[BFD][AARCH64]Refactor to facilitate further large memory model support patches.
[binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2015 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "bfd_stdint.h"
143 #include "elf-bfd.h"
144 #include "bfdlink.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #endif
158
159 #if ARCH_SIZE == 32
160 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
162 #define HOWTO64(...) EMPTY_HOWTO (0)
163 #define HOWTO32(...) HOWTO (__VA_ARGS__)
164 #define LOG_FILE_ALIGN 2
165 #endif
166
167 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
207 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
208
209 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
210 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
220 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
221 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
222 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
225
226 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
227 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
239
240 #define ELIMINATE_COPY_RELOCS 0
241
242 /* Return size of a relocation entry. HTAB is the bfd's
243 elf_aarch64_link_hash_entry. */
244 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
245
246 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
247 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
248 #define PLT_ENTRY_SIZE (32)
249 #define PLT_SMALL_ENTRY_SIZE (16)
250 #define PLT_TLSDESC_ENTRY_SIZE (32)
251
252 /* Encoding of the nop instruction */
253 #define INSN_NOP 0xd503201f
254
255 #define aarch64_compute_jump_table_size(htab) \
256 (((htab)->root.srelplt == NULL) ? 0 \
257 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
258
259 /* The first entry in a procedure linkage table looks like this
260 if the distance between the PLTGOT and the PLT is < 4GB use
261 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
262 in x16 and needs to work out PLTGOT[1] by using an address of
263 [x16,#-GOT_ENTRY_SIZE]. */
264 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
265 {
266 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
267 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
268 #if ARCH_SIZE == 64
269 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
270 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
271 #else
272 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
273 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
274 #endif
275 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
276 0x1f, 0x20, 0x03, 0xd5, /* nop */
277 0x1f, 0x20, 0x03, 0xd5, /* nop */
278 0x1f, 0x20, 0x03, 0xd5, /* nop */
279 };
280
281 /* Per function entry in a procedure linkage table looks like this
282 if the distance between the PLTGOT and the PLT is < 4GB use
283 these PLT entries. */
284 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
285 {
286 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
287 #if ARCH_SIZE == 64
288 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
289 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
290 #else
291 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
292 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
293 #endif
294 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
295 };
296
297 static const bfd_byte
298 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
299 {
300 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
301 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
302 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
303 #if ARCH_SIZE == 64
304 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
305 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
306 #else
307 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
308 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
309 #endif
310 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
311 0x1f, 0x20, 0x03, 0xd5, /* nop */
312 0x1f, 0x20, 0x03, 0xd5, /* nop */
313 };
314
315 #define elf_info_to_howto elfNN_aarch64_info_to_howto
316 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
317
318 #define AARCH64_ELF_ABI_VERSION 0
319
320 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
321 #define ALL_ONES (~ (bfd_vma) 0)
322
323 /* Indexed by the bfd interal reloc enumerators.
324 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
325 in reloc.c. */
326
327 static reloc_howto_type elfNN_aarch64_howto_table[] =
328 {
329 EMPTY_HOWTO (0),
330
331 /* Basic data relocations. */
332
333 #if ARCH_SIZE == 64
334 HOWTO (R_AARCH64_NULL, /* type */
335 0, /* rightshift */
336 3, /* size (0 = byte, 1 = short, 2 = long) */
337 0, /* bitsize */
338 FALSE, /* pc_relative */
339 0, /* bitpos */
340 complain_overflow_dont, /* complain_on_overflow */
341 bfd_elf_generic_reloc, /* special_function */
342 "R_AARCH64_NULL", /* name */
343 FALSE, /* partial_inplace */
344 0, /* src_mask */
345 0, /* dst_mask */
346 FALSE), /* pcrel_offset */
347 #else
348 HOWTO (R_AARCH64_NONE, /* type */
349 0, /* rightshift */
350 3, /* size (0 = byte, 1 = short, 2 = long) */
351 0, /* bitsize */
352 FALSE, /* pc_relative */
353 0, /* bitpos */
354 complain_overflow_dont, /* complain_on_overflow */
355 bfd_elf_generic_reloc, /* special_function */
356 "R_AARCH64_NONE", /* name */
357 FALSE, /* partial_inplace */
358 0, /* src_mask */
359 0, /* dst_mask */
360 FALSE), /* pcrel_offset */
361 #endif
362
363 /* .xword: (S+A) */
364 HOWTO64 (AARCH64_R (ABS64), /* type */
365 0, /* rightshift */
366 4, /* size (4 = long long) */
367 64, /* bitsize */
368 FALSE, /* pc_relative */
369 0, /* bitpos */
370 complain_overflow_unsigned, /* complain_on_overflow */
371 bfd_elf_generic_reloc, /* special_function */
372 AARCH64_R_STR (ABS64), /* name */
373 FALSE, /* partial_inplace */
374 ALL_ONES, /* src_mask */
375 ALL_ONES, /* dst_mask */
376 FALSE), /* pcrel_offset */
377
378 /* .word: (S+A) */
379 HOWTO (AARCH64_R (ABS32), /* type */
380 0, /* rightshift */
381 2, /* size (0 = byte, 1 = short, 2 = long) */
382 32, /* bitsize */
383 FALSE, /* pc_relative */
384 0, /* bitpos */
385 complain_overflow_unsigned, /* complain_on_overflow */
386 bfd_elf_generic_reloc, /* special_function */
387 AARCH64_R_STR (ABS32), /* name */
388 FALSE, /* partial_inplace */
389 0xffffffff, /* src_mask */
390 0xffffffff, /* dst_mask */
391 FALSE), /* pcrel_offset */
392
393 /* .half: (S+A) */
394 HOWTO (AARCH64_R (ABS16), /* type */
395 0, /* rightshift */
396 1, /* size (0 = byte, 1 = short, 2 = long) */
397 16, /* bitsize */
398 FALSE, /* pc_relative */
399 0, /* bitpos */
400 complain_overflow_unsigned, /* complain_on_overflow */
401 bfd_elf_generic_reloc, /* special_function */
402 AARCH64_R_STR (ABS16), /* name */
403 FALSE, /* partial_inplace */
404 0xffff, /* src_mask */
405 0xffff, /* dst_mask */
406 FALSE), /* pcrel_offset */
407
408 /* .xword: (S+A-P) */
409 HOWTO64 (AARCH64_R (PREL64), /* type */
410 0, /* rightshift */
411 4, /* size (4 = long long) */
412 64, /* bitsize */
413 TRUE, /* pc_relative */
414 0, /* bitpos */
415 complain_overflow_signed, /* complain_on_overflow */
416 bfd_elf_generic_reloc, /* special_function */
417 AARCH64_R_STR (PREL64), /* name */
418 FALSE, /* partial_inplace */
419 ALL_ONES, /* src_mask */
420 ALL_ONES, /* dst_mask */
421 TRUE), /* pcrel_offset */
422
423 /* .word: (S+A-P) */
424 HOWTO (AARCH64_R (PREL32), /* type */
425 0, /* rightshift */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
427 32, /* bitsize */
428 TRUE, /* pc_relative */
429 0, /* bitpos */
430 complain_overflow_signed, /* complain_on_overflow */
431 bfd_elf_generic_reloc, /* special_function */
432 AARCH64_R_STR (PREL32), /* name */
433 FALSE, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 TRUE), /* pcrel_offset */
437
438 /* .half: (S+A-P) */
439 HOWTO (AARCH64_R (PREL16), /* type */
440 0, /* rightshift */
441 1, /* size (0 = byte, 1 = short, 2 = long) */
442 16, /* bitsize */
443 TRUE, /* pc_relative */
444 0, /* bitpos */
445 complain_overflow_signed, /* complain_on_overflow */
446 bfd_elf_generic_reloc, /* special_function */
447 AARCH64_R_STR (PREL16), /* name */
448 FALSE, /* partial_inplace */
449 0xffff, /* src_mask */
450 0xffff, /* dst_mask */
451 TRUE), /* pcrel_offset */
452
453 /* Group relocations to create a 16, 32, 48 or 64 bit
454 unsigned data or abs address inline. */
455
456 /* MOVZ: ((S+A) >> 0) & 0xffff */
457 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
458 0, /* rightshift */
459 2, /* size (0 = byte, 1 = short, 2 = long) */
460 16, /* bitsize */
461 FALSE, /* pc_relative */
462 0, /* bitpos */
463 complain_overflow_unsigned, /* complain_on_overflow */
464 bfd_elf_generic_reloc, /* special_function */
465 AARCH64_R_STR (MOVW_UABS_G0), /* name */
466 FALSE, /* partial_inplace */
467 0xffff, /* src_mask */
468 0xffff, /* dst_mask */
469 FALSE), /* pcrel_offset */
470
471 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
472 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
473 0, /* rightshift */
474 2, /* size (0 = byte, 1 = short, 2 = long) */
475 16, /* bitsize */
476 FALSE, /* pc_relative */
477 0, /* bitpos */
478 complain_overflow_dont, /* complain_on_overflow */
479 bfd_elf_generic_reloc, /* special_function */
480 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
481 FALSE, /* partial_inplace */
482 0xffff, /* src_mask */
483 0xffff, /* dst_mask */
484 FALSE), /* pcrel_offset */
485
486 /* MOVZ: ((S+A) >> 16) & 0xffff */
487 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
488 16, /* rightshift */
489 2, /* size (0 = byte, 1 = short, 2 = long) */
490 16, /* bitsize */
491 FALSE, /* pc_relative */
492 0, /* bitpos */
493 complain_overflow_unsigned, /* complain_on_overflow */
494 bfd_elf_generic_reloc, /* special_function */
495 AARCH64_R_STR (MOVW_UABS_G1), /* name */
496 FALSE, /* partial_inplace */
497 0xffff, /* src_mask */
498 0xffff, /* dst_mask */
499 FALSE), /* pcrel_offset */
500
501 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
502 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
503 16, /* rightshift */
504 2, /* size (0 = byte, 1 = short, 2 = long) */
505 16, /* bitsize */
506 FALSE, /* pc_relative */
507 0, /* bitpos */
508 complain_overflow_dont, /* complain_on_overflow */
509 bfd_elf_generic_reloc, /* special_function */
510 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
511 FALSE, /* partial_inplace */
512 0xffff, /* src_mask */
513 0xffff, /* dst_mask */
514 FALSE), /* pcrel_offset */
515
516 /* MOVZ: ((S+A) >> 32) & 0xffff */
517 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
518 32, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 16, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_unsigned, /* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 AARCH64_R_STR (MOVW_UABS_G2), /* name */
526 FALSE, /* partial_inplace */
527 0xffff, /* src_mask */
528 0xffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
532 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
533 32, /* rightshift */
534 2, /* size (0 = byte, 1 = short, 2 = long) */
535 16, /* bitsize */
536 FALSE, /* pc_relative */
537 0, /* bitpos */
538 complain_overflow_dont, /* complain_on_overflow */
539 bfd_elf_generic_reloc, /* special_function */
540 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
541 FALSE, /* partial_inplace */
542 0xffff, /* src_mask */
543 0xffff, /* dst_mask */
544 FALSE), /* pcrel_offset */
545
546 /* MOVZ: ((S+A) >> 48) & 0xffff */
547 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
548 48, /* rightshift */
549 2, /* size (0 = byte, 1 = short, 2 = long) */
550 16, /* bitsize */
551 FALSE, /* pc_relative */
552 0, /* bitpos */
553 complain_overflow_unsigned, /* complain_on_overflow */
554 bfd_elf_generic_reloc, /* special_function */
555 AARCH64_R_STR (MOVW_UABS_G3), /* name */
556 FALSE, /* partial_inplace */
557 0xffff, /* src_mask */
558 0xffff, /* dst_mask */
559 FALSE), /* pcrel_offset */
560
561 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
562 signed data or abs address inline. Will change instruction
563 to MOVN or MOVZ depending on sign of calculated value. */
564
565 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
566 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
567 0, /* rightshift */
568 2, /* size (0 = byte, 1 = short, 2 = long) */
569 16, /* bitsize */
570 FALSE, /* pc_relative */
571 0, /* bitpos */
572 complain_overflow_signed, /* complain_on_overflow */
573 bfd_elf_generic_reloc, /* special_function */
574 AARCH64_R_STR (MOVW_SABS_G0), /* name */
575 FALSE, /* partial_inplace */
576 0xffff, /* src_mask */
577 0xffff, /* dst_mask */
578 FALSE), /* pcrel_offset */
579
580 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
581 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
582 16, /* rightshift */
583 2, /* size (0 = byte, 1 = short, 2 = long) */
584 16, /* bitsize */
585 FALSE, /* pc_relative */
586 0, /* bitpos */
587 complain_overflow_signed, /* complain_on_overflow */
588 bfd_elf_generic_reloc, /* special_function */
589 AARCH64_R_STR (MOVW_SABS_G1), /* name */
590 FALSE, /* partial_inplace */
591 0xffff, /* src_mask */
592 0xffff, /* dst_mask */
593 FALSE), /* pcrel_offset */
594
595 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
596 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
597 32, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 16, /* bitsize */
600 FALSE, /* pc_relative */
601 0, /* bitpos */
602 complain_overflow_signed, /* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 AARCH64_R_STR (MOVW_SABS_G2), /* name */
605 FALSE, /* partial_inplace */
606 0xffff, /* src_mask */
607 0xffff, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
611 addresses: PG(x) is (x & ~0xfff). */
612
613 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
614 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
615 2, /* rightshift */
616 2, /* size (0 = byte, 1 = short, 2 = long) */
617 19, /* bitsize */
618 TRUE, /* pc_relative */
619 0, /* bitpos */
620 complain_overflow_signed, /* complain_on_overflow */
621 bfd_elf_generic_reloc, /* special_function */
622 AARCH64_R_STR (LD_PREL_LO19), /* name */
623 FALSE, /* partial_inplace */
624 0x7ffff, /* src_mask */
625 0x7ffff, /* dst_mask */
626 TRUE), /* pcrel_offset */
627
628 /* ADR: (S+A-P) & 0x1fffff */
629 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 21, /* bitsize */
633 TRUE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_signed, /* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 AARCH64_R_STR (ADR_PREL_LO21), /* name */
638 FALSE, /* partial_inplace */
639 0x1fffff, /* src_mask */
640 0x1fffff, /* dst_mask */
641 TRUE), /* pcrel_offset */
642
643 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
644 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
645 12, /* rightshift */
646 2, /* size (0 = byte, 1 = short, 2 = long) */
647 21, /* bitsize */
648 TRUE, /* pc_relative */
649 0, /* bitpos */
650 complain_overflow_signed, /* complain_on_overflow */
651 bfd_elf_generic_reloc, /* special_function */
652 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
653 FALSE, /* partial_inplace */
654 0x1fffff, /* src_mask */
655 0x1fffff, /* dst_mask */
656 TRUE), /* pcrel_offset */
657
658 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
659 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
660 12, /* rightshift */
661 2, /* size (0 = byte, 1 = short, 2 = long) */
662 21, /* bitsize */
663 TRUE, /* pc_relative */
664 0, /* bitpos */
665 complain_overflow_dont, /* complain_on_overflow */
666 bfd_elf_generic_reloc, /* special_function */
667 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
668 FALSE, /* partial_inplace */
669 0x1fffff, /* src_mask */
670 0x1fffff, /* dst_mask */
671 TRUE), /* pcrel_offset */
672
673 /* ADD: (S+A) & 0xfff [no overflow check] */
674 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
675 0, /* rightshift */
676 2, /* size (0 = byte, 1 = short, 2 = long) */
677 12, /* bitsize */
678 FALSE, /* pc_relative */
679 10, /* bitpos */
680 complain_overflow_dont, /* complain_on_overflow */
681 bfd_elf_generic_reloc, /* special_function */
682 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
683 FALSE, /* partial_inplace */
684 0x3ffc00, /* src_mask */
685 0x3ffc00, /* dst_mask */
686 FALSE), /* pcrel_offset */
687
688 /* LD/ST8: (S+A) & 0xfff */
689 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
690 0, /* rightshift */
691 2, /* size (0 = byte, 1 = short, 2 = long) */
692 12, /* bitsize */
693 FALSE, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_dont, /* complain_on_overflow */
696 bfd_elf_generic_reloc, /* special_function */
697 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
698 FALSE, /* partial_inplace */
699 0xfff, /* src_mask */
700 0xfff, /* dst_mask */
701 FALSE), /* pcrel_offset */
702
703 /* Relocations for control-flow instructions. */
704
705 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
706 HOWTO (AARCH64_R (TSTBR14), /* type */
707 2, /* rightshift */
708 2, /* size (0 = byte, 1 = short, 2 = long) */
709 14, /* bitsize */
710 TRUE, /* pc_relative */
711 0, /* bitpos */
712 complain_overflow_signed, /* complain_on_overflow */
713 bfd_elf_generic_reloc, /* special_function */
714 AARCH64_R_STR (TSTBR14), /* name */
715 FALSE, /* partial_inplace */
716 0x3fff, /* src_mask */
717 0x3fff, /* dst_mask */
718 TRUE), /* pcrel_offset */
719
720 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
721 HOWTO (AARCH64_R (CONDBR19), /* type */
722 2, /* rightshift */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
724 19, /* bitsize */
725 TRUE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 AARCH64_R_STR (CONDBR19), /* name */
730 FALSE, /* partial_inplace */
731 0x7ffff, /* src_mask */
732 0x7ffff, /* dst_mask */
733 TRUE), /* pcrel_offset */
734
735 /* B: ((S+A-P) >> 2) & 0x3ffffff */
736 HOWTO (AARCH64_R (JUMP26), /* type */
737 2, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 26, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_signed, /* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 AARCH64_R_STR (JUMP26), /* name */
745 FALSE, /* partial_inplace */
746 0x3ffffff, /* src_mask */
747 0x3ffffff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
751 HOWTO (AARCH64_R (CALL26), /* type */
752 2, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 26, /* bitsize */
755 TRUE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_signed, /* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 AARCH64_R_STR (CALL26), /* name */
760 FALSE, /* partial_inplace */
761 0x3ffffff, /* src_mask */
762 0x3ffffff, /* dst_mask */
763 TRUE), /* pcrel_offset */
764
765 /* LD/ST16: (S+A) & 0xffe */
766 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
767 1, /* rightshift */
768 2, /* size (0 = byte, 1 = short, 2 = long) */
769 12, /* bitsize */
770 FALSE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_dont, /* complain_on_overflow */
773 bfd_elf_generic_reloc, /* special_function */
774 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
775 FALSE, /* partial_inplace */
776 0xffe, /* src_mask */
777 0xffe, /* dst_mask */
778 FALSE), /* pcrel_offset */
779
780 /* LD/ST32: (S+A) & 0xffc */
781 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
782 2, /* rightshift */
783 2, /* size (0 = byte, 1 = short, 2 = long) */
784 12, /* bitsize */
785 FALSE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_dont, /* complain_on_overflow */
788 bfd_elf_generic_reloc, /* special_function */
789 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
790 FALSE, /* partial_inplace */
791 0xffc, /* src_mask */
792 0xffc, /* dst_mask */
793 FALSE), /* pcrel_offset */
794
795 /* LD/ST64: (S+A) & 0xff8 */
796 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
797 3, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 12, /* bitsize */
800 FALSE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
805 FALSE, /* partial_inplace */
806 0xff8, /* src_mask */
807 0xff8, /* dst_mask */
808 FALSE), /* pcrel_offset */
809
810 /* LD/ST128: (S+A) & 0xff0 */
811 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
812 4, /* rightshift */
813 2, /* size (0 = byte, 1 = short, 2 = long) */
814 12, /* bitsize */
815 FALSE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_dont, /* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
820 FALSE, /* partial_inplace */
821 0xff0, /* src_mask */
822 0xff0, /* dst_mask */
823 FALSE), /* pcrel_offset */
824
825 /* Set a load-literal immediate field to bits
826 0x1FFFFC of G(S)-P */
827 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
828 2, /* rightshift */
829 2, /* size (0 = byte,1 = short,2 = long) */
830 19, /* bitsize */
831 TRUE, /* pc_relative */
832 0, /* bitpos */
833 complain_overflow_signed, /* complain_on_overflow */
834 bfd_elf_generic_reloc, /* special_function */
835 AARCH64_R_STR (GOT_LD_PREL19), /* name */
836 FALSE, /* partial_inplace */
837 0xffffe0, /* src_mask */
838 0xffffe0, /* dst_mask */
839 TRUE), /* pcrel_offset */
840
841 /* Get to the page for the GOT entry for the symbol
842 (G(S) - P) using an ADRP instruction. */
843 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
844 12, /* rightshift */
845 2, /* size (0 = byte, 1 = short, 2 = long) */
846 21, /* bitsize */
847 TRUE, /* pc_relative */
848 0, /* bitpos */
849 complain_overflow_dont, /* complain_on_overflow */
850 bfd_elf_generic_reloc, /* special_function */
851 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
852 FALSE, /* partial_inplace */
853 0x1fffff, /* src_mask */
854 0x1fffff, /* dst_mask */
855 TRUE), /* pcrel_offset */
856
857 /* LD64: GOT offset G(S) & 0xff8 */
858 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
859 3, /* rightshift */
860 2, /* size (0 = byte, 1 = short, 2 = long) */
861 12, /* bitsize */
862 FALSE, /* pc_relative */
863 0, /* bitpos */
864 complain_overflow_dont, /* complain_on_overflow */
865 bfd_elf_generic_reloc, /* special_function */
866 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
867 FALSE, /* partial_inplace */
868 0xff8, /* src_mask */
869 0xff8, /* dst_mask */
870 FALSE), /* pcrel_offset */
871
872 /* LD32: GOT offset G(S) & 0xffc */
873 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
874 2, /* rightshift */
875 2, /* size (0 = byte, 1 = short, 2 = long) */
876 12, /* bitsize */
877 FALSE, /* pc_relative */
878 0, /* bitpos */
879 complain_overflow_dont, /* complain_on_overflow */
880 bfd_elf_generic_reloc, /* special_function */
881 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
882 FALSE, /* partial_inplace */
883 0xffc, /* src_mask */
884 0xffc, /* dst_mask */
885 FALSE), /* pcrel_offset */
886
887 /* LD64: GOT offset for the symbol. */
888 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
889 3, /* rightshift */
890 2, /* size (0 = byte, 1 = short, 2 = long) */
891 12, /* bitsize */
892 FALSE, /* pc_relative */
893 0, /* bitpos */
894 complain_overflow_unsigned, /* complain_on_overflow */
895 bfd_elf_generic_reloc, /* special_function */
896 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
897 FALSE, /* partial_inplace */
898 0x7ff8, /* src_mask */
899 0x7ff8, /* dst_mask */
900 FALSE), /* pcrel_offset */
901
902 /* LD32: GOT offset to the page address of GOT table.
903 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
904 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
905 2, /* rightshift */
906 2, /* size (0 = byte, 1 = short, 2 = long) */
907 12, /* bitsize */
908 FALSE, /* pc_relative */
909 0, /* bitpos */
910 complain_overflow_unsigned, /* complain_on_overflow */
911 bfd_elf_generic_reloc, /* special_function */
912 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
913 FALSE, /* partial_inplace */
914 0x5ffc, /* src_mask */
915 0x5ffc, /* dst_mask */
916 FALSE), /* pcrel_offset */
917
918 /* LD64: GOT offset to the page address of GOT table.
919 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
920 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
921 3, /* rightshift */
922 2, /* size (0 = byte, 1 = short, 2 = long) */
923 12, /* bitsize */
924 FALSE, /* pc_relative */
925 0, /* bitpos */
926 complain_overflow_unsigned, /* complain_on_overflow */
927 bfd_elf_generic_reloc, /* special_function */
928 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
929 FALSE, /* partial_inplace */
930 0x7ff8, /* src_mask */
931 0x7ff8, /* dst_mask */
932 FALSE), /* pcrel_offset */
933
934 /* Get to the page for the GOT entry for the symbol
935 (G(S) - P) using an ADRP instruction. */
936 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
937 12, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 21, /* bitsize */
940 TRUE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_dont, /* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
945 FALSE, /* partial_inplace */
946 0x1fffff, /* src_mask */
947 0x1fffff, /* dst_mask */
948 TRUE), /* pcrel_offset */
949
950 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
951 0, /* rightshift */
952 2, /* size (0 = byte, 1 = short, 2 = long) */
953 21, /* bitsize */
954 TRUE, /* pc_relative */
955 0, /* bitpos */
956 complain_overflow_dont, /* complain_on_overflow */
957 bfd_elf_generic_reloc, /* special_function */
958 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
959 FALSE, /* partial_inplace */
960 0x1fffff, /* src_mask */
961 0x1fffff, /* dst_mask */
962 TRUE), /* pcrel_offset */
963
964 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
965 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 12, /* bitsize */
969 FALSE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont, /* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
974 FALSE, /* partial_inplace */
975 0xfff, /* src_mask */
976 0xfff, /* dst_mask */
977 FALSE), /* pcrel_offset */
978
979 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
980 16, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 16, /* bitsize */
983 FALSE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont, /* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
988 FALSE, /* partial_inplace */
989 0xffff, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE), /* pcrel_offset */
992
993 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 16, /* bitsize */
997 FALSE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont, /* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1002 FALSE, /* partial_inplace */
1003 0xffff, /* src_mask */
1004 0xffff, /* dst_mask */
1005 FALSE), /* pcrel_offset */
1006
1007 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1008 12, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 21, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont, /* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1016 FALSE, /* partial_inplace */
1017 0x1fffff, /* src_mask */
1018 0x1fffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1022 3, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 12, /* bitsize */
1025 FALSE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont, /* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1030 FALSE, /* partial_inplace */
1031 0xff8, /* src_mask */
1032 0xff8, /* dst_mask */
1033 FALSE), /* pcrel_offset */
1034
1035 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1036 2, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 12, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont, /* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1044 FALSE, /* partial_inplace */
1045 0xffc, /* src_mask */
1046 0xffc, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
1049 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1050 2, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 19, /* bitsize */
1053 FALSE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont, /* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1058 FALSE, /* partial_inplace */
1059 0x1ffffc, /* src_mask */
1060 0x1ffffc, /* dst_mask */
1061 FALSE), /* pcrel_offset */
1062
1063 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1064 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1065 12, /* rightshift */
1066 2, /* size (0 = byte, 1 = short, 2 = long) */
1067 12, /* bitsize */
1068 FALSE, /* pc_relative */
1069 0, /* bitpos */
1070 complain_overflow_unsigned, /* complain_on_overflow */
1071 bfd_elf_generic_reloc, /* special_function */
1072 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1073 FALSE, /* partial_inplace */
1074 0xfff, /* src_mask */
1075 0xfff, /* dst_mask */
1076 FALSE), /* pcrel_offset */
1077
1078 /* Unsigned 12 bit byte offset to module TLS base address. */
1079 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1080 0, /* rightshift */
1081 2, /* size (0 = byte, 1 = short, 2 = long) */
1082 12, /* bitsize */
1083 FALSE, /* pc_relative */
1084 0, /* bitpos */
1085 complain_overflow_unsigned, /* complain_on_overflow */
1086 bfd_elf_generic_reloc, /* special_function */
1087 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1088 FALSE, /* partial_inplace */
1089 0xfff, /* src_mask */
1090 0xfff, /* dst_mask */
1091 FALSE), /* pcrel_offset */
1092
1093 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1094 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1095 0, /* rightshift */
1096 2, /* size (0 = byte, 1 = short, 2 = long) */
1097 12, /* bitsize */
1098 FALSE, /* pc_relative */
1099 0, /* bitpos */
1100 complain_overflow_dont, /* complain_on_overflow */
1101 bfd_elf_generic_reloc, /* special_function */
1102 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1103 FALSE, /* partial_inplace */
1104 0xfff, /* src_mask */
1105 0xfff, /* dst_mask */
1106 FALSE), /* pcrel_offset */
1107
1108 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1109 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1110 0, /* rightshift */
1111 2, /* size (0 = byte, 1 = short, 2 = long) */
1112 12, /* bitsize */
1113 FALSE, /* pc_relative */
1114 0, /* bitpos */
1115 complain_overflow_dont, /* complain_on_overflow */
1116 bfd_elf_generic_reloc, /* special_function */
1117 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1118 FALSE, /* partial_inplace */
1119 0xfff, /* src_mask */
1120 0xfff, /* dst_mask */
1121 FALSE), /* pcrel_offset */
1122
1123 /* Get to the page for the GOT entry for the symbol
1124 (G(S) - P) using an ADRP instruction. */
1125 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1126 12, /* rightshift */
1127 2, /* size (0 = byte, 1 = short, 2 = long) */
1128 21, /* bitsize */
1129 TRUE, /* pc_relative */
1130 0, /* bitpos */
1131 complain_overflow_signed, /* complain_on_overflow */
1132 bfd_elf_generic_reloc, /* special_function */
1133 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1134 FALSE, /* partial_inplace */
1135 0x1fffff, /* src_mask */
1136 0x1fffff, /* dst_mask */
1137 TRUE), /* pcrel_offset */
1138
1139 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1140 0, /* rightshift */
1141 2, /* size (0 = byte, 1 = short, 2 = long) */
1142 21, /* bitsize */
1143 TRUE, /* pc_relative */
1144 0, /* bitpos */
1145 complain_overflow_signed, /* complain_on_overflow */
1146 bfd_elf_generic_reloc, /* special_function */
1147 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1148 FALSE, /* partial_inplace */
1149 0x1fffff, /* src_mask */
1150 0x1fffff, /* dst_mask */
1151 TRUE), /* pcrel_offset */
1152
1153 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1154 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1155 1, /* rightshift */
1156 2, /* size (0 = byte, 1 = short, 2 = long) */
1157 11, /* bitsize */
1158 FALSE, /* pc_relative */
1159 10, /* bitpos */
1160 complain_overflow_unsigned, /* complain_on_overflow */
1161 bfd_elf_generic_reloc, /* special_function */
1162 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1163 FALSE, /* partial_inplace */
1164 0x1ffc00, /* src_mask */
1165 0x1ffc00, /* dst_mask */
1166 FALSE), /* pcrel_offset */
1167
1168 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1169 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1170 1, /* rightshift */
1171 2, /* size (0 = byte, 1 = short, 2 = long) */
1172 11, /* bitsize */
1173 FALSE, /* pc_relative */
1174 10, /* bitpos */
1175 complain_overflow_dont, /* complain_on_overflow */
1176 bfd_elf_generic_reloc, /* special_function */
1177 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1178 FALSE, /* partial_inplace */
1179 0x1ffc00, /* src_mask */
1180 0x1ffc00, /* dst_mask */
1181 FALSE), /* pcrel_offset */
1182
1183 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1184 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1185 2, /* rightshift */
1186 2, /* size (0 = byte, 1 = short, 2 = long) */
1187 10, /* bitsize */
1188 FALSE, /* pc_relative */
1189 10, /* bitpos */
1190 complain_overflow_unsigned, /* complain_on_overflow */
1191 bfd_elf_generic_reloc, /* special_function */
1192 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1193 FALSE, /* partial_inplace */
1194 0x3ffc00, /* src_mask */
1195 0x3ffc00, /* dst_mask */
1196 FALSE), /* pcrel_offset */
1197
1198 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1199 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1200 2, /* rightshift */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1202 10, /* bitsize */
1203 FALSE, /* pc_relative */
1204 10, /* bitpos */
1205 complain_overflow_dont, /* complain_on_overflow */
1206 bfd_elf_generic_reloc, /* special_function */
1207 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1208 FALSE, /* partial_inplace */
1209 0xffc00, /* src_mask */
1210 0xffc00, /* dst_mask */
1211 FALSE), /* pcrel_offset */
1212
1213 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1214 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1215 3, /* rightshift */
1216 2, /* size (0 = byte, 1 = short, 2 = long) */
1217 9, /* bitsize */
1218 FALSE, /* pc_relative */
1219 10, /* bitpos */
1220 complain_overflow_unsigned, /* complain_on_overflow */
1221 bfd_elf_generic_reloc, /* special_function */
1222 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1223 FALSE, /* partial_inplace */
1224 0x3ffc00, /* src_mask */
1225 0x3ffc00, /* dst_mask */
1226 FALSE), /* pcrel_offset */
1227
1228 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1229 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1230 3, /* rightshift */
1231 2, /* size (0 = byte, 1 = short, 2 = long) */
1232 9, /* bitsize */
1233 FALSE, /* pc_relative */
1234 10, /* bitpos */
1235 complain_overflow_dont, /* complain_on_overflow */
1236 bfd_elf_generic_reloc, /* special_function */
1237 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1238 FALSE, /* partial_inplace */
1239 0x7fc00, /* src_mask */
1240 0x7fc00, /* dst_mask */
1241 FALSE), /* pcrel_offset */
1242
1243 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1244 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1245 0, /* rightshift */
1246 2, /* size (0 = byte, 1 = short, 2 = long) */
1247 12, /* bitsize */
1248 FALSE, /* pc_relative */
1249 10, /* bitpos */
1250 complain_overflow_unsigned, /* complain_on_overflow */
1251 bfd_elf_generic_reloc, /* special_function */
1252 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1253 FALSE, /* partial_inplace */
1254 0x3ffc00, /* src_mask */
1255 0x3ffc00, /* dst_mask */
1256 FALSE), /* pcrel_offset */
1257
1258 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1259 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 12, /* bitsize */
1263 FALSE, /* pc_relative */
1264 10, /* bitpos */
1265 complain_overflow_dont, /* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1268 FALSE, /* partial_inplace */
1269 0x3ffc00, /* src_mask */
1270 0x3ffc00, /* dst_mask */
1271 FALSE), /* pcrel_offset */
1272
1273 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1274 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1275 0, /* rightshift */
1276 2, /* size (0 = byte, 1 = short, 2 = long) */
1277 16, /* bitsize */
1278 FALSE, /* pc_relative */
1279 0, /* bitpos */
1280 complain_overflow_unsigned, /* complain_on_overflow */
1281 bfd_elf_generic_reloc, /* special_function */
1282 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1283 FALSE, /* partial_inplace */
1284 0xffff, /* src_mask */
1285 0xffff, /* dst_mask */
1286 FALSE), /* pcrel_offset */
1287
1288 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1289 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_dont, /* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1298 FALSE, /* partial_inplace */
1299 0xffff, /* src_mask */
1300 0xffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1304 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1305 16, /* rightshift */
1306 2, /* size (0 = byte, 1 = short, 2 = long) */
1307 16, /* bitsize */
1308 FALSE, /* pc_relative */
1309 0, /* bitpos */
1310 complain_overflow_unsigned, /* complain_on_overflow */
1311 bfd_elf_generic_reloc, /* special_function */
1312 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1313 FALSE, /* partial_inplace */
1314 0xffff, /* src_mask */
1315 0xffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1317
1318 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1319 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1320 16, /* rightshift */
1321 2, /* size (0 = byte, 1 = short, 2 = long) */
1322 16, /* bitsize */
1323 FALSE, /* pc_relative */
1324 0, /* bitpos */
1325 complain_overflow_dont, /* complain_on_overflow */
1326 bfd_elf_generic_reloc, /* special_function */
1327 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1328 FALSE, /* partial_inplace */
1329 0xffff, /* src_mask */
1330 0xffff, /* dst_mask */
1331 FALSE), /* pcrel_offset */
1332
1333 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1334 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1335 32, /* rightshift */
1336 2, /* size (0 = byte, 1 = short, 2 = long) */
1337 16, /* bitsize */
1338 FALSE, /* pc_relative */
1339 0, /* bitpos */
1340 complain_overflow_unsigned, /* complain_on_overflow */
1341 bfd_elf_generic_reloc, /* special_function */
1342 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1343 FALSE, /* partial_inplace */
1344 0xffff, /* src_mask */
1345 0xffff, /* dst_mask */
1346 FALSE), /* pcrel_offset */
1347
1348 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1349 32, /* rightshift */
1350 2, /* size (0 = byte, 1 = short, 2 = long) */
1351 16, /* bitsize */
1352 FALSE, /* pc_relative */
1353 0, /* bitpos */
1354 complain_overflow_unsigned, /* complain_on_overflow */
1355 bfd_elf_generic_reloc, /* special_function */
1356 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1357 FALSE, /* partial_inplace */
1358 0xffff, /* src_mask */
1359 0xffff, /* dst_mask */
1360 FALSE), /* pcrel_offset */
1361
1362 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1363 16, /* rightshift */
1364 2, /* size (0 = byte, 1 = short, 2 = long) */
1365 16, /* bitsize */
1366 FALSE, /* pc_relative */
1367 0, /* bitpos */
1368 complain_overflow_dont, /* complain_on_overflow */
1369 bfd_elf_generic_reloc, /* special_function */
1370 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1371 FALSE, /* partial_inplace */
1372 0xffff, /* src_mask */
1373 0xffff, /* dst_mask */
1374 FALSE), /* pcrel_offset */
1375
1376 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1377 16, /* rightshift */
1378 2, /* size (0 = byte, 1 = short, 2 = long) */
1379 16, /* bitsize */
1380 FALSE, /* pc_relative */
1381 0, /* bitpos */
1382 complain_overflow_dont, /* complain_on_overflow */
1383 bfd_elf_generic_reloc, /* special_function */
1384 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1385 FALSE, /* partial_inplace */
1386 0xffff, /* src_mask */
1387 0xffff, /* dst_mask */
1388 FALSE), /* pcrel_offset */
1389
1390 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1391 0, /* rightshift */
1392 2, /* size (0 = byte, 1 = short, 2 = long) */
1393 16, /* bitsize */
1394 FALSE, /* pc_relative */
1395 0, /* bitpos */
1396 complain_overflow_dont, /* complain_on_overflow */
1397 bfd_elf_generic_reloc, /* special_function */
1398 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1399 FALSE, /* partial_inplace */
1400 0xffff, /* src_mask */
1401 0xffff, /* dst_mask */
1402 FALSE), /* pcrel_offset */
1403
1404 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1405 0, /* rightshift */
1406 2, /* size (0 = byte, 1 = short, 2 = long) */
1407 16, /* bitsize */
1408 FALSE, /* pc_relative */
1409 0, /* bitpos */
1410 complain_overflow_dont, /* complain_on_overflow */
1411 bfd_elf_generic_reloc, /* special_function */
1412 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1413 FALSE, /* partial_inplace */
1414 0xffff, /* src_mask */
1415 0xffff, /* dst_mask */
1416 FALSE), /* pcrel_offset */
1417
1418 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1419 12, /* rightshift */
1420 2, /* size (0 = byte, 1 = short, 2 = long) */
1421 12, /* bitsize */
1422 FALSE, /* pc_relative */
1423 0, /* bitpos */
1424 complain_overflow_unsigned, /* complain_on_overflow */
1425 bfd_elf_generic_reloc, /* special_function */
1426 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1427 FALSE, /* partial_inplace */
1428 0xfff, /* src_mask */
1429 0xfff, /* dst_mask */
1430 FALSE), /* pcrel_offset */
1431
1432 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1433 0, /* rightshift */
1434 2, /* size (0 = byte, 1 = short, 2 = long) */
1435 12, /* bitsize */
1436 FALSE, /* pc_relative */
1437 0, /* bitpos */
1438 complain_overflow_unsigned, /* complain_on_overflow */
1439 bfd_elf_generic_reloc, /* special_function */
1440 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1441 FALSE, /* partial_inplace */
1442 0xfff, /* src_mask */
1443 0xfff, /* dst_mask */
1444 FALSE), /* pcrel_offset */
1445
1446 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1447 0, /* rightshift */
1448 2, /* size (0 = byte, 1 = short, 2 = long) */
1449 12, /* bitsize */
1450 FALSE, /* pc_relative */
1451 0, /* bitpos */
1452 complain_overflow_dont, /* complain_on_overflow */
1453 bfd_elf_generic_reloc, /* special_function */
1454 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1455 FALSE, /* partial_inplace */
1456 0xfff, /* src_mask */
1457 0xfff, /* dst_mask */
1458 FALSE), /* pcrel_offset */
1459
1460 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1461 2, /* rightshift */
1462 2, /* size (0 = byte, 1 = short, 2 = long) */
1463 19, /* bitsize */
1464 TRUE, /* pc_relative */
1465 0, /* bitpos */
1466 complain_overflow_dont, /* complain_on_overflow */
1467 bfd_elf_generic_reloc, /* special_function */
1468 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1469 FALSE, /* partial_inplace */
1470 0x0ffffe0, /* src_mask */
1471 0x0ffffe0, /* dst_mask */
1472 TRUE), /* pcrel_offset */
1473
1474 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1475 0, /* rightshift */
1476 2, /* size (0 = byte, 1 = short, 2 = long) */
1477 21, /* bitsize */
1478 TRUE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
1482 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1483 FALSE, /* partial_inplace */
1484 0x1fffff, /* src_mask */
1485 0x1fffff, /* dst_mask */
1486 TRUE), /* pcrel_offset */
1487
1488 /* Get to the page for the GOT entry for the symbol
1489 (G(S) - P) using an ADRP instruction. */
1490 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1491 12, /* rightshift */
1492 2, /* size (0 = byte, 1 = short, 2 = long) */
1493 21, /* bitsize */
1494 TRUE, /* pc_relative */
1495 0, /* bitpos */
1496 complain_overflow_dont, /* complain_on_overflow */
1497 bfd_elf_generic_reloc, /* special_function */
1498 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1499 FALSE, /* partial_inplace */
1500 0x1fffff, /* src_mask */
1501 0x1fffff, /* dst_mask */
1502 TRUE), /* pcrel_offset */
1503
1504 /* LD64: GOT offset G(S) & 0xff8. */
1505 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC), /* type */
1506 3, /* rightshift */
1507 2, /* size (0 = byte, 1 = short, 2 = long) */
1508 12, /* bitsize */
1509 FALSE, /* pc_relative */
1510 0, /* bitpos */
1511 complain_overflow_dont, /* complain_on_overflow */
1512 bfd_elf_generic_reloc, /* special_function */
1513 AARCH64_R_STR (TLSDESC_LD64_LO12_NC), /* name */
1514 FALSE, /* partial_inplace */
1515 0xff8, /* src_mask */
1516 0xff8, /* dst_mask */
1517 FALSE), /* pcrel_offset */
1518
1519 /* LD32: GOT offset G(S) & 0xffc. */
1520 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1521 2, /* rightshift */
1522 2, /* size (0 = byte, 1 = short, 2 = long) */
1523 12, /* bitsize */
1524 FALSE, /* pc_relative */
1525 0, /* bitpos */
1526 complain_overflow_dont, /* complain_on_overflow */
1527 bfd_elf_generic_reloc, /* special_function */
1528 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1529 FALSE, /* partial_inplace */
1530 0xffc, /* src_mask */
1531 0xffc, /* dst_mask */
1532 FALSE), /* pcrel_offset */
1533
1534 /* ADD: GOT offset G(S) & 0xfff. */
1535 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC), /* type */
1536 0, /* rightshift */
1537 2, /* size (0 = byte, 1 = short, 2 = long) */
1538 12, /* bitsize */
1539 FALSE, /* pc_relative */
1540 0, /* bitpos */
1541 complain_overflow_dont, /* complain_on_overflow */
1542 bfd_elf_generic_reloc, /* special_function */
1543 AARCH64_R_STR (TLSDESC_ADD_LO12_NC), /* name */
1544 FALSE, /* partial_inplace */
1545 0xfff, /* src_mask */
1546 0xfff, /* dst_mask */
1547 FALSE), /* pcrel_offset */
1548
1549 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1550 16, /* rightshift */
1551 2, /* size (0 = byte, 1 = short, 2 = long) */
1552 12, /* bitsize */
1553 FALSE, /* pc_relative */
1554 0, /* bitpos */
1555 complain_overflow_dont, /* complain_on_overflow */
1556 bfd_elf_generic_reloc, /* special_function */
1557 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1558 FALSE, /* partial_inplace */
1559 0xffff, /* src_mask */
1560 0xffff, /* dst_mask */
1561 FALSE), /* pcrel_offset */
1562
1563 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1564 0, /* rightshift */
1565 2, /* size (0 = byte, 1 = short, 2 = long) */
1566 12, /* bitsize */
1567 FALSE, /* pc_relative */
1568 0, /* bitpos */
1569 complain_overflow_dont, /* complain_on_overflow */
1570 bfd_elf_generic_reloc, /* special_function */
1571 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1572 FALSE, /* partial_inplace */
1573 0xffff, /* src_mask */
1574 0xffff, /* dst_mask */
1575 FALSE), /* pcrel_offset */
1576
1577 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1578 0, /* rightshift */
1579 2, /* size (0 = byte, 1 = short, 2 = long) */
1580 12, /* bitsize */
1581 FALSE, /* pc_relative */
1582 0, /* bitpos */
1583 complain_overflow_dont, /* complain_on_overflow */
1584 bfd_elf_generic_reloc, /* special_function */
1585 AARCH64_R_STR (TLSDESC_LDR), /* name */
1586 FALSE, /* partial_inplace */
1587 0x0, /* src_mask */
1588 0x0, /* dst_mask */
1589 FALSE), /* pcrel_offset */
1590
1591 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1592 0, /* rightshift */
1593 2, /* size (0 = byte, 1 = short, 2 = long) */
1594 12, /* bitsize */
1595 FALSE, /* pc_relative */
1596 0, /* bitpos */
1597 complain_overflow_dont, /* complain_on_overflow */
1598 bfd_elf_generic_reloc, /* special_function */
1599 AARCH64_R_STR (TLSDESC_ADD), /* name */
1600 FALSE, /* partial_inplace */
1601 0x0, /* src_mask */
1602 0x0, /* dst_mask */
1603 FALSE), /* pcrel_offset */
1604
1605 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1606 0, /* rightshift */
1607 2, /* size (0 = byte, 1 = short, 2 = long) */
1608 0, /* bitsize */
1609 FALSE, /* pc_relative */
1610 0, /* bitpos */
1611 complain_overflow_dont, /* complain_on_overflow */
1612 bfd_elf_generic_reloc, /* special_function */
1613 AARCH64_R_STR (TLSDESC_CALL), /* name */
1614 FALSE, /* partial_inplace */
1615 0x0, /* src_mask */
1616 0x0, /* dst_mask */
1617 FALSE), /* pcrel_offset */
1618
1619 HOWTO (AARCH64_R (COPY), /* type */
1620 0, /* rightshift */
1621 2, /* size (0 = byte, 1 = short, 2 = long) */
1622 64, /* bitsize */
1623 FALSE, /* pc_relative */
1624 0, /* bitpos */
1625 complain_overflow_bitfield, /* complain_on_overflow */
1626 bfd_elf_generic_reloc, /* special_function */
1627 AARCH64_R_STR (COPY), /* name */
1628 TRUE, /* partial_inplace */
1629 0xffffffff, /* src_mask */
1630 0xffffffff, /* dst_mask */
1631 FALSE), /* pcrel_offset */
1632
1633 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1634 0, /* rightshift */
1635 2, /* size (0 = byte, 1 = short, 2 = long) */
1636 64, /* bitsize */
1637 FALSE, /* pc_relative */
1638 0, /* bitpos */
1639 complain_overflow_bitfield, /* complain_on_overflow */
1640 bfd_elf_generic_reloc, /* special_function */
1641 AARCH64_R_STR (GLOB_DAT), /* name */
1642 TRUE, /* partial_inplace */
1643 0xffffffff, /* src_mask */
1644 0xffffffff, /* dst_mask */
1645 FALSE), /* pcrel_offset */
1646
1647 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1648 0, /* rightshift */
1649 2, /* size (0 = byte, 1 = short, 2 = long) */
1650 64, /* bitsize */
1651 FALSE, /* pc_relative */
1652 0, /* bitpos */
1653 complain_overflow_bitfield, /* complain_on_overflow */
1654 bfd_elf_generic_reloc, /* special_function */
1655 AARCH64_R_STR (JUMP_SLOT), /* name */
1656 TRUE, /* partial_inplace */
1657 0xffffffff, /* src_mask */
1658 0xffffffff, /* dst_mask */
1659 FALSE), /* pcrel_offset */
1660
1661 HOWTO (AARCH64_R (RELATIVE), /* type */
1662 0, /* rightshift */
1663 2, /* size (0 = byte, 1 = short, 2 = long) */
1664 64, /* bitsize */
1665 FALSE, /* pc_relative */
1666 0, /* bitpos */
1667 complain_overflow_bitfield, /* complain_on_overflow */
1668 bfd_elf_generic_reloc, /* special_function */
1669 AARCH64_R_STR (RELATIVE), /* name */
1670 TRUE, /* partial_inplace */
1671 ALL_ONES, /* src_mask */
1672 ALL_ONES, /* dst_mask */
1673 FALSE), /* pcrel_offset */
1674
1675 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1676 0, /* rightshift */
1677 2, /* size (0 = byte, 1 = short, 2 = long) */
1678 64, /* bitsize */
1679 FALSE, /* pc_relative */
1680 0, /* bitpos */
1681 complain_overflow_dont, /* complain_on_overflow */
1682 bfd_elf_generic_reloc, /* special_function */
1683 #if ARCH_SIZE == 64
1684 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1685 #else
1686 AARCH64_R_STR (TLS_DTPMOD), /* name */
1687 #endif
1688 FALSE, /* partial_inplace */
1689 0, /* src_mask */
1690 ALL_ONES, /* dst_mask */
1691 FALSE), /* pc_reloffset */
1692
1693 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1694 0, /* rightshift */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1696 64, /* bitsize */
1697 FALSE, /* pc_relative */
1698 0, /* bitpos */
1699 complain_overflow_dont, /* complain_on_overflow */
1700 bfd_elf_generic_reloc, /* special_function */
1701 #if ARCH_SIZE == 64
1702 AARCH64_R_STR (TLS_DTPREL64), /* name */
1703 #else
1704 AARCH64_R_STR (TLS_DTPREL), /* name */
1705 #endif
1706 FALSE, /* partial_inplace */
1707 0, /* src_mask */
1708 ALL_ONES, /* dst_mask */
1709 FALSE), /* pcrel_offset */
1710
1711 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1712 0, /* rightshift */
1713 2, /* size (0 = byte, 1 = short, 2 = long) */
1714 64, /* bitsize */
1715 FALSE, /* pc_relative */
1716 0, /* bitpos */
1717 complain_overflow_dont, /* complain_on_overflow */
1718 bfd_elf_generic_reloc, /* special_function */
1719 #if ARCH_SIZE == 64
1720 AARCH64_R_STR (TLS_TPREL64), /* name */
1721 #else
1722 AARCH64_R_STR (TLS_TPREL), /* name */
1723 #endif
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 ALL_ONES, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1728
1729 HOWTO (AARCH64_R (TLSDESC), /* type */
1730 0, /* rightshift */
1731 2, /* size (0 = byte, 1 = short, 2 = long) */
1732 64, /* bitsize */
1733 FALSE, /* pc_relative */
1734 0, /* bitpos */
1735 complain_overflow_dont, /* complain_on_overflow */
1736 bfd_elf_generic_reloc, /* special_function */
1737 AARCH64_R_STR (TLSDESC), /* name */
1738 FALSE, /* partial_inplace */
1739 0, /* src_mask */
1740 ALL_ONES, /* dst_mask */
1741 FALSE), /* pcrel_offset */
1742
1743 HOWTO (AARCH64_R (IRELATIVE), /* type */
1744 0, /* rightshift */
1745 2, /* size (0 = byte, 1 = short, 2 = long) */
1746 64, /* bitsize */
1747 FALSE, /* pc_relative */
1748 0, /* bitpos */
1749 complain_overflow_bitfield, /* complain_on_overflow */
1750 bfd_elf_generic_reloc, /* special_function */
1751 AARCH64_R_STR (IRELATIVE), /* name */
1752 FALSE, /* partial_inplace */
1753 0, /* src_mask */
1754 ALL_ONES, /* dst_mask */
1755 FALSE), /* pcrel_offset */
1756
1757 EMPTY_HOWTO (0),
1758 };
1759
1760 static reloc_howto_type elfNN_aarch64_howto_none =
1761 HOWTO (R_AARCH64_NONE, /* type */
1762 0, /* rightshift */
1763 3, /* size (0 = byte, 1 = short, 2 = long) */
1764 0, /* bitsize */
1765 FALSE, /* pc_relative */
1766 0, /* bitpos */
1767 complain_overflow_dont,/* complain_on_overflow */
1768 bfd_elf_generic_reloc, /* special_function */
1769 "R_AARCH64_NONE", /* name */
1770 FALSE, /* partial_inplace */
1771 0, /* src_mask */
1772 0, /* dst_mask */
1773 FALSE); /* pcrel_offset */
1774
1775 /* Given HOWTO, return the bfd internal relocation enumerator. */
1776
1777 static bfd_reloc_code_real_type
1778 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1779 {
1780 const int size
1781 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1782 const ptrdiff_t offset
1783 = howto - elfNN_aarch64_howto_table;
1784
1785 if (offset > 0 && offset < size - 1)
1786 return BFD_RELOC_AARCH64_RELOC_START + offset;
1787
1788 if (howto == &elfNN_aarch64_howto_none)
1789 return BFD_RELOC_AARCH64_NONE;
1790
1791 return BFD_RELOC_AARCH64_RELOC_START;
1792 }
1793
1794 /* Given R_TYPE, return the bfd internal relocation enumerator. */
1795
1796 static bfd_reloc_code_real_type
1797 elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1798 {
1799 static bfd_boolean initialized_p = FALSE;
1800 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1801 static unsigned int offsets[R_AARCH64_end];
1802
1803 if (initialized_p == FALSE)
1804 {
1805 unsigned int i;
1806
1807 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1808 if (elfNN_aarch64_howto_table[i].type != 0)
1809 offsets[elfNN_aarch64_howto_table[i].type] = i;
1810
1811 initialized_p = TRUE;
1812 }
1813
1814 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1815 return BFD_RELOC_AARCH64_NONE;
1816
1817 /* PR 17512: file: b371e70a. */
1818 if (r_type >= R_AARCH64_end)
1819 {
1820 _bfd_error_handler (_("Invalid AArch64 reloc number: %d"), r_type);
1821 bfd_set_error (bfd_error_bad_value);
1822 return BFD_RELOC_AARCH64_NONE;
1823 }
1824
1825 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1826 }
1827
1828 struct elf_aarch64_reloc_map
1829 {
1830 bfd_reloc_code_real_type from;
1831 bfd_reloc_code_real_type to;
1832 };
1833
1834 /* Map bfd generic reloc to AArch64-specific reloc. */
1835 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1836 {
1837 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1838
1839 /* Basic data relocations. */
1840 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1841 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1842 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1843 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1844 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1845 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1846 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1847 };
1848
1849 /* Given the bfd internal relocation enumerator in CODE, return the
1850 corresponding howto entry. */
1851
1852 static reloc_howto_type *
1853 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1854 {
1855 unsigned int i;
1856
1857 /* Convert bfd generic reloc to AArch64-specific reloc. */
1858 if (code < BFD_RELOC_AARCH64_RELOC_START
1859 || code > BFD_RELOC_AARCH64_RELOC_END)
1860 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1861 if (elf_aarch64_reloc_map[i].from == code)
1862 {
1863 code = elf_aarch64_reloc_map[i].to;
1864 break;
1865 }
1866
1867 if (code > BFD_RELOC_AARCH64_RELOC_START
1868 && code < BFD_RELOC_AARCH64_RELOC_END)
1869 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1870 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1871
1872 if (code == BFD_RELOC_AARCH64_NONE)
1873 return &elfNN_aarch64_howto_none;
1874
1875 return NULL;
1876 }
1877
1878 static reloc_howto_type *
1879 elfNN_aarch64_howto_from_type (unsigned int r_type)
1880 {
1881 bfd_reloc_code_real_type val;
1882 reloc_howto_type *howto;
1883
1884 #if ARCH_SIZE == 32
1885 if (r_type > 256)
1886 {
1887 bfd_set_error (bfd_error_bad_value);
1888 return NULL;
1889 }
1890 #endif
1891
1892 if (r_type == R_AARCH64_NONE)
1893 return &elfNN_aarch64_howto_none;
1894
1895 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1896 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
1897
1898 if (howto != NULL)
1899 return howto;
1900
1901 bfd_set_error (bfd_error_bad_value);
1902 return NULL;
1903 }
1904
1905 static void
1906 elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
1907 Elf_Internal_Rela *elf_reloc)
1908 {
1909 unsigned int r_type;
1910
1911 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1912 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
1913 }
1914
1915 static reloc_howto_type *
1916 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1917 bfd_reloc_code_real_type code)
1918 {
1919 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
1920
1921 if (howto != NULL)
1922 return howto;
1923
1924 bfd_set_error (bfd_error_bad_value);
1925 return NULL;
1926 }
1927
1928 static reloc_howto_type *
1929 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1930 const char *r_name)
1931 {
1932 unsigned int i;
1933
1934 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1935 if (elfNN_aarch64_howto_table[i].name != NULL
1936 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
1937 return &elfNN_aarch64_howto_table[i];
1938
1939 return NULL;
1940 }
1941
1942 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
1943 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
1944 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
1945 #define TARGET_BIG_NAME "elfNN-bigaarch64"
1946
1947 /* The linker script knows the section names for placement.
1948 The entry_names are used to do simple name mangling on the stubs.
1949 Given a function name, and its type, the stub can be found. The
1950 name can be changed. The only requirement is the %s be present. */
1951 #define STUB_ENTRY_NAME "__%s_veneer"
1952
1953 /* The name of the dynamic interpreter. This is put in the .interp
1954 section. */
1955 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
1956
1957 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
1958 (((1 << 25) - 1) << 2)
1959 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
1960 (-((1 << 25) << 2))
1961
1962 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
1963 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
1964
1965 static int
1966 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
1967 {
1968 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
1969 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
1970 }
1971
1972 static int
1973 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
1974 {
1975 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
1976 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
1977 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
1978 }
1979
1980 static const uint32_t aarch64_adrp_branch_stub [] =
1981 {
1982 0x90000010, /* adrp ip0, X */
1983 /* R_AARCH64_ADR_HI21_PCREL(X) */
1984 0x91000210, /* add ip0, ip0, :lo12:X */
1985 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
1986 0xd61f0200, /* br ip0 */
1987 };
1988
1989 static const uint32_t aarch64_long_branch_stub[] =
1990 {
1991 #if ARCH_SIZE == 64
1992 0x58000090, /* ldr ip0, 1f */
1993 #else
1994 0x18000090, /* ldr wip0, 1f */
1995 #endif
1996 0x10000011, /* adr ip1, #0 */
1997 0x8b110210, /* add ip0, ip0, ip1 */
1998 0xd61f0200, /* br ip0 */
1999 0x00000000, /* 1: .xword or .word
2000 R_AARCH64_PRELNN(X) + 12
2001 */
2002 0x00000000,
2003 };
2004
2005 static const uint32_t aarch64_erratum_835769_stub[] =
2006 {
2007 0x00000000, /* Placeholder for multiply accumulate. */
2008 0x14000000, /* b <label> */
2009 };
2010
2011 static const uint32_t aarch64_erratum_843419_stub[] =
2012 {
2013 0x00000000, /* Placeholder for LDR instruction. */
2014 0x14000000, /* b <label> */
2015 };
2016
2017 /* Section name for stubs is the associated section name plus this
2018 string. */
2019 #define STUB_SUFFIX ".stub"
2020
2021 enum elf_aarch64_stub_type
2022 {
2023 aarch64_stub_none,
2024 aarch64_stub_adrp_branch,
2025 aarch64_stub_long_branch,
2026 aarch64_stub_erratum_835769_veneer,
2027 aarch64_stub_erratum_843419_veneer,
2028 };
2029
2030 struct elf_aarch64_stub_hash_entry
2031 {
2032 /* Base hash table entry structure. */
2033 struct bfd_hash_entry root;
2034
2035 /* The stub section. */
2036 asection *stub_sec;
2037
2038 /* Offset within stub_sec of the beginning of this stub. */
2039 bfd_vma stub_offset;
2040
2041 /* Given the symbol's value and its section we can determine its final
2042 value when building the stubs (so the stub knows where to jump). */
2043 bfd_vma target_value;
2044 asection *target_section;
2045
2046 enum elf_aarch64_stub_type stub_type;
2047
2048 /* The symbol table entry, if any, that this was derived from. */
2049 struct elf_aarch64_link_hash_entry *h;
2050
2051 /* Destination symbol type */
2052 unsigned char st_type;
2053
2054 /* Where this stub is being called from, or, in the case of combined
2055 stub sections, the first input section in the group. */
2056 asection *id_sec;
2057
2058 /* The name for the local symbol at the start of this stub. The
2059 stub name in the hash table has to be unique; this does not, so
2060 it can be friendlier. */
2061 char *output_name;
2062
2063 /* The instruction which caused this stub to be generated (only valid for
2064 erratum 835769 workaround stubs at present). */
2065 uint32_t veneered_insn;
2066
2067 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2068 bfd_vma adrp_offset;
2069 };
2070
2071 /* Used to build a map of a section. This is required for mixed-endian
2072 code/data. */
2073
2074 typedef struct elf_elf_section_map
2075 {
2076 bfd_vma vma;
2077 char type;
2078 }
2079 elf_aarch64_section_map;
2080
2081
2082 typedef struct _aarch64_elf_section_data
2083 {
2084 struct bfd_elf_section_data elf;
2085 unsigned int mapcount;
2086 unsigned int mapsize;
2087 elf_aarch64_section_map *map;
2088 }
2089 _aarch64_elf_section_data;
2090
2091 #define elf_aarch64_section_data(sec) \
2092 ((_aarch64_elf_section_data *) elf_section_data (sec))
2093
2094 /* The size of the thread control block which is defined to be two pointers. */
2095 #define TCB_SIZE (ARCH_SIZE/8)*2
2096
2097 struct elf_aarch64_local_symbol
2098 {
2099 unsigned int got_type;
2100 bfd_signed_vma got_refcount;
2101 bfd_vma got_offset;
2102
2103 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2104 offset is from the end of the jump table and reserved entries
2105 within the PLTGOT.
2106
2107 The magic value (bfd_vma) -1 indicates that an offset has not be
2108 allocated. */
2109 bfd_vma tlsdesc_got_jump_table_offset;
2110 };
2111
2112 struct elf_aarch64_obj_tdata
2113 {
2114 struct elf_obj_tdata root;
2115
2116 /* local symbol descriptors */
2117 struct elf_aarch64_local_symbol *locals;
2118
2119 /* Zero to warn when linking objects with incompatible enum sizes. */
2120 int no_enum_size_warning;
2121
2122 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2123 int no_wchar_size_warning;
2124 };
2125
2126 #define elf_aarch64_tdata(bfd) \
2127 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2128
2129 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2130
2131 #define is_aarch64_elf(bfd) \
2132 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2133 && elf_tdata (bfd) != NULL \
2134 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2135
2136 static bfd_boolean
2137 elfNN_aarch64_mkobject (bfd *abfd)
2138 {
2139 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2140 AARCH64_ELF_DATA);
2141 }
2142
2143 #define elf_aarch64_hash_entry(ent) \
2144 ((struct elf_aarch64_link_hash_entry *)(ent))
2145
2146 #define GOT_UNKNOWN 0
2147 #define GOT_NORMAL 1
2148 #define GOT_TLS_GD 2
2149 #define GOT_TLS_IE 4
2150 #define GOT_TLSDESC_GD 8
2151
2152 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2153
2154 /* AArch64 ELF linker hash entry. */
2155 struct elf_aarch64_link_hash_entry
2156 {
2157 struct elf_link_hash_entry root;
2158
2159 /* Track dynamic relocs copied for this symbol. */
2160 struct elf_dyn_relocs *dyn_relocs;
2161
2162 /* Since PLT entries have variable size, we need to record the
2163 index into .got.plt instead of recomputing it from the PLT
2164 offset. */
2165 bfd_signed_vma plt_got_offset;
2166
2167 /* Bit mask representing the type of GOT entry(s) if any required by
2168 this symbol. */
2169 unsigned int got_type;
2170
2171 /* A pointer to the most recently used stub hash entry against this
2172 symbol. */
2173 struct elf_aarch64_stub_hash_entry *stub_cache;
2174
2175 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2176 is from the end of the jump table and reserved entries within the PLTGOT.
2177
2178 The magic value (bfd_vma) -1 indicates that an offset has not
2179 be allocated. */
2180 bfd_vma tlsdesc_got_jump_table_offset;
2181 };
2182
2183 static unsigned int
2184 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2185 bfd *abfd,
2186 unsigned long r_symndx)
2187 {
2188 if (h)
2189 return elf_aarch64_hash_entry (h)->got_type;
2190
2191 if (! elf_aarch64_locals (abfd))
2192 return GOT_UNKNOWN;
2193
2194 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2195 }
2196
2197 /* Get the AArch64 elf linker hash table from a link_info structure. */
2198 #define elf_aarch64_hash_table(info) \
2199 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2200
2201 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2202 ((struct elf_aarch64_stub_hash_entry *) \
2203 bfd_hash_lookup ((table), (string), (create), (copy)))
2204
2205 /* AArch64 ELF linker hash table. */
2206 struct elf_aarch64_link_hash_table
2207 {
2208 /* The main hash table. */
2209 struct elf_link_hash_table root;
2210
2211 /* Nonzero to force PIC branch veneers. */
2212 int pic_veneer;
2213
2214 /* Fix erratum 835769. */
2215 int fix_erratum_835769;
2216
2217 /* Fix erratum 843419. */
2218 int fix_erratum_843419;
2219
2220 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2221 int fix_erratum_843419_adr;
2222
2223 /* The number of bytes in the initial entry in the PLT. */
2224 bfd_size_type plt_header_size;
2225
2226 /* The number of bytes in the subsequent PLT etries. */
2227 bfd_size_type plt_entry_size;
2228
2229 /* Short-cuts to get to dynamic linker sections. */
2230 asection *sdynbss;
2231 asection *srelbss;
2232
2233 /* Small local sym cache. */
2234 struct sym_cache sym_cache;
2235
2236 /* For convenience in allocate_dynrelocs. */
2237 bfd *obfd;
2238
2239 /* The amount of space used by the reserved portion of the sgotplt
2240 section, plus whatever space is used by the jump slots. */
2241 bfd_vma sgotplt_jump_table_size;
2242
2243 /* The stub hash table. */
2244 struct bfd_hash_table stub_hash_table;
2245
2246 /* Linker stub bfd. */
2247 bfd *stub_bfd;
2248
2249 /* Linker call-backs. */
2250 asection *(*add_stub_section) (const char *, asection *);
2251 void (*layout_sections_again) (void);
2252
2253 /* Array to keep track of which stub sections have been created, and
2254 information on stub grouping. */
2255 struct map_stub
2256 {
2257 /* This is the section to which stubs in the group will be
2258 attached. */
2259 asection *link_sec;
2260 /* The stub section. */
2261 asection *stub_sec;
2262 } *stub_group;
2263
2264 /* Assorted information used by elfNN_aarch64_size_stubs. */
2265 unsigned int bfd_count;
2266 unsigned int top_index;
2267 asection **input_list;
2268
2269 /* The offset into splt of the PLT entry for the TLS descriptor
2270 resolver. Special values are 0, if not necessary (or not found
2271 to be necessary yet), and -1 if needed but not determined
2272 yet. */
2273 bfd_vma tlsdesc_plt;
2274
2275 /* The GOT offset for the lazy trampoline. Communicated to the
2276 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2277 indicates an offset is not allocated. */
2278 bfd_vma dt_tlsdesc_got;
2279
2280 /* Used by local STT_GNU_IFUNC symbols. */
2281 htab_t loc_hash_table;
2282 void * loc_hash_memory;
2283 };
2284
2285 /* Create an entry in an AArch64 ELF linker hash table. */
2286
2287 static struct bfd_hash_entry *
2288 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2289 struct bfd_hash_table *table,
2290 const char *string)
2291 {
2292 struct elf_aarch64_link_hash_entry *ret =
2293 (struct elf_aarch64_link_hash_entry *) entry;
2294
2295 /* Allocate the structure if it has not already been allocated by a
2296 subclass. */
2297 if (ret == NULL)
2298 ret = bfd_hash_allocate (table,
2299 sizeof (struct elf_aarch64_link_hash_entry));
2300 if (ret == NULL)
2301 return (struct bfd_hash_entry *) ret;
2302
2303 /* Call the allocation method of the superclass. */
2304 ret = ((struct elf_aarch64_link_hash_entry *)
2305 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2306 table, string));
2307 if (ret != NULL)
2308 {
2309 ret->dyn_relocs = NULL;
2310 ret->got_type = GOT_UNKNOWN;
2311 ret->plt_got_offset = (bfd_vma) - 1;
2312 ret->stub_cache = NULL;
2313 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2314 }
2315
2316 return (struct bfd_hash_entry *) ret;
2317 }
2318
2319 /* Initialize an entry in the stub hash table. */
2320
2321 static struct bfd_hash_entry *
2322 stub_hash_newfunc (struct bfd_hash_entry *entry,
2323 struct bfd_hash_table *table, const char *string)
2324 {
2325 /* Allocate the structure if it has not already been allocated by a
2326 subclass. */
2327 if (entry == NULL)
2328 {
2329 entry = bfd_hash_allocate (table,
2330 sizeof (struct
2331 elf_aarch64_stub_hash_entry));
2332 if (entry == NULL)
2333 return entry;
2334 }
2335
2336 /* Call the allocation method of the superclass. */
2337 entry = bfd_hash_newfunc (entry, table, string);
2338 if (entry != NULL)
2339 {
2340 struct elf_aarch64_stub_hash_entry *eh;
2341
2342 /* Initialize the local fields. */
2343 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2344 eh->adrp_offset = 0;
2345 eh->stub_sec = NULL;
2346 eh->stub_offset = 0;
2347 eh->target_value = 0;
2348 eh->target_section = NULL;
2349 eh->stub_type = aarch64_stub_none;
2350 eh->h = NULL;
2351 eh->id_sec = NULL;
2352 }
2353
2354 return entry;
2355 }
2356
2357 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2358 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2359 as global symbol. We reuse indx and dynstr_index for local symbol
2360 hash since they aren't used by global symbols in this backend. */
2361
2362 static hashval_t
2363 elfNN_aarch64_local_htab_hash (const void *ptr)
2364 {
2365 struct elf_link_hash_entry *h
2366 = (struct elf_link_hash_entry *) ptr;
2367 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2368 }
2369
2370 /* Compare local hash entries. */
2371
2372 static int
2373 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2374 {
2375 struct elf_link_hash_entry *h1
2376 = (struct elf_link_hash_entry *) ptr1;
2377 struct elf_link_hash_entry *h2
2378 = (struct elf_link_hash_entry *) ptr2;
2379
2380 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2381 }
2382
2383 /* Find and/or create a hash entry for local symbol. */
2384
2385 static struct elf_link_hash_entry *
2386 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2387 bfd *abfd, const Elf_Internal_Rela *rel,
2388 bfd_boolean create)
2389 {
2390 struct elf_aarch64_link_hash_entry e, *ret;
2391 asection *sec = abfd->sections;
2392 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2393 ELFNN_R_SYM (rel->r_info));
2394 void **slot;
2395
2396 e.root.indx = sec->id;
2397 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2398 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2399 create ? INSERT : NO_INSERT);
2400
2401 if (!slot)
2402 return NULL;
2403
2404 if (*slot)
2405 {
2406 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2407 return &ret->root;
2408 }
2409
2410 ret = (struct elf_aarch64_link_hash_entry *)
2411 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2412 sizeof (struct elf_aarch64_link_hash_entry));
2413 if (ret)
2414 {
2415 memset (ret, 0, sizeof (*ret));
2416 ret->root.indx = sec->id;
2417 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2418 ret->root.dynindx = -1;
2419 *slot = ret;
2420 }
2421 return &ret->root;
2422 }
2423
2424 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2425
2426 static void
2427 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2428 struct elf_link_hash_entry *dir,
2429 struct elf_link_hash_entry *ind)
2430 {
2431 struct elf_aarch64_link_hash_entry *edir, *eind;
2432
2433 edir = (struct elf_aarch64_link_hash_entry *) dir;
2434 eind = (struct elf_aarch64_link_hash_entry *) ind;
2435
2436 if (eind->dyn_relocs != NULL)
2437 {
2438 if (edir->dyn_relocs != NULL)
2439 {
2440 struct elf_dyn_relocs **pp;
2441 struct elf_dyn_relocs *p;
2442
2443 /* Add reloc counts against the indirect sym to the direct sym
2444 list. Merge any entries against the same section. */
2445 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2446 {
2447 struct elf_dyn_relocs *q;
2448
2449 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2450 if (q->sec == p->sec)
2451 {
2452 q->pc_count += p->pc_count;
2453 q->count += p->count;
2454 *pp = p->next;
2455 break;
2456 }
2457 if (q == NULL)
2458 pp = &p->next;
2459 }
2460 *pp = edir->dyn_relocs;
2461 }
2462
2463 edir->dyn_relocs = eind->dyn_relocs;
2464 eind->dyn_relocs = NULL;
2465 }
2466
2467 if (ind->root.type == bfd_link_hash_indirect)
2468 {
2469 /* Copy over PLT info. */
2470 if (dir->got.refcount <= 0)
2471 {
2472 edir->got_type = eind->got_type;
2473 eind->got_type = GOT_UNKNOWN;
2474 }
2475 }
2476
2477 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2478 }
2479
2480 /* Destroy an AArch64 elf linker hash table. */
2481
2482 static void
2483 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2484 {
2485 struct elf_aarch64_link_hash_table *ret
2486 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2487
2488 if (ret->loc_hash_table)
2489 htab_delete (ret->loc_hash_table);
2490 if (ret->loc_hash_memory)
2491 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2492
2493 bfd_hash_table_free (&ret->stub_hash_table);
2494 _bfd_elf_link_hash_table_free (obfd);
2495 }
2496
2497 /* Create an AArch64 elf linker hash table. */
2498
2499 static struct bfd_link_hash_table *
2500 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2501 {
2502 struct elf_aarch64_link_hash_table *ret;
2503 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2504
2505 ret = bfd_zmalloc (amt);
2506 if (ret == NULL)
2507 return NULL;
2508
2509 if (!_bfd_elf_link_hash_table_init
2510 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2511 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2512 {
2513 free (ret);
2514 return NULL;
2515 }
2516
2517 ret->plt_header_size = PLT_ENTRY_SIZE;
2518 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2519 ret->obfd = abfd;
2520 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2521
2522 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2523 sizeof (struct elf_aarch64_stub_hash_entry)))
2524 {
2525 _bfd_elf_link_hash_table_free (abfd);
2526 return NULL;
2527 }
2528
2529 ret->loc_hash_table = htab_try_create (1024,
2530 elfNN_aarch64_local_htab_hash,
2531 elfNN_aarch64_local_htab_eq,
2532 NULL);
2533 ret->loc_hash_memory = objalloc_create ();
2534 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2535 {
2536 elfNN_aarch64_link_hash_table_free (abfd);
2537 return NULL;
2538 }
2539 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2540
2541 return &ret->root.root;
2542 }
2543
2544 static bfd_boolean
2545 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2546 bfd_vma offset, bfd_vma value)
2547 {
2548 reloc_howto_type *howto;
2549 bfd_vma place;
2550
2551 howto = elfNN_aarch64_howto_from_type (r_type);
2552 place = (input_section->output_section->vma + input_section->output_offset
2553 + offset);
2554
2555 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2556 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2557 return _bfd_aarch64_elf_put_addend (input_bfd,
2558 input_section->contents + offset, r_type,
2559 howto, value);
2560 }
2561
2562 static enum elf_aarch64_stub_type
2563 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2564 {
2565 if (aarch64_valid_for_adrp_p (value, place))
2566 return aarch64_stub_adrp_branch;
2567 return aarch64_stub_long_branch;
2568 }
2569
2570 /* Determine the type of stub needed, if any, for a call. */
2571
2572 static enum elf_aarch64_stub_type
2573 aarch64_type_of_stub (struct bfd_link_info *info,
2574 asection *input_sec,
2575 const Elf_Internal_Rela *rel,
2576 asection *sym_sec,
2577 unsigned char st_type,
2578 struct elf_aarch64_link_hash_entry *hash,
2579 bfd_vma destination)
2580 {
2581 bfd_vma location;
2582 bfd_signed_vma branch_offset;
2583 unsigned int r_type;
2584 struct elf_aarch64_link_hash_table *globals;
2585 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2586 bfd_boolean via_plt_p;
2587
2588 if (st_type != STT_FUNC
2589 && (sym_sec != bfd_abs_section_ptr))
2590 return stub_type;
2591
2592 globals = elf_aarch64_hash_table (info);
2593 via_plt_p = (globals->root.splt != NULL && hash != NULL
2594 && hash->root.plt.offset != (bfd_vma) - 1);
2595 /* Make sure call to plt stub can fit into the branch range. */
2596 if (via_plt_p)
2597 destination = (globals->root.splt->output_section->vma
2598 + globals->root.splt->output_offset
2599 + hash->root.plt.offset);
2600
2601 /* Determine where the call point is. */
2602 location = (input_sec->output_offset
2603 + input_sec->output_section->vma + rel->r_offset);
2604
2605 branch_offset = (bfd_signed_vma) (destination - location);
2606
2607 r_type = ELFNN_R_TYPE (rel->r_info);
2608
2609 /* We don't want to redirect any old unconditional jump in this way,
2610 only one which is being used for a sibcall, where it is
2611 acceptable for the IP0 and IP1 registers to be clobbered. */
2612 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2613 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2614 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2615 {
2616 stub_type = aarch64_stub_long_branch;
2617 }
2618
2619 return stub_type;
2620 }
2621
2622 /* Build a name for an entry in the stub hash table. */
2623
2624 static char *
2625 elfNN_aarch64_stub_name (const asection *input_section,
2626 const asection *sym_sec,
2627 const struct elf_aarch64_link_hash_entry *hash,
2628 const Elf_Internal_Rela *rel)
2629 {
2630 char *stub_name;
2631 bfd_size_type len;
2632
2633 if (hash)
2634 {
2635 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2636 stub_name = bfd_malloc (len);
2637 if (stub_name != NULL)
2638 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2639 (unsigned int) input_section->id,
2640 hash->root.root.root.string,
2641 rel->r_addend);
2642 }
2643 else
2644 {
2645 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2646 stub_name = bfd_malloc (len);
2647 if (stub_name != NULL)
2648 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2649 (unsigned int) input_section->id,
2650 (unsigned int) sym_sec->id,
2651 (unsigned int) ELFNN_R_SYM (rel->r_info),
2652 rel->r_addend);
2653 }
2654
2655 return stub_name;
2656 }
2657
2658 /* Look up an entry in the stub hash. Stub entries are cached because
2659 creating the stub name takes a bit of time. */
2660
2661 static struct elf_aarch64_stub_hash_entry *
2662 elfNN_aarch64_get_stub_entry (const asection *input_section,
2663 const asection *sym_sec,
2664 struct elf_link_hash_entry *hash,
2665 const Elf_Internal_Rela *rel,
2666 struct elf_aarch64_link_hash_table *htab)
2667 {
2668 struct elf_aarch64_stub_hash_entry *stub_entry;
2669 struct elf_aarch64_link_hash_entry *h =
2670 (struct elf_aarch64_link_hash_entry *) hash;
2671 const asection *id_sec;
2672
2673 if ((input_section->flags & SEC_CODE) == 0)
2674 return NULL;
2675
2676 /* If this input section is part of a group of sections sharing one
2677 stub section, then use the id of the first section in the group.
2678 Stub names need to include a section id, as there may well be
2679 more than one stub used to reach say, printf, and we need to
2680 distinguish between them. */
2681 id_sec = htab->stub_group[input_section->id].link_sec;
2682
2683 if (h != NULL && h->stub_cache != NULL
2684 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2685 {
2686 stub_entry = h->stub_cache;
2687 }
2688 else
2689 {
2690 char *stub_name;
2691
2692 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
2693 if (stub_name == NULL)
2694 return NULL;
2695
2696 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2697 stub_name, FALSE, FALSE);
2698 if (h != NULL)
2699 h->stub_cache = stub_entry;
2700
2701 free (stub_name);
2702 }
2703
2704 return stub_entry;
2705 }
2706
2707
2708 /* Create a stub section. */
2709
2710 static asection *
2711 _bfd_aarch64_create_stub_section (asection *section,
2712 struct elf_aarch64_link_hash_table *htab)
2713 {
2714 size_t namelen;
2715 bfd_size_type len;
2716 char *s_name;
2717
2718 namelen = strlen (section->name);
2719 len = namelen + sizeof (STUB_SUFFIX);
2720 s_name = bfd_alloc (htab->stub_bfd, len);
2721 if (s_name == NULL)
2722 return NULL;
2723
2724 memcpy (s_name, section->name, namelen);
2725 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2726 return (*htab->add_stub_section) (s_name, section);
2727 }
2728
2729
2730 /* Find or create a stub section for a link section.
2731
2732 Fix or create the stub section used to collect stubs attached to
2733 the specified link section. */
2734
2735 static asection *
2736 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
2737 struct elf_aarch64_link_hash_table *htab)
2738 {
2739 if (htab->stub_group[link_section->id].stub_sec == NULL)
2740 htab->stub_group[link_section->id].stub_sec
2741 = _bfd_aarch64_create_stub_section (link_section, htab);
2742 return htab->stub_group[link_section->id].stub_sec;
2743 }
2744
2745
2746 /* Find or create a stub section in the stub group for an input
2747 section. */
2748
2749 static asection *
2750 _bfd_aarch64_create_or_find_stub_sec (asection *section,
2751 struct elf_aarch64_link_hash_table *htab)
2752 {
2753 asection *link_sec = htab->stub_group[section->id].link_sec;
2754 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
2755 }
2756
2757
2758 /* Add a new stub entry in the stub group associated with an input
2759 section to the stub hash. Not all fields of the new stub entry are
2760 initialised. */
2761
2762 static struct elf_aarch64_stub_hash_entry *
2763 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
2764 asection *section,
2765 struct elf_aarch64_link_hash_table *htab)
2766 {
2767 asection *link_sec;
2768 asection *stub_sec;
2769 struct elf_aarch64_stub_hash_entry *stub_entry;
2770
2771 link_sec = htab->stub_group[section->id].link_sec;
2772 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
2773
2774 /* Enter this entry into the linker stub hash table. */
2775 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2776 TRUE, FALSE);
2777 if (stub_entry == NULL)
2778 {
2779 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2780 section->owner, stub_name);
2781 return NULL;
2782 }
2783
2784 stub_entry->stub_sec = stub_sec;
2785 stub_entry->stub_offset = 0;
2786 stub_entry->id_sec = link_sec;
2787
2788 return stub_entry;
2789 }
2790
2791 /* Add a new stub entry in the final stub section to the stub hash.
2792 Not all fields of the new stub entry are initialised. */
2793
2794 static struct elf_aarch64_stub_hash_entry *
2795 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
2796 asection *link_section,
2797 struct elf_aarch64_link_hash_table *htab)
2798 {
2799 asection *stub_sec;
2800 struct elf_aarch64_stub_hash_entry *stub_entry;
2801
2802 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
2803 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2804 TRUE, FALSE);
2805 if (stub_entry == NULL)
2806 {
2807 (*_bfd_error_handler) (_("cannot create stub entry %s"), stub_name);
2808 return NULL;
2809 }
2810
2811 stub_entry->stub_sec = stub_sec;
2812 stub_entry->stub_offset = 0;
2813 stub_entry->id_sec = link_section;
2814
2815 return stub_entry;
2816 }
2817
2818
2819 static bfd_boolean
2820 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2821 void *in_arg ATTRIBUTE_UNUSED)
2822 {
2823 struct elf_aarch64_stub_hash_entry *stub_entry;
2824 asection *stub_sec;
2825 bfd *stub_bfd;
2826 bfd_byte *loc;
2827 bfd_vma sym_value;
2828 bfd_vma veneered_insn_loc;
2829 bfd_vma veneer_entry_loc;
2830 bfd_signed_vma branch_offset = 0;
2831 unsigned int template_size;
2832 const uint32_t *template;
2833 unsigned int i;
2834
2835 /* Massage our args to the form they really have. */
2836 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2837
2838 stub_sec = stub_entry->stub_sec;
2839
2840 /* Make a note of the offset within the stubs for this entry. */
2841 stub_entry->stub_offset = stub_sec->size;
2842 loc = stub_sec->contents + stub_entry->stub_offset;
2843
2844 stub_bfd = stub_sec->owner;
2845
2846 /* This is the address of the stub destination. */
2847 sym_value = (stub_entry->target_value
2848 + stub_entry->target_section->output_offset
2849 + stub_entry->target_section->output_section->vma);
2850
2851 if (stub_entry->stub_type == aarch64_stub_long_branch)
2852 {
2853 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2854 + stub_sec->output_offset);
2855
2856 /* See if we can relax the stub. */
2857 if (aarch64_valid_for_adrp_p (sym_value, place))
2858 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2859 }
2860
2861 switch (stub_entry->stub_type)
2862 {
2863 case aarch64_stub_adrp_branch:
2864 template = aarch64_adrp_branch_stub;
2865 template_size = sizeof (aarch64_adrp_branch_stub);
2866 break;
2867 case aarch64_stub_long_branch:
2868 template = aarch64_long_branch_stub;
2869 template_size = sizeof (aarch64_long_branch_stub);
2870 break;
2871 case aarch64_stub_erratum_835769_veneer:
2872 template = aarch64_erratum_835769_stub;
2873 template_size = sizeof (aarch64_erratum_835769_stub);
2874 break;
2875 case aarch64_stub_erratum_843419_veneer:
2876 template = aarch64_erratum_843419_stub;
2877 template_size = sizeof (aarch64_erratum_843419_stub);
2878 break;
2879 default:
2880 abort ();
2881 }
2882
2883 for (i = 0; i < (template_size / sizeof template[0]); i++)
2884 {
2885 bfd_putl32 (template[i], loc);
2886 loc += 4;
2887 }
2888
2889 template_size = (template_size + 7) & ~7;
2890 stub_sec->size += template_size;
2891
2892 switch (stub_entry->stub_type)
2893 {
2894 case aarch64_stub_adrp_branch:
2895 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
2896 stub_entry->stub_offset, sym_value))
2897 /* The stub would not have been relaxed if the offset was out
2898 of range. */
2899 BFD_FAIL ();
2900
2901 if (aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
2902 stub_entry->stub_offset + 4, sym_value))
2903 BFD_FAIL ();
2904 break;
2905
2906 case aarch64_stub_long_branch:
2907 /* We want the value relative to the address 12 bytes back from the
2908 value itself. */
2909 if (aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
2910 stub_entry->stub_offset + 16, sym_value + 12))
2911 BFD_FAIL ();
2912 break;
2913
2914 case aarch64_stub_erratum_835769_veneer:
2915 veneered_insn_loc = stub_entry->target_section->output_section->vma
2916 + stub_entry->target_section->output_offset
2917 + stub_entry->target_value;
2918 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
2919 + stub_entry->stub_sec->output_offset
2920 + stub_entry->stub_offset;
2921 branch_offset = veneered_insn_loc - veneer_entry_loc;
2922 branch_offset >>= 2;
2923 branch_offset &= 0x3ffffff;
2924 bfd_putl32 (stub_entry->veneered_insn,
2925 stub_sec->contents + stub_entry->stub_offset);
2926 bfd_putl32 (template[1] | branch_offset,
2927 stub_sec->contents + stub_entry->stub_offset + 4);
2928 break;
2929
2930 case aarch64_stub_erratum_843419_veneer:
2931 if (aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
2932 stub_entry->stub_offset + 4, sym_value + 4))
2933 BFD_FAIL ();
2934 break;
2935
2936 default:
2937 abort ();
2938 }
2939
2940 return TRUE;
2941 }
2942
2943 /* As above, but don't actually build the stub. Just bump offset so
2944 we know stub section sizes. */
2945
2946 static bfd_boolean
2947 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
2948 void *in_arg ATTRIBUTE_UNUSED)
2949 {
2950 struct elf_aarch64_stub_hash_entry *stub_entry;
2951 int size;
2952
2953 /* Massage our args to the form they really have. */
2954 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2955
2956 switch (stub_entry->stub_type)
2957 {
2958 case aarch64_stub_adrp_branch:
2959 size = sizeof (aarch64_adrp_branch_stub);
2960 break;
2961 case aarch64_stub_long_branch:
2962 size = sizeof (aarch64_long_branch_stub);
2963 break;
2964 case aarch64_stub_erratum_835769_veneer:
2965 size = sizeof (aarch64_erratum_835769_stub);
2966 break;
2967 case aarch64_stub_erratum_843419_veneer:
2968 size = sizeof (aarch64_erratum_843419_stub);
2969 break;
2970 default:
2971 abort ();
2972 }
2973
2974 size = (size + 7) & ~7;
2975 stub_entry->stub_sec->size += size;
2976 return TRUE;
2977 }
2978
2979 /* External entry points for sizing and building linker stubs. */
2980
2981 /* Set up various things so that we can make a list of input sections
2982 for each output section included in the link. Returns -1 on error,
2983 0 when no stubs will be needed, and 1 on success. */
2984
2985 int
2986 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
2987 struct bfd_link_info *info)
2988 {
2989 bfd *input_bfd;
2990 unsigned int bfd_count;
2991 unsigned int top_id, top_index;
2992 asection *section;
2993 asection **input_list, **list;
2994 bfd_size_type amt;
2995 struct elf_aarch64_link_hash_table *htab =
2996 elf_aarch64_hash_table (info);
2997
2998 if (!is_elf_hash_table (htab))
2999 return 0;
3000
3001 /* Count the number of input BFDs and find the top input section id. */
3002 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3003 input_bfd != NULL; input_bfd = input_bfd->link.next)
3004 {
3005 bfd_count += 1;
3006 for (section = input_bfd->sections;
3007 section != NULL; section = section->next)
3008 {
3009 if (top_id < section->id)
3010 top_id = section->id;
3011 }
3012 }
3013 htab->bfd_count = bfd_count;
3014
3015 amt = sizeof (struct map_stub) * (top_id + 1);
3016 htab->stub_group = bfd_zmalloc (amt);
3017 if (htab->stub_group == NULL)
3018 return -1;
3019
3020 /* We can't use output_bfd->section_count here to find the top output
3021 section index as some sections may have been removed, and
3022 _bfd_strip_section_from_output doesn't renumber the indices. */
3023 for (section = output_bfd->sections, top_index = 0;
3024 section != NULL; section = section->next)
3025 {
3026 if (top_index < section->index)
3027 top_index = section->index;
3028 }
3029
3030 htab->top_index = top_index;
3031 amt = sizeof (asection *) * (top_index + 1);
3032 input_list = bfd_malloc (amt);
3033 htab->input_list = input_list;
3034 if (input_list == NULL)
3035 return -1;
3036
3037 /* For sections we aren't interested in, mark their entries with a
3038 value we can check later. */
3039 list = input_list + top_index;
3040 do
3041 *list = bfd_abs_section_ptr;
3042 while (list-- != input_list);
3043
3044 for (section = output_bfd->sections;
3045 section != NULL; section = section->next)
3046 {
3047 if ((section->flags & SEC_CODE) != 0)
3048 input_list[section->index] = NULL;
3049 }
3050
3051 return 1;
3052 }
3053
3054 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3055 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3056
3057 /* The linker repeatedly calls this function for each input section,
3058 in the order that input sections are linked into output sections.
3059 Build lists of input sections to determine groupings between which
3060 we may insert linker stubs. */
3061
3062 void
3063 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3064 {
3065 struct elf_aarch64_link_hash_table *htab =
3066 elf_aarch64_hash_table (info);
3067
3068 if (isec->output_section->index <= htab->top_index)
3069 {
3070 asection **list = htab->input_list + isec->output_section->index;
3071
3072 if (*list != bfd_abs_section_ptr)
3073 {
3074 /* Steal the link_sec pointer for our list. */
3075 /* This happens to make the list in reverse order,
3076 which is what we want. */
3077 PREV_SEC (isec) = *list;
3078 *list = isec;
3079 }
3080 }
3081 }
3082
3083 /* See whether we can group stub sections together. Grouping stub
3084 sections may result in fewer stubs. More importantly, we need to
3085 put all .init* and .fini* stubs at the beginning of the .init or
3086 .fini output sections respectively, because glibc splits the
3087 _init and _fini functions into multiple parts. Putting a stub in
3088 the middle of a function is not a good idea. */
3089
3090 static void
3091 group_sections (struct elf_aarch64_link_hash_table *htab,
3092 bfd_size_type stub_group_size,
3093 bfd_boolean stubs_always_before_branch)
3094 {
3095 asection **list = htab->input_list + htab->top_index;
3096
3097 do
3098 {
3099 asection *tail = *list;
3100
3101 if (tail == bfd_abs_section_ptr)
3102 continue;
3103
3104 while (tail != NULL)
3105 {
3106 asection *curr;
3107 asection *prev;
3108 bfd_size_type total;
3109
3110 curr = tail;
3111 total = tail->size;
3112 while ((prev = PREV_SEC (curr)) != NULL
3113 && ((total += curr->output_offset - prev->output_offset)
3114 < stub_group_size))
3115 curr = prev;
3116
3117 /* OK, the size from the start of CURR to the end is less
3118 than stub_group_size and thus can be handled by one stub
3119 section. (Or the tail section is itself larger than
3120 stub_group_size, in which case we may be toast.)
3121 We should really be keeping track of the total size of
3122 stubs added here, as stubs contribute to the final output
3123 section size. */
3124 do
3125 {
3126 prev = PREV_SEC (tail);
3127 /* Set up this stub group. */
3128 htab->stub_group[tail->id].link_sec = curr;
3129 }
3130 while (tail != curr && (tail = prev) != NULL);
3131
3132 /* But wait, there's more! Input sections up to stub_group_size
3133 bytes before the stub section can be handled by it too. */
3134 if (!stubs_always_before_branch)
3135 {
3136 total = 0;
3137 while (prev != NULL
3138 && ((total += tail->output_offset - prev->output_offset)
3139 < stub_group_size))
3140 {
3141 tail = prev;
3142 prev = PREV_SEC (tail);
3143 htab->stub_group[tail->id].link_sec = curr;
3144 }
3145 }
3146 tail = prev;
3147 }
3148 }
3149 while (list-- != htab->input_list);
3150
3151 free (htab->input_list);
3152 }
3153
3154 #undef PREV_SEC
3155
3156 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3157
3158 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3159 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3160 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3161 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3162 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3163 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3164
3165 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3166 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3167 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3168 #define AARCH64_ZR 0x1f
3169
3170 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3171 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3172
3173 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3174 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3175 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3176 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3177 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3178 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3179 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3180 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3181 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3182 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3183 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3184 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3185 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3186 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3187 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3188 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3189 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3190 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3191
3192 /* Classify an INSN if it is indeed a load/store.
3193
3194 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3195
3196 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3197 is set equal to RT.
3198
3199 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned.
3200
3201 */
3202
3203 static bfd_boolean
3204 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3205 bfd_boolean *pair, bfd_boolean *load)
3206 {
3207 uint32_t opcode;
3208 unsigned int r;
3209 uint32_t opc = 0;
3210 uint32_t v = 0;
3211 uint32_t opc_v = 0;
3212
3213 /* Bail out quickly if INSN doesn't fall into the the load-store
3214 encoding space. */
3215 if (!AARCH64_LDST (insn))
3216 return FALSE;
3217
3218 *pair = FALSE;
3219 *load = FALSE;
3220 if (AARCH64_LDST_EX (insn))
3221 {
3222 *rt = AARCH64_RT (insn);
3223 *rt2 = *rt;
3224 if (AARCH64_BIT (insn, 21) == 1)
3225 {
3226 *pair = TRUE;
3227 *rt2 = AARCH64_RT2 (insn);
3228 }
3229 *load = AARCH64_LD (insn);
3230 return TRUE;
3231 }
3232 else if (AARCH64_LDST_NAP (insn)
3233 || AARCH64_LDSTP_PI (insn)
3234 || AARCH64_LDSTP_O (insn)
3235 || AARCH64_LDSTP_PRE (insn))
3236 {
3237 *pair = TRUE;
3238 *rt = AARCH64_RT (insn);
3239 *rt2 = AARCH64_RT2 (insn);
3240 *load = AARCH64_LD (insn);
3241 return TRUE;
3242 }
3243 else if (AARCH64_LDST_PCREL (insn)
3244 || AARCH64_LDST_UI (insn)
3245 || AARCH64_LDST_PIIMM (insn)
3246 || AARCH64_LDST_U (insn)
3247 || AARCH64_LDST_PREIMM (insn)
3248 || AARCH64_LDST_RO (insn)
3249 || AARCH64_LDST_UIMM (insn))
3250 {
3251 *rt = AARCH64_RT (insn);
3252 *rt2 = *rt;
3253 if (AARCH64_LDST_PCREL (insn))
3254 *load = TRUE;
3255 opc = AARCH64_BITS (insn, 22, 2);
3256 v = AARCH64_BIT (insn, 26);
3257 opc_v = opc | (v << 2);
3258 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3259 || opc_v == 5 || opc_v == 7);
3260 return TRUE;
3261 }
3262 else if (AARCH64_LDST_SIMD_M (insn)
3263 || AARCH64_LDST_SIMD_M_PI (insn))
3264 {
3265 *rt = AARCH64_RT (insn);
3266 *load = AARCH64_BIT (insn, 22);
3267 opcode = (insn >> 12) & 0xf;
3268 switch (opcode)
3269 {
3270 case 0:
3271 case 2:
3272 *rt2 = *rt + 3;
3273 break;
3274
3275 case 4:
3276 case 6:
3277 *rt2 = *rt + 2;
3278 break;
3279
3280 case 7:
3281 *rt2 = *rt;
3282 break;
3283
3284 case 8:
3285 case 10:
3286 *rt2 = *rt + 1;
3287 break;
3288
3289 default:
3290 return FALSE;
3291 }
3292 return TRUE;
3293 }
3294 else if (AARCH64_LDST_SIMD_S (insn)
3295 || AARCH64_LDST_SIMD_S_PI (insn))
3296 {
3297 *rt = AARCH64_RT (insn);
3298 r = (insn >> 21) & 1;
3299 *load = AARCH64_BIT (insn, 22);
3300 opcode = (insn >> 13) & 0x7;
3301 switch (opcode)
3302 {
3303 case 0:
3304 case 2:
3305 case 4:
3306 *rt2 = *rt + r;
3307 break;
3308
3309 case 1:
3310 case 3:
3311 case 5:
3312 *rt2 = *rt + (r == 0 ? 2 : 3);
3313 break;
3314
3315 case 6:
3316 *rt2 = *rt + r;
3317 break;
3318
3319 case 7:
3320 *rt2 = *rt + (r == 0 ? 2 : 3);
3321 break;
3322
3323 default:
3324 return FALSE;
3325 }
3326 return TRUE;
3327 }
3328
3329 return FALSE;
3330 }
3331
3332 /* Return TRUE if INSN is multiply-accumulate. */
3333
3334 static bfd_boolean
3335 aarch64_mlxl_p (uint32_t insn)
3336 {
3337 uint32_t op31 = AARCH64_OP31 (insn);
3338
3339 if (AARCH64_MAC (insn)
3340 && (op31 == 0 || op31 == 1 || op31 == 5)
3341 /* Exclude MUL instructions which are encoded as a multiple accumulate
3342 with RA = XZR. */
3343 && AARCH64_RA (insn) != AARCH64_ZR)
3344 return TRUE;
3345
3346 return FALSE;
3347 }
3348
3349 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3350 it is possible for a 64-bit multiply-accumulate instruction to generate an
3351 incorrect result. The details are quite complex and hard to
3352 determine statically, since branches in the code may exist in some
3353 circumstances, but all cases end with a memory (load, store, or
3354 prefetch) instruction followed immediately by the multiply-accumulate
3355 operation. We employ a linker patching technique, by moving the potentially
3356 affected multiply-accumulate instruction into a patch region and replacing
3357 the original instruction with a branch to the patch. This function checks
3358 if INSN_1 is the memory operation followed by a multiply-accumulate
3359 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3360 if INSN_1 and INSN_2 are safe. */
3361
3362 static bfd_boolean
3363 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3364 {
3365 uint32_t rt;
3366 uint32_t rt2;
3367 uint32_t rn;
3368 uint32_t rm;
3369 uint32_t ra;
3370 bfd_boolean pair;
3371 bfd_boolean load;
3372
3373 if (aarch64_mlxl_p (insn_2)
3374 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3375 {
3376 /* Any SIMD memory op is independent of the subsequent MLA
3377 by definition of the erratum. */
3378 if (AARCH64_BIT (insn_1, 26))
3379 return TRUE;
3380
3381 /* If not SIMD, check for integer memory ops and MLA relationship. */
3382 rn = AARCH64_RN (insn_2);
3383 ra = AARCH64_RA (insn_2);
3384 rm = AARCH64_RM (insn_2);
3385
3386 /* If this is a load and there's a true(RAW) dependency, we are safe
3387 and this is not an erratum sequence. */
3388 if (load &&
3389 (rt == rn || rt == rm || rt == ra
3390 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3391 return FALSE;
3392
3393 /* We conservatively put out stubs for all other cases (including
3394 writebacks). */
3395 return TRUE;
3396 }
3397
3398 return FALSE;
3399 }
3400
3401 /* Used to order a list of mapping symbols by address. */
3402
3403 static int
3404 elf_aarch64_compare_mapping (const void *a, const void *b)
3405 {
3406 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3407 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3408
3409 if (amap->vma > bmap->vma)
3410 return 1;
3411 else if (amap->vma < bmap->vma)
3412 return -1;
3413 else if (amap->type > bmap->type)
3414 /* Ensure results do not depend on the host qsort for objects with
3415 multiple mapping symbols at the same address by sorting on type
3416 after vma. */
3417 return 1;
3418 else if (amap->type < bmap->type)
3419 return -1;
3420 else
3421 return 0;
3422 }
3423
3424
3425 static char *
3426 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3427 {
3428 char *stub_name = (char *) bfd_malloc
3429 (strlen ("__erratum_835769_veneer_") + 16);
3430 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3431 return stub_name;
3432 }
3433
3434 /* Scan for Cortex-A53 erratum 835769 sequence.
3435
3436 Return TRUE else FALSE on abnormal termination. */
3437
3438 static bfd_boolean
3439 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3440 struct bfd_link_info *info,
3441 unsigned int *num_fixes_p)
3442 {
3443 asection *section;
3444 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3445 unsigned int num_fixes = *num_fixes_p;
3446
3447 if (htab == NULL)
3448 return TRUE;
3449
3450 for (section = input_bfd->sections;
3451 section != NULL;
3452 section = section->next)
3453 {
3454 bfd_byte *contents = NULL;
3455 struct _aarch64_elf_section_data *sec_data;
3456 unsigned int span;
3457
3458 if (elf_section_type (section) != SHT_PROGBITS
3459 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3460 || (section->flags & SEC_EXCLUDE) != 0
3461 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3462 || (section->output_section == bfd_abs_section_ptr))
3463 continue;
3464
3465 if (elf_section_data (section)->this_hdr.contents != NULL)
3466 contents = elf_section_data (section)->this_hdr.contents;
3467 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3468 return FALSE;
3469
3470 sec_data = elf_aarch64_section_data (section);
3471
3472 qsort (sec_data->map, sec_data->mapcount,
3473 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3474
3475 for (span = 0; span < sec_data->mapcount; span++)
3476 {
3477 unsigned int span_start = sec_data->map[span].vma;
3478 unsigned int span_end = ((span == sec_data->mapcount - 1)
3479 ? sec_data->map[0].vma + section->size
3480 : sec_data->map[span + 1].vma);
3481 unsigned int i;
3482 char span_type = sec_data->map[span].type;
3483
3484 if (span_type == 'd')
3485 continue;
3486
3487 for (i = span_start; i + 4 < span_end; i += 4)
3488 {
3489 uint32_t insn_1 = bfd_getl32 (contents + i);
3490 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3491
3492 if (aarch64_erratum_sequence (insn_1, insn_2))
3493 {
3494 struct elf_aarch64_stub_hash_entry *stub_entry;
3495 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3496 if (! stub_name)
3497 return FALSE;
3498
3499 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3500 section,
3501 htab);
3502 if (! stub_entry)
3503 return FALSE;
3504
3505 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3506 stub_entry->target_section = section;
3507 stub_entry->target_value = i + 4;
3508 stub_entry->veneered_insn = insn_2;
3509 stub_entry->output_name = stub_name;
3510 num_fixes++;
3511 }
3512 }
3513 }
3514 if (elf_section_data (section)->this_hdr.contents == NULL)
3515 free (contents);
3516 }
3517
3518 *num_fixes_p = num_fixes;
3519
3520 return TRUE;
3521 }
3522
3523
3524 /* Test if instruction INSN is ADRP. */
3525
3526 static bfd_boolean
3527 _bfd_aarch64_adrp_p (uint32_t insn)
3528 {
3529 return ((insn & 0x9f000000) == 0x90000000);
3530 }
3531
3532
3533 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3534
3535 static bfd_boolean
3536 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3537 uint32_t insn_3)
3538 {
3539 uint32_t rt;
3540 uint32_t rt2;
3541 bfd_boolean pair;
3542 bfd_boolean load;
3543
3544 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3545 && (!pair
3546 || (pair && !load))
3547 && AARCH64_LDST_UIMM (insn_3)
3548 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3549 }
3550
3551
3552 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3553
3554 Return TRUE if section CONTENTS at offset I contains one of the
3555 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3556 seen set P_VENEER_I to the offset of the final LOAD/STORE
3557 instruction in the sequence.
3558 */
3559
3560 static bfd_boolean
3561 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3562 bfd_vma i, bfd_vma span_end,
3563 bfd_vma *p_veneer_i)
3564 {
3565 uint32_t insn_1 = bfd_getl32 (contents + i);
3566
3567 if (!_bfd_aarch64_adrp_p (insn_1))
3568 return FALSE;
3569
3570 if (span_end < i + 12)
3571 return FALSE;
3572
3573 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3574 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3575
3576 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3577 return FALSE;
3578
3579 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3580 {
3581 *p_veneer_i = i + 8;
3582 return TRUE;
3583 }
3584
3585 if (span_end < i + 16)
3586 return FALSE;
3587
3588 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3589
3590 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3591 {
3592 *p_veneer_i = i + 12;
3593 return TRUE;
3594 }
3595
3596 return FALSE;
3597 }
3598
3599
3600 /* Resize all stub sections. */
3601
3602 static void
3603 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3604 {
3605 asection *section;
3606
3607 /* OK, we've added some stubs. Find out the new size of the
3608 stub sections. */
3609 for (section = htab->stub_bfd->sections;
3610 section != NULL; section = section->next)
3611 {
3612 /* Ignore non-stub sections. */
3613 if (!strstr (section->name, STUB_SUFFIX))
3614 continue;
3615 section->size = 0;
3616 }
3617
3618 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
3619
3620 for (section = htab->stub_bfd->sections;
3621 section != NULL; section = section->next)
3622 {
3623 if (!strstr (section->name, STUB_SUFFIX))
3624 continue;
3625
3626 if (section->size)
3627 section->size += 4;
3628
3629 /* Ensure all stub sections have a size which is a multiple of
3630 4096. This is important in order to ensure that the insertion
3631 of stub sections does not in itself move existing code around
3632 in such a way that new errata sequences are created. */
3633 if (htab->fix_erratum_843419)
3634 if (section->size)
3635 section->size = BFD_ALIGN (section->size, 0x1000);
3636 }
3637 }
3638
3639
3640 /* Construct an erratum 843419 workaround stub name.
3641 */
3642
3643 static char *
3644 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3645 bfd_vma offset)
3646 {
3647 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3648 char *stub_name = bfd_malloc (len);
3649
3650 if (stub_name != NULL)
3651 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3652 input_section->owner->id,
3653 input_section->id,
3654 offset);
3655 return stub_name;
3656 }
3657
3658 /* Build a stub_entry structure describing an 843419 fixup.
3659
3660 The stub_entry constructed is populated with the bit pattern INSN
3661 of the instruction located at OFFSET within input SECTION.
3662
3663 Returns TRUE on success. */
3664
3665 static bfd_boolean
3666 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3667 bfd_vma adrp_offset,
3668 bfd_vma ldst_offset,
3669 asection *section,
3670 struct bfd_link_info *info)
3671 {
3672 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3673 char *stub_name;
3674 struct elf_aarch64_stub_hash_entry *stub_entry;
3675
3676 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3677 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3678 FALSE, FALSE);
3679 if (stub_entry)
3680 {
3681 free (stub_name);
3682 return TRUE;
3683 }
3684
3685 /* We always place an 843419 workaround veneer in the stub section
3686 attached to the input section in which an erratum sequence has
3687 been found. This ensures that later in the link process (in
3688 elfNN_aarch64_write_section) when we copy the veneered
3689 instruction from the input section into the stub section the
3690 copied instruction will have had any relocations applied to it.
3691 If we placed workaround veneers in any other stub section then we
3692 could not assume that all relocations have been processed on the
3693 corresponding input section at the point we output the stub
3694 section.
3695 */
3696
3697 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
3698 if (stub_entry == NULL)
3699 {
3700 free (stub_name);
3701 return FALSE;
3702 }
3703
3704 stub_entry->adrp_offset = adrp_offset;
3705 stub_entry->target_value = ldst_offset;
3706 stub_entry->target_section = section;
3707 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
3708 stub_entry->veneered_insn = insn;
3709 stub_entry->output_name = stub_name;
3710
3711 return TRUE;
3712 }
3713
3714
3715 /* Scan an input section looking for the signature of erratum 843419.
3716
3717 Scans input SECTION in INPUT_BFD looking for erratum 843419
3718 signatures, for each signature found a stub_entry is created
3719 describing the location of the erratum for subsequent fixup.
3720
3721 Return TRUE on successful scan, FALSE on failure to scan.
3722 */
3723
3724 static bfd_boolean
3725 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
3726 struct bfd_link_info *info)
3727 {
3728 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3729
3730 if (htab == NULL)
3731 return TRUE;
3732
3733 if (elf_section_type (section) != SHT_PROGBITS
3734 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3735 || (section->flags & SEC_EXCLUDE) != 0
3736 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3737 || (section->output_section == bfd_abs_section_ptr))
3738 return TRUE;
3739
3740 do
3741 {
3742 bfd_byte *contents = NULL;
3743 struct _aarch64_elf_section_data *sec_data;
3744 unsigned int span;
3745
3746 if (elf_section_data (section)->this_hdr.contents != NULL)
3747 contents = elf_section_data (section)->this_hdr.contents;
3748 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3749 return FALSE;
3750
3751 sec_data = elf_aarch64_section_data (section);
3752
3753 qsort (sec_data->map, sec_data->mapcount,
3754 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3755
3756 for (span = 0; span < sec_data->mapcount; span++)
3757 {
3758 unsigned int span_start = sec_data->map[span].vma;
3759 unsigned int span_end = ((span == sec_data->mapcount - 1)
3760 ? sec_data->map[0].vma + section->size
3761 : sec_data->map[span + 1].vma);
3762 unsigned int i;
3763 char span_type = sec_data->map[span].type;
3764
3765 if (span_type == 'd')
3766 continue;
3767
3768 for (i = span_start; i + 8 < span_end; i += 4)
3769 {
3770 bfd_vma vma = (section->output_section->vma
3771 + section->output_offset
3772 + i);
3773 bfd_vma veneer_i;
3774
3775 if (_bfd_aarch64_erratum_843419_p
3776 (contents, vma, i, span_end, &veneer_i))
3777 {
3778 uint32_t insn = bfd_getl32 (contents + veneer_i);
3779
3780 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
3781 section, info))
3782 return FALSE;
3783 }
3784 }
3785 }
3786
3787 if (elf_section_data (section)->this_hdr.contents == NULL)
3788 free (contents);
3789 }
3790 while (0);
3791
3792 return TRUE;
3793 }
3794
3795
3796 /* Determine and set the size of the stub section for a final link.
3797
3798 The basic idea here is to examine all the relocations looking for
3799 PC-relative calls to a target that is unreachable with a "bl"
3800 instruction. */
3801
3802 bfd_boolean
3803 elfNN_aarch64_size_stubs (bfd *output_bfd,
3804 bfd *stub_bfd,
3805 struct bfd_link_info *info,
3806 bfd_signed_vma group_size,
3807 asection * (*add_stub_section) (const char *,
3808 asection *),
3809 void (*layout_sections_again) (void))
3810 {
3811 bfd_size_type stub_group_size;
3812 bfd_boolean stubs_always_before_branch;
3813 bfd_boolean stub_changed = FALSE;
3814 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3815 unsigned int num_erratum_835769_fixes = 0;
3816
3817 /* Propagate mach to stub bfd, because it may not have been
3818 finalized when we created stub_bfd. */
3819 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3820 bfd_get_mach (output_bfd));
3821
3822 /* Stash our params away. */
3823 htab->stub_bfd = stub_bfd;
3824 htab->add_stub_section = add_stub_section;
3825 htab->layout_sections_again = layout_sections_again;
3826 stubs_always_before_branch = group_size < 0;
3827 if (group_size < 0)
3828 stub_group_size = -group_size;
3829 else
3830 stub_group_size = group_size;
3831
3832 if (stub_group_size == 1)
3833 {
3834 /* Default values. */
3835 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
3836 stub_group_size = 127 * 1024 * 1024;
3837 }
3838
3839 group_sections (htab, stub_group_size, stubs_always_before_branch);
3840
3841 (*htab->layout_sections_again) ();
3842
3843 if (htab->fix_erratum_835769)
3844 {
3845 bfd *input_bfd;
3846
3847 for (input_bfd = info->input_bfds;
3848 input_bfd != NULL; input_bfd = input_bfd->link.next)
3849 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
3850 &num_erratum_835769_fixes))
3851 return FALSE;
3852
3853 _bfd_aarch64_resize_stubs (htab);
3854 (*htab->layout_sections_again) ();
3855 }
3856
3857 if (htab->fix_erratum_843419)
3858 {
3859 bfd *input_bfd;
3860
3861 for (input_bfd = info->input_bfds;
3862 input_bfd != NULL;
3863 input_bfd = input_bfd->link.next)
3864 {
3865 asection *section;
3866
3867 for (section = input_bfd->sections;
3868 section != NULL;
3869 section = section->next)
3870 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
3871 return FALSE;
3872 }
3873
3874 _bfd_aarch64_resize_stubs (htab);
3875 (*htab->layout_sections_again) ();
3876 }
3877
3878 while (1)
3879 {
3880 bfd *input_bfd;
3881
3882 for (input_bfd = info->input_bfds;
3883 input_bfd != NULL; input_bfd = input_bfd->link.next)
3884 {
3885 Elf_Internal_Shdr *symtab_hdr;
3886 asection *section;
3887 Elf_Internal_Sym *local_syms = NULL;
3888
3889 /* We'll need the symbol table in a second. */
3890 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3891 if (symtab_hdr->sh_info == 0)
3892 continue;
3893
3894 /* Walk over each section attached to the input bfd. */
3895 for (section = input_bfd->sections;
3896 section != NULL; section = section->next)
3897 {
3898 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3899
3900 /* If there aren't any relocs, then there's nothing more
3901 to do. */
3902 if ((section->flags & SEC_RELOC) == 0
3903 || section->reloc_count == 0
3904 || (section->flags & SEC_CODE) == 0)
3905 continue;
3906
3907 /* If this section is a link-once section that will be
3908 discarded, then don't create any stubs. */
3909 if (section->output_section == NULL
3910 || section->output_section->owner != output_bfd)
3911 continue;
3912
3913 /* Get the relocs. */
3914 internal_relocs
3915 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3916 NULL, info->keep_memory);
3917 if (internal_relocs == NULL)
3918 goto error_ret_free_local;
3919
3920 /* Now examine each relocation. */
3921 irela = internal_relocs;
3922 irelaend = irela + section->reloc_count;
3923 for (; irela < irelaend; irela++)
3924 {
3925 unsigned int r_type, r_indx;
3926 enum elf_aarch64_stub_type stub_type;
3927 struct elf_aarch64_stub_hash_entry *stub_entry;
3928 asection *sym_sec;
3929 bfd_vma sym_value;
3930 bfd_vma destination;
3931 struct elf_aarch64_link_hash_entry *hash;
3932 const char *sym_name;
3933 char *stub_name;
3934 const asection *id_sec;
3935 unsigned char st_type;
3936 bfd_size_type len;
3937
3938 r_type = ELFNN_R_TYPE (irela->r_info);
3939 r_indx = ELFNN_R_SYM (irela->r_info);
3940
3941 if (r_type >= (unsigned int) R_AARCH64_end)
3942 {
3943 bfd_set_error (bfd_error_bad_value);
3944 error_ret_free_internal:
3945 if (elf_section_data (section)->relocs == NULL)
3946 free (internal_relocs);
3947 goto error_ret_free_local;
3948 }
3949
3950 /* Only look for stubs on unconditional branch and
3951 branch and link instructions. */
3952 if (r_type != (unsigned int) AARCH64_R (CALL26)
3953 && r_type != (unsigned int) AARCH64_R (JUMP26))
3954 continue;
3955
3956 /* Now determine the call target, its name, value,
3957 section. */
3958 sym_sec = NULL;
3959 sym_value = 0;
3960 destination = 0;
3961 hash = NULL;
3962 sym_name = NULL;
3963 if (r_indx < symtab_hdr->sh_info)
3964 {
3965 /* It's a local symbol. */
3966 Elf_Internal_Sym *sym;
3967 Elf_Internal_Shdr *hdr;
3968
3969 if (local_syms == NULL)
3970 {
3971 local_syms
3972 = (Elf_Internal_Sym *) symtab_hdr->contents;
3973 if (local_syms == NULL)
3974 local_syms
3975 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3976 symtab_hdr->sh_info, 0,
3977 NULL, NULL, NULL);
3978 if (local_syms == NULL)
3979 goto error_ret_free_internal;
3980 }
3981
3982 sym = local_syms + r_indx;
3983 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3984 sym_sec = hdr->bfd_section;
3985 if (!sym_sec)
3986 /* This is an undefined symbol. It can never
3987 be resolved. */
3988 continue;
3989
3990 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3991 sym_value = sym->st_value;
3992 destination = (sym_value + irela->r_addend
3993 + sym_sec->output_offset
3994 + sym_sec->output_section->vma);
3995 st_type = ELF_ST_TYPE (sym->st_info);
3996 sym_name
3997 = bfd_elf_string_from_elf_section (input_bfd,
3998 symtab_hdr->sh_link,
3999 sym->st_name);
4000 }
4001 else
4002 {
4003 int e_indx;
4004
4005 e_indx = r_indx - symtab_hdr->sh_info;
4006 hash = ((struct elf_aarch64_link_hash_entry *)
4007 elf_sym_hashes (input_bfd)[e_indx]);
4008
4009 while (hash->root.root.type == bfd_link_hash_indirect
4010 || hash->root.root.type == bfd_link_hash_warning)
4011 hash = ((struct elf_aarch64_link_hash_entry *)
4012 hash->root.root.u.i.link);
4013
4014 if (hash->root.root.type == bfd_link_hash_defined
4015 || hash->root.root.type == bfd_link_hash_defweak)
4016 {
4017 struct elf_aarch64_link_hash_table *globals =
4018 elf_aarch64_hash_table (info);
4019 sym_sec = hash->root.root.u.def.section;
4020 sym_value = hash->root.root.u.def.value;
4021 /* For a destination in a shared library,
4022 use the PLT stub as target address to
4023 decide whether a branch stub is
4024 needed. */
4025 if (globals->root.splt != NULL && hash != NULL
4026 && hash->root.plt.offset != (bfd_vma) - 1)
4027 {
4028 sym_sec = globals->root.splt;
4029 sym_value = hash->root.plt.offset;
4030 if (sym_sec->output_section != NULL)
4031 destination = (sym_value
4032 + sym_sec->output_offset
4033 +
4034 sym_sec->output_section->vma);
4035 }
4036 else if (sym_sec->output_section != NULL)
4037 destination = (sym_value + irela->r_addend
4038 + sym_sec->output_offset
4039 + sym_sec->output_section->vma);
4040 }
4041 else if (hash->root.root.type == bfd_link_hash_undefined
4042 || (hash->root.root.type
4043 == bfd_link_hash_undefweak))
4044 {
4045 /* For a shared library, use the PLT stub as
4046 target address to decide whether a long
4047 branch stub is needed.
4048 For absolute code, they cannot be handled. */
4049 struct elf_aarch64_link_hash_table *globals =
4050 elf_aarch64_hash_table (info);
4051
4052 if (globals->root.splt != NULL && hash != NULL
4053 && hash->root.plt.offset != (bfd_vma) - 1)
4054 {
4055 sym_sec = globals->root.splt;
4056 sym_value = hash->root.plt.offset;
4057 if (sym_sec->output_section != NULL)
4058 destination = (sym_value
4059 + sym_sec->output_offset
4060 +
4061 sym_sec->output_section->vma);
4062 }
4063 else
4064 continue;
4065 }
4066 else
4067 {
4068 bfd_set_error (bfd_error_bad_value);
4069 goto error_ret_free_internal;
4070 }
4071 st_type = ELF_ST_TYPE (hash->root.type);
4072 sym_name = hash->root.root.root.string;
4073 }
4074
4075 /* Determine what (if any) linker stub is needed. */
4076 stub_type = aarch64_type_of_stub
4077 (info, section, irela, sym_sec, st_type, hash, destination);
4078 if (stub_type == aarch64_stub_none)
4079 continue;
4080
4081 /* Support for grouping stub sections. */
4082 id_sec = htab->stub_group[section->id].link_sec;
4083
4084 /* Get the name of this stub. */
4085 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4086 irela);
4087 if (!stub_name)
4088 goto error_ret_free_internal;
4089
4090 stub_entry =
4091 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4092 stub_name, FALSE, FALSE);
4093 if (stub_entry != NULL)
4094 {
4095 /* The proper stub has already been created. */
4096 free (stub_name);
4097 continue;
4098 }
4099
4100 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4101 (stub_name, section, htab);
4102 if (stub_entry == NULL)
4103 {
4104 free (stub_name);
4105 goto error_ret_free_internal;
4106 }
4107
4108 stub_entry->target_value = sym_value;
4109 stub_entry->target_section = sym_sec;
4110 stub_entry->stub_type = stub_type;
4111 stub_entry->h = hash;
4112 stub_entry->st_type = st_type;
4113
4114 if (sym_name == NULL)
4115 sym_name = "unnamed";
4116 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4117 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4118 if (stub_entry->output_name == NULL)
4119 {
4120 free (stub_name);
4121 goto error_ret_free_internal;
4122 }
4123
4124 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4125 sym_name);
4126
4127 stub_changed = TRUE;
4128 }
4129
4130 /* We're done with the internal relocs, free them. */
4131 if (elf_section_data (section)->relocs == NULL)
4132 free (internal_relocs);
4133 }
4134 }
4135
4136 if (!stub_changed)
4137 break;
4138
4139 _bfd_aarch64_resize_stubs (htab);
4140
4141 /* Ask the linker to do its stuff. */
4142 (*htab->layout_sections_again) ();
4143 stub_changed = FALSE;
4144 }
4145
4146 return TRUE;
4147
4148 error_ret_free_local:
4149 return FALSE;
4150 }
4151
4152 /* Build all the stubs associated with the current output file. The
4153 stubs are kept in a hash table attached to the main linker hash
4154 table. We also set up the .plt entries for statically linked PIC
4155 functions here. This function is called via aarch64_elf_finish in the
4156 linker. */
4157
4158 bfd_boolean
4159 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4160 {
4161 asection *stub_sec;
4162 struct bfd_hash_table *table;
4163 struct elf_aarch64_link_hash_table *htab;
4164
4165 htab = elf_aarch64_hash_table (info);
4166
4167 for (stub_sec = htab->stub_bfd->sections;
4168 stub_sec != NULL; stub_sec = stub_sec->next)
4169 {
4170 bfd_size_type size;
4171
4172 /* Ignore non-stub sections. */
4173 if (!strstr (stub_sec->name, STUB_SUFFIX))
4174 continue;
4175
4176 /* Allocate memory to hold the linker stubs. */
4177 size = stub_sec->size;
4178 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4179 if (stub_sec->contents == NULL && size != 0)
4180 return FALSE;
4181 stub_sec->size = 0;
4182
4183 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4184 stub_sec->size += 4;
4185 }
4186
4187 /* Build the stubs as directed by the stub hash table. */
4188 table = &htab->stub_hash_table;
4189 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4190
4191 return TRUE;
4192 }
4193
4194
4195 /* Add an entry to the code/data map for section SEC. */
4196
4197 static void
4198 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4199 {
4200 struct _aarch64_elf_section_data *sec_data =
4201 elf_aarch64_section_data (sec);
4202 unsigned int newidx;
4203
4204 if (sec_data->map == NULL)
4205 {
4206 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4207 sec_data->mapcount = 0;
4208 sec_data->mapsize = 1;
4209 }
4210
4211 newidx = sec_data->mapcount++;
4212
4213 if (sec_data->mapcount > sec_data->mapsize)
4214 {
4215 sec_data->mapsize *= 2;
4216 sec_data->map = bfd_realloc_or_free
4217 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4218 }
4219
4220 if (sec_data->map)
4221 {
4222 sec_data->map[newidx].vma = vma;
4223 sec_data->map[newidx].type = type;
4224 }
4225 }
4226
4227
4228 /* Initialise maps of insn/data for input BFDs. */
4229 void
4230 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4231 {
4232 Elf_Internal_Sym *isymbuf;
4233 Elf_Internal_Shdr *hdr;
4234 unsigned int i, localsyms;
4235
4236 /* Make sure that we are dealing with an AArch64 elf binary. */
4237 if (!is_aarch64_elf (abfd))
4238 return;
4239
4240 if ((abfd->flags & DYNAMIC) != 0)
4241 return;
4242
4243 hdr = &elf_symtab_hdr (abfd);
4244 localsyms = hdr->sh_info;
4245
4246 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4247 should contain the number of local symbols, which should come before any
4248 global symbols. Mapping symbols are always local. */
4249 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4250
4251 /* No internal symbols read? Skip this BFD. */
4252 if (isymbuf == NULL)
4253 return;
4254
4255 for (i = 0; i < localsyms; i++)
4256 {
4257 Elf_Internal_Sym *isym = &isymbuf[i];
4258 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4259 const char *name;
4260
4261 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4262 {
4263 name = bfd_elf_string_from_elf_section (abfd,
4264 hdr->sh_link,
4265 isym->st_name);
4266
4267 if (bfd_is_aarch64_special_symbol_name
4268 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4269 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4270 }
4271 }
4272 }
4273
4274 /* Set option values needed during linking. */
4275 void
4276 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4277 struct bfd_link_info *link_info,
4278 int no_enum_warn,
4279 int no_wchar_warn, int pic_veneer,
4280 int fix_erratum_835769,
4281 int fix_erratum_843419)
4282 {
4283 struct elf_aarch64_link_hash_table *globals;
4284
4285 globals = elf_aarch64_hash_table (link_info);
4286 globals->pic_veneer = pic_veneer;
4287 globals->fix_erratum_835769 = fix_erratum_835769;
4288 globals->fix_erratum_843419 = fix_erratum_843419;
4289 globals->fix_erratum_843419_adr = TRUE;
4290
4291 BFD_ASSERT (is_aarch64_elf (output_bfd));
4292 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4293 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4294 }
4295
4296 static bfd_vma
4297 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4298 struct elf_aarch64_link_hash_table
4299 *globals, struct bfd_link_info *info,
4300 bfd_vma value, bfd *output_bfd,
4301 bfd_boolean *unresolved_reloc_p)
4302 {
4303 bfd_vma off = (bfd_vma) - 1;
4304 asection *basegot = globals->root.sgot;
4305 bfd_boolean dyn = globals->root.dynamic_sections_created;
4306
4307 if (h != NULL)
4308 {
4309 BFD_ASSERT (basegot != NULL);
4310 off = h->got.offset;
4311 BFD_ASSERT (off != (bfd_vma) - 1);
4312 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4313 || (bfd_link_pic (info)
4314 && SYMBOL_REFERENCES_LOCAL (info, h))
4315 || (ELF_ST_VISIBILITY (h->other)
4316 && h->root.type == bfd_link_hash_undefweak))
4317 {
4318 /* This is actually a static link, or it is a -Bsymbolic link
4319 and the symbol is defined locally. We must initialize this
4320 entry in the global offset table. Since the offset must
4321 always be a multiple of 8 (4 in the case of ILP32), we use
4322 the least significant bit to record whether we have
4323 initialized it already.
4324 When doing a dynamic link, we create a .rel(a).got relocation
4325 entry to initialize the value. This is done in the
4326 finish_dynamic_symbol routine. */
4327 if ((off & 1) != 0)
4328 off &= ~1;
4329 else
4330 {
4331 bfd_put_NN (output_bfd, value, basegot->contents + off);
4332 h->got.offset |= 1;
4333 }
4334 }
4335 else
4336 *unresolved_reloc_p = FALSE;
4337
4338 off = off + basegot->output_section->vma + basegot->output_offset;
4339 }
4340
4341 return off;
4342 }
4343
4344 /* Change R_TYPE to a more efficient access model where possible,
4345 return the new reloc type. */
4346
4347 static bfd_reloc_code_real_type
4348 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4349 struct elf_link_hash_entry *h)
4350 {
4351 bfd_boolean is_local = h == NULL;
4352
4353 switch (r_type)
4354 {
4355 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4356 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4357 return (is_local
4358 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4359 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4360
4361 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4362 return (is_local
4363 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4364 : r_type);
4365
4366 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4367 return (is_local
4368 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4369 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4370
4371 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4372 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4373 return (is_local
4374 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4375 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4376
4377 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4378 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4379
4380 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4381 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4382
4383 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4384 return r_type;
4385
4386 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4387 return (is_local
4388 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4389 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4390
4391 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4392 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4393 /* Instructions with these relocations will become NOPs. */
4394 return BFD_RELOC_AARCH64_NONE;
4395
4396 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4397 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4398 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4399 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4400
4401 default:
4402 break;
4403 }
4404
4405 return r_type;
4406 }
4407
4408 static unsigned int
4409 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4410 {
4411 switch (r_type)
4412 {
4413 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4414 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4415 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4416 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4417 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4418 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4419 return GOT_NORMAL;
4420
4421 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4422 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4423 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4424 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4425 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4426 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4427 return GOT_TLS_GD;
4428
4429 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4430 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4431 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4432 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4433 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4434 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
4435 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4436 return GOT_TLSDESC_GD;
4437
4438 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4439 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4440 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4441 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4442 return GOT_TLS_IE;
4443
4444 default:
4445 break;
4446 }
4447 return GOT_UNKNOWN;
4448 }
4449
4450 static bfd_boolean
4451 aarch64_can_relax_tls (bfd *input_bfd,
4452 struct bfd_link_info *info,
4453 bfd_reloc_code_real_type r_type,
4454 struct elf_link_hash_entry *h,
4455 unsigned long r_symndx)
4456 {
4457 unsigned int symbol_got_type;
4458 unsigned int reloc_got_type;
4459
4460 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
4461 return FALSE;
4462
4463 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
4464 reloc_got_type = aarch64_reloc_got_type (r_type);
4465
4466 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4467 return TRUE;
4468
4469 if (bfd_link_pic (info))
4470 return FALSE;
4471
4472 if (h && h->root.type == bfd_link_hash_undefweak)
4473 return FALSE;
4474
4475 return TRUE;
4476 }
4477
4478 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
4479 enumerator. */
4480
4481 static bfd_reloc_code_real_type
4482 aarch64_tls_transition (bfd *input_bfd,
4483 struct bfd_link_info *info,
4484 unsigned int r_type,
4485 struct elf_link_hash_entry *h,
4486 unsigned long r_symndx)
4487 {
4488 bfd_reloc_code_real_type bfd_r_type
4489 = elfNN_aarch64_bfd_reloc_from_type (r_type);
4490
4491 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4492 return bfd_r_type;
4493
4494 return aarch64_tls_transition_without_check (bfd_r_type, h);
4495 }
4496
4497 /* Return the base VMA address which should be subtracted from real addresses
4498 when resolving R_AARCH64_TLS_DTPREL relocation. */
4499
4500 static bfd_vma
4501 dtpoff_base (struct bfd_link_info *info)
4502 {
4503 /* If tls_sec is NULL, we should have signalled an error already. */
4504 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4505 return elf_hash_table (info)->tls_sec->vma;
4506 }
4507
4508 /* Return the base VMA address which should be subtracted from real addresses
4509 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4510
4511 static bfd_vma
4512 tpoff_base (struct bfd_link_info *info)
4513 {
4514 struct elf_link_hash_table *htab = elf_hash_table (info);
4515
4516 /* If tls_sec is NULL, we should have signalled an error already. */
4517 BFD_ASSERT (htab->tls_sec != NULL);
4518
4519 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4520 htab->tls_sec->alignment_power);
4521 return htab->tls_sec->vma - base;
4522 }
4523
4524 static bfd_vma *
4525 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4526 unsigned long r_symndx)
4527 {
4528 /* Calculate the address of the GOT entry for symbol
4529 referred to in h. */
4530 if (h != NULL)
4531 return &h->got.offset;
4532 else
4533 {
4534 /* local symbol */
4535 struct elf_aarch64_local_symbol *l;
4536
4537 l = elf_aarch64_locals (input_bfd);
4538 return &l[r_symndx].got_offset;
4539 }
4540 }
4541
4542 static void
4543 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4544 unsigned long r_symndx)
4545 {
4546 bfd_vma *p;
4547 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4548 *p |= 1;
4549 }
4550
4551 static int
4552 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4553 unsigned long r_symndx)
4554 {
4555 bfd_vma value;
4556 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4557 return value & 1;
4558 }
4559
4560 static bfd_vma
4561 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4562 unsigned long r_symndx)
4563 {
4564 bfd_vma value;
4565 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4566 value &= ~1;
4567 return value;
4568 }
4569
4570 static bfd_vma *
4571 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4572 unsigned long r_symndx)
4573 {
4574 /* Calculate the address of the GOT entry for symbol
4575 referred to in h. */
4576 if (h != NULL)
4577 {
4578 struct elf_aarch64_link_hash_entry *eh;
4579 eh = (struct elf_aarch64_link_hash_entry *) h;
4580 return &eh->tlsdesc_got_jump_table_offset;
4581 }
4582 else
4583 {
4584 /* local symbol */
4585 struct elf_aarch64_local_symbol *l;
4586
4587 l = elf_aarch64_locals (input_bfd);
4588 return &l[r_symndx].tlsdesc_got_jump_table_offset;
4589 }
4590 }
4591
4592 static void
4593 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4594 unsigned long r_symndx)
4595 {
4596 bfd_vma *p;
4597 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4598 *p |= 1;
4599 }
4600
4601 static int
4602 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4603 struct elf_link_hash_entry *h,
4604 unsigned long r_symndx)
4605 {
4606 bfd_vma value;
4607 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4608 return value & 1;
4609 }
4610
4611 static bfd_vma
4612 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4613 unsigned long r_symndx)
4614 {
4615 bfd_vma value;
4616 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4617 value &= ~1;
4618 return value;
4619 }
4620
4621 /* Data for make_branch_to_erratum_835769_stub(). */
4622
4623 struct erratum_835769_branch_to_stub_data
4624 {
4625 struct bfd_link_info *info;
4626 asection *output_section;
4627 bfd_byte *contents;
4628 };
4629
4630 /* Helper to insert branches to erratum 835769 stubs in the right
4631 places for a particular section. */
4632
4633 static bfd_boolean
4634 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
4635 void *in_arg)
4636 {
4637 struct elf_aarch64_stub_hash_entry *stub_entry;
4638 struct erratum_835769_branch_to_stub_data *data;
4639 bfd_byte *contents;
4640 unsigned long branch_insn = 0;
4641 bfd_vma veneered_insn_loc, veneer_entry_loc;
4642 bfd_signed_vma branch_offset;
4643 unsigned int target;
4644 bfd *abfd;
4645
4646 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4647 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
4648
4649 if (stub_entry->target_section != data->output_section
4650 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
4651 return TRUE;
4652
4653 contents = data->contents;
4654 veneered_insn_loc = stub_entry->target_section->output_section->vma
4655 + stub_entry->target_section->output_offset
4656 + stub_entry->target_value;
4657 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4658 + stub_entry->stub_sec->output_offset
4659 + stub_entry->stub_offset;
4660 branch_offset = veneer_entry_loc - veneered_insn_loc;
4661
4662 abfd = stub_entry->target_section->owner;
4663 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4664 (*_bfd_error_handler)
4665 (_("%B: error: Erratum 835769 stub out "
4666 "of range (input file too large)"), abfd);
4667
4668 target = stub_entry->target_value;
4669 branch_insn = 0x14000000;
4670 branch_offset >>= 2;
4671 branch_offset &= 0x3ffffff;
4672 branch_insn |= branch_offset;
4673 bfd_putl32 (branch_insn, &contents[target]);
4674
4675 return TRUE;
4676 }
4677
4678
4679 static bfd_boolean
4680 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
4681 void *in_arg)
4682 {
4683 struct elf_aarch64_stub_hash_entry *stub_entry
4684 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4685 struct erratum_835769_branch_to_stub_data *data
4686 = (struct erratum_835769_branch_to_stub_data *) in_arg;
4687 struct bfd_link_info *info;
4688 struct elf_aarch64_link_hash_table *htab;
4689 bfd_byte *contents;
4690 asection *section;
4691 bfd *abfd;
4692 bfd_vma place;
4693 uint32_t insn;
4694
4695 info = data->info;
4696 contents = data->contents;
4697 section = data->output_section;
4698
4699 htab = elf_aarch64_hash_table (info);
4700
4701 if (stub_entry->target_section != section
4702 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
4703 return TRUE;
4704
4705 insn = bfd_getl32 (contents + stub_entry->target_value);
4706 bfd_putl32 (insn,
4707 stub_entry->stub_sec->contents + stub_entry->stub_offset);
4708
4709 place = (section->output_section->vma + section->output_offset
4710 + stub_entry->adrp_offset);
4711 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
4712
4713 if ((insn & AARCH64_ADRP_OP_MASK) != AARCH64_ADRP_OP)
4714 abort ();
4715
4716 bfd_signed_vma imm =
4717 (_bfd_aarch64_sign_extend
4718 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
4719 - (place & 0xfff));
4720
4721 if (htab->fix_erratum_843419_adr
4722 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
4723 {
4724 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
4725 | AARCH64_RT (insn));
4726 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
4727 }
4728 else
4729 {
4730 bfd_vma veneered_insn_loc;
4731 bfd_vma veneer_entry_loc;
4732 bfd_signed_vma branch_offset;
4733 uint32_t branch_insn;
4734
4735 veneered_insn_loc = stub_entry->target_section->output_section->vma
4736 + stub_entry->target_section->output_offset
4737 + stub_entry->target_value;
4738 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4739 + stub_entry->stub_sec->output_offset
4740 + stub_entry->stub_offset;
4741 branch_offset = veneer_entry_loc - veneered_insn_loc;
4742
4743 abfd = stub_entry->target_section->owner;
4744 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4745 (*_bfd_error_handler)
4746 (_("%B: error: Erratum 843419 stub out "
4747 "of range (input file too large)"), abfd);
4748
4749 branch_insn = 0x14000000;
4750 branch_offset >>= 2;
4751 branch_offset &= 0x3ffffff;
4752 branch_insn |= branch_offset;
4753 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
4754 }
4755 return TRUE;
4756 }
4757
4758
4759 static bfd_boolean
4760 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
4761 struct bfd_link_info *link_info,
4762 asection *sec,
4763 bfd_byte *contents)
4764
4765 {
4766 struct elf_aarch64_link_hash_table *globals =
4767 elf_aarch64_hash_table (link_info);
4768
4769 if (globals == NULL)
4770 return FALSE;
4771
4772 /* Fix code to point to erratum 835769 stubs. */
4773 if (globals->fix_erratum_835769)
4774 {
4775 struct erratum_835769_branch_to_stub_data data;
4776
4777 data.info = link_info;
4778 data.output_section = sec;
4779 data.contents = contents;
4780 bfd_hash_traverse (&globals->stub_hash_table,
4781 make_branch_to_erratum_835769_stub, &data);
4782 }
4783
4784 if (globals->fix_erratum_843419)
4785 {
4786 struct erratum_835769_branch_to_stub_data data;
4787
4788 data.info = link_info;
4789 data.output_section = sec;
4790 data.contents = contents;
4791 bfd_hash_traverse (&globals->stub_hash_table,
4792 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
4793 }
4794
4795 return FALSE;
4796 }
4797
4798 /* Perform a relocation as part of a final link. */
4799 static bfd_reloc_status_type
4800 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
4801 bfd *input_bfd,
4802 bfd *output_bfd,
4803 asection *input_section,
4804 bfd_byte *contents,
4805 Elf_Internal_Rela *rel,
4806 bfd_vma value,
4807 struct bfd_link_info *info,
4808 asection *sym_sec,
4809 struct elf_link_hash_entry *h,
4810 bfd_boolean *unresolved_reloc_p,
4811 bfd_boolean save_addend,
4812 bfd_vma *saved_addend,
4813 Elf_Internal_Sym *sym)
4814 {
4815 Elf_Internal_Shdr *symtab_hdr;
4816 unsigned int r_type = howto->type;
4817 bfd_reloc_code_real_type bfd_r_type
4818 = elfNN_aarch64_bfd_reloc_from_howto (howto);
4819 bfd_reloc_code_real_type new_bfd_r_type;
4820 unsigned long r_symndx;
4821 bfd_byte *hit_data = contents + rel->r_offset;
4822 bfd_vma place, off;
4823 bfd_signed_vma signed_addend;
4824 struct elf_aarch64_link_hash_table *globals;
4825 bfd_boolean weak_undef_p;
4826 asection *base_got;
4827
4828 globals = elf_aarch64_hash_table (info);
4829
4830 symtab_hdr = &elf_symtab_hdr (input_bfd);
4831
4832 BFD_ASSERT (is_aarch64_elf (input_bfd));
4833
4834 r_symndx = ELFNN_R_SYM (rel->r_info);
4835
4836 /* It is possible to have linker relaxations on some TLS access
4837 models. Update our information here. */
4838 new_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type, h, r_symndx);
4839 if (new_bfd_r_type != bfd_r_type)
4840 {
4841 bfd_r_type = new_bfd_r_type;
4842 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
4843 BFD_ASSERT (howto != NULL);
4844 r_type = howto->type;
4845 }
4846
4847 place = input_section->output_section->vma
4848 + input_section->output_offset + rel->r_offset;
4849
4850 /* Get addend, accumulating the addend for consecutive relocs
4851 which refer to the same offset. */
4852 signed_addend = saved_addend ? *saved_addend : 0;
4853 signed_addend += rel->r_addend;
4854
4855 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
4856 : bfd_is_und_section (sym_sec));
4857
4858 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
4859 it here if it is defined in a non-shared object. */
4860 if (h != NULL
4861 && h->type == STT_GNU_IFUNC
4862 && h->def_regular)
4863 {
4864 asection *plt;
4865 const char *name;
4866 bfd_vma addend = 0;
4867
4868 if ((input_section->flags & SEC_ALLOC) == 0
4869 || h->plt.offset == (bfd_vma) -1)
4870 abort ();
4871
4872 /* STT_GNU_IFUNC symbol must go through PLT. */
4873 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
4874 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
4875
4876 switch (bfd_r_type)
4877 {
4878 default:
4879 if (h->root.root.string)
4880 name = h->root.root.string;
4881 else
4882 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4883 NULL);
4884 (*_bfd_error_handler)
4885 (_("%B: relocation %s against STT_GNU_IFUNC "
4886 "symbol `%s' isn't handled by %s"), input_bfd,
4887 howto->name, name, __FUNCTION__);
4888 bfd_set_error (bfd_error_bad_value);
4889 return FALSE;
4890
4891 case BFD_RELOC_AARCH64_NN:
4892 if (rel->r_addend != 0)
4893 {
4894 if (h->root.root.string)
4895 name = h->root.root.string;
4896 else
4897 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4898 sym, NULL);
4899 (*_bfd_error_handler)
4900 (_("%B: relocation %s against STT_GNU_IFUNC "
4901 "symbol `%s' has non-zero addend: %d"),
4902 input_bfd, howto->name, name, rel->r_addend);
4903 bfd_set_error (bfd_error_bad_value);
4904 return FALSE;
4905 }
4906
4907 /* Generate dynamic relocation only when there is a
4908 non-GOT reference in a shared object. */
4909 if (bfd_link_pic (info) && h->non_got_ref)
4910 {
4911 Elf_Internal_Rela outrel;
4912 asection *sreloc;
4913
4914 /* Need a dynamic relocation to get the real function
4915 address. */
4916 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
4917 info,
4918 input_section,
4919 rel->r_offset);
4920 if (outrel.r_offset == (bfd_vma) -1
4921 || outrel.r_offset == (bfd_vma) -2)
4922 abort ();
4923
4924 outrel.r_offset += (input_section->output_section->vma
4925 + input_section->output_offset);
4926
4927 if (h->dynindx == -1
4928 || h->forced_local
4929 || bfd_link_executable (info))
4930 {
4931 /* This symbol is resolved locally. */
4932 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
4933 outrel.r_addend = (h->root.u.def.value
4934 + h->root.u.def.section->output_section->vma
4935 + h->root.u.def.section->output_offset);
4936 }
4937 else
4938 {
4939 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
4940 outrel.r_addend = 0;
4941 }
4942
4943 sreloc = globals->root.irelifunc;
4944 elf_append_rela (output_bfd, sreloc, &outrel);
4945
4946 /* If this reloc is against an external symbol, we
4947 do not want to fiddle with the addend. Otherwise,
4948 we need to include the symbol value so that it
4949 becomes an addend for the dynamic reloc. For an
4950 internal symbol, we have updated addend. */
4951 return bfd_reloc_ok;
4952 }
4953 /* FALLTHROUGH */
4954 case BFD_RELOC_AARCH64_CALL26:
4955 case BFD_RELOC_AARCH64_JUMP26:
4956 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
4957 signed_addend,
4958 weak_undef_p);
4959 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
4960 howto, value);
4961 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4962 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4963 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4964 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4965 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4966 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4967 base_got = globals->root.sgot;
4968 off = h->got.offset;
4969
4970 if (base_got == NULL)
4971 abort ();
4972
4973 if (off == (bfd_vma) -1)
4974 {
4975 bfd_vma plt_index;
4976
4977 /* We can't use h->got.offset here to save state, or
4978 even just remember the offset, as finish_dynamic_symbol
4979 would use that as offset into .got. */
4980
4981 if (globals->root.splt != NULL)
4982 {
4983 plt_index = ((h->plt.offset - globals->plt_header_size) /
4984 globals->plt_entry_size);
4985 off = (plt_index + 3) * GOT_ENTRY_SIZE;
4986 base_got = globals->root.sgotplt;
4987 }
4988 else
4989 {
4990 plt_index = h->plt.offset / globals->plt_entry_size;
4991 off = plt_index * GOT_ENTRY_SIZE;
4992 base_got = globals->root.igotplt;
4993 }
4994
4995 if (h->dynindx == -1
4996 || h->forced_local
4997 || info->symbolic)
4998 {
4999 /* This references the local definition. We must
5000 initialize this entry in the global offset table.
5001 Since the offset must always be a multiple of 8,
5002 we use the least significant bit to record
5003 whether we have initialized it already.
5004
5005 When doing a dynamic link, we create a .rela.got
5006 relocation entry to initialize the value. This
5007 is done in the finish_dynamic_symbol routine. */
5008 if ((off & 1) != 0)
5009 off &= ~1;
5010 else
5011 {
5012 bfd_put_NN (output_bfd, value,
5013 base_got->contents + off);
5014 /* Note that this is harmless as -1 | 1 still is -1. */
5015 h->got.offset |= 1;
5016 }
5017 }
5018 value = (base_got->output_section->vma
5019 + base_got->output_offset + off);
5020 }
5021 else
5022 value = aarch64_calculate_got_entry_vma (h, globals, info,
5023 value, output_bfd,
5024 unresolved_reloc_p);
5025
5026 switch (bfd_r_type)
5027 {
5028 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5029 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5030 addend = (globals->root.sgot->output_section->vma
5031 + globals->root.sgot->output_offset);
5032 break;
5033 default:
5034 break;
5035 }
5036
5037 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5038 addend, weak_undef_p);
5039 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5040 case BFD_RELOC_AARCH64_ADD_LO12:
5041 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5042 break;
5043 }
5044 }
5045
5046 switch (bfd_r_type)
5047 {
5048 case BFD_RELOC_AARCH64_NONE:
5049 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5050 *unresolved_reloc_p = FALSE;
5051 return bfd_reloc_ok;
5052
5053 case BFD_RELOC_AARCH64_NN:
5054
5055 /* When generating a shared object or relocatable executable, these
5056 relocations are copied into the output file to be resolved at
5057 run time. */
5058 if (((bfd_link_pic (info) == TRUE)
5059 || globals->root.is_relocatable_executable)
5060 && (input_section->flags & SEC_ALLOC)
5061 && (h == NULL
5062 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5063 || h->root.type != bfd_link_hash_undefweak))
5064 {
5065 Elf_Internal_Rela outrel;
5066 bfd_byte *loc;
5067 bfd_boolean skip, relocate;
5068 asection *sreloc;
5069
5070 *unresolved_reloc_p = FALSE;
5071
5072 skip = FALSE;
5073 relocate = FALSE;
5074
5075 outrel.r_addend = signed_addend;
5076 outrel.r_offset =
5077 _bfd_elf_section_offset (output_bfd, info, input_section,
5078 rel->r_offset);
5079 if (outrel.r_offset == (bfd_vma) - 1)
5080 skip = TRUE;
5081 else if (outrel.r_offset == (bfd_vma) - 2)
5082 {
5083 skip = TRUE;
5084 relocate = TRUE;
5085 }
5086
5087 outrel.r_offset += (input_section->output_section->vma
5088 + input_section->output_offset);
5089
5090 if (skip)
5091 memset (&outrel, 0, sizeof outrel);
5092 else if (h != NULL
5093 && h->dynindx != -1
5094 && (!bfd_link_pic (info)
5095 || !SYMBOLIC_BIND (info, h)
5096 || !h->def_regular))
5097 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5098 else
5099 {
5100 int symbol;
5101
5102 /* On SVR4-ish systems, the dynamic loader cannot
5103 relocate the text and data segments independently,
5104 so the symbol does not matter. */
5105 symbol = 0;
5106 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5107 outrel.r_addend += value;
5108 }
5109
5110 sreloc = elf_section_data (input_section)->sreloc;
5111 if (sreloc == NULL || sreloc->contents == NULL)
5112 return bfd_reloc_notsupported;
5113
5114 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5115 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5116
5117 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5118 {
5119 /* Sanity to check that we have previously allocated
5120 sufficient space in the relocation section for the
5121 number of relocations we actually want to emit. */
5122 abort ();
5123 }
5124
5125 /* If this reloc is against an external symbol, we do not want to
5126 fiddle with the addend. Otherwise, we need to include the symbol
5127 value so that it becomes an addend for the dynamic reloc. */
5128 if (!relocate)
5129 return bfd_reloc_ok;
5130
5131 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5132 contents, rel->r_offset, value,
5133 signed_addend);
5134 }
5135 else
5136 value += signed_addend;
5137 break;
5138
5139 case BFD_RELOC_AARCH64_CALL26:
5140 case BFD_RELOC_AARCH64_JUMP26:
5141 {
5142 asection *splt = globals->root.splt;
5143 bfd_boolean via_plt_p =
5144 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5145
5146 /* A call to an undefined weak symbol is converted to a jump to
5147 the next instruction unless a PLT entry will be created.
5148 The jump to the next instruction is optimized as a NOP.
5149 Do the same for local undefined symbols. */
5150 if (weak_undef_p && ! via_plt_p)
5151 {
5152 bfd_putl32 (INSN_NOP, hit_data);
5153 return bfd_reloc_ok;
5154 }
5155
5156 /* If the call goes through a PLT entry, make sure to
5157 check distance to the right destination address. */
5158 if (via_plt_p)
5159 value = (splt->output_section->vma
5160 + splt->output_offset + h->plt.offset);
5161
5162 /* Check if a stub has to be inserted because the destination
5163 is too far away. */
5164 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5165 if (! aarch64_valid_branch_p (value, place))
5166 /* The target is out of reach, so redirect the branch to
5167 the local stub for this function. */
5168 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5169 rel, globals);
5170 if (stub_entry != NULL)
5171 value = (stub_entry->stub_offset
5172 + stub_entry->stub_sec->output_offset
5173 + stub_entry->stub_sec->output_section->vma);
5174 }
5175 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5176 signed_addend, weak_undef_p);
5177 *unresolved_reloc_p = FALSE;
5178 break;
5179
5180 case BFD_RELOC_AARCH64_16_PCREL:
5181 case BFD_RELOC_AARCH64_32_PCREL:
5182 case BFD_RELOC_AARCH64_64_PCREL:
5183 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5184 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5185 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5186 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5187 if (bfd_link_pic (info)
5188 && (input_section->flags & SEC_ALLOC) != 0
5189 && (input_section->flags & SEC_READONLY) != 0
5190 && h != NULL
5191 && !h->def_regular)
5192 {
5193 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5194
5195 (*_bfd_error_handler)
5196 (_("%B: relocation %s against external symbol `%s' can not be used"
5197 " when making a shared object; recompile with -fPIC"),
5198 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5199 h->root.root.string);
5200 bfd_set_error (bfd_error_bad_value);
5201 return FALSE;
5202 }
5203
5204 case BFD_RELOC_AARCH64_16:
5205 #if ARCH_SIZE == 64
5206 case BFD_RELOC_AARCH64_32:
5207 #endif
5208 case BFD_RELOC_AARCH64_ADD_LO12:
5209 case BFD_RELOC_AARCH64_BRANCH19:
5210 case BFD_RELOC_AARCH64_LDST128_LO12:
5211 case BFD_RELOC_AARCH64_LDST16_LO12:
5212 case BFD_RELOC_AARCH64_LDST32_LO12:
5213 case BFD_RELOC_AARCH64_LDST64_LO12:
5214 case BFD_RELOC_AARCH64_LDST8_LO12:
5215 case BFD_RELOC_AARCH64_MOVW_G0:
5216 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5217 case BFD_RELOC_AARCH64_MOVW_G0_S:
5218 case BFD_RELOC_AARCH64_MOVW_G1:
5219 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5220 case BFD_RELOC_AARCH64_MOVW_G1_S:
5221 case BFD_RELOC_AARCH64_MOVW_G2:
5222 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5223 case BFD_RELOC_AARCH64_MOVW_G2_S:
5224 case BFD_RELOC_AARCH64_MOVW_G3:
5225 case BFD_RELOC_AARCH64_TSTBR14:
5226 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5227 signed_addend, weak_undef_p);
5228 break;
5229
5230 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5231 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5232 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5233 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5234 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5235 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5236 if (globals->root.sgot == NULL)
5237 BFD_ASSERT (h != NULL);
5238
5239 if (h != NULL)
5240 {
5241 bfd_vma addend = 0;
5242 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5243 output_bfd,
5244 unresolved_reloc_p);
5245 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5246 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5247 addend = (globals->root.sgot->output_section->vma
5248 + globals->root.sgot->output_offset);
5249 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5250 addend, weak_undef_p);
5251 }
5252 else
5253 {
5254 bfd_vma addend = 0;
5255 struct elf_aarch64_local_symbol *locals
5256 = elf_aarch64_locals (input_bfd);
5257
5258 if (locals == NULL)
5259 {
5260 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5261 (*_bfd_error_handler)
5262 (_("%B: Local symbol descriptor table be NULL when applying "
5263 "relocation %s against local symbol"),
5264 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5265 abort ();
5266 }
5267
5268 off = symbol_got_offset (input_bfd, h, r_symndx);
5269 base_got = globals->root.sgot;
5270 bfd_vma got_entry_addr = (base_got->output_section->vma
5271 + base_got->output_offset + off);
5272
5273 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5274 {
5275 bfd_put_64 (output_bfd, value, base_got->contents + off);
5276
5277 if (bfd_link_pic (info))
5278 {
5279 asection *s;
5280 Elf_Internal_Rela outrel;
5281
5282 /* For local symbol, we have done absolute relocation in static
5283 linking stageh. While for share library, we need to update
5284 the content of GOT entry according to the share objects
5285 loading base address. So we need to generate a
5286 R_AARCH64_RELATIVE reloc for dynamic linker. */
5287 s = globals->root.srelgot;
5288 if (s == NULL)
5289 abort ();
5290
5291 outrel.r_offset = got_entry_addr;
5292 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5293 outrel.r_addend = value;
5294 elf_append_rela (output_bfd, s, &outrel);
5295 }
5296
5297 symbol_got_offset_mark (input_bfd, h, r_symndx);
5298 }
5299
5300 /* Update the relocation value to GOT entry addr as we have transformed
5301 the direct data access into indirect data access through GOT. */
5302 value = got_entry_addr;
5303
5304 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5305 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5306 addend = base_got->output_section->vma + base_got->output_offset;
5307
5308 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5309 addend, weak_undef_p);
5310 }
5311
5312 break;
5313
5314 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5315 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5316 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5317 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5318 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5319 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5320 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5321 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5322 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5323 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5324 if (globals->root.sgot == NULL)
5325 return bfd_reloc_notsupported;
5326
5327 value = (symbol_got_offset (input_bfd, h, r_symndx)
5328 + globals->root.sgot->output_section->vma
5329 + globals->root.sgot->output_offset);
5330
5331 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5332 0, weak_undef_p);
5333 *unresolved_reloc_p = FALSE;
5334 break;
5335
5336 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
5337 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
5338 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5339 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5340 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5341 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5342 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5343 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5344 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5345 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5346 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
5347 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5348 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5349 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5350 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5351 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5352 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5353 signed_addend - dtpoff_base (info),
5354 weak_undef_p);
5355 break;
5356
5357 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5358 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5359 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5360 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5361 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5362 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5363 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5364 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5365 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5366 signed_addend - tpoff_base (info),
5367 weak_undef_p);
5368 *unresolved_reloc_p = FALSE;
5369 break;
5370
5371 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5372 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5373 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5374 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5375 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5376 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
5377 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5378 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5379 if (globals->root.sgot == NULL)
5380 return bfd_reloc_notsupported;
5381 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5382 + globals->root.sgotplt->output_section->vma
5383 + globals->root.sgotplt->output_offset
5384 + globals->sgotplt_jump_table_size);
5385
5386 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5387 0, weak_undef_p);
5388 *unresolved_reloc_p = FALSE;
5389 break;
5390
5391 default:
5392 return bfd_reloc_notsupported;
5393 }
5394
5395 if (saved_addend)
5396 *saved_addend = value;
5397
5398 /* Only apply the final relocation in a sequence. */
5399 if (save_addend)
5400 return bfd_reloc_continue;
5401
5402 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5403 howto, value);
5404 }
5405
5406 /* Handle TLS relaxations. Relaxing is possible for symbols that use
5407 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
5408 link.
5409
5410 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
5411 is to then call final_link_relocate. Return other values in the
5412 case of error. */
5413
5414 static bfd_reloc_status_type
5415 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
5416 bfd *input_bfd, bfd_byte *contents,
5417 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
5418 {
5419 bfd_boolean is_local = h == NULL;
5420 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
5421 unsigned long insn;
5422
5423 BFD_ASSERT (globals && input_bfd && contents && rel);
5424
5425 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
5426 {
5427 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5428 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5429 if (is_local)
5430 {
5431 /* GD->LE relaxation:
5432 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
5433 or
5434 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
5435 */
5436 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5437 return bfd_reloc_continue;
5438 }
5439 else
5440 {
5441 /* GD->IE relaxation:
5442 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
5443 or
5444 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
5445 */
5446 return bfd_reloc_continue;
5447 }
5448
5449 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5450 BFD_ASSERT (0);
5451 break;
5452
5453 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5454 if (is_local)
5455 {
5456 /* Tiny TLSDESC->LE relaxation:
5457 ldr x1, :tlsdesc:var => movz x0, #:tprel_g1:var
5458 adr x0, :tlsdesc:var => movk x0, #:tprel_g0_nc:var
5459 .tlsdesccall var
5460 blr x1 => nop
5461 */
5462 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5463 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5464
5465 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5466 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5467 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5468
5469 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5470 bfd_putl32 (0xf2800000, contents + rel->r_offset + 4);
5471 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5472 return bfd_reloc_continue;
5473 }
5474 else
5475 {
5476 /* Tiny TLSDESC->IE relaxation:
5477 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
5478 adr x0, :tlsdesc:var => nop
5479 .tlsdesccall var
5480 blr x1 => nop
5481 */
5482 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5483 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5484
5485 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5486 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5487
5488 bfd_putl32 (0x58000000, contents + rel->r_offset);
5489 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
5490 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5491 return bfd_reloc_continue;
5492 }
5493
5494 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5495 if (is_local)
5496 {
5497 /* Tiny GD->LE relaxation:
5498 adr x0, :tlsgd:var => mrs x1, tpidr_el0
5499 bl __tls_get_addr => add x0, x1, #:tprel_hi12:x, lsl #12
5500 nop => add x0, x0, #:tprel_lo12_nc:x
5501 */
5502
5503 /* First kill the tls_get_addr reloc on the bl instruction. */
5504 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5505
5506 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
5507 bfd_putl32 (0x91400020, contents + rel->r_offset + 4);
5508 bfd_putl32 (0x91000000, contents + rel->r_offset + 8);
5509
5510 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5511 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
5512 rel[1].r_offset = rel->r_offset + 8;
5513
5514 /* Move the current relocation to the second instruction in
5515 the sequence. */
5516 rel->r_offset += 4;
5517 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5518 AARCH64_R (TLSLE_ADD_TPREL_HI12));
5519 return bfd_reloc_continue;
5520 }
5521 else
5522 {
5523 /* Tiny GD->IE relaxation:
5524 adr x0, :tlsgd:var => ldr x0, :gottprel:var
5525 bl __tls_get_addr => mrs x1, tpidr_el0
5526 nop => add x0, x0, x1
5527 */
5528
5529 /* First kill the tls_get_addr reloc on the bl instruction. */
5530 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5531 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5532
5533 bfd_putl32 (0x58000000, contents + rel->r_offset);
5534 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5535 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5536 return bfd_reloc_continue;
5537 }
5538
5539 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5540 return bfd_reloc_continue;
5541
5542 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
5543 if (is_local)
5544 {
5545 /* GD->LE relaxation:
5546 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
5547 */
5548 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5549 return bfd_reloc_continue;
5550 }
5551 else
5552 {
5553 /* GD->IE relaxation:
5554 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
5555 */
5556 insn = bfd_getl32 (contents + rel->r_offset);
5557 insn &= 0xffffffe0;
5558 bfd_putl32 (insn, contents + rel->r_offset);
5559 return bfd_reloc_continue;
5560 }
5561
5562 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5563 if (is_local)
5564 {
5565 /* GD->LE relaxation
5566 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
5567 bl __tls_get_addr => mrs x1, tpidr_el0
5568 nop => add x0, x1, x0
5569 */
5570
5571 /* First kill the tls_get_addr reloc on the bl instruction. */
5572 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5573 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5574
5575 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5576 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5577 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5578 return bfd_reloc_continue;
5579 }
5580 else
5581 {
5582 /* GD->IE relaxation
5583 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
5584 BL __tls_get_addr => mrs x1, tpidr_el0
5585 R_AARCH64_CALL26
5586 NOP => add x0, x1, x0
5587 */
5588
5589 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5590
5591 /* Remove the relocation on the BL instruction. */
5592 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5593
5594 bfd_putl32 (0xf9400000, contents + rel->r_offset);
5595
5596 /* We choose to fixup the BL and NOP instructions using the
5597 offset from the second relocation to allow flexibility in
5598 scheduling instructions between the ADD and BL. */
5599 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
5600 bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
5601 return bfd_reloc_continue;
5602 }
5603
5604 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5605 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5606 /* GD->IE/LE relaxation:
5607 add x0, x0, #:tlsdesc_lo12:var => nop
5608 blr xd => nop
5609 */
5610 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
5611 return bfd_reloc_ok;
5612
5613 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5614 /* IE->LE relaxation:
5615 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
5616 */
5617 if (is_local)
5618 {
5619 insn = bfd_getl32 (contents + rel->r_offset);
5620 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
5621 }
5622 return bfd_reloc_continue;
5623
5624 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
5625 /* IE->LE relaxation:
5626 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
5627 */
5628 if (is_local)
5629 {
5630 insn = bfd_getl32 (contents + rel->r_offset);
5631 bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
5632 }
5633 return bfd_reloc_continue;
5634
5635 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5636 /* LD->LE relaxation (tiny):
5637 adr x0, :tlsldm:x => mrs x0, tpidr_el0
5638 bl __tls_get_addr => add x0, x0, TCB_SIZE
5639 */
5640 if (is_local)
5641 {
5642 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5643 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5644 /* No need of CALL26 relocation for tls_get_addr. */
5645 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5646 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
5647 bfd_putl32 (0x91004000, contents + rel->r_offset + 4);
5648 return bfd_reloc_ok;
5649 }
5650 return bfd_reloc_continue;
5651
5652 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5653 /* LD->LE relaxation (small):
5654 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
5655 */
5656 if (is_local)
5657 {
5658 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
5659 return bfd_reloc_ok;
5660 }
5661 return bfd_reloc_continue;
5662
5663 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5664 /* LD->LE relaxation (small):
5665 add x0, #:tlsldm_lo12:x => add x0, x0, TCB_SIZE
5666 bl __tls_get_addr => nop
5667 */
5668 if (is_local)
5669 {
5670 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5671 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5672 /* No need of CALL26 relocation for tls_get_addr. */
5673 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5674 bfd_putl32 (0x91004000, contents + rel->r_offset + 0);
5675 bfd_putl32 (0xd503201f, contents + rel->r_offset + 4);
5676 return bfd_reloc_ok;
5677 }
5678 return bfd_reloc_continue;
5679
5680 default:
5681 return bfd_reloc_continue;
5682 }
5683
5684 return bfd_reloc_ok;
5685 }
5686
5687 /* Relocate an AArch64 ELF section. */
5688
5689 static bfd_boolean
5690 elfNN_aarch64_relocate_section (bfd *output_bfd,
5691 struct bfd_link_info *info,
5692 bfd *input_bfd,
5693 asection *input_section,
5694 bfd_byte *contents,
5695 Elf_Internal_Rela *relocs,
5696 Elf_Internal_Sym *local_syms,
5697 asection **local_sections)
5698 {
5699 Elf_Internal_Shdr *symtab_hdr;
5700 struct elf_link_hash_entry **sym_hashes;
5701 Elf_Internal_Rela *rel;
5702 Elf_Internal_Rela *relend;
5703 const char *name;
5704 struct elf_aarch64_link_hash_table *globals;
5705 bfd_boolean save_addend = FALSE;
5706 bfd_vma addend = 0;
5707
5708 globals = elf_aarch64_hash_table (info);
5709
5710 symtab_hdr = &elf_symtab_hdr (input_bfd);
5711 sym_hashes = elf_sym_hashes (input_bfd);
5712
5713 rel = relocs;
5714 relend = relocs + input_section->reloc_count;
5715 for (; rel < relend; rel++)
5716 {
5717 unsigned int r_type;
5718 bfd_reloc_code_real_type bfd_r_type;
5719 bfd_reloc_code_real_type relaxed_bfd_r_type;
5720 reloc_howto_type *howto;
5721 unsigned long r_symndx;
5722 Elf_Internal_Sym *sym;
5723 asection *sec;
5724 struct elf_link_hash_entry *h;
5725 bfd_vma relocation;
5726 bfd_reloc_status_type r;
5727 arelent bfd_reloc;
5728 char sym_type;
5729 bfd_boolean unresolved_reloc = FALSE;
5730 char *error_message = NULL;
5731
5732 r_symndx = ELFNN_R_SYM (rel->r_info);
5733 r_type = ELFNN_R_TYPE (rel->r_info);
5734
5735 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
5736 howto = bfd_reloc.howto;
5737
5738 if (howto == NULL)
5739 {
5740 (*_bfd_error_handler)
5741 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
5742 input_bfd, input_section, r_type);
5743 return FALSE;
5744 }
5745 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
5746
5747 h = NULL;
5748 sym = NULL;
5749 sec = NULL;
5750
5751 if (r_symndx < symtab_hdr->sh_info)
5752 {
5753 sym = local_syms + r_symndx;
5754 sym_type = ELFNN_ST_TYPE (sym->st_info);
5755 sec = local_sections[r_symndx];
5756
5757 /* An object file might have a reference to a local
5758 undefined symbol. This is a daft object file, but we
5759 should at least do something about it. */
5760 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
5761 && bfd_is_und_section (sec)
5762 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
5763 {
5764 if (!info->callbacks->undefined_symbol
5765 (info, bfd_elf_string_from_elf_section
5766 (input_bfd, symtab_hdr->sh_link, sym->st_name),
5767 input_bfd, input_section, rel->r_offset, TRUE))
5768 return FALSE;
5769 }
5770
5771 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
5772
5773 /* Relocate against local STT_GNU_IFUNC symbol. */
5774 if (!bfd_link_relocatable (info)
5775 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
5776 {
5777 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
5778 rel, FALSE);
5779 if (h == NULL)
5780 abort ();
5781
5782 /* Set STT_GNU_IFUNC symbol value. */
5783 h->root.u.def.value = sym->st_value;
5784 h->root.u.def.section = sec;
5785 }
5786 }
5787 else
5788 {
5789 bfd_boolean warned, ignored;
5790
5791 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
5792 r_symndx, symtab_hdr, sym_hashes,
5793 h, sec, relocation,
5794 unresolved_reloc, warned, ignored);
5795
5796 sym_type = h->type;
5797 }
5798
5799 if (sec != NULL && discarded_section (sec))
5800 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
5801 rel, 1, relend, howto, 0, contents);
5802
5803 if (bfd_link_relocatable (info))
5804 continue;
5805
5806 if (h != NULL)
5807 name = h->root.root.string;
5808 else
5809 {
5810 name = (bfd_elf_string_from_elf_section
5811 (input_bfd, symtab_hdr->sh_link, sym->st_name));
5812 if (name == NULL || *name == '\0')
5813 name = bfd_section_name (input_bfd, sec);
5814 }
5815
5816 if (r_symndx != 0
5817 && r_type != R_AARCH64_NONE
5818 && r_type != R_AARCH64_NULL
5819 && (h == NULL
5820 || h->root.type == bfd_link_hash_defined
5821 || h->root.type == bfd_link_hash_defweak)
5822 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
5823 {
5824 (*_bfd_error_handler)
5825 ((sym_type == STT_TLS
5826 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
5827 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
5828 input_bfd,
5829 input_section, (long) rel->r_offset, howto->name, name);
5830 }
5831
5832 /* We relax only if we can see that there can be a valid transition
5833 from a reloc type to another.
5834 We call elfNN_aarch64_final_link_relocate unless we're completely
5835 done, i.e., the relaxation produced the final output we want. */
5836
5837 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
5838 h, r_symndx);
5839 if (relaxed_bfd_r_type != bfd_r_type)
5840 {
5841 bfd_r_type = relaxed_bfd_r_type;
5842 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
5843 BFD_ASSERT (howto != NULL);
5844 r_type = howto->type;
5845 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
5846 unresolved_reloc = 0;
5847 }
5848 else
5849 r = bfd_reloc_continue;
5850
5851 /* There may be multiple consecutive relocations for the
5852 same offset. In that case we are supposed to treat the
5853 output of each relocation as the addend for the next. */
5854 if (rel + 1 < relend
5855 && rel->r_offset == rel[1].r_offset
5856 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
5857 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
5858 save_addend = TRUE;
5859 else
5860 save_addend = FALSE;
5861
5862 if (r == bfd_reloc_continue)
5863 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
5864 input_section, contents, rel,
5865 relocation, info, sec,
5866 h, &unresolved_reloc,
5867 save_addend, &addend, sym);
5868
5869 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
5870 {
5871 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5872 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5873 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5874 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5875 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5876 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5877 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5878 {
5879 bfd_boolean need_relocs = FALSE;
5880 bfd_byte *loc;
5881 int indx;
5882 bfd_vma off;
5883
5884 off = symbol_got_offset (input_bfd, h, r_symndx);
5885 indx = h && h->dynindx != -1 ? h->dynindx : 0;
5886
5887 need_relocs =
5888 (bfd_link_pic (info) || indx != 0) &&
5889 (h == NULL
5890 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5891 || h->root.type != bfd_link_hash_undefweak);
5892
5893 BFD_ASSERT (globals->root.srelgot != NULL);
5894
5895 if (need_relocs)
5896 {
5897 Elf_Internal_Rela rela;
5898 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
5899 rela.r_addend = 0;
5900 rela.r_offset = globals->root.sgot->output_section->vma +
5901 globals->root.sgot->output_offset + off;
5902
5903
5904 loc = globals->root.srelgot->contents;
5905 loc += globals->root.srelgot->reloc_count++
5906 * RELOC_SIZE (htab);
5907 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
5908
5909 bfd_reloc_code_real_type real_type =
5910 elfNN_aarch64_bfd_reloc_from_type (r_type);
5911
5912 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
5913 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
5914 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
5915 {
5916 /* For local dynamic, don't generate DTPREL in any case.
5917 Initialize the DTPREL slot into zero, so we get module
5918 base address when invoke runtime TLS resolver. */
5919 bfd_put_NN (output_bfd, 0,
5920 globals->root.sgot->contents + off
5921 + GOT_ENTRY_SIZE);
5922 }
5923 else if (indx == 0)
5924 {
5925 bfd_put_NN (output_bfd,
5926 relocation - dtpoff_base (info),
5927 globals->root.sgot->contents + off
5928 + GOT_ENTRY_SIZE);
5929 }
5930 else
5931 {
5932 /* This TLS symbol is global. We emit a
5933 relocation to fixup the tls offset at load
5934 time. */
5935 rela.r_info =
5936 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
5937 rela.r_addend = 0;
5938 rela.r_offset =
5939 (globals->root.sgot->output_section->vma
5940 + globals->root.sgot->output_offset + off
5941 + GOT_ENTRY_SIZE);
5942
5943 loc = globals->root.srelgot->contents;
5944 loc += globals->root.srelgot->reloc_count++
5945 * RELOC_SIZE (globals);
5946 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
5947 bfd_put_NN (output_bfd, (bfd_vma) 0,
5948 globals->root.sgot->contents + off
5949 + GOT_ENTRY_SIZE);
5950 }
5951 }
5952 else
5953 {
5954 bfd_put_NN (output_bfd, (bfd_vma) 1,
5955 globals->root.sgot->contents + off);
5956 bfd_put_NN (output_bfd,
5957 relocation - dtpoff_base (info),
5958 globals->root.sgot->contents + off
5959 + GOT_ENTRY_SIZE);
5960 }
5961
5962 symbol_got_offset_mark (input_bfd, h, r_symndx);
5963 }
5964 break;
5965
5966 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5967 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
5968 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5969 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5970 {
5971 bfd_boolean need_relocs = FALSE;
5972 bfd_byte *loc;
5973 int indx;
5974 bfd_vma off;
5975
5976 off = symbol_got_offset (input_bfd, h, r_symndx);
5977
5978 indx = h && h->dynindx != -1 ? h->dynindx : 0;
5979
5980 need_relocs =
5981 (bfd_link_pic (info) || indx != 0) &&
5982 (h == NULL
5983 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5984 || h->root.type != bfd_link_hash_undefweak);
5985
5986 BFD_ASSERT (globals->root.srelgot != NULL);
5987
5988 if (need_relocs)
5989 {
5990 Elf_Internal_Rela rela;
5991
5992 if (indx == 0)
5993 rela.r_addend = relocation - dtpoff_base (info);
5994 else
5995 rela.r_addend = 0;
5996
5997 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
5998 rela.r_offset = globals->root.sgot->output_section->vma +
5999 globals->root.sgot->output_offset + off;
6000
6001 loc = globals->root.srelgot->contents;
6002 loc += globals->root.srelgot->reloc_count++
6003 * RELOC_SIZE (htab);
6004
6005 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6006
6007 bfd_put_NN (output_bfd, rela.r_addend,
6008 globals->root.sgot->contents + off);
6009 }
6010 else
6011 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6012 globals->root.sgot->contents + off);
6013
6014 symbol_got_offset_mark (input_bfd, h, r_symndx);
6015 }
6016 break;
6017
6018 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6019 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6020 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6021 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6022 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6023 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6024 {
6025 bfd_boolean need_relocs = FALSE;
6026 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6027 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6028
6029 need_relocs = (h == NULL
6030 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6031 || h->root.type != bfd_link_hash_undefweak);
6032
6033 BFD_ASSERT (globals->root.srelgot != NULL);
6034 BFD_ASSERT (globals->root.sgot != NULL);
6035
6036 if (need_relocs)
6037 {
6038 bfd_byte *loc;
6039 Elf_Internal_Rela rela;
6040 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6041
6042 rela.r_addend = 0;
6043 rela.r_offset = (globals->root.sgotplt->output_section->vma
6044 + globals->root.sgotplt->output_offset
6045 + off + globals->sgotplt_jump_table_size);
6046
6047 if (indx == 0)
6048 rela.r_addend = relocation - dtpoff_base (info);
6049
6050 /* Allocate the next available slot in the PLT reloc
6051 section to hold our R_AARCH64_TLSDESC, the next
6052 available slot is determined from reloc_count,
6053 which we step. But note, reloc_count was
6054 artifically moved down while allocating slots for
6055 real PLT relocs such that all of the PLT relocs
6056 will fit above the initial reloc_count and the
6057 extra stuff will fit below. */
6058 loc = globals->root.srelplt->contents;
6059 loc += globals->root.srelplt->reloc_count++
6060 * RELOC_SIZE (globals);
6061
6062 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6063
6064 bfd_put_NN (output_bfd, (bfd_vma) 0,
6065 globals->root.sgotplt->contents + off +
6066 globals->sgotplt_jump_table_size);
6067 bfd_put_NN (output_bfd, (bfd_vma) 0,
6068 globals->root.sgotplt->contents + off +
6069 globals->sgotplt_jump_table_size +
6070 GOT_ENTRY_SIZE);
6071 }
6072
6073 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6074 }
6075 break;
6076 default:
6077 break;
6078 }
6079
6080 if (!save_addend)
6081 addend = 0;
6082
6083
6084 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6085 because such sections are not SEC_ALLOC and thus ld.so will
6086 not process them. */
6087 if (unresolved_reloc
6088 && !((input_section->flags & SEC_DEBUGGING) != 0
6089 && h->def_dynamic)
6090 && _bfd_elf_section_offset (output_bfd, info, input_section,
6091 +rel->r_offset) != (bfd_vma) - 1)
6092 {
6093 (*_bfd_error_handler)
6094 (_
6095 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
6096 input_bfd, input_section, (long) rel->r_offset, howto->name,
6097 h->root.root.string);
6098 return FALSE;
6099 }
6100
6101 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6102 {
6103 bfd_reloc_code_real_type real_r_type
6104 = elfNN_aarch64_bfd_reloc_from_type (r_type);
6105
6106 switch (r)
6107 {
6108 case bfd_reloc_overflow:
6109 if (!(*info->callbacks->reloc_overflow)
6110 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6111 input_bfd, input_section, rel->r_offset))
6112 return FALSE;
6113 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6114 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6115 {
6116 (*info->callbacks->warning)
6117 (info,
6118 _("Too many GOT entries for -fpic, "
6119 "please recompile with -fPIC"),
6120 name, input_bfd, input_section, rel->r_offset);
6121 return FALSE;
6122 }
6123 break;
6124
6125 case bfd_reloc_undefined:
6126 if (!((*info->callbacks->undefined_symbol)
6127 (info, name, input_bfd, input_section,
6128 rel->r_offset, TRUE)))
6129 return FALSE;
6130 break;
6131
6132 case bfd_reloc_outofrange:
6133 error_message = _("out of range");
6134 goto common_error;
6135
6136 case bfd_reloc_notsupported:
6137 error_message = _("unsupported relocation");
6138 goto common_error;
6139
6140 case bfd_reloc_dangerous:
6141 /* error_message should already be set. */
6142 goto common_error;
6143
6144 default:
6145 error_message = _("unknown error");
6146 /* Fall through. */
6147
6148 common_error:
6149 BFD_ASSERT (error_message != NULL);
6150 if (!((*info->callbacks->reloc_dangerous)
6151 (info, error_message, input_bfd, input_section,
6152 rel->r_offset)))
6153 return FALSE;
6154 break;
6155 }
6156 }
6157 }
6158
6159 return TRUE;
6160 }
6161
6162 /* Set the right machine number. */
6163
6164 static bfd_boolean
6165 elfNN_aarch64_object_p (bfd *abfd)
6166 {
6167 #if ARCH_SIZE == 32
6168 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
6169 #else
6170 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
6171 #endif
6172 return TRUE;
6173 }
6174
6175 /* Function to keep AArch64 specific flags in the ELF header. */
6176
6177 static bfd_boolean
6178 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
6179 {
6180 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
6181 {
6182 }
6183 else
6184 {
6185 elf_elfheader (abfd)->e_flags = flags;
6186 elf_flags_init (abfd) = TRUE;
6187 }
6188
6189 return TRUE;
6190 }
6191
6192 /* Merge backend specific data from an object file to the output
6193 object file when linking. */
6194
6195 static bfd_boolean
6196 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
6197 {
6198 flagword out_flags;
6199 flagword in_flags;
6200 bfd_boolean flags_compatible = TRUE;
6201 asection *sec;
6202
6203 /* Check if we have the same endianess. */
6204 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
6205 return FALSE;
6206
6207 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
6208 return TRUE;
6209
6210 /* The input BFD must have had its flags initialised. */
6211 /* The following seems bogus to me -- The flags are initialized in
6212 the assembler but I don't think an elf_flags_init field is
6213 written into the object. */
6214 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6215
6216 in_flags = elf_elfheader (ibfd)->e_flags;
6217 out_flags = elf_elfheader (obfd)->e_flags;
6218
6219 if (!elf_flags_init (obfd))
6220 {
6221 /* If the input is the default architecture and had the default
6222 flags then do not bother setting the flags for the output
6223 architecture, instead allow future merges to do this. If no
6224 future merges ever set these flags then they will retain their
6225 uninitialised values, which surprise surprise, correspond
6226 to the default values. */
6227 if (bfd_get_arch_info (ibfd)->the_default
6228 && elf_elfheader (ibfd)->e_flags == 0)
6229 return TRUE;
6230
6231 elf_flags_init (obfd) = TRUE;
6232 elf_elfheader (obfd)->e_flags = in_flags;
6233
6234 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6235 && bfd_get_arch_info (obfd)->the_default)
6236 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
6237 bfd_get_mach (ibfd));
6238
6239 return TRUE;
6240 }
6241
6242 /* Identical flags must be compatible. */
6243 if (in_flags == out_flags)
6244 return TRUE;
6245
6246 /* Check to see if the input BFD actually contains any sections. If
6247 not, its flags may not have been initialised either, but it
6248 cannot actually cause any incompatiblity. Do not short-circuit
6249 dynamic objects; their section list may be emptied by
6250 elf_link_add_object_symbols.
6251
6252 Also check to see if there are no code sections in the input.
6253 In this case there is no need to check for code specific flags.
6254 XXX - do we need to worry about floating-point format compatability
6255 in data sections ? */
6256 if (!(ibfd->flags & DYNAMIC))
6257 {
6258 bfd_boolean null_input_bfd = TRUE;
6259 bfd_boolean only_data_sections = TRUE;
6260
6261 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6262 {
6263 if ((bfd_get_section_flags (ibfd, sec)
6264 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6265 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6266 only_data_sections = FALSE;
6267
6268 null_input_bfd = FALSE;
6269 break;
6270 }
6271
6272 if (null_input_bfd || only_data_sections)
6273 return TRUE;
6274 }
6275
6276 return flags_compatible;
6277 }
6278
6279 /* Display the flags field. */
6280
6281 static bfd_boolean
6282 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
6283 {
6284 FILE *file = (FILE *) ptr;
6285 unsigned long flags;
6286
6287 BFD_ASSERT (abfd != NULL && ptr != NULL);
6288
6289 /* Print normal ELF private data. */
6290 _bfd_elf_print_private_bfd_data (abfd, ptr);
6291
6292 flags = elf_elfheader (abfd)->e_flags;
6293 /* Ignore init flag - it may not be set, despite the flags field
6294 containing valid data. */
6295
6296 /* xgettext:c-format */
6297 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
6298
6299 if (flags)
6300 fprintf (file, _("<Unrecognised flag bits set>"));
6301
6302 fputc ('\n', file);
6303
6304 return TRUE;
6305 }
6306
6307 /* Update the got entry reference counts for the section being removed. */
6308
6309 static bfd_boolean
6310 elfNN_aarch64_gc_sweep_hook (bfd *abfd,
6311 struct bfd_link_info *info,
6312 asection *sec,
6313 const Elf_Internal_Rela * relocs)
6314 {
6315 struct elf_aarch64_link_hash_table *htab;
6316 Elf_Internal_Shdr *symtab_hdr;
6317 struct elf_link_hash_entry **sym_hashes;
6318 struct elf_aarch64_local_symbol *locals;
6319 const Elf_Internal_Rela *rel, *relend;
6320
6321 if (bfd_link_relocatable (info))
6322 return TRUE;
6323
6324 htab = elf_aarch64_hash_table (info);
6325
6326 if (htab == NULL)
6327 return FALSE;
6328
6329 elf_section_data (sec)->local_dynrel = NULL;
6330
6331 symtab_hdr = &elf_symtab_hdr (abfd);
6332 sym_hashes = elf_sym_hashes (abfd);
6333
6334 locals = elf_aarch64_locals (abfd);
6335
6336 relend = relocs + sec->reloc_count;
6337 for (rel = relocs; rel < relend; rel++)
6338 {
6339 unsigned long r_symndx;
6340 unsigned int r_type;
6341 struct elf_link_hash_entry *h = NULL;
6342
6343 r_symndx = ELFNN_R_SYM (rel->r_info);
6344
6345 if (r_symndx >= symtab_hdr->sh_info)
6346 {
6347
6348 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6349 while (h->root.type == bfd_link_hash_indirect
6350 || h->root.type == bfd_link_hash_warning)
6351 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6352 }
6353 else
6354 {
6355 Elf_Internal_Sym *isym;
6356
6357 /* A local symbol. */
6358 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6359 abfd, r_symndx);
6360
6361 /* Check relocation against local STT_GNU_IFUNC symbol. */
6362 if (isym != NULL
6363 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6364 {
6365 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
6366 if (h == NULL)
6367 abort ();
6368 }
6369 }
6370
6371 if (h)
6372 {
6373 struct elf_aarch64_link_hash_entry *eh;
6374 struct elf_dyn_relocs **pp;
6375 struct elf_dyn_relocs *p;
6376
6377 eh = (struct elf_aarch64_link_hash_entry *) h;
6378
6379 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6380 if (p->sec == sec)
6381 {
6382 /* Everything must go for SEC. */
6383 *pp = p->next;
6384 break;
6385 }
6386 }
6387
6388 r_type = ELFNN_R_TYPE (rel->r_info);
6389 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
6390 {
6391 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6392 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6393 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6394 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6395 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6396 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6397 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6398 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6399 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6400 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6401 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
6402 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6403 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6404 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6405 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6406 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6407 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6408 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6409 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6410 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6411 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6412 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6413 if (h != NULL)
6414 {
6415 if (h->got.refcount > 0)
6416 h->got.refcount -= 1;
6417
6418 if (h->type == STT_GNU_IFUNC)
6419 {
6420 if (h->plt.refcount > 0)
6421 h->plt.refcount -= 1;
6422 }
6423 }
6424 else if (locals != NULL)
6425 {
6426 if (locals[r_symndx].got_refcount > 0)
6427 locals[r_symndx].got_refcount -= 1;
6428 }
6429 break;
6430
6431 case BFD_RELOC_AARCH64_CALL26:
6432 case BFD_RELOC_AARCH64_JUMP26:
6433 /* If this is a local symbol then we resolve it
6434 directly without creating a PLT entry. */
6435 if (h == NULL)
6436 continue;
6437
6438 if (h->plt.refcount > 0)
6439 h->plt.refcount -= 1;
6440 break;
6441
6442 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6443 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6444 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
6445 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6446 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6447 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6448 case BFD_RELOC_AARCH64_MOVW_G3:
6449 case BFD_RELOC_AARCH64_NN:
6450 if (h != NULL && bfd_link_executable (info))
6451 {
6452 if (h->plt.refcount > 0)
6453 h->plt.refcount -= 1;
6454 }
6455 break;
6456
6457 default:
6458 break;
6459 }
6460 }
6461
6462 return TRUE;
6463 }
6464
6465 /* Adjust a symbol defined by a dynamic object and referenced by a
6466 regular object. The current definition is in some section of the
6467 dynamic object, but we're not including those sections. We have to
6468 change the definition to something the rest of the link can
6469 understand. */
6470
6471 static bfd_boolean
6472 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
6473 struct elf_link_hash_entry *h)
6474 {
6475 struct elf_aarch64_link_hash_table *htab;
6476 asection *s;
6477
6478 /* If this is a function, put it in the procedure linkage table. We
6479 will fill in the contents of the procedure linkage table later,
6480 when we know the address of the .got section. */
6481 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
6482 {
6483 if (h->plt.refcount <= 0
6484 || (h->type != STT_GNU_IFUNC
6485 && (SYMBOL_CALLS_LOCAL (info, h)
6486 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6487 && h->root.type == bfd_link_hash_undefweak))))
6488 {
6489 /* This case can occur if we saw a CALL26 reloc in
6490 an input file, but the symbol wasn't referred to
6491 by a dynamic object or all references were
6492 garbage collected. In which case we can end up
6493 resolving. */
6494 h->plt.offset = (bfd_vma) - 1;
6495 h->needs_plt = 0;
6496 }
6497
6498 return TRUE;
6499 }
6500 else
6501 /* Otherwise, reset to -1. */
6502 h->plt.offset = (bfd_vma) - 1;
6503
6504
6505 /* If this is a weak symbol, and there is a real definition, the
6506 processor independent code will have arranged for us to see the
6507 real definition first, and we can just use the same value. */
6508 if (h->u.weakdef != NULL)
6509 {
6510 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6511 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6512 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6513 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6514 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
6515 h->non_got_ref = h->u.weakdef->non_got_ref;
6516 return TRUE;
6517 }
6518
6519 /* If we are creating a shared library, we must presume that the
6520 only references to the symbol are via the global offset table.
6521 For such cases we need not do anything here; the relocations will
6522 be handled correctly by relocate_section. */
6523 if (bfd_link_pic (info))
6524 return TRUE;
6525
6526 /* If there are no references to this symbol that do not use the
6527 GOT, we don't need to generate a copy reloc. */
6528 if (!h->non_got_ref)
6529 return TRUE;
6530
6531 /* If -z nocopyreloc was given, we won't generate them either. */
6532 if (info->nocopyreloc)
6533 {
6534 h->non_got_ref = 0;
6535 return TRUE;
6536 }
6537
6538 /* We must allocate the symbol in our .dynbss section, which will
6539 become part of the .bss section of the executable. There will be
6540 an entry for this symbol in the .dynsym section. The dynamic
6541 object will contain position independent code, so all references
6542 from the dynamic object to this symbol will go through the global
6543 offset table. The dynamic linker will use the .dynsym entry to
6544 determine the address it must put in the global offset table, so
6545 both the dynamic object and the regular object will refer to the
6546 same memory location for the variable. */
6547
6548 htab = elf_aarch64_hash_table (info);
6549
6550 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
6551 to copy the initial value out of the dynamic object and into the
6552 runtime process image. */
6553 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6554 {
6555 htab->srelbss->size += RELOC_SIZE (htab);
6556 h->needs_copy = 1;
6557 }
6558
6559 s = htab->sdynbss;
6560
6561 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6562
6563 }
6564
6565 static bfd_boolean
6566 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
6567 {
6568 struct elf_aarch64_local_symbol *locals;
6569 locals = elf_aarch64_locals (abfd);
6570 if (locals == NULL)
6571 {
6572 locals = (struct elf_aarch64_local_symbol *)
6573 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
6574 if (locals == NULL)
6575 return FALSE;
6576 elf_aarch64_locals (abfd) = locals;
6577 }
6578 return TRUE;
6579 }
6580
6581 /* Create the .got section to hold the global offset table. */
6582
6583 static bfd_boolean
6584 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
6585 {
6586 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6587 flagword flags;
6588 asection *s;
6589 struct elf_link_hash_entry *h;
6590 struct elf_link_hash_table *htab = elf_hash_table (info);
6591
6592 /* This function may be called more than once. */
6593 s = bfd_get_linker_section (abfd, ".got");
6594 if (s != NULL)
6595 return TRUE;
6596
6597 flags = bed->dynamic_sec_flags;
6598
6599 s = bfd_make_section_anyway_with_flags (abfd,
6600 (bed->rela_plts_and_copies_p
6601 ? ".rela.got" : ".rel.got"),
6602 (bed->dynamic_sec_flags
6603 | SEC_READONLY));
6604 if (s == NULL
6605 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6606 return FALSE;
6607 htab->srelgot = s;
6608
6609 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
6610 if (s == NULL
6611 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6612 return FALSE;
6613 htab->sgot = s;
6614 htab->sgot->size += GOT_ENTRY_SIZE;
6615
6616 if (bed->want_got_sym)
6617 {
6618 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
6619 (or .got.plt) section. We don't do this in the linker script
6620 because we don't want to define the symbol if we are not creating
6621 a global offset table. */
6622 h = _bfd_elf_define_linkage_sym (abfd, info, s,
6623 "_GLOBAL_OFFSET_TABLE_");
6624 elf_hash_table (info)->hgot = h;
6625 if (h == NULL)
6626 return FALSE;
6627 }
6628
6629 if (bed->want_got_plt)
6630 {
6631 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
6632 if (s == NULL
6633 || !bfd_set_section_alignment (abfd, s,
6634 bed->s->log_file_align))
6635 return FALSE;
6636 htab->sgotplt = s;
6637 }
6638
6639 /* The first bit of the global offset table is the header. */
6640 s->size += bed->got_header_size;
6641
6642 return TRUE;
6643 }
6644
6645 /* Look through the relocs for a section during the first phase. */
6646
6647 static bfd_boolean
6648 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
6649 asection *sec, const Elf_Internal_Rela *relocs)
6650 {
6651 Elf_Internal_Shdr *symtab_hdr;
6652 struct elf_link_hash_entry **sym_hashes;
6653 const Elf_Internal_Rela *rel;
6654 const Elf_Internal_Rela *rel_end;
6655 asection *sreloc;
6656
6657 struct elf_aarch64_link_hash_table *htab;
6658
6659 if (bfd_link_relocatable (info))
6660 return TRUE;
6661
6662 BFD_ASSERT (is_aarch64_elf (abfd));
6663
6664 htab = elf_aarch64_hash_table (info);
6665 sreloc = NULL;
6666
6667 symtab_hdr = &elf_symtab_hdr (abfd);
6668 sym_hashes = elf_sym_hashes (abfd);
6669
6670 rel_end = relocs + sec->reloc_count;
6671 for (rel = relocs; rel < rel_end; rel++)
6672 {
6673 struct elf_link_hash_entry *h;
6674 unsigned long r_symndx;
6675 unsigned int r_type;
6676 bfd_reloc_code_real_type bfd_r_type;
6677 Elf_Internal_Sym *isym;
6678
6679 r_symndx = ELFNN_R_SYM (rel->r_info);
6680 r_type = ELFNN_R_TYPE (rel->r_info);
6681
6682 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
6683 {
6684 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
6685 r_symndx);
6686 return FALSE;
6687 }
6688
6689 if (r_symndx < symtab_hdr->sh_info)
6690 {
6691 /* A local symbol. */
6692 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6693 abfd, r_symndx);
6694 if (isym == NULL)
6695 return FALSE;
6696
6697 /* Check relocation against local STT_GNU_IFUNC symbol. */
6698 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6699 {
6700 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
6701 TRUE);
6702 if (h == NULL)
6703 return FALSE;
6704
6705 /* Fake a STT_GNU_IFUNC symbol. */
6706 h->type = STT_GNU_IFUNC;
6707 h->def_regular = 1;
6708 h->ref_regular = 1;
6709 h->forced_local = 1;
6710 h->root.type = bfd_link_hash_defined;
6711 }
6712 else
6713 h = NULL;
6714 }
6715 else
6716 {
6717 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6718 while (h->root.type == bfd_link_hash_indirect
6719 || h->root.type == bfd_link_hash_warning)
6720 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6721
6722 /* PR15323, ref flags aren't set for references in the same
6723 object. */
6724 h->root.non_ir_ref = 1;
6725 }
6726
6727 /* Could be done earlier, if h were already available. */
6728 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
6729
6730 if (h != NULL)
6731 {
6732 /* Create the ifunc sections for static executables. If we
6733 never see an indirect function symbol nor we are building
6734 a static executable, those sections will be empty and
6735 won't appear in output. */
6736 switch (bfd_r_type)
6737 {
6738 default:
6739 break;
6740
6741 case BFD_RELOC_AARCH64_ADD_LO12:
6742 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6743 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6744 case BFD_RELOC_AARCH64_CALL26:
6745 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6746 case BFD_RELOC_AARCH64_JUMP26:
6747 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6748 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6749 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6750 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6751 case BFD_RELOC_AARCH64_NN:
6752 if (htab->root.dynobj == NULL)
6753 htab->root.dynobj = abfd;
6754 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
6755 return FALSE;
6756 break;
6757 }
6758
6759 /* It is referenced by a non-shared object. */
6760 h->ref_regular = 1;
6761 h->root.non_ir_ref = 1;
6762 }
6763
6764 switch (bfd_r_type)
6765 {
6766 case BFD_RELOC_AARCH64_NN:
6767
6768 /* We don't need to handle relocs into sections not going into
6769 the "real" output. */
6770 if ((sec->flags & SEC_ALLOC) == 0)
6771 break;
6772
6773 if (h != NULL)
6774 {
6775 if (!bfd_link_pic (info))
6776 h->non_got_ref = 1;
6777
6778 h->plt.refcount += 1;
6779 h->pointer_equality_needed = 1;
6780 }
6781
6782 /* No need to do anything if we're not creating a shared
6783 object. */
6784 if (! bfd_link_pic (info))
6785 break;
6786
6787 {
6788 struct elf_dyn_relocs *p;
6789 struct elf_dyn_relocs **head;
6790
6791 /* We must copy these reloc types into the output file.
6792 Create a reloc section in dynobj and make room for
6793 this reloc. */
6794 if (sreloc == NULL)
6795 {
6796 if (htab->root.dynobj == NULL)
6797 htab->root.dynobj = abfd;
6798
6799 sreloc = _bfd_elf_make_dynamic_reloc_section
6800 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
6801
6802 if (sreloc == NULL)
6803 return FALSE;
6804 }
6805
6806 /* If this is a global symbol, we count the number of
6807 relocations we need for this symbol. */
6808 if (h != NULL)
6809 {
6810 struct elf_aarch64_link_hash_entry *eh;
6811 eh = (struct elf_aarch64_link_hash_entry *) h;
6812 head = &eh->dyn_relocs;
6813 }
6814 else
6815 {
6816 /* Track dynamic relocs needed for local syms too.
6817 We really need local syms available to do this
6818 easily. Oh well. */
6819
6820 asection *s;
6821 void **vpp;
6822
6823 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6824 abfd, r_symndx);
6825 if (isym == NULL)
6826 return FALSE;
6827
6828 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
6829 if (s == NULL)
6830 s = sec;
6831
6832 /* Beware of type punned pointers vs strict aliasing
6833 rules. */
6834 vpp = &(elf_section_data (s)->local_dynrel);
6835 head = (struct elf_dyn_relocs **) vpp;
6836 }
6837
6838 p = *head;
6839 if (p == NULL || p->sec != sec)
6840 {
6841 bfd_size_type amt = sizeof *p;
6842 p = ((struct elf_dyn_relocs *)
6843 bfd_zalloc (htab->root.dynobj, amt));
6844 if (p == NULL)
6845 return FALSE;
6846 p->next = *head;
6847 *head = p;
6848 p->sec = sec;
6849 }
6850
6851 p->count += 1;
6852
6853 }
6854 break;
6855
6856 /* RR: We probably want to keep a consistency check that
6857 there are no dangling GOT_PAGE relocs. */
6858 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6859 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6860 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6861 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6862 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6863 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6864 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6865 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6866 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6867 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6868 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
6869 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6870 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6871 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6872 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6873 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6874 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6875 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6876 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6877 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6878 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6879 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6880 {
6881 unsigned got_type;
6882 unsigned old_got_type;
6883
6884 got_type = aarch64_reloc_got_type (bfd_r_type);
6885
6886 if (h)
6887 {
6888 h->got.refcount += 1;
6889 old_got_type = elf_aarch64_hash_entry (h)->got_type;
6890 }
6891 else
6892 {
6893 struct elf_aarch64_local_symbol *locals;
6894
6895 if (!elfNN_aarch64_allocate_local_symbols
6896 (abfd, symtab_hdr->sh_info))
6897 return FALSE;
6898
6899 locals = elf_aarch64_locals (abfd);
6900 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
6901 locals[r_symndx].got_refcount += 1;
6902 old_got_type = locals[r_symndx].got_type;
6903 }
6904
6905 /* If a variable is accessed with both general dynamic TLS
6906 methods, two slots may be created. */
6907 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
6908 got_type |= old_got_type;
6909
6910 /* We will already have issued an error message if there
6911 is a TLS/non-TLS mismatch, based on the symbol type.
6912 So just combine any TLS types needed. */
6913 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
6914 && got_type != GOT_NORMAL)
6915 got_type |= old_got_type;
6916
6917 /* If the symbol is accessed by both IE and GD methods, we
6918 are able to relax. Turn off the GD flag, without
6919 messing up with any other kind of TLS types that may be
6920 involved. */
6921 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
6922 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
6923
6924 if (old_got_type != got_type)
6925 {
6926 if (h != NULL)
6927 elf_aarch64_hash_entry (h)->got_type = got_type;
6928 else
6929 {
6930 struct elf_aarch64_local_symbol *locals;
6931 locals = elf_aarch64_locals (abfd);
6932 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
6933 locals[r_symndx].got_type = got_type;
6934 }
6935 }
6936
6937 if (htab->root.dynobj == NULL)
6938 htab->root.dynobj = abfd;
6939 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
6940 return FALSE;
6941 break;
6942 }
6943
6944 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6945 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6946 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6947 case BFD_RELOC_AARCH64_MOVW_G3:
6948 if (bfd_link_pic (info))
6949 {
6950 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6951 (*_bfd_error_handler)
6952 (_("%B: relocation %s against `%s' can not be used when making "
6953 "a shared object; recompile with -fPIC"),
6954 abfd, elfNN_aarch64_howto_table[howto_index].name,
6955 (h) ? h->root.root.string : "a local symbol");
6956 bfd_set_error (bfd_error_bad_value);
6957 return FALSE;
6958 }
6959
6960 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6961 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6962 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
6963 if (h != NULL && bfd_link_executable (info))
6964 {
6965 /* If this reloc is in a read-only section, we might
6966 need a copy reloc. We can't check reliably at this
6967 stage whether the section is read-only, as input
6968 sections have not yet been mapped to output sections.
6969 Tentatively set the flag for now, and correct in
6970 adjust_dynamic_symbol. */
6971 h->non_got_ref = 1;
6972 h->plt.refcount += 1;
6973 h->pointer_equality_needed = 1;
6974 }
6975 /* FIXME:: RR need to handle these in shared libraries
6976 and essentially bomb out as these being non-PIC
6977 relocations in shared libraries. */
6978 break;
6979
6980 case BFD_RELOC_AARCH64_CALL26:
6981 case BFD_RELOC_AARCH64_JUMP26:
6982 /* If this is a local symbol then we resolve it
6983 directly without creating a PLT entry. */
6984 if (h == NULL)
6985 continue;
6986
6987 h->needs_plt = 1;
6988 if (h->plt.refcount <= 0)
6989 h->plt.refcount = 1;
6990 else
6991 h->plt.refcount += 1;
6992 break;
6993
6994 default:
6995 break;
6996 }
6997 }
6998
6999 return TRUE;
7000 }
7001
7002 /* Treat mapping symbols as special target symbols. */
7003
7004 static bfd_boolean
7005 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7006 asymbol *sym)
7007 {
7008 return bfd_is_aarch64_special_symbol_name (sym->name,
7009 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7010 }
7011
7012 /* This is a copy of elf_find_function () from elf.c except that
7013 AArch64 mapping symbols are ignored when looking for function names. */
7014
7015 static bfd_boolean
7016 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7017 asymbol **symbols,
7018 asection *section,
7019 bfd_vma offset,
7020 const char **filename_ptr,
7021 const char **functionname_ptr)
7022 {
7023 const char *filename = NULL;
7024 asymbol *func = NULL;
7025 bfd_vma low_func = 0;
7026 asymbol **p;
7027
7028 for (p = symbols; *p != NULL; p++)
7029 {
7030 elf_symbol_type *q;
7031
7032 q = (elf_symbol_type *) * p;
7033
7034 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7035 {
7036 default:
7037 break;
7038 case STT_FILE:
7039 filename = bfd_asymbol_name (&q->symbol);
7040 break;
7041 case STT_FUNC:
7042 case STT_NOTYPE:
7043 /* Skip mapping symbols. */
7044 if ((q->symbol.flags & BSF_LOCAL)
7045 && (bfd_is_aarch64_special_symbol_name
7046 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7047 continue;
7048 /* Fall through. */
7049 if (bfd_get_section (&q->symbol) == section
7050 && q->symbol.value >= low_func && q->symbol.value <= offset)
7051 {
7052 func = (asymbol *) q;
7053 low_func = q->symbol.value;
7054 }
7055 break;
7056 }
7057 }
7058
7059 if (func == NULL)
7060 return FALSE;
7061
7062 if (filename_ptr)
7063 *filename_ptr = filename;
7064 if (functionname_ptr)
7065 *functionname_ptr = bfd_asymbol_name (func);
7066
7067 return TRUE;
7068 }
7069
7070
7071 /* Find the nearest line to a particular section and offset, for error
7072 reporting. This code is a duplicate of the code in elf.c, except
7073 that it uses aarch64_elf_find_function. */
7074
7075 static bfd_boolean
7076 elfNN_aarch64_find_nearest_line (bfd *abfd,
7077 asymbol **symbols,
7078 asection *section,
7079 bfd_vma offset,
7080 const char **filename_ptr,
7081 const char **functionname_ptr,
7082 unsigned int *line_ptr,
7083 unsigned int *discriminator_ptr)
7084 {
7085 bfd_boolean found = FALSE;
7086
7087 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7088 filename_ptr, functionname_ptr,
7089 line_ptr, discriminator_ptr,
7090 dwarf_debug_sections, 0,
7091 &elf_tdata (abfd)->dwarf2_find_line_info))
7092 {
7093 if (!*functionname_ptr)
7094 aarch64_elf_find_function (abfd, symbols, section, offset,
7095 *filename_ptr ? NULL : filename_ptr,
7096 functionname_ptr);
7097
7098 return TRUE;
7099 }
7100
7101 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7102 toolchain uses DWARF1. */
7103
7104 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7105 &found, filename_ptr,
7106 functionname_ptr, line_ptr,
7107 &elf_tdata (abfd)->line_info))
7108 return FALSE;
7109
7110 if (found && (*functionname_ptr || *line_ptr))
7111 return TRUE;
7112
7113 if (symbols == NULL)
7114 return FALSE;
7115
7116 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
7117 filename_ptr, functionname_ptr))
7118 return FALSE;
7119
7120 *line_ptr = 0;
7121 return TRUE;
7122 }
7123
7124 static bfd_boolean
7125 elfNN_aarch64_find_inliner_info (bfd *abfd,
7126 const char **filename_ptr,
7127 const char **functionname_ptr,
7128 unsigned int *line_ptr)
7129 {
7130 bfd_boolean found;
7131 found = _bfd_dwarf2_find_inliner_info
7132 (abfd, filename_ptr,
7133 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7134 return found;
7135 }
7136
7137
7138 static void
7139 elfNN_aarch64_post_process_headers (bfd *abfd,
7140 struct bfd_link_info *link_info)
7141 {
7142 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
7143
7144 i_ehdrp = elf_elfheader (abfd);
7145 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
7146
7147 _bfd_elf_post_process_headers (abfd, link_info);
7148 }
7149
7150 static enum elf_reloc_type_class
7151 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7152 const asection *rel_sec ATTRIBUTE_UNUSED,
7153 const Elf_Internal_Rela *rela)
7154 {
7155 switch ((int) ELFNN_R_TYPE (rela->r_info))
7156 {
7157 case AARCH64_R (RELATIVE):
7158 return reloc_class_relative;
7159 case AARCH64_R (JUMP_SLOT):
7160 return reloc_class_plt;
7161 case AARCH64_R (COPY):
7162 return reloc_class_copy;
7163 default:
7164 return reloc_class_normal;
7165 }
7166 }
7167
7168 /* Handle an AArch64 specific section when reading an object file. This is
7169 called when bfd_section_from_shdr finds a section with an unknown
7170 type. */
7171
7172 static bfd_boolean
7173 elfNN_aarch64_section_from_shdr (bfd *abfd,
7174 Elf_Internal_Shdr *hdr,
7175 const char *name, int shindex)
7176 {
7177 /* There ought to be a place to keep ELF backend specific flags, but
7178 at the moment there isn't one. We just keep track of the
7179 sections by their name, instead. Fortunately, the ABI gives
7180 names for all the AArch64 specific sections, so we will probably get
7181 away with this. */
7182 switch (hdr->sh_type)
7183 {
7184 case SHT_AARCH64_ATTRIBUTES:
7185 break;
7186
7187 default:
7188 return FALSE;
7189 }
7190
7191 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7192 return FALSE;
7193
7194 return TRUE;
7195 }
7196
7197 /* A structure used to record a list of sections, independently
7198 of the next and prev fields in the asection structure. */
7199 typedef struct section_list
7200 {
7201 asection *sec;
7202 struct section_list *next;
7203 struct section_list *prev;
7204 }
7205 section_list;
7206
7207 /* Unfortunately we need to keep a list of sections for which
7208 an _aarch64_elf_section_data structure has been allocated. This
7209 is because it is possible for functions like elfNN_aarch64_write_section
7210 to be called on a section which has had an elf_data_structure
7211 allocated for it (and so the used_by_bfd field is valid) but
7212 for which the AArch64 extended version of this structure - the
7213 _aarch64_elf_section_data structure - has not been allocated. */
7214 static section_list *sections_with_aarch64_elf_section_data = NULL;
7215
7216 static void
7217 record_section_with_aarch64_elf_section_data (asection *sec)
7218 {
7219 struct section_list *entry;
7220
7221 entry = bfd_malloc (sizeof (*entry));
7222 if (entry == NULL)
7223 return;
7224 entry->sec = sec;
7225 entry->next = sections_with_aarch64_elf_section_data;
7226 entry->prev = NULL;
7227 if (entry->next != NULL)
7228 entry->next->prev = entry;
7229 sections_with_aarch64_elf_section_data = entry;
7230 }
7231
7232 static struct section_list *
7233 find_aarch64_elf_section_entry (asection *sec)
7234 {
7235 struct section_list *entry;
7236 static struct section_list *last_entry = NULL;
7237
7238 /* This is a short cut for the typical case where the sections are added
7239 to the sections_with_aarch64_elf_section_data list in forward order and
7240 then looked up here in backwards order. This makes a real difference
7241 to the ld-srec/sec64k.exp linker test. */
7242 entry = sections_with_aarch64_elf_section_data;
7243 if (last_entry != NULL)
7244 {
7245 if (last_entry->sec == sec)
7246 entry = last_entry;
7247 else if (last_entry->next != NULL && last_entry->next->sec == sec)
7248 entry = last_entry->next;
7249 }
7250
7251 for (; entry; entry = entry->next)
7252 if (entry->sec == sec)
7253 break;
7254
7255 if (entry)
7256 /* Record the entry prior to this one - it is the entry we are
7257 most likely to want to locate next time. Also this way if we
7258 have been called from
7259 unrecord_section_with_aarch64_elf_section_data () we will not
7260 be caching a pointer that is about to be freed. */
7261 last_entry = entry->prev;
7262
7263 return entry;
7264 }
7265
7266 static void
7267 unrecord_section_with_aarch64_elf_section_data (asection *sec)
7268 {
7269 struct section_list *entry;
7270
7271 entry = find_aarch64_elf_section_entry (sec);
7272
7273 if (entry)
7274 {
7275 if (entry->prev != NULL)
7276 entry->prev->next = entry->next;
7277 if (entry->next != NULL)
7278 entry->next->prev = entry->prev;
7279 if (entry == sections_with_aarch64_elf_section_data)
7280 sections_with_aarch64_elf_section_data = entry->next;
7281 free (entry);
7282 }
7283 }
7284
7285
7286 typedef struct
7287 {
7288 void *finfo;
7289 struct bfd_link_info *info;
7290 asection *sec;
7291 int sec_shndx;
7292 int (*func) (void *, const char *, Elf_Internal_Sym *,
7293 asection *, struct elf_link_hash_entry *);
7294 } output_arch_syminfo;
7295
7296 enum map_symbol_type
7297 {
7298 AARCH64_MAP_INSN,
7299 AARCH64_MAP_DATA
7300 };
7301
7302
7303 /* Output a single mapping symbol. */
7304
7305 static bfd_boolean
7306 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
7307 enum map_symbol_type type, bfd_vma offset)
7308 {
7309 static const char *names[2] = { "$x", "$d" };
7310 Elf_Internal_Sym sym;
7311
7312 sym.st_value = (osi->sec->output_section->vma
7313 + osi->sec->output_offset + offset);
7314 sym.st_size = 0;
7315 sym.st_other = 0;
7316 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7317 sym.st_shndx = osi->sec_shndx;
7318 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
7319 }
7320
7321 /* Output a single local symbol for a generated stub. */
7322
7323 static bfd_boolean
7324 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
7325 bfd_vma offset, bfd_vma size)
7326 {
7327 Elf_Internal_Sym sym;
7328
7329 sym.st_value = (osi->sec->output_section->vma
7330 + osi->sec->output_offset + offset);
7331 sym.st_size = size;
7332 sym.st_other = 0;
7333 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7334 sym.st_shndx = osi->sec_shndx;
7335 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7336 }
7337
7338 static bfd_boolean
7339 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7340 {
7341 struct elf_aarch64_stub_hash_entry *stub_entry;
7342 asection *stub_sec;
7343 bfd_vma addr;
7344 char *stub_name;
7345 output_arch_syminfo *osi;
7346
7347 /* Massage our args to the form they really have. */
7348 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
7349 osi = (output_arch_syminfo *) in_arg;
7350
7351 stub_sec = stub_entry->stub_sec;
7352
7353 /* Ensure this stub is attached to the current section being
7354 processed. */
7355 if (stub_sec != osi->sec)
7356 return TRUE;
7357
7358 addr = (bfd_vma) stub_entry->stub_offset;
7359
7360 stub_name = stub_entry->output_name;
7361
7362 switch (stub_entry->stub_type)
7363 {
7364 case aarch64_stub_adrp_branch:
7365 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7366 sizeof (aarch64_adrp_branch_stub)))
7367 return FALSE;
7368 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7369 return FALSE;
7370 break;
7371 case aarch64_stub_long_branch:
7372 if (!elfNN_aarch64_output_stub_sym
7373 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
7374 return FALSE;
7375 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7376 return FALSE;
7377 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
7378 return FALSE;
7379 break;
7380 case aarch64_stub_erratum_835769_veneer:
7381 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7382 sizeof (aarch64_erratum_835769_stub)))
7383 return FALSE;
7384 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7385 return FALSE;
7386 break;
7387 case aarch64_stub_erratum_843419_veneer:
7388 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7389 sizeof (aarch64_erratum_843419_stub)))
7390 return FALSE;
7391 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7392 return FALSE;
7393 break;
7394
7395 default:
7396 abort ();
7397 }
7398
7399 return TRUE;
7400 }
7401
7402 /* Output mapping symbols for linker generated sections. */
7403
7404 static bfd_boolean
7405 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
7406 struct bfd_link_info *info,
7407 void *finfo,
7408 int (*func) (void *, const char *,
7409 Elf_Internal_Sym *,
7410 asection *,
7411 struct elf_link_hash_entry
7412 *))
7413 {
7414 output_arch_syminfo osi;
7415 struct elf_aarch64_link_hash_table *htab;
7416
7417 htab = elf_aarch64_hash_table (info);
7418
7419 osi.finfo = finfo;
7420 osi.info = info;
7421 osi.func = func;
7422
7423 /* Long calls stubs. */
7424 if (htab->stub_bfd && htab->stub_bfd->sections)
7425 {
7426 asection *stub_sec;
7427
7428 for (stub_sec = htab->stub_bfd->sections;
7429 stub_sec != NULL; stub_sec = stub_sec->next)
7430 {
7431 /* Ignore non-stub sections. */
7432 if (!strstr (stub_sec->name, STUB_SUFFIX))
7433 continue;
7434
7435 osi.sec = stub_sec;
7436
7437 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7438 (output_bfd, osi.sec->output_section);
7439
7440 /* The first instruction in a stub is always a branch. */
7441 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
7442 return FALSE;
7443
7444 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
7445 &osi);
7446 }
7447 }
7448
7449 /* Finally, output mapping symbols for the PLT. */
7450 if (!htab->root.splt || htab->root.splt->size == 0)
7451 return TRUE;
7452
7453 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7454 (output_bfd, htab->root.splt->output_section);
7455 osi.sec = htab->root.splt;
7456
7457 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
7458
7459 return TRUE;
7460
7461 }
7462
7463 /* Allocate target specific section data. */
7464
7465 static bfd_boolean
7466 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
7467 {
7468 if (!sec->used_by_bfd)
7469 {
7470 _aarch64_elf_section_data *sdata;
7471 bfd_size_type amt = sizeof (*sdata);
7472
7473 sdata = bfd_zalloc (abfd, amt);
7474 if (sdata == NULL)
7475 return FALSE;
7476 sec->used_by_bfd = sdata;
7477 }
7478
7479 record_section_with_aarch64_elf_section_data (sec);
7480
7481 return _bfd_elf_new_section_hook (abfd, sec);
7482 }
7483
7484
7485 static void
7486 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
7487 asection *sec,
7488 void *ignore ATTRIBUTE_UNUSED)
7489 {
7490 unrecord_section_with_aarch64_elf_section_data (sec);
7491 }
7492
7493 static bfd_boolean
7494 elfNN_aarch64_close_and_cleanup (bfd *abfd)
7495 {
7496 if (abfd->sections)
7497 bfd_map_over_sections (abfd,
7498 unrecord_section_via_map_over_sections, NULL);
7499
7500 return _bfd_elf_close_and_cleanup (abfd);
7501 }
7502
7503 static bfd_boolean
7504 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
7505 {
7506 if (abfd->sections)
7507 bfd_map_over_sections (abfd,
7508 unrecord_section_via_map_over_sections, NULL);
7509
7510 return _bfd_free_cached_info (abfd);
7511 }
7512
7513 /* Create dynamic sections. This is different from the ARM backend in that
7514 the got, plt, gotplt and their relocation sections are all created in the
7515 standard part of the bfd elf backend. */
7516
7517 static bfd_boolean
7518 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
7519 struct bfd_link_info *info)
7520 {
7521 struct elf_aarch64_link_hash_table *htab;
7522
7523 /* We need to create .got section. */
7524 if (!aarch64_elf_create_got_section (dynobj, info))
7525 return FALSE;
7526
7527 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
7528 return FALSE;
7529
7530 htab = elf_aarch64_hash_table (info);
7531 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
7532 if (!bfd_link_pic (info))
7533 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
7534
7535 if (!htab->sdynbss || (!bfd_link_pic (info) && !htab->srelbss))
7536 abort ();
7537
7538 return TRUE;
7539 }
7540
7541
7542 /* Allocate space in .plt, .got and associated reloc sections for
7543 dynamic relocs. */
7544
7545 static bfd_boolean
7546 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7547 {
7548 struct bfd_link_info *info;
7549 struct elf_aarch64_link_hash_table *htab;
7550 struct elf_aarch64_link_hash_entry *eh;
7551 struct elf_dyn_relocs *p;
7552
7553 /* An example of a bfd_link_hash_indirect symbol is versioned
7554 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
7555 -> __gxx_personality_v0(bfd_link_hash_defined)
7556
7557 There is no need to process bfd_link_hash_indirect symbols here
7558 because we will also be presented with the concrete instance of
7559 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
7560 called to copy all relevant data from the generic to the concrete
7561 symbol instance.
7562 */
7563 if (h->root.type == bfd_link_hash_indirect)
7564 return TRUE;
7565
7566 if (h->root.type == bfd_link_hash_warning)
7567 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7568
7569 info = (struct bfd_link_info *) inf;
7570 htab = elf_aarch64_hash_table (info);
7571
7572 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
7573 here if it is defined and referenced in a non-shared object. */
7574 if (h->type == STT_GNU_IFUNC
7575 && h->def_regular)
7576 return TRUE;
7577 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
7578 {
7579 /* Make sure this symbol is output as a dynamic symbol.
7580 Undefined weak syms won't yet be marked as dynamic. */
7581 if (h->dynindx == -1 && !h->forced_local)
7582 {
7583 if (!bfd_elf_link_record_dynamic_symbol (info, h))
7584 return FALSE;
7585 }
7586
7587 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
7588 {
7589 asection *s = htab->root.splt;
7590
7591 /* If this is the first .plt entry, make room for the special
7592 first entry. */
7593 if (s->size == 0)
7594 s->size += htab->plt_header_size;
7595
7596 h->plt.offset = s->size;
7597
7598 /* If this symbol is not defined in a regular file, and we are
7599 not generating a shared library, then set the symbol to this
7600 location in the .plt. This is required to make function
7601 pointers compare as equal between the normal executable and
7602 the shared library. */
7603 if (!bfd_link_pic (info) && !h->def_regular)
7604 {
7605 h->root.u.def.section = s;
7606 h->root.u.def.value = h->plt.offset;
7607 }
7608
7609 /* Make room for this entry. For now we only create the
7610 small model PLT entries. We later need to find a way
7611 of relaxing into these from the large model PLT entries. */
7612 s->size += PLT_SMALL_ENTRY_SIZE;
7613
7614 /* We also need to make an entry in the .got.plt section, which
7615 will be placed in the .got section by the linker script. */
7616 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
7617
7618 /* We also need to make an entry in the .rela.plt section. */
7619 htab->root.srelplt->size += RELOC_SIZE (htab);
7620
7621 /* We need to ensure that all GOT entries that serve the PLT
7622 are consecutive with the special GOT slots [0] [1] and
7623 [2]. Any addtional relocations, such as
7624 R_AARCH64_TLSDESC, must be placed after the PLT related
7625 entries. We abuse the reloc_count such that during
7626 sizing we adjust reloc_count to indicate the number of
7627 PLT related reserved entries. In subsequent phases when
7628 filling in the contents of the reloc entries, PLT related
7629 entries are placed by computing their PLT index (0
7630 .. reloc_count). While other none PLT relocs are placed
7631 at the slot indicated by reloc_count and reloc_count is
7632 updated. */
7633
7634 htab->root.srelplt->reloc_count++;
7635 }
7636 else
7637 {
7638 h->plt.offset = (bfd_vma) - 1;
7639 h->needs_plt = 0;
7640 }
7641 }
7642 else
7643 {
7644 h->plt.offset = (bfd_vma) - 1;
7645 h->needs_plt = 0;
7646 }
7647
7648 eh = (struct elf_aarch64_link_hash_entry *) h;
7649 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
7650
7651 if (h->got.refcount > 0)
7652 {
7653 bfd_boolean dyn;
7654 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
7655
7656 h->got.offset = (bfd_vma) - 1;
7657
7658 dyn = htab->root.dynamic_sections_created;
7659
7660 /* Make sure this symbol is output as a dynamic symbol.
7661 Undefined weak syms won't yet be marked as dynamic. */
7662 if (dyn && h->dynindx == -1 && !h->forced_local)
7663 {
7664 if (!bfd_elf_link_record_dynamic_symbol (info, h))
7665 return FALSE;
7666 }
7667
7668 if (got_type == GOT_UNKNOWN)
7669 {
7670 }
7671 else if (got_type == GOT_NORMAL)
7672 {
7673 h->got.offset = htab->root.sgot->size;
7674 htab->root.sgot->size += GOT_ENTRY_SIZE;
7675 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7676 || h->root.type != bfd_link_hash_undefweak)
7677 && (bfd_link_pic (info)
7678 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
7679 {
7680 htab->root.srelgot->size += RELOC_SIZE (htab);
7681 }
7682 }
7683 else
7684 {
7685 int indx;
7686 if (got_type & GOT_TLSDESC_GD)
7687 {
7688 eh->tlsdesc_got_jump_table_offset =
7689 (htab->root.sgotplt->size
7690 - aarch64_compute_jump_table_size (htab));
7691 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
7692 h->got.offset = (bfd_vma) - 2;
7693 }
7694
7695 if (got_type & GOT_TLS_GD)
7696 {
7697 h->got.offset = htab->root.sgot->size;
7698 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
7699 }
7700
7701 if (got_type & GOT_TLS_IE)
7702 {
7703 h->got.offset = htab->root.sgot->size;
7704 htab->root.sgot->size += GOT_ENTRY_SIZE;
7705 }
7706
7707 indx = h && h->dynindx != -1 ? h->dynindx : 0;
7708 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7709 || h->root.type != bfd_link_hash_undefweak)
7710 && (bfd_link_pic (info)
7711 || indx != 0
7712 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
7713 {
7714 if (got_type & GOT_TLSDESC_GD)
7715 {
7716 htab->root.srelplt->size += RELOC_SIZE (htab);
7717 /* Note reloc_count not incremented here! We have
7718 already adjusted reloc_count for this relocation
7719 type. */
7720
7721 /* TLSDESC PLT is now needed, but not yet determined. */
7722 htab->tlsdesc_plt = (bfd_vma) - 1;
7723 }
7724
7725 if (got_type & GOT_TLS_GD)
7726 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
7727
7728 if (got_type & GOT_TLS_IE)
7729 htab->root.srelgot->size += RELOC_SIZE (htab);
7730 }
7731 }
7732 }
7733 else
7734 {
7735 h->got.offset = (bfd_vma) - 1;
7736 }
7737
7738 if (eh->dyn_relocs == NULL)
7739 return TRUE;
7740
7741 /* In the shared -Bsymbolic case, discard space allocated for
7742 dynamic pc-relative relocs against symbols which turn out to be
7743 defined in regular objects. For the normal shared case, discard
7744 space for pc-relative relocs that have become local due to symbol
7745 visibility changes. */
7746
7747 if (bfd_link_pic (info))
7748 {
7749 /* Relocs that use pc_count are those that appear on a call
7750 insn, or certain REL relocs that can generated via assembly.
7751 We want calls to protected symbols to resolve directly to the
7752 function rather than going via the plt. If people want
7753 function pointer comparisons to work as expected then they
7754 should avoid writing weird assembly. */
7755 if (SYMBOL_CALLS_LOCAL (info, h))
7756 {
7757 struct elf_dyn_relocs **pp;
7758
7759 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
7760 {
7761 p->count -= p->pc_count;
7762 p->pc_count = 0;
7763 if (p->count == 0)
7764 *pp = p->next;
7765 else
7766 pp = &p->next;
7767 }
7768 }
7769
7770 /* Also discard relocs on undefined weak syms with non-default
7771 visibility. */
7772 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
7773 {
7774 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
7775 eh->dyn_relocs = NULL;
7776
7777 /* Make sure undefined weak symbols are output as a dynamic
7778 symbol in PIEs. */
7779 else if (h->dynindx == -1
7780 && !h->forced_local
7781 && !bfd_elf_link_record_dynamic_symbol (info, h))
7782 return FALSE;
7783 }
7784
7785 }
7786 else if (ELIMINATE_COPY_RELOCS)
7787 {
7788 /* For the non-shared case, discard space for relocs against
7789 symbols which turn out to need copy relocs or are not
7790 dynamic. */
7791
7792 if (!h->non_got_ref
7793 && ((h->def_dynamic
7794 && !h->def_regular)
7795 || (htab->root.dynamic_sections_created
7796 && (h->root.type == bfd_link_hash_undefweak
7797 || h->root.type == bfd_link_hash_undefined))))
7798 {
7799 /* Make sure this symbol is output as a dynamic symbol.
7800 Undefined weak syms won't yet be marked as dynamic. */
7801 if (h->dynindx == -1
7802 && !h->forced_local
7803 && !bfd_elf_link_record_dynamic_symbol (info, h))
7804 return FALSE;
7805
7806 /* If that succeeded, we know we'll be keeping all the
7807 relocs. */
7808 if (h->dynindx != -1)
7809 goto keep;
7810 }
7811
7812 eh->dyn_relocs = NULL;
7813
7814 keep:;
7815 }
7816
7817 /* Finally, allocate space. */
7818 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7819 {
7820 asection *sreloc;
7821
7822 sreloc = elf_section_data (p->sec)->sreloc;
7823
7824 BFD_ASSERT (sreloc != NULL);
7825
7826 sreloc->size += p->count * RELOC_SIZE (htab);
7827 }
7828
7829 return TRUE;
7830 }
7831
7832 /* Allocate space in .plt, .got and associated reloc sections for
7833 ifunc dynamic relocs. */
7834
7835 static bfd_boolean
7836 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
7837 void *inf)
7838 {
7839 struct bfd_link_info *info;
7840 struct elf_aarch64_link_hash_table *htab;
7841 struct elf_aarch64_link_hash_entry *eh;
7842
7843 /* An example of a bfd_link_hash_indirect symbol is versioned
7844 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
7845 -> __gxx_personality_v0(bfd_link_hash_defined)
7846
7847 There is no need to process bfd_link_hash_indirect symbols here
7848 because we will also be presented with the concrete instance of
7849 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
7850 called to copy all relevant data from the generic to the concrete
7851 symbol instance.
7852 */
7853 if (h->root.type == bfd_link_hash_indirect)
7854 return TRUE;
7855
7856 if (h->root.type == bfd_link_hash_warning)
7857 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7858
7859 info = (struct bfd_link_info *) inf;
7860 htab = elf_aarch64_hash_table (info);
7861
7862 eh = (struct elf_aarch64_link_hash_entry *) h;
7863
7864 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
7865 here if it is defined and referenced in a non-shared object. */
7866 if (h->type == STT_GNU_IFUNC
7867 && h->def_regular)
7868 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
7869 &eh->dyn_relocs,
7870 htab->plt_entry_size,
7871 htab->plt_header_size,
7872 GOT_ENTRY_SIZE);
7873 return TRUE;
7874 }
7875
7876 /* Allocate space in .plt, .got and associated reloc sections for
7877 local dynamic relocs. */
7878
7879 static bfd_boolean
7880 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
7881 {
7882 struct elf_link_hash_entry *h
7883 = (struct elf_link_hash_entry *) *slot;
7884
7885 if (h->type != STT_GNU_IFUNC
7886 || !h->def_regular
7887 || !h->ref_regular
7888 || !h->forced_local
7889 || h->root.type != bfd_link_hash_defined)
7890 abort ();
7891
7892 return elfNN_aarch64_allocate_dynrelocs (h, inf);
7893 }
7894
7895 /* Allocate space in .plt, .got and associated reloc sections for
7896 local ifunc dynamic relocs. */
7897
7898 static bfd_boolean
7899 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
7900 {
7901 struct elf_link_hash_entry *h
7902 = (struct elf_link_hash_entry *) *slot;
7903
7904 if (h->type != STT_GNU_IFUNC
7905 || !h->def_regular
7906 || !h->ref_regular
7907 || !h->forced_local
7908 || h->root.type != bfd_link_hash_defined)
7909 abort ();
7910
7911 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
7912 }
7913
7914 /* Find any dynamic relocs that apply to read-only sections. */
7915
7916 static bfd_boolean
7917 aarch64_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
7918 {
7919 struct elf_aarch64_link_hash_entry * eh;
7920 struct elf_dyn_relocs * p;
7921
7922 eh = (struct elf_aarch64_link_hash_entry *) h;
7923 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7924 {
7925 asection *s = p->sec;
7926
7927 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7928 {
7929 struct bfd_link_info *info = (struct bfd_link_info *) inf;
7930
7931 info->flags |= DF_TEXTREL;
7932
7933 /* Not an error, just cut short the traversal. */
7934 return FALSE;
7935 }
7936 }
7937 return TRUE;
7938 }
7939
7940 /* This is the most important function of all . Innocuosly named
7941 though ! */
7942 static bfd_boolean
7943 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
7944 struct bfd_link_info *info)
7945 {
7946 struct elf_aarch64_link_hash_table *htab;
7947 bfd *dynobj;
7948 asection *s;
7949 bfd_boolean relocs;
7950 bfd *ibfd;
7951
7952 htab = elf_aarch64_hash_table ((info));
7953 dynobj = htab->root.dynobj;
7954
7955 BFD_ASSERT (dynobj != NULL);
7956
7957 if (htab->root.dynamic_sections_created)
7958 {
7959 if (bfd_link_executable (info) && !info->nointerp)
7960 {
7961 s = bfd_get_linker_section (dynobj, ".interp");
7962 if (s == NULL)
7963 abort ();
7964 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
7965 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
7966 }
7967 }
7968
7969 /* Set up .got offsets for local syms, and space for local dynamic
7970 relocs. */
7971 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7972 {
7973 struct elf_aarch64_local_symbol *locals = NULL;
7974 Elf_Internal_Shdr *symtab_hdr;
7975 asection *srel;
7976 unsigned int i;
7977
7978 if (!is_aarch64_elf (ibfd))
7979 continue;
7980
7981 for (s = ibfd->sections; s != NULL; s = s->next)
7982 {
7983 struct elf_dyn_relocs *p;
7984
7985 for (p = (struct elf_dyn_relocs *)
7986 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
7987 {
7988 if (!bfd_is_abs_section (p->sec)
7989 && bfd_is_abs_section (p->sec->output_section))
7990 {
7991 /* Input section has been discarded, either because
7992 it is a copy of a linkonce section or due to
7993 linker script /DISCARD/, so we'll be discarding
7994 the relocs too. */
7995 }
7996 else if (p->count != 0)
7997 {
7998 srel = elf_section_data (p->sec)->sreloc;
7999 srel->size += p->count * RELOC_SIZE (htab);
8000 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8001 info->flags |= DF_TEXTREL;
8002 }
8003 }
8004 }
8005
8006 locals = elf_aarch64_locals (ibfd);
8007 if (!locals)
8008 continue;
8009
8010 symtab_hdr = &elf_symtab_hdr (ibfd);
8011 srel = htab->root.srelgot;
8012 for (i = 0; i < symtab_hdr->sh_info; i++)
8013 {
8014 locals[i].got_offset = (bfd_vma) - 1;
8015 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8016 if (locals[i].got_refcount > 0)
8017 {
8018 unsigned got_type = locals[i].got_type;
8019 if (got_type & GOT_TLSDESC_GD)
8020 {
8021 locals[i].tlsdesc_got_jump_table_offset =
8022 (htab->root.sgotplt->size
8023 - aarch64_compute_jump_table_size (htab));
8024 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8025 locals[i].got_offset = (bfd_vma) - 2;
8026 }
8027
8028 if (got_type & GOT_TLS_GD)
8029 {
8030 locals[i].got_offset = htab->root.sgot->size;
8031 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8032 }
8033
8034 if (got_type & GOT_TLS_IE
8035 || got_type & GOT_NORMAL)
8036 {
8037 locals[i].got_offset = htab->root.sgot->size;
8038 htab->root.sgot->size += GOT_ENTRY_SIZE;
8039 }
8040
8041 if (got_type == GOT_UNKNOWN)
8042 {
8043 }
8044
8045 if (bfd_link_pic (info))
8046 {
8047 if (got_type & GOT_TLSDESC_GD)
8048 {
8049 htab->root.srelplt->size += RELOC_SIZE (htab);
8050 /* Note RELOC_COUNT not incremented here! */
8051 htab->tlsdesc_plt = (bfd_vma) - 1;
8052 }
8053
8054 if (got_type & GOT_TLS_GD)
8055 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8056
8057 if (got_type & GOT_TLS_IE
8058 || got_type & GOT_NORMAL)
8059 htab->root.srelgot->size += RELOC_SIZE (htab);
8060 }
8061 }
8062 else
8063 {
8064 locals[i].got_refcount = (bfd_vma) - 1;
8065 }
8066 }
8067 }
8068
8069
8070 /* Allocate global sym .plt and .got entries, and space for global
8071 sym dynamic relocs. */
8072 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8073 info);
8074
8075 /* Allocate global ifunc sym .plt and .got entries, and space for global
8076 ifunc sym dynamic relocs. */
8077 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8078 info);
8079
8080 /* Allocate .plt and .got entries, and space for local symbols. */
8081 htab_traverse (htab->loc_hash_table,
8082 elfNN_aarch64_allocate_local_dynrelocs,
8083 info);
8084
8085 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8086 htab_traverse (htab->loc_hash_table,
8087 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8088 info);
8089
8090 /* For every jump slot reserved in the sgotplt, reloc_count is
8091 incremented. However, when we reserve space for TLS descriptors,
8092 it's not incremented, so in order to compute the space reserved
8093 for them, it suffices to multiply the reloc count by the jump
8094 slot size. */
8095
8096 if (htab->root.srelplt)
8097 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
8098
8099 if (htab->tlsdesc_plt)
8100 {
8101 if (htab->root.splt->size == 0)
8102 htab->root.splt->size += PLT_ENTRY_SIZE;
8103
8104 htab->tlsdesc_plt = htab->root.splt->size;
8105 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
8106
8107 /* If we're not using lazy TLS relocations, don't generate the
8108 GOT entry required. */
8109 if (!(info->flags & DF_BIND_NOW))
8110 {
8111 htab->dt_tlsdesc_got = htab->root.sgot->size;
8112 htab->root.sgot->size += GOT_ENTRY_SIZE;
8113 }
8114 }
8115
8116 /* Init mapping symbols information to use later to distingush between
8117 code and data while scanning for errata. */
8118 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
8119 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8120 {
8121 if (!is_aarch64_elf (ibfd))
8122 continue;
8123 bfd_elfNN_aarch64_init_maps (ibfd);
8124 }
8125
8126 /* We now have determined the sizes of the various dynamic sections.
8127 Allocate memory for them. */
8128 relocs = FALSE;
8129 for (s = dynobj->sections; s != NULL; s = s->next)
8130 {
8131 if ((s->flags & SEC_LINKER_CREATED) == 0)
8132 continue;
8133
8134 if (s == htab->root.splt
8135 || s == htab->root.sgot
8136 || s == htab->root.sgotplt
8137 || s == htab->root.iplt
8138 || s == htab->root.igotplt || s == htab->sdynbss)
8139 {
8140 /* Strip this section if we don't need it; see the
8141 comment below. */
8142 }
8143 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8144 {
8145 if (s->size != 0 && s != htab->root.srelplt)
8146 relocs = TRUE;
8147
8148 /* We use the reloc_count field as a counter if we need
8149 to copy relocs into the output file. */
8150 if (s != htab->root.srelplt)
8151 s->reloc_count = 0;
8152 }
8153 else
8154 {
8155 /* It's not one of our sections, so don't allocate space. */
8156 continue;
8157 }
8158
8159 if (s->size == 0)
8160 {
8161 /* If we don't need this section, strip it from the
8162 output file. This is mostly to handle .rela.bss and
8163 .rela.plt. We must create both sections in
8164 create_dynamic_sections, because they must be created
8165 before the linker maps input sections to output
8166 sections. The linker does that before
8167 adjust_dynamic_symbol is called, and it is that
8168 function which decides whether anything needs to go
8169 into these sections. */
8170
8171 s->flags |= SEC_EXCLUDE;
8172 continue;
8173 }
8174
8175 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8176 continue;
8177
8178 /* Allocate memory for the section contents. We use bfd_zalloc
8179 here in case unused entries are not reclaimed before the
8180 section's contents are written out. This should not happen,
8181 but this way if it does, we get a R_AARCH64_NONE reloc instead
8182 of garbage. */
8183 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8184 if (s->contents == NULL)
8185 return FALSE;
8186 }
8187
8188 if (htab->root.dynamic_sections_created)
8189 {
8190 /* Add some entries to the .dynamic section. We fill in the
8191 values later, in elfNN_aarch64_finish_dynamic_sections, but we
8192 must add the entries now so that we get the correct size for
8193 the .dynamic section. The DT_DEBUG entry is filled in by the
8194 dynamic linker and used by the debugger. */
8195 #define add_dynamic_entry(TAG, VAL) \
8196 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8197
8198 if (bfd_link_executable (info))
8199 {
8200 if (!add_dynamic_entry (DT_DEBUG, 0))
8201 return FALSE;
8202 }
8203
8204 if (htab->root.splt->size != 0)
8205 {
8206 if (!add_dynamic_entry (DT_PLTGOT, 0)
8207 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8208 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8209 || !add_dynamic_entry (DT_JMPREL, 0))
8210 return FALSE;
8211
8212 if (htab->tlsdesc_plt
8213 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
8214 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
8215 return FALSE;
8216 }
8217
8218 if (relocs)
8219 {
8220 if (!add_dynamic_entry (DT_RELA, 0)
8221 || !add_dynamic_entry (DT_RELASZ, 0)
8222 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8223 return FALSE;
8224
8225 /* If any dynamic relocs apply to a read-only section,
8226 then we need a DT_TEXTREL entry. */
8227 if ((info->flags & DF_TEXTREL) == 0)
8228 elf_link_hash_traverse (& htab->root, aarch64_readonly_dynrelocs,
8229 info);
8230
8231 if ((info->flags & DF_TEXTREL) != 0)
8232 {
8233 if (!add_dynamic_entry (DT_TEXTREL, 0))
8234 return FALSE;
8235 }
8236 }
8237 }
8238 #undef add_dynamic_entry
8239
8240 return TRUE;
8241 }
8242
8243 static inline void
8244 elf_aarch64_update_plt_entry (bfd *output_bfd,
8245 bfd_reloc_code_real_type r_type,
8246 bfd_byte *plt_entry, bfd_vma value)
8247 {
8248 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
8249
8250 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
8251 }
8252
8253 static void
8254 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
8255 struct elf_aarch64_link_hash_table
8256 *htab, bfd *output_bfd,
8257 struct bfd_link_info *info)
8258 {
8259 bfd_byte *plt_entry;
8260 bfd_vma plt_index;
8261 bfd_vma got_offset;
8262 bfd_vma gotplt_entry_address;
8263 bfd_vma plt_entry_address;
8264 Elf_Internal_Rela rela;
8265 bfd_byte *loc;
8266 asection *plt, *gotplt, *relplt;
8267
8268 /* When building a static executable, use .iplt, .igot.plt and
8269 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8270 if (htab->root.splt != NULL)
8271 {
8272 plt = htab->root.splt;
8273 gotplt = htab->root.sgotplt;
8274 relplt = htab->root.srelplt;
8275 }
8276 else
8277 {
8278 plt = htab->root.iplt;
8279 gotplt = htab->root.igotplt;
8280 relplt = htab->root.irelplt;
8281 }
8282
8283 /* Get the index in the procedure linkage table which
8284 corresponds to this symbol. This is the index of this symbol
8285 in all the symbols for which we are making plt entries. The
8286 first entry in the procedure linkage table is reserved.
8287
8288 Get the offset into the .got table of the entry that
8289 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
8290 bytes. The first three are reserved for the dynamic linker.
8291
8292 For static executables, we don't reserve anything. */
8293
8294 if (plt == htab->root.splt)
8295 {
8296 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
8297 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
8298 }
8299 else
8300 {
8301 plt_index = h->plt.offset / htab->plt_entry_size;
8302 got_offset = plt_index * GOT_ENTRY_SIZE;
8303 }
8304
8305 plt_entry = plt->contents + h->plt.offset;
8306 plt_entry_address = plt->output_section->vma
8307 + plt->output_offset + h->plt.offset;
8308 gotplt_entry_address = gotplt->output_section->vma +
8309 gotplt->output_offset + got_offset;
8310
8311 /* Copy in the boiler-plate for the PLTn entry. */
8312 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
8313
8314 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8315 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8316 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8317 plt_entry,
8318 PG (gotplt_entry_address) -
8319 PG (plt_entry_address));
8320
8321 /* Fill in the lo12 bits for the load from the pltgot. */
8322 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8323 plt_entry + 4,
8324 PG_OFFSET (gotplt_entry_address));
8325
8326 /* Fill in the lo12 bits for the add from the pltgot entry. */
8327 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8328 plt_entry + 8,
8329 PG_OFFSET (gotplt_entry_address));
8330
8331 /* All the GOTPLT Entries are essentially initialized to PLT0. */
8332 bfd_put_NN (output_bfd,
8333 plt->output_section->vma + plt->output_offset,
8334 gotplt->contents + got_offset);
8335
8336 rela.r_offset = gotplt_entry_address;
8337
8338 if (h->dynindx == -1
8339 || ((bfd_link_executable (info)
8340 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8341 && h->def_regular
8342 && h->type == STT_GNU_IFUNC))
8343 {
8344 /* If an STT_GNU_IFUNC symbol is locally defined, generate
8345 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
8346 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
8347 rela.r_addend = (h->root.u.def.value
8348 + h->root.u.def.section->output_section->vma
8349 + h->root.u.def.section->output_offset);
8350 }
8351 else
8352 {
8353 /* Fill in the entry in the .rela.plt section. */
8354 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
8355 rela.r_addend = 0;
8356 }
8357
8358 /* Compute the relocation entry to used based on PLT index and do
8359 not adjust reloc_count. The reloc_count has already been adjusted
8360 to account for this entry. */
8361 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
8362 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8363 }
8364
8365 /* Size sections even though they're not dynamic. We use it to setup
8366 _TLS_MODULE_BASE_, if needed. */
8367
8368 static bfd_boolean
8369 elfNN_aarch64_always_size_sections (bfd *output_bfd,
8370 struct bfd_link_info *info)
8371 {
8372 asection *tls_sec;
8373
8374 if (bfd_link_relocatable (info))
8375 return TRUE;
8376
8377 tls_sec = elf_hash_table (info)->tls_sec;
8378
8379 if (tls_sec)
8380 {
8381 struct elf_link_hash_entry *tlsbase;
8382
8383 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
8384 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
8385
8386 if (tlsbase)
8387 {
8388 struct bfd_link_hash_entry *h = NULL;
8389 const struct elf_backend_data *bed =
8390 get_elf_backend_data (output_bfd);
8391
8392 if (!(_bfd_generic_link_add_one_symbol
8393 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
8394 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
8395 return FALSE;
8396
8397 tlsbase->type = STT_TLS;
8398 tlsbase = (struct elf_link_hash_entry *) h;
8399 tlsbase->def_regular = 1;
8400 tlsbase->other = STV_HIDDEN;
8401 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
8402 }
8403 }
8404
8405 return TRUE;
8406 }
8407
8408 /* Finish up dynamic symbol handling. We set the contents of various
8409 dynamic sections here. */
8410 static bfd_boolean
8411 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
8412 struct bfd_link_info *info,
8413 struct elf_link_hash_entry *h,
8414 Elf_Internal_Sym *sym)
8415 {
8416 struct elf_aarch64_link_hash_table *htab;
8417 htab = elf_aarch64_hash_table (info);
8418
8419 if (h->plt.offset != (bfd_vma) - 1)
8420 {
8421 asection *plt, *gotplt, *relplt;
8422
8423 /* This symbol has an entry in the procedure linkage table. Set
8424 it up. */
8425
8426 /* When building a static executable, use .iplt, .igot.plt and
8427 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8428 if (htab->root.splt != NULL)
8429 {
8430 plt = htab->root.splt;
8431 gotplt = htab->root.sgotplt;
8432 relplt = htab->root.srelplt;
8433 }
8434 else
8435 {
8436 plt = htab->root.iplt;
8437 gotplt = htab->root.igotplt;
8438 relplt = htab->root.irelplt;
8439 }
8440
8441 /* This symbol has an entry in the procedure linkage table. Set
8442 it up. */
8443 if ((h->dynindx == -1
8444 && !((h->forced_local || bfd_link_executable (info))
8445 && h->def_regular
8446 && h->type == STT_GNU_IFUNC))
8447 || plt == NULL
8448 || gotplt == NULL
8449 || relplt == NULL)
8450 abort ();
8451
8452 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
8453 if (!h->def_regular)
8454 {
8455 /* Mark the symbol as undefined, rather than as defined in
8456 the .plt section. */
8457 sym->st_shndx = SHN_UNDEF;
8458 /* If the symbol is weak we need to clear the value.
8459 Otherwise, the PLT entry would provide a definition for
8460 the symbol even if the symbol wasn't defined anywhere,
8461 and so the symbol would never be NULL. Leave the value if
8462 there were any relocations where pointer equality matters
8463 (this is a clue for the dynamic linker, to make function
8464 pointer comparisons work between an application and shared
8465 library). */
8466 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
8467 sym->st_value = 0;
8468 }
8469 }
8470
8471 if (h->got.offset != (bfd_vma) - 1
8472 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
8473 {
8474 Elf_Internal_Rela rela;
8475 bfd_byte *loc;
8476
8477 /* This symbol has an entry in the global offset table. Set it
8478 up. */
8479 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
8480 abort ();
8481
8482 rela.r_offset = (htab->root.sgot->output_section->vma
8483 + htab->root.sgot->output_offset
8484 + (h->got.offset & ~(bfd_vma) 1));
8485
8486 if (h->def_regular
8487 && h->type == STT_GNU_IFUNC)
8488 {
8489 if (bfd_link_pic (info))
8490 {
8491 /* Generate R_AARCH64_GLOB_DAT. */
8492 goto do_glob_dat;
8493 }
8494 else
8495 {
8496 asection *plt;
8497
8498 if (!h->pointer_equality_needed)
8499 abort ();
8500
8501 /* For non-shared object, we can't use .got.plt, which
8502 contains the real function address if we need pointer
8503 equality. We load the GOT entry with the PLT entry. */
8504 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
8505 bfd_put_NN (output_bfd, (plt->output_section->vma
8506 + plt->output_offset
8507 + h->plt.offset),
8508 htab->root.sgot->contents
8509 + (h->got.offset & ~(bfd_vma) 1));
8510 return TRUE;
8511 }
8512 }
8513 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
8514 {
8515 if (!h->def_regular)
8516 return FALSE;
8517
8518 BFD_ASSERT ((h->got.offset & 1) != 0);
8519 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
8520 rela.r_addend = (h->root.u.def.value
8521 + h->root.u.def.section->output_section->vma
8522 + h->root.u.def.section->output_offset);
8523 }
8524 else
8525 {
8526 do_glob_dat:
8527 BFD_ASSERT ((h->got.offset & 1) == 0);
8528 bfd_put_NN (output_bfd, (bfd_vma) 0,
8529 htab->root.sgot->contents + h->got.offset);
8530 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
8531 rela.r_addend = 0;
8532 }
8533
8534 loc = htab->root.srelgot->contents;
8535 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
8536 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8537 }
8538
8539 if (h->needs_copy)
8540 {
8541 Elf_Internal_Rela rela;
8542 bfd_byte *loc;
8543
8544 /* This symbol needs a copy reloc. Set it up. */
8545
8546 if (h->dynindx == -1
8547 || (h->root.type != bfd_link_hash_defined
8548 && h->root.type != bfd_link_hash_defweak)
8549 || htab->srelbss == NULL)
8550 abort ();
8551
8552 rela.r_offset = (h->root.u.def.value
8553 + h->root.u.def.section->output_section->vma
8554 + h->root.u.def.section->output_offset);
8555 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
8556 rela.r_addend = 0;
8557 loc = htab->srelbss->contents;
8558 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
8559 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8560 }
8561
8562 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
8563 be NULL for local symbols. */
8564 if (sym != NULL
8565 && (h == elf_hash_table (info)->hdynamic
8566 || h == elf_hash_table (info)->hgot))
8567 sym->st_shndx = SHN_ABS;
8568
8569 return TRUE;
8570 }
8571
8572 /* Finish up local dynamic symbol handling. We set the contents of
8573 various dynamic sections here. */
8574
8575 static bfd_boolean
8576 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
8577 {
8578 struct elf_link_hash_entry *h
8579 = (struct elf_link_hash_entry *) *slot;
8580 struct bfd_link_info *info
8581 = (struct bfd_link_info *) inf;
8582
8583 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
8584 info, h, NULL);
8585 }
8586
8587 static void
8588 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
8589 struct elf_aarch64_link_hash_table
8590 *htab)
8591 {
8592 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
8593 small and large plts and at the minute just generates
8594 the small PLT. */
8595
8596 /* PLT0 of the small PLT looks like this in ELF64 -
8597 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
8598 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
8599 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
8600 // symbol resolver
8601 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
8602 // GOTPLT entry for this.
8603 br x17
8604 PLT0 will be slightly different in ELF32 due to different got entry
8605 size.
8606 */
8607 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
8608 bfd_vma plt_base;
8609
8610
8611 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
8612 PLT_ENTRY_SIZE);
8613 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
8614 PLT_ENTRY_SIZE;
8615
8616 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
8617 + htab->root.sgotplt->output_offset
8618 + GOT_ENTRY_SIZE * 2);
8619
8620 plt_base = htab->root.splt->output_section->vma +
8621 htab->root.splt->output_offset;
8622
8623 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8624 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8625 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8626 htab->root.splt->contents + 4,
8627 PG (plt_got_2nd_ent) - PG (plt_base + 4));
8628
8629 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8630 htab->root.splt->contents + 8,
8631 PG_OFFSET (plt_got_2nd_ent));
8632
8633 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8634 htab->root.splt->contents + 12,
8635 PG_OFFSET (plt_got_2nd_ent));
8636 }
8637
8638 static bfd_boolean
8639 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
8640 struct bfd_link_info *info)
8641 {
8642 struct elf_aarch64_link_hash_table *htab;
8643 bfd *dynobj;
8644 asection *sdyn;
8645
8646 htab = elf_aarch64_hash_table (info);
8647 dynobj = htab->root.dynobj;
8648 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
8649
8650 if (htab->root.dynamic_sections_created)
8651 {
8652 ElfNN_External_Dyn *dyncon, *dynconend;
8653
8654 if (sdyn == NULL || htab->root.sgot == NULL)
8655 abort ();
8656
8657 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
8658 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
8659 for (; dyncon < dynconend; dyncon++)
8660 {
8661 Elf_Internal_Dyn dyn;
8662 asection *s;
8663
8664 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
8665
8666 switch (dyn.d_tag)
8667 {
8668 default:
8669 continue;
8670
8671 case DT_PLTGOT:
8672 s = htab->root.sgotplt;
8673 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8674 break;
8675
8676 case DT_JMPREL:
8677 dyn.d_un.d_ptr = htab->root.srelplt->output_section->vma;
8678 break;
8679
8680 case DT_PLTRELSZ:
8681 s = htab->root.srelplt;
8682 dyn.d_un.d_val = s->size;
8683 break;
8684
8685 case DT_RELASZ:
8686 /* The procedure linkage table relocs (DT_JMPREL) should
8687 not be included in the overall relocs (DT_RELA).
8688 Therefore, we override the DT_RELASZ entry here to
8689 make it not include the JMPREL relocs. Since the
8690 linker script arranges for .rela.plt to follow all
8691 other relocation sections, we don't have to worry
8692 about changing the DT_RELA entry. */
8693 if (htab->root.srelplt != NULL)
8694 {
8695 s = htab->root.srelplt;
8696 dyn.d_un.d_val -= s->size;
8697 }
8698 break;
8699
8700 case DT_TLSDESC_PLT:
8701 s = htab->root.splt;
8702 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
8703 + htab->tlsdesc_plt;
8704 break;
8705
8706 case DT_TLSDESC_GOT:
8707 s = htab->root.sgot;
8708 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
8709 + htab->dt_tlsdesc_got;
8710 break;
8711 }
8712
8713 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
8714 }
8715
8716 }
8717
8718 /* Fill in the special first entry in the procedure linkage table. */
8719 if (htab->root.splt && htab->root.splt->size > 0)
8720 {
8721 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
8722
8723 elf_section_data (htab->root.splt->output_section)->
8724 this_hdr.sh_entsize = htab->plt_entry_size;
8725
8726
8727 if (htab->tlsdesc_plt)
8728 {
8729 bfd_put_NN (output_bfd, (bfd_vma) 0,
8730 htab->root.sgot->contents + htab->dt_tlsdesc_got);
8731
8732 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
8733 elfNN_aarch64_tlsdesc_small_plt_entry,
8734 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
8735
8736 {
8737 bfd_vma adrp1_addr =
8738 htab->root.splt->output_section->vma
8739 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
8740
8741 bfd_vma adrp2_addr = adrp1_addr + 4;
8742
8743 bfd_vma got_addr =
8744 htab->root.sgot->output_section->vma
8745 + htab->root.sgot->output_offset;
8746
8747 bfd_vma pltgot_addr =
8748 htab->root.sgotplt->output_section->vma
8749 + htab->root.sgotplt->output_offset;
8750
8751 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
8752
8753 bfd_byte *plt_entry =
8754 htab->root.splt->contents + htab->tlsdesc_plt;
8755
8756 /* adrp x2, DT_TLSDESC_GOT */
8757 elf_aarch64_update_plt_entry (output_bfd,
8758 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8759 plt_entry + 4,
8760 (PG (dt_tlsdesc_got)
8761 - PG (adrp1_addr)));
8762
8763 /* adrp x3, 0 */
8764 elf_aarch64_update_plt_entry (output_bfd,
8765 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8766 plt_entry + 8,
8767 (PG (pltgot_addr)
8768 - PG (adrp2_addr)));
8769
8770 /* ldr x2, [x2, #0] */
8771 elf_aarch64_update_plt_entry (output_bfd,
8772 BFD_RELOC_AARCH64_LDSTNN_LO12,
8773 plt_entry + 12,
8774 PG_OFFSET (dt_tlsdesc_got));
8775
8776 /* add x3, x3, 0 */
8777 elf_aarch64_update_plt_entry (output_bfd,
8778 BFD_RELOC_AARCH64_ADD_LO12,
8779 plt_entry + 16,
8780 PG_OFFSET (pltgot_addr));
8781 }
8782 }
8783 }
8784
8785 if (htab->root.sgotplt)
8786 {
8787 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
8788 {
8789 (*_bfd_error_handler)
8790 (_("discarded output section: `%A'"), htab->root.sgotplt);
8791 return FALSE;
8792 }
8793
8794 /* Fill in the first three entries in the global offset table. */
8795 if (htab->root.sgotplt->size > 0)
8796 {
8797 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
8798
8799 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
8800 bfd_put_NN (output_bfd,
8801 (bfd_vma) 0,
8802 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
8803 bfd_put_NN (output_bfd,
8804 (bfd_vma) 0,
8805 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
8806 }
8807
8808 if (htab->root.sgot)
8809 {
8810 if (htab->root.sgot->size > 0)
8811 {
8812 bfd_vma addr =
8813 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
8814 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
8815 }
8816 }
8817
8818 elf_section_data (htab->root.sgotplt->output_section)->
8819 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
8820 }
8821
8822 if (htab->root.sgot && htab->root.sgot->size > 0)
8823 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
8824 = GOT_ENTRY_SIZE;
8825
8826 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
8827 htab_traverse (htab->loc_hash_table,
8828 elfNN_aarch64_finish_local_dynamic_symbol,
8829 info);
8830
8831 return TRUE;
8832 }
8833
8834 /* Return address for Ith PLT stub in section PLT, for relocation REL
8835 or (bfd_vma) -1 if it should not be included. */
8836
8837 static bfd_vma
8838 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
8839 const arelent *rel ATTRIBUTE_UNUSED)
8840 {
8841 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
8842 }
8843
8844
8845 /* We use this so we can override certain functions
8846 (though currently we don't). */
8847
8848 const struct elf_size_info elfNN_aarch64_size_info =
8849 {
8850 sizeof (ElfNN_External_Ehdr),
8851 sizeof (ElfNN_External_Phdr),
8852 sizeof (ElfNN_External_Shdr),
8853 sizeof (ElfNN_External_Rel),
8854 sizeof (ElfNN_External_Rela),
8855 sizeof (ElfNN_External_Sym),
8856 sizeof (ElfNN_External_Dyn),
8857 sizeof (Elf_External_Note),
8858 4, /* Hash table entry size. */
8859 1, /* Internal relocs per external relocs. */
8860 ARCH_SIZE, /* Arch size. */
8861 LOG_FILE_ALIGN, /* Log_file_align. */
8862 ELFCLASSNN, EV_CURRENT,
8863 bfd_elfNN_write_out_phdrs,
8864 bfd_elfNN_write_shdrs_and_ehdr,
8865 bfd_elfNN_checksum_contents,
8866 bfd_elfNN_write_relocs,
8867 bfd_elfNN_swap_symbol_in,
8868 bfd_elfNN_swap_symbol_out,
8869 bfd_elfNN_slurp_reloc_table,
8870 bfd_elfNN_slurp_symbol_table,
8871 bfd_elfNN_swap_dyn_in,
8872 bfd_elfNN_swap_dyn_out,
8873 bfd_elfNN_swap_reloc_in,
8874 bfd_elfNN_swap_reloc_out,
8875 bfd_elfNN_swap_reloca_in,
8876 bfd_elfNN_swap_reloca_out
8877 };
8878
8879 #define ELF_ARCH bfd_arch_aarch64
8880 #define ELF_MACHINE_CODE EM_AARCH64
8881 #define ELF_MAXPAGESIZE 0x10000
8882 #define ELF_MINPAGESIZE 0x1000
8883 #define ELF_COMMONPAGESIZE 0x1000
8884
8885 #define bfd_elfNN_close_and_cleanup \
8886 elfNN_aarch64_close_and_cleanup
8887
8888 #define bfd_elfNN_bfd_free_cached_info \
8889 elfNN_aarch64_bfd_free_cached_info
8890
8891 #define bfd_elfNN_bfd_is_target_special_symbol \
8892 elfNN_aarch64_is_target_special_symbol
8893
8894 #define bfd_elfNN_bfd_link_hash_table_create \
8895 elfNN_aarch64_link_hash_table_create
8896
8897 #define bfd_elfNN_bfd_merge_private_bfd_data \
8898 elfNN_aarch64_merge_private_bfd_data
8899
8900 #define bfd_elfNN_bfd_print_private_bfd_data \
8901 elfNN_aarch64_print_private_bfd_data
8902
8903 #define bfd_elfNN_bfd_reloc_type_lookup \
8904 elfNN_aarch64_reloc_type_lookup
8905
8906 #define bfd_elfNN_bfd_reloc_name_lookup \
8907 elfNN_aarch64_reloc_name_lookup
8908
8909 #define bfd_elfNN_bfd_set_private_flags \
8910 elfNN_aarch64_set_private_flags
8911
8912 #define bfd_elfNN_find_inliner_info \
8913 elfNN_aarch64_find_inliner_info
8914
8915 #define bfd_elfNN_find_nearest_line \
8916 elfNN_aarch64_find_nearest_line
8917
8918 #define bfd_elfNN_mkobject \
8919 elfNN_aarch64_mkobject
8920
8921 #define bfd_elfNN_new_section_hook \
8922 elfNN_aarch64_new_section_hook
8923
8924 #define elf_backend_adjust_dynamic_symbol \
8925 elfNN_aarch64_adjust_dynamic_symbol
8926
8927 #define elf_backend_always_size_sections \
8928 elfNN_aarch64_always_size_sections
8929
8930 #define elf_backend_check_relocs \
8931 elfNN_aarch64_check_relocs
8932
8933 #define elf_backend_copy_indirect_symbol \
8934 elfNN_aarch64_copy_indirect_symbol
8935
8936 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
8937 to them in our hash. */
8938 #define elf_backend_create_dynamic_sections \
8939 elfNN_aarch64_create_dynamic_sections
8940
8941 #define elf_backend_init_index_section \
8942 _bfd_elf_init_2_index_sections
8943
8944 #define elf_backend_finish_dynamic_sections \
8945 elfNN_aarch64_finish_dynamic_sections
8946
8947 #define elf_backend_finish_dynamic_symbol \
8948 elfNN_aarch64_finish_dynamic_symbol
8949
8950 #define elf_backend_gc_sweep_hook \
8951 elfNN_aarch64_gc_sweep_hook
8952
8953 #define elf_backend_object_p \
8954 elfNN_aarch64_object_p
8955
8956 #define elf_backend_output_arch_local_syms \
8957 elfNN_aarch64_output_arch_local_syms
8958
8959 #define elf_backend_plt_sym_val \
8960 elfNN_aarch64_plt_sym_val
8961
8962 #define elf_backend_post_process_headers \
8963 elfNN_aarch64_post_process_headers
8964
8965 #define elf_backend_relocate_section \
8966 elfNN_aarch64_relocate_section
8967
8968 #define elf_backend_reloc_type_class \
8969 elfNN_aarch64_reloc_type_class
8970
8971 #define elf_backend_section_from_shdr \
8972 elfNN_aarch64_section_from_shdr
8973
8974 #define elf_backend_size_dynamic_sections \
8975 elfNN_aarch64_size_dynamic_sections
8976
8977 #define elf_backend_size_info \
8978 elfNN_aarch64_size_info
8979
8980 #define elf_backend_write_section \
8981 elfNN_aarch64_write_section
8982
8983 #define elf_backend_can_refcount 1
8984 #define elf_backend_can_gc_sections 1
8985 #define elf_backend_plt_readonly 1
8986 #define elf_backend_want_got_plt 1
8987 #define elf_backend_want_plt_sym 0
8988 #define elf_backend_may_use_rel_p 0
8989 #define elf_backend_may_use_rela_p 1
8990 #define elf_backend_default_use_rela_p 1
8991 #define elf_backend_rela_normal 1
8992 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
8993 #define elf_backend_default_execstack 0
8994 #define elf_backend_extern_protected_data 1
8995
8996 #undef elf_backend_obj_attrs_section
8997 #define elf_backend_obj_attrs_section ".ARM.attributes"
8998
8999 #include "elfNN-target.h"