symbols, and can access the hash table entries
5327 for the external symbols via elf_sym_hashes (input_bfd).
5328
5329 When generating relocateable output, the back end routine
5330 must handle STB_LOCAL/STT_SECTION symbols specially. The
5331 output symbol is going to be a section symbol
5332 corresponding to the output section, which will require
5333 the addend to be adjusted. */
5334
5335 if (! (*relocate_section) (output_bfd, finfo->info,
5336 input_bfd, o, contents,
5337 internal_relocs,
5338 finfo->internal_syms,
5339 finfo->sections))
5340 return false;
5341
5342 if (finfo->info->relocateable)
5343 {
5344 Elf_Internal_Rela *irela;
5345 Elf_Internal_Rela *irelaend;
5346 struct elf_link_hash_entry **rel_hash;
5347 Elf_Internal_Shdr *input_rel_hdr;
5348
5349 /* Adjust the reloc addresses and symbol indices. */
5350
5351 irela = internal_relocs;
5352 irelaend =
5353 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
5354 rel_hash = (elf_section_data (o->output_section)->rel_hashes
5355 + elf_section_data (o->output_section)->rel_count
5356 + elf_section_data (o->output_section)->rel_count2);
5357 for (; irela < irelaend; irela++, rel_hash++)
5358 {
5359 unsigned long r_symndx;
5360 Elf_Internal_Sym *isym;
5361 asection *sec;
5362
5363 irela->r_offset += o->output_offset;
5364
5365 r_symndx = ELF_R_SYM (irela->r_info);
5366
5367 if (r_symndx == 0)
5368 continue;
5369
5370 if (r_symndx >= locsymcount
5371 || (elf_bad_symtab (input_bfd)
5372 && finfo->sections[r_symndx] == NULL))
5373 {
5374 struct elf_link_hash_entry *rh;
5375 long indx;
5376
5377 /* This is a reloc against a global symbol. We
5378 have not yet output all the local symbols, so
5379 we do not know the symbol index of any global
5380 symbol. We set the rel_hash entry for this
5381 reloc to point to the global hash table entry
5382 for this symbol. The symbol index is then
5383 set at the end of elf_bfd_final_link. */
5384 indx = r_symndx - extsymoff;
5385 rh = elf_sym_hashes (input_bfd)[indx];
5386 while (rh->root.type == bfd_link_hash_indirect
5387 || rh->root.type == bfd_link_hash_warning)
5388 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5389
5390 /* Setting the index to -2 tells
5391 elf_link_output_extsym that this symbol is
5392 used by a reloc. */
5393 BFD_ASSERT (rh->indx < 0);
5394 rh->indx = -2;
5395
5396 *rel_hash = rh;
5397
5398 continue;
5399 }
5400
5401 /* This is a reloc against a local symbol. */
5402
5403 *rel_hash = NULL;
5404 isym = finfo->internal_syms + r_symndx;
5405 sec = finfo->sections[r_symndx];
5406 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5407 {
5408 /* I suppose the backend ought to fill in the
5409 section of any STT_SECTION symbol against a
5410 processor specific section. If we have
5411 discarded a section, the output_section will
5412 be the absolute section. */
5413 if (sec != NULL
5414 && (bfd_is_abs_section (sec)
5415 || (sec->output_section != NULL
5416 && bfd_is_abs_section (sec->output_section))))
5417 r_symndx = 0;
5418 else if (sec == NULL || sec->owner == NULL)
5419 {
5420 bfd_set_error (bfd_error_bad_value);
5421 return false;
5422 }
5423 else
5424 {
5425 r_symndx = sec->output_section->target_index;
5426 BFD_ASSERT (r_symndx != 0);
5427 }
5428 }
5429 else
5430 {
5431 if (finfo->indices[r_symndx] == -1)
5432 {
5433 unsigned long link;
5434 const char *name;
5435 asection *osec;
5436
5437 if (finfo->info->strip == strip_all)
5438 {
5439 /* You can't do ld -r -s. */
5440 bfd_set_error (bfd_error_invalid_operation);
5441 return false;
5442 }
5443
5444 /* This symbol was skipped earlier, but
5445 since it is needed by a reloc, we
5446 must output it now. */
5447 link = symtab_hdr->sh_link;
5448 name = bfd_elf_string_from_elf_section (input_bfd,
5449 link,
5450 isym->st_name);
5451 if (name == NULL)
5452 return false;
5453
5454 osec = sec->output_section;
5455 isym->st_shndx =
5456 _bfd_elf_section_from_bfd_section (output_bfd,
5457 osec);
5458 if (isym->st_shndx == (unsigned short) -1)
5459 return false;
5460
5461 isym->st_value += sec->output_offset;
5462 if (! finfo->info->relocateable)
5463 isym->st_value += osec->vma;
5464
5465 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5466
5467 if (! elf_link_output_sym (finfo, name, isym, sec))
5468 return false;
5469 }
5470
5471 r_symndx = finfo->indices[r_symndx];
5472 }
5473
5474 irela->r_info = ELF_R_INFO (r_symndx,
5475 ELF_R_TYPE (irela->r_info));
5476 }
5477
5478 /* Swap out the relocs. */
5479 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5480 elf_link_output_relocs (output_bfd, o,
5481 input_rel_hdr,
5482 internal_relocs);
5483 internal_relocs
5484 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5485 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5486 if (input_rel_hdr)
5487 elf_link_output_relocs (output_bfd, o,
5488 input_rel_hdr,
5489 internal_relocs);
5490 }
5491 }
5492
5493 /* Write out the modified section contents. */
5494 if (elf_section_data (o)->stab_info == NULL)
5495 {
5496 if (! (o->flags & SEC_EXCLUDE) &&
5497 ! bfd_set_section_contents (output_bfd, o->output_section,
5498 contents, o->output_offset,
5499 (o->_cooked_size != 0
5500 ? o->_cooked_size
5501 : o->_raw_size)))
5502 return false;
5503 }
5504 else
5505 {
5506 if (! (_bfd_write_section_stabs
5507 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5508 o, &elf_section_data (o)->stab_info, contents)))
5509 return false;
5510 }
5511 }
5512
5513 return true;
5514 }
5515
5516 /* Generate a reloc when linking an ELF file. This is a reloc
5517 requested by the linker, and does come from any input file. This
5518 is used to build constructor and destructor tables when linking
5519 with -Ur. */
5520
5521 static boolean
5522 elf_reloc_link_order (output_bfd, info, output_section, link_order)
5523 bfd *output_bfd;
5524 struct bfd_link_info *info;
5525 asection *output_section;
5526 struct bfd_link_order *link_order;
5527 {
5528 reloc_howto_type *howto;
5529 long indx;
5530 bfd_vma offset;
5531 bfd_vma addend;
5532 struct elf_link_hash_entry **rel_hash_ptr;
5533 Elf_Internal_Shdr *rel_hdr;
5534
5535 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5536 if (howto == NULL)
5537 {
5538 bfd_set_error (bfd_error_bad_value);
5539 return false;
5540 }
5541
5542 addend = link_order->u.reloc.p->addend;
5543
5544 /* Figure out the symbol index. */
5545 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5546 + elf_section_data (output_section)->rel_count
5547 + elf_section_data (output_section)->rel_count2);
5548 if (link_order->type == bfd_section_reloc_link_order)
5549 {
5550 indx = link_order->u.reloc.p->u.section->target_index;
5551 BFD_ASSERT (indx != 0);
5552 *rel_hash_ptr = NULL;
5553 }
5554 else
5555 {
5556 struct elf_link_hash_entry *h;
5557
5558 /* Treat a reloc against a defined symbol as though it were
5559 actually against the section. */
5560 h = ((struct elf_link_hash_entry *)
5561 bfd_wrapped_link_hash_lookup (output_bfd, info,
5562 link_order->u.reloc.p->u.name,
5563 false, false, true));
5564 if (h != NULL
5565 && (h->root.type == bfd_link_hash_defined
5566 || h->root.type == bfd_link_hash_defweak))
5567 {
5568 asection *section;
5569
5570 section = h->root.u.def.section;
5571 indx = section->output_section->target_index;
5572 *rel_hash_ptr = NULL;
5573 /* It seems that we ought to add the symbol value to the
5574 addend here, but in practice it has already been added
5575 because it was passed to constructor_callback. */
5576 addend += section->output_section->vma + section->output_offset;
5577 }
5578 else if (h != NULL)
5579 {
5580 /* Setting the index to -2 tells elf_link_output_extsym that
5581 this symbol is used by a reloc. */
5582 h->indx = -2;
5583 *rel_hash_ptr = h;
5584 indx = 0;
5585 }
5586 else
5587 {
5588 if (! ((*info->callbacks->unattached_reloc)
5589 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5590 (asection *) NULL, (bfd_vma) 0)))
5591 return false;
5592 indx = 0;
5593 }
5594 }
5595
5596 /* If this is an inplace reloc, we must write the addend into the
5597 object file. */
5598 if (howto->partial_inplace && addend != 0)
5599 {
5600 bfd_size_type size;
5601 bfd_reloc_status_type rstat;
5602 bfd_byte *buf;
5603 boolean ok;
5604
5605 size = bfd_get_reloc_size (howto);
5606 buf = (bfd_byte *) bfd_zmalloc (size);
5607 if (buf == (bfd_byte *) NULL)
5608 return false;
5609 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5610 switch (rstat)
5611 {
5612 case bfd_reloc_ok:
5613 break;
5614 default:
5615 case bfd_reloc_outofrange:
5616 abort ();
5617 case bfd_reloc_overflow:
5618 if (! ((*info->callbacks->reloc_overflow)
5619 (info,
5620 (link_order->type == bfd_section_reloc_link_order
5621 ? bfd_section_name (output_bfd,
5622 link_order->u.reloc.p->u.section)
5623 : link_order->u.reloc.p->u.name),
5624 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5625 (bfd_vma) 0)))
5626 {
5627 free (buf);
5628 return false;
5629 }
5630 break;
5631 }
5632 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5633 (file_ptr) link_order->offset, size);
5634 free (buf);
5635 if (! ok)
5636 return false;
5637 }
5638
5639 /* The address of a reloc is relative to the section in a
5640 relocateable file, and is a virtual address in an executable
5641 file. */
5642 offset = link_order->offset;
5643 if (! info->relocateable)
5644 offset += output_section->vma;
5645
5646 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5647
5648 if (rel_hdr->sh_type == SHT_REL)
5649 {
5650 Elf_Internal_Rel irel;
5651 Elf_External_Rel *erel;
5652
5653 irel.r_offset = offset;
5654 irel.r_info = ELF_R_INFO (indx, howto->type);
5655 erel = ((Elf_External_Rel *) rel_hdr->contents
5656 + elf_section_data (output_section)->rel_count);
5657 elf_swap_reloc_out (output_bfd, &irel, erel);
5658 }
5659 else
5660 {
5661 Elf_Internal_Rela irela;
5662 Elf_External_Rela *erela;
5663
5664 irela.r_offset = offset;
5665 irela.r_info = ELF_R_INFO (indx, howto->type);
5666 irela.r_addend = addend;
5667 erela = ((Elf_External_Rela *) rel_hdr->contents
5668 + elf_section_data (output_section)->rel_count);
5669 elf_swap_reloca_out (output_bfd, &irela, erela);
5670 }
5671
5672 ++elf_section_data (output_section)->rel_count;
5673
5674 return true;
5675 }
5676
5677 \f
5678 /* Allocate a pointer to live in a linker created section. */
5679
5680 boolean
5681 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5682 bfd *abfd;
5683 struct bfd_link_info *info;
5684 elf_linker_section_t *lsect;
5685 struct elf_link_hash_entry *h;
5686 const Elf_Internal_Rela *rel;
5687 {
5688 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5689 elf_linker_section_pointers_t *linker_section_ptr;
5690 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5691
5692 BFD_ASSERT (lsect != NULL);
5693
5694 /* Is this a global symbol? */
5695 if (h != NULL)
5696 {
5697 /* Has this symbol already been allocated, if so, our work is done */
5698 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5699 rel->r_addend,
5700 lsect->which))
5701 return true;
5702
5703 ptr_linker_section_ptr = &h->linker_section_pointer;
5704 /* Make sure this symbol is output as a dynamic symbol. */
5705 if (h->dynindx == -1)
5706 {
5707 if (! elf_link_record_dynamic_symbol (info, h))
5708 return false;
5709 }
5710
5711 if (lsect->rel_section)
5712 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5713 }
5714
5715 else /* Allocation of a pointer to a local symbol */
5716 {
5717 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5718
5719 /* Allocate a table to hold the local symbols if first time */
5720 if (!ptr)
5721 {
5722 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5723 register unsigned int i;
5724
5725 ptr = (elf_linker_section_pointers_t **)
5726 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5727
5728 if (!ptr)
5729 return false;
5730
5731 elf_local_ptr_offsets (abfd) = ptr;
5732 for (i = 0; i < num_symbols; i++)
5733 ptr[i] = (elf_linker_section_pointers_t *)0;
5734 }
5735
5736 /* Has this symbol already been allocated, if so, our work is done */
5737 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5738 rel->r_addend,
5739 lsect->which))
5740 return true;
5741
5742 ptr_linker_section_ptr = &ptr[r_symndx];
5743
5744 if (info->shared)
5745 {
5746 /* If we are generating a shared object, we need to
5747 output a R_<xxx>_RELATIVE reloc so that the
5748 dynamic linker can adjust this GOT entry. */
5749 BFD_ASSERT (lsect->rel_section != NULL);
5750 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5751 }
5752 }
5753
5754 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5755 from internal memory. */
5756 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5757 linker_section_ptr = (elf_linker_section_pointers_t *)
5758 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5759
5760 if (!linker_section_ptr)
5761 return false;
5762
5763 linker_section_ptr->next = *ptr_linker_section_ptr;
5764 linker_section_ptr->addend = rel->r_addend;
5765 linker_section_ptr->which = lsect->which;
5766 linker_section_ptr->written_address_p = false;
5767 *ptr_linker_section_ptr = linker_section_ptr;
5768
5769 #if 0
5770 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5771 {
5772 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5773 lsect->hole_offset += ARCH_SIZE / 8;
5774 lsect->sym_offset += ARCH_SIZE / 8;
5775 if (lsect->sym_hash) /* Bump up symbol value if needed */
5776 {
5777 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5778 #ifdef DEBUG
5779 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5780 lsect->sym_hash->root.root.string,
5781 (long)ARCH_SIZE / 8,
5782 (long)lsect->sym_hash->root.u.def.value);
5783 #endif
5784 }
5785 }
5786 else
5787 #endif
5788 linker_section_ptr->offset = lsect->section->_raw_size;
5789
5790 lsect->section->_raw_size += ARCH_SIZE / 8;
5791
5792 #ifdef DEBUG
5793 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5794 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5795 #endif
5796
5797 return true;
5798 }
5799
5800 \f
5801 #if ARCH_SIZE==64
5802 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5803 #endif
5804 #if ARCH_SIZE==32
5805 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5806 #endif
5807
5808 /* Fill in the address for a pointer generated in alinker section. */
5809
5810 bfd_vma
5811 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5812 bfd *output_bfd;
5813 bfd *input_bfd;
5814 struct bfd_link_info *info;
5815 elf_linker_section_t *lsect;
5816 struct elf_link_hash_entry *h;
5817 bfd_vma relocation;
5818 const Elf_Internal_Rela *rel;
5819 int relative_reloc;
5820 {
5821 elf_linker_section_pointers_t *linker_section_ptr;
5822
5823 BFD_ASSERT (lsect != NULL);
5824
5825 if (h != NULL) /* global symbol */
5826 {
5827 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5828 rel->r_addend,
5829 lsect->which);
5830
5831 BFD_ASSERT (linker_section_ptr != NULL);
5832
5833 if (! elf_hash_table (info)->dynamic_sections_created
5834 || (info->shared
5835 && info->symbolic
5836 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5837 {
5838 /* This is actually a static link, or it is a
5839 -Bsymbolic link and the symbol is defined
5840 locally. We must initialize this entry in the
5841 global section.
5842
5843 When doing a dynamic link, we create a .rela.<xxx>
5844 relocation entry to initialize the value. This
5845 is done in the finish_dynamic_symbol routine. */
5846 if (!linker_section_ptr->written_address_p)
5847 {
5848 linker_section_ptr->written_address_p = true;
5849 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5850 lsect->section->contents + linker_section_ptr->offset);
5851 }
5852 }
5853 }
5854 else /* local symbol */
5855 {
5856 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
5857 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
5858 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
5859 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
5860 rel->r_addend,
5861 lsect->which);
5862
5863 BFD_ASSERT (linker_section_ptr != NULL);
5864
5865 /* Write out pointer if it hasn't been rewritten out before */
5866 if (!linker_section_ptr->written_address_p)
5867 {
5868 linker_section_ptr->written_address_p = true;
5869 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5870 lsect->section->contents + linker_section_ptr->offset);
5871
5872 if (info->shared)
5873 {
5874 asection *srel = lsect->rel_section;
5875 Elf_Internal_Rela outrel;
5876
5877 /* We need to generate a relative reloc for the dynamic linker. */
5878 if (!srel)
5879 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5880 lsect->rel_name);
5881
5882 BFD_ASSERT (srel != NULL);
5883
5884 outrel.r_offset = (lsect->section->output_section->vma
5885 + lsect->section->output_offset
5886 + linker_section_ptr->offset);
5887 outrel.r_info = ELF_R_INFO (0, relative_reloc);
5888 outrel.r_addend = 0;
5889 elf_swap_reloca_out (output_bfd, &outrel,
5890 (((Elf_External_Rela *)
5891 lsect->section->contents)
5892 + elf_section_data (lsect->section)->rel_count));
5893 ++elf_section_data (lsect->section)->rel_count;
5894 }
5895 }
5896 }
5897
5898 relocation = (lsect->section->output_offset
5899 + linker_section_ptr->offset
5900 - lsect->hole_offset
5901 - lsect->sym_offset);
5902
5903 #ifdef DEBUG
5904 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
5905 lsect->name, (long)relocation, (long)relocation);
5906 #endif
5907
5908 /* Subtract out the addend, because it will get added back in by the normal
5909 processing. */
5910 return relocation - linker_section_ptr->addend;
5911 }
5912 \f
5913 /* Garbage collect unused sections. */
5914
5915 static boolean elf_gc_mark
5916 PARAMS ((struct bfd_link_info *info, asection *sec,
5917 asection * (*gc_mark_hook)
5918 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5919 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
5920
5921 static boolean elf_gc_sweep
5922 PARAMS ((struct bfd_link_info *info,
5923 boolean (*gc_sweep_hook)
5924 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5925 const Elf_Internal_Rela *relocs))));
5926
5927 static boolean elf_gc_sweep_symbol
5928 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
5929
5930 static boolean elf_gc_allocate_got_offsets
5931 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
5932
5933 static boolean elf_gc_propagate_vtable_entries_used
5934 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5935
5936 static boolean elf_gc_smash_unused_vtentry_relocs
5937 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5938
5939 /* The mark phase of garbage collection. For a given section, mark
5940 it, and all the sections which define symbols to which it refers. */
5941
5942 static boolean
5943 elf_gc_mark (info, sec, gc_mark_hook)
5944 struct bfd_link_info *info;
5945 asection *sec;
5946 asection * (*gc_mark_hook)
5947 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5948 struct elf_link_hash_entry *, Elf_Internal_Sym *));
5949 {
5950 boolean ret = true;
5951
5952 sec->gc_mark = 1;
5953
5954 /* Look through the section relocs. */
5955
5956 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
5957 {
5958 Elf_Internal_Rela *relstart, *rel, *relend;
5959 Elf_Internal_Shdr *symtab_hdr;
5960 struct elf_link_hash_entry **sym_hashes;
5961 size_t nlocsyms;
5962 size_t extsymoff;
5963 Elf_External_Sym *locsyms, *freesyms = NULL;
5964 bfd *input_bfd = sec->owner;
5965 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
5966
5967 /* GCFIXME: how to arrange so that relocs and symbols are not
5968 reread continually? */
5969
5970 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5971 sym_hashes = elf_sym_hashes (input_bfd);
5972
5973 /* Read the local symbols. */
5974 if (elf_bad_symtab (input_bfd))
5975 {
5976 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5977 extsymoff = 0;
5978 }
5979 else
5980 extsymoff = nlocsyms = symtab_hdr->sh_info;
5981 if (symtab_hdr->contents)
5982 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
5983 else if (nlocsyms == 0)
5984 locsyms = NULL;
5985 else
5986 {
5987 locsyms = freesyms =
5988 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
5989 if (freesyms == NULL
5990 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5991 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
5992 nlocsyms, input_bfd)
5993 != nlocsyms * sizeof (Elf_External_Sym)))
5994 {
5995 ret = false;
5996 goto out1;
5997 }
5998 }
5999
6000 /* Read the relocations. */
6001 relstart = (NAME(_bfd_elf,link_read_relocs)
6002 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6003 info->keep_memory));
6004 if (relstart == NULL)
6005 {
6006 ret = false;
6007 goto out1;
6008 }
6009 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6010
6011 for (rel = relstart; rel < relend; rel++)
6012 {
6013 unsigned long r_symndx;
6014 asection *rsec;
6015 struct elf_link_hash_entry *h;
6016 Elf_Internal_Sym s;
6017
6018 r_symndx = ELF_R_SYM (rel->r_info);
6019 if (r_symndx == 0)
6020 continue;
6021
6022 if (elf_bad_symtab (sec->owner))
6023 {
6024 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6025 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
6026 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6027 else
6028 {
6029 h = sym_hashes[r_symndx - extsymoff];
6030 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6031 }
6032 }
6033 else if (r_symndx >= nlocsyms)
6034 {
6035 h = sym_hashes[r_symndx - extsymoff];
6036 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6037 }
6038 else
6039 {
6040 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6041 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6042 }
6043
6044 if (rsec && !rsec->gc_mark)
6045 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6046 {
6047 ret = false;
6048 goto out2;
6049 }
6050 }
6051
6052 out2:
6053 if (!info->keep_memory)
6054 free (relstart);
6055 out1:
6056 if (freesyms)
6057 free (freesyms);
6058 }
6059
6060 return ret;
6061 }
6062
6063 /* The sweep phase of garbage collection. Remove all garbage sections. */
6064
6065 static boolean
6066 elf_gc_sweep (info, gc_sweep_hook)
6067 struct bfd_link_info *info;
6068 boolean (*gc_sweep_hook)
6069 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6070 const Elf_Internal_Rela *relocs));
6071 {
6072 bfd *sub;
6073
6074 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6075 {
6076 asection *o;
6077
6078 for (o = sub->sections; o != NULL; o = o->next)
6079 {
6080 /* Keep special sections. Keep .debug sections. */
6081 if ((o->flags & SEC_LINKER_CREATED)
6082 || (o->flags & SEC_DEBUGGING))
6083 o->gc_mark = 1;
6084
6085 if (o->gc_mark)
6086 continue;
6087
6088 /* Skip sweeping sections already excluded. */
6089 if (o->flags & SEC_EXCLUDE)
6090 continue;
6091
6092 /* Since this is early in the link process, it is simple
6093 to remove a section from the output. */
6094 o->flags |= SEC_EXCLUDE;
6095
6096 /* But we also have to update some of the relocation
6097 info we collected before. */
6098 if (gc_sweep_hook
6099 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6100 {
6101 Elf_Internal_Rela *internal_relocs;
6102 boolean r;
6103
6104 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6105 (o->owner, o, NULL, NULL, info->keep_memory));
6106 if (internal_relocs == NULL)
6107 return false;
6108
6109 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
6110
6111 if (!info->keep_memory)
6112 free (internal_relocs);
6113
6114 if (!r)
6115 return false;
6116 }
6117 }
6118 }
6119
6120 /* Remove the symbols that were in the swept sections from the dynamic
6121 symbol table. GCFIXME: Anyone know how to get them out of the
6122 static symbol table as well? */
6123 {
6124 int i = 0;
6125
6126 elf_link_hash_traverse (elf_hash_table (info),
6127 elf_gc_sweep_symbol,
6128 (PTR) &i);
6129
6130 elf_hash_table (info)->dynsymcount = i;
6131 }
6132
6133 return true;
6134 }
6135
6136 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6137
6138 static boolean
6139 elf_gc_sweep_symbol (h, idxptr)
6140 struct elf_link_hash_entry *h;
6141 PTR idxptr;
6142 {
6143 int *idx = (int *) idxptr;
6144
6145 if (h->dynindx != -1
6146 && ((h->root.type != bfd_link_hash_defined
6147 && h->root.type != bfd_link_hash_defweak)
6148 || h->root.u.def.section->gc_mark))
6149 h->dynindx = (*idx)++;
6150
6151 return true;
6152 }
6153
6154 /* Propogate collected vtable information. This is called through
6155 elf_link_hash_traverse. */
6156
6157 static boolean
6158 elf_gc_propagate_vtable_entries_used (h, okp)
6159 struct elf_link_hash_entry *h;
6160 PTR okp;
6161 {
6162 /* Those that are not vtables. */
6163 if (h->vtable_parent == NULL)
6164 return true;
6165
6166 /* Those vtables that do not have parents, we cannot merge. */
6167 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6168 return true;
6169
6170 /* If we've already been done, exit. */
6171 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6172 return true;
6173
6174 /* Make sure the parent's table is up to date. */
6175 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6176
6177 if (h->vtable_entries_used == NULL)
6178 {
6179 /* None of this table's entries were referenced. Re-use the
6180 parent's table. */
6181 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6182 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6183 }
6184 else
6185 {
6186 size_t n;
6187 boolean *cu, *pu;
6188
6189 /* Or the parent's entries into ours. */
6190 cu = h->vtable_entries_used;
6191 cu[-1] = true;
6192 pu = h->vtable_parent->vtable_entries_used;
6193 if (pu != NULL)
6194 {
6195 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6196 while (--n != 0)
6197 {
6198 if (*pu) *cu = true;
6199 pu++, cu++;
6200 }
6201 }
6202 }
6203
6204 return true;
6205 }
6206
6207 static boolean
6208 elf_gc_smash_unused_vtentry_relocs (h, okp)
6209 struct elf_link_hash_entry *h;
6210 PTR okp;
6211 {
6212 asection *sec;
6213 bfd_vma hstart, hend;
6214 Elf_Internal_Rela *relstart, *relend, *rel;
6215 struct elf_backend_data *bed;
6216
6217 /* Take care of both those symbols that do not describe vtables as
6218 well as those that are not loaded. */
6219 if (h->vtable_parent == NULL)
6220 return true;
6221
6222 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6223 || h->root.type == bfd_link_hash_defweak);
6224
6225 sec = h->root.u.def.section;
6226 hstart = h->root.u.def.value;
6227 hend = hstart + h->size;
6228
6229 relstart = (NAME(_bfd_elf,link_read_relocs)
6230 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6231 if (!relstart)
6232 return *(boolean *)okp = false;
6233 bed = get_elf_backend_data (sec->owner);
6234 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6235
6236 for (rel = relstart; rel < relend; ++rel)
6237 if (rel->r_offset >= hstart && rel->r_offset < hend)
6238 {
6239 /* If the entry is in use, do nothing. */
6240 if (h->vtable_entries_used
6241 && (rel->r_offset - hstart) < h->vtable_entries_size)
6242 {
6243 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6244 if (h->vtable_entries_used[entry])
6245 continue;
6246 }
6247 /* Otherwise, kill it. */
6248 rel->r_offset = rel->r_info = rel->r_addend = 0;
6249 }
6250
6251 return true;
6252 }
6253
6254 /* Do mark and sweep of unused sections. */
6255
6256 boolean
6257 elf_gc_sections (abfd, info)
6258 bfd *abfd;
6259 struct bfd_link_info *info;
6260 {
6261 boolean ok = true;
6262 bfd *sub;
6263 asection * (*gc_mark_hook)
6264 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6265 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6266
6267 if (!get_elf_backend_data (abfd)->can_gc_sections
6268 || info->relocateable
6269 || elf_hash_table (info)->dynamic_sections_created)
6270 return true;
6271
6272 /* Apply transitive closure to the vtable entry usage info. */
6273 elf_link_hash_traverse (elf_hash_table (info),
6274 elf_gc_propagate_vtable_entries_used,
6275 (PTR) &ok);
6276 if (!ok)
6277 return false;
6278
6279 /* Kill the vtable relocations that were not used. */
6280 elf_link_hash_traverse (elf_hash_table (info),
6281 elf_gc_smash_unused_vtentry_relocs,
6282 (PTR) &ok);
6283 if (!ok)
6284 return false;
6285
6286 /* Grovel through relocs to find out who stays ... */
6287
6288 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6289 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6290 {
6291 asection *o;
6292 for (o = sub->sections; o != NULL; o = o->next)
6293 {
6294 if (o->flags & SEC_KEEP)
6295 if (!elf_gc_mark (info, o, gc_mark_hook))
6296 return false;
6297 }
6298 }
6299
6300 /* ... and mark SEC_EXCLUDE for those that go. */
6301 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6302 return false;
6303
6304 return true;
6305 }
6306 \f
6307 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6308
6309 boolean
6310 elf_gc_record_vtinherit (abfd, sec, h, offset)
6311 bfd *abfd;
6312 asection *sec;
6313 struct elf_link_hash_entry *h;
6314 bfd_vma offset;
6315 {
6316 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6317 struct elf_link_hash_entry **search, *child;
6318 bfd_size_type extsymcount;
6319
6320 /* The sh_info field of the symtab header tells us where the
6321 external symbols start. We don't care about the local symbols at
6322 this point. */
6323 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6324 if (!elf_bad_symtab (abfd))
6325 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6326
6327 sym_hashes = elf_sym_hashes (abfd);
6328 sym_hashes_end = sym_hashes + extsymcount;
6329
6330 /* Hunt down the child symbol, which is in this section at the same
6331 offset as the relocation. */
6332 for (search = sym_hashes; search != sym_hashes_end; ++search)
6333 {
6334 if ((child = *search) != NULL
6335 && (child->root.type == bfd_link_hash_defined
6336 || child->root.type == bfd_link_hash_defweak)
6337 && child->root.u.def.section == sec
6338 && child->root.u.def.value == offset)
6339 goto win;
6340 }
6341
6342 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6343 bfd_get_filename (abfd), sec->name,
6344 (unsigned long)offset);
6345 bfd_set_error (bfd_error_invalid_operation);
6346 return false;
6347
6348 win:
6349 if (!h)
6350 {
6351 /* This *should* only be the absolute section. It could potentially
6352 be that someone has defined a non-global vtable though, which
6353 would be bad. It isn't worth paging in the local symbols to be
6354 sure though; that case should simply be handled by the assembler. */
6355
6356 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6357 }
6358 else
6359 child->vtable_parent = h;
6360
6361 return true;
6362 }
6363
6364 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
6365
6366 boolean
6367 elf_gc_record_vtentry (abfd, sec, h, addend)
6368 bfd *abfd ATTRIBUTE_UNUSED;
6369 asection *sec ATTRIBUTE_UNUSED;
6370 struct elf_link_hash_entry *h;
6371 bfd_vma addend;
6372 {
6373 if (addend >= h->vtable_entries_size)
6374 {
6375 size_t size, bytes;
6376 boolean *ptr = h->vtable_entries_used;
6377
6378 /* While the symbol is undefined, we have to be prepared to handle
6379 a zero size. */
6380 if (h->root.type == bfd_link_hash_undefined)
6381 size = addend;
6382 else
6383 {
6384 size = h->size;
6385 if (size < addend)
6386 {
6387 /* Oops! We've got a reference past the defined end of
6388 the table. This is probably a bug -- shall we warn? */
6389 size = addend;
6390 }
6391 }
6392
6393 /* Allocate one extra entry for use as a "done" flag for the
6394 consolidation pass. */
6395 bytes = (size / FILE_ALIGN + 1) * sizeof(boolean);
6396
6397 if (ptr)
6398 {
6399 size_t oldbytes;
6400
6401 ptr = realloc (ptr-1, bytes);
6402 if (ptr == NULL)
6403 return false;
6404
6405 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof(boolean);
6406 memset (ptr + oldbytes, 0, bytes - oldbytes);
6407 }
6408 else
6409 {
6410 ptr = calloc (1, bytes);
6411 if (ptr == NULL)
6412 return false;
6413 }
6414
6415 /* And arrange for that done flag to be at index -1. */
6416 h->vtable_entries_used = ptr+1;
6417 h->vtable_entries_size = size;
6418 }
6419 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6420
6421 return true;
6422 }
6423
6424 /* And an accompanying bit to work out final got entry offsets once
6425 we're done. Should be called from final_link. */
6426
6427 boolean
6428 elf_gc_common_finalize_got_offsets (abfd, info)
6429 bfd *abfd;
6430 struct bfd_link_info *info;
6431 {
6432 bfd *i;
6433 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6434 bfd_vma gotoff;
6435
6436 /* The GOT offset is relative to the .got section, but the GOT header is
6437 put into the .got.plt section, if the backend uses it. */
6438 if (bed->want_got_plt)
6439 gotoff = 0;
6440 else
6441 gotoff = bed->got_header_size;
6442
6443 /* Do the local .got entries first. */
6444 for (i = info->input_bfds; i; i = i->link_next)
6445 {
6446 bfd_signed_vma *local_got = elf_local_got_refcounts (i);
6447 bfd_size_type j, locsymcount;
6448 Elf_Internal_Shdr *symtab_hdr;
6449
6450 if (!local_got)
6451 continue;
6452
6453 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6454 if (elf_bad_symtab (i))
6455 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6456 else
6457 locsymcount = symtab_hdr->sh_info;
6458
6459 for (j = 0; j < locsymcount; ++j)
6460 {
6461 if (local_got[j] > 0)
6462 {
6463 local_got[j] = gotoff;
6464 gotoff += ARCH_SIZE / 8;
6465 }
6466 else
6467 local_got[j] = (bfd_vma) -1;
6468 }
6469 }
6470
6471 /* Then the global .got and .plt entries. */
6472 elf_link_hash_traverse (elf_hash_table (info),
6473 elf_gc_allocate_got_offsets,
6474 (PTR) &gotoff);
6475 return true;
6476 }
6477
6478 /* We need a special top-level link routine to convert got reference counts
6479 to real got offsets. */
6480
6481 static boolean
6482 elf_gc_allocate_got_offsets (h, offarg)
6483 struct elf_link_hash_entry *h;
6484 PTR offarg;
6485 {
6486 bfd_vma *off = (bfd_vma *) offarg;
6487
6488 if (h->got.refcount > 0)
6489 {
6490 h->got.offset = off[0];
6491 off[0] += ARCH_SIZE / 8;
6492 }
6493 else
6494 h->got.offset = (bfd_vma) -1;
6495
6496 return true;
6497 }
6498
6499 /* Many folk need no more in the way of final link than this, once
6500 got entry reference counting is enabled. */
6501
6502 boolean
6503 elf_gc_common_final_link (abfd, info)
6504 bfd *abfd;
6505 struct bfd_link_info *info;
6506 {
6507 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6508 return false;
6509
6510 /* Invoke the regular ELF backend linker to do all the work. */
6511 return elf_bfd_final_link (abfd, info);
6512 }
6513
6514 /* This function will be called though elf_link_hash_traverse to store
6515 all hash value of the exported symbols in an array. */
6516
6517 static boolean
6518 elf_collect_hash_codes (h, data)
6519 struct elf_link_hash_entry *h;
6520 PTR data;
6521 {
6522 unsigned long **valuep = (unsigned long **) data;
6523 const char *name;
6524 char *p;
6525 unsigned long ha;
6526 char *alc = NULL;
6527
6528 /* Ignore indirect symbols. These are added by the versioning code. */
6529 if (h->dynindx == -1)
6530 return true;
6531
6532 name = h->root.root.string;
6533 p = strchr (name, ELF_VER_CHR);
6534 if (p != NULL)
6535 {
6536 alc = bfd_malloc (p - name + 1);
6537 memcpy (alc, name, p - name);
6538 alc[p - name] = '\0';
6539 name = alc;
6540 }
6541
6542 /* Compute the hash value. */
6543 ha = bfd_elf_hash (name);
6544
6545 /* Store the found hash value in the array given as the argument. */
6546 *(*valuep)++ = ha;
6547
6548 /* And store it in the struct so that we can put it in the hash table
6549 later. */
6550 h->elf_hash_value = ha;
6551
6552 if (alc != NULL)
6553 free (alc);
6554
6555 return true;
6556 }