* elflink.h (size_dynamic_sections): Use user-specified init/fini
[binutils-gdb.git] / bfd / elflink.h
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /* ELF linker code. */
21
22 /* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25 struct elf_info_failed
26 {
27 boolean failed;
28 struct bfd_link_info *info;
29 };
30
31 static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33 static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35 static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39 static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41 static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43 static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45 static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49 static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51 static boolean elf_link_renumber_dynsyms
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53 static boolean elf_collect_hash_codes
54 PARAMS ((struct elf_link_hash_entry *, PTR));
55 static boolean elf_link_read_relocs_from_section
56 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
57 static void elf_link_remove_section_and_adjust_dynindices
58 PARAMS ((struct bfd_link_info *, asection *));
59
60 /* Given an ELF BFD, add symbols to the global hash table as
61 appropriate. */
62
63 boolean
64 elf_bfd_link_add_symbols (abfd, info)
65 bfd *abfd;
66 struct bfd_link_info *info;
67 {
68 switch (bfd_get_format (abfd))
69 {
70 case bfd_object:
71 return elf_link_add_object_symbols (abfd, info);
72 case bfd_archive:
73 return elf_link_add_archive_symbols (abfd, info);
74 default:
75 bfd_set_error (bfd_error_wrong_format);
76 return false;
77 }
78 }
79 \f
80
81 /* Add symbols from an ELF archive file to the linker hash table. We
82 don't use _bfd_generic_link_add_archive_symbols because of a
83 problem which arises on UnixWare. The UnixWare libc.so is an
84 archive which includes an entry libc.so.1 which defines a bunch of
85 symbols. The libc.so archive also includes a number of other
86 object files, which also define symbols, some of which are the same
87 as those defined in libc.so.1. Correct linking requires that we
88 consider each object file in turn, and include it if it defines any
89 symbols we need. _bfd_generic_link_add_archive_symbols does not do
90 this; it looks through the list of undefined symbols, and includes
91 any object file which defines them. When this algorithm is used on
92 UnixWare, it winds up pulling in libc.so.1 early and defining a
93 bunch of symbols. This means that some of the other objects in the
94 archive are not included in the link, which is incorrect since they
95 precede libc.so.1 in the archive.
96
97 Fortunately, ELF archive handling is simpler than that done by
98 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
99 oddities. In ELF, if we find a symbol in the archive map, and the
100 symbol is currently undefined, we know that we must pull in that
101 object file.
102
103 Unfortunately, we do have to make multiple passes over the symbol
104 table until nothing further is resolved. */
105
106 static boolean
107 elf_link_add_archive_symbols (abfd, info)
108 bfd *abfd;
109 struct bfd_link_info *info;
110 {
111 symindex c;
112 boolean *defined = NULL;
113 boolean *included = NULL;
114 carsym *symdefs;
115 boolean loop;
116
117 if (! bfd_has_map (abfd))
118 {
119 /* An empty archive is a special case. */
120 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
121 return true;
122 bfd_set_error (bfd_error_no_armap);
123 return false;
124 }
125
126 /* Keep track of all symbols we know to be already defined, and all
127 files we know to be already included. This is to speed up the
128 second and subsequent passes. */
129 c = bfd_ardata (abfd)->symdef_count;
130 if (c == 0)
131 return true;
132 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
133 included = (boolean *) bfd_malloc (c * sizeof (boolean));
134 if (defined == (boolean *) NULL || included == (boolean *) NULL)
135 goto error_return;
136 memset (defined, 0, c * sizeof (boolean));
137 memset (included, 0, c * sizeof (boolean));
138
139 symdefs = bfd_ardata (abfd)->symdefs;
140
141 do
142 {
143 file_ptr last;
144 symindex i;
145 carsym *symdef;
146 carsym *symdefend;
147
148 loop = false;
149 last = -1;
150
151 symdef = symdefs;
152 symdefend = symdef + c;
153 for (i = 0; symdef < symdefend; symdef++, i++)
154 {
155 struct elf_link_hash_entry *h;
156 bfd *element;
157 struct bfd_link_hash_entry *undefs_tail;
158 symindex mark;
159
160 if (defined[i] || included[i])
161 continue;
162 if (symdef->file_offset == last)
163 {
164 included[i] = true;
165 continue;
166 }
167
168 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
169 false, false, false);
170
171 if (h == NULL)
172 {
173 char *p, *copy;
174
175 /* If this is a default version (the name contains @@),
176 look up the symbol again without the version. The
177 effect is that references to the symbol without the
178 version will be matched by the default symbol in the
179 archive. */
180
181 p = strchr (symdef->name, ELF_VER_CHR);
182 if (p == NULL || p[1] != ELF_VER_CHR)
183 continue;
184
185 copy = bfd_alloc (abfd, p - symdef->name + 1);
186 if (copy == NULL)
187 goto error_return;
188 memcpy (copy, symdef->name, p - symdef->name);
189 copy[p - symdef->name] = '\0';
190
191 h = elf_link_hash_lookup (elf_hash_table (info), copy,
192 false, false, false);
193
194 bfd_release (abfd, copy);
195 }
196
197 if (h == NULL)
198 continue;
199
200 if (h->root.type != bfd_link_hash_undefined)
201 {
202 if (h->root.type != bfd_link_hash_undefweak)
203 defined[i] = true;
204 continue;
205 }
206
207 /* We need to include this archive member. */
208
209 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
210 if (element == (bfd *) NULL)
211 goto error_return;
212
213 if (! bfd_check_format (element, bfd_object))
214 goto error_return;
215
216 /* Doublecheck that we have not included this object
217 already--it should be impossible, but there may be
218 something wrong with the archive. */
219 if (element->archive_pass != 0)
220 {
221 bfd_set_error (bfd_error_bad_value);
222 goto error_return;
223 }
224 element->archive_pass = 1;
225
226 undefs_tail = info->hash->undefs_tail;
227
228 if (! (*info->callbacks->add_archive_element) (info, element,
229 symdef->name))
230 goto error_return;
231 if (! elf_link_add_object_symbols (element, info))
232 goto error_return;
233
234 /* If there are any new undefined symbols, we need to make
235 another pass through the archive in order to see whether
236 they can be defined. FIXME: This isn't perfect, because
237 common symbols wind up on undefs_tail and because an
238 undefined symbol which is defined later on in this pass
239 does not require another pass. This isn't a bug, but it
240 does make the code less efficient than it could be. */
241 if (undefs_tail != info->hash->undefs_tail)
242 loop = true;
243
244 /* Look backward to mark all symbols from this object file
245 which we have already seen in this pass. */
246 mark = i;
247 do
248 {
249 included[mark] = true;
250 if (mark == 0)
251 break;
252 --mark;
253 }
254 while (symdefs[mark].file_offset == symdef->file_offset);
255
256 /* We mark subsequent symbols from this object file as we go
257 on through the loop. */
258 last = symdef->file_offset;
259 }
260 }
261 while (loop);
262
263 free (defined);
264 free (included);
265
266 return true;
267
268 error_return:
269 if (defined != (boolean *) NULL)
270 free (defined);
271 if (included != (boolean *) NULL)
272 free (included);
273 return false;
274 }
275
276 /* This function is called when we want to define a new symbol. It
277 handles the various cases which arise when we find a definition in
278 a dynamic object, or when there is already a definition in a
279 dynamic object. The new symbol is described by NAME, SYM, PSEC,
280 and PVALUE. We set SYM_HASH to the hash table entry. We set
281 OVERRIDE if the old symbol is overriding a new definition. We set
282 TYPE_CHANGE_OK if it is OK for the type to change. We set
283 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
284 change, we mean that we shouldn't warn if the type or size does
285 change. */
286
287 static boolean
288 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
289 override, type_change_ok, size_change_ok)
290 bfd *abfd;
291 struct bfd_link_info *info;
292 const char *name;
293 Elf_Internal_Sym *sym;
294 asection **psec;
295 bfd_vma *pvalue;
296 struct elf_link_hash_entry **sym_hash;
297 boolean *override;
298 boolean *type_change_ok;
299 boolean *size_change_ok;
300 {
301 asection *sec;
302 struct elf_link_hash_entry *h;
303 int bind;
304 bfd *oldbfd;
305 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
306
307 *override = false;
308
309 sec = *psec;
310 bind = ELF_ST_BIND (sym->st_info);
311
312 if (! bfd_is_und_section (sec))
313 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
314 else
315 h = ((struct elf_link_hash_entry *)
316 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
317 if (h == NULL)
318 return false;
319 *sym_hash = h;
320
321 /* This code is for coping with dynamic objects, and is only useful
322 if we are doing an ELF link. */
323 if (info->hash->creator != abfd->xvec)
324 return true;
325
326 /* For merging, we only care about real symbols. */
327
328 while (h->root.type == bfd_link_hash_indirect
329 || h->root.type == bfd_link_hash_warning)
330 h = (struct elf_link_hash_entry *) h->root.u.i.link;
331
332 /* If we just created the symbol, mark it as being an ELF symbol.
333 Other than that, there is nothing to do--there is no merge issue
334 with a newly defined symbol--so we just return. */
335
336 if (h->root.type == bfd_link_hash_new)
337 {
338 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
339 return true;
340 }
341
342 /* OLDBFD is a BFD associated with the existing symbol. */
343
344 switch (h->root.type)
345 {
346 default:
347 oldbfd = NULL;
348 break;
349
350 case bfd_link_hash_undefined:
351 case bfd_link_hash_undefweak:
352 oldbfd = h->root.u.undef.abfd;
353 break;
354
355 case bfd_link_hash_defined:
356 case bfd_link_hash_defweak:
357 oldbfd = h->root.u.def.section->owner;
358 break;
359
360 case bfd_link_hash_common:
361 oldbfd = h->root.u.c.p->section->owner;
362 break;
363 }
364
365 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
366 respectively, is from a dynamic object. */
367
368 if ((abfd->flags & DYNAMIC) != 0)
369 newdyn = true;
370 else
371 newdyn = false;
372
373 if (oldbfd == NULL || (oldbfd->flags & DYNAMIC) == 0)
374 olddyn = false;
375 else
376 olddyn = true;
377
378 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
379 respectively, appear to be a definition rather than reference. */
380
381 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
382 newdef = false;
383 else
384 newdef = true;
385
386 if (h->root.type == bfd_link_hash_undefined
387 || h->root.type == bfd_link_hash_undefweak
388 || h->root.type == bfd_link_hash_common)
389 olddef = false;
390 else
391 olddef = true;
392
393 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
394 symbol, respectively, appears to be a common symbol in a dynamic
395 object. If a symbol appears in an uninitialized section, and is
396 not weak, and is not a function, then it may be a common symbol
397 which was resolved when the dynamic object was created. We want
398 to treat such symbols specially, because they raise special
399 considerations when setting the symbol size: if the symbol
400 appears as a common symbol in a regular object, and the size in
401 the regular object is larger, we must make sure that we use the
402 larger size. This problematic case can always be avoided in C,
403 but it must be handled correctly when using Fortran shared
404 libraries.
405
406 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
407 likewise for OLDDYNCOMMON and OLDDEF.
408
409 Note that this test is just a heuristic, and that it is quite
410 possible to have an uninitialized symbol in a shared object which
411 is really a definition, rather than a common symbol. This could
412 lead to some minor confusion when the symbol really is a common
413 symbol in some regular object. However, I think it will be
414 harmless. */
415
416 if (newdyn
417 && newdef
418 && (sec->flags & SEC_ALLOC) != 0
419 && (sec->flags & SEC_LOAD) == 0
420 && sym->st_size > 0
421 && bind != STB_WEAK
422 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
423 newdyncommon = true;
424 else
425 newdyncommon = false;
426
427 if (olddyn
428 && olddef
429 && h->root.type == bfd_link_hash_defined
430 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
431 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
432 && (h->root.u.def.section->flags & SEC_LOAD) == 0
433 && h->size > 0
434 && h->type != STT_FUNC)
435 olddyncommon = true;
436 else
437 olddyncommon = false;
438
439 /* It's OK to change the type if either the existing symbol or the
440 new symbol is weak. */
441
442 if (h->root.type == bfd_link_hash_defweak
443 || h->root.type == bfd_link_hash_undefweak
444 || bind == STB_WEAK)
445 *type_change_ok = true;
446
447 /* It's OK to change the size if either the existing symbol or the
448 new symbol is weak, or if the old symbol is undefined. */
449
450 if (*type_change_ok
451 || h->root.type == bfd_link_hash_undefined)
452 *size_change_ok = true;
453
454 /* If both the old and the new symbols look like common symbols in a
455 dynamic object, set the size of the symbol to the larger of the
456 two. */
457
458 if (olddyncommon
459 && newdyncommon
460 && sym->st_size != h->size)
461 {
462 /* Since we think we have two common symbols, issue a multiple
463 common warning if desired. Note that we only warn if the
464 size is different. If the size is the same, we simply let
465 the old symbol override the new one as normally happens with
466 symbols defined in dynamic objects. */
467
468 if (! ((*info->callbacks->multiple_common)
469 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
470 h->size, abfd, bfd_link_hash_common, sym->st_size)))
471 return false;
472
473 if (sym->st_size > h->size)
474 h->size = sym->st_size;
475
476 *size_change_ok = true;
477 }
478
479 /* If we are looking at a dynamic object, and we have found a
480 definition, we need to see if the symbol was already defined by
481 some other object. If so, we want to use the existing
482 definition, and we do not want to report a multiple symbol
483 definition error; we do this by clobbering *PSEC to be
484 bfd_und_section_ptr.
485
486 We treat a common symbol as a definition if the symbol in the
487 shared library is a function, since common symbols always
488 represent variables; this can cause confusion in principle, but
489 any such confusion would seem to indicate an erroneous program or
490 shared library. We also permit a common symbol in a regular
491 object to override a weak symbol in a shared object. */
492
493 if (newdyn
494 && newdef
495 && (olddef
496 || (h->root.type == bfd_link_hash_common
497 && (bind == STB_WEAK
498 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
499 {
500 *override = true;
501 newdef = false;
502 newdyncommon = false;
503
504 *psec = sec = bfd_und_section_ptr;
505 *size_change_ok = true;
506
507 /* If we get here when the old symbol is a common symbol, then
508 we are explicitly letting it override a weak symbol or
509 function in a dynamic object, and we don't want to warn about
510 a type change. If the old symbol is a defined symbol, a type
511 change warning may still be appropriate. */
512
513 if (h->root.type == bfd_link_hash_common)
514 *type_change_ok = true;
515 }
516
517 /* Handle the special case of an old common symbol merging with a
518 new symbol which looks like a common symbol in a shared object.
519 We change *PSEC and *PVALUE to make the new symbol look like a
520 common symbol, and let _bfd_generic_link_add_one_symbol will do
521 the right thing. */
522
523 if (newdyncommon
524 && h->root.type == bfd_link_hash_common)
525 {
526 *override = true;
527 newdef = false;
528 newdyncommon = false;
529 *pvalue = sym->st_size;
530 *psec = sec = bfd_com_section_ptr;
531 *size_change_ok = true;
532 }
533
534 /* If the old symbol is from a dynamic object, and the new symbol is
535 a definition which is not from a dynamic object, then the new
536 symbol overrides the old symbol. Symbols from regular files
537 always take precedence over symbols from dynamic objects, even if
538 they are defined after the dynamic object in the link.
539
540 As above, we again permit a common symbol in a regular object to
541 override a definition in a shared object if the shared object
542 symbol is a function or is weak. */
543
544 if (! newdyn
545 && (newdef
546 || (bfd_is_com_section (sec)
547 && (h->root.type == bfd_link_hash_defweak
548 || h->type == STT_FUNC)))
549 && olddyn
550 && olddef
551 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
552 {
553 /* Change the hash table entry to undefined, and let
554 _bfd_generic_link_add_one_symbol do the right thing with the
555 new definition. */
556
557 h->root.type = bfd_link_hash_undefined;
558 h->root.u.undef.abfd = h->root.u.def.section->owner;
559 *size_change_ok = true;
560
561 olddef = false;
562 olddyncommon = false;
563
564 /* We again permit a type change when a common symbol may be
565 overriding a function. */
566
567 if (bfd_is_com_section (sec))
568 *type_change_ok = true;
569
570 /* This union may have been set to be non-NULL when this symbol
571 was seen in a dynamic object. We must force the union to be
572 NULL, so that it is correct for a regular symbol. */
573
574 h->verinfo.vertree = NULL;
575
576 /* In this special case, if H is the target of an indirection,
577 we want the caller to frob with H rather than with the
578 indirect symbol. That will permit the caller to redefine the
579 target of the indirection, rather than the indirect symbol
580 itself. FIXME: This will break the -y option if we store a
581 symbol with a different name. */
582 *sym_hash = h;
583 }
584
585 /* Handle the special case of a new common symbol merging with an
586 old symbol that looks like it might be a common symbol defined in
587 a shared object. Note that we have already handled the case in
588 which a new common symbol should simply override the definition
589 in the shared library. */
590
591 if (! newdyn
592 && bfd_is_com_section (sec)
593 && olddyncommon)
594 {
595 /* It would be best if we could set the hash table entry to a
596 common symbol, but we don't know what to use for the section
597 or the alignment. */
598 if (! ((*info->callbacks->multiple_common)
599 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
600 h->size, abfd, bfd_link_hash_common, sym->st_size)))
601 return false;
602
603 /* If the predumed common symbol in the dynamic object is
604 larger, pretend that the new symbol has its size. */
605
606 if (h->size > *pvalue)
607 *pvalue = h->size;
608
609 /* FIXME: We no longer know the alignment required by the symbol
610 in the dynamic object, so we just wind up using the one from
611 the regular object. */
612
613 olddef = false;
614 olddyncommon = false;
615
616 h->root.type = bfd_link_hash_undefined;
617 h->root.u.undef.abfd = h->root.u.def.section->owner;
618
619 *size_change_ok = true;
620 *type_change_ok = true;
621
622 h->verinfo.vertree = NULL;
623 }
624
625 return true;
626 }
627
628 /* Add symbols from an ELF object file to the linker hash table. */
629
630 static boolean
631 elf_link_add_object_symbols (abfd, info)
632 bfd *abfd;
633 struct bfd_link_info *info;
634 {
635 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
636 const Elf_Internal_Sym *,
637 const char **, flagword *,
638 asection **, bfd_vma *));
639 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
640 asection *, const Elf_Internal_Rela *));
641 boolean collect;
642 Elf_Internal_Shdr *hdr;
643 size_t symcount;
644 size_t extsymcount;
645 size_t extsymoff;
646 Elf_External_Sym *buf = NULL;
647 struct elf_link_hash_entry **sym_hash;
648 boolean dynamic;
649 bfd_byte *dynver = NULL;
650 Elf_External_Versym *extversym = NULL;
651 Elf_External_Versym *ever;
652 Elf_External_Dyn *dynbuf = NULL;
653 struct elf_link_hash_entry *weaks;
654 Elf_External_Sym *esym;
655 Elf_External_Sym *esymend;
656
657 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
658 collect = get_elf_backend_data (abfd)->collect;
659
660 if ((abfd->flags & DYNAMIC) == 0)
661 dynamic = false;
662 else
663 {
664 dynamic = true;
665
666 /* You can't use -r against a dynamic object. Also, there's no
667 hope of using a dynamic object which does not exactly match
668 the format of the output file. */
669 if (info->relocateable || info->hash->creator != abfd->xvec)
670 {
671 bfd_set_error (bfd_error_invalid_operation);
672 goto error_return;
673 }
674 }
675
676 /* As a GNU extension, any input sections which are named
677 .gnu.warning.SYMBOL are treated as warning symbols for the given
678 symbol. This differs from .gnu.warning sections, which generate
679 warnings when they are included in an output file. */
680 if (! info->shared)
681 {
682 asection *s;
683
684 for (s = abfd->sections; s != NULL; s = s->next)
685 {
686 const char *name;
687
688 name = bfd_get_section_name (abfd, s);
689 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
690 {
691 char *msg;
692 bfd_size_type sz;
693
694 name += sizeof ".gnu.warning." - 1;
695
696 /* If this is a shared object, then look up the symbol
697 in the hash table. If it is there, and it is already
698 been defined, then we will not be using the entry
699 from this shared object, so we don't need to warn.
700 FIXME: If we see the definition in a regular object
701 later on, we will warn, but we shouldn't. The only
702 fix is to keep track of what warnings we are supposed
703 to emit, and then handle them all at the end of the
704 link. */
705 if (dynamic && abfd->xvec == info->hash->creator)
706 {
707 struct elf_link_hash_entry *h;
708
709 h = elf_link_hash_lookup (elf_hash_table (info), name,
710 false, false, true);
711
712 /* FIXME: What about bfd_link_hash_common? */
713 if (h != NULL
714 && (h->root.type == bfd_link_hash_defined
715 || h->root.type == bfd_link_hash_defweak))
716 {
717 /* We don't want to issue this warning. Clobber
718 the section size so that the warning does not
719 get copied into the output file. */
720 s->_raw_size = 0;
721 continue;
722 }
723 }
724
725 sz = bfd_section_size (abfd, s);
726 msg = (char *) bfd_alloc (abfd, sz + 1);
727 if (msg == NULL)
728 goto error_return;
729
730 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
731 goto error_return;
732
733 msg[sz] = '\0';
734
735 if (! (_bfd_generic_link_add_one_symbol
736 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
737 false, collect, (struct bfd_link_hash_entry **) NULL)))
738 goto error_return;
739
740 if (! info->relocateable)
741 {
742 /* Clobber the section size so that the warning does
743 not get copied into the output file. */
744 s->_raw_size = 0;
745 }
746 }
747 }
748 }
749
750 /* If this is a dynamic object, we always link against the .dynsym
751 symbol table, not the .symtab symbol table. The dynamic linker
752 will only see the .dynsym symbol table, so there is no reason to
753 look at .symtab for a dynamic object. */
754
755 if (! dynamic || elf_dynsymtab (abfd) == 0)
756 hdr = &elf_tdata (abfd)->symtab_hdr;
757 else
758 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
759
760 if (dynamic)
761 {
762 /* Read in any version definitions. */
763
764 if (! _bfd_elf_slurp_version_tables (abfd))
765 goto error_return;
766
767 /* Read in the symbol versions, but don't bother to convert them
768 to internal format. */
769 if (elf_dynversym (abfd) != 0)
770 {
771 Elf_Internal_Shdr *versymhdr;
772
773 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
774 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
775 if (extversym == NULL)
776 goto error_return;
777 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
778 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
779 != versymhdr->sh_size))
780 goto error_return;
781 }
782 }
783
784 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
785
786 /* The sh_info field of the symtab header tells us where the
787 external symbols start. We don't care about the local symbols at
788 this point. */
789 if (elf_bad_symtab (abfd))
790 {
791 extsymcount = symcount;
792 extsymoff = 0;
793 }
794 else
795 {
796 extsymcount = symcount - hdr->sh_info;
797 extsymoff = hdr->sh_info;
798 }
799
800 buf = ((Elf_External_Sym *)
801 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
802 if (buf == NULL && extsymcount != 0)
803 goto error_return;
804
805 /* We store a pointer to the hash table entry for each external
806 symbol. */
807 sym_hash = ((struct elf_link_hash_entry **)
808 bfd_alloc (abfd,
809 extsymcount * sizeof (struct elf_link_hash_entry *)));
810 if (sym_hash == NULL)
811 goto error_return;
812 elf_sym_hashes (abfd) = sym_hash;
813
814 if (! dynamic)
815 {
816 /* If we are creating a shared library, create all the dynamic
817 sections immediately. We need to attach them to something,
818 so we attach them to this BFD, provided it is the right
819 format. FIXME: If there are no input BFD's of the same
820 format as the output, we can't make a shared library. */
821 if (info->shared
822 && ! elf_hash_table (info)->dynamic_sections_created
823 && abfd->xvec == info->hash->creator)
824 {
825 if (! elf_link_create_dynamic_sections (abfd, info))
826 goto error_return;
827 }
828 }
829 else
830 {
831 asection *s;
832 boolean add_needed;
833 const char *name;
834 bfd_size_type oldsize;
835 bfd_size_type strindex;
836
837 /* Find the name to use in a DT_NEEDED entry that refers to this
838 object. If the object has a DT_SONAME entry, we use it.
839 Otherwise, if the generic linker stuck something in
840 elf_dt_name, we use that. Otherwise, we just use the file
841 name. If the generic linker put a null string into
842 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
843 there is a DT_SONAME entry. */
844 add_needed = true;
845 name = bfd_get_filename (abfd);
846 if (elf_dt_name (abfd) != NULL)
847 {
848 name = elf_dt_name (abfd);
849 if (*name == '\0')
850 add_needed = false;
851 }
852 s = bfd_get_section_by_name (abfd, ".dynamic");
853 if (s != NULL)
854 {
855 Elf_External_Dyn *extdyn;
856 Elf_External_Dyn *extdynend;
857 int elfsec;
858 unsigned long link;
859
860 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
861 if (dynbuf == NULL)
862 goto error_return;
863
864 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
865 (file_ptr) 0, s->_raw_size))
866 goto error_return;
867
868 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
869 if (elfsec == -1)
870 goto error_return;
871 link = elf_elfsections (abfd)[elfsec]->sh_link;
872
873 extdyn = dynbuf;
874 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
875 for (; extdyn < extdynend; extdyn++)
876 {
877 Elf_Internal_Dyn dyn;
878
879 elf_swap_dyn_in (abfd, extdyn, &dyn);
880 if (dyn.d_tag == DT_SONAME)
881 {
882 name = bfd_elf_string_from_elf_section (abfd, link,
883 dyn.d_un.d_val);
884 if (name == NULL)
885 goto error_return;
886 }
887 if (dyn.d_tag == DT_NEEDED)
888 {
889 struct bfd_link_needed_list *n, **pn;
890 char *fnm, *anm;
891
892 n = ((struct bfd_link_needed_list *)
893 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
894 fnm = bfd_elf_string_from_elf_section (abfd, link,
895 dyn.d_un.d_val);
896 if (n == NULL || fnm == NULL)
897 goto error_return;
898 anm = bfd_alloc (abfd, strlen (fnm) + 1);
899 if (anm == NULL)
900 goto error_return;
901 strcpy (anm, fnm);
902 n->name = anm;
903 n->by = abfd;
904 n->next = NULL;
905 for (pn = &elf_hash_table (info)->needed;
906 *pn != NULL;
907 pn = &(*pn)->next)
908 ;
909 *pn = n;
910 }
911 }
912
913 free (dynbuf);
914 dynbuf = NULL;
915 }
916
917 /* We do not want to include any of the sections in a dynamic
918 object in the output file. We hack by simply clobbering the
919 list of sections in the BFD. This could be handled more
920 cleanly by, say, a new section flag; the existing
921 SEC_NEVER_LOAD flag is not the one we want, because that one
922 still implies that the section takes up space in the output
923 file. */
924 abfd->sections = NULL;
925 abfd->section_count = 0;
926
927 /* If this is the first dynamic object found in the link, create
928 the special sections required for dynamic linking. */
929 if (! elf_hash_table (info)->dynamic_sections_created)
930 {
931 if (! elf_link_create_dynamic_sections (abfd, info))
932 goto error_return;
933 }
934
935 if (add_needed)
936 {
937 /* Add a DT_NEEDED entry for this dynamic object. */
938 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
939 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
940 true, false);
941 if (strindex == (bfd_size_type) -1)
942 goto error_return;
943
944 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
945 {
946 asection *sdyn;
947 Elf_External_Dyn *dyncon, *dynconend;
948
949 /* The hash table size did not change, which means that
950 the dynamic object name was already entered. If we
951 have already included this dynamic object in the
952 link, just ignore it. There is no reason to include
953 a particular dynamic object more than once. */
954 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
955 ".dynamic");
956 BFD_ASSERT (sdyn != NULL);
957
958 dyncon = (Elf_External_Dyn *) sdyn->contents;
959 dynconend = (Elf_External_Dyn *) (sdyn->contents +
960 sdyn->_raw_size);
961 for (; dyncon < dynconend; dyncon++)
962 {
963 Elf_Internal_Dyn dyn;
964
965 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
966 &dyn);
967 if (dyn.d_tag == DT_NEEDED
968 && dyn.d_un.d_val == strindex)
969 {
970 if (buf != NULL)
971 free (buf);
972 if (extversym != NULL)
973 free (extversym);
974 return true;
975 }
976 }
977 }
978
979 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
980 goto error_return;
981 }
982
983 /* Save the SONAME, if there is one, because sometimes the
984 linker emulation code will need to know it. */
985 if (*name == '\0')
986 name = bfd_get_filename (abfd);
987 elf_dt_name (abfd) = name;
988 }
989
990 if (bfd_seek (abfd,
991 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
992 SEEK_SET) != 0
993 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
994 != extsymcount * sizeof (Elf_External_Sym)))
995 goto error_return;
996
997 weaks = NULL;
998
999 ever = extversym != NULL ? extversym + extsymoff : NULL;
1000 esymend = buf + extsymcount;
1001 for (esym = buf;
1002 esym < esymend;
1003 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1004 {
1005 Elf_Internal_Sym sym;
1006 int bind;
1007 bfd_vma value;
1008 asection *sec;
1009 flagword flags;
1010 const char *name;
1011 struct elf_link_hash_entry *h;
1012 boolean definition;
1013 boolean size_change_ok, type_change_ok;
1014 boolean new_weakdef;
1015 unsigned int old_alignment;
1016
1017 elf_swap_symbol_in (abfd, esym, &sym);
1018
1019 flags = BSF_NO_FLAGS;
1020 sec = NULL;
1021 value = sym.st_value;
1022 *sym_hash = NULL;
1023
1024 bind = ELF_ST_BIND (sym.st_info);
1025 if (bind == STB_LOCAL)
1026 {
1027 /* This should be impossible, since ELF requires that all
1028 global symbols follow all local symbols, and that sh_info
1029 point to the first global symbol. Unfortunatealy, Irix 5
1030 screws this up. */
1031 continue;
1032 }
1033 else if (bind == STB_GLOBAL)
1034 {
1035 if (sym.st_shndx != SHN_UNDEF
1036 && sym.st_shndx != SHN_COMMON)
1037 flags = BSF_GLOBAL;
1038 else
1039 flags = 0;
1040 }
1041 else if (bind == STB_WEAK)
1042 flags = BSF_WEAK;
1043 else
1044 {
1045 /* Leave it up to the processor backend. */
1046 }
1047
1048 if (sym.st_shndx == SHN_UNDEF)
1049 sec = bfd_und_section_ptr;
1050 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1051 {
1052 sec = section_from_elf_index (abfd, sym.st_shndx);
1053 if (sec == NULL)
1054 sec = bfd_abs_section_ptr;
1055 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1056 value -= sec->vma;
1057 }
1058 else if (sym.st_shndx == SHN_ABS)
1059 sec = bfd_abs_section_ptr;
1060 else if (sym.st_shndx == SHN_COMMON)
1061 {
1062 sec = bfd_com_section_ptr;
1063 /* What ELF calls the size we call the value. What ELF
1064 calls the value we call the alignment. */
1065 value = sym.st_size;
1066 }
1067 else
1068 {
1069 /* Leave it up to the processor backend. */
1070 }
1071
1072 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1073 if (name == (const char *) NULL)
1074 goto error_return;
1075
1076 if (add_symbol_hook)
1077 {
1078 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1079 &value))
1080 goto error_return;
1081
1082 /* The hook function sets the name to NULL if this symbol
1083 should be skipped for some reason. */
1084 if (name == (const char *) NULL)
1085 continue;
1086 }
1087
1088 /* Sanity check that all possibilities were handled. */
1089 if (sec == (asection *) NULL)
1090 {
1091 bfd_set_error (bfd_error_bad_value);
1092 goto error_return;
1093 }
1094
1095 if (bfd_is_und_section (sec)
1096 || bfd_is_com_section (sec))
1097 definition = false;
1098 else
1099 definition = true;
1100
1101 size_change_ok = false;
1102 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1103 old_alignment = 0;
1104 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1105 {
1106 Elf_Internal_Versym iver;
1107 unsigned int vernum = 0;
1108 boolean override;
1109
1110 if (ever != NULL)
1111 {
1112 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1113 vernum = iver.vs_vers & VERSYM_VERSION;
1114
1115 /* If this is a hidden symbol, or if it is not version
1116 1, we append the version name to the symbol name.
1117 However, we do not modify a non-hidden absolute
1118 symbol, because it might be the version symbol
1119 itself. FIXME: What if it isn't? */
1120 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1121 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1122 {
1123 const char *verstr;
1124 int namelen, newlen;
1125 char *newname, *p;
1126
1127 if (sym.st_shndx != SHN_UNDEF)
1128 {
1129 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1130 {
1131 (*_bfd_error_handler)
1132 (_("%s: %s: invalid version %u (max %d)"),
1133 bfd_get_filename (abfd), name, vernum,
1134 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1135 bfd_set_error (bfd_error_bad_value);
1136 goto error_return;
1137 }
1138 else if (vernum > 1)
1139 verstr =
1140 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1141 else
1142 verstr = "";
1143 }
1144 else
1145 {
1146 /* We cannot simply test for the number of
1147 entries in the VERNEED section since the
1148 numbers for the needed versions do not start
1149 at 0. */
1150 Elf_Internal_Verneed *t;
1151
1152 verstr = NULL;
1153 for (t = elf_tdata (abfd)->verref;
1154 t != NULL;
1155 t = t->vn_nextref)
1156 {
1157 Elf_Internal_Vernaux *a;
1158
1159 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1160 {
1161 if (a->vna_other == vernum)
1162 {
1163 verstr = a->vna_nodename;
1164 break;
1165 }
1166 }
1167 if (a != NULL)
1168 break;
1169 }
1170 if (verstr == NULL)
1171 {
1172 (*_bfd_error_handler)
1173 (_("%s: %s: invalid needed version %d"),
1174 bfd_get_filename (abfd), name, vernum);
1175 bfd_set_error (bfd_error_bad_value);
1176 goto error_return;
1177 }
1178 }
1179
1180 namelen = strlen (name);
1181 newlen = namelen + strlen (verstr) + 2;
1182 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1183 ++newlen;
1184
1185 newname = (char *) bfd_alloc (abfd, newlen);
1186 if (newname == NULL)
1187 goto error_return;
1188 strcpy (newname, name);
1189 p = newname + namelen;
1190 *p++ = ELF_VER_CHR;
1191 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1192 *p++ = ELF_VER_CHR;
1193 strcpy (p, verstr);
1194
1195 name = newname;
1196 }
1197 }
1198
1199 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1200 sym_hash, &override, &type_change_ok,
1201 &size_change_ok))
1202 goto error_return;
1203
1204 if (override)
1205 definition = false;
1206
1207 h = *sym_hash;
1208 while (h->root.type == bfd_link_hash_indirect
1209 || h->root.type == bfd_link_hash_warning)
1210 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1211
1212 /* Remember the old alignment if this is a common symbol, so
1213 that we don't reduce the alignment later on. We can't
1214 check later, because _bfd_generic_link_add_one_symbol
1215 will set a default for the alignment which we want to
1216 override. */
1217 if (h->root.type == bfd_link_hash_common)
1218 old_alignment = h->root.u.c.p->alignment_power;
1219
1220 if (elf_tdata (abfd)->verdef != NULL
1221 && ! override
1222 && vernum > 1
1223 && definition)
1224 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1225 }
1226
1227 if (! (_bfd_generic_link_add_one_symbol
1228 (info, abfd, name, flags, sec, value, (const char *) NULL,
1229 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1230 goto error_return;
1231
1232 h = *sym_hash;
1233 while (h->root.type == bfd_link_hash_indirect
1234 || h->root.type == bfd_link_hash_warning)
1235 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1236 *sym_hash = h;
1237
1238 new_weakdef = false;
1239 if (dynamic
1240 && definition
1241 && (flags & BSF_WEAK) != 0
1242 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1243 && info->hash->creator->flavour == bfd_target_elf_flavour
1244 && h->weakdef == NULL)
1245 {
1246 /* Keep a list of all weak defined non function symbols from
1247 a dynamic object, using the weakdef field. Later in this
1248 function we will set the weakdef field to the correct
1249 value. We only put non-function symbols from dynamic
1250 objects on this list, because that happens to be the only
1251 time we need to know the normal symbol corresponding to a
1252 weak symbol, and the information is time consuming to
1253 figure out. If the weakdef field is not already NULL,
1254 then this symbol was already defined by some previous
1255 dynamic object, and we will be using that previous
1256 definition anyhow. */
1257
1258 h->weakdef = weaks;
1259 weaks = h;
1260 new_weakdef = true;
1261 }
1262
1263 /* Set the alignment of a common symbol. */
1264 if (sym.st_shndx == SHN_COMMON
1265 && h->root.type == bfd_link_hash_common)
1266 {
1267 unsigned int align;
1268
1269 align = bfd_log2 (sym.st_value);
1270 if (align > old_alignment)
1271 h->root.u.c.p->alignment_power = align;
1272 }
1273
1274 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1275 {
1276 int old_flags;
1277 boolean dynsym;
1278 int new_flag;
1279
1280 /* Remember the symbol size and type. */
1281 if (sym.st_size != 0
1282 && (definition || h->size == 0))
1283 {
1284 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1285 (*_bfd_error_handler)
1286 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1287 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1288 bfd_get_filename (abfd));
1289
1290 h->size = sym.st_size;
1291 }
1292
1293 /* If this is a common symbol, then we always want H->SIZE
1294 to be the size of the common symbol. The code just above
1295 won't fix the size if a common symbol becomes larger. We
1296 don't warn about a size change here, because that is
1297 covered by --warn-common. */
1298 if (h->root.type == bfd_link_hash_common)
1299 h->size = h->root.u.c.size;
1300
1301 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1302 && (definition || h->type == STT_NOTYPE))
1303 {
1304 if (h->type != STT_NOTYPE
1305 && h->type != ELF_ST_TYPE (sym.st_info)
1306 && ! type_change_ok)
1307 (*_bfd_error_handler)
1308 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1309 name, h->type, ELF_ST_TYPE (sym.st_info),
1310 bfd_get_filename (abfd));
1311
1312 h->type = ELF_ST_TYPE (sym.st_info);
1313 }
1314
1315 if (sym.st_other != 0
1316 && (definition || h->other == 0))
1317 h->other = sym.st_other;
1318
1319 /* Set a flag in the hash table entry indicating the type of
1320 reference or definition we just found. Keep a count of
1321 the number of dynamic symbols we find. A dynamic symbol
1322 is one which is referenced or defined by both a regular
1323 object and a shared object. */
1324 old_flags = h->elf_link_hash_flags;
1325 dynsym = false;
1326 if (! dynamic)
1327 {
1328 if (! definition)
1329 {
1330 new_flag = ELF_LINK_HASH_REF_REGULAR;
1331 if (bind != STB_WEAK)
1332 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1333 }
1334 else
1335 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1336 if (info->shared
1337 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1338 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1339 dynsym = true;
1340 }
1341 else
1342 {
1343 if (! definition)
1344 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1345 else
1346 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1347 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1348 | ELF_LINK_HASH_REF_REGULAR)) != 0
1349 || (h->weakdef != NULL
1350 && ! new_weakdef
1351 && h->weakdef->dynindx != -1))
1352 dynsym = true;
1353 }
1354
1355 h->elf_link_hash_flags |= new_flag;
1356
1357 /* If this symbol has a version, and it is the default
1358 version, we create an indirect symbol from the default
1359 name to the fully decorated name. This will cause
1360 external references which do not specify a version to be
1361 bound to this version of the symbol. */
1362 if (definition)
1363 {
1364 char *p;
1365
1366 p = strchr (name, ELF_VER_CHR);
1367 if (p != NULL && p[1] == ELF_VER_CHR)
1368 {
1369 char *shortname;
1370 struct elf_link_hash_entry *hi;
1371 boolean override;
1372
1373 shortname = bfd_hash_allocate (&info->hash->table,
1374 p - name + 1);
1375 if (shortname == NULL)
1376 goto error_return;
1377 strncpy (shortname, name, p - name);
1378 shortname[p - name] = '\0';
1379
1380 /* We are going to create a new symbol. Merge it
1381 with any existing symbol with this name. For the
1382 purposes of the merge, act as though we were
1383 defining the symbol we just defined, although we
1384 actually going to define an indirect symbol. */
1385 type_change_ok = false;
1386 size_change_ok = false;
1387 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1388 &value, &hi, &override,
1389 &type_change_ok, &size_change_ok))
1390 goto error_return;
1391
1392 if (! override)
1393 {
1394 if (! (_bfd_generic_link_add_one_symbol
1395 (info, abfd, shortname, BSF_INDIRECT,
1396 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1397 collect, (struct bfd_link_hash_entry **) &hi)))
1398 goto error_return;
1399 }
1400 else
1401 {
1402 /* In this case the symbol named SHORTNAME is
1403 overriding the indirect symbol we want to
1404 add. We were planning on making SHORTNAME an
1405 indirect symbol referring to NAME. SHORTNAME
1406 is the name without a version. NAME is the
1407 fully versioned name, and it is the default
1408 version.
1409
1410 Overriding means that we already saw a
1411 definition for the symbol SHORTNAME in a
1412 regular object, and it is overriding the
1413 symbol defined in the dynamic object.
1414
1415 When this happens, we actually want to change
1416 NAME, the symbol we just added, to refer to
1417 SHORTNAME. This will cause references to
1418 NAME in the shared object to become
1419 references to SHORTNAME in the regular
1420 object. This is what we expect when we
1421 override a function in a shared object: that
1422 the references in the shared object will be
1423 mapped to the definition in the regular
1424 object. */
1425
1426 while (hi->root.type == bfd_link_hash_indirect
1427 || hi->root.type == bfd_link_hash_warning)
1428 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1429
1430 h->root.type = bfd_link_hash_indirect;
1431 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1432 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1433 {
1434 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1435 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1436 if (hi->elf_link_hash_flags
1437 & (ELF_LINK_HASH_REF_REGULAR
1438 | ELF_LINK_HASH_DEF_REGULAR))
1439 {
1440 if (! _bfd_elf_link_record_dynamic_symbol (info,
1441 hi))
1442 goto error_return;
1443 }
1444 }
1445
1446 /* Now set HI to H, so that the following code
1447 will set the other fields correctly. */
1448 hi = h;
1449 }
1450
1451 /* If there is a duplicate definition somewhere,
1452 then HI may not point to an indirect symbol. We
1453 will have reported an error to the user in that
1454 case. */
1455
1456 if (hi->root.type == bfd_link_hash_indirect)
1457 {
1458 struct elf_link_hash_entry *ht;
1459
1460 /* If the symbol became indirect, then we assume
1461 that we have not seen a definition before. */
1462 BFD_ASSERT ((hi->elf_link_hash_flags
1463 & (ELF_LINK_HASH_DEF_DYNAMIC
1464 | ELF_LINK_HASH_DEF_REGULAR))
1465 == 0);
1466
1467 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1468
1469 /* Copy down any references that we may have
1470 already seen to the symbol which just became
1471 indirect. */
1472 ht->elf_link_hash_flags |=
1473 (hi->elf_link_hash_flags
1474 & (ELF_LINK_HASH_REF_DYNAMIC
1475 | ELF_LINK_HASH_REF_REGULAR
1476 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
1477
1478 /* Copy over the global and procedure linkage table
1479 offset entries. These may have been already set
1480 up by a check_relocs routine. */
1481 if (ht->got.offset == (bfd_vma) -1)
1482 {
1483 ht->got.offset = hi->got.offset;
1484 hi->got.offset = (bfd_vma) -1;
1485 }
1486 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1487
1488 if (ht->plt.offset == (bfd_vma) -1)
1489 {
1490 ht->plt.offset = hi->plt.offset;
1491 hi->plt.offset = (bfd_vma) -1;
1492 }
1493 BFD_ASSERT (hi->plt.offset == (bfd_vma) -1);
1494
1495 if (ht->dynindx == -1)
1496 {
1497 ht->dynindx = hi->dynindx;
1498 ht->dynstr_index = hi->dynstr_index;
1499 hi->dynindx = -1;
1500 hi->dynstr_index = 0;
1501 }
1502 BFD_ASSERT (hi->dynindx == -1);
1503
1504 /* FIXME: There may be other information to copy
1505 over for particular targets. */
1506
1507 /* See if the new flags lead us to realize that
1508 the symbol must be dynamic. */
1509 if (! dynsym)
1510 {
1511 if (! dynamic)
1512 {
1513 if (info->shared
1514 || ((hi->elf_link_hash_flags
1515 & ELF_LINK_HASH_REF_DYNAMIC)
1516 != 0))
1517 dynsym = true;
1518 }
1519 else
1520 {
1521 if ((hi->elf_link_hash_flags
1522 & ELF_LINK_HASH_REF_REGULAR) != 0)
1523 dynsym = true;
1524 }
1525 }
1526 }
1527
1528 /* We also need to define an indirection from the
1529 nondefault version of the symbol. */
1530
1531 shortname = bfd_hash_allocate (&info->hash->table,
1532 strlen (name));
1533 if (shortname == NULL)
1534 goto error_return;
1535 strncpy (shortname, name, p - name);
1536 strcpy (shortname + (p - name), p + 1);
1537
1538 /* Once again, merge with any existing symbol. */
1539 type_change_ok = false;
1540 size_change_ok = false;
1541 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1542 &value, &hi, &override,
1543 &type_change_ok, &size_change_ok))
1544 goto error_return;
1545
1546 if (override)
1547 {
1548 /* Here SHORTNAME is a versioned name, so we
1549 don't expect to see the type of override we
1550 do in the case above. */
1551 (*_bfd_error_handler)
1552 (_("%s: warning: unexpected redefinition of `%s'"),
1553 bfd_get_filename (abfd), shortname);
1554 }
1555 else
1556 {
1557 if (! (_bfd_generic_link_add_one_symbol
1558 (info, abfd, shortname, BSF_INDIRECT,
1559 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1560 collect, (struct bfd_link_hash_entry **) &hi)))
1561 goto error_return;
1562
1563 /* If there is a duplicate definition somewhere,
1564 then HI may not point to an indirect symbol.
1565 We will have reported an error to the user in
1566 that case. */
1567
1568 if (hi->root.type == bfd_link_hash_indirect)
1569 {
1570 /* If the symbol became indirect, then we
1571 assume that we have not seen a definition
1572 before. */
1573 BFD_ASSERT ((hi->elf_link_hash_flags
1574 & (ELF_LINK_HASH_DEF_DYNAMIC
1575 | ELF_LINK_HASH_DEF_REGULAR))
1576 == 0);
1577
1578 /* Copy down any references that we may have
1579 already seen to the symbol which just
1580 became indirect. */
1581 h->elf_link_hash_flags |=
1582 (hi->elf_link_hash_flags
1583 & (ELF_LINK_HASH_REF_DYNAMIC
1584 | ELF_LINK_HASH_REF_REGULAR
1585 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
1586
1587 /* Copy over the global and procedure linkage
1588 table offset entries. These may have been
1589 already set up by a check_relocs routine. */
1590 if (h->got.offset == (bfd_vma) -1)
1591 {
1592 h->got.offset = hi->got.offset;
1593 hi->got.offset = (bfd_vma) -1;
1594 }
1595 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1596
1597 if (h->plt.offset == (bfd_vma) -1)
1598 {
1599 h->plt.offset = hi->plt.offset;
1600 hi->plt.offset = (bfd_vma) -1;
1601 }
1602 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1603
1604 if (h->dynindx == -1)
1605 {
1606 h->dynindx = hi->dynindx;
1607 h->dynstr_index = hi->dynstr_index;
1608 hi->dynindx = -1;
1609 hi->dynstr_index = 0;
1610 }
1611 BFD_ASSERT (hi->dynindx == -1);
1612
1613 /* FIXME: There may be other information to
1614 copy over for particular targets. */
1615
1616 /* See if the new flags lead us to realize
1617 that the symbol must be dynamic. */
1618 if (! dynsym)
1619 {
1620 if (! dynamic)
1621 {
1622 if (info->shared
1623 || ((hi->elf_link_hash_flags
1624 & ELF_LINK_HASH_REF_DYNAMIC)
1625 != 0))
1626 dynsym = true;
1627 }
1628 else
1629 {
1630 if ((hi->elf_link_hash_flags
1631 & ELF_LINK_HASH_REF_REGULAR) != 0)
1632 dynsym = true;
1633 }
1634 }
1635 }
1636 }
1637 }
1638 }
1639
1640 if (dynsym && h->dynindx == -1)
1641 {
1642 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1643 goto error_return;
1644 if (h->weakdef != NULL
1645 && ! new_weakdef
1646 && h->weakdef->dynindx == -1)
1647 {
1648 if (! _bfd_elf_link_record_dynamic_symbol (info,
1649 h->weakdef))
1650 goto error_return;
1651 }
1652 }
1653 }
1654 }
1655
1656 /* Now set the weakdefs field correctly for all the weak defined
1657 symbols we found. The only way to do this is to search all the
1658 symbols. Since we only need the information for non functions in
1659 dynamic objects, that's the only time we actually put anything on
1660 the list WEAKS. We need this information so that if a regular
1661 object refers to a symbol defined weakly in a dynamic object, the
1662 real symbol in the dynamic object is also put in the dynamic
1663 symbols; we also must arrange for both symbols to point to the
1664 same memory location. We could handle the general case of symbol
1665 aliasing, but a general symbol alias can only be generated in
1666 assembler code, handling it correctly would be very time
1667 consuming, and other ELF linkers don't handle general aliasing
1668 either. */
1669 while (weaks != NULL)
1670 {
1671 struct elf_link_hash_entry *hlook;
1672 asection *slook;
1673 bfd_vma vlook;
1674 struct elf_link_hash_entry **hpp;
1675 struct elf_link_hash_entry **hppend;
1676
1677 hlook = weaks;
1678 weaks = hlook->weakdef;
1679 hlook->weakdef = NULL;
1680
1681 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1682 || hlook->root.type == bfd_link_hash_defweak
1683 || hlook->root.type == bfd_link_hash_common
1684 || hlook->root.type == bfd_link_hash_indirect);
1685 slook = hlook->root.u.def.section;
1686 vlook = hlook->root.u.def.value;
1687
1688 hpp = elf_sym_hashes (abfd);
1689 hppend = hpp + extsymcount;
1690 for (; hpp < hppend; hpp++)
1691 {
1692 struct elf_link_hash_entry *h;
1693
1694 h = *hpp;
1695 if (h != NULL && h != hlook
1696 && h->root.type == bfd_link_hash_defined
1697 && h->root.u.def.section == slook
1698 && h->root.u.def.value == vlook)
1699 {
1700 hlook->weakdef = h;
1701
1702 /* If the weak definition is in the list of dynamic
1703 symbols, make sure the real definition is put there
1704 as well. */
1705 if (hlook->dynindx != -1
1706 && h->dynindx == -1)
1707 {
1708 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1709 goto error_return;
1710 }
1711
1712 /* If the real definition is in the list of dynamic
1713 symbols, make sure the weak definition is put there
1714 as well. If we don't do this, then the dynamic
1715 loader might not merge the entries for the real
1716 definition and the weak definition. */
1717 if (h->dynindx != -1
1718 && hlook->dynindx == -1)
1719 {
1720 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1721 goto error_return;
1722 }
1723
1724 break;
1725 }
1726 }
1727 }
1728
1729 if (buf != NULL)
1730 {
1731 free (buf);
1732 buf = NULL;
1733 }
1734
1735 if (extversym != NULL)
1736 {
1737 free (extversym);
1738 extversym = NULL;
1739 }
1740
1741 /* If this object is the same format as the output object, and it is
1742 not a shared library, then let the backend look through the
1743 relocs.
1744
1745 This is required to build global offset table entries and to
1746 arrange for dynamic relocs. It is not required for the
1747 particular common case of linking non PIC code, even when linking
1748 against shared libraries, but unfortunately there is no way of
1749 knowing whether an object file has been compiled PIC or not.
1750 Looking through the relocs is not particularly time consuming.
1751 The problem is that we must either (1) keep the relocs in memory,
1752 which causes the linker to require additional runtime memory or
1753 (2) read the relocs twice from the input file, which wastes time.
1754 This would be a good case for using mmap.
1755
1756 I have no idea how to handle linking PIC code into a file of a
1757 different format. It probably can't be done. */
1758 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1759 if (! dynamic
1760 && abfd->xvec == info->hash->creator
1761 && check_relocs != NULL)
1762 {
1763 asection *o;
1764
1765 for (o = abfd->sections; o != NULL; o = o->next)
1766 {
1767 Elf_Internal_Rela *internal_relocs;
1768 boolean ok;
1769
1770 if ((o->flags & SEC_RELOC) == 0
1771 || o->reloc_count == 0
1772 || ((info->strip == strip_all || info->strip == strip_debugger)
1773 && (o->flags & SEC_DEBUGGING) != 0)
1774 || bfd_is_abs_section (o->output_section))
1775 continue;
1776
1777 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1778 (abfd, o, (PTR) NULL,
1779 (Elf_Internal_Rela *) NULL,
1780 info->keep_memory));
1781 if (internal_relocs == NULL)
1782 goto error_return;
1783
1784 ok = (*check_relocs) (abfd, info, o, internal_relocs);
1785
1786 if (! info->keep_memory)
1787 free (internal_relocs);
1788
1789 if (! ok)
1790 goto error_return;
1791 }
1792 }
1793
1794 /* If this is a non-traditional, non-relocateable link, try to
1795 optimize the handling of the .stab/.stabstr sections. */
1796 if (! dynamic
1797 && ! info->relocateable
1798 && ! info->traditional_format
1799 && info->hash->creator->flavour == bfd_target_elf_flavour
1800 && (info->strip != strip_all && info->strip != strip_debugger))
1801 {
1802 asection *stab, *stabstr;
1803
1804 stab = bfd_get_section_by_name (abfd, ".stab");
1805 if (stab != NULL)
1806 {
1807 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
1808
1809 if (stabstr != NULL)
1810 {
1811 struct bfd_elf_section_data *secdata;
1812
1813 secdata = elf_section_data (stab);
1814 if (! _bfd_link_section_stabs (abfd,
1815 &elf_hash_table (info)->stab_info,
1816 stab, stabstr,
1817 &secdata->stab_info))
1818 goto error_return;
1819 }
1820 }
1821 }
1822
1823 return true;
1824
1825 error_return:
1826 if (buf != NULL)
1827 free (buf);
1828 if (dynbuf != NULL)
1829 free (dynbuf);
1830 if (dynver != NULL)
1831 free (dynver);
1832 if (extversym != NULL)
1833 free (extversym);
1834 return false;
1835 }
1836
1837 /* Create some sections which will be filled in with dynamic linking
1838 information. ABFD is an input file which requires dynamic sections
1839 to be created. The dynamic sections take up virtual memory space
1840 when the final executable is run, so we need to create them before
1841 addresses are assigned to the output sections. We work out the
1842 actual contents and size of these sections later. */
1843
1844 boolean
1845 elf_link_create_dynamic_sections (abfd, info)
1846 bfd *abfd;
1847 struct bfd_link_info *info;
1848 {
1849 flagword flags;
1850 register asection *s;
1851 struct elf_link_hash_entry *h;
1852 struct elf_backend_data *bed;
1853
1854 if (elf_hash_table (info)->dynamic_sections_created)
1855 return true;
1856
1857 /* Make sure that all dynamic sections use the same input BFD. */
1858 if (elf_hash_table (info)->dynobj == NULL)
1859 elf_hash_table (info)->dynobj = abfd;
1860 else
1861 abfd = elf_hash_table (info)->dynobj;
1862
1863 /* Note that we set the SEC_IN_MEMORY flag for all of these
1864 sections. */
1865 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
1866 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1867
1868 /* A dynamically linked executable has a .interp section, but a
1869 shared library does not. */
1870 if (! info->shared)
1871 {
1872 s = bfd_make_section (abfd, ".interp");
1873 if (s == NULL
1874 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1875 return false;
1876 }
1877
1878 /* Create sections to hold version informations. These are removed
1879 if they are not needed. */
1880 s = bfd_make_section (abfd, ".gnu.version_d");
1881 if (s == NULL
1882 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1883 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1884 return false;
1885
1886 s = bfd_make_section (abfd, ".gnu.version");
1887 if (s == NULL
1888 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1889 || ! bfd_set_section_alignment (abfd, s, 1))
1890 return false;
1891
1892 s = bfd_make_section (abfd, ".gnu.version_r");
1893 if (s == NULL
1894 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1895 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1896 return false;
1897
1898 s = bfd_make_section (abfd, ".dynsym");
1899 if (s == NULL
1900 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1901 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1902 return false;
1903
1904 s = bfd_make_section (abfd, ".dynstr");
1905 if (s == NULL
1906 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1907 return false;
1908
1909 /* Create a strtab to hold the dynamic symbol names. */
1910 if (elf_hash_table (info)->dynstr == NULL)
1911 {
1912 elf_hash_table (info)->dynstr = elf_stringtab_init ();
1913 if (elf_hash_table (info)->dynstr == NULL)
1914 return false;
1915 }
1916
1917 s = bfd_make_section (abfd, ".dynamic");
1918 if (s == NULL
1919 || ! bfd_set_section_flags (abfd, s, flags)
1920 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1921 return false;
1922
1923 /* The special symbol _DYNAMIC is always set to the start of the
1924 .dynamic section. This call occurs before we have processed the
1925 symbols for any dynamic object, so we don't have to worry about
1926 overriding a dynamic definition. We could set _DYNAMIC in a
1927 linker script, but we only want to define it if we are, in fact,
1928 creating a .dynamic section. We don't want to define it if there
1929 is no .dynamic section, since on some ELF platforms the start up
1930 code examines it to decide how to initialize the process. */
1931 h = NULL;
1932 if (! (_bfd_generic_link_add_one_symbol
1933 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
1934 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
1935 (struct bfd_link_hash_entry **) &h)))
1936 return false;
1937 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1938 h->type = STT_OBJECT;
1939
1940 if (info->shared
1941 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
1942 return false;
1943
1944 s = bfd_make_section (abfd, ".hash");
1945 if (s == NULL
1946 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1947 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1948 return false;
1949
1950 /* Let the backend create the rest of the sections. This lets the
1951 backend set the right flags. The backend will normally create
1952 the .got and .plt sections. */
1953 bed = get_elf_backend_data (abfd);
1954 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
1955 return false;
1956
1957 elf_hash_table (info)->dynamic_sections_created = true;
1958
1959 return true;
1960 }
1961
1962 /* Add an entry to the .dynamic table. */
1963
1964 boolean
1965 elf_add_dynamic_entry (info, tag, val)
1966 struct bfd_link_info *info;
1967 bfd_vma tag;
1968 bfd_vma val;
1969 {
1970 Elf_Internal_Dyn dyn;
1971 bfd *dynobj;
1972 asection *s;
1973 size_t newsize;
1974 bfd_byte *newcontents;
1975
1976 dynobj = elf_hash_table (info)->dynobj;
1977
1978 s = bfd_get_section_by_name (dynobj, ".dynamic");
1979 BFD_ASSERT (s != NULL);
1980
1981 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
1982 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
1983 if (newcontents == NULL)
1984 return false;
1985
1986 dyn.d_tag = tag;
1987 dyn.d_un.d_val = val;
1988 elf_swap_dyn_out (dynobj, &dyn,
1989 (Elf_External_Dyn *) (newcontents + s->_raw_size));
1990
1991 s->_raw_size = newsize;
1992 s->contents = newcontents;
1993
1994 return true;
1995 }
1996 \f
1997
1998 /* Read and swap the relocs from the section indicated by SHDR. This
1999 may be either a REL or a RELA section. The relocations are
2000 translated into RELA relocations and stored in INTERNAL_RELOCS,
2001 which should have already been allocated to contain enough space.
2002 The EXTERNAL_RELOCS are a buffer where the external form of the
2003 relocations should be stored.
2004
2005 Returns false if something goes wrong. */
2006
2007 static boolean
2008 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2009 internal_relocs)
2010 bfd *abfd;
2011 Elf_Internal_Shdr *shdr;
2012 PTR external_relocs;
2013 Elf_Internal_Rela *internal_relocs;
2014 {
2015 /* If there aren't any relocations, that's OK. */
2016 if (!shdr)
2017 return true;
2018
2019 /* Position ourselves at the start of the section. */
2020 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2021 return false;
2022
2023 /* Read the relocations. */
2024 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2025 != shdr->sh_size)
2026 return false;
2027
2028 /* Convert the external relocations to the internal format. */
2029 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2030 {
2031 Elf_External_Rel *erel;
2032 Elf_External_Rel *erelend;
2033 Elf_Internal_Rela *irela;
2034
2035 erel = (Elf_External_Rel *) external_relocs;
2036 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2037 irela = internal_relocs;
2038 for (; erel < erelend; erel++, irela++)
2039 {
2040 Elf_Internal_Rel irel;
2041
2042 elf_swap_reloc_in (abfd, erel, &irel);
2043 irela->r_offset = irel.r_offset;
2044 irela->r_info = irel.r_info;
2045 irela->r_addend = 0;
2046 }
2047 }
2048 else
2049 {
2050 Elf_External_Rela *erela;
2051 Elf_External_Rela *erelaend;
2052 Elf_Internal_Rela *irela;
2053
2054 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2055
2056 erela = (Elf_External_Rela *) external_relocs;
2057 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2058 irela = internal_relocs;
2059 for (; erela < erelaend; erela++, irela++)
2060 elf_swap_reloca_in (abfd, erela, irela);
2061 }
2062
2063 return true;
2064 }
2065
2066 /* Read and swap the relocs for a section. They may have been cached.
2067 If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL,
2068 they are used as buffers to read into. They are known to be large
2069 enough. If the INTERNAL_RELOCS relocs argument is NULL, the return
2070 value is allocated using either malloc or bfd_alloc, according to
2071 the KEEP_MEMORY argument. */
2072
2073 Elf_Internal_Rela *
2074 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2075 keep_memory)
2076 bfd *abfd;
2077 asection *o;
2078 PTR external_relocs;
2079 Elf_Internal_Rela *internal_relocs;
2080 boolean keep_memory;
2081 {
2082 Elf_Internal_Shdr *rel_hdr;
2083 PTR alloc1 = NULL;
2084 Elf_Internal_Rela *alloc2 = NULL;
2085
2086 if (elf_section_data (o)->relocs != NULL)
2087 return elf_section_data (o)->relocs;
2088
2089 if (o->reloc_count == 0)
2090 return NULL;
2091
2092 rel_hdr = &elf_section_data (o)->rel_hdr;
2093
2094 if (internal_relocs == NULL)
2095 {
2096 size_t size;
2097
2098 size = o->reloc_count * sizeof (Elf_Internal_Rela);
2099 if (keep_memory)
2100 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2101 else
2102 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2103 if (internal_relocs == NULL)
2104 goto error_return;
2105 }
2106
2107 if (external_relocs == NULL)
2108 {
2109 size_t size = (size_t) rel_hdr->sh_size;
2110
2111 if (elf_section_data (o)->rel_hdr2)
2112 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2113 alloc1 = (PTR) bfd_malloc (size);
2114 if (alloc1 == NULL)
2115 goto error_return;
2116 external_relocs = alloc1;
2117 }
2118
2119 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2120 external_relocs,
2121 internal_relocs))
2122 goto error_return;
2123 if (!elf_link_read_relocs_from_section
2124 (abfd,
2125 elf_section_data (o)->rel_hdr2,
2126 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2127 internal_relocs + rel_hdr->sh_size / rel_hdr->sh_entsize))
2128 goto error_return;
2129
2130 /* Cache the results for next time, if we can. */
2131 if (keep_memory)
2132 elf_section_data (o)->relocs = internal_relocs;
2133
2134 if (alloc1 != NULL)
2135 free (alloc1);
2136
2137 /* Don't free alloc2, since if it was allocated we are passing it
2138 back (under the name of internal_relocs). */
2139
2140 return internal_relocs;
2141
2142 error_return:
2143 if (alloc1 != NULL)
2144 free (alloc1);
2145 if (alloc2 != NULL)
2146 free (alloc2);
2147 return NULL;
2148 }
2149 \f
2150
2151 /* Record an assignment to a symbol made by a linker script. We need
2152 this in case some dynamic object refers to this symbol. */
2153
2154 /*ARGSUSED*/
2155 boolean
2156 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2157 bfd *output_bfd;
2158 struct bfd_link_info *info;
2159 const char *name;
2160 boolean provide;
2161 {
2162 struct elf_link_hash_entry *h;
2163
2164 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2165 return true;
2166
2167 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2168 if (h == NULL)
2169 return false;
2170
2171 if (h->root.type == bfd_link_hash_new)
2172 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2173
2174 /* If this symbol is being provided by the linker script, and it is
2175 currently defined by a dynamic object, but not by a regular
2176 object, then mark it as undefined so that the generic linker will
2177 force the correct value. */
2178 if (provide
2179 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2180 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2181 h->root.type = bfd_link_hash_undefined;
2182
2183 /* If this symbol is not being provided by the linker script, and it is
2184 currently defined by a dynamic object, but not by a regular object,
2185 then clear out any version information because the symbol will not be
2186 associated with the dynamic object any more. */
2187 if (!provide
2188 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2189 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2190 h->verinfo.verdef = NULL;
2191
2192 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2193 h->type = STT_OBJECT;
2194
2195 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2196 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2197 || info->shared)
2198 && h->dynindx == -1)
2199 {
2200 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2201 return false;
2202
2203 /* If this is a weak defined symbol, and we know a corresponding
2204 real symbol from the same dynamic object, make sure the real
2205 symbol is also made into a dynamic symbol. */
2206 if (h->weakdef != NULL
2207 && h->weakdef->dynindx == -1)
2208 {
2209 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2210 return false;
2211 }
2212 }
2213
2214 return true;
2215 }
2216 \f
2217 /* This structure is used to pass information to
2218 elf_link_assign_sym_version. */
2219
2220 struct elf_assign_sym_version_info
2221 {
2222 /* Output BFD. */
2223 bfd *output_bfd;
2224 /* General link information. */
2225 struct bfd_link_info *info;
2226 /* Version tree. */
2227 struct bfd_elf_version_tree *verdefs;
2228 /* Whether we are exporting all dynamic symbols. */
2229 boolean export_dynamic;
2230 /* Whether we removed any symbols from the dynamic symbol table. */
2231 boolean removed_dynamic;
2232 /* Whether we had a failure. */
2233 boolean failed;
2234 };
2235
2236 /* This structure is used to pass information to
2237 elf_link_find_version_dependencies. */
2238
2239 struct elf_find_verdep_info
2240 {
2241 /* Output BFD. */
2242 bfd *output_bfd;
2243 /* General link information. */
2244 struct bfd_link_info *info;
2245 /* The number of dependencies. */
2246 unsigned int vers;
2247 /* Whether we had a failure. */
2248 boolean failed;
2249 };
2250
2251 /* Array used to determine the number of hash table buckets to use
2252 based on the number of symbols there are. If there are fewer than
2253 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2254 fewer than 37 we use 17 buckets, and so forth. We never use more
2255 than 32771 buckets. */
2256
2257 static const size_t elf_buckets[] =
2258 {
2259 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2260 16411, 32771, 0
2261 };
2262
2263 /* Compute bucket count for hashing table. We do not use a static set
2264 of possible tables sizes anymore. Instead we determine for all
2265 possible reasonable sizes of the table the outcome (i.e., the
2266 number of collisions etc) and choose the best solution. The
2267 weighting functions are not too simple to allow the table to grow
2268 without bounds. Instead one of the weighting factors is the size.
2269 Therefore the result is always a good payoff between few collisions
2270 (= short chain lengths) and table size. */
2271 static size_t
2272 compute_bucket_count (info)
2273 struct bfd_link_info *info;
2274 {
2275 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2276 size_t best_size;
2277 unsigned long int *hashcodes;
2278 unsigned long int *hashcodesp;
2279 unsigned long int i;
2280
2281 /* Compute the hash values for all exported symbols. At the same
2282 time store the values in an array so that we could use them for
2283 optimizations. */
2284 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2285 * sizeof (unsigned long int));
2286 if (hashcodes == NULL)
2287 return 0;
2288 hashcodesp = hashcodes;
2289
2290 /* Put all hash values in HASHCODES. */
2291 elf_link_hash_traverse (elf_hash_table (info),
2292 elf_collect_hash_codes, &hashcodesp);
2293
2294 /* We have a problem here. The following code to optimize the table
2295 size requires an integer type with more the 32 bits. If
2296 BFD_HOST_U_64_BIT is set we know about such a type. */
2297 #ifdef BFD_HOST_U_64_BIT
2298 if (info->optimize == true)
2299 {
2300 unsigned long int nsyms = hashcodesp - hashcodes;
2301 size_t minsize;
2302 size_t maxsize;
2303 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2304 unsigned long int *counts ;
2305
2306 /* Possible optimization parameters: if we have NSYMS symbols we say
2307 that the hashing table must at least have NSYMS/4 and at most
2308 2*NSYMS buckets. */
2309 minsize = nsyms / 4;
2310 if (minsize == 0)
2311 minsize = 1;
2312 best_size = maxsize = nsyms * 2;
2313
2314 /* Create array where we count the collisions in. We must use bfd_malloc
2315 since the size could be large. */
2316 counts = (unsigned long int *) bfd_malloc (maxsize
2317 * sizeof (unsigned long int));
2318 if (counts == NULL)
2319 {
2320 free (hashcodes);
2321 return 0;
2322 }
2323
2324 /* Compute the "optimal" size for the hash table. The criteria is a
2325 minimal chain length. The minor criteria is (of course) the size
2326 of the table. */
2327 for (i = minsize; i < maxsize; ++i)
2328 {
2329 /* Walk through the array of hashcodes and count the collisions. */
2330 BFD_HOST_U_64_BIT max;
2331 unsigned long int j;
2332 unsigned long int fact;
2333
2334 memset (counts, '\0', i * sizeof (unsigned long int));
2335
2336 /* Determine how often each hash bucket is used. */
2337 for (j = 0; j < nsyms; ++j)
2338 ++counts[hashcodes[j] % i];
2339
2340 /* For the weight function we need some information about the
2341 pagesize on the target. This is information need not be 100%
2342 accurate. Since this information is not available (so far) we
2343 define it here to a reasonable default value. If it is crucial
2344 to have a better value some day simply define this value. */
2345 # ifndef BFD_TARGET_PAGESIZE
2346 # define BFD_TARGET_PAGESIZE (4096)
2347 # endif
2348
2349 /* We in any case need 2 + NSYMS entries for the size values and
2350 the chains. */
2351 max = (2 + nsyms) * (ARCH_SIZE / 8);
2352
2353 # if 1
2354 /* Variant 1: optimize for short chains. We add the squares
2355 of all the chain lengths (which favous many small chain
2356 over a few long chains). */
2357 for (j = 0; j < i; ++j)
2358 max += counts[j] * counts[j];
2359
2360 /* This adds penalties for the overall size of the table. */
2361 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2362 max *= fact * fact;
2363 # else
2364 /* Variant 2: Optimize a lot more for small table. Here we
2365 also add squares of the size but we also add penalties for
2366 empty slots (the +1 term). */
2367 for (j = 0; j < i; ++j)
2368 max += (1 + counts[j]) * (1 + counts[j]);
2369
2370 /* The overall size of the table is considered, but not as
2371 strong as in variant 1, where it is squared. */
2372 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2373 max *= fact;
2374 # endif
2375
2376 /* Compare with current best results. */
2377 if (max < best_chlen)
2378 {
2379 best_chlen = max;
2380 best_size = i;
2381 }
2382 }
2383
2384 free (counts);
2385 }
2386 else
2387 #endif /* defined (BFD_HOST_U_64_BIT) */
2388 {
2389 /* This is the fallback solution if no 64bit type is available or if we
2390 are not supposed to spend much time on optimizations. We select the
2391 bucket count using a fixed set of numbers. */
2392 for (i = 0; elf_buckets[i] != 0; i++)
2393 {
2394 best_size = elf_buckets[i];
2395 if (dynsymcount < elf_buckets[i + 1])
2396 break;
2397 }
2398 }
2399
2400 /* Free the arrays we needed. */
2401 free (hashcodes);
2402
2403 return best_size;
2404 }
2405
2406 /* Remove SECTION from the BFD. If a symbol for SECTION was going to
2407 be put into the dynamic symbol table, remove it, and renumber
2408 subsequent entries. */
2409
2410 static void
2411 elf_link_remove_section_and_adjust_dynindices (info, section)
2412 struct bfd_link_info *info;
2413 asection *section;
2414 {
2415 /* Remove the section from the output list. */
2416 _bfd_strip_section_from_output (section);
2417
2418 if (elf_section_data (section->output_section)->dynindx)
2419 {
2420 asection *s;
2421 int increment = -1;
2422
2423 /* We were going to output an entry in the dynamic symbol table
2424 for the symbol corresponding to this section. Now, the
2425 section is gone. So, we must renumber the dynamic indices of
2426 all subsequent sections and all other entries in the dynamic
2427 symbol table. */
2428 elf_section_data (section->output_section)->dynindx = 0;
2429 for (s = section->output_section->next; s; s = s->next)
2430 if (elf_section_data (s)->dynindx)
2431 --elf_section_data (s)->dynindx;
2432
2433 elf_link_hash_traverse (elf_hash_table (info),
2434 _bfd_elf_link_adjust_dynindx,
2435 &increment);
2436
2437 /* There is one less dynamic symbol than there was before. */
2438 --elf_hash_table (info)->dynsymcount;
2439 }
2440 }
2441
2442 /* Set up the sizes and contents of the ELF dynamic sections. This is
2443 called by the ELF linker emulation before_allocation routine. We
2444 must set the sizes of the sections before the linker sets the
2445 addresses of the various sections. */
2446
2447 boolean
2448 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2449 export_dynamic, filter_shlib,
2450 auxiliary_filters, info, sinterpptr,
2451 verdefs)
2452 bfd *output_bfd;
2453 const char *soname;
2454 const char *rpath;
2455 boolean export_dynamic;
2456 const char *filter_shlib;
2457 const char * const *auxiliary_filters;
2458 struct bfd_link_info *info;
2459 asection **sinterpptr;
2460 struct bfd_elf_version_tree *verdefs;
2461 {
2462 bfd_size_type soname_indx;
2463 bfd *dynobj;
2464 struct elf_backend_data *bed;
2465 bfd_size_type old_dynsymcount;
2466 struct elf_assign_sym_version_info asvinfo;
2467
2468 *sinterpptr = NULL;
2469
2470 soname_indx = (bfd_size_type) -1;
2471
2472 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2473 return true;
2474
2475 /* The backend may have to create some sections regardless of whether
2476 we're dynamic or not. */
2477 bed = get_elf_backend_data (output_bfd);
2478 if (bed->elf_backend_always_size_sections
2479 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2480 return false;
2481
2482 dynobj = elf_hash_table (info)->dynobj;
2483
2484 /* If there were no dynamic objects in the link, there is nothing to
2485 do here. */
2486 if (dynobj == NULL)
2487 return true;
2488
2489 /* If we are supposed to export all symbols into the dynamic symbol
2490 table (this is not the normal case), then do so. */
2491 if (export_dynamic)
2492 {
2493 struct elf_info_failed eif;
2494
2495 eif.failed = false;
2496 eif.info = info;
2497 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2498 (PTR) &eif);
2499 if (eif.failed)
2500 return false;
2501 }
2502
2503 if (elf_hash_table (info)->dynamic_sections_created)
2504 {
2505 struct elf_info_failed eif;
2506 struct elf_link_hash_entry *h;
2507 bfd_size_type strsize;
2508
2509 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2510 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2511
2512 if (soname != NULL)
2513 {
2514 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2515 soname, true, true);
2516 if (soname_indx == (bfd_size_type) -1
2517 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2518 return false;
2519 }
2520
2521 if (info->symbolic)
2522 {
2523 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2524 return false;
2525 }
2526
2527 if (rpath != NULL)
2528 {
2529 bfd_size_type indx;
2530
2531 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2532 true, true);
2533 if (indx == (bfd_size_type) -1
2534 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2535 return false;
2536 }
2537
2538 if (filter_shlib != NULL)
2539 {
2540 bfd_size_type indx;
2541
2542 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2543 filter_shlib, true, true);
2544 if (indx == (bfd_size_type) -1
2545 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2546 return false;
2547 }
2548
2549 if (auxiliary_filters != NULL)
2550 {
2551 const char * const *p;
2552
2553 for (p = auxiliary_filters; *p != NULL; p++)
2554 {
2555 bfd_size_type indx;
2556
2557 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2558 *p, true, true);
2559 if (indx == (bfd_size_type) -1
2560 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2561 return false;
2562 }
2563 }
2564
2565 /* Attach all the symbols to their version information. */
2566 asvinfo.output_bfd = output_bfd;
2567 asvinfo.info = info;
2568 asvinfo.verdefs = verdefs;
2569 asvinfo.export_dynamic = export_dynamic;
2570 asvinfo.removed_dynamic = false;
2571 asvinfo.failed = false;
2572
2573 elf_link_hash_traverse (elf_hash_table (info),
2574 elf_link_assign_sym_version,
2575 (PTR) &asvinfo);
2576 if (asvinfo.failed)
2577 return false;
2578
2579 /* Find all symbols which were defined in a dynamic object and make
2580 the backend pick a reasonable value for them. */
2581 eif.failed = false;
2582 eif.info = info;
2583 elf_link_hash_traverse (elf_hash_table (info),
2584 elf_adjust_dynamic_symbol,
2585 (PTR) &eif);
2586 if (eif.failed)
2587 return false;
2588
2589 /* Add some entries to the .dynamic section. We fill in some of the
2590 values later, in elf_bfd_final_link, but we must add the entries
2591 now so that we know the final size of the .dynamic section. */
2592
2593 /* If there are initialization and/or finalization functions to
2594 call then add the corresponding DT_INIT/DT_FINI entries. */
2595 h = (info->init_function
2596 ? elf_link_hash_lookup (elf_hash_table (info),
2597 info->init_function, false,
2598 false, false)
2599 : NULL);
2600 if (h != NULL
2601 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2602 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2603 {
2604 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2605 return false;
2606 }
2607 h = (info->fini_function
2608 ? elf_link_hash_lookup (elf_hash_table (info),
2609 info->fini_function, false,
2610 false, false)
2611 : NULL);
2612 if (h != NULL
2613 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2614 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2615 {
2616 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2617 return false;
2618 }
2619
2620 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2621 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2622 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2623 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2624 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2625 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2626 sizeof (Elf_External_Sym)))
2627 return false;
2628 }
2629
2630 /* The backend must work out the sizes of all the other dynamic
2631 sections. */
2632 old_dynsymcount = elf_hash_table (info)->dynsymcount;
2633 if (bed->elf_backend_size_dynamic_sections
2634 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2635 return false;
2636
2637 if (elf_hash_table (info)->dynamic_sections_created)
2638 {
2639 size_t dynsymcount;
2640 asection *s;
2641 size_t bucketcount = 0;
2642 Elf_Internal_Sym isym;
2643
2644 /* Set up the version definition section. */
2645 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2646 BFD_ASSERT (s != NULL);
2647
2648 /* We may have created additional version definitions if we are
2649 just linking a regular application. */
2650 verdefs = asvinfo.verdefs;
2651
2652 if (verdefs == NULL)
2653 elf_link_remove_section_and_adjust_dynindices (info, s);
2654 else
2655 {
2656 unsigned int cdefs;
2657 bfd_size_type size;
2658 struct bfd_elf_version_tree *t;
2659 bfd_byte *p;
2660 Elf_Internal_Verdef def;
2661 Elf_Internal_Verdaux defaux;
2662
2663 if (asvinfo.removed_dynamic)
2664 {
2665 /* Some dynamic symbols were changed to be local
2666 symbols. In this case, we renumber all of the
2667 dynamic symbols, so that we don't have a hole. If
2668 the backend changed dynsymcount, then assume that the
2669 new symbols are at the start. This is the case on
2670 the MIPS. FIXME: The names of the removed symbols
2671 will still be in the dynamic string table, wasting
2672 space. */
2673 elf_hash_table (info)->dynsymcount =
2674 1 + (elf_hash_table (info)->dynsymcount - old_dynsymcount);
2675 elf_link_hash_traverse (elf_hash_table (info),
2676 elf_link_renumber_dynsyms,
2677 (PTR) info);
2678 }
2679
2680 cdefs = 0;
2681 size = 0;
2682
2683 /* Make space for the base version. */
2684 size += sizeof (Elf_External_Verdef);
2685 size += sizeof (Elf_External_Verdaux);
2686 ++cdefs;
2687
2688 for (t = verdefs; t != NULL; t = t->next)
2689 {
2690 struct bfd_elf_version_deps *n;
2691
2692 size += sizeof (Elf_External_Verdef);
2693 size += sizeof (Elf_External_Verdaux);
2694 ++cdefs;
2695
2696 for (n = t->deps; n != NULL; n = n->next)
2697 size += sizeof (Elf_External_Verdaux);
2698 }
2699
2700 s->_raw_size = size;
2701 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2702 if (s->contents == NULL && s->_raw_size != 0)
2703 return false;
2704
2705 /* Fill in the version definition section. */
2706
2707 p = s->contents;
2708
2709 def.vd_version = VER_DEF_CURRENT;
2710 def.vd_flags = VER_FLG_BASE;
2711 def.vd_ndx = 1;
2712 def.vd_cnt = 1;
2713 def.vd_aux = sizeof (Elf_External_Verdef);
2714 def.vd_next = (sizeof (Elf_External_Verdef)
2715 + sizeof (Elf_External_Verdaux));
2716
2717 if (soname_indx != (bfd_size_type) -1)
2718 {
2719 def.vd_hash = bfd_elf_hash ((const unsigned char *) soname);
2720 defaux.vda_name = soname_indx;
2721 }
2722 else
2723 {
2724 const char *name;
2725 bfd_size_type indx;
2726
2727 name = output_bfd->filename;
2728 def.vd_hash = bfd_elf_hash ((const unsigned char *) name);
2729 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2730 name, true, false);
2731 if (indx == (bfd_size_type) -1)
2732 return false;
2733 defaux.vda_name = indx;
2734 }
2735 defaux.vda_next = 0;
2736
2737 _bfd_elf_swap_verdef_out (output_bfd, &def,
2738 (Elf_External_Verdef *)p);
2739 p += sizeof (Elf_External_Verdef);
2740 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2741 (Elf_External_Verdaux *) p);
2742 p += sizeof (Elf_External_Verdaux);
2743
2744 for (t = verdefs; t != NULL; t = t->next)
2745 {
2746 unsigned int cdeps;
2747 struct bfd_elf_version_deps *n;
2748 struct elf_link_hash_entry *h;
2749
2750 cdeps = 0;
2751 for (n = t->deps; n != NULL; n = n->next)
2752 ++cdeps;
2753
2754 /* Add a symbol representing this version. */
2755 h = NULL;
2756 if (! (_bfd_generic_link_add_one_symbol
2757 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
2758 (bfd_vma) 0, (const char *) NULL, false,
2759 get_elf_backend_data (dynobj)->collect,
2760 (struct bfd_link_hash_entry **) &h)))
2761 return false;
2762 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
2763 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2764 h->type = STT_OBJECT;
2765 h->verinfo.vertree = t;
2766
2767 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2768 return false;
2769
2770 def.vd_version = VER_DEF_CURRENT;
2771 def.vd_flags = 0;
2772 if (t->globals == NULL && t->locals == NULL && ! t->used)
2773 def.vd_flags |= VER_FLG_WEAK;
2774 def.vd_ndx = t->vernum + 1;
2775 def.vd_cnt = cdeps + 1;
2776 def.vd_hash = bfd_elf_hash ((const unsigned char *) t->name);
2777 def.vd_aux = sizeof (Elf_External_Verdef);
2778 if (t->next != NULL)
2779 def.vd_next = (sizeof (Elf_External_Verdef)
2780 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
2781 else
2782 def.vd_next = 0;
2783
2784 _bfd_elf_swap_verdef_out (output_bfd, &def,
2785 (Elf_External_Verdef *) p);
2786 p += sizeof (Elf_External_Verdef);
2787
2788 defaux.vda_name = h->dynstr_index;
2789 if (t->deps == NULL)
2790 defaux.vda_next = 0;
2791 else
2792 defaux.vda_next = sizeof (Elf_External_Verdaux);
2793 t->name_indx = defaux.vda_name;
2794
2795 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2796 (Elf_External_Verdaux *) p);
2797 p += sizeof (Elf_External_Verdaux);
2798
2799 for (n = t->deps; n != NULL; n = n->next)
2800 {
2801 if (n->version_needed == NULL)
2802 {
2803 /* This can happen if there was an error in the
2804 version script. */
2805 defaux.vda_name = 0;
2806 }
2807 else
2808 defaux.vda_name = n->version_needed->name_indx;
2809 if (n->next == NULL)
2810 defaux.vda_next = 0;
2811 else
2812 defaux.vda_next = sizeof (Elf_External_Verdaux);
2813
2814 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2815 (Elf_External_Verdaux *) p);
2816 p += sizeof (Elf_External_Verdaux);
2817 }
2818 }
2819
2820 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
2821 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
2822 return false;
2823
2824 elf_tdata (output_bfd)->cverdefs = cdefs;
2825 }
2826
2827 /* Work out the size of the version reference section. */
2828
2829 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2830 BFD_ASSERT (s != NULL);
2831 {
2832 struct elf_find_verdep_info sinfo;
2833
2834 sinfo.output_bfd = output_bfd;
2835 sinfo.info = info;
2836 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
2837 if (sinfo.vers == 0)
2838 sinfo.vers = 1;
2839 sinfo.failed = false;
2840
2841 elf_link_hash_traverse (elf_hash_table (info),
2842 elf_link_find_version_dependencies,
2843 (PTR) &sinfo);
2844
2845 if (elf_tdata (output_bfd)->verref == NULL)
2846 elf_link_remove_section_and_adjust_dynindices (info, s);
2847 else
2848 {
2849 Elf_Internal_Verneed *t;
2850 unsigned int size;
2851 unsigned int crefs;
2852 bfd_byte *p;
2853
2854 /* Build the version definition section. */
2855 size = 0;
2856 crefs = 0;
2857 for (t = elf_tdata (output_bfd)->verref;
2858 t != NULL;
2859 t = t->vn_nextref)
2860 {
2861 Elf_Internal_Vernaux *a;
2862
2863 size += sizeof (Elf_External_Verneed);
2864 ++crefs;
2865 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2866 size += sizeof (Elf_External_Vernaux);
2867 }
2868
2869 s->_raw_size = size;
2870 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
2871 if (s->contents == NULL)
2872 return false;
2873
2874 p = s->contents;
2875 for (t = elf_tdata (output_bfd)->verref;
2876 t != NULL;
2877 t = t->vn_nextref)
2878 {
2879 unsigned int caux;
2880 Elf_Internal_Vernaux *a;
2881 bfd_size_type indx;
2882
2883 caux = 0;
2884 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2885 ++caux;
2886
2887 t->vn_version = VER_NEED_CURRENT;
2888 t->vn_cnt = caux;
2889 if (elf_dt_name (t->vn_bfd) != NULL)
2890 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2891 elf_dt_name (t->vn_bfd),
2892 true, false);
2893 else
2894 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2895 t->vn_bfd->filename, true, false);
2896 if (indx == (bfd_size_type) -1)
2897 return false;
2898 t->vn_file = indx;
2899 t->vn_aux = sizeof (Elf_External_Verneed);
2900 if (t->vn_nextref == NULL)
2901 t->vn_next = 0;
2902 else
2903 t->vn_next = (sizeof (Elf_External_Verneed)
2904 + caux * sizeof (Elf_External_Vernaux));
2905
2906 _bfd_elf_swap_verneed_out (output_bfd, t,
2907 (Elf_External_Verneed *) p);
2908 p += sizeof (Elf_External_Verneed);
2909
2910 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2911 {
2912 a->vna_hash = bfd_elf_hash ((const unsigned char *)
2913 a->vna_nodename);
2914 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2915 a->vna_nodename, true, false);
2916 if (indx == (bfd_size_type) -1)
2917 return false;
2918 a->vna_name = indx;
2919 if (a->vna_nextptr == NULL)
2920 a->vna_next = 0;
2921 else
2922 a->vna_next = sizeof (Elf_External_Vernaux);
2923
2924 _bfd_elf_swap_vernaux_out (output_bfd, a,
2925 (Elf_External_Vernaux *) p);
2926 p += sizeof (Elf_External_Vernaux);
2927 }
2928 }
2929
2930 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
2931 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
2932 return false;
2933
2934 elf_tdata (output_bfd)->cverrefs = crefs;
2935 }
2936 }
2937
2938 dynsymcount = elf_hash_table (info)->dynsymcount;
2939
2940 /* Work out the size of the symbol version section. */
2941 s = bfd_get_section_by_name (dynobj, ".gnu.version");
2942 BFD_ASSERT (s != NULL);
2943 if (dynsymcount == 0
2944 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
2945 {
2946 elf_link_remove_section_and_adjust_dynindices (info, s);
2947 /* The DYNSYMCOUNT might have changed if we were going to
2948 output a dynamic symbol table entry for S. */
2949 dynsymcount = elf_hash_table (info)->dynsymcount;
2950 }
2951 else
2952 {
2953 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
2954 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
2955 if (s->contents == NULL)
2956 return false;
2957
2958 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
2959 return false;
2960 }
2961
2962 /* Set the size of the .dynsym and .hash sections. We counted
2963 the number of dynamic symbols in elf_link_add_object_symbols.
2964 We will build the contents of .dynsym and .hash when we build
2965 the final symbol table, because until then we do not know the
2966 correct value to give the symbols. We built the .dynstr
2967 section as we went along in elf_link_add_object_symbols. */
2968 s = bfd_get_section_by_name (dynobj, ".dynsym");
2969 BFD_ASSERT (s != NULL);
2970 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
2971 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2972 if (s->contents == NULL && s->_raw_size != 0)
2973 return false;
2974
2975 /* The first entry in .dynsym is a dummy symbol. */
2976 isym.st_value = 0;
2977 isym.st_size = 0;
2978 isym.st_name = 0;
2979 isym.st_info = 0;
2980 isym.st_other = 0;
2981 isym.st_shndx = 0;
2982 elf_swap_symbol_out (output_bfd, &isym,
2983 (PTR) (Elf_External_Sym *) s->contents);
2984
2985 /* Compute the size of the hashing table. As a side effect this
2986 computes the hash values for all the names we export. */
2987 bucketcount = compute_bucket_count (info);
2988
2989 s = bfd_get_section_by_name (dynobj, ".hash");
2990 BFD_ASSERT (s != NULL);
2991 s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8);
2992 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2993 if (s->contents == NULL)
2994 return false;
2995 memset (s->contents, 0, (size_t) s->_raw_size);
2996
2997 put_word (output_bfd, bucketcount, s->contents);
2998 put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8));
2999
3000 elf_hash_table (info)->bucketcount = bucketcount;
3001
3002 s = bfd_get_section_by_name (dynobj, ".dynstr");
3003 BFD_ASSERT (s != NULL);
3004 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3005
3006 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3007 return false;
3008 }
3009
3010 return true;
3011 }
3012 \f
3013 /* Fix up the flags for a symbol. This handles various cases which
3014 can only be fixed after all the input files are seen. This is
3015 currently called by both adjust_dynamic_symbol and
3016 assign_sym_version, which is unnecessary but perhaps more robust in
3017 the face of future changes. */
3018
3019 static boolean
3020 elf_fix_symbol_flags (h, eif)
3021 struct elf_link_hash_entry *h;
3022 struct elf_info_failed *eif;
3023 {
3024 /* If this symbol was mentioned in a non-ELF file, try to set
3025 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3026 permit a non-ELF file to correctly refer to a symbol defined in
3027 an ELF dynamic object. */
3028 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3029 {
3030 if (h->root.type != bfd_link_hash_defined
3031 && h->root.type != bfd_link_hash_defweak)
3032 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3033 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3034 else
3035 {
3036 if (h->root.u.def.section->owner != NULL
3037 && (bfd_get_flavour (h->root.u.def.section->owner)
3038 == bfd_target_elf_flavour))
3039 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3040 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3041 else
3042 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3043 }
3044
3045 if (h->dynindx == -1
3046 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3047 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3048 {
3049 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3050 {
3051 eif->failed = true;
3052 return false;
3053 }
3054 }
3055 }
3056 else
3057 {
3058 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3059 was first seen in a non-ELF file. Fortunately, if the symbol
3060 was first seen in an ELF file, we're probably OK unless the
3061 symbol was defined in a non-ELF file. Catch that case here.
3062 FIXME: We're still in trouble if the symbol was first seen in
3063 a dynamic object, and then later in a non-ELF regular object. */
3064 if ((h->root.type == bfd_link_hash_defined
3065 || h->root.type == bfd_link_hash_defweak)
3066 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3067 && (h->root.u.def.section->owner != NULL
3068 ? (bfd_get_flavour (h->root.u.def.section->owner)
3069 != bfd_target_elf_flavour)
3070 : (bfd_is_abs_section (h->root.u.def.section)
3071 && (h->elf_link_hash_flags
3072 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3073 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3074 }
3075
3076 /* If this is a final link, and the symbol was defined as a common
3077 symbol in a regular object file, and there was no definition in
3078 any dynamic object, then the linker will have allocated space for
3079 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3080 flag will not have been set. */
3081 if (h->root.type == bfd_link_hash_defined
3082 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3083 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3084 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3085 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3086 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3087
3088 /* If -Bsymbolic was used (which means to bind references to global
3089 symbols to the definition within the shared object), and this
3090 symbol was defined in a regular object, then it actually doesn't
3091 need a PLT entry. */
3092 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3093 && eif->info->shared
3094 && eif->info->symbolic
3095 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3096 {
3097 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3098 h->plt.offset = (bfd_vma) -1;
3099 }
3100
3101 return true;
3102 }
3103
3104 /* Make the backend pick a good value for a dynamic symbol. This is
3105 called via elf_link_hash_traverse, and also calls itself
3106 recursively. */
3107
3108 static boolean
3109 elf_adjust_dynamic_symbol (h, data)
3110 struct elf_link_hash_entry *h;
3111 PTR data;
3112 {
3113 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3114 bfd *dynobj;
3115 struct elf_backend_data *bed;
3116
3117 /* Ignore indirect symbols. These are added by the versioning code. */
3118 if (h->root.type == bfd_link_hash_indirect)
3119 return true;
3120
3121 /* Fix the symbol flags. */
3122 if (! elf_fix_symbol_flags (h, eif))
3123 return false;
3124
3125 /* If this symbol does not require a PLT entry, and it is not
3126 defined by a dynamic object, or is not referenced by a regular
3127 object, ignore it. We do have to handle a weak defined symbol,
3128 even if no regular object refers to it, if we decided to add it
3129 to the dynamic symbol table. FIXME: Do we normally need to worry
3130 about symbols which are defined by one dynamic object and
3131 referenced by another one? */
3132 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3133 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3134 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3135 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3136 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3137 {
3138 h->plt.offset = (bfd_vma) -1;
3139 return true;
3140 }
3141
3142 /* If we've already adjusted this symbol, don't do it again. This
3143 can happen via a recursive call. */
3144 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3145 return true;
3146
3147 /* Don't look at this symbol again. Note that we must set this
3148 after checking the above conditions, because we may look at a
3149 symbol once, decide not to do anything, and then get called
3150 recursively later after REF_REGULAR is set below. */
3151 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3152
3153 /* If this is a weak definition, and we know a real definition, and
3154 the real symbol is not itself defined by a regular object file,
3155 then get a good value for the real definition. We handle the
3156 real symbol first, for the convenience of the backend routine.
3157
3158 Note that there is a confusing case here. If the real definition
3159 is defined by a regular object file, we don't get the real symbol
3160 from the dynamic object, but we do get the weak symbol. If the
3161 processor backend uses a COPY reloc, then if some routine in the
3162 dynamic object changes the real symbol, we will not see that
3163 change in the corresponding weak symbol. This is the way other
3164 ELF linkers work as well, and seems to be a result of the shared
3165 library model.
3166
3167 I will clarify this issue. Most SVR4 shared libraries define the
3168 variable _timezone and define timezone as a weak synonym. The
3169 tzset call changes _timezone. If you write
3170 extern int timezone;
3171 int _timezone = 5;
3172 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3173 you might expect that, since timezone is a synonym for _timezone,
3174 the same number will print both times. However, if the processor
3175 backend uses a COPY reloc, then actually timezone will be copied
3176 into your process image, and, since you define _timezone
3177 yourself, _timezone will not. Thus timezone and _timezone will
3178 wind up at different memory locations. The tzset call will set
3179 _timezone, leaving timezone unchanged. */
3180
3181 if (h->weakdef != NULL)
3182 {
3183 struct elf_link_hash_entry *weakdef;
3184
3185 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3186 || h->root.type == bfd_link_hash_defweak);
3187 weakdef = h->weakdef;
3188 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3189 || weakdef->root.type == bfd_link_hash_defweak);
3190 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3191 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3192 {
3193 /* This symbol is defined by a regular object file, so we
3194 will not do anything special. Clear weakdef for the
3195 convenience of the processor backend. */
3196 h->weakdef = NULL;
3197 }
3198 else
3199 {
3200 /* There is an implicit reference by a regular object file
3201 via the weak symbol. */
3202 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3203 if (h->weakdef->elf_link_hash_flags
3204 & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3205 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
3206 if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
3207 return false;
3208 }
3209 }
3210
3211 /* If a symbol has no type and no size and does not require a PLT
3212 entry, then we are probably about to do the wrong thing here: we
3213 are probably going to create a COPY reloc for an empty object.
3214 This case can arise when a shared object is built with assembly
3215 code, and the assembly code fails to set the symbol type. */
3216 if (h->size == 0
3217 && h->type == STT_NOTYPE
3218 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3219 (*_bfd_error_handler)
3220 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3221 h->root.root.string);
3222
3223 dynobj = elf_hash_table (eif->info)->dynobj;
3224 bed = get_elf_backend_data (dynobj);
3225 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3226 {
3227 eif->failed = true;
3228 return false;
3229 }
3230
3231 return true;
3232 }
3233 \f
3234 /* This routine is used to export all defined symbols into the dynamic
3235 symbol table. It is called via elf_link_hash_traverse. */
3236
3237 static boolean
3238 elf_export_symbol (h, data)
3239 struct elf_link_hash_entry *h;
3240 PTR data;
3241 {
3242 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3243
3244 /* Ignore indirect symbols. These are added by the versioning code. */
3245 if (h->root.type == bfd_link_hash_indirect)
3246 return true;
3247
3248 if (h->dynindx == -1
3249 && (h->elf_link_hash_flags
3250 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3251 {
3252 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3253 {
3254 eif->failed = true;
3255 return false;
3256 }
3257 }
3258
3259 return true;
3260 }
3261 \f
3262 /* Look through the symbols which are defined in other shared
3263 libraries and referenced here. Update the list of version
3264 dependencies. This will be put into the .gnu.version_r section.
3265 This function is called via elf_link_hash_traverse. */
3266
3267 static boolean
3268 elf_link_find_version_dependencies (h, data)
3269 struct elf_link_hash_entry *h;
3270 PTR data;
3271 {
3272 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3273 Elf_Internal_Verneed *t;
3274 Elf_Internal_Vernaux *a;
3275
3276 /* We only care about symbols defined in shared objects with version
3277 information. */
3278 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3279 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3280 || h->dynindx == -1
3281 || h->verinfo.verdef == NULL)
3282 return true;
3283
3284 /* See if we already know about this version. */
3285 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3286 {
3287 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3288 continue;
3289
3290 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3291 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3292 return true;
3293
3294 break;
3295 }
3296
3297 /* This is a new version. Add it to tree we are building. */
3298
3299 if (t == NULL)
3300 {
3301 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3302 if (t == NULL)
3303 {
3304 rinfo->failed = true;
3305 return false;
3306 }
3307
3308 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3309 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3310 elf_tdata (rinfo->output_bfd)->verref = t;
3311 }
3312
3313 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3314
3315 /* Note that we are copying a string pointer here, and testing it
3316 above. If bfd_elf_string_from_elf_section is ever changed to
3317 discard the string data when low in memory, this will have to be
3318 fixed. */
3319 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3320
3321 a->vna_flags = h->verinfo.verdef->vd_flags;
3322 a->vna_nextptr = t->vn_auxptr;
3323
3324 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3325 ++rinfo->vers;
3326
3327 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3328
3329 t->vn_auxptr = a;
3330
3331 return true;
3332 }
3333
3334 /* Figure out appropriate versions for all the symbols. We may not
3335 have the version number script until we have read all of the input
3336 files, so until that point we don't know which symbols should be
3337 local. This function is called via elf_link_hash_traverse. */
3338
3339 static boolean
3340 elf_link_assign_sym_version (h, data)
3341 struct elf_link_hash_entry *h;
3342 PTR data;
3343 {
3344 struct elf_assign_sym_version_info *sinfo =
3345 (struct elf_assign_sym_version_info *) data;
3346 struct bfd_link_info *info = sinfo->info;
3347 struct elf_info_failed eif;
3348 char *p;
3349
3350 /* Fix the symbol flags. */
3351 eif.failed = false;
3352 eif.info = info;
3353 if (! elf_fix_symbol_flags (h, &eif))
3354 {
3355 if (eif.failed)
3356 sinfo->failed = true;
3357 return false;
3358 }
3359
3360 /* We only need version numbers for symbols defined in regular
3361 objects. */
3362 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3363 return true;
3364
3365 p = strchr (h->root.root.string, ELF_VER_CHR);
3366 if (p != NULL && h->verinfo.vertree == NULL)
3367 {
3368 struct bfd_elf_version_tree *t;
3369 boolean hidden;
3370
3371 hidden = true;
3372
3373 /* There are two consecutive ELF_VER_CHR characters if this is
3374 not a hidden symbol. */
3375 ++p;
3376 if (*p == ELF_VER_CHR)
3377 {
3378 hidden = false;
3379 ++p;
3380 }
3381
3382 /* If there is no version string, we can just return out. */
3383 if (*p == '\0')
3384 {
3385 if (hidden)
3386 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3387 return true;
3388 }
3389
3390 /* Look for the version. If we find it, it is no longer weak. */
3391 for (t = sinfo->verdefs; t != NULL; t = t->next)
3392 {
3393 if (strcmp (t->name, p) == 0)
3394 {
3395 int len;
3396 char *alc;
3397 struct bfd_elf_version_expr *d;
3398
3399 len = p - h->root.root.string;
3400 alc = bfd_alloc (sinfo->output_bfd, len);
3401 if (alc == NULL)
3402 return false;
3403 strncpy (alc, h->root.root.string, len - 1);
3404 alc[len - 1] = '\0';
3405 if (alc[len - 2] == ELF_VER_CHR)
3406 alc[len - 2] = '\0';
3407
3408 h->verinfo.vertree = t;
3409 t->used = true;
3410 d = NULL;
3411
3412 if (t->globals != NULL)
3413 {
3414 for (d = t->globals; d != NULL; d = d->next)
3415 if ((*d->match) (d, alc))
3416 break;
3417 }
3418
3419 /* See if there is anything to force this symbol to
3420 local scope. */
3421 if (d == NULL && t->locals != NULL)
3422 {
3423 for (d = t->locals; d != NULL; d = d->next)
3424 {
3425 if ((*d->match) (d, alc))
3426 {
3427 if (h->dynindx != -1
3428 && info->shared
3429 && ! sinfo->export_dynamic)
3430 {
3431 sinfo->removed_dynamic = true;
3432 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3433 h->elf_link_hash_flags &=~
3434 ELF_LINK_HASH_NEEDS_PLT;
3435 h->dynindx = -1;
3436 h->plt.offset = (bfd_vma) -1;
3437 /* FIXME: The name of the symbol has
3438 already been recorded in the dynamic
3439 string table section. */
3440 }
3441
3442 break;
3443 }
3444 }
3445 }
3446
3447 bfd_release (sinfo->output_bfd, alc);
3448 break;
3449 }
3450 }
3451
3452 /* If we are building an application, we need to create a
3453 version node for this version. */
3454 if (t == NULL && ! info->shared)
3455 {
3456 struct bfd_elf_version_tree **pp;
3457 int version_index;
3458
3459 /* If we aren't going to export this symbol, we don't need
3460 to worry about it. */
3461 if (h->dynindx == -1)
3462 return true;
3463
3464 t = ((struct bfd_elf_version_tree *)
3465 bfd_alloc (sinfo->output_bfd, sizeof *t));
3466 if (t == NULL)
3467 {
3468 sinfo->failed = true;
3469 return false;
3470 }
3471
3472 t->next = NULL;
3473 t->name = p;
3474 t->globals = NULL;
3475 t->locals = NULL;
3476 t->deps = NULL;
3477 t->name_indx = (unsigned int) -1;
3478 t->used = true;
3479
3480 version_index = 1;
3481 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3482 ++version_index;
3483 t->vernum = version_index;
3484
3485 *pp = t;
3486
3487 h->verinfo.vertree = t;
3488 }
3489 else if (t == NULL)
3490 {
3491 /* We could not find the version for a symbol when
3492 generating a shared archive. Return an error. */
3493 (*_bfd_error_handler)
3494 (_("%s: undefined versioned symbol name %s"),
3495 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3496 bfd_set_error (bfd_error_bad_value);
3497 sinfo->failed = true;
3498 return false;
3499 }
3500
3501 if (hidden)
3502 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3503 }
3504
3505 /* If we don't have a version for this symbol, see if we can find
3506 something. */
3507 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3508 {
3509 struct bfd_elf_version_tree *t;
3510 struct bfd_elf_version_tree *deflt;
3511 struct bfd_elf_version_expr *d;
3512
3513 /* See if can find what version this symbol is in. If the
3514 symbol is supposed to be local, then don't actually register
3515 it. */
3516 deflt = NULL;
3517 for (t = sinfo->verdefs; t != NULL; t = t->next)
3518 {
3519 if (t->globals != NULL)
3520 {
3521 for (d = t->globals; d != NULL; d = d->next)
3522 {
3523 if ((*d->match) (d, h->root.root.string))
3524 {
3525 h->verinfo.vertree = t;
3526 break;
3527 }
3528 }
3529
3530 if (d != NULL)
3531 break;
3532 }
3533
3534 if (t->locals != NULL)
3535 {
3536 for (d = t->locals; d != NULL; d = d->next)
3537 {
3538 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3539 deflt = t;
3540 else if ((*d->match) (d, h->root.root.string))
3541 {
3542 h->verinfo.vertree = t;
3543 if (h->dynindx != -1
3544 && info->shared
3545 && ! sinfo->export_dynamic)
3546 {
3547 sinfo->removed_dynamic = true;
3548 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3549 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3550 h->dynindx = -1;
3551 h->plt.offset = (bfd_vma) -1;
3552 /* FIXME: The name of the symbol has already
3553 been recorded in the dynamic string table
3554 section. */
3555 }
3556 break;
3557 }
3558 }
3559
3560 if (d != NULL)
3561 break;
3562 }
3563 }
3564
3565 if (deflt != NULL && h->verinfo.vertree == NULL)
3566 {
3567 h->verinfo.vertree = deflt;
3568 if (h->dynindx != -1
3569 && info->shared
3570 && ! sinfo->export_dynamic)
3571 {
3572 sinfo->removed_dynamic = true;
3573 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3574 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3575 h->dynindx = -1;
3576 h->plt.offset = (bfd_vma) -1;
3577 /* FIXME: The name of the symbol has already been
3578 recorded in the dynamic string table section. */
3579 }
3580 }
3581 }
3582
3583 return true;
3584 }
3585
3586 /* This function is used to renumber the dynamic symbols, if some of
3587 them are removed because they are marked as local. This is called
3588 via elf_link_hash_traverse. */
3589
3590 static boolean
3591 elf_link_renumber_dynsyms (h, data)
3592 struct elf_link_hash_entry *h;
3593 PTR data;
3594 {
3595 struct bfd_link_info *info = (struct bfd_link_info *) data;
3596
3597 if (h->dynindx != -1)
3598 {
3599 h->dynindx = elf_hash_table (info)->dynsymcount;
3600 ++elf_hash_table (info)->dynsymcount;
3601 }
3602
3603 return true;
3604 }
3605 \f
3606 /* Final phase of ELF linker. */
3607
3608 /* A structure we use to avoid passing large numbers of arguments. */
3609
3610 struct elf_final_link_info
3611 {
3612 /* General link information. */
3613 struct bfd_link_info *info;
3614 /* Output BFD. */
3615 bfd *output_bfd;
3616 /* Symbol string table. */
3617 struct bfd_strtab_hash *symstrtab;
3618 /* .dynsym section. */
3619 asection *dynsym_sec;
3620 /* .hash section. */
3621 asection *hash_sec;
3622 /* symbol version section (.gnu.version). */
3623 asection *symver_sec;
3624 /* Buffer large enough to hold contents of any section. */
3625 bfd_byte *contents;
3626 /* Buffer large enough to hold external relocs of any section. */
3627 PTR external_relocs;
3628 /* Buffer large enough to hold internal relocs of any section. */
3629 Elf_Internal_Rela *internal_relocs;
3630 /* Buffer large enough to hold external local symbols of any input
3631 BFD. */
3632 Elf_External_Sym *external_syms;
3633 /* Buffer large enough to hold internal local symbols of any input
3634 BFD. */
3635 Elf_Internal_Sym *internal_syms;
3636 /* Array large enough to hold a symbol index for each local symbol
3637 of any input BFD. */
3638 long *indices;
3639 /* Array large enough to hold a section pointer for each local
3640 symbol of any input BFD. */
3641 asection **sections;
3642 /* Buffer to hold swapped out symbols. */
3643 Elf_External_Sym *symbuf;
3644 /* Number of swapped out symbols in buffer. */
3645 size_t symbuf_count;
3646 /* Number of symbols which fit in symbuf. */
3647 size_t symbuf_size;
3648 };
3649
3650 static boolean elf_link_output_sym
3651 PARAMS ((struct elf_final_link_info *, const char *,
3652 Elf_Internal_Sym *, asection *));
3653 static boolean elf_link_flush_output_syms
3654 PARAMS ((struct elf_final_link_info *));
3655 static boolean elf_link_output_extsym
3656 PARAMS ((struct elf_link_hash_entry *, PTR));
3657 static boolean elf_link_input_bfd
3658 PARAMS ((struct elf_final_link_info *, bfd *));
3659 static boolean elf_reloc_link_order
3660 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3661 struct bfd_link_order *));
3662
3663 /* This struct is used to pass information to elf_link_output_extsym. */
3664
3665 struct elf_outext_info
3666 {
3667 boolean failed;
3668 boolean localsyms;
3669 struct elf_final_link_info *finfo;
3670 };
3671
3672 /* Do the final step of an ELF link. */
3673
3674 boolean
3675 elf_bfd_final_link (abfd, info)
3676 bfd *abfd;
3677 struct bfd_link_info *info;
3678 {
3679 boolean dynamic;
3680 bfd *dynobj;
3681 struct elf_final_link_info finfo;
3682 register asection *o;
3683 register struct bfd_link_order *p;
3684 register bfd *sub;
3685 size_t max_contents_size;
3686 size_t max_external_reloc_size;
3687 size_t max_internal_reloc_count;
3688 size_t max_sym_count;
3689 file_ptr off;
3690 Elf_Internal_Sym elfsym;
3691 unsigned int i;
3692 Elf_Internal_Shdr *symtab_hdr;
3693 Elf_Internal_Shdr *symstrtab_hdr;
3694 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3695 struct elf_outext_info eoinfo;
3696
3697 if (info->shared)
3698 abfd->flags |= DYNAMIC;
3699
3700 dynamic = elf_hash_table (info)->dynamic_sections_created;
3701 dynobj = elf_hash_table (info)->dynobj;
3702
3703 finfo.info = info;
3704 finfo.output_bfd = abfd;
3705 finfo.symstrtab = elf_stringtab_init ();
3706 if (finfo.symstrtab == NULL)
3707 return false;
3708
3709 if (! dynamic)
3710 {
3711 finfo.dynsym_sec = NULL;
3712 finfo.hash_sec = NULL;
3713 finfo.symver_sec = NULL;
3714 }
3715 else
3716 {
3717 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
3718 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
3719 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
3720 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
3721 /* Note that it is OK if symver_sec is NULL. */
3722 }
3723
3724 finfo.contents = NULL;
3725 finfo.external_relocs = NULL;
3726 finfo.internal_relocs = NULL;
3727 finfo.external_syms = NULL;
3728 finfo.internal_syms = NULL;
3729 finfo.indices = NULL;
3730 finfo.sections = NULL;
3731 finfo.symbuf = NULL;
3732 finfo.symbuf_count = 0;
3733
3734 /* Count up the number of relocations we will output for each output
3735 section, so that we know the sizes of the reloc sections. We
3736 also figure out some maximum sizes. */
3737 max_contents_size = 0;
3738 max_external_reloc_size = 0;
3739 max_internal_reloc_count = 0;
3740 max_sym_count = 0;
3741 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
3742 {
3743 o->reloc_count = 0;
3744
3745 for (p = o->link_order_head; p != NULL; p = p->next)
3746 {
3747 if (p->type == bfd_section_reloc_link_order
3748 || p->type == bfd_symbol_reloc_link_order)
3749 ++o->reloc_count;
3750 else if (p->type == bfd_indirect_link_order)
3751 {
3752 asection *sec;
3753
3754 sec = p->u.indirect.section;
3755
3756 /* Mark all sections which are to be included in the
3757 link. This will normally be every section. We need
3758 to do this so that we can identify any sections which
3759 the linker has decided to not include. */
3760 sec->linker_mark = true;
3761
3762 if (info->relocateable)
3763 o->reloc_count += sec->reloc_count;
3764
3765 if (sec->_raw_size > max_contents_size)
3766 max_contents_size = sec->_raw_size;
3767 if (sec->_cooked_size > max_contents_size)
3768 max_contents_size = sec->_cooked_size;
3769
3770 /* We are interested in just local symbols, not all
3771 symbols. */
3772 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
3773 && (sec->owner->flags & DYNAMIC) == 0)
3774 {
3775 size_t sym_count;
3776
3777 if (elf_bad_symtab (sec->owner))
3778 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
3779 / sizeof (Elf_External_Sym));
3780 else
3781 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
3782
3783 if (sym_count > max_sym_count)
3784 max_sym_count = sym_count;
3785
3786 if ((sec->flags & SEC_RELOC) != 0)
3787 {
3788 size_t ext_size;
3789
3790 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
3791 if (ext_size > max_external_reloc_size)
3792 max_external_reloc_size = ext_size;
3793 if (sec->reloc_count > max_internal_reloc_count)
3794 max_internal_reloc_count = sec->reloc_count;
3795 }
3796 }
3797 }
3798 }
3799
3800 if (o->reloc_count > 0)
3801 o->flags |= SEC_RELOC;
3802 else
3803 {
3804 /* Explicitly clear the SEC_RELOC flag. The linker tends to
3805 set it (this is probably a bug) and if it is set
3806 assign_section_numbers will create a reloc section. */
3807 o->flags &=~ SEC_RELOC;
3808 }
3809
3810 /* If the SEC_ALLOC flag is not set, force the section VMA to
3811 zero. This is done in elf_fake_sections as well, but forcing
3812 the VMA to 0 here will ensure that relocs against these
3813 sections are handled correctly. */
3814 if ((o->flags & SEC_ALLOC) == 0
3815 && ! o->user_set_vma)
3816 o->vma = 0;
3817 }
3818
3819 /* Figure out the file positions for everything but the symbol table
3820 and the relocs. We set symcount to force assign_section_numbers
3821 to create a symbol table. */
3822 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
3823 BFD_ASSERT (! abfd->output_has_begun);
3824 if (! _bfd_elf_compute_section_file_positions (abfd, info))
3825 goto error_return;
3826
3827 /* That created the reloc sections. Set their sizes, and assign
3828 them file positions, and allocate some buffers. */
3829 for (o = abfd->sections; o != NULL; o = o->next)
3830 {
3831 if ((o->flags & SEC_RELOC) != 0)
3832 {
3833 Elf_Internal_Shdr *rel_hdr;
3834 register struct elf_link_hash_entry **p, **pend;
3835
3836 rel_hdr = &elf_section_data (o)->rel_hdr;
3837
3838 rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count;
3839
3840 /* The contents field must last into write_object_contents,
3841 so we allocate it with bfd_alloc rather than malloc. */
3842 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3843 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3844 goto error_return;
3845
3846 p = ((struct elf_link_hash_entry **)
3847 bfd_malloc (o->reloc_count
3848 * sizeof (struct elf_link_hash_entry *)));
3849 if (p == NULL && o->reloc_count != 0)
3850 goto error_return;
3851 elf_section_data (o)->rel_hashes = p;
3852 pend = p + o->reloc_count;
3853 for (; p < pend; p++)
3854 *p = NULL;
3855
3856 /* Use the reloc_count field as an index when outputting the
3857 relocs. */
3858 o->reloc_count = 0;
3859 }
3860 }
3861
3862 _bfd_elf_assign_file_positions_for_relocs (abfd);
3863
3864 /* We have now assigned file positions for all the sections except
3865 .symtab and .strtab. We start the .symtab section at the current
3866 file position, and write directly to it. We build the .strtab
3867 section in memory. */
3868 bfd_get_symcount (abfd) = 0;
3869 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3870 /* sh_name is set in prep_headers. */
3871 symtab_hdr->sh_type = SHT_SYMTAB;
3872 symtab_hdr->sh_flags = 0;
3873 symtab_hdr->sh_addr = 0;
3874 symtab_hdr->sh_size = 0;
3875 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
3876 /* sh_link is set in assign_section_numbers. */
3877 /* sh_info is set below. */
3878 /* sh_offset is set just below. */
3879 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
3880
3881 off = elf_tdata (abfd)->next_file_pos;
3882 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
3883
3884 /* Note that at this point elf_tdata (abfd)->next_file_pos is
3885 incorrect. We do not yet know the size of the .symtab section.
3886 We correct next_file_pos below, after we do know the size. */
3887
3888 /* Allocate a buffer to hold swapped out symbols. This is to avoid
3889 continuously seeking to the right position in the file. */
3890 if (! info->keep_memory || max_sym_count < 20)
3891 finfo.symbuf_size = 20;
3892 else
3893 finfo.symbuf_size = max_sym_count;
3894 finfo.symbuf = ((Elf_External_Sym *)
3895 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
3896 if (finfo.symbuf == NULL)
3897 goto error_return;
3898
3899 /* Start writing out the symbol table. The first symbol is always a
3900 dummy symbol. */
3901 if (info->strip != strip_all || info->relocateable)
3902 {
3903 elfsym.st_value = 0;
3904 elfsym.st_size = 0;
3905 elfsym.st_info = 0;
3906 elfsym.st_other = 0;
3907 elfsym.st_shndx = SHN_UNDEF;
3908 if (! elf_link_output_sym (&finfo, (const char *) NULL,
3909 &elfsym, bfd_und_section_ptr))
3910 goto error_return;
3911 }
3912
3913 #if 0
3914 /* Some standard ELF linkers do this, but we don't because it causes
3915 bootstrap comparison failures. */
3916 /* Output a file symbol for the output file as the second symbol.
3917 We output this even if we are discarding local symbols, although
3918 I'm not sure if this is correct. */
3919 elfsym.st_value = 0;
3920 elfsym.st_size = 0;
3921 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
3922 elfsym.st_other = 0;
3923 elfsym.st_shndx = SHN_ABS;
3924 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
3925 &elfsym, bfd_abs_section_ptr))
3926 goto error_return;
3927 #endif
3928
3929 /* Output a symbol for each section. We output these even if we are
3930 discarding local symbols, since they are used for relocs. These
3931 symbols have no names. We store the index of each one in the
3932 index field of the section, so that we can find it again when
3933 outputting relocs. */
3934 if (info->strip != strip_all || info->relocateable)
3935 {
3936 elfsym.st_size = 0;
3937 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
3938 elfsym.st_other = 0;
3939 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
3940 {
3941 o = section_from_elf_index (abfd, i);
3942 if (o != NULL)
3943 o->target_index = bfd_get_symcount (abfd);
3944 elfsym.st_shndx = i;
3945 if (info->relocateable || o == NULL)
3946 elfsym.st_value = 0;
3947 else
3948 elfsym.st_value = o->vma;
3949 if (! elf_link_output_sym (&finfo, (const char *) NULL,
3950 &elfsym, o))
3951 goto error_return;
3952 }
3953 }
3954
3955 /* Allocate some memory to hold information read in from the input
3956 files. */
3957 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
3958 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
3959 finfo.internal_relocs = ((Elf_Internal_Rela *)
3960 bfd_malloc (max_internal_reloc_count
3961 * sizeof (Elf_Internal_Rela)));
3962 finfo.external_syms = ((Elf_External_Sym *)
3963 bfd_malloc (max_sym_count
3964 * sizeof (Elf_External_Sym)));
3965 finfo.internal_syms = ((Elf_Internal_Sym *)
3966 bfd_malloc (max_sym_count
3967 * sizeof (Elf_Internal_Sym)));
3968 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
3969 finfo.sections = ((asection **)
3970 bfd_malloc (max_sym_count * sizeof (asection *)));
3971 if ((finfo.contents == NULL && max_contents_size != 0)
3972 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
3973 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
3974 || (finfo.external_syms == NULL && max_sym_count != 0)
3975 || (finfo.internal_syms == NULL && max_sym_count != 0)
3976 || (finfo.indices == NULL && max_sym_count != 0)
3977 || (finfo.sections == NULL && max_sym_count != 0))
3978 goto error_return;
3979
3980 /* Since ELF permits relocations to be against local symbols, we
3981 must have the local symbols available when we do the relocations.
3982 Since we would rather only read the local symbols once, and we
3983 would rather not keep them in memory, we handle all the
3984 relocations for a single input file at the same time.
3985
3986 Unfortunately, there is no way to know the total number of local
3987 symbols until we have seen all of them, and the local symbol
3988 indices precede the global symbol indices. This means that when
3989 we are generating relocateable output, and we see a reloc against
3990 a global symbol, we can not know the symbol index until we have
3991 finished examining all the local symbols to see which ones we are
3992 going to output. To deal with this, we keep the relocations in
3993 memory, and don't output them until the end of the link. This is
3994 an unfortunate waste of memory, but I don't see a good way around
3995 it. Fortunately, it only happens when performing a relocateable
3996 link, which is not the common case. FIXME: If keep_memory is set
3997 we could write the relocs out and then read them again; I don't
3998 know how bad the memory loss will be. */
3999
4000 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4001 sub->output_has_begun = false;
4002 for (o = abfd->sections; o != NULL; o = o->next)
4003 {
4004 for (p = o->link_order_head; p != NULL; p = p->next)
4005 {
4006 if (p->type == bfd_indirect_link_order
4007 && (bfd_get_flavour (p->u.indirect.section->owner)
4008 == bfd_target_elf_flavour))
4009 {
4010 sub = p->u.indirect.section->owner;
4011 if (! sub->output_has_begun)
4012 {
4013 if (! elf_link_input_bfd (&finfo, sub))
4014 goto error_return;
4015 sub->output_has_begun = true;
4016 }
4017 }
4018 else if (p->type == bfd_section_reloc_link_order
4019 || p->type == bfd_symbol_reloc_link_order)
4020 {
4021 if (! elf_reloc_link_order (abfd, info, o, p))
4022 goto error_return;
4023 }
4024 else
4025 {
4026 if (! _bfd_default_link_order (abfd, info, o, p))
4027 goto error_return;
4028 }
4029 }
4030 }
4031
4032 /* That wrote out all the local symbols. Finish up the symbol table
4033 with the global symbols. */
4034
4035 if (info->strip != strip_all && info->shared)
4036 {
4037 /* Output any global symbols that got converted to local in a
4038 version script. We do this in a separate step since ELF
4039 requires all local symbols to appear prior to any global
4040 symbols. FIXME: We should only do this if some global
4041 symbols were, in fact, converted to become local. FIXME:
4042 Will this work correctly with the Irix 5 linker? */
4043 eoinfo.failed = false;
4044 eoinfo.finfo = &finfo;
4045 eoinfo.localsyms = true;
4046 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4047 (PTR) &eoinfo);
4048 if (eoinfo.failed)
4049 return false;
4050 }
4051
4052 /* The sh_info field records the index of the first non local
4053 symbol. */
4054 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4055 if (dynamic)
4056 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1;
4057
4058 /* We get the global symbols from the hash table. */
4059 eoinfo.failed = false;
4060 eoinfo.localsyms = false;
4061 eoinfo.finfo = &finfo;
4062 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4063 (PTR) &eoinfo);
4064 if (eoinfo.failed)
4065 return false;
4066
4067 /* Flush all symbols to the file. */
4068 if (! elf_link_flush_output_syms (&finfo))
4069 return false;
4070
4071 /* Now we know the size of the symtab section. */
4072 off += symtab_hdr->sh_size;
4073
4074 /* Finish up and write out the symbol string table (.strtab)
4075 section. */
4076 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4077 /* sh_name was set in prep_headers. */
4078 symstrtab_hdr->sh_type = SHT_STRTAB;
4079 symstrtab_hdr->sh_flags = 0;
4080 symstrtab_hdr->sh_addr = 0;
4081 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4082 symstrtab_hdr->sh_entsize = 0;
4083 symstrtab_hdr->sh_link = 0;
4084 symstrtab_hdr->sh_info = 0;
4085 /* sh_offset is set just below. */
4086 symstrtab_hdr->sh_addralign = 1;
4087
4088 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4089 elf_tdata (abfd)->next_file_pos = off;
4090
4091 if (bfd_get_symcount (abfd) > 0)
4092 {
4093 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4094 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4095 return false;
4096 }
4097
4098 /* Adjust the relocs to have the correct symbol indices. */
4099 for (o = abfd->sections; o != NULL; o = o->next)
4100 {
4101 struct elf_link_hash_entry **rel_hash;
4102 Elf_Internal_Shdr *rel_hdr;
4103
4104 if ((o->flags & SEC_RELOC) == 0)
4105 continue;
4106
4107 rel_hash = elf_section_data (o)->rel_hashes;
4108 rel_hdr = &elf_section_data (o)->rel_hdr;
4109 for (i = 0; i < o->reloc_count; i++, rel_hash++)
4110 {
4111 if (*rel_hash == NULL)
4112 continue;
4113
4114 BFD_ASSERT ((*rel_hash)->indx >= 0);
4115
4116 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4117 {
4118 Elf_External_Rel *erel;
4119 Elf_Internal_Rel irel;
4120
4121 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4122 elf_swap_reloc_in (abfd, erel, &irel);
4123 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
4124 ELF_R_TYPE (irel.r_info));
4125 elf_swap_reloc_out (abfd, &irel, erel);
4126 }
4127 else
4128 {
4129 Elf_External_Rela *erela;
4130 Elf_Internal_Rela irela;
4131
4132 BFD_ASSERT (rel_hdr->sh_entsize
4133 == sizeof (Elf_External_Rela));
4134
4135 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4136 elf_swap_reloca_in (abfd, erela, &irela);
4137 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4138 ELF_R_TYPE (irela.r_info));
4139 elf_swap_reloca_out (abfd, &irela, erela);
4140 }
4141 }
4142
4143 /* Set the reloc_count field to 0 to prevent write_relocs from
4144 trying to swap the relocs out itself. */
4145 o->reloc_count = 0;
4146 }
4147
4148 /* If we are linking against a dynamic object, or generating a
4149 shared library, finish up the dynamic linking information. */
4150 if (dynamic)
4151 {
4152 Elf_External_Dyn *dyncon, *dynconend;
4153
4154 /* Fix up .dynamic entries. */
4155 o = bfd_get_section_by_name (dynobj, ".dynamic");
4156 BFD_ASSERT (o != NULL);
4157
4158 dyncon = (Elf_External_Dyn *) o->contents;
4159 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4160 for (; dyncon < dynconend; dyncon++)
4161 {
4162 Elf_Internal_Dyn dyn;
4163 const char *name;
4164 unsigned int type;
4165
4166 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4167
4168 switch (dyn.d_tag)
4169 {
4170 default:
4171 break;
4172 case DT_INIT:
4173 name = info->init_function;
4174 goto get_sym;
4175 case DT_FINI:
4176 name = info->fini_function;
4177 get_sym:
4178 {
4179 struct elf_link_hash_entry *h;
4180
4181 h = elf_link_hash_lookup (elf_hash_table (info), name,
4182 false, false, true);
4183 if (h != NULL
4184 && (h->root.type == bfd_link_hash_defined
4185 || h->root.type == bfd_link_hash_defweak))
4186 {
4187 dyn.d_un.d_val = h->root.u.def.value;
4188 o = h->root.u.def.section;
4189 if (o->output_section != NULL)
4190 dyn.d_un.d_val += (o->output_section->vma
4191 + o->output_offset);
4192 else
4193 {
4194 /* The symbol is imported from another shared
4195 library and does not apply to this one. */
4196 dyn.d_un.d_val = 0;
4197 }
4198
4199 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4200 }
4201 }
4202 break;
4203
4204 case DT_HASH:
4205 name = ".hash";
4206 goto get_vma;
4207 case DT_STRTAB:
4208 name = ".dynstr";
4209 goto get_vma;
4210 case DT_SYMTAB:
4211 name = ".dynsym";
4212 goto get_vma;
4213 case DT_VERDEF:
4214 name = ".gnu.version_d";
4215 goto get_vma;
4216 case DT_VERNEED:
4217 name = ".gnu.version_r";
4218 goto get_vma;
4219 case DT_VERSYM:
4220 name = ".gnu.version";
4221 get_vma:
4222 o = bfd_get_section_by_name (abfd, name);
4223 BFD_ASSERT (o != NULL);
4224 dyn.d_un.d_ptr = o->vma;
4225 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4226 break;
4227
4228 case DT_REL:
4229 case DT_RELA:
4230 case DT_RELSZ:
4231 case DT_RELASZ:
4232 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4233 type = SHT_REL;
4234 else
4235 type = SHT_RELA;
4236 dyn.d_un.d_val = 0;
4237 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4238 {
4239 Elf_Internal_Shdr *hdr;
4240
4241 hdr = elf_elfsections (abfd)[i];
4242 if (hdr->sh_type == type
4243 && (hdr->sh_flags & SHF_ALLOC) != 0)
4244 {
4245 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4246 dyn.d_un.d_val += hdr->sh_size;
4247 else
4248 {
4249 if (dyn.d_un.d_val == 0
4250 || hdr->sh_addr < dyn.d_un.d_val)
4251 dyn.d_un.d_val = hdr->sh_addr;
4252 }
4253 }
4254 }
4255 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4256 break;
4257 }
4258 }
4259 }
4260
4261 /* If we have created any dynamic sections, then output them. */
4262 if (dynobj != NULL)
4263 {
4264 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4265 goto error_return;
4266
4267 for (o = dynobj->sections; o != NULL; o = o->next)
4268 {
4269 if ((o->flags & SEC_HAS_CONTENTS) == 0
4270 || o->_raw_size == 0)
4271 continue;
4272 if ((o->flags & SEC_LINKER_CREATED) == 0)
4273 {
4274 /* At this point, we are only interested in sections
4275 created by elf_link_create_dynamic_sections. */
4276 continue;
4277 }
4278 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4279 != SHT_STRTAB)
4280 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4281 {
4282 if (! bfd_set_section_contents (abfd, o->output_section,
4283 o->contents, o->output_offset,
4284 o->_raw_size))
4285 goto error_return;
4286 }
4287 else
4288 {
4289 file_ptr off;
4290
4291 /* The contents of the .dynstr section are actually in a
4292 stringtab. */
4293 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4294 if (bfd_seek (abfd, off, SEEK_SET) != 0
4295 || ! _bfd_stringtab_emit (abfd,
4296 elf_hash_table (info)->dynstr))
4297 goto error_return;
4298 }
4299 }
4300 }
4301
4302 /* If we have optimized stabs strings, output them. */
4303 if (elf_hash_table (info)->stab_info != NULL)
4304 {
4305 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4306 goto error_return;
4307 }
4308
4309 if (finfo.symstrtab != NULL)
4310 _bfd_stringtab_free (finfo.symstrtab);
4311 if (finfo.contents != NULL)
4312 free (finfo.contents);
4313 if (finfo.external_relocs != NULL)
4314 free (finfo.external_relocs);
4315 if (finfo.internal_relocs != NULL)
4316 free (finfo.internal_relocs);
4317 if (finfo.external_syms != NULL)
4318 free (finfo.external_syms);
4319 if (finfo.internal_syms != NULL)
4320 free (finfo.internal_syms);
4321 if (finfo.indices != NULL)
4322 free (finfo.indices);
4323 if (finfo.sections != NULL)
4324 free (finfo.sections);
4325 if (finfo.symbuf != NULL)
4326 free (finfo.symbuf);
4327 for (o = abfd->sections; o != NULL; o = o->next)
4328 {
4329 if ((o->flags & SEC_RELOC) != 0
4330 && elf_section_data (o)->rel_hashes != NULL)
4331 free (elf_section_data (o)->rel_hashes);
4332 }
4333
4334 elf_tdata (abfd)->linker = true;
4335
4336 return true;
4337
4338 error_return:
4339 if (finfo.symstrtab != NULL)
4340 _bfd_stringtab_free (finfo.symstrtab);
4341 if (finfo.contents != NULL)
4342 free (finfo.contents);
4343 if (finfo.external_relocs != NULL)
4344 free (finfo.external_relocs);
4345 if (finfo.internal_relocs != NULL)
4346 free (finfo.internal_relocs);
4347 if (finfo.external_syms != NULL)
4348 free (finfo.external_syms);
4349 if (finfo.internal_syms != NULL)
4350 free (finfo.internal_syms);
4351 if (finfo.indices != NULL)
4352 free (finfo.indices);
4353 if (finfo.sections != NULL)
4354 free (finfo.sections);
4355 if (finfo.symbuf != NULL)
4356 free (finfo.symbuf);
4357 for (o = abfd->sections; o != NULL; o = o->next)
4358 {
4359 if ((o->flags & SEC_RELOC) != 0
4360 && elf_section_data (o)->rel_hashes != NULL)
4361 free (elf_section_data (o)->rel_hashes);
4362 }
4363
4364 return false;
4365 }
4366
4367 /* Add a symbol to the output symbol table. */
4368
4369 static boolean
4370 elf_link_output_sym (finfo, name, elfsym, input_sec)
4371 struct elf_final_link_info *finfo;
4372 const char *name;
4373 Elf_Internal_Sym *elfsym;
4374 asection *input_sec;
4375 {
4376 boolean (*output_symbol_hook) PARAMS ((bfd *,
4377 struct bfd_link_info *info,
4378 const char *,
4379 Elf_Internal_Sym *,
4380 asection *));
4381
4382 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4383 elf_backend_link_output_symbol_hook;
4384 if (output_symbol_hook != NULL)
4385 {
4386 if (! ((*output_symbol_hook)
4387 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4388 return false;
4389 }
4390
4391 if (name == (const char *) NULL || *name == '\0')
4392 elfsym->st_name = 0;
4393 else if (input_sec->flags & SEC_EXCLUDE)
4394 elfsym->st_name = 0;
4395 else
4396 {
4397 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4398 name, true,
4399 false);
4400 if (elfsym->st_name == (unsigned long) -1)
4401 return false;
4402 }
4403
4404 if (finfo->symbuf_count >= finfo->symbuf_size)
4405 {
4406 if (! elf_link_flush_output_syms (finfo))
4407 return false;
4408 }
4409
4410 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4411 (PTR) (finfo->symbuf + finfo->symbuf_count));
4412 ++finfo->symbuf_count;
4413
4414 ++ bfd_get_symcount (finfo->output_bfd);
4415
4416 return true;
4417 }
4418
4419 /* Flush the output symbols to the file. */
4420
4421 static boolean
4422 elf_link_flush_output_syms (finfo)
4423 struct elf_final_link_info *finfo;
4424 {
4425 if (finfo->symbuf_count > 0)
4426 {
4427 Elf_Internal_Shdr *symtab;
4428
4429 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4430
4431 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4432 SEEK_SET) != 0
4433 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4434 sizeof (Elf_External_Sym), finfo->output_bfd)
4435 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4436 return false;
4437
4438 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4439
4440 finfo->symbuf_count = 0;
4441 }
4442
4443 return true;
4444 }
4445
4446 /* Add an external symbol to the symbol table. This is called from
4447 the hash table traversal routine. When generating a shared object,
4448 we go through the symbol table twice. The first time we output
4449 anything that might have been forced to local scope in a version
4450 script. The second time we output the symbols that are still
4451 global symbols. */
4452
4453 static boolean
4454 elf_link_output_extsym (h, data)
4455 struct elf_link_hash_entry *h;
4456 PTR data;
4457 {
4458 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4459 struct elf_final_link_info *finfo = eoinfo->finfo;
4460 boolean strip;
4461 Elf_Internal_Sym sym;
4462 asection *input_sec;
4463
4464 /* Decide whether to output this symbol in this pass. */
4465 if (eoinfo->localsyms)
4466 {
4467 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4468 return true;
4469 }
4470 else
4471 {
4472 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4473 return true;
4474 }
4475
4476 /* If we are not creating a shared library, and this symbol is
4477 referenced by a shared library but is not defined anywhere, then
4478 warn that it is undefined. If we do not do this, the runtime
4479 linker will complain that the symbol is undefined when the
4480 program is run. We don't have to worry about symbols that are
4481 referenced by regular files, because we will already have issued
4482 warnings for them. */
4483 if (! finfo->info->relocateable
4484 && ! (finfo->info->shared
4485 && !finfo->info->symbolic
4486 && !finfo->info->no_undefined)
4487 && h->root.type == bfd_link_hash_undefined
4488 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4489 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4490 {
4491 if (! ((*finfo->info->callbacks->undefined_symbol)
4492 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4493 (asection *) NULL, 0)))
4494 {
4495 eoinfo->failed = true;
4496 return false;
4497 }
4498 }
4499
4500 /* We don't want to output symbols that have never been mentioned by
4501 a regular file, or that we have been told to strip. However, if
4502 h->indx is set to -2, the symbol is used by a reloc and we must
4503 output it. */
4504 if (h->indx == -2)
4505 strip = false;
4506 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4507 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4508 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4509 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4510 strip = true;
4511 else if (finfo->info->strip == strip_all
4512 || (finfo->info->strip == strip_some
4513 && bfd_hash_lookup (finfo->info->keep_hash,
4514 h->root.root.string,
4515 false, false) == NULL))
4516 strip = true;
4517 else
4518 strip = false;
4519
4520 /* If we're stripping it, and it's not a dynamic symbol, there's
4521 nothing else to do. */
4522 if (strip && h->dynindx == -1)
4523 return true;
4524
4525 sym.st_value = 0;
4526 sym.st_size = h->size;
4527 sym.st_other = h->other;
4528 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4529 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4530 else if (h->root.type == bfd_link_hash_undefweak
4531 || h->root.type == bfd_link_hash_defweak)
4532 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4533 else
4534 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4535
4536 switch (h->root.type)
4537 {
4538 default:
4539 case bfd_link_hash_new:
4540 abort ();
4541 return false;
4542
4543 case bfd_link_hash_undefined:
4544 input_sec = bfd_und_section_ptr;
4545 sym.st_shndx = SHN_UNDEF;
4546 break;
4547
4548 case bfd_link_hash_undefweak:
4549 input_sec = bfd_und_section_ptr;
4550 sym.st_shndx = SHN_UNDEF;
4551 break;
4552
4553 case bfd_link_hash_defined:
4554 case bfd_link_hash_defweak:
4555 {
4556 input_sec = h->root.u.def.section;
4557 if (input_sec->output_section != NULL)
4558 {
4559 sym.st_shndx =
4560 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4561 input_sec->output_section);
4562 if (sym.st_shndx == (unsigned short) -1)
4563 {
4564 (*_bfd_error_handler)
4565 (_("%s: could not find output section %s for input section %s"),
4566 bfd_get_filename (finfo->output_bfd),
4567 input_sec->output_section->name,
4568 input_sec->name);
4569 eoinfo->failed = true;
4570 return false;
4571 }
4572
4573 /* ELF symbols in relocateable files are section relative,
4574 but in nonrelocateable files they are virtual
4575 addresses. */
4576 sym.st_value = h->root.u.def.value + input_sec->output_offset;
4577 if (! finfo->info->relocateable)
4578 sym.st_value += input_sec->output_section->vma;
4579 }
4580 else
4581 {
4582 BFD_ASSERT (input_sec->owner == NULL
4583 || (input_sec->owner->flags & DYNAMIC) != 0);
4584 sym.st_shndx = SHN_UNDEF;
4585 input_sec = bfd_und_section_ptr;
4586 }
4587 }
4588 break;
4589
4590 case bfd_link_hash_common:
4591 input_sec = h->root.u.c.p->section;
4592 sym.st_shndx = SHN_COMMON;
4593 sym.st_value = 1 << h->root.u.c.p->alignment_power;
4594 break;
4595
4596 case bfd_link_hash_indirect:
4597 /* These symbols are created by symbol versioning. They point
4598 to the decorated version of the name. For example, if the
4599 symbol foo@@GNU_1.2 is the default, which should be used when
4600 foo is used with no version, then we add an indirect symbol
4601 foo which points to foo@@GNU_1.2. We ignore these symbols,
4602 since the indirected symbol is already in the hash table. If
4603 the indirect symbol is non-ELF, fall through and output it. */
4604 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
4605 return true;
4606
4607 /* Fall through. */
4608 case bfd_link_hash_warning:
4609 /* We can't represent these symbols in ELF, although a warning
4610 symbol may have come from a .gnu.warning.SYMBOL section. We
4611 just put the target symbol in the hash table. If the target
4612 symbol does not really exist, don't do anything. */
4613 if (h->root.u.i.link->type == bfd_link_hash_new)
4614 return true;
4615 return (elf_link_output_extsym
4616 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
4617 }
4618
4619 /* Give the processor backend a chance to tweak the symbol value,
4620 and also to finish up anything that needs to be done for this
4621 symbol. */
4622 if ((h->dynindx != -1
4623 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4624 && elf_hash_table (finfo->info)->dynamic_sections_created)
4625 {
4626 struct elf_backend_data *bed;
4627
4628 bed = get_elf_backend_data (finfo->output_bfd);
4629 if (! ((*bed->elf_backend_finish_dynamic_symbol)
4630 (finfo->output_bfd, finfo->info, h, &sym)))
4631 {
4632 eoinfo->failed = true;
4633 return false;
4634 }
4635 }
4636
4637 /* If we are marking the symbol as undefined, and there are no
4638 non-weak references to this symbol from a regular object, then
4639 mark the symbol as weak undefined. We can't do this earlier,
4640 because it might not be marked as undefined until the
4641 finish_dynamic_symbol routine gets through with it. */
4642 if (sym.st_shndx == SHN_UNDEF
4643 && sym.st_info == ELF_ST_INFO (STB_GLOBAL, h->type)
4644 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
4645 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) == 0)
4646 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4647
4648 /* If this symbol should be put in the .dynsym section, then put it
4649 there now. We have already know the symbol index. We also fill
4650 in the entry in the .hash section. */
4651 if (h->dynindx != -1
4652 && elf_hash_table (finfo->info)->dynamic_sections_created)
4653 {
4654 size_t bucketcount;
4655 size_t bucket;
4656 bfd_byte *bucketpos;
4657 bfd_vma chain;
4658
4659 sym.st_name = h->dynstr_index;
4660
4661 elf_swap_symbol_out (finfo->output_bfd, &sym,
4662 (PTR) (((Elf_External_Sym *)
4663 finfo->dynsym_sec->contents)
4664 + h->dynindx));
4665
4666 bucketcount = elf_hash_table (finfo->info)->bucketcount;
4667 bucket = h->elf_hash_value % bucketcount;
4668 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
4669 + (bucket + 2) * (ARCH_SIZE / 8));
4670 chain = get_word (finfo->output_bfd, bucketpos);
4671 put_word (finfo->output_bfd, h->dynindx, bucketpos);
4672 put_word (finfo->output_bfd, chain,
4673 ((bfd_byte *) finfo->hash_sec->contents
4674 + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8)));
4675
4676 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
4677 {
4678 Elf_Internal_Versym iversym;
4679
4680 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4681 {
4682 if (h->verinfo.verdef == NULL)
4683 iversym.vs_vers = 0;
4684 else
4685 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
4686 }
4687 else
4688 {
4689 if (h->verinfo.vertree == NULL)
4690 iversym.vs_vers = 1;
4691 else
4692 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
4693 }
4694
4695 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
4696 iversym.vs_vers |= VERSYM_HIDDEN;
4697
4698 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
4699 (((Elf_External_Versym *)
4700 finfo->symver_sec->contents)
4701 + h->dynindx));
4702 }
4703 }
4704
4705 /* If we're stripping it, then it was just a dynamic symbol, and
4706 there's nothing else to do. */
4707 if (strip)
4708 return true;
4709
4710 h->indx = bfd_get_symcount (finfo->output_bfd);
4711
4712 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
4713 {
4714 eoinfo->failed = true;
4715 return false;
4716 }
4717
4718 return true;
4719 }
4720
4721 /* Link an input file into the linker output file. This function
4722 handles all the sections and relocations of the input file at once.
4723 This is so that we only have to read the local symbols once, and
4724 don't have to keep them in memory. */
4725
4726 static boolean
4727 elf_link_input_bfd (finfo, input_bfd)
4728 struct elf_final_link_info *finfo;
4729 bfd *input_bfd;
4730 {
4731 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
4732 bfd *, asection *, bfd_byte *,
4733 Elf_Internal_Rela *,
4734 Elf_Internal_Sym *, asection **));
4735 bfd *output_bfd;
4736 Elf_Internal_Shdr *symtab_hdr;
4737 size_t locsymcount;
4738 size_t extsymoff;
4739 Elf_External_Sym *external_syms;
4740 Elf_External_Sym *esym;
4741 Elf_External_Sym *esymend;
4742 Elf_Internal_Sym *isym;
4743 long *pindex;
4744 asection **ppsection;
4745 asection *o;
4746
4747 output_bfd = finfo->output_bfd;
4748 relocate_section =
4749 get_elf_backend_data (output_bfd)->elf_backend_relocate_section;
4750
4751 /* If this is a dynamic object, we don't want to do anything here:
4752 we don't want the local symbols, and we don't want the section
4753 contents. */
4754 if ((input_bfd->flags & DYNAMIC) != 0)
4755 return true;
4756
4757 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4758 if (elf_bad_symtab (input_bfd))
4759 {
4760 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
4761 extsymoff = 0;
4762 }
4763 else
4764 {
4765 locsymcount = symtab_hdr->sh_info;
4766 extsymoff = symtab_hdr->sh_info;
4767 }
4768
4769 /* Read the local symbols. */
4770 if (symtab_hdr->contents != NULL)
4771 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
4772 else if (locsymcount == 0)
4773 external_syms = NULL;
4774 else
4775 {
4776 external_syms = finfo->external_syms;
4777 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
4778 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
4779 locsymcount, input_bfd)
4780 != locsymcount * sizeof (Elf_External_Sym)))
4781 return false;
4782 }
4783
4784 /* Swap in the local symbols and write out the ones which we know
4785 are going into the output file. */
4786 esym = external_syms;
4787 esymend = esym + locsymcount;
4788 isym = finfo->internal_syms;
4789 pindex = finfo->indices;
4790 ppsection = finfo->sections;
4791 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
4792 {
4793 asection *isec;
4794 const char *name;
4795 Elf_Internal_Sym osym;
4796
4797 elf_swap_symbol_in (input_bfd, esym, isym);
4798 *pindex = -1;
4799
4800 if (elf_bad_symtab (input_bfd))
4801 {
4802 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
4803 {
4804 *ppsection = NULL;
4805 continue;
4806 }
4807 }
4808
4809 if (isym->st_shndx == SHN_UNDEF)
4810 isec = bfd_und_section_ptr;
4811 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
4812 isec = section_from_elf_index (input_bfd, isym->st_shndx);
4813 else if (isym->st_shndx == SHN_ABS)
4814 isec = bfd_abs_section_ptr;
4815 else if (isym->st_shndx == SHN_COMMON)
4816 isec = bfd_com_section_ptr;
4817 else
4818 {
4819 /* Who knows? */
4820 isec = NULL;
4821 }
4822
4823 *ppsection = isec;
4824
4825 /* Don't output the first, undefined, symbol. */
4826 if (esym == external_syms)
4827 continue;
4828
4829 /* If we are stripping all symbols, we don't want to output this
4830 one. */
4831 if (finfo->info->strip == strip_all)
4832 continue;
4833
4834 /* We never output section symbols. Instead, we use the section
4835 symbol of the corresponding section in the output file. */
4836 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4837 continue;
4838
4839 /* If we are discarding all local symbols, we don't want to
4840 output this one. If we are generating a relocateable output
4841 file, then some of the local symbols may be required by
4842 relocs; we output them below as we discover that they are
4843 needed. */
4844 if (finfo->info->discard == discard_all)
4845 continue;
4846
4847 /* If this symbol is defined in a section which we are
4848 discarding, we don't need to keep it, but note that
4849 linker_mark is only reliable for sections that have contents.
4850 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
4851 as well as linker_mark. */
4852 if (isym->st_shndx > 0
4853 && isym->st_shndx < SHN_LORESERVE
4854 && isec != NULL
4855 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
4856 || (! finfo->info->relocateable
4857 && (isec->flags & SEC_EXCLUDE) != 0)))
4858 continue;
4859
4860 /* Get the name of the symbol. */
4861 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
4862 isym->st_name);
4863 if (name == NULL)
4864 return false;
4865
4866 /* See if we are discarding symbols with this name. */
4867 if ((finfo->info->strip == strip_some
4868 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
4869 == NULL))
4870 || (finfo->info->discard == discard_l
4871 && bfd_is_local_label_name (input_bfd, name)))
4872 continue;
4873
4874 /* If we get here, we are going to output this symbol. */
4875
4876 osym = *isym;
4877
4878 /* Adjust the section index for the output file. */
4879 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
4880 isec->output_section);
4881 if (osym.st_shndx == (unsigned short) -1)
4882 return false;
4883
4884 *pindex = bfd_get_symcount (output_bfd);
4885
4886 /* ELF symbols in relocateable files are section relative, but
4887 in executable files they are virtual addresses. Note that
4888 this code assumes that all ELF sections have an associated
4889 BFD section with a reasonable value for output_offset; below
4890 we assume that they also have a reasonable value for
4891 output_section. Any special sections must be set up to meet
4892 these requirements. */
4893 osym.st_value += isec->output_offset;
4894 if (! finfo->info->relocateable)
4895 osym.st_value += isec->output_section->vma;
4896
4897 if (! elf_link_output_sym (finfo, name, &osym, isec))
4898 return false;
4899 }
4900
4901 /* Relocate the contents of each section. */
4902 for (o = input_bfd->sections; o != NULL; o = o->next)
4903 {
4904 bfd_byte *contents;
4905
4906 if (! o->linker_mark)
4907 {
4908 /* This section was omitted from the link. */
4909 continue;
4910 }
4911
4912 if ((o->flags & SEC_HAS_CONTENTS) == 0
4913 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
4914 continue;
4915
4916 if ((o->flags & SEC_LINKER_CREATED) != 0)
4917 {
4918 /* Section was created by elf_link_create_dynamic_sections
4919 or somesuch. */
4920 continue;
4921 }
4922
4923 /* Get the contents of the section. They have been cached by a
4924 relaxation routine. Note that o is a section in an input
4925 file, so the contents field will not have been set by any of
4926 the routines which work on output files. */
4927 if (elf_section_data (o)->this_hdr.contents != NULL)
4928 contents = elf_section_data (o)->this_hdr.contents;
4929 else
4930 {
4931 contents = finfo->contents;
4932 if (! bfd_get_section_contents (input_bfd, o, contents,
4933 (file_ptr) 0, o->_raw_size))
4934 return false;
4935 }
4936
4937 if ((o->flags & SEC_RELOC) != 0)
4938 {
4939 Elf_Internal_Rela *internal_relocs;
4940
4941 /* Get the swapped relocs. */
4942 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
4943 (input_bfd, o, finfo->external_relocs,
4944 finfo->internal_relocs, false));
4945 if (internal_relocs == NULL
4946 && o->reloc_count > 0)
4947 return false;
4948
4949 /* Relocate the section by invoking a back end routine.
4950
4951 The back end routine is responsible for adjusting the
4952 section contents as necessary, and (if using Rela relocs
4953 and generating a relocateable output file) adjusting the
4954 reloc addend as necessary.
4955
4956 The back end routine does not have to worry about setting
4957 the reloc address or the reloc symbol index.
4958
4959 The back end routine is given a pointer to the swapped in
4960 internal symbols, and can access the hash table entries
4961 for the external symbols via elf_sym_hashes (input_bfd).
4962
4963 When generating relocateable output, the back end routine
4964 must handle STB_LOCAL/STT_SECTION symbols specially. The
4965 output symbol is going to be a section symbol
4966 corresponding to the output section, which will require
4967 the addend to be adjusted. */
4968
4969 if (! (*relocate_section) (output_bfd, finfo->info,
4970 input_bfd, o, contents,
4971 internal_relocs,
4972 finfo->internal_syms,
4973 finfo->sections))
4974 return false;
4975
4976 if (finfo->info->relocateable)
4977 {
4978 Elf_Internal_Rela *irela;
4979 Elf_Internal_Rela *irelaend;
4980 struct elf_link_hash_entry **rel_hash;
4981 Elf_Internal_Shdr *input_rel_hdr;
4982 Elf_Internal_Shdr *output_rel_hdr;
4983
4984 /* Adjust the reloc addresses and symbol indices. */
4985
4986 irela = internal_relocs;
4987 irelaend = irela + o->reloc_count;
4988 rel_hash = (elf_section_data (o->output_section)->rel_hashes
4989 + o->output_section->reloc_count);
4990 for (; irela < irelaend; irela++, rel_hash++)
4991 {
4992 unsigned long r_symndx;
4993 Elf_Internal_Sym *isym;
4994 asection *sec;
4995
4996 irela->r_offset += o->output_offset;
4997
4998 r_symndx = ELF_R_SYM (irela->r_info);
4999
5000 if (r_symndx == 0)
5001 continue;
5002
5003 if (r_symndx >= locsymcount
5004 || (elf_bad_symtab (input_bfd)
5005 && finfo->sections[r_symndx] == NULL))
5006 {
5007 struct elf_link_hash_entry *rh;
5008 long indx;
5009
5010 /* This is a reloc against a global symbol. We
5011 have not yet output all the local symbols, so
5012 we do not know the symbol index of any global
5013 symbol. We set the rel_hash entry for this
5014 reloc to point to the global hash table entry
5015 for this symbol. The symbol index is then
5016 set at the end of elf_bfd_final_link. */
5017 indx = r_symndx - extsymoff;
5018 rh = elf_sym_hashes (input_bfd)[indx];
5019 while (rh->root.type == bfd_link_hash_indirect
5020 || rh->root.type == bfd_link_hash_warning)
5021 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5022
5023 /* Setting the index to -2 tells
5024 elf_link_output_extsym that this symbol is
5025 used by a reloc. */
5026 BFD_ASSERT (rh->indx < 0);
5027 rh->indx = -2;
5028
5029 *rel_hash = rh;
5030
5031 continue;
5032 }
5033
5034 /* This is a reloc against a local symbol. */
5035
5036 *rel_hash = NULL;
5037 isym = finfo->internal_syms + r_symndx;
5038 sec = finfo->sections[r_symndx];
5039 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5040 {
5041 /* I suppose the backend ought to fill in the
5042 section of any STT_SECTION symbol against a
5043 processor specific section. If we have
5044 discarded a section, the output_section will
5045 be the absolute section. */
5046 if (sec != NULL
5047 && (bfd_is_abs_section (sec)
5048 || (sec->output_section != NULL
5049 && bfd_is_abs_section (sec->output_section))))
5050 r_symndx = 0;
5051 else if (sec == NULL || sec->owner == NULL)
5052 {
5053 bfd_set_error (bfd_error_bad_value);
5054 return false;
5055 }
5056 else
5057 {
5058 r_symndx = sec->output_section->target_index;
5059 BFD_ASSERT (r_symndx != 0);
5060 }
5061 }
5062 else
5063 {
5064 if (finfo->indices[r_symndx] == -1)
5065 {
5066 unsigned long link;
5067 const char *name;
5068 asection *osec;
5069
5070 if (finfo->info->strip == strip_all)
5071 {
5072 /* You can't do ld -r -s. */
5073 bfd_set_error (bfd_error_invalid_operation);
5074 return false;
5075 }
5076
5077 /* This symbol was skipped earlier, but
5078 since it is needed by a reloc, we
5079 must output it now. */
5080 link = symtab_hdr->sh_link;
5081 name = bfd_elf_string_from_elf_section (input_bfd,
5082 link,
5083 isym->st_name);
5084 if (name == NULL)
5085 return false;
5086
5087 osec = sec->output_section;
5088 isym->st_shndx =
5089 _bfd_elf_section_from_bfd_section (output_bfd,
5090 osec);
5091 if (isym->st_shndx == (unsigned short) -1)
5092 return false;
5093
5094 isym->st_value += sec->output_offset;
5095 if (! finfo->info->relocateable)
5096 isym->st_value += osec->vma;
5097
5098 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5099
5100 if (! elf_link_output_sym (finfo, name, isym, sec))
5101 return false;
5102 }
5103
5104 r_symndx = finfo->indices[r_symndx];
5105 }
5106
5107 irela->r_info = ELF_R_INFO (r_symndx,
5108 ELF_R_TYPE (irela->r_info));
5109 }
5110
5111 /* Swap out the relocs. */
5112 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5113 output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr;
5114 BFD_ASSERT (output_rel_hdr->sh_entsize
5115 == input_rel_hdr->sh_entsize);
5116 irela = internal_relocs;
5117 irelaend = irela + o->reloc_count;
5118 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5119 {
5120 Elf_External_Rel *erel;
5121
5122 erel = ((Elf_External_Rel *) output_rel_hdr->contents
5123 + o->output_section->reloc_count);
5124 for (; irela < irelaend; irela++, erel++)
5125 {
5126 Elf_Internal_Rel irel;
5127
5128 irel.r_offset = irela->r_offset;
5129 irel.r_info = irela->r_info;
5130 BFD_ASSERT (irela->r_addend == 0);
5131 elf_swap_reloc_out (output_bfd, &irel, erel);
5132 }
5133 }
5134 else
5135 {
5136 Elf_External_Rela *erela;
5137
5138 BFD_ASSERT (input_rel_hdr->sh_entsize
5139 == sizeof (Elf_External_Rela));
5140 erela = ((Elf_External_Rela *) output_rel_hdr->contents
5141 + o->output_section->reloc_count);
5142 for (; irela < irelaend; irela++, erela++)
5143 elf_swap_reloca_out (output_bfd, irela, erela);
5144 }
5145
5146 o->output_section->reloc_count += o->reloc_count;
5147 }
5148 }
5149
5150 /* Write out the modified section contents. */
5151 if (elf_section_data (o)->stab_info == NULL)
5152 {
5153 if (! (o->flags & SEC_EXCLUDE) &&
5154 ! bfd_set_section_contents (output_bfd, o->output_section,
5155 contents, o->output_offset,
5156 (o->_cooked_size != 0
5157 ? o->_cooked_size
5158 : o->_raw_size)))
5159 return false;
5160 }
5161 else
5162 {
5163 if (! (_bfd_write_section_stabs
5164 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5165 o, &elf_section_data (o)->stab_info, contents)))
5166 return false;
5167 }
5168 }
5169
5170 return true;
5171 }
5172
5173 /* Generate a reloc when linking an ELF file. This is a reloc
5174 requested by the linker, and does come from any input file. This
5175 is used to build constructor and destructor tables when linking
5176 with -Ur. */
5177
5178 static boolean
5179 elf_reloc_link_order (output_bfd, info, output_section, link_order)
5180 bfd *output_bfd;
5181 struct bfd_link_info *info;
5182 asection *output_section;
5183 struct bfd_link_order *link_order;
5184 {
5185 reloc_howto_type *howto;
5186 long indx;
5187 bfd_vma offset;
5188 bfd_vma addend;
5189 struct elf_link_hash_entry **rel_hash_ptr;
5190 Elf_Internal_Shdr *rel_hdr;
5191
5192 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5193 if (howto == NULL)
5194 {
5195 bfd_set_error (bfd_error_bad_value);
5196 return false;
5197 }
5198
5199 addend = link_order->u.reloc.p->addend;
5200
5201 /* Figure out the symbol index. */
5202 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5203 + output_section->reloc_count);
5204 if (link_order->type == bfd_section_reloc_link_order)
5205 {
5206 indx = link_order->u.reloc.p->u.section->target_index;
5207 BFD_ASSERT (indx != 0);
5208 *rel_hash_ptr = NULL;
5209 }
5210 else
5211 {
5212 struct elf_link_hash_entry *h;
5213
5214 /* Treat a reloc against a defined symbol as though it were
5215 actually against the section. */
5216 h = ((struct elf_link_hash_entry *)
5217 bfd_wrapped_link_hash_lookup (output_bfd, info,
5218 link_order->u.reloc.p->u.name,
5219 false, false, true));
5220 if (h != NULL
5221 && (h->root.type == bfd_link_hash_defined
5222 || h->root.type == bfd_link_hash_defweak))
5223 {
5224 asection *section;
5225
5226 section = h->root.u.def.section;
5227 indx = section->output_section->target_index;
5228 *rel_hash_ptr = NULL;
5229 /* It seems that we ought to add the symbol value to the
5230 addend here, but in practice it has already been added
5231 because it was passed to constructor_callback. */
5232 addend += section->output_section->vma + section->output_offset;
5233 }
5234 else if (h != NULL)
5235 {
5236 /* Setting the index to -2 tells elf_link_output_extsym that
5237 this symbol is used by a reloc. */
5238 h->indx = -2;
5239 *rel_hash_ptr = h;
5240 indx = 0;
5241 }
5242 else
5243 {
5244 if (! ((*info->callbacks->unattached_reloc)
5245 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5246 (asection *) NULL, (bfd_vma) 0)))
5247 return false;
5248 indx = 0;
5249 }
5250 }
5251
5252 /* If this is an inplace reloc, we must write the addend into the
5253 object file. */
5254 if (howto->partial_inplace && addend != 0)
5255 {
5256 bfd_size_type size;
5257 bfd_reloc_status_type rstat;
5258 bfd_byte *buf;
5259 boolean ok;
5260
5261 size = bfd_get_reloc_size (howto);
5262 buf = (bfd_byte *) bfd_zmalloc (size);
5263 if (buf == (bfd_byte *) NULL)
5264 return false;
5265 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5266 switch (rstat)
5267 {
5268 case bfd_reloc_ok:
5269 break;
5270 default:
5271 case bfd_reloc_outofrange:
5272 abort ();
5273 case bfd_reloc_overflow:
5274 if (! ((*info->callbacks->reloc_overflow)
5275 (info,
5276 (link_order->type == bfd_section_reloc_link_order
5277 ? bfd_section_name (output_bfd,
5278 link_order->u.reloc.p->u.section)
5279 : link_order->u.reloc.p->u.name),
5280 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5281 (bfd_vma) 0)))
5282 {
5283 free (buf);
5284 return false;
5285 }
5286 break;
5287 }
5288 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5289 (file_ptr) link_order->offset, size);
5290 free (buf);
5291 if (! ok)
5292 return false;
5293 }
5294
5295 /* The address of a reloc is relative to the section in a
5296 relocateable file, and is a virtual address in an executable
5297 file. */
5298 offset = link_order->offset;
5299 if (! info->relocateable)
5300 offset += output_section->vma;
5301
5302 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5303
5304 if (rel_hdr->sh_type == SHT_REL)
5305 {
5306 Elf_Internal_Rel irel;
5307 Elf_External_Rel *erel;
5308
5309 irel.r_offset = offset;
5310 irel.r_info = ELF_R_INFO (indx, howto->type);
5311 erel = ((Elf_External_Rel *) rel_hdr->contents
5312 + output_section->reloc_count);
5313 elf_swap_reloc_out (output_bfd, &irel, erel);
5314 }
5315 else
5316 {
5317 Elf_Internal_Rela irela;
5318 Elf_External_Rela *erela;
5319
5320 irela.r_offset = offset;
5321 irela.r_info = ELF_R_INFO (indx, howto->type);
5322 irela.r_addend = addend;
5323 erela = ((Elf_External_Rela *) rel_hdr->contents
5324 + output_section->reloc_count);
5325 elf_swap_reloca_out (output_bfd, &irela, erela);
5326 }
5327
5328 ++output_section->reloc_count;
5329
5330 return true;
5331 }
5332
5333 \f
5334 /* Allocate a pointer to live in a linker created section. */
5335
5336 boolean
5337 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5338 bfd *abfd;
5339 struct bfd_link_info *info;
5340 elf_linker_section_t *lsect;
5341 struct elf_link_hash_entry *h;
5342 const Elf_Internal_Rela *rel;
5343 {
5344 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5345 elf_linker_section_pointers_t *linker_section_ptr;
5346 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5347
5348 BFD_ASSERT (lsect != NULL);
5349
5350 /* Is this a global symbol? */
5351 if (h != NULL)
5352 {
5353 /* Has this symbol already been allocated, if so, our work is done */
5354 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5355 rel->r_addend,
5356 lsect->which))
5357 return true;
5358
5359 ptr_linker_section_ptr = &h->linker_section_pointer;
5360 /* Make sure this symbol is output as a dynamic symbol. */
5361 if (h->dynindx == -1)
5362 {
5363 if (! elf_link_record_dynamic_symbol (info, h))
5364 return false;
5365 }
5366
5367 if (lsect->rel_section)
5368 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5369 }
5370
5371 else /* Allocation of a pointer to a local symbol */
5372 {
5373 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5374
5375 /* Allocate a table to hold the local symbols if first time */
5376 if (!ptr)
5377 {
5378 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5379 register unsigned int i;
5380
5381 ptr = (elf_linker_section_pointers_t **)
5382 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5383
5384 if (!ptr)
5385 return false;
5386
5387 elf_local_ptr_offsets (abfd) = ptr;
5388 for (i = 0; i < num_symbols; i++)
5389 ptr[i] = (elf_linker_section_pointers_t *)0;
5390 }
5391
5392 /* Has this symbol already been allocated, if so, our work is done */
5393 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5394 rel->r_addend,
5395 lsect->which))
5396 return true;
5397
5398 ptr_linker_section_ptr = &ptr[r_symndx];
5399
5400 if (info->shared)
5401 {
5402 /* If we are generating a shared object, we need to
5403 output a R_<xxx>_RELATIVE reloc so that the
5404 dynamic linker can adjust this GOT entry. */
5405 BFD_ASSERT (lsect->rel_section != NULL);
5406 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5407 }
5408 }
5409
5410 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5411 from internal memory. */
5412 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5413 linker_section_ptr = (elf_linker_section_pointers_t *)
5414 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5415
5416 if (!linker_section_ptr)
5417 return false;
5418
5419 linker_section_ptr->next = *ptr_linker_section_ptr;
5420 linker_section_ptr->addend = rel->r_addend;
5421 linker_section_ptr->which = lsect->which;
5422 linker_section_ptr->written_address_p = false;
5423 *ptr_linker_section_ptr = linker_section_ptr;
5424
5425 #if 0
5426 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5427 {
5428 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5429 lsect->hole_offset += ARCH_SIZE / 8;
5430 lsect->sym_offset += ARCH_SIZE / 8;
5431 if (lsect->sym_hash) /* Bump up symbol value if needed */
5432 {
5433 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5434 #ifdef DEBUG
5435 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5436 lsect->sym_hash->root.root.string,
5437 (long)ARCH_SIZE / 8,
5438 (long)lsect->sym_hash->root.u.def.value);
5439 #endif
5440 }
5441 }
5442 else
5443 #endif
5444 linker_section_ptr->offset = lsect->section->_raw_size;
5445
5446 lsect->section->_raw_size += ARCH_SIZE / 8;
5447
5448 #ifdef DEBUG
5449 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5450 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5451 #endif
5452
5453 return true;
5454 }
5455
5456 \f
5457 #if ARCH_SIZE==64
5458 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5459 #endif
5460 #if ARCH_SIZE==32
5461 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5462 #endif
5463
5464 /* Fill in the address for a pointer generated in alinker section. */
5465
5466 bfd_vma
5467 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5468 bfd *output_bfd;
5469 bfd *input_bfd;
5470 struct bfd_link_info *info;
5471 elf_linker_section_t *lsect;
5472 struct elf_link_hash_entry *h;
5473 bfd_vma relocation;
5474 const Elf_Internal_Rela *rel;
5475 int relative_reloc;
5476 {
5477 elf_linker_section_pointers_t *linker_section_ptr;
5478
5479 BFD_ASSERT (lsect != NULL);
5480
5481 if (h != NULL) /* global symbol */
5482 {
5483 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5484 rel->r_addend,
5485 lsect->which);
5486
5487 BFD_ASSERT (linker_section_ptr != NULL);
5488
5489 if (! elf_hash_table (info)->dynamic_sections_created
5490 || (info->shared
5491 && info->symbolic
5492 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5493 {
5494 /* This is actually a static link, or it is a
5495 -Bsymbolic link and the symbol is defined
5496 locally. We must initialize this entry in the
5497 global section.
5498
5499 When doing a dynamic link, we create a .rela.<xxx>
5500 relocation entry to initialize the value. This
5501 is done in the finish_dynamic_symbol routine. */
5502 if (!linker_section_ptr->written_address_p)
5503 {
5504 linker_section_ptr->written_address_p = true;
5505 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5506 lsect->section->contents + linker_section_ptr->offset);
5507 }
5508 }
5509 }
5510 else /* local symbol */
5511 {
5512 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
5513 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
5514 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
5515 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
5516 rel->r_addend,
5517 lsect->which);
5518
5519 BFD_ASSERT (linker_section_ptr != NULL);
5520
5521 /* Write out pointer if it hasn't been rewritten out before */
5522 if (!linker_section_ptr->written_address_p)
5523 {
5524 linker_section_ptr->written_address_p = true;
5525 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5526 lsect->section->contents + linker_section_ptr->offset);
5527
5528 if (info->shared)
5529 {
5530 asection *srel = lsect->rel_section;
5531 Elf_Internal_Rela outrel;
5532
5533 /* We need to generate a relative reloc for the dynamic linker. */
5534 if (!srel)
5535 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5536 lsect->rel_name);
5537
5538 BFD_ASSERT (srel != NULL);
5539
5540 outrel.r_offset = (lsect->section->output_section->vma
5541 + lsect->section->output_offset
5542 + linker_section_ptr->offset);
5543 outrel.r_info = ELF_R_INFO (0, relative_reloc);
5544 outrel.r_addend = 0;
5545 elf_swap_reloca_out (output_bfd, &outrel,
5546 (((Elf_External_Rela *)
5547 lsect->section->contents)
5548 + lsect->section->reloc_count));
5549 ++lsect->section->reloc_count;
5550 }
5551 }
5552 }
5553
5554 relocation = (lsect->section->output_offset
5555 + linker_section_ptr->offset
5556 - lsect->hole_offset
5557 - lsect->sym_offset);
5558
5559 #ifdef DEBUG
5560 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
5561 lsect->name, (long)relocation, (long)relocation);
5562 #endif
5563
5564 /* Subtract out the addend, because it will get added back in by the normal
5565 processing. */
5566 return relocation - linker_section_ptr->addend;
5567 }
5568 \f
5569 /* Garbage collect unused sections. */
5570
5571 static boolean elf_gc_mark
5572 PARAMS ((struct bfd_link_info *info, asection *sec,
5573 asection * (*gc_mark_hook)
5574 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5575 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
5576
5577 static boolean elf_gc_sweep
5578 PARAMS ((struct bfd_link_info *info,
5579 boolean (*gc_sweep_hook)
5580 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5581 const Elf_Internal_Rela *relocs))));
5582
5583 static boolean elf_gc_sweep_symbol
5584 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
5585
5586 static boolean elf_gc_allocate_got_offsets
5587 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
5588
5589 static boolean elf_gc_propagate_vtable_entries_used
5590 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5591
5592 static boolean elf_gc_smash_unused_vtentry_relocs
5593 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5594
5595 /* The mark phase of garbage collection. For a given section, mark
5596 it, and all the sections which define symbols to which it refers. */
5597
5598 static boolean
5599 elf_gc_mark (info, sec, gc_mark_hook)
5600 struct bfd_link_info *info;
5601 asection *sec;
5602 asection * (*gc_mark_hook)
5603 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5604 struct elf_link_hash_entry *, Elf_Internal_Sym *));
5605 {
5606 boolean ret = true;
5607
5608 sec->gc_mark = 1;
5609
5610 /* Look through the section relocs. */
5611
5612 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
5613 {
5614 Elf_Internal_Rela *relstart, *rel, *relend;
5615 Elf_Internal_Shdr *symtab_hdr;
5616 struct elf_link_hash_entry **sym_hashes;
5617 size_t nlocsyms;
5618 size_t extsymoff;
5619 Elf_External_Sym *locsyms, *freesyms = NULL;
5620 bfd *input_bfd = sec->owner;
5621
5622 /* GCFIXME: how to arrange so that relocs and symbols are not
5623 reread continually? */
5624
5625 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5626 sym_hashes = elf_sym_hashes (input_bfd);
5627
5628 /* Read the local symbols. */
5629 if (elf_bad_symtab (input_bfd))
5630 {
5631 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5632 extsymoff = 0;
5633 }
5634 else
5635 extsymoff = nlocsyms = symtab_hdr->sh_info;
5636 if (symtab_hdr->contents)
5637 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
5638 else if (nlocsyms == 0)
5639 locsyms = NULL;
5640 else
5641 {
5642 locsyms = freesyms =
5643 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
5644 if (freesyms == NULL
5645 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5646 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
5647 nlocsyms, input_bfd)
5648 != nlocsyms * sizeof (Elf_External_Sym)))
5649 {
5650 ret = false;
5651 goto out1;
5652 }
5653 }
5654
5655 /* Read the relocations. */
5656 relstart = (NAME(_bfd_elf,link_read_relocs)
5657 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
5658 info->keep_memory));
5659 if (relstart == NULL)
5660 {
5661 ret = false;
5662 goto out1;
5663 }
5664 relend = relstart + sec->reloc_count;
5665
5666 for (rel = relstart; rel < relend; rel++)
5667 {
5668 unsigned long r_symndx;
5669 asection *rsec;
5670 struct elf_link_hash_entry *h;
5671 Elf_Internal_Sym s;
5672
5673 r_symndx = ELF_R_SYM (rel->r_info);
5674 if (r_symndx == 0)
5675 continue;
5676
5677 if (elf_bad_symtab (sec->owner))
5678 {
5679 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5680 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
5681 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5682 else
5683 {
5684 h = sym_hashes[r_symndx - extsymoff];
5685 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5686 }
5687 }
5688 else if (r_symndx >= nlocsyms)
5689 {
5690 h = sym_hashes[r_symndx - extsymoff];
5691 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5692 }
5693 else
5694 {
5695 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5696 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5697 }
5698
5699 if (rsec && !rsec->gc_mark)
5700 if (!elf_gc_mark (info, rsec, gc_mark_hook))
5701 {
5702 ret = false;
5703 goto out2;
5704 }
5705 }
5706
5707 out2:
5708 if (!info->keep_memory)
5709 free (relstart);
5710 out1:
5711 if (freesyms)
5712 free (freesyms);
5713 }
5714
5715 return ret;
5716 }
5717
5718 /* The sweep phase of garbage collection. Remove all garbage sections. */
5719
5720 static boolean
5721 elf_gc_sweep (info, gc_sweep_hook)
5722 struct bfd_link_info *info;
5723 boolean (*gc_sweep_hook)
5724 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5725 const Elf_Internal_Rela *relocs));
5726 {
5727 bfd *sub;
5728
5729 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5730 {
5731 asection *o;
5732
5733 for (o = sub->sections; o != NULL; o = o->next)
5734 {
5735 /* Keep special sections. Keep .debug sections. */
5736 if ((o->flags & SEC_LINKER_CREATED)
5737 || (o->flags & SEC_DEBUGGING))
5738 o->gc_mark = 1;
5739
5740 if (o->gc_mark)
5741 continue;
5742
5743 /* Skip sweeping sections already excluded. */
5744 if (o->flags & SEC_EXCLUDE)
5745 continue;
5746
5747 /* Since this is early in the link process, it is simple
5748 to remove a section from the output. */
5749 o->flags |= SEC_EXCLUDE;
5750
5751 /* But we also have to update some of the relocation
5752 info we collected before. */
5753 if (gc_sweep_hook
5754 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
5755 {
5756 Elf_Internal_Rela *internal_relocs;
5757 boolean r;
5758
5759 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5760 (o->owner, o, NULL, NULL, info->keep_memory));
5761 if (internal_relocs == NULL)
5762 return false;
5763
5764 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
5765
5766 if (!info->keep_memory)
5767 free (internal_relocs);
5768
5769 if (!r)
5770 return false;
5771 }
5772 }
5773 }
5774
5775 /* Remove the symbols that were in the swept sections from the dynamic
5776 symbol table. GCFIXME: Anyone know how to get them out of the
5777 static symbol table as well? */
5778 {
5779 int i = 0;
5780
5781 elf_link_hash_traverse (elf_hash_table (info),
5782 elf_gc_sweep_symbol,
5783 (PTR) &i);
5784
5785 elf_hash_table (info)->dynsymcount = i;
5786 }
5787
5788 return true;
5789 }
5790
5791 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5792
5793 static boolean
5794 elf_gc_sweep_symbol (h, idxptr)
5795 struct elf_link_hash_entry *h;
5796 PTR idxptr;
5797 {
5798 int *idx = (int *) idxptr;
5799
5800 if (h->dynindx != -1
5801 && ((h->root.type != bfd_link_hash_defined
5802 && h->root.type != bfd_link_hash_defweak)
5803 || h->root.u.def.section->gc_mark))
5804 h->dynindx = (*idx)++;
5805
5806 return true;
5807 }
5808
5809 /* Propogate collected vtable information. This is called through
5810 elf_link_hash_traverse. */
5811
5812 static boolean
5813 elf_gc_propagate_vtable_entries_used (h, okp)
5814 struct elf_link_hash_entry *h;
5815 PTR okp;
5816 {
5817 /* Those that are not vtables. */
5818 if (h->vtable_parent == NULL)
5819 return true;
5820
5821 /* Those vtables that do not have parents, we cannot merge. */
5822 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
5823 return true;
5824
5825 /* If we've already been done, exit. */
5826 if (h->vtable_entries_used && h->vtable_entries_used[-1])
5827 return true;
5828
5829 /* Make sure the parent's table is up to date. */
5830 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
5831
5832 if (h->vtable_entries_used == NULL)
5833 {
5834 /* None of this table's entries were referenced. Re-use the
5835 parent's table. */
5836 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
5837 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
5838 }
5839 else
5840 {
5841 size_t n;
5842 boolean *cu, *pu;
5843
5844 /* Or the parent's entries into ours. */
5845 cu = h->vtable_entries_used;
5846 cu[-1] = true;
5847 pu = h->vtable_parent->vtable_entries_used;
5848 if (pu != NULL)
5849 {
5850 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
5851 while (--n != 0)
5852 {
5853 if (*pu) *cu = true;
5854 pu++, cu++;
5855 }
5856 }
5857 }
5858
5859 return true;
5860 }
5861
5862 static boolean
5863 elf_gc_smash_unused_vtentry_relocs (h, okp)
5864 struct elf_link_hash_entry *h;
5865 PTR okp;
5866 {
5867 asection *sec;
5868 bfd_vma hstart, hend;
5869 Elf_Internal_Rela *relstart, *relend, *rel;
5870
5871 /* Take care of both those symbols that do not describe vtables as
5872 well as those that are not loaded. */
5873 if (h->vtable_parent == NULL)
5874 return true;
5875
5876 BFD_ASSERT (h->root.type == bfd_link_hash_defined
5877 || h->root.type == bfd_link_hash_defweak);
5878
5879 sec = h->root.u.def.section;
5880 hstart = h->root.u.def.value;
5881 hend = hstart + h->size;
5882
5883 relstart = (NAME(_bfd_elf,link_read_relocs)
5884 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
5885 if (!relstart)
5886 return *(boolean *)okp = false;
5887 relend = relstart + sec->reloc_count;
5888
5889 for (rel = relstart; rel < relend; ++rel)
5890 if (rel->r_offset >= hstart && rel->r_offset < hend)
5891 {
5892 /* If the entry is in use, do nothing. */
5893 if (h->vtable_entries_used
5894 && (rel->r_offset - hstart) < h->vtable_entries_size)
5895 {
5896 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
5897 if (h->vtable_entries_used[entry])
5898 continue;
5899 }
5900 /* Otherwise, kill it. */
5901 rel->r_offset = rel->r_info = rel->r_addend = 0;
5902 }
5903
5904 return true;
5905 }
5906
5907 /* Do mark and sweep of unused sections. */
5908
5909 boolean
5910 elf_gc_sections (abfd, info)
5911 bfd *abfd;
5912 struct bfd_link_info *info;
5913 {
5914 boolean ok = true;
5915 bfd *sub;
5916 asection * (*gc_mark_hook)
5917 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
5918 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
5919
5920 if (!get_elf_backend_data (abfd)->can_gc_sections
5921 || info->relocateable
5922 || elf_hash_table (info)->dynamic_sections_created)
5923 return true;
5924
5925 /* Apply transitive closure to the vtable entry usage info. */
5926 elf_link_hash_traverse (elf_hash_table (info),
5927 elf_gc_propagate_vtable_entries_used,
5928 (PTR) &ok);
5929 if (!ok)
5930 return false;
5931
5932 /* Kill the vtable relocations that were not used. */
5933 elf_link_hash_traverse (elf_hash_table (info),
5934 elf_gc_smash_unused_vtentry_relocs,
5935 (PTR) &ok);
5936 if (!ok)
5937 return false;
5938
5939 /* Grovel through relocs to find out who stays ... */
5940
5941 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
5942 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5943 {
5944 asection *o;
5945 for (o = sub->sections; o != NULL; o = o->next)
5946 {
5947 if (o->flags & SEC_KEEP)
5948 if (!elf_gc_mark (info, o, gc_mark_hook))
5949 return false;
5950 }
5951 }
5952
5953 /* ... and mark SEC_EXCLUDE for those that go. */
5954 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
5955 return false;
5956
5957 return true;
5958 }
5959 \f
5960 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
5961
5962 boolean
5963 elf_gc_record_vtinherit (abfd, sec, h, offset)
5964 bfd *abfd;
5965 asection *sec;
5966 struct elf_link_hash_entry *h;
5967 bfd_vma offset;
5968 {
5969 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
5970 struct elf_link_hash_entry **search, *child;
5971 bfd_size_type extsymcount;
5972
5973 /* The sh_info field of the symtab header tells us where the
5974 external symbols start. We don't care about the local symbols at
5975 this point. */
5976 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
5977 if (!elf_bad_symtab (abfd))
5978 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
5979
5980 sym_hashes = elf_sym_hashes (abfd);
5981 sym_hashes_end = sym_hashes + extsymcount;
5982
5983 /* Hunt down the child symbol, which is in this section at the same
5984 offset as the relocation. */
5985 for (search = sym_hashes; search != sym_hashes_end; ++search)
5986 {
5987 if ((child = *search) != NULL
5988 && (child->root.type == bfd_link_hash_defined
5989 || child->root.type == bfd_link_hash_defweak)
5990 && child->root.u.def.section == sec
5991 && child->root.u.def.value == offset)
5992 goto win;
5993 }
5994
5995 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
5996 bfd_get_filename (abfd), sec->name,
5997 (unsigned long)offset);
5998 bfd_set_error (bfd_error_invalid_operation);
5999 return false;
6000
6001 win:
6002 if (!h)
6003 {
6004 /* This *should* only be the absolute section. It could potentially
6005 be that someone has defined a non-global vtable though, which
6006 would be bad. It isn't worth paging in the local symbols to be
6007 sure though; that case should simply be handled by the assembler. */
6008
6009 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6010 }
6011 else
6012 child->vtable_parent = h;
6013
6014 return true;
6015 }
6016
6017 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
6018
6019 boolean
6020 elf_gc_record_vtentry (abfd, sec, h, addend)
6021 bfd *abfd;
6022 asection *sec;
6023 struct elf_link_hash_entry *h;
6024 bfd_vma addend;
6025 {
6026 if (addend >= h->vtable_entries_size)
6027 {
6028 size_t size, bytes;
6029 boolean *ptr = h->vtable_entries_used;
6030
6031 /* While the symbol is undefined, we have to be prepared to handle
6032 a zero size. */
6033 if (h->root.type == bfd_link_hash_undefined)
6034 size = addend;
6035 else
6036 {
6037 size = h->size;
6038 if (size < addend)
6039 {
6040 /* Oops! We've got a reference past the defined end of
6041 the table. This is probably a bug -- shall we warn? */
6042 size = addend;
6043 }
6044 }
6045
6046 /* Allocate one extra entry for use as a "done" flag for the
6047 consolidation pass. */
6048 bytes = (size / FILE_ALIGN + 1) * sizeof(boolean);
6049
6050 if (ptr)
6051 {
6052 size_t oldbytes;
6053
6054 ptr = realloc (ptr-1, bytes);
6055 if (ptr == NULL)
6056 return false;
6057
6058 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof(boolean);
6059 memset (ptr + oldbytes, 0, bytes - oldbytes);
6060 }
6061 else
6062 {
6063 ptr = calloc (1, bytes);
6064 if (ptr == NULL)
6065 return false;
6066 }
6067
6068 /* And arrange for that done flag to be at index -1. */
6069 h->vtable_entries_used = ptr+1;
6070 h->vtable_entries_size = size;
6071 }
6072 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6073
6074 return true;
6075 }
6076
6077 /* And an accompanying bit to work out final got entry offsets once
6078 we're done. Should be called from final_link. */
6079
6080 boolean
6081 elf_gc_common_finalize_got_offsets (abfd, info)
6082 bfd *abfd;
6083 struct bfd_link_info *info;
6084 {
6085 bfd *i;
6086 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6087 bfd_vma gotoff;
6088
6089 /* The GOT offset is relative to the .got section, but the GOT header is
6090 put into the .got.plt section, if the backend uses it. */
6091 if (bed->want_got_plt)
6092 gotoff = 0;
6093 else
6094 gotoff = bed->got_header_size;
6095
6096 /* Do the local .got entries first. */
6097 for (i = info->input_bfds; i; i = i->link_next)
6098 {
6099 bfd_signed_vma *local_got = elf_local_got_refcounts (i);
6100 bfd_size_type j, locsymcount;
6101 Elf_Internal_Shdr *symtab_hdr;
6102
6103 if (!local_got)
6104 continue;
6105
6106 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6107 if (elf_bad_symtab (i))
6108 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6109 else
6110 locsymcount = symtab_hdr->sh_info;
6111
6112 for (j = 0; j < locsymcount; ++j)
6113 {
6114 if (local_got[j] > 0)
6115 {
6116 local_got[j] = gotoff;
6117 gotoff += ARCH_SIZE / 8;
6118 }
6119 else
6120 local_got[j] = (bfd_vma) -1;
6121 }
6122 }
6123
6124 /* Then the global .got and .plt entries. */
6125 elf_link_hash_traverse (elf_hash_table (info),
6126 elf_gc_allocate_got_offsets,
6127 (PTR) &gotoff);
6128 return true;
6129 }
6130
6131 /* We need a special top-level link routine to convert got reference counts
6132 to real got offsets. */
6133
6134 static boolean
6135 elf_gc_allocate_got_offsets (h, offarg)
6136 struct elf_link_hash_entry *h;
6137 PTR offarg;
6138 {
6139 bfd_vma *off = (bfd_vma *) offarg;
6140
6141 if (h->got.refcount > 0)
6142 {
6143 h->got.offset = off[0];
6144 off[0] += ARCH_SIZE / 8;
6145 }
6146 else
6147 h->got.offset = (bfd_vma) -1;
6148
6149 return true;
6150 }
6151
6152 /* Many folk need no more in the way of final link than this, once
6153 got entry reference counting is enabled. */
6154
6155 boolean
6156 elf_gc_common_final_link (abfd, info)
6157 bfd *abfd;
6158 struct bfd_link_info *info;
6159 {
6160 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6161 return false;
6162
6163 /* Invoke the regular ELF backend linker to do all the work. */
6164 return elf_bfd_final_link (abfd, info);
6165 }
6166
6167 /* This function will be called though elf_link_hash_traverse to store
6168 all hash value of the exported symbols in an array. */
6169
6170 static boolean
6171 elf_collect_hash_codes (h, data)
6172 struct elf_link_hash_entry *h;
6173 PTR data;
6174 {
6175 unsigned long **valuep = (unsigned long **) data;
6176 const char *name;
6177 char *p;
6178 unsigned long ha;
6179 char *alc = NULL;
6180
6181 /* Ignore indirect symbols. These are added by the versioning code. */
6182 if (h->dynindx == -1)
6183 return true;
6184
6185 name = h->root.root.string;
6186 p = strchr (name, ELF_VER_CHR);
6187 if (p != NULL)
6188 {
6189 alc = bfd_malloc (p - name + 1);
6190 memcpy (alc, name, p - name);
6191 alc[p - name] = '\0';
6192 name = alc;
6193 }
6194
6195 /* Compute the hash value. */
6196 ha = bfd_elf_hash (name);
6197
6198 /* Store the found hash value in the array given as the argument. */
6199 *(*valuep)++ = ha;
6200
6201 /* And store it in the struct so that we can put it in the hash table
6202 later. */
6203 h->elf_hash_value = ha;
6204
6205 if (alc != NULL)
6206 free (alc);
6207
6208 return true;
6209 }