2005-05-16 H.J. Lu <hongjiu.lu@intel.com>
[binutils-gdb.git] / bfd / elfxx-ia64.c
1 /* IA-64 support for 64-bit ELF
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "opcode/ia64.h"
27 #include "elf/ia64.h"
28 #include "objalloc.h"
29 #include "hashtab.h"
30
31 #define ARCH_SIZE NN
32
33 #if ARCH_SIZE == 64
34 #define LOG_SECTION_ALIGN 3
35 #endif
36
37 #if ARCH_SIZE == 32
38 #define LOG_SECTION_ALIGN 2
39 #endif
40
41 /* THE RULES for all the stuff the linker creates --
42
43 GOT Entries created in response to LTOFF or LTOFF_FPTR
44 relocations. Dynamic relocs created for dynamic
45 symbols in an application; REL relocs for locals
46 in a shared library.
47
48 FPTR The canonical function descriptor. Created for local
49 symbols in applications. Descriptors for dynamic symbols
50 and local symbols in shared libraries are created by
51 ld.so. Thus there are no dynamic relocs against these
52 objects. The FPTR relocs for such _are_ passed through
53 to the dynamic relocation tables.
54
55 FULL_PLT Created for a PCREL21B relocation against a dynamic symbol.
56 Requires the creation of a PLTOFF entry. This does not
57 require any dynamic relocations.
58
59 PLTOFF Created by PLTOFF relocations. For local symbols, this
60 is an alternate function descriptor, and in shared libraries
61 requires two REL relocations. Note that this cannot be
62 transformed into an FPTR relocation, since it must be in
63 range of the GP. For dynamic symbols, this is a function
64 descriptor for a MIN_PLT entry, and requires one IPLT reloc.
65
66 MIN_PLT Created by PLTOFF entries against dynamic symbols. This
67 does not require dynamic relocations. */
68
69 #define NELEMS(a) ((int) (sizeof (a) / sizeof ((a)[0])))
70
71 typedef struct bfd_hash_entry *(*new_hash_entry_func)
72 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
73
74 /* In dynamically (linker-) created sections, we generally need to keep track
75 of the place a symbol or expression got allocated to. This is done via hash
76 tables that store entries of the following type. */
77
78 struct elfNN_ia64_dyn_sym_info
79 {
80 /* The addend for which this entry is relevant. */
81 bfd_vma addend;
82
83 /* Next addend in the list. */
84 struct elfNN_ia64_dyn_sym_info *next;
85
86 bfd_vma got_offset;
87 bfd_vma fptr_offset;
88 bfd_vma pltoff_offset;
89 bfd_vma plt_offset;
90 bfd_vma plt2_offset;
91 bfd_vma tprel_offset;
92 bfd_vma dtpmod_offset;
93 bfd_vma dtprel_offset;
94
95 /* The symbol table entry, if any, that this was derived from. */
96 struct elf_link_hash_entry *h;
97
98 /* Used to count non-got, non-plt relocations for delayed sizing
99 of relocation sections. */
100 struct elfNN_ia64_dyn_reloc_entry
101 {
102 struct elfNN_ia64_dyn_reloc_entry *next;
103 asection *srel;
104 int type;
105 int count;
106
107 /* Is this reloc against readonly section? */
108 bfd_boolean reltext;
109 } *reloc_entries;
110
111 /* TRUE when the section contents have been updated. */
112 unsigned got_done : 1;
113 unsigned fptr_done : 1;
114 unsigned pltoff_done : 1;
115 unsigned tprel_done : 1;
116 unsigned dtpmod_done : 1;
117 unsigned dtprel_done : 1;
118
119 /* TRUE for the different kinds of linker data we want created. */
120 unsigned want_got : 1;
121 unsigned want_gotx : 1;
122 unsigned want_fptr : 1;
123 unsigned want_ltoff_fptr : 1;
124 unsigned want_plt : 1;
125 unsigned want_plt2 : 1;
126 unsigned want_pltoff : 1;
127 unsigned want_tprel : 1;
128 unsigned want_dtpmod : 1;
129 unsigned want_dtprel : 1;
130 };
131
132 struct elfNN_ia64_local_hash_entry
133 {
134 int id;
135 unsigned int r_sym;
136 struct elfNN_ia64_dyn_sym_info *info;
137
138 /* TRUE if this hash entry's addends was translated for
139 SHF_MERGE optimization. */
140 unsigned sec_merge_done : 1;
141 };
142
143 struct elfNN_ia64_link_hash_entry
144 {
145 struct elf_link_hash_entry root;
146 struct elfNN_ia64_dyn_sym_info *info;
147 };
148
149 struct elfNN_ia64_link_hash_table
150 {
151 /* The main hash table. */
152 struct elf_link_hash_table root;
153
154 asection *got_sec; /* the linkage table section (or NULL) */
155 asection *rel_got_sec; /* dynamic relocation section for same */
156 asection *fptr_sec; /* function descriptor table (or NULL) */
157 asection *rel_fptr_sec; /* dynamic relocation section for same */
158 asection *plt_sec; /* the primary plt section (or NULL) */
159 asection *pltoff_sec; /* private descriptors for plt (or NULL) */
160 asection *rel_pltoff_sec; /* dynamic relocation section for same */
161
162 bfd_size_type minplt_entries; /* number of minplt entries */
163 unsigned reltext : 1; /* are there relocs against readonly sections? */
164 unsigned self_dtpmod_done : 1;/* has self DTPMOD entry been finished? */
165 bfd_vma self_dtpmod_offset; /* .got offset to self DTPMOD entry */
166
167 htab_t loc_hash_table;
168 void *loc_hash_memory;
169 };
170
171 struct elfNN_ia64_allocate_data
172 {
173 struct bfd_link_info *info;
174 bfd_size_type ofs;
175 };
176
177 #define elfNN_ia64_hash_table(p) \
178 ((struct elfNN_ia64_link_hash_table *) ((p)->hash))
179
180 static bfd_reloc_status_type elfNN_ia64_reloc
181 PARAMS ((bfd *abfd, arelent *reloc, asymbol *sym, PTR data,
182 asection *input_section, bfd *output_bfd, char **error_message));
183 static reloc_howto_type * lookup_howto
184 PARAMS ((unsigned int rtype));
185 static reloc_howto_type *elfNN_ia64_reloc_type_lookup
186 PARAMS ((bfd *abfd, bfd_reloc_code_real_type bfd_code));
187 static void elfNN_ia64_info_to_howto
188 PARAMS ((bfd *abfd, arelent *bfd_reloc, Elf_Internal_Rela *elf_reloc));
189 static bfd_boolean elfNN_ia64_relax_section
190 PARAMS((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
191 bfd_boolean *again));
192 static void elfNN_ia64_relax_ldxmov
193 PARAMS((bfd_byte *contents, bfd_vma off));
194 static bfd_boolean is_unwind_section_name
195 PARAMS ((bfd *abfd, const char *));
196 static bfd_boolean elfNN_ia64_section_flags
197 PARAMS ((flagword *, const Elf_Internal_Shdr *));
198 static bfd_boolean elfNN_ia64_fake_sections
199 PARAMS ((bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec));
200 static void elfNN_ia64_final_write_processing
201 PARAMS ((bfd *abfd, bfd_boolean linker));
202 static bfd_boolean elfNN_ia64_add_symbol_hook
203 PARAMS ((bfd *abfd, struct bfd_link_info *info, Elf_Internal_Sym *sym,
204 const char **namep, flagword *flagsp, asection **secp,
205 bfd_vma *valp));
206 static int elfNN_ia64_additional_program_headers
207 PARAMS ((bfd *abfd));
208 static bfd_boolean elfNN_ia64_modify_segment_map
209 PARAMS ((bfd *, struct bfd_link_info *));
210 static bfd_boolean elfNN_ia64_is_local_label_name
211 PARAMS ((bfd *abfd, const char *name));
212 static bfd_boolean elfNN_ia64_dynamic_symbol_p
213 PARAMS ((struct elf_link_hash_entry *h, struct bfd_link_info *info, int));
214 static struct bfd_hash_entry *elfNN_ia64_new_elf_hash_entry
215 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
216 const char *string));
217 static void elfNN_ia64_hash_copy_indirect
218 PARAMS ((const struct elf_backend_data *, struct elf_link_hash_entry *,
219 struct elf_link_hash_entry *));
220 static void elfNN_ia64_hash_hide_symbol
221 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, bfd_boolean));
222 static hashval_t elfNN_ia64_local_htab_hash PARAMS ((const void *));
223 static int elfNN_ia64_local_htab_eq PARAMS ((const void *ptr1,
224 const void *ptr2));
225 static struct bfd_link_hash_table *elfNN_ia64_hash_table_create
226 PARAMS ((bfd *abfd));
227 static void elfNN_ia64_hash_table_free
228 PARAMS ((struct bfd_link_hash_table *hash));
229 static bfd_boolean elfNN_ia64_global_dyn_sym_thunk
230 PARAMS ((struct bfd_hash_entry *, PTR));
231 static int elfNN_ia64_local_dyn_sym_thunk
232 PARAMS ((void **, PTR));
233 static void elfNN_ia64_dyn_sym_traverse
234 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
235 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR),
236 PTR info));
237 static bfd_boolean elfNN_ia64_create_dynamic_sections
238 PARAMS ((bfd *abfd, struct bfd_link_info *info));
239 static struct elfNN_ia64_local_hash_entry * get_local_sym_hash
240 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
241 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create));
242 static struct elfNN_ia64_dyn_sym_info * get_dyn_sym_info
243 PARAMS ((struct elfNN_ia64_link_hash_table *ia64_info,
244 struct elf_link_hash_entry *h,
245 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create));
246 static asection *get_got
247 PARAMS ((bfd *abfd, struct bfd_link_info *info,
248 struct elfNN_ia64_link_hash_table *ia64_info));
249 static asection *get_fptr
250 PARAMS ((bfd *abfd, struct bfd_link_info *info,
251 struct elfNN_ia64_link_hash_table *ia64_info));
252 static asection *get_pltoff
253 PARAMS ((bfd *abfd, struct bfd_link_info *info,
254 struct elfNN_ia64_link_hash_table *ia64_info));
255 static asection *get_reloc_section
256 PARAMS ((bfd *abfd, struct elfNN_ia64_link_hash_table *ia64_info,
257 asection *sec, bfd_boolean create));
258 static bfd_boolean elfNN_ia64_check_relocs
259 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *sec,
260 const Elf_Internal_Rela *relocs));
261 static bfd_boolean elfNN_ia64_adjust_dynamic_symbol
262 PARAMS ((struct bfd_link_info *info, struct elf_link_hash_entry *h));
263 static long global_sym_index
264 PARAMS ((struct elf_link_hash_entry *h));
265 static bfd_boolean allocate_fptr
266 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
267 static bfd_boolean allocate_global_data_got
268 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
269 static bfd_boolean allocate_global_fptr_got
270 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
271 static bfd_boolean allocate_local_got
272 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
273 static bfd_boolean allocate_pltoff_entries
274 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
275 static bfd_boolean allocate_plt_entries
276 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
277 static bfd_boolean allocate_plt2_entries
278 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
279 static bfd_boolean allocate_dynrel_entries
280 PARAMS ((struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data));
281 static bfd_boolean elfNN_ia64_size_dynamic_sections
282 PARAMS ((bfd *output_bfd, struct bfd_link_info *info));
283 static bfd_reloc_status_type elfNN_ia64_install_value
284 PARAMS ((bfd_byte *hit_addr, bfd_vma val, unsigned int r_type));
285 static void elfNN_ia64_install_dyn_reloc
286 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *sec,
287 asection *srel, bfd_vma offset, unsigned int type,
288 long dynindx, bfd_vma addend));
289 static bfd_vma set_got_entry
290 PARAMS ((bfd *abfd, struct bfd_link_info *info,
291 struct elfNN_ia64_dyn_sym_info *dyn_i, long dynindx,
292 bfd_vma addend, bfd_vma value, unsigned int dyn_r_type));
293 static bfd_vma set_fptr_entry
294 PARAMS ((bfd *abfd, struct bfd_link_info *info,
295 struct elfNN_ia64_dyn_sym_info *dyn_i,
296 bfd_vma value));
297 static bfd_vma set_pltoff_entry
298 PARAMS ((bfd *abfd, struct bfd_link_info *info,
299 struct elfNN_ia64_dyn_sym_info *dyn_i,
300 bfd_vma value, bfd_boolean));
301 static bfd_vma elfNN_ia64_tprel_base
302 PARAMS ((struct bfd_link_info *info));
303 static bfd_vma elfNN_ia64_dtprel_base
304 PARAMS ((struct bfd_link_info *info));
305 static int elfNN_ia64_unwind_entry_compare
306 PARAMS ((const PTR, const PTR));
307 static bfd_boolean elfNN_ia64_choose_gp
308 PARAMS ((bfd *abfd, struct bfd_link_info *info));
309 static bfd_boolean elfNN_ia64_final_link
310 PARAMS ((bfd *abfd, struct bfd_link_info *info));
311 static bfd_boolean elfNN_ia64_relocate_section
312 PARAMS ((bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd,
313 asection *input_section, bfd_byte *contents,
314 Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms,
315 asection **local_sections));
316 static bfd_boolean elfNN_ia64_finish_dynamic_symbol
317 PARAMS ((bfd *output_bfd, struct bfd_link_info *info,
318 struct elf_link_hash_entry *h, Elf_Internal_Sym *sym));
319 static bfd_boolean elfNN_ia64_finish_dynamic_sections
320 PARAMS ((bfd *abfd, struct bfd_link_info *info));
321 static bfd_boolean elfNN_ia64_set_private_flags
322 PARAMS ((bfd *abfd, flagword flags));
323 static bfd_boolean elfNN_ia64_merge_private_bfd_data
324 PARAMS ((bfd *ibfd, bfd *obfd));
325 static bfd_boolean elfNN_ia64_print_private_bfd_data
326 PARAMS ((bfd *abfd, PTR ptr));
327 static enum elf_reloc_type_class elfNN_ia64_reloc_type_class
328 PARAMS ((const Elf_Internal_Rela *));
329 static bfd_boolean elfNN_ia64_hpux_vec
330 PARAMS ((const bfd_target *vec));
331 static void elfNN_hpux_post_process_headers
332 PARAMS ((bfd *abfd, struct bfd_link_info *info));
333 bfd_boolean elfNN_hpux_backend_section_from_bfd_section
334 PARAMS ((bfd *abfd, asection *sec, int *retval));
335 \f
336 /* ia64-specific relocation. */
337
338 /* Perform a relocation. Not much to do here as all the hard work is
339 done in elfNN_ia64_final_link_relocate. */
340 static bfd_reloc_status_type
341 elfNN_ia64_reloc (abfd, reloc, sym, data, input_section,
342 output_bfd, error_message)
343 bfd *abfd ATTRIBUTE_UNUSED;
344 arelent *reloc;
345 asymbol *sym ATTRIBUTE_UNUSED;
346 PTR data ATTRIBUTE_UNUSED;
347 asection *input_section;
348 bfd *output_bfd;
349 char **error_message;
350 {
351 if (output_bfd)
352 {
353 reloc->address += input_section->output_offset;
354 return bfd_reloc_ok;
355 }
356
357 if (input_section->flags & SEC_DEBUGGING)
358 return bfd_reloc_continue;
359
360 *error_message = "Unsupported call to elfNN_ia64_reloc";
361 return bfd_reloc_notsupported;
362 }
363
364 #define IA64_HOWTO(TYPE, NAME, SIZE, PCREL, IN) \
365 HOWTO (TYPE, 0, SIZE, 0, PCREL, 0, complain_overflow_signed, \
366 elfNN_ia64_reloc, NAME, FALSE, 0, -1, IN)
367
368 /* This table has to be sorted according to increasing number of the
369 TYPE field. */
370 static reloc_howto_type ia64_howto_table[] =
371 {
372 IA64_HOWTO (R_IA64_NONE, "NONE", 0, FALSE, TRUE),
373
374 IA64_HOWTO (R_IA64_IMM14, "IMM14", 0, FALSE, TRUE),
375 IA64_HOWTO (R_IA64_IMM22, "IMM22", 0, FALSE, TRUE),
376 IA64_HOWTO (R_IA64_IMM64, "IMM64", 0, FALSE, TRUE),
377 IA64_HOWTO (R_IA64_DIR32MSB, "DIR32MSB", 2, FALSE, TRUE),
378 IA64_HOWTO (R_IA64_DIR32LSB, "DIR32LSB", 2, FALSE, TRUE),
379 IA64_HOWTO (R_IA64_DIR64MSB, "DIR64MSB", 4, FALSE, TRUE),
380 IA64_HOWTO (R_IA64_DIR64LSB, "DIR64LSB", 4, FALSE, TRUE),
381
382 IA64_HOWTO (R_IA64_GPREL22, "GPREL22", 0, FALSE, TRUE),
383 IA64_HOWTO (R_IA64_GPREL64I, "GPREL64I", 0, FALSE, TRUE),
384 IA64_HOWTO (R_IA64_GPREL32MSB, "GPREL32MSB", 2, FALSE, TRUE),
385 IA64_HOWTO (R_IA64_GPREL32LSB, "GPREL32LSB", 2, FALSE, TRUE),
386 IA64_HOWTO (R_IA64_GPREL64MSB, "GPREL64MSB", 4, FALSE, TRUE),
387 IA64_HOWTO (R_IA64_GPREL64LSB, "GPREL64LSB", 4, FALSE, TRUE),
388
389 IA64_HOWTO (R_IA64_LTOFF22, "LTOFF22", 0, FALSE, TRUE),
390 IA64_HOWTO (R_IA64_LTOFF64I, "LTOFF64I", 0, FALSE, TRUE),
391
392 IA64_HOWTO (R_IA64_PLTOFF22, "PLTOFF22", 0, FALSE, TRUE),
393 IA64_HOWTO (R_IA64_PLTOFF64I, "PLTOFF64I", 0, FALSE, TRUE),
394 IA64_HOWTO (R_IA64_PLTOFF64MSB, "PLTOFF64MSB", 4, FALSE, TRUE),
395 IA64_HOWTO (R_IA64_PLTOFF64LSB, "PLTOFF64LSB", 4, FALSE, TRUE),
396
397 IA64_HOWTO (R_IA64_FPTR64I, "FPTR64I", 0, FALSE, TRUE),
398 IA64_HOWTO (R_IA64_FPTR32MSB, "FPTR32MSB", 2, FALSE, TRUE),
399 IA64_HOWTO (R_IA64_FPTR32LSB, "FPTR32LSB", 2, FALSE, TRUE),
400 IA64_HOWTO (R_IA64_FPTR64MSB, "FPTR64MSB", 4, FALSE, TRUE),
401 IA64_HOWTO (R_IA64_FPTR64LSB, "FPTR64LSB", 4, FALSE, TRUE),
402
403 IA64_HOWTO (R_IA64_PCREL60B, "PCREL60B", 0, TRUE, TRUE),
404 IA64_HOWTO (R_IA64_PCREL21B, "PCREL21B", 0, TRUE, TRUE),
405 IA64_HOWTO (R_IA64_PCREL21M, "PCREL21M", 0, TRUE, TRUE),
406 IA64_HOWTO (R_IA64_PCREL21F, "PCREL21F", 0, TRUE, TRUE),
407 IA64_HOWTO (R_IA64_PCREL32MSB, "PCREL32MSB", 2, TRUE, TRUE),
408 IA64_HOWTO (R_IA64_PCREL32LSB, "PCREL32LSB", 2, TRUE, TRUE),
409 IA64_HOWTO (R_IA64_PCREL64MSB, "PCREL64MSB", 4, TRUE, TRUE),
410 IA64_HOWTO (R_IA64_PCREL64LSB, "PCREL64LSB", 4, TRUE, TRUE),
411
412 IA64_HOWTO (R_IA64_LTOFF_FPTR22, "LTOFF_FPTR22", 0, FALSE, TRUE),
413 IA64_HOWTO (R_IA64_LTOFF_FPTR64I, "LTOFF_FPTR64I", 0, FALSE, TRUE),
414 IA64_HOWTO (R_IA64_LTOFF_FPTR32MSB, "LTOFF_FPTR32MSB", 2, FALSE, TRUE),
415 IA64_HOWTO (R_IA64_LTOFF_FPTR32LSB, "LTOFF_FPTR32LSB", 2, FALSE, TRUE),
416 IA64_HOWTO (R_IA64_LTOFF_FPTR64MSB, "LTOFF_FPTR64MSB", 4, FALSE, TRUE),
417 IA64_HOWTO (R_IA64_LTOFF_FPTR64LSB, "LTOFF_FPTR64LSB", 4, FALSE, TRUE),
418
419 IA64_HOWTO (R_IA64_SEGREL32MSB, "SEGREL32MSB", 2, FALSE, TRUE),
420 IA64_HOWTO (R_IA64_SEGREL32LSB, "SEGREL32LSB", 2, FALSE, TRUE),
421 IA64_HOWTO (R_IA64_SEGREL64MSB, "SEGREL64MSB", 4, FALSE, TRUE),
422 IA64_HOWTO (R_IA64_SEGREL64LSB, "SEGREL64LSB", 4, FALSE, TRUE),
423
424 IA64_HOWTO (R_IA64_SECREL32MSB, "SECREL32MSB", 2, FALSE, TRUE),
425 IA64_HOWTO (R_IA64_SECREL32LSB, "SECREL32LSB", 2, FALSE, TRUE),
426 IA64_HOWTO (R_IA64_SECREL64MSB, "SECREL64MSB", 4, FALSE, TRUE),
427 IA64_HOWTO (R_IA64_SECREL64LSB, "SECREL64LSB", 4, FALSE, TRUE),
428
429 IA64_HOWTO (R_IA64_REL32MSB, "REL32MSB", 2, FALSE, TRUE),
430 IA64_HOWTO (R_IA64_REL32LSB, "REL32LSB", 2, FALSE, TRUE),
431 IA64_HOWTO (R_IA64_REL64MSB, "REL64MSB", 4, FALSE, TRUE),
432 IA64_HOWTO (R_IA64_REL64LSB, "REL64LSB", 4, FALSE, TRUE),
433
434 IA64_HOWTO (R_IA64_LTV32MSB, "LTV32MSB", 2, FALSE, TRUE),
435 IA64_HOWTO (R_IA64_LTV32LSB, "LTV32LSB", 2, FALSE, TRUE),
436 IA64_HOWTO (R_IA64_LTV64MSB, "LTV64MSB", 4, FALSE, TRUE),
437 IA64_HOWTO (R_IA64_LTV64LSB, "LTV64LSB", 4, FALSE, TRUE),
438
439 IA64_HOWTO (R_IA64_PCREL21BI, "PCREL21BI", 0, TRUE, TRUE),
440 IA64_HOWTO (R_IA64_PCREL22, "PCREL22", 0, TRUE, TRUE),
441 IA64_HOWTO (R_IA64_PCREL64I, "PCREL64I", 0, TRUE, TRUE),
442
443 IA64_HOWTO (R_IA64_IPLTMSB, "IPLTMSB", 4, FALSE, TRUE),
444 IA64_HOWTO (R_IA64_IPLTLSB, "IPLTLSB", 4, FALSE, TRUE),
445 IA64_HOWTO (R_IA64_COPY, "COPY", 4, FALSE, TRUE),
446 IA64_HOWTO (R_IA64_LTOFF22X, "LTOFF22X", 0, FALSE, TRUE),
447 IA64_HOWTO (R_IA64_LDXMOV, "LDXMOV", 0, FALSE, TRUE),
448
449 IA64_HOWTO (R_IA64_TPREL14, "TPREL14", 0, FALSE, FALSE),
450 IA64_HOWTO (R_IA64_TPREL22, "TPREL22", 0, FALSE, FALSE),
451 IA64_HOWTO (R_IA64_TPREL64I, "TPREL64I", 0, FALSE, FALSE),
452 IA64_HOWTO (R_IA64_TPREL64MSB, "TPREL64MSB", 4, FALSE, FALSE),
453 IA64_HOWTO (R_IA64_TPREL64LSB, "TPREL64LSB", 4, FALSE, FALSE),
454 IA64_HOWTO (R_IA64_LTOFF_TPREL22, "LTOFF_TPREL22", 0, FALSE, FALSE),
455
456 IA64_HOWTO (R_IA64_DTPMOD64MSB, "DTPMOD64MSB", 4, FALSE, FALSE),
457 IA64_HOWTO (R_IA64_DTPMOD64LSB, "DTPMOD64LSB", 4, FALSE, FALSE),
458 IA64_HOWTO (R_IA64_LTOFF_DTPMOD22, "LTOFF_DTPMOD22", 0, FALSE, FALSE),
459
460 IA64_HOWTO (R_IA64_DTPREL14, "DTPREL14", 0, FALSE, FALSE),
461 IA64_HOWTO (R_IA64_DTPREL22, "DTPREL22", 0, FALSE, FALSE),
462 IA64_HOWTO (R_IA64_DTPREL64I, "DTPREL64I", 0, FALSE, FALSE),
463 IA64_HOWTO (R_IA64_DTPREL32MSB, "DTPREL32MSB", 2, FALSE, FALSE),
464 IA64_HOWTO (R_IA64_DTPREL32LSB, "DTPREL32LSB", 2, FALSE, FALSE),
465 IA64_HOWTO (R_IA64_DTPREL64MSB, "DTPREL64MSB", 4, FALSE, FALSE),
466 IA64_HOWTO (R_IA64_DTPREL64LSB, "DTPREL64LSB", 4, FALSE, FALSE),
467 IA64_HOWTO (R_IA64_LTOFF_DTPREL22, "LTOFF_DTPREL22", 0, FALSE, FALSE),
468 };
469
470 static unsigned char elf_code_to_howto_index[R_IA64_MAX_RELOC_CODE + 1];
471
472 /* Given a BFD reloc type, return the matching HOWTO structure. */
473
474 static reloc_howto_type *
475 lookup_howto (rtype)
476 unsigned int rtype;
477 {
478 static int inited = 0;
479 int i;
480
481 if (!inited)
482 {
483 inited = 1;
484
485 memset (elf_code_to_howto_index, 0xff, sizeof (elf_code_to_howto_index));
486 for (i = 0; i < NELEMS (ia64_howto_table); ++i)
487 elf_code_to_howto_index[ia64_howto_table[i].type] = i;
488 }
489
490 BFD_ASSERT (rtype <= R_IA64_MAX_RELOC_CODE);
491 i = elf_code_to_howto_index[rtype];
492 if (i >= NELEMS (ia64_howto_table))
493 return 0;
494 return ia64_howto_table + i;
495 }
496
497 static reloc_howto_type*
498 elfNN_ia64_reloc_type_lookup (abfd, bfd_code)
499 bfd *abfd ATTRIBUTE_UNUSED;
500 bfd_reloc_code_real_type bfd_code;
501 {
502 unsigned int rtype;
503
504 switch (bfd_code)
505 {
506 case BFD_RELOC_NONE: rtype = R_IA64_NONE; break;
507
508 case BFD_RELOC_IA64_IMM14: rtype = R_IA64_IMM14; break;
509 case BFD_RELOC_IA64_IMM22: rtype = R_IA64_IMM22; break;
510 case BFD_RELOC_IA64_IMM64: rtype = R_IA64_IMM64; break;
511
512 case BFD_RELOC_IA64_DIR32MSB: rtype = R_IA64_DIR32MSB; break;
513 case BFD_RELOC_IA64_DIR32LSB: rtype = R_IA64_DIR32LSB; break;
514 case BFD_RELOC_IA64_DIR64MSB: rtype = R_IA64_DIR64MSB; break;
515 case BFD_RELOC_IA64_DIR64LSB: rtype = R_IA64_DIR64LSB; break;
516
517 case BFD_RELOC_IA64_GPREL22: rtype = R_IA64_GPREL22; break;
518 case BFD_RELOC_IA64_GPREL64I: rtype = R_IA64_GPREL64I; break;
519 case BFD_RELOC_IA64_GPREL32MSB: rtype = R_IA64_GPREL32MSB; break;
520 case BFD_RELOC_IA64_GPREL32LSB: rtype = R_IA64_GPREL32LSB; break;
521 case BFD_RELOC_IA64_GPREL64MSB: rtype = R_IA64_GPREL64MSB; break;
522 case BFD_RELOC_IA64_GPREL64LSB: rtype = R_IA64_GPREL64LSB; break;
523
524 case BFD_RELOC_IA64_LTOFF22: rtype = R_IA64_LTOFF22; break;
525 case BFD_RELOC_IA64_LTOFF64I: rtype = R_IA64_LTOFF64I; break;
526
527 case BFD_RELOC_IA64_PLTOFF22: rtype = R_IA64_PLTOFF22; break;
528 case BFD_RELOC_IA64_PLTOFF64I: rtype = R_IA64_PLTOFF64I; break;
529 case BFD_RELOC_IA64_PLTOFF64MSB: rtype = R_IA64_PLTOFF64MSB; break;
530 case BFD_RELOC_IA64_PLTOFF64LSB: rtype = R_IA64_PLTOFF64LSB; break;
531 case BFD_RELOC_IA64_FPTR64I: rtype = R_IA64_FPTR64I; break;
532 case BFD_RELOC_IA64_FPTR32MSB: rtype = R_IA64_FPTR32MSB; break;
533 case BFD_RELOC_IA64_FPTR32LSB: rtype = R_IA64_FPTR32LSB; break;
534 case BFD_RELOC_IA64_FPTR64MSB: rtype = R_IA64_FPTR64MSB; break;
535 case BFD_RELOC_IA64_FPTR64LSB: rtype = R_IA64_FPTR64LSB; break;
536
537 case BFD_RELOC_IA64_PCREL21B: rtype = R_IA64_PCREL21B; break;
538 case BFD_RELOC_IA64_PCREL21BI: rtype = R_IA64_PCREL21BI; break;
539 case BFD_RELOC_IA64_PCREL21M: rtype = R_IA64_PCREL21M; break;
540 case BFD_RELOC_IA64_PCREL21F: rtype = R_IA64_PCREL21F; break;
541 case BFD_RELOC_IA64_PCREL22: rtype = R_IA64_PCREL22; break;
542 case BFD_RELOC_IA64_PCREL60B: rtype = R_IA64_PCREL60B; break;
543 case BFD_RELOC_IA64_PCREL64I: rtype = R_IA64_PCREL64I; break;
544 case BFD_RELOC_IA64_PCREL32MSB: rtype = R_IA64_PCREL32MSB; break;
545 case BFD_RELOC_IA64_PCREL32LSB: rtype = R_IA64_PCREL32LSB; break;
546 case BFD_RELOC_IA64_PCREL64MSB: rtype = R_IA64_PCREL64MSB; break;
547 case BFD_RELOC_IA64_PCREL64LSB: rtype = R_IA64_PCREL64LSB; break;
548
549 case BFD_RELOC_IA64_LTOFF_FPTR22: rtype = R_IA64_LTOFF_FPTR22; break;
550 case BFD_RELOC_IA64_LTOFF_FPTR64I: rtype = R_IA64_LTOFF_FPTR64I; break;
551 case BFD_RELOC_IA64_LTOFF_FPTR32MSB: rtype = R_IA64_LTOFF_FPTR32MSB; break;
552 case BFD_RELOC_IA64_LTOFF_FPTR32LSB: rtype = R_IA64_LTOFF_FPTR32LSB; break;
553 case BFD_RELOC_IA64_LTOFF_FPTR64MSB: rtype = R_IA64_LTOFF_FPTR64MSB; break;
554 case BFD_RELOC_IA64_LTOFF_FPTR64LSB: rtype = R_IA64_LTOFF_FPTR64LSB; break;
555
556 case BFD_RELOC_IA64_SEGREL32MSB: rtype = R_IA64_SEGREL32MSB; break;
557 case BFD_RELOC_IA64_SEGREL32LSB: rtype = R_IA64_SEGREL32LSB; break;
558 case BFD_RELOC_IA64_SEGREL64MSB: rtype = R_IA64_SEGREL64MSB; break;
559 case BFD_RELOC_IA64_SEGREL64LSB: rtype = R_IA64_SEGREL64LSB; break;
560
561 case BFD_RELOC_IA64_SECREL32MSB: rtype = R_IA64_SECREL32MSB; break;
562 case BFD_RELOC_IA64_SECREL32LSB: rtype = R_IA64_SECREL32LSB; break;
563 case BFD_RELOC_IA64_SECREL64MSB: rtype = R_IA64_SECREL64MSB; break;
564 case BFD_RELOC_IA64_SECREL64LSB: rtype = R_IA64_SECREL64LSB; break;
565
566 case BFD_RELOC_IA64_REL32MSB: rtype = R_IA64_REL32MSB; break;
567 case BFD_RELOC_IA64_REL32LSB: rtype = R_IA64_REL32LSB; break;
568 case BFD_RELOC_IA64_REL64MSB: rtype = R_IA64_REL64MSB; break;
569 case BFD_RELOC_IA64_REL64LSB: rtype = R_IA64_REL64LSB; break;
570
571 case BFD_RELOC_IA64_LTV32MSB: rtype = R_IA64_LTV32MSB; break;
572 case BFD_RELOC_IA64_LTV32LSB: rtype = R_IA64_LTV32LSB; break;
573 case BFD_RELOC_IA64_LTV64MSB: rtype = R_IA64_LTV64MSB; break;
574 case BFD_RELOC_IA64_LTV64LSB: rtype = R_IA64_LTV64LSB; break;
575
576 case BFD_RELOC_IA64_IPLTMSB: rtype = R_IA64_IPLTMSB; break;
577 case BFD_RELOC_IA64_IPLTLSB: rtype = R_IA64_IPLTLSB; break;
578 case BFD_RELOC_IA64_COPY: rtype = R_IA64_COPY; break;
579 case BFD_RELOC_IA64_LTOFF22X: rtype = R_IA64_LTOFF22X; break;
580 case BFD_RELOC_IA64_LDXMOV: rtype = R_IA64_LDXMOV; break;
581
582 case BFD_RELOC_IA64_TPREL14: rtype = R_IA64_TPREL14; break;
583 case BFD_RELOC_IA64_TPREL22: rtype = R_IA64_TPREL22; break;
584 case BFD_RELOC_IA64_TPREL64I: rtype = R_IA64_TPREL64I; break;
585 case BFD_RELOC_IA64_TPREL64MSB: rtype = R_IA64_TPREL64MSB; break;
586 case BFD_RELOC_IA64_TPREL64LSB: rtype = R_IA64_TPREL64LSB; break;
587 case BFD_RELOC_IA64_LTOFF_TPREL22: rtype = R_IA64_LTOFF_TPREL22; break;
588
589 case BFD_RELOC_IA64_DTPMOD64MSB: rtype = R_IA64_DTPMOD64MSB; break;
590 case BFD_RELOC_IA64_DTPMOD64LSB: rtype = R_IA64_DTPMOD64LSB; break;
591 case BFD_RELOC_IA64_LTOFF_DTPMOD22: rtype = R_IA64_LTOFF_DTPMOD22; break;
592
593 case BFD_RELOC_IA64_DTPREL14: rtype = R_IA64_DTPREL14; break;
594 case BFD_RELOC_IA64_DTPREL22: rtype = R_IA64_DTPREL22; break;
595 case BFD_RELOC_IA64_DTPREL64I: rtype = R_IA64_DTPREL64I; break;
596 case BFD_RELOC_IA64_DTPREL32MSB: rtype = R_IA64_DTPREL32MSB; break;
597 case BFD_RELOC_IA64_DTPREL32LSB: rtype = R_IA64_DTPREL32LSB; break;
598 case BFD_RELOC_IA64_DTPREL64MSB: rtype = R_IA64_DTPREL64MSB; break;
599 case BFD_RELOC_IA64_DTPREL64LSB: rtype = R_IA64_DTPREL64LSB; break;
600 case BFD_RELOC_IA64_LTOFF_DTPREL22: rtype = R_IA64_LTOFF_DTPREL22; break;
601
602 default: return 0;
603 }
604 return lookup_howto (rtype);
605 }
606
607 /* Given a ELF reloc, return the matching HOWTO structure. */
608
609 static void
610 elfNN_ia64_info_to_howto (abfd, bfd_reloc, elf_reloc)
611 bfd *abfd ATTRIBUTE_UNUSED;
612 arelent *bfd_reloc;
613 Elf_Internal_Rela *elf_reloc;
614 {
615 bfd_reloc->howto
616 = lookup_howto ((unsigned int) ELFNN_R_TYPE (elf_reloc->r_info));
617 }
618 \f
619 #define PLT_HEADER_SIZE (3 * 16)
620 #define PLT_MIN_ENTRY_SIZE (1 * 16)
621 #define PLT_FULL_ENTRY_SIZE (2 * 16)
622 #define PLT_RESERVED_WORDS 3
623
624 static const bfd_byte plt_header[PLT_HEADER_SIZE] =
625 {
626 0x0b, 0x10, 0x00, 0x1c, 0x00, 0x21, /* [MMI] mov r2=r14;; */
627 0xe0, 0x00, 0x08, 0x00, 0x48, 0x00, /* addl r14=0,r2 */
628 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
629 0x0b, 0x80, 0x20, 0x1c, 0x18, 0x14, /* [MMI] ld8 r16=[r14],8;; */
630 0x10, 0x41, 0x38, 0x30, 0x28, 0x00, /* ld8 r17=[r14],8 */
631 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
632 0x11, 0x08, 0x00, 0x1c, 0x18, 0x10, /* [MIB] ld8 r1=[r14] */
633 0x60, 0x88, 0x04, 0x80, 0x03, 0x00, /* mov b6=r17 */
634 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
635 };
636
637 static const bfd_byte plt_min_entry[PLT_MIN_ENTRY_SIZE] =
638 {
639 0x11, 0x78, 0x00, 0x00, 0x00, 0x24, /* [MIB] mov r15=0 */
640 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, /* nop.i 0x0 */
641 0x00, 0x00, 0x00, 0x40 /* br.few 0 <PLT0>;; */
642 };
643
644 static const bfd_byte plt_full_entry[PLT_FULL_ENTRY_SIZE] =
645 {
646 0x0b, 0x78, 0x00, 0x02, 0x00, 0x24, /* [MMI] addl r15=0,r1;; */
647 0x00, 0x41, 0x3c, 0x70, 0x29, 0xc0, /* ld8.acq r16=[r15],8*/
648 0x01, 0x08, 0x00, 0x84, /* mov r14=r1;; */
649 0x11, 0x08, 0x00, 0x1e, 0x18, 0x10, /* [MIB] ld8 r1=[r15] */
650 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
651 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
652 };
653
654 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
655
656 static const bfd_byte oor_brl[16] =
657 {
658 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
659 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* brl.sptk.few tgt;; */
660 0x00, 0x00, 0x00, 0xc0
661 };
662
663 static const bfd_byte oor_ip[48] =
664 {
665 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
666 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, /* movl r15=0 */
667 0x01, 0x00, 0x00, 0x60,
668 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MII] nop.m 0 */
669 0x00, 0x01, 0x00, 0x60, 0x00, 0x00, /* mov r16=ip;; */
670 0xf2, 0x80, 0x00, 0x80, /* add r16=r15,r16;; */
671 0x11, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MIB] nop.m 0 */
672 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
673 0x60, 0x00, 0x80, 0x00 /* br b6;; */
674 };
675
676 static size_t oor_branch_size = sizeof (oor_brl);
677
678 void
679 bfd_elfNN_ia64_after_parse (int itanium)
680 {
681 oor_branch_size = itanium ? sizeof (oor_ip) : sizeof (oor_brl);
682 }
683
684 #define BTYPE_SHIFT 6
685 #define Y_SHIFT 26
686 #define X6_SHIFT 27
687 #define X4_SHIFT 27
688 #define X3_SHIFT 33
689 #define X2_SHIFT 31
690 #define X_SHIFT 33
691 #define OPCODE_SHIFT 37
692
693 #define OPCODE_BITS (0xfLL << OPCODE_SHIFT)
694 #define X6_BITS (0x3fLL << X6_SHIFT)
695 #define X4_BITS (0xfLL << X4_SHIFT)
696 #define X3_BITS (0x7LL << X3_SHIFT)
697 #define X2_BITS (0x3LL << X2_SHIFT)
698 #define X_BITS (0x1LL << X_SHIFT)
699 #define Y_BITS (0x1LL << Y_SHIFT)
700 #define BTYPE_BITS (0x7LL << BTYPE_SHIFT)
701 #define PREDICATE_BITS (0x3fLL)
702
703 #define IS_NOP_B(i) \
704 (((i) & (OPCODE_BITS | X6_BITS)) == (2LL << OPCODE_SHIFT))
705 #define IS_NOP_F(i) \
706 (((i) & (OPCODE_BITS | X_BITS | X6_BITS | Y_BITS)) \
707 == (0x1LL << X6_SHIFT))
708 #define IS_NOP_I(i) \
709 (((i) & (OPCODE_BITS | X3_BITS | X6_BITS | Y_BITS)) \
710 == (0x1LL << X6_SHIFT))
711 #define IS_NOP_M(i) \
712 (((i) & (OPCODE_BITS | X3_BITS | X2_BITS | X4_BITS | Y_BITS)) \
713 == (0x1LL << X4_SHIFT))
714 #define IS_BR_COND(i) \
715 (((i) & (OPCODE_BITS | BTYPE_BITS)) == (0x4LL << OPCODE_SHIFT))
716 #define IS_BR_CALL(i) \
717 (((i) & OPCODE_BITS) == (0x5LL << OPCODE_SHIFT))
718
719 static bfd_boolean
720 elfNN_ia64_relax_br (bfd_byte *contents, bfd_vma off)
721 {
722 unsigned int template, mlx;
723 bfd_vma t0, t1, s0, s1, s2, br_code;
724 long br_slot;
725 bfd_byte *hit_addr;
726
727 hit_addr = (bfd_byte *) (contents + off);
728 br_slot = (long) hit_addr & 0x3;
729 hit_addr -= br_slot;
730 t0 = bfd_getl64 (hit_addr + 0);
731 t1 = bfd_getl64 (hit_addr + 8);
732
733 /* Check if we can turn br into brl. A label is always at the start
734 of the bundle. Even if there are predicates on NOPs, we still
735 perform this optimization. */
736 template = t0 & 0x1e;
737 s0 = (t0 >> 5) & 0x1ffffffffffLL;
738 s1 = ((t0 >> 46) | (t1 << 18)) & 0x1ffffffffffLL;
739 s2 = (t1 >> 23) & 0x1ffffffffffLL;
740 switch (br_slot)
741 {
742 case 0:
743 /* Check if slot 1 and slot 2 are NOPs. Possible template is
744 BBB. We only need to check nop.b. */
745 if (!(IS_NOP_B (s1) && IS_NOP_B (s2)))
746 return FALSE;
747 br_code = s0;
748 break;
749 case 1:
750 /* Check if slot 2 is NOP. Possible templates are MBB and BBB.
751 For BBB, slot 0 also has to be nop.b. */
752 if (!((template == 0x12 /* MBB */
753 && IS_NOP_B (s2))
754 || (template == 0x16 /* BBB */
755 && IS_NOP_B (s0)
756 && IS_NOP_B (s2))))
757 return FALSE;
758 br_code = s1;
759 break;
760 case 2:
761 /* Check if slot 1 is NOP. Possible templates are MIB, MBB, BBB,
762 MMB and MFB. For BBB, slot 0 also has to be nop.b. */
763 if (!((template == 0x10 /* MIB */
764 && IS_NOP_I (s1))
765 || (template == 0x12 /* MBB */
766 && IS_NOP_B (s1))
767 || (template == 0x16 /* BBB */
768 && IS_NOP_B (s0)
769 && IS_NOP_B (s1))
770 || (template == 0x18 /* MMB */
771 && IS_NOP_M (s1))
772 || (template == 0x1c /* MFB */
773 && IS_NOP_F (s1))))
774 return FALSE;
775 br_code = s2;
776 break;
777 default:
778 /* It should never happen. */
779 abort ();
780 }
781
782 /* We can turn br.cond/br.call into brl.cond/brl.call. */
783 if (!(IS_BR_COND (br_code) || IS_BR_CALL (br_code)))
784 return FALSE;
785
786 /* Turn br into brl by setting bit 40. */
787 br_code |= 0x1LL << 40;
788
789 /* Turn the old bundle into a MLX bundle with the same stop-bit
790 variety. */
791 if (t0 & 0x1)
792 mlx = 0x5;
793 else
794 mlx = 0x4;
795
796 if (template == 0x16)
797 {
798 /* For BBB, we need to put nop.m in slot 0 and keep the original
799 predicate. */
800 t0 &= PREDICATE_BITS << 5;
801 t0 |= 0x1LL << (X4_SHIFT + 5);
802 }
803 else
804 {
805 /* Keep the original instruction in slot 0. */
806 t0 &= 0x1ffffffffffLL << 5;
807 }
808
809 t0 |= mlx;
810
811 /* Put brl in slot 1. */
812 t1 = br_code << 23;
813
814 bfd_putl64 (t0, hit_addr);
815 bfd_putl64 (t1, hit_addr + 8);
816 return TRUE;
817 }
818
819 static void
820 elfNN_ia64_relax_brl (bfd_byte *contents, bfd_vma off)
821 {
822 unsigned int template, t0, t1, t2, t3;
823 bfd_byte *hit_addr;
824
825 hit_addr = (bfd_byte *) (contents + off);
826 hit_addr -= (long) hit_addr & 0x3;
827 t0 = bfd_getl32 (hit_addr + 0);
828 t1 = bfd_getl32 (hit_addr + 4);
829 t2 = bfd_getl32 (hit_addr + 8);
830 t3 = bfd_getl32 (hit_addr + 12);
831
832 /* Turn a MLX bundle into a MBB bundle with the same stop-bit
833 variety. */
834 template = 0x12;
835 if ((t0 & 0x1f) == 5)
836 template += 1;
837
838 /* Keep the instruction in slot 0. */
839 t0 &= 0xffffffe0;
840 t1 &= 0x3fff;
841
842 t0 |= template;
843
844 /* For slot 2, turn brl into br by masking out bit 40. */
845 t2 &= 0xff800000;
846 t3 &= 0x7fffffff;
847
848 /* Use nop.b for slot 1. */
849 t2 |= 0x100000;
850
851 bfd_putl32 (t0, hit_addr);
852 bfd_putl32 (t1, hit_addr + 4);
853 bfd_putl32 (t2, hit_addr + 8);
854 bfd_putl32 (t3, hit_addr + 12);
855 }
856 \f
857 /* These functions do relaxation for IA-64 ELF. */
858
859 static bfd_boolean
860 elfNN_ia64_relax_section (abfd, sec, link_info, again)
861 bfd *abfd;
862 asection *sec;
863 struct bfd_link_info *link_info;
864 bfd_boolean *again;
865 {
866 struct one_fixup
867 {
868 struct one_fixup *next;
869 asection *tsec;
870 bfd_vma toff;
871 bfd_vma trampoff;
872 };
873
874 Elf_Internal_Shdr *symtab_hdr;
875 Elf_Internal_Rela *internal_relocs;
876 Elf_Internal_Rela *irel, *irelend;
877 bfd_byte *contents;
878 Elf_Internal_Sym *isymbuf = NULL;
879 struct elfNN_ia64_link_hash_table *ia64_info;
880 struct one_fixup *fixups = NULL;
881 bfd_boolean changed_contents = FALSE;
882 bfd_boolean changed_relocs = FALSE;
883 bfd_boolean changed_got = FALSE;
884 bfd_vma gp = 0;
885
886 /* Assume we're not going to change any sizes, and we'll only need
887 one pass. */
888 *again = FALSE;
889
890 /* Don't even try to relax for non-ELF outputs. */
891 if (!is_elf_hash_table (link_info->hash))
892 return FALSE;
893
894 /* Nothing to do if there are no relocations or there is no need for
895 the relax finalize pass. */
896 if ((sec->flags & SEC_RELOC) == 0
897 || sec->reloc_count == 0
898 || (!link_info->need_relax_finalize
899 && sec->need_finalize_relax == 0))
900 return TRUE;
901
902 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
903
904 /* Load the relocations for this section. */
905 internal_relocs = (_bfd_elf_link_read_relocs
906 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
907 link_info->keep_memory));
908 if (internal_relocs == NULL)
909 return FALSE;
910
911 ia64_info = elfNN_ia64_hash_table (link_info);
912 irelend = internal_relocs + sec->reloc_count;
913
914 /* Get the section contents. */
915 if (elf_section_data (sec)->this_hdr.contents != NULL)
916 contents = elf_section_data (sec)->this_hdr.contents;
917 else
918 {
919 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
920 goto error_return;
921 }
922
923 for (irel = internal_relocs; irel < irelend; irel++)
924 {
925 unsigned long r_type = ELFNN_R_TYPE (irel->r_info);
926 bfd_vma symaddr, reladdr, trampoff, toff, roff;
927 asection *tsec;
928 struct one_fixup *f;
929 bfd_size_type amt;
930 bfd_boolean is_branch;
931 struct elfNN_ia64_dyn_sym_info *dyn_i;
932 char symtype;
933
934 switch (r_type)
935 {
936 case R_IA64_PCREL21B:
937 case R_IA64_PCREL21BI:
938 case R_IA64_PCREL21M:
939 case R_IA64_PCREL21F:
940 /* In the finalize pass, all br relaxations are done. We can
941 skip it. */
942 if (!link_info->need_relax_finalize)
943 continue;
944 is_branch = TRUE;
945 break;
946
947 case R_IA64_PCREL60B:
948 /* We can't optimize brl to br before the finalize pass since
949 br relaxations will increase the code size. Defer it to
950 the finalize pass. */
951 if (link_info->need_relax_finalize)
952 {
953 sec->need_finalize_relax = 1;
954 continue;
955 }
956 is_branch = TRUE;
957 break;
958
959 case R_IA64_LTOFF22X:
960 case R_IA64_LDXMOV:
961 /* We can't relax ldx/mov before the finalize pass since
962 br relaxations will increase the code size. Defer it to
963 the finalize pass. */
964 if (link_info->need_relax_finalize)
965 {
966 sec->need_finalize_relax = 1;
967 continue;
968 }
969 is_branch = FALSE;
970 break;
971
972 default:
973 continue;
974 }
975
976 /* Get the value of the symbol referred to by the reloc. */
977 if (ELFNN_R_SYM (irel->r_info) < symtab_hdr->sh_info)
978 {
979 /* A local symbol. */
980 Elf_Internal_Sym *isym;
981
982 /* Read this BFD's local symbols. */
983 if (isymbuf == NULL)
984 {
985 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
986 if (isymbuf == NULL)
987 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
988 symtab_hdr->sh_info, 0,
989 NULL, NULL, NULL);
990 if (isymbuf == 0)
991 goto error_return;
992 }
993
994 isym = isymbuf + ELFNN_R_SYM (irel->r_info);
995 if (isym->st_shndx == SHN_UNDEF)
996 continue; /* We can't do anything with undefined symbols. */
997 else if (isym->st_shndx == SHN_ABS)
998 tsec = bfd_abs_section_ptr;
999 else if (isym->st_shndx == SHN_COMMON)
1000 tsec = bfd_com_section_ptr;
1001 else if (isym->st_shndx == SHN_IA_64_ANSI_COMMON)
1002 tsec = bfd_com_section_ptr;
1003 else
1004 tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
1005
1006 toff = isym->st_value;
1007 dyn_i = get_dyn_sym_info (ia64_info, NULL, abfd, irel, FALSE);
1008 symtype = ELF_ST_TYPE (isym->st_info);
1009 }
1010 else
1011 {
1012 unsigned long indx;
1013 struct elf_link_hash_entry *h;
1014
1015 indx = ELFNN_R_SYM (irel->r_info) - symtab_hdr->sh_info;
1016 h = elf_sym_hashes (abfd)[indx];
1017 BFD_ASSERT (h != NULL);
1018
1019 while (h->root.type == bfd_link_hash_indirect
1020 || h->root.type == bfd_link_hash_warning)
1021 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1022
1023 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, irel, FALSE);
1024
1025 /* For branches to dynamic symbols, we're interested instead
1026 in a branch to the PLT entry. */
1027 if (is_branch && dyn_i && dyn_i->want_plt2)
1028 {
1029 /* Internal branches shouldn't be sent to the PLT.
1030 Leave this for now and we'll give an error later. */
1031 if (r_type != R_IA64_PCREL21B)
1032 continue;
1033
1034 tsec = ia64_info->plt_sec;
1035 toff = dyn_i->plt2_offset;
1036 BFD_ASSERT (irel->r_addend == 0);
1037 }
1038
1039 /* Can't do anything else with dynamic symbols. */
1040 else if (elfNN_ia64_dynamic_symbol_p (h, link_info, r_type))
1041 continue;
1042
1043 else
1044 {
1045 /* We can't do anything with undefined symbols. */
1046 if (h->root.type == bfd_link_hash_undefined
1047 || h->root.type == bfd_link_hash_undefweak)
1048 continue;
1049
1050 tsec = h->root.u.def.section;
1051 toff = h->root.u.def.value;
1052 }
1053
1054 symtype = h->type;
1055 }
1056
1057 if (tsec->sec_info_type == ELF_INFO_TYPE_MERGE)
1058 {
1059 /* At this stage in linking, no SEC_MERGE symbol has been
1060 adjusted, so all references to such symbols need to be
1061 passed through _bfd_merged_section_offset. (Later, in
1062 relocate_section, all SEC_MERGE symbols *except* for
1063 section symbols have been adjusted.)
1064
1065 gas may reduce relocations against symbols in SEC_MERGE
1066 sections to a relocation against the section symbol when
1067 the original addend was zero. When the reloc is against
1068 a section symbol we should include the addend in the
1069 offset passed to _bfd_merged_section_offset, since the
1070 location of interest is the original symbol. On the
1071 other hand, an access to "sym+addend" where "sym" is not
1072 a section symbol should not include the addend; Such an
1073 access is presumed to be an offset from "sym"; The
1074 location of interest is just "sym". */
1075 if (symtype == STT_SECTION)
1076 toff += irel->r_addend;
1077
1078 toff = _bfd_merged_section_offset (abfd, &tsec,
1079 elf_section_data (tsec)->sec_info,
1080 toff);
1081
1082 if (symtype != STT_SECTION)
1083 toff += irel->r_addend;
1084 }
1085 else
1086 toff += irel->r_addend;
1087
1088 symaddr = tsec->output_section->vma + tsec->output_offset + toff;
1089
1090 roff = irel->r_offset;
1091
1092 if (is_branch)
1093 {
1094 bfd_signed_vma offset;
1095
1096 reladdr = (sec->output_section->vma
1097 + sec->output_offset
1098 + roff) & (bfd_vma) -4;
1099
1100 /* If the branch is in range, no need to do anything. */
1101 if ((bfd_signed_vma) (symaddr - reladdr) >= -0x1000000
1102 && (bfd_signed_vma) (symaddr - reladdr) <= 0x0FFFFF0)
1103 {
1104 /* If the 60-bit branch is in 21-bit range, optimize it. */
1105 if (r_type == R_IA64_PCREL60B)
1106 {
1107 elfNN_ia64_relax_brl (contents, roff);
1108
1109 irel->r_info
1110 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1111 R_IA64_PCREL21B);
1112
1113 /* If the original relocation offset points to slot
1114 1, change it to slot 2. */
1115 if ((irel->r_offset & 3) == 1)
1116 irel->r_offset += 1;
1117 }
1118
1119 continue;
1120 }
1121 else if (r_type == R_IA64_PCREL60B)
1122 continue;
1123 else if (elfNN_ia64_relax_br (contents, roff))
1124 {
1125 irel->r_info
1126 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1127 R_IA64_PCREL60B);
1128
1129 /* Make the relocation offset point to slot 1. */
1130 irel->r_offset = (irel->r_offset & ~((bfd_vma) 0x3)) + 1;
1131 continue;
1132 }
1133
1134 /* We can't put a trampoline in a .init/.fini section. Issue
1135 an error. */
1136 if (strcmp (sec->output_section->name, ".init") == 0
1137 || strcmp (sec->output_section->name, ".fini") == 0)
1138 {
1139 (*_bfd_error_handler)
1140 (_("%B: Can't relax br at 0x%lx in section `%A'. Please use brl or indirect branch."),
1141 sec->owner, sec, (unsigned long) roff);
1142 bfd_set_error (bfd_error_bad_value);
1143 goto error_return;
1144 }
1145
1146 /* If the branch and target are in the same section, you've
1147 got one honking big section and we can't help you unless
1148 you are branching backwards. You'll get an error message
1149 later. */
1150 if (tsec == sec && toff > roff)
1151 continue;
1152
1153 /* Look for an existing fixup to this address. */
1154 for (f = fixups; f ; f = f->next)
1155 if (f->tsec == tsec && f->toff == toff)
1156 break;
1157
1158 if (f == NULL)
1159 {
1160 /* Two alternatives: If it's a branch to a PLT entry, we can
1161 make a copy of the FULL_PLT entry. Otherwise, we'll have
1162 to use a `brl' insn to get where we're going. */
1163
1164 size_t size;
1165
1166 if (tsec == ia64_info->plt_sec)
1167 size = sizeof (plt_full_entry);
1168 else
1169 size = oor_branch_size;
1170
1171 /* Resize the current section to make room for the new branch. */
1172 trampoff = (sec->size + 15) & (bfd_vma) -16;
1173
1174 /* If trampoline is out of range, there is nothing we
1175 can do. */
1176 offset = trampoff - (roff & (bfd_vma) -4);
1177 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1178 continue;
1179
1180 amt = trampoff + size;
1181 contents = (bfd_byte *) bfd_realloc (contents, amt);
1182 if (contents == NULL)
1183 goto error_return;
1184 sec->size = amt;
1185
1186 if (tsec == ia64_info->plt_sec)
1187 {
1188 memcpy (contents + trampoff, plt_full_entry, size);
1189
1190 /* Hijack the old relocation for use as the PLTOFF reloc. */
1191 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1192 R_IA64_PLTOFF22);
1193 irel->r_offset = trampoff;
1194 }
1195 else
1196 {
1197 if (size == sizeof (oor_ip))
1198 {
1199 memcpy (contents + trampoff, oor_ip, size);
1200 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1201 R_IA64_PCREL64I);
1202 irel->r_addend -= 16;
1203 irel->r_offset = trampoff + 2;
1204 }
1205 else
1206 {
1207 memcpy (contents + trampoff, oor_brl, size);
1208 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1209 R_IA64_PCREL60B);
1210 irel->r_offset = trampoff + 2;
1211 }
1212
1213 }
1214
1215 /* Record the fixup so we don't do it again this section. */
1216 f = (struct one_fixup *)
1217 bfd_malloc ((bfd_size_type) sizeof (*f));
1218 f->next = fixups;
1219 f->tsec = tsec;
1220 f->toff = toff;
1221 f->trampoff = trampoff;
1222 fixups = f;
1223 }
1224 else
1225 {
1226 /* If trampoline is out of range, there is nothing we
1227 can do. */
1228 offset = f->trampoff - (roff & (bfd_vma) -4);
1229 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1230 continue;
1231
1232 /* Nop out the reloc, since we're finalizing things here. */
1233 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1234 }
1235
1236 /* Fix up the existing branch to hit the trampoline. */
1237 if (elfNN_ia64_install_value (contents + roff, offset, r_type)
1238 != bfd_reloc_ok)
1239 goto error_return;
1240
1241 changed_contents = TRUE;
1242 changed_relocs = TRUE;
1243 }
1244 else
1245 {
1246 /* Fetch the gp. */
1247 if (gp == 0)
1248 {
1249 bfd *obfd = sec->output_section->owner;
1250 gp = _bfd_get_gp_value (obfd);
1251 if (gp == 0)
1252 {
1253 if (!elfNN_ia64_choose_gp (obfd, link_info))
1254 goto error_return;
1255 gp = _bfd_get_gp_value (obfd);
1256 }
1257 }
1258
1259 /* If the data is out of range, do nothing. */
1260 if ((bfd_signed_vma) (symaddr - gp) >= 0x200000
1261 ||(bfd_signed_vma) (symaddr - gp) < -0x200000)
1262 continue;
1263
1264 if (r_type == R_IA64_LTOFF22X)
1265 {
1266 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1267 R_IA64_GPREL22);
1268 changed_relocs = TRUE;
1269 if (dyn_i->want_gotx)
1270 {
1271 dyn_i->want_gotx = 0;
1272 changed_got |= !dyn_i->want_got;
1273 }
1274 }
1275 else
1276 {
1277 elfNN_ia64_relax_ldxmov (contents, roff);
1278 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1279 changed_contents = TRUE;
1280 changed_relocs = TRUE;
1281 }
1282 }
1283 }
1284
1285 /* ??? If we created fixups, this may push the code segment large
1286 enough that the data segment moves, which will change the GP.
1287 Reset the GP so that we re-calculate next round. We need to
1288 do this at the _beginning_ of the next round; now will not do. */
1289
1290 /* Clean up and go home. */
1291 while (fixups)
1292 {
1293 struct one_fixup *f = fixups;
1294 fixups = fixups->next;
1295 free (f);
1296 }
1297
1298 if (isymbuf != NULL
1299 && symtab_hdr->contents != (unsigned char *) isymbuf)
1300 {
1301 if (! link_info->keep_memory)
1302 free (isymbuf);
1303 else
1304 {
1305 /* Cache the symbols for elf_link_input_bfd. */
1306 symtab_hdr->contents = (unsigned char *) isymbuf;
1307 }
1308 }
1309
1310 if (contents != NULL
1311 && elf_section_data (sec)->this_hdr.contents != contents)
1312 {
1313 if (!changed_contents && !link_info->keep_memory)
1314 free (contents);
1315 else
1316 {
1317 /* Cache the section contents for elf_link_input_bfd. */
1318 elf_section_data (sec)->this_hdr.contents = contents;
1319 }
1320 }
1321
1322 if (elf_section_data (sec)->relocs != internal_relocs)
1323 {
1324 if (!changed_relocs)
1325 free (internal_relocs);
1326 else
1327 elf_section_data (sec)->relocs = internal_relocs;
1328 }
1329
1330 if (changed_got)
1331 {
1332 struct elfNN_ia64_allocate_data data;
1333 data.info = link_info;
1334 data.ofs = 0;
1335 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
1336
1337 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
1338 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
1339 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
1340 ia64_info->got_sec->size = data.ofs;
1341
1342 /* ??? Resize .rela.got too. */
1343 }
1344
1345 if (!link_info->need_relax_finalize)
1346 sec->need_finalize_relax = 0;
1347
1348 *again = changed_contents || changed_relocs;
1349 return TRUE;
1350
1351 error_return:
1352 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
1353 free (isymbuf);
1354 if (contents != NULL
1355 && elf_section_data (sec)->this_hdr.contents != contents)
1356 free (contents);
1357 if (internal_relocs != NULL
1358 && elf_section_data (sec)->relocs != internal_relocs)
1359 free (internal_relocs);
1360 return FALSE;
1361 }
1362
1363 static void
1364 elfNN_ia64_relax_ldxmov (contents, off)
1365 bfd_byte *contents;
1366 bfd_vma off;
1367 {
1368 int shift, r1, r3;
1369 bfd_vma dword, insn;
1370
1371 switch ((int)off & 0x3)
1372 {
1373 case 0: shift = 5; break;
1374 case 1: shift = 14; off += 3; break;
1375 case 2: shift = 23; off += 6; break;
1376 default:
1377 abort ();
1378 }
1379
1380 dword = bfd_getl64 (contents + off);
1381 insn = (dword >> shift) & 0x1ffffffffffLL;
1382
1383 r1 = (insn >> 6) & 127;
1384 r3 = (insn >> 20) & 127;
1385 if (r1 == r3)
1386 insn = 0x8000000; /* nop */
1387 else
1388 insn = (insn & 0x7f01fff) | 0x10800000000LL; /* (qp) mov r1 = r3 */
1389
1390 dword &= ~(0x1ffffffffffLL << shift);
1391 dword |= (insn << shift);
1392 bfd_putl64 (dword, contents + off);
1393 }
1394 \f
1395 /* Return TRUE if NAME is an unwind table section name. */
1396
1397 static inline bfd_boolean
1398 is_unwind_section_name (abfd, name)
1399 bfd *abfd;
1400 const char *name;
1401 {
1402 size_t len1, len2, len3;
1403
1404 if (elfNN_ia64_hpux_vec (abfd->xvec)
1405 && !strcmp (name, ELF_STRING_ia64_unwind_hdr))
1406 return FALSE;
1407
1408 len1 = sizeof (ELF_STRING_ia64_unwind) - 1;
1409 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
1410 len3 = sizeof (ELF_STRING_ia64_unwind_once) - 1;
1411 return ((strncmp (name, ELF_STRING_ia64_unwind, len1) == 0
1412 && strncmp (name, ELF_STRING_ia64_unwind_info, len2) != 0)
1413 || strncmp (name, ELF_STRING_ia64_unwind_once, len3) == 0);
1414 }
1415
1416 /* Handle an IA-64 specific section when reading an object file. This
1417 is called when bfd_section_from_shdr finds a section with an unknown
1418 type. */
1419
1420 static bfd_boolean
1421 elfNN_ia64_section_from_shdr (bfd *abfd,
1422 Elf_Internal_Shdr *hdr,
1423 const char *name,
1424 int shindex)
1425 {
1426 asection *newsect;
1427
1428 /* There ought to be a place to keep ELF backend specific flags, but
1429 at the moment there isn't one. We just keep track of the
1430 sections by their name, instead. Fortunately, the ABI gives
1431 suggested names for all the MIPS specific sections, so we will
1432 probably get away with this. */
1433 switch (hdr->sh_type)
1434 {
1435 case SHT_IA_64_UNWIND:
1436 case SHT_IA_64_HP_OPT_ANOT:
1437 break;
1438
1439 case SHT_IA_64_EXT:
1440 if (strcmp (name, ELF_STRING_ia64_archext) != 0)
1441 return FALSE;
1442 break;
1443
1444 default:
1445 return FALSE;
1446 }
1447
1448 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1449 return FALSE;
1450 newsect = hdr->bfd_section;
1451
1452 return TRUE;
1453 }
1454
1455 /* Convert IA-64 specific section flags to bfd internal section flags. */
1456
1457 /* ??? There is no bfd internal flag equivalent to the SHF_IA_64_NORECOV
1458 flag. */
1459
1460 static bfd_boolean
1461 elfNN_ia64_section_flags (flags, hdr)
1462 flagword *flags;
1463 const Elf_Internal_Shdr *hdr;
1464 {
1465 if (hdr->sh_flags & SHF_IA_64_SHORT)
1466 *flags |= SEC_SMALL_DATA;
1467
1468 return TRUE;
1469 }
1470
1471 /* Set the correct type for an IA-64 ELF section. We do this by the
1472 section name, which is a hack, but ought to work. */
1473
1474 static bfd_boolean
1475 elfNN_ia64_fake_sections (abfd, hdr, sec)
1476 bfd *abfd ATTRIBUTE_UNUSED;
1477 Elf_Internal_Shdr *hdr;
1478 asection *sec;
1479 {
1480 register const char *name;
1481
1482 name = bfd_get_section_name (abfd, sec);
1483
1484 if (is_unwind_section_name (abfd, name))
1485 {
1486 /* We don't have the sections numbered at this point, so sh_info
1487 is set later, in elfNN_ia64_final_write_processing. */
1488 hdr->sh_type = SHT_IA_64_UNWIND;
1489 hdr->sh_flags |= SHF_LINK_ORDER;
1490 }
1491 else if (strcmp (name, ELF_STRING_ia64_archext) == 0)
1492 hdr->sh_type = SHT_IA_64_EXT;
1493 else if (strcmp (name, ".HP.opt_annot") == 0)
1494 hdr->sh_type = SHT_IA_64_HP_OPT_ANOT;
1495 else if (strcmp (name, ".reloc") == 0)
1496 /* This is an ugly, but unfortunately necessary hack that is
1497 needed when producing EFI binaries on IA-64. It tells
1498 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1499 containing ELF relocation info. We need this hack in order to
1500 be able to generate ELF binaries that can be translated into
1501 EFI applications (which are essentially COFF objects). Those
1502 files contain a COFF ".reloc" section inside an ELFNN object,
1503 which would normally cause BFD to segfault because it would
1504 attempt to interpret this section as containing relocation
1505 entries for section "oc". With this hack enabled, ".reloc"
1506 will be treated as a normal data section, which will avoid the
1507 segfault. However, you won't be able to create an ELFNN binary
1508 with a section named "oc" that needs relocations, but that's
1509 the kind of ugly side-effects you get when detecting section
1510 types based on their names... In practice, this limitation is
1511 unlikely to bite. */
1512 hdr->sh_type = SHT_PROGBITS;
1513
1514 if (sec->flags & SEC_SMALL_DATA)
1515 hdr->sh_flags |= SHF_IA_64_SHORT;
1516
1517 return TRUE;
1518 }
1519
1520 /* The final processing done just before writing out an IA-64 ELF
1521 object file. */
1522
1523 static void
1524 elfNN_ia64_final_write_processing (abfd, linker)
1525 bfd *abfd;
1526 bfd_boolean linker ATTRIBUTE_UNUSED;
1527 {
1528 Elf_Internal_Shdr *hdr;
1529 asection *s;
1530
1531 for (s = abfd->sections; s; s = s->next)
1532 {
1533 hdr = &elf_section_data (s)->this_hdr;
1534 switch (hdr->sh_type)
1535 {
1536 case SHT_IA_64_UNWIND:
1537 /* The IA-64 processor-specific ABI requires setting sh_link
1538 to the unwind section, whereas HP-UX requires sh_info to
1539 do so. For maximum compatibility, we'll set both for
1540 now... */
1541 hdr->sh_info = hdr->sh_link;
1542 break;
1543 }
1544 }
1545
1546 if (! elf_flags_init (abfd))
1547 {
1548 unsigned long flags = 0;
1549
1550 if (abfd->xvec->byteorder == BFD_ENDIAN_BIG)
1551 flags |= EF_IA_64_BE;
1552 if (bfd_get_mach (abfd) == bfd_mach_ia64_elf64)
1553 flags |= EF_IA_64_ABI64;
1554
1555 elf_elfheader(abfd)->e_flags = flags;
1556 elf_flags_init (abfd) = TRUE;
1557 }
1558 }
1559
1560 /* Hook called by the linker routine which adds symbols from an object
1561 file. We use it to put .comm items in .sbss, and not .bss. */
1562
1563 static bfd_boolean
1564 elfNN_ia64_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1565 bfd *abfd;
1566 struct bfd_link_info *info;
1567 Elf_Internal_Sym *sym;
1568 const char **namep ATTRIBUTE_UNUSED;
1569 flagword *flagsp ATTRIBUTE_UNUSED;
1570 asection **secp;
1571 bfd_vma *valp;
1572 {
1573 if (sym->st_shndx == SHN_COMMON
1574 && !info->relocatable
1575 && sym->st_size <= elf_gp_size (abfd))
1576 {
1577 /* Common symbols less than or equal to -G nn bytes are
1578 automatically put into .sbss. */
1579
1580 asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
1581
1582 if (scomm == NULL)
1583 {
1584 scomm = bfd_make_section_with_flags (abfd, ".scommon",
1585 (SEC_ALLOC
1586 | SEC_IS_COMMON
1587 | SEC_LINKER_CREATED));
1588 if (scomm == NULL)
1589 return FALSE;
1590 }
1591
1592 *secp = scomm;
1593 *valp = sym->st_size;
1594 }
1595
1596 return TRUE;
1597 }
1598
1599 /* Return the number of additional phdrs we will need. */
1600
1601 static int
1602 elfNN_ia64_additional_program_headers (abfd)
1603 bfd *abfd;
1604 {
1605 asection *s;
1606 int ret = 0;
1607
1608 /* See if we need a PT_IA_64_ARCHEXT segment. */
1609 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1610 if (s && (s->flags & SEC_LOAD))
1611 ++ret;
1612
1613 /* Count how many PT_IA_64_UNWIND segments we need. */
1614 for (s = abfd->sections; s; s = s->next)
1615 if (is_unwind_section_name (abfd, s->name) && (s->flags & SEC_LOAD))
1616 ++ret;
1617
1618 return ret;
1619 }
1620
1621 static bfd_boolean
1622 elfNN_ia64_modify_segment_map (abfd, info)
1623 bfd *abfd;
1624 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1625 {
1626 struct elf_segment_map *m, **pm;
1627 Elf_Internal_Shdr *hdr;
1628 asection *s;
1629
1630 /* If we need a PT_IA_64_ARCHEXT segment, it must come before
1631 all PT_LOAD segments. */
1632 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1633 if (s && (s->flags & SEC_LOAD))
1634 {
1635 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1636 if (m->p_type == PT_IA_64_ARCHEXT)
1637 break;
1638 if (m == NULL)
1639 {
1640 m = ((struct elf_segment_map *)
1641 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1642 if (m == NULL)
1643 return FALSE;
1644
1645 m->p_type = PT_IA_64_ARCHEXT;
1646 m->count = 1;
1647 m->sections[0] = s;
1648
1649 /* We want to put it after the PHDR and INTERP segments. */
1650 pm = &elf_tdata (abfd)->segment_map;
1651 while (*pm != NULL
1652 && ((*pm)->p_type == PT_PHDR
1653 || (*pm)->p_type == PT_INTERP))
1654 pm = &(*pm)->next;
1655
1656 m->next = *pm;
1657 *pm = m;
1658 }
1659 }
1660
1661 /* Install PT_IA_64_UNWIND segments, if needed. */
1662 for (s = abfd->sections; s; s = s->next)
1663 {
1664 hdr = &elf_section_data (s)->this_hdr;
1665 if (hdr->sh_type != SHT_IA_64_UNWIND)
1666 continue;
1667
1668 if (s && (s->flags & SEC_LOAD))
1669 {
1670 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1671 if (m->p_type == PT_IA_64_UNWIND)
1672 {
1673 int i;
1674
1675 /* Look through all sections in the unwind segment
1676 for a match since there may be multiple sections
1677 to a segment. */
1678 for (i = m->count - 1; i >= 0; --i)
1679 if (m->sections[i] == s)
1680 break;
1681
1682 if (i >= 0)
1683 break;
1684 }
1685
1686 if (m == NULL)
1687 {
1688 m = ((struct elf_segment_map *)
1689 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1690 if (m == NULL)
1691 return FALSE;
1692
1693 m->p_type = PT_IA_64_UNWIND;
1694 m->count = 1;
1695 m->sections[0] = s;
1696 m->next = NULL;
1697
1698 /* We want to put it last. */
1699 pm = &elf_tdata (abfd)->segment_map;
1700 while (*pm != NULL)
1701 pm = &(*pm)->next;
1702 *pm = m;
1703 }
1704 }
1705 }
1706
1707 /* Turn on PF_IA_64_NORECOV if needed. This involves traversing all of
1708 the input sections for each output section in the segment and testing
1709 for SHF_IA_64_NORECOV on each. */
1710 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1711 if (m->p_type == PT_LOAD)
1712 {
1713 int i;
1714 for (i = m->count - 1; i >= 0; --i)
1715 {
1716 struct bfd_link_order *order = m->sections[i]->map_head.link_order;
1717 while (order)
1718 {
1719 if (order->type == bfd_indirect_link_order)
1720 {
1721 asection *is = order->u.indirect.section;
1722 bfd_vma flags = elf_section_data(is)->this_hdr.sh_flags;
1723 if (flags & SHF_IA_64_NORECOV)
1724 {
1725 m->p_flags |= PF_IA_64_NORECOV;
1726 goto found;
1727 }
1728 }
1729 order = order->next;
1730 }
1731 }
1732 found:;
1733 }
1734
1735 return TRUE;
1736 }
1737
1738 /* According to the Tahoe assembler spec, all labels starting with a
1739 '.' are local. */
1740
1741 static bfd_boolean
1742 elfNN_ia64_is_local_label_name (abfd, name)
1743 bfd *abfd ATTRIBUTE_UNUSED;
1744 const char *name;
1745 {
1746 return name[0] == '.';
1747 }
1748
1749 /* Should we do dynamic things to this symbol? */
1750
1751 static bfd_boolean
1752 elfNN_ia64_dynamic_symbol_p (h, info, r_type)
1753 struct elf_link_hash_entry *h;
1754 struct bfd_link_info *info;
1755 int r_type;
1756 {
1757 bfd_boolean ignore_protected
1758 = ((r_type & 0xf8) == 0x40 /* FPTR relocs */
1759 || (r_type & 0xf8) == 0x50); /* LTOFF_FPTR relocs */
1760
1761 return _bfd_elf_dynamic_symbol_p (h, info, ignore_protected);
1762 }
1763 \f
1764 static struct bfd_hash_entry*
1765 elfNN_ia64_new_elf_hash_entry (entry, table, string)
1766 struct bfd_hash_entry *entry;
1767 struct bfd_hash_table *table;
1768 const char *string;
1769 {
1770 struct elfNN_ia64_link_hash_entry *ret;
1771 ret = (struct elfNN_ia64_link_hash_entry *) entry;
1772
1773 /* Allocate the structure if it has not already been allocated by a
1774 subclass. */
1775 if (!ret)
1776 ret = bfd_hash_allocate (table, sizeof (*ret));
1777
1778 if (!ret)
1779 return 0;
1780
1781 /* Call the allocation method of the superclass. */
1782 ret = ((struct elfNN_ia64_link_hash_entry *)
1783 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1784 table, string));
1785
1786 ret->info = NULL;
1787 return (struct bfd_hash_entry *) ret;
1788 }
1789
1790 static void
1791 elfNN_ia64_hash_copy_indirect (bed, xdir, xind)
1792 const struct elf_backend_data *bed ATTRIBUTE_UNUSED;
1793 struct elf_link_hash_entry *xdir, *xind;
1794 {
1795 struct elfNN_ia64_link_hash_entry *dir, *ind;
1796
1797 dir = (struct elfNN_ia64_link_hash_entry *) xdir;
1798 ind = (struct elfNN_ia64_link_hash_entry *) xind;
1799
1800 /* Copy down any references that we may have already seen to the
1801 symbol which just became indirect. */
1802
1803 dir->root.ref_dynamic |= ind->root.ref_dynamic;
1804 dir->root.ref_regular |= ind->root.ref_regular;
1805 dir->root.ref_regular_nonweak |= ind->root.ref_regular_nonweak;
1806 dir->root.needs_plt |= ind->root.needs_plt;
1807
1808 if (ind->root.root.type != bfd_link_hash_indirect)
1809 return;
1810
1811 /* Copy over the got and plt data. This would have been done
1812 by check_relocs. */
1813
1814 if (dir->info == NULL)
1815 {
1816 struct elfNN_ia64_dyn_sym_info *dyn_i;
1817
1818 dir->info = dyn_i = ind->info;
1819 ind->info = NULL;
1820
1821 /* Fix up the dyn_sym_info pointers to the global symbol. */
1822 for (; dyn_i; dyn_i = dyn_i->next)
1823 dyn_i->h = &dir->root;
1824 }
1825 BFD_ASSERT (ind->info == NULL);
1826
1827 /* Copy over the dynindx. */
1828
1829 if (dir->root.dynindx == -1)
1830 {
1831 dir->root.dynindx = ind->root.dynindx;
1832 dir->root.dynstr_index = ind->root.dynstr_index;
1833 ind->root.dynindx = -1;
1834 ind->root.dynstr_index = 0;
1835 }
1836 BFD_ASSERT (ind->root.dynindx == -1);
1837 }
1838
1839 static void
1840 elfNN_ia64_hash_hide_symbol (info, xh, force_local)
1841 struct bfd_link_info *info;
1842 struct elf_link_hash_entry *xh;
1843 bfd_boolean force_local;
1844 {
1845 struct elfNN_ia64_link_hash_entry *h;
1846 struct elfNN_ia64_dyn_sym_info *dyn_i;
1847
1848 h = (struct elfNN_ia64_link_hash_entry *)xh;
1849
1850 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
1851
1852 for (dyn_i = h->info; dyn_i; dyn_i = dyn_i->next)
1853 {
1854 dyn_i->want_plt2 = 0;
1855 dyn_i->want_plt = 0;
1856 }
1857 }
1858
1859 /* Compute a hash of a local hash entry. */
1860
1861 static hashval_t
1862 elfNN_ia64_local_htab_hash (ptr)
1863 const void *ptr;
1864 {
1865 struct elfNN_ia64_local_hash_entry *entry
1866 = (struct elfNN_ia64_local_hash_entry *) ptr;
1867
1868 return (((entry->id & 0xff) << 24) | ((entry->id & 0xff00) << 8))
1869 ^ entry->r_sym ^ (entry->id >> 16);
1870 }
1871
1872 /* Compare local hash entries. */
1873
1874 static int
1875 elfNN_ia64_local_htab_eq (ptr1, ptr2)
1876 const void *ptr1, *ptr2;
1877 {
1878 struct elfNN_ia64_local_hash_entry *entry1
1879 = (struct elfNN_ia64_local_hash_entry *) ptr1;
1880 struct elfNN_ia64_local_hash_entry *entry2
1881 = (struct elfNN_ia64_local_hash_entry *) ptr2;
1882
1883 return entry1->id == entry2->id && entry1->r_sym == entry2->r_sym;
1884 }
1885
1886 /* Create the derived linker hash table. The IA-64 ELF port uses this
1887 derived hash table to keep information specific to the IA-64 ElF
1888 linker (without using static variables). */
1889
1890 static struct bfd_link_hash_table*
1891 elfNN_ia64_hash_table_create (abfd)
1892 bfd *abfd;
1893 {
1894 struct elfNN_ia64_link_hash_table *ret;
1895
1896 ret = bfd_zmalloc ((bfd_size_type) sizeof (*ret));
1897 if (!ret)
1898 return 0;
1899
1900 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
1901 elfNN_ia64_new_elf_hash_entry))
1902 {
1903 free (ret);
1904 return 0;
1905 }
1906
1907 ret->loc_hash_table = htab_try_create (1024, elfNN_ia64_local_htab_hash,
1908 elfNN_ia64_local_htab_eq, NULL);
1909 ret->loc_hash_memory = objalloc_create ();
1910 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1911 {
1912 free (ret);
1913 return 0;
1914 }
1915
1916 return &ret->root.root;
1917 }
1918
1919 /* Destroy IA-64 linker hash table. */
1920
1921 static void
1922 elfNN_ia64_hash_table_free (hash)
1923 struct bfd_link_hash_table *hash;
1924 {
1925 struct elfNN_ia64_link_hash_table *ia64_info
1926 = (struct elfNN_ia64_link_hash_table *) hash;
1927 if (ia64_info->loc_hash_table)
1928 htab_delete (ia64_info->loc_hash_table);
1929 if (ia64_info->loc_hash_memory)
1930 objalloc_free ((struct objalloc *) ia64_info->loc_hash_memory);
1931 _bfd_generic_link_hash_table_free (hash);
1932 }
1933
1934 /* Traverse both local and global hash tables. */
1935
1936 struct elfNN_ia64_dyn_sym_traverse_data
1937 {
1938 bfd_boolean (*func) PARAMS ((struct elfNN_ia64_dyn_sym_info *, PTR));
1939 PTR data;
1940 };
1941
1942 static bfd_boolean
1943 elfNN_ia64_global_dyn_sym_thunk (xentry, xdata)
1944 struct bfd_hash_entry *xentry;
1945 PTR xdata;
1946 {
1947 struct elfNN_ia64_link_hash_entry *entry
1948 = (struct elfNN_ia64_link_hash_entry *) xentry;
1949 struct elfNN_ia64_dyn_sym_traverse_data *data
1950 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
1951 struct elfNN_ia64_dyn_sym_info *dyn_i;
1952
1953 if (entry->root.root.type == bfd_link_hash_warning)
1954 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
1955
1956 for (dyn_i = entry->info; dyn_i; dyn_i = dyn_i->next)
1957 if (! (*data->func) (dyn_i, data->data))
1958 return FALSE;
1959 return TRUE;
1960 }
1961
1962 static bfd_boolean
1963 elfNN_ia64_local_dyn_sym_thunk (slot, xdata)
1964 void **slot;
1965 PTR xdata;
1966 {
1967 struct elfNN_ia64_local_hash_entry *entry
1968 = (struct elfNN_ia64_local_hash_entry *) *slot;
1969 struct elfNN_ia64_dyn_sym_traverse_data *data
1970 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
1971 struct elfNN_ia64_dyn_sym_info *dyn_i;
1972
1973 for (dyn_i = entry->info; dyn_i; dyn_i = dyn_i->next)
1974 if (! (*data->func) (dyn_i, data->data))
1975 return 0;
1976 return 1;
1977 }
1978
1979 static void
1980 elfNN_ia64_dyn_sym_traverse (ia64_info, func, data)
1981 struct elfNN_ia64_link_hash_table *ia64_info;
1982 bfd_boolean (*func) PARAMS ((struct elfNN_ia64_dyn_sym_info *, PTR));
1983 PTR data;
1984 {
1985 struct elfNN_ia64_dyn_sym_traverse_data xdata;
1986
1987 xdata.func = func;
1988 xdata.data = data;
1989
1990 elf_link_hash_traverse (&ia64_info->root,
1991 elfNN_ia64_global_dyn_sym_thunk, &xdata);
1992 htab_traverse (ia64_info->loc_hash_table,
1993 elfNN_ia64_local_dyn_sym_thunk, &xdata);
1994 }
1995 \f
1996 static bfd_boolean
1997 elfNN_ia64_create_dynamic_sections (abfd, info)
1998 bfd *abfd;
1999 struct bfd_link_info *info;
2000 {
2001 struct elfNN_ia64_link_hash_table *ia64_info;
2002 asection *s;
2003
2004 if (! _bfd_elf_create_dynamic_sections (abfd, info))
2005 return FALSE;
2006
2007 ia64_info = elfNN_ia64_hash_table (info);
2008
2009 ia64_info->plt_sec = bfd_get_section_by_name (abfd, ".plt");
2010 ia64_info->got_sec = bfd_get_section_by_name (abfd, ".got");
2011
2012 {
2013 flagword flags = bfd_get_section_flags (abfd, ia64_info->got_sec);
2014 bfd_set_section_flags (abfd, ia64_info->got_sec, SEC_SMALL_DATA | flags);
2015 /* The .got section is always aligned at 8 bytes. */
2016 bfd_set_section_alignment (abfd, ia64_info->got_sec, 3);
2017 }
2018
2019 if (!get_pltoff (abfd, info, ia64_info))
2020 return FALSE;
2021
2022 s = bfd_make_section_with_flags (abfd, ".rela.IA_64.pltoff",
2023 (SEC_ALLOC | SEC_LOAD
2024 | SEC_HAS_CONTENTS
2025 | SEC_IN_MEMORY
2026 | SEC_LINKER_CREATED
2027 | SEC_READONLY));
2028 if (s == NULL
2029 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2030 return FALSE;
2031 ia64_info->rel_pltoff_sec = s;
2032
2033 s = bfd_make_section_with_flags (abfd, ".rela.got",
2034 (SEC_ALLOC | SEC_LOAD
2035 | SEC_HAS_CONTENTS
2036 | SEC_IN_MEMORY
2037 | SEC_LINKER_CREATED
2038 | SEC_READONLY));
2039 if (s == NULL
2040 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2041 return FALSE;
2042 ia64_info->rel_got_sec = s;
2043
2044 return TRUE;
2045 }
2046
2047 /* Find and/or create a hash entry for local symbol. */
2048 static struct elfNN_ia64_local_hash_entry *
2049 get_local_sym_hash (ia64_info, abfd, rel, create)
2050 struct elfNN_ia64_link_hash_table *ia64_info;
2051 bfd *abfd;
2052 const Elf_Internal_Rela *rel;
2053 bfd_boolean create;
2054 {
2055 struct elfNN_ia64_local_hash_entry e, *ret;
2056 asection *sec = abfd->sections;
2057 hashval_t h = (((sec->id & 0xff) << 24) | ((sec->id & 0xff00) << 8))
2058 ^ ELFNN_R_SYM (rel->r_info) ^ (sec->id >> 16);
2059 void **slot;
2060
2061 e.id = sec->id;
2062 e.r_sym = ELFNN_R_SYM (rel->r_info);
2063 slot = htab_find_slot_with_hash (ia64_info->loc_hash_table, &e, h,
2064 create ? INSERT : NO_INSERT);
2065
2066 if (!slot)
2067 return NULL;
2068
2069 if (*slot)
2070 return (struct elfNN_ia64_local_hash_entry *) *slot;
2071
2072 ret = (struct elfNN_ia64_local_hash_entry *)
2073 objalloc_alloc ((struct objalloc *) ia64_info->loc_hash_memory,
2074 sizeof (struct elfNN_ia64_local_hash_entry));
2075 if (ret)
2076 {
2077 memset (ret, 0, sizeof (*ret));
2078 ret->id = sec->id;
2079 ret->r_sym = ELFNN_R_SYM (rel->r_info);
2080 *slot = ret;
2081 }
2082 return ret;
2083 }
2084
2085 /* Find and/or create a descriptor for dynamic symbol info. This will
2086 vary based on global or local symbol, and the addend to the reloc. */
2087
2088 static struct elfNN_ia64_dyn_sym_info *
2089 get_dyn_sym_info (ia64_info, h, abfd, rel, create)
2090 struct elfNN_ia64_link_hash_table *ia64_info;
2091 struct elf_link_hash_entry *h;
2092 bfd *abfd;
2093 const Elf_Internal_Rela *rel;
2094 bfd_boolean create;
2095 {
2096 struct elfNN_ia64_dyn_sym_info **pp;
2097 struct elfNN_ia64_dyn_sym_info *dyn_i;
2098 bfd_vma addend = rel ? rel->r_addend : 0;
2099
2100 if (h)
2101 pp = &((struct elfNN_ia64_link_hash_entry *)h)->info;
2102 else
2103 {
2104 struct elfNN_ia64_local_hash_entry *loc_h;
2105
2106 loc_h = get_local_sym_hash (ia64_info, abfd, rel, create);
2107 if (!loc_h)
2108 {
2109 BFD_ASSERT (!create);
2110 return NULL;
2111 }
2112
2113 pp = &loc_h->info;
2114 }
2115
2116 for (dyn_i = *pp; dyn_i && dyn_i->addend != addend; dyn_i = *pp)
2117 pp = &dyn_i->next;
2118
2119 if (dyn_i == NULL && create)
2120 {
2121 dyn_i = ((struct elfNN_ia64_dyn_sym_info *)
2122 bfd_zalloc (abfd, (bfd_size_type) sizeof *dyn_i));
2123 *pp = dyn_i;
2124 dyn_i->addend = addend;
2125 }
2126
2127 return dyn_i;
2128 }
2129
2130 static asection *
2131 get_got (abfd, info, ia64_info)
2132 bfd *abfd;
2133 struct bfd_link_info *info;
2134 struct elfNN_ia64_link_hash_table *ia64_info;
2135 {
2136 asection *got;
2137 bfd *dynobj;
2138
2139 got = ia64_info->got_sec;
2140 if (!got)
2141 {
2142 flagword flags;
2143
2144 dynobj = ia64_info->root.dynobj;
2145 if (!dynobj)
2146 ia64_info->root.dynobj = dynobj = abfd;
2147 if (!_bfd_elf_create_got_section (dynobj, info))
2148 return 0;
2149
2150 got = bfd_get_section_by_name (dynobj, ".got");
2151 BFD_ASSERT (got);
2152 ia64_info->got_sec = got;
2153
2154 /* The .got section is always aligned at 8 bytes. */
2155 if (!bfd_set_section_alignment (abfd, got, 3))
2156 return 0;
2157
2158 flags = bfd_get_section_flags (abfd, got);
2159 bfd_set_section_flags (abfd, got, SEC_SMALL_DATA | flags);
2160 }
2161
2162 return got;
2163 }
2164
2165 /* Create function descriptor section (.opd). This section is called .opd
2166 because it contains "official procedure descriptors". The "official"
2167 refers to the fact that these descriptors are used when taking the address
2168 of a procedure, thus ensuring a unique address for each procedure. */
2169
2170 static asection *
2171 get_fptr (abfd, info, ia64_info)
2172 bfd *abfd;
2173 struct bfd_link_info *info;
2174 struct elfNN_ia64_link_hash_table *ia64_info;
2175 {
2176 asection *fptr;
2177 bfd *dynobj;
2178
2179 fptr = ia64_info->fptr_sec;
2180 if (!fptr)
2181 {
2182 dynobj = ia64_info->root.dynobj;
2183 if (!dynobj)
2184 ia64_info->root.dynobj = dynobj = abfd;
2185
2186 fptr = bfd_make_section_with_flags (dynobj, ".opd",
2187 (SEC_ALLOC
2188 | SEC_LOAD
2189 | SEC_HAS_CONTENTS
2190 | SEC_IN_MEMORY
2191 | (info->pie ? 0 : SEC_READONLY)
2192 | SEC_LINKER_CREATED));
2193 if (!fptr
2194 || !bfd_set_section_alignment (abfd, fptr, 4))
2195 {
2196 BFD_ASSERT (0);
2197 return NULL;
2198 }
2199
2200 ia64_info->fptr_sec = fptr;
2201
2202 if (info->pie)
2203 {
2204 asection *fptr_rel;
2205 fptr_rel = bfd_make_section_with_flags (dynobj, ".rela.opd",
2206 (SEC_ALLOC | SEC_LOAD
2207 | SEC_HAS_CONTENTS
2208 | SEC_IN_MEMORY
2209 | SEC_LINKER_CREATED
2210 | SEC_READONLY));
2211 if (fptr_rel == NULL
2212 || !bfd_set_section_alignment (abfd, fptr_rel,
2213 LOG_SECTION_ALIGN))
2214 {
2215 BFD_ASSERT (0);
2216 return NULL;
2217 }
2218
2219 ia64_info->rel_fptr_sec = fptr_rel;
2220 }
2221 }
2222
2223 return fptr;
2224 }
2225
2226 static asection *
2227 get_pltoff (abfd, info, ia64_info)
2228 bfd *abfd;
2229 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2230 struct elfNN_ia64_link_hash_table *ia64_info;
2231 {
2232 asection *pltoff;
2233 bfd *dynobj;
2234
2235 pltoff = ia64_info->pltoff_sec;
2236 if (!pltoff)
2237 {
2238 dynobj = ia64_info->root.dynobj;
2239 if (!dynobj)
2240 ia64_info->root.dynobj = dynobj = abfd;
2241
2242 pltoff = bfd_make_section_with_flags (dynobj,
2243 ELF_STRING_ia64_pltoff,
2244 (SEC_ALLOC
2245 | SEC_LOAD
2246 | SEC_HAS_CONTENTS
2247 | SEC_IN_MEMORY
2248 | SEC_SMALL_DATA
2249 | SEC_LINKER_CREATED));
2250 if (!pltoff
2251 || !bfd_set_section_alignment (abfd, pltoff, 4))
2252 {
2253 BFD_ASSERT (0);
2254 return NULL;
2255 }
2256
2257 ia64_info->pltoff_sec = pltoff;
2258 }
2259
2260 return pltoff;
2261 }
2262
2263 static asection *
2264 get_reloc_section (abfd, ia64_info, sec, create)
2265 bfd *abfd;
2266 struct elfNN_ia64_link_hash_table *ia64_info;
2267 asection *sec;
2268 bfd_boolean create;
2269 {
2270 const char *srel_name;
2271 asection *srel;
2272 bfd *dynobj;
2273
2274 srel_name = (bfd_elf_string_from_elf_section
2275 (abfd, elf_elfheader(abfd)->e_shstrndx,
2276 elf_section_data(sec)->rel_hdr.sh_name));
2277 if (srel_name == NULL)
2278 return NULL;
2279
2280 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
2281 && strcmp (bfd_get_section_name (abfd, sec),
2282 srel_name+5) == 0)
2283 || (strncmp (srel_name, ".rel", 4) == 0
2284 && strcmp (bfd_get_section_name (abfd, sec),
2285 srel_name+4) == 0));
2286
2287 dynobj = ia64_info->root.dynobj;
2288 if (!dynobj)
2289 ia64_info->root.dynobj = dynobj = abfd;
2290
2291 srel = bfd_get_section_by_name (dynobj, srel_name);
2292 if (srel == NULL && create)
2293 {
2294 srel = bfd_make_section_with_flags (dynobj, srel_name,
2295 (SEC_ALLOC | SEC_LOAD
2296 | SEC_HAS_CONTENTS
2297 | SEC_IN_MEMORY
2298 | SEC_LINKER_CREATED
2299 | SEC_READONLY));
2300 if (srel == NULL
2301 || !bfd_set_section_alignment (dynobj, srel,
2302 LOG_SECTION_ALIGN))
2303 return NULL;
2304 }
2305
2306 return srel;
2307 }
2308
2309 static bfd_boolean
2310 count_dyn_reloc (bfd *abfd, struct elfNN_ia64_dyn_sym_info *dyn_i,
2311 asection *srel, int type, bfd_boolean reltext)
2312 {
2313 struct elfNN_ia64_dyn_reloc_entry *rent;
2314
2315 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2316 if (rent->srel == srel && rent->type == type)
2317 break;
2318
2319 if (!rent)
2320 {
2321 rent = ((struct elfNN_ia64_dyn_reloc_entry *)
2322 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)));
2323 if (!rent)
2324 return FALSE;
2325
2326 rent->next = dyn_i->reloc_entries;
2327 rent->srel = srel;
2328 rent->type = type;
2329 rent->count = 0;
2330 dyn_i->reloc_entries = rent;
2331 }
2332 rent->reltext = reltext;
2333 rent->count++;
2334
2335 return TRUE;
2336 }
2337
2338 static bfd_boolean
2339 elfNN_ia64_check_relocs (abfd, info, sec, relocs)
2340 bfd *abfd;
2341 struct bfd_link_info *info;
2342 asection *sec;
2343 const Elf_Internal_Rela *relocs;
2344 {
2345 struct elfNN_ia64_link_hash_table *ia64_info;
2346 const Elf_Internal_Rela *relend;
2347 Elf_Internal_Shdr *symtab_hdr;
2348 const Elf_Internal_Rela *rel;
2349 asection *got, *fptr, *srel, *pltoff;
2350
2351 if (info->relocatable)
2352 return TRUE;
2353
2354 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2355 ia64_info = elfNN_ia64_hash_table (info);
2356
2357 got = fptr = srel = pltoff = NULL;
2358
2359 relend = relocs + sec->reloc_count;
2360 for (rel = relocs; rel < relend; ++rel)
2361 {
2362 enum {
2363 NEED_GOT = 1,
2364 NEED_GOTX = 2,
2365 NEED_FPTR = 4,
2366 NEED_PLTOFF = 8,
2367 NEED_MIN_PLT = 16,
2368 NEED_FULL_PLT = 32,
2369 NEED_DYNREL = 64,
2370 NEED_LTOFF_FPTR = 128,
2371 NEED_TPREL = 256,
2372 NEED_DTPMOD = 512,
2373 NEED_DTPREL = 1024
2374 };
2375
2376 struct elf_link_hash_entry *h = NULL;
2377 unsigned long r_symndx = ELFNN_R_SYM (rel->r_info);
2378 struct elfNN_ia64_dyn_sym_info *dyn_i;
2379 int need_entry;
2380 bfd_boolean maybe_dynamic;
2381 int dynrel_type = R_IA64_NONE;
2382
2383 if (r_symndx >= symtab_hdr->sh_info)
2384 {
2385 /* We're dealing with a global symbol -- find its hash entry
2386 and mark it as being referenced. */
2387 long indx = r_symndx - symtab_hdr->sh_info;
2388 h = elf_sym_hashes (abfd)[indx];
2389 while (h->root.type == bfd_link_hash_indirect
2390 || h->root.type == bfd_link_hash_warning)
2391 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2392
2393 h->ref_regular = 1;
2394 }
2395
2396 /* We can only get preliminary data on whether a symbol is
2397 locally or externally defined, as not all of the input files
2398 have yet been processed. Do something with what we know, as
2399 this may help reduce memory usage and processing time later. */
2400 maybe_dynamic = FALSE;
2401 if (h && ((!info->executable
2402 && (!info->symbolic
2403 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2404 || !h->def_regular
2405 || h->root.type == bfd_link_hash_defweak))
2406 maybe_dynamic = TRUE;
2407
2408 need_entry = 0;
2409 switch (ELFNN_R_TYPE (rel->r_info))
2410 {
2411 case R_IA64_TPREL64MSB:
2412 case R_IA64_TPREL64LSB:
2413 if (info->shared || maybe_dynamic)
2414 need_entry = NEED_DYNREL;
2415 dynrel_type = R_IA64_TPREL64LSB;
2416 if (info->shared)
2417 info->flags |= DF_STATIC_TLS;
2418 break;
2419
2420 case R_IA64_LTOFF_TPREL22:
2421 need_entry = NEED_TPREL;
2422 if (info->shared)
2423 info->flags |= DF_STATIC_TLS;
2424 break;
2425
2426 case R_IA64_DTPREL32MSB:
2427 case R_IA64_DTPREL32LSB:
2428 case R_IA64_DTPREL64MSB:
2429 case R_IA64_DTPREL64LSB:
2430 if (info->shared || maybe_dynamic)
2431 need_entry = NEED_DYNREL;
2432 dynrel_type = R_IA64_DTPRELNNLSB;
2433 break;
2434
2435 case R_IA64_LTOFF_DTPREL22:
2436 need_entry = NEED_DTPREL;
2437 break;
2438
2439 case R_IA64_DTPMOD64MSB:
2440 case R_IA64_DTPMOD64LSB:
2441 if (info->shared || maybe_dynamic)
2442 need_entry = NEED_DYNREL;
2443 dynrel_type = R_IA64_DTPMOD64LSB;
2444 break;
2445
2446 case R_IA64_LTOFF_DTPMOD22:
2447 need_entry = NEED_DTPMOD;
2448 break;
2449
2450 case R_IA64_LTOFF_FPTR22:
2451 case R_IA64_LTOFF_FPTR64I:
2452 case R_IA64_LTOFF_FPTR32MSB:
2453 case R_IA64_LTOFF_FPTR32LSB:
2454 case R_IA64_LTOFF_FPTR64MSB:
2455 case R_IA64_LTOFF_FPTR64LSB:
2456 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2457 break;
2458
2459 case R_IA64_FPTR64I:
2460 case R_IA64_FPTR32MSB:
2461 case R_IA64_FPTR32LSB:
2462 case R_IA64_FPTR64MSB:
2463 case R_IA64_FPTR64LSB:
2464 if (info->shared || h)
2465 need_entry = NEED_FPTR | NEED_DYNREL;
2466 else
2467 need_entry = NEED_FPTR;
2468 dynrel_type = R_IA64_FPTRNNLSB;
2469 break;
2470
2471 case R_IA64_LTOFF22:
2472 case R_IA64_LTOFF64I:
2473 need_entry = NEED_GOT;
2474 break;
2475
2476 case R_IA64_LTOFF22X:
2477 need_entry = NEED_GOTX;
2478 break;
2479
2480 case R_IA64_PLTOFF22:
2481 case R_IA64_PLTOFF64I:
2482 case R_IA64_PLTOFF64MSB:
2483 case R_IA64_PLTOFF64LSB:
2484 need_entry = NEED_PLTOFF;
2485 if (h)
2486 {
2487 if (maybe_dynamic)
2488 need_entry |= NEED_MIN_PLT;
2489 }
2490 else
2491 {
2492 (*info->callbacks->warning)
2493 (info, _("@pltoff reloc against local symbol"), 0,
2494 abfd, 0, (bfd_vma) 0);
2495 }
2496 break;
2497
2498 case R_IA64_PCREL21B:
2499 case R_IA64_PCREL60B:
2500 /* Depending on where this symbol is defined, we may or may not
2501 need a full plt entry. Only skip if we know we'll not need
2502 the entry -- static or symbolic, and the symbol definition
2503 has already been seen. */
2504 if (maybe_dynamic && rel->r_addend == 0)
2505 need_entry = NEED_FULL_PLT;
2506 break;
2507
2508 case R_IA64_IMM14:
2509 case R_IA64_IMM22:
2510 case R_IA64_IMM64:
2511 case R_IA64_DIR32MSB:
2512 case R_IA64_DIR32LSB:
2513 case R_IA64_DIR64MSB:
2514 case R_IA64_DIR64LSB:
2515 /* Shared objects will always need at least a REL relocation. */
2516 if (info->shared || maybe_dynamic)
2517 need_entry = NEED_DYNREL;
2518 dynrel_type = R_IA64_DIRNNLSB;
2519 break;
2520
2521 case R_IA64_IPLTMSB:
2522 case R_IA64_IPLTLSB:
2523 /* Shared objects will always need at least a REL relocation. */
2524 if (info->shared || maybe_dynamic)
2525 need_entry = NEED_DYNREL;
2526 dynrel_type = R_IA64_IPLTLSB;
2527 break;
2528
2529 case R_IA64_PCREL22:
2530 case R_IA64_PCREL64I:
2531 case R_IA64_PCREL32MSB:
2532 case R_IA64_PCREL32LSB:
2533 case R_IA64_PCREL64MSB:
2534 case R_IA64_PCREL64LSB:
2535 if (maybe_dynamic)
2536 need_entry = NEED_DYNREL;
2537 dynrel_type = R_IA64_PCRELNNLSB;
2538 break;
2539 }
2540
2541 if (!need_entry)
2542 continue;
2543
2544 if ((need_entry & NEED_FPTR) != 0
2545 && rel->r_addend)
2546 {
2547 (*info->callbacks->warning)
2548 (info, _("non-zero addend in @fptr reloc"), 0,
2549 abfd, 0, (bfd_vma) 0);
2550 }
2551
2552 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, rel, TRUE);
2553
2554 /* Record whether or not this is a local symbol. */
2555 dyn_i->h = h;
2556
2557 /* Create what's needed. */
2558 if (need_entry & (NEED_GOT | NEED_GOTX | NEED_TPREL
2559 | NEED_DTPMOD | NEED_DTPREL))
2560 {
2561 if (!got)
2562 {
2563 got = get_got (abfd, info, ia64_info);
2564 if (!got)
2565 return FALSE;
2566 }
2567 if (need_entry & NEED_GOT)
2568 dyn_i->want_got = 1;
2569 if (need_entry & NEED_GOTX)
2570 dyn_i->want_gotx = 1;
2571 if (need_entry & NEED_TPREL)
2572 dyn_i->want_tprel = 1;
2573 if (need_entry & NEED_DTPMOD)
2574 dyn_i->want_dtpmod = 1;
2575 if (need_entry & NEED_DTPREL)
2576 dyn_i->want_dtprel = 1;
2577 }
2578 if (need_entry & NEED_FPTR)
2579 {
2580 if (!fptr)
2581 {
2582 fptr = get_fptr (abfd, info, ia64_info);
2583 if (!fptr)
2584 return FALSE;
2585 }
2586
2587 /* FPTRs for shared libraries are allocated by the dynamic
2588 linker. Make sure this local symbol will appear in the
2589 dynamic symbol table. */
2590 if (!h && info->shared)
2591 {
2592 if (! (bfd_elf_link_record_local_dynamic_symbol
2593 (info, abfd, (long) r_symndx)))
2594 return FALSE;
2595 }
2596
2597 dyn_i->want_fptr = 1;
2598 }
2599 if (need_entry & NEED_LTOFF_FPTR)
2600 dyn_i->want_ltoff_fptr = 1;
2601 if (need_entry & (NEED_MIN_PLT | NEED_FULL_PLT))
2602 {
2603 if (!ia64_info->root.dynobj)
2604 ia64_info->root.dynobj = abfd;
2605 h->needs_plt = 1;
2606 dyn_i->want_plt = 1;
2607 }
2608 if (need_entry & NEED_FULL_PLT)
2609 dyn_i->want_plt2 = 1;
2610 if (need_entry & NEED_PLTOFF)
2611 {
2612 /* This is needed here, in case @pltoff is used in a non-shared
2613 link. */
2614 if (!pltoff)
2615 {
2616 pltoff = get_pltoff (abfd, info, ia64_info);
2617 if (!pltoff)
2618 return FALSE;
2619 }
2620
2621 dyn_i->want_pltoff = 1;
2622 }
2623 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
2624 {
2625 if (!srel)
2626 {
2627 srel = get_reloc_section (abfd, ia64_info, sec, TRUE);
2628 if (!srel)
2629 return FALSE;
2630 }
2631 if (!count_dyn_reloc (abfd, dyn_i, srel, dynrel_type,
2632 (sec->flags & SEC_READONLY) != 0))
2633 return FALSE;
2634 }
2635 }
2636
2637 return TRUE;
2638 }
2639
2640 /* For cleanliness, and potentially faster dynamic loading, allocate
2641 external GOT entries first. */
2642
2643 static bfd_boolean
2644 allocate_global_data_got (dyn_i, data)
2645 struct elfNN_ia64_dyn_sym_info *dyn_i;
2646 PTR data;
2647 {
2648 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2649
2650 if ((dyn_i->want_got || dyn_i->want_gotx)
2651 && ! dyn_i->want_fptr
2652 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
2653 {
2654 dyn_i->got_offset = x->ofs;
2655 x->ofs += 8;
2656 }
2657 if (dyn_i->want_tprel)
2658 {
2659 dyn_i->tprel_offset = x->ofs;
2660 x->ofs += 8;
2661 }
2662 if (dyn_i->want_dtpmod)
2663 {
2664 if (elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
2665 {
2666 dyn_i->dtpmod_offset = x->ofs;
2667 x->ofs += 8;
2668 }
2669 else
2670 {
2671 struct elfNN_ia64_link_hash_table *ia64_info;
2672
2673 ia64_info = elfNN_ia64_hash_table (x->info);
2674 if (ia64_info->self_dtpmod_offset == (bfd_vma) -1)
2675 {
2676 ia64_info->self_dtpmod_offset = x->ofs;
2677 x->ofs += 8;
2678 }
2679 dyn_i->dtpmod_offset = ia64_info->self_dtpmod_offset;
2680 }
2681 }
2682 if (dyn_i->want_dtprel)
2683 {
2684 dyn_i->dtprel_offset = x->ofs;
2685 x->ofs += 8;
2686 }
2687 return TRUE;
2688 }
2689
2690 /* Next, allocate all the GOT entries used by LTOFF_FPTR relocs. */
2691
2692 static bfd_boolean
2693 allocate_global_fptr_got (dyn_i, data)
2694 struct elfNN_ia64_dyn_sym_info *dyn_i;
2695 PTR data;
2696 {
2697 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2698
2699 if (dyn_i->want_got
2700 && dyn_i->want_fptr
2701 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, R_IA64_FPTRNNLSB))
2702 {
2703 dyn_i->got_offset = x->ofs;
2704 x->ofs += 8;
2705 }
2706 return TRUE;
2707 }
2708
2709 /* Lastly, allocate all the GOT entries for local data. */
2710
2711 static bfd_boolean
2712 allocate_local_got (dyn_i, data)
2713 struct elfNN_ia64_dyn_sym_info *dyn_i;
2714 PTR data;
2715 {
2716 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2717
2718 if ((dyn_i->want_got || dyn_i->want_gotx)
2719 && !elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
2720 {
2721 dyn_i->got_offset = x->ofs;
2722 x->ofs += 8;
2723 }
2724 return TRUE;
2725 }
2726
2727 /* Search for the index of a global symbol in it's defining object file. */
2728
2729 static long
2730 global_sym_index (h)
2731 struct elf_link_hash_entry *h;
2732 {
2733 struct elf_link_hash_entry **p;
2734 bfd *obj;
2735
2736 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2737 || h->root.type == bfd_link_hash_defweak);
2738
2739 obj = h->root.u.def.section->owner;
2740 for (p = elf_sym_hashes (obj); *p != h; ++p)
2741 continue;
2742
2743 return p - elf_sym_hashes (obj) + elf_tdata (obj)->symtab_hdr.sh_info;
2744 }
2745
2746 /* Allocate function descriptors. We can do these for every function
2747 in a main executable that is not exported. */
2748
2749 static bfd_boolean
2750 allocate_fptr (dyn_i, data)
2751 struct elfNN_ia64_dyn_sym_info *dyn_i;
2752 PTR data;
2753 {
2754 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2755
2756 if (dyn_i->want_fptr)
2757 {
2758 struct elf_link_hash_entry *h = dyn_i->h;
2759
2760 if (h)
2761 while (h->root.type == bfd_link_hash_indirect
2762 || h->root.type == bfd_link_hash_warning)
2763 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2764
2765 if (!x->info->executable
2766 && (!h
2767 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2768 || h->root.type != bfd_link_hash_undefweak))
2769 {
2770 if (h && h->dynindx == -1)
2771 {
2772 BFD_ASSERT ((h->root.type == bfd_link_hash_defined)
2773 || (h->root.type == bfd_link_hash_defweak));
2774
2775 if (!bfd_elf_link_record_local_dynamic_symbol
2776 (x->info, h->root.u.def.section->owner,
2777 global_sym_index (h)))
2778 return FALSE;
2779 }
2780
2781 dyn_i->want_fptr = 0;
2782 }
2783 else if (h == NULL || h->dynindx == -1)
2784 {
2785 dyn_i->fptr_offset = x->ofs;
2786 x->ofs += 16;
2787 }
2788 else
2789 dyn_i->want_fptr = 0;
2790 }
2791 return TRUE;
2792 }
2793
2794 /* Allocate all the minimal PLT entries. */
2795
2796 static bfd_boolean
2797 allocate_plt_entries (dyn_i, data)
2798 struct elfNN_ia64_dyn_sym_info *dyn_i;
2799 PTR data;
2800 {
2801 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2802
2803 if (dyn_i->want_plt)
2804 {
2805 struct elf_link_hash_entry *h = dyn_i->h;
2806
2807 if (h)
2808 while (h->root.type == bfd_link_hash_indirect
2809 || h->root.type == bfd_link_hash_warning)
2810 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2811
2812 /* ??? Versioned symbols seem to lose NEEDS_PLT. */
2813 if (elfNN_ia64_dynamic_symbol_p (h, x->info, 0))
2814 {
2815 bfd_size_type offset = x->ofs;
2816 if (offset == 0)
2817 offset = PLT_HEADER_SIZE;
2818 dyn_i->plt_offset = offset;
2819 x->ofs = offset + PLT_MIN_ENTRY_SIZE;
2820
2821 dyn_i->want_pltoff = 1;
2822 }
2823 else
2824 {
2825 dyn_i->want_plt = 0;
2826 dyn_i->want_plt2 = 0;
2827 }
2828 }
2829 return TRUE;
2830 }
2831
2832 /* Allocate all the full PLT entries. */
2833
2834 static bfd_boolean
2835 allocate_plt2_entries (dyn_i, data)
2836 struct elfNN_ia64_dyn_sym_info *dyn_i;
2837 PTR data;
2838 {
2839 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2840
2841 if (dyn_i->want_plt2)
2842 {
2843 struct elf_link_hash_entry *h = dyn_i->h;
2844 bfd_size_type ofs = x->ofs;
2845
2846 dyn_i->plt2_offset = ofs;
2847 x->ofs = ofs + PLT_FULL_ENTRY_SIZE;
2848
2849 while (h->root.type == bfd_link_hash_indirect
2850 || h->root.type == bfd_link_hash_warning)
2851 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2852 dyn_i->h->plt.offset = ofs;
2853 }
2854 return TRUE;
2855 }
2856
2857 /* Allocate all the PLTOFF entries requested by relocations and
2858 plt entries. We can't share space with allocated FPTR entries,
2859 because the latter are not necessarily addressable by the GP.
2860 ??? Relaxation might be able to determine that they are. */
2861
2862 static bfd_boolean
2863 allocate_pltoff_entries (dyn_i, data)
2864 struct elfNN_ia64_dyn_sym_info *dyn_i;
2865 PTR data;
2866 {
2867 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2868
2869 if (dyn_i->want_pltoff)
2870 {
2871 dyn_i->pltoff_offset = x->ofs;
2872 x->ofs += 16;
2873 }
2874 return TRUE;
2875 }
2876
2877 /* Allocate dynamic relocations for those symbols that turned out
2878 to be dynamic. */
2879
2880 static bfd_boolean
2881 allocate_dynrel_entries (dyn_i, data)
2882 struct elfNN_ia64_dyn_sym_info *dyn_i;
2883 PTR data;
2884 {
2885 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
2886 struct elfNN_ia64_link_hash_table *ia64_info;
2887 struct elfNN_ia64_dyn_reloc_entry *rent;
2888 bfd_boolean dynamic_symbol, shared, resolved_zero;
2889
2890 ia64_info = elfNN_ia64_hash_table (x->info);
2891
2892 /* Note that this can't be used in relation to FPTR relocs below. */
2893 dynamic_symbol = elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0);
2894
2895 shared = x->info->shared;
2896 resolved_zero = (dyn_i->h
2897 && ELF_ST_VISIBILITY (dyn_i->h->other)
2898 && dyn_i->h->root.type == bfd_link_hash_undefweak);
2899
2900 /* Take care of the normal data relocations. */
2901
2902 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2903 {
2904 int count = rent->count;
2905
2906 switch (rent->type)
2907 {
2908 case R_IA64_FPTR32LSB:
2909 case R_IA64_FPTR64LSB:
2910 /* Allocate one iff !want_fptr and not PIE, which by this point
2911 will be true only if we're actually allocating one statically
2912 in the main executable. Position independent executables
2913 need a relative reloc. */
2914 if (dyn_i->want_fptr && !x->info->pie)
2915 continue;
2916 break;
2917 case R_IA64_PCREL32LSB:
2918 case R_IA64_PCREL64LSB:
2919 if (!dynamic_symbol)
2920 continue;
2921 break;
2922 case R_IA64_DIR32LSB:
2923 case R_IA64_DIR64LSB:
2924 if (!dynamic_symbol && !shared)
2925 continue;
2926 break;
2927 case R_IA64_IPLTLSB:
2928 if (!dynamic_symbol && !shared)
2929 continue;
2930 /* Use two REL relocations for IPLT relocations
2931 against local symbols. */
2932 if (!dynamic_symbol)
2933 count *= 2;
2934 break;
2935 case R_IA64_DTPREL32LSB:
2936 case R_IA64_TPREL64LSB:
2937 case R_IA64_DTPREL64LSB:
2938 case R_IA64_DTPMOD64LSB:
2939 break;
2940 default:
2941 abort ();
2942 }
2943 if (rent->reltext)
2944 ia64_info->reltext = 1;
2945 rent->srel->size += sizeof (ElfNN_External_Rela) * count;
2946 }
2947
2948 /* Take care of the GOT and PLT relocations. */
2949
2950 if ((!resolved_zero
2951 && (dynamic_symbol || shared)
2952 && (dyn_i->want_got || dyn_i->want_gotx))
2953 || (dyn_i->want_ltoff_fptr
2954 && dyn_i->h
2955 && dyn_i->h->dynindx != -1))
2956 {
2957 if (!dyn_i->want_ltoff_fptr
2958 || !x->info->pie
2959 || dyn_i->h == NULL
2960 || dyn_i->h->root.type != bfd_link_hash_undefweak)
2961 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
2962 }
2963 if ((dynamic_symbol || shared) && dyn_i->want_tprel)
2964 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
2965 if (dynamic_symbol && dyn_i->want_dtpmod)
2966 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
2967 if (dynamic_symbol && dyn_i->want_dtprel)
2968 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
2969 if (ia64_info->rel_fptr_sec && dyn_i->want_fptr)
2970 {
2971 if (dyn_i->h == NULL || dyn_i->h->root.type != bfd_link_hash_undefweak)
2972 ia64_info->rel_fptr_sec->size += sizeof (ElfNN_External_Rela);
2973 }
2974
2975 if (!resolved_zero && dyn_i->want_pltoff)
2976 {
2977 bfd_size_type t = 0;
2978
2979 /* Dynamic symbols get one IPLT relocation. Local symbols in
2980 shared libraries get two REL relocations. Local symbols in
2981 main applications get nothing. */
2982 if (dynamic_symbol)
2983 t = sizeof (ElfNN_External_Rela);
2984 else if (shared)
2985 t = 2 * sizeof (ElfNN_External_Rela);
2986
2987 ia64_info->rel_pltoff_sec->size += t;
2988 }
2989
2990 return TRUE;
2991 }
2992
2993 static bfd_boolean
2994 elfNN_ia64_adjust_dynamic_symbol (info, h)
2995 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2996 struct elf_link_hash_entry *h;
2997 {
2998 /* ??? Undefined symbols with PLT entries should be re-defined
2999 to be the PLT entry. */
3000
3001 /* If this is a weak symbol, and there is a real definition, the
3002 processor independent code will have arranged for us to see the
3003 real definition first, and we can just use the same value. */
3004 if (h->u.weakdef != NULL)
3005 {
3006 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3007 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3008 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3009 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3010 return TRUE;
3011 }
3012
3013 /* If this is a reference to a symbol defined by a dynamic object which
3014 is not a function, we might allocate the symbol in our .dynbss section
3015 and allocate a COPY dynamic relocation.
3016
3017 But IA-64 code is canonically PIC, so as a rule we can avoid this sort
3018 of hackery. */
3019
3020 return TRUE;
3021 }
3022
3023 static bfd_boolean
3024 elfNN_ia64_size_dynamic_sections (output_bfd, info)
3025 bfd *output_bfd ATTRIBUTE_UNUSED;
3026 struct bfd_link_info *info;
3027 {
3028 struct elfNN_ia64_allocate_data data;
3029 struct elfNN_ia64_link_hash_table *ia64_info;
3030 asection *sec;
3031 bfd *dynobj;
3032 bfd_boolean relplt = FALSE;
3033
3034 dynobj = elf_hash_table(info)->dynobj;
3035 ia64_info = elfNN_ia64_hash_table (info);
3036 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
3037 BFD_ASSERT(dynobj != NULL);
3038 data.info = info;
3039
3040 /* Set the contents of the .interp section to the interpreter. */
3041 if (ia64_info->root.dynamic_sections_created
3042 && info->executable)
3043 {
3044 sec = bfd_get_section_by_name (dynobj, ".interp");
3045 BFD_ASSERT (sec != NULL);
3046 sec->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER;
3047 sec->size = strlen (ELF_DYNAMIC_INTERPRETER) + 1;
3048 }
3049
3050 /* Allocate the GOT entries. */
3051
3052 if (ia64_info->got_sec)
3053 {
3054 data.ofs = 0;
3055 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
3056 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
3057 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
3058 ia64_info->got_sec->size = data.ofs;
3059 }
3060
3061 /* Allocate the FPTR entries. */
3062
3063 if (ia64_info->fptr_sec)
3064 {
3065 data.ofs = 0;
3066 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_fptr, &data);
3067 ia64_info->fptr_sec->size = data.ofs;
3068 }
3069
3070 /* Now that we've seen all of the input files, we can decide which
3071 symbols need plt entries. Allocate the minimal PLT entries first.
3072 We do this even though dynamic_sections_created may be FALSE, because
3073 this has the side-effect of clearing want_plt and want_plt2. */
3074
3075 data.ofs = 0;
3076 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt_entries, &data);
3077
3078 ia64_info->minplt_entries = 0;
3079 if (data.ofs)
3080 {
3081 ia64_info->minplt_entries
3082 = (data.ofs - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
3083 }
3084
3085 /* Align the pointer for the plt2 entries. */
3086 data.ofs = (data.ofs + 31) & (bfd_vma) -32;
3087
3088 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt2_entries, &data);
3089 if (data.ofs != 0 || ia64_info->root.dynamic_sections_created)
3090 {
3091 /* FIXME: we always reserve the memory for dynamic linker even if
3092 there are no PLT entries since dynamic linker may assume the
3093 reserved memory always exists. */
3094
3095 BFD_ASSERT (ia64_info->root.dynamic_sections_created);
3096
3097 ia64_info->plt_sec->size = data.ofs;
3098
3099 /* If we've got a .plt, we need some extra memory for the dynamic
3100 linker. We stuff these in .got.plt. */
3101 sec = bfd_get_section_by_name (dynobj, ".got.plt");
3102 sec->size = 8 * PLT_RESERVED_WORDS;
3103 }
3104
3105 /* Allocate the PLTOFF entries. */
3106
3107 if (ia64_info->pltoff_sec)
3108 {
3109 data.ofs = 0;
3110 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_pltoff_entries, &data);
3111 ia64_info->pltoff_sec->size = data.ofs;
3112 }
3113
3114 if (ia64_info->root.dynamic_sections_created)
3115 {
3116 /* Allocate space for the dynamic relocations that turned out to be
3117 required. */
3118
3119 if (info->shared && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
3120 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3121 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries, &data);
3122 }
3123
3124 /* We have now determined the sizes of the various dynamic sections.
3125 Allocate memory for them. */
3126 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
3127 {
3128 bfd_boolean strip;
3129
3130 if (!(sec->flags & SEC_LINKER_CREATED))
3131 continue;
3132
3133 /* If we don't need this section, strip it from the output file.
3134 There were several sections primarily related to dynamic
3135 linking that must be create before the linker maps input
3136 sections to output sections. The linker does that before
3137 bfd_elf_size_dynamic_sections is called, and it is that
3138 function which decides whether anything needs to go into
3139 these sections. */
3140
3141 strip = (sec->size == 0);
3142
3143 if (sec == ia64_info->got_sec)
3144 strip = FALSE;
3145 else if (sec == ia64_info->rel_got_sec)
3146 {
3147 if (strip)
3148 ia64_info->rel_got_sec = NULL;
3149 else
3150 /* We use the reloc_count field as a counter if we need to
3151 copy relocs into the output file. */
3152 sec->reloc_count = 0;
3153 }
3154 else if (sec == ia64_info->fptr_sec)
3155 {
3156 if (strip)
3157 ia64_info->fptr_sec = NULL;
3158 }
3159 else if (sec == ia64_info->rel_fptr_sec)
3160 {
3161 if (strip)
3162 ia64_info->rel_fptr_sec = NULL;
3163 else
3164 /* We use the reloc_count field as a counter if we need to
3165 copy relocs into the output file. */
3166 sec->reloc_count = 0;
3167 }
3168 else if (sec == ia64_info->plt_sec)
3169 {
3170 if (strip)
3171 ia64_info->plt_sec = NULL;
3172 }
3173 else if (sec == ia64_info->pltoff_sec)
3174 {
3175 if (strip)
3176 ia64_info->pltoff_sec = NULL;
3177 }
3178 else if (sec == ia64_info->rel_pltoff_sec)
3179 {
3180 if (strip)
3181 ia64_info->rel_pltoff_sec = NULL;
3182 else
3183 {
3184 relplt = TRUE;
3185 /* We use the reloc_count field as a counter if we need to
3186 copy relocs into the output file. */
3187 sec->reloc_count = 0;
3188 }
3189 }
3190 else
3191 {
3192 const char *name;
3193
3194 /* It's OK to base decisions on the section name, because none
3195 of the dynobj section names depend upon the input files. */
3196 name = bfd_get_section_name (dynobj, sec);
3197
3198 if (strcmp (name, ".got.plt") == 0)
3199 strip = FALSE;
3200 else if (strncmp (name, ".rel", 4) == 0)
3201 {
3202 if (!strip)
3203 {
3204 /* We use the reloc_count field as a counter if we need to
3205 copy relocs into the output file. */
3206 sec->reloc_count = 0;
3207 }
3208 }
3209 else
3210 continue;
3211 }
3212
3213 if (strip)
3214 sec->flags |= SEC_EXCLUDE;
3215 else
3216 {
3217 /* Allocate memory for the section contents. */
3218 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
3219 if (sec->contents == NULL && sec->size != 0)
3220 return FALSE;
3221 }
3222 }
3223
3224 if (elf_hash_table (info)->dynamic_sections_created)
3225 {
3226 /* Add some entries to the .dynamic section. We fill in the values
3227 later (in finish_dynamic_sections) but we must add the entries now
3228 so that we get the correct size for the .dynamic section. */
3229
3230 if (info->executable)
3231 {
3232 /* The DT_DEBUG entry is filled in by the dynamic linker and used
3233 by the debugger. */
3234 #define add_dynamic_entry(TAG, VAL) \
3235 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3236
3237 if (!add_dynamic_entry (DT_DEBUG, 0))
3238 return FALSE;
3239 }
3240
3241 if (!add_dynamic_entry (DT_IA_64_PLT_RESERVE, 0))
3242 return FALSE;
3243 if (!add_dynamic_entry (DT_PLTGOT, 0))
3244 return FALSE;
3245
3246 if (relplt)
3247 {
3248 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
3249 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3250 || !add_dynamic_entry (DT_JMPREL, 0))
3251 return FALSE;
3252 }
3253
3254 if (!add_dynamic_entry (DT_RELA, 0)
3255 || !add_dynamic_entry (DT_RELASZ, 0)
3256 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
3257 return FALSE;
3258
3259 if (ia64_info->reltext)
3260 {
3261 if (!add_dynamic_entry (DT_TEXTREL, 0))
3262 return FALSE;
3263 info->flags |= DF_TEXTREL;
3264 }
3265 }
3266
3267 /* ??? Perhaps force __gp local. */
3268
3269 return TRUE;
3270 }
3271
3272 static bfd_reloc_status_type
3273 elfNN_ia64_install_value (hit_addr, v, r_type)
3274 bfd_byte *hit_addr;
3275 bfd_vma v;
3276 unsigned int r_type;
3277 {
3278 const struct ia64_operand *op;
3279 int bigendian = 0, shift = 0;
3280 bfd_vma t0, t1, dword;
3281 ia64_insn insn;
3282 enum ia64_opnd opnd;
3283 const char *err;
3284 size_t size = 8;
3285 #ifdef BFD_HOST_U_64_BIT
3286 BFD_HOST_U_64_BIT val = (BFD_HOST_U_64_BIT) v;
3287 #else
3288 bfd_vma val = v;
3289 #endif
3290
3291 opnd = IA64_OPND_NIL;
3292 switch (r_type)
3293 {
3294 case R_IA64_NONE:
3295 case R_IA64_LDXMOV:
3296 return bfd_reloc_ok;
3297
3298 /* Instruction relocations. */
3299
3300 case R_IA64_IMM14:
3301 case R_IA64_TPREL14:
3302 case R_IA64_DTPREL14:
3303 opnd = IA64_OPND_IMM14;
3304 break;
3305
3306 case R_IA64_PCREL21F: opnd = IA64_OPND_TGT25; break;
3307 case R_IA64_PCREL21M: opnd = IA64_OPND_TGT25b; break;
3308 case R_IA64_PCREL60B: opnd = IA64_OPND_TGT64; break;
3309 case R_IA64_PCREL21B:
3310 case R_IA64_PCREL21BI:
3311 opnd = IA64_OPND_TGT25c;
3312 break;
3313
3314 case R_IA64_IMM22:
3315 case R_IA64_GPREL22:
3316 case R_IA64_LTOFF22:
3317 case R_IA64_LTOFF22X:
3318 case R_IA64_PLTOFF22:
3319 case R_IA64_PCREL22:
3320 case R_IA64_LTOFF_FPTR22:
3321 case R_IA64_TPREL22:
3322 case R_IA64_DTPREL22:
3323 case R_IA64_LTOFF_TPREL22:
3324 case R_IA64_LTOFF_DTPMOD22:
3325 case R_IA64_LTOFF_DTPREL22:
3326 opnd = IA64_OPND_IMM22;
3327 break;
3328
3329 case R_IA64_IMM64:
3330 case R_IA64_GPREL64I:
3331 case R_IA64_LTOFF64I:
3332 case R_IA64_PLTOFF64I:
3333 case R_IA64_PCREL64I:
3334 case R_IA64_FPTR64I:
3335 case R_IA64_LTOFF_FPTR64I:
3336 case R_IA64_TPREL64I:
3337 case R_IA64_DTPREL64I:
3338 opnd = IA64_OPND_IMMU64;
3339 break;
3340
3341 /* Data relocations. */
3342
3343 case R_IA64_DIR32MSB:
3344 case R_IA64_GPREL32MSB:
3345 case R_IA64_FPTR32MSB:
3346 case R_IA64_PCREL32MSB:
3347 case R_IA64_LTOFF_FPTR32MSB:
3348 case R_IA64_SEGREL32MSB:
3349 case R_IA64_SECREL32MSB:
3350 case R_IA64_LTV32MSB:
3351 case R_IA64_DTPREL32MSB:
3352 size = 4; bigendian = 1;
3353 break;
3354
3355 case R_IA64_DIR32LSB:
3356 case R_IA64_GPREL32LSB:
3357 case R_IA64_FPTR32LSB:
3358 case R_IA64_PCREL32LSB:
3359 case R_IA64_LTOFF_FPTR32LSB:
3360 case R_IA64_SEGREL32LSB:
3361 case R_IA64_SECREL32LSB:
3362 case R_IA64_LTV32LSB:
3363 case R_IA64_DTPREL32LSB:
3364 size = 4; bigendian = 0;
3365 break;
3366
3367 case R_IA64_DIR64MSB:
3368 case R_IA64_GPREL64MSB:
3369 case R_IA64_PLTOFF64MSB:
3370 case R_IA64_FPTR64MSB:
3371 case R_IA64_PCREL64MSB:
3372 case R_IA64_LTOFF_FPTR64MSB:
3373 case R_IA64_SEGREL64MSB:
3374 case R_IA64_SECREL64MSB:
3375 case R_IA64_LTV64MSB:
3376 case R_IA64_TPREL64MSB:
3377 case R_IA64_DTPMOD64MSB:
3378 case R_IA64_DTPREL64MSB:
3379 size = 8; bigendian = 1;
3380 break;
3381
3382 case R_IA64_DIR64LSB:
3383 case R_IA64_GPREL64LSB:
3384 case R_IA64_PLTOFF64LSB:
3385 case R_IA64_FPTR64LSB:
3386 case R_IA64_PCREL64LSB:
3387 case R_IA64_LTOFF_FPTR64LSB:
3388 case R_IA64_SEGREL64LSB:
3389 case R_IA64_SECREL64LSB:
3390 case R_IA64_LTV64LSB:
3391 case R_IA64_TPREL64LSB:
3392 case R_IA64_DTPMOD64LSB:
3393 case R_IA64_DTPREL64LSB:
3394 size = 8; bigendian = 0;
3395 break;
3396
3397 /* Unsupported / Dynamic relocations. */
3398 default:
3399 return bfd_reloc_notsupported;
3400 }
3401
3402 switch (opnd)
3403 {
3404 case IA64_OPND_IMMU64:
3405 hit_addr -= (long) hit_addr & 0x3;
3406 t0 = bfd_getl64 (hit_addr);
3407 t1 = bfd_getl64 (hit_addr + 8);
3408
3409 /* tmpl/s: bits 0.. 5 in t0
3410 slot 0: bits 5..45 in t0
3411 slot 1: bits 46..63 in t0, bits 0..22 in t1
3412 slot 2: bits 23..63 in t1 */
3413
3414 /* First, clear the bits that form the 64 bit constant. */
3415 t0 &= ~(0x3ffffLL << 46);
3416 t1 &= ~(0x7fffffLL
3417 | (( (0x07fLL << 13) | (0x1ffLL << 27)
3418 | (0x01fLL << 22) | (0x001LL << 21)
3419 | (0x001LL << 36)) << 23));
3420
3421 t0 |= ((val >> 22) & 0x03ffffLL) << 46; /* 18 lsbs of imm41 */
3422 t1 |= ((val >> 40) & 0x7fffffLL) << 0; /* 23 msbs of imm41 */
3423 t1 |= ( (((val >> 0) & 0x07f) << 13) /* imm7b */
3424 | (((val >> 7) & 0x1ff) << 27) /* imm9d */
3425 | (((val >> 16) & 0x01f) << 22) /* imm5c */
3426 | (((val >> 21) & 0x001) << 21) /* ic */
3427 | (((val >> 63) & 0x001) << 36)) << 23; /* i */
3428
3429 bfd_putl64 (t0, hit_addr);
3430 bfd_putl64 (t1, hit_addr + 8);
3431 break;
3432
3433 case IA64_OPND_TGT64:
3434 hit_addr -= (long) hit_addr & 0x3;
3435 t0 = bfd_getl64 (hit_addr);
3436 t1 = bfd_getl64 (hit_addr + 8);
3437
3438 /* tmpl/s: bits 0.. 5 in t0
3439 slot 0: bits 5..45 in t0
3440 slot 1: bits 46..63 in t0, bits 0..22 in t1
3441 slot 2: bits 23..63 in t1 */
3442
3443 /* First, clear the bits that form the 64 bit constant. */
3444 t0 &= ~(0x3ffffLL << 46);
3445 t1 &= ~(0x7fffffLL
3446 | ((1LL << 36 | 0xfffffLL << 13) << 23));
3447
3448 val >>= 4;
3449 t0 |= ((val >> 20) & 0xffffLL) << 2 << 46; /* 16 lsbs of imm39 */
3450 t1 |= ((val >> 36) & 0x7fffffLL) << 0; /* 23 msbs of imm39 */
3451 t1 |= ((((val >> 0) & 0xfffffLL) << 13) /* imm20b */
3452 | (((val >> 59) & 0x1LL) << 36)) << 23; /* i */
3453
3454 bfd_putl64 (t0, hit_addr);
3455 bfd_putl64 (t1, hit_addr + 8);
3456 break;
3457
3458 default:
3459 switch ((long) hit_addr & 0x3)
3460 {
3461 case 0: shift = 5; break;
3462 case 1: shift = 14; hit_addr += 3; break;
3463 case 2: shift = 23; hit_addr += 6; break;
3464 case 3: return bfd_reloc_notsupported; /* shouldn't happen... */
3465 }
3466 dword = bfd_getl64 (hit_addr);
3467 insn = (dword >> shift) & 0x1ffffffffffLL;
3468
3469 op = elf64_ia64_operands + opnd;
3470 err = (*op->insert) (op, val, &insn);
3471 if (err)
3472 return bfd_reloc_overflow;
3473
3474 dword &= ~(0x1ffffffffffLL << shift);
3475 dword |= (insn << shift);
3476 bfd_putl64 (dword, hit_addr);
3477 break;
3478
3479 case IA64_OPND_NIL:
3480 /* A data relocation. */
3481 if (bigendian)
3482 if (size == 4)
3483 bfd_putb32 (val, hit_addr);
3484 else
3485 bfd_putb64 (val, hit_addr);
3486 else
3487 if (size == 4)
3488 bfd_putl32 (val, hit_addr);
3489 else
3490 bfd_putl64 (val, hit_addr);
3491 break;
3492 }
3493
3494 return bfd_reloc_ok;
3495 }
3496
3497 static void
3498 elfNN_ia64_install_dyn_reloc (abfd, info, sec, srel, offset, type,
3499 dynindx, addend)
3500 bfd *abfd;
3501 struct bfd_link_info *info;
3502 asection *sec;
3503 asection *srel;
3504 bfd_vma offset;
3505 unsigned int type;
3506 long dynindx;
3507 bfd_vma addend;
3508 {
3509 Elf_Internal_Rela outrel;
3510 bfd_byte *loc;
3511
3512 BFD_ASSERT (dynindx != -1);
3513 outrel.r_info = ELFNN_R_INFO (dynindx, type);
3514 outrel.r_addend = addend;
3515 outrel.r_offset = _bfd_elf_section_offset (abfd, info, sec, offset);
3516 if (outrel.r_offset >= (bfd_vma) -2)
3517 {
3518 /* Run for the hills. We shouldn't be outputting a relocation
3519 for this. So do what everyone else does and output a no-op. */
3520 outrel.r_info = ELFNN_R_INFO (0, R_IA64_NONE);
3521 outrel.r_addend = 0;
3522 outrel.r_offset = 0;
3523 }
3524 else
3525 outrel.r_offset += sec->output_section->vma + sec->output_offset;
3526
3527 loc = srel->contents;
3528 loc += srel->reloc_count++ * sizeof (ElfNN_External_Rela);
3529 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
3530 BFD_ASSERT (sizeof (ElfNN_External_Rela) * srel->reloc_count <= srel->size);
3531 }
3532
3533 /* Store an entry for target address TARGET_ADDR in the linkage table
3534 and return the gp-relative address of the linkage table entry. */
3535
3536 static bfd_vma
3537 set_got_entry (abfd, info, dyn_i, dynindx, addend, value, dyn_r_type)
3538 bfd *abfd;
3539 struct bfd_link_info *info;
3540 struct elfNN_ia64_dyn_sym_info *dyn_i;
3541 long dynindx;
3542 bfd_vma addend;
3543 bfd_vma value;
3544 unsigned int dyn_r_type;
3545 {
3546 struct elfNN_ia64_link_hash_table *ia64_info;
3547 asection *got_sec;
3548 bfd_boolean done;
3549 bfd_vma got_offset;
3550
3551 ia64_info = elfNN_ia64_hash_table (info);
3552 got_sec = ia64_info->got_sec;
3553
3554 switch (dyn_r_type)
3555 {
3556 case R_IA64_TPREL64LSB:
3557 done = dyn_i->tprel_done;
3558 dyn_i->tprel_done = TRUE;
3559 got_offset = dyn_i->tprel_offset;
3560 break;
3561 case R_IA64_DTPMOD64LSB:
3562 if (dyn_i->dtpmod_offset != ia64_info->self_dtpmod_offset)
3563 {
3564 done = dyn_i->dtpmod_done;
3565 dyn_i->dtpmod_done = TRUE;
3566 }
3567 else
3568 {
3569 done = ia64_info->self_dtpmod_done;
3570 ia64_info->self_dtpmod_done = TRUE;
3571 dynindx = 0;
3572 }
3573 got_offset = dyn_i->dtpmod_offset;
3574 break;
3575 case R_IA64_DTPREL32LSB:
3576 case R_IA64_DTPREL64LSB:
3577 done = dyn_i->dtprel_done;
3578 dyn_i->dtprel_done = TRUE;
3579 got_offset = dyn_i->dtprel_offset;
3580 break;
3581 default:
3582 done = dyn_i->got_done;
3583 dyn_i->got_done = TRUE;
3584 got_offset = dyn_i->got_offset;
3585 break;
3586 }
3587
3588 BFD_ASSERT ((got_offset & 7) == 0);
3589
3590 if (! done)
3591 {
3592 /* Store the target address in the linkage table entry. */
3593 bfd_put_64 (abfd, value, got_sec->contents + got_offset);
3594
3595 /* Install a dynamic relocation if needed. */
3596 if (((info->shared
3597 && (!dyn_i->h
3598 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
3599 || dyn_i->h->root.type != bfd_link_hash_undefweak)
3600 && dyn_r_type != R_IA64_DTPREL32LSB
3601 && dyn_r_type != R_IA64_DTPREL64LSB)
3602 || elfNN_ia64_dynamic_symbol_p (dyn_i->h, info, dyn_r_type)
3603 || (dynindx != -1
3604 && (dyn_r_type == R_IA64_FPTR32LSB
3605 || dyn_r_type == R_IA64_FPTR64LSB)))
3606 && (!dyn_i->want_ltoff_fptr
3607 || !info->pie
3608 || !dyn_i->h
3609 || dyn_i->h->root.type != bfd_link_hash_undefweak))
3610 {
3611 if (dynindx == -1
3612 && dyn_r_type != R_IA64_TPREL64LSB
3613 && dyn_r_type != R_IA64_DTPMOD64LSB
3614 && dyn_r_type != R_IA64_DTPREL32LSB
3615 && dyn_r_type != R_IA64_DTPREL64LSB)
3616 {
3617 dyn_r_type = R_IA64_RELNNLSB;
3618 dynindx = 0;
3619 addend = value;
3620 }
3621
3622 if (bfd_big_endian (abfd))
3623 {
3624 switch (dyn_r_type)
3625 {
3626 case R_IA64_REL32LSB:
3627 dyn_r_type = R_IA64_REL32MSB;
3628 break;
3629 case R_IA64_DIR32LSB:
3630 dyn_r_type = R_IA64_DIR32MSB;
3631 break;
3632 case R_IA64_FPTR32LSB:
3633 dyn_r_type = R_IA64_FPTR32MSB;
3634 break;
3635 case R_IA64_DTPREL32LSB:
3636 dyn_r_type = R_IA64_DTPREL32MSB;
3637 break;
3638 case R_IA64_REL64LSB:
3639 dyn_r_type = R_IA64_REL64MSB;
3640 break;
3641 case R_IA64_DIR64LSB:
3642 dyn_r_type = R_IA64_DIR64MSB;
3643 break;
3644 case R_IA64_FPTR64LSB:
3645 dyn_r_type = R_IA64_FPTR64MSB;
3646 break;
3647 case R_IA64_TPREL64LSB:
3648 dyn_r_type = R_IA64_TPREL64MSB;
3649 break;
3650 case R_IA64_DTPMOD64LSB:
3651 dyn_r_type = R_IA64_DTPMOD64MSB;
3652 break;
3653 case R_IA64_DTPREL64LSB:
3654 dyn_r_type = R_IA64_DTPREL64MSB;
3655 break;
3656 default:
3657 BFD_ASSERT (FALSE);
3658 break;
3659 }
3660 }
3661
3662 elfNN_ia64_install_dyn_reloc (abfd, NULL, got_sec,
3663 ia64_info->rel_got_sec,
3664 got_offset, dyn_r_type,
3665 dynindx, addend);
3666 }
3667 }
3668
3669 /* Return the address of the linkage table entry. */
3670 value = (got_sec->output_section->vma
3671 + got_sec->output_offset
3672 + got_offset);
3673
3674 return value;
3675 }
3676
3677 /* Fill in a function descriptor consisting of the function's code
3678 address and its global pointer. Return the descriptor's address. */
3679
3680 static bfd_vma
3681 set_fptr_entry (abfd, info, dyn_i, value)
3682 bfd *abfd;
3683 struct bfd_link_info *info;
3684 struct elfNN_ia64_dyn_sym_info *dyn_i;
3685 bfd_vma value;
3686 {
3687 struct elfNN_ia64_link_hash_table *ia64_info;
3688 asection *fptr_sec;
3689
3690 ia64_info = elfNN_ia64_hash_table (info);
3691 fptr_sec = ia64_info->fptr_sec;
3692
3693 if (!dyn_i->fptr_done)
3694 {
3695 dyn_i->fptr_done = 1;
3696
3697 /* Fill in the function descriptor. */
3698 bfd_put_64 (abfd, value, fptr_sec->contents + dyn_i->fptr_offset);
3699 bfd_put_64 (abfd, _bfd_get_gp_value (abfd),
3700 fptr_sec->contents + dyn_i->fptr_offset + 8);
3701 if (ia64_info->rel_fptr_sec)
3702 {
3703 Elf_Internal_Rela outrel;
3704 bfd_byte *loc;
3705
3706 if (bfd_little_endian (abfd))
3707 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTLSB);
3708 else
3709 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTMSB);
3710 outrel.r_addend = value;
3711 outrel.r_offset = (fptr_sec->output_section->vma
3712 + fptr_sec->output_offset
3713 + dyn_i->fptr_offset);
3714 loc = ia64_info->rel_fptr_sec->contents;
3715 loc += ia64_info->rel_fptr_sec->reloc_count++
3716 * sizeof (ElfNN_External_Rela);
3717 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
3718 }
3719 }
3720
3721 /* Return the descriptor's address. */
3722 value = (fptr_sec->output_section->vma
3723 + fptr_sec->output_offset
3724 + dyn_i->fptr_offset);
3725
3726 return value;
3727 }
3728
3729 /* Fill in a PLTOFF entry consisting of the function's code address
3730 and its global pointer. Return the descriptor's address. */
3731
3732 static bfd_vma
3733 set_pltoff_entry (abfd, info, dyn_i, value, is_plt)
3734 bfd *abfd;
3735 struct bfd_link_info *info;
3736 struct elfNN_ia64_dyn_sym_info *dyn_i;
3737 bfd_vma value;
3738 bfd_boolean is_plt;
3739 {
3740 struct elfNN_ia64_link_hash_table *ia64_info;
3741 asection *pltoff_sec;
3742
3743 ia64_info = elfNN_ia64_hash_table (info);
3744 pltoff_sec = ia64_info->pltoff_sec;
3745
3746 /* Don't do anything if this symbol uses a real PLT entry. In
3747 that case, we'll fill this in during finish_dynamic_symbol. */
3748 if ((! dyn_i->want_plt || is_plt)
3749 && !dyn_i->pltoff_done)
3750 {
3751 bfd_vma gp = _bfd_get_gp_value (abfd);
3752
3753 /* Fill in the function descriptor. */
3754 bfd_put_64 (abfd, value, pltoff_sec->contents + dyn_i->pltoff_offset);
3755 bfd_put_64 (abfd, gp, pltoff_sec->contents + dyn_i->pltoff_offset + 8);
3756
3757 /* Install dynamic relocations if needed. */
3758 if (!is_plt
3759 && info->shared
3760 && (!dyn_i->h
3761 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
3762 || dyn_i->h->root.type != bfd_link_hash_undefweak))
3763 {
3764 unsigned int dyn_r_type;
3765
3766 if (bfd_big_endian (abfd))
3767 dyn_r_type = R_IA64_RELNNMSB;
3768 else
3769 dyn_r_type = R_IA64_RELNNLSB;
3770
3771 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
3772 ia64_info->rel_pltoff_sec,
3773 dyn_i->pltoff_offset,
3774 dyn_r_type, 0, value);
3775 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
3776 ia64_info->rel_pltoff_sec,
3777 dyn_i->pltoff_offset + ARCH_SIZE / 8,
3778 dyn_r_type, 0, gp);
3779 }
3780
3781 dyn_i->pltoff_done = 1;
3782 }
3783
3784 /* Return the descriptor's address. */
3785 value = (pltoff_sec->output_section->vma
3786 + pltoff_sec->output_offset
3787 + dyn_i->pltoff_offset);
3788
3789 return value;
3790 }
3791
3792 /* Return the base VMA address which should be subtracted from real addresses
3793 when resolving @tprel() relocation.
3794 Main program TLS (whose template starts at PT_TLS p_vaddr)
3795 is assigned offset round(2 * size of pointer, PT_TLS p_align). */
3796
3797 static bfd_vma
3798 elfNN_ia64_tprel_base (info)
3799 struct bfd_link_info *info;
3800 {
3801 asection *tls_sec = elf_hash_table (info)->tls_sec;
3802
3803 BFD_ASSERT (tls_sec != NULL);
3804 return tls_sec->vma - align_power ((bfd_vma) ARCH_SIZE / 4,
3805 tls_sec->alignment_power);
3806 }
3807
3808 /* Return the base VMA address which should be subtracted from real addresses
3809 when resolving @dtprel() relocation.
3810 This is PT_TLS segment p_vaddr. */
3811
3812 static bfd_vma
3813 elfNN_ia64_dtprel_base (info)
3814 struct bfd_link_info *info;
3815 {
3816 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
3817 return elf_hash_table (info)->tls_sec->vma;
3818 }
3819
3820 /* Called through qsort to sort the .IA_64.unwind section during a
3821 non-relocatable link. Set elfNN_ia64_unwind_entry_compare_bfd
3822 to the output bfd so we can do proper endianness frobbing. */
3823
3824 static bfd *elfNN_ia64_unwind_entry_compare_bfd;
3825
3826 static int
3827 elfNN_ia64_unwind_entry_compare (a, b)
3828 const PTR a;
3829 const PTR b;
3830 {
3831 bfd_vma av, bv;
3832
3833 av = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, a);
3834 bv = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, b);
3835
3836 return (av < bv ? -1 : av > bv ? 1 : 0);
3837 }
3838
3839 /* Make sure we've got ourselves a nice fat __gp value. */
3840 static bfd_boolean
3841 elfNN_ia64_choose_gp (abfd, info)
3842 bfd *abfd;
3843 struct bfd_link_info *info;
3844 {
3845 bfd_vma min_vma = (bfd_vma) -1, max_vma = 0;
3846 bfd_vma min_short_vma = min_vma, max_short_vma = 0;
3847 struct elf_link_hash_entry *gp;
3848 bfd_vma gp_val;
3849 asection *os;
3850 struct elfNN_ia64_link_hash_table *ia64_info;
3851
3852 ia64_info = elfNN_ia64_hash_table (info);
3853
3854 /* Find the min and max vma of all sections marked short. Also collect
3855 min and max vma of any type, for use in selecting a nice gp. */
3856 for (os = abfd->sections; os ; os = os->next)
3857 {
3858 bfd_vma lo, hi;
3859
3860 if ((os->flags & SEC_ALLOC) == 0)
3861 continue;
3862
3863 lo = os->vma;
3864 hi = os->vma + os->size;
3865 if (hi < lo)
3866 hi = (bfd_vma) -1;
3867
3868 if (min_vma > lo)
3869 min_vma = lo;
3870 if (max_vma < hi)
3871 max_vma = hi;
3872 if (os->flags & SEC_SMALL_DATA)
3873 {
3874 if (min_short_vma > lo)
3875 min_short_vma = lo;
3876 if (max_short_vma < hi)
3877 max_short_vma = hi;
3878 }
3879 }
3880
3881 /* See if the user wants to force a value. */
3882 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
3883 FALSE, FALSE);
3884
3885 if (gp
3886 && (gp->root.type == bfd_link_hash_defined
3887 || gp->root.type == bfd_link_hash_defweak))
3888 {
3889 asection *gp_sec = gp->root.u.def.section;
3890 gp_val = (gp->root.u.def.value
3891 + gp_sec->output_section->vma
3892 + gp_sec->output_offset);
3893 }
3894 else
3895 {
3896 /* Pick a sensible value. */
3897
3898 asection *got_sec = ia64_info->got_sec;
3899
3900 /* Start with just the address of the .got. */
3901 if (got_sec)
3902 gp_val = got_sec->output_section->vma;
3903 else if (max_short_vma != 0)
3904 gp_val = min_short_vma;
3905 else
3906 gp_val = min_vma;
3907
3908 /* If it is possible to address the entire image, but we
3909 don't with the choice above, adjust. */
3910 if (max_vma - min_vma < 0x400000
3911 && max_vma - gp_val <= 0x200000
3912 && gp_val - min_vma > 0x200000)
3913 gp_val = min_vma + 0x200000;
3914 else if (max_short_vma != 0)
3915 {
3916 /* If we don't cover all the short data, adjust. */
3917 if (max_short_vma - gp_val >= 0x200000)
3918 gp_val = min_short_vma + 0x200000;
3919
3920 /* If we're addressing stuff past the end, adjust back. */
3921 if (gp_val > max_vma)
3922 gp_val = max_vma - 0x200000 + 8;
3923 }
3924 }
3925
3926 /* Validate whether all SHF_IA_64_SHORT sections are within
3927 range of the chosen GP. */
3928
3929 if (max_short_vma != 0)
3930 {
3931 if (max_short_vma - min_short_vma >= 0x400000)
3932 {
3933 (*_bfd_error_handler)
3934 (_("%s: short data segment overflowed (0x%lx >= 0x400000)"),
3935 bfd_get_filename (abfd),
3936 (unsigned long) (max_short_vma - min_short_vma));
3937 return FALSE;
3938 }
3939 else if ((gp_val > min_short_vma
3940 && gp_val - min_short_vma > 0x200000)
3941 || (gp_val < max_short_vma
3942 && max_short_vma - gp_val >= 0x200000))
3943 {
3944 (*_bfd_error_handler)
3945 (_("%s: __gp does not cover short data segment"),
3946 bfd_get_filename (abfd));
3947 return FALSE;
3948 }
3949 }
3950
3951 _bfd_set_gp_value (abfd, gp_val);
3952
3953 return TRUE;
3954 }
3955
3956 static bfd_boolean
3957 elfNN_ia64_final_link (abfd, info)
3958 bfd *abfd;
3959 struct bfd_link_info *info;
3960 {
3961 struct elfNN_ia64_link_hash_table *ia64_info;
3962 asection *unwind_output_sec;
3963
3964 ia64_info = elfNN_ia64_hash_table (info);
3965
3966 /* Make sure we've got ourselves a nice fat __gp value. */
3967 if (!info->relocatable)
3968 {
3969 bfd_vma gp_val = _bfd_get_gp_value (abfd);
3970 struct elf_link_hash_entry *gp;
3971
3972 if (gp_val == 0)
3973 {
3974 if (! elfNN_ia64_choose_gp (abfd, info))
3975 return FALSE;
3976 gp_val = _bfd_get_gp_value (abfd);
3977 }
3978
3979 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
3980 FALSE, FALSE);
3981 if (gp)
3982 {
3983 gp->root.type = bfd_link_hash_defined;
3984 gp->root.u.def.value = gp_val;
3985 gp->root.u.def.section = bfd_abs_section_ptr;
3986 }
3987 }
3988
3989 /* If we're producing a final executable, we need to sort the contents
3990 of the .IA_64.unwind section. Force this section to be relocated
3991 into memory rather than written immediately to the output file. */
3992 unwind_output_sec = NULL;
3993 if (!info->relocatable)
3994 {
3995 asection *s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_unwind);
3996 if (s)
3997 {
3998 unwind_output_sec = s->output_section;
3999 unwind_output_sec->contents
4000 = bfd_malloc (unwind_output_sec->size);
4001 if (unwind_output_sec->contents == NULL)
4002 return FALSE;
4003 }
4004 }
4005
4006 /* Invoke the regular ELF backend linker to do all the work. */
4007 if (!bfd_elf_final_link (abfd, info))
4008 return FALSE;
4009
4010 if (unwind_output_sec)
4011 {
4012 elfNN_ia64_unwind_entry_compare_bfd = abfd;
4013 qsort (unwind_output_sec->contents,
4014 (size_t) (unwind_output_sec->size / 24),
4015 24,
4016 elfNN_ia64_unwind_entry_compare);
4017
4018 if (! bfd_set_section_contents (abfd, unwind_output_sec,
4019 unwind_output_sec->contents, (bfd_vma) 0,
4020 unwind_output_sec->size))
4021 return FALSE;
4022 }
4023
4024 return TRUE;
4025 }
4026
4027 static bfd_boolean
4028 elfNN_ia64_relocate_section (output_bfd, info, input_bfd, input_section,
4029 contents, relocs, local_syms, local_sections)
4030 bfd *output_bfd;
4031 struct bfd_link_info *info;
4032 bfd *input_bfd;
4033 asection *input_section;
4034 bfd_byte *contents;
4035 Elf_Internal_Rela *relocs;
4036 Elf_Internal_Sym *local_syms;
4037 asection **local_sections;
4038 {
4039 struct elfNN_ia64_link_hash_table *ia64_info;
4040 Elf_Internal_Shdr *symtab_hdr;
4041 Elf_Internal_Rela *rel;
4042 Elf_Internal_Rela *relend;
4043 asection *srel;
4044 bfd_boolean ret_val = TRUE; /* for non-fatal errors */
4045 bfd_vma gp_val;
4046
4047 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4048 ia64_info = elfNN_ia64_hash_table (info);
4049
4050 /* Infect various flags from the input section to the output section. */
4051 if (info->relocatable)
4052 {
4053 bfd_vma flags;
4054
4055 flags = elf_section_data(input_section)->this_hdr.sh_flags;
4056 flags &= SHF_IA_64_NORECOV;
4057
4058 elf_section_data(input_section->output_section)
4059 ->this_hdr.sh_flags |= flags;
4060 return TRUE;
4061 }
4062
4063 gp_val = _bfd_get_gp_value (output_bfd);
4064 srel = get_reloc_section (input_bfd, ia64_info, input_section, FALSE);
4065
4066 rel = relocs;
4067 relend = relocs + input_section->reloc_count;
4068 for (; rel < relend; ++rel)
4069 {
4070 struct elf_link_hash_entry *h;
4071 struct elfNN_ia64_dyn_sym_info *dyn_i;
4072 bfd_reloc_status_type r;
4073 reloc_howto_type *howto;
4074 unsigned long r_symndx;
4075 Elf_Internal_Sym *sym;
4076 unsigned int r_type;
4077 bfd_vma value;
4078 asection *sym_sec;
4079 bfd_byte *hit_addr;
4080 bfd_boolean dynamic_symbol_p;
4081 bfd_boolean undef_weak_ref;
4082
4083 r_type = ELFNN_R_TYPE (rel->r_info);
4084 if (r_type > R_IA64_MAX_RELOC_CODE)
4085 {
4086 (*_bfd_error_handler)
4087 (_("%B: unknown relocation type %d"),
4088 input_bfd, (int) r_type);
4089 bfd_set_error (bfd_error_bad_value);
4090 ret_val = FALSE;
4091 continue;
4092 }
4093
4094 howto = lookup_howto (r_type);
4095 r_symndx = ELFNN_R_SYM (rel->r_info);
4096 h = NULL;
4097 sym = NULL;
4098 sym_sec = NULL;
4099 undef_weak_ref = FALSE;
4100
4101 if (r_symndx < symtab_hdr->sh_info)
4102 {
4103 /* Reloc against local symbol. */
4104 asection *msec;
4105 sym = local_syms + r_symndx;
4106 sym_sec = local_sections[r_symndx];
4107 msec = sym_sec;
4108 value = _bfd_elf_rela_local_sym (output_bfd, sym, &msec, rel);
4109 if ((sym_sec->flags & SEC_MERGE)
4110 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
4111 && sym_sec->sec_info_type == ELF_INFO_TYPE_MERGE)
4112 {
4113 struct elfNN_ia64_local_hash_entry *loc_h;
4114
4115 loc_h = get_local_sym_hash (ia64_info, input_bfd, rel, FALSE);
4116 if (loc_h && ! loc_h->sec_merge_done)
4117 {
4118 struct elfNN_ia64_dyn_sym_info *dynent;
4119
4120 for (dynent = loc_h->info; dynent; dynent = dynent->next)
4121 {
4122 msec = sym_sec;
4123 dynent->addend =
4124 _bfd_merged_section_offset (output_bfd, &msec,
4125 elf_section_data (msec)->
4126 sec_info,
4127 sym->st_value
4128 + dynent->addend);
4129 dynent->addend -= sym->st_value;
4130 dynent->addend += msec->output_section->vma
4131 + msec->output_offset
4132 - sym_sec->output_section->vma
4133 - sym_sec->output_offset;
4134 }
4135 loc_h->sec_merge_done = 1;
4136 }
4137 }
4138 }
4139 else
4140 {
4141 bfd_boolean unresolved_reloc;
4142 bfd_boolean warned;
4143 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
4144
4145 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4146 r_symndx, symtab_hdr, sym_hashes,
4147 h, sym_sec, value,
4148 unresolved_reloc, warned);
4149
4150 if (h->root.type == bfd_link_hash_undefweak)
4151 undef_weak_ref = TRUE;
4152 else if (warned)
4153 continue;
4154 }
4155
4156 hit_addr = contents + rel->r_offset;
4157 value += rel->r_addend;
4158 dynamic_symbol_p = elfNN_ia64_dynamic_symbol_p (h, info, r_type);
4159
4160 switch (r_type)
4161 {
4162 case R_IA64_NONE:
4163 case R_IA64_LDXMOV:
4164 continue;
4165
4166 case R_IA64_IMM14:
4167 case R_IA64_IMM22:
4168 case R_IA64_IMM64:
4169 case R_IA64_DIR32MSB:
4170 case R_IA64_DIR32LSB:
4171 case R_IA64_DIR64MSB:
4172 case R_IA64_DIR64LSB:
4173 /* Install a dynamic relocation for this reloc. */
4174 if ((dynamic_symbol_p || info->shared)
4175 && r_symndx != 0
4176 && (input_section->flags & SEC_ALLOC) != 0)
4177 {
4178 unsigned int dyn_r_type;
4179 long dynindx;
4180 bfd_vma addend;
4181
4182 BFD_ASSERT (srel != NULL);
4183
4184 switch (r_type)
4185 {
4186 case R_IA64_IMM14:
4187 case R_IA64_IMM22:
4188 case R_IA64_IMM64:
4189 /* ??? People shouldn't be doing non-pic code in
4190 shared libraries nor dynamic executables. */
4191 (*_bfd_error_handler)
4192 (_("%B: non-pic code with imm relocation against dynamic symbol `%s'"),
4193 input_bfd,
4194 h ? h->root.root.string
4195 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4196 sym_sec));
4197 ret_val = FALSE;
4198 continue;
4199
4200 default:
4201 break;
4202 }
4203
4204 /* If we don't need dynamic symbol lookup, find a
4205 matching RELATIVE relocation. */
4206 dyn_r_type = r_type;
4207 if (dynamic_symbol_p)
4208 {
4209 dynindx = h->dynindx;
4210 addend = rel->r_addend;
4211 value = 0;
4212 }
4213 else
4214 {
4215 switch (r_type)
4216 {
4217 case R_IA64_DIR32MSB:
4218 dyn_r_type = R_IA64_REL32MSB;
4219 break;
4220 case R_IA64_DIR32LSB:
4221 dyn_r_type = R_IA64_REL32LSB;
4222 break;
4223 case R_IA64_DIR64MSB:
4224 dyn_r_type = R_IA64_REL64MSB;
4225 break;
4226 case R_IA64_DIR64LSB:
4227 dyn_r_type = R_IA64_REL64LSB;
4228 break;
4229
4230 default:
4231 break;
4232 }
4233 dynindx = 0;
4234 addend = value;
4235 }
4236
4237 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4238 srel, rel->r_offset, dyn_r_type,
4239 dynindx, addend);
4240 }
4241 /* Fall through. */
4242
4243 case R_IA64_LTV32MSB:
4244 case R_IA64_LTV32LSB:
4245 case R_IA64_LTV64MSB:
4246 case R_IA64_LTV64LSB:
4247 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4248 break;
4249
4250 case R_IA64_GPREL22:
4251 case R_IA64_GPREL64I:
4252 case R_IA64_GPREL32MSB:
4253 case R_IA64_GPREL32LSB:
4254 case R_IA64_GPREL64MSB:
4255 case R_IA64_GPREL64LSB:
4256 if (dynamic_symbol_p)
4257 {
4258 (*_bfd_error_handler)
4259 (_("%B: @gprel relocation against dynamic symbol %s"),
4260 input_bfd,
4261 h ? h->root.root.string
4262 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4263 sym_sec));
4264 ret_val = FALSE;
4265 continue;
4266 }
4267 value -= gp_val;
4268 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4269 break;
4270
4271 case R_IA64_LTOFF22:
4272 case R_IA64_LTOFF22X:
4273 case R_IA64_LTOFF64I:
4274 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4275 value = set_got_entry (input_bfd, info, dyn_i, (h ? h->dynindx : -1),
4276 rel->r_addend, value, R_IA64_DIRNNLSB);
4277 value -= gp_val;
4278 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4279 break;
4280
4281 case R_IA64_PLTOFF22:
4282 case R_IA64_PLTOFF64I:
4283 case R_IA64_PLTOFF64MSB:
4284 case R_IA64_PLTOFF64LSB:
4285 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4286 value = set_pltoff_entry (output_bfd, info, dyn_i, value, FALSE);
4287 value -= gp_val;
4288 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4289 break;
4290
4291 case R_IA64_FPTR64I:
4292 case R_IA64_FPTR32MSB:
4293 case R_IA64_FPTR32LSB:
4294 case R_IA64_FPTR64MSB:
4295 case R_IA64_FPTR64LSB:
4296 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4297 if (dyn_i->want_fptr)
4298 {
4299 if (!undef_weak_ref)
4300 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4301 }
4302 if (!dyn_i->want_fptr || info->pie)
4303 {
4304 long dynindx;
4305 unsigned int dyn_r_type = r_type;
4306 bfd_vma addend = rel->r_addend;
4307
4308 /* Otherwise, we expect the dynamic linker to create
4309 the entry. */
4310
4311 if (dyn_i->want_fptr)
4312 {
4313 if (r_type == R_IA64_FPTR64I)
4314 {
4315 /* We can't represent this without a dynamic symbol.
4316 Adjust the relocation to be against an output
4317 section symbol, which are always present in the
4318 dynamic symbol table. */
4319 /* ??? People shouldn't be doing non-pic code in
4320 shared libraries. Hork. */
4321 (*_bfd_error_handler)
4322 (_("%B: linking non-pic code in a position independent executable"),
4323 input_bfd);
4324 ret_val = FALSE;
4325 continue;
4326 }
4327 dynindx = 0;
4328 addend = value;
4329 dyn_r_type = r_type + R_IA64_RELNNLSB - R_IA64_FPTRNNLSB;
4330 }
4331 else if (h)
4332 {
4333 if (h->dynindx != -1)
4334 dynindx = h->dynindx;
4335 else
4336 dynindx = (_bfd_elf_link_lookup_local_dynindx
4337 (info, h->root.u.def.section->owner,
4338 global_sym_index (h)));
4339 value = 0;
4340 }
4341 else
4342 {
4343 dynindx = (_bfd_elf_link_lookup_local_dynindx
4344 (info, input_bfd, (long) r_symndx));
4345 value = 0;
4346 }
4347
4348 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4349 srel, rel->r_offset, dyn_r_type,
4350 dynindx, addend);
4351 }
4352
4353 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4354 break;
4355
4356 case R_IA64_LTOFF_FPTR22:
4357 case R_IA64_LTOFF_FPTR64I:
4358 case R_IA64_LTOFF_FPTR32MSB:
4359 case R_IA64_LTOFF_FPTR32LSB:
4360 case R_IA64_LTOFF_FPTR64MSB:
4361 case R_IA64_LTOFF_FPTR64LSB:
4362 {
4363 long dynindx;
4364
4365 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4366 if (dyn_i->want_fptr)
4367 {
4368 BFD_ASSERT (h == NULL || h->dynindx == -1);
4369 if (!undef_weak_ref)
4370 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4371 dynindx = -1;
4372 }
4373 else
4374 {
4375 /* Otherwise, we expect the dynamic linker to create
4376 the entry. */
4377 if (h)
4378 {
4379 if (h->dynindx != -1)
4380 dynindx = h->dynindx;
4381 else
4382 dynindx = (_bfd_elf_link_lookup_local_dynindx
4383 (info, h->root.u.def.section->owner,
4384 global_sym_index (h)));
4385 }
4386 else
4387 dynindx = (_bfd_elf_link_lookup_local_dynindx
4388 (info, input_bfd, (long) r_symndx));
4389 value = 0;
4390 }
4391
4392 value = set_got_entry (output_bfd, info, dyn_i, dynindx,
4393 rel->r_addend, value, R_IA64_FPTRNNLSB);
4394 value -= gp_val;
4395 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4396 }
4397 break;
4398
4399 case R_IA64_PCREL32MSB:
4400 case R_IA64_PCREL32LSB:
4401 case R_IA64_PCREL64MSB:
4402 case R_IA64_PCREL64LSB:
4403 /* Install a dynamic relocation for this reloc. */
4404 if (dynamic_symbol_p && r_symndx != 0)
4405 {
4406 BFD_ASSERT (srel != NULL);
4407
4408 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4409 srel, rel->r_offset, r_type,
4410 h->dynindx, rel->r_addend);
4411 }
4412 goto finish_pcrel;
4413
4414 case R_IA64_PCREL21B:
4415 case R_IA64_PCREL60B:
4416 /* We should have created a PLT entry for any dynamic symbol. */
4417 dyn_i = NULL;
4418 if (h)
4419 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4420
4421 if (dyn_i && dyn_i->want_plt2)
4422 {
4423 /* Should have caught this earlier. */
4424 BFD_ASSERT (rel->r_addend == 0);
4425
4426 value = (ia64_info->plt_sec->output_section->vma
4427 + ia64_info->plt_sec->output_offset
4428 + dyn_i->plt2_offset);
4429 }
4430 else
4431 {
4432 /* Since there's no PLT entry, Validate that this is
4433 locally defined. */
4434 BFD_ASSERT (undef_weak_ref || sym_sec->output_section != NULL);
4435
4436 /* If the symbol is undef_weak, we shouldn't be trying
4437 to call it. There's every chance that we'd wind up
4438 with an out-of-range fixup here. Don't bother setting
4439 any value at all. */
4440 if (undef_weak_ref)
4441 continue;
4442 }
4443 goto finish_pcrel;
4444
4445 case R_IA64_PCREL21BI:
4446 case R_IA64_PCREL21F:
4447 case R_IA64_PCREL21M:
4448 case R_IA64_PCREL22:
4449 case R_IA64_PCREL64I:
4450 /* The PCREL21BI reloc is specifically not intended for use with
4451 dynamic relocs. PCREL21F and PCREL21M are used for speculation
4452 fixup code, and thus probably ought not be dynamic. The
4453 PCREL22 and PCREL64I relocs aren't emitted as dynamic relocs. */
4454 if (dynamic_symbol_p)
4455 {
4456 const char *msg;
4457
4458 if (r_type == R_IA64_PCREL21BI)
4459 msg = _("%B: @internal branch to dynamic symbol %s");
4460 else if (r_type == R_IA64_PCREL21F || r_type == R_IA64_PCREL21M)
4461 msg = _("%B: speculation fixup to dynamic symbol %s");
4462 else
4463 msg = _("%B: @pcrel relocation against dynamic symbol %s");
4464 (*_bfd_error_handler) (msg, input_bfd,
4465 h ? h->root.root.string
4466 : bfd_elf_sym_name (input_bfd,
4467 symtab_hdr,
4468 sym,
4469 sym_sec));
4470 ret_val = FALSE;
4471 continue;
4472 }
4473 goto finish_pcrel;
4474
4475 finish_pcrel:
4476 /* Make pc-relative. */
4477 value -= (input_section->output_section->vma
4478 + input_section->output_offset
4479 + rel->r_offset) & ~ (bfd_vma) 0x3;
4480 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4481 break;
4482
4483 case R_IA64_SEGREL32MSB:
4484 case R_IA64_SEGREL32LSB:
4485 case R_IA64_SEGREL64MSB:
4486 case R_IA64_SEGREL64LSB:
4487 if (r_symndx == 0)
4488 {
4489 /* If the input section was discarded from the output, then
4490 do nothing. */
4491 r = bfd_reloc_ok;
4492 }
4493 else
4494 {
4495 struct elf_segment_map *m;
4496 Elf_Internal_Phdr *p;
4497
4498 /* Find the segment that contains the output_section. */
4499 for (m = elf_tdata (output_bfd)->segment_map,
4500 p = elf_tdata (output_bfd)->phdr;
4501 m != NULL;
4502 m = m->next, p++)
4503 {
4504 int i;
4505 for (i = m->count - 1; i >= 0; i--)
4506 if (m->sections[i] == input_section->output_section)
4507 break;
4508 if (i >= 0)
4509 break;
4510 }
4511
4512 if (m == NULL)
4513 {
4514 r = bfd_reloc_notsupported;
4515 }
4516 else
4517 {
4518 /* The VMA of the segment is the vaddr of the associated
4519 program header. */
4520 if (value > p->p_vaddr)
4521 value -= p->p_vaddr;
4522 else
4523 value = 0;
4524 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4525 }
4526 break;
4527 }
4528
4529 case R_IA64_SECREL32MSB:
4530 case R_IA64_SECREL32LSB:
4531 case R_IA64_SECREL64MSB:
4532 case R_IA64_SECREL64LSB:
4533 /* Make output-section relative to section where the symbol
4534 is defined. PR 475 */
4535 if (sym_sec)
4536 value -= sym_sec->output_section->vma;
4537 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4538 break;
4539
4540 case R_IA64_IPLTMSB:
4541 case R_IA64_IPLTLSB:
4542 /* Install a dynamic relocation for this reloc. */
4543 if ((dynamic_symbol_p || info->shared)
4544 && (input_section->flags & SEC_ALLOC) != 0)
4545 {
4546 BFD_ASSERT (srel != NULL);
4547
4548 /* If we don't need dynamic symbol lookup, install two
4549 RELATIVE relocations. */
4550 if (!dynamic_symbol_p)
4551 {
4552 unsigned int dyn_r_type;
4553
4554 if (r_type == R_IA64_IPLTMSB)
4555 dyn_r_type = R_IA64_REL64MSB;
4556 else
4557 dyn_r_type = R_IA64_REL64LSB;
4558
4559 elfNN_ia64_install_dyn_reloc (output_bfd, info,
4560 input_section,
4561 srel, rel->r_offset,
4562 dyn_r_type, 0, value);
4563 elfNN_ia64_install_dyn_reloc (output_bfd, info,
4564 input_section,
4565 srel, rel->r_offset + 8,
4566 dyn_r_type, 0, gp_val);
4567 }
4568 else
4569 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4570 srel, rel->r_offset, r_type,
4571 h->dynindx, rel->r_addend);
4572 }
4573
4574 if (r_type == R_IA64_IPLTMSB)
4575 r_type = R_IA64_DIR64MSB;
4576 else
4577 r_type = R_IA64_DIR64LSB;
4578 elfNN_ia64_install_value (hit_addr, value, r_type);
4579 r = elfNN_ia64_install_value (hit_addr + 8, gp_val, r_type);
4580 break;
4581
4582 case R_IA64_TPREL14:
4583 case R_IA64_TPREL22:
4584 case R_IA64_TPREL64I:
4585 value -= elfNN_ia64_tprel_base (info);
4586 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4587 break;
4588
4589 case R_IA64_DTPREL14:
4590 case R_IA64_DTPREL22:
4591 case R_IA64_DTPREL64I:
4592 case R_IA64_DTPREL32LSB:
4593 case R_IA64_DTPREL32MSB:
4594 case R_IA64_DTPREL64LSB:
4595 case R_IA64_DTPREL64MSB:
4596 value -= elfNN_ia64_dtprel_base (info);
4597 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4598 break;
4599
4600 case R_IA64_LTOFF_TPREL22:
4601 case R_IA64_LTOFF_DTPMOD22:
4602 case R_IA64_LTOFF_DTPREL22:
4603 {
4604 int got_r_type;
4605 long dynindx = h ? h->dynindx : -1;
4606 bfd_vma r_addend = rel->r_addend;
4607
4608 switch (r_type)
4609 {
4610 default:
4611 case R_IA64_LTOFF_TPREL22:
4612 if (!dynamic_symbol_p)
4613 {
4614 if (!info->shared)
4615 value -= elfNN_ia64_tprel_base (info);
4616 else
4617 {
4618 r_addend += value - elfNN_ia64_dtprel_base (info);
4619 dynindx = 0;
4620 }
4621 }
4622 got_r_type = R_IA64_TPREL64LSB;
4623 break;
4624 case R_IA64_LTOFF_DTPMOD22:
4625 if (!dynamic_symbol_p && !info->shared)
4626 value = 1;
4627 got_r_type = R_IA64_DTPMOD64LSB;
4628 break;
4629 case R_IA64_LTOFF_DTPREL22:
4630 if (!dynamic_symbol_p)
4631 value -= elfNN_ia64_dtprel_base (info);
4632 got_r_type = R_IA64_DTPRELNNLSB;
4633 break;
4634 }
4635 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4636 value = set_got_entry (input_bfd, info, dyn_i, dynindx, r_addend,
4637 value, got_r_type);
4638 value -= gp_val;
4639 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4640 }
4641 break;
4642
4643 default:
4644 r = bfd_reloc_notsupported;
4645 break;
4646 }
4647
4648 switch (r)
4649 {
4650 case bfd_reloc_ok:
4651 break;
4652
4653 case bfd_reloc_undefined:
4654 /* This can happen for global table relative relocs if
4655 __gp is undefined. This is a panic situation so we
4656 don't try to continue. */
4657 (*info->callbacks->undefined_symbol)
4658 (info, "__gp", input_bfd, input_section, rel->r_offset, 1);
4659 return FALSE;
4660
4661 case bfd_reloc_notsupported:
4662 {
4663 const char *name;
4664
4665 if (h)
4666 name = h->root.root.string;
4667 else
4668 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4669 sym_sec);
4670 if (!(*info->callbacks->warning) (info, _("unsupported reloc"),
4671 name, input_bfd,
4672 input_section, rel->r_offset))
4673 return FALSE;
4674 ret_val = FALSE;
4675 }
4676 break;
4677
4678 case bfd_reloc_dangerous:
4679 case bfd_reloc_outofrange:
4680 case bfd_reloc_overflow:
4681 default:
4682 {
4683 const char *name;
4684
4685 if (h)
4686 name = h->root.root.string;
4687 else
4688 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4689 sym_sec);
4690
4691 switch (r_type)
4692 {
4693 case R_IA64_PCREL21B:
4694 case R_IA64_PCREL21BI:
4695 case R_IA64_PCREL21M:
4696 case R_IA64_PCREL21F:
4697 if (is_elf_hash_table (info->hash))
4698 {
4699 /* Relaxtion is always performed for ELF output.
4700 Overflow failures for those relocations mean
4701 that the section is too big to relax. */
4702 (*_bfd_error_handler)
4703 (_("%B: Can't relax br (%s) to `%s' at 0x%lx in section `%A' with size 0x%lx (> 0x1000000)."),
4704 input_bfd, input_section, howto->name, name,
4705 rel->r_offset, input_section->size);
4706 break;
4707 }
4708 default:
4709 if (!(*info->callbacks->reloc_overflow) (info,
4710 &h->root,
4711 name,
4712 howto->name,
4713 (bfd_vma) 0,
4714 input_bfd,
4715 input_section,
4716 rel->r_offset))
4717 return FALSE;
4718 break;
4719 }
4720
4721 ret_val = FALSE;
4722 }
4723 break;
4724 }
4725 }
4726
4727 return ret_val;
4728 }
4729
4730 static bfd_boolean
4731 elfNN_ia64_finish_dynamic_symbol (output_bfd, info, h, sym)
4732 bfd *output_bfd;
4733 struct bfd_link_info *info;
4734 struct elf_link_hash_entry *h;
4735 Elf_Internal_Sym *sym;
4736 {
4737 struct elfNN_ia64_link_hash_table *ia64_info;
4738 struct elfNN_ia64_dyn_sym_info *dyn_i;
4739
4740 ia64_info = elfNN_ia64_hash_table (info);
4741 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4742
4743 /* Fill in the PLT data, if required. */
4744 if (dyn_i && dyn_i->want_plt)
4745 {
4746 Elf_Internal_Rela outrel;
4747 bfd_byte *loc;
4748 asection *plt_sec;
4749 bfd_vma plt_addr, pltoff_addr, gp_val, index;
4750
4751 gp_val = _bfd_get_gp_value (output_bfd);
4752
4753 /* Initialize the minimal PLT entry. */
4754
4755 index = (dyn_i->plt_offset - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
4756 plt_sec = ia64_info->plt_sec;
4757 loc = plt_sec->contents + dyn_i->plt_offset;
4758
4759 memcpy (loc, plt_min_entry, PLT_MIN_ENTRY_SIZE);
4760 elfNN_ia64_install_value (loc, index, R_IA64_IMM22);
4761 elfNN_ia64_install_value (loc+2, -dyn_i->plt_offset, R_IA64_PCREL21B);
4762
4763 plt_addr = (plt_sec->output_section->vma
4764 + plt_sec->output_offset
4765 + dyn_i->plt_offset);
4766 pltoff_addr = set_pltoff_entry (output_bfd, info, dyn_i, plt_addr, TRUE);
4767
4768 /* Initialize the FULL PLT entry, if needed. */
4769 if (dyn_i->want_plt2)
4770 {
4771 loc = plt_sec->contents + dyn_i->plt2_offset;
4772
4773 memcpy (loc, plt_full_entry, PLT_FULL_ENTRY_SIZE);
4774 elfNN_ia64_install_value (loc, pltoff_addr - gp_val, R_IA64_IMM22);
4775
4776 /* Mark the symbol as undefined, rather than as defined in the
4777 plt section. Leave the value alone. */
4778 /* ??? We didn't redefine it in adjust_dynamic_symbol in the
4779 first place. But perhaps elflink.c did some for us. */
4780 if (!h->def_regular)
4781 sym->st_shndx = SHN_UNDEF;
4782 }
4783
4784 /* Create the dynamic relocation. */
4785 outrel.r_offset = pltoff_addr;
4786 if (bfd_little_endian (output_bfd))
4787 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTLSB);
4788 else
4789 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTMSB);
4790 outrel.r_addend = 0;
4791
4792 /* This is fun. In the .IA_64.pltoff section, we've got entries
4793 that correspond both to real PLT entries, and those that
4794 happened to resolve to local symbols but need to be created
4795 to satisfy @pltoff relocations. The .rela.IA_64.pltoff
4796 relocations for the real PLT should come at the end of the
4797 section, so that they can be indexed by plt entry at runtime.
4798
4799 We emitted all of the relocations for the non-PLT @pltoff
4800 entries during relocate_section. So we can consider the
4801 existing sec->reloc_count to be the base of the array of
4802 PLT relocations. */
4803
4804 loc = ia64_info->rel_pltoff_sec->contents;
4805 loc += ((ia64_info->rel_pltoff_sec->reloc_count + index)
4806 * sizeof (ElfNN_External_Rela));
4807 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
4808 }
4809
4810 /* Mark some specially defined symbols as absolute. */
4811 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
4812 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
4813 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
4814 sym->st_shndx = SHN_ABS;
4815
4816 return TRUE;
4817 }
4818
4819 static bfd_boolean
4820 elfNN_ia64_finish_dynamic_sections (abfd, info)
4821 bfd *abfd;
4822 struct bfd_link_info *info;
4823 {
4824 struct elfNN_ia64_link_hash_table *ia64_info;
4825 bfd *dynobj;
4826
4827 ia64_info = elfNN_ia64_hash_table (info);
4828 dynobj = ia64_info->root.dynobj;
4829
4830 if (elf_hash_table (info)->dynamic_sections_created)
4831 {
4832 ElfNN_External_Dyn *dyncon, *dynconend;
4833 asection *sdyn, *sgotplt;
4834 bfd_vma gp_val;
4835
4836 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4837 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
4838 BFD_ASSERT (sdyn != NULL);
4839 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
4840 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
4841
4842 gp_val = _bfd_get_gp_value (abfd);
4843
4844 for (; dyncon < dynconend; dyncon++)
4845 {
4846 Elf_Internal_Dyn dyn;
4847
4848 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
4849
4850 switch (dyn.d_tag)
4851 {
4852 case DT_PLTGOT:
4853 dyn.d_un.d_ptr = gp_val;
4854 break;
4855
4856 case DT_PLTRELSZ:
4857 dyn.d_un.d_val = (ia64_info->minplt_entries
4858 * sizeof (ElfNN_External_Rela));
4859 break;
4860
4861 case DT_JMPREL:
4862 /* See the comment above in finish_dynamic_symbol. */
4863 dyn.d_un.d_ptr = (ia64_info->rel_pltoff_sec->output_section->vma
4864 + ia64_info->rel_pltoff_sec->output_offset
4865 + (ia64_info->rel_pltoff_sec->reloc_count
4866 * sizeof (ElfNN_External_Rela)));
4867 break;
4868
4869 case DT_IA_64_PLT_RESERVE:
4870 dyn.d_un.d_ptr = (sgotplt->output_section->vma
4871 + sgotplt->output_offset);
4872 break;
4873
4874 case DT_RELASZ:
4875 /* Do not have RELASZ include JMPREL. This makes things
4876 easier on ld.so. This is not what the rest of BFD set up. */
4877 dyn.d_un.d_val -= (ia64_info->minplt_entries
4878 * sizeof (ElfNN_External_Rela));
4879 break;
4880 }
4881
4882 bfd_elfNN_swap_dyn_out (abfd, &dyn, dyncon);
4883 }
4884
4885 /* Initialize the PLT0 entry. */
4886 if (ia64_info->plt_sec)
4887 {
4888 bfd_byte *loc = ia64_info->plt_sec->contents;
4889 bfd_vma pltres;
4890
4891 memcpy (loc, plt_header, PLT_HEADER_SIZE);
4892
4893 pltres = (sgotplt->output_section->vma
4894 + sgotplt->output_offset
4895 - gp_val);
4896
4897 elfNN_ia64_install_value (loc+1, pltres, R_IA64_GPREL22);
4898 }
4899 }
4900
4901 return TRUE;
4902 }
4903 \f
4904 /* ELF file flag handling: */
4905
4906 /* Function to keep IA-64 specific file flags. */
4907 static bfd_boolean
4908 elfNN_ia64_set_private_flags (abfd, flags)
4909 bfd *abfd;
4910 flagword flags;
4911 {
4912 BFD_ASSERT (!elf_flags_init (abfd)
4913 || elf_elfheader (abfd)->e_flags == flags);
4914
4915 elf_elfheader (abfd)->e_flags = flags;
4916 elf_flags_init (abfd) = TRUE;
4917 return TRUE;
4918 }
4919
4920 /* Merge backend specific data from an object file to the output
4921 object file when linking. */
4922 static bfd_boolean
4923 elfNN_ia64_merge_private_bfd_data (ibfd, obfd)
4924 bfd *ibfd, *obfd;
4925 {
4926 flagword out_flags;
4927 flagword in_flags;
4928 bfd_boolean ok = TRUE;
4929
4930 /* Don't even pretend to support mixed-format linking. */
4931 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4932 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4933 return FALSE;
4934
4935 in_flags = elf_elfheader (ibfd)->e_flags;
4936 out_flags = elf_elfheader (obfd)->e_flags;
4937
4938 if (! elf_flags_init (obfd))
4939 {
4940 elf_flags_init (obfd) = TRUE;
4941 elf_elfheader (obfd)->e_flags = in_flags;
4942
4943 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
4944 && bfd_get_arch_info (obfd)->the_default)
4945 {
4946 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
4947 bfd_get_mach (ibfd));
4948 }
4949
4950 return TRUE;
4951 }
4952
4953 /* Check flag compatibility. */
4954 if (in_flags == out_flags)
4955 return TRUE;
4956
4957 /* Output has EF_IA_64_REDUCEDFP set only if all inputs have it set. */
4958 if (!(in_flags & EF_IA_64_REDUCEDFP) && (out_flags & EF_IA_64_REDUCEDFP))
4959 elf_elfheader (obfd)->e_flags &= ~EF_IA_64_REDUCEDFP;
4960
4961 if ((in_flags & EF_IA_64_TRAPNIL) != (out_flags & EF_IA_64_TRAPNIL))
4962 {
4963 (*_bfd_error_handler)
4964 (_("%B: linking trap-on-NULL-dereference with non-trapping files"),
4965 ibfd);
4966
4967 bfd_set_error (bfd_error_bad_value);
4968 ok = FALSE;
4969 }
4970 if ((in_flags & EF_IA_64_BE) != (out_flags & EF_IA_64_BE))
4971 {
4972 (*_bfd_error_handler)
4973 (_("%B: linking big-endian files with little-endian files"),
4974 ibfd);
4975
4976 bfd_set_error (bfd_error_bad_value);
4977 ok = FALSE;
4978 }
4979 if ((in_flags & EF_IA_64_ABI64) != (out_flags & EF_IA_64_ABI64))
4980 {
4981 (*_bfd_error_handler)
4982 (_("%B: linking 64-bit files with 32-bit files"),
4983 ibfd);
4984
4985 bfd_set_error (bfd_error_bad_value);
4986 ok = FALSE;
4987 }
4988 if ((in_flags & EF_IA_64_CONS_GP) != (out_flags & EF_IA_64_CONS_GP))
4989 {
4990 (*_bfd_error_handler)
4991 (_("%B: linking constant-gp files with non-constant-gp files"),
4992 ibfd);
4993
4994 bfd_set_error (bfd_error_bad_value);
4995 ok = FALSE;
4996 }
4997 if ((in_flags & EF_IA_64_NOFUNCDESC_CONS_GP)
4998 != (out_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
4999 {
5000 (*_bfd_error_handler)
5001 (_("%B: linking auto-pic files with non-auto-pic files"),
5002 ibfd);
5003
5004 bfd_set_error (bfd_error_bad_value);
5005 ok = FALSE;
5006 }
5007
5008 return ok;
5009 }
5010
5011 static bfd_boolean
5012 elfNN_ia64_print_private_bfd_data (abfd, ptr)
5013 bfd *abfd;
5014 PTR ptr;
5015 {
5016 FILE *file = (FILE *) ptr;
5017 flagword flags = elf_elfheader (abfd)->e_flags;
5018
5019 BFD_ASSERT (abfd != NULL && ptr != NULL);
5020
5021 fprintf (file, "private flags = %s%s%s%s%s%s%s%s\n",
5022 (flags & EF_IA_64_TRAPNIL) ? "TRAPNIL, " : "",
5023 (flags & EF_IA_64_EXT) ? "EXT, " : "",
5024 (flags & EF_IA_64_BE) ? "BE, " : "LE, ",
5025 (flags & EF_IA_64_REDUCEDFP) ? "REDUCEDFP, " : "",
5026 (flags & EF_IA_64_CONS_GP) ? "CONS_GP, " : "",
5027 (flags & EF_IA_64_NOFUNCDESC_CONS_GP) ? "NOFUNCDESC_CONS_GP, " : "",
5028 (flags & EF_IA_64_ABSOLUTE) ? "ABSOLUTE, " : "",
5029 (flags & EF_IA_64_ABI64) ? "ABI64" : "ABI32");
5030
5031 _bfd_elf_print_private_bfd_data (abfd, ptr);
5032 return TRUE;
5033 }
5034
5035 static enum elf_reloc_type_class
5036 elfNN_ia64_reloc_type_class (rela)
5037 const Elf_Internal_Rela *rela;
5038 {
5039 switch ((int) ELFNN_R_TYPE (rela->r_info))
5040 {
5041 case R_IA64_REL32MSB:
5042 case R_IA64_REL32LSB:
5043 case R_IA64_REL64MSB:
5044 case R_IA64_REL64LSB:
5045 return reloc_class_relative;
5046 case R_IA64_IPLTMSB:
5047 case R_IA64_IPLTLSB:
5048 return reloc_class_plt;
5049 case R_IA64_COPY:
5050 return reloc_class_copy;
5051 default:
5052 return reloc_class_normal;
5053 }
5054 }
5055
5056 static struct bfd_elf_special_section const
5057 ia64_special_sections_s[]=
5058 {
5059 { ".sbss", 5, -1, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5060 { ".sdata", 6, -1, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5061 { NULL, 0, 0, 0, 0 }
5062 };
5063
5064 static struct bfd_elf_special_section const *
5065 elfNN_ia64_special_sections[27] =
5066 {
5067 NULL, /* 'a' */
5068 NULL, /* 'b' */
5069 NULL, /* 'c' */
5070 NULL, /* 'd' */
5071 NULL, /* 'e' */
5072 NULL, /* 'f' */
5073 NULL, /* 'g' */
5074 NULL, /* 'h' */
5075 NULL, /* 'i' */
5076 NULL, /* 'j' */
5077 NULL, /* 'k' */
5078 NULL, /* 'l' */
5079 NULL, /* 'm' */
5080 NULL, /* 'n' */
5081 NULL, /* 'o' */
5082 NULL, /* 'p' */
5083 NULL, /* 'q' */
5084 NULL, /* 'r' */
5085 ia64_special_sections_s, /* 's' */
5086 NULL, /* 't' */
5087 NULL, /* 'u' */
5088 NULL, /* 'v' */
5089 NULL, /* 'w' */
5090 NULL, /* 'x' */
5091 NULL, /* 'y' */
5092 NULL, /* 'z' */
5093 NULL /* other */
5094 };
5095
5096 static bfd_boolean
5097 elfNN_ia64_object_p (bfd *abfd)
5098 {
5099 asection *sec;
5100 asection *group, *unwi, *unw;
5101 flagword flags;
5102 const char *name;
5103 char *unwi_name, *unw_name;
5104 bfd_size_type amt;
5105
5106 if (abfd->flags & DYNAMIC)
5107 return TRUE;
5108
5109 /* Flags for fake group section. */
5110 flags = (SEC_LINKER_CREATED | SEC_GROUP | SEC_LINK_ONCE
5111 | SEC_EXCLUDE);
5112
5113 /* We add a fake section group for each .gnu.linkonce.t.* section,
5114 which isn't in a section group, and its unwind sections. */
5115 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5116 {
5117 if (elf_sec_group (sec) == NULL
5118 && ((sec->flags & (SEC_LINK_ONCE | SEC_CODE | SEC_GROUP))
5119 == (SEC_LINK_ONCE | SEC_CODE))
5120 && strncmp (sec->name, ".gnu.linkonce.t.", 16) == 0)
5121 {
5122 name = sec->name + 16;
5123
5124 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unwi.");
5125 unwi_name = bfd_alloc (abfd, amt);
5126 if (!unwi_name)
5127 return FALSE;
5128
5129 strcpy (stpcpy (unwi_name, ".gnu.linkonce.ia64unwi."), name);
5130 unwi = bfd_get_section_by_name (abfd, unwi_name);
5131
5132 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unw.");
5133 unw_name = bfd_alloc (abfd, amt);
5134 if (!unw_name)
5135 return FALSE;
5136
5137 strcpy (stpcpy (unw_name, ".gnu.linkonce.ia64unw."), name);
5138 unw = bfd_get_section_by_name (abfd, unw_name);
5139
5140 /* We need to create a fake group section for it and its
5141 unwind sections. */
5142 group = bfd_make_section_anyway_with_flags (abfd, name,
5143 flags);
5144 if (group == NULL)
5145 return FALSE;
5146
5147 /* Move the fake group section to the beginning. */
5148 bfd_section_list_remove (abfd, group);
5149 bfd_section_list_prepend (abfd, group);
5150
5151 elf_next_in_group (group) = sec;
5152
5153 elf_group_name (sec) = name;
5154 elf_next_in_group (sec) = sec;
5155 elf_sec_group (sec) = group;
5156
5157 if (unwi)
5158 {
5159 elf_group_name (unwi) = name;
5160 elf_next_in_group (unwi) = sec;
5161 elf_next_in_group (sec) = unwi;
5162 elf_sec_group (unwi) = group;
5163 }
5164
5165 if (unw)
5166 {
5167 elf_group_name (unw) = name;
5168 if (unwi)
5169 {
5170 elf_next_in_group (unw) = elf_next_in_group (unwi);
5171 elf_next_in_group (unwi) = unw;
5172 }
5173 else
5174 {
5175 elf_next_in_group (unw) = sec;
5176 elf_next_in_group (sec) = unw;
5177 }
5178 elf_sec_group (unw) = group;
5179 }
5180
5181 /* Fake SHT_GROUP section header. */
5182 elf_section_data (group)->this_hdr.bfd_section = group;
5183 elf_section_data (group)->this_hdr.sh_type = SHT_GROUP;
5184 }
5185 }
5186 return TRUE;
5187 }
5188
5189 static bfd_boolean
5190 elfNN_ia64_hpux_vec (const bfd_target *vec)
5191 {
5192 extern const bfd_target bfd_elfNN_ia64_hpux_big_vec;
5193 return (vec == & bfd_elfNN_ia64_hpux_big_vec);
5194 }
5195
5196 static void
5197 elfNN_hpux_post_process_headers (abfd, info)
5198 bfd *abfd;
5199 struct bfd_link_info *info ATTRIBUTE_UNUSED;
5200 {
5201 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5202
5203 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
5204 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
5205 }
5206
5207 bfd_boolean
5208 elfNN_hpux_backend_section_from_bfd_section (abfd, sec, retval)
5209 bfd *abfd ATTRIBUTE_UNUSED;
5210 asection *sec;
5211 int *retval;
5212 {
5213 if (bfd_is_com_section (sec))
5214 {
5215 *retval = SHN_IA_64_ANSI_COMMON;
5216 return TRUE;
5217 }
5218 return FALSE;
5219 }
5220
5221 static void
5222 elfNN_hpux_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5223 asymbol *asym)
5224 {
5225 elf_symbol_type *elfsym = (elf_symbol_type *) asym;;
5226
5227 switch (elfsym->internal_elf_sym.st_shndx)
5228 {
5229 case SHN_IA_64_ANSI_COMMON:
5230 asym->section = bfd_com_section_ptr;
5231 asym->value = elfsym->internal_elf_sym.st_size;
5232 asym->flags &= ~BSF_GLOBAL;
5233 break;
5234 }
5235 }
5236
5237 \f
5238 #define TARGET_LITTLE_SYM bfd_elfNN_ia64_little_vec
5239 #define TARGET_LITTLE_NAME "elfNN-ia64-little"
5240 #define TARGET_BIG_SYM bfd_elfNN_ia64_big_vec
5241 #define TARGET_BIG_NAME "elfNN-ia64-big"
5242 #define ELF_ARCH bfd_arch_ia64
5243 #define ELF_MACHINE_CODE EM_IA_64
5244 #define ELF_MACHINE_ALT1 1999 /* EAS2.3 */
5245 #define ELF_MACHINE_ALT2 1998 /* EAS2.2 */
5246 #define ELF_MAXPAGESIZE 0x10000 /* 64KB */
5247
5248 #define elf_backend_section_from_shdr \
5249 elfNN_ia64_section_from_shdr
5250 #define elf_backend_section_flags \
5251 elfNN_ia64_section_flags
5252 #define elf_backend_fake_sections \
5253 elfNN_ia64_fake_sections
5254 #define elf_backend_final_write_processing \
5255 elfNN_ia64_final_write_processing
5256 #define elf_backend_add_symbol_hook \
5257 elfNN_ia64_add_symbol_hook
5258 #define elf_backend_additional_program_headers \
5259 elfNN_ia64_additional_program_headers
5260 #define elf_backend_modify_segment_map \
5261 elfNN_ia64_modify_segment_map
5262 #define elf_info_to_howto \
5263 elfNN_ia64_info_to_howto
5264
5265 #define bfd_elfNN_bfd_reloc_type_lookup \
5266 elfNN_ia64_reloc_type_lookup
5267 #define bfd_elfNN_bfd_is_local_label_name \
5268 elfNN_ia64_is_local_label_name
5269 #define bfd_elfNN_bfd_relax_section \
5270 elfNN_ia64_relax_section
5271
5272 #define elf_backend_object_p \
5273 elfNN_ia64_object_p
5274
5275 /* Stuff for the BFD linker: */
5276 #define bfd_elfNN_bfd_link_hash_table_create \
5277 elfNN_ia64_hash_table_create
5278 #define bfd_elfNN_bfd_link_hash_table_free \
5279 elfNN_ia64_hash_table_free
5280 #define elf_backend_create_dynamic_sections \
5281 elfNN_ia64_create_dynamic_sections
5282 #define elf_backend_check_relocs \
5283 elfNN_ia64_check_relocs
5284 #define elf_backend_adjust_dynamic_symbol \
5285 elfNN_ia64_adjust_dynamic_symbol
5286 #define elf_backend_size_dynamic_sections \
5287 elfNN_ia64_size_dynamic_sections
5288 #define elf_backend_relocate_section \
5289 elfNN_ia64_relocate_section
5290 #define elf_backend_finish_dynamic_symbol \
5291 elfNN_ia64_finish_dynamic_symbol
5292 #define elf_backend_finish_dynamic_sections \
5293 elfNN_ia64_finish_dynamic_sections
5294 #define bfd_elfNN_bfd_final_link \
5295 elfNN_ia64_final_link
5296
5297 #define bfd_elfNN_bfd_merge_private_bfd_data \
5298 elfNN_ia64_merge_private_bfd_data
5299 #define bfd_elfNN_bfd_set_private_flags \
5300 elfNN_ia64_set_private_flags
5301 #define bfd_elfNN_bfd_print_private_bfd_data \
5302 elfNN_ia64_print_private_bfd_data
5303
5304 #define elf_backend_plt_readonly 1
5305 #define elf_backend_want_plt_sym 0
5306 #define elf_backend_plt_alignment 5
5307 #define elf_backend_got_header_size 0
5308 #define elf_backend_want_got_plt 1
5309 #define elf_backend_may_use_rel_p 1
5310 #define elf_backend_may_use_rela_p 1
5311 #define elf_backend_default_use_rela_p 1
5312 #define elf_backend_want_dynbss 0
5313 #define elf_backend_copy_indirect_symbol elfNN_ia64_hash_copy_indirect
5314 #define elf_backend_hide_symbol elfNN_ia64_hash_hide_symbol
5315 #define elf_backend_reloc_type_class elfNN_ia64_reloc_type_class
5316 #define elf_backend_rela_normal 1
5317 #define elf_backend_special_sections elfNN_ia64_special_sections
5318
5319 /* FIXME: PR 290: The Intel C compiler generates SHT_IA_64_UNWIND with
5320 SHF_LINK_ORDER. But it doesn't set theh sh_link or sh_info fields.
5321 We don't want to flood users with so many error messages. We turn
5322 off the warning for now. It will be turned on later when the Intel
5323 compiler is fixed. */
5324 #define elf_backend_link_order_error_handler NULL
5325
5326 #include "elfNN-target.h"
5327
5328 /* HPUX-specific vectors. */
5329
5330 #undef TARGET_LITTLE_SYM
5331 #undef TARGET_LITTLE_NAME
5332 #undef TARGET_BIG_SYM
5333 #define TARGET_BIG_SYM bfd_elfNN_ia64_hpux_big_vec
5334 #undef TARGET_BIG_NAME
5335 #define TARGET_BIG_NAME "elfNN-ia64-hpux-big"
5336
5337 /* These are HP-UX specific functions. */
5338
5339 #undef elf_backend_post_process_headers
5340 #define elf_backend_post_process_headers elfNN_hpux_post_process_headers
5341
5342 #undef elf_backend_section_from_bfd_section
5343 #define elf_backend_section_from_bfd_section elfNN_hpux_backend_section_from_bfd_section
5344
5345 #undef elf_backend_symbol_processing
5346 #define elf_backend_symbol_processing elfNN_hpux_backend_symbol_processing
5347
5348 #undef elf_backend_want_p_paddr_set_to_zero
5349 #define elf_backend_want_p_paddr_set_to_zero 1
5350
5351 #undef ELF_MAXPAGESIZE
5352 #define ELF_MAXPAGESIZE 0x1000 /* 1K */
5353
5354 #undef elfNN_bed
5355 #define elfNN_bed elfNN_ia64_hpux_bed
5356
5357 #include "elfNN-target.h"
5358
5359 #undef elf_backend_want_p_paddr_set_to_zero