* elflink.h (elf_bfd_final_link): Remove unused variables rel_hash
[binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /* ELF linker code. */
21
22 /* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25 struct elf_info_failed
26 {
27 boolean failed;
28 struct bfd_link_info *info;
29 };
30
31 static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33 static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35 static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39 static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41 static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43 static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45 static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49 static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51 static boolean elf_collect_hash_codes
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53 static boolean elf_link_read_relocs_from_section
54 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
55 static void elf_link_output_relocs
56 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
57 static boolean elf_link_size_reloc_section
58 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
59 static void elf_link_adjust_relocs
60 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
61 struct elf_link_hash_entry **));
62
63 /* Given an ELF BFD, add symbols to the global hash table as
64 appropriate. */
65
66 boolean
67 elf_bfd_link_add_symbols (abfd, info)
68 bfd *abfd;
69 struct bfd_link_info *info;
70 {
71 switch (bfd_get_format (abfd))
72 {
73 case bfd_object:
74 return elf_link_add_object_symbols (abfd, info);
75 case bfd_archive:
76 return elf_link_add_archive_symbols (abfd, info);
77 default:
78 bfd_set_error (bfd_error_wrong_format);
79 return false;
80 }
81 }
82 \f
83
84 /* Add symbols from an ELF archive file to the linker hash table. We
85 don't use _bfd_generic_link_add_archive_symbols because of a
86 problem which arises on UnixWare. The UnixWare libc.so is an
87 archive which includes an entry libc.so.1 which defines a bunch of
88 symbols. The libc.so archive also includes a number of other
89 object files, which also define symbols, some of which are the same
90 as those defined in libc.so.1. Correct linking requires that we
91 consider each object file in turn, and include it if it defines any
92 symbols we need. _bfd_generic_link_add_archive_symbols does not do
93 this; it looks through the list of undefined symbols, and includes
94 any object file which defines them. When this algorithm is used on
95 UnixWare, it winds up pulling in libc.so.1 early and defining a
96 bunch of symbols. This means that some of the other objects in the
97 archive are not included in the link, which is incorrect since they
98 precede libc.so.1 in the archive.
99
100 Fortunately, ELF archive handling is simpler than that done by
101 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
102 oddities. In ELF, if we find a symbol in the archive map, and the
103 symbol is currently undefined, we know that we must pull in that
104 object file.
105
106 Unfortunately, we do have to make multiple passes over the symbol
107 table until nothing further is resolved. */
108
109 static boolean
110 elf_link_add_archive_symbols (abfd, info)
111 bfd *abfd;
112 struct bfd_link_info *info;
113 {
114 symindex c;
115 boolean *defined = NULL;
116 boolean *included = NULL;
117 carsym *symdefs;
118 boolean loop;
119
120 if (! bfd_has_map (abfd))
121 {
122 /* An empty archive is a special case. */
123 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
124 return true;
125 bfd_set_error (bfd_error_no_armap);
126 return false;
127 }
128
129 /* Keep track of all symbols we know to be already defined, and all
130 files we know to be already included. This is to speed up the
131 second and subsequent passes. */
132 c = bfd_ardata (abfd)->symdef_count;
133 if (c == 0)
134 return true;
135 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
136 included = (boolean *) bfd_malloc (c * sizeof (boolean));
137 if (defined == (boolean *) NULL || included == (boolean *) NULL)
138 goto error_return;
139 memset (defined, 0, c * sizeof (boolean));
140 memset (included, 0, c * sizeof (boolean));
141
142 symdefs = bfd_ardata (abfd)->symdefs;
143
144 do
145 {
146 file_ptr last;
147 symindex i;
148 carsym *symdef;
149 carsym *symdefend;
150
151 loop = false;
152 last = -1;
153
154 symdef = symdefs;
155 symdefend = symdef + c;
156 for (i = 0; symdef < symdefend; symdef++, i++)
157 {
158 struct elf_link_hash_entry *h;
159 bfd *element;
160 struct bfd_link_hash_entry *undefs_tail;
161 symindex mark;
162
163 if (defined[i] || included[i])
164 continue;
165 if (symdef->file_offset == last)
166 {
167 included[i] = true;
168 continue;
169 }
170
171 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
172 false, false, false);
173
174 if (h == NULL)
175 {
176 char *p, *copy;
177
178 /* If this is a default version (the name contains @@),
179 look up the symbol again without the version. The
180 effect is that references to the symbol without the
181 version will be matched by the default symbol in the
182 archive. */
183
184 p = strchr (symdef->name, ELF_VER_CHR);
185 if (p == NULL || p[1] != ELF_VER_CHR)
186 continue;
187
188 copy = bfd_alloc (abfd, p - symdef->name + 1);
189 if (copy == NULL)
190 goto error_return;
191 memcpy (copy, symdef->name, p - symdef->name);
192 copy[p - symdef->name] = '\0';
193
194 h = elf_link_hash_lookup (elf_hash_table (info), copy,
195 false, false, false);
196
197 bfd_release (abfd, copy);
198 }
199
200 if (h == NULL)
201 continue;
202
203 if (h->root.type != bfd_link_hash_undefined)
204 {
205 if (h->root.type != bfd_link_hash_undefweak)
206 defined[i] = true;
207 continue;
208 }
209
210 /* We need to include this archive member. */
211
212 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
213 if (element == (bfd *) NULL)
214 goto error_return;
215
216 if (! bfd_check_format (element, bfd_object))
217 goto error_return;
218
219 /* Doublecheck that we have not included this object
220 already--it should be impossible, but there may be
221 something wrong with the archive. */
222 if (element->archive_pass != 0)
223 {
224 bfd_set_error (bfd_error_bad_value);
225 goto error_return;
226 }
227 element->archive_pass = 1;
228
229 undefs_tail = info->hash->undefs_tail;
230
231 if (! (*info->callbacks->add_archive_element) (info, element,
232 symdef->name))
233 goto error_return;
234 if (! elf_link_add_object_symbols (element, info))
235 goto error_return;
236
237 /* If there are any new undefined symbols, we need to make
238 another pass through the archive in order to see whether
239 they can be defined. FIXME: This isn't perfect, because
240 common symbols wind up on undefs_tail and because an
241 undefined symbol which is defined later on in this pass
242 does not require another pass. This isn't a bug, but it
243 does make the code less efficient than it could be. */
244 if (undefs_tail != info->hash->undefs_tail)
245 loop = true;
246
247 /* Look backward to mark all symbols from this object file
248 which we have already seen in this pass. */
249 mark = i;
250 do
251 {
252 included[mark] = true;
253 if (mark == 0)
254 break;
255 --mark;
256 }
257 while (symdefs[mark].file_offset == symdef->file_offset);
258
259 /* We mark subsequent symbols from this object file as we go
260 on through the loop. */
261 last = symdef->file_offset;
262 }
263 }
264 while (loop);
265
266 free (defined);
267 free (included);
268
269 return true;
270
271 error_return:
272 if (defined != (boolean *) NULL)
273 free (defined);
274 if (included != (boolean *) NULL)
275 free (included);
276 return false;
277 }
278
279 /* This function is called when we want to define a new symbol. It
280 handles the various cases which arise when we find a definition in
281 a dynamic object, or when there is already a definition in a
282 dynamic object. The new symbol is described by NAME, SYM, PSEC,
283 and PVALUE. We set SYM_HASH to the hash table entry. We set
284 OVERRIDE if the old symbol is overriding a new definition. We set
285 TYPE_CHANGE_OK if it is OK for the type to change. We set
286 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
287 change, we mean that we shouldn't warn if the type or size does
288 change. */
289
290 static boolean
291 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
292 override, type_change_ok, size_change_ok)
293 bfd *abfd;
294 struct bfd_link_info *info;
295 const char *name;
296 Elf_Internal_Sym *sym;
297 asection **psec;
298 bfd_vma *pvalue;
299 struct elf_link_hash_entry **sym_hash;
300 boolean *override;
301 boolean *type_change_ok;
302 boolean *size_change_ok;
303 {
304 asection *sec;
305 struct elf_link_hash_entry *h;
306 int bind;
307 bfd *oldbfd;
308 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
309
310 *override = false;
311
312 sec = *psec;
313 bind = ELF_ST_BIND (sym->st_info);
314
315 if (! bfd_is_und_section (sec))
316 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
317 else
318 h = ((struct elf_link_hash_entry *)
319 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
320 if (h == NULL)
321 return false;
322 *sym_hash = h;
323
324 /* This code is for coping with dynamic objects, and is only useful
325 if we are doing an ELF link. */
326 if (info->hash->creator != abfd->xvec)
327 return true;
328
329 /* For merging, we only care about real symbols. */
330
331 while (h->root.type == bfd_link_hash_indirect
332 || h->root.type == bfd_link_hash_warning)
333 h = (struct elf_link_hash_entry *) h->root.u.i.link;
334
335 /* If we just created the symbol, mark it as being an ELF symbol.
336 Other than that, there is nothing to do--there is no merge issue
337 with a newly defined symbol--so we just return. */
338
339 if (h->root.type == bfd_link_hash_new)
340 {
341 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
342 return true;
343 }
344
345 /* OLDBFD is a BFD associated with the existing symbol. */
346
347 switch (h->root.type)
348 {
349 default:
350 oldbfd = NULL;
351 break;
352
353 case bfd_link_hash_undefined:
354 case bfd_link_hash_undefweak:
355 oldbfd = h->root.u.undef.abfd;
356 break;
357
358 case bfd_link_hash_defined:
359 case bfd_link_hash_defweak:
360 oldbfd = h->root.u.def.section->owner;
361 break;
362
363 case bfd_link_hash_common:
364 oldbfd = h->root.u.c.p->section->owner;
365 break;
366 }
367
368 /* In cases involving weak versioned symbols, we may wind up trying
369 to merge a symbol with itself. Catch that here, to avoid the
370 confusion that results if we try to override a symbol with
371 itself. */
372 if (abfd == oldbfd)
373 return true;
374
375 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
376 respectively, is from a dynamic object. */
377
378 if ((abfd->flags & DYNAMIC) != 0)
379 newdyn = true;
380 else
381 newdyn = false;
382
383 if (oldbfd == NULL || (oldbfd->flags & DYNAMIC) == 0)
384 olddyn = false;
385 else
386 olddyn = true;
387
388 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
389 respectively, appear to be a definition rather than reference. */
390
391 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
392 newdef = false;
393 else
394 newdef = true;
395
396 if (h->root.type == bfd_link_hash_undefined
397 || h->root.type == bfd_link_hash_undefweak
398 || h->root.type == bfd_link_hash_common)
399 olddef = false;
400 else
401 olddef = true;
402
403 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
404 symbol, respectively, appears to be a common symbol in a dynamic
405 object. If a symbol appears in an uninitialized section, and is
406 not weak, and is not a function, then it may be a common symbol
407 which was resolved when the dynamic object was created. We want
408 to treat such symbols specially, because they raise special
409 considerations when setting the symbol size: if the symbol
410 appears as a common symbol in a regular object, and the size in
411 the regular object is larger, we must make sure that we use the
412 larger size. This problematic case can always be avoided in C,
413 but it must be handled correctly when using Fortran shared
414 libraries.
415
416 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
417 likewise for OLDDYNCOMMON and OLDDEF.
418
419 Note that this test is just a heuristic, and that it is quite
420 possible to have an uninitialized symbol in a shared object which
421 is really a definition, rather than a common symbol. This could
422 lead to some minor confusion when the symbol really is a common
423 symbol in some regular object. However, I think it will be
424 harmless. */
425
426 if (newdyn
427 && newdef
428 && (sec->flags & SEC_ALLOC) != 0
429 && (sec->flags & SEC_LOAD) == 0
430 && sym->st_size > 0
431 && bind != STB_WEAK
432 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
433 newdyncommon = true;
434 else
435 newdyncommon = false;
436
437 if (olddyn
438 && olddef
439 && h->root.type == bfd_link_hash_defined
440 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
441 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
442 && (h->root.u.def.section->flags & SEC_LOAD) == 0
443 && h->size > 0
444 && h->type != STT_FUNC)
445 olddyncommon = true;
446 else
447 olddyncommon = false;
448
449 /* It's OK to change the type if either the existing symbol or the
450 new symbol is weak. */
451
452 if (h->root.type == bfd_link_hash_defweak
453 || h->root.type == bfd_link_hash_undefweak
454 || bind == STB_WEAK)
455 *type_change_ok = true;
456
457 /* It's OK to change the size if either the existing symbol or the
458 new symbol is weak, or if the old symbol is undefined. */
459
460 if (*type_change_ok
461 || h->root.type == bfd_link_hash_undefined)
462 *size_change_ok = true;
463
464 /* If both the old and the new symbols look like common symbols in a
465 dynamic object, set the size of the symbol to the larger of the
466 two. */
467
468 if (olddyncommon
469 && newdyncommon
470 && sym->st_size != h->size)
471 {
472 /* Since we think we have two common symbols, issue a multiple
473 common warning if desired. Note that we only warn if the
474 size is different. If the size is the same, we simply let
475 the old symbol override the new one as normally happens with
476 symbols defined in dynamic objects. */
477
478 if (! ((*info->callbacks->multiple_common)
479 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
480 h->size, abfd, bfd_link_hash_common, sym->st_size)))
481 return false;
482
483 if (sym->st_size > h->size)
484 h->size = sym->st_size;
485
486 *size_change_ok = true;
487 }
488
489 /* If we are looking at a dynamic object, and we have found a
490 definition, we need to see if the symbol was already defined by
491 some other object. If so, we want to use the existing
492 definition, and we do not want to report a multiple symbol
493 definition error; we do this by clobbering *PSEC to be
494 bfd_und_section_ptr.
495
496 We treat a common symbol as a definition if the symbol in the
497 shared library is a function, since common symbols always
498 represent variables; this can cause confusion in principle, but
499 any such confusion would seem to indicate an erroneous program or
500 shared library. We also permit a common symbol in a regular
501 object to override a weak symbol in a shared object.
502
503 We prefer a non-weak definition in a shared library to a weak
504 definition in the executable. */
505
506 if (newdyn
507 && newdef
508 && (olddef
509 || (h->root.type == bfd_link_hash_common
510 && (bind == STB_WEAK
511 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
512 && (h->root.type != bfd_link_hash_defweak
513 || bind == STB_WEAK))
514 {
515 *override = true;
516 newdef = false;
517 newdyncommon = false;
518
519 *psec = sec = bfd_und_section_ptr;
520 *size_change_ok = true;
521
522 /* If we get here when the old symbol is a common symbol, then
523 we are explicitly letting it override a weak symbol or
524 function in a dynamic object, and we don't want to warn about
525 a type change. If the old symbol is a defined symbol, a type
526 change warning may still be appropriate. */
527
528 if (h->root.type == bfd_link_hash_common)
529 *type_change_ok = true;
530 }
531
532 /* Handle the special case of an old common symbol merging with a
533 new symbol which looks like a common symbol in a shared object.
534 We change *PSEC and *PVALUE to make the new symbol look like a
535 common symbol, and let _bfd_generic_link_add_one_symbol will do
536 the right thing. */
537
538 if (newdyncommon
539 && h->root.type == bfd_link_hash_common)
540 {
541 *override = true;
542 newdef = false;
543 newdyncommon = false;
544 *pvalue = sym->st_size;
545 *psec = sec = bfd_com_section_ptr;
546 *size_change_ok = true;
547 }
548
549 /* If the old symbol is from a dynamic object, and the new symbol is
550 a definition which is not from a dynamic object, then the new
551 symbol overrides the old symbol. Symbols from regular files
552 always take precedence over symbols from dynamic objects, even if
553 they are defined after the dynamic object in the link.
554
555 As above, we again permit a common symbol in a regular object to
556 override a definition in a shared object if the shared object
557 symbol is a function or is weak.
558
559 As above, we permit a non-weak definition in a shared object to
560 override a weak definition in a regular object. */
561
562 if (! newdyn
563 && (newdef
564 || (bfd_is_com_section (sec)
565 && (h->root.type == bfd_link_hash_defweak
566 || h->type == STT_FUNC)))
567 && olddyn
568 && olddef
569 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
570 && (bind != STB_WEAK
571 || h->root.type == bfd_link_hash_defweak))
572 {
573 /* Change the hash table entry to undefined, and let
574 _bfd_generic_link_add_one_symbol do the right thing with the
575 new definition. */
576
577 h->root.type = bfd_link_hash_undefined;
578 h->root.u.undef.abfd = h->root.u.def.section->owner;
579 *size_change_ok = true;
580
581 olddef = false;
582 olddyncommon = false;
583
584 /* We again permit a type change when a common symbol may be
585 overriding a function. */
586
587 if (bfd_is_com_section (sec))
588 *type_change_ok = true;
589
590 /* This union may have been set to be non-NULL when this symbol
591 was seen in a dynamic object. We must force the union to be
592 NULL, so that it is correct for a regular symbol. */
593
594 h->verinfo.vertree = NULL;
595
596 /* In this special case, if H is the target of an indirection,
597 we want the caller to frob with H rather than with the
598 indirect symbol. That will permit the caller to redefine the
599 target of the indirection, rather than the indirect symbol
600 itself. FIXME: This will break the -y option if we store a
601 symbol with a different name. */
602 *sym_hash = h;
603 }
604
605 /* Handle the special case of a new common symbol merging with an
606 old symbol that looks like it might be a common symbol defined in
607 a shared object. Note that we have already handled the case in
608 which a new common symbol should simply override the definition
609 in the shared library. */
610
611 if (! newdyn
612 && bfd_is_com_section (sec)
613 && olddyncommon)
614 {
615 /* It would be best if we could set the hash table entry to a
616 common symbol, but we don't know what to use for the section
617 or the alignment. */
618 if (! ((*info->callbacks->multiple_common)
619 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
620 h->size, abfd, bfd_link_hash_common, sym->st_size)))
621 return false;
622
623 /* If the predumed common symbol in the dynamic object is
624 larger, pretend that the new symbol has its size. */
625
626 if (h->size > *pvalue)
627 *pvalue = h->size;
628
629 /* FIXME: We no longer know the alignment required by the symbol
630 in the dynamic object, so we just wind up using the one from
631 the regular object. */
632
633 olddef = false;
634 olddyncommon = false;
635
636 h->root.type = bfd_link_hash_undefined;
637 h->root.u.undef.abfd = h->root.u.def.section->owner;
638
639 *size_change_ok = true;
640 *type_change_ok = true;
641
642 h->verinfo.vertree = NULL;
643 }
644
645 /* Handle the special case of a weak definition in a regular object
646 followed by a non-weak definition in a shared object. In this
647 case, we prefer the definition in the shared object. */
648 if (olddef
649 && h->root.type == bfd_link_hash_defweak
650 && newdef
651 && newdyn
652 && bind != STB_WEAK)
653 {
654 /* To make this work we have to frob the flags so that the rest
655 of the code does not think we are using the regular
656 definition. */
657 h->elf_link_hash_flags &= ~ ELF_LINK_HASH_DEF_REGULAR;
658 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
659
660 /* If H is the target of an indirection, we want the caller to
661 use H rather than the indirect symbol. Otherwise if we are
662 defining a new indirect symbol we will wind up attaching it
663 to the entry we are overriding. */
664 *sym_hash = h;
665 }
666
667 /* Handle the special case of a non-weak definition in a shared
668 object followed by a weak definition in a regular object. In
669 this case we prefer to definition in the shared object. To make
670 this work we have to tell the caller to not treat the new symbol
671 as a definition. */
672 if (olddef
673 && olddyn
674 && h->root.type != bfd_link_hash_defweak
675 && newdef
676 && ! newdyn
677 && bind == STB_WEAK)
678 *override = true;
679
680 return true;
681 }
682
683 /* Add symbols from an ELF object file to the linker hash table. */
684
685 static boolean
686 elf_link_add_object_symbols (abfd, info)
687 bfd *abfd;
688 struct bfd_link_info *info;
689 {
690 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
691 const Elf_Internal_Sym *,
692 const char **, flagword *,
693 asection **, bfd_vma *));
694 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
695 asection *, const Elf_Internal_Rela *));
696 boolean collect;
697 Elf_Internal_Shdr *hdr;
698 size_t symcount;
699 size_t extsymcount;
700 size_t extsymoff;
701 Elf_External_Sym *buf = NULL;
702 struct elf_link_hash_entry **sym_hash;
703 boolean dynamic;
704 bfd_byte *dynver = NULL;
705 Elf_External_Versym *extversym = NULL;
706 Elf_External_Versym *ever;
707 Elf_External_Dyn *dynbuf = NULL;
708 struct elf_link_hash_entry *weaks;
709 Elf_External_Sym *esym;
710 Elf_External_Sym *esymend;
711
712 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
713 collect = get_elf_backend_data (abfd)->collect;
714
715 if ((abfd->flags & DYNAMIC) == 0)
716 dynamic = false;
717 else
718 {
719 dynamic = true;
720
721 /* You can't use -r against a dynamic object. Also, there's no
722 hope of using a dynamic object which does not exactly match
723 the format of the output file. */
724 if (info->relocateable || info->hash->creator != abfd->xvec)
725 {
726 bfd_set_error (bfd_error_invalid_operation);
727 goto error_return;
728 }
729 }
730
731 /* As a GNU extension, any input sections which are named
732 .gnu.warning.SYMBOL are treated as warning symbols for the given
733 symbol. This differs from .gnu.warning sections, which generate
734 warnings when they are included in an output file. */
735 if (! info->shared)
736 {
737 asection *s;
738
739 for (s = abfd->sections; s != NULL; s = s->next)
740 {
741 const char *name;
742
743 name = bfd_get_section_name (abfd, s);
744 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
745 {
746 char *msg;
747 bfd_size_type sz;
748
749 name += sizeof ".gnu.warning." - 1;
750
751 /* If this is a shared object, then look up the symbol
752 in the hash table. If it is there, and it is already
753 been defined, then we will not be using the entry
754 from this shared object, so we don't need to warn.
755 FIXME: If we see the definition in a regular object
756 later on, we will warn, but we shouldn't. The only
757 fix is to keep track of what warnings we are supposed
758 to emit, and then handle them all at the end of the
759 link. */
760 if (dynamic && abfd->xvec == info->hash->creator)
761 {
762 struct elf_link_hash_entry *h;
763
764 h = elf_link_hash_lookup (elf_hash_table (info), name,
765 false, false, true);
766
767 /* FIXME: What about bfd_link_hash_common? */
768 if (h != NULL
769 && (h->root.type == bfd_link_hash_defined
770 || h->root.type == bfd_link_hash_defweak))
771 {
772 /* We don't want to issue this warning. Clobber
773 the section size so that the warning does not
774 get copied into the output file. */
775 s->_raw_size = 0;
776 continue;
777 }
778 }
779
780 sz = bfd_section_size (abfd, s);
781 msg = (char *) bfd_alloc (abfd, sz + 1);
782 if (msg == NULL)
783 goto error_return;
784
785 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
786 goto error_return;
787
788 msg[sz] = '\0';
789
790 if (! (_bfd_generic_link_add_one_symbol
791 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
792 false, collect, (struct bfd_link_hash_entry **) NULL)))
793 goto error_return;
794
795 if (! info->relocateable)
796 {
797 /* Clobber the section size so that the warning does
798 not get copied into the output file. */
799 s->_raw_size = 0;
800 }
801 }
802 }
803 }
804
805 /* If this is a dynamic object, we always link against the .dynsym
806 symbol table, not the .symtab symbol table. The dynamic linker
807 will only see the .dynsym symbol table, so there is no reason to
808 look at .symtab for a dynamic object. */
809
810 if (! dynamic || elf_dynsymtab (abfd) == 0)
811 hdr = &elf_tdata (abfd)->symtab_hdr;
812 else
813 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
814
815 if (dynamic)
816 {
817 /* Read in any version definitions. */
818
819 if (! _bfd_elf_slurp_version_tables (abfd))
820 goto error_return;
821
822 /* Read in the symbol versions, but don't bother to convert them
823 to internal format. */
824 if (elf_dynversym (abfd) != 0)
825 {
826 Elf_Internal_Shdr *versymhdr;
827
828 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
829 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
830 if (extversym == NULL)
831 goto error_return;
832 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
833 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
834 != versymhdr->sh_size))
835 goto error_return;
836 }
837 }
838
839 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
840
841 /* The sh_info field of the symtab header tells us where the
842 external symbols start. We don't care about the local symbols at
843 this point. */
844 if (elf_bad_symtab (abfd))
845 {
846 extsymcount = symcount;
847 extsymoff = 0;
848 }
849 else
850 {
851 extsymcount = symcount - hdr->sh_info;
852 extsymoff = hdr->sh_info;
853 }
854
855 buf = ((Elf_External_Sym *)
856 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
857 if (buf == NULL && extsymcount != 0)
858 goto error_return;
859
860 /* We store a pointer to the hash table entry for each external
861 symbol. */
862 sym_hash = ((struct elf_link_hash_entry **)
863 bfd_alloc (abfd,
864 extsymcount * sizeof (struct elf_link_hash_entry *)));
865 if (sym_hash == NULL)
866 goto error_return;
867 elf_sym_hashes (abfd) = sym_hash;
868
869 if (! dynamic)
870 {
871 /* If we are creating a shared library, create all the dynamic
872 sections immediately. We need to attach them to something,
873 so we attach them to this BFD, provided it is the right
874 format. FIXME: If there are no input BFD's of the same
875 format as the output, we can't make a shared library. */
876 if (info->shared
877 && ! elf_hash_table (info)->dynamic_sections_created
878 && abfd->xvec == info->hash->creator)
879 {
880 if (! elf_link_create_dynamic_sections (abfd, info))
881 goto error_return;
882 }
883 }
884 else
885 {
886 asection *s;
887 boolean add_needed;
888 const char *name;
889 bfd_size_type oldsize;
890 bfd_size_type strindex;
891
892 /* Find the name to use in a DT_NEEDED entry that refers to this
893 object. If the object has a DT_SONAME entry, we use it.
894 Otherwise, if the generic linker stuck something in
895 elf_dt_name, we use that. Otherwise, we just use the file
896 name. If the generic linker put a null string into
897 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
898 there is a DT_SONAME entry. */
899 add_needed = true;
900 name = bfd_get_filename (abfd);
901 if (elf_dt_name (abfd) != NULL)
902 {
903 name = elf_dt_name (abfd);
904 if (*name == '\0')
905 add_needed = false;
906 }
907 s = bfd_get_section_by_name (abfd, ".dynamic");
908 if (s != NULL)
909 {
910 Elf_External_Dyn *extdyn;
911 Elf_External_Dyn *extdynend;
912 int elfsec;
913 unsigned long link;
914
915 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
916 if (dynbuf == NULL)
917 goto error_return;
918
919 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
920 (file_ptr) 0, s->_raw_size))
921 goto error_return;
922
923 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
924 if (elfsec == -1)
925 goto error_return;
926 link = elf_elfsections (abfd)[elfsec]->sh_link;
927
928 extdyn = dynbuf;
929 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
930 for (; extdyn < extdynend; extdyn++)
931 {
932 Elf_Internal_Dyn dyn;
933
934 elf_swap_dyn_in (abfd, extdyn, &dyn);
935 if (dyn.d_tag == DT_SONAME)
936 {
937 name = bfd_elf_string_from_elf_section (abfd, link,
938 dyn.d_un.d_val);
939 if (name == NULL)
940 goto error_return;
941 }
942 if (dyn.d_tag == DT_NEEDED)
943 {
944 struct bfd_link_needed_list *n, **pn;
945 char *fnm, *anm;
946
947 n = ((struct bfd_link_needed_list *)
948 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
949 fnm = bfd_elf_string_from_elf_section (abfd, link,
950 dyn.d_un.d_val);
951 if (n == NULL || fnm == NULL)
952 goto error_return;
953 anm = bfd_alloc (abfd, strlen (fnm) + 1);
954 if (anm == NULL)
955 goto error_return;
956 strcpy (anm, fnm);
957 n->name = anm;
958 n->by = abfd;
959 n->next = NULL;
960 for (pn = &elf_hash_table (info)->needed;
961 *pn != NULL;
962 pn = &(*pn)->next)
963 ;
964 *pn = n;
965 }
966 }
967
968 free (dynbuf);
969 dynbuf = NULL;
970 }
971
972 /* We do not want to include any of the sections in a dynamic
973 object in the output file. We hack by simply clobbering the
974 list of sections in the BFD. This could be handled more
975 cleanly by, say, a new section flag; the existing
976 SEC_NEVER_LOAD flag is not the one we want, because that one
977 still implies that the section takes up space in the output
978 file. */
979 abfd->sections = NULL;
980 abfd->section_count = 0;
981
982 /* If this is the first dynamic object found in the link, create
983 the special sections required for dynamic linking. */
984 if (! elf_hash_table (info)->dynamic_sections_created)
985 {
986 if (! elf_link_create_dynamic_sections (abfd, info))
987 goto error_return;
988 }
989
990 if (add_needed)
991 {
992 /* Add a DT_NEEDED entry for this dynamic object. */
993 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
994 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
995 true, false);
996 if (strindex == (bfd_size_type) -1)
997 goto error_return;
998
999 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1000 {
1001 asection *sdyn;
1002 Elf_External_Dyn *dyncon, *dynconend;
1003
1004 /* The hash table size did not change, which means that
1005 the dynamic object name was already entered. If we
1006 have already included this dynamic object in the
1007 link, just ignore it. There is no reason to include
1008 a particular dynamic object more than once. */
1009 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1010 ".dynamic");
1011 BFD_ASSERT (sdyn != NULL);
1012
1013 dyncon = (Elf_External_Dyn *) sdyn->contents;
1014 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1015 sdyn->_raw_size);
1016 for (; dyncon < dynconend; dyncon++)
1017 {
1018 Elf_Internal_Dyn dyn;
1019
1020 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1021 &dyn);
1022 if (dyn.d_tag == DT_NEEDED
1023 && dyn.d_un.d_val == strindex)
1024 {
1025 if (buf != NULL)
1026 free (buf);
1027 if (extversym != NULL)
1028 free (extversym);
1029 return true;
1030 }
1031 }
1032 }
1033
1034 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1035 goto error_return;
1036 }
1037
1038 /* Save the SONAME, if there is one, because sometimes the
1039 linker emulation code will need to know it. */
1040 if (*name == '\0')
1041 name = bfd_get_filename (abfd);
1042 elf_dt_name (abfd) = name;
1043 }
1044
1045 if (bfd_seek (abfd,
1046 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1047 SEEK_SET) != 0
1048 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1049 != extsymcount * sizeof (Elf_External_Sym)))
1050 goto error_return;
1051
1052 weaks = NULL;
1053
1054 ever = extversym != NULL ? extversym + extsymoff : NULL;
1055 esymend = buf + extsymcount;
1056 for (esym = buf;
1057 esym < esymend;
1058 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1059 {
1060 Elf_Internal_Sym sym;
1061 int bind;
1062 bfd_vma value;
1063 asection *sec;
1064 flagword flags;
1065 const char *name;
1066 struct elf_link_hash_entry *h;
1067 boolean definition;
1068 boolean size_change_ok, type_change_ok;
1069 boolean new_weakdef;
1070 unsigned int old_alignment;
1071
1072 elf_swap_symbol_in (abfd, esym, &sym);
1073
1074 flags = BSF_NO_FLAGS;
1075 sec = NULL;
1076 value = sym.st_value;
1077 *sym_hash = NULL;
1078
1079 bind = ELF_ST_BIND (sym.st_info);
1080 if (bind == STB_LOCAL)
1081 {
1082 /* This should be impossible, since ELF requires that all
1083 global symbols follow all local symbols, and that sh_info
1084 point to the first global symbol. Unfortunatealy, Irix 5
1085 screws this up. */
1086 continue;
1087 }
1088 else if (bind == STB_GLOBAL)
1089 {
1090 if (sym.st_shndx != SHN_UNDEF
1091 && sym.st_shndx != SHN_COMMON)
1092 flags = BSF_GLOBAL;
1093 else
1094 flags = 0;
1095 }
1096 else if (bind == STB_WEAK)
1097 flags = BSF_WEAK;
1098 else
1099 {
1100 /* Leave it up to the processor backend. */
1101 }
1102
1103 if (sym.st_shndx == SHN_UNDEF)
1104 sec = bfd_und_section_ptr;
1105 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1106 {
1107 sec = section_from_elf_index (abfd, sym.st_shndx);
1108 if (sec == NULL)
1109 sec = bfd_abs_section_ptr;
1110 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1111 value -= sec->vma;
1112 }
1113 else if (sym.st_shndx == SHN_ABS)
1114 sec = bfd_abs_section_ptr;
1115 else if (sym.st_shndx == SHN_COMMON)
1116 {
1117 sec = bfd_com_section_ptr;
1118 /* What ELF calls the size we call the value. What ELF
1119 calls the value we call the alignment. */
1120 value = sym.st_size;
1121 }
1122 else
1123 {
1124 /* Leave it up to the processor backend. */
1125 }
1126
1127 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1128 if (name == (const char *) NULL)
1129 goto error_return;
1130
1131 if (add_symbol_hook)
1132 {
1133 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1134 &value))
1135 goto error_return;
1136
1137 /* The hook function sets the name to NULL if this symbol
1138 should be skipped for some reason. */
1139 if (name == (const char *) NULL)
1140 continue;
1141 }
1142
1143 /* Sanity check that all possibilities were handled. */
1144 if (sec == (asection *) NULL)
1145 {
1146 bfd_set_error (bfd_error_bad_value);
1147 goto error_return;
1148 }
1149
1150 if (bfd_is_und_section (sec)
1151 || bfd_is_com_section (sec))
1152 definition = false;
1153 else
1154 definition = true;
1155
1156 size_change_ok = false;
1157 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1158 old_alignment = 0;
1159 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1160 {
1161 Elf_Internal_Versym iver;
1162 unsigned int vernum = 0;
1163 boolean override;
1164
1165 if (ever != NULL)
1166 {
1167 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1168 vernum = iver.vs_vers & VERSYM_VERSION;
1169
1170 /* If this is a hidden symbol, or if it is not version
1171 1, we append the version name to the symbol name.
1172 However, we do not modify a non-hidden absolute
1173 symbol, because it might be the version symbol
1174 itself. FIXME: What if it isn't? */
1175 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1176 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1177 {
1178 const char *verstr;
1179 int namelen, newlen;
1180 char *newname, *p;
1181
1182 if (sym.st_shndx != SHN_UNDEF)
1183 {
1184 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1185 {
1186 (*_bfd_error_handler)
1187 (_("%s: %s: invalid version %u (max %d)"),
1188 bfd_get_filename (abfd), name, vernum,
1189 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1190 bfd_set_error (bfd_error_bad_value);
1191 goto error_return;
1192 }
1193 else if (vernum > 1)
1194 verstr =
1195 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1196 else
1197 verstr = "";
1198 }
1199 else
1200 {
1201 /* We cannot simply test for the number of
1202 entries in the VERNEED section since the
1203 numbers for the needed versions do not start
1204 at 0. */
1205 Elf_Internal_Verneed *t;
1206
1207 verstr = NULL;
1208 for (t = elf_tdata (abfd)->verref;
1209 t != NULL;
1210 t = t->vn_nextref)
1211 {
1212 Elf_Internal_Vernaux *a;
1213
1214 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1215 {
1216 if (a->vna_other == vernum)
1217 {
1218 verstr = a->vna_nodename;
1219 break;
1220 }
1221 }
1222 if (a != NULL)
1223 break;
1224 }
1225 if (verstr == NULL)
1226 {
1227 (*_bfd_error_handler)
1228 (_("%s: %s: invalid needed version %d"),
1229 bfd_get_filename (abfd), name, vernum);
1230 bfd_set_error (bfd_error_bad_value);
1231 goto error_return;
1232 }
1233 }
1234
1235 namelen = strlen (name);
1236 newlen = namelen + strlen (verstr) + 2;
1237 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1238 ++newlen;
1239
1240 newname = (char *) bfd_alloc (abfd, newlen);
1241 if (newname == NULL)
1242 goto error_return;
1243 strcpy (newname, name);
1244 p = newname + namelen;
1245 *p++ = ELF_VER_CHR;
1246 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1247 *p++ = ELF_VER_CHR;
1248 strcpy (p, verstr);
1249
1250 name = newname;
1251 }
1252 }
1253
1254 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1255 sym_hash, &override, &type_change_ok,
1256 &size_change_ok))
1257 goto error_return;
1258
1259 if (override)
1260 definition = false;
1261
1262 h = *sym_hash;
1263 while (h->root.type == bfd_link_hash_indirect
1264 || h->root.type == bfd_link_hash_warning)
1265 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1266
1267 /* Remember the old alignment if this is a common symbol, so
1268 that we don't reduce the alignment later on. We can't
1269 check later, because _bfd_generic_link_add_one_symbol
1270 will set a default for the alignment which we want to
1271 override. */
1272 if (h->root.type == bfd_link_hash_common)
1273 old_alignment = h->root.u.c.p->alignment_power;
1274
1275 if (elf_tdata (abfd)->verdef != NULL
1276 && ! override
1277 && vernum > 1
1278 && definition)
1279 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1280 }
1281
1282 if (! (_bfd_generic_link_add_one_symbol
1283 (info, abfd, name, flags, sec, value, (const char *) NULL,
1284 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1285 goto error_return;
1286
1287 h = *sym_hash;
1288 while (h->root.type == bfd_link_hash_indirect
1289 || h->root.type == bfd_link_hash_warning)
1290 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1291 *sym_hash = h;
1292
1293 new_weakdef = false;
1294 if (dynamic
1295 && definition
1296 && (flags & BSF_WEAK) != 0
1297 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1298 && info->hash->creator->flavour == bfd_target_elf_flavour
1299 && h->weakdef == NULL)
1300 {
1301 /* Keep a list of all weak defined non function symbols from
1302 a dynamic object, using the weakdef field. Later in this
1303 function we will set the weakdef field to the correct
1304 value. We only put non-function symbols from dynamic
1305 objects on this list, because that happens to be the only
1306 time we need to know the normal symbol corresponding to a
1307 weak symbol, and the information is time consuming to
1308 figure out. If the weakdef field is not already NULL,
1309 then this symbol was already defined by some previous
1310 dynamic object, and we will be using that previous
1311 definition anyhow. */
1312
1313 h->weakdef = weaks;
1314 weaks = h;
1315 new_weakdef = true;
1316 }
1317
1318 /* Set the alignment of a common symbol. */
1319 if (sym.st_shndx == SHN_COMMON
1320 && h->root.type == bfd_link_hash_common)
1321 {
1322 unsigned int align;
1323
1324 align = bfd_log2 (sym.st_value);
1325 if (align > old_alignment)
1326 h->root.u.c.p->alignment_power = align;
1327 }
1328
1329 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1330 {
1331 int old_flags;
1332 boolean dynsym;
1333 int new_flag;
1334
1335 /* Remember the symbol size and type. */
1336 if (sym.st_size != 0
1337 && (definition || h->size == 0))
1338 {
1339 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1340 (*_bfd_error_handler)
1341 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1342 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1343 bfd_get_filename (abfd));
1344
1345 h->size = sym.st_size;
1346 }
1347
1348 /* If this is a common symbol, then we always want H->SIZE
1349 to be the size of the common symbol. The code just above
1350 won't fix the size if a common symbol becomes larger. We
1351 don't warn about a size change here, because that is
1352 covered by --warn-common. */
1353 if (h->root.type == bfd_link_hash_common)
1354 h->size = h->root.u.c.size;
1355
1356 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1357 && (definition || h->type == STT_NOTYPE))
1358 {
1359 if (h->type != STT_NOTYPE
1360 && h->type != ELF_ST_TYPE (sym.st_info)
1361 && ! type_change_ok)
1362 (*_bfd_error_handler)
1363 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1364 name, h->type, ELF_ST_TYPE (sym.st_info),
1365 bfd_get_filename (abfd));
1366
1367 h->type = ELF_ST_TYPE (sym.st_info);
1368 }
1369
1370 if (sym.st_other != 0
1371 && (definition || h->other == 0))
1372 h->other = sym.st_other;
1373
1374 /* Set a flag in the hash table entry indicating the type of
1375 reference or definition we just found. Keep a count of
1376 the number of dynamic symbols we find. A dynamic symbol
1377 is one which is referenced or defined by both a regular
1378 object and a shared object. */
1379 old_flags = h->elf_link_hash_flags;
1380 dynsym = false;
1381 if (! dynamic)
1382 {
1383 if (! definition)
1384 {
1385 new_flag = ELF_LINK_HASH_REF_REGULAR;
1386 if (bind != STB_WEAK)
1387 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1388 }
1389 else
1390 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1391 if (info->shared
1392 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1393 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1394 dynsym = true;
1395 }
1396 else
1397 {
1398 if (! definition)
1399 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1400 else
1401 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1402 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1403 | ELF_LINK_HASH_REF_REGULAR)) != 0
1404 || (h->weakdef != NULL
1405 && ! new_weakdef
1406 && h->weakdef->dynindx != -1))
1407 dynsym = true;
1408 }
1409
1410 h->elf_link_hash_flags |= new_flag;
1411
1412 /* If this symbol has a version, and it is the default
1413 version, we create an indirect symbol from the default
1414 name to the fully decorated name. This will cause
1415 external references which do not specify a version to be
1416 bound to this version of the symbol. */
1417 if (definition)
1418 {
1419 char *p;
1420
1421 p = strchr (name, ELF_VER_CHR);
1422 if (p != NULL && p[1] == ELF_VER_CHR)
1423 {
1424 char *shortname;
1425 struct elf_link_hash_entry *hi;
1426 boolean override;
1427
1428 shortname = bfd_hash_allocate (&info->hash->table,
1429 p - name + 1);
1430 if (shortname == NULL)
1431 goto error_return;
1432 strncpy (shortname, name, p - name);
1433 shortname[p - name] = '\0';
1434
1435 /* We are going to create a new symbol. Merge it
1436 with any existing symbol with this name. For the
1437 purposes of the merge, act as though we were
1438 defining the symbol we just defined, although we
1439 actually going to define an indirect symbol. */
1440 type_change_ok = false;
1441 size_change_ok = false;
1442 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1443 &value, &hi, &override,
1444 &type_change_ok, &size_change_ok))
1445 goto error_return;
1446
1447 if (! override)
1448 {
1449 if (! (_bfd_generic_link_add_one_symbol
1450 (info, abfd, shortname, BSF_INDIRECT,
1451 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1452 collect, (struct bfd_link_hash_entry **) &hi)))
1453 goto error_return;
1454 }
1455 else
1456 {
1457 /* In this case the symbol named SHORTNAME is
1458 overriding the indirect symbol we want to
1459 add. We were planning on making SHORTNAME an
1460 indirect symbol referring to NAME. SHORTNAME
1461 is the name without a version. NAME is the
1462 fully versioned name, and it is the default
1463 version.
1464
1465 Overriding means that we already saw a
1466 definition for the symbol SHORTNAME in a
1467 regular object, and it is overriding the
1468 symbol defined in the dynamic object.
1469
1470 When this happens, we actually want to change
1471 NAME, the symbol we just added, to refer to
1472 SHORTNAME. This will cause references to
1473 NAME in the shared object to become
1474 references to SHORTNAME in the regular
1475 object. This is what we expect when we
1476 override a function in a shared object: that
1477 the references in the shared object will be
1478 mapped to the definition in the regular
1479 object. */
1480
1481 while (hi->root.type == bfd_link_hash_indirect
1482 || hi->root.type == bfd_link_hash_warning)
1483 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1484
1485 h->root.type = bfd_link_hash_indirect;
1486 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1487 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1488 {
1489 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1490 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1491 if (hi->elf_link_hash_flags
1492 & (ELF_LINK_HASH_REF_REGULAR
1493 | ELF_LINK_HASH_DEF_REGULAR))
1494 {
1495 if (! _bfd_elf_link_record_dynamic_symbol (info,
1496 hi))
1497 goto error_return;
1498 }
1499 }
1500
1501 /* Now set HI to H, so that the following code
1502 will set the other fields correctly. */
1503 hi = h;
1504 }
1505
1506 /* If there is a duplicate definition somewhere,
1507 then HI may not point to an indirect symbol. We
1508 will have reported an error to the user in that
1509 case. */
1510
1511 if (hi->root.type == bfd_link_hash_indirect)
1512 {
1513 struct elf_link_hash_entry *ht;
1514
1515 /* If the symbol became indirect, then we assume
1516 that we have not seen a definition before. */
1517 BFD_ASSERT ((hi->elf_link_hash_flags
1518 & (ELF_LINK_HASH_DEF_DYNAMIC
1519 | ELF_LINK_HASH_DEF_REGULAR))
1520 == 0);
1521
1522 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1523
1524 /* Copy down any references that we may have
1525 already seen to the symbol which just became
1526 indirect. */
1527 ht->elf_link_hash_flags |=
1528 (hi->elf_link_hash_flags
1529 & (ELF_LINK_HASH_REF_DYNAMIC
1530 | ELF_LINK_HASH_REF_REGULAR
1531 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
1532
1533 /* Copy over the global and procedure linkage table
1534 offset entries. These may have been already set
1535 up by a check_relocs routine. */
1536 if (ht->got.offset == (bfd_vma) -1)
1537 {
1538 ht->got.offset = hi->got.offset;
1539 hi->got.offset = (bfd_vma) -1;
1540 }
1541 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1542
1543 if (ht->plt.offset == (bfd_vma) -1)
1544 {
1545 ht->plt.offset = hi->plt.offset;
1546 hi->plt.offset = (bfd_vma) -1;
1547 }
1548 BFD_ASSERT (hi->plt.offset == (bfd_vma) -1);
1549
1550 if (ht->dynindx == -1)
1551 {
1552 ht->dynindx = hi->dynindx;
1553 ht->dynstr_index = hi->dynstr_index;
1554 hi->dynindx = -1;
1555 hi->dynstr_index = 0;
1556 }
1557 BFD_ASSERT (hi->dynindx == -1);
1558
1559 /* FIXME: There may be other information to copy
1560 over for particular targets. */
1561
1562 /* See if the new flags lead us to realize that
1563 the symbol must be dynamic. */
1564 if (! dynsym)
1565 {
1566 if (! dynamic)
1567 {
1568 if (info->shared
1569 || ((hi->elf_link_hash_flags
1570 & ELF_LINK_HASH_REF_DYNAMIC)
1571 != 0))
1572 dynsym = true;
1573 }
1574 else
1575 {
1576 if ((hi->elf_link_hash_flags
1577 & ELF_LINK_HASH_REF_REGULAR) != 0)
1578 dynsym = true;
1579 }
1580 }
1581 }
1582
1583 /* We also need to define an indirection from the
1584 nondefault version of the symbol. */
1585
1586 shortname = bfd_hash_allocate (&info->hash->table,
1587 strlen (name));
1588 if (shortname == NULL)
1589 goto error_return;
1590 strncpy (shortname, name, p - name);
1591 strcpy (shortname + (p - name), p + 1);
1592
1593 /* Once again, merge with any existing symbol. */
1594 type_change_ok = false;
1595 size_change_ok = false;
1596 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1597 &value, &hi, &override,
1598 &type_change_ok, &size_change_ok))
1599 goto error_return;
1600
1601 if (override)
1602 {
1603 /* Here SHORTNAME is a versioned name, so we
1604 don't expect to see the type of override we
1605 do in the case above. */
1606 (*_bfd_error_handler)
1607 (_("%s: warning: unexpected redefinition of `%s'"),
1608 bfd_get_filename (abfd), shortname);
1609 }
1610 else
1611 {
1612 if (! (_bfd_generic_link_add_one_symbol
1613 (info, abfd, shortname, BSF_INDIRECT,
1614 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1615 collect, (struct bfd_link_hash_entry **) &hi)))
1616 goto error_return;
1617
1618 /* If there is a duplicate definition somewhere,
1619 then HI may not point to an indirect symbol.
1620 We will have reported an error to the user in
1621 that case. */
1622
1623 if (hi->root.type == bfd_link_hash_indirect)
1624 {
1625 /* If the symbol became indirect, then we
1626 assume that we have not seen a definition
1627 before. */
1628 BFD_ASSERT ((hi->elf_link_hash_flags
1629 & (ELF_LINK_HASH_DEF_DYNAMIC
1630 | ELF_LINK_HASH_DEF_REGULAR))
1631 == 0);
1632
1633 /* Copy down any references that we may have
1634 already seen to the symbol which just
1635 became indirect. */
1636 h->elf_link_hash_flags |=
1637 (hi->elf_link_hash_flags
1638 & (ELF_LINK_HASH_REF_DYNAMIC
1639 | ELF_LINK_HASH_REF_REGULAR
1640 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
1641
1642 /* Copy over the global and procedure linkage
1643 table offset entries. These may have been
1644 already set up by a check_relocs routine. */
1645 if (h->got.offset == (bfd_vma) -1)
1646 {
1647 h->got.offset = hi->got.offset;
1648 hi->got.offset = (bfd_vma) -1;
1649 }
1650 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1651
1652 if (h->plt.offset == (bfd_vma) -1)
1653 {
1654 h->plt.offset = hi->plt.offset;
1655 hi->plt.offset = (bfd_vma) -1;
1656 }
1657 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1658
1659 if (h->dynindx == -1)
1660 {
1661 h->dynindx = hi->dynindx;
1662 h->dynstr_index = hi->dynstr_index;
1663 hi->dynindx = -1;
1664 hi->dynstr_index = 0;
1665 }
1666 BFD_ASSERT (hi->dynindx == -1);
1667
1668 /* FIXME: There may be other information to
1669 copy over for particular targets. */
1670
1671 /* See if the new flags lead us to realize
1672 that the symbol must be dynamic. */
1673 if (! dynsym)
1674 {
1675 if (! dynamic)
1676 {
1677 if (info->shared
1678 || ((hi->elf_link_hash_flags
1679 & ELF_LINK_HASH_REF_DYNAMIC)
1680 != 0))
1681 dynsym = true;
1682 }
1683 else
1684 {
1685 if ((hi->elf_link_hash_flags
1686 & ELF_LINK_HASH_REF_REGULAR) != 0)
1687 dynsym = true;
1688 }
1689 }
1690 }
1691 }
1692 }
1693 }
1694
1695 if (dynsym && h->dynindx == -1)
1696 {
1697 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1698 goto error_return;
1699 if (h->weakdef != NULL
1700 && ! new_weakdef
1701 && h->weakdef->dynindx == -1)
1702 {
1703 if (! _bfd_elf_link_record_dynamic_symbol (info,
1704 h->weakdef))
1705 goto error_return;
1706 }
1707 }
1708 }
1709 }
1710
1711 /* Now set the weakdefs field correctly for all the weak defined
1712 symbols we found. The only way to do this is to search all the
1713 symbols. Since we only need the information for non functions in
1714 dynamic objects, that's the only time we actually put anything on
1715 the list WEAKS. We need this information so that if a regular
1716 object refers to a symbol defined weakly in a dynamic object, the
1717 real symbol in the dynamic object is also put in the dynamic
1718 symbols; we also must arrange for both symbols to point to the
1719 same memory location. We could handle the general case of symbol
1720 aliasing, but a general symbol alias can only be generated in
1721 assembler code, handling it correctly would be very time
1722 consuming, and other ELF linkers don't handle general aliasing
1723 either. */
1724 while (weaks != NULL)
1725 {
1726 struct elf_link_hash_entry *hlook;
1727 asection *slook;
1728 bfd_vma vlook;
1729 struct elf_link_hash_entry **hpp;
1730 struct elf_link_hash_entry **hppend;
1731
1732 hlook = weaks;
1733 weaks = hlook->weakdef;
1734 hlook->weakdef = NULL;
1735
1736 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1737 || hlook->root.type == bfd_link_hash_defweak
1738 || hlook->root.type == bfd_link_hash_common
1739 || hlook->root.type == bfd_link_hash_indirect);
1740 slook = hlook->root.u.def.section;
1741 vlook = hlook->root.u.def.value;
1742
1743 hpp = elf_sym_hashes (abfd);
1744 hppend = hpp + extsymcount;
1745 for (; hpp < hppend; hpp++)
1746 {
1747 struct elf_link_hash_entry *h;
1748
1749 h = *hpp;
1750 if (h != NULL && h != hlook
1751 && h->root.type == bfd_link_hash_defined
1752 && h->root.u.def.section == slook
1753 && h->root.u.def.value == vlook)
1754 {
1755 hlook->weakdef = h;
1756
1757 /* If the weak definition is in the list of dynamic
1758 symbols, make sure the real definition is put there
1759 as well. */
1760 if (hlook->dynindx != -1
1761 && h->dynindx == -1)
1762 {
1763 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1764 goto error_return;
1765 }
1766
1767 /* If the real definition is in the list of dynamic
1768 symbols, make sure the weak definition is put there
1769 as well. If we don't do this, then the dynamic
1770 loader might not merge the entries for the real
1771 definition and the weak definition. */
1772 if (h->dynindx != -1
1773 && hlook->dynindx == -1)
1774 {
1775 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1776 goto error_return;
1777 }
1778
1779 break;
1780 }
1781 }
1782 }
1783
1784 if (buf != NULL)
1785 {
1786 free (buf);
1787 buf = NULL;
1788 }
1789
1790 if (extversym != NULL)
1791 {
1792 free (extversym);
1793 extversym = NULL;
1794 }
1795
1796 /* If this object is the same format as the output object, and it is
1797 not a shared library, then let the backend look through the
1798 relocs.
1799
1800 This is required to build global offset table entries and to
1801 arrange for dynamic relocs. It is not required for the
1802 particular common case of linking non PIC code, even when linking
1803 against shared libraries, but unfortunately there is no way of
1804 knowing whether an object file has been compiled PIC or not.
1805 Looking through the relocs is not particularly time consuming.
1806 The problem is that we must either (1) keep the relocs in memory,
1807 which causes the linker to require additional runtime memory or
1808 (2) read the relocs twice from the input file, which wastes time.
1809 This would be a good case for using mmap.
1810
1811 I have no idea how to handle linking PIC code into a file of a
1812 different format. It probably can't be done. */
1813 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1814 if (! dynamic
1815 && abfd->xvec == info->hash->creator
1816 && check_relocs != NULL)
1817 {
1818 asection *o;
1819
1820 for (o = abfd->sections; o != NULL; o = o->next)
1821 {
1822 Elf_Internal_Rela *internal_relocs;
1823 boolean ok;
1824
1825 if ((o->flags & SEC_RELOC) == 0
1826 || o->reloc_count == 0
1827 || ((info->strip == strip_all || info->strip == strip_debugger)
1828 && (o->flags & SEC_DEBUGGING) != 0)
1829 || bfd_is_abs_section (o->output_section))
1830 continue;
1831
1832 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1833 (abfd, o, (PTR) NULL,
1834 (Elf_Internal_Rela *) NULL,
1835 info->keep_memory));
1836 if (internal_relocs == NULL)
1837 goto error_return;
1838
1839 ok = (*check_relocs) (abfd, info, o, internal_relocs);
1840
1841 if (! info->keep_memory)
1842 free (internal_relocs);
1843
1844 if (! ok)
1845 goto error_return;
1846 }
1847 }
1848
1849 /* If this is a non-traditional, non-relocateable link, try to
1850 optimize the handling of the .stab/.stabstr sections. */
1851 if (! dynamic
1852 && ! info->relocateable
1853 && ! info->traditional_format
1854 && info->hash->creator->flavour == bfd_target_elf_flavour
1855 && (info->strip != strip_all && info->strip != strip_debugger))
1856 {
1857 asection *stab, *stabstr;
1858
1859 stab = bfd_get_section_by_name (abfd, ".stab");
1860 if (stab != NULL)
1861 {
1862 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
1863
1864 if (stabstr != NULL)
1865 {
1866 struct bfd_elf_section_data *secdata;
1867
1868 secdata = elf_section_data (stab);
1869 if (! _bfd_link_section_stabs (abfd,
1870 &elf_hash_table (info)->stab_info,
1871 stab, stabstr,
1872 &secdata->stab_info))
1873 goto error_return;
1874 }
1875 }
1876 }
1877
1878 return true;
1879
1880 error_return:
1881 if (buf != NULL)
1882 free (buf);
1883 if (dynbuf != NULL)
1884 free (dynbuf);
1885 if (dynver != NULL)
1886 free (dynver);
1887 if (extversym != NULL)
1888 free (extversym);
1889 return false;
1890 }
1891
1892 /* Create some sections which will be filled in with dynamic linking
1893 information. ABFD is an input file which requires dynamic sections
1894 to be created. The dynamic sections take up virtual memory space
1895 when the final executable is run, so we need to create them before
1896 addresses are assigned to the output sections. We work out the
1897 actual contents and size of these sections later. */
1898
1899 boolean
1900 elf_link_create_dynamic_sections (abfd, info)
1901 bfd *abfd;
1902 struct bfd_link_info *info;
1903 {
1904 flagword flags;
1905 register asection *s;
1906 struct elf_link_hash_entry *h;
1907 struct elf_backend_data *bed;
1908
1909 if (elf_hash_table (info)->dynamic_sections_created)
1910 return true;
1911
1912 /* Make sure that all dynamic sections use the same input BFD. */
1913 if (elf_hash_table (info)->dynobj == NULL)
1914 elf_hash_table (info)->dynobj = abfd;
1915 else
1916 abfd = elf_hash_table (info)->dynobj;
1917
1918 /* Note that we set the SEC_IN_MEMORY flag for all of these
1919 sections. */
1920 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
1921 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1922
1923 /* A dynamically linked executable has a .interp section, but a
1924 shared library does not. */
1925 if (! info->shared)
1926 {
1927 s = bfd_make_section (abfd, ".interp");
1928 if (s == NULL
1929 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1930 return false;
1931 }
1932
1933 /* Create sections to hold version informations. These are removed
1934 if they are not needed. */
1935 s = bfd_make_section (abfd, ".gnu.version_d");
1936 if (s == NULL
1937 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1938 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1939 return false;
1940
1941 s = bfd_make_section (abfd, ".gnu.version");
1942 if (s == NULL
1943 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1944 || ! bfd_set_section_alignment (abfd, s, 1))
1945 return false;
1946
1947 s = bfd_make_section (abfd, ".gnu.version_r");
1948 if (s == NULL
1949 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1950 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1951 return false;
1952
1953 s = bfd_make_section (abfd, ".dynsym");
1954 if (s == NULL
1955 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1956 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1957 return false;
1958
1959 s = bfd_make_section (abfd, ".dynstr");
1960 if (s == NULL
1961 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1962 return false;
1963
1964 /* Create a strtab to hold the dynamic symbol names. */
1965 if (elf_hash_table (info)->dynstr == NULL)
1966 {
1967 elf_hash_table (info)->dynstr = elf_stringtab_init ();
1968 if (elf_hash_table (info)->dynstr == NULL)
1969 return false;
1970 }
1971
1972 s = bfd_make_section (abfd, ".dynamic");
1973 if (s == NULL
1974 || ! bfd_set_section_flags (abfd, s, flags)
1975 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1976 return false;
1977
1978 /* The special symbol _DYNAMIC is always set to the start of the
1979 .dynamic section. This call occurs before we have processed the
1980 symbols for any dynamic object, so we don't have to worry about
1981 overriding a dynamic definition. We could set _DYNAMIC in a
1982 linker script, but we only want to define it if we are, in fact,
1983 creating a .dynamic section. We don't want to define it if there
1984 is no .dynamic section, since on some ELF platforms the start up
1985 code examines it to decide how to initialize the process. */
1986 h = NULL;
1987 if (! (_bfd_generic_link_add_one_symbol
1988 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
1989 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
1990 (struct bfd_link_hash_entry **) &h)))
1991 return false;
1992 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1993 h->type = STT_OBJECT;
1994
1995 if (info->shared
1996 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
1997 return false;
1998
1999 bed = get_elf_backend_data (abfd);
2000
2001 s = bfd_make_section (abfd, ".hash");
2002 if (s == NULL
2003 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2004 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2005 return false;
2006 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2007
2008 /* Let the backend create the rest of the sections. This lets the
2009 backend set the right flags. The backend will normally create
2010 the .got and .plt sections. */
2011 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2012 return false;
2013
2014 elf_hash_table (info)->dynamic_sections_created = true;
2015
2016 return true;
2017 }
2018
2019 /* Add an entry to the .dynamic table. */
2020
2021 boolean
2022 elf_add_dynamic_entry (info, tag, val)
2023 struct bfd_link_info *info;
2024 bfd_vma tag;
2025 bfd_vma val;
2026 {
2027 Elf_Internal_Dyn dyn;
2028 bfd *dynobj;
2029 asection *s;
2030 size_t newsize;
2031 bfd_byte *newcontents;
2032
2033 dynobj = elf_hash_table (info)->dynobj;
2034
2035 s = bfd_get_section_by_name (dynobj, ".dynamic");
2036 BFD_ASSERT (s != NULL);
2037
2038 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2039 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2040 if (newcontents == NULL)
2041 return false;
2042
2043 dyn.d_tag = tag;
2044 dyn.d_un.d_val = val;
2045 elf_swap_dyn_out (dynobj, &dyn,
2046 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2047
2048 s->_raw_size = newsize;
2049 s->contents = newcontents;
2050
2051 return true;
2052 }
2053
2054 /* Record a new local dynamic symbol. */
2055
2056 boolean
2057 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2058 struct bfd_link_info *info;
2059 bfd *input_bfd;
2060 long input_indx;
2061 {
2062 struct elf_link_local_dynamic_entry *entry;
2063 struct elf_link_hash_table *eht;
2064 struct bfd_strtab_hash *dynstr;
2065 Elf_External_Sym esym;
2066 unsigned long dynstr_index;
2067 char *name;
2068
2069 /* See if the entry exists already. */
2070 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2071 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2072 return true;
2073
2074 entry = (struct elf_link_local_dynamic_entry *)
2075 bfd_alloc (input_bfd, sizeof (*entry));
2076 if (entry == NULL)
2077 return false;
2078
2079 /* Go find the symbol, so that we can find it's name. */
2080 if (bfd_seek (input_bfd,
2081 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2082 + input_indx * sizeof (Elf_External_Sym)),
2083 SEEK_SET) != 0
2084 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2085 != sizeof (Elf_External_Sym)))
2086 return false;
2087 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2088
2089 name = (bfd_elf_string_from_elf_section
2090 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2091 entry->isym.st_name));
2092
2093 dynstr = elf_hash_table (info)->dynstr;
2094 if (dynstr == NULL)
2095 {
2096 /* Create a strtab to hold the dynamic symbol names. */
2097 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2098 if (dynstr == NULL)
2099 return false;
2100 }
2101
2102 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2103 if (dynstr_index == (unsigned long) -1)
2104 return false;
2105 entry->isym.st_name = dynstr_index;
2106
2107 eht = elf_hash_table (info);
2108
2109 entry->next = eht->dynlocal;
2110 eht->dynlocal = entry;
2111 entry->input_bfd = input_bfd;
2112 entry->input_indx = input_indx;
2113 eht->dynsymcount++;
2114
2115 /* The dynindx will be set at the end of size_dynamic_sections. */
2116
2117 return true;
2118 }
2119 \f
2120
2121 /* Read and swap the relocs from the section indicated by SHDR. This
2122 may be either a REL or a RELA section. The relocations are
2123 translated into RELA relocations and stored in INTERNAL_RELOCS,
2124 which should have already been allocated to contain enough space.
2125 The EXTERNAL_RELOCS are a buffer where the external form of the
2126 relocations should be stored.
2127
2128 Returns false if something goes wrong. */
2129
2130 static boolean
2131 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2132 internal_relocs)
2133 bfd *abfd;
2134 Elf_Internal_Shdr *shdr;
2135 PTR external_relocs;
2136 Elf_Internal_Rela *internal_relocs;
2137 {
2138 struct elf_backend_data *bed;
2139
2140 /* If there aren't any relocations, that's OK. */
2141 if (!shdr)
2142 return true;
2143
2144 /* Position ourselves at the start of the section. */
2145 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2146 return false;
2147
2148 /* Read the relocations. */
2149 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2150 != shdr->sh_size)
2151 return false;
2152
2153 bed = get_elf_backend_data (abfd);
2154
2155 /* Convert the external relocations to the internal format. */
2156 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2157 {
2158 Elf_External_Rel *erel;
2159 Elf_External_Rel *erelend;
2160 Elf_Internal_Rela *irela;
2161 Elf_Internal_Rel *irel;
2162
2163 erel = (Elf_External_Rel *) external_relocs;
2164 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2165 irela = internal_relocs;
2166 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2167 * sizeof (Elf_Internal_Rel)));
2168 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2169 {
2170 unsigned char i;
2171
2172 if (bed->s->swap_reloc_in)
2173 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2174 else
2175 elf_swap_reloc_in (abfd, erel, irel);
2176
2177 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2178 {
2179 irela[i].r_offset = irel[i].r_offset;
2180 irela[i].r_info = irel[i].r_info;
2181 irela[i].r_addend = 0;
2182 }
2183 }
2184 }
2185 else
2186 {
2187 Elf_External_Rela *erela;
2188 Elf_External_Rela *erelaend;
2189 Elf_Internal_Rela *irela;
2190
2191 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2192
2193 erela = (Elf_External_Rela *) external_relocs;
2194 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2195 irela = internal_relocs;
2196 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2197 {
2198 if (bed->s->swap_reloca_in)
2199 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2200 else
2201 elf_swap_reloca_in (abfd, erela, irela);
2202 }
2203 }
2204
2205 return true;
2206 }
2207
2208 /* Read and swap the relocs for a section O. They may have been
2209 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2210 not NULL, they are used as buffers to read into. They are known to
2211 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2212 the return value is allocated using either malloc or bfd_alloc,
2213 according to the KEEP_MEMORY argument. If O has two relocation
2214 sections (both REL and RELA relocations), then the REL_HDR
2215 relocations will appear first in INTERNAL_RELOCS, followed by the
2216 REL_HDR2 relocations. */
2217
2218 Elf_Internal_Rela *
2219 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2220 keep_memory)
2221 bfd *abfd;
2222 asection *o;
2223 PTR external_relocs;
2224 Elf_Internal_Rela *internal_relocs;
2225 boolean keep_memory;
2226 {
2227 Elf_Internal_Shdr *rel_hdr;
2228 PTR alloc1 = NULL;
2229 Elf_Internal_Rela *alloc2 = NULL;
2230 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2231
2232 if (elf_section_data (o)->relocs != NULL)
2233 return elf_section_data (o)->relocs;
2234
2235 if (o->reloc_count == 0)
2236 return NULL;
2237
2238 rel_hdr = &elf_section_data (o)->rel_hdr;
2239
2240 if (internal_relocs == NULL)
2241 {
2242 size_t size;
2243
2244 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2245 * sizeof (Elf_Internal_Rela));
2246 if (keep_memory)
2247 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2248 else
2249 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2250 if (internal_relocs == NULL)
2251 goto error_return;
2252 }
2253
2254 if (external_relocs == NULL)
2255 {
2256 size_t size = (size_t) rel_hdr->sh_size;
2257
2258 if (elf_section_data (o)->rel_hdr2)
2259 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2260 alloc1 = (PTR) bfd_malloc (size);
2261 if (alloc1 == NULL)
2262 goto error_return;
2263 external_relocs = alloc1;
2264 }
2265
2266 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2267 external_relocs,
2268 internal_relocs))
2269 goto error_return;
2270 if (!elf_link_read_relocs_from_section
2271 (abfd,
2272 elf_section_data (o)->rel_hdr2,
2273 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2274 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2275 * bed->s->int_rels_per_ext_rel)))
2276 goto error_return;
2277
2278 /* Cache the results for next time, if we can. */
2279 if (keep_memory)
2280 elf_section_data (o)->relocs = internal_relocs;
2281
2282 if (alloc1 != NULL)
2283 free (alloc1);
2284
2285 /* Don't free alloc2, since if it was allocated we are passing it
2286 back (under the name of internal_relocs). */
2287
2288 return internal_relocs;
2289
2290 error_return:
2291 if (alloc1 != NULL)
2292 free (alloc1);
2293 if (alloc2 != NULL)
2294 free (alloc2);
2295 return NULL;
2296 }
2297 \f
2298
2299 /* Record an assignment to a symbol made by a linker script. We need
2300 this in case some dynamic object refers to this symbol. */
2301
2302 /*ARGSUSED*/
2303 boolean
2304 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2305 bfd *output_bfd ATTRIBUTE_UNUSED;
2306 struct bfd_link_info *info;
2307 const char *name;
2308 boolean provide;
2309 {
2310 struct elf_link_hash_entry *h;
2311
2312 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2313 return true;
2314
2315 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2316 if (h == NULL)
2317 return false;
2318
2319 if (h->root.type == bfd_link_hash_new)
2320 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2321
2322 /* If this symbol is being provided by the linker script, and it is
2323 currently defined by a dynamic object, but not by a regular
2324 object, then mark it as undefined so that the generic linker will
2325 force the correct value. */
2326 if (provide
2327 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2328 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2329 h->root.type = bfd_link_hash_undefined;
2330
2331 /* If this symbol is not being provided by the linker script, and it is
2332 currently defined by a dynamic object, but not by a regular object,
2333 then clear out any version information because the symbol will not be
2334 associated with the dynamic object any more. */
2335 if (!provide
2336 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2337 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2338 h->verinfo.verdef = NULL;
2339
2340 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2341 h->type = STT_OBJECT;
2342
2343 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2344 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2345 || info->shared)
2346 && h->dynindx == -1)
2347 {
2348 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2349 return false;
2350
2351 /* If this is a weak defined symbol, and we know a corresponding
2352 real symbol from the same dynamic object, make sure the real
2353 symbol is also made into a dynamic symbol. */
2354 if (h->weakdef != NULL
2355 && h->weakdef->dynindx == -1)
2356 {
2357 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2358 return false;
2359 }
2360 }
2361
2362 return true;
2363 }
2364 \f
2365 /* This structure is used to pass information to
2366 elf_link_assign_sym_version. */
2367
2368 struct elf_assign_sym_version_info
2369 {
2370 /* Output BFD. */
2371 bfd *output_bfd;
2372 /* General link information. */
2373 struct bfd_link_info *info;
2374 /* Version tree. */
2375 struct bfd_elf_version_tree *verdefs;
2376 /* Whether we are exporting all dynamic symbols. */
2377 boolean export_dynamic;
2378 /* Whether we had a failure. */
2379 boolean failed;
2380 };
2381
2382 /* This structure is used to pass information to
2383 elf_link_find_version_dependencies. */
2384
2385 struct elf_find_verdep_info
2386 {
2387 /* Output BFD. */
2388 bfd *output_bfd;
2389 /* General link information. */
2390 struct bfd_link_info *info;
2391 /* The number of dependencies. */
2392 unsigned int vers;
2393 /* Whether we had a failure. */
2394 boolean failed;
2395 };
2396
2397 /* Array used to determine the number of hash table buckets to use
2398 based on the number of symbols there are. If there are fewer than
2399 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2400 fewer than 37 we use 17 buckets, and so forth. We never use more
2401 than 32771 buckets. */
2402
2403 static const size_t elf_buckets[] =
2404 {
2405 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2406 16411, 32771, 0
2407 };
2408
2409 /* Compute bucket count for hashing table. We do not use a static set
2410 of possible tables sizes anymore. Instead we determine for all
2411 possible reasonable sizes of the table the outcome (i.e., the
2412 number of collisions etc) and choose the best solution. The
2413 weighting functions are not too simple to allow the table to grow
2414 without bounds. Instead one of the weighting factors is the size.
2415 Therefore the result is always a good payoff between few collisions
2416 (= short chain lengths) and table size. */
2417 static size_t
2418 compute_bucket_count (info)
2419 struct bfd_link_info *info;
2420 {
2421 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2422 size_t best_size = 0;
2423 unsigned long int *hashcodes;
2424 unsigned long int *hashcodesp;
2425 unsigned long int i;
2426
2427 /* Compute the hash values for all exported symbols. At the same
2428 time store the values in an array so that we could use them for
2429 optimizations. */
2430 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2431 * sizeof (unsigned long int));
2432 if (hashcodes == NULL)
2433 return 0;
2434 hashcodesp = hashcodes;
2435
2436 /* Put all hash values in HASHCODES. */
2437 elf_link_hash_traverse (elf_hash_table (info),
2438 elf_collect_hash_codes, &hashcodesp);
2439
2440 /* We have a problem here. The following code to optimize the table
2441 size requires an integer type with more the 32 bits. If
2442 BFD_HOST_U_64_BIT is set we know about such a type. */
2443 #ifdef BFD_HOST_U_64_BIT
2444 if (info->optimize == true)
2445 {
2446 unsigned long int nsyms = hashcodesp - hashcodes;
2447 size_t minsize;
2448 size_t maxsize;
2449 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2450 unsigned long int *counts ;
2451
2452 /* Possible optimization parameters: if we have NSYMS symbols we say
2453 that the hashing table must at least have NSYMS/4 and at most
2454 2*NSYMS buckets. */
2455 minsize = nsyms / 4;
2456 if (minsize == 0)
2457 minsize = 1;
2458 best_size = maxsize = nsyms * 2;
2459
2460 /* Create array where we count the collisions in. We must use bfd_malloc
2461 since the size could be large. */
2462 counts = (unsigned long int *) bfd_malloc (maxsize
2463 * sizeof (unsigned long int));
2464 if (counts == NULL)
2465 {
2466 free (hashcodes);
2467 return 0;
2468 }
2469
2470 /* Compute the "optimal" size for the hash table. The criteria is a
2471 minimal chain length. The minor criteria is (of course) the size
2472 of the table. */
2473 for (i = minsize; i < maxsize; ++i)
2474 {
2475 /* Walk through the array of hashcodes and count the collisions. */
2476 BFD_HOST_U_64_BIT max;
2477 unsigned long int j;
2478 unsigned long int fact;
2479
2480 memset (counts, '\0', i * sizeof (unsigned long int));
2481
2482 /* Determine how often each hash bucket is used. */
2483 for (j = 0; j < nsyms; ++j)
2484 ++counts[hashcodes[j] % i];
2485
2486 /* For the weight function we need some information about the
2487 pagesize on the target. This is information need not be 100%
2488 accurate. Since this information is not available (so far) we
2489 define it here to a reasonable default value. If it is crucial
2490 to have a better value some day simply define this value. */
2491 # ifndef BFD_TARGET_PAGESIZE
2492 # define BFD_TARGET_PAGESIZE (4096)
2493 # endif
2494
2495 /* We in any case need 2 + NSYMS entries for the size values and
2496 the chains. */
2497 max = (2 + nsyms) * (ARCH_SIZE / 8);
2498
2499 # if 1
2500 /* Variant 1: optimize for short chains. We add the squares
2501 of all the chain lengths (which favous many small chain
2502 over a few long chains). */
2503 for (j = 0; j < i; ++j)
2504 max += counts[j] * counts[j];
2505
2506 /* This adds penalties for the overall size of the table. */
2507 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2508 max *= fact * fact;
2509 # else
2510 /* Variant 2: Optimize a lot more for small table. Here we
2511 also add squares of the size but we also add penalties for
2512 empty slots (the +1 term). */
2513 for (j = 0; j < i; ++j)
2514 max += (1 + counts[j]) * (1 + counts[j]);
2515
2516 /* The overall size of the table is considered, but not as
2517 strong as in variant 1, where it is squared. */
2518 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2519 max *= fact;
2520 # endif
2521
2522 /* Compare with current best results. */
2523 if (max < best_chlen)
2524 {
2525 best_chlen = max;
2526 best_size = i;
2527 }
2528 }
2529
2530 free (counts);
2531 }
2532 else
2533 #endif /* defined (BFD_HOST_U_64_BIT) */
2534 {
2535 /* This is the fallback solution if no 64bit type is available or if we
2536 are not supposed to spend much time on optimizations. We select the
2537 bucket count using a fixed set of numbers. */
2538 for (i = 0; elf_buckets[i] != 0; i++)
2539 {
2540 best_size = elf_buckets[i];
2541 if (dynsymcount < elf_buckets[i + 1])
2542 break;
2543 }
2544 }
2545
2546 /* Free the arrays we needed. */
2547 free (hashcodes);
2548
2549 return best_size;
2550 }
2551
2552 /* Set up the sizes and contents of the ELF dynamic sections. This is
2553 called by the ELF linker emulation before_allocation routine. We
2554 must set the sizes of the sections before the linker sets the
2555 addresses of the various sections. */
2556
2557 boolean
2558 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2559 export_dynamic, filter_shlib,
2560 auxiliary_filters, info, sinterpptr,
2561 verdefs)
2562 bfd *output_bfd;
2563 const char *soname;
2564 const char *rpath;
2565 boolean export_dynamic;
2566 const char *filter_shlib;
2567 const char * const *auxiliary_filters;
2568 struct bfd_link_info *info;
2569 asection **sinterpptr;
2570 struct bfd_elf_version_tree *verdefs;
2571 {
2572 bfd_size_type soname_indx;
2573 bfd *dynobj;
2574 struct elf_backend_data *bed;
2575 struct elf_assign_sym_version_info asvinfo;
2576
2577 *sinterpptr = NULL;
2578
2579 soname_indx = (bfd_size_type) -1;
2580
2581 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2582 return true;
2583
2584 /* The backend may have to create some sections regardless of whether
2585 we're dynamic or not. */
2586 bed = get_elf_backend_data (output_bfd);
2587 if (bed->elf_backend_always_size_sections
2588 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2589 return false;
2590
2591 dynobj = elf_hash_table (info)->dynobj;
2592
2593 /* If there were no dynamic objects in the link, there is nothing to
2594 do here. */
2595 if (dynobj == NULL)
2596 return true;
2597
2598 /* If we are supposed to export all symbols into the dynamic symbol
2599 table (this is not the normal case), then do so. */
2600 if (export_dynamic)
2601 {
2602 struct elf_info_failed eif;
2603
2604 eif.failed = false;
2605 eif.info = info;
2606 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2607 (PTR) &eif);
2608 if (eif.failed)
2609 return false;
2610 }
2611
2612 if (elf_hash_table (info)->dynamic_sections_created)
2613 {
2614 struct elf_info_failed eif;
2615 struct elf_link_hash_entry *h;
2616 bfd_size_type strsize;
2617
2618 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2619 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2620
2621 if (soname != NULL)
2622 {
2623 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2624 soname, true, true);
2625 if (soname_indx == (bfd_size_type) -1
2626 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2627 return false;
2628 }
2629
2630 if (info->symbolic)
2631 {
2632 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2633 return false;
2634 }
2635
2636 if (rpath != NULL)
2637 {
2638 bfd_size_type indx;
2639
2640 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2641 true, true);
2642 if (indx == (bfd_size_type) -1
2643 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2644 return false;
2645 }
2646
2647 if (filter_shlib != NULL)
2648 {
2649 bfd_size_type indx;
2650
2651 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2652 filter_shlib, true, true);
2653 if (indx == (bfd_size_type) -1
2654 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2655 return false;
2656 }
2657
2658 if (auxiliary_filters != NULL)
2659 {
2660 const char * const *p;
2661
2662 for (p = auxiliary_filters; *p != NULL; p++)
2663 {
2664 bfd_size_type indx;
2665
2666 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2667 *p, true, true);
2668 if (indx == (bfd_size_type) -1
2669 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2670 return false;
2671 }
2672 }
2673
2674 /* Attach all the symbols to their version information. */
2675 asvinfo.output_bfd = output_bfd;
2676 asvinfo.info = info;
2677 asvinfo.verdefs = verdefs;
2678 asvinfo.export_dynamic = export_dynamic;
2679 asvinfo.failed = false;
2680
2681 elf_link_hash_traverse (elf_hash_table (info),
2682 elf_link_assign_sym_version,
2683 (PTR) &asvinfo);
2684 if (asvinfo.failed)
2685 return false;
2686
2687 /* Find all symbols which were defined in a dynamic object and make
2688 the backend pick a reasonable value for them. */
2689 eif.failed = false;
2690 eif.info = info;
2691 elf_link_hash_traverse (elf_hash_table (info),
2692 elf_adjust_dynamic_symbol,
2693 (PTR) &eif);
2694 if (eif.failed)
2695 return false;
2696
2697 /* Add some entries to the .dynamic section. We fill in some of the
2698 values later, in elf_bfd_final_link, but we must add the entries
2699 now so that we know the final size of the .dynamic section. */
2700
2701 /* If there are initialization and/or finalization functions to
2702 call then add the corresponding DT_INIT/DT_FINI entries. */
2703 h = (info->init_function
2704 ? elf_link_hash_lookup (elf_hash_table (info),
2705 info->init_function, false,
2706 false, false)
2707 : NULL);
2708 if (h != NULL
2709 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2710 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2711 {
2712 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2713 return false;
2714 }
2715 h = (info->fini_function
2716 ? elf_link_hash_lookup (elf_hash_table (info),
2717 info->fini_function, false,
2718 false, false)
2719 : NULL);
2720 if (h != NULL
2721 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2722 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2723 {
2724 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2725 return false;
2726 }
2727
2728 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2729 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2730 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2731 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2732 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2733 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2734 sizeof (Elf_External_Sym)))
2735 return false;
2736 }
2737
2738 /* The backend must work out the sizes of all the other dynamic
2739 sections. */
2740 if (bed->elf_backend_size_dynamic_sections
2741 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2742 return false;
2743
2744 if (elf_hash_table (info)->dynamic_sections_created)
2745 {
2746 size_t dynsymcount;
2747 asection *s;
2748 size_t bucketcount = 0;
2749 Elf_Internal_Sym isym;
2750 size_t hash_entry_size;
2751
2752 /* Set up the version definition section. */
2753 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2754 BFD_ASSERT (s != NULL);
2755
2756 /* We may have created additional version definitions if we are
2757 just linking a regular application. */
2758 verdefs = asvinfo.verdefs;
2759
2760 if (verdefs == NULL)
2761 _bfd_strip_section_from_output (s);
2762 else
2763 {
2764 unsigned int cdefs;
2765 bfd_size_type size;
2766 struct bfd_elf_version_tree *t;
2767 bfd_byte *p;
2768 Elf_Internal_Verdef def;
2769 Elf_Internal_Verdaux defaux;
2770
2771 cdefs = 0;
2772 size = 0;
2773
2774 /* Make space for the base version. */
2775 size += sizeof (Elf_External_Verdef);
2776 size += sizeof (Elf_External_Verdaux);
2777 ++cdefs;
2778
2779 for (t = verdefs; t != NULL; t = t->next)
2780 {
2781 struct bfd_elf_version_deps *n;
2782
2783 size += sizeof (Elf_External_Verdef);
2784 size += sizeof (Elf_External_Verdaux);
2785 ++cdefs;
2786
2787 for (n = t->deps; n != NULL; n = n->next)
2788 size += sizeof (Elf_External_Verdaux);
2789 }
2790
2791 s->_raw_size = size;
2792 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2793 if (s->contents == NULL && s->_raw_size != 0)
2794 return false;
2795
2796 /* Fill in the version definition section. */
2797
2798 p = s->contents;
2799
2800 def.vd_version = VER_DEF_CURRENT;
2801 def.vd_flags = VER_FLG_BASE;
2802 def.vd_ndx = 1;
2803 def.vd_cnt = 1;
2804 def.vd_aux = sizeof (Elf_External_Verdef);
2805 def.vd_next = (sizeof (Elf_External_Verdef)
2806 + sizeof (Elf_External_Verdaux));
2807
2808 if (soname_indx != (bfd_size_type) -1)
2809 {
2810 def.vd_hash = bfd_elf_hash (soname);
2811 defaux.vda_name = soname_indx;
2812 }
2813 else
2814 {
2815 const char *name;
2816 bfd_size_type indx;
2817
2818 name = output_bfd->filename;
2819 def.vd_hash = bfd_elf_hash (name);
2820 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2821 name, true, false);
2822 if (indx == (bfd_size_type) -1)
2823 return false;
2824 defaux.vda_name = indx;
2825 }
2826 defaux.vda_next = 0;
2827
2828 _bfd_elf_swap_verdef_out (output_bfd, &def,
2829 (Elf_External_Verdef *)p);
2830 p += sizeof (Elf_External_Verdef);
2831 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2832 (Elf_External_Verdaux *) p);
2833 p += sizeof (Elf_External_Verdaux);
2834
2835 for (t = verdefs; t != NULL; t = t->next)
2836 {
2837 unsigned int cdeps;
2838 struct bfd_elf_version_deps *n;
2839 struct elf_link_hash_entry *h;
2840
2841 cdeps = 0;
2842 for (n = t->deps; n != NULL; n = n->next)
2843 ++cdeps;
2844
2845 /* Add a symbol representing this version. */
2846 h = NULL;
2847 if (! (_bfd_generic_link_add_one_symbol
2848 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
2849 (bfd_vma) 0, (const char *) NULL, false,
2850 get_elf_backend_data (dynobj)->collect,
2851 (struct bfd_link_hash_entry **) &h)))
2852 return false;
2853 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
2854 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2855 h->type = STT_OBJECT;
2856 h->verinfo.vertree = t;
2857
2858 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2859 return false;
2860
2861 def.vd_version = VER_DEF_CURRENT;
2862 def.vd_flags = 0;
2863 if (t->globals == NULL && t->locals == NULL && ! t->used)
2864 def.vd_flags |= VER_FLG_WEAK;
2865 def.vd_ndx = t->vernum + 1;
2866 def.vd_cnt = cdeps + 1;
2867 def.vd_hash = bfd_elf_hash (t->name);
2868 def.vd_aux = sizeof (Elf_External_Verdef);
2869 if (t->next != NULL)
2870 def.vd_next = (sizeof (Elf_External_Verdef)
2871 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
2872 else
2873 def.vd_next = 0;
2874
2875 _bfd_elf_swap_verdef_out (output_bfd, &def,
2876 (Elf_External_Verdef *) p);
2877 p += sizeof (Elf_External_Verdef);
2878
2879 defaux.vda_name = h->dynstr_index;
2880 if (t->deps == NULL)
2881 defaux.vda_next = 0;
2882 else
2883 defaux.vda_next = sizeof (Elf_External_Verdaux);
2884 t->name_indx = defaux.vda_name;
2885
2886 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2887 (Elf_External_Verdaux *) p);
2888 p += sizeof (Elf_External_Verdaux);
2889
2890 for (n = t->deps; n != NULL; n = n->next)
2891 {
2892 if (n->version_needed == NULL)
2893 {
2894 /* This can happen if there was an error in the
2895 version script. */
2896 defaux.vda_name = 0;
2897 }
2898 else
2899 defaux.vda_name = n->version_needed->name_indx;
2900 if (n->next == NULL)
2901 defaux.vda_next = 0;
2902 else
2903 defaux.vda_next = sizeof (Elf_External_Verdaux);
2904
2905 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2906 (Elf_External_Verdaux *) p);
2907 p += sizeof (Elf_External_Verdaux);
2908 }
2909 }
2910
2911 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
2912 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
2913 return false;
2914
2915 elf_tdata (output_bfd)->cverdefs = cdefs;
2916 }
2917
2918 /* Work out the size of the version reference section. */
2919
2920 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2921 BFD_ASSERT (s != NULL);
2922 {
2923 struct elf_find_verdep_info sinfo;
2924
2925 sinfo.output_bfd = output_bfd;
2926 sinfo.info = info;
2927 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
2928 if (sinfo.vers == 0)
2929 sinfo.vers = 1;
2930 sinfo.failed = false;
2931
2932 elf_link_hash_traverse (elf_hash_table (info),
2933 elf_link_find_version_dependencies,
2934 (PTR) &sinfo);
2935
2936 if (elf_tdata (output_bfd)->verref == NULL)
2937 _bfd_strip_section_from_output (s);
2938 else
2939 {
2940 Elf_Internal_Verneed *t;
2941 unsigned int size;
2942 unsigned int crefs;
2943 bfd_byte *p;
2944
2945 /* Build the version definition section. */
2946 size = 0;
2947 crefs = 0;
2948 for (t = elf_tdata (output_bfd)->verref;
2949 t != NULL;
2950 t = t->vn_nextref)
2951 {
2952 Elf_Internal_Vernaux *a;
2953
2954 size += sizeof (Elf_External_Verneed);
2955 ++crefs;
2956 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2957 size += sizeof (Elf_External_Vernaux);
2958 }
2959
2960 s->_raw_size = size;
2961 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
2962 if (s->contents == NULL)
2963 return false;
2964
2965 p = s->contents;
2966 for (t = elf_tdata (output_bfd)->verref;
2967 t != NULL;
2968 t = t->vn_nextref)
2969 {
2970 unsigned int caux;
2971 Elf_Internal_Vernaux *a;
2972 bfd_size_type indx;
2973
2974 caux = 0;
2975 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2976 ++caux;
2977
2978 t->vn_version = VER_NEED_CURRENT;
2979 t->vn_cnt = caux;
2980 if (elf_dt_name (t->vn_bfd) != NULL)
2981 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2982 elf_dt_name (t->vn_bfd),
2983 true, false);
2984 else
2985 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2986 t->vn_bfd->filename, true, false);
2987 if (indx == (bfd_size_type) -1)
2988 return false;
2989 t->vn_file = indx;
2990 t->vn_aux = sizeof (Elf_External_Verneed);
2991 if (t->vn_nextref == NULL)
2992 t->vn_next = 0;
2993 else
2994 t->vn_next = (sizeof (Elf_External_Verneed)
2995 + caux * sizeof (Elf_External_Vernaux));
2996
2997 _bfd_elf_swap_verneed_out (output_bfd, t,
2998 (Elf_External_Verneed *) p);
2999 p += sizeof (Elf_External_Verneed);
3000
3001 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3002 {
3003 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3004 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3005 a->vna_nodename, true, false);
3006 if (indx == (bfd_size_type) -1)
3007 return false;
3008 a->vna_name = indx;
3009 if (a->vna_nextptr == NULL)
3010 a->vna_next = 0;
3011 else
3012 a->vna_next = sizeof (Elf_External_Vernaux);
3013
3014 _bfd_elf_swap_vernaux_out (output_bfd, a,
3015 (Elf_External_Vernaux *) p);
3016 p += sizeof (Elf_External_Vernaux);
3017 }
3018 }
3019
3020 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3021 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3022 return false;
3023
3024 elf_tdata (output_bfd)->cverrefs = crefs;
3025 }
3026 }
3027
3028 /* Assign dynsym indicies. In a shared library we generate a
3029 section symbol for each output section, which come first.
3030 Next come all of the back-end allocated local dynamic syms,
3031 followed by the rest of the global symbols. */
3032
3033 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3034
3035 /* Work out the size of the symbol version section. */
3036 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3037 BFD_ASSERT (s != NULL);
3038 if (dynsymcount == 0
3039 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3040 {
3041 _bfd_strip_section_from_output (s);
3042 /* The DYNSYMCOUNT might have changed if we were going to
3043 output a dynamic symbol table entry for S. */
3044 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3045 }
3046 else
3047 {
3048 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3049 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3050 if (s->contents == NULL)
3051 return false;
3052
3053 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3054 return false;
3055 }
3056
3057 /* Set the size of the .dynsym and .hash sections. We counted
3058 the number of dynamic symbols in elf_link_add_object_symbols.
3059 We will build the contents of .dynsym and .hash when we build
3060 the final symbol table, because until then we do not know the
3061 correct value to give the symbols. We built the .dynstr
3062 section as we went along in elf_link_add_object_symbols. */
3063 s = bfd_get_section_by_name (dynobj, ".dynsym");
3064 BFD_ASSERT (s != NULL);
3065 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3066 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3067 if (s->contents == NULL && s->_raw_size != 0)
3068 return false;
3069
3070 /* The first entry in .dynsym is a dummy symbol. */
3071 isym.st_value = 0;
3072 isym.st_size = 0;
3073 isym.st_name = 0;
3074 isym.st_info = 0;
3075 isym.st_other = 0;
3076 isym.st_shndx = 0;
3077 elf_swap_symbol_out (output_bfd, &isym,
3078 (PTR) (Elf_External_Sym *) s->contents);
3079
3080 /* Compute the size of the hashing table. As a side effect this
3081 computes the hash values for all the names we export. */
3082 bucketcount = compute_bucket_count (info);
3083
3084 s = bfd_get_section_by_name (dynobj, ".hash");
3085 BFD_ASSERT (s != NULL);
3086 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3087 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3088 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3089 if (s->contents == NULL)
3090 return false;
3091 memset (s->contents, 0, (size_t) s->_raw_size);
3092
3093 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3094 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3095 s->contents + hash_entry_size);
3096
3097 elf_hash_table (info)->bucketcount = bucketcount;
3098
3099 s = bfd_get_section_by_name (dynobj, ".dynstr");
3100 BFD_ASSERT (s != NULL);
3101 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3102
3103 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3104 return false;
3105 }
3106
3107 return true;
3108 }
3109 \f
3110 /* Fix up the flags for a symbol. This handles various cases which
3111 can only be fixed after all the input files are seen. This is
3112 currently called by both adjust_dynamic_symbol and
3113 assign_sym_version, which is unnecessary but perhaps more robust in
3114 the face of future changes. */
3115
3116 static boolean
3117 elf_fix_symbol_flags (h, eif)
3118 struct elf_link_hash_entry *h;
3119 struct elf_info_failed *eif;
3120 {
3121 /* If this symbol was mentioned in a non-ELF file, try to set
3122 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3123 permit a non-ELF file to correctly refer to a symbol defined in
3124 an ELF dynamic object. */
3125 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3126 {
3127 if (h->root.type != bfd_link_hash_defined
3128 && h->root.type != bfd_link_hash_defweak)
3129 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3130 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3131 else
3132 {
3133 if (h->root.u.def.section->owner != NULL
3134 && (bfd_get_flavour (h->root.u.def.section->owner)
3135 == bfd_target_elf_flavour))
3136 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3137 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3138 else
3139 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3140 }
3141
3142 if (h->dynindx == -1
3143 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3144 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3145 {
3146 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3147 {
3148 eif->failed = true;
3149 return false;
3150 }
3151 }
3152 }
3153 else
3154 {
3155 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3156 was first seen in a non-ELF file. Fortunately, if the symbol
3157 was first seen in an ELF file, we're probably OK unless the
3158 symbol was defined in a non-ELF file. Catch that case here.
3159 FIXME: We're still in trouble if the symbol was first seen in
3160 a dynamic object, and then later in a non-ELF regular object. */
3161 if ((h->root.type == bfd_link_hash_defined
3162 || h->root.type == bfd_link_hash_defweak)
3163 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3164 && (h->root.u.def.section->owner != NULL
3165 ? (bfd_get_flavour (h->root.u.def.section->owner)
3166 != bfd_target_elf_flavour)
3167 : (bfd_is_abs_section (h->root.u.def.section)
3168 && (h->elf_link_hash_flags
3169 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3170 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3171 }
3172
3173 /* If this is a final link, and the symbol was defined as a common
3174 symbol in a regular object file, and there was no definition in
3175 any dynamic object, then the linker will have allocated space for
3176 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3177 flag will not have been set. */
3178 if (h->root.type == bfd_link_hash_defined
3179 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3180 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3181 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3182 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3183 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3184
3185 /* If -Bsymbolic was used (which means to bind references to global
3186 symbols to the definition within the shared object), and this
3187 symbol was defined in a regular object, then it actually doesn't
3188 need a PLT entry. */
3189 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3190 && eif->info->shared
3191 && eif->info->symbolic
3192 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3193 {
3194 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3195 h->plt.offset = (bfd_vma) -1;
3196 }
3197
3198 return true;
3199 }
3200
3201 /* Make the backend pick a good value for a dynamic symbol. This is
3202 called via elf_link_hash_traverse, and also calls itself
3203 recursively. */
3204
3205 static boolean
3206 elf_adjust_dynamic_symbol (h, data)
3207 struct elf_link_hash_entry *h;
3208 PTR data;
3209 {
3210 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3211 bfd *dynobj;
3212 struct elf_backend_data *bed;
3213
3214 /* Ignore indirect symbols. These are added by the versioning code. */
3215 if (h->root.type == bfd_link_hash_indirect)
3216 return true;
3217
3218 /* Fix the symbol flags. */
3219 if (! elf_fix_symbol_flags (h, eif))
3220 return false;
3221
3222 /* If this symbol does not require a PLT entry, and it is not
3223 defined by a dynamic object, or is not referenced by a regular
3224 object, ignore it. We do have to handle a weak defined symbol,
3225 even if no regular object refers to it, if we decided to add it
3226 to the dynamic symbol table. FIXME: Do we normally need to worry
3227 about symbols which are defined by one dynamic object and
3228 referenced by another one? */
3229 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3230 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3231 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3232 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3233 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3234 {
3235 h->plt.offset = (bfd_vma) -1;
3236 return true;
3237 }
3238
3239 /* If we've already adjusted this symbol, don't do it again. This
3240 can happen via a recursive call. */
3241 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3242 return true;
3243
3244 /* Don't look at this symbol again. Note that we must set this
3245 after checking the above conditions, because we may look at a
3246 symbol once, decide not to do anything, and then get called
3247 recursively later after REF_REGULAR is set below. */
3248 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3249
3250 /* If this is a weak definition, and we know a real definition, and
3251 the real symbol is not itself defined by a regular object file,
3252 then get a good value for the real definition. We handle the
3253 real symbol first, for the convenience of the backend routine.
3254
3255 Note that there is a confusing case here. If the real definition
3256 is defined by a regular object file, we don't get the real symbol
3257 from the dynamic object, but we do get the weak symbol. If the
3258 processor backend uses a COPY reloc, then if some routine in the
3259 dynamic object changes the real symbol, we will not see that
3260 change in the corresponding weak symbol. This is the way other
3261 ELF linkers work as well, and seems to be a result of the shared
3262 library model.
3263
3264 I will clarify this issue. Most SVR4 shared libraries define the
3265 variable _timezone and define timezone as a weak synonym. The
3266 tzset call changes _timezone. If you write
3267 extern int timezone;
3268 int _timezone = 5;
3269 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3270 you might expect that, since timezone is a synonym for _timezone,
3271 the same number will print both times. However, if the processor
3272 backend uses a COPY reloc, then actually timezone will be copied
3273 into your process image, and, since you define _timezone
3274 yourself, _timezone will not. Thus timezone and _timezone will
3275 wind up at different memory locations. The tzset call will set
3276 _timezone, leaving timezone unchanged. */
3277
3278 if (h->weakdef != NULL)
3279 {
3280 struct elf_link_hash_entry *weakdef;
3281
3282 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3283 || h->root.type == bfd_link_hash_defweak);
3284 weakdef = h->weakdef;
3285 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3286 || weakdef->root.type == bfd_link_hash_defweak);
3287 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3288 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3289 {
3290 /* This symbol is defined by a regular object file, so we
3291 will not do anything special. Clear weakdef for the
3292 convenience of the processor backend. */
3293 h->weakdef = NULL;
3294 }
3295 else
3296 {
3297 /* There is an implicit reference by a regular object file
3298 via the weak symbol. */
3299 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3300 if (h->weakdef->elf_link_hash_flags
3301 & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3302 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
3303 if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
3304 return false;
3305 }
3306 }
3307
3308 /* If a symbol has no type and no size and does not require a PLT
3309 entry, then we are probably about to do the wrong thing here: we
3310 are probably going to create a COPY reloc for an empty object.
3311 This case can arise when a shared object is built with assembly
3312 code, and the assembly code fails to set the symbol type. */
3313 if (h->size == 0
3314 && h->type == STT_NOTYPE
3315 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3316 (*_bfd_error_handler)
3317 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3318 h->root.root.string);
3319
3320 dynobj = elf_hash_table (eif->info)->dynobj;
3321 bed = get_elf_backend_data (dynobj);
3322 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3323 {
3324 eif->failed = true;
3325 return false;
3326 }
3327
3328 return true;
3329 }
3330 \f
3331 /* This routine is used to export all defined symbols into the dynamic
3332 symbol table. It is called via elf_link_hash_traverse. */
3333
3334 static boolean
3335 elf_export_symbol (h, data)
3336 struct elf_link_hash_entry *h;
3337 PTR data;
3338 {
3339 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3340
3341 /* Ignore indirect symbols. These are added by the versioning code. */
3342 if (h->root.type == bfd_link_hash_indirect)
3343 return true;
3344
3345 if (h->dynindx == -1
3346 && (h->elf_link_hash_flags
3347 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3348 {
3349 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3350 {
3351 eif->failed = true;
3352 return false;
3353 }
3354 }
3355
3356 return true;
3357 }
3358 \f
3359 /* Look through the symbols which are defined in other shared
3360 libraries and referenced here. Update the list of version
3361 dependencies. This will be put into the .gnu.version_r section.
3362 This function is called via elf_link_hash_traverse. */
3363
3364 static boolean
3365 elf_link_find_version_dependencies (h, data)
3366 struct elf_link_hash_entry *h;
3367 PTR data;
3368 {
3369 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3370 Elf_Internal_Verneed *t;
3371 Elf_Internal_Vernaux *a;
3372
3373 /* We only care about symbols defined in shared objects with version
3374 information. */
3375 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3376 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3377 || h->dynindx == -1
3378 || h->verinfo.verdef == NULL)
3379 return true;
3380
3381 /* See if we already know about this version. */
3382 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3383 {
3384 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3385 continue;
3386
3387 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3388 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3389 return true;
3390
3391 break;
3392 }
3393
3394 /* This is a new version. Add it to tree we are building. */
3395
3396 if (t == NULL)
3397 {
3398 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3399 if (t == NULL)
3400 {
3401 rinfo->failed = true;
3402 return false;
3403 }
3404
3405 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3406 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3407 elf_tdata (rinfo->output_bfd)->verref = t;
3408 }
3409
3410 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3411
3412 /* Note that we are copying a string pointer here, and testing it
3413 above. If bfd_elf_string_from_elf_section is ever changed to
3414 discard the string data when low in memory, this will have to be
3415 fixed. */
3416 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3417
3418 a->vna_flags = h->verinfo.verdef->vd_flags;
3419 a->vna_nextptr = t->vn_auxptr;
3420
3421 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3422 ++rinfo->vers;
3423
3424 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3425
3426 t->vn_auxptr = a;
3427
3428 return true;
3429 }
3430
3431 /* Figure out appropriate versions for all the symbols. We may not
3432 have the version number script until we have read all of the input
3433 files, so until that point we don't know which symbols should be
3434 local. This function is called via elf_link_hash_traverse. */
3435
3436 static boolean
3437 elf_link_assign_sym_version (h, data)
3438 struct elf_link_hash_entry *h;
3439 PTR data;
3440 {
3441 struct elf_assign_sym_version_info *sinfo =
3442 (struct elf_assign_sym_version_info *) data;
3443 struct bfd_link_info *info = sinfo->info;
3444 struct elf_info_failed eif;
3445 char *p;
3446
3447 /* Fix the symbol flags. */
3448 eif.failed = false;
3449 eif.info = info;
3450 if (! elf_fix_symbol_flags (h, &eif))
3451 {
3452 if (eif.failed)
3453 sinfo->failed = true;
3454 return false;
3455 }
3456
3457 /* We only need version numbers for symbols defined in regular
3458 objects. */
3459 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3460 return true;
3461
3462 p = strchr (h->root.root.string, ELF_VER_CHR);
3463 if (p != NULL && h->verinfo.vertree == NULL)
3464 {
3465 struct bfd_elf_version_tree *t;
3466 boolean hidden;
3467
3468 hidden = true;
3469
3470 /* There are two consecutive ELF_VER_CHR characters if this is
3471 not a hidden symbol. */
3472 ++p;
3473 if (*p == ELF_VER_CHR)
3474 {
3475 hidden = false;
3476 ++p;
3477 }
3478
3479 /* If there is no version string, we can just return out. */
3480 if (*p == '\0')
3481 {
3482 if (hidden)
3483 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3484 return true;
3485 }
3486
3487 /* Look for the version. If we find it, it is no longer weak. */
3488 for (t = sinfo->verdefs; t != NULL; t = t->next)
3489 {
3490 if (strcmp (t->name, p) == 0)
3491 {
3492 int len;
3493 char *alc;
3494 struct bfd_elf_version_expr *d;
3495
3496 len = p - h->root.root.string;
3497 alc = bfd_alloc (sinfo->output_bfd, len);
3498 if (alc == NULL)
3499 return false;
3500 strncpy (alc, h->root.root.string, len - 1);
3501 alc[len - 1] = '\0';
3502 if (alc[len - 2] == ELF_VER_CHR)
3503 alc[len - 2] = '\0';
3504
3505 h->verinfo.vertree = t;
3506 t->used = true;
3507 d = NULL;
3508
3509 if (t->globals != NULL)
3510 {
3511 for (d = t->globals; d != NULL; d = d->next)
3512 if ((*d->match) (d, alc))
3513 break;
3514 }
3515
3516 /* See if there is anything to force this symbol to
3517 local scope. */
3518 if (d == NULL && t->locals != NULL)
3519 {
3520 for (d = t->locals; d != NULL; d = d->next)
3521 {
3522 if ((*d->match) (d, alc))
3523 {
3524 if (h->dynindx != -1
3525 && info->shared
3526 && ! sinfo->export_dynamic)
3527 {
3528 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3529 h->elf_link_hash_flags &=~
3530 ELF_LINK_HASH_NEEDS_PLT;
3531 h->dynindx = -1;
3532 h->plt.offset = (bfd_vma) -1;
3533 /* FIXME: The name of the symbol has
3534 already been recorded in the dynamic
3535 string table section. */
3536 }
3537
3538 break;
3539 }
3540 }
3541 }
3542
3543 bfd_release (sinfo->output_bfd, alc);
3544 break;
3545 }
3546 }
3547
3548 /* If we are building an application, we need to create a
3549 version node for this version. */
3550 if (t == NULL && ! info->shared)
3551 {
3552 struct bfd_elf_version_tree **pp;
3553 int version_index;
3554
3555 /* If we aren't going to export this symbol, we don't need
3556 to worry about it. */
3557 if (h->dynindx == -1)
3558 return true;
3559
3560 t = ((struct bfd_elf_version_tree *)
3561 bfd_alloc (sinfo->output_bfd, sizeof *t));
3562 if (t == NULL)
3563 {
3564 sinfo->failed = true;
3565 return false;
3566 }
3567
3568 t->next = NULL;
3569 t->name = p;
3570 t->globals = NULL;
3571 t->locals = NULL;
3572 t->deps = NULL;
3573 t->name_indx = (unsigned int) -1;
3574 t->used = true;
3575
3576 version_index = 1;
3577 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3578 ++version_index;
3579 t->vernum = version_index;
3580
3581 *pp = t;
3582
3583 h->verinfo.vertree = t;
3584 }
3585 else if (t == NULL)
3586 {
3587 /* We could not find the version for a symbol when
3588 generating a shared archive. Return an error. */
3589 (*_bfd_error_handler)
3590 (_("%s: undefined versioned symbol name %s"),
3591 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3592 bfd_set_error (bfd_error_bad_value);
3593 sinfo->failed = true;
3594 return false;
3595 }
3596
3597 if (hidden)
3598 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3599 }
3600
3601 /* If we don't have a version for this symbol, see if we can find
3602 something. */
3603 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3604 {
3605 struct bfd_elf_version_tree *t;
3606 struct bfd_elf_version_tree *deflt;
3607 struct bfd_elf_version_expr *d;
3608
3609 /* See if can find what version this symbol is in. If the
3610 symbol is supposed to be local, then don't actually register
3611 it. */
3612 deflt = NULL;
3613 for (t = sinfo->verdefs; t != NULL; t = t->next)
3614 {
3615 if (t->globals != NULL)
3616 {
3617 for (d = t->globals; d != NULL; d = d->next)
3618 {
3619 if ((*d->match) (d, h->root.root.string))
3620 {
3621 h->verinfo.vertree = t;
3622 break;
3623 }
3624 }
3625
3626 if (d != NULL)
3627 break;
3628 }
3629
3630 if (t->locals != NULL)
3631 {
3632 for (d = t->locals; d != NULL; d = d->next)
3633 {
3634 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3635 deflt = t;
3636 else if ((*d->match) (d, h->root.root.string))
3637 {
3638 h->verinfo.vertree = t;
3639 if (h->dynindx != -1
3640 && info->shared
3641 && ! sinfo->export_dynamic)
3642 {
3643 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3644 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3645 h->dynindx = -1;
3646 h->plt.offset = (bfd_vma) -1;
3647 /* FIXME: The name of the symbol has already
3648 been recorded in the dynamic string table
3649 section. */
3650 }
3651 break;
3652 }
3653 }
3654
3655 if (d != NULL)
3656 break;
3657 }
3658 }
3659
3660 if (deflt != NULL && h->verinfo.vertree == NULL)
3661 {
3662 h->verinfo.vertree = deflt;
3663 if (h->dynindx != -1
3664 && info->shared
3665 && ! sinfo->export_dynamic)
3666 {
3667 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3668 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3669 h->dynindx = -1;
3670 h->plt.offset = (bfd_vma) -1;
3671 /* FIXME: The name of the symbol has already been
3672 recorded in the dynamic string table section. */
3673 }
3674 }
3675 }
3676
3677 return true;
3678 }
3679 \f
3680 /* Final phase of ELF linker. */
3681
3682 /* A structure we use to avoid passing large numbers of arguments. */
3683
3684 struct elf_final_link_info
3685 {
3686 /* General link information. */
3687 struct bfd_link_info *info;
3688 /* Output BFD. */
3689 bfd *output_bfd;
3690 /* Symbol string table. */
3691 struct bfd_strtab_hash *symstrtab;
3692 /* .dynsym section. */
3693 asection *dynsym_sec;
3694 /* .hash section. */
3695 asection *hash_sec;
3696 /* symbol version section (.gnu.version). */
3697 asection *symver_sec;
3698 /* Buffer large enough to hold contents of any section. */
3699 bfd_byte *contents;
3700 /* Buffer large enough to hold external relocs of any section. */
3701 PTR external_relocs;
3702 /* Buffer large enough to hold internal relocs of any section. */
3703 Elf_Internal_Rela *internal_relocs;
3704 /* Buffer large enough to hold external local symbols of any input
3705 BFD. */
3706 Elf_External_Sym *external_syms;
3707 /* Buffer large enough to hold internal local symbols of any input
3708 BFD. */
3709 Elf_Internal_Sym *internal_syms;
3710 /* Array large enough to hold a symbol index for each local symbol
3711 of any input BFD. */
3712 long *indices;
3713 /* Array large enough to hold a section pointer for each local
3714 symbol of any input BFD. */
3715 asection **sections;
3716 /* Buffer to hold swapped out symbols. */
3717 Elf_External_Sym *symbuf;
3718 /* Number of swapped out symbols in buffer. */
3719 size_t symbuf_count;
3720 /* Number of symbols which fit in symbuf. */
3721 size_t symbuf_size;
3722 };
3723
3724 static boolean elf_link_output_sym
3725 PARAMS ((struct elf_final_link_info *, const char *,
3726 Elf_Internal_Sym *, asection *));
3727 static boolean elf_link_flush_output_syms
3728 PARAMS ((struct elf_final_link_info *));
3729 static boolean elf_link_output_extsym
3730 PARAMS ((struct elf_link_hash_entry *, PTR));
3731 static boolean elf_link_input_bfd
3732 PARAMS ((struct elf_final_link_info *, bfd *));
3733 static boolean elf_reloc_link_order
3734 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3735 struct bfd_link_order *));
3736
3737 /* This struct is used to pass information to elf_link_output_extsym. */
3738
3739 struct elf_outext_info
3740 {
3741 boolean failed;
3742 boolean localsyms;
3743 struct elf_final_link_info *finfo;
3744 };
3745
3746 /* Compute the size of, and allocate space for, REL_HDR which is the
3747 section header for a section containing relocations for O. */
3748
3749 static boolean
3750 elf_link_size_reloc_section (abfd, rel_hdr, o)
3751 bfd *abfd;
3752 Elf_Internal_Shdr *rel_hdr;
3753 asection *o;
3754 {
3755 register struct elf_link_hash_entry **p, **pend;
3756
3757 /* We are overestimating the size required for the relocation
3758 sections, in the case that we are using both REL and RELA
3759 relocations for a single section. In that case, RELOC_COUNT will
3760 be the total number of relocations required, and we allocate
3761 space for that many REL relocations as well as that many RELA
3762 relocations. This approximation is wasteful of disk space.
3763 However, until we keep track of how many of each kind of
3764 relocation is required, it's difficult to calculate the right
3765 value. */
3766 rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count;
3767
3768 /* The contents field must last into write_object_contents, so we
3769 allocate it with bfd_alloc rather than malloc. */
3770 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3771 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3772 return false;
3773
3774 p = ((struct elf_link_hash_entry **)
3775 bfd_malloc (o->reloc_count
3776 * sizeof (struct elf_link_hash_entry *)));
3777 if (p == NULL && o->reloc_count != 0)
3778 return false;
3779
3780 elf_section_data (o)->rel_hashes = p;
3781 pend = p + o->reloc_count;
3782 for (; p < pend; p++)
3783 *p = NULL;
3784
3785 return true;
3786 }
3787
3788 /* When performing a relocateable link, the input relocations are
3789 preserved. But, if they reference global symbols, the indices
3790 referenced must be updated. Update all the relocations in
3791 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
3792
3793 static void
3794 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
3795 bfd *abfd;
3796 Elf_Internal_Shdr *rel_hdr;
3797 unsigned int count;
3798 struct elf_link_hash_entry **rel_hash;
3799 {
3800 unsigned int i;
3801
3802 for (i = 0; i < count; i++, rel_hash++)
3803 {
3804 if (*rel_hash == NULL)
3805 continue;
3806
3807 BFD_ASSERT ((*rel_hash)->indx >= 0);
3808
3809 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
3810 {
3811 Elf_External_Rel *erel;
3812 Elf_Internal_Rel irel;
3813
3814 erel = (Elf_External_Rel *) rel_hdr->contents + i;
3815 elf_swap_reloc_in (abfd, erel, &irel);
3816 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
3817 ELF_R_TYPE (irel.r_info));
3818 elf_swap_reloc_out (abfd, &irel, erel);
3819 }
3820 else
3821 {
3822 Elf_External_Rela *erela;
3823 Elf_Internal_Rela irela;
3824
3825 BFD_ASSERT (rel_hdr->sh_entsize
3826 == sizeof (Elf_External_Rela));
3827
3828 erela = (Elf_External_Rela *) rel_hdr->contents + i;
3829 elf_swap_reloca_in (abfd, erela, &irela);
3830 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
3831 ELF_R_TYPE (irela.r_info));
3832 elf_swap_reloca_out (abfd, &irela, erela);
3833 }
3834 }
3835 }
3836
3837 /* Do the final step of an ELF link. */
3838
3839 boolean
3840 elf_bfd_final_link (abfd, info)
3841 bfd *abfd;
3842 struct bfd_link_info *info;
3843 {
3844 boolean dynamic;
3845 bfd *dynobj;
3846 struct elf_final_link_info finfo;
3847 register asection *o;
3848 register struct bfd_link_order *p;
3849 register bfd *sub;
3850 size_t max_contents_size;
3851 size_t max_external_reloc_size;
3852 size_t max_internal_reloc_count;
3853 size_t max_sym_count;
3854 file_ptr off;
3855 Elf_Internal_Sym elfsym;
3856 unsigned int i;
3857 Elf_Internal_Shdr *symtab_hdr;
3858 Elf_Internal_Shdr *symstrtab_hdr;
3859 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3860 struct elf_outext_info eoinfo;
3861
3862 if (info->shared)
3863 abfd->flags |= DYNAMIC;
3864
3865 dynamic = elf_hash_table (info)->dynamic_sections_created;
3866 dynobj = elf_hash_table (info)->dynobj;
3867
3868 finfo.info = info;
3869 finfo.output_bfd = abfd;
3870 finfo.symstrtab = elf_stringtab_init ();
3871 if (finfo.symstrtab == NULL)
3872 return false;
3873
3874 if (! dynamic)
3875 {
3876 finfo.dynsym_sec = NULL;
3877 finfo.hash_sec = NULL;
3878 finfo.symver_sec = NULL;
3879 }
3880 else
3881 {
3882 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
3883 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
3884 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
3885 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
3886 /* Note that it is OK if symver_sec is NULL. */
3887 }
3888
3889 finfo.contents = NULL;
3890 finfo.external_relocs = NULL;
3891 finfo.internal_relocs = NULL;
3892 finfo.external_syms = NULL;
3893 finfo.internal_syms = NULL;
3894 finfo.indices = NULL;
3895 finfo.sections = NULL;
3896 finfo.symbuf = NULL;
3897 finfo.symbuf_count = 0;
3898
3899 /* Count up the number of relocations we will output for each output
3900 section, so that we know the sizes of the reloc sections. We
3901 also figure out some maximum sizes. */
3902 max_contents_size = 0;
3903 max_external_reloc_size = 0;
3904 max_internal_reloc_count = 0;
3905 max_sym_count = 0;
3906 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
3907 {
3908 o->reloc_count = 0;
3909
3910 for (p = o->link_order_head; p != NULL; p = p->next)
3911 {
3912 if (p->type == bfd_section_reloc_link_order
3913 || p->type == bfd_symbol_reloc_link_order)
3914 ++o->reloc_count;
3915 else if (p->type == bfd_indirect_link_order)
3916 {
3917 asection *sec;
3918
3919 sec = p->u.indirect.section;
3920
3921 /* Mark all sections which are to be included in the
3922 link. This will normally be every section. We need
3923 to do this so that we can identify any sections which
3924 the linker has decided to not include. */
3925 sec->linker_mark = true;
3926
3927 if (info->relocateable)
3928 o->reloc_count += sec->reloc_count;
3929
3930 if (sec->_raw_size > max_contents_size)
3931 max_contents_size = sec->_raw_size;
3932 if (sec->_cooked_size > max_contents_size)
3933 max_contents_size = sec->_cooked_size;
3934
3935 /* We are interested in just local symbols, not all
3936 symbols. */
3937 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
3938 && (sec->owner->flags & DYNAMIC) == 0)
3939 {
3940 size_t sym_count;
3941
3942 if (elf_bad_symtab (sec->owner))
3943 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
3944 / sizeof (Elf_External_Sym));
3945 else
3946 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
3947
3948 if (sym_count > max_sym_count)
3949 max_sym_count = sym_count;
3950
3951 if ((sec->flags & SEC_RELOC) != 0)
3952 {
3953 size_t ext_size;
3954
3955 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
3956 if (ext_size > max_external_reloc_size)
3957 max_external_reloc_size = ext_size;
3958 if (sec->reloc_count > max_internal_reloc_count)
3959 max_internal_reloc_count = sec->reloc_count;
3960 }
3961 }
3962 }
3963 }
3964
3965 if (o->reloc_count > 0)
3966 o->flags |= SEC_RELOC;
3967 else
3968 {
3969 /* Explicitly clear the SEC_RELOC flag. The linker tends to
3970 set it (this is probably a bug) and if it is set
3971 assign_section_numbers will create a reloc section. */
3972 o->flags &=~ SEC_RELOC;
3973 }
3974
3975 /* If the SEC_ALLOC flag is not set, force the section VMA to
3976 zero. This is done in elf_fake_sections as well, but forcing
3977 the VMA to 0 here will ensure that relocs against these
3978 sections are handled correctly. */
3979 if ((o->flags & SEC_ALLOC) == 0
3980 && ! o->user_set_vma)
3981 o->vma = 0;
3982 }
3983
3984 /* Figure out the file positions for everything but the symbol table
3985 and the relocs. We set symcount to force assign_section_numbers
3986 to create a symbol table. */
3987 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
3988 BFD_ASSERT (! abfd->output_has_begun);
3989 if (! _bfd_elf_compute_section_file_positions (abfd, info))
3990 goto error_return;
3991
3992 /* That created the reloc sections. Set their sizes, and assign
3993 them file positions, and allocate some buffers. */
3994 for (o = abfd->sections; o != NULL; o = o->next)
3995 {
3996 if ((o->flags & SEC_RELOC) != 0)
3997 {
3998 if (!elf_link_size_reloc_section (abfd,
3999 &elf_section_data (o)->rel_hdr,
4000 o))
4001 goto error_return;
4002
4003 if (elf_section_data (o)->rel_hdr2
4004 && !elf_link_size_reloc_section (abfd,
4005 elf_section_data (o)->rel_hdr2,
4006 o))
4007 goto error_return;
4008 }
4009 }
4010
4011 _bfd_elf_assign_file_positions_for_relocs (abfd);
4012
4013 /* We have now assigned file positions for all the sections except
4014 .symtab and .strtab. We start the .symtab section at the current
4015 file position, and write directly to it. We build the .strtab
4016 section in memory. */
4017 bfd_get_symcount (abfd) = 0;
4018 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4019 /* sh_name is set in prep_headers. */
4020 symtab_hdr->sh_type = SHT_SYMTAB;
4021 symtab_hdr->sh_flags = 0;
4022 symtab_hdr->sh_addr = 0;
4023 symtab_hdr->sh_size = 0;
4024 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4025 /* sh_link is set in assign_section_numbers. */
4026 /* sh_info is set below. */
4027 /* sh_offset is set just below. */
4028 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
4029
4030 off = elf_tdata (abfd)->next_file_pos;
4031 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4032
4033 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4034 incorrect. We do not yet know the size of the .symtab section.
4035 We correct next_file_pos below, after we do know the size. */
4036
4037 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4038 continuously seeking to the right position in the file. */
4039 if (! info->keep_memory || max_sym_count < 20)
4040 finfo.symbuf_size = 20;
4041 else
4042 finfo.symbuf_size = max_sym_count;
4043 finfo.symbuf = ((Elf_External_Sym *)
4044 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4045 if (finfo.symbuf == NULL)
4046 goto error_return;
4047
4048 /* Start writing out the symbol table. The first symbol is always a
4049 dummy symbol. */
4050 if (info->strip != strip_all || info->relocateable)
4051 {
4052 elfsym.st_value = 0;
4053 elfsym.st_size = 0;
4054 elfsym.st_info = 0;
4055 elfsym.st_other = 0;
4056 elfsym.st_shndx = SHN_UNDEF;
4057 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4058 &elfsym, bfd_und_section_ptr))
4059 goto error_return;
4060 }
4061
4062 #if 0
4063 /* Some standard ELF linkers do this, but we don't because it causes
4064 bootstrap comparison failures. */
4065 /* Output a file symbol for the output file as the second symbol.
4066 We output this even if we are discarding local symbols, although
4067 I'm not sure if this is correct. */
4068 elfsym.st_value = 0;
4069 elfsym.st_size = 0;
4070 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4071 elfsym.st_other = 0;
4072 elfsym.st_shndx = SHN_ABS;
4073 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4074 &elfsym, bfd_abs_section_ptr))
4075 goto error_return;
4076 #endif
4077
4078 /* Output a symbol for each section. We output these even if we are
4079 discarding local symbols, since they are used for relocs. These
4080 symbols have no names. We store the index of each one in the
4081 index field of the section, so that we can find it again when
4082 outputting relocs. */
4083 if (info->strip != strip_all || info->relocateable)
4084 {
4085 elfsym.st_size = 0;
4086 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4087 elfsym.st_other = 0;
4088 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4089 {
4090 o = section_from_elf_index (abfd, i);
4091 if (o != NULL)
4092 o->target_index = bfd_get_symcount (abfd);
4093 elfsym.st_shndx = i;
4094 if (info->relocateable || o == NULL)
4095 elfsym.st_value = 0;
4096 else
4097 elfsym.st_value = o->vma;
4098 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4099 &elfsym, o))
4100 goto error_return;
4101 }
4102 }
4103
4104 /* Allocate some memory to hold information read in from the input
4105 files. */
4106 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4107 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4108 finfo.internal_relocs = ((Elf_Internal_Rela *)
4109 bfd_malloc (max_internal_reloc_count
4110 * sizeof (Elf_Internal_Rela)
4111 * bed->s->int_rels_per_ext_rel));
4112 finfo.external_syms = ((Elf_External_Sym *)
4113 bfd_malloc (max_sym_count
4114 * sizeof (Elf_External_Sym)));
4115 finfo.internal_syms = ((Elf_Internal_Sym *)
4116 bfd_malloc (max_sym_count
4117 * sizeof (Elf_Internal_Sym)));
4118 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4119 finfo.sections = ((asection **)
4120 bfd_malloc (max_sym_count * sizeof (asection *)));
4121 if ((finfo.contents == NULL && max_contents_size != 0)
4122 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4123 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4124 || (finfo.external_syms == NULL && max_sym_count != 0)
4125 || (finfo.internal_syms == NULL && max_sym_count != 0)
4126 || (finfo.indices == NULL && max_sym_count != 0)
4127 || (finfo.sections == NULL && max_sym_count != 0))
4128 goto error_return;
4129
4130 /* Since ELF permits relocations to be against local symbols, we
4131 must have the local symbols available when we do the relocations.
4132 Since we would rather only read the local symbols once, and we
4133 would rather not keep them in memory, we handle all the
4134 relocations for a single input file at the same time.
4135
4136 Unfortunately, there is no way to know the total number of local
4137 symbols until we have seen all of them, and the local symbol
4138 indices precede the global symbol indices. This means that when
4139 we are generating relocateable output, and we see a reloc against
4140 a global symbol, we can not know the symbol index until we have
4141 finished examining all the local symbols to see which ones we are
4142 going to output. To deal with this, we keep the relocations in
4143 memory, and don't output them until the end of the link. This is
4144 an unfortunate waste of memory, but I don't see a good way around
4145 it. Fortunately, it only happens when performing a relocateable
4146 link, which is not the common case. FIXME: If keep_memory is set
4147 we could write the relocs out and then read them again; I don't
4148 know how bad the memory loss will be. */
4149
4150 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4151 sub->output_has_begun = false;
4152 for (o = abfd->sections; o != NULL; o = o->next)
4153 {
4154 for (p = o->link_order_head; p != NULL; p = p->next)
4155 {
4156 if (p->type == bfd_indirect_link_order
4157 && (bfd_get_flavour (p->u.indirect.section->owner)
4158 == bfd_target_elf_flavour))
4159 {
4160 sub = p->u.indirect.section->owner;
4161 if (! sub->output_has_begun)
4162 {
4163 if (! elf_link_input_bfd (&finfo, sub))
4164 goto error_return;
4165 sub->output_has_begun = true;
4166 }
4167 }
4168 else if (p->type == bfd_section_reloc_link_order
4169 || p->type == bfd_symbol_reloc_link_order)
4170 {
4171 if (! elf_reloc_link_order (abfd, info, o, p))
4172 goto error_return;
4173 }
4174 else
4175 {
4176 if (! _bfd_default_link_order (abfd, info, o, p))
4177 goto error_return;
4178 }
4179 }
4180 }
4181
4182 /* That wrote out all the local symbols. Finish up the symbol table
4183 with the global symbols. */
4184
4185 if (info->strip != strip_all && info->shared)
4186 {
4187 /* Output any global symbols that got converted to local in a
4188 version script. We do this in a separate step since ELF
4189 requires all local symbols to appear prior to any global
4190 symbols. FIXME: We should only do this if some global
4191 symbols were, in fact, converted to become local. FIXME:
4192 Will this work correctly with the Irix 5 linker? */
4193 eoinfo.failed = false;
4194 eoinfo.finfo = &finfo;
4195 eoinfo.localsyms = true;
4196 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4197 (PTR) &eoinfo);
4198 if (eoinfo.failed)
4199 return false;
4200 }
4201
4202 /* The sh_info field records the index of the first non local symbol. */
4203 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4204
4205 if (dynamic)
4206 {
4207 Elf_Internal_Sym sym;
4208 Elf_External_Sym *dynsym =
4209 (Elf_External_Sym *)finfo.dynsym_sec->contents;
4210 unsigned long last_local = 0;
4211
4212 /* Write out the section symbols for the output sections. */
4213 if (info->shared)
4214 {
4215 asection *s;
4216
4217 sym.st_size = 0;
4218 sym.st_name = 0;
4219 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4220 sym.st_other = 0;
4221
4222 for (s = abfd->sections; s != NULL; s = s->next)
4223 {
4224 int indx;
4225 indx = elf_section_data (s)->this_idx;
4226 BFD_ASSERT (indx > 0);
4227 sym.st_shndx = indx;
4228 sym.st_value = s->vma;
4229
4230 elf_swap_symbol_out (abfd, &sym,
4231 dynsym + elf_section_data (s)->dynindx);
4232 }
4233
4234 last_local = bfd_count_sections (abfd);
4235 }
4236
4237 /* Write out the local dynsyms. */
4238 if (elf_hash_table (info)->dynlocal)
4239 {
4240 struct elf_link_local_dynamic_entry *e;
4241 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4242 {
4243 asection *s;
4244
4245 sym.st_size = e->isym.st_size;
4246 sym.st_other = e->isym.st_other;
4247
4248 /* Note that we saved a word of storage and overwrote
4249 the original st_name with the dynstr_index. */
4250 sym.st_name = e->isym.st_name;
4251
4252 /* Whatever binding the symbol had before, it's now local. */
4253 sym.st_info = ELF_ST_INFO (STB_LOCAL,
4254 ELF_ST_TYPE (e->isym.st_info));
4255
4256 s = bfd_section_from_elf_index (e->input_bfd, e->isym.st_shndx);
4257
4258 sym.st_shndx = elf_section_data (s->output_section)->this_idx;
4259 sym.st_value = (s->output_section->vma
4260 + s->output_offset
4261 + e->isym.st_value);
4262
4263 if (last_local < e->dynindx)
4264 last_local = e->dynindx;
4265
4266 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4267 }
4268 }
4269
4270 elf_section_data (finfo.dynsym_sec->output_section)
4271 ->this_hdr.sh_info = last_local;
4272 }
4273
4274 /* We get the global symbols from the hash table. */
4275 eoinfo.failed = false;
4276 eoinfo.localsyms = false;
4277 eoinfo.finfo = &finfo;
4278 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4279 (PTR) &eoinfo);
4280 if (eoinfo.failed)
4281 return false;
4282
4283 /* Flush all symbols to the file. */
4284 if (! elf_link_flush_output_syms (&finfo))
4285 return false;
4286
4287 /* Now we know the size of the symtab section. */
4288 off += symtab_hdr->sh_size;
4289
4290 /* Finish up and write out the symbol string table (.strtab)
4291 section. */
4292 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4293 /* sh_name was set in prep_headers. */
4294 symstrtab_hdr->sh_type = SHT_STRTAB;
4295 symstrtab_hdr->sh_flags = 0;
4296 symstrtab_hdr->sh_addr = 0;
4297 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4298 symstrtab_hdr->sh_entsize = 0;
4299 symstrtab_hdr->sh_link = 0;
4300 symstrtab_hdr->sh_info = 0;
4301 /* sh_offset is set just below. */
4302 symstrtab_hdr->sh_addralign = 1;
4303
4304 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4305 elf_tdata (abfd)->next_file_pos = off;
4306
4307 if (bfd_get_symcount (abfd) > 0)
4308 {
4309 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4310 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4311 return false;
4312 }
4313
4314 /* Adjust the relocs to have the correct symbol indices. */
4315 for (o = abfd->sections; o != NULL; o = o->next)
4316 {
4317 if ((o->flags & SEC_RELOC) == 0)
4318 continue;
4319
4320 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4321 elf_section_data (o)->rel_count,
4322 elf_section_data (o)->rel_hashes);
4323 if (elf_section_data (o)->rel_hdr2 != NULL)
4324 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4325 elf_section_data (o)->rel_count2,
4326 (elf_section_data (o)->rel_hashes
4327 + elf_section_data (o)->rel_count));
4328
4329 /* Set the reloc_count field to 0 to prevent write_relocs from
4330 trying to swap the relocs out itself. */
4331 o->reloc_count = 0;
4332 }
4333
4334 /* If we are linking against a dynamic object, or generating a
4335 shared library, finish up the dynamic linking information. */
4336 if (dynamic)
4337 {
4338 Elf_External_Dyn *dyncon, *dynconend;
4339
4340 /* Fix up .dynamic entries. */
4341 o = bfd_get_section_by_name (dynobj, ".dynamic");
4342 BFD_ASSERT (o != NULL);
4343
4344 dyncon = (Elf_External_Dyn *) o->contents;
4345 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4346 for (; dyncon < dynconend; dyncon++)
4347 {
4348 Elf_Internal_Dyn dyn;
4349 const char *name;
4350 unsigned int type;
4351
4352 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4353
4354 switch (dyn.d_tag)
4355 {
4356 default:
4357 break;
4358 case DT_INIT:
4359 name = info->init_function;
4360 goto get_sym;
4361 case DT_FINI:
4362 name = info->fini_function;
4363 get_sym:
4364 {
4365 struct elf_link_hash_entry *h;
4366
4367 h = elf_link_hash_lookup (elf_hash_table (info), name,
4368 false, false, true);
4369 if (h != NULL
4370 && (h->root.type == bfd_link_hash_defined
4371 || h->root.type == bfd_link_hash_defweak))
4372 {
4373 dyn.d_un.d_val = h->root.u.def.value;
4374 o = h->root.u.def.section;
4375 if (o->output_section != NULL)
4376 dyn.d_un.d_val += (o->output_section->vma
4377 + o->output_offset);
4378 else
4379 {
4380 /* The symbol is imported from another shared
4381 library and does not apply to this one. */
4382 dyn.d_un.d_val = 0;
4383 }
4384
4385 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4386 }
4387 }
4388 break;
4389
4390 case DT_HASH:
4391 name = ".hash";
4392 goto get_vma;
4393 case DT_STRTAB:
4394 name = ".dynstr";
4395 goto get_vma;
4396 case DT_SYMTAB:
4397 name = ".dynsym";
4398 goto get_vma;
4399 case DT_VERDEF:
4400 name = ".gnu.version_d";
4401 goto get_vma;
4402 case DT_VERNEED:
4403 name = ".gnu.version_r";
4404 goto get_vma;
4405 case DT_VERSYM:
4406 name = ".gnu.version";
4407 get_vma:
4408 o = bfd_get_section_by_name (abfd, name);
4409 BFD_ASSERT (o != NULL);
4410 dyn.d_un.d_ptr = o->vma;
4411 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4412 break;
4413
4414 case DT_REL:
4415 case DT_RELA:
4416 case DT_RELSZ:
4417 case DT_RELASZ:
4418 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4419 type = SHT_REL;
4420 else
4421 type = SHT_RELA;
4422 dyn.d_un.d_val = 0;
4423 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4424 {
4425 Elf_Internal_Shdr *hdr;
4426
4427 hdr = elf_elfsections (abfd)[i];
4428 if (hdr->sh_type == type
4429 && (hdr->sh_flags & SHF_ALLOC) != 0)
4430 {
4431 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4432 dyn.d_un.d_val += hdr->sh_size;
4433 else
4434 {
4435 if (dyn.d_un.d_val == 0
4436 || hdr->sh_addr < dyn.d_un.d_val)
4437 dyn.d_un.d_val = hdr->sh_addr;
4438 }
4439 }
4440 }
4441 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4442 break;
4443 }
4444 }
4445 }
4446
4447 /* If we have created any dynamic sections, then output them. */
4448 if (dynobj != NULL)
4449 {
4450 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4451 goto error_return;
4452
4453 for (o = dynobj->sections; o != NULL; o = o->next)
4454 {
4455 if ((o->flags & SEC_HAS_CONTENTS) == 0
4456 || o->_raw_size == 0)
4457 continue;
4458 if ((o->flags & SEC_LINKER_CREATED) == 0)
4459 {
4460 /* At this point, we are only interested in sections
4461 created by elf_link_create_dynamic_sections. */
4462 continue;
4463 }
4464 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4465 != SHT_STRTAB)
4466 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4467 {
4468 if (! bfd_set_section_contents (abfd, o->output_section,
4469 o->contents, o->output_offset,
4470 o->_raw_size))
4471 goto error_return;
4472 }
4473 else
4474 {
4475 file_ptr off;
4476
4477 /* The contents of the .dynstr section are actually in a
4478 stringtab. */
4479 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4480 if (bfd_seek (abfd, off, SEEK_SET) != 0
4481 || ! _bfd_stringtab_emit (abfd,
4482 elf_hash_table (info)->dynstr))
4483 goto error_return;
4484 }
4485 }
4486 }
4487
4488 /* If we have optimized stabs strings, output them. */
4489 if (elf_hash_table (info)->stab_info != NULL)
4490 {
4491 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4492 goto error_return;
4493 }
4494
4495 if (finfo.symstrtab != NULL)
4496 _bfd_stringtab_free (finfo.symstrtab);
4497 if (finfo.contents != NULL)
4498 free (finfo.contents);
4499 if (finfo.external_relocs != NULL)
4500 free (finfo.external_relocs);
4501 if (finfo.internal_relocs != NULL)
4502 free (finfo.internal_relocs);
4503 if (finfo.external_syms != NULL)
4504 free (finfo.external_syms);
4505 if (finfo.internal_syms != NULL)
4506 free (finfo.internal_syms);
4507 if (finfo.indices != NULL)
4508 free (finfo.indices);
4509 if (finfo.sections != NULL)
4510 free (finfo.sections);
4511 if (finfo.symbuf != NULL)
4512 free (finfo.symbuf);
4513 for (o = abfd->sections; o != NULL; o = o->next)
4514 {
4515 if ((o->flags & SEC_RELOC) != 0
4516 && elf_section_data (o)->rel_hashes != NULL)
4517 free (elf_section_data (o)->rel_hashes);
4518 }
4519
4520 elf_tdata (abfd)->linker = true;
4521
4522 return true;
4523
4524 error_return:
4525 if (finfo.symstrtab != NULL)
4526 _bfd_stringtab_free (finfo.symstrtab);
4527 if (finfo.contents != NULL)
4528 free (finfo.contents);
4529 if (finfo.external_relocs != NULL)
4530 free (finfo.external_relocs);
4531 if (finfo.internal_relocs != NULL)
4532 free (finfo.internal_relocs);
4533 if (finfo.external_syms != NULL)
4534 free (finfo.external_syms);
4535 if (finfo.internal_syms != NULL)
4536 free (finfo.internal_syms);
4537 if (finfo.indices != NULL)
4538 free (finfo.indices);
4539 if (finfo.sections != NULL)
4540 free (finfo.sections);
4541 if (finfo.symbuf != NULL)
4542 free (finfo.symbuf);
4543 for (o = abfd->sections; o != NULL; o = o->next)
4544 {
4545 if ((o->flags & SEC_RELOC) != 0
4546 && elf_section_data (o)->rel_hashes != NULL)
4547 free (elf_section_data (o)->rel_hashes);
4548 }
4549
4550 return false;
4551 }
4552
4553 /* Add a symbol to the output symbol table. */
4554
4555 static boolean
4556 elf_link_output_sym (finfo, name, elfsym, input_sec)
4557 struct elf_final_link_info *finfo;
4558 const char *name;
4559 Elf_Internal_Sym *elfsym;
4560 asection *input_sec;
4561 {
4562 boolean (*output_symbol_hook) PARAMS ((bfd *,
4563 struct bfd_link_info *info,
4564 const char *,
4565 Elf_Internal_Sym *,
4566 asection *));
4567
4568 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4569 elf_backend_link_output_symbol_hook;
4570 if (output_symbol_hook != NULL)
4571 {
4572 if (! ((*output_symbol_hook)
4573 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4574 return false;
4575 }
4576
4577 if (name == (const char *) NULL || *name == '\0')
4578 elfsym->st_name = 0;
4579 else if (input_sec->flags & SEC_EXCLUDE)
4580 elfsym->st_name = 0;
4581 else
4582 {
4583 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4584 name, true,
4585 false);
4586 if (elfsym->st_name == (unsigned long) -1)
4587 return false;
4588 }
4589
4590 if (finfo->symbuf_count >= finfo->symbuf_size)
4591 {
4592 if (! elf_link_flush_output_syms (finfo))
4593 return false;
4594 }
4595
4596 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4597 (PTR) (finfo->symbuf + finfo->symbuf_count));
4598 ++finfo->symbuf_count;
4599
4600 ++ bfd_get_symcount (finfo->output_bfd);
4601
4602 return true;
4603 }
4604
4605 /* Flush the output symbols to the file. */
4606
4607 static boolean
4608 elf_link_flush_output_syms (finfo)
4609 struct elf_final_link_info *finfo;
4610 {
4611 if (finfo->symbuf_count > 0)
4612 {
4613 Elf_Internal_Shdr *symtab;
4614
4615 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4616
4617 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4618 SEEK_SET) != 0
4619 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4620 sizeof (Elf_External_Sym), finfo->output_bfd)
4621 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4622 return false;
4623
4624 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4625
4626 finfo->symbuf_count = 0;
4627 }
4628
4629 return true;
4630 }
4631
4632 /* Add an external symbol to the symbol table. This is called from
4633 the hash table traversal routine. When generating a shared object,
4634 we go through the symbol table twice. The first time we output
4635 anything that might have been forced to local scope in a version
4636 script. The second time we output the symbols that are still
4637 global symbols. */
4638
4639 static boolean
4640 elf_link_output_extsym (h, data)
4641 struct elf_link_hash_entry *h;
4642 PTR data;
4643 {
4644 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4645 struct elf_final_link_info *finfo = eoinfo->finfo;
4646 boolean strip;
4647 Elf_Internal_Sym sym;
4648 asection *input_sec;
4649
4650 /* Decide whether to output this symbol in this pass. */
4651 if (eoinfo->localsyms)
4652 {
4653 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4654 return true;
4655 }
4656 else
4657 {
4658 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4659 return true;
4660 }
4661
4662 /* If we are not creating a shared library, and this symbol is
4663 referenced by a shared library but is not defined anywhere, then
4664 warn that it is undefined. If we do not do this, the runtime
4665 linker will complain that the symbol is undefined when the
4666 program is run. We don't have to worry about symbols that are
4667 referenced by regular files, because we will already have issued
4668 warnings for them. */
4669 if (! finfo->info->relocateable
4670 && ! (finfo->info->shared
4671 && !finfo->info->no_undefined)
4672 && h->root.type == bfd_link_hash_undefined
4673 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4674 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4675 {
4676 if (! ((*finfo->info->callbacks->undefined_symbol)
4677 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4678 (asection *) NULL, 0)))
4679 {
4680 eoinfo->failed = true;
4681 return false;
4682 }
4683 }
4684
4685 /* We don't want to output symbols that have never been mentioned by
4686 a regular file, or that we have been told to strip. However, if
4687 h->indx is set to -2, the symbol is used by a reloc and we must
4688 output it. */
4689 if (h->indx == -2)
4690 strip = false;
4691 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4692 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4693 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4694 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4695 strip = true;
4696 else if (finfo->info->strip == strip_all
4697 || (finfo->info->strip == strip_some
4698 && bfd_hash_lookup (finfo->info->keep_hash,
4699 h->root.root.string,
4700 false, false) == NULL))
4701 strip = true;
4702 else
4703 strip = false;
4704
4705 /* If we're stripping it, and it's not a dynamic symbol, there's
4706 nothing else to do. */
4707 if (strip && h->dynindx == -1)
4708 return true;
4709
4710 sym.st_value = 0;
4711 sym.st_size = h->size;
4712 sym.st_other = h->other;
4713 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4714 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4715 else if (h->root.type == bfd_link_hash_undefweak
4716 || h->root.type == bfd_link_hash_defweak)
4717 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4718 else
4719 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4720
4721 switch (h->root.type)
4722 {
4723 default:
4724 case bfd_link_hash_new:
4725 abort ();
4726 return false;
4727
4728 case bfd_link_hash_undefined:
4729 input_sec = bfd_und_section_ptr;
4730 sym.st_shndx = SHN_UNDEF;
4731 break;
4732
4733 case bfd_link_hash_undefweak:
4734 input_sec = bfd_und_section_ptr;
4735 sym.st_shndx = SHN_UNDEF;
4736 break;
4737
4738 case bfd_link_hash_defined:
4739 case bfd_link_hash_defweak:
4740 {
4741 input_sec = h->root.u.def.section;
4742 if (input_sec->output_section != NULL)
4743 {
4744 sym.st_shndx =
4745 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4746 input_sec->output_section);
4747 if (sym.st_shndx == (unsigned short) -1)
4748 {
4749 (*_bfd_error_handler)
4750 (_("%s: could not find output section %s for input section %s"),
4751 bfd_get_filename (finfo->output_bfd),
4752 input_sec->output_section->name,
4753 input_sec->name);
4754 eoinfo->failed = true;
4755 return false;
4756 }
4757
4758 /* ELF symbols in relocateable files are section relative,
4759 but in nonrelocateable files they are virtual
4760 addresses. */
4761 sym.st_value = h->root.u.def.value + input_sec->output_offset;
4762 if (! finfo->info->relocateable)
4763 sym.st_value += input_sec->output_section->vma;
4764 }
4765 else
4766 {
4767 BFD_ASSERT (input_sec->owner == NULL
4768 || (input_sec->owner->flags & DYNAMIC) != 0);
4769 sym.st_shndx = SHN_UNDEF;
4770 input_sec = bfd_und_section_ptr;
4771 }
4772 }
4773 break;
4774
4775 case bfd_link_hash_common:
4776 input_sec = h->root.u.c.p->section;
4777 sym.st_shndx = SHN_COMMON;
4778 sym.st_value = 1 << h->root.u.c.p->alignment_power;
4779 break;
4780
4781 case bfd_link_hash_indirect:
4782 /* These symbols are created by symbol versioning. They point
4783 to the decorated version of the name. For example, if the
4784 symbol foo@@GNU_1.2 is the default, which should be used when
4785 foo is used with no version, then we add an indirect symbol
4786 foo which points to foo@@GNU_1.2. We ignore these symbols,
4787 since the indirected symbol is already in the hash table. If
4788 the indirect symbol is non-ELF, fall through and output it. */
4789 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
4790 return true;
4791
4792 /* Fall through. */
4793 case bfd_link_hash_warning:
4794 /* We can't represent these symbols in ELF, although a warning
4795 symbol may have come from a .gnu.warning.SYMBOL section. We
4796 just put the target symbol in the hash table. If the target
4797 symbol does not really exist, don't do anything. */
4798 if (h->root.u.i.link->type == bfd_link_hash_new)
4799 return true;
4800 return (elf_link_output_extsym
4801 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
4802 }
4803
4804 /* Give the processor backend a chance to tweak the symbol value,
4805 and also to finish up anything that needs to be done for this
4806 symbol. */
4807 if ((h->dynindx != -1
4808 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4809 && elf_hash_table (finfo->info)->dynamic_sections_created)
4810 {
4811 struct elf_backend_data *bed;
4812
4813 bed = get_elf_backend_data (finfo->output_bfd);
4814 if (! ((*bed->elf_backend_finish_dynamic_symbol)
4815 (finfo->output_bfd, finfo->info, h, &sym)))
4816 {
4817 eoinfo->failed = true;
4818 return false;
4819 }
4820 }
4821
4822 /* If we are marking the symbol as undefined, and there are no
4823 non-weak references to this symbol from a regular object, then
4824 mark the symbol as weak undefined. We can't do this earlier,
4825 because it might not be marked as undefined until the
4826 finish_dynamic_symbol routine gets through with it. */
4827 if (sym.st_shndx == SHN_UNDEF
4828 && sym.st_info == ELF_ST_INFO (STB_GLOBAL, h->type)
4829 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
4830 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) == 0)
4831 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4832
4833 /* If this symbol should be put in the .dynsym section, then put it
4834 there now. We have already know the symbol index. We also fill
4835 in the entry in the .hash section. */
4836 if (h->dynindx != -1
4837 && elf_hash_table (finfo->info)->dynamic_sections_created)
4838 {
4839 size_t bucketcount;
4840 size_t bucket;
4841 size_t hash_entry_size;
4842 bfd_byte *bucketpos;
4843 bfd_vma chain;
4844
4845 sym.st_name = h->dynstr_index;
4846
4847 elf_swap_symbol_out (finfo->output_bfd, &sym,
4848 (PTR) (((Elf_External_Sym *)
4849 finfo->dynsym_sec->contents)
4850 + h->dynindx));
4851
4852 bucketcount = elf_hash_table (finfo->info)->bucketcount;
4853 bucket = h->elf_hash_value % bucketcount;
4854 hash_entry_size
4855 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
4856 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
4857 + (bucket + 2) * hash_entry_size);
4858 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
4859 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
4860 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
4861 ((bfd_byte *) finfo->hash_sec->contents
4862 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
4863
4864 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
4865 {
4866 Elf_Internal_Versym iversym;
4867
4868 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4869 {
4870 if (h->verinfo.verdef == NULL)
4871 iversym.vs_vers = 0;
4872 else
4873 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
4874 }
4875 else
4876 {
4877 if (h->verinfo.vertree == NULL)
4878 iversym.vs_vers = 1;
4879 else
4880 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
4881 }
4882
4883 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
4884 iversym.vs_vers |= VERSYM_HIDDEN;
4885
4886 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
4887 (((Elf_External_Versym *)
4888 finfo->symver_sec->contents)
4889 + h->dynindx));
4890 }
4891 }
4892
4893 /* If we're stripping it, then it was just a dynamic symbol, and
4894 there's nothing else to do. */
4895 if (strip)
4896 return true;
4897
4898 h->indx = bfd_get_symcount (finfo->output_bfd);
4899
4900 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
4901 {
4902 eoinfo->failed = true;
4903 return false;
4904 }
4905
4906 return true;
4907 }
4908
4909 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
4910 originated from the section given by INPUT_REL_HDR) to the
4911 OUTPUT_BFD. */
4912
4913 static void
4914 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
4915 internal_relocs)
4916 bfd *output_bfd;
4917 asection *input_section;
4918 Elf_Internal_Shdr *input_rel_hdr;
4919 Elf_Internal_Rela *internal_relocs;
4920 {
4921 Elf_Internal_Rela *irela;
4922 Elf_Internal_Rela *irelaend;
4923 Elf_Internal_Shdr *output_rel_hdr;
4924 asection *output_section;
4925 unsigned int *rel_countp = NULL;
4926
4927 output_section = input_section->output_section;
4928 output_rel_hdr = NULL;
4929
4930 if (elf_section_data (output_section)->rel_hdr.sh_entsize
4931 == input_rel_hdr->sh_entsize)
4932 {
4933 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
4934 rel_countp = &elf_section_data (output_section)->rel_count;
4935 }
4936 else if (elf_section_data (output_section)->rel_hdr2
4937 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
4938 == input_rel_hdr->sh_entsize))
4939 {
4940 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
4941 rel_countp = &elf_section_data (output_section)->rel_count2;
4942 }
4943
4944 BFD_ASSERT (output_rel_hdr != NULL);
4945
4946 irela = internal_relocs;
4947 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
4948 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4949 {
4950 Elf_External_Rel *erel;
4951
4952 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
4953 for (; irela < irelaend; irela++, erel++)
4954 {
4955 Elf_Internal_Rel irel;
4956
4957 irel.r_offset = irela->r_offset;
4958 irel.r_info = irela->r_info;
4959 BFD_ASSERT (irela->r_addend == 0);
4960 elf_swap_reloc_out (output_bfd, &irel, erel);
4961 }
4962 }
4963 else
4964 {
4965 Elf_External_Rela *erela;
4966
4967 BFD_ASSERT (input_rel_hdr->sh_entsize
4968 == sizeof (Elf_External_Rela));
4969 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
4970 for (; irela < irelaend; irela++, erela++)
4971 elf_swap_reloca_out (output_bfd, irela, erela);
4972 }
4973
4974 /* Bump the counter, so that we know where to add the next set of
4975 relocations. */
4976 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
4977 }
4978
4979 /* Link an input file into the linker output file. This function
4980 handles all the sections and relocations of the input file at once.
4981 This is so that we only have to read the local symbols once, and
4982 don't have to keep them in memory. */
4983
4984 static boolean
4985 elf_link_input_bfd (finfo, input_bfd)
4986 struct elf_final_link_info *finfo;
4987 bfd *input_bfd;
4988 {
4989 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
4990 bfd *, asection *, bfd_byte *,
4991 Elf_Internal_Rela *,
4992 Elf_Internal_Sym *, asection **));
4993 bfd *output_bfd;
4994 Elf_Internal_Shdr *symtab_hdr;
4995 size_t locsymcount;
4996 size_t extsymoff;
4997 Elf_External_Sym *external_syms;
4998 Elf_External_Sym *esym;
4999 Elf_External_Sym *esymend;
5000 Elf_Internal_Sym *isym;
5001 long *pindex;
5002 asection **ppsection;
5003 asection *o;
5004 struct elf_backend_data *bed;
5005
5006 output_bfd = finfo->output_bfd;
5007 bed = get_elf_backend_data (output_bfd);
5008 relocate_section = bed->elf_backend_relocate_section;
5009
5010 /* If this is a dynamic object, we don't want to do anything here:
5011 we don't want the local symbols, and we don't want the section
5012 contents. */
5013 if ((input_bfd->flags & DYNAMIC) != 0)
5014 return true;
5015
5016 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5017 if (elf_bad_symtab (input_bfd))
5018 {
5019 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5020 extsymoff = 0;
5021 }
5022 else
5023 {
5024 locsymcount = symtab_hdr->sh_info;
5025 extsymoff = symtab_hdr->sh_info;
5026 }
5027
5028 /* Read the local symbols. */
5029 if (symtab_hdr->contents != NULL)
5030 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5031 else if (locsymcount == 0)
5032 external_syms = NULL;
5033 else
5034 {
5035 external_syms = finfo->external_syms;
5036 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5037 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5038 locsymcount, input_bfd)
5039 != locsymcount * sizeof (Elf_External_Sym)))
5040 return false;
5041 }
5042
5043 /* Swap in the local symbols and write out the ones which we know
5044 are going into the output file. */
5045 esym = external_syms;
5046 esymend = esym + locsymcount;
5047 isym = finfo->internal_syms;
5048 pindex = finfo->indices;
5049 ppsection = finfo->sections;
5050 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5051 {
5052 asection *isec;
5053 const char *name;
5054 Elf_Internal_Sym osym;
5055
5056 elf_swap_symbol_in (input_bfd, esym, isym);
5057 *pindex = -1;
5058
5059 if (elf_bad_symtab (input_bfd))
5060 {
5061 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5062 {
5063 *ppsection = NULL;
5064 continue;
5065 }
5066 }
5067
5068 if (isym->st_shndx == SHN_UNDEF)
5069 isec = bfd_und_section_ptr;
5070 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5071 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5072 else if (isym->st_shndx == SHN_ABS)
5073 isec = bfd_abs_section_ptr;
5074 else if (isym->st_shndx == SHN_COMMON)
5075 isec = bfd_com_section_ptr;
5076 else
5077 {
5078 /* Who knows? */
5079 isec = NULL;
5080 }
5081
5082 *ppsection = isec;
5083
5084 /* Don't output the first, undefined, symbol. */
5085 if (esym == external_syms)
5086 continue;
5087
5088 /* If we are stripping all symbols, we don't want to output this
5089 one. */
5090 if (finfo->info->strip == strip_all)
5091 continue;
5092
5093 /* We never output section symbols. Instead, we use the section
5094 symbol of the corresponding section in the output file. */
5095 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5096 continue;
5097
5098 /* If we are discarding all local symbols, we don't want to
5099 output this one. If we are generating a relocateable output
5100 file, then some of the local symbols may be required by
5101 relocs; we output them below as we discover that they are
5102 needed. */
5103 if (finfo->info->discard == discard_all)
5104 continue;
5105
5106 /* If this symbol is defined in a section which we are
5107 discarding, we don't need to keep it, but note that
5108 linker_mark is only reliable for sections that have contents.
5109 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5110 as well as linker_mark. */
5111 if (isym->st_shndx > 0
5112 && isym->st_shndx < SHN_LORESERVE
5113 && isec != NULL
5114 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5115 || (! finfo->info->relocateable
5116 && (isec->flags & SEC_EXCLUDE) != 0)))
5117 continue;
5118
5119 /* Get the name of the symbol. */
5120 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5121 isym->st_name);
5122 if (name == NULL)
5123 return false;
5124
5125 /* See if we are discarding symbols with this name. */
5126 if ((finfo->info->strip == strip_some
5127 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5128 == NULL))
5129 || (finfo->info->discard == discard_l
5130 && bfd_is_local_label_name (input_bfd, name)))
5131 continue;
5132
5133 /* If we get here, we are going to output this symbol. */
5134
5135 osym = *isym;
5136
5137 /* Adjust the section index for the output file. */
5138 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5139 isec->output_section);
5140 if (osym.st_shndx == (unsigned short) -1)
5141 return false;
5142
5143 *pindex = bfd_get_symcount (output_bfd);
5144
5145 /* ELF symbols in relocateable files are section relative, but
5146 in executable files they are virtual addresses. Note that
5147 this code assumes that all ELF sections have an associated
5148 BFD section with a reasonable value for output_offset; below
5149 we assume that they also have a reasonable value for
5150 output_section. Any special sections must be set up to meet
5151 these requirements. */
5152 osym.st_value += isec->output_offset;
5153 if (! finfo->info->relocateable)
5154 osym.st_value += isec->output_section->vma;
5155
5156 if (! elf_link_output_sym (finfo, name, &osym, isec))
5157 return false;
5158 }
5159
5160 /* Relocate the contents of each section. */
5161 for (o = input_bfd->sections; o != NULL; o = o->next)
5162 {
5163 bfd_byte *contents;
5164
5165 if (! o->linker_mark)
5166 {
5167 /* This section was omitted from the link. */
5168 continue;
5169 }
5170
5171 if ((o->flags & SEC_HAS_CONTENTS) == 0
5172 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5173 continue;
5174
5175 if ((o->flags & SEC_LINKER_CREATED) != 0)
5176 {
5177 /* Section was created by elf_link_create_dynamic_sections
5178 or somesuch. */
5179 continue;
5180 }
5181
5182 /* Get the contents of the section. They have been cached by a
5183 relaxation routine. Note that o is a section in an input
5184 file, so the contents field will not have been set by any of
5185 the routines which work on output files. */
5186 if (elf_section_data (o)->this_hdr.contents != NULL)
5187 contents = elf_section_data (o)->this_hdr.contents;
5188 else
5189 {
5190 contents = finfo->contents;
5191 if (! bfd_get_section_contents (input_bfd, o, contents,
5192 (file_ptr) 0, o->_raw_size))
5193 return false;
5194 }
5195
5196 if ((o->flags & SEC_RELOC) != 0)
5197 {
5198 Elf_Internal_Rela *internal_relocs;
5199
5200 /* Get the swapped relocs. */
5201 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5202 (input_bfd, o, finfo->external_relocs,
5203 finfo->internal_relocs, false));
5204 if (internal_relocs == NULL
5205 && o->reloc_count > 0)
5206 return false;
5207
5208 /* Relocate the section by invoking a back end routine.
5209
5210 The back end routine is responsible for adjusting the
5211 section contents as necessary, and (if using Rela relocs
5212 and generating a relocateable output file) adjusting the
5213 reloc addend as necessary.
5214
5215 The back end routine does not have to worry about setting
5216 the reloc address or the reloc symbol index.
5217
5218 The back end routine is given a pointer to the swapped in
5219 internal symbols, and can access the hash table entries
5220 for the external symbols via elf_sym_hashes (input_bfd).
5221
5222 When generating relocateable output, the back end routine
5223 must handle STB_LOCAL/STT_SECTION symbols specially. The
5224 output symbol is going to be a section symbol
5225 corresponding to the output section, which will require
5226 the addend to be adjusted. */
5227
5228 if (! (*relocate_section) (output_bfd, finfo->info,
5229 input_bfd, o, contents,
5230 internal_relocs,
5231 finfo->internal_syms,
5232 finfo->sections))
5233 return false;
5234
5235 if (finfo->info->relocateable)
5236 {
5237 Elf_Internal_Rela *irela;
5238 Elf_Internal_Rela *irelaend;
5239 struct elf_link_hash_entry **rel_hash;
5240 Elf_Internal_Shdr *input_rel_hdr;
5241
5242 /* Adjust the reloc addresses and symbol indices. */
5243
5244 irela = internal_relocs;
5245 irelaend =
5246 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
5247 rel_hash = (elf_section_data (o->output_section)->rel_hashes
5248 + elf_section_data (o->output_section)->rel_count
5249 + elf_section_data (o->output_section)->rel_count2);
5250 for (; irela < irelaend; irela++, rel_hash++)
5251 {
5252 unsigned long r_symndx;
5253 Elf_Internal_Sym *isym;
5254 asection *sec;
5255
5256 irela->r_offset += o->output_offset;
5257
5258 r_symndx = ELF_R_SYM (irela->r_info);
5259
5260 if (r_symndx == 0)
5261 continue;
5262
5263 if (r_symndx >= locsymcount
5264 || (elf_bad_symtab (input_bfd)
5265 && finfo->sections[r_symndx] == NULL))
5266 {
5267 struct elf_link_hash_entry *rh;
5268 long indx;
5269
5270 /* This is a reloc against a global symbol. We
5271 have not yet output all the local symbols, so
5272 we do not know the symbol index of any global
5273 symbol. We set the rel_hash entry for this
5274 reloc to point to the global hash table entry
5275 for this symbol. The symbol index is then
5276 set at the end of elf_bfd_final_link. */
5277 indx = r_symndx - extsymoff;
5278 rh = elf_sym_hashes (input_bfd)[indx];
5279 while (rh->root.type == bfd_link_hash_indirect
5280 || rh->root.type == bfd_link_hash_warning)
5281 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5282
5283 /* Setting the index to -2 tells
5284 elf_link_output_extsym that this symbol is
5285 used by a reloc. */
5286 BFD_ASSERT (rh->indx < 0);
5287 rh->indx = -2;
5288
5289 *rel_hash = rh;
5290
5291 continue;
5292 }
5293
5294 /* This is a reloc against a local symbol. */
5295
5296 *rel_hash = NULL;
5297 isym = finfo->internal_syms + r_symndx;
5298 sec = finfo->sections[r_symndx];
5299 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5300 {
5301 /* I suppose the backend ought to fill in the
5302 section of any STT_SECTION symbol against a
5303 processor specific section. If we have
5304 discarded a section, the output_section will
5305 be the absolute section. */
5306 if (sec != NULL
5307 && (bfd_is_abs_section (sec)
5308 || (sec->output_section != NULL
5309 && bfd_is_abs_section (sec->output_section))))
5310 r_symndx = 0;
5311 else if (sec == NULL || sec->owner == NULL)
5312 {
5313 bfd_set_error (bfd_error_bad_value);
5314 return false;
5315 }
5316 else
5317 {
5318 r_symndx = sec->output_section->target_index;
5319 BFD_ASSERT (r_symndx != 0);
5320 }
5321 }
5322 else
5323 {
5324 if (finfo->indices[r_symndx] == -1)
5325 {
5326 unsigned long link;
5327 const char *name;
5328 asection *osec;
5329
5330 if (finfo->info->strip == strip_all)
5331 {
5332 /* You can't do ld -r -s. */
5333 bfd_set_error (bfd_error_invalid_operation);
5334 return false;
5335 }
5336
5337 /* This symbol was skipped earlier, but
5338 since it is needed by a reloc, we
5339 must output it now. */
5340 link = symtab_hdr->sh_link;
5341 name = bfd_elf_string_from_elf_section (input_bfd,
5342 link,
5343 isym->st_name);
5344 if (name == NULL)
5345 return false;
5346
5347 osec = sec->output_section;
5348 isym->st_shndx =
5349 _bfd_elf_section_from_bfd_section (output_bfd,
5350 osec);
5351 if (isym->st_shndx == (unsigned short) -1)
5352 return false;
5353
5354 isym->st_value += sec->output_offset;
5355 if (! finfo->info->relocateable)
5356 isym->st_value += osec->vma;
5357
5358 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5359
5360 if (! elf_link_output_sym (finfo, name, isym, sec))
5361 return false;
5362 }
5363
5364 r_symndx = finfo->indices[r_symndx];
5365 }
5366
5367 irela->r_info = ELF_R_INFO (r_symndx,
5368 ELF_R_TYPE (irela->r_info));
5369 }
5370
5371 /* Swap out the relocs. */
5372 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5373 elf_link_output_relocs (output_bfd, o,
5374 input_rel_hdr,
5375 internal_relocs);
5376 internal_relocs
5377 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5378 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5379 if (input_rel_hdr)
5380 elf_link_output_relocs (output_bfd, o,
5381 input_rel_hdr,
5382 internal_relocs);
5383 }
5384 }
5385
5386 /* Write out the modified section contents. */
5387 if (elf_section_data (o)->stab_info == NULL)
5388 {
5389 if (! (o->flags & SEC_EXCLUDE) &&
5390 ! bfd_set_section_contents (output_bfd, o->output_section,
5391 contents, o->output_offset,
5392 (o->_cooked_size != 0
5393 ? o->_cooked_size
5394 : o->_raw_size)))
5395 return false;
5396 }
5397 else
5398 {
5399 if (! (_bfd_write_section_stabs
5400 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5401 o, &elf_section_data (o)->stab_info, contents)))
5402 return false;
5403 }
5404 }
5405
5406 return true;
5407 }
5408
5409 /* Generate a reloc when linking an ELF file. This is a reloc
5410 requested by the linker, and does come from any input file. This
5411 is used to build constructor and destructor tables when linking
5412 with -Ur. */
5413
5414 static boolean
5415 elf_reloc_link_order (output_bfd, info, output_section, link_order)
5416 bfd *output_bfd;
5417 struct bfd_link_info *info;
5418 asection *output_section;
5419 struct bfd_link_order *link_order;
5420 {
5421 reloc_howto_type *howto;
5422 long indx;
5423 bfd_vma offset;
5424 bfd_vma addend;
5425 struct elf_link_hash_entry **rel_hash_ptr;
5426 Elf_Internal_Shdr *rel_hdr;
5427
5428 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5429 if (howto == NULL)
5430 {
5431 bfd_set_error (bfd_error_bad_value);
5432 return false;
5433 }
5434
5435 addend = link_order->u.reloc.p->addend;
5436
5437 /* Figure out the symbol index. */
5438 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5439 + elf_section_data (output_section)->rel_count
5440 + elf_section_data (output_section)->rel_count2);
5441 if (link_order->type == bfd_section_reloc_link_order)
5442 {
5443 indx = link_order->u.reloc.p->u.section->target_index;
5444 BFD_ASSERT (indx != 0);
5445 *rel_hash_ptr = NULL;
5446 }
5447 else
5448 {
5449 struct elf_link_hash_entry *h;
5450
5451 /* Treat a reloc against a defined symbol as though it were
5452 actually against the section. */
5453 h = ((struct elf_link_hash_entry *)
5454 bfd_wrapped_link_hash_lookup (output_bfd, info,
5455 link_order->u.reloc.p->u.name,
5456 false, false, true));
5457 if (h != NULL
5458 && (h->root.type == bfd_link_hash_defined
5459 || h->root.type == bfd_link_hash_defweak))
5460 {
5461 asection *section;
5462
5463 section = h->root.u.def.section;
5464 indx = section->output_section->target_index;
5465 *rel_hash_ptr = NULL;
5466 /* It seems that we ought to add the symbol value to the
5467 addend here, but in practice it has already been added
5468 because it was passed to constructor_callback. */
5469 addend += section->output_section->vma + section->output_offset;
5470 }
5471 else if (h != NULL)
5472 {
5473 /* Setting the index to -2 tells elf_link_output_extsym that
5474 this symbol is used by a reloc. */
5475 h->indx = -2;
5476 *rel_hash_ptr = h;
5477 indx = 0;
5478 }
5479 else
5480 {
5481 if (! ((*info->callbacks->unattached_reloc)
5482 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5483 (asection *) NULL, (bfd_vma) 0)))
5484 return false;
5485 indx = 0;
5486 }
5487 }
5488
5489 /* If this is an inplace reloc, we must write the addend into the
5490 object file. */
5491 if (howto->partial_inplace && addend != 0)
5492 {
5493 bfd_size_type size;
5494 bfd_reloc_status_type rstat;
5495 bfd_byte *buf;
5496 boolean ok;
5497
5498 size = bfd_get_reloc_size (howto);
5499 buf = (bfd_byte *) bfd_zmalloc (size);
5500 if (buf == (bfd_byte *) NULL)
5501 return false;
5502 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5503 switch (rstat)
5504 {
5505 case bfd_reloc_ok:
5506 break;
5507 default:
5508 case bfd_reloc_outofrange:
5509 abort ();
5510 case bfd_reloc_overflow:
5511 if (! ((*info->callbacks->reloc_overflow)
5512 (info,
5513 (link_order->type == bfd_section_reloc_link_order
5514 ? bfd_section_name (output_bfd,
5515 link_order->u.reloc.p->u.section)
5516 : link_order->u.reloc.p->u.name),
5517 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5518 (bfd_vma) 0)))
5519 {
5520 free (buf);
5521 return false;
5522 }
5523 break;
5524 }
5525 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5526 (file_ptr) link_order->offset, size);
5527 free (buf);
5528 if (! ok)
5529 return false;
5530 }
5531
5532 /* The address of a reloc is relative to the section in a
5533 relocateable file, and is a virtual address in an executable
5534 file. */
5535 offset = link_order->offset;
5536 if (! info->relocateable)
5537 offset += output_section->vma;
5538
5539 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5540
5541 if (rel_hdr->sh_type == SHT_REL)
5542 {
5543 Elf_Internal_Rel irel;
5544 Elf_External_Rel *erel;
5545
5546 irel.r_offset = offset;
5547 irel.r_info = ELF_R_INFO (indx, howto->type);
5548 erel = ((Elf_External_Rel *) rel_hdr->contents
5549 + elf_section_data (output_section)->rel_count);
5550 elf_swap_reloc_out (output_bfd, &irel, erel);
5551 }
5552 else
5553 {
5554 Elf_Internal_Rela irela;
5555 Elf_External_Rela *erela;
5556
5557 irela.r_offset = offset;
5558 irela.r_info = ELF_R_INFO (indx, howto->type);
5559 irela.r_addend = addend;
5560 erela = ((Elf_External_Rela *) rel_hdr->contents
5561 + elf_section_data (output_section)->rel_count);
5562 elf_swap_reloca_out (output_bfd, &irela, erela);
5563 }
5564
5565 ++elf_section_data (output_section)->rel_count;
5566
5567 return true;
5568 }
5569
5570 \f
5571 /* Allocate a pointer to live in a linker created section. */
5572
5573 boolean
5574 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5575 bfd *abfd;
5576 struct bfd_link_info *info;
5577 elf_linker_section_t *lsect;
5578 struct elf_link_hash_entry *h;
5579 const Elf_Internal_Rela *rel;
5580 {
5581 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5582 elf_linker_section_pointers_t *linker_section_ptr;
5583 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5584
5585 BFD_ASSERT (lsect != NULL);
5586
5587 /* Is this a global symbol? */
5588 if (h != NULL)
5589 {
5590 /* Has this symbol already been allocated, if so, our work is done */
5591 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5592 rel->r_addend,
5593 lsect->which))
5594 return true;
5595
5596 ptr_linker_section_ptr = &h->linker_section_pointer;
5597 /* Make sure this symbol is output as a dynamic symbol. */
5598 if (h->dynindx == -1)
5599 {
5600 if (! elf_link_record_dynamic_symbol (info, h))
5601 return false;
5602 }
5603
5604 if (lsect->rel_section)
5605 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5606 }
5607
5608 else /* Allocation of a pointer to a local symbol */
5609 {
5610 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5611
5612 /* Allocate a table to hold the local symbols if first time */
5613 if (!ptr)
5614 {
5615 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5616 register unsigned int i;
5617
5618 ptr = (elf_linker_section_pointers_t **)
5619 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5620
5621 if (!ptr)
5622 return false;
5623
5624 elf_local_ptr_offsets (abfd) = ptr;
5625 for (i = 0; i < num_symbols; i++)
5626 ptr[i] = (elf_linker_section_pointers_t *)0;
5627 }
5628
5629 /* Has this symbol already been allocated, if so, our work is done */
5630 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5631 rel->r_addend,
5632 lsect->which))
5633 return true;
5634
5635 ptr_linker_section_ptr = &ptr[r_symndx];
5636
5637 if (info->shared)
5638 {
5639 /* If we are generating a shared object, we need to
5640 output a R_<xxx>_RELATIVE reloc so that the
5641 dynamic linker can adjust this GOT entry. */
5642 BFD_ASSERT (lsect->rel_section != NULL);
5643 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5644 }
5645 }
5646
5647 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5648 from internal memory. */
5649 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5650 linker_section_ptr = (elf_linker_section_pointers_t *)
5651 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5652
5653 if (!linker_section_ptr)
5654 return false;
5655
5656 linker_section_ptr->next = *ptr_linker_section_ptr;
5657 linker_section_ptr->addend = rel->r_addend;
5658 linker_section_ptr->which = lsect->which;
5659 linker_section_ptr->written_address_p = false;
5660 *ptr_linker_section_ptr = linker_section_ptr;
5661
5662 #if 0
5663 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5664 {
5665 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5666 lsect->hole_offset += ARCH_SIZE / 8;
5667 lsect->sym_offset += ARCH_SIZE / 8;
5668 if (lsect->sym_hash) /* Bump up symbol value if needed */
5669 {
5670 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5671 #ifdef DEBUG
5672 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5673 lsect->sym_hash->root.root.string,
5674 (long)ARCH_SIZE / 8,
5675 (long)lsect->sym_hash->root.u.def.value);
5676 #endif
5677 }
5678 }
5679 else
5680 #endif
5681 linker_section_ptr->offset = lsect->section->_raw_size;
5682
5683 lsect->section->_raw_size += ARCH_SIZE / 8;
5684
5685 #ifdef DEBUG
5686 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5687 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5688 #endif
5689
5690 return true;
5691 }
5692
5693 \f
5694 #if ARCH_SIZE==64
5695 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5696 #endif
5697 #if ARCH_SIZE==32
5698 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5699 #endif
5700
5701 /* Fill in the address for a pointer generated in alinker section. */
5702
5703 bfd_vma
5704 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5705 bfd *output_bfd;
5706 bfd *input_bfd;
5707 struct bfd_link_info *info;
5708 elf_linker_section_t *lsect;
5709 struct elf_link_hash_entry *h;
5710 bfd_vma relocation;
5711 const Elf_Internal_Rela *rel;
5712 int relative_reloc;
5713 {
5714 elf_linker_section_pointers_t *linker_section_ptr;
5715
5716 BFD_ASSERT (lsect != NULL);
5717
5718 if (h != NULL) /* global symbol */
5719 {
5720 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5721 rel->r_addend,
5722 lsect->which);
5723
5724 BFD_ASSERT (linker_section_ptr != NULL);
5725
5726 if (! elf_hash_table (info)->dynamic_sections_created
5727 || (info->shared
5728 && info->symbolic
5729 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5730 {
5731 /* This is actually a static link, or it is a
5732 -Bsymbolic link and the symbol is defined
5733 locally. We must initialize this entry in the
5734 global section.
5735
5736 When doing a dynamic link, we create a .rela.<xxx>
5737 relocation entry to initialize the value. This
5738 is done in the finish_dynamic_symbol routine. */
5739 if (!linker_section_ptr->written_address_p)
5740 {
5741 linker_section_ptr->written_address_p = true;
5742 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5743 lsect->section->contents + linker_section_ptr->offset);
5744 }
5745 }
5746 }
5747 else /* local symbol */
5748 {
5749 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
5750 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
5751 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
5752 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
5753 rel->r_addend,
5754 lsect->which);
5755
5756 BFD_ASSERT (linker_section_ptr != NULL);
5757
5758 /* Write out pointer if it hasn't been rewritten out before */
5759 if (!linker_section_ptr->written_address_p)
5760 {
5761 linker_section_ptr->written_address_p = true;
5762 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5763 lsect->section->contents + linker_section_ptr->offset);
5764
5765 if (info->shared)
5766 {
5767 asection *srel = lsect->rel_section;
5768 Elf_Internal_Rela outrel;
5769
5770 /* We need to generate a relative reloc for the dynamic linker. */
5771 if (!srel)
5772 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5773 lsect->rel_name);
5774
5775 BFD_ASSERT (srel != NULL);
5776
5777 outrel.r_offset = (lsect->section->output_section->vma
5778 + lsect->section->output_offset
5779 + linker_section_ptr->offset);
5780 outrel.r_info = ELF_R_INFO (0, relative_reloc);
5781 outrel.r_addend = 0;
5782 elf_swap_reloca_out (output_bfd, &outrel,
5783 (((Elf_External_Rela *)
5784 lsect->section->contents)
5785 + elf_section_data (lsect->section)->rel_count));
5786 ++elf_section_data (lsect->section)->rel_count;
5787 }
5788 }
5789 }
5790
5791 relocation = (lsect->section->output_offset
5792 + linker_section_ptr->offset
5793 - lsect->hole_offset
5794 - lsect->sym_offset);
5795
5796 #ifdef DEBUG
5797 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
5798 lsect->name, (long)relocation, (long)relocation);
5799 #endif
5800
5801 /* Subtract out the addend, because it will get added back in by the normal
5802 processing. */
5803 return relocation - linker_section_ptr->addend;
5804 }
5805 \f
5806 /* Garbage collect unused sections. */
5807
5808 static boolean elf_gc_mark
5809 PARAMS ((struct bfd_link_info *info, asection *sec,
5810 asection * (*gc_mark_hook)
5811 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5812 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
5813
5814 static boolean elf_gc_sweep
5815 PARAMS ((struct bfd_link_info *info,
5816 boolean (*gc_sweep_hook)
5817 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5818 const Elf_Internal_Rela *relocs))));
5819
5820 static boolean elf_gc_sweep_symbol
5821 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
5822
5823 static boolean elf_gc_allocate_got_offsets
5824 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
5825
5826 static boolean elf_gc_propagate_vtable_entries_used
5827 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5828
5829 static boolean elf_gc_smash_unused_vtentry_relocs
5830 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5831
5832 /* The mark phase of garbage collection. For a given section, mark
5833 it, and all the sections which define symbols to which it refers. */
5834
5835 static boolean
5836 elf_gc_mark (info, sec, gc_mark_hook)
5837 struct bfd_link_info *info;
5838 asection *sec;
5839 asection * (*gc_mark_hook)
5840 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5841 struct elf_link_hash_entry *, Elf_Internal_Sym *));
5842 {
5843 boolean ret = true;
5844
5845 sec->gc_mark = 1;
5846
5847 /* Look through the section relocs. */
5848
5849 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
5850 {
5851 Elf_Internal_Rela *relstart, *rel, *relend;
5852 Elf_Internal_Shdr *symtab_hdr;
5853 struct elf_link_hash_entry **sym_hashes;
5854 size_t nlocsyms;
5855 size_t extsymoff;
5856 Elf_External_Sym *locsyms, *freesyms = NULL;
5857 bfd *input_bfd = sec->owner;
5858 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
5859
5860 /* GCFIXME: how to arrange so that relocs and symbols are not
5861 reread continually? */
5862
5863 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5864 sym_hashes = elf_sym_hashes (input_bfd);
5865
5866 /* Read the local symbols. */
5867 if (elf_bad_symtab (input_bfd))
5868 {
5869 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5870 extsymoff = 0;
5871 }
5872 else
5873 extsymoff = nlocsyms = symtab_hdr->sh_info;
5874 if (symtab_hdr->contents)
5875 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
5876 else if (nlocsyms == 0)
5877 locsyms = NULL;
5878 else
5879 {
5880 locsyms = freesyms =
5881 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
5882 if (freesyms == NULL
5883 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5884 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
5885 nlocsyms, input_bfd)
5886 != nlocsyms * sizeof (Elf_External_Sym)))
5887 {
5888 ret = false;
5889 goto out1;
5890 }
5891 }
5892
5893 /* Read the relocations. */
5894 relstart = (NAME(_bfd_elf,link_read_relocs)
5895 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
5896 info->keep_memory));
5897 if (relstart == NULL)
5898 {
5899 ret = false;
5900 goto out1;
5901 }
5902 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5903
5904 for (rel = relstart; rel < relend; rel++)
5905 {
5906 unsigned long r_symndx;
5907 asection *rsec;
5908 struct elf_link_hash_entry *h;
5909 Elf_Internal_Sym s;
5910
5911 r_symndx = ELF_R_SYM (rel->r_info);
5912 if (r_symndx == 0)
5913 continue;
5914
5915 if (elf_bad_symtab (sec->owner))
5916 {
5917 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5918 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
5919 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5920 else
5921 {
5922 h = sym_hashes[r_symndx - extsymoff];
5923 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5924 }
5925 }
5926 else if (r_symndx >= nlocsyms)
5927 {
5928 h = sym_hashes[r_symndx - extsymoff];
5929 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5930 }
5931 else
5932 {
5933 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5934 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5935 }
5936
5937 if (rsec && !rsec->gc_mark)
5938 if (!elf_gc_mark (info, rsec, gc_mark_hook))
5939 {
5940 ret = false;
5941 goto out2;
5942 }
5943 }
5944
5945 out2:
5946 if (!info->keep_memory)
5947 free (relstart);
5948 out1:
5949 if (freesyms)
5950 free (freesyms);
5951 }
5952
5953 return ret;
5954 }
5955
5956 /* The sweep phase of garbage collection. Remove all garbage sections. */
5957
5958 static boolean
5959 elf_gc_sweep (info, gc_sweep_hook)
5960 struct bfd_link_info *info;
5961 boolean (*gc_sweep_hook)
5962 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5963 const Elf_Internal_Rela *relocs));
5964 {
5965 bfd *sub;
5966
5967 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5968 {
5969 asection *o;
5970
5971 for (o = sub->sections; o != NULL; o = o->next)
5972 {
5973 /* Keep special sections. Keep .debug sections. */
5974 if ((o->flags & SEC_LINKER_CREATED)
5975 || (o->flags & SEC_DEBUGGING))
5976 o->gc_mark = 1;
5977
5978 if (o->gc_mark)
5979 continue;
5980
5981 /* Skip sweeping sections already excluded. */
5982 if (o->flags & SEC_EXCLUDE)
5983 continue;
5984
5985 /* Since this is early in the link process, it is simple
5986 to remove a section from the output. */
5987 o->flags |= SEC_EXCLUDE;
5988
5989 /* But we also have to update some of the relocation
5990 info we collected before. */
5991 if (gc_sweep_hook
5992 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
5993 {
5994 Elf_Internal_Rela *internal_relocs;
5995 boolean r;
5996
5997 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5998 (o->owner, o, NULL, NULL, info->keep_memory));
5999 if (internal_relocs == NULL)
6000 return false;
6001
6002 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
6003
6004 if (!info->keep_memory)
6005 free (internal_relocs);
6006
6007 if (!r)
6008 return false;
6009 }
6010 }
6011 }
6012
6013 /* Remove the symbols that were in the swept sections from the dynamic
6014 symbol table. GCFIXME: Anyone know how to get them out of the
6015 static symbol table as well? */
6016 {
6017 int i = 0;
6018
6019 elf_link_hash_traverse (elf_hash_table (info),
6020 elf_gc_sweep_symbol,
6021 (PTR) &i);
6022
6023 elf_hash_table (info)->dynsymcount = i;
6024 }
6025
6026 return true;
6027 }
6028
6029 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6030
6031 static boolean
6032 elf_gc_sweep_symbol (h, idxptr)
6033 struct elf_link_hash_entry *h;
6034 PTR idxptr;
6035 {
6036 int *idx = (int *) idxptr;
6037
6038 if (h->dynindx != -1
6039 && ((h->root.type != bfd_link_hash_defined
6040 && h->root.type != bfd_link_hash_defweak)
6041 || h->root.u.def.section->gc_mark))
6042 h->dynindx = (*idx)++;
6043
6044 return true;
6045 }
6046
6047 /* Propogate collected vtable information. This is called through
6048 elf_link_hash_traverse. */
6049
6050 static boolean
6051 elf_gc_propagate_vtable_entries_used (h, okp)
6052 struct elf_link_hash_entry *h;
6053 PTR okp;
6054 {
6055 /* Those that are not vtables. */
6056 if (h->vtable_parent == NULL)
6057 return true;
6058
6059 /* Those vtables that do not have parents, we cannot merge. */
6060 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6061 return true;
6062
6063 /* If we've already been done, exit. */
6064 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6065 return true;
6066
6067 /* Make sure the parent's table is up to date. */
6068 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6069
6070 if (h->vtable_entries_used == NULL)
6071 {
6072 /* None of this table's entries were referenced. Re-use the
6073 parent's table. */
6074 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6075 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6076 }
6077 else
6078 {
6079 size_t n;
6080 boolean *cu, *pu;
6081
6082 /* Or the parent's entries into ours. */
6083 cu = h->vtable_entries_used;
6084 cu[-1] = true;
6085 pu = h->vtable_parent->vtable_entries_used;
6086 if (pu != NULL)
6087 {
6088 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6089 while (--n != 0)
6090 {
6091 if (*pu) *cu = true;
6092 pu++, cu++;
6093 }
6094 }
6095 }
6096
6097 return true;
6098 }
6099
6100 static boolean
6101 elf_gc_smash_unused_vtentry_relocs (h, okp)
6102 struct elf_link_hash_entry *h;
6103 PTR okp;
6104 {
6105 asection *sec;
6106 bfd_vma hstart, hend;
6107 Elf_Internal_Rela *relstart, *relend, *rel;
6108 struct elf_backend_data *bed;
6109
6110 /* Take care of both those symbols that do not describe vtables as
6111 well as those that are not loaded. */
6112 if (h->vtable_parent == NULL)
6113 return true;
6114
6115 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6116 || h->root.type == bfd_link_hash_defweak);
6117
6118 sec = h->root.u.def.section;
6119 hstart = h->root.u.def.value;
6120 hend = hstart + h->size;
6121
6122 relstart = (NAME(_bfd_elf,link_read_relocs)
6123 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6124 if (!relstart)
6125 return *(boolean *)okp = false;
6126 bed = get_elf_backend_data (sec->owner);
6127 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6128
6129 for (rel = relstart; rel < relend; ++rel)
6130 if (rel->r_offset >= hstart && rel->r_offset < hend)
6131 {
6132 /* If the entry is in use, do nothing. */
6133 if (h->vtable_entries_used
6134 && (rel->r_offset - hstart) < h->vtable_entries_size)
6135 {
6136 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6137 if (h->vtable_entries_used[entry])
6138 continue;
6139 }
6140 /* Otherwise, kill it. */
6141 rel->r_offset = rel->r_info = rel->r_addend = 0;
6142 }
6143
6144 return true;
6145 }
6146
6147 /* Do mark and sweep of unused sections. */
6148
6149 boolean
6150 elf_gc_sections (abfd, info)
6151 bfd *abfd;
6152 struct bfd_link_info *info;
6153 {
6154 boolean ok = true;
6155 bfd *sub;
6156 asection * (*gc_mark_hook)
6157 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6158 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6159
6160 if (!get_elf_backend_data (abfd)->can_gc_sections
6161 || info->relocateable
6162 || elf_hash_table (info)->dynamic_sections_created)
6163 return true;
6164
6165 /* Apply transitive closure to the vtable entry usage info. */
6166 elf_link_hash_traverse (elf_hash_table (info),
6167 elf_gc_propagate_vtable_entries_used,
6168 (PTR) &ok);
6169 if (!ok)
6170 return false;
6171
6172 /* Kill the vtable relocations that were not used. */
6173 elf_link_hash_traverse (elf_hash_table (info),
6174 elf_gc_smash_unused_vtentry_relocs,
6175 (PTR) &ok);
6176 if (!ok)
6177 return false;
6178
6179 /* Grovel through relocs to find out who stays ... */
6180
6181 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6182 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6183 {
6184 asection *o;
6185 for (o = sub->sections; o != NULL; o = o->next)
6186 {
6187 if (o->flags & SEC_KEEP)
6188 if (!elf_gc_mark (info, o, gc_mark_hook))
6189 return false;
6190 }
6191 }
6192
6193 /* ... and mark SEC_EXCLUDE for those that go. */
6194 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6195 return false;
6196
6197 return true;
6198 }
6199 \f
6200 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6201
6202 boolean
6203 elf_gc_record_vtinherit (abfd, sec, h, offset)
6204 bfd *abfd;
6205 asection *sec;
6206 struct elf_link_hash_entry *h;
6207 bfd_vma offset;
6208 {
6209 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6210 struct elf_link_hash_entry **search, *child;
6211 bfd_size_type extsymcount;
6212
6213 /* The sh_info field of the symtab header tells us where the
6214 external symbols start. We don't care about the local symbols at
6215 this point. */
6216 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6217 if (!elf_bad_symtab (abfd))
6218 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6219
6220 sym_hashes = elf_sym_hashes (abfd);
6221 sym_hashes_end = sym_hashes + extsymcount;
6222
6223 /* Hunt down the child symbol, which is in this section at the same
6224 offset as the relocation. */
6225 for (search = sym_hashes; search != sym_hashes_end; ++search)
6226 {
6227 if ((child = *search) != NULL
6228 && (child->root.type == bfd_link_hash_defined
6229 || child->root.type == bfd_link_hash_defweak)
6230 && child->root.u.def.section == sec
6231 && child->root.u.def.value == offset)
6232 goto win;
6233 }
6234
6235 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6236 bfd_get_filename (abfd), sec->name,
6237 (unsigned long)offset);
6238 bfd_set_error (bfd_error_invalid_operation);
6239 return false;
6240
6241 win:
6242 if (!h)
6243 {
6244 /* This *should* only be the absolute section. It could potentially
6245 be that someone has defined a non-global vtable though, which
6246 would be bad. It isn't worth paging in the local symbols to be
6247 sure though; that case should simply be handled by the assembler. */
6248
6249 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6250 }
6251 else
6252 child->vtable_parent = h;
6253
6254 return true;
6255 }
6256
6257 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
6258
6259 boolean
6260 elf_gc_record_vtentry (abfd, sec, h, addend)
6261 bfd *abfd ATTRIBUTE_UNUSED;
6262 asection *sec ATTRIBUTE_UNUSED;
6263 struct elf_link_hash_entry *h;
6264 bfd_vma addend;
6265 {
6266 if (addend >= h->vtable_entries_size)
6267 {
6268 size_t size, bytes;
6269 boolean *ptr = h->vtable_entries_used;
6270
6271 /* While the symbol is undefined, we have to be prepared to handle
6272 a zero size. */
6273 if (h->root.type == bfd_link_hash_undefined)
6274 size = addend;
6275 else
6276 {
6277 size = h->size;
6278 if (size < addend)
6279 {
6280 /* Oops! We've got a reference past the defined end of
6281 the table. This is probably a bug -- shall we warn? */
6282 size = addend;
6283 }
6284 }
6285
6286 /* Allocate one extra entry for use as a "done" flag for the
6287 consolidation pass. */
6288 bytes = (size / FILE_ALIGN + 1) * sizeof(boolean);
6289
6290 if (ptr)
6291 {
6292 size_t oldbytes;
6293
6294 ptr = realloc (ptr-1, bytes);
6295 if (ptr == NULL)
6296 return false;
6297
6298 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof(boolean);
6299 memset (ptr + oldbytes, 0, bytes - oldbytes);
6300 }
6301 else
6302 {
6303 ptr = calloc (1, bytes);
6304 if (ptr == NULL)
6305 return false;
6306 }
6307
6308 /* And arrange for that done flag to be at index -1. */
6309 h->vtable_entries_used = ptr+1;
6310 h->vtable_entries_size = size;
6311 }
6312 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6313
6314 return true;
6315 }
6316
6317 /* And an accompanying bit to work out final got entry offsets once
6318 we're done. Should be called from final_link. */
6319
6320 boolean
6321 elf_gc_common_finalize_got_offsets (abfd, info)
6322 bfd *abfd;
6323 struct bfd_link_info *info;
6324 {
6325 bfd *i;
6326 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6327 bfd_vma gotoff;
6328
6329 /* The GOT offset is relative to the .got section, but the GOT header is
6330 put into the .got.plt section, if the backend uses it. */
6331 if (bed->want_got_plt)
6332 gotoff = 0;
6333 else
6334 gotoff = bed->got_header_size;
6335
6336 /* Do the local .got entries first. */
6337 for (i = info->input_bfds; i; i = i->link_next)
6338 {
6339 bfd_signed_vma *local_got = elf_local_got_refcounts (i);
6340 bfd_size_type j, locsymcount;
6341 Elf_Internal_Shdr *symtab_hdr;
6342
6343 if (!local_got)
6344 continue;
6345
6346 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6347 if (elf_bad_symtab (i))
6348 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6349 else
6350 locsymcount = symtab_hdr->sh_info;
6351
6352 for (j = 0; j < locsymcount; ++j)
6353 {
6354 if (local_got[j] > 0)
6355 {
6356 local_got[j] = gotoff;
6357 gotoff += ARCH_SIZE / 8;
6358 }
6359 else
6360 local_got[j] = (bfd_vma) -1;
6361 }
6362 }
6363
6364 /* Then the global .got and .plt entries. */
6365 elf_link_hash_traverse (elf_hash_table (info),
6366 elf_gc_allocate_got_offsets,
6367 (PTR) &gotoff);
6368 return true;
6369 }
6370
6371 /* We need a special top-level link routine to convert got reference counts
6372 to real got offsets. */
6373
6374 static boolean
6375 elf_gc_allocate_got_offsets (h, offarg)
6376 struct elf_link_hash_entry *h;
6377 PTR offarg;
6378 {
6379 bfd_vma *off = (bfd_vma *) offarg;
6380
6381 if (h->got.refcount > 0)
6382 {
6383 h->got.offset = off[0];
6384 off[0] += ARCH_SIZE / 8;
6385 }
6386 else
6387 h->got.offset = (bfd_vma) -1;
6388
6389 return true;
6390 }
6391
6392 /* Many folk need no more in the way of final link than this, once
6393 got entry reference counting is enabled. */
6394
6395 boolean
6396 elf_gc_common_final_link (abfd, info)
6397 bfd *abfd;
6398 struct bfd_link_info *info;
6399 {
6400 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6401 return false;
6402
6403 /* Invoke the regular ELF backend linker to do all the work. */
6404 return elf_bfd_final_link (abfd, info);
6405 }
6406
6407 /* This function will be called though elf_link_hash_traverse to store
6408 all hash value of the exported symbols in an array. */
6409
6410 static boolean
6411 elf_collect_hash_codes (h, data)
6412 struct elf_link_hash_entry *h;
6413 PTR data;
6414 {
6415 unsigned long **valuep = (unsigned long **) data;
6416 const char *name;
6417 char *p;
6418 unsigned long ha;
6419 char *alc = NULL;
6420
6421 /* Ignore indirect symbols. These are added by the versioning code. */
6422 if (h->dynindx == -1)
6423 return true;
6424
6425 name = h->root.root.string;
6426 p = strchr (name, ELF_VER_CHR);
6427 if (p != NULL)
6428 {
6429 alc = bfd_malloc (p - name + 1);
6430 memcpy (alc, name, p - name);
6431 alc[p - name] = '\0';
6432 name = alc;
6433 }
6434
6435 /* Compute the hash value. */
6436 ha = bfd_elf_hash (name);
6437
6438 /* Store the found hash value in the array given as the argument. */
6439 *(*valuep)++ = ha;
6440
6441 /* And store it in the struct so that we can put it in the hash table
6442 later. */
6443 h->elf_hash_value = ha;
6444
6445 if (alc != NULL)
6446 free (alc);
6447
6448 return true;
6449 }