bfd/
[binutils-gdb.git] / bfd / elfxx-ia64.c
1 /* IA-64 support for 64-bit ELF
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "opcode/ia64.h"
28 #include "elf/ia64.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31
32 #define ARCH_SIZE NN
33
34 #if ARCH_SIZE == 64
35 #define LOG_SECTION_ALIGN 3
36 #endif
37
38 #if ARCH_SIZE == 32
39 #define LOG_SECTION_ALIGN 2
40 #endif
41
42 /* THE RULES for all the stuff the linker creates --
43
44 GOT Entries created in response to LTOFF or LTOFF_FPTR
45 relocations. Dynamic relocs created for dynamic
46 symbols in an application; REL relocs for locals
47 in a shared library.
48
49 FPTR The canonical function descriptor. Created for local
50 symbols in applications. Descriptors for dynamic symbols
51 and local symbols in shared libraries are created by
52 ld.so. Thus there are no dynamic relocs against these
53 objects. The FPTR relocs for such _are_ passed through
54 to the dynamic relocation tables.
55
56 FULL_PLT Created for a PCREL21B relocation against a dynamic symbol.
57 Requires the creation of a PLTOFF entry. This does not
58 require any dynamic relocations.
59
60 PLTOFF Created by PLTOFF relocations. For local symbols, this
61 is an alternate function descriptor, and in shared libraries
62 requires two REL relocations. Note that this cannot be
63 transformed into an FPTR relocation, since it must be in
64 range of the GP. For dynamic symbols, this is a function
65 descriptor for a MIN_PLT entry, and requires one IPLT reloc.
66
67 MIN_PLT Created by PLTOFF entries against dynamic symbols. This
68 does not require dynamic relocations. */
69
70 /* Only add code for vms when the vms target is enabled. This is required
71 because it depends on vms-lib.c for its archive format and we don't want
72 to compile that code if it is not used. */
73 #if ARCH_SIZE == 64 && \
74 (defined (HAVE_bfd_elf64_ia64_vms_vec) || defined (HAVE_all_vecs))
75 #define INCLUDE_IA64_VMS
76 #endif
77
78
79 #define NELEMS(a) ((int) (sizeof (a) / sizeof ((a)[0])))
80
81 typedef struct bfd_hash_entry *(*new_hash_entry_func)
82 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
83
84 /* In dynamically (linker-) created sections, we generally need to keep track
85 of the place a symbol or expression got allocated to. This is done via hash
86 tables that store entries of the following type. */
87
88 struct elfNN_ia64_dyn_sym_info
89 {
90 /* The addend for which this entry is relevant. */
91 bfd_vma addend;
92
93 bfd_vma got_offset;
94 bfd_vma fptr_offset;
95 bfd_vma pltoff_offset;
96 bfd_vma plt_offset;
97 bfd_vma plt2_offset;
98 bfd_vma tprel_offset;
99 bfd_vma dtpmod_offset;
100 bfd_vma dtprel_offset;
101
102 /* The symbol table entry, if any, that this was derived from. */
103 struct elf_link_hash_entry *h;
104
105 /* Used to count non-got, non-plt relocations for delayed sizing
106 of relocation sections. */
107 struct elfNN_ia64_dyn_reloc_entry
108 {
109 struct elfNN_ia64_dyn_reloc_entry *next;
110 asection *srel;
111 int type;
112 int count;
113
114 /* Is this reloc against readonly section? */
115 bfd_boolean reltext;
116 } *reloc_entries;
117
118 /* TRUE when the section contents have been updated. */
119 unsigned got_done : 1;
120 unsigned fptr_done : 1;
121 unsigned pltoff_done : 1;
122 unsigned tprel_done : 1;
123 unsigned dtpmod_done : 1;
124 unsigned dtprel_done : 1;
125
126 /* TRUE for the different kinds of linker data we want created. */
127 unsigned want_got : 1;
128 unsigned want_gotx : 1;
129 unsigned want_fptr : 1;
130 unsigned want_ltoff_fptr : 1;
131 unsigned want_plt : 1;
132 unsigned want_plt2 : 1;
133 unsigned want_pltoff : 1;
134 unsigned want_tprel : 1;
135 unsigned want_dtpmod : 1;
136 unsigned want_dtprel : 1;
137 };
138
139 struct elfNN_ia64_local_hash_entry
140 {
141 int id;
142 unsigned int r_sym;
143 /* The number of elements in elfNN_ia64_dyn_sym_info array. */
144 unsigned int count;
145 /* The number of sorted elements in elfNN_ia64_dyn_sym_info array. */
146 unsigned int sorted_count;
147 /* The size of elfNN_ia64_dyn_sym_info array. */
148 unsigned int size;
149 /* The array of elfNN_ia64_dyn_sym_info. */
150 struct elfNN_ia64_dyn_sym_info *info;
151
152 /* TRUE if this hash entry's addends was translated for
153 SHF_MERGE optimization. */
154 unsigned sec_merge_done : 1;
155 };
156
157 struct elfNN_ia64_link_hash_entry
158 {
159 struct elf_link_hash_entry root;
160 /* The number of elements in elfNN_ia64_dyn_sym_info array. */
161 unsigned int count;
162 /* The number of sorted elements in elfNN_ia64_dyn_sym_info array. */
163 unsigned int sorted_count;
164 /* The size of elfNN_ia64_dyn_sym_info array. */
165 unsigned int size;
166 /* The array of elfNN_ia64_dyn_sym_info. */
167 struct elfNN_ia64_dyn_sym_info *info;
168 };
169
170 struct elfNN_ia64_link_hash_table
171 {
172 /* The main hash table. */
173 struct elf_link_hash_table root;
174
175 asection *fptr_sec; /* Function descriptor table (or NULL). */
176 asection *rel_fptr_sec; /* Dynamic relocation section for same. */
177 asection *pltoff_sec; /* Private descriptors for plt (or NULL). */
178 asection *rel_pltoff_sec; /* Dynamic relocation section for same. */
179
180 bfd_size_type minplt_entries; /* Number of minplt entries. */
181 unsigned reltext : 1; /* Are there relocs against readonly sections? */
182 unsigned self_dtpmod_done : 1;/* Has self DTPMOD entry been finished? */
183 bfd_vma self_dtpmod_offset; /* .got offset to self DTPMOD entry. */
184 /* There are maybe R_IA64_GPREL22 relocations, including those
185 optimized from R_IA64_LTOFF22X, against non-SHF_IA_64_SHORT
186 sections. We need to record those sections so that we can choose
187 a proper GP to cover all R_IA64_GPREL22 relocations. */
188 asection *max_short_sec; /* Maximum short output section. */
189 bfd_vma max_short_offset; /* Maximum short offset. */
190 asection *min_short_sec; /* Minimum short output section. */
191 bfd_vma min_short_offset; /* Minimum short offset. */
192
193 htab_t loc_hash_table;
194 void *loc_hash_memory;
195 };
196
197 struct elfNN_ia64_allocate_data
198 {
199 struct bfd_link_info *info;
200 bfd_size_type ofs;
201 bfd_boolean only_got;
202 };
203
204 #define elfNN_ia64_hash_table(p) \
205 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
206 == IA64_ELF_DATA ? ((struct elfNN_ia64_link_hash_table *) ((p)->hash)) : NULL)
207
208 static struct elfNN_ia64_dyn_sym_info * get_dyn_sym_info
209 (struct elfNN_ia64_link_hash_table *ia64_info,
210 struct elf_link_hash_entry *h,
211 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create);
212 static bfd_boolean elfNN_ia64_dynamic_symbol_p
213 (struct elf_link_hash_entry *h, struct bfd_link_info *info, int);
214 static bfd_reloc_status_type elfNN_ia64_install_value
215 (bfd_byte *hit_addr, bfd_vma val, unsigned int r_type);
216 static bfd_boolean elfNN_ia64_choose_gp
217 (bfd *abfd, struct bfd_link_info *info);
218 static void elfNN_ia64_relax_ldxmov
219 (bfd_byte *contents, bfd_vma off);
220 static void elfNN_ia64_dyn_sym_traverse
221 (struct elfNN_ia64_link_hash_table *ia64_info,
222 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR),
223 PTR info);
224 static bfd_boolean allocate_global_data_got
225 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
226 static bfd_boolean allocate_global_fptr_got
227 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
228 static bfd_boolean allocate_local_got
229 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
230 static bfd_boolean elfNN_ia64_hpux_vec
231 (const bfd_target *vec);
232 static bfd_boolean allocate_dynrel_entries
233 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
234 static asection *get_pltoff
235 (bfd *abfd, struct bfd_link_info *info,
236 struct elfNN_ia64_link_hash_table *ia64_info);
237 \f
238 /* ia64-specific relocation. */
239
240 /* Perform a relocation. Not much to do here as all the hard work is
241 done in elfNN_ia64_final_link_relocate. */
242 static bfd_reloc_status_type
243 elfNN_ia64_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc,
244 asymbol *sym ATTRIBUTE_UNUSED,
245 PTR data ATTRIBUTE_UNUSED, asection *input_section,
246 bfd *output_bfd, char **error_message)
247 {
248 if (output_bfd)
249 {
250 reloc->address += input_section->output_offset;
251 return bfd_reloc_ok;
252 }
253
254 if (input_section->flags & SEC_DEBUGGING)
255 return bfd_reloc_continue;
256
257 *error_message = "Unsupported call to elfNN_ia64_reloc";
258 return bfd_reloc_notsupported;
259 }
260
261 #define IA64_HOWTO(TYPE, NAME, SIZE, PCREL, IN) \
262 HOWTO (TYPE, 0, SIZE, 0, PCREL, 0, complain_overflow_signed, \
263 elfNN_ia64_reloc, NAME, FALSE, 0, -1, IN)
264
265 /* This table has to be sorted according to increasing number of the
266 TYPE field. */
267 static reloc_howto_type ia64_howto_table[] =
268 {
269 IA64_HOWTO (R_IA64_NONE, "NONE", 0, FALSE, TRUE),
270
271 IA64_HOWTO (R_IA64_IMM14, "IMM14", 0, FALSE, TRUE),
272 IA64_HOWTO (R_IA64_IMM22, "IMM22", 0, FALSE, TRUE),
273 IA64_HOWTO (R_IA64_IMM64, "IMM64", 0, FALSE, TRUE),
274 IA64_HOWTO (R_IA64_DIR32MSB, "DIR32MSB", 2, FALSE, TRUE),
275 IA64_HOWTO (R_IA64_DIR32LSB, "DIR32LSB", 2, FALSE, TRUE),
276 IA64_HOWTO (R_IA64_DIR64MSB, "DIR64MSB", 4, FALSE, TRUE),
277 IA64_HOWTO (R_IA64_DIR64LSB, "DIR64LSB", 4, FALSE, TRUE),
278
279 IA64_HOWTO (R_IA64_GPREL22, "GPREL22", 0, FALSE, TRUE),
280 IA64_HOWTO (R_IA64_GPREL64I, "GPREL64I", 0, FALSE, TRUE),
281 IA64_HOWTO (R_IA64_GPREL32MSB, "GPREL32MSB", 2, FALSE, TRUE),
282 IA64_HOWTO (R_IA64_GPREL32LSB, "GPREL32LSB", 2, FALSE, TRUE),
283 IA64_HOWTO (R_IA64_GPREL64MSB, "GPREL64MSB", 4, FALSE, TRUE),
284 IA64_HOWTO (R_IA64_GPREL64LSB, "GPREL64LSB", 4, FALSE, TRUE),
285
286 IA64_HOWTO (R_IA64_LTOFF22, "LTOFF22", 0, FALSE, TRUE),
287 IA64_HOWTO (R_IA64_LTOFF64I, "LTOFF64I", 0, FALSE, TRUE),
288
289 IA64_HOWTO (R_IA64_PLTOFF22, "PLTOFF22", 0, FALSE, TRUE),
290 IA64_HOWTO (R_IA64_PLTOFF64I, "PLTOFF64I", 0, FALSE, TRUE),
291 IA64_HOWTO (R_IA64_PLTOFF64MSB, "PLTOFF64MSB", 4, FALSE, TRUE),
292 IA64_HOWTO (R_IA64_PLTOFF64LSB, "PLTOFF64LSB", 4, FALSE, TRUE),
293
294 IA64_HOWTO (R_IA64_FPTR64I, "FPTR64I", 0, FALSE, TRUE),
295 IA64_HOWTO (R_IA64_FPTR32MSB, "FPTR32MSB", 2, FALSE, TRUE),
296 IA64_HOWTO (R_IA64_FPTR32LSB, "FPTR32LSB", 2, FALSE, TRUE),
297 IA64_HOWTO (R_IA64_FPTR64MSB, "FPTR64MSB", 4, FALSE, TRUE),
298 IA64_HOWTO (R_IA64_FPTR64LSB, "FPTR64LSB", 4, FALSE, TRUE),
299
300 IA64_HOWTO (R_IA64_PCREL60B, "PCREL60B", 0, TRUE, TRUE),
301 IA64_HOWTO (R_IA64_PCREL21B, "PCREL21B", 0, TRUE, TRUE),
302 IA64_HOWTO (R_IA64_PCREL21M, "PCREL21M", 0, TRUE, TRUE),
303 IA64_HOWTO (R_IA64_PCREL21F, "PCREL21F", 0, TRUE, TRUE),
304 IA64_HOWTO (R_IA64_PCREL32MSB, "PCREL32MSB", 2, TRUE, TRUE),
305 IA64_HOWTO (R_IA64_PCREL32LSB, "PCREL32LSB", 2, TRUE, TRUE),
306 IA64_HOWTO (R_IA64_PCREL64MSB, "PCREL64MSB", 4, TRUE, TRUE),
307 IA64_HOWTO (R_IA64_PCREL64LSB, "PCREL64LSB", 4, TRUE, TRUE),
308
309 IA64_HOWTO (R_IA64_LTOFF_FPTR22, "LTOFF_FPTR22", 0, FALSE, TRUE),
310 IA64_HOWTO (R_IA64_LTOFF_FPTR64I, "LTOFF_FPTR64I", 0, FALSE, TRUE),
311 IA64_HOWTO (R_IA64_LTOFF_FPTR32MSB, "LTOFF_FPTR32MSB", 2, FALSE, TRUE),
312 IA64_HOWTO (R_IA64_LTOFF_FPTR32LSB, "LTOFF_FPTR32LSB", 2, FALSE, TRUE),
313 IA64_HOWTO (R_IA64_LTOFF_FPTR64MSB, "LTOFF_FPTR64MSB", 4, FALSE, TRUE),
314 IA64_HOWTO (R_IA64_LTOFF_FPTR64LSB, "LTOFF_FPTR64LSB", 4, FALSE, TRUE),
315
316 IA64_HOWTO (R_IA64_SEGREL32MSB, "SEGREL32MSB", 2, FALSE, TRUE),
317 IA64_HOWTO (R_IA64_SEGREL32LSB, "SEGREL32LSB", 2, FALSE, TRUE),
318 IA64_HOWTO (R_IA64_SEGREL64MSB, "SEGREL64MSB", 4, FALSE, TRUE),
319 IA64_HOWTO (R_IA64_SEGREL64LSB, "SEGREL64LSB", 4, FALSE, TRUE),
320
321 IA64_HOWTO (R_IA64_SECREL32MSB, "SECREL32MSB", 2, FALSE, TRUE),
322 IA64_HOWTO (R_IA64_SECREL32LSB, "SECREL32LSB", 2, FALSE, TRUE),
323 IA64_HOWTO (R_IA64_SECREL64MSB, "SECREL64MSB", 4, FALSE, TRUE),
324 IA64_HOWTO (R_IA64_SECREL64LSB, "SECREL64LSB", 4, FALSE, TRUE),
325
326 IA64_HOWTO (R_IA64_REL32MSB, "REL32MSB", 2, FALSE, TRUE),
327 IA64_HOWTO (R_IA64_REL32LSB, "REL32LSB", 2, FALSE, TRUE),
328 IA64_HOWTO (R_IA64_REL64MSB, "REL64MSB", 4, FALSE, TRUE),
329 IA64_HOWTO (R_IA64_REL64LSB, "REL64LSB", 4, FALSE, TRUE),
330
331 IA64_HOWTO (R_IA64_LTV32MSB, "LTV32MSB", 2, FALSE, TRUE),
332 IA64_HOWTO (R_IA64_LTV32LSB, "LTV32LSB", 2, FALSE, TRUE),
333 IA64_HOWTO (R_IA64_LTV64MSB, "LTV64MSB", 4, FALSE, TRUE),
334 IA64_HOWTO (R_IA64_LTV64LSB, "LTV64LSB", 4, FALSE, TRUE),
335
336 IA64_HOWTO (R_IA64_PCREL21BI, "PCREL21BI", 0, TRUE, TRUE),
337 IA64_HOWTO (R_IA64_PCREL22, "PCREL22", 0, TRUE, TRUE),
338 IA64_HOWTO (R_IA64_PCREL64I, "PCREL64I", 0, TRUE, TRUE),
339
340 IA64_HOWTO (R_IA64_IPLTMSB, "IPLTMSB", 4, FALSE, TRUE),
341 IA64_HOWTO (R_IA64_IPLTLSB, "IPLTLSB", 4, FALSE, TRUE),
342 IA64_HOWTO (R_IA64_COPY, "COPY", 4, FALSE, TRUE),
343 IA64_HOWTO (R_IA64_LTOFF22X, "LTOFF22X", 0, FALSE, TRUE),
344 IA64_HOWTO (R_IA64_LDXMOV, "LDXMOV", 0, FALSE, TRUE),
345
346 IA64_HOWTO (R_IA64_TPREL14, "TPREL14", 0, FALSE, FALSE),
347 IA64_HOWTO (R_IA64_TPREL22, "TPREL22", 0, FALSE, FALSE),
348 IA64_HOWTO (R_IA64_TPREL64I, "TPREL64I", 0, FALSE, FALSE),
349 IA64_HOWTO (R_IA64_TPREL64MSB, "TPREL64MSB", 4, FALSE, FALSE),
350 IA64_HOWTO (R_IA64_TPREL64LSB, "TPREL64LSB", 4, FALSE, FALSE),
351 IA64_HOWTO (R_IA64_LTOFF_TPREL22, "LTOFF_TPREL22", 0, FALSE, FALSE),
352
353 IA64_HOWTO (R_IA64_DTPMOD64MSB, "DTPMOD64MSB", 4, FALSE, FALSE),
354 IA64_HOWTO (R_IA64_DTPMOD64LSB, "DTPMOD64LSB", 4, FALSE, FALSE),
355 IA64_HOWTO (R_IA64_LTOFF_DTPMOD22, "LTOFF_DTPMOD22", 0, FALSE, FALSE),
356
357 IA64_HOWTO (R_IA64_DTPREL14, "DTPREL14", 0, FALSE, FALSE),
358 IA64_HOWTO (R_IA64_DTPREL22, "DTPREL22", 0, FALSE, FALSE),
359 IA64_HOWTO (R_IA64_DTPREL64I, "DTPREL64I", 0, FALSE, FALSE),
360 IA64_HOWTO (R_IA64_DTPREL32MSB, "DTPREL32MSB", 2, FALSE, FALSE),
361 IA64_HOWTO (R_IA64_DTPREL32LSB, "DTPREL32LSB", 2, FALSE, FALSE),
362 IA64_HOWTO (R_IA64_DTPREL64MSB, "DTPREL64MSB", 4, FALSE, FALSE),
363 IA64_HOWTO (R_IA64_DTPREL64LSB, "DTPREL64LSB", 4, FALSE, FALSE),
364 IA64_HOWTO (R_IA64_LTOFF_DTPREL22, "LTOFF_DTPREL22", 0, FALSE, FALSE),
365 };
366
367 static unsigned char elf_code_to_howto_index[R_IA64_MAX_RELOC_CODE + 1];
368
369 /* Given a BFD reloc type, return the matching HOWTO structure. */
370
371 static reloc_howto_type *
372 lookup_howto (unsigned int rtype)
373 {
374 static int inited = 0;
375 int i;
376
377 if (!inited)
378 {
379 inited = 1;
380
381 memset (elf_code_to_howto_index, 0xff, sizeof (elf_code_to_howto_index));
382 for (i = 0; i < NELEMS (ia64_howto_table); ++i)
383 elf_code_to_howto_index[ia64_howto_table[i].type] = i;
384 }
385
386 if (rtype > R_IA64_MAX_RELOC_CODE)
387 return 0;
388 i = elf_code_to_howto_index[rtype];
389 if (i >= NELEMS (ia64_howto_table))
390 return 0;
391 return ia64_howto_table + i;
392 }
393
394 static reloc_howto_type*
395 elfNN_ia64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
396 bfd_reloc_code_real_type bfd_code)
397 {
398 unsigned int rtype;
399
400 switch (bfd_code)
401 {
402 case BFD_RELOC_NONE: rtype = R_IA64_NONE; break;
403
404 case BFD_RELOC_IA64_IMM14: rtype = R_IA64_IMM14; break;
405 case BFD_RELOC_IA64_IMM22: rtype = R_IA64_IMM22; break;
406 case BFD_RELOC_IA64_IMM64: rtype = R_IA64_IMM64; break;
407
408 case BFD_RELOC_IA64_DIR32MSB: rtype = R_IA64_DIR32MSB; break;
409 case BFD_RELOC_IA64_DIR32LSB: rtype = R_IA64_DIR32LSB; break;
410 case BFD_RELOC_IA64_DIR64MSB: rtype = R_IA64_DIR64MSB; break;
411 case BFD_RELOC_IA64_DIR64LSB: rtype = R_IA64_DIR64LSB; break;
412
413 case BFD_RELOC_IA64_GPREL22: rtype = R_IA64_GPREL22; break;
414 case BFD_RELOC_IA64_GPREL64I: rtype = R_IA64_GPREL64I; break;
415 case BFD_RELOC_IA64_GPREL32MSB: rtype = R_IA64_GPREL32MSB; break;
416 case BFD_RELOC_IA64_GPREL32LSB: rtype = R_IA64_GPREL32LSB; break;
417 case BFD_RELOC_IA64_GPREL64MSB: rtype = R_IA64_GPREL64MSB; break;
418 case BFD_RELOC_IA64_GPREL64LSB: rtype = R_IA64_GPREL64LSB; break;
419
420 case BFD_RELOC_IA64_LTOFF22: rtype = R_IA64_LTOFF22; break;
421 case BFD_RELOC_IA64_LTOFF64I: rtype = R_IA64_LTOFF64I; break;
422
423 case BFD_RELOC_IA64_PLTOFF22: rtype = R_IA64_PLTOFF22; break;
424 case BFD_RELOC_IA64_PLTOFF64I: rtype = R_IA64_PLTOFF64I; break;
425 case BFD_RELOC_IA64_PLTOFF64MSB: rtype = R_IA64_PLTOFF64MSB; break;
426 case BFD_RELOC_IA64_PLTOFF64LSB: rtype = R_IA64_PLTOFF64LSB; break;
427 case BFD_RELOC_IA64_FPTR64I: rtype = R_IA64_FPTR64I; break;
428 case BFD_RELOC_IA64_FPTR32MSB: rtype = R_IA64_FPTR32MSB; break;
429 case BFD_RELOC_IA64_FPTR32LSB: rtype = R_IA64_FPTR32LSB; break;
430 case BFD_RELOC_IA64_FPTR64MSB: rtype = R_IA64_FPTR64MSB; break;
431 case BFD_RELOC_IA64_FPTR64LSB: rtype = R_IA64_FPTR64LSB; break;
432
433 case BFD_RELOC_IA64_PCREL21B: rtype = R_IA64_PCREL21B; break;
434 case BFD_RELOC_IA64_PCREL21BI: rtype = R_IA64_PCREL21BI; break;
435 case BFD_RELOC_IA64_PCREL21M: rtype = R_IA64_PCREL21M; break;
436 case BFD_RELOC_IA64_PCREL21F: rtype = R_IA64_PCREL21F; break;
437 case BFD_RELOC_IA64_PCREL22: rtype = R_IA64_PCREL22; break;
438 case BFD_RELOC_IA64_PCREL60B: rtype = R_IA64_PCREL60B; break;
439 case BFD_RELOC_IA64_PCREL64I: rtype = R_IA64_PCREL64I; break;
440 case BFD_RELOC_IA64_PCREL32MSB: rtype = R_IA64_PCREL32MSB; break;
441 case BFD_RELOC_IA64_PCREL32LSB: rtype = R_IA64_PCREL32LSB; break;
442 case BFD_RELOC_IA64_PCREL64MSB: rtype = R_IA64_PCREL64MSB; break;
443 case BFD_RELOC_IA64_PCREL64LSB: rtype = R_IA64_PCREL64LSB; break;
444
445 case BFD_RELOC_IA64_LTOFF_FPTR22: rtype = R_IA64_LTOFF_FPTR22; break;
446 case BFD_RELOC_IA64_LTOFF_FPTR64I: rtype = R_IA64_LTOFF_FPTR64I; break;
447 case BFD_RELOC_IA64_LTOFF_FPTR32MSB: rtype = R_IA64_LTOFF_FPTR32MSB; break;
448 case BFD_RELOC_IA64_LTOFF_FPTR32LSB: rtype = R_IA64_LTOFF_FPTR32LSB; break;
449 case BFD_RELOC_IA64_LTOFF_FPTR64MSB: rtype = R_IA64_LTOFF_FPTR64MSB; break;
450 case BFD_RELOC_IA64_LTOFF_FPTR64LSB: rtype = R_IA64_LTOFF_FPTR64LSB; break;
451
452 case BFD_RELOC_IA64_SEGREL32MSB: rtype = R_IA64_SEGREL32MSB; break;
453 case BFD_RELOC_IA64_SEGREL32LSB: rtype = R_IA64_SEGREL32LSB; break;
454 case BFD_RELOC_IA64_SEGREL64MSB: rtype = R_IA64_SEGREL64MSB; break;
455 case BFD_RELOC_IA64_SEGREL64LSB: rtype = R_IA64_SEGREL64LSB; break;
456
457 case BFD_RELOC_IA64_SECREL32MSB: rtype = R_IA64_SECREL32MSB; break;
458 case BFD_RELOC_IA64_SECREL32LSB: rtype = R_IA64_SECREL32LSB; break;
459 case BFD_RELOC_IA64_SECREL64MSB: rtype = R_IA64_SECREL64MSB; break;
460 case BFD_RELOC_IA64_SECREL64LSB: rtype = R_IA64_SECREL64LSB; break;
461
462 case BFD_RELOC_IA64_REL32MSB: rtype = R_IA64_REL32MSB; break;
463 case BFD_RELOC_IA64_REL32LSB: rtype = R_IA64_REL32LSB; break;
464 case BFD_RELOC_IA64_REL64MSB: rtype = R_IA64_REL64MSB; break;
465 case BFD_RELOC_IA64_REL64LSB: rtype = R_IA64_REL64LSB; break;
466
467 case BFD_RELOC_IA64_LTV32MSB: rtype = R_IA64_LTV32MSB; break;
468 case BFD_RELOC_IA64_LTV32LSB: rtype = R_IA64_LTV32LSB; break;
469 case BFD_RELOC_IA64_LTV64MSB: rtype = R_IA64_LTV64MSB; break;
470 case BFD_RELOC_IA64_LTV64LSB: rtype = R_IA64_LTV64LSB; break;
471
472 case BFD_RELOC_IA64_IPLTMSB: rtype = R_IA64_IPLTMSB; break;
473 case BFD_RELOC_IA64_IPLTLSB: rtype = R_IA64_IPLTLSB; break;
474 case BFD_RELOC_IA64_COPY: rtype = R_IA64_COPY; break;
475 case BFD_RELOC_IA64_LTOFF22X: rtype = R_IA64_LTOFF22X; break;
476 case BFD_RELOC_IA64_LDXMOV: rtype = R_IA64_LDXMOV; break;
477
478 case BFD_RELOC_IA64_TPREL14: rtype = R_IA64_TPREL14; break;
479 case BFD_RELOC_IA64_TPREL22: rtype = R_IA64_TPREL22; break;
480 case BFD_RELOC_IA64_TPREL64I: rtype = R_IA64_TPREL64I; break;
481 case BFD_RELOC_IA64_TPREL64MSB: rtype = R_IA64_TPREL64MSB; break;
482 case BFD_RELOC_IA64_TPREL64LSB: rtype = R_IA64_TPREL64LSB; break;
483 case BFD_RELOC_IA64_LTOFF_TPREL22: rtype = R_IA64_LTOFF_TPREL22; break;
484
485 case BFD_RELOC_IA64_DTPMOD64MSB: rtype = R_IA64_DTPMOD64MSB; break;
486 case BFD_RELOC_IA64_DTPMOD64LSB: rtype = R_IA64_DTPMOD64LSB; break;
487 case BFD_RELOC_IA64_LTOFF_DTPMOD22: rtype = R_IA64_LTOFF_DTPMOD22; break;
488
489 case BFD_RELOC_IA64_DTPREL14: rtype = R_IA64_DTPREL14; break;
490 case BFD_RELOC_IA64_DTPREL22: rtype = R_IA64_DTPREL22; break;
491 case BFD_RELOC_IA64_DTPREL64I: rtype = R_IA64_DTPREL64I; break;
492 case BFD_RELOC_IA64_DTPREL32MSB: rtype = R_IA64_DTPREL32MSB; break;
493 case BFD_RELOC_IA64_DTPREL32LSB: rtype = R_IA64_DTPREL32LSB; break;
494 case BFD_RELOC_IA64_DTPREL64MSB: rtype = R_IA64_DTPREL64MSB; break;
495 case BFD_RELOC_IA64_DTPREL64LSB: rtype = R_IA64_DTPREL64LSB; break;
496 case BFD_RELOC_IA64_LTOFF_DTPREL22: rtype = R_IA64_LTOFF_DTPREL22; break;
497
498 default: return 0;
499 }
500 return lookup_howto (rtype);
501 }
502
503 static reloc_howto_type *
504 elfNN_ia64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
505 const char *r_name)
506 {
507 unsigned int i;
508
509 for (i = 0;
510 i < sizeof (ia64_howto_table) / sizeof (ia64_howto_table[0]);
511 i++)
512 if (ia64_howto_table[i].name != NULL
513 && strcasecmp (ia64_howto_table[i].name, r_name) == 0)
514 return &ia64_howto_table[i];
515
516 return NULL;
517 }
518
519 /* Given a ELF reloc, return the matching HOWTO structure. */
520
521 static void
522 elfNN_ia64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
523 arelent *bfd_reloc,
524 Elf_Internal_Rela *elf_reloc)
525 {
526 bfd_reloc->howto
527 = lookup_howto ((unsigned int) ELFNN_R_TYPE (elf_reloc->r_info));
528 }
529 \f
530 #define PLT_HEADER_SIZE (3 * 16)
531 #define PLT_MIN_ENTRY_SIZE (1 * 16)
532 #define PLT_FULL_ENTRY_SIZE (2 * 16)
533 #define PLT_RESERVED_WORDS 3
534
535 static const bfd_byte plt_header[PLT_HEADER_SIZE] =
536 {
537 0x0b, 0x10, 0x00, 0x1c, 0x00, 0x21, /* [MMI] mov r2=r14;; */
538 0xe0, 0x00, 0x08, 0x00, 0x48, 0x00, /* addl r14=0,r2 */
539 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
540 0x0b, 0x80, 0x20, 0x1c, 0x18, 0x14, /* [MMI] ld8 r16=[r14],8;; */
541 0x10, 0x41, 0x38, 0x30, 0x28, 0x00, /* ld8 r17=[r14],8 */
542 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
543 0x11, 0x08, 0x00, 0x1c, 0x18, 0x10, /* [MIB] ld8 r1=[r14] */
544 0x60, 0x88, 0x04, 0x80, 0x03, 0x00, /* mov b6=r17 */
545 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
546 };
547
548 static const bfd_byte plt_min_entry[PLT_MIN_ENTRY_SIZE] =
549 {
550 0x11, 0x78, 0x00, 0x00, 0x00, 0x24, /* [MIB] mov r15=0 */
551 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, /* nop.i 0x0 */
552 0x00, 0x00, 0x00, 0x40 /* br.few 0 <PLT0>;; */
553 };
554
555 static const bfd_byte plt_full_entry[PLT_FULL_ENTRY_SIZE] =
556 {
557 0x0b, 0x78, 0x00, 0x02, 0x00, 0x24, /* [MMI] addl r15=0,r1;; */
558 0x00, 0x41, 0x3c, 0x70, 0x29, 0xc0, /* ld8.acq r16=[r15],8*/
559 0x01, 0x08, 0x00, 0x84, /* mov r14=r1;; */
560 0x11, 0x08, 0x00, 0x1e, 0x18, 0x10, /* [MIB] ld8 r1=[r15] */
561 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
562 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
563 };
564
565 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
566
567 static const bfd_byte oor_brl[16] =
568 {
569 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
570 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* brl.sptk.few tgt;; */
571 0x00, 0x00, 0x00, 0xc0
572 };
573
574 static const bfd_byte oor_ip[48] =
575 {
576 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
577 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, /* movl r15=0 */
578 0x01, 0x00, 0x00, 0x60,
579 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MII] nop.m 0 */
580 0x00, 0x01, 0x00, 0x60, 0x00, 0x00, /* mov r16=ip;; */
581 0xf2, 0x80, 0x00, 0x80, /* add r16=r15,r16;; */
582 0x11, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MIB] nop.m 0 */
583 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
584 0x60, 0x00, 0x80, 0x00 /* br b6;; */
585 };
586
587 static size_t oor_branch_size = sizeof (oor_brl);
588
589 void
590 bfd_elfNN_ia64_after_parse (int itanium)
591 {
592 oor_branch_size = itanium ? sizeof (oor_ip) : sizeof (oor_brl);
593 }
594
595 #define BTYPE_SHIFT 6
596 #define Y_SHIFT 26
597 #define X6_SHIFT 27
598 #define X4_SHIFT 27
599 #define X3_SHIFT 33
600 #define X2_SHIFT 31
601 #define X_SHIFT 33
602 #define OPCODE_SHIFT 37
603
604 #define OPCODE_BITS (0xfLL << OPCODE_SHIFT)
605 #define X6_BITS (0x3fLL << X6_SHIFT)
606 #define X4_BITS (0xfLL << X4_SHIFT)
607 #define X3_BITS (0x7LL << X3_SHIFT)
608 #define X2_BITS (0x3LL << X2_SHIFT)
609 #define X_BITS (0x1LL << X_SHIFT)
610 #define Y_BITS (0x1LL << Y_SHIFT)
611 #define BTYPE_BITS (0x7LL << BTYPE_SHIFT)
612 #define PREDICATE_BITS (0x3fLL)
613
614 #define IS_NOP_B(i) \
615 (((i) & (OPCODE_BITS | X6_BITS)) == (2LL << OPCODE_SHIFT))
616 #define IS_NOP_F(i) \
617 (((i) & (OPCODE_BITS | X_BITS | X6_BITS | Y_BITS)) \
618 == (0x1LL << X6_SHIFT))
619 #define IS_NOP_I(i) \
620 (((i) & (OPCODE_BITS | X3_BITS | X6_BITS | Y_BITS)) \
621 == (0x1LL << X6_SHIFT))
622 #define IS_NOP_M(i) \
623 (((i) & (OPCODE_BITS | X3_BITS | X2_BITS | X4_BITS | Y_BITS)) \
624 == (0x1LL << X4_SHIFT))
625 #define IS_BR_COND(i) \
626 (((i) & (OPCODE_BITS | BTYPE_BITS)) == (0x4LL << OPCODE_SHIFT))
627 #define IS_BR_CALL(i) \
628 (((i) & OPCODE_BITS) == (0x5LL << OPCODE_SHIFT))
629
630 static bfd_boolean
631 elfNN_ia64_relax_br (bfd_byte *contents, bfd_vma off)
632 {
633 unsigned int template_val, mlx;
634 bfd_vma t0, t1, s0, s1, s2, br_code;
635 long br_slot;
636 bfd_byte *hit_addr;
637
638 hit_addr = (bfd_byte *) (contents + off);
639 br_slot = (long) hit_addr & 0x3;
640 hit_addr -= br_slot;
641 t0 = bfd_getl64 (hit_addr + 0);
642 t1 = bfd_getl64 (hit_addr + 8);
643
644 /* Check if we can turn br into brl. A label is always at the start
645 of the bundle. Even if there are predicates on NOPs, we still
646 perform this optimization. */
647 template_val = t0 & 0x1e;
648 s0 = (t0 >> 5) & 0x1ffffffffffLL;
649 s1 = ((t0 >> 46) | (t1 << 18)) & 0x1ffffffffffLL;
650 s2 = (t1 >> 23) & 0x1ffffffffffLL;
651 switch (br_slot)
652 {
653 case 0:
654 /* Check if slot 1 and slot 2 are NOPs. Possible template is
655 BBB. We only need to check nop.b. */
656 if (!(IS_NOP_B (s1) && IS_NOP_B (s2)))
657 return FALSE;
658 br_code = s0;
659 break;
660 case 1:
661 /* Check if slot 2 is NOP. Possible templates are MBB and BBB.
662 For BBB, slot 0 also has to be nop.b. */
663 if (!((template_val == 0x12 /* MBB */
664 && IS_NOP_B (s2))
665 || (template_val == 0x16 /* BBB */
666 && IS_NOP_B (s0)
667 && IS_NOP_B (s2))))
668 return FALSE;
669 br_code = s1;
670 break;
671 case 2:
672 /* Check if slot 1 is NOP. Possible templates are MIB, MBB, BBB,
673 MMB and MFB. For BBB, slot 0 also has to be nop.b. */
674 if (!((template_val == 0x10 /* MIB */
675 && IS_NOP_I (s1))
676 || (template_val == 0x12 /* MBB */
677 && IS_NOP_B (s1))
678 || (template_val == 0x16 /* BBB */
679 && IS_NOP_B (s0)
680 && IS_NOP_B (s1))
681 || (template_val == 0x18 /* MMB */
682 && IS_NOP_M (s1))
683 || (template_val == 0x1c /* MFB */
684 && IS_NOP_F (s1))))
685 return FALSE;
686 br_code = s2;
687 break;
688 default:
689 /* It should never happen. */
690 abort ();
691 }
692
693 /* We can turn br.cond/br.call into brl.cond/brl.call. */
694 if (!(IS_BR_COND (br_code) || IS_BR_CALL (br_code)))
695 return FALSE;
696
697 /* Turn br into brl by setting bit 40. */
698 br_code |= 0x1LL << 40;
699
700 /* Turn the old bundle into a MLX bundle with the same stop-bit
701 variety. */
702 if (t0 & 0x1)
703 mlx = 0x5;
704 else
705 mlx = 0x4;
706
707 if (template_val == 0x16)
708 {
709 /* For BBB, we need to put nop.m in slot 0. We keep the original
710 predicate only if slot 0 isn't br. */
711 if (br_slot == 0)
712 t0 = 0LL;
713 else
714 t0 &= PREDICATE_BITS << 5;
715 t0 |= 0x1LL << (X4_SHIFT + 5);
716 }
717 else
718 {
719 /* Keep the original instruction in slot 0. */
720 t0 &= 0x1ffffffffffLL << 5;
721 }
722
723 t0 |= mlx;
724
725 /* Put brl in slot 1. */
726 t1 = br_code << 23;
727
728 bfd_putl64 (t0, hit_addr);
729 bfd_putl64 (t1, hit_addr + 8);
730 return TRUE;
731 }
732
733 static void
734 elfNN_ia64_relax_brl (bfd_byte *contents, bfd_vma off)
735 {
736 int template_val;
737 bfd_byte *hit_addr;
738 bfd_vma t0, t1, i0, i1, i2;
739
740 hit_addr = (bfd_byte *) (contents + off);
741 hit_addr -= (long) hit_addr & 0x3;
742 t0 = bfd_getl64 (hit_addr);
743 t1 = bfd_getl64 (hit_addr + 8);
744
745 /* Keep the instruction in slot 0. */
746 i0 = (t0 >> 5) & 0x1ffffffffffLL;
747 /* Use nop.b for slot 1. */
748 i1 = 0x4000000000LL;
749 /* For slot 2, turn brl into br by masking out bit 40. */
750 i2 = (t1 >> 23) & 0x0ffffffffffLL;
751
752 /* Turn a MLX bundle into a MBB bundle with the same stop-bit
753 variety. */
754 if (t0 & 0x1)
755 template_val = 0x13;
756 else
757 template_val = 0x12;
758 t0 = (i1 << 46) | (i0 << 5) | template_val;
759 t1 = (i2 << 23) | (i1 >> 18);
760
761 bfd_putl64 (t0, hit_addr);
762 bfd_putl64 (t1, hit_addr + 8);
763 }
764
765 /* Rename some of the generic section flags to better document how they
766 are used here. */
767 #define skip_relax_pass_0 sec_flg0
768 #define skip_relax_pass_1 sec_flg1
769
770 \f
771 /* These functions do relaxation for IA-64 ELF. */
772
773 static void
774 elfNN_ia64_update_short_info (asection *sec, bfd_vma offset,
775 struct elfNN_ia64_link_hash_table *ia64_info)
776 {
777 /* Skip ABS and SHF_IA_64_SHORT sections. */
778 if (sec == bfd_abs_section_ptr
779 || (sec->flags & SEC_SMALL_DATA) != 0)
780 return;
781
782 if (!ia64_info->min_short_sec)
783 {
784 ia64_info->max_short_sec = sec;
785 ia64_info->max_short_offset = offset;
786 ia64_info->min_short_sec = sec;
787 ia64_info->min_short_offset = offset;
788 }
789 else if (sec == ia64_info->max_short_sec
790 && offset > ia64_info->max_short_offset)
791 ia64_info->max_short_offset = offset;
792 else if (sec == ia64_info->min_short_sec
793 && offset < ia64_info->min_short_offset)
794 ia64_info->min_short_offset = offset;
795 else if (sec->output_section->vma
796 > ia64_info->max_short_sec->vma)
797 {
798 ia64_info->max_short_sec = sec;
799 ia64_info->max_short_offset = offset;
800 }
801 else if (sec->output_section->vma
802 < ia64_info->min_short_sec->vma)
803 {
804 ia64_info->min_short_sec = sec;
805 ia64_info->min_short_offset = offset;
806 }
807 }
808
809 static bfd_boolean
810 elfNN_ia64_relax_section (bfd *abfd, asection *sec,
811 struct bfd_link_info *link_info,
812 bfd_boolean *again)
813 {
814 struct one_fixup
815 {
816 struct one_fixup *next;
817 asection *tsec;
818 bfd_vma toff;
819 bfd_vma trampoff;
820 };
821
822 Elf_Internal_Shdr *symtab_hdr;
823 Elf_Internal_Rela *internal_relocs;
824 Elf_Internal_Rela *irel, *irelend;
825 bfd_byte *contents;
826 Elf_Internal_Sym *isymbuf = NULL;
827 struct elfNN_ia64_link_hash_table *ia64_info;
828 struct one_fixup *fixups = NULL;
829 bfd_boolean changed_contents = FALSE;
830 bfd_boolean changed_relocs = FALSE;
831 bfd_boolean changed_got = FALSE;
832 bfd_boolean skip_relax_pass_0 = TRUE;
833 bfd_boolean skip_relax_pass_1 = TRUE;
834 bfd_vma gp = 0;
835
836 /* Assume we're not going to change any sizes, and we'll only need
837 one pass. */
838 *again = FALSE;
839
840 if (link_info->relocatable)
841 (*link_info->callbacks->einfo)
842 (_("%P%F: --relax and -r may not be used together\n"));
843
844 /* Don't even try to relax for non-ELF outputs. */
845 if (!is_elf_hash_table (link_info->hash))
846 return FALSE;
847
848 /* Nothing to do if there are no relocations or there is no need for
849 the current pass. */
850 if ((sec->flags & SEC_RELOC) == 0
851 || sec->reloc_count == 0
852 || (link_info->relax_pass == 0 && sec->skip_relax_pass_0)
853 || (link_info->relax_pass == 1 && sec->skip_relax_pass_1))
854 return TRUE;
855
856 ia64_info = elfNN_ia64_hash_table (link_info);
857 if (ia64_info == NULL)
858 return FALSE;
859
860 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
861
862 /* Load the relocations for this section. */
863 internal_relocs = (_bfd_elf_link_read_relocs
864 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
865 link_info->keep_memory));
866 if (internal_relocs == NULL)
867 return FALSE;
868
869 irelend = internal_relocs + sec->reloc_count;
870
871 /* Get the section contents. */
872 if (elf_section_data (sec)->this_hdr.contents != NULL)
873 contents = elf_section_data (sec)->this_hdr.contents;
874 else
875 {
876 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
877 goto error_return;
878 }
879
880 for (irel = internal_relocs; irel < irelend; irel++)
881 {
882 unsigned long r_type = ELFNN_R_TYPE (irel->r_info);
883 bfd_vma symaddr, reladdr, trampoff, toff, roff;
884 asection *tsec;
885 struct one_fixup *f;
886 bfd_size_type amt;
887 bfd_boolean is_branch;
888 struct elfNN_ia64_dyn_sym_info *dyn_i;
889 char symtype;
890
891 switch (r_type)
892 {
893 case R_IA64_PCREL21B:
894 case R_IA64_PCREL21BI:
895 case R_IA64_PCREL21M:
896 case R_IA64_PCREL21F:
897 /* In pass 1, all br relaxations are done. We can skip it. */
898 if (link_info->relax_pass == 1)
899 continue;
900 skip_relax_pass_0 = FALSE;
901 is_branch = TRUE;
902 break;
903
904 case R_IA64_PCREL60B:
905 /* We can't optimize brl to br in pass 0 since br relaxations
906 will increase the code size. Defer it to pass 1. */
907 if (link_info->relax_pass == 0)
908 {
909 skip_relax_pass_1 = FALSE;
910 continue;
911 }
912 is_branch = TRUE;
913 break;
914
915 case R_IA64_GPREL22:
916 /* Update max_short_sec/min_short_sec. */
917
918 case R_IA64_LTOFF22X:
919 case R_IA64_LDXMOV:
920 /* We can't relax ldx/mov in pass 0 since br relaxations will
921 increase the code size. Defer it to pass 1. */
922 if (link_info->relax_pass == 0)
923 {
924 skip_relax_pass_1 = FALSE;
925 continue;
926 }
927 is_branch = FALSE;
928 break;
929
930 default:
931 continue;
932 }
933
934 /* Get the value of the symbol referred to by the reloc. */
935 if (ELFNN_R_SYM (irel->r_info) < symtab_hdr->sh_info)
936 {
937 /* A local symbol. */
938 Elf_Internal_Sym *isym;
939
940 /* Read this BFD's local symbols. */
941 if (isymbuf == NULL)
942 {
943 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
944 if (isymbuf == NULL)
945 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
946 symtab_hdr->sh_info, 0,
947 NULL, NULL, NULL);
948 if (isymbuf == 0)
949 goto error_return;
950 }
951
952 isym = isymbuf + ELFNN_R_SYM (irel->r_info);
953 if (isym->st_shndx == SHN_UNDEF)
954 continue; /* We can't do anything with undefined symbols. */
955 else if (isym->st_shndx == SHN_ABS)
956 tsec = bfd_abs_section_ptr;
957 else if (isym->st_shndx == SHN_COMMON)
958 tsec = bfd_com_section_ptr;
959 else if (isym->st_shndx == SHN_IA_64_ANSI_COMMON)
960 tsec = bfd_com_section_ptr;
961 else
962 tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
963
964 toff = isym->st_value;
965 dyn_i = get_dyn_sym_info (ia64_info, NULL, abfd, irel, FALSE);
966 symtype = ELF_ST_TYPE (isym->st_info);
967 }
968 else
969 {
970 unsigned long indx;
971 struct elf_link_hash_entry *h;
972
973 indx = ELFNN_R_SYM (irel->r_info) - symtab_hdr->sh_info;
974 h = elf_sym_hashes (abfd)[indx];
975 BFD_ASSERT (h != NULL);
976
977 while (h->root.type == bfd_link_hash_indirect
978 || h->root.type == bfd_link_hash_warning)
979 h = (struct elf_link_hash_entry *) h->root.u.i.link;
980
981 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, irel, FALSE);
982
983 /* For branches to dynamic symbols, we're interested instead
984 in a branch to the PLT entry. */
985 if (is_branch && dyn_i && dyn_i->want_plt2)
986 {
987 /* Internal branches shouldn't be sent to the PLT.
988 Leave this for now and we'll give an error later. */
989 if (r_type != R_IA64_PCREL21B)
990 continue;
991
992 tsec = ia64_info->root.splt;
993 toff = dyn_i->plt2_offset;
994 BFD_ASSERT (irel->r_addend == 0);
995 }
996
997 /* Can't do anything else with dynamic symbols. */
998 else if (elfNN_ia64_dynamic_symbol_p (h, link_info, r_type))
999 continue;
1000
1001 else
1002 {
1003 /* We can't do anything with undefined symbols. */
1004 if (h->root.type == bfd_link_hash_undefined
1005 || h->root.type == bfd_link_hash_undefweak)
1006 continue;
1007
1008 tsec = h->root.u.def.section;
1009 toff = h->root.u.def.value;
1010 }
1011
1012 symtype = h->type;
1013 }
1014
1015 if (tsec->sec_info_type == ELF_INFO_TYPE_MERGE)
1016 {
1017 /* At this stage in linking, no SEC_MERGE symbol has been
1018 adjusted, so all references to such symbols need to be
1019 passed through _bfd_merged_section_offset. (Later, in
1020 relocate_section, all SEC_MERGE symbols *except* for
1021 section symbols have been adjusted.)
1022
1023 gas may reduce relocations against symbols in SEC_MERGE
1024 sections to a relocation against the section symbol when
1025 the original addend was zero. When the reloc is against
1026 a section symbol we should include the addend in the
1027 offset passed to _bfd_merged_section_offset, since the
1028 location of interest is the original symbol. On the
1029 other hand, an access to "sym+addend" where "sym" is not
1030 a section symbol should not include the addend; Such an
1031 access is presumed to be an offset from "sym"; The
1032 location of interest is just "sym". */
1033 if (symtype == STT_SECTION)
1034 toff += irel->r_addend;
1035
1036 toff = _bfd_merged_section_offset (abfd, &tsec,
1037 elf_section_data (tsec)->sec_info,
1038 toff);
1039
1040 if (symtype != STT_SECTION)
1041 toff += irel->r_addend;
1042 }
1043 else
1044 toff += irel->r_addend;
1045
1046 symaddr = tsec->output_section->vma + tsec->output_offset + toff;
1047
1048 roff = irel->r_offset;
1049
1050 if (is_branch)
1051 {
1052 bfd_signed_vma offset;
1053
1054 reladdr = (sec->output_section->vma
1055 + sec->output_offset
1056 + roff) & (bfd_vma) -4;
1057
1058 /* The .plt section is aligned at 32byte and the .text section
1059 is aligned at 64byte. The .text section is right after the
1060 .plt section. After the first relaxation pass, linker may
1061 increase the gap between the .plt and .text sections up
1062 to 32byte. We assume linker will always insert 32byte
1063 between the .plt and .text sections after the the first
1064 relaxation pass. */
1065 if (tsec == ia64_info->root.splt)
1066 offset = -0x1000000 + 32;
1067 else
1068 offset = -0x1000000;
1069
1070 /* If the branch is in range, no need to do anything. */
1071 if ((bfd_signed_vma) (symaddr - reladdr) >= offset
1072 && (bfd_signed_vma) (symaddr - reladdr) <= 0x0FFFFF0)
1073 {
1074 /* If the 60-bit branch is in 21-bit range, optimize it. */
1075 if (r_type == R_IA64_PCREL60B)
1076 {
1077 elfNN_ia64_relax_brl (contents, roff);
1078
1079 irel->r_info
1080 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1081 R_IA64_PCREL21B);
1082
1083 /* If the original relocation offset points to slot
1084 1, change it to slot 2. */
1085 if ((irel->r_offset & 3) == 1)
1086 irel->r_offset += 1;
1087 }
1088
1089 continue;
1090 }
1091 else if (r_type == R_IA64_PCREL60B)
1092 continue;
1093 else if (elfNN_ia64_relax_br (contents, roff))
1094 {
1095 irel->r_info
1096 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1097 R_IA64_PCREL60B);
1098
1099 /* Make the relocation offset point to slot 1. */
1100 irel->r_offset = (irel->r_offset & ~((bfd_vma) 0x3)) + 1;
1101 continue;
1102 }
1103
1104 /* We can't put a trampoline in a .init/.fini section. Issue
1105 an error. */
1106 if (strcmp (sec->output_section->name, ".init") == 0
1107 || strcmp (sec->output_section->name, ".fini") == 0)
1108 {
1109 (*_bfd_error_handler)
1110 (_("%B: Can't relax br at 0x%lx in section `%A'. Please use brl or indirect branch."),
1111 sec->owner, sec, (unsigned long) roff);
1112 bfd_set_error (bfd_error_bad_value);
1113 goto error_return;
1114 }
1115
1116 /* If the branch and target are in the same section, you've
1117 got one honking big section and we can't help you unless
1118 you are branching backwards. You'll get an error message
1119 later. */
1120 if (tsec == sec && toff > roff)
1121 continue;
1122
1123 /* Look for an existing fixup to this address. */
1124 for (f = fixups; f ; f = f->next)
1125 if (f->tsec == tsec && f->toff == toff)
1126 break;
1127
1128 if (f == NULL)
1129 {
1130 /* Two alternatives: If it's a branch to a PLT entry, we can
1131 make a copy of the FULL_PLT entry. Otherwise, we'll have
1132 to use a `brl' insn to get where we're going. */
1133
1134 size_t size;
1135
1136 if (tsec == ia64_info->root.splt)
1137 size = sizeof (plt_full_entry);
1138 else
1139 size = oor_branch_size;
1140
1141 /* Resize the current section to make room for the new branch. */
1142 trampoff = (sec->size + 15) & (bfd_vma) -16;
1143
1144 /* If trampoline is out of range, there is nothing we
1145 can do. */
1146 offset = trampoff - (roff & (bfd_vma) -4);
1147 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1148 continue;
1149
1150 amt = trampoff + size;
1151 contents = (bfd_byte *) bfd_realloc (contents, amt);
1152 if (contents == NULL)
1153 goto error_return;
1154 sec->size = amt;
1155
1156 if (tsec == ia64_info->root.splt)
1157 {
1158 memcpy (contents + trampoff, plt_full_entry, size);
1159
1160 /* Hijack the old relocation for use as the PLTOFF reloc. */
1161 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1162 R_IA64_PLTOFF22);
1163 irel->r_offset = trampoff;
1164 }
1165 else
1166 {
1167 if (size == sizeof (oor_ip))
1168 {
1169 memcpy (contents + trampoff, oor_ip, size);
1170 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1171 R_IA64_PCREL64I);
1172 irel->r_addend -= 16;
1173 irel->r_offset = trampoff + 2;
1174 }
1175 else
1176 {
1177 memcpy (contents + trampoff, oor_brl, size);
1178 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1179 R_IA64_PCREL60B);
1180 irel->r_offset = trampoff + 2;
1181 }
1182
1183 }
1184
1185 /* Record the fixup so we don't do it again this section. */
1186 f = (struct one_fixup *)
1187 bfd_malloc ((bfd_size_type) sizeof (*f));
1188 f->next = fixups;
1189 f->tsec = tsec;
1190 f->toff = toff;
1191 f->trampoff = trampoff;
1192 fixups = f;
1193 }
1194 else
1195 {
1196 /* If trampoline is out of range, there is nothing we
1197 can do. */
1198 offset = f->trampoff - (roff & (bfd_vma) -4);
1199 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1200 continue;
1201
1202 /* Nop out the reloc, since we're finalizing things here. */
1203 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1204 }
1205
1206 /* Fix up the existing branch to hit the trampoline. */
1207 if (elfNN_ia64_install_value (contents + roff, offset, r_type)
1208 != bfd_reloc_ok)
1209 goto error_return;
1210
1211 changed_contents = TRUE;
1212 changed_relocs = TRUE;
1213 }
1214 else
1215 {
1216 /* Fetch the gp. */
1217 if (gp == 0)
1218 {
1219 bfd *obfd = sec->output_section->owner;
1220 gp = _bfd_get_gp_value (obfd);
1221 if (gp == 0)
1222 {
1223 if (!elfNN_ia64_choose_gp (obfd, link_info))
1224 goto error_return;
1225 gp = _bfd_get_gp_value (obfd);
1226 }
1227 }
1228
1229 /* If the data is out of range, do nothing. */
1230 if ((bfd_signed_vma) (symaddr - gp) >= 0x200000
1231 ||(bfd_signed_vma) (symaddr - gp) < -0x200000)
1232 continue;
1233
1234 if (r_type == R_IA64_GPREL22)
1235 elfNN_ia64_update_short_info (tsec->output_section,
1236 tsec->output_offset + toff,
1237 ia64_info);
1238 else if (r_type == R_IA64_LTOFF22X)
1239 {
1240 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1241 R_IA64_GPREL22);
1242 changed_relocs = TRUE;
1243 if (dyn_i->want_gotx)
1244 {
1245 dyn_i->want_gotx = 0;
1246 changed_got |= !dyn_i->want_got;
1247 }
1248
1249 elfNN_ia64_update_short_info (tsec->output_section,
1250 tsec->output_offset + toff,
1251 ia64_info);
1252 }
1253 else
1254 {
1255 elfNN_ia64_relax_ldxmov (contents, roff);
1256 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1257 changed_contents = TRUE;
1258 changed_relocs = TRUE;
1259 }
1260 }
1261 }
1262
1263 /* ??? If we created fixups, this may push the code segment large
1264 enough that the data segment moves, which will change the GP.
1265 Reset the GP so that we re-calculate next round. We need to
1266 do this at the _beginning_ of the next round; now will not do. */
1267
1268 /* Clean up and go home. */
1269 while (fixups)
1270 {
1271 struct one_fixup *f = fixups;
1272 fixups = fixups->next;
1273 free (f);
1274 }
1275
1276 if (isymbuf != NULL
1277 && symtab_hdr->contents != (unsigned char *) isymbuf)
1278 {
1279 if (! link_info->keep_memory)
1280 free (isymbuf);
1281 else
1282 {
1283 /* Cache the symbols for elf_link_input_bfd. */
1284 symtab_hdr->contents = (unsigned char *) isymbuf;
1285 }
1286 }
1287
1288 if (contents != NULL
1289 && elf_section_data (sec)->this_hdr.contents != contents)
1290 {
1291 if (!changed_contents && !link_info->keep_memory)
1292 free (contents);
1293 else
1294 {
1295 /* Cache the section contents for elf_link_input_bfd. */
1296 elf_section_data (sec)->this_hdr.contents = contents;
1297 }
1298 }
1299
1300 if (elf_section_data (sec)->relocs != internal_relocs)
1301 {
1302 if (!changed_relocs)
1303 free (internal_relocs);
1304 else
1305 elf_section_data (sec)->relocs = internal_relocs;
1306 }
1307
1308 if (changed_got)
1309 {
1310 struct elfNN_ia64_allocate_data data;
1311 data.info = link_info;
1312 data.ofs = 0;
1313 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
1314
1315 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
1316 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
1317 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
1318 ia64_info->root.sgot->size = data.ofs;
1319
1320 if (ia64_info->root.dynamic_sections_created
1321 && ia64_info->root.srelgot != NULL)
1322 {
1323 /* Resize .rela.got. */
1324 ia64_info->root.srelgot->size = 0;
1325 if (link_info->shared
1326 && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
1327 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela);
1328 data.only_got = TRUE;
1329 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries,
1330 &data);
1331 }
1332 }
1333
1334 if (link_info->relax_pass == 0)
1335 {
1336 /* Pass 0 is only needed to relax br. */
1337 sec->skip_relax_pass_0 = skip_relax_pass_0;
1338 sec->skip_relax_pass_1 = skip_relax_pass_1;
1339 }
1340
1341 *again = changed_contents || changed_relocs;
1342 return TRUE;
1343
1344 error_return:
1345 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
1346 free (isymbuf);
1347 if (contents != NULL
1348 && elf_section_data (sec)->this_hdr.contents != contents)
1349 free (contents);
1350 if (internal_relocs != NULL
1351 && elf_section_data (sec)->relocs != internal_relocs)
1352 free (internal_relocs);
1353 return FALSE;
1354 }
1355 #undef skip_relax_pass_0
1356 #undef skip_relax_pass_1
1357
1358 static void
1359 elfNN_ia64_relax_ldxmov (bfd_byte *contents, bfd_vma off)
1360 {
1361 int shift, r1, r3;
1362 bfd_vma dword, insn;
1363
1364 switch ((int)off & 0x3)
1365 {
1366 case 0: shift = 5; break;
1367 case 1: shift = 14; off += 3; break;
1368 case 2: shift = 23; off += 6; break;
1369 default:
1370 abort ();
1371 }
1372
1373 dword = bfd_getl64 (contents + off);
1374 insn = (dword >> shift) & 0x1ffffffffffLL;
1375
1376 r1 = (insn >> 6) & 127;
1377 r3 = (insn >> 20) & 127;
1378 if (r1 == r3)
1379 insn = 0x8000000; /* nop */
1380 else
1381 insn = (insn & 0x7f01fff) | 0x10800000000LL; /* (qp) mov r1 = r3 */
1382
1383 dword &= ~(0x1ffffffffffLL << shift);
1384 dword |= (insn << shift);
1385 bfd_putl64 (dword, contents + off);
1386 }
1387 \f
1388 /* Return TRUE if NAME is an unwind table section name. */
1389
1390 static inline bfd_boolean
1391 is_unwind_section_name (bfd *abfd, const char *name)
1392 {
1393 if (elfNN_ia64_hpux_vec (abfd->xvec)
1394 && !strcmp (name, ELF_STRING_ia64_unwind_hdr))
1395 return FALSE;
1396
1397 return ((CONST_STRNEQ (name, ELF_STRING_ia64_unwind)
1398 && ! CONST_STRNEQ (name, ELF_STRING_ia64_unwind_info))
1399 || CONST_STRNEQ (name, ELF_STRING_ia64_unwind_once));
1400 }
1401
1402 /* Handle an IA-64 specific section when reading an object file. This
1403 is called when bfd_section_from_shdr finds a section with an unknown
1404 type. */
1405
1406 static bfd_boolean
1407 elfNN_ia64_section_from_shdr (bfd *abfd,
1408 Elf_Internal_Shdr *hdr,
1409 const char *name,
1410 int shindex)
1411 {
1412 /* There ought to be a place to keep ELF backend specific flags, but
1413 at the moment there isn't one. We just keep track of the
1414 sections by their name, instead. Fortunately, the ABI gives
1415 suggested names for all the MIPS specific sections, so we will
1416 probably get away with this. */
1417 switch (hdr->sh_type)
1418 {
1419 case SHT_IA_64_UNWIND:
1420 case SHT_IA_64_HP_OPT_ANOT:
1421 break;
1422
1423 case SHT_IA_64_EXT:
1424 if (strcmp (name, ELF_STRING_ia64_archext) != 0)
1425 return FALSE;
1426 break;
1427
1428 default:
1429 return FALSE;
1430 }
1431
1432 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1433 return FALSE;
1434
1435 return TRUE;
1436 }
1437
1438 /* Convert IA-64 specific section flags to bfd internal section flags. */
1439
1440 /* ??? There is no bfd internal flag equivalent to the SHF_IA_64_NORECOV
1441 flag. */
1442
1443 static bfd_boolean
1444 elfNN_ia64_section_flags (flagword *flags,
1445 const Elf_Internal_Shdr *hdr)
1446 {
1447 if (hdr->sh_flags & SHF_IA_64_SHORT)
1448 *flags |= SEC_SMALL_DATA;
1449
1450 return TRUE;
1451 }
1452
1453 /* Set the correct type for an IA-64 ELF section. We do this by the
1454 section name, which is a hack, but ought to work. */
1455
1456 static bfd_boolean
1457 elfNN_ia64_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr,
1458 asection *sec)
1459 {
1460 const char *name;
1461
1462 name = bfd_get_section_name (abfd, sec);
1463
1464 if (is_unwind_section_name (abfd, name))
1465 {
1466 /* We don't have the sections numbered at this point, so sh_info
1467 is set later, in elfNN_ia64_final_write_processing. */
1468 hdr->sh_type = SHT_IA_64_UNWIND;
1469 hdr->sh_flags |= SHF_LINK_ORDER;
1470 }
1471 else if (strcmp (name, ELF_STRING_ia64_archext) == 0)
1472 hdr->sh_type = SHT_IA_64_EXT;
1473 else if (strcmp (name, ".HP.opt_annot") == 0)
1474 hdr->sh_type = SHT_IA_64_HP_OPT_ANOT;
1475 else if (strcmp (name, ".reloc") == 0)
1476 /* This is an ugly, but unfortunately necessary hack that is
1477 needed when producing EFI binaries on IA-64. It tells
1478 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1479 containing ELF relocation info. We need this hack in order to
1480 be able to generate ELF binaries that can be translated into
1481 EFI applications (which are essentially COFF objects). Those
1482 files contain a COFF ".reloc" section inside an ELFNN object,
1483 which would normally cause BFD to segfault because it would
1484 attempt to interpret this section as containing relocation
1485 entries for section "oc". With this hack enabled, ".reloc"
1486 will be treated as a normal data section, which will avoid the
1487 segfault. However, you won't be able to create an ELFNN binary
1488 with a section named "oc" that needs relocations, but that's
1489 the kind of ugly side-effects you get when detecting section
1490 types based on their names... In practice, this limitation is
1491 unlikely to bite. */
1492 hdr->sh_type = SHT_PROGBITS;
1493
1494 if (sec->flags & SEC_SMALL_DATA)
1495 hdr->sh_flags |= SHF_IA_64_SHORT;
1496
1497 /* Some HP linkers look for the SHF_IA_64_HP_TLS flag instead of SHF_TLS. */
1498
1499 if (elfNN_ia64_hpux_vec (abfd->xvec) && (sec->flags & SHF_TLS))
1500 hdr->sh_flags |= SHF_IA_64_HP_TLS;
1501
1502 return TRUE;
1503 }
1504
1505 /* The final processing done just before writing out an IA-64 ELF
1506 object file. */
1507
1508 static void
1509 elfNN_ia64_final_write_processing (bfd *abfd,
1510 bfd_boolean linker ATTRIBUTE_UNUSED)
1511 {
1512 Elf_Internal_Shdr *hdr;
1513 asection *s;
1514
1515 for (s = abfd->sections; s; s = s->next)
1516 {
1517 hdr = &elf_section_data (s)->this_hdr;
1518 switch (hdr->sh_type)
1519 {
1520 case SHT_IA_64_UNWIND:
1521 /* The IA-64 processor-specific ABI requires setting sh_link
1522 to the unwind section, whereas HP-UX requires sh_info to
1523 do so. For maximum compatibility, we'll set both for
1524 now... */
1525 hdr->sh_info = hdr->sh_link;
1526 break;
1527 }
1528 }
1529
1530 if (! elf_flags_init (abfd))
1531 {
1532 unsigned long flags = 0;
1533
1534 if (abfd->xvec->byteorder == BFD_ENDIAN_BIG)
1535 flags |= EF_IA_64_BE;
1536 if (bfd_get_mach (abfd) == bfd_mach_ia64_elf64)
1537 flags |= EF_IA_64_ABI64;
1538
1539 elf_elfheader(abfd)->e_flags = flags;
1540 elf_flags_init (abfd) = TRUE;
1541 }
1542 }
1543
1544 /* Hook called by the linker routine which adds symbols from an object
1545 file. We use it to put .comm items in .sbss, and not .bss. */
1546
1547 static bfd_boolean
1548 elfNN_ia64_add_symbol_hook (bfd *abfd,
1549 struct bfd_link_info *info,
1550 Elf_Internal_Sym *sym,
1551 const char **namep ATTRIBUTE_UNUSED,
1552 flagword *flagsp ATTRIBUTE_UNUSED,
1553 asection **secp,
1554 bfd_vma *valp)
1555 {
1556 if (sym->st_shndx == SHN_COMMON
1557 && !info->relocatable
1558 && sym->st_size <= elf_gp_size (abfd))
1559 {
1560 /* Common symbols less than or equal to -G nn bytes are
1561 automatically put into .sbss. */
1562
1563 asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
1564
1565 if (scomm == NULL)
1566 {
1567 scomm = bfd_make_section_with_flags (abfd, ".scommon",
1568 (SEC_ALLOC
1569 | SEC_IS_COMMON
1570 | SEC_LINKER_CREATED));
1571 if (scomm == NULL)
1572 return FALSE;
1573 }
1574
1575 *secp = scomm;
1576 *valp = sym->st_size;
1577 }
1578
1579 return TRUE;
1580 }
1581
1582 /* Return the number of additional phdrs we will need. */
1583
1584 static int
1585 elfNN_ia64_additional_program_headers (bfd *abfd,
1586 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1587 {
1588 asection *s;
1589 int ret = 0;
1590
1591 /* See if we need a PT_IA_64_ARCHEXT segment. */
1592 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1593 if (s && (s->flags & SEC_LOAD))
1594 ++ret;
1595
1596 /* Count how many PT_IA_64_UNWIND segments we need. */
1597 for (s = abfd->sections; s; s = s->next)
1598 if (is_unwind_section_name (abfd, s->name) && (s->flags & SEC_LOAD))
1599 ++ret;
1600
1601 return ret;
1602 }
1603
1604 static bfd_boolean
1605 elfNN_ia64_modify_segment_map (bfd *abfd,
1606 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1607 {
1608 struct elf_segment_map *m, **pm;
1609 Elf_Internal_Shdr *hdr;
1610 asection *s;
1611
1612 /* If we need a PT_IA_64_ARCHEXT segment, it must come before
1613 all PT_LOAD segments. */
1614 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1615 if (s && (s->flags & SEC_LOAD))
1616 {
1617 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1618 if (m->p_type == PT_IA_64_ARCHEXT)
1619 break;
1620 if (m == NULL)
1621 {
1622 m = ((struct elf_segment_map *)
1623 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1624 if (m == NULL)
1625 return FALSE;
1626
1627 m->p_type = PT_IA_64_ARCHEXT;
1628 m->count = 1;
1629 m->sections[0] = s;
1630
1631 /* We want to put it after the PHDR and INTERP segments. */
1632 pm = &elf_tdata (abfd)->segment_map;
1633 while (*pm != NULL
1634 && ((*pm)->p_type == PT_PHDR
1635 || (*pm)->p_type == PT_INTERP))
1636 pm = &(*pm)->next;
1637
1638 m->next = *pm;
1639 *pm = m;
1640 }
1641 }
1642
1643 /* Install PT_IA_64_UNWIND segments, if needed. */
1644 for (s = abfd->sections; s; s = s->next)
1645 {
1646 hdr = &elf_section_data (s)->this_hdr;
1647 if (hdr->sh_type != SHT_IA_64_UNWIND)
1648 continue;
1649
1650 if (s && (s->flags & SEC_LOAD))
1651 {
1652 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1653 if (m->p_type == PT_IA_64_UNWIND)
1654 {
1655 int i;
1656
1657 /* Look through all sections in the unwind segment
1658 for a match since there may be multiple sections
1659 to a segment. */
1660 for (i = m->count - 1; i >= 0; --i)
1661 if (m->sections[i] == s)
1662 break;
1663
1664 if (i >= 0)
1665 break;
1666 }
1667
1668 if (m == NULL)
1669 {
1670 m = ((struct elf_segment_map *)
1671 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1672 if (m == NULL)
1673 return FALSE;
1674
1675 m->p_type = PT_IA_64_UNWIND;
1676 m->count = 1;
1677 m->sections[0] = s;
1678 m->next = NULL;
1679
1680 /* We want to put it last. */
1681 pm = &elf_tdata (abfd)->segment_map;
1682 while (*pm != NULL)
1683 pm = &(*pm)->next;
1684 *pm = m;
1685 }
1686 }
1687 }
1688
1689 return TRUE;
1690 }
1691
1692 /* Turn on PF_IA_64_NORECOV if needed. This involves traversing all of
1693 the input sections for each output section in the segment and testing
1694 for SHF_IA_64_NORECOV on each. */
1695
1696 static bfd_boolean
1697 elfNN_ia64_modify_program_headers (bfd *abfd,
1698 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1699 {
1700 struct elf_obj_tdata *tdata = elf_tdata (abfd);
1701 struct elf_segment_map *m;
1702 Elf_Internal_Phdr *p;
1703
1704 for (p = tdata->phdr, m = tdata->segment_map; m != NULL; m = m->next, p++)
1705 if (m->p_type == PT_LOAD)
1706 {
1707 int i;
1708 for (i = m->count - 1; i >= 0; --i)
1709 {
1710 struct bfd_link_order *order = m->sections[i]->map_head.link_order;
1711
1712 while (order != NULL)
1713 {
1714 if (order->type == bfd_indirect_link_order)
1715 {
1716 asection *is = order->u.indirect.section;
1717 bfd_vma flags = elf_section_data(is)->this_hdr.sh_flags;
1718 if (flags & SHF_IA_64_NORECOV)
1719 {
1720 p->p_flags |= PF_IA_64_NORECOV;
1721 goto found;
1722 }
1723 }
1724 order = order->next;
1725 }
1726 }
1727 found:;
1728 }
1729
1730 return TRUE;
1731 }
1732
1733 /* According to the Tahoe assembler spec, all labels starting with a
1734 '.' are local. */
1735
1736 static bfd_boolean
1737 elfNN_ia64_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
1738 const char *name)
1739 {
1740 return name[0] == '.';
1741 }
1742
1743 /* Should we do dynamic things to this symbol? */
1744
1745 static bfd_boolean
1746 elfNN_ia64_dynamic_symbol_p (struct elf_link_hash_entry *h,
1747 struct bfd_link_info *info, int r_type)
1748 {
1749 bfd_boolean ignore_protected
1750 = ((r_type & 0xf8) == 0x40 /* FPTR relocs */
1751 || (r_type & 0xf8) == 0x50); /* LTOFF_FPTR relocs */
1752
1753 return _bfd_elf_dynamic_symbol_p (h, info, ignore_protected);
1754 }
1755 \f
1756 static struct bfd_hash_entry*
1757 elfNN_ia64_new_elf_hash_entry (struct bfd_hash_entry *entry,
1758 struct bfd_hash_table *table,
1759 const char *string)
1760 {
1761 struct elfNN_ia64_link_hash_entry *ret;
1762 ret = (struct elfNN_ia64_link_hash_entry *) entry;
1763
1764 /* Allocate the structure if it has not already been allocated by a
1765 subclass. */
1766 if (!ret)
1767 ret = bfd_hash_allocate (table, sizeof (*ret));
1768
1769 if (!ret)
1770 return 0;
1771
1772 /* Call the allocation method of the superclass. */
1773 ret = ((struct elfNN_ia64_link_hash_entry *)
1774 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1775 table, string));
1776
1777 ret->info = NULL;
1778 ret->count = 0;
1779 ret->sorted_count = 0;
1780 ret->size = 0;
1781 return (struct bfd_hash_entry *) ret;
1782 }
1783
1784 static void
1785 elfNN_ia64_hash_copy_indirect (struct bfd_link_info *info,
1786 struct elf_link_hash_entry *xdir,
1787 struct elf_link_hash_entry *xind)
1788 {
1789 struct elfNN_ia64_link_hash_entry *dir, *ind;
1790
1791 dir = (struct elfNN_ia64_link_hash_entry *) xdir;
1792 ind = (struct elfNN_ia64_link_hash_entry *) xind;
1793
1794 /* Copy down any references that we may have already seen to the
1795 symbol which just became indirect. */
1796
1797 dir->root.ref_dynamic |= ind->root.ref_dynamic;
1798 dir->root.ref_regular |= ind->root.ref_regular;
1799 dir->root.ref_regular_nonweak |= ind->root.ref_regular_nonweak;
1800 dir->root.needs_plt |= ind->root.needs_plt;
1801
1802 if (ind->root.root.type != bfd_link_hash_indirect)
1803 return;
1804
1805 /* Copy over the got and plt data. This would have been done
1806 by check_relocs. */
1807
1808 if (ind->info != NULL)
1809 {
1810 struct elfNN_ia64_dyn_sym_info *dyn_i;
1811 unsigned int count;
1812
1813 if (dir->info)
1814 free (dir->info);
1815
1816 dir->info = ind->info;
1817 dir->count = ind->count;
1818 dir->sorted_count = ind->sorted_count;
1819 dir->size = ind->size;
1820
1821 ind->info = NULL;
1822 ind->count = 0;
1823 ind->sorted_count = 0;
1824 ind->size = 0;
1825
1826 /* Fix up the dyn_sym_info pointers to the global symbol. */
1827 for (count = dir->count, dyn_i = dir->info;
1828 count != 0;
1829 count--, dyn_i++)
1830 dyn_i->h = &dir->root;
1831 }
1832
1833 /* Copy over the dynindx. */
1834
1835 if (ind->root.dynindx != -1)
1836 {
1837 if (dir->root.dynindx != -1)
1838 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1839 dir->root.dynstr_index);
1840 dir->root.dynindx = ind->root.dynindx;
1841 dir->root.dynstr_index = ind->root.dynstr_index;
1842 ind->root.dynindx = -1;
1843 ind->root.dynstr_index = 0;
1844 }
1845 }
1846
1847 static void
1848 elfNN_ia64_hash_hide_symbol (struct bfd_link_info *info,
1849 struct elf_link_hash_entry *xh,
1850 bfd_boolean force_local)
1851 {
1852 struct elfNN_ia64_link_hash_entry *h;
1853 struct elfNN_ia64_dyn_sym_info *dyn_i;
1854 unsigned int count;
1855
1856 h = (struct elfNN_ia64_link_hash_entry *)xh;
1857
1858 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
1859
1860 for (count = h->count, dyn_i = h->info;
1861 count != 0;
1862 count--, dyn_i++)
1863 {
1864 dyn_i->want_plt2 = 0;
1865 dyn_i->want_plt = 0;
1866 }
1867 }
1868
1869 /* Compute a hash of a local hash entry. */
1870
1871 static hashval_t
1872 elfNN_ia64_local_htab_hash (const void *ptr)
1873 {
1874 struct elfNN_ia64_local_hash_entry *entry
1875 = (struct elfNN_ia64_local_hash_entry *) ptr;
1876
1877 return ELF_LOCAL_SYMBOL_HASH (entry->id, entry->r_sym);
1878 }
1879
1880 /* Compare local hash entries. */
1881
1882 static int
1883 elfNN_ia64_local_htab_eq (const void *ptr1, const void *ptr2)
1884 {
1885 struct elfNN_ia64_local_hash_entry *entry1
1886 = (struct elfNN_ia64_local_hash_entry *) ptr1;
1887 struct elfNN_ia64_local_hash_entry *entry2
1888 = (struct elfNN_ia64_local_hash_entry *) ptr2;
1889
1890 return entry1->id == entry2->id && entry1->r_sym == entry2->r_sym;
1891 }
1892
1893 /* Create the derived linker hash table. The IA-64 ELF port uses this
1894 derived hash table to keep information specific to the IA-64 ElF
1895 linker (without using static variables). */
1896
1897 static struct bfd_link_hash_table *
1898 elfNN_ia64_hash_table_create (bfd *abfd)
1899 {
1900 struct elfNN_ia64_link_hash_table *ret;
1901
1902 ret = bfd_zmalloc ((bfd_size_type) sizeof (*ret));
1903 if (!ret)
1904 return NULL;
1905
1906 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
1907 elfNN_ia64_new_elf_hash_entry,
1908 sizeof (struct elfNN_ia64_link_hash_entry),
1909 IA64_ELF_DATA))
1910 {
1911 free (ret);
1912 return NULL;
1913 }
1914
1915 ret->loc_hash_table = htab_try_create (1024, elfNN_ia64_local_htab_hash,
1916 elfNN_ia64_local_htab_eq, NULL);
1917 ret->loc_hash_memory = objalloc_create ();
1918 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1919 {
1920 free (ret);
1921 return NULL;
1922 }
1923
1924 return &ret->root.root;
1925 }
1926
1927 /* Free the global elfNN_ia64_dyn_sym_info array. */
1928
1929 static bfd_boolean
1930 elfNN_ia64_global_dyn_info_free (void **xentry,
1931 PTR unused ATTRIBUTE_UNUSED)
1932 {
1933 struct elfNN_ia64_link_hash_entry *entry
1934 = (struct elfNN_ia64_link_hash_entry *) xentry;
1935
1936 if (entry->root.root.type == bfd_link_hash_warning)
1937 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
1938
1939 if (entry->info)
1940 {
1941 free (entry->info);
1942 entry->info = NULL;
1943 entry->count = 0;
1944 entry->sorted_count = 0;
1945 entry->size = 0;
1946 }
1947
1948 return TRUE;
1949 }
1950
1951 /* Free the local elfNN_ia64_dyn_sym_info array. */
1952
1953 static bfd_boolean
1954 elfNN_ia64_local_dyn_info_free (void **slot,
1955 PTR unused ATTRIBUTE_UNUSED)
1956 {
1957 struct elfNN_ia64_local_hash_entry *entry
1958 = (struct elfNN_ia64_local_hash_entry *) *slot;
1959
1960 if (entry->info)
1961 {
1962 free (entry->info);
1963 entry->info = NULL;
1964 entry->count = 0;
1965 entry->sorted_count = 0;
1966 entry->size = 0;
1967 }
1968
1969 return TRUE;
1970 }
1971
1972 /* Destroy IA-64 linker hash table. */
1973
1974 static void
1975 elfNN_ia64_hash_table_free (struct bfd_link_hash_table *hash)
1976 {
1977 struct elfNN_ia64_link_hash_table *ia64_info
1978 = (struct elfNN_ia64_link_hash_table *) hash;
1979 if (ia64_info->loc_hash_table)
1980 {
1981 htab_traverse (ia64_info->loc_hash_table,
1982 elfNN_ia64_local_dyn_info_free, NULL);
1983 htab_delete (ia64_info->loc_hash_table);
1984 }
1985 if (ia64_info->loc_hash_memory)
1986 objalloc_free ((struct objalloc *) ia64_info->loc_hash_memory);
1987 elf_link_hash_traverse (&ia64_info->root,
1988 elfNN_ia64_global_dyn_info_free, NULL);
1989 _bfd_generic_link_hash_table_free (hash);
1990 }
1991
1992 /* Traverse both local and global hash tables. */
1993
1994 struct elfNN_ia64_dyn_sym_traverse_data
1995 {
1996 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR);
1997 PTR data;
1998 };
1999
2000 static bfd_boolean
2001 elfNN_ia64_global_dyn_sym_thunk (struct bfd_hash_entry *xentry,
2002 PTR xdata)
2003 {
2004 struct elfNN_ia64_link_hash_entry *entry
2005 = (struct elfNN_ia64_link_hash_entry *) xentry;
2006 struct elfNN_ia64_dyn_sym_traverse_data *data
2007 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
2008 struct elfNN_ia64_dyn_sym_info *dyn_i;
2009 unsigned int count;
2010
2011 if (entry->root.root.type == bfd_link_hash_warning)
2012 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
2013
2014 for (count = entry->count, dyn_i = entry->info;
2015 count != 0;
2016 count--, dyn_i++)
2017 if (! (*data->func) (dyn_i, data->data))
2018 return FALSE;
2019 return TRUE;
2020 }
2021
2022 static bfd_boolean
2023 elfNN_ia64_local_dyn_sym_thunk (void **slot, PTR xdata)
2024 {
2025 struct elfNN_ia64_local_hash_entry *entry
2026 = (struct elfNN_ia64_local_hash_entry *) *slot;
2027 struct elfNN_ia64_dyn_sym_traverse_data *data
2028 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
2029 struct elfNN_ia64_dyn_sym_info *dyn_i;
2030 unsigned int count;
2031
2032 for (count = entry->count, dyn_i = entry->info;
2033 count != 0;
2034 count--, dyn_i++)
2035 if (! (*data->func) (dyn_i, data->data))
2036 return FALSE;
2037 return TRUE;
2038 }
2039
2040 static void
2041 elfNN_ia64_dyn_sym_traverse (struct elfNN_ia64_link_hash_table *ia64_info,
2042 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR),
2043 PTR data)
2044 {
2045 struct elfNN_ia64_dyn_sym_traverse_data xdata;
2046
2047 xdata.func = func;
2048 xdata.data = data;
2049
2050 elf_link_hash_traverse (&ia64_info->root,
2051 elfNN_ia64_global_dyn_sym_thunk, &xdata);
2052 htab_traverse (ia64_info->loc_hash_table,
2053 elfNN_ia64_local_dyn_sym_thunk, &xdata);
2054 }
2055 \f
2056 static bfd_boolean
2057 elfNN_ia64_create_dynamic_sections (bfd *abfd,
2058 struct bfd_link_info *info)
2059 {
2060 struct elfNN_ia64_link_hash_table *ia64_info;
2061 asection *s;
2062
2063 if (! _bfd_elf_create_dynamic_sections (abfd, info))
2064 return FALSE;
2065
2066 ia64_info = elfNN_ia64_hash_table (info);
2067 if (ia64_info == NULL)
2068 return FALSE;
2069
2070 {
2071 flagword flags = bfd_get_section_flags (abfd, ia64_info->root.sgot);
2072 bfd_set_section_flags (abfd, ia64_info->root.sgot,
2073 SEC_SMALL_DATA | flags);
2074 /* The .got section is always aligned at 8 bytes. */
2075 bfd_set_section_alignment (abfd, ia64_info->root.sgot, 3);
2076 }
2077
2078 if (!get_pltoff (abfd, info, ia64_info))
2079 return FALSE;
2080
2081 s = bfd_make_section_with_flags (abfd, ".rela.IA_64.pltoff",
2082 (SEC_ALLOC | SEC_LOAD
2083 | SEC_HAS_CONTENTS
2084 | SEC_IN_MEMORY
2085 | SEC_LINKER_CREATED
2086 | SEC_READONLY));
2087 if (s == NULL
2088 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2089 return FALSE;
2090 ia64_info->rel_pltoff_sec = s;
2091
2092 return TRUE;
2093 }
2094
2095 /* Find and/or create a hash entry for local symbol. */
2096 static struct elfNN_ia64_local_hash_entry *
2097 get_local_sym_hash (struct elfNN_ia64_link_hash_table *ia64_info,
2098 bfd *abfd, const Elf_Internal_Rela *rel,
2099 bfd_boolean create)
2100 {
2101 struct elfNN_ia64_local_hash_entry e, *ret;
2102 asection *sec = abfd->sections;
2103 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2104 ELFNN_R_SYM (rel->r_info));
2105 void **slot;
2106
2107 e.id = sec->id;
2108 e.r_sym = ELFNN_R_SYM (rel->r_info);
2109 slot = htab_find_slot_with_hash (ia64_info->loc_hash_table, &e, h,
2110 create ? INSERT : NO_INSERT);
2111
2112 if (!slot)
2113 return NULL;
2114
2115 if (*slot)
2116 return (struct elfNN_ia64_local_hash_entry *) *slot;
2117
2118 ret = (struct elfNN_ia64_local_hash_entry *)
2119 objalloc_alloc ((struct objalloc *) ia64_info->loc_hash_memory,
2120 sizeof (struct elfNN_ia64_local_hash_entry));
2121 if (ret)
2122 {
2123 memset (ret, 0, sizeof (*ret));
2124 ret->id = sec->id;
2125 ret->r_sym = ELFNN_R_SYM (rel->r_info);
2126 *slot = ret;
2127 }
2128 return ret;
2129 }
2130
2131 /* Used to sort elfNN_ia64_dyn_sym_info array. */
2132
2133 static int
2134 addend_compare (const void *xp, const void *yp)
2135 {
2136 const struct elfNN_ia64_dyn_sym_info *x
2137 = (const struct elfNN_ia64_dyn_sym_info *) xp;
2138 const struct elfNN_ia64_dyn_sym_info *y
2139 = (const struct elfNN_ia64_dyn_sym_info *) yp;
2140
2141 return x->addend < y->addend ? -1 : x->addend > y->addend ? 1 : 0;
2142 }
2143
2144 /* Sort elfNN_ia64_dyn_sym_info array and remove duplicates. */
2145
2146 static unsigned int
2147 sort_dyn_sym_info (struct elfNN_ia64_dyn_sym_info *info,
2148 unsigned int count)
2149 {
2150 bfd_vma curr, prev, got_offset;
2151 unsigned int i, kept, dupes, diff, dest, src, len;
2152
2153 qsort (info, count, sizeof (*info), addend_compare);
2154
2155 /* Find the first duplicate. */
2156 prev = info [0].addend;
2157 got_offset = info [0].got_offset;
2158 for (i = 1; i < count; i++)
2159 {
2160 curr = info [i].addend;
2161 if (curr == prev)
2162 {
2163 /* For duplicates, make sure that GOT_OFFSET is valid. */
2164 if (got_offset == (bfd_vma) -1)
2165 got_offset = info [i].got_offset;
2166 break;
2167 }
2168 got_offset = info [i].got_offset;
2169 prev = curr;
2170 }
2171
2172 /* We may move a block of elements to here. */
2173 dest = i++;
2174
2175 /* Remove duplicates. */
2176 if (i < count)
2177 {
2178 while (i < count)
2179 {
2180 /* For duplicates, make sure that the kept one has a valid
2181 got_offset. */
2182 kept = dest - 1;
2183 if (got_offset != (bfd_vma) -1)
2184 info [kept].got_offset = got_offset;
2185
2186 curr = info [i].addend;
2187 got_offset = info [i].got_offset;
2188
2189 /* Move a block of elements whose first one is different from
2190 the previous. */
2191 if (curr == prev)
2192 {
2193 for (src = i + 1; src < count; src++)
2194 {
2195 if (info [src].addend != curr)
2196 break;
2197 /* For duplicates, make sure that GOT_OFFSET is
2198 valid. */
2199 if (got_offset == (bfd_vma) -1)
2200 got_offset = info [src].got_offset;
2201 }
2202
2203 /* Make sure that the kept one has a valid got_offset. */
2204 if (got_offset != (bfd_vma) -1)
2205 info [kept].got_offset = got_offset;
2206 }
2207 else
2208 src = i;
2209
2210 if (src >= count)
2211 break;
2212
2213 /* Find the next duplicate. SRC will be kept. */
2214 prev = info [src].addend;
2215 got_offset = info [src].got_offset;
2216 for (dupes = src + 1; dupes < count; dupes ++)
2217 {
2218 curr = info [dupes].addend;
2219 if (curr == prev)
2220 {
2221 /* Make sure that got_offset is valid. */
2222 if (got_offset == (bfd_vma) -1)
2223 got_offset = info [dupes].got_offset;
2224
2225 /* For duplicates, make sure that the kept one has
2226 a valid got_offset. */
2227 if (got_offset != (bfd_vma) -1)
2228 info [dupes - 1].got_offset = got_offset;
2229 break;
2230 }
2231 got_offset = info [dupes].got_offset;
2232 prev = curr;
2233 }
2234
2235 /* How much to move. */
2236 len = dupes - src;
2237 i = dupes + 1;
2238
2239 if (len == 1 && dupes < count)
2240 {
2241 /* If we only move 1 element, we combine it with the next
2242 one. There must be at least a duplicate. Find the
2243 next different one. */
2244 for (diff = dupes + 1, src++; diff < count; diff++, src++)
2245 {
2246 if (info [diff].addend != curr)
2247 break;
2248 /* Make sure that got_offset is valid. */
2249 if (got_offset == (bfd_vma) -1)
2250 got_offset = info [diff].got_offset;
2251 }
2252
2253 /* Makre sure that the last duplicated one has an valid
2254 offset. */
2255 BFD_ASSERT (curr == prev);
2256 if (got_offset != (bfd_vma) -1)
2257 info [diff - 1].got_offset = got_offset;
2258
2259 if (diff < count)
2260 {
2261 /* Find the next duplicate. Track the current valid
2262 offset. */
2263 prev = info [diff].addend;
2264 got_offset = info [diff].got_offset;
2265 for (dupes = diff + 1; dupes < count; dupes ++)
2266 {
2267 curr = info [dupes].addend;
2268 if (curr == prev)
2269 {
2270 /* For duplicates, make sure that GOT_OFFSET
2271 is valid. */
2272 if (got_offset == (bfd_vma) -1)
2273 got_offset = info [dupes].got_offset;
2274 break;
2275 }
2276 got_offset = info [dupes].got_offset;
2277 prev = curr;
2278 diff++;
2279 }
2280
2281 len = diff - src + 1;
2282 i = diff + 1;
2283 }
2284 }
2285
2286 memmove (&info [dest], &info [src], len * sizeof (*info));
2287
2288 dest += len;
2289 }
2290
2291 count = dest;
2292 }
2293 else
2294 {
2295 /* When we get here, either there is no duplicate at all or
2296 the only duplicate is the last element. */
2297 if (dest < count)
2298 {
2299 /* If the last element is a duplicate, make sure that the
2300 kept one has a valid got_offset. We also update count. */
2301 if (got_offset != (bfd_vma) -1)
2302 info [dest - 1].got_offset = got_offset;
2303 count = dest;
2304 }
2305 }
2306
2307 return count;
2308 }
2309
2310 /* Find and/or create a descriptor for dynamic symbol info. This will
2311 vary based on global or local symbol, and the addend to the reloc.
2312
2313 We don't sort when inserting. Also, we sort and eliminate
2314 duplicates if there is an unsorted section. Typically, this will
2315 only happen once, because we do all insertions before lookups. We
2316 then use bsearch to do a lookup. This also allows lookups to be
2317 fast. So we have fast insertion (O(log N) due to duplicate check),
2318 fast lookup (O(log N)) and one sort (O(N log N) expected time).
2319 Previously, all lookups were O(N) because of the use of the linked
2320 list and also all insertions were O(N) because of the check for
2321 duplicates. There are some complications here because the array
2322 size grows occasionally, which may add an O(N) factor, but this
2323 should be rare. Also, we free the excess array allocation, which
2324 requires a copy which is O(N), but this only happens once. */
2325
2326 static struct elfNN_ia64_dyn_sym_info *
2327 get_dyn_sym_info (struct elfNN_ia64_link_hash_table *ia64_info,
2328 struct elf_link_hash_entry *h, bfd *abfd,
2329 const Elf_Internal_Rela *rel, bfd_boolean create)
2330 {
2331 struct elfNN_ia64_dyn_sym_info **info_p, *info, *dyn_i, key;
2332 unsigned int *count_p, *sorted_count_p, *size_p;
2333 unsigned int count, sorted_count, size;
2334 bfd_vma addend = rel ? rel->r_addend : 0;
2335 bfd_size_type amt;
2336
2337 if (h)
2338 {
2339 struct elfNN_ia64_link_hash_entry *global_h;
2340
2341 global_h = (struct elfNN_ia64_link_hash_entry *) h;
2342 info_p = &global_h->info;
2343 count_p = &global_h->count;
2344 sorted_count_p = &global_h->sorted_count;
2345 size_p = &global_h->size;
2346 }
2347 else
2348 {
2349 struct elfNN_ia64_local_hash_entry *loc_h;
2350
2351 loc_h = get_local_sym_hash (ia64_info, abfd, rel, create);
2352 if (!loc_h)
2353 {
2354 BFD_ASSERT (!create);
2355 return NULL;
2356 }
2357
2358 info_p = &loc_h->info;
2359 count_p = &loc_h->count;
2360 sorted_count_p = &loc_h->sorted_count;
2361 size_p = &loc_h->size;
2362 }
2363
2364 count = *count_p;
2365 sorted_count = *sorted_count_p;
2366 size = *size_p;
2367 info = *info_p;
2368 if (create)
2369 {
2370 /* When we create the array, we don't check for duplicates,
2371 except in the previously sorted section if one exists, and
2372 against the last inserted entry. This allows insertions to
2373 be fast. */
2374 if (info)
2375 {
2376 if (sorted_count)
2377 {
2378 /* Try bsearch first on the sorted section. */
2379 key.addend = addend;
2380 dyn_i = bsearch (&key, info, sorted_count,
2381 sizeof (*info), addend_compare);
2382
2383 if (dyn_i)
2384 {
2385 return dyn_i;
2386 }
2387 }
2388
2389 /* Do a quick check for the last inserted entry. */
2390 dyn_i = info + count - 1;
2391 if (dyn_i->addend == addend)
2392 {
2393 return dyn_i;
2394 }
2395 }
2396
2397 if (size == 0)
2398 {
2399 /* It is the very first element. We create the array of size
2400 1. */
2401 size = 1;
2402 amt = size * sizeof (*info);
2403 info = bfd_malloc (amt);
2404 }
2405 else if (size <= count)
2406 {
2407 /* We double the array size every time when we reach the
2408 size limit. */
2409 size += size;
2410 amt = size * sizeof (*info);
2411 info = bfd_realloc (info, amt);
2412 }
2413 else
2414 goto has_space;
2415
2416 if (info == NULL)
2417 return NULL;
2418 *size_p = size;
2419 *info_p = info;
2420
2421 has_space:
2422 /* Append the new one to the array. */
2423 dyn_i = info + count;
2424 memset (dyn_i, 0, sizeof (*dyn_i));
2425 dyn_i->got_offset = (bfd_vma) -1;
2426 dyn_i->addend = addend;
2427
2428 /* We increment count only since the new ones are unsorted and
2429 may have duplicate. */
2430 (*count_p)++;
2431 }
2432 else
2433 {
2434 /* It is a lookup without insertion. Sort array if part of the
2435 array isn't sorted. */
2436 if (count != sorted_count)
2437 {
2438 count = sort_dyn_sym_info (info, count);
2439 *count_p = count;
2440 *sorted_count_p = count;
2441 }
2442
2443 /* Free unused memory. */
2444 if (size != count)
2445 {
2446 amt = count * sizeof (*info);
2447 info = bfd_malloc (amt);
2448 if (info != NULL)
2449 {
2450 memcpy (info, *info_p, amt);
2451 free (*info_p);
2452 *size_p = count;
2453 *info_p = info;
2454 }
2455 }
2456
2457 key.addend = addend;
2458 dyn_i = bsearch (&key, info, count,
2459 sizeof (*info), addend_compare);
2460 }
2461
2462 return dyn_i;
2463 }
2464
2465 static asection *
2466 get_got (bfd *abfd, struct bfd_link_info *info,
2467 struct elfNN_ia64_link_hash_table *ia64_info)
2468 {
2469 asection *got;
2470 bfd *dynobj;
2471
2472 got = ia64_info->root.sgot;
2473 if (!got)
2474 {
2475 flagword flags;
2476
2477 dynobj = ia64_info->root.dynobj;
2478 if (!dynobj)
2479 ia64_info->root.dynobj = dynobj = abfd;
2480 if (!_bfd_elf_create_got_section (dynobj, info))
2481 return 0;
2482
2483 got = ia64_info->root.sgot;
2484
2485 /* The .got section is always aligned at 8 bytes. */
2486 if (!bfd_set_section_alignment (abfd, got, 3))
2487 return 0;
2488
2489 flags = bfd_get_section_flags (abfd, got);
2490 bfd_set_section_flags (abfd, got, SEC_SMALL_DATA | flags);
2491 }
2492
2493 return got;
2494 }
2495
2496 /* Create function descriptor section (.opd). This section is called .opd
2497 because it contains "official procedure descriptors". The "official"
2498 refers to the fact that these descriptors are used when taking the address
2499 of a procedure, thus ensuring a unique address for each procedure. */
2500
2501 static asection *
2502 get_fptr (bfd *abfd, struct bfd_link_info *info,
2503 struct elfNN_ia64_link_hash_table *ia64_info)
2504 {
2505 asection *fptr;
2506 bfd *dynobj;
2507
2508 fptr = ia64_info->fptr_sec;
2509 if (!fptr)
2510 {
2511 dynobj = ia64_info->root.dynobj;
2512 if (!dynobj)
2513 ia64_info->root.dynobj = dynobj = abfd;
2514
2515 fptr = bfd_make_section_with_flags (dynobj, ".opd",
2516 (SEC_ALLOC
2517 | SEC_LOAD
2518 | SEC_HAS_CONTENTS
2519 | SEC_IN_MEMORY
2520 | (info->pie ? 0 : SEC_READONLY)
2521 | SEC_LINKER_CREATED));
2522 if (!fptr
2523 || !bfd_set_section_alignment (abfd, fptr, 4))
2524 {
2525 BFD_ASSERT (0);
2526 return NULL;
2527 }
2528
2529 ia64_info->fptr_sec = fptr;
2530
2531 if (info->pie)
2532 {
2533 asection *fptr_rel;
2534 fptr_rel = bfd_make_section_with_flags (dynobj, ".rela.opd",
2535 (SEC_ALLOC | SEC_LOAD
2536 | SEC_HAS_CONTENTS
2537 | SEC_IN_MEMORY
2538 | SEC_LINKER_CREATED
2539 | SEC_READONLY));
2540 if (fptr_rel == NULL
2541 || !bfd_set_section_alignment (abfd, fptr_rel,
2542 LOG_SECTION_ALIGN))
2543 {
2544 BFD_ASSERT (0);
2545 return NULL;
2546 }
2547
2548 ia64_info->rel_fptr_sec = fptr_rel;
2549 }
2550 }
2551
2552 return fptr;
2553 }
2554
2555 static asection *
2556 get_pltoff (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED,
2557 struct elfNN_ia64_link_hash_table *ia64_info)
2558 {
2559 asection *pltoff;
2560 bfd *dynobj;
2561
2562 pltoff = ia64_info->pltoff_sec;
2563 if (!pltoff)
2564 {
2565 dynobj = ia64_info->root.dynobj;
2566 if (!dynobj)
2567 ia64_info->root.dynobj = dynobj = abfd;
2568
2569 pltoff = bfd_make_section_with_flags (dynobj,
2570 ELF_STRING_ia64_pltoff,
2571 (SEC_ALLOC
2572 | SEC_LOAD
2573 | SEC_HAS_CONTENTS
2574 | SEC_IN_MEMORY
2575 | SEC_SMALL_DATA
2576 | SEC_LINKER_CREATED));
2577 if (!pltoff
2578 || !bfd_set_section_alignment (abfd, pltoff, 4))
2579 {
2580 BFD_ASSERT (0);
2581 return NULL;
2582 }
2583
2584 ia64_info->pltoff_sec = pltoff;
2585 }
2586
2587 return pltoff;
2588 }
2589
2590 static asection *
2591 get_reloc_section (bfd *abfd,
2592 struct elfNN_ia64_link_hash_table *ia64_info,
2593 asection *sec, bfd_boolean create)
2594 {
2595 const char *srel_name;
2596 asection *srel;
2597 bfd *dynobj;
2598
2599 srel_name = (bfd_elf_string_from_elf_section
2600 (abfd, elf_elfheader(abfd)->e_shstrndx,
2601 _bfd_elf_single_rel_hdr (sec)->sh_name));
2602 if (srel_name == NULL)
2603 return NULL;
2604
2605 BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
2606 && strcmp (bfd_get_section_name (abfd, sec),
2607 srel_name+5) == 0)
2608 || (CONST_STRNEQ (srel_name, ".rel")
2609 && strcmp (bfd_get_section_name (abfd, sec),
2610 srel_name+4) == 0));
2611
2612 dynobj = ia64_info->root.dynobj;
2613 if (!dynobj)
2614 ia64_info->root.dynobj = dynobj = abfd;
2615
2616 srel = bfd_get_section_by_name (dynobj, srel_name);
2617 if (srel == NULL && create)
2618 {
2619 srel = bfd_make_section_with_flags (dynobj, srel_name,
2620 (SEC_ALLOC | SEC_LOAD
2621 | SEC_HAS_CONTENTS
2622 | SEC_IN_MEMORY
2623 | SEC_LINKER_CREATED
2624 | SEC_READONLY));
2625 if (srel == NULL
2626 || !bfd_set_section_alignment (dynobj, srel,
2627 LOG_SECTION_ALIGN))
2628 return NULL;
2629 }
2630
2631 return srel;
2632 }
2633
2634 static bfd_boolean
2635 count_dyn_reloc (bfd *abfd, struct elfNN_ia64_dyn_sym_info *dyn_i,
2636 asection *srel, int type, bfd_boolean reltext)
2637 {
2638 struct elfNN_ia64_dyn_reloc_entry *rent;
2639
2640 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2641 if (rent->srel == srel && rent->type == type)
2642 break;
2643
2644 if (!rent)
2645 {
2646 rent = ((struct elfNN_ia64_dyn_reloc_entry *)
2647 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)));
2648 if (!rent)
2649 return FALSE;
2650
2651 rent->next = dyn_i->reloc_entries;
2652 rent->srel = srel;
2653 rent->type = type;
2654 rent->count = 0;
2655 dyn_i->reloc_entries = rent;
2656 }
2657 rent->reltext = reltext;
2658 rent->count++;
2659
2660 return TRUE;
2661 }
2662
2663 static bfd_boolean
2664 elfNN_ia64_check_relocs (bfd *abfd, struct bfd_link_info *info,
2665 asection *sec,
2666 const Elf_Internal_Rela *relocs)
2667 {
2668 struct elfNN_ia64_link_hash_table *ia64_info;
2669 const Elf_Internal_Rela *relend;
2670 Elf_Internal_Shdr *symtab_hdr;
2671 const Elf_Internal_Rela *rel;
2672 asection *got, *fptr, *srel, *pltoff;
2673 enum {
2674 NEED_GOT = 1,
2675 NEED_GOTX = 2,
2676 NEED_FPTR = 4,
2677 NEED_PLTOFF = 8,
2678 NEED_MIN_PLT = 16,
2679 NEED_FULL_PLT = 32,
2680 NEED_DYNREL = 64,
2681 NEED_LTOFF_FPTR = 128,
2682 NEED_TPREL = 256,
2683 NEED_DTPMOD = 512,
2684 NEED_DTPREL = 1024
2685 };
2686 int need_entry;
2687 struct elf_link_hash_entry *h;
2688 unsigned long r_symndx;
2689 bfd_boolean maybe_dynamic;
2690
2691 if (info->relocatable)
2692 return TRUE;
2693
2694 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2695 ia64_info = elfNN_ia64_hash_table (info);
2696 if (ia64_info == NULL)
2697 return FALSE;
2698
2699 got = fptr = srel = pltoff = NULL;
2700
2701 relend = relocs + sec->reloc_count;
2702
2703 /* We scan relocations first to create dynamic relocation arrays. We
2704 modified get_dyn_sym_info to allow fast insertion and support fast
2705 lookup in the next loop. */
2706 for (rel = relocs; rel < relend; ++rel)
2707 {
2708 r_symndx = ELFNN_R_SYM (rel->r_info);
2709 if (r_symndx >= symtab_hdr->sh_info)
2710 {
2711 long indx = r_symndx - symtab_hdr->sh_info;
2712 h = elf_sym_hashes (abfd)[indx];
2713 while (h->root.type == bfd_link_hash_indirect
2714 || h->root.type == bfd_link_hash_warning)
2715 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2716 }
2717 else
2718 h = NULL;
2719
2720 /* We can only get preliminary data on whether a symbol is
2721 locally or externally defined, as not all of the input files
2722 have yet been processed. Do something with what we know, as
2723 this may help reduce memory usage and processing time later. */
2724 maybe_dynamic = (h && ((!info->executable
2725 && (!SYMBOLIC_BIND (info, h)
2726 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2727 || !h->def_regular
2728 || h->root.type == bfd_link_hash_defweak));
2729
2730 need_entry = 0;
2731 switch (ELFNN_R_TYPE (rel->r_info))
2732 {
2733 case R_IA64_TPREL64MSB:
2734 case R_IA64_TPREL64LSB:
2735 if (info->shared || maybe_dynamic)
2736 need_entry = NEED_DYNREL;
2737 break;
2738
2739 case R_IA64_LTOFF_TPREL22:
2740 need_entry = NEED_TPREL;
2741 if (info->shared)
2742 info->flags |= DF_STATIC_TLS;
2743 break;
2744
2745 case R_IA64_DTPREL32MSB:
2746 case R_IA64_DTPREL32LSB:
2747 case R_IA64_DTPREL64MSB:
2748 case R_IA64_DTPREL64LSB:
2749 if (info->shared || maybe_dynamic)
2750 need_entry = NEED_DYNREL;
2751 break;
2752
2753 case R_IA64_LTOFF_DTPREL22:
2754 need_entry = NEED_DTPREL;
2755 break;
2756
2757 case R_IA64_DTPMOD64MSB:
2758 case R_IA64_DTPMOD64LSB:
2759 if (info->shared || maybe_dynamic)
2760 need_entry = NEED_DYNREL;
2761 break;
2762
2763 case R_IA64_LTOFF_DTPMOD22:
2764 need_entry = NEED_DTPMOD;
2765 break;
2766
2767 case R_IA64_LTOFF_FPTR22:
2768 case R_IA64_LTOFF_FPTR64I:
2769 case R_IA64_LTOFF_FPTR32MSB:
2770 case R_IA64_LTOFF_FPTR32LSB:
2771 case R_IA64_LTOFF_FPTR64MSB:
2772 case R_IA64_LTOFF_FPTR64LSB:
2773 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2774 break;
2775
2776 case R_IA64_FPTR64I:
2777 case R_IA64_FPTR32MSB:
2778 case R_IA64_FPTR32LSB:
2779 case R_IA64_FPTR64MSB:
2780 case R_IA64_FPTR64LSB:
2781 if (info->shared || h)
2782 need_entry = NEED_FPTR | NEED_DYNREL;
2783 else
2784 need_entry = NEED_FPTR;
2785 break;
2786
2787 case R_IA64_LTOFF22:
2788 case R_IA64_LTOFF64I:
2789 need_entry = NEED_GOT;
2790 break;
2791
2792 case R_IA64_LTOFF22X:
2793 need_entry = NEED_GOTX;
2794 break;
2795
2796 case R_IA64_PLTOFF22:
2797 case R_IA64_PLTOFF64I:
2798 case R_IA64_PLTOFF64MSB:
2799 case R_IA64_PLTOFF64LSB:
2800 need_entry = NEED_PLTOFF;
2801 if (h)
2802 {
2803 if (maybe_dynamic)
2804 need_entry |= NEED_MIN_PLT;
2805 }
2806 else
2807 {
2808 (*info->callbacks->warning)
2809 (info, _("@pltoff reloc against local symbol"), 0,
2810 abfd, 0, (bfd_vma) 0);
2811 }
2812 break;
2813
2814 case R_IA64_PCREL21B:
2815 case R_IA64_PCREL60B:
2816 /* Depending on where this symbol is defined, we may or may not
2817 need a full plt entry. Only skip if we know we'll not need
2818 the entry -- static or symbolic, and the symbol definition
2819 has already been seen. */
2820 if (maybe_dynamic && rel->r_addend == 0)
2821 need_entry = NEED_FULL_PLT;
2822 break;
2823
2824 case R_IA64_IMM14:
2825 case R_IA64_IMM22:
2826 case R_IA64_IMM64:
2827 case R_IA64_DIR32MSB:
2828 case R_IA64_DIR32LSB:
2829 case R_IA64_DIR64MSB:
2830 case R_IA64_DIR64LSB:
2831 /* Shared objects will always need at least a REL relocation. */
2832 if (info->shared || maybe_dynamic)
2833 need_entry = NEED_DYNREL;
2834 break;
2835
2836 case R_IA64_IPLTMSB:
2837 case R_IA64_IPLTLSB:
2838 /* Shared objects will always need at least a REL relocation. */
2839 if (info->shared || maybe_dynamic)
2840 need_entry = NEED_DYNREL;
2841 break;
2842
2843 case R_IA64_PCREL22:
2844 case R_IA64_PCREL64I:
2845 case R_IA64_PCREL32MSB:
2846 case R_IA64_PCREL32LSB:
2847 case R_IA64_PCREL64MSB:
2848 case R_IA64_PCREL64LSB:
2849 if (maybe_dynamic)
2850 need_entry = NEED_DYNREL;
2851 break;
2852 }
2853
2854 if (!need_entry)
2855 continue;
2856
2857 if ((need_entry & NEED_FPTR) != 0
2858 && rel->r_addend)
2859 {
2860 (*info->callbacks->warning)
2861 (info, _("non-zero addend in @fptr reloc"), 0,
2862 abfd, 0, (bfd_vma) 0);
2863 }
2864
2865 if (get_dyn_sym_info (ia64_info, h, abfd, rel, TRUE) == NULL)
2866 return FALSE;
2867 }
2868
2869 /* Now, we only do lookup without insertion, which is very fast
2870 with the modified get_dyn_sym_info. */
2871 for (rel = relocs; rel < relend; ++rel)
2872 {
2873 struct elfNN_ia64_dyn_sym_info *dyn_i;
2874 int dynrel_type = R_IA64_NONE;
2875
2876 r_symndx = ELFNN_R_SYM (rel->r_info);
2877 if (r_symndx >= symtab_hdr->sh_info)
2878 {
2879 /* We're dealing with a global symbol -- find its hash entry
2880 and mark it as being referenced. */
2881 long indx = r_symndx - symtab_hdr->sh_info;
2882 h = elf_sym_hashes (abfd)[indx];
2883 while (h->root.type == bfd_link_hash_indirect
2884 || h->root.type == bfd_link_hash_warning)
2885 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2886
2887 h->ref_regular = 1;
2888 }
2889 else
2890 h = NULL;
2891
2892 /* We can only get preliminary data on whether a symbol is
2893 locally or externally defined, as not all of the input files
2894 have yet been processed. Do something with what we know, as
2895 this may help reduce memory usage and processing time later. */
2896 maybe_dynamic = (h && ((!info->executable
2897 && (!SYMBOLIC_BIND (info, h)
2898 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2899 || !h->def_regular
2900 || h->root.type == bfd_link_hash_defweak));
2901
2902 need_entry = 0;
2903 switch (ELFNN_R_TYPE (rel->r_info))
2904 {
2905 case R_IA64_TPREL64MSB:
2906 case R_IA64_TPREL64LSB:
2907 if (info->shared || maybe_dynamic)
2908 need_entry = NEED_DYNREL;
2909 dynrel_type = R_IA64_TPREL64LSB;
2910 if (info->shared)
2911 info->flags |= DF_STATIC_TLS;
2912 break;
2913
2914 case R_IA64_LTOFF_TPREL22:
2915 need_entry = NEED_TPREL;
2916 if (info->shared)
2917 info->flags |= DF_STATIC_TLS;
2918 break;
2919
2920 case R_IA64_DTPREL32MSB:
2921 case R_IA64_DTPREL32LSB:
2922 case R_IA64_DTPREL64MSB:
2923 case R_IA64_DTPREL64LSB:
2924 if (info->shared || maybe_dynamic)
2925 need_entry = NEED_DYNREL;
2926 dynrel_type = R_IA64_DTPRELNNLSB;
2927 break;
2928
2929 case R_IA64_LTOFF_DTPREL22:
2930 need_entry = NEED_DTPREL;
2931 break;
2932
2933 case R_IA64_DTPMOD64MSB:
2934 case R_IA64_DTPMOD64LSB:
2935 if (info->shared || maybe_dynamic)
2936 need_entry = NEED_DYNREL;
2937 dynrel_type = R_IA64_DTPMOD64LSB;
2938 break;
2939
2940 case R_IA64_LTOFF_DTPMOD22:
2941 need_entry = NEED_DTPMOD;
2942 break;
2943
2944 case R_IA64_LTOFF_FPTR22:
2945 case R_IA64_LTOFF_FPTR64I:
2946 case R_IA64_LTOFF_FPTR32MSB:
2947 case R_IA64_LTOFF_FPTR32LSB:
2948 case R_IA64_LTOFF_FPTR64MSB:
2949 case R_IA64_LTOFF_FPTR64LSB:
2950 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2951 break;
2952
2953 case R_IA64_FPTR64I:
2954 case R_IA64_FPTR32MSB:
2955 case R_IA64_FPTR32LSB:
2956 case R_IA64_FPTR64MSB:
2957 case R_IA64_FPTR64LSB:
2958 if (info->shared || h)
2959 need_entry = NEED_FPTR | NEED_DYNREL;
2960 else
2961 need_entry = NEED_FPTR;
2962 dynrel_type = R_IA64_FPTRNNLSB;
2963 break;
2964
2965 case R_IA64_LTOFF22:
2966 case R_IA64_LTOFF64I:
2967 need_entry = NEED_GOT;
2968 break;
2969
2970 case R_IA64_LTOFF22X:
2971 need_entry = NEED_GOTX;
2972 break;
2973
2974 case R_IA64_PLTOFF22:
2975 case R_IA64_PLTOFF64I:
2976 case R_IA64_PLTOFF64MSB:
2977 case R_IA64_PLTOFF64LSB:
2978 need_entry = NEED_PLTOFF;
2979 if (h)
2980 {
2981 if (maybe_dynamic)
2982 need_entry |= NEED_MIN_PLT;
2983 }
2984 break;
2985
2986 case R_IA64_PCREL21B:
2987 case R_IA64_PCREL60B:
2988 /* Depending on where this symbol is defined, we may or may not
2989 need a full plt entry. Only skip if we know we'll not need
2990 the entry -- static or symbolic, and the symbol definition
2991 has already been seen. */
2992 if (maybe_dynamic && rel->r_addend == 0)
2993 need_entry = NEED_FULL_PLT;
2994 break;
2995
2996 case R_IA64_IMM14:
2997 case R_IA64_IMM22:
2998 case R_IA64_IMM64:
2999 case R_IA64_DIR32MSB:
3000 case R_IA64_DIR32LSB:
3001 case R_IA64_DIR64MSB:
3002 case R_IA64_DIR64LSB:
3003 /* Shared objects will always need at least a REL relocation. */
3004 if (info->shared || maybe_dynamic)
3005 need_entry = NEED_DYNREL;
3006 dynrel_type = R_IA64_DIRNNLSB;
3007 break;
3008
3009 case R_IA64_IPLTMSB:
3010 case R_IA64_IPLTLSB:
3011 /* Shared objects will always need at least a REL relocation. */
3012 if (info->shared || maybe_dynamic)
3013 need_entry = NEED_DYNREL;
3014 dynrel_type = R_IA64_IPLTLSB;
3015 break;
3016
3017 case R_IA64_PCREL22:
3018 case R_IA64_PCREL64I:
3019 case R_IA64_PCREL32MSB:
3020 case R_IA64_PCREL32LSB:
3021 case R_IA64_PCREL64MSB:
3022 case R_IA64_PCREL64LSB:
3023 if (maybe_dynamic)
3024 need_entry = NEED_DYNREL;
3025 dynrel_type = R_IA64_PCRELNNLSB;
3026 break;
3027 }
3028
3029 if (!need_entry)
3030 continue;
3031
3032 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, rel, FALSE);
3033
3034 /* Record whether or not this is a local symbol. */
3035 dyn_i->h = h;
3036
3037 /* Create what's needed. */
3038 if (need_entry & (NEED_GOT | NEED_GOTX | NEED_TPREL
3039 | NEED_DTPMOD | NEED_DTPREL))
3040 {
3041 if (!got)
3042 {
3043 got = get_got (abfd, info, ia64_info);
3044 if (!got)
3045 return FALSE;
3046 }
3047 if (need_entry & NEED_GOT)
3048 dyn_i->want_got = 1;
3049 if (need_entry & NEED_GOTX)
3050 dyn_i->want_gotx = 1;
3051 if (need_entry & NEED_TPREL)
3052 dyn_i->want_tprel = 1;
3053 if (need_entry & NEED_DTPMOD)
3054 dyn_i->want_dtpmod = 1;
3055 if (need_entry & NEED_DTPREL)
3056 dyn_i->want_dtprel = 1;
3057 }
3058 if (need_entry & NEED_FPTR)
3059 {
3060 if (!fptr)
3061 {
3062 fptr = get_fptr (abfd, info, ia64_info);
3063 if (!fptr)
3064 return FALSE;
3065 }
3066
3067 /* FPTRs for shared libraries are allocated by the dynamic
3068 linker. Make sure this local symbol will appear in the
3069 dynamic symbol table. */
3070 if (!h && info->shared)
3071 {
3072 if (! (bfd_elf_link_record_local_dynamic_symbol
3073 (info, abfd, (long) r_symndx)))
3074 return FALSE;
3075 }
3076
3077 dyn_i->want_fptr = 1;
3078 }
3079 if (need_entry & NEED_LTOFF_FPTR)
3080 dyn_i->want_ltoff_fptr = 1;
3081 if (need_entry & (NEED_MIN_PLT | NEED_FULL_PLT))
3082 {
3083 if (!ia64_info->root.dynobj)
3084 ia64_info->root.dynobj = abfd;
3085 h->needs_plt = 1;
3086 dyn_i->want_plt = 1;
3087 }
3088 if (need_entry & NEED_FULL_PLT)
3089 dyn_i->want_plt2 = 1;
3090 if (need_entry & NEED_PLTOFF)
3091 {
3092 /* This is needed here, in case @pltoff is used in a non-shared
3093 link. */
3094 if (!pltoff)
3095 {
3096 pltoff = get_pltoff (abfd, info, ia64_info);
3097 if (!pltoff)
3098 return FALSE;
3099 }
3100
3101 dyn_i->want_pltoff = 1;
3102 }
3103 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
3104 {
3105 if (!srel)
3106 {
3107 srel = get_reloc_section (abfd, ia64_info, sec, TRUE);
3108 if (!srel)
3109 return FALSE;
3110 }
3111 if (!count_dyn_reloc (abfd, dyn_i, srel, dynrel_type,
3112 (sec->flags & SEC_READONLY) != 0))
3113 return FALSE;
3114 }
3115 }
3116
3117 return TRUE;
3118 }
3119
3120 /* For cleanliness, and potentially faster dynamic loading, allocate
3121 external GOT entries first. */
3122
3123 static bfd_boolean
3124 allocate_global_data_got (struct elfNN_ia64_dyn_sym_info *dyn_i,
3125 void * data)
3126 {
3127 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3128
3129 if ((dyn_i->want_got || dyn_i->want_gotx)
3130 && ! dyn_i->want_fptr
3131 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3132 {
3133 dyn_i->got_offset = x->ofs;
3134 x->ofs += 8;
3135 }
3136 if (dyn_i->want_tprel)
3137 {
3138 dyn_i->tprel_offset = x->ofs;
3139 x->ofs += 8;
3140 }
3141 if (dyn_i->want_dtpmod)
3142 {
3143 if (elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3144 {
3145 dyn_i->dtpmod_offset = x->ofs;
3146 x->ofs += 8;
3147 }
3148 else
3149 {
3150 struct elfNN_ia64_link_hash_table *ia64_info;
3151
3152 ia64_info = elfNN_ia64_hash_table (x->info);
3153 if (ia64_info == NULL)
3154 return FALSE;
3155
3156 if (ia64_info->self_dtpmod_offset == (bfd_vma) -1)
3157 {
3158 ia64_info->self_dtpmod_offset = x->ofs;
3159 x->ofs += 8;
3160 }
3161 dyn_i->dtpmod_offset = ia64_info->self_dtpmod_offset;
3162 }
3163 }
3164 if (dyn_i->want_dtprel)
3165 {
3166 dyn_i->dtprel_offset = x->ofs;
3167 x->ofs += 8;
3168 }
3169 return TRUE;
3170 }
3171
3172 /* Next, allocate all the GOT entries used by LTOFF_FPTR relocs. */
3173
3174 static bfd_boolean
3175 allocate_global_fptr_got (struct elfNN_ia64_dyn_sym_info *dyn_i,
3176 void * data)
3177 {
3178 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3179
3180 if (dyn_i->want_got
3181 && dyn_i->want_fptr
3182 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, R_IA64_FPTRNNLSB))
3183 {
3184 dyn_i->got_offset = x->ofs;
3185 x->ofs += 8;
3186 }
3187 return TRUE;
3188 }
3189
3190 /* Lastly, allocate all the GOT entries for local data. */
3191
3192 static bfd_boolean
3193 allocate_local_got (struct elfNN_ia64_dyn_sym_info *dyn_i,
3194 PTR data)
3195 {
3196 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3197
3198 if ((dyn_i->want_got || dyn_i->want_gotx)
3199 && !elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3200 {
3201 dyn_i->got_offset = x->ofs;
3202 x->ofs += 8;
3203 }
3204 return TRUE;
3205 }
3206
3207 /* Search for the index of a global symbol in it's defining object file. */
3208
3209 static long
3210 global_sym_index (struct elf_link_hash_entry *h)
3211 {
3212 struct elf_link_hash_entry **p;
3213 bfd *obj;
3214
3215 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3216 || h->root.type == bfd_link_hash_defweak);
3217
3218 obj = h->root.u.def.section->owner;
3219 for (p = elf_sym_hashes (obj); *p != h; ++p)
3220 continue;
3221
3222 return p - elf_sym_hashes (obj) + elf_tdata (obj)->symtab_hdr.sh_info;
3223 }
3224
3225 /* Allocate function descriptors. We can do these for every function
3226 in a main executable that is not exported. */
3227
3228 static bfd_boolean
3229 allocate_fptr (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data)
3230 {
3231 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3232
3233 if (dyn_i->want_fptr)
3234 {
3235 struct elf_link_hash_entry *h = dyn_i->h;
3236
3237 if (h)
3238 while (h->root.type == bfd_link_hash_indirect
3239 || h->root.type == bfd_link_hash_warning)
3240 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3241
3242 if (!x->info->executable
3243 && (!h
3244 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3245 || (h->root.type != bfd_link_hash_undefweak
3246 && h->root.type != bfd_link_hash_undefined)))
3247 {
3248 if (h && h->dynindx == -1)
3249 {
3250 BFD_ASSERT ((h->root.type == bfd_link_hash_defined)
3251 || (h->root.type == bfd_link_hash_defweak));
3252
3253 if (!bfd_elf_link_record_local_dynamic_symbol
3254 (x->info, h->root.u.def.section->owner,
3255 global_sym_index (h)))
3256 return FALSE;
3257 }
3258
3259 dyn_i->want_fptr = 0;
3260 }
3261 else if (h == NULL || h->dynindx == -1)
3262 {
3263 dyn_i->fptr_offset = x->ofs;
3264 x->ofs += 16;
3265 }
3266 else
3267 dyn_i->want_fptr = 0;
3268 }
3269 return TRUE;
3270 }
3271
3272 /* Allocate all the minimal PLT entries. */
3273
3274 static bfd_boolean
3275 allocate_plt_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3276 PTR data)
3277 {
3278 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3279
3280 if (dyn_i->want_plt)
3281 {
3282 struct elf_link_hash_entry *h = dyn_i->h;
3283
3284 if (h)
3285 while (h->root.type == bfd_link_hash_indirect
3286 || h->root.type == bfd_link_hash_warning)
3287 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3288
3289 /* ??? Versioned symbols seem to lose NEEDS_PLT. */
3290 if (elfNN_ia64_dynamic_symbol_p (h, x->info, 0))
3291 {
3292 bfd_size_type offset = x->ofs;
3293 if (offset == 0)
3294 offset = PLT_HEADER_SIZE;
3295 dyn_i->plt_offset = offset;
3296 x->ofs = offset + PLT_MIN_ENTRY_SIZE;
3297
3298 dyn_i->want_pltoff = 1;
3299 }
3300 else
3301 {
3302 dyn_i->want_plt = 0;
3303 dyn_i->want_plt2 = 0;
3304 }
3305 }
3306 return TRUE;
3307 }
3308
3309 /* Allocate all the full PLT entries. */
3310
3311 static bfd_boolean
3312 allocate_plt2_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3313 PTR data)
3314 {
3315 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3316
3317 if (dyn_i->want_plt2)
3318 {
3319 struct elf_link_hash_entry *h = dyn_i->h;
3320 bfd_size_type ofs = x->ofs;
3321
3322 dyn_i->plt2_offset = ofs;
3323 x->ofs = ofs + PLT_FULL_ENTRY_SIZE;
3324
3325 while (h->root.type == bfd_link_hash_indirect
3326 || h->root.type == bfd_link_hash_warning)
3327 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3328 dyn_i->h->plt.offset = ofs;
3329 }
3330 return TRUE;
3331 }
3332
3333 /* Allocate all the PLTOFF entries requested by relocations and
3334 plt entries. We can't share space with allocated FPTR entries,
3335 because the latter are not necessarily addressable by the GP.
3336 ??? Relaxation might be able to determine that they are. */
3337
3338 static bfd_boolean
3339 allocate_pltoff_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3340 PTR data)
3341 {
3342 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3343
3344 if (dyn_i->want_pltoff)
3345 {
3346 dyn_i->pltoff_offset = x->ofs;
3347 x->ofs += 16;
3348 }
3349 return TRUE;
3350 }
3351
3352 /* Allocate dynamic relocations for those symbols that turned out
3353 to be dynamic. */
3354
3355 static bfd_boolean
3356 allocate_dynrel_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3357 PTR data)
3358 {
3359 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3360 struct elfNN_ia64_link_hash_table *ia64_info;
3361 struct elfNN_ia64_dyn_reloc_entry *rent;
3362 bfd_boolean dynamic_symbol, shared, resolved_zero;
3363
3364 ia64_info = elfNN_ia64_hash_table (x->info);
3365 if (ia64_info == NULL)
3366 return FALSE;
3367
3368 /* Note that this can't be used in relation to FPTR relocs below. */
3369 dynamic_symbol = elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0);
3370
3371 shared = x->info->shared;
3372 resolved_zero = (dyn_i->h
3373 && ELF_ST_VISIBILITY (dyn_i->h->other)
3374 && dyn_i->h->root.type == bfd_link_hash_undefweak);
3375
3376 /* Take care of the GOT and PLT relocations. */
3377
3378 if ((!resolved_zero
3379 && (dynamic_symbol || shared)
3380 && (dyn_i->want_got || dyn_i->want_gotx))
3381 || (dyn_i->want_ltoff_fptr
3382 && dyn_i->h
3383 && dyn_i->h->dynindx != -1))
3384 {
3385 if (!dyn_i->want_ltoff_fptr
3386 || !x->info->pie
3387 || dyn_i->h == NULL
3388 || dyn_i->h->root.type != bfd_link_hash_undefweak)
3389 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela);
3390 }
3391 if ((dynamic_symbol || shared) && dyn_i->want_tprel)
3392 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela);
3393 if (dynamic_symbol && dyn_i->want_dtpmod)
3394 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela);
3395 if (dynamic_symbol && dyn_i->want_dtprel)
3396 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela);
3397
3398 if (x->only_got)
3399 return TRUE;
3400
3401 if (ia64_info->rel_fptr_sec && dyn_i->want_fptr)
3402 {
3403 if (dyn_i->h == NULL || dyn_i->h->root.type != bfd_link_hash_undefweak)
3404 ia64_info->rel_fptr_sec->size += sizeof (ElfNN_External_Rela);
3405 }
3406
3407 if (!resolved_zero && dyn_i->want_pltoff)
3408 {
3409 bfd_size_type t = 0;
3410
3411 /* Dynamic symbols get one IPLT relocation. Local symbols in
3412 shared libraries get two REL relocations. Local symbols in
3413 main applications get nothing. */
3414 if (dynamic_symbol)
3415 t = sizeof (ElfNN_External_Rela);
3416 else if (shared)
3417 t = 2 * sizeof (ElfNN_External_Rela);
3418
3419 ia64_info->rel_pltoff_sec->size += t;
3420 }
3421
3422 /* Take care of the normal data relocations. */
3423
3424 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
3425 {
3426 int count = rent->count;
3427
3428 switch (rent->type)
3429 {
3430 case R_IA64_FPTR32LSB:
3431 case R_IA64_FPTR64LSB:
3432 /* Allocate one iff !want_fptr and not PIE, which by this point
3433 will be true only if we're actually allocating one statically
3434 in the main executable. Position independent executables
3435 need a relative reloc. */
3436 if (dyn_i->want_fptr && !x->info->pie)
3437 continue;
3438 break;
3439 case R_IA64_PCREL32LSB:
3440 case R_IA64_PCREL64LSB:
3441 if (!dynamic_symbol)
3442 continue;
3443 break;
3444 case R_IA64_DIR32LSB:
3445 case R_IA64_DIR64LSB:
3446 if (!dynamic_symbol && !shared)
3447 continue;
3448 break;
3449 case R_IA64_IPLTLSB:
3450 if (!dynamic_symbol && !shared)
3451 continue;
3452 /* Use two REL relocations for IPLT relocations
3453 against local symbols. */
3454 if (!dynamic_symbol)
3455 count *= 2;
3456 break;
3457 case R_IA64_DTPREL32LSB:
3458 case R_IA64_TPREL64LSB:
3459 case R_IA64_DTPREL64LSB:
3460 case R_IA64_DTPMOD64LSB:
3461 break;
3462 default:
3463 abort ();
3464 }
3465 if (rent->reltext)
3466 ia64_info->reltext = 1;
3467 rent->srel->size += sizeof (ElfNN_External_Rela) * count;
3468 }
3469
3470 return TRUE;
3471 }
3472
3473 static bfd_boolean
3474 elfNN_ia64_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3475 struct elf_link_hash_entry *h)
3476 {
3477 /* ??? Undefined symbols with PLT entries should be re-defined
3478 to be the PLT entry. */
3479
3480 /* If this is a weak symbol, and there is a real definition, the
3481 processor independent code will have arranged for us to see the
3482 real definition first, and we can just use the same value. */
3483 if (h->u.weakdef != NULL)
3484 {
3485 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3486 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3487 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3488 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3489 return TRUE;
3490 }
3491
3492 /* If this is a reference to a symbol defined by a dynamic object which
3493 is not a function, we might allocate the symbol in our .dynbss section
3494 and allocate a COPY dynamic relocation.
3495
3496 But IA-64 code is canonically PIC, so as a rule we can avoid this sort
3497 of hackery. */
3498
3499 return TRUE;
3500 }
3501
3502 static bfd_boolean
3503 elfNN_ia64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3504 struct bfd_link_info *info)
3505 {
3506 struct elfNN_ia64_allocate_data data;
3507 struct elfNN_ia64_link_hash_table *ia64_info;
3508 asection *sec;
3509 bfd *dynobj;
3510 bfd_boolean relplt = FALSE;
3511
3512 dynobj = elf_hash_table(info)->dynobj;
3513 ia64_info = elfNN_ia64_hash_table (info);
3514 if (ia64_info == NULL)
3515 return FALSE;
3516 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
3517 BFD_ASSERT(dynobj != NULL);
3518 data.info = info;
3519
3520 /* Set the contents of the .interp section to the interpreter. */
3521 if (ia64_info->root.dynamic_sections_created
3522 && info->executable)
3523 {
3524 sec = bfd_get_section_by_name (dynobj, ".interp");
3525 BFD_ASSERT (sec != NULL);
3526 sec->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER;
3527 sec->size = strlen (ELF_DYNAMIC_INTERPRETER) + 1;
3528 }
3529
3530 /* Allocate the GOT entries. */
3531
3532 if (ia64_info->root.sgot)
3533 {
3534 data.ofs = 0;
3535 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
3536 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
3537 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
3538 ia64_info->root.sgot->size = data.ofs;
3539 }
3540
3541 /* Allocate the FPTR entries. */
3542
3543 if (ia64_info->fptr_sec)
3544 {
3545 data.ofs = 0;
3546 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_fptr, &data);
3547 ia64_info->fptr_sec->size = data.ofs;
3548 }
3549
3550 /* Now that we've seen all of the input files, we can decide which
3551 symbols need plt entries. Allocate the minimal PLT entries first.
3552 We do this even though dynamic_sections_created may be FALSE, because
3553 this has the side-effect of clearing want_plt and want_plt2. */
3554
3555 data.ofs = 0;
3556 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt_entries, &data);
3557
3558 ia64_info->minplt_entries = 0;
3559 if (data.ofs)
3560 {
3561 ia64_info->minplt_entries
3562 = (data.ofs - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
3563 }
3564
3565 /* Align the pointer for the plt2 entries. */
3566 data.ofs = (data.ofs + 31) & (bfd_vma) -32;
3567
3568 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt2_entries, &data);
3569 if (data.ofs != 0 || ia64_info->root.dynamic_sections_created)
3570 {
3571 /* FIXME: we always reserve the memory for dynamic linker even if
3572 there are no PLT entries since dynamic linker may assume the
3573 reserved memory always exists. */
3574
3575 BFD_ASSERT (ia64_info->root.dynamic_sections_created);
3576
3577 ia64_info->root.splt->size = data.ofs;
3578
3579 /* If we've got a .plt, we need some extra memory for the dynamic
3580 linker. We stuff these in .got.plt. */
3581 sec = bfd_get_section_by_name (dynobj, ".got.plt");
3582 sec->size = 8 * PLT_RESERVED_WORDS;
3583 }
3584
3585 /* Allocate the PLTOFF entries. */
3586
3587 if (ia64_info->pltoff_sec)
3588 {
3589 data.ofs = 0;
3590 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_pltoff_entries, &data);
3591 ia64_info->pltoff_sec->size = data.ofs;
3592 }
3593
3594 if (ia64_info->root.dynamic_sections_created)
3595 {
3596 /* Allocate space for the dynamic relocations that turned out to be
3597 required. */
3598
3599 if (info->shared && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
3600 ia64_info->root.srelgot->size += sizeof (ElfNN_External_Rela);
3601 data.only_got = FALSE;
3602 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries, &data);
3603 }
3604
3605 /* We have now determined the sizes of the various dynamic sections.
3606 Allocate memory for them. */
3607 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
3608 {
3609 bfd_boolean strip;
3610
3611 if (!(sec->flags & SEC_LINKER_CREATED))
3612 continue;
3613
3614 /* If we don't need this section, strip it from the output file.
3615 There were several sections primarily related to dynamic
3616 linking that must be create before the linker maps input
3617 sections to output sections. The linker does that before
3618 bfd_elf_size_dynamic_sections is called, and it is that
3619 function which decides whether anything needs to go into
3620 these sections. */
3621
3622 strip = (sec->size == 0);
3623
3624 if (sec == ia64_info->root.sgot)
3625 strip = FALSE;
3626 else if (sec == ia64_info->root.srelgot)
3627 {
3628 if (strip)
3629 ia64_info->root.srelgot = NULL;
3630 else
3631 /* We use the reloc_count field as a counter if we need to
3632 copy relocs into the output file. */
3633 sec->reloc_count = 0;
3634 }
3635 else if (sec == ia64_info->fptr_sec)
3636 {
3637 if (strip)
3638 ia64_info->fptr_sec = NULL;
3639 }
3640 else if (sec == ia64_info->rel_fptr_sec)
3641 {
3642 if (strip)
3643 ia64_info->rel_fptr_sec = NULL;
3644 else
3645 /* We use the reloc_count field as a counter if we need to
3646 copy relocs into the output file. */
3647 sec->reloc_count = 0;
3648 }
3649 else if (sec == ia64_info->root.splt)
3650 {
3651 if (strip)
3652 ia64_info->root.splt = NULL;
3653 }
3654 else if (sec == ia64_info->pltoff_sec)
3655 {
3656 if (strip)
3657 ia64_info->pltoff_sec = NULL;
3658 }
3659 else if (sec == ia64_info->rel_pltoff_sec)
3660 {
3661 if (strip)
3662 ia64_info->rel_pltoff_sec = NULL;
3663 else
3664 {
3665 relplt = TRUE;
3666 /* We use the reloc_count field as a counter if we need to
3667 copy relocs into the output file. */
3668 sec->reloc_count = 0;
3669 }
3670 }
3671 else
3672 {
3673 const char *name;
3674
3675 /* It's OK to base decisions on the section name, because none
3676 of the dynobj section names depend upon the input files. */
3677 name = bfd_get_section_name (dynobj, sec);
3678
3679 if (strcmp (name, ".got.plt") == 0)
3680 strip = FALSE;
3681 else if (CONST_STRNEQ (name, ".rel"))
3682 {
3683 if (!strip)
3684 {
3685 /* We use the reloc_count field as a counter if we need to
3686 copy relocs into the output file. */
3687 sec->reloc_count = 0;
3688 }
3689 }
3690 else
3691 continue;
3692 }
3693
3694 if (strip)
3695 sec->flags |= SEC_EXCLUDE;
3696 else
3697 {
3698 /* Allocate memory for the section contents. */
3699 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
3700 if (sec->contents == NULL && sec->size != 0)
3701 return FALSE;
3702 }
3703 }
3704
3705 if (elf_hash_table (info)->dynamic_sections_created)
3706 {
3707 /* Add some entries to the .dynamic section. We fill in the values
3708 later (in finish_dynamic_sections) but we must add the entries now
3709 so that we get the correct size for the .dynamic section. */
3710
3711 if (info->executable)
3712 {
3713 /* The DT_DEBUG entry is filled in by the dynamic linker and used
3714 by the debugger. */
3715 #define add_dynamic_entry(TAG, VAL) \
3716 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3717
3718 if (!add_dynamic_entry (DT_DEBUG, 0))
3719 return FALSE;
3720 }
3721
3722 if (!add_dynamic_entry (DT_IA_64_PLT_RESERVE, 0))
3723 return FALSE;
3724 if (!add_dynamic_entry (DT_PLTGOT, 0))
3725 return FALSE;
3726
3727 if (relplt)
3728 {
3729 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
3730 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3731 || !add_dynamic_entry (DT_JMPREL, 0))
3732 return FALSE;
3733 }
3734
3735 if (!add_dynamic_entry (DT_RELA, 0)
3736 || !add_dynamic_entry (DT_RELASZ, 0)
3737 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
3738 return FALSE;
3739
3740 if (ia64_info->reltext)
3741 {
3742 if (!add_dynamic_entry (DT_TEXTREL, 0))
3743 return FALSE;
3744 info->flags |= DF_TEXTREL;
3745 }
3746 }
3747
3748 /* ??? Perhaps force __gp local. */
3749
3750 return TRUE;
3751 }
3752
3753 static bfd_reloc_status_type
3754 elfNN_ia64_install_value (bfd_byte *hit_addr, bfd_vma v,
3755 unsigned int r_type)
3756 {
3757 const struct ia64_operand *op;
3758 int bigendian = 0, shift = 0;
3759 bfd_vma t0, t1, dword;
3760 ia64_insn insn;
3761 enum ia64_opnd opnd;
3762 const char *err;
3763 size_t size = 8;
3764 #ifdef BFD_HOST_U_64_BIT
3765 BFD_HOST_U_64_BIT val = (BFD_HOST_U_64_BIT) v;
3766 #else
3767 bfd_vma val = v;
3768 #endif
3769
3770 opnd = IA64_OPND_NIL;
3771 switch (r_type)
3772 {
3773 case R_IA64_NONE:
3774 case R_IA64_LDXMOV:
3775 return bfd_reloc_ok;
3776
3777 /* Instruction relocations. */
3778
3779 case R_IA64_IMM14:
3780 case R_IA64_TPREL14:
3781 case R_IA64_DTPREL14:
3782 opnd = IA64_OPND_IMM14;
3783 break;
3784
3785 case R_IA64_PCREL21F: opnd = IA64_OPND_TGT25; break;
3786 case R_IA64_PCREL21M: opnd = IA64_OPND_TGT25b; break;
3787 case R_IA64_PCREL60B: opnd = IA64_OPND_TGT64; break;
3788 case R_IA64_PCREL21B:
3789 case R_IA64_PCREL21BI:
3790 opnd = IA64_OPND_TGT25c;
3791 break;
3792
3793 case R_IA64_IMM22:
3794 case R_IA64_GPREL22:
3795 case R_IA64_LTOFF22:
3796 case R_IA64_LTOFF22X:
3797 case R_IA64_PLTOFF22:
3798 case R_IA64_PCREL22:
3799 case R_IA64_LTOFF_FPTR22:
3800 case R_IA64_TPREL22:
3801 case R_IA64_DTPREL22:
3802 case R_IA64_LTOFF_TPREL22:
3803 case R_IA64_LTOFF_DTPMOD22:
3804 case R_IA64_LTOFF_DTPREL22:
3805 opnd = IA64_OPND_IMM22;
3806 break;
3807
3808 case R_IA64_IMM64:
3809 case R_IA64_GPREL64I:
3810 case R_IA64_LTOFF64I:
3811 case R_IA64_PLTOFF64I:
3812 case R_IA64_PCREL64I:
3813 case R_IA64_FPTR64I:
3814 case R_IA64_LTOFF_FPTR64I:
3815 case R_IA64_TPREL64I:
3816 case R_IA64_DTPREL64I:
3817 opnd = IA64_OPND_IMMU64;
3818 break;
3819
3820 /* Data relocations. */
3821
3822 case R_IA64_DIR32MSB:
3823 case R_IA64_GPREL32MSB:
3824 case R_IA64_FPTR32MSB:
3825 case R_IA64_PCREL32MSB:
3826 case R_IA64_LTOFF_FPTR32MSB:
3827 case R_IA64_SEGREL32MSB:
3828 case R_IA64_SECREL32MSB:
3829 case R_IA64_LTV32MSB:
3830 case R_IA64_DTPREL32MSB:
3831 size = 4; bigendian = 1;
3832 break;
3833
3834 case R_IA64_DIR32LSB:
3835 case R_IA64_GPREL32LSB:
3836 case R_IA64_FPTR32LSB:
3837 case R_IA64_PCREL32LSB:
3838 case R_IA64_LTOFF_FPTR32LSB:
3839 case R_IA64_SEGREL32LSB:
3840 case R_IA64_SECREL32LSB:
3841 case R_IA64_LTV32LSB:
3842 case R_IA64_DTPREL32LSB:
3843 size = 4; bigendian = 0;
3844 break;
3845
3846 case R_IA64_DIR64MSB:
3847 case R_IA64_GPREL64MSB:
3848 case R_IA64_PLTOFF64MSB:
3849 case R_IA64_FPTR64MSB:
3850 case R_IA64_PCREL64MSB:
3851 case R_IA64_LTOFF_FPTR64MSB:
3852 case R_IA64_SEGREL64MSB:
3853 case R_IA64_SECREL64MSB:
3854 case R_IA64_LTV64MSB:
3855 case R_IA64_TPREL64MSB:
3856 case R_IA64_DTPMOD64MSB:
3857 case R_IA64_DTPREL64MSB:
3858 size = 8; bigendian = 1;
3859 break;
3860
3861 case R_IA64_DIR64LSB:
3862 case R_IA64_GPREL64LSB:
3863 case R_IA64_PLTOFF64LSB:
3864 case R_IA64_FPTR64LSB:
3865 case R_IA64_PCREL64LSB:
3866 case R_IA64_LTOFF_FPTR64LSB:
3867 case R_IA64_SEGREL64LSB:
3868 case R_IA64_SECREL64LSB:
3869 case R_IA64_LTV64LSB:
3870 case R_IA64_TPREL64LSB:
3871 case R_IA64_DTPMOD64LSB:
3872 case R_IA64_DTPREL64LSB:
3873 size = 8; bigendian = 0;
3874 break;
3875
3876 /* Unsupported / Dynamic relocations. */
3877 default:
3878 return bfd_reloc_notsupported;
3879 }
3880
3881 switch (opnd)
3882 {
3883 case IA64_OPND_IMMU64:
3884 hit_addr -= (long) hit_addr & 0x3;
3885 t0 = bfd_getl64 (hit_addr);
3886 t1 = bfd_getl64 (hit_addr + 8);
3887
3888 /* tmpl/s: bits 0.. 5 in t0
3889 slot 0: bits 5..45 in t0
3890 slot 1: bits 46..63 in t0, bits 0..22 in t1
3891 slot 2: bits 23..63 in t1 */
3892
3893 /* First, clear the bits that form the 64 bit constant. */
3894 t0 &= ~(0x3ffffLL << 46);
3895 t1 &= ~(0x7fffffLL
3896 | (( (0x07fLL << 13) | (0x1ffLL << 27)
3897 | (0x01fLL << 22) | (0x001LL << 21)
3898 | (0x001LL << 36)) << 23));
3899
3900 t0 |= ((val >> 22) & 0x03ffffLL) << 46; /* 18 lsbs of imm41 */
3901 t1 |= ((val >> 40) & 0x7fffffLL) << 0; /* 23 msbs of imm41 */
3902 t1 |= ( (((val >> 0) & 0x07f) << 13) /* imm7b */
3903 | (((val >> 7) & 0x1ff) << 27) /* imm9d */
3904 | (((val >> 16) & 0x01f) << 22) /* imm5c */
3905 | (((val >> 21) & 0x001) << 21) /* ic */
3906 | (((val >> 63) & 0x001) << 36)) << 23; /* i */
3907
3908 bfd_putl64 (t0, hit_addr);
3909 bfd_putl64 (t1, hit_addr + 8);
3910 break;
3911
3912 case IA64_OPND_TGT64:
3913 hit_addr -= (long) hit_addr & 0x3;
3914 t0 = bfd_getl64 (hit_addr);
3915 t1 = bfd_getl64 (hit_addr + 8);
3916
3917 /* tmpl/s: bits 0.. 5 in t0
3918 slot 0: bits 5..45 in t0
3919 slot 1: bits 46..63 in t0, bits 0..22 in t1
3920 slot 2: bits 23..63 in t1 */
3921
3922 /* First, clear the bits that form the 64 bit constant. */
3923 t0 &= ~(0x3ffffLL << 46);
3924 t1 &= ~(0x7fffffLL
3925 | ((1LL << 36 | 0xfffffLL << 13) << 23));
3926
3927 val >>= 4;
3928 t0 |= ((val >> 20) & 0xffffLL) << 2 << 46; /* 16 lsbs of imm39 */
3929 t1 |= ((val >> 36) & 0x7fffffLL) << 0; /* 23 msbs of imm39 */
3930 t1 |= ((((val >> 0) & 0xfffffLL) << 13) /* imm20b */
3931 | (((val >> 59) & 0x1LL) << 36)) << 23; /* i */
3932
3933 bfd_putl64 (t0, hit_addr);
3934 bfd_putl64 (t1, hit_addr + 8);
3935 break;
3936
3937 default:
3938 switch ((long) hit_addr & 0x3)
3939 {
3940 case 0: shift = 5; break;
3941 case 1: shift = 14; hit_addr += 3; break;
3942 case 2: shift = 23; hit_addr += 6; break;
3943 case 3: return bfd_reloc_notsupported; /* shouldn't happen... */
3944 }
3945 dword = bfd_getl64 (hit_addr);
3946 insn = (dword >> shift) & 0x1ffffffffffLL;
3947
3948 op = elf64_ia64_operands + opnd;
3949 err = (*op->insert) (op, val, &insn);
3950 if (err)
3951 return bfd_reloc_overflow;
3952
3953 dword &= ~(0x1ffffffffffLL << shift);
3954 dword |= (insn << shift);
3955 bfd_putl64 (dword, hit_addr);
3956 break;
3957
3958 case IA64_OPND_NIL:
3959 /* A data relocation. */
3960 if (bigendian)
3961 if (size == 4)
3962 bfd_putb32 (val, hit_addr);
3963 else
3964 bfd_putb64 (val, hit_addr);
3965 else
3966 if (size == 4)
3967 bfd_putl32 (val, hit_addr);
3968 else
3969 bfd_putl64 (val, hit_addr);
3970 break;
3971 }
3972
3973 return bfd_reloc_ok;
3974 }
3975
3976 static void
3977 elfNN_ia64_install_dyn_reloc (bfd *abfd, struct bfd_link_info *info,
3978 asection *sec, asection *srel,
3979 bfd_vma offset, unsigned int type,
3980 long dynindx, bfd_vma addend)
3981 {
3982 Elf_Internal_Rela outrel;
3983 bfd_byte *loc;
3984
3985 BFD_ASSERT (dynindx != -1);
3986 outrel.r_info = ELFNN_R_INFO (dynindx, type);
3987 outrel.r_addend = addend;
3988 outrel.r_offset = _bfd_elf_section_offset (abfd, info, sec, offset);
3989 if (outrel.r_offset >= (bfd_vma) -2)
3990 {
3991 /* Run for the hills. We shouldn't be outputting a relocation
3992 for this. So do what everyone else does and output a no-op. */
3993 outrel.r_info = ELFNN_R_INFO (0, R_IA64_NONE);
3994 outrel.r_addend = 0;
3995 outrel.r_offset = 0;
3996 }
3997 else
3998 outrel.r_offset += sec->output_section->vma + sec->output_offset;
3999
4000 loc = srel->contents;
4001 loc += srel->reloc_count++ * sizeof (ElfNN_External_Rela);
4002 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
4003 BFD_ASSERT (sizeof (ElfNN_External_Rela) * srel->reloc_count <= srel->size);
4004 }
4005
4006 /* Store an entry for target address TARGET_ADDR in the linkage table
4007 and return the gp-relative address of the linkage table entry. */
4008
4009 static bfd_vma
4010 set_got_entry (bfd *abfd, struct bfd_link_info *info,
4011 struct elfNN_ia64_dyn_sym_info *dyn_i,
4012 long dynindx, bfd_vma addend, bfd_vma value,
4013 unsigned int dyn_r_type)
4014 {
4015 struct elfNN_ia64_link_hash_table *ia64_info;
4016 asection *got_sec;
4017 bfd_boolean done;
4018 bfd_vma got_offset;
4019
4020 ia64_info = elfNN_ia64_hash_table (info);
4021 if (ia64_info == NULL)
4022 return 0;
4023
4024 got_sec = ia64_info->root.sgot;
4025
4026 switch (dyn_r_type)
4027 {
4028 case R_IA64_TPREL64LSB:
4029 done = dyn_i->tprel_done;
4030 dyn_i->tprel_done = TRUE;
4031 got_offset = dyn_i->tprel_offset;
4032 break;
4033 case R_IA64_DTPMOD64LSB:
4034 if (dyn_i->dtpmod_offset != ia64_info->self_dtpmod_offset)
4035 {
4036 done = dyn_i->dtpmod_done;
4037 dyn_i->dtpmod_done = TRUE;
4038 }
4039 else
4040 {
4041 done = ia64_info->self_dtpmod_done;
4042 ia64_info->self_dtpmod_done = TRUE;
4043 dynindx = 0;
4044 }
4045 got_offset = dyn_i->dtpmod_offset;
4046 break;
4047 case R_IA64_DTPREL32LSB:
4048 case R_IA64_DTPREL64LSB:
4049 done = dyn_i->dtprel_done;
4050 dyn_i->dtprel_done = TRUE;
4051 got_offset = dyn_i->dtprel_offset;
4052 break;
4053 default:
4054 done = dyn_i->got_done;
4055 dyn_i->got_done = TRUE;
4056 got_offset = dyn_i->got_offset;
4057 break;
4058 }
4059
4060 BFD_ASSERT ((got_offset & 7) == 0);
4061
4062 if (! done)
4063 {
4064 /* Store the target address in the linkage table entry. */
4065 bfd_put_64 (abfd, value, got_sec->contents + got_offset);
4066
4067 /* Install a dynamic relocation if needed. */
4068 if (((info->shared
4069 && (!dyn_i->h
4070 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
4071 || dyn_i->h->root.type != bfd_link_hash_undefweak)
4072 && dyn_r_type != R_IA64_DTPREL32LSB
4073 && dyn_r_type != R_IA64_DTPREL64LSB)
4074 || elfNN_ia64_dynamic_symbol_p (dyn_i->h, info, dyn_r_type)
4075 || (dynindx != -1
4076 && (dyn_r_type == R_IA64_FPTR32LSB
4077 || dyn_r_type == R_IA64_FPTR64LSB)))
4078 && (!dyn_i->want_ltoff_fptr
4079 || !info->pie
4080 || !dyn_i->h
4081 || dyn_i->h->root.type != bfd_link_hash_undefweak))
4082 {
4083 if (dynindx == -1
4084 && dyn_r_type != R_IA64_TPREL64LSB
4085 && dyn_r_type != R_IA64_DTPMOD64LSB
4086 && dyn_r_type != R_IA64_DTPREL32LSB
4087 && dyn_r_type != R_IA64_DTPREL64LSB)
4088 {
4089 dyn_r_type = R_IA64_RELNNLSB;
4090 dynindx = 0;
4091 addend = value;
4092 }
4093
4094 if (bfd_big_endian (abfd))
4095 {
4096 switch (dyn_r_type)
4097 {
4098 case R_IA64_REL32LSB:
4099 dyn_r_type = R_IA64_REL32MSB;
4100 break;
4101 case R_IA64_DIR32LSB:
4102 dyn_r_type = R_IA64_DIR32MSB;
4103 break;
4104 case R_IA64_FPTR32LSB:
4105 dyn_r_type = R_IA64_FPTR32MSB;
4106 break;
4107 case R_IA64_DTPREL32LSB:
4108 dyn_r_type = R_IA64_DTPREL32MSB;
4109 break;
4110 case R_IA64_REL64LSB:
4111 dyn_r_type = R_IA64_REL64MSB;
4112 break;
4113 case R_IA64_DIR64LSB:
4114 dyn_r_type = R_IA64_DIR64MSB;
4115 break;
4116 case R_IA64_FPTR64LSB:
4117 dyn_r_type = R_IA64_FPTR64MSB;
4118 break;
4119 case R_IA64_TPREL64LSB:
4120 dyn_r_type = R_IA64_TPREL64MSB;
4121 break;
4122 case R_IA64_DTPMOD64LSB:
4123 dyn_r_type = R_IA64_DTPMOD64MSB;
4124 break;
4125 case R_IA64_DTPREL64LSB:
4126 dyn_r_type = R_IA64_DTPREL64MSB;
4127 break;
4128 default:
4129 BFD_ASSERT (FALSE);
4130 break;
4131 }
4132 }
4133
4134 elfNN_ia64_install_dyn_reloc (abfd, NULL, got_sec,
4135 ia64_info->root.srelgot,
4136 got_offset, dyn_r_type,
4137 dynindx, addend);
4138 }
4139 }
4140
4141 /* Return the address of the linkage table entry. */
4142 value = (got_sec->output_section->vma
4143 + got_sec->output_offset
4144 + got_offset);
4145
4146 return value;
4147 }
4148
4149 /* Fill in a function descriptor consisting of the function's code
4150 address and its global pointer. Return the descriptor's address. */
4151
4152 static bfd_vma
4153 set_fptr_entry (bfd *abfd, struct bfd_link_info *info,
4154 struct elfNN_ia64_dyn_sym_info *dyn_i,
4155 bfd_vma value)
4156 {
4157 struct elfNN_ia64_link_hash_table *ia64_info;
4158 asection *fptr_sec;
4159
4160 ia64_info = elfNN_ia64_hash_table (info);
4161 if (ia64_info == NULL)
4162 return 0;
4163
4164 fptr_sec = ia64_info->fptr_sec;
4165
4166 if (!dyn_i->fptr_done)
4167 {
4168 dyn_i->fptr_done = 1;
4169
4170 /* Fill in the function descriptor. */
4171 bfd_put_64 (abfd, value, fptr_sec->contents + dyn_i->fptr_offset);
4172 bfd_put_64 (abfd, _bfd_get_gp_value (abfd),
4173 fptr_sec->contents + dyn_i->fptr_offset + 8);
4174 if (ia64_info->rel_fptr_sec)
4175 {
4176 Elf_Internal_Rela outrel;
4177 bfd_byte *loc;
4178
4179 if (bfd_little_endian (abfd))
4180 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTLSB);
4181 else
4182 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTMSB);
4183 outrel.r_addend = value;
4184 outrel.r_offset = (fptr_sec->output_section->vma
4185 + fptr_sec->output_offset
4186 + dyn_i->fptr_offset);
4187 loc = ia64_info->rel_fptr_sec->contents;
4188 loc += ia64_info->rel_fptr_sec->reloc_count++
4189 * sizeof (ElfNN_External_Rela);
4190 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
4191 }
4192 }
4193
4194 /* Return the descriptor's address. */
4195 value = (fptr_sec->output_section->vma
4196 + fptr_sec->output_offset
4197 + dyn_i->fptr_offset);
4198
4199 return value;
4200 }
4201
4202 /* Fill in a PLTOFF entry consisting of the function's code address
4203 and its global pointer. Return the descriptor's address. */
4204
4205 static bfd_vma
4206 set_pltoff_entry (bfd *abfd, struct bfd_link_info *info,
4207 struct elfNN_ia64_dyn_sym_info *dyn_i,
4208 bfd_vma value, bfd_boolean is_plt)
4209 {
4210 struct elfNN_ia64_link_hash_table *ia64_info;
4211 asection *pltoff_sec;
4212
4213 ia64_info = elfNN_ia64_hash_table (info);
4214 if (ia64_info == NULL)
4215 return 0;
4216
4217 pltoff_sec = ia64_info->pltoff_sec;
4218
4219 /* Don't do anything if this symbol uses a real PLT entry. In
4220 that case, we'll fill this in during finish_dynamic_symbol. */
4221 if ((! dyn_i->want_plt || is_plt)
4222 && !dyn_i->pltoff_done)
4223 {
4224 bfd_vma gp = _bfd_get_gp_value (abfd);
4225
4226 /* Fill in the function descriptor. */
4227 bfd_put_64 (abfd, value, pltoff_sec->contents + dyn_i->pltoff_offset);
4228 bfd_put_64 (abfd, gp, pltoff_sec->contents + dyn_i->pltoff_offset + 8);
4229
4230 /* Install dynamic relocations if needed. */
4231 if (!is_plt
4232 && info->shared
4233 && (!dyn_i->h
4234 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
4235 || dyn_i->h->root.type != bfd_link_hash_undefweak))
4236 {
4237 unsigned int dyn_r_type;
4238
4239 if (bfd_big_endian (abfd))
4240 dyn_r_type = R_IA64_RELNNMSB;
4241 else
4242 dyn_r_type = R_IA64_RELNNLSB;
4243
4244 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
4245 ia64_info->rel_pltoff_sec,
4246 dyn_i->pltoff_offset,
4247 dyn_r_type, 0, value);
4248 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
4249 ia64_info->rel_pltoff_sec,
4250 dyn_i->pltoff_offset + ARCH_SIZE / 8,
4251 dyn_r_type, 0, gp);
4252 }
4253
4254 dyn_i->pltoff_done = 1;
4255 }
4256
4257 /* Return the descriptor's address. */
4258 value = (pltoff_sec->output_section->vma
4259 + pltoff_sec->output_offset
4260 + dyn_i->pltoff_offset);
4261
4262 return value;
4263 }
4264
4265 /* Return the base VMA address which should be subtracted from real addresses
4266 when resolving @tprel() relocation.
4267 Main program TLS (whose template starts at PT_TLS p_vaddr)
4268 is assigned offset round(2 * size of pointer, PT_TLS p_align). */
4269
4270 static bfd_vma
4271 elfNN_ia64_tprel_base (struct bfd_link_info *info)
4272 {
4273 asection *tls_sec = elf_hash_table (info)->tls_sec;
4274 return tls_sec->vma - align_power ((bfd_vma) ARCH_SIZE / 4,
4275 tls_sec->alignment_power);
4276 }
4277
4278 /* Return the base VMA address which should be subtracted from real addresses
4279 when resolving @dtprel() relocation.
4280 This is PT_TLS segment p_vaddr. */
4281
4282 static bfd_vma
4283 elfNN_ia64_dtprel_base (struct bfd_link_info *info)
4284 {
4285 return elf_hash_table (info)->tls_sec->vma;
4286 }
4287
4288 /* Called through qsort to sort the .IA_64.unwind section during a
4289 non-relocatable link. Set elfNN_ia64_unwind_entry_compare_bfd
4290 to the output bfd so we can do proper endianness frobbing. */
4291
4292 static bfd *elfNN_ia64_unwind_entry_compare_bfd;
4293
4294 static int
4295 elfNN_ia64_unwind_entry_compare (const PTR a, const PTR b)
4296 {
4297 bfd_vma av, bv;
4298
4299 av = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, a);
4300 bv = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, b);
4301
4302 return (av < bv ? -1 : av > bv ? 1 : 0);
4303 }
4304
4305 /* Make sure we've got ourselves a nice fat __gp value. */
4306 static bfd_boolean
4307 elfNN_ia64_choose_gp (bfd *abfd, struct bfd_link_info *info)
4308 {
4309 bfd_vma min_vma = (bfd_vma) -1, max_vma = 0;
4310 bfd_vma min_short_vma = min_vma, max_short_vma = 0;
4311 struct elf_link_hash_entry *gp;
4312 bfd_vma gp_val;
4313 asection *os;
4314 struct elfNN_ia64_link_hash_table *ia64_info;
4315
4316 ia64_info = elfNN_ia64_hash_table (info);
4317 if (ia64_info == NULL)
4318 return FALSE;
4319
4320 /* Find the min and max vma of all sections marked short. Also collect
4321 min and max vma of any type, for use in selecting a nice gp. */
4322 for (os = abfd->sections; os ; os = os->next)
4323 {
4324 bfd_vma lo, hi;
4325
4326 if ((os->flags & SEC_ALLOC) == 0)
4327 continue;
4328
4329 lo = os->vma;
4330 hi = os->vma + (os->rawsize ? os->rawsize : os->size);
4331 if (hi < lo)
4332 hi = (bfd_vma) -1;
4333
4334 if (min_vma > lo)
4335 min_vma = lo;
4336 if (max_vma < hi)
4337 max_vma = hi;
4338 if (os->flags & SEC_SMALL_DATA)
4339 {
4340 if (min_short_vma > lo)
4341 min_short_vma = lo;
4342 if (max_short_vma < hi)
4343 max_short_vma = hi;
4344 }
4345 }
4346
4347 if (ia64_info->min_short_sec)
4348 {
4349 if (min_short_vma
4350 > (ia64_info->min_short_sec->vma
4351 + ia64_info->min_short_offset))
4352 min_short_vma = (ia64_info->min_short_sec->vma
4353 + ia64_info->min_short_offset);
4354 if (max_short_vma
4355 < (ia64_info->max_short_sec->vma
4356 + ia64_info->max_short_offset))
4357 max_short_vma = (ia64_info->max_short_sec->vma
4358 + ia64_info->max_short_offset);
4359 }
4360
4361 /* See if the user wants to force a value. */
4362 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
4363 FALSE, FALSE);
4364
4365 if (gp
4366 && (gp->root.type == bfd_link_hash_defined
4367 || gp->root.type == bfd_link_hash_defweak))
4368 {
4369 asection *gp_sec = gp->root.u.def.section;
4370 gp_val = (gp->root.u.def.value
4371 + gp_sec->output_section->vma
4372 + gp_sec->output_offset);
4373 }
4374 else
4375 {
4376 /* Pick a sensible value. */
4377
4378 if (ia64_info->min_short_sec)
4379 {
4380 bfd_vma short_range = max_short_vma - min_short_vma;
4381
4382 /* If min_short_sec is set, pick one in the middle bewteen
4383 min_short_vma and max_short_vma. */
4384 if (short_range >= 0x400000)
4385 goto overflow;
4386 gp_val = min_short_vma + short_range / 2;
4387 }
4388 else
4389 {
4390 asection *got_sec = ia64_info->root.sgot;
4391
4392 /* Start with just the address of the .got. */
4393 if (got_sec)
4394 gp_val = got_sec->output_section->vma;
4395 else if (max_short_vma != 0)
4396 gp_val = min_short_vma;
4397 else if (max_vma - min_vma < 0x200000)
4398 gp_val = min_vma;
4399 else
4400 gp_val = max_vma - 0x200000 + 8;
4401 }
4402
4403 /* If it is possible to address the entire image, but we
4404 don't with the choice above, adjust. */
4405 if (max_vma - min_vma < 0x400000
4406 && (max_vma - gp_val >= 0x200000
4407 || gp_val - min_vma > 0x200000))
4408 gp_val = min_vma + 0x200000;
4409 else if (max_short_vma != 0)
4410 {
4411 /* If we don't cover all the short data, adjust. */
4412 if (max_short_vma - gp_val >= 0x200000)
4413 gp_val = min_short_vma + 0x200000;
4414
4415 /* If we're addressing stuff past the end, adjust back. */
4416 if (gp_val > max_vma)
4417 gp_val = max_vma - 0x200000 + 8;
4418 }
4419 }
4420
4421 /* Validate whether all SHF_IA_64_SHORT sections are within
4422 range of the chosen GP. */
4423
4424 if (max_short_vma != 0)
4425 {
4426 if (max_short_vma - min_short_vma >= 0x400000)
4427 {
4428 overflow:
4429 (*_bfd_error_handler)
4430 (_("%s: short data segment overflowed (0x%lx >= 0x400000)"),
4431 bfd_get_filename (abfd),
4432 (unsigned long) (max_short_vma - min_short_vma));
4433 return FALSE;
4434 }
4435 else if ((gp_val > min_short_vma
4436 && gp_val - min_short_vma > 0x200000)
4437 || (gp_val < max_short_vma
4438 && max_short_vma - gp_val >= 0x200000))
4439 {
4440 (*_bfd_error_handler)
4441 (_("%s: __gp does not cover short data segment"),
4442 bfd_get_filename (abfd));
4443 return FALSE;
4444 }
4445 }
4446
4447 _bfd_set_gp_value (abfd, gp_val);
4448
4449 return TRUE;
4450 }
4451
4452 static bfd_boolean
4453 elfNN_ia64_final_link (bfd *abfd, struct bfd_link_info *info)
4454 {
4455 struct elfNN_ia64_link_hash_table *ia64_info;
4456 asection *unwind_output_sec;
4457
4458 ia64_info = elfNN_ia64_hash_table (info);
4459 if (ia64_info == NULL)
4460 return FALSE;
4461
4462 /* Make sure we've got ourselves a nice fat __gp value. */
4463 if (!info->relocatable)
4464 {
4465 bfd_vma gp_val;
4466 struct elf_link_hash_entry *gp;
4467
4468 /* We assume after gp is set, section size will only decrease. We
4469 need to adjust gp for it. */
4470 _bfd_set_gp_value (abfd, 0);
4471 if (! elfNN_ia64_choose_gp (abfd, info))
4472 return FALSE;
4473 gp_val = _bfd_get_gp_value (abfd);
4474
4475 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
4476 FALSE, FALSE);
4477 if (gp)
4478 {
4479 gp->root.type = bfd_link_hash_defined;
4480 gp->root.u.def.value = gp_val;
4481 gp->root.u.def.section = bfd_abs_section_ptr;
4482 }
4483 }
4484
4485 /* If we're producing a final executable, we need to sort the contents
4486 of the .IA_64.unwind section. Force this section to be relocated
4487 into memory rather than written immediately to the output file. */
4488 unwind_output_sec = NULL;
4489 if (!info->relocatable)
4490 {
4491 asection *s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_unwind);
4492 if (s)
4493 {
4494 unwind_output_sec = s->output_section;
4495 unwind_output_sec->contents
4496 = bfd_malloc (unwind_output_sec->size);
4497 if (unwind_output_sec->contents == NULL)
4498 return FALSE;
4499 }
4500 }
4501
4502 /* Invoke the regular ELF backend linker to do all the work. */
4503 if (!bfd_elf_final_link (abfd, info))
4504 return FALSE;
4505
4506 if (unwind_output_sec)
4507 {
4508 elfNN_ia64_unwind_entry_compare_bfd = abfd;
4509 qsort (unwind_output_sec->contents,
4510 (size_t) (unwind_output_sec->size / 24),
4511 24,
4512 elfNN_ia64_unwind_entry_compare);
4513
4514 if (! bfd_set_section_contents (abfd, unwind_output_sec,
4515 unwind_output_sec->contents, (bfd_vma) 0,
4516 unwind_output_sec->size))
4517 return FALSE;
4518 }
4519
4520 return TRUE;
4521 }
4522
4523 static bfd_boolean
4524 elfNN_ia64_relocate_section (bfd *output_bfd,
4525 struct bfd_link_info *info,
4526 bfd *input_bfd,
4527 asection *input_section,
4528 bfd_byte *contents,
4529 Elf_Internal_Rela *relocs,
4530 Elf_Internal_Sym *local_syms,
4531 asection **local_sections)
4532 {
4533 struct elfNN_ia64_link_hash_table *ia64_info;
4534 Elf_Internal_Shdr *symtab_hdr;
4535 Elf_Internal_Rela *rel;
4536 Elf_Internal_Rela *relend;
4537 asection *srel;
4538 bfd_boolean ret_val = TRUE; /* for non-fatal errors */
4539 bfd_vma gp_val;
4540
4541 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4542 ia64_info = elfNN_ia64_hash_table (info);
4543 if (ia64_info == NULL)
4544 return FALSE;
4545
4546 /* Infect various flags from the input section to the output section. */
4547 if (info->relocatable)
4548 {
4549 bfd_vma flags;
4550
4551 flags = elf_section_data(input_section)->this_hdr.sh_flags;
4552 flags &= SHF_IA_64_NORECOV;
4553
4554 elf_section_data(input_section->output_section)
4555 ->this_hdr.sh_flags |= flags;
4556 }
4557
4558 gp_val = _bfd_get_gp_value (output_bfd);
4559 srel = get_reloc_section (input_bfd, ia64_info, input_section, FALSE);
4560
4561 rel = relocs;
4562 relend = relocs + input_section->reloc_count;
4563 for (; rel < relend; ++rel)
4564 {
4565 struct elf_link_hash_entry *h;
4566 struct elfNN_ia64_dyn_sym_info *dyn_i;
4567 bfd_reloc_status_type r;
4568 reloc_howto_type *howto;
4569 unsigned long r_symndx;
4570 Elf_Internal_Sym *sym;
4571 unsigned int r_type;
4572 bfd_vma value;
4573 asection *sym_sec;
4574 bfd_byte *hit_addr;
4575 bfd_boolean dynamic_symbol_p;
4576 bfd_boolean undef_weak_ref;
4577
4578 r_type = ELFNN_R_TYPE (rel->r_info);
4579 if (r_type > R_IA64_MAX_RELOC_CODE)
4580 {
4581 (*_bfd_error_handler)
4582 (_("%B: unknown relocation type %d"),
4583 input_bfd, (int) r_type);
4584 bfd_set_error (bfd_error_bad_value);
4585 ret_val = FALSE;
4586 continue;
4587 }
4588
4589 howto = lookup_howto (r_type);
4590 r_symndx = ELFNN_R_SYM (rel->r_info);
4591 h = NULL;
4592 sym = NULL;
4593 sym_sec = NULL;
4594 undef_weak_ref = FALSE;
4595
4596 if (r_symndx < symtab_hdr->sh_info)
4597 {
4598 /* Reloc against local symbol. */
4599 asection *msec;
4600 sym = local_syms + r_symndx;
4601 sym_sec = local_sections[r_symndx];
4602 msec = sym_sec;
4603 value = _bfd_elf_rela_local_sym (output_bfd, sym, &msec, rel);
4604 if (!info->relocatable
4605 && (sym_sec->flags & SEC_MERGE) != 0
4606 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
4607 && sym_sec->sec_info_type == ELF_INFO_TYPE_MERGE)
4608 {
4609 struct elfNN_ia64_local_hash_entry *loc_h;
4610
4611 loc_h = get_local_sym_hash (ia64_info, input_bfd, rel, FALSE);
4612 if (loc_h && ! loc_h->sec_merge_done)
4613 {
4614 struct elfNN_ia64_dyn_sym_info *dynent;
4615 unsigned int count;
4616
4617 for (count = loc_h->count, dynent = loc_h->info;
4618 count != 0;
4619 count--, dynent++)
4620 {
4621 msec = sym_sec;
4622 dynent->addend =
4623 _bfd_merged_section_offset (output_bfd, &msec,
4624 elf_section_data (msec)->
4625 sec_info,
4626 sym->st_value
4627 + dynent->addend);
4628 dynent->addend -= sym->st_value;
4629 dynent->addend += msec->output_section->vma
4630 + msec->output_offset
4631 - sym_sec->output_section->vma
4632 - sym_sec->output_offset;
4633 }
4634
4635 /* We may have introduced duplicated entries. We need
4636 to remove them properly. */
4637 count = sort_dyn_sym_info (loc_h->info, loc_h->count);
4638 if (count != loc_h->count)
4639 {
4640 loc_h->count = count;
4641 loc_h->sorted_count = count;
4642 }
4643
4644 loc_h->sec_merge_done = 1;
4645 }
4646 }
4647 }
4648 else
4649 {
4650 bfd_boolean unresolved_reloc;
4651 bfd_boolean warned;
4652 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
4653
4654 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4655 r_symndx, symtab_hdr, sym_hashes,
4656 h, sym_sec, value,
4657 unresolved_reloc, warned);
4658
4659 if (h->root.type == bfd_link_hash_undefweak)
4660 undef_weak_ref = TRUE;
4661 else if (warned)
4662 continue;
4663 }
4664
4665 if (sym_sec != NULL && elf_discarded_section (sym_sec))
4666 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
4667 rel, relend, howto, contents);
4668
4669 if (info->relocatable)
4670 continue;
4671
4672 hit_addr = contents + rel->r_offset;
4673 value += rel->r_addend;
4674 dynamic_symbol_p = elfNN_ia64_dynamic_symbol_p (h, info, r_type);
4675
4676 switch (r_type)
4677 {
4678 case R_IA64_NONE:
4679 case R_IA64_LDXMOV:
4680 continue;
4681
4682 case R_IA64_IMM14:
4683 case R_IA64_IMM22:
4684 case R_IA64_IMM64:
4685 case R_IA64_DIR32MSB:
4686 case R_IA64_DIR32LSB:
4687 case R_IA64_DIR64MSB:
4688 case R_IA64_DIR64LSB:
4689 /* Install a dynamic relocation for this reloc. */
4690 if ((dynamic_symbol_p || info->shared)
4691 && r_symndx != STN_UNDEF
4692 && (input_section->flags & SEC_ALLOC) != 0)
4693 {
4694 unsigned int dyn_r_type;
4695 long dynindx;
4696 bfd_vma addend;
4697
4698 BFD_ASSERT (srel != NULL);
4699
4700 switch (r_type)
4701 {
4702 case R_IA64_IMM14:
4703 case R_IA64_IMM22:
4704 case R_IA64_IMM64:
4705 /* ??? People shouldn't be doing non-pic code in
4706 shared libraries nor dynamic executables. */
4707 (*_bfd_error_handler)
4708 (_("%B: non-pic code with imm relocation against dynamic symbol `%s'"),
4709 input_bfd,
4710 h ? h->root.root.string
4711 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4712 sym_sec));
4713 ret_val = FALSE;
4714 continue;
4715
4716 default:
4717 break;
4718 }
4719
4720 /* If we don't need dynamic symbol lookup, find a
4721 matching RELATIVE relocation. */
4722 dyn_r_type = r_type;
4723 if (dynamic_symbol_p)
4724 {
4725 dynindx = h->dynindx;
4726 addend = rel->r_addend;
4727 value = 0;
4728 }
4729 else
4730 {
4731 switch (r_type)
4732 {
4733 case R_IA64_DIR32MSB:
4734 dyn_r_type = R_IA64_REL32MSB;
4735 break;
4736 case R_IA64_DIR32LSB:
4737 dyn_r_type = R_IA64_REL32LSB;
4738 break;
4739 case R_IA64_DIR64MSB:
4740 dyn_r_type = R_IA64_REL64MSB;
4741 break;
4742 case R_IA64_DIR64LSB:
4743 dyn_r_type = R_IA64_REL64LSB;
4744 break;
4745
4746 default:
4747 break;
4748 }
4749 dynindx = 0;
4750 addend = value;
4751 }
4752
4753 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4754 srel, rel->r_offset, dyn_r_type,
4755 dynindx, addend);
4756 }
4757 /* Fall through. */
4758
4759 case R_IA64_LTV32MSB:
4760 case R_IA64_LTV32LSB:
4761 case R_IA64_LTV64MSB:
4762 case R_IA64_LTV64LSB:
4763 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4764 break;
4765
4766 case R_IA64_GPREL22:
4767 case R_IA64_GPREL64I:
4768 case R_IA64_GPREL32MSB:
4769 case R_IA64_GPREL32LSB:
4770 case R_IA64_GPREL64MSB:
4771 case R_IA64_GPREL64LSB:
4772 if (dynamic_symbol_p)
4773 {
4774 (*_bfd_error_handler)
4775 (_("%B: @gprel relocation against dynamic symbol %s"),
4776 input_bfd,
4777 h ? h->root.root.string
4778 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4779 sym_sec));
4780 ret_val = FALSE;
4781 continue;
4782 }
4783 value -= gp_val;
4784 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4785 break;
4786
4787 case R_IA64_LTOFF22:
4788 case R_IA64_LTOFF22X:
4789 case R_IA64_LTOFF64I:
4790 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4791 value = set_got_entry (input_bfd, info, dyn_i, (h ? h->dynindx : -1),
4792 rel->r_addend, value, R_IA64_DIRNNLSB);
4793 value -= gp_val;
4794 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4795 break;
4796
4797 case R_IA64_PLTOFF22:
4798 case R_IA64_PLTOFF64I:
4799 case R_IA64_PLTOFF64MSB:
4800 case R_IA64_PLTOFF64LSB:
4801 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4802 value = set_pltoff_entry (output_bfd, info, dyn_i, value, FALSE);
4803 value -= gp_val;
4804 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4805 break;
4806
4807 case R_IA64_FPTR64I:
4808 case R_IA64_FPTR32MSB:
4809 case R_IA64_FPTR32LSB:
4810 case R_IA64_FPTR64MSB:
4811 case R_IA64_FPTR64LSB:
4812 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4813 if (dyn_i->want_fptr)
4814 {
4815 if (!undef_weak_ref)
4816 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4817 }
4818 if (!dyn_i->want_fptr || info->pie)
4819 {
4820 long dynindx;
4821 unsigned int dyn_r_type = r_type;
4822 bfd_vma addend = rel->r_addend;
4823
4824 /* Otherwise, we expect the dynamic linker to create
4825 the entry. */
4826
4827 if (dyn_i->want_fptr)
4828 {
4829 if (r_type == R_IA64_FPTR64I)
4830 {
4831 /* We can't represent this without a dynamic symbol.
4832 Adjust the relocation to be against an output
4833 section symbol, which are always present in the
4834 dynamic symbol table. */
4835 /* ??? People shouldn't be doing non-pic code in
4836 shared libraries. Hork. */
4837 (*_bfd_error_handler)
4838 (_("%B: linking non-pic code in a position independent executable"),
4839 input_bfd);
4840 ret_val = FALSE;
4841 continue;
4842 }
4843 dynindx = 0;
4844 addend = value;
4845 dyn_r_type = r_type + R_IA64_RELNNLSB - R_IA64_FPTRNNLSB;
4846 }
4847 else if (h)
4848 {
4849 if (h->dynindx != -1)
4850 dynindx = h->dynindx;
4851 else
4852 dynindx = (_bfd_elf_link_lookup_local_dynindx
4853 (info, h->root.u.def.section->owner,
4854 global_sym_index (h)));
4855 value = 0;
4856 }
4857 else
4858 {
4859 dynindx = (_bfd_elf_link_lookup_local_dynindx
4860 (info, input_bfd, (long) r_symndx));
4861 value = 0;
4862 }
4863
4864 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4865 srel, rel->r_offset, dyn_r_type,
4866 dynindx, addend);
4867 }
4868
4869 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4870 break;
4871
4872 case R_IA64_LTOFF_FPTR22:
4873 case R_IA64_LTOFF_FPTR64I:
4874 case R_IA64_LTOFF_FPTR32MSB:
4875 case R_IA64_LTOFF_FPTR32LSB:
4876 case R_IA64_LTOFF_FPTR64MSB:
4877 case R_IA64_LTOFF_FPTR64LSB:
4878 {
4879 long dynindx;
4880
4881 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4882 if (dyn_i->want_fptr)
4883 {
4884 BFD_ASSERT (h == NULL || h->dynindx == -1);
4885 if (!undef_weak_ref)
4886 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4887 dynindx = -1;
4888 }
4889 else
4890 {
4891 /* Otherwise, we expect the dynamic linker to create
4892 the entry. */
4893 if (h)
4894 {
4895 if (h->dynindx != -1)
4896 dynindx = h->dynindx;
4897 else
4898 dynindx = (_bfd_elf_link_lookup_local_dynindx
4899 (info, h->root.u.def.section->owner,
4900 global_sym_index (h)));
4901 }
4902 else
4903 dynindx = (_bfd_elf_link_lookup_local_dynindx
4904 (info, input_bfd, (long) r_symndx));
4905 value = 0;
4906 }
4907
4908 value = set_got_entry (output_bfd, info, dyn_i, dynindx,
4909 rel->r_addend, value, R_IA64_FPTRNNLSB);
4910 value -= gp_val;
4911 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4912 }
4913 break;
4914
4915 case R_IA64_PCREL32MSB:
4916 case R_IA64_PCREL32LSB:
4917 case R_IA64_PCREL64MSB:
4918 case R_IA64_PCREL64LSB:
4919 /* Install a dynamic relocation for this reloc. */
4920 if (dynamic_symbol_p && r_symndx != STN_UNDEF)
4921 {
4922 BFD_ASSERT (srel != NULL);
4923
4924 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4925 srel, rel->r_offset, r_type,
4926 h->dynindx, rel->r_addend);
4927 }
4928 goto finish_pcrel;
4929
4930 case R_IA64_PCREL21B:
4931 case R_IA64_PCREL60B:
4932 /* We should have created a PLT entry for any dynamic symbol. */
4933 dyn_i = NULL;
4934 if (h)
4935 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4936
4937 if (dyn_i && dyn_i->want_plt2)
4938 {
4939 /* Should have caught this earlier. */
4940 BFD_ASSERT (rel->r_addend == 0);
4941
4942 value = (ia64_info->root.splt->output_section->vma
4943 + ia64_info->root.splt->output_offset
4944 + dyn_i->plt2_offset);
4945 }
4946 else
4947 {
4948 /* Since there's no PLT entry, Validate that this is
4949 locally defined. */
4950 BFD_ASSERT (undef_weak_ref || sym_sec->output_section != NULL);
4951
4952 /* If the symbol is undef_weak, we shouldn't be trying
4953 to call it. There's every chance that we'd wind up
4954 with an out-of-range fixup here. Don't bother setting
4955 any value at all. */
4956 if (undef_weak_ref)
4957 continue;
4958 }
4959 goto finish_pcrel;
4960
4961 case R_IA64_PCREL21BI:
4962 case R_IA64_PCREL21F:
4963 case R_IA64_PCREL21M:
4964 case R_IA64_PCREL22:
4965 case R_IA64_PCREL64I:
4966 /* The PCREL21BI reloc is specifically not intended for use with
4967 dynamic relocs. PCREL21F and PCREL21M are used for speculation
4968 fixup code, and thus probably ought not be dynamic. The
4969 PCREL22 and PCREL64I relocs aren't emitted as dynamic relocs. */
4970 if (dynamic_symbol_p)
4971 {
4972 const char *msg;
4973
4974 if (r_type == R_IA64_PCREL21BI)
4975 msg = _("%B: @internal branch to dynamic symbol %s");
4976 else if (r_type == R_IA64_PCREL21F || r_type == R_IA64_PCREL21M)
4977 msg = _("%B: speculation fixup to dynamic symbol %s");
4978 else
4979 msg = _("%B: @pcrel relocation against dynamic symbol %s");
4980 (*_bfd_error_handler) (msg, input_bfd,
4981 h ? h->root.root.string
4982 : bfd_elf_sym_name (input_bfd,
4983 symtab_hdr,
4984 sym,
4985 sym_sec));
4986 ret_val = FALSE;
4987 continue;
4988 }
4989 goto finish_pcrel;
4990
4991 finish_pcrel:
4992 /* Make pc-relative. */
4993 value -= (input_section->output_section->vma
4994 + input_section->output_offset
4995 + rel->r_offset) & ~ (bfd_vma) 0x3;
4996 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4997 break;
4998
4999 case R_IA64_SEGREL32MSB:
5000 case R_IA64_SEGREL32LSB:
5001 case R_IA64_SEGREL64MSB:
5002 case R_IA64_SEGREL64LSB:
5003 {
5004 /* Find the segment that contains the output_section. */
5005 Elf_Internal_Phdr *p = _bfd_elf_find_segment_containing_section
5006 (output_bfd, input_section->output_section);
5007
5008 if (p == NULL)
5009 {
5010 r = bfd_reloc_notsupported;
5011 }
5012 else
5013 {
5014 /* The VMA of the segment is the vaddr of the associated
5015 program header. */
5016 if (value > p->p_vaddr)
5017 value -= p->p_vaddr;
5018 else
5019 value = 0;
5020 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5021 }
5022 break;
5023 }
5024
5025 case R_IA64_SECREL32MSB:
5026 case R_IA64_SECREL32LSB:
5027 case R_IA64_SECREL64MSB:
5028 case R_IA64_SECREL64LSB:
5029 /* Make output-section relative to section where the symbol
5030 is defined. PR 475 */
5031 if (sym_sec)
5032 value -= sym_sec->output_section->vma;
5033 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5034 break;
5035
5036 case R_IA64_IPLTMSB:
5037 case R_IA64_IPLTLSB:
5038 /* Install a dynamic relocation for this reloc. */
5039 if ((dynamic_symbol_p || info->shared)
5040 && (input_section->flags & SEC_ALLOC) != 0)
5041 {
5042 BFD_ASSERT (srel != NULL);
5043
5044 /* If we don't need dynamic symbol lookup, install two
5045 RELATIVE relocations. */
5046 if (!dynamic_symbol_p)
5047 {
5048 unsigned int dyn_r_type;
5049
5050 if (r_type == R_IA64_IPLTMSB)
5051 dyn_r_type = R_IA64_REL64MSB;
5052 else
5053 dyn_r_type = R_IA64_REL64LSB;
5054
5055 elfNN_ia64_install_dyn_reloc (output_bfd, info,
5056 input_section,
5057 srel, rel->r_offset,
5058 dyn_r_type, 0, value);
5059 elfNN_ia64_install_dyn_reloc (output_bfd, info,
5060 input_section,
5061 srel, rel->r_offset + 8,
5062 dyn_r_type, 0, gp_val);
5063 }
5064 else
5065 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
5066 srel, rel->r_offset, r_type,
5067 h->dynindx, rel->r_addend);
5068 }
5069
5070 if (r_type == R_IA64_IPLTMSB)
5071 r_type = R_IA64_DIR64MSB;
5072 else
5073 r_type = R_IA64_DIR64LSB;
5074 elfNN_ia64_install_value (hit_addr, value, r_type);
5075 r = elfNN_ia64_install_value (hit_addr + 8, gp_val, r_type);
5076 break;
5077
5078 case R_IA64_TPREL14:
5079 case R_IA64_TPREL22:
5080 case R_IA64_TPREL64I:
5081 if (elf_hash_table (info)->tls_sec == NULL)
5082 goto missing_tls_sec;
5083 value -= elfNN_ia64_tprel_base (info);
5084 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5085 break;
5086
5087 case R_IA64_DTPREL14:
5088 case R_IA64_DTPREL22:
5089 case R_IA64_DTPREL64I:
5090 case R_IA64_DTPREL32LSB:
5091 case R_IA64_DTPREL32MSB:
5092 case R_IA64_DTPREL64LSB:
5093 case R_IA64_DTPREL64MSB:
5094 if (elf_hash_table (info)->tls_sec == NULL)
5095 goto missing_tls_sec;
5096 value -= elfNN_ia64_dtprel_base (info);
5097 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5098 break;
5099
5100 case R_IA64_LTOFF_TPREL22:
5101 case R_IA64_LTOFF_DTPMOD22:
5102 case R_IA64_LTOFF_DTPREL22:
5103 {
5104 int got_r_type;
5105 long dynindx = h ? h->dynindx : -1;
5106 bfd_vma r_addend = rel->r_addend;
5107
5108 switch (r_type)
5109 {
5110 default:
5111 case R_IA64_LTOFF_TPREL22:
5112 if (!dynamic_symbol_p)
5113 {
5114 if (elf_hash_table (info)->tls_sec == NULL)
5115 goto missing_tls_sec;
5116 if (!info->shared)
5117 value -= elfNN_ia64_tprel_base (info);
5118 else
5119 {
5120 r_addend += value - elfNN_ia64_dtprel_base (info);
5121 dynindx = 0;
5122 }
5123 }
5124 got_r_type = R_IA64_TPREL64LSB;
5125 break;
5126 case R_IA64_LTOFF_DTPMOD22:
5127 if (!dynamic_symbol_p && !info->shared)
5128 value = 1;
5129 got_r_type = R_IA64_DTPMOD64LSB;
5130 break;
5131 case R_IA64_LTOFF_DTPREL22:
5132 if (!dynamic_symbol_p)
5133 {
5134 if (elf_hash_table (info)->tls_sec == NULL)
5135 goto missing_tls_sec;
5136 value -= elfNN_ia64_dtprel_base (info);
5137 }
5138 got_r_type = R_IA64_DTPRELNNLSB;
5139 break;
5140 }
5141 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
5142 value = set_got_entry (input_bfd, info, dyn_i, dynindx, r_addend,
5143 value, got_r_type);
5144 value -= gp_val;
5145 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5146 }
5147 break;
5148
5149 default:
5150 r = bfd_reloc_notsupported;
5151 break;
5152 }
5153
5154 switch (r)
5155 {
5156 case bfd_reloc_ok:
5157 break;
5158
5159 case bfd_reloc_undefined:
5160 /* This can happen for global table relative relocs if
5161 __gp is undefined. This is a panic situation so we
5162 don't try to continue. */
5163 (*info->callbacks->undefined_symbol)
5164 (info, "__gp", input_bfd, input_section, rel->r_offset, 1);
5165 return FALSE;
5166
5167 case bfd_reloc_notsupported:
5168 {
5169 const char *name;
5170
5171 if (h)
5172 name = h->root.root.string;
5173 else
5174 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5175 sym_sec);
5176 if (!(*info->callbacks->warning) (info, _("unsupported reloc"),
5177 name, input_bfd,
5178 input_section, rel->r_offset))
5179 return FALSE;
5180 ret_val = FALSE;
5181 }
5182 break;
5183
5184 case bfd_reloc_dangerous:
5185 case bfd_reloc_outofrange:
5186 case bfd_reloc_overflow:
5187 default:
5188 missing_tls_sec:
5189 {
5190 const char *name;
5191
5192 if (h)
5193 name = h->root.root.string;
5194 else
5195 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5196 sym_sec);
5197
5198 switch (r_type)
5199 {
5200 case R_IA64_TPREL14:
5201 case R_IA64_TPREL22:
5202 case R_IA64_TPREL64I:
5203 case R_IA64_DTPREL14:
5204 case R_IA64_DTPREL22:
5205 case R_IA64_DTPREL64I:
5206 case R_IA64_DTPREL32LSB:
5207 case R_IA64_DTPREL32MSB:
5208 case R_IA64_DTPREL64LSB:
5209 case R_IA64_DTPREL64MSB:
5210 case R_IA64_LTOFF_TPREL22:
5211 case R_IA64_LTOFF_DTPMOD22:
5212 case R_IA64_LTOFF_DTPREL22:
5213 (*_bfd_error_handler)
5214 (_("%B: missing TLS section for relocation %s against `%s' at 0x%lx in section `%A'."),
5215 input_bfd, input_section, howto->name, name,
5216 rel->r_offset);
5217 break;
5218
5219 case R_IA64_PCREL21B:
5220 case R_IA64_PCREL21BI:
5221 case R_IA64_PCREL21M:
5222 case R_IA64_PCREL21F:
5223 if (is_elf_hash_table (info->hash))
5224 {
5225 /* Relaxtion is always performed for ELF output.
5226 Overflow failures for those relocations mean
5227 that the section is too big to relax. */
5228 (*_bfd_error_handler)
5229 (_("%B: Can't relax br (%s) to `%s' at 0x%lx in section `%A' with size 0x%lx (> 0x1000000)."),
5230 input_bfd, input_section, howto->name, name,
5231 rel->r_offset, input_section->size);
5232 break;
5233 }
5234 default:
5235 if (!(*info->callbacks->reloc_overflow) (info,
5236 &h->root,
5237 name,
5238 howto->name,
5239 (bfd_vma) 0,
5240 input_bfd,
5241 input_section,
5242 rel->r_offset))
5243 return FALSE;
5244 break;
5245 }
5246
5247 ret_val = FALSE;
5248 }
5249 break;
5250 }
5251 }
5252
5253 return ret_val;
5254 }
5255
5256 static bfd_boolean
5257 elfNN_ia64_finish_dynamic_symbol (bfd *output_bfd,
5258 struct bfd_link_info *info,
5259 struct elf_link_hash_entry *h,
5260 Elf_Internal_Sym *sym)
5261 {
5262 struct elfNN_ia64_link_hash_table *ia64_info;
5263 struct elfNN_ia64_dyn_sym_info *dyn_i;
5264
5265 ia64_info = elfNN_ia64_hash_table (info);
5266 if (ia64_info == NULL)
5267 return FALSE;
5268
5269 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
5270
5271 /* Fill in the PLT data, if required. */
5272 if (dyn_i && dyn_i->want_plt)
5273 {
5274 Elf_Internal_Rela outrel;
5275 bfd_byte *loc;
5276 asection *plt_sec;
5277 bfd_vma plt_addr, pltoff_addr, gp_val, plt_index;
5278
5279 gp_val = _bfd_get_gp_value (output_bfd);
5280
5281 /* Initialize the minimal PLT entry. */
5282
5283 plt_index = (dyn_i->plt_offset - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
5284 plt_sec = ia64_info->root.splt;
5285 loc = plt_sec->contents + dyn_i->plt_offset;
5286
5287 memcpy (loc, plt_min_entry, PLT_MIN_ENTRY_SIZE);
5288 elfNN_ia64_install_value (loc, plt_index, R_IA64_IMM22);
5289 elfNN_ia64_install_value (loc+2, -dyn_i->plt_offset, R_IA64_PCREL21B);
5290
5291 plt_addr = (plt_sec->output_section->vma
5292 + plt_sec->output_offset
5293 + dyn_i->plt_offset);
5294 pltoff_addr = set_pltoff_entry (output_bfd, info, dyn_i, plt_addr, TRUE);
5295
5296 /* Initialize the FULL PLT entry, if needed. */
5297 if (dyn_i->want_plt2)
5298 {
5299 loc = plt_sec->contents + dyn_i->plt2_offset;
5300
5301 memcpy (loc, plt_full_entry, PLT_FULL_ENTRY_SIZE);
5302 elfNN_ia64_install_value (loc, pltoff_addr - gp_val, R_IA64_IMM22);
5303
5304 /* Mark the symbol as undefined, rather than as defined in the
5305 plt section. Leave the value alone. */
5306 /* ??? We didn't redefine it in adjust_dynamic_symbol in the
5307 first place. But perhaps elflink.c did some for us. */
5308 if (!h->def_regular)
5309 sym->st_shndx = SHN_UNDEF;
5310 }
5311
5312 /* Create the dynamic relocation. */
5313 outrel.r_offset = pltoff_addr;
5314 if (bfd_little_endian (output_bfd))
5315 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTLSB);
5316 else
5317 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTMSB);
5318 outrel.r_addend = 0;
5319
5320 /* This is fun. In the .IA_64.pltoff section, we've got entries
5321 that correspond both to real PLT entries, and those that
5322 happened to resolve to local symbols but need to be created
5323 to satisfy @pltoff relocations. The .rela.IA_64.pltoff
5324 relocations for the real PLT should come at the end of the
5325 section, so that they can be indexed by plt entry at runtime.
5326
5327 We emitted all of the relocations for the non-PLT @pltoff
5328 entries during relocate_section. So we can consider the
5329 existing sec->reloc_count to be the base of the array of
5330 PLT relocations. */
5331
5332 loc = ia64_info->rel_pltoff_sec->contents;
5333 loc += ((ia64_info->rel_pltoff_sec->reloc_count + plt_index)
5334 * sizeof (ElfNN_External_Rela));
5335 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5336 }
5337
5338 /* Mark some specially defined symbols as absolute. */
5339 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
5340 || h == ia64_info->root.hgot
5341 || h == ia64_info->root.hplt)
5342 sym->st_shndx = SHN_ABS;
5343
5344 return TRUE;
5345 }
5346
5347 static bfd_boolean
5348 elfNN_ia64_finish_dynamic_sections (bfd *abfd,
5349 struct bfd_link_info *info)
5350 {
5351 struct elfNN_ia64_link_hash_table *ia64_info;
5352 bfd *dynobj;
5353
5354 ia64_info = elfNN_ia64_hash_table (info);
5355 if (ia64_info == NULL)
5356 return FALSE;
5357
5358 dynobj = ia64_info->root.dynobj;
5359
5360 if (elf_hash_table (info)->dynamic_sections_created)
5361 {
5362 ElfNN_External_Dyn *dyncon, *dynconend;
5363 asection *sdyn, *sgotplt;
5364 bfd_vma gp_val;
5365
5366 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
5367 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
5368 BFD_ASSERT (sdyn != NULL);
5369 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
5370 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
5371
5372 gp_val = _bfd_get_gp_value (abfd);
5373
5374 for (; dyncon < dynconend; dyncon++)
5375 {
5376 Elf_Internal_Dyn dyn;
5377
5378 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
5379
5380 switch (dyn.d_tag)
5381 {
5382 case DT_PLTGOT:
5383 dyn.d_un.d_ptr = gp_val;
5384 break;
5385
5386 case DT_PLTRELSZ:
5387 dyn.d_un.d_val = (ia64_info->minplt_entries
5388 * sizeof (ElfNN_External_Rela));
5389 break;
5390
5391 case DT_JMPREL:
5392 /* See the comment above in finish_dynamic_symbol. */
5393 dyn.d_un.d_ptr = (ia64_info->rel_pltoff_sec->output_section->vma
5394 + ia64_info->rel_pltoff_sec->output_offset
5395 + (ia64_info->rel_pltoff_sec->reloc_count
5396 * sizeof (ElfNN_External_Rela)));
5397 break;
5398
5399 case DT_IA_64_PLT_RESERVE:
5400 dyn.d_un.d_ptr = (sgotplt->output_section->vma
5401 + sgotplt->output_offset);
5402 break;
5403
5404 case DT_RELASZ:
5405 /* Do not have RELASZ include JMPREL. This makes things
5406 easier on ld.so. This is not what the rest of BFD set up. */
5407 dyn.d_un.d_val -= (ia64_info->minplt_entries
5408 * sizeof (ElfNN_External_Rela));
5409 break;
5410 }
5411
5412 bfd_elfNN_swap_dyn_out (abfd, &dyn, dyncon);
5413 }
5414
5415 /* Initialize the PLT0 entry. */
5416 if (ia64_info->root.splt)
5417 {
5418 bfd_byte *loc = ia64_info->root.splt->contents;
5419 bfd_vma pltres;
5420
5421 memcpy (loc, plt_header, PLT_HEADER_SIZE);
5422
5423 pltres = (sgotplt->output_section->vma
5424 + sgotplt->output_offset
5425 - gp_val);
5426
5427 elfNN_ia64_install_value (loc+1, pltres, R_IA64_GPREL22);
5428 }
5429 }
5430
5431 return TRUE;
5432 }
5433 \f
5434 /* ELF file flag handling: */
5435
5436 /* Function to keep IA-64 specific file flags. */
5437 static bfd_boolean
5438 elfNN_ia64_set_private_flags (bfd *abfd, flagword flags)
5439 {
5440 BFD_ASSERT (!elf_flags_init (abfd)
5441 || elf_elfheader (abfd)->e_flags == flags);
5442
5443 elf_elfheader (abfd)->e_flags = flags;
5444 elf_flags_init (abfd) = TRUE;
5445 return TRUE;
5446 }
5447
5448 /* Merge backend specific data from an object file to the output
5449 object file when linking. */
5450 static bfd_boolean
5451 elfNN_ia64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5452 {
5453 flagword out_flags;
5454 flagword in_flags;
5455 bfd_boolean ok = TRUE;
5456
5457 /* Don't even pretend to support mixed-format linking. */
5458 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5459 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5460 return FALSE;
5461
5462 in_flags = elf_elfheader (ibfd)->e_flags;
5463 out_flags = elf_elfheader (obfd)->e_flags;
5464
5465 if (! elf_flags_init (obfd))
5466 {
5467 elf_flags_init (obfd) = TRUE;
5468 elf_elfheader (obfd)->e_flags = in_flags;
5469
5470 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
5471 && bfd_get_arch_info (obfd)->the_default)
5472 {
5473 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
5474 bfd_get_mach (ibfd));
5475 }
5476
5477 return TRUE;
5478 }
5479
5480 /* Check flag compatibility. */
5481 if (in_flags == out_flags)
5482 return TRUE;
5483
5484 /* Output has EF_IA_64_REDUCEDFP set only if all inputs have it set. */
5485 if (!(in_flags & EF_IA_64_REDUCEDFP) && (out_flags & EF_IA_64_REDUCEDFP))
5486 elf_elfheader (obfd)->e_flags &= ~EF_IA_64_REDUCEDFP;
5487
5488 if ((in_flags & EF_IA_64_TRAPNIL) != (out_flags & EF_IA_64_TRAPNIL))
5489 {
5490 (*_bfd_error_handler)
5491 (_("%B: linking trap-on-NULL-dereference with non-trapping files"),
5492 ibfd);
5493
5494 bfd_set_error (bfd_error_bad_value);
5495 ok = FALSE;
5496 }
5497 if ((in_flags & EF_IA_64_BE) != (out_flags & EF_IA_64_BE))
5498 {
5499 (*_bfd_error_handler)
5500 (_("%B: linking big-endian files with little-endian files"),
5501 ibfd);
5502
5503 bfd_set_error (bfd_error_bad_value);
5504 ok = FALSE;
5505 }
5506 if ((in_flags & EF_IA_64_ABI64) != (out_flags & EF_IA_64_ABI64))
5507 {
5508 (*_bfd_error_handler)
5509 (_("%B: linking 64-bit files with 32-bit files"),
5510 ibfd);
5511
5512 bfd_set_error (bfd_error_bad_value);
5513 ok = FALSE;
5514 }
5515 if ((in_flags & EF_IA_64_CONS_GP) != (out_flags & EF_IA_64_CONS_GP))
5516 {
5517 (*_bfd_error_handler)
5518 (_("%B: linking constant-gp files with non-constant-gp files"),
5519 ibfd);
5520
5521 bfd_set_error (bfd_error_bad_value);
5522 ok = FALSE;
5523 }
5524 if ((in_flags & EF_IA_64_NOFUNCDESC_CONS_GP)
5525 != (out_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
5526 {
5527 (*_bfd_error_handler)
5528 (_("%B: linking auto-pic files with non-auto-pic files"),
5529 ibfd);
5530
5531 bfd_set_error (bfd_error_bad_value);
5532 ok = FALSE;
5533 }
5534
5535 return ok;
5536 }
5537
5538 static bfd_boolean
5539 elfNN_ia64_print_private_bfd_data (bfd *abfd, PTR ptr)
5540 {
5541 FILE *file = (FILE *) ptr;
5542 flagword flags = elf_elfheader (abfd)->e_flags;
5543
5544 BFD_ASSERT (abfd != NULL && ptr != NULL);
5545
5546 fprintf (file, "private flags = %s%s%s%s%s%s%s%s\n",
5547 (flags & EF_IA_64_TRAPNIL) ? "TRAPNIL, " : "",
5548 (flags & EF_IA_64_EXT) ? "EXT, " : "",
5549 (flags & EF_IA_64_BE) ? "BE, " : "LE, ",
5550 (flags & EF_IA_64_REDUCEDFP) ? "REDUCEDFP, " : "",
5551 (flags & EF_IA_64_CONS_GP) ? "CONS_GP, " : "",
5552 (flags & EF_IA_64_NOFUNCDESC_CONS_GP) ? "NOFUNCDESC_CONS_GP, " : "",
5553 (flags & EF_IA_64_ABSOLUTE) ? "ABSOLUTE, " : "",
5554 (flags & EF_IA_64_ABI64) ? "ABI64" : "ABI32");
5555
5556 _bfd_elf_print_private_bfd_data (abfd, ptr);
5557 return TRUE;
5558 }
5559
5560 static enum elf_reloc_type_class
5561 elfNN_ia64_reloc_type_class (const Elf_Internal_Rela *rela)
5562 {
5563 switch ((int) ELFNN_R_TYPE (rela->r_info))
5564 {
5565 case R_IA64_REL32MSB:
5566 case R_IA64_REL32LSB:
5567 case R_IA64_REL64MSB:
5568 case R_IA64_REL64LSB:
5569 return reloc_class_relative;
5570 case R_IA64_IPLTMSB:
5571 case R_IA64_IPLTLSB:
5572 return reloc_class_plt;
5573 case R_IA64_COPY:
5574 return reloc_class_copy;
5575 default:
5576 return reloc_class_normal;
5577 }
5578 }
5579
5580 static const struct bfd_elf_special_section elfNN_ia64_special_sections[] =
5581 {
5582 { STRING_COMMA_LEN (".sbss"), -1, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5583 { STRING_COMMA_LEN (".sdata"), -1, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5584 { NULL, 0, 0, 0, 0 }
5585 };
5586
5587 static bfd_boolean
5588 elfNN_ia64_object_p (bfd *abfd)
5589 {
5590 asection *sec;
5591 asection *group, *unwi, *unw;
5592 flagword flags;
5593 const char *name;
5594 char *unwi_name, *unw_name;
5595 bfd_size_type amt;
5596
5597 if (abfd->flags & DYNAMIC)
5598 return TRUE;
5599
5600 /* Flags for fake group section. */
5601 flags = (SEC_LINKER_CREATED | SEC_GROUP | SEC_LINK_ONCE
5602 | SEC_EXCLUDE);
5603
5604 /* We add a fake section group for each .gnu.linkonce.t.* section,
5605 which isn't in a section group, and its unwind sections. */
5606 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5607 {
5608 if (elf_sec_group (sec) == NULL
5609 && ((sec->flags & (SEC_LINK_ONCE | SEC_CODE | SEC_GROUP))
5610 == (SEC_LINK_ONCE | SEC_CODE))
5611 && CONST_STRNEQ (sec->name, ".gnu.linkonce.t."))
5612 {
5613 name = sec->name + 16;
5614
5615 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unwi.");
5616 unwi_name = bfd_alloc (abfd, amt);
5617 if (!unwi_name)
5618 return FALSE;
5619
5620 strcpy (stpcpy (unwi_name, ".gnu.linkonce.ia64unwi."), name);
5621 unwi = bfd_get_section_by_name (abfd, unwi_name);
5622
5623 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unw.");
5624 unw_name = bfd_alloc (abfd, amt);
5625 if (!unw_name)
5626 return FALSE;
5627
5628 strcpy (stpcpy (unw_name, ".gnu.linkonce.ia64unw."), name);
5629 unw = bfd_get_section_by_name (abfd, unw_name);
5630
5631 /* We need to create a fake group section for it and its
5632 unwind sections. */
5633 group = bfd_make_section_anyway_with_flags (abfd, name,
5634 flags);
5635 if (group == NULL)
5636 return FALSE;
5637
5638 /* Move the fake group section to the beginning. */
5639 bfd_section_list_remove (abfd, group);
5640 bfd_section_list_prepend (abfd, group);
5641
5642 elf_next_in_group (group) = sec;
5643
5644 elf_group_name (sec) = name;
5645 elf_next_in_group (sec) = sec;
5646 elf_sec_group (sec) = group;
5647
5648 if (unwi)
5649 {
5650 elf_group_name (unwi) = name;
5651 elf_next_in_group (unwi) = sec;
5652 elf_next_in_group (sec) = unwi;
5653 elf_sec_group (unwi) = group;
5654 }
5655
5656 if (unw)
5657 {
5658 elf_group_name (unw) = name;
5659 if (unwi)
5660 {
5661 elf_next_in_group (unw) = elf_next_in_group (unwi);
5662 elf_next_in_group (unwi) = unw;
5663 }
5664 else
5665 {
5666 elf_next_in_group (unw) = sec;
5667 elf_next_in_group (sec) = unw;
5668 }
5669 elf_sec_group (unw) = group;
5670 }
5671
5672 /* Fake SHT_GROUP section header. */
5673 elf_section_data (group)->this_hdr.bfd_section = group;
5674 elf_section_data (group)->this_hdr.sh_type = SHT_GROUP;
5675 }
5676 }
5677 return TRUE;
5678 }
5679
5680 static bfd_boolean
5681 elfNN_ia64_hpux_vec (const bfd_target *vec)
5682 {
5683 extern const bfd_target bfd_elfNN_ia64_hpux_big_vec;
5684 return (vec == & bfd_elfNN_ia64_hpux_big_vec);
5685 }
5686
5687 static void
5688 elfNN_hpux_post_process_headers (bfd *abfd,
5689 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5690 {
5691 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5692
5693 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
5694 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
5695 }
5696
5697 static bfd_boolean
5698 elfNN_hpux_backend_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5699 asection *sec, int *retval)
5700 {
5701 if (bfd_is_com_section (sec))
5702 {
5703 *retval = SHN_IA_64_ANSI_COMMON;
5704 return TRUE;
5705 }
5706 return FALSE;
5707 }
5708
5709 static void
5710 elfNN_hpux_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5711 asymbol *asym)
5712 {
5713 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5714
5715 switch (elfsym->internal_elf_sym.st_shndx)
5716 {
5717 case SHN_IA_64_ANSI_COMMON:
5718 asym->section = bfd_com_section_ptr;
5719 asym->value = elfsym->internal_elf_sym.st_size;
5720 asym->flags &= ~BSF_GLOBAL;
5721 break;
5722 }
5723 }
5724
5725 #ifdef INCLUDE_IA64_VMS
5726
5727 static bfd_boolean
5728 elfNN_vms_section_from_shdr (bfd *abfd,
5729 Elf_Internal_Shdr *hdr,
5730 const char *name,
5731 int shindex)
5732 {
5733 switch (hdr->sh_type)
5734 {
5735 case SHT_IA_64_VMS_TRACE:
5736 case SHT_IA_64_VMS_DEBUG:
5737 case SHT_IA_64_VMS_DEBUG_STR:
5738 break;
5739
5740 default:
5741 return elfNN_ia64_section_from_shdr (abfd, hdr, name, shindex);
5742 }
5743
5744 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5745 return FALSE;
5746
5747 return TRUE;
5748 }
5749
5750 static bfd_boolean
5751 elfNN_vms_object_p (bfd *abfd)
5752 {
5753 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5754 Elf_Internal_Phdr *i_phdr = elf_tdata (abfd)->phdr;
5755 unsigned int i;
5756 unsigned int num_text = 0;
5757 unsigned int num_data = 0;
5758 unsigned int num_rodata = 0;
5759 char name[16];
5760
5761 if (!elfNN_ia64_object_p (abfd))
5762 return FALSE;
5763
5764 for (i = 0; i < i_ehdrp->e_phnum; i++, i_phdr++)
5765 {
5766 /* Is there a section for this segment? */
5767 bfd_vma base_vma = i_phdr->p_vaddr;
5768 bfd_vma limit_vma = base_vma + i_phdr->p_filesz;
5769
5770 if (i_phdr->p_type != PT_LOAD)
5771 continue;
5772
5773 again:
5774 while (base_vma < limit_vma)
5775 {
5776 bfd_vma next_vma = limit_vma;
5777 asection *nsec;
5778 asection *sec;
5779 flagword flags;
5780 char *nname = NULL;
5781
5782 /* Find a section covering base_vma. */
5783 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5784 {
5785 if ((sec->flags & (SEC_ALLOC | SEC_LOAD)) == 0)
5786 continue;
5787 if (sec->vma <= base_vma && sec->vma + sec->size > base_vma)
5788 {
5789 base_vma = sec->vma + sec->size;
5790 goto again;
5791 }
5792 if (sec->vma < next_vma && sec->vma + sec->size >= base_vma)
5793 next_vma = sec->vma;
5794 }
5795
5796 /* No section covering [base_vma; next_vma). Create a fake one. */
5797 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS;
5798 if (i_phdr->p_flags & PF_X)
5799 {
5800 flags |= SEC_CODE;
5801 if (num_text++ == 0)
5802 nname = ".text";
5803 else
5804 sprintf (name, ".text$%u", num_text);
5805 }
5806 else if ((i_phdr->p_flags & (PF_R | PF_W)) == PF_R)
5807 {
5808 flags |= SEC_READONLY;
5809 sprintf (name, ".rodata$%u", num_rodata++);
5810 }
5811 else
5812 {
5813 flags |= SEC_DATA;
5814 sprintf (name, ".data$%u", num_data++);
5815 }
5816
5817 /* Allocate name. */
5818 if (nname == NULL)
5819 {
5820 size_t name_len = strlen (name) + 1;
5821 nname = bfd_alloc (abfd, name_len);
5822 if (nname == NULL)
5823 return FALSE;
5824 memcpy (nname, name, name_len);
5825 }
5826
5827 /* Create and fill new section. */
5828 nsec = bfd_make_section_anyway_with_flags (abfd, nname, flags);
5829 if (nsec == NULL)
5830 return FALSE;
5831 nsec->vma = base_vma;
5832 nsec->size = next_vma - base_vma;
5833 nsec->filepos = i_phdr->p_offset + (base_vma - i_phdr->p_vaddr);
5834
5835 base_vma = next_vma;
5836 }
5837 }
5838 return TRUE;
5839 }
5840
5841 static void
5842 elfNN_vms_post_process_headers (bfd *abfd,
5843 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5844 {
5845 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5846
5847 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_OPENVMS;
5848 i_ehdrp->e_ident[EI_ABIVERSION] = 2;
5849 }
5850
5851 static bfd_boolean
5852 elfNN_vms_section_processing (bfd *abfd ATTRIBUTE_UNUSED,
5853 Elf_Internal_Shdr *hdr)
5854 {
5855 if (hdr->bfd_section != NULL)
5856 {
5857 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5858
5859 if (strcmp (name, ".text") == 0)
5860 hdr->sh_flags |= SHF_IA_64_VMS_SHARED;
5861 else if ((strcmp (name, ".debug") == 0)
5862 || (strcmp (name, ".debug_abbrev") == 0)
5863 || (strcmp (name, ".debug_aranges") == 0)
5864 || (strcmp (name, ".debug_frame") == 0)
5865 || (strcmp (name, ".debug_info") == 0)
5866 || (strcmp (name, ".debug_loc") == 0)
5867 || (strcmp (name, ".debug_macinfo") == 0)
5868 || (strcmp (name, ".debug_pubnames") == 0)
5869 || (strcmp (name, ".debug_pubtypes") == 0))
5870 hdr->sh_type = SHT_IA_64_VMS_DEBUG;
5871 else if ((strcmp (name, ".debug_line") == 0)
5872 || (strcmp (name, ".debug_ranges") == 0))
5873 hdr->sh_type = SHT_IA_64_VMS_TRACE;
5874 else if (strcmp (name, ".debug_str") == 0)
5875 hdr->sh_type = SHT_IA_64_VMS_DEBUG_STR;
5876 else if (strcmp (name, ".vms_display_name_info") == 0)
5877 {
5878 int idx, symcount;
5879 asymbol **syms;
5880 struct elf_obj_tdata *t = elf_tdata (abfd);
5881 int buf[2];
5882 int demangler_sym_idx = -1;
5883
5884 symcount = bfd_get_symcount (abfd);
5885 syms = bfd_get_outsymbols (abfd);
5886 for (idx = 0; idx < symcount; idx++)
5887 {
5888 asymbol *sym;
5889 sym = syms[idx];
5890 if ((sym->flags & (BSF_DEBUGGING | BSF_DYNAMIC))
5891 && strchr (sym->name, '@')
5892 && (strcmp (sym->section->name, BFD_ABS_SECTION_NAME) == 0))
5893 {
5894 demangler_sym_idx = sym->udata.i;
5895 break;
5896 }
5897 }
5898
5899 hdr->sh_type = SHT_IA_64_VMS_DISPLAY_NAME_INFO;
5900 hdr->sh_entsize = 4;
5901 hdr->sh_addralign = 0;
5902 hdr->sh_link = t->symtab_section;
5903
5904 /* Find symtab index of demangler routine and stuff it in
5905 the second long word of section data. */
5906
5907 if (demangler_sym_idx > -1)
5908 {
5909 bfd_seek (abfd, hdr->sh_offset, SEEK_SET);
5910 bfd_bread (buf, hdr->sh_size, abfd);
5911 buf [1] = demangler_sym_idx;
5912 bfd_seek (abfd, hdr->sh_offset, SEEK_SET);
5913 bfd_bwrite (buf, hdr->sh_size, abfd);
5914 }
5915 }
5916 }
5917
5918 return TRUE;
5919 }
5920
5921 /* The final processing done just before writing out a VMS IA-64 ELF
5922 object file. */
5923
5924 static void
5925 elfNN_vms_final_write_processing (bfd *abfd,
5926 bfd_boolean linker ATTRIBUTE_UNUSED)
5927 {
5928 Elf_Internal_Shdr *hdr;
5929 asection *s;
5930 int unwind_info_sect_idx = 0;
5931
5932 for (s = abfd->sections; s; s = s->next)
5933 {
5934 hdr = &elf_section_data (s)->this_hdr;
5935
5936 if (strcmp (bfd_get_section_name (abfd, hdr->bfd_section),
5937 ".IA_64.unwind_info") == 0)
5938 unwind_info_sect_idx = elf_section_data (s)->this_idx;
5939
5940 switch (hdr->sh_type)
5941 {
5942 case SHT_IA_64_UNWIND:
5943 /* VMS requires sh_info to point to the unwind info section. */
5944 hdr->sh_info = unwind_info_sect_idx;
5945 break;
5946 }
5947 }
5948
5949 if (! elf_flags_init (abfd))
5950 {
5951 unsigned long flags = 0;
5952
5953 if (abfd->xvec->byteorder == BFD_ENDIAN_BIG)
5954 flags |= EF_IA_64_BE;
5955 if (bfd_get_mach (abfd) == bfd_mach_ia64_elf64)
5956 flags |= EF_IA_64_ABI64;
5957
5958 elf_elfheader(abfd)->e_flags = flags;
5959 elf_flags_init (abfd) = TRUE;
5960 }
5961 }
5962
5963 static bfd_boolean
5964 elfNN_vms_close_and_cleanup (bfd *abfd)
5965 {
5966 if (bfd_get_format (abfd) == bfd_object)
5967 {
5968 long isize, irsize;
5969
5970 if (elf_shstrtab (abfd) != NULL)
5971 _bfd_elf_strtab_free (elf_shstrtab (abfd));
5972
5973 /* Pad to 8 byte boundary for IPF/VMS. */
5974 isize = bfd_get_size (abfd);
5975 if ((irsize = isize/8*8) < isize)
5976 {
5977 int ishort = (irsize + 8) - isize;
5978 bfd_seek (abfd, isize, SEEK_SET);
5979 bfd_bwrite (bfd_zmalloc (ishort), ishort, abfd);
5980 }
5981 }
5982
5983 return _bfd_generic_close_and_cleanup (abfd);
5984 }
5985 #endif /* INCLUDE_IA64_VMS */
5986 \f
5987 #define TARGET_LITTLE_SYM bfd_elfNN_ia64_little_vec
5988 #define TARGET_LITTLE_NAME "elfNN-ia64-little"
5989 #define TARGET_BIG_SYM bfd_elfNN_ia64_big_vec
5990 #define TARGET_BIG_NAME "elfNN-ia64-big"
5991 #define ELF_ARCH bfd_arch_ia64
5992 #define ELF_TARGET_ID IA64_ELF_DATA
5993 #define ELF_MACHINE_CODE EM_IA_64
5994 #define ELF_MACHINE_ALT1 1999 /* EAS2.3 */
5995 #define ELF_MACHINE_ALT2 1998 /* EAS2.2 */
5996 #define ELF_MAXPAGESIZE 0x10000 /* 64KB */
5997 #define ELF_COMMONPAGESIZE 0x4000 /* 16KB */
5998
5999 #define elf_backend_section_from_shdr \
6000 elfNN_ia64_section_from_shdr
6001 #define elf_backend_section_flags \
6002 elfNN_ia64_section_flags
6003 #define elf_backend_fake_sections \
6004 elfNN_ia64_fake_sections
6005 #define elf_backend_final_write_processing \
6006 elfNN_ia64_final_write_processing
6007 #define elf_backend_add_symbol_hook \
6008 elfNN_ia64_add_symbol_hook
6009 #define elf_backend_additional_program_headers \
6010 elfNN_ia64_additional_program_headers
6011 #define elf_backend_modify_segment_map \
6012 elfNN_ia64_modify_segment_map
6013 #define elf_backend_modify_program_headers \
6014 elfNN_ia64_modify_program_headers
6015 #define elf_info_to_howto \
6016 elfNN_ia64_info_to_howto
6017
6018 #define bfd_elfNN_bfd_reloc_type_lookup \
6019 elfNN_ia64_reloc_type_lookup
6020 #define bfd_elfNN_bfd_reloc_name_lookup \
6021 elfNN_ia64_reloc_name_lookup
6022 #define bfd_elfNN_bfd_is_local_label_name \
6023 elfNN_ia64_is_local_label_name
6024 #define bfd_elfNN_bfd_relax_section \
6025 elfNN_ia64_relax_section
6026
6027 #define elf_backend_object_p \
6028 elfNN_ia64_object_p
6029
6030 /* Stuff for the BFD linker: */
6031 #define bfd_elfNN_bfd_link_hash_table_create \
6032 elfNN_ia64_hash_table_create
6033 #define bfd_elfNN_bfd_link_hash_table_free \
6034 elfNN_ia64_hash_table_free
6035 #define elf_backend_create_dynamic_sections \
6036 elfNN_ia64_create_dynamic_sections
6037 #define elf_backend_check_relocs \
6038 elfNN_ia64_check_relocs
6039 #define elf_backend_adjust_dynamic_symbol \
6040 elfNN_ia64_adjust_dynamic_symbol
6041 #define elf_backend_size_dynamic_sections \
6042 elfNN_ia64_size_dynamic_sections
6043 #define elf_backend_omit_section_dynsym \
6044 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
6045 #define elf_backend_relocate_section \
6046 elfNN_ia64_relocate_section
6047 #define elf_backend_finish_dynamic_symbol \
6048 elfNN_ia64_finish_dynamic_symbol
6049 #define elf_backend_finish_dynamic_sections \
6050 elfNN_ia64_finish_dynamic_sections
6051 #define bfd_elfNN_bfd_final_link \
6052 elfNN_ia64_final_link
6053
6054 #define bfd_elfNN_bfd_merge_private_bfd_data \
6055 elfNN_ia64_merge_private_bfd_data
6056 #define bfd_elfNN_bfd_set_private_flags \
6057 elfNN_ia64_set_private_flags
6058 #define bfd_elfNN_bfd_print_private_bfd_data \
6059 elfNN_ia64_print_private_bfd_data
6060
6061 #define elf_backend_plt_readonly 1
6062 #define elf_backend_want_plt_sym 0
6063 #define elf_backend_plt_alignment 5
6064 #define elf_backend_got_header_size 0
6065 #define elf_backend_want_got_plt 1
6066 #define elf_backend_may_use_rel_p 1
6067 #define elf_backend_may_use_rela_p 1
6068 #define elf_backend_default_use_rela_p 1
6069 #define elf_backend_want_dynbss 0
6070 #define elf_backend_copy_indirect_symbol elfNN_ia64_hash_copy_indirect
6071 #define elf_backend_hide_symbol elfNN_ia64_hash_hide_symbol
6072 #define elf_backend_fixup_symbol _bfd_elf_link_hash_fixup_symbol
6073 #define elf_backend_reloc_type_class elfNN_ia64_reloc_type_class
6074 #define elf_backend_rela_normal 1
6075 #define elf_backend_special_sections elfNN_ia64_special_sections
6076 #define elf_backend_default_execstack 0
6077
6078 /* FIXME: PR 290: The Intel C compiler generates SHT_IA_64_UNWIND with
6079 SHF_LINK_ORDER. But it doesn't set the sh_link or sh_info fields.
6080 We don't want to flood users with so many error messages. We turn
6081 off the warning for now. It will be turned on later when the Intel
6082 compiler is fixed. */
6083 #define elf_backend_link_order_error_handler NULL
6084
6085 #include "elfNN-target.h"
6086
6087 /* HPUX-specific vectors. */
6088
6089 #undef TARGET_LITTLE_SYM
6090 #undef TARGET_LITTLE_NAME
6091 #undef TARGET_BIG_SYM
6092 #define TARGET_BIG_SYM bfd_elfNN_ia64_hpux_big_vec
6093 #undef TARGET_BIG_NAME
6094 #define TARGET_BIG_NAME "elfNN-ia64-hpux-big"
6095
6096 /* These are HP-UX specific functions. */
6097
6098 #undef elf_backend_post_process_headers
6099 #define elf_backend_post_process_headers elfNN_hpux_post_process_headers
6100
6101 #undef elf_backend_section_from_bfd_section
6102 #define elf_backend_section_from_bfd_section elfNN_hpux_backend_section_from_bfd_section
6103
6104 #undef elf_backend_symbol_processing
6105 #define elf_backend_symbol_processing elfNN_hpux_backend_symbol_processing
6106
6107 #undef elf_backend_want_p_paddr_set_to_zero
6108 #define elf_backend_want_p_paddr_set_to_zero 1
6109
6110 #undef ELF_COMMONPAGESIZE
6111 #undef ELF_OSABI
6112 #define ELF_OSABI ELFOSABI_HPUX
6113
6114 #undef elfNN_bed
6115 #define elfNN_bed elfNN_ia64_hpux_bed
6116
6117 #include "elfNN-target.h"
6118
6119 /* VMS-specific vectors. */
6120 #ifdef INCLUDE_IA64_VMS
6121
6122 #undef TARGET_LITTLE_SYM
6123 #define TARGET_LITTLE_SYM bfd_elfNN_ia64_vms_vec
6124 #undef TARGET_LITTLE_NAME
6125 #define TARGET_LITTLE_NAME "elfNN-ia64-vms"
6126 #undef TARGET_BIG_SYM
6127 #undef TARGET_BIG_NAME
6128
6129 /* These are VMS specific functions. */
6130
6131 #undef elf_backend_object_p
6132 #define elf_backend_object_p elfNN_vms_object_p
6133
6134 #undef elf_backend_section_from_shdr
6135 #define elf_backend_section_from_shdr elfNN_vms_section_from_shdr
6136
6137 #undef elf_backend_post_process_headers
6138 #define elf_backend_post_process_headers elfNN_vms_post_process_headers
6139
6140 #undef elf_backend_section_processing
6141 #define elf_backend_section_processing elfNN_vms_section_processing
6142
6143 #undef elf_backend_final_write_processing
6144 #define elf_backend_final_write_processing elfNN_vms_final_write_processing
6145
6146 #undef bfd_elfNN_close_and_cleanup
6147 #define bfd_elfNN_close_and_cleanup elfNN_vms_close_and_cleanup
6148
6149 #undef elf_backend_section_from_bfd_section
6150
6151 #undef elf_backend_symbol_processing
6152
6153 #undef elf_backend_want_p_paddr_set_to_zero
6154
6155 #undef ELF_OSABI
6156 #define ELF_OSABI ELFOSABI_OPENVMS
6157
6158 #undef ELF_MAXPAGESIZE
6159 #define ELF_MAXPAGESIZE 0x10000 /* 64KB */
6160
6161 #undef elfNN_bed
6162 #define elfNN_bed elfNN_ia64_vms_bed
6163
6164 /* Use VMS-style archives (in particular, don't use the standard coff
6165 archive format). */
6166 #define bfd_elfNN_archive_functions
6167
6168 #undef bfd_elfNN_archive_p
6169 #define bfd_elfNN_archive_p _bfd_vms_lib_ia64_archive_p
6170 #undef bfd_elfNN_write_archive_contents
6171 #define bfd_elfNN_write_archive_contents _bfd_vms_lib_write_archive_contents
6172 #undef bfd_elfNN_mkarchive
6173 #define bfd_elfNN_mkarchive _bfd_vms_lib_ia64_mkarchive
6174
6175 #define bfd_elfNN_archive_slurp_armap \
6176 _bfd_vms_lib_slurp_armap
6177 #define bfd_elfNN_archive_slurp_extended_name_table \
6178 _bfd_vms_lib_slurp_extended_name_table
6179 #define bfd_elfNN_archive_construct_extended_name_table \
6180 _bfd_vms_lib_construct_extended_name_table
6181 #define bfd_elfNN_archive_truncate_arname \
6182 _bfd_vms_lib_truncate_arname
6183 #define bfd_elfNN_archive_write_armap \
6184 _bfd_vms_lib_write_armap
6185 #define bfd_elfNN_archive_read_ar_hdr \
6186 _bfd_vms_lib_read_ar_hdr
6187 #define bfd_elfNN_archive_write_ar_hdr \
6188 _bfd_vms_lib_write_ar_hdr
6189 #define bfd_elfNN_archive_openr_next_archived_file \
6190 _bfd_vms_lib_openr_next_archived_file
6191 #define bfd_elfNN_archive_get_elt_at_index \
6192 _bfd_vms_lib_get_elt_at_index
6193 #define bfd_elfNN_archive_generic_stat_arch_elt \
6194 _bfd_vms_lib_generic_stat_arch_elt
6195 #define bfd_elfNN_archive_update_armap_timestamp \
6196 _bfd_vms_lib_update_armap_timestamp
6197
6198 #include "elfNN-target.h"
6199
6200 #endif /* INCLUDE_IA64_VMS */