2001-06-18 H.J. Lu <hjl@gnu.org>
[binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* ELF linker code. */
22
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
25
26 struct elf_info_failed
27 {
28 boolean failed;
29 struct bfd_link_info *info;
30 struct bfd_elf_version_tree *verdefs;
31 };
32
33 static boolean elf_link_add_object_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35 static boolean elf_link_add_archive_symbols
36 PARAMS ((bfd *, struct bfd_link_info *));
37 static boolean elf_merge_symbol
38 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
39 asection **, bfd_vma *, struct elf_link_hash_entry **,
40 boolean *, boolean *, boolean *, boolean));
41 static boolean elf_export_symbol
42 PARAMS ((struct elf_link_hash_entry *, PTR));
43 static boolean elf_fix_symbol_flags
44 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
45 static boolean elf_adjust_dynamic_symbol
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49 static boolean elf_link_find_version_dependencies
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51 static boolean elf_link_assign_sym_version
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53 static boolean elf_collect_hash_codes
54 PARAMS ((struct elf_link_hash_entry *, PTR));
55 static boolean elf_link_read_relocs_from_section
56 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
57 static void elf_link_output_relocs
58 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
59 static boolean elf_link_size_reloc_section
60 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
61 static void elf_link_adjust_relocs
62 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
63 struct elf_link_hash_entry **));
64
65 /* Given an ELF BFD, add symbols to the global hash table as
66 appropriate. */
67
68 boolean
69 elf_bfd_link_add_symbols (abfd, info)
70 bfd *abfd;
71 struct bfd_link_info *info;
72 {
73 switch (bfd_get_format (abfd))
74 {
75 case bfd_object:
76 return elf_link_add_object_symbols (abfd, info);
77 case bfd_archive:
78 return elf_link_add_archive_symbols (abfd, info);
79 default:
80 bfd_set_error (bfd_error_wrong_format);
81 return false;
82 }
83 }
84 \f
85 /* Return true iff this is a non-common, definition of a non-function symbol. */
86 static boolean
87 is_global_data_symbol_definition (abfd, sym)
88 bfd * abfd ATTRIBUTE_UNUSED;
89 Elf_Internal_Sym * sym;
90 {
91 /* Local symbols do not count, but target specific ones might. */
92 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
93 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
94 return false;
95
96 /* Function symbols do not count. */
97 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
98 return false;
99
100 /* If the section is undefined, then so is the symbol. */
101 if (sym->st_shndx == SHN_UNDEF)
102 return false;
103
104 /* If the symbol is defined in the common section, then
105 it is a common definition and so does not count. */
106 if (sym->st_shndx == SHN_COMMON)
107 return false;
108
109 /* If the symbol is in a target specific section then we
110 must rely upon the backend to tell us what it is. */
111 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
112 /* FIXME - this function is not coded yet:
113
114 return _bfd_is_global_symbol_definition (abfd, sym);
115
116 Instead for now assume that the definition is not global,
117 Even if this is wrong, at least the linker will behave
118 in the same way that it used to do. */
119 return false;
120
121 return true;
122 }
123
124 /* Search the symbol table of the archive element of the archive ABFD
125 whose archive map contains a mention of SYMDEF, and determine if
126 the symbol is defined in this element. */
127 static boolean
128 elf_link_is_defined_archive_symbol (abfd, symdef)
129 bfd * abfd;
130 carsym * symdef;
131 {
132 Elf_Internal_Shdr * hdr;
133 Elf_External_Sym * esym;
134 Elf_External_Sym * esymend;
135 Elf_External_Sym * buf = NULL;
136 size_t symcount;
137 size_t extsymcount;
138 size_t extsymoff;
139 boolean result = false;
140
141 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
142 if (abfd == (bfd *) NULL)
143 return false;
144
145 if (! bfd_check_format (abfd, bfd_object))
146 return false;
147
148 /* If we have already included the element containing this symbol in the
149 link then we do not need to include it again. Just claim that any symbol
150 it contains is not a definition, so that our caller will not decide to
151 (re)include this element. */
152 if (abfd->archive_pass)
153 return false;
154
155 /* Select the appropriate symbol table. */
156 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
157 hdr = &elf_tdata (abfd)->symtab_hdr;
158 else
159 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
160
161 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
162
163 /* The sh_info field of the symtab header tells us where the
164 external symbols start. We don't care about the local symbols. */
165 if (elf_bad_symtab (abfd))
166 {
167 extsymcount = symcount;
168 extsymoff = 0;
169 }
170 else
171 {
172 extsymcount = symcount - hdr->sh_info;
173 extsymoff = hdr->sh_info;
174 }
175
176 buf = ((Elf_External_Sym *)
177 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
178 if (buf == NULL && extsymcount != 0)
179 return false;
180
181 /* Read in the symbol table.
182 FIXME: This ought to be cached somewhere. */
183 if (bfd_seek (abfd,
184 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
185 SEEK_SET) != 0
186 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
187 != extsymcount * sizeof (Elf_External_Sym)))
188 {
189 free (buf);
190 return false;
191 }
192
193 /* Scan the symbol table looking for SYMDEF. */
194 esymend = buf + extsymcount;
195 for (esym = buf;
196 esym < esymend;
197 esym++)
198 {
199 Elf_Internal_Sym sym;
200 const char * name;
201
202 elf_swap_symbol_in (abfd, esym, & sym);
203
204 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
205 if (name == (const char *) NULL)
206 break;
207
208 if (strcmp (name, symdef->name) == 0)
209 {
210 result = is_global_data_symbol_definition (abfd, & sym);
211 break;
212 }
213 }
214
215 free (buf);
216
217 return result;
218 }
219 \f
220 /* Add symbols from an ELF archive file to the linker hash table. We
221 don't use _bfd_generic_link_add_archive_symbols because of a
222 problem which arises on UnixWare. The UnixWare libc.so is an
223 archive which includes an entry libc.so.1 which defines a bunch of
224 symbols. The libc.so archive also includes a number of other
225 object files, which also define symbols, some of which are the same
226 as those defined in libc.so.1. Correct linking requires that we
227 consider each object file in turn, and include it if it defines any
228 symbols we need. _bfd_generic_link_add_archive_symbols does not do
229 this; it looks through the list of undefined symbols, and includes
230 any object file which defines them. When this algorithm is used on
231 UnixWare, it winds up pulling in libc.so.1 early and defining a
232 bunch of symbols. This means that some of the other objects in the
233 archive are not included in the link, which is incorrect since they
234 precede libc.so.1 in the archive.
235
236 Fortunately, ELF archive handling is simpler than that done by
237 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
238 oddities. In ELF, if we find a symbol in the archive map, and the
239 symbol is currently undefined, we know that we must pull in that
240 object file.
241
242 Unfortunately, we do have to make multiple passes over the symbol
243 table until nothing further is resolved. */
244
245 static boolean
246 elf_link_add_archive_symbols (abfd, info)
247 bfd *abfd;
248 struct bfd_link_info *info;
249 {
250 symindex c;
251 boolean *defined = NULL;
252 boolean *included = NULL;
253 carsym *symdefs;
254 boolean loop;
255
256 if (! bfd_has_map (abfd))
257 {
258 /* An empty archive is a special case. */
259 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
260 return true;
261 bfd_set_error (bfd_error_no_armap);
262 return false;
263 }
264
265 /* Keep track of all symbols we know to be already defined, and all
266 files we know to be already included. This is to speed up the
267 second and subsequent passes. */
268 c = bfd_ardata (abfd)->symdef_count;
269 if (c == 0)
270 return true;
271 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
272 included = (boolean *) bfd_malloc (c * sizeof (boolean));
273 if (defined == (boolean *) NULL || included == (boolean *) NULL)
274 goto error_return;
275 memset (defined, 0, c * sizeof (boolean));
276 memset (included, 0, c * sizeof (boolean));
277
278 symdefs = bfd_ardata (abfd)->symdefs;
279
280 do
281 {
282 file_ptr last;
283 symindex i;
284 carsym *symdef;
285 carsym *symdefend;
286
287 loop = false;
288 last = -1;
289
290 symdef = symdefs;
291 symdefend = symdef + c;
292 for (i = 0; symdef < symdefend; symdef++, i++)
293 {
294 struct elf_link_hash_entry *h;
295 bfd *element;
296 struct bfd_link_hash_entry *undefs_tail;
297 symindex mark;
298
299 if (defined[i] || included[i])
300 continue;
301 if (symdef->file_offset == last)
302 {
303 included[i] = true;
304 continue;
305 }
306
307 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
308 false, false, false);
309
310 if (h == NULL)
311 {
312 char *p, *copy;
313
314 /* If this is a default version (the name contains @@),
315 look up the symbol again without the version. The
316 effect is that references to the symbol without the
317 version will be matched by the default symbol in the
318 archive. */
319
320 p = strchr (symdef->name, ELF_VER_CHR);
321 if (p == NULL || p[1] != ELF_VER_CHR)
322 continue;
323
324 copy = bfd_alloc (abfd, p - symdef->name + 1);
325 if (copy == NULL)
326 goto error_return;
327 memcpy (copy, symdef->name, p - symdef->name);
328 copy[p - symdef->name] = '\0';
329
330 h = elf_link_hash_lookup (elf_hash_table (info), copy,
331 false, false, false);
332
333 bfd_release (abfd, copy);
334 }
335
336 if (h == NULL)
337 continue;
338
339 if (h->root.type == bfd_link_hash_common)
340 {
341 /* We currently have a common symbol. The archive map contains
342 a reference to this symbol, so we may want to include it. We
343 only want to include it however, if this archive element
344 contains a definition of the symbol, not just another common
345 declaration of it.
346
347 Unfortunately some archivers (including GNU ar) will put
348 declarations of common symbols into their archive maps, as
349 well as real definitions, so we cannot just go by the archive
350 map alone. Instead we must read in the element's symbol
351 table and check that to see what kind of symbol definition
352 this is. */
353 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
354 continue;
355 }
356 else if (h->root.type != bfd_link_hash_undefined)
357 {
358 if (h->root.type != bfd_link_hash_undefweak)
359 defined[i] = true;
360 continue;
361 }
362
363 /* We need to include this archive member. */
364 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
365 if (element == (bfd *) NULL)
366 goto error_return;
367
368 if (! bfd_check_format (element, bfd_object))
369 goto error_return;
370
371 /* Doublecheck that we have not included this object
372 already--it should be impossible, but there may be
373 something wrong with the archive. */
374 if (element->archive_pass != 0)
375 {
376 bfd_set_error (bfd_error_bad_value);
377 goto error_return;
378 }
379 element->archive_pass = 1;
380
381 undefs_tail = info->hash->undefs_tail;
382
383 if (! (*info->callbacks->add_archive_element) (info, element,
384 symdef->name))
385 goto error_return;
386 if (! elf_link_add_object_symbols (element, info))
387 goto error_return;
388
389 /* If there are any new undefined symbols, we need to make
390 another pass through the archive in order to see whether
391 they can be defined. FIXME: This isn't perfect, because
392 common symbols wind up on undefs_tail and because an
393 undefined symbol which is defined later on in this pass
394 does not require another pass. This isn't a bug, but it
395 does make the code less efficient than it could be. */
396 if (undefs_tail != info->hash->undefs_tail)
397 loop = true;
398
399 /* Look backward to mark all symbols from this object file
400 which we have already seen in this pass. */
401 mark = i;
402 do
403 {
404 included[mark] = true;
405 if (mark == 0)
406 break;
407 --mark;
408 }
409 while (symdefs[mark].file_offset == symdef->file_offset);
410
411 /* We mark subsequent symbols from this object file as we go
412 on through the loop. */
413 last = symdef->file_offset;
414 }
415 }
416 while (loop);
417
418 free (defined);
419 free (included);
420
421 return true;
422
423 error_return:
424 if (defined != (boolean *) NULL)
425 free (defined);
426 if (included != (boolean *) NULL)
427 free (included);
428 return false;
429 }
430
431 /* This function is called when we want to define a new symbol. It
432 handles the various cases which arise when we find a definition in
433 a dynamic object, or when there is already a definition in a
434 dynamic object. The new symbol is described by NAME, SYM, PSEC,
435 and PVALUE. We set SYM_HASH to the hash table entry. We set
436 OVERRIDE if the old symbol is overriding a new definition. We set
437 TYPE_CHANGE_OK if it is OK for the type to change. We set
438 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
439 change, we mean that we shouldn't warn if the type or size does
440 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
441 a shared object. */
442
443 static boolean
444 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
445 override, type_change_ok, size_change_ok, dt_needed)
446 bfd *abfd;
447 struct bfd_link_info *info;
448 const char *name;
449 Elf_Internal_Sym *sym;
450 asection **psec;
451 bfd_vma *pvalue;
452 struct elf_link_hash_entry **sym_hash;
453 boolean *override;
454 boolean *type_change_ok;
455 boolean *size_change_ok;
456 boolean dt_needed;
457 {
458 asection *sec;
459 struct elf_link_hash_entry *h;
460 int bind;
461 bfd *oldbfd;
462 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
463
464 *override = false;
465
466 sec = *psec;
467 bind = ELF_ST_BIND (sym->st_info);
468
469 if (! bfd_is_und_section (sec))
470 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
471 else
472 h = ((struct elf_link_hash_entry *)
473 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
474 if (h == NULL)
475 return false;
476 *sym_hash = h;
477
478 /* This code is for coping with dynamic objects, and is only useful
479 if we are doing an ELF link. */
480 if (info->hash->creator != abfd->xvec)
481 return true;
482
483 /* For merging, we only care about real symbols. */
484
485 while (h->root.type == bfd_link_hash_indirect
486 || h->root.type == bfd_link_hash_warning)
487 h = (struct elf_link_hash_entry *) h->root.u.i.link;
488
489 /* If we just created the symbol, mark it as being an ELF symbol.
490 Other than that, there is nothing to do--there is no merge issue
491 with a newly defined symbol--so we just return. */
492
493 if (h->root.type == bfd_link_hash_new)
494 {
495 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
496 return true;
497 }
498
499 /* OLDBFD is a BFD associated with the existing symbol. */
500
501 switch (h->root.type)
502 {
503 default:
504 oldbfd = NULL;
505 break;
506
507 case bfd_link_hash_undefined:
508 case bfd_link_hash_undefweak:
509 oldbfd = h->root.u.undef.abfd;
510 break;
511
512 case bfd_link_hash_defined:
513 case bfd_link_hash_defweak:
514 oldbfd = h->root.u.def.section->owner;
515 break;
516
517 case bfd_link_hash_common:
518 oldbfd = h->root.u.c.p->section->owner;
519 break;
520 }
521
522 /* In cases involving weak versioned symbols, we may wind up trying
523 to merge a symbol with itself. Catch that here, to avoid the
524 confusion that results if we try to override a symbol with
525 itself. The additional tests catch cases like
526 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
527 dynamic object, which we do want to handle here. */
528 if (abfd == oldbfd
529 && ((abfd->flags & DYNAMIC) == 0
530 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
531 return true;
532
533 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
534 respectively, is from a dynamic object. */
535
536 if ((abfd->flags & DYNAMIC) != 0)
537 newdyn = true;
538 else
539 newdyn = false;
540
541 if (oldbfd != NULL)
542 olddyn = (oldbfd->flags & DYNAMIC) != 0;
543 else
544 {
545 asection *hsec;
546
547 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
548 indices used by MIPS ELF. */
549 switch (h->root.type)
550 {
551 default:
552 hsec = NULL;
553 break;
554
555 case bfd_link_hash_defined:
556 case bfd_link_hash_defweak:
557 hsec = h->root.u.def.section;
558 break;
559
560 case bfd_link_hash_common:
561 hsec = h->root.u.c.p->section;
562 break;
563 }
564
565 if (hsec == NULL)
566 olddyn = false;
567 else
568 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
569 }
570
571 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
572 respectively, appear to be a definition rather than reference. */
573
574 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
575 newdef = false;
576 else
577 newdef = true;
578
579 if (h->root.type == bfd_link_hash_undefined
580 || h->root.type == bfd_link_hash_undefweak
581 || h->root.type == bfd_link_hash_common)
582 olddef = false;
583 else
584 olddef = true;
585
586 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
587 symbol, respectively, appears to be a common symbol in a dynamic
588 object. If a symbol appears in an uninitialized section, and is
589 not weak, and is not a function, then it may be a common symbol
590 which was resolved when the dynamic object was created. We want
591 to treat such symbols specially, because they raise special
592 considerations when setting the symbol size: if the symbol
593 appears as a common symbol in a regular object, and the size in
594 the regular object is larger, we must make sure that we use the
595 larger size. This problematic case can always be avoided in C,
596 but it must be handled correctly when using Fortran shared
597 libraries.
598
599 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
600 likewise for OLDDYNCOMMON and OLDDEF.
601
602 Note that this test is just a heuristic, and that it is quite
603 possible to have an uninitialized symbol in a shared object which
604 is really a definition, rather than a common symbol. This could
605 lead to some minor confusion when the symbol really is a common
606 symbol in some regular object. However, I think it will be
607 harmless. */
608
609 if (newdyn
610 && newdef
611 && (sec->flags & SEC_ALLOC) != 0
612 && (sec->flags & SEC_LOAD) == 0
613 && sym->st_size > 0
614 && bind != STB_WEAK
615 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
616 newdyncommon = true;
617 else
618 newdyncommon = false;
619
620 if (olddyn
621 && olddef
622 && h->root.type == bfd_link_hash_defined
623 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
624 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
625 && (h->root.u.def.section->flags & SEC_LOAD) == 0
626 && h->size > 0
627 && h->type != STT_FUNC)
628 olddyncommon = true;
629 else
630 olddyncommon = false;
631
632 /* It's OK to change the type if either the existing symbol or the
633 new symbol is weak unless it comes from a DT_NEEDED entry of
634 a shared object, in which case, the DT_NEEDED entry may not be
635 required at the run time. */
636
637 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
638 || h->root.type == bfd_link_hash_undefweak
639 || bind == STB_WEAK)
640 *type_change_ok = true;
641
642 /* It's OK to change the size if either the existing symbol or the
643 new symbol is weak, or if the old symbol is undefined. */
644
645 if (*type_change_ok
646 || h->root.type == bfd_link_hash_undefined)
647 *size_change_ok = true;
648
649 /* If both the old and the new symbols look like common symbols in a
650 dynamic object, set the size of the symbol to the larger of the
651 two. */
652
653 if (olddyncommon
654 && newdyncommon
655 && sym->st_size != h->size)
656 {
657 /* Since we think we have two common symbols, issue a multiple
658 common warning if desired. Note that we only warn if the
659 size is different. If the size is the same, we simply let
660 the old symbol override the new one as normally happens with
661 symbols defined in dynamic objects. */
662
663 if (! ((*info->callbacks->multiple_common)
664 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
665 h->size, abfd, bfd_link_hash_common, sym->st_size)))
666 return false;
667
668 if (sym->st_size > h->size)
669 h->size = sym->st_size;
670
671 *size_change_ok = true;
672 }
673
674 /* If we are looking at a dynamic object, and we have found a
675 definition, we need to see if the symbol was already defined by
676 some other object. If so, we want to use the existing
677 definition, and we do not want to report a multiple symbol
678 definition error; we do this by clobbering *PSEC to be
679 bfd_und_section_ptr.
680
681 We treat a common symbol as a definition if the symbol in the
682 shared library is a function, since common symbols always
683 represent variables; this can cause confusion in principle, but
684 any such confusion would seem to indicate an erroneous program or
685 shared library. We also permit a common symbol in a regular
686 object to override a weak symbol in a shared object.
687
688 We prefer a non-weak definition in a shared library to a weak
689 definition in the executable unless it comes from a DT_NEEDED
690 entry of a shared object, in which case, the DT_NEEDED entry
691 may not be required at the run time. */
692
693 if (newdyn
694 && newdef
695 && (olddef
696 || (h->root.type == bfd_link_hash_common
697 && (bind == STB_WEAK
698 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
699 && (h->root.type != bfd_link_hash_defweak
700 || dt_needed
701 || bind == STB_WEAK))
702 {
703 *override = true;
704 newdef = false;
705 newdyncommon = false;
706
707 *psec = sec = bfd_und_section_ptr;
708 *size_change_ok = true;
709
710 /* If we get here when the old symbol is a common symbol, then
711 we are explicitly letting it override a weak symbol or
712 function in a dynamic object, and we don't want to warn about
713 a type change. If the old symbol is a defined symbol, a type
714 change warning may still be appropriate. */
715
716 if (h->root.type == bfd_link_hash_common)
717 *type_change_ok = true;
718 }
719
720 /* Handle the special case of an old common symbol merging with a
721 new symbol which looks like a common symbol in a shared object.
722 We change *PSEC and *PVALUE to make the new symbol look like a
723 common symbol, and let _bfd_generic_link_add_one_symbol will do
724 the right thing. */
725
726 if (newdyncommon
727 && h->root.type == bfd_link_hash_common)
728 {
729 *override = true;
730 newdef = false;
731 newdyncommon = false;
732 *pvalue = sym->st_size;
733 *psec = sec = bfd_com_section_ptr;
734 *size_change_ok = true;
735 }
736
737 /* If the old symbol is from a dynamic object, and the new symbol is
738 a definition which is not from a dynamic object, then the new
739 symbol overrides the old symbol. Symbols from regular files
740 always take precedence over symbols from dynamic objects, even if
741 they are defined after the dynamic object in the link.
742
743 As above, we again permit a common symbol in a regular object to
744 override a definition in a shared object if the shared object
745 symbol is a function or is weak.
746
747 As above, we permit a non-weak definition in a shared object to
748 override a weak definition in a regular object. */
749
750 if (! newdyn
751 && (newdef
752 || (bfd_is_com_section (sec)
753 && (h->root.type == bfd_link_hash_defweak
754 || h->type == STT_FUNC)))
755 && olddyn
756 && olddef
757 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
758 && (bind != STB_WEAK
759 || h->root.type == bfd_link_hash_defweak))
760 {
761 /* Change the hash table entry to undefined, and let
762 _bfd_generic_link_add_one_symbol do the right thing with the
763 new definition. */
764
765 h->root.type = bfd_link_hash_undefined;
766 h->root.u.undef.abfd = h->root.u.def.section->owner;
767 *size_change_ok = true;
768
769 olddef = false;
770 olddyncommon = false;
771
772 /* We again permit a type change when a common symbol may be
773 overriding a function. */
774
775 if (bfd_is_com_section (sec))
776 *type_change_ok = true;
777
778 /* This union may have been set to be non-NULL when this symbol
779 was seen in a dynamic object. We must force the union to be
780 NULL, so that it is correct for a regular symbol. */
781
782 h->verinfo.vertree = NULL;
783
784 /* In this special case, if H is the target of an indirection,
785 we want the caller to frob with H rather than with the
786 indirect symbol. That will permit the caller to redefine the
787 target of the indirection, rather than the indirect symbol
788 itself. FIXME: This will break the -y option if we store a
789 symbol with a different name. */
790 *sym_hash = h;
791 }
792
793 /* Handle the special case of a new common symbol merging with an
794 old symbol that looks like it might be a common symbol defined in
795 a shared object. Note that we have already handled the case in
796 which a new common symbol should simply override the definition
797 in the shared library. */
798
799 if (! newdyn
800 && bfd_is_com_section (sec)
801 && olddyncommon)
802 {
803 /* It would be best if we could set the hash table entry to a
804 common symbol, but we don't know what to use for the section
805 or the alignment. */
806 if (! ((*info->callbacks->multiple_common)
807 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
808 h->size, abfd, bfd_link_hash_common, sym->st_size)))
809 return false;
810
811 /* If the predumed common symbol in the dynamic object is
812 larger, pretend that the new symbol has its size. */
813
814 if (h->size > *pvalue)
815 *pvalue = h->size;
816
817 /* FIXME: We no longer know the alignment required by the symbol
818 in the dynamic object, so we just wind up using the one from
819 the regular object. */
820
821 olddef = false;
822 olddyncommon = false;
823
824 h->root.type = bfd_link_hash_undefined;
825 h->root.u.undef.abfd = h->root.u.def.section->owner;
826
827 *size_change_ok = true;
828 *type_change_ok = true;
829
830 h->verinfo.vertree = NULL;
831 }
832
833 /* Handle the special case of a weak definition in a regular object
834 followed by a non-weak definition in a shared object. In this
835 case, we prefer the definition in the shared object unless it
836 comes from a DT_NEEDED entry of a shared object, in which case,
837 the DT_NEEDED entry may not be required at the run time. */
838 if (olddef
839 && ! dt_needed
840 && h->root.type == bfd_link_hash_defweak
841 && newdef
842 && newdyn
843 && bind != STB_WEAK)
844 {
845 /* To make this work we have to frob the flags so that the rest
846 of the code does not think we are using the regular
847 definition. */
848 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
849 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
850 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
851 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
852 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
853 | ELF_LINK_HASH_DEF_DYNAMIC);
854
855 /* If H is the target of an indirection, we want the caller to
856 use H rather than the indirect symbol. Otherwise if we are
857 defining a new indirect symbol we will wind up attaching it
858 to the entry we are overriding. */
859 *sym_hash = h;
860 }
861
862 /* Handle the special case of a non-weak definition in a shared
863 object followed by a weak definition in a regular object. In
864 this case we prefer to definition in the shared object. To make
865 this work we have to tell the caller to not treat the new symbol
866 as a definition. */
867 if (olddef
868 && olddyn
869 && h->root.type != bfd_link_hash_defweak
870 && newdef
871 && ! newdyn
872 && bind == STB_WEAK)
873 *override = true;
874
875 return true;
876 }
877
878 /* Add symbols from an ELF object file to the linker hash table. */
879
880 static boolean
881 elf_link_add_object_symbols (abfd, info)
882 bfd *abfd;
883 struct bfd_link_info *info;
884 {
885 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
886 const Elf_Internal_Sym *,
887 const char **, flagword *,
888 asection **, bfd_vma *));
889 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
890 asection *, const Elf_Internal_Rela *));
891 boolean collect;
892 Elf_Internal_Shdr *hdr;
893 size_t symcount;
894 size_t extsymcount;
895 size_t extsymoff;
896 Elf_External_Sym *buf = NULL;
897 struct elf_link_hash_entry **sym_hash;
898 boolean dynamic;
899 Elf_External_Versym *extversym = NULL;
900 Elf_External_Versym *ever;
901 Elf_External_Dyn *dynbuf = NULL;
902 struct elf_link_hash_entry *weaks;
903 Elf_External_Sym *esym;
904 Elf_External_Sym *esymend;
905 struct elf_backend_data *bed;
906 boolean dt_needed;
907
908 bed = get_elf_backend_data (abfd);
909 add_symbol_hook = bed->elf_add_symbol_hook;
910 collect = bed->collect;
911
912 if ((abfd->flags & DYNAMIC) == 0)
913 dynamic = false;
914 else
915 {
916 dynamic = true;
917
918 /* You can't use -r against a dynamic object. Also, there's no
919 hope of using a dynamic object which does not exactly match
920 the format of the output file. */
921 if (info->relocateable || info->hash->creator != abfd->xvec)
922 {
923 bfd_set_error (bfd_error_invalid_operation);
924 goto error_return;
925 }
926 }
927
928 /* As a GNU extension, any input sections which are named
929 .gnu.warning.SYMBOL are treated as warning symbols for the given
930 symbol. This differs from .gnu.warning sections, which generate
931 warnings when they are included in an output file. */
932 if (! info->shared)
933 {
934 asection *s;
935
936 for (s = abfd->sections; s != NULL; s = s->next)
937 {
938 const char *name;
939
940 name = bfd_get_section_name (abfd, s);
941 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
942 {
943 char *msg;
944 bfd_size_type sz;
945
946 name += sizeof ".gnu.warning." - 1;
947
948 /* If this is a shared object, then look up the symbol
949 in the hash table. If it is there, and it is already
950 been defined, then we will not be using the entry
951 from this shared object, so we don't need to warn.
952 FIXME: If we see the definition in a regular object
953 later on, we will warn, but we shouldn't. The only
954 fix is to keep track of what warnings we are supposed
955 to emit, and then handle them all at the end of the
956 link. */
957 if (dynamic && abfd->xvec == info->hash->creator)
958 {
959 struct elf_link_hash_entry *h;
960
961 h = elf_link_hash_lookup (elf_hash_table (info), name,
962 false, false, true);
963
964 /* FIXME: What about bfd_link_hash_common? */
965 if (h != NULL
966 && (h->root.type == bfd_link_hash_defined
967 || h->root.type == bfd_link_hash_defweak))
968 {
969 /* We don't want to issue this warning. Clobber
970 the section size so that the warning does not
971 get copied into the output file. */
972 s->_raw_size = 0;
973 continue;
974 }
975 }
976
977 sz = bfd_section_size (abfd, s);
978 msg = (char *) bfd_alloc (abfd, sz + 1);
979 if (msg == NULL)
980 goto error_return;
981
982 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
983 goto error_return;
984
985 msg[sz] = '\0';
986
987 if (! (_bfd_generic_link_add_one_symbol
988 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
989 false, collect, (struct bfd_link_hash_entry **) NULL)))
990 goto error_return;
991
992 if (! info->relocateable)
993 {
994 /* Clobber the section size so that the warning does
995 not get copied into the output file. */
996 s->_raw_size = 0;
997 }
998 }
999 }
1000 }
1001
1002 /* If this is a dynamic object, we always link against the .dynsym
1003 symbol table, not the .symtab symbol table. The dynamic linker
1004 will only see the .dynsym symbol table, so there is no reason to
1005 look at .symtab for a dynamic object. */
1006
1007 if (! dynamic || elf_dynsymtab (abfd) == 0)
1008 hdr = &elf_tdata (abfd)->symtab_hdr;
1009 else
1010 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1011
1012 if (dynamic)
1013 {
1014 /* Read in any version definitions. */
1015
1016 if (! _bfd_elf_slurp_version_tables (abfd))
1017 goto error_return;
1018
1019 /* Read in the symbol versions, but don't bother to convert them
1020 to internal format. */
1021 if (elf_dynversym (abfd) != 0)
1022 {
1023 Elf_Internal_Shdr *versymhdr;
1024
1025 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1026 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
1027 if (extversym == NULL)
1028 goto error_return;
1029 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1030 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
1031 != versymhdr->sh_size))
1032 goto error_return;
1033 }
1034 }
1035
1036 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1037
1038 /* The sh_info field of the symtab header tells us where the
1039 external symbols start. We don't care about the local symbols at
1040 this point. */
1041 if (elf_bad_symtab (abfd))
1042 {
1043 extsymcount = symcount;
1044 extsymoff = 0;
1045 }
1046 else
1047 {
1048 extsymcount = symcount - hdr->sh_info;
1049 extsymoff = hdr->sh_info;
1050 }
1051
1052 buf = ((Elf_External_Sym *)
1053 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
1054 if (buf == NULL && extsymcount != 0)
1055 goto error_return;
1056
1057 /* We store a pointer to the hash table entry for each external
1058 symbol. */
1059 sym_hash = ((struct elf_link_hash_entry **)
1060 bfd_alloc (abfd,
1061 extsymcount * sizeof (struct elf_link_hash_entry *)));
1062 if (sym_hash == NULL)
1063 goto error_return;
1064 elf_sym_hashes (abfd) = sym_hash;
1065
1066 dt_needed = false;
1067
1068 if (! dynamic)
1069 {
1070 /* If we are creating a shared library, create all the dynamic
1071 sections immediately. We need to attach them to something,
1072 so we attach them to this BFD, provided it is the right
1073 format. FIXME: If there are no input BFD's of the same
1074 format as the output, we can't make a shared library. */
1075 if (info->shared
1076 && ! elf_hash_table (info)->dynamic_sections_created
1077 && abfd->xvec == info->hash->creator)
1078 {
1079 if (! elf_link_create_dynamic_sections (abfd, info))
1080 goto error_return;
1081 }
1082 }
1083 else
1084 {
1085 asection *s;
1086 boolean add_needed;
1087 const char *name;
1088 bfd_size_type oldsize;
1089 bfd_size_type strindex;
1090
1091 /* Find the name to use in a DT_NEEDED entry that refers to this
1092 object. If the object has a DT_SONAME entry, we use it.
1093 Otherwise, if the generic linker stuck something in
1094 elf_dt_name, we use that. Otherwise, we just use the file
1095 name. If the generic linker put a null string into
1096 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1097 there is a DT_SONAME entry. */
1098 add_needed = true;
1099 name = bfd_get_filename (abfd);
1100 if (elf_dt_name (abfd) != NULL)
1101 {
1102 name = elf_dt_name (abfd);
1103 if (*name == '\0')
1104 {
1105 if (elf_dt_soname (abfd) != NULL)
1106 dt_needed = true;
1107
1108 add_needed = false;
1109 }
1110 }
1111 s = bfd_get_section_by_name (abfd, ".dynamic");
1112 if (s != NULL)
1113 {
1114 Elf_External_Dyn *extdyn;
1115 Elf_External_Dyn *extdynend;
1116 int elfsec;
1117 unsigned long link;
1118 int rpath;
1119 int runpath;
1120
1121 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
1122 if (dynbuf == NULL)
1123 goto error_return;
1124
1125 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1126 (file_ptr) 0, s->_raw_size))
1127 goto error_return;
1128
1129 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1130 if (elfsec == -1)
1131 goto error_return;
1132 link = elf_elfsections (abfd)[elfsec]->sh_link;
1133
1134 {
1135 /* The shared libraries distributed with hpux11 have a bogus
1136 sh_link field for the ".dynamic" section. This code detects
1137 when LINK refers to a section that is not a string table and
1138 tries to find the string table for the ".dynsym" section
1139 instead. */
1140 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
1141 if (hdr->sh_type != SHT_STRTAB)
1142 {
1143 asection *s = bfd_get_section_by_name (abfd, ".dynsym");
1144 int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1145 if (elfsec == -1)
1146 goto error_return;
1147 link = elf_elfsections (abfd)[elfsec]->sh_link;
1148 }
1149 }
1150
1151 extdyn = dynbuf;
1152 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1153 rpath = 0;
1154 runpath = 0;
1155 for (; extdyn < extdynend; extdyn++)
1156 {
1157 Elf_Internal_Dyn dyn;
1158
1159 elf_swap_dyn_in (abfd, extdyn, &dyn);
1160 if (dyn.d_tag == DT_SONAME)
1161 {
1162 name = bfd_elf_string_from_elf_section (abfd, link,
1163 dyn.d_un.d_val);
1164 if (name == NULL)
1165 goto error_return;
1166 }
1167 if (dyn.d_tag == DT_NEEDED)
1168 {
1169 struct bfd_link_needed_list *n, **pn;
1170 char *fnm, *anm;
1171
1172 n = ((struct bfd_link_needed_list *)
1173 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1174 fnm = bfd_elf_string_from_elf_section (abfd, link,
1175 dyn.d_un.d_val);
1176 if (n == NULL || fnm == NULL)
1177 goto error_return;
1178 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1179 if (anm == NULL)
1180 goto error_return;
1181 strcpy (anm, fnm);
1182 n->name = anm;
1183 n->by = abfd;
1184 n->next = NULL;
1185 for (pn = &elf_hash_table (info)->needed;
1186 *pn != NULL;
1187 pn = &(*pn)->next)
1188 ;
1189 *pn = n;
1190 }
1191 if (dyn.d_tag == DT_RUNPATH)
1192 {
1193 struct bfd_link_needed_list *n, **pn;
1194 char *fnm, *anm;
1195
1196 /* When we see DT_RPATH before DT_RUNPATH, we have
1197 to clear runpath. Do _NOT_ bfd_release, as that
1198 frees all more recently bfd_alloc'd blocks as
1199 well. */
1200 if (rpath && elf_hash_table (info)->runpath)
1201 elf_hash_table (info)->runpath = NULL;
1202
1203 n = ((struct bfd_link_needed_list *)
1204 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1205 fnm = bfd_elf_string_from_elf_section (abfd, link,
1206 dyn.d_un.d_val);
1207 if (n == NULL || fnm == NULL)
1208 goto error_return;
1209 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1210 if (anm == NULL)
1211 goto error_return;
1212 strcpy (anm, fnm);
1213 n->name = anm;
1214 n->by = abfd;
1215 n->next = NULL;
1216 for (pn = &elf_hash_table (info)->runpath;
1217 *pn != NULL;
1218 pn = &(*pn)->next)
1219 ;
1220 *pn = n;
1221 runpath = 1;
1222 rpath = 0;
1223 }
1224 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1225 if (!runpath && dyn.d_tag == DT_RPATH)
1226 {
1227 struct bfd_link_needed_list *n, **pn;
1228 char *fnm, *anm;
1229
1230 n = ((struct bfd_link_needed_list *)
1231 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1232 fnm = bfd_elf_string_from_elf_section (abfd, link,
1233 dyn.d_un.d_val);
1234 if (n == NULL || fnm == NULL)
1235 goto error_return;
1236 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1237 if (anm == NULL)
1238 goto error_return;
1239 strcpy (anm, fnm);
1240 n->name = anm;
1241 n->by = abfd;
1242 n->next = NULL;
1243 for (pn = &elf_hash_table (info)->runpath;
1244 *pn != NULL;
1245 pn = &(*pn)->next)
1246 ;
1247 *pn = n;
1248 rpath = 1;
1249 }
1250 }
1251
1252 free (dynbuf);
1253 dynbuf = NULL;
1254 }
1255
1256 /* We do not want to include any of the sections in a dynamic
1257 object in the output file. We hack by simply clobbering the
1258 list of sections in the BFD. This could be handled more
1259 cleanly by, say, a new section flag; the existing
1260 SEC_NEVER_LOAD flag is not the one we want, because that one
1261 still implies that the section takes up space in the output
1262 file. */
1263 abfd->sections = NULL;
1264 abfd->section_count = 0;
1265
1266 /* If this is the first dynamic object found in the link, create
1267 the special sections required for dynamic linking. */
1268 if (! elf_hash_table (info)->dynamic_sections_created)
1269 {
1270 if (! elf_link_create_dynamic_sections (abfd, info))
1271 goto error_return;
1272 }
1273
1274 if (add_needed)
1275 {
1276 /* Add a DT_NEEDED entry for this dynamic object. */
1277 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1278 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1279 true, false);
1280 if (strindex == (bfd_size_type) -1)
1281 goto error_return;
1282
1283 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1284 {
1285 asection *sdyn;
1286 Elf_External_Dyn *dyncon, *dynconend;
1287
1288 /* The hash table size did not change, which means that
1289 the dynamic object name was already entered. If we
1290 have already included this dynamic object in the
1291 link, just ignore it. There is no reason to include
1292 a particular dynamic object more than once. */
1293 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1294 ".dynamic");
1295 BFD_ASSERT (sdyn != NULL);
1296
1297 dyncon = (Elf_External_Dyn *) sdyn->contents;
1298 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1299 sdyn->_raw_size);
1300 for (; dyncon < dynconend; dyncon++)
1301 {
1302 Elf_Internal_Dyn dyn;
1303
1304 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1305 &dyn);
1306 if (dyn.d_tag == DT_NEEDED
1307 && dyn.d_un.d_val == strindex)
1308 {
1309 if (buf != NULL)
1310 free (buf);
1311 if (extversym != NULL)
1312 free (extversym);
1313 return true;
1314 }
1315 }
1316 }
1317
1318 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1319 goto error_return;
1320 }
1321
1322 /* Save the SONAME, if there is one, because sometimes the
1323 linker emulation code will need to know it. */
1324 if (*name == '\0')
1325 name = basename (bfd_get_filename (abfd));
1326 elf_dt_name (abfd) = name;
1327 }
1328
1329 if (bfd_seek (abfd,
1330 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1331 SEEK_SET) != 0
1332 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1333 != extsymcount * sizeof (Elf_External_Sym)))
1334 goto error_return;
1335
1336 weaks = NULL;
1337
1338 ever = extversym != NULL ? extversym + extsymoff : NULL;
1339 esymend = buf + extsymcount;
1340 for (esym = buf;
1341 esym < esymend;
1342 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1343 {
1344 Elf_Internal_Sym sym;
1345 int bind;
1346 bfd_vma value;
1347 asection *sec;
1348 flagword flags;
1349 const char *name;
1350 struct elf_link_hash_entry *h;
1351 boolean definition;
1352 boolean size_change_ok, type_change_ok;
1353 boolean new_weakdef;
1354 unsigned int old_alignment;
1355
1356 elf_swap_symbol_in (abfd, esym, &sym);
1357
1358 flags = BSF_NO_FLAGS;
1359 sec = NULL;
1360 value = sym.st_value;
1361 *sym_hash = NULL;
1362
1363 bind = ELF_ST_BIND (sym.st_info);
1364 if (bind == STB_LOCAL)
1365 {
1366 /* This should be impossible, since ELF requires that all
1367 global symbols follow all local symbols, and that sh_info
1368 point to the first global symbol. Unfortunatealy, Irix 5
1369 screws this up. */
1370 continue;
1371 }
1372 else if (bind == STB_GLOBAL)
1373 {
1374 if (sym.st_shndx != SHN_UNDEF
1375 && sym.st_shndx != SHN_COMMON)
1376 flags = BSF_GLOBAL;
1377 }
1378 else if (bind == STB_WEAK)
1379 flags = BSF_WEAK;
1380 else
1381 {
1382 /* Leave it up to the processor backend. */
1383 }
1384
1385 if (sym.st_shndx == SHN_UNDEF)
1386 sec = bfd_und_section_ptr;
1387 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1388 {
1389 sec = section_from_elf_index (abfd, sym.st_shndx);
1390 if (sec == NULL)
1391 sec = bfd_abs_section_ptr;
1392 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1393 value -= sec->vma;
1394 }
1395 else if (sym.st_shndx == SHN_ABS)
1396 sec = bfd_abs_section_ptr;
1397 else if (sym.st_shndx == SHN_COMMON)
1398 {
1399 sec = bfd_com_section_ptr;
1400 /* What ELF calls the size we call the value. What ELF
1401 calls the value we call the alignment. */
1402 value = sym.st_size;
1403 }
1404 else
1405 {
1406 /* Leave it up to the processor backend. */
1407 }
1408
1409 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1410 if (name == (const char *) NULL)
1411 goto error_return;
1412
1413 if (add_symbol_hook)
1414 {
1415 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1416 &value))
1417 goto error_return;
1418
1419 /* The hook function sets the name to NULL if this symbol
1420 should be skipped for some reason. */
1421 if (name == (const char *) NULL)
1422 continue;
1423 }
1424
1425 /* Sanity check that all possibilities were handled. */
1426 if (sec == (asection *) NULL)
1427 {
1428 bfd_set_error (bfd_error_bad_value);
1429 goto error_return;
1430 }
1431
1432 if (bfd_is_und_section (sec)
1433 || bfd_is_com_section (sec))
1434 definition = false;
1435 else
1436 definition = true;
1437
1438 size_change_ok = false;
1439 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1440 old_alignment = 0;
1441 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1442 {
1443 Elf_Internal_Versym iver;
1444 unsigned int vernum = 0;
1445 boolean override;
1446
1447 if (ever != NULL)
1448 {
1449 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1450 vernum = iver.vs_vers & VERSYM_VERSION;
1451
1452 /* If this is a hidden symbol, or if it is not version
1453 1, we append the version name to the symbol name.
1454 However, we do not modify a non-hidden absolute
1455 symbol, because it might be the version symbol
1456 itself. FIXME: What if it isn't? */
1457 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1458 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1459 {
1460 const char *verstr;
1461 int namelen, newlen;
1462 char *newname, *p;
1463
1464 if (sym.st_shndx != SHN_UNDEF)
1465 {
1466 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1467 {
1468 (*_bfd_error_handler)
1469 (_("%s: %s: invalid version %u (max %d)"),
1470 bfd_get_filename (abfd), name, vernum,
1471 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1472 bfd_set_error (bfd_error_bad_value);
1473 goto error_return;
1474 }
1475 else if (vernum > 1)
1476 verstr =
1477 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1478 else
1479 verstr = "";
1480 }
1481 else
1482 {
1483 /* We cannot simply test for the number of
1484 entries in the VERNEED section since the
1485 numbers for the needed versions do not start
1486 at 0. */
1487 Elf_Internal_Verneed *t;
1488
1489 verstr = NULL;
1490 for (t = elf_tdata (abfd)->verref;
1491 t != NULL;
1492 t = t->vn_nextref)
1493 {
1494 Elf_Internal_Vernaux *a;
1495
1496 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1497 {
1498 if (a->vna_other == vernum)
1499 {
1500 verstr = a->vna_nodename;
1501 break;
1502 }
1503 }
1504 if (a != NULL)
1505 break;
1506 }
1507 if (verstr == NULL)
1508 {
1509 (*_bfd_error_handler)
1510 (_("%s: %s: invalid needed version %d"),
1511 bfd_get_filename (abfd), name, vernum);
1512 bfd_set_error (bfd_error_bad_value);
1513 goto error_return;
1514 }
1515 }
1516
1517 namelen = strlen (name);
1518 newlen = namelen + strlen (verstr) + 2;
1519 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1520 ++newlen;
1521
1522 newname = (char *) bfd_alloc (abfd, newlen);
1523 if (newname == NULL)
1524 goto error_return;
1525 strcpy (newname, name);
1526 p = newname + namelen;
1527 *p++ = ELF_VER_CHR;
1528 /* If this is a defined non-hidden version symbol,
1529 we add another @ to the name. This indicates the
1530 default version of the symbol. */
1531 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1532 && sym.st_shndx != SHN_UNDEF)
1533 *p++ = ELF_VER_CHR;
1534 strcpy (p, verstr);
1535
1536 name = newname;
1537 }
1538 }
1539
1540 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1541 sym_hash, &override, &type_change_ok,
1542 &size_change_ok, dt_needed))
1543 goto error_return;
1544
1545 if (override)
1546 definition = false;
1547
1548 h = *sym_hash;
1549 while (h->root.type == bfd_link_hash_indirect
1550 || h->root.type == bfd_link_hash_warning)
1551 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1552
1553 /* Remember the old alignment if this is a common symbol, so
1554 that we don't reduce the alignment later on. We can't
1555 check later, because _bfd_generic_link_add_one_symbol
1556 will set a default for the alignment which we want to
1557 override. */
1558 if (h->root.type == bfd_link_hash_common)
1559 old_alignment = h->root.u.c.p->alignment_power;
1560
1561 if (elf_tdata (abfd)->verdef != NULL
1562 && ! override
1563 && vernum > 1
1564 && definition)
1565 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1566 }
1567
1568 if (! (_bfd_generic_link_add_one_symbol
1569 (info, abfd, name, flags, sec, value, (const char *) NULL,
1570 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1571 goto error_return;
1572
1573 h = *sym_hash;
1574 while (h->root.type == bfd_link_hash_indirect
1575 || h->root.type == bfd_link_hash_warning)
1576 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1577 *sym_hash = h;
1578
1579 new_weakdef = false;
1580 if (dynamic
1581 && definition
1582 && (flags & BSF_WEAK) != 0
1583 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1584 && info->hash->creator->flavour == bfd_target_elf_flavour
1585 && h->weakdef == NULL)
1586 {
1587 /* Keep a list of all weak defined non function symbols from
1588 a dynamic object, using the weakdef field. Later in this
1589 function we will set the weakdef field to the correct
1590 value. We only put non-function symbols from dynamic
1591 objects on this list, because that happens to be the only
1592 time we need to know the normal symbol corresponding to a
1593 weak symbol, and the information is time consuming to
1594 figure out. If the weakdef field is not already NULL,
1595 then this symbol was already defined by some previous
1596 dynamic object, and we will be using that previous
1597 definition anyhow. */
1598
1599 h->weakdef = weaks;
1600 weaks = h;
1601 new_weakdef = true;
1602 }
1603
1604 /* Set the alignment of a common symbol. */
1605 if (sym.st_shndx == SHN_COMMON
1606 && h->root.type == bfd_link_hash_common)
1607 {
1608 unsigned int align;
1609
1610 align = bfd_log2 (sym.st_value);
1611 if (align > old_alignment
1612 /* Permit an alignment power of zero if an alignment of one
1613 is specified and no other alignments have been specified. */
1614 || (sym.st_value == 1 && old_alignment == 0))
1615 h->root.u.c.p->alignment_power = align;
1616 }
1617
1618 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1619 {
1620 int old_flags;
1621 boolean dynsym;
1622 int new_flag;
1623
1624 /* Remember the symbol size and type. */
1625 if (sym.st_size != 0
1626 && (definition || h->size == 0))
1627 {
1628 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1629 (*_bfd_error_handler)
1630 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1631 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1632 bfd_get_filename (abfd));
1633
1634 h->size = sym.st_size;
1635 }
1636
1637 /* If this is a common symbol, then we always want H->SIZE
1638 to be the size of the common symbol. The code just above
1639 won't fix the size if a common symbol becomes larger. We
1640 don't warn about a size change here, because that is
1641 covered by --warn-common. */
1642 if (h->root.type == bfd_link_hash_common)
1643 h->size = h->root.u.c.size;
1644
1645 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1646 && (definition || h->type == STT_NOTYPE))
1647 {
1648 if (h->type != STT_NOTYPE
1649 && h->type != ELF_ST_TYPE (sym.st_info)
1650 && ! type_change_ok)
1651 (*_bfd_error_handler)
1652 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1653 name, h->type, ELF_ST_TYPE (sym.st_info),
1654 bfd_get_filename (abfd));
1655
1656 h->type = ELF_ST_TYPE (sym.st_info);
1657 }
1658
1659 /* If st_other has a processor-specific meaning, specific code
1660 might be needed here. */
1661 if (sym.st_other != 0)
1662 {
1663 /* Combine visibilities, using the most constraining one. */
1664 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1665 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
1666
1667 if (symvis && (hvis > symvis || hvis == 0))
1668 h->other = sym.st_other;
1669
1670 /* If neither has visibility, use the st_other of the
1671 definition. This is an arbitrary choice, since the
1672 other bits have no general meaning. */
1673 if (!symvis && !hvis
1674 && (definition || h->other == 0))
1675 h->other = sym.st_other;
1676 }
1677
1678 /* Set a flag in the hash table entry indicating the type of
1679 reference or definition we just found. Keep a count of
1680 the number of dynamic symbols we find. A dynamic symbol
1681 is one which is referenced or defined by both a regular
1682 object and a shared object. */
1683 old_flags = h->elf_link_hash_flags;
1684 dynsym = false;
1685 if (! dynamic)
1686 {
1687 if (! definition)
1688 {
1689 new_flag = ELF_LINK_HASH_REF_REGULAR;
1690 if (bind != STB_WEAK)
1691 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1692 }
1693 else
1694 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1695 if (info->shared
1696 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1697 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1698 dynsym = true;
1699 }
1700 else
1701 {
1702 if (! definition)
1703 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1704 else
1705 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1706 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1707 | ELF_LINK_HASH_REF_REGULAR)) != 0
1708 || (h->weakdef != NULL
1709 && ! new_weakdef
1710 && h->weakdef->dynindx != -1))
1711 dynsym = true;
1712 }
1713
1714 h->elf_link_hash_flags |= new_flag;
1715
1716 /* If this symbol has a version, and it is the default
1717 version, we create an indirect symbol from the default
1718 name to the fully decorated name. This will cause
1719 external references which do not specify a version to be
1720 bound to this version of the symbol. */
1721 if (definition || h->root.type == bfd_link_hash_common)
1722 {
1723 char *p;
1724
1725 p = strchr (name, ELF_VER_CHR);
1726 if (p != NULL && p[1] == ELF_VER_CHR)
1727 {
1728 char *shortname;
1729 struct elf_link_hash_entry *hi;
1730 boolean override;
1731
1732 shortname = bfd_hash_allocate (&info->hash->table,
1733 p - name + 1);
1734 if (shortname == NULL)
1735 goto error_return;
1736 strncpy (shortname, name, p - name);
1737 shortname[p - name] = '\0';
1738
1739 /* We are going to create a new symbol. Merge it
1740 with any existing symbol with this name. For the
1741 purposes of the merge, act as though we were
1742 defining the symbol we just defined, although we
1743 actually going to define an indirect symbol. */
1744 type_change_ok = false;
1745 size_change_ok = false;
1746 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1747 &value, &hi, &override,
1748 &type_change_ok,
1749 &size_change_ok, dt_needed))
1750 goto error_return;
1751
1752 if (! override)
1753 {
1754 if (! (_bfd_generic_link_add_one_symbol
1755 (info, abfd, shortname, BSF_INDIRECT,
1756 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1757 collect, (struct bfd_link_hash_entry **) &hi)))
1758 goto error_return;
1759 }
1760 else
1761 {
1762 /* In this case the symbol named SHORTNAME is
1763 overriding the indirect symbol we want to
1764 add. We were planning on making SHORTNAME an
1765 indirect symbol referring to NAME. SHORTNAME
1766 is the name without a version. NAME is the
1767 fully versioned name, and it is the default
1768 version.
1769
1770 Overriding means that we already saw a
1771 definition for the symbol SHORTNAME in a
1772 regular object, and it is overriding the
1773 symbol defined in the dynamic object.
1774
1775 When this happens, we actually want to change
1776 NAME, the symbol we just added, to refer to
1777 SHORTNAME. This will cause references to
1778 NAME in the shared object to become
1779 references to SHORTNAME in the regular
1780 object. This is what we expect when we
1781 override a function in a shared object: that
1782 the references in the shared object will be
1783 mapped to the definition in the regular
1784 object. */
1785
1786 while (hi->root.type == bfd_link_hash_indirect
1787 || hi->root.type == bfd_link_hash_warning)
1788 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1789
1790 h->root.type = bfd_link_hash_indirect;
1791 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1792 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1793 {
1794 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1795 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1796 if (hi->elf_link_hash_flags
1797 & (ELF_LINK_HASH_REF_REGULAR
1798 | ELF_LINK_HASH_DEF_REGULAR))
1799 {
1800 if (! _bfd_elf_link_record_dynamic_symbol (info,
1801 hi))
1802 goto error_return;
1803 }
1804 }
1805
1806 /* Now set HI to H, so that the following code
1807 will set the other fields correctly. */
1808 hi = h;
1809 }
1810
1811 /* If there is a duplicate definition somewhere,
1812 then HI may not point to an indirect symbol. We
1813 will have reported an error to the user in that
1814 case. */
1815
1816 if (hi->root.type == bfd_link_hash_indirect)
1817 {
1818 struct elf_link_hash_entry *ht;
1819
1820 /* If the symbol became indirect, then we assume
1821 that we have not seen a definition before. */
1822 BFD_ASSERT ((hi->elf_link_hash_flags
1823 & (ELF_LINK_HASH_DEF_DYNAMIC
1824 | ELF_LINK_HASH_DEF_REGULAR))
1825 == 0);
1826
1827 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1828 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
1829
1830 /* See if the new flags lead us to realize that
1831 the symbol must be dynamic. */
1832 if (! dynsym)
1833 {
1834 if (! dynamic)
1835 {
1836 if (info->shared
1837 || ((hi->elf_link_hash_flags
1838 & ELF_LINK_HASH_REF_DYNAMIC)
1839 != 0))
1840 dynsym = true;
1841 }
1842 else
1843 {
1844 if ((hi->elf_link_hash_flags
1845 & ELF_LINK_HASH_REF_REGULAR) != 0)
1846 dynsym = true;
1847 }
1848 }
1849 }
1850
1851 /* We also need to define an indirection from the
1852 nondefault version of the symbol. */
1853
1854 shortname = bfd_hash_allocate (&info->hash->table,
1855 strlen (name));
1856 if (shortname == NULL)
1857 goto error_return;
1858 strncpy (shortname, name, p - name);
1859 strcpy (shortname + (p - name), p + 1);
1860
1861 /* Once again, merge with any existing symbol. */
1862 type_change_ok = false;
1863 size_change_ok = false;
1864 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1865 &value, &hi, &override,
1866 &type_change_ok,
1867 &size_change_ok, dt_needed))
1868 goto error_return;
1869
1870 if (override)
1871 {
1872 /* Here SHORTNAME is a versioned name, so we
1873 don't expect to see the type of override we
1874 do in the case above. */
1875 (*_bfd_error_handler)
1876 (_("%s: warning: unexpected redefinition of `%s'"),
1877 bfd_get_filename (abfd), shortname);
1878 }
1879 else
1880 {
1881 if (! (_bfd_generic_link_add_one_symbol
1882 (info, abfd, shortname, BSF_INDIRECT,
1883 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1884 collect, (struct bfd_link_hash_entry **) &hi)))
1885 goto error_return;
1886
1887 /* If there is a duplicate definition somewhere,
1888 then HI may not point to an indirect symbol.
1889 We will have reported an error to the user in
1890 that case. */
1891
1892 if (hi->root.type == bfd_link_hash_indirect)
1893 {
1894 /* If the symbol became indirect, then we
1895 assume that we have not seen a definition
1896 before. */
1897 BFD_ASSERT ((hi->elf_link_hash_flags
1898 & (ELF_LINK_HASH_DEF_DYNAMIC
1899 | ELF_LINK_HASH_DEF_REGULAR))
1900 == 0);
1901
1902 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
1903
1904 /* See if the new flags lead us to realize
1905 that the symbol must be dynamic. */
1906 if (! dynsym)
1907 {
1908 if (! dynamic)
1909 {
1910 if (info->shared
1911 || ((hi->elf_link_hash_flags
1912 & ELF_LINK_HASH_REF_DYNAMIC)
1913 != 0))
1914 dynsym = true;
1915 }
1916 else
1917 {
1918 if ((hi->elf_link_hash_flags
1919 & ELF_LINK_HASH_REF_REGULAR) != 0)
1920 dynsym = true;
1921 }
1922 }
1923 }
1924 }
1925 }
1926 }
1927
1928 if (dynsym && h->dynindx == -1)
1929 {
1930 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1931 goto error_return;
1932 if (h->weakdef != NULL
1933 && ! new_weakdef
1934 && h->weakdef->dynindx == -1)
1935 {
1936 if (! _bfd_elf_link_record_dynamic_symbol (info,
1937 h->weakdef))
1938 goto error_return;
1939 }
1940 }
1941 else if (dynsym && h->dynindx != -1)
1942 /* If the symbol already has a dynamic index, but
1943 visibility says it should not be visible, turn it into
1944 a local symbol. */
1945 switch (ELF_ST_VISIBILITY (h->other))
1946 {
1947 case STV_INTERNAL:
1948 case STV_HIDDEN:
1949 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1950 (*bed->elf_backend_hide_symbol) (info, h);
1951 break;
1952 }
1953
1954 if (dt_needed && definition
1955 && (h->elf_link_hash_flags
1956 & ELF_LINK_HASH_REF_REGULAR) != 0)
1957 {
1958 bfd_size_type oldsize;
1959 bfd_size_type strindex;
1960
1961 /* The symbol from a DT_NEEDED object is referenced from
1962 the regular object to create a dynamic executable. We
1963 have to make sure there is a DT_NEEDED entry for it. */
1964
1965 dt_needed = false;
1966 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1967 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
1968 elf_dt_soname (abfd),
1969 true, false);
1970 if (strindex == (bfd_size_type) -1)
1971 goto error_return;
1972
1973 if (oldsize
1974 == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1975 {
1976 asection *sdyn;
1977 Elf_External_Dyn *dyncon, *dynconend;
1978
1979 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1980 ".dynamic");
1981 BFD_ASSERT (sdyn != NULL);
1982
1983 dyncon = (Elf_External_Dyn *) sdyn->contents;
1984 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1985 sdyn->_raw_size);
1986 for (; dyncon < dynconend; dyncon++)
1987 {
1988 Elf_Internal_Dyn dyn;
1989
1990 elf_swap_dyn_in (elf_hash_table (info)->dynobj,
1991 dyncon, &dyn);
1992 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
1993 dyn.d_un.d_val != strindex);
1994 }
1995 }
1996
1997 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1998 goto error_return;
1999 }
2000 }
2001 }
2002
2003 /* Now set the weakdefs field correctly for all the weak defined
2004 symbols we found. The only way to do this is to search all the
2005 symbols. Since we only need the information for non functions in
2006 dynamic objects, that's the only time we actually put anything on
2007 the list WEAKS. We need this information so that if a regular
2008 object refers to a symbol defined weakly in a dynamic object, the
2009 real symbol in the dynamic object is also put in the dynamic
2010 symbols; we also must arrange for both symbols to point to the
2011 same memory location. We could handle the general case of symbol
2012 aliasing, but a general symbol alias can only be generated in
2013 assembler code, handling it correctly would be very time
2014 consuming, and other ELF linkers don't handle general aliasing
2015 either. */
2016 while (weaks != NULL)
2017 {
2018 struct elf_link_hash_entry *hlook;
2019 asection *slook;
2020 bfd_vma vlook;
2021 struct elf_link_hash_entry **hpp;
2022 struct elf_link_hash_entry **hppend;
2023
2024 hlook = weaks;
2025 weaks = hlook->weakdef;
2026 hlook->weakdef = NULL;
2027
2028 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2029 || hlook->root.type == bfd_link_hash_defweak
2030 || hlook->root.type == bfd_link_hash_common
2031 || hlook->root.type == bfd_link_hash_indirect);
2032 slook = hlook->root.u.def.section;
2033 vlook = hlook->root.u.def.value;
2034
2035 hpp = elf_sym_hashes (abfd);
2036 hppend = hpp + extsymcount;
2037 for (; hpp < hppend; hpp++)
2038 {
2039 struct elf_link_hash_entry *h;
2040
2041 h = *hpp;
2042 if (h != NULL && h != hlook
2043 && h->root.type == bfd_link_hash_defined
2044 && h->root.u.def.section == slook
2045 && h->root.u.def.value == vlook)
2046 {
2047 hlook->weakdef = h;
2048
2049 /* If the weak definition is in the list of dynamic
2050 symbols, make sure the real definition is put there
2051 as well. */
2052 if (hlook->dynindx != -1
2053 && h->dynindx == -1)
2054 {
2055 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2056 goto error_return;
2057 }
2058
2059 /* If the real definition is in the list of dynamic
2060 symbols, make sure the weak definition is put there
2061 as well. If we don't do this, then the dynamic
2062 loader might not merge the entries for the real
2063 definition and the weak definition. */
2064 if (h->dynindx != -1
2065 && hlook->dynindx == -1)
2066 {
2067 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2068 goto error_return;
2069 }
2070
2071 break;
2072 }
2073 }
2074 }
2075
2076 if (buf != NULL)
2077 {
2078 free (buf);
2079 buf = NULL;
2080 }
2081
2082 if (extversym != NULL)
2083 {
2084 free (extversym);
2085 extversym = NULL;
2086 }
2087
2088 /* If this object is the same format as the output object, and it is
2089 not a shared library, then let the backend look through the
2090 relocs.
2091
2092 This is required to build global offset table entries and to
2093 arrange for dynamic relocs. It is not required for the
2094 particular common case of linking non PIC code, even when linking
2095 against shared libraries, but unfortunately there is no way of
2096 knowing whether an object file has been compiled PIC or not.
2097 Looking through the relocs is not particularly time consuming.
2098 The problem is that we must either (1) keep the relocs in memory,
2099 which causes the linker to require additional runtime memory or
2100 (2) read the relocs twice from the input file, which wastes time.
2101 This would be a good case for using mmap.
2102
2103 I have no idea how to handle linking PIC code into a file of a
2104 different format. It probably can't be done. */
2105 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2106 if (! dynamic
2107 && abfd->xvec == info->hash->creator
2108 && check_relocs != NULL)
2109 {
2110 asection *o;
2111
2112 for (o = abfd->sections; o != NULL; o = o->next)
2113 {
2114 Elf_Internal_Rela *internal_relocs;
2115 boolean ok;
2116
2117 if ((o->flags & SEC_RELOC) == 0
2118 || o->reloc_count == 0
2119 || ((info->strip == strip_all || info->strip == strip_debugger)
2120 && (o->flags & SEC_DEBUGGING) != 0)
2121 || bfd_is_abs_section (o->output_section))
2122 continue;
2123
2124 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2125 (abfd, o, (PTR) NULL,
2126 (Elf_Internal_Rela *) NULL,
2127 info->keep_memory));
2128 if (internal_relocs == NULL)
2129 goto error_return;
2130
2131 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2132
2133 if (! info->keep_memory)
2134 free (internal_relocs);
2135
2136 if (! ok)
2137 goto error_return;
2138 }
2139 }
2140
2141 /* If this is a non-traditional, non-relocateable link, try to
2142 optimize the handling of the .stab/.stabstr sections. */
2143 if (! dynamic
2144 && ! info->relocateable
2145 && ! info->traditional_format
2146 && info->hash->creator->flavour == bfd_target_elf_flavour
2147 && (info->strip != strip_all && info->strip != strip_debugger))
2148 {
2149 asection *stab, *stabstr;
2150
2151 stab = bfd_get_section_by_name (abfd, ".stab");
2152 if (stab != NULL)
2153 {
2154 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2155
2156 if (stabstr != NULL)
2157 {
2158 struct bfd_elf_section_data *secdata;
2159
2160 secdata = elf_section_data (stab);
2161 if (! _bfd_link_section_stabs (abfd,
2162 &elf_hash_table (info)->stab_info,
2163 stab, stabstr,
2164 &secdata->stab_info))
2165 goto error_return;
2166 }
2167 }
2168 }
2169
2170 if (! info->relocateable && ! dynamic)
2171 {
2172 asection *s;
2173
2174 for (s = abfd->sections; s != NULL; s = s->next)
2175 if ((s->flags & SEC_MERGE)
2176 && ! _bfd_merge_section (abfd,
2177 &elf_hash_table (info)->merge_info,
2178 s, &elf_section_data (s)->merge_info))
2179 goto error_return;
2180 }
2181
2182 return true;
2183
2184 error_return:
2185 if (buf != NULL)
2186 free (buf);
2187 if (dynbuf != NULL)
2188 free (dynbuf);
2189 if (extversym != NULL)
2190 free (extversym);
2191 return false;
2192 }
2193
2194 /* Create some sections which will be filled in with dynamic linking
2195 information. ABFD is an input file which requires dynamic sections
2196 to be created. The dynamic sections take up virtual memory space
2197 when the final executable is run, so we need to create them before
2198 addresses are assigned to the output sections. We work out the
2199 actual contents and size of these sections later. */
2200
2201 boolean
2202 elf_link_create_dynamic_sections (abfd, info)
2203 bfd *abfd;
2204 struct bfd_link_info *info;
2205 {
2206 flagword flags;
2207 register asection *s;
2208 struct elf_link_hash_entry *h;
2209 struct elf_backend_data *bed;
2210
2211 if (elf_hash_table (info)->dynamic_sections_created)
2212 return true;
2213
2214 /* Make sure that all dynamic sections use the same input BFD. */
2215 if (elf_hash_table (info)->dynobj == NULL)
2216 elf_hash_table (info)->dynobj = abfd;
2217 else
2218 abfd = elf_hash_table (info)->dynobj;
2219
2220 /* Note that we set the SEC_IN_MEMORY flag for all of these
2221 sections. */
2222 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2223 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2224
2225 /* A dynamically linked executable has a .interp section, but a
2226 shared library does not. */
2227 if (! info->shared)
2228 {
2229 s = bfd_make_section (abfd, ".interp");
2230 if (s == NULL
2231 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2232 return false;
2233 }
2234
2235 /* Create sections to hold version informations. These are removed
2236 if they are not needed. */
2237 s = bfd_make_section (abfd, ".gnu.version_d");
2238 if (s == NULL
2239 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2240 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2241 return false;
2242
2243 s = bfd_make_section (abfd, ".gnu.version");
2244 if (s == NULL
2245 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2246 || ! bfd_set_section_alignment (abfd, s, 1))
2247 return false;
2248
2249 s = bfd_make_section (abfd, ".gnu.version_r");
2250 if (s == NULL
2251 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2252 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2253 return false;
2254
2255 s = bfd_make_section (abfd, ".dynsym");
2256 if (s == NULL
2257 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2258 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2259 return false;
2260
2261 s = bfd_make_section (abfd, ".dynstr");
2262 if (s == NULL
2263 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2264 return false;
2265
2266 /* Create a strtab to hold the dynamic symbol names. */
2267 if (elf_hash_table (info)->dynstr == NULL)
2268 {
2269 elf_hash_table (info)->dynstr = elf_stringtab_init ();
2270 if (elf_hash_table (info)->dynstr == NULL)
2271 return false;
2272 }
2273
2274 s = bfd_make_section (abfd, ".dynamic");
2275 if (s == NULL
2276 || ! bfd_set_section_flags (abfd, s, flags)
2277 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2278 return false;
2279
2280 /* The special symbol _DYNAMIC is always set to the start of the
2281 .dynamic section. This call occurs before we have processed the
2282 symbols for any dynamic object, so we don't have to worry about
2283 overriding a dynamic definition. We could set _DYNAMIC in a
2284 linker script, but we only want to define it if we are, in fact,
2285 creating a .dynamic section. We don't want to define it if there
2286 is no .dynamic section, since on some ELF platforms the start up
2287 code examines it to decide how to initialize the process. */
2288 h = NULL;
2289 if (! (_bfd_generic_link_add_one_symbol
2290 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2291 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2292 (struct bfd_link_hash_entry **) &h)))
2293 return false;
2294 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2295 h->type = STT_OBJECT;
2296
2297 if (info->shared
2298 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2299 return false;
2300
2301 bed = get_elf_backend_data (abfd);
2302
2303 s = bfd_make_section (abfd, ".hash");
2304 if (s == NULL
2305 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2306 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2307 return false;
2308 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2309
2310 /* Let the backend create the rest of the sections. This lets the
2311 backend set the right flags. The backend will normally create
2312 the .got and .plt sections. */
2313 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2314 return false;
2315
2316 elf_hash_table (info)->dynamic_sections_created = true;
2317
2318 return true;
2319 }
2320
2321 /* Add an entry to the .dynamic table. */
2322
2323 boolean
2324 elf_add_dynamic_entry (info, tag, val)
2325 struct bfd_link_info *info;
2326 bfd_vma tag;
2327 bfd_vma val;
2328 {
2329 Elf_Internal_Dyn dyn;
2330 bfd *dynobj;
2331 asection *s;
2332 size_t newsize;
2333 bfd_byte *newcontents;
2334
2335 dynobj = elf_hash_table (info)->dynobj;
2336
2337 s = bfd_get_section_by_name (dynobj, ".dynamic");
2338 BFD_ASSERT (s != NULL);
2339
2340 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2341 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2342 if (newcontents == NULL)
2343 return false;
2344
2345 dyn.d_tag = tag;
2346 dyn.d_un.d_val = val;
2347 elf_swap_dyn_out (dynobj, &dyn,
2348 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2349
2350 s->_raw_size = newsize;
2351 s->contents = newcontents;
2352
2353 return true;
2354 }
2355
2356 /* Record a new local dynamic symbol. */
2357
2358 boolean
2359 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2360 struct bfd_link_info *info;
2361 bfd *input_bfd;
2362 long input_indx;
2363 {
2364 struct elf_link_local_dynamic_entry *entry;
2365 struct elf_link_hash_table *eht;
2366 struct bfd_strtab_hash *dynstr;
2367 Elf_External_Sym esym;
2368 unsigned long dynstr_index;
2369 char *name;
2370
2371 /* See if the entry exists already. */
2372 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2373 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2374 return true;
2375
2376 entry = (struct elf_link_local_dynamic_entry *)
2377 bfd_alloc (input_bfd, sizeof (*entry));
2378 if (entry == NULL)
2379 return false;
2380
2381 /* Go find the symbol, so that we can find it's name. */
2382 if (bfd_seek (input_bfd,
2383 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2384 + input_indx * sizeof (Elf_External_Sym)),
2385 SEEK_SET) != 0
2386 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2387 != sizeof (Elf_External_Sym)))
2388 return false;
2389 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2390
2391 name = (bfd_elf_string_from_elf_section
2392 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2393 entry->isym.st_name));
2394
2395 dynstr = elf_hash_table (info)->dynstr;
2396 if (dynstr == NULL)
2397 {
2398 /* Create a strtab to hold the dynamic symbol names. */
2399 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2400 if (dynstr == NULL)
2401 return false;
2402 }
2403
2404 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2405 if (dynstr_index == (unsigned long) -1)
2406 return false;
2407 entry->isym.st_name = dynstr_index;
2408
2409 eht = elf_hash_table (info);
2410
2411 entry->next = eht->dynlocal;
2412 eht->dynlocal = entry;
2413 entry->input_bfd = input_bfd;
2414 entry->input_indx = input_indx;
2415 eht->dynsymcount++;
2416
2417 /* Whatever binding the symbol had before, it's now local. */
2418 entry->isym.st_info
2419 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2420
2421 /* The dynindx will be set at the end of size_dynamic_sections. */
2422
2423 return true;
2424 }
2425 \f
2426 /* Read and swap the relocs from the section indicated by SHDR. This
2427 may be either a REL or a RELA section. The relocations are
2428 translated into RELA relocations and stored in INTERNAL_RELOCS,
2429 which should have already been allocated to contain enough space.
2430 The EXTERNAL_RELOCS are a buffer where the external form of the
2431 relocations should be stored.
2432
2433 Returns false if something goes wrong. */
2434
2435 static boolean
2436 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2437 internal_relocs)
2438 bfd *abfd;
2439 Elf_Internal_Shdr *shdr;
2440 PTR external_relocs;
2441 Elf_Internal_Rela *internal_relocs;
2442 {
2443 struct elf_backend_data *bed;
2444
2445 /* If there aren't any relocations, that's OK. */
2446 if (!shdr)
2447 return true;
2448
2449 /* Position ourselves at the start of the section. */
2450 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2451 return false;
2452
2453 /* Read the relocations. */
2454 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2455 != shdr->sh_size)
2456 return false;
2457
2458 bed = get_elf_backend_data (abfd);
2459
2460 /* Convert the external relocations to the internal format. */
2461 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2462 {
2463 Elf_External_Rel *erel;
2464 Elf_External_Rel *erelend;
2465 Elf_Internal_Rela *irela;
2466 Elf_Internal_Rel *irel;
2467
2468 erel = (Elf_External_Rel *) external_relocs;
2469 erelend = erel + NUM_SHDR_ENTRIES (shdr);
2470 irela = internal_relocs;
2471 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2472 * sizeof (Elf_Internal_Rel)));
2473 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2474 {
2475 unsigned int i;
2476
2477 if (bed->s->swap_reloc_in)
2478 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2479 else
2480 elf_swap_reloc_in (abfd, erel, irel);
2481
2482 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2483 {
2484 irela[i].r_offset = irel[i].r_offset;
2485 irela[i].r_info = irel[i].r_info;
2486 irela[i].r_addend = 0;
2487 }
2488 }
2489 }
2490 else
2491 {
2492 Elf_External_Rela *erela;
2493 Elf_External_Rela *erelaend;
2494 Elf_Internal_Rela *irela;
2495
2496 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2497
2498 erela = (Elf_External_Rela *) external_relocs;
2499 erelaend = erela + NUM_SHDR_ENTRIES (shdr);
2500 irela = internal_relocs;
2501 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2502 {
2503 if (bed->s->swap_reloca_in)
2504 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2505 else
2506 elf_swap_reloca_in (abfd, erela, irela);
2507 }
2508 }
2509
2510 return true;
2511 }
2512
2513 /* Read and swap the relocs for a section O. They may have been
2514 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2515 not NULL, they are used as buffers to read into. They are known to
2516 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2517 the return value is allocated using either malloc or bfd_alloc,
2518 according to the KEEP_MEMORY argument. If O has two relocation
2519 sections (both REL and RELA relocations), then the REL_HDR
2520 relocations will appear first in INTERNAL_RELOCS, followed by the
2521 REL_HDR2 relocations. */
2522
2523 Elf_Internal_Rela *
2524 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2525 keep_memory)
2526 bfd *abfd;
2527 asection *o;
2528 PTR external_relocs;
2529 Elf_Internal_Rela *internal_relocs;
2530 boolean keep_memory;
2531 {
2532 Elf_Internal_Shdr *rel_hdr;
2533 PTR alloc1 = NULL;
2534 Elf_Internal_Rela *alloc2 = NULL;
2535 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2536
2537 if (elf_section_data (o)->relocs != NULL)
2538 return elf_section_data (o)->relocs;
2539
2540 if (o->reloc_count == 0)
2541 return NULL;
2542
2543 rel_hdr = &elf_section_data (o)->rel_hdr;
2544
2545 if (internal_relocs == NULL)
2546 {
2547 size_t size;
2548
2549 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2550 * sizeof (Elf_Internal_Rela));
2551 if (keep_memory)
2552 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2553 else
2554 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2555 if (internal_relocs == NULL)
2556 goto error_return;
2557 }
2558
2559 if (external_relocs == NULL)
2560 {
2561 size_t size = (size_t) rel_hdr->sh_size;
2562
2563 if (elf_section_data (o)->rel_hdr2)
2564 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2565 alloc1 = (PTR) bfd_malloc (size);
2566 if (alloc1 == NULL)
2567 goto error_return;
2568 external_relocs = alloc1;
2569 }
2570
2571 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2572 external_relocs,
2573 internal_relocs))
2574 goto error_return;
2575 if (!elf_link_read_relocs_from_section
2576 (abfd,
2577 elf_section_data (o)->rel_hdr2,
2578 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2579 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2580 * bed->s->int_rels_per_ext_rel)))
2581 goto error_return;
2582
2583 /* Cache the results for next time, if we can. */
2584 if (keep_memory)
2585 elf_section_data (o)->relocs = internal_relocs;
2586
2587 if (alloc1 != NULL)
2588 free (alloc1);
2589
2590 /* Don't free alloc2, since if it was allocated we are passing it
2591 back (under the name of internal_relocs). */
2592
2593 return internal_relocs;
2594
2595 error_return:
2596 if (alloc1 != NULL)
2597 free (alloc1);
2598 if (alloc2 != NULL)
2599 free (alloc2);
2600 return NULL;
2601 }
2602 \f
2603 /* Record an assignment to a symbol made by a linker script. We need
2604 this in case some dynamic object refers to this symbol. */
2605
2606 /*ARGSUSED*/
2607 boolean
2608 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2609 bfd *output_bfd ATTRIBUTE_UNUSED;
2610 struct bfd_link_info *info;
2611 const char *name;
2612 boolean provide;
2613 {
2614 struct elf_link_hash_entry *h;
2615
2616 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2617 return true;
2618
2619 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2620 if (h == NULL)
2621 return false;
2622
2623 if (h->root.type == bfd_link_hash_new)
2624 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2625
2626 /* If this symbol is being provided by the linker script, and it is
2627 currently defined by a dynamic object, but not by a regular
2628 object, then mark it as undefined so that the generic linker will
2629 force the correct value. */
2630 if (provide
2631 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2632 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2633 h->root.type = bfd_link_hash_undefined;
2634
2635 /* If this symbol is not being provided by the linker script, and it is
2636 currently defined by a dynamic object, but not by a regular object,
2637 then clear out any version information because the symbol will not be
2638 associated with the dynamic object any more. */
2639 if (!provide
2640 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2641 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2642 h->verinfo.verdef = NULL;
2643
2644 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2645
2646 /* When possible, keep the original type of the symbol */
2647 if (h->type == STT_NOTYPE)
2648 h->type = STT_OBJECT;
2649
2650 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2651 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2652 || info->shared)
2653 && h->dynindx == -1)
2654 {
2655 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2656 return false;
2657
2658 /* If this is a weak defined symbol, and we know a corresponding
2659 real symbol from the same dynamic object, make sure the real
2660 symbol is also made into a dynamic symbol. */
2661 if (h->weakdef != NULL
2662 && h->weakdef->dynindx == -1)
2663 {
2664 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2665 return false;
2666 }
2667 }
2668
2669 return true;
2670 }
2671 \f
2672 /* This structure is used to pass information to
2673 elf_link_assign_sym_version. */
2674
2675 struct elf_assign_sym_version_info
2676 {
2677 /* Output BFD. */
2678 bfd *output_bfd;
2679 /* General link information. */
2680 struct bfd_link_info *info;
2681 /* Version tree. */
2682 struct bfd_elf_version_tree *verdefs;
2683 /* Whether we are exporting all dynamic symbols. */
2684 boolean export_dynamic;
2685 /* Whether we had a failure. */
2686 boolean failed;
2687 };
2688
2689 /* This structure is used to pass information to
2690 elf_link_find_version_dependencies. */
2691
2692 struct elf_find_verdep_info
2693 {
2694 /* Output BFD. */
2695 bfd *output_bfd;
2696 /* General link information. */
2697 struct bfd_link_info *info;
2698 /* The number of dependencies. */
2699 unsigned int vers;
2700 /* Whether we had a failure. */
2701 boolean failed;
2702 };
2703
2704 /* Array used to determine the number of hash table buckets to use
2705 based on the number of symbols there are. If there are fewer than
2706 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2707 fewer than 37 we use 17 buckets, and so forth. We never use more
2708 than 32771 buckets. */
2709
2710 static const size_t elf_buckets[] =
2711 {
2712 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2713 16411, 32771, 0
2714 };
2715
2716 /* Compute bucket count for hashing table. We do not use a static set
2717 of possible tables sizes anymore. Instead we determine for all
2718 possible reasonable sizes of the table the outcome (i.e., the
2719 number of collisions etc) and choose the best solution. The
2720 weighting functions are not too simple to allow the table to grow
2721 without bounds. Instead one of the weighting factors is the size.
2722 Therefore the result is always a good payoff between few collisions
2723 (= short chain lengths) and table size. */
2724 static size_t
2725 compute_bucket_count (info)
2726 struct bfd_link_info *info;
2727 {
2728 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2729 size_t best_size = 0;
2730 unsigned long int *hashcodes;
2731 unsigned long int *hashcodesp;
2732 unsigned long int i;
2733
2734 /* Compute the hash values for all exported symbols. At the same
2735 time store the values in an array so that we could use them for
2736 optimizations. */
2737 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2738 * sizeof (unsigned long int));
2739 if (hashcodes == NULL)
2740 return 0;
2741 hashcodesp = hashcodes;
2742
2743 /* Put all hash values in HASHCODES. */
2744 elf_link_hash_traverse (elf_hash_table (info),
2745 elf_collect_hash_codes, &hashcodesp);
2746
2747 /* We have a problem here. The following code to optimize the table
2748 size requires an integer type with more the 32 bits. If
2749 BFD_HOST_U_64_BIT is set we know about such a type. */
2750 #ifdef BFD_HOST_U_64_BIT
2751 if (info->optimize == true)
2752 {
2753 unsigned long int nsyms = hashcodesp - hashcodes;
2754 size_t minsize;
2755 size_t maxsize;
2756 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2757 unsigned long int *counts ;
2758
2759 /* Possible optimization parameters: if we have NSYMS symbols we say
2760 that the hashing table must at least have NSYMS/4 and at most
2761 2*NSYMS buckets. */
2762 minsize = nsyms / 4;
2763 if (minsize == 0)
2764 minsize = 1;
2765 best_size = maxsize = nsyms * 2;
2766
2767 /* Create array where we count the collisions in. We must use bfd_malloc
2768 since the size could be large. */
2769 counts = (unsigned long int *) bfd_malloc (maxsize
2770 * sizeof (unsigned long int));
2771 if (counts == NULL)
2772 {
2773 free (hashcodes);
2774 return 0;
2775 }
2776
2777 /* Compute the "optimal" size for the hash table. The criteria is a
2778 minimal chain length. The minor criteria is (of course) the size
2779 of the table. */
2780 for (i = minsize; i < maxsize; ++i)
2781 {
2782 /* Walk through the array of hashcodes and count the collisions. */
2783 BFD_HOST_U_64_BIT max;
2784 unsigned long int j;
2785 unsigned long int fact;
2786
2787 memset (counts, '\0', i * sizeof (unsigned long int));
2788
2789 /* Determine how often each hash bucket is used. */
2790 for (j = 0; j < nsyms; ++j)
2791 ++counts[hashcodes[j] % i];
2792
2793 /* For the weight function we need some information about the
2794 pagesize on the target. This is information need not be 100%
2795 accurate. Since this information is not available (so far) we
2796 define it here to a reasonable default value. If it is crucial
2797 to have a better value some day simply define this value. */
2798 # ifndef BFD_TARGET_PAGESIZE
2799 # define BFD_TARGET_PAGESIZE (4096)
2800 # endif
2801
2802 /* We in any case need 2 + NSYMS entries for the size values and
2803 the chains. */
2804 max = (2 + nsyms) * (ARCH_SIZE / 8);
2805
2806 # if 1
2807 /* Variant 1: optimize for short chains. We add the squares
2808 of all the chain lengths (which favous many small chain
2809 over a few long chains). */
2810 for (j = 0; j < i; ++j)
2811 max += counts[j] * counts[j];
2812
2813 /* This adds penalties for the overall size of the table. */
2814 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2815 max *= fact * fact;
2816 # else
2817 /* Variant 2: Optimize a lot more for small table. Here we
2818 also add squares of the size but we also add penalties for
2819 empty slots (the +1 term). */
2820 for (j = 0; j < i; ++j)
2821 max += (1 + counts[j]) * (1 + counts[j]);
2822
2823 /* The overall size of the table is considered, but not as
2824 strong as in variant 1, where it is squared. */
2825 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2826 max *= fact;
2827 # endif
2828
2829 /* Compare with current best results. */
2830 if (max < best_chlen)
2831 {
2832 best_chlen = max;
2833 best_size = i;
2834 }
2835 }
2836
2837 free (counts);
2838 }
2839 else
2840 #endif /* defined (BFD_HOST_U_64_BIT) */
2841 {
2842 /* This is the fallback solution if no 64bit type is available or if we
2843 are not supposed to spend much time on optimizations. We select the
2844 bucket count using a fixed set of numbers. */
2845 for (i = 0; elf_buckets[i] != 0; i++)
2846 {
2847 best_size = elf_buckets[i];
2848 if (dynsymcount < elf_buckets[i + 1])
2849 break;
2850 }
2851 }
2852
2853 /* Free the arrays we needed. */
2854 free (hashcodes);
2855
2856 return best_size;
2857 }
2858
2859 /* Set up the sizes and contents of the ELF dynamic sections. This is
2860 called by the ELF linker emulation before_allocation routine. We
2861 must set the sizes of the sections before the linker sets the
2862 addresses of the various sections. */
2863
2864 boolean
2865 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2866 export_dynamic, filter_shlib,
2867 auxiliary_filters, info, sinterpptr,
2868 verdefs)
2869 bfd *output_bfd;
2870 const char *soname;
2871 const char *rpath;
2872 boolean export_dynamic;
2873 const char *filter_shlib;
2874 const char * const *auxiliary_filters;
2875 struct bfd_link_info *info;
2876 asection **sinterpptr;
2877 struct bfd_elf_version_tree *verdefs;
2878 {
2879 bfd_size_type soname_indx;
2880 bfd *dynobj;
2881 struct elf_backend_data *bed;
2882 struct elf_assign_sym_version_info asvinfo;
2883
2884 *sinterpptr = NULL;
2885
2886 soname_indx = (bfd_size_type) -1;
2887
2888 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2889 return true;
2890
2891 /* The backend may have to create some sections regardless of whether
2892 we're dynamic or not. */
2893 bed = get_elf_backend_data (output_bfd);
2894 if (bed->elf_backend_always_size_sections
2895 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2896 return false;
2897
2898 dynobj = elf_hash_table (info)->dynobj;
2899
2900 /* If there were no dynamic objects in the link, there is nothing to
2901 do here. */
2902 if (dynobj == NULL)
2903 return true;
2904
2905 if (elf_hash_table (info)->dynamic_sections_created)
2906 {
2907 struct elf_info_failed eif;
2908 struct elf_link_hash_entry *h;
2909 asection *dynstr;
2910
2911 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2912 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2913
2914 if (soname != NULL)
2915 {
2916 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2917 soname, true, true);
2918 if (soname_indx == (bfd_size_type) -1
2919 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2920 return false;
2921 }
2922
2923 if (info->symbolic)
2924 {
2925 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2926 return false;
2927 info->flags |= DF_SYMBOLIC;
2928 }
2929
2930 if (rpath != NULL)
2931 {
2932 bfd_size_type indx;
2933
2934 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2935 true, true);
2936 if (indx == (bfd_size_type) -1
2937 || ! elf_add_dynamic_entry (info, DT_RPATH, indx)
2938 || (info->new_dtags
2939 && ! elf_add_dynamic_entry (info, DT_RUNPATH, indx)))
2940 return false;
2941 }
2942
2943 if (filter_shlib != NULL)
2944 {
2945 bfd_size_type indx;
2946
2947 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2948 filter_shlib, true, true);
2949 if (indx == (bfd_size_type) -1
2950 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2951 return false;
2952 }
2953
2954 if (auxiliary_filters != NULL)
2955 {
2956 const char * const *p;
2957
2958 for (p = auxiliary_filters; *p != NULL; p++)
2959 {
2960 bfd_size_type indx;
2961
2962 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2963 *p, true, true);
2964 if (indx == (bfd_size_type) -1
2965 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2966 return false;
2967 }
2968 }
2969
2970 eif.info = info;
2971 eif.verdefs = verdefs;
2972 eif.failed = false;
2973
2974 /* If we are supposed to export all symbols into the dynamic symbol
2975 table (this is not the normal case), then do so. */
2976 if (export_dynamic)
2977 {
2978 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2979 (PTR) &eif);
2980 if (eif.failed)
2981 return false;
2982 }
2983
2984 /* Attach all the symbols to their version information. */
2985 asvinfo.output_bfd = output_bfd;
2986 asvinfo.info = info;
2987 asvinfo.verdefs = verdefs;
2988 asvinfo.export_dynamic = export_dynamic;
2989 asvinfo.failed = false;
2990
2991 elf_link_hash_traverse (elf_hash_table (info),
2992 elf_link_assign_sym_version,
2993 (PTR) &asvinfo);
2994 if (asvinfo.failed)
2995 return false;
2996
2997 /* Find all symbols which were defined in a dynamic object and make
2998 the backend pick a reasonable value for them. */
2999 elf_link_hash_traverse (elf_hash_table (info),
3000 elf_adjust_dynamic_symbol,
3001 (PTR) &eif);
3002 if (eif.failed)
3003 return false;
3004
3005 /* Add some entries to the .dynamic section. We fill in some of the
3006 values later, in elf_bfd_final_link, but we must add the entries
3007 now so that we know the final size of the .dynamic section. */
3008
3009 /* If there are initialization and/or finalization functions to
3010 call then add the corresponding DT_INIT/DT_FINI entries. */
3011 h = (info->init_function
3012 ? elf_link_hash_lookup (elf_hash_table (info),
3013 info->init_function, false,
3014 false, false)
3015 : NULL);
3016 if (h != NULL
3017 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3018 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3019 {
3020 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
3021 return false;
3022 }
3023 h = (info->fini_function
3024 ? elf_link_hash_lookup (elf_hash_table (info),
3025 info->fini_function, false,
3026 false, false)
3027 : NULL);
3028 if (h != NULL
3029 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3030 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3031 {
3032 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
3033 return false;
3034 }
3035
3036 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3037 /* If .dynstr is excluded from the link, we don't want any of
3038 these tags. Strictly, we should be checking each section
3039 individually; This quick check covers for the case where
3040 someone does a /DISCARD/ : { *(*) }. */
3041 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3042 {
3043 bfd_size_type strsize;
3044
3045 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3046 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
3047 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
3048 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
3049 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
3050 || ! elf_add_dynamic_entry (info, DT_SYMENT,
3051 sizeof (Elf_External_Sym)))
3052 return false;
3053 }
3054 }
3055
3056 /* The backend must work out the sizes of all the other dynamic
3057 sections. */
3058 if (bed->elf_backend_size_dynamic_sections
3059 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3060 return false;
3061
3062 if (elf_hash_table (info)->dynamic_sections_created)
3063 {
3064 size_t dynsymcount;
3065 asection *s;
3066 size_t bucketcount = 0;
3067 size_t hash_entry_size;
3068
3069 /* Set up the version definition section. */
3070 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3071 BFD_ASSERT (s != NULL);
3072
3073 /* We may have created additional version definitions if we are
3074 just linking a regular application. */
3075 verdefs = asvinfo.verdefs;
3076
3077 if (verdefs == NULL)
3078 _bfd_strip_section_from_output (info, s);
3079 else
3080 {
3081 unsigned int cdefs;
3082 bfd_size_type size;
3083 struct bfd_elf_version_tree *t;
3084 bfd_byte *p;
3085 Elf_Internal_Verdef def;
3086 Elf_Internal_Verdaux defaux;
3087
3088 cdefs = 0;
3089 size = 0;
3090
3091 /* Make space for the base version. */
3092 size += sizeof (Elf_External_Verdef);
3093 size += sizeof (Elf_External_Verdaux);
3094 ++cdefs;
3095
3096 for (t = verdefs; t != NULL; t = t->next)
3097 {
3098 struct bfd_elf_version_deps *n;
3099
3100 size += sizeof (Elf_External_Verdef);
3101 size += sizeof (Elf_External_Verdaux);
3102 ++cdefs;
3103
3104 for (n = t->deps; n != NULL; n = n->next)
3105 size += sizeof (Elf_External_Verdaux);
3106 }
3107
3108 s->_raw_size = size;
3109 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3110 if (s->contents == NULL && s->_raw_size != 0)
3111 return false;
3112
3113 /* Fill in the version definition section. */
3114
3115 p = s->contents;
3116
3117 def.vd_version = VER_DEF_CURRENT;
3118 def.vd_flags = VER_FLG_BASE;
3119 def.vd_ndx = 1;
3120 def.vd_cnt = 1;
3121 def.vd_aux = sizeof (Elf_External_Verdef);
3122 def.vd_next = (sizeof (Elf_External_Verdef)
3123 + sizeof (Elf_External_Verdaux));
3124
3125 if (soname_indx != (bfd_size_type) -1)
3126 {
3127 def.vd_hash = bfd_elf_hash (soname);
3128 defaux.vda_name = soname_indx;
3129 }
3130 else
3131 {
3132 const char *name;
3133 bfd_size_type indx;
3134
3135 name = basename (output_bfd->filename);
3136 def.vd_hash = bfd_elf_hash (name);
3137 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3138 name, true, false);
3139 if (indx == (bfd_size_type) -1)
3140 return false;
3141 defaux.vda_name = indx;
3142 }
3143 defaux.vda_next = 0;
3144
3145 _bfd_elf_swap_verdef_out (output_bfd, &def,
3146 (Elf_External_Verdef *)p);
3147 p += sizeof (Elf_External_Verdef);
3148 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3149 (Elf_External_Verdaux *) p);
3150 p += sizeof (Elf_External_Verdaux);
3151
3152 for (t = verdefs; t != NULL; t = t->next)
3153 {
3154 unsigned int cdeps;
3155 struct bfd_elf_version_deps *n;
3156 struct elf_link_hash_entry *h;
3157
3158 cdeps = 0;
3159 for (n = t->deps; n != NULL; n = n->next)
3160 ++cdeps;
3161
3162 /* Add a symbol representing this version. */
3163 h = NULL;
3164 if (! (_bfd_generic_link_add_one_symbol
3165 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3166 (bfd_vma) 0, (const char *) NULL, false,
3167 get_elf_backend_data (dynobj)->collect,
3168 (struct bfd_link_hash_entry **) &h)))
3169 return false;
3170 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3171 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3172 h->type = STT_OBJECT;
3173 h->verinfo.vertree = t;
3174
3175 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3176 return false;
3177
3178 def.vd_version = VER_DEF_CURRENT;
3179 def.vd_flags = 0;
3180 if (t->globals == NULL && t->locals == NULL && ! t->used)
3181 def.vd_flags |= VER_FLG_WEAK;
3182 def.vd_ndx = t->vernum + 1;
3183 def.vd_cnt = cdeps + 1;
3184 def.vd_hash = bfd_elf_hash (t->name);
3185 def.vd_aux = sizeof (Elf_External_Verdef);
3186 if (t->next != NULL)
3187 def.vd_next = (sizeof (Elf_External_Verdef)
3188 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3189 else
3190 def.vd_next = 0;
3191
3192 _bfd_elf_swap_verdef_out (output_bfd, &def,
3193 (Elf_External_Verdef *) p);
3194 p += sizeof (Elf_External_Verdef);
3195
3196 defaux.vda_name = h->dynstr_index;
3197 if (t->deps == NULL)
3198 defaux.vda_next = 0;
3199 else
3200 defaux.vda_next = sizeof (Elf_External_Verdaux);
3201 t->name_indx = defaux.vda_name;
3202
3203 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3204 (Elf_External_Verdaux *) p);
3205 p += sizeof (Elf_External_Verdaux);
3206
3207 for (n = t->deps; n != NULL; n = n->next)
3208 {
3209 if (n->version_needed == NULL)
3210 {
3211 /* This can happen if there was an error in the
3212 version script. */
3213 defaux.vda_name = 0;
3214 }
3215 else
3216 defaux.vda_name = n->version_needed->name_indx;
3217 if (n->next == NULL)
3218 defaux.vda_next = 0;
3219 else
3220 defaux.vda_next = sizeof (Elf_External_Verdaux);
3221
3222 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3223 (Elf_External_Verdaux *) p);
3224 p += sizeof (Elf_External_Verdaux);
3225 }
3226 }
3227
3228 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
3229 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
3230 return false;
3231
3232 elf_tdata (output_bfd)->cverdefs = cdefs;
3233 }
3234
3235 if (info->new_dtags && info->flags)
3236 {
3237 if (! elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
3238 return false;
3239 }
3240
3241 if (info->flags_1)
3242 {
3243 if (! info->shared)
3244 info->flags_1 &= ~ (DF_1_INITFIRST
3245 | DF_1_NODELETE
3246 | DF_1_NOOPEN);
3247 if (! elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
3248 return false;
3249 }
3250
3251 /* Work out the size of the version reference section. */
3252
3253 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3254 BFD_ASSERT (s != NULL);
3255 {
3256 struct elf_find_verdep_info sinfo;
3257
3258 sinfo.output_bfd = output_bfd;
3259 sinfo.info = info;
3260 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3261 if (sinfo.vers == 0)
3262 sinfo.vers = 1;
3263 sinfo.failed = false;
3264
3265 elf_link_hash_traverse (elf_hash_table (info),
3266 elf_link_find_version_dependencies,
3267 (PTR) &sinfo);
3268
3269 if (elf_tdata (output_bfd)->verref == NULL)
3270 _bfd_strip_section_from_output (info, s);
3271 else
3272 {
3273 Elf_Internal_Verneed *t;
3274 unsigned int size;
3275 unsigned int crefs;
3276 bfd_byte *p;
3277
3278 /* Build the version definition section. */
3279 size = 0;
3280 crefs = 0;
3281 for (t = elf_tdata (output_bfd)->verref;
3282 t != NULL;
3283 t = t->vn_nextref)
3284 {
3285 Elf_Internal_Vernaux *a;
3286
3287 size += sizeof (Elf_External_Verneed);
3288 ++crefs;
3289 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3290 size += sizeof (Elf_External_Vernaux);
3291 }
3292
3293 s->_raw_size = size;
3294 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3295 if (s->contents == NULL)
3296 return false;
3297
3298 p = s->contents;
3299 for (t = elf_tdata (output_bfd)->verref;
3300 t != NULL;
3301 t = t->vn_nextref)
3302 {
3303 unsigned int caux;
3304 Elf_Internal_Vernaux *a;
3305 bfd_size_type indx;
3306
3307 caux = 0;
3308 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3309 ++caux;
3310
3311 t->vn_version = VER_NEED_CURRENT;
3312 t->vn_cnt = caux;
3313 if (elf_dt_name (t->vn_bfd) != NULL)
3314 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3315 elf_dt_name (t->vn_bfd),
3316 true, false);
3317 else
3318 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3319 basename (t->vn_bfd->filename),
3320 true, false);
3321 if (indx == (bfd_size_type) -1)
3322 return false;
3323 t->vn_file = indx;
3324 t->vn_aux = sizeof (Elf_External_Verneed);
3325 if (t->vn_nextref == NULL)
3326 t->vn_next = 0;
3327 else
3328 t->vn_next = (sizeof (Elf_External_Verneed)
3329 + caux * sizeof (Elf_External_Vernaux));
3330
3331 _bfd_elf_swap_verneed_out (output_bfd, t,
3332 (Elf_External_Verneed *) p);
3333 p += sizeof (Elf_External_Verneed);
3334
3335 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3336 {
3337 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3338 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3339 a->vna_nodename, true, false);
3340 if (indx == (bfd_size_type) -1)
3341 return false;
3342 a->vna_name = indx;
3343 if (a->vna_nextptr == NULL)
3344 a->vna_next = 0;
3345 else
3346 a->vna_next = sizeof (Elf_External_Vernaux);
3347
3348 _bfd_elf_swap_vernaux_out (output_bfd, a,
3349 (Elf_External_Vernaux *) p);
3350 p += sizeof (Elf_External_Vernaux);
3351 }
3352 }
3353
3354 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3355 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3356 return false;
3357
3358 elf_tdata (output_bfd)->cverrefs = crefs;
3359 }
3360 }
3361
3362 /* Assign dynsym indicies. In a shared library we generate a
3363 section symbol for each output section, which come first.
3364 Next come all of the back-end allocated local dynamic syms,
3365 followed by the rest of the global symbols. */
3366
3367 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3368
3369 /* Work out the size of the symbol version section. */
3370 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3371 BFD_ASSERT (s != NULL);
3372 if (dynsymcount == 0
3373 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3374 {
3375 _bfd_strip_section_from_output (info, s);
3376 /* The DYNSYMCOUNT might have changed if we were going to
3377 output a dynamic symbol table entry for S. */
3378 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3379 }
3380 else
3381 {
3382 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3383 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3384 if (s->contents == NULL)
3385 return false;
3386
3387 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3388 return false;
3389 }
3390
3391 /* Set the size of the .dynsym and .hash sections. We counted
3392 the number of dynamic symbols in elf_link_add_object_symbols.
3393 We will build the contents of .dynsym and .hash when we build
3394 the final symbol table, because until then we do not know the
3395 correct value to give the symbols. We built the .dynstr
3396 section as we went along in elf_link_add_object_symbols. */
3397 s = bfd_get_section_by_name (dynobj, ".dynsym");
3398 BFD_ASSERT (s != NULL);
3399 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3400 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3401 if (s->contents == NULL && s->_raw_size != 0)
3402 return false;
3403
3404 if (dynsymcount != 0)
3405 {
3406 Elf_Internal_Sym isym;
3407
3408 /* The first entry in .dynsym is a dummy symbol. */
3409 isym.st_value = 0;
3410 isym.st_size = 0;
3411 isym.st_name = 0;
3412 isym.st_info = 0;
3413 isym.st_other = 0;
3414 isym.st_shndx = 0;
3415 elf_swap_symbol_out (output_bfd, &isym,
3416 (PTR) (Elf_External_Sym *) s->contents);
3417 }
3418
3419 /* Compute the size of the hashing table. As a side effect this
3420 computes the hash values for all the names we export. */
3421 bucketcount = compute_bucket_count (info);
3422
3423 s = bfd_get_section_by_name (dynobj, ".hash");
3424 BFD_ASSERT (s != NULL);
3425 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3426 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3427 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3428 if (s->contents == NULL)
3429 return false;
3430 memset (s->contents, 0, (size_t) s->_raw_size);
3431
3432 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3433 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3434 s->contents + hash_entry_size);
3435
3436 elf_hash_table (info)->bucketcount = bucketcount;
3437
3438 s = bfd_get_section_by_name (dynobj, ".dynstr");
3439 BFD_ASSERT (s != NULL);
3440 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3441
3442 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3443 return false;
3444 }
3445
3446 return true;
3447 }
3448 \f
3449 /* Fix up the flags for a symbol. This handles various cases which
3450 can only be fixed after all the input files are seen. This is
3451 currently called by both adjust_dynamic_symbol and
3452 assign_sym_version, which is unnecessary but perhaps more robust in
3453 the face of future changes. */
3454
3455 static boolean
3456 elf_fix_symbol_flags (h, eif)
3457 struct elf_link_hash_entry *h;
3458 struct elf_info_failed *eif;
3459 {
3460 /* If this symbol was mentioned in a non-ELF file, try to set
3461 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3462 permit a non-ELF file to correctly refer to a symbol defined in
3463 an ELF dynamic object. */
3464 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3465 {
3466 while (h->root.type == bfd_link_hash_indirect)
3467 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3468
3469 if (h->root.type != bfd_link_hash_defined
3470 && h->root.type != bfd_link_hash_defweak)
3471 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3472 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3473 else
3474 {
3475 if (h->root.u.def.section->owner != NULL
3476 && (bfd_get_flavour (h->root.u.def.section->owner)
3477 == bfd_target_elf_flavour))
3478 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3479 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3480 else
3481 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3482 }
3483
3484 if (h->dynindx == -1
3485 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3486 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3487 {
3488 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3489 {
3490 eif->failed = true;
3491 return false;
3492 }
3493 }
3494 }
3495 else
3496 {
3497 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3498 was first seen in a non-ELF file. Fortunately, if the symbol
3499 was first seen in an ELF file, we're probably OK unless the
3500 symbol was defined in a non-ELF file. Catch that case here.
3501 FIXME: We're still in trouble if the symbol was first seen in
3502 a dynamic object, and then later in a non-ELF regular object. */
3503 if ((h->root.type == bfd_link_hash_defined
3504 || h->root.type == bfd_link_hash_defweak)
3505 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3506 && (h->root.u.def.section->owner != NULL
3507 ? (bfd_get_flavour (h->root.u.def.section->owner)
3508 != bfd_target_elf_flavour)
3509 : (bfd_is_abs_section (h->root.u.def.section)
3510 && (h->elf_link_hash_flags
3511 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3512 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3513 }
3514
3515 /* If this is a final link, and the symbol was defined as a common
3516 symbol in a regular object file, and there was no definition in
3517 any dynamic object, then the linker will have allocated space for
3518 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3519 flag will not have been set. */
3520 if (h->root.type == bfd_link_hash_defined
3521 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3522 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3523 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3524 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3525 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3526
3527 /* If -Bsymbolic was used (which means to bind references to global
3528 symbols to the definition within the shared object), and this
3529 symbol was defined in a regular object, then it actually doesn't
3530 need a PLT entry, and we can accomplish that by forcing it local.
3531 Likewise, if the symbol has hidden or internal visibility.
3532 FIXME: It might be that we also do not need a PLT for other
3533 non-hidden visibilities, but we would have to tell that to the
3534 backend specifically; we can't just clear PLT-related data here. */
3535 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3536 && eif->info->shared
3537 && (eif->info->symbolic
3538 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3539 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
3540 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3541 {
3542 struct elf_backend_data *bed;
3543 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3544 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3545 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
3546 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3547 (*bed->elf_backend_hide_symbol) (eif->info, h);
3548 }
3549
3550 /* If this is a weak defined symbol in a dynamic object, and we know
3551 the real definition in the dynamic object, copy interesting flags
3552 over to the real definition. */
3553 if (h->weakdef != NULL)
3554 {
3555 struct elf_link_hash_entry *weakdef;
3556
3557 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3558 || h->root.type == bfd_link_hash_defweak);
3559 weakdef = h->weakdef;
3560 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3561 || weakdef->root.type == bfd_link_hash_defweak);
3562 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3563
3564 /* If the real definition is defined by a regular object file,
3565 don't do anything special. See the longer description in
3566 elf_adjust_dynamic_symbol, below. */
3567 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3568 h->weakdef = NULL;
3569 else
3570 weakdef->elf_link_hash_flags |=
3571 (h->elf_link_hash_flags
3572 & (ELF_LINK_HASH_REF_REGULAR
3573 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3574 | ELF_LINK_NON_GOT_REF));
3575 }
3576
3577 return true;
3578 }
3579
3580 /* Make the backend pick a good value for a dynamic symbol. This is
3581 called via elf_link_hash_traverse, and also calls itself
3582 recursively. */
3583
3584 static boolean
3585 elf_adjust_dynamic_symbol (h, data)
3586 struct elf_link_hash_entry *h;
3587 PTR data;
3588 {
3589 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3590 bfd *dynobj;
3591 struct elf_backend_data *bed;
3592
3593 /* Ignore indirect symbols. These are added by the versioning code. */
3594 if (h->root.type == bfd_link_hash_indirect)
3595 return true;
3596
3597 /* Fix the symbol flags. */
3598 if (! elf_fix_symbol_flags (h, eif))
3599 return false;
3600
3601 /* If this symbol does not require a PLT entry, and it is not
3602 defined by a dynamic object, or is not referenced by a regular
3603 object, ignore it. We do have to handle a weak defined symbol,
3604 even if no regular object refers to it, if we decided to add it
3605 to the dynamic symbol table. FIXME: Do we normally need to worry
3606 about symbols which are defined by one dynamic object and
3607 referenced by another one? */
3608 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3609 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3610 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3611 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3612 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3613 {
3614 h->plt.offset = (bfd_vma) -1;
3615 return true;
3616 }
3617
3618 /* If we've already adjusted this symbol, don't do it again. This
3619 can happen via a recursive call. */
3620 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3621 return true;
3622
3623 /* Don't look at this symbol again. Note that we must set this
3624 after checking the above conditions, because we may look at a
3625 symbol once, decide not to do anything, and then get called
3626 recursively later after REF_REGULAR is set below. */
3627 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3628
3629 /* If this is a weak definition, and we know a real definition, and
3630 the real symbol is not itself defined by a regular object file,
3631 then get a good value for the real definition. We handle the
3632 real symbol first, for the convenience of the backend routine.
3633
3634 Note that there is a confusing case here. If the real definition
3635 is defined by a regular object file, we don't get the real symbol
3636 from the dynamic object, but we do get the weak symbol. If the
3637 processor backend uses a COPY reloc, then if some routine in the
3638 dynamic object changes the real symbol, we will not see that
3639 change in the corresponding weak symbol. This is the way other
3640 ELF linkers work as well, and seems to be a result of the shared
3641 library model.
3642
3643 I will clarify this issue. Most SVR4 shared libraries define the
3644 variable _timezone and define timezone as a weak synonym. The
3645 tzset call changes _timezone. If you write
3646 extern int timezone;
3647 int _timezone = 5;
3648 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3649 you might expect that, since timezone is a synonym for _timezone,
3650 the same number will print both times. However, if the processor
3651 backend uses a COPY reloc, then actually timezone will be copied
3652 into your process image, and, since you define _timezone
3653 yourself, _timezone will not. Thus timezone and _timezone will
3654 wind up at different memory locations. The tzset call will set
3655 _timezone, leaving timezone unchanged. */
3656
3657 if (h->weakdef != NULL)
3658 {
3659 /* If we get to this point, we know there is an implicit
3660 reference by a regular object file via the weak symbol H.
3661 FIXME: Is this really true? What if the traversal finds
3662 H->WEAKDEF before it finds H? */
3663 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3664
3665 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3666 return false;
3667 }
3668
3669 /* If a symbol has no type and no size and does not require a PLT
3670 entry, then we are probably about to do the wrong thing here: we
3671 are probably going to create a COPY reloc for an empty object.
3672 This case can arise when a shared object is built with assembly
3673 code, and the assembly code fails to set the symbol type. */
3674 if (h->size == 0
3675 && h->type == STT_NOTYPE
3676 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3677 (*_bfd_error_handler)
3678 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3679 h->root.root.string);
3680
3681 dynobj = elf_hash_table (eif->info)->dynobj;
3682 bed = get_elf_backend_data (dynobj);
3683 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3684 {
3685 eif->failed = true;
3686 return false;
3687 }
3688
3689 return true;
3690 }
3691 \f
3692 /* This routine is used to export all defined symbols into the dynamic
3693 symbol table. It is called via elf_link_hash_traverse. */
3694
3695 static boolean
3696 elf_export_symbol (h, data)
3697 struct elf_link_hash_entry *h;
3698 PTR data;
3699 {
3700 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3701
3702 /* Ignore indirect symbols. These are added by the versioning code. */
3703 if (h->root.type == bfd_link_hash_indirect)
3704 return true;
3705
3706 if (h->dynindx == -1
3707 && (h->elf_link_hash_flags
3708 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3709 {
3710 struct bfd_elf_version_tree *t;
3711 struct bfd_elf_version_expr *d;
3712
3713 for (t = eif->verdefs; t != NULL; t = t->next)
3714 {
3715 if (t->globals != NULL)
3716 {
3717 for (d = t->globals; d != NULL; d = d->next)
3718 {
3719 if ((*d->match) (d, h->root.root.string))
3720 goto doit;
3721 }
3722 }
3723
3724 if (t->locals != NULL)
3725 {
3726 for (d = t->locals ; d != NULL; d = d->next)
3727 {
3728 if ((*d->match) (d, h->root.root.string))
3729 return true;
3730 }
3731 }
3732 }
3733
3734 if (!eif->verdefs)
3735 {
3736 doit:
3737 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3738 {
3739 eif->failed = true;
3740 return false;
3741 }
3742 }
3743 }
3744
3745 return true;
3746 }
3747 \f
3748 /* Look through the symbols which are defined in other shared
3749 libraries and referenced here. Update the list of version
3750 dependencies. This will be put into the .gnu.version_r section.
3751 This function is called via elf_link_hash_traverse. */
3752
3753 static boolean
3754 elf_link_find_version_dependencies (h, data)
3755 struct elf_link_hash_entry *h;
3756 PTR data;
3757 {
3758 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3759 Elf_Internal_Verneed *t;
3760 Elf_Internal_Vernaux *a;
3761
3762 /* We only care about symbols defined in shared objects with version
3763 information. */
3764 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3765 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3766 || h->dynindx == -1
3767 || h->verinfo.verdef == NULL)
3768 return true;
3769
3770 /* See if we already know about this version. */
3771 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3772 {
3773 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3774 continue;
3775
3776 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3777 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3778 return true;
3779
3780 break;
3781 }
3782
3783 /* This is a new version. Add it to tree we are building. */
3784
3785 if (t == NULL)
3786 {
3787 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3788 if (t == NULL)
3789 {
3790 rinfo->failed = true;
3791 return false;
3792 }
3793
3794 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3795 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3796 elf_tdata (rinfo->output_bfd)->verref = t;
3797 }
3798
3799 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3800
3801 /* Note that we are copying a string pointer here, and testing it
3802 above. If bfd_elf_string_from_elf_section is ever changed to
3803 discard the string data when low in memory, this will have to be
3804 fixed. */
3805 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3806
3807 a->vna_flags = h->verinfo.verdef->vd_flags;
3808 a->vna_nextptr = t->vn_auxptr;
3809
3810 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3811 ++rinfo->vers;
3812
3813 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3814
3815 t->vn_auxptr = a;
3816
3817 return true;
3818 }
3819
3820 /* Figure out appropriate versions for all the symbols. We may not
3821 have the version number script until we have read all of the input
3822 files, so until that point we don't know which symbols should be
3823 local. This function is called via elf_link_hash_traverse. */
3824
3825 static boolean
3826 elf_link_assign_sym_version (h, data)
3827 struct elf_link_hash_entry *h;
3828 PTR data;
3829 {
3830 struct elf_assign_sym_version_info *sinfo =
3831 (struct elf_assign_sym_version_info *) data;
3832 struct bfd_link_info *info = sinfo->info;
3833 struct elf_backend_data *bed;
3834 struct elf_info_failed eif;
3835 char *p;
3836
3837 /* Fix the symbol flags. */
3838 eif.failed = false;
3839 eif.info = info;
3840 if (! elf_fix_symbol_flags (h, &eif))
3841 {
3842 if (eif.failed)
3843 sinfo->failed = true;
3844 return false;
3845 }
3846
3847 /* We only need version numbers for symbols defined in regular
3848 objects. */
3849 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3850 return true;
3851
3852 bed = get_elf_backend_data (sinfo->output_bfd);
3853 p = strchr (h->root.root.string, ELF_VER_CHR);
3854 if (p != NULL && h->verinfo.vertree == NULL)
3855 {
3856 struct bfd_elf_version_tree *t;
3857 boolean hidden;
3858
3859 hidden = true;
3860
3861 /* There are two consecutive ELF_VER_CHR characters if this is
3862 not a hidden symbol. */
3863 ++p;
3864 if (*p == ELF_VER_CHR)
3865 {
3866 hidden = false;
3867 ++p;
3868 }
3869
3870 /* If there is no version string, we can just return out. */
3871 if (*p == '\0')
3872 {
3873 if (hidden)
3874 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3875 return true;
3876 }
3877
3878 /* Look for the version. If we find it, it is no longer weak. */
3879 for (t = sinfo->verdefs; t != NULL; t = t->next)
3880 {
3881 if (strcmp (t->name, p) == 0)
3882 {
3883 int len;
3884 char *alc;
3885 struct bfd_elf_version_expr *d;
3886
3887 len = p - h->root.root.string;
3888 alc = bfd_alloc (sinfo->output_bfd, len);
3889 if (alc == NULL)
3890 return false;
3891 strncpy (alc, h->root.root.string, len - 1);
3892 alc[len - 1] = '\0';
3893 if (alc[len - 2] == ELF_VER_CHR)
3894 alc[len - 2] = '\0';
3895
3896 h->verinfo.vertree = t;
3897 t->used = true;
3898 d = NULL;
3899
3900 if (t->globals != NULL)
3901 {
3902 for (d = t->globals; d != NULL; d = d->next)
3903 if ((*d->match) (d, alc))
3904 break;
3905 }
3906
3907 /* See if there is anything to force this symbol to
3908 local scope. */
3909 if (d == NULL && t->locals != NULL)
3910 {
3911 for (d = t->locals; d != NULL; d = d->next)
3912 {
3913 if ((*d->match) (d, alc))
3914 {
3915 if (h->dynindx != -1
3916 && info->shared
3917 && ! sinfo->export_dynamic)
3918 {
3919 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3920 (*bed->elf_backend_hide_symbol) (info, h);
3921 /* FIXME: The name of the symbol has
3922 already been recorded in the dynamic
3923 string table section. */
3924 }
3925
3926 break;
3927 }
3928 }
3929 }
3930
3931 bfd_release (sinfo->output_bfd, alc);
3932 break;
3933 }
3934 }
3935
3936 /* If we are building an application, we need to create a
3937 version node for this version. */
3938 if (t == NULL && ! info->shared)
3939 {
3940 struct bfd_elf_version_tree **pp;
3941 int version_index;
3942
3943 /* If we aren't going to export this symbol, we don't need
3944 to worry about it. */
3945 if (h->dynindx == -1)
3946 return true;
3947
3948 t = ((struct bfd_elf_version_tree *)
3949 bfd_alloc (sinfo->output_bfd, sizeof *t));
3950 if (t == NULL)
3951 {
3952 sinfo->failed = true;
3953 return false;
3954 }
3955
3956 t->next = NULL;
3957 t->name = p;
3958 t->globals = NULL;
3959 t->locals = NULL;
3960 t->deps = NULL;
3961 t->name_indx = (unsigned int) -1;
3962 t->used = true;
3963
3964 version_index = 1;
3965 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3966 ++version_index;
3967 t->vernum = version_index;
3968
3969 *pp = t;
3970
3971 h->verinfo.vertree = t;
3972 }
3973 else if (t == NULL)
3974 {
3975 /* We could not find the version for a symbol when
3976 generating a shared archive. Return an error. */
3977 (*_bfd_error_handler)
3978 (_("%s: undefined versioned symbol name %s"),
3979 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3980 bfd_set_error (bfd_error_bad_value);
3981 sinfo->failed = true;
3982 return false;
3983 }
3984
3985 if (hidden)
3986 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3987 }
3988
3989 /* If we don't have a version for this symbol, see if we can find
3990 something. */
3991 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3992 {
3993 struct bfd_elf_version_tree *t;
3994 struct bfd_elf_version_tree *deflt;
3995 struct bfd_elf_version_expr *d;
3996
3997 /* See if can find what version this symbol is in. If the
3998 symbol is supposed to be local, then don't actually register
3999 it. */
4000 deflt = NULL;
4001 for (t = sinfo->verdefs; t != NULL; t = t->next)
4002 {
4003 if (t->globals != NULL)
4004 {
4005 for (d = t->globals; d != NULL; d = d->next)
4006 {
4007 if ((*d->match) (d, h->root.root.string))
4008 {
4009 h->verinfo.vertree = t;
4010 break;
4011 }
4012 }
4013
4014 if (d != NULL)
4015 break;
4016 }
4017
4018 if (t->locals != NULL)
4019 {
4020 for (d = t->locals; d != NULL; d = d->next)
4021 {
4022 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
4023 deflt = t;
4024 else if ((*d->match) (d, h->root.root.string))
4025 {
4026 h->verinfo.vertree = t;
4027 if (h->dynindx != -1
4028 && info->shared
4029 && ! sinfo->export_dynamic)
4030 {
4031 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
4032 (*bed->elf_backend_hide_symbol) (info, h);
4033 /* FIXME: The name of the symbol has already
4034 been recorded in the dynamic string table
4035 section. */
4036 }
4037 break;
4038 }
4039 }
4040
4041 if (d != NULL)
4042 break;
4043 }
4044 }
4045
4046 if (deflt != NULL && h->verinfo.vertree == NULL)
4047 {
4048 h->verinfo.vertree = deflt;
4049 if (h->dynindx != -1
4050 && info->shared
4051 && ! sinfo->export_dynamic)
4052 {
4053 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
4054 (*bed->elf_backend_hide_symbol) (info, h);
4055 /* FIXME: The name of the symbol has already been
4056 recorded in the dynamic string table section. */
4057 }
4058 }
4059 }
4060
4061 return true;
4062 }
4063 \f
4064 /* Final phase of ELF linker. */
4065
4066 /* A structure we use to avoid passing large numbers of arguments. */
4067
4068 struct elf_final_link_info
4069 {
4070 /* General link information. */
4071 struct bfd_link_info *info;
4072 /* Output BFD. */
4073 bfd *output_bfd;
4074 /* Symbol string table. */
4075 struct bfd_strtab_hash *symstrtab;
4076 /* .dynsym section. */
4077 asection *dynsym_sec;
4078 /* .hash section. */
4079 asection *hash_sec;
4080 /* symbol version section (.gnu.version). */
4081 asection *symver_sec;
4082 /* Buffer large enough to hold contents of any section. */
4083 bfd_byte *contents;
4084 /* Buffer large enough to hold external relocs of any section. */
4085 PTR external_relocs;
4086 /* Buffer large enough to hold internal relocs of any section. */
4087 Elf_Internal_Rela *internal_relocs;
4088 /* Buffer large enough to hold external local symbols of any input
4089 BFD. */
4090 Elf_External_Sym *external_syms;
4091 /* Buffer large enough to hold internal local symbols of any input
4092 BFD. */
4093 Elf_Internal_Sym *internal_syms;
4094 /* Array large enough to hold a symbol index for each local symbol
4095 of any input BFD. */
4096 long *indices;
4097 /* Array large enough to hold a section pointer for each local
4098 symbol of any input BFD. */
4099 asection **sections;
4100 /* Buffer to hold swapped out symbols. */
4101 Elf_External_Sym *symbuf;
4102 /* Number of swapped out symbols in buffer. */
4103 size_t symbuf_count;
4104 /* Number of symbols which fit in symbuf. */
4105 size_t symbuf_size;
4106 };
4107
4108 static boolean elf_link_output_sym
4109 PARAMS ((struct elf_final_link_info *, const char *,
4110 Elf_Internal_Sym *, asection *));
4111 static boolean elf_link_flush_output_syms
4112 PARAMS ((struct elf_final_link_info *));
4113 static boolean elf_link_output_extsym
4114 PARAMS ((struct elf_link_hash_entry *, PTR));
4115 static boolean elf_link_sec_merge_syms
4116 PARAMS ((struct elf_link_hash_entry *, PTR));
4117 static boolean elf_link_input_bfd
4118 PARAMS ((struct elf_final_link_info *, bfd *));
4119 static boolean elf_reloc_link_order
4120 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4121 struct bfd_link_order *));
4122
4123 /* This struct is used to pass information to elf_link_output_extsym. */
4124
4125 struct elf_outext_info
4126 {
4127 boolean failed;
4128 boolean localsyms;
4129 struct elf_final_link_info *finfo;
4130 };
4131
4132 /* Compute the size of, and allocate space for, REL_HDR which is the
4133 section header for a section containing relocations for O. */
4134
4135 static boolean
4136 elf_link_size_reloc_section (abfd, rel_hdr, o)
4137 bfd *abfd;
4138 Elf_Internal_Shdr *rel_hdr;
4139 asection *o;
4140 {
4141 unsigned reloc_count;
4142
4143 /* Figure out how many relocations there will be. */
4144 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4145 reloc_count = elf_section_data (o)->rel_count;
4146 else
4147 reloc_count = elf_section_data (o)->rel_count2;
4148
4149 /* That allows us to calculate the size of the section. */
4150 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
4151
4152 /* The contents field must last into write_object_contents, so we
4153 allocate it with bfd_alloc rather than malloc. Also since we
4154 cannot be sure that the contents will actually be filled in,
4155 we zero the allocated space. */
4156 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
4157 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4158 return false;
4159
4160 /* We only allocate one set of hash entries, so we only do it the
4161 first time we are called. */
4162 if (elf_section_data (o)->rel_hashes == NULL)
4163 {
4164 struct elf_link_hash_entry **p;
4165
4166 p = ((struct elf_link_hash_entry **)
4167 bfd_zmalloc (o->reloc_count
4168 * sizeof (struct elf_link_hash_entry *)));
4169 if (p == NULL && o->reloc_count != 0)
4170 return false;
4171
4172 elf_section_data (o)->rel_hashes = p;
4173 }
4174
4175 return true;
4176 }
4177
4178 /* When performing a relocateable link, the input relocations are
4179 preserved. But, if they reference global symbols, the indices
4180 referenced must be updated. Update all the relocations in
4181 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4182
4183 static void
4184 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4185 bfd *abfd;
4186 Elf_Internal_Shdr *rel_hdr;
4187 unsigned int count;
4188 struct elf_link_hash_entry **rel_hash;
4189 {
4190 unsigned int i;
4191 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4192 Elf_Internal_Rel *irel;
4193 Elf_Internal_Rela *irela;
4194
4195 irel = (Elf_Internal_Rel *) bfd_zmalloc (sizeof (Elf_Internal_Rel)
4196 * bed->s->int_rels_per_ext_rel);
4197 if (irel == NULL)
4198 {
4199 (*_bfd_error_handler) (_("Error: out of memory"));
4200 abort ();
4201 }
4202
4203 irela = (Elf_Internal_Rela *) bfd_zmalloc (sizeof (Elf_Internal_Rela)
4204 * bed->s->int_rels_per_ext_rel);
4205 if (irela == NULL)
4206 {
4207 (*_bfd_error_handler) (_("Error: out of memory"));
4208 abort ();
4209 }
4210
4211 for (i = 0; i < count; i++, rel_hash++)
4212 {
4213 if (*rel_hash == NULL)
4214 continue;
4215
4216 BFD_ASSERT ((*rel_hash)->indx >= 0);
4217
4218 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4219 {
4220 Elf_External_Rel *erel;
4221 unsigned int j;
4222
4223 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4224 if (bed->s->swap_reloc_in)
4225 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
4226 else
4227 elf_swap_reloc_in (abfd, erel, irel);
4228
4229 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4230 irel[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4231 ELF_R_TYPE (irel[j].r_info));
4232
4233 if (bed->s->swap_reloc_out)
4234 (*bed->s->swap_reloc_out) (abfd, irel, (bfd_byte *) erel);
4235 else
4236 elf_swap_reloc_out (abfd, irel, erel);
4237 }
4238 else
4239 {
4240 Elf_External_Rela *erela;
4241 unsigned int j;
4242
4243 BFD_ASSERT (rel_hdr->sh_entsize
4244 == sizeof (Elf_External_Rela));
4245
4246 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4247 if (bed->s->swap_reloca_in)
4248 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
4249 else
4250 elf_swap_reloca_in (abfd, erela, irela);
4251
4252 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4253 irela[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4254 ELF_R_TYPE (irela[j].r_info));
4255
4256 if (bed->s->swap_reloca_out)
4257 (*bed->s->swap_reloca_out) (abfd, irela, (bfd_byte *) erela);
4258 else
4259 elf_swap_reloca_out (abfd, irela, erela);
4260 }
4261 }
4262
4263 free (irel);
4264 free (irela);
4265 }
4266
4267 /* Do the final step of an ELF link. */
4268
4269 boolean
4270 elf_bfd_final_link (abfd, info)
4271 bfd *abfd;
4272 struct bfd_link_info *info;
4273 {
4274 boolean dynamic;
4275 bfd *dynobj;
4276 struct elf_final_link_info finfo;
4277 register asection *o;
4278 register struct bfd_link_order *p;
4279 register bfd *sub;
4280 size_t max_contents_size;
4281 size_t max_external_reloc_size;
4282 size_t max_internal_reloc_count;
4283 size_t max_sym_count;
4284 file_ptr off;
4285 Elf_Internal_Sym elfsym;
4286 unsigned int i;
4287 Elf_Internal_Shdr *symtab_hdr;
4288 Elf_Internal_Shdr *symstrtab_hdr;
4289 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4290 struct elf_outext_info eoinfo;
4291 boolean merged;
4292
4293 if (info->shared)
4294 abfd->flags |= DYNAMIC;
4295
4296 dynamic = elf_hash_table (info)->dynamic_sections_created;
4297 dynobj = elf_hash_table (info)->dynobj;
4298
4299 finfo.info = info;
4300 finfo.output_bfd = abfd;
4301 finfo.symstrtab = elf_stringtab_init ();
4302 if (finfo.symstrtab == NULL)
4303 return false;
4304
4305 if (! dynamic)
4306 {
4307 finfo.dynsym_sec = NULL;
4308 finfo.hash_sec = NULL;
4309 finfo.symver_sec = NULL;
4310 }
4311 else
4312 {
4313 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4314 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4315 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4316 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4317 /* Note that it is OK if symver_sec is NULL. */
4318 }
4319
4320 finfo.contents = NULL;
4321 finfo.external_relocs = NULL;
4322 finfo.internal_relocs = NULL;
4323 finfo.external_syms = NULL;
4324 finfo.internal_syms = NULL;
4325 finfo.indices = NULL;
4326 finfo.sections = NULL;
4327 finfo.symbuf = NULL;
4328 finfo.symbuf_count = 0;
4329
4330 /* Count up the number of relocations we will output for each output
4331 section, so that we know the sizes of the reloc sections. We
4332 also figure out some maximum sizes. */
4333 max_contents_size = 0;
4334 max_external_reloc_size = 0;
4335 max_internal_reloc_count = 0;
4336 max_sym_count = 0;
4337 merged = false;
4338 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4339 {
4340 o->reloc_count = 0;
4341
4342 for (p = o->link_order_head; p != NULL; p = p->next)
4343 {
4344 if (p->type == bfd_section_reloc_link_order
4345 || p->type == bfd_symbol_reloc_link_order)
4346 ++o->reloc_count;
4347 else if (p->type == bfd_indirect_link_order)
4348 {
4349 asection *sec;
4350
4351 sec = p->u.indirect.section;
4352
4353 /* Mark all sections which are to be included in the
4354 link. This will normally be every section. We need
4355 to do this so that we can identify any sections which
4356 the linker has decided to not include. */
4357 sec->linker_mark = true;
4358
4359 if (sec->flags & SEC_MERGE)
4360 merged = true;
4361
4362 if (info->relocateable || info->emitrelocations)
4363 o->reloc_count += sec->reloc_count;
4364
4365 if (sec->_raw_size > max_contents_size)
4366 max_contents_size = sec->_raw_size;
4367 if (sec->_cooked_size > max_contents_size)
4368 max_contents_size = sec->_cooked_size;
4369
4370 /* We are interested in just local symbols, not all
4371 symbols. */
4372 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4373 && (sec->owner->flags & DYNAMIC) == 0)
4374 {
4375 size_t sym_count;
4376
4377 if (elf_bad_symtab (sec->owner))
4378 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4379 / sizeof (Elf_External_Sym));
4380 else
4381 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4382
4383 if (sym_count > max_sym_count)
4384 max_sym_count = sym_count;
4385
4386 if ((sec->flags & SEC_RELOC) != 0)
4387 {
4388 size_t ext_size;
4389
4390 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4391 if (ext_size > max_external_reloc_size)
4392 max_external_reloc_size = ext_size;
4393 if (sec->reloc_count > max_internal_reloc_count)
4394 max_internal_reloc_count = sec->reloc_count;
4395 }
4396 }
4397 }
4398 }
4399
4400 if (o->reloc_count > 0)
4401 o->flags |= SEC_RELOC;
4402 else
4403 {
4404 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4405 set it (this is probably a bug) and if it is set
4406 assign_section_numbers will create a reloc section. */
4407 o->flags &=~ SEC_RELOC;
4408 }
4409
4410 /* If the SEC_ALLOC flag is not set, force the section VMA to
4411 zero. This is done in elf_fake_sections as well, but forcing
4412 the VMA to 0 here will ensure that relocs against these
4413 sections are handled correctly. */
4414 if ((o->flags & SEC_ALLOC) == 0
4415 && ! o->user_set_vma)
4416 o->vma = 0;
4417 }
4418
4419 if (! info->relocateable && merged)
4420 elf_link_hash_traverse (elf_hash_table (info),
4421 elf_link_sec_merge_syms, (PTR) abfd);
4422
4423 /* Figure out the file positions for everything but the symbol table
4424 and the relocs. We set symcount to force assign_section_numbers
4425 to create a symbol table. */
4426 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4427 BFD_ASSERT (! abfd->output_has_begun);
4428 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4429 goto error_return;
4430
4431 /* Figure out how many relocations we will have in each section.
4432 Just using RELOC_COUNT isn't good enough since that doesn't
4433 maintain a separate value for REL vs. RELA relocations. */
4434 if (info->relocateable || info->emitrelocations)
4435 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4436 for (o = sub->sections; o != NULL; o = o->next)
4437 {
4438 asection *output_section;
4439
4440 if (! o->linker_mark)
4441 {
4442 /* This section was omitted from the link. */
4443 continue;
4444 }
4445
4446 output_section = o->output_section;
4447
4448 if (output_section != NULL
4449 && (o->flags & SEC_RELOC) != 0)
4450 {
4451 struct bfd_elf_section_data *esdi
4452 = elf_section_data (o);
4453 struct bfd_elf_section_data *esdo
4454 = elf_section_data (output_section);
4455 unsigned int *rel_count;
4456 unsigned int *rel_count2;
4457
4458 /* We must be careful to add the relocation froms the
4459 input section to the right output count. */
4460 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4461 {
4462 rel_count = &esdo->rel_count;
4463 rel_count2 = &esdo->rel_count2;
4464 }
4465 else
4466 {
4467 rel_count = &esdo->rel_count2;
4468 rel_count2 = &esdo->rel_count;
4469 }
4470
4471 *rel_count += NUM_SHDR_ENTRIES (& esdi->rel_hdr);
4472 if (esdi->rel_hdr2)
4473 *rel_count2 += NUM_SHDR_ENTRIES (esdi->rel_hdr2);
4474 }
4475 }
4476
4477 /* That created the reloc sections. Set their sizes, and assign
4478 them file positions, and allocate some buffers. */
4479 for (o = abfd->sections; o != NULL; o = o->next)
4480 {
4481 if ((o->flags & SEC_RELOC) != 0)
4482 {
4483 if (!elf_link_size_reloc_section (abfd,
4484 &elf_section_data (o)->rel_hdr,
4485 o))
4486 goto error_return;
4487
4488 if (elf_section_data (o)->rel_hdr2
4489 && !elf_link_size_reloc_section (abfd,
4490 elf_section_data (o)->rel_hdr2,
4491 o))
4492 goto error_return;
4493 }
4494
4495 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4496 to count upwards while actually outputting the relocations. */
4497 elf_section_data (o)->rel_count = 0;
4498 elf_section_data (o)->rel_count2 = 0;
4499 }
4500
4501 _bfd_elf_assign_file_positions_for_relocs (abfd);
4502
4503 /* We have now assigned file positions for all the sections except
4504 .symtab and .strtab. We start the .symtab section at the current
4505 file position, and write directly to it. We build the .strtab
4506 section in memory. */
4507 bfd_get_symcount (abfd) = 0;
4508 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4509 /* sh_name is set in prep_headers. */
4510 symtab_hdr->sh_type = SHT_SYMTAB;
4511 symtab_hdr->sh_flags = 0;
4512 symtab_hdr->sh_addr = 0;
4513 symtab_hdr->sh_size = 0;
4514 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4515 /* sh_link is set in assign_section_numbers. */
4516 /* sh_info is set below. */
4517 /* sh_offset is set just below. */
4518 symtab_hdr->sh_addralign = bed->s->file_align;
4519
4520 off = elf_tdata (abfd)->next_file_pos;
4521 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4522
4523 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4524 incorrect. We do not yet know the size of the .symtab section.
4525 We correct next_file_pos below, after we do know the size. */
4526
4527 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4528 continuously seeking to the right position in the file. */
4529 if (! info->keep_memory || max_sym_count < 20)
4530 finfo.symbuf_size = 20;
4531 else
4532 finfo.symbuf_size = max_sym_count;
4533 finfo.symbuf = ((Elf_External_Sym *)
4534 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4535 if (finfo.symbuf == NULL)
4536 goto error_return;
4537
4538 /* Start writing out the symbol table. The first symbol is always a
4539 dummy symbol. */
4540 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
4541 {
4542 elfsym.st_value = 0;
4543 elfsym.st_size = 0;
4544 elfsym.st_info = 0;
4545 elfsym.st_other = 0;
4546 elfsym.st_shndx = SHN_UNDEF;
4547 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4548 &elfsym, bfd_und_section_ptr))
4549 goto error_return;
4550 }
4551
4552 #if 0
4553 /* Some standard ELF linkers do this, but we don't because it causes
4554 bootstrap comparison failures. */
4555 /* Output a file symbol for the output file as the second symbol.
4556 We output this even if we are discarding local symbols, although
4557 I'm not sure if this is correct. */
4558 elfsym.st_value = 0;
4559 elfsym.st_size = 0;
4560 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4561 elfsym.st_other = 0;
4562 elfsym.st_shndx = SHN_ABS;
4563 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4564 &elfsym, bfd_abs_section_ptr))
4565 goto error_return;
4566 #endif
4567
4568 /* Output a symbol for each section. We output these even if we are
4569 discarding local symbols, since they are used for relocs. These
4570 symbols have no names. We store the index of each one in the
4571 index field of the section, so that we can find it again when
4572 outputting relocs. */
4573 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
4574 {
4575 elfsym.st_size = 0;
4576 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4577 elfsym.st_other = 0;
4578 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4579 {
4580 o = section_from_elf_index (abfd, i);
4581 if (o != NULL)
4582 o->target_index = bfd_get_symcount (abfd);
4583 elfsym.st_shndx = i;
4584 if (info->relocateable || o == NULL)
4585 elfsym.st_value = 0;
4586 else
4587 elfsym.st_value = o->vma;
4588 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4589 &elfsym, o))
4590 goto error_return;
4591 }
4592 }
4593
4594 /* Allocate some memory to hold information read in from the input
4595 files. */
4596 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4597 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4598 finfo.internal_relocs = ((Elf_Internal_Rela *)
4599 bfd_malloc (max_internal_reloc_count
4600 * sizeof (Elf_Internal_Rela)
4601 * bed->s->int_rels_per_ext_rel));
4602 finfo.external_syms = ((Elf_External_Sym *)
4603 bfd_malloc (max_sym_count
4604 * sizeof (Elf_External_Sym)));
4605 finfo.internal_syms = ((Elf_Internal_Sym *)
4606 bfd_malloc (max_sym_count
4607 * sizeof (Elf_Internal_Sym)));
4608 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4609 finfo.sections = ((asection **)
4610 bfd_malloc (max_sym_count * sizeof (asection *)));
4611 if ((finfo.contents == NULL && max_contents_size != 0)
4612 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4613 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4614 || (finfo.external_syms == NULL && max_sym_count != 0)
4615 || (finfo.internal_syms == NULL && max_sym_count != 0)
4616 || (finfo.indices == NULL && max_sym_count != 0)
4617 || (finfo.sections == NULL && max_sym_count != 0))
4618 goto error_return;
4619
4620 /* Since ELF permits relocations to be against local symbols, we
4621 must have the local symbols available when we do the relocations.
4622 Since we would rather only read the local symbols once, and we
4623 would rather not keep them in memory, we handle all the
4624 relocations for a single input file at the same time.
4625
4626 Unfortunately, there is no way to know the total number of local
4627 symbols until we have seen all of them, and the local symbol
4628 indices precede the global symbol indices. This means that when
4629 we are generating relocateable output, and we see a reloc against
4630 a global symbol, we can not know the symbol index until we have
4631 finished examining all the local symbols to see which ones we are
4632 going to output. To deal with this, we keep the relocations in
4633 memory, and don't output them until the end of the link. This is
4634 an unfortunate waste of memory, but I don't see a good way around
4635 it. Fortunately, it only happens when performing a relocateable
4636 link, which is not the common case. FIXME: If keep_memory is set
4637 we could write the relocs out and then read them again; I don't
4638 know how bad the memory loss will be. */
4639
4640 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4641 sub->output_has_begun = false;
4642 for (o = abfd->sections; o != NULL; o = o->next)
4643 {
4644 for (p = o->link_order_head; p != NULL; p = p->next)
4645 {
4646 if (p->type == bfd_indirect_link_order
4647 && (bfd_get_flavour (p->u.indirect.section->owner)
4648 == bfd_target_elf_flavour))
4649 {
4650 sub = p->u.indirect.section->owner;
4651 if (! sub->output_has_begun)
4652 {
4653 if (! elf_link_input_bfd (&finfo, sub))
4654 goto error_return;
4655 sub->output_has_begun = true;
4656 }
4657 }
4658 else if (p->type == bfd_section_reloc_link_order
4659 || p->type == bfd_symbol_reloc_link_order)
4660 {
4661 if (! elf_reloc_link_order (abfd, info, o, p))
4662 goto error_return;
4663 }
4664 else
4665 {
4666 if (! _bfd_default_link_order (abfd, info, o, p))
4667 goto error_return;
4668 }
4669 }
4670 }
4671
4672 /* That wrote out all the local symbols. Finish up the symbol table
4673 with the global symbols. Even if we want to strip everything we
4674 can, we still need to deal with those global symbols that got
4675 converted to local in a version script. */
4676
4677 if (info->shared)
4678 {
4679 /* Output any global symbols that got converted to local in a
4680 version script. We do this in a separate step since ELF
4681 requires all local symbols to appear prior to any global
4682 symbols. FIXME: We should only do this if some global
4683 symbols were, in fact, converted to become local. FIXME:
4684 Will this work correctly with the Irix 5 linker? */
4685 eoinfo.failed = false;
4686 eoinfo.finfo = &finfo;
4687 eoinfo.localsyms = true;
4688 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4689 (PTR) &eoinfo);
4690 if (eoinfo.failed)
4691 return false;
4692 }
4693
4694 /* The sh_info field records the index of the first non local symbol. */
4695 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4696
4697 if (dynamic
4698 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
4699 {
4700 Elf_Internal_Sym sym;
4701 Elf_External_Sym *dynsym =
4702 (Elf_External_Sym *)finfo.dynsym_sec->contents;
4703 long last_local = 0;
4704
4705 /* Write out the section symbols for the output sections. */
4706 if (info->shared)
4707 {
4708 asection *s;
4709
4710 sym.st_size = 0;
4711 sym.st_name = 0;
4712 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4713 sym.st_other = 0;
4714
4715 for (s = abfd->sections; s != NULL; s = s->next)
4716 {
4717 int indx;
4718 indx = elf_section_data (s)->this_idx;
4719 BFD_ASSERT (indx > 0);
4720 sym.st_shndx = indx;
4721 sym.st_value = s->vma;
4722
4723 elf_swap_symbol_out (abfd, &sym,
4724 dynsym + elf_section_data (s)->dynindx);
4725 }
4726
4727 last_local = bfd_count_sections (abfd);
4728 }
4729
4730 /* Write out the local dynsyms. */
4731 if (elf_hash_table (info)->dynlocal)
4732 {
4733 struct elf_link_local_dynamic_entry *e;
4734 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4735 {
4736 asection *s;
4737
4738 sym.st_size = e->isym.st_size;
4739 sym.st_other = e->isym.st_other;
4740
4741 /* Copy the internal symbol as is.
4742 Note that we saved a word of storage and overwrote
4743 the original st_name with the dynstr_index. */
4744 sym = e->isym;
4745
4746 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
4747 {
4748 s = bfd_section_from_elf_index (e->input_bfd,
4749 e->isym.st_shndx);
4750
4751 sym.st_shndx =
4752 elf_section_data (s->output_section)->this_idx;
4753 sym.st_value = (s->output_section->vma
4754 + s->output_offset
4755 + e->isym.st_value);
4756 }
4757
4758 if (last_local < e->dynindx)
4759 last_local = e->dynindx;
4760
4761 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4762 }
4763 }
4764
4765 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
4766 last_local + 1;
4767 }
4768
4769 /* We get the global symbols from the hash table. */
4770 eoinfo.failed = false;
4771 eoinfo.localsyms = false;
4772 eoinfo.finfo = &finfo;
4773 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4774 (PTR) &eoinfo);
4775 if (eoinfo.failed)
4776 return false;
4777
4778 /* If backend needs to output some symbols not present in the hash
4779 table, do it now. */
4780 if (bed->elf_backend_output_arch_syms)
4781 {
4782 if (! (*bed->elf_backend_output_arch_syms)
4783 (abfd, info, (PTR) &finfo,
4784 (boolean (*) PARAMS ((PTR, const char *,
4785 Elf_Internal_Sym *, asection *)))
4786 elf_link_output_sym))
4787 return false;
4788 }
4789
4790 /* Flush all symbols to the file. */
4791 if (! elf_link_flush_output_syms (&finfo))
4792 return false;
4793
4794 /* Now we know the size of the symtab section. */
4795 off += symtab_hdr->sh_size;
4796
4797 /* Finish up and write out the symbol string table (.strtab)
4798 section. */
4799 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4800 /* sh_name was set in prep_headers. */
4801 symstrtab_hdr->sh_type = SHT_STRTAB;
4802 symstrtab_hdr->sh_flags = 0;
4803 symstrtab_hdr->sh_addr = 0;
4804 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4805 symstrtab_hdr->sh_entsize = 0;
4806 symstrtab_hdr->sh_link = 0;
4807 symstrtab_hdr->sh_info = 0;
4808 /* sh_offset is set just below. */
4809 symstrtab_hdr->sh_addralign = 1;
4810
4811 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4812 elf_tdata (abfd)->next_file_pos = off;
4813
4814 if (bfd_get_symcount (abfd) > 0)
4815 {
4816 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4817 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4818 return false;
4819 }
4820
4821 /* Adjust the relocs to have the correct symbol indices. */
4822 for (o = abfd->sections; o != NULL; o = o->next)
4823 {
4824 if ((o->flags & SEC_RELOC) == 0)
4825 continue;
4826
4827 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4828 elf_section_data (o)->rel_count,
4829 elf_section_data (o)->rel_hashes);
4830 if (elf_section_data (o)->rel_hdr2 != NULL)
4831 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4832 elf_section_data (o)->rel_count2,
4833 (elf_section_data (o)->rel_hashes
4834 + elf_section_data (o)->rel_count));
4835
4836 /* Set the reloc_count field to 0 to prevent write_relocs from
4837 trying to swap the relocs out itself. */
4838 o->reloc_count = 0;
4839 }
4840
4841 /* If we are linking against a dynamic object, or generating a
4842 shared library, finish up the dynamic linking information. */
4843 if (dynamic)
4844 {
4845 Elf_External_Dyn *dyncon, *dynconend;
4846
4847 /* Fix up .dynamic entries. */
4848 o = bfd_get_section_by_name (dynobj, ".dynamic");
4849 BFD_ASSERT (o != NULL);
4850
4851 dyncon = (Elf_External_Dyn *) o->contents;
4852 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4853 for (; dyncon < dynconend; dyncon++)
4854 {
4855 Elf_Internal_Dyn dyn;
4856 const char *name;
4857 unsigned int type;
4858
4859 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4860
4861 switch (dyn.d_tag)
4862 {
4863 default:
4864 break;
4865 case DT_INIT:
4866 name = info->init_function;
4867 goto get_sym;
4868 case DT_FINI:
4869 name = info->fini_function;
4870 get_sym:
4871 {
4872 struct elf_link_hash_entry *h;
4873
4874 h = elf_link_hash_lookup (elf_hash_table (info), name,
4875 false, false, true);
4876 if (h != NULL
4877 && (h->root.type == bfd_link_hash_defined
4878 || h->root.type == bfd_link_hash_defweak))
4879 {
4880 dyn.d_un.d_val = h->root.u.def.value;
4881 o = h->root.u.def.section;
4882 if (o->output_section != NULL)
4883 dyn.d_un.d_val += (o->output_section->vma
4884 + o->output_offset);
4885 else
4886 {
4887 /* The symbol is imported from another shared
4888 library and does not apply to this one. */
4889 dyn.d_un.d_val = 0;
4890 }
4891
4892 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4893 }
4894 }
4895 break;
4896
4897 case DT_HASH:
4898 name = ".hash";
4899 goto get_vma;
4900 case DT_STRTAB:
4901 name = ".dynstr";
4902 goto get_vma;
4903 case DT_SYMTAB:
4904 name = ".dynsym";
4905 goto get_vma;
4906 case DT_VERDEF:
4907 name = ".gnu.version_d";
4908 goto get_vma;
4909 case DT_VERNEED:
4910 name = ".gnu.version_r";
4911 goto get_vma;
4912 case DT_VERSYM:
4913 name = ".gnu.version";
4914 get_vma:
4915 o = bfd_get_section_by_name (abfd, name);
4916 BFD_ASSERT (o != NULL);
4917 dyn.d_un.d_ptr = o->vma;
4918 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4919 break;
4920
4921 case DT_REL:
4922 case DT_RELA:
4923 case DT_RELSZ:
4924 case DT_RELASZ:
4925 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4926 type = SHT_REL;
4927 else
4928 type = SHT_RELA;
4929 dyn.d_un.d_val = 0;
4930 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4931 {
4932 Elf_Internal_Shdr *hdr;
4933
4934 hdr = elf_elfsections (abfd)[i];
4935 if (hdr->sh_type == type
4936 && (hdr->sh_flags & SHF_ALLOC) != 0)
4937 {
4938 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4939 dyn.d_un.d_val += hdr->sh_size;
4940 else
4941 {
4942 if (dyn.d_un.d_val == 0
4943 || hdr->sh_addr < dyn.d_un.d_val)
4944 dyn.d_un.d_val = hdr->sh_addr;
4945 }
4946 }
4947 }
4948 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4949 break;
4950 }
4951 }
4952 }
4953
4954 /* If we have created any dynamic sections, then output them. */
4955 if (dynobj != NULL)
4956 {
4957 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4958 goto error_return;
4959
4960 for (o = dynobj->sections; o != NULL; o = o->next)
4961 {
4962 if ((o->flags & SEC_HAS_CONTENTS) == 0
4963 || o->_raw_size == 0
4964 || o->output_section == bfd_abs_section_ptr)
4965 continue;
4966 if ((o->flags & SEC_LINKER_CREATED) == 0)
4967 {
4968 /* At this point, we are only interested in sections
4969 created by elf_link_create_dynamic_sections. */
4970 continue;
4971 }
4972 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4973 != SHT_STRTAB)
4974 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4975 {
4976 if (! bfd_set_section_contents (abfd, o->output_section,
4977 o->contents, o->output_offset,
4978 o->_raw_size))
4979 goto error_return;
4980 }
4981 else
4982 {
4983 file_ptr off;
4984
4985 /* The contents of the .dynstr section are actually in a
4986 stringtab. */
4987 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4988 if (bfd_seek (abfd, off, SEEK_SET) != 0
4989 || ! _bfd_stringtab_emit (abfd,
4990 elf_hash_table (info)->dynstr))
4991 goto error_return;
4992 }
4993 }
4994 }
4995
4996 /* If we have optimized stabs strings, output them. */
4997 if (elf_hash_table (info)->stab_info != NULL)
4998 {
4999 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
5000 goto error_return;
5001 }
5002
5003 if (finfo.symstrtab != NULL)
5004 _bfd_stringtab_free (finfo.symstrtab);
5005 if (finfo.contents != NULL)
5006 free (finfo.contents);
5007 if (finfo.external_relocs != NULL)
5008 free (finfo.external_relocs);
5009 if (finfo.internal_relocs != NULL)
5010 free (finfo.internal_relocs);
5011 if (finfo.external_syms != NULL)
5012 free (finfo.external_syms);
5013 if (finfo.internal_syms != NULL)
5014 free (finfo.internal_syms);
5015 if (finfo.indices != NULL)
5016 free (finfo.indices);
5017 if (finfo.sections != NULL)
5018 free (finfo.sections);
5019 if (finfo.symbuf != NULL)
5020 free (finfo.symbuf);
5021 for (o = abfd->sections; o != NULL; o = o->next)
5022 {
5023 if ((o->flags & SEC_RELOC) != 0
5024 && elf_section_data (o)->rel_hashes != NULL)
5025 free (elf_section_data (o)->rel_hashes);
5026 }
5027
5028 elf_tdata (abfd)->linker = true;
5029
5030 return true;
5031
5032 error_return:
5033 if (finfo.symstrtab != NULL)
5034 _bfd_stringtab_free (finfo.symstrtab);
5035 if (finfo.contents != NULL)
5036 free (finfo.contents);
5037 if (finfo.external_relocs != NULL)
5038 free (finfo.external_relocs);
5039 if (finfo.internal_relocs != NULL)
5040 free (finfo.internal_relocs);
5041 if (finfo.external_syms != NULL)
5042 free (finfo.external_syms);
5043 if (finfo.internal_syms != NULL)
5044 free (finfo.internal_syms);
5045 if (finfo.indices != NULL)
5046 free (finfo.indices);
5047 if (finfo.sections != NULL)
5048 free (finfo.sections);
5049 if (finfo.symbuf != NULL)
5050 free (finfo.symbuf);
5051 for (o = abfd->sections; o != NULL; o = o->next)
5052 {
5053 if ((o->flags & SEC_RELOC) != 0
5054 && elf_section_data (o)->rel_hashes != NULL)
5055 free (elf_section_data (o)->rel_hashes);
5056 }
5057
5058 return false;
5059 }
5060
5061 /* Add a symbol to the output symbol table. */
5062
5063 static boolean
5064 elf_link_output_sym (finfo, name, elfsym, input_sec)
5065 struct elf_final_link_info *finfo;
5066 const char *name;
5067 Elf_Internal_Sym *elfsym;
5068 asection *input_sec;
5069 {
5070 boolean (*output_symbol_hook) PARAMS ((bfd *,
5071 struct bfd_link_info *info,
5072 const char *,
5073 Elf_Internal_Sym *,
5074 asection *));
5075
5076 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
5077 elf_backend_link_output_symbol_hook;
5078 if (output_symbol_hook != NULL)
5079 {
5080 if (! ((*output_symbol_hook)
5081 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5082 return false;
5083 }
5084
5085 if (name == (const char *) NULL || *name == '\0')
5086 elfsym->st_name = 0;
5087 else if (input_sec->flags & SEC_EXCLUDE)
5088 elfsym->st_name = 0;
5089 else
5090 {
5091 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5092 name, true,
5093 false);
5094 if (elfsym->st_name == (unsigned long) -1)
5095 return false;
5096 }
5097
5098 if (finfo->symbuf_count >= finfo->symbuf_size)
5099 {
5100 if (! elf_link_flush_output_syms (finfo))
5101 return false;
5102 }
5103
5104 elf_swap_symbol_out (finfo->output_bfd, elfsym,
5105 (PTR) (finfo->symbuf + finfo->symbuf_count));
5106 ++finfo->symbuf_count;
5107
5108 ++ bfd_get_symcount (finfo->output_bfd);
5109
5110 return true;
5111 }
5112
5113 /* Flush the output symbols to the file. */
5114
5115 static boolean
5116 elf_link_flush_output_syms (finfo)
5117 struct elf_final_link_info *finfo;
5118 {
5119 if (finfo->symbuf_count > 0)
5120 {
5121 Elf_Internal_Shdr *symtab;
5122
5123 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5124
5125 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
5126 SEEK_SET) != 0
5127 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
5128 sizeof (Elf_External_Sym), finfo->output_bfd)
5129 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
5130 return false;
5131
5132 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
5133
5134 finfo->symbuf_count = 0;
5135 }
5136
5137 return true;
5138 }
5139
5140 /* Adjust all external symbols pointing into SEC_MERGE sections
5141 to reflect the object merging within the sections. */
5142
5143 static boolean
5144 elf_link_sec_merge_syms (h, data)
5145 struct elf_link_hash_entry *h;
5146 PTR data;
5147 {
5148 asection *sec;
5149
5150 if ((h->root.type == bfd_link_hash_defined
5151 || h->root.type == bfd_link_hash_defweak)
5152 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
5153 && elf_section_data (sec)->merge_info)
5154 {
5155 bfd *output_bfd = (bfd *) data;
5156
5157 h->root.u.def.value =
5158 _bfd_merged_section_offset (output_bfd,
5159 &h->root.u.def.section,
5160 elf_section_data (sec)->merge_info,
5161 h->root.u.def.value, (bfd_vma) 0);
5162 }
5163
5164 return true;
5165 }
5166
5167 /* Add an external symbol to the symbol table. This is called from
5168 the hash table traversal routine. When generating a shared object,
5169 we go through the symbol table twice. The first time we output
5170 anything that might have been forced to local scope in a version
5171 script. The second time we output the symbols that are still
5172 global symbols. */
5173
5174 static boolean
5175 elf_link_output_extsym (h, data)
5176 struct elf_link_hash_entry *h;
5177 PTR data;
5178 {
5179 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
5180 struct elf_final_link_info *finfo = eoinfo->finfo;
5181 boolean strip;
5182 Elf_Internal_Sym sym;
5183 asection *input_sec;
5184
5185 /* Decide whether to output this symbol in this pass. */
5186 if (eoinfo->localsyms)
5187 {
5188 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5189 return true;
5190 }
5191 else
5192 {
5193 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5194 return true;
5195 }
5196
5197 /* If we are not creating a shared library, and this symbol is
5198 referenced by a shared library but is not defined anywhere, then
5199 warn that it is undefined. If we do not do this, the runtime
5200 linker will complain that the symbol is undefined when the
5201 program is run. We don't have to worry about symbols that are
5202 referenced by regular files, because we will already have issued
5203 warnings for them. */
5204 if (! finfo->info->relocateable
5205 && ! finfo->info->allow_shlib_undefined
5206 && ! (finfo->info->shared
5207 && !finfo->info->no_undefined)
5208 && h->root.type == bfd_link_hash_undefined
5209 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5210 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5211 {
5212 if (! ((*finfo->info->callbacks->undefined_symbol)
5213 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
5214 (asection *) NULL, 0, true)))
5215 {
5216 eoinfo->failed = true;
5217 return false;
5218 }
5219 }
5220
5221 /* We don't want to output symbols that have never been mentioned by
5222 a regular file, or that we have been told to strip. However, if
5223 h->indx is set to -2, the symbol is used by a reloc and we must
5224 output it. */
5225 if (h->indx == -2)
5226 strip = false;
5227 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5228 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
5229 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5230 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5231 strip = true;
5232 else if (finfo->info->strip == strip_all
5233 || (finfo->info->strip == strip_some
5234 && bfd_hash_lookup (finfo->info->keep_hash,
5235 h->root.root.string,
5236 false, false) == NULL))
5237 strip = true;
5238 else
5239 strip = false;
5240
5241 /* If we're stripping it, and it's not a dynamic symbol, there's
5242 nothing else to do unless it is a forced local symbol. */
5243 if (strip
5244 && h->dynindx == -1
5245 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5246 return true;
5247
5248 sym.st_value = 0;
5249 sym.st_size = h->size;
5250 sym.st_other = h->other;
5251 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5252 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
5253 else if (h->root.type == bfd_link_hash_undefweak
5254 || h->root.type == bfd_link_hash_defweak)
5255 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
5256 else
5257 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
5258
5259 switch (h->root.type)
5260 {
5261 default:
5262 case bfd_link_hash_new:
5263 abort ();
5264 return false;
5265
5266 case bfd_link_hash_undefined:
5267 input_sec = bfd_und_section_ptr;
5268 sym.st_shndx = SHN_UNDEF;
5269 break;
5270
5271 case bfd_link_hash_undefweak:
5272 input_sec = bfd_und_section_ptr;
5273 sym.st_shndx = SHN_UNDEF;
5274 break;
5275
5276 case bfd_link_hash_defined:
5277 case bfd_link_hash_defweak:
5278 {
5279 input_sec = h->root.u.def.section;
5280 if (input_sec->output_section != NULL)
5281 {
5282 sym.st_shndx =
5283 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
5284 input_sec->output_section);
5285 if (sym.st_shndx == (unsigned short) -1)
5286 {
5287 (*_bfd_error_handler)
5288 (_("%s: could not find output section %s for input section %s"),
5289 bfd_get_filename (finfo->output_bfd),
5290 input_sec->output_section->name,
5291 input_sec->name);
5292 eoinfo->failed = true;
5293 return false;
5294 }
5295
5296 /* ELF symbols in relocateable files are section relative,
5297 but in nonrelocateable files they are virtual
5298 addresses. */
5299 sym.st_value = h->root.u.def.value + input_sec->output_offset;
5300 if (! finfo->info->relocateable)
5301 sym.st_value += input_sec->output_section->vma;
5302 }
5303 else
5304 {
5305 BFD_ASSERT (input_sec->owner == NULL
5306 || (input_sec->owner->flags & DYNAMIC) != 0);
5307 sym.st_shndx = SHN_UNDEF;
5308 input_sec = bfd_und_section_ptr;
5309 }
5310 }
5311 break;
5312
5313 case bfd_link_hash_common:
5314 input_sec = h->root.u.c.p->section;
5315 sym.st_shndx = SHN_COMMON;
5316 sym.st_value = 1 << h->root.u.c.p->alignment_power;
5317 break;
5318
5319 case bfd_link_hash_indirect:
5320 /* These symbols are created by symbol versioning. They point
5321 to the decorated version of the name. For example, if the
5322 symbol foo@@GNU_1.2 is the default, which should be used when
5323 foo is used with no version, then we add an indirect symbol
5324 foo which points to foo@@GNU_1.2. We ignore these symbols,
5325 since the indirected symbol is already in the hash table. */
5326 return true;
5327
5328 case bfd_link_hash_warning:
5329 /* We can't represent these symbols in ELF, although a warning
5330 symbol may have come from a .gnu.warning.SYMBOL section. We
5331 just put the target symbol in the hash table. If the target
5332 symbol does not really exist, don't do anything. */
5333 if (h->root.u.i.link->type == bfd_link_hash_new)
5334 return true;
5335 return (elf_link_output_extsym
5336 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
5337 }
5338
5339 /* Give the processor backend a chance to tweak the symbol value,
5340 and also to finish up anything that needs to be done for this
5341 symbol. */
5342 if ((h->dynindx != -1
5343 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5344 && elf_hash_table (finfo->info)->dynamic_sections_created)
5345 {
5346 struct elf_backend_data *bed;
5347
5348 bed = get_elf_backend_data (finfo->output_bfd);
5349 if (! ((*bed->elf_backend_finish_dynamic_symbol)
5350 (finfo->output_bfd, finfo->info, h, &sym)))
5351 {
5352 eoinfo->failed = true;
5353 return false;
5354 }
5355 }
5356
5357 /* If we are marking the symbol as undefined, and there are no
5358 non-weak references to this symbol from a regular object, then
5359 mark the symbol as weak undefined; if there are non-weak
5360 references, mark the symbol as strong. We can't do this earlier,
5361 because it might not be marked as undefined until the
5362 finish_dynamic_symbol routine gets through with it. */
5363 if (sym.st_shndx == SHN_UNDEF
5364 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
5365 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
5366 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
5367 {
5368 int bindtype;
5369
5370 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
5371 bindtype = STB_GLOBAL;
5372 else
5373 bindtype = STB_WEAK;
5374 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
5375 }
5376
5377 /* If a symbol is not defined locally, we clear the visibility
5378 field. */
5379 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5380 sym.st_other ^= ELF_ST_VISIBILITY(sym.st_other);
5381
5382 /* If this symbol should be put in the .dynsym section, then put it
5383 there now. We have already know the symbol index. We also fill
5384 in the entry in the .hash section. */
5385 if (h->dynindx != -1
5386 && elf_hash_table (finfo->info)->dynamic_sections_created)
5387 {
5388 size_t bucketcount;
5389 size_t bucket;
5390 size_t hash_entry_size;
5391 bfd_byte *bucketpos;
5392 bfd_vma chain;
5393
5394 sym.st_name = h->dynstr_index;
5395
5396 elf_swap_symbol_out (finfo->output_bfd, &sym,
5397 (PTR) (((Elf_External_Sym *)
5398 finfo->dynsym_sec->contents)
5399 + h->dynindx));
5400
5401 bucketcount = elf_hash_table (finfo->info)->bucketcount;
5402 bucket = h->elf_hash_value % bucketcount;
5403 hash_entry_size
5404 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
5405 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
5406 + (bucket + 2) * hash_entry_size);
5407 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
5408 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
5409 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
5410 ((bfd_byte *) finfo->hash_sec->contents
5411 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
5412
5413 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5414 {
5415 Elf_Internal_Versym iversym;
5416
5417 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5418 {
5419 if (h->verinfo.verdef == NULL)
5420 iversym.vs_vers = 0;
5421 else
5422 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5423 }
5424 else
5425 {
5426 if (h->verinfo.vertree == NULL)
5427 iversym.vs_vers = 1;
5428 else
5429 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5430 }
5431
5432 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5433 iversym.vs_vers |= VERSYM_HIDDEN;
5434
5435 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5436 (((Elf_External_Versym *)
5437 finfo->symver_sec->contents)
5438 + h->dynindx));
5439 }
5440 }
5441
5442 /* If we're stripping it, then it was just a dynamic symbol, and
5443 there's nothing else to do. */
5444 if (strip)
5445 return true;
5446
5447 h->indx = bfd_get_symcount (finfo->output_bfd);
5448
5449 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5450 {
5451 eoinfo->failed = true;
5452 return false;
5453 }
5454
5455 return true;
5456 }
5457
5458 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
5459 originated from the section given by INPUT_REL_HDR) to the
5460 OUTPUT_BFD. */
5461
5462 static void
5463 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
5464 internal_relocs)
5465 bfd *output_bfd;
5466 asection *input_section;
5467 Elf_Internal_Shdr *input_rel_hdr;
5468 Elf_Internal_Rela *internal_relocs;
5469 {
5470 Elf_Internal_Rela *irela;
5471 Elf_Internal_Rela *irelaend;
5472 Elf_Internal_Shdr *output_rel_hdr;
5473 asection *output_section;
5474 unsigned int *rel_countp = NULL;
5475 struct elf_backend_data *bed;
5476
5477 output_section = input_section->output_section;
5478 output_rel_hdr = NULL;
5479
5480 if (elf_section_data (output_section)->rel_hdr.sh_entsize
5481 == input_rel_hdr->sh_entsize)
5482 {
5483 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5484 rel_countp = &elf_section_data (output_section)->rel_count;
5485 }
5486 else if (elf_section_data (output_section)->rel_hdr2
5487 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5488 == input_rel_hdr->sh_entsize))
5489 {
5490 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5491 rel_countp = &elf_section_data (output_section)->rel_count2;
5492 }
5493
5494 BFD_ASSERT (output_rel_hdr != NULL);
5495
5496 bed = get_elf_backend_data (output_bfd);
5497 irela = internal_relocs;
5498 irelaend = irela + NUM_SHDR_ENTRIES (input_rel_hdr)
5499 * bed->s->int_rels_per_ext_rel;
5500
5501 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5502 {
5503 Elf_External_Rel *erel;
5504 Elf_Internal_Rel *irel;
5505
5506 irel = (Elf_Internal_Rel *) bfd_zmalloc (bed->s->int_rels_per_ext_rel
5507 * sizeof (Elf_Internal_Rel));
5508 if (irel == NULL)
5509 {
5510 (*_bfd_error_handler) (_("Error: out of memory"));
5511 abort ();
5512 }
5513
5514 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5515 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erel++)
5516 {
5517 unsigned int i;
5518
5519 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
5520 {
5521 irel[i].r_offset = irela[i].r_offset;
5522 irel[i].r_info = irela[i].r_info;
5523 BFD_ASSERT (irela[i].r_addend == 0);
5524 }
5525
5526 if (bed->s->swap_reloc_out)
5527 (*bed->s->swap_reloc_out) (output_bfd, irel, (PTR) erel);
5528 else
5529 elf_swap_reloc_out (output_bfd, irel, erel);
5530 }
5531
5532 free (irel);
5533 }
5534 else
5535 {
5536 Elf_External_Rela *erela;
5537
5538 BFD_ASSERT (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
5539
5540 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5541 for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erela++)
5542 if (bed->s->swap_reloca_out)
5543 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
5544 else
5545 elf_swap_reloca_out (output_bfd, irela, erela);
5546 }
5547
5548 /* Bump the counter, so that we know where to add the next set of
5549 relocations. */
5550 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
5551 }
5552
5553 /* Link an input file into the linker output file. This function
5554 handles all the sections and relocations of the input file at once.
5555 This is so that we only have to read the local symbols once, and
5556 don't have to keep them in memory. */
5557
5558 static boolean
5559 elf_link_input_bfd (finfo, input_bfd)
5560 struct elf_final_link_info *finfo;
5561 bfd *input_bfd;
5562 {
5563 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5564 bfd *, asection *, bfd_byte *,
5565 Elf_Internal_Rela *,
5566 Elf_Internal_Sym *, asection **));
5567 bfd *output_bfd;
5568 Elf_Internal_Shdr *symtab_hdr;
5569 size_t locsymcount;
5570 size_t extsymoff;
5571 Elf_External_Sym *external_syms;
5572 Elf_External_Sym *esym;
5573 Elf_External_Sym *esymend;
5574 Elf_Internal_Sym *isym;
5575 long *pindex;
5576 asection **ppsection;
5577 asection *o;
5578 struct elf_backend_data *bed;
5579
5580 output_bfd = finfo->output_bfd;
5581 bed = get_elf_backend_data (output_bfd);
5582 relocate_section = bed->elf_backend_relocate_section;
5583
5584 /* If this is a dynamic object, we don't want to do anything here:
5585 we don't want the local symbols, and we don't want the section
5586 contents. */
5587 if ((input_bfd->flags & DYNAMIC) != 0)
5588 return true;
5589
5590 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5591 if (elf_bad_symtab (input_bfd))
5592 {
5593 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5594 extsymoff = 0;
5595 }
5596 else
5597 {
5598 locsymcount = symtab_hdr->sh_info;
5599 extsymoff = symtab_hdr->sh_info;
5600 }
5601
5602 /* Read the local symbols. */
5603 if (symtab_hdr->contents != NULL)
5604 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5605 else if (locsymcount == 0)
5606 external_syms = NULL;
5607 else
5608 {
5609 external_syms = finfo->external_syms;
5610 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5611 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5612 locsymcount, input_bfd)
5613 != locsymcount * sizeof (Elf_External_Sym)))
5614 return false;
5615 }
5616
5617 /* Swap in the local symbols and write out the ones which we know
5618 are going into the output file. */
5619 esym = external_syms;
5620 esymend = esym + locsymcount;
5621 isym = finfo->internal_syms;
5622 pindex = finfo->indices;
5623 ppsection = finfo->sections;
5624 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5625 {
5626 asection *isec;
5627 const char *name;
5628 Elf_Internal_Sym osym;
5629
5630 elf_swap_symbol_in (input_bfd, esym, isym);
5631 *pindex = -1;
5632
5633 if (elf_bad_symtab (input_bfd))
5634 {
5635 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5636 {
5637 *ppsection = NULL;
5638 continue;
5639 }
5640 }
5641
5642 name = NULL;
5643 if (isym->st_shndx == SHN_UNDEF)
5644 {
5645 isec = bfd_und_section_ptr;
5646 name = isec->name;
5647 }
5648 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5649 {
5650 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5651 if (isec && elf_section_data (isec)->merge_info
5652 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
5653 isym->st_value =
5654 _bfd_merged_section_offset (output_bfd, &isec,
5655 elf_section_data (isec)->merge_info,
5656 isym->st_value, (bfd_vma) 0);
5657 }
5658 else if (isym->st_shndx == SHN_ABS)
5659 {
5660 isec = bfd_abs_section_ptr;
5661 name = isec->name;
5662 }
5663 else if (isym->st_shndx == SHN_COMMON)
5664 {
5665 isec = bfd_com_section_ptr;
5666 name = isec->name;
5667 }
5668 else
5669 {
5670 /* Who knows? */
5671 isec = NULL;
5672 }
5673
5674 *ppsection = isec;
5675
5676 /* Don't output the first, undefined, symbol. */
5677 if (esym == external_syms)
5678 continue;
5679
5680 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5681 {
5682 asection *ksec;
5683
5684 /* Save away all section symbol values. */
5685 if (isec != NULL)
5686 {
5687 if (name)
5688 {
5689 if (isec->symbol->value != isym->st_value)
5690 (*_bfd_error_handler)
5691 (_("%s: invalid section symbol index 0x%x (%s) ingored"),
5692 bfd_get_filename (input_bfd), isym->st_shndx,
5693 name);
5694 continue;
5695 }
5696 isec->symbol->value = isym->st_value;
5697 }
5698
5699 /* If this is a discarded link-once section symbol, update
5700 it's value to that of the kept section symbol. The
5701 linker will keep the first of any matching link-once
5702 sections, so we should have already seen it's section
5703 symbol. I trust no-one will have the bright idea of
5704 re-ordering the bfd list... */
5705 if (isec != NULL
5706 && (bfd_get_section_flags (input_bfd, isec) & SEC_LINK_ONCE) != 0
5707 && (ksec = isec->kept_section) != NULL)
5708 {
5709 isym->st_value = ksec->symbol->value;
5710
5711 /* That put the value right, but the section info is all
5712 wrong. I hope this works. */
5713 isec->output_offset = ksec->output_offset;
5714 isec->output_section = ksec->output_section;
5715 }
5716
5717 /* We never output section symbols. Instead, we use the
5718 section symbol of the corresponding section in the output
5719 file. */
5720 continue;
5721 }
5722
5723 /* If we are stripping all symbols, we don't want to output this
5724 one. */
5725 if (finfo->info->strip == strip_all)
5726 continue;
5727
5728 /* If we are discarding all local symbols, we don't want to
5729 output this one. If we are generating a relocateable output
5730 file, then some of the local symbols may be required by
5731 relocs; we output them below as we discover that they are
5732 needed. */
5733 if (finfo->info->discard == discard_all)
5734 continue;
5735
5736 /* If this symbol is defined in a section which we are
5737 discarding, we don't need to keep it, but note that
5738 linker_mark is only reliable for sections that have contents.
5739 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5740 as well as linker_mark. */
5741 if (isym->st_shndx > 0
5742 && isym->st_shndx < SHN_LORESERVE
5743 && isec != NULL
5744 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5745 || (! finfo->info->relocateable
5746 && (isec->flags & SEC_EXCLUDE) != 0)))
5747 continue;
5748
5749 /* Get the name of the symbol. */
5750 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5751 isym->st_name);
5752 if (name == NULL)
5753 return false;
5754
5755 /* See if we are discarding symbols with this name. */
5756 if ((finfo->info->strip == strip_some
5757 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5758 == NULL))
5759 || (((finfo->info->discard == discard_sec_merge
5760 && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable)
5761 || finfo->info->discard == discard_l)
5762 && bfd_is_local_label_name (input_bfd, name)))
5763 continue;
5764
5765 /* If we get here, we are going to output this symbol. */
5766
5767 osym = *isym;
5768
5769 /* Adjust the section index for the output file. */
5770 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5771 isec->output_section);
5772 if (osym.st_shndx == (unsigned short) -1)
5773 return false;
5774
5775 *pindex = bfd_get_symcount (output_bfd);
5776
5777 /* ELF symbols in relocateable files are section relative, but
5778 in executable files they are virtual addresses. Note that
5779 this code assumes that all ELF sections have an associated
5780 BFD section with a reasonable value for output_offset; below
5781 we assume that they also have a reasonable value for
5782 output_section. Any special sections must be set up to meet
5783 these requirements. */
5784 osym.st_value += isec->output_offset;
5785 if (! finfo->info->relocateable)
5786 osym.st_value += isec->output_section->vma;
5787
5788 if (! elf_link_output_sym (finfo, name, &osym, isec))
5789 return false;
5790 }
5791
5792 /* Relocate the contents of each section. */
5793 for (o = input_bfd->sections; o != NULL; o = o->next)
5794 {
5795 bfd_byte *contents;
5796
5797 if (! o->linker_mark)
5798 {
5799 /* This section was omitted from the link. */
5800 continue;
5801 }
5802
5803 if ((o->flags & SEC_HAS_CONTENTS) == 0
5804 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5805 continue;
5806
5807 if ((o->flags & SEC_LINKER_CREATED) != 0)
5808 {
5809 /* Section was created by elf_link_create_dynamic_sections
5810 or somesuch. */
5811 continue;
5812 }
5813
5814 /* Get the contents of the section. They have been cached by a
5815 relaxation routine. Note that o is a section in an input
5816 file, so the contents field will not have been set by any of
5817 the routines which work on output files. */
5818 if (elf_section_data (o)->this_hdr.contents != NULL)
5819 contents = elf_section_data (o)->this_hdr.contents;
5820 else
5821 {
5822 contents = finfo->contents;
5823 if (! bfd_get_section_contents (input_bfd, o, contents,
5824 (file_ptr) 0, o->_raw_size))
5825 return false;
5826 }
5827
5828 if ((o->flags & SEC_RELOC) != 0)
5829 {
5830 Elf_Internal_Rela *internal_relocs;
5831
5832 /* Get the swapped relocs. */
5833 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5834 (input_bfd, o, finfo->external_relocs,
5835 finfo->internal_relocs, false));
5836 if (internal_relocs == NULL
5837 && o->reloc_count > 0)
5838 return false;
5839
5840 /* Relocate the section by invoking a back end routine.
5841
5842 The back end routine is responsible for adjusting the
5843 section contents as necessary, and (if using Rela relocs
5844 and generating a relocateable output file) adjusting the
5845 reloc addend as necessary.
5846
5847 The back end routine does not have to worry about setting
5848 the reloc address or the reloc symbol index.
5849
5850 The back end routine is given a pointer to the swapped in
5851 internal symbols, and can access the hash table entries
5852 for the external symbols via elf_sym_hashes (input_bfd).
5853
5854 When generating relocateable output, the back end routine
5855 must handle STB_LOCAL/STT_SECTION symbols specially. The
5856 output symbol is going to be a section symbol
5857 corresponding to the output section, which will require
5858 the addend to be adjusted. */
5859
5860 if (! (*relocate_section) (output_bfd, finfo->info,
5861 input_bfd, o, contents,
5862 internal_relocs,
5863 finfo->internal_syms,
5864 finfo->sections))
5865 return false;
5866
5867 if (finfo->info->relocateable || finfo->info->emitrelocations)
5868 {
5869 Elf_Internal_Rela *irela;
5870 Elf_Internal_Rela *irelaend;
5871 struct elf_link_hash_entry **rel_hash;
5872 Elf_Internal_Shdr *input_rel_hdr;
5873 unsigned int next_erel;
5874
5875 /* Adjust the reloc addresses and symbol indices. */
5876
5877 irela = internal_relocs;
5878 irelaend = irela
5879 + o->reloc_count * bed->s->int_rels_per_ext_rel;
5880 rel_hash = (elf_section_data (o->output_section)->rel_hashes
5881 + elf_section_data (o->output_section)->rel_count
5882 + elf_section_data (o->output_section)->rel_count2);
5883 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
5884 {
5885 unsigned long r_symndx;
5886 Elf_Internal_Sym *isym;
5887 asection *sec;
5888
5889 if (next_erel == bed->s->int_rels_per_ext_rel)
5890 {
5891 rel_hash++;
5892 next_erel = 0;
5893 }
5894
5895 irela->r_offset += o->output_offset;
5896
5897 /* Relocs in an executable have to be virtual addresses. */
5898 if (finfo->info->emitrelocations)
5899 irela->r_offset += o->output_section->vma;
5900
5901 r_symndx = ELF_R_SYM (irela->r_info);
5902
5903 if (r_symndx == 0)
5904 continue;
5905
5906 if (r_symndx >= locsymcount
5907 || (elf_bad_symtab (input_bfd)
5908 && finfo->sections[r_symndx] == NULL))
5909 {
5910 struct elf_link_hash_entry *rh;
5911 unsigned long indx;
5912
5913 /* This is a reloc against a global symbol. We
5914 have not yet output all the local symbols, so
5915 we do not know the symbol index of any global
5916 symbol. We set the rel_hash entry for this
5917 reloc to point to the global hash table entry
5918 for this symbol. The symbol index is then
5919 set at the end of elf_bfd_final_link. */
5920 indx = r_symndx - extsymoff;
5921 rh = elf_sym_hashes (input_bfd)[indx];
5922 while (rh->root.type == bfd_link_hash_indirect
5923 || rh->root.type == bfd_link_hash_warning)
5924 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5925
5926 /* Setting the index to -2 tells
5927 elf_link_output_extsym that this symbol is
5928 used by a reloc. */
5929 BFD_ASSERT (rh->indx < 0);
5930 rh->indx = -2;
5931
5932 *rel_hash = rh;
5933
5934 continue;
5935 }
5936
5937 /* This is a reloc against a local symbol. */
5938
5939 *rel_hash = NULL;
5940 isym = finfo->internal_syms + r_symndx;
5941 sec = finfo->sections[r_symndx];
5942 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5943 {
5944 /* I suppose the backend ought to fill in the
5945 section of any STT_SECTION symbol against a
5946 processor specific section. If we have
5947 discarded a section, the output_section will
5948 be the absolute section. */
5949 if (sec != NULL
5950 && (bfd_is_abs_section (sec)
5951 || (sec->output_section != NULL
5952 && bfd_is_abs_section (sec->output_section))))
5953 r_symndx = 0;
5954 else if (sec == NULL || sec->owner == NULL)
5955 {
5956 bfd_set_error (bfd_error_bad_value);
5957 return false;
5958 }
5959 else
5960 {
5961 r_symndx = sec->output_section->target_index;
5962 BFD_ASSERT (r_symndx != 0);
5963 }
5964 }
5965 else
5966 {
5967 if (finfo->indices[r_symndx] == -1)
5968 {
5969 unsigned long link;
5970 const char *name;
5971 asection *osec;
5972
5973 if (finfo->info->strip == strip_all)
5974 {
5975 /* You can't do ld -r -s. */
5976 bfd_set_error (bfd_error_invalid_operation);
5977 return false;
5978 }
5979
5980 /* This symbol was skipped earlier, but
5981 since it is needed by a reloc, we
5982 must output it now. */
5983 link = symtab_hdr->sh_link;
5984 name = bfd_elf_string_from_elf_section (input_bfd,
5985 link,
5986 isym->st_name);
5987 if (name == NULL)
5988 return false;
5989
5990 osec = sec->output_section;
5991 isym->st_shndx =
5992 _bfd_elf_section_from_bfd_section (output_bfd,
5993 osec);
5994 if (isym->st_shndx == (unsigned short) -1)
5995 return false;
5996
5997 isym->st_value += sec->output_offset;
5998 if (! finfo->info->relocateable)
5999 isym->st_value += osec->vma;
6000
6001 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
6002
6003 if (! elf_link_output_sym (finfo, name, isym, sec))
6004 return false;
6005 }
6006
6007 r_symndx = finfo->indices[r_symndx];
6008 }
6009
6010 irela->r_info = ELF_R_INFO (r_symndx,
6011 ELF_R_TYPE (irela->r_info));
6012 }
6013
6014 /* Swap out the relocs. */
6015 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6016 elf_link_output_relocs (output_bfd, o,
6017 input_rel_hdr,
6018 internal_relocs);
6019 internal_relocs += NUM_SHDR_ENTRIES (input_rel_hdr)
6020 * bed->s->int_rels_per_ext_rel;
6021 input_rel_hdr = elf_section_data (o)->rel_hdr2;
6022 if (input_rel_hdr)
6023 elf_link_output_relocs (output_bfd, o,
6024 input_rel_hdr,
6025 internal_relocs);
6026 }
6027 }
6028
6029 /* Write out the modified section contents. */
6030 if (elf_section_data (o)->stab_info)
6031 {
6032 if (! (_bfd_write_section_stabs
6033 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
6034 o, &elf_section_data (o)->stab_info, contents)))
6035 return false;
6036 }
6037 else if (elf_section_data (o)->merge_info)
6038 {
6039 if (! (_bfd_write_merged_section
6040 (output_bfd, o, elf_section_data (o)->merge_info)))
6041 return false;
6042 }
6043 else
6044 {
6045 if (! (o->flags & SEC_EXCLUDE) &&
6046 ! bfd_set_section_contents (output_bfd, o->output_section,
6047 contents, o->output_offset,
6048 (o->_cooked_size != 0
6049 ? o->_cooked_size
6050 : o->_raw_size)))
6051 return false;
6052 }
6053 }
6054
6055 return true;
6056 }
6057
6058 /* Generate a reloc when linking an ELF file. This is a reloc
6059 requested by the linker, and does come from any input file. This
6060 is used to build constructor and destructor tables when linking
6061 with -Ur. */
6062
6063 static boolean
6064 elf_reloc_link_order (output_bfd, info, output_section, link_order)
6065 bfd *output_bfd;
6066 struct bfd_link_info *info;
6067 asection *output_section;
6068 struct bfd_link_order *link_order;
6069 {
6070 reloc_howto_type *howto;
6071 long indx;
6072 bfd_vma offset;
6073 bfd_vma addend;
6074 struct elf_link_hash_entry **rel_hash_ptr;
6075 Elf_Internal_Shdr *rel_hdr;
6076 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
6077
6078 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
6079 if (howto == NULL)
6080 {
6081 bfd_set_error (bfd_error_bad_value);
6082 return false;
6083 }
6084
6085 addend = link_order->u.reloc.p->addend;
6086
6087 /* Figure out the symbol index. */
6088 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
6089 + elf_section_data (output_section)->rel_count
6090 + elf_section_data (output_section)->rel_count2);
6091 if (link_order->type == bfd_section_reloc_link_order)
6092 {
6093 indx = link_order->u.reloc.p->u.section->target_index;
6094 BFD_ASSERT (indx != 0);
6095 *rel_hash_ptr = NULL;
6096 }
6097 else
6098 {
6099 struct elf_link_hash_entry *h;
6100
6101 /* Treat a reloc against a defined symbol as though it were
6102 actually against the section. */
6103 h = ((struct elf_link_hash_entry *)
6104 bfd_wrapped_link_hash_lookup (output_bfd, info,
6105 link_order->u.reloc.p->u.name,
6106 false, false, true));
6107 if (h != NULL
6108 && (h->root.type == bfd_link_hash_defined
6109 || h->root.type == bfd_link_hash_defweak))
6110 {
6111 asection *section;
6112
6113 section = h->root.u.def.section;
6114 indx = section->output_section->target_index;
6115 *rel_hash_ptr = NULL;
6116 /* It seems that we ought to add the symbol value to the
6117 addend here, but in practice it has already been added
6118 because it was passed to constructor_callback. */
6119 addend += section->output_section->vma + section->output_offset;
6120 }
6121 else if (h != NULL)
6122 {
6123 /* Setting the index to -2 tells elf_link_output_extsym that
6124 this symbol is used by a reloc. */
6125 h->indx = -2;
6126 *rel_hash_ptr = h;
6127 indx = 0;
6128 }
6129 else
6130 {
6131 if (! ((*info->callbacks->unattached_reloc)
6132 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
6133 (asection *) NULL, (bfd_vma) 0)))
6134 return false;
6135 indx = 0;
6136 }
6137 }
6138
6139 /* If this is an inplace reloc, we must write the addend into the
6140 object file. */
6141 if (howto->partial_inplace && addend != 0)
6142 {
6143 bfd_size_type size;
6144 bfd_reloc_status_type rstat;
6145 bfd_byte *buf;
6146 boolean ok;
6147
6148 size = bfd_get_reloc_size (howto);
6149 buf = (bfd_byte *) bfd_zmalloc (size);
6150 if (buf == (bfd_byte *) NULL)
6151 return false;
6152 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
6153 switch (rstat)
6154 {
6155 case bfd_reloc_ok:
6156 break;
6157 default:
6158 case bfd_reloc_outofrange:
6159 abort ();
6160 case bfd_reloc_overflow:
6161 if (! ((*info->callbacks->reloc_overflow)
6162 (info,
6163 (link_order->type == bfd_section_reloc_link_order
6164 ? bfd_section_name (output_bfd,
6165 link_order->u.reloc.p->u.section)
6166 : link_order->u.reloc.p->u.name),
6167 howto->name, addend, (bfd *) NULL, (asection *) NULL,
6168 (bfd_vma) 0)))
6169 {
6170 free (buf);
6171 return false;
6172 }
6173 break;
6174 }
6175 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
6176 (file_ptr) link_order->offset, size);
6177 free (buf);
6178 if (! ok)
6179 return false;
6180 }
6181
6182 /* The address of a reloc is relative to the section in a
6183 relocateable file, and is a virtual address in an executable
6184 file. */
6185 offset = link_order->offset;
6186 if (! info->relocateable)
6187 offset += output_section->vma;
6188
6189 rel_hdr = &elf_section_data (output_section)->rel_hdr;
6190
6191 if (rel_hdr->sh_type == SHT_REL)
6192 {
6193 Elf_Internal_Rel *irel;
6194 Elf_External_Rel *erel;
6195 unsigned int i;
6196
6197 irel = (Elf_Internal_Rel *) bfd_zmalloc (bed->s->int_rels_per_ext_rel
6198 * sizeof (Elf_Internal_Rel));
6199 if (irel == NULL)
6200 return false;
6201
6202 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6203 irel[i].r_offset = offset;
6204 irel[0].r_info = ELF_R_INFO (indx, howto->type);
6205
6206 erel = ((Elf_External_Rel *) rel_hdr->contents
6207 + elf_section_data (output_section)->rel_count);
6208
6209 if (bed->s->swap_reloc_out)
6210 (*bed->s->swap_reloc_out) (output_bfd, irel, (bfd_byte *) erel);
6211 else
6212 elf_swap_reloc_out (output_bfd, irel, erel);
6213
6214 free (irel);
6215 }
6216 else
6217 {
6218 Elf_Internal_Rela *irela;
6219 Elf_External_Rela *erela;
6220 unsigned int i;
6221
6222 irela = (Elf_Internal_Rela *) bfd_zmalloc (bed->s->int_rels_per_ext_rel
6223 * sizeof (Elf_Internal_Rela));
6224 if (irela == NULL)
6225 return false;
6226
6227 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6228 irela[i].r_offset = offset;
6229 irela[0].r_info = ELF_R_INFO (indx, howto->type);
6230 irela[0].r_addend = addend;
6231
6232 erela = ((Elf_External_Rela *) rel_hdr->contents
6233 + elf_section_data (output_section)->rel_count);
6234
6235 if (bed->s->swap_reloca_out)
6236 (*bed->s->swap_reloca_out) (output_bfd, irela, (bfd_byte *) erela);
6237 else
6238 elf_swap_reloca_out (output_bfd, irela, erela);
6239 }
6240
6241 ++elf_section_data (output_section)->rel_count;
6242
6243 return true;
6244 }
6245 \f
6246 /* Allocate a pointer to live in a linker created section. */
6247
6248 boolean
6249 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
6250 bfd *abfd;
6251 struct bfd_link_info *info;
6252 elf_linker_section_t *lsect;
6253 struct elf_link_hash_entry *h;
6254 const Elf_Internal_Rela *rel;
6255 {
6256 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
6257 elf_linker_section_pointers_t *linker_section_ptr;
6258 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
6259
6260 BFD_ASSERT (lsect != NULL);
6261
6262 /* Is this a global symbol? */
6263 if (h != NULL)
6264 {
6265 /* Has this symbol already been allocated, if so, our work is done */
6266 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6267 rel->r_addend,
6268 lsect->which))
6269 return true;
6270
6271 ptr_linker_section_ptr = &h->linker_section_pointer;
6272 /* Make sure this symbol is output as a dynamic symbol. */
6273 if (h->dynindx == -1)
6274 {
6275 if (! elf_link_record_dynamic_symbol (info, h))
6276 return false;
6277 }
6278
6279 if (lsect->rel_section)
6280 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6281 }
6282
6283 else /* Allocation of a pointer to a local symbol */
6284 {
6285 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
6286
6287 /* Allocate a table to hold the local symbols if first time */
6288 if (!ptr)
6289 {
6290 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
6291 register unsigned int i;
6292
6293 ptr = (elf_linker_section_pointers_t **)
6294 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
6295
6296 if (!ptr)
6297 return false;
6298
6299 elf_local_ptr_offsets (abfd) = ptr;
6300 for (i = 0; i < num_symbols; i++)
6301 ptr[i] = (elf_linker_section_pointers_t *)0;
6302 }
6303
6304 /* Has this symbol already been allocated, if so, our work is done */
6305 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
6306 rel->r_addend,
6307 lsect->which))
6308 return true;
6309
6310 ptr_linker_section_ptr = &ptr[r_symndx];
6311
6312 if (info->shared)
6313 {
6314 /* If we are generating a shared object, we need to
6315 output a R_<xxx>_RELATIVE reloc so that the
6316 dynamic linker can adjust this GOT entry. */
6317 BFD_ASSERT (lsect->rel_section != NULL);
6318 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6319 }
6320 }
6321
6322 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
6323 from internal memory. */
6324 BFD_ASSERT (ptr_linker_section_ptr != NULL);
6325 linker_section_ptr = (elf_linker_section_pointers_t *)
6326 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
6327
6328 if (!linker_section_ptr)
6329 return false;
6330
6331 linker_section_ptr->next = *ptr_linker_section_ptr;
6332 linker_section_ptr->addend = rel->r_addend;
6333 linker_section_ptr->which = lsect->which;
6334 linker_section_ptr->written_address_p = false;
6335 *ptr_linker_section_ptr = linker_section_ptr;
6336
6337 #if 0
6338 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
6339 {
6340 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
6341 lsect->hole_offset += ARCH_SIZE / 8;
6342 lsect->sym_offset += ARCH_SIZE / 8;
6343 if (lsect->sym_hash) /* Bump up symbol value if needed */
6344 {
6345 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
6346 #ifdef DEBUG
6347 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
6348 lsect->sym_hash->root.root.string,
6349 (long)ARCH_SIZE / 8,
6350 (long)lsect->sym_hash->root.u.def.value);
6351 #endif
6352 }
6353 }
6354 else
6355 #endif
6356 linker_section_ptr->offset = lsect->section->_raw_size;
6357
6358 lsect->section->_raw_size += ARCH_SIZE / 8;
6359
6360 #ifdef DEBUG
6361 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
6362 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
6363 #endif
6364
6365 return true;
6366 }
6367 \f
6368 #if ARCH_SIZE==64
6369 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
6370 #endif
6371 #if ARCH_SIZE==32
6372 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
6373 #endif
6374
6375 /* Fill in the address for a pointer generated in a linker section. */
6376
6377 bfd_vma
6378 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
6379 bfd *output_bfd;
6380 bfd *input_bfd;
6381 struct bfd_link_info *info;
6382 elf_linker_section_t *lsect;
6383 struct elf_link_hash_entry *h;
6384 bfd_vma relocation;
6385 const Elf_Internal_Rela *rel;
6386 int relative_reloc;
6387 {
6388 elf_linker_section_pointers_t *linker_section_ptr;
6389
6390 BFD_ASSERT (lsect != NULL);
6391
6392 if (h != NULL) /* global symbol */
6393 {
6394 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6395 rel->r_addend,
6396 lsect->which);
6397
6398 BFD_ASSERT (linker_section_ptr != NULL);
6399
6400 if (! elf_hash_table (info)->dynamic_sections_created
6401 || (info->shared
6402 && info->symbolic
6403 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6404 {
6405 /* This is actually a static link, or it is a
6406 -Bsymbolic link and the symbol is defined
6407 locally. We must initialize this entry in the
6408 global section.
6409
6410 When doing a dynamic link, we create a .rela.<xxx>
6411 relocation entry to initialize the value. This
6412 is done in the finish_dynamic_symbol routine. */
6413 if (!linker_section_ptr->written_address_p)
6414 {
6415 linker_section_ptr->written_address_p = true;
6416 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6417 lsect->section->contents + linker_section_ptr->offset);
6418 }
6419 }
6420 }
6421 else /* local symbol */
6422 {
6423 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6424 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
6425 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
6426 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
6427 rel->r_addend,
6428 lsect->which);
6429
6430 BFD_ASSERT (linker_section_ptr != NULL);
6431
6432 /* Write out pointer if it hasn't been rewritten out before */
6433 if (!linker_section_ptr->written_address_p)
6434 {
6435 linker_section_ptr->written_address_p = true;
6436 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6437 lsect->section->contents + linker_section_ptr->offset);
6438
6439 if (info->shared)
6440 {
6441 asection *srel = lsect->rel_section;
6442 Elf_Internal_Rela *outrel;
6443 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
6444 unsigned int i;
6445
6446 outrel = (Elf_Internal_Rela *) bfd_zmalloc (sizeof (Elf_Internal_Rela)
6447 * bed->s->int_rels_per_ext_rel);
6448 if (outrel == NULL)
6449 {
6450 (*_bfd_error_handler) (_("Error: out of memory"));
6451 return 0;
6452 }
6453
6454 /* We need to generate a relative reloc for the dynamic linker. */
6455 if (!srel)
6456 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
6457 lsect->rel_name);
6458
6459 BFD_ASSERT (srel != NULL);
6460
6461 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6462 outrel[i].r_offset = (lsect->section->output_section->vma
6463 + lsect->section->output_offset
6464 + linker_section_ptr->offset);
6465 outrel[0].r_info = ELF_R_INFO (0, relative_reloc);
6466 outrel[0].r_addend = 0;
6467 elf_swap_reloca_out (output_bfd, outrel,
6468 (((Elf_External_Rela *)
6469 lsect->section->contents)
6470 + elf_section_data (lsect->section)->rel_count));
6471 ++elf_section_data (lsect->section)->rel_count;
6472
6473 free (outrel);
6474 }
6475 }
6476 }
6477
6478 relocation = (lsect->section->output_offset
6479 + linker_section_ptr->offset
6480 - lsect->hole_offset
6481 - lsect->sym_offset);
6482
6483 #ifdef DEBUG
6484 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6485 lsect->name, (long)relocation, (long)relocation);
6486 #endif
6487
6488 /* Subtract out the addend, because it will get added back in by the normal
6489 processing. */
6490 return relocation - linker_section_ptr->addend;
6491 }
6492 \f
6493 /* Garbage collect unused sections. */
6494
6495 static boolean elf_gc_mark
6496 PARAMS ((struct bfd_link_info *info, asection *sec,
6497 asection * (*gc_mark_hook)
6498 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6499 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
6500
6501 static boolean elf_gc_sweep
6502 PARAMS ((struct bfd_link_info *info,
6503 boolean (*gc_sweep_hook)
6504 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6505 const Elf_Internal_Rela *relocs))));
6506
6507 static boolean elf_gc_sweep_symbol
6508 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
6509
6510 static boolean elf_gc_allocate_got_offsets
6511 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
6512
6513 static boolean elf_gc_propagate_vtable_entries_used
6514 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6515
6516 static boolean elf_gc_smash_unused_vtentry_relocs
6517 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6518
6519 /* The mark phase of garbage collection. For a given section, mark
6520 it, and all the sections which define symbols to which it refers. */
6521
6522 static boolean
6523 elf_gc_mark (info, sec, gc_mark_hook)
6524 struct bfd_link_info *info;
6525 asection *sec;
6526 asection * (*gc_mark_hook)
6527 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6528 struct elf_link_hash_entry *, Elf_Internal_Sym *));
6529 {
6530 boolean ret = true;
6531
6532 sec->gc_mark = 1;
6533
6534 /* Look through the section relocs. */
6535
6536 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
6537 {
6538 Elf_Internal_Rela *relstart, *rel, *relend;
6539 Elf_Internal_Shdr *symtab_hdr;
6540 struct elf_link_hash_entry **sym_hashes;
6541 size_t nlocsyms;
6542 size_t extsymoff;
6543 Elf_External_Sym *locsyms, *freesyms = NULL;
6544 bfd *input_bfd = sec->owner;
6545 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
6546
6547 /* GCFIXME: how to arrange so that relocs and symbols are not
6548 reread continually? */
6549
6550 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6551 sym_hashes = elf_sym_hashes (input_bfd);
6552
6553 /* Read the local symbols. */
6554 if (elf_bad_symtab (input_bfd))
6555 {
6556 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6557 extsymoff = 0;
6558 }
6559 else
6560 extsymoff = nlocsyms = symtab_hdr->sh_info;
6561 if (symtab_hdr->contents)
6562 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6563 else if (nlocsyms == 0)
6564 locsyms = NULL;
6565 else
6566 {
6567 locsyms = freesyms =
6568 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6569 if (freesyms == NULL
6570 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6571 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6572 nlocsyms, input_bfd)
6573 != nlocsyms * sizeof (Elf_External_Sym)))
6574 {
6575 ret = false;
6576 goto out1;
6577 }
6578 }
6579
6580 /* Read the relocations. */
6581 relstart = (NAME(_bfd_elf,link_read_relocs)
6582 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6583 info->keep_memory));
6584 if (relstart == NULL)
6585 {
6586 ret = false;
6587 goto out1;
6588 }
6589 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6590
6591 for (rel = relstart; rel < relend; rel++)
6592 {
6593 unsigned long r_symndx;
6594 asection *rsec;
6595 struct elf_link_hash_entry *h;
6596 Elf_Internal_Sym s;
6597
6598 r_symndx = ELF_R_SYM (rel->r_info);
6599 if (r_symndx == 0)
6600 continue;
6601
6602 if (elf_bad_symtab (sec->owner))
6603 {
6604 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6605 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
6606 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
6607 else
6608 {
6609 h = sym_hashes[r_symndx - extsymoff];
6610 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
6611 }
6612 }
6613 else if (r_symndx >= nlocsyms)
6614 {
6615 h = sym_hashes[r_symndx - extsymoff];
6616 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
6617 }
6618 else
6619 {
6620 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6621 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
6622 }
6623
6624 if (rsec && !rsec->gc_mark)
6625 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6626 {
6627 ret = false;
6628 goto out2;
6629 }
6630 }
6631
6632 out2:
6633 if (!info->keep_memory)
6634 free (relstart);
6635 out1:
6636 if (freesyms)
6637 free (freesyms);
6638 }
6639
6640 return ret;
6641 }
6642
6643 /* The sweep phase of garbage collection. Remove all garbage sections. */
6644
6645 static boolean
6646 elf_gc_sweep (info, gc_sweep_hook)
6647 struct bfd_link_info *info;
6648 boolean (*gc_sweep_hook)
6649 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6650 const Elf_Internal_Rela *relocs));
6651 {
6652 bfd *sub;
6653
6654 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6655 {
6656 asection *o;
6657
6658 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6659 continue;
6660
6661 for (o = sub->sections; o != NULL; o = o->next)
6662 {
6663 /* Keep special sections. Keep .debug sections. */
6664 if ((o->flags & SEC_LINKER_CREATED)
6665 || (o->flags & SEC_DEBUGGING))
6666 o->gc_mark = 1;
6667
6668 if (o->gc_mark)
6669 continue;
6670
6671 /* Skip sweeping sections already excluded. */
6672 if (o->flags & SEC_EXCLUDE)
6673 continue;
6674
6675 /* Since this is early in the link process, it is simple
6676 to remove a section from the output. */
6677 o->flags |= SEC_EXCLUDE;
6678
6679 /* But we also have to update some of the relocation
6680 info we collected before. */
6681 if (gc_sweep_hook
6682 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6683 {
6684 Elf_Internal_Rela *internal_relocs;
6685 boolean r;
6686
6687 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6688 (o->owner, o, NULL, NULL, info->keep_memory));
6689 if (internal_relocs == NULL)
6690 return false;
6691
6692 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
6693
6694 if (!info->keep_memory)
6695 free (internal_relocs);
6696
6697 if (!r)
6698 return false;
6699 }
6700 }
6701 }
6702
6703 /* Remove the symbols that were in the swept sections from the dynamic
6704 symbol table. GCFIXME: Anyone know how to get them out of the
6705 static symbol table as well? */
6706 {
6707 int i = 0;
6708
6709 elf_link_hash_traverse (elf_hash_table (info),
6710 elf_gc_sweep_symbol,
6711 (PTR) &i);
6712
6713 elf_hash_table (info)->dynsymcount = i;
6714 }
6715
6716 return true;
6717 }
6718
6719 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6720
6721 static boolean
6722 elf_gc_sweep_symbol (h, idxptr)
6723 struct elf_link_hash_entry *h;
6724 PTR idxptr;
6725 {
6726 int *idx = (int *) idxptr;
6727
6728 if (h->dynindx != -1
6729 && ((h->root.type != bfd_link_hash_defined
6730 && h->root.type != bfd_link_hash_defweak)
6731 || h->root.u.def.section->gc_mark))
6732 h->dynindx = (*idx)++;
6733
6734 return true;
6735 }
6736
6737 /* Propogate collected vtable information. This is called through
6738 elf_link_hash_traverse. */
6739
6740 static boolean
6741 elf_gc_propagate_vtable_entries_used (h, okp)
6742 struct elf_link_hash_entry *h;
6743 PTR okp;
6744 {
6745 /* Those that are not vtables. */
6746 if (h->vtable_parent == NULL)
6747 return true;
6748
6749 /* Those vtables that do not have parents, we cannot merge. */
6750 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6751 return true;
6752
6753 /* If we've already been done, exit. */
6754 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6755 return true;
6756
6757 /* Make sure the parent's table is up to date. */
6758 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6759
6760 if (h->vtable_entries_used == NULL)
6761 {
6762 /* None of this table's entries were referenced. Re-use the
6763 parent's table. */
6764 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6765 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6766 }
6767 else
6768 {
6769 size_t n;
6770 boolean *cu, *pu;
6771
6772
6773 /* Or the parent's entries into ours. */
6774 cu = h->vtable_entries_used;
6775 cu[-1] = true;
6776 pu = h->vtable_parent->vtable_entries_used;
6777 if (pu != NULL)
6778 {
6779 asection *sec = h->root.u.def.section;
6780 struct elf_backend_data *bed = get_elf_backend_data (sec->owner);
6781 int file_align = bed->s->file_align;
6782
6783 n = h->vtable_parent->vtable_entries_size / file_align;
6784 while (--n != 0)
6785 {
6786 if (*pu) *cu = true;
6787 pu++, cu++;
6788 }
6789 }
6790 }
6791
6792 return true;
6793 }
6794
6795 static boolean
6796 elf_gc_smash_unused_vtentry_relocs (h, okp)
6797 struct elf_link_hash_entry *h;
6798 PTR okp;
6799 {
6800 asection *sec;
6801 bfd_vma hstart, hend;
6802 Elf_Internal_Rela *relstart, *relend, *rel;
6803 struct elf_backend_data *bed;
6804 int file_align;
6805
6806 /* Take care of both those symbols that do not describe vtables as
6807 well as those that are not loaded. */
6808 if (h->vtable_parent == NULL)
6809 return true;
6810
6811 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6812 || h->root.type == bfd_link_hash_defweak);
6813
6814 sec = h->root.u.def.section;
6815 hstart = h->root.u.def.value;
6816 hend = hstart + h->size;
6817
6818 relstart = (NAME(_bfd_elf,link_read_relocs)
6819 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6820 if (!relstart)
6821 return *(boolean *)okp = false;
6822 bed = get_elf_backend_data (sec->owner);
6823 file_align = bed->s->file_align;
6824
6825 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6826
6827 for (rel = relstart; rel < relend; ++rel)
6828 if (rel->r_offset >= hstart && rel->r_offset < hend)
6829 {
6830 /* If the entry is in use, do nothing. */
6831 if (h->vtable_entries_used
6832 && (rel->r_offset - hstart) < h->vtable_entries_size)
6833 {
6834 bfd_vma entry = (rel->r_offset - hstart) / file_align;
6835 if (h->vtable_entries_used[entry])
6836 continue;
6837 }
6838 /* Otherwise, kill it. */
6839 rel->r_offset = rel->r_info = rel->r_addend = 0;
6840 }
6841
6842 return true;
6843 }
6844
6845 /* Do mark and sweep of unused sections. */
6846
6847 boolean
6848 elf_gc_sections (abfd, info)
6849 bfd *abfd;
6850 struct bfd_link_info *info;
6851 {
6852 boolean ok = true;
6853 bfd *sub;
6854 asection * (*gc_mark_hook)
6855 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6856 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6857
6858 if (!get_elf_backend_data (abfd)->can_gc_sections
6859 || info->relocateable || info->emitrelocations
6860 || elf_hash_table (info)->dynamic_sections_created)
6861 return true;
6862
6863 /* Apply transitive closure to the vtable entry usage info. */
6864 elf_link_hash_traverse (elf_hash_table (info),
6865 elf_gc_propagate_vtable_entries_used,
6866 (PTR) &ok);
6867 if (!ok)
6868 return false;
6869
6870 /* Kill the vtable relocations that were not used. */
6871 elf_link_hash_traverse (elf_hash_table (info),
6872 elf_gc_smash_unused_vtentry_relocs,
6873 (PTR) &ok);
6874 if (!ok)
6875 return false;
6876
6877 /* Grovel through relocs to find out who stays ... */
6878
6879 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6880 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6881 {
6882 asection *o;
6883
6884 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6885 continue;
6886
6887 for (o = sub->sections; o != NULL; o = o->next)
6888 {
6889 if (o->flags & SEC_KEEP)
6890 if (!elf_gc_mark (info, o, gc_mark_hook))
6891 return false;
6892 }
6893 }
6894
6895 /* ... and mark SEC_EXCLUDE for those that go. */
6896 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6897 return false;
6898
6899 return true;
6900 }
6901 \f
6902 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6903
6904 boolean
6905 elf_gc_record_vtinherit (abfd, sec, h, offset)
6906 bfd *abfd;
6907 asection *sec;
6908 struct elf_link_hash_entry *h;
6909 bfd_vma offset;
6910 {
6911 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6912 struct elf_link_hash_entry **search, *child;
6913 bfd_size_type extsymcount;
6914
6915 /* The sh_info field of the symtab header tells us where the
6916 external symbols start. We don't care about the local symbols at
6917 this point. */
6918 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6919 if (!elf_bad_symtab (abfd))
6920 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6921
6922 sym_hashes = elf_sym_hashes (abfd);
6923 sym_hashes_end = sym_hashes + extsymcount;
6924
6925 /* Hunt down the child symbol, which is in this section at the same
6926 offset as the relocation. */
6927 for (search = sym_hashes; search != sym_hashes_end; ++search)
6928 {
6929 if ((child = *search) != NULL
6930 && (child->root.type == bfd_link_hash_defined
6931 || child->root.type == bfd_link_hash_defweak)
6932 && child->root.u.def.section == sec
6933 && child->root.u.def.value == offset)
6934 goto win;
6935 }
6936
6937 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6938 bfd_get_filename (abfd), sec->name,
6939 (unsigned long)offset);
6940 bfd_set_error (bfd_error_invalid_operation);
6941 return false;
6942
6943 win:
6944 if (!h)
6945 {
6946 /* This *should* only be the absolute section. It could potentially
6947 be that someone has defined a non-global vtable though, which
6948 would be bad. It isn't worth paging in the local symbols to be
6949 sure though; that case should simply be handled by the assembler. */
6950
6951 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6952 }
6953 else
6954 child->vtable_parent = h;
6955
6956 return true;
6957 }
6958
6959 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
6960
6961 boolean
6962 elf_gc_record_vtentry (abfd, sec, h, addend)
6963 bfd *abfd ATTRIBUTE_UNUSED;
6964 asection *sec ATTRIBUTE_UNUSED;
6965 struct elf_link_hash_entry *h;
6966 bfd_vma addend;
6967 {
6968 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6969 int file_align = bed->s->file_align;
6970
6971 if (addend >= h->vtable_entries_size)
6972 {
6973 size_t size, bytes;
6974 boolean *ptr = h->vtable_entries_used;
6975
6976 /* While the symbol is undefined, we have to be prepared to handle
6977 a zero size. */
6978 if (h->root.type == bfd_link_hash_undefined)
6979 size = addend;
6980 else
6981 {
6982 size = h->size;
6983 if (size < addend)
6984 {
6985 /* Oops! We've got a reference past the defined end of
6986 the table. This is probably a bug -- shall we warn? */
6987 size = addend;
6988 }
6989 }
6990
6991 /* Allocate one extra entry for use as a "done" flag for the
6992 consolidation pass. */
6993 bytes = (size / file_align + 1) * sizeof (boolean);
6994
6995 if (ptr)
6996 {
6997 ptr = bfd_realloc (ptr - 1, bytes);
6998
6999 if (ptr != NULL)
7000 {
7001 size_t oldbytes;
7002
7003 oldbytes = (h->vtable_entries_size/file_align + 1) * sizeof (boolean);
7004 memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
7005 }
7006 }
7007 else
7008 ptr = bfd_zmalloc (bytes);
7009
7010 if (ptr == NULL)
7011 return false;
7012
7013 /* And arrange for that done flag to be at index -1. */
7014 h->vtable_entries_used = ptr + 1;
7015 h->vtable_entries_size = size;
7016 }
7017
7018 h->vtable_entries_used[addend / file_align] = true;
7019
7020 return true;
7021 }
7022
7023 /* And an accompanying bit to work out final got entry offsets once
7024 we're done. Should be called from final_link. */
7025
7026 boolean
7027 elf_gc_common_finalize_got_offsets (abfd, info)
7028 bfd *abfd;
7029 struct bfd_link_info *info;
7030 {
7031 bfd *i;
7032 struct elf_backend_data *bed = get_elf_backend_data (abfd);
7033 bfd_vma gotoff;
7034
7035 /* The GOT offset is relative to the .got section, but the GOT header is
7036 put into the .got.plt section, if the backend uses it. */
7037 if (bed->want_got_plt)
7038 gotoff = 0;
7039 else
7040 gotoff = bed->got_header_size;
7041
7042 /* Do the local .got entries first. */
7043 for (i = info->input_bfds; i; i = i->link_next)
7044 {
7045 bfd_signed_vma *local_got;
7046 bfd_size_type j, locsymcount;
7047 Elf_Internal_Shdr *symtab_hdr;
7048
7049 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
7050 continue;
7051
7052 local_got = elf_local_got_refcounts (i);
7053 if (!local_got)
7054 continue;
7055
7056 symtab_hdr = &elf_tdata (i)->symtab_hdr;
7057 if (elf_bad_symtab (i))
7058 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
7059 else
7060 locsymcount = symtab_hdr->sh_info;
7061
7062 for (j = 0; j < locsymcount; ++j)
7063 {
7064 if (local_got[j] > 0)
7065 {
7066 local_got[j] = gotoff;
7067 gotoff += ARCH_SIZE / 8;
7068 }
7069 else
7070 local_got[j] = (bfd_vma) -1;
7071 }
7072 }
7073
7074 /* Then the global .got entries. .plt refcounts are handled by
7075 adjust_dynamic_symbol */
7076 elf_link_hash_traverse (elf_hash_table (info),
7077 elf_gc_allocate_got_offsets,
7078 (PTR) &gotoff);
7079 return true;
7080 }
7081
7082 /* We need a special top-level link routine to convert got reference counts
7083 to real got offsets. */
7084
7085 static boolean
7086 elf_gc_allocate_got_offsets (h, offarg)
7087 struct elf_link_hash_entry *h;
7088 PTR offarg;
7089 {
7090 bfd_vma *off = (bfd_vma *) offarg;
7091
7092 if (h->got.refcount > 0)
7093 {
7094 h->got.offset = off[0];
7095 off[0] += ARCH_SIZE / 8;
7096 }
7097 else
7098 h->got.offset = (bfd_vma) -1;
7099
7100 return true;
7101 }
7102
7103 /* Many folk need no more in the way of final link than this, once
7104 got entry reference counting is enabled. */
7105
7106 boolean
7107 elf_gc_common_final_link (abfd, info)
7108 bfd *abfd;
7109 struct bfd_link_info *info;
7110 {
7111 if (!elf_gc_common_finalize_got_offsets (abfd, info))
7112 return false;
7113
7114 /* Invoke the regular ELF backend linker to do all the work. */
7115 return elf_bfd_final_link (abfd, info);
7116 }
7117
7118 /* This function will be called though elf_link_hash_traverse to store
7119 all hash value of the exported symbols in an array. */
7120
7121 static boolean
7122 elf_collect_hash_codes (h, data)
7123 struct elf_link_hash_entry *h;
7124 PTR data;
7125 {
7126 unsigned long **valuep = (unsigned long **) data;
7127 const char *name;
7128 char *p;
7129 unsigned long ha;
7130 char *alc = NULL;
7131
7132 /* Ignore indirect symbols. These are added by the versioning code. */
7133 if (h->dynindx == -1)
7134 return true;
7135
7136 name = h->root.root.string;
7137 p = strchr (name, ELF_VER_CHR);
7138 if (p != NULL)
7139 {
7140 alc = bfd_malloc (p - name + 1);
7141 memcpy (alc, name, p - name);
7142 alc[p - name] = '\0';
7143 name = alc;
7144 }
7145
7146 /* Compute the hash value. */
7147 ha = bfd_elf_hash (name);
7148
7149 /* Store the found hash value in the array given as the argument. */
7150 *(*valuep)++ = ha;
7151
7152 /* And store it in the struct so that we can put it in the hash table
7153 later. */
7154 h->elf_hash_value = ha;
7155
7156 if (alc != NULL)
7157 free (alc);
7158
7159 return true;
7160 }