daily update
[binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2014 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "bfd_stdint.h"
143 #include "elf-bfd.h"
144 #include "bfdlink.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #endif
158
159 #if ARCH_SIZE == 32
160 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
162 #define HOWTO64(...) EMPTY_HOWTO (0)
163 #define HOWTO32(...) HOWTO (__VA_ARGS__)
164 #define LOG_FILE_ALIGN 2
165 #endif
166
167 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
187 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
188
189 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
190 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC)
202
203 #define ELIMINATE_COPY_RELOCS 0
204
205 /* Return size of a relocation entry. HTAB is the bfd's
206 elf_aarch64_link_hash_entry. */
207 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
208
209 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
210 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
211 #define PLT_ENTRY_SIZE (32)
212 #define PLT_SMALL_ENTRY_SIZE (16)
213 #define PLT_TLSDESC_ENTRY_SIZE (32)
214
215 /* Encoding of the nop instruction */
216 #define INSN_NOP 0xd503201f
217
218 #define aarch64_compute_jump_table_size(htab) \
219 (((htab)->root.srelplt == NULL) ? 0 \
220 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
221
222 /* The first entry in a procedure linkage table looks like this
223 if the distance between the PLTGOT and the PLT is < 4GB use
224 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
225 in x16 and needs to work out PLTGOT[1] by using an address of
226 [x16,#-GOT_ENTRY_SIZE]. */
227 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
228 {
229 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
230 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
231 #if ARCH_SIZE == 64
232 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
233 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
234 #else
235 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
236 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
237 #endif
238 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
239 0x1f, 0x20, 0x03, 0xd5, /* nop */
240 0x1f, 0x20, 0x03, 0xd5, /* nop */
241 0x1f, 0x20, 0x03, 0xd5, /* nop */
242 };
243
244 /* Per function entry in a procedure linkage table looks like this
245 if the distance between the PLTGOT and the PLT is < 4GB use
246 these PLT entries. */
247 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
248 {
249 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
250 #if ARCH_SIZE == 64
251 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
252 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
253 #else
254 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
255 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
256 #endif
257 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
258 };
259
260 static const bfd_byte
261 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
262 {
263 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
264 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
265 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
266 #if ARCH_SIZE == 64
267 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
268 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
269 #else
270 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
271 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
272 #endif
273 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
274 0x1f, 0x20, 0x03, 0xd5, /* nop */
275 0x1f, 0x20, 0x03, 0xd5, /* nop */
276 };
277
278 #define elf_info_to_howto elfNN_aarch64_info_to_howto
279 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
280
281 #define AARCH64_ELF_ABI_VERSION 0
282
283 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
284 #define ALL_ONES (~ (bfd_vma) 0)
285
286 /* Indexed by the bfd interal reloc enumerators.
287 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
288 in reloc.c. */
289
290 static reloc_howto_type elfNN_aarch64_howto_table[] =
291 {
292 EMPTY_HOWTO (0),
293
294 /* Basic data relocations. */
295
296 #if ARCH_SIZE == 64
297 HOWTO (R_AARCH64_NULL, /* type */
298 0, /* rightshift */
299 0, /* size (0 = byte, 1 = short, 2 = long) */
300 0, /* bitsize */
301 FALSE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_dont, /* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_AARCH64_NULL", /* name */
306 FALSE, /* partial_inplace */
307 0, /* src_mask */
308 0, /* dst_mask */
309 FALSE), /* pcrel_offset */
310 #else
311 HOWTO (R_AARCH64_NONE, /* type */
312 0, /* rightshift */
313 0, /* size (0 = byte, 1 = short, 2 = long) */
314 0, /* bitsize */
315 FALSE, /* pc_relative */
316 0, /* bitpos */
317 complain_overflow_dont, /* complain_on_overflow */
318 bfd_elf_generic_reloc, /* special_function */
319 "R_AARCH64_NONE", /* name */
320 FALSE, /* partial_inplace */
321 0, /* src_mask */
322 0, /* dst_mask */
323 FALSE), /* pcrel_offset */
324 #endif
325
326 /* .xword: (S+A) */
327 HOWTO64 (AARCH64_R (ABS64), /* type */
328 0, /* rightshift */
329 4, /* size (4 = long long) */
330 64, /* bitsize */
331 FALSE, /* pc_relative */
332 0, /* bitpos */
333 complain_overflow_unsigned, /* complain_on_overflow */
334 bfd_elf_generic_reloc, /* special_function */
335 AARCH64_R_STR (ABS64), /* name */
336 FALSE, /* partial_inplace */
337 ALL_ONES, /* src_mask */
338 ALL_ONES, /* dst_mask */
339 FALSE), /* pcrel_offset */
340
341 /* .word: (S+A) */
342 HOWTO (AARCH64_R (ABS32), /* type */
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_unsigned, /* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 AARCH64_R_STR (ABS32), /* name */
351 FALSE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 /* .half: (S+A) */
357 HOWTO (AARCH64_R (ABS16), /* type */
358 0, /* rightshift */
359 1, /* size (0 = byte, 1 = short, 2 = long) */
360 16, /* bitsize */
361 FALSE, /* pc_relative */
362 0, /* bitpos */
363 complain_overflow_unsigned, /* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
365 AARCH64_R_STR (ABS16), /* name */
366 FALSE, /* partial_inplace */
367 0xffff, /* src_mask */
368 0xffff, /* dst_mask */
369 FALSE), /* pcrel_offset */
370
371 /* .xword: (S+A-P) */
372 HOWTO64 (AARCH64_R (PREL64), /* type */
373 0, /* rightshift */
374 4, /* size (4 = long long) */
375 64, /* bitsize */
376 TRUE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_signed, /* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 AARCH64_R_STR (PREL64), /* name */
381 FALSE, /* partial_inplace */
382 ALL_ONES, /* src_mask */
383 ALL_ONES, /* dst_mask */
384 TRUE), /* pcrel_offset */
385
386 /* .word: (S+A-P) */
387 HOWTO (AARCH64_R (PREL32), /* type */
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 32, /* bitsize */
391 TRUE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_signed, /* complain_on_overflow */
394 bfd_elf_generic_reloc, /* special_function */
395 AARCH64_R_STR (PREL32), /* name */
396 FALSE, /* partial_inplace */
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
399 TRUE), /* pcrel_offset */
400
401 /* .half: (S+A-P) */
402 HOWTO (AARCH64_R (PREL16), /* type */
403 0, /* rightshift */
404 1, /* size (0 = byte, 1 = short, 2 = long) */
405 16, /* bitsize */
406 TRUE, /* pc_relative */
407 0, /* bitpos */
408 complain_overflow_signed, /* complain_on_overflow */
409 bfd_elf_generic_reloc, /* special_function */
410 AARCH64_R_STR (PREL16), /* name */
411 FALSE, /* partial_inplace */
412 0xffff, /* src_mask */
413 0xffff, /* dst_mask */
414 TRUE), /* pcrel_offset */
415
416 /* Group relocations to create a 16, 32, 48 or 64 bit
417 unsigned data or abs address inline. */
418
419 /* MOVZ: ((S+A) >> 0) & 0xffff */
420 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
421 0, /* rightshift */
422 2, /* size (0 = byte, 1 = short, 2 = long) */
423 16, /* bitsize */
424 FALSE, /* pc_relative */
425 0, /* bitpos */
426 complain_overflow_unsigned, /* complain_on_overflow */
427 bfd_elf_generic_reloc, /* special_function */
428 AARCH64_R_STR (MOVW_UABS_G0), /* name */
429 FALSE, /* partial_inplace */
430 0xffff, /* src_mask */
431 0xffff, /* dst_mask */
432 FALSE), /* pcrel_offset */
433
434 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
435 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
436 0, /* rightshift */
437 2, /* size (0 = byte, 1 = short, 2 = long) */
438 16, /* bitsize */
439 FALSE, /* pc_relative */
440 0, /* bitpos */
441 complain_overflow_dont, /* complain_on_overflow */
442 bfd_elf_generic_reloc, /* special_function */
443 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
444 FALSE, /* partial_inplace */
445 0xffff, /* src_mask */
446 0xffff, /* dst_mask */
447 FALSE), /* pcrel_offset */
448
449 /* MOVZ: ((S+A) >> 16) & 0xffff */
450 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
451 16, /* rightshift */
452 2, /* size (0 = byte, 1 = short, 2 = long) */
453 16, /* bitsize */
454 FALSE, /* pc_relative */
455 0, /* bitpos */
456 complain_overflow_unsigned, /* complain_on_overflow */
457 bfd_elf_generic_reloc, /* special_function */
458 AARCH64_R_STR (MOVW_UABS_G1), /* name */
459 FALSE, /* partial_inplace */
460 0xffff, /* src_mask */
461 0xffff, /* dst_mask */
462 FALSE), /* pcrel_offset */
463
464 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
465 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
466 16, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 FALSE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_dont, /* complain_on_overflow */
472 bfd_elf_generic_reloc, /* special_function */
473 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
474 FALSE, /* partial_inplace */
475 0xffff, /* src_mask */
476 0xffff, /* dst_mask */
477 FALSE), /* pcrel_offset */
478
479 /* MOVZ: ((S+A) >> 32) & 0xffff */
480 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
481 32, /* rightshift */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
483 16, /* bitsize */
484 FALSE, /* pc_relative */
485 0, /* bitpos */
486 complain_overflow_unsigned, /* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
488 AARCH64_R_STR (MOVW_UABS_G2), /* name */
489 FALSE, /* partial_inplace */
490 0xffff, /* src_mask */
491 0xffff, /* dst_mask */
492 FALSE), /* pcrel_offset */
493
494 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
495 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
496 32, /* rightshift */
497 2, /* size (0 = byte, 1 = short, 2 = long) */
498 16, /* bitsize */
499 FALSE, /* pc_relative */
500 0, /* bitpos */
501 complain_overflow_dont, /* complain_on_overflow */
502 bfd_elf_generic_reloc, /* special_function */
503 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
504 FALSE, /* partial_inplace */
505 0xffff, /* src_mask */
506 0xffff, /* dst_mask */
507 FALSE), /* pcrel_offset */
508
509 /* MOVZ: ((S+A) >> 48) & 0xffff */
510 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
511 48, /* rightshift */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
513 16, /* bitsize */
514 FALSE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_unsigned, /* complain_on_overflow */
517 bfd_elf_generic_reloc, /* special_function */
518 AARCH64_R_STR (MOVW_UABS_G3), /* name */
519 FALSE, /* partial_inplace */
520 0xffff, /* src_mask */
521 0xffff, /* dst_mask */
522 FALSE), /* pcrel_offset */
523
524 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
525 signed data or abs address inline. Will change instruction
526 to MOVN or MOVZ depending on sign of calculated value. */
527
528 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
529 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
530 0, /* rightshift */
531 2, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed, /* complain_on_overflow */
536 bfd_elf_generic_reloc, /* special_function */
537 AARCH64_R_STR (MOVW_SABS_G0), /* name */
538 FALSE, /* partial_inplace */
539 0xffff, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
544 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
545 16, /* rightshift */
546 2, /* size (0 = byte, 1 = short, 2 = long) */
547 16, /* bitsize */
548 FALSE, /* pc_relative */
549 0, /* bitpos */
550 complain_overflow_signed, /* complain_on_overflow */
551 bfd_elf_generic_reloc, /* special_function */
552 AARCH64_R_STR (MOVW_SABS_G1), /* name */
553 FALSE, /* partial_inplace */
554 0xffff, /* src_mask */
555 0xffff, /* dst_mask */
556 FALSE), /* pcrel_offset */
557
558 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
559 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
560 32, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 16, /* bitsize */
563 FALSE, /* pc_relative */
564 0, /* bitpos */
565 complain_overflow_signed, /* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 AARCH64_R_STR (MOVW_SABS_G2), /* name */
568 FALSE, /* partial_inplace */
569 0xffff, /* src_mask */
570 0xffff, /* dst_mask */
571 FALSE), /* pcrel_offset */
572
573 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
574 addresses: PG(x) is (x & ~0xfff). */
575
576 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
577 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
578 2, /* rightshift */
579 2, /* size (0 = byte, 1 = short, 2 = long) */
580 19, /* bitsize */
581 TRUE, /* pc_relative */
582 0, /* bitpos */
583 complain_overflow_signed, /* complain_on_overflow */
584 bfd_elf_generic_reloc, /* special_function */
585 AARCH64_R_STR (LD_PREL_LO19), /* name */
586 FALSE, /* partial_inplace */
587 0x7ffff, /* src_mask */
588 0x7ffff, /* dst_mask */
589 TRUE), /* pcrel_offset */
590
591 /* ADR: (S+A-P) & 0x1fffff */
592 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
593 0, /* rightshift */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
595 21, /* bitsize */
596 TRUE, /* pc_relative */
597 0, /* bitpos */
598 complain_overflow_signed, /* complain_on_overflow */
599 bfd_elf_generic_reloc, /* special_function */
600 AARCH64_R_STR (ADR_PREL_LO21), /* name */
601 FALSE, /* partial_inplace */
602 0x1fffff, /* src_mask */
603 0x1fffff, /* dst_mask */
604 TRUE), /* pcrel_offset */
605
606 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
607 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
608 12, /* rightshift */
609 2, /* size (0 = byte, 1 = short, 2 = long) */
610 21, /* bitsize */
611 TRUE, /* pc_relative */
612 0, /* bitpos */
613 complain_overflow_signed, /* complain_on_overflow */
614 bfd_elf_generic_reloc, /* special_function */
615 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
616 FALSE, /* partial_inplace */
617 0x1fffff, /* src_mask */
618 0x1fffff, /* dst_mask */
619 TRUE), /* pcrel_offset */
620
621 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
622 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
623 12, /* rightshift */
624 2, /* size (0 = byte, 1 = short, 2 = long) */
625 21, /* bitsize */
626 TRUE, /* pc_relative */
627 0, /* bitpos */
628 complain_overflow_dont, /* complain_on_overflow */
629 bfd_elf_generic_reloc, /* special_function */
630 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
631 FALSE, /* partial_inplace */
632 0x1fffff, /* src_mask */
633 0x1fffff, /* dst_mask */
634 TRUE), /* pcrel_offset */
635
636 /* ADD: (S+A) & 0xfff [no overflow check] */
637 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
638 0, /* rightshift */
639 2, /* size (0 = byte, 1 = short, 2 = long) */
640 12, /* bitsize */
641 FALSE, /* pc_relative */
642 10, /* bitpos */
643 complain_overflow_dont, /* complain_on_overflow */
644 bfd_elf_generic_reloc, /* special_function */
645 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
646 FALSE, /* partial_inplace */
647 0x3ffc00, /* src_mask */
648 0x3ffc00, /* dst_mask */
649 FALSE), /* pcrel_offset */
650
651 /* LD/ST8: (S+A) & 0xfff */
652 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 12, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont, /* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
661 FALSE, /* partial_inplace */
662 0xfff, /* src_mask */
663 0xfff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 /* Relocations for control-flow instructions. */
667
668 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
669 HOWTO (AARCH64_R (TSTBR14), /* type */
670 2, /* rightshift */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
672 14, /* bitsize */
673 TRUE, /* pc_relative */
674 0, /* bitpos */
675 complain_overflow_signed, /* complain_on_overflow */
676 bfd_elf_generic_reloc, /* special_function */
677 AARCH64_R_STR (TSTBR14), /* name */
678 FALSE, /* partial_inplace */
679 0x3fff, /* src_mask */
680 0x3fff, /* dst_mask */
681 TRUE), /* pcrel_offset */
682
683 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
684 HOWTO (AARCH64_R (CONDBR19), /* type */
685 2, /* rightshift */
686 2, /* size (0 = byte, 1 = short, 2 = long) */
687 19, /* bitsize */
688 TRUE, /* pc_relative */
689 0, /* bitpos */
690 complain_overflow_signed, /* complain_on_overflow */
691 bfd_elf_generic_reloc, /* special_function */
692 AARCH64_R_STR (CONDBR19), /* name */
693 FALSE, /* partial_inplace */
694 0x7ffff, /* src_mask */
695 0x7ffff, /* dst_mask */
696 TRUE), /* pcrel_offset */
697
698 /* B: ((S+A-P) >> 2) & 0x3ffffff */
699 HOWTO (AARCH64_R (JUMP26), /* type */
700 2, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 26, /* bitsize */
703 TRUE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_signed, /* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 AARCH64_R_STR (JUMP26), /* name */
708 FALSE, /* partial_inplace */
709 0x3ffffff, /* src_mask */
710 0x3ffffff, /* dst_mask */
711 TRUE), /* pcrel_offset */
712
713 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
714 HOWTO (AARCH64_R (CALL26), /* type */
715 2, /* rightshift */
716 2, /* size (0 = byte, 1 = short, 2 = long) */
717 26, /* bitsize */
718 TRUE, /* pc_relative */
719 0, /* bitpos */
720 complain_overflow_signed, /* complain_on_overflow */
721 bfd_elf_generic_reloc, /* special_function */
722 AARCH64_R_STR (CALL26), /* name */
723 FALSE, /* partial_inplace */
724 0x3ffffff, /* src_mask */
725 0x3ffffff, /* dst_mask */
726 TRUE), /* pcrel_offset */
727
728 /* LD/ST16: (S+A) & 0xffe */
729 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
730 1, /* rightshift */
731 2, /* size (0 = byte, 1 = short, 2 = long) */
732 12, /* bitsize */
733 FALSE, /* pc_relative */
734 0, /* bitpos */
735 complain_overflow_dont, /* complain_on_overflow */
736 bfd_elf_generic_reloc, /* special_function */
737 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
738 FALSE, /* partial_inplace */
739 0xffe, /* src_mask */
740 0xffe, /* dst_mask */
741 FALSE), /* pcrel_offset */
742
743 /* LD/ST32: (S+A) & 0xffc */
744 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
745 2, /* rightshift */
746 2, /* size (0 = byte, 1 = short, 2 = long) */
747 12, /* bitsize */
748 FALSE, /* pc_relative */
749 0, /* bitpos */
750 complain_overflow_dont, /* complain_on_overflow */
751 bfd_elf_generic_reloc, /* special_function */
752 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
753 FALSE, /* partial_inplace */
754 0xffc, /* src_mask */
755 0xffc, /* dst_mask */
756 FALSE), /* pcrel_offset */
757
758 /* LD/ST64: (S+A) & 0xff8 */
759 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
760 3, /* rightshift */
761 2, /* size (0 = byte, 1 = short, 2 = long) */
762 12, /* bitsize */
763 FALSE, /* pc_relative */
764 0, /* bitpos */
765 complain_overflow_dont, /* complain_on_overflow */
766 bfd_elf_generic_reloc, /* special_function */
767 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
768 FALSE, /* partial_inplace */
769 0xff8, /* src_mask */
770 0xff8, /* dst_mask */
771 FALSE), /* pcrel_offset */
772
773 /* LD/ST128: (S+A) & 0xff0 */
774 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
775 4, /* rightshift */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
777 12, /* bitsize */
778 FALSE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont, /* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
782 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
783 FALSE, /* partial_inplace */
784 0xff0, /* src_mask */
785 0xff0, /* dst_mask */
786 FALSE), /* pcrel_offset */
787
788 /* Set a load-literal immediate field to bits
789 0x1FFFFC of G(S)-P */
790 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
791 2, /* rightshift */
792 2, /* size (0 = byte,1 = short,2 = long) */
793 19, /* bitsize */
794 TRUE, /* pc_relative */
795 0, /* bitpos */
796 complain_overflow_signed, /* complain_on_overflow */
797 bfd_elf_generic_reloc, /* special_function */
798 AARCH64_R_STR (GOT_LD_PREL19), /* name */
799 FALSE, /* partial_inplace */
800 0xffffe0, /* src_mask */
801 0xffffe0, /* dst_mask */
802 TRUE), /* pcrel_offset */
803
804 /* Get to the page for the GOT entry for the symbol
805 (G(S) - P) using an ADRP instruction. */
806 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
807 12, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 21, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
815 FALSE, /* partial_inplace */
816 0x1fffff, /* src_mask */
817 0x1fffff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 /* LD64: GOT offset G(S) & 0xff8 */
821 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
822 3, /* rightshift */
823 2, /* size (0 = byte, 1 = short, 2 = long) */
824 12, /* bitsize */
825 FALSE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_dont, /* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
829 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
830 FALSE, /* partial_inplace */
831 0xff8, /* src_mask */
832 0xff8, /* dst_mask */
833 FALSE), /* pcrel_offset */
834
835 /* LD32: GOT offset G(S) & 0xffc */
836 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
837 2, /* rightshift */
838 2, /* size (0 = byte, 1 = short, 2 = long) */
839 12, /* bitsize */
840 FALSE, /* pc_relative */
841 0, /* bitpos */
842 complain_overflow_dont, /* complain_on_overflow */
843 bfd_elf_generic_reloc, /* special_function */
844 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
845 FALSE, /* partial_inplace */
846 0xffc, /* src_mask */
847 0xffc, /* dst_mask */
848 FALSE), /* pcrel_offset */
849
850 /* Get to the page for the GOT entry for the symbol
851 (G(S) - P) using an ADRP instruction. */
852 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
853 12, /* rightshift */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
855 21, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont, /* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
860 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
861 FALSE, /* partial_inplace */
862 0x1fffff, /* src_mask */
863 0x1fffff, /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
867 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
868 0, /* rightshift */
869 2, /* size (0 = byte, 1 = short, 2 = long) */
870 12, /* bitsize */
871 FALSE, /* pc_relative */
872 0, /* bitpos */
873 complain_overflow_dont, /* complain_on_overflow */
874 bfd_elf_generic_reloc, /* special_function */
875 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
876 FALSE, /* partial_inplace */
877 0xfff, /* src_mask */
878 0xfff, /* dst_mask */
879 FALSE), /* pcrel_offset */
880
881 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
882 16, /* rightshift */
883 2, /* size (0 = byte, 1 = short, 2 = long) */
884 16, /* bitsize */
885 FALSE, /* pc_relative */
886 0, /* bitpos */
887 complain_overflow_dont, /* complain_on_overflow */
888 bfd_elf_generic_reloc, /* special_function */
889 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
890 FALSE, /* partial_inplace */
891 0xffff, /* src_mask */
892 0xffff, /* dst_mask */
893 FALSE), /* pcrel_offset */
894
895 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 FALSE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont, /* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
904 FALSE, /* partial_inplace */
905 0xffff, /* src_mask */
906 0xffff, /* dst_mask */
907 FALSE), /* pcrel_offset */
908
909 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
910 12, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 21, /* bitsize */
913 FALSE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont, /* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
918 FALSE, /* partial_inplace */
919 0x1fffff, /* src_mask */
920 0x1fffff, /* dst_mask */
921 FALSE), /* pcrel_offset */
922
923 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
924 3, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 12, /* bitsize */
927 FALSE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont, /* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
932 FALSE, /* partial_inplace */
933 0xff8, /* src_mask */
934 0xff8, /* dst_mask */
935 FALSE), /* pcrel_offset */
936
937 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
938 2, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 12, /* bitsize */
941 FALSE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
946 FALSE, /* partial_inplace */
947 0xffc, /* src_mask */
948 0xffc, /* dst_mask */
949 FALSE), /* pcrel_offset */
950
951 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
952 2, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 21, /* bitsize */
955 FALSE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
960 FALSE, /* partial_inplace */
961 0x1ffffc, /* src_mask */
962 0x1ffffc, /* dst_mask */
963 FALSE), /* pcrel_offset */
964
965 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
966 32, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 12, /* bitsize */
969 FALSE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont, /* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
974 FALSE, /* partial_inplace */
975 0xffff, /* src_mask */
976 0xffff, /* dst_mask */
977 FALSE), /* pcrel_offset */
978
979 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
980 16, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 12, /* bitsize */
983 FALSE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont, /* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
988 FALSE, /* partial_inplace */
989 0xffff, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE), /* pcrel_offset */
992
993 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
994 16, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 12, /* bitsize */
997 FALSE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont, /* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1002 FALSE, /* partial_inplace */
1003 0xffff, /* src_mask */
1004 0xffff, /* dst_mask */
1005 FALSE), /* pcrel_offset */
1006
1007 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 12, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont, /* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1016 FALSE, /* partial_inplace */
1017 0xffff, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 12, /* bitsize */
1025 FALSE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont, /* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1030 FALSE, /* partial_inplace */
1031 0xffff, /* src_mask */
1032 0xffff, /* dst_mask */
1033 FALSE), /* pcrel_offset */
1034
1035 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1036 12, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 12, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont, /* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1044 FALSE, /* partial_inplace */
1045 0xfff, /* src_mask */
1046 0xfff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
1049 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 12, /* bitsize */
1053 FALSE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont, /* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1058 FALSE, /* partial_inplace */
1059 0xfff, /* src_mask */
1060 0xfff, /* dst_mask */
1061 FALSE), /* pcrel_offset */
1062
1063 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 12, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1072 FALSE, /* partial_inplace */
1073 0xfff, /* src_mask */
1074 0xfff, /* dst_mask */
1075 FALSE), /* pcrel_offset */
1076
1077 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1078 2, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 21, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont, /* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1086 FALSE, /* partial_inplace */
1087 0x1ffffc, /* src_mask */
1088 0x1ffffc, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 21, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont, /* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1100 FALSE, /* partial_inplace */
1101 0x1fffff, /* src_mask */
1102 0x1fffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 /* Get to the page for the GOT entry for the symbol
1106 (G(S) - P) using an ADRP instruction. */
1107 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1108 12, /* rightshift */
1109 2, /* size (0 = byte, 1 = short, 2 = long) */
1110 21, /* bitsize */
1111 TRUE, /* pc_relative */
1112 0, /* bitpos */
1113 complain_overflow_dont, /* complain_on_overflow */
1114 bfd_elf_generic_reloc, /* special_function */
1115 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1116 FALSE, /* partial_inplace */
1117 0x1fffff, /* src_mask */
1118 0x1fffff, /* dst_mask */
1119 TRUE), /* pcrel_offset */
1120
1121 /* LD64: GOT offset G(S) & 0xff8. */
1122 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC), /* type */
1123 3, /* rightshift */
1124 2, /* size (0 = byte, 1 = short, 2 = long) */
1125 12, /* bitsize */
1126 FALSE, /* pc_relative */
1127 0, /* bitpos */
1128 complain_overflow_dont, /* complain_on_overflow */
1129 bfd_elf_generic_reloc, /* special_function */
1130 AARCH64_R_STR (TLSDESC_LD64_LO12_NC), /* name */
1131 FALSE, /* partial_inplace */
1132 0xff8, /* src_mask */
1133 0xff8, /* dst_mask */
1134 FALSE), /* pcrel_offset */
1135
1136 /* LD32: GOT offset G(S) & 0xffc. */
1137 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1138 2, /* rightshift */
1139 2, /* size (0 = byte, 1 = short, 2 = long) */
1140 12, /* bitsize */
1141 FALSE, /* pc_relative */
1142 0, /* bitpos */
1143 complain_overflow_dont, /* complain_on_overflow */
1144 bfd_elf_generic_reloc, /* special_function */
1145 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1146 FALSE, /* partial_inplace */
1147 0xffc, /* src_mask */
1148 0xffc, /* dst_mask */
1149 FALSE), /* pcrel_offset */
1150
1151 /* ADD: GOT offset G(S) & 0xfff. */
1152 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC), /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 12, /* bitsize */
1156 FALSE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont, /* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 AARCH64_R_STR (TLSDESC_ADD_LO12_NC), /* name */
1161 FALSE, /* partial_inplace */
1162 0xfff, /* src_mask */
1163 0xfff, /* dst_mask */
1164 FALSE), /* pcrel_offset */
1165
1166 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1167 16, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 12, /* bitsize */
1170 FALSE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont, /* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1175 FALSE, /* partial_inplace */
1176 0xffff, /* src_mask */
1177 0xffff, /* dst_mask */
1178 FALSE), /* pcrel_offset */
1179
1180 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 12, /* bitsize */
1184 FALSE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont, /* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1189 FALSE, /* partial_inplace */
1190 0xffff, /* src_mask */
1191 0xffff, /* dst_mask */
1192 FALSE), /* pcrel_offset */
1193
1194 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 12, /* bitsize */
1198 FALSE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont, /* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 AARCH64_R_STR (TLSDESC_LDR), /* name */
1203 FALSE, /* partial_inplace */
1204 0x0, /* src_mask */
1205 0x0, /* dst_mask */
1206 FALSE), /* pcrel_offset */
1207
1208 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 12, /* bitsize */
1212 FALSE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont, /* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 AARCH64_R_STR (TLSDESC_ADD), /* name */
1217 FALSE, /* partial_inplace */
1218 0x0, /* src_mask */
1219 0x0, /* dst_mask */
1220 FALSE), /* pcrel_offset */
1221
1222 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 12, /* bitsize */
1226 FALSE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont, /* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 AARCH64_R_STR (TLSDESC_CALL), /* name */
1231 FALSE, /* partial_inplace */
1232 0x0, /* src_mask */
1233 0x0, /* dst_mask */
1234 FALSE), /* pcrel_offset */
1235
1236 HOWTO (AARCH64_R (COPY), /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 64, /* bitsize */
1240 FALSE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_bitfield, /* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 AARCH64_R_STR (COPY), /* name */
1245 TRUE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 FALSE), /* pcrel_offset */
1249
1250 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 64, /* bitsize */
1254 FALSE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_bitfield, /* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 AARCH64_R_STR (GLOB_DAT), /* name */
1259 TRUE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 FALSE), /* pcrel_offset */
1263
1264 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1265 0, /* rightshift */
1266 2, /* size (0 = byte, 1 = short, 2 = long) */
1267 64, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_bitfield, /* complain_on_overflow */
1271 bfd_elf_generic_reloc, /* special_function */
1272 AARCH64_R_STR (JUMP_SLOT), /* name */
1273 TRUE, /* partial_inplace */
1274 0xffffffff, /* src_mask */
1275 0xffffffff, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 HOWTO (AARCH64_R (RELATIVE), /* type */
1279 0, /* rightshift */
1280 2, /* size (0 = byte, 1 = short, 2 = long) */
1281 64, /* bitsize */
1282 FALSE, /* pc_relative */
1283 0, /* bitpos */
1284 complain_overflow_bitfield, /* complain_on_overflow */
1285 bfd_elf_generic_reloc, /* special_function */
1286 AARCH64_R_STR (RELATIVE), /* name */
1287 TRUE, /* partial_inplace */
1288 ALL_ONES, /* src_mask */
1289 ALL_ONES, /* dst_mask */
1290 FALSE), /* pcrel_offset */
1291
1292 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1293 0, /* rightshift */
1294 2, /* size (0 = byte, 1 = short, 2 = long) */
1295 64, /* bitsize */
1296 FALSE, /* pc_relative */
1297 0, /* bitpos */
1298 complain_overflow_dont, /* complain_on_overflow */
1299 bfd_elf_generic_reloc, /* special_function */
1300 #if ARCH_SIZE == 64
1301 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1302 #else
1303 AARCH64_R_STR (TLS_DTPMOD), /* name */
1304 #endif
1305 FALSE, /* partial_inplace */
1306 0, /* src_mask */
1307 ALL_ONES, /* dst_mask */
1308 FALSE), /* pc_reloffset */
1309
1310 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1311 0, /* rightshift */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 64, /* bitsize */
1314 FALSE, /* pc_relative */
1315 0, /* bitpos */
1316 complain_overflow_dont, /* complain_on_overflow */
1317 bfd_elf_generic_reloc, /* special_function */
1318 #if ARCH_SIZE == 64
1319 AARCH64_R_STR (TLS_DTPREL64), /* name */
1320 #else
1321 AARCH64_R_STR (TLS_DTPREL), /* name */
1322 #endif
1323 FALSE, /* partial_inplace */
1324 0, /* src_mask */
1325 ALL_ONES, /* dst_mask */
1326 FALSE), /* pcrel_offset */
1327
1328 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1329 0, /* rightshift */
1330 2, /* size (0 = byte, 1 = short, 2 = long) */
1331 64, /* bitsize */
1332 FALSE, /* pc_relative */
1333 0, /* bitpos */
1334 complain_overflow_dont, /* complain_on_overflow */
1335 bfd_elf_generic_reloc, /* special_function */
1336 #if ARCH_SIZE == 64
1337 AARCH64_R_STR (TLS_TPREL64), /* name */
1338 #else
1339 AARCH64_R_STR (TLS_TPREL), /* name */
1340 #endif
1341 FALSE, /* partial_inplace */
1342 0, /* src_mask */
1343 ALL_ONES, /* dst_mask */
1344 FALSE), /* pcrel_offset */
1345
1346 HOWTO (AARCH64_R (TLSDESC), /* type */
1347 0, /* rightshift */
1348 2, /* size (0 = byte, 1 = short, 2 = long) */
1349 64, /* bitsize */
1350 FALSE, /* pc_relative */
1351 0, /* bitpos */
1352 complain_overflow_dont, /* complain_on_overflow */
1353 bfd_elf_generic_reloc, /* special_function */
1354 AARCH64_R_STR (TLSDESC), /* name */
1355 FALSE, /* partial_inplace */
1356 0, /* src_mask */
1357 ALL_ONES, /* dst_mask */
1358 FALSE), /* pcrel_offset */
1359
1360 HOWTO (AARCH64_R (IRELATIVE), /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 64, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_bitfield, /* complain_on_overflow */
1367 bfd_elf_generic_reloc, /* special_function */
1368 AARCH64_R_STR (IRELATIVE), /* name */
1369 FALSE, /* partial_inplace */
1370 0, /* src_mask */
1371 ALL_ONES, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1373
1374 EMPTY_HOWTO (0),
1375 };
1376
1377 static reloc_howto_type elfNN_aarch64_howto_none =
1378 HOWTO (R_AARCH64_NONE, /* type */
1379 0, /* rightshift */
1380 0, /* size (0 = byte, 1 = short, 2 = long) */
1381 0, /* bitsize */
1382 FALSE, /* pc_relative */
1383 0, /* bitpos */
1384 complain_overflow_dont,/* complain_on_overflow */
1385 bfd_elf_generic_reloc, /* special_function */
1386 "R_AARCH64_NONE", /* name */
1387 FALSE, /* partial_inplace */
1388 0, /* src_mask */
1389 0, /* dst_mask */
1390 FALSE); /* pcrel_offset */
1391
1392 /* Given HOWTO, return the bfd internal relocation enumerator. */
1393
1394 static bfd_reloc_code_real_type
1395 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1396 {
1397 const int size
1398 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1399 const ptrdiff_t offset
1400 = howto - elfNN_aarch64_howto_table;
1401
1402 if (offset > 0 && offset < size - 1)
1403 return BFD_RELOC_AARCH64_RELOC_START + offset;
1404
1405 if (howto == &elfNN_aarch64_howto_none)
1406 return BFD_RELOC_AARCH64_NONE;
1407
1408 return BFD_RELOC_AARCH64_RELOC_START;
1409 }
1410
1411 /* Given R_TYPE, return the bfd internal relocation enumerator. */
1412
1413 static bfd_reloc_code_real_type
1414 elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1415 {
1416 static bfd_boolean initialized_p = FALSE;
1417 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1418 static unsigned int offsets[R_AARCH64_end];
1419
1420 if (initialized_p == FALSE)
1421 {
1422 unsigned int i;
1423
1424 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1425 if (elfNN_aarch64_howto_table[i].type != 0)
1426 offsets[elfNN_aarch64_howto_table[i].type] = i;
1427
1428 initialized_p = TRUE;
1429 }
1430
1431 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1432 return BFD_RELOC_AARCH64_NONE;
1433
1434 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1435 }
1436
1437 struct elf_aarch64_reloc_map
1438 {
1439 bfd_reloc_code_real_type from;
1440 bfd_reloc_code_real_type to;
1441 };
1442
1443 /* Map bfd generic reloc to AArch64-specific reloc. */
1444 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1445 {
1446 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1447
1448 /* Basic data relocations. */
1449 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1450 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1451 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1452 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1453 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1454 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1455 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1456 };
1457
1458 /* Given the bfd internal relocation enumerator in CODE, return the
1459 corresponding howto entry. */
1460
1461 static reloc_howto_type *
1462 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1463 {
1464 unsigned int i;
1465
1466 /* Convert bfd generic reloc to AArch64-specific reloc. */
1467 if (code < BFD_RELOC_AARCH64_RELOC_START
1468 || code > BFD_RELOC_AARCH64_RELOC_END)
1469 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1470 if (elf_aarch64_reloc_map[i].from == code)
1471 {
1472 code = elf_aarch64_reloc_map[i].to;
1473 break;
1474 }
1475
1476 if (code > BFD_RELOC_AARCH64_RELOC_START
1477 && code < BFD_RELOC_AARCH64_RELOC_END)
1478 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1479 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1480
1481 if (code == BFD_RELOC_AARCH64_NONE)
1482 return &elfNN_aarch64_howto_none;
1483
1484 return NULL;
1485 }
1486
1487 static reloc_howto_type *
1488 elfNN_aarch64_howto_from_type (unsigned int r_type)
1489 {
1490 bfd_reloc_code_real_type val;
1491 reloc_howto_type *howto;
1492
1493 #if ARCH_SIZE == 32
1494 if (r_type > 256)
1495 {
1496 bfd_set_error (bfd_error_bad_value);
1497 return NULL;
1498 }
1499 #endif
1500
1501 if (r_type == R_AARCH64_NONE)
1502 return &elfNN_aarch64_howto_none;
1503
1504 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1505 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
1506
1507 if (howto != NULL)
1508 return howto;
1509
1510 bfd_set_error (bfd_error_bad_value);
1511 return NULL;
1512 }
1513
1514 static void
1515 elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
1516 Elf_Internal_Rela *elf_reloc)
1517 {
1518 unsigned int r_type;
1519
1520 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1521 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
1522 }
1523
1524 static reloc_howto_type *
1525 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1526 bfd_reloc_code_real_type code)
1527 {
1528 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
1529
1530 if (howto != NULL)
1531 return howto;
1532
1533 bfd_set_error (bfd_error_bad_value);
1534 return NULL;
1535 }
1536
1537 static reloc_howto_type *
1538 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1539 const char *r_name)
1540 {
1541 unsigned int i;
1542
1543 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1544 if (elfNN_aarch64_howto_table[i].name != NULL
1545 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
1546 return &elfNN_aarch64_howto_table[i];
1547
1548 return NULL;
1549 }
1550
1551 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
1552 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
1553 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
1554 #define TARGET_BIG_NAME "elfNN-bigaarch64"
1555
1556 /* The linker script knows the section names for placement.
1557 The entry_names are used to do simple name mangling on the stubs.
1558 Given a function name, and its type, the stub can be found. The
1559 name can be changed. The only requirement is the %s be present. */
1560 #define STUB_ENTRY_NAME "__%s_veneer"
1561
1562 /* The name of the dynamic interpreter. This is put in the .interp
1563 section. */
1564 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
1565
1566 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
1567 (((1 << 25) - 1) << 2)
1568 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
1569 (-((1 << 25) << 2))
1570
1571 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
1572 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
1573
1574 static int
1575 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
1576 {
1577 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
1578 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
1579 }
1580
1581 static int
1582 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
1583 {
1584 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
1585 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
1586 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
1587 }
1588
1589 static const uint32_t aarch64_adrp_branch_stub [] =
1590 {
1591 0x90000010, /* adrp ip0, X */
1592 /* R_AARCH64_ADR_HI21_PCREL(X) */
1593 0x91000210, /* add ip0, ip0, :lo12:X */
1594 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
1595 0xd61f0200, /* br ip0 */
1596 };
1597
1598 static const uint32_t aarch64_long_branch_stub[] =
1599 {
1600 #if ARCH_SIZE == 64
1601 0x58000090, /* ldr ip0, 1f */
1602 #else
1603 0x18000090, /* ldr wip0, 1f */
1604 #endif
1605 0x10000011, /* adr ip1, #0 */
1606 0x8b110210, /* add ip0, ip0, ip1 */
1607 0xd61f0200, /* br ip0 */
1608 0x00000000, /* 1: .xword or .word
1609 R_AARCH64_PRELNN(X) + 12
1610 */
1611 0x00000000,
1612 };
1613
1614 /* Section name for stubs is the associated section name plus this
1615 string. */
1616 #define STUB_SUFFIX ".stub"
1617
1618 enum elf_aarch64_stub_type
1619 {
1620 aarch64_stub_none,
1621 aarch64_stub_adrp_branch,
1622 aarch64_stub_long_branch,
1623 };
1624
1625 struct elf_aarch64_stub_hash_entry
1626 {
1627 /* Base hash table entry structure. */
1628 struct bfd_hash_entry root;
1629
1630 /* The stub section. */
1631 asection *stub_sec;
1632
1633 /* Offset within stub_sec of the beginning of this stub. */
1634 bfd_vma stub_offset;
1635
1636 /* Given the symbol's value and its section we can determine its final
1637 value when building the stubs (so the stub knows where to jump). */
1638 bfd_vma target_value;
1639 asection *target_section;
1640
1641 enum elf_aarch64_stub_type stub_type;
1642
1643 /* The symbol table entry, if any, that this was derived from. */
1644 struct elf_aarch64_link_hash_entry *h;
1645
1646 /* Destination symbol type */
1647 unsigned char st_type;
1648
1649 /* Where this stub is being called from, or, in the case of combined
1650 stub sections, the first input section in the group. */
1651 asection *id_sec;
1652
1653 /* The name for the local symbol at the start of this stub. The
1654 stub name in the hash table has to be unique; this does not, so
1655 it can be friendlier. */
1656 char *output_name;
1657 };
1658
1659 /* Used to build a map of a section. This is required for mixed-endian
1660 code/data. */
1661
1662 typedef struct elf_elf_section_map
1663 {
1664 bfd_vma vma;
1665 char type;
1666 }
1667 elf_aarch64_section_map;
1668
1669
1670 typedef struct _aarch64_elf_section_data
1671 {
1672 struct bfd_elf_section_data elf;
1673 unsigned int mapcount;
1674 unsigned int mapsize;
1675 elf_aarch64_section_map *map;
1676 }
1677 _aarch64_elf_section_data;
1678
1679 #define elf_aarch64_section_data(sec) \
1680 ((_aarch64_elf_section_data *) elf_section_data (sec))
1681
1682 /* The size of the thread control block which is defined to be two pointers. */
1683 #define TCB_SIZE (ARCH_SIZE/8)*2
1684
1685 struct elf_aarch64_local_symbol
1686 {
1687 unsigned int got_type;
1688 bfd_signed_vma got_refcount;
1689 bfd_vma got_offset;
1690
1691 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
1692 offset is from the end of the jump table and reserved entries
1693 within the PLTGOT.
1694
1695 The magic value (bfd_vma) -1 indicates that an offset has not be
1696 allocated. */
1697 bfd_vma tlsdesc_got_jump_table_offset;
1698 };
1699
1700 struct elf_aarch64_obj_tdata
1701 {
1702 struct elf_obj_tdata root;
1703
1704 /* local symbol descriptors */
1705 struct elf_aarch64_local_symbol *locals;
1706
1707 /* Zero to warn when linking objects with incompatible enum sizes. */
1708 int no_enum_size_warning;
1709
1710 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
1711 int no_wchar_size_warning;
1712 };
1713
1714 #define elf_aarch64_tdata(bfd) \
1715 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
1716
1717 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
1718
1719 #define is_aarch64_elf(bfd) \
1720 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1721 && elf_tdata (bfd) != NULL \
1722 && elf_object_id (bfd) == AARCH64_ELF_DATA)
1723
1724 static bfd_boolean
1725 elfNN_aarch64_mkobject (bfd *abfd)
1726 {
1727 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
1728 AARCH64_ELF_DATA);
1729 }
1730
1731 #define elf_aarch64_hash_entry(ent) \
1732 ((struct elf_aarch64_link_hash_entry *)(ent))
1733
1734 #define GOT_UNKNOWN 0
1735 #define GOT_NORMAL 1
1736 #define GOT_TLS_GD 2
1737 #define GOT_TLS_IE 4
1738 #define GOT_TLSDESC_GD 8
1739
1740 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
1741
1742 /* AArch64 ELF linker hash entry. */
1743 struct elf_aarch64_link_hash_entry
1744 {
1745 struct elf_link_hash_entry root;
1746
1747 /* Track dynamic relocs copied for this symbol. */
1748 struct elf_dyn_relocs *dyn_relocs;
1749
1750 /* Since PLT entries have variable size, we need to record the
1751 index into .got.plt instead of recomputing it from the PLT
1752 offset. */
1753 bfd_signed_vma plt_got_offset;
1754
1755 /* Bit mask representing the type of GOT entry(s) if any required by
1756 this symbol. */
1757 unsigned int got_type;
1758
1759 /* A pointer to the most recently used stub hash entry against this
1760 symbol. */
1761 struct elf_aarch64_stub_hash_entry *stub_cache;
1762
1763 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
1764 is from the end of the jump table and reserved entries within the PLTGOT.
1765
1766 The magic value (bfd_vma) -1 indicates that an offset has not
1767 be allocated. */
1768 bfd_vma tlsdesc_got_jump_table_offset;
1769 };
1770
1771 static unsigned int
1772 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
1773 bfd *abfd,
1774 unsigned long r_symndx)
1775 {
1776 if (h)
1777 return elf_aarch64_hash_entry (h)->got_type;
1778
1779 if (! elf_aarch64_locals (abfd))
1780 return GOT_UNKNOWN;
1781
1782 return elf_aarch64_locals (abfd)[r_symndx].got_type;
1783 }
1784
1785 /* Get the AArch64 elf linker hash table from a link_info structure. */
1786 #define elf_aarch64_hash_table(info) \
1787 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
1788
1789 #define aarch64_stub_hash_lookup(table, string, create, copy) \
1790 ((struct elf_aarch64_stub_hash_entry *) \
1791 bfd_hash_lookup ((table), (string), (create), (copy)))
1792
1793 /* AArch64 ELF linker hash table. */
1794 struct elf_aarch64_link_hash_table
1795 {
1796 /* The main hash table. */
1797 struct elf_link_hash_table root;
1798
1799 /* Nonzero to force PIC branch veneers. */
1800 int pic_veneer;
1801
1802 /* The number of bytes in the initial entry in the PLT. */
1803 bfd_size_type plt_header_size;
1804
1805 /* The number of bytes in the subsequent PLT etries. */
1806 bfd_size_type plt_entry_size;
1807
1808 /* Short-cuts to get to dynamic linker sections. */
1809 asection *sdynbss;
1810 asection *srelbss;
1811
1812 /* Small local sym cache. */
1813 struct sym_cache sym_cache;
1814
1815 /* For convenience in allocate_dynrelocs. */
1816 bfd *obfd;
1817
1818 /* The amount of space used by the reserved portion of the sgotplt
1819 section, plus whatever space is used by the jump slots. */
1820 bfd_vma sgotplt_jump_table_size;
1821
1822 /* The stub hash table. */
1823 struct bfd_hash_table stub_hash_table;
1824
1825 /* Linker stub bfd. */
1826 bfd *stub_bfd;
1827
1828 /* Linker call-backs. */
1829 asection *(*add_stub_section) (const char *, asection *);
1830 void (*layout_sections_again) (void);
1831
1832 /* Array to keep track of which stub sections have been created, and
1833 information on stub grouping. */
1834 struct map_stub
1835 {
1836 /* This is the section to which stubs in the group will be
1837 attached. */
1838 asection *link_sec;
1839 /* The stub section. */
1840 asection *stub_sec;
1841 } *stub_group;
1842
1843 /* Assorted information used by elfNN_aarch64_size_stubs. */
1844 unsigned int bfd_count;
1845 int top_index;
1846 asection **input_list;
1847
1848 /* The offset into splt of the PLT entry for the TLS descriptor
1849 resolver. Special values are 0, if not necessary (or not found
1850 to be necessary yet), and -1 if needed but not determined
1851 yet. */
1852 bfd_vma tlsdesc_plt;
1853
1854 /* The GOT offset for the lazy trampoline. Communicated to the
1855 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
1856 indicates an offset is not allocated. */
1857 bfd_vma dt_tlsdesc_got;
1858
1859 /* Used by local STT_GNU_IFUNC symbols. */
1860 htab_t loc_hash_table;
1861 void * loc_hash_memory;
1862 };
1863
1864 /* Create an entry in an AArch64 ELF linker hash table. */
1865
1866 static struct bfd_hash_entry *
1867 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
1868 struct bfd_hash_table *table,
1869 const char *string)
1870 {
1871 struct elf_aarch64_link_hash_entry *ret =
1872 (struct elf_aarch64_link_hash_entry *) entry;
1873
1874 /* Allocate the structure if it has not already been allocated by a
1875 subclass. */
1876 if (ret == NULL)
1877 ret = bfd_hash_allocate (table,
1878 sizeof (struct elf_aarch64_link_hash_entry));
1879 if (ret == NULL)
1880 return (struct bfd_hash_entry *) ret;
1881
1882 /* Call the allocation method of the superclass. */
1883 ret = ((struct elf_aarch64_link_hash_entry *)
1884 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1885 table, string));
1886 if (ret != NULL)
1887 {
1888 ret->dyn_relocs = NULL;
1889 ret->got_type = GOT_UNKNOWN;
1890 ret->plt_got_offset = (bfd_vma) - 1;
1891 ret->stub_cache = NULL;
1892 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
1893 }
1894
1895 return (struct bfd_hash_entry *) ret;
1896 }
1897
1898 /* Initialize an entry in the stub hash table. */
1899
1900 static struct bfd_hash_entry *
1901 stub_hash_newfunc (struct bfd_hash_entry *entry,
1902 struct bfd_hash_table *table, const char *string)
1903 {
1904 /* Allocate the structure if it has not already been allocated by a
1905 subclass. */
1906 if (entry == NULL)
1907 {
1908 entry = bfd_hash_allocate (table,
1909 sizeof (struct
1910 elf_aarch64_stub_hash_entry));
1911 if (entry == NULL)
1912 return entry;
1913 }
1914
1915 /* Call the allocation method of the superclass. */
1916 entry = bfd_hash_newfunc (entry, table, string);
1917 if (entry != NULL)
1918 {
1919 struct elf_aarch64_stub_hash_entry *eh;
1920
1921 /* Initialize the local fields. */
1922 eh = (struct elf_aarch64_stub_hash_entry *) entry;
1923 eh->stub_sec = NULL;
1924 eh->stub_offset = 0;
1925 eh->target_value = 0;
1926 eh->target_section = NULL;
1927 eh->stub_type = aarch64_stub_none;
1928 eh->h = NULL;
1929 eh->id_sec = NULL;
1930 }
1931
1932 return entry;
1933 }
1934
1935 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
1936 for local symbol so that we can handle local STT_GNU_IFUNC symbols
1937 as global symbol. We reuse indx and dynstr_index for local symbol
1938 hash since they aren't used by global symbols in this backend. */
1939
1940 static hashval_t
1941 elfNN_aarch64_local_htab_hash (const void *ptr)
1942 {
1943 struct elf_link_hash_entry *h
1944 = (struct elf_link_hash_entry *) ptr;
1945 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
1946 }
1947
1948 /* Compare local hash entries. */
1949
1950 static int
1951 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
1952 {
1953 struct elf_link_hash_entry *h1
1954 = (struct elf_link_hash_entry *) ptr1;
1955 struct elf_link_hash_entry *h2
1956 = (struct elf_link_hash_entry *) ptr2;
1957
1958 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
1959 }
1960
1961 /* Find and/or create a hash entry for local symbol. */
1962
1963 static struct elf_link_hash_entry *
1964 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
1965 bfd *abfd, const Elf_Internal_Rela *rel,
1966 bfd_boolean create)
1967 {
1968 struct elf_aarch64_link_hash_entry e, *ret;
1969 asection *sec = abfd->sections;
1970 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
1971 ELFNN_R_SYM (rel->r_info));
1972 void **slot;
1973
1974 e.root.indx = sec->id;
1975 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
1976 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
1977 create ? INSERT : NO_INSERT);
1978
1979 if (!slot)
1980 return NULL;
1981
1982 if (*slot)
1983 {
1984 ret = (struct elf_aarch64_link_hash_entry *) *slot;
1985 return &ret->root;
1986 }
1987
1988 ret = (struct elf_aarch64_link_hash_entry *)
1989 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
1990 sizeof (struct elf_aarch64_link_hash_entry));
1991 if (ret)
1992 {
1993 memset (ret, 0, sizeof (*ret));
1994 ret->root.indx = sec->id;
1995 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
1996 ret->root.dynindx = -1;
1997 *slot = ret;
1998 }
1999 return &ret->root;
2000 }
2001
2002 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2003
2004 static void
2005 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2006 struct elf_link_hash_entry *dir,
2007 struct elf_link_hash_entry *ind)
2008 {
2009 struct elf_aarch64_link_hash_entry *edir, *eind;
2010
2011 edir = (struct elf_aarch64_link_hash_entry *) dir;
2012 eind = (struct elf_aarch64_link_hash_entry *) ind;
2013
2014 if (eind->dyn_relocs != NULL)
2015 {
2016 if (edir->dyn_relocs != NULL)
2017 {
2018 struct elf_dyn_relocs **pp;
2019 struct elf_dyn_relocs *p;
2020
2021 /* Add reloc counts against the indirect sym to the direct sym
2022 list. Merge any entries against the same section. */
2023 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2024 {
2025 struct elf_dyn_relocs *q;
2026
2027 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2028 if (q->sec == p->sec)
2029 {
2030 q->pc_count += p->pc_count;
2031 q->count += p->count;
2032 *pp = p->next;
2033 break;
2034 }
2035 if (q == NULL)
2036 pp = &p->next;
2037 }
2038 *pp = edir->dyn_relocs;
2039 }
2040
2041 edir->dyn_relocs = eind->dyn_relocs;
2042 eind->dyn_relocs = NULL;
2043 }
2044
2045 if (ind->root.type == bfd_link_hash_indirect)
2046 {
2047 /* Copy over PLT info. */
2048 if (dir->got.refcount <= 0)
2049 {
2050 edir->got_type = eind->got_type;
2051 eind->got_type = GOT_UNKNOWN;
2052 }
2053 }
2054
2055 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2056 }
2057
2058 /* Destroy an AArch64 elf linker hash table. */
2059
2060 static void
2061 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2062 {
2063 struct elf_aarch64_link_hash_table *ret
2064 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2065
2066 if (ret->loc_hash_table)
2067 htab_delete (ret->loc_hash_table);
2068 if (ret->loc_hash_memory)
2069 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2070
2071 bfd_hash_table_free (&ret->stub_hash_table);
2072 _bfd_elf_link_hash_table_free (obfd);
2073 }
2074
2075 /* Create an AArch64 elf linker hash table. */
2076
2077 static struct bfd_link_hash_table *
2078 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2079 {
2080 struct elf_aarch64_link_hash_table *ret;
2081 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2082
2083 ret = bfd_zmalloc (amt);
2084 if (ret == NULL)
2085 return NULL;
2086
2087 if (!_bfd_elf_link_hash_table_init
2088 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2089 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2090 {
2091 free (ret);
2092 return NULL;
2093 }
2094
2095 ret->plt_header_size = PLT_ENTRY_SIZE;
2096 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2097 ret->obfd = abfd;
2098 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2099
2100 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2101 sizeof (struct elf_aarch64_stub_hash_entry)))
2102 {
2103 _bfd_elf_link_hash_table_free (abfd);
2104 return NULL;
2105 }
2106
2107 ret->loc_hash_table = htab_try_create (1024,
2108 elfNN_aarch64_local_htab_hash,
2109 elfNN_aarch64_local_htab_eq,
2110 NULL);
2111 ret->loc_hash_memory = objalloc_create ();
2112 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2113 {
2114 elfNN_aarch64_link_hash_table_free (abfd);
2115 return NULL;
2116 }
2117 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2118
2119 return &ret->root.root;
2120 }
2121
2122 static bfd_boolean
2123 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2124 bfd_vma offset, bfd_vma value)
2125 {
2126 reloc_howto_type *howto;
2127 bfd_vma place;
2128
2129 howto = elfNN_aarch64_howto_from_type (r_type);
2130 place = (input_section->output_section->vma + input_section->output_offset
2131 + offset);
2132
2133 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2134 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2135 return _bfd_aarch64_elf_put_addend (input_bfd,
2136 input_section->contents + offset, r_type,
2137 howto, value);
2138 }
2139
2140 static enum elf_aarch64_stub_type
2141 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2142 {
2143 if (aarch64_valid_for_adrp_p (value, place))
2144 return aarch64_stub_adrp_branch;
2145 return aarch64_stub_long_branch;
2146 }
2147
2148 /* Determine the type of stub needed, if any, for a call. */
2149
2150 static enum elf_aarch64_stub_type
2151 aarch64_type_of_stub (struct bfd_link_info *info,
2152 asection *input_sec,
2153 const Elf_Internal_Rela *rel,
2154 unsigned char st_type,
2155 struct elf_aarch64_link_hash_entry *hash,
2156 bfd_vma destination)
2157 {
2158 bfd_vma location;
2159 bfd_signed_vma branch_offset;
2160 unsigned int r_type;
2161 struct elf_aarch64_link_hash_table *globals;
2162 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2163 bfd_boolean via_plt_p;
2164
2165 if (st_type != STT_FUNC)
2166 return stub_type;
2167
2168 globals = elf_aarch64_hash_table (info);
2169 via_plt_p = (globals->root.splt != NULL && hash != NULL
2170 && hash->root.plt.offset != (bfd_vma) - 1);
2171
2172 if (via_plt_p)
2173 return stub_type;
2174
2175 /* Determine where the call point is. */
2176 location = (input_sec->output_offset
2177 + input_sec->output_section->vma + rel->r_offset);
2178
2179 branch_offset = (bfd_signed_vma) (destination - location);
2180
2181 r_type = ELFNN_R_TYPE (rel->r_info);
2182
2183 /* We don't want to redirect any old unconditional jump in this way,
2184 only one which is being used for a sibcall, where it is
2185 acceptable for the IP0 and IP1 registers to be clobbered. */
2186 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2187 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2188 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2189 {
2190 stub_type = aarch64_stub_long_branch;
2191 }
2192
2193 return stub_type;
2194 }
2195
2196 /* Build a name for an entry in the stub hash table. */
2197
2198 static char *
2199 elfNN_aarch64_stub_name (const asection *input_section,
2200 const asection *sym_sec,
2201 const struct elf_aarch64_link_hash_entry *hash,
2202 const Elf_Internal_Rela *rel)
2203 {
2204 char *stub_name;
2205 bfd_size_type len;
2206
2207 if (hash)
2208 {
2209 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2210 stub_name = bfd_malloc (len);
2211 if (stub_name != NULL)
2212 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2213 (unsigned int) input_section->id,
2214 hash->root.root.root.string,
2215 rel->r_addend);
2216 }
2217 else
2218 {
2219 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2220 stub_name = bfd_malloc (len);
2221 if (stub_name != NULL)
2222 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2223 (unsigned int) input_section->id,
2224 (unsigned int) sym_sec->id,
2225 (unsigned int) ELFNN_R_SYM (rel->r_info),
2226 rel->r_addend);
2227 }
2228
2229 return stub_name;
2230 }
2231
2232 /* Look up an entry in the stub hash. Stub entries are cached because
2233 creating the stub name takes a bit of time. */
2234
2235 static struct elf_aarch64_stub_hash_entry *
2236 elfNN_aarch64_get_stub_entry (const asection *input_section,
2237 const asection *sym_sec,
2238 struct elf_link_hash_entry *hash,
2239 const Elf_Internal_Rela *rel,
2240 struct elf_aarch64_link_hash_table *htab)
2241 {
2242 struct elf_aarch64_stub_hash_entry *stub_entry;
2243 struct elf_aarch64_link_hash_entry *h =
2244 (struct elf_aarch64_link_hash_entry *) hash;
2245 const asection *id_sec;
2246
2247 if ((input_section->flags & SEC_CODE) == 0)
2248 return NULL;
2249
2250 /* If this input section is part of a group of sections sharing one
2251 stub section, then use the id of the first section in the group.
2252 Stub names need to include a section id, as there may well be
2253 more than one stub used to reach say, printf, and we need to
2254 distinguish between them. */
2255 id_sec = htab->stub_group[input_section->id].link_sec;
2256
2257 if (h != NULL && h->stub_cache != NULL
2258 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2259 {
2260 stub_entry = h->stub_cache;
2261 }
2262 else
2263 {
2264 char *stub_name;
2265
2266 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
2267 if (stub_name == NULL)
2268 return NULL;
2269
2270 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2271 stub_name, FALSE, FALSE);
2272 if (h != NULL)
2273 h->stub_cache = stub_entry;
2274
2275 free (stub_name);
2276 }
2277
2278 return stub_entry;
2279 }
2280
2281 /* Add a new stub entry to the stub hash. Not all fields of the new
2282 stub entry are initialised. */
2283
2284 static struct elf_aarch64_stub_hash_entry *
2285 elfNN_aarch64_add_stub (const char *stub_name,
2286 asection *section,
2287 struct elf_aarch64_link_hash_table *htab)
2288 {
2289 asection *link_sec;
2290 asection *stub_sec;
2291 struct elf_aarch64_stub_hash_entry *stub_entry;
2292
2293 link_sec = htab->stub_group[section->id].link_sec;
2294 stub_sec = htab->stub_group[section->id].stub_sec;
2295 if (stub_sec == NULL)
2296 {
2297 stub_sec = htab->stub_group[link_sec->id].stub_sec;
2298 if (stub_sec == NULL)
2299 {
2300 size_t namelen;
2301 bfd_size_type len;
2302 char *s_name;
2303
2304 namelen = strlen (link_sec->name);
2305 len = namelen + sizeof (STUB_SUFFIX);
2306 s_name = bfd_alloc (htab->stub_bfd, len);
2307 if (s_name == NULL)
2308 return NULL;
2309
2310 memcpy (s_name, link_sec->name, namelen);
2311 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2312 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
2313 if (stub_sec == NULL)
2314 return NULL;
2315 htab->stub_group[link_sec->id].stub_sec = stub_sec;
2316 }
2317 htab->stub_group[section->id].stub_sec = stub_sec;
2318 }
2319
2320 /* Enter this entry into the linker stub hash table. */
2321 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2322 TRUE, FALSE);
2323 if (stub_entry == NULL)
2324 {
2325 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2326 section->owner, stub_name);
2327 return NULL;
2328 }
2329
2330 stub_entry->stub_sec = stub_sec;
2331 stub_entry->stub_offset = 0;
2332 stub_entry->id_sec = link_sec;
2333
2334 return stub_entry;
2335 }
2336
2337 static bfd_boolean
2338 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2339 void *in_arg ATTRIBUTE_UNUSED)
2340 {
2341 struct elf_aarch64_stub_hash_entry *stub_entry;
2342 asection *stub_sec;
2343 bfd *stub_bfd;
2344 bfd_byte *loc;
2345 bfd_vma sym_value;
2346 unsigned int template_size;
2347 const uint32_t *template;
2348 unsigned int i;
2349
2350 /* Massage our args to the form they really have. */
2351 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2352
2353 stub_sec = stub_entry->stub_sec;
2354
2355 /* Make a note of the offset within the stubs for this entry. */
2356 stub_entry->stub_offset = stub_sec->size;
2357 loc = stub_sec->contents + stub_entry->stub_offset;
2358
2359 stub_bfd = stub_sec->owner;
2360
2361 /* This is the address of the stub destination. */
2362 sym_value = (stub_entry->target_value
2363 + stub_entry->target_section->output_offset
2364 + stub_entry->target_section->output_section->vma);
2365
2366 if (stub_entry->stub_type == aarch64_stub_long_branch)
2367 {
2368 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2369 + stub_sec->output_offset);
2370
2371 /* See if we can relax the stub. */
2372 if (aarch64_valid_for_adrp_p (sym_value, place))
2373 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2374 }
2375
2376 switch (stub_entry->stub_type)
2377 {
2378 case aarch64_stub_adrp_branch:
2379 template = aarch64_adrp_branch_stub;
2380 template_size = sizeof (aarch64_adrp_branch_stub);
2381 break;
2382 case aarch64_stub_long_branch:
2383 template = aarch64_long_branch_stub;
2384 template_size = sizeof (aarch64_long_branch_stub);
2385 break;
2386 default:
2387 BFD_FAIL ();
2388 return FALSE;
2389 }
2390
2391 for (i = 0; i < (template_size / sizeof template[0]); i++)
2392 {
2393 bfd_putl32 (template[i], loc);
2394 loc += 4;
2395 }
2396
2397 template_size = (template_size + 7) & ~7;
2398 stub_sec->size += template_size;
2399
2400 switch (stub_entry->stub_type)
2401 {
2402 case aarch64_stub_adrp_branch:
2403 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
2404 stub_entry->stub_offset, sym_value))
2405 /* The stub would not have been relaxed if the offset was out
2406 of range. */
2407 BFD_FAIL ();
2408
2409 _bfd_final_link_relocate
2410 (elfNN_aarch64_howto_from_type (AARCH64_R (ADD_ABS_LO12_NC)),
2411 stub_bfd,
2412 stub_sec,
2413 stub_sec->contents,
2414 stub_entry->stub_offset + 4,
2415 sym_value,
2416 0);
2417 break;
2418
2419 case aarch64_stub_long_branch:
2420 /* We want the value relative to the address 12 bytes back from the
2421 value itself. */
2422 _bfd_final_link_relocate (elfNN_aarch64_howto_from_type
2423 (AARCH64_R (PRELNN)), stub_bfd, stub_sec,
2424 stub_sec->contents,
2425 stub_entry->stub_offset + 16,
2426 sym_value + 12, 0);
2427 break;
2428 default:
2429 break;
2430 }
2431
2432 return TRUE;
2433 }
2434
2435 /* As above, but don't actually build the stub. Just bump offset so
2436 we know stub section sizes. */
2437
2438 static bfd_boolean
2439 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
2440 void *in_arg ATTRIBUTE_UNUSED)
2441 {
2442 struct elf_aarch64_stub_hash_entry *stub_entry;
2443 int size;
2444
2445 /* Massage our args to the form they really have. */
2446 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2447
2448 switch (stub_entry->stub_type)
2449 {
2450 case aarch64_stub_adrp_branch:
2451 size = sizeof (aarch64_adrp_branch_stub);
2452 break;
2453 case aarch64_stub_long_branch:
2454 size = sizeof (aarch64_long_branch_stub);
2455 break;
2456 default:
2457 BFD_FAIL ();
2458 return FALSE;
2459 break;
2460 }
2461
2462 size = (size + 7) & ~7;
2463 stub_entry->stub_sec->size += size;
2464 return TRUE;
2465 }
2466
2467 /* External entry points for sizing and building linker stubs. */
2468
2469 /* Set up various things so that we can make a list of input sections
2470 for each output section included in the link. Returns -1 on error,
2471 0 when no stubs will be needed, and 1 on success. */
2472
2473 int
2474 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
2475 struct bfd_link_info *info)
2476 {
2477 bfd *input_bfd;
2478 unsigned int bfd_count;
2479 int top_id, top_index;
2480 asection *section;
2481 asection **input_list, **list;
2482 bfd_size_type amt;
2483 struct elf_aarch64_link_hash_table *htab =
2484 elf_aarch64_hash_table (info);
2485
2486 if (!is_elf_hash_table (htab))
2487 return 0;
2488
2489 /* Count the number of input BFDs and find the top input section id. */
2490 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2491 input_bfd != NULL; input_bfd = input_bfd->link.next)
2492 {
2493 bfd_count += 1;
2494 for (section = input_bfd->sections;
2495 section != NULL; section = section->next)
2496 {
2497 if (top_id < section->id)
2498 top_id = section->id;
2499 }
2500 }
2501 htab->bfd_count = bfd_count;
2502
2503 amt = sizeof (struct map_stub) * (top_id + 1);
2504 htab->stub_group = bfd_zmalloc (amt);
2505 if (htab->stub_group == NULL)
2506 return -1;
2507
2508 /* We can't use output_bfd->section_count here to find the top output
2509 section index as some sections may have been removed, and
2510 _bfd_strip_section_from_output doesn't renumber the indices. */
2511 for (section = output_bfd->sections, top_index = 0;
2512 section != NULL; section = section->next)
2513 {
2514 if (top_index < section->index)
2515 top_index = section->index;
2516 }
2517
2518 htab->top_index = top_index;
2519 amt = sizeof (asection *) * (top_index + 1);
2520 input_list = bfd_malloc (amt);
2521 htab->input_list = input_list;
2522 if (input_list == NULL)
2523 return -1;
2524
2525 /* For sections we aren't interested in, mark their entries with a
2526 value we can check later. */
2527 list = input_list + top_index;
2528 do
2529 *list = bfd_abs_section_ptr;
2530 while (list-- != input_list);
2531
2532 for (section = output_bfd->sections;
2533 section != NULL; section = section->next)
2534 {
2535 if ((section->flags & SEC_CODE) != 0)
2536 input_list[section->index] = NULL;
2537 }
2538
2539 return 1;
2540 }
2541
2542 /* Used by elfNN_aarch64_next_input_section and group_sections. */
2543 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2544
2545 /* The linker repeatedly calls this function for each input section,
2546 in the order that input sections are linked into output sections.
2547 Build lists of input sections to determine groupings between which
2548 we may insert linker stubs. */
2549
2550 void
2551 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
2552 {
2553 struct elf_aarch64_link_hash_table *htab =
2554 elf_aarch64_hash_table (info);
2555
2556 if (isec->output_section->index <= htab->top_index)
2557 {
2558 asection **list = htab->input_list + isec->output_section->index;
2559
2560 if (*list != bfd_abs_section_ptr)
2561 {
2562 /* Steal the link_sec pointer for our list. */
2563 /* This happens to make the list in reverse order,
2564 which is what we want. */
2565 PREV_SEC (isec) = *list;
2566 *list = isec;
2567 }
2568 }
2569 }
2570
2571 /* See whether we can group stub sections together. Grouping stub
2572 sections may result in fewer stubs. More importantly, we need to
2573 put all .init* and .fini* stubs at the beginning of the .init or
2574 .fini output sections respectively, because glibc splits the
2575 _init and _fini functions into multiple parts. Putting a stub in
2576 the middle of a function is not a good idea. */
2577
2578 static void
2579 group_sections (struct elf_aarch64_link_hash_table *htab,
2580 bfd_size_type stub_group_size,
2581 bfd_boolean stubs_always_before_branch)
2582 {
2583 asection **list = htab->input_list + htab->top_index;
2584
2585 do
2586 {
2587 asection *tail = *list;
2588
2589 if (tail == bfd_abs_section_ptr)
2590 continue;
2591
2592 while (tail != NULL)
2593 {
2594 asection *curr;
2595 asection *prev;
2596 bfd_size_type total;
2597
2598 curr = tail;
2599 total = tail->size;
2600 while ((prev = PREV_SEC (curr)) != NULL
2601 && ((total += curr->output_offset - prev->output_offset)
2602 < stub_group_size))
2603 curr = prev;
2604
2605 /* OK, the size from the start of CURR to the end is less
2606 than stub_group_size and thus can be handled by one stub
2607 section. (Or the tail section is itself larger than
2608 stub_group_size, in which case we may be toast.)
2609 We should really be keeping track of the total size of
2610 stubs added here, as stubs contribute to the final output
2611 section size. */
2612 do
2613 {
2614 prev = PREV_SEC (tail);
2615 /* Set up this stub group. */
2616 htab->stub_group[tail->id].link_sec = curr;
2617 }
2618 while (tail != curr && (tail = prev) != NULL);
2619
2620 /* But wait, there's more! Input sections up to stub_group_size
2621 bytes before the stub section can be handled by it too. */
2622 if (!stubs_always_before_branch)
2623 {
2624 total = 0;
2625 while (prev != NULL
2626 && ((total += tail->output_offset - prev->output_offset)
2627 < stub_group_size))
2628 {
2629 tail = prev;
2630 prev = PREV_SEC (tail);
2631 htab->stub_group[tail->id].link_sec = curr;
2632 }
2633 }
2634 tail = prev;
2635 }
2636 }
2637 while (list-- != htab->input_list);
2638
2639 free (htab->input_list);
2640 }
2641
2642 #undef PREV_SEC
2643
2644 /* Determine and set the size of the stub section for a final link.
2645
2646 The basic idea here is to examine all the relocations looking for
2647 PC-relative calls to a target that is unreachable with a "bl"
2648 instruction. */
2649
2650 bfd_boolean
2651 elfNN_aarch64_size_stubs (bfd *output_bfd,
2652 bfd *stub_bfd,
2653 struct bfd_link_info *info,
2654 bfd_signed_vma group_size,
2655 asection * (*add_stub_section) (const char *,
2656 asection *),
2657 void (*layout_sections_again) (void))
2658 {
2659 bfd_size_type stub_group_size;
2660 bfd_boolean stubs_always_before_branch;
2661 bfd_boolean stub_changed = 0;
2662 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
2663
2664 /* Propagate mach to stub bfd, because it may not have been
2665 finalized when we created stub_bfd. */
2666 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
2667 bfd_get_mach (output_bfd));
2668
2669 /* Stash our params away. */
2670 htab->stub_bfd = stub_bfd;
2671 htab->add_stub_section = add_stub_section;
2672 htab->layout_sections_again = layout_sections_again;
2673 stubs_always_before_branch = group_size < 0;
2674 if (group_size < 0)
2675 stub_group_size = -group_size;
2676 else
2677 stub_group_size = group_size;
2678
2679 if (stub_group_size == 1)
2680 {
2681 /* Default values. */
2682 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
2683 stub_group_size = 127 * 1024 * 1024;
2684 }
2685
2686 group_sections (htab, stub_group_size, stubs_always_before_branch);
2687
2688 while (1)
2689 {
2690 bfd *input_bfd;
2691 unsigned int bfd_indx;
2692 asection *stub_sec;
2693
2694 for (input_bfd = info->input_bfds, bfd_indx = 0;
2695 input_bfd != NULL; input_bfd = input_bfd->link.next, bfd_indx++)
2696 {
2697 Elf_Internal_Shdr *symtab_hdr;
2698 asection *section;
2699 Elf_Internal_Sym *local_syms = NULL;
2700
2701 /* We'll need the symbol table in a second. */
2702 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2703 if (symtab_hdr->sh_info == 0)
2704 continue;
2705
2706 /* Walk over each section attached to the input bfd. */
2707 for (section = input_bfd->sections;
2708 section != NULL; section = section->next)
2709 {
2710 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2711
2712 /* If there aren't any relocs, then there's nothing more
2713 to do. */
2714 if ((section->flags & SEC_RELOC) == 0
2715 || section->reloc_count == 0
2716 || (section->flags & SEC_CODE) == 0)
2717 continue;
2718
2719 /* If this section is a link-once section that will be
2720 discarded, then don't create any stubs. */
2721 if (section->output_section == NULL
2722 || section->output_section->owner != output_bfd)
2723 continue;
2724
2725 /* Get the relocs. */
2726 internal_relocs
2727 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
2728 NULL, info->keep_memory);
2729 if (internal_relocs == NULL)
2730 goto error_ret_free_local;
2731
2732 /* Now examine each relocation. */
2733 irela = internal_relocs;
2734 irelaend = irela + section->reloc_count;
2735 for (; irela < irelaend; irela++)
2736 {
2737 unsigned int r_type, r_indx;
2738 enum elf_aarch64_stub_type stub_type;
2739 struct elf_aarch64_stub_hash_entry *stub_entry;
2740 asection *sym_sec;
2741 bfd_vma sym_value;
2742 bfd_vma destination;
2743 struct elf_aarch64_link_hash_entry *hash;
2744 const char *sym_name;
2745 char *stub_name;
2746 const asection *id_sec;
2747 unsigned char st_type;
2748 bfd_size_type len;
2749
2750 r_type = ELFNN_R_TYPE (irela->r_info);
2751 r_indx = ELFNN_R_SYM (irela->r_info);
2752
2753 if (r_type >= (unsigned int) R_AARCH64_end)
2754 {
2755 bfd_set_error (bfd_error_bad_value);
2756 error_ret_free_internal:
2757 if (elf_section_data (section)->relocs == NULL)
2758 free (internal_relocs);
2759 goto error_ret_free_local;
2760 }
2761
2762 /* Only look for stubs on unconditional branch and
2763 branch and link instructions. */
2764 if (r_type != (unsigned int) AARCH64_R (CALL26)
2765 && r_type != (unsigned int) AARCH64_R (JUMP26))
2766 continue;
2767
2768 /* Now determine the call target, its name, value,
2769 section. */
2770 sym_sec = NULL;
2771 sym_value = 0;
2772 destination = 0;
2773 hash = NULL;
2774 sym_name = NULL;
2775 if (r_indx < symtab_hdr->sh_info)
2776 {
2777 /* It's a local symbol. */
2778 Elf_Internal_Sym *sym;
2779 Elf_Internal_Shdr *hdr;
2780
2781 if (local_syms == NULL)
2782 {
2783 local_syms
2784 = (Elf_Internal_Sym *) symtab_hdr->contents;
2785 if (local_syms == NULL)
2786 local_syms
2787 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2788 symtab_hdr->sh_info, 0,
2789 NULL, NULL, NULL);
2790 if (local_syms == NULL)
2791 goto error_ret_free_internal;
2792 }
2793
2794 sym = local_syms + r_indx;
2795 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2796 sym_sec = hdr->bfd_section;
2797 if (!sym_sec)
2798 /* This is an undefined symbol. It can never
2799 be resolved. */
2800 continue;
2801
2802 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2803 sym_value = sym->st_value;
2804 destination = (sym_value + irela->r_addend
2805 + sym_sec->output_offset
2806 + sym_sec->output_section->vma);
2807 st_type = ELF_ST_TYPE (sym->st_info);
2808 sym_name
2809 = bfd_elf_string_from_elf_section (input_bfd,
2810 symtab_hdr->sh_link,
2811 sym->st_name);
2812 }
2813 else
2814 {
2815 int e_indx;
2816
2817 e_indx = r_indx - symtab_hdr->sh_info;
2818 hash = ((struct elf_aarch64_link_hash_entry *)
2819 elf_sym_hashes (input_bfd)[e_indx]);
2820
2821 while (hash->root.root.type == bfd_link_hash_indirect
2822 || hash->root.root.type == bfd_link_hash_warning)
2823 hash = ((struct elf_aarch64_link_hash_entry *)
2824 hash->root.root.u.i.link);
2825
2826 if (hash->root.root.type == bfd_link_hash_defined
2827 || hash->root.root.type == bfd_link_hash_defweak)
2828 {
2829 struct elf_aarch64_link_hash_table *globals =
2830 elf_aarch64_hash_table (info);
2831 sym_sec = hash->root.root.u.def.section;
2832 sym_value = hash->root.root.u.def.value;
2833 /* For a destination in a shared library,
2834 use the PLT stub as target address to
2835 decide whether a branch stub is
2836 needed. */
2837 if (globals->root.splt != NULL && hash != NULL
2838 && hash->root.plt.offset != (bfd_vma) - 1)
2839 {
2840 sym_sec = globals->root.splt;
2841 sym_value = hash->root.plt.offset;
2842 if (sym_sec->output_section != NULL)
2843 destination = (sym_value
2844 + sym_sec->output_offset
2845 +
2846 sym_sec->output_section->vma);
2847 }
2848 else if (sym_sec->output_section != NULL)
2849 destination = (sym_value + irela->r_addend
2850 + sym_sec->output_offset
2851 + sym_sec->output_section->vma);
2852 }
2853 else if (hash->root.root.type == bfd_link_hash_undefined
2854 || (hash->root.root.type
2855 == bfd_link_hash_undefweak))
2856 {
2857 /* For a shared library, use the PLT stub as
2858 target address to decide whether a long
2859 branch stub is needed.
2860 For absolute code, they cannot be handled. */
2861 struct elf_aarch64_link_hash_table *globals =
2862 elf_aarch64_hash_table (info);
2863
2864 if (globals->root.splt != NULL && hash != NULL
2865 && hash->root.plt.offset != (bfd_vma) - 1)
2866 {
2867 sym_sec = globals->root.splt;
2868 sym_value = hash->root.plt.offset;
2869 if (sym_sec->output_section != NULL)
2870 destination = (sym_value
2871 + sym_sec->output_offset
2872 +
2873 sym_sec->output_section->vma);
2874 }
2875 else
2876 continue;
2877 }
2878 else
2879 {
2880 bfd_set_error (bfd_error_bad_value);
2881 goto error_ret_free_internal;
2882 }
2883 st_type = ELF_ST_TYPE (hash->root.type);
2884 sym_name = hash->root.root.root.string;
2885 }
2886
2887 /* Determine what (if any) linker stub is needed. */
2888 stub_type = aarch64_type_of_stub
2889 (info, section, irela, st_type, hash, destination);
2890 if (stub_type == aarch64_stub_none)
2891 continue;
2892
2893 /* Support for grouping stub sections. */
2894 id_sec = htab->stub_group[section->id].link_sec;
2895
2896 /* Get the name of this stub. */
2897 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
2898 irela);
2899 if (!stub_name)
2900 goto error_ret_free_internal;
2901
2902 stub_entry =
2903 aarch64_stub_hash_lookup (&htab->stub_hash_table,
2904 stub_name, FALSE, FALSE);
2905 if (stub_entry != NULL)
2906 {
2907 /* The proper stub has already been created. */
2908 free (stub_name);
2909 continue;
2910 }
2911
2912 stub_entry = elfNN_aarch64_add_stub (stub_name, section,
2913 htab);
2914 if (stub_entry == NULL)
2915 {
2916 free (stub_name);
2917 goto error_ret_free_internal;
2918 }
2919
2920 stub_entry->target_value = sym_value;
2921 stub_entry->target_section = sym_sec;
2922 stub_entry->stub_type = stub_type;
2923 stub_entry->h = hash;
2924 stub_entry->st_type = st_type;
2925
2926 if (sym_name == NULL)
2927 sym_name = "unnamed";
2928 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
2929 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
2930 if (stub_entry->output_name == NULL)
2931 {
2932 free (stub_name);
2933 goto error_ret_free_internal;
2934 }
2935
2936 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
2937 sym_name);
2938
2939 stub_changed = TRUE;
2940 }
2941
2942 /* We're done with the internal relocs, free them. */
2943 if (elf_section_data (section)->relocs == NULL)
2944 free (internal_relocs);
2945 }
2946 }
2947
2948 if (!stub_changed)
2949 break;
2950
2951 /* OK, we've added some stubs. Find out the new size of the
2952 stub sections. */
2953 for (stub_sec = htab->stub_bfd->sections;
2954 stub_sec != NULL; stub_sec = stub_sec->next)
2955 stub_sec->size = 0;
2956
2957 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
2958
2959 /* Ask the linker to do its stuff. */
2960 (*htab->layout_sections_again) ();
2961 stub_changed = FALSE;
2962 }
2963
2964 return TRUE;
2965
2966 error_ret_free_local:
2967 return FALSE;
2968 }
2969
2970 /* Build all the stubs associated with the current output file. The
2971 stubs are kept in a hash table attached to the main linker hash
2972 table. We also set up the .plt entries for statically linked PIC
2973 functions here. This function is called via aarch64_elf_finish in the
2974 linker. */
2975
2976 bfd_boolean
2977 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
2978 {
2979 asection *stub_sec;
2980 struct bfd_hash_table *table;
2981 struct elf_aarch64_link_hash_table *htab;
2982
2983 htab = elf_aarch64_hash_table (info);
2984
2985 for (stub_sec = htab->stub_bfd->sections;
2986 stub_sec != NULL; stub_sec = stub_sec->next)
2987 {
2988 bfd_size_type size;
2989
2990 /* Ignore non-stub sections. */
2991 if (!strstr (stub_sec->name, STUB_SUFFIX))
2992 continue;
2993
2994 /* Allocate memory to hold the linker stubs. */
2995 size = stub_sec->size;
2996 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2997 if (stub_sec->contents == NULL && size != 0)
2998 return FALSE;
2999 stub_sec->size = 0;
3000 }
3001
3002 /* Build the stubs as directed by the stub hash table. */
3003 table = &htab->stub_hash_table;
3004 bfd_hash_traverse (table, aarch64_build_one_stub, info);
3005
3006 return TRUE;
3007 }
3008
3009
3010 /* Add an entry to the code/data map for section SEC. */
3011
3012 static void
3013 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
3014 {
3015 struct _aarch64_elf_section_data *sec_data =
3016 elf_aarch64_section_data (sec);
3017 unsigned int newidx;
3018
3019 if (sec_data->map == NULL)
3020 {
3021 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
3022 sec_data->mapcount = 0;
3023 sec_data->mapsize = 1;
3024 }
3025
3026 newidx = sec_data->mapcount++;
3027
3028 if (sec_data->mapcount > sec_data->mapsize)
3029 {
3030 sec_data->mapsize *= 2;
3031 sec_data->map = bfd_realloc_or_free
3032 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
3033 }
3034
3035 if (sec_data->map)
3036 {
3037 sec_data->map[newidx].vma = vma;
3038 sec_data->map[newidx].type = type;
3039 }
3040 }
3041
3042
3043 /* Initialise maps of insn/data for input BFDs. */
3044 void
3045 bfd_elfNN_aarch64_init_maps (bfd *abfd)
3046 {
3047 Elf_Internal_Sym *isymbuf;
3048 Elf_Internal_Shdr *hdr;
3049 unsigned int i, localsyms;
3050
3051 /* Make sure that we are dealing with an AArch64 elf binary. */
3052 if (!is_aarch64_elf (abfd))
3053 return;
3054
3055 if ((abfd->flags & DYNAMIC) != 0)
3056 return;
3057
3058 hdr = &elf_symtab_hdr (abfd);
3059 localsyms = hdr->sh_info;
3060
3061 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
3062 should contain the number of local symbols, which should come before any
3063 global symbols. Mapping symbols are always local. */
3064 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
3065
3066 /* No internal symbols read? Skip this BFD. */
3067 if (isymbuf == NULL)
3068 return;
3069
3070 for (i = 0; i < localsyms; i++)
3071 {
3072 Elf_Internal_Sym *isym = &isymbuf[i];
3073 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3074 const char *name;
3075
3076 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
3077 {
3078 name = bfd_elf_string_from_elf_section (abfd,
3079 hdr->sh_link,
3080 isym->st_name);
3081
3082 if (bfd_is_aarch64_special_symbol_name
3083 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
3084 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
3085 }
3086 }
3087 }
3088
3089 /* Set option values needed during linking. */
3090 void
3091 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
3092 struct bfd_link_info *link_info,
3093 int no_enum_warn,
3094 int no_wchar_warn, int pic_veneer)
3095 {
3096 struct elf_aarch64_link_hash_table *globals;
3097
3098 globals = elf_aarch64_hash_table (link_info);
3099 globals->pic_veneer = pic_veneer;
3100
3101 BFD_ASSERT (is_aarch64_elf (output_bfd));
3102 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
3103 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
3104 }
3105
3106 static bfd_vma
3107 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
3108 struct elf_aarch64_link_hash_table
3109 *globals, struct bfd_link_info *info,
3110 bfd_vma value, bfd *output_bfd,
3111 bfd_boolean *unresolved_reloc_p)
3112 {
3113 bfd_vma off = (bfd_vma) - 1;
3114 asection *basegot = globals->root.sgot;
3115 bfd_boolean dyn = globals->root.dynamic_sections_created;
3116
3117 if (h != NULL)
3118 {
3119 BFD_ASSERT (basegot != NULL);
3120 off = h->got.offset;
3121 BFD_ASSERT (off != (bfd_vma) - 1);
3122 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3123 || (info->shared
3124 && SYMBOL_REFERENCES_LOCAL (info, h))
3125 || (ELF_ST_VISIBILITY (h->other)
3126 && h->root.type == bfd_link_hash_undefweak))
3127 {
3128 /* This is actually a static link, or it is a -Bsymbolic link
3129 and the symbol is defined locally. We must initialize this
3130 entry in the global offset table. Since the offset must
3131 always be a multiple of 8 (4 in the case of ILP32), we use
3132 the least significant bit to record whether we have
3133 initialized it already.
3134 When doing a dynamic link, we create a .rel(a).got relocation
3135 entry to initialize the value. This is done in the
3136 finish_dynamic_symbol routine. */
3137 if ((off & 1) != 0)
3138 off &= ~1;
3139 else
3140 {
3141 bfd_put_NN (output_bfd, value, basegot->contents + off);
3142 h->got.offset |= 1;
3143 }
3144 }
3145 else
3146 *unresolved_reloc_p = FALSE;
3147
3148 off = off + basegot->output_section->vma + basegot->output_offset;
3149 }
3150
3151 return off;
3152 }
3153
3154 /* Change R_TYPE to a more efficient access model where possible,
3155 return the new reloc type. */
3156
3157 static bfd_reloc_code_real_type
3158 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
3159 struct elf_link_hash_entry *h)
3160 {
3161 bfd_boolean is_local = h == NULL;
3162
3163 switch (r_type)
3164 {
3165 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3166 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3167 return (is_local
3168 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
3169 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
3170
3171 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3172 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
3173 return (is_local
3174 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
3175 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
3176
3177 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3178 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
3179
3180 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
3181 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
3182
3183 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
3184 case BFD_RELOC_AARCH64_TLSDESC_CALL:
3185 /* Instructions with these relocations will become NOPs. */
3186 return BFD_RELOC_AARCH64_NONE;
3187
3188 default:
3189 break;
3190 }
3191
3192 return r_type;
3193 }
3194
3195 static unsigned int
3196 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
3197 {
3198 switch (r_type)
3199 {
3200 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3201 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3202 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3203 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
3204 return GOT_NORMAL;
3205
3206 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3207 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3208 return GOT_TLS_GD;
3209
3210 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
3211 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3212 case BFD_RELOC_AARCH64_TLSDESC_CALL:
3213 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
3214 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
3215 return GOT_TLSDESC_GD;
3216
3217 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3218 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
3219 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
3220 return GOT_TLS_IE;
3221
3222 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
3223 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
3224 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3225 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
3226 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
3227 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
3228 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
3229 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
3230 return GOT_UNKNOWN;
3231
3232 default:
3233 break;
3234 }
3235 return GOT_UNKNOWN;
3236 }
3237
3238 static bfd_boolean
3239 aarch64_can_relax_tls (bfd *input_bfd,
3240 struct bfd_link_info *info,
3241 bfd_reloc_code_real_type r_type,
3242 struct elf_link_hash_entry *h,
3243 unsigned long r_symndx)
3244 {
3245 unsigned int symbol_got_type;
3246 unsigned int reloc_got_type;
3247
3248 if (! IS_AARCH64_TLS_RELOC (r_type))
3249 return FALSE;
3250
3251 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
3252 reloc_got_type = aarch64_reloc_got_type (r_type);
3253
3254 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
3255 return TRUE;
3256
3257 if (info->shared)
3258 return FALSE;
3259
3260 if (h && h->root.type == bfd_link_hash_undefweak)
3261 return FALSE;
3262
3263 return TRUE;
3264 }
3265
3266 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
3267 enumerator. */
3268
3269 static bfd_reloc_code_real_type
3270 aarch64_tls_transition (bfd *input_bfd,
3271 struct bfd_link_info *info,
3272 unsigned int r_type,
3273 struct elf_link_hash_entry *h,
3274 unsigned long r_symndx)
3275 {
3276 bfd_reloc_code_real_type bfd_r_type
3277 = elfNN_aarch64_bfd_reloc_from_type (r_type);
3278
3279 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
3280 return bfd_r_type;
3281
3282 return aarch64_tls_transition_without_check (bfd_r_type, h);
3283 }
3284
3285 /* Return the base VMA address which should be subtracted from real addresses
3286 when resolving R_AARCH64_TLS_DTPREL relocation. */
3287
3288 static bfd_vma
3289 dtpoff_base (struct bfd_link_info *info)
3290 {
3291 /* If tls_sec is NULL, we should have signalled an error already. */
3292 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
3293 return elf_hash_table (info)->tls_sec->vma;
3294 }
3295
3296 /* Return the base VMA address which should be subtracted from real addresses
3297 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
3298
3299 static bfd_vma
3300 tpoff_base (struct bfd_link_info *info)
3301 {
3302 struct elf_link_hash_table *htab = elf_hash_table (info);
3303
3304 /* If tls_sec is NULL, we should have signalled an error already. */
3305 BFD_ASSERT (htab->tls_sec != NULL);
3306
3307 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
3308 htab->tls_sec->alignment_power);
3309 return htab->tls_sec->vma - base;
3310 }
3311
3312 static bfd_vma *
3313 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
3314 unsigned long r_symndx)
3315 {
3316 /* Calculate the address of the GOT entry for symbol
3317 referred to in h. */
3318 if (h != NULL)
3319 return &h->got.offset;
3320 else
3321 {
3322 /* local symbol */
3323 struct elf_aarch64_local_symbol *l;
3324
3325 l = elf_aarch64_locals (input_bfd);
3326 return &l[r_symndx].got_offset;
3327 }
3328 }
3329
3330 static void
3331 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
3332 unsigned long r_symndx)
3333 {
3334 bfd_vma *p;
3335 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
3336 *p |= 1;
3337 }
3338
3339 static int
3340 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
3341 unsigned long r_symndx)
3342 {
3343 bfd_vma value;
3344 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
3345 return value & 1;
3346 }
3347
3348 static bfd_vma
3349 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
3350 unsigned long r_symndx)
3351 {
3352 bfd_vma value;
3353 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
3354 value &= ~1;
3355 return value;
3356 }
3357
3358 static bfd_vma *
3359 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
3360 unsigned long r_symndx)
3361 {
3362 /* Calculate the address of the GOT entry for symbol
3363 referred to in h. */
3364 if (h != NULL)
3365 {
3366 struct elf_aarch64_link_hash_entry *eh;
3367 eh = (struct elf_aarch64_link_hash_entry *) h;
3368 return &eh->tlsdesc_got_jump_table_offset;
3369 }
3370 else
3371 {
3372 /* local symbol */
3373 struct elf_aarch64_local_symbol *l;
3374
3375 l = elf_aarch64_locals (input_bfd);
3376 return &l[r_symndx].tlsdesc_got_jump_table_offset;
3377 }
3378 }
3379
3380 static void
3381 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
3382 unsigned long r_symndx)
3383 {
3384 bfd_vma *p;
3385 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3386 *p |= 1;
3387 }
3388
3389 static int
3390 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
3391 struct elf_link_hash_entry *h,
3392 unsigned long r_symndx)
3393 {
3394 bfd_vma value;
3395 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3396 return value & 1;
3397 }
3398
3399 static bfd_vma
3400 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
3401 unsigned long r_symndx)
3402 {
3403 bfd_vma value;
3404 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
3405 value &= ~1;
3406 return value;
3407 }
3408
3409 /* Perform a relocation as part of a final link. */
3410 static bfd_reloc_status_type
3411 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
3412 bfd *input_bfd,
3413 bfd *output_bfd,
3414 asection *input_section,
3415 bfd_byte *contents,
3416 Elf_Internal_Rela *rel,
3417 bfd_vma value,
3418 struct bfd_link_info *info,
3419 asection *sym_sec,
3420 struct elf_link_hash_entry *h,
3421 bfd_boolean *unresolved_reloc_p,
3422 bfd_boolean save_addend,
3423 bfd_vma *saved_addend,
3424 Elf_Internal_Sym *sym)
3425 {
3426 Elf_Internal_Shdr *symtab_hdr;
3427 unsigned int r_type = howto->type;
3428 bfd_reloc_code_real_type bfd_r_type
3429 = elfNN_aarch64_bfd_reloc_from_howto (howto);
3430 bfd_reloc_code_real_type new_bfd_r_type;
3431 unsigned long r_symndx;
3432 bfd_byte *hit_data = contents + rel->r_offset;
3433 bfd_vma place;
3434 bfd_signed_vma signed_addend;
3435 struct elf_aarch64_link_hash_table *globals;
3436 bfd_boolean weak_undef_p;
3437
3438 globals = elf_aarch64_hash_table (info);
3439
3440 symtab_hdr = &elf_symtab_hdr (input_bfd);
3441
3442 BFD_ASSERT (is_aarch64_elf (input_bfd));
3443
3444 r_symndx = ELFNN_R_SYM (rel->r_info);
3445
3446 /* It is possible to have linker relaxations on some TLS access
3447 models. Update our information here. */
3448 new_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type, h, r_symndx);
3449 if (new_bfd_r_type != bfd_r_type)
3450 {
3451 bfd_r_type = new_bfd_r_type;
3452 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
3453 BFD_ASSERT (howto != NULL);
3454 r_type = howto->type;
3455 }
3456
3457 place = input_section->output_section->vma
3458 + input_section->output_offset + rel->r_offset;
3459
3460 /* Get addend, accumulating the addend for consecutive relocs
3461 which refer to the same offset. */
3462 signed_addend = saved_addend ? *saved_addend : 0;
3463 signed_addend += rel->r_addend;
3464
3465 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
3466 : bfd_is_und_section (sym_sec));
3467
3468 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3469 it here if it is defined in a non-shared object. */
3470 if (h != NULL
3471 && h->type == STT_GNU_IFUNC
3472 && h->def_regular)
3473 {
3474 asection *plt;
3475 const char *name;
3476 asection *base_got;
3477 bfd_vma off;
3478
3479 if ((input_section->flags & SEC_ALLOC) == 0
3480 || h->plt.offset == (bfd_vma) -1)
3481 abort ();
3482
3483 /* STT_GNU_IFUNC symbol must go through PLT. */
3484 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
3485 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
3486
3487 switch (bfd_r_type)
3488 {
3489 default:
3490 if (h->root.root.string)
3491 name = h->root.root.string;
3492 else
3493 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3494 NULL);
3495 (*_bfd_error_handler)
3496 (_("%B: relocation %s against STT_GNU_IFUNC "
3497 "symbol `%s' isn't handled by %s"), input_bfd,
3498 howto->name, name, __FUNCTION__);
3499 bfd_set_error (bfd_error_bad_value);
3500 return FALSE;
3501
3502 case BFD_RELOC_AARCH64_NN:
3503 if (rel->r_addend != 0)
3504 {
3505 if (h->root.root.string)
3506 name = h->root.root.string;
3507 else
3508 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3509 sym, NULL);
3510 (*_bfd_error_handler)
3511 (_("%B: relocation %s against STT_GNU_IFUNC "
3512 "symbol `%s' has non-zero addend: %d"),
3513 input_bfd, howto->name, name, rel->r_addend);
3514 bfd_set_error (bfd_error_bad_value);
3515 return FALSE;
3516 }
3517
3518 /* Generate dynamic relocation only when there is a
3519 non-GOT reference in a shared object. */
3520 if (info->shared && h->non_got_ref)
3521 {
3522 Elf_Internal_Rela outrel;
3523 asection *sreloc;
3524
3525 /* Need a dynamic relocation to get the real function
3526 address. */
3527 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3528 info,
3529 input_section,
3530 rel->r_offset);
3531 if (outrel.r_offset == (bfd_vma) -1
3532 || outrel.r_offset == (bfd_vma) -2)
3533 abort ();
3534
3535 outrel.r_offset += (input_section->output_section->vma
3536 + input_section->output_offset);
3537
3538 if (h->dynindx == -1
3539 || h->forced_local
3540 || info->executable)
3541 {
3542 /* This symbol is resolved locally. */
3543 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
3544 outrel.r_addend = (h->root.u.def.value
3545 + h->root.u.def.section->output_section->vma
3546 + h->root.u.def.section->output_offset);
3547 }
3548 else
3549 {
3550 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
3551 outrel.r_addend = 0;
3552 }
3553
3554 sreloc = globals->root.irelifunc;
3555 elf_append_rela (output_bfd, sreloc, &outrel);
3556
3557 /* If this reloc is against an external symbol, we
3558 do not want to fiddle with the addend. Otherwise,
3559 we need to include the symbol value so that it
3560 becomes an addend for the dynamic reloc. For an
3561 internal symbol, we have updated addend. */
3562 return bfd_reloc_ok;
3563 }
3564 /* FALLTHROUGH */
3565 case BFD_RELOC_AARCH64_JUMP26:
3566 case BFD_RELOC_AARCH64_CALL26:
3567 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3568 signed_addend,
3569 weak_undef_p);
3570 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
3571 howto, value);
3572 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3573 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3574 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3575 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
3576 base_got = globals->root.sgot;
3577 off = h->got.offset;
3578
3579 if (base_got == NULL)
3580 abort ();
3581
3582 if (off == (bfd_vma) -1)
3583 {
3584 bfd_vma plt_index;
3585
3586 /* We can't use h->got.offset here to save state, or
3587 even just remember the offset, as finish_dynamic_symbol
3588 would use that as offset into .got. */
3589
3590 if (globals->root.splt != NULL)
3591 {
3592 plt_index = ((h->plt.offset - globals->plt_header_size) /
3593 globals->plt_entry_size);
3594 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3595 base_got = globals->root.sgotplt;
3596 }
3597 else
3598 {
3599 plt_index = h->plt.offset / globals->plt_entry_size;
3600 off = plt_index * GOT_ENTRY_SIZE;
3601 base_got = globals->root.igotplt;
3602 }
3603
3604 if (h->dynindx == -1
3605 || h->forced_local
3606 || info->symbolic)
3607 {
3608 /* This references the local definition. We must
3609 initialize this entry in the global offset table.
3610 Since the offset must always be a multiple of 8,
3611 we use the least significant bit to record
3612 whether we have initialized it already.
3613
3614 When doing a dynamic link, we create a .rela.got
3615 relocation entry to initialize the value. This
3616 is done in the finish_dynamic_symbol routine. */
3617 if ((off & 1) != 0)
3618 off &= ~1;
3619 else
3620 {
3621 bfd_put_NN (output_bfd, value,
3622 base_got->contents + off);
3623 /* Note that this is harmless as -1 | 1 still is -1. */
3624 h->got.offset |= 1;
3625 }
3626 }
3627 value = (base_got->output_section->vma
3628 + base_got->output_offset + off);
3629 }
3630 else
3631 value = aarch64_calculate_got_entry_vma (h, globals, info,
3632 value, output_bfd,
3633 unresolved_reloc_p);
3634 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3635 0, weak_undef_p);
3636 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
3637 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
3638 case BFD_RELOC_AARCH64_ADD_LO12:
3639 break;
3640 }
3641 }
3642
3643 switch (bfd_r_type)
3644 {
3645 case BFD_RELOC_AARCH64_NONE:
3646 case BFD_RELOC_AARCH64_TLSDESC_CALL:
3647 *unresolved_reloc_p = FALSE;
3648 return bfd_reloc_ok;
3649
3650 case BFD_RELOC_AARCH64_NN:
3651
3652 /* When generating a shared object or relocatable executable, these
3653 relocations are copied into the output file to be resolved at
3654 run time. */
3655 if (((info->shared == TRUE) || globals->root.is_relocatable_executable)
3656 && (input_section->flags & SEC_ALLOC)
3657 && (h == NULL
3658 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3659 || h->root.type != bfd_link_hash_undefweak))
3660 {
3661 Elf_Internal_Rela outrel;
3662 bfd_byte *loc;
3663 bfd_boolean skip, relocate;
3664 asection *sreloc;
3665
3666 *unresolved_reloc_p = FALSE;
3667
3668 skip = FALSE;
3669 relocate = FALSE;
3670
3671 outrel.r_addend = signed_addend;
3672 outrel.r_offset =
3673 _bfd_elf_section_offset (output_bfd, info, input_section,
3674 rel->r_offset);
3675 if (outrel.r_offset == (bfd_vma) - 1)
3676 skip = TRUE;
3677 else if (outrel.r_offset == (bfd_vma) - 2)
3678 {
3679 skip = TRUE;
3680 relocate = TRUE;
3681 }
3682
3683 outrel.r_offset += (input_section->output_section->vma
3684 + input_section->output_offset);
3685
3686 if (skip)
3687 memset (&outrel, 0, sizeof outrel);
3688 else if (h != NULL
3689 && h->dynindx != -1
3690 && (!info->shared || !info->symbolic || !h->def_regular))
3691 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
3692 else
3693 {
3694 int symbol;
3695
3696 /* On SVR4-ish systems, the dynamic loader cannot
3697 relocate the text and data segments independently,
3698 so the symbol does not matter. */
3699 symbol = 0;
3700 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
3701 outrel.r_addend += value;
3702 }
3703
3704 sreloc = elf_section_data (input_section)->sreloc;
3705 if (sreloc == NULL || sreloc->contents == NULL)
3706 return bfd_reloc_notsupported;
3707
3708 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
3709 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
3710
3711 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
3712 {
3713 /* Sanity to check that we have previously allocated
3714 sufficient space in the relocation section for the
3715 number of relocations we actually want to emit. */
3716 abort ();
3717 }
3718
3719 /* If this reloc is against an external symbol, we do not want to
3720 fiddle with the addend. Otherwise, we need to include the symbol
3721 value so that it becomes an addend for the dynamic reloc. */
3722 if (!relocate)
3723 return bfd_reloc_ok;
3724
3725 return _bfd_final_link_relocate (howto, input_bfd, input_section,
3726 contents, rel->r_offset, value,
3727 signed_addend);
3728 }
3729 else
3730 value += signed_addend;
3731 break;
3732
3733 case BFD_RELOC_AARCH64_JUMP26:
3734 case BFD_RELOC_AARCH64_CALL26:
3735 {
3736 asection *splt = globals->root.splt;
3737 bfd_boolean via_plt_p =
3738 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
3739
3740 /* A call to an undefined weak symbol is converted to a jump to
3741 the next instruction unless a PLT entry will be created.
3742 The jump to the next instruction is optimized as a NOP.
3743 Do the same for local undefined symbols. */
3744 if (weak_undef_p && ! via_plt_p)
3745 {
3746 bfd_putl32 (INSN_NOP, hit_data);
3747 return bfd_reloc_ok;
3748 }
3749
3750 /* If the call goes through a PLT entry, make sure to
3751 check distance to the right destination address. */
3752 if (via_plt_p)
3753 {
3754 value = (splt->output_section->vma
3755 + splt->output_offset + h->plt.offset);
3756 *unresolved_reloc_p = FALSE;
3757 }
3758
3759 /* If the target symbol is global and marked as a function the
3760 relocation applies a function call or a tail call. In this
3761 situation we can veneer out of range branches. The veneers
3762 use IP0 and IP1 hence cannot be used arbitrary out of range
3763 branches that occur within the body of a function. */
3764 if (h && h->type == STT_FUNC)
3765 {
3766 /* Check if a stub has to be inserted because the destination
3767 is too far away. */
3768 if (! aarch64_valid_branch_p (value, place))
3769 {
3770 /* The target is out of reach, so redirect the branch to
3771 the local stub for this function. */
3772 struct elf_aarch64_stub_hash_entry *stub_entry;
3773 stub_entry = elfNN_aarch64_get_stub_entry (input_section,
3774 sym_sec, h,
3775 rel, globals);
3776 if (stub_entry != NULL)
3777 value = (stub_entry->stub_offset
3778 + stub_entry->stub_sec->output_offset
3779 + stub_entry->stub_sec->output_section->vma);
3780 }
3781 }
3782 }
3783 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3784 signed_addend, weak_undef_p);
3785 break;
3786
3787 case BFD_RELOC_AARCH64_16:
3788 #if ARCH_SIZE == 64
3789 case BFD_RELOC_AARCH64_32:
3790 #endif
3791 case BFD_RELOC_AARCH64_ADD_LO12:
3792 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
3793 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
3794 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
3795 case BFD_RELOC_AARCH64_BRANCH19:
3796 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
3797 case BFD_RELOC_AARCH64_LDST8_LO12:
3798 case BFD_RELOC_AARCH64_LDST16_LO12:
3799 case BFD_RELOC_AARCH64_LDST32_LO12:
3800 case BFD_RELOC_AARCH64_LDST64_LO12:
3801 case BFD_RELOC_AARCH64_LDST128_LO12:
3802 case BFD_RELOC_AARCH64_MOVW_G0_S:
3803 case BFD_RELOC_AARCH64_MOVW_G1_S:
3804 case BFD_RELOC_AARCH64_MOVW_G2_S:
3805 case BFD_RELOC_AARCH64_MOVW_G0:
3806 case BFD_RELOC_AARCH64_MOVW_G0_NC:
3807 case BFD_RELOC_AARCH64_MOVW_G1:
3808 case BFD_RELOC_AARCH64_MOVW_G1_NC:
3809 case BFD_RELOC_AARCH64_MOVW_G2:
3810 case BFD_RELOC_AARCH64_MOVW_G2_NC:
3811 case BFD_RELOC_AARCH64_MOVW_G3:
3812 case BFD_RELOC_AARCH64_16_PCREL:
3813 case BFD_RELOC_AARCH64_32_PCREL:
3814 case BFD_RELOC_AARCH64_64_PCREL:
3815 case BFD_RELOC_AARCH64_TSTBR14:
3816 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3817 signed_addend, weak_undef_p);
3818 break;
3819
3820 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
3821 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3822 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
3823 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
3824 if (globals->root.sgot == NULL)
3825 BFD_ASSERT (h != NULL);
3826
3827 if (h != NULL)
3828 {
3829 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
3830 output_bfd,
3831 unresolved_reloc_p);
3832 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3833 0, weak_undef_p);
3834 }
3835 break;
3836
3837 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3838 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3839 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3840 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
3841 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
3842 if (globals->root.sgot == NULL)
3843 return bfd_reloc_notsupported;
3844
3845 value = (symbol_got_offset (input_bfd, h, r_symndx)
3846 + globals->root.sgot->output_section->vma
3847 + globals->root.sgot->output_offset);
3848
3849 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3850 0, weak_undef_p);
3851 *unresolved_reloc_p = FALSE;
3852 break;
3853
3854 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
3855 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
3856 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3857 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
3858 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
3859 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
3860 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
3861 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
3862 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3863 signed_addend - tpoff_base (info),
3864 weak_undef_p);
3865 *unresolved_reloc_p = FALSE;
3866 break;
3867
3868 case BFD_RELOC_AARCH64_TLSDESC_ADD:
3869 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
3870 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3871 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
3872 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
3873 case BFD_RELOC_AARCH64_TLSDESC_LDR:
3874 if (globals->root.sgot == NULL)
3875 return bfd_reloc_notsupported;
3876 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
3877 + globals->root.sgotplt->output_section->vma
3878 + globals->root.sgotplt->output_offset
3879 + globals->sgotplt_jump_table_size);
3880
3881 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
3882 0, weak_undef_p);
3883 *unresolved_reloc_p = FALSE;
3884 break;
3885
3886 default:
3887 return bfd_reloc_notsupported;
3888 }
3889
3890 if (saved_addend)
3891 *saved_addend = value;
3892
3893 /* Only apply the final relocation in a sequence. */
3894 if (save_addend)
3895 return bfd_reloc_continue;
3896
3897 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
3898 howto, value);
3899 }
3900
3901 /* Handle TLS relaxations. Relaxing is possible for symbols that use
3902 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
3903 link.
3904
3905 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
3906 is to then call final_link_relocate. Return other values in the
3907 case of error. */
3908
3909 static bfd_reloc_status_type
3910 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
3911 bfd *input_bfd, bfd_byte *contents,
3912 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
3913 {
3914 bfd_boolean is_local = h == NULL;
3915 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
3916 unsigned long insn;
3917
3918 BFD_ASSERT (globals && input_bfd && contents && rel);
3919
3920 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
3921 {
3922 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3923 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
3924 if (is_local)
3925 {
3926 /* GD->LE relaxation:
3927 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
3928 or
3929 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
3930 */
3931 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
3932 return bfd_reloc_continue;
3933 }
3934 else
3935 {
3936 /* GD->IE relaxation:
3937 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
3938 or
3939 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
3940 */
3941 return bfd_reloc_continue;
3942 }
3943
3944 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
3945 if (is_local)
3946 {
3947 /* GD->LE relaxation:
3948 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
3949 */
3950 bfd_putl32 (0xf2800000, contents + rel->r_offset);
3951 return bfd_reloc_continue;
3952 }
3953 else
3954 {
3955 /* GD->IE relaxation:
3956 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
3957 */
3958 insn = bfd_getl32 (contents + rel->r_offset);
3959 insn &= 0xffffffe0;
3960 bfd_putl32 (insn, contents + rel->r_offset);
3961 return bfd_reloc_continue;
3962 }
3963
3964 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
3965 if (is_local)
3966 {
3967 /* GD->LE relaxation
3968 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
3969 bl __tls_get_addr => mrs x1, tpidr_el0
3970 nop => add x0, x1, x0
3971 */
3972
3973 /* First kill the tls_get_addr reloc on the bl instruction. */
3974 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
3975 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
3976
3977 bfd_putl32 (0xf2800000, contents + rel->r_offset);
3978 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
3979 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
3980 return bfd_reloc_continue;
3981 }
3982 else
3983 {
3984 /* GD->IE relaxation
3985 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
3986 BL __tls_get_addr => mrs x1, tpidr_el0
3987 R_AARCH64_CALL26
3988 NOP => add x0, x1, x0
3989 */
3990
3991 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
3992
3993 /* Remove the relocation on the BL instruction. */
3994 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
3995
3996 bfd_putl32 (0xf9400000, contents + rel->r_offset);
3997
3998 /* We choose to fixup the BL and NOP instructions using the
3999 offset from the second relocation to allow flexibility in
4000 scheduling instructions between the ADD and BL. */
4001 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
4002 bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
4003 return bfd_reloc_continue;
4004 }
4005
4006 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4007 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4008 /* GD->IE/LE relaxation:
4009 add x0, x0, #:tlsdesc_lo12:var => nop
4010 blr xd => nop
4011 */
4012 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
4013 return bfd_reloc_ok;
4014
4015 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4016 /* IE->LE relaxation:
4017 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
4018 */
4019 if (is_local)
4020 {
4021 insn = bfd_getl32 (contents + rel->r_offset);
4022 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
4023 }
4024 return bfd_reloc_continue;
4025
4026 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4027 /* IE->LE relaxation:
4028 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
4029 */
4030 if (is_local)
4031 {
4032 insn = bfd_getl32 (contents + rel->r_offset);
4033 bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
4034 }
4035 return bfd_reloc_continue;
4036
4037 default:
4038 return bfd_reloc_continue;
4039 }
4040
4041 return bfd_reloc_ok;
4042 }
4043
4044 /* Relocate an AArch64 ELF section. */
4045
4046 static bfd_boolean
4047 elfNN_aarch64_relocate_section (bfd *output_bfd,
4048 struct bfd_link_info *info,
4049 bfd *input_bfd,
4050 asection *input_section,
4051 bfd_byte *contents,
4052 Elf_Internal_Rela *relocs,
4053 Elf_Internal_Sym *local_syms,
4054 asection **local_sections)
4055 {
4056 Elf_Internal_Shdr *symtab_hdr;
4057 struct elf_link_hash_entry **sym_hashes;
4058 Elf_Internal_Rela *rel;
4059 Elf_Internal_Rela *relend;
4060 const char *name;
4061 struct elf_aarch64_link_hash_table *globals;
4062 bfd_boolean save_addend = FALSE;
4063 bfd_vma addend = 0;
4064
4065 globals = elf_aarch64_hash_table (info);
4066
4067 symtab_hdr = &elf_symtab_hdr (input_bfd);
4068 sym_hashes = elf_sym_hashes (input_bfd);
4069
4070 rel = relocs;
4071 relend = relocs + input_section->reloc_count;
4072 for (; rel < relend; rel++)
4073 {
4074 unsigned int r_type;
4075 bfd_reloc_code_real_type bfd_r_type;
4076 bfd_reloc_code_real_type relaxed_bfd_r_type;
4077 reloc_howto_type *howto;
4078 unsigned long r_symndx;
4079 Elf_Internal_Sym *sym;
4080 asection *sec;
4081 struct elf_link_hash_entry *h;
4082 bfd_vma relocation;
4083 bfd_reloc_status_type r;
4084 arelent bfd_reloc;
4085 char sym_type;
4086 bfd_boolean unresolved_reloc = FALSE;
4087 char *error_message = NULL;
4088
4089 r_symndx = ELFNN_R_SYM (rel->r_info);
4090 r_type = ELFNN_R_TYPE (rel->r_info);
4091
4092 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
4093 howto = bfd_reloc.howto;
4094
4095 if (howto == NULL)
4096 {
4097 (*_bfd_error_handler)
4098 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
4099 input_bfd, input_section, r_type);
4100 return FALSE;
4101 }
4102 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
4103
4104 h = NULL;
4105 sym = NULL;
4106 sec = NULL;
4107
4108 if (r_symndx < symtab_hdr->sh_info)
4109 {
4110 sym = local_syms + r_symndx;
4111 sym_type = ELFNN_ST_TYPE (sym->st_info);
4112 sec = local_sections[r_symndx];
4113
4114 /* An object file might have a reference to a local
4115 undefined symbol. This is a daft object file, but we
4116 should at least do something about it. */
4117 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
4118 && bfd_is_und_section (sec)
4119 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
4120 {
4121 if (!info->callbacks->undefined_symbol
4122 (info, bfd_elf_string_from_elf_section
4123 (input_bfd, symtab_hdr->sh_link, sym->st_name),
4124 input_bfd, input_section, rel->r_offset, TRUE))
4125 return FALSE;
4126 }
4127
4128 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
4129
4130 /* Relocate against local STT_GNU_IFUNC symbol. */
4131 if (!info->relocatable
4132 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
4133 {
4134 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
4135 rel, FALSE);
4136 if (h == NULL)
4137 abort ();
4138
4139 /* Set STT_GNU_IFUNC symbol value. */
4140 h->root.u.def.value = sym->st_value;
4141 h->root.u.def.section = sec;
4142 }
4143 }
4144 else
4145 {
4146 bfd_boolean warned, ignored;
4147
4148 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4149 r_symndx, symtab_hdr, sym_hashes,
4150 h, sec, relocation,
4151 unresolved_reloc, warned, ignored);
4152
4153 sym_type = h->type;
4154 }
4155
4156 if (sec != NULL && discarded_section (sec))
4157 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
4158 rel, 1, relend, howto, 0, contents);
4159
4160 if (info->relocatable)
4161 continue;
4162
4163 if (h != NULL)
4164 name = h->root.root.string;
4165 else
4166 {
4167 name = (bfd_elf_string_from_elf_section
4168 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4169 if (name == NULL || *name == '\0')
4170 name = bfd_section_name (input_bfd, sec);
4171 }
4172
4173 if (r_symndx != 0
4174 && r_type != R_AARCH64_NONE
4175 && r_type != R_AARCH64_NULL
4176 && (h == NULL
4177 || h->root.type == bfd_link_hash_defined
4178 || h->root.type == bfd_link_hash_defweak)
4179 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
4180 {
4181 (*_bfd_error_handler)
4182 ((sym_type == STT_TLS
4183 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
4184 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
4185 input_bfd,
4186 input_section, (long) rel->r_offset, howto->name, name);
4187 }
4188
4189 /* We relax only if we can see that there can be a valid transition
4190 from a reloc type to another.
4191 We call elfNN_aarch64_final_link_relocate unless we're completely
4192 done, i.e., the relaxation produced the final output we want. */
4193
4194 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
4195 h, r_symndx);
4196 if (relaxed_bfd_r_type != bfd_r_type)
4197 {
4198 bfd_r_type = relaxed_bfd_r_type;
4199 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
4200 BFD_ASSERT (howto != NULL);
4201 r_type = howto->type;
4202 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
4203 unresolved_reloc = 0;
4204 }
4205 else
4206 r = bfd_reloc_continue;
4207
4208 /* There may be multiple consecutive relocations for the
4209 same offset. In that case we are supposed to treat the
4210 output of each relocation as the addend for the next. */
4211 if (rel + 1 < relend
4212 && rel->r_offset == rel[1].r_offset
4213 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
4214 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
4215 save_addend = TRUE;
4216 else
4217 save_addend = FALSE;
4218
4219 if (r == bfd_reloc_continue)
4220 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
4221 input_section, contents, rel,
4222 relocation, info, sec,
4223 h, &unresolved_reloc,
4224 save_addend, &addend, sym);
4225
4226 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
4227 {
4228 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4229 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4230 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
4231 {
4232 bfd_boolean need_relocs = FALSE;
4233 bfd_byte *loc;
4234 int indx;
4235 bfd_vma off;
4236
4237 off = symbol_got_offset (input_bfd, h, r_symndx);
4238 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4239
4240 need_relocs =
4241 (info->shared || indx != 0) &&
4242 (h == NULL
4243 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4244 || h->root.type != bfd_link_hash_undefweak);
4245
4246 BFD_ASSERT (globals->root.srelgot != NULL);
4247
4248 if (need_relocs)
4249 {
4250 Elf_Internal_Rela rela;
4251 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
4252 rela.r_addend = 0;
4253 rela.r_offset = globals->root.sgot->output_section->vma +
4254 globals->root.sgot->output_offset + off;
4255
4256
4257 loc = globals->root.srelgot->contents;
4258 loc += globals->root.srelgot->reloc_count++
4259 * RELOC_SIZE (htab);
4260 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4261
4262 if (indx == 0)
4263 {
4264 bfd_put_NN (output_bfd,
4265 relocation - dtpoff_base (info),
4266 globals->root.sgot->contents + off
4267 + GOT_ENTRY_SIZE);
4268 }
4269 else
4270 {
4271 /* This TLS symbol is global. We emit a
4272 relocation to fixup the tls offset at load
4273 time. */
4274 rela.r_info =
4275 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
4276 rela.r_addend = 0;
4277 rela.r_offset =
4278 (globals->root.sgot->output_section->vma
4279 + globals->root.sgot->output_offset + off
4280 + GOT_ENTRY_SIZE);
4281
4282 loc = globals->root.srelgot->contents;
4283 loc += globals->root.srelgot->reloc_count++
4284 * RELOC_SIZE (globals);
4285 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4286 bfd_put_NN (output_bfd, (bfd_vma) 0,
4287 globals->root.sgot->contents + off
4288 + GOT_ENTRY_SIZE);
4289 }
4290 }
4291 else
4292 {
4293 bfd_put_NN (output_bfd, (bfd_vma) 1,
4294 globals->root.sgot->contents + off);
4295 bfd_put_NN (output_bfd,
4296 relocation - dtpoff_base (info),
4297 globals->root.sgot->contents + off
4298 + GOT_ENTRY_SIZE);
4299 }
4300
4301 symbol_got_offset_mark (input_bfd, h, r_symndx);
4302 }
4303 break;
4304
4305 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4306 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4307 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
4308 {
4309 bfd_boolean need_relocs = FALSE;
4310 bfd_byte *loc;
4311 int indx;
4312 bfd_vma off;
4313
4314 off = symbol_got_offset (input_bfd, h, r_symndx);
4315
4316 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4317
4318 need_relocs =
4319 (info->shared || indx != 0) &&
4320 (h == NULL
4321 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4322 || h->root.type != bfd_link_hash_undefweak);
4323
4324 BFD_ASSERT (globals->root.srelgot != NULL);
4325
4326 if (need_relocs)
4327 {
4328 Elf_Internal_Rela rela;
4329
4330 if (indx == 0)
4331 rela.r_addend = relocation - dtpoff_base (info);
4332 else
4333 rela.r_addend = 0;
4334
4335 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
4336 rela.r_offset = globals->root.sgot->output_section->vma +
4337 globals->root.sgot->output_offset + off;
4338
4339 loc = globals->root.srelgot->contents;
4340 loc += globals->root.srelgot->reloc_count++
4341 * RELOC_SIZE (htab);
4342
4343 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4344
4345 bfd_put_NN (output_bfd, rela.r_addend,
4346 globals->root.sgot->contents + off);
4347 }
4348 else
4349 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
4350 globals->root.sgot->contents + off);
4351
4352 symbol_got_offset_mark (input_bfd, h, r_symndx);
4353 }
4354 break;
4355
4356 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
4357 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
4358 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
4359 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4360 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4361 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4362 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4363 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4364 break;
4365
4366 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4367 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4368 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4369 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
4370 {
4371 bfd_boolean need_relocs = FALSE;
4372 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
4373 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
4374
4375 need_relocs = (h == NULL
4376 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4377 || h->root.type != bfd_link_hash_undefweak);
4378
4379 BFD_ASSERT (globals->root.srelgot != NULL);
4380 BFD_ASSERT (globals->root.sgot != NULL);
4381
4382 if (need_relocs)
4383 {
4384 bfd_byte *loc;
4385 Elf_Internal_Rela rela;
4386 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
4387
4388 rela.r_addend = 0;
4389 rela.r_offset = (globals->root.sgotplt->output_section->vma
4390 + globals->root.sgotplt->output_offset
4391 + off + globals->sgotplt_jump_table_size);
4392
4393 if (indx == 0)
4394 rela.r_addend = relocation - dtpoff_base (info);
4395
4396 /* Allocate the next available slot in the PLT reloc
4397 section to hold our R_AARCH64_TLSDESC, the next
4398 available slot is determined from reloc_count,
4399 which we step. But note, reloc_count was
4400 artifically moved down while allocating slots for
4401 real PLT relocs such that all of the PLT relocs
4402 will fit above the initial reloc_count and the
4403 extra stuff will fit below. */
4404 loc = globals->root.srelplt->contents;
4405 loc += globals->root.srelplt->reloc_count++
4406 * RELOC_SIZE (globals);
4407
4408 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
4409
4410 bfd_put_NN (output_bfd, (bfd_vma) 0,
4411 globals->root.sgotplt->contents + off +
4412 globals->sgotplt_jump_table_size);
4413 bfd_put_NN (output_bfd, (bfd_vma) 0,
4414 globals->root.sgotplt->contents + off +
4415 globals->sgotplt_jump_table_size +
4416 GOT_ENTRY_SIZE);
4417 }
4418
4419 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
4420 }
4421 break;
4422 default:
4423 break;
4424 }
4425
4426 if (!save_addend)
4427 addend = 0;
4428
4429
4430 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4431 because such sections are not SEC_ALLOC and thus ld.so will
4432 not process them. */
4433 if (unresolved_reloc
4434 && !((input_section->flags & SEC_DEBUGGING) != 0
4435 && h->def_dynamic)
4436 && _bfd_elf_section_offset (output_bfd, info, input_section,
4437 +rel->r_offset) != (bfd_vma) - 1)
4438 {
4439 (*_bfd_error_handler)
4440 (_
4441 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4442 input_bfd, input_section, (long) rel->r_offset, howto->name,
4443 h->root.root.string);
4444 return FALSE;
4445 }
4446
4447 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
4448 {
4449 switch (r)
4450 {
4451 case bfd_reloc_overflow:
4452 /* If the overflowing reloc was to an undefined symbol,
4453 we have already printed one error message and there
4454 is no point complaining again. */
4455 if ((!h ||
4456 h->root.type != bfd_link_hash_undefined)
4457 && (!((*info->callbacks->reloc_overflow)
4458 (info, (h ? &h->root : NULL), name, howto->name,
4459 (bfd_vma) 0, input_bfd, input_section,
4460 rel->r_offset))))
4461 return FALSE;
4462 break;
4463
4464 case bfd_reloc_undefined:
4465 if (!((*info->callbacks->undefined_symbol)
4466 (info, name, input_bfd, input_section,
4467 rel->r_offset, TRUE)))
4468 return FALSE;
4469 break;
4470
4471 case bfd_reloc_outofrange:
4472 error_message = _("out of range");
4473 goto common_error;
4474
4475 case bfd_reloc_notsupported:
4476 error_message = _("unsupported relocation");
4477 goto common_error;
4478
4479 case bfd_reloc_dangerous:
4480 /* error_message should already be set. */
4481 goto common_error;
4482
4483 default:
4484 error_message = _("unknown error");
4485 /* Fall through. */
4486
4487 common_error:
4488 BFD_ASSERT (error_message != NULL);
4489 if (!((*info->callbacks->reloc_dangerous)
4490 (info, error_message, input_bfd, input_section,
4491 rel->r_offset)))
4492 return FALSE;
4493 break;
4494 }
4495 }
4496 }
4497
4498 return TRUE;
4499 }
4500
4501 /* Set the right machine number. */
4502
4503 static bfd_boolean
4504 elfNN_aarch64_object_p (bfd *abfd)
4505 {
4506 #if ARCH_SIZE == 32
4507 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
4508 #else
4509 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
4510 #endif
4511 return TRUE;
4512 }
4513
4514 /* Function to keep AArch64 specific flags in the ELF header. */
4515
4516 static bfd_boolean
4517 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
4518 {
4519 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
4520 {
4521 }
4522 else
4523 {
4524 elf_elfheader (abfd)->e_flags = flags;
4525 elf_flags_init (abfd) = TRUE;
4526 }
4527
4528 return TRUE;
4529 }
4530
4531 /* Merge backend specific data from an object file to the output
4532 object file when linking. */
4533
4534 static bfd_boolean
4535 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
4536 {
4537 flagword out_flags;
4538 flagword in_flags;
4539 bfd_boolean flags_compatible = TRUE;
4540 asection *sec;
4541
4542 /* Check if we have the same endianess. */
4543 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
4544 return FALSE;
4545
4546 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
4547 return TRUE;
4548
4549 /* The input BFD must have had its flags initialised. */
4550 /* The following seems bogus to me -- The flags are initialized in
4551 the assembler but I don't think an elf_flags_init field is
4552 written into the object. */
4553 /* BFD_ASSERT (elf_flags_init (ibfd)); */
4554
4555 in_flags = elf_elfheader (ibfd)->e_flags;
4556 out_flags = elf_elfheader (obfd)->e_flags;
4557
4558 if (!elf_flags_init (obfd))
4559 {
4560 /* If the input is the default architecture and had the default
4561 flags then do not bother setting the flags for the output
4562 architecture, instead allow future merges to do this. If no
4563 future merges ever set these flags then they will retain their
4564 uninitialised values, which surprise surprise, correspond
4565 to the default values. */
4566 if (bfd_get_arch_info (ibfd)->the_default
4567 && elf_elfheader (ibfd)->e_flags == 0)
4568 return TRUE;
4569
4570 elf_flags_init (obfd) = TRUE;
4571 elf_elfheader (obfd)->e_flags = in_flags;
4572
4573 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
4574 && bfd_get_arch_info (obfd)->the_default)
4575 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
4576 bfd_get_mach (ibfd));
4577
4578 return TRUE;
4579 }
4580
4581 /* Identical flags must be compatible. */
4582 if (in_flags == out_flags)
4583 return TRUE;
4584
4585 /* Check to see if the input BFD actually contains any sections. If
4586 not, its flags may not have been initialised either, but it
4587 cannot actually cause any incompatiblity. Do not short-circuit
4588 dynamic objects; their section list may be emptied by
4589 elf_link_add_object_symbols.
4590
4591 Also check to see if there are no code sections in the input.
4592 In this case there is no need to check for code specific flags.
4593 XXX - do we need to worry about floating-point format compatability
4594 in data sections ? */
4595 if (!(ibfd->flags & DYNAMIC))
4596 {
4597 bfd_boolean null_input_bfd = TRUE;
4598 bfd_boolean only_data_sections = TRUE;
4599
4600 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
4601 {
4602 if ((bfd_get_section_flags (ibfd, sec)
4603 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
4604 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
4605 only_data_sections = FALSE;
4606
4607 null_input_bfd = FALSE;
4608 break;
4609 }
4610
4611 if (null_input_bfd || only_data_sections)
4612 return TRUE;
4613 }
4614
4615 return flags_compatible;
4616 }
4617
4618 /* Display the flags field. */
4619
4620 static bfd_boolean
4621 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
4622 {
4623 FILE *file = (FILE *) ptr;
4624 unsigned long flags;
4625
4626 BFD_ASSERT (abfd != NULL && ptr != NULL);
4627
4628 /* Print normal ELF private data. */
4629 _bfd_elf_print_private_bfd_data (abfd, ptr);
4630
4631 flags = elf_elfheader (abfd)->e_flags;
4632 /* Ignore init flag - it may not be set, despite the flags field
4633 containing valid data. */
4634
4635 /* xgettext:c-format */
4636 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
4637
4638 if (flags)
4639 fprintf (file, _("<Unrecognised flag bits set>"));
4640
4641 fputc ('\n', file);
4642
4643 return TRUE;
4644 }
4645
4646 /* Update the got entry reference counts for the section being removed. */
4647
4648 static bfd_boolean
4649 elfNN_aarch64_gc_sweep_hook (bfd *abfd,
4650 struct bfd_link_info *info,
4651 asection *sec,
4652 const Elf_Internal_Rela * relocs)
4653 {
4654 struct elf_aarch64_link_hash_table *htab;
4655 Elf_Internal_Shdr *symtab_hdr;
4656 struct elf_link_hash_entry **sym_hashes;
4657 struct elf_aarch64_local_symbol *locals;
4658 const Elf_Internal_Rela *rel, *relend;
4659
4660 if (info->relocatable)
4661 return TRUE;
4662
4663 htab = elf_aarch64_hash_table (info);
4664
4665 if (htab == NULL)
4666 return FALSE;
4667
4668 elf_section_data (sec)->local_dynrel = NULL;
4669
4670 symtab_hdr = &elf_symtab_hdr (abfd);
4671 sym_hashes = elf_sym_hashes (abfd);
4672
4673 locals = elf_aarch64_locals (abfd);
4674
4675 relend = relocs + sec->reloc_count;
4676 for (rel = relocs; rel < relend; rel++)
4677 {
4678 unsigned long r_symndx;
4679 unsigned int r_type;
4680 struct elf_link_hash_entry *h = NULL;
4681
4682 r_symndx = ELFNN_R_SYM (rel->r_info);
4683
4684 if (r_symndx >= symtab_hdr->sh_info)
4685 {
4686
4687 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4688 while (h->root.type == bfd_link_hash_indirect
4689 || h->root.type == bfd_link_hash_warning)
4690 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4691 }
4692 else
4693 {
4694 Elf_Internal_Sym *isym;
4695
4696 /* A local symbol. */
4697 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4698 abfd, r_symndx);
4699
4700 /* Check relocation against local STT_GNU_IFUNC symbol. */
4701 if (isym != NULL
4702 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4703 {
4704 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
4705 if (h == NULL)
4706 abort ();
4707 }
4708 }
4709
4710 if (h)
4711 {
4712 struct elf_aarch64_link_hash_entry *eh;
4713 struct elf_dyn_relocs **pp;
4714 struct elf_dyn_relocs *p;
4715
4716 eh = (struct elf_aarch64_link_hash_entry *) h;
4717
4718 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
4719 if (p->sec == sec)
4720 {
4721 /* Everything must go for SEC. */
4722 *pp = p->next;
4723 break;
4724 }
4725 }
4726
4727 r_type = ELFNN_R_TYPE (rel->r_info);
4728 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
4729 {
4730 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4731 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4732 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4733 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4734 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4735 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4736 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4737 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
4738 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4739 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4740 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4741 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4742 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4743 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
4744 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
4745 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
4746 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4747 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4748 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4749 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4750 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4751 if (h != NULL)
4752 {
4753 if (h->got.refcount > 0)
4754 h->got.refcount -= 1;
4755
4756 if (h->type == STT_GNU_IFUNC)
4757 {
4758 if (h->plt.refcount > 0)
4759 h->plt.refcount -= 1;
4760 }
4761 }
4762 else if (locals != NULL)
4763 {
4764 if (locals[r_symndx].got_refcount > 0)
4765 locals[r_symndx].got_refcount -= 1;
4766 }
4767 break;
4768
4769 case BFD_RELOC_AARCH64_CALL26:
4770 case BFD_RELOC_AARCH64_JUMP26:
4771 /* If this is a local symbol then we resolve it
4772 directly without creating a PLT entry. */
4773 if (h == NULL)
4774 continue;
4775
4776 if (h->plt.refcount > 0)
4777 h->plt.refcount -= 1;
4778 break;
4779
4780 case BFD_RELOC_AARCH64_MOVW_G0_NC:
4781 case BFD_RELOC_AARCH64_MOVW_G1_NC:
4782 case BFD_RELOC_AARCH64_MOVW_G2_NC:
4783 case BFD_RELOC_AARCH64_MOVW_G3:
4784 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
4785 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
4786 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
4787 case BFD_RELOC_AARCH64_NN:
4788 if (h != NULL && info->executable)
4789 {
4790 if (h->plt.refcount > 0)
4791 h->plt.refcount -= 1;
4792 }
4793 break;
4794
4795 default:
4796 break;
4797 }
4798 }
4799
4800 return TRUE;
4801 }
4802
4803 /* Adjust a symbol defined by a dynamic object and referenced by a
4804 regular object. The current definition is in some section of the
4805 dynamic object, but we're not including those sections. We have to
4806 change the definition to something the rest of the link can
4807 understand. */
4808
4809 static bfd_boolean
4810 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
4811 struct elf_link_hash_entry *h)
4812 {
4813 struct elf_aarch64_link_hash_table *htab;
4814 asection *s;
4815
4816 /* If this is a function, put it in the procedure linkage table. We
4817 will fill in the contents of the procedure linkage table later,
4818 when we know the address of the .got section. */
4819 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
4820 {
4821 if (h->plt.refcount <= 0
4822 || (h->type != STT_GNU_IFUNC
4823 && (SYMBOL_CALLS_LOCAL (info, h)
4824 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
4825 && h->root.type == bfd_link_hash_undefweak))))
4826 {
4827 /* This case can occur if we saw a CALL26 reloc in
4828 an input file, but the symbol wasn't referred to
4829 by a dynamic object or all references were
4830 garbage collected. In which case we can end up
4831 resolving. */
4832 h->plt.offset = (bfd_vma) - 1;
4833 h->needs_plt = 0;
4834 }
4835
4836 return TRUE;
4837 }
4838 else
4839 /* It's possible that we incorrectly decided a .plt reloc was
4840 needed for an R_X86_64_PC32 reloc to a non-function sym in
4841 check_relocs. We can't decide accurately between function and
4842 non-function syms in check-relocs; Objects loaded later in
4843 the link may change h->type. So fix it now. */
4844 h->plt.offset = (bfd_vma) - 1;
4845
4846
4847 /* If this is a weak symbol, and there is a real definition, the
4848 processor independent code will have arranged for us to see the
4849 real definition first, and we can just use the same value. */
4850 if (h->u.weakdef != NULL)
4851 {
4852 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
4853 || h->u.weakdef->root.type == bfd_link_hash_defweak);
4854 h->root.u.def.section = h->u.weakdef->root.u.def.section;
4855 h->root.u.def.value = h->u.weakdef->root.u.def.value;
4856 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
4857 h->non_got_ref = h->u.weakdef->non_got_ref;
4858 return TRUE;
4859 }
4860
4861 /* If we are creating a shared library, we must presume that the
4862 only references to the symbol are via the global offset table.
4863 For such cases we need not do anything here; the relocations will
4864 be handled correctly by relocate_section. */
4865 if (info->shared)
4866 return TRUE;
4867
4868 /* If there are no references to this symbol that do not use the
4869 GOT, we don't need to generate a copy reloc. */
4870 if (!h->non_got_ref)
4871 return TRUE;
4872
4873 /* If -z nocopyreloc was given, we won't generate them either. */
4874 if (info->nocopyreloc)
4875 {
4876 h->non_got_ref = 0;
4877 return TRUE;
4878 }
4879
4880 /* We must allocate the symbol in our .dynbss section, which will
4881 become part of the .bss section of the executable. There will be
4882 an entry for this symbol in the .dynsym section. The dynamic
4883 object will contain position independent code, so all references
4884 from the dynamic object to this symbol will go through the global
4885 offset table. The dynamic linker will use the .dynsym entry to
4886 determine the address it must put in the global offset table, so
4887 both the dynamic object and the regular object will refer to the
4888 same memory location for the variable. */
4889
4890 htab = elf_aarch64_hash_table (info);
4891
4892 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
4893 to copy the initial value out of the dynamic object and into the
4894 runtime process image. */
4895 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
4896 {
4897 htab->srelbss->size += RELOC_SIZE (htab);
4898 h->needs_copy = 1;
4899 }
4900
4901 s = htab->sdynbss;
4902
4903 return _bfd_elf_adjust_dynamic_copy (h, s);
4904
4905 }
4906
4907 static bfd_boolean
4908 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
4909 {
4910 struct elf_aarch64_local_symbol *locals;
4911 locals = elf_aarch64_locals (abfd);
4912 if (locals == NULL)
4913 {
4914 locals = (struct elf_aarch64_local_symbol *)
4915 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
4916 if (locals == NULL)
4917 return FALSE;
4918 elf_aarch64_locals (abfd) = locals;
4919 }
4920 return TRUE;
4921 }
4922
4923 /* Create the .got section to hold the global offset table. */
4924
4925 static bfd_boolean
4926 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4927 {
4928 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4929 flagword flags;
4930 asection *s;
4931 struct elf_link_hash_entry *h;
4932 struct elf_link_hash_table *htab = elf_hash_table (info);
4933
4934 /* This function may be called more than once. */
4935 s = bfd_get_linker_section (abfd, ".got");
4936 if (s != NULL)
4937 return TRUE;
4938
4939 flags = bed->dynamic_sec_flags;
4940
4941 s = bfd_make_section_anyway_with_flags (abfd,
4942 (bed->rela_plts_and_copies_p
4943 ? ".rela.got" : ".rel.got"),
4944 (bed->dynamic_sec_flags
4945 | SEC_READONLY));
4946 if (s == NULL
4947 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
4948 return FALSE;
4949 htab->srelgot = s;
4950
4951 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4952 if (s == NULL
4953 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
4954 return FALSE;
4955 htab->sgot = s;
4956 htab->sgot->size += GOT_ENTRY_SIZE;
4957
4958 if (bed->want_got_sym)
4959 {
4960 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
4961 (or .got.plt) section. We don't do this in the linker script
4962 because we don't want to define the symbol if we are not creating
4963 a global offset table. */
4964 h = _bfd_elf_define_linkage_sym (abfd, info, s,
4965 "_GLOBAL_OFFSET_TABLE_");
4966 elf_hash_table (info)->hgot = h;
4967 if (h == NULL)
4968 return FALSE;
4969 }
4970
4971 if (bed->want_got_plt)
4972 {
4973 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
4974 if (s == NULL
4975 || !bfd_set_section_alignment (abfd, s,
4976 bed->s->log_file_align))
4977 return FALSE;
4978 htab->sgotplt = s;
4979 }
4980
4981 /* The first bit of the global offset table is the header. */
4982 s->size += bed->got_header_size;
4983
4984 return TRUE;
4985 }
4986
4987 /* Look through the relocs for a section during the first phase. */
4988
4989 static bfd_boolean
4990 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
4991 asection *sec, const Elf_Internal_Rela *relocs)
4992 {
4993 Elf_Internal_Shdr *symtab_hdr;
4994 struct elf_link_hash_entry **sym_hashes;
4995 const Elf_Internal_Rela *rel;
4996 const Elf_Internal_Rela *rel_end;
4997 asection *sreloc;
4998
4999 struct elf_aarch64_link_hash_table *htab;
5000
5001 if (info->relocatable)
5002 return TRUE;
5003
5004 BFD_ASSERT (is_aarch64_elf (abfd));
5005
5006 htab = elf_aarch64_hash_table (info);
5007 sreloc = NULL;
5008
5009 symtab_hdr = &elf_symtab_hdr (abfd);
5010 sym_hashes = elf_sym_hashes (abfd);
5011
5012 rel_end = relocs + sec->reloc_count;
5013 for (rel = relocs; rel < rel_end; rel++)
5014 {
5015 struct elf_link_hash_entry *h;
5016 unsigned long r_symndx;
5017 unsigned int r_type;
5018 bfd_reloc_code_real_type bfd_r_type;
5019 Elf_Internal_Sym *isym;
5020
5021 r_symndx = ELFNN_R_SYM (rel->r_info);
5022 r_type = ELFNN_R_TYPE (rel->r_info);
5023
5024 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
5025 {
5026 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
5027 r_symndx);
5028 return FALSE;
5029 }
5030
5031 if (r_symndx < symtab_hdr->sh_info)
5032 {
5033 /* A local symbol. */
5034 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5035 abfd, r_symndx);
5036 if (isym == NULL)
5037 return FALSE;
5038
5039 /* Check relocation against local STT_GNU_IFUNC symbol. */
5040 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5041 {
5042 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
5043 TRUE);
5044 if (h == NULL)
5045 return FALSE;
5046
5047 /* Fake a STT_GNU_IFUNC symbol. */
5048 h->type = STT_GNU_IFUNC;
5049 h->def_regular = 1;
5050 h->ref_regular = 1;
5051 h->forced_local = 1;
5052 h->root.type = bfd_link_hash_defined;
5053 }
5054 else
5055 h = NULL;
5056 }
5057 else
5058 {
5059 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5060 while (h->root.type == bfd_link_hash_indirect
5061 || h->root.type == bfd_link_hash_warning)
5062 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5063
5064 /* PR15323, ref flags aren't set for references in the same
5065 object. */
5066 h->root.non_ir_ref = 1;
5067 }
5068
5069 /* Could be done earlier, if h were already available. */
5070 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
5071
5072 if (h != NULL)
5073 {
5074 /* Create the ifunc sections for static executables. If we
5075 never see an indirect function symbol nor we are building
5076 a static executable, those sections will be empty and
5077 won't appear in output. */
5078 switch (bfd_r_type)
5079 {
5080 default:
5081 break;
5082
5083 case BFD_RELOC_AARCH64_NN:
5084 case BFD_RELOC_AARCH64_CALL26:
5085 case BFD_RELOC_AARCH64_JUMP26:
5086 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5087 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5088 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5089 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5090 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5091 case BFD_RELOC_AARCH64_ADD_LO12:
5092 if (htab->root.dynobj == NULL)
5093 htab->root.dynobj = abfd;
5094 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
5095 return FALSE;
5096 break;
5097 }
5098
5099 /* It is referenced by a non-shared object. */
5100 h->ref_regular = 1;
5101 h->root.non_ir_ref = 1;
5102 }
5103
5104 switch (bfd_r_type)
5105 {
5106 case BFD_RELOC_AARCH64_NN:
5107
5108 /* We don't need to handle relocs into sections not going into
5109 the "real" output. */
5110 if ((sec->flags & SEC_ALLOC) == 0)
5111 break;
5112
5113 if (h != NULL)
5114 {
5115 if (!info->shared)
5116 h->non_got_ref = 1;
5117
5118 h->plt.refcount += 1;
5119 h->pointer_equality_needed = 1;
5120 }
5121
5122 /* No need to do anything if we're not creating a shared
5123 object. */
5124 if (! info->shared)
5125 break;
5126
5127 {
5128 struct elf_dyn_relocs *p;
5129 struct elf_dyn_relocs **head;
5130
5131 /* We must copy these reloc types into the output file.
5132 Create a reloc section in dynobj and make room for
5133 this reloc. */
5134 if (sreloc == NULL)
5135 {
5136 if (htab->root.dynobj == NULL)
5137 htab->root.dynobj = abfd;
5138
5139 sreloc = _bfd_elf_make_dynamic_reloc_section
5140 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
5141
5142 if (sreloc == NULL)
5143 return FALSE;
5144 }
5145
5146 /* If this is a global symbol, we count the number of
5147 relocations we need for this symbol. */
5148 if (h != NULL)
5149 {
5150 struct elf_aarch64_link_hash_entry *eh;
5151 eh = (struct elf_aarch64_link_hash_entry *) h;
5152 head = &eh->dyn_relocs;
5153 }
5154 else
5155 {
5156 /* Track dynamic relocs needed for local syms too.
5157 We really need local syms available to do this
5158 easily. Oh well. */
5159
5160 asection *s;
5161 void **vpp;
5162
5163 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5164 abfd, r_symndx);
5165 if (isym == NULL)
5166 return FALSE;
5167
5168 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5169 if (s == NULL)
5170 s = sec;
5171
5172 /* Beware of type punned pointers vs strict aliasing
5173 rules. */
5174 vpp = &(elf_section_data (s)->local_dynrel);
5175 head = (struct elf_dyn_relocs **) vpp;
5176 }
5177
5178 p = *head;
5179 if (p == NULL || p->sec != sec)
5180 {
5181 bfd_size_type amt = sizeof *p;
5182 p = ((struct elf_dyn_relocs *)
5183 bfd_zalloc (htab->root.dynobj, amt));
5184 if (p == NULL)
5185 return FALSE;
5186 p->next = *head;
5187 *head = p;
5188 p->sec = sec;
5189 }
5190
5191 p->count += 1;
5192
5193 }
5194 break;
5195
5196 /* RR: We probably want to keep a consistency check that
5197 there are no dangling GOT_PAGE relocs. */
5198 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5199 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5200 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5201 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5202 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5203 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5204 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5205 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
5206 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5207 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5208 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5209 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5210 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5211 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5212 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5213 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5214 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5215 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5216 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5217 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5218 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5219 {
5220 unsigned got_type;
5221 unsigned old_got_type;
5222
5223 got_type = aarch64_reloc_got_type (bfd_r_type);
5224
5225 if (h)
5226 {
5227 h->got.refcount += 1;
5228 old_got_type = elf_aarch64_hash_entry (h)->got_type;
5229 }
5230 else
5231 {
5232 struct elf_aarch64_local_symbol *locals;
5233
5234 if (!elfNN_aarch64_allocate_local_symbols
5235 (abfd, symtab_hdr->sh_info))
5236 return FALSE;
5237
5238 locals = elf_aarch64_locals (abfd);
5239 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
5240 locals[r_symndx].got_refcount += 1;
5241 old_got_type = locals[r_symndx].got_type;
5242 }
5243
5244 /* If a variable is accessed with both general dynamic TLS
5245 methods, two slots may be created. */
5246 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
5247 got_type |= old_got_type;
5248
5249 /* We will already have issued an error message if there
5250 is a TLS/non-TLS mismatch, based on the symbol type.
5251 So just combine any TLS types needed. */
5252 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
5253 && got_type != GOT_NORMAL)
5254 got_type |= old_got_type;
5255
5256 /* If the symbol is accessed by both IE and GD methods, we
5257 are able to relax. Turn off the GD flag, without
5258 messing up with any other kind of TLS types that may be
5259 involved. */
5260 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
5261 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
5262
5263 if (old_got_type != got_type)
5264 {
5265 if (h != NULL)
5266 elf_aarch64_hash_entry (h)->got_type = got_type;
5267 else
5268 {
5269 struct elf_aarch64_local_symbol *locals;
5270 locals = elf_aarch64_locals (abfd);
5271 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
5272 locals[r_symndx].got_type = got_type;
5273 }
5274 }
5275
5276 if (htab->root.dynobj == NULL)
5277 htab->root.dynobj = abfd;
5278 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
5279 return FALSE;
5280 break;
5281 }
5282
5283 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5284 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5285 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5286 case BFD_RELOC_AARCH64_MOVW_G3:
5287 if (info->shared)
5288 {
5289 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5290 (*_bfd_error_handler)
5291 (_("%B: relocation %s against `%s' can not be used when making "
5292 "a shared object; recompile with -fPIC"),
5293 abfd, elfNN_aarch64_howto_table[howto_index].name,
5294 (h) ? h->root.root.string : "a local symbol");
5295 bfd_set_error (bfd_error_bad_value);
5296 return FALSE;
5297 }
5298
5299 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5300 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5301 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5302 if (h != NULL && info->executable)
5303 {
5304 /* If this reloc is in a read-only section, we might
5305 need a copy reloc. We can't check reliably at this
5306 stage whether the section is read-only, as input
5307 sections have not yet been mapped to output sections.
5308 Tentatively set the flag for now, and correct in
5309 adjust_dynamic_symbol. */
5310 h->non_got_ref = 1;
5311 h->plt.refcount += 1;
5312 h->pointer_equality_needed = 1;
5313 }
5314 /* FIXME:: RR need to handle these in shared libraries
5315 and essentially bomb out as these being non-PIC
5316 relocations in shared libraries. */
5317 break;
5318
5319 case BFD_RELOC_AARCH64_CALL26:
5320 case BFD_RELOC_AARCH64_JUMP26:
5321 /* If this is a local symbol then we resolve it
5322 directly without creating a PLT entry. */
5323 if (h == NULL)
5324 continue;
5325
5326 h->needs_plt = 1;
5327 if (h->plt.refcount <= 0)
5328 h->plt.refcount = 1;
5329 else
5330 h->plt.refcount += 1;
5331 break;
5332
5333 default:
5334 break;
5335 }
5336 }
5337
5338 return TRUE;
5339 }
5340
5341 /* Treat mapping symbols as special target symbols. */
5342
5343 static bfd_boolean
5344 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
5345 asymbol *sym)
5346 {
5347 return bfd_is_aarch64_special_symbol_name (sym->name,
5348 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
5349 }
5350
5351 /* This is a copy of elf_find_function () from elf.c except that
5352 AArch64 mapping symbols are ignored when looking for function names. */
5353
5354 static bfd_boolean
5355 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
5356 asection *section,
5357 asymbol **symbols,
5358 bfd_vma offset,
5359 const char **filename_ptr,
5360 const char **functionname_ptr)
5361 {
5362 const char *filename = NULL;
5363 asymbol *func = NULL;
5364 bfd_vma low_func = 0;
5365 asymbol **p;
5366
5367 for (p = symbols; *p != NULL; p++)
5368 {
5369 elf_symbol_type *q;
5370
5371 q = (elf_symbol_type *) * p;
5372
5373 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
5374 {
5375 default:
5376 break;
5377 case STT_FILE:
5378 filename = bfd_asymbol_name (&q->symbol);
5379 break;
5380 case STT_FUNC:
5381 case STT_NOTYPE:
5382 /* Skip mapping symbols. */
5383 if ((q->symbol.flags & BSF_LOCAL)
5384 && (bfd_is_aarch64_special_symbol_name
5385 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
5386 continue;
5387 /* Fall through. */
5388 if (bfd_get_section (&q->symbol) == section
5389 && q->symbol.value >= low_func && q->symbol.value <= offset)
5390 {
5391 func = (asymbol *) q;
5392 low_func = q->symbol.value;
5393 }
5394 break;
5395 }
5396 }
5397
5398 if (func == NULL)
5399 return FALSE;
5400
5401 if (filename_ptr)
5402 *filename_ptr = filename;
5403 if (functionname_ptr)
5404 *functionname_ptr = bfd_asymbol_name (func);
5405
5406 return TRUE;
5407 }
5408
5409
5410 /* Find the nearest line to a particular section and offset, for error
5411 reporting. This code is a duplicate of the code in elf.c, except
5412 that it uses aarch64_elf_find_function. */
5413
5414 static bfd_boolean
5415 elfNN_aarch64_find_nearest_line (bfd *abfd,
5416 asection *section,
5417 asymbol **symbols,
5418 bfd_vma offset,
5419 const char **filename_ptr,
5420 const char **functionname_ptr,
5421 unsigned int *line_ptr)
5422 {
5423 bfd_boolean found = FALSE;
5424
5425 /* We skip _bfd_dwarf1_find_nearest_line since no known AArch64
5426 toolchain uses it. */
5427
5428 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
5429 section, symbols, offset,
5430 filename_ptr, functionname_ptr,
5431 line_ptr, NULL, 0,
5432 &elf_tdata (abfd)->dwarf2_find_line_info))
5433 {
5434 if (!*functionname_ptr)
5435 aarch64_elf_find_function (abfd, section, symbols, offset,
5436 *filename_ptr ? NULL : filename_ptr,
5437 functionname_ptr);
5438
5439 return TRUE;
5440 }
5441
5442 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
5443 &found, filename_ptr,
5444 functionname_ptr, line_ptr,
5445 &elf_tdata (abfd)->line_info))
5446 return FALSE;
5447
5448 if (found && (*functionname_ptr || *line_ptr))
5449 return TRUE;
5450
5451 if (symbols == NULL)
5452 return FALSE;
5453
5454 if (!aarch64_elf_find_function (abfd, section, symbols, offset,
5455 filename_ptr, functionname_ptr))
5456 return FALSE;
5457
5458 *line_ptr = 0;
5459 return TRUE;
5460 }
5461
5462 static bfd_boolean
5463 elfNN_aarch64_find_inliner_info (bfd *abfd,
5464 const char **filename_ptr,
5465 const char **functionname_ptr,
5466 unsigned int *line_ptr)
5467 {
5468 bfd_boolean found;
5469 found = _bfd_dwarf2_find_inliner_info
5470 (abfd, filename_ptr,
5471 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
5472 return found;
5473 }
5474
5475
5476 static void
5477 elfNN_aarch64_post_process_headers (bfd *abfd,
5478 struct bfd_link_info *link_info)
5479 {
5480 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
5481
5482 i_ehdrp = elf_elfheader (abfd);
5483 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
5484
5485 _bfd_elf_post_process_headers (abfd, link_info);
5486 }
5487
5488 static enum elf_reloc_type_class
5489 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
5490 const asection *rel_sec ATTRIBUTE_UNUSED,
5491 const Elf_Internal_Rela *rela)
5492 {
5493 switch ((int) ELFNN_R_TYPE (rela->r_info))
5494 {
5495 case AARCH64_R (RELATIVE):
5496 return reloc_class_relative;
5497 case AARCH64_R (JUMP_SLOT):
5498 return reloc_class_plt;
5499 case AARCH64_R (COPY):
5500 return reloc_class_copy;
5501 default:
5502 return reloc_class_normal;
5503 }
5504 }
5505
5506 /* Handle an AArch64 specific section when reading an object file. This is
5507 called when bfd_section_from_shdr finds a section with an unknown
5508 type. */
5509
5510 static bfd_boolean
5511 elfNN_aarch64_section_from_shdr (bfd *abfd,
5512 Elf_Internal_Shdr *hdr,
5513 const char *name, int shindex)
5514 {
5515 /* There ought to be a place to keep ELF backend specific flags, but
5516 at the moment there isn't one. We just keep track of the
5517 sections by their name, instead. Fortunately, the ABI gives
5518 names for all the AArch64 specific sections, so we will probably get
5519 away with this. */
5520 switch (hdr->sh_type)
5521 {
5522 case SHT_AARCH64_ATTRIBUTES:
5523 break;
5524
5525 default:
5526 return FALSE;
5527 }
5528
5529 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5530 return FALSE;
5531
5532 return TRUE;
5533 }
5534
5535 /* A structure used to record a list of sections, independently
5536 of the next and prev fields in the asection structure. */
5537 typedef struct section_list
5538 {
5539 asection *sec;
5540 struct section_list *next;
5541 struct section_list *prev;
5542 }
5543 section_list;
5544
5545 /* Unfortunately we need to keep a list of sections for which
5546 an _aarch64_elf_section_data structure has been allocated. This
5547 is because it is possible for functions like elfNN_aarch64_write_section
5548 to be called on a section which has had an elf_data_structure
5549 allocated for it (and so the used_by_bfd field is valid) but
5550 for which the AArch64 extended version of this structure - the
5551 _aarch64_elf_section_data structure - has not been allocated. */
5552 static section_list *sections_with_aarch64_elf_section_data = NULL;
5553
5554 static void
5555 record_section_with_aarch64_elf_section_data (asection *sec)
5556 {
5557 struct section_list *entry;
5558
5559 entry = bfd_malloc (sizeof (*entry));
5560 if (entry == NULL)
5561 return;
5562 entry->sec = sec;
5563 entry->next = sections_with_aarch64_elf_section_data;
5564 entry->prev = NULL;
5565 if (entry->next != NULL)
5566 entry->next->prev = entry;
5567 sections_with_aarch64_elf_section_data = entry;
5568 }
5569
5570 static struct section_list *
5571 find_aarch64_elf_section_entry (asection *sec)
5572 {
5573 struct section_list *entry;
5574 static struct section_list *last_entry = NULL;
5575
5576 /* This is a short cut for the typical case where the sections are added
5577 to the sections_with_aarch64_elf_section_data list in forward order and
5578 then looked up here in backwards order. This makes a real difference
5579 to the ld-srec/sec64k.exp linker test. */
5580 entry = sections_with_aarch64_elf_section_data;
5581 if (last_entry != NULL)
5582 {
5583 if (last_entry->sec == sec)
5584 entry = last_entry;
5585 else if (last_entry->next != NULL && last_entry->next->sec == sec)
5586 entry = last_entry->next;
5587 }
5588
5589 for (; entry; entry = entry->next)
5590 if (entry->sec == sec)
5591 break;
5592
5593 if (entry)
5594 /* Record the entry prior to this one - it is the entry we are
5595 most likely to want to locate next time. Also this way if we
5596 have been called from
5597 unrecord_section_with_aarch64_elf_section_data () we will not
5598 be caching a pointer that is about to be freed. */
5599 last_entry = entry->prev;
5600
5601 return entry;
5602 }
5603
5604 static void
5605 unrecord_section_with_aarch64_elf_section_data (asection *sec)
5606 {
5607 struct section_list *entry;
5608
5609 entry = find_aarch64_elf_section_entry (sec);
5610
5611 if (entry)
5612 {
5613 if (entry->prev != NULL)
5614 entry->prev->next = entry->next;
5615 if (entry->next != NULL)
5616 entry->next->prev = entry->prev;
5617 if (entry == sections_with_aarch64_elf_section_data)
5618 sections_with_aarch64_elf_section_data = entry->next;
5619 free (entry);
5620 }
5621 }
5622
5623
5624 typedef struct
5625 {
5626 void *finfo;
5627 struct bfd_link_info *info;
5628 asection *sec;
5629 int sec_shndx;
5630 int (*func) (void *, const char *, Elf_Internal_Sym *,
5631 asection *, struct elf_link_hash_entry *);
5632 } output_arch_syminfo;
5633
5634 enum map_symbol_type
5635 {
5636 AARCH64_MAP_INSN,
5637 AARCH64_MAP_DATA
5638 };
5639
5640
5641 /* Output a single mapping symbol. */
5642
5643 static bfd_boolean
5644 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
5645 enum map_symbol_type type, bfd_vma offset)
5646 {
5647 static const char *names[2] = { "$x", "$d" };
5648 Elf_Internal_Sym sym;
5649
5650 sym.st_value = (osi->sec->output_section->vma
5651 + osi->sec->output_offset + offset);
5652 sym.st_size = 0;
5653 sym.st_other = 0;
5654 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5655 sym.st_shndx = osi->sec_shndx;
5656 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
5657 }
5658
5659
5660
5661 /* Output mapping symbols for PLT entries associated with H. */
5662
5663 static bfd_boolean
5664 elfNN_aarch64_output_plt_map (struct elf_link_hash_entry *h, void *inf)
5665 {
5666 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
5667 bfd_vma addr;
5668
5669 if (h->root.type == bfd_link_hash_indirect)
5670 return TRUE;
5671
5672 if (h->root.type == bfd_link_hash_warning)
5673 /* When warning symbols are created, they **replace** the "real"
5674 entry in the hash table, thus we never get to see the real
5675 symbol in a hash traversal. So look at it now. */
5676 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5677
5678 if (h->plt.offset == (bfd_vma) - 1)
5679 return TRUE;
5680
5681 addr = h->plt.offset;
5682 if (addr == 32)
5683 {
5684 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
5685 return FALSE;
5686 }
5687 return TRUE;
5688 }
5689
5690
5691 /* Output a single local symbol for a generated stub. */
5692
5693 static bfd_boolean
5694 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
5695 bfd_vma offset, bfd_vma size)
5696 {
5697 Elf_Internal_Sym sym;
5698
5699 sym.st_value = (osi->sec->output_section->vma
5700 + osi->sec->output_offset + offset);
5701 sym.st_size = size;
5702 sym.st_other = 0;
5703 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5704 sym.st_shndx = osi->sec_shndx;
5705 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
5706 }
5707
5708 static bfd_boolean
5709 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
5710 {
5711 struct elf_aarch64_stub_hash_entry *stub_entry;
5712 asection *stub_sec;
5713 bfd_vma addr;
5714 char *stub_name;
5715 output_arch_syminfo *osi;
5716
5717 /* Massage our args to the form they really have. */
5718 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5719 osi = (output_arch_syminfo *) in_arg;
5720
5721 stub_sec = stub_entry->stub_sec;
5722
5723 /* Ensure this stub is attached to the current section being
5724 processed. */
5725 if (stub_sec != osi->sec)
5726 return TRUE;
5727
5728 addr = (bfd_vma) stub_entry->stub_offset;
5729
5730 stub_name = stub_entry->output_name;
5731
5732 switch (stub_entry->stub_type)
5733 {
5734 case aarch64_stub_adrp_branch:
5735 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
5736 sizeof (aarch64_adrp_branch_stub)))
5737 return FALSE;
5738 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
5739 return FALSE;
5740 break;
5741 case aarch64_stub_long_branch:
5742 if (!elfNN_aarch64_output_stub_sym
5743 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
5744 return FALSE;
5745 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
5746 return FALSE;
5747 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
5748 return FALSE;
5749 break;
5750 default:
5751 BFD_FAIL ();
5752 }
5753
5754 return TRUE;
5755 }
5756
5757 /* Output mapping symbols for linker generated sections. */
5758
5759 static bfd_boolean
5760 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
5761 struct bfd_link_info *info,
5762 void *finfo,
5763 int (*func) (void *, const char *,
5764 Elf_Internal_Sym *,
5765 asection *,
5766 struct elf_link_hash_entry
5767 *))
5768 {
5769 output_arch_syminfo osi;
5770 struct elf_aarch64_link_hash_table *htab;
5771
5772 htab = elf_aarch64_hash_table (info);
5773
5774 osi.finfo = finfo;
5775 osi.info = info;
5776 osi.func = func;
5777
5778 /* Long calls stubs. */
5779 if (htab->stub_bfd && htab->stub_bfd->sections)
5780 {
5781 asection *stub_sec;
5782
5783 for (stub_sec = htab->stub_bfd->sections;
5784 stub_sec != NULL; stub_sec = stub_sec->next)
5785 {
5786 /* Ignore non-stub sections. */
5787 if (!strstr (stub_sec->name, STUB_SUFFIX))
5788 continue;
5789
5790 osi.sec = stub_sec;
5791
5792 osi.sec_shndx = _bfd_elf_section_from_bfd_section
5793 (output_bfd, osi.sec->output_section);
5794
5795 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
5796 &osi);
5797 }
5798 }
5799
5800 /* Finally, output mapping symbols for the PLT. */
5801 if (!htab->root.splt || htab->root.splt->size == 0)
5802 return TRUE;
5803
5804 /* For now live without mapping symbols for the plt. */
5805 osi.sec_shndx = _bfd_elf_section_from_bfd_section
5806 (output_bfd, htab->root.splt->output_section);
5807 osi.sec = htab->root.splt;
5808
5809 elf_link_hash_traverse (&htab->root, elfNN_aarch64_output_plt_map,
5810 (void *) &osi);
5811
5812 return TRUE;
5813
5814 }
5815
5816 /* Allocate target specific section data. */
5817
5818 static bfd_boolean
5819 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
5820 {
5821 if (!sec->used_by_bfd)
5822 {
5823 _aarch64_elf_section_data *sdata;
5824 bfd_size_type amt = sizeof (*sdata);
5825
5826 sdata = bfd_zalloc (abfd, amt);
5827 if (sdata == NULL)
5828 return FALSE;
5829 sec->used_by_bfd = sdata;
5830 }
5831
5832 record_section_with_aarch64_elf_section_data (sec);
5833
5834 return _bfd_elf_new_section_hook (abfd, sec);
5835 }
5836
5837
5838 static void
5839 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
5840 asection *sec,
5841 void *ignore ATTRIBUTE_UNUSED)
5842 {
5843 unrecord_section_with_aarch64_elf_section_data (sec);
5844 }
5845
5846 static bfd_boolean
5847 elfNN_aarch64_close_and_cleanup (bfd *abfd)
5848 {
5849 if (abfd->sections)
5850 bfd_map_over_sections (abfd,
5851 unrecord_section_via_map_over_sections, NULL);
5852
5853 return _bfd_elf_close_and_cleanup (abfd);
5854 }
5855
5856 static bfd_boolean
5857 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
5858 {
5859 if (abfd->sections)
5860 bfd_map_over_sections (abfd,
5861 unrecord_section_via_map_over_sections, NULL);
5862
5863 return _bfd_free_cached_info (abfd);
5864 }
5865
5866 /* Create dynamic sections. This is different from the ARM backend in that
5867 the got, plt, gotplt and their relocation sections are all created in the
5868 standard part of the bfd elf backend. */
5869
5870 static bfd_boolean
5871 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
5872 struct bfd_link_info *info)
5873 {
5874 struct elf_aarch64_link_hash_table *htab;
5875
5876 /* We need to create .got section. */
5877 if (!aarch64_elf_create_got_section (dynobj, info))
5878 return FALSE;
5879
5880 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
5881 return FALSE;
5882
5883 htab = elf_aarch64_hash_table (info);
5884 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
5885 if (!info->shared)
5886 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
5887
5888 if (!htab->sdynbss || (!info->shared && !htab->srelbss))
5889 abort ();
5890
5891 return TRUE;
5892 }
5893
5894
5895 /* Allocate space in .plt, .got and associated reloc sections for
5896 dynamic relocs. */
5897
5898 static bfd_boolean
5899 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
5900 {
5901 struct bfd_link_info *info;
5902 struct elf_aarch64_link_hash_table *htab;
5903 struct elf_aarch64_link_hash_entry *eh;
5904 struct elf_dyn_relocs *p;
5905
5906 /* An example of a bfd_link_hash_indirect symbol is versioned
5907 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
5908 -> __gxx_personality_v0(bfd_link_hash_defined)
5909
5910 There is no need to process bfd_link_hash_indirect symbols here
5911 because we will also be presented with the concrete instance of
5912 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
5913 called to copy all relevant data from the generic to the concrete
5914 symbol instance.
5915 */
5916 if (h->root.type == bfd_link_hash_indirect)
5917 return TRUE;
5918
5919 if (h->root.type == bfd_link_hash_warning)
5920 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5921
5922 info = (struct bfd_link_info *) inf;
5923 htab = elf_aarch64_hash_table (info);
5924
5925 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
5926 here if it is defined and referenced in a non-shared object. */
5927 if (h->type == STT_GNU_IFUNC
5928 && h->def_regular)
5929 return TRUE;
5930 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
5931 {
5932 /* Make sure this symbol is output as a dynamic symbol.
5933 Undefined weak syms won't yet be marked as dynamic. */
5934 if (h->dynindx == -1 && !h->forced_local)
5935 {
5936 if (!bfd_elf_link_record_dynamic_symbol (info, h))
5937 return FALSE;
5938 }
5939
5940 if (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
5941 {
5942 asection *s = htab->root.splt;
5943
5944 /* If this is the first .plt entry, make room for the special
5945 first entry. */
5946 if (s->size == 0)
5947 s->size += htab->plt_header_size;
5948
5949 h->plt.offset = s->size;
5950
5951 /* If this symbol is not defined in a regular file, and we are
5952 not generating a shared library, then set the symbol to this
5953 location in the .plt. This is required to make function
5954 pointers compare as equal between the normal executable and
5955 the shared library. */
5956 if (!info->shared && !h->def_regular)
5957 {
5958 h->root.u.def.section = s;
5959 h->root.u.def.value = h->plt.offset;
5960 }
5961
5962 /* Make room for this entry. For now we only create the
5963 small model PLT entries. We later need to find a way
5964 of relaxing into these from the large model PLT entries. */
5965 s->size += PLT_SMALL_ENTRY_SIZE;
5966
5967 /* We also need to make an entry in the .got.plt section, which
5968 will be placed in the .got section by the linker script. */
5969 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
5970
5971 /* We also need to make an entry in the .rela.plt section. */
5972 htab->root.srelplt->size += RELOC_SIZE (htab);
5973
5974 /* We need to ensure that all GOT entries that serve the PLT
5975 are consecutive with the special GOT slots [0] [1] and
5976 [2]. Any addtional relocations, such as
5977 R_AARCH64_TLSDESC, must be placed after the PLT related
5978 entries. We abuse the reloc_count such that during
5979 sizing we adjust reloc_count to indicate the number of
5980 PLT related reserved entries. In subsequent phases when
5981 filling in the contents of the reloc entries, PLT related
5982 entries are placed by computing their PLT index (0
5983 .. reloc_count). While other none PLT relocs are placed
5984 at the slot indicated by reloc_count and reloc_count is
5985 updated. */
5986
5987 htab->root.srelplt->reloc_count++;
5988 }
5989 else
5990 {
5991 h->plt.offset = (bfd_vma) - 1;
5992 h->needs_plt = 0;
5993 }
5994 }
5995 else
5996 {
5997 h->plt.offset = (bfd_vma) - 1;
5998 h->needs_plt = 0;
5999 }
6000
6001 eh = (struct elf_aarch64_link_hash_entry *) h;
6002 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
6003
6004 if (h->got.refcount > 0)
6005 {
6006 bfd_boolean dyn;
6007 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
6008
6009 h->got.offset = (bfd_vma) - 1;
6010
6011 dyn = htab->root.dynamic_sections_created;
6012
6013 /* Make sure this symbol is output as a dynamic symbol.
6014 Undefined weak syms won't yet be marked as dynamic. */
6015 if (dyn && h->dynindx == -1 && !h->forced_local)
6016 {
6017 if (!bfd_elf_link_record_dynamic_symbol (info, h))
6018 return FALSE;
6019 }
6020
6021 if (got_type == GOT_UNKNOWN)
6022 {
6023 }
6024 else if (got_type == GOT_NORMAL)
6025 {
6026 h->got.offset = htab->root.sgot->size;
6027 htab->root.sgot->size += GOT_ENTRY_SIZE;
6028 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6029 || h->root.type != bfd_link_hash_undefweak)
6030 && (info->shared
6031 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
6032 {
6033 htab->root.srelgot->size += RELOC_SIZE (htab);
6034 }
6035 }
6036 else
6037 {
6038 int indx;
6039 if (got_type & GOT_TLSDESC_GD)
6040 {
6041 eh->tlsdesc_got_jump_table_offset =
6042 (htab->root.sgotplt->size
6043 - aarch64_compute_jump_table_size (htab));
6044 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
6045 h->got.offset = (bfd_vma) - 2;
6046 }
6047
6048 if (got_type & GOT_TLS_GD)
6049 {
6050 h->got.offset = htab->root.sgot->size;
6051 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
6052 }
6053
6054 if (got_type & GOT_TLS_IE)
6055 {
6056 h->got.offset = htab->root.sgot->size;
6057 htab->root.sgot->size += GOT_ENTRY_SIZE;
6058 }
6059
6060 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6061 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6062 || h->root.type != bfd_link_hash_undefweak)
6063 && (info->shared
6064 || indx != 0
6065 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
6066 {
6067 if (got_type & GOT_TLSDESC_GD)
6068 {
6069 htab->root.srelplt->size += RELOC_SIZE (htab);
6070 /* Note reloc_count not incremented here! We have
6071 already adjusted reloc_count for this relocation
6072 type. */
6073
6074 /* TLSDESC PLT is now needed, but not yet determined. */
6075 htab->tlsdesc_plt = (bfd_vma) - 1;
6076 }
6077
6078 if (got_type & GOT_TLS_GD)
6079 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
6080
6081 if (got_type & GOT_TLS_IE)
6082 htab->root.srelgot->size += RELOC_SIZE (htab);
6083 }
6084 }
6085 }
6086 else
6087 {
6088 h->got.offset = (bfd_vma) - 1;
6089 }
6090
6091 if (eh->dyn_relocs == NULL)
6092 return TRUE;
6093
6094 /* In the shared -Bsymbolic case, discard space allocated for
6095 dynamic pc-relative relocs against symbols which turn out to be
6096 defined in regular objects. For the normal shared case, discard
6097 space for pc-relative relocs that have become local due to symbol
6098 visibility changes. */
6099
6100 if (info->shared)
6101 {
6102 /* Relocs that use pc_count are those that appear on a call
6103 insn, or certain REL relocs that can generated via assembly.
6104 We want calls to protected symbols to resolve directly to the
6105 function rather than going via the plt. If people want
6106 function pointer comparisons to work as expected then they
6107 should avoid writing weird assembly. */
6108 if (SYMBOL_CALLS_LOCAL (info, h))
6109 {
6110 struct elf_dyn_relocs **pp;
6111
6112 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
6113 {
6114 p->count -= p->pc_count;
6115 p->pc_count = 0;
6116 if (p->count == 0)
6117 *pp = p->next;
6118 else
6119 pp = &p->next;
6120 }
6121 }
6122
6123 /* Also discard relocs on undefined weak syms with non-default
6124 visibility. */
6125 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
6126 {
6127 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
6128 eh->dyn_relocs = NULL;
6129
6130 /* Make sure undefined weak symbols are output as a dynamic
6131 symbol in PIEs. */
6132 else if (h->dynindx == -1
6133 && !h->forced_local
6134 && !bfd_elf_link_record_dynamic_symbol (info, h))
6135 return FALSE;
6136 }
6137
6138 }
6139 else if (ELIMINATE_COPY_RELOCS)
6140 {
6141 /* For the non-shared case, discard space for relocs against
6142 symbols which turn out to need copy relocs or are not
6143 dynamic. */
6144
6145 if (!h->non_got_ref
6146 && ((h->def_dynamic
6147 && !h->def_regular)
6148 || (htab->root.dynamic_sections_created
6149 && (h->root.type == bfd_link_hash_undefweak
6150 || h->root.type == bfd_link_hash_undefined))))
6151 {
6152 /* Make sure this symbol is output as a dynamic symbol.
6153 Undefined weak syms won't yet be marked as dynamic. */
6154 if (h->dynindx == -1
6155 && !h->forced_local
6156 && !bfd_elf_link_record_dynamic_symbol (info, h))
6157 return FALSE;
6158
6159 /* If that succeeded, we know we'll be keeping all the
6160 relocs. */
6161 if (h->dynindx != -1)
6162 goto keep;
6163 }
6164
6165 eh->dyn_relocs = NULL;
6166
6167 keep:;
6168 }
6169
6170 /* Finally, allocate space. */
6171 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6172 {
6173 asection *sreloc;
6174
6175 sreloc = elf_section_data (p->sec)->sreloc;
6176
6177 BFD_ASSERT (sreloc != NULL);
6178
6179 sreloc->size += p->count * RELOC_SIZE (htab);
6180 }
6181
6182 return TRUE;
6183 }
6184
6185 /* Allocate space in .plt, .got and associated reloc sections for
6186 ifunc dynamic relocs. */
6187
6188 static bfd_boolean
6189 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
6190 void *inf)
6191 {
6192 struct bfd_link_info *info;
6193 struct elf_aarch64_link_hash_table *htab;
6194 struct elf_aarch64_link_hash_entry *eh;
6195
6196 /* An example of a bfd_link_hash_indirect symbol is versioned
6197 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
6198 -> __gxx_personality_v0(bfd_link_hash_defined)
6199
6200 There is no need to process bfd_link_hash_indirect symbols here
6201 because we will also be presented with the concrete instance of
6202 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
6203 called to copy all relevant data from the generic to the concrete
6204 symbol instance.
6205 */
6206 if (h->root.type == bfd_link_hash_indirect)
6207 return TRUE;
6208
6209 if (h->root.type == bfd_link_hash_warning)
6210 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6211
6212 info = (struct bfd_link_info *) inf;
6213 htab = elf_aarch64_hash_table (info);
6214
6215 eh = (struct elf_aarch64_link_hash_entry *) h;
6216
6217 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
6218 here if it is defined and referenced in a non-shared object. */
6219 if (h->type == STT_GNU_IFUNC
6220 && h->def_regular)
6221 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
6222 &eh->dyn_relocs,
6223 htab->plt_entry_size,
6224 htab->plt_header_size,
6225 GOT_ENTRY_SIZE);
6226 return TRUE;
6227 }
6228
6229 /* Allocate space in .plt, .got and associated reloc sections for
6230 local dynamic relocs. */
6231
6232 static bfd_boolean
6233 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
6234 {
6235 struct elf_link_hash_entry *h
6236 = (struct elf_link_hash_entry *) *slot;
6237
6238 if (h->type != STT_GNU_IFUNC
6239 || !h->def_regular
6240 || !h->ref_regular
6241 || !h->forced_local
6242 || h->root.type != bfd_link_hash_defined)
6243 abort ();
6244
6245 return elfNN_aarch64_allocate_dynrelocs (h, inf);
6246 }
6247
6248 /* Allocate space in .plt, .got and associated reloc sections for
6249 local ifunc dynamic relocs. */
6250
6251 static bfd_boolean
6252 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
6253 {
6254 struct elf_link_hash_entry *h
6255 = (struct elf_link_hash_entry *) *slot;
6256
6257 if (h->type != STT_GNU_IFUNC
6258 || !h->def_regular
6259 || !h->ref_regular
6260 || !h->forced_local
6261 || h->root.type != bfd_link_hash_defined)
6262 abort ();
6263
6264 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
6265 }
6266
6267 /* This is the most important function of all . Innocuosly named
6268 though ! */
6269 static bfd_boolean
6270 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
6271 struct bfd_link_info *info)
6272 {
6273 struct elf_aarch64_link_hash_table *htab;
6274 bfd *dynobj;
6275 asection *s;
6276 bfd_boolean relocs;
6277 bfd *ibfd;
6278
6279 htab = elf_aarch64_hash_table ((info));
6280 dynobj = htab->root.dynobj;
6281
6282 BFD_ASSERT (dynobj != NULL);
6283
6284 if (htab->root.dynamic_sections_created)
6285 {
6286 if (info->executable)
6287 {
6288 s = bfd_get_linker_section (dynobj, ".interp");
6289 if (s == NULL)
6290 abort ();
6291 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
6292 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
6293 }
6294 }
6295
6296 /* Set up .got offsets for local syms, and space for local dynamic
6297 relocs. */
6298 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6299 {
6300 struct elf_aarch64_local_symbol *locals = NULL;
6301 Elf_Internal_Shdr *symtab_hdr;
6302 asection *srel;
6303 unsigned int i;
6304
6305 if (!is_aarch64_elf (ibfd))
6306 continue;
6307
6308 for (s = ibfd->sections; s != NULL; s = s->next)
6309 {
6310 struct elf_dyn_relocs *p;
6311
6312 for (p = (struct elf_dyn_relocs *)
6313 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
6314 {
6315 if (!bfd_is_abs_section (p->sec)
6316 && bfd_is_abs_section (p->sec->output_section))
6317 {
6318 /* Input section has been discarded, either because
6319 it is a copy of a linkonce section or due to
6320 linker script /DISCARD/, so we'll be discarding
6321 the relocs too. */
6322 }
6323 else if (p->count != 0)
6324 {
6325 srel = elf_section_data (p->sec)->sreloc;
6326 srel->size += p->count * RELOC_SIZE (htab);
6327 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
6328 info->flags |= DF_TEXTREL;
6329 }
6330 }
6331 }
6332
6333 locals = elf_aarch64_locals (ibfd);
6334 if (!locals)
6335 continue;
6336
6337 symtab_hdr = &elf_symtab_hdr (ibfd);
6338 srel = htab->root.srelgot;
6339 for (i = 0; i < symtab_hdr->sh_info; i++)
6340 {
6341 locals[i].got_offset = (bfd_vma) - 1;
6342 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
6343 if (locals[i].got_refcount > 0)
6344 {
6345 unsigned got_type = locals[i].got_type;
6346 if (got_type & GOT_TLSDESC_GD)
6347 {
6348 locals[i].tlsdesc_got_jump_table_offset =
6349 (htab->root.sgotplt->size
6350 - aarch64_compute_jump_table_size (htab));
6351 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
6352 locals[i].got_offset = (bfd_vma) - 2;
6353 }
6354
6355 if (got_type & GOT_TLS_GD)
6356 {
6357 locals[i].got_offset = htab->root.sgot->size;
6358 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
6359 }
6360
6361 if (got_type & GOT_TLS_IE)
6362 {
6363 locals[i].got_offset = htab->root.sgot->size;
6364 htab->root.sgot->size += GOT_ENTRY_SIZE;
6365 }
6366
6367 if (got_type == GOT_UNKNOWN)
6368 {
6369 }
6370
6371 if (got_type == GOT_NORMAL)
6372 {
6373 }
6374
6375 if (info->shared)
6376 {
6377 if (got_type & GOT_TLSDESC_GD)
6378 {
6379 htab->root.srelplt->size += RELOC_SIZE (htab);
6380 /* Note RELOC_COUNT not incremented here! */
6381 htab->tlsdesc_plt = (bfd_vma) - 1;
6382 }
6383
6384 if (got_type & GOT_TLS_GD)
6385 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
6386
6387 if (got_type & GOT_TLS_IE)
6388 htab->root.srelgot->size += RELOC_SIZE (htab);
6389 }
6390 }
6391 else
6392 {
6393 locals[i].got_refcount = (bfd_vma) - 1;
6394 }
6395 }
6396 }
6397
6398
6399 /* Allocate global sym .plt and .got entries, and space for global
6400 sym dynamic relocs. */
6401 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
6402 info);
6403
6404 /* Allocate global ifunc sym .plt and .got entries, and space for global
6405 ifunc sym dynamic relocs. */
6406 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
6407 info);
6408
6409 /* Allocate .plt and .got entries, and space for local symbols. */
6410 htab_traverse (htab->loc_hash_table,
6411 elfNN_aarch64_allocate_local_dynrelocs,
6412 info);
6413
6414 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
6415 htab_traverse (htab->loc_hash_table,
6416 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
6417 info);
6418
6419 /* For every jump slot reserved in the sgotplt, reloc_count is
6420 incremented. However, when we reserve space for TLS descriptors,
6421 it's not incremented, so in order to compute the space reserved
6422 for them, it suffices to multiply the reloc count by the jump
6423 slot size. */
6424
6425 if (htab->root.srelplt)
6426 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
6427
6428 if (htab->tlsdesc_plt)
6429 {
6430 if (htab->root.splt->size == 0)
6431 htab->root.splt->size += PLT_ENTRY_SIZE;
6432
6433 htab->tlsdesc_plt = htab->root.splt->size;
6434 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
6435
6436 /* If we're not using lazy TLS relocations, don't generate the
6437 GOT entry required. */
6438 if (!(info->flags & DF_BIND_NOW))
6439 {
6440 htab->dt_tlsdesc_got = htab->root.sgot->size;
6441 htab->root.sgot->size += GOT_ENTRY_SIZE;
6442 }
6443 }
6444
6445 /* We now have determined the sizes of the various dynamic sections.
6446 Allocate memory for them. */
6447 relocs = FALSE;
6448 for (s = dynobj->sections; s != NULL; s = s->next)
6449 {
6450 if ((s->flags & SEC_LINKER_CREATED) == 0)
6451 continue;
6452
6453 if (s == htab->root.splt
6454 || s == htab->root.sgot
6455 || s == htab->root.sgotplt
6456 || s == htab->root.iplt
6457 || s == htab->root.igotplt || s == htab->sdynbss)
6458 {
6459 /* Strip this section if we don't need it; see the
6460 comment below. */
6461 }
6462 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
6463 {
6464 if (s->size != 0 && s != htab->root.srelplt)
6465 relocs = TRUE;
6466
6467 /* We use the reloc_count field as a counter if we need
6468 to copy relocs into the output file. */
6469 if (s != htab->root.srelplt)
6470 s->reloc_count = 0;
6471 }
6472 else
6473 {
6474 /* It's not one of our sections, so don't allocate space. */
6475 continue;
6476 }
6477
6478 if (s->size == 0)
6479 {
6480 /* If we don't need this section, strip it from the
6481 output file. This is mostly to handle .rela.bss and
6482 .rela.plt. We must create both sections in
6483 create_dynamic_sections, because they must be created
6484 before the linker maps input sections to output
6485 sections. The linker does that before
6486 adjust_dynamic_symbol is called, and it is that
6487 function which decides whether anything needs to go
6488 into these sections. */
6489
6490 s->flags |= SEC_EXCLUDE;
6491 continue;
6492 }
6493
6494 if ((s->flags & SEC_HAS_CONTENTS) == 0)
6495 continue;
6496
6497 /* Allocate memory for the section contents. We use bfd_zalloc
6498 here in case unused entries are not reclaimed before the
6499 section's contents are written out. This should not happen,
6500 but this way if it does, we get a R_AARCH64_NONE reloc instead
6501 of garbage. */
6502 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
6503 if (s->contents == NULL)
6504 return FALSE;
6505 }
6506
6507 if (htab->root.dynamic_sections_created)
6508 {
6509 /* Add some entries to the .dynamic section. We fill in the
6510 values later, in elfNN_aarch64_finish_dynamic_sections, but we
6511 must add the entries now so that we get the correct size for
6512 the .dynamic section. The DT_DEBUG entry is filled in by the
6513 dynamic linker and used by the debugger. */
6514 #define add_dynamic_entry(TAG, VAL) \
6515 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
6516
6517 if (info->executable)
6518 {
6519 if (!add_dynamic_entry (DT_DEBUG, 0))
6520 return FALSE;
6521 }
6522
6523 if (htab->root.splt->size != 0)
6524 {
6525 if (!add_dynamic_entry (DT_PLTGOT, 0)
6526 || !add_dynamic_entry (DT_PLTRELSZ, 0)
6527 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
6528 || !add_dynamic_entry (DT_JMPREL, 0))
6529 return FALSE;
6530
6531 if (htab->tlsdesc_plt
6532 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
6533 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
6534 return FALSE;
6535 }
6536
6537 if (relocs)
6538 {
6539 if (!add_dynamic_entry (DT_RELA, 0)
6540 || !add_dynamic_entry (DT_RELASZ, 0)
6541 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
6542 return FALSE;
6543
6544 /* If any dynamic relocs apply to a read-only section,
6545 then we need a DT_TEXTREL entry. */
6546 if ((info->flags & DF_TEXTREL) != 0)
6547 {
6548 if (!add_dynamic_entry (DT_TEXTREL, 0))
6549 return FALSE;
6550 }
6551 }
6552 }
6553 #undef add_dynamic_entry
6554
6555 return TRUE;
6556 }
6557
6558 static inline void
6559 elf_aarch64_update_plt_entry (bfd *output_bfd,
6560 bfd_reloc_code_real_type r_type,
6561 bfd_byte *plt_entry, bfd_vma value)
6562 {
6563 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
6564
6565 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
6566 }
6567
6568 static void
6569 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
6570 struct elf_aarch64_link_hash_table
6571 *htab, bfd *output_bfd,
6572 struct bfd_link_info *info)
6573 {
6574 bfd_byte *plt_entry;
6575 bfd_vma plt_index;
6576 bfd_vma got_offset;
6577 bfd_vma gotplt_entry_address;
6578 bfd_vma plt_entry_address;
6579 Elf_Internal_Rela rela;
6580 bfd_byte *loc;
6581 asection *plt, *gotplt, *relplt;
6582
6583 /* When building a static executable, use .iplt, .igot.plt and
6584 .rela.iplt sections for STT_GNU_IFUNC symbols. */
6585 if (htab->root.splt != NULL)
6586 {
6587 plt = htab->root.splt;
6588 gotplt = htab->root.sgotplt;
6589 relplt = htab->root.srelplt;
6590 }
6591 else
6592 {
6593 plt = htab->root.iplt;
6594 gotplt = htab->root.igotplt;
6595 relplt = htab->root.irelplt;
6596 }
6597
6598 /* Get the index in the procedure linkage table which
6599 corresponds to this symbol. This is the index of this symbol
6600 in all the symbols for which we are making plt entries. The
6601 first entry in the procedure linkage table is reserved.
6602
6603 Get the offset into the .got table of the entry that
6604 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
6605 bytes. The first three are reserved for the dynamic linker.
6606
6607 For static executables, we don't reserve anything. */
6608
6609 if (plt == htab->root.splt)
6610 {
6611 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
6612 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
6613 }
6614 else
6615 {
6616 plt_index = h->plt.offset / htab->plt_entry_size;
6617 got_offset = plt_index * GOT_ENTRY_SIZE;
6618 }
6619
6620 plt_entry = plt->contents + h->plt.offset;
6621 plt_entry_address = plt->output_section->vma
6622 + plt->output_offset + h->plt.offset;
6623 gotplt_entry_address = gotplt->output_section->vma +
6624 gotplt->output_offset + got_offset;
6625
6626 /* Copy in the boiler-plate for the PLTn entry. */
6627 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
6628
6629 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6630 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
6631 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
6632 plt_entry,
6633 PG (gotplt_entry_address) -
6634 PG (plt_entry_address));
6635
6636 /* Fill in the lo12 bits for the load from the pltgot. */
6637 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
6638 plt_entry + 4,
6639 PG_OFFSET (gotplt_entry_address));
6640
6641 /* Fill in the lo12 bits for the add from the pltgot entry. */
6642 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
6643 plt_entry + 8,
6644 PG_OFFSET (gotplt_entry_address));
6645
6646 /* All the GOTPLT Entries are essentially initialized to PLT0. */
6647 bfd_put_NN (output_bfd,
6648 plt->output_section->vma + plt->output_offset,
6649 gotplt->contents + got_offset);
6650
6651 rela.r_offset = gotplt_entry_address;
6652
6653 if (h->dynindx == -1
6654 || ((info->executable
6655 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
6656 && h->def_regular
6657 && h->type == STT_GNU_IFUNC))
6658 {
6659 /* If an STT_GNU_IFUNC symbol is locally defined, generate
6660 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
6661 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
6662 rela.r_addend = (h->root.u.def.value
6663 + h->root.u.def.section->output_section->vma
6664 + h->root.u.def.section->output_offset);
6665 }
6666 else
6667 {
6668 /* Fill in the entry in the .rela.plt section. */
6669 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
6670 rela.r_addend = 0;
6671 }
6672
6673 /* Compute the relocation entry to used based on PLT index and do
6674 not adjust reloc_count. The reloc_count has already been adjusted
6675 to account for this entry. */
6676 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
6677 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6678 }
6679
6680 /* Size sections even though they're not dynamic. We use it to setup
6681 _TLS_MODULE_BASE_, if needed. */
6682
6683 static bfd_boolean
6684 elfNN_aarch64_always_size_sections (bfd *output_bfd,
6685 struct bfd_link_info *info)
6686 {
6687 asection *tls_sec;
6688
6689 if (info->relocatable)
6690 return TRUE;
6691
6692 tls_sec = elf_hash_table (info)->tls_sec;
6693
6694 if (tls_sec)
6695 {
6696 struct elf_link_hash_entry *tlsbase;
6697
6698 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
6699 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
6700
6701 if (tlsbase)
6702 {
6703 struct bfd_link_hash_entry *h = NULL;
6704 const struct elf_backend_data *bed =
6705 get_elf_backend_data (output_bfd);
6706
6707 if (!(_bfd_generic_link_add_one_symbol
6708 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
6709 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
6710 return FALSE;
6711
6712 tlsbase->type = STT_TLS;
6713 tlsbase = (struct elf_link_hash_entry *) h;
6714 tlsbase->def_regular = 1;
6715 tlsbase->other = STV_HIDDEN;
6716 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
6717 }
6718 }
6719
6720 return TRUE;
6721 }
6722
6723 /* Finish up dynamic symbol handling. We set the contents of various
6724 dynamic sections here. */
6725 static bfd_boolean
6726 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
6727 struct bfd_link_info *info,
6728 struct elf_link_hash_entry *h,
6729 Elf_Internal_Sym *sym)
6730 {
6731 struct elf_aarch64_link_hash_table *htab;
6732 htab = elf_aarch64_hash_table (info);
6733
6734 if (h->plt.offset != (bfd_vma) - 1)
6735 {
6736 asection *plt, *gotplt, *relplt;
6737
6738 /* This symbol has an entry in the procedure linkage table. Set
6739 it up. */
6740
6741 /* When building a static executable, use .iplt, .igot.plt and
6742 .rela.iplt sections for STT_GNU_IFUNC symbols. */
6743 if (htab->root.splt != NULL)
6744 {
6745 plt = htab->root.splt;
6746 gotplt = htab->root.sgotplt;
6747 relplt = htab->root.srelplt;
6748 }
6749 else
6750 {
6751 plt = htab->root.iplt;
6752 gotplt = htab->root.igotplt;
6753 relplt = htab->root.irelplt;
6754 }
6755
6756 /* This symbol has an entry in the procedure linkage table. Set
6757 it up. */
6758 if ((h->dynindx == -1
6759 && !((h->forced_local || info->executable)
6760 && h->def_regular
6761 && h->type == STT_GNU_IFUNC))
6762 || plt == NULL
6763 || gotplt == NULL
6764 || relplt == NULL)
6765 abort ();
6766
6767 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
6768 if (!h->def_regular)
6769 {
6770 /* Mark the symbol as undefined, rather than as defined in
6771 the .plt section. Leave the value alone. This is a clue
6772 for the dynamic linker, to make function pointer
6773 comparisons work between an application and shared
6774 library. */
6775 sym->st_shndx = SHN_UNDEF;
6776 }
6777 }
6778
6779 if (h->got.offset != (bfd_vma) - 1
6780 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
6781 {
6782 Elf_Internal_Rela rela;
6783 bfd_byte *loc;
6784
6785 /* This symbol has an entry in the global offset table. Set it
6786 up. */
6787 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
6788 abort ();
6789
6790 rela.r_offset = (htab->root.sgot->output_section->vma
6791 + htab->root.sgot->output_offset
6792 + (h->got.offset & ~(bfd_vma) 1));
6793
6794 if (h->def_regular
6795 && h->type == STT_GNU_IFUNC)
6796 {
6797 if (info->shared)
6798 {
6799 /* Generate R_AARCH64_GLOB_DAT. */
6800 goto do_glob_dat;
6801 }
6802 else
6803 {
6804 asection *plt;
6805
6806 if (!h->pointer_equality_needed)
6807 abort ();
6808
6809 /* For non-shared object, we can't use .got.plt, which
6810 contains the real function address if we need pointer
6811 equality. We load the GOT entry with the PLT entry. */
6812 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
6813 bfd_put_NN (output_bfd, (plt->output_section->vma
6814 + plt->output_offset
6815 + h->plt.offset),
6816 htab->root.sgot->contents
6817 + (h->got.offset & ~(bfd_vma) 1));
6818 return TRUE;
6819 }
6820 }
6821 else if (info->shared && SYMBOL_REFERENCES_LOCAL (info, h))
6822 {
6823 if (!h->def_regular)
6824 return FALSE;
6825
6826 BFD_ASSERT ((h->got.offset & 1) != 0);
6827 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
6828 rela.r_addend = (h->root.u.def.value
6829 + h->root.u.def.section->output_section->vma
6830 + h->root.u.def.section->output_offset);
6831 }
6832 else
6833 {
6834 do_glob_dat:
6835 BFD_ASSERT ((h->got.offset & 1) == 0);
6836 bfd_put_NN (output_bfd, (bfd_vma) 0,
6837 htab->root.sgot->contents + h->got.offset);
6838 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
6839 rela.r_addend = 0;
6840 }
6841
6842 loc = htab->root.srelgot->contents;
6843 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
6844 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6845 }
6846
6847 if (h->needs_copy)
6848 {
6849 Elf_Internal_Rela rela;
6850 bfd_byte *loc;
6851
6852 /* This symbol needs a copy reloc. Set it up. */
6853
6854 if (h->dynindx == -1
6855 || (h->root.type != bfd_link_hash_defined
6856 && h->root.type != bfd_link_hash_defweak)
6857 || htab->srelbss == NULL)
6858 abort ();
6859
6860 rela.r_offset = (h->root.u.def.value
6861 + h->root.u.def.section->output_section->vma
6862 + h->root.u.def.section->output_offset);
6863 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
6864 rela.r_addend = 0;
6865 loc = htab->srelbss->contents;
6866 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
6867 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6868 }
6869
6870 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
6871 be NULL for local symbols. */
6872 if (sym != NULL
6873 && (h == elf_hash_table (info)->hdynamic
6874 || h == elf_hash_table (info)->hgot))
6875 sym->st_shndx = SHN_ABS;
6876
6877 return TRUE;
6878 }
6879
6880 /* Finish up local dynamic symbol handling. We set the contents of
6881 various dynamic sections here. */
6882
6883 static bfd_boolean
6884 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
6885 {
6886 struct elf_link_hash_entry *h
6887 = (struct elf_link_hash_entry *) *slot;
6888 struct bfd_link_info *info
6889 = (struct bfd_link_info *) inf;
6890
6891 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
6892 info, h, NULL);
6893 }
6894
6895 static void
6896 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
6897 struct elf_aarch64_link_hash_table
6898 *htab)
6899 {
6900 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
6901 small and large plts and at the minute just generates
6902 the small PLT. */
6903
6904 /* PLT0 of the small PLT looks like this in ELF64 -
6905 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
6906 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
6907 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
6908 // symbol resolver
6909 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
6910 // GOTPLT entry for this.
6911 br x17
6912 PLT0 will be slightly different in ELF32 due to different got entry
6913 size.
6914 */
6915 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
6916 bfd_vma plt_base;
6917
6918
6919 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
6920 PLT_ENTRY_SIZE);
6921 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
6922 PLT_ENTRY_SIZE;
6923
6924 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
6925 + htab->root.sgotplt->output_offset
6926 + GOT_ENTRY_SIZE * 2);
6927
6928 plt_base = htab->root.splt->output_section->vma +
6929 htab->root.splt->output_offset;
6930
6931 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6932 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
6933 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
6934 htab->root.splt->contents + 4,
6935 PG (plt_got_2nd_ent) - PG (plt_base + 4));
6936
6937 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
6938 htab->root.splt->contents + 8,
6939 PG_OFFSET (plt_got_2nd_ent));
6940
6941 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
6942 htab->root.splt->contents + 12,
6943 PG_OFFSET (plt_got_2nd_ent));
6944 }
6945
6946 static bfd_boolean
6947 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
6948 struct bfd_link_info *info)
6949 {
6950 struct elf_aarch64_link_hash_table *htab;
6951 bfd *dynobj;
6952 asection *sdyn;
6953
6954 htab = elf_aarch64_hash_table (info);
6955 dynobj = htab->root.dynobj;
6956 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
6957
6958 if (htab->root.dynamic_sections_created)
6959 {
6960 ElfNN_External_Dyn *dyncon, *dynconend;
6961
6962 if (sdyn == NULL || htab->root.sgot == NULL)
6963 abort ();
6964
6965 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
6966 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
6967 for (; dyncon < dynconend; dyncon++)
6968 {
6969 Elf_Internal_Dyn dyn;
6970 asection *s;
6971
6972 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
6973
6974 switch (dyn.d_tag)
6975 {
6976 default:
6977 continue;
6978
6979 case DT_PLTGOT:
6980 s = htab->root.sgotplt;
6981 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
6982 break;
6983
6984 case DT_JMPREL:
6985 dyn.d_un.d_ptr = htab->root.srelplt->output_section->vma;
6986 break;
6987
6988 case DT_PLTRELSZ:
6989 s = htab->root.srelplt;
6990 dyn.d_un.d_val = s->size;
6991 break;
6992
6993 case DT_RELASZ:
6994 /* The procedure linkage table relocs (DT_JMPREL) should
6995 not be included in the overall relocs (DT_RELA).
6996 Therefore, we override the DT_RELASZ entry here to
6997 make it not include the JMPREL relocs. Since the
6998 linker script arranges for .rela.plt to follow all
6999 other relocation sections, we don't have to worry
7000 about changing the DT_RELA entry. */
7001 if (htab->root.srelplt != NULL)
7002 {
7003 s = htab->root.srelplt;
7004 dyn.d_un.d_val -= s->size;
7005 }
7006 break;
7007
7008 case DT_TLSDESC_PLT:
7009 s = htab->root.splt;
7010 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
7011 + htab->tlsdesc_plt;
7012 break;
7013
7014 case DT_TLSDESC_GOT:
7015 s = htab->root.sgot;
7016 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
7017 + htab->dt_tlsdesc_got;
7018 break;
7019 }
7020
7021 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
7022 }
7023
7024 }
7025
7026 /* Fill in the special first entry in the procedure linkage table. */
7027 if (htab->root.splt && htab->root.splt->size > 0)
7028 {
7029 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
7030
7031 elf_section_data (htab->root.splt->output_section)->
7032 this_hdr.sh_entsize = htab->plt_entry_size;
7033
7034
7035 if (htab->tlsdesc_plt)
7036 {
7037 bfd_put_NN (output_bfd, (bfd_vma) 0,
7038 htab->root.sgot->contents + htab->dt_tlsdesc_got);
7039
7040 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
7041 elfNN_aarch64_tlsdesc_small_plt_entry,
7042 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
7043
7044 {
7045 bfd_vma adrp1_addr =
7046 htab->root.splt->output_section->vma
7047 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
7048
7049 bfd_vma adrp2_addr = adrp1_addr + 4;
7050
7051 bfd_vma got_addr =
7052 htab->root.sgot->output_section->vma
7053 + htab->root.sgot->output_offset;
7054
7055 bfd_vma pltgot_addr =
7056 htab->root.sgotplt->output_section->vma
7057 + htab->root.sgotplt->output_offset;
7058
7059 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
7060
7061 bfd_byte *plt_entry =
7062 htab->root.splt->contents + htab->tlsdesc_plt;
7063
7064 /* adrp x2, DT_TLSDESC_GOT */
7065 elf_aarch64_update_plt_entry (output_bfd,
7066 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
7067 plt_entry + 4,
7068 (PG (dt_tlsdesc_got)
7069 - PG (adrp1_addr)));
7070
7071 /* adrp x3, 0 */
7072 elf_aarch64_update_plt_entry (output_bfd,
7073 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
7074 plt_entry + 8,
7075 (PG (pltgot_addr)
7076 - PG (adrp2_addr)));
7077
7078 /* ldr x2, [x2, #0] */
7079 elf_aarch64_update_plt_entry (output_bfd,
7080 BFD_RELOC_AARCH64_LDSTNN_LO12,
7081 plt_entry + 12,
7082 PG_OFFSET (dt_tlsdesc_got));
7083
7084 /* add x3, x3, 0 */
7085 elf_aarch64_update_plt_entry (output_bfd,
7086 BFD_RELOC_AARCH64_ADD_LO12,
7087 plt_entry + 16,
7088 PG_OFFSET (pltgot_addr));
7089 }
7090 }
7091 }
7092
7093 if (htab->root.sgotplt)
7094 {
7095 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
7096 {
7097 (*_bfd_error_handler)
7098 (_("discarded output section: `%A'"), htab->root.sgotplt);
7099 return FALSE;
7100 }
7101
7102 /* Fill in the first three entries in the global offset table. */
7103 if (htab->root.sgotplt->size > 0)
7104 {
7105 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
7106
7107 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
7108 bfd_put_NN (output_bfd,
7109 (bfd_vma) 0,
7110 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
7111 bfd_put_NN (output_bfd,
7112 (bfd_vma) 0,
7113 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
7114 }
7115
7116 if (htab->root.sgot)
7117 {
7118 if (htab->root.sgot->size > 0)
7119 {
7120 bfd_vma addr =
7121 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
7122 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
7123 }
7124 }
7125
7126 elf_section_data (htab->root.sgotplt->output_section)->
7127 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
7128 }
7129
7130 if (htab->root.sgot && htab->root.sgot->size > 0)
7131 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
7132 = GOT_ENTRY_SIZE;
7133
7134 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
7135 htab_traverse (htab->loc_hash_table,
7136 elfNN_aarch64_finish_local_dynamic_symbol,
7137 info);
7138
7139 return TRUE;
7140 }
7141
7142 /* Return address for Ith PLT stub in section PLT, for relocation REL
7143 or (bfd_vma) -1 if it should not be included. */
7144
7145 static bfd_vma
7146 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
7147 const arelent *rel ATTRIBUTE_UNUSED)
7148 {
7149 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
7150 }
7151
7152
7153 /* We use this so we can override certain functions
7154 (though currently we don't). */
7155
7156 const struct elf_size_info elfNN_aarch64_size_info =
7157 {
7158 sizeof (ElfNN_External_Ehdr),
7159 sizeof (ElfNN_External_Phdr),
7160 sizeof (ElfNN_External_Shdr),
7161 sizeof (ElfNN_External_Rel),
7162 sizeof (ElfNN_External_Rela),
7163 sizeof (ElfNN_External_Sym),
7164 sizeof (ElfNN_External_Dyn),
7165 sizeof (Elf_External_Note),
7166 4, /* Hash table entry size. */
7167 1, /* Internal relocs per external relocs. */
7168 ARCH_SIZE, /* Arch size. */
7169 LOG_FILE_ALIGN, /* Log_file_align. */
7170 ELFCLASSNN, EV_CURRENT,
7171 bfd_elfNN_write_out_phdrs,
7172 bfd_elfNN_write_shdrs_and_ehdr,
7173 bfd_elfNN_checksum_contents,
7174 bfd_elfNN_write_relocs,
7175 bfd_elfNN_swap_symbol_in,
7176 bfd_elfNN_swap_symbol_out,
7177 bfd_elfNN_slurp_reloc_table,
7178 bfd_elfNN_slurp_symbol_table,
7179 bfd_elfNN_swap_dyn_in,
7180 bfd_elfNN_swap_dyn_out,
7181 bfd_elfNN_swap_reloc_in,
7182 bfd_elfNN_swap_reloc_out,
7183 bfd_elfNN_swap_reloca_in,
7184 bfd_elfNN_swap_reloca_out
7185 };
7186
7187 #define ELF_ARCH bfd_arch_aarch64
7188 #define ELF_MACHINE_CODE EM_AARCH64
7189 #define ELF_MAXPAGESIZE 0x10000
7190 #define ELF_MINPAGESIZE 0x1000
7191 #define ELF_COMMONPAGESIZE 0x1000
7192
7193 #define bfd_elfNN_close_and_cleanup \
7194 elfNN_aarch64_close_and_cleanup
7195
7196 #define bfd_elfNN_bfd_free_cached_info \
7197 elfNN_aarch64_bfd_free_cached_info
7198
7199 #define bfd_elfNN_bfd_is_target_special_symbol \
7200 elfNN_aarch64_is_target_special_symbol
7201
7202 #define bfd_elfNN_bfd_link_hash_table_create \
7203 elfNN_aarch64_link_hash_table_create
7204
7205 #define bfd_elfNN_bfd_merge_private_bfd_data \
7206 elfNN_aarch64_merge_private_bfd_data
7207
7208 #define bfd_elfNN_bfd_print_private_bfd_data \
7209 elfNN_aarch64_print_private_bfd_data
7210
7211 #define bfd_elfNN_bfd_reloc_type_lookup \
7212 elfNN_aarch64_reloc_type_lookup
7213
7214 #define bfd_elfNN_bfd_reloc_name_lookup \
7215 elfNN_aarch64_reloc_name_lookup
7216
7217 #define bfd_elfNN_bfd_set_private_flags \
7218 elfNN_aarch64_set_private_flags
7219
7220 #define bfd_elfNN_find_inliner_info \
7221 elfNN_aarch64_find_inliner_info
7222
7223 #define bfd_elfNN_find_nearest_line \
7224 elfNN_aarch64_find_nearest_line
7225
7226 #define bfd_elfNN_mkobject \
7227 elfNN_aarch64_mkobject
7228
7229 #define bfd_elfNN_new_section_hook \
7230 elfNN_aarch64_new_section_hook
7231
7232 #define elf_backend_adjust_dynamic_symbol \
7233 elfNN_aarch64_adjust_dynamic_symbol
7234
7235 #define elf_backend_always_size_sections \
7236 elfNN_aarch64_always_size_sections
7237
7238 #define elf_backend_check_relocs \
7239 elfNN_aarch64_check_relocs
7240
7241 #define elf_backend_copy_indirect_symbol \
7242 elfNN_aarch64_copy_indirect_symbol
7243
7244 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
7245 to them in our hash. */
7246 #define elf_backend_create_dynamic_sections \
7247 elfNN_aarch64_create_dynamic_sections
7248
7249 #define elf_backend_init_index_section \
7250 _bfd_elf_init_2_index_sections
7251
7252 #define elf_backend_finish_dynamic_sections \
7253 elfNN_aarch64_finish_dynamic_sections
7254
7255 #define elf_backend_finish_dynamic_symbol \
7256 elfNN_aarch64_finish_dynamic_symbol
7257
7258 #define elf_backend_gc_sweep_hook \
7259 elfNN_aarch64_gc_sweep_hook
7260
7261 #define elf_backend_object_p \
7262 elfNN_aarch64_object_p
7263
7264 #define elf_backend_output_arch_local_syms \
7265 elfNN_aarch64_output_arch_local_syms
7266
7267 #define elf_backend_plt_sym_val \
7268 elfNN_aarch64_plt_sym_val
7269
7270 #define elf_backend_post_process_headers \
7271 elfNN_aarch64_post_process_headers
7272
7273 #define elf_backend_relocate_section \
7274 elfNN_aarch64_relocate_section
7275
7276 #define elf_backend_reloc_type_class \
7277 elfNN_aarch64_reloc_type_class
7278
7279 #define elf_backend_section_from_shdr \
7280 elfNN_aarch64_section_from_shdr
7281
7282 #define elf_backend_size_dynamic_sections \
7283 elfNN_aarch64_size_dynamic_sections
7284
7285 #define elf_backend_size_info \
7286 elfNN_aarch64_size_info
7287
7288 #define elf_backend_can_refcount 1
7289 #define elf_backend_can_gc_sections 1
7290 #define elf_backend_plt_readonly 1
7291 #define elf_backend_want_got_plt 1
7292 #define elf_backend_want_plt_sym 0
7293 #define elf_backend_may_use_rel_p 0
7294 #define elf_backend_may_use_rela_p 1
7295 #define elf_backend_default_use_rela_p 1
7296 #define elf_backend_rela_normal 1
7297 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
7298 #define elf_backend_default_execstack 0
7299
7300 #undef elf_backend_obj_attrs_section
7301 #define elf_backend_obj_attrs_section ".ARM.attributes"
7302
7303 #include "elfNN-target.h"