PR binutils/15140
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* Types of TLS GOT entry. */
51 enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56 };
57
58 /* This structure is used to hold information about one GOT entry.
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
76 struct mips_got_entry
77 {
78 /* One input bfd that needs the GOT entry. */
79 bfd *abfd;
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
91 corresponding to a symbol in the GOT. The symbol's entry
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
94 struct mips_elf_link_hash_entry *h;
95 } d;
96
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
99 unsigned char tls_type;
100
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
105 /* The offset from the beginning of the .got section to the entry
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
109 };
110
111 /* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121 struct mips_got_page_ref
122 {
123 long symndx;
124 union
125 {
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
130 };
131
132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135 struct mips_got_page_range
136 {
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
140 };
141
142 /* This structure describes the range of addends that are applied to page
143 relocations against a given section. */
144 struct mips_got_page_entry
145 {
146 /* The section that these entries are based on. */
147 asection *sec;
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
152 };
153
154 /* This structure is used to hold .got information when linking. */
155
156 struct mips_got_info
157 {
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
167 /* The number of local .got entries, eventually including page entries. */
168 unsigned int local_gotno;
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
173 /* The number of local .got entries we have used. */
174 unsigned int assigned_gotno;
175 /* A hash table holding members of the got. */
176 struct htab *got_entries;
177 /* A hash table holding mips_got_page_ref structures. */
178 struct htab *got_page_refs;
179 /* A hash table of mips_got_page_entry structures. */
180 struct htab *got_page_entries;
181 /* In multi-got links, a pointer to the next got (err, rather, most
182 of the time, it points to the previous got). */
183 struct mips_got_info *next;
184 };
185
186 /* Structure passed when merging bfds' gots. */
187
188 struct mips_elf_got_per_bfd_arg
189 {
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
211 };
212
213 /* A structure used to pass information to htab_traverse callbacks
214 when laying out the GOT. */
215
216 struct mips_elf_traverse_got_arg
217 {
218 struct bfd_link_info *info;
219 struct mips_got_info *g;
220 int value;
221 };
222
223 struct _mips_elf_section_data
224 {
225 struct bfd_elf_section_data elf;
226 union
227 {
228 bfd_byte *tdata;
229 } u;
230 };
231
232 #define mips_elf_section_data(sec) \
233 ((struct _mips_elf_section_data *) elf_section_data (sec))
234
235 #define is_mips_elf(bfd) \
236 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
237 && elf_tdata (bfd) != NULL \
238 && elf_object_id (bfd) == MIPS_ELF_DATA)
239
240 /* The ABI says that every symbol used by dynamic relocations must have
241 a global GOT entry. Among other things, this provides the dynamic
242 linker with a free, directly-indexed cache. The GOT can therefore
243 contain symbols that are not referenced by GOT relocations themselves
244 (in other words, it may have symbols that are not referenced by things
245 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
246
247 GOT relocations are less likely to overflow if we put the associated
248 GOT entries towards the beginning. We therefore divide the global
249 GOT entries into two areas: "normal" and "reloc-only". Entries in
250 the first area can be used for both dynamic relocations and GP-relative
251 accesses, while those in the "reloc-only" area are for dynamic
252 relocations only.
253
254 These GGA_* ("Global GOT Area") values are organised so that lower
255 values are more general than higher values. Also, non-GGA_NONE
256 values are ordered by the position of the area in the GOT. */
257 #define GGA_NORMAL 0
258 #define GGA_RELOC_ONLY 1
259 #define GGA_NONE 2
260
261 /* Information about a non-PIC interface to a PIC function. There are
262 two ways of creating these interfaces. The first is to add:
263
264 lui $25,%hi(func)
265 addiu $25,$25,%lo(func)
266
267 immediately before a PIC function "func". The second is to add:
268
269 lui $25,%hi(func)
270 j func
271 addiu $25,$25,%lo(func)
272
273 to a separate trampoline section.
274
275 Stubs of the first kind go in a new section immediately before the
276 target function. Stubs of the second kind go in a single section
277 pointed to by the hash table's "strampoline" field. */
278 struct mips_elf_la25_stub {
279 /* The generated section that contains this stub. */
280 asection *stub_section;
281
282 /* The offset of the stub from the start of STUB_SECTION. */
283 bfd_vma offset;
284
285 /* One symbol for the original function. Its location is available
286 in H->root.root.u.def. */
287 struct mips_elf_link_hash_entry *h;
288 };
289
290 /* Macros for populating a mips_elf_la25_stub. */
291
292 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
293 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
294 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
295 #define LA25_LUI_MICROMIPS(VAL) \
296 (0x41b90000 | (VAL)) /* lui t9,VAL */
297 #define LA25_J_MICROMIPS(VAL) \
298 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
299 #define LA25_ADDIU_MICROMIPS(VAL) \
300 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
301
302 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
303 the dynamic symbols. */
304
305 struct mips_elf_hash_sort_data
306 {
307 /* The symbol in the global GOT with the lowest dynamic symbol table
308 index. */
309 struct elf_link_hash_entry *low;
310 /* The least dynamic symbol table index corresponding to a non-TLS
311 symbol with a GOT entry. */
312 long min_got_dynindx;
313 /* The greatest dynamic symbol table index corresponding to a symbol
314 with a GOT entry that is not referenced (e.g., a dynamic symbol
315 with dynamic relocations pointing to it from non-primary GOTs). */
316 long max_unref_got_dynindx;
317 /* The greatest dynamic symbol table index not corresponding to a
318 symbol without a GOT entry. */
319 long max_non_got_dynindx;
320 };
321
322 /* The MIPS ELF linker needs additional information for each symbol in
323 the global hash table. */
324
325 struct mips_elf_link_hash_entry
326 {
327 struct elf_link_hash_entry root;
328
329 /* External symbol information. */
330 EXTR esym;
331
332 /* The la25 stub we have created for ths symbol, if any. */
333 struct mips_elf_la25_stub *la25_stub;
334
335 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
336 this symbol. */
337 unsigned int possibly_dynamic_relocs;
338
339 /* If there is a stub that 32 bit functions should use to call this
340 16 bit function, this points to the section containing the stub. */
341 asection *fn_stub;
342
343 /* If there is a stub that 16 bit functions should use to call this
344 32 bit function, this points to the section containing the stub. */
345 asection *call_stub;
346
347 /* This is like the call_stub field, but it is used if the function
348 being called returns a floating point value. */
349 asection *call_fp_stub;
350
351 /* The highest GGA_* value that satisfies all references to this symbol. */
352 unsigned int global_got_area : 2;
353
354 /* True if all GOT relocations against this symbol are for calls. This is
355 a looser condition than no_fn_stub below, because there may be other
356 non-call non-GOT relocations against the symbol. */
357 unsigned int got_only_for_calls : 1;
358
359 /* True if one of the relocations described by possibly_dynamic_relocs
360 is against a readonly section. */
361 unsigned int readonly_reloc : 1;
362
363 /* True if there is a relocation against this symbol that must be
364 resolved by the static linker (in other words, if the relocation
365 cannot possibly be made dynamic). */
366 unsigned int has_static_relocs : 1;
367
368 /* True if we must not create a .MIPS.stubs entry for this symbol.
369 This is set, for example, if there are relocations related to
370 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
371 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
372 unsigned int no_fn_stub : 1;
373
374 /* Whether we need the fn_stub; this is true if this symbol appears
375 in any relocs other than a 16 bit call. */
376 unsigned int need_fn_stub : 1;
377
378 /* True if this symbol is referenced by branch relocations from
379 any non-PIC input file. This is used to determine whether an
380 la25 stub is required. */
381 unsigned int has_nonpic_branches : 1;
382
383 /* Does this symbol need a traditional MIPS lazy-binding stub
384 (as opposed to a PLT entry)? */
385 unsigned int needs_lazy_stub : 1;
386 };
387
388 /* MIPS ELF linker hash table. */
389
390 struct mips_elf_link_hash_table
391 {
392 struct elf_link_hash_table root;
393
394 /* The number of .rtproc entries. */
395 bfd_size_type procedure_count;
396
397 /* The size of the .compact_rel section (if SGI_COMPAT). */
398 bfd_size_type compact_rel_size;
399
400 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
401 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
402 bfd_boolean use_rld_obj_head;
403
404 /* The __rld_map or __rld_obj_head symbol. */
405 struct elf_link_hash_entry *rld_symbol;
406
407 /* This is set if we see any mips16 stub sections. */
408 bfd_boolean mips16_stubs_seen;
409
410 /* True if we can generate copy relocs and PLTs. */
411 bfd_boolean use_plts_and_copy_relocs;
412
413 /* True if we're generating code for VxWorks. */
414 bfd_boolean is_vxworks;
415
416 /* True if we already reported the small-data section overflow. */
417 bfd_boolean small_data_overflow_reported;
418
419 /* Shortcuts to some dynamic sections, or NULL if they are not
420 being used. */
421 asection *srelbss;
422 asection *sdynbss;
423 asection *srelplt;
424 asection *srelplt2;
425 asection *sgotplt;
426 asection *splt;
427 asection *sstubs;
428 asection *sgot;
429
430 /* The master GOT information. */
431 struct mips_got_info *got_info;
432
433 /* The global symbol in the GOT with the lowest index in the dynamic
434 symbol table. */
435 struct elf_link_hash_entry *global_gotsym;
436
437 /* The size of the PLT header in bytes. */
438 bfd_vma plt_header_size;
439
440 /* The size of a PLT entry in bytes. */
441 bfd_vma plt_entry_size;
442
443 /* The number of functions that need a lazy-binding stub. */
444 bfd_vma lazy_stub_count;
445
446 /* The size of a function stub entry in bytes. */
447 bfd_vma function_stub_size;
448
449 /* The number of reserved entries at the beginning of the GOT. */
450 unsigned int reserved_gotno;
451
452 /* The section used for mips_elf_la25_stub trampolines.
453 See the comment above that structure for details. */
454 asection *strampoline;
455
456 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
457 pairs. */
458 htab_t la25_stubs;
459
460 /* A function FN (NAME, IS, OS) that creates a new input section
461 called NAME and links it to output section OS. If IS is nonnull,
462 the new section should go immediately before it, otherwise it
463 should go at the (current) beginning of OS.
464
465 The function returns the new section on success, otherwise it
466 returns null. */
467 asection *(*add_stub_section) (const char *, asection *, asection *);
468
469 /* Small local sym cache. */
470 struct sym_cache sym_cache;
471 };
472
473 /* Get the MIPS ELF linker hash table from a link_info structure. */
474
475 #define mips_elf_hash_table(p) \
476 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
477 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
478
479 /* A structure used to communicate with htab_traverse callbacks. */
480 struct mips_htab_traverse_info
481 {
482 /* The usual link-wide information. */
483 struct bfd_link_info *info;
484 bfd *output_bfd;
485
486 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
487 bfd_boolean error;
488 };
489
490 /* MIPS ELF private object data. */
491
492 struct mips_elf_obj_tdata
493 {
494 /* Generic ELF private object data. */
495 struct elf_obj_tdata root;
496
497 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
498 bfd *abi_fp_bfd;
499
500 /* The GOT requirements of input bfds. */
501 struct mips_got_info *got;
502 };
503
504 /* Get MIPS ELF private object data from BFD's tdata. */
505
506 #define mips_elf_tdata(bfd) \
507 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
508
509 #define TLS_RELOC_P(r_type) \
510 (r_type == R_MIPS_TLS_DTPMOD32 \
511 || r_type == R_MIPS_TLS_DTPMOD64 \
512 || r_type == R_MIPS_TLS_DTPREL32 \
513 || r_type == R_MIPS_TLS_DTPREL64 \
514 || r_type == R_MIPS_TLS_GD \
515 || r_type == R_MIPS_TLS_LDM \
516 || r_type == R_MIPS_TLS_DTPREL_HI16 \
517 || r_type == R_MIPS_TLS_DTPREL_LO16 \
518 || r_type == R_MIPS_TLS_GOTTPREL \
519 || r_type == R_MIPS_TLS_TPREL32 \
520 || r_type == R_MIPS_TLS_TPREL64 \
521 || r_type == R_MIPS_TLS_TPREL_HI16 \
522 || r_type == R_MIPS_TLS_TPREL_LO16 \
523 || r_type == R_MIPS16_TLS_GD \
524 || r_type == R_MIPS16_TLS_LDM \
525 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
526 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
527 || r_type == R_MIPS16_TLS_GOTTPREL \
528 || r_type == R_MIPS16_TLS_TPREL_HI16 \
529 || r_type == R_MIPS16_TLS_TPREL_LO16 \
530 || r_type == R_MICROMIPS_TLS_GD \
531 || r_type == R_MICROMIPS_TLS_LDM \
532 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
533 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
534 || r_type == R_MICROMIPS_TLS_GOTTPREL \
535 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
536 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
537
538 /* Structure used to pass information to mips_elf_output_extsym. */
539
540 struct extsym_info
541 {
542 bfd *abfd;
543 struct bfd_link_info *info;
544 struct ecoff_debug_info *debug;
545 const struct ecoff_debug_swap *swap;
546 bfd_boolean failed;
547 };
548
549 /* The names of the runtime procedure table symbols used on IRIX5. */
550
551 static const char * const mips_elf_dynsym_rtproc_names[] =
552 {
553 "_procedure_table",
554 "_procedure_string_table",
555 "_procedure_table_size",
556 NULL
557 };
558
559 /* These structures are used to generate the .compact_rel section on
560 IRIX5. */
561
562 typedef struct
563 {
564 unsigned long id1; /* Always one? */
565 unsigned long num; /* Number of compact relocation entries. */
566 unsigned long id2; /* Always two? */
567 unsigned long offset; /* The file offset of the first relocation. */
568 unsigned long reserved0; /* Zero? */
569 unsigned long reserved1; /* Zero? */
570 } Elf32_compact_rel;
571
572 typedef struct
573 {
574 bfd_byte id1[4];
575 bfd_byte num[4];
576 bfd_byte id2[4];
577 bfd_byte offset[4];
578 bfd_byte reserved0[4];
579 bfd_byte reserved1[4];
580 } Elf32_External_compact_rel;
581
582 typedef struct
583 {
584 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
585 unsigned int rtype : 4; /* Relocation types. See below. */
586 unsigned int dist2to : 8;
587 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
588 unsigned long konst; /* KONST field. See below. */
589 unsigned long vaddr; /* VADDR to be relocated. */
590 } Elf32_crinfo;
591
592 typedef struct
593 {
594 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
595 unsigned int rtype : 4; /* Relocation types. See below. */
596 unsigned int dist2to : 8;
597 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
598 unsigned long konst; /* KONST field. See below. */
599 } Elf32_crinfo2;
600
601 typedef struct
602 {
603 bfd_byte info[4];
604 bfd_byte konst[4];
605 bfd_byte vaddr[4];
606 } Elf32_External_crinfo;
607
608 typedef struct
609 {
610 bfd_byte info[4];
611 bfd_byte konst[4];
612 } Elf32_External_crinfo2;
613
614 /* These are the constants used to swap the bitfields in a crinfo. */
615
616 #define CRINFO_CTYPE (0x1)
617 #define CRINFO_CTYPE_SH (31)
618 #define CRINFO_RTYPE (0xf)
619 #define CRINFO_RTYPE_SH (27)
620 #define CRINFO_DIST2TO (0xff)
621 #define CRINFO_DIST2TO_SH (19)
622 #define CRINFO_RELVADDR (0x7ffff)
623 #define CRINFO_RELVADDR_SH (0)
624
625 /* A compact relocation info has long (3 words) or short (2 words)
626 formats. A short format doesn't have VADDR field and relvaddr
627 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
628 #define CRF_MIPS_LONG 1
629 #define CRF_MIPS_SHORT 0
630
631 /* There are 4 types of compact relocation at least. The value KONST
632 has different meaning for each type:
633
634 (type) (konst)
635 CT_MIPS_REL32 Address in data
636 CT_MIPS_WORD Address in word (XXX)
637 CT_MIPS_GPHI_LO GP - vaddr
638 CT_MIPS_JMPAD Address to jump
639 */
640
641 #define CRT_MIPS_REL32 0xa
642 #define CRT_MIPS_WORD 0xb
643 #define CRT_MIPS_GPHI_LO 0xc
644 #define CRT_MIPS_JMPAD 0xd
645
646 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
647 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
648 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
649 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
650 \f
651 /* The structure of the runtime procedure descriptor created by the
652 loader for use by the static exception system. */
653
654 typedef struct runtime_pdr {
655 bfd_vma adr; /* Memory address of start of procedure. */
656 long regmask; /* Save register mask. */
657 long regoffset; /* Save register offset. */
658 long fregmask; /* Save floating point register mask. */
659 long fregoffset; /* Save floating point register offset. */
660 long frameoffset; /* Frame size. */
661 short framereg; /* Frame pointer register. */
662 short pcreg; /* Offset or reg of return pc. */
663 long irpss; /* Index into the runtime string table. */
664 long reserved;
665 struct exception_info *exception_info;/* Pointer to exception array. */
666 } RPDR, *pRPDR;
667 #define cbRPDR sizeof (RPDR)
668 #define rpdNil ((pRPDR) 0)
669 \f
670 static struct mips_got_entry *mips_elf_create_local_got_entry
671 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
672 struct mips_elf_link_hash_entry *, int);
673 static bfd_boolean mips_elf_sort_hash_table_f
674 (struct mips_elf_link_hash_entry *, void *);
675 static bfd_vma mips_elf_high
676 (bfd_vma);
677 static bfd_boolean mips_elf_create_dynamic_relocation
678 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
679 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
680 bfd_vma *, asection *);
681 static bfd_vma mips_elf_adjust_gp
682 (bfd *, struct mips_got_info *, bfd *);
683
684 /* This will be used when we sort the dynamic relocation records. */
685 static bfd *reldyn_sorting_bfd;
686
687 /* True if ABFD is for CPUs with load interlocking that include
688 non-MIPS1 CPUs and R3900. */
689 #define LOAD_INTERLOCKS_P(abfd) \
690 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
691 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
692
693 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
694 This should be safe for all architectures. We enable this predicate
695 for RM9000 for now. */
696 #define JAL_TO_BAL_P(abfd) \
697 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
698
699 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
700 This should be safe for all architectures. We enable this predicate for
701 all CPUs. */
702 #define JALR_TO_BAL_P(abfd) 1
703
704 /* True if ABFD is for CPUs that are faster if JR is converted to B.
705 This should be safe for all architectures. We enable this predicate for
706 all CPUs. */
707 #define JR_TO_B_P(abfd) 1
708
709 /* True if ABFD is a PIC object. */
710 #define PIC_OBJECT_P(abfd) \
711 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
712
713 /* Nonzero if ABFD is using the N32 ABI. */
714 #define ABI_N32_P(abfd) \
715 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
716
717 /* Nonzero if ABFD is using the N64 ABI. */
718 #define ABI_64_P(abfd) \
719 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
720
721 /* Nonzero if ABFD is using NewABI conventions. */
722 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
723
724 /* The IRIX compatibility level we are striving for. */
725 #define IRIX_COMPAT(abfd) \
726 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
727
728 /* Whether we are trying to be compatible with IRIX at all. */
729 #define SGI_COMPAT(abfd) \
730 (IRIX_COMPAT (abfd) != ict_none)
731
732 /* The name of the options section. */
733 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
734 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
735
736 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
737 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
738 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
739 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
740
741 /* Whether the section is readonly. */
742 #define MIPS_ELF_READONLY_SECTION(sec) \
743 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
744 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
745
746 /* The name of the stub section. */
747 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
748
749 /* The size of an external REL relocation. */
750 #define MIPS_ELF_REL_SIZE(abfd) \
751 (get_elf_backend_data (abfd)->s->sizeof_rel)
752
753 /* The size of an external RELA relocation. */
754 #define MIPS_ELF_RELA_SIZE(abfd) \
755 (get_elf_backend_data (abfd)->s->sizeof_rela)
756
757 /* The size of an external dynamic table entry. */
758 #define MIPS_ELF_DYN_SIZE(abfd) \
759 (get_elf_backend_data (abfd)->s->sizeof_dyn)
760
761 /* The size of a GOT entry. */
762 #define MIPS_ELF_GOT_SIZE(abfd) \
763 (get_elf_backend_data (abfd)->s->arch_size / 8)
764
765 /* The size of the .rld_map section. */
766 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
767 (get_elf_backend_data (abfd)->s->arch_size / 8)
768
769 /* The size of a symbol-table entry. */
770 #define MIPS_ELF_SYM_SIZE(abfd) \
771 (get_elf_backend_data (abfd)->s->sizeof_sym)
772
773 /* The default alignment for sections, as a power of two. */
774 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
775 (get_elf_backend_data (abfd)->s->log_file_align)
776
777 /* Get word-sized data. */
778 #define MIPS_ELF_GET_WORD(abfd, ptr) \
779 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
780
781 /* Put out word-sized data. */
782 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
783 (ABI_64_P (abfd) \
784 ? bfd_put_64 (abfd, val, ptr) \
785 : bfd_put_32 (abfd, val, ptr))
786
787 /* The opcode for word-sized loads (LW or LD). */
788 #define MIPS_ELF_LOAD_WORD(abfd) \
789 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
790
791 /* Add a dynamic symbol table-entry. */
792 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
793 _bfd_elf_add_dynamic_entry (info, tag, val)
794
795 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
796 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
797
798 /* The name of the dynamic relocation section. */
799 #define MIPS_ELF_REL_DYN_NAME(INFO) \
800 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
801
802 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
803 from smaller values. Start with zero, widen, *then* decrement. */
804 #define MINUS_ONE (((bfd_vma)0) - 1)
805 #define MINUS_TWO (((bfd_vma)0) - 2)
806
807 /* The value to write into got[1] for SVR4 targets, to identify it is
808 a GNU object. The dynamic linker can then use got[1] to store the
809 module pointer. */
810 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
811 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
812
813 /* The offset of $gp from the beginning of the .got section. */
814 #define ELF_MIPS_GP_OFFSET(INFO) \
815 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
816
817 /* The maximum size of the GOT for it to be addressable using 16-bit
818 offsets from $gp. */
819 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
820
821 /* Instructions which appear in a stub. */
822 #define STUB_LW(abfd) \
823 ((ABI_64_P (abfd) \
824 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
825 : 0x8f998010)) /* lw t9,0x8010(gp) */
826 #define STUB_MOVE(abfd) \
827 ((ABI_64_P (abfd) \
828 ? 0x03e0782d /* daddu t7,ra */ \
829 : 0x03e07821)) /* addu t7,ra */
830 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
831 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
832 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
833 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
834 #define STUB_LI16S(abfd, VAL) \
835 ((ABI_64_P (abfd) \
836 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
837 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
838
839 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
840 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
841
842 /* The name of the dynamic interpreter. This is put in the .interp
843 section. */
844
845 #define ELF_DYNAMIC_INTERPRETER(abfd) \
846 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
847 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
848 : "/usr/lib/libc.so.1")
849
850 #ifdef BFD64
851 #define MNAME(bfd,pre,pos) \
852 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
853 #define ELF_R_SYM(bfd, i) \
854 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
855 #define ELF_R_TYPE(bfd, i) \
856 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
857 #define ELF_R_INFO(bfd, s, t) \
858 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
859 #else
860 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
861 #define ELF_R_SYM(bfd, i) \
862 (ELF32_R_SYM (i))
863 #define ELF_R_TYPE(bfd, i) \
864 (ELF32_R_TYPE (i))
865 #define ELF_R_INFO(bfd, s, t) \
866 (ELF32_R_INFO (s, t))
867 #endif
868 \f
869 /* The mips16 compiler uses a couple of special sections to handle
870 floating point arguments.
871
872 Section names that look like .mips16.fn.FNNAME contain stubs that
873 copy floating point arguments from the fp regs to the gp regs and
874 then jump to FNNAME. If any 32 bit function calls FNNAME, the
875 call should be redirected to the stub instead. If no 32 bit
876 function calls FNNAME, the stub should be discarded. We need to
877 consider any reference to the function, not just a call, because
878 if the address of the function is taken we will need the stub,
879 since the address might be passed to a 32 bit function.
880
881 Section names that look like .mips16.call.FNNAME contain stubs
882 that copy floating point arguments from the gp regs to the fp
883 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
884 then any 16 bit function that calls FNNAME should be redirected
885 to the stub instead. If FNNAME is not a 32 bit function, the
886 stub should be discarded.
887
888 .mips16.call.fp.FNNAME sections are similar, but contain stubs
889 which call FNNAME and then copy the return value from the fp regs
890 to the gp regs. These stubs store the return value in $18 while
891 calling FNNAME; any function which might call one of these stubs
892 must arrange to save $18 around the call. (This case is not
893 needed for 32 bit functions that call 16 bit functions, because
894 16 bit functions always return floating point values in both
895 $f0/$f1 and $2/$3.)
896
897 Note that in all cases FNNAME might be defined statically.
898 Therefore, FNNAME is not used literally. Instead, the relocation
899 information will indicate which symbol the section is for.
900
901 We record any stubs that we find in the symbol table. */
902
903 #define FN_STUB ".mips16.fn."
904 #define CALL_STUB ".mips16.call."
905 #define CALL_FP_STUB ".mips16.call.fp."
906
907 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
908 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
909 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
910 \f
911 /* The format of the first PLT entry in an O32 executable. */
912 static const bfd_vma mips_o32_exec_plt0_entry[] =
913 {
914 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
915 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
916 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
917 0x031cc023, /* subu $24, $24, $28 */
918 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
919 0x0018c082, /* srl $24, $24, 2 */
920 0x0320f809, /* jalr $25 */
921 0x2718fffe /* subu $24, $24, 2 */
922 };
923
924 /* The format of the first PLT entry in an N32 executable. Different
925 because gp ($28) is not available; we use t2 ($14) instead. */
926 static const bfd_vma mips_n32_exec_plt0_entry[] =
927 {
928 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
929 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
930 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
931 0x030ec023, /* subu $24, $24, $14 */
932 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
933 0x0018c082, /* srl $24, $24, 2 */
934 0x0320f809, /* jalr $25 */
935 0x2718fffe /* subu $24, $24, 2 */
936 };
937
938 /* The format of the first PLT entry in an N64 executable. Different
939 from N32 because of the increased size of GOT entries. */
940 static const bfd_vma mips_n64_exec_plt0_entry[] =
941 {
942 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
943 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
944 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
945 0x030ec023, /* subu $24, $24, $14 */
946 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
947 0x0018c0c2, /* srl $24, $24, 3 */
948 0x0320f809, /* jalr $25 */
949 0x2718fffe /* subu $24, $24, 2 */
950 };
951
952 /* The format of subsequent PLT entries. */
953 static const bfd_vma mips_exec_plt_entry[] =
954 {
955 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
956 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
957 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
958 0x03200008 /* jr $25 */
959 };
960
961 /* The format of the first PLT entry in a VxWorks executable. */
962 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
963 {
964 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
965 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
966 0x8f390008, /* lw t9, 8(t9) */
967 0x00000000, /* nop */
968 0x03200008, /* jr t9 */
969 0x00000000 /* nop */
970 };
971
972 /* The format of subsequent PLT entries. */
973 static const bfd_vma mips_vxworks_exec_plt_entry[] =
974 {
975 0x10000000, /* b .PLT_resolver */
976 0x24180000, /* li t8, <pltindex> */
977 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
978 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
979 0x8f390000, /* lw t9, 0(t9) */
980 0x00000000, /* nop */
981 0x03200008, /* jr t9 */
982 0x00000000 /* nop */
983 };
984
985 /* The format of the first PLT entry in a VxWorks shared object. */
986 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
987 {
988 0x8f990008, /* lw t9, 8(gp) */
989 0x00000000, /* nop */
990 0x03200008, /* jr t9 */
991 0x00000000, /* nop */
992 0x00000000, /* nop */
993 0x00000000 /* nop */
994 };
995
996 /* The format of subsequent PLT entries. */
997 static const bfd_vma mips_vxworks_shared_plt_entry[] =
998 {
999 0x10000000, /* b .PLT_resolver */
1000 0x24180000 /* li t8, <pltindex> */
1001 };
1002 \f
1003 /* microMIPS 32-bit opcode helper installer. */
1004
1005 static void
1006 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1007 {
1008 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1009 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1010 }
1011
1012 /* microMIPS 32-bit opcode helper retriever. */
1013
1014 static bfd_vma
1015 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1016 {
1017 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1018 }
1019 \f
1020 /* Look up an entry in a MIPS ELF linker hash table. */
1021
1022 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1023 ((struct mips_elf_link_hash_entry *) \
1024 elf_link_hash_lookup (&(table)->root, (string), (create), \
1025 (copy), (follow)))
1026
1027 /* Traverse a MIPS ELF linker hash table. */
1028
1029 #define mips_elf_link_hash_traverse(table, func, info) \
1030 (elf_link_hash_traverse \
1031 (&(table)->root, \
1032 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1033 (info)))
1034
1035 /* Find the base offsets for thread-local storage in this object,
1036 for GD/LD and IE/LE respectively. */
1037
1038 #define TP_OFFSET 0x7000
1039 #define DTP_OFFSET 0x8000
1040
1041 static bfd_vma
1042 dtprel_base (struct bfd_link_info *info)
1043 {
1044 /* If tls_sec is NULL, we should have signalled an error already. */
1045 if (elf_hash_table (info)->tls_sec == NULL)
1046 return 0;
1047 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1048 }
1049
1050 static bfd_vma
1051 tprel_base (struct bfd_link_info *info)
1052 {
1053 /* If tls_sec is NULL, we should have signalled an error already. */
1054 if (elf_hash_table (info)->tls_sec == NULL)
1055 return 0;
1056 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1057 }
1058
1059 /* Create an entry in a MIPS ELF linker hash table. */
1060
1061 static struct bfd_hash_entry *
1062 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1063 struct bfd_hash_table *table, const char *string)
1064 {
1065 struct mips_elf_link_hash_entry *ret =
1066 (struct mips_elf_link_hash_entry *) entry;
1067
1068 /* Allocate the structure if it has not already been allocated by a
1069 subclass. */
1070 if (ret == NULL)
1071 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1072 if (ret == NULL)
1073 return (struct bfd_hash_entry *) ret;
1074
1075 /* Call the allocation method of the superclass. */
1076 ret = ((struct mips_elf_link_hash_entry *)
1077 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1078 table, string));
1079 if (ret != NULL)
1080 {
1081 /* Set local fields. */
1082 memset (&ret->esym, 0, sizeof (EXTR));
1083 /* We use -2 as a marker to indicate that the information has
1084 not been set. -1 means there is no associated ifd. */
1085 ret->esym.ifd = -2;
1086 ret->la25_stub = 0;
1087 ret->possibly_dynamic_relocs = 0;
1088 ret->fn_stub = NULL;
1089 ret->call_stub = NULL;
1090 ret->call_fp_stub = NULL;
1091 ret->global_got_area = GGA_NONE;
1092 ret->got_only_for_calls = TRUE;
1093 ret->readonly_reloc = FALSE;
1094 ret->has_static_relocs = FALSE;
1095 ret->no_fn_stub = FALSE;
1096 ret->need_fn_stub = FALSE;
1097 ret->has_nonpic_branches = FALSE;
1098 ret->needs_lazy_stub = FALSE;
1099 }
1100
1101 return (struct bfd_hash_entry *) ret;
1102 }
1103
1104 /* Allocate MIPS ELF private object data. */
1105
1106 bfd_boolean
1107 _bfd_mips_elf_mkobject (bfd *abfd)
1108 {
1109 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1110 MIPS_ELF_DATA);
1111 }
1112
1113 bfd_boolean
1114 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1115 {
1116 if (!sec->used_by_bfd)
1117 {
1118 struct _mips_elf_section_data *sdata;
1119 bfd_size_type amt = sizeof (*sdata);
1120
1121 sdata = bfd_zalloc (abfd, amt);
1122 if (sdata == NULL)
1123 return FALSE;
1124 sec->used_by_bfd = sdata;
1125 }
1126
1127 return _bfd_elf_new_section_hook (abfd, sec);
1128 }
1129 \f
1130 /* Read ECOFF debugging information from a .mdebug section into a
1131 ecoff_debug_info structure. */
1132
1133 bfd_boolean
1134 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1135 struct ecoff_debug_info *debug)
1136 {
1137 HDRR *symhdr;
1138 const struct ecoff_debug_swap *swap;
1139 char *ext_hdr;
1140
1141 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1142 memset (debug, 0, sizeof (*debug));
1143
1144 ext_hdr = bfd_malloc (swap->external_hdr_size);
1145 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1146 goto error_return;
1147
1148 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1149 swap->external_hdr_size))
1150 goto error_return;
1151
1152 symhdr = &debug->symbolic_header;
1153 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1154
1155 /* The symbolic header contains absolute file offsets and sizes to
1156 read. */
1157 #define READ(ptr, offset, count, size, type) \
1158 if (symhdr->count == 0) \
1159 debug->ptr = NULL; \
1160 else \
1161 { \
1162 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1163 debug->ptr = bfd_malloc (amt); \
1164 if (debug->ptr == NULL) \
1165 goto error_return; \
1166 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1167 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1168 goto error_return; \
1169 }
1170
1171 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1172 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1173 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1174 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1175 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1176 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1177 union aux_ext *);
1178 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1179 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1180 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1181 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1182 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1183 #undef READ
1184
1185 debug->fdr = NULL;
1186
1187 return TRUE;
1188
1189 error_return:
1190 if (ext_hdr != NULL)
1191 free (ext_hdr);
1192 if (debug->line != NULL)
1193 free (debug->line);
1194 if (debug->external_dnr != NULL)
1195 free (debug->external_dnr);
1196 if (debug->external_pdr != NULL)
1197 free (debug->external_pdr);
1198 if (debug->external_sym != NULL)
1199 free (debug->external_sym);
1200 if (debug->external_opt != NULL)
1201 free (debug->external_opt);
1202 if (debug->external_aux != NULL)
1203 free (debug->external_aux);
1204 if (debug->ss != NULL)
1205 free (debug->ss);
1206 if (debug->ssext != NULL)
1207 free (debug->ssext);
1208 if (debug->external_fdr != NULL)
1209 free (debug->external_fdr);
1210 if (debug->external_rfd != NULL)
1211 free (debug->external_rfd);
1212 if (debug->external_ext != NULL)
1213 free (debug->external_ext);
1214 return FALSE;
1215 }
1216 \f
1217 /* Swap RPDR (runtime procedure table entry) for output. */
1218
1219 static void
1220 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1221 {
1222 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1223 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1224 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1225 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1226 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1227 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1228
1229 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1230 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1231
1232 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1233 }
1234
1235 /* Create a runtime procedure table from the .mdebug section. */
1236
1237 static bfd_boolean
1238 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1239 struct bfd_link_info *info, asection *s,
1240 struct ecoff_debug_info *debug)
1241 {
1242 const struct ecoff_debug_swap *swap;
1243 HDRR *hdr = &debug->symbolic_header;
1244 RPDR *rpdr, *rp;
1245 struct rpdr_ext *erp;
1246 void *rtproc;
1247 struct pdr_ext *epdr;
1248 struct sym_ext *esym;
1249 char *ss, **sv;
1250 char *str;
1251 bfd_size_type size;
1252 bfd_size_type count;
1253 unsigned long sindex;
1254 unsigned long i;
1255 PDR pdr;
1256 SYMR sym;
1257 const char *no_name_func = _("static procedure (no name)");
1258
1259 epdr = NULL;
1260 rpdr = NULL;
1261 esym = NULL;
1262 ss = NULL;
1263 sv = NULL;
1264
1265 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1266
1267 sindex = strlen (no_name_func) + 1;
1268 count = hdr->ipdMax;
1269 if (count > 0)
1270 {
1271 size = swap->external_pdr_size;
1272
1273 epdr = bfd_malloc (size * count);
1274 if (epdr == NULL)
1275 goto error_return;
1276
1277 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1278 goto error_return;
1279
1280 size = sizeof (RPDR);
1281 rp = rpdr = bfd_malloc (size * count);
1282 if (rpdr == NULL)
1283 goto error_return;
1284
1285 size = sizeof (char *);
1286 sv = bfd_malloc (size * count);
1287 if (sv == NULL)
1288 goto error_return;
1289
1290 count = hdr->isymMax;
1291 size = swap->external_sym_size;
1292 esym = bfd_malloc (size * count);
1293 if (esym == NULL)
1294 goto error_return;
1295
1296 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1297 goto error_return;
1298
1299 count = hdr->issMax;
1300 ss = bfd_malloc (count);
1301 if (ss == NULL)
1302 goto error_return;
1303 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1304 goto error_return;
1305
1306 count = hdr->ipdMax;
1307 for (i = 0; i < (unsigned long) count; i++, rp++)
1308 {
1309 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1310 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1311 rp->adr = sym.value;
1312 rp->regmask = pdr.regmask;
1313 rp->regoffset = pdr.regoffset;
1314 rp->fregmask = pdr.fregmask;
1315 rp->fregoffset = pdr.fregoffset;
1316 rp->frameoffset = pdr.frameoffset;
1317 rp->framereg = pdr.framereg;
1318 rp->pcreg = pdr.pcreg;
1319 rp->irpss = sindex;
1320 sv[i] = ss + sym.iss;
1321 sindex += strlen (sv[i]) + 1;
1322 }
1323 }
1324
1325 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1326 size = BFD_ALIGN (size, 16);
1327 rtproc = bfd_alloc (abfd, size);
1328 if (rtproc == NULL)
1329 {
1330 mips_elf_hash_table (info)->procedure_count = 0;
1331 goto error_return;
1332 }
1333
1334 mips_elf_hash_table (info)->procedure_count = count + 2;
1335
1336 erp = rtproc;
1337 memset (erp, 0, sizeof (struct rpdr_ext));
1338 erp++;
1339 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1340 strcpy (str, no_name_func);
1341 str += strlen (no_name_func) + 1;
1342 for (i = 0; i < count; i++)
1343 {
1344 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1345 strcpy (str, sv[i]);
1346 str += strlen (sv[i]) + 1;
1347 }
1348 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1349
1350 /* Set the size and contents of .rtproc section. */
1351 s->size = size;
1352 s->contents = rtproc;
1353
1354 /* Skip this section later on (I don't think this currently
1355 matters, but someday it might). */
1356 s->map_head.link_order = NULL;
1357
1358 if (epdr != NULL)
1359 free (epdr);
1360 if (rpdr != NULL)
1361 free (rpdr);
1362 if (esym != NULL)
1363 free (esym);
1364 if (ss != NULL)
1365 free (ss);
1366 if (sv != NULL)
1367 free (sv);
1368
1369 return TRUE;
1370
1371 error_return:
1372 if (epdr != NULL)
1373 free (epdr);
1374 if (rpdr != NULL)
1375 free (rpdr);
1376 if (esym != NULL)
1377 free (esym);
1378 if (ss != NULL)
1379 free (ss);
1380 if (sv != NULL)
1381 free (sv);
1382 return FALSE;
1383 }
1384 \f
1385 /* We're going to create a stub for H. Create a symbol for the stub's
1386 value and size, to help make the disassembly easier to read. */
1387
1388 static bfd_boolean
1389 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1390 struct mips_elf_link_hash_entry *h,
1391 const char *prefix, asection *s, bfd_vma value,
1392 bfd_vma size)
1393 {
1394 struct bfd_link_hash_entry *bh;
1395 struct elf_link_hash_entry *elfh;
1396 const char *name;
1397
1398 if (ELF_ST_IS_MICROMIPS (h->root.other))
1399 value |= 1;
1400
1401 /* Create a new symbol. */
1402 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1403 bh = NULL;
1404 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1405 BSF_LOCAL, s, value, NULL,
1406 TRUE, FALSE, &bh))
1407 return FALSE;
1408
1409 /* Make it a local function. */
1410 elfh = (struct elf_link_hash_entry *) bh;
1411 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1412 elfh->size = size;
1413 elfh->forced_local = 1;
1414 return TRUE;
1415 }
1416
1417 /* We're about to redefine H. Create a symbol to represent H's
1418 current value and size, to help make the disassembly easier
1419 to read. */
1420
1421 static bfd_boolean
1422 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1423 struct mips_elf_link_hash_entry *h,
1424 const char *prefix)
1425 {
1426 struct bfd_link_hash_entry *bh;
1427 struct elf_link_hash_entry *elfh;
1428 const char *name;
1429 asection *s;
1430 bfd_vma value;
1431
1432 /* Read the symbol's value. */
1433 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1434 || h->root.root.type == bfd_link_hash_defweak);
1435 s = h->root.root.u.def.section;
1436 value = h->root.root.u.def.value;
1437
1438 /* Create a new symbol. */
1439 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1440 bh = NULL;
1441 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1442 BSF_LOCAL, s, value, NULL,
1443 TRUE, FALSE, &bh))
1444 return FALSE;
1445
1446 /* Make it local and copy the other attributes from H. */
1447 elfh = (struct elf_link_hash_entry *) bh;
1448 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1449 elfh->other = h->root.other;
1450 elfh->size = h->root.size;
1451 elfh->forced_local = 1;
1452 return TRUE;
1453 }
1454
1455 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1456 function rather than to a hard-float stub. */
1457
1458 static bfd_boolean
1459 section_allows_mips16_refs_p (asection *section)
1460 {
1461 const char *name;
1462
1463 name = bfd_get_section_name (section->owner, section);
1464 return (FN_STUB_P (name)
1465 || CALL_STUB_P (name)
1466 || CALL_FP_STUB_P (name)
1467 || strcmp (name, ".pdr") == 0);
1468 }
1469
1470 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1471 stub section of some kind. Return the R_SYMNDX of the target
1472 function, or 0 if we can't decide which function that is. */
1473
1474 static unsigned long
1475 mips16_stub_symndx (const struct elf_backend_data *bed,
1476 asection *sec ATTRIBUTE_UNUSED,
1477 const Elf_Internal_Rela *relocs,
1478 const Elf_Internal_Rela *relend)
1479 {
1480 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1481 const Elf_Internal_Rela *rel;
1482
1483 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1484 one in a compound relocation. */
1485 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1486 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1487 return ELF_R_SYM (sec->owner, rel->r_info);
1488
1489 /* Otherwise trust the first relocation, whatever its kind. This is
1490 the traditional behavior. */
1491 if (relocs < relend)
1492 return ELF_R_SYM (sec->owner, relocs->r_info);
1493
1494 return 0;
1495 }
1496
1497 /* Check the mips16 stubs for a particular symbol, and see if we can
1498 discard them. */
1499
1500 static void
1501 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1502 struct mips_elf_link_hash_entry *h)
1503 {
1504 /* Dynamic symbols must use the standard call interface, in case other
1505 objects try to call them. */
1506 if (h->fn_stub != NULL
1507 && h->root.dynindx != -1)
1508 {
1509 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1510 h->need_fn_stub = TRUE;
1511 }
1512
1513 if (h->fn_stub != NULL
1514 && ! h->need_fn_stub)
1515 {
1516 /* We don't need the fn_stub; the only references to this symbol
1517 are 16 bit calls. Clobber the size to 0 to prevent it from
1518 being included in the link. */
1519 h->fn_stub->size = 0;
1520 h->fn_stub->flags &= ~SEC_RELOC;
1521 h->fn_stub->reloc_count = 0;
1522 h->fn_stub->flags |= SEC_EXCLUDE;
1523 }
1524
1525 if (h->call_stub != NULL
1526 && ELF_ST_IS_MIPS16 (h->root.other))
1527 {
1528 /* We don't need the call_stub; this is a 16 bit function, so
1529 calls from other 16 bit functions are OK. Clobber the size
1530 to 0 to prevent it from being included in the link. */
1531 h->call_stub->size = 0;
1532 h->call_stub->flags &= ~SEC_RELOC;
1533 h->call_stub->reloc_count = 0;
1534 h->call_stub->flags |= SEC_EXCLUDE;
1535 }
1536
1537 if (h->call_fp_stub != NULL
1538 && ELF_ST_IS_MIPS16 (h->root.other))
1539 {
1540 /* We don't need the call_stub; this is a 16 bit function, so
1541 calls from other 16 bit functions are OK. Clobber the size
1542 to 0 to prevent it from being included in the link. */
1543 h->call_fp_stub->size = 0;
1544 h->call_fp_stub->flags &= ~SEC_RELOC;
1545 h->call_fp_stub->reloc_count = 0;
1546 h->call_fp_stub->flags |= SEC_EXCLUDE;
1547 }
1548 }
1549
1550 /* Hashtable callbacks for mips_elf_la25_stubs. */
1551
1552 static hashval_t
1553 mips_elf_la25_stub_hash (const void *entry_)
1554 {
1555 const struct mips_elf_la25_stub *entry;
1556
1557 entry = (struct mips_elf_la25_stub *) entry_;
1558 return entry->h->root.root.u.def.section->id
1559 + entry->h->root.root.u.def.value;
1560 }
1561
1562 static int
1563 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1564 {
1565 const struct mips_elf_la25_stub *entry1, *entry2;
1566
1567 entry1 = (struct mips_elf_la25_stub *) entry1_;
1568 entry2 = (struct mips_elf_la25_stub *) entry2_;
1569 return ((entry1->h->root.root.u.def.section
1570 == entry2->h->root.root.u.def.section)
1571 && (entry1->h->root.root.u.def.value
1572 == entry2->h->root.root.u.def.value));
1573 }
1574
1575 /* Called by the linker to set up the la25 stub-creation code. FN is
1576 the linker's implementation of add_stub_function. Return true on
1577 success. */
1578
1579 bfd_boolean
1580 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1581 asection *(*fn) (const char *, asection *,
1582 asection *))
1583 {
1584 struct mips_elf_link_hash_table *htab;
1585
1586 htab = mips_elf_hash_table (info);
1587 if (htab == NULL)
1588 return FALSE;
1589
1590 htab->add_stub_section = fn;
1591 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1592 mips_elf_la25_stub_eq, NULL);
1593 if (htab->la25_stubs == NULL)
1594 return FALSE;
1595
1596 return TRUE;
1597 }
1598
1599 /* Return true if H is a locally-defined PIC function, in the sense
1600 that it or its fn_stub might need $25 to be valid on entry.
1601 Note that MIPS16 functions set up $gp using PC-relative instructions,
1602 so they themselves never need $25 to be valid. Only non-MIPS16
1603 entry points are of interest here. */
1604
1605 static bfd_boolean
1606 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1607 {
1608 return ((h->root.root.type == bfd_link_hash_defined
1609 || h->root.root.type == bfd_link_hash_defweak)
1610 && h->root.def_regular
1611 && !bfd_is_abs_section (h->root.root.u.def.section)
1612 && (!ELF_ST_IS_MIPS16 (h->root.other)
1613 || (h->fn_stub && h->need_fn_stub))
1614 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1615 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1616 }
1617
1618 /* Set *SEC to the input section that contains the target of STUB.
1619 Return the offset of the target from the start of that section. */
1620
1621 static bfd_vma
1622 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1623 asection **sec)
1624 {
1625 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1626 {
1627 BFD_ASSERT (stub->h->need_fn_stub);
1628 *sec = stub->h->fn_stub;
1629 return 0;
1630 }
1631 else
1632 {
1633 *sec = stub->h->root.root.u.def.section;
1634 return stub->h->root.root.u.def.value;
1635 }
1636 }
1637
1638 /* STUB describes an la25 stub that we have decided to implement
1639 by inserting an LUI/ADDIU pair before the target function.
1640 Create the section and redirect the function symbol to it. */
1641
1642 static bfd_boolean
1643 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1644 struct bfd_link_info *info)
1645 {
1646 struct mips_elf_link_hash_table *htab;
1647 char *name;
1648 asection *s, *input_section;
1649 unsigned int align;
1650
1651 htab = mips_elf_hash_table (info);
1652 if (htab == NULL)
1653 return FALSE;
1654
1655 /* Create a unique name for the new section. */
1656 name = bfd_malloc (11 + sizeof (".text.stub."));
1657 if (name == NULL)
1658 return FALSE;
1659 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1660
1661 /* Create the section. */
1662 mips_elf_get_la25_target (stub, &input_section);
1663 s = htab->add_stub_section (name, input_section,
1664 input_section->output_section);
1665 if (s == NULL)
1666 return FALSE;
1667
1668 /* Make sure that any padding goes before the stub. */
1669 align = input_section->alignment_power;
1670 if (!bfd_set_section_alignment (s->owner, s, align))
1671 return FALSE;
1672 if (align > 3)
1673 s->size = (1 << align) - 8;
1674
1675 /* Create a symbol for the stub. */
1676 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1677 stub->stub_section = s;
1678 stub->offset = s->size;
1679
1680 /* Allocate room for it. */
1681 s->size += 8;
1682 return TRUE;
1683 }
1684
1685 /* STUB describes an la25 stub that we have decided to implement
1686 with a separate trampoline. Allocate room for it and redirect
1687 the function symbol to it. */
1688
1689 static bfd_boolean
1690 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1691 struct bfd_link_info *info)
1692 {
1693 struct mips_elf_link_hash_table *htab;
1694 asection *s;
1695
1696 htab = mips_elf_hash_table (info);
1697 if (htab == NULL)
1698 return FALSE;
1699
1700 /* Create a trampoline section, if we haven't already. */
1701 s = htab->strampoline;
1702 if (s == NULL)
1703 {
1704 asection *input_section = stub->h->root.root.u.def.section;
1705 s = htab->add_stub_section (".text", NULL,
1706 input_section->output_section);
1707 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1708 return FALSE;
1709 htab->strampoline = s;
1710 }
1711
1712 /* Create a symbol for the stub. */
1713 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1714 stub->stub_section = s;
1715 stub->offset = s->size;
1716
1717 /* Allocate room for it. */
1718 s->size += 16;
1719 return TRUE;
1720 }
1721
1722 /* H describes a symbol that needs an la25 stub. Make sure that an
1723 appropriate stub exists and point H at it. */
1724
1725 static bfd_boolean
1726 mips_elf_add_la25_stub (struct bfd_link_info *info,
1727 struct mips_elf_link_hash_entry *h)
1728 {
1729 struct mips_elf_link_hash_table *htab;
1730 struct mips_elf_la25_stub search, *stub;
1731 bfd_boolean use_trampoline_p;
1732 asection *s;
1733 bfd_vma value;
1734 void **slot;
1735
1736 /* Describe the stub we want. */
1737 search.stub_section = NULL;
1738 search.offset = 0;
1739 search.h = h;
1740
1741 /* See if we've already created an equivalent stub. */
1742 htab = mips_elf_hash_table (info);
1743 if (htab == NULL)
1744 return FALSE;
1745
1746 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1747 if (slot == NULL)
1748 return FALSE;
1749
1750 stub = (struct mips_elf_la25_stub *) *slot;
1751 if (stub != NULL)
1752 {
1753 /* We can reuse the existing stub. */
1754 h->la25_stub = stub;
1755 return TRUE;
1756 }
1757
1758 /* Create a permanent copy of ENTRY and add it to the hash table. */
1759 stub = bfd_malloc (sizeof (search));
1760 if (stub == NULL)
1761 return FALSE;
1762 *stub = search;
1763 *slot = stub;
1764
1765 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1766 of the section and if we would need no more than 2 nops. */
1767 value = mips_elf_get_la25_target (stub, &s);
1768 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1769
1770 h->la25_stub = stub;
1771 return (use_trampoline_p
1772 ? mips_elf_add_la25_trampoline (stub, info)
1773 : mips_elf_add_la25_intro (stub, info));
1774 }
1775
1776 /* A mips_elf_link_hash_traverse callback that is called before sizing
1777 sections. DATA points to a mips_htab_traverse_info structure. */
1778
1779 static bfd_boolean
1780 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1781 {
1782 struct mips_htab_traverse_info *hti;
1783
1784 hti = (struct mips_htab_traverse_info *) data;
1785 if (!hti->info->relocatable)
1786 mips_elf_check_mips16_stubs (hti->info, h);
1787
1788 if (mips_elf_local_pic_function_p (h))
1789 {
1790 /* PR 12845: If H is in a section that has been garbage
1791 collected it will have its output section set to *ABS*. */
1792 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1793 return TRUE;
1794
1795 /* H is a function that might need $25 to be valid on entry.
1796 If we're creating a non-PIC relocatable object, mark H as
1797 being PIC. If we're creating a non-relocatable object with
1798 non-PIC branches and jumps to H, make sure that H has an la25
1799 stub. */
1800 if (hti->info->relocatable)
1801 {
1802 if (!PIC_OBJECT_P (hti->output_bfd))
1803 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1804 }
1805 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1806 {
1807 hti->error = TRUE;
1808 return FALSE;
1809 }
1810 }
1811 return TRUE;
1812 }
1813 \f
1814 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1815 Most mips16 instructions are 16 bits, but these instructions
1816 are 32 bits.
1817
1818 The format of these instructions is:
1819
1820 +--------------+--------------------------------+
1821 | JALX | X| Imm 20:16 | Imm 25:21 |
1822 +--------------+--------------------------------+
1823 | Immediate 15:0 |
1824 +-----------------------------------------------+
1825
1826 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1827 Note that the immediate value in the first word is swapped.
1828
1829 When producing a relocatable object file, R_MIPS16_26 is
1830 handled mostly like R_MIPS_26. In particular, the addend is
1831 stored as a straight 26-bit value in a 32-bit instruction.
1832 (gas makes life simpler for itself by never adjusting a
1833 R_MIPS16_26 reloc to be against a section, so the addend is
1834 always zero). However, the 32 bit instruction is stored as 2
1835 16-bit values, rather than a single 32-bit value. In a
1836 big-endian file, the result is the same; in a little-endian
1837 file, the two 16-bit halves of the 32 bit value are swapped.
1838 This is so that a disassembler can recognize the jal
1839 instruction.
1840
1841 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1842 instruction stored as two 16-bit values. The addend A is the
1843 contents of the targ26 field. The calculation is the same as
1844 R_MIPS_26. When storing the calculated value, reorder the
1845 immediate value as shown above, and don't forget to store the
1846 value as two 16-bit values.
1847
1848 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1849 defined as
1850
1851 big-endian:
1852 +--------+----------------------+
1853 | | |
1854 | | targ26-16 |
1855 |31 26|25 0|
1856 +--------+----------------------+
1857
1858 little-endian:
1859 +----------+------+-------------+
1860 | | | |
1861 | sub1 | | sub2 |
1862 |0 9|10 15|16 31|
1863 +----------+--------------------+
1864 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1865 ((sub1 << 16) | sub2)).
1866
1867 When producing a relocatable object file, the calculation is
1868 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1869 When producing a fully linked file, the calculation is
1870 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1871 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1872
1873 The table below lists the other MIPS16 instruction relocations.
1874 Each one is calculated in the same way as the non-MIPS16 relocation
1875 given on the right, but using the extended MIPS16 layout of 16-bit
1876 immediate fields:
1877
1878 R_MIPS16_GPREL R_MIPS_GPREL16
1879 R_MIPS16_GOT16 R_MIPS_GOT16
1880 R_MIPS16_CALL16 R_MIPS_CALL16
1881 R_MIPS16_HI16 R_MIPS_HI16
1882 R_MIPS16_LO16 R_MIPS_LO16
1883
1884 A typical instruction will have a format like this:
1885
1886 +--------------+--------------------------------+
1887 | EXTEND | Imm 10:5 | Imm 15:11 |
1888 +--------------+--------------------------------+
1889 | Major | rx | ry | Imm 4:0 |
1890 +--------------+--------------------------------+
1891
1892 EXTEND is the five bit value 11110. Major is the instruction
1893 opcode.
1894
1895 All we need to do here is shuffle the bits appropriately.
1896 As above, the two 16-bit halves must be swapped on a
1897 little-endian system. */
1898
1899 static inline bfd_boolean
1900 mips16_reloc_p (int r_type)
1901 {
1902 switch (r_type)
1903 {
1904 case R_MIPS16_26:
1905 case R_MIPS16_GPREL:
1906 case R_MIPS16_GOT16:
1907 case R_MIPS16_CALL16:
1908 case R_MIPS16_HI16:
1909 case R_MIPS16_LO16:
1910 case R_MIPS16_TLS_GD:
1911 case R_MIPS16_TLS_LDM:
1912 case R_MIPS16_TLS_DTPREL_HI16:
1913 case R_MIPS16_TLS_DTPREL_LO16:
1914 case R_MIPS16_TLS_GOTTPREL:
1915 case R_MIPS16_TLS_TPREL_HI16:
1916 case R_MIPS16_TLS_TPREL_LO16:
1917 return TRUE;
1918
1919 default:
1920 return FALSE;
1921 }
1922 }
1923
1924 /* Check if a microMIPS reloc. */
1925
1926 static inline bfd_boolean
1927 micromips_reloc_p (unsigned int r_type)
1928 {
1929 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1930 }
1931
1932 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1933 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1934 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1935
1936 static inline bfd_boolean
1937 micromips_reloc_shuffle_p (unsigned int r_type)
1938 {
1939 return (micromips_reloc_p (r_type)
1940 && r_type != R_MICROMIPS_PC7_S1
1941 && r_type != R_MICROMIPS_PC10_S1);
1942 }
1943
1944 static inline bfd_boolean
1945 got16_reloc_p (int r_type)
1946 {
1947 return (r_type == R_MIPS_GOT16
1948 || r_type == R_MIPS16_GOT16
1949 || r_type == R_MICROMIPS_GOT16);
1950 }
1951
1952 static inline bfd_boolean
1953 call16_reloc_p (int r_type)
1954 {
1955 return (r_type == R_MIPS_CALL16
1956 || r_type == R_MIPS16_CALL16
1957 || r_type == R_MICROMIPS_CALL16);
1958 }
1959
1960 static inline bfd_boolean
1961 got_disp_reloc_p (unsigned int r_type)
1962 {
1963 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1964 }
1965
1966 static inline bfd_boolean
1967 got_page_reloc_p (unsigned int r_type)
1968 {
1969 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1970 }
1971
1972 static inline bfd_boolean
1973 got_ofst_reloc_p (unsigned int r_type)
1974 {
1975 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1976 }
1977
1978 static inline bfd_boolean
1979 got_hi16_reloc_p (unsigned int r_type)
1980 {
1981 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1982 }
1983
1984 static inline bfd_boolean
1985 got_lo16_reloc_p (unsigned int r_type)
1986 {
1987 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1988 }
1989
1990 static inline bfd_boolean
1991 call_hi16_reloc_p (unsigned int r_type)
1992 {
1993 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1994 }
1995
1996 static inline bfd_boolean
1997 call_lo16_reloc_p (unsigned int r_type)
1998 {
1999 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2000 }
2001
2002 static inline bfd_boolean
2003 hi16_reloc_p (int r_type)
2004 {
2005 return (r_type == R_MIPS_HI16
2006 || r_type == R_MIPS16_HI16
2007 || r_type == R_MICROMIPS_HI16);
2008 }
2009
2010 static inline bfd_boolean
2011 lo16_reloc_p (int r_type)
2012 {
2013 return (r_type == R_MIPS_LO16
2014 || r_type == R_MIPS16_LO16
2015 || r_type == R_MICROMIPS_LO16);
2016 }
2017
2018 static inline bfd_boolean
2019 mips16_call_reloc_p (int r_type)
2020 {
2021 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2022 }
2023
2024 static inline bfd_boolean
2025 jal_reloc_p (int r_type)
2026 {
2027 return (r_type == R_MIPS_26
2028 || r_type == R_MIPS16_26
2029 || r_type == R_MICROMIPS_26_S1);
2030 }
2031
2032 static inline bfd_boolean
2033 micromips_branch_reloc_p (int r_type)
2034 {
2035 return (r_type == R_MICROMIPS_26_S1
2036 || r_type == R_MICROMIPS_PC16_S1
2037 || r_type == R_MICROMIPS_PC10_S1
2038 || r_type == R_MICROMIPS_PC7_S1);
2039 }
2040
2041 static inline bfd_boolean
2042 tls_gd_reloc_p (unsigned int r_type)
2043 {
2044 return (r_type == R_MIPS_TLS_GD
2045 || r_type == R_MIPS16_TLS_GD
2046 || r_type == R_MICROMIPS_TLS_GD);
2047 }
2048
2049 static inline bfd_boolean
2050 tls_ldm_reloc_p (unsigned int r_type)
2051 {
2052 return (r_type == R_MIPS_TLS_LDM
2053 || r_type == R_MIPS16_TLS_LDM
2054 || r_type == R_MICROMIPS_TLS_LDM);
2055 }
2056
2057 static inline bfd_boolean
2058 tls_gottprel_reloc_p (unsigned int r_type)
2059 {
2060 return (r_type == R_MIPS_TLS_GOTTPREL
2061 || r_type == R_MIPS16_TLS_GOTTPREL
2062 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2063 }
2064
2065 void
2066 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2067 bfd_boolean jal_shuffle, bfd_byte *data)
2068 {
2069 bfd_vma first, second, val;
2070
2071 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2072 return;
2073
2074 /* Pick up the first and second halfwords of the instruction. */
2075 first = bfd_get_16 (abfd, data);
2076 second = bfd_get_16 (abfd, data + 2);
2077 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2078 val = first << 16 | second;
2079 else if (r_type != R_MIPS16_26)
2080 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2081 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2082 else
2083 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2084 | ((first & 0x1f) << 21) | second);
2085 bfd_put_32 (abfd, val, data);
2086 }
2087
2088 void
2089 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2090 bfd_boolean jal_shuffle, bfd_byte *data)
2091 {
2092 bfd_vma first, second, val;
2093
2094 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2095 return;
2096
2097 val = bfd_get_32 (abfd, data);
2098 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2099 {
2100 second = val & 0xffff;
2101 first = val >> 16;
2102 }
2103 else if (r_type != R_MIPS16_26)
2104 {
2105 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2106 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2107 }
2108 else
2109 {
2110 second = val & 0xffff;
2111 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2112 | ((val >> 21) & 0x1f);
2113 }
2114 bfd_put_16 (abfd, second, data + 2);
2115 bfd_put_16 (abfd, first, data);
2116 }
2117
2118 bfd_reloc_status_type
2119 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2120 arelent *reloc_entry, asection *input_section,
2121 bfd_boolean relocatable, void *data, bfd_vma gp)
2122 {
2123 bfd_vma relocation;
2124 bfd_signed_vma val;
2125 bfd_reloc_status_type status;
2126
2127 if (bfd_is_com_section (symbol->section))
2128 relocation = 0;
2129 else
2130 relocation = symbol->value;
2131
2132 relocation += symbol->section->output_section->vma;
2133 relocation += symbol->section->output_offset;
2134
2135 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2136 return bfd_reloc_outofrange;
2137
2138 /* Set val to the offset into the section or symbol. */
2139 val = reloc_entry->addend;
2140
2141 _bfd_mips_elf_sign_extend (val, 16);
2142
2143 /* Adjust val for the final section location and GP value. If we
2144 are producing relocatable output, we don't want to do this for
2145 an external symbol. */
2146 if (! relocatable
2147 || (symbol->flags & BSF_SECTION_SYM) != 0)
2148 val += relocation - gp;
2149
2150 if (reloc_entry->howto->partial_inplace)
2151 {
2152 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2153 (bfd_byte *) data
2154 + reloc_entry->address);
2155 if (status != bfd_reloc_ok)
2156 return status;
2157 }
2158 else
2159 reloc_entry->addend = val;
2160
2161 if (relocatable)
2162 reloc_entry->address += input_section->output_offset;
2163
2164 return bfd_reloc_ok;
2165 }
2166
2167 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2168 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2169 that contains the relocation field and DATA points to the start of
2170 INPUT_SECTION. */
2171
2172 struct mips_hi16
2173 {
2174 struct mips_hi16 *next;
2175 bfd_byte *data;
2176 asection *input_section;
2177 arelent rel;
2178 };
2179
2180 /* FIXME: This should not be a static variable. */
2181
2182 static struct mips_hi16 *mips_hi16_list;
2183
2184 /* A howto special_function for REL *HI16 relocations. We can only
2185 calculate the correct value once we've seen the partnering
2186 *LO16 relocation, so just save the information for later.
2187
2188 The ABI requires that the *LO16 immediately follow the *HI16.
2189 However, as a GNU extension, we permit an arbitrary number of
2190 *HI16s to be associated with a single *LO16. This significantly
2191 simplies the relocation handling in gcc. */
2192
2193 bfd_reloc_status_type
2194 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2195 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2196 asection *input_section, bfd *output_bfd,
2197 char **error_message ATTRIBUTE_UNUSED)
2198 {
2199 struct mips_hi16 *n;
2200
2201 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2202 return bfd_reloc_outofrange;
2203
2204 n = bfd_malloc (sizeof *n);
2205 if (n == NULL)
2206 return bfd_reloc_outofrange;
2207
2208 n->next = mips_hi16_list;
2209 n->data = data;
2210 n->input_section = input_section;
2211 n->rel = *reloc_entry;
2212 mips_hi16_list = n;
2213
2214 if (output_bfd != NULL)
2215 reloc_entry->address += input_section->output_offset;
2216
2217 return bfd_reloc_ok;
2218 }
2219
2220 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2221 like any other 16-bit relocation when applied to global symbols, but is
2222 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2223
2224 bfd_reloc_status_type
2225 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2226 void *data, asection *input_section,
2227 bfd *output_bfd, char **error_message)
2228 {
2229 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2230 || bfd_is_und_section (bfd_get_section (symbol))
2231 || bfd_is_com_section (bfd_get_section (symbol)))
2232 /* The relocation is against a global symbol. */
2233 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2234 input_section, output_bfd,
2235 error_message);
2236
2237 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2238 input_section, output_bfd, error_message);
2239 }
2240
2241 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2242 is a straightforward 16 bit inplace relocation, but we must deal with
2243 any partnering high-part relocations as well. */
2244
2245 bfd_reloc_status_type
2246 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2247 void *data, asection *input_section,
2248 bfd *output_bfd, char **error_message)
2249 {
2250 bfd_vma vallo;
2251 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2252
2253 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2254 return bfd_reloc_outofrange;
2255
2256 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2257 location);
2258 vallo = bfd_get_32 (abfd, location);
2259 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2260 location);
2261
2262 while (mips_hi16_list != NULL)
2263 {
2264 bfd_reloc_status_type ret;
2265 struct mips_hi16 *hi;
2266
2267 hi = mips_hi16_list;
2268
2269 /* R_MIPS*_GOT16 relocations are something of a special case. We
2270 want to install the addend in the same way as for a R_MIPS*_HI16
2271 relocation (with a rightshift of 16). However, since GOT16
2272 relocations can also be used with global symbols, their howto
2273 has a rightshift of 0. */
2274 if (hi->rel.howto->type == R_MIPS_GOT16)
2275 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2276 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2277 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2278 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2279 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2280
2281 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2282 carry or borrow will induce a change of +1 or -1 in the high part. */
2283 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2284
2285 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2286 hi->input_section, output_bfd,
2287 error_message);
2288 if (ret != bfd_reloc_ok)
2289 return ret;
2290
2291 mips_hi16_list = hi->next;
2292 free (hi);
2293 }
2294
2295 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2296 input_section, output_bfd,
2297 error_message);
2298 }
2299
2300 /* A generic howto special_function. This calculates and installs the
2301 relocation itself, thus avoiding the oft-discussed problems in
2302 bfd_perform_relocation and bfd_install_relocation. */
2303
2304 bfd_reloc_status_type
2305 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2306 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2307 asection *input_section, bfd *output_bfd,
2308 char **error_message ATTRIBUTE_UNUSED)
2309 {
2310 bfd_signed_vma val;
2311 bfd_reloc_status_type status;
2312 bfd_boolean relocatable;
2313
2314 relocatable = (output_bfd != NULL);
2315
2316 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2317 return bfd_reloc_outofrange;
2318
2319 /* Build up the field adjustment in VAL. */
2320 val = 0;
2321 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2322 {
2323 /* Either we're calculating the final field value or we have a
2324 relocation against a section symbol. Add in the section's
2325 offset or address. */
2326 val += symbol->section->output_section->vma;
2327 val += symbol->section->output_offset;
2328 }
2329
2330 if (!relocatable)
2331 {
2332 /* We're calculating the final field value. Add in the symbol's value
2333 and, if pc-relative, subtract the address of the field itself. */
2334 val += symbol->value;
2335 if (reloc_entry->howto->pc_relative)
2336 {
2337 val -= input_section->output_section->vma;
2338 val -= input_section->output_offset;
2339 val -= reloc_entry->address;
2340 }
2341 }
2342
2343 /* VAL is now the final adjustment. If we're keeping this relocation
2344 in the output file, and if the relocation uses a separate addend,
2345 we just need to add VAL to that addend. Otherwise we need to add
2346 VAL to the relocation field itself. */
2347 if (relocatable && !reloc_entry->howto->partial_inplace)
2348 reloc_entry->addend += val;
2349 else
2350 {
2351 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2352
2353 /* Add in the separate addend, if any. */
2354 val += reloc_entry->addend;
2355
2356 /* Add VAL to the relocation field. */
2357 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2358 location);
2359 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2360 location);
2361 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2362 location);
2363
2364 if (status != bfd_reloc_ok)
2365 return status;
2366 }
2367
2368 if (relocatable)
2369 reloc_entry->address += input_section->output_offset;
2370
2371 return bfd_reloc_ok;
2372 }
2373 \f
2374 /* Swap an entry in a .gptab section. Note that these routines rely
2375 on the equivalence of the two elements of the union. */
2376
2377 static void
2378 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2379 Elf32_gptab *in)
2380 {
2381 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2382 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2383 }
2384
2385 static void
2386 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2387 Elf32_External_gptab *ex)
2388 {
2389 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2390 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2391 }
2392
2393 static void
2394 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2395 Elf32_External_compact_rel *ex)
2396 {
2397 H_PUT_32 (abfd, in->id1, ex->id1);
2398 H_PUT_32 (abfd, in->num, ex->num);
2399 H_PUT_32 (abfd, in->id2, ex->id2);
2400 H_PUT_32 (abfd, in->offset, ex->offset);
2401 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2402 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2403 }
2404
2405 static void
2406 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2407 Elf32_External_crinfo *ex)
2408 {
2409 unsigned long l;
2410
2411 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2412 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2413 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2414 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2415 H_PUT_32 (abfd, l, ex->info);
2416 H_PUT_32 (abfd, in->konst, ex->konst);
2417 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2418 }
2419 \f
2420 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2421 routines swap this structure in and out. They are used outside of
2422 BFD, so they are globally visible. */
2423
2424 void
2425 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2426 Elf32_RegInfo *in)
2427 {
2428 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2429 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2430 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2431 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2432 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2433 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2434 }
2435
2436 void
2437 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2438 Elf32_External_RegInfo *ex)
2439 {
2440 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2441 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2442 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2443 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2444 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2445 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2446 }
2447
2448 /* In the 64 bit ABI, the .MIPS.options section holds register
2449 information in an Elf64_Reginfo structure. These routines swap
2450 them in and out. They are globally visible because they are used
2451 outside of BFD. These routines are here so that gas can call them
2452 without worrying about whether the 64 bit ABI has been included. */
2453
2454 void
2455 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2456 Elf64_Internal_RegInfo *in)
2457 {
2458 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2459 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2460 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2461 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2462 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2463 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2464 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2465 }
2466
2467 void
2468 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2469 Elf64_External_RegInfo *ex)
2470 {
2471 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2472 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2473 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2474 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2475 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2476 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2477 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2478 }
2479
2480 /* Swap in an options header. */
2481
2482 void
2483 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2484 Elf_Internal_Options *in)
2485 {
2486 in->kind = H_GET_8 (abfd, ex->kind);
2487 in->size = H_GET_8 (abfd, ex->size);
2488 in->section = H_GET_16 (abfd, ex->section);
2489 in->info = H_GET_32 (abfd, ex->info);
2490 }
2491
2492 /* Swap out an options header. */
2493
2494 void
2495 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2496 Elf_External_Options *ex)
2497 {
2498 H_PUT_8 (abfd, in->kind, ex->kind);
2499 H_PUT_8 (abfd, in->size, ex->size);
2500 H_PUT_16 (abfd, in->section, ex->section);
2501 H_PUT_32 (abfd, in->info, ex->info);
2502 }
2503 \f
2504 /* This function is called via qsort() to sort the dynamic relocation
2505 entries by increasing r_symndx value. */
2506
2507 static int
2508 sort_dynamic_relocs (const void *arg1, const void *arg2)
2509 {
2510 Elf_Internal_Rela int_reloc1;
2511 Elf_Internal_Rela int_reloc2;
2512 int diff;
2513
2514 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2515 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2516
2517 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2518 if (diff != 0)
2519 return diff;
2520
2521 if (int_reloc1.r_offset < int_reloc2.r_offset)
2522 return -1;
2523 if (int_reloc1.r_offset > int_reloc2.r_offset)
2524 return 1;
2525 return 0;
2526 }
2527
2528 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2529
2530 static int
2531 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2532 const void *arg2 ATTRIBUTE_UNUSED)
2533 {
2534 #ifdef BFD64
2535 Elf_Internal_Rela int_reloc1[3];
2536 Elf_Internal_Rela int_reloc2[3];
2537
2538 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2539 (reldyn_sorting_bfd, arg1, int_reloc1);
2540 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2541 (reldyn_sorting_bfd, arg2, int_reloc2);
2542
2543 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2544 return -1;
2545 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2546 return 1;
2547
2548 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2549 return -1;
2550 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2551 return 1;
2552 return 0;
2553 #else
2554 abort ();
2555 #endif
2556 }
2557
2558
2559 /* This routine is used to write out ECOFF debugging external symbol
2560 information. It is called via mips_elf_link_hash_traverse. The
2561 ECOFF external symbol information must match the ELF external
2562 symbol information. Unfortunately, at this point we don't know
2563 whether a symbol is required by reloc information, so the two
2564 tables may wind up being different. We must sort out the external
2565 symbol information before we can set the final size of the .mdebug
2566 section, and we must set the size of the .mdebug section before we
2567 can relocate any sections, and we can't know which symbols are
2568 required by relocation until we relocate the sections.
2569 Fortunately, it is relatively unlikely that any symbol will be
2570 stripped but required by a reloc. In particular, it can not happen
2571 when generating a final executable. */
2572
2573 static bfd_boolean
2574 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2575 {
2576 struct extsym_info *einfo = data;
2577 bfd_boolean strip;
2578 asection *sec, *output_section;
2579
2580 if (h->root.indx == -2)
2581 strip = FALSE;
2582 else if ((h->root.def_dynamic
2583 || h->root.ref_dynamic
2584 || h->root.type == bfd_link_hash_new)
2585 && !h->root.def_regular
2586 && !h->root.ref_regular)
2587 strip = TRUE;
2588 else if (einfo->info->strip == strip_all
2589 || (einfo->info->strip == strip_some
2590 && bfd_hash_lookup (einfo->info->keep_hash,
2591 h->root.root.root.string,
2592 FALSE, FALSE) == NULL))
2593 strip = TRUE;
2594 else
2595 strip = FALSE;
2596
2597 if (strip)
2598 return TRUE;
2599
2600 if (h->esym.ifd == -2)
2601 {
2602 h->esym.jmptbl = 0;
2603 h->esym.cobol_main = 0;
2604 h->esym.weakext = 0;
2605 h->esym.reserved = 0;
2606 h->esym.ifd = ifdNil;
2607 h->esym.asym.value = 0;
2608 h->esym.asym.st = stGlobal;
2609
2610 if (h->root.root.type == bfd_link_hash_undefined
2611 || h->root.root.type == bfd_link_hash_undefweak)
2612 {
2613 const char *name;
2614
2615 /* Use undefined class. Also, set class and type for some
2616 special symbols. */
2617 name = h->root.root.root.string;
2618 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2619 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2620 {
2621 h->esym.asym.sc = scData;
2622 h->esym.asym.st = stLabel;
2623 h->esym.asym.value = 0;
2624 }
2625 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2626 {
2627 h->esym.asym.sc = scAbs;
2628 h->esym.asym.st = stLabel;
2629 h->esym.asym.value =
2630 mips_elf_hash_table (einfo->info)->procedure_count;
2631 }
2632 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2633 {
2634 h->esym.asym.sc = scAbs;
2635 h->esym.asym.st = stLabel;
2636 h->esym.asym.value = elf_gp (einfo->abfd);
2637 }
2638 else
2639 h->esym.asym.sc = scUndefined;
2640 }
2641 else if (h->root.root.type != bfd_link_hash_defined
2642 && h->root.root.type != bfd_link_hash_defweak)
2643 h->esym.asym.sc = scAbs;
2644 else
2645 {
2646 const char *name;
2647
2648 sec = h->root.root.u.def.section;
2649 output_section = sec->output_section;
2650
2651 /* When making a shared library and symbol h is the one from
2652 the another shared library, OUTPUT_SECTION may be null. */
2653 if (output_section == NULL)
2654 h->esym.asym.sc = scUndefined;
2655 else
2656 {
2657 name = bfd_section_name (output_section->owner, output_section);
2658
2659 if (strcmp (name, ".text") == 0)
2660 h->esym.asym.sc = scText;
2661 else if (strcmp (name, ".data") == 0)
2662 h->esym.asym.sc = scData;
2663 else if (strcmp (name, ".sdata") == 0)
2664 h->esym.asym.sc = scSData;
2665 else if (strcmp (name, ".rodata") == 0
2666 || strcmp (name, ".rdata") == 0)
2667 h->esym.asym.sc = scRData;
2668 else if (strcmp (name, ".bss") == 0)
2669 h->esym.asym.sc = scBss;
2670 else if (strcmp (name, ".sbss") == 0)
2671 h->esym.asym.sc = scSBss;
2672 else if (strcmp (name, ".init") == 0)
2673 h->esym.asym.sc = scInit;
2674 else if (strcmp (name, ".fini") == 0)
2675 h->esym.asym.sc = scFini;
2676 else
2677 h->esym.asym.sc = scAbs;
2678 }
2679 }
2680
2681 h->esym.asym.reserved = 0;
2682 h->esym.asym.index = indexNil;
2683 }
2684
2685 if (h->root.root.type == bfd_link_hash_common)
2686 h->esym.asym.value = h->root.root.u.c.size;
2687 else if (h->root.root.type == bfd_link_hash_defined
2688 || h->root.root.type == bfd_link_hash_defweak)
2689 {
2690 if (h->esym.asym.sc == scCommon)
2691 h->esym.asym.sc = scBss;
2692 else if (h->esym.asym.sc == scSCommon)
2693 h->esym.asym.sc = scSBss;
2694
2695 sec = h->root.root.u.def.section;
2696 output_section = sec->output_section;
2697 if (output_section != NULL)
2698 h->esym.asym.value = (h->root.root.u.def.value
2699 + sec->output_offset
2700 + output_section->vma);
2701 else
2702 h->esym.asym.value = 0;
2703 }
2704 else
2705 {
2706 struct mips_elf_link_hash_entry *hd = h;
2707
2708 while (hd->root.root.type == bfd_link_hash_indirect)
2709 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2710
2711 if (hd->needs_lazy_stub)
2712 {
2713 /* Set type and value for a symbol with a function stub. */
2714 h->esym.asym.st = stProc;
2715 sec = hd->root.root.u.def.section;
2716 if (sec == NULL)
2717 h->esym.asym.value = 0;
2718 else
2719 {
2720 output_section = sec->output_section;
2721 if (output_section != NULL)
2722 h->esym.asym.value = (hd->root.plt.offset
2723 + sec->output_offset
2724 + output_section->vma);
2725 else
2726 h->esym.asym.value = 0;
2727 }
2728 }
2729 }
2730
2731 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2732 h->root.root.root.string,
2733 &h->esym))
2734 {
2735 einfo->failed = TRUE;
2736 return FALSE;
2737 }
2738
2739 return TRUE;
2740 }
2741
2742 /* A comparison routine used to sort .gptab entries. */
2743
2744 static int
2745 gptab_compare (const void *p1, const void *p2)
2746 {
2747 const Elf32_gptab *a1 = p1;
2748 const Elf32_gptab *a2 = p2;
2749
2750 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2751 }
2752 \f
2753 /* Functions to manage the got entry hash table. */
2754
2755 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2756 hash number. */
2757
2758 static INLINE hashval_t
2759 mips_elf_hash_bfd_vma (bfd_vma addr)
2760 {
2761 #ifdef BFD64
2762 return addr + (addr >> 32);
2763 #else
2764 return addr;
2765 #endif
2766 }
2767
2768 static hashval_t
2769 mips_elf_got_entry_hash (const void *entry_)
2770 {
2771 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2772
2773 return (entry->symndx
2774 + ((entry->tls_type == GOT_TLS_LDM) << 18)
2775 + (entry->tls_type == GOT_TLS_LDM ? 0
2776 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2777 : entry->symndx >= 0 ? (entry->abfd->id
2778 + mips_elf_hash_bfd_vma (entry->d.addend))
2779 : entry->d.h->root.root.root.hash));
2780 }
2781
2782 static int
2783 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2784 {
2785 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2786 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2787
2788 return (e1->symndx == e2->symndx
2789 && e1->tls_type == e2->tls_type
2790 && (e1->tls_type == GOT_TLS_LDM ? TRUE
2791 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
2792 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
2793 && e1->d.addend == e2->d.addend)
2794 : e2->abfd && e1->d.h == e2->d.h));
2795 }
2796
2797 static hashval_t
2798 mips_got_page_ref_hash (const void *ref_)
2799 {
2800 const struct mips_got_page_ref *ref;
2801
2802 ref = (const struct mips_got_page_ref *) ref_;
2803 return ((ref->symndx >= 0
2804 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
2805 : ref->u.h->root.root.root.hash)
2806 + mips_elf_hash_bfd_vma (ref->addend));
2807 }
2808
2809 static int
2810 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
2811 {
2812 const struct mips_got_page_ref *ref1, *ref2;
2813
2814 ref1 = (const struct mips_got_page_ref *) ref1_;
2815 ref2 = (const struct mips_got_page_ref *) ref2_;
2816 return (ref1->symndx == ref2->symndx
2817 && (ref1->symndx < 0
2818 ? ref1->u.h == ref2->u.h
2819 : ref1->u.abfd == ref2->u.abfd)
2820 && ref1->addend == ref2->addend);
2821 }
2822
2823 static hashval_t
2824 mips_got_page_entry_hash (const void *entry_)
2825 {
2826 const struct mips_got_page_entry *entry;
2827
2828 entry = (const struct mips_got_page_entry *) entry_;
2829 return entry->sec->id;
2830 }
2831
2832 static int
2833 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2834 {
2835 const struct mips_got_page_entry *entry1, *entry2;
2836
2837 entry1 = (const struct mips_got_page_entry *) entry1_;
2838 entry2 = (const struct mips_got_page_entry *) entry2_;
2839 return entry1->sec == entry2->sec;
2840 }
2841 \f
2842 /* Create and return a new mips_got_info structure. */
2843
2844 static struct mips_got_info *
2845 mips_elf_create_got_info (bfd *abfd)
2846 {
2847 struct mips_got_info *g;
2848
2849 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
2850 if (g == NULL)
2851 return NULL;
2852
2853 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2854 mips_elf_got_entry_eq, NULL);
2855 if (g->got_entries == NULL)
2856 return NULL;
2857
2858 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
2859 mips_got_page_ref_eq, NULL);
2860 if (g->got_page_refs == NULL)
2861 return NULL;
2862
2863 return g;
2864 }
2865
2866 /* Return the GOT info for input bfd ABFD, trying to create a new one if
2867 CREATE_P and if ABFD doesn't already have a GOT. */
2868
2869 static struct mips_got_info *
2870 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
2871 {
2872 struct mips_elf_obj_tdata *tdata;
2873
2874 if (!is_mips_elf (abfd))
2875 return NULL;
2876
2877 tdata = mips_elf_tdata (abfd);
2878 if (!tdata->got && create_p)
2879 tdata->got = mips_elf_create_got_info (abfd);
2880 return tdata->got;
2881 }
2882
2883 /* Record that ABFD should use output GOT G. */
2884
2885 static void
2886 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
2887 {
2888 struct mips_elf_obj_tdata *tdata;
2889
2890 BFD_ASSERT (is_mips_elf (abfd));
2891 tdata = mips_elf_tdata (abfd);
2892 if (tdata->got)
2893 {
2894 /* The GOT structure itself and the hash table entries are
2895 allocated to a bfd, but the hash tables aren't. */
2896 htab_delete (tdata->got->got_entries);
2897 htab_delete (tdata->got->got_page_refs);
2898 if (tdata->got->got_page_entries)
2899 htab_delete (tdata->got->got_page_entries);
2900 }
2901 tdata->got = g;
2902 }
2903
2904 /* Return the dynamic relocation section. If it doesn't exist, try to
2905 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2906 if creation fails. */
2907
2908 static asection *
2909 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2910 {
2911 const char *dname;
2912 asection *sreloc;
2913 bfd *dynobj;
2914
2915 dname = MIPS_ELF_REL_DYN_NAME (info);
2916 dynobj = elf_hash_table (info)->dynobj;
2917 sreloc = bfd_get_linker_section (dynobj, dname);
2918 if (sreloc == NULL && create_p)
2919 {
2920 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2921 (SEC_ALLOC
2922 | SEC_LOAD
2923 | SEC_HAS_CONTENTS
2924 | SEC_IN_MEMORY
2925 | SEC_LINKER_CREATED
2926 | SEC_READONLY));
2927 if (sreloc == NULL
2928 || ! bfd_set_section_alignment (dynobj, sreloc,
2929 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2930 return NULL;
2931 }
2932 return sreloc;
2933 }
2934
2935 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
2936
2937 static int
2938 mips_elf_reloc_tls_type (unsigned int r_type)
2939 {
2940 if (tls_gd_reloc_p (r_type))
2941 return GOT_TLS_GD;
2942
2943 if (tls_ldm_reloc_p (r_type))
2944 return GOT_TLS_LDM;
2945
2946 if (tls_gottprel_reloc_p (r_type))
2947 return GOT_TLS_IE;
2948
2949 return GOT_TLS_NONE;
2950 }
2951
2952 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
2953
2954 static int
2955 mips_tls_got_entries (unsigned int type)
2956 {
2957 switch (type)
2958 {
2959 case GOT_TLS_GD:
2960 case GOT_TLS_LDM:
2961 return 2;
2962
2963 case GOT_TLS_IE:
2964 return 1;
2965
2966 case GOT_TLS_NONE:
2967 return 0;
2968 }
2969 abort ();
2970 }
2971
2972 /* Count the number of relocations needed for a TLS GOT entry, with
2973 access types from TLS_TYPE, and symbol H (or a local symbol if H
2974 is NULL). */
2975
2976 static int
2977 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2978 struct elf_link_hash_entry *h)
2979 {
2980 int indx = 0;
2981 bfd_boolean need_relocs = FALSE;
2982 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2983
2984 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2985 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2986 indx = h->dynindx;
2987
2988 if ((info->shared || indx != 0)
2989 && (h == NULL
2990 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2991 || h->root.type != bfd_link_hash_undefweak))
2992 need_relocs = TRUE;
2993
2994 if (!need_relocs)
2995 return 0;
2996
2997 switch (tls_type)
2998 {
2999 case GOT_TLS_GD:
3000 return indx != 0 ? 2 : 1;
3001
3002 case GOT_TLS_IE:
3003 return 1;
3004
3005 case GOT_TLS_LDM:
3006 return info->shared ? 1 : 0;
3007
3008 default:
3009 return 0;
3010 }
3011 }
3012
3013 /* Add the number of GOT entries and TLS relocations required by ENTRY
3014 to G. */
3015
3016 static void
3017 mips_elf_count_got_entry (struct bfd_link_info *info,
3018 struct mips_got_info *g,
3019 struct mips_got_entry *entry)
3020 {
3021 if (entry->tls_type)
3022 {
3023 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3024 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3025 entry->symndx < 0
3026 ? &entry->d.h->root : NULL);
3027 }
3028 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3029 g->local_gotno += 1;
3030 else
3031 g->global_gotno += 1;
3032 }
3033
3034 /* Output a simple dynamic relocation into SRELOC. */
3035
3036 static void
3037 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3038 asection *sreloc,
3039 unsigned long reloc_index,
3040 unsigned long indx,
3041 int r_type,
3042 bfd_vma offset)
3043 {
3044 Elf_Internal_Rela rel[3];
3045
3046 memset (rel, 0, sizeof (rel));
3047
3048 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3049 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3050
3051 if (ABI_64_P (output_bfd))
3052 {
3053 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3054 (output_bfd, &rel[0],
3055 (sreloc->contents
3056 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3057 }
3058 else
3059 bfd_elf32_swap_reloc_out
3060 (output_bfd, &rel[0],
3061 (sreloc->contents
3062 + reloc_index * sizeof (Elf32_External_Rel)));
3063 }
3064
3065 /* Initialize a set of TLS GOT entries for one symbol. */
3066
3067 static void
3068 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3069 struct mips_got_entry *entry,
3070 struct mips_elf_link_hash_entry *h,
3071 bfd_vma value)
3072 {
3073 struct mips_elf_link_hash_table *htab;
3074 int indx;
3075 asection *sreloc, *sgot;
3076 bfd_vma got_offset, got_offset2;
3077 bfd_boolean need_relocs = FALSE;
3078
3079 htab = mips_elf_hash_table (info);
3080 if (htab == NULL)
3081 return;
3082
3083 sgot = htab->sgot;
3084
3085 indx = 0;
3086 if (h != NULL)
3087 {
3088 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3089
3090 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3091 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3092 indx = h->root.dynindx;
3093 }
3094
3095 if (entry->tls_initialized)
3096 return;
3097
3098 if ((info->shared || indx != 0)
3099 && (h == NULL
3100 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3101 || h->root.type != bfd_link_hash_undefweak))
3102 need_relocs = TRUE;
3103
3104 /* MINUS_ONE means the symbol is not defined in this object. It may not
3105 be defined at all; assume that the value doesn't matter in that
3106 case. Otherwise complain if we would use the value. */
3107 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3108 || h->root.root.type == bfd_link_hash_undefweak);
3109
3110 /* Emit necessary relocations. */
3111 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3112 got_offset = entry->gotidx;
3113
3114 switch (entry->tls_type)
3115 {
3116 case GOT_TLS_GD:
3117 /* General Dynamic. */
3118 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3119
3120 if (need_relocs)
3121 {
3122 mips_elf_output_dynamic_relocation
3123 (abfd, sreloc, sreloc->reloc_count++, indx,
3124 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3125 sgot->output_offset + sgot->output_section->vma + got_offset);
3126
3127 if (indx)
3128 mips_elf_output_dynamic_relocation
3129 (abfd, sreloc, sreloc->reloc_count++, indx,
3130 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3131 sgot->output_offset + sgot->output_section->vma + got_offset2);
3132 else
3133 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3134 sgot->contents + got_offset2);
3135 }
3136 else
3137 {
3138 MIPS_ELF_PUT_WORD (abfd, 1,
3139 sgot->contents + got_offset);
3140 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3141 sgot->contents + got_offset2);
3142 }
3143 break;
3144
3145 case GOT_TLS_IE:
3146 /* Initial Exec model. */
3147 if (need_relocs)
3148 {
3149 if (indx == 0)
3150 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3151 sgot->contents + got_offset);
3152 else
3153 MIPS_ELF_PUT_WORD (abfd, 0,
3154 sgot->contents + got_offset);
3155
3156 mips_elf_output_dynamic_relocation
3157 (abfd, sreloc, sreloc->reloc_count++, indx,
3158 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3159 sgot->output_offset + sgot->output_section->vma + got_offset);
3160 }
3161 else
3162 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3163 sgot->contents + got_offset);
3164 break;
3165
3166 case GOT_TLS_LDM:
3167 /* The initial offset is zero, and the LD offsets will include the
3168 bias by DTP_OFFSET. */
3169 MIPS_ELF_PUT_WORD (abfd, 0,
3170 sgot->contents + got_offset
3171 + MIPS_ELF_GOT_SIZE (abfd));
3172
3173 if (!info->shared)
3174 MIPS_ELF_PUT_WORD (abfd, 1,
3175 sgot->contents + got_offset);
3176 else
3177 mips_elf_output_dynamic_relocation
3178 (abfd, sreloc, sreloc->reloc_count++, indx,
3179 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3180 sgot->output_offset + sgot->output_section->vma + got_offset);
3181 break;
3182
3183 default:
3184 abort ();
3185 }
3186
3187 entry->tls_initialized = TRUE;
3188 }
3189
3190 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3191 for global symbol H. .got.plt comes before the GOT, so the offset
3192 will be negative. */
3193
3194 static bfd_vma
3195 mips_elf_gotplt_index (struct bfd_link_info *info,
3196 struct elf_link_hash_entry *h)
3197 {
3198 bfd_vma plt_index, got_address, got_value;
3199 struct mips_elf_link_hash_table *htab;
3200
3201 htab = mips_elf_hash_table (info);
3202 BFD_ASSERT (htab != NULL);
3203
3204 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3205
3206 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3207 section starts with reserved entries. */
3208 BFD_ASSERT (htab->is_vxworks);
3209
3210 /* Calculate the index of the symbol's PLT entry. */
3211 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3212
3213 /* Calculate the address of the associated .got.plt entry. */
3214 got_address = (htab->sgotplt->output_section->vma
3215 + htab->sgotplt->output_offset
3216 + plt_index * 4);
3217
3218 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3219 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3220 + htab->root.hgot->root.u.def.section->output_offset
3221 + htab->root.hgot->root.u.def.value);
3222
3223 return got_address - got_value;
3224 }
3225
3226 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3227 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3228 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3229 offset can be found. */
3230
3231 static bfd_vma
3232 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3233 bfd_vma value, unsigned long r_symndx,
3234 struct mips_elf_link_hash_entry *h, int r_type)
3235 {
3236 struct mips_elf_link_hash_table *htab;
3237 struct mips_got_entry *entry;
3238
3239 htab = mips_elf_hash_table (info);
3240 BFD_ASSERT (htab != NULL);
3241
3242 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3243 r_symndx, h, r_type);
3244 if (!entry)
3245 return MINUS_ONE;
3246
3247 if (entry->tls_type)
3248 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3249 return entry->gotidx;
3250 }
3251
3252 /* Return the GOT index of global symbol H in the primary GOT. */
3253
3254 static bfd_vma
3255 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3256 struct elf_link_hash_entry *h)
3257 {
3258 struct mips_elf_link_hash_table *htab;
3259 long global_got_dynindx;
3260 struct mips_got_info *g;
3261 bfd_vma got_index;
3262
3263 htab = mips_elf_hash_table (info);
3264 BFD_ASSERT (htab != NULL);
3265
3266 global_got_dynindx = 0;
3267 if (htab->global_gotsym != NULL)
3268 global_got_dynindx = htab->global_gotsym->dynindx;
3269
3270 /* Once we determine the global GOT entry with the lowest dynamic
3271 symbol table index, we must put all dynamic symbols with greater
3272 indices into the primary GOT. That makes it easy to calculate the
3273 GOT offset. */
3274 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3275 g = mips_elf_bfd_got (obfd, FALSE);
3276 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3277 * MIPS_ELF_GOT_SIZE (obfd));
3278 BFD_ASSERT (got_index < htab->sgot->size);
3279
3280 return got_index;
3281 }
3282
3283 /* Return the GOT index for the global symbol indicated by H, which is
3284 referenced by a relocation of type R_TYPE in IBFD. */
3285
3286 static bfd_vma
3287 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3288 struct elf_link_hash_entry *h, int r_type)
3289 {
3290 struct mips_elf_link_hash_table *htab;
3291 struct mips_got_info *g;
3292 struct mips_got_entry lookup, *entry;
3293 bfd_vma gotidx;
3294
3295 htab = mips_elf_hash_table (info);
3296 BFD_ASSERT (htab != NULL);
3297
3298 g = mips_elf_bfd_got (ibfd, FALSE);
3299 BFD_ASSERT (g);
3300
3301 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3302 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3303 return mips_elf_primary_global_got_index (obfd, info, h);
3304
3305 lookup.abfd = ibfd;
3306 lookup.symndx = -1;
3307 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3308 entry = htab_find (g->got_entries, &lookup);
3309 BFD_ASSERT (entry);
3310
3311 gotidx = entry->gotidx;
3312 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3313
3314 if (lookup.tls_type)
3315 {
3316 bfd_vma value = MINUS_ONE;
3317
3318 if ((h->root.type == bfd_link_hash_defined
3319 || h->root.type == bfd_link_hash_defweak)
3320 && h->root.u.def.section->output_section)
3321 value = (h->root.u.def.value
3322 + h->root.u.def.section->output_offset
3323 + h->root.u.def.section->output_section->vma);
3324
3325 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3326 }
3327 return gotidx;
3328 }
3329
3330 /* Find a GOT page entry that points to within 32KB of VALUE. These
3331 entries are supposed to be placed at small offsets in the GOT, i.e.,
3332 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3333 entry could be created. If OFFSETP is nonnull, use it to return the
3334 offset of the GOT entry from VALUE. */
3335
3336 static bfd_vma
3337 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3338 bfd_vma value, bfd_vma *offsetp)
3339 {
3340 bfd_vma page, got_index;
3341 struct mips_got_entry *entry;
3342
3343 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3344 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3345 NULL, R_MIPS_GOT_PAGE);
3346
3347 if (!entry)
3348 return MINUS_ONE;
3349
3350 got_index = entry->gotidx;
3351
3352 if (offsetp)
3353 *offsetp = value - entry->d.address;
3354
3355 return got_index;
3356 }
3357
3358 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3359 EXTERNAL is true if the relocation was originally against a global
3360 symbol that binds locally. */
3361
3362 static bfd_vma
3363 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3364 bfd_vma value, bfd_boolean external)
3365 {
3366 struct mips_got_entry *entry;
3367
3368 /* GOT16 relocations against local symbols are followed by a LO16
3369 relocation; those against global symbols are not. Thus if the
3370 symbol was originally local, the GOT16 relocation should load the
3371 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3372 if (! external)
3373 value = mips_elf_high (value) << 16;
3374
3375 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3376 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3377 same in all cases. */
3378 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3379 NULL, R_MIPS_GOT16);
3380 if (entry)
3381 return entry->gotidx;
3382 else
3383 return MINUS_ONE;
3384 }
3385
3386 /* Returns the offset for the entry at the INDEXth position
3387 in the GOT. */
3388
3389 static bfd_vma
3390 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3391 bfd *input_bfd, bfd_vma got_index)
3392 {
3393 struct mips_elf_link_hash_table *htab;
3394 asection *sgot;
3395 bfd_vma gp;
3396
3397 htab = mips_elf_hash_table (info);
3398 BFD_ASSERT (htab != NULL);
3399
3400 sgot = htab->sgot;
3401 gp = _bfd_get_gp_value (output_bfd)
3402 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3403
3404 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3405 }
3406
3407 /* Create and return a local GOT entry for VALUE, which was calculated
3408 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3409 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3410 instead. */
3411
3412 static struct mips_got_entry *
3413 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3414 bfd *ibfd, bfd_vma value,
3415 unsigned long r_symndx,
3416 struct mips_elf_link_hash_entry *h,
3417 int r_type)
3418 {
3419 struct mips_got_entry lookup, *entry;
3420 void **loc;
3421 struct mips_got_info *g;
3422 struct mips_elf_link_hash_table *htab;
3423 bfd_vma gotidx;
3424
3425 htab = mips_elf_hash_table (info);
3426 BFD_ASSERT (htab != NULL);
3427
3428 g = mips_elf_bfd_got (ibfd, FALSE);
3429 if (g == NULL)
3430 {
3431 g = mips_elf_bfd_got (abfd, FALSE);
3432 BFD_ASSERT (g != NULL);
3433 }
3434
3435 /* This function shouldn't be called for symbols that live in the global
3436 area of the GOT. */
3437 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3438
3439 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3440 if (lookup.tls_type)
3441 {
3442 lookup.abfd = ibfd;
3443 if (tls_ldm_reloc_p (r_type))
3444 {
3445 lookup.symndx = 0;
3446 lookup.d.addend = 0;
3447 }
3448 else if (h == NULL)
3449 {
3450 lookup.symndx = r_symndx;
3451 lookup.d.addend = 0;
3452 }
3453 else
3454 {
3455 lookup.symndx = -1;
3456 lookup.d.h = h;
3457 }
3458
3459 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3460 BFD_ASSERT (entry);
3461
3462 gotidx = entry->gotidx;
3463 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3464
3465 return entry;
3466 }
3467
3468 lookup.abfd = NULL;
3469 lookup.symndx = -1;
3470 lookup.d.address = value;
3471 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3472 if (!loc)
3473 return NULL;
3474
3475 entry = (struct mips_got_entry *) *loc;
3476 if (entry)
3477 return entry;
3478
3479 if (g->assigned_gotno >= g->local_gotno)
3480 {
3481 /* We didn't allocate enough space in the GOT. */
3482 (*_bfd_error_handler)
3483 (_("not enough GOT space for local GOT entries"));
3484 bfd_set_error (bfd_error_bad_value);
3485 return NULL;
3486 }
3487
3488 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3489 if (!entry)
3490 return NULL;
3491
3492 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3493 *entry = lookup;
3494 *loc = entry;
3495
3496 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3497
3498 /* These GOT entries need a dynamic relocation on VxWorks. */
3499 if (htab->is_vxworks)
3500 {
3501 Elf_Internal_Rela outrel;
3502 asection *s;
3503 bfd_byte *rloc;
3504 bfd_vma got_address;
3505
3506 s = mips_elf_rel_dyn_section (info, FALSE);
3507 got_address = (htab->sgot->output_section->vma
3508 + htab->sgot->output_offset
3509 + entry->gotidx);
3510
3511 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3512 outrel.r_offset = got_address;
3513 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3514 outrel.r_addend = value;
3515 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3516 }
3517
3518 return entry;
3519 }
3520
3521 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3522 The number might be exact or a worst-case estimate, depending on how
3523 much information is available to elf_backend_omit_section_dynsym at
3524 the current linking stage. */
3525
3526 static bfd_size_type
3527 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3528 {
3529 bfd_size_type count;
3530
3531 count = 0;
3532 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3533 {
3534 asection *p;
3535 const struct elf_backend_data *bed;
3536
3537 bed = get_elf_backend_data (output_bfd);
3538 for (p = output_bfd->sections; p ; p = p->next)
3539 if ((p->flags & SEC_EXCLUDE) == 0
3540 && (p->flags & SEC_ALLOC) != 0
3541 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3542 ++count;
3543 }
3544 return count;
3545 }
3546
3547 /* Sort the dynamic symbol table so that symbols that need GOT entries
3548 appear towards the end. */
3549
3550 static bfd_boolean
3551 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3552 {
3553 struct mips_elf_link_hash_table *htab;
3554 struct mips_elf_hash_sort_data hsd;
3555 struct mips_got_info *g;
3556
3557 if (elf_hash_table (info)->dynsymcount == 0)
3558 return TRUE;
3559
3560 htab = mips_elf_hash_table (info);
3561 BFD_ASSERT (htab != NULL);
3562
3563 g = htab->got_info;
3564 if (g == NULL)
3565 return TRUE;
3566
3567 hsd.low = NULL;
3568 hsd.max_unref_got_dynindx
3569 = hsd.min_got_dynindx
3570 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3571 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3572 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3573 elf_hash_table (info)),
3574 mips_elf_sort_hash_table_f,
3575 &hsd);
3576
3577 /* There should have been enough room in the symbol table to
3578 accommodate both the GOT and non-GOT symbols. */
3579 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3580 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3581 == elf_hash_table (info)->dynsymcount);
3582 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3583 == g->global_gotno);
3584
3585 /* Now we know which dynamic symbol has the lowest dynamic symbol
3586 table index in the GOT. */
3587 htab->global_gotsym = hsd.low;
3588
3589 return TRUE;
3590 }
3591
3592 /* If H needs a GOT entry, assign it the highest available dynamic
3593 index. Otherwise, assign it the lowest available dynamic
3594 index. */
3595
3596 static bfd_boolean
3597 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3598 {
3599 struct mips_elf_hash_sort_data *hsd = data;
3600
3601 /* Symbols without dynamic symbol table entries aren't interesting
3602 at all. */
3603 if (h->root.dynindx == -1)
3604 return TRUE;
3605
3606 switch (h->global_got_area)
3607 {
3608 case GGA_NONE:
3609 h->root.dynindx = hsd->max_non_got_dynindx++;
3610 break;
3611
3612 case GGA_NORMAL:
3613 h->root.dynindx = --hsd->min_got_dynindx;
3614 hsd->low = (struct elf_link_hash_entry *) h;
3615 break;
3616
3617 case GGA_RELOC_ONLY:
3618 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3619 hsd->low = (struct elf_link_hash_entry *) h;
3620 h->root.dynindx = hsd->max_unref_got_dynindx++;
3621 break;
3622 }
3623
3624 return TRUE;
3625 }
3626
3627 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3628 (which is owned by the caller and shouldn't be added to the
3629 hash table directly). */
3630
3631 static bfd_boolean
3632 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3633 struct mips_got_entry *lookup)
3634 {
3635 struct mips_elf_link_hash_table *htab;
3636 struct mips_got_entry *entry;
3637 struct mips_got_info *g;
3638 void **loc, **bfd_loc;
3639
3640 /* Make sure there's a slot for this entry in the master GOT. */
3641 htab = mips_elf_hash_table (info);
3642 g = htab->got_info;
3643 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3644 if (!loc)
3645 return FALSE;
3646
3647 /* Populate the entry if it isn't already. */
3648 entry = (struct mips_got_entry *) *loc;
3649 if (!entry)
3650 {
3651 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3652 if (!entry)
3653 return FALSE;
3654
3655 lookup->tls_initialized = FALSE;
3656 lookup->gotidx = -1;
3657 *entry = *lookup;
3658 *loc = entry;
3659 }
3660
3661 /* Reuse the same GOT entry for the BFD's GOT. */
3662 g = mips_elf_bfd_got (abfd, TRUE);
3663 if (!g)
3664 return FALSE;
3665
3666 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3667 if (!bfd_loc)
3668 return FALSE;
3669
3670 if (!*bfd_loc)
3671 *bfd_loc = entry;
3672 return TRUE;
3673 }
3674
3675 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3676 entry for it. FOR_CALL is true if the caller is only interested in
3677 using the GOT entry for calls. */
3678
3679 static bfd_boolean
3680 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3681 bfd *abfd, struct bfd_link_info *info,
3682 bfd_boolean for_call, int r_type)
3683 {
3684 struct mips_elf_link_hash_table *htab;
3685 struct mips_elf_link_hash_entry *hmips;
3686 struct mips_got_entry entry;
3687 unsigned char tls_type;
3688
3689 htab = mips_elf_hash_table (info);
3690 BFD_ASSERT (htab != NULL);
3691
3692 hmips = (struct mips_elf_link_hash_entry *) h;
3693 if (!for_call)
3694 hmips->got_only_for_calls = FALSE;
3695
3696 /* A global symbol in the GOT must also be in the dynamic symbol
3697 table. */
3698 if (h->dynindx == -1)
3699 {
3700 switch (ELF_ST_VISIBILITY (h->other))
3701 {
3702 case STV_INTERNAL:
3703 case STV_HIDDEN:
3704 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3705 break;
3706 }
3707 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3708 return FALSE;
3709 }
3710
3711 tls_type = mips_elf_reloc_tls_type (r_type);
3712 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3713 hmips->global_got_area = GGA_NORMAL;
3714
3715 entry.abfd = abfd;
3716 entry.symndx = -1;
3717 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3718 entry.tls_type = tls_type;
3719 return mips_elf_record_got_entry (info, abfd, &entry);
3720 }
3721
3722 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3723 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3724
3725 static bfd_boolean
3726 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3727 struct bfd_link_info *info, int r_type)
3728 {
3729 struct mips_elf_link_hash_table *htab;
3730 struct mips_got_info *g;
3731 struct mips_got_entry entry;
3732
3733 htab = mips_elf_hash_table (info);
3734 BFD_ASSERT (htab != NULL);
3735
3736 g = htab->got_info;
3737 BFD_ASSERT (g != NULL);
3738
3739 entry.abfd = abfd;
3740 entry.symndx = symndx;
3741 entry.d.addend = addend;
3742 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3743 return mips_elf_record_got_entry (info, abfd, &entry);
3744 }
3745
3746 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3747 H is the symbol's hash table entry, or null if SYMNDX is local
3748 to ABFD. */
3749
3750 static bfd_boolean
3751 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3752 long symndx, struct elf_link_hash_entry *h,
3753 bfd_signed_vma addend)
3754 {
3755 struct mips_elf_link_hash_table *htab;
3756 struct mips_got_info *g1, *g2;
3757 struct mips_got_page_ref lookup, *entry;
3758 void **loc, **bfd_loc;
3759
3760 htab = mips_elf_hash_table (info);
3761 BFD_ASSERT (htab != NULL);
3762
3763 g1 = htab->got_info;
3764 BFD_ASSERT (g1 != NULL);
3765
3766 if (h)
3767 {
3768 lookup.symndx = -1;
3769 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
3770 }
3771 else
3772 {
3773 lookup.symndx = symndx;
3774 lookup.u.abfd = abfd;
3775 }
3776 lookup.addend = addend;
3777 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
3778 if (loc == NULL)
3779 return FALSE;
3780
3781 entry = (struct mips_got_page_ref *) *loc;
3782 if (!entry)
3783 {
3784 entry = bfd_alloc (abfd, sizeof (*entry));
3785 if (!entry)
3786 return FALSE;
3787
3788 *entry = lookup;
3789 *loc = entry;
3790 }
3791
3792 /* Add the same entry to the BFD's GOT. */
3793 g2 = mips_elf_bfd_got (abfd, TRUE);
3794 if (!g2)
3795 return FALSE;
3796
3797 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
3798 if (!bfd_loc)
3799 return FALSE;
3800
3801 if (!*bfd_loc)
3802 *bfd_loc = entry;
3803
3804 return TRUE;
3805 }
3806
3807 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3808
3809 static void
3810 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3811 unsigned int n)
3812 {
3813 asection *s;
3814 struct mips_elf_link_hash_table *htab;
3815
3816 htab = mips_elf_hash_table (info);
3817 BFD_ASSERT (htab != NULL);
3818
3819 s = mips_elf_rel_dyn_section (info, FALSE);
3820 BFD_ASSERT (s != NULL);
3821
3822 if (htab->is_vxworks)
3823 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3824 else
3825 {
3826 if (s->size == 0)
3827 {
3828 /* Make room for a null element. */
3829 s->size += MIPS_ELF_REL_SIZE (abfd);
3830 ++s->reloc_count;
3831 }
3832 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3833 }
3834 }
3835 \f
3836 /* A htab_traverse callback for GOT entries, with DATA pointing to a
3837 mips_elf_traverse_got_arg structure. Count the number of GOT
3838 entries and TLS relocs. Set DATA->value to true if we need
3839 to resolve indirect or warning symbols and then recreate the GOT. */
3840
3841 static int
3842 mips_elf_check_recreate_got (void **entryp, void *data)
3843 {
3844 struct mips_got_entry *entry;
3845 struct mips_elf_traverse_got_arg *arg;
3846
3847 entry = (struct mips_got_entry *) *entryp;
3848 arg = (struct mips_elf_traverse_got_arg *) data;
3849 if (entry->abfd != NULL && entry->symndx == -1)
3850 {
3851 struct mips_elf_link_hash_entry *h;
3852
3853 h = entry->d.h;
3854 if (h->root.root.type == bfd_link_hash_indirect
3855 || h->root.root.type == bfd_link_hash_warning)
3856 {
3857 arg->value = TRUE;
3858 return 0;
3859 }
3860 }
3861 mips_elf_count_got_entry (arg->info, arg->g, entry);
3862 return 1;
3863 }
3864
3865 /* A htab_traverse callback for GOT entries, with DATA pointing to a
3866 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
3867 converting entries for indirect and warning symbols into entries
3868 for the target symbol. Set DATA->g to null on error. */
3869
3870 static int
3871 mips_elf_recreate_got (void **entryp, void *data)
3872 {
3873 struct mips_got_entry new_entry, *entry;
3874 struct mips_elf_traverse_got_arg *arg;
3875 void **slot;
3876
3877 entry = (struct mips_got_entry *) *entryp;
3878 arg = (struct mips_elf_traverse_got_arg *) data;
3879 if (entry->abfd != NULL
3880 && entry->symndx == -1
3881 && (entry->d.h->root.root.type == bfd_link_hash_indirect
3882 || entry->d.h->root.root.type == bfd_link_hash_warning))
3883 {
3884 struct mips_elf_link_hash_entry *h;
3885
3886 new_entry = *entry;
3887 entry = &new_entry;
3888 h = entry->d.h;
3889 do
3890 {
3891 BFD_ASSERT (h->global_got_area == GGA_NONE);
3892 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3893 }
3894 while (h->root.root.type == bfd_link_hash_indirect
3895 || h->root.root.type == bfd_link_hash_warning);
3896 entry->d.h = h;
3897 }
3898 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
3899 if (slot == NULL)
3900 {
3901 arg->g = NULL;
3902 return 0;
3903 }
3904 if (*slot == NULL)
3905 {
3906 if (entry == &new_entry)
3907 {
3908 entry = bfd_alloc (entry->abfd, sizeof (*entry));
3909 if (!entry)
3910 {
3911 arg->g = NULL;
3912 return 0;
3913 }
3914 *entry = new_entry;
3915 }
3916 *slot = entry;
3917 mips_elf_count_got_entry (arg->info, arg->g, entry);
3918 }
3919 return 1;
3920 }
3921
3922 /* Return the maximum number of GOT page entries required for RANGE. */
3923
3924 static bfd_vma
3925 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3926 {
3927 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3928 }
3929
3930 /* Record that G requires a page entry that can reach SEC + ADDEND. */
3931
3932 static bfd_boolean
3933 mips_elf_record_got_page_entry (struct mips_got_info *g,
3934 asection *sec, bfd_signed_vma addend)
3935 {
3936 struct mips_got_page_entry lookup, *entry;
3937 struct mips_got_page_range **range_ptr, *range;
3938 bfd_vma old_pages, new_pages;
3939 void **loc;
3940
3941 /* Find the mips_got_page_entry hash table entry for this section. */
3942 lookup.sec = sec;
3943 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3944 if (loc == NULL)
3945 return FALSE;
3946
3947 /* Create a mips_got_page_entry if this is the first time we've
3948 seen the section. */
3949 entry = (struct mips_got_page_entry *) *loc;
3950 if (!entry)
3951 {
3952 entry = bfd_zalloc (sec->owner, sizeof (*entry));
3953 if (!entry)
3954 return FALSE;
3955
3956 entry->sec = sec;
3957 *loc = entry;
3958 }
3959
3960 /* Skip over ranges whose maximum extent cannot share a page entry
3961 with ADDEND. */
3962 range_ptr = &entry->ranges;
3963 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3964 range_ptr = &(*range_ptr)->next;
3965
3966 /* If we scanned to the end of the list, or found a range whose
3967 minimum extent cannot share a page entry with ADDEND, create
3968 a new singleton range. */
3969 range = *range_ptr;
3970 if (!range || addend < range->min_addend - 0xffff)
3971 {
3972 range = bfd_zalloc (sec->owner, sizeof (*range));
3973 if (!range)
3974 return FALSE;
3975
3976 range->next = *range_ptr;
3977 range->min_addend = addend;
3978 range->max_addend = addend;
3979
3980 *range_ptr = range;
3981 entry->num_pages++;
3982 g->page_gotno++;
3983 return TRUE;
3984 }
3985
3986 /* Remember how many pages the old range contributed. */
3987 old_pages = mips_elf_pages_for_range (range);
3988
3989 /* Update the ranges. */
3990 if (addend < range->min_addend)
3991 range->min_addend = addend;
3992 else if (addend > range->max_addend)
3993 {
3994 if (range->next && addend >= range->next->min_addend - 0xffff)
3995 {
3996 old_pages += mips_elf_pages_for_range (range->next);
3997 range->max_addend = range->next->max_addend;
3998 range->next = range->next->next;
3999 }
4000 else
4001 range->max_addend = addend;
4002 }
4003
4004 /* Record any change in the total estimate. */
4005 new_pages = mips_elf_pages_for_range (range);
4006 if (old_pages != new_pages)
4007 {
4008 entry->num_pages += new_pages - old_pages;
4009 g->page_gotno += new_pages - old_pages;
4010 }
4011
4012 return TRUE;
4013 }
4014
4015 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4016 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4017 whether the page reference described by *REFP needs a GOT page entry,
4018 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4019
4020 static bfd_boolean
4021 mips_elf_resolve_got_page_ref (void **refp, void *data)
4022 {
4023 struct mips_got_page_ref *ref;
4024 struct mips_elf_traverse_got_arg *arg;
4025 struct mips_elf_link_hash_table *htab;
4026 asection *sec;
4027 bfd_vma addend;
4028
4029 ref = (struct mips_got_page_ref *) *refp;
4030 arg = (struct mips_elf_traverse_got_arg *) data;
4031 htab = mips_elf_hash_table (arg->info);
4032
4033 if (ref->symndx < 0)
4034 {
4035 struct mips_elf_link_hash_entry *h;
4036
4037 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4038 h = ref->u.h;
4039 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4040 return 1;
4041
4042 /* Ignore undefined symbols; we'll issue an error later if
4043 appropriate. */
4044 if (!((h->root.root.type == bfd_link_hash_defined
4045 || h->root.root.type == bfd_link_hash_defweak)
4046 && h->root.root.u.def.section))
4047 return 1;
4048
4049 sec = h->root.root.u.def.section;
4050 addend = h->root.root.u.def.value + ref->addend;
4051 }
4052 else
4053 {
4054 Elf_Internal_Sym *isym;
4055
4056 /* Read in the symbol. */
4057 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4058 ref->symndx);
4059 if (isym == NULL)
4060 {
4061 arg->g = NULL;
4062 return 0;
4063 }
4064
4065 /* Get the associated input section. */
4066 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4067 if (sec == NULL)
4068 {
4069 arg->g = NULL;
4070 return 0;
4071 }
4072
4073 /* If this is a mergable section, work out the section and offset
4074 of the merged data. For section symbols, the addend specifies
4075 of the offset _of_ the first byte in the data, otherwise it
4076 specifies the offset _from_ the first byte. */
4077 if (sec->flags & SEC_MERGE)
4078 {
4079 void *secinfo;
4080
4081 secinfo = elf_section_data (sec)->sec_info;
4082 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4083 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4084 isym->st_value + ref->addend);
4085 else
4086 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4087 isym->st_value) + ref->addend;
4088 }
4089 else
4090 addend = isym->st_value + ref->addend;
4091 }
4092 if (!mips_elf_record_got_page_entry (arg->g, sec, addend))
4093 {
4094 arg->g = NULL;
4095 return 0;
4096 }
4097 return 1;
4098 }
4099
4100 /* If any entries in G->got_entries are for indirect or warning symbols,
4101 replace them with entries for the target symbol. Convert g->got_page_refs
4102 into got_page_entry structures and estimate the number of page entries
4103 that they require. */
4104
4105 static bfd_boolean
4106 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4107 struct mips_got_info *g)
4108 {
4109 struct mips_elf_traverse_got_arg tga;
4110 struct mips_got_info oldg;
4111
4112 oldg = *g;
4113
4114 tga.info = info;
4115 tga.g = g;
4116 tga.value = FALSE;
4117 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4118 if (tga.value)
4119 {
4120 *g = oldg;
4121 g->got_entries = htab_create (htab_size (oldg.got_entries),
4122 mips_elf_got_entry_hash,
4123 mips_elf_got_entry_eq, NULL);
4124 if (!g->got_entries)
4125 return FALSE;
4126
4127 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4128 if (!tga.g)
4129 return FALSE;
4130
4131 htab_delete (oldg.got_entries);
4132 }
4133
4134 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4135 mips_got_page_entry_eq, NULL);
4136 if (g->got_page_entries == NULL)
4137 return FALSE;
4138
4139 tga.info = info;
4140 tga.g = g;
4141 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4142
4143 return TRUE;
4144 }
4145
4146 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4147 link_info structure. Decide whether the hash entry needs an entry in
4148 the global part of the primary GOT, setting global_got_area accordingly.
4149 Count the number of global symbols that are in the primary GOT only
4150 because they have relocations against them (reloc_only_gotno). */
4151
4152 static int
4153 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4154 {
4155 struct bfd_link_info *info;
4156 struct mips_elf_link_hash_table *htab;
4157 struct mips_got_info *g;
4158
4159 info = (struct bfd_link_info *) data;
4160 htab = mips_elf_hash_table (info);
4161 g = htab->got_info;
4162 if (h->global_got_area != GGA_NONE)
4163 {
4164 /* Make a final decision about whether the symbol belongs in the
4165 local or global GOT. Symbols that bind locally can (and in the
4166 case of forced-local symbols, must) live in the local GOT.
4167 Those that are aren't in the dynamic symbol table must also
4168 live in the local GOT.
4169
4170 Note that the former condition does not always imply the
4171 latter: symbols do not bind locally if they are completely
4172 undefined. We'll report undefined symbols later if appropriate. */
4173 if (h->root.dynindx == -1
4174 || (h->got_only_for_calls
4175 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4176 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4177 /* The symbol belongs in the local GOT. We no longer need this
4178 entry if it was only used for relocations; those relocations
4179 will be against the null or section symbol instead of H. */
4180 h->global_got_area = GGA_NONE;
4181 else if (htab->is_vxworks
4182 && h->got_only_for_calls
4183 && h->root.plt.offset != MINUS_ONE)
4184 /* On VxWorks, calls can refer directly to the .got.plt entry;
4185 they don't need entries in the regular GOT. .got.plt entries
4186 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4187 h->global_got_area = GGA_NONE;
4188 else if (h->global_got_area == GGA_RELOC_ONLY)
4189 {
4190 g->reloc_only_gotno++;
4191 g->global_gotno++;
4192 }
4193 }
4194 return 1;
4195 }
4196 \f
4197 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4198 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4199
4200 static int
4201 mips_elf_add_got_entry (void **entryp, void *data)
4202 {
4203 struct mips_got_entry *entry;
4204 struct mips_elf_traverse_got_arg *arg;
4205 void **slot;
4206
4207 entry = (struct mips_got_entry *) *entryp;
4208 arg = (struct mips_elf_traverse_got_arg *) data;
4209 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4210 if (!slot)
4211 {
4212 arg->g = NULL;
4213 return 0;
4214 }
4215 if (!*slot)
4216 {
4217 *slot = entry;
4218 mips_elf_count_got_entry (arg->info, arg->g, entry);
4219 }
4220 return 1;
4221 }
4222
4223 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4224 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4225
4226 static int
4227 mips_elf_add_got_page_entry (void **entryp, void *data)
4228 {
4229 struct mips_got_page_entry *entry;
4230 struct mips_elf_traverse_got_arg *arg;
4231 void **slot;
4232
4233 entry = (struct mips_got_page_entry *) *entryp;
4234 arg = (struct mips_elf_traverse_got_arg *) data;
4235 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4236 if (!slot)
4237 {
4238 arg->g = NULL;
4239 return 0;
4240 }
4241 if (!*slot)
4242 {
4243 *slot = entry;
4244 arg->g->page_gotno += entry->num_pages;
4245 }
4246 return 1;
4247 }
4248
4249 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4250 this would lead to overflow, 1 if they were merged successfully,
4251 and 0 if a merge failed due to lack of memory. (These values are chosen
4252 so that nonnegative return values can be returned by a htab_traverse
4253 callback.) */
4254
4255 static int
4256 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4257 struct mips_got_info *to,
4258 struct mips_elf_got_per_bfd_arg *arg)
4259 {
4260 struct mips_elf_traverse_got_arg tga;
4261 unsigned int estimate;
4262
4263 /* Work out how many page entries we would need for the combined GOT. */
4264 estimate = arg->max_pages;
4265 if (estimate >= from->page_gotno + to->page_gotno)
4266 estimate = from->page_gotno + to->page_gotno;
4267
4268 /* And conservatively estimate how many local and TLS entries
4269 would be needed. */
4270 estimate += from->local_gotno + to->local_gotno;
4271 estimate += from->tls_gotno + to->tls_gotno;
4272
4273 /* If we're merging with the primary got, any TLS relocations will
4274 come after the full set of global entries. Otherwise estimate those
4275 conservatively as well. */
4276 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4277 estimate += arg->global_count;
4278 else
4279 estimate += from->global_gotno + to->global_gotno;
4280
4281 /* Bail out if the combined GOT might be too big. */
4282 if (estimate > arg->max_count)
4283 return -1;
4284
4285 /* Transfer the bfd's got information from FROM to TO. */
4286 tga.info = arg->info;
4287 tga.g = to;
4288 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4289 if (!tga.g)
4290 return 0;
4291
4292 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4293 if (!tga.g)
4294 return 0;
4295
4296 mips_elf_replace_bfd_got (abfd, to);
4297 return 1;
4298 }
4299
4300 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4301 as possible of the primary got, since it doesn't require explicit
4302 dynamic relocations, but don't use bfds that would reference global
4303 symbols out of the addressable range. Failing the primary got,
4304 attempt to merge with the current got, or finish the current got
4305 and then make make the new got current. */
4306
4307 static bfd_boolean
4308 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4309 struct mips_elf_got_per_bfd_arg *arg)
4310 {
4311 unsigned int estimate;
4312 int result;
4313
4314 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4315 return FALSE;
4316
4317 /* Work out the number of page, local and TLS entries. */
4318 estimate = arg->max_pages;
4319 if (estimate > g->page_gotno)
4320 estimate = g->page_gotno;
4321 estimate += g->local_gotno + g->tls_gotno;
4322
4323 /* We place TLS GOT entries after both locals and globals. The globals
4324 for the primary GOT may overflow the normal GOT size limit, so be
4325 sure not to merge a GOT which requires TLS with the primary GOT in that
4326 case. This doesn't affect non-primary GOTs. */
4327 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4328
4329 if (estimate <= arg->max_count)
4330 {
4331 /* If we don't have a primary GOT, use it as
4332 a starting point for the primary GOT. */
4333 if (!arg->primary)
4334 {
4335 arg->primary = g;
4336 return TRUE;
4337 }
4338
4339 /* Try merging with the primary GOT. */
4340 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4341 if (result >= 0)
4342 return result;
4343 }
4344
4345 /* If we can merge with the last-created got, do it. */
4346 if (arg->current)
4347 {
4348 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4349 if (result >= 0)
4350 return result;
4351 }
4352
4353 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4354 fits; if it turns out that it doesn't, we'll get relocation
4355 overflows anyway. */
4356 g->next = arg->current;
4357 arg->current = g;
4358
4359 return TRUE;
4360 }
4361
4362 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4363 to GOTIDX, duplicating the entry if it has already been assigned
4364 an index in a different GOT. */
4365
4366 static bfd_boolean
4367 mips_elf_set_gotidx (void **entryp, long gotidx)
4368 {
4369 struct mips_got_entry *entry;
4370
4371 entry = (struct mips_got_entry *) *entryp;
4372 if (entry->gotidx > 0)
4373 {
4374 struct mips_got_entry *new_entry;
4375
4376 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4377 if (!new_entry)
4378 return FALSE;
4379
4380 *new_entry = *entry;
4381 *entryp = new_entry;
4382 entry = new_entry;
4383 }
4384 entry->gotidx = gotidx;
4385 return TRUE;
4386 }
4387
4388 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4389 mips_elf_traverse_got_arg in which DATA->value is the size of one
4390 GOT entry. Set DATA->g to null on failure. */
4391
4392 static int
4393 mips_elf_initialize_tls_index (void **entryp, void *data)
4394 {
4395 struct mips_got_entry *entry;
4396 struct mips_elf_traverse_got_arg *arg;
4397
4398 /* We're only interested in TLS symbols. */
4399 entry = (struct mips_got_entry *) *entryp;
4400 if (entry->tls_type == GOT_TLS_NONE)
4401 return 1;
4402
4403 arg = (struct mips_elf_traverse_got_arg *) data;
4404 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4405 {
4406 arg->g = NULL;
4407 return 0;
4408 }
4409
4410 /* Account for the entries we've just allocated. */
4411 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4412 return 1;
4413 }
4414
4415 /* A htab_traverse callback for GOT entries, where DATA points to a
4416 mips_elf_traverse_got_arg. Set the global_got_area of each global
4417 symbol to DATA->value. */
4418
4419 static int
4420 mips_elf_set_global_got_area (void **entryp, void *data)
4421 {
4422 struct mips_got_entry *entry;
4423 struct mips_elf_traverse_got_arg *arg;
4424
4425 entry = (struct mips_got_entry *) *entryp;
4426 arg = (struct mips_elf_traverse_got_arg *) data;
4427 if (entry->abfd != NULL
4428 && entry->symndx == -1
4429 && entry->d.h->global_got_area != GGA_NONE)
4430 entry->d.h->global_got_area = arg->value;
4431 return 1;
4432 }
4433
4434 /* A htab_traverse callback for secondary GOT entries, where DATA points
4435 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4436 and record the number of relocations they require. DATA->value is
4437 the size of one GOT entry. Set DATA->g to null on failure. */
4438
4439 static int
4440 mips_elf_set_global_gotidx (void **entryp, void *data)
4441 {
4442 struct mips_got_entry *entry;
4443 struct mips_elf_traverse_got_arg *arg;
4444
4445 entry = (struct mips_got_entry *) *entryp;
4446 arg = (struct mips_elf_traverse_got_arg *) data;
4447 if (entry->abfd != NULL
4448 && entry->symndx == -1
4449 && entry->d.h->global_got_area != GGA_NONE)
4450 {
4451 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_gotno))
4452 {
4453 arg->g = NULL;
4454 return 0;
4455 }
4456 arg->g->assigned_gotno += 1;
4457
4458 if (arg->info->shared
4459 || (elf_hash_table (arg->info)->dynamic_sections_created
4460 && entry->d.h->root.def_dynamic
4461 && !entry->d.h->root.def_regular))
4462 arg->g->relocs += 1;
4463 }
4464
4465 return 1;
4466 }
4467
4468 /* A htab_traverse callback for GOT entries for which DATA is the
4469 bfd_link_info. Forbid any global symbols from having traditional
4470 lazy-binding stubs. */
4471
4472 static int
4473 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4474 {
4475 struct bfd_link_info *info;
4476 struct mips_elf_link_hash_table *htab;
4477 struct mips_got_entry *entry;
4478
4479 entry = (struct mips_got_entry *) *entryp;
4480 info = (struct bfd_link_info *) data;
4481 htab = mips_elf_hash_table (info);
4482 BFD_ASSERT (htab != NULL);
4483
4484 if (entry->abfd != NULL
4485 && entry->symndx == -1
4486 && entry->d.h->needs_lazy_stub)
4487 {
4488 entry->d.h->needs_lazy_stub = FALSE;
4489 htab->lazy_stub_count--;
4490 }
4491
4492 return 1;
4493 }
4494
4495 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4496 the primary GOT. */
4497 static bfd_vma
4498 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4499 {
4500 if (!g->next)
4501 return 0;
4502
4503 g = mips_elf_bfd_got (ibfd, FALSE);
4504 if (! g)
4505 return 0;
4506
4507 BFD_ASSERT (g->next);
4508
4509 g = g->next;
4510
4511 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4512 * MIPS_ELF_GOT_SIZE (abfd);
4513 }
4514
4515 /* Turn a single GOT that is too big for 16-bit addressing into
4516 a sequence of GOTs, each one 16-bit addressable. */
4517
4518 static bfd_boolean
4519 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4520 asection *got, bfd_size_type pages)
4521 {
4522 struct mips_elf_link_hash_table *htab;
4523 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4524 struct mips_elf_traverse_got_arg tga;
4525 struct mips_got_info *g, *gg;
4526 unsigned int assign, needed_relocs;
4527 bfd *dynobj, *ibfd;
4528
4529 dynobj = elf_hash_table (info)->dynobj;
4530 htab = mips_elf_hash_table (info);
4531 BFD_ASSERT (htab != NULL);
4532
4533 g = htab->got_info;
4534
4535 got_per_bfd_arg.obfd = abfd;
4536 got_per_bfd_arg.info = info;
4537 got_per_bfd_arg.current = NULL;
4538 got_per_bfd_arg.primary = NULL;
4539 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4540 / MIPS_ELF_GOT_SIZE (abfd))
4541 - htab->reserved_gotno);
4542 got_per_bfd_arg.max_pages = pages;
4543 /* The number of globals that will be included in the primary GOT.
4544 See the calls to mips_elf_set_global_got_area below for more
4545 information. */
4546 got_per_bfd_arg.global_count = g->global_gotno;
4547
4548 /* Try to merge the GOTs of input bfds together, as long as they
4549 don't seem to exceed the maximum GOT size, choosing one of them
4550 to be the primary GOT. */
4551 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
4552 {
4553 gg = mips_elf_bfd_got (ibfd, FALSE);
4554 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4555 return FALSE;
4556 }
4557
4558 /* If we do not find any suitable primary GOT, create an empty one. */
4559 if (got_per_bfd_arg.primary == NULL)
4560 g->next = mips_elf_create_got_info (abfd);
4561 else
4562 g->next = got_per_bfd_arg.primary;
4563 g->next->next = got_per_bfd_arg.current;
4564
4565 /* GG is now the master GOT, and G is the primary GOT. */
4566 gg = g;
4567 g = g->next;
4568
4569 /* Map the output bfd to the primary got. That's what we're going
4570 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4571 didn't mark in check_relocs, and we want a quick way to find it.
4572 We can't just use gg->next because we're going to reverse the
4573 list. */
4574 mips_elf_replace_bfd_got (abfd, g);
4575
4576 /* Every symbol that is referenced in a dynamic relocation must be
4577 present in the primary GOT, so arrange for them to appear after
4578 those that are actually referenced. */
4579 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4580 g->global_gotno = gg->global_gotno;
4581
4582 tga.info = info;
4583 tga.value = GGA_RELOC_ONLY;
4584 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4585 tga.value = GGA_NORMAL;
4586 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4587
4588 /* Now go through the GOTs assigning them offset ranges.
4589 [assigned_gotno, local_gotno[ will be set to the range of local
4590 entries in each GOT. We can then compute the end of a GOT by
4591 adding local_gotno to global_gotno. We reverse the list and make
4592 it circular since then we'll be able to quickly compute the
4593 beginning of a GOT, by computing the end of its predecessor. To
4594 avoid special cases for the primary GOT, while still preserving
4595 assertions that are valid for both single- and multi-got links,
4596 we arrange for the main got struct to have the right number of
4597 global entries, but set its local_gotno such that the initial
4598 offset of the primary GOT is zero. Remember that the primary GOT
4599 will become the last item in the circular linked list, so it
4600 points back to the master GOT. */
4601 gg->local_gotno = -g->global_gotno;
4602 gg->global_gotno = g->global_gotno;
4603 gg->tls_gotno = 0;
4604 assign = 0;
4605 gg->next = gg;
4606
4607 do
4608 {
4609 struct mips_got_info *gn;
4610
4611 assign += htab->reserved_gotno;
4612 g->assigned_gotno = assign;
4613 g->local_gotno += assign;
4614 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4615 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4616
4617 /* Take g out of the direct list, and push it onto the reversed
4618 list that gg points to. g->next is guaranteed to be nonnull after
4619 this operation, as required by mips_elf_initialize_tls_index. */
4620 gn = g->next;
4621 g->next = gg->next;
4622 gg->next = g;
4623
4624 /* Set up any TLS entries. We always place the TLS entries after
4625 all non-TLS entries. */
4626 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4627 tga.g = g;
4628 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4629 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4630 if (!tga.g)
4631 return FALSE;
4632 BFD_ASSERT (g->tls_assigned_gotno == assign);
4633
4634 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4635 g = gn;
4636
4637 /* Forbid global symbols in every non-primary GOT from having
4638 lazy-binding stubs. */
4639 if (g)
4640 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4641 }
4642 while (g);
4643
4644 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4645
4646 needed_relocs = 0;
4647 for (g = gg->next; g && g->next != gg; g = g->next)
4648 {
4649 unsigned int save_assign;
4650
4651 /* Assign offsets to global GOT entries and count how many
4652 relocations they need. */
4653 save_assign = g->assigned_gotno;
4654 g->assigned_gotno = g->local_gotno;
4655 tga.info = info;
4656 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4657 tga.g = g;
4658 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4659 if (!tga.g)
4660 return FALSE;
4661 BFD_ASSERT (g->assigned_gotno == g->local_gotno + g->global_gotno);
4662 g->assigned_gotno = save_assign;
4663
4664 if (info->shared)
4665 {
4666 g->relocs += g->local_gotno - g->assigned_gotno;
4667 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4668 + g->next->global_gotno
4669 + g->next->tls_gotno
4670 + htab->reserved_gotno);
4671 }
4672 needed_relocs += g->relocs;
4673 }
4674 needed_relocs += g->relocs;
4675
4676 if (needed_relocs)
4677 mips_elf_allocate_dynamic_relocations (dynobj, info,
4678 needed_relocs);
4679
4680 return TRUE;
4681 }
4682
4683 \f
4684 /* Returns the first relocation of type r_type found, beginning with
4685 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4686
4687 static const Elf_Internal_Rela *
4688 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4689 const Elf_Internal_Rela *relocation,
4690 const Elf_Internal_Rela *relend)
4691 {
4692 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4693
4694 while (relocation < relend)
4695 {
4696 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4697 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4698 return relocation;
4699
4700 ++relocation;
4701 }
4702
4703 /* We didn't find it. */
4704 return NULL;
4705 }
4706
4707 /* Return whether an input relocation is against a local symbol. */
4708
4709 static bfd_boolean
4710 mips_elf_local_relocation_p (bfd *input_bfd,
4711 const Elf_Internal_Rela *relocation,
4712 asection **local_sections)
4713 {
4714 unsigned long r_symndx;
4715 Elf_Internal_Shdr *symtab_hdr;
4716 size_t extsymoff;
4717
4718 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4719 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4720 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4721
4722 if (r_symndx < extsymoff)
4723 return TRUE;
4724 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4725 return TRUE;
4726
4727 return FALSE;
4728 }
4729 \f
4730 /* Sign-extend VALUE, which has the indicated number of BITS. */
4731
4732 bfd_vma
4733 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4734 {
4735 if (value & ((bfd_vma) 1 << (bits - 1)))
4736 /* VALUE is negative. */
4737 value |= ((bfd_vma) - 1) << bits;
4738
4739 return value;
4740 }
4741
4742 /* Return non-zero if the indicated VALUE has overflowed the maximum
4743 range expressible by a signed number with the indicated number of
4744 BITS. */
4745
4746 static bfd_boolean
4747 mips_elf_overflow_p (bfd_vma value, int bits)
4748 {
4749 bfd_signed_vma svalue = (bfd_signed_vma) value;
4750
4751 if (svalue > (1 << (bits - 1)) - 1)
4752 /* The value is too big. */
4753 return TRUE;
4754 else if (svalue < -(1 << (bits - 1)))
4755 /* The value is too small. */
4756 return TRUE;
4757
4758 /* All is well. */
4759 return FALSE;
4760 }
4761
4762 /* Calculate the %high function. */
4763
4764 static bfd_vma
4765 mips_elf_high (bfd_vma value)
4766 {
4767 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4768 }
4769
4770 /* Calculate the %higher function. */
4771
4772 static bfd_vma
4773 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4774 {
4775 #ifdef BFD64
4776 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4777 #else
4778 abort ();
4779 return MINUS_ONE;
4780 #endif
4781 }
4782
4783 /* Calculate the %highest function. */
4784
4785 static bfd_vma
4786 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4787 {
4788 #ifdef BFD64
4789 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4790 #else
4791 abort ();
4792 return MINUS_ONE;
4793 #endif
4794 }
4795 \f
4796 /* Create the .compact_rel section. */
4797
4798 static bfd_boolean
4799 mips_elf_create_compact_rel_section
4800 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4801 {
4802 flagword flags;
4803 register asection *s;
4804
4805 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4806 {
4807 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4808 | SEC_READONLY);
4809
4810 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4811 if (s == NULL
4812 || ! bfd_set_section_alignment (abfd, s,
4813 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4814 return FALSE;
4815
4816 s->size = sizeof (Elf32_External_compact_rel);
4817 }
4818
4819 return TRUE;
4820 }
4821
4822 /* Create the .got section to hold the global offset table. */
4823
4824 static bfd_boolean
4825 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4826 {
4827 flagword flags;
4828 register asection *s;
4829 struct elf_link_hash_entry *h;
4830 struct bfd_link_hash_entry *bh;
4831 struct mips_elf_link_hash_table *htab;
4832
4833 htab = mips_elf_hash_table (info);
4834 BFD_ASSERT (htab != NULL);
4835
4836 /* This function may be called more than once. */
4837 if (htab->sgot)
4838 return TRUE;
4839
4840 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4841 | SEC_LINKER_CREATED);
4842
4843 /* We have to use an alignment of 2**4 here because this is hardcoded
4844 in the function stub generation and in the linker script. */
4845 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4846 if (s == NULL
4847 || ! bfd_set_section_alignment (abfd, s, 4))
4848 return FALSE;
4849 htab->sgot = s;
4850
4851 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4852 linker script because we don't want to define the symbol if we
4853 are not creating a global offset table. */
4854 bh = NULL;
4855 if (! (_bfd_generic_link_add_one_symbol
4856 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4857 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4858 return FALSE;
4859
4860 h = (struct elf_link_hash_entry *) bh;
4861 h->non_elf = 0;
4862 h->def_regular = 1;
4863 h->type = STT_OBJECT;
4864 elf_hash_table (info)->hgot = h;
4865
4866 if (info->shared
4867 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4868 return FALSE;
4869
4870 htab->got_info = mips_elf_create_got_info (abfd);
4871 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4872 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4873
4874 /* We also need a .got.plt section when generating PLTs. */
4875 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4876 SEC_ALLOC | SEC_LOAD
4877 | SEC_HAS_CONTENTS
4878 | SEC_IN_MEMORY
4879 | SEC_LINKER_CREATED);
4880 if (s == NULL)
4881 return FALSE;
4882 htab->sgotplt = s;
4883
4884 return TRUE;
4885 }
4886 \f
4887 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4888 __GOTT_INDEX__ symbols. These symbols are only special for
4889 shared objects; they are not used in executables. */
4890
4891 static bfd_boolean
4892 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4893 {
4894 return (mips_elf_hash_table (info)->is_vxworks
4895 && info->shared
4896 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4897 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4898 }
4899
4900 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4901 require an la25 stub. See also mips_elf_local_pic_function_p,
4902 which determines whether the destination function ever requires a
4903 stub. */
4904
4905 static bfd_boolean
4906 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4907 bfd_boolean target_is_16_bit_code_p)
4908 {
4909 /* We specifically ignore branches and jumps from EF_PIC objects,
4910 where the onus is on the compiler or programmer to perform any
4911 necessary initialization of $25. Sometimes such initialization
4912 is unnecessary; for example, -mno-shared functions do not use
4913 the incoming value of $25, and may therefore be called directly. */
4914 if (PIC_OBJECT_P (input_bfd))
4915 return FALSE;
4916
4917 switch (r_type)
4918 {
4919 case R_MIPS_26:
4920 case R_MIPS_PC16:
4921 case R_MICROMIPS_26_S1:
4922 case R_MICROMIPS_PC7_S1:
4923 case R_MICROMIPS_PC10_S1:
4924 case R_MICROMIPS_PC16_S1:
4925 case R_MICROMIPS_PC23_S2:
4926 return TRUE;
4927
4928 case R_MIPS16_26:
4929 return !target_is_16_bit_code_p;
4930
4931 default:
4932 return FALSE;
4933 }
4934 }
4935 \f
4936 /* Calculate the value produced by the RELOCATION (which comes from
4937 the INPUT_BFD). The ADDEND is the addend to use for this
4938 RELOCATION; RELOCATION->R_ADDEND is ignored.
4939
4940 The result of the relocation calculation is stored in VALUEP.
4941 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4942 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4943
4944 This function returns bfd_reloc_continue if the caller need take no
4945 further action regarding this relocation, bfd_reloc_notsupported if
4946 something goes dramatically wrong, bfd_reloc_overflow if an
4947 overflow occurs, and bfd_reloc_ok to indicate success. */
4948
4949 static bfd_reloc_status_type
4950 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4951 asection *input_section,
4952 struct bfd_link_info *info,
4953 const Elf_Internal_Rela *relocation,
4954 bfd_vma addend, reloc_howto_type *howto,
4955 Elf_Internal_Sym *local_syms,
4956 asection **local_sections, bfd_vma *valuep,
4957 const char **namep,
4958 bfd_boolean *cross_mode_jump_p,
4959 bfd_boolean save_addend)
4960 {
4961 /* The eventual value we will return. */
4962 bfd_vma value;
4963 /* The address of the symbol against which the relocation is
4964 occurring. */
4965 bfd_vma symbol = 0;
4966 /* The final GP value to be used for the relocatable, executable, or
4967 shared object file being produced. */
4968 bfd_vma gp;
4969 /* The place (section offset or address) of the storage unit being
4970 relocated. */
4971 bfd_vma p;
4972 /* The value of GP used to create the relocatable object. */
4973 bfd_vma gp0;
4974 /* The offset into the global offset table at which the address of
4975 the relocation entry symbol, adjusted by the addend, resides
4976 during execution. */
4977 bfd_vma g = MINUS_ONE;
4978 /* The section in which the symbol referenced by the relocation is
4979 located. */
4980 asection *sec = NULL;
4981 struct mips_elf_link_hash_entry *h = NULL;
4982 /* TRUE if the symbol referred to by this relocation is a local
4983 symbol. */
4984 bfd_boolean local_p, was_local_p;
4985 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4986 bfd_boolean gp_disp_p = FALSE;
4987 /* TRUE if the symbol referred to by this relocation is
4988 "__gnu_local_gp". */
4989 bfd_boolean gnu_local_gp_p = FALSE;
4990 Elf_Internal_Shdr *symtab_hdr;
4991 size_t extsymoff;
4992 unsigned long r_symndx;
4993 int r_type;
4994 /* TRUE if overflow occurred during the calculation of the
4995 relocation value. */
4996 bfd_boolean overflowed_p;
4997 /* TRUE if this relocation refers to a MIPS16 function. */
4998 bfd_boolean target_is_16_bit_code_p = FALSE;
4999 bfd_boolean target_is_micromips_code_p = FALSE;
5000 struct mips_elf_link_hash_table *htab;
5001 bfd *dynobj;
5002
5003 dynobj = elf_hash_table (info)->dynobj;
5004 htab = mips_elf_hash_table (info);
5005 BFD_ASSERT (htab != NULL);
5006
5007 /* Parse the relocation. */
5008 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5009 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5010 p = (input_section->output_section->vma
5011 + input_section->output_offset
5012 + relocation->r_offset);
5013
5014 /* Assume that there will be no overflow. */
5015 overflowed_p = FALSE;
5016
5017 /* Figure out whether or not the symbol is local, and get the offset
5018 used in the array of hash table entries. */
5019 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5020 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5021 local_sections);
5022 was_local_p = local_p;
5023 if (! elf_bad_symtab (input_bfd))
5024 extsymoff = symtab_hdr->sh_info;
5025 else
5026 {
5027 /* The symbol table does not follow the rule that local symbols
5028 must come before globals. */
5029 extsymoff = 0;
5030 }
5031
5032 /* Figure out the value of the symbol. */
5033 if (local_p)
5034 {
5035 Elf_Internal_Sym *sym;
5036
5037 sym = local_syms + r_symndx;
5038 sec = local_sections[r_symndx];
5039
5040 symbol = sec->output_section->vma + sec->output_offset;
5041 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5042 || (sec->flags & SEC_MERGE))
5043 symbol += sym->st_value;
5044 if ((sec->flags & SEC_MERGE)
5045 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5046 {
5047 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5048 addend -= symbol;
5049 addend += sec->output_section->vma + sec->output_offset;
5050 }
5051
5052 /* MIPS16/microMIPS text labels should be treated as odd. */
5053 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5054 ++symbol;
5055
5056 /* Record the name of this symbol, for our caller. */
5057 *namep = bfd_elf_string_from_elf_section (input_bfd,
5058 symtab_hdr->sh_link,
5059 sym->st_name);
5060 if (*namep == '\0')
5061 *namep = bfd_section_name (input_bfd, sec);
5062
5063 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5064 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5065 }
5066 else
5067 {
5068 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5069
5070 /* For global symbols we look up the symbol in the hash-table. */
5071 h = ((struct mips_elf_link_hash_entry *)
5072 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5073 /* Find the real hash-table entry for this symbol. */
5074 while (h->root.root.type == bfd_link_hash_indirect
5075 || h->root.root.type == bfd_link_hash_warning)
5076 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5077
5078 /* Record the name of this symbol, for our caller. */
5079 *namep = h->root.root.root.string;
5080
5081 /* See if this is the special _gp_disp symbol. Note that such a
5082 symbol must always be a global symbol. */
5083 if (strcmp (*namep, "_gp_disp") == 0
5084 && ! NEWABI_P (input_bfd))
5085 {
5086 /* Relocations against _gp_disp are permitted only with
5087 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5088 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5089 return bfd_reloc_notsupported;
5090
5091 gp_disp_p = TRUE;
5092 }
5093 /* See if this is the special _gp symbol. Note that such a
5094 symbol must always be a global symbol. */
5095 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5096 gnu_local_gp_p = TRUE;
5097
5098
5099 /* If this symbol is defined, calculate its address. Note that
5100 _gp_disp is a magic symbol, always implicitly defined by the
5101 linker, so it's inappropriate to check to see whether or not
5102 its defined. */
5103 else if ((h->root.root.type == bfd_link_hash_defined
5104 || h->root.root.type == bfd_link_hash_defweak)
5105 && h->root.root.u.def.section)
5106 {
5107 sec = h->root.root.u.def.section;
5108 if (sec->output_section)
5109 symbol = (h->root.root.u.def.value
5110 + sec->output_section->vma
5111 + sec->output_offset);
5112 else
5113 symbol = h->root.root.u.def.value;
5114 }
5115 else if (h->root.root.type == bfd_link_hash_undefweak)
5116 /* We allow relocations against undefined weak symbols, giving
5117 it the value zero, so that you can undefined weak functions
5118 and check to see if they exist by looking at their
5119 addresses. */
5120 symbol = 0;
5121 else if (info->unresolved_syms_in_objects == RM_IGNORE
5122 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5123 symbol = 0;
5124 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5125 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5126 {
5127 /* If this is a dynamic link, we should have created a
5128 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5129 in in _bfd_mips_elf_create_dynamic_sections.
5130 Otherwise, we should define the symbol with a value of 0.
5131 FIXME: It should probably get into the symbol table
5132 somehow as well. */
5133 BFD_ASSERT (! info->shared);
5134 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5135 symbol = 0;
5136 }
5137 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5138 {
5139 /* This is an optional symbol - an Irix specific extension to the
5140 ELF spec. Ignore it for now.
5141 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5142 than simply ignoring them, but we do not handle this for now.
5143 For information see the "64-bit ELF Object File Specification"
5144 which is available from here:
5145 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5146 symbol = 0;
5147 }
5148 else if ((*info->callbacks->undefined_symbol)
5149 (info, h->root.root.root.string, input_bfd,
5150 input_section, relocation->r_offset,
5151 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5152 || ELF_ST_VISIBILITY (h->root.other)))
5153 {
5154 return bfd_reloc_undefined;
5155 }
5156 else
5157 {
5158 return bfd_reloc_notsupported;
5159 }
5160
5161 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5162 /* If the output section is the PLT section,
5163 then the target is not microMIPS. */
5164 target_is_micromips_code_p = (htab->splt != sec
5165 && ELF_ST_IS_MICROMIPS (h->root.other));
5166 }
5167
5168 /* If this is a reference to a 16-bit function with a stub, we need
5169 to redirect the relocation to the stub unless:
5170
5171 (a) the relocation is for a MIPS16 JAL;
5172
5173 (b) the relocation is for a MIPS16 PIC call, and there are no
5174 non-MIPS16 uses of the GOT slot; or
5175
5176 (c) the section allows direct references to MIPS16 functions. */
5177 if (r_type != R_MIPS16_26
5178 && !info->relocatable
5179 && ((h != NULL
5180 && h->fn_stub != NULL
5181 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5182 || (local_p
5183 && elf_tdata (input_bfd)->local_stubs != NULL
5184 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5185 && !section_allows_mips16_refs_p (input_section))
5186 {
5187 /* This is a 32- or 64-bit call to a 16-bit function. We should
5188 have already noticed that we were going to need the
5189 stub. */
5190 if (local_p)
5191 {
5192 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5193 value = 0;
5194 }
5195 else
5196 {
5197 BFD_ASSERT (h->need_fn_stub);
5198 if (h->la25_stub)
5199 {
5200 /* If a LA25 header for the stub itself exists, point to the
5201 prepended LUI/ADDIU sequence. */
5202 sec = h->la25_stub->stub_section;
5203 value = h->la25_stub->offset;
5204 }
5205 else
5206 {
5207 sec = h->fn_stub;
5208 value = 0;
5209 }
5210 }
5211
5212 symbol = sec->output_section->vma + sec->output_offset + value;
5213 /* The target is 16-bit, but the stub isn't. */
5214 target_is_16_bit_code_p = FALSE;
5215 }
5216 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5217 need to redirect the call to the stub. Note that we specifically
5218 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5219 use an indirect stub instead. */
5220 else if (r_type == R_MIPS16_26 && !info->relocatable
5221 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5222 || (local_p
5223 && elf_tdata (input_bfd)->local_call_stubs != NULL
5224 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5225 && !target_is_16_bit_code_p)
5226 {
5227 if (local_p)
5228 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5229 else
5230 {
5231 /* If both call_stub and call_fp_stub are defined, we can figure
5232 out which one to use by checking which one appears in the input
5233 file. */
5234 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5235 {
5236 asection *o;
5237
5238 sec = NULL;
5239 for (o = input_bfd->sections; o != NULL; o = o->next)
5240 {
5241 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5242 {
5243 sec = h->call_fp_stub;
5244 break;
5245 }
5246 }
5247 if (sec == NULL)
5248 sec = h->call_stub;
5249 }
5250 else if (h->call_stub != NULL)
5251 sec = h->call_stub;
5252 else
5253 sec = h->call_fp_stub;
5254 }
5255
5256 BFD_ASSERT (sec->size > 0);
5257 symbol = sec->output_section->vma + sec->output_offset;
5258 }
5259 /* If this is a direct call to a PIC function, redirect to the
5260 non-PIC stub. */
5261 else if (h != NULL && h->la25_stub
5262 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5263 target_is_16_bit_code_p))
5264 symbol = (h->la25_stub->stub_section->output_section->vma
5265 + h->la25_stub->stub_section->output_offset
5266 + h->la25_stub->offset);
5267
5268 /* Make sure MIPS16 and microMIPS are not used together. */
5269 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5270 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5271 {
5272 (*_bfd_error_handler)
5273 (_("MIPS16 and microMIPS functions cannot call each other"));
5274 return bfd_reloc_notsupported;
5275 }
5276
5277 /* Calls from 16-bit code to 32-bit code and vice versa require the
5278 mode change. However, we can ignore calls to undefined weak symbols,
5279 which should never be executed at runtime. This exception is important
5280 because the assembly writer may have "known" that any definition of the
5281 symbol would be 16-bit code, and that direct jumps were therefore
5282 acceptable. */
5283 *cross_mode_jump_p = (!info->relocatable
5284 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5285 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5286 || (r_type == R_MICROMIPS_26_S1
5287 && !target_is_micromips_code_p)
5288 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5289 && (target_is_16_bit_code_p
5290 || target_is_micromips_code_p))));
5291
5292 local_p = (h == NULL
5293 || (h->got_only_for_calls
5294 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5295 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
5296
5297 gp0 = _bfd_get_gp_value (input_bfd);
5298 gp = _bfd_get_gp_value (abfd);
5299 if (htab->got_info)
5300 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5301
5302 if (gnu_local_gp_p)
5303 symbol = gp;
5304
5305 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5306 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5307 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5308 if (got_page_reloc_p (r_type) && !local_p)
5309 {
5310 r_type = (micromips_reloc_p (r_type)
5311 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5312 addend = 0;
5313 }
5314
5315 /* If we haven't already determined the GOT offset, and we're going
5316 to need it, get it now. */
5317 switch (r_type)
5318 {
5319 case R_MIPS16_CALL16:
5320 case R_MIPS16_GOT16:
5321 case R_MIPS_CALL16:
5322 case R_MIPS_GOT16:
5323 case R_MIPS_GOT_DISP:
5324 case R_MIPS_GOT_HI16:
5325 case R_MIPS_CALL_HI16:
5326 case R_MIPS_GOT_LO16:
5327 case R_MIPS_CALL_LO16:
5328 case R_MICROMIPS_CALL16:
5329 case R_MICROMIPS_GOT16:
5330 case R_MICROMIPS_GOT_DISP:
5331 case R_MICROMIPS_GOT_HI16:
5332 case R_MICROMIPS_CALL_HI16:
5333 case R_MICROMIPS_GOT_LO16:
5334 case R_MICROMIPS_CALL_LO16:
5335 case R_MIPS_TLS_GD:
5336 case R_MIPS_TLS_GOTTPREL:
5337 case R_MIPS_TLS_LDM:
5338 case R_MIPS16_TLS_GD:
5339 case R_MIPS16_TLS_GOTTPREL:
5340 case R_MIPS16_TLS_LDM:
5341 case R_MICROMIPS_TLS_GD:
5342 case R_MICROMIPS_TLS_GOTTPREL:
5343 case R_MICROMIPS_TLS_LDM:
5344 /* Find the index into the GOT where this value is located. */
5345 if (tls_ldm_reloc_p (r_type))
5346 {
5347 g = mips_elf_local_got_index (abfd, input_bfd, info,
5348 0, 0, NULL, r_type);
5349 if (g == MINUS_ONE)
5350 return bfd_reloc_outofrange;
5351 }
5352 else if (!local_p)
5353 {
5354 /* On VxWorks, CALL relocations should refer to the .got.plt
5355 entry, which is initialized to point at the PLT stub. */
5356 if (htab->is_vxworks
5357 && (call_hi16_reloc_p (r_type)
5358 || call_lo16_reloc_p (r_type)
5359 || call16_reloc_p (r_type)))
5360 {
5361 BFD_ASSERT (addend == 0);
5362 BFD_ASSERT (h->root.needs_plt);
5363 g = mips_elf_gotplt_index (info, &h->root);
5364 }
5365 else
5366 {
5367 BFD_ASSERT (addend == 0);
5368 g = mips_elf_global_got_index (abfd, info, input_bfd,
5369 &h->root, r_type);
5370 if (!TLS_RELOC_P (r_type)
5371 && !elf_hash_table (info)->dynamic_sections_created)
5372 /* This is a static link. We must initialize the GOT entry. */
5373 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5374 }
5375 }
5376 else if (!htab->is_vxworks
5377 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5378 /* The calculation below does not involve "g". */
5379 break;
5380 else
5381 {
5382 g = mips_elf_local_got_index (abfd, input_bfd, info,
5383 symbol + addend, r_symndx, h, r_type);
5384 if (g == MINUS_ONE)
5385 return bfd_reloc_outofrange;
5386 }
5387
5388 /* Convert GOT indices to actual offsets. */
5389 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5390 break;
5391 }
5392
5393 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5394 symbols are resolved by the loader. Add them to .rela.dyn. */
5395 if (h != NULL && is_gott_symbol (info, &h->root))
5396 {
5397 Elf_Internal_Rela outrel;
5398 bfd_byte *loc;
5399 asection *s;
5400
5401 s = mips_elf_rel_dyn_section (info, FALSE);
5402 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5403
5404 outrel.r_offset = (input_section->output_section->vma
5405 + input_section->output_offset
5406 + relocation->r_offset);
5407 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5408 outrel.r_addend = addend;
5409 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5410
5411 /* If we've written this relocation for a readonly section,
5412 we need to set DF_TEXTREL again, so that we do not delete the
5413 DT_TEXTREL tag. */
5414 if (MIPS_ELF_READONLY_SECTION (input_section))
5415 info->flags |= DF_TEXTREL;
5416
5417 *valuep = 0;
5418 return bfd_reloc_ok;
5419 }
5420
5421 /* Figure out what kind of relocation is being performed. */
5422 switch (r_type)
5423 {
5424 case R_MIPS_NONE:
5425 return bfd_reloc_continue;
5426
5427 case R_MIPS_16:
5428 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5429 overflowed_p = mips_elf_overflow_p (value, 16);
5430 break;
5431
5432 case R_MIPS_32:
5433 case R_MIPS_REL32:
5434 case R_MIPS_64:
5435 if ((info->shared
5436 || (htab->root.dynamic_sections_created
5437 && h != NULL
5438 && h->root.def_dynamic
5439 && !h->root.def_regular
5440 && !h->has_static_relocs))
5441 && r_symndx != STN_UNDEF
5442 && (h == NULL
5443 || h->root.root.type != bfd_link_hash_undefweak
5444 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5445 && (input_section->flags & SEC_ALLOC) != 0)
5446 {
5447 /* If we're creating a shared library, then we can't know
5448 where the symbol will end up. So, we create a relocation
5449 record in the output, and leave the job up to the dynamic
5450 linker. We must do the same for executable references to
5451 shared library symbols, unless we've decided to use copy
5452 relocs or PLTs instead. */
5453 value = addend;
5454 if (!mips_elf_create_dynamic_relocation (abfd,
5455 info,
5456 relocation,
5457 h,
5458 sec,
5459 symbol,
5460 &value,
5461 input_section))
5462 return bfd_reloc_undefined;
5463 }
5464 else
5465 {
5466 if (r_type != R_MIPS_REL32)
5467 value = symbol + addend;
5468 else
5469 value = addend;
5470 }
5471 value &= howto->dst_mask;
5472 break;
5473
5474 case R_MIPS_PC32:
5475 value = symbol + addend - p;
5476 value &= howto->dst_mask;
5477 break;
5478
5479 case R_MIPS16_26:
5480 /* The calculation for R_MIPS16_26 is just the same as for an
5481 R_MIPS_26. It's only the storage of the relocated field into
5482 the output file that's different. That's handled in
5483 mips_elf_perform_relocation. So, we just fall through to the
5484 R_MIPS_26 case here. */
5485 case R_MIPS_26:
5486 case R_MICROMIPS_26_S1:
5487 {
5488 unsigned int shift;
5489
5490 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5491 the correct ISA mode selector and bit 1 must be 0. */
5492 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5493 return bfd_reloc_outofrange;
5494
5495 /* Shift is 2, unusually, for microMIPS JALX. */
5496 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5497
5498 if (was_local_p)
5499 value = addend | ((p + 4) & (0xfc000000 << shift));
5500 else
5501 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5502 value = (value + symbol) >> shift;
5503 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5504 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5505 value &= howto->dst_mask;
5506 }
5507 break;
5508
5509 case R_MIPS_TLS_DTPREL_HI16:
5510 case R_MIPS16_TLS_DTPREL_HI16:
5511 case R_MICROMIPS_TLS_DTPREL_HI16:
5512 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5513 & howto->dst_mask);
5514 break;
5515
5516 case R_MIPS_TLS_DTPREL_LO16:
5517 case R_MIPS_TLS_DTPREL32:
5518 case R_MIPS_TLS_DTPREL64:
5519 case R_MIPS16_TLS_DTPREL_LO16:
5520 case R_MICROMIPS_TLS_DTPREL_LO16:
5521 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5522 break;
5523
5524 case R_MIPS_TLS_TPREL_HI16:
5525 case R_MIPS16_TLS_TPREL_HI16:
5526 case R_MICROMIPS_TLS_TPREL_HI16:
5527 value = (mips_elf_high (addend + symbol - tprel_base (info))
5528 & howto->dst_mask);
5529 break;
5530
5531 case R_MIPS_TLS_TPREL_LO16:
5532 case R_MIPS_TLS_TPREL32:
5533 case R_MIPS_TLS_TPREL64:
5534 case R_MIPS16_TLS_TPREL_LO16:
5535 case R_MICROMIPS_TLS_TPREL_LO16:
5536 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5537 break;
5538
5539 case R_MIPS_HI16:
5540 case R_MIPS16_HI16:
5541 case R_MICROMIPS_HI16:
5542 if (!gp_disp_p)
5543 {
5544 value = mips_elf_high (addend + symbol);
5545 value &= howto->dst_mask;
5546 }
5547 else
5548 {
5549 /* For MIPS16 ABI code we generate this sequence
5550 0: li $v0,%hi(_gp_disp)
5551 4: addiupc $v1,%lo(_gp_disp)
5552 8: sll $v0,16
5553 12: addu $v0,$v1
5554 14: move $gp,$v0
5555 So the offsets of hi and lo relocs are the same, but the
5556 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5557 ADDIUPC clears the low two bits of the instruction address,
5558 so the base is ($t9 + 4) & ~3. */
5559 if (r_type == R_MIPS16_HI16)
5560 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5561 /* The microMIPS .cpload sequence uses the same assembly
5562 instructions as the traditional psABI version, but the
5563 incoming $t9 has the low bit set. */
5564 else if (r_type == R_MICROMIPS_HI16)
5565 value = mips_elf_high (addend + gp - p - 1);
5566 else
5567 value = mips_elf_high (addend + gp - p);
5568 overflowed_p = mips_elf_overflow_p (value, 16);
5569 }
5570 break;
5571
5572 case R_MIPS_LO16:
5573 case R_MIPS16_LO16:
5574 case R_MICROMIPS_LO16:
5575 case R_MICROMIPS_HI0_LO16:
5576 if (!gp_disp_p)
5577 value = (symbol + addend) & howto->dst_mask;
5578 else
5579 {
5580 /* See the comment for R_MIPS16_HI16 above for the reason
5581 for this conditional. */
5582 if (r_type == R_MIPS16_LO16)
5583 value = addend + gp - (p & ~(bfd_vma) 0x3);
5584 else if (r_type == R_MICROMIPS_LO16
5585 || r_type == R_MICROMIPS_HI0_LO16)
5586 value = addend + gp - p + 3;
5587 else
5588 value = addend + gp - p + 4;
5589 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5590 for overflow. But, on, say, IRIX5, relocations against
5591 _gp_disp are normally generated from the .cpload
5592 pseudo-op. It generates code that normally looks like
5593 this:
5594
5595 lui $gp,%hi(_gp_disp)
5596 addiu $gp,$gp,%lo(_gp_disp)
5597 addu $gp,$gp,$t9
5598
5599 Here $t9 holds the address of the function being called,
5600 as required by the MIPS ELF ABI. The R_MIPS_LO16
5601 relocation can easily overflow in this situation, but the
5602 R_MIPS_HI16 relocation will handle the overflow.
5603 Therefore, we consider this a bug in the MIPS ABI, and do
5604 not check for overflow here. */
5605 }
5606 break;
5607
5608 case R_MIPS_LITERAL:
5609 case R_MICROMIPS_LITERAL:
5610 /* Because we don't merge literal sections, we can handle this
5611 just like R_MIPS_GPREL16. In the long run, we should merge
5612 shared literals, and then we will need to additional work
5613 here. */
5614
5615 /* Fall through. */
5616
5617 case R_MIPS16_GPREL:
5618 /* The R_MIPS16_GPREL performs the same calculation as
5619 R_MIPS_GPREL16, but stores the relocated bits in a different
5620 order. We don't need to do anything special here; the
5621 differences are handled in mips_elf_perform_relocation. */
5622 case R_MIPS_GPREL16:
5623 case R_MICROMIPS_GPREL7_S2:
5624 case R_MICROMIPS_GPREL16:
5625 /* Only sign-extend the addend if it was extracted from the
5626 instruction. If the addend was separate, leave it alone,
5627 otherwise we may lose significant bits. */
5628 if (howto->partial_inplace)
5629 addend = _bfd_mips_elf_sign_extend (addend, 16);
5630 value = symbol + addend - gp;
5631 /* If the symbol was local, any earlier relocatable links will
5632 have adjusted its addend with the gp offset, so compensate
5633 for that now. Don't do it for symbols forced local in this
5634 link, though, since they won't have had the gp offset applied
5635 to them before. */
5636 if (was_local_p)
5637 value += gp0;
5638 overflowed_p = mips_elf_overflow_p (value, 16);
5639 break;
5640
5641 case R_MIPS16_GOT16:
5642 case R_MIPS16_CALL16:
5643 case R_MIPS_GOT16:
5644 case R_MIPS_CALL16:
5645 case R_MICROMIPS_GOT16:
5646 case R_MICROMIPS_CALL16:
5647 /* VxWorks does not have separate local and global semantics for
5648 R_MIPS*_GOT16; every relocation evaluates to "G". */
5649 if (!htab->is_vxworks && local_p)
5650 {
5651 value = mips_elf_got16_entry (abfd, input_bfd, info,
5652 symbol + addend, !was_local_p);
5653 if (value == MINUS_ONE)
5654 return bfd_reloc_outofrange;
5655 value
5656 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5657 overflowed_p = mips_elf_overflow_p (value, 16);
5658 break;
5659 }
5660
5661 /* Fall through. */
5662
5663 case R_MIPS_TLS_GD:
5664 case R_MIPS_TLS_GOTTPREL:
5665 case R_MIPS_TLS_LDM:
5666 case R_MIPS_GOT_DISP:
5667 case R_MIPS16_TLS_GD:
5668 case R_MIPS16_TLS_GOTTPREL:
5669 case R_MIPS16_TLS_LDM:
5670 case R_MICROMIPS_TLS_GD:
5671 case R_MICROMIPS_TLS_GOTTPREL:
5672 case R_MICROMIPS_TLS_LDM:
5673 case R_MICROMIPS_GOT_DISP:
5674 value = g;
5675 overflowed_p = mips_elf_overflow_p (value, 16);
5676 break;
5677
5678 case R_MIPS_GPREL32:
5679 value = (addend + symbol + gp0 - gp);
5680 if (!save_addend)
5681 value &= howto->dst_mask;
5682 break;
5683
5684 case R_MIPS_PC16:
5685 case R_MIPS_GNU_REL16_S2:
5686 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5687 overflowed_p = mips_elf_overflow_p (value, 18);
5688 value >>= howto->rightshift;
5689 value &= howto->dst_mask;
5690 break;
5691
5692 case R_MICROMIPS_PC7_S1:
5693 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5694 overflowed_p = mips_elf_overflow_p (value, 8);
5695 value >>= howto->rightshift;
5696 value &= howto->dst_mask;
5697 break;
5698
5699 case R_MICROMIPS_PC10_S1:
5700 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5701 overflowed_p = mips_elf_overflow_p (value, 11);
5702 value >>= howto->rightshift;
5703 value &= howto->dst_mask;
5704 break;
5705
5706 case R_MICROMIPS_PC16_S1:
5707 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5708 overflowed_p = mips_elf_overflow_p (value, 17);
5709 value >>= howto->rightshift;
5710 value &= howto->dst_mask;
5711 break;
5712
5713 case R_MICROMIPS_PC23_S2:
5714 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5715 overflowed_p = mips_elf_overflow_p (value, 25);
5716 value >>= howto->rightshift;
5717 value &= howto->dst_mask;
5718 break;
5719
5720 case R_MIPS_GOT_HI16:
5721 case R_MIPS_CALL_HI16:
5722 case R_MICROMIPS_GOT_HI16:
5723 case R_MICROMIPS_CALL_HI16:
5724 /* We're allowed to handle these two relocations identically.
5725 The dynamic linker is allowed to handle the CALL relocations
5726 differently by creating a lazy evaluation stub. */
5727 value = g;
5728 value = mips_elf_high (value);
5729 value &= howto->dst_mask;
5730 break;
5731
5732 case R_MIPS_GOT_LO16:
5733 case R_MIPS_CALL_LO16:
5734 case R_MICROMIPS_GOT_LO16:
5735 case R_MICROMIPS_CALL_LO16:
5736 value = g & howto->dst_mask;
5737 break;
5738
5739 case R_MIPS_GOT_PAGE:
5740 case R_MICROMIPS_GOT_PAGE:
5741 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5742 if (value == MINUS_ONE)
5743 return bfd_reloc_outofrange;
5744 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5745 overflowed_p = mips_elf_overflow_p (value, 16);
5746 break;
5747
5748 case R_MIPS_GOT_OFST:
5749 case R_MICROMIPS_GOT_OFST:
5750 if (local_p)
5751 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5752 else
5753 value = addend;
5754 overflowed_p = mips_elf_overflow_p (value, 16);
5755 break;
5756
5757 case R_MIPS_SUB:
5758 case R_MICROMIPS_SUB:
5759 value = symbol - addend;
5760 value &= howto->dst_mask;
5761 break;
5762
5763 case R_MIPS_HIGHER:
5764 case R_MICROMIPS_HIGHER:
5765 value = mips_elf_higher (addend + symbol);
5766 value &= howto->dst_mask;
5767 break;
5768
5769 case R_MIPS_HIGHEST:
5770 case R_MICROMIPS_HIGHEST:
5771 value = mips_elf_highest (addend + symbol);
5772 value &= howto->dst_mask;
5773 break;
5774
5775 case R_MIPS_SCN_DISP:
5776 case R_MICROMIPS_SCN_DISP:
5777 value = symbol + addend - sec->output_offset;
5778 value &= howto->dst_mask;
5779 break;
5780
5781 case R_MIPS_JALR:
5782 case R_MICROMIPS_JALR:
5783 /* This relocation is only a hint. In some cases, we optimize
5784 it into a bal instruction. But we don't try to optimize
5785 when the symbol does not resolve locally. */
5786 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5787 return bfd_reloc_continue;
5788 value = symbol + addend;
5789 break;
5790
5791 case R_MIPS_PJUMP:
5792 case R_MIPS_GNU_VTINHERIT:
5793 case R_MIPS_GNU_VTENTRY:
5794 /* We don't do anything with these at present. */
5795 return bfd_reloc_continue;
5796
5797 default:
5798 /* An unrecognized relocation type. */
5799 return bfd_reloc_notsupported;
5800 }
5801
5802 /* Store the VALUE for our caller. */
5803 *valuep = value;
5804 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5805 }
5806
5807 /* Obtain the field relocated by RELOCATION. */
5808
5809 static bfd_vma
5810 mips_elf_obtain_contents (reloc_howto_type *howto,
5811 const Elf_Internal_Rela *relocation,
5812 bfd *input_bfd, bfd_byte *contents)
5813 {
5814 bfd_vma x;
5815 bfd_byte *location = contents + relocation->r_offset;
5816
5817 /* Obtain the bytes. */
5818 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5819
5820 return x;
5821 }
5822
5823 /* It has been determined that the result of the RELOCATION is the
5824 VALUE. Use HOWTO to place VALUE into the output file at the
5825 appropriate position. The SECTION is the section to which the
5826 relocation applies.
5827 CROSS_MODE_JUMP_P is true if the relocation field
5828 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5829
5830 Returns FALSE if anything goes wrong. */
5831
5832 static bfd_boolean
5833 mips_elf_perform_relocation (struct bfd_link_info *info,
5834 reloc_howto_type *howto,
5835 const Elf_Internal_Rela *relocation,
5836 bfd_vma value, bfd *input_bfd,
5837 asection *input_section, bfd_byte *contents,
5838 bfd_boolean cross_mode_jump_p)
5839 {
5840 bfd_vma x;
5841 bfd_byte *location;
5842 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5843
5844 /* Figure out where the relocation is occurring. */
5845 location = contents + relocation->r_offset;
5846
5847 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5848
5849 /* Obtain the current value. */
5850 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5851
5852 /* Clear the field we are setting. */
5853 x &= ~howto->dst_mask;
5854
5855 /* Set the field. */
5856 x |= (value & howto->dst_mask);
5857
5858 /* If required, turn JAL into JALX. */
5859 if (cross_mode_jump_p && jal_reloc_p (r_type))
5860 {
5861 bfd_boolean ok;
5862 bfd_vma opcode = x >> 26;
5863 bfd_vma jalx_opcode;
5864
5865 /* Check to see if the opcode is already JAL or JALX. */
5866 if (r_type == R_MIPS16_26)
5867 {
5868 ok = ((opcode == 0x6) || (opcode == 0x7));
5869 jalx_opcode = 0x7;
5870 }
5871 else if (r_type == R_MICROMIPS_26_S1)
5872 {
5873 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5874 jalx_opcode = 0x3c;
5875 }
5876 else
5877 {
5878 ok = ((opcode == 0x3) || (opcode == 0x1d));
5879 jalx_opcode = 0x1d;
5880 }
5881
5882 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5883 convert J or JALS to JALX. */
5884 if (!ok)
5885 {
5886 (*_bfd_error_handler)
5887 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
5888 input_bfd,
5889 input_section,
5890 (unsigned long) relocation->r_offset);
5891 bfd_set_error (bfd_error_bad_value);
5892 return FALSE;
5893 }
5894
5895 /* Make this the JALX opcode. */
5896 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5897 }
5898
5899 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5900 range. */
5901 if (!info->relocatable
5902 && !cross_mode_jump_p
5903 && ((JAL_TO_BAL_P (input_bfd)
5904 && r_type == R_MIPS_26
5905 && (x >> 26) == 0x3) /* jal addr */
5906 || (JALR_TO_BAL_P (input_bfd)
5907 && r_type == R_MIPS_JALR
5908 && x == 0x0320f809) /* jalr t9 */
5909 || (JR_TO_B_P (input_bfd)
5910 && r_type == R_MIPS_JALR
5911 && x == 0x03200008))) /* jr t9 */
5912 {
5913 bfd_vma addr;
5914 bfd_vma dest;
5915 bfd_signed_vma off;
5916
5917 addr = (input_section->output_section->vma
5918 + input_section->output_offset
5919 + relocation->r_offset
5920 + 4);
5921 if (r_type == R_MIPS_26)
5922 dest = (value << 2) | ((addr >> 28) << 28);
5923 else
5924 dest = value;
5925 off = dest - addr;
5926 if (off <= 0x1ffff && off >= -0x20000)
5927 {
5928 if (x == 0x03200008) /* jr t9 */
5929 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5930 else
5931 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5932 }
5933 }
5934
5935 /* Put the value into the output. */
5936 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5937
5938 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5939 location);
5940
5941 return TRUE;
5942 }
5943 \f
5944 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5945 is the original relocation, which is now being transformed into a
5946 dynamic relocation. The ADDENDP is adjusted if necessary; the
5947 caller should store the result in place of the original addend. */
5948
5949 static bfd_boolean
5950 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5951 struct bfd_link_info *info,
5952 const Elf_Internal_Rela *rel,
5953 struct mips_elf_link_hash_entry *h,
5954 asection *sec, bfd_vma symbol,
5955 bfd_vma *addendp, asection *input_section)
5956 {
5957 Elf_Internal_Rela outrel[3];
5958 asection *sreloc;
5959 bfd *dynobj;
5960 int r_type;
5961 long indx;
5962 bfd_boolean defined_p;
5963 struct mips_elf_link_hash_table *htab;
5964
5965 htab = mips_elf_hash_table (info);
5966 BFD_ASSERT (htab != NULL);
5967
5968 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5969 dynobj = elf_hash_table (info)->dynobj;
5970 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5971 BFD_ASSERT (sreloc != NULL);
5972 BFD_ASSERT (sreloc->contents != NULL);
5973 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5974 < sreloc->size);
5975
5976 outrel[0].r_offset =
5977 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5978 if (ABI_64_P (output_bfd))
5979 {
5980 outrel[1].r_offset =
5981 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5982 outrel[2].r_offset =
5983 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5984 }
5985
5986 if (outrel[0].r_offset == MINUS_ONE)
5987 /* The relocation field has been deleted. */
5988 return TRUE;
5989
5990 if (outrel[0].r_offset == MINUS_TWO)
5991 {
5992 /* The relocation field has been converted into a relative value of
5993 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5994 the field to be fully relocated, so add in the symbol's value. */
5995 *addendp += symbol;
5996 return TRUE;
5997 }
5998
5999 /* We must now calculate the dynamic symbol table index to use
6000 in the relocation. */
6001 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6002 {
6003 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6004 indx = h->root.dynindx;
6005 if (SGI_COMPAT (output_bfd))
6006 defined_p = h->root.def_regular;
6007 else
6008 /* ??? glibc's ld.so just adds the final GOT entry to the
6009 relocation field. It therefore treats relocs against
6010 defined symbols in the same way as relocs against
6011 undefined symbols. */
6012 defined_p = FALSE;
6013 }
6014 else
6015 {
6016 if (sec != NULL && bfd_is_abs_section (sec))
6017 indx = 0;
6018 else if (sec == NULL || sec->owner == NULL)
6019 {
6020 bfd_set_error (bfd_error_bad_value);
6021 return FALSE;
6022 }
6023 else
6024 {
6025 indx = elf_section_data (sec->output_section)->dynindx;
6026 if (indx == 0)
6027 {
6028 asection *osec = htab->root.text_index_section;
6029 indx = elf_section_data (osec)->dynindx;
6030 }
6031 if (indx == 0)
6032 abort ();
6033 }
6034
6035 /* Instead of generating a relocation using the section
6036 symbol, we may as well make it a fully relative
6037 relocation. We want to avoid generating relocations to
6038 local symbols because we used to generate them
6039 incorrectly, without adding the original symbol value,
6040 which is mandated by the ABI for section symbols. In
6041 order to give dynamic loaders and applications time to
6042 phase out the incorrect use, we refrain from emitting
6043 section-relative relocations. It's not like they're
6044 useful, after all. This should be a bit more efficient
6045 as well. */
6046 /* ??? Although this behavior is compatible with glibc's ld.so,
6047 the ABI says that relocations against STN_UNDEF should have
6048 a symbol value of 0. Irix rld honors this, so relocations
6049 against STN_UNDEF have no effect. */
6050 if (!SGI_COMPAT (output_bfd))
6051 indx = 0;
6052 defined_p = TRUE;
6053 }
6054
6055 /* If the relocation was previously an absolute relocation and
6056 this symbol will not be referred to by the relocation, we must
6057 adjust it by the value we give it in the dynamic symbol table.
6058 Otherwise leave the job up to the dynamic linker. */
6059 if (defined_p && r_type != R_MIPS_REL32)
6060 *addendp += symbol;
6061
6062 if (htab->is_vxworks)
6063 /* VxWorks uses non-relative relocations for this. */
6064 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6065 else
6066 /* The relocation is always an REL32 relocation because we don't
6067 know where the shared library will wind up at load-time. */
6068 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6069 R_MIPS_REL32);
6070
6071 /* For strict adherence to the ABI specification, we should
6072 generate a R_MIPS_64 relocation record by itself before the
6073 _REL32/_64 record as well, such that the addend is read in as
6074 a 64-bit value (REL32 is a 32-bit relocation, after all).
6075 However, since none of the existing ELF64 MIPS dynamic
6076 loaders seems to care, we don't waste space with these
6077 artificial relocations. If this turns out to not be true,
6078 mips_elf_allocate_dynamic_relocation() should be tweaked so
6079 as to make room for a pair of dynamic relocations per
6080 invocation if ABI_64_P, and here we should generate an
6081 additional relocation record with R_MIPS_64 by itself for a
6082 NULL symbol before this relocation record. */
6083 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6084 ABI_64_P (output_bfd)
6085 ? R_MIPS_64
6086 : R_MIPS_NONE);
6087 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6088
6089 /* Adjust the output offset of the relocation to reference the
6090 correct location in the output file. */
6091 outrel[0].r_offset += (input_section->output_section->vma
6092 + input_section->output_offset);
6093 outrel[1].r_offset += (input_section->output_section->vma
6094 + input_section->output_offset);
6095 outrel[2].r_offset += (input_section->output_section->vma
6096 + input_section->output_offset);
6097
6098 /* Put the relocation back out. We have to use the special
6099 relocation outputter in the 64-bit case since the 64-bit
6100 relocation format is non-standard. */
6101 if (ABI_64_P (output_bfd))
6102 {
6103 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6104 (output_bfd, &outrel[0],
6105 (sreloc->contents
6106 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6107 }
6108 else if (htab->is_vxworks)
6109 {
6110 /* VxWorks uses RELA rather than REL dynamic relocations. */
6111 outrel[0].r_addend = *addendp;
6112 bfd_elf32_swap_reloca_out
6113 (output_bfd, &outrel[0],
6114 (sreloc->contents
6115 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6116 }
6117 else
6118 bfd_elf32_swap_reloc_out
6119 (output_bfd, &outrel[0],
6120 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6121
6122 /* We've now added another relocation. */
6123 ++sreloc->reloc_count;
6124
6125 /* Make sure the output section is writable. The dynamic linker
6126 will be writing to it. */
6127 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6128 |= SHF_WRITE;
6129
6130 /* On IRIX5, make an entry of compact relocation info. */
6131 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6132 {
6133 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6134 bfd_byte *cr;
6135
6136 if (scpt)
6137 {
6138 Elf32_crinfo cptrel;
6139
6140 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6141 cptrel.vaddr = (rel->r_offset
6142 + input_section->output_section->vma
6143 + input_section->output_offset);
6144 if (r_type == R_MIPS_REL32)
6145 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6146 else
6147 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6148 mips_elf_set_cr_dist2to (cptrel, 0);
6149 cptrel.konst = *addendp;
6150
6151 cr = (scpt->contents
6152 + sizeof (Elf32_External_compact_rel));
6153 mips_elf_set_cr_relvaddr (cptrel, 0);
6154 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6155 ((Elf32_External_crinfo *) cr
6156 + scpt->reloc_count));
6157 ++scpt->reloc_count;
6158 }
6159 }
6160
6161 /* If we've written this relocation for a readonly section,
6162 we need to set DF_TEXTREL again, so that we do not delete the
6163 DT_TEXTREL tag. */
6164 if (MIPS_ELF_READONLY_SECTION (input_section))
6165 info->flags |= DF_TEXTREL;
6166
6167 return TRUE;
6168 }
6169 \f
6170 /* Return the MACH for a MIPS e_flags value. */
6171
6172 unsigned long
6173 _bfd_elf_mips_mach (flagword flags)
6174 {
6175 switch (flags & EF_MIPS_MACH)
6176 {
6177 case E_MIPS_MACH_3900:
6178 return bfd_mach_mips3900;
6179
6180 case E_MIPS_MACH_4010:
6181 return bfd_mach_mips4010;
6182
6183 case E_MIPS_MACH_4100:
6184 return bfd_mach_mips4100;
6185
6186 case E_MIPS_MACH_4111:
6187 return bfd_mach_mips4111;
6188
6189 case E_MIPS_MACH_4120:
6190 return bfd_mach_mips4120;
6191
6192 case E_MIPS_MACH_4650:
6193 return bfd_mach_mips4650;
6194
6195 case E_MIPS_MACH_5400:
6196 return bfd_mach_mips5400;
6197
6198 case E_MIPS_MACH_5500:
6199 return bfd_mach_mips5500;
6200
6201 case E_MIPS_MACH_5900:
6202 return bfd_mach_mips5900;
6203
6204 case E_MIPS_MACH_9000:
6205 return bfd_mach_mips9000;
6206
6207 case E_MIPS_MACH_SB1:
6208 return bfd_mach_mips_sb1;
6209
6210 case E_MIPS_MACH_LS2E:
6211 return bfd_mach_mips_loongson_2e;
6212
6213 case E_MIPS_MACH_LS2F:
6214 return bfd_mach_mips_loongson_2f;
6215
6216 case E_MIPS_MACH_LS3A:
6217 return bfd_mach_mips_loongson_3a;
6218
6219 case E_MIPS_MACH_OCTEON2:
6220 return bfd_mach_mips_octeon2;
6221
6222 case E_MIPS_MACH_OCTEON:
6223 return bfd_mach_mips_octeon;
6224
6225 case E_MIPS_MACH_XLR:
6226 return bfd_mach_mips_xlr;
6227
6228 default:
6229 switch (flags & EF_MIPS_ARCH)
6230 {
6231 default:
6232 case E_MIPS_ARCH_1:
6233 return bfd_mach_mips3000;
6234
6235 case E_MIPS_ARCH_2:
6236 return bfd_mach_mips6000;
6237
6238 case E_MIPS_ARCH_3:
6239 return bfd_mach_mips4000;
6240
6241 case E_MIPS_ARCH_4:
6242 return bfd_mach_mips8000;
6243
6244 case E_MIPS_ARCH_5:
6245 return bfd_mach_mips5;
6246
6247 case E_MIPS_ARCH_32:
6248 return bfd_mach_mipsisa32;
6249
6250 case E_MIPS_ARCH_64:
6251 return bfd_mach_mipsisa64;
6252
6253 case E_MIPS_ARCH_32R2:
6254 return bfd_mach_mipsisa32r2;
6255
6256 case E_MIPS_ARCH_64R2:
6257 return bfd_mach_mipsisa64r2;
6258 }
6259 }
6260
6261 return 0;
6262 }
6263
6264 /* Return printable name for ABI. */
6265
6266 static INLINE char *
6267 elf_mips_abi_name (bfd *abfd)
6268 {
6269 flagword flags;
6270
6271 flags = elf_elfheader (abfd)->e_flags;
6272 switch (flags & EF_MIPS_ABI)
6273 {
6274 case 0:
6275 if (ABI_N32_P (abfd))
6276 return "N32";
6277 else if (ABI_64_P (abfd))
6278 return "64";
6279 else
6280 return "none";
6281 case E_MIPS_ABI_O32:
6282 return "O32";
6283 case E_MIPS_ABI_O64:
6284 return "O64";
6285 case E_MIPS_ABI_EABI32:
6286 return "EABI32";
6287 case E_MIPS_ABI_EABI64:
6288 return "EABI64";
6289 default:
6290 return "unknown abi";
6291 }
6292 }
6293 \f
6294 /* MIPS ELF uses two common sections. One is the usual one, and the
6295 other is for small objects. All the small objects are kept
6296 together, and then referenced via the gp pointer, which yields
6297 faster assembler code. This is what we use for the small common
6298 section. This approach is copied from ecoff.c. */
6299 static asection mips_elf_scom_section;
6300 static asymbol mips_elf_scom_symbol;
6301 static asymbol *mips_elf_scom_symbol_ptr;
6302
6303 /* MIPS ELF also uses an acommon section, which represents an
6304 allocated common symbol which may be overridden by a
6305 definition in a shared library. */
6306 static asection mips_elf_acom_section;
6307 static asymbol mips_elf_acom_symbol;
6308 static asymbol *mips_elf_acom_symbol_ptr;
6309
6310 /* This is used for both the 32-bit and the 64-bit ABI. */
6311
6312 void
6313 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6314 {
6315 elf_symbol_type *elfsym;
6316
6317 /* Handle the special MIPS section numbers that a symbol may use. */
6318 elfsym = (elf_symbol_type *) asym;
6319 switch (elfsym->internal_elf_sym.st_shndx)
6320 {
6321 case SHN_MIPS_ACOMMON:
6322 /* This section is used in a dynamically linked executable file.
6323 It is an allocated common section. The dynamic linker can
6324 either resolve these symbols to something in a shared
6325 library, or it can just leave them here. For our purposes,
6326 we can consider these symbols to be in a new section. */
6327 if (mips_elf_acom_section.name == NULL)
6328 {
6329 /* Initialize the acommon section. */
6330 mips_elf_acom_section.name = ".acommon";
6331 mips_elf_acom_section.flags = SEC_ALLOC;
6332 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6333 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6334 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6335 mips_elf_acom_symbol.name = ".acommon";
6336 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6337 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6338 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6339 }
6340 asym->section = &mips_elf_acom_section;
6341 break;
6342
6343 case SHN_COMMON:
6344 /* Common symbols less than the GP size are automatically
6345 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6346 if (asym->value > elf_gp_size (abfd)
6347 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6348 || IRIX_COMPAT (abfd) == ict_irix6)
6349 break;
6350 /* Fall through. */
6351 case SHN_MIPS_SCOMMON:
6352 if (mips_elf_scom_section.name == NULL)
6353 {
6354 /* Initialize the small common section. */
6355 mips_elf_scom_section.name = ".scommon";
6356 mips_elf_scom_section.flags = SEC_IS_COMMON;
6357 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6358 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6359 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6360 mips_elf_scom_symbol.name = ".scommon";
6361 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6362 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6363 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6364 }
6365 asym->section = &mips_elf_scom_section;
6366 asym->value = elfsym->internal_elf_sym.st_size;
6367 break;
6368
6369 case SHN_MIPS_SUNDEFINED:
6370 asym->section = bfd_und_section_ptr;
6371 break;
6372
6373 case SHN_MIPS_TEXT:
6374 {
6375 asection *section = bfd_get_section_by_name (abfd, ".text");
6376
6377 if (section != NULL)
6378 {
6379 asym->section = section;
6380 /* MIPS_TEXT is a bit special, the address is not an offset
6381 to the base of the .text section. So substract the section
6382 base address to make it an offset. */
6383 asym->value -= section->vma;
6384 }
6385 }
6386 break;
6387
6388 case SHN_MIPS_DATA:
6389 {
6390 asection *section = bfd_get_section_by_name (abfd, ".data");
6391
6392 if (section != NULL)
6393 {
6394 asym->section = section;
6395 /* MIPS_DATA is a bit special, the address is not an offset
6396 to the base of the .data section. So substract the section
6397 base address to make it an offset. */
6398 asym->value -= section->vma;
6399 }
6400 }
6401 break;
6402 }
6403
6404 /* If this is an odd-valued function symbol, assume it's a MIPS16
6405 or microMIPS one. */
6406 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6407 && (asym->value & 1) != 0)
6408 {
6409 asym->value--;
6410 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6411 elfsym->internal_elf_sym.st_other
6412 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6413 else
6414 elfsym->internal_elf_sym.st_other
6415 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6416 }
6417 }
6418 \f
6419 /* Implement elf_backend_eh_frame_address_size. This differs from
6420 the default in the way it handles EABI64.
6421
6422 EABI64 was originally specified as an LP64 ABI, and that is what
6423 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6424 historically accepted the combination of -mabi=eabi and -mlong32,
6425 and this ILP32 variation has become semi-official over time.
6426 Both forms use elf32 and have pointer-sized FDE addresses.
6427
6428 If an EABI object was generated by GCC 4.0 or above, it will have
6429 an empty .gcc_compiled_longXX section, where XX is the size of longs
6430 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6431 have no special marking to distinguish them from LP64 objects.
6432
6433 We don't want users of the official LP64 ABI to be punished for the
6434 existence of the ILP32 variant, but at the same time, we don't want
6435 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6436 We therefore take the following approach:
6437
6438 - If ABFD contains a .gcc_compiled_longXX section, use it to
6439 determine the pointer size.
6440
6441 - Otherwise check the type of the first relocation. Assume that
6442 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6443
6444 - Otherwise punt.
6445
6446 The second check is enough to detect LP64 objects generated by pre-4.0
6447 compilers because, in the kind of output generated by those compilers,
6448 the first relocation will be associated with either a CIE personality
6449 routine or an FDE start address. Furthermore, the compilers never
6450 used a special (non-pointer) encoding for this ABI.
6451
6452 Checking the relocation type should also be safe because there is no
6453 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6454 did so. */
6455
6456 unsigned int
6457 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6458 {
6459 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6460 return 8;
6461 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6462 {
6463 bfd_boolean long32_p, long64_p;
6464
6465 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6466 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6467 if (long32_p && long64_p)
6468 return 0;
6469 if (long32_p)
6470 return 4;
6471 if (long64_p)
6472 return 8;
6473
6474 if (sec->reloc_count > 0
6475 && elf_section_data (sec)->relocs != NULL
6476 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6477 == R_MIPS_64))
6478 return 8;
6479
6480 return 0;
6481 }
6482 return 4;
6483 }
6484 \f
6485 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6486 relocations against two unnamed section symbols to resolve to the
6487 same address. For example, if we have code like:
6488
6489 lw $4,%got_disp(.data)($gp)
6490 lw $25,%got_disp(.text)($gp)
6491 jalr $25
6492
6493 then the linker will resolve both relocations to .data and the program
6494 will jump there rather than to .text.
6495
6496 We can work around this problem by giving names to local section symbols.
6497 This is also what the MIPSpro tools do. */
6498
6499 bfd_boolean
6500 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6501 {
6502 return SGI_COMPAT (abfd);
6503 }
6504 \f
6505 /* Work over a section just before writing it out. This routine is
6506 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6507 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6508 a better way. */
6509
6510 bfd_boolean
6511 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6512 {
6513 if (hdr->sh_type == SHT_MIPS_REGINFO
6514 && hdr->sh_size > 0)
6515 {
6516 bfd_byte buf[4];
6517
6518 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6519 BFD_ASSERT (hdr->contents == NULL);
6520
6521 if (bfd_seek (abfd,
6522 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6523 SEEK_SET) != 0)
6524 return FALSE;
6525 H_PUT_32 (abfd, elf_gp (abfd), buf);
6526 if (bfd_bwrite (buf, 4, abfd) != 4)
6527 return FALSE;
6528 }
6529
6530 if (hdr->sh_type == SHT_MIPS_OPTIONS
6531 && hdr->bfd_section != NULL
6532 && mips_elf_section_data (hdr->bfd_section) != NULL
6533 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6534 {
6535 bfd_byte *contents, *l, *lend;
6536
6537 /* We stored the section contents in the tdata field in the
6538 set_section_contents routine. We save the section contents
6539 so that we don't have to read them again.
6540 At this point we know that elf_gp is set, so we can look
6541 through the section contents to see if there is an
6542 ODK_REGINFO structure. */
6543
6544 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6545 l = contents;
6546 lend = contents + hdr->sh_size;
6547 while (l + sizeof (Elf_External_Options) <= lend)
6548 {
6549 Elf_Internal_Options intopt;
6550
6551 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6552 &intopt);
6553 if (intopt.size < sizeof (Elf_External_Options))
6554 {
6555 (*_bfd_error_handler)
6556 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6557 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6558 break;
6559 }
6560 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6561 {
6562 bfd_byte buf[8];
6563
6564 if (bfd_seek (abfd,
6565 (hdr->sh_offset
6566 + (l - contents)
6567 + sizeof (Elf_External_Options)
6568 + (sizeof (Elf64_External_RegInfo) - 8)),
6569 SEEK_SET) != 0)
6570 return FALSE;
6571 H_PUT_64 (abfd, elf_gp (abfd), buf);
6572 if (bfd_bwrite (buf, 8, abfd) != 8)
6573 return FALSE;
6574 }
6575 else if (intopt.kind == ODK_REGINFO)
6576 {
6577 bfd_byte buf[4];
6578
6579 if (bfd_seek (abfd,
6580 (hdr->sh_offset
6581 + (l - contents)
6582 + sizeof (Elf_External_Options)
6583 + (sizeof (Elf32_External_RegInfo) - 4)),
6584 SEEK_SET) != 0)
6585 return FALSE;
6586 H_PUT_32 (abfd, elf_gp (abfd), buf);
6587 if (bfd_bwrite (buf, 4, abfd) != 4)
6588 return FALSE;
6589 }
6590 l += intopt.size;
6591 }
6592 }
6593
6594 if (hdr->bfd_section != NULL)
6595 {
6596 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6597
6598 /* .sbss is not handled specially here because the GNU/Linux
6599 prelinker can convert .sbss from NOBITS to PROGBITS and
6600 changing it back to NOBITS breaks the binary. The entry in
6601 _bfd_mips_elf_special_sections will ensure the correct flags
6602 are set on .sbss if BFD creates it without reading it from an
6603 input file, and without special handling here the flags set
6604 on it in an input file will be followed. */
6605 if (strcmp (name, ".sdata") == 0
6606 || strcmp (name, ".lit8") == 0
6607 || strcmp (name, ".lit4") == 0)
6608 {
6609 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6610 hdr->sh_type = SHT_PROGBITS;
6611 }
6612 else if (strcmp (name, ".srdata") == 0)
6613 {
6614 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6615 hdr->sh_type = SHT_PROGBITS;
6616 }
6617 else if (strcmp (name, ".compact_rel") == 0)
6618 {
6619 hdr->sh_flags = 0;
6620 hdr->sh_type = SHT_PROGBITS;
6621 }
6622 else if (strcmp (name, ".rtproc") == 0)
6623 {
6624 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6625 {
6626 unsigned int adjust;
6627
6628 adjust = hdr->sh_size % hdr->sh_addralign;
6629 if (adjust != 0)
6630 hdr->sh_size += hdr->sh_addralign - adjust;
6631 }
6632 }
6633 }
6634
6635 return TRUE;
6636 }
6637
6638 /* Handle a MIPS specific section when reading an object file. This
6639 is called when elfcode.h finds a section with an unknown type.
6640 This routine supports both the 32-bit and 64-bit ELF ABI.
6641
6642 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6643 how to. */
6644
6645 bfd_boolean
6646 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6647 Elf_Internal_Shdr *hdr,
6648 const char *name,
6649 int shindex)
6650 {
6651 flagword flags = 0;
6652
6653 /* There ought to be a place to keep ELF backend specific flags, but
6654 at the moment there isn't one. We just keep track of the
6655 sections by their name, instead. Fortunately, the ABI gives
6656 suggested names for all the MIPS specific sections, so we will
6657 probably get away with this. */
6658 switch (hdr->sh_type)
6659 {
6660 case SHT_MIPS_LIBLIST:
6661 if (strcmp (name, ".liblist") != 0)
6662 return FALSE;
6663 break;
6664 case SHT_MIPS_MSYM:
6665 if (strcmp (name, ".msym") != 0)
6666 return FALSE;
6667 break;
6668 case SHT_MIPS_CONFLICT:
6669 if (strcmp (name, ".conflict") != 0)
6670 return FALSE;
6671 break;
6672 case SHT_MIPS_GPTAB:
6673 if (! CONST_STRNEQ (name, ".gptab."))
6674 return FALSE;
6675 break;
6676 case SHT_MIPS_UCODE:
6677 if (strcmp (name, ".ucode") != 0)
6678 return FALSE;
6679 break;
6680 case SHT_MIPS_DEBUG:
6681 if (strcmp (name, ".mdebug") != 0)
6682 return FALSE;
6683 flags = SEC_DEBUGGING;
6684 break;
6685 case SHT_MIPS_REGINFO:
6686 if (strcmp (name, ".reginfo") != 0
6687 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6688 return FALSE;
6689 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6690 break;
6691 case SHT_MIPS_IFACE:
6692 if (strcmp (name, ".MIPS.interfaces") != 0)
6693 return FALSE;
6694 break;
6695 case SHT_MIPS_CONTENT:
6696 if (! CONST_STRNEQ (name, ".MIPS.content"))
6697 return FALSE;
6698 break;
6699 case SHT_MIPS_OPTIONS:
6700 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6701 return FALSE;
6702 break;
6703 case SHT_MIPS_DWARF:
6704 if (! CONST_STRNEQ (name, ".debug_")
6705 && ! CONST_STRNEQ (name, ".zdebug_"))
6706 return FALSE;
6707 break;
6708 case SHT_MIPS_SYMBOL_LIB:
6709 if (strcmp (name, ".MIPS.symlib") != 0)
6710 return FALSE;
6711 break;
6712 case SHT_MIPS_EVENTS:
6713 if (! CONST_STRNEQ (name, ".MIPS.events")
6714 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6715 return FALSE;
6716 break;
6717 default:
6718 break;
6719 }
6720
6721 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6722 return FALSE;
6723
6724 if (flags)
6725 {
6726 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6727 (bfd_get_section_flags (abfd,
6728 hdr->bfd_section)
6729 | flags)))
6730 return FALSE;
6731 }
6732
6733 /* FIXME: We should record sh_info for a .gptab section. */
6734
6735 /* For a .reginfo section, set the gp value in the tdata information
6736 from the contents of this section. We need the gp value while
6737 processing relocs, so we just get it now. The .reginfo section
6738 is not used in the 64-bit MIPS ELF ABI. */
6739 if (hdr->sh_type == SHT_MIPS_REGINFO)
6740 {
6741 Elf32_External_RegInfo ext;
6742 Elf32_RegInfo s;
6743
6744 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6745 &ext, 0, sizeof ext))
6746 return FALSE;
6747 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6748 elf_gp (abfd) = s.ri_gp_value;
6749 }
6750
6751 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6752 set the gp value based on what we find. We may see both
6753 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6754 they should agree. */
6755 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6756 {
6757 bfd_byte *contents, *l, *lend;
6758
6759 contents = bfd_malloc (hdr->sh_size);
6760 if (contents == NULL)
6761 return FALSE;
6762 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6763 0, hdr->sh_size))
6764 {
6765 free (contents);
6766 return FALSE;
6767 }
6768 l = contents;
6769 lend = contents + hdr->sh_size;
6770 while (l + sizeof (Elf_External_Options) <= lend)
6771 {
6772 Elf_Internal_Options intopt;
6773
6774 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6775 &intopt);
6776 if (intopt.size < sizeof (Elf_External_Options))
6777 {
6778 (*_bfd_error_handler)
6779 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6780 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6781 break;
6782 }
6783 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6784 {
6785 Elf64_Internal_RegInfo intreg;
6786
6787 bfd_mips_elf64_swap_reginfo_in
6788 (abfd,
6789 ((Elf64_External_RegInfo *)
6790 (l + sizeof (Elf_External_Options))),
6791 &intreg);
6792 elf_gp (abfd) = intreg.ri_gp_value;
6793 }
6794 else if (intopt.kind == ODK_REGINFO)
6795 {
6796 Elf32_RegInfo intreg;
6797
6798 bfd_mips_elf32_swap_reginfo_in
6799 (abfd,
6800 ((Elf32_External_RegInfo *)
6801 (l + sizeof (Elf_External_Options))),
6802 &intreg);
6803 elf_gp (abfd) = intreg.ri_gp_value;
6804 }
6805 l += intopt.size;
6806 }
6807 free (contents);
6808 }
6809
6810 return TRUE;
6811 }
6812
6813 /* Set the correct type for a MIPS ELF section. We do this by the
6814 section name, which is a hack, but ought to work. This routine is
6815 used by both the 32-bit and the 64-bit ABI. */
6816
6817 bfd_boolean
6818 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6819 {
6820 const char *name = bfd_get_section_name (abfd, sec);
6821
6822 if (strcmp (name, ".liblist") == 0)
6823 {
6824 hdr->sh_type = SHT_MIPS_LIBLIST;
6825 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6826 /* The sh_link field is set in final_write_processing. */
6827 }
6828 else if (strcmp (name, ".conflict") == 0)
6829 hdr->sh_type = SHT_MIPS_CONFLICT;
6830 else if (CONST_STRNEQ (name, ".gptab."))
6831 {
6832 hdr->sh_type = SHT_MIPS_GPTAB;
6833 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6834 /* The sh_info field is set in final_write_processing. */
6835 }
6836 else if (strcmp (name, ".ucode") == 0)
6837 hdr->sh_type = SHT_MIPS_UCODE;
6838 else if (strcmp (name, ".mdebug") == 0)
6839 {
6840 hdr->sh_type = SHT_MIPS_DEBUG;
6841 /* In a shared object on IRIX 5.3, the .mdebug section has an
6842 entsize of 0. FIXME: Does this matter? */
6843 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6844 hdr->sh_entsize = 0;
6845 else
6846 hdr->sh_entsize = 1;
6847 }
6848 else if (strcmp (name, ".reginfo") == 0)
6849 {
6850 hdr->sh_type = SHT_MIPS_REGINFO;
6851 /* In a shared object on IRIX 5.3, the .reginfo section has an
6852 entsize of 0x18. FIXME: Does this matter? */
6853 if (SGI_COMPAT (abfd))
6854 {
6855 if ((abfd->flags & DYNAMIC) != 0)
6856 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6857 else
6858 hdr->sh_entsize = 1;
6859 }
6860 else
6861 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6862 }
6863 else if (SGI_COMPAT (abfd)
6864 && (strcmp (name, ".hash") == 0
6865 || strcmp (name, ".dynamic") == 0
6866 || strcmp (name, ".dynstr") == 0))
6867 {
6868 if (SGI_COMPAT (abfd))
6869 hdr->sh_entsize = 0;
6870 #if 0
6871 /* This isn't how the IRIX6 linker behaves. */
6872 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6873 #endif
6874 }
6875 else if (strcmp (name, ".got") == 0
6876 || strcmp (name, ".srdata") == 0
6877 || strcmp (name, ".sdata") == 0
6878 || strcmp (name, ".sbss") == 0
6879 || strcmp (name, ".lit4") == 0
6880 || strcmp (name, ".lit8") == 0)
6881 hdr->sh_flags |= SHF_MIPS_GPREL;
6882 else if (strcmp (name, ".MIPS.interfaces") == 0)
6883 {
6884 hdr->sh_type = SHT_MIPS_IFACE;
6885 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6886 }
6887 else if (CONST_STRNEQ (name, ".MIPS.content"))
6888 {
6889 hdr->sh_type = SHT_MIPS_CONTENT;
6890 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6891 /* The sh_info field is set in final_write_processing. */
6892 }
6893 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6894 {
6895 hdr->sh_type = SHT_MIPS_OPTIONS;
6896 hdr->sh_entsize = 1;
6897 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6898 }
6899 else if (CONST_STRNEQ (name, ".debug_")
6900 || CONST_STRNEQ (name, ".zdebug_"))
6901 {
6902 hdr->sh_type = SHT_MIPS_DWARF;
6903
6904 /* Irix facilities such as libexc expect a single .debug_frame
6905 per executable, the system ones have NOSTRIP set and the linker
6906 doesn't merge sections with different flags so ... */
6907 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6908 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6909 }
6910 else if (strcmp (name, ".MIPS.symlib") == 0)
6911 {
6912 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6913 /* The sh_link and sh_info fields are set in
6914 final_write_processing. */
6915 }
6916 else if (CONST_STRNEQ (name, ".MIPS.events")
6917 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6918 {
6919 hdr->sh_type = SHT_MIPS_EVENTS;
6920 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6921 /* The sh_link field is set in final_write_processing. */
6922 }
6923 else if (strcmp (name, ".msym") == 0)
6924 {
6925 hdr->sh_type = SHT_MIPS_MSYM;
6926 hdr->sh_flags |= SHF_ALLOC;
6927 hdr->sh_entsize = 8;
6928 }
6929
6930 /* The generic elf_fake_sections will set up REL_HDR using the default
6931 kind of relocations. We used to set up a second header for the
6932 non-default kind of relocations here, but only NewABI would use
6933 these, and the IRIX ld doesn't like resulting empty RELA sections.
6934 Thus we create those header only on demand now. */
6935
6936 return TRUE;
6937 }
6938
6939 /* Given a BFD section, try to locate the corresponding ELF section
6940 index. This is used by both the 32-bit and the 64-bit ABI.
6941 Actually, it's not clear to me that the 64-bit ABI supports these,
6942 but for non-PIC objects we will certainly want support for at least
6943 the .scommon section. */
6944
6945 bfd_boolean
6946 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6947 asection *sec, int *retval)
6948 {
6949 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6950 {
6951 *retval = SHN_MIPS_SCOMMON;
6952 return TRUE;
6953 }
6954 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6955 {
6956 *retval = SHN_MIPS_ACOMMON;
6957 return TRUE;
6958 }
6959 return FALSE;
6960 }
6961 \f
6962 /* Hook called by the linker routine which adds symbols from an object
6963 file. We must handle the special MIPS section numbers here. */
6964
6965 bfd_boolean
6966 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6967 Elf_Internal_Sym *sym, const char **namep,
6968 flagword *flagsp ATTRIBUTE_UNUSED,
6969 asection **secp, bfd_vma *valp)
6970 {
6971 if (SGI_COMPAT (abfd)
6972 && (abfd->flags & DYNAMIC) != 0
6973 && strcmp (*namep, "_rld_new_interface") == 0)
6974 {
6975 /* Skip IRIX5 rld entry name. */
6976 *namep = NULL;
6977 return TRUE;
6978 }
6979
6980 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6981 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6982 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6983 a magic symbol resolved by the linker, we ignore this bogus definition
6984 of _gp_disp. New ABI objects do not suffer from this problem so this
6985 is not done for them. */
6986 if (!NEWABI_P(abfd)
6987 && (sym->st_shndx == SHN_ABS)
6988 && (strcmp (*namep, "_gp_disp") == 0))
6989 {
6990 *namep = NULL;
6991 return TRUE;
6992 }
6993
6994 switch (sym->st_shndx)
6995 {
6996 case SHN_COMMON:
6997 /* Common symbols less than the GP size are automatically
6998 treated as SHN_MIPS_SCOMMON symbols. */
6999 if (sym->st_size > elf_gp_size (abfd)
7000 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7001 || IRIX_COMPAT (abfd) == ict_irix6)
7002 break;
7003 /* Fall through. */
7004 case SHN_MIPS_SCOMMON:
7005 *secp = bfd_make_section_old_way (abfd, ".scommon");
7006 (*secp)->flags |= SEC_IS_COMMON;
7007 *valp = sym->st_size;
7008 break;
7009
7010 case SHN_MIPS_TEXT:
7011 /* This section is used in a shared object. */
7012 if (elf_tdata (abfd)->elf_text_section == NULL)
7013 {
7014 asymbol *elf_text_symbol;
7015 asection *elf_text_section;
7016 bfd_size_type amt = sizeof (asection);
7017
7018 elf_text_section = bfd_zalloc (abfd, amt);
7019 if (elf_text_section == NULL)
7020 return FALSE;
7021
7022 amt = sizeof (asymbol);
7023 elf_text_symbol = bfd_zalloc (abfd, amt);
7024 if (elf_text_symbol == NULL)
7025 return FALSE;
7026
7027 /* Initialize the section. */
7028
7029 elf_tdata (abfd)->elf_text_section = elf_text_section;
7030 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7031
7032 elf_text_section->symbol = elf_text_symbol;
7033 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7034
7035 elf_text_section->name = ".text";
7036 elf_text_section->flags = SEC_NO_FLAGS;
7037 elf_text_section->output_section = NULL;
7038 elf_text_section->owner = abfd;
7039 elf_text_symbol->name = ".text";
7040 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7041 elf_text_symbol->section = elf_text_section;
7042 }
7043 /* This code used to do *secp = bfd_und_section_ptr if
7044 info->shared. I don't know why, and that doesn't make sense,
7045 so I took it out. */
7046 *secp = elf_tdata (abfd)->elf_text_section;
7047 break;
7048
7049 case SHN_MIPS_ACOMMON:
7050 /* Fall through. XXX Can we treat this as allocated data? */
7051 case SHN_MIPS_DATA:
7052 /* This section is used in a shared object. */
7053 if (elf_tdata (abfd)->elf_data_section == NULL)
7054 {
7055 asymbol *elf_data_symbol;
7056 asection *elf_data_section;
7057 bfd_size_type amt = sizeof (asection);
7058
7059 elf_data_section = bfd_zalloc (abfd, amt);
7060 if (elf_data_section == NULL)
7061 return FALSE;
7062
7063 amt = sizeof (asymbol);
7064 elf_data_symbol = bfd_zalloc (abfd, amt);
7065 if (elf_data_symbol == NULL)
7066 return FALSE;
7067
7068 /* Initialize the section. */
7069
7070 elf_tdata (abfd)->elf_data_section = elf_data_section;
7071 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7072
7073 elf_data_section->symbol = elf_data_symbol;
7074 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7075
7076 elf_data_section->name = ".data";
7077 elf_data_section->flags = SEC_NO_FLAGS;
7078 elf_data_section->output_section = NULL;
7079 elf_data_section->owner = abfd;
7080 elf_data_symbol->name = ".data";
7081 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7082 elf_data_symbol->section = elf_data_section;
7083 }
7084 /* This code used to do *secp = bfd_und_section_ptr if
7085 info->shared. I don't know why, and that doesn't make sense,
7086 so I took it out. */
7087 *secp = elf_tdata (abfd)->elf_data_section;
7088 break;
7089
7090 case SHN_MIPS_SUNDEFINED:
7091 *secp = bfd_und_section_ptr;
7092 break;
7093 }
7094
7095 if (SGI_COMPAT (abfd)
7096 && ! info->shared
7097 && info->output_bfd->xvec == abfd->xvec
7098 && strcmp (*namep, "__rld_obj_head") == 0)
7099 {
7100 struct elf_link_hash_entry *h;
7101 struct bfd_link_hash_entry *bh;
7102
7103 /* Mark __rld_obj_head as dynamic. */
7104 bh = NULL;
7105 if (! (_bfd_generic_link_add_one_symbol
7106 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7107 get_elf_backend_data (abfd)->collect, &bh)))
7108 return FALSE;
7109
7110 h = (struct elf_link_hash_entry *) bh;
7111 h->non_elf = 0;
7112 h->def_regular = 1;
7113 h->type = STT_OBJECT;
7114
7115 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7116 return FALSE;
7117
7118 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7119 mips_elf_hash_table (info)->rld_symbol = h;
7120 }
7121
7122 /* If this is a mips16 text symbol, add 1 to the value to make it
7123 odd. This will cause something like .word SYM to come up with
7124 the right value when it is loaded into the PC. */
7125 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7126 ++*valp;
7127
7128 return TRUE;
7129 }
7130
7131 /* This hook function is called before the linker writes out a global
7132 symbol. We mark symbols as small common if appropriate. This is
7133 also where we undo the increment of the value for a mips16 symbol. */
7134
7135 int
7136 _bfd_mips_elf_link_output_symbol_hook
7137 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7138 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7139 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7140 {
7141 /* If we see a common symbol, which implies a relocatable link, then
7142 if a symbol was small common in an input file, mark it as small
7143 common in the output file. */
7144 if (sym->st_shndx == SHN_COMMON
7145 && strcmp (input_sec->name, ".scommon") == 0)
7146 sym->st_shndx = SHN_MIPS_SCOMMON;
7147
7148 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7149 sym->st_value &= ~1;
7150
7151 return 1;
7152 }
7153 \f
7154 /* Functions for the dynamic linker. */
7155
7156 /* Create dynamic sections when linking against a dynamic object. */
7157
7158 bfd_boolean
7159 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7160 {
7161 struct elf_link_hash_entry *h;
7162 struct bfd_link_hash_entry *bh;
7163 flagword flags;
7164 register asection *s;
7165 const char * const *namep;
7166 struct mips_elf_link_hash_table *htab;
7167
7168 htab = mips_elf_hash_table (info);
7169 BFD_ASSERT (htab != NULL);
7170
7171 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7172 | SEC_LINKER_CREATED | SEC_READONLY);
7173
7174 /* The psABI requires a read-only .dynamic section, but the VxWorks
7175 EABI doesn't. */
7176 if (!htab->is_vxworks)
7177 {
7178 s = bfd_get_linker_section (abfd, ".dynamic");
7179 if (s != NULL)
7180 {
7181 if (! bfd_set_section_flags (abfd, s, flags))
7182 return FALSE;
7183 }
7184 }
7185
7186 /* We need to create .got section. */
7187 if (!mips_elf_create_got_section (abfd, info))
7188 return FALSE;
7189
7190 if (! mips_elf_rel_dyn_section (info, TRUE))
7191 return FALSE;
7192
7193 /* Create .stub section. */
7194 s = bfd_make_section_anyway_with_flags (abfd,
7195 MIPS_ELF_STUB_SECTION_NAME (abfd),
7196 flags | SEC_CODE);
7197 if (s == NULL
7198 || ! bfd_set_section_alignment (abfd, s,
7199 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7200 return FALSE;
7201 htab->sstubs = s;
7202
7203 if (!mips_elf_hash_table (info)->use_rld_obj_head
7204 && !info->shared
7205 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7206 {
7207 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7208 flags &~ (flagword) SEC_READONLY);
7209 if (s == NULL
7210 || ! bfd_set_section_alignment (abfd, s,
7211 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7212 return FALSE;
7213 }
7214
7215 /* On IRIX5, we adjust add some additional symbols and change the
7216 alignments of several sections. There is no ABI documentation
7217 indicating that this is necessary on IRIX6, nor any evidence that
7218 the linker takes such action. */
7219 if (IRIX_COMPAT (abfd) == ict_irix5)
7220 {
7221 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7222 {
7223 bh = NULL;
7224 if (! (_bfd_generic_link_add_one_symbol
7225 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7226 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7227 return FALSE;
7228
7229 h = (struct elf_link_hash_entry *) bh;
7230 h->non_elf = 0;
7231 h->def_regular = 1;
7232 h->type = STT_SECTION;
7233
7234 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7235 return FALSE;
7236 }
7237
7238 /* We need to create a .compact_rel section. */
7239 if (SGI_COMPAT (abfd))
7240 {
7241 if (!mips_elf_create_compact_rel_section (abfd, info))
7242 return FALSE;
7243 }
7244
7245 /* Change alignments of some sections. */
7246 s = bfd_get_linker_section (abfd, ".hash");
7247 if (s != NULL)
7248 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7249 s = bfd_get_linker_section (abfd, ".dynsym");
7250 if (s != NULL)
7251 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7252 s = bfd_get_linker_section (abfd, ".dynstr");
7253 if (s != NULL)
7254 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7255 /* ??? */
7256 s = bfd_get_section_by_name (abfd, ".reginfo");
7257 if (s != NULL)
7258 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7259 s = bfd_get_linker_section (abfd, ".dynamic");
7260 if (s != NULL)
7261 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7262 }
7263
7264 if (!info->shared)
7265 {
7266 const char *name;
7267
7268 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7269 bh = NULL;
7270 if (!(_bfd_generic_link_add_one_symbol
7271 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7272 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7273 return FALSE;
7274
7275 h = (struct elf_link_hash_entry *) bh;
7276 h->non_elf = 0;
7277 h->def_regular = 1;
7278 h->type = STT_SECTION;
7279
7280 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7281 return FALSE;
7282
7283 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7284 {
7285 /* __rld_map is a four byte word located in the .data section
7286 and is filled in by the rtld to contain a pointer to
7287 the _r_debug structure. Its symbol value will be set in
7288 _bfd_mips_elf_finish_dynamic_symbol. */
7289 s = bfd_get_linker_section (abfd, ".rld_map");
7290 BFD_ASSERT (s != NULL);
7291
7292 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7293 bh = NULL;
7294 if (!(_bfd_generic_link_add_one_symbol
7295 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7296 get_elf_backend_data (abfd)->collect, &bh)))
7297 return FALSE;
7298
7299 h = (struct elf_link_hash_entry *) bh;
7300 h->non_elf = 0;
7301 h->def_regular = 1;
7302 h->type = STT_OBJECT;
7303
7304 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7305 return FALSE;
7306 mips_elf_hash_table (info)->rld_symbol = h;
7307 }
7308 }
7309
7310 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7311 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7312 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7313 return FALSE;
7314
7315 /* Cache the sections created above. */
7316 htab->splt = bfd_get_linker_section (abfd, ".plt");
7317 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7318 if (htab->is_vxworks)
7319 {
7320 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7321 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7322 }
7323 else
7324 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7325 if (!htab->sdynbss
7326 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7327 || !htab->srelplt
7328 || !htab->splt)
7329 abort ();
7330
7331 if (htab->is_vxworks)
7332 {
7333 /* Do the usual VxWorks handling. */
7334 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7335 return FALSE;
7336
7337 /* Work out the PLT sizes. */
7338 if (info->shared)
7339 {
7340 htab->plt_header_size
7341 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7342 htab->plt_entry_size
7343 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7344 }
7345 else
7346 {
7347 htab->plt_header_size
7348 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7349 htab->plt_entry_size
7350 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7351 }
7352 }
7353 else if (!info->shared)
7354 {
7355 /* All variants of the plt0 entry are the same size. */
7356 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7357 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7358 }
7359
7360 return TRUE;
7361 }
7362 \f
7363 /* Return true if relocation REL against section SEC is a REL rather than
7364 RELA relocation. RELOCS is the first relocation in the section and
7365 ABFD is the bfd that contains SEC. */
7366
7367 static bfd_boolean
7368 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7369 const Elf_Internal_Rela *relocs,
7370 const Elf_Internal_Rela *rel)
7371 {
7372 Elf_Internal_Shdr *rel_hdr;
7373 const struct elf_backend_data *bed;
7374
7375 /* To determine which flavor of relocation this is, we depend on the
7376 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7377 rel_hdr = elf_section_data (sec)->rel.hdr;
7378 if (rel_hdr == NULL)
7379 return FALSE;
7380 bed = get_elf_backend_data (abfd);
7381 return ((size_t) (rel - relocs)
7382 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7383 }
7384
7385 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7386 HOWTO is the relocation's howto and CONTENTS points to the contents
7387 of the section that REL is against. */
7388
7389 static bfd_vma
7390 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7391 reloc_howto_type *howto, bfd_byte *contents)
7392 {
7393 bfd_byte *location;
7394 unsigned int r_type;
7395 bfd_vma addend;
7396
7397 r_type = ELF_R_TYPE (abfd, rel->r_info);
7398 location = contents + rel->r_offset;
7399
7400 /* Get the addend, which is stored in the input file. */
7401 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7402 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7403 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7404
7405 return addend & howto->src_mask;
7406 }
7407
7408 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7409 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7410 and update *ADDEND with the final addend. Return true on success
7411 or false if the LO16 could not be found. RELEND is the exclusive
7412 upper bound on the relocations for REL's section. */
7413
7414 static bfd_boolean
7415 mips_elf_add_lo16_rel_addend (bfd *abfd,
7416 const Elf_Internal_Rela *rel,
7417 const Elf_Internal_Rela *relend,
7418 bfd_byte *contents, bfd_vma *addend)
7419 {
7420 unsigned int r_type, lo16_type;
7421 const Elf_Internal_Rela *lo16_relocation;
7422 reloc_howto_type *lo16_howto;
7423 bfd_vma l;
7424
7425 r_type = ELF_R_TYPE (abfd, rel->r_info);
7426 if (mips16_reloc_p (r_type))
7427 lo16_type = R_MIPS16_LO16;
7428 else if (micromips_reloc_p (r_type))
7429 lo16_type = R_MICROMIPS_LO16;
7430 else
7431 lo16_type = R_MIPS_LO16;
7432
7433 /* The combined value is the sum of the HI16 addend, left-shifted by
7434 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7435 code does a `lui' of the HI16 value, and then an `addiu' of the
7436 LO16 value.)
7437
7438 Scan ahead to find a matching LO16 relocation.
7439
7440 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7441 be immediately following. However, for the IRIX6 ABI, the next
7442 relocation may be a composed relocation consisting of several
7443 relocations for the same address. In that case, the R_MIPS_LO16
7444 relocation may occur as one of these. We permit a similar
7445 extension in general, as that is useful for GCC.
7446
7447 In some cases GCC dead code elimination removes the LO16 but keeps
7448 the corresponding HI16. This is strictly speaking a violation of
7449 the ABI but not immediately harmful. */
7450 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7451 if (lo16_relocation == NULL)
7452 return FALSE;
7453
7454 /* Obtain the addend kept there. */
7455 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7456 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7457
7458 l <<= lo16_howto->rightshift;
7459 l = _bfd_mips_elf_sign_extend (l, 16);
7460
7461 *addend <<= 16;
7462 *addend += l;
7463 return TRUE;
7464 }
7465
7466 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7467 store the contents in *CONTENTS on success. Assume that *CONTENTS
7468 already holds the contents if it is nonull on entry. */
7469
7470 static bfd_boolean
7471 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7472 {
7473 if (*contents)
7474 return TRUE;
7475
7476 /* Get cached copy if it exists. */
7477 if (elf_section_data (sec)->this_hdr.contents != NULL)
7478 {
7479 *contents = elf_section_data (sec)->this_hdr.contents;
7480 return TRUE;
7481 }
7482
7483 return bfd_malloc_and_get_section (abfd, sec, contents);
7484 }
7485
7486 /* Look through the relocs for a section during the first phase, and
7487 allocate space in the global offset table. */
7488
7489 bfd_boolean
7490 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7491 asection *sec, const Elf_Internal_Rela *relocs)
7492 {
7493 const char *name;
7494 bfd *dynobj;
7495 Elf_Internal_Shdr *symtab_hdr;
7496 struct elf_link_hash_entry **sym_hashes;
7497 size_t extsymoff;
7498 const Elf_Internal_Rela *rel;
7499 const Elf_Internal_Rela *rel_end;
7500 asection *sreloc;
7501 const struct elf_backend_data *bed;
7502 struct mips_elf_link_hash_table *htab;
7503 bfd_byte *contents;
7504 bfd_vma addend;
7505 reloc_howto_type *howto;
7506
7507 if (info->relocatable)
7508 return TRUE;
7509
7510 htab = mips_elf_hash_table (info);
7511 BFD_ASSERT (htab != NULL);
7512
7513 dynobj = elf_hash_table (info)->dynobj;
7514 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7515 sym_hashes = elf_sym_hashes (abfd);
7516 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7517
7518 bed = get_elf_backend_data (abfd);
7519 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7520
7521 /* Check for the mips16 stub sections. */
7522
7523 name = bfd_get_section_name (abfd, sec);
7524 if (FN_STUB_P (name))
7525 {
7526 unsigned long r_symndx;
7527
7528 /* Look at the relocation information to figure out which symbol
7529 this is for. */
7530
7531 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7532 if (r_symndx == 0)
7533 {
7534 (*_bfd_error_handler)
7535 (_("%B: Warning: cannot determine the target function for"
7536 " stub section `%s'"),
7537 abfd, name);
7538 bfd_set_error (bfd_error_bad_value);
7539 return FALSE;
7540 }
7541
7542 if (r_symndx < extsymoff
7543 || sym_hashes[r_symndx - extsymoff] == NULL)
7544 {
7545 asection *o;
7546
7547 /* This stub is for a local symbol. This stub will only be
7548 needed if there is some relocation in this BFD, other
7549 than a 16 bit function call, which refers to this symbol. */
7550 for (o = abfd->sections; o != NULL; o = o->next)
7551 {
7552 Elf_Internal_Rela *sec_relocs;
7553 const Elf_Internal_Rela *r, *rend;
7554
7555 /* We can ignore stub sections when looking for relocs. */
7556 if ((o->flags & SEC_RELOC) == 0
7557 || o->reloc_count == 0
7558 || section_allows_mips16_refs_p (o))
7559 continue;
7560
7561 sec_relocs
7562 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7563 info->keep_memory);
7564 if (sec_relocs == NULL)
7565 return FALSE;
7566
7567 rend = sec_relocs + o->reloc_count;
7568 for (r = sec_relocs; r < rend; r++)
7569 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7570 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7571 break;
7572
7573 if (elf_section_data (o)->relocs != sec_relocs)
7574 free (sec_relocs);
7575
7576 if (r < rend)
7577 break;
7578 }
7579
7580 if (o == NULL)
7581 {
7582 /* There is no non-call reloc for this stub, so we do
7583 not need it. Since this function is called before
7584 the linker maps input sections to output sections, we
7585 can easily discard it by setting the SEC_EXCLUDE
7586 flag. */
7587 sec->flags |= SEC_EXCLUDE;
7588 return TRUE;
7589 }
7590
7591 /* Record this stub in an array of local symbol stubs for
7592 this BFD. */
7593 if (elf_tdata (abfd)->local_stubs == NULL)
7594 {
7595 unsigned long symcount;
7596 asection **n;
7597 bfd_size_type amt;
7598
7599 if (elf_bad_symtab (abfd))
7600 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7601 else
7602 symcount = symtab_hdr->sh_info;
7603 amt = symcount * sizeof (asection *);
7604 n = bfd_zalloc (abfd, amt);
7605 if (n == NULL)
7606 return FALSE;
7607 elf_tdata (abfd)->local_stubs = n;
7608 }
7609
7610 sec->flags |= SEC_KEEP;
7611 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7612
7613 /* We don't need to set mips16_stubs_seen in this case.
7614 That flag is used to see whether we need to look through
7615 the global symbol table for stubs. We don't need to set
7616 it here, because we just have a local stub. */
7617 }
7618 else
7619 {
7620 struct mips_elf_link_hash_entry *h;
7621
7622 h = ((struct mips_elf_link_hash_entry *)
7623 sym_hashes[r_symndx - extsymoff]);
7624
7625 while (h->root.root.type == bfd_link_hash_indirect
7626 || h->root.root.type == bfd_link_hash_warning)
7627 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7628
7629 /* H is the symbol this stub is for. */
7630
7631 /* If we already have an appropriate stub for this function, we
7632 don't need another one, so we can discard this one. Since
7633 this function is called before the linker maps input sections
7634 to output sections, we can easily discard it by setting the
7635 SEC_EXCLUDE flag. */
7636 if (h->fn_stub != NULL)
7637 {
7638 sec->flags |= SEC_EXCLUDE;
7639 return TRUE;
7640 }
7641
7642 sec->flags |= SEC_KEEP;
7643 h->fn_stub = sec;
7644 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7645 }
7646 }
7647 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7648 {
7649 unsigned long r_symndx;
7650 struct mips_elf_link_hash_entry *h;
7651 asection **loc;
7652
7653 /* Look at the relocation information to figure out which symbol
7654 this is for. */
7655
7656 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7657 if (r_symndx == 0)
7658 {
7659 (*_bfd_error_handler)
7660 (_("%B: Warning: cannot determine the target function for"
7661 " stub section `%s'"),
7662 abfd, name);
7663 bfd_set_error (bfd_error_bad_value);
7664 return FALSE;
7665 }
7666
7667 if (r_symndx < extsymoff
7668 || sym_hashes[r_symndx - extsymoff] == NULL)
7669 {
7670 asection *o;
7671
7672 /* This stub is for a local symbol. This stub will only be
7673 needed if there is some relocation (R_MIPS16_26) in this BFD
7674 that refers to this symbol. */
7675 for (o = abfd->sections; o != NULL; o = o->next)
7676 {
7677 Elf_Internal_Rela *sec_relocs;
7678 const Elf_Internal_Rela *r, *rend;
7679
7680 /* We can ignore stub sections when looking for relocs. */
7681 if ((o->flags & SEC_RELOC) == 0
7682 || o->reloc_count == 0
7683 || section_allows_mips16_refs_p (o))
7684 continue;
7685
7686 sec_relocs
7687 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7688 info->keep_memory);
7689 if (sec_relocs == NULL)
7690 return FALSE;
7691
7692 rend = sec_relocs + o->reloc_count;
7693 for (r = sec_relocs; r < rend; r++)
7694 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7695 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7696 break;
7697
7698 if (elf_section_data (o)->relocs != sec_relocs)
7699 free (sec_relocs);
7700
7701 if (r < rend)
7702 break;
7703 }
7704
7705 if (o == NULL)
7706 {
7707 /* There is no non-call reloc for this stub, so we do
7708 not need it. Since this function is called before
7709 the linker maps input sections to output sections, we
7710 can easily discard it by setting the SEC_EXCLUDE
7711 flag. */
7712 sec->flags |= SEC_EXCLUDE;
7713 return TRUE;
7714 }
7715
7716 /* Record this stub in an array of local symbol call_stubs for
7717 this BFD. */
7718 if (elf_tdata (abfd)->local_call_stubs == NULL)
7719 {
7720 unsigned long symcount;
7721 asection **n;
7722 bfd_size_type amt;
7723
7724 if (elf_bad_symtab (abfd))
7725 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7726 else
7727 symcount = symtab_hdr->sh_info;
7728 amt = symcount * sizeof (asection *);
7729 n = bfd_zalloc (abfd, amt);
7730 if (n == NULL)
7731 return FALSE;
7732 elf_tdata (abfd)->local_call_stubs = n;
7733 }
7734
7735 sec->flags |= SEC_KEEP;
7736 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7737
7738 /* We don't need to set mips16_stubs_seen in this case.
7739 That flag is used to see whether we need to look through
7740 the global symbol table for stubs. We don't need to set
7741 it here, because we just have a local stub. */
7742 }
7743 else
7744 {
7745 h = ((struct mips_elf_link_hash_entry *)
7746 sym_hashes[r_symndx - extsymoff]);
7747
7748 /* H is the symbol this stub is for. */
7749
7750 if (CALL_FP_STUB_P (name))
7751 loc = &h->call_fp_stub;
7752 else
7753 loc = &h->call_stub;
7754
7755 /* If we already have an appropriate stub for this function, we
7756 don't need another one, so we can discard this one. Since
7757 this function is called before the linker maps input sections
7758 to output sections, we can easily discard it by setting the
7759 SEC_EXCLUDE flag. */
7760 if (*loc != NULL)
7761 {
7762 sec->flags |= SEC_EXCLUDE;
7763 return TRUE;
7764 }
7765
7766 sec->flags |= SEC_KEEP;
7767 *loc = sec;
7768 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7769 }
7770 }
7771
7772 sreloc = NULL;
7773 contents = NULL;
7774 for (rel = relocs; rel < rel_end; ++rel)
7775 {
7776 unsigned long r_symndx;
7777 unsigned int r_type;
7778 struct elf_link_hash_entry *h;
7779 bfd_boolean can_make_dynamic_p;
7780
7781 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7782 r_type = ELF_R_TYPE (abfd, rel->r_info);
7783
7784 if (r_symndx < extsymoff)
7785 h = NULL;
7786 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7787 {
7788 (*_bfd_error_handler)
7789 (_("%B: Malformed reloc detected for section %s"),
7790 abfd, name);
7791 bfd_set_error (bfd_error_bad_value);
7792 return FALSE;
7793 }
7794 else
7795 {
7796 h = sym_hashes[r_symndx - extsymoff];
7797 while (h != NULL
7798 && (h->root.type == bfd_link_hash_indirect
7799 || h->root.type == bfd_link_hash_warning))
7800 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7801 }
7802
7803 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7804 relocation into a dynamic one. */
7805 can_make_dynamic_p = FALSE;
7806 switch (r_type)
7807 {
7808 case R_MIPS_GOT16:
7809 case R_MIPS_CALL16:
7810 case R_MIPS_CALL_HI16:
7811 case R_MIPS_CALL_LO16:
7812 case R_MIPS_GOT_HI16:
7813 case R_MIPS_GOT_LO16:
7814 case R_MIPS_GOT_PAGE:
7815 case R_MIPS_GOT_OFST:
7816 case R_MIPS_GOT_DISP:
7817 case R_MIPS_TLS_GOTTPREL:
7818 case R_MIPS_TLS_GD:
7819 case R_MIPS_TLS_LDM:
7820 case R_MIPS16_GOT16:
7821 case R_MIPS16_CALL16:
7822 case R_MIPS16_TLS_GOTTPREL:
7823 case R_MIPS16_TLS_GD:
7824 case R_MIPS16_TLS_LDM:
7825 case R_MICROMIPS_GOT16:
7826 case R_MICROMIPS_CALL16:
7827 case R_MICROMIPS_CALL_HI16:
7828 case R_MICROMIPS_CALL_LO16:
7829 case R_MICROMIPS_GOT_HI16:
7830 case R_MICROMIPS_GOT_LO16:
7831 case R_MICROMIPS_GOT_PAGE:
7832 case R_MICROMIPS_GOT_OFST:
7833 case R_MICROMIPS_GOT_DISP:
7834 case R_MICROMIPS_TLS_GOTTPREL:
7835 case R_MICROMIPS_TLS_GD:
7836 case R_MICROMIPS_TLS_LDM:
7837 if (dynobj == NULL)
7838 elf_hash_table (info)->dynobj = dynobj = abfd;
7839 if (!mips_elf_create_got_section (dynobj, info))
7840 return FALSE;
7841 if (htab->is_vxworks && !info->shared)
7842 {
7843 (*_bfd_error_handler)
7844 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7845 abfd, (unsigned long) rel->r_offset);
7846 bfd_set_error (bfd_error_bad_value);
7847 return FALSE;
7848 }
7849 break;
7850
7851 /* This is just a hint; it can safely be ignored. Don't set
7852 has_static_relocs for the corresponding symbol. */
7853 case R_MIPS_JALR:
7854 case R_MICROMIPS_JALR:
7855 break;
7856
7857 case R_MIPS_32:
7858 case R_MIPS_REL32:
7859 case R_MIPS_64:
7860 /* In VxWorks executables, references to external symbols
7861 must be handled using copy relocs or PLT entries; it is not
7862 possible to convert this relocation into a dynamic one.
7863
7864 For executables that use PLTs and copy-relocs, we have a
7865 choice between converting the relocation into a dynamic
7866 one or using copy relocations or PLT entries. It is
7867 usually better to do the former, unless the relocation is
7868 against a read-only section. */
7869 if ((info->shared
7870 || (h != NULL
7871 && !htab->is_vxworks
7872 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7873 && !(!info->nocopyreloc
7874 && !PIC_OBJECT_P (abfd)
7875 && MIPS_ELF_READONLY_SECTION (sec))))
7876 && (sec->flags & SEC_ALLOC) != 0)
7877 {
7878 can_make_dynamic_p = TRUE;
7879 if (dynobj == NULL)
7880 elf_hash_table (info)->dynobj = dynobj = abfd;
7881 break;
7882 }
7883 /* For sections that are not SEC_ALLOC a copy reloc would be
7884 output if possible (implying questionable semantics for
7885 read-only data objects) or otherwise the final link would
7886 fail as ld.so will not process them and could not therefore
7887 handle any outstanding dynamic relocations.
7888
7889 For such sections that are also SEC_DEBUGGING, we can avoid
7890 these problems by simply ignoring any relocs as these
7891 sections have a predefined use and we know it is safe to do
7892 so.
7893
7894 This is needed in cases such as a global symbol definition
7895 in a shared library causing a common symbol from an object
7896 file to be converted to an undefined reference. If that
7897 happens, then all the relocations against this symbol from
7898 SEC_DEBUGGING sections in the object file will resolve to
7899 nil. */
7900 if ((sec->flags & SEC_DEBUGGING) != 0)
7901 break;
7902 /* Fall through. */
7903
7904 default:
7905 /* Most static relocations require pointer equality, except
7906 for branches. */
7907 if (h)
7908 h->pointer_equality_needed = TRUE;
7909 /* Fall through. */
7910
7911 case R_MIPS_26:
7912 case R_MIPS_PC16:
7913 case R_MIPS16_26:
7914 case R_MICROMIPS_26_S1:
7915 case R_MICROMIPS_PC7_S1:
7916 case R_MICROMIPS_PC10_S1:
7917 case R_MICROMIPS_PC16_S1:
7918 case R_MICROMIPS_PC23_S2:
7919 if (h)
7920 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7921 break;
7922 }
7923
7924 if (h)
7925 {
7926 /* Relocations against the special VxWorks __GOTT_BASE__ and
7927 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7928 room for them in .rela.dyn. */
7929 if (is_gott_symbol (info, h))
7930 {
7931 if (sreloc == NULL)
7932 {
7933 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7934 if (sreloc == NULL)
7935 return FALSE;
7936 }
7937 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7938 if (MIPS_ELF_READONLY_SECTION (sec))
7939 /* We tell the dynamic linker that there are
7940 relocations against the text segment. */
7941 info->flags |= DF_TEXTREL;
7942 }
7943 }
7944 else if (call_lo16_reloc_p (r_type)
7945 || got_lo16_reloc_p (r_type)
7946 || got_disp_reloc_p (r_type)
7947 || (got16_reloc_p (r_type) && htab->is_vxworks))
7948 {
7949 /* We may need a local GOT entry for this relocation. We
7950 don't count R_MIPS_GOT_PAGE because we can estimate the
7951 maximum number of pages needed by looking at the size of
7952 the segment. Similar comments apply to R_MIPS*_GOT16 and
7953 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7954 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7955 R_MIPS_CALL_HI16 because these are always followed by an
7956 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7957 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7958 rel->r_addend, info, r_type))
7959 return FALSE;
7960 }
7961
7962 if (h != NULL
7963 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
7964 ELF_ST_IS_MIPS16 (h->other)))
7965 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7966
7967 switch (r_type)
7968 {
7969 case R_MIPS_CALL16:
7970 case R_MIPS16_CALL16:
7971 case R_MICROMIPS_CALL16:
7972 if (h == NULL)
7973 {
7974 (*_bfd_error_handler)
7975 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7976 abfd, (unsigned long) rel->r_offset);
7977 bfd_set_error (bfd_error_bad_value);
7978 return FALSE;
7979 }
7980 /* Fall through. */
7981
7982 case R_MIPS_CALL_HI16:
7983 case R_MIPS_CALL_LO16:
7984 case R_MICROMIPS_CALL_HI16:
7985 case R_MICROMIPS_CALL_LO16:
7986 if (h != NULL)
7987 {
7988 /* Make sure there is room in the regular GOT to hold the
7989 function's address. We may eliminate it in favour of
7990 a .got.plt entry later; see mips_elf_count_got_symbols. */
7991 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
7992 r_type))
7993 return FALSE;
7994
7995 /* We need a stub, not a plt entry for the undefined
7996 function. But we record it as if it needs plt. See
7997 _bfd_elf_adjust_dynamic_symbol. */
7998 h->needs_plt = 1;
7999 h->type = STT_FUNC;
8000 }
8001 break;
8002
8003 case R_MIPS_GOT_PAGE:
8004 case R_MICROMIPS_GOT_PAGE:
8005 case R_MIPS16_GOT16:
8006 case R_MIPS_GOT16:
8007 case R_MIPS_GOT_HI16:
8008 case R_MIPS_GOT_LO16:
8009 case R_MICROMIPS_GOT16:
8010 case R_MICROMIPS_GOT_HI16:
8011 case R_MICROMIPS_GOT_LO16:
8012 if (!h || got_page_reloc_p (r_type))
8013 {
8014 /* This relocation needs (or may need, if h != NULL) a
8015 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8016 know for sure until we know whether the symbol is
8017 preemptible. */
8018 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8019 {
8020 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8021 return FALSE;
8022 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8023 addend = mips_elf_read_rel_addend (abfd, rel,
8024 howto, contents);
8025 if (got16_reloc_p (r_type))
8026 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8027 contents, &addend);
8028 else
8029 addend <<= howto->rightshift;
8030 }
8031 else
8032 addend = rel->r_addend;
8033 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8034 h, addend))
8035 return FALSE;
8036
8037 if (h)
8038 {
8039 struct mips_elf_link_hash_entry *hmips =
8040 (struct mips_elf_link_hash_entry *) h;
8041
8042 /* This symbol is definitely not overridable. */
8043 if (hmips->root.def_regular
8044 && ! (info->shared && ! info->symbolic
8045 && ! hmips->root.forced_local))
8046 h = NULL;
8047 }
8048 }
8049 /* If this is a global, overridable symbol, GOT_PAGE will
8050 decay to GOT_DISP, so we'll need a GOT entry for it. */
8051 /* Fall through. */
8052
8053 case R_MIPS_GOT_DISP:
8054 case R_MICROMIPS_GOT_DISP:
8055 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8056 FALSE, r_type))
8057 return FALSE;
8058 break;
8059
8060 case R_MIPS_TLS_GOTTPREL:
8061 case R_MIPS16_TLS_GOTTPREL:
8062 case R_MICROMIPS_TLS_GOTTPREL:
8063 if (info->shared)
8064 info->flags |= DF_STATIC_TLS;
8065 /* Fall through */
8066
8067 case R_MIPS_TLS_LDM:
8068 case R_MIPS16_TLS_LDM:
8069 case R_MICROMIPS_TLS_LDM:
8070 if (tls_ldm_reloc_p (r_type))
8071 {
8072 r_symndx = STN_UNDEF;
8073 h = NULL;
8074 }
8075 /* Fall through */
8076
8077 case R_MIPS_TLS_GD:
8078 case R_MIPS16_TLS_GD:
8079 case R_MICROMIPS_TLS_GD:
8080 /* This symbol requires a global offset table entry, or two
8081 for TLS GD relocations. */
8082 if (h != NULL)
8083 {
8084 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8085 FALSE, r_type))
8086 return FALSE;
8087 }
8088 else
8089 {
8090 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8091 rel->r_addend,
8092 info, r_type))
8093 return FALSE;
8094 }
8095 break;
8096
8097 case R_MIPS_32:
8098 case R_MIPS_REL32:
8099 case R_MIPS_64:
8100 /* In VxWorks executables, references to external symbols
8101 are handled using copy relocs or PLT stubs, so there's
8102 no need to add a .rela.dyn entry for this relocation. */
8103 if (can_make_dynamic_p)
8104 {
8105 if (sreloc == NULL)
8106 {
8107 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8108 if (sreloc == NULL)
8109 return FALSE;
8110 }
8111 if (info->shared && h == NULL)
8112 {
8113 /* When creating a shared object, we must copy these
8114 reloc types into the output file as R_MIPS_REL32
8115 relocs. Make room for this reloc in .rel(a).dyn. */
8116 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8117 if (MIPS_ELF_READONLY_SECTION (sec))
8118 /* We tell the dynamic linker that there are
8119 relocations against the text segment. */
8120 info->flags |= DF_TEXTREL;
8121 }
8122 else
8123 {
8124 struct mips_elf_link_hash_entry *hmips;
8125
8126 /* For a shared object, we must copy this relocation
8127 unless the symbol turns out to be undefined and
8128 weak with non-default visibility, in which case
8129 it will be left as zero.
8130
8131 We could elide R_MIPS_REL32 for locally binding symbols
8132 in shared libraries, but do not yet do so.
8133
8134 For an executable, we only need to copy this
8135 reloc if the symbol is defined in a dynamic
8136 object. */
8137 hmips = (struct mips_elf_link_hash_entry *) h;
8138 ++hmips->possibly_dynamic_relocs;
8139 if (MIPS_ELF_READONLY_SECTION (sec))
8140 /* We need it to tell the dynamic linker if there
8141 are relocations against the text segment. */
8142 hmips->readonly_reloc = TRUE;
8143 }
8144 }
8145
8146 if (SGI_COMPAT (abfd))
8147 mips_elf_hash_table (info)->compact_rel_size +=
8148 sizeof (Elf32_External_crinfo);
8149 break;
8150
8151 case R_MIPS_26:
8152 case R_MIPS_GPREL16:
8153 case R_MIPS_LITERAL:
8154 case R_MIPS_GPREL32:
8155 case R_MICROMIPS_26_S1:
8156 case R_MICROMIPS_GPREL16:
8157 case R_MICROMIPS_LITERAL:
8158 case R_MICROMIPS_GPREL7_S2:
8159 if (SGI_COMPAT (abfd))
8160 mips_elf_hash_table (info)->compact_rel_size +=
8161 sizeof (Elf32_External_crinfo);
8162 break;
8163
8164 /* This relocation describes the C++ object vtable hierarchy.
8165 Reconstruct it for later use during GC. */
8166 case R_MIPS_GNU_VTINHERIT:
8167 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8168 return FALSE;
8169 break;
8170
8171 /* This relocation describes which C++ vtable entries are actually
8172 used. Record for later use during GC. */
8173 case R_MIPS_GNU_VTENTRY:
8174 BFD_ASSERT (h != NULL);
8175 if (h != NULL
8176 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8177 return FALSE;
8178 break;
8179
8180 default:
8181 break;
8182 }
8183
8184 /* We must not create a stub for a symbol that has relocations
8185 related to taking the function's address. This doesn't apply to
8186 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8187 a normal .got entry. */
8188 if (!htab->is_vxworks && h != NULL)
8189 switch (r_type)
8190 {
8191 default:
8192 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8193 break;
8194 case R_MIPS16_CALL16:
8195 case R_MIPS_CALL16:
8196 case R_MIPS_CALL_HI16:
8197 case R_MIPS_CALL_LO16:
8198 case R_MIPS_JALR:
8199 case R_MICROMIPS_CALL16:
8200 case R_MICROMIPS_CALL_HI16:
8201 case R_MICROMIPS_CALL_LO16:
8202 case R_MICROMIPS_JALR:
8203 break;
8204 }
8205
8206 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8207 if there is one. We only need to handle global symbols here;
8208 we decide whether to keep or delete stubs for local symbols
8209 when processing the stub's relocations. */
8210 if (h != NULL
8211 && !mips16_call_reloc_p (r_type)
8212 && !section_allows_mips16_refs_p (sec))
8213 {
8214 struct mips_elf_link_hash_entry *mh;
8215
8216 mh = (struct mips_elf_link_hash_entry *) h;
8217 mh->need_fn_stub = TRUE;
8218 }
8219
8220 /* Refuse some position-dependent relocations when creating a
8221 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8222 not PIC, but we can create dynamic relocations and the result
8223 will be fine. Also do not refuse R_MIPS_LO16, which can be
8224 combined with R_MIPS_GOT16. */
8225 if (info->shared)
8226 {
8227 switch (r_type)
8228 {
8229 case R_MIPS16_HI16:
8230 case R_MIPS_HI16:
8231 case R_MIPS_HIGHER:
8232 case R_MIPS_HIGHEST:
8233 case R_MICROMIPS_HI16:
8234 case R_MICROMIPS_HIGHER:
8235 case R_MICROMIPS_HIGHEST:
8236 /* Don't refuse a high part relocation if it's against
8237 no symbol (e.g. part of a compound relocation). */
8238 if (r_symndx == STN_UNDEF)
8239 break;
8240
8241 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8242 and has a special meaning. */
8243 if (!NEWABI_P (abfd) && h != NULL
8244 && strcmp (h->root.root.string, "_gp_disp") == 0)
8245 break;
8246
8247 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8248 if (is_gott_symbol (info, h))
8249 break;
8250
8251 /* FALLTHROUGH */
8252
8253 case R_MIPS16_26:
8254 case R_MIPS_26:
8255 case R_MICROMIPS_26_S1:
8256 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8257 (*_bfd_error_handler)
8258 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8259 abfd, howto->name,
8260 (h) ? h->root.root.string : "a local symbol");
8261 bfd_set_error (bfd_error_bad_value);
8262 return FALSE;
8263 default:
8264 break;
8265 }
8266 }
8267 }
8268
8269 return TRUE;
8270 }
8271 \f
8272 bfd_boolean
8273 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8274 struct bfd_link_info *link_info,
8275 bfd_boolean *again)
8276 {
8277 Elf_Internal_Rela *internal_relocs;
8278 Elf_Internal_Rela *irel, *irelend;
8279 Elf_Internal_Shdr *symtab_hdr;
8280 bfd_byte *contents = NULL;
8281 size_t extsymoff;
8282 bfd_boolean changed_contents = FALSE;
8283 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8284 Elf_Internal_Sym *isymbuf = NULL;
8285
8286 /* We are not currently changing any sizes, so only one pass. */
8287 *again = FALSE;
8288
8289 if (link_info->relocatable)
8290 return TRUE;
8291
8292 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8293 link_info->keep_memory);
8294 if (internal_relocs == NULL)
8295 return TRUE;
8296
8297 irelend = internal_relocs + sec->reloc_count
8298 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8299 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8300 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8301
8302 for (irel = internal_relocs; irel < irelend; irel++)
8303 {
8304 bfd_vma symval;
8305 bfd_signed_vma sym_offset;
8306 unsigned int r_type;
8307 unsigned long r_symndx;
8308 asection *sym_sec;
8309 unsigned long instruction;
8310
8311 /* Turn jalr into bgezal, and jr into beq, if they're marked
8312 with a JALR relocation, that indicate where they jump to.
8313 This saves some pipeline bubbles. */
8314 r_type = ELF_R_TYPE (abfd, irel->r_info);
8315 if (r_type != R_MIPS_JALR)
8316 continue;
8317
8318 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8319 /* Compute the address of the jump target. */
8320 if (r_symndx >= extsymoff)
8321 {
8322 struct mips_elf_link_hash_entry *h
8323 = ((struct mips_elf_link_hash_entry *)
8324 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8325
8326 while (h->root.root.type == bfd_link_hash_indirect
8327 || h->root.root.type == bfd_link_hash_warning)
8328 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8329
8330 /* If a symbol is undefined, or if it may be overridden,
8331 skip it. */
8332 if (! ((h->root.root.type == bfd_link_hash_defined
8333 || h->root.root.type == bfd_link_hash_defweak)
8334 && h->root.root.u.def.section)
8335 || (link_info->shared && ! link_info->symbolic
8336 && !h->root.forced_local))
8337 continue;
8338
8339 sym_sec = h->root.root.u.def.section;
8340 if (sym_sec->output_section)
8341 symval = (h->root.root.u.def.value
8342 + sym_sec->output_section->vma
8343 + sym_sec->output_offset);
8344 else
8345 symval = h->root.root.u.def.value;
8346 }
8347 else
8348 {
8349 Elf_Internal_Sym *isym;
8350
8351 /* Read this BFD's symbols if we haven't done so already. */
8352 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8353 {
8354 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8355 if (isymbuf == NULL)
8356 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8357 symtab_hdr->sh_info, 0,
8358 NULL, NULL, NULL);
8359 if (isymbuf == NULL)
8360 goto relax_return;
8361 }
8362
8363 isym = isymbuf + r_symndx;
8364 if (isym->st_shndx == SHN_UNDEF)
8365 continue;
8366 else if (isym->st_shndx == SHN_ABS)
8367 sym_sec = bfd_abs_section_ptr;
8368 else if (isym->st_shndx == SHN_COMMON)
8369 sym_sec = bfd_com_section_ptr;
8370 else
8371 sym_sec
8372 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8373 symval = isym->st_value
8374 + sym_sec->output_section->vma
8375 + sym_sec->output_offset;
8376 }
8377
8378 /* Compute branch offset, from delay slot of the jump to the
8379 branch target. */
8380 sym_offset = (symval + irel->r_addend)
8381 - (sec_start + irel->r_offset + 4);
8382
8383 /* Branch offset must be properly aligned. */
8384 if ((sym_offset & 3) != 0)
8385 continue;
8386
8387 sym_offset >>= 2;
8388
8389 /* Check that it's in range. */
8390 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8391 continue;
8392
8393 /* Get the section contents if we haven't done so already. */
8394 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8395 goto relax_return;
8396
8397 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8398
8399 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8400 if ((instruction & 0xfc1fffff) == 0x0000f809)
8401 instruction = 0x04110000;
8402 /* If it was jr <reg>, turn it into b <target>. */
8403 else if ((instruction & 0xfc1fffff) == 0x00000008)
8404 instruction = 0x10000000;
8405 else
8406 continue;
8407
8408 instruction |= (sym_offset & 0xffff);
8409 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8410 changed_contents = TRUE;
8411 }
8412
8413 if (contents != NULL
8414 && elf_section_data (sec)->this_hdr.contents != contents)
8415 {
8416 if (!changed_contents && !link_info->keep_memory)
8417 free (contents);
8418 else
8419 {
8420 /* Cache the section contents for elf_link_input_bfd. */
8421 elf_section_data (sec)->this_hdr.contents = contents;
8422 }
8423 }
8424 return TRUE;
8425
8426 relax_return:
8427 if (contents != NULL
8428 && elf_section_data (sec)->this_hdr.contents != contents)
8429 free (contents);
8430 return FALSE;
8431 }
8432 \f
8433 /* Allocate space for global sym dynamic relocs. */
8434
8435 static bfd_boolean
8436 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8437 {
8438 struct bfd_link_info *info = inf;
8439 bfd *dynobj;
8440 struct mips_elf_link_hash_entry *hmips;
8441 struct mips_elf_link_hash_table *htab;
8442
8443 htab = mips_elf_hash_table (info);
8444 BFD_ASSERT (htab != NULL);
8445
8446 dynobj = elf_hash_table (info)->dynobj;
8447 hmips = (struct mips_elf_link_hash_entry *) h;
8448
8449 /* VxWorks executables are handled elsewhere; we only need to
8450 allocate relocations in shared objects. */
8451 if (htab->is_vxworks && !info->shared)
8452 return TRUE;
8453
8454 /* Ignore indirect symbols. All relocations against such symbols
8455 will be redirected to the target symbol. */
8456 if (h->root.type == bfd_link_hash_indirect)
8457 return TRUE;
8458
8459 /* If this symbol is defined in a dynamic object, or we are creating
8460 a shared library, we will need to copy any R_MIPS_32 or
8461 R_MIPS_REL32 relocs against it into the output file. */
8462 if (! info->relocatable
8463 && hmips->possibly_dynamic_relocs != 0
8464 && (h->root.type == bfd_link_hash_defweak
8465 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8466 || info->shared))
8467 {
8468 bfd_boolean do_copy = TRUE;
8469
8470 if (h->root.type == bfd_link_hash_undefweak)
8471 {
8472 /* Do not copy relocations for undefined weak symbols with
8473 non-default visibility. */
8474 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8475 do_copy = FALSE;
8476
8477 /* Make sure undefined weak symbols are output as a dynamic
8478 symbol in PIEs. */
8479 else if (h->dynindx == -1 && !h->forced_local)
8480 {
8481 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8482 return FALSE;
8483 }
8484 }
8485
8486 if (do_copy)
8487 {
8488 /* Even though we don't directly need a GOT entry for this symbol,
8489 the SVR4 psABI requires it to have a dynamic symbol table
8490 index greater that DT_MIPS_GOTSYM if there are dynamic
8491 relocations against it.
8492
8493 VxWorks does not enforce the same mapping between the GOT
8494 and the symbol table, so the same requirement does not
8495 apply there. */
8496 if (!htab->is_vxworks)
8497 {
8498 if (hmips->global_got_area > GGA_RELOC_ONLY)
8499 hmips->global_got_area = GGA_RELOC_ONLY;
8500 hmips->got_only_for_calls = FALSE;
8501 }
8502
8503 mips_elf_allocate_dynamic_relocations
8504 (dynobj, info, hmips->possibly_dynamic_relocs);
8505 if (hmips->readonly_reloc)
8506 /* We tell the dynamic linker that there are relocations
8507 against the text segment. */
8508 info->flags |= DF_TEXTREL;
8509 }
8510 }
8511
8512 return TRUE;
8513 }
8514
8515 /* Adjust a symbol defined by a dynamic object and referenced by a
8516 regular object. The current definition is in some section of the
8517 dynamic object, but we're not including those sections. We have to
8518 change the definition to something the rest of the link can
8519 understand. */
8520
8521 bfd_boolean
8522 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8523 struct elf_link_hash_entry *h)
8524 {
8525 bfd *dynobj;
8526 struct mips_elf_link_hash_entry *hmips;
8527 struct mips_elf_link_hash_table *htab;
8528
8529 htab = mips_elf_hash_table (info);
8530 BFD_ASSERT (htab != NULL);
8531
8532 dynobj = elf_hash_table (info)->dynobj;
8533 hmips = (struct mips_elf_link_hash_entry *) h;
8534
8535 /* Make sure we know what is going on here. */
8536 BFD_ASSERT (dynobj != NULL
8537 && (h->needs_plt
8538 || h->u.weakdef != NULL
8539 || (h->def_dynamic
8540 && h->ref_regular
8541 && !h->def_regular)));
8542
8543 hmips = (struct mips_elf_link_hash_entry *) h;
8544
8545 /* If there are call relocations against an externally-defined symbol,
8546 see whether we can create a MIPS lazy-binding stub for it. We can
8547 only do this if all references to the function are through call
8548 relocations, and in that case, the traditional lazy-binding stubs
8549 are much more efficient than PLT entries.
8550
8551 Traditional stubs are only available on SVR4 psABI-based systems;
8552 VxWorks always uses PLTs instead. */
8553 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8554 {
8555 if (! elf_hash_table (info)->dynamic_sections_created)
8556 return TRUE;
8557
8558 /* If this symbol is not defined in a regular file, then set
8559 the symbol to the stub location. This is required to make
8560 function pointers compare as equal between the normal
8561 executable and the shared library. */
8562 if (!h->def_regular)
8563 {
8564 hmips->needs_lazy_stub = TRUE;
8565 htab->lazy_stub_count++;
8566 return TRUE;
8567 }
8568 }
8569 /* As above, VxWorks requires PLT entries for externally-defined
8570 functions that are only accessed through call relocations.
8571
8572 Both VxWorks and non-VxWorks targets also need PLT entries if there
8573 are static-only relocations against an externally-defined function.
8574 This can technically occur for shared libraries if there are
8575 branches to the symbol, although it is unlikely that this will be
8576 used in practice due to the short ranges involved. It can occur
8577 for any relative or absolute relocation in executables; in that
8578 case, the PLT entry becomes the function's canonical address. */
8579 else if (((h->needs_plt && !hmips->no_fn_stub)
8580 || (h->type == STT_FUNC && hmips->has_static_relocs))
8581 && htab->use_plts_and_copy_relocs
8582 && !SYMBOL_CALLS_LOCAL (info, h)
8583 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8584 && h->root.type == bfd_link_hash_undefweak))
8585 {
8586 /* If this is the first symbol to need a PLT entry, allocate room
8587 for the header. */
8588 if (htab->splt->size == 0)
8589 {
8590 BFD_ASSERT (htab->sgotplt->size == 0);
8591
8592 /* If we're using the PLT additions to the psABI, each PLT
8593 entry is 16 bytes and the PLT0 entry is 32 bytes.
8594 Encourage better cache usage by aligning. We do this
8595 lazily to avoid pessimizing traditional objects. */
8596 if (!htab->is_vxworks
8597 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8598 return FALSE;
8599
8600 /* Make sure that .got.plt is word-aligned. We do this lazily
8601 for the same reason as above. */
8602 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8603 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8604 return FALSE;
8605
8606 htab->splt->size += htab->plt_header_size;
8607
8608 /* On non-VxWorks targets, the first two entries in .got.plt
8609 are reserved. */
8610 if (!htab->is_vxworks)
8611 htab->sgotplt->size
8612 += get_elf_backend_data (dynobj)->got_header_size;
8613
8614 /* On VxWorks, also allocate room for the header's
8615 .rela.plt.unloaded entries. */
8616 if (htab->is_vxworks && !info->shared)
8617 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8618 }
8619
8620 /* Assign the next .plt entry to this symbol. */
8621 h->plt.offset = htab->splt->size;
8622 htab->splt->size += htab->plt_entry_size;
8623
8624 /* If the output file has no definition of the symbol, set the
8625 symbol's value to the address of the stub. */
8626 if (!info->shared && !h->def_regular)
8627 {
8628 h->root.u.def.section = htab->splt;
8629 h->root.u.def.value = h->plt.offset;
8630 /* For VxWorks, point at the PLT load stub rather than the
8631 lazy resolution stub; this stub will become the canonical
8632 function address. */
8633 if (htab->is_vxworks)
8634 h->root.u.def.value += 8;
8635 }
8636
8637 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8638 relocation. */
8639 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8640 htab->srelplt->size += (htab->is_vxworks
8641 ? MIPS_ELF_RELA_SIZE (dynobj)
8642 : MIPS_ELF_REL_SIZE (dynobj));
8643
8644 /* Make room for the .rela.plt.unloaded relocations. */
8645 if (htab->is_vxworks && !info->shared)
8646 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8647
8648 /* All relocations against this symbol that could have been made
8649 dynamic will now refer to the PLT entry instead. */
8650 hmips->possibly_dynamic_relocs = 0;
8651
8652 return TRUE;
8653 }
8654
8655 /* If this is a weak symbol, and there is a real definition, the
8656 processor independent code will have arranged for us to see the
8657 real definition first, and we can just use the same value. */
8658 if (h->u.weakdef != NULL)
8659 {
8660 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8661 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8662 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8663 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8664 return TRUE;
8665 }
8666
8667 /* Otherwise, there is nothing further to do for symbols defined
8668 in regular objects. */
8669 if (h->def_regular)
8670 return TRUE;
8671
8672 /* There's also nothing more to do if we'll convert all relocations
8673 against this symbol into dynamic relocations. */
8674 if (!hmips->has_static_relocs)
8675 return TRUE;
8676
8677 /* We're now relying on copy relocations. Complain if we have
8678 some that we can't convert. */
8679 if (!htab->use_plts_and_copy_relocs || info->shared)
8680 {
8681 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8682 "dynamic symbol %s"),
8683 h->root.root.string);
8684 bfd_set_error (bfd_error_bad_value);
8685 return FALSE;
8686 }
8687
8688 /* We must allocate the symbol in our .dynbss section, which will
8689 become part of the .bss section of the executable. There will be
8690 an entry for this symbol in the .dynsym section. The dynamic
8691 object will contain position independent code, so all references
8692 from the dynamic object to this symbol will go through the global
8693 offset table. The dynamic linker will use the .dynsym entry to
8694 determine the address it must put in the global offset table, so
8695 both the dynamic object and the regular object will refer to the
8696 same memory location for the variable. */
8697
8698 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8699 {
8700 if (htab->is_vxworks)
8701 htab->srelbss->size += sizeof (Elf32_External_Rela);
8702 else
8703 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8704 h->needs_copy = 1;
8705 }
8706
8707 /* All relocations against this symbol that could have been made
8708 dynamic will now refer to the local copy instead. */
8709 hmips->possibly_dynamic_relocs = 0;
8710
8711 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8712 }
8713 \f
8714 /* This function is called after all the input files have been read,
8715 and the input sections have been assigned to output sections. We
8716 check for any mips16 stub sections that we can discard. */
8717
8718 bfd_boolean
8719 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8720 struct bfd_link_info *info)
8721 {
8722 asection *ri;
8723 struct mips_elf_link_hash_table *htab;
8724 struct mips_htab_traverse_info hti;
8725
8726 htab = mips_elf_hash_table (info);
8727 BFD_ASSERT (htab != NULL);
8728
8729 /* The .reginfo section has a fixed size. */
8730 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8731 if (ri != NULL)
8732 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8733
8734 hti.info = info;
8735 hti.output_bfd = output_bfd;
8736 hti.error = FALSE;
8737 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8738 mips_elf_check_symbols, &hti);
8739 if (hti.error)
8740 return FALSE;
8741
8742 return TRUE;
8743 }
8744
8745 /* If the link uses a GOT, lay it out and work out its size. */
8746
8747 static bfd_boolean
8748 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8749 {
8750 bfd *dynobj;
8751 asection *s;
8752 struct mips_got_info *g;
8753 bfd_size_type loadable_size = 0;
8754 bfd_size_type page_gotno;
8755 bfd *ibfd;
8756 struct mips_elf_traverse_got_arg tga;
8757 struct mips_elf_link_hash_table *htab;
8758
8759 htab = mips_elf_hash_table (info);
8760 BFD_ASSERT (htab != NULL);
8761
8762 s = htab->sgot;
8763 if (s == NULL)
8764 return TRUE;
8765
8766 dynobj = elf_hash_table (info)->dynobj;
8767 g = htab->got_info;
8768
8769 /* Allocate room for the reserved entries. VxWorks always reserves
8770 3 entries; other objects only reserve 2 entries. */
8771 BFD_ASSERT (g->assigned_gotno == 0);
8772 if (htab->is_vxworks)
8773 htab->reserved_gotno = 3;
8774 else
8775 htab->reserved_gotno = 2;
8776 g->local_gotno += htab->reserved_gotno;
8777 g->assigned_gotno = htab->reserved_gotno;
8778
8779 /* Decide which symbols need to go in the global part of the GOT and
8780 count the number of reloc-only GOT symbols. */
8781 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8782
8783 if (!mips_elf_resolve_final_got_entries (info, g))
8784 return FALSE;
8785
8786 /* Calculate the total loadable size of the output. That
8787 will give us the maximum number of GOT_PAGE entries
8788 required. */
8789 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
8790 {
8791 asection *subsection;
8792
8793 for (subsection = ibfd->sections;
8794 subsection;
8795 subsection = subsection->next)
8796 {
8797 if ((subsection->flags & SEC_ALLOC) == 0)
8798 continue;
8799 loadable_size += ((subsection->size + 0xf)
8800 &~ (bfd_size_type) 0xf);
8801 }
8802 }
8803
8804 if (htab->is_vxworks)
8805 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8806 relocations against local symbols evaluate to "G", and the EABI does
8807 not include R_MIPS_GOT_PAGE. */
8808 page_gotno = 0;
8809 else
8810 /* Assume there are two loadable segments consisting of contiguous
8811 sections. Is 5 enough? */
8812 page_gotno = (loadable_size >> 16) + 5;
8813
8814 /* Choose the smaller of the two page estimates; both are intended to be
8815 conservative. */
8816 if (page_gotno > g->page_gotno)
8817 page_gotno = g->page_gotno;
8818
8819 g->local_gotno += page_gotno;
8820
8821 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8822 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8823 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8824
8825 /* VxWorks does not support multiple GOTs. It initializes $gp to
8826 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8827 dynamic loader. */
8828 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8829 {
8830 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8831 return FALSE;
8832 }
8833 else
8834 {
8835 /* Record that all bfds use G. This also has the effect of freeing
8836 the per-bfd GOTs, which we no longer need. */
8837 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
8838 if (mips_elf_bfd_got (ibfd, FALSE))
8839 mips_elf_replace_bfd_got (ibfd, g);
8840 mips_elf_replace_bfd_got (output_bfd, g);
8841
8842 /* Set up TLS entries. */
8843 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8844 tga.info = info;
8845 tga.g = g;
8846 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
8847 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
8848 if (!tga.g)
8849 return FALSE;
8850 BFD_ASSERT (g->tls_assigned_gotno
8851 == g->global_gotno + g->local_gotno + g->tls_gotno);
8852
8853 /* Each VxWorks GOT entry needs an explicit relocation. */
8854 if (htab->is_vxworks && info->shared)
8855 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
8856
8857 /* Allocate room for the TLS relocations. */
8858 if (g->relocs)
8859 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
8860 }
8861
8862 return TRUE;
8863 }
8864
8865 /* Estimate the size of the .MIPS.stubs section. */
8866
8867 static void
8868 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8869 {
8870 struct mips_elf_link_hash_table *htab;
8871 bfd_size_type dynsymcount;
8872
8873 htab = mips_elf_hash_table (info);
8874 BFD_ASSERT (htab != NULL);
8875
8876 if (htab->lazy_stub_count == 0)
8877 return;
8878
8879 /* IRIX rld assumes that a function stub isn't at the end of the .text
8880 section, so add a dummy entry to the end. */
8881 htab->lazy_stub_count++;
8882
8883 /* Get a worst-case estimate of the number of dynamic symbols needed.
8884 At this point, dynsymcount does not account for section symbols
8885 and count_section_dynsyms may overestimate the number that will
8886 be needed. */
8887 dynsymcount = (elf_hash_table (info)->dynsymcount
8888 + count_section_dynsyms (output_bfd, info));
8889
8890 /* Determine the size of one stub entry. */
8891 htab->function_stub_size = (dynsymcount > 0x10000
8892 ? MIPS_FUNCTION_STUB_BIG_SIZE
8893 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8894
8895 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8896 }
8897
8898 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8899 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8900 allocate an entry in the stubs section. */
8901
8902 static bfd_boolean
8903 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8904 {
8905 struct mips_elf_link_hash_table *htab;
8906
8907 htab = (struct mips_elf_link_hash_table *) data;
8908 if (h->needs_lazy_stub)
8909 {
8910 h->root.root.u.def.section = htab->sstubs;
8911 h->root.root.u.def.value = htab->sstubs->size;
8912 h->root.plt.offset = htab->sstubs->size;
8913 htab->sstubs->size += htab->function_stub_size;
8914 }
8915 return TRUE;
8916 }
8917
8918 /* Allocate offsets in the stubs section to each symbol that needs one.
8919 Set the final size of the .MIPS.stub section. */
8920
8921 static void
8922 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8923 {
8924 struct mips_elf_link_hash_table *htab;
8925
8926 htab = mips_elf_hash_table (info);
8927 BFD_ASSERT (htab != NULL);
8928
8929 if (htab->lazy_stub_count == 0)
8930 return;
8931
8932 htab->sstubs->size = 0;
8933 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8934 htab->sstubs->size += htab->function_stub_size;
8935 BFD_ASSERT (htab->sstubs->size
8936 == htab->lazy_stub_count * htab->function_stub_size);
8937 }
8938
8939 /* Set the sizes of the dynamic sections. */
8940
8941 bfd_boolean
8942 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8943 struct bfd_link_info *info)
8944 {
8945 bfd *dynobj;
8946 asection *s, *sreldyn;
8947 bfd_boolean reltext;
8948 struct mips_elf_link_hash_table *htab;
8949
8950 htab = mips_elf_hash_table (info);
8951 BFD_ASSERT (htab != NULL);
8952 dynobj = elf_hash_table (info)->dynobj;
8953 BFD_ASSERT (dynobj != NULL);
8954
8955 if (elf_hash_table (info)->dynamic_sections_created)
8956 {
8957 /* Set the contents of the .interp section to the interpreter. */
8958 if (info->executable)
8959 {
8960 s = bfd_get_linker_section (dynobj, ".interp");
8961 BFD_ASSERT (s != NULL);
8962 s->size
8963 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8964 s->contents
8965 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8966 }
8967
8968 /* Create a symbol for the PLT, if we know that we are using it. */
8969 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8970 {
8971 struct elf_link_hash_entry *h;
8972
8973 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8974
8975 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8976 "_PROCEDURE_LINKAGE_TABLE_");
8977 htab->root.hplt = h;
8978 if (h == NULL)
8979 return FALSE;
8980 h->type = STT_FUNC;
8981 }
8982 }
8983
8984 /* Allocate space for global sym dynamic relocs. */
8985 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
8986
8987 mips_elf_estimate_stub_size (output_bfd, info);
8988
8989 if (!mips_elf_lay_out_got (output_bfd, info))
8990 return FALSE;
8991
8992 mips_elf_lay_out_lazy_stubs (info);
8993
8994 /* The check_relocs and adjust_dynamic_symbol entry points have
8995 determined the sizes of the various dynamic sections. Allocate
8996 memory for them. */
8997 reltext = FALSE;
8998 for (s = dynobj->sections; s != NULL; s = s->next)
8999 {
9000 const char *name;
9001
9002 /* It's OK to base decisions on the section name, because none
9003 of the dynobj section names depend upon the input files. */
9004 name = bfd_get_section_name (dynobj, s);
9005
9006 if ((s->flags & SEC_LINKER_CREATED) == 0)
9007 continue;
9008
9009 if (CONST_STRNEQ (name, ".rel"))
9010 {
9011 if (s->size != 0)
9012 {
9013 const char *outname;
9014 asection *target;
9015
9016 /* If this relocation section applies to a read only
9017 section, then we probably need a DT_TEXTREL entry.
9018 If the relocation section is .rel(a).dyn, we always
9019 assert a DT_TEXTREL entry rather than testing whether
9020 there exists a relocation to a read only section or
9021 not. */
9022 outname = bfd_get_section_name (output_bfd,
9023 s->output_section);
9024 target = bfd_get_section_by_name (output_bfd, outname + 4);
9025 if ((target != NULL
9026 && (target->flags & SEC_READONLY) != 0
9027 && (target->flags & SEC_ALLOC) != 0)
9028 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9029 reltext = TRUE;
9030
9031 /* We use the reloc_count field as a counter if we need
9032 to copy relocs into the output file. */
9033 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9034 s->reloc_count = 0;
9035
9036 /* If combreloc is enabled, elf_link_sort_relocs() will
9037 sort relocations, but in a different way than we do,
9038 and before we're done creating relocations. Also, it
9039 will move them around between input sections'
9040 relocation's contents, so our sorting would be
9041 broken, so don't let it run. */
9042 info->combreloc = 0;
9043 }
9044 }
9045 else if (! info->shared
9046 && ! mips_elf_hash_table (info)->use_rld_obj_head
9047 && CONST_STRNEQ (name, ".rld_map"))
9048 {
9049 /* We add a room for __rld_map. It will be filled in by the
9050 rtld to contain a pointer to the _r_debug structure. */
9051 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9052 }
9053 else if (SGI_COMPAT (output_bfd)
9054 && CONST_STRNEQ (name, ".compact_rel"))
9055 s->size += mips_elf_hash_table (info)->compact_rel_size;
9056 else if (s == htab->splt)
9057 {
9058 /* If the last PLT entry has a branch delay slot, allocate
9059 room for an extra nop to fill the delay slot. This is
9060 for CPUs without load interlocking. */
9061 if (! LOAD_INTERLOCKS_P (output_bfd)
9062 && ! htab->is_vxworks && s->size > 0)
9063 s->size += 4;
9064 }
9065 else if (! CONST_STRNEQ (name, ".init")
9066 && s != htab->sgot
9067 && s != htab->sgotplt
9068 && s != htab->sstubs
9069 && s != htab->sdynbss)
9070 {
9071 /* It's not one of our sections, so don't allocate space. */
9072 continue;
9073 }
9074
9075 if (s->size == 0)
9076 {
9077 s->flags |= SEC_EXCLUDE;
9078 continue;
9079 }
9080
9081 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9082 continue;
9083
9084 /* Allocate memory for the section contents. */
9085 s->contents = bfd_zalloc (dynobj, s->size);
9086 if (s->contents == NULL)
9087 {
9088 bfd_set_error (bfd_error_no_memory);
9089 return FALSE;
9090 }
9091 }
9092
9093 if (elf_hash_table (info)->dynamic_sections_created)
9094 {
9095 /* Add some entries to the .dynamic section. We fill in the
9096 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9097 must add the entries now so that we get the correct size for
9098 the .dynamic section. */
9099
9100 /* SGI object has the equivalence of DT_DEBUG in the
9101 DT_MIPS_RLD_MAP entry. This must come first because glibc
9102 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9103 may only look at the first one they see. */
9104 if (!info->shared
9105 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9106 return FALSE;
9107
9108 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9109 used by the debugger. */
9110 if (info->executable
9111 && !SGI_COMPAT (output_bfd)
9112 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9113 return FALSE;
9114
9115 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9116 info->flags |= DF_TEXTREL;
9117
9118 if ((info->flags & DF_TEXTREL) != 0)
9119 {
9120 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9121 return FALSE;
9122
9123 /* Clear the DF_TEXTREL flag. It will be set again if we
9124 write out an actual text relocation; we may not, because
9125 at this point we do not know whether e.g. any .eh_frame
9126 absolute relocations have been converted to PC-relative. */
9127 info->flags &= ~DF_TEXTREL;
9128 }
9129
9130 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9131 return FALSE;
9132
9133 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9134 if (htab->is_vxworks)
9135 {
9136 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9137 use any of the DT_MIPS_* tags. */
9138 if (sreldyn && sreldyn->size > 0)
9139 {
9140 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9141 return FALSE;
9142
9143 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9144 return FALSE;
9145
9146 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9147 return FALSE;
9148 }
9149 }
9150 else
9151 {
9152 if (sreldyn && sreldyn->size > 0)
9153 {
9154 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9155 return FALSE;
9156
9157 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9158 return FALSE;
9159
9160 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9161 return FALSE;
9162 }
9163
9164 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9165 return FALSE;
9166
9167 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9168 return FALSE;
9169
9170 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9171 return FALSE;
9172
9173 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9174 return FALSE;
9175
9176 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9177 return FALSE;
9178
9179 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9180 return FALSE;
9181
9182 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9183 return FALSE;
9184
9185 if (IRIX_COMPAT (dynobj) == ict_irix5
9186 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9187 return FALSE;
9188
9189 if (IRIX_COMPAT (dynobj) == ict_irix6
9190 && (bfd_get_section_by_name
9191 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9192 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9193 return FALSE;
9194 }
9195 if (htab->splt->size > 0)
9196 {
9197 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9198 return FALSE;
9199
9200 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9201 return FALSE;
9202
9203 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9204 return FALSE;
9205
9206 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9207 return FALSE;
9208 }
9209 if (htab->is_vxworks
9210 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9211 return FALSE;
9212 }
9213
9214 return TRUE;
9215 }
9216 \f
9217 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9218 Adjust its R_ADDEND field so that it is correct for the output file.
9219 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9220 and sections respectively; both use symbol indexes. */
9221
9222 static void
9223 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9224 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9225 asection **local_sections, Elf_Internal_Rela *rel)
9226 {
9227 unsigned int r_type, r_symndx;
9228 Elf_Internal_Sym *sym;
9229 asection *sec;
9230
9231 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9232 {
9233 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9234 if (gprel16_reloc_p (r_type)
9235 || r_type == R_MIPS_GPREL32
9236 || literal_reloc_p (r_type))
9237 {
9238 rel->r_addend += _bfd_get_gp_value (input_bfd);
9239 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9240 }
9241
9242 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9243 sym = local_syms + r_symndx;
9244
9245 /* Adjust REL's addend to account for section merging. */
9246 if (!info->relocatable)
9247 {
9248 sec = local_sections[r_symndx];
9249 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9250 }
9251
9252 /* This would normally be done by the rela_normal code in elflink.c. */
9253 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9254 rel->r_addend += local_sections[r_symndx]->output_offset;
9255 }
9256 }
9257
9258 /* Handle relocations against symbols from removed linkonce sections,
9259 or sections discarded by a linker script. We use this wrapper around
9260 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9261 on 64-bit ELF targets. In this case for any relocation handled, which
9262 always be the first in a triplet, the remaining two have to be processed
9263 together with the first, even if they are R_MIPS_NONE. It is the symbol
9264 index referred by the first reloc that applies to all the three and the
9265 remaining two never refer to an object symbol. And it is the final
9266 relocation (the last non-null one) that determines the output field of
9267 the whole relocation so retrieve the corresponding howto structure for
9268 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9269
9270 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9271 and therefore requires to be pasted in a loop. It also defines a block
9272 and does not protect any of its arguments, hence the extra brackets. */
9273
9274 static void
9275 mips_reloc_against_discarded_section (bfd *output_bfd,
9276 struct bfd_link_info *info,
9277 bfd *input_bfd, asection *input_section,
9278 Elf_Internal_Rela **rel,
9279 const Elf_Internal_Rela **relend,
9280 bfd_boolean rel_reloc,
9281 reloc_howto_type *howto,
9282 bfd_byte *contents)
9283 {
9284 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9285 int count = bed->s->int_rels_per_ext_rel;
9286 unsigned int r_type;
9287 int i;
9288
9289 for (i = count - 1; i > 0; i--)
9290 {
9291 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9292 if (r_type != R_MIPS_NONE)
9293 {
9294 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9295 break;
9296 }
9297 }
9298 do
9299 {
9300 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9301 (*rel), count, (*relend),
9302 howto, i, contents);
9303 }
9304 while (0);
9305 }
9306
9307 /* Relocate a MIPS ELF section. */
9308
9309 bfd_boolean
9310 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9311 bfd *input_bfd, asection *input_section,
9312 bfd_byte *contents, Elf_Internal_Rela *relocs,
9313 Elf_Internal_Sym *local_syms,
9314 asection **local_sections)
9315 {
9316 Elf_Internal_Rela *rel;
9317 const Elf_Internal_Rela *relend;
9318 bfd_vma addend = 0;
9319 bfd_boolean use_saved_addend_p = FALSE;
9320 const struct elf_backend_data *bed;
9321
9322 bed = get_elf_backend_data (output_bfd);
9323 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9324 for (rel = relocs; rel < relend; ++rel)
9325 {
9326 const char *name;
9327 bfd_vma value = 0;
9328 reloc_howto_type *howto;
9329 bfd_boolean cross_mode_jump_p;
9330 /* TRUE if the relocation is a RELA relocation, rather than a
9331 REL relocation. */
9332 bfd_boolean rela_relocation_p = TRUE;
9333 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9334 const char *msg;
9335 unsigned long r_symndx;
9336 asection *sec;
9337 Elf_Internal_Shdr *symtab_hdr;
9338 struct elf_link_hash_entry *h;
9339 bfd_boolean rel_reloc;
9340
9341 rel_reloc = (NEWABI_P (input_bfd)
9342 && mips_elf_rel_relocation_p (input_bfd, input_section,
9343 relocs, rel));
9344 /* Find the relocation howto for this relocation. */
9345 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9346
9347 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9348 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9349 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9350 {
9351 sec = local_sections[r_symndx];
9352 h = NULL;
9353 }
9354 else
9355 {
9356 unsigned long extsymoff;
9357
9358 extsymoff = 0;
9359 if (!elf_bad_symtab (input_bfd))
9360 extsymoff = symtab_hdr->sh_info;
9361 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9362 while (h->root.type == bfd_link_hash_indirect
9363 || h->root.type == bfd_link_hash_warning)
9364 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9365
9366 sec = NULL;
9367 if (h->root.type == bfd_link_hash_defined
9368 || h->root.type == bfd_link_hash_defweak)
9369 sec = h->root.u.def.section;
9370 }
9371
9372 if (sec != NULL && discarded_section (sec))
9373 {
9374 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9375 input_section, &rel, &relend,
9376 rel_reloc, howto, contents);
9377 continue;
9378 }
9379
9380 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9381 {
9382 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9383 64-bit code, but make sure all their addresses are in the
9384 lowermost or uppermost 32-bit section of the 64-bit address
9385 space. Thus, when they use an R_MIPS_64 they mean what is
9386 usually meant by R_MIPS_32, with the exception that the
9387 stored value is sign-extended to 64 bits. */
9388 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9389
9390 /* On big-endian systems, we need to lie about the position
9391 of the reloc. */
9392 if (bfd_big_endian (input_bfd))
9393 rel->r_offset += 4;
9394 }
9395
9396 if (!use_saved_addend_p)
9397 {
9398 /* If these relocations were originally of the REL variety,
9399 we must pull the addend out of the field that will be
9400 relocated. Otherwise, we simply use the contents of the
9401 RELA relocation. */
9402 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9403 relocs, rel))
9404 {
9405 rela_relocation_p = FALSE;
9406 addend = mips_elf_read_rel_addend (input_bfd, rel,
9407 howto, contents);
9408 if (hi16_reloc_p (r_type)
9409 || (got16_reloc_p (r_type)
9410 && mips_elf_local_relocation_p (input_bfd, rel,
9411 local_sections)))
9412 {
9413 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9414 contents, &addend))
9415 {
9416 if (h)
9417 name = h->root.root.string;
9418 else
9419 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9420 local_syms + r_symndx,
9421 sec);
9422 (*_bfd_error_handler)
9423 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9424 input_bfd, input_section, name, howto->name,
9425 rel->r_offset);
9426 }
9427 }
9428 else
9429 addend <<= howto->rightshift;
9430 }
9431 else
9432 addend = rel->r_addend;
9433 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9434 local_syms, local_sections, rel);
9435 }
9436
9437 if (info->relocatable)
9438 {
9439 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9440 && bfd_big_endian (input_bfd))
9441 rel->r_offset -= 4;
9442
9443 if (!rela_relocation_p && rel->r_addend)
9444 {
9445 addend += rel->r_addend;
9446 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9447 addend = mips_elf_high (addend);
9448 else if (r_type == R_MIPS_HIGHER)
9449 addend = mips_elf_higher (addend);
9450 else if (r_type == R_MIPS_HIGHEST)
9451 addend = mips_elf_highest (addend);
9452 else
9453 addend >>= howto->rightshift;
9454
9455 /* We use the source mask, rather than the destination
9456 mask because the place to which we are writing will be
9457 source of the addend in the final link. */
9458 addend &= howto->src_mask;
9459
9460 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9461 /* See the comment above about using R_MIPS_64 in the 32-bit
9462 ABI. Here, we need to update the addend. It would be
9463 possible to get away with just using the R_MIPS_32 reloc
9464 but for endianness. */
9465 {
9466 bfd_vma sign_bits;
9467 bfd_vma low_bits;
9468 bfd_vma high_bits;
9469
9470 if (addend & ((bfd_vma) 1 << 31))
9471 #ifdef BFD64
9472 sign_bits = ((bfd_vma) 1 << 32) - 1;
9473 #else
9474 sign_bits = -1;
9475 #endif
9476 else
9477 sign_bits = 0;
9478
9479 /* If we don't know that we have a 64-bit type,
9480 do two separate stores. */
9481 if (bfd_big_endian (input_bfd))
9482 {
9483 /* Store the sign-bits (which are most significant)
9484 first. */
9485 low_bits = sign_bits;
9486 high_bits = addend;
9487 }
9488 else
9489 {
9490 low_bits = addend;
9491 high_bits = sign_bits;
9492 }
9493 bfd_put_32 (input_bfd, low_bits,
9494 contents + rel->r_offset);
9495 bfd_put_32 (input_bfd, high_bits,
9496 contents + rel->r_offset + 4);
9497 continue;
9498 }
9499
9500 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9501 input_bfd, input_section,
9502 contents, FALSE))
9503 return FALSE;
9504 }
9505
9506 /* Go on to the next relocation. */
9507 continue;
9508 }
9509
9510 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9511 relocations for the same offset. In that case we are
9512 supposed to treat the output of each relocation as the addend
9513 for the next. */
9514 if (rel + 1 < relend
9515 && rel->r_offset == rel[1].r_offset
9516 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9517 use_saved_addend_p = TRUE;
9518 else
9519 use_saved_addend_p = FALSE;
9520
9521 /* Figure out what value we are supposed to relocate. */
9522 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9523 input_section, info, rel,
9524 addend, howto, local_syms,
9525 local_sections, &value,
9526 &name, &cross_mode_jump_p,
9527 use_saved_addend_p))
9528 {
9529 case bfd_reloc_continue:
9530 /* There's nothing to do. */
9531 continue;
9532
9533 case bfd_reloc_undefined:
9534 /* mips_elf_calculate_relocation already called the
9535 undefined_symbol callback. There's no real point in
9536 trying to perform the relocation at this point, so we
9537 just skip ahead to the next relocation. */
9538 continue;
9539
9540 case bfd_reloc_notsupported:
9541 msg = _("internal error: unsupported relocation error");
9542 info->callbacks->warning
9543 (info, msg, name, input_bfd, input_section, rel->r_offset);
9544 return FALSE;
9545
9546 case bfd_reloc_overflow:
9547 if (use_saved_addend_p)
9548 /* Ignore overflow until we reach the last relocation for
9549 a given location. */
9550 ;
9551 else
9552 {
9553 struct mips_elf_link_hash_table *htab;
9554
9555 htab = mips_elf_hash_table (info);
9556 BFD_ASSERT (htab != NULL);
9557 BFD_ASSERT (name != NULL);
9558 if (!htab->small_data_overflow_reported
9559 && (gprel16_reloc_p (howto->type)
9560 || literal_reloc_p (howto->type)))
9561 {
9562 msg = _("small-data section exceeds 64KB;"
9563 " lower small-data size limit (see option -G)");
9564
9565 htab->small_data_overflow_reported = TRUE;
9566 (*info->callbacks->einfo) ("%P: %s\n", msg);
9567 }
9568 if (! ((*info->callbacks->reloc_overflow)
9569 (info, NULL, name, howto->name, (bfd_vma) 0,
9570 input_bfd, input_section, rel->r_offset)))
9571 return FALSE;
9572 }
9573 break;
9574
9575 case bfd_reloc_ok:
9576 break;
9577
9578 case bfd_reloc_outofrange:
9579 if (jal_reloc_p (howto->type))
9580 {
9581 msg = _("JALX to a non-word-aligned address");
9582 info->callbacks->warning
9583 (info, msg, name, input_bfd, input_section, rel->r_offset);
9584 return FALSE;
9585 }
9586 /* Fall through. */
9587
9588 default:
9589 abort ();
9590 break;
9591 }
9592
9593 /* If we've got another relocation for the address, keep going
9594 until we reach the last one. */
9595 if (use_saved_addend_p)
9596 {
9597 addend = value;
9598 continue;
9599 }
9600
9601 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9602 /* See the comment above about using R_MIPS_64 in the 32-bit
9603 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9604 that calculated the right value. Now, however, we
9605 sign-extend the 32-bit result to 64-bits, and store it as a
9606 64-bit value. We are especially generous here in that we
9607 go to extreme lengths to support this usage on systems with
9608 only a 32-bit VMA. */
9609 {
9610 bfd_vma sign_bits;
9611 bfd_vma low_bits;
9612 bfd_vma high_bits;
9613
9614 if (value & ((bfd_vma) 1 << 31))
9615 #ifdef BFD64
9616 sign_bits = ((bfd_vma) 1 << 32) - 1;
9617 #else
9618 sign_bits = -1;
9619 #endif
9620 else
9621 sign_bits = 0;
9622
9623 /* If we don't know that we have a 64-bit type,
9624 do two separate stores. */
9625 if (bfd_big_endian (input_bfd))
9626 {
9627 /* Undo what we did above. */
9628 rel->r_offset -= 4;
9629 /* Store the sign-bits (which are most significant)
9630 first. */
9631 low_bits = sign_bits;
9632 high_bits = value;
9633 }
9634 else
9635 {
9636 low_bits = value;
9637 high_bits = sign_bits;
9638 }
9639 bfd_put_32 (input_bfd, low_bits,
9640 contents + rel->r_offset);
9641 bfd_put_32 (input_bfd, high_bits,
9642 contents + rel->r_offset + 4);
9643 continue;
9644 }
9645
9646 /* Actually perform the relocation. */
9647 if (! mips_elf_perform_relocation (info, howto, rel, value,
9648 input_bfd, input_section,
9649 contents, cross_mode_jump_p))
9650 return FALSE;
9651 }
9652
9653 return TRUE;
9654 }
9655 \f
9656 /* A function that iterates over each entry in la25_stubs and fills
9657 in the code for each one. DATA points to a mips_htab_traverse_info. */
9658
9659 static int
9660 mips_elf_create_la25_stub (void **slot, void *data)
9661 {
9662 struct mips_htab_traverse_info *hti;
9663 struct mips_elf_link_hash_table *htab;
9664 struct mips_elf_la25_stub *stub;
9665 asection *s;
9666 bfd_byte *loc;
9667 bfd_vma offset, target, target_high, target_low;
9668
9669 stub = (struct mips_elf_la25_stub *) *slot;
9670 hti = (struct mips_htab_traverse_info *) data;
9671 htab = mips_elf_hash_table (hti->info);
9672 BFD_ASSERT (htab != NULL);
9673
9674 /* Create the section contents, if we haven't already. */
9675 s = stub->stub_section;
9676 loc = s->contents;
9677 if (loc == NULL)
9678 {
9679 loc = bfd_malloc (s->size);
9680 if (loc == NULL)
9681 {
9682 hti->error = TRUE;
9683 return FALSE;
9684 }
9685 s->contents = loc;
9686 }
9687
9688 /* Work out where in the section this stub should go. */
9689 offset = stub->offset;
9690
9691 /* Work out the target address. */
9692 target = mips_elf_get_la25_target (stub, &s);
9693 target += s->output_section->vma + s->output_offset;
9694
9695 target_high = ((target + 0x8000) >> 16) & 0xffff;
9696 target_low = (target & 0xffff);
9697
9698 if (stub->stub_section != htab->strampoline)
9699 {
9700 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9701 of the section and write the two instructions at the end. */
9702 memset (loc, 0, offset);
9703 loc += offset;
9704 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9705 {
9706 bfd_put_micromips_32 (hti->output_bfd,
9707 LA25_LUI_MICROMIPS (target_high),
9708 loc);
9709 bfd_put_micromips_32 (hti->output_bfd,
9710 LA25_ADDIU_MICROMIPS (target_low),
9711 loc + 4);
9712 }
9713 else
9714 {
9715 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9716 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9717 }
9718 }
9719 else
9720 {
9721 /* This is trampoline. */
9722 loc += offset;
9723 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9724 {
9725 bfd_put_micromips_32 (hti->output_bfd,
9726 LA25_LUI_MICROMIPS (target_high), loc);
9727 bfd_put_micromips_32 (hti->output_bfd,
9728 LA25_J_MICROMIPS (target), loc + 4);
9729 bfd_put_micromips_32 (hti->output_bfd,
9730 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
9731 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9732 }
9733 else
9734 {
9735 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9736 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9737 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9738 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9739 }
9740 }
9741 return TRUE;
9742 }
9743
9744 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9745 adjust it appropriately now. */
9746
9747 static void
9748 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9749 const char *name, Elf_Internal_Sym *sym)
9750 {
9751 /* The linker script takes care of providing names and values for
9752 these, but we must place them into the right sections. */
9753 static const char* const text_section_symbols[] = {
9754 "_ftext",
9755 "_etext",
9756 "__dso_displacement",
9757 "__elf_header",
9758 "__program_header_table",
9759 NULL
9760 };
9761
9762 static const char* const data_section_symbols[] = {
9763 "_fdata",
9764 "_edata",
9765 "_end",
9766 "_fbss",
9767 NULL
9768 };
9769
9770 const char* const *p;
9771 int i;
9772
9773 for (i = 0; i < 2; ++i)
9774 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9775 *p;
9776 ++p)
9777 if (strcmp (*p, name) == 0)
9778 {
9779 /* All of these symbols are given type STT_SECTION by the
9780 IRIX6 linker. */
9781 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9782 sym->st_other = STO_PROTECTED;
9783
9784 /* The IRIX linker puts these symbols in special sections. */
9785 if (i == 0)
9786 sym->st_shndx = SHN_MIPS_TEXT;
9787 else
9788 sym->st_shndx = SHN_MIPS_DATA;
9789
9790 break;
9791 }
9792 }
9793
9794 /* Finish up dynamic symbol handling. We set the contents of various
9795 dynamic sections here. */
9796
9797 bfd_boolean
9798 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9799 struct bfd_link_info *info,
9800 struct elf_link_hash_entry *h,
9801 Elf_Internal_Sym *sym)
9802 {
9803 bfd *dynobj;
9804 asection *sgot;
9805 struct mips_got_info *g, *gg;
9806 const char *name;
9807 int idx;
9808 struct mips_elf_link_hash_table *htab;
9809 struct mips_elf_link_hash_entry *hmips;
9810
9811 htab = mips_elf_hash_table (info);
9812 BFD_ASSERT (htab != NULL);
9813 dynobj = elf_hash_table (info)->dynobj;
9814 hmips = (struct mips_elf_link_hash_entry *) h;
9815
9816 BFD_ASSERT (!htab->is_vxworks);
9817
9818 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9819 {
9820 /* We've decided to create a PLT entry for this symbol. */
9821 bfd_byte *loc;
9822 bfd_vma header_address, plt_index, got_address;
9823 bfd_vma got_address_high, got_address_low, load;
9824 const bfd_vma *plt_entry;
9825
9826 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9827 BFD_ASSERT (h->dynindx != -1);
9828 BFD_ASSERT (htab->splt != NULL);
9829 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9830 BFD_ASSERT (!h->def_regular);
9831
9832 /* Calculate the address of the PLT header. */
9833 header_address = (htab->splt->output_section->vma
9834 + htab->splt->output_offset);
9835
9836 /* Calculate the index of the entry. */
9837 plt_index = ((h->plt.offset - htab->plt_header_size)
9838 / htab->plt_entry_size);
9839
9840 /* Calculate the address of the .got.plt entry. */
9841 got_address = (htab->sgotplt->output_section->vma
9842 + htab->sgotplt->output_offset
9843 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9844 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9845 got_address_low = got_address & 0xffff;
9846
9847 /* Initially point the .got.plt entry at the PLT header. */
9848 loc = (htab->sgotplt->contents
9849 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9850 if (ABI_64_P (output_bfd))
9851 bfd_put_64 (output_bfd, header_address, loc);
9852 else
9853 bfd_put_32 (output_bfd, header_address, loc);
9854
9855 /* Find out where the .plt entry should go. */
9856 loc = htab->splt->contents + h->plt.offset;
9857
9858 /* Pick the load opcode. */
9859 load = MIPS_ELF_LOAD_WORD (output_bfd);
9860
9861 /* Fill in the PLT entry itself. */
9862 plt_entry = mips_exec_plt_entry;
9863 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9864 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9865
9866 if (! LOAD_INTERLOCKS_P (output_bfd))
9867 {
9868 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9869 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9870 }
9871 else
9872 {
9873 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9874 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9875 }
9876
9877 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9878 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9879 plt_index, h->dynindx,
9880 R_MIPS_JUMP_SLOT, got_address);
9881
9882 /* We distinguish between PLT entries and lazy-binding stubs by
9883 giving the former an st_other value of STO_MIPS_PLT. Set the
9884 flag and leave the value if there are any relocations in the
9885 binary where pointer equality matters. */
9886 sym->st_shndx = SHN_UNDEF;
9887 if (h->pointer_equality_needed)
9888 sym->st_other = STO_MIPS_PLT;
9889 else
9890 sym->st_value = 0;
9891 }
9892 else if (h->plt.offset != MINUS_ONE)
9893 {
9894 /* We've decided to create a lazy-binding stub. */
9895 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9896
9897 /* This symbol has a stub. Set it up. */
9898
9899 BFD_ASSERT (h->dynindx != -1);
9900
9901 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9902 || (h->dynindx <= 0xffff));
9903
9904 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9905 sign extension at runtime in the stub, resulting in a negative
9906 index value. */
9907 if (h->dynindx & ~0x7fffffff)
9908 return FALSE;
9909
9910 /* Fill the stub. */
9911 idx = 0;
9912 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9913 idx += 4;
9914 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9915 idx += 4;
9916 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9917 {
9918 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9919 stub + idx);
9920 idx += 4;
9921 }
9922 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9923 idx += 4;
9924
9925 /* If a large stub is not required and sign extension is not a
9926 problem, then use legacy code in the stub. */
9927 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9928 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9929 else if (h->dynindx & ~0x7fff)
9930 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9931 else
9932 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9933 stub + idx);
9934
9935 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9936 memcpy (htab->sstubs->contents + h->plt.offset,
9937 stub, htab->function_stub_size);
9938
9939 /* Mark the symbol as undefined. plt.offset != -1 occurs
9940 only for the referenced symbol. */
9941 sym->st_shndx = SHN_UNDEF;
9942
9943 /* The run-time linker uses the st_value field of the symbol
9944 to reset the global offset table entry for this external
9945 to its stub address when unlinking a shared object. */
9946 sym->st_value = (htab->sstubs->output_section->vma
9947 + htab->sstubs->output_offset
9948 + h->plt.offset);
9949 }
9950
9951 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9952 refer to the stub, since only the stub uses the standard calling
9953 conventions. */
9954 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9955 {
9956 BFD_ASSERT (hmips->need_fn_stub);
9957 sym->st_value = (hmips->fn_stub->output_section->vma
9958 + hmips->fn_stub->output_offset);
9959 sym->st_size = hmips->fn_stub->size;
9960 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9961 }
9962
9963 BFD_ASSERT (h->dynindx != -1
9964 || h->forced_local);
9965
9966 sgot = htab->sgot;
9967 g = htab->got_info;
9968 BFD_ASSERT (g != NULL);
9969
9970 /* Run through the global symbol table, creating GOT entries for all
9971 the symbols that need them. */
9972 if (hmips->global_got_area != GGA_NONE)
9973 {
9974 bfd_vma offset;
9975 bfd_vma value;
9976
9977 value = sym->st_value;
9978 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
9979 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9980 }
9981
9982 if (hmips->global_got_area != GGA_NONE && g->next)
9983 {
9984 struct mips_got_entry e, *p;
9985 bfd_vma entry;
9986 bfd_vma offset;
9987
9988 gg = g;
9989
9990 e.abfd = output_bfd;
9991 e.symndx = -1;
9992 e.d.h = hmips;
9993 e.tls_type = GOT_TLS_NONE;
9994
9995 for (g = g->next; g->next != gg; g = g->next)
9996 {
9997 if (g->got_entries
9998 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9999 &e)))
10000 {
10001 offset = p->gotidx;
10002 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10003 if (info->shared
10004 || (elf_hash_table (info)->dynamic_sections_created
10005 && p->d.h != NULL
10006 && p->d.h->root.def_dynamic
10007 && !p->d.h->root.def_regular))
10008 {
10009 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10010 the various compatibility problems, it's easier to mock
10011 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10012 mips_elf_create_dynamic_relocation to calculate the
10013 appropriate addend. */
10014 Elf_Internal_Rela rel[3];
10015
10016 memset (rel, 0, sizeof (rel));
10017 if (ABI_64_P (output_bfd))
10018 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10019 else
10020 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10021 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10022
10023 entry = 0;
10024 if (! (mips_elf_create_dynamic_relocation
10025 (output_bfd, info, rel,
10026 e.d.h, NULL, sym->st_value, &entry, sgot)))
10027 return FALSE;
10028 }
10029 else
10030 entry = sym->st_value;
10031 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10032 }
10033 }
10034 }
10035
10036 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10037 name = h->root.root.string;
10038 if (h == elf_hash_table (info)->hdynamic
10039 || h == elf_hash_table (info)->hgot)
10040 sym->st_shndx = SHN_ABS;
10041 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10042 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10043 {
10044 sym->st_shndx = SHN_ABS;
10045 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10046 sym->st_value = 1;
10047 }
10048 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10049 {
10050 sym->st_shndx = SHN_ABS;
10051 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10052 sym->st_value = elf_gp (output_bfd);
10053 }
10054 else if (SGI_COMPAT (output_bfd))
10055 {
10056 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10057 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10058 {
10059 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10060 sym->st_other = STO_PROTECTED;
10061 sym->st_value = 0;
10062 sym->st_shndx = SHN_MIPS_DATA;
10063 }
10064 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10065 {
10066 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10067 sym->st_other = STO_PROTECTED;
10068 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10069 sym->st_shndx = SHN_ABS;
10070 }
10071 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10072 {
10073 if (h->type == STT_FUNC)
10074 sym->st_shndx = SHN_MIPS_TEXT;
10075 else if (h->type == STT_OBJECT)
10076 sym->st_shndx = SHN_MIPS_DATA;
10077 }
10078 }
10079
10080 /* Emit a copy reloc, if needed. */
10081 if (h->needs_copy)
10082 {
10083 asection *s;
10084 bfd_vma symval;
10085
10086 BFD_ASSERT (h->dynindx != -1);
10087 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10088
10089 s = mips_elf_rel_dyn_section (info, FALSE);
10090 symval = (h->root.u.def.section->output_section->vma
10091 + h->root.u.def.section->output_offset
10092 + h->root.u.def.value);
10093 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10094 h->dynindx, R_MIPS_COPY, symval);
10095 }
10096
10097 /* Handle the IRIX6-specific symbols. */
10098 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10099 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10100
10101 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10102 treat MIPS16 symbols like any other. */
10103 if (ELF_ST_IS_MIPS16 (sym->st_other))
10104 {
10105 BFD_ASSERT (sym->st_value & 1);
10106 sym->st_other -= STO_MIPS16;
10107 }
10108
10109 return TRUE;
10110 }
10111
10112 /* Likewise, for VxWorks. */
10113
10114 bfd_boolean
10115 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10116 struct bfd_link_info *info,
10117 struct elf_link_hash_entry *h,
10118 Elf_Internal_Sym *sym)
10119 {
10120 bfd *dynobj;
10121 asection *sgot;
10122 struct mips_got_info *g;
10123 struct mips_elf_link_hash_table *htab;
10124 struct mips_elf_link_hash_entry *hmips;
10125
10126 htab = mips_elf_hash_table (info);
10127 BFD_ASSERT (htab != NULL);
10128 dynobj = elf_hash_table (info)->dynobj;
10129 hmips = (struct mips_elf_link_hash_entry *) h;
10130
10131 if (h->plt.offset != (bfd_vma) -1)
10132 {
10133 bfd_byte *loc;
10134 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10135 Elf_Internal_Rela rel;
10136 static const bfd_vma *plt_entry;
10137
10138 BFD_ASSERT (h->dynindx != -1);
10139 BFD_ASSERT (htab->splt != NULL);
10140 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10141
10142 /* Calculate the address of the .plt entry. */
10143 plt_address = (htab->splt->output_section->vma
10144 + htab->splt->output_offset
10145 + h->plt.offset);
10146
10147 /* Calculate the index of the entry. */
10148 plt_index = ((h->plt.offset - htab->plt_header_size)
10149 / htab->plt_entry_size);
10150
10151 /* Calculate the address of the .got.plt entry. */
10152 got_address = (htab->sgotplt->output_section->vma
10153 + htab->sgotplt->output_offset
10154 + plt_index * 4);
10155
10156 /* Calculate the offset of the .got.plt entry from
10157 _GLOBAL_OFFSET_TABLE_. */
10158 got_offset = mips_elf_gotplt_index (info, h);
10159
10160 /* Calculate the offset for the branch at the start of the PLT
10161 entry. The branch jumps to the beginning of .plt. */
10162 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10163
10164 /* Fill in the initial value of the .got.plt entry. */
10165 bfd_put_32 (output_bfd, plt_address,
10166 htab->sgotplt->contents + plt_index * 4);
10167
10168 /* Find out where the .plt entry should go. */
10169 loc = htab->splt->contents + h->plt.offset;
10170
10171 if (info->shared)
10172 {
10173 plt_entry = mips_vxworks_shared_plt_entry;
10174 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10175 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10176 }
10177 else
10178 {
10179 bfd_vma got_address_high, got_address_low;
10180
10181 plt_entry = mips_vxworks_exec_plt_entry;
10182 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10183 got_address_low = got_address & 0xffff;
10184
10185 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10186 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10187 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10188 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10189 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10190 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10191 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10192 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10193
10194 loc = (htab->srelplt2->contents
10195 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10196
10197 /* Emit a relocation for the .got.plt entry. */
10198 rel.r_offset = got_address;
10199 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10200 rel.r_addend = h->plt.offset;
10201 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10202
10203 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10204 loc += sizeof (Elf32_External_Rela);
10205 rel.r_offset = plt_address + 8;
10206 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10207 rel.r_addend = got_offset;
10208 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10209
10210 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10211 loc += sizeof (Elf32_External_Rela);
10212 rel.r_offset += 4;
10213 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10214 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10215 }
10216
10217 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10218 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10219 rel.r_offset = got_address;
10220 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10221 rel.r_addend = 0;
10222 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10223
10224 if (!h->def_regular)
10225 sym->st_shndx = SHN_UNDEF;
10226 }
10227
10228 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10229
10230 sgot = htab->sgot;
10231 g = htab->got_info;
10232 BFD_ASSERT (g != NULL);
10233
10234 /* See if this symbol has an entry in the GOT. */
10235 if (hmips->global_got_area != GGA_NONE)
10236 {
10237 bfd_vma offset;
10238 Elf_Internal_Rela outrel;
10239 bfd_byte *loc;
10240 asection *s;
10241
10242 /* Install the symbol value in the GOT. */
10243 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10244 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10245
10246 /* Add a dynamic relocation for it. */
10247 s = mips_elf_rel_dyn_section (info, FALSE);
10248 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10249 outrel.r_offset = (sgot->output_section->vma
10250 + sgot->output_offset
10251 + offset);
10252 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10253 outrel.r_addend = 0;
10254 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10255 }
10256
10257 /* Emit a copy reloc, if needed. */
10258 if (h->needs_copy)
10259 {
10260 Elf_Internal_Rela rel;
10261
10262 BFD_ASSERT (h->dynindx != -1);
10263
10264 rel.r_offset = (h->root.u.def.section->output_section->vma
10265 + h->root.u.def.section->output_offset
10266 + h->root.u.def.value);
10267 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10268 rel.r_addend = 0;
10269 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10270 htab->srelbss->contents
10271 + (htab->srelbss->reloc_count
10272 * sizeof (Elf32_External_Rela)));
10273 ++htab->srelbss->reloc_count;
10274 }
10275
10276 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10277 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10278 sym->st_value &= ~1;
10279
10280 return TRUE;
10281 }
10282
10283 /* Write out a plt0 entry to the beginning of .plt. */
10284
10285 static void
10286 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10287 {
10288 bfd_byte *loc;
10289 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10290 static const bfd_vma *plt_entry;
10291 struct mips_elf_link_hash_table *htab;
10292
10293 htab = mips_elf_hash_table (info);
10294 BFD_ASSERT (htab != NULL);
10295
10296 if (ABI_64_P (output_bfd))
10297 plt_entry = mips_n64_exec_plt0_entry;
10298 else if (ABI_N32_P (output_bfd))
10299 plt_entry = mips_n32_exec_plt0_entry;
10300 else
10301 plt_entry = mips_o32_exec_plt0_entry;
10302
10303 /* Calculate the value of .got.plt. */
10304 gotplt_value = (htab->sgotplt->output_section->vma
10305 + htab->sgotplt->output_offset);
10306 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10307 gotplt_value_low = gotplt_value & 0xffff;
10308
10309 /* The PLT sequence is not safe for N64 if .got.plt's address can
10310 not be loaded in two instructions. */
10311 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10312 || ~(gotplt_value | 0x7fffffff) == 0);
10313
10314 /* Install the PLT header. */
10315 loc = htab->splt->contents;
10316 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10317 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10318 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10319 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10320 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10321 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10322 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10323 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10324 }
10325
10326 /* Install the PLT header for a VxWorks executable and finalize the
10327 contents of .rela.plt.unloaded. */
10328
10329 static void
10330 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10331 {
10332 Elf_Internal_Rela rela;
10333 bfd_byte *loc;
10334 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10335 static const bfd_vma *plt_entry;
10336 struct mips_elf_link_hash_table *htab;
10337
10338 htab = mips_elf_hash_table (info);
10339 BFD_ASSERT (htab != NULL);
10340
10341 plt_entry = mips_vxworks_exec_plt0_entry;
10342
10343 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10344 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10345 + htab->root.hgot->root.u.def.section->output_offset
10346 + htab->root.hgot->root.u.def.value);
10347
10348 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10349 got_value_low = got_value & 0xffff;
10350
10351 /* Calculate the address of the PLT header. */
10352 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10353
10354 /* Install the PLT header. */
10355 loc = htab->splt->contents;
10356 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10357 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10358 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10359 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10360 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10361 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10362
10363 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10364 loc = htab->srelplt2->contents;
10365 rela.r_offset = plt_address;
10366 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10367 rela.r_addend = 0;
10368 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10369 loc += sizeof (Elf32_External_Rela);
10370
10371 /* Output the relocation for the following addiu of
10372 %lo(_GLOBAL_OFFSET_TABLE_). */
10373 rela.r_offset += 4;
10374 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10375 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10376 loc += sizeof (Elf32_External_Rela);
10377
10378 /* Fix up the remaining relocations. They may have the wrong
10379 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10380 in which symbols were output. */
10381 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10382 {
10383 Elf_Internal_Rela rel;
10384
10385 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10386 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10387 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10388 loc += sizeof (Elf32_External_Rela);
10389
10390 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10391 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10392 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10393 loc += sizeof (Elf32_External_Rela);
10394
10395 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10396 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10397 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10398 loc += sizeof (Elf32_External_Rela);
10399 }
10400 }
10401
10402 /* Install the PLT header for a VxWorks shared library. */
10403
10404 static void
10405 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10406 {
10407 unsigned int i;
10408 struct mips_elf_link_hash_table *htab;
10409
10410 htab = mips_elf_hash_table (info);
10411 BFD_ASSERT (htab != NULL);
10412
10413 /* We just need to copy the entry byte-by-byte. */
10414 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10415 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10416 htab->splt->contents + i * 4);
10417 }
10418
10419 /* Finish up the dynamic sections. */
10420
10421 bfd_boolean
10422 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10423 struct bfd_link_info *info)
10424 {
10425 bfd *dynobj;
10426 asection *sdyn;
10427 asection *sgot;
10428 struct mips_got_info *gg, *g;
10429 struct mips_elf_link_hash_table *htab;
10430
10431 htab = mips_elf_hash_table (info);
10432 BFD_ASSERT (htab != NULL);
10433
10434 dynobj = elf_hash_table (info)->dynobj;
10435
10436 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
10437
10438 sgot = htab->sgot;
10439 gg = htab->got_info;
10440
10441 if (elf_hash_table (info)->dynamic_sections_created)
10442 {
10443 bfd_byte *b;
10444 int dyn_to_skip = 0, dyn_skipped = 0;
10445
10446 BFD_ASSERT (sdyn != NULL);
10447 BFD_ASSERT (gg != NULL);
10448
10449 g = mips_elf_bfd_got (output_bfd, FALSE);
10450 BFD_ASSERT (g != NULL);
10451
10452 for (b = sdyn->contents;
10453 b < sdyn->contents + sdyn->size;
10454 b += MIPS_ELF_DYN_SIZE (dynobj))
10455 {
10456 Elf_Internal_Dyn dyn;
10457 const char *name;
10458 size_t elemsize;
10459 asection *s;
10460 bfd_boolean swap_out_p;
10461
10462 /* Read in the current dynamic entry. */
10463 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10464
10465 /* Assume that we're going to modify it and write it out. */
10466 swap_out_p = TRUE;
10467
10468 switch (dyn.d_tag)
10469 {
10470 case DT_RELENT:
10471 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10472 break;
10473
10474 case DT_RELAENT:
10475 BFD_ASSERT (htab->is_vxworks);
10476 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10477 break;
10478
10479 case DT_STRSZ:
10480 /* Rewrite DT_STRSZ. */
10481 dyn.d_un.d_val =
10482 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10483 break;
10484
10485 case DT_PLTGOT:
10486 s = htab->sgot;
10487 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10488 break;
10489
10490 case DT_MIPS_PLTGOT:
10491 s = htab->sgotplt;
10492 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10493 break;
10494
10495 case DT_MIPS_RLD_VERSION:
10496 dyn.d_un.d_val = 1; /* XXX */
10497 break;
10498
10499 case DT_MIPS_FLAGS:
10500 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10501 break;
10502
10503 case DT_MIPS_TIME_STAMP:
10504 {
10505 time_t t;
10506 time (&t);
10507 dyn.d_un.d_val = t;
10508 }
10509 break;
10510
10511 case DT_MIPS_ICHECKSUM:
10512 /* XXX FIXME: */
10513 swap_out_p = FALSE;
10514 break;
10515
10516 case DT_MIPS_IVERSION:
10517 /* XXX FIXME: */
10518 swap_out_p = FALSE;
10519 break;
10520
10521 case DT_MIPS_BASE_ADDRESS:
10522 s = output_bfd->sections;
10523 BFD_ASSERT (s != NULL);
10524 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10525 break;
10526
10527 case DT_MIPS_LOCAL_GOTNO:
10528 dyn.d_un.d_val = g->local_gotno;
10529 break;
10530
10531 case DT_MIPS_UNREFEXTNO:
10532 /* The index into the dynamic symbol table which is the
10533 entry of the first external symbol that is not
10534 referenced within the same object. */
10535 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10536 break;
10537
10538 case DT_MIPS_GOTSYM:
10539 if (htab->global_gotsym)
10540 {
10541 dyn.d_un.d_val = htab->global_gotsym->dynindx;
10542 break;
10543 }
10544 /* In case if we don't have global got symbols we default
10545 to setting DT_MIPS_GOTSYM to the same value as
10546 DT_MIPS_SYMTABNO, so we just fall through. */
10547
10548 case DT_MIPS_SYMTABNO:
10549 name = ".dynsym";
10550 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10551 s = bfd_get_section_by_name (output_bfd, name);
10552 BFD_ASSERT (s != NULL);
10553
10554 dyn.d_un.d_val = s->size / elemsize;
10555 break;
10556
10557 case DT_MIPS_HIPAGENO:
10558 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10559 break;
10560
10561 case DT_MIPS_RLD_MAP:
10562 {
10563 struct elf_link_hash_entry *h;
10564 h = mips_elf_hash_table (info)->rld_symbol;
10565 if (!h)
10566 {
10567 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10568 swap_out_p = FALSE;
10569 break;
10570 }
10571 s = h->root.u.def.section;
10572 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10573 + h->root.u.def.value);
10574 }
10575 break;
10576
10577 case DT_MIPS_OPTIONS:
10578 s = (bfd_get_section_by_name
10579 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10580 dyn.d_un.d_ptr = s->vma;
10581 break;
10582
10583 case DT_RELASZ:
10584 BFD_ASSERT (htab->is_vxworks);
10585 /* The count does not include the JUMP_SLOT relocations. */
10586 if (htab->srelplt)
10587 dyn.d_un.d_val -= htab->srelplt->size;
10588 break;
10589
10590 case DT_PLTREL:
10591 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10592 if (htab->is_vxworks)
10593 dyn.d_un.d_val = DT_RELA;
10594 else
10595 dyn.d_un.d_val = DT_REL;
10596 break;
10597
10598 case DT_PLTRELSZ:
10599 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10600 dyn.d_un.d_val = htab->srelplt->size;
10601 break;
10602
10603 case DT_JMPREL:
10604 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10605 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10606 + htab->srelplt->output_offset);
10607 break;
10608
10609 case DT_TEXTREL:
10610 /* If we didn't need any text relocations after all, delete
10611 the dynamic tag. */
10612 if (!(info->flags & DF_TEXTREL))
10613 {
10614 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10615 swap_out_p = FALSE;
10616 }
10617 break;
10618
10619 case DT_FLAGS:
10620 /* If we didn't need any text relocations after all, clear
10621 DF_TEXTREL from DT_FLAGS. */
10622 if (!(info->flags & DF_TEXTREL))
10623 dyn.d_un.d_val &= ~DF_TEXTREL;
10624 else
10625 swap_out_p = FALSE;
10626 break;
10627
10628 default:
10629 swap_out_p = FALSE;
10630 if (htab->is_vxworks
10631 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10632 swap_out_p = TRUE;
10633 break;
10634 }
10635
10636 if (swap_out_p || dyn_skipped)
10637 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10638 (dynobj, &dyn, b - dyn_skipped);
10639
10640 if (dyn_to_skip)
10641 {
10642 dyn_skipped += dyn_to_skip;
10643 dyn_to_skip = 0;
10644 }
10645 }
10646
10647 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10648 if (dyn_skipped > 0)
10649 memset (b - dyn_skipped, 0, dyn_skipped);
10650 }
10651
10652 if (sgot != NULL && sgot->size > 0
10653 && !bfd_is_abs_section (sgot->output_section))
10654 {
10655 if (htab->is_vxworks)
10656 {
10657 /* The first entry of the global offset table points to the
10658 ".dynamic" section. The second is initialized by the
10659 loader and contains the shared library identifier.
10660 The third is also initialized by the loader and points
10661 to the lazy resolution stub. */
10662 MIPS_ELF_PUT_WORD (output_bfd,
10663 sdyn->output_offset + sdyn->output_section->vma,
10664 sgot->contents);
10665 MIPS_ELF_PUT_WORD (output_bfd, 0,
10666 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10667 MIPS_ELF_PUT_WORD (output_bfd, 0,
10668 sgot->contents
10669 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10670 }
10671 else
10672 {
10673 /* The first entry of the global offset table will be filled at
10674 runtime. The second entry will be used by some runtime loaders.
10675 This isn't the case of IRIX rld. */
10676 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10677 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10678 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10679 }
10680
10681 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10682 = MIPS_ELF_GOT_SIZE (output_bfd);
10683 }
10684
10685 /* Generate dynamic relocations for the non-primary gots. */
10686 if (gg != NULL && gg->next)
10687 {
10688 Elf_Internal_Rela rel[3];
10689 bfd_vma addend = 0;
10690
10691 memset (rel, 0, sizeof (rel));
10692 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10693
10694 for (g = gg->next; g->next != gg; g = g->next)
10695 {
10696 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10697 + g->next->tls_gotno;
10698
10699 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10700 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10701 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10702 sgot->contents
10703 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10704
10705 if (! info->shared)
10706 continue;
10707
10708 while (got_index < g->assigned_gotno)
10709 {
10710 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10711 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10712 if (!(mips_elf_create_dynamic_relocation
10713 (output_bfd, info, rel, NULL,
10714 bfd_abs_section_ptr,
10715 0, &addend, sgot)))
10716 return FALSE;
10717 BFD_ASSERT (addend == 0);
10718 }
10719 }
10720 }
10721
10722 /* The generation of dynamic relocations for the non-primary gots
10723 adds more dynamic relocations. We cannot count them until
10724 here. */
10725
10726 if (elf_hash_table (info)->dynamic_sections_created)
10727 {
10728 bfd_byte *b;
10729 bfd_boolean swap_out_p;
10730
10731 BFD_ASSERT (sdyn != NULL);
10732
10733 for (b = sdyn->contents;
10734 b < sdyn->contents + sdyn->size;
10735 b += MIPS_ELF_DYN_SIZE (dynobj))
10736 {
10737 Elf_Internal_Dyn dyn;
10738 asection *s;
10739
10740 /* Read in the current dynamic entry. */
10741 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10742
10743 /* Assume that we're going to modify it and write it out. */
10744 swap_out_p = TRUE;
10745
10746 switch (dyn.d_tag)
10747 {
10748 case DT_RELSZ:
10749 /* Reduce DT_RELSZ to account for any relocations we
10750 decided not to make. This is for the n64 irix rld,
10751 which doesn't seem to apply any relocations if there
10752 are trailing null entries. */
10753 s = mips_elf_rel_dyn_section (info, FALSE);
10754 dyn.d_un.d_val = (s->reloc_count
10755 * (ABI_64_P (output_bfd)
10756 ? sizeof (Elf64_Mips_External_Rel)
10757 : sizeof (Elf32_External_Rel)));
10758 /* Adjust the section size too. Tools like the prelinker
10759 can reasonably expect the values to the same. */
10760 elf_section_data (s->output_section)->this_hdr.sh_size
10761 = dyn.d_un.d_val;
10762 break;
10763
10764 default:
10765 swap_out_p = FALSE;
10766 break;
10767 }
10768
10769 if (swap_out_p)
10770 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10771 (dynobj, &dyn, b);
10772 }
10773 }
10774
10775 {
10776 asection *s;
10777 Elf32_compact_rel cpt;
10778
10779 if (SGI_COMPAT (output_bfd))
10780 {
10781 /* Write .compact_rel section out. */
10782 s = bfd_get_linker_section (dynobj, ".compact_rel");
10783 if (s != NULL)
10784 {
10785 cpt.id1 = 1;
10786 cpt.num = s->reloc_count;
10787 cpt.id2 = 2;
10788 cpt.offset = (s->output_section->filepos
10789 + sizeof (Elf32_External_compact_rel));
10790 cpt.reserved0 = 0;
10791 cpt.reserved1 = 0;
10792 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10793 ((Elf32_External_compact_rel *)
10794 s->contents));
10795
10796 /* Clean up a dummy stub function entry in .text. */
10797 if (htab->sstubs != NULL)
10798 {
10799 file_ptr dummy_offset;
10800
10801 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10802 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10803 memset (htab->sstubs->contents + dummy_offset, 0,
10804 htab->function_stub_size);
10805 }
10806 }
10807 }
10808
10809 /* The psABI says that the dynamic relocations must be sorted in
10810 increasing order of r_symndx. The VxWorks EABI doesn't require
10811 this, and because the code below handles REL rather than RELA
10812 relocations, using it for VxWorks would be outright harmful. */
10813 if (!htab->is_vxworks)
10814 {
10815 s = mips_elf_rel_dyn_section (info, FALSE);
10816 if (s != NULL
10817 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10818 {
10819 reldyn_sorting_bfd = output_bfd;
10820
10821 if (ABI_64_P (output_bfd))
10822 qsort ((Elf64_External_Rel *) s->contents + 1,
10823 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10824 sort_dynamic_relocs_64);
10825 else
10826 qsort ((Elf32_External_Rel *) s->contents + 1,
10827 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10828 sort_dynamic_relocs);
10829 }
10830 }
10831 }
10832
10833 if (htab->splt && htab->splt->size > 0)
10834 {
10835 if (htab->is_vxworks)
10836 {
10837 if (info->shared)
10838 mips_vxworks_finish_shared_plt (output_bfd, info);
10839 else
10840 mips_vxworks_finish_exec_plt (output_bfd, info);
10841 }
10842 else
10843 {
10844 BFD_ASSERT (!info->shared);
10845 mips_finish_exec_plt (output_bfd, info);
10846 }
10847 }
10848 return TRUE;
10849 }
10850
10851
10852 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10853
10854 static void
10855 mips_set_isa_flags (bfd *abfd)
10856 {
10857 flagword val;
10858
10859 switch (bfd_get_mach (abfd))
10860 {
10861 default:
10862 case bfd_mach_mips3000:
10863 val = E_MIPS_ARCH_1;
10864 break;
10865
10866 case bfd_mach_mips3900:
10867 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10868 break;
10869
10870 case bfd_mach_mips6000:
10871 val = E_MIPS_ARCH_2;
10872 break;
10873
10874 case bfd_mach_mips4000:
10875 case bfd_mach_mips4300:
10876 case bfd_mach_mips4400:
10877 case bfd_mach_mips4600:
10878 val = E_MIPS_ARCH_3;
10879 break;
10880
10881 case bfd_mach_mips4010:
10882 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10883 break;
10884
10885 case bfd_mach_mips4100:
10886 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10887 break;
10888
10889 case bfd_mach_mips4111:
10890 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10891 break;
10892
10893 case bfd_mach_mips4120:
10894 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10895 break;
10896
10897 case bfd_mach_mips4650:
10898 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10899 break;
10900
10901 case bfd_mach_mips5400:
10902 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10903 break;
10904
10905 case bfd_mach_mips5500:
10906 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10907 break;
10908
10909 case bfd_mach_mips5900:
10910 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
10911 break;
10912
10913 case bfd_mach_mips9000:
10914 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10915 break;
10916
10917 case bfd_mach_mips5000:
10918 case bfd_mach_mips7000:
10919 case bfd_mach_mips8000:
10920 case bfd_mach_mips10000:
10921 case bfd_mach_mips12000:
10922 case bfd_mach_mips14000:
10923 case bfd_mach_mips16000:
10924 val = E_MIPS_ARCH_4;
10925 break;
10926
10927 case bfd_mach_mips5:
10928 val = E_MIPS_ARCH_5;
10929 break;
10930
10931 case bfd_mach_mips_loongson_2e:
10932 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10933 break;
10934
10935 case bfd_mach_mips_loongson_2f:
10936 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10937 break;
10938
10939 case bfd_mach_mips_sb1:
10940 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10941 break;
10942
10943 case bfd_mach_mips_loongson_3a:
10944 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10945 break;
10946
10947 case bfd_mach_mips_octeon:
10948 case bfd_mach_mips_octeonp:
10949 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10950 break;
10951
10952 case bfd_mach_mips_xlr:
10953 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10954 break;
10955
10956 case bfd_mach_mips_octeon2:
10957 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
10958 break;
10959
10960 case bfd_mach_mipsisa32:
10961 val = E_MIPS_ARCH_32;
10962 break;
10963
10964 case bfd_mach_mipsisa64:
10965 val = E_MIPS_ARCH_64;
10966 break;
10967
10968 case bfd_mach_mipsisa32r2:
10969 val = E_MIPS_ARCH_32R2;
10970 break;
10971
10972 case bfd_mach_mipsisa64r2:
10973 val = E_MIPS_ARCH_64R2;
10974 break;
10975 }
10976 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10977 elf_elfheader (abfd)->e_flags |= val;
10978
10979 }
10980
10981
10982 /* The final processing done just before writing out a MIPS ELF object
10983 file. This gets the MIPS architecture right based on the machine
10984 number. This is used by both the 32-bit and the 64-bit ABI. */
10985
10986 void
10987 _bfd_mips_elf_final_write_processing (bfd *abfd,
10988 bfd_boolean linker ATTRIBUTE_UNUSED)
10989 {
10990 unsigned int i;
10991 Elf_Internal_Shdr **hdrpp;
10992 const char *name;
10993 asection *sec;
10994
10995 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10996 is nonzero. This is for compatibility with old objects, which used
10997 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10998 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10999 mips_set_isa_flags (abfd);
11000
11001 /* Set the sh_info field for .gptab sections and other appropriate
11002 info for each special section. */
11003 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11004 i < elf_numsections (abfd);
11005 i++, hdrpp++)
11006 {
11007 switch ((*hdrpp)->sh_type)
11008 {
11009 case SHT_MIPS_MSYM:
11010 case SHT_MIPS_LIBLIST:
11011 sec = bfd_get_section_by_name (abfd, ".dynstr");
11012 if (sec != NULL)
11013 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11014 break;
11015
11016 case SHT_MIPS_GPTAB:
11017 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11018 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11019 BFD_ASSERT (name != NULL
11020 && CONST_STRNEQ (name, ".gptab."));
11021 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11022 BFD_ASSERT (sec != NULL);
11023 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11024 break;
11025
11026 case SHT_MIPS_CONTENT:
11027 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11028 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11029 BFD_ASSERT (name != NULL
11030 && CONST_STRNEQ (name, ".MIPS.content"));
11031 sec = bfd_get_section_by_name (abfd,
11032 name + sizeof ".MIPS.content" - 1);
11033 BFD_ASSERT (sec != NULL);
11034 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11035 break;
11036
11037 case SHT_MIPS_SYMBOL_LIB:
11038 sec = bfd_get_section_by_name (abfd, ".dynsym");
11039 if (sec != NULL)
11040 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11041 sec = bfd_get_section_by_name (abfd, ".liblist");
11042 if (sec != NULL)
11043 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11044 break;
11045
11046 case SHT_MIPS_EVENTS:
11047 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11048 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11049 BFD_ASSERT (name != NULL);
11050 if (CONST_STRNEQ (name, ".MIPS.events"))
11051 sec = bfd_get_section_by_name (abfd,
11052 name + sizeof ".MIPS.events" - 1);
11053 else
11054 {
11055 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11056 sec = bfd_get_section_by_name (abfd,
11057 (name
11058 + sizeof ".MIPS.post_rel" - 1));
11059 }
11060 BFD_ASSERT (sec != NULL);
11061 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11062 break;
11063
11064 }
11065 }
11066 }
11067 \f
11068 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11069 segments. */
11070
11071 int
11072 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11073 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11074 {
11075 asection *s;
11076 int ret = 0;
11077
11078 /* See if we need a PT_MIPS_REGINFO segment. */
11079 s = bfd_get_section_by_name (abfd, ".reginfo");
11080 if (s && (s->flags & SEC_LOAD))
11081 ++ret;
11082
11083 /* See if we need a PT_MIPS_OPTIONS segment. */
11084 if (IRIX_COMPAT (abfd) == ict_irix6
11085 && bfd_get_section_by_name (abfd,
11086 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11087 ++ret;
11088
11089 /* See if we need a PT_MIPS_RTPROC segment. */
11090 if (IRIX_COMPAT (abfd) == ict_irix5
11091 && bfd_get_section_by_name (abfd, ".dynamic")
11092 && bfd_get_section_by_name (abfd, ".mdebug"))
11093 ++ret;
11094
11095 /* Allocate a PT_NULL header in dynamic objects. See
11096 _bfd_mips_elf_modify_segment_map for details. */
11097 if (!SGI_COMPAT (abfd)
11098 && bfd_get_section_by_name (abfd, ".dynamic"))
11099 ++ret;
11100
11101 return ret;
11102 }
11103
11104 /* Modify the segment map for an IRIX5 executable. */
11105
11106 bfd_boolean
11107 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11108 struct bfd_link_info *info)
11109 {
11110 asection *s;
11111 struct elf_segment_map *m, **pm;
11112 bfd_size_type amt;
11113
11114 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11115 segment. */
11116 s = bfd_get_section_by_name (abfd, ".reginfo");
11117 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11118 {
11119 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11120 if (m->p_type == PT_MIPS_REGINFO)
11121 break;
11122 if (m == NULL)
11123 {
11124 amt = sizeof *m;
11125 m = bfd_zalloc (abfd, amt);
11126 if (m == NULL)
11127 return FALSE;
11128
11129 m->p_type = PT_MIPS_REGINFO;
11130 m->count = 1;
11131 m->sections[0] = s;
11132
11133 /* We want to put it after the PHDR and INTERP segments. */
11134 pm = &elf_tdata (abfd)->segment_map;
11135 while (*pm != NULL
11136 && ((*pm)->p_type == PT_PHDR
11137 || (*pm)->p_type == PT_INTERP))
11138 pm = &(*pm)->next;
11139
11140 m->next = *pm;
11141 *pm = m;
11142 }
11143 }
11144
11145 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11146 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11147 PT_MIPS_OPTIONS segment immediately following the program header
11148 table. */
11149 if (NEWABI_P (abfd)
11150 /* On non-IRIX6 new abi, we'll have already created a segment
11151 for this section, so don't create another. I'm not sure this
11152 is not also the case for IRIX 6, but I can't test it right
11153 now. */
11154 && IRIX_COMPAT (abfd) == ict_irix6)
11155 {
11156 for (s = abfd->sections; s; s = s->next)
11157 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11158 break;
11159
11160 if (s)
11161 {
11162 struct elf_segment_map *options_segment;
11163
11164 pm = &elf_tdata (abfd)->segment_map;
11165 while (*pm != NULL
11166 && ((*pm)->p_type == PT_PHDR
11167 || (*pm)->p_type == PT_INTERP))
11168 pm = &(*pm)->next;
11169
11170 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11171 {
11172 amt = sizeof (struct elf_segment_map);
11173 options_segment = bfd_zalloc (abfd, amt);
11174 options_segment->next = *pm;
11175 options_segment->p_type = PT_MIPS_OPTIONS;
11176 options_segment->p_flags = PF_R;
11177 options_segment->p_flags_valid = TRUE;
11178 options_segment->count = 1;
11179 options_segment->sections[0] = s;
11180 *pm = options_segment;
11181 }
11182 }
11183 }
11184 else
11185 {
11186 if (IRIX_COMPAT (abfd) == ict_irix5)
11187 {
11188 /* If there are .dynamic and .mdebug sections, we make a room
11189 for the RTPROC header. FIXME: Rewrite without section names. */
11190 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11191 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11192 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11193 {
11194 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11195 if (m->p_type == PT_MIPS_RTPROC)
11196 break;
11197 if (m == NULL)
11198 {
11199 amt = sizeof *m;
11200 m = bfd_zalloc (abfd, amt);
11201 if (m == NULL)
11202 return FALSE;
11203
11204 m->p_type = PT_MIPS_RTPROC;
11205
11206 s = bfd_get_section_by_name (abfd, ".rtproc");
11207 if (s == NULL)
11208 {
11209 m->count = 0;
11210 m->p_flags = 0;
11211 m->p_flags_valid = 1;
11212 }
11213 else
11214 {
11215 m->count = 1;
11216 m->sections[0] = s;
11217 }
11218
11219 /* We want to put it after the DYNAMIC segment. */
11220 pm = &elf_tdata (abfd)->segment_map;
11221 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11222 pm = &(*pm)->next;
11223 if (*pm != NULL)
11224 pm = &(*pm)->next;
11225
11226 m->next = *pm;
11227 *pm = m;
11228 }
11229 }
11230 }
11231 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11232 .dynstr, .dynsym, and .hash sections, and everything in
11233 between. */
11234 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11235 pm = &(*pm)->next)
11236 if ((*pm)->p_type == PT_DYNAMIC)
11237 break;
11238 m = *pm;
11239 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11240 {
11241 /* For a normal mips executable the permissions for the PT_DYNAMIC
11242 segment are read, write and execute. We do that here since
11243 the code in elf.c sets only the read permission. This matters
11244 sometimes for the dynamic linker. */
11245 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11246 {
11247 m->p_flags = PF_R | PF_W | PF_X;
11248 m->p_flags_valid = 1;
11249 }
11250 }
11251 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11252 glibc's dynamic linker has traditionally derived the number of
11253 tags from the p_filesz field, and sometimes allocates stack
11254 arrays of that size. An overly-big PT_DYNAMIC segment can
11255 be actively harmful in such cases. Making PT_DYNAMIC contain
11256 other sections can also make life hard for the prelinker,
11257 which might move one of the other sections to a different
11258 PT_LOAD segment. */
11259 if (SGI_COMPAT (abfd)
11260 && m != NULL
11261 && m->count == 1
11262 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11263 {
11264 static const char *sec_names[] =
11265 {
11266 ".dynamic", ".dynstr", ".dynsym", ".hash"
11267 };
11268 bfd_vma low, high;
11269 unsigned int i, c;
11270 struct elf_segment_map *n;
11271
11272 low = ~(bfd_vma) 0;
11273 high = 0;
11274 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11275 {
11276 s = bfd_get_section_by_name (abfd, sec_names[i]);
11277 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11278 {
11279 bfd_size_type sz;
11280
11281 if (low > s->vma)
11282 low = s->vma;
11283 sz = s->size;
11284 if (high < s->vma + sz)
11285 high = s->vma + sz;
11286 }
11287 }
11288
11289 c = 0;
11290 for (s = abfd->sections; s != NULL; s = s->next)
11291 if ((s->flags & SEC_LOAD) != 0
11292 && s->vma >= low
11293 && s->vma + s->size <= high)
11294 ++c;
11295
11296 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11297 n = bfd_zalloc (abfd, amt);
11298 if (n == NULL)
11299 return FALSE;
11300 *n = *m;
11301 n->count = c;
11302
11303 i = 0;
11304 for (s = abfd->sections; s != NULL; s = s->next)
11305 {
11306 if ((s->flags & SEC_LOAD) != 0
11307 && s->vma >= low
11308 && s->vma + s->size <= high)
11309 {
11310 n->sections[i] = s;
11311 ++i;
11312 }
11313 }
11314
11315 *pm = n;
11316 }
11317 }
11318
11319 /* Allocate a spare program header in dynamic objects so that tools
11320 like the prelinker can add an extra PT_LOAD entry.
11321
11322 If the prelinker needs to make room for a new PT_LOAD entry, its
11323 standard procedure is to move the first (read-only) sections into
11324 the new (writable) segment. However, the MIPS ABI requires
11325 .dynamic to be in a read-only segment, and the section will often
11326 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11327
11328 Although the prelinker could in principle move .dynamic to a
11329 writable segment, it seems better to allocate a spare program
11330 header instead, and avoid the need to move any sections.
11331 There is a long tradition of allocating spare dynamic tags,
11332 so allocating a spare program header seems like a natural
11333 extension.
11334
11335 If INFO is NULL, we may be copying an already prelinked binary
11336 with objcopy or strip, so do not add this header. */
11337 if (info != NULL
11338 && !SGI_COMPAT (abfd)
11339 && bfd_get_section_by_name (abfd, ".dynamic"))
11340 {
11341 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11342 if ((*pm)->p_type == PT_NULL)
11343 break;
11344 if (*pm == NULL)
11345 {
11346 m = bfd_zalloc (abfd, sizeof (*m));
11347 if (m == NULL)
11348 return FALSE;
11349
11350 m->p_type = PT_NULL;
11351 *pm = m;
11352 }
11353 }
11354
11355 return TRUE;
11356 }
11357 \f
11358 /* Return the section that should be marked against GC for a given
11359 relocation. */
11360
11361 asection *
11362 _bfd_mips_elf_gc_mark_hook (asection *sec,
11363 struct bfd_link_info *info,
11364 Elf_Internal_Rela *rel,
11365 struct elf_link_hash_entry *h,
11366 Elf_Internal_Sym *sym)
11367 {
11368 /* ??? Do mips16 stub sections need to be handled special? */
11369
11370 if (h != NULL)
11371 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11372 {
11373 case R_MIPS_GNU_VTINHERIT:
11374 case R_MIPS_GNU_VTENTRY:
11375 return NULL;
11376 }
11377
11378 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11379 }
11380
11381 /* Update the got entry reference counts for the section being removed. */
11382
11383 bfd_boolean
11384 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11385 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11386 asection *sec ATTRIBUTE_UNUSED,
11387 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11388 {
11389 #if 0
11390 Elf_Internal_Shdr *symtab_hdr;
11391 struct elf_link_hash_entry **sym_hashes;
11392 bfd_signed_vma *local_got_refcounts;
11393 const Elf_Internal_Rela *rel, *relend;
11394 unsigned long r_symndx;
11395 struct elf_link_hash_entry *h;
11396
11397 if (info->relocatable)
11398 return TRUE;
11399
11400 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11401 sym_hashes = elf_sym_hashes (abfd);
11402 local_got_refcounts = elf_local_got_refcounts (abfd);
11403
11404 relend = relocs + sec->reloc_count;
11405 for (rel = relocs; rel < relend; rel++)
11406 switch (ELF_R_TYPE (abfd, rel->r_info))
11407 {
11408 case R_MIPS16_GOT16:
11409 case R_MIPS16_CALL16:
11410 case R_MIPS_GOT16:
11411 case R_MIPS_CALL16:
11412 case R_MIPS_CALL_HI16:
11413 case R_MIPS_CALL_LO16:
11414 case R_MIPS_GOT_HI16:
11415 case R_MIPS_GOT_LO16:
11416 case R_MIPS_GOT_DISP:
11417 case R_MIPS_GOT_PAGE:
11418 case R_MIPS_GOT_OFST:
11419 case R_MICROMIPS_GOT16:
11420 case R_MICROMIPS_CALL16:
11421 case R_MICROMIPS_CALL_HI16:
11422 case R_MICROMIPS_CALL_LO16:
11423 case R_MICROMIPS_GOT_HI16:
11424 case R_MICROMIPS_GOT_LO16:
11425 case R_MICROMIPS_GOT_DISP:
11426 case R_MICROMIPS_GOT_PAGE:
11427 case R_MICROMIPS_GOT_OFST:
11428 /* ??? It would seem that the existing MIPS code does no sort
11429 of reference counting or whatnot on its GOT and PLT entries,
11430 so it is not possible to garbage collect them at this time. */
11431 break;
11432
11433 default:
11434 break;
11435 }
11436 #endif
11437
11438 return TRUE;
11439 }
11440 \f
11441 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11442 hiding the old indirect symbol. Process additional relocation
11443 information. Also called for weakdefs, in which case we just let
11444 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11445
11446 void
11447 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11448 struct elf_link_hash_entry *dir,
11449 struct elf_link_hash_entry *ind)
11450 {
11451 struct mips_elf_link_hash_entry *dirmips, *indmips;
11452
11453 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11454
11455 dirmips = (struct mips_elf_link_hash_entry *) dir;
11456 indmips = (struct mips_elf_link_hash_entry *) ind;
11457 /* Any absolute non-dynamic relocations against an indirect or weak
11458 definition will be against the target symbol. */
11459 if (indmips->has_static_relocs)
11460 dirmips->has_static_relocs = TRUE;
11461
11462 if (ind->root.type != bfd_link_hash_indirect)
11463 return;
11464
11465 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11466 if (indmips->readonly_reloc)
11467 dirmips->readonly_reloc = TRUE;
11468 if (indmips->no_fn_stub)
11469 dirmips->no_fn_stub = TRUE;
11470 if (indmips->fn_stub)
11471 {
11472 dirmips->fn_stub = indmips->fn_stub;
11473 indmips->fn_stub = NULL;
11474 }
11475 if (indmips->need_fn_stub)
11476 {
11477 dirmips->need_fn_stub = TRUE;
11478 indmips->need_fn_stub = FALSE;
11479 }
11480 if (indmips->call_stub)
11481 {
11482 dirmips->call_stub = indmips->call_stub;
11483 indmips->call_stub = NULL;
11484 }
11485 if (indmips->call_fp_stub)
11486 {
11487 dirmips->call_fp_stub = indmips->call_fp_stub;
11488 indmips->call_fp_stub = NULL;
11489 }
11490 if (indmips->global_got_area < dirmips->global_got_area)
11491 dirmips->global_got_area = indmips->global_got_area;
11492 if (indmips->global_got_area < GGA_NONE)
11493 indmips->global_got_area = GGA_NONE;
11494 if (indmips->has_nonpic_branches)
11495 dirmips->has_nonpic_branches = TRUE;
11496 }
11497 \f
11498 #define PDR_SIZE 32
11499
11500 bfd_boolean
11501 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11502 struct bfd_link_info *info)
11503 {
11504 asection *o;
11505 bfd_boolean ret = FALSE;
11506 unsigned char *tdata;
11507 size_t i, skip;
11508
11509 o = bfd_get_section_by_name (abfd, ".pdr");
11510 if (! o)
11511 return FALSE;
11512 if (o->size == 0)
11513 return FALSE;
11514 if (o->size % PDR_SIZE != 0)
11515 return FALSE;
11516 if (o->output_section != NULL
11517 && bfd_is_abs_section (o->output_section))
11518 return FALSE;
11519
11520 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11521 if (! tdata)
11522 return FALSE;
11523
11524 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11525 info->keep_memory);
11526 if (!cookie->rels)
11527 {
11528 free (tdata);
11529 return FALSE;
11530 }
11531
11532 cookie->rel = cookie->rels;
11533 cookie->relend = cookie->rels + o->reloc_count;
11534
11535 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11536 {
11537 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11538 {
11539 tdata[i] = 1;
11540 skip ++;
11541 }
11542 }
11543
11544 if (skip != 0)
11545 {
11546 mips_elf_section_data (o)->u.tdata = tdata;
11547 o->size -= skip * PDR_SIZE;
11548 ret = TRUE;
11549 }
11550 else
11551 free (tdata);
11552
11553 if (! info->keep_memory)
11554 free (cookie->rels);
11555
11556 return ret;
11557 }
11558
11559 bfd_boolean
11560 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11561 {
11562 if (strcmp (sec->name, ".pdr") == 0)
11563 return TRUE;
11564 return FALSE;
11565 }
11566
11567 bfd_boolean
11568 _bfd_mips_elf_write_section (bfd *output_bfd,
11569 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11570 asection *sec, bfd_byte *contents)
11571 {
11572 bfd_byte *to, *from, *end;
11573 int i;
11574
11575 if (strcmp (sec->name, ".pdr") != 0)
11576 return FALSE;
11577
11578 if (mips_elf_section_data (sec)->u.tdata == NULL)
11579 return FALSE;
11580
11581 to = contents;
11582 end = contents + sec->size;
11583 for (from = contents, i = 0;
11584 from < end;
11585 from += PDR_SIZE, i++)
11586 {
11587 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11588 continue;
11589 if (to != from)
11590 memcpy (to, from, PDR_SIZE);
11591 to += PDR_SIZE;
11592 }
11593 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11594 sec->output_offset, sec->size);
11595 return TRUE;
11596 }
11597 \f
11598 /* microMIPS code retains local labels for linker relaxation. Omit them
11599 from output by default for clarity. */
11600
11601 bfd_boolean
11602 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11603 {
11604 return _bfd_elf_is_local_label_name (abfd, sym->name);
11605 }
11606
11607 /* MIPS ELF uses a special find_nearest_line routine in order the
11608 handle the ECOFF debugging information. */
11609
11610 struct mips_elf_find_line
11611 {
11612 struct ecoff_debug_info d;
11613 struct ecoff_find_line i;
11614 };
11615
11616 bfd_boolean
11617 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11618 asymbol **symbols, bfd_vma offset,
11619 const char **filename_ptr,
11620 const char **functionname_ptr,
11621 unsigned int *line_ptr)
11622 {
11623 asection *msec;
11624
11625 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11626 filename_ptr, functionname_ptr,
11627 line_ptr))
11628 return TRUE;
11629
11630 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11631 section, symbols, offset,
11632 filename_ptr, functionname_ptr,
11633 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
11634 &elf_tdata (abfd)->dwarf2_find_line_info))
11635 return TRUE;
11636
11637 msec = bfd_get_section_by_name (abfd, ".mdebug");
11638 if (msec != NULL)
11639 {
11640 flagword origflags;
11641 struct mips_elf_find_line *fi;
11642 const struct ecoff_debug_swap * const swap =
11643 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11644
11645 /* If we are called during a link, mips_elf_final_link may have
11646 cleared the SEC_HAS_CONTENTS field. We force it back on here
11647 if appropriate (which it normally will be). */
11648 origflags = msec->flags;
11649 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11650 msec->flags |= SEC_HAS_CONTENTS;
11651
11652 fi = elf_tdata (abfd)->find_line_info;
11653 if (fi == NULL)
11654 {
11655 bfd_size_type external_fdr_size;
11656 char *fraw_src;
11657 char *fraw_end;
11658 struct fdr *fdr_ptr;
11659 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11660
11661 fi = bfd_zalloc (abfd, amt);
11662 if (fi == NULL)
11663 {
11664 msec->flags = origflags;
11665 return FALSE;
11666 }
11667
11668 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11669 {
11670 msec->flags = origflags;
11671 return FALSE;
11672 }
11673
11674 /* Swap in the FDR information. */
11675 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11676 fi->d.fdr = bfd_alloc (abfd, amt);
11677 if (fi->d.fdr == NULL)
11678 {
11679 msec->flags = origflags;
11680 return FALSE;
11681 }
11682 external_fdr_size = swap->external_fdr_size;
11683 fdr_ptr = fi->d.fdr;
11684 fraw_src = (char *) fi->d.external_fdr;
11685 fraw_end = (fraw_src
11686 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11687 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11688 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11689
11690 elf_tdata (abfd)->find_line_info = fi;
11691
11692 /* Note that we don't bother to ever free this information.
11693 find_nearest_line is either called all the time, as in
11694 objdump -l, so the information should be saved, or it is
11695 rarely called, as in ld error messages, so the memory
11696 wasted is unimportant. Still, it would probably be a
11697 good idea for free_cached_info to throw it away. */
11698 }
11699
11700 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11701 &fi->i, filename_ptr, functionname_ptr,
11702 line_ptr))
11703 {
11704 msec->flags = origflags;
11705 return TRUE;
11706 }
11707
11708 msec->flags = origflags;
11709 }
11710
11711 /* Fall back on the generic ELF find_nearest_line routine. */
11712
11713 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11714 filename_ptr, functionname_ptr,
11715 line_ptr);
11716 }
11717
11718 bfd_boolean
11719 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11720 const char **filename_ptr,
11721 const char **functionname_ptr,
11722 unsigned int *line_ptr)
11723 {
11724 bfd_boolean found;
11725 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11726 functionname_ptr, line_ptr,
11727 & elf_tdata (abfd)->dwarf2_find_line_info);
11728 return found;
11729 }
11730
11731 \f
11732 /* When are writing out the .options or .MIPS.options section,
11733 remember the bytes we are writing out, so that we can install the
11734 GP value in the section_processing routine. */
11735
11736 bfd_boolean
11737 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11738 const void *location,
11739 file_ptr offset, bfd_size_type count)
11740 {
11741 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11742 {
11743 bfd_byte *c;
11744
11745 if (elf_section_data (section) == NULL)
11746 {
11747 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11748 section->used_by_bfd = bfd_zalloc (abfd, amt);
11749 if (elf_section_data (section) == NULL)
11750 return FALSE;
11751 }
11752 c = mips_elf_section_data (section)->u.tdata;
11753 if (c == NULL)
11754 {
11755 c = bfd_zalloc (abfd, section->size);
11756 if (c == NULL)
11757 return FALSE;
11758 mips_elf_section_data (section)->u.tdata = c;
11759 }
11760
11761 memcpy (c + offset, location, count);
11762 }
11763
11764 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11765 count);
11766 }
11767
11768 /* This is almost identical to bfd_generic_get_... except that some
11769 MIPS relocations need to be handled specially. Sigh. */
11770
11771 bfd_byte *
11772 _bfd_elf_mips_get_relocated_section_contents
11773 (bfd *abfd,
11774 struct bfd_link_info *link_info,
11775 struct bfd_link_order *link_order,
11776 bfd_byte *data,
11777 bfd_boolean relocatable,
11778 asymbol **symbols)
11779 {
11780 /* Get enough memory to hold the stuff */
11781 bfd *input_bfd = link_order->u.indirect.section->owner;
11782 asection *input_section = link_order->u.indirect.section;
11783 bfd_size_type sz;
11784
11785 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11786 arelent **reloc_vector = NULL;
11787 long reloc_count;
11788
11789 if (reloc_size < 0)
11790 goto error_return;
11791
11792 reloc_vector = bfd_malloc (reloc_size);
11793 if (reloc_vector == NULL && reloc_size != 0)
11794 goto error_return;
11795
11796 /* read in the section */
11797 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11798 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11799 goto error_return;
11800
11801 reloc_count = bfd_canonicalize_reloc (input_bfd,
11802 input_section,
11803 reloc_vector,
11804 symbols);
11805 if (reloc_count < 0)
11806 goto error_return;
11807
11808 if (reloc_count > 0)
11809 {
11810 arelent **parent;
11811 /* for mips */
11812 int gp_found;
11813 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11814
11815 {
11816 struct bfd_hash_entry *h;
11817 struct bfd_link_hash_entry *lh;
11818 /* Skip all this stuff if we aren't mixing formats. */
11819 if (abfd && input_bfd
11820 && abfd->xvec == input_bfd->xvec)
11821 lh = 0;
11822 else
11823 {
11824 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11825 lh = (struct bfd_link_hash_entry *) h;
11826 }
11827 lookup:
11828 if (lh)
11829 {
11830 switch (lh->type)
11831 {
11832 case bfd_link_hash_undefined:
11833 case bfd_link_hash_undefweak:
11834 case bfd_link_hash_common:
11835 gp_found = 0;
11836 break;
11837 case bfd_link_hash_defined:
11838 case bfd_link_hash_defweak:
11839 gp_found = 1;
11840 gp = lh->u.def.value;
11841 break;
11842 case bfd_link_hash_indirect:
11843 case bfd_link_hash_warning:
11844 lh = lh->u.i.link;
11845 /* @@FIXME ignoring warning for now */
11846 goto lookup;
11847 case bfd_link_hash_new:
11848 default:
11849 abort ();
11850 }
11851 }
11852 else
11853 gp_found = 0;
11854 }
11855 /* end mips */
11856 for (parent = reloc_vector; *parent != NULL; parent++)
11857 {
11858 char *error_message = NULL;
11859 bfd_reloc_status_type r;
11860
11861 /* Specific to MIPS: Deal with relocation types that require
11862 knowing the gp of the output bfd. */
11863 asymbol *sym = *(*parent)->sym_ptr_ptr;
11864
11865 /* If we've managed to find the gp and have a special
11866 function for the relocation then go ahead, else default
11867 to the generic handling. */
11868 if (gp_found
11869 && (*parent)->howto->special_function
11870 == _bfd_mips_elf32_gprel16_reloc)
11871 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11872 input_section, relocatable,
11873 data, gp);
11874 else
11875 r = bfd_perform_relocation (input_bfd, *parent, data,
11876 input_section,
11877 relocatable ? abfd : NULL,
11878 &error_message);
11879
11880 if (relocatable)
11881 {
11882 asection *os = input_section->output_section;
11883
11884 /* A partial link, so keep the relocs */
11885 os->orelocation[os->reloc_count] = *parent;
11886 os->reloc_count++;
11887 }
11888
11889 if (r != bfd_reloc_ok)
11890 {
11891 switch (r)
11892 {
11893 case bfd_reloc_undefined:
11894 if (!((*link_info->callbacks->undefined_symbol)
11895 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11896 input_bfd, input_section, (*parent)->address, TRUE)))
11897 goto error_return;
11898 break;
11899 case bfd_reloc_dangerous:
11900 BFD_ASSERT (error_message != NULL);
11901 if (!((*link_info->callbacks->reloc_dangerous)
11902 (link_info, error_message, input_bfd, input_section,
11903 (*parent)->address)))
11904 goto error_return;
11905 break;
11906 case bfd_reloc_overflow:
11907 if (!((*link_info->callbacks->reloc_overflow)
11908 (link_info, NULL,
11909 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11910 (*parent)->howto->name, (*parent)->addend,
11911 input_bfd, input_section, (*parent)->address)))
11912 goto error_return;
11913 break;
11914 case bfd_reloc_outofrange:
11915 default:
11916 abort ();
11917 break;
11918 }
11919
11920 }
11921 }
11922 }
11923 if (reloc_vector != NULL)
11924 free (reloc_vector);
11925 return data;
11926
11927 error_return:
11928 if (reloc_vector != NULL)
11929 free (reloc_vector);
11930 return NULL;
11931 }
11932 \f
11933 static bfd_boolean
11934 mips_elf_relax_delete_bytes (bfd *abfd,
11935 asection *sec, bfd_vma addr, int count)
11936 {
11937 Elf_Internal_Shdr *symtab_hdr;
11938 unsigned int sec_shndx;
11939 bfd_byte *contents;
11940 Elf_Internal_Rela *irel, *irelend;
11941 Elf_Internal_Sym *isym;
11942 Elf_Internal_Sym *isymend;
11943 struct elf_link_hash_entry **sym_hashes;
11944 struct elf_link_hash_entry **end_hashes;
11945 struct elf_link_hash_entry **start_hashes;
11946 unsigned int symcount;
11947
11948 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11949 contents = elf_section_data (sec)->this_hdr.contents;
11950
11951 irel = elf_section_data (sec)->relocs;
11952 irelend = irel + sec->reloc_count;
11953
11954 /* Actually delete the bytes. */
11955 memmove (contents + addr, contents + addr + count,
11956 (size_t) (sec->size - addr - count));
11957 sec->size -= count;
11958
11959 /* Adjust all the relocs. */
11960 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11961 {
11962 /* Get the new reloc address. */
11963 if (irel->r_offset > addr)
11964 irel->r_offset -= count;
11965 }
11966
11967 BFD_ASSERT (addr % 2 == 0);
11968 BFD_ASSERT (count % 2 == 0);
11969
11970 /* Adjust the local symbols defined in this section. */
11971 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11972 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11973 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
11974 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
11975 isym->st_value -= count;
11976
11977 /* Now adjust the global symbols defined in this section. */
11978 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
11979 - symtab_hdr->sh_info);
11980 sym_hashes = start_hashes = elf_sym_hashes (abfd);
11981 end_hashes = sym_hashes + symcount;
11982
11983 for (; sym_hashes < end_hashes; sym_hashes++)
11984 {
11985 struct elf_link_hash_entry *sym_hash = *sym_hashes;
11986
11987 if ((sym_hash->root.type == bfd_link_hash_defined
11988 || sym_hash->root.type == bfd_link_hash_defweak)
11989 && sym_hash->root.u.def.section == sec)
11990 {
11991 bfd_vma value = sym_hash->root.u.def.value;
11992
11993 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
11994 value &= MINUS_TWO;
11995 if (value > addr)
11996 sym_hash->root.u.def.value -= count;
11997 }
11998 }
11999
12000 return TRUE;
12001 }
12002
12003
12004 /* Opcodes needed for microMIPS relaxation as found in
12005 opcodes/micromips-opc.c. */
12006
12007 struct opcode_descriptor {
12008 unsigned long match;
12009 unsigned long mask;
12010 };
12011
12012 /* The $ra register aka $31. */
12013
12014 #define RA 31
12015
12016 /* 32-bit instruction format register fields. */
12017
12018 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12019 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12020
12021 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12022
12023 #define OP16_VALID_REG(r) \
12024 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12025
12026
12027 /* 32-bit and 16-bit branches. */
12028
12029 static const struct opcode_descriptor b_insns_32[] = {
12030 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12031 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12032 { 0, 0 } /* End marker for find_match(). */
12033 };
12034
12035 static const struct opcode_descriptor bc_insn_32 =
12036 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12037
12038 static const struct opcode_descriptor bz_insn_32 =
12039 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12040
12041 static const struct opcode_descriptor bzal_insn_32 =
12042 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12043
12044 static const struct opcode_descriptor beq_insn_32 =
12045 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12046
12047 static const struct opcode_descriptor b_insn_16 =
12048 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12049
12050 static const struct opcode_descriptor bz_insn_16 =
12051 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12052
12053
12054 /* 32-bit and 16-bit branch EQ and NE zero. */
12055
12056 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12057 eq and second the ne. This convention is used when replacing a
12058 32-bit BEQ/BNE with the 16-bit version. */
12059
12060 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12061
12062 static const struct opcode_descriptor bz_rs_insns_32[] = {
12063 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12064 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12065 { 0, 0 } /* End marker for find_match(). */
12066 };
12067
12068 static const struct opcode_descriptor bz_rt_insns_32[] = {
12069 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12070 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12071 { 0, 0 } /* End marker for find_match(). */
12072 };
12073
12074 static const struct opcode_descriptor bzc_insns_32[] = {
12075 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12076 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12077 { 0, 0 } /* End marker for find_match(). */
12078 };
12079
12080 static const struct opcode_descriptor bz_insns_16[] = {
12081 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12082 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12083 { 0, 0 } /* End marker for find_match(). */
12084 };
12085
12086 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12087
12088 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12089 #define BZ16_REG_FIELD(r) \
12090 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12091
12092
12093 /* 32-bit instructions with a delay slot. */
12094
12095 static const struct opcode_descriptor jal_insn_32_bd16 =
12096 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12097
12098 static const struct opcode_descriptor jal_insn_32_bd32 =
12099 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12100
12101 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12102 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12103
12104 static const struct opcode_descriptor j_insn_32 =
12105 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12106
12107 static const struct opcode_descriptor jalr_insn_32 =
12108 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12109
12110 /* This table can be compacted, because no opcode replacement is made. */
12111
12112 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12113 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12114
12115 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12116 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12117
12118 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12119 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12120 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12121 { 0, 0 } /* End marker for find_match(). */
12122 };
12123
12124 /* This table can be compacted, because no opcode replacement is made. */
12125
12126 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12127 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12128
12129 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12130 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12131 { 0, 0 } /* End marker for find_match(). */
12132 };
12133
12134
12135 /* 16-bit instructions with a delay slot. */
12136
12137 static const struct opcode_descriptor jalr_insn_16_bd16 =
12138 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12139
12140 static const struct opcode_descriptor jalr_insn_16_bd32 =
12141 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12142
12143 static const struct opcode_descriptor jr_insn_16 =
12144 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12145
12146 #define JR16_REG(opcode) ((opcode) & 0x1f)
12147
12148 /* This table can be compacted, because no opcode replacement is made. */
12149
12150 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12151 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12152
12153 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12154 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12155 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12156 { 0, 0 } /* End marker for find_match(). */
12157 };
12158
12159
12160 /* LUI instruction. */
12161
12162 static const struct opcode_descriptor lui_insn =
12163 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12164
12165
12166 /* ADDIU instruction. */
12167
12168 static const struct opcode_descriptor addiu_insn =
12169 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12170
12171 static const struct opcode_descriptor addiupc_insn =
12172 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12173
12174 #define ADDIUPC_REG_FIELD(r) \
12175 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12176
12177
12178 /* Relaxable instructions in a JAL delay slot: MOVE. */
12179
12180 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12181 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12182 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12183 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12184
12185 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12186 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12187
12188 static const struct opcode_descriptor move_insns_32[] = {
12189 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12190 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12191 { 0, 0 } /* End marker for find_match(). */
12192 };
12193
12194 static const struct opcode_descriptor move_insn_16 =
12195 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12196
12197
12198 /* NOP instructions. */
12199
12200 static const struct opcode_descriptor nop_insn_32 =
12201 { /* "nop", "", */ 0x00000000, 0xffffffff };
12202
12203 static const struct opcode_descriptor nop_insn_16 =
12204 { /* "nop", "", */ 0x0c00, 0xffff };
12205
12206
12207 /* Instruction match support. */
12208
12209 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12210
12211 static int
12212 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12213 {
12214 unsigned long indx;
12215
12216 for (indx = 0; insn[indx].mask != 0; indx++)
12217 if (MATCH (opcode, insn[indx]))
12218 return indx;
12219
12220 return -1;
12221 }
12222
12223
12224 /* Branch and delay slot decoding support. */
12225
12226 /* If PTR points to what *might* be a 16-bit branch or jump, then
12227 return the minimum length of its delay slot, otherwise return 0.
12228 Non-zero results are not definitive as we might be checking against
12229 the second half of another instruction. */
12230
12231 static int
12232 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12233 {
12234 unsigned long opcode;
12235 int bdsize;
12236
12237 opcode = bfd_get_16 (abfd, ptr);
12238 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12239 /* 16-bit branch/jump with a 32-bit delay slot. */
12240 bdsize = 4;
12241 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12242 || find_match (opcode, ds_insns_16_bd16) >= 0)
12243 /* 16-bit branch/jump with a 16-bit delay slot. */
12244 bdsize = 2;
12245 else
12246 /* No delay slot. */
12247 bdsize = 0;
12248
12249 return bdsize;
12250 }
12251
12252 /* If PTR points to what *might* be a 32-bit branch or jump, then
12253 return the minimum length of its delay slot, otherwise return 0.
12254 Non-zero results are not definitive as we might be checking against
12255 the second half of another instruction. */
12256
12257 static int
12258 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12259 {
12260 unsigned long opcode;
12261 int bdsize;
12262
12263 opcode = bfd_get_micromips_32 (abfd, ptr);
12264 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12265 /* 32-bit branch/jump with a 32-bit delay slot. */
12266 bdsize = 4;
12267 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12268 /* 32-bit branch/jump with a 16-bit delay slot. */
12269 bdsize = 2;
12270 else
12271 /* No delay slot. */
12272 bdsize = 0;
12273
12274 return bdsize;
12275 }
12276
12277 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12278 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12279
12280 static bfd_boolean
12281 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12282 {
12283 unsigned long opcode;
12284
12285 opcode = bfd_get_16 (abfd, ptr);
12286 if (MATCH (opcode, b_insn_16)
12287 /* B16 */
12288 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12289 /* JR16 */
12290 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12291 /* BEQZ16, BNEZ16 */
12292 || (MATCH (opcode, jalr_insn_16_bd32)
12293 /* JALR16 */
12294 && reg != JR16_REG (opcode) && reg != RA))
12295 return TRUE;
12296
12297 return FALSE;
12298 }
12299
12300 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12301 then return TRUE, otherwise FALSE. */
12302
12303 static bfd_boolean
12304 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12305 {
12306 unsigned long opcode;
12307
12308 opcode = bfd_get_micromips_32 (abfd, ptr);
12309 if (MATCH (opcode, j_insn_32)
12310 /* J */
12311 || MATCH (opcode, bc_insn_32)
12312 /* BC1F, BC1T, BC2F, BC2T */
12313 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12314 /* JAL, JALX */
12315 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12316 /* BGEZ, BGTZ, BLEZ, BLTZ */
12317 || (MATCH (opcode, bzal_insn_32)
12318 /* BGEZAL, BLTZAL */
12319 && reg != OP32_SREG (opcode) && reg != RA)
12320 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12321 /* JALR, JALR.HB, BEQ, BNE */
12322 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12323 return TRUE;
12324
12325 return FALSE;
12326 }
12327
12328 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12329 IRELEND) at OFFSET indicate that there must be a compact branch there,
12330 then return TRUE, otherwise FALSE. */
12331
12332 static bfd_boolean
12333 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12334 const Elf_Internal_Rela *internal_relocs,
12335 const Elf_Internal_Rela *irelend)
12336 {
12337 const Elf_Internal_Rela *irel;
12338 unsigned long opcode;
12339
12340 opcode = bfd_get_micromips_32 (abfd, ptr);
12341 if (find_match (opcode, bzc_insns_32) < 0)
12342 return FALSE;
12343
12344 for (irel = internal_relocs; irel < irelend; irel++)
12345 if (irel->r_offset == offset
12346 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12347 return TRUE;
12348
12349 return FALSE;
12350 }
12351
12352 /* Bitsize checking. */
12353 #define IS_BITSIZE(val, N) \
12354 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12355 - (1ULL << ((N) - 1))) == (val))
12356
12357 \f
12358 bfd_boolean
12359 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12360 struct bfd_link_info *link_info,
12361 bfd_boolean *again)
12362 {
12363 Elf_Internal_Shdr *symtab_hdr;
12364 Elf_Internal_Rela *internal_relocs;
12365 Elf_Internal_Rela *irel, *irelend;
12366 bfd_byte *contents = NULL;
12367 Elf_Internal_Sym *isymbuf = NULL;
12368
12369 /* Assume nothing changes. */
12370 *again = FALSE;
12371
12372 /* We don't have to do anything for a relocatable link, if
12373 this section does not have relocs, or if this is not a
12374 code section. */
12375
12376 if (link_info->relocatable
12377 || (sec->flags & SEC_RELOC) == 0
12378 || sec->reloc_count == 0
12379 || (sec->flags & SEC_CODE) == 0)
12380 return TRUE;
12381
12382 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12383
12384 /* Get a copy of the native relocations. */
12385 internal_relocs = (_bfd_elf_link_read_relocs
12386 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
12387 link_info->keep_memory));
12388 if (internal_relocs == NULL)
12389 goto error_return;
12390
12391 /* Walk through them looking for relaxing opportunities. */
12392 irelend = internal_relocs + sec->reloc_count;
12393 for (irel = internal_relocs; irel < irelend; irel++)
12394 {
12395 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12396 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12397 bfd_boolean target_is_micromips_code_p;
12398 unsigned long opcode;
12399 bfd_vma symval;
12400 bfd_vma pcrval;
12401 bfd_byte *ptr;
12402 int fndopc;
12403
12404 /* The number of bytes to delete for relaxation and from where
12405 to delete these bytes starting at irel->r_offset. */
12406 int delcnt = 0;
12407 int deloff = 0;
12408
12409 /* If this isn't something that can be relaxed, then ignore
12410 this reloc. */
12411 if (r_type != R_MICROMIPS_HI16
12412 && r_type != R_MICROMIPS_PC16_S1
12413 && r_type != R_MICROMIPS_26_S1)
12414 continue;
12415
12416 /* Get the section contents if we haven't done so already. */
12417 if (contents == NULL)
12418 {
12419 /* Get cached copy if it exists. */
12420 if (elf_section_data (sec)->this_hdr.contents != NULL)
12421 contents = elf_section_data (sec)->this_hdr.contents;
12422 /* Go get them off disk. */
12423 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12424 goto error_return;
12425 }
12426 ptr = contents + irel->r_offset;
12427
12428 /* Read this BFD's local symbols if we haven't done so already. */
12429 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12430 {
12431 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12432 if (isymbuf == NULL)
12433 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12434 symtab_hdr->sh_info, 0,
12435 NULL, NULL, NULL);
12436 if (isymbuf == NULL)
12437 goto error_return;
12438 }
12439
12440 /* Get the value of the symbol referred to by the reloc. */
12441 if (r_symndx < symtab_hdr->sh_info)
12442 {
12443 /* A local symbol. */
12444 Elf_Internal_Sym *isym;
12445 asection *sym_sec;
12446
12447 isym = isymbuf + r_symndx;
12448 if (isym->st_shndx == SHN_UNDEF)
12449 sym_sec = bfd_und_section_ptr;
12450 else if (isym->st_shndx == SHN_ABS)
12451 sym_sec = bfd_abs_section_ptr;
12452 else if (isym->st_shndx == SHN_COMMON)
12453 sym_sec = bfd_com_section_ptr;
12454 else
12455 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12456 symval = (isym->st_value
12457 + sym_sec->output_section->vma
12458 + sym_sec->output_offset);
12459 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12460 }
12461 else
12462 {
12463 unsigned long indx;
12464 struct elf_link_hash_entry *h;
12465
12466 /* An external symbol. */
12467 indx = r_symndx - symtab_hdr->sh_info;
12468 h = elf_sym_hashes (abfd)[indx];
12469 BFD_ASSERT (h != NULL);
12470
12471 if (h->root.type != bfd_link_hash_defined
12472 && h->root.type != bfd_link_hash_defweak)
12473 /* This appears to be a reference to an undefined
12474 symbol. Just ignore it -- it will be caught by the
12475 regular reloc processing. */
12476 continue;
12477
12478 symval = (h->root.u.def.value
12479 + h->root.u.def.section->output_section->vma
12480 + h->root.u.def.section->output_offset);
12481 target_is_micromips_code_p = (!h->needs_plt
12482 && ELF_ST_IS_MICROMIPS (h->other));
12483 }
12484
12485
12486 /* For simplicity of coding, we are going to modify the
12487 section contents, the section relocs, and the BFD symbol
12488 table. We must tell the rest of the code not to free up this
12489 information. It would be possible to instead create a table
12490 of changes which have to be made, as is done in coff-mips.c;
12491 that would be more work, but would require less memory when
12492 the linker is run. */
12493
12494 /* Only 32-bit instructions relaxed. */
12495 if (irel->r_offset + 4 > sec->size)
12496 continue;
12497
12498 opcode = bfd_get_micromips_32 (abfd, ptr);
12499
12500 /* This is the pc-relative distance from the instruction the
12501 relocation is applied to, to the symbol referred. */
12502 pcrval = (symval
12503 - (sec->output_section->vma + sec->output_offset)
12504 - irel->r_offset);
12505
12506 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12507 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12508 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12509
12510 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12511
12512 where pcrval has first to be adjusted to apply against the LO16
12513 location (we make the adjustment later on, when we have figured
12514 out the offset). */
12515 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12516 {
12517 bfd_boolean bzc = FALSE;
12518 unsigned long nextopc;
12519 unsigned long reg;
12520 bfd_vma offset;
12521
12522 /* Give up if the previous reloc was a HI16 against this symbol
12523 too. */
12524 if (irel > internal_relocs
12525 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12526 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12527 continue;
12528
12529 /* Or if the next reloc is not a LO16 against this symbol. */
12530 if (irel + 1 >= irelend
12531 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12532 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12533 continue;
12534
12535 /* Or if the second next reloc is a LO16 against this symbol too. */
12536 if (irel + 2 >= irelend
12537 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12538 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12539 continue;
12540
12541 /* See if the LUI instruction *might* be in a branch delay slot.
12542 We check whether what looks like a 16-bit branch or jump is
12543 actually an immediate argument to a compact branch, and let
12544 it through if so. */
12545 if (irel->r_offset >= 2
12546 && check_br16_dslot (abfd, ptr - 2)
12547 && !(irel->r_offset >= 4
12548 && (bzc = check_relocated_bzc (abfd,
12549 ptr - 4, irel->r_offset - 4,
12550 internal_relocs, irelend))))
12551 continue;
12552 if (irel->r_offset >= 4
12553 && !bzc
12554 && check_br32_dslot (abfd, ptr - 4))
12555 continue;
12556
12557 reg = OP32_SREG (opcode);
12558
12559 /* We only relax adjacent instructions or ones separated with
12560 a branch or jump that has a delay slot. The branch or jump
12561 must not fiddle with the register used to hold the address.
12562 Subtract 4 for the LUI itself. */
12563 offset = irel[1].r_offset - irel[0].r_offset;
12564 switch (offset - 4)
12565 {
12566 case 0:
12567 break;
12568 case 2:
12569 if (check_br16 (abfd, ptr + 4, reg))
12570 break;
12571 continue;
12572 case 4:
12573 if (check_br32 (abfd, ptr + 4, reg))
12574 break;
12575 continue;
12576 default:
12577 continue;
12578 }
12579
12580 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
12581
12582 /* Give up unless the same register is used with both
12583 relocations. */
12584 if (OP32_SREG (nextopc) != reg)
12585 continue;
12586
12587 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12588 and rounding up to take masking of the two LSBs into account. */
12589 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12590
12591 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12592 if (IS_BITSIZE (symval, 16))
12593 {
12594 /* Fix the relocation's type. */
12595 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12596
12597 /* Instructions using R_MICROMIPS_LO16 have the base or
12598 source register in bits 20:16. This register becomes $0
12599 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12600 nextopc &= ~0x001f0000;
12601 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12602 contents + irel[1].r_offset);
12603 }
12604
12605 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12606 We add 4 to take LUI deletion into account while checking
12607 the PC-relative distance. */
12608 else if (symval % 4 == 0
12609 && IS_BITSIZE (pcrval + 4, 25)
12610 && MATCH (nextopc, addiu_insn)
12611 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12612 && OP16_VALID_REG (OP32_TREG (nextopc)))
12613 {
12614 /* Fix the relocation's type. */
12615 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12616
12617 /* Replace ADDIU with the ADDIUPC version. */
12618 nextopc = (addiupc_insn.match
12619 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12620
12621 bfd_put_micromips_32 (abfd, nextopc,
12622 contents + irel[1].r_offset);
12623 }
12624
12625 /* Can't do anything, give up, sigh... */
12626 else
12627 continue;
12628
12629 /* Fix the relocation's type. */
12630 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12631
12632 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12633 delcnt = 4;
12634 deloff = 0;
12635 }
12636
12637 /* Compact branch relaxation -- due to the multitude of macros
12638 employed by the compiler/assembler, compact branches are not
12639 always generated. Obviously, this can/will be fixed elsewhere,
12640 but there is no drawback in double checking it here. */
12641 else if (r_type == R_MICROMIPS_PC16_S1
12642 && irel->r_offset + 5 < sec->size
12643 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12644 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12645 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12646 {
12647 unsigned long reg;
12648
12649 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12650
12651 /* Replace BEQZ/BNEZ with the compact version. */
12652 opcode = (bzc_insns_32[fndopc].match
12653 | BZC32_REG_FIELD (reg)
12654 | (opcode & 0xffff)); /* Addend value. */
12655
12656 bfd_put_micromips_32 (abfd, opcode, ptr);
12657
12658 /* Delete the 16-bit delay slot NOP: two bytes from
12659 irel->offset + 4. */
12660 delcnt = 2;
12661 deloff = 4;
12662 }
12663
12664 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12665 to check the distance from the next instruction, so subtract 2. */
12666 else if (r_type == R_MICROMIPS_PC16_S1
12667 && IS_BITSIZE (pcrval - 2, 11)
12668 && find_match (opcode, b_insns_32) >= 0)
12669 {
12670 /* Fix the relocation's type. */
12671 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12672
12673 /* Replace the 32-bit opcode with a 16-bit opcode. */
12674 bfd_put_16 (abfd,
12675 (b_insn_16.match
12676 | (opcode & 0x3ff)), /* Addend value. */
12677 ptr);
12678
12679 /* Delete 2 bytes from irel->r_offset + 2. */
12680 delcnt = 2;
12681 deloff = 2;
12682 }
12683
12684 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12685 to check the distance from the next instruction, so subtract 2. */
12686 else if (r_type == R_MICROMIPS_PC16_S1
12687 && IS_BITSIZE (pcrval - 2, 8)
12688 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12689 && OP16_VALID_REG (OP32_SREG (opcode)))
12690 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12691 && OP16_VALID_REG (OP32_TREG (opcode)))))
12692 {
12693 unsigned long reg;
12694
12695 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12696
12697 /* Fix the relocation's type. */
12698 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12699
12700 /* Replace the 32-bit opcode with a 16-bit opcode. */
12701 bfd_put_16 (abfd,
12702 (bz_insns_16[fndopc].match
12703 | BZ16_REG_FIELD (reg)
12704 | (opcode & 0x7f)), /* Addend value. */
12705 ptr);
12706
12707 /* Delete 2 bytes from irel->r_offset + 2. */
12708 delcnt = 2;
12709 deloff = 2;
12710 }
12711
12712 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12713 else if (r_type == R_MICROMIPS_26_S1
12714 && target_is_micromips_code_p
12715 && irel->r_offset + 7 < sec->size
12716 && MATCH (opcode, jal_insn_32_bd32))
12717 {
12718 unsigned long n32opc;
12719 bfd_boolean relaxed = FALSE;
12720
12721 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
12722
12723 if (MATCH (n32opc, nop_insn_32))
12724 {
12725 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12726 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12727
12728 relaxed = TRUE;
12729 }
12730 else if (find_match (n32opc, move_insns_32) >= 0)
12731 {
12732 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12733 bfd_put_16 (abfd,
12734 (move_insn_16.match
12735 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12736 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12737 ptr + 4);
12738
12739 relaxed = TRUE;
12740 }
12741 /* Other 32-bit instructions relaxable to 16-bit
12742 instructions will be handled here later. */
12743
12744 if (relaxed)
12745 {
12746 /* JAL with 32-bit delay slot that is changed to a JALS
12747 with 16-bit delay slot. */
12748 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
12749
12750 /* Delete 2 bytes from irel->r_offset + 6. */
12751 delcnt = 2;
12752 deloff = 6;
12753 }
12754 }
12755
12756 if (delcnt != 0)
12757 {
12758 /* Note that we've changed the relocs, section contents, etc. */
12759 elf_section_data (sec)->relocs = internal_relocs;
12760 elf_section_data (sec)->this_hdr.contents = contents;
12761 symtab_hdr->contents = (unsigned char *) isymbuf;
12762
12763 /* Delete bytes depending on the delcnt and deloff. */
12764 if (!mips_elf_relax_delete_bytes (abfd, sec,
12765 irel->r_offset + deloff, delcnt))
12766 goto error_return;
12767
12768 /* That will change things, so we should relax again.
12769 Note that this is not required, and it may be slow. */
12770 *again = TRUE;
12771 }
12772 }
12773
12774 if (isymbuf != NULL
12775 && symtab_hdr->contents != (unsigned char *) isymbuf)
12776 {
12777 if (! link_info->keep_memory)
12778 free (isymbuf);
12779 else
12780 {
12781 /* Cache the symbols for elf_link_input_bfd. */
12782 symtab_hdr->contents = (unsigned char *) isymbuf;
12783 }
12784 }
12785
12786 if (contents != NULL
12787 && elf_section_data (sec)->this_hdr.contents != contents)
12788 {
12789 if (! link_info->keep_memory)
12790 free (contents);
12791 else
12792 {
12793 /* Cache the section contents for elf_link_input_bfd. */
12794 elf_section_data (sec)->this_hdr.contents = contents;
12795 }
12796 }
12797
12798 if (internal_relocs != NULL
12799 && elf_section_data (sec)->relocs != internal_relocs)
12800 free (internal_relocs);
12801
12802 return TRUE;
12803
12804 error_return:
12805 if (isymbuf != NULL
12806 && symtab_hdr->contents != (unsigned char *) isymbuf)
12807 free (isymbuf);
12808 if (contents != NULL
12809 && elf_section_data (sec)->this_hdr.contents != contents)
12810 free (contents);
12811 if (internal_relocs != NULL
12812 && elf_section_data (sec)->relocs != internal_relocs)
12813 free (internal_relocs);
12814
12815 return FALSE;
12816 }
12817 \f
12818 /* Create a MIPS ELF linker hash table. */
12819
12820 struct bfd_link_hash_table *
12821 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12822 {
12823 struct mips_elf_link_hash_table *ret;
12824 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12825
12826 ret = bfd_zmalloc (amt);
12827 if (ret == NULL)
12828 return NULL;
12829
12830 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12831 mips_elf_link_hash_newfunc,
12832 sizeof (struct mips_elf_link_hash_entry),
12833 MIPS_ELF_DATA))
12834 {
12835 free (ret);
12836 return NULL;
12837 }
12838
12839 return &ret->root.root;
12840 }
12841
12842 /* Likewise, but indicate that the target is VxWorks. */
12843
12844 struct bfd_link_hash_table *
12845 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12846 {
12847 struct bfd_link_hash_table *ret;
12848
12849 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12850 if (ret)
12851 {
12852 struct mips_elf_link_hash_table *htab;
12853
12854 htab = (struct mips_elf_link_hash_table *) ret;
12855 htab->use_plts_and_copy_relocs = TRUE;
12856 htab->is_vxworks = TRUE;
12857 }
12858 return ret;
12859 }
12860
12861 /* A function that the linker calls if we are allowed to use PLTs
12862 and copy relocs. */
12863
12864 void
12865 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12866 {
12867 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12868 }
12869 \f
12870 /* We need to use a special link routine to handle the .reginfo and
12871 the .mdebug sections. We need to merge all instances of these
12872 sections together, not write them all out sequentially. */
12873
12874 bfd_boolean
12875 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12876 {
12877 asection *o;
12878 struct bfd_link_order *p;
12879 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12880 asection *rtproc_sec;
12881 Elf32_RegInfo reginfo;
12882 struct ecoff_debug_info debug;
12883 struct mips_htab_traverse_info hti;
12884 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12885 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
12886 HDRR *symhdr = &debug.symbolic_header;
12887 void *mdebug_handle = NULL;
12888 asection *s;
12889 EXTR esym;
12890 unsigned int i;
12891 bfd_size_type amt;
12892 struct mips_elf_link_hash_table *htab;
12893
12894 static const char * const secname[] =
12895 {
12896 ".text", ".init", ".fini", ".data",
12897 ".rodata", ".sdata", ".sbss", ".bss"
12898 };
12899 static const int sc[] =
12900 {
12901 scText, scInit, scFini, scData,
12902 scRData, scSData, scSBss, scBss
12903 };
12904
12905 /* Sort the dynamic symbols so that those with GOT entries come after
12906 those without. */
12907 htab = mips_elf_hash_table (info);
12908 BFD_ASSERT (htab != NULL);
12909
12910 if (!mips_elf_sort_hash_table (abfd, info))
12911 return FALSE;
12912
12913 /* Create any scheduled LA25 stubs. */
12914 hti.info = info;
12915 hti.output_bfd = abfd;
12916 hti.error = FALSE;
12917 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12918 if (hti.error)
12919 return FALSE;
12920
12921 /* Get a value for the GP register. */
12922 if (elf_gp (abfd) == 0)
12923 {
12924 struct bfd_link_hash_entry *h;
12925
12926 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
12927 if (h != NULL && h->type == bfd_link_hash_defined)
12928 elf_gp (abfd) = (h->u.def.value
12929 + h->u.def.section->output_section->vma
12930 + h->u.def.section->output_offset);
12931 else if (htab->is_vxworks
12932 && (h = bfd_link_hash_lookup (info->hash,
12933 "_GLOBAL_OFFSET_TABLE_",
12934 FALSE, FALSE, TRUE))
12935 && h->type == bfd_link_hash_defined)
12936 elf_gp (abfd) = (h->u.def.section->output_section->vma
12937 + h->u.def.section->output_offset
12938 + h->u.def.value);
12939 else if (info->relocatable)
12940 {
12941 bfd_vma lo = MINUS_ONE;
12942
12943 /* Find the GP-relative section with the lowest offset. */
12944 for (o = abfd->sections; o != NULL; o = o->next)
12945 if (o->vma < lo
12946 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12947 lo = o->vma;
12948
12949 /* And calculate GP relative to that. */
12950 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
12951 }
12952 else
12953 {
12954 /* If the relocate_section function needs to do a reloc
12955 involving the GP value, it should make a reloc_dangerous
12956 callback to warn that GP is not defined. */
12957 }
12958 }
12959
12960 /* Go through the sections and collect the .reginfo and .mdebug
12961 information. */
12962 reginfo_sec = NULL;
12963 mdebug_sec = NULL;
12964 gptab_data_sec = NULL;
12965 gptab_bss_sec = NULL;
12966 for (o = abfd->sections; o != NULL; o = o->next)
12967 {
12968 if (strcmp (o->name, ".reginfo") == 0)
12969 {
12970 memset (&reginfo, 0, sizeof reginfo);
12971
12972 /* We have found the .reginfo section in the output file.
12973 Look through all the link_orders comprising it and merge
12974 the information together. */
12975 for (p = o->map_head.link_order; p != NULL; p = p->next)
12976 {
12977 asection *input_section;
12978 bfd *input_bfd;
12979 Elf32_External_RegInfo ext;
12980 Elf32_RegInfo sub;
12981
12982 if (p->type != bfd_indirect_link_order)
12983 {
12984 if (p->type == bfd_data_link_order)
12985 continue;
12986 abort ();
12987 }
12988
12989 input_section = p->u.indirect.section;
12990 input_bfd = input_section->owner;
12991
12992 if (! bfd_get_section_contents (input_bfd, input_section,
12993 &ext, 0, sizeof ext))
12994 return FALSE;
12995
12996 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
12997
12998 reginfo.ri_gprmask |= sub.ri_gprmask;
12999 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13000 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13001 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13002 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13003
13004 /* ri_gp_value is set by the function
13005 mips_elf32_section_processing when the section is
13006 finally written out. */
13007
13008 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13009 elf_link_input_bfd ignores this section. */
13010 input_section->flags &= ~SEC_HAS_CONTENTS;
13011 }
13012
13013 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13014 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13015
13016 /* Skip this section later on (I don't think this currently
13017 matters, but someday it might). */
13018 o->map_head.link_order = NULL;
13019
13020 reginfo_sec = o;
13021 }
13022
13023 if (strcmp (o->name, ".mdebug") == 0)
13024 {
13025 struct extsym_info einfo;
13026 bfd_vma last;
13027
13028 /* We have found the .mdebug section in the output file.
13029 Look through all the link_orders comprising it and merge
13030 the information together. */
13031 symhdr->magic = swap->sym_magic;
13032 /* FIXME: What should the version stamp be? */
13033 symhdr->vstamp = 0;
13034 symhdr->ilineMax = 0;
13035 symhdr->cbLine = 0;
13036 symhdr->idnMax = 0;
13037 symhdr->ipdMax = 0;
13038 symhdr->isymMax = 0;
13039 symhdr->ioptMax = 0;
13040 symhdr->iauxMax = 0;
13041 symhdr->issMax = 0;
13042 symhdr->issExtMax = 0;
13043 symhdr->ifdMax = 0;
13044 symhdr->crfd = 0;
13045 symhdr->iextMax = 0;
13046
13047 /* We accumulate the debugging information itself in the
13048 debug_info structure. */
13049 debug.line = NULL;
13050 debug.external_dnr = NULL;
13051 debug.external_pdr = NULL;
13052 debug.external_sym = NULL;
13053 debug.external_opt = NULL;
13054 debug.external_aux = NULL;
13055 debug.ss = NULL;
13056 debug.ssext = debug.ssext_end = NULL;
13057 debug.external_fdr = NULL;
13058 debug.external_rfd = NULL;
13059 debug.external_ext = debug.external_ext_end = NULL;
13060
13061 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13062 if (mdebug_handle == NULL)
13063 return FALSE;
13064
13065 esym.jmptbl = 0;
13066 esym.cobol_main = 0;
13067 esym.weakext = 0;
13068 esym.reserved = 0;
13069 esym.ifd = ifdNil;
13070 esym.asym.iss = issNil;
13071 esym.asym.st = stLocal;
13072 esym.asym.reserved = 0;
13073 esym.asym.index = indexNil;
13074 last = 0;
13075 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13076 {
13077 esym.asym.sc = sc[i];
13078 s = bfd_get_section_by_name (abfd, secname[i]);
13079 if (s != NULL)
13080 {
13081 esym.asym.value = s->vma;
13082 last = s->vma + s->size;
13083 }
13084 else
13085 esym.asym.value = last;
13086 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13087 secname[i], &esym))
13088 return FALSE;
13089 }
13090
13091 for (p = o->map_head.link_order; p != NULL; p = p->next)
13092 {
13093 asection *input_section;
13094 bfd *input_bfd;
13095 const struct ecoff_debug_swap *input_swap;
13096 struct ecoff_debug_info input_debug;
13097 char *eraw_src;
13098 char *eraw_end;
13099
13100 if (p->type != bfd_indirect_link_order)
13101 {
13102 if (p->type == bfd_data_link_order)
13103 continue;
13104 abort ();
13105 }
13106
13107 input_section = p->u.indirect.section;
13108 input_bfd = input_section->owner;
13109
13110 if (!is_mips_elf (input_bfd))
13111 {
13112 /* I don't know what a non MIPS ELF bfd would be
13113 doing with a .mdebug section, but I don't really
13114 want to deal with it. */
13115 continue;
13116 }
13117
13118 input_swap = (get_elf_backend_data (input_bfd)
13119 ->elf_backend_ecoff_debug_swap);
13120
13121 BFD_ASSERT (p->size == input_section->size);
13122
13123 /* The ECOFF linking code expects that we have already
13124 read in the debugging information and set up an
13125 ecoff_debug_info structure, so we do that now. */
13126 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13127 &input_debug))
13128 return FALSE;
13129
13130 if (! (bfd_ecoff_debug_accumulate
13131 (mdebug_handle, abfd, &debug, swap, input_bfd,
13132 &input_debug, input_swap, info)))
13133 return FALSE;
13134
13135 /* Loop through the external symbols. For each one with
13136 interesting information, try to find the symbol in
13137 the linker global hash table and save the information
13138 for the output external symbols. */
13139 eraw_src = input_debug.external_ext;
13140 eraw_end = (eraw_src
13141 + (input_debug.symbolic_header.iextMax
13142 * input_swap->external_ext_size));
13143 for (;
13144 eraw_src < eraw_end;
13145 eraw_src += input_swap->external_ext_size)
13146 {
13147 EXTR ext;
13148 const char *name;
13149 struct mips_elf_link_hash_entry *h;
13150
13151 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13152 if (ext.asym.sc == scNil
13153 || ext.asym.sc == scUndefined
13154 || ext.asym.sc == scSUndefined)
13155 continue;
13156
13157 name = input_debug.ssext + ext.asym.iss;
13158 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13159 name, FALSE, FALSE, TRUE);
13160 if (h == NULL || h->esym.ifd != -2)
13161 continue;
13162
13163 if (ext.ifd != -1)
13164 {
13165 BFD_ASSERT (ext.ifd
13166 < input_debug.symbolic_header.ifdMax);
13167 ext.ifd = input_debug.ifdmap[ext.ifd];
13168 }
13169
13170 h->esym = ext;
13171 }
13172
13173 /* Free up the information we just read. */
13174 free (input_debug.line);
13175 free (input_debug.external_dnr);
13176 free (input_debug.external_pdr);
13177 free (input_debug.external_sym);
13178 free (input_debug.external_opt);
13179 free (input_debug.external_aux);
13180 free (input_debug.ss);
13181 free (input_debug.ssext);
13182 free (input_debug.external_fdr);
13183 free (input_debug.external_rfd);
13184 free (input_debug.external_ext);
13185
13186 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13187 elf_link_input_bfd ignores this section. */
13188 input_section->flags &= ~SEC_HAS_CONTENTS;
13189 }
13190
13191 if (SGI_COMPAT (abfd) && info->shared)
13192 {
13193 /* Create .rtproc section. */
13194 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13195 if (rtproc_sec == NULL)
13196 {
13197 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13198 | SEC_LINKER_CREATED | SEC_READONLY);
13199
13200 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13201 ".rtproc",
13202 flags);
13203 if (rtproc_sec == NULL
13204 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13205 return FALSE;
13206 }
13207
13208 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13209 info, rtproc_sec,
13210 &debug))
13211 return FALSE;
13212 }
13213
13214 /* Build the external symbol information. */
13215 einfo.abfd = abfd;
13216 einfo.info = info;
13217 einfo.debug = &debug;
13218 einfo.swap = swap;
13219 einfo.failed = FALSE;
13220 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13221 mips_elf_output_extsym, &einfo);
13222 if (einfo.failed)
13223 return FALSE;
13224
13225 /* Set the size of the .mdebug section. */
13226 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13227
13228 /* Skip this section later on (I don't think this currently
13229 matters, but someday it might). */
13230 o->map_head.link_order = NULL;
13231
13232 mdebug_sec = o;
13233 }
13234
13235 if (CONST_STRNEQ (o->name, ".gptab."))
13236 {
13237 const char *subname;
13238 unsigned int c;
13239 Elf32_gptab *tab;
13240 Elf32_External_gptab *ext_tab;
13241 unsigned int j;
13242
13243 /* The .gptab.sdata and .gptab.sbss sections hold
13244 information describing how the small data area would
13245 change depending upon the -G switch. These sections
13246 not used in executables files. */
13247 if (! info->relocatable)
13248 {
13249 for (p = o->map_head.link_order; p != NULL; p = p->next)
13250 {
13251 asection *input_section;
13252
13253 if (p->type != bfd_indirect_link_order)
13254 {
13255 if (p->type == bfd_data_link_order)
13256 continue;
13257 abort ();
13258 }
13259
13260 input_section = p->u.indirect.section;
13261
13262 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13263 elf_link_input_bfd ignores this section. */
13264 input_section->flags &= ~SEC_HAS_CONTENTS;
13265 }
13266
13267 /* Skip this section later on (I don't think this
13268 currently matters, but someday it might). */
13269 o->map_head.link_order = NULL;
13270
13271 /* Really remove the section. */
13272 bfd_section_list_remove (abfd, o);
13273 --abfd->section_count;
13274
13275 continue;
13276 }
13277
13278 /* There is one gptab for initialized data, and one for
13279 uninitialized data. */
13280 if (strcmp (o->name, ".gptab.sdata") == 0)
13281 gptab_data_sec = o;
13282 else if (strcmp (o->name, ".gptab.sbss") == 0)
13283 gptab_bss_sec = o;
13284 else
13285 {
13286 (*_bfd_error_handler)
13287 (_("%s: illegal section name `%s'"),
13288 bfd_get_filename (abfd), o->name);
13289 bfd_set_error (bfd_error_nonrepresentable_section);
13290 return FALSE;
13291 }
13292
13293 /* The linker script always combines .gptab.data and
13294 .gptab.sdata into .gptab.sdata, and likewise for
13295 .gptab.bss and .gptab.sbss. It is possible that there is
13296 no .sdata or .sbss section in the output file, in which
13297 case we must change the name of the output section. */
13298 subname = o->name + sizeof ".gptab" - 1;
13299 if (bfd_get_section_by_name (abfd, subname) == NULL)
13300 {
13301 if (o == gptab_data_sec)
13302 o->name = ".gptab.data";
13303 else
13304 o->name = ".gptab.bss";
13305 subname = o->name + sizeof ".gptab" - 1;
13306 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13307 }
13308
13309 /* Set up the first entry. */
13310 c = 1;
13311 amt = c * sizeof (Elf32_gptab);
13312 tab = bfd_malloc (amt);
13313 if (tab == NULL)
13314 return FALSE;
13315 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13316 tab[0].gt_header.gt_unused = 0;
13317
13318 /* Combine the input sections. */
13319 for (p = o->map_head.link_order; p != NULL; p = p->next)
13320 {
13321 asection *input_section;
13322 bfd *input_bfd;
13323 bfd_size_type size;
13324 unsigned long last;
13325 bfd_size_type gpentry;
13326
13327 if (p->type != bfd_indirect_link_order)
13328 {
13329 if (p->type == bfd_data_link_order)
13330 continue;
13331 abort ();
13332 }
13333
13334 input_section = p->u.indirect.section;
13335 input_bfd = input_section->owner;
13336
13337 /* Combine the gptab entries for this input section one
13338 by one. We know that the input gptab entries are
13339 sorted by ascending -G value. */
13340 size = input_section->size;
13341 last = 0;
13342 for (gpentry = sizeof (Elf32_External_gptab);
13343 gpentry < size;
13344 gpentry += sizeof (Elf32_External_gptab))
13345 {
13346 Elf32_External_gptab ext_gptab;
13347 Elf32_gptab int_gptab;
13348 unsigned long val;
13349 unsigned long add;
13350 bfd_boolean exact;
13351 unsigned int look;
13352
13353 if (! (bfd_get_section_contents
13354 (input_bfd, input_section, &ext_gptab, gpentry,
13355 sizeof (Elf32_External_gptab))))
13356 {
13357 free (tab);
13358 return FALSE;
13359 }
13360
13361 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13362 &int_gptab);
13363 val = int_gptab.gt_entry.gt_g_value;
13364 add = int_gptab.gt_entry.gt_bytes - last;
13365
13366 exact = FALSE;
13367 for (look = 1; look < c; look++)
13368 {
13369 if (tab[look].gt_entry.gt_g_value >= val)
13370 tab[look].gt_entry.gt_bytes += add;
13371
13372 if (tab[look].gt_entry.gt_g_value == val)
13373 exact = TRUE;
13374 }
13375
13376 if (! exact)
13377 {
13378 Elf32_gptab *new_tab;
13379 unsigned int max;
13380
13381 /* We need a new table entry. */
13382 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13383 new_tab = bfd_realloc (tab, amt);
13384 if (new_tab == NULL)
13385 {
13386 free (tab);
13387 return FALSE;
13388 }
13389 tab = new_tab;
13390 tab[c].gt_entry.gt_g_value = val;
13391 tab[c].gt_entry.gt_bytes = add;
13392
13393 /* Merge in the size for the next smallest -G
13394 value, since that will be implied by this new
13395 value. */
13396 max = 0;
13397 for (look = 1; look < c; look++)
13398 {
13399 if (tab[look].gt_entry.gt_g_value < val
13400 && (max == 0
13401 || (tab[look].gt_entry.gt_g_value
13402 > tab[max].gt_entry.gt_g_value)))
13403 max = look;
13404 }
13405 if (max != 0)
13406 tab[c].gt_entry.gt_bytes +=
13407 tab[max].gt_entry.gt_bytes;
13408
13409 ++c;
13410 }
13411
13412 last = int_gptab.gt_entry.gt_bytes;
13413 }
13414
13415 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13416 elf_link_input_bfd ignores this section. */
13417 input_section->flags &= ~SEC_HAS_CONTENTS;
13418 }
13419
13420 /* The table must be sorted by -G value. */
13421 if (c > 2)
13422 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13423
13424 /* Swap out the table. */
13425 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13426 ext_tab = bfd_alloc (abfd, amt);
13427 if (ext_tab == NULL)
13428 {
13429 free (tab);
13430 return FALSE;
13431 }
13432
13433 for (j = 0; j < c; j++)
13434 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13435 free (tab);
13436
13437 o->size = c * sizeof (Elf32_External_gptab);
13438 o->contents = (bfd_byte *) ext_tab;
13439
13440 /* Skip this section later on (I don't think this currently
13441 matters, but someday it might). */
13442 o->map_head.link_order = NULL;
13443 }
13444 }
13445
13446 /* Invoke the regular ELF backend linker to do all the work. */
13447 if (!bfd_elf_final_link (abfd, info))
13448 return FALSE;
13449
13450 /* Now write out the computed sections. */
13451
13452 if (reginfo_sec != NULL)
13453 {
13454 Elf32_External_RegInfo ext;
13455
13456 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13457 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13458 return FALSE;
13459 }
13460
13461 if (mdebug_sec != NULL)
13462 {
13463 BFD_ASSERT (abfd->output_has_begun);
13464 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13465 swap, info,
13466 mdebug_sec->filepos))
13467 return FALSE;
13468
13469 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13470 }
13471
13472 if (gptab_data_sec != NULL)
13473 {
13474 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13475 gptab_data_sec->contents,
13476 0, gptab_data_sec->size))
13477 return FALSE;
13478 }
13479
13480 if (gptab_bss_sec != NULL)
13481 {
13482 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13483 gptab_bss_sec->contents,
13484 0, gptab_bss_sec->size))
13485 return FALSE;
13486 }
13487
13488 if (SGI_COMPAT (abfd))
13489 {
13490 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13491 if (rtproc_sec != NULL)
13492 {
13493 if (! bfd_set_section_contents (abfd, rtproc_sec,
13494 rtproc_sec->contents,
13495 0, rtproc_sec->size))
13496 return FALSE;
13497 }
13498 }
13499
13500 return TRUE;
13501 }
13502 \f
13503 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13504
13505 struct mips_mach_extension {
13506 unsigned long extension, base;
13507 };
13508
13509
13510 /* An array describing how BFD machines relate to one another. The entries
13511 are ordered topologically with MIPS I extensions listed last. */
13512
13513 static const struct mips_mach_extension mips_mach_extensions[] = {
13514 /* MIPS64r2 extensions. */
13515 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13516 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13517 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13518
13519 /* MIPS64 extensions. */
13520 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13521 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13522 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13523 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13524
13525 /* MIPS V extensions. */
13526 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13527
13528 /* R10000 extensions. */
13529 { bfd_mach_mips12000, bfd_mach_mips10000 },
13530 { bfd_mach_mips14000, bfd_mach_mips10000 },
13531 { bfd_mach_mips16000, bfd_mach_mips10000 },
13532
13533 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13534 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13535 better to allow vr5400 and vr5500 code to be merged anyway, since
13536 many libraries will just use the core ISA. Perhaps we could add
13537 some sort of ASE flag if this ever proves a problem. */
13538 { bfd_mach_mips5500, bfd_mach_mips5400 },
13539 { bfd_mach_mips5400, bfd_mach_mips5000 },
13540
13541 /* MIPS IV extensions. */
13542 { bfd_mach_mips5, bfd_mach_mips8000 },
13543 { bfd_mach_mips10000, bfd_mach_mips8000 },
13544 { bfd_mach_mips5000, bfd_mach_mips8000 },
13545 { bfd_mach_mips7000, bfd_mach_mips8000 },
13546 { bfd_mach_mips9000, bfd_mach_mips8000 },
13547
13548 /* VR4100 extensions. */
13549 { bfd_mach_mips4120, bfd_mach_mips4100 },
13550 { bfd_mach_mips4111, bfd_mach_mips4100 },
13551
13552 /* MIPS III extensions. */
13553 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13554 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13555 { bfd_mach_mips8000, bfd_mach_mips4000 },
13556 { bfd_mach_mips4650, bfd_mach_mips4000 },
13557 { bfd_mach_mips4600, bfd_mach_mips4000 },
13558 { bfd_mach_mips4400, bfd_mach_mips4000 },
13559 { bfd_mach_mips4300, bfd_mach_mips4000 },
13560 { bfd_mach_mips4100, bfd_mach_mips4000 },
13561 { bfd_mach_mips4010, bfd_mach_mips4000 },
13562 { bfd_mach_mips5900, bfd_mach_mips4000 },
13563
13564 /* MIPS32 extensions. */
13565 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13566
13567 /* MIPS II extensions. */
13568 { bfd_mach_mips4000, bfd_mach_mips6000 },
13569 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13570
13571 /* MIPS I extensions. */
13572 { bfd_mach_mips6000, bfd_mach_mips3000 },
13573 { bfd_mach_mips3900, bfd_mach_mips3000 }
13574 };
13575
13576
13577 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13578
13579 static bfd_boolean
13580 mips_mach_extends_p (unsigned long base, unsigned long extension)
13581 {
13582 size_t i;
13583
13584 if (extension == base)
13585 return TRUE;
13586
13587 if (base == bfd_mach_mipsisa32
13588 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13589 return TRUE;
13590
13591 if (base == bfd_mach_mipsisa32r2
13592 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13593 return TRUE;
13594
13595 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13596 if (extension == mips_mach_extensions[i].extension)
13597 {
13598 extension = mips_mach_extensions[i].base;
13599 if (extension == base)
13600 return TRUE;
13601 }
13602
13603 return FALSE;
13604 }
13605
13606
13607 /* Return true if the given ELF header flags describe a 32-bit binary. */
13608
13609 static bfd_boolean
13610 mips_32bit_flags_p (flagword flags)
13611 {
13612 return ((flags & EF_MIPS_32BITMODE) != 0
13613 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13614 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13615 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13616 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13617 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13618 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13619 }
13620
13621
13622 /* Merge object attributes from IBFD into OBFD. Raise an error if
13623 there are conflicting attributes. */
13624 static bfd_boolean
13625 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13626 {
13627 obj_attribute *in_attr;
13628 obj_attribute *out_attr;
13629 bfd *abi_fp_bfd;
13630
13631 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13632 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13633 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13634 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
13635
13636 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13637 {
13638 /* This is the first object. Copy the attributes. */
13639 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13640
13641 /* Use the Tag_null value to indicate the attributes have been
13642 initialized. */
13643 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13644
13645 return TRUE;
13646 }
13647
13648 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13649 non-conflicting ones. */
13650 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13651 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13652 {
13653 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13654 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13655 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13656 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13657 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13658 {
13659 case 1:
13660 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13661 {
13662 case 2:
13663 _bfd_error_handler
13664 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13665 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
13666 break;
13667
13668 case 3:
13669 _bfd_error_handler
13670 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13671 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13672 break;
13673
13674 case 4:
13675 _bfd_error_handler
13676 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13677 obfd, abi_fp_bfd, ibfd,
13678 "-mdouble-float", "-mips32r2 -mfp64");
13679 break;
13680
13681 default:
13682 _bfd_error_handler
13683 (_("Warning: %B uses %s (set by %B), "
13684 "%B uses unknown floating point ABI %d"),
13685 obfd, abi_fp_bfd, ibfd,
13686 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13687 break;
13688 }
13689 break;
13690
13691 case 2:
13692 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13693 {
13694 case 1:
13695 _bfd_error_handler
13696 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13697 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
13698 break;
13699
13700 case 3:
13701 _bfd_error_handler
13702 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13703 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13704 break;
13705
13706 case 4:
13707 _bfd_error_handler
13708 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13709 obfd, abi_fp_bfd, ibfd,
13710 "-msingle-float", "-mips32r2 -mfp64");
13711 break;
13712
13713 default:
13714 _bfd_error_handler
13715 (_("Warning: %B uses %s (set by %B), "
13716 "%B uses unknown floating point ABI %d"),
13717 obfd, abi_fp_bfd, ibfd,
13718 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13719 break;
13720 }
13721 break;
13722
13723 case 3:
13724 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13725 {
13726 case 1:
13727 case 2:
13728 case 4:
13729 _bfd_error_handler
13730 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13731 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
13732 break;
13733
13734 default:
13735 _bfd_error_handler
13736 (_("Warning: %B uses %s (set by %B), "
13737 "%B uses unknown floating point ABI %d"),
13738 obfd, abi_fp_bfd, ibfd,
13739 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13740 break;
13741 }
13742 break;
13743
13744 case 4:
13745 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13746 {
13747 case 1:
13748 _bfd_error_handler
13749 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13750 obfd, abi_fp_bfd, ibfd,
13751 "-mips32r2 -mfp64", "-mdouble-float");
13752 break;
13753
13754 case 2:
13755 _bfd_error_handler
13756 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13757 obfd, abi_fp_bfd, ibfd,
13758 "-mips32r2 -mfp64", "-msingle-float");
13759 break;
13760
13761 case 3:
13762 _bfd_error_handler
13763 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13764 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13765 break;
13766
13767 default:
13768 _bfd_error_handler
13769 (_("Warning: %B uses %s (set by %B), "
13770 "%B uses unknown floating point ABI %d"),
13771 obfd, abi_fp_bfd, ibfd,
13772 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13773 break;
13774 }
13775 break;
13776
13777 default:
13778 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13779 {
13780 case 1:
13781 _bfd_error_handler
13782 (_("Warning: %B uses unknown floating point ABI %d "
13783 "(set by %B), %B uses %s"),
13784 obfd, abi_fp_bfd, ibfd,
13785 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13786 break;
13787
13788 case 2:
13789 _bfd_error_handler
13790 (_("Warning: %B uses unknown floating point ABI %d "
13791 "(set by %B), %B uses %s"),
13792 obfd, abi_fp_bfd, ibfd,
13793 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13794 break;
13795
13796 case 3:
13797 _bfd_error_handler
13798 (_("Warning: %B uses unknown floating point ABI %d "
13799 "(set by %B), %B uses %s"),
13800 obfd, abi_fp_bfd, ibfd,
13801 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13802 break;
13803
13804 case 4:
13805 _bfd_error_handler
13806 (_("Warning: %B uses unknown floating point ABI %d "
13807 "(set by %B), %B uses %s"),
13808 obfd, abi_fp_bfd, ibfd,
13809 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13810 break;
13811
13812 default:
13813 _bfd_error_handler
13814 (_("Warning: %B uses unknown floating point ABI %d "
13815 "(set by %B), %B uses unknown floating point ABI %d"),
13816 obfd, abi_fp_bfd, ibfd,
13817 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13818 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13819 break;
13820 }
13821 break;
13822 }
13823 }
13824
13825 /* Merge Tag_compatibility attributes and any common GNU ones. */
13826 _bfd_elf_merge_object_attributes (ibfd, obfd);
13827
13828 return TRUE;
13829 }
13830
13831 /* Merge backend specific data from an object file to the output
13832 object file when linking. */
13833
13834 bfd_boolean
13835 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13836 {
13837 flagword old_flags;
13838 flagword new_flags;
13839 bfd_boolean ok;
13840 bfd_boolean null_input_bfd = TRUE;
13841 asection *sec;
13842
13843 /* Check if we have the same endianness. */
13844 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13845 {
13846 (*_bfd_error_handler)
13847 (_("%B: endianness incompatible with that of the selected emulation"),
13848 ibfd);
13849 return FALSE;
13850 }
13851
13852 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13853 return TRUE;
13854
13855 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13856 {
13857 (*_bfd_error_handler)
13858 (_("%B: ABI is incompatible with that of the selected emulation"),
13859 ibfd);
13860 return FALSE;
13861 }
13862
13863 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13864 return FALSE;
13865
13866 new_flags = elf_elfheader (ibfd)->e_flags;
13867 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13868 old_flags = elf_elfheader (obfd)->e_flags;
13869
13870 if (! elf_flags_init (obfd))
13871 {
13872 elf_flags_init (obfd) = TRUE;
13873 elf_elfheader (obfd)->e_flags = new_flags;
13874 elf_elfheader (obfd)->e_ident[EI_CLASS]
13875 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13876
13877 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13878 && (bfd_get_arch_info (obfd)->the_default
13879 || mips_mach_extends_p (bfd_get_mach (obfd),
13880 bfd_get_mach (ibfd))))
13881 {
13882 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13883 bfd_get_mach (ibfd)))
13884 return FALSE;
13885 }
13886
13887 return TRUE;
13888 }
13889
13890 /* Check flag compatibility. */
13891
13892 new_flags &= ~EF_MIPS_NOREORDER;
13893 old_flags &= ~EF_MIPS_NOREORDER;
13894
13895 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13896 doesn't seem to matter. */
13897 new_flags &= ~EF_MIPS_XGOT;
13898 old_flags &= ~EF_MIPS_XGOT;
13899
13900 /* MIPSpro generates ucode info in n64 objects. Again, we should
13901 just be able to ignore this. */
13902 new_flags &= ~EF_MIPS_UCODE;
13903 old_flags &= ~EF_MIPS_UCODE;
13904
13905 /* DSOs should only be linked with CPIC code. */
13906 if ((ibfd->flags & DYNAMIC) != 0)
13907 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13908
13909 if (new_flags == old_flags)
13910 return TRUE;
13911
13912 /* Check to see if the input BFD actually contains any sections.
13913 If not, its flags may not have been initialised either, but it cannot
13914 actually cause any incompatibility. */
13915 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13916 {
13917 /* Ignore synthetic sections and empty .text, .data and .bss sections
13918 which are automatically generated by gas. Also ignore fake
13919 (s)common sections, since merely defining a common symbol does
13920 not affect compatibility. */
13921 if ((sec->flags & SEC_IS_COMMON) == 0
13922 && strcmp (sec->name, ".reginfo")
13923 && strcmp (sec->name, ".mdebug")
13924 && (sec->size != 0
13925 || (strcmp (sec->name, ".text")
13926 && strcmp (sec->name, ".data")
13927 && strcmp (sec->name, ".bss"))))
13928 {
13929 null_input_bfd = FALSE;
13930 break;
13931 }
13932 }
13933 if (null_input_bfd)
13934 return TRUE;
13935
13936 ok = TRUE;
13937
13938 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13939 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13940 {
13941 (*_bfd_error_handler)
13942 (_("%B: warning: linking abicalls files with non-abicalls files"),
13943 ibfd);
13944 ok = TRUE;
13945 }
13946
13947 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13948 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13949 if (! (new_flags & EF_MIPS_PIC))
13950 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13951
13952 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13953 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13954
13955 /* Compare the ISAs. */
13956 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
13957 {
13958 (*_bfd_error_handler)
13959 (_("%B: linking 32-bit code with 64-bit code"),
13960 ibfd);
13961 ok = FALSE;
13962 }
13963 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13964 {
13965 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13966 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
13967 {
13968 /* Copy the architecture info from IBFD to OBFD. Also copy
13969 the 32-bit flag (if set) so that we continue to recognise
13970 OBFD as a 32-bit binary. */
13971 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
13972 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
13973 elf_elfheader (obfd)->e_flags
13974 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13975
13976 /* Copy across the ABI flags if OBFD doesn't use them
13977 and if that was what caused us to treat IBFD as 32-bit. */
13978 if ((old_flags & EF_MIPS_ABI) == 0
13979 && mips_32bit_flags_p (new_flags)
13980 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
13981 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
13982 }
13983 else
13984 {
13985 /* The ISAs aren't compatible. */
13986 (*_bfd_error_handler)
13987 (_("%B: linking %s module with previous %s modules"),
13988 ibfd,
13989 bfd_printable_name (ibfd),
13990 bfd_printable_name (obfd));
13991 ok = FALSE;
13992 }
13993 }
13994
13995 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13996 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13997
13998 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
13999 does set EI_CLASS differently from any 32-bit ABI. */
14000 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14001 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14002 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14003 {
14004 /* Only error if both are set (to different values). */
14005 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14006 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14007 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14008 {
14009 (*_bfd_error_handler)
14010 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14011 ibfd,
14012 elf_mips_abi_name (ibfd),
14013 elf_mips_abi_name (obfd));
14014 ok = FALSE;
14015 }
14016 new_flags &= ~EF_MIPS_ABI;
14017 old_flags &= ~EF_MIPS_ABI;
14018 }
14019
14020 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14021 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14022 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14023 {
14024 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14025 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14026 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14027 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14028 int micro_mis = old_m16 && new_micro;
14029 int m16_mis = old_micro && new_m16;
14030
14031 if (m16_mis || micro_mis)
14032 {
14033 (*_bfd_error_handler)
14034 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14035 ibfd,
14036 m16_mis ? "MIPS16" : "microMIPS",
14037 m16_mis ? "microMIPS" : "MIPS16");
14038 ok = FALSE;
14039 }
14040
14041 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14042
14043 new_flags &= ~ EF_MIPS_ARCH_ASE;
14044 old_flags &= ~ EF_MIPS_ARCH_ASE;
14045 }
14046
14047 /* Warn about any other mismatches */
14048 if (new_flags != old_flags)
14049 {
14050 (*_bfd_error_handler)
14051 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14052 ibfd, (unsigned long) new_flags,
14053 (unsigned long) old_flags);
14054 ok = FALSE;
14055 }
14056
14057 if (! ok)
14058 {
14059 bfd_set_error (bfd_error_bad_value);
14060 return FALSE;
14061 }
14062
14063 return TRUE;
14064 }
14065
14066 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14067
14068 bfd_boolean
14069 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14070 {
14071 BFD_ASSERT (!elf_flags_init (abfd)
14072 || elf_elfheader (abfd)->e_flags == flags);
14073
14074 elf_elfheader (abfd)->e_flags = flags;
14075 elf_flags_init (abfd) = TRUE;
14076 return TRUE;
14077 }
14078
14079 char *
14080 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14081 {
14082 switch (dtag)
14083 {
14084 default: return "";
14085 case DT_MIPS_RLD_VERSION:
14086 return "MIPS_RLD_VERSION";
14087 case DT_MIPS_TIME_STAMP:
14088 return "MIPS_TIME_STAMP";
14089 case DT_MIPS_ICHECKSUM:
14090 return "MIPS_ICHECKSUM";
14091 case DT_MIPS_IVERSION:
14092 return "MIPS_IVERSION";
14093 case DT_MIPS_FLAGS:
14094 return "MIPS_FLAGS";
14095 case DT_MIPS_BASE_ADDRESS:
14096 return "MIPS_BASE_ADDRESS";
14097 case DT_MIPS_MSYM:
14098 return "MIPS_MSYM";
14099 case DT_MIPS_CONFLICT:
14100 return "MIPS_CONFLICT";
14101 case DT_MIPS_LIBLIST:
14102 return "MIPS_LIBLIST";
14103 case DT_MIPS_LOCAL_GOTNO:
14104 return "MIPS_LOCAL_GOTNO";
14105 case DT_MIPS_CONFLICTNO:
14106 return "MIPS_CONFLICTNO";
14107 case DT_MIPS_LIBLISTNO:
14108 return "MIPS_LIBLISTNO";
14109 case DT_MIPS_SYMTABNO:
14110 return "MIPS_SYMTABNO";
14111 case DT_MIPS_UNREFEXTNO:
14112 return "MIPS_UNREFEXTNO";
14113 case DT_MIPS_GOTSYM:
14114 return "MIPS_GOTSYM";
14115 case DT_MIPS_HIPAGENO:
14116 return "MIPS_HIPAGENO";
14117 case DT_MIPS_RLD_MAP:
14118 return "MIPS_RLD_MAP";
14119 case DT_MIPS_DELTA_CLASS:
14120 return "MIPS_DELTA_CLASS";
14121 case DT_MIPS_DELTA_CLASS_NO:
14122 return "MIPS_DELTA_CLASS_NO";
14123 case DT_MIPS_DELTA_INSTANCE:
14124 return "MIPS_DELTA_INSTANCE";
14125 case DT_MIPS_DELTA_INSTANCE_NO:
14126 return "MIPS_DELTA_INSTANCE_NO";
14127 case DT_MIPS_DELTA_RELOC:
14128 return "MIPS_DELTA_RELOC";
14129 case DT_MIPS_DELTA_RELOC_NO:
14130 return "MIPS_DELTA_RELOC_NO";
14131 case DT_MIPS_DELTA_SYM:
14132 return "MIPS_DELTA_SYM";
14133 case DT_MIPS_DELTA_SYM_NO:
14134 return "MIPS_DELTA_SYM_NO";
14135 case DT_MIPS_DELTA_CLASSSYM:
14136 return "MIPS_DELTA_CLASSSYM";
14137 case DT_MIPS_DELTA_CLASSSYM_NO:
14138 return "MIPS_DELTA_CLASSSYM_NO";
14139 case DT_MIPS_CXX_FLAGS:
14140 return "MIPS_CXX_FLAGS";
14141 case DT_MIPS_PIXIE_INIT:
14142 return "MIPS_PIXIE_INIT";
14143 case DT_MIPS_SYMBOL_LIB:
14144 return "MIPS_SYMBOL_LIB";
14145 case DT_MIPS_LOCALPAGE_GOTIDX:
14146 return "MIPS_LOCALPAGE_GOTIDX";
14147 case DT_MIPS_LOCAL_GOTIDX:
14148 return "MIPS_LOCAL_GOTIDX";
14149 case DT_MIPS_HIDDEN_GOTIDX:
14150 return "MIPS_HIDDEN_GOTIDX";
14151 case DT_MIPS_PROTECTED_GOTIDX:
14152 return "MIPS_PROTECTED_GOT_IDX";
14153 case DT_MIPS_OPTIONS:
14154 return "MIPS_OPTIONS";
14155 case DT_MIPS_INTERFACE:
14156 return "MIPS_INTERFACE";
14157 case DT_MIPS_DYNSTR_ALIGN:
14158 return "DT_MIPS_DYNSTR_ALIGN";
14159 case DT_MIPS_INTERFACE_SIZE:
14160 return "DT_MIPS_INTERFACE_SIZE";
14161 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14162 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14163 case DT_MIPS_PERF_SUFFIX:
14164 return "DT_MIPS_PERF_SUFFIX";
14165 case DT_MIPS_COMPACT_SIZE:
14166 return "DT_MIPS_COMPACT_SIZE";
14167 case DT_MIPS_GP_VALUE:
14168 return "DT_MIPS_GP_VALUE";
14169 case DT_MIPS_AUX_DYNAMIC:
14170 return "DT_MIPS_AUX_DYNAMIC";
14171 case DT_MIPS_PLTGOT:
14172 return "DT_MIPS_PLTGOT";
14173 case DT_MIPS_RWPLT:
14174 return "DT_MIPS_RWPLT";
14175 }
14176 }
14177
14178 bfd_boolean
14179 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14180 {
14181 FILE *file = ptr;
14182
14183 BFD_ASSERT (abfd != NULL && ptr != NULL);
14184
14185 /* Print normal ELF private data. */
14186 _bfd_elf_print_private_bfd_data (abfd, ptr);
14187
14188 /* xgettext:c-format */
14189 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14190
14191 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14192 fprintf (file, _(" [abi=O32]"));
14193 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14194 fprintf (file, _(" [abi=O64]"));
14195 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14196 fprintf (file, _(" [abi=EABI32]"));
14197 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14198 fprintf (file, _(" [abi=EABI64]"));
14199 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14200 fprintf (file, _(" [abi unknown]"));
14201 else if (ABI_N32_P (abfd))
14202 fprintf (file, _(" [abi=N32]"));
14203 else if (ABI_64_P (abfd))
14204 fprintf (file, _(" [abi=64]"));
14205 else
14206 fprintf (file, _(" [no abi set]"));
14207
14208 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14209 fprintf (file, " [mips1]");
14210 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14211 fprintf (file, " [mips2]");
14212 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14213 fprintf (file, " [mips3]");
14214 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14215 fprintf (file, " [mips4]");
14216 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14217 fprintf (file, " [mips5]");
14218 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14219 fprintf (file, " [mips32]");
14220 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14221 fprintf (file, " [mips64]");
14222 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14223 fprintf (file, " [mips32r2]");
14224 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14225 fprintf (file, " [mips64r2]");
14226 else
14227 fprintf (file, _(" [unknown ISA]"));
14228
14229 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14230 fprintf (file, " [mdmx]");
14231
14232 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14233 fprintf (file, " [mips16]");
14234
14235 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14236 fprintf (file, " [micromips]");
14237
14238 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14239 fprintf (file, " [32bitmode]");
14240 else
14241 fprintf (file, _(" [not 32bitmode]"));
14242
14243 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14244 fprintf (file, " [noreorder]");
14245
14246 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14247 fprintf (file, " [PIC]");
14248
14249 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14250 fprintf (file, " [CPIC]");
14251
14252 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14253 fprintf (file, " [XGOT]");
14254
14255 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14256 fprintf (file, " [UCODE]");
14257
14258 fputc ('\n', file);
14259
14260 return TRUE;
14261 }
14262
14263 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14264 {
14265 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14266 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14267 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14268 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14269 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14270 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14271 { NULL, 0, 0, 0, 0 }
14272 };
14273
14274 /* Merge non visibility st_other attributes. Ensure that the
14275 STO_OPTIONAL flag is copied into h->other, even if this is not a
14276 definiton of the symbol. */
14277 void
14278 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14279 const Elf_Internal_Sym *isym,
14280 bfd_boolean definition,
14281 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14282 {
14283 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14284 {
14285 unsigned char other;
14286
14287 other = (definition ? isym->st_other : h->other);
14288 other &= ~ELF_ST_VISIBILITY (-1);
14289 h->other = other | ELF_ST_VISIBILITY (h->other);
14290 }
14291
14292 if (!definition
14293 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14294 h->other |= STO_OPTIONAL;
14295 }
14296
14297 /* Decide whether an undefined symbol is special and can be ignored.
14298 This is the case for OPTIONAL symbols on IRIX. */
14299 bfd_boolean
14300 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14301 {
14302 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14303 }
14304
14305 bfd_boolean
14306 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14307 {
14308 return (sym->st_shndx == SHN_COMMON
14309 || sym->st_shndx == SHN_MIPS_ACOMMON
14310 || sym->st_shndx == SHN_MIPS_SCOMMON);
14311 }
14312
14313 /* Return address for Ith PLT stub in section PLT, for relocation REL
14314 or (bfd_vma) -1 if it should not be included. */
14315
14316 bfd_vma
14317 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14318 const arelent *rel ATTRIBUTE_UNUSED)
14319 {
14320 return (plt->vma
14321 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14322 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14323 }
14324
14325 void
14326 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14327 {
14328 struct mips_elf_link_hash_table *htab;
14329 Elf_Internal_Ehdr *i_ehdrp;
14330
14331 i_ehdrp = elf_elfheader (abfd);
14332 if (link_info)
14333 {
14334 htab = mips_elf_hash_table (link_info);
14335 BFD_ASSERT (htab != NULL);
14336
14337 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14338 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14339 }
14340 }