2009-06-16 H.J. Lu <hongjiu.lu@intel.com>
[binutils-gdb.git] / bfd / elfxx-ia64.c
1 /* IA-64 support for 64-bit ELF
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2009 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "opcode/ia64.h"
28 #include "elf/ia64.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31
32 #define ARCH_SIZE NN
33
34 #if ARCH_SIZE == 64
35 #define LOG_SECTION_ALIGN 3
36 #endif
37
38 #if ARCH_SIZE == 32
39 #define LOG_SECTION_ALIGN 2
40 #endif
41
42 /* THE RULES for all the stuff the linker creates --
43
44 GOT Entries created in response to LTOFF or LTOFF_FPTR
45 relocations. Dynamic relocs created for dynamic
46 symbols in an application; REL relocs for locals
47 in a shared library.
48
49 FPTR The canonical function descriptor. Created for local
50 symbols in applications. Descriptors for dynamic symbols
51 and local symbols in shared libraries are created by
52 ld.so. Thus there are no dynamic relocs against these
53 objects. The FPTR relocs for such _are_ passed through
54 to the dynamic relocation tables.
55
56 FULL_PLT Created for a PCREL21B relocation against a dynamic symbol.
57 Requires the creation of a PLTOFF entry. This does not
58 require any dynamic relocations.
59
60 PLTOFF Created by PLTOFF relocations. For local symbols, this
61 is an alternate function descriptor, and in shared libraries
62 requires two REL relocations. Note that this cannot be
63 transformed into an FPTR relocation, since it must be in
64 range of the GP. For dynamic symbols, this is a function
65 descriptor for a MIN_PLT entry, and requires one IPLT reloc.
66
67 MIN_PLT Created by PLTOFF entries against dynamic symbols. This
68 does not require dynamic relocations. */
69
70 #define NELEMS(a) ((int) (sizeof (a) / sizeof ((a)[0])))
71
72 typedef struct bfd_hash_entry *(*new_hash_entry_func)
73 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
74
75 /* In dynamically (linker-) created sections, we generally need to keep track
76 of the place a symbol or expression got allocated to. This is done via hash
77 tables that store entries of the following type. */
78
79 struct elfNN_ia64_dyn_sym_info
80 {
81 /* The addend for which this entry is relevant. */
82 bfd_vma addend;
83
84 bfd_vma got_offset;
85 bfd_vma fptr_offset;
86 bfd_vma pltoff_offset;
87 bfd_vma plt_offset;
88 bfd_vma plt2_offset;
89 bfd_vma tprel_offset;
90 bfd_vma dtpmod_offset;
91 bfd_vma dtprel_offset;
92
93 /* The symbol table entry, if any, that this was derived from. */
94 struct elf_link_hash_entry *h;
95
96 /* Used to count non-got, non-plt relocations for delayed sizing
97 of relocation sections. */
98 struct elfNN_ia64_dyn_reloc_entry
99 {
100 struct elfNN_ia64_dyn_reloc_entry *next;
101 asection *srel;
102 int type;
103 int count;
104
105 /* Is this reloc against readonly section? */
106 bfd_boolean reltext;
107 } *reloc_entries;
108
109 /* TRUE when the section contents have been updated. */
110 unsigned got_done : 1;
111 unsigned fptr_done : 1;
112 unsigned pltoff_done : 1;
113 unsigned tprel_done : 1;
114 unsigned dtpmod_done : 1;
115 unsigned dtprel_done : 1;
116
117 /* TRUE for the different kinds of linker data we want created. */
118 unsigned want_got : 1;
119 unsigned want_gotx : 1;
120 unsigned want_fptr : 1;
121 unsigned want_ltoff_fptr : 1;
122 unsigned want_plt : 1;
123 unsigned want_plt2 : 1;
124 unsigned want_pltoff : 1;
125 unsigned want_tprel : 1;
126 unsigned want_dtpmod : 1;
127 unsigned want_dtprel : 1;
128 };
129
130 struct elfNN_ia64_local_hash_entry
131 {
132 int id;
133 unsigned int r_sym;
134 /* The number of elements in elfNN_ia64_dyn_sym_info array. */
135 unsigned int count;
136 /* The number of sorted elements in elfNN_ia64_dyn_sym_info array. */
137 unsigned int sorted_count;
138 /* The size of elfNN_ia64_dyn_sym_info array. */
139 unsigned int size;
140 /* The array of elfNN_ia64_dyn_sym_info. */
141 struct elfNN_ia64_dyn_sym_info *info;
142
143 /* TRUE if this hash entry's addends was translated for
144 SHF_MERGE optimization. */
145 unsigned sec_merge_done : 1;
146 };
147
148 struct elfNN_ia64_link_hash_entry
149 {
150 struct elf_link_hash_entry root;
151 /* The number of elements in elfNN_ia64_dyn_sym_info array. */
152 unsigned int count;
153 /* The number of sorted elements in elfNN_ia64_dyn_sym_info array. */
154 unsigned int sorted_count;
155 /* The size of elfNN_ia64_dyn_sym_info array. */
156 unsigned int size;
157 /* The array of elfNN_ia64_dyn_sym_info. */
158 struct elfNN_ia64_dyn_sym_info *info;
159 };
160
161 struct elfNN_ia64_link_hash_table
162 {
163 /* The main hash table. */
164 struct elf_link_hash_table root;
165
166 asection *fptr_sec; /* function descriptor table (or NULL) */
167 asection *rel_fptr_sec; /* dynamic relocation section for same */
168 asection *pltoff_sec; /* private descriptors for plt (or NULL) */
169 asection *rel_pltoff_sec; /* dynamic relocation section for same */
170
171 bfd_size_type minplt_entries; /* number of minplt entries */
172 unsigned reltext : 1; /* are there relocs against readonly sections? */
173 unsigned self_dtpmod_done : 1;/* has self DTPMOD entry been finished? */
174 bfd_vma self_dtpmod_offset; /* .got offset to self DTPMOD entry */
175
176 htab_t loc_hash_table;
177 void *loc_hash_memory;
178 };
179
180 struct elfNN_ia64_allocate_data
181 {
182 struct bfd_link_info *info;
183 bfd_size_type ofs;
184 bfd_boolean only_got;
185 };
186
187 #define elfNN_ia64_hash_table(p) \
188 ((struct elfNN_ia64_link_hash_table *) ((p)->hash))
189
190 static struct elfNN_ia64_dyn_sym_info * get_dyn_sym_info
191 (struct elfNN_ia64_link_hash_table *ia64_info,
192 struct elf_link_hash_entry *h,
193 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create);
194 static bfd_boolean elfNN_ia64_dynamic_symbol_p
195 (struct elf_link_hash_entry *h, struct bfd_link_info *info, int);
196 static bfd_reloc_status_type elfNN_ia64_install_value
197 (bfd_byte *hit_addr, bfd_vma val, unsigned int r_type);
198 static bfd_boolean elfNN_ia64_choose_gp
199 (bfd *abfd, struct bfd_link_info *info);
200 static void elfNN_ia64_relax_ldxmov
201 (bfd_byte *contents, bfd_vma off);
202 static void elfNN_ia64_dyn_sym_traverse
203 (struct elfNN_ia64_link_hash_table *ia64_info,
204 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR),
205 PTR info);
206 static bfd_boolean allocate_global_data_got
207 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
208 static bfd_boolean allocate_global_fptr_got
209 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
210 static bfd_boolean allocate_local_got
211 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
212 static bfd_boolean elfNN_ia64_hpux_vec
213 (const bfd_target *vec);
214 static bfd_boolean allocate_dynrel_entries
215 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
216 static asection *get_pltoff
217 (bfd *abfd, struct bfd_link_info *info,
218 struct elfNN_ia64_link_hash_table *ia64_info);
219 \f
220 /* ia64-specific relocation. */
221
222 /* Perform a relocation. Not much to do here as all the hard work is
223 done in elfNN_ia64_final_link_relocate. */
224 static bfd_reloc_status_type
225 elfNN_ia64_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc,
226 asymbol *sym ATTRIBUTE_UNUSED,
227 PTR data ATTRIBUTE_UNUSED, asection *input_section,
228 bfd *output_bfd, char **error_message)
229 {
230 if (output_bfd)
231 {
232 reloc->address += input_section->output_offset;
233 return bfd_reloc_ok;
234 }
235
236 if (input_section->flags & SEC_DEBUGGING)
237 return bfd_reloc_continue;
238
239 *error_message = "Unsupported call to elfNN_ia64_reloc";
240 return bfd_reloc_notsupported;
241 }
242
243 #define IA64_HOWTO(TYPE, NAME, SIZE, PCREL, IN) \
244 HOWTO (TYPE, 0, SIZE, 0, PCREL, 0, complain_overflow_signed, \
245 elfNN_ia64_reloc, NAME, FALSE, 0, -1, IN)
246
247 /* This table has to be sorted according to increasing number of the
248 TYPE field. */
249 static reloc_howto_type ia64_howto_table[] =
250 {
251 IA64_HOWTO (R_IA64_NONE, "NONE", 0, FALSE, TRUE),
252
253 IA64_HOWTO (R_IA64_IMM14, "IMM14", 0, FALSE, TRUE),
254 IA64_HOWTO (R_IA64_IMM22, "IMM22", 0, FALSE, TRUE),
255 IA64_HOWTO (R_IA64_IMM64, "IMM64", 0, FALSE, TRUE),
256 IA64_HOWTO (R_IA64_DIR32MSB, "DIR32MSB", 2, FALSE, TRUE),
257 IA64_HOWTO (R_IA64_DIR32LSB, "DIR32LSB", 2, FALSE, TRUE),
258 IA64_HOWTO (R_IA64_DIR64MSB, "DIR64MSB", 4, FALSE, TRUE),
259 IA64_HOWTO (R_IA64_DIR64LSB, "DIR64LSB", 4, FALSE, TRUE),
260
261 IA64_HOWTO (R_IA64_GPREL22, "GPREL22", 0, FALSE, TRUE),
262 IA64_HOWTO (R_IA64_GPREL64I, "GPREL64I", 0, FALSE, TRUE),
263 IA64_HOWTO (R_IA64_GPREL32MSB, "GPREL32MSB", 2, FALSE, TRUE),
264 IA64_HOWTO (R_IA64_GPREL32LSB, "GPREL32LSB", 2, FALSE, TRUE),
265 IA64_HOWTO (R_IA64_GPREL64MSB, "GPREL64MSB", 4, FALSE, TRUE),
266 IA64_HOWTO (R_IA64_GPREL64LSB, "GPREL64LSB", 4, FALSE, TRUE),
267
268 IA64_HOWTO (R_IA64_LTOFF22, "LTOFF22", 0, FALSE, TRUE),
269 IA64_HOWTO (R_IA64_LTOFF64I, "LTOFF64I", 0, FALSE, TRUE),
270
271 IA64_HOWTO (R_IA64_PLTOFF22, "PLTOFF22", 0, FALSE, TRUE),
272 IA64_HOWTO (R_IA64_PLTOFF64I, "PLTOFF64I", 0, FALSE, TRUE),
273 IA64_HOWTO (R_IA64_PLTOFF64MSB, "PLTOFF64MSB", 4, FALSE, TRUE),
274 IA64_HOWTO (R_IA64_PLTOFF64LSB, "PLTOFF64LSB", 4, FALSE, TRUE),
275
276 IA64_HOWTO (R_IA64_FPTR64I, "FPTR64I", 0, FALSE, TRUE),
277 IA64_HOWTO (R_IA64_FPTR32MSB, "FPTR32MSB", 2, FALSE, TRUE),
278 IA64_HOWTO (R_IA64_FPTR32LSB, "FPTR32LSB", 2, FALSE, TRUE),
279 IA64_HOWTO (R_IA64_FPTR64MSB, "FPTR64MSB", 4, FALSE, TRUE),
280 IA64_HOWTO (R_IA64_FPTR64LSB, "FPTR64LSB", 4, FALSE, TRUE),
281
282 IA64_HOWTO (R_IA64_PCREL60B, "PCREL60B", 0, TRUE, TRUE),
283 IA64_HOWTO (R_IA64_PCREL21B, "PCREL21B", 0, TRUE, TRUE),
284 IA64_HOWTO (R_IA64_PCREL21M, "PCREL21M", 0, TRUE, TRUE),
285 IA64_HOWTO (R_IA64_PCREL21F, "PCREL21F", 0, TRUE, TRUE),
286 IA64_HOWTO (R_IA64_PCREL32MSB, "PCREL32MSB", 2, TRUE, TRUE),
287 IA64_HOWTO (R_IA64_PCREL32LSB, "PCREL32LSB", 2, TRUE, TRUE),
288 IA64_HOWTO (R_IA64_PCREL64MSB, "PCREL64MSB", 4, TRUE, TRUE),
289 IA64_HOWTO (R_IA64_PCREL64LSB, "PCREL64LSB", 4, TRUE, TRUE),
290
291 IA64_HOWTO (R_IA64_LTOFF_FPTR22, "LTOFF_FPTR22", 0, FALSE, TRUE),
292 IA64_HOWTO (R_IA64_LTOFF_FPTR64I, "LTOFF_FPTR64I", 0, FALSE, TRUE),
293 IA64_HOWTO (R_IA64_LTOFF_FPTR32MSB, "LTOFF_FPTR32MSB", 2, FALSE, TRUE),
294 IA64_HOWTO (R_IA64_LTOFF_FPTR32LSB, "LTOFF_FPTR32LSB", 2, FALSE, TRUE),
295 IA64_HOWTO (R_IA64_LTOFF_FPTR64MSB, "LTOFF_FPTR64MSB", 4, FALSE, TRUE),
296 IA64_HOWTO (R_IA64_LTOFF_FPTR64LSB, "LTOFF_FPTR64LSB", 4, FALSE, TRUE),
297
298 IA64_HOWTO (R_IA64_SEGREL32MSB, "SEGREL32MSB", 2, FALSE, TRUE),
299 IA64_HOWTO (R_IA64_SEGREL32LSB, "SEGREL32LSB", 2, FALSE, TRUE),
300 IA64_HOWTO (R_IA64_SEGREL64MSB, "SEGREL64MSB", 4, FALSE, TRUE),
301 IA64_HOWTO (R_IA64_SEGREL64LSB, "SEGREL64LSB", 4, FALSE, TRUE),
302
303 IA64_HOWTO (R_IA64_SECREL32MSB, "SECREL32MSB", 2, FALSE, TRUE),
304 IA64_HOWTO (R_IA64_SECREL32LSB, "SECREL32LSB", 2, FALSE, TRUE),
305 IA64_HOWTO (R_IA64_SECREL64MSB, "SECREL64MSB", 4, FALSE, TRUE),
306 IA64_HOWTO (R_IA64_SECREL64LSB, "SECREL64LSB", 4, FALSE, TRUE),
307
308 IA64_HOWTO (R_IA64_REL32MSB, "REL32MSB", 2, FALSE, TRUE),
309 IA64_HOWTO (R_IA64_REL32LSB, "REL32LSB", 2, FALSE, TRUE),
310 IA64_HOWTO (R_IA64_REL64MSB, "REL64MSB", 4, FALSE, TRUE),
311 IA64_HOWTO (R_IA64_REL64LSB, "REL64LSB", 4, FALSE, TRUE),
312
313 IA64_HOWTO (R_IA64_LTV32MSB, "LTV32MSB", 2, FALSE, TRUE),
314 IA64_HOWTO (R_IA64_LTV32LSB, "LTV32LSB", 2, FALSE, TRUE),
315 IA64_HOWTO (R_IA64_LTV64MSB, "LTV64MSB", 4, FALSE, TRUE),
316 IA64_HOWTO (R_IA64_LTV64LSB, "LTV64LSB", 4, FALSE, TRUE),
317
318 IA64_HOWTO (R_IA64_PCREL21BI, "PCREL21BI", 0, TRUE, TRUE),
319 IA64_HOWTO (R_IA64_PCREL22, "PCREL22", 0, TRUE, TRUE),
320 IA64_HOWTO (R_IA64_PCREL64I, "PCREL64I", 0, TRUE, TRUE),
321
322 IA64_HOWTO (R_IA64_IPLTMSB, "IPLTMSB", 4, FALSE, TRUE),
323 IA64_HOWTO (R_IA64_IPLTLSB, "IPLTLSB", 4, FALSE, TRUE),
324 IA64_HOWTO (R_IA64_COPY, "COPY", 4, FALSE, TRUE),
325 IA64_HOWTO (R_IA64_LTOFF22X, "LTOFF22X", 0, FALSE, TRUE),
326 IA64_HOWTO (R_IA64_LDXMOV, "LDXMOV", 0, FALSE, TRUE),
327
328 IA64_HOWTO (R_IA64_TPREL14, "TPREL14", 0, FALSE, FALSE),
329 IA64_HOWTO (R_IA64_TPREL22, "TPREL22", 0, FALSE, FALSE),
330 IA64_HOWTO (R_IA64_TPREL64I, "TPREL64I", 0, FALSE, FALSE),
331 IA64_HOWTO (R_IA64_TPREL64MSB, "TPREL64MSB", 4, FALSE, FALSE),
332 IA64_HOWTO (R_IA64_TPREL64LSB, "TPREL64LSB", 4, FALSE, FALSE),
333 IA64_HOWTO (R_IA64_LTOFF_TPREL22, "LTOFF_TPREL22", 0, FALSE, FALSE),
334
335 IA64_HOWTO (R_IA64_DTPMOD64MSB, "DTPMOD64MSB", 4, FALSE, FALSE),
336 IA64_HOWTO (R_IA64_DTPMOD64LSB, "DTPMOD64LSB", 4, FALSE, FALSE),
337 IA64_HOWTO (R_IA64_LTOFF_DTPMOD22, "LTOFF_DTPMOD22", 0, FALSE, FALSE),
338
339 IA64_HOWTO (R_IA64_DTPREL14, "DTPREL14", 0, FALSE, FALSE),
340 IA64_HOWTO (R_IA64_DTPREL22, "DTPREL22", 0, FALSE, FALSE),
341 IA64_HOWTO (R_IA64_DTPREL64I, "DTPREL64I", 0, FALSE, FALSE),
342 IA64_HOWTO (R_IA64_DTPREL32MSB, "DTPREL32MSB", 2, FALSE, FALSE),
343 IA64_HOWTO (R_IA64_DTPREL32LSB, "DTPREL32LSB", 2, FALSE, FALSE),
344 IA64_HOWTO (R_IA64_DTPREL64MSB, "DTPREL64MSB", 4, FALSE, FALSE),
345 IA64_HOWTO (R_IA64_DTPREL64LSB, "DTPREL64LSB", 4, FALSE, FALSE),
346 IA64_HOWTO (R_IA64_LTOFF_DTPREL22, "LTOFF_DTPREL22", 0, FALSE, FALSE),
347 };
348
349 static unsigned char elf_code_to_howto_index[R_IA64_MAX_RELOC_CODE + 1];
350
351 /* Given a BFD reloc type, return the matching HOWTO structure. */
352
353 static reloc_howto_type *
354 lookup_howto (unsigned int rtype)
355 {
356 static int inited = 0;
357 int i;
358
359 if (!inited)
360 {
361 inited = 1;
362
363 memset (elf_code_to_howto_index, 0xff, sizeof (elf_code_to_howto_index));
364 for (i = 0; i < NELEMS (ia64_howto_table); ++i)
365 elf_code_to_howto_index[ia64_howto_table[i].type] = i;
366 }
367
368 if (rtype > R_IA64_MAX_RELOC_CODE)
369 return 0;
370 i = elf_code_to_howto_index[rtype];
371 if (i >= NELEMS (ia64_howto_table))
372 return 0;
373 return ia64_howto_table + i;
374 }
375
376 static reloc_howto_type*
377 elfNN_ia64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
378 bfd_reloc_code_real_type bfd_code)
379 {
380 unsigned int rtype;
381
382 switch (bfd_code)
383 {
384 case BFD_RELOC_NONE: rtype = R_IA64_NONE; break;
385
386 case BFD_RELOC_IA64_IMM14: rtype = R_IA64_IMM14; break;
387 case BFD_RELOC_IA64_IMM22: rtype = R_IA64_IMM22; break;
388 case BFD_RELOC_IA64_IMM64: rtype = R_IA64_IMM64; break;
389
390 case BFD_RELOC_IA64_DIR32MSB: rtype = R_IA64_DIR32MSB; break;
391 case BFD_RELOC_IA64_DIR32LSB: rtype = R_IA64_DIR32LSB; break;
392 case BFD_RELOC_IA64_DIR64MSB: rtype = R_IA64_DIR64MSB; break;
393 case BFD_RELOC_IA64_DIR64LSB: rtype = R_IA64_DIR64LSB; break;
394
395 case BFD_RELOC_IA64_GPREL22: rtype = R_IA64_GPREL22; break;
396 case BFD_RELOC_IA64_GPREL64I: rtype = R_IA64_GPREL64I; break;
397 case BFD_RELOC_IA64_GPREL32MSB: rtype = R_IA64_GPREL32MSB; break;
398 case BFD_RELOC_IA64_GPREL32LSB: rtype = R_IA64_GPREL32LSB; break;
399 case BFD_RELOC_IA64_GPREL64MSB: rtype = R_IA64_GPREL64MSB; break;
400 case BFD_RELOC_IA64_GPREL64LSB: rtype = R_IA64_GPREL64LSB; break;
401
402 case BFD_RELOC_IA64_LTOFF22: rtype = R_IA64_LTOFF22; break;
403 case BFD_RELOC_IA64_LTOFF64I: rtype = R_IA64_LTOFF64I; break;
404
405 case BFD_RELOC_IA64_PLTOFF22: rtype = R_IA64_PLTOFF22; break;
406 case BFD_RELOC_IA64_PLTOFF64I: rtype = R_IA64_PLTOFF64I; break;
407 case BFD_RELOC_IA64_PLTOFF64MSB: rtype = R_IA64_PLTOFF64MSB; break;
408 case BFD_RELOC_IA64_PLTOFF64LSB: rtype = R_IA64_PLTOFF64LSB; break;
409 case BFD_RELOC_IA64_FPTR64I: rtype = R_IA64_FPTR64I; break;
410 case BFD_RELOC_IA64_FPTR32MSB: rtype = R_IA64_FPTR32MSB; break;
411 case BFD_RELOC_IA64_FPTR32LSB: rtype = R_IA64_FPTR32LSB; break;
412 case BFD_RELOC_IA64_FPTR64MSB: rtype = R_IA64_FPTR64MSB; break;
413 case BFD_RELOC_IA64_FPTR64LSB: rtype = R_IA64_FPTR64LSB; break;
414
415 case BFD_RELOC_IA64_PCREL21B: rtype = R_IA64_PCREL21B; break;
416 case BFD_RELOC_IA64_PCREL21BI: rtype = R_IA64_PCREL21BI; break;
417 case BFD_RELOC_IA64_PCREL21M: rtype = R_IA64_PCREL21M; break;
418 case BFD_RELOC_IA64_PCREL21F: rtype = R_IA64_PCREL21F; break;
419 case BFD_RELOC_IA64_PCREL22: rtype = R_IA64_PCREL22; break;
420 case BFD_RELOC_IA64_PCREL60B: rtype = R_IA64_PCREL60B; break;
421 case BFD_RELOC_IA64_PCREL64I: rtype = R_IA64_PCREL64I; break;
422 case BFD_RELOC_IA64_PCREL32MSB: rtype = R_IA64_PCREL32MSB; break;
423 case BFD_RELOC_IA64_PCREL32LSB: rtype = R_IA64_PCREL32LSB; break;
424 case BFD_RELOC_IA64_PCREL64MSB: rtype = R_IA64_PCREL64MSB; break;
425 case BFD_RELOC_IA64_PCREL64LSB: rtype = R_IA64_PCREL64LSB; break;
426
427 case BFD_RELOC_IA64_LTOFF_FPTR22: rtype = R_IA64_LTOFF_FPTR22; break;
428 case BFD_RELOC_IA64_LTOFF_FPTR64I: rtype = R_IA64_LTOFF_FPTR64I; break;
429 case BFD_RELOC_IA64_LTOFF_FPTR32MSB: rtype = R_IA64_LTOFF_FPTR32MSB; break;
430 case BFD_RELOC_IA64_LTOFF_FPTR32LSB: rtype = R_IA64_LTOFF_FPTR32LSB; break;
431 case BFD_RELOC_IA64_LTOFF_FPTR64MSB: rtype = R_IA64_LTOFF_FPTR64MSB; break;
432 case BFD_RELOC_IA64_LTOFF_FPTR64LSB: rtype = R_IA64_LTOFF_FPTR64LSB; break;
433
434 case BFD_RELOC_IA64_SEGREL32MSB: rtype = R_IA64_SEGREL32MSB; break;
435 case BFD_RELOC_IA64_SEGREL32LSB: rtype = R_IA64_SEGREL32LSB; break;
436 case BFD_RELOC_IA64_SEGREL64MSB: rtype = R_IA64_SEGREL64MSB; break;
437 case BFD_RELOC_IA64_SEGREL64LSB: rtype = R_IA64_SEGREL64LSB; break;
438
439 case BFD_RELOC_IA64_SECREL32MSB: rtype = R_IA64_SECREL32MSB; break;
440 case BFD_RELOC_IA64_SECREL32LSB: rtype = R_IA64_SECREL32LSB; break;
441 case BFD_RELOC_IA64_SECREL64MSB: rtype = R_IA64_SECREL64MSB; break;
442 case BFD_RELOC_IA64_SECREL64LSB: rtype = R_IA64_SECREL64LSB; break;
443
444 case BFD_RELOC_IA64_REL32MSB: rtype = R_IA64_REL32MSB; break;
445 case BFD_RELOC_IA64_REL32LSB: rtype = R_IA64_REL32LSB; break;
446 case BFD_RELOC_IA64_REL64MSB: rtype = R_IA64_REL64MSB; break;
447 case BFD_RELOC_IA64_REL64LSB: rtype = R_IA64_REL64LSB; break;
448
449 case BFD_RELOC_IA64_LTV32MSB: rtype = R_IA64_LTV32MSB; break;
450 case BFD_RELOC_IA64_LTV32LSB: rtype = R_IA64_LTV32LSB; break;
451 case BFD_RELOC_IA64_LTV64MSB: rtype = R_IA64_LTV64MSB; break;
452 case BFD_RELOC_IA64_LTV64LSB: rtype = R_IA64_LTV64LSB; break;
453
454 case BFD_RELOC_IA64_IPLTMSB: rtype = R_IA64_IPLTMSB; break;
455 case BFD_RELOC_IA64_IPLTLSB: rtype = R_IA64_IPLTLSB; break;
456 case BFD_RELOC_IA64_COPY: rtype = R_IA64_COPY; break;
457 case BFD_RELOC_IA64_LTOFF22X: rtype = R_IA64_LTOFF22X; break;
458 case BFD_RELOC_IA64_LDXMOV: rtype = R_IA64_LDXMOV; break;
459
460 case BFD_RELOC_IA64_TPREL14: rtype = R_IA64_TPREL14; break;
461 case BFD_RELOC_IA64_TPREL22: rtype = R_IA64_TPREL22; break;
462 case BFD_RELOC_IA64_TPREL64I: rtype = R_IA64_TPREL64I; break;
463 case BFD_RELOC_IA64_TPREL64MSB: rtype = R_IA64_TPREL64MSB; break;
464 case BFD_RELOC_IA64_TPREL64LSB: rtype = R_IA64_TPREL64LSB; break;
465 case BFD_RELOC_IA64_LTOFF_TPREL22: rtype = R_IA64_LTOFF_TPREL22; break;
466
467 case BFD_RELOC_IA64_DTPMOD64MSB: rtype = R_IA64_DTPMOD64MSB; break;
468 case BFD_RELOC_IA64_DTPMOD64LSB: rtype = R_IA64_DTPMOD64LSB; break;
469 case BFD_RELOC_IA64_LTOFF_DTPMOD22: rtype = R_IA64_LTOFF_DTPMOD22; break;
470
471 case BFD_RELOC_IA64_DTPREL14: rtype = R_IA64_DTPREL14; break;
472 case BFD_RELOC_IA64_DTPREL22: rtype = R_IA64_DTPREL22; break;
473 case BFD_RELOC_IA64_DTPREL64I: rtype = R_IA64_DTPREL64I; break;
474 case BFD_RELOC_IA64_DTPREL32MSB: rtype = R_IA64_DTPREL32MSB; break;
475 case BFD_RELOC_IA64_DTPREL32LSB: rtype = R_IA64_DTPREL32LSB; break;
476 case BFD_RELOC_IA64_DTPREL64MSB: rtype = R_IA64_DTPREL64MSB; break;
477 case BFD_RELOC_IA64_DTPREL64LSB: rtype = R_IA64_DTPREL64LSB; break;
478 case BFD_RELOC_IA64_LTOFF_DTPREL22: rtype = R_IA64_LTOFF_DTPREL22; break;
479
480 default: return 0;
481 }
482 return lookup_howto (rtype);
483 }
484
485 static reloc_howto_type *
486 elfNN_ia64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
487 const char *r_name)
488 {
489 unsigned int i;
490
491 for (i = 0;
492 i < sizeof (ia64_howto_table) / sizeof (ia64_howto_table[0]);
493 i++)
494 if (ia64_howto_table[i].name != NULL
495 && strcasecmp (ia64_howto_table[i].name, r_name) == 0)
496 return &ia64_howto_table[i];
497
498 return NULL;
499 }
500
501 /* Given a ELF reloc, return the matching HOWTO structure. */
502
503 static void
504 elfNN_ia64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
505 arelent *bfd_reloc,
506 Elf_Internal_Rela *elf_reloc)
507 {
508 bfd_reloc->howto
509 = lookup_howto ((unsigned int) ELFNN_R_TYPE (elf_reloc->r_info));
510 }
511 \f
512 #define PLT_HEADER_SIZE (3 * 16)
513 #define PLT_MIN_ENTRY_SIZE (1 * 16)
514 #define PLT_FULL_ENTRY_SIZE (2 * 16)
515 #define PLT_RESERVED_WORDS 3
516
517 static const bfd_byte plt_header[PLT_HEADER_SIZE] =
518 {
519 0x0b, 0x10, 0x00, 0x1c, 0x00, 0x21, /* [MMI] mov r2=r14;; */
520 0xe0, 0x00, 0x08, 0x00, 0x48, 0x00, /* addl r14=0,r2 */
521 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
522 0x0b, 0x80, 0x20, 0x1c, 0x18, 0x14, /* [MMI] ld8 r16=[r14],8;; */
523 0x10, 0x41, 0x38, 0x30, 0x28, 0x00, /* ld8 r17=[r14],8 */
524 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
525 0x11, 0x08, 0x00, 0x1c, 0x18, 0x10, /* [MIB] ld8 r1=[r14] */
526 0x60, 0x88, 0x04, 0x80, 0x03, 0x00, /* mov b6=r17 */
527 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
528 };
529
530 static const bfd_byte plt_min_entry[PLT_MIN_ENTRY_SIZE] =
531 {
532 0x11, 0x78, 0x00, 0x00, 0x00, 0x24, /* [MIB] mov r15=0 */
533 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, /* nop.i 0x0 */
534 0x00, 0x00, 0x00, 0x40 /* br.few 0 <PLT0>;; */
535 };
536
537 static const bfd_byte plt_full_entry[PLT_FULL_ENTRY_SIZE] =
538 {
539 0x0b, 0x78, 0x00, 0x02, 0x00, 0x24, /* [MMI] addl r15=0,r1;; */
540 0x00, 0x41, 0x3c, 0x70, 0x29, 0xc0, /* ld8.acq r16=[r15],8*/
541 0x01, 0x08, 0x00, 0x84, /* mov r14=r1;; */
542 0x11, 0x08, 0x00, 0x1e, 0x18, 0x10, /* [MIB] ld8 r1=[r15] */
543 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
544 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
545 };
546
547 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
548
549 static const bfd_byte oor_brl[16] =
550 {
551 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
552 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* brl.sptk.few tgt;; */
553 0x00, 0x00, 0x00, 0xc0
554 };
555
556 static const bfd_byte oor_ip[48] =
557 {
558 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
559 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, /* movl r15=0 */
560 0x01, 0x00, 0x00, 0x60,
561 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MII] nop.m 0 */
562 0x00, 0x01, 0x00, 0x60, 0x00, 0x00, /* mov r16=ip;; */
563 0xf2, 0x80, 0x00, 0x80, /* add r16=r15,r16;; */
564 0x11, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MIB] nop.m 0 */
565 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
566 0x60, 0x00, 0x80, 0x00 /* br b6;; */
567 };
568
569 static size_t oor_branch_size = sizeof (oor_brl);
570
571 void
572 bfd_elfNN_ia64_after_parse (int itanium)
573 {
574 oor_branch_size = itanium ? sizeof (oor_ip) : sizeof (oor_brl);
575 }
576
577 #define BTYPE_SHIFT 6
578 #define Y_SHIFT 26
579 #define X6_SHIFT 27
580 #define X4_SHIFT 27
581 #define X3_SHIFT 33
582 #define X2_SHIFT 31
583 #define X_SHIFT 33
584 #define OPCODE_SHIFT 37
585
586 #define OPCODE_BITS (0xfLL << OPCODE_SHIFT)
587 #define X6_BITS (0x3fLL << X6_SHIFT)
588 #define X4_BITS (0xfLL << X4_SHIFT)
589 #define X3_BITS (0x7LL << X3_SHIFT)
590 #define X2_BITS (0x3LL << X2_SHIFT)
591 #define X_BITS (0x1LL << X_SHIFT)
592 #define Y_BITS (0x1LL << Y_SHIFT)
593 #define BTYPE_BITS (0x7LL << BTYPE_SHIFT)
594 #define PREDICATE_BITS (0x3fLL)
595
596 #define IS_NOP_B(i) \
597 (((i) & (OPCODE_BITS | X6_BITS)) == (2LL << OPCODE_SHIFT))
598 #define IS_NOP_F(i) \
599 (((i) & (OPCODE_BITS | X_BITS | X6_BITS | Y_BITS)) \
600 == (0x1LL << X6_SHIFT))
601 #define IS_NOP_I(i) \
602 (((i) & (OPCODE_BITS | X3_BITS | X6_BITS | Y_BITS)) \
603 == (0x1LL << X6_SHIFT))
604 #define IS_NOP_M(i) \
605 (((i) & (OPCODE_BITS | X3_BITS | X2_BITS | X4_BITS | Y_BITS)) \
606 == (0x1LL << X4_SHIFT))
607 #define IS_BR_COND(i) \
608 (((i) & (OPCODE_BITS | BTYPE_BITS)) == (0x4LL << OPCODE_SHIFT))
609 #define IS_BR_CALL(i) \
610 (((i) & OPCODE_BITS) == (0x5LL << OPCODE_SHIFT))
611
612 static bfd_boolean
613 elfNN_ia64_relax_br (bfd_byte *contents, bfd_vma off)
614 {
615 unsigned int template, mlx;
616 bfd_vma t0, t1, s0, s1, s2, br_code;
617 long br_slot;
618 bfd_byte *hit_addr;
619
620 hit_addr = (bfd_byte *) (contents + off);
621 br_slot = (long) hit_addr & 0x3;
622 hit_addr -= br_slot;
623 t0 = bfd_getl64 (hit_addr + 0);
624 t1 = bfd_getl64 (hit_addr + 8);
625
626 /* Check if we can turn br into brl. A label is always at the start
627 of the bundle. Even if there are predicates on NOPs, we still
628 perform this optimization. */
629 template = t0 & 0x1e;
630 s0 = (t0 >> 5) & 0x1ffffffffffLL;
631 s1 = ((t0 >> 46) | (t1 << 18)) & 0x1ffffffffffLL;
632 s2 = (t1 >> 23) & 0x1ffffffffffLL;
633 switch (br_slot)
634 {
635 case 0:
636 /* Check if slot 1 and slot 2 are NOPs. Possible template is
637 BBB. We only need to check nop.b. */
638 if (!(IS_NOP_B (s1) && IS_NOP_B (s2)))
639 return FALSE;
640 br_code = s0;
641 break;
642 case 1:
643 /* Check if slot 2 is NOP. Possible templates are MBB and BBB.
644 For BBB, slot 0 also has to be nop.b. */
645 if (!((template == 0x12 /* MBB */
646 && IS_NOP_B (s2))
647 || (template == 0x16 /* BBB */
648 && IS_NOP_B (s0)
649 && IS_NOP_B (s2))))
650 return FALSE;
651 br_code = s1;
652 break;
653 case 2:
654 /* Check if slot 1 is NOP. Possible templates are MIB, MBB, BBB,
655 MMB and MFB. For BBB, slot 0 also has to be nop.b. */
656 if (!((template == 0x10 /* MIB */
657 && IS_NOP_I (s1))
658 || (template == 0x12 /* MBB */
659 && IS_NOP_B (s1))
660 || (template == 0x16 /* BBB */
661 && IS_NOP_B (s0)
662 && IS_NOP_B (s1))
663 || (template == 0x18 /* MMB */
664 && IS_NOP_M (s1))
665 || (template == 0x1c /* MFB */
666 && IS_NOP_F (s1))))
667 return FALSE;
668 br_code = s2;
669 break;
670 default:
671 /* It should never happen. */
672 abort ();
673 }
674
675 /* We can turn br.cond/br.call into brl.cond/brl.call. */
676 if (!(IS_BR_COND (br_code) || IS_BR_CALL (br_code)))
677 return FALSE;
678
679 /* Turn br into brl by setting bit 40. */
680 br_code |= 0x1LL << 40;
681
682 /* Turn the old bundle into a MLX bundle with the same stop-bit
683 variety. */
684 if (t0 & 0x1)
685 mlx = 0x5;
686 else
687 mlx = 0x4;
688
689 if (template == 0x16)
690 {
691 /* For BBB, we need to put nop.m in slot 0. We keep the original
692 predicate only if slot 0 isn't br. */
693 if (br_slot == 0)
694 t0 = 0LL;
695 else
696 t0 &= PREDICATE_BITS << 5;
697 t0 |= 0x1LL << (X4_SHIFT + 5);
698 }
699 else
700 {
701 /* Keep the original instruction in slot 0. */
702 t0 &= 0x1ffffffffffLL << 5;
703 }
704
705 t0 |= mlx;
706
707 /* Put brl in slot 1. */
708 t1 = br_code << 23;
709
710 bfd_putl64 (t0, hit_addr);
711 bfd_putl64 (t1, hit_addr + 8);
712 return TRUE;
713 }
714
715 static void
716 elfNN_ia64_relax_brl (bfd_byte *contents, bfd_vma off)
717 {
718 int template;
719 bfd_byte *hit_addr;
720 bfd_vma t0, t1, i0, i1, i2;
721
722 hit_addr = (bfd_byte *) (contents + off);
723 hit_addr -= (long) hit_addr & 0x3;
724 t0 = bfd_getl64 (hit_addr);
725 t1 = bfd_getl64 (hit_addr + 8);
726
727 /* Keep the instruction in slot 0. */
728 i0 = (t0 >> 5) & 0x1ffffffffffLL;
729 /* Use nop.b for slot 1. */
730 i1 = 0x4000000000LL;
731 /* For slot 2, turn brl into br by masking out bit 40. */
732 i2 = (t1 >> 23) & 0x0ffffffffffLL;
733
734 /* Turn a MLX bundle into a MBB bundle with the same stop-bit
735 variety. */
736 if (t0 & 0x1)
737 template = 0x13;
738 else
739 template = 0x12;
740 t0 = (i1 << 46) | (i0 << 5) | template;
741 t1 = (i2 << 23) | (i1 >> 18);
742
743 bfd_putl64 (t0, hit_addr);
744 bfd_putl64 (t1, hit_addr + 8);
745 }
746
747 /* Rename some of the generic section flags to better document how they
748 are used here. */
749 #define skip_relax_pass_0 need_finalize_relax
750 #define skip_relax_pass_1 has_gp_reloc
751
752 \f
753 /* These functions do relaxation for IA-64 ELF. */
754
755 static bfd_boolean
756 elfNN_ia64_relax_section (bfd *abfd, asection *sec,
757 struct bfd_link_info *link_info,
758 bfd_boolean *again)
759 {
760 struct one_fixup
761 {
762 struct one_fixup *next;
763 asection *tsec;
764 bfd_vma toff;
765 bfd_vma trampoff;
766 };
767
768 Elf_Internal_Shdr *symtab_hdr;
769 Elf_Internal_Rela *internal_relocs;
770 Elf_Internal_Rela *irel, *irelend;
771 bfd_byte *contents;
772 Elf_Internal_Sym *isymbuf = NULL;
773 struct elfNN_ia64_link_hash_table *ia64_info;
774 struct one_fixup *fixups = NULL;
775 bfd_boolean changed_contents = FALSE;
776 bfd_boolean changed_relocs = FALSE;
777 bfd_boolean changed_got = FALSE;
778 bfd_boolean skip_relax_pass_0 = TRUE;
779 bfd_boolean skip_relax_pass_1 = TRUE;
780 bfd_vma gp = 0;
781
782 /* Assume we're not going to change any sizes, and we'll only need
783 one pass. */
784 *again = FALSE;
785
786 if (link_info->relocatable)
787 (*link_info->callbacks->einfo)
788 (_("%P%F: --relax and -r may not be used together\n"));
789
790 /* Don't even try to relax for non-ELF outputs. */
791 if (!is_elf_hash_table (link_info->hash))
792 return FALSE;
793
794 /* Nothing to do if there are no relocations or there is no need for
795 the current pass. */
796 if ((sec->flags & SEC_RELOC) == 0
797 || sec->reloc_count == 0
798 || (link_info->relax_pass == 0 && sec->skip_relax_pass_0)
799 || (link_info->relax_pass == 1 && sec->skip_relax_pass_1))
800 return TRUE;
801
802 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
803
804 /* Load the relocations for this section. */
805 internal_relocs = (_bfd_elf_link_read_relocs
806 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
807 link_info->keep_memory));
808 if (internal_relocs == NULL)
809 return FALSE;
810
811 ia64_info = elfNN_ia64_hash_table (link_info);
812 irelend = internal_relocs + sec->reloc_count;
813
814 /* Get the section contents. */
815 if (elf_section_data (sec)->this_hdr.contents != NULL)
816 contents = elf_section_data (sec)->this_hdr.contents;
817 else
818 {
819 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
820 goto error_return;
821 }
822
823 for (irel = internal_relocs; irel < irelend; irel++)
824 {
825 unsigned long r_type = ELFNN_R_TYPE (irel->r_info);
826 bfd_vma symaddr, reladdr, trampoff, toff, roff;
827 asection *tsec;
828 struct one_fixup *f;
829 bfd_size_type amt;
830 bfd_boolean is_branch;
831 struct elfNN_ia64_dyn_sym_info *dyn_i;
832 char symtype;
833
834 switch (r_type)
835 {
836 case R_IA64_PCREL21B:
837 case R_IA64_PCREL21BI:
838 case R_IA64_PCREL21M:
839 case R_IA64_PCREL21F:
840 /* In pass 1, all br relaxations are done. We can skip it. */
841 if (link_info->relax_pass == 1)
842 continue;
843 skip_relax_pass_0 = FALSE;
844 is_branch = TRUE;
845 break;
846
847 case R_IA64_PCREL60B:
848 /* We can't optimize brl to br in pass 0 since br relaxations
849 will increase the code size. Defer it to pass 1. */
850 if (link_info->relax_pass == 0)
851 {
852 skip_relax_pass_1 = FALSE;
853 continue;
854 }
855 is_branch = TRUE;
856 break;
857
858 case R_IA64_LTOFF22X:
859 case R_IA64_LDXMOV:
860 /* We can't relax ldx/mov in pass 0 since br relaxations will
861 increase the code size. Defer it to pass 1. */
862 if (link_info->relax_pass == 0)
863 {
864 skip_relax_pass_1 = FALSE;
865 continue;
866 }
867 is_branch = FALSE;
868 break;
869
870 default:
871 continue;
872 }
873
874 /* Get the value of the symbol referred to by the reloc. */
875 if (ELFNN_R_SYM (irel->r_info) < symtab_hdr->sh_info)
876 {
877 /* A local symbol. */
878 Elf_Internal_Sym *isym;
879
880 /* Read this BFD's local symbols. */
881 if (isymbuf == NULL)
882 {
883 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
884 if (isymbuf == NULL)
885 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
886 symtab_hdr->sh_info, 0,
887 NULL, NULL, NULL);
888 if (isymbuf == 0)
889 goto error_return;
890 }
891
892 isym = isymbuf + ELFNN_R_SYM (irel->r_info);
893 if (isym->st_shndx == SHN_UNDEF)
894 continue; /* We can't do anything with undefined symbols. */
895 else if (isym->st_shndx == SHN_ABS)
896 tsec = bfd_abs_section_ptr;
897 else if (isym->st_shndx == SHN_COMMON)
898 tsec = bfd_com_section_ptr;
899 else if (isym->st_shndx == SHN_IA_64_ANSI_COMMON)
900 tsec = bfd_com_section_ptr;
901 else
902 tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
903
904 toff = isym->st_value;
905 dyn_i = get_dyn_sym_info (ia64_info, NULL, abfd, irel, FALSE);
906 symtype = ELF_ST_TYPE (isym->st_info);
907 }
908 else
909 {
910 unsigned long indx;
911 struct elf_link_hash_entry *h;
912
913 indx = ELFNN_R_SYM (irel->r_info) - symtab_hdr->sh_info;
914 h = elf_sym_hashes (abfd)[indx];
915 BFD_ASSERT (h != NULL);
916
917 while (h->root.type == bfd_link_hash_indirect
918 || h->root.type == bfd_link_hash_warning)
919 h = (struct elf_link_hash_entry *) h->root.u.i.link;
920
921 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, irel, FALSE);
922
923 /* For branches to dynamic symbols, we're interested instead
924 in a branch to the PLT entry. */
925 if (is_branch && dyn_i && dyn_i->want_plt2)
926 {
927 /* Internal branches shouldn't be sent to the PLT.
928 Leave this for now and we'll give an error later. */
929 if (r_type != R_IA64_PCREL21B)
930 continue;
931
932 tsec = ia64_info->root.splt;
933 toff = dyn_i->plt2_offset;
934 BFD_ASSERT (irel->r_addend == 0);
935 }
936
937 /* Can't do anything else with dynamic symbols. */
938 else if (elfNN_ia64_dynamic_symbol_p (h, link_info, r_type))
939 continue;
940
941 else
942 {
943 /* We can't do anything with undefined symbols. */
944 if (h->root.type == bfd_link_hash_undefined
945 || h->root.type == bfd_link_hash_undefweak)
946 continue;
947
948 tsec = h->root.u.def.section;
949 toff = h->root.u.def.value;
950 }
951
952 symtype = h->type;
953 }
954
955 if (tsec->sec_info_type == ELF_INFO_TYPE_MERGE)
956 {
957 /* At this stage in linking, no SEC_MERGE symbol has been
958 adjusted, so all references to such symbols need to be
959 passed through _bfd_merged_section_offset. (Later, in
960 relocate_section, all SEC_MERGE symbols *except* for
961 section symbols have been adjusted.)
962
963 gas may reduce relocations against symbols in SEC_MERGE
964 sections to a relocation against the section symbol when
965 the original addend was zero. When the reloc is against
966 a section symbol we should include the addend in the
967 offset passed to _bfd_merged_section_offset, since the
968 location of interest is the original symbol. On the
969 other hand, an access to "sym+addend" where "sym" is not
970 a section symbol should not include the addend; Such an
971 access is presumed to be an offset from "sym"; The
972 location of interest is just "sym". */
973 if (symtype == STT_SECTION)
974 toff += irel->r_addend;
975
976 toff = _bfd_merged_section_offset (abfd, &tsec,
977 elf_section_data (tsec)->sec_info,
978 toff);
979
980 if (symtype != STT_SECTION)
981 toff += irel->r_addend;
982 }
983 else
984 toff += irel->r_addend;
985
986 symaddr = tsec->output_section->vma + tsec->output_offset + toff;
987
988 roff = irel->r_offset;
989
990 if (is_branch)
991 {
992 bfd_signed_vma offset;
993
994 reladdr = (sec->output_section->vma
995 + sec->output_offset
996 + roff) & (bfd_vma) -4;
997
998 /* The .plt section is aligned at 32byte and the .text section
999 is aligned at 64byte. The .text section is right after the
1000 .plt section. After the first relaxation pass, linker may
1001 increase the gap between the .plt and .text sections up
1002 to 32byte. We assume linker will always insert 32byte
1003 between the .plt and .text sections after the the first
1004 relaxation pass. */
1005 if (tsec == ia64_info->root.splt)
1006 offset = -0x1000000 + 32;
1007 else
1008 offset = -0x1000000;
1009
1010 /* If the branch is in range, no need to do anything. */
1011 if ((bfd_signed_vma) (symaddr - reladdr) >= offset
1012 && (bfd_signed_vma) (symaddr - reladdr) <= 0x0FFFFF0)
1013 {
1014 /* If the 60-bit branch is in 21-bit range, optimize it. */
1015 if (r_type == R_IA64_PCREL60B)
1016 {
1017 elfNN_ia64_relax_brl (contents, roff);
1018
1019 irel->r_info
1020 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1021 R_IA64_PCREL21B);
1022
1023 /* If the original relocation offset points to slot
1024 1, change it to slot 2. */
1025 if ((irel->r_offset & 3) == 1)
1026 irel->r_offset += 1;
1027 }
1028
1029 continue;
1030 }
1031 else if (r_type == R_IA64_PCREL60B)
1032 continue;
1033 else if (elfNN_ia64_relax_br (contents, roff))
1034 {
1035 irel->r_info
1036 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1037 R_IA64_PCREL60B);
1038
1039 /* Make the relocation offset point to slot 1. */
1040 irel->r_offset = (irel->r_offset & ~((bfd_vma) 0x3)) + 1;
1041 continue;
1042 }
1043
1044 /* We can't put a trampoline in a .init/.fini section. Issue
1045 an error. */
1046 if (strcmp (sec->output_section->name, ".init") == 0
1047 || strcmp (sec->output_section->name, ".fini") == 0)
1048 {
1049 (*_bfd_error_handler)
1050 (_("%B: Can't relax br at 0x%lx in section `%A'. Please use brl or indirect branch."),
1051 sec->owner, sec, (unsigned long) roff);
1052 bfd_set_error (bfd_error_bad_value);
1053 goto error_return;
1054 }
1055
1056 /* If the branch and target are in the same section, you've
1057 got one honking big section and we can't help you unless
1058 you are branching backwards. You'll get an error message
1059 later. */
1060 if (tsec == sec && toff > roff)
1061 continue;
1062
1063 /* Look for an existing fixup to this address. */
1064 for (f = fixups; f ; f = f->next)
1065 if (f->tsec == tsec && f->toff == toff)
1066 break;
1067
1068 if (f == NULL)
1069 {
1070 /* Two alternatives: If it's a branch to a PLT entry, we can
1071 make a copy of the FULL_PLT entry. Otherwise, we'll have
1072 to use a `brl' insn to get where we're going. */
1073
1074 size_t size;
1075
1076 if (tsec == ia64_info->root.splt)
1077 size = sizeof (plt_full_entry);
1078 else
1079 size = oor_branch_size;
1080
1081 /* Resize the current section to make room for the new branch. */
1082 trampoff = (sec->size + 15) & (bfd_vma) -16;
1083
1084 /* If trampoline is out of range, there is nothing we
1085 can do. */
1086 offset = trampoff - (roff & (bfd_vma) -4);
1087 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1088 continue;
1089
1090 amt = trampoff + size;
1091 contents = (bfd_byte *) bfd_realloc (contents, amt);
1092 if (contents == NULL)
1093 goto error_return;
1094 sec->size = amt;
1095
1096 if (tsec == ia64_info->root.splt)
1097 {
1098 memcpy (contents + trampoff, plt_full_entry, size);
1099
1100 /* Hijack the old relocation for use as the PLTOFF reloc. */
1101 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1102 R_IA64_PLTOFF22);
1103 irel->r_offset = trampoff;
1104 }
1105 else
1106 {
1107 if (size == sizeof (oor_ip))
1108 {
1109 memcpy (contents + trampoff, oor_ip, size);
1110 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1111 R_IA64_PCREL64I);
1112 irel->r_addend -= 16;
1113 irel->r_offset = trampoff + 2;
1114 }
1115 else
1116 {
1117 memcpy (contents + trampoff, oor_brl, size);
1118 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1119 R_IA64_PCREL60B);
1120 irel->r_offset = trampoff + 2;
1121 }
1122
1123 }
1124
1125 /* Record the fixup so we don't do it again this section. */
1126 f = (struct one_fixup *)
1127 bfd_malloc ((bfd_size_type) sizeof (*f));
1128 f->next = fixups;
1129 f->tsec = tsec;
1130 f->toff = toff;
1131 f->trampoff = trampoff;
1132 fixups = f;
1133 }
1134 else
1135 {
1136 /* If trampoline is out of range, there is nothing we
1137 can do. */
1138 offset = f->trampoff - (roff & (bfd_vma) -4);
1139 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1140 continue;
1141
1142 /* Nop out the reloc, since we're finalizing things here. */
1143 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1144 }
1145
1146 /* Fix up the existing branch to hit the trampoline. */
1147 if (elfNN_ia64_install_value (contents + roff, offset, r_type)
1148 != bfd_reloc_ok)
1149 goto error_return;
1150
1151 changed_contents = TRUE;
1152 changed_relocs = TRUE;
1153 }
1154 else
1155 {
1156 /* Fetch the gp. */
1157 if (gp == 0)
1158 {
1159 bfd *obfd = sec->output_section->owner;
1160 gp = _bfd_get_gp_value (obfd);
1161 if (gp == 0)
1162 {
1163 if (!elfNN_ia64_choose_gp (obfd, link_info))
1164 goto error_return;
1165 gp = _bfd_get_gp_value (obfd);
1166 }
1167 }
1168
1169 /* If the data is out of range, do nothing. */
1170 if ((bfd_signed_vma) (symaddr - gp) >= 0x200000
1171 ||(bfd_signed_vma) (symaddr - gp) < -0x200000)
1172 continue;
1173
1174 if (r_type == R_IA64_LTOFF22X)
1175 {
1176 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1177 R_IA64_GPREL22);
1178 changed_relocs = TRUE;
1179 if (dyn_i->want_gotx)
1180 {
1181 dyn_i->want_gotx = 0;
1182 changed_got |= !dyn_i->want_got;
1183 }
1184 }
1185 else
1186 {
1187 elfNN_ia64_relax_ldxmov (contents, roff);
1188 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1189 changed_contents = TRUE;
1190 changed_relocs = TRUE;
1191 }
1192 }
1193 }
1194
1195 /* ??? If we created fixups, this may push the code segment large
1196 enough that the data segment moves, which will change the GP.
1197 Reset the GP so that we re-calculate next round. We need to
1198 do this at the _beginning_ of the next round; now will not do. */
1199
1200 /* Clean up and go home. */
1201 while (fixups)
1202 {
1203 struct one_fixup *f = fixups;
1204 fixups = fixups->next;
1205 free (f);
1206 }
1207
1208 if (isymbuf != NULL
1209 && symtab_hdr->contents != (unsigned char *) isymbuf)
1210 {
1211 if (! link_info->keep_memory)
1212 free (isymbuf);
1213 else
1214 {
1215 /* Cache the symbols for elf_link_input_bfd. */
1216 symtab_hdr->contents = (unsigned char *) isymbuf;
1217 }
1218 }
1219
1220 if (contents != NULL
1221 && elf_section_data (sec)->this_hdr.contents != contents)
1222 {
1223 if (!changed_contents && !link_info->keep_memory)
1224 free (contents);
1225 else
1226 {
1227 /* Cache the section contents for elf_link_input_bfd. */
1228 elf_section_data (sec)->this_hdr.contents = contents;
1229 }
1230 }
1231
1232 if (elf_section_data (sec)->relocs != internal_relocs)
1233 {
1234 if (!changed_relocs)
1235 free (internal_relocs);
1236 else
1237 elf_section_data (sec)->relocs = internal_relocs;
1238 }
1239
1240 if (changed_got)
1241 {
1242 struct elfNN_ia64_allocate_data data;
1243 data.info = link_info;
1244 data.ofs = 0;
1245 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
1246
1247 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
1248 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
1249 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
1250 ia64_info->root.sgot->size = data.ofs;
1251
1252 if (ia64_info->root.dynamic_sections_created
1253 && ia64_info->root.srelgot != NULL)
1254 {
1255 /* Resize .rela.got. */
1256 ia64_info->root.srelgot->size = 0;
1257 if (link_info->shared
1258 && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
1259 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela);
1260 data.only_got = TRUE;
1261 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries,
1262 &data);
1263 }
1264 }
1265
1266 if (link_info->relax_pass == 0)
1267 {
1268 /* Pass 0 is only needed to relax br. */
1269 sec->skip_relax_pass_0 = skip_relax_pass_0;
1270 sec->skip_relax_pass_1 = skip_relax_pass_1;
1271 }
1272
1273 *again = changed_contents || changed_relocs;
1274 return TRUE;
1275
1276 error_return:
1277 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
1278 free (isymbuf);
1279 if (contents != NULL
1280 && elf_section_data (sec)->this_hdr.contents != contents)
1281 free (contents);
1282 if (internal_relocs != NULL
1283 && elf_section_data (sec)->relocs != internal_relocs)
1284 free (internal_relocs);
1285 return FALSE;
1286 }
1287 #undef skip_relax_pass_0
1288 #undef skip_relax_pass_1
1289
1290 static void
1291 elfNN_ia64_relax_ldxmov (bfd_byte *contents, bfd_vma off)
1292 {
1293 int shift, r1, r3;
1294 bfd_vma dword, insn;
1295
1296 switch ((int)off & 0x3)
1297 {
1298 case 0: shift = 5; break;
1299 case 1: shift = 14; off += 3; break;
1300 case 2: shift = 23; off += 6; break;
1301 default:
1302 abort ();
1303 }
1304
1305 dword = bfd_getl64 (contents + off);
1306 insn = (dword >> shift) & 0x1ffffffffffLL;
1307
1308 r1 = (insn >> 6) & 127;
1309 r3 = (insn >> 20) & 127;
1310 if (r1 == r3)
1311 insn = 0x8000000; /* nop */
1312 else
1313 insn = (insn & 0x7f01fff) | 0x10800000000LL; /* (qp) mov r1 = r3 */
1314
1315 dword &= ~(0x1ffffffffffLL << shift);
1316 dword |= (insn << shift);
1317 bfd_putl64 (dword, contents + off);
1318 }
1319 \f
1320 /* Return TRUE if NAME is an unwind table section name. */
1321
1322 static inline bfd_boolean
1323 is_unwind_section_name (bfd *abfd, const char *name)
1324 {
1325 if (elfNN_ia64_hpux_vec (abfd->xvec)
1326 && !strcmp (name, ELF_STRING_ia64_unwind_hdr))
1327 return FALSE;
1328
1329 return ((CONST_STRNEQ (name, ELF_STRING_ia64_unwind)
1330 && ! CONST_STRNEQ (name, ELF_STRING_ia64_unwind_info))
1331 || CONST_STRNEQ (name, ELF_STRING_ia64_unwind_once));
1332 }
1333
1334 /* Handle an IA-64 specific section when reading an object file. This
1335 is called when bfd_section_from_shdr finds a section with an unknown
1336 type. */
1337
1338 static bfd_boolean
1339 elfNN_ia64_section_from_shdr (bfd *abfd,
1340 Elf_Internal_Shdr *hdr,
1341 const char *name,
1342 int shindex)
1343 {
1344 asection *newsect;
1345
1346 /* There ought to be a place to keep ELF backend specific flags, but
1347 at the moment there isn't one. We just keep track of the
1348 sections by their name, instead. Fortunately, the ABI gives
1349 suggested names for all the MIPS specific sections, so we will
1350 probably get away with this. */
1351 switch (hdr->sh_type)
1352 {
1353 case SHT_IA_64_UNWIND:
1354 case SHT_IA_64_HP_OPT_ANOT:
1355 break;
1356
1357 case SHT_IA_64_EXT:
1358 if (strcmp (name, ELF_STRING_ia64_archext) != 0)
1359 return FALSE;
1360 break;
1361
1362 default:
1363 return FALSE;
1364 }
1365
1366 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1367 return FALSE;
1368 newsect = hdr->bfd_section;
1369
1370 return TRUE;
1371 }
1372
1373 /* Convert IA-64 specific section flags to bfd internal section flags. */
1374
1375 /* ??? There is no bfd internal flag equivalent to the SHF_IA_64_NORECOV
1376 flag. */
1377
1378 static bfd_boolean
1379 elfNN_ia64_section_flags (flagword *flags,
1380 const Elf_Internal_Shdr *hdr)
1381 {
1382 if (hdr->sh_flags & SHF_IA_64_SHORT)
1383 *flags |= SEC_SMALL_DATA;
1384
1385 return TRUE;
1386 }
1387
1388 /* Set the correct type for an IA-64 ELF section. We do this by the
1389 section name, which is a hack, but ought to work. */
1390
1391 static bfd_boolean
1392 elfNN_ia64_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr,
1393 asection *sec)
1394 {
1395 register const char *name;
1396
1397 name = bfd_get_section_name (abfd, sec);
1398
1399 if (is_unwind_section_name (abfd, name))
1400 {
1401 /* We don't have the sections numbered at this point, so sh_info
1402 is set later, in elfNN_ia64_final_write_processing. */
1403 hdr->sh_type = SHT_IA_64_UNWIND;
1404 hdr->sh_flags |= SHF_LINK_ORDER;
1405 }
1406 else if (strcmp (name, ELF_STRING_ia64_archext) == 0)
1407 hdr->sh_type = SHT_IA_64_EXT;
1408 else if (strcmp (name, ".HP.opt_annot") == 0)
1409 hdr->sh_type = SHT_IA_64_HP_OPT_ANOT;
1410 else if (strcmp (name, ".reloc") == 0)
1411 /* This is an ugly, but unfortunately necessary hack that is
1412 needed when producing EFI binaries on IA-64. It tells
1413 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1414 containing ELF relocation info. We need this hack in order to
1415 be able to generate ELF binaries that can be translated into
1416 EFI applications (which are essentially COFF objects). Those
1417 files contain a COFF ".reloc" section inside an ELFNN object,
1418 which would normally cause BFD to segfault because it would
1419 attempt to interpret this section as containing relocation
1420 entries for section "oc". With this hack enabled, ".reloc"
1421 will be treated as a normal data section, which will avoid the
1422 segfault. However, you won't be able to create an ELFNN binary
1423 with a section named "oc" that needs relocations, but that's
1424 the kind of ugly side-effects you get when detecting section
1425 types based on their names... In practice, this limitation is
1426 unlikely to bite. */
1427 hdr->sh_type = SHT_PROGBITS;
1428
1429 if (sec->flags & SEC_SMALL_DATA)
1430 hdr->sh_flags |= SHF_IA_64_SHORT;
1431
1432 /* Some HP linkers look for the SHF_IA_64_HP_TLS flag instead of SHF_TLS. */
1433
1434 if (elfNN_ia64_hpux_vec (abfd->xvec) && (sec->flags & SHF_TLS))
1435 hdr->sh_flags |= SHF_IA_64_HP_TLS;
1436
1437 return TRUE;
1438 }
1439
1440 /* The final processing done just before writing out an IA-64 ELF
1441 object file. */
1442
1443 static void
1444 elfNN_ia64_final_write_processing (bfd *abfd,
1445 bfd_boolean linker ATTRIBUTE_UNUSED)
1446 {
1447 Elf_Internal_Shdr *hdr;
1448 asection *s;
1449
1450 for (s = abfd->sections; s; s = s->next)
1451 {
1452 hdr = &elf_section_data (s)->this_hdr;
1453 switch (hdr->sh_type)
1454 {
1455 case SHT_IA_64_UNWIND:
1456 /* The IA-64 processor-specific ABI requires setting sh_link
1457 to the unwind section, whereas HP-UX requires sh_info to
1458 do so. For maximum compatibility, we'll set both for
1459 now... */
1460 hdr->sh_info = hdr->sh_link;
1461 break;
1462 }
1463 }
1464
1465 if (! elf_flags_init (abfd))
1466 {
1467 unsigned long flags = 0;
1468
1469 if (abfd->xvec->byteorder == BFD_ENDIAN_BIG)
1470 flags |= EF_IA_64_BE;
1471 if (bfd_get_mach (abfd) == bfd_mach_ia64_elf64)
1472 flags |= EF_IA_64_ABI64;
1473
1474 elf_elfheader(abfd)->e_flags = flags;
1475 elf_flags_init (abfd) = TRUE;
1476 }
1477 }
1478
1479 /* Hook called by the linker routine which adds symbols from an object
1480 file. We use it to put .comm items in .sbss, and not .bss. */
1481
1482 static bfd_boolean
1483 elfNN_ia64_add_symbol_hook (bfd *abfd,
1484 struct bfd_link_info *info,
1485 Elf_Internal_Sym *sym,
1486 const char **namep ATTRIBUTE_UNUSED,
1487 flagword *flagsp ATTRIBUTE_UNUSED,
1488 asection **secp,
1489 bfd_vma *valp)
1490 {
1491 if (sym->st_shndx == SHN_COMMON
1492 && !info->relocatable
1493 && sym->st_size <= elf_gp_size (abfd))
1494 {
1495 /* Common symbols less than or equal to -G nn bytes are
1496 automatically put into .sbss. */
1497
1498 asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
1499
1500 if (scomm == NULL)
1501 {
1502 scomm = bfd_make_section_with_flags (abfd, ".scommon",
1503 (SEC_ALLOC
1504 | SEC_IS_COMMON
1505 | SEC_LINKER_CREATED));
1506 if (scomm == NULL)
1507 return FALSE;
1508 }
1509
1510 *secp = scomm;
1511 *valp = sym->st_size;
1512 }
1513
1514 return TRUE;
1515 }
1516
1517 /* Return the number of additional phdrs we will need. */
1518
1519 static int
1520 elfNN_ia64_additional_program_headers (bfd *abfd,
1521 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1522 {
1523 asection *s;
1524 int ret = 0;
1525
1526 /* See if we need a PT_IA_64_ARCHEXT segment. */
1527 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1528 if (s && (s->flags & SEC_LOAD))
1529 ++ret;
1530
1531 /* Count how many PT_IA_64_UNWIND segments we need. */
1532 for (s = abfd->sections; s; s = s->next)
1533 if (is_unwind_section_name (abfd, s->name) && (s->flags & SEC_LOAD))
1534 ++ret;
1535
1536 return ret;
1537 }
1538
1539 static bfd_boolean
1540 elfNN_ia64_modify_segment_map (bfd *abfd,
1541 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1542 {
1543 struct elf_segment_map *m, **pm;
1544 Elf_Internal_Shdr *hdr;
1545 asection *s;
1546
1547 /* If we need a PT_IA_64_ARCHEXT segment, it must come before
1548 all PT_LOAD segments. */
1549 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1550 if (s && (s->flags & SEC_LOAD))
1551 {
1552 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1553 if (m->p_type == PT_IA_64_ARCHEXT)
1554 break;
1555 if (m == NULL)
1556 {
1557 m = ((struct elf_segment_map *)
1558 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1559 if (m == NULL)
1560 return FALSE;
1561
1562 m->p_type = PT_IA_64_ARCHEXT;
1563 m->count = 1;
1564 m->sections[0] = s;
1565
1566 /* We want to put it after the PHDR and INTERP segments. */
1567 pm = &elf_tdata (abfd)->segment_map;
1568 while (*pm != NULL
1569 && ((*pm)->p_type == PT_PHDR
1570 || (*pm)->p_type == PT_INTERP))
1571 pm = &(*pm)->next;
1572
1573 m->next = *pm;
1574 *pm = m;
1575 }
1576 }
1577
1578 /* Install PT_IA_64_UNWIND segments, if needed. */
1579 for (s = abfd->sections; s; s = s->next)
1580 {
1581 hdr = &elf_section_data (s)->this_hdr;
1582 if (hdr->sh_type != SHT_IA_64_UNWIND)
1583 continue;
1584
1585 if (s && (s->flags & SEC_LOAD))
1586 {
1587 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1588 if (m->p_type == PT_IA_64_UNWIND)
1589 {
1590 int i;
1591
1592 /* Look through all sections in the unwind segment
1593 for a match since there may be multiple sections
1594 to a segment. */
1595 for (i = m->count - 1; i >= 0; --i)
1596 if (m->sections[i] == s)
1597 break;
1598
1599 if (i >= 0)
1600 break;
1601 }
1602
1603 if (m == NULL)
1604 {
1605 m = ((struct elf_segment_map *)
1606 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1607 if (m == NULL)
1608 return FALSE;
1609
1610 m->p_type = PT_IA_64_UNWIND;
1611 m->count = 1;
1612 m->sections[0] = s;
1613 m->next = NULL;
1614
1615 /* We want to put it last. */
1616 pm = &elf_tdata (abfd)->segment_map;
1617 while (*pm != NULL)
1618 pm = &(*pm)->next;
1619 *pm = m;
1620 }
1621 }
1622 }
1623
1624 return TRUE;
1625 }
1626
1627 /* Turn on PF_IA_64_NORECOV if needed. This involves traversing all of
1628 the input sections for each output section in the segment and testing
1629 for SHF_IA_64_NORECOV on each. */
1630
1631 static bfd_boolean
1632 elfNN_ia64_modify_program_headers (bfd *abfd,
1633 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1634 {
1635 struct elf_obj_tdata *tdata = elf_tdata (abfd);
1636 struct elf_segment_map *m;
1637 Elf_Internal_Phdr *p;
1638
1639 for (p = tdata->phdr, m = tdata->segment_map; m != NULL; m = m->next, p++)
1640 if (m->p_type == PT_LOAD)
1641 {
1642 int i;
1643 for (i = m->count - 1; i >= 0; --i)
1644 {
1645 struct bfd_link_order *order = m->sections[i]->map_head.link_order;
1646
1647 while (order != NULL)
1648 {
1649 if (order->type == bfd_indirect_link_order)
1650 {
1651 asection *is = order->u.indirect.section;
1652 bfd_vma flags = elf_section_data(is)->this_hdr.sh_flags;
1653 if (flags & SHF_IA_64_NORECOV)
1654 {
1655 p->p_flags |= PF_IA_64_NORECOV;
1656 goto found;
1657 }
1658 }
1659 order = order->next;
1660 }
1661 }
1662 found:;
1663 }
1664
1665 return TRUE;
1666 }
1667
1668 /* According to the Tahoe assembler spec, all labels starting with a
1669 '.' are local. */
1670
1671 static bfd_boolean
1672 elfNN_ia64_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
1673 const char *name)
1674 {
1675 return name[0] == '.';
1676 }
1677
1678 /* Should we do dynamic things to this symbol? */
1679
1680 static bfd_boolean
1681 elfNN_ia64_dynamic_symbol_p (struct elf_link_hash_entry *h,
1682 struct bfd_link_info *info, int r_type)
1683 {
1684 bfd_boolean ignore_protected
1685 = ((r_type & 0xf8) == 0x40 /* FPTR relocs */
1686 || (r_type & 0xf8) == 0x50); /* LTOFF_FPTR relocs */
1687
1688 return _bfd_elf_dynamic_symbol_p (h, info, ignore_protected);
1689 }
1690 \f
1691 static struct bfd_hash_entry*
1692 elfNN_ia64_new_elf_hash_entry (struct bfd_hash_entry *entry,
1693 struct bfd_hash_table *table,
1694 const char *string)
1695 {
1696 struct elfNN_ia64_link_hash_entry *ret;
1697 ret = (struct elfNN_ia64_link_hash_entry *) entry;
1698
1699 /* Allocate the structure if it has not already been allocated by a
1700 subclass. */
1701 if (!ret)
1702 ret = bfd_hash_allocate (table, sizeof (*ret));
1703
1704 if (!ret)
1705 return 0;
1706
1707 /* Call the allocation method of the superclass. */
1708 ret = ((struct elfNN_ia64_link_hash_entry *)
1709 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1710 table, string));
1711
1712 ret->info = NULL;
1713 ret->count = 0;
1714 ret->sorted_count = 0;
1715 ret->size = 0;
1716 return (struct bfd_hash_entry *) ret;
1717 }
1718
1719 static void
1720 elfNN_ia64_hash_copy_indirect (struct bfd_link_info *info,
1721 struct elf_link_hash_entry *xdir,
1722 struct elf_link_hash_entry *xind)
1723 {
1724 struct elfNN_ia64_link_hash_entry *dir, *ind;
1725
1726 dir = (struct elfNN_ia64_link_hash_entry *) xdir;
1727 ind = (struct elfNN_ia64_link_hash_entry *) xind;
1728
1729 /* Copy down any references that we may have already seen to the
1730 symbol which just became indirect. */
1731
1732 dir->root.ref_dynamic |= ind->root.ref_dynamic;
1733 dir->root.ref_regular |= ind->root.ref_regular;
1734 dir->root.ref_regular_nonweak |= ind->root.ref_regular_nonweak;
1735 dir->root.needs_plt |= ind->root.needs_plt;
1736
1737 if (ind->root.root.type != bfd_link_hash_indirect)
1738 return;
1739
1740 /* Copy over the got and plt data. This would have been done
1741 by check_relocs. */
1742
1743 if (ind->info != NULL)
1744 {
1745 struct elfNN_ia64_dyn_sym_info *dyn_i;
1746 unsigned int count;
1747
1748 if (dir->info)
1749 free (dir->info);
1750
1751 dir->info = ind->info;
1752 dir->count = ind->count;
1753 dir->sorted_count = ind->sorted_count;
1754 dir->size = ind->size;
1755
1756 ind->info = NULL;
1757 ind->count = 0;
1758 ind->sorted_count = 0;
1759 ind->size = 0;
1760
1761 /* Fix up the dyn_sym_info pointers to the global symbol. */
1762 for (count = dir->count, dyn_i = dir->info;
1763 count != 0;
1764 count--, dyn_i++)
1765 dyn_i->h = &dir->root;
1766 }
1767
1768 /* Copy over the dynindx. */
1769
1770 if (ind->root.dynindx != -1)
1771 {
1772 if (dir->root.dynindx != -1)
1773 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1774 dir->root.dynstr_index);
1775 dir->root.dynindx = ind->root.dynindx;
1776 dir->root.dynstr_index = ind->root.dynstr_index;
1777 ind->root.dynindx = -1;
1778 ind->root.dynstr_index = 0;
1779 }
1780 }
1781
1782 static void
1783 elfNN_ia64_hash_hide_symbol (struct bfd_link_info *info,
1784 struct elf_link_hash_entry *xh,
1785 bfd_boolean force_local)
1786 {
1787 struct elfNN_ia64_link_hash_entry *h;
1788 struct elfNN_ia64_dyn_sym_info *dyn_i;
1789 unsigned int count;
1790
1791 h = (struct elfNN_ia64_link_hash_entry *)xh;
1792
1793 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
1794
1795 for (count = h->count, dyn_i = h->info;
1796 count != 0;
1797 count--, dyn_i++)
1798 {
1799 dyn_i->want_plt2 = 0;
1800 dyn_i->want_plt = 0;
1801 }
1802 }
1803
1804 /* Compute a hash of a local hash entry. */
1805
1806 static hashval_t
1807 elfNN_ia64_local_htab_hash (const void *ptr)
1808 {
1809 struct elfNN_ia64_local_hash_entry *entry
1810 = (struct elfNN_ia64_local_hash_entry *) ptr;
1811
1812 return (((entry->id & 0xff) << 24) | ((entry->id & 0xff00) << 8))
1813 ^ entry->r_sym ^ (entry->id >> 16);
1814 }
1815
1816 /* Compare local hash entries. */
1817
1818 static int
1819 elfNN_ia64_local_htab_eq (const void *ptr1, const void *ptr2)
1820 {
1821 struct elfNN_ia64_local_hash_entry *entry1
1822 = (struct elfNN_ia64_local_hash_entry *) ptr1;
1823 struct elfNN_ia64_local_hash_entry *entry2
1824 = (struct elfNN_ia64_local_hash_entry *) ptr2;
1825
1826 return entry1->id == entry2->id && entry1->r_sym == entry2->r_sym;
1827 }
1828
1829 /* Create the derived linker hash table. The IA-64 ELF port uses this
1830 derived hash table to keep information specific to the IA-64 ElF
1831 linker (without using static variables). */
1832
1833 static struct bfd_link_hash_table*
1834 elfNN_ia64_hash_table_create (bfd *abfd)
1835 {
1836 struct elfNN_ia64_link_hash_table *ret;
1837
1838 ret = bfd_zmalloc ((bfd_size_type) sizeof (*ret));
1839 if (!ret)
1840 return 0;
1841
1842 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
1843 elfNN_ia64_new_elf_hash_entry,
1844 sizeof (struct elfNN_ia64_link_hash_entry)))
1845 {
1846 free (ret);
1847 return 0;
1848 }
1849
1850 ret->loc_hash_table = htab_try_create (1024, elfNN_ia64_local_htab_hash,
1851 elfNN_ia64_local_htab_eq, NULL);
1852 ret->loc_hash_memory = objalloc_create ();
1853 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1854 {
1855 free (ret);
1856 return 0;
1857 }
1858
1859 return &ret->root.root;
1860 }
1861
1862 /* Free the global elfNN_ia64_dyn_sym_info array. */
1863
1864 static bfd_boolean
1865 elfNN_ia64_global_dyn_info_free (void **xentry,
1866 PTR unused ATTRIBUTE_UNUSED)
1867 {
1868 struct elfNN_ia64_link_hash_entry *entry
1869 = (struct elfNN_ia64_link_hash_entry *) xentry;
1870
1871 if (entry->root.root.type == bfd_link_hash_warning)
1872 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
1873
1874 if (entry->info)
1875 {
1876 free (entry->info);
1877 entry->info = NULL;
1878 entry->count = 0;
1879 entry->sorted_count = 0;
1880 entry->size = 0;
1881 }
1882
1883 return TRUE;
1884 }
1885
1886 /* Free the local elfNN_ia64_dyn_sym_info array. */
1887
1888 static bfd_boolean
1889 elfNN_ia64_local_dyn_info_free (void **slot,
1890 PTR unused ATTRIBUTE_UNUSED)
1891 {
1892 struct elfNN_ia64_local_hash_entry *entry
1893 = (struct elfNN_ia64_local_hash_entry *) *slot;
1894
1895 if (entry->info)
1896 {
1897 free (entry->info);
1898 entry->info = NULL;
1899 entry->count = 0;
1900 entry->sorted_count = 0;
1901 entry->size = 0;
1902 }
1903
1904 return TRUE;
1905 }
1906
1907 /* Destroy IA-64 linker hash table. */
1908
1909 static void
1910 elfNN_ia64_hash_table_free (struct bfd_link_hash_table *hash)
1911 {
1912 struct elfNN_ia64_link_hash_table *ia64_info
1913 = (struct elfNN_ia64_link_hash_table *) hash;
1914 if (ia64_info->loc_hash_table)
1915 {
1916 htab_traverse (ia64_info->loc_hash_table,
1917 elfNN_ia64_local_dyn_info_free, NULL);
1918 htab_delete (ia64_info->loc_hash_table);
1919 }
1920 if (ia64_info->loc_hash_memory)
1921 objalloc_free ((struct objalloc *) ia64_info->loc_hash_memory);
1922 elf_link_hash_traverse (&ia64_info->root,
1923 elfNN_ia64_global_dyn_info_free, NULL);
1924 _bfd_generic_link_hash_table_free (hash);
1925 }
1926
1927 /* Traverse both local and global hash tables. */
1928
1929 struct elfNN_ia64_dyn_sym_traverse_data
1930 {
1931 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR);
1932 PTR data;
1933 };
1934
1935 static bfd_boolean
1936 elfNN_ia64_global_dyn_sym_thunk (struct bfd_hash_entry *xentry,
1937 PTR xdata)
1938 {
1939 struct elfNN_ia64_link_hash_entry *entry
1940 = (struct elfNN_ia64_link_hash_entry *) xentry;
1941 struct elfNN_ia64_dyn_sym_traverse_data *data
1942 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
1943 struct elfNN_ia64_dyn_sym_info *dyn_i;
1944 unsigned int count;
1945
1946 if (entry->root.root.type == bfd_link_hash_warning)
1947 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
1948
1949 for (count = entry->count, dyn_i = entry->info;
1950 count != 0;
1951 count--, dyn_i++)
1952 if (! (*data->func) (dyn_i, data->data))
1953 return FALSE;
1954 return TRUE;
1955 }
1956
1957 static bfd_boolean
1958 elfNN_ia64_local_dyn_sym_thunk (void **slot, PTR xdata)
1959 {
1960 struct elfNN_ia64_local_hash_entry *entry
1961 = (struct elfNN_ia64_local_hash_entry *) *slot;
1962 struct elfNN_ia64_dyn_sym_traverse_data *data
1963 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
1964 struct elfNN_ia64_dyn_sym_info *dyn_i;
1965 unsigned int count;
1966
1967 for (count = entry->count, dyn_i = entry->info;
1968 count != 0;
1969 count--, dyn_i++)
1970 if (! (*data->func) (dyn_i, data->data))
1971 return FALSE;
1972 return TRUE;
1973 }
1974
1975 static void
1976 elfNN_ia64_dyn_sym_traverse (struct elfNN_ia64_link_hash_table *ia64_info,
1977 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR),
1978 PTR data)
1979 {
1980 struct elfNN_ia64_dyn_sym_traverse_data xdata;
1981
1982 xdata.func = func;
1983 xdata.data = data;
1984
1985 elf_link_hash_traverse (&ia64_info->root,
1986 elfNN_ia64_global_dyn_sym_thunk, &xdata);
1987 htab_traverse (ia64_info->loc_hash_table,
1988 elfNN_ia64_local_dyn_sym_thunk, &xdata);
1989 }
1990 \f
1991 static bfd_boolean
1992 elfNN_ia64_create_dynamic_sections (bfd *abfd,
1993 struct bfd_link_info *info)
1994 {
1995 struct elfNN_ia64_link_hash_table *ia64_info;
1996 asection *s;
1997
1998 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1999 return FALSE;
2000
2001 ia64_info = elfNN_ia64_hash_table (info);
2002
2003 {
2004 flagword flags = bfd_get_section_flags (abfd, ia64_info->root.sgot);
2005 bfd_set_section_flags (abfd, ia64_info->root.sgot,
2006 SEC_SMALL_DATA | flags);
2007 /* The .got section is always aligned at 8 bytes. */
2008 bfd_set_section_alignment (abfd, ia64_info->root.sgot, 3);
2009 }
2010
2011 if (!get_pltoff (abfd, info, ia64_info))
2012 return FALSE;
2013
2014 s = bfd_make_section_with_flags (abfd, ".rela.IA_64.pltoff",
2015 (SEC_ALLOC | SEC_LOAD
2016 | SEC_HAS_CONTENTS
2017 | SEC_IN_MEMORY
2018 | SEC_LINKER_CREATED
2019 | SEC_READONLY));
2020 if (s == NULL
2021 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2022 return FALSE;
2023 ia64_info->rel_pltoff_sec = s;
2024
2025 return TRUE;
2026 }
2027
2028 /* Find and/or create a hash entry for local symbol. */
2029 static struct elfNN_ia64_local_hash_entry *
2030 get_local_sym_hash (struct elfNN_ia64_link_hash_table *ia64_info,
2031 bfd *abfd, const Elf_Internal_Rela *rel,
2032 bfd_boolean create)
2033 {
2034 struct elfNN_ia64_local_hash_entry e, *ret;
2035 asection *sec = abfd->sections;
2036 hashval_t h = (((sec->id & 0xff) << 24) | ((sec->id & 0xff00) << 8))
2037 ^ ELFNN_R_SYM (rel->r_info) ^ (sec->id >> 16);
2038 void **slot;
2039
2040 e.id = sec->id;
2041 e.r_sym = ELFNN_R_SYM (rel->r_info);
2042 slot = htab_find_slot_with_hash (ia64_info->loc_hash_table, &e, h,
2043 create ? INSERT : NO_INSERT);
2044
2045 if (!slot)
2046 return NULL;
2047
2048 if (*slot)
2049 return (struct elfNN_ia64_local_hash_entry *) *slot;
2050
2051 ret = (struct elfNN_ia64_local_hash_entry *)
2052 objalloc_alloc ((struct objalloc *) ia64_info->loc_hash_memory,
2053 sizeof (struct elfNN_ia64_local_hash_entry));
2054 if (ret)
2055 {
2056 memset (ret, 0, sizeof (*ret));
2057 ret->id = sec->id;
2058 ret->r_sym = ELFNN_R_SYM (rel->r_info);
2059 *slot = ret;
2060 }
2061 return ret;
2062 }
2063
2064 /* Used to sort elfNN_ia64_dyn_sym_info array. */
2065
2066 static int
2067 addend_compare (const void *xp, const void *yp)
2068 {
2069 const struct elfNN_ia64_dyn_sym_info *x
2070 = (const struct elfNN_ia64_dyn_sym_info *) xp;
2071 const struct elfNN_ia64_dyn_sym_info *y
2072 = (const struct elfNN_ia64_dyn_sym_info *) yp;
2073
2074 return x->addend < y->addend ? -1 : x->addend > y->addend ? 1 : 0;
2075 }
2076
2077 /* Sort elfNN_ia64_dyn_sym_info array and remove duplicates. */
2078
2079 static unsigned int
2080 sort_dyn_sym_info (struct elfNN_ia64_dyn_sym_info *info,
2081 unsigned int count)
2082 {
2083 bfd_vma curr, prev, got_offset;
2084 unsigned int i, kept, dup, diff, dest, src, len;
2085
2086 qsort (info, count, sizeof (*info), addend_compare);
2087
2088 /* Find the first duplicate. */
2089 prev = info [0].addend;
2090 got_offset = info [0].got_offset;
2091 for (i = 1; i < count; i++)
2092 {
2093 curr = info [i].addend;
2094 if (curr == prev)
2095 {
2096 /* For duplicates, make sure that GOT_OFFSET is valid. */
2097 if (got_offset == (bfd_vma) -1)
2098 got_offset = info [i].got_offset;
2099 break;
2100 }
2101 got_offset = info [i].got_offset;
2102 prev = curr;
2103 }
2104
2105 /* We may move a block of elements to here. */
2106 dest = i++;
2107
2108 /* Remove duplicates. */
2109 if (i < count)
2110 {
2111 while (i < count)
2112 {
2113 /* For duplicates, make sure that the kept one has a valid
2114 got_offset. */
2115 kept = dest - 1;
2116 if (got_offset != (bfd_vma) -1)
2117 info [kept].got_offset = got_offset;
2118
2119 curr = info [i].addend;
2120 got_offset = info [i].got_offset;
2121
2122 /* Move a block of elements whose first one is different from
2123 the previous. */
2124 if (curr == prev)
2125 {
2126 for (src = i + 1; src < count; src++)
2127 {
2128 if (info [src].addend != curr)
2129 break;
2130 /* For duplicates, make sure that GOT_OFFSET is
2131 valid. */
2132 if (got_offset == (bfd_vma) -1)
2133 got_offset = info [src].got_offset;
2134 }
2135
2136 /* Make sure that the kept one has a valid got_offset. */
2137 if (got_offset != (bfd_vma) -1)
2138 info [kept].got_offset = got_offset;
2139 }
2140 else
2141 src = i;
2142
2143 if (src >= count)
2144 break;
2145
2146 /* Find the next duplicate. SRC will be kept. */
2147 prev = info [src].addend;
2148 got_offset = info [src].got_offset;
2149 for (dup = src + 1; dup < count; dup++)
2150 {
2151 curr = info [dup].addend;
2152 if (curr == prev)
2153 {
2154 /* Make sure that got_offset is valid. */
2155 if (got_offset == (bfd_vma) -1)
2156 got_offset = info [dup].got_offset;
2157
2158 /* For duplicates, make sure that the kept one has
2159 a valid got_offset. */
2160 if (got_offset != (bfd_vma) -1)
2161 info [dup - 1].got_offset = got_offset;
2162 break;
2163 }
2164 got_offset = info [dup].got_offset;
2165 prev = curr;
2166 }
2167
2168 /* How much to move. */
2169 len = dup - src;
2170 i = dup + 1;
2171
2172 if (len == 1 && dup < count)
2173 {
2174 /* If we only move 1 element, we combine it with the next
2175 one. There must be at least a duplicate. Find the
2176 next different one. */
2177 for (diff = dup + 1, src++; diff < count; diff++, src++)
2178 {
2179 if (info [diff].addend != curr)
2180 break;
2181 /* Make sure that got_offset is valid. */
2182 if (got_offset == (bfd_vma) -1)
2183 got_offset = info [diff].got_offset;
2184 }
2185
2186 /* Makre sure that the last duplicated one has an valid
2187 offset. */
2188 BFD_ASSERT (curr == prev);
2189 if (got_offset != (bfd_vma) -1)
2190 info [diff - 1].got_offset = got_offset;
2191
2192 if (diff < count)
2193 {
2194 /* Find the next duplicate. Track the current valid
2195 offset. */
2196 prev = info [diff].addend;
2197 got_offset = info [diff].got_offset;
2198 for (dup = diff + 1; dup < count; dup++)
2199 {
2200 curr = info [dup].addend;
2201 if (curr == prev)
2202 {
2203 /* For duplicates, make sure that GOT_OFFSET
2204 is valid. */
2205 if (got_offset == (bfd_vma) -1)
2206 got_offset = info [dup].got_offset;
2207 break;
2208 }
2209 got_offset = info [dup].got_offset;
2210 prev = curr;
2211 diff++;
2212 }
2213
2214 len = diff - src + 1;
2215 i = diff + 1;
2216 }
2217 }
2218
2219 memmove (&info [dest], &info [src], len * sizeof (*info));
2220
2221 dest += len;
2222 }
2223
2224 count = dest;
2225 }
2226 else
2227 {
2228 /* When we get here, either there is no duplicate at all or
2229 the only duplicate is the last element. */
2230 if (dest < count)
2231 {
2232 /* If the last element is a duplicate, make sure that the
2233 kept one has a valid got_offset. We also update count. */
2234 if (got_offset != (bfd_vma) -1)
2235 info [dest - 1].got_offset = got_offset;
2236 count = dest;
2237 }
2238 }
2239
2240 return count;
2241 }
2242
2243 /* Find and/or create a descriptor for dynamic symbol info. This will
2244 vary based on global or local symbol, and the addend to the reloc.
2245
2246 We don't sort when inserting. Also, we sort and eliminate
2247 duplicates if there is an unsorted section. Typically, this will
2248 only happen once, because we do all insertions before lookups. We
2249 then use bsearch to do a lookup. This also allows lookups to be
2250 fast. So we have fast insertion (O(log N) due to duplicate check),
2251 fast lookup (O(log N)) and one sort (O(N log N) expected time).
2252 Previously, all lookups were O(N) because of the use of the linked
2253 list and also all insertions were O(N) because of the check for
2254 duplicates. There are some complications here because the array
2255 size grows occasionally, which may add an O(N) factor, but this
2256 should be rare. Also, we free the excess array allocation, which
2257 requires a copy which is O(N), but this only happens once. */
2258
2259 static struct elfNN_ia64_dyn_sym_info *
2260 get_dyn_sym_info (struct elfNN_ia64_link_hash_table *ia64_info,
2261 struct elf_link_hash_entry *h, bfd *abfd,
2262 const Elf_Internal_Rela *rel, bfd_boolean create)
2263 {
2264 struct elfNN_ia64_dyn_sym_info **info_p, *info, *dyn_i, key;
2265 unsigned int *count_p, *sorted_count_p, *size_p;
2266 unsigned int count, sorted_count, size;
2267 bfd_vma addend = rel ? rel->r_addend : 0;
2268 bfd_size_type amt;
2269
2270 if (h)
2271 {
2272 struct elfNN_ia64_link_hash_entry *global_h;
2273
2274 global_h = (struct elfNN_ia64_link_hash_entry *) h;
2275 info_p = &global_h->info;
2276 count_p = &global_h->count;
2277 sorted_count_p = &global_h->sorted_count;
2278 size_p = &global_h->size;
2279 }
2280 else
2281 {
2282 struct elfNN_ia64_local_hash_entry *loc_h;
2283
2284 loc_h = get_local_sym_hash (ia64_info, abfd, rel, create);
2285 if (!loc_h)
2286 {
2287 BFD_ASSERT (!create);
2288 return NULL;
2289 }
2290
2291 info_p = &loc_h->info;
2292 count_p = &loc_h->count;
2293 sorted_count_p = &loc_h->sorted_count;
2294 size_p = &loc_h->size;
2295 }
2296
2297 count = *count_p;
2298 sorted_count = *sorted_count_p;
2299 size = *size_p;
2300 info = *info_p;
2301 if (create)
2302 {
2303 /* When we create the array, we don't check for duplicates,
2304 except in the previously sorted section if one exists, and
2305 against the last inserted entry. This allows insertions to
2306 be fast. */
2307 if (info)
2308 {
2309 if (sorted_count)
2310 {
2311 /* Try bsearch first on the sorted section. */
2312 key.addend = addend;
2313 dyn_i = bsearch (&key, info, sorted_count,
2314 sizeof (*info), addend_compare);
2315
2316 if (dyn_i)
2317 {
2318 return dyn_i;
2319 }
2320 }
2321
2322 /* Do a quick check for the last inserted entry. */
2323 dyn_i = info + count - 1;
2324 if (dyn_i->addend == addend)
2325 {
2326 return dyn_i;
2327 }
2328 }
2329
2330 if (size == 0)
2331 {
2332 /* It is the very first element. We create the array of size
2333 1. */
2334 size = 1;
2335 amt = size * sizeof (*info);
2336 info = bfd_malloc (amt);
2337 }
2338 else if (size <= count)
2339 {
2340 /* We double the array size every time when we reach the
2341 size limit. */
2342 size += size;
2343 amt = size * sizeof (*info);
2344 info = bfd_realloc (info, amt);
2345 }
2346 else
2347 goto has_space;
2348
2349 if (info == NULL)
2350 return NULL;
2351 *size_p = size;
2352 *info_p = info;
2353
2354 has_space:
2355 /* Append the new one to the array. */
2356 dyn_i = info + count;
2357 memset (dyn_i, 0, sizeof (*dyn_i));
2358 dyn_i->got_offset = (bfd_vma) -1;
2359 dyn_i->addend = addend;
2360
2361 /* We increment count only since the new ones are unsorted and
2362 may have duplicate. */
2363 (*count_p)++;
2364 }
2365 else
2366 {
2367 /* It is a lookup without insertion. Sort array if part of the
2368 array isn't sorted. */
2369 if (count != sorted_count)
2370 {
2371 count = sort_dyn_sym_info (info, count);
2372 *count_p = count;
2373 *sorted_count_p = count;
2374 }
2375
2376 /* Free unused memory. */
2377 if (size != count)
2378 {
2379 amt = count * sizeof (*info);
2380 info = bfd_malloc (amt);
2381 if (info != NULL)
2382 {
2383 memcpy (info, *info_p, amt);
2384 free (*info_p);
2385 *size_p = count;
2386 *info_p = info;
2387 }
2388 }
2389
2390 key.addend = addend;
2391 dyn_i = bsearch (&key, info, count,
2392 sizeof (*info), addend_compare);
2393 }
2394
2395 return dyn_i;
2396 }
2397
2398 static asection *
2399 get_got (bfd *abfd, struct bfd_link_info *info,
2400 struct elfNN_ia64_link_hash_table *ia64_info)
2401 {
2402 asection *got;
2403 bfd *dynobj;
2404
2405 got = ia64_info->root.sgot;
2406 if (!got)
2407 {
2408 flagword flags;
2409
2410 dynobj = ia64_info->root.dynobj;
2411 if (!dynobj)
2412 ia64_info->root.dynobj = dynobj = abfd;
2413 if (!_bfd_elf_create_got_section (dynobj, info))
2414 return 0;
2415
2416 got = ia64_info->root.sgot;
2417
2418 /* The .got section is always aligned at 8 bytes. */
2419 if (!bfd_set_section_alignment (abfd, got, 3))
2420 return 0;
2421
2422 flags = bfd_get_section_flags (abfd, got);
2423 bfd_set_section_flags (abfd, got, SEC_SMALL_DATA | flags);
2424 }
2425
2426 return got;
2427 }
2428
2429 /* Create function descriptor section (.opd). This section is called .opd
2430 because it contains "official procedure descriptors". The "official"
2431 refers to the fact that these descriptors are used when taking the address
2432 of a procedure, thus ensuring a unique address for each procedure. */
2433
2434 static asection *
2435 get_fptr (bfd *abfd, struct bfd_link_info *info,
2436 struct elfNN_ia64_link_hash_table *ia64_info)
2437 {
2438 asection *fptr;
2439 bfd *dynobj;
2440
2441 fptr = ia64_info->fptr_sec;
2442 if (!fptr)
2443 {
2444 dynobj = ia64_info->root.dynobj;
2445 if (!dynobj)
2446 ia64_info->root.dynobj = dynobj = abfd;
2447
2448 fptr = bfd_make_section_with_flags (dynobj, ".opd",
2449 (SEC_ALLOC
2450 | SEC_LOAD
2451 | SEC_HAS_CONTENTS
2452 | SEC_IN_MEMORY
2453 | (info->pie ? 0 : SEC_READONLY)
2454 | SEC_LINKER_CREATED));
2455 if (!fptr
2456 || !bfd_set_section_alignment (abfd, fptr, 4))
2457 {
2458 BFD_ASSERT (0);
2459 return NULL;
2460 }
2461
2462 ia64_info->fptr_sec = fptr;
2463
2464 if (info->pie)
2465 {
2466 asection *fptr_rel;
2467 fptr_rel = bfd_make_section_with_flags (dynobj, ".rela.opd",
2468 (SEC_ALLOC | SEC_LOAD
2469 | SEC_HAS_CONTENTS
2470 | SEC_IN_MEMORY
2471 | SEC_LINKER_CREATED
2472 | SEC_READONLY));
2473 if (fptr_rel == NULL
2474 || !bfd_set_section_alignment (abfd, fptr_rel,
2475 LOG_SECTION_ALIGN))
2476 {
2477 BFD_ASSERT (0);
2478 return NULL;
2479 }
2480
2481 ia64_info->rel_fptr_sec = fptr_rel;
2482 }
2483 }
2484
2485 return fptr;
2486 }
2487
2488 static asection *
2489 get_pltoff (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED,
2490 struct elfNN_ia64_link_hash_table *ia64_info)
2491 {
2492 asection *pltoff;
2493 bfd *dynobj;
2494
2495 pltoff = ia64_info->pltoff_sec;
2496 if (!pltoff)
2497 {
2498 dynobj = ia64_info->root.dynobj;
2499 if (!dynobj)
2500 ia64_info->root.dynobj = dynobj = abfd;
2501
2502 pltoff = bfd_make_section_with_flags (dynobj,
2503 ELF_STRING_ia64_pltoff,
2504 (SEC_ALLOC
2505 | SEC_LOAD
2506 | SEC_HAS_CONTENTS
2507 | SEC_IN_MEMORY
2508 | SEC_SMALL_DATA
2509 | SEC_LINKER_CREATED));
2510 if (!pltoff
2511 || !bfd_set_section_alignment (abfd, pltoff, 4))
2512 {
2513 BFD_ASSERT (0);
2514 return NULL;
2515 }
2516
2517 ia64_info->pltoff_sec = pltoff;
2518 }
2519
2520 return pltoff;
2521 }
2522
2523 static asection *
2524 get_reloc_section (bfd *abfd,
2525 struct elfNN_ia64_link_hash_table *ia64_info,
2526 asection *sec, bfd_boolean create)
2527 {
2528 const char *srel_name;
2529 asection *srel;
2530 bfd *dynobj;
2531
2532 srel_name = (bfd_elf_string_from_elf_section
2533 (abfd, elf_elfheader(abfd)->e_shstrndx,
2534 elf_section_data(sec)->rel_hdr.sh_name));
2535 if (srel_name == NULL)
2536 return NULL;
2537
2538 BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
2539 && strcmp (bfd_get_section_name (abfd, sec),
2540 srel_name+5) == 0)
2541 || (CONST_STRNEQ (srel_name, ".rel")
2542 && strcmp (bfd_get_section_name (abfd, sec),
2543 srel_name+4) == 0));
2544
2545 dynobj = ia64_info->root.dynobj;
2546 if (!dynobj)
2547 ia64_info->root.dynobj = dynobj = abfd;
2548
2549 srel = bfd_get_section_by_name (dynobj, srel_name);
2550 if (srel == NULL && create)
2551 {
2552 srel = bfd_make_section_with_flags (dynobj, srel_name,
2553 (SEC_ALLOC | SEC_LOAD
2554 | SEC_HAS_CONTENTS
2555 | SEC_IN_MEMORY
2556 | SEC_LINKER_CREATED
2557 | SEC_READONLY));
2558 if (srel == NULL
2559 || !bfd_set_section_alignment (dynobj, srel,
2560 LOG_SECTION_ALIGN))
2561 return NULL;
2562 }
2563
2564 return srel;
2565 }
2566
2567 static bfd_boolean
2568 count_dyn_reloc (bfd *abfd, struct elfNN_ia64_dyn_sym_info *dyn_i,
2569 asection *srel, int type, bfd_boolean reltext)
2570 {
2571 struct elfNN_ia64_dyn_reloc_entry *rent;
2572
2573 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2574 if (rent->srel == srel && rent->type == type)
2575 break;
2576
2577 if (!rent)
2578 {
2579 rent = ((struct elfNN_ia64_dyn_reloc_entry *)
2580 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)));
2581 if (!rent)
2582 return FALSE;
2583
2584 rent->next = dyn_i->reloc_entries;
2585 rent->srel = srel;
2586 rent->type = type;
2587 rent->count = 0;
2588 dyn_i->reloc_entries = rent;
2589 }
2590 rent->reltext = reltext;
2591 rent->count++;
2592
2593 return TRUE;
2594 }
2595
2596 static bfd_boolean
2597 elfNN_ia64_check_relocs (bfd *abfd, struct bfd_link_info *info,
2598 asection *sec,
2599 const Elf_Internal_Rela *relocs)
2600 {
2601 struct elfNN_ia64_link_hash_table *ia64_info;
2602 const Elf_Internal_Rela *relend;
2603 Elf_Internal_Shdr *symtab_hdr;
2604 const Elf_Internal_Rela *rel;
2605 asection *got, *fptr, *srel, *pltoff;
2606 enum {
2607 NEED_GOT = 1,
2608 NEED_GOTX = 2,
2609 NEED_FPTR = 4,
2610 NEED_PLTOFF = 8,
2611 NEED_MIN_PLT = 16,
2612 NEED_FULL_PLT = 32,
2613 NEED_DYNREL = 64,
2614 NEED_LTOFF_FPTR = 128,
2615 NEED_TPREL = 256,
2616 NEED_DTPMOD = 512,
2617 NEED_DTPREL = 1024
2618 };
2619 int need_entry;
2620 struct elf_link_hash_entry *h;
2621 unsigned long r_symndx;
2622 bfd_boolean maybe_dynamic;
2623
2624 if (info->relocatable)
2625 return TRUE;
2626
2627 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2628 ia64_info = elfNN_ia64_hash_table (info);
2629
2630 got = fptr = srel = pltoff = NULL;
2631
2632 relend = relocs + sec->reloc_count;
2633
2634 /* We scan relocations first to create dynamic relocation arrays. We
2635 modified get_dyn_sym_info to allow fast insertion and support fast
2636 lookup in the next loop. */
2637 for (rel = relocs; rel < relend; ++rel)
2638 {
2639 r_symndx = ELFNN_R_SYM (rel->r_info);
2640 if (r_symndx >= symtab_hdr->sh_info)
2641 {
2642 long indx = r_symndx - symtab_hdr->sh_info;
2643 h = elf_sym_hashes (abfd)[indx];
2644 while (h->root.type == bfd_link_hash_indirect
2645 || h->root.type == bfd_link_hash_warning)
2646 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2647 }
2648 else
2649 h = NULL;
2650
2651 /* We can only get preliminary data on whether a symbol is
2652 locally or externally defined, as not all of the input files
2653 have yet been processed. Do something with what we know, as
2654 this may help reduce memory usage and processing time later. */
2655 maybe_dynamic = (h && ((!info->executable
2656 && (!SYMBOLIC_BIND (info, h)
2657 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2658 || !h->def_regular
2659 || h->root.type == bfd_link_hash_defweak));
2660
2661 need_entry = 0;
2662 switch (ELFNN_R_TYPE (rel->r_info))
2663 {
2664 case R_IA64_TPREL64MSB:
2665 case R_IA64_TPREL64LSB:
2666 if (info->shared || maybe_dynamic)
2667 need_entry = NEED_DYNREL;
2668 break;
2669
2670 case R_IA64_LTOFF_TPREL22:
2671 need_entry = NEED_TPREL;
2672 if (info->shared)
2673 info->flags |= DF_STATIC_TLS;
2674 break;
2675
2676 case R_IA64_DTPREL32MSB:
2677 case R_IA64_DTPREL32LSB:
2678 case R_IA64_DTPREL64MSB:
2679 case R_IA64_DTPREL64LSB:
2680 if (info->shared || maybe_dynamic)
2681 need_entry = NEED_DYNREL;
2682 break;
2683
2684 case R_IA64_LTOFF_DTPREL22:
2685 need_entry = NEED_DTPREL;
2686 break;
2687
2688 case R_IA64_DTPMOD64MSB:
2689 case R_IA64_DTPMOD64LSB:
2690 if (info->shared || maybe_dynamic)
2691 need_entry = NEED_DYNREL;
2692 break;
2693
2694 case R_IA64_LTOFF_DTPMOD22:
2695 need_entry = NEED_DTPMOD;
2696 break;
2697
2698 case R_IA64_LTOFF_FPTR22:
2699 case R_IA64_LTOFF_FPTR64I:
2700 case R_IA64_LTOFF_FPTR32MSB:
2701 case R_IA64_LTOFF_FPTR32LSB:
2702 case R_IA64_LTOFF_FPTR64MSB:
2703 case R_IA64_LTOFF_FPTR64LSB:
2704 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2705 break;
2706
2707 case R_IA64_FPTR64I:
2708 case R_IA64_FPTR32MSB:
2709 case R_IA64_FPTR32LSB:
2710 case R_IA64_FPTR64MSB:
2711 case R_IA64_FPTR64LSB:
2712 if (info->shared || h)
2713 need_entry = NEED_FPTR | NEED_DYNREL;
2714 else
2715 need_entry = NEED_FPTR;
2716 break;
2717
2718 case R_IA64_LTOFF22:
2719 case R_IA64_LTOFF64I:
2720 need_entry = NEED_GOT;
2721 break;
2722
2723 case R_IA64_LTOFF22X:
2724 need_entry = NEED_GOTX;
2725 break;
2726
2727 case R_IA64_PLTOFF22:
2728 case R_IA64_PLTOFF64I:
2729 case R_IA64_PLTOFF64MSB:
2730 case R_IA64_PLTOFF64LSB:
2731 need_entry = NEED_PLTOFF;
2732 if (h)
2733 {
2734 if (maybe_dynamic)
2735 need_entry |= NEED_MIN_PLT;
2736 }
2737 else
2738 {
2739 (*info->callbacks->warning)
2740 (info, _("@pltoff reloc against local symbol"), 0,
2741 abfd, 0, (bfd_vma) 0);
2742 }
2743 break;
2744
2745 case R_IA64_PCREL21B:
2746 case R_IA64_PCREL60B:
2747 /* Depending on where this symbol is defined, we may or may not
2748 need a full plt entry. Only skip if we know we'll not need
2749 the entry -- static or symbolic, and the symbol definition
2750 has already been seen. */
2751 if (maybe_dynamic && rel->r_addend == 0)
2752 need_entry = NEED_FULL_PLT;
2753 break;
2754
2755 case R_IA64_IMM14:
2756 case R_IA64_IMM22:
2757 case R_IA64_IMM64:
2758 case R_IA64_DIR32MSB:
2759 case R_IA64_DIR32LSB:
2760 case R_IA64_DIR64MSB:
2761 case R_IA64_DIR64LSB:
2762 /* Shared objects will always need at least a REL relocation. */
2763 if (info->shared || maybe_dynamic)
2764 need_entry = NEED_DYNREL;
2765 break;
2766
2767 case R_IA64_IPLTMSB:
2768 case R_IA64_IPLTLSB:
2769 /* Shared objects will always need at least a REL relocation. */
2770 if (info->shared || maybe_dynamic)
2771 need_entry = NEED_DYNREL;
2772 break;
2773
2774 case R_IA64_PCREL22:
2775 case R_IA64_PCREL64I:
2776 case R_IA64_PCREL32MSB:
2777 case R_IA64_PCREL32LSB:
2778 case R_IA64_PCREL64MSB:
2779 case R_IA64_PCREL64LSB:
2780 if (maybe_dynamic)
2781 need_entry = NEED_DYNREL;
2782 break;
2783 }
2784
2785 if (!need_entry)
2786 continue;
2787
2788 if ((need_entry & NEED_FPTR) != 0
2789 && rel->r_addend)
2790 {
2791 (*info->callbacks->warning)
2792 (info, _("non-zero addend in @fptr reloc"), 0,
2793 abfd, 0, (bfd_vma) 0);
2794 }
2795
2796 if (get_dyn_sym_info (ia64_info, h, abfd, rel, TRUE) == NULL)
2797 return FALSE;
2798 }
2799
2800 /* Now, we only do lookup without insertion, which is very fast
2801 with the modified get_dyn_sym_info. */
2802 for (rel = relocs; rel < relend; ++rel)
2803 {
2804 struct elfNN_ia64_dyn_sym_info *dyn_i;
2805 int dynrel_type = R_IA64_NONE;
2806
2807 r_symndx = ELFNN_R_SYM (rel->r_info);
2808 if (r_symndx >= symtab_hdr->sh_info)
2809 {
2810 /* We're dealing with a global symbol -- find its hash entry
2811 and mark it as being referenced. */
2812 long indx = r_symndx - symtab_hdr->sh_info;
2813 h = elf_sym_hashes (abfd)[indx];
2814 while (h->root.type == bfd_link_hash_indirect
2815 || h->root.type == bfd_link_hash_warning)
2816 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2817
2818 h->ref_regular = 1;
2819 }
2820 else
2821 h = NULL;
2822
2823 /* We can only get preliminary data on whether a symbol is
2824 locally or externally defined, as not all of the input files
2825 have yet been processed. Do something with what we know, as
2826 this may help reduce memory usage and processing time later. */
2827 maybe_dynamic = (h && ((!info->executable
2828 && (!SYMBOLIC_BIND (info, h)
2829 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2830 || !h->def_regular
2831 || h->root.type == bfd_link_hash_defweak));
2832
2833 need_entry = 0;
2834 switch (ELFNN_R_TYPE (rel->r_info))
2835 {
2836 case R_IA64_TPREL64MSB:
2837 case R_IA64_TPREL64LSB:
2838 if (info->shared || maybe_dynamic)
2839 need_entry = NEED_DYNREL;
2840 dynrel_type = R_IA64_TPREL64LSB;
2841 if (info->shared)
2842 info->flags |= DF_STATIC_TLS;
2843 break;
2844
2845 case R_IA64_LTOFF_TPREL22:
2846 need_entry = NEED_TPREL;
2847 if (info->shared)
2848 info->flags |= DF_STATIC_TLS;
2849 break;
2850
2851 case R_IA64_DTPREL32MSB:
2852 case R_IA64_DTPREL32LSB:
2853 case R_IA64_DTPREL64MSB:
2854 case R_IA64_DTPREL64LSB:
2855 if (info->shared || maybe_dynamic)
2856 need_entry = NEED_DYNREL;
2857 dynrel_type = R_IA64_DTPRELNNLSB;
2858 break;
2859
2860 case R_IA64_LTOFF_DTPREL22:
2861 need_entry = NEED_DTPREL;
2862 break;
2863
2864 case R_IA64_DTPMOD64MSB:
2865 case R_IA64_DTPMOD64LSB:
2866 if (info->shared || maybe_dynamic)
2867 need_entry = NEED_DYNREL;
2868 dynrel_type = R_IA64_DTPMOD64LSB;
2869 break;
2870
2871 case R_IA64_LTOFF_DTPMOD22:
2872 need_entry = NEED_DTPMOD;
2873 break;
2874
2875 case R_IA64_LTOFF_FPTR22:
2876 case R_IA64_LTOFF_FPTR64I:
2877 case R_IA64_LTOFF_FPTR32MSB:
2878 case R_IA64_LTOFF_FPTR32LSB:
2879 case R_IA64_LTOFF_FPTR64MSB:
2880 case R_IA64_LTOFF_FPTR64LSB:
2881 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2882 break;
2883
2884 case R_IA64_FPTR64I:
2885 case R_IA64_FPTR32MSB:
2886 case R_IA64_FPTR32LSB:
2887 case R_IA64_FPTR64MSB:
2888 case R_IA64_FPTR64LSB:
2889 if (info->shared || h)
2890 need_entry = NEED_FPTR | NEED_DYNREL;
2891 else
2892 need_entry = NEED_FPTR;
2893 dynrel_type = R_IA64_FPTRNNLSB;
2894 break;
2895
2896 case R_IA64_LTOFF22:
2897 case R_IA64_LTOFF64I:
2898 need_entry = NEED_GOT;
2899 break;
2900
2901 case R_IA64_LTOFF22X:
2902 need_entry = NEED_GOTX;
2903 break;
2904
2905 case R_IA64_PLTOFF22:
2906 case R_IA64_PLTOFF64I:
2907 case R_IA64_PLTOFF64MSB:
2908 case R_IA64_PLTOFF64LSB:
2909 need_entry = NEED_PLTOFF;
2910 if (h)
2911 {
2912 if (maybe_dynamic)
2913 need_entry |= NEED_MIN_PLT;
2914 }
2915 break;
2916
2917 case R_IA64_PCREL21B:
2918 case R_IA64_PCREL60B:
2919 /* Depending on where this symbol is defined, we may or may not
2920 need a full plt entry. Only skip if we know we'll not need
2921 the entry -- static or symbolic, and the symbol definition
2922 has already been seen. */
2923 if (maybe_dynamic && rel->r_addend == 0)
2924 need_entry = NEED_FULL_PLT;
2925 break;
2926
2927 case R_IA64_IMM14:
2928 case R_IA64_IMM22:
2929 case R_IA64_IMM64:
2930 case R_IA64_DIR32MSB:
2931 case R_IA64_DIR32LSB:
2932 case R_IA64_DIR64MSB:
2933 case R_IA64_DIR64LSB:
2934 /* Shared objects will always need at least a REL relocation. */
2935 if (info->shared || maybe_dynamic)
2936 need_entry = NEED_DYNREL;
2937 dynrel_type = R_IA64_DIRNNLSB;
2938 break;
2939
2940 case R_IA64_IPLTMSB:
2941 case R_IA64_IPLTLSB:
2942 /* Shared objects will always need at least a REL relocation. */
2943 if (info->shared || maybe_dynamic)
2944 need_entry = NEED_DYNREL;
2945 dynrel_type = R_IA64_IPLTLSB;
2946 break;
2947
2948 case R_IA64_PCREL22:
2949 case R_IA64_PCREL64I:
2950 case R_IA64_PCREL32MSB:
2951 case R_IA64_PCREL32LSB:
2952 case R_IA64_PCREL64MSB:
2953 case R_IA64_PCREL64LSB:
2954 if (maybe_dynamic)
2955 need_entry = NEED_DYNREL;
2956 dynrel_type = R_IA64_PCRELNNLSB;
2957 break;
2958 }
2959
2960 if (!need_entry)
2961 continue;
2962
2963 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, rel, FALSE);
2964
2965 /* Record whether or not this is a local symbol. */
2966 dyn_i->h = h;
2967
2968 /* Create what's needed. */
2969 if (need_entry & (NEED_GOT | NEED_GOTX | NEED_TPREL
2970 | NEED_DTPMOD | NEED_DTPREL))
2971 {
2972 if (!got)
2973 {
2974 got = get_got (abfd, info, ia64_info);
2975 if (!got)
2976 return FALSE;
2977 }
2978 if (need_entry & NEED_GOT)
2979 dyn_i->want_got = 1;
2980 if (need_entry & NEED_GOTX)
2981 dyn_i->want_gotx = 1;
2982 if (need_entry & NEED_TPREL)
2983 dyn_i->want_tprel = 1;
2984 if (need_entry & NEED_DTPMOD)
2985 dyn_i->want_dtpmod = 1;
2986 if (need_entry & NEED_DTPREL)
2987 dyn_i->want_dtprel = 1;
2988 }
2989 if (need_entry & NEED_FPTR)
2990 {
2991 if (!fptr)
2992 {
2993 fptr = get_fptr (abfd, info, ia64_info);
2994 if (!fptr)
2995 return FALSE;
2996 }
2997
2998 /* FPTRs for shared libraries are allocated by the dynamic
2999 linker. Make sure this local symbol will appear in the
3000 dynamic symbol table. */
3001 if (!h && info->shared)
3002 {
3003 if (! (bfd_elf_link_record_local_dynamic_symbol
3004 (info, abfd, (long) r_symndx)))
3005 return FALSE;
3006 }
3007
3008 dyn_i->want_fptr = 1;
3009 }
3010 if (need_entry & NEED_LTOFF_FPTR)
3011 dyn_i->want_ltoff_fptr = 1;
3012 if (need_entry & (NEED_MIN_PLT | NEED_FULL_PLT))
3013 {
3014 if (!ia64_info->root.dynobj)
3015 ia64_info->root.dynobj = abfd;
3016 h->needs_plt = 1;
3017 dyn_i->want_plt = 1;
3018 }
3019 if (need_entry & NEED_FULL_PLT)
3020 dyn_i->want_plt2 = 1;
3021 if (need_entry & NEED_PLTOFF)
3022 {
3023 /* This is needed here, in case @pltoff is used in a non-shared
3024 link. */
3025 if (!pltoff)
3026 {
3027 pltoff = get_pltoff (abfd, info, ia64_info);
3028 if (!pltoff)
3029 return FALSE;
3030 }
3031
3032 dyn_i->want_pltoff = 1;
3033 }
3034 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
3035 {
3036 if (!srel)
3037 {
3038 srel = get_reloc_section (abfd, ia64_info, sec, TRUE);
3039 if (!srel)
3040 return FALSE;
3041 }
3042 if (!count_dyn_reloc (abfd, dyn_i, srel, dynrel_type,
3043 (sec->flags & SEC_READONLY) != 0))
3044 return FALSE;
3045 }
3046 }
3047
3048 return TRUE;
3049 }
3050
3051 /* For cleanliness, and potentially faster dynamic loading, allocate
3052 external GOT entries first. */
3053
3054 static bfd_boolean
3055 allocate_global_data_got (struct elfNN_ia64_dyn_sym_info *dyn_i,
3056 PTR data)
3057 {
3058 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3059
3060 if ((dyn_i->want_got || dyn_i->want_gotx)
3061 && ! dyn_i->want_fptr
3062 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3063 {
3064 dyn_i->got_offset = x->ofs;
3065 x->ofs += 8;
3066 }
3067 if (dyn_i->want_tprel)
3068 {
3069 dyn_i->tprel_offset = x->ofs;
3070 x->ofs += 8;
3071 }
3072 if (dyn_i->want_dtpmod)
3073 {
3074 if (elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3075 {
3076 dyn_i->dtpmod_offset = x->ofs;
3077 x->ofs += 8;
3078 }
3079 else
3080 {
3081 struct elfNN_ia64_link_hash_table *ia64_info;
3082
3083 ia64_info = elfNN_ia64_hash_table (x->info);
3084 if (ia64_info->self_dtpmod_offset == (bfd_vma) -1)
3085 {
3086 ia64_info->self_dtpmod_offset = x->ofs;
3087 x->ofs += 8;
3088 }
3089 dyn_i->dtpmod_offset = ia64_info->self_dtpmod_offset;
3090 }
3091 }
3092 if (dyn_i->want_dtprel)
3093 {
3094 dyn_i->dtprel_offset = x->ofs;
3095 x->ofs += 8;
3096 }
3097 return TRUE;
3098 }
3099
3100 /* Next, allocate all the GOT entries used by LTOFF_FPTR relocs. */
3101
3102 static bfd_boolean
3103 allocate_global_fptr_got (struct elfNN_ia64_dyn_sym_info *dyn_i,
3104 PTR data)
3105 {
3106 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3107
3108 if (dyn_i->want_got
3109 && dyn_i->want_fptr
3110 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, R_IA64_FPTRNNLSB))
3111 {
3112 dyn_i->got_offset = x->ofs;
3113 x->ofs += 8;
3114 }
3115 return TRUE;
3116 }
3117
3118 /* Lastly, allocate all the GOT entries for local data. */
3119
3120 static bfd_boolean
3121 allocate_local_got (struct elfNN_ia64_dyn_sym_info *dyn_i,
3122 PTR data)
3123 {
3124 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3125
3126 if ((dyn_i->want_got || dyn_i->want_gotx)
3127 && !elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3128 {
3129 dyn_i->got_offset = x->ofs;
3130 x->ofs += 8;
3131 }
3132 return TRUE;
3133 }
3134
3135 /* Search for the index of a global symbol in it's defining object file. */
3136
3137 static long
3138 global_sym_index (struct elf_link_hash_entry *h)
3139 {
3140 struct elf_link_hash_entry **p;
3141 bfd *obj;
3142
3143 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3144 || h->root.type == bfd_link_hash_defweak);
3145
3146 obj = h->root.u.def.section->owner;
3147 for (p = elf_sym_hashes (obj); *p != h; ++p)
3148 continue;
3149
3150 return p - elf_sym_hashes (obj) + elf_tdata (obj)->symtab_hdr.sh_info;
3151 }
3152
3153 /* Allocate function descriptors. We can do these for every function
3154 in a main executable that is not exported. */
3155
3156 static bfd_boolean
3157 allocate_fptr (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data)
3158 {
3159 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3160
3161 if (dyn_i->want_fptr)
3162 {
3163 struct elf_link_hash_entry *h = dyn_i->h;
3164
3165 if (h)
3166 while (h->root.type == bfd_link_hash_indirect
3167 || h->root.type == bfd_link_hash_warning)
3168 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3169
3170 if (!x->info->executable
3171 && (!h
3172 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3173 || (h->root.type != bfd_link_hash_undefweak
3174 && h->root.type != bfd_link_hash_undefined)))
3175 {
3176 if (h && h->dynindx == -1)
3177 {
3178 BFD_ASSERT ((h->root.type == bfd_link_hash_defined)
3179 || (h->root.type == bfd_link_hash_defweak));
3180
3181 if (!bfd_elf_link_record_local_dynamic_symbol
3182 (x->info, h->root.u.def.section->owner,
3183 global_sym_index (h)))
3184 return FALSE;
3185 }
3186
3187 dyn_i->want_fptr = 0;
3188 }
3189 else if (h == NULL || h->dynindx == -1)
3190 {
3191 dyn_i->fptr_offset = x->ofs;
3192 x->ofs += 16;
3193 }
3194 else
3195 dyn_i->want_fptr = 0;
3196 }
3197 return TRUE;
3198 }
3199
3200 /* Allocate all the minimal PLT entries. */
3201
3202 static bfd_boolean
3203 allocate_plt_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3204 PTR data)
3205 {
3206 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3207
3208 if (dyn_i->want_plt)
3209 {
3210 struct elf_link_hash_entry *h = dyn_i->h;
3211
3212 if (h)
3213 while (h->root.type == bfd_link_hash_indirect
3214 || h->root.type == bfd_link_hash_warning)
3215 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3216
3217 /* ??? Versioned symbols seem to lose NEEDS_PLT. */
3218 if (elfNN_ia64_dynamic_symbol_p (h, x->info, 0))
3219 {
3220 bfd_size_type offset = x->ofs;
3221 if (offset == 0)
3222 offset = PLT_HEADER_SIZE;
3223 dyn_i->plt_offset = offset;
3224 x->ofs = offset + PLT_MIN_ENTRY_SIZE;
3225
3226 dyn_i->want_pltoff = 1;
3227 }
3228 else
3229 {
3230 dyn_i->want_plt = 0;
3231 dyn_i->want_plt2 = 0;
3232 }
3233 }
3234 return TRUE;
3235 }
3236
3237 /* Allocate all the full PLT entries. */
3238
3239 static bfd_boolean
3240 allocate_plt2_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3241 PTR data)
3242 {
3243 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3244
3245 if (dyn_i->want_plt2)
3246 {
3247 struct elf_link_hash_entry *h = dyn_i->h;
3248 bfd_size_type ofs = x->ofs;
3249
3250 dyn_i->plt2_offset = ofs;
3251 x->ofs = ofs + PLT_FULL_ENTRY_SIZE;
3252
3253 while (h->root.type == bfd_link_hash_indirect
3254 || h->root.type == bfd_link_hash_warning)
3255 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3256 dyn_i->h->plt.offset = ofs;
3257 }
3258 return TRUE;
3259 }
3260
3261 /* Allocate all the PLTOFF entries requested by relocations and
3262 plt entries. We can't share space with allocated FPTR entries,
3263 because the latter are not necessarily addressable by the GP.
3264 ??? Relaxation might be able to determine that they are. */
3265
3266 static bfd_boolean
3267 allocate_pltoff_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3268 PTR data)
3269 {
3270 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3271
3272 if (dyn_i->want_pltoff)
3273 {
3274 dyn_i->pltoff_offset = x->ofs;
3275 x->ofs += 16;
3276 }
3277 return TRUE;
3278 }
3279
3280 /* Allocate dynamic relocations for those symbols that turned out
3281 to be dynamic. */
3282
3283 static bfd_boolean
3284 allocate_dynrel_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3285 PTR data)
3286 {
3287 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3288 struct elfNN_ia64_link_hash_table *ia64_info;
3289 struct elfNN_ia64_dyn_reloc_entry *rent;
3290 bfd_boolean dynamic_symbol, shared, resolved_zero;
3291
3292 ia64_info = elfNN_ia64_hash_table (x->info);
3293
3294 /* Note that this can't be used in relation to FPTR relocs below. */
3295 dynamic_symbol = elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0);
3296
3297 shared = x->info->shared;
3298 resolved_zero = (dyn_i->h
3299 && ELF_ST_VISIBILITY (dyn_i->h->other)
3300 && dyn_i->h->root.type == bfd_link_hash_undefweak);
3301
3302 /* Take care of the GOT and PLT relocations. */
3303
3304 if ((!resolved_zero
3305 && (dynamic_symbol || shared)
3306 && (dyn_i->want_got || dyn_i->want_gotx))
3307 || (dyn_i->want_ltoff_fptr
3308 && dyn_i->h
3309 && dyn_i->h->dynindx != -1))
3310 {
3311 if (!dyn_i->want_ltoff_fptr
3312 || !x->info->pie
3313 || dyn_i->h == NULL
3314 || dyn_i->h->root.type != bfd_link_hash_undefweak)
3315 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela);
3316 }
3317 if ((dynamic_symbol || shared) && dyn_i->want_tprel)
3318 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela);
3319 if (dynamic_symbol && dyn_i->want_dtpmod)
3320 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela);
3321 if (dynamic_symbol && dyn_i->want_dtprel)
3322 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela);
3323
3324 if (x->only_got)
3325 return TRUE;
3326
3327 if (ia64_info->rel_fptr_sec && dyn_i->want_fptr)
3328 {
3329 if (dyn_i->h == NULL || dyn_i->h->root.type != bfd_link_hash_undefweak)
3330 ia64_info->rel_fptr_sec->size += sizeof (ElfNN_External_Rela);
3331 }
3332
3333 if (!resolved_zero && dyn_i->want_pltoff)
3334 {
3335 bfd_size_type t = 0;
3336
3337 /* Dynamic symbols get one IPLT relocation. Local symbols in
3338 shared libraries get two REL relocations. Local symbols in
3339 main applications get nothing. */
3340 if (dynamic_symbol)
3341 t = sizeof (ElfNN_External_Rela);
3342 else if (shared)
3343 t = 2 * sizeof (ElfNN_External_Rela);
3344
3345 ia64_info->rel_pltoff_sec->size += t;
3346 }
3347
3348 /* Take care of the normal data relocations. */
3349
3350 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
3351 {
3352 int count = rent->count;
3353
3354 switch (rent->type)
3355 {
3356 case R_IA64_FPTR32LSB:
3357 case R_IA64_FPTR64LSB:
3358 /* Allocate one iff !want_fptr and not PIE, which by this point
3359 will be true only if we're actually allocating one statically
3360 in the main executable. Position independent executables
3361 need a relative reloc. */
3362 if (dyn_i->want_fptr && !x->info->pie)
3363 continue;
3364 break;
3365 case R_IA64_PCREL32LSB:
3366 case R_IA64_PCREL64LSB:
3367 if (!dynamic_symbol)
3368 continue;
3369 break;
3370 case R_IA64_DIR32LSB:
3371 case R_IA64_DIR64LSB:
3372 if (!dynamic_symbol && !shared)
3373 continue;
3374 break;
3375 case R_IA64_IPLTLSB:
3376 if (!dynamic_symbol && !shared)
3377 continue;
3378 /* Use two REL relocations for IPLT relocations
3379 against local symbols. */
3380 if (!dynamic_symbol)
3381 count *= 2;
3382 break;
3383 case R_IA64_DTPREL32LSB:
3384 case R_IA64_TPREL64LSB:
3385 case R_IA64_DTPREL64LSB:
3386 case R_IA64_DTPMOD64LSB:
3387 break;
3388 default:
3389 abort ();
3390 }
3391 if (rent->reltext)
3392 ia64_info->reltext = 1;
3393 rent->srel->size += sizeof (ElfNN_External_Rela) * count;
3394 }
3395
3396 return TRUE;
3397 }
3398
3399 static bfd_boolean
3400 elfNN_ia64_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3401 struct elf_link_hash_entry *h)
3402 {
3403 /* ??? Undefined symbols with PLT entries should be re-defined
3404 to be the PLT entry. */
3405
3406 /* If this is a weak symbol, and there is a real definition, the
3407 processor independent code will have arranged for us to see the
3408 real definition first, and we can just use the same value. */
3409 if (h->u.weakdef != NULL)
3410 {
3411 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3412 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3413 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3414 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3415 return TRUE;
3416 }
3417
3418 /* If this is a reference to a symbol defined by a dynamic object which
3419 is not a function, we might allocate the symbol in our .dynbss section
3420 and allocate a COPY dynamic relocation.
3421
3422 But IA-64 code is canonically PIC, so as a rule we can avoid this sort
3423 of hackery. */
3424
3425 return TRUE;
3426 }
3427
3428 static bfd_boolean
3429 elfNN_ia64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3430 struct bfd_link_info *info)
3431 {
3432 struct elfNN_ia64_allocate_data data;
3433 struct elfNN_ia64_link_hash_table *ia64_info;
3434 asection *sec;
3435 bfd *dynobj;
3436 bfd_boolean relplt = FALSE;
3437
3438 dynobj = elf_hash_table(info)->dynobj;
3439 ia64_info = elfNN_ia64_hash_table (info);
3440 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
3441 BFD_ASSERT(dynobj != NULL);
3442 data.info = info;
3443
3444 /* Set the contents of the .interp section to the interpreter. */
3445 if (ia64_info->root.dynamic_sections_created
3446 && info->executable)
3447 {
3448 sec = bfd_get_section_by_name (dynobj, ".interp");
3449 BFD_ASSERT (sec != NULL);
3450 sec->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER;
3451 sec->size = strlen (ELF_DYNAMIC_INTERPRETER) + 1;
3452 }
3453
3454 /* Allocate the GOT entries. */
3455
3456 if (ia64_info->root.sgot)
3457 {
3458 data.ofs = 0;
3459 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
3460 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
3461 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
3462 ia64_info->root.sgot->size = data.ofs;
3463 }
3464
3465 /* Allocate the FPTR entries. */
3466
3467 if (ia64_info->fptr_sec)
3468 {
3469 data.ofs = 0;
3470 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_fptr, &data);
3471 ia64_info->fptr_sec->size = data.ofs;
3472 }
3473
3474 /* Now that we've seen all of the input files, we can decide which
3475 symbols need plt entries. Allocate the minimal PLT entries first.
3476 We do this even though dynamic_sections_created may be FALSE, because
3477 this has the side-effect of clearing want_plt and want_plt2. */
3478
3479 data.ofs = 0;
3480 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt_entries, &data);
3481
3482 ia64_info->minplt_entries = 0;
3483 if (data.ofs)
3484 {
3485 ia64_info->minplt_entries
3486 = (data.ofs - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
3487 }
3488
3489 /* Align the pointer for the plt2 entries. */
3490 data.ofs = (data.ofs + 31) & (bfd_vma) -32;
3491
3492 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt2_entries, &data);
3493 if (data.ofs != 0 || ia64_info->root.dynamic_sections_created)
3494 {
3495 /* FIXME: we always reserve the memory for dynamic linker even if
3496 there are no PLT entries since dynamic linker may assume the
3497 reserved memory always exists. */
3498
3499 BFD_ASSERT (ia64_info->root.dynamic_sections_created);
3500
3501 ia64_info->root.splt->size = data.ofs;
3502
3503 /* If we've got a .plt, we need some extra memory for the dynamic
3504 linker. We stuff these in .got.plt. */
3505 sec = bfd_get_section_by_name (dynobj, ".got.plt");
3506 sec->size = 8 * PLT_RESERVED_WORDS;
3507 }
3508
3509 /* Allocate the PLTOFF entries. */
3510
3511 if (ia64_info->pltoff_sec)
3512 {
3513 data.ofs = 0;
3514 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_pltoff_entries, &data);
3515 ia64_info->pltoff_sec->size = data.ofs;
3516 }
3517
3518 if (ia64_info->root.dynamic_sections_created)
3519 {
3520 /* Allocate space for the dynamic relocations that turned out to be
3521 required. */
3522
3523 if (info->shared && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
3524 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela);
3525 data.only_got = FALSE;
3526 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries, &data);
3527 }
3528
3529 /* We have now determined the sizes of the various dynamic sections.
3530 Allocate memory for them. */
3531 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
3532 {
3533 bfd_boolean strip;
3534
3535 if (!(sec->flags & SEC_LINKER_CREATED))
3536 continue;
3537
3538 /* If we don't need this section, strip it from the output file.
3539 There were several sections primarily related to dynamic
3540 linking that must be create before the linker maps input
3541 sections to output sections. The linker does that before
3542 bfd_elf_size_dynamic_sections is called, and it is that
3543 function which decides whether anything needs to go into
3544 these sections. */
3545
3546 strip = (sec->size == 0);
3547
3548 if (sec == ia64_info->root.sgot)
3549 strip = FALSE;
3550 else if (sec == ia64_info->root.srelgot)
3551 {
3552 if (strip)
3553 ia64_info->root.srelgot = NULL;
3554 else
3555 /* We use the reloc_count field as a counter if we need to
3556 copy relocs into the output file. */
3557 sec->reloc_count = 0;
3558 }
3559 else if (sec == ia64_info->fptr_sec)
3560 {
3561 if (strip)
3562 ia64_info->fptr_sec = NULL;
3563 }
3564 else if (sec == ia64_info->rel_fptr_sec)
3565 {
3566 if (strip)
3567 ia64_info->rel_fptr_sec = NULL;
3568 else
3569 /* We use the reloc_count field as a counter if we need to
3570 copy relocs into the output file. */
3571 sec->reloc_count = 0;
3572 }
3573 else if (sec == ia64_info->root.splt)
3574 {
3575 if (strip)
3576 ia64_info->root.splt = NULL;
3577 }
3578 else if (sec == ia64_info->pltoff_sec)
3579 {
3580 if (strip)
3581 ia64_info->pltoff_sec = NULL;
3582 }
3583 else if (sec == ia64_info->rel_pltoff_sec)
3584 {
3585 if (strip)
3586 ia64_info->rel_pltoff_sec = NULL;
3587 else
3588 {
3589 relplt = TRUE;
3590 /* We use the reloc_count field as a counter if we need to
3591 copy relocs into the output file. */
3592 sec->reloc_count = 0;
3593 }
3594 }
3595 else
3596 {
3597 const char *name;
3598
3599 /* It's OK to base decisions on the section name, because none
3600 of the dynobj section names depend upon the input files. */
3601 name = bfd_get_section_name (dynobj, sec);
3602
3603 if (strcmp (name, ".got.plt") == 0)
3604 strip = FALSE;
3605 else if (CONST_STRNEQ (name, ".rel"))
3606 {
3607 if (!strip)
3608 {
3609 /* We use the reloc_count field as a counter if we need to
3610 copy relocs into the output file. */
3611 sec->reloc_count = 0;
3612 }
3613 }
3614 else
3615 continue;
3616 }
3617
3618 if (strip)
3619 sec->flags |= SEC_EXCLUDE;
3620 else
3621 {
3622 /* Allocate memory for the section contents. */
3623 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
3624 if (sec->contents == NULL && sec->size != 0)
3625 return FALSE;
3626 }
3627 }
3628
3629 if (elf_hash_table (info)->dynamic_sections_created)
3630 {
3631 /* Add some entries to the .dynamic section. We fill in the values
3632 later (in finish_dynamic_sections) but we must add the entries now
3633 so that we get the correct size for the .dynamic section. */
3634
3635 if (info->executable)
3636 {
3637 /* The DT_DEBUG entry is filled in by the dynamic linker and used
3638 by the debugger. */
3639 #define add_dynamic_entry(TAG, VAL) \
3640 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3641
3642 if (!add_dynamic_entry (DT_DEBUG, 0))
3643 return FALSE;
3644 }
3645
3646 if (!add_dynamic_entry (DT_IA_64_PLT_RESERVE, 0))
3647 return FALSE;
3648 if (!add_dynamic_entry (DT_PLTGOT, 0))
3649 return FALSE;
3650
3651 if (relplt)
3652 {
3653 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
3654 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3655 || !add_dynamic_entry (DT_JMPREL, 0))
3656 return FALSE;
3657 }
3658
3659 if (!add_dynamic_entry (DT_RELA, 0)
3660 || !add_dynamic_entry (DT_RELASZ, 0)
3661 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
3662 return FALSE;
3663
3664 if (ia64_info->reltext)
3665 {
3666 if (!add_dynamic_entry (DT_TEXTREL, 0))
3667 return FALSE;
3668 info->flags |= DF_TEXTREL;
3669 }
3670 }
3671
3672 /* ??? Perhaps force __gp local. */
3673
3674 return TRUE;
3675 }
3676
3677 static bfd_reloc_status_type
3678 elfNN_ia64_install_value (bfd_byte *hit_addr, bfd_vma v,
3679 unsigned int r_type)
3680 {
3681 const struct ia64_operand *op;
3682 int bigendian = 0, shift = 0;
3683 bfd_vma t0, t1, dword;
3684 ia64_insn insn;
3685 enum ia64_opnd opnd;
3686 const char *err;
3687 size_t size = 8;
3688 #ifdef BFD_HOST_U_64_BIT
3689 BFD_HOST_U_64_BIT val = (BFD_HOST_U_64_BIT) v;
3690 #else
3691 bfd_vma val = v;
3692 #endif
3693
3694 opnd = IA64_OPND_NIL;
3695 switch (r_type)
3696 {
3697 case R_IA64_NONE:
3698 case R_IA64_LDXMOV:
3699 return bfd_reloc_ok;
3700
3701 /* Instruction relocations. */
3702
3703 case R_IA64_IMM14:
3704 case R_IA64_TPREL14:
3705 case R_IA64_DTPREL14:
3706 opnd = IA64_OPND_IMM14;
3707 break;
3708
3709 case R_IA64_PCREL21F: opnd = IA64_OPND_TGT25; break;
3710 case R_IA64_PCREL21M: opnd = IA64_OPND_TGT25b; break;
3711 case R_IA64_PCREL60B: opnd = IA64_OPND_TGT64; break;
3712 case R_IA64_PCREL21B:
3713 case R_IA64_PCREL21BI:
3714 opnd = IA64_OPND_TGT25c;
3715 break;
3716
3717 case R_IA64_IMM22:
3718 case R_IA64_GPREL22:
3719 case R_IA64_LTOFF22:
3720 case R_IA64_LTOFF22X:
3721 case R_IA64_PLTOFF22:
3722 case R_IA64_PCREL22:
3723 case R_IA64_LTOFF_FPTR22:
3724 case R_IA64_TPREL22:
3725 case R_IA64_DTPREL22:
3726 case R_IA64_LTOFF_TPREL22:
3727 case R_IA64_LTOFF_DTPMOD22:
3728 case R_IA64_LTOFF_DTPREL22:
3729 opnd = IA64_OPND_IMM22;
3730 break;
3731
3732 case R_IA64_IMM64:
3733 case R_IA64_GPREL64I:
3734 case R_IA64_LTOFF64I:
3735 case R_IA64_PLTOFF64I:
3736 case R_IA64_PCREL64I:
3737 case R_IA64_FPTR64I:
3738 case R_IA64_LTOFF_FPTR64I:
3739 case R_IA64_TPREL64I:
3740 case R_IA64_DTPREL64I:
3741 opnd = IA64_OPND_IMMU64;
3742 break;
3743
3744 /* Data relocations. */
3745
3746 case R_IA64_DIR32MSB:
3747 case R_IA64_GPREL32MSB:
3748 case R_IA64_FPTR32MSB:
3749 case R_IA64_PCREL32MSB:
3750 case R_IA64_LTOFF_FPTR32MSB:
3751 case R_IA64_SEGREL32MSB:
3752 case R_IA64_SECREL32MSB:
3753 case R_IA64_LTV32MSB:
3754 case R_IA64_DTPREL32MSB:
3755 size = 4; bigendian = 1;
3756 break;
3757
3758 case R_IA64_DIR32LSB:
3759 case R_IA64_GPREL32LSB:
3760 case R_IA64_FPTR32LSB:
3761 case R_IA64_PCREL32LSB:
3762 case R_IA64_LTOFF_FPTR32LSB:
3763 case R_IA64_SEGREL32LSB:
3764 case R_IA64_SECREL32LSB:
3765 case R_IA64_LTV32LSB:
3766 case R_IA64_DTPREL32LSB:
3767 size = 4; bigendian = 0;
3768 break;
3769
3770 case R_IA64_DIR64MSB:
3771 case R_IA64_GPREL64MSB:
3772 case R_IA64_PLTOFF64MSB:
3773 case R_IA64_FPTR64MSB:
3774 case R_IA64_PCREL64MSB:
3775 case R_IA64_LTOFF_FPTR64MSB:
3776 case R_IA64_SEGREL64MSB:
3777 case R_IA64_SECREL64MSB:
3778 case R_IA64_LTV64MSB:
3779 case R_IA64_TPREL64MSB:
3780 case R_IA64_DTPMOD64MSB:
3781 case R_IA64_DTPREL64MSB:
3782 size = 8; bigendian = 1;
3783 break;
3784
3785 case R_IA64_DIR64LSB:
3786 case R_IA64_GPREL64LSB:
3787 case R_IA64_PLTOFF64LSB:
3788 case R_IA64_FPTR64LSB:
3789 case R_IA64_PCREL64LSB:
3790 case R_IA64_LTOFF_FPTR64LSB:
3791 case R_IA64_SEGREL64LSB:
3792 case R_IA64_SECREL64LSB:
3793 case R_IA64_LTV64LSB:
3794 case R_IA64_TPREL64LSB:
3795 case R_IA64_DTPMOD64LSB:
3796 case R_IA64_DTPREL64LSB:
3797 size = 8; bigendian = 0;
3798 break;
3799
3800 /* Unsupported / Dynamic relocations. */
3801 default:
3802 return bfd_reloc_notsupported;
3803 }
3804
3805 switch (opnd)
3806 {
3807 case IA64_OPND_IMMU64:
3808 hit_addr -= (long) hit_addr & 0x3;
3809 t0 = bfd_getl64 (hit_addr);
3810 t1 = bfd_getl64 (hit_addr + 8);
3811
3812 /* tmpl/s: bits 0.. 5 in t0
3813 slot 0: bits 5..45 in t0
3814 slot 1: bits 46..63 in t0, bits 0..22 in t1
3815 slot 2: bits 23..63 in t1 */
3816
3817 /* First, clear the bits that form the 64 bit constant. */
3818 t0 &= ~(0x3ffffLL << 46);
3819 t1 &= ~(0x7fffffLL
3820 | (( (0x07fLL << 13) | (0x1ffLL << 27)
3821 | (0x01fLL << 22) | (0x001LL << 21)
3822 | (0x001LL << 36)) << 23));
3823
3824 t0 |= ((val >> 22) & 0x03ffffLL) << 46; /* 18 lsbs of imm41 */
3825 t1 |= ((val >> 40) & 0x7fffffLL) << 0; /* 23 msbs of imm41 */
3826 t1 |= ( (((val >> 0) & 0x07f) << 13) /* imm7b */
3827 | (((val >> 7) & 0x1ff) << 27) /* imm9d */
3828 | (((val >> 16) & 0x01f) << 22) /* imm5c */
3829 | (((val >> 21) & 0x001) << 21) /* ic */
3830 | (((val >> 63) & 0x001) << 36)) << 23; /* i */
3831
3832 bfd_putl64 (t0, hit_addr);
3833 bfd_putl64 (t1, hit_addr + 8);
3834 break;
3835
3836 case IA64_OPND_TGT64:
3837 hit_addr -= (long) hit_addr & 0x3;
3838 t0 = bfd_getl64 (hit_addr);
3839 t1 = bfd_getl64 (hit_addr + 8);
3840
3841 /* tmpl/s: bits 0.. 5 in t0
3842 slot 0: bits 5..45 in t0
3843 slot 1: bits 46..63 in t0, bits 0..22 in t1
3844 slot 2: bits 23..63 in t1 */
3845
3846 /* First, clear the bits that form the 64 bit constant. */
3847 t0 &= ~(0x3ffffLL << 46);
3848 t1 &= ~(0x7fffffLL
3849 | ((1LL << 36 | 0xfffffLL << 13) << 23));
3850
3851 val >>= 4;
3852 t0 |= ((val >> 20) & 0xffffLL) << 2 << 46; /* 16 lsbs of imm39 */
3853 t1 |= ((val >> 36) & 0x7fffffLL) << 0; /* 23 msbs of imm39 */
3854 t1 |= ((((val >> 0) & 0xfffffLL) << 13) /* imm20b */
3855 | (((val >> 59) & 0x1LL) << 36)) << 23; /* i */
3856
3857 bfd_putl64 (t0, hit_addr);
3858 bfd_putl64 (t1, hit_addr + 8);
3859 break;
3860
3861 default:
3862 switch ((long) hit_addr & 0x3)
3863 {
3864 case 0: shift = 5; break;
3865 case 1: shift = 14; hit_addr += 3; break;
3866 case 2: shift = 23; hit_addr += 6; break;
3867 case 3: return bfd_reloc_notsupported; /* shouldn't happen... */
3868 }
3869 dword = bfd_getl64 (hit_addr);
3870 insn = (dword >> shift) & 0x1ffffffffffLL;
3871
3872 op = elf64_ia64_operands + opnd;
3873 err = (*op->insert) (op, val, &insn);
3874 if (err)
3875 return bfd_reloc_overflow;
3876
3877 dword &= ~(0x1ffffffffffLL << shift);
3878 dword |= (insn << shift);
3879 bfd_putl64 (dword, hit_addr);
3880 break;
3881
3882 case IA64_OPND_NIL:
3883 /* A data relocation. */
3884 if (bigendian)
3885 if (size == 4)
3886 bfd_putb32 (val, hit_addr);
3887 else
3888 bfd_putb64 (val, hit_addr);
3889 else
3890 if (size == 4)
3891 bfd_putl32 (val, hit_addr);
3892 else
3893 bfd_putl64 (val, hit_addr);
3894 break;
3895 }
3896
3897 return bfd_reloc_ok;
3898 }
3899
3900 static void
3901 elfNN_ia64_install_dyn_reloc (bfd *abfd, struct bfd_link_info *info,
3902 asection *sec, asection *srel,
3903 bfd_vma offset, unsigned int type,
3904 long dynindx, bfd_vma addend)
3905 {
3906 Elf_Internal_Rela outrel;
3907 bfd_byte *loc;
3908
3909 BFD_ASSERT (dynindx != -1);
3910 outrel.r_info = ELFNN_R_INFO (dynindx, type);
3911 outrel.r_addend = addend;
3912 outrel.r_offset = _bfd_elf_section_offset (abfd, info, sec, offset);
3913 if (outrel.r_offset >= (bfd_vma) -2)
3914 {
3915 /* Run for the hills. We shouldn't be outputting a relocation
3916 for this. So do what everyone else does and output a no-op. */
3917 outrel.r_info = ELFNN_R_INFO (0, R_IA64_NONE);
3918 outrel.r_addend = 0;
3919 outrel.r_offset = 0;
3920 }
3921 else
3922 outrel.r_offset += sec->output_section->vma + sec->output_offset;
3923
3924 loc = srel->contents;
3925 loc += srel->reloc_count++ * sizeof (ElfNN_External_Rela);
3926 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
3927 BFD_ASSERT (sizeof (ElfNN_External_Rela) * srel->reloc_count <= srel->size);
3928 }
3929
3930 /* Store an entry for target address TARGET_ADDR in the linkage table
3931 and return the gp-relative address of the linkage table entry. */
3932
3933 static bfd_vma
3934 set_got_entry (bfd *abfd, struct bfd_link_info *info,
3935 struct elfNN_ia64_dyn_sym_info *dyn_i,
3936 long dynindx, bfd_vma addend, bfd_vma value,
3937 unsigned int dyn_r_type)
3938 {
3939 struct elfNN_ia64_link_hash_table *ia64_info;
3940 asection *got_sec;
3941 bfd_boolean done;
3942 bfd_vma got_offset;
3943
3944 ia64_info = elfNN_ia64_hash_table (info);
3945 got_sec = ia64_info->root.sgot;
3946
3947 switch (dyn_r_type)
3948 {
3949 case R_IA64_TPREL64LSB:
3950 done = dyn_i->tprel_done;
3951 dyn_i->tprel_done = TRUE;
3952 got_offset = dyn_i->tprel_offset;
3953 break;
3954 case R_IA64_DTPMOD64LSB:
3955 if (dyn_i->dtpmod_offset != ia64_info->self_dtpmod_offset)
3956 {
3957 done = dyn_i->dtpmod_done;
3958 dyn_i->dtpmod_done = TRUE;
3959 }
3960 else
3961 {
3962 done = ia64_info->self_dtpmod_done;
3963 ia64_info->self_dtpmod_done = TRUE;
3964 dynindx = 0;
3965 }
3966 got_offset = dyn_i->dtpmod_offset;
3967 break;
3968 case R_IA64_DTPREL32LSB:
3969 case R_IA64_DTPREL64LSB:
3970 done = dyn_i->dtprel_done;
3971 dyn_i->dtprel_done = TRUE;
3972 got_offset = dyn_i->dtprel_offset;
3973 break;
3974 default:
3975 done = dyn_i->got_done;
3976 dyn_i->got_done = TRUE;
3977 got_offset = dyn_i->got_offset;
3978 break;
3979 }
3980
3981 BFD_ASSERT ((got_offset & 7) == 0);
3982
3983 if (! done)
3984 {
3985 /* Store the target address in the linkage table entry. */
3986 bfd_put_64 (abfd, value, got_sec->contents + got_offset);
3987
3988 /* Install a dynamic relocation if needed. */
3989 if (((info->shared
3990 && (!dyn_i->h
3991 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
3992 || dyn_i->h->root.type != bfd_link_hash_undefweak)
3993 && dyn_r_type != R_IA64_DTPREL32LSB
3994 && dyn_r_type != R_IA64_DTPREL64LSB)
3995 || elfNN_ia64_dynamic_symbol_p (dyn_i->h, info, dyn_r_type)
3996 || (dynindx != -1
3997 && (dyn_r_type == R_IA64_FPTR32LSB
3998 || dyn_r_type == R_IA64_FPTR64LSB)))
3999 && (!dyn_i->want_ltoff_fptr
4000 || !info->pie
4001 || !dyn_i->h
4002 || dyn_i->h->root.type != bfd_link_hash_undefweak))
4003 {
4004 if (dynindx == -1
4005 && dyn_r_type != R_IA64_TPREL64LSB
4006 && dyn_r_type != R_IA64_DTPMOD64LSB
4007 && dyn_r_type != R_IA64_DTPREL32LSB
4008 && dyn_r_type != R_IA64_DTPREL64LSB)
4009 {
4010 dyn_r_type = R_IA64_RELNNLSB;
4011 dynindx = 0;
4012 addend = value;
4013 }
4014
4015 if (bfd_big_endian (abfd))
4016 {
4017 switch (dyn_r_type)
4018 {
4019 case R_IA64_REL32LSB:
4020 dyn_r_type = R_IA64_REL32MSB;
4021 break;
4022 case R_IA64_DIR32LSB:
4023 dyn_r_type = R_IA64_DIR32MSB;
4024 break;
4025 case R_IA64_FPTR32LSB:
4026 dyn_r_type = R_IA64_FPTR32MSB;
4027 break;
4028 case R_IA64_DTPREL32LSB:
4029 dyn_r_type = R_IA64_DTPREL32MSB;
4030 break;
4031 case R_IA64_REL64LSB:
4032 dyn_r_type = R_IA64_REL64MSB;
4033 break;
4034 case R_IA64_DIR64LSB:
4035 dyn_r_type = R_IA64_DIR64MSB;
4036 break;
4037 case R_IA64_FPTR64LSB:
4038 dyn_r_type = R_IA64_FPTR64MSB;
4039 break;
4040 case R_IA64_TPREL64LSB:
4041 dyn_r_type = R_IA64_TPREL64MSB;
4042 break;
4043 case R_IA64_DTPMOD64LSB:
4044 dyn_r_type = R_IA64_DTPMOD64MSB;
4045 break;
4046 case R_IA64_DTPREL64LSB:
4047 dyn_r_type = R_IA64_DTPREL64MSB;
4048 break;
4049 default:
4050 BFD_ASSERT (FALSE);
4051 break;
4052 }
4053 }
4054
4055 elfNN_ia64_install_dyn_reloc (abfd, NULL, got_sec,
4056 ia64_info->root.srelgot,
4057 got_offset, dyn_r_type,
4058 dynindx, addend);
4059 }
4060 }
4061
4062 /* Return the address of the linkage table entry. */
4063 value = (got_sec->output_section->vma
4064 + got_sec->output_offset
4065 + got_offset);
4066
4067 return value;
4068 }
4069
4070 /* Fill in a function descriptor consisting of the function's code
4071 address and its global pointer. Return the descriptor's address. */
4072
4073 static bfd_vma
4074 set_fptr_entry (bfd *abfd, struct bfd_link_info *info,
4075 struct elfNN_ia64_dyn_sym_info *dyn_i,
4076 bfd_vma value)
4077 {
4078 struct elfNN_ia64_link_hash_table *ia64_info;
4079 asection *fptr_sec;
4080
4081 ia64_info = elfNN_ia64_hash_table (info);
4082 fptr_sec = ia64_info->fptr_sec;
4083
4084 if (!dyn_i->fptr_done)
4085 {
4086 dyn_i->fptr_done = 1;
4087
4088 /* Fill in the function descriptor. */
4089 bfd_put_64 (abfd, value, fptr_sec->contents + dyn_i->fptr_offset);
4090 bfd_put_64 (abfd, _bfd_get_gp_value (abfd),
4091 fptr_sec->contents + dyn_i->fptr_offset + 8);
4092 if (ia64_info->rel_fptr_sec)
4093 {
4094 Elf_Internal_Rela outrel;
4095 bfd_byte *loc;
4096
4097 if (bfd_little_endian (abfd))
4098 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTLSB);
4099 else
4100 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTMSB);
4101 outrel.r_addend = value;
4102 outrel.r_offset = (fptr_sec->output_section->vma
4103 + fptr_sec->output_offset
4104 + dyn_i->fptr_offset);
4105 loc = ia64_info->rel_fptr_sec->contents;
4106 loc += ia64_info->rel_fptr_sec->reloc_count++
4107 * sizeof (ElfNN_External_Rela);
4108 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
4109 }
4110 }
4111
4112 /* Return the descriptor's address. */
4113 value = (fptr_sec->output_section->vma
4114 + fptr_sec->output_offset
4115 + dyn_i->fptr_offset);
4116
4117 return value;
4118 }
4119
4120 /* Fill in a PLTOFF entry consisting of the function's code address
4121 and its global pointer. Return the descriptor's address. */
4122
4123 static bfd_vma
4124 set_pltoff_entry (bfd *abfd, struct bfd_link_info *info,
4125 struct elfNN_ia64_dyn_sym_info *dyn_i,
4126 bfd_vma value, bfd_boolean is_plt)
4127 {
4128 struct elfNN_ia64_link_hash_table *ia64_info;
4129 asection *pltoff_sec;
4130
4131 ia64_info = elfNN_ia64_hash_table (info);
4132 pltoff_sec = ia64_info->pltoff_sec;
4133
4134 /* Don't do anything if this symbol uses a real PLT entry. In
4135 that case, we'll fill this in during finish_dynamic_symbol. */
4136 if ((! dyn_i->want_plt || is_plt)
4137 && !dyn_i->pltoff_done)
4138 {
4139 bfd_vma gp = _bfd_get_gp_value (abfd);
4140
4141 /* Fill in the function descriptor. */
4142 bfd_put_64 (abfd, value, pltoff_sec->contents + dyn_i->pltoff_offset);
4143 bfd_put_64 (abfd, gp, pltoff_sec->contents + dyn_i->pltoff_offset + 8);
4144
4145 /* Install dynamic relocations if needed. */
4146 if (!is_plt
4147 && info->shared
4148 && (!dyn_i->h
4149 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
4150 || dyn_i->h->root.type != bfd_link_hash_undefweak))
4151 {
4152 unsigned int dyn_r_type;
4153
4154 if (bfd_big_endian (abfd))
4155 dyn_r_type = R_IA64_RELNNMSB;
4156 else
4157 dyn_r_type = R_IA64_RELNNLSB;
4158
4159 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
4160 ia64_info->rel_pltoff_sec,
4161 dyn_i->pltoff_offset,
4162 dyn_r_type, 0, value);
4163 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
4164 ia64_info->rel_pltoff_sec,
4165 dyn_i->pltoff_offset + ARCH_SIZE / 8,
4166 dyn_r_type, 0, gp);
4167 }
4168
4169 dyn_i->pltoff_done = 1;
4170 }
4171
4172 /* Return the descriptor's address. */
4173 value = (pltoff_sec->output_section->vma
4174 + pltoff_sec->output_offset
4175 + dyn_i->pltoff_offset);
4176
4177 return value;
4178 }
4179
4180 /* Return the base VMA address which should be subtracted from real addresses
4181 when resolving @tprel() relocation.
4182 Main program TLS (whose template starts at PT_TLS p_vaddr)
4183 is assigned offset round(2 * size of pointer, PT_TLS p_align). */
4184
4185 static bfd_vma
4186 elfNN_ia64_tprel_base (struct bfd_link_info *info)
4187 {
4188 asection *tls_sec = elf_hash_table (info)->tls_sec;
4189 return tls_sec->vma - align_power ((bfd_vma) ARCH_SIZE / 4,
4190 tls_sec->alignment_power);
4191 }
4192
4193 /* Return the base VMA address which should be subtracted from real addresses
4194 when resolving @dtprel() relocation.
4195 This is PT_TLS segment p_vaddr. */
4196
4197 static bfd_vma
4198 elfNN_ia64_dtprel_base (struct bfd_link_info *info)
4199 {
4200 return elf_hash_table (info)->tls_sec->vma;
4201 }
4202
4203 /* Called through qsort to sort the .IA_64.unwind section during a
4204 non-relocatable link. Set elfNN_ia64_unwind_entry_compare_bfd
4205 to the output bfd so we can do proper endianness frobbing. */
4206
4207 static bfd *elfNN_ia64_unwind_entry_compare_bfd;
4208
4209 static int
4210 elfNN_ia64_unwind_entry_compare (const PTR a, const PTR b)
4211 {
4212 bfd_vma av, bv;
4213
4214 av = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, a);
4215 bv = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, b);
4216
4217 return (av < bv ? -1 : av > bv ? 1 : 0);
4218 }
4219
4220 /* Make sure we've got ourselves a nice fat __gp value. */
4221 static bfd_boolean
4222 elfNN_ia64_choose_gp (bfd *abfd, struct bfd_link_info *info)
4223 {
4224 bfd_vma min_vma = (bfd_vma) -1, max_vma = 0;
4225 bfd_vma min_short_vma = min_vma, max_short_vma = 0;
4226 struct elf_link_hash_entry *gp;
4227 bfd_vma gp_val;
4228 asection *os;
4229 struct elfNN_ia64_link_hash_table *ia64_info;
4230
4231 ia64_info = elfNN_ia64_hash_table (info);
4232
4233 /* Find the min and max vma of all sections marked short. Also collect
4234 min and max vma of any type, for use in selecting a nice gp. */
4235 for (os = abfd->sections; os ; os = os->next)
4236 {
4237 bfd_vma lo, hi;
4238
4239 if ((os->flags & SEC_ALLOC) == 0)
4240 continue;
4241
4242 lo = os->vma;
4243 hi = os->vma + (os->rawsize ? os->rawsize : os->size);
4244 if (hi < lo)
4245 hi = (bfd_vma) -1;
4246
4247 if (min_vma > lo)
4248 min_vma = lo;
4249 if (max_vma < hi)
4250 max_vma = hi;
4251 if (os->flags & SEC_SMALL_DATA)
4252 {
4253 if (min_short_vma > lo)
4254 min_short_vma = lo;
4255 if (max_short_vma < hi)
4256 max_short_vma = hi;
4257 }
4258 }
4259
4260 /* See if the user wants to force a value. */
4261 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
4262 FALSE, FALSE);
4263
4264 if (gp
4265 && (gp->root.type == bfd_link_hash_defined
4266 || gp->root.type == bfd_link_hash_defweak))
4267 {
4268 asection *gp_sec = gp->root.u.def.section;
4269 gp_val = (gp->root.u.def.value
4270 + gp_sec->output_section->vma
4271 + gp_sec->output_offset);
4272 }
4273 else
4274 {
4275 /* Pick a sensible value. */
4276
4277 asection *got_sec = ia64_info->root.sgot;
4278
4279 /* Start with just the address of the .got. */
4280 if (got_sec)
4281 gp_val = got_sec->output_section->vma;
4282 else if (max_short_vma != 0)
4283 gp_val = min_short_vma;
4284 else if (max_vma - min_vma < 0x200000)
4285 gp_val = min_vma;
4286 else
4287 gp_val = max_vma - 0x200000 + 8;
4288
4289 /* If it is possible to address the entire image, but we
4290 don't with the choice above, adjust. */
4291 if (max_vma - min_vma < 0x400000
4292 && (max_vma - gp_val >= 0x200000
4293 || gp_val - min_vma > 0x200000))
4294 gp_val = min_vma + 0x200000;
4295 else if (max_short_vma != 0)
4296 {
4297 /* If we don't cover all the short data, adjust. */
4298 if (max_short_vma - gp_val >= 0x200000)
4299 gp_val = min_short_vma + 0x200000;
4300
4301 /* If we're addressing stuff past the end, adjust back. */
4302 if (gp_val > max_vma)
4303 gp_val = max_vma - 0x200000 + 8;
4304 }
4305 }
4306
4307 /* Validate whether all SHF_IA_64_SHORT sections are within
4308 range of the chosen GP. */
4309
4310 if (max_short_vma != 0)
4311 {
4312 if (max_short_vma - min_short_vma >= 0x400000)
4313 {
4314 (*_bfd_error_handler)
4315 (_("%s: short data segment overflowed (0x%lx >= 0x400000)"),
4316 bfd_get_filename (abfd),
4317 (unsigned long) (max_short_vma - min_short_vma));
4318 return FALSE;
4319 }
4320 else if ((gp_val > min_short_vma
4321 && gp_val - min_short_vma > 0x200000)
4322 || (gp_val < max_short_vma
4323 && max_short_vma - gp_val >= 0x200000))
4324 {
4325 (*_bfd_error_handler)
4326 (_("%s: __gp does not cover short data segment"),
4327 bfd_get_filename (abfd));
4328 return FALSE;
4329 }
4330 }
4331
4332 _bfd_set_gp_value (abfd, gp_val);
4333
4334 return TRUE;
4335 }
4336
4337 static bfd_boolean
4338 elfNN_ia64_final_link (bfd *abfd, struct bfd_link_info *info)
4339 {
4340 struct elfNN_ia64_link_hash_table *ia64_info;
4341 asection *unwind_output_sec;
4342
4343 ia64_info = elfNN_ia64_hash_table (info);
4344
4345 /* Make sure we've got ourselves a nice fat __gp value. */
4346 if (!info->relocatable)
4347 {
4348 bfd_vma gp_val;
4349 struct elf_link_hash_entry *gp;
4350
4351 /* We assume after gp is set, section size will only decrease. We
4352 need to adjust gp for it. */
4353 _bfd_set_gp_value (abfd, 0);
4354 if (! elfNN_ia64_choose_gp (abfd, info))
4355 return FALSE;
4356 gp_val = _bfd_get_gp_value (abfd);
4357
4358 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
4359 FALSE, FALSE);
4360 if (gp)
4361 {
4362 gp->root.type = bfd_link_hash_defined;
4363 gp->root.u.def.value = gp_val;
4364 gp->root.u.def.section = bfd_abs_section_ptr;
4365 }
4366 }
4367
4368 /* If we're producing a final executable, we need to sort the contents
4369 of the .IA_64.unwind section. Force this section to be relocated
4370 into memory rather than written immediately to the output file. */
4371 unwind_output_sec = NULL;
4372 if (!info->relocatable)
4373 {
4374 asection *s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_unwind);
4375 if (s)
4376 {
4377 unwind_output_sec = s->output_section;
4378 unwind_output_sec->contents
4379 = bfd_malloc (unwind_output_sec->size);
4380 if (unwind_output_sec->contents == NULL)
4381 return FALSE;
4382 }
4383 }
4384
4385 /* Invoke the regular ELF backend linker to do all the work. */
4386 if (!bfd_elf_final_link (abfd, info))
4387 return FALSE;
4388
4389 if (unwind_output_sec)
4390 {
4391 elfNN_ia64_unwind_entry_compare_bfd = abfd;
4392 qsort (unwind_output_sec->contents,
4393 (size_t) (unwind_output_sec->size / 24),
4394 24,
4395 elfNN_ia64_unwind_entry_compare);
4396
4397 if (! bfd_set_section_contents (abfd, unwind_output_sec,
4398 unwind_output_sec->contents, (bfd_vma) 0,
4399 unwind_output_sec->size))
4400 return FALSE;
4401 }
4402
4403 return TRUE;
4404 }
4405
4406 static bfd_boolean
4407 elfNN_ia64_relocate_section (bfd *output_bfd,
4408 struct bfd_link_info *info,
4409 bfd *input_bfd,
4410 asection *input_section,
4411 bfd_byte *contents,
4412 Elf_Internal_Rela *relocs,
4413 Elf_Internal_Sym *local_syms,
4414 asection **local_sections)
4415 {
4416 struct elfNN_ia64_link_hash_table *ia64_info;
4417 Elf_Internal_Shdr *symtab_hdr;
4418 Elf_Internal_Rela *rel;
4419 Elf_Internal_Rela *relend;
4420 asection *srel;
4421 bfd_boolean ret_val = TRUE; /* for non-fatal errors */
4422 bfd_vma gp_val;
4423
4424 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4425 ia64_info = elfNN_ia64_hash_table (info);
4426
4427 /* Infect various flags from the input section to the output section. */
4428 if (info->relocatable)
4429 {
4430 bfd_vma flags;
4431
4432 flags = elf_section_data(input_section)->this_hdr.sh_flags;
4433 flags &= SHF_IA_64_NORECOV;
4434
4435 elf_section_data(input_section->output_section)
4436 ->this_hdr.sh_flags |= flags;
4437 }
4438
4439 gp_val = _bfd_get_gp_value (output_bfd);
4440 srel = get_reloc_section (input_bfd, ia64_info, input_section, FALSE);
4441
4442 rel = relocs;
4443 relend = relocs + input_section->reloc_count;
4444 for (; rel < relend; ++rel)
4445 {
4446 struct elf_link_hash_entry *h;
4447 struct elfNN_ia64_dyn_sym_info *dyn_i;
4448 bfd_reloc_status_type r;
4449 reloc_howto_type *howto;
4450 unsigned long r_symndx;
4451 Elf_Internal_Sym *sym;
4452 unsigned int r_type;
4453 bfd_vma value;
4454 asection *sym_sec;
4455 bfd_byte *hit_addr;
4456 bfd_boolean dynamic_symbol_p;
4457 bfd_boolean undef_weak_ref;
4458
4459 r_type = ELFNN_R_TYPE (rel->r_info);
4460 if (r_type > R_IA64_MAX_RELOC_CODE)
4461 {
4462 (*_bfd_error_handler)
4463 (_("%B: unknown relocation type %d"),
4464 input_bfd, (int) r_type);
4465 bfd_set_error (bfd_error_bad_value);
4466 ret_val = FALSE;
4467 continue;
4468 }
4469
4470 howto = lookup_howto (r_type);
4471 r_symndx = ELFNN_R_SYM (rel->r_info);
4472 h = NULL;
4473 sym = NULL;
4474 sym_sec = NULL;
4475 undef_weak_ref = FALSE;
4476
4477 if (r_symndx < symtab_hdr->sh_info)
4478 {
4479 /* Reloc against local symbol. */
4480 asection *msec;
4481 sym = local_syms + r_symndx;
4482 sym_sec = local_sections[r_symndx];
4483 msec = sym_sec;
4484 value = _bfd_elf_rela_local_sym (output_bfd, sym, &msec, rel);
4485 if (!info->relocatable
4486 && (sym_sec->flags & SEC_MERGE) != 0
4487 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
4488 && sym_sec->sec_info_type == ELF_INFO_TYPE_MERGE)
4489 {
4490 struct elfNN_ia64_local_hash_entry *loc_h;
4491
4492 loc_h = get_local_sym_hash (ia64_info, input_bfd, rel, FALSE);
4493 if (loc_h && ! loc_h->sec_merge_done)
4494 {
4495 struct elfNN_ia64_dyn_sym_info *dynent;
4496 unsigned int count;
4497
4498 for (count = loc_h->count, dynent = loc_h->info;
4499 count != 0;
4500 count--, dynent++)
4501 {
4502 msec = sym_sec;
4503 dynent->addend =
4504 _bfd_merged_section_offset (output_bfd, &msec,
4505 elf_section_data (msec)->
4506 sec_info,
4507 sym->st_value
4508 + dynent->addend);
4509 dynent->addend -= sym->st_value;
4510 dynent->addend += msec->output_section->vma
4511 + msec->output_offset
4512 - sym_sec->output_section->vma
4513 - sym_sec->output_offset;
4514 }
4515
4516 /* We may have introduced duplicated entries. We need
4517 to remove them properly. */
4518 count = sort_dyn_sym_info (loc_h->info, loc_h->count);
4519 if (count != loc_h->count)
4520 {
4521 loc_h->count = count;
4522 loc_h->sorted_count = count;
4523 }
4524
4525 loc_h->sec_merge_done = 1;
4526 }
4527 }
4528 }
4529 else
4530 {
4531 bfd_boolean unresolved_reloc;
4532 bfd_boolean warned;
4533 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
4534
4535 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4536 r_symndx, symtab_hdr, sym_hashes,
4537 h, sym_sec, value,
4538 unresolved_reloc, warned);
4539
4540 if (h->root.type == bfd_link_hash_undefweak)
4541 undef_weak_ref = TRUE;
4542 else if (warned)
4543 continue;
4544 }
4545
4546 /* For relocs against symbols from removed linkonce sections,
4547 or sections discarded by a linker script, we just want the
4548 section contents zeroed. Avoid any special processing. */
4549 if (sym_sec != NULL && elf_discarded_section (sym_sec))
4550 {
4551 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
4552 rel->r_info = 0;
4553 rel->r_addend = 0;
4554 continue;
4555 }
4556
4557 if (info->relocatable)
4558 continue;
4559
4560 hit_addr = contents + rel->r_offset;
4561 value += rel->r_addend;
4562 dynamic_symbol_p = elfNN_ia64_dynamic_symbol_p (h, info, r_type);
4563
4564 switch (r_type)
4565 {
4566 case R_IA64_NONE:
4567 case R_IA64_LDXMOV:
4568 continue;
4569
4570 case R_IA64_IMM14:
4571 case R_IA64_IMM22:
4572 case R_IA64_IMM64:
4573 case R_IA64_DIR32MSB:
4574 case R_IA64_DIR32LSB:
4575 case R_IA64_DIR64MSB:
4576 case R_IA64_DIR64LSB:
4577 /* Install a dynamic relocation for this reloc. */
4578 if ((dynamic_symbol_p || info->shared)
4579 && r_symndx != 0
4580 && (input_section->flags & SEC_ALLOC) != 0)
4581 {
4582 unsigned int dyn_r_type;
4583 long dynindx;
4584 bfd_vma addend;
4585
4586 BFD_ASSERT (srel != NULL);
4587
4588 switch (r_type)
4589 {
4590 case R_IA64_IMM14:
4591 case R_IA64_IMM22:
4592 case R_IA64_IMM64:
4593 /* ??? People shouldn't be doing non-pic code in
4594 shared libraries nor dynamic executables. */
4595 (*_bfd_error_handler)
4596 (_("%B: non-pic code with imm relocation against dynamic symbol `%s'"),
4597 input_bfd,
4598 h ? h->root.root.string
4599 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4600 sym_sec));
4601 ret_val = FALSE;
4602 continue;
4603
4604 default:
4605 break;
4606 }
4607
4608 /* If we don't need dynamic symbol lookup, find a
4609 matching RELATIVE relocation. */
4610 dyn_r_type = r_type;
4611 if (dynamic_symbol_p)
4612 {
4613 dynindx = h->dynindx;
4614 addend = rel->r_addend;
4615 value = 0;
4616 }
4617 else
4618 {
4619 switch (r_type)
4620 {
4621 case R_IA64_DIR32MSB:
4622 dyn_r_type = R_IA64_REL32MSB;
4623 break;
4624 case R_IA64_DIR32LSB:
4625 dyn_r_type = R_IA64_REL32LSB;
4626 break;
4627 case R_IA64_DIR64MSB:
4628 dyn_r_type = R_IA64_REL64MSB;
4629 break;
4630 case R_IA64_DIR64LSB:
4631 dyn_r_type = R_IA64_REL64LSB;
4632 break;
4633
4634 default:
4635 break;
4636 }
4637 dynindx = 0;
4638 addend = value;
4639 }
4640
4641 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4642 srel, rel->r_offset, dyn_r_type,
4643 dynindx, addend);
4644 }
4645 /* Fall through. */
4646
4647 case R_IA64_LTV32MSB:
4648 case R_IA64_LTV32LSB:
4649 case R_IA64_LTV64MSB:
4650 case R_IA64_LTV64LSB:
4651 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4652 break;
4653
4654 case R_IA64_GPREL22:
4655 case R_IA64_GPREL64I:
4656 case R_IA64_GPREL32MSB:
4657 case R_IA64_GPREL32LSB:
4658 case R_IA64_GPREL64MSB:
4659 case R_IA64_GPREL64LSB:
4660 if (dynamic_symbol_p)
4661 {
4662 (*_bfd_error_handler)
4663 (_("%B: @gprel relocation against dynamic symbol %s"),
4664 input_bfd,
4665 h ? h->root.root.string
4666 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4667 sym_sec));
4668 ret_val = FALSE;
4669 continue;
4670 }
4671 value -= gp_val;
4672 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4673 break;
4674
4675 case R_IA64_LTOFF22:
4676 case R_IA64_LTOFF22X:
4677 case R_IA64_LTOFF64I:
4678 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4679 value = set_got_entry (input_bfd, info, dyn_i, (h ? h->dynindx : -1),
4680 rel->r_addend, value, R_IA64_DIRNNLSB);
4681 value -= gp_val;
4682 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4683 break;
4684
4685 case R_IA64_PLTOFF22:
4686 case R_IA64_PLTOFF64I:
4687 case R_IA64_PLTOFF64MSB:
4688 case R_IA64_PLTOFF64LSB:
4689 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4690 value = set_pltoff_entry (output_bfd, info, dyn_i, value, FALSE);
4691 value -= gp_val;
4692 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4693 break;
4694
4695 case R_IA64_FPTR64I:
4696 case R_IA64_FPTR32MSB:
4697 case R_IA64_FPTR32LSB:
4698 case R_IA64_FPTR64MSB:
4699 case R_IA64_FPTR64LSB:
4700 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4701 if (dyn_i->want_fptr)
4702 {
4703 if (!undef_weak_ref)
4704 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4705 }
4706 if (!dyn_i->want_fptr || info->pie)
4707 {
4708 long dynindx;
4709 unsigned int dyn_r_type = r_type;
4710 bfd_vma addend = rel->r_addend;
4711
4712 /* Otherwise, we expect the dynamic linker to create
4713 the entry. */
4714
4715 if (dyn_i->want_fptr)
4716 {
4717 if (r_type == R_IA64_FPTR64I)
4718 {
4719 /* We can't represent this without a dynamic symbol.
4720 Adjust the relocation to be against an output
4721 section symbol, which are always present in the
4722 dynamic symbol table. */
4723 /* ??? People shouldn't be doing non-pic code in
4724 shared libraries. Hork. */
4725 (*_bfd_error_handler)
4726 (_("%B: linking non-pic code in a position independent executable"),
4727 input_bfd);
4728 ret_val = FALSE;
4729 continue;
4730 }
4731 dynindx = 0;
4732 addend = value;
4733 dyn_r_type = r_type + R_IA64_RELNNLSB - R_IA64_FPTRNNLSB;
4734 }
4735 else if (h)
4736 {
4737 if (h->dynindx != -1)
4738 dynindx = h->dynindx;
4739 else
4740 dynindx = (_bfd_elf_link_lookup_local_dynindx
4741 (info, h->root.u.def.section->owner,
4742 global_sym_index (h)));
4743 value = 0;
4744 }
4745 else
4746 {
4747 dynindx = (_bfd_elf_link_lookup_local_dynindx
4748 (info, input_bfd, (long) r_symndx));
4749 value = 0;
4750 }
4751
4752 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4753 srel, rel->r_offset, dyn_r_type,
4754 dynindx, addend);
4755 }
4756
4757 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4758 break;
4759
4760 case R_IA64_LTOFF_FPTR22:
4761 case R_IA64_LTOFF_FPTR64I:
4762 case R_IA64_LTOFF_FPTR32MSB:
4763 case R_IA64_LTOFF_FPTR32LSB:
4764 case R_IA64_LTOFF_FPTR64MSB:
4765 case R_IA64_LTOFF_FPTR64LSB:
4766 {
4767 long dynindx;
4768
4769 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4770 if (dyn_i->want_fptr)
4771 {
4772 BFD_ASSERT (h == NULL || h->dynindx == -1);
4773 if (!undef_weak_ref)
4774 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4775 dynindx = -1;
4776 }
4777 else
4778 {
4779 /* Otherwise, we expect the dynamic linker to create
4780 the entry. */
4781 if (h)
4782 {
4783 if (h->dynindx != -1)
4784 dynindx = h->dynindx;
4785 else
4786 dynindx = (_bfd_elf_link_lookup_local_dynindx
4787 (info, h->root.u.def.section->owner,
4788 global_sym_index (h)));
4789 }
4790 else
4791 dynindx = (_bfd_elf_link_lookup_local_dynindx
4792 (info, input_bfd, (long) r_symndx));
4793 value = 0;
4794 }
4795
4796 value = set_got_entry (output_bfd, info, dyn_i, dynindx,
4797 rel->r_addend, value, R_IA64_FPTRNNLSB);
4798 value -= gp_val;
4799 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4800 }
4801 break;
4802
4803 case R_IA64_PCREL32MSB:
4804 case R_IA64_PCREL32LSB:
4805 case R_IA64_PCREL64MSB:
4806 case R_IA64_PCREL64LSB:
4807 /* Install a dynamic relocation for this reloc. */
4808 if (dynamic_symbol_p && r_symndx != 0)
4809 {
4810 BFD_ASSERT (srel != NULL);
4811
4812 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4813 srel, rel->r_offset, r_type,
4814 h->dynindx, rel->r_addend);
4815 }
4816 goto finish_pcrel;
4817
4818 case R_IA64_PCREL21B:
4819 case R_IA64_PCREL60B:
4820 /* We should have created a PLT entry for any dynamic symbol. */
4821 dyn_i = NULL;
4822 if (h)
4823 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4824
4825 if (dyn_i && dyn_i->want_plt2)
4826 {
4827 /* Should have caught this earlier. */
4828 BFD_ASSERT (rel->r_addend == 0);
4829
4830 value = (ia64_info->root.splt->output_section->vma
4831 + ia64_info->root.splt->output_offset
4832 + dyn_i->plt2_offset);
4833 }
4834 else
4835 {
4836 /* Since there's no PLT entry, Validate that this is
4837 locally defined. */
4838 BFD_ASSERT (undef_weak_ref || sym_sec->output_section != NULL);
4839
4840 /* If the symbol is undef_weak, we shouldn't be trying
4841 to call it. There's every chance that we'd wind up
4842 with an out-of-range fixup here. Don't bother setting
4843 any value at all. */
4844 if (undef_weak_ref)
4845 continue;
4846 }
4847 goto finish_pcrel;
4848
4849 case R_IA64_PCREL21BI:
4850 case R_IA64_PCREL21F:
4851 case R_IA64_PCREL21M:
4852 case R_IA64_PCREL22:
4853 case R_IA64_PCREL64I:
4854 /* The PCREL21BI reloc is specifically not intended for use with
4855 dynamic relocs. PCREL21F and PCREL21M are used for speculation
4856 fixup code, and thus probably ought not be dynamic. The
4857 PCREL22 and PCREL64I relocs aren't emitted as dynamic relocs. */
4858 if (dynamic_symbol_p)
4859 {
4860 const char *msg;
4861
4862 if (r_type == R_IA64_PCREL21BI)
4863 msg = _("%B: @internal branch to dynamic symbol %s");
4864 else if (r_type == R_IA64_PCREL21F || r_type == R_IA64_PCREL21M)
4865 msg = _("%B: speculation fixup to dynamic symbol %s");
4866 else
4867 msg = _("%B: @pcrel relocation against dynamic symbol %s");
4868 (*_bfd_error_handler) (msg, input_bfd,
4869 h ? h->root.root.string
4870 : bfd_elf_sym_name (input_bfd,
4871 symtab_hdr,
4872 sym,
4873 sym_sec));
4874 ret_val = FALSE;
4875 continue;
4876 }
4877 goto finish_pcrel;
4878
4879 finish_pcrel:
4880 /* Make pc-relative. */
4881 value -= (input_section->output_section->vma
4882 + input_section->output_offset
4883 + rel->r_offset) & ~ (bfd_vma) 0x3;
4884 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4885 break;
4886
4887 case R_IA64_SEGREL32MSB:
4888 case R_IA64_SEGREL32LSB:
4889 case R_IA64_SEGREL64MSB:
4890 case R_IA64_SEGREL64LSB:
4891 {
4892 /* Find the segment that contains the output_section. */
4893 Elf_Internal_Phdr *p = _bfd_elf_find_segment_containing_section
4894 (output_bfd, input_section->output_section);
4895
4896 if (p == NULL)
4897 {
4898 r = bfd_reloc_notsupported;
4899 }
4900 else
4901 {
4902 /* The VMA of the segment is the vaddr of the associated
4903 program header. */
4904 if (value > p->p_vaddr)
4905 value -= p->p_vaddr;
4906 else
4907 value = 0;
4908 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4909 }
4910 break;
4911 }
4912
4913 case R_IA64_SECREL32MSB:
4914 case R_IA64_SECREL32LSB:
4915 case R_IA64_SECREL64MSB:
4916 case R_IA64_SECREL64LSB:
4917 /* Make output-section relative to section where the symbol
4918 is defined. PR 475 */
4919 if (sym_sec)
4920 value -= sym_sec->output_section->vma;
4921 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4922 break;
4923
4924 case R_IA64_IPLTMSB:
4925 case R_IA64_IPLTLSB:
4926 /* Install a dynamic relocation for this reloc. */
4927 if ((dynamic_symbol_p || info->shared)
4928 && (input_section->flags & SEC_ALLOC) != 0)
4929 {
4930 BFD_ASSERT (srel != NULL);
4931
4932 /* If we don't need dynamic symbol lookup, install two
4933 RELATIVE relocations. */
4934 if (!dynamic_symbol_p)
4935 {
4936 unsigned int dyn_r_type;
4937
4938 if (r_type == R_IA64_IPLTMSB)
4939 dyn_r_type = R_IA64_REL64MSB;
4940 else
4941 dyn_r_type = R_IA64_REL64LSB;
4942
4943 elfNN_ia64_install_dyn_reloc (output_bfd, info,
4944 input_section,
4945 srel, rel->r_offset,
4946 dyn_r_type, 0, value);
4947 elfNN_ia64_install_dyn_reloc (output_bfd, info,
4948 input_section,
4949 srel, rel->r_offset + 8,
4950 dyn_r_type, 0, gp_val);
4951 }
4952 else
4953 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4954 srel, rel->r_offset, r_type,
4955 h->dynindx, rel->r_addend);
4956 }
4957
4958 if (r_type == R_IA64_IPLTMSB)
4959 r_type = R_IA64_DIR64MSB;
4960 else
4961 r_type = R_IA64_DIR64LSB;
4962 elfNN_ia64_install_value (hit_addr, value, r_type);
4963 r = elfNN_ia64_install_value (hit_addr + 8, gp_val, r_type);
4964 break;
4965
4966 case R_IA64_TPREL14:
4967 case R_IA64_TPREL22:
4968 case R_IA64_TPREL64I:
4969 if (elf_hash_table (info)->tls_sec == NULL)
4970 goto missing_tls_sec;
4971 value -= elfNN_ia64_tprel_base (info);
4972 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4973 break;
4974
4975 case R_IA64_DTPREL14:
4976 case R_IA64_DTPREL22:
4977 case R_IA64_DTPREL64I:
4978 case R_IA64_DTPREL32LSB:
4979 case R_IA64_DTPREL32MSB:
4980 case R_IA64_DTPREL64LSB:
4981 case R_IA64_DTPREL64MSB:
4982 if (elf_hash_table (info)->tls_sec == NULL)
4983 goto missing_tls_sec;
4984 value -= elfNN_ia64_dtprel_base (info);
4985 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4986 break;
4987
4988 case R_IA64_LTOFF_TPREL22:
4989 case R_IA64_LTOFF_DTPMOD22:
4990 case R_IA64_LTOFF_DTPREL22:
4991 {
4992 int got_r_type;
4993 long dynindx = h ? h->dynindx : -1;
4994 bfd_vma r_addend = rel->r_addend;
4995
4996 switch (r_type)
4997 {
4998 default:
4999 case R_IA64_LTOFF_TPREL22:
5000 if (!dynamic_symbol_p)
5001 {
5002 if (elf_hash_table (info)->tls_sec == NULL)
5003 goto missing_tls_sec;
5004 if (!info->shared)
5005 value -= elfNN_ia64_tprel_base (info);
5006 else
5007 {
5008 r_addend += value - elfNN_ia64_dtprel_base (info);
5009 dynindx = 0;
5010 }
5011 }
5012 got_r_type = R_IA64_TPREL64LSB;
5013 break;
5014 case R_IA64_LTOFF_DTPMOD22:
5015 if (!dynamic_symbol_p && !info->shared)
5016 value = 1;
5017 got_r_type = R_IA64_DTPMOD64LSB;
5018 break;
5019 case R_IA64_LTOFF_DTPREL22:
5020 if (!dynamic_symbol_p)
5021 {
5022 if (elf_hash_table (info)->tls_sec == NULL)
5023 goto missing_tls_sec;
5024 value -= elfNN_ia64_dtprel_base (info);
5025 }
5026 got_r_type = R_IA64_DTPRELNNLSB;
5027 break;
5028 }
5029 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
5030 value = set_got_entry (input_bfd, info, dyn_i, dynindx, r_addend,
5031 value, got_r_type);
5032 value -= gp_val;
5033 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5034 }
5035 break;
5036
5037 default:
5038 r = bfd_reloc_notsupported;
5039 break;
5040 }
5041
5042 switch (r)
5043 {
5044 case bfd_reloc_ok:
5045 break;
5046
5047 case bfd_reloc_undefined:
5048 /* This can happen for global table relative relocs if
5049 __gp is undefined. This is a panic situation so we
5050 don't try to continue. */
5051 (*info->callbacks->undefined_symbol)
5052 (info, "__gp", input_bfd, input_section, rel->r_offset, 1);
5053 return FALSE;
5054
5055 case bfd_reloc_notsupported:
5056 {
5057 const char *name;
5058
5059 if (h)
5060 name = h->root.root.string;
5061 else
5062 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5063 sym_sec);
5064 if (!(*info->callbacks->warning) (info, _("unsupported reloc"),
5065 name, input_bfd,
5066 input_section, rel->r_offset))
5067 return FALSE;
5068 ret_val = FALSE;
5069 }
5070 break;
5071
5072 case bfd_reloc_dangerous:
5073 case bfd_reloc_outofrange:
5074 case bfd_reloc_overflow:
5075 default:
5076 missing_tls_sec:
5077 {
5078 const char *name;
5079
5080 if (h)
5081 name = h->root.root.string;
5082 else
5083 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5084 sym_sec);
5085
5086 switch (r_type)
5087 {
5088 case R_IA64_TPREL14:
5089 case R_IA64_TPREL22:
5090 case R_IA64_TPREL64I:
5091 case R_IA64_DTPREL14:
5092 case R_IA64_DTPREL22:
5093 case R_IA64_DTPREL64I:
5094 case R_IA64_DTPREL32LSB:
5095 case R_IA64_DTPREL32MSB:
5096 case R_IA64_DTPREL64LSB:
5097 case R_IA64_DTPREL64MSB:
5098 case R_IA64_LTOFF_TPREL22:
5099 case R_IA64_LTOFF_DTPMOD22:
5100 case R_IA64_LTOFF_DTPREL22:
5101 (*_bfd_error_handler)
5102 (_("%B: missing TLS section for relocation %s against `%s' at 0x%lx in section `%A'."),
5103 input_bfd, input_section, howto->name, name,
5104 rel->r_offset);
5105 break;
5106
5107 case R_IA64_PCREL21B:
5108 case R_IA64_PCREL21BI:
5109 case R_IA64_PCREL21M:
5110 case R_IA64_PCREL21F:
5111 if (is_elf_hash_table (info->hash))
5112 {
5113 /* Relaxtion is always performed for ELF output.
5114 Overflow failures for those relocations mean
5115 that the section is too big to relax. */
5116 (*_bfd_error_handler)
5117 (_("%B: Can't relax br (%s) to `%s' at 0x%lx in section `%A' with size 0x%lx (> 0x1000000)."),
5118 input_bfd, input_section, howto->name, name,
5119 rel->r_offset, input_section->size);
5120 break;
5121 }
5122 default:
5123 if (!(*info->callbacks->reloc_overflow) (info,
5124 &h->root,
5125 name,
5126 howto->name,
5127 (bfd_vma) 0,
5128 input_bfd,
5129 input_section,
5130 rel->r_offset))
5131 return FALSE;
5132 break;
5133 }
5134
5135 ret_val = FALSE;
5136 }
5137 break;
5138 }
5139 }
5140
5141 return ret_val;
5142 }
5143
5144 static bfd_boolean
5145 elfNN_ia64_finish_dynamic_symbol (bfd *output_bfd,
5146 struct bfd_link_info *info,
5147 struct elf_link_hash_entry *h,
5148 Elf_Internal_Sym *sym)
5149 {
5150 struct elfNN_ia64_link_hash_table *ia64_info;
5151 struct elfNN_ia64_dyn_sym_info *dyn_i;
5152
5153 ia64_info = elfNN_ia64_hash_table (info);
5154 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
5155
5156 /* Fill in the PLT data, if required. */
5157 if (dyn_i && dyn_i->want_plt)
5158 {
5159 Elf_Internal_Rela outrel;
5160 bfd_byte *loc;
5161 asection *plt_sec;
5162 bfd_vma plt_addr, pltoff_addr, gp_val, index;
5163
5164 gp_val = _bfd_get_gp_value (output_bfd);
5165
5166 /* Initialize the minimal PLT entry. */
5167
5168 index = (dyn_i->plt_offset - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
5169 plt_sec = ia64_info->root.splt;
5170 loc = plt_sec->contents + dyn_i->plt_offset;
5171
5172 memcpy (loc, plt_min_entry, PLT_MIN_ENTRY_SIZE);
5173 elfNN_ia64_install_value (loc, index, R_IA64_IMM22);
5174 elfNN_ia64_install_value (loc+2, -dyn_i->plt_offset, R_IA64_PCREL21B);
5175
5176 plt_addr = (plt_sec->output_section->vma
5177 + plt_sec->output_offset
5178 + dyn_i->plt_offset);
5179 pltoff_addr = set_pltoff_entry (output_bfd, info, dyn_i, plt_addr, TRUE);
5180
5181 /* Initialize the FULL PLT entry, if needed. */
5182 if (dyn_i->want_plt2)
5183 {
5184 loc = plt_sec->contents + dyn_i->plt2_offset;
5185
5186 memcpy (loc, plt_full_entry, PLT_FULL_ENTRY_SIZE);
5187 elfNN_ia64_install_value (loc, pltoff_addr - gp_val, R_IA64_IMM22);
5188
5189 /* Mark the symbol as undefined, rather than as defined in the
5190 plt section. Leave the value alone. */
5191 /* ??? We didn't redefine it in adjust_dynamic_symbol in the
5192 first place. But perhaps elflink.c did some for us. */
5193 if (!h->def_regular)
5194 sym->st_shndx = SHN_UNDEF;
5195 }
5196
5197 /* Create the dynamic relocation. */
5198 outrel.r_offset = pltoff_addr;
5199 if (bfd_little_endian (output_bfd))
5200 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTLSB);
5201 else
5202 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTMSB);
5203 outrel.r_addend = 0;
5204
5205 /* This is fun. In the .IA_64.pltoff section, we've got entries
5206 that correspond both to real PLT entries, and those that
5207 happened to resolve to local symbols but need to be created
5208 to satisfy @pltoff relocations. The .rela.IA_64.pltoff
5209 relocations for the real PLT should come at the end of the
5210 section, so that they can be indexed by plt entry at runtime.
5211
5212 We emitted all of the relocations for the non-PLT @pltoff
5213 entries during relocate_section. So we can consider the
5214 existing sec->reloc_count to be the base of the array of
5215 PLT relocations. */
5216
5217 loc = ia64_info->rel_pltoff_sec->contents;
5218 loc += ((ia64_info->rel_pltoff_sec->reloc_count + index)
5219 * sizeof (ElfNN_External_Rela));
5220 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5221 }
5222
5223 /* Mark some specially defined symbols as absolute. */
5224 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
5225 || h == ia64_info->root.hgot
5226 || h == ia64_info->root.hplt)
5227 sym->st_shndx = SHN_ABS;
5228
5229 return TRUE;
5230 }
5231
5232 static bfd_boolean
5233 elfNN_ia64_finish_dynamic_sections (bfd *abfd,
5234 struct bfd_link_info *info)
5235 {
5236 struct elfNN_ia64_link_hash_table *ia64_info;
5237 bfd *dynobj;
5238
5239 ia64_info = elfNN_ia64_hash_table (info);
5240 dynobj = ia64_info->root.dynobj;
5241
5242 if (elf_hash_table (info)->dynamic_sections_created)
5243 {
5244 ElfNN_External_Dyn *dyncon, *dynconend;
5245 asection *sdyn, *sgotplt;
5246 bfd_vma gp_val;
5247
5248 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
5249 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
5250 BFD_ASSERT (sdyn != NULL);
5251 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
5252 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
5253
5254 gp_val = _bfd_get_gp_value (abfd);
5255
5256 for (; dyncon < dynconend; dyncon++)
5257 {
5258 Elf_Internal_Dyn dyn;
5259
5260 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
5261
5262 switch (dyn.d_tag)
5263 {
5264 case DT_PLTGOT:
5265 dyn.d_un.d_ptr = gp_val;
5266 break;
5267
5268 case DT_PLTRELSZ:
5269 dyn.d_un.d_val = (ia64_info->minplt_entries
5270 * sizeof (ElfNN_External_Rela));
5271 break;
5272
5273 case DT_JMPREL:
5274 /* See the comment above in finish_dynamic_symbol. */
5275 dyn.d_un.d_ptr = (ia64_info->rel_pltoff_sec->output_section->vma
5276 + ia64_info->rel_pltoff_sec->output_offset
5277 + (ia64_info->rel_pltoff_sec->reloc_count
5278 * sizeof (ElfNN_External_Rela)));
5279 break;
5280
5281 case DT_IA_64_PLT_RESERVE:
5282 dyn.d_un.d_ptr = (sgotplt->output_section->vma
5283 + sgotplt->output_offset);
5284 break;
5285
5286 case DT_RELASZ:
5287 /* Do not have RELASZ include JMPREL. This makes things
5288 easier on ld.so. This is not what the rest of BFD set up. */
5289 dyn.d_un.d_val -= (ia64_info->minplt_entries
5290 * sizeof (ElfNN_External_Rela));
5291 break;
5292 }
5293
5294 bfd_elfNN_swap_dyn_out (abfd, &dyn, dyncon);
5295 }
5296
5297 /* Initialize the PLT0 entry. */
5298 if (ia64_info->root.splt)
5299 {
5300 bfd_byte *loc = ia64_info->root.splt->contents;
5301 bfd_vma pltres;
5302
5303 memcpy (loc, plt_header, PLT_HEADER_SIZE);
5304
5305 pltres = (sgotplt->output_section->vma
5306 + sgotplt->output_offset
5307 - gp_val);
5308
5309 elfNN_ia64_install_value (loc+1, pltres, R_IA64_GPREL22);
5310 }
5311 }
5312
5313 return TRUE;
5314 }
5315 \f
5316 /* ELF file flag handling: */
5317
5318 /* Function to keep IA-64 specific file flags. */
5319 static bfd_boolean
5320 elfNN_ia64_set_private_flags (bfd *abfd, flagword flags)
5321 {
5322 BFD_ASSERT (!elf_flags_init (abfd)
5323 || elf_elfheader (abfd)->e_flags == flags);
5324
5325 elf_elfheader (abfd)->e_flags = flags;
5326 elf_flags_init (abfd) = TRUE;
5327 return TRUE;
5328 }
5329
5330 /* Merge backend specific data from an object file to the output
5331 object file when linking. */
5332 static bfd_boolean
5333 elfNN_ia64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5334 {
5335 flagword out_flags;
5336 flagword in_flags;
5337 bfd_boolean ok = TRUE;
5338
5339 /* Don't even pretend to support mixed-format linking. */
5340 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5341 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5342 return FALSE;
5343
5344 in_flags = elf_elfheader (ibfd)->e_flags;
5345 out_flags = elf_elfheader (obfd)->e_flags;
5346
5347 if (! elf_flags_init (obfd))
5348 {
5349 elf_flags_init (obfd) = TRUE;
5350 elf_elfheader (obfd)->e_flags = in_flags;
5351
5352 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
5353 && bfd_get_arch_info (obfd)->the_default)
5354 {
5355 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
5356 bfd_get_mach (ibfd));
5357 }
5358
5359 return TRUE;
5360 }
5361
5362 /* Check flag compatibility. */
5363 if (in_flags == out_flags)
5364 return TRUE;
5365
5366 /* Output has EF_IA_64_REDUCEDFP set only if all inputs have it set. */
5367 if (!(in_flags & EF_IA_64_REDUCEDFP) && (out_flags & EF_IA_64_REDUCEDFP))
5368 elf_elfheader (obfd)->e_flags &= ~EF_IA_64_REDUCEDFP;
5369
5370 if ((in_flags & EF_IA_64_TRAPNIL) != (out_flags & EF_IA_64_TRAPNIL))
5371 {
5372 (*_bfd_error_handler)
5373 (_("%B: linking trap-on-NULL-dereference with non-trapping files"),
5374 ibfd);
5375
5376 bfd_set_error (bfd_error_bad_value);
5377 ok = FALSE;
5378 }
5379 if ((in_flags & EF_IA_64_BE) != (out_flags & EF_IA_64_BE))
5380 {
5381 (*_bfd_error_handler)
5382 (_("%B: linking big-endian files with little-endian files"),
5383 ibfd);
5384
5385 bfd_set_error (bfd_error_bad_value);
5386 ok = FALSE;
5387 }
5388 if ((in_flags & EF_IA_64_ABI64) != (out_flags & EF_IA_64_ABI64))
5389 {
5390 (*_bfd_error_handler)
5391 (_("%B: linking 64-bit files with 32-bit files"),
5392 ibfd);
5393
5394 bfd_set_error (bfd_error_bad_value);
5395 ok = FALSE;
5396 }
5397 if ((in_flags & EF_IA_64_CONS_GP) != (out_flags & EF_IA_64_CONS_GP))
5398 {
5399 (*_bfd_error_handler)
5400 (_("%B: linking constant-gp files with non-constant-gp files"),
5401 ibfd);
5402
5403 bfd_set_error (bfd_error_bad_value);
5404 ok = FALSE;
5405 }
5406 if ((in_flags & EF_IA_64_NOFUNCDESC_CONS_GP)
5407 != (out_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
5408 {
5409 (*_bfd_error_handler)
5410 (_("%B: linking auto-pic files with non-auto-pic files"),
5411 ibfd);
5412
5413 bfd_set_error (bfd_error_bad_value);
5414 ok = FALSE;
5415 }
5416
5417 return ok;
5418 }
5419
5420 static bfd_boolean
5421 elfNN_ia64_print_private_bfd_data (bfd *abfd, PTR ptr)
5422 {
5423 FILE *file = (FILE *) ptr;
5424 flagword flags = elf_elfheader (abfd)->e_flags;
5425
5426 BFD_ASSERT (abfd != NULL && ptr != NULL);
5427
5428 fprintf (file, "private flags = %s%s%s%s%s%s%s%s\n",
5429 (flags & EF_IA_64_TRAPNIL) ? "TRAPNIL, " : "",
5430 (flags & EF_IA_64_EXT) ? "EXT, " : "",
5431 (flags & EF_IA_64_BE) ? "BE, " : "LE, ",
5432 (flags & EF_IA_64_REDUCEDFP) ? "REDUCEDFP, " : "",
5433 (flags & EF_IA_64_CONS_GP) ? "CONS_GP, " : "",
5434 (flags & EF_IA_64_NOFUNCDESC_CONS_GP) ? "NOFUNCDESC_CONS_GP, " : "",
5435 (flags & EF_IA_64_ABSOLUTE) ? "ABSOLUTE, " : "",
5436 (flags & EF_IA_64_ABI64) ? "ABI64" : "ABI32");
5437
5438 _bfd_elf_print_private_bfd_data (abfd, ptr);
5439 return TRUE;
5440 }
5441
5442 static enum elf_reloc_type_class
5443 elfNN_ia64_reloc_type_class (const Elf_Internal_Rela *rela)
5444 {
5445 switch ((int) ELFNN_R_TYPE (rela->r_info))
5446 {
5447 case R_IA64_REL32MSB:
5448 case R_IA64_REL32LSB:
5449 case R_IA64_REL64MSB:
5450 case R_IA64_REL64LSB:
5451 return reloc_class_relative;
5452 case R_IA64_IPLTMSB:
5453 case R_IA64_IPLTLSB:
5454 return reloc_class_plt;
5455 case R_IA64_COPY:
5456 return reloc_class_copy;
5457 default:
5458 return reloc_class_normal;
5459 }
5460 }
5461
5462 static const struct bfd_elf_special_section elfNN_ia64_special_sections[] =
5463 {
5464 { STRING_COMMA_LEN (".sbss"), -1, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5465 { STRING_COMMA_LEN (".sdata"), -1, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5466 { NULL, 0, 0, 0, 0 }
5467 };
5468
5469 static bfd_boolean
5470 elfNN_ia64_object_p (bfd *abfd)
5471 {
5472 asection *sec;
5473 asection *group, *unwi, *unw;
5474 flagword flags;
5475 const char *name;
5476 char *unwi_name, *unw_name;
5477 bfd_size_type amt;
5478
5479 if (abfd->flags & DYNAMIC)
5480 return TRUE;
5481
5482 /* Flags for fake group section. */
5483 flags = (SEC_LINKER_CREATED | SEC_GROUP | SEC_LINK_ONCE
5484 | SEC_EXCLUDE);
5485
5486 /* We add a fake section group for each .gnu.linkonce.t.* section,
5487 which isn't in a section group, and its unwind sections. */
5488 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5489 {
5490 if (elf_sec_group (sec) == NULL
5491 && ((sec->flags & (SEC_LINK_ONCE | SEC_CODE | SEC_GROUP))
5492 == (SEC_LINK_ONCE | SEC_CODE))
5493 && CONST_STRNEQ (sec->name, ".gnu.linkonce.t."))
5494 {
5495 name = sec->name + 16;
5496
5497 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unwi.");
5498 unwi_name = bfd_alloc (abfd, amt);
5499 if (!unwi_name)
5500 return FALSE;
5501
5502 strcpy (stpcpy (unwi_name, ".gnu.linkonce.ia64unwi."), name);
5503 unwi = bfd_get_section_by_name (abfd, unwi_name);
5504
5505 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unw.");
5506 unw_name = bfd_alloc (abfd, amt);
5507 if (!unw_name)
5508 return FALSE;
5509
5510 strcpy (stpcpy (unw_name, ".gnu.linkonce.ia64unw."), name);
5511 unw = bfd_get_section_by_name (abfd, unw_name);
5512
5513 /* We need to create a fake group section for it and its
5514 unwind sections. */
5515 group = bfd_make_section_anyway_with_flags (abfd, name,
5516 flags);
5517 if (group == NULL)
5518 return FALSE;
5519
5520 /* Move the fake group section to the beginning. */
5521 bfd_section_list_remove (abfd, group);
5522 bfd_section_list_prepend (abfd, group);
5523
5524 elf_next_in_group (group) = sec;
5525
5526 elf_group_name (sec) = name;
5527 elf_next_in_group (sec) = sec;
5528 elf_sec_group (sec) = group;
5529
5530 if (unwi)
5531 {
5532 elf_group_name (unwi) = name;
5533 elf_next_in_group (unwi) = sec;
5534 elf_next_in_group (sec) = unwi;
5535 elf_sec_group (unwi) = group;
5536 }
5537
5538 if (unw)
5539 {
5540 elf_group_name (unw) = name;
5541 if (unwi)
5542 {
5543 elf_next_in_group (unw) = elf_next_in_group (unwi);
5544 elf_next_in_group (unwi) = unw;
5545 }
5546 else
5547 {
5548 elf_next_in_group (unw) = sec;
5549 elf_next_in_group (sec) = unw;
5550 }
5551 elf_sec_group (unw) = group;
5552 }
5553
5554 /* Fake SHT_GROUP section header. */
5555 elf_section_data (group)->this_hdr.bfd_section = group;
5556 elf_section_data (group)->this_hdr.sh_type = SHT_GROUP;
5557 }
5558 }
5559 return TRUE;
5560 }
5561
5562 static bfd_boolean
5563 elfNN_ia64_hpux_vec (const bfd_target *vec)
5564 {
5565 extern const bfd_target bfd_elfNN_ia64_hpux_big_vec;
5566 return (vec == & bfd_elfNN_ia64_hpux_big_vec);
5567 }
5568
5569 static void
5570 elfNN_hpux_post_process_headers (bfd *abfd,
5571 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5572 {
5573 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5574
5575 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
5576 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
5577 }
5578
5579 static bfd_boolean
5580 elfNN_hpux_backend_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5581 asection *sec, int *retval)
5582 {
5583 if (bfd_is_com_section (sec))
5584 {
5585 *retval = SHN_IA_64_ANSI_COMMON;
5586 return TRUE;
5587 }
5588 return FALSE;
5589 }
5590
5591 static void
5592 elfNN_hpux_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5593 asymbol *asym)
5594 {
5595 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5596
5597 switch (elfsym->internal_elf_sym.st_shndx)
5598 {
5599 case SHN_IA_64_ANSI_COMMON:
5600 asym->section = bfd_com_section_ptr;
5601 asym->value = elfsym->internal_elf_sym.st_size;
5602 asym->flags &= ~BSF_GLOBAL;
5603 break;
5604 }
5605 }
5606
5607 static bfd_boolean
5608 elfNN_vms_section_from_shdr (bfd *abfd,
5609 Elf_Internal_Shdr *hdr,
5610 const char *name,
5611 int shindex)
5612 {
5613 asection *newsect;
5614
5615 switch (hdr->sh_type)
5616 {
5617 case SHT_IA_64_VMS_TRACE:
5618 case SHT_IA_64_VMS_DEBUG:
5619 case SHT_IA_64_VMS_DEBUG_STR:
5620 break;
5621
5622 default:
5623 return elfNN_ia64_section_from_shdr (abfd, hdr, name, shindex);
5624 }
5625
5626 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5627 return FALSE;
5628 newsect = hdr->bfd_section;
5629
5630 return TRUE;
5631 }
5632
5633 static bfd_boolean
5634 elfNN_vms_object_p (bfd *abfd)
5635 {
5636 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5637 Elf_Internal_Phdr *i_phdr = elf_tdata (abfd)->phdr;
5638 unsigned int i;
5639 unsigned int num_text = 0;
5640 unsigned int num_data = 0;
5641 unsigned int num_rodata = 0;
5642 char name[16];
5643
5644 if (!elfNN_ia64_object_p (abfd))
5645 return FALSE;
5646
5647 for (i = 0; i < i_ehdrp->e_phnum; i++, i_phdr++)
5648 {
5649 /* Is there a section for this segment? */
5650 bfd_vma base_vma = i_phdr->p_vaddr;
5651 bfd_vma limit_vma = base_vma + i_phdr->p_filesz;
5652
5653 if (i_phdr->p_type != PT_LOAD)
5654 continue;
5655
5656 again:
5657 while (base_vma < limit_vma)
5658 {
5659 bfd_vma next_vma = limit_vma;
5660 asection *nsec;
5661 asection *sec;
5662 flagword flags;
5663 char *nname = NULL;
5664
5665 /* Find a section covering base_vma. */
5666 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5667 {
5668 if ((sec->flags & (SEC_ALLOC | SEC_LOAD)) == 0)
5669 continue;
5670 if (sec->vma <= base_vma && sec->vma + sec->size > base_vma)
5671 {
5672 base_vma = sec->vma + sec->size;
5673 goto again;
5674 }
5675 if (sec->vma < next_vma && sec->vma + sec->size >= base_vma)
5676 next_vma = sec->vma;
5677 }
5678
5679 /* No section covering [base_vma; next_vma). Create a fake one. */
5680 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS;
5681 if (i_phdr->p_flags & PF_X)
5682 {
5683 flags |= SEC_CODE;
5684 if (num_text++ == 0)
5685 nname = ".text";
5686 else
5687 sprintf (name, ".text$%u", num_text);
5688 }
5689 else if ((i_phdr->p_flags & (PF_R | PF_W)) == PF_R)
5690 {
5691 flags |= SEC_READONLY;
5692 sprintf (name, ".rodata$%u", num_rodata++);
5693 }
5694 else
5695 {
5696 flags |= SEC_DATA;
5697 sprintf (name, ".data$%u", num_data++);
5698 }
5699
5700 /* Allocate name. */
5701 if (nname == NULL)
5702 {
5703 size_t name_len = strlen (name) + 1;
5704 nname = bfd_alloc (abfd, name_len);
5705 if (nname == NULL)
5706 return FALSE;
5707 memcpy (nname, name, name_len);
5708 }
5709
5710 /* Create and fill new section. */
5711 nsec = bfd_make_section_anyway_with_flags (abfd, nname, flags);
5712 if (nsec == NULL)
5713 return FALSE;
5714 nsec->vma = base_vma;
5715 nsec->size = next_vma - base_vma;
5716 nsec->filepos = i_phdr->p_offset + (base_vma - i_phdr->p_vaddr);
5717
5718 base_vma = next_vma;
5719 }
5720 }
5721 return TRUE;
5722 }
5723
5724 static void
5725 elfNN_vms_post_process_headers (bfd *abfd,
5726 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5727 {
5728 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5729
5730 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_OPENVMS;
5731 i_ehdrp->e_ident[EI_ABIVERSION] = 2;
5732 }
5733
5734 static bfd_boolean
5735 elfNN_vms_section_processing (bfd *abfd ATTRIBUTE_UNUSED,
5736 Elf_Internal_Shdr *hdr)
5737 {
5738 if (hdr->bfd_section != NULL)
5739 {
5740 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5741
5742 if (strcmp (name, ".text") == 0)
5743 hdr->sh_flags |= SHF_IA_64_VMS_SHARED;
5744 else if ((strcmp (name, ".debug") == 0)
5745 || (strcmp (name, ".debug_abbrev") == 0)
5746 || (strcmp (name, ".debug_aranges") == 0)
5747 || (strcmp (name, ".debug_frame") == 0)
5748 || (strcmp (name, ".debug_info") == 0)
5749 || (strcmp (name, ".debug_loc") == 0)
5750 || (strcmp (name, ".debug_macinfo") == 0)
5751 || (strcmp (name, ".debug_pubnames") == 0)
5752 || (strcmp (name, ".debug_pubtypes") == 0))
5753 hdr->sh_type = SHT_IA_64_VMS_DEBUG;
5754 else if ((strcmp (name, ".debug_line") == 0)
5755 || (strcmp (name, ".debug_ranges") == 0))
5756 hdr->sh_type = SHT_IA_64_VMS_TRACE;
5757 else if (strcmp (name, ".debug_str") == 0)
5758 hdr->sh_type = SHT_IA_64_VMS_DEBUG_STR;
5759 else if (strcmp (name, ".vms_display_name_info") == 0)
5760 {
5761 int idx, symcount;
5762 asymbol **syms;
5763 struct elf_obj_tdata *t = elf_tdata (abfd);
5764 int buf[2];
5765 int demangler_sym_idx = -1;
5766
5767 symcount = bfd_get_symcount (abfd);
5768 syms = bfd_get_outsymbols (abfd);
5769 for (idx = 0; idx < symcount; idx++)
5770 {
5771 asymbol *sym;
5772 sym = syms[idx];
5773 if ((sym->flags & (BSF_DEBUGGING | BSF_DYNAMIC))
5774 && strchr (sym->name, '@')
5775 && (strcmp (sym->section->name, BFD_ABS_SECTION_NAME) == 0))
5776 {
5777 demangler_sym_idx = sym->udata.i;
5778 break;
5779 }
5780 }
5781
5782 hdr->sh_type = SHT_IA_64_VMS_DISPLAY_NAME_INFO;
5783 hdr->sh_entsize = 4;
5784 hdr->sh_addralign = 0;
5785 hdr->sh_link = t->symtab_section;
5786
5787 /* Find symtab index of demangler routine and stuff it in
5788 the second long word of section data. */
5789
5790 if (demangler_sym_idx > -1)
5791 {
5792 bfd_seek (abfd, hdr->sh_offset, SEEK_SET);
5793 bfd_bread (buf, hdr->sh_size, abfd);
5794 buf [1] = demangler_sym_idx;
5795 bfd_seek (abfd, hdr->sh_offset, SEEK_SET);
5796 bfd_bwrite (buf, hdr->sh_size, abfd);
5797 }
5798 }
5799 }
5800
5801 return TRUE;
5802 }
5803
5804 /* The final processing done just before writing out a VMS IA-64 ELF
5805 object file. */
5806
5807 static void
5808 elfNN_vms_final_write_processing (bfd *abfd,
5809 bfd_boolean linker ATTRIBUTE_UNUSED)
5810 {
5811 Elf_Internal_Shdr *hdr;
5812 asection *s;
5813 int unwind_info_sect_idx = 0;
5814
5815 for (s = abfd->sections; s; s = s->next)
5816 {
5817 hdr = &elf_section_data (s)->this_hdr;
5818
5819 if (strcmp (bfd_get_section_name (abfd, hdr->bfd_section),
5820 ".IA_64.unwind_info") == 0)
5821 unwind_info_sect_idx = elf_section_data (s)->this_idx;
5822
5823 switch (hdr->sh_type)
5824 {
5825 case SHT_IA_64_UNWIND:
5826 /* VMS requires sh_info to point to the unwind info section. */
5827 hdr->sh_info = unwind_info_sect_idx;
5828 break;
5829 }
5830 }
5831
5832 if (! elf_flags_init (abfd))
5833 {
5834 unsigned long flags = 0;
5835
5836 if (abfd->xvec->byteorder == BFD_ENDIAN_BIG)
5837 flags |= EF_IA_64_BE;
5838 if (bfd_get_mach (abfd) == bfd_mach_ia64_elf64)
5839 flags |= EF_IA_64_ABI64;
5840
5841 elf_elfheader(abfd)->e_flags = flags;
5842 elf_flags_init (abfd) = TRUE;
5843 }
5844 }
5845
5846 static bfd_boolean
5847 elfNN_vms_close_and_cleanup (bfd *abfd)
5848 {
5849 if (bfd_get_format (abfd) == bfd_object)
5850 {
5851 long isize, irsize;
5852
5853 if (elf_shstrtab (abfd) != NULL)
5854 _bfd_elf_strtab_free (elf_shstrtab (abfd));
5855
5856 /* Pad to 8 byte boundary for IPF/VMS. */
5857 isize = bfd_get_size (abfd);
5858 if ((irsize = isize/8*8) < isize)
5859 {
5860 int ishort = (irsize + 8) - isize;
5861 bfd_seek (abfd, isize, SEEK_SET);
5862 bfd_bwrite (bfd_zmalloc (ishort), ishort, abfd);
5863 }
5864 }
5865
5866 return _bfd_generic_close_and_cleanup (abfd);
5867 }
5868 \f
5869 #define TARGET_LITTLE_SYM bfd_elfNN_ia64_little_vec
5870 #define TARGET_LITTLE_NAME "elfNN-ia64-little"
5871 #define TARGET_BIG_SYM bfd_elfNN_ia64_big_vec
5872 #define TARGET_BIG_NAME "elfNN-ia64-big"
5873 #define ELF_ARCH bfd_arch_ia64
5874 #define ELF_MACHINE_CODE EM_IA_64
5875 #define ELF_MACHINE_ALT1 1999 /* EAS2.3 */
5876 #define ELF_MACHINE_ALT2 1998 /* EAS2.2 */
5877 #define ELF_MAXPAGESIZE 0x10000 /* 64KB */
5878 #define ELF_COMMONPAGESIZE 0x4000 /* 16KB */
5879
5880 #define elf_backend_section_from_shdr \
5881 elfNN_ia64_section_from_shdr
5882 #define elf_backend_section_flags \
5883 elfNN_ia64_section_flags
5884 #define elf_backend_fake_sections \
5885 elfNN_ia64_fake_sections
5886 #define elf_backend_final_write_processing \
5887 elfNN_ia64_final_write_processing
5888 #define elf_backend_add_symbol_hook \
5889 elfNN_ia64_add_symbol_hook
5890 #define elf_backend_additional_program_headers \
5891 elfNN_ia64_additional_program_headers
5892 #define elf_backend_modify_segment_map \
5893 elfNN_ia64_modify_segment_map
5894 #define elf_backend_modify_program_headers \
5895 elfNN_ia64_modify_program_headers
5896 #define elf_info_to_howto \
5897 elfNN_ia64_info_to_howto
5898
5899 #define bfd_elfNN_bfd_reloc_type_lookup \
5900 elfNN_ia64_reloc_type_lookup
5901 #define bfd_elfNN_bfd_reloc_name_lookup \
5902 elfNN_ia64_reloc_name_lookup
5903 #define bfd_elfNN_bfd_is_local_label_name \
5904 elfNN_ia64_is_local_label_name
5905 #define bfd_elfNN_bfd_relax_section \
5906 elfNN_ia64_relax_section
5907
5908 #define elf_backend_object_p \
5909 elfNN_ia64_object_p
5910
5911 /* Stuff for the BFD linker: */
5912 #define bfd_elfNN_bfd_link_hash_table_create \
5913 elfNN_ia64_hash_table_create
5914 #define bfd_elfNN_bfd_link_hash_table_free \
5915 elfNN_ia64_hash_table_free
5916 #define elf_backend_create_dynamic_sections \
5917 elfNN_ia64_create_dynamic_sections
5918 #define elf_backend_check_relocs \
5919 elfNN_ia64_check_relocs
5920 #define elf_backend_adjust_dynamic_symbol \
5921 elfNN_ia64_adjust_dynamic_symbol
5922 #define elf_backend_size_dynamic_sections \
5923 elfNN_ia64_size_dynamic_sections
5924 #define elf_backend_omit_section_dynsym \
5925 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
5926 #define elf_backend_relocate_section \
5927 elfNN_ia64_relocate_section
5928 #define elf_backend_finish_dynamic_symbol \
5929 elfNN_ia64_finish_dynamic_symbol
5930 #define elf_backend_finish_dynamic_sections \
5931 elfNN_ia64_finish_dynamic_sections
5932 #define bfd_elfNN_bfd_final_link \
5933 elfNN_ia64_final_link
5934
5935 #define bfd_elfNN_bfd_merge_private_bfd_data \
5936 elfNN_ia64_merge_private_bfd_data
5937 #define bfd_elfNN_bfd_set_private_flags \
5938 elfNN_ia64_set_private_flags
5939 #define bfd_elfNN_bfd_print_private_bfd_data \
5940 elfNN_ia64_print_private_bfd_data
5941
5942 #define elf_backend_plt_readonly 1
5943 #define elf_backend_want_plt_sym 0
5944 #define elf_backend_plt_alignment 5
5945 #define elf_backend_got_header_size 0
5946 #define elf_backend_want_got_plt 1
5947 #define elf_backend_may_use_rel_p 1
5948 #define elf_backend_may_use_rela_p 1
5949 #define elf_backend_default_use_rela_p 1
5950 #define elf_backend_want_dynbss 0
5951 #define elf_backend_copy_indirect_symbol elfNN_ia64_hash_copy_indirect
5952 #define elf_backend_hide_symbol elfNN_ia64_hash_hide_symbol
5953 #define elf_backend_fixup_symbol _bfd_elf_link_hash_fixup_symbol
5954 #define elf_backend_reloc_type_class elfNN_ia64_reloc_type_class
5955 #define elf_backend_rela_normal 1
5956 #define elf_backend_special_sections elfNN_ia64_special_sections
5957 #define elf_backend_default_execstack 0
5958
5959 /* FIXME: PR 290: The Intel C compiler generates SHT_IA_64_UNWIND with
5960 SHF_LINK_ORDER. But it doesn't set the sh_link or sh_info fields.
5961 We don't want to flood users with so many error messages. We turn
5962 off the warning for now. It will be turned on later when the Intel
5963 compiler is fixed. */
5964 #define elf_backend_link_order_error_handler NULL
5965
5966 #include "elfNN-target.h"
5967
5968 /* HPUX-specific vectors. */
5969
5970 #undef TARGET_LITTLE_SYM
5971 #undef TARGET_LITTLE_NAME
5972 #undef TARGET_BIG_SYM
5973 #define TARGET_BIG_SYM bfd_elfNN_ia64_hpux_big_vec
5974 #undef TARGET_BIG_NAME
5975 #define TARGET_BIG_NAME "elfNN-ia64-hpux-big"
5976
5977 /* These are HP-UX specific functions. */
5978
5979 #undef elf_backend_post_process_headers
5980 #define elf_backend_post_process_headers elfNN_hpux_post_process_headers
5981
5982 #undef elf_backend_section_from_bfd_section
5983 #define elf_backend_section_from_bfd_section elfNN_hpux_backend_section_from_bfd_section
5984
5985 #undef elf_backend_symbol_processing
5986 #define elf_backend_symbol_processing elfNN_hpux_backend_symbol_processing
5987
5988 #undef elf_backend_want_p_paddr_set_to_zero
5989 #define elf_backend_want_p_paddr_set_to_zero 1
5990
5991 #undef ELF_COMMONPAGESIZE
5992 #undef ELF_OSABI
5993 #define ELF_OSABI ELFOSABI_HPUX
5994
5995 #undef elfNN_bed
5996 #define elfNN_bed elfNN_ia64_hpux_bed
5997
5998 #include "elfNN-target.h"
5999
6000 /* VMS-specific vectors. */
6001
6002 #undef TARGET_LITTLE_SYM
6003 #define TARGET_LITTLE_SYM bfd_elfNN_ia64_vms_vec
6004 #undef TARGET_LITTLE_NAME
6005 #define TARGET_LITTLE_NAME "elfNN-ia64-vms"
6006 #undef TARGET_BIG_SYM
6007 #undef TARGET_BIG_NAME
6008
6009 /* These are VMS specific functions. */
6010
6011 #undef elf_backend_object_p
6012 #define elf_backend_object_p elfNN_vms_object_p
6013
6014 #undef elf_backend_section_from_shdr
6015 #define elf_backend_section_from_shdr elfNN_vms_section_from_shdr
6016
6017 #undef elf_backend_post_process_headers
6018 #define elf_backend_post_process_headers elfNN_vms_post_process_headers
6019
6020 #undef elf_backend_section_processing
6021 #define elf_backend_section_processing elfNN_vms_section_processing
6022
6023 #undef elf_backend_final_write_processing
6024 #define elf_backend_final_write_processing elfNN_vms_final_write_processing
6025
6026 #undef bfd_elfNN_close_and_cleanup
6027 #define bfd_elfNN_close_and_cleanup elfNN_vms_close_and_cleanup
6028
6029 #undef elf_backend_section_from_bfd_section
6030
6031 #undef elf_backend_symbol_processing
6032
6033 #undef elf_backend_want_p_paddr_set_to_zero
6034
6035 #undef ELF_MAXPAGESIZE
6036 #define ELF_MAXPAGESIZE 0x10000 /* 64KB */
6037
6038 #undef elfNN_bed
6039 #define elfNN_bed elfNN_ia64_vms_bed
6040
6041 #include "elfNN-target.h"