bfd/
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "sysdep.h"
31 #include "bfd.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37 #include "elf-vxworks.h"
38
39 /* Get the ECOFF swapping routines. */
40 #include "coff/sym.h"
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
44
45 #include "hashtab.h"
46
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
80 struct mips_got_entry
81 {
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
111 };
112
113 /* This structure is used to hold .got information when linking. */
114
115 struct mips_got_info
116 {
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
144 };
145
146 /* Map an input bfd to a got in a multi-got link. */
147
148 struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151 };
152
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156 struct mips_elf_got_per_bfd_arg
157 {
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
183 };
184
185 /* Another structure used to pass arguments for got entries traversal. */
186
187 struct mips_elf_set_global_got_offset_arg
188 {
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
193 };
194
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198 struct mips_elf_count_tls_arg
199 {
200 struct bfd_link_info *info;
201 unsigned int needed;
202 };
203
204 struct _mips_elf_section_data
205 {
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212 };
213
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
216
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220 struct mips_elf_hash_sort_data
221 {
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235 };
236
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240 struct mips_elf_link_hash_entry
241 {
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc;
254
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
259 bfd_boolean no_fn_stub;
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub;
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
276
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local;
280
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
287 #define GOT_NORMAL 0
288 #define GOT_TLS_GD 1
289 #define GOT_TLS_LDM 2
290 #define GOT_TLS_IE 4
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
301 };
302
303 /* MIPS ELF linker hash table. */
304
305 struct mips_elf_link_hash_table
306 {
307 struct elf_link_hash_table root;
308 #if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312 #endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
340 };
341
342 #define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
357 /* Structure used to pass information to mips_elf_output_extsym. */
358
359 struct extsym_info
360 {
361 bfd *abfd;
362 struct bfd_link_info *info;
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
365 bfd_boolean failed;
366 };
367
368 /* The names of the runtime procedure table symbols used on IRIX5. */
369
370 static const char * const mips_elf_dynsym_rtproc_names[] =
371 {
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376 };
377
378 /* These structures are used to generate the .compact_rel section on
379 IRIX5. */
380
381 typedef struct
382 {
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389 } Elf32_compact_rel;
390
391 typedef struct
392 {
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399 } Elf32_External_compact_rel;
400
401 typedef struct
402 {
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409 } Elf32_crinfo;
410
411 typedef struct
412 {
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418 } Elf32_crinfo2;
419
420 typedef struct
421 {
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425 } Elf32_External_crinfo;
426
427 typedef struct
428 {
429 bfd_byte info[4];
430 bfd_byte konst[4];
431 } Elf32_External_crinfo2;
432
433 /* These are the constants used to swap the bitfields in a crinfo. */
434
435 #define CRINFO_CTYPE (0x1)
436 #define CRINFO_CTYPE_SH (31)
437 #define CRINFO_RTYPE (0xf)
438 #define CRINFO_RTYPE_SH (27)
439 #define CRINFO_DIST2TO (0xff)
440 #define CRINFO_DIST2TO_SH (19)
441 #define CRINFO_RELVADDR (0x7ffff)
442 #define CRINFO_RELVADDR_SH (0)
443
444 /* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447 #define CRF_MIPS_LONG 1
448 #define CRF_MIPS_SHORT 0
449
450 /* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460 #define CRT_MIPS_REL32 0xa
461 #define CRT_MIPS_WORD 0xb
462 #define CRT_MIPS_GPHI_LO 0xc
463 #define CRT_MIPS_JMPAD 0xd
464
465 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469 \f
470 /* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473 typedef struct runtime_pdr {
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
483 long reserved;
484 struct exception_info *exception_info;/* Pointer to exception array. */
485 } RPDR, *pRPDR;
486 #define cbRPDR sizeof (RPDR)
487 #define rpdNil ((pRPDR) 0)
488 \f
489 static struct mips_got_entry *mips_elf_create_local_got_entry
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
492 static bfd_boolean mips_elf_sort_hash_table_f
493 (struct mips_elf_link_hash_entry *, void *);
494 static bfd_vma mips_elf_high
495 (bfd_vma);
496 static bfd_boolean mips16_stub_section_p
497 (bfd *, asection *);
498 static bfd_boolean mips_elf_create_dynamic_relocation
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
502 static hashval_t mips_elf_got_entry_hash
503 (const void *);
504 static bfd_vma mips_elf_adjust_gp
505 (bfd *, struct mips_got_info *, bfd *);
506 static struct mips_got_info *mips_elf_got_for_ibfd
507 (struct mips_got_info *, bfd *);
508
509 /* This will be used when we sort the dynamic relocation records. */
510 static bfd *reldyn_sorting_bfd;
511
512 /* Nonzero if ABFD is using the N32 ABI. */
513 #define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
516 /* Nonzero if ABFD is using the N64 ABI. */
517 #define ABI_64_P(abfd) \
518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
519
520 /* Nonzero if ABFD is using NewABI conventions. */
521 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523 /* The IRIX compatibility level we are striving for. */
524 #define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
527 /* Whether we are trying to be compatible with IRIX at all. */
528 #define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531 /* The name of the options section. */
532 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
534
535 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
540 /* Whether the section is readonly. */
541 #define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
545 /* The name of the stub section. */
546 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
547
548 /* The size of an external REL relocation. */
549 #define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
552 /* The size of an external RELA relocation. */
553 #define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
556 /* The size of an external dynamic table entry. */
557 #define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560 /* The size of a GOT entry. */
561 #define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564 /* The size of a symbol-table entry. */
565 #define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568 /* The default alignment for sections, as a power of two. */
569 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
570 (get_elf_backend_data (abfd)->s->log_file_align)
571
572 /* Get word-sized data. */
573 #define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576 /* Put out word-sized data. */
577 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582 /* Add a dynamic symbol table-entry. */
583 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
584 _bfd_elf_add_dynamic_entry (info, tag, val)
585
586 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
589 /* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
606 /* The name of the dynamic relocation section. */
607 #define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
610 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612 #define MINUS_ONE (((bfd_vma)0) - 1)
613 #define MINUS_TWO (((bfd_vma)0) - 2)
614
615 /* The number of local .got entries we reserve. */
616 #define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
618
619 /* The offset of $gp from the beginning of the .got section. */
620 #define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
622
623 /* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
625 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
626
627 /* Instructions which appear in a stub. */
628 #define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632 #define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
638 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
640 #define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
645 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
647
648 /* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651 #define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656 #ifdef BFD64
657 #define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
659 #define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661 #define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663 #define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665 #else
666 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
667 #define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669 #define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671 #define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673 #endif
674 \f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709 #define FN_STUB ".mips16.fn."
710 #define CALL_STUB ".mips16.call."
711 #define CALL_FP_STUB ".mips16.call.fp."
712
713 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
714 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
715 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
716 \f
717 /* The format of the first PLT entry in a VxWorks executable. */
718 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
719 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
720 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
721 0x8f390008, /* lw t9, 8(t9) */
722 0x00000000, /* nop */
723 0x03200008, /* jr t9 */
724 0x00000000 /* nop */
725 };
726
727 /* The format of subsequent PLT entries. */
728 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
729 0x10000000, /* b .PLT_resolver */
730 0x24180000, /* li t8, <pltindex> */
731 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
732 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
733 0x8f390000, /* lw t9, 0(t9) */
734 0x00000000, /* nop */
735 0x03200008, /* jr t9 */
736 0x00000000 /* nop */
737 };
738
739 /* The format of the first PLT entry in a VxWorks shared object. */
740 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
741 0x8f990008, /* lw t9, 8(gp) */
742 0x00000000, /* nop */
743 0x03200008, /* jr t9 */
744 0x00000000, /* nop */
745 0x00000000, /* nop */
746 0x00000000 /* nop */
747 };
748
749 /* The format of subsequent PLT entries. */
750 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
751 0x10000000, /* b .PLT_resolver */
752 0x24180000 /* li t8, <pltindex> */
753 };
754 \f
755 /* Look up an entry in a MIPS ELF linker hash table. */
756
757 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
758 ((struct mips_elf_link_hash_entry *) \
759 elf_link_hash_lookup (&(table)->root, (string), (create), \
760 (copy), (follow)))
761
762 /* Traverse a MIPS ELF linker hash table. */
763
764 #define mips_elf_link_hash_traverse(table, func, info) \
765 (elf_link_hash_traverse \
766 (&(table)->root, \
767 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
768 (info)))
769
770 /* Get the MIPS ELF linker hash table from a link_info structure. */
771
772 #define mips_elf_hash_table(p) \
773 ((struct mips_elf_link_hash_table *) ((p)->hash))
774
775 /* Find the base offsets for thread-local storage in this object,
776 for GD/LD and IE/LE respectively. */
777
778 #define TP_OFFSET 0x7000
779 #define DTP_OFFSET 0x8000
780
781 static bfd_vma
782 dtprel_base (struct bfd_link_info *info)
783 {
784 /* If tls_sec is NULL, we should have signalled an error already. */
785 if (elf_hash_table (info)->tls_sec == NULL)
786 return 0;
787 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
788 }
789
790 static bfd_vma
791 tprel_base (struct bfd_link_info *info)
792 {
793 /* If tls_sec is NULL, we should have signalled an error already. */
794 if (elf_hash_table (info)->tls_sec == NULL)
795 return 0;
796 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
797 }
798
799 /* Create an entry in a MIPS ELF linker hash table. */
800
801 static struct bfd_hash_entry *
802 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
803 struct bfd_hash_table *table, const char *string)
804 {
805 struct mips_elf_link_hash_entry *ret =
806 (struct mips_elf_link_hash_entry *) entry;
807
808 /* Allocate the structure if it has not already been allocated by a
809 subclass. */
810 if (ret == NULL)
811 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
812 if (ret == NULL)
813 return (struct bfd_hash_entry *) ret;
814
815 /* Call the allocation method of the superclass. */
816 ret = ((struct mips_elf_link_hash_entry *)
817 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
818 table, string));
819 if (ret != NULL)
820 {
821 /* Set local fields. */
822 memset (&ret->esym, 0, sizeof (EXTR));
823 /* We use -2 as a marker to indicate that the information has
824 not been set. -1 means there is no associated ifd. */
825 ret->esym.ifd = -2;
826 ret->possibly_dynamic_relocs = 0;
827 ret->readonly_reloc = FALSE;
828 ret->no_fn_stub = FALSE;
829 ret->fn_stub = NULL;
830 ret->need_fn_stub = FALSE;
831 ret->call_stub = NULL;
832 ret->call_fp_stub = NULL;
833 ret->forced_local = FALSE;
834 ret->is_branch_target = FALSE;
835 ret->is_relocation_target = FALSE;
836 ret->tls_type = GOT_NORMAL;
837 }
838
839 return (struct bfd_hash_entry *) ret;
840 }
841
842 bfd_boolean
843 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
844 {
845 if (!sec->used_by_bfd)
846 {
847 struct _mips_elf_section_data *sdata;
848 bfd_size_type amt = sizeof (*sdata);
849
850 sdata = bfd_zalloc (abfd, amt);
851 if (sdata == NULL)
852 return FALSE;
853 sec->used_by_bfd = sdata;
854 }
855
856 return _bfd_elf_new_section_hook (abfd, sec);
857 }
858 \f
859 /* Read ECOFF debugging information from a .mdebug section into a
860 ecoff_debug_info structure. */
861
862 bfd_boolean
863 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
864 struct ecoff_debug_info *debug)
865 {
866 HDRR *symhdr;
867 const struct ecoff_debug_swap *swap;
868 char *ext_hdr;
869
870 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
871 memset (debug, 0, sizeof (*debug));
872
873 ext_hdr = bfd_malloc (swap->external_hdr_size);
874 if (ext_hdr == NULL && swap->external_hdr_size != 0)
875 goto error_return;
876
877 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
878 swap->external_hdr_size))
879 goto error_return;
880
881 symhdr = &debug->symbolic_header;
882 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
883
884 /* The symbolic header contains absolute file offsets and sizes to
885 read. */
886 #define READ(ptr, offset, count, size, type) \
887 if (symhdr->count == 0) \
888 debug->ptr = NULL; \
889 else \
890 { \
891 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
892 debug->ptr = bfd_malloc (amt); \
893 if (debug->ptr == NULL) \
894 goto error_return; \
895 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
896 || bfd_bread (debug->ptr, amt, abfd) != amt) \
897 goto error_return; \
898 }
899
900 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
901 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
902 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
903 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
904 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
905 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
906 union aux_ext *);
907 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
908 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
909 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
910 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
911 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
912 #undef READ
913
914 debug->fdr = NULL;
915
916 return TRUE;
917
918 error_return:
919 if (ext_hdr != NULL)
920 free (ext_hdr);
921 if (debug->line != NULL)
922 free (debug->line);
923 if (debug->external_dnr != NULL)
924 free (debug->external_dnr);
925 if (debug->external_pdr != NULL)
926 free (debug->external_pdr);
927 if (debug->external_sym != NULL)
928 free (debug->external_sym);
929 if (debug->external_opt != NULL)
930 free (debug->external_opt);
931 if (debug->external_aux != NULL)
932 free (debug->external_aux);
933 if (debug->ss != NULL)
934 free (debug->ss);
935 if (debug->ssext != NULL)
936 free (debug->ssext);
937 if (debug->external_fdr != NULL)
938 free (debug->external_fdr);
939 if (debug->external_rfd != NULL)
940 free (debug->external_rfd);
941 if (debug->external_ext != NULL)
942 free (debug->external_ext);
943 return FALSE;
944 }
945 \f
946 /* Swap RPDR (runtime procedure table entry) for output. */
947
948 static void
949 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
950 {
951 H_PUT_S32 (abfd, in->adr, ex->p_adr);
952 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
953 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
954 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
955 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
956 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
957
958 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
959 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
960
961 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
962 }
963
964 /* Create a runtime procedure table from the .mdebug section. */
965
966 static bfd_boolean
967 mips_elf_create_procedure_table (void *handle, bfd *abfd,
968 struct bfd_link_info *info, asection *s,
969 struct ecoff_debug_info *debug)
970 {
971 const struct ecoff_debug_swap *swap;
972 HDRR *hdr = &debug->symbolic_header;
973 RPDR *rpdr, *rp;
974 struct rpdr_ext *erp;
975 void *rtproc;
976 struct pdr_ext *epdr;
977 struct sym_ext *esym;
978 char *ss, **sv;
979 char *str;
980 bfd_size_type size;
981 bfd_size_type count;
982 unsigned long sindex;
983 unsigned long i;
984 PDR pdr;
985 SYMR sym;
986 const char *no_name_func = _("static procedure (no name)");
987
988 epdr = NULL;
989 rpdr = NULL;
990 esym = NULL;
991 ss = NULL;
992 sv = NULL;
993
994 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
995
996 sindex = strlen (no_name_func) + 1;
997 count = hdr->ipdMax;
998 if (count > 0)
999 {
1000 size = swap->external_pdr_size;
1001
1002 epdr = bfd_malloc (size * count);
1003 if (epdr == NULL)
1004 goto error_return;
1005
1006 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1007 goto error_return;
1008
1009 size = sizeof (RPDR);
1010 rp = rpdr = bfd_malloc (size * count);
1011 if (rpdr == NULL)
1012 goto error_return;
1013
1014 size = sizeof (char *);
1015 sv = bfd_malloc (size * count);
1016 if (sv == NULL)
1017 goto error_return;
1018
1019 count = hdr->isymMax;
1020 size = swap->external_sym_size;
1021 esym = bfd_malloc (size * count);
1022 if (esym == NULL)
1023 goto error_return;
1024
1025 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1026 goto error_return;
1027
1028 count = hdr->issMax;
1029 ss = bfd_malloc (count);
1030 if (ss == NULL)
1031 goto error_return;
1032 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1033 goto error_return;
1034
1035 count = hdr->ipdMax;
1036 for (i = 0; i < (unsigned long) count; i++, rp++)
1037 {
1038 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1039 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1040 rp->adr = sym.value;
1041 rp->regmask = pdr.regmask;
1042 rp->regoffset = pdr.regoffset;
1043 rp->fregmask = pdr.fregmask;
1044 rp->fregoffset = pdr.fregoffset;
1045 rp->frameoffset = pdr.frameoffset;
1046 rp->framereg = pdr.framereg;
1047 rp->pcreg = pdr.pcreg;
1048 rp->irpss = sindex;
1049 sv[i] = ss + sym.iss;
1050 sindex += strlen (sv[i]) + 1;
1051 }
1052 }
1053
1054 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1055 size = BFD_ALIGN (size, 16);
1056 rtproc = bfd_alloc (abfd, size);
1057 if (rtproc == NULL)
1058 {
1059 mips_elf_hash_table (info)->procedure_count = 0;
1060 goto error_return;
1061 }
1062
1063 mips_elf_hash_table (info)->procedure_count = count + 2;
1064
1065 erp = rtproc;
1066 memset (erp, 0, sizeof (struct rpdr_ext));
1067 erp++;
1068 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1069 strcpy (str, no_name_func);
1070 str += strlen (no_name_func) + 1;
1071 for (i = 0; i < count; i++)
1072 {
1073 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1074 strcpy (str, sv[i]);
1075 str += strlen (sv[i]) + 1;
1076 }
1077 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1078
1079 /* Set the size and contents of .rtproc section. */
1080 s->size = size;
1081 s->contents = rtproc;
1082
1083 /* Skip this section later on (I don't think this currently
1084 matters, but someday it might). */
1085 s->map_head.link_order = NULL;
1086
1087 if (epdr != NULL)
1088 free (epdr);
1089 if (rpdr != NULL)
1090 free (rpdr);
1091 if (esym != NULL)
1092 free (esym);
1093 if (ss != NULL)
1094 free (ss);
1095 if (sv != NULL)
1096 free (sv);
1097
1098 return TRUE;
1099
1100 error_return:
1101 if (epdr != NULL)
1102 free (epdr);
1103 if (rpdr != NULL)
1104 free (rpdr);
1105 if (esym != NULL)
1106 free (esym);
1107 if (ss != NULL)
1108 free (ss);
1109 if (sv != NULL)
1110 free (sv);
1111 return FALSE;
1112 }
1113
1114 /* Check the mips16 stubs for a particular symbol, and see if we can
1115 discard them. */
1116
1117 static bfd_boolean
1118 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1119 void *data ATTRIBUTE_UNUSED)
1120 {
1121 if (h->root.root.type == bfd_link_hash_warning)
1122 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1123
1124 if (h->fn_stub != NULL
1125 && ! h->need_fn_stub)
1126 {
1127 /* We don't need the fn_stub; the only references to this symbol
1128 are 16 bit calls. Clobber the size to 0 to prevent it from
1129 being included in the link. */
1130 h->fn_stub->size = 0;
1131 h->fn_stub->flags &= ~SEC_RELOC;
1132 h->fn_stub->reloc_count = 0;
1133 h->fn_stub->flags |= SEC_EXCLUDE;
1134 }
1135
1136 if (h->call_stub != NULL
1137 && h->root.other == STO_MIPS16)
1138 {
1139 /* We don't need the call_stub; this is a 16 bit function, so
1140 calls from other 16 bit functions are OK. Clobber the size
1141 to 0 to prevent it from being included in the link. */
1142 h->call_stub->size = 0;
1143 h->call_stub->flags &= ~SEC_RELOC;
1144 h->call_stub->reloc_count = 0;
1145 h->call_stub->flags |= SEC_EXCLUDE;
1146 }
1147
1148 if (h->call_fp_stub != NULL
1149 && h->root.other == STO_MIPS16)
1150 {
1151 /* We don't need the call_stub; this is a 16 bit function, so
1152 calls from other 16 bit functions are OK. Clobber the size
1153 to 0 to prevent it from being included in the link. */
1154 h->call_fp_stub->size = 0;
1155 h->call_fp_stub->flags &= ~SEC_RELOC;
1156 h->call_fp_stub->reloc_count = 0;
1157 h->call_fp_stub->flags |= SEC_EXCLUDE;
1158 }
1159
1160 return TRUE;
1161 }
1162 \f
1163 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1164 Most mips16 instructions are 16 bits, but these instructions
1165 are 32 bits.
1166
1167 The format of these instructions is:
1168
1169 +--------------+--------------------------------+
1170 | JALX | X| Imm 20:16 | Imm 25:21 |
1171 +--------------+--------------------------------+
1172 | Immediate 15:0 |
1173 +-----------------------------------------------+
1174
1175 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1176 Note that the immediate value in the first word is swapped.
1177
1178 When producing a relocatable object file, R_MIPS16_26 is
1179 handled mostly like R_MIPS_26. In particular, the addend is
1180 stored as a straight 26-bit value in a 32-bit instruction.
1181 (gas makes life simpler for itself by never adjusting a
1182 R_MIPS16_26 reloc to be against a section, so the addend is
1183 always zero). However, the 32 bit instruction is stored as 2
1184 16-bit values, rather than a single 32-bit value. In a
1185 big-endian file, the result is the same; in a little-endian
1186 file, the two 16-bit halves of the 32 bit value are swapped.
1187 This is so that a disassembler can recognize the jal
1188 instruction.
1189
1190 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1191 instruction stored as two 16-bit values. The addend A is the
1192 contents of the targ26 field. The calculation is the same as
1193 R_MIPS_26. When storing the calculated value, reorder the
1194 immediate value as shown above, and don't forget to store the
1195 value as two 16-bit values.
1196
1197 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1198 defined as
1199
1200 big-endian:
1201 +--------+----------------------+
1202 | | |
1203 | | targ26-16 |
1204 |31 26|25 0|
1205 +--------+----------------------+
1206
1207 little-endian:
1208 +----------+------+-------------+
1209 | | | |
1210 | sub1 | | sub2 |
1211 |0 9|10 15|16 31|
1212 +----------+--------------------+
1213 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1214 ((sub1 << 16) | sub2)).
1215
1216 When producing a relocatable object file, the calculation is
1217 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1218 When producing a fully linked file, the calculation is
1219 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1220 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1221
1222 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1223 mode. A typical instruction will have a format like this:
1224
1225 +--------------+--------------------------------+
1226 | EXTEND | Imm 10:5 | Imm 15:11 |
1227 +--------------+--------------------------------+
1228 | Major | rx | ry | Imm 4:0 |
1229 +--------------+--------------------------------+
1230
1231 EXTEND is the five bit value 11110. Major is the instruction
1232 opcode.
1233
1234 This is handled exactly like R_MIPS_GPREL16, except that the
1235 addend is retrieved and stored as shown in this diagram; that
1236 is, the Imm fields above replace the V-rel16 field.
1237
1238 All we need to do here is shuffle the bits appropriately. As
1239 above, the two 16-bit halves must be swapped on a
1240 little-endian system.
1241
1242 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1243 access data when neither GP-relative nor PC-relative addressing
1244 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1245 except that the addend is retrieved and stored as shown above
1246 for R_MIPS16_GPREL.
1247 */
1248 void
1249 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1250 bfd_boolean jal_shuffle, bfd_byte *data)
1251 {
1252 bfd_vma extend, insn, val;
1253
1254 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1255 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1256 return;
1257
1258 /* Pick up the mips16 extend instruction and the real instruction. */
1259 extend = bfd_get_16 (abfd, data);
1260 insn = bfd_get_16 (abfd, data + 2);
1261 if (r_type == R_MIPS16_26)
1262 {
1263 if (jal_shuffle)
1264 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1265 | ((extend & 0x1f) << 21) | insn;
1266 else
1267 val = extend << 16 | insn;
1268 }
1269 else
1270 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1271 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1272 bfd_put_32 (abfd, val, data);
1273 }
1274
1275 void
1276 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1277 bfd_boolean jal_shuffle, bfd_byte *data)
1278 {
1279 bfd_vma extend, insn, val;
1280
1281 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1282 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1283 return;
1284
1285 val = bfd_get_32 (abfd, data);
1286 if (r_type == R_MIPS16_26)
1287 {
1288 if (jal_shuffle)
1289 {
1290 insn = val & 0xffff;
1291 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1292 | ((val >> 21) & 0x1f);
1293 }
1294 else
1295 {
1296 insn = val & 0xffff;
1297 extend = val >> 16;
1298 }
1299 }
1300 else
1301 {
1302 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1303 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1304 }
1305 bfd_put_16 (abfd, insn, data + 2);
1306 bfd_put_16 (abfd, extend, data);
1307 }
1308
1309 bfd_reloc_status_type
1310 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1311 arelent *reloc_entry, asection *input_section,
1312 bfd_boolean relocatable, void *data, bfd_vma gp)
1313 {
1314 bfd_vma relocation;
1315 bfd_signed_vma val;
1316 bfd_reloc_status_type status;
1317
1318 if (bfd_is_com_section (symbol->section))
1319 relocation = 0;
1320 else
1321 relocation = symbol->value;
1322
1323 relocation += symbol->section->output_section->vma;
1324 relocation += symbol->section->output_offset;
1325
1326 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1327 return bfd_reloc_outofrange;
1328
1329 /* Set val to the offset into the section or symbol. */
1330 val = reloc_entry->addend;
1331
1332 _bfd_mips_elf_sign_extend (val, 16);
1333
1334 /* Adjust val for the final section location and GP value. If we
1335 are producing relocatable output, we don't want to do this for
1336 an external symbol. */
1337 if (! relocatable
1338 || (symbol->flags & BSF_SECTION_SYM) != 0)
1339 val += relocation - gp;
1340
1341 if (reloc_entry->howto->partial_inplace)
1342 {
1343 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1344 (bfd_byte *) data
1345 + reloc_entry->address);
1346 if (status != bfd_reloc_ok)
1347 return status;
1348 }
1349 else
1350 reloc_entry->addend = val;
1351
1352 if (relocatable)
1353 reloc_entry->address += input_section->output_offset;
1354
1355 return bfd_reloc_ok;
1356 }
1357
1358 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1359 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1360 that contains the relocation field and DATA points to the start of
1361 INPUT_SECTION. */
1362
1363 struct mips_hi16
1364 {
1365 struct mips_hi16 *next;
1366 bfd_byte *data;
1367 asection *input_section;
1368 arelent rel;
1369 };
1370
1371 /* FIXME: This should not be a static variable. */
1372
1373 static struct mips_hi16 *mips_hi16_list;
1374
1375 /* A howto special_function for REL *HI16 relocations. We can only
1376 calculate the correct value once we've seen the partnering
1377 *LO16 relocation, so just save the information for later.
1378
1379 The ABI requires that the *LO16 immediately follow the *HI16.
1380 However, as a GNU extension, we permit an arbitrary number of
1381 *HI16s to be associated with a single *LO16. This significantly
1382 simplies the relocation handling in gcc. */
1383
1384 bfd_reloc_status_type
1385 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1386 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1387 asection *input_section, bfd *output_bfd,
1388 char **error_message ATTRIBUTE_UNUSED)
1389 {
1390 struct mips_hi16 *n;
1391
1392 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1393 return bfd_reloc_outofrange;
1394
1395 n = bfd_malloc (sizeof *n);
1396 if (n == NULL)
1397 return bfd_reloc_outofrange;
1398
1399 n->next = mips_hi16_list;
1400 n->data = data;
1401 n->input_section = input_section;
1402 n->rel = *reloc_entry;
1403 mips_hi16_list = n;
1404
1405 if (output_bfd != NULL)
1406 reloc_entry->address += input_section->output_offset;
1407
1408 return bfd_reloc_ok;
1409 }
1410
1411 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1412 like any other 16-bit relocation when applied to global symbols, but is
1413 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1414
1415 bfd_reloc_status_type
1416 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1417 void *data, asection *input_section,
1418 bfd *output_bfd, char **error_message)
1419 {
1420 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1421 || bfd_is_und_section (bfd_get_section (symbol))
1422 || bfd_is_com_section (bfd_get_section (symbol)))
1423 /* The relocation is against a global symbol. */
1424 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd,
1426 error_message);
1427
1428 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1429 input_section, output_bfd, error_message);
1430 }
1431
1432 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1433 is a straightforward 16 bit inplace relocation, but we must deal with
1434 any partnering high-part relocations as well. */
1435
1436 bfd_reloc_status_type
1437 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1438 void *data, asection *input_section,
1439 bfd *output_bfd, char **error_message)
1440 {
1441 bfd_vma vallo;
1442 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1443
1444 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1445 return bfd_reloc_outofrange;
1446
1447 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1448 location);
1449 vallo = bfd_get_32 (abfd, location);
1450 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1451 location);
1452
1453 while (mips_hi16_list != NULL)
1454 {
1455 bfd_reloc_status_type ret;
1456 struct mips_hi16 *hi;
1457
1458 hi = mips_hi16_list;
1459
1460 /* R_MIPS_GOT16 relocations are something of a special case. We
1461 want to install the addend in the same way as for a R_MIPS_HI16
1462 relocation (with a rightshift of 16). However, since GOT16
1463 relocations can also be used with global symbols, their howto
1464 has a rightshift of 0. */
1465 if (hi->rel.howto->type == R_MIPS_GOT16)
1466 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1467
1468 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1469 carry or borrow will induce a change of +1 or -1 in the high part. */
1470 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1471
1472 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1473 hi->input_section, output_bfd,
1474 error_message);
1475 if (ret != bfd_reloc_ok)
1476 return ret;
1477
1478 mips_hi16_list = hi->next;
1479 free (hi);
1480 }
1481
1482 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1483 input_section, output_bfd,
1484 error_message);
1485 }
1486
1487 /* A generic howto special_function. This calculates and installs the
1488 relocation itself, thus avoiding the oft-discussed problems in
1489 bfd_perform_relocation and bfd_install_relocation. */
1490
1491 bfd_reloc_status_type
1492 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1493 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1494 asection *input_section, bfd *output_bfd,
1495 char **error_message ATTRIBUTE_UNUSED)
1496 {
1497 bfd_signed_vma val;
1498 bfd_reloc_status_type status;
1499 bfd_boolean relocatable;
1500
1501 relocatable = (output_bfd != NULL);
1502
1503 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1504 return bfd_reloc_outofrange;
1505
1506 /* Build up the field adjustment in VAL. */
1507 val = 0;
1508 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1509 {
1510 /* Either we're calculating the final field value or we have a
1511 relocation against a section symbol. Add in the section's
1512 offset or address. */
1513 val += symbol->section->output_section->vma;
1514 val += symbol->section->output_offset;
1515 }
1516
1517 if (!relocatable)
1518 {
1519 /* We're calculating the final field value. Add in the symbol's value
1520 and, if pc-relative, subtract the address of the field itself. */
1521 val += symbol->value;
1522 if (reloc_entry->howto->pc_relative)
1523 {
1524 val -= input_section->output_section->vma;
1525 val -= input_section->output_offset;
1526 val -= reloc_entry->address;
1527 }
1528 }
1529
1530 /* VAL is now the final adjustment. If we're keeping this relocation
1531 in the output file, and if the relocation uses a separate addend,
1532 we just need to add VAL to that addend. Otherwise we need to add
1533 VAL to the relocation field itself. */
1534 if (relocatable && !reloc_entry->howto->partial_inplace)
1535 reloc_entry->addend += val;
1536 else
1537 {
1538 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1539
1540 /* Add in the separate addend, if any. */
1541 val += reloc_entry->addend;
1542
1543 /* Add VAL to the relocation field. */
1544 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
1546 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1547 location);
1548 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1549 location);
1550
1551 if (status != bfd_reloc_ok)
1552 return status;
1553 }
1554
1555 if (relocatable)
1556 reloc_entry->address += input_section->output_offset;
1557
1558 return bfd_reloc_ok;
1559 }
1560 \f
1561 /* Swap an entry in a .gptab section. Note that these routines rely
1562 on the equivalence of the two elements of the union. */
1563
1564 static void
1565 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1566 Elf32_gptab *in)
1567 {
1568 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1569 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1570 }
1571
1572 static void
1573 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1574 Elf32_External_gptab *ex)
1575 {
1576 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1577 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1578 }
1579
1580 static void
1581 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1582 Elf32_External_compact_rel *ex)
1583 {
1584 H_PUT_32 (abfd, in->id1, ex->id1);
1585 H_PUT_32 (abfd, in->num, ex->num);
1586 H_PUT_32 (abfd, in->id2, ex->id2);
1587 H_PUT_32 (abfd, in->offset, ex->offset);
1588 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1589 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1590 }
1591
1592 static void
1593 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1594 Elf32_External_crinfo *ex)
1595 {
1596 unsigned long l;
1597
1598 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1599 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1600 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1601 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1602 H_PUT_32 (abfd, l, ex->info);
1603 H_PUT_32 (abfd, in->konst, ex->konst);
1604 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1605 }
1606 \f
1607 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1608 routines swap this structure in and out. They are used outside of
1609 BFD, so they are globally visible. */
1610
1611 void
1612 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1613 Elf32_RegInfo *in)
1614 {
1615 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1616 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1617 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1618 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1619 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1620 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1621 }
1622
1623 void
1624 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1625 Elf32_External_RegInfo *ex)
1626 {
1627 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1628 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1629 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1630 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1631 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1632 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1633 }
1634
1635 /* In the 64 bit ABI, the .MIPS.options section holds register
1636 information in an Elf64_Reginfo structure. These routines swap
1637 them in and out. They are globally visible because they are used
1638 outside of BFD. These routines are here so that gas can call them
1639 without worrying about whether the 64 bit ABI has been included. */
1640
1641 void
1642 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1643 Elf64_Internal_RegInfo *in)
1644 {
1645 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1646 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1647 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1648 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1649 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1650 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1651 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1652 }
1653
1654 void
1655 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1656 Elf64_External_RegInfo *ex)
1657 {
1658 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1659 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1660 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1661 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1662 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1663 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1664 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1665 }
1666
1667 /* Swap in an options header. */
1668
1669 void
1670 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1671 Elf_Internal_Options *in)
1672 {
1673 in->kind = H_GET_8 (abfd, ex->kind);
1674 in->size = H_GET_8 (abfd, ex->size);
1675 in->section = H_GET_16 (abfd, ex->section);
1676 in->info = H_GET_32 (abfd, ex->info);
1677 }
1678
1679 /* Swap out an options header. */
1680
1681 void
1682 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1683 Elf_External_Options *ex)
1684 {
1685 H_PUT_8 (abfd, in->kind, ex->kind);
1686 H_PUT_8 (abfd, in->size, ex->size);
1687 H_PUT_16 (abfd, in->section, ex->section);
1688 H_PUT_32 (abfd, in->info, ex->info);
1689 }
1690 \f
1691 /* This function is called via qsort() to sort the dynamic relocation
1692 entries by increasing r_symndx value. */
1693
1694 static int
1695 sort_dynamic_relocs (const void *arg1, const void *arg2)
1696 {
1697 Elf_Internal_Rela int_reloc1;
1698 Elf_Internal_Rela int_reloc2;
1699 int diff;
1700
1701 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1702 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1703
1704 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1705 if (diff != 0)
1706 return diff;
1707
1708 if (int_reloc1.r_offset < int_reloc2.r_offset)
1709 return -1;
1710 if (int_reloc1.r_offset > int_reloc2.r_offset)
1711 return 1;
1712 return 0;
1713 }
1714
1715 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1716
1717 static int
1718 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1719 const void *arg2 ATTRIBUTE_UNUSED)
1720 {
1721 #ifdef BFD64
1722 Elf_Internal_Rela int_reloc1[3];
1723 Elf_Internal_Rela int_reloc2[3];
1724
1725 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1726 (reldyn_sorting_bfd, arg1, int_reloc1);
1727 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1728 (reldyn_sorting_bfd, arg2, int_reloc2);
1729
1730 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1731 return -1;
1732 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1733 return 1;
1734
1735 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1736 return -1;
1737 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1738 return 1;
1739 return 0;
1740 #else
1741 abort ();
1742 #endif
1743 }
1744
1745
1746 /* This routine is used to write out ECOFF debugging external symbol
1747 information. It is called via mips_elf_link_hash_traverse. The
1748 ECOFF external symbol information must match the ELF external
1749 symbol information. Unfortunately, at this point we don't know
1750 whether a symbol is required by reloc information, so the two
1751 tables may wind up being different. We must sort out the external
1752 symbol information before we can set the final size of the .mdebug
1753 section, and we must set the size of the .mdebug section before we
1754 can relocate any sections, and we can't know which symbols are
1755 required by relocation until we relocate the sections.
1756 Fortunately, it is relatively unlikely that any symbol will be
1757 stripped but required by a reloc. In particular, it can not happen
1758 when generating a final executable. */
1759
1760 static bfd_boolean
1761 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1762 {
1763 struct extsym_info *einfo = data;
1764 bfd_boolean strip;
1765 asection *sec, *output_section;
1766
1767 if (h->root.root.type == bfd_link_hash_warning)
1768 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1769
1770 if (h->root.indx == -2)
1771 strip = FALSE;
1772 else if ((h->root.def_dynamic
1773 || h->root.ref_dynamic
1774 || h->root.type == bfd_link_hash_new)
1775 && !h->root.def_regular
1776 && !h->root.ref_regular)
1777 strip = TRUE;
1778 else if (einfo->info->strip == strip_all
1779 || (einfo->info->strip == strip_some
1780 && bfd_hash_lookup (einfo->info->keep_hash,
1781 h->root.root.root.string,
1782 FALSE, FALSE) == NULL))
1783 strip = TRUE;
1784 else
1785 strip = FALSE;
1786
1787 if (strip)
1788 return TRUE;
1789
1790 if (h->esym.ifd == -2)
1791 {
1792 h->esym.jmptbl = 0;
1793 h->esym.cobol_main = 0;
1794 h->esym.weakext = 0;
1795 h->esym.reserved = 0;
1796 h->esym.ifd = ifdNil;
1797 h->esym.asym.value = 0;
1798 h->esym.asym.st = stGlobal;
1799
1800 if (h->root.root.type == bfd_link_hash_undefined
1801 || h->root.root.type == bfd_link_hash_undefweak)
1802 {
1803 const char *name;
1804
1805 /* Use undefined class. Also, set class and type for some
1806 special symbols. */
1807 name = h->root.root.root.string;
1808 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1809 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1810 {
1811 h->esym.asym.sc = scData;
1812 h->esym.asym.st = stLabel;
1813 h->esym.asym.value = 0;
1814 }
1815 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1816 {
1817 h->esym.asym.sc = scAbs;
1818 h->esym.asym.st = stLabel;
1819 h->esym.asym.value =
1820 mips_elf_hash_table (einfo->info)->procedure_count;
1821 }
1822 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1823 {
1824 h->esym.asym.sc = scAbs;
1825 h->esym.asym.st = stLabel;
1826 h->esym.asym.value = elf_gp (einfo->abfd);
1827 }
1828 else
1829 h->esym.asym.sc = scUndefined;
1830 }
1831 else if (h->root.root.type != bfd_link_hash_defined
1832 && h->root.root.type != bfd_link_hash_defweak)
1833 h->esym.asym.sc = scAbs;
1834 else
1835 {
1836 const char *name;
1837
1838 sec = h->root.root.u.def.section;
1839 output_section = sec->output_section;
1840
1841 /* When making a shared library and symbol h is the one from
1842 the another shared library, OUTPUT_SECTION may be null. */
1843 if (output_section == NULL)
1844 h->esym.asym.sc = scUndefined;
1845 else
1846 {
1847 name = bfd_section_name (output_section->owner, output_section);
1848
1849 if (strcmp (name, ".text") == 0)
1850 h->esym.asym.sc = scText;
1851 else if (strcmp (name, ".data") == 0)
1852 h->esym.asym.sc = scData;
1853 else if (strcmp (name, ".sdata") == 0)
1854 h->esym.asym.sc = scSData;
1855 else if (strcmp (name, ".rodata") == 0
1856 || strcmp (name, ".rdata") == 0)
1857 h->esym.asym.sc = scRData;
1858 else if (strcmp (name, ".bss") == 0)
1859 h->esym.asym.sc = scBss;
1860 else if (strcmp (name, ".sbss") == 0)
1861 h->esym.asym.sc = scSBss;
1862 else if (strcmp (name, ".init") == 0)
1863 h->esym.asym.sc = scInit;
1864 else if (strcmp (name, ".fini") == 0)
1865 h->esym.asym.sc = scFini;
1866 else
1867 h->esym.asym.sc = scAbs;
1868 }
1869 }
1870
1871 h->esym.asym.reserved = 0;
1872 h->esym.asym.index = indexNil;
1873 }
1874
1875 if (h->root.root.type == bfd_link_hash_common)
1876 h->esym.asym.value = h->root.root.u.c.size;
1877 else if (h->root.root.type == bfd_link_hash_defined
1878 || h->root.root.type == bfd_link_hash_defweak)
1879 {
1880 if (h->esym.asym.sc == scCommon)
1881 h->esym.asym.sc = scBss;
1882 else if (h->esym.asym.sc == scSCommon)
1883 h->esym.asym.sc = scSBss;
1884
1885 sec = h->root.root.u.def.section;
1886 output_section = sec->output_section;
1887 if (output_section != NULL)
1888 h->esym.asym.value = (h->root.root.u.def.value
1889 + sec->output_offset
1890 + output_section->vma);
1891 else
1892 h->esym.asym.value = 0;
1893 }
1894 else if (h->root.needs_plt)
1895 {
1896 struct mips_elf_link_hash_entry *hd = h;
1897 bfd_boolean no_fn_stub = h->no_fn_stub;
1898
1899 while (hd->root.root.type == bfd_link_hash_indirect)
1900 {
1901 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1902 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1903 }
1904
1905 if (!no_fn_stub)
1906 {
1907 /* Set type and value for a symbol with a function stub. */
1908 h->esym.asym.st = stProc;
1909 sec = hd->root.root.u.def.section;
1910 if (sec == NULL)
1911 h->esym.asym.value = 0;
1912 else
1913 {
1914 output_section = sec->output_section;
1915 if (output_section != NULL)
1916 h->esym.asym.value = (hd->root.plt.offset
1917 + sec->output_offset
1918 + output_section->vma);
1919 else
1920 h->esym.asym.value = 0;
1921 }
1922 }
1923 }
1924
1925 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1926 h->root.root.root.string,
1927 &h->esym))
1928 {
1929 einfo->failed = TRUE;
1930 return FALSE;
1931 }
1932
1933 return TRUE;
1934 }
1935
1936 /* A comparison routine used to sort .gptab entries. */
1937
1938 static int
1939 gptab_compare (const void *p1, const void *p2)
1940 {
1941 const Elf32_gptab *a1 = p1;
1942 const Elf32_gptab *a2 = p2;
1943
1944 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1945 }
1946 \f
1947 /* Functions to manage the got entry hash table. */
1948
1949 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1950 hash number. */
1951
1952 static INLINE hashval_t
1953 mips_elf_hash_bfd_vma (bfd_vma addr)
1954 {
1955 #ifdef BFD64
1956 return addr + (addr >> 32);
1957 #else
1958 return addr;
1959 #endif
1960 }
1961
1962 /* got_entries only match if they're identical, except for gotidx, so
1963 use all fields to compute the hash, and compare the appropriate
1964 union members. */
1965
1966 static hashval_t
1967 mips_elf_got_entry_hash (const void *entry_)
1968 {
1969 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1970
1971 return entry->symndx
1972 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1973 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1974 : entry->abfd->id
1975 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1976 : entry->d.h->root.root.root.hash));
1977 }
1978
1979 static int
1980 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1981 {
1982 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1983 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1984
1985 /* An LDM entry can only match another LDM entry. */
1986 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1987 return 0;
1988
1989 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1990 && (! e1->abfd ? e1->d.address == e2->d.address
1991 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1992 : e1->d.h == e2->d.h);
1993 }
1994
1995 /* multi_got_entries are still a match in the case of global objects,
1996 even if the input bfd in which they're referenced differs, so the
1997 hash computation and compare functions are adjusted
1998 accordingly. */
1999
2000 static hashval_t
2001 mips_elf_multi_got_entry_hash (const void *entry_)
2002 {
2003 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2004
2005 return entry->symndx
2006 + (! entry->abfd
2007 ? mips_elf_hash_bfd_vma (entry->d.address)
2008 : entry->symndx >= 0
2009 ? ((entry->tls_type & GOT_TLS_LDM)
2010 ? (GOT_TLS_LDM << 17)
2011 : (entry->abfd->id
2012 + mips_elf_hash_bfd_vma (entry->d.addend)))
2013 : entry->d.h->root.root.root.hash);
2014 }
2015
2016 static int
2017 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2018 {
2019 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2020 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2021
2022 /* Any two LDM entries match. */
2023 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2024 return 1;
2025
2026 /* Nothing else matches an LDM entry. */
2027 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2028 return 0;
2029
2030 return e1->symndx == e2->symndx
2031 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2032 : e1->abfd == NULL || e2->abfd == NULL
2033 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2034 : e1->d.h == e2->d.h);
2035 }
2036 \f
2037 /* Return the dynamic relocation section. If it doesn't exist, try to
2038 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2039 if creation fails. */
2040
2041 static asection *
2042 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2043 {
2044 const char *dname;
2045 asection *sreloc;
2046 bfd *dynobj;
2047
2048 dname = MIPS_ELF_REL_DYN_NAME (info);
2049 dynobj = elf_hash_table (info)->dynobj;
2050 sreloc = bfd_get_section_by_name (dynobj, dname);
2051 if (sreloc == NULL && create_p)
2052 {
2053 sreloc = bfd_make_section_with_flags (dynobj, dname,
2054 (SEC_ALLOC
2055 | SEC_LOAD
2056 | SEC_HAS_CONTENTS
2057 | SEC_IN_MEMORY
2058 | SEC_LINKER_CREATED
2059 | SEC_READONLY));
2060 if (sreloc == NULL
2061 || ! bfd_set_section_alignment (dynobj, sreloc,
2062 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2063 return NULL;
2064 }
2065 return sreloc;
2066 }
2067
2068 /* Returns the GOT section for ABFD. */
2069
2070 static asection *
2071 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2072 {
2073 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2074 if (sgot == NULL
2075 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2076 return NULL;
2077 return sgot;
2078 }
2079
2080 /* Returns the GOT information associated with the link indicated by
2081 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2082 section. */
2083
2084 static struct mips_got_info *
2085 mips_elf_got_info (bfd *abfd, asection **sgotp)
2086 {
2087 asection *sgot;
2088 struct mips_got_info *g;
2089
2090 sgot = mips_elf_got_section (abfd, TRUE);
2091 BFD_ASSERT (sgot != NULL);
2092 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2093 g = mips_elf_section_data (sgot)->u.got_info;
2094 BFD_ASSERT (g != NULL);
2095
2096 if (sgotp)
2097 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2098
2099 return g;
2100 }
2101
2102 /* Count the number of relocations needed for a TLS GOT entry, with
2103 access types from TLS_TYPE, and symbol H (or a local symbol if H
2104 is NULL). */
2105
2106 static int
2107 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2108 struct elf_link_hash_entry *h)
2109 {
2110 int indx = 0;
2111 int ret = 0;
2112 bfd_boolean need_relocs = FALSE;
2113 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2114
2115 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2116 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2117 indx = h->dynindx;
2118
2119 if ((info->shared || indx != 0)
2120 && (h == NULL
2121 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2122 || h->root.type != bfd_link_hash_undefweak))
2123 need_relocs = TRUE;
2124
2125 if (!need_relocs)
2126 return FALSE;
2127
2128 if (tls_type & GOT_TLS_GD)
2129 {
2130 ret++;
2131 if (indx != 0)
2132 ret++;
2133 }
2134
2135 if (tls_type & GOT_TLS_IE)
2136 ret++;
2137
2138 if ((tls_type & GOT_TLS_LDM) && info->shared)
2139 ret++;
2140
2141 return ret;
2142 }
2143
2144 /* Count the number of TLS relocations required for the GOT entry in
2145 ARG1, if it describes a local symbol. */
2146
2147 static int
2148 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2149 {
2150 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2151 struct mips_elf_count_tls_arg *arg = arg2;
2152
2153 if (entry->abfd != NULL && entry->symndx != -1)
2154 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2155
2156 return 1;
2157 }
2158
2159 /* Count the number of TLS GOT entries required for the global (or
2160 forced-local) symbol in ARG1. */
2161
2162 static int
2163 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2164 {
2165 struct mips_elf_link_hash_entry *hm
2166 = (struct mips_elf_link_hash_entry *) arg1;
2167 struct mips_elf_count_tls_arg *arg = arg2;
2168
2169 if (hm->tls_type & GOT_TLS_GD)
2170 arg->needed += 2;
2171 if (hm->tls_type & GOT_TLS_IE)
2172 arg->needed += 1;
2173
2174 return 1;
2175 }
2176
2177 /* Count the number of TLS relocations required for the global (or
2178 forced-local) symbol in ARG1. */
2179
2180 static int
2181 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2182 {
2183 struct mips_elf_link_hash_entry *hm
2184 = (struct mips_elf_link_hash_entry *) arg1;
2185 struct mips_elf_count_tls_arg *arg = arg2;
2186
2187 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2188
2189 return 1;
2190 }
2191
2192 /* Output a simple dynamic relocation into SRELOC. */
2193
2194 static void
2195 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2196 asection *sreloc,
2197 unsigned long indx,
2198 int r_type,
2199 bfd_vma offset)
2200 {
2201 Elf_Internal_Rela rel[3];
2202
2203 memset (rel, 0, sizeof (rel));
2204
2205 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2206 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2207
2208 if (ABI_64_P (output_bfd))
2209 {
2210 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2211 (output_bfd, &rel[0],
2212 (sreloc->contents
2213 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2214 }
2215 else
2216 bfd_elf32_swap_reloc_out
2217 (output_bfd, &rel[0],
2218 (sreloc->contents
2219 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2220 ++sreloc->reloc_count;
2221 }
2222
2223 /* Initialize a set of TLS GOT entries for one symbol. */
2224
2225 static void
2226 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2227 unsigned char *tls_type_p,
2228 struct bfd_link_info *info,
2229 struct mips_elf_link_hash_entry *h,
2230 bfd_vma value)
2231 {
2232 int indx;
2233 asection *sreloc, *sgot;
2234 bfd_vma offset, offset2;
2235 bfd *dynobj;
2236 bfd_boolean need_relocs = FALSE;
2237
2238 dynobj = elf_hash_table (info)->dynobj;
2239 sgot = mips_elf_got_section (dynobj, FALSE);
2240
2241 indx = 0;
2242 if (h != NULL)
2243 {
2244 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2245
2246 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2247 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2248 indx = h->root.dynindx;
2249 }
2250
2251 if (*tls_type_p & GOT_TLS_DONE)
2252 return;
2253
2254 if ((info->shared || indx != 0)
2255 && (h == NULL
2256 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2257 || h->root.type != bfd_link_hash_undefweak))
2258 need_relocs = TRUE;
2259
2260 /* MINUS_ONE means the symbol is not defined in this object. It may not
2261 be defined at all; assume that the value doesn't matter in that
2262 case. Otherwise complain if we would use the value. */
2263 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2264 || h->root.root.type == bfd_link_hash_undefweak);
2265
2266 /* Emit necessary relocations. */
2267 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2268
2269 /* General Dynamic. */
2270 if (*tls_type_p & GOT_TLS_GD)
2271 {
2272 offset = got_offset;
2273 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2274
2275 if (need_relocs)
2276 {
2277 mips_elf_output_dynamic_relocation
2278 (abfd, sreloc, indx,
2279 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2280 sgot->output_offset + sgot->output_section->vma + offset);
2281
2282 if (indx)
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2286 sgot->output_offset + sgot->output_section->vma + offset2);
2287 else
2288 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2289 sgot->contents + offset2);
2290 }
2291 else
2292 {
2293 MIPS_ELF_PUT_WORD (abfd, 1,
2294 sgot->contents + offset);
2295 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2296 sgot->contents + offset2);
2297 }
2298
2299 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2300 }
2301
2302 /* Initial Exec model. */
2303 if (*tls_type_p & GOT_TLS_IE)
2304 {
2305 offset = got_offset;
2306
2307 if (need_relocs)
2308 {
2309 if (indx == 0)
2310 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2311 sgot->contents + offset);
2312 else
2313 MIPS_ELF_PUT_WORD (abfd, 0,
2314 sgot->contents + offset);
2315
2316 mips_elf_output_dynamic_relocation
2317 (abfd, sreloc, indx,
2318 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2319 sgot->output_offset + sgot->output_section->vma + offset);
2320 }
2321 else
2322 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2323 sgot->contents + offset);
2324 }
2325
2326 if (*tls_type_p & GOT_TLS_LDM)
2327 {
2328 /* The initial offset is zero, and the LD offsets will include the
2329 bias by DTP_OFFSET. */
2330 MIPS_ELF_PUT_WORD (abfd, 0,
2331 sgot->contents + got_offset
2332 + MIPS_ELF_GOT_SIZE (abfd));
2333
2334 if (!info->shared)
2335 MIPS_ELF_PUT_WORD (abfd, 1,
2336 sgot->contents + got_offset);
2337 else
2338 mips_elf_output_dynamic_relocation
2339 (abfd, sreloc, indx,
2340 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2341 sgot->output_offset + sgot->output_section->vma + got_offset);
2342 }
2343
2344 *tls_type_p |= GOT_TLS_DONE;
2345 }
2346
2347 /* Return the GOT index to use for a relocation of type R_TYPE against
2348 a symbol accessed using TLS_TYPE models. The GOT entries for this
2349 symbol in this GOT start at GOT_INDEX. This function initializes the
2350 GOT entries and corresponding relocations. */
2351
2352 static bfd_vma
2353 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2354 int r_type, struct bfd_link_info *info,
2355 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2356 {
2357 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2358 || r_type == R_MIPS_TLS_LDM);
2359
2360 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2361
2362 if (r_type == R_MIPS_TLS_GOTTPREL)
2363 {
2364 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2365 if (*tls_type & GOT_TLS_GD)
2366 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2367 else
2368 return got_index;
2369 }
2370
2371 if (r_type == R_MIPS_TLS_GD)
2372 {
2373 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2374 return got_index;
2375 }
2376
2377 if (r_type == R_MIPS_TLS_LDM)
2378 {
2379 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2380 return got_index;
2381 }
2382
2383 return got_index;
2384 }
2385
2386 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2387 for global symbol H. .got.plt comes before the GOT, so the offset
2388 will be negative. */
2389
2390 static bfd_vma
2391 mips_elf_gotplt_index (struct bfd_link_info *info,
2392 struct elf_link_hash_entry *h)
2393 {
2394 bfd_vma plt_index, got_address, got_value;
2395 struct mips_elf_link_hash_table *htab;
2396
2397 htab = mips_elf_hash_table (info);
2398 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2399
2400 /* Calculate the index of the symbol's PLT entry. */
2401 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2402
2403 /* Calculate the address of the associated .got.plt entry. */
2404 got_address = (htab->sgotplt->output_section->vma
2405 + htab->sgotplt->output_offset
2406 + plt_index * 4);
2407
2408 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2409 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2410 + htab->root.hgot->root.u.def.section->output_offset
2411 + htab->root.hgot->root.u.def.value);
2412
2413 return got_address - got_value;
2414 }
2415
2416 /* Return the GOT offset for address VALUE. If there is not yet a GOT
2417 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2418 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2419 offset can be found. */
2420
2421 static bfd_vma
2422 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2423 bfd_vma value, unsigned long r_symndx,
2424 struct mips_elf_link_hash_entry *h, int r_type)
2425 {
2426 asection *sgot;
2427 struct mips_got_info *g;
2428 struct mips_got_entry *entry;
2429
2430 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2431
2432 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2433 value, r_symndx, h, r_type);
2434 if (!entry)
2435 return MINUS_ONE;
2436
2437 if (TLS_RELOC_P (r_type))
2438 {
2439 if (entry->symndx == -1 && g->next == NULL)
2440 /* A type (3) entry in the single-GOT case. We use the symbol's
2441 hash table entry to track the index. */
2442 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2443 r_type, info, h, value);
2444 else
2445 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2446 r_type, info, h, value);
2447 }
2448 else
2449 return entry->gotidx;
2450 }
2451
2452 /* Returns the GOT index for the global symbol indicated by H. */
2453
2454 static bfd_vma
2455 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2456 int r_type, struct bfd_link_info *info)
2457 {
2458 bfd_vma index;
2459 asection *sgot;
2460 struct mips_got_info *g, *gg;
2461 long global_got_dynindx = 0;
2462
2463 gg = g = mips_elf_got_info (abfd, &sgot);
2464 if (g->bfd2got && ibfd)
2465 {
2466 struct mips_got_entry e, *p;
2467
2468 BFD_ASSERT (h->dynindx >= 0);
2469
2470 g = mips_elf_got_for_ibfd (g, ibfd);
2471 if (g->next != gg || TLS_RELOC_P (r_type))
2472 {
2473 e.abfd = ibfd;
2474 e.symndx = -1;
2475 e.d.h = (struct mips_elf_link_hash_entry *)h;
2476 e.tls_type = 0;
2477
2478 p = htab_find (g->got_entries, &e);
2479
2480 BFD_ASSERT (p->gotidx > 0);
2481
2482 if (TLS_RELOC_P (r_type))
2483 {
2484 bfd_vma value = MINUS_ONE;
2485 if ((h->root.type == bfd_link_hash_defined
2486 || h->root.type == bfd_link_hash_defweak)
2487 && h->root.u.def.section->output_section)
2488 value = (h->root.u.def.value
2489 + h->root.u.def.section->output_offset
2490 + h->root.u.def.section->output_section->vma);
2491
2492 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2493 info, e.d.h, value);
2494 }
2495 else
2496 return p->gotidx;
2497 }
2498 }
2499
2500 if (gg->global_gotsym != NULL)
2501 global_got_dynindx = gg->global_gotsym->dynindx;
2502
2503 if (TLS_RELOC_P (r_type))
2504 {
2505 struct mips_elf_link_hash_entry *hm
2506 = (struct mips_elf_link_hash_entry *) h;
2507 bfd_vma value = MINUS_ONE;
2508
2509 if ((h->root.type == bfd_link_hash_defined
2510 || h->root.type == bfd_link_hash_defweak)
2511 && h->root.u.def.section->output_section)
2512 value = (h->root.u.def.value
2513 + h->root.u.def.section->output_offset
2514 + h->root.u.def.section->output_section->vma);
2515
2516 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2517 r_type, info, hm, value);
2518 }
2519 else
2520 {
2521 /* Once we determine the global GOT entry with the lowest dynamic
2522 symbol table index, we must put all dynamic symbols with greater
2523 indices into the GOT. That makes it easy to calculate the GOT
2524 offset. */
2525 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2526 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2527 * MIPS_ELF_GOT_SIZE (abfd));
2528 }
2529 BFD_ASSERT (index < sgot->size);
2530
2531 return index;
2532 }
2533
2534 /* Find a GOT page entry that points to within 32KB of VALUE. These
2535 entries are supposed to be placed at small offsets in the GOT, i.e.,
2536 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2537 entry could be created. If OFFSETP is nonnull, use it to return the
2538 offset of the GOT entry from VALUE. */
2539
2540 static bfd_vma
2541 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2542 bfd_vma value, bfd_vma *offsetp)
2543 {
2544 asection *sgot;
2545 struct mips_got_info *g;
2546 bfd_vma page, index;
2547 struct mips_got_entry *entry;
2548
2549 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2550
2551 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2552 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2553 page, 0, NULL, R_MIPS_GOT_PAGE);
2554
2555 if (!entry)
2556 return MINUS_ONE;
2557
2558 index = entry->gotidx;
2559
2560 if (offsetp)
2561 *offsetp = value - entry->d.address;
2562
2563 return index;
2564 }
2565
2566 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
2567 EXTERNAL is true if the relocation was against a global symbol
2568 that has been forced local. */
2569
2570 static bfd_vma
2571 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2572 bfd_vma value, bfd_boolean external)
2573 {
2574 asection *sgot;
2575 struct mips_got_info *g;
2576 struct mips_got_entry *entry;
2577
2578 /* GOT16 relocations against local symbols are followed by a LO16
2579 relocation; those against global symbols are not. Thus if the
2580 symbol was originally local, the GOT16 relocation should load the
2581 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2582 if (! external)
2583 value = mips_elf_high (value) << 16;
2584
2585 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2586
2587 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2588 value, 0, NULL, R_MIPS_GOT16);
2589 if (entry)
2590 return entry->gotidx;
2591 else
2592 return MINUS_ONE;
2593 }
2594
2595 /* Returns the offset for the entry at the INDEXth position
2596 in the GOT. */
2597
2598 static bfd_vma
2599 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2600 bfd *input_bfd, bfd_vma index)
2601 {
2602 asection *sgot;
2603 bfd_vma gp;
2604 struct mips_got_info *g;
2605
2606 g = mips_elf_got_info (dynobj, &sgot);
2607 gp = _bfd_get_gp_value (output_bfd)
2608 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2609
2610 return sgot->output_section->vma + sgot->output_offset + index - gp;
2611 }
2612
2613 /* Create and return a local GOT entry for VALUE, which was calculated
2614 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2615 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2616 instead. */
2617
2618 static struct mips_got_entry *
2619 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2620 bfd *ibfd, struct mips_got_info *gg,
2621 asection *sgot, bfd_vma value,
2622 unsigned long r_symndx,
2623 struct mips_elf_link_hash_entry *h,
2624 int r_type)
2625 {
2626 struct mips_got_entry entry, **loc;
2627 struct mips_got_info *g;
2628 struct mips_elf_link_hash_table *htab;
2629
2630 htab = mips_elf_hash_table (info);
2631
2632 entry.abfd = NULL;
2633 entry.symndx = -1;
2634 entry.d.address = value;
2635 entry.tls_type = 0;
2636
2637 g = mips_elf_got_for_ibfd (gg, ibfd);
2638 if (g == NULL)
2639 {
2640 g = mips_elf_got_for_ibfd (gg, abfd);
2641 BFD_ASSERT (g != NULL);
2642 }
2643
2644 /* We might have a symbol, H, if it has been forced local. Use the
2645 global entry then. It doesn't matter whether an entry is local
2646 or global for TLS, since the dynamic linker does not
2647 automatically relocate TLS GOT entries. */
2648 BFD_ASSERT (h == NULL || h->root.forced_local);
2649 if (TLS_RELOC_P (r_type))
2650 {
2651 struct mips_got_entry *p;
2652
2653 entry.abfd = ibfd;
2654 if (r_type == R_MIPS_TLS_LDM)
2655 {
2656 entry.tls_type = GOT_TLS_LDM;
2657 entry.symndx = 0;
2658 entry.d.addend = 0;
2659 }
2660 else if (h == NULL)
2661 {
2662 entry.symndx = r_symndx;
2663 entry.d.addend = 0;
2664 }
2665 else
2666 entry.d.h = h;
2667
2668 p = (struct mips_got_entry *)
2669 htab_find (g->got_entries, &entry);
2670
2671 BFD_ASSERT (p);
2672 return p;
2673 }
2674
2675 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2676 INSERT);
2677 if (*loc)
2678 return *loc;
2679
2680 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2681 entry.tls_type = 0;
2682
2683 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2684
2685 if (! *loc)
2686 return NULL;
2687
2688 memcpy (*loc, &entry, sizeof entry);
2689
2690 if (g->assigned_gotno >= g->local_gotno)
2691 {
2692 (*loc)->gotidx = -1;
2693 /* We didn't allocate enough space in the GOT. */
2694 (*_bfd_error_handler)
2695 (_("not enough GOT space for local GOT entries"));
2696 bfd_set_error (bfd_error_bad_value);
2697 return NULL;
2698 }
2699
2700 MIPS_ELF_PUT_WORD (abfd, value,
2701 (sgot->contents + entry.gotidx));
2702
2703 /* These GOT entries need a dynamic relocation on VxWorks. */
2704 if (htab->is_vxworks)
2705 {
2706 Elf_Internal_Rela outrel;
2707 asection *s;
2708 bfd_byte *loc;
2709 bfd_vma got_address;
2710
2711 s = mips_elf_rel_dyn_section (info, FALSE);
2712 got_address = (sgot->output_section->vma
2713 + sgot->output_offset
2714 + entry.gotidx);
2715
2716 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2717 outrel.r_offset = got_address;
2718 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2719 outrel.r_addend = value;
2720 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2721 }
2722
2723 return *loc;
2724 }
2725
2726 /* Sort the dynamic symbol table so that symbols that need GOT entries
2727 appear towards the end. This reduces the amount of GOT space
2728 required. MAX_LOCAL is used to set the number of local symbols
2729 known to be in the dynamic symbol table. During
2730 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2731 section symbols are added and the count is higher. */
2732
2733 static bfd_boolean
2734 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2735 {
2736 struct mips_elf_hash_sort_data hsd;
2737 struct mips_got_info *g;
2738 bfd *dynobj;
2739
2740 dynobj = elf_hash_table (info)->dynobj;
2741
2742 g = mips_elf_got_info (dynobj, NULL);
2743
2744 hsd.low = NULL;
2745 hsd.max_unref_got_dynindx =
2746 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2747 /* In the multi-got case, assigned_gotno of the master got_info
2748 indicate the number of entries that aren't referenced in the
2749 primary GOT, but that must have entries because there are
2750 dynamic relocations that reference it. Since they aren't
2751 referenced, we move them to the end of the GOT, so that they
2752 don't prevent other entries that are referenced from getting
2753 too large offsets. */
2754 - (g->next ? g->assigned_gotno : 0);
2755 hsd.max_non_got_dynindx = max_local;
2756 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2757 elf_hash_table (info)),
2758 mips_elf_sort_hash_table_f,
2759 &hsd);
2760
2761 /* There should have been enough room in the symbol table to
2762 accommodate both the GOT and non-GOT symbols. */
2763 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2764 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2765 <= elf_hash_table (info)->dynsymcount);
2766
2767 /* Now we know which dynamic symbol has the lowest dynamic symbol
2768 table index in the GOT. */
2769 g->global_gotsym = hsd.low;
2770
2771 return TRUE;
2772 }
2773
2774 /* If H needs a GOT entry, assign it the highest available dynamic
2775 index. Otherwise, assign it the lowest available dynamic
2776 index. */
2777
2778 static bfd_boolean
2779 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2780 {
2781 struct mips_elf_hash_sort_data *hsd = data;
2782
2783 if (h->root.root.type == bfd_link_hash_warning)
2784 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2785
2786 /* Symbols without dynamic symbol table entries aren't interesting
2787 at all. */
2788 if (h->root.dynindx == -1)
2789 return TRUE;
2790
2791 /* Global symbols that need GOT entries that are not explicitly
2792 referenced are marked with got offset 2. Those that are
2793 referenced get a 1, and those that don't need GOT entries get
2794 -1. */
2795 if (h->root.got.offset == 2)
2796 {
2797 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2798
2799 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2800 hsd->low = (struct elf_link_hash_entry *) h;
2801 h->root.dynindx = hsd->max_unref_got_dynindx++;
2802 }
2803 else if (h->root.got.offset != 1)
2804 h->root.dynindx = hsd->max_non_got_dynindx++;
2805 else
2806 {
2807 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2808
2809 h->root.dynindx = --hsd->min_got_dynindx;
2810 hsd->low = (struct elf_link_hash_entry *) h;
2811 }
2812
2813 return TRUE;
2814 }
2815
2816 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2817 symbol table index lower than any we've seen to date, record it for
2818 posterity. */
2819
2820 static bfd_boolean
2821 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2822 bfd *abfd, struct bfd_link_info *info,
2823 struct mips_got_info *g,
2824 unsigned char tls_flag)
2825 {
2826 struct mips_got_entry entry, **loc;
2827
2828 /* A global symbol in the GOT must also be in the dynamic symbol
2829 table. */
2830 if (h->dynindx == -1)
2831 {
2832 switch (ELF_ST_VISIBILITY (h->other))
2833 {
2834 case STV_INTERNAL:
2835 case STV_HIDDEN:
2836 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2837 break;
2838 }
2839 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2840 return FALSE;
2841 }
2842
2843 /* Make sure we have a GOT to put this entry into. */
2844 BFD_ASSERT (g != NULL);
2845
2846 entry.abfd = abfd;
2847 entry.symndx = -1;
2848 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2849 entry.tls_type = 0;
2850
2851 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2852 INSERT);
2853
2854 /* If we've already marked this entry as needing GOT space, we don't
2855 need to do it again. */
2856 if (*loc)
2857 {
2858 (*loc)->tls_type |= tls_flag;
2859 return TRUE;
2860 }
2861
2862 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2863
2864 if (! *loc)
2865 return FALSE;
2866
2867 entry.gotidx = -1;
2868 entry.tls_type = tls_flag;
2869
2870 memcpy (*loc, &entry, sizeof entry);
2871
2872 if (h->got.offset != MINUS_ONE)
2873 return TRUE;
2874
2875 /* By setting this to a value other than -1, we are indicating that
2876 there needs to be a GOT entry for H. Avoid using zero, as the
2877 generic ELF copy_indirect_symbol tests for <= 0. */
2878 if (tls_flag == 0)
2879 h->got.offset = 1;
2880
2881 return TRUE;
2882 }
2883
2884 /* Reserve space in G for a GOT entry containing the value of symbol
2885 SYMNDX in input bfd ABDF, plus ADDEND. */
2886
2887 static bfd_boolean
2888 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2889 struct mips_got_info *g,
2890 unsigned char tls_flag)
2891 {
2892 struct mips_got_entry entry, **loc;
2893
2894 entry.abfd = abfd;
2895 entry.symndx = symndx;
2896 entry.d.addend = addend;
2897 entry.tls_type = tls_flag;
2898 loc = (struct mips_got_entry **)
2899 htab_find_slot (g->got_entries, &entry, INSERT);
2900
2901 if (*loc)
2902 {
2903 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2904 {
2905 g->tls_gotno += 2;
2906 (*loc)->tls_type |= tls_flag;
2907 }
2908 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2909 {
2910 g->tls_gotno += 1;
2911 (*loc)->tls_type |= tls_flag;
2912 }
2913 return TRUE;
2914 }
2915
2916 if (tls_flag != 0)
2917 {
2918 entry.gotidx = -1;
2919 entry.tls_type = tls_flag;
2920 if (tls_flag == GOT_TLS_IE)
2921 g->tls_gotno += 1;
2922 else if (tls_flag == GOT_TLS_GD)
2923 g->tls_gotno += 2;
2924 else if (g->tls_ldm_offset == MINUS_ONE)
2925 {
2926 g->tls_ldm_offset = MINUS_TWO;
2927 g->tls_gotno += 2;
2928 }
2929 }
2930 else
2931 {
2932 entry.gotidx = g->local_gotno++;
2933 entry.tls_type = 0;
2934 }
2935
2936 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2937
2938 if (! *loc)
2939 return FALSE;
2940
2941 memcpy (*loc, &entry, sizeof entry);
2942
2943 return TRUE;
2944 }
2945 \f
2946 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2947
2948 static hashval_t
2949 mips_elf_bfd2got_entry_hash (const void *entry_)
2950 {
2951 const struct mips_elf_bfd2got_hash *entry
2952 = (struct mips_elf_bfd2got_hash *)entry_;
2953
2954 return entry->bfd->id;
2955 }
2956
2957 /* Check whether two hash entries have the same bfd. */
2958
2959 static int
2960 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2961 {
2962 const struct mips_elf_bfd2got_hash *e1
2963 = (const struct mips_elf_bfd2got_hash *)entry1;
2964 const struct mips_elf_bfd2got_hash *e2
2965 = (const struct mips_elf_bfd2got_hash *)entry2;
2966
2967 return e1->bfd == e2->bfd;
2968 }
2969
2970 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2971 be the master GOT data. */
2972
2973 static struct mips_got_info *
2974 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2975 {
2976 struct mips_elf_bfd2got_hash e, *p;
2977
2978 if (! g->bfd2got)
2979 return g;
2980
2981 e.bfd = ibfd;
2982 p = htab_find (g->bfd2got, &e);
2983 return p ? p->g : NULL;
2984 }
2985
2986 /* Create one separate got for each bfd that has entries in the global
2987 got, such that we can tell how many local and global entries each
2988 bfd requires. */
2989
2990 static int
2991 mips_elf_make_got_per_bfd (void **entryp, void *p)
2992 {
2993 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2994 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2995 htab_t bfd2got = arg->bfd2got;
2996 struct mips_got_info *g;
2997 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2998 void **bfdgotp;
2999
3000 /* Find the got_info for this GOT entry's input bfd. Create one if
3001 none exists. */
3002 bfdgot_entry.bfd = entry->abfd;
3003 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3004 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3005
3006 if (bfdgot != NULL)
3007 g = bfdgot->g;
3008 else
3009 {
3010 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3011 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3012
3013 if (bfdgot == NULL)
3014 {
3015 arg->obfd = 0;
3016 return 0;
3017 }
3018
3019 *bfdgotp = bfdgot;
3020
3021 bfdgot->bfd = entry->abfd;
3022 bfdgot->g = g = (struct mips_got_info *)
3023 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3024 if (g == NULL)
3025 {
3026 arg->obfd = 0;
3027 return 0;
3028 }
3029
3030 g->global_gotsym = NULL;
3031 g->global_gotno = 0;
3032 g->local_gotno = 0;
3033 g->assigned_gotno = -1;
3034 g->tls_gotno = 0;
3035 g->tls_assigned_gotno = 0;
3036 g->tls_ldm_offset = MINUS_ONE;
3037 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3038 mips_elf_multi_got_entry_eq, NULL);
3039 if (g->got_entries == NULL)
3040 {
3041 arg->obfd = 0;
3042 return 0;
3043 }
3044
3045 g->bfd2got = NULL;
3046 g->next = NULL;
3047 }
3048
3049 /* Insert the GOT entry in the bfd's got entry hash table. */
3050 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3051 if (*entryp != NULL)
3052 return 1;
3053
3054 *entryp = entry;
3055
3056 if (entry->tls_type)
3057 {
3058 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3059 g->tls_gotno += 2;
3060 if (entry->tls_type & GOT_TLS_IE)
3061 g->tls_gotno += 1;
3062 }
3063 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3064 ++g->local_gotno;
3065 else
3066 ++g->global_gotno;
3067
3068 return 1;
3069 }
3070
3071 /* Attempt to merge gots of different input bfds. Try to use as much
3072 as possible of the primary got, since it doesn't require explicit
3073 dynamic relocations, but don't use bfds that would reference global
3074 symbols out of the addressable range. Failing the primary got,
3075 attempt to merge with the current got, or finish the current got
3076 and then make make the new got current. */
3077
3078 static int
3079 mips_elf_merge_gots (void **bfd2got_, void *p)
3080 {
3081 struct mips_elf_bfd2got_hash *bfd2got
3082 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3083 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3084 unsigned int lcount = bfd2got->g->local_gotno;
3085 unsigned int gcount = bfd2got->g->global_gotno;
3086 unsigned int tcount = bfd2got->g->tls_gotno;
3087 unsigned int maxcnt = arg->max_count;
3088 bfd_boolean too_many_for_tls = FALSE;
3089
3090 /* We place TLS GOT entries after both locals and globals. The globals
3091 for the primary GOT may overflow the normal GOT size limit, so be
3092 sure not to merge a GOT which requires TLS with the primary GOT in that
3093 case. This doesn't affect non-primary GOTs. */
3094 if (tcount > 0)
3095 {
3096 unsigned int primary_total = lcount + tcount + arg->global_count;
3097 if (primary_total > maxcnt)
3098 too_many_for_tls = TRUE;
3099 }
3100
3101 /* If we don't have a primary GOT and this is not too big, use it as
3102 a starting point for the primary GOT. */
3103 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3104 && ! too_many_for_tls)
3105 {
3106 arg->primary = bfd2got->g;
3107 arg->primary_count = lcount + gcount;
3108 }
3109 /* If it looks like we can merge this bfd's entries with those of
3110 the primary, merge them. The heuristics is conservative, but we
3111 don't have to squeeze it too hard. */
3112 else if (arg->primary && ! too_many_for_tls
3113 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3114 {
3115 struct mips_got_info *g = bfd2got->g;
3116 int old_lcount = arg->primary->local_gotno;
3117 int old_gcount = arg->primary->global_gotno;
3118 int old_tcount = arg->primary->tls_gotno;
3119
3120 bfd2got->g = arg->primary;
3121
3122 htab_traverse (g->got_entries,
3123 mips_elf_make_got_per_bfd,
3124 arg);
3125 if (arg->obfd == NULL)
3126 return 0;
3127
3128 htab_delete (g->got_entries);
3129 /* We don't have to worry about releasing memory of the actual
3130 got entries, since they're all in the master got_entries hash
3131 table anyway. */
3132
3133 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3134 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3135 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3136
3137 arg->primary_count = arg->primary->local_gotno
3138 + arg->primary->global_gotno + arg->primary->tls_gotno;
3139 }
3140 /* If we can merge with the last-created got, do it. */
3141 else if (arg->current
3142 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3143 {
3144 struct mips_got_info *g = bfd2got->g;
3145 int old_lcount = arg->current->local_gotno;
3146 int old_gcount = arg->current->global_gotno;
3147 int old_tcount = arg->current->tls_gotno;
3148
3149 bfd2got->g = arg->current;
3150
3151 htab_traverse (g->got_entries,
3152 mips_elf_make_got_per_bfd,
3153 arg);
3154 if (arg->obfd == NULL)
3155 return 0;
3156
3157 htab_delete (g->got_entries);
3158
3159 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3160 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3161 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3162
3163 arg->current_count = arg->current->local_gotno
3164 + arg->current->global_gotno + arg->current->tls_gotno;
3165 }
3166 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3167 fits; if it turns out that it doesn't, we'll get relocation
3168 overflows anyway. */
3169 else
3170 {
3171 bfd2got->g->next = arg->current;
3172 arg->current = bfd2got->g;
3173
3174 arg->current_count = lcount + gcount + 2 * tcount;
3175 }
3176
3177 return 1;
3178 }
3179
3180 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3181 is null iff there is just a single GOT. */
3182
3183 static int
3184 mips_elf_initialize_tls_index (void **entryp, void *p)
3185 {
3186 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3187 struct mips_got_info *g = p;
3188 bfd_vma next_index;
3189
3190 /* We're only interested in TLS symbols. */
3191 if (entry->tls_type == 0)
3192 return 1;
3193
3194 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3195
3196 if (entry->symndx == -1 && g->next == NULL)
3197 {
3198 /* A type (3) got entry in the single-GOT case. We use the symbol's
3199 hash table entry to track its index. */
3200 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3201 return 1;
3202 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3203 entry->d.h->tls_got_offset = next_index;
3204 }
3205 else
3206 {
3207 if (entry->tls_type & GOT_TLS_LDM)
3208 {
3209 /* There are separate mips_got_entry objects for each input bfd
3210 that requires an LDM entry. Make sure that all LDM entries in
3211 a GOT resolve to the same index. */
3212 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3213 {
3214 entry->gotidx = g->tls_ldm_offset;
3215 return 1;
3216 }
3217 g->tls_ldm_offset = next_index;
3218 }
3219 entry->gotidx = next_index;
3220 }
3221
3222 /* Account for the entries we've just allocated. */
3223 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3224 g->tls_assigned_gotno += 2;
3225 if (entry->tls_type & GOT_TLS_IE)
3226 g->tls_assigned_gotno += 1;
3227
3228 return 1;
3229 }
3230
3231 /* If passed a NULL mips_got_info in the argument, set the marker used
3232 to tell whether a global symbol needs a got entry (in the primary
3233 got) to the given VALUE.
3234
3235 If passed a pointer G to a mips_got_info in the argument (it must
3236 not be the primary GOT), compute the offset from the beginning of
3237 the (primary) GOT section to the entry in G corresponding to the
3238 global symbol. G's assigned_gotno must contain the index of the
3239 first available global GOT entry in G. VALUE must contain the size
3240 of a GOT entry in bytes. For each global GOT entry that requires a
3241 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3242 marked as not eligible for lazy resolution through a function
3243 stub. */
3244 static int
3245 mips_elf_set_global_got_offset (void **entryp, void *p)
3246 {
3247 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3248 struct mips_elf_set_global_got_offset_arg *arg
3249 = (struct mips_elf_set_global_got_offset_arg *)p;
3250 struct mips_got_info *g = arg->g;
3251
3252 if (g && entry->tls_type != GOT_NORMAL)
3253 arg->needed_relocs +=
3254 mips_tls_got_relocs (arg->info, entry->tls_type,
3255 entry->symndx == -1 ? &entry->d.h->root : NULL);
3256
3257 if (entry->abfd != NULL && entry->symndx == -1
3258 && entry->d.h->root.dynindx != -1
3259 && entry->d.h->tls_type == GOT_NORMAL)
3260 {
3261 if (g)
3262 {
3263 BFD_ASSERT (g->global_gotsym == NULL);
3264
3265 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3266 if (arg->info->shared
3267 || (elf_hash_table (arg->info)->dynamic_sections_created
3268 && entry->d.h->root.def_dynamic
3269 && !entry->d.h->root.def_regular))
3270 ++arg->needed_relocs;
3271 }
3272 else
3273 entry->d.h->root.got.offset = arg->value;
3274 }
3275
3276 return 1;
3277 }
3278
3279 /* Mark any global symbols referenced in the GOT we are iterating over
3280 as inelligible for lazy resolution stubs. */
3281 static int
3282 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3283 {
3284 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3285
3286 if (entry->abfd != NULL
3287 && entry->symndx == -1
3288 && entry->d.h->root.dynindx != -1)
3289 entry->d.h->no_fn_stub = TRUE;
3290
3291 return 1;
3292 }
3293
3294 /* Follow indirect and warning hash entries so that each got entry
3295 points to the final symbol definition. P must point to a pointer
3296 to the hash table we're traversing. Since this traversal may
3297 modify the hash table, we set this pointer to NULL to indicate
3298 we've made a potentially-destructive change to the hash table, so
3299 the traversal must be restarted. */
3300 static int
3301 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3302 {
3303 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3304 htab_t got_entries = *(htab_t *)p;
3305
3306 if (entry->abfd != NULL && entry->symndx == -1)
3307 {
3308 struct mips_elf_link_hash_entry *h = entry->d.h;
3309
3310 while (h->root.root.type == bfd_link_hash_indirect
3311 || h->root.root.type == bfd_link_hash_warning)
3312 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3313
3314 if (entry->d.h == h)
3315 return 1;
3316
3317 entry->d.h = h;
3318
3319 /* If we can't find this entry with the new bfd hash, re-insert
3320 it, and get the traversal restarted. */
3321 if (! htab_find (got_entries, entry))
3322 {
3323 htab_clear_slot (got_entries, entryp);
3324 entryp = htab_find_slot (got_entries, entry, INSERT);
3325 if (! *entryp)
3326 *entryp = entry;
3327 /* Abort the traversal, since the whole table may have
3328 moved, and leave it up to the parent to restart the
3329 process. */
3330 *(htab_t *)p = NULL;
3331 return 0;
3332 }
3333 /* We might want to decrement the global_gotno count, but it's
3334 either too early or too late for that at this point. */
3335 }
3336
3337 return 1;
3338 }
3339
3340 /* Turn indirect got entries in a got_entries table into their final
3341 locations. */
3342 static void
3343 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3344 {
3345 htab_t got_entries;
3346
3347 do
3348 {
3349 got_entries = g->got_entries;
3350
3351 htab_traverse (got_entries,
3352 mips_elf_resolve_final_got_entry,
3353 &got_entries);
3354 }
3355 while (got_entries == NULL);
3356 }
3357
3358 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3359 the primary GOT. */
3360 static bfd_vma
3361 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3362 {
3363 if (g->bfd2got == NULL)
3364 return 0;
3365
3366 g = mips_elf_got_for_ibfd (g, ibfd);
3367 if (! g)
3368 return 0;
3369
3370 BFD_ASSERT (g->next);
3371
3372 g = g->next;
3373
3374 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3375 * MIPS_ELF_GOT_SIZE (abfd);
3376 }
3377
3378 /* Turn a single GOT that is too big for 16-bit addressing into
3379 a sequence of GOTs, each one 16-bit addressable. */
3380
3381 static bfd_boolean
3382 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3383 struct mips_got_info *g, asection *got,
3384 bfd_size_type pages)
3385 {
3386 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3387 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3388 struct mips_got_info *gg;
3389 unsigned int assign;
3390
3391 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3392 mips_elf_bfd2got_entry_eq, NULL);
3393 if (g->bfd2got == NULL)
3394 return FALSE;
3395
3396 got_per_bfd_arg.bfd2got = g->bfd2got;
3397 got_per_bfd_arg.obfd = abfd;
3398 got_per_bfd_arg.info = info;
3399
3400 /* Count how many GOT entries each input bfd requires, creating a
3401 map from bfd to got info while at that. */
3402 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3403 if (got_per_bfd_arg.obfd == NULL)
3404 return FALSE;
3405
3406 got_per_bfd_arg.current = NULL;
3407 got_per_bfd_arg.primary = NULL;
3408 /* Taking out PAGES entries is a worst-case estimate. We could
3409 compute the maximum number of pages that each separate input bfd
3410 uses, but it's probably not worth it. */
3411 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3412 / MIPS_ELF_GOT_SIZE (abfd))
3413 - MIPS_RESERVED_GOTNO (info) - pages);
3414 /* The number of globals that will be included in the primary GOT.
3415 See the calls to mips_elf_set_global_got_offset below for more
3416 information. */
3417 got_per_bfd_arg.global_count = g->global_gotno;
3418
3419 /* Try to merge the GOTs of input bfds together, as long as they
3420 don't seem to exceed the maximum GOT size, choosing one of them
3421 to be the primary GOT. */
3422 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3423 if (got_per_bfd_arg.obfd == NULL)
3424 return FALSE;
3425
3426 /* If we do not find any suitable primary GOT, create an empty one. */
3427 if (got_per_bfd_arg.primary == NULL)
3428 {
3429 g->next = (struct mips_got_info *)
3430 bfd_alloc (abfd, sizeof (struct mips_got_info));
3431 if (g->next == NULL)
3432 return FALSE;
3433
3434 g->next->global_gotsym = NULL;
3435 g->next->global_gotno = 0;
3436 g->next->local_gotno = 0;
3437 g->next->tls_gotno = 0;
3438 g->next->assigned_gotno = 0;
3439 g->next->tls_assigned_gotno = 0;
3440 g->next->tls_ldm_offset = MINUS_ONE;
3441 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3442 mips_elf_multi_got_entry_eq,
3443 NULL);
3444 if (g->next->got_entries == NULL)
3445 return FALSE;
3446 g->next->bfd2got = NULL;
3447 }
3448 else
3449 g->next = got_per_bfd_arg.primary;
3450 g->next->next = got_per_bfd_arg.current;
3451
3452 /* GG is now the master GOT, and G is the primary GOT. */
3453 gg = g;
3454 g = g->next;
3455
3456 /* Map the output bfd to the primary got. That's what we're going
3457 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3458 didn't mark in check_relocs, and we want a quick way to find it.
3459 We can't just use gg->next because we're going to reverse the
3460 list. */
3461 {
3462 struct mips_elf_bfd2got_hash *bfdgot;
3463 void **bfdgotp;
3464
3465 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3466 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3467
3468 if (bfdgot == NULL)
3469 return FALSE;
3470
3471 bfdgot->bfd = abfd;
3472 bfdgot->g = g;
3473 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3474
3475 BFD_ASSERT (*bfdgotp == NULL);
3476 *bfdgotp = bfdgot;
3477 }
3478
3479 /* The IRIX dynamic linker requires every symbol that is referenced
3480 in a dynamic relocation to be present in the primary GOT, so
3481 arrange for them to appear after those that are actually
3482 referenced.
3483
3484 GNU/Linux could very well do without it, but it would slow down
3485 the dynamic linker, since it would have to resolve every dynamic
3486 symbol referenced in other GOTs more than once, without help from
3487 the cache. Also, knowing that every external symbol has a GOT
3488 helps speed up the resolution of local symbols too, so GNU/Linux
3489 follows IRIX's practice.
3490
3491 The number 2 is used by mips_elf_sort_hash_table_f to count
3492 global GOT symbols that are unreferenced in the primary GOT, with
3493 an initial dynamic index computed from gg->assigned_gotno, where
3494 the number of unreferenced global entries in the primary GOT is
3495 preserved. */
3496 if (1)
3497 {
3498 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3499 g->global_gotno = gg->global_gotno;
3500 set_got_offset_arg.value = 2;
3501 }
3502 else
3503 {
3504 /* This could be used for dynamic linkers that don't optimize
3505 symbol resolution while applying relocations so as to use
3506 primary GOT entries or assuming the symbol is locally-defined.
3507 With this code, we assign lower dynamic indices to global
3508 symbols that are not referenced in the primary GOT, so that
3509 their entries can be omitted. */
3510 gg->assigned_gotno = 0;
3511 set_got_offset_arg.value = -1;
3512 }
3513
3514 /* Reorder dynamic symbols as described above (which behavior
3515 depends on the setting of VALUE). */
3516 set_got_offset_arg.g = NULL;
3517 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3518 &set_got_offset_arg);
3519 set_got_offset_arg.value = 1;
3520 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3521 &set_got_offset_arg);
3522 if (! mips_elf_sort_hash_table (info, 1))
3523 return FALSE;
3524
3525 /* Now go through the GOTs assigning them offset ranges.
3526 [assigned_gotno, local_gotno[ will be set to the range of local
3527 entries in each GOT. We can then compute the end of a GOT by
3528 adding local_gotno to global_gotno. We reverse the list and make
3529 it circular since then we'll be able to quickly compute the
3530 beginning of a GOT, by computing the end of its predecessor. To
3531 avoid special cases for the primary GOT, while still preserving
3532 assertions that are valid for both single- and multi-got links,
3533 we arrange for the main got struct to have the right number of
3534 global entries, but set its local_gotno such that the initial
3535 offset of the primary GOT is zero. Remember that the primary GOT
3536 will become the last item in the circular linked list, so it
3537 points back to the master GOT. */
3538 gg->local_gotno = -g->global_gotno;
3539 gg->global_gotno = g->global_gotno;
3540 gg->tls_gotno = 0;
3541 assign = 0;
3542 gg->next = gg;
3543
3544 do
3545 {
3546 struct mips_got_info *gn;
3547
3548 assign += MIPS_RESERVED_GOTNO (info);
3549 g->assigned_gotno = assign;
3550 g->local_gotno += assign + pages;
3551 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3552
3553 /* Take g out of the direct list, and push it onto the reversed
3554 list that gg points to. g->next is guaranteed to be nonnull after
3555 this operation, as required by mips_elf_initialize_tls_index. */
3556 gn = g->next;
3557 g->next = gg->next;
3558 gg->next = g;
3559
3560 /* Set up any TLS entries. We always place the TLS entries after
3561 all non-TLS entries. */
3562 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3563 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3564
3565 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3566 g = gn;
3567
3568 /* Mark global symbols in every non-primary GOT as ineligible for
3569 stubs. */
3570 if (g)
3571 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3572 }
3573 while (g);
3574
3575 got->size = (gg->next->local_gotno
3576 + gg->next->global_gotno
3577 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3578
3579 return TRUE;
3580 }
3581
3582 \f
3583 /* Returns the first relocation of type r_type found, beginning with
3584 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3585
3586 static const Elf_Internal_Rela *
3587 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3588 const Elf_Internal_Rela *relocation,
3589 const Elf_Internal_Rela *relend)
3590 {
3591 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3592
3593 while (relocation < relend)
3594 {
3595 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3596 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3597 return relocation;
3598
3599 ++relocation;
3600 }
3601
3602 /* We didn't find it. */
3603 return NULL;
3604 }
3605
3606 /* Return whether a relocation is against a local symbol. */
3607
3608 static bfd_boolean
3609 mips_elf_local_relocation_p (bfd *input_bfd,
3610 const Elf_Internal_Rela *relocation,
3611 asection **local_sections,
3612 bfd_boolean check_forced)
3613 {
3614 unsigned long r_symndx;
3615 Elf_Internal_Shdr *symtab_hdr;
3616 struct mips_elf_link_hash_entry *h;
3617 size_t extsymoff;
3618
3619 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3620 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3621 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3622
3623 if (r_symndx < extsymoff)
3624 return TRUE;
3625 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3626 return TRUE;
3627
3628 if (check_forced)
3629 {
3630 /* Look up the hash table to check whether the symbol
3631 was forced local. */
3632 h = (struct mips_elf_link_hash_entry *)
3633 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3634 /* Find the real hash-table entry for this symbol. */
3635 while (h->root.root.type == bfd_link_hash_indirect
3636 || h->root.root.type == bfd_link_hash_warning)
3637 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3638 if (h->root.forced_local)
3639 return TRUE;
3640 }
3641
3642 return FALSE;
3643 }
3644 \f
3645 /* Sign-extend VALUE, which has the indicated number of BITS. */
3646
3647 bfd_vma
3648 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3649 {
3650 if (value & ((bfd_vma) 1 << (bits - 1)))
3651 /* VALUE is negative. */
3652 value |= ((bfd_vma) - 1) << bits;
3653
3654 return value;
3655 }
3656
3657 /* Return non-zero if the indicated VALUE has overflowed the maximum
3658 range expressible by a signed number with the indicated number of
3659 BITS. */
3660
3661 static bfd_boolean
3662 mips_elf_overflow_p (bfd_vma value, int bits)
3663 {
3664 bfd_signed_vma svalue = (bfd_signed_vma) value;
3665
3666 if (svalue > (1 << (bits - 1)) - 1)
3667 /* The value is too big. */
3668 return TRUE;
3669 else if (svalue < -(1 << (bits - 1)))
3670 /* The value is too small. */
3671 return TRUE;
3672
3673 /* All is well. */
3674 return FALSE;
3675 }
3676
3677 /* Calculate the %high function. */
3678
3679 static bfd_vma
3680 mips_elf_high (bfd_vma value)
3681 {
3682 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3683 }
3684
3685 /* Calculate the %higher function. */
3686
3687 static bfd_vma
3688 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3689 {
3690 #ifdef BFD64
3691 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3692 #else
3693 abort ();
3694 return MINUS_ONE;
3695 #endif
3696 }
3697
3698 /* Calculate the %highest function. */
3699
3700 static bfd_vma
3701 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3702 {
3703 #ifdef BFD64
3704 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3705 #else
3706 abort ();
3707 return MINUS_ONE;
3708 #endif
3709 }
3710 \f
3711 /* Create the .compact_rel section. */
3712
3713 static bfd_boolean
3714 mips_elf_create_compact_rel_section
3715 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3716 {
3717 flagword flags;
3718 register asection *s;
3719
3720 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3721 {
3722 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3723 | SEC_READONLY);
3724
3725 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3726 if (s == NULL
3727 || ! bfd_set_section_alignment (abfd, s,
3728 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3729 return FALSE;
3730
3731 s->size = sizeof (Elf32_External_compact_rel);
3732 }
3733
3734 return TRUE;
3735 }
3736
3737 /* Create the .got section to hold the global offset table. */
3738
3739 static bfd_boolean
3740 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3741 bfd_boolean maybe_exclude)
3742 {
3743 flagword flags;
3744 register asection *s;
3745 struct elf_link_hash_entry *h;
3746 struct bfd_link_hash_entry *bh;
3747 struct mips_got_info *g;
3748 bfd_size_type amt;
3749 struct mips_elf_link_hash_table *htab;
3750
3751 htab = mips_elf_hash_table (info);
3752
3753 /* This function may be called more than once. */
3754 s = mips_elf_got_section (abfd, TRUE);
3755 if (s)
3756 {
3757 if (! maybe_exclude)
3758 s->flags &= ~SEC_EXCLUDE;
3759 return TRUE;
3760 }
3761
3762 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3763 | SEC_LINKER_CREATED);
3764
3765 if (maybe_exclude)
3766 flags |= SEC_EXCLUDE;
3767
3768 /* We have to use an alignment of 2**4 here because this is hardcoded
3769 in the function stub generation and in the linker script. */
3770 s = bfd_make_section_with_flags (abfd, ".got", flags);
3771 if (s == NULL
3772 || ! bfd_set_section_alignment (abfd, s, 4))
3773 return FALSE;
3774
3775 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3776 linker script because we don't want to define the symbol if we
3777 are not creating a global offset table. */
3778 bh = NULL;
3779 if (! (_bfd_generic_link_add_one_symbol
3780 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3781 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3782 return FALSE;
3783
3784 h = (struct elf_link_hash_entry *) bh;
3785 h->non_elf = 0;
3786 h->def_regular = 1;
3787 h->type = STT_OBJECT;
3788 elf_hash_table (info)->hgot = h;
3789
3790 if (info->shared
3791 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3792 return FALSE;
3793
3794 amt = sizeof (struct mips_got_info);
3795 g = bfd_alloc (abfd, amt);
3796 if (g == NULL)
3797 return FALSE;
3798 g->global_gotsym = NULL;
3799 g->global_gotno = 0;
3800 g->tls_gotno = 0;
3801 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3802 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3803 g->bfd2got = NULL;
3804 g->next = NULL;
3805 g->tls_ldm_offset = MINUS_ONE;
3806 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3807 mips_elf_got_entry_eq, NULL);
3808 if (g->got_entries == NULL)
3809 return FALSE;
3810 mips_elf_section_data (s)->u.got_info = g;
3811 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3812 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3813
3814 /* VxWorks also needs a .got.plt section. */
3815 if (htab->is_vxworks)
3816 {
3817 s = bfd_make_section_with_flags (abfd, ".got.plt",
3818 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3819 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3820 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3821 return FALSE;
3822
3823 htab->sgotplt = s;
3824 }
3825 return TRUE;
3826 }
3827 \f
3828 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3829 __GOTT_INDEX__ symbols. These symbols are only special for
3830 shared objects; they are not used in executables. */
3831
3832 static bfd_boolean
3833 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3834 {
3835 return (mips_elf_hash_table (info)->is_vxworks
3836 && info->shared
3837 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3838 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3839 }
3840 \f
3841 /* Calculate the value produced by the RELOCATION (which comes from
3842 the INPUT_BFD). The ADDEND is the addend to use for this
3843 RELOCATION; RELOCATION->R_ADDEND is ignored.
3844
3845 The result of the relocation calculation is stored in VALUEP.
3846 REQUIRE_JALXP indicates whether or not the opcode used with this
3847 relocation must be JALX.
3848
3849 This function returns bfd_reloc_continue if the caller need take no
3850 further action regarding this relocation, bfd_reloc_notsupported if
3851 something goes dramatically wrong, bfd_reloc_overflow if an
3852 overflow occurs, and bfd_reloc_ok to indicate success. */
3853
3854 static bfd_reloc_status_type
3855 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3856 asection *input_section,
3857 struct bfd_link_info *info,
3858 const Elf_Internal_Rela *relocation,
3859 bfd_vma addend, reloc_howto_type *howto,
3860 Elf_Internal_Sym *local_syms,
3861 asection **local_sections, bfd_vma *valuep,
3862 const char **namep, bfd_boolean *require_jalxp,
3863 bfd_boolean save_addend)
3864 {
3865 /* The eventual value we will return. */
3866 bfd_vma value;
3867 /* The address of the symbol against which the relocation is
3868 occurring. */
3869 bfd_vma symbol = 0;
3870 /* The final GP value to be used for the relocatable, executable, or
3871 shared object file being produced. */
3872 bfd_vma gp = MINUS_ONE;
3873 /* The place (section offset or address) of the storage unit being
3874 relocated. */
3875 bfd_vma p;
3876 /* The value of GP used to create the relocatable object. */
3877 bfd_vma gp0 = MINUS_ONE;
3878 /* The offset into the global offset table at which the address of
3879 the relocation entry symbol, adjusted by the addend, resides
3880 during execution. */
3881 bfd_vma g = MINUS_ONE;
3882 /* The section in which the symbol referenced by the relocation is
3883 located. */
3884 asection *sec = NULL;
3885 struct mips_elf_link_hash_entry *h = NULL;
3886 /* TRUE if the symbol referred to by this relocation is a local
3887 symbol. */
3888 bfd_boolean local_p, was_local_p;
3889 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3890 bfd_boolean gp_disp_p = FALSE;
3891 /* TRUE if the symbol referred to by this relocation is
3892 "__gnu_local_gp". */
3893 bfd_boolean gnu_local_gp_p = FALSE;
3894 Elf_Internal_Shdr *symtab_hdr;
3895 size_t extsymoff;
3896 unsigned long r_symndx;
3897 int r_type;
3898 /* TRUE if overflow occurred during the calculation of the
3899 relocation value. */
3900 bfd_boolean overflowed_p;
3901 /* TRUE if this relocation refers to a MIPS16 function. */
3902 bfd_boolean target_is_16_bit_code_p = FALSE;
3903 struct mips_elf_link_hash_table *htab;
3904 bfd *dynobj;
3905
3906 dynobj = elf_hash_table (info)->dynobj;
3907 htab = mips_elf_hash_table (info);
3908
3909 /* Parse the relocation. */
3910 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3911 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3912 p = (input_section->output_section->vma
3913 + input_section->output_offset
3914 + relocation->r_offset);
3915
3916 /* Assume that there will be no overflow. */
3917 overflowed_p = FALSE;
3918
3919 /* Figure out whether or not the symbol is local, and get the offset
3920 used in the array of hash table entries. */
3921 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3922 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3923 local_sections, FALSE);
3924 was_local_p = local_p;
3925 if (! elf_bad_symtab (input_bfd))
3926 extsymoff = symtab_hdr->sh_info;
3927 else
3928 {
3929 /* The symbol table does not follow the rule that local symbols
3930 must come before globals. */
3931 extsymoff = 0;
3932 }
3933
3934 /* Figure out the value of the symbol. */
3935 if (local_p)
3936 {
3937 Elf_Internal_Sym *sym;
3938
3939 sym = local_syms + r_symndx;
3940 sec = local_sections[r_symndx];
3941
3942 symbol = sec->output_section->vma + sec->output_offset;
3943 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3944 || (sec->flags & SEC_MERGE))
3945 symbol += sym->st_value;
3946 if ((sec->flags & SEC_MERGE)
3947 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3948 {
3949 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3950 addend -= symbol;
3951 addend += sec->output_section->vma + sec->output_offset;
3952 }
3953
3954 /* MIPS16 text labels should be treated as odd. */
3955 if (sym->st_other == STO_MIPS16)
3956 ++symbol;
3957
3958 /* Record the name of this symbol, for our caller. */
3959 *namep = bfd_elf_string_from_elf_section (input_bfd,
3960 symtab_hdr->sh_link,
3961 sym->st_name);
3962 if (*namep == '\0')
3963 *namep = bfd_section_name (input_bfd, sec);
3964
3965 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3966 }
3967 else
3968 {
3969 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3970
3971 /* For global symbols we look up the symbol in the hash-table. */
3972 h = ((struct mips_elf_link_hash_entry *)
3973 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3974 /* Find the real hash-table entry for this symbol. */
3975 while (h->root.root.type == bfd_link_hash_indirect
3976 || h->root.root.type == bfd_link_hash_warning)
3977 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3978
3979 /* Record the name of this symbol, for our caller. */
3980 *namep = h->root.root.root.string;
3981
3982 /* See if this is the special _gp_disp symbol. Note that such a
3983 symbol must always be a global symbol. */
3984 if (strcmp (*namep, "_gp_disp") == 0
3985 && ! NEWABI_P (input_bfd))
3986 {
3987 /* Relocations against _gp_disp are permitted only with
3988 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3989 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3990 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3991 return bfd_reloc_notsupported;
3992
3993 gp_disp_p = TRUE;
3994 }
3995 /* See if this is the special _gp symbol. Note that such a
3996 symbol must always be a global symbol. */
3997 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3998 gnu_local_gp_p = TRUE;
3999
4000
4001 /* If this symbol is defined, calculate its address. Note that
4002 _gp_disp is a magic symbol, always implicitly defined by the
4003 linker, so it's inappropriate to check to see whether or not
4004 its defined. */
4005 else if ((h->root.root.type == bfd_link_hash_defined
4006 || h->root.root.type == bfd_link_hash_defweak)
4007 && h->root.root.u.def.section)
4008 {
4009 sec = h->root.root.u.def.section;
4010 if (sec->output_section)
4011 symbol = (h->root.root.u.def.value
4012 + sec->output_section->vma
4013 + sec->output_offset);
4014 else
4015 symbol = h->root.root.u.def.value;
4016 }
4017 else if (h->root.root.type == bfd_link_hash_undefweak)
4018 /* We allow relocations against undefined weak symbols, giving
4019 it the value zero, so that you can undefined weak functions
4020 and check to see if they exist by looking at their
4021 addresses. */
4022 symbol = 0;
4023 else if (info->unresolved_syms_in_objects == RM_IGNORE
4024 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4025 symbol = 0;
4026 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4027 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4028 {
4029 /* If this is a dynamic link, we should have created a
4030 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4031 in in _bfd_mips_elf_create_dynamic_sections.
4032 Otherwise, we should define the symbol with a value of 0.
4033 FIXME: It should probably get into the symbol table
4034 somehow as well. */
4035 BFD_ASSERT (! info->shared);
4036 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4037 symbol = 0;
4038 }
4039 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4040 {
4041 /* This is an optional symbol - an Irix specific extension to the
4042 ELF spec. Ignore it for now.
4043 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4044 than simply ignoring them, but we do not handle this for now.
4045 For information see the "64-bit ELF Object File Specification"
4046 which is available from here:
4047 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4048 symbol = 0;
4049 }
4050 else
4051 {
4052 if (! ((*info->callbacks->undefined_symbol)
4053 (info, h->root.root.root.string, input_bfd,
4054 input_section, relocation->r_offset,
4055 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4056 || ELF_ST_VISIBILITY (h->root.other))))
4057 return bfd_reloc_undefined;
4058 symbol = 0;
4059 }
4060
4061 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4062 }
4063
4064 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4065 need to redirect the call to the stub, unless we're already *in*
4066 a stub. */
4067 if (r_type != R_MIPS16_26 && !info->relocatable
4068 && ((h != NULL && h->fn_stub != NULL)
4069 || (local_p
4070 && elf_tdata (input_bfd)->local_stubs != NULL
4071 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4072 && !mips16_stub_section_p (input_bfd, input_section))
4073 {
4074 /* This is a 32- or 64-bit call to a 16-bit function. We should
4075 have already noticed that we were going to need the
4076 stub. */
4077 if (local_p)
4078 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4079 else
4080 {
4081 BFD_ASSERT (h->need_fn_stub);
4082 sec = h->fn_stub;
4083 }
4084
4085 symbol = sec->output_section->vma + sec->output_offset;
4086 /* The target is 16-bit, but the stub isn't. */
4087 target_is_16_bit_code_p = FALSE;
4088 }
4089 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4090 need to redirect the call to the stub. */
4091 else if (r_type == R_MIPS16_26 && !info->relocatable
4092 && h != NULL
4093 && ((h->call_stub != NULL || h->call_fp_stub != NULL)
4094 || (local_p
4095 && elf_tdata (input_bfd)->local_call_stubs != NULL
4096 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
4097 && !target_is_16_bit_code_p)
4098 {
4099 if (local_p)
4100 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4101 else
4102 {
4103 /* If both call_stub and call_fp_stub are defined, we can figure
4104 out which one to use by checking which one appears in the input
4105 file. */
4106 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4107 {
4108 asection *o;
4109
4110 sec = NULL;
4111 for (o = input_bfd->sections; o != NULL; o = o->next)
4112 {
4113 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4114 {
4115 sec = h->call_fp_stub;
4116 break;
4117 }
4118 }
4119 if (sec == NULL)
4120 sec = h->call_stub;
4121 }
4122 else if (h->call_stub != NULL)
4123 sec = h->call_stub;
4124 else
4125 sec = h->call_fp_stub;
4126 }
4127
4128 BFD_ASSERT (sec->size > 0);
4129 symbol = sec->output_section->vma + sec->output_offset;
4130 }
4131
4132 /* Calls from 16-bit code to 32-bit code and vice versa require the
4133 special jalx instruction. */
4134 *require_jalxp = (!info->relocatable
4135 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4136 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4137
4138 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4139 local_sections, TRUE);
4140
4141 /* If we haven't already determined the GOT offset, or the GP value,
4142 and we're going to need it, get it now. */
4143 switch (r_type)
4144 {
4145 case R_MIPS_GOT_PAGE:
4146 case R_MIPS_GOT_OFST:
4147 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4148 bind locally. */
4149 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4150 if (local_p || r_type == R_MIPS_GOT_OFST)
4151 break;
4152 /* Fall through. */
4153
4154 case R_MIPS_CALL16:
4155 case R_MIPS_GOT16:
4156 case R_MIPS_GOT_DISP:
4157 case R_MIPS_GOT_HI16:
4158 case R_MIPS_CALL_HI16:
4159 case R_MIPS_GOT_LO16:
4160 case R_MIPS_CALL_LO16:
4161 case R_MIPS_TLS_GD:
4162 case R_MIPS_TLS_GOTTPREL:
4163 case R_MIPS_TLS_LDM:
4164 /* Find the index into the GOT where this value is located. */
4165 if (r_type == R_MIPS_TLS_LDM)
4166 {
4167 g = mips_elf_local_got_index (abfd, input_bfd, info,
4168 0, 0, NULL, r_type);
4169 if (g == MINUS_ONE)
4170 return bfd_reloc_outofrange;
4171 }
4172 else if (!local_p)
4173 {
4174 /* On VxWorks, CALL relocations should refer to the .got.plt
4175 entry, which is initialized to point at the PLT stub. */
4176 if (htab->is_vxworks
4177 && (r_type == R_MIPS_CALL_HI16
4178 || r_type == R_MIPS_CALL_LO16
4179 || r_type == R_MIPS_CALL16))
4180 {
4181 BFD_ASSERT (addend == 0);
4182 BFD_ASSERT (h->root.needs_plt);
4183 g = mips_elf_gotplt_index (info, &h->root);
4184 }
4185 else
4186 {
4187 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4188 GOT_PAGE relocation that decays to GOT_DISP because the
4189 symbol turns out to be global. The addend is then added
4190 as GOT_OFST. */
4191 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4192 g = mips_elf_global_got_index (dynobj, input_bfd,
4193 &h->root, r_type, info);
4194 if (h->tls_type == GOT_NORMAL
4195 && (! elf_hash_table(info)->dynamic_sections_created
4196 || (info->shared
4197 && (info->symbolic || h->root.forced_local)
4198 && h->root.def_regular)))
4199 {
4200 /* This is a static link or a -Bsymbolic link. The
4201 symbol is defined locally, or was forced to be local.
4202 We must initialize this entry in the GOT. */
4203 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4204 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4205 }
4206 }
4207 }
4208 else if (!htab->is_vxworks
4209 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4210 /* The calculation below does not involve "g". */
4211 break;
4212 else
4213 {
4214 g = mips_elf_local_got_index (abfd, input_bfd, info,
4215 symbol + addend, r_symndx, h, r_type);
4216 if (g == MINUS_ONE)
4217 return bfd_reloc_outofrange;
4218 }
4219
4220 /* Convert GOT indices to actual offsets. */
4221 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4222 break;
4223
4224 case R_MIPS_HI16:
4225 case R_MIPS_LO16:
4226 case R_MIPS_GPREL16:
4227 case R_MIPS_GPREL32:
4228 case R_MIPS_LITERAL:
4229 case R_MIPS16_HI16:
4230 case R_MIPS16_LO16:
4231 case R_MIPS16_GPREL:
4232 gp0 = _bfd_get_gp_value (input_bfd);
4233 gp = _bfd_get_gp_value (abfd);
4234 if (dynobj)
4235 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4236 input_bfd);
4237 break;
4238
4239 default:
4240 break;
4241 }
4242
4243 if (gnu_local_gp_p)
4244 symbol = gp;
4245
4246 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4247 symbols are resolved by the loader. Add them to .rela.dyn. */
4248 if (h != NULL && is_gott_symbol (info, &h->root))
4249 {
4250 Elf_Internal_Rela outrel;
4251 bfd_byte *loc;
4252 asection *s;
4253
4254 s = mips_elf_rel_dyn_section (info, FALSE);
4255 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4256
4257 outrel.r_offset = (input_section->output_section->vma
4258 + input_section->output_offset
4259 + relocation->r_offset);
4260 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4261 outrel.r_addend = addend;
4262 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4263
4264 /* If we've written this relocation for a readonly section,
4265 we need to set DF_TEXTREL again, so that we do not delete the
4266 DT_TEXTREL tag. */
4267 if (MIPS_ELF_READONLY_SECTION (input_section))
4268 info->flags |= DF_TEXTREL;
4269
4270 *valuep = 0;
4271 return bfd_reloc_ok;
4272 }
4273
4274 /* Figure out what kind of relocation is being performed. */
4275 switch (r_type)
4276 {
4277 case R_MIPS_NONE:
4278 return bfd_reloc_continue;
4279
4280 case R_MIPS_16:
4281 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4282 overflowed_p = mips_elf_overflow_p (value, 16);
4283 break;
4284
4285 case R_MIPS_32:
4286 case R_MIPS_REL32:
4287 case R_MIPS_64:
4288 if ((info->shared
4289 || (!htab->is_vxworks
4290 && htab->root.dynamic_sections_created
4291 && h != NULL
4292 && h->root.def_dynamic
4293 && !h->root.def_regular))
4294 && r_symndx != 0
4295 && (input_section->flags & SEC_ALLOC) != 0)
4296 {
4297 /* If we're creating a shared library, or this relocation is
4298 against a symbol in a shared library, then we can't know
4299 where the symbol will end up. So, we create a relocation
4300 record in the output, and leave the job up to the dynamic
4301 linker.
4302
4303 In VxWorks executables, references to external symbols
4304 are handled using copy relocs or PLT stubs, so there's
4305 no need to add a dynamic relocation here. */
4306 value = addend;
4307 if (!mips_elf_create_dynamic_relocation (abfd,
4308 info,
4309 relocation,
4310 h,
4311 sec,
4312 symbol,
4313 &value,
4314 input_section))
4315 return bfd_reloc_undefined;
4316 }
4317 else
4318 {
4319 if (r_type != R_MIPS_REL32)
4320 value = symbol + addend;
4321 else
4322 value = addend;
4323 }
4324 value &= howto->dst_mask;
4325 break;
4326
4327 case R_MIPS_PC32:
4328 value = symbol + addend - p;
4329 value &= howto->dst_mask;
4330 break;
4331
4332 case R_MIPS16_26:
4333 /* The calculation for R_MIPS16_26 is just the same as for an
4334 R_MIPS_26. It's only the storage of the relocated field into
4335 the output file that's different. That's handled in
4336 mips_elf_perform_relocation. So, we just fall through to the
4337 R_MIPS_26 case here. */
4338 case R_MIPS_26:
4339 if (local_p)
4340 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4341 else
4342 {
4343 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4344 if (h->root.root.type != bfd_link_hash_undefweak)
4345 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4346 }
4347 value &= howto->dst_mask;
4348 break;
4349
4350 case R_MIPS_TLS_DTPREL_HI16:
4351 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4352 & howto->dst_mask);
4353 break;
4354
4355 case R_MIPS_TLS_DTPREL_LO16:
4356 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4357 break;
4358
4359 case R_MIPS_TLS_TPREL_HI16:
4360 value = (mips_elf_high (addend + symbol - tprel_base (info))
4361 & howto->dst_mask);
4362 break;
4363
4364 case R_MIPS_TLS_TPREL_LO16:
4365 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4366 break;
4367
4368 case R_MIPS_HI16:
4369 case R_MIPS16_HI16:
4370 if (!gp_disp_p)
4371 {
4372 value = mips_elf_high (addend + symbol);
4373 value &= howto->dst_mask;
4374 }
4375 else
4376 {
4377 /* For MIPS16 ABI code we generate this sequence
4378 0: li $v0,%hi(_gp_disp)
4379 4: addiupc $v1,%lo(_gp_disp)
4380 8: sll $v0,16
4381 12: addu $v0,$v1
4382 14: move $gp,$v0
4383 So the offsets of hi and lo relocs are the same, but the
4384 $pc is four higher than $t9 would be, so reduce
4385 both reloc addends by 4. */
4386 if (r_type == R_MIPS16_HI16)
4387 value = mips_elf_high (addend + gp - p - 4);
4388 else
4389 value = mips_elf_high (addend + gp - p);
4390 overflowed_p = mips_elf_overflow_p (value, 16);
4391 }
4392 break;
4393
4394 case R_MIPS_LO16:
4395 case R_MIPS16_LO16:
4396 if (!gp_disp_p)
4397 value = (symbol + addend) & howto->dst_mask;
4398 else
4399 {
4400 /* See the comment for R_MIPS16_HI16 above for the reason
4401 for this conditional. */
4402 if (r_type == R_MIPS16_LO16)
4403 value = addend + gp - p;
4404 else
4405 value = addend + gp - p + 4;
4406 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4407 for overflow. But, on, say, IRIX5, relocations against
4408 _gp_disp are normally generated from the .cpload
4409 pseudo-op. It generates code that normally looks like
4410 this:
4411
4412 lui $gp,%hi(_gp_disp)
4413 addiu $gp,$gp,%lo(_gp_disp)
4414 addu $gp,$gp,$t9
4415
4416 Here $t9 holds the address of the function being called,
4417 as required by the MIPS ELF ABI. The R_MIPS_LO16
4418 relocation can easily overflow in this situation, but the
4419 R_MIPS_HI16 relocation will handle the overflow.
4420 Therefore, we consider this a bug in the MIPS ABI, and do
4421 not check for overflow here. */
4422 }
4423 break;
4424
4425 case R_MIPS_LITERAL:
4426 /* Because we don't merge literal sections, we can handle this
4427 just like R_MIPS_GPREL16. In the long run, we should merge
4428 shared literals, and then we will need to additional work
4429 here. */
4430
4431 /* Fall through. */
4432
4433 case R_MIPS16_GPREL:
4434 /* The R_MIPS16_GPREL performs the same calculation as
4435 R_MIPS_GPREL16, but stores the relocated bits in a different
4436 order. We don't need to do anything special here; the
4437 differences are handled in mips_elf_perform_relocation. */
4438 case R_MIPS_GPREL16:
4439 /* Only sign-extend the addend if it was extracted from the
4440 instruction. If the addend was separate, leave it alone,
4441 otherwise we may lose significant bits. */
4442 if (howto->partial_inplace)
4443 addend = _bfd_mips_elf_sign_extend (addend, 16);
4444 value = symbol + addend - gp;
4445 /* If the symbol was local, any earlier relocatable links will
4446 have adjusted its addend with the gp offset, so compensate
4447 for that now. Don't do it for symbols forced local in this
4448 link, though, since they won't have had the gp offset applied
4449 to them before. */
4450 if (was_local_p)
4451 value += gp0;
4452 overflowed_p = mips_elf_overflow_p (value, 16);
4453 break;
4454
4455 case R_MIPS_GOT16:
4456 case R_MIPS_CALL16:
4457 /* VxWorks does not have separate local and global semantics for
4458 R_MIPS_GOT16; every relocation evaluates to "G". */
4459 if (!htab->is_vxworks && local_p)
4460 {
4461 bfd_boolean forced;
4462
4463 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4464 local_sections, FALSE);
4465 value = mips_elf_got16_entry (abfd, input_bfd, info,
4466 symbol + addend, forced);
4467 if (value == MINUS_ONE)
4468 return bfd_reloc_outofrange;
4469 value
4470 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4471 overflowed_p = mips_elf_overflow_p (value, 16);
4472 break;
4473 }
4474
4475 /* Fall through. */
4476
4477 case R_MIPS_TLS_GD:
4478 case R_MIPS_TLS_GOTTPREL:
4479 case R_MIPS_TLS_LDM:
4480 case R_MIPS_GOT_DISP:
4481 got_disp:
4482 value = g;
4483 overflowed_p = mips_elf_overflow_p (value, 16);
4484 break;
4485
4486 case R_MIPS_GPREL32:
4487 value = (addend + symbol + gp0 - gp);
4488 if (!save_addend)
4489 value &= howto->dst_mask;
4490 break;
4491
4492 case R_MIPS_PC16:
4493 case R_MIPS_GNU_REL16_S2:
4494 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4495 overflowed_p = mips_elf_overflow_p (value, 18);
4496 value >>= howto->rightshift;
4497 value &= howto->dst_mask;
4498 break;
4499
4500 case R_MIPS_GOT_HI16:
4501 case R_MIPS_CALL_HI16:
4502 /* We're allowed to handle these two relocations identically.
4503 The dynamic linker is allowed to handle the CALL relocations
4504 differently by creating a lazy evaluation stub. */
4505 value = g;
4506 value = mips_elf_high (value);
4507 value &= howto->dst_mask;
4508 break;
4509
4510 case R_MIPS_GOT_LO16:
4511 case R_MIPS_CALL_LO16:
4512 value = g & howto->dst_mask;
4513 break;
4514
4515 case R_MIPS_GOT_PAGE:
4516 /* GOT_PAGE relocations that reference non-local symbols decay
4517 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4518 0. */
4519 if (! local_p)
4520 goto got_disp;
4521 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
4522 if (value == MINUS_ONE)
4523 return bfd_reloc_outofrange;
4524 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4525 overflowed_p = mips_elf_overflow_p (value, 16);
4526 break;
4527
4528 case R_MIPS_GOT_OFST:
4529 if (local_p)
4530 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4531 else
4532 value = addend;
4533 overflowed_p = mips_elf_overflow_p (value, 16);
4534 break;
4535
4536 case R_MIPS_SUB:
4537 value = symbol - addend;
4538 value &= howto->dst_mask;
4539 break;
4540
4541 case R_MIPS_HIGHER:
4542 value = mips_elf_higher (addend + symbol);
4543 value &= howto->dst_mask;
4544 break;
4545
4546 case R_MIPS_HIGHEST:
4547 value = mips_elf_highest (addend + symbol);
4548 value &= howto->dst_mask;
4549 break;
4550
4551 case R_MIPS_SCN_DISP:
4552 value = symbol + addend - sec->output_offset;
4553 value &= howto->dst_mask;
4554 break;
4555
4556 case R_MIPS_JALR:
4557 /* This relocation is only a hint. In some cases, we optimize
4558 it into a bal instruction. But we don't try to optimize
4559 branches to the PLT; that will wind up wasting time. */
4560 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4561 return bfd_reloc_continue;
4562 value = symbol + addend;
4563 break;
4564
4565 case R_MIPS_PJUMP:
4566 case R_MIPS_GNU_VTINHERIT:
4567 case R_MIPS_GNU_VTENTRY:
4568 /* We don't do anything with these at present. */
4569 return bfd_reloc_continue;
4570
4571 default:
4572 /* An unrecognized relocation type. */
4573 return bfd_reloc_notsupported;
4574 }
4575
4576 /* Store the VALUE for our caller. */
4577 *valuep = value;
4578 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4579 }
4580
4581 /* Obtain the field relocated by RELOCATION. */
4582
4583 static bfd_vma
4584 mips_elf_obtain_contents (reloc_howto_type *howto,
4585 const Elf_Internal_Rela *relocation,
4586 bfd *input_bfd, bfd_byte *contents)
4587 {
4588 bfd_vma x;
4589 bfd_byte *location = contents + relocation->r_offset;
4590
4591 /* Obtain the bytes. */
4592 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4593
4594 return x;
4595 }
4596
4597 /* It has been determined that the result of the RELOCATION is the
4598 VALUE. Use HOWTO to place VALUE into the output file at the
4599 appropriate position. The SECTION is the section to which the
4600 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4601 for the relocation must be either JAL or JALX, and it is
4602 unconditionally converted to JALX.
4603
4604 Returns FALSE if anything goes wrong. */
4605
4606 static bfd_boolean
4607 mips_elf_perform_relocation (struct bfd_link_info *info,
4608 reloc_howto_type *howto,
4609 const Elf_Internal_Rela *relocation,
4610 bfd_vma value, bfd *input_bfd,
4611 asection *input_section, bfd_byte *contents,
4612 bfd_boolean require_jalx)
4613 {
4614 bfd_vma x;
4615 bfd_byte *location;
4616 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4617
4618 /* Figure out where the relocation is occurring. */
4619 location = contents + relocation->r_offset;
4620
4621 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4622
4623 /* Obtain the current value. */
4624 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4625
4626 /* Clear the field we are setting. */
4627 x &= ~howto->dst_mask;
4628
4629 /* Set the field. */
4630 x |= (value & howto->dst_mask);
4631
4632 /* If required, turn JAL into JALX. */
4633 if (require_jalx)
4634 {
4635 bfd_boolean ok;
4636 bfd_vma opcode = x >> 26;
4637 bfd_vma jalx_opcode;
4638
4639 /* Check to see if the opcode is already JAL or JALX. */
4640 if (r_type == R_MIPS16_26)
4641 {
4642 ok = ((opcode == 0x6) || (opcode == 0x7));
4643 jalx_opcode = 0x7;
4644 }
4645 else
4646 {
4647 ok = ((opcode == 0x3) || (opcode == 0x1d));
4648 jalx_opcode = 0x1d;
4649 }
4650
4651 /* If the opcode is not JAL or JALX, there's a problem. */
4652 if (!ok)
4653 {
4654 (*_bfd_error_handler)
4655 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4656 input_bfd,
4657 input_section,
4658 (unsigned long) relocation->r_offset);
4659 bfd_set_error (bfd_error_bad_value);
4660 return FALSE;
4661 }
4662
4663 /* Make this the JALX opcode. */
4664 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4665 }
4666
4667 /* On the RM9000, bal is faster than jal, because bal uses branch
4668 prediction hardware. If we are linking for the RM9000, and we
4669 see jal, and bal fits, use it instead. Note that this
4670 transformation should be safe for all architectures. */
4671 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4672 && !info->relocatable
4673 && !require_jalx
4674 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4675 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4676 {
4677 bfd_vma addr;
4678 bfd_vma dest;
4679 bfd_signed_vma off;
4680
4681 addr = (input_section->output_section->vma
4682 + input_section->output_offset
4683 + relocation->r_offset
4684 + 4);
4685 if (r_type == R_MIPS_26)
4686 dest = (value << 2) | ((addr >> 28) << 28);
4687 else
4688 dest = value;
4689 off = dest - addr;
4690 if (off <= 0x1ffff && off >= -0x20000)
4691 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4692 }
4693
4694 /* Put the value into the output. */
4695 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4696
4697 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4698 location);
4699
4700 return TRUE;
4701 }
4702
4703 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4704
4705 static bfd_boolean
4706 mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4707 {
4708 const char *name = bfd_get_section_name (abfd, section);
4709
4710 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
4711 }
4712 \f
4713 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4714
4715 static void
4716 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4717 unsigned int n)
4718 {
4719 asection *s;
4720 struct mips_elf_link_hash_table *htab;
4721
4722 htab = mips_elf_hash_table (info);
4723 s = mips_elf_rel_dyn_section (info, FALSE);
4724 BFD_ASSERT (s != NULL);
4725
4726 if (htab->is_vxworks)
4727 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4728 else
4729 {
4730 if (s->size == 0)
4731 {
4732 /* Make room for a null element. */
4733 s->size += MIPS_ELF_REL_SIZE (abfd);
4734 ++s->reloc_count;
4735 }
4736 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4737 }
4738 }
4739
4740 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4741 is the original relocation, which is now being transformed into a
4742 dynamic relocation. The ADDENDP is adjusted if necessary; the
4743 caller should store the result in place of the original addend. */
4744
4745 static bfd_boolean
4746 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4747 struct bfd_link_info *info,
4748 const Elf_Internal_Rela *rel,
4749 struct mips_elf_link_hash_entry *h,
4750 asection *sec, bfd_vma symbol,
4751 bfd_vma *addendp, asection *input_section)
4752 {
4753 Elf_Internal_Rela outrel[3];
4754 asection *sreloc;
4755 bfd *dynobj;
4756 int r_type;
4757 long indx;
4758 bfd_boolean defined_p;
4759 struct mips_elf_link_hash_table *htab;
4760
4761 htab = mips_elf_hash_table (info);
4762 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4763 dynobj = elf_hash_table (info)->dynobj;
4764 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4765 BFD_ASSERT (sreloc != NULL);
4766 BFD_ASSERT (sreloc->contents != NULL);
4767 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4768 < sreloc->size);
4769
4770 outrel[0].r_offset =
4771 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4772 if (ABI_64_P (output_bfd))
4773 {
4774 outrel[1].r_offset =
4775 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4776 outrel[2].r_offset =
4777 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4778 }
4779
4780 if (outrel[0].r_offset == MINUS_ONE)
4781 /* The relocation field has been deleted. */
4782 return TRUE;
4783
4784 if (outrel[0].r_offset == MINUS_TWO)
4785 {
4786 /* The relocation field has been converted into a relative value of
4787 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4788 the field to be fully relocated, so add in the symbol's value. */
4789 *addendp += symbol;
4790 return TRUE;
4791 }
4792
4793 /* We must now calculate the dynamic symbol table index to use
4794 in the relocation. */
4795 if (h != NULL
4796 && (!h->root.def_regular
4797 || (info->shared && !info->symbolic && !h->root.forced_local)))
4798 {
4799 indx = h->root.dynindx;
4800 if (SGI_COMPAT (output_bfd))
4801 defined_p = h->root.def_regular;
4802 else
4803 /* ??? glibc's ld.so just adds the final GOT entry to the
4804 relocation field. It therefore treats relocs against
4805 defined symbols in the same way as relocs against
4806 undefined symbols. */
4807 defined_p = FALSE;
4808 }
4809 else
4810 {
4811 if (sec != NULL && bfd_is_abs_section (sec))
4812 indx = 0;
4813 else if (sec == NULL || sec->owner == NULL)
4814 {
4815 bfd_set_error (bfd_error_bad_value);
4816 return FALSE;
4817 }
4818 else
4819 {
4820 indx = elf_section_data (sec->output_section)->dynindx;
4821 if (indx == 0)
4822 {
4823 asection *osec = htab->root.text_index_section;
4824 indx = elf_section_data (osec)->dynindx;
4825 }
4826 if (indx == 0)
4827 abort ();
4828 }
4829
4830 /* Instead of generating a relocation using the section
4831 symbol, we may as well make it a fully relative
4832 relocation. We want to avoid generating relocations to
4833 local symbols because we used to generate them
4834 incorrectly, without adding the original symbol value,
4835 which is mandated by the ABI for section symbols. In
4836 order to give dynamic loaders and applications time to
4837 phase out the incorrect use, we refrain from emitting
4838 section-relative relocations. It's not like they're
4839 useful, after all. This should be a bit more efficient
4840 as well. */
4841 /* ??? Although this behavior is compatible with glibc's ld.so,
4842 the ABI says that relocations against STN_UNDEF should have
4843 a symbol value of 0. Irix rld honors this, so relocations
4844 against STN_UNDEF have no effect. */
4845 if (!SGI_COMPAT (output_bfd))
4846 indx = 0;
4847 defined_p = TRUE;
4848 }
4849
4850 /* If the relocation was previously an absolute relocation and
4851 this symbol will not be referred to by the relocation, we must
4852 adjust it by the value we give it in the dynamic symbol table.
4853 Otherwise leave the job up to the dynamic linker. */
4854 if (defined_p && r_type != R_MIPS_REL32)
4855 *addendp += symbol;
4856
4857 if (htab->is_vxworks)
4858 /* VxWorks uses non-relative relocations for this. */
4859 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4860 else
4861 /* The relocation is always an REL32 relocation because we don't
4862 know where the shared library will wind up at load-time. */
4863 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4864 R_MIPS_REL32);
4865
4866 /* For strict adherence to the ABI specification, we should
4867 generate a R_MIPS_64 relocation record by itself before the
4868 _REL32/_64 record as well, such that the addend is read in as
4869 a 64-bit value (REL32 is a 32-bit relocation, after all).
4870 However, since none of the existing ELF64 MIPS dynamic
4871 loaders seems to care, we don't waste space with these
4872 artificial relocations. If this turns out to not be true,
4873 mips_elf_allocate_dynamic_relocation() should be tweaked so
4874 as to make room for a pair of dynamic relocations per
4875 invocation if ABI_64_P, and here we should generate an
4876 additional relocation record with R_MIPS_64 by itself for a
4877 NULL symbol before this relocation record. */
4878 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4879 ABI_64_P (output_bfd)
4880 ? R_MIPS_64
4881 : R_MIPS_NONE);
4882 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4883
4884 /* Adjust the output offset of the relocation to reference the
4885 correct location in the output file. */
4886 outrel[0].r_offset += (input_section->output_section->vma
4887 + input_section->output_offset);
4888 outrel[1].r_offset += (input_section->output_section->vma
4889 + input_section->output_offset);
4890 outrel[2].r_offset += (input_section->output_section->vma
4891 + input_section->output_offset);
4892
4893 /* Put the relocation back out. We have to use the special
4894 relocation outputter in the 64-bit case since the 64-bit
4895 relocation format is non-standard. */
4896 if (ABI_64_P (output_bfd))
4897 {
4898 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4899 (output_bfd, &outrel[0],
4900 (sreloc->contents
4901 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4902 }
4903 else if (htab->is_vxworks)
4904 {
4905 /* VxWorks uses RELA rather than REL dynamic relocations. */
4906 outrel[0].r_addend = *addendp;
4907 bfd_elf32_swap_reloca_out
4908 (output_bfd, &outrel[0],
4909 (sreloc->contents
4910 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4911 }
4912 else
4913 bfd_elf32_swap_reloc_out
4914 (output_bfd, &outrel[0],
4915 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4916
4917 /* We've now added another relocation. */
4918 ++sreloc->reloc_count;
4919
4920 /* Make sure the output section is writable. The dynamic linker
4921 will be writing to it. */
4922 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4923 |= SHF_WRITE;
4924
4925 /* On IRIX5, make an entry of compact relocation info. */
4926 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4927 {
4928 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4929 bfd_byte *cr;
4930
4931 if (scpt)
4932 {
4933 Elf32_crinfo cptrel;
4934
4935 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4936 cptrel.vaddr = (rel->r_offset
4937 + input_section->output_section->vma
4938 + input_section->output_offset);
4939 if (r_type == R_MIPS_REL32)
4940 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4941 else
4942 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4943 mips_elf_set_cr_dist2to (cptrel, 0);
4944 cptrel.konst = *addendp;
4945
4946 cr = (scpt->contents
4947 + sizeof (Elf32_External_compact_rel));
4948 mips_elf_set_cr_relvaddr (cptrel, 0);
4949 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4950 ((Elf32_External_crinfo *) cr
4951 + scpt->reloc_count));
4952 ++scpt->reloc_count;
4953 }
4954 }
4955
4956 /* If we've written this relocation for a readonly section,
4957 we need to set DF_TEXTREL again, so that we do not delete the
4958 DT_TEXTREL tag. */
4959 if (MIPS_ELF_READONLY_SECTION (input_section))
4960 info->flags |= DF_TEXTREL;
4961
4962 return TRUE;
4963 }
4964 \f
4965 /* Return the MACH for a MIPS e_flags value. */
4966
4967 unsigned long
4968 _bfd_elf_mips_mach (flagword flags)
4969 {
4970 switch (flags & EF_MIPS_MACH)
4971 {
4972 case E_MIPS_MACH_3900:
4973 return bfd_mach_mips3900;
4974
4975 case E_MIPS_MACH_4010:
4976 return bfd_mach_mips4010;
4977
4978 case E_MIPS_MACH_4100:
4979 return bfd_mach_mips4100;
4980
4981 case E_MIPS_MACH_4111:
4982 return bfd_mach_mips4111;
4983
4984 case E_MIPS_MACH_4120:
4985 return bfd_mach_mips4120;
4986
4987 case E_MIPS_MACH_4650:
4988 return bfd_mach_mips4650;
4989
4990 case E_MIPS_MACH_5400:
4991 return bfd_mach_mips5400;
4992
4993 case E_MIPS_MACH_5500:
4994 return bfd_mach_mips5500;
4995
4996 case E_MIPS_MACH_9000:
4997 return bfd_mach_mips9000;
4998
4999 case E_MIPS_MACH_SB1:
5000 return bfd_mach_mips_sb1;
5001
5002 default:
5003 switch (flags & EF_MIPS_ARCH)
5004 {
5005 default:
5006 case E_MIPS_ARCH_1:
5007 return bfd_mach_mips3000;
5008
5009 case E_MIPS_ARCH_2:
5010 return bfd_mach_mips6000;
5011
5012 case E_MIPS_ARCH_3:
5013 return bfd_mach_mips4000;
5014
5015 case E_MIPS_ARCH_4:
5016 return bfd_mach_mips8000;
5017
5018 case E_MIPS_ARCH_5:
5019 return bfd_mach_mips5;
5020
5021 case E_MIPS_ARCH_32:
5022 return bfd_mach_mipsisa32;
5023
5024 case E_MIPS_ARCH_64:
5025 return bfd_mach_mipsisa64;
5026
5027 case E_MIPS_ARCH_32R2:
5028 return bfd_mach_mipsisa32r2;
5029
5030 case E_MIPS_ARCH_64R2:
5031 return bfd_mach_mipsisa64r2;
5032 }
5033 }
5034
5035 return 0;
5036 }
5037
5038 /* Return printable name for ABI. */
5039
5040 static INLINE char *
5041 elf_mips_abi_name (bfd *abfd)
5042 {
5043 flagword flags;
5044
5045 flags = elf_elfheader (abfd)->e_flags;
5046 switch (flags & EF_MIPS_ABI)
5047 {
5048 case 0:
5049 if (ABI_N32_P (abfd))
5050 return "N32";
5051 else if (ABI_64_P (abfd))
5052 return "64";
5053 else
5054 return "none";
5055 case E_MIPS_ABI_O32:
5056 return "O32";
5057 case E_MIPS_ABI_O64:
5058 return "O64";
5059 case E_MIPS_ABI_EABI32:
5060 return "EABI32";
5061 case E_MIPS_ABI_EABI64:
5062 return "EABI64";
5063 default:
5064 return "unknown abi";
5065 }
5066 }
5067 \f
5068 /* MIPS ELF uses two common sections. One is the usual one, and the
5069 other is for small objects. All the small objects are kept
5070 together, and then referenced via the gp pointer, which yields
5071 faster assembler code. This is what we use for the small common
5072 section. This approach is copied from ecoff.c. */
5073 static asection mips_elf_scom_section;
5074 static asymbol mips_elf_scom_symbol;
5075 static asymbol *mips_elf_scom_symbol_ptr;
5076
5077 /* MIPS ELF also uses an acommon section, which represents an
5078 allocated common symbol which may be overridden by a
5079 definition in a shared library. */
5080 static asection mips_elf_acom_section;
5081 static asymbol mips_elf_acom_symbol;
5082 static asymbol *mips_elf_acom_symbol_ptr;
5083
5084 /* Handle the special MIPS section numbers that a symbol may use.
5085 This is used for both the 32-bit and the 64-bit ABI. */
5086
5087 void
5088 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5089 {
5090 elf_symbol_type *elfsym;
5091
5092 elfsym = (elf_symbol_type *) asym;
5093 switch (elfsym->internal_elf_sym.st_shndx)
5094 {
5095 case SHN_MIPS_ACOMMON:
5096 /* This section is used in a dynamically linked executable file.
5097 It is an allocated common section. The dynamic linker can
5098 either resolve these symbols to something in a shared
5099 library, or it can just leave them here. For our purposes,
5100 we can consider these symbols to be in a new section. */
5101 if (mips_elf_acom_section.name == NULL)
5102 {
5103 /* Initialize the acommon section. */
5104 mips_elf_acom_section.name = ".acommon";
5105 mips_elf_acom_section.flags = SEC_ALLOC;
5106 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5107 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5108 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5109 mips_elf_acom_symbol.name = ".acommon";
5110 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5111 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5112 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5113 }
5114 asym->section = &mips_elf_acom_section;
5115 break;
5116
5117 case SHN_COMMON:
5118 /* Common symbols less than the GP size are automatically
5119 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5120 if (asym->value > elf_gp_size (abfd)
5121 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5122 || IRIX_COMPAT (abfd) == ict_irix6)
5123 break;
5124 /* Fall through. */
5125 case SHN_MIPS_SCOMMON:
5126 if (mips_elf_scom_section.name == NULL)
5127 {
5128 /* Initialize the small common section. */
5129 mips_elf_scom_section.name = ".scommon";
5130 mips_elf_scom_section.flags = SEC_IS_COMMON;
5131 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5132 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5133 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5134 mips_elf_scom_symbol.name = ".scommon";
5135 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5136 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5137 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5138 }
5139 asym->section = &mips_elf_scom_section;
5140 asym->value = elfsym->internal_elf_sym.st_size;
5141 break;
5142
5143 case SHN_MIPS_SUNDEFINED:
5144 asym->section = bfd_und_section_ptr;
5145 break;
5146
5147 case SHN_MIPS_TEXT:
5148 {
5149 asection *section = bfd_get_section_by_name (abfd, ".text");
5150
5151 BFD_ASSERT (SGI_COMPAT (abfd));
5152 if (section != NULL)
5153 {
5154 asym->section = section;
5155 /* MIPS_TEXT is a bit special, the address is not an offset
5156 to the base of the .text section. So substract the section
5157 base address to make it an offset. */
5158 asym->value -= section->vma;
5159 }
5160 }
5161 break;
5162
5163 case SHN_MIPS_DATA:
5164 {
5165 asection *section = bfd_get_section_by_name (abfd, ".data");
5166
5167 BFD_ASSERT (SGI_COMPAT (abfd));
5168 if (section != NULL)
5169 {
5170 asym->section = section;
5171 /* MIPS_DATA is a bit special, the address is not an offset
5172 to the base of the .data section. So substract the section
5173 base address to make it an offset. */
5174 asym->value -= section->vma;
5175 }
5176 }
5177 break;
5178 }
5179 }
5180 \f
5181 /* Implement elf_backend_eh_frame_address_size. This differs from
5182 the default in the way it handles EABI64.
5183
5184 EABI64 was originally specified as an LP64 ABI, and that is what
5185 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5186 historically accepted the combination of -mabi=eabi and -mlong32,
5187 and this ILP32 variation has become semi-official over time.
5188 Both forms use elf32 and have pointer-sized FDE addresses.
5189
5190 If an EABI object was generated by GCC 4.0 or above, it will have
5191 an empty .gcc_compiled_longXX section, where XX is the size of longs
5192 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5193 have no special marking to distinguish them from LP64 objects.
5194
5195 We don't want users of the official LP64 ABI to be punished for the
5196 existence of the ILP32 variant, but at the same time, we don't want
5197 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5198 We therefore take the following approach:
5199
5200 - If ABFD contains a .gcc_compiled_longXX section, use it to
5201 determine the pointer size.
5202
5203 - Otherwise check the type of the first relocation. Assume that
5204 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5205
5206 - Otherwise punt.
5207
5208 The second check is enough to detect LP64 objects generated by pre-4.0
5209 compilers because, in the kind of output generated by those compilers,
5210 the first relocation will be associated with either a CIE personality
5211 routine or an FDE start address. Furthermore, the compilers never
5212 used a special (non-pointer) encoding for this ABI.
5213
5214 Checking the relocation type should also be safe because there is no
5215 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5216 did so. */
5217
5218 unsigned int
5219 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5220 {
5221 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5222 return 8;
5223 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5224 {
5225 bfd_boolean long32_p, long64_p;
5226
5227 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5228 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5229 if (long32_p && long64_p)
5230 return 0;
5231 if (long32_p)
5232 return 4;
5233 if (long64_p)
5234 return 8;
5235
5236 if (sec->reloc_count > 0
5237 && elf_section_data (sec)->relocs != NULL
5238 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5239 == R_MIPS_64))
5240 return 8;
5241
5242 return 0;
5243 }
5244 return 4;
5245 }
5246 \f
5247 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5248 relocations against two unnamed section symbols to resolve to the
5249 same address. For example, if we have code like:
5250
5251 lw $4,%got_disp(.data)($gp)
5252 lw $25,%got_disp(.text)($gp)
5253 jalr $25
5254
5255 then the linker will resolve both relocations to .data and the program
5256 will jump there rather than to .text.
5257
5258 We can work around this problem by giving names to local section symbols.
5259 This is also what the MIPSpro tools do. */
5260
5261 bfd_boolean
5262 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5263 {
5264 return SGI_COMPAT (abfd);
5265 }
5266 \f
5267 /* Work over a section just before writing it out. This routine is
5268 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5269 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5270 a better way. */
5271
5272 bfd_boolean
5273 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5274 {
5275 if (hdr->sh_type == SHT_MIPS_REGINFO
5276 && hdr->sh_size > 0)
5277 {
5278 bfd_byte buf[4];
5279
5280 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5281 BFD_ASSERT (hdr->contents == NULL);
5282
5283 if (bfd_seek (abfd,
5284 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5285 SEEK_SET) != 0)
5286 return FALSE;
5287 H_PUT_32 (abfd, elf_gp (abfd), buf);
5288 if (bfd_bwrite (buf, 4, abfd) != 4)
5289 return FALSE;
5290 }
5291
5292 if (hdr->sh_type == SHT_MIPS_OPTIONS
5293 && hdr->bfd_section != NULL
5294 && mips_elf_section_data (hdr->bfd_section) != NULL
5295 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5296 {
5297 bfd_byte *contents, *l, *lend;
5298
5299 /* We stored the section contents in the tdata field in the
5300 set_section_contents routine. We save the section contents
5301 so that we don't have to read them again.
5302 At this point we know that elf_gp is set, so we can look
5303 through the section contents to see if there is an
5304 ODK_REGINFO structure. */
5305
5306 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5307 l = contents;
5308 lend = contents + hdr->sh_size;
5309 while (l + sizeof (Elf_External_Options) <= lend)
5310 {
5311 Elf_Internal_Options intopt;
5312
5313 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5314 &intopt);
5315 if (intopt.size < sizeof (Elf_External_Options))
5316 {
5317 (*_bfd_error_handler)
5318 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5319 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5320 break;
5321 }
5322 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5323 {
5324 bfd_byte buf[8];
5325
5326 if (bfd_seek (abfd,
5327 (hdr->sh_offset
5328 + (l - contents)
5329 + sizeof (Elf_External_Options)
5330 + (sizeof (Elf64_External_RegInfo) - 8)),
5331 SEEK_SET) != 0)
5332 return FALSE;
5333 H_PUT_64 (abfd, elf_gp (abfd), buf);
5334 if (bfd_bwrite (buf, 8, abfd) != 8)
5335 return FALSE;
5336 }
5337 else if (intopt.kind == ODK_REGINFO)
5338 {
5339 bfd_byte buf[4];
5340
5341 if (bfd_seek (abfd,
5342 (hdr->sh_offset
5343 + (l - contents)
5344 + sizeof (Elf_External_Options)
5345 + (sizeof (Elf32_External_RegInfo) - 4)),
5346 SEEK_SET) != 0)
5347 return FALSE;
5348 H_PUT_32 (abfd, elf_gp (abfd), buf);
5349 if (bfd_bwrite (buf, 4, abfd) != 4)
5350 return FALSE;
5351 }
5352 l += intopt.size;
5353 }
5354 }
5355
5356 if (hdr->bfd_section != NULL)
5357 {
5358 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5359
5360 if (strcmp (name, ".sdata") == 0
5361 || strcmp (name, ".lit8") == 0
5362 || strcmp (name, ".lit4") == 0)
5363 {
5364 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5365 hdr->sh_type = SHT_PROGBITS;
5366 }
5367 else if (strcmp (name, ".sbss") == 0)
5368 {
5369 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5370 hdr->sh_type = SHT_NOBITS;
5371 }
5372 else if (strcmp (name, ".srdata") == 0)
5373 {
5374 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5375 hdr->sh_type = SHT_PROGBITS;
5376 }
5377 else if (strcmp (name, ".compact_rel") == 0)
5378 {
5379 hdr->sh_flags = 0;
5380 hdr->sh_type = SHT_PROGBITS;
5381 }
5382 else if (strcmp (name, ".rtproc") == 0)
5383 {
5384 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5385 {
5386 unsigned int adjust;
5387
5388 adjust = hdr->sh_size % hdr->sh_addralign;
5389 if (adjust != 0)
5390 hdr->sh_size += hdr->sh_addralign - adjust;
5391 }
5392 }
5393 }
5394
5395 return TRUE;
5396 }
5397
5398 /* Handle a MIPS specific section when reading an object file. This
5399 is called when elfcode.h finds a section with an unknown type.
5400 This routine supports both the 32-bit and 64-bit ELF ABI.
5401
5402 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5403 how to. */
5404
5405 bfd_boolean
5406 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5407 Elf_Internal_Shdr *hdr,
5408 const char *name,
5409 int shindex)
5410 {
5411 flagword flags = 0;
5412
5413 /* There ought to be a place to keep ELF backend specific flags, but
5414 at the moment there isn't one. We just keep track of the
5415 sections by their name, instead. Fortunately, the ABI gives
5416 suggested names for all the MIPS specific sections, so we will
5417 probably get away with this. */
5418 switch (hdr->sh_type)
5419 {
5420 case SHT_MIPS_LIBLIST:
5421 if (strcmp (name, ".liblist") != 0)
5422 return FALSE;
5423 break;
5424 case SHT_MIPS_MSYM:
5425 if (strcmp (name, ".msym") != 0)
5426 return FALSE;
5427 break;
5428 case SHT_MIPS_CONFLICT:
5429 if (strcmp (name, ".conflict") != 0)
5430 return FALSE;
5431 break;
5432 case SHT_MIPS_GPTAB:
5433 if (! CONST_STRNEQ (name, ".gptab."))
5434 return FALSE;
5435 break;
5436 case SHT_MIPS_UCODE:
5437 if (strcmp (name, ".ucode") != 0)
5438 return FALSE;
5439 break;
5440 case SHT_MIPS_DEBUG:
5441 if (strcmp (name, ".mdebug") != 0)
5442 return FALSE;
5443 flags = SEC_DEBUGGING;
5444 break;
5445 case SHT_MIPS_REGINFO:
5446 if (strcmp (name, ".reginfo") != 0
5447 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5448 return FALSE;
5449 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5450 break;
5451 case SHT_MIPS_IFACE:
5452 if (strcmp (name, ".MIPS.interfaces") != 0)
5453 return FALSE;
5454 break;
5455 case SHT_MIPS_CONTENT:
5456 if (! CONST_STRNEQ (name, ".MIPS.content"))
5457 return FALSE;
5458 break;
5459 case SHT_MIPS_OPTIONS:
5460 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5461 return FALSE;
5462 break;
5463 case SHT_MIPS_DWARF:
5464 if (! CONST_STRNEQ (name, ".debug_"))
5465 return FALSE;
5466 break;
5467 case SHT_MIPS_SYMBOL_LIB:
5468 if (strcmp (name, ".MIPS.symlib") != 0)
5469 return FALSE;
5470 break;
5471 case SHT_MIPS_EVENTS:
5472 if (! CONST_STRNEQ (name, ".MIPS.events")
5473 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5474 return FALSE;
5475 break;
5476 default:
5477 break;
5478 }
5479
5480 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5481 return FALSE;
5482
5483 if (flags)
5484 {
5485 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5486 (bfd_get_section_flags (abfd,
5487 hdr->bfd_section)
5488 | flags)))
5489 return FALSE;
5490 }
5491
5492 /* FIXME: We should record sh_info for a .gptab section. */
5493
5494 /* For a .reginfo section, set the gp value in the tdata information
5495 from the contents of this section. We need the gp value while
5496 processing relocs, so we just get it now. The .reginfo section
5497 is not used in the 64-bit MIPS ELF ABI. */
5498 if (hdr->sh_type == SHT_MIPS_REGINFO)
5499 {
5500 Elf32_External_RegInfo ext;
5501 Elf32_RegInfo s;
5502
5503 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5504 &ext, 0, sizeof ext))
5505 return FALSE;
5506 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5507 elf_gp (abfd) = s.ri_gp_value;
5508 }
5509
5510 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5511 set the gp value based on what we find. We may see both
5512 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5513 they should agree. */
5514 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5515 {
5516 bfd_byte *contents, *l, *lend;
5517
5518 contents = bfd_malloc (hdr->sh_size);
5519 if (contents == NULL)
5520 return FALSE;
5521 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5522 0, hdr->sh_size))
5523 {
5524 free (contents);
5525 return FALSE;
5526 }
5527 l = contents;
5528 lend = contents + hdr->sh_size;
5529 while (l + sizeof (Elf_External_Options) <= lend)
5530 {
5531 Elf_Internal_Options intopt;
5532
5533 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5534 &intopt);
5535 if (intopt.size < sizeof (Elf_External_Options))
5536 {
5537 (*_bfd_error_handler)
5538 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5539 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5540 break;
5541 }
5542 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5543 {
5544 Elf64_Internal_RegInfo intreg;
5545
5546 bfd_mips_elf64_swap_reginfo_in
5547 (abfd,
5548 ((Elf64_External_RegInfo *)
5549 (l + sizeof (Elf_External_Options))),
5550 &intreg);
5551 elf_gp (abfd) = intreg.ri_gp_value;
5552 }
5553 else if (intopt.kind == ODK_REGINFO)
5554 {
5555 Elf32_RegInfo intreg;
5556
5557 bfd_mips_elf32_swap_reginfo_in
5558 (abfd,
5559 ((Elf32_External_RegInfo *)
5560 (l + sizeof (Elf_External_Options))),
5561 &intreg);
5562 elf_gp (abfd) = intreg.ri_gp_value;
5563 }
5564 l += intopt.size;
5565 }
5566 free (contents);
5567 }
5568
5569 return TRUE;
5570 }
5571
5572 /* Set the correct type for a MIPS ELF section. We do this by the
5573 section name, which is a hack, but ought to work. This routine is
5574 used by both the 32-bit and the 64-bit ABI. */
5575
5576 bfd_boolean
5577 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5578 {
5579 const char *name = bfd_get_section_name (abfd, sec);
5580
5581 if (strcmp (name, ".liblist") == 0)
5582 {
5583 hdr->sh_type = SHT_MIPS_LIBLIST;
5584 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5585 /* The sh_link field is set in final_write_processing. */
5586 }
5587 else if (strcmp (name, ".conflict") == 0)
5588 hdr->sh_type = SHT_MIPS_CONFLICT;
5589 else if (CONST_STRNEQ (name, ".gptab."))
5590 {
5591 hdr->sh_type = SHT_MIPS_GPTAB;
5592 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5593 /* The sh_info field is set in final_write_processing. */
5594 }
5595 else if (strcmp (name, ".ucode") == 0)
5596 hdr->sh_type = SHT_MIPS_UCODE;
5597 else if (strcmp (name, ".mdebug") == 0)
5598 {
5599 hdr->sh_type = SHT_MIPS_DEBUG;
5600 /* In a shared object on IRIX 5.3, the .mdebug section has an
5601 entsize of 0. FIXME: Does this matter? */
5602 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5603 hdr->sh_entsize = 0;
5604 else
5605 hdr->sh_entsize = 1;
5606 }
5607 else if (strcmp (name, ".reginfo") == 0)
5608 {
5609 hdr->sh_type = SHT_MIPS_REGINFO;
5610 /* In a shared object on IRIX 5.3, the .reginfo section has an
5611 entsize of 0x18. FIXME: Does this matter? */
5612 if (SGI_COMPAT (abfd))
5613 {
5614 if ((abfd->flags & DYNAMIC) != 0)
5615 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5616 else
5617 hdr->sh_entsize = 1;
5618 }
5619 else
5620 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5621 }
5622 else if (SGI_COMPAT (abfd)
5623 && (strcmp (name, ".hash") == 0
5624 || strcmp (name, ".dynamic") == 0
5625 || strcmp (name, ".dynstr") == 0))
5626 {
5627 if (SGI_COMPAT (abfd))
5628 hdr->sh_entsize = 0;
5629 #if 0
5630 /* This isn't how the IRIX6 linker behaves. */
5631 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5632 #endif
5633 }
5634 else if (strcmp (name, ".got") == 0
5635 || strcmp (name, ".srdata") == 0
5636 || strcmp (name, ".sdata") == 0
5637 || strcmp (name, ".sbss") == 0
5638 || strcmp (name, ".lit4") == 0
5639 || strcmp (name, ".lit8") == 0)
5640 hdr->sh_flags |= SHF_MIPS_GPREL;
5641 else if (strcmp (name, ".MIPS.interfaces") == 0)
5642 {
5643 hdr->sh_type = SHT_MIPS_IFACE;
5644 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5645 }
5646 else if (CONST_STRNEQ (name, ".MIPS.content"))
5647 {
5648 hdr->sh_type = SHT_MIPS_CONTENT;
5649 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5650 /* The sh_info field is set in final_write_processing. */
5651 }
5652 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5653 {
5654 hdr->sh_type = SHT_MIPS_OPTIONS;
5655 hdr->sh_entsize = 1;
5656 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5657 }
5658 else if (CONST_STRNEQ (name, ".debug_"))
5659 hdr->sh_type = SHT_MIPS_DWARF;
5660 else if (strcmp (name, ".MIPS.symlib") == 0)
5661 {
5662 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5663 /* The sh_link and sh_info fields are set in
5664 final_write_processing. */
5665 }
5666 else if (CONST_STRNEQ (name, ".MIPS.events")
5667 || CONST_STRNEQ (name, ".MIPS.post_rel"))
5668 {
5669 hdr->sh_type = SHT_MIPS_EVENTS;
5670 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5671 /* The sh_link field is set in final_write_processing. */
5672 }
5673 else if (strcmp (name, ".msym") == 0)
5674 {
5675 hdr->sh_type = SHT_MIPS_MSYM;
5676 hdr->sh_flags |= SHF_ALLOC;
5677 hdr->sh_entsize = 8;
5678 }
5679
5680 /* The generic elf_fake_sections will set up REL_HDR using the default
5681 kind of relocations. We used to set up a second header for the
5682 non-default kind of relocations here, but only NewABI would use
5683 these, and the IRIX ld doesn't like resulting empty RELA sections.
5684 Thus we create those header only on demand now. */
5685
5686 return TRUE;
5687 }
5688
5689 /* Given a BFD section, try to locate the corresponding ELF section
5690 index. This is used by both the 32-bit and the 64-bit ABI.
5691 Actually, it's not clear to me that the 64-bit ABI supports these,
5692 but for non-PIC objects we will certainly want support for at least
5693 the .scommon section. */
5694
5695 bfd_boolean
5696 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5697 asection *sec, int *retval)
5698 {
5699 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5700 {
5701 *retval = SHN_MIPS_SCOMMON;
5702 return TRUE;
5703 }
5704 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5705 {
5706 *retval = SHN_MIPS_ACOMMON;
5707 return TRUE;
5708 }
5709 return FALSE;
5710 }
5711 \f
5712 /* Hook called by the linker routine which adds symbols from an object
5713 file. We must handle the special MIPS section numbers here. */
5714
5715 bfd_boolean
5716 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5717 Elf_Internal_Sym *sym, const char **namep,
5718 flagword *flagsp ATTRIBUTE_UNUSED,
5719 asection **secp, bfd_vma *valp)
5720 {
5721 if (SGI_COMPAT (abfd)
5722 && (abfd->flags & DYNAMIC) != 0
5723 && strcmp (*namep, "_rld_new_interface") == 0)
5724 {
5725 /* Skip IRIX5 rld entry name. */
5726 *namep = NULL;
5727 return TRUE;
5728 }
5729
5730 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5731 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5732 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5733 a magic symbol resolved by the linker, we ignore this bogus definition
5734 of _gp_disp. New ABI objects do not suffer from this problem so this
5735 is not done for them. */
5736 if (!NEWABI_P(abfd)
5737 && (sym->st_shndx == SHN_ABS)
5738 && (strcmp (*namep, "_gp_disp") == 0))
5739 {
5740 *namep = NULL;
5741 return TRUE;
5742 }
5743
5744 switch (sym->st_shndx)
5745 {
5746 case SHN_COMMON:
5747 /* Common symbols less than the GP size are automatically
5748 treated as SHN_MIPS_SCOMMON symbols. */
5749 if (sym->st_size > elf_gp_size (abfd)
5750 || ELF_ST_TYPE (sym->st_info) == STT_TLS
5751 || IRIX_COMPAT (abfd) == ict_irix6)
5752 break;
5753 /* Fall through. */
5754 case SHN_MIPS_SCOMMON:
5755 *secp = bfd_make_section_old_way (abfd, ".scommon");
5756 (*secp)->flags |= SEC_IS_COMMON;
5757 *valp = sym->st_size;
5758 break;
5759
5760 case SHN_MIPS_TEXT:
5761 /* This section is used in a shared object. */
5762 if (elf_tdata (abfd)->elf_text_section == NULL)
5763 {
5764 asymbol *elf_text_symbol;
5765 asection *elf_text_section;
5766 bfd_size_type amt = sizeof (asection);
5767
5768 elf_text_section = bfd_zalloc (abfd, amt);
5769 if (elf_text_section == NULL)
5770 return FALSE;
5771
5772 amt = sizeof (asymbol);
5773 elf_text_symbol = bfd_zalloc (abfd, amt);
5774 if (elf_text_symbol == NULL)
5775 return FALSE;
5776
5777 /* Initialize the section. */
5778
5779 elf_tdata (abfd)->elf_text_section = elf_text_section;
5780 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5781
5782 elf_text_section->symbol = elf_text_symbol;
5783 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5784
5785 elf_text_section->name = ".text";
5786 elf_text_section->flags = SEC_NO_FLAGS;
5787 elf_text_section->output_section = NULL;
5788 elf_text_section->owner = abfd;
5789 elf_text_symbol->name = ".text";
5790 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5791 elf_text_symbol->section = elf_text_section;
5792 }
5793 /* This code used to do *secp = bfd_und_section_ptr if
5794 info->shared. I don't know why, and that doesn't make sense,
5795 so I took it out. */
5796 *secp = elf_tdata (abfd)->elf_text_section;
5797 break;
5798
5799 case SHN_MIPS_ACOMMON:
5800 /* Fall through. XXX Can we treat this as allocated data? */
5801 case SHN_MIPS_DATA:
5802 /* This section is used in a shared object. */
5803 if (elf_tdata (abfd)->elf_data_section == NULL)
5804 {
5805 asymbol *elf_data_symbol;
5806 asection *elf_data_section;
5807 bfd_size_type amt = sizeof (asection);
5808
5809 elf_data_section = bfd_zalloc (abfd, amt);
5810 if (elf_data_section == NULL)
5811 return FALSE;
5812
5813 amt = sizeof (asymbol);
5814 elf_data_symbol = bfd_zalloc (abfd, amt);
5815 if (elf_data_symbol == NULL)
5816 return FALSE;
5817
5818 /* Initialize the section. */
5819
5820 elf_tdata (abfd)->elf_data_section = elf_data_section;
5821 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5822
5823 elf_data_section->symbol = elf_data_symbol;
5824 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5825
5826 elf_data_section->name = ".data";
5827 elf_data_section->flags = SEC_NO_FLAGS;
5828 elf_data_section->output_section = NULL;
5829 elf_data_section->owner = abfd;
5830 elf_data_symbol->name = ".data";
5831 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5832 elf_data_symbol->section = elf_data_section;
5833 }
5834 /* This code used to do *secp = bfd_und_section_ptr if
5835 info->shared. I don't know why, and that doesn't make sense,
5836 so I took it out. */
5837 *secp = elf_tdata (abfd)->elf_data_section;
5838 break;
5839
5840 case SHN_MIPS_SUNDEFINED:
5841 *secp = bfd_und_section_ptr;
5842 break;
5843 }
5844
5845 if (SGI_COMPAT (abfd)
5846 && ! info->shared
5847 && info->hash->creator == abfd->xvec
5848 && strcmp (*namep, "__rld_obj_head") == 0)
5849 {
5850 struct elf_link_hash_entry *h;
5851 struct bfd_link_hash_entry *bh;
5852
5853 /* Mark __rld_obj_head as dynamic. */
5854 bh = NULL;
5855 if (! (_bfd_generic_link_add_one_symbol
5856 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5857 get_elf_backend_data (abfd)->collect, &bh)))
5858 return FALSE;
5859
5860 h = (struct elf_link_hash_entry *) bh;
5861 h->non_elf = 0;
5862 h->def_regular = 1;
5863 h->type = STT_OBJECT;
5864
5865 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5866 return FALSE;
5867
5868 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5869 }
5870
5871 /* If this is a mips16 text symbol, add 1 to the value to make it
5872 odd. This will cause something like .word SYM to come up with
5873 the right value when it is loaded into the PC. */
5874 if (sym->st_other == STO_MIPS16)
5875 ++*valp;
5876
5877 return TRUE;
5878 }
5879
5880 /* This hook function is called before the linker writes out a global
5881 symbol. We mark symbols as small common if appropriate. This is
5882 also where we undo the increment of the value for a mips16 symbol. */
5883
5884 bfd_boolean
5885 _bfd_mips_elf_link_output_symbol_hook
5886 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5887 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5888 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5889 {
5890 /* If we see a common symbol, which implies a relocatable link, then
5891 if a symbol was small common in an input file, mark it as small
5892 common in the output file. */
5893 if (sym->st_shndx == SHN_COMMON
5894 && strcmp (input_sec->name, ".scommon") == 0)
5895 sym->st_shndx = SHN_MIPS_SCOMMON;
5896
5897 if (sym->st_other == STO_MIPS16)
5898 sym->st_value &= ~1;
5899
5900 return TRUE;
5901 }
5902 \f
5903 /* Functions for the dynamic linker. */
5904
5905 /* Create dynamic sections when linking against a dynamic object. */
5906
5907 bfd_boolean
5908 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5909 {
5910 struct elf_link_hash_entry *h;
5911 struct bfd_link_hash_entry *bh;
5912 flagword flags;
5913 register asection *s;
5914 const char * const *namep;
5915 struct mips_elf_link_hash_table *htab;
5916
5917 htab = mips_elf_hash_table (info);
5918 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5919 | SEC_LINKER_CREATED | SEC_READONLY);
5920
5921 /* The psABI requires a read-only .dynamic section, but the VxWorks
5922 EABI doesn't. */
5923 if (!htab->is_vxworks)
5924 {
5925 s = bfd_get_section_by_name (abfd, ".dynamic");
5926 if (s != NULL)
5927 {
5928 if (! bfd_set_section_flags (abfd, s, flags))
5929 return FALSE;
5930 }
5931 }
5932
5933 /* We need to create .got section. */
5934 if (! mips_elf_create_got_section (abfd, info, FALSE))
5935 return FALSE;
5936
5937 if (! mips_elf_rel_dyn_section (info, TRUE))
5938 return FALSE;
5939
5940 /* Create .stub section. */
5941 if (bfd_get_section_by_name (abfd,
5942 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5943 {
5944 s = bfd_make_section_with_flags (abfd,
5945 MIPS_ELF_STUB_SECTION_NAME (abfd),
5946 flags | SEC_CODE);
5947 if (s == NULL
5948 || ! bfd_set_section_alignment (abfd, s,
5949 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5950 return FALSE;
5951 }
5952
5953 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5954 && !info->shared
5955 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5956 {
5957 s = bfd_make_section_with_flags (abfd, ".rld_map",
5958 flags &~ (flagword) SEC_READONLY);
5959 if (s == NULL
5960 || ! bfd_set_section_alignment (abfd, s,
5961 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5962 return FALSE;
5963 }
5964
5965 /* On IRIX5, we adjust add some additional symbols and change the
5966 alignments of several sections. There is no ABI documentation
5967 indicating that this is necessary on IRIX6, nor any evidence that
5968 the linker takes such action. */
5969 if (IRIX_COMPAT (abfd) == ict_irix5)
5970 {
5971 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5972 {
5973 bh = NULL;
5974 if (! (_bfd_generic_link_add_one_symbol
5975 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5976 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5977 return FALSE;
5978
5979 h = (struct elf_link_hash_entry *) bh;
5980 h->non_elf = 0;
5981 h->def_regular = 1;
5982 h->type = STT_SECTION;
5983
5984 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5985 return FALSE;
5986 }
5987
5988 /* We need to create a .compact_rel section. */
5989 if (SGI_COMPAT (abfd))
5990 {
5991 if (!mips_elf_create_compact_rel_section (abfd, info))
5992 return FALSE;
5993 }
5994
5995 /* Change alignments of some sections. */
5996 s = bfd_get_section_by_name (abfd, ".hash");
5997 if (s != NULL)
5998 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5999 s = bfd_get_section_by_name (abfd, ".dynsym");
6000 if (s != NULL)
6001 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6002 s = bfd_get_section_by_name (abfd, ".dynstr");
6003 if (s != NULL)
6004 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6005 s = bfd_get_section_by_name (abfd, ".reginfo");
6006 if (s != NULL)
6007 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6008 s = bfd_get_section_by_name (abfd, ".dynamic");
6009 if (s != NULL)
6010 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6011 }
6012
6013 if (!info->shared)
6014 {
6015 const char *name;
6016
6017 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6018 bh = NULL;
6019 if (!(_bfd_generic_link_add_one_symbol
6020 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6021 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6022 return FALSE;
6023
6024 h = (struct elf_link_hash_entry *) bh;
6025 h->non_elf = 0;
6026 h->def_regular = 1;
6027 h->type = STT_SECTION;
6028
6029 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6030 return FALSE;
6031
6032 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6033 {
6034 /* __rld_map is a four byte word located in the .data section
6035 and is filled in by the rtld to contain a pointer to
6036 the _r_debug structure. Its symbol value will be set in
6037 _bfd_mips_elf_finish_dynamic_symbol. */
6038 s = bfd_get_section_by_name (abfd, ".rld_map");
6039 BFD_ASSERT (s != NULL);
6040
6041 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6042 bh = NULL;
6043 if (!(_bfd_generic_link_add_one_symbol
6044 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6045 get_elf_backend_data (abfd)->collect, &bh)))
6046 return FALSE;
6047
6048 h = (struct elf_link_hash_entry *) bh;
6049 h->non_elf = 0;
6050 h->def_regular = 1;
6051 h->type = STT_OBJECT;
6052
6053 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6054 return FALSE;
6055 }
6056 }
6057
6058 if (htab->is_vxworks)
6059 {
6060 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6061 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6062 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6063 return FALSE;
6064
6065 /* Cache the sections created above. */
6066 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6067 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6068 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6069 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6070 if (!htab->sdynbss
6071 || (!htab->srelbss && !info->shared)
6072 || !htab->srelplt
6073 || !htab->splt)
6074 abort ();
6075
6076 /* Do the usual VxWorks handling. */
6077 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6078 return FALSE;
6079
6080 /* Work out the PLT sizes. */
6081 if (info->shared)
6082 {
6083 htab->plt_header_size
6084 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6085 htab->plt_entry_size
6086 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6087 }
6088 else
6089 {
6090 htab->plt_header_size
6091 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6092 htab->plt_entry_size
6093 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6094 }
6095 }
6096
6097 return TRUE;
6098 }
6099 \f
6100 /* Look through the relocs for a section during the first phase, and
6101 allocate space in the global offset table. */
6102
6103 bfd_boolean
6104 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6105 asection *sec, const Elf_Internal_Rela *relocs)
6106 {
6107 const char *name;
6108 bfd *dynobj;
6109 Elf_Internal_Shdr *symtab_hdr;
6110 struct elf_link_hash_entry **sym_hashes;
6111 struct mips_got_info *g;
6112 size_t extsymoff;
6113 const Elf_Internal_Rela *rel;
6114 const Elf_Internal_Rela *rel_end;
6115 asection *sgot;
6116 asection *sreloc;
6117 const struct elf_backend_data *bed;
6118 struct mips_elf_link_hash_table *htab;
6119
6120 if (info->relocatable)
6121 return TRUE;
6122
6123 htab = mips_elf_hash_table (info);
6124 dynobj = elf_hash_table (info)->dynobj;
6125 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6126 sym_hashes = elf_sym_hashes (abfd);
6127 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6128
6129 /* Check for the mips16 stub sections. */
6130
6131 name = bfd_get_section_name (abfd, sec);
6132 if (FN_STUB_P (name))
6133 {
6134 unsigned long r_symndx;
6135
6136 /* Look at the relocation information to figure out which symbol
6137 this is for. */
6138
6139 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6140
6141 if (r_symndx < extsymoff
6142 || sym_hashes[r_symndx - extsymoff] == NULL)
6143 {
6144 asection *o;
6145
6146 /* This stub is for a local symbol. This stub will only be
6147 needed if there is some relocation in this BFD, other
6148 than a 16 bit function call, which refers to this symbol. */
6149 for (o = abfd->sections; o != NULL; o = o->next)
6150 {
6151 Elf_Internal_Rela *sec_relocs;
6152 const Elf_Internal_Rela *r, *rend;
6153
6154 /* We can ignore stub sections when looking for relocs. */
6155 if ((o->flags & SEC_RELOC) == 0
6156 || o->reloc_count == 0
6157 || mips16_stub_section_p (abfd, o))
6158 continue;
6159
6160 sec_relocs
6161 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6162 info->keep_memory);
6163 if (sec_relocs == NULL)
6164 return FALSE;
6165
6166 rend = sec_relocs + o->reloc_count;
6167 for (r = sec_relocs; r < rend; r++)
6168 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6169 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6170 break;
6171
6172 if (elf_section_data (o)->relocs != sec_relocs)
6173 free (sec_relocs);
6174
6175 if (r < rend)
6176 break;
6177 }
6178
6179 if (o == NULL)
6180 {
6181 /* There is no non-call reloc for this stub, so we do
6182 not need it. Since this function is called before
6183 the linker maps input sections to output sections, we
6184 can easily discard it by setting the SEC_EXCLUDE
6185 flag. */
6186 sec->flags |= SEC_EXCLUDE;
6187 return TRUE;
6188 }
6189
6190 /* Record this stub in an array of local symbol stubs for
6191 this BFD. */
6192 if (elf_tdata (abfd)->local_stubs == NULL)
6193 {
6194 unsigned long symcount;
6195 asection **n;
6196 bfd_size_type amt;
6197
6198 if (elf_bad_symtab (abfd))
6199 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6200 else
6201 symcount = symtab_hdr->sh_info;
6202 amt = symcount * sizeof (asection *);
6203 n = bfd_zalloc (abfd, amt);
6204 if (n == NULL)
6205 return FALSE;
6206 elf_tdata (abfd)->local_stubs = n;
6207 }
6208
6209 sec->flags |= SEC_KEEP;
6210 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6211
6212 /* We don't need to set mips16_stubs_seen in this case.
6213 That flag is used to see whether we need to look through
6214 the global symbol table for stubs. We don't need to set
6215 it here, because we just have a local stub. */
6216 }
6217 else
6218 {
6219 struct mips_elf_link_hash_entry *h;
6220
6221 h = ((struct mips_elf_link_hash_entry *)
6222 sym_hashes[r_symndx - extsymoff]);
6223
6224 while (h->root.root.type == bfd_link_hash_indirect
6225 || h->root.root.type == bfd_link_hash_warning)
6226 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6227
6228 /* H is the symbol this stub is for. */
6229
6230 /* If we already have an appropriate stub for this function, we
6231 don't need another one, so we can discard this one. Since
6232 this function is called before the linker maps input sections
6233 to output sections, we can easily discard it by setting the
6234 SEC_EXCLUDE flag. */
6235 if (h->fn_stub != NULL)
6236 {
6237 sec->flags |= SEC_EXCLUDE;
6238 return TRUE;
6239 }
6240
6241 sec->flags |= SEC_KEEP;
6242 h->fn_stub = sec;
6243 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6244 }
6245 }
6246 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
6247 {
6248 unsigned long r_symndx;
6249 struct mips_elf_link_hash_entry *h;
6250 asection **loc;
6251
6252 /* Look at the relocation information to figure out which symbol
6253 this is for. */
6254
6255 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6256
6257 if (r_symndx < extsymoff
6258 || sym_hashes[r_symndx - extsymoff] == NULL)
6259 {
6260 asection *o;
6261
6262 /* This stub is for a local symbol. This stub will only be
6263 needed if there is some relocation (R_MIPS16_26) in this BFD
6264 that refers to this symbol. */
6265 for (o = abfd->sections; o != NULL; o = o->next)
6266 {
6267 Elf_Internal_Rela *sec_relocs;
6268 const Elf_Internal_Rela *r, *rend;
6269
6270 /* We can ignore stub sections when looking for relocs. */
6271 if ((o->flags & SEC_RELOC) == 0
6272 || o->reloc_count == 0
6273 || mips16_stub_section_p (abfd, o))
6274 continue;
6275
6276 sec_relocs
6277 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6278 info->keep_memory);
6279 if (sec_relocs == NULL)
6280 return FALSE;
6281
6282 rend = sec_relocs + o->reloc_count;
6283 for (r = sec_relocs; r < rend; r++)
6284 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6285 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6286 break;
6287
6288 if (elf_section_data (o)->relocs != sec_relocs)
6289 free (sec_relocs);
6290
6291 if (r < rend)
6292 break;
6293 }
6294
6295 if (o == NULL)
6296 {
6297 /* There is no non-call reloc for this stub, so we do
6298 not need it. Since this function is called before
6299 the linker maps input sections to output sections, we
6300 can easily discard it by setting the SEC_EXCLUDE
6301 flag. */
6302 sec->flags |= SEC_EXCLUDE;
6303 return TRUE;
6304 }
6305
6306 /* Record this stub in an array of local symbol call_stubs for
6307 this BFD. */
6308 if (elf_tdata (abfd)->local_call_stubs == NULL)
6309 {
6310 unsigned long symcount;
6311 asection **n;
6312 bfd_size_type amt;
6313
6314 if (elf_bad_symtab (abfd))
6315 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6316 else
6317 symcount = symtab_hdr->sh_info;
6318 amt = symcount * sizeof (asection *);
6319 n = bfd_zalloc (abfd, amt);
6320 if (n == NULL)
6321 return FALSE;
6322 elf_tdata (abfd)->local_call_stubs = n;
6323 }
6324
6325 sec->flags |= SEC_KEEP;
6326 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
6327
6328 /* We don't need to set mips16_stubs_seen in this case.
6329 That flag is used to see whether we need to look through
6330 the global symbol table for stubs. We don't need to set
6331 it here, because we just have a local stub. */
6332 }
6333 else
6334 {
6335 h = ((struct mips_elf_link_hash_entry *)
6336 sym_hashes[r_symndx - extsymoff]);
6337
6338 /* H is the symbol this stub is for. */
6339
6340 if (CALL_FP_STUB_P (name))
6341 loc = &h->call_fp_stub;
6342 else
6343 loc = &h->call_stub;
6344
6345 /* If we already have an appropriate stub for this function, we
6346 don't need another one, so we can discard this one. Since
6347 this function is called before the linker maps input sections
6348 to output sections, we can easily discard it by setting the
6349 SEC_EXCLUDE flag. */
6350 if (*loc != NULL)
6351 {
6352 sec->flags |= SEC_EXCLUDE;
6353 return TRUE;
6354 }
6355
6356 sec->flags |= SEC_KEEP;
6357 *loc = sec;
6358 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6359 }
6360 }
6361
6362 if (dynobj == NULL)
6363 {
6364 sgot = NULL;
6365 g = NULL;
6366 }
6367 else
6368 {
6369 sgot = mips_elf_got_section (dynobj, FALSE);
6370 if (sgot == NULL)
6371 g = NULL;
6372 else
6373 {
6374 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6375 g = mips_elf_section_data (sgot)->u.got_info;
6376 BFD_ASSERT (g != NULL);
6377 }
6378 }
6379
6380 sreloc = NULL;
6381 bed = get_elf_backend_data (abfd);
6382 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6383 for (rel = relocs; rel < rel_end; ++rel)
6384 {
6385 unsigned long r_symndx;
6386 unsigned int r_type;
6387 struct elf_link_hash_entry *h;
6388
6389 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6390 r_type = ELF_R_TYPE (abfd, rel->r_info);
6391
6392 if (r_symndx < extsymoff)
6393 h = NULL;
6394 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6395 {
6396 (*_bfd_error_handler)
6397 (_("%B: Malformed reloc detected for section %s"),
6398 abfd, name);
6399 bfd_set_error (bfd_error_bad_value);
6400 return FALSE;
6401 }
6402 else
6403 {
6404 h = sym_hashes[r_symndx - extsymoff];
6405
6406 /* This may be an indirect symbol created because of a version. */
6407 if (h != NULL)
6408 {
6409 while (h->root.type == bfd_link_hash_indirect)
6410 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6411 }
6412 }
6413
6414 /* Some relocs require a global offset table. */
6415 if (dynobj == NULL || sgot == NULL)
6416 {
6417 switch (r_type)
6418 {
6419 case R_MIPS_GOT16:
6420 case R_MIPS_CALL16:
6421 case R_MIPS_CALL_HI16:
6422 case R_MIPS_CALL_LO16:
6423 case R_MIPS_GOT_HI16:
6424 case R_MIPS_GOT_LO16:
6425 case R_MIPS_GOT_PAGE:
6426 case R_MIPS_GOT_OFST:
6427 case R_MIPS_GOT_DISP:
6428 case R_MIPS_TLS_GOTTPREL:
6429 case R_MIPS_TLS_GD:
6430 case R_MIPS_TLS_LDM:
6431 if (dynobj == NULL)
6432 elf_hash_table (info)->dynobj = dynobj = abfd;
6433 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6434 return FALSE;
6435 g = mips_elf_got_info (dynobj, &sgot);
6436 if (htab->is_vxworks && !info->shared)
6437 {
6438 (*_bfd_error_handler)
6439 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6440 abfd, (unsigned long) rel->r_offset);
6441 bfd_set_error (bfd_error_bad_value);
6442 return FALSE;
6443 }
6444 break;
6445
6446 case R_MIPS_32:
6447 case R_MIPS_REL32:
6448 case R_MIPS_64:
6449 /* In VxWorks executables, references to external symbols
6450 are handled using copy relocs or PLT stubs, so there's
6451 no need to add a dynamic relocation here. */
6452 if (dynobj == NULL
6453 && (info->shared || (h != NULL && !htab->is_vxworks))
6454 && (sec->flags & SEC_ALLOC) != 0)
6455 elf_hash_table (info)->dynobj = dynobj = abfd;
6456 break;
6457
6458 default:
6459 break;
6460 }
6461 }
6462
6463 if (h)
6464 {
6465 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6466
6467 /* Relocations against the special VxWorks __GOTT_BASE__ and
6468 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6469 room for them in .rela.dyn. */
6470 if (is_gott_symbol (info, h))
6471 {
6472 if (sreloc == NULL)
6473 {
6474 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6475 if (sreloc == NULL)
6476 return FALSE;
6477 }
6478 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6479 if (MIPS_ELF_READONLY_SECTION (sec))
6480 /* We tell the dynamic linker that there are
6481 relocations against the text segment. */
6482 info->flags |= DF_TEXTREL;
6483 }
6484 }
6485 else if (r_type == R_MIPS_CALL_LO16
6486 || r_type == R_MIPS_GOT_LO16
6487 || r_type == R_MIPS_GOT_DISP
6488 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6489 {
6490 /* We may need a local GOT entry for this relocation. We
6491 don't count R_MIPS_GOT_PAGE because we can estimate the
6492 maximum number of pages needed by looking at the size of
6493 the segment. Similar comments apply to R_MIPS_GOT16 and
6494 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6495 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6496 R_MIPS_CALL_HI16 because these are always followed by an
6497 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6498 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6499 rel->r_addend, g, 0))
6500 return FALSE;
6501 }
6502
6503 switch (r_type)
6504 {
6505 case R_MIPS_CALL16:
6506 if (h == NULL)
6507 {
6508 (*_bfd_error_handler)
6509 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6510 abfd, (unsigned long) rel->r_offset);
6511 bfd_set_error (bfd_error_bad_value);
6512 return FALSE;
6513 }
6514 /* Fall through. */
6515
6516 case R_MIPS_CALL_HI16:
6517 case R_MIPS_CALL_LO16:
6518 if (h != NULL)
6519 {
6520 /* VxWorks call relocations point the function's .got.plt
6521 entry, which will be allocated by adjust_dynamic_symbol.
6522 Otherwise, this symbol requires a global GOT entry. */
6523 if (!htab->is_vxworks
6524 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6525 return FALSE;
6526
6527 /* We need a stub, not a plt entry for the undefined
6528 function. But we record it as if it needs plt. See
6529 _bfd_elf_adjust_dynamic_symbol. */
6530 h->needs_plt = 1;
6531 h->type = STT_FUNC;
6532 }
6533 break;
6534
6535 case R_MIPS_GOT_PAGE:
6536 /* If this is a global, overridable symbol, GOT_PAGE will
6537 decay to GOT_DISP, so we'll need a GOT entry for it. */
6538 if (h == NULL)
6539 break;
6540 else
6541 {
6542 struct mips_elf_link_hash_entry *hmips =
6543 (struct mips_elf_link_hash_entry *) h;
6544
6545 while (hmips->root.root.type == bfd_link_hash_indirect
6546 || hmips->root.root.type == bfd_link_hash_warning)
6547 hmips = (struct mips_elf_link_hash_entry *)
6548 hmips->root.root.u.i.link;
6549
6550 if (hmips->root.def_regular
6551 && ! (info->shared && ! info->symbolic
6552 && ! hmips->root.forced_local))
6553 break;
6554 }
6555 /* Fall through. */
6556
6557 case R_MIPS_GOT16:
6558 case R_MIPS_GOT_HI16:
6559 case R_MIPS_GOT_LO16:
6560 case R_MIPS_GOT_DISP:
6561 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6562 return FALSE;
6563 break;
6564
6565 case R_MIPS_TLS_GOTTPREL:
6566 if (info->shared)
6567 info->flags |= DF_STATIC_TLS;
6568 /* Fall through */
6569
6570 case R_MIPS_TLS_LDM:
6571 if (r_type == R_MIPS_TLS_LDM)
6572 {
6573 r_symndx = 0;
6574 h = NULL;
6575 }
6576 /* Fall through */
6577
6578 case R_MIPS_TLS_GD:
6579 /* This symbol requires a global offset table entry, or two
6580 for TLS GD relocations. */
6581 {
6582 unsigned char flag = (r_type == R_MIPS_TLS_GD
6583 ? GOT_TLS_GD
6584 : r_type == R_MIPS_TLS_LDM
6585 ? GOT_TLS_LDM
6586 : GOT_TLS_IE);
6587 if (h != NULL)
6588 {
6589 struct mips_elf_link_hash_entry *hmips =
6590 (struct mips_elf_link_hash_entry *) h;
6591 hmips->tls_type |= flag;
6592
6593 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6594 return FALSE;
6595 }
6596 else
6597 {
6598 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6599
6600 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6601 rel->r_addend, g, flag))
6602 return FALSE;
6603 }
6604 }
6605 break;
6606
6607 case R_MIPS_32:
6608 case R_MIPS_REL32:
6609 case R_MIPS_64:
6610 /* In VxWorks executables, references to external symbols
6611 are handled using copy relocs or PLT stubs, so there's
6612 no need to add a .rela.dyn entry for this relocation. */
6613 if ((info->shared || (h != NULL && !htab->is_vxworks))
6614 && (sec->flags & SEC_ALLOC) != 0)
6615 {
6616 if (sreloc == NULL)
6617 {
6618 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6619 if (sreloc == NULL)
6620 return FALSE;
6621 }
6622 if (info->shared)
6623 {
6624 /* When creating a shared object, we must copy these
6625 reloc types into the output file as R_MIPS_REL32
6626 relocs. Make room for this reloc in .rel(a).dyn. */
6627 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6628 if (MIPS_ELF_READONLY_SECTION (sec))
6629 /* We tell the dynamic linker that there are
6630 relocations against the text segment. */
6631 info->flags |= DF_TEXTREL;
6632 }
6633 else
6634 {
6635 struct mips_elf_link_hash_entry *hmips;
6636
6637 /* We only need to copy this reloc if the symbol is
6638 defined in a dynamic object. */
6639 hmips = (struct mips_elf_link_hash_entry *) h;
6640 ++hmips->possibly_dynamic_relocs;
6641 if (MIPS_ELF_READONLY_SECTION (sec))
6642 /* We need it to tell the dynamic linker if there
6643 are relocations against the text segment. */
6644 hmips->readonly_reloc = TRUE;
6645 }
6646
6647 /* Even though we don't directly need a GOT entry for
6648 this symbol, a symbol must have a dynamic symbol
6649 table index greater that DT_MIPS_GOTSYM if there are
6650 dynamic relocations against it. This does not apply
6651 to VxWorks, which does not have the usual coupling
6652 between global GOT entries and .dynsym entries. */
6653 if (h != NULL && !htab->is_vxworks)
6654 {
6655 if (dynobj == NULL)
6656 elf_hash_table (info)->dynobj = dynobj = abfd;
6657 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6658 return FALSE;
6659 g = mips_elf_got_info (dynobj, &sgot);
6660 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6661 return FALSE;
6662 }
6663 }
6664
6665 if (SGI_COMPAT (abfd))
6666 mips_elf_hash_table (info)->compact_rel_size +=
6667 sizeof (Elf32_External_crinfo);
6668 break;
6669
6670 case R_MIPS_PC16:
6671 if (h)
6672 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6673 break;
6674
6675 case R_MIPS_26:
6676 if (h)
6677 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6678 /* Fall through. */
6679
6680 case R_MIPS_GPREL16:
6681 case R_MIPS_LITERAL:
6682 case R_MIPS_GPREL32:
6683 if (SGI_COMPAT (abfd))
6684 mips_elf_hash_table (info)->compact_rel_size +=
6685 sizeof (Elf32_External_crinfo);
6686 break;
6687
6688 /* This relocation describes the C++ object vtable hierarchy.
6689 Reconstruct it for later use during GC. */
6690 case R_MIPS_GNU_VTINHERIT:
6691 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6692 return FALSE;
6693 break;
6694
6695 /* This relocation describes which C++ vtable entries are actually
6696 used. Record for later use during GC. */
6697 case R_MIPS_GNU_VTENTRY:
6698 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6699 return FALSE;
6700 break;
6701
6702 default:
6703 break;
6704 }
6705
6706 /* We must not create a stub for a symbol that has relocations
6707 related to taking the function's address. This doesn't apply to
6708 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6709 a normal .got entry. */
6710 if (!htab->is_vxworks && h != NULL)
6711 switch (r_type)
6712 {
6713 default:
6714 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6715 break;
6716 case R_MIPS_CALL16:
6717 case R_MIPS_CALL_HI16:
6718 case R_MIPS_CALL_LO16:
6719 case R_MIPS_JALR:
6720 break;
6721 }
6722
6723 /* If this reloc is not a 16 bit call, and it has a global
6724 symbol, then we will need the fn_stub if there is one.
6725 References from a stub section do not count. */
6726 if (h != NULL
6727 && r_type != R_MIPS16_26
6728 && !mips16_stub_section_p (abfd, sec))
6729 {
6730 struct mips_elf_link_hash_entry *mh;
6731
6732 mh = (struct mips_elf_link_hash_entry *) h;
6733 mh->need_fn_stub = TRUE;
6734 }
6735 }
6736
6737 return TRUE;
6738 }
6739 \f
6740 bfd_boolean
6741 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6742 struct bfd_link_info *link_info,
6743 bfd_boolean *again)
6744 {
6745 Elf_Internal_Rela *internal_relocs;
6746 Elf_Internal_Rela *irel, *irelend;
6747 Elf_Internal_Shdr *symtab_hdr;
6748 bfd_byte *contents = NULL;
6749 size_t extsymoff;
6750 bfd_boolean changed_contents = FALSE;
6751 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6752 Elf_Internal_Sym *isymbuf = NULL;
6753
6754 /* We are not currently changing any sizes, so only one pass. */
6755 *again = FALSE;
6756
6757 if (link_info->relocatable)
6758 return TRUE;
6759
6760 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6761 link_info->keep_memory);
6762 if (internal_relocs == NULL)
6763 return TRUE;
6764
6765 irelend = internal_relocs + sec->reloc_count
6766 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6767 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6768 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6769
6770 for (irel = internal_relocs; irel < irelend; irel++)
6771 {
6772 bfd_vma symval;
6773 bfd_signed_vma sym_offset;
6774 unsigned int r_type;
6775 unsigned long r_symndx;
6776 asection *sym_sec;
6777 unsigned long instruction;
6778
6779 /* Turn jalr into bgezal, and jr into beq, if they're marked
6780 with a JALR relocation, that indicate where they jump to.
6781 This saves some pipeline bubbles. */
6782 r_type = ELF_R_TYPE (abfd, irel->r_info);
6783 if (r_type != R_MIPS_JALR)
6784 continue;
6785
6786 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6787 /* Compute the address of the jump target. */
6788 if (r_symndx >= extsymoff)
6789 {
6790 struct mips_elf_link_hash_entry *h
6791 = ((struct mips_elf_link_hash_entry *)
6792 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6793
6794 while (h->root.root.type == bfd_link_hash_indirect
6795 || h->root.root.type == bfd_link_hash_warning)
6796 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6797
6798 /* If a symbol is undefined, or if it may be overridden,
6799 skip it. */
6800 if (! ((h->root.root.type == bfd_link_hash_defined
6801 || h->root.root.type == bfd_link_hash_defweak)
6802 && h->root.root.u.def.section)
6803 || (link_info->shared && ! link_info->symbolic
6804 && !h->root.forced_local))
6805 continue;
6806
6807 sym_sec = h->root.root.u.def.section;
6808 if (sym_sec->output_section)
6809 symval = (h->root.root.u.def.value
6810 + sym_sec->output_section->vma
6811 + sym_sec->output_offset);
6812 else
6813 symval = h->root.root.u.def.value;
6814 }
6815 else
6816 {
6817 Elf_Internal_Sym *isym;
6818
6819 /* Read this BFD's symbols if we haven't done so already. */
6820 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6821 {
6822 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6823 if (isymbuf == NULL)
6824 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6825 symtab_hdr->sh_info, 0,
6826 NULL, NULL, NULL);
6827 if (isymbuf == NULL)
6828 goto relax_return;
6829 }
6830
6831 isym = isymbuf + r_symndx;
6832 if (isym->st_shndx == SHN_UNDEF)
6833 continue;
6834 else if (isym->st_shndx == SHN_ABS)
6835 sym_sec = bfd_abs_section_ptr;
6836 else if (isym->st_shndx == SHN_COMMON)
6837 sym_sec = bfd_com_section_ptr;
6838 else
6839 sym_sec
6840 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6841 symval = isym->st_value
6842 + sym_sec->output_section->vma
6843 + sym_sec->output_offset;
6844 }
6845
6846 /* Compute branch offset, from delay slot of the jump to the
6847 branch target. */
6848 sym_offset = (symval + irel->r_addend)
6849 - (sec_start + irel->r_offset + 4);
6850
6851 /* Branch offset must be properly aligned. */
6852 if ((sym_offset & 3) != 0)
6853 continue;
6854
6855 sym_offset >>= 2;
6856
6857 /* Check that it's in range. */
6858 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6859 continue;
6860
6861 /* Get the section contents if we haven't done so already. */
6862 if (contents == NULL)
6863 {
6864 /* Get cached copy if it exists. */
6865 if (elf_section_data (sec)->this_hdr.contents != NULL)
6866 contents = elf_section_data (sec)->this_hdr.contents;
6867 else
6868 {
6869 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6870 goto relax_return;
6871 }
6872 }
6873
6874 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6875
6876 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6877 if ((instruction & 0xfc1fffff) == 0x0000f809)
6878 instruction = 0x04110000;
6879 /* If it was jr <reg>, turn it into b <target>. */
6880 else if ((instruction & 0xfc1fffff) == 0x00000008)
6881 instruction = 0x10000000;
6882 else
6883 continue;
6884
6885 instruction |= (sym_offset & 0xffff);
6886 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6887 changed_contents = TRUE;
6888 }
6889
6890 if (contents != NULL
6891 && elf_section_data (sec)->this_hdr.contents != contents)
6892 {
6893 if (!changed_contents && !link_info->keep_memory)
6894 free (contents);
6895 else
6896 {
6897 /* Cache the section contents for elf_link_input_bfd. */
6898 elf_section_data (sec)->this_hdr.contents = contents;
6899 }
6900 }
6901 return TRUE;
6902
6903 relax_return:
6904 if (contents != NULL
6905 && elf_section_data (sec)->this_hdr.contents != contents)
6906 free (contents);
6907 return FALSE;
6908 }
6909 \f
6910 /* Adjust a symbol defined by a dynamic object and referenced by a
6911 regular object. The current definition is in some section of the
6912 dynamic object, but we're not including those sections. We have to
6913 change the definition to something the rest of the link can
6914 understand. */
6915
6916 bfd_boolean
6917 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6918 struct elf_link_hash_entry *h)
6919 {
6920 bfd *dynobj;
6921 struct mips_elf_link_hash_entry *hmips;
6922 asection *s;
6923 struct mips_elf_link_hash_table *htab;
6924
6925 htab = mips_elf_hash_table (info);
6926 dynobj = elf_hash_table (info)->dynobj;
6927
6928 /* Make sure we know what is going on here. */
6929 BFD_ASSERT (dynobj != NULL
6930 && (h->needs_plt
6931 || h->u.weakdef != NULL
6932 || (h->def_dynamic
6933 && h->ref_regular
6934 && !h->def_regular)));
6935
6936 /* If this symbol is defined in a dynamic object, we need to copy
6937 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6938 file. */
6939 hmips = (struct mips_elf_link_hash_entry *) h;
6940 if (! info->relocatable
6941 && hmips->possibly_dynamic_relocs != 0
6942 && (h->root.type == bfd_link_hash_defweak
6943 || !h->def_regular))
6944 {
6945 mips_elf_allocate_dynamic_relocations
6946 (dynobj, info, hmips->possibly_dynamic_relocs);
6947 if (hmips->readonly_reloc)
6948 /* We tell the dynamic linker that there are relocations
6949 against the text segment. */
6950 info->flags |= DF_TEXTREL;
6951 }
6952
6953 /* For a function, create a stub, if allowed. */
6954 if (! hmips->no_fn_stub
6955 && h->needs_plt)
6956 {
6957 if (! elf_hash_table (info)->dynamic_sections_created)
6958 return TRUE;
6959
6960 /* If this symbol is not defined in a regular file, then set
6961 the symbol to the stub location. This is required to make
6962 function pointers compare as equal between the normal
6963 executable and the shared library. */
6964 if (!h->def_regular)
6965 {
6966 /* We need .stub section. */
6967 s = bfd_get_section_by_name (dynobj,
6968 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6969 BFD_ASSERT (s != NULL);
6970
6971 h->root.u.def.section = s;
6972 h->root.u.def.value = s->size;
6973
6974 /* XXX Write this stub address somewhere. */
6975 h->plt.offset = s->size;
6976
6977 /* Make room for this stub code. */
6978 s->size += htab->function_stub_size;
6979
6980 /* The last half word of the stub will be filled with the index
6981 of this symbol in .dynsym section. */
6982 return TRUE;
6983 }
6984 }
6985 else if ((h->type == STT_FUNC)
6986 && !h->needs_plt)
6987 {
6988 /* This will set the entry for this symbol in the GOT to 0, and
6989 the dynamic linker will take care of this. */
6990 h->root.u.def.value = 0;
6991 return TRUE;
6992 }
6993
6994 /* If this is a weak symbol, and there is a real definition, the
6995 processor independent code will have arranged for us to see the
6996 real definition first, and we can just use the same value. */
6997 if (h->u.weakdef != NULL)
6998 {
6999 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7000 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7001 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7002 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7003 return TRUE;
7004 }
7005
7006 /* This is a reference to a symbol defined by a dynamic object which
7007 is not a function. */
7008
7009 return TRUE;
7010 }
7011
7012 /* Likewise, for VxWorks. */
7013
7014 bfd_boolean
7015 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7016 struct elf_link_hash_entry *h)
7017 {
7018 bfd *dynobj;
7019 struct mips_elf_link_hash_entry *hmips;
7020 struct mips_elf_link_hash_table *htab;
7021 unsigned int power_of_two;
7022
7023 htab = mips_elf_hash_table (info);
7024 dynobj = elf_hash_table (info)->dynobj;
7025 hmips = (struct mips_elf_link_hash_entry *) h;
7026
7027 /* Make sure we know what is going on here. */
7028 BFD_ASSERT (dynobj != NULL
7029 && (h->needs_plt
7030 || h->needs_copy
7031 || h->u.weakdef != NULL
7032 || (h->def_dynamic
7033 && h->ref_regular
7034 && !h->def_regular)));
7035
7036 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7037 either (a) we want to branch to the symbol or (b) we're linking an
7038 executable that needs a canonical function address. In the latter
7039 case, the canonical address will be the address of the executable's
7040 load stub. */
7041 if ((hmips->is_branch_target
7042 || (!info->shared
7043 && h->type == STT_FUNC
7044 && hmips->is_relocation_target))
7045 && h->def_dynamic
7046 && h->ref_regular
7047 && !h->def_regular
7048 && !h->forced_local)
7049 h->needs_plt = 1;
7050
7051 /* Locally-binding symbols do not need a PLT stub; we can refer to
7052 the functions directly. */
7053 else if (h->needs_plt
7054 && (SYMBOL_CALLS_LOCAL (info, h)
7055 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7056 && h->root.type == bfd_link_hash_undefweak)))
7057 {
7058 h->needs_plt = 0;
7059 return TRUE;
7060 }
7061
7062 if (h->needs_plt)
7063 {
7064 /* If this is the first symbol to need a PLT entry, allocate room
7065 for the header, and for the header's .rela.plt.unloaded entries. */
7066 if (htab->splt->size == 0)
7067 {
7068 htab->splt->size += htab->plt_header_size;
7069 if (!info->shared)
7070 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7071 }
7072
7073 /* Assign the next .plt entry to this symbol. */
7074 h->plt.offset = htab->splt->size;
7075 htab->splt->size += htab->plt_entry_size;
7076
7077 /* If the output file has no definition of the symbol, set the
7078 symbol's value to the address of the stub. For executables,
7079 point at the PLT load stub rather than the lazy resolution stub;
7080 this stub will become the canonical function address. */
7081 if (!h->def_regular)
7082 {
7083 h->root.u.def.section = htab->splt;
7084 h->root.u.def.value = h->plt.offset;
7085 if (!info->shared)
7086 h->root.u.def.value += 8;
7087 }
7088
7089 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7090 htab->sgotplt->size += 4;
7091 htab->srelplt->size += sizeof (Elf32_External_Rela);
7092
7093 /* Make room for the .rela.plt.unloaded relocations. */
7094 if (!info->shared)
7095 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7096
7097 return TRUE;
7098 }
7099
7100 /* If a function symbol is defined by a dynamic object, and we do not
7101 need a PLT stub for it, the symbol's value should be zero. */
7102 if (h->type == STT_FUNC
7103 && h->def_dynamic
7104 && h->ref_regular
7105 && !h->def_regular)
7106 {
7107 h->root.u.def.value = 0;
7108 return TRUE;
7109 }
7110
7111 /* If this is a weak symbol, and there is a real definition, the
7112 processor independent code will have arranged for us to see the
7113 real definition first, and we can just use the same value. */
7114 if (h->u.weakdef != NULL)
7115 {
7116 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7117 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7118 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7119 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7120 return TRUE;
7121 }
7122
7123 /* This is a reference to a symbol defined by a dynamic object which
7124 is not a function. */
7125 if (info->shared)
7126 return TRUE;
7127
7128 /* We must allocate the symbol in our .dynbss section, which will
7129 become part of the .bss section of the executable. There will be
7130 an entry for this symbol in the .dynsym section. The dynamic
7131 object will contain position independent code, so all references
7132 from the dynamic object to this symbol will go through the global
7133 offset table. The dynamic linker will use the .dynsym entry to
7134 determine the address it must put in the global offset table, so
7135 both the dynamic object and the regular object will refer to the
7136 same memory location for the variable. */
7137
7138 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7139 {
7140 htab->srelbss->size += sizeof (Elf32_External_Rela);
7141 h->needs_copy = 1;
7142 }
7143
7144 /* We need to figure out the alignment required for this symbol. */
7145 power_of_two = bfd_log2 (h->size);
7146 if (power_of_two > 4)
7147 power_of_two = 4;
7148
7149 /* Apply the required alignment. */
7150 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7151 (bfd_size_type) 1 << power_of_two);
7152 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7153 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7154 return FALSE;
7155
7156 /* Define the symbol as being at this point in the section. */
7157 h->root.u.def.section = htab->sdynbss;
7158 h->root.u.def.value = htab->sdynbss->size;
7159
7160 /* Increment the section size to make room for the symbol. */
7161 htab->sdynbss->size += h->size;
7162
7163 return TRUE;
7164 }
7165 \f
7166 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7167 The number might be exact or a worst-case estimate, depending on how
7168 much information is available to elf_backend_omit_section_dynsym at
7169 the current linking stage. */
7170
7171 static bfd_size_type
7172 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7173 {
7174 bfd_size_type count;
7175
7176 count = 0;
7177 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7178 {
7179 asection *p;
7180 const struct elf_backend_data *bed;
7181
7182 bed = get_elf_backend_data (output_bfd);
7183 for (p = output_bfd->sections; p ; p = p->next)
7184 if ((p->flags & SEC_EXCLUDE) == 0
7185 && (p->flags & SEC_ALLOC) != 0
7186 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7187 ++count;
7188 }
7189 return count;
7190 }
7191
7192 /* This function is called after all the input files have been read,
7193 and the input sections have been assigned to output sections. We
7194 check for any mips16 stub sections that we can discard. */
7195
7196 bfd_boolean
7197 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7198 struct bfd_link_info *info)
7199 {
7200 asection *ri;
7201
7202 bfd *dynobj;
7203 asection *s;
7204 struct mips_got_info *g;
7205 int i;
7206 bfd_size_type loadable_size = 0;
7207 bfd_size_type local_gotno;
7208 bfd_size_type dynsymcount;
7209 bfd *sub;
7210 struct mips_elf_count_tls_arg count_tls_arg;
7211 struct mips_elf_link_hash_table *htab;
7212
7213 htab = mips_elf_hash_table (info);
7214
7215 /* The .reginfo section has a fixed size. */
7216 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7217 if (ri != NULL)
7218 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7219
7220 if (! (info->relocatable
7221 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7222 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7223 mips_elf_check_mips16_stubs, NULL);
7224
7225 dynobj = elf_hash_table (info)->dynobj;
7226 if (dynobj == NULL)
7227 /* Relocatable links don't have it. */
7228 return TRUE;
7229
7230 g = mips_elf_got_info (dynobj, &s);
7231 if (s == NULL)
7232 return TRUE;
7233
7234 /* Calculate the total loadable size of the output. That
7235 will give us the maximum number of GOT_PAGE entries
7236 required. */
7237 for (sub = info->input_bfds; sub; sub = sub->link_next)
7238 {
7239 asection *subsection;
7240
7241 for (subsection = sub->sections;
7242 subsection;
7243 subsection = subsection->next)
7244 {
7245 if ((subsection->flags & SEC_ALLOC) == 0)
7246 continue;
7247 loadable_size += ((subsection->size + 0xf)
7248 &~ (bfd_size_type) 0xf);
7249 }
7250 }
7251
7252 /* There has to be a global GOT entry for every symbol with
7253 a dynamic symbol table index of DT_MIPS_GOTSYM or
7254 higher. Therefore, it make sense to put those symbols
7255 that need GOT entries at the end of the symbol table. We
7256 do that here. */
7257 if (! mips_elf_sort_hash_table (info, 1))
7258 return FALSE;
7259
7260 if (g->global_gotsym != NULL)
7261 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7262 else
7263 /* If there are no global symbols, or none requiring
7264 relocations, then GLOBAL_GOTSYM will be NULL. */
7265 i = 0;
7266
7267 /* Get a worst-case estimate of the number of dynamic symbols needed.
7268 At this point, dynsymcount does not account for section symbols
7269 and count_section_dynsyms may overestimate the number that will
7270 be needed. */
7271 dynsymcount = (elf_hash_table (info)->dynsymcount
7272 + count_section_dynsyms (output_bfd, info));
7273
7274 /* Determine the size of one stub entry. */
7275 htab->function_stub_size = (dynsymcount > 0x10000
7276 ? MIPS_FUNCTION_STUB_BIG_SIZE
7277 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7278
7279 /* In the worst case, we'll get one stub per dynamic symbol, plus
7280 one to account for the dummy entry at the end required by IRIX
7281 rld. */
7282 loadable_size += htab->function_stub_size * (i + 1);
7283
7284 if (htab->is_vxworks)
7285 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7286 relocations against local symbols evaluate to "G", and the EABI does
7287 not include R_MIPS_GOT_PAGE. */
7288 local_gotno = 0;
7289 else
7290 /* Assume there are two loadable segments consisting of contiguous
7291 sections. Is 5 enough? */
7292 local_gotno = (loadable_size >> 16) + 5;
7293
7294 g->local_gotno += local_gotno;
7295 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7296
7297 g->global_gotno = i;
7298 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7299
7300 /* We need to calculate tls_gotno for global symbols at this point
7301 instead of building it up earlier, to avoid doublecounting
7302 entries for one global symbol from multiple input files. */
7303 count_tls_arg.info = info;
7304 count_tls_arg.needed = 0;
7305 elf_link_hash_traverse (elf_hash_table (info),
7306 mips_elf_count_global_tls_entries,
7307 &count_tls_arg);
7308 g->tls_gotno += count_tls_arg.needed;
7309 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7310
7311 mips_elf_resolve_final_got_entries (g);
7312
7313 /* VxWorks does not support multiple GOTs. It initializes $gp to
7314 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7315 dynamic loader. */
7316 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7317 {
7318 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7319 return FALSE;
7320 }
7321 else
7322 {
7323 /* Set up TLS entries for the first GOT. */
7324 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7325 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7326 }
7327
7328 return TRUE;
7329 }
7330
7331 /* Set the sizes of the dynamic sections. */
7332
7333 bfd_boolean
7334 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7335 struct bfd_link_info *info)
7336 {
7337 bfd *dynobj;
7338 asection *s, *sreldyn;
7339 bfd_boolean reltext;
7340 struct mips_elf_link_hash_table *htab;
7341
7342 htab = mips_elf_hash_table (info);
7343 dynobj = elf_hash_table (info)->dynobj;
7344 BFD_ASSERT (dynobj != NULL);
7345
7346 if (elf_hash_table (info)->dynamic_sections_created)
7347 {
7348 /* Set the contents of the .interp section to the interpreter. */
7349 if (info->executable)
7350 {
7351 s = bfd_get_section_by_name (dynobj, ".interp");
7352 BFD_ASSERT (s != NULL);
7353 s->size
7354 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7355 s->contents
7356 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7357 }
7358 }
7359
7360 /* The check_relocs and adjust_dynamic_symbol entry points have
7361 determined the sizes of the various dynamic sections. Allocate
7362 memory for them. */
7363 reltext = FALSE;
7364 sreldyn = NULL;
7365 for (s = dynobj->sections; s != NULL; s = s->next)
7366 {
7367 const char *name;
7368
7369 /* It's OK to base decisions on the section name, because none
7370 of the dynobj section names depend upon the input files. */
7371 name = bfd_get_section_name (dynobj, s);
7372
7373 if ((s->flags & SEC_LINKER_CREATED) == 0)
7374 continue;
7375
7376 if (CONST_STRNEQ (name, ".rel"))
7377 {
7378 if (s->size != 0)
7379 {
7380 const char *outname;
7381 asection *target;
7382
7383 /* If this relocation section applies to a read only
7384 section, then we probably need a DT_TEXTREL entry.
7385 If the relocation section is .rel(a).dyn, we always
7386 assert a DT_TEXTREL entry rather than testing whether
7387 there exists a relocation to a read only section or
7388 not. */
7389 outname = bfd_get_section_name (output_bfd,
7390 s->output_section);
7391 target = bfd_get_section_by_name (output_bfd, outname + 4);
7392 if ((target != NULL
7393 && (target->flags & SEC_READONLY) != 0
7394 && (target->flags & SEC_ALLOC) != 0)
7395 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7396 reltext = TRUE;
7397
7398 /* We use the reloc_count field as a counter if we need
7399 to copy relocs into the output file. */
7400 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7401 s->reloc_count = 0;
7402
7403 /* If combreloc is enabled, elf_link_sort_relocs() will
7404 sort relocations, but in a different way than we do,
7405 and before we're done creating relocations. Also, it
7406 will move them around between input sections'
7407 relocation's contents, so our sorting would be
7408 broken, so don't let it run. */
7409 info->combreloc = 0;
7410 }
7411 }
7412 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7413 {
7414 /* Executables do not need a GOT. */
7415 if (info->shared)
7416 {
7417 /* Allocate relocations for all but the reserved entries. */
7418 struct mips_got_info *g;
7419 unsigned int count;
7420
7421 g = mips_elf_got_info (dynobj, NULL);
7422 count = (g->global_gotno
7423 + g->local_gotno
7424 - MIPS_RESERVED_GOTNO (info));
7425 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7426 }
7427 }
7428 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
7429 {
7430 /* _bfd_mips_elf_always_size_sections() has already done
7431 most of the work, but some symbols may have been mapped
7432 to versions that we must now resolve in the got_entries
7433 hash tables. */
7434 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7435 struct mips_got_info *g = gg;
7436 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7437 unsigned int needed_relocs = 0;
7438
7439 if (gg->next)
7440 {
7441 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7442 set_got_offset_arg.info = info;
7443
7444 /* NOTE 2005-02-03: How can this call, or the next, ever
7445 find any indirect entries to resolve? They were all
7446 resolved in mips_elf_multi_got. */
7447 mips_elf_resolve_final_got_entries (gg);
7448 for (g = gg->next; g && g->next != gg; g = g->next)
7449 {
7450 unsigned int save_assign;
7451
7452 mips_elf_resolve_final_got_entries (g);
7453
7454 /* Assign offsets to global GOT entries. */
7455 save_assign = g->assigned_gotno;
7456 g->assigned_gotno = g->local_gotno;
7457 set_got_offset_arg.g = g;
7458 set_got_offset_arg.needed_relocs = 0;
7459 htab_traverse (g->got_entries,
7460 mips_elf_set_global_got_offset,
7461 &set_got_offset_arg);
7462 needed_relocs += set_got_offset_arg.needed_relocs;
7463 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7464 <= g->global_gotno);
7465
7466 g->assigned_gotno = save_assign;
7467 if (info->shared)
7468 {
7469 needed_relocs += g->local_gotno - g->assigned_gotno;
7470 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7471 + g->next->global_gotno
7472 + g->next->tls_gotno
7473 + MIPS_RESERVED_GOTNO (info));
7474 }
7475 }
7476 }
7477 else
7478 {
7479 struct mips_elf_count_tls_arg arg;
7480 arg.info = info;
7481 arg.needed = 0;
7482
7483 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7484 &arg);
7485 elf_link_hash_traverse (elf_hash_table (info),
7486 mips_elf_count_global_tls_relocs,
7487 &arg);
7488
7489 needed_relocs += arg.needed;
7490 }
7491
7492 if (needed_relocs)
7493 mips_elf_allocate_dynamic_relocations (dynobj, info,
7494 needed_relocs);
7495 }
7496 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7497 {
7498 /* IRIX rld assumes that the function stub isn't at the end
7499 of .text section. So put a dummy. XXX */
7500 s->size += htab->function_stub_size;
7501 }
7502 else if (! info->shared
7503 && ! mips_elf_hash_table (info)->use_rld_obj_head
7504 && CONST_STRNEQ (name, ".rld_map"))
7505 {
7506 /* We add a room for __rld_map. It will be filled in by the
7507 rtld to contain a pointer to the _r_debug structure. */
7508 s->size += 4;
7509 }
7510 else if (SGI_COMPAT (output_bfd)
7511 && CONST_STRNEQ (name, ".compact_rel"))
7512 s->size += mips_elf_hash_table (info)->compact_rel_size;
7513 else if (! CONST_STRNEQ (name, ".init")
7514 && s != htab->sgotplt
7515 && s != htab->splt)
7516 {
7517 /* It's not one of our sections, so don't allocate space. */
7518 continue;
7519 }
7520
7521 if (s->size == 0)
7522 {
7523 s->flags |= SEC_EXCLUDE;
7524 continue;
7525 }
7526
7527 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7528 continue;
7529
7530 /* Allocate memory for this section last, since we may increase its
7531 size above. */
7532 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7533 {
7534 sreldyn = s;
7535 continue;
7536 }
7537
7538 /* Allocate memory for the section contents. */
7539 s->contents = bfd_zalloc (dynobj, s->size);
7540 if (s->contents == NULL)
7541 {
7542 bfd_set_error (bfd_error_no_memory);
7543 return FALSE;
7544 }
7545 }
7546
7547 /* Allocate memory for the .rel(a).dyn section. */
7548 if (sreldyn != NULL)
7549 {
7550 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7551 if (sreldyn->contents == NULL)
7552 {
7553 bfd_set_error (bfd_error_no_memory);
7554 return FALSE;
7555 }
7556 }
7557
7558 if (elf_hash_table (info)->dynamic_sections_created)
7559 {
7560 /* Add some entries to the .dynamic section. We fill in the
7561 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7562 must add the entries now so that we get the correct size for
7563 the .dynamic section. */
7564
7565 /* SGI object has the equivalence of DT_DEBUG in the
7566 DT_MIPS_RLD_MAP entry. This must come first because glibc
7567 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7568 looks at the first one it sees. */
7569 if (!info->shared
7570 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7571 return FALSE;
7572
7573 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7574 used by the debugger. */
7575 if (info->executable
7576 && !SGI_COMPAT (output_bfd)
7577 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7578 return FALSE;
7579
7580 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7581 info->flags |= DF_TEXTREL;
7582
7583 if ((info->flags & DF_TEXTREL) != 0)
7584 {
7585 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7586 return FALSE;
7587
7588 /* Clear the DF_TEXTREL flag. It will be set again if we
7589 write out an actual text relocation; we may not, because
7590 at this point we do not know whether e.g. any .eh_frame
7591 absolute relocations have been converted to PC-relative. */
7592 info->flags &= ~DF_TEXTREL;
7593 }
7594
7595 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7596 return FALSE;
7597
7598 if (htab->is_vxworks)
7599 {
7600 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7601 use any of the DT_MIPS_* tags. */
7602 if (mips_elf_rel_dyn_section (info, FALSE))
7603 {
7604 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7605 return FALSE;
7606
7607 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7608 return FALSE;
7609
7610 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7611 return FALSE;
7612 }
7613 if (htab->splt->size > 0)
7614 {
7615 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7616 return FALSE;
7617
7618 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7619 return FALSE;
7620
7621 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7622 return FALSE;
7623 }
7624 }
7625 else
7626 {
7627 if (mips_elf_rel_dyn_section (info, FALSE))
7628 {
7629 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7630 return FALSE;
7631
7632 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7633 return FALSE;
7634
7635 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7636 return FALSE;
7637 }
7638
7639 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7640 return FALSE;
7641
7642 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7643 return FALSE;
7644
7645 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7646 return FALSE;
7647
7648 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7649 return FALSE;
7650
7651 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7652 return FALSE;
7653
7654 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7655 return FALSE;
7656
7657 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7658 return FALSE;
7659
7660 if (IRIX_COMPAT (dynobj) == ict_irix5
7661 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7662 return FALSE;
7663
7664 if (IRIX_COMPAT (dynobj) == ict_irix6
7665 && (bfd_get_section_by_name
7666 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7667 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7668 return FALSE;
7669 }
7670 }
7671
7672 return TRUE;
7673 }
7674 \f
7675 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7676 Adjust its R_ADDEND field so that it is correct for the output file.
7677 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7678 and sections respectively; both use symbol indexes. */
7679
7680 static void
7681 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7682 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7683 asection **local_sections, Elf_Internal_Rela *rel)
7684 {
7685 unsigned int r_type, r_symndx;
7686 Elf_Internal_Sym *sym;
7687 asection *sec;
7688
7689 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7690 {
7691 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7692 if (r_type == R_MIPS16_GPREL
7693 || r_type == R_MIPS_GPREL16
7694 || r_type == R_MIPS_GPREL32
7695 || r_type == R_MIPS_LITERAL)
7696 {
7697 rel->r_addend += _bfd_get_gp_value (input_bfd);
7698 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7699 }
7700
7701 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7702 sym = local_syms + r_symndx;
7703
7704 /* Adjust REL's addend to account for section merging. */
7705 if (!info->relocatable)
7706 {
7707 sec = local_sections[r_symndx];
7708 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7709 }
7710
7711 /* This would normally be done by the rela_normal code in elflink.c. */
7712 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7713 rel->r_addend += local_sections[r_symndx]->output_offset;
7714 }
7715 }
7716
7717 /* Relocate a MIPS ELF section. */
7718
7719 bfd_boolean
7720 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7721 bfd *input_bfd, asection *input_section,
7722 bfd_byte *contents, Elf_Internal_Rela *relocs,
7723 Elf_Internal_Sym *local_syms,
7724 asection **local_sections)
7725 {
7726 Elf_Internal_Rela *rel;
7727 const Elf_Internal_Rela *relend;
7728 bfd_vma addend = 0;
7729 bfd_boolean use_saved_addend_p = FALSE;
7730 const struct elf_backend_data *bed;
7731
7732 bed = get_elf_backend_data (output_bfd);
7733 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7734 for (rel = relocs; rel < relend; ++rel)
7735 {
7736 const char *name;
7737 bfd_vma value = 0;
7738 reloc_howto_type *howto;
7739 bfd_boolean require_jalx;
7740 /* TRUE if the relocation is a RELA relocation, rather than a
7741 REL relocation. */
7742 bfd_boolean rela_relocation_p = TRUE;
7743 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7744 const char *msg;
7745 unsigned long r_symndx;
7746 asection *sec;
7747 Elf_Internal_Shdr *symtab_hdr;
7748 struct elf_link_hash_entry *h;
7749
7750 /* Find the relocation howto for this relocation. */
7751 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7752 NEWABI_P (input_bfd)
7753 && (MIPS_RELOC_RELA_P
7754 (input_bfd, input_section,
7755 rel - relocs)));
7756
7757 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
7758 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7759 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7760 {
7761 sec = local_sections[r_symndx];
7762 h = NULL;
7763 }
7764 else
7765 {
7766 unsigned long extsymoff;
7767
7768 extsymoff = 0;
7769 if (!elf_bad_symtab (input_bfd))
7770 extsymoff = symtab_hdr->sh_info;
7771 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7772 while (h->root.type == bfd_link_hash_indirect
7773 || h->root.type == bfd_link_hash_warning)
7774 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7775
7776 sec = NULL;
7777 if (h->root.type == bfd_link_hash_defined
7778 || h->root.type == bfd_link_hash_defweak)
7779 sec = h->root.u.def.section;
7780 }
7781
7782 if (sec != NULL && elf_discarded_section (sec))
7783 {
7784 /* For relocs against symbols from removed linkonce sections,
7785 or sections discarded by a linker script, we just want the
7786 section contents zeroed. Avoid any special processing. */
7787 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7788 rel->r_info = 0;
7789 rel->r_addend = 0;
7790 continue;
7791 }
7792
7793 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7794 {
7795 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7796 64-bit code, but make sure all their addresses are in the
7797 lowermost or uppermost 32-bit section of the 64-bit address
7798 space. Thus, when they use an R_MIPS_64 they mean what is
7799 usually meant by R_MIPS_32, with the exception that the
7800 stored value is sign-extended to 64 bits. */
7801 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7802
7803 /* On big-endian systems, we need to lie about the position
7804 of the reloc. */
7805 if (bfd_big_endian (input_bfd))
7806 rel->r_offset += 4;
7807 }
7808
7809 if (!use_saved_addend_p)
7810 {
7811 Elf_Internal_Shdr *rel_hdr;
7812
7813 /* If these relocations were originally of the REL variety,
7814 we must pull the addend out of the field that will be
7815 relocated. Otherwise, we simply use the contents of the
7816 RELA relocation. To determine which flavor or relocation
7817 this is, we depend on the fact that the INPUT_SECTION's
7818 REL_HDR is read before its REL_HDR2. */
7819 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7820 if ((size_t) (rel - relocs)
7821 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7822 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7823 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7824 {
7825 bfd_byte *location = contents + rel->r_offset;
7826
7827 /* Note that this is a REL relocation. */
7828 rela_relocation_p = FALSE;
7829
7830 /* Get the addend, which is stored in the input file. */
7831 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7832 location);
7833 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7834 contents);
7835 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7836 location);
7837
7838 addend &= howto->src_mask;
7839
7840 /* For some kinds of relocations, the ADDEND is a
7841 combination of the addend stored in two different
7842 relocations. */
7843 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7844 || (r_type == R_MIPS_GOT16
7845 && mips_elf_local_relocation_p (input_bfd, rel,
7846 local_sections, FALSE)))
7847 {
7848 const Elf_Internal_Rela *lo16_relocation;
7849 reloc_howto_type *lo16_howto;
7850 int lo16_type;
7851
7852 if (r_type == R_MIPS16_HI16)
7853 lo16_type = R_MIPS16_LO16;
7854 else
7855 lo16_type = R_MIPS_LO16;
7856
7857 /* The combined value is the sum of the HI16 addend,
7858 left-shifted by sixteen bits, and the LO16
7859 addend, sign extended. (Usually, the code does
7860 a `lui' of the HI16 value, and then an `addiu' of
7861 the LO16 value.)
7862
7863 Scan ahead to find a matching LO16 relocation.
7864
7865 According to the MIPS ELF ABI, the R_MIPS_LO16
7866 relocation must be immediately following.
7867 However, for the IRIX6 ABI, the next relocation
7868 may be a composed relocation consisting of
7869 several relocations for the same address. In
7870 that case, the R_MIPS_LO16 relocation may occur
7871 as one of these. We permit a similar extension
7872 in general, as that is useful for GCC.
7873
7874 In some cases GCC dead code elimination removes
7875 the LO16 but keeps the corresponding HI16. This
7876 is strictly speaking a violation of the ABI but
7877 not immediately harmful. */
7878 lo16_relocation = mips_elf_next_relocation (input_bfd,
7879 lo16_type,
7880 rel, relend);
7881 if (lo16_relocation == NULL)
7882 {
7883 const char *name;
7884
7885 if (h)
7886 name = h->root.root.string;
7887 else
7888 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7889 local_syms + r_symndx,
7890 sec);
7891 (*_bfd_error_handler)
7892 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7893 input_bfd, input_section, name, howto->name,
7894 rel->r_offset);
7895 }
7896 else
7897 {
7898 bfd_byte *lo16_location;
7899 bfd_vma l;
7900
7901 lo16_location = contents + lo16_relocation->r_offset;
7902
7903 /* Obtain the addend kept there. */
7904 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7905 lo16_type, FALSE);
7906 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type,
7907 FALSE, lo16_location);
7908 l = mips_elf_obtain_contents (lo16_howto,
7909 lo16_relocation,
7910 input_bfd, contents);
7911 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type,
7912 FALSE, lo16_location);
7913 l &= lo16_howto->src_mask;
7914 l <<= lo16_howto->rightshift;
7915 l = _bfd_mips_elf_sign_extend (l, 16);
7916
7917 addend <<= 16;
7918
7919 /* Compute the combined addend. */
7920 addend += l;
7921 }
7922 }
7923 else
7924 addend <<= howto->rightshift;
7925 }
7926 else
7927 addend = rel->r_addend;
7928 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7929 local_syms, local_sections, rel);
7930 }
7931
7932 if (info->relocatable)
7933 {
7934 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7935 && bfd_big_endian (input_bfd))
7936 rel->r_offset -= 4;
7937
7938 if (!rela_relocation_p && rel->r_addend)
7939 {
7940 addend += rel->r_addend;
7941 if (r_type == R_MIPS_HI16
7942 || r_type == R_MIPS_GOT16)
7943 addend = mips_elf_high (addend);
7944 else if (r_type == R_MIPS_HIGHER)
7945 addend = mips_elf_higher (addend);
7946 else if (r_type == R_MIPS_HIGHEST)
7947 addend = mips_elf_highest (addend);
7948 else
7949 addend >>= howto->rightshift;
7950
7951 /* We use the source mask, rather than the destination
7952 mask because the place to which we are writing will be
7953 source of the addend in the final link. */
7954 addend &= howto->src_mask;
7955
7956 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7957 /* See the comment above about using R_MIPS_64 in the 32-bit
7958 ABI. Here, we need to update the addend. It would be
7959 possible to get away with just using the R_MIPS_32 reloc
7960 but for endianness. */
7961 {
7962 bfd_vma sign_bits;
7963 bfd_vma low_bits;
7964 bfd_vma high_bits;
7965
7966 if (addend & ((bfd_vma) 1 << 31))
7967 #ifdef BFD64
7968 sign_bits = ((bfd_vma) 1 << 32) - 1;
7969 #else
7970 sign_bits = -1;
7971 #endif
7972 else
7973 sign_bits = 0;
7974
7975 /* If we don't know that we have a 64-bit type,
7976 do two separate stores. */
7977 if (bfd_big_endian (input_bfd))
7978 {
7979 /* Store the sign-bits (which are most significant)
7980 first. */
7981 low_bits = sign_bits;
7982 high_bits = addend;
7983 }
7984 else
7985 {
7986 low_bits = addend;
7987 high_bits = sign_bits;
7988 }
7989 bfd_put_32 (input_bfd, low_bits,
7990 contents + rel->r_offset);
7991 bfd_put_32 (input_bfd, high_bits,
7992 contents + rel->r_offset + 4);
7993 continue;
7994 }
7995
7996 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7997 input_bfd, input_section,
7998 contents, FALSE))
7999 return FALSE;
8000 }
8001
8002 /* Go on to the next relocation. */
8003 continue;
8004 }
8005
8006 /* In the N32 and 64-bit ABIs there may be multiple consecutive
8007 relocations for the same offset. In that case we are
8008 supposed to treat the output of each relocation as the addend
8009 for the next. */
8010 if (rel + 1 < relend
8011 && rel->r_offset == rel[1].r_offset
8012 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
8013 use_saved_addend_p = TRUE;
8014 else
8015 use_saved_addend_p = FALSE;
8016
8017 /* Figure out what value we are supposed to relocate. */
8018 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8019 input_section, info, rel,
8020 addend, howto, local_syms,
8021 local_sections, &value,
8022 &name, &require_jalx,
8023 use_saved_addend_p))
8024 {
8025 case bfd_reloc_continue:
8026 /* There's nothing to do. */
8027 continue;
8028
8029 case bfd_reloc_undefined:
8030 /* mips_elf_calculate_relocation already called the
8031 undefined_symbol callback. There's no real point in
8032 trying to perform the relocation at this point, so we
8033 just skip ahead to the next relocation. */
8034 continue;
8035
8036 case bfd_reloc_notsupported:
8037 msg = _("internal error: unsupported relocation error");
8038 info->callbacks->warning
8039 (info, msg, name, input_bfd, input_section, rel->r_offset);
8040 return FALSE;
8041
8042 case bfd_reloc_overflow:
8043 if (use_saved_addend_p)
8044 /* Ignore overflow until we reach the last relocation for
8045 a given location. */
8046 ;
8047 else
8048 {
8049 BFD_ASSERT (name != NULL);
8050 if (! ((*info->callbacks->reloc_overflow)
8051 (info, NULL, name, howto->name, (bfd_vma) 0,
8052 input_bfd, input_section, rel->r_offset)))
8053 return FALSE;
8054 }
8055 break;
8056
8057 case bfd_reloc_ok:
8058 break;
8059
8060 default:
8061 abort ();
8062 break;
8063 }
8064
8065 /* If we've got another relocation for the address, keep going
8066 until we reach the last one. */
8067 if (use_saved_addend_p)
8068 {
8069 addend = value;
8070 continue;
8071 }
8072
8073 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8074 /* See the comment above about using R_MIPS_64 in the 32-bit
8075 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8076 that calculated the right value. Now, however, we
8077 sign-extend the 32-bit result to 64-bits, and store it as a
8078 64-bit value. We are especially generous here in that we
8079 go to extreme lengths to support this usage on systems with
8080 only a 32-bit VMA. */
8081 {
8082 bfd_vma sign_bits;
8083 bfd_vma low_bits;
8084 bfd_vma high_bits;
8085
8086 if (value & ((bfd_vma) 1 << 31))
8087 #ifdef BFD64
8088 sign_bits = ((bfd_vma) 1 << 32) - 1;
8089 #else
8090 sign_bits = -1;
8091 #endif
8092 else
8093 sign_bits = 0;
8094
8095 /* If we don't know that we have a 64-bit type,
8096 do two separate stores. */
8097 if (bfd_big_endian (input_bfd))
8098 {
8099 /* Undo what we did above. */
8100 rel->r_offset -= 4;
8101 /* Store the sign-bits (which are most significant)
8102 first. */
8103 low_bits = sign_bits;
8104 high_bits = value;
8105 }
8106 else
8107 {
8108 low_bits = value;
8109 high_bits = sign_bits;
8110 }
8111 bfd_put_32 (input_bfd, low_bits,
8112 contents + rel->r_offset);
8113 bfd_put_32 (input_bfd, high_bits,
8114 contents + rel->r_offset + 4);
8115 continue;
8116 }
8117
8118 /* Actually perform the relocation. */
8119 if (! mips_elf_perform_relocation (info, howto, rel, value,
8120 input_bfd, input_section,
8121 contents, require_jalx))
8122 return FALSE;
8123 }
8124
8125 return TRUE;
8126 }
8127 \f
8128 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8129 adjust it appropriately now. */
8130
8131 static void
8132 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8133 const char *name, Elf_Internal_Sym *sym)
8134 {
8135 /* The linker script takes care of providing names and values for
8136 these, but we must place them into the right sections. */
8137 static const char* const text_section_symbols[] = {
8138 "_ftext",
8139 "_etext",
8140 "__dso_displacement",
8141 "__elf_header",
8142 "__program_header_table",
8143 NULL
8144 };
8145
8146 static const char* const data_section_symbols[] = {
8147 "_fdata",
8148 "_edata",
8149 "_end",
8150 "_fbss",
8151 NULL
8152 };
8153
8154 const char* const *p;
8155 int i;
8156
8157 for (i = 0; i < 2; ++i)
8158 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8159 *p;
8160 ++p)
8161 if (strcmp (*p, name) == 0)
8162 {
8163 /* All of these symbols are given type STT_SECTION by the
8164 IRIX6 linker. */
8165 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8166 sym->st_other = STO_PROTECTED;
8167
8168 /* The IRIX linker puts these symbols in special sections. */
8169 if (i == 0)
8170 sym->st_shndx = SHN_MIPS_TEXT;
8171 else
8172 sym->st_shndx = SHN_MIPS_DATA;
8173
8174 break;
8175 }
8176 }
8177
8178 /* Finish up dynamic symbol handling. We set the contents of various
8179 dynamic sections here. */
8180
8181 bfd_boolean
8182 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8183 struct bfd_link_info *info,
8184 struct elf_link_hash_entry *h,
8185 Elf_Internal_Sym *sym)
8186 {
8187 bfd *dynobj;
8188 asection *sgot;
8189 struct mips_got_info *g, *gg;
8190 const char *name;
8191 int idx;
8192 struct mips_elf_link_hash_table *htab;
8193
8194 htab = mips_elf_hash_table (info);
8195 dynobj = elf_hash_table (info)->dynobj;
8196
8197 if (h->plt.offset != MINUS_ONE)
8198 {
8199 asection *s;
8200 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8201
8202 /* This symbol has a stub. Set it up. */
8203
8204 BFD_ASSERT (h->dynindx != -1);
8205
8206 s = bfd_get_section_by_name (dynobj,
8207 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8208 BFD_ASSERT (s != NULL);
8209
8210 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8211 || (h->dynindx <= 0xffff));
8212
8213 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8214 sign extension at runtime in the stub, resulting in a negative
8215 index value. */
8216 if (h->dynindx & ~0x7fffffff)
8217 return FALSE;
8218
8219 /* Fill the stub. */
8220 idx = 0;
8221 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8222 idx += 4;
8223 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8224 idx += 4;
8225 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8226 {
8227 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8228 stub + idx);
8229 idx += 4;
8230 }
8231 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8232 idx += 4;
8233
8234 /* If a large stub is not required and sign extension is not a
8235 problem, then use legacy code in the stub. */
8236 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8237 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8238 else if (h->dynindx & ~0x7fff)
8239 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8240 else
8241 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8242 stub + idx);
8243
8244 BFD_ASSERT (h->plt.offset <= s->size);
8245 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8246
8247 /* Mark the symbol as undefined. plt.offset != -1 occurs
8248 only for the referenced symbol. */
8249 sym->st_shndx = SHN_UNDEF;
8250
8251 /* The run-time linker uses the st_value field of the symbol
8252 to reset the global offset table entry for this external
8253 to its stub address when unlinking a shared object. */
8254 sym->st_value = (s->output_section->vma + s->output_offset
8255 + h->plt.offset);
8256 }
8257
8258 BFD_ASSERT (h->dynindx != -1
8259 || h->forced_local);
8260
8261 sgot = mips_elf_got_section (dynobj, FALSE);
8262 BFD_ASSERT (sgot != NULL);
8263 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8264 g = mips_elf_section_data (sgot)->u.got_info;
8265 BFD_ASSERT (g != NULL);
8266
8267 /* Run through the global symbol table, creating GOT entries for all
8268 the symbols that need them. */
8269 if (g->global_gotsym != NULL
8270 && h->dynindx >= g->global_gotsym->dynindx)
8271 {
8272 bfd_vma offset;
8273 bfd_vma value;
8274
8275 value = sym->st_value;
8276 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8277 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8278 }
8279
8280 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8281 {
8282 struct mips_got_entry e, *p;
8283 bfd_vma entry;
8284 bfd_vma offset;
8285
8286 gg = g;
8287
8288 e.abfd = output_bfd;
8289 e.symndx = -1;
8290 e.d.h = (struct mips_elf_link_hash_entry *)h;
8291 e.tls_type = 0;
8292
8293 for (g = g->next; g->next != gg; g = g->next)
8294 {
8295 if (g->got_entries
8296 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8297 &e)))
8298 {
8299 offset = p->gotidx;
8300 if (info->shared
8301 || (elf_hash_table (info)->dynamic_sections_created
8302 && p->d.h != NULL
8303 && p->d.h->root.def_dynamic
8304 && !p->d.h->root.def_regular))
8305 {
8306 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8307 the various compatibility problems, it's easier to mock
8308 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8309 mips_elf_create_dynamic_relocation to calculate the
8310 appropriate addend. */
8311 Elf_Internal_Rela rel[3];
8312
8313 memset (rel, 0, sizeof (rel));
8314 if (ABI_64_P (output_bfd))
8315 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8316 else
8317 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8318 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8319
8320 entry = 0;
8321 if (! (mips_elf_create_dynamic_relocation
8322 (output_bfd, info, rel,
8323 e.d.h, NULL, sym->st_value, &entry, sgot)))
8324 return FALSE;
8325 }
8326 else
8327 entry = sym->st_value;
8328 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8329 }
8330 }
8331 }
8332
8333 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8334 name = h->root.root.string;
8335 if (strcmp (name, "_DYNAMIC") == 0
8336 || h == elf_hash_table (info)->hgot)
8337 sym->st_shndx = SHN_ABS;
8338 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8339 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8340 {
8341 sym->st_shndx = SHN_ABS;
8342 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8343 sym->st_value = 1;
8344 }
8345 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8346 {
8347 sym->st_shndx = SHN_ABS;
8348 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8349 sym->st_value = elf_gp (output_bfd);
8350 }
8351 else if (SGI_COMPAT (output_bfd))
8352 {
8353 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8354 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8355 {
8356 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8357 sym->st_other = STO_PROTECTED;
8358 sym->st_value = 0;
8359 sym->st_shndx = SHN_MIPS_DATA;
8360 }
8361 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8362 {
8363 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8364 sym->st_other = STO_PROTECTED;
8365 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8366 sym->st_shndx = SHN_ABS;
8367 }
8368 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8369 {
8370 if (h->type == STT_FUNC)
8371 sym->st_shndx = SHN_MIPS_TEXT;
8372 else if (h->type == STT_OBJECT)
8373 sym->st_shndx = SHN_MIPS_DATA;
8374 }
8375 }
8376
8377 /* Handle the IRIX6-specific symbols. */
8378 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8379 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8380
8381 if (! info->shared)
8382 {
8383 if (! mips_elf_hash_table (info)->use_rld_obj_head
8384 && (strcmp (name, "__rld_map") == 0
8385 || strcmp (name, "__RLD_MAP") == 0))
8386 {
8387 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8388 BFD_ASSERT (s != NULL);
8389 sym->st_value = s->output_section->vma + s->output_offset;
8390 bfd_put_32 (output_bfd, 0, s->contents);
8391 if (mips_elf_hash_table (info)->rld_value == 0)
8392 mips_elf_hash_table (info)->rld_value = sym->st_value;
8393 }
8394 else if (mips_elf_hash_table (info)->use_rld_obj_head
8395 && strcmp (name, "__rld_obj_head") == 0)
8396 {
8397 /* IRIX6 does not use a .rld_map section. */
8398 if (IRIX_COMPAT (output_bfd) == ict_irix5
8399 || IRIX_COMPAT (output_bfd) == ict_none)
8400 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8401 != NULL);
8402 mips_elf_hash_table (info)->rld_value = sym->st_value;
8403 }
8404 }
8405
8406 /* If this is a mips16 symbol, force the value to be even. */
8407 if (sym->st_other == STO_MIPS16)
8408 sym->st_value &= ~1;
8409
8410 return TRUE;
8411 }
8412
8413 /* Likewise, for VxWorks. */
8414
8415 bfd_boolean
8416 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8417 struct bfd_link_info *info,
8418 struct elf_link_hash_entry *h,
8419 Elf_Internal_Sym *sym)
8420 {
8421 bfd *dynobj;
8422 asection *sgot;
8423 struct mips_got_info *g;
8424 struct mips_elf_link_hash_table *htab;
8425
8426 htab = mips_elf_hash_table (info);
8427 dynobj = elf_hash_table (info)->dynobj;
8428
8429 if (h->plt.offset != (bfd_vma) -1)
8430 {
8431 bfd_byte *loc;
8432 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8433 Elf_Internal_Rela rel;
8434 static const bfd_vma *plt_entry;
8435
8436 BFD_ASSERT (h->dynindx != -1);
8437 BFD_ASSERT (htab->splt != NULL);
8438 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8439
8440 /* Calculate the address of the .plt entry. */
8441 plt_address = (htab->splt->output_section->vma
8442 + htab->splt->output_offset
8443 + h->plt.offset);
8444
8445 /* Calculate the index of the entry. */
8446 plt_index = ((h->plt.offset - htab->plt_header_size)
8447 / htab->plt_entry_size);
8448
8449 /* Calculate the address of the .got.plt entry. */
8450 got_address = (htab->sgotplt->output_section->vma
8451 + htab->sgotplt->output_offset
8452 + plt_index * 4);
8453
8454 /* Calculate the offset of the .got.plt entry from
8455 _GLOBAL_OFFSET_TABLE_. */
8456 got_offset = mips_elf_gotplt_index (info, h);
8457
8458 /* Calculate the offset for the branch at the start of the PLT
8459 entry. The branch jumps to the beginning of .plt. */
8460 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8461
8462 /* Fill in the initial value of the .got.plt entry. */
8463 bfd_put_32 (output_bfd, plt_address,
8464 htab->sgotplt->contents + plt_index * 4);
8465
8466 /* Find out where the .plt entry should go. */
8467 loc = htab->splt->contents + h->plt.offset;
8468
8469 if (info->shared)
8470 {
8471 plt_entry = mips_vxworks_shared_plt_entry;
8472 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8473 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8474 }
8475 else
8476 {
8477 bfd_vma got_address_high, got_address_low;
8478
8479 plt_entry = mips_vxworks_exec_plt_entry;
8480 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8481 got_address_low = got_address & 0xffff;
8482
8483 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8484 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8485 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8486 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8487 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8488 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8489 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8490 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8491
8492 loc = (htab->srelplt2->contents
8493 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8494
8495 /* Emit a relocation for the .got.plt entry. */
8496 rel.r_offset = got_address;
8497 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8498 rel.r_addend = h->plt.offset;
8499 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8500
8501 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8502 loc += sizeof (Elf32_External_Rela);
8503 rel.r_offset = plt_address + 8;
8504 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8505 rel.r_addend = got_offset;
8506 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8507
8508 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8509 loc += sizeof (Elf32_External_Rela);
8510 rel.r_offset += 4;
8511 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8512 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8513 }
8514
8515 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8516 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8517 rel.r_offset = got_address;
8518 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8519 rel.r_addend = 0;
8520 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8521
8522 if (!h->def_regular)
8523 sym->st_shndx = SHN_UNDEF;
8524 }
8525
8526 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8527
8528 sgot = mips_elf_got_section (dynobj, FALSE);
8529 BFD_ASSERT (sgot != NULL);
8530 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8531 g = mips_elf_section_data (sgot)->u.got_info;
8532 BFD_ASSERT (g != NULL);
8533
8534 /* See if this symbol has an entry in the GOT. */
8535 if (g->global_gotsym != NULL
8536 && h->dynindx >= g->global_gotsym->dynindx)
8537 {
8538 bfd_vma offset;
8539 Elf_Internal_Rela outrel;
8540 bfd_byte *loc;
8541 asection *s;
8542
8543 /* Install the symbol value in the GOT. */
8544 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8545 R_MIPS_GOT16, info);
8546 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8547
8548 /* Add a dynamic relocation for it. */
8549 s = mips_elf_rel_dyn_section (info, FALSE);
8550 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8551 outrel.r_offset = (sgot->output_section->vma
8552 + sgot->output_offset
8553 + offset);
8554 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8555 outrel.r_addend = 0;
8556 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8557 }
8558
8559 /* Emit a copy reloc, if needed. */
8560 if (h->needs_copy)
8561 {
8562 Elf_Internal_Rela rel;
8563
8564 BFD_ASSERT (h->dynindx != -1);
8565
8566 rel.r_offset = (h->root.u.def.section->output_section->vma
8567 + h->root.u.def.section->output_offset
8568 + h->root.u.def.value);
8569 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8570 rel.r_addend = 0;
8571 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8572 htab->srelbss->contents
8573 + (htab->srelbss->reloc_count
8574 * sizeof (Elf32_External_Rela)));
8575 ++htab->srelbss->reloc_count;
8576 }
8577
8578 /* If this is a mips16 symbol, force the value to be even. */
8579 if (sym->st_other == STO_MIPS16)
8580 sym->st_value &= ~1;
8581
8582 return TRUE;
8583 }
8584
8585 /* Install the PLT header for a VxWorks executable and finalize the
8586 contents of .rela.plt.unloaded. */
8587
8588 static void
8589 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8590 {
8591 Elf_Internal_Rela rela;
8592 bfd_byte *loc;
8593 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8594 static const bfd_vma *plt_entry;
8595 struct mips_elf_link_hash_table *htab;
8596
8597 htab = mips_elf_hash_table (info);
8598 plt_entry = mips_vxworks_exec_plt0_entry;
8599
8600 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8601 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8602 + htab->root.hgot->root.u.def.section->output_offset
8603 + htab->root.hgot->root.u.def.value);
8604
8605 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8606 got_value_low = got_value & 0xffff;
8607
8608 /* Calculate the address of the PLT header. */
8609 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8610
8611 /* Install the PLT header. */
8612 loc = htab->splt->contents;
8613 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8614 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8615 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8616 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8617 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8618 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8619
8620 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8621 loc = htab->srelplt2->contents;
8622 rela.r_offset = plt_address;
8623 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8624 rela.r_addend = 0;
8625 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8626 loc += sizeof (Elf32_External_Rela);
8627
8628 /* Output the relocation for the following addiu of
8629 %lo(_GLOBAL_OFFSET_TABLE_). */
8630 rela.r_offset += 4;
8631 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8632 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8633 loc += sizeof (Elf32_External_Rela);
8634
8635 /* Fix up the remaining relocations. They may have the wrong
8636 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8637 in which symbols were output. */
8638 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8639 {
8640 Elf_Internal_Rela rel;
8641
8642 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8643 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8644 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8645 loc += sizeof (Elf32_External_Rela);
8646
8647 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8648 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8649 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8650 loc += sizeof (Elf32_External_Rela);
8651
8652 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8653 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8654 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8655 loc += sizeof (Elf32_External_Rela);
8656 }
8657 }
8658
8659 /* Install the PLT header for a VxWorks shared library. */
8660
8661 static void
8662 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8663 {
8664 unsigned int i;
8665 struct mips_elf_link_hash_table *htab;
8666
8667 htab = mips_elf_hash_table (info);
8668
8669 /* We just need to copy the entry byte-by-byte. */
8670 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8671 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8672 htab->splt->contents + i * 4);
8673 }
8674
8675 /* Finish up the dynamic sections. */
8676
8677 bfd_boolean
8678 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8679 struct bfd_link_info *info)
8680 {
8681 bfd *dynobj;
8682 asection *sdyn;
8683 asection *sgot;
8684 struct mips_got_info *gg, *g;
8685 struct mips_elf_link_hash_table *htab;
8686
8687 htab = mips_elf_hash_table (info);
8688 dynobj = elf_hash_table (info)->dynobj;
8689
8690 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8691
8692 sgot = mips_elf_got_section (dynobj, FALSE);
8693 if (sgot == NULL)
8694 gg = g = NULL;
8695 else
8696 {
8697 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8698 gg = mips_elf_section_data (sgot)->u.got_info;
8699 BFD_ASSERT (gg != NULL);
8700 g = mips_elf_got_for_ibfd (gg, output_bfd);
8701 BFD_ASSERT (g != NULL);
8702 }
8703
8704 if (elf_hash_table (info)->dynamic_sections_created)
8705 {
8706 bfd_byte *b;
8707 int dyn_to_skip = 0, dyn_skipped = 0;
8708
8709 BFD_ASSERT (sdyn != NULL);
8710 BFD_ASSERT (g != NULL);
8711
8712 for (b = sdyn->contents;
8713 b < sdyn->contents + sdyn->size;
8714 b += MIPS_ELF_DYN_SIZE (dynobj))
8715 {
8716 Elf_Internal_Dyn dyn;
8717 const char *name;
8718 size_t elemsize;
8719 asection *s;
8720 bfd_boolean swap_out_p;
8721
8722 /* Read in the current dynamic entry. */
8723 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8724
8725 /* Assume that we're going to modify it and write it out. */
8726 swap_out_p = TRUE;
8727
8728 switch (dyn.d_tag)
8729 {
8730 case DT_RELENT:
8731 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8732 break;
8733
8734 case DT_RELAENT:
8735 BFD_ASSERT (htab->is_vxworks);
8736 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8737 break;
8738
8739 case DT_STRSZ:
8740 /* Rewrite DT_STRSZ. */
8741 dyn.d_un.d_val =
8742 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8743 break;
8744
8745 case DT_PLTGOT:
8746 name = ".got";
8747 if (htab->is_vxworks)
8748 {
8749 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8750 of the ".got" section in DYNOBJ. */
8751 s = bfd_get_section_by_name (dynobj, name);
8752 BFD_ASSERT (s != NULL);
8753 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8754 }
8755 else
8756 {
8757 s = bfd_get_section_by_name (output_bfd, name);
8758 BFD_ASSERT (s != NULL);
8759 dyn.d_un.d_ptr = s->vma;
8760 }
8761 break;
8762
8763 case DT_MIPS_RLD_VERSION:
8764 dyn.d_un.d_val = 1; /* XXX */
8765 break;
8766
8767 case DT_MIPS_FLAGS:
8768 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8769 break;
8770
8771 case DT_MIPS_TIME_STAMP:
8772 {
8773 time_t t;
8774 time (&t);
8775 dyn.d_un.d_val = t;
8776 }
8777 break;
8778
8779 case DT_MIPS_ICHECKSUM:
8780 /* XXX FIXME: */
8781 swap_out_p = FALSE;
8782 break;
8783
8784 case DT_MIPS_IVERSION:
8785 /* XXX FIXME: */
8786 swap_out_p = FALSE;
8787 break;
8788
8789 case DT_MIPS_BASE_ADDRESS:
8790 s = output_bfd->sections;
8791 BFD_ASSERT (s != NULL);
8792 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8793 break;
8794
8795 case DT_MIPS_LOCAL_GOTNO:
8796 dyn.d_un.d_val = g->local_gotno;
8797 break;
8798
8799 case DT_MIPS_UNREFEXTNO:
8800 /* The index into the dynamic symbol table which is the
8801 entry of the first external symbol that is not
8802 referenced within the same object. */
8803 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8804 break;
8805
8806 case DT_MIPS_GOTSYM:
8807 if (gg->global_gotsym)
8808 {
8809 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8810 break;
8811 }
8812 /* In case if we don't have global got symbols we default
8813 to setting DT_MIPS_GOTSYM to the same value as
8814 DT_MIPS_SYMTABNO, so we just fall through. */
8815
8816 case DT_MIPS_SYMTABNO:
8817 name = ".dynsym";
8818 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8819 s = bfd_get_section_by_name (output_bfd, name);
8820 BFD_ASSERT (s != NULL);
8821
8822 dyn.d_un.d_val = s->size / elemsize;
8823 break;
8824
8825 case DT_MIPS_HIPAGENO:
8826 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8827 break;
8828
8829 case DT_MIPS_RLD_MAP:
8830 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8831 break;
8832
8833 case DT_MIPS_OPTIONS:
8834 s = (bfd_get_section_by_name
8835 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8836 dyn.d_un.d_ptr = s->vma;
8837 break;
8838
8839 case DT_RELASZ:
8840 BFD_ASSERT (htab->is_vxworks);
8841 /* The count does not include the JUMP_SLOT relocations. */
8842 if (htab->srelplt)
8843 dyn.d_un.d_val -= htab->srelplt->size;
8844 break;
8845
8846 case DT_PLTREL:
8847 BFD_ASSERT (htab->is_vxworks);
8848 dyn.d_un.d_val = DT_RELA;
8849 break;
8850
8851 case DT_PLTRELSZ:
8852 BFD_ASSERT (htab->is_vxworks);
8853 dyn.d_un.d_val = htab->srelplt->size;
8854 break;
8855
8856 case DT_JMPREL:
8857 BFD_ASSERT (htab->is_vxworks);
8858 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8859 + htab->srelplt->output_offset);
8860 break;
8861
8862 case DT_TEXTREL:
8863 /* If we didn't need any text relocations after all, delete
8864 the dynamic tag. */
8865 if (!(info->flags & DF_TEXTREL))
8866 {
8867 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8868 swap_out_p = FALSE;
8869 }
8870 break;
8871
8872 case DT_FLAGS:
8873 /* If we didn't need any text relocations after all, clear
8874 DF_TEXTREL from DT_FLAGS. */
8875 if (!(info->flags & DF_TEXTREL))
8876 dyn.d_un.d_val &= ~DF_TEXTREL;
8877 else
8878 swap_out_p = FALSE;
8879 break;
8880
8881 default:
8882 swap_out_p = FALSE;
8883 break;
8884 }
8885
8886 if (swap_out_p || dyn_skipped)
8887 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8888 (dynobj, &dyn, b - dyn_skipped);
8889
8890 if (dyn_to_skip)
8891 {
8892 dyn_skipped += dyn_to_skip;
8893 dyn_to_skip = 0;
8894 }
8895 }
8896
8897 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8898 if (dyn_skipped > 0)
8899 memset (b - dyn_skipped, 0, dyn_skipped);
8900 }
8901
8902 if (sgot != NULL && sgot->size > 0)
8903 {
8904 if (htab->is_vxworks)
8905 {
8906 /* The first entry of the global offset table points to the
8907 ".dynamic" section. The second is initialized by the
8908 loader and contains the shared library identifier.
8909 The third is also initialized by the loader and points
8910 to the lazy resolution stub. */
8911 MIPS_ELF_PUT_WORD (output_bfd,
8912 sdyn->output_offset + sdyn->output_section->vma,
8913 sgot->contents);
8914 MIPS_ELF_PUT_WORD (output_bfd, 0,
8915 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8916 MIPS_ELF_PUT_WORD (output_bfd, 0,
8917 sgot->contents
8918 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8919 }
8920 else
8921 {
8922 /* The first entry of the global offset table will be filled at
8923 runtime. The second entry will be used by some runtime loaders.
8924 This isn't the case of IRIX rld. */
8925 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8926 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8927 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8928 }
8929
8930 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8931 = MIPS_ELF_GOT_SIZE (output_bfd);
8932 }
8933
8934 /* Generate dynamic relocations for the non-primary gots. */
8935 if (gg != NULL && gg->next)
8936 {
8937 Elf_Internal_Rela rel[3];
8938 bfd_vma addend = 0;
8939
8940 memset (rel, 0, sizeof (rel));
8941 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8942
8943 for (g = gg->next; g->next != gg; g = g->next)
8944 {
8945 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8946 + g->next->tls_gotno;
8947
8948 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8949 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8950 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8951 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8952
8953 if (! info->shared)
8954 continue;
8955
8956 while (index < g->assigned_gotno)
8957 {
8958 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8959 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8960 if (!(mips_elf_create_dynamic_relocation
8961 (output_bfd, info, rel, NULL,
8962 bfd_abs_section_ptr,
8963 0, &addend, sgot)))
8964 return FALSE;
8965 BFD_ASSERT (addend == 0);
8966 }
8967 }
8968 }
8969
8970 /* The generation of dynamic relocations for the non-primary gots
8971 adds more dynamic relocations. We cannot count them until
8972 here. */
8973
8974 if (elf_hash_table (info)->dynamic_sections_created)
8975 {
8976 bfd_byte *b;
8977 bfd_boolean swap_out_p;
8978
8979 BFD_ASSERT (sdyn != NULL);
8980
8981 for (b = sdyn->contents;
8982 b < sdyn->contents + sdyn->size;
8983 b += MIPS_ELF_DYN_SIZE (dynobj))
8984 {
8985 Elf_Internal_Dyn dyn;
8986 asection *s;
8987
8988 /* Read in the current dynamic entry. */
8989 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8990
8991 /* Assume that we're going to modify it and write it out. */
8992 swap_out_p = TRUE;
8993
8994 switch (dyn.d_tag)
8995 {
8996 case DT_RELSZ:
8997 /* Reduce DT_RELSZ to account for any relocations we
8998 decided not to make. This is for the n64 irix rld,
8999 which doesn't seem to apply any relocations if there
9000 are trailing null entries. */
9001 s = mips_elf_rel_dyn_section (info, FALSE);
9002 dyn.d_un.d_val = (s->reloc_count
9003 * (ABI_64_P (output_bfd)
9004 ? sizeof (Elf64_Mips_External_Rel)
9005 : sizeof (Elf32_External_Rel)));
9006 /* Adjust the section size too. Tools like the prelinker
9007 can reasonably expect the values to the same. */
9008 elf_section_data (s->output_section)->this_hdr.sh_size
9009 = dyn.d_un.d_val;
9010 break;
9011
9012 default:
9013 swap_out_p = FALSE;
9014 break;
9015 }
9016
9017 if (swap_out_p)
9018 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9019 (dynobj, &dyn, b);
9020 }
9021 }
9022
9023 {
9024 asection *s;
9025 Elf32_compact_rel cpt;
9026
9027 if (SGI_COMPAT (output_bfd))
9028 {
9029 /* Write .compact_rel section out. */
9030 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9031 if (s != NULL)
9032 {
9033 cpt.id1 = 1;
9034 cpt.num = s->reloc_count;
9035 cpt.id2 = 2;
9036 cpt.offset = (s->output_section->filepos
9037 + sizeof (Elf32_External_compact_rel));
9038 cpt.reserved0 = 0;
9039 cpt.reserved1 = 0;
9040 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9041 ((Elf32_External_compact_rel *)
9042 s->contents));
9043
9044 /* Clean up a dummy stub function entry in .text. */
9045 s = bfd_get_section_by_name (dynobj,
9046 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9047 if (s != NULL)
9048 {
9049 file_ptr dummy_offset;
9050
9051 BFD_ASSERT (s->size >= htab->function_stub_size);
9052 dummy_offset = s->size - htab->function_stub_size;
9053 memset (s->contents + dummy_offset, 0,
9054 htab->function_stub_size);
9055 }
9056 }
9057 }
9058
9059 /* The psABI says that the dynamic relocations must be sorted in
9060 increasing order of r_symndx. The VxWorks EABI doesn't require
9061 this, and because the code below handles REL rather than RELA
9062 relocations, using it for VxWorks would be outright harmful. */
9063 if (!htab->is_vxworks)
9064 {
9065 s = mips_elf_rel_dyn_section (info, FALSE);
9066 if (s != NULL
9067 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9068 {
9069 reldyn_sorting_bfd = output_bfd;
9070
9071 if (ABI_64_P (output_bfd))
9072 qsort ((Elf64_External_Rel *) s->contents + 1,
9073 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9074 sort_dynamic_relocs_64);
9075 else
9076 qsort ((Elf32_External_Rel *) s->contents + 1,
9077 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9078 sort_dynamic_relocs);
9079 }
9080 }
9081 }
9082
9083 if (htab->is_vxworks && htab->splt->size > 0)
9084 {
9085 if (info->shared)
9086 mips_vxworks_finish_shared_plt (output_bfd, info);
9087 else
9088 mips_vxworks_finish_exec_plt (output_bfd, info);
9089 }
9090 return TRUE;
9091 }
9092
9093
9094 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9095
9096 static void
9097 mips_set_isa_flags (bfd *abfd)
9098 {
9099 flagword val;
9100
9101 switch (bfd_get_mach (abfd))
9102 {
9103 default:
9104 case bfd_mach_mips3000:
9105 val = E_MIPS_ARCH_1;
9106 break;
9107
9108 case bfd_mach_mips3900:
9109 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9110 break;
9111
9112 case bfd_mach_mips6000:
9113 val = E_MIPS_ARCH_2;
9114 break;
9115
9116 case bfd_mach_mips4000:
9117 case bfd_mach_mips4300:
9118 case bfd_mach_mips4400:
9119 case bfd_mach_mips4600:
9120 val = E_MIPS_ARCH_3;
9121 break;
9122
9123 case bfd_mach_mips4010:
9124 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9125 break;
9126
9127 case bfd_mach_mips4100:
9128 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9129 break;
9130
9131 case bfd_mach_mips4111:
9132 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9133 break;
9134
9135 case bfd_mach_mips4120:
9136 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9137 break;
9138
9139 case bfd_mach_mips4650:
9140 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9141 break;
9142
9143 case bfd_mach_mips5400:
9144 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9145 break;
9146
9147 case bfd_mach_mips5500:
9148 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9149 break;
9150
9151 case bfd_mach_mips9000:
9152 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9153 break;
9154
9155 case bfd_mach_mips5000:
9156 case bfd_mach_mips7000:
9157 case bfd_mach_mips8000:
9158 case bfd_mach_mips10000:
9159 case bfd_mach_mips12000:
9160 val = E_MIPS_ARCH_4;
9161 break;
9162
9163 case bfd_mach_mips5:
9164 val = E_MIPS_ARCH_5;
9165 break;
9166
9167 case bfd_mach_mips_sb1:
9168 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9169 break;
9170
9171 case bfd_mach_mipsisa32:
9172 val = E_MIPS_ARCH_32;
9173 break;
9174
9175 case bfd_mach_mipsisa64:
9176 val = E_MIPS_ARCH_64;
9177 break;
9178
9179 case bfd_mach_mipsisa32r2:
9180 val = E_MIPS_ARCH_32R2;
9181 break;
9182
9183 case bfd_mach_mipsisa64r2:
9184 val = E_MIPS_ARCH_64R2;
9185 break;
9186 }
9187 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9188 elf_elfheader (abfd)->e_flags |= val;
9189
9190 }
9191
9192
9193 /* The final processing done just before writing out a MIPS ELF object
9194 file. This gets the MIPS architecture right based on the machine
9195 number. This is used by both the 32-bit and the 64-bit ABI. */
9196
9197 void
9198 _bfd_mips_elf_final_write_processing (bfd *abfd,
9199 bfd_boolean linker ATTRIBUTE_UNUSED)
9200 {
9201 unsigned int i;
9202 Elf_Internal_Shdr **hdrpp;
9203 const char *name;
9204 asection *sec;
9205
9206 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9207 is nonzero. This is for compatibility with old objects, which used
9208 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9209 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9210 mips_set_isa_flags (abfd);
9211
9212 /* Set the sh_info field for .gptab sections and other appropriate
9213 info for each special section. */
9214 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9215 i < elf_numsections (abfd);
9216 i++, hdrpp++)
9217 {
9218 switch ((*hdrpp)->sh_type)
9219 {
9220 case SHT_MIPS_MSYM:
9221 case SHT_MIPS_LIBLIST:
9222 sec = bfd_get_section_by_name (abfd, ".dynstr");
9223 if (sec != NULL)
9224 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9225 break;
9226
9227 case SHT_MIPS_GPTAB:
9228 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9229 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9230 BFD_ASSERT (name != NULL
9231 && CONST_STRNEQ (name, ".gptab."));
9232 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9233 BFD_ASSERT (sec != NULL);
9234 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9235 break;
9236
9237 case SHT_MIPS_CONTENT:
9238 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9239 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9240 BFD_ASSERT (name != NULL
9241 && CONST_STRNEQ (name, ".MIPS.content"));
9242 sec = bfd_get_section_by_name (abfd,
9243 name + sizeof ".MIPS.content" - 1);
9244 BFD_ASSERT (sec != NULL);
9245 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9246 break;
9247
9248 case SHT_MIPS_SYMBOL_LIB:
9249 sec = bfd_get_section_by_name (abfd, ".dynsym");
9250 if (sec != NULL)
9251 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9252 sec = bfd_get_section_by_name (abfd, ".liblist");
9253 if (sec != NULL)
9254 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9255 break;
9256
9257 case SHT_MIPS_EVENTS:
9258 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9259 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9260 BFD_ASSERT (name != NULL);
9261 if (CONST_STRNEQ (name, ".MIPS.events"))
9262 sec = bfd_get_section_by_name (abfd,
9263 name + sizeof ".MIPS.events" - 1);
9264 else
9265 {
9266 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9267 sec = bfd_get_section_by_name (abfd,
9268 (name
9269 + sizeof ".MIPS.post_rel" - 1));
9270 }
9271 BFD_ASSERT (sec != NULL);
9272 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9273 break;
9274
9275 }
9276 }
9277 }
9278 \f
9279 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9280 segments. */
9281
9282 int
9283 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9284 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9285 {
9286 asection *s;
9287 int ret = 0;
9288
9289 /* See if we need a PT_MIPS_REGINFO segment. */
9290 s = bfd_get_section_by_name (abfd, ".reginfo");
9291 if (s && (s->flags & SEC_LOAD))
9292 ++ret;
9293
9294 /* See if we need a PT_MIPS_OPTIONS segment. */
9295 if (IRIX_COMPAT (abfd) == ict_irix6
9296 && bfd_get_section_by_name (abfd,
9297 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9298 ++ret;
9299
9300 /* See if we need a PT_MIPS_RTPROC segment. */
9301 if (IRIX_COMPAT (abfd) == ict_irix5
9302 && bfd_get_section_by_name (abfd, ".dynamic")
9303 && bfd_get_section_by_name (abfd, ".mdebug"))
9304 ++ret;
9305
9306 /* Allocate a PT_NULL header in dynamic objects. See
9307 _bfd_mips_elf_modify_segment_map for details. */
9308 if (!SGI_COMPAT (abfd)
9309 && bfd_get_section_by_name (abfd, ".dynamic"))
9310 ++ret;
9311
9312 return ret;
9313 }
9314
9315 /* Modify the segment map for an IRIX5 executable. */
9316
9317 bfd_boolean
9318 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9319 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9320 {
9321 asection *s;
9322 struct elf_segment_map *m, **pm;
9323 bfd_size_type amt;
9324
9325 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9326 segment. */
9327 s = bfd_get_section_by_name (abfd, ".reginfo");
9328 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9329 {
9330 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9331 if (m->p_type == PT_MIPS_REGINFO)
9332 break;
9333 if (m == NULL)
9334 {
9335 amt = sizeof *m;
9336 m = bfd_zalloc (abfd, amt);
9337 if (m == NULL)
9338 return FALSE;
9339
9340 m->p_type = PT_MIPS_REGINFO;
9341 m->count = 1;
9342 m->sections[0] = s;
9343
9344 /* We want to put it after the PHDR and INTERP segments. */
9345 pm = &elf_tdata (abfd)->segment_map;
9346 while (*pm != NULL
9347 && ((*pm)->p_type == PT_PHDR
9348 || (*pm)->p_type == PT_INTERP))
9349 pm = &(*pm)->next;
9350
9351 m->next = *pm;
9352 *pm = m;
9353 }
9354 }
9355
9356 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9357 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9358 PT_MIPS_OPTIONS segment immediately following the program header
9359 table. */
9360 if (NEWABI_P (abfd)
9361 /* On non-IRIX6 new abi, we'll have already created a segment
9362 for this section, so don't create another. I'm not sure this
9363 is not also the case for IRIX 6, but I can't test it right
9364 now. */
9365 && IRIX_COMPAT (abfd) == ict_irix6)
9366 {
9367 for (s = abfd->sections; s; s = s->next)
9368 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9369 break;
9370
9371 if (s)
9372 {
9373 struct elf_segment_map *options_segment;
9374
9375 pm = &elf_tdata (abfd)->segment_map;
9376 while (*pm != NULL
9377 && ((*pm)->p_type == PT_PHDR
9378 || (*pm)->p_type == PT_INTERP))
9379 pm = &(*pm)->next;
9380
9381 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9382 {
9383 amt = sizeof (struct elf_segment_map);
9384 options_segment = bfd_zalloc (abfd, amt);
9385 options_segment->next = *pm;
9386 options_segment->p_type = PT_MIPS_OPTIONS;
9387 options_segment->p_flags = PF_R;
9388 options_segment->p_flags_valid = TRUE;
9389 options_segment->count = 1;
9390 options_segment->sections[0] = s;
9391 *pm = options_segment;
9392 }
9393 }
9394 }
9395 else
9396 {
9397 if (IRIX_COMPAT (abfd) == ict_irix5)
9398 {
9399 /* If there are .dynamic and .mdebug sections, we make a room
9400 for the RTPROC header. FIXME: Rewrite without section names. */
9401 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9402 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9403 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9404 {
9405 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9406 if (m->p_type == PT_MIPS_RTPROC)
9407 break;
9408 if (m == NULL)
9409 {
9410 amt = sizeof *m;
9411 m = bfd_zalloc (abfd, amt);
9412 if (m == NULL)
9413 return FALSE;
9414
9415 m->p_type = PT_MIPS_RTPROC;
9416
9417 s = bfd_get_section_by_name (abfd, ".rtproc");
9418 if (s == NULL)
9419 {
9420 m->count = 0;
9421 m->p_flags = 0;
9422 m->p_flags_valid = 1;
9423 }
9424 else
9425 {
9426 m->count = 1;
9427 m->sections[0] = s;
9428 }
9429
9430 /* We want to put it after the DYNAMIC segment. */
9431 pm = &elf_tdata (abfd)->segment_map;
9432 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9433 pm = &(*pm)->next;
9434 if (*pm != NULL)
9435 pm = &(*pm)->next;
9436
9437 m->next = *pm;
9438 *pm = m;
9439 }
9440 }
9441 }
9442 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9443 .dynstr, .dynsym, and .hash sections, and everything in
9444 between. */
9445 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9446 pm = &(*pm)->next)
9447 if ((*pm)->p_type == PT_DYNAMIC)
9448 break;
9449 m = *pm;
9450 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9451 {
9452 /* For a normal mips executable the permissions for the PT_DYNAMIC
9453 segment are read, write and execute. We do that here since
9454 the code in elf.c sets only the read permission. This matters
9455 sometimes for the dynamic linker. */
9456 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9457 {
9458 m->p_flags = PF_R | PF_W | PF_X;
9459 m->p_flags_valid = 1;
9460 }
9461 }
9462 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9463 glibc's dynamic linker has traditionally derived the number of
9464 tags from the p_filesz field, and sometimes allocates stack
9465 arrays of that size. An overly-big PT_DYNAMIC segment can
9466 be actively harmful in such cases. Making PT_DYNAMIC contain
9467 other sections can also make life hard for the prelinker,
9468 which might move one of the other sections to a different
9469 PT_LOAD segment. */
9470 if (SGI_COMPAT (abfd)
9471 && m != NULL
9472 && m->count == 1
9473 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9474 {
9475 static const char *sec_names[] =
9476 {
9477 ".dynamic", ".dynstr", ".dynsym", ".hash"
9478 };
9479 bfd_vma low, high;
9480 unsigned int i, c;
9481 struct elf_segment_map *n;
9482
9483 low = ~(bfd_vma) 0;
9484 high = 0;
9485 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9486 {
9487 s = bfd_get_section_by_name (abfd, sec_names[i]);
9488 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9489 {
9490 bfd_size_type sz;
9491
9492 if (low > s->vma)
9493 low = s->vma;
9494 sz = s->size;
9495 if (high < s->vma + sz)
9496 high = s->vma + sz;
9497 }
9498 }
9499
9500 c = 0;
9501 for (s = abfd->sections; s != NULL; s = s->next)
9502 if ((s->flags & SEC_LOAD) != 0
9503 && s->vma >= low
9504 && s->vma + s->size <= high)
9505 ++c;
9506
9507 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9508 n = bfd_zalloc (abfd, amt);
9509 if (n == NULL)
9510 return FALSE;
9511 *n = *m;
9512 n->count = c;
9513
9514 i = 0;
9515 for (s = abfd->sections; s != NULL; s = s->next)
9516 {
9517 if ((s->flags & SEC_LOAD) != 0
9518 && s->vma >= low
9519 && s->vma + s->size <= high)
9520 {
9521 n->sections[i] = s;
9522 ++i;
9523 }
9524 }
9525
9526 *pm = n;
9527 }
9528 }
9529
9530 /* Allocate a spare program header in dynamic objects so that tools
9531 like the prelinker can add an extra PT_LOAD entry.
9532
9533 If the prelinker needs to make room for a new PT_LOAD entry, its
9534 standard procedure is to move the first (read-only) sections into
9535 the new (writable) segment. However, the MIPS ABI requires
9536 .dynamic to be in a read-only segment, and the section will often
9537 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9538
9539 Although the prelinker could in principle move .dynamic to a
9540 writable segment, it seems better to allocate a spare program
9541 header instead, and avoid the need to move any sections.
9542 There is a long tradition of allocating spare dynamic tags,
9543 so allocating a spare program header seems like a natural
9544 extension. */
9545 if (!SGI_COMPAT (abfd)
9546 && bfd_get_section_by_name (abfd, ".dynamic"))
9547 {
9548 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9549 if ((*pm)->p_type == PT_NULL)
9550 break;
9551 if (*pm == NULL)
9552 {
9553 m = bfd_zalloc (abfd, sizeof (*m));
9554 if (m == NULL)
9555 return FALSE;
9556
9557 m->p_type = PT_NULL;
9558 *pm = m;
9559 }
9560 }
9561
9562 return TRUE;
9563 }
9564 \f
9565 /* Return the section that should be marked against GC for a given
9566 relocation. */
9567
9568 asection *
9569 _bfd_mips_elf_gc_mark_hook (asection *sec,
9570 struct bfd_link_info *info,
9571 Elf_Internal_Rela *rel,
9572 struct elf_link_hash_entry *h,
9573 Elf_Internal_Sym *sym)
9574 {
9575 /* ??? Do mips16 stub sections need to be handled special? */
9576
9577 if (h != NULL)
9578 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9579 {
9580 case R_MIPS_GNU_VTINHERIT:
9581 case R_MIPS_GNU_VTENTRY:
9582 return NULL;
9583 }
9584
9585 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9586 }
9587
9588 /* Update the got entry reference counts for the section being removed. */
9589
9590 bfd_boolean
9591 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9592 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9593 asection *sec ATTRIBUTE_UNUSED,
9594 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9595 {
9596 #if 0
9597 Elf_Internal_Shdr *symtab_hdr;
9598 struct elf_link_hash_entry **sym_hashes;
9599 bfd_signed_vma *local_got_refcounts;
9600 const Elf_Internal_Rela *rel, *relend;
9601 unsigned long r_symndx;
9602 struct elf_link_hash_entry *h;
9603
9604 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9605 sym_hashes = elf_sym_hashes (abfd);
9606 local_got_refcounts = elf_local_got_refcounts (abfd);
9607
9608 relend = relocs + sec->reloc_count;
9609 for (rel = relocs; rel < relend; rel++)
9610 switch (ELF_R_TYPE (abfd, rel->r_info))
9611 {
9612 case R_MIPS_GOT16:
9613 case R_MIPS_CALL16:
9614 case R_MIPS_CALL_HI16:
9615 case R_MIPS_CALL_LO16:
9616 case R_MIPS_GOT_HI16:
9617 case R_MIPS_GOT_LO16:
9618 case R_MIPS_GOT_DISP:
9619 case R_MIPS_GOT_PAGE:
9620 case R_MIPS_GOT_OFST:
9621 /* ??? It would seem that the existing MIPS code does no sort
9622 of reference counting or whatnot on its GOT and PLT entries,
9623 so it is not possible to garbage collect them at this time. */
9624 break;
9625
9626 default:
9627 break;
9628 }
9629 #endif
9630
9631 return TRUE;
9632 }
9633 \f
9634 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9635 hiding the old indirect symbol. Process additional relocation
9636 information. Also called for weakdefs, in which case we just let
9637 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9638
9639 void
9640 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9641 struct elf_link_hash_entry *dir,
9642 struct elf_link_hash_entry *ind)
9643 {
9644 struct mips_elf_link_hash_entry *dirmips, *indmips;
9645
9646 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9647
9648 if (ind->root.type != bfd_link_hash_indirect)
9649 return;
9650
9651 dirmips = (struct mips_elf_link_hash_entry *) dir;
9652 indmips = (struct mips_elf_link_hash_entry *) ind;
9653 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9654 if (indmips->readonly_reloc)
9655 dirmips->readonly_reloc = TRUE;
9656 if (indmips->no_fn_stub)
9657 dirmips->no_fn_stub = TRUE;
9658
9659 if (dirmips->tls_type == 0)
9660 dirmips->tls_type = indmips->tls_type;
9661 }
9662
9663 void
9664 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9665 struct elf_link_hash_entry *entry,
9666 bfd_boolean force_local)
9667 {
9668 bfd *dynobj;
9669 asection *got;
9670 struct mips_got_info *g;
9671 struct mips_elf_link_hash_entry *h;
9672
9673 h = (struct mips_elf_link_hash_entry *) entry;
9674 if (h->forced_local)
9675 return;
9676 h->forced_local = force_local;
9677
9678 dynobj = elf_hash_table (info)->dynobj;
9679 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9680 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
9681 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9682 {
9683 if (g->next)
9684 {
9685 struct mips_got_entry e;
9686 struct mips_got_info *gg = g;
9687
9688 /* Since we're turning what used to be a global symbol into a
9689 local one, bump up the number of local entries of each GOT
9690 that had an entry for it. This will automatically decrease
9691 the number of global entries, since global_gotno is actually
9692 the upper limit of global entries. */
9693 e.abfd = dynobj;
9694 e.symndx = -1;
9695 e.d.h = h;
9696 e.tls_type = 0;
9697
9698 for (g = g->next; g != gg; g = g->next)
9699 if (htab_find (g->got_entries, &e))
9700 {
9701 BFD_ASSERT (g->global_gotno > 0);
9702 g->local_gotno++;
9703 g->global_gotno--;
9704 }
9705
9706 /* If this was a global symbol forced into the primary GOT, we
9707 no longer need an entry for it. We can't release the entry
9708 at this point, but we must at least stop counting it as one
9709 of the symbols that required a forced got entry. */
9710 if (h->root.got.offset == 2)
9711 {
9712 BFD_ASSERT (gg->assigned_gotno > 0);
9713 gg->assigned_gotno--;
9714 }
9715 }
9716 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9717 /* If we haven't got through GOT allocation yet, just bump up the
9718 number of local entries, as this symbol won't be counted as
9719 global. */
9720 g->local_gotno++;
9721 else if (h->root.got.offset == 1)
9722 {
9723 /* If we're past non-multi-GOT allocation and this symbol had
9724 been marked for a global got entry, give it a local entry
9725 instead. */
9726 BFD_ASSERT (g->global_gotno > 0);
9727 g->local_gotno++;
9728 g->global_gotno--;
9729 }
9730 }
9731
9732 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9733 }
9734 \f
9735 #define PDR_SIZE 32
9736
9737 bfd_boolean
9738 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9739 struct bfd_link_info *info)
9740 {
9741 asection *o;
9742 bfd_boolean ret = FALSE;
9743 unsigned char *tdata;
9744 size_t i, skip;
9745
9746 o = bfd_get_section_by_name (abfd, ".pdr");
9747 if (! o)
9748 return FALSE;
9749 if (o->size == 0)
9750 return FALSE;
9751 if (o->size % PDR_SIZE != 0)
9752 return FALSE;
9753 if (o->output_section != NULL
9754 && bfd_is_abs_section (o->output_section))
9755 return FALSE;
9756
9757 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9758 if (! tdata)
9759 return FALSE;
9760
9761 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9762 info->keep_memory);
9763 if (!cookie->rels)
9764 {
9765 free (tdata);
9766 return FALSE;
9767 }
9768
9769 cookie->rel = cookie->rels;
9770 cookie->relend = cookie->rels + o->reloc_count;
9771
9772 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9773 {
9774 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9775 {
9776 tdata[i] = 1;
9777 skip ++;
9778 }
9779 }
9780
9781 if (skip != 0)
9782 {
9783 mips_elf_section_data (o)->u.tdata = tdata;
9784 o->size -= skip * PDR_SIZE;
9785 ret = TRUE;
9786 }
9787 else
9788 free (tdata);
9789
9790 if (! info->keep_memory)
9791 free (cookie->rels);
9792
9793 return ret;
9794 }
9795
9796 bfd_boolean
9797 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9798 {
9799 if (strcmp (sec->name, ".pdr") == 0)
9800 return TRUE;
9801 return FALSE;
9802 }
9803
9804 bfd_boolean
9805 _bfd_mips_elf_write_section (bfd *output_bfd,
9806 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9807 asection *sec, bfd_byte *contents)
9808 {
9809 bfd_byte *to, *from, *end;
9810 int i;
9811
9812 if (strcmp (sec->name, ".pdr") != 0)
9813 return FALSE;
9814
9815 if (mips_elf_section_data (sec)->u.tdata == NULL)
9816 return FALSE;
9817
9818 to = contents;
9819 end = contents + sec->size;
9820 for (from = contents, i = 0;
9821 from < end;
9822 from += PDR_SIZE, i++)
9823 {
9824 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9825 continue;
9826 if (to != from)
9827 memcpy (to, from, PDR_SIZE);
9828 to += PDR_SIZE;
9829 }
9830 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9831 sec->output_offset, sec->size);
9832 return TRUE;
9833 }
9834 \f
9835 /* MIPS ELF uses a special find_nearest_line routine in order the
9836 handle the ECOFF debugging information. */
9837
9838 struct mips_elf_find_line
9839 {
9840 struct ecoff_debug_info d;
9841 struct ecoff_find_line i;
9842 };
9843
9844 bfd_boolean
9845 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9846 asymbol **symbols, bfd_vma offset,
9847 const char **filename_ptr,
9848 const char **functionname_ptr,
9849 unsigned int *line_ptr)
9850 {
9851 asection *msec;
9852
9853 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9854 filename_ptr, functionname_ptr,
9855 line_ptr))
9856 return TRUE;
9857
9858 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9859 filename_ptr, functionname_ptr,
9860 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9861 &elf_tdata (abfd)->dwarf2_find_line_info))
9862 return TRUE;
9863
9864 msec = bfd_get_section_by_name (abfd, ".mdebug");
9865 if (msec != NULL)
9866 {
9867 flagword origflags;
9868 struct mips_elf_find_line *fi;
9869 const struct ecoff_debug_swap * const swap =
9870 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9871
9872 /* If we are called during a link, mips_elf_final_link may have
9873 cleared the SEC_HAS_CONTENTS field. We force it back on here
9874 if appropriate (which it normally will be). */
9875 origflags = msec->flags;
9876 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9877 msec->flags |= SEC_HAS_CONTENTS;
9878
9879 fi = elf_tdata (abfd)->find_line_info;
9880 if (fi == NULL)
9881 {
9882 bfd_size_type external_fdr_size;
9883 char *fraw_src;
9884 char *fraw_end;
9885 struct fdr *fdr_ptr;
9886 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9887
9888 fi = bfd_zalloc (abfd, amt);
9889 if (fi == NULL)
9890 {
9891 msec->flags = origflags;
9892 return FALSE;
9893 }
9894
9895 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9896 {
9897 msec->flags = origflags;
9898 return FALSE;
9899 }
9900
9901 /* Swap in the FDR information. */
9902 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9903 fi->d.fdr = bfd_alloc (abfd, amt);
9904 if (fi->d.fdr == NULL)
9905 {
9906 msec->flags = origflags;
9907 return FALSE;
9908 }
9909 external_fdr_size = swap->external_fdr_size;
9910 fdr_ptr = fi->d.fdr;
9911 fraw_src = (char *) fi->d.external_fdr;
9912 fraw_end = (fraw_src
9913 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9914 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9915 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9916
9917 elf_tdata (abfd)->find_line_info = fi;
9918
9919 /* Note that we don't bother to ever free this information.
9920 find_nearest_line is either called all the time, as in
9921 objdump -l, so the information should be saved, or it is
9922 rarely called, as in ld error messages, so the memory
9923 wasted is unimportant. Still, it would probably be a
9924 good idea for free_cached_info to throw it away. */
9925 }
9926
9927 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9928 &fi->i, filename_ptr, functionname_ptr,
9929 line_ptr))
9930 {
9931 msec->flags = origflags;
9932 return TRUE;
9933 }
9934
9935 msec->flags = origflags;
9936 }
9937
9938 /* Fall back on the generic ELF find_nearest_line routine. */
9939
9940 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9941 filename_ptr, functionname_ptr,
9942 line_ptr);
9943 }
9944
9945 bfd_boolean
9946 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9947 const char **filename_ptr,
9948 const char **functionname_ptr,
9949 unsigned int *line_ptr)
9950 {
9951 bfd_boolean found;
9952 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9953 functionname_ptr, line_ptr,
9954 & elf_tdata (abfd)->dwarf2_find_line_info);
9955 return found;
9956 }
9957
9958 \f
9959 /* When are writing out the .options or .MIPS.options section,
9960 remember the bytes we are writing out, so that we can install the
9961 GP value in the section_processing routine. */
9962
9963 bfd_boolean
9964 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9965 const void *location,
9966 file_ptr offset, bfd_size_type count)
9967 {
9968 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9969 {
9970 bfd_byte *c;
9971
9972 if (elf_section_data (section) == NULL)
9973 {
9974 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9975 section->used_by_bfd = bfd_zalloc (abfd, amt);
9976 if (elf_section_data (section) == NULL)
9977 return FALSE;
9978 }
9979 c = mips_elf_section_data (section)->u.tdata;
9980 if (c == NULL)
9981 {
9982 c = bfd_zalloc (abfd, section->size);
9983 if (c == NULL)
9984 return FALSE;
9985 mips_elf_section_data (section)->u.tdata = c;
9986 }
9987
9988 memcpy (c + offset, location, count);
9989 }
9990
9991 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9992 count);
9993 }
9994
9995 /* This is almost identical to bfd_generic_get_... except that some
9996 MIPS relocations need to be handled specially. Sigh. */
9997
9998 bfd_byte *
9999 _bfd_elf_mips_get_relocated_section_contents
10000 (bfd *abfd,
10001 struct bfd_link_info *link_info,
10002 struct bfd_link_order *link_order,
10003 bfd_byte *data,
10004 bfd_boolean relocatable,
10005 asymbol **symbols)
10006 {
10007 /* Get enough memory to hold the stuff */
10008 bfd *input_bfd = link_order->u.indirect.section->owner;
10009 asection *input_section = link_order->u.indirect.section;
10010 bfd_size_type sz;
10011
10012 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10013 arelent **reloc_vector = NULL;
10014 long reloc_count;
10015
10016 if (reloc_size < 0)
10017 goto error_return;
10018
10019 reloc_vector = bfd_malloc (reloc_size);
10020 if (reloc_vector == NULL && reloc_size != 0)
10021 goto error_return;
10022
10023 /* read in the section */
10024 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10025 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
10026 goto error_return;
10027
10028 reloc_count = bfd_canonicalize_reloc (input_bfd,
10029 input_section,
10030 reloc_vector,
10031 symbols);
10032 if (reloc_count < 0)
10033 goto error_return;
10034
10035 if (reloc_count > 0)
10036 {
10037 arelent **parent;
10038 /* for mips */
10039 int gp_found;
10040 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10041
10042 {
10043 struct bfd_hash_entry *h;
10044 struct bfd_link_hash_entry *lh;
10045 /* Skip all this stuff if we aren't mixing formats. */
10046 if (abfd && input_bfd
10047 && abfd->xvec == input_bfd->xvec)
10048 lh = 0;
10049 else
10050 {
10051 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
10052 lh = (struct bfd_link_hash_entry *) h;
10053 }
10054 lookup:
10055 if (lh)
10056 {
10057 switch (lh->type)
10058 {
10059 case bfd_link_hash_undefined:
10060 case bfd_link_hash_undefweak:
10061 case bfd_link_hash_common:
10062 gp_found = 0;
10063 break;
10064 case bfd_link_hash_defined:
10065 case bfd_link_hash_defweak:
10066 gp_found = 1;
10067 gp = lh->u.def.value;
10068 break;
10069 case bfd_link_hash_indirect:
10070 case bfd_link_hash_warning:
10071 lh = lh->u.i.link;
10072 /* @@FIXME ignoring warning for now */
10073 goto lookup;
10074 case bfd_link_hash_new:
10075 default:
10076 abort ();
10077 }
10078 }
10079 else
10080 gp_found = 0;
10081 }
10082 /* end mips */
10083 for (parent = reloc_vector; *parent != NULL; parent++)
10084 {
10085 char *error_message = NULL;
10086 bfd_reloc_status_type r;
10087
10088 /* Specific to MIPS: Deal with relocation types that require
10089 knowing the gp of the output bfd. */
10090 asymbol *sym = *(*parent)->sym_ptr_ptr;
10091
10092 /* If we've managed to find the gp and have a special
10093 function for the relocation then go ahead, else default
10094 to the generic handling. */
10095 if (gp_found
10096 && (*parent)->howto->special_function
10097 == _bfd_mips_elf32_gprel16_reloc)
10098 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10099 input_section, relocatable,
10100 data, gp);
10101 else
10102 r = bfd_perform_relocation (input_bfd, *parent, data,
10103 input_section,
10104 relocatable ? abfd : NULL,
10105 &error_message);
10106
10107 if (relocatable)
10108 {
10109 asection *os = input_section->output_section;
10110
10111 /* A partial link, so keep the relocs */
10112 os->orelocation[os->reloc_count] = *parent;
10113 os->reloc_count++;
10114 }
10115
10116 if (r != bfd_reloc_ok)
10117 {
10118 switch (r)
10119 {
10120 case bfd_reloc_undefined:
10121 if (!((*link_info->callbacks->undefined_symbol)
10122 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10123 input_bfd, input_section, (*parent)->address, TRUE)))
10124 goto error_return;
10125 break;
10126 case bfd_reloc_dangerous:
10127 BFD_ASSERT (error_message != NULL);
10128 if (!((*link_info->callbacks->reloc_dangerous)
10129 (link_info, error_message, input_bfd, input_section,
10130 (*parent)->address)))
10131 goto error_return;
10132 break;
10133 case bfd_reloc_overflow:
10134 if (!((*link_info->callbacks->reloc_overflow)
10135 (link_info, NULL,
10136 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10137 (*parent)->howto->name, (*parent)->addend,
10138 input_bfd, input_section, (*parent)->address)))
10139 goto error_return;
10140 break;
10141 case bfd_reloc_outofrange:
10142 default:
10143 abort ();
10144 break;
10145 }
10146
10147 }
10148 }
10149 }
10150 if (reloc_vector != NULL)
10151 free (reloc_vector);
10152 return data;
10153
10154 error_return:
10155 if (reloc_vector != NULL)
10156 free (reloc_vector);
10157 return NULL;
10158 }
10159 \f
10160 /* Create a MIPS ELF linker hash table. */
10161
10162 struct bfd_link_hash_table *
10163 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
10164 {
10165 struct mips_elf_link_hash_table *ret;
10166 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10167
10168 ret = bfd_malloc (amt);
10169 if (ret == NULL)
10170 return NULL;
10171
10172 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10173 mips_elf_link_hash_newfunc,
10174 sizeof (struct mips_elf_link_hash_entry)))
10175 {
10176 free (ret);
10177 return NULL;
10178 }
10179
10180 #if 0
10181 /* We no longer use this. */
10182 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10183 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10184 #endif
10185 ret->procedure_count = 0;
10186 ret->compact_rel_size = 0;
10187 ret->use_rld_obj_head = FALSE;
10188 ret->rld_value = 0;
10189 ret->mips16_stubs_seen = FALSE;
10190 ret->is_vxworks = FALSE;
10191 ret->srelbss = NULL;
10192 ret->sdynbss = NULL;
10193 ret->srelplt = NULL;
10194 ret->srelplt2 = NULL;
10195 ret->sgotplt = NULL;
10196 ret->splt = NULL;
10197 ret->plt_header_size = 0;
10198 ret->plt_entry_size = 0;
10199 ret->function_stub_size = 0;
10200
10201 return &ret->root.root;
10202 }
10203
10204 /* Likewise, but indicate that the target is VxWorks. */
10205
10206 struct bfd_link_hash_table *
10207 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10208 {
10209 struct bfd_link_hash_table *ret;
10210
10211 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10212 if (ret)
10213 {
10214 struct mips_elf_link_hash_table *htab;
10215
10216 htab = (struct mips_elf_link_hash_table *) ret;
10217 htab->is_vxworks = 1;
10218 }
10219 return ret;
10220 }
10221 \f
10222 /* We need to use a special link routine to handle the .reginfo and
10223 the .mdebug sections. We need to merge all instances of these
10224 sections together, not write them all out sequentially. */
10225
10226 bfd_boolean
10227 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10228 {
10229 asection *o;
10230 struct bfd_link_order *p;
10231 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10232 asection *rtproc_sec;
10233 Elf32_RegInfo reginfo;
10234 struct ecoff_debug_info debug;
10235 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10236 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10237 HDRR *symhdr = &debug.symbolic_header;
10238 void *mdebug_handle = NULL;
10239 asection *s;
10240 EXTR esym;
10241 unsigned int i;
10242 bfd_size_type amt;
10243 struct mips_elf_link_hash_table *htab;
10244
10245 static const char * const secname[] =
10246 {
10247 ".text", ".init", ".fini", ".data",
10248 ".rodata", ".sdata", ".sbss", ".bss"
10249 };
10250 static const int sc[] =
10251 {
10252 scText, scInit, scFini, scData,
10253 scRData, scSData, scSBss, scBss
10254 };
10255
10256 /* We'd carefully arranged the dynamic symbol indices, and then the
10257 generic size_dynamic_sections renumbered them out from under us.
10258 Rather than trying somehow to prevent the renumbering, just do
10259 the sort again. */
10260 htab = mips_elf_hash_table (info);
10261 if (elf_hash_table (info)->dynamic_sections_created)
10262 {
10263 bfd *dynobj;
10264 asection *got;
10265 struct mips_got_info *g;
10266 bfd_size_type dynsecsymcount;
10267
10268 /* When we resort, we must tell mips_elf_sort_hash_table what
10269 the lowest index it may use is. That's the number of section
10270 symbols we're going to add. The generic ELF linker only
10271 adds these symbols when building a shared object. Note that
10272 we count the sections after (possibly) removing the .options
10273 section above. */
10274
10275 dynsecsymcount = count_section_dynsyms (abfd, info);
10276 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10277 return FALSE;
10278
10279 /* Make sure we didn't grow the global .got region. */
10280 dynobj = elf_hash_table (info)->dynobj;
10281 got = mips_elf_got_section (dynobj, FALSE);
10282 g = mips_elf_section_data (got)->u.got_info;
10283
10284 if (g->global_gotsym != NULL)
10285 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10286 - g->global_gotsym->dynindx)
10287 <= g->global_gotno);
10288 }
10289
10290 /* Get a value for the GP register. */
10291 if (elf_gp (abfd) == 0)
10292 {
10293 struct bfd_link_hash_entry *h;
10294
10295 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10296 if (h != NULL && h->type == bfd_link_hash_defined)
10297 elf_gp (abfd) = (h->u.def.value
10298 + h->u.def.section->output_section->vma
10299 + h->u.def.section->output_offset);
10300 else if (htab->is_vxworks
10301 && (h = bfd_link_hash_lookup (info->hash,
10302 "_GLOBAL_OFFSET_TABLE_",
10303 FALSE, FALSE, TRUE))
10304 && h->type == bfd_link_hash_defined)
10305 elf_gp (abfd) = (h->u.def.section->output_section->vma
10306 + h->u.def.section->output_offset
10307 + h->u.def.value);
10308 else if (info->relocatable)
10309 {
10310 bfd_vma lo = MINUS_ONE;
10311
10312 /* Find the GP-relative section with the lowest offset. */
10313 for (o = abfd->sections; o != NULL; o = o->next)
10314 if (o->vma < lo
10315 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10316 lo = o->vma;
10317
10318 /* And calculate GP relative to that. */
10319 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10320 }
10321 else
10322 {
10323 /* If the relocate_section function needs to do a reloc
10324 involving the GP value, it should make a reloc_dangerous
10325 callback to warn that GP is not defined. */
10326 }
10327 }
10328
10329 /* Go through the sections and collect the .reginfo and .mdebug
10330 information. */
10331 reginfo_sec = NULL;
10332 mdebug_sec = NULL;
10333 gptab_data_sec = NULL;
10334 gptab_bss_sec = NULL;
10335 for (o = abfd->sections; o != NULL; o = o->next)
10336 {
10337 if (strcmp (o->name, ".reginfo") == 0)
10338 {
10339 memset (&reginfo, 0, sizeof reginfo);
10340
10341 /* We have found the .reginfo section in the output file.
10342 Look through all the link_orders comprising it and merge
10343 the information together. */
10344 for (p = o->map_head.link_order; p != NULL; p = p->next)
10345 {
10346 asection *input_section;
10347 bfd *input_bfd;
10348 Elf32_External_RegInfo ext;
10349 Elf32_RegInfo sub;
10350
10351 if (p->type != bfd_indirect_link_order)
10352 {
10353 if (p->type == bfd_data_link_order)
10354 continue;
10355 abort ();
10356 }
10357
10358 input_section = p->u.indirect.section;
10359 input_bfd = input_section->owner;
10360
10361 if (! bfd_get_section_contents (input_bfd, input_section,
10362 &ext, 0, sizeof ext))
10363 return FALSE;
10364
10365 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10366
10367 reginfo.ri_gprmask |= sub.ri_gprmask;
10368 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10369 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10370 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10371 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10372
10373 /* ri_gp_value is set by the function
10374 mips_elf32_section_processing when the section is
10375 finally written out. */
10376
10377 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10378 elf_link_input_bfd ignores this section. */
10379 input_section->flags &= ~SEC_HAS_CONTENTS;
10380 }
10381
10382 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10383 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10384
10385 /* Skip this section later on (I don't think this currently
10386 matters, but someday it might). */
10387 o->map_head.link_order = NULL;
10388
10389 reginfo_sec = o;
10390 }
10391
10392 if (strcmp (o->name, ".mdebug") == 0)
10393 {
10394 struct extsym_info einfo;
10395 bfd_vma last;
10396
10397 /* We have found the .mdebug section in the output file.
10398 Look through all the link_orders comprising it and merge
10399 the information together. */
10400 symhdr->magic = swap->sym_magic;
10401 /* FIXME: What should the version stamp be? */
10402 symhdr->vstamp = 0;
10403 symhdr->ilineMax = 0;
10404 symhdr->cbLine = 0;
10405 symhdr->idnMax = 0;
10406 symhdr->ipdMax = 0;
10407 symhdr->isymMax = 0;
10408 symhdr->ioptMax = 0;
10409 symhdr->iauxMax = 0;
10410 symhdr->issMax = 0;
10411 symhdr->issExtMax = 0;
10412 symhdr->ifdMax = 0;
10413 symhdr->crfd = 0;
10414 symhdr->iextMax = 0;
10415
10416 /* We accumulate the debugging information itself in the
10417 debug_info structure. */
10418 debug.line = NULL;
10419 debug.external_dnr = NULL;
10420 debug.external_pdr = NULL;
10421 debug.external_sym = NULL;
10422 debug.external_opt = NULL;
10423 debug.external_aux = NULL;
10424 debug.ss = NULL;
10425 debug.ssext = debug.ssext_end = NULL;
10426 debug.external_fdr = NULL;
10427 debug.external_rfd = NULL;
10428 debug.external_ext = debug.external_ext_end = NULL;
10429
10430 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10431 if (mdebug_handle == NULL)
10432 return FALSE;
10433
10434 esym.jmptbl = 0;
10435 esym.cobol_main = 0;
10436 esym.weakext = 0;
10437 esym.reserved = 0;
10438 esym.ifd = ifdNil;
10439 esym.asym.iss = issNil;
10440 esym.asym.st = stLocal;
10441 esym.asym.reserved = 0;
10442 esym.asym.index = indexNil;
10443 last = 0;
10444 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10445 {
10446 esym.asym.sc = sc[i];
10447 s = bfd_get_section_by_name (abfd, secname[i]);
10448 if (s != NULL)
10449 {
10450 esym.asym.value = s->vma;
10451 last = s->vma + s->size;
10452 }
10453 else
10454 esym.asym.value = last;
10455 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10456 secname[i], &esym))
10457 return FALSE;
10458 }
10459
10460 for (p = o->map_head.link_order; p != NULL; p = p->next)
10461 {
10462 asection *input_section;
10463 bfd *input_bfd;
10464 const struct ecoff_debug_swap *input_swap;
10465 struct ecoff_debug_info input_debug;
10466 char *eraw_src;
10467 char *eraw_end;
10468
10469 if (p->type != bfd_indirect_link_order)
10470 {
10471 if (p->type == bfd_data_link_order)
10472 continue;
10473 abort ();
10474 }
10475
10476 input_section = p->u.indirect.section;
10477 input_bfd = input_section->owner;
10478
10479 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10480 || (get_elf_backend_data (input_bfd)
10481 ->elf_backend_ecoff_debug_swap) == NULL)
10482 {
10483 /* I don't know what a non MIPS ELF bfd would be
10484 doing with a .mdebug section, but I don't really
10485 want to deal with it. */
10486 continue;
10487 }
10488
10489 input_swap = (get_elf_backend_data (input_bfd)
10490 ->elf_backend_ecoff_debug_swap);
10491
10492 BFD_ASSERT (p->size == input_section->size);
10493
10494 /* The ECOFF linking code expects that we have already
10495 read in the debugging information and set up an
10496 ecoff_debug_info structure, so we do that now. */
10497 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10498 &input_debug))
10499 return FALSE;
10500
10501 if (! (bfd_ecoff_debug_accumulate
10502 (mdebug_handle, abfd, &debug, swap, input_bfd,
10503 &input_debug, input_swap, info)))
10504 return FALSE;
10505
10506 /* Loop through the external symbols. For each one with
10507 interesting information, try to find the symbol in
10508 the linker global hash table and save the information
10509 for the output external symbols. */
10510 eraw_src = input_debug.external_ext;
10511 eraw_end = (eraw_src
10512 + (input_debug.symbolic_header.iextMax
10513 * input_swap->external_ext_size));
10514 for (;
10515 eraw_src < eraw_end;
10516 eraw_src += input_swap->external_ext_size)
10517 {
10518 EXTR ext;
10519 const char *name;
10520 struct mips_elf_link_hash_entry *h;
10521
10522 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10523 if (ext.asym.sc == scNil
10524 || ext.asym.sc == scUndefined
10525 || ext.asym.sc == scSUndefined)
10526 continue;
10527
10528 name = input_debug.ssext + ext.asym.iss;
10529 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10530 name, FALSE, FALSE, TRUE);
10531 if (h == NULL || h->esym.ifd != -2)
10532 continue;
10533
10534 if (ext.ifd != -1)
10535 {
10536 BFD_ASSERT (ext.ifd
10537 < input_debug.symbolic_header.ifdMax);
10538 ext.ifd = input_debug.ifdmap[ext.ifd];
10539 }
10540
10541 h->esym = ext;
10542 }
10543
10544 /* Free up the information we just read. */
10545 free (input_debug.line);
10546 free (input_debug.external_dnr);
10547 free (input_debug.external_pdr);
10548 free (input_debug.external_sym);
10549 free (input_debug.external_opt);
10550 free (input_debug.external_aux);
10551 free (input_debug.ss);
10552 free (input_debug.ssext);
10553 free (input_debug.external_fdr);
10554 free (input_debug.external_rfd);
10555 free (input_debug.external_ext);
10556
10557 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10558 elf_link_input_bfd ignores this section. */
10559 input_section->flags &= ~SEC_HAS_CONTENTS;
10560 }
10561
10562 if (SGI_COMPAT (abfd) && info->shared)
10563 {
10564 /* Create .rtproc section. */
10565 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10566 if (rtproc_sec == NULL)
10567 {
10568 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10569 | SEC_LINKER_CREATED | SEC_READONLY);
10570
10571 rtproc_sec = bfd_make_section_with_flags (abfd,
10572 ".rtproc",
10573 flags);
10574 if (rtproc_sec == NULL
10575 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10576 return FALSE;
10577 }
10578
10579 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10580 info, rtproc_sec,
10581 &debug))
10582 return FALSE;
10583 }
10584
10585 /* Build the external symbol information. */
10586 einfo.abfd = abfd;
10587 einfo.info = info;
10588 einfo.debug = &debug;
10589 einfo.swap = swap;
10590 einfo.failed = FALSE;
10591 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10592 mips_elf_output_extsym, &einfo);
10593 if (einfo.failed)
10594 return FALSE;
10595
10596 /* Set the size of the .mdebug section. */
10597 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10598
10599 /* Skip this section later on (I don't think this currently
10600 matters, but someday it might). */
10601 o->map_head.link_order = NULL;
10602
10603 mdebug_sec = o;
10604 }
10605
10606 if (CONST_STRNEQ (o->name, ".gptab."))
10607 {
10608 const char *subname;
10609 unsigned int c;
10610 Elf32_gptab *tab;
10611 Elf32_External_gptab *ext_tab;
10612 unsigned int j;
10613
10614 /* The .gptab.sdata and .gptab.sbss sections hold
10615 information describing how the small data area would
10616 change depending upon the -G switch. These sections
10617 not used in executables files. */
10618 if (! info->relocatable)
10619 {
10620 for (p = o->map_head.link_order; p != NULL; p = p->next)
10621 {
10622 asection *input_section;
10623
10624 if (p->type != bfd_indirect_link_order)
10625 {
10626 if (p->type == bfd_data_link_order)
10627 continue;
10628 abort ();
10629 }
10630
10631 input_section = p->u.indirect.section;
10632
10633 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10634 elf_link_input_bfd ignores this section. */
10635 input_section->flags &= ~SEC_HAS_CONTENTS;
10636 }
10637
10638 /* Skip this section later on (I don't think this
10639 currently matters, but someday it might). */
10640 o->map_head.link_order = NULL;
10641
10642 /* Really remove the section. */
10643 bfd_section_list_remove (abfd, o);
10644 --abfd->section_count;
10645
10646 continue;
10647 }
10648
10649 /* There is one gptab for initialized data, and one for
10650 uninitialized data. */
10651 if (strcmp (o->name, ".gptab.sdata") == 0)
10652 gptab_data_sec = o;
10653 else if (strcmp (o->name, ".gptab.sbss") == 0)
10654 gptab_bss_sec = o;
10655 else
10656 {
10657 (*_bfd_error_handler)
10658 (_("%s: illegal section name `%s'"),
10659 bfd_get_filename (abfd), o->name);
10660 bfd_set_error (bfd_error_nonrepresentable_section);
10661 return FALSE;
10662 }
10663
10664 /* The linker script always combines .gptab.data and
10665 .gptab.sdata into .gptab.sdata, and likewise for
10666 .gptab.bss and .gptab.sbss. It is possible that there is
10667 no .sdata or .sbss section in the output file, in which
10668 case we must change the name of the output section. */
10669 subname = o->name + sizeof ".gptab" - 1;
10670 if (bfd_get_section_by_name (abfd, subname) == NULL)
10671 {
10672 if (o == gptab_data_sec)
10673 o->name = ".gptab.data";
10674 else
10675 o->name = ".gptab.bss";
10676 subname = o->name + sizeof ".gptab" - 1;
10677 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10678 }
10679
10680 /* Set up the first entry. */
10681 c = 1;
10682 amt = c * sizeof (Elf32_gptab);
10683 tab = bfd_malloc (amt);
10684 if (tab == NULL)
10685 return FALSE;
10686 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10687 tab[0].gt_header.gt_unused = 0;
10688
10689 /* Combine the input sections. */
10690 for (p = o->map_head.link_order; p != NULL; p = p->next)
10691 {
10692 asection *input_section;
10693 bfd *input_bfd;
10694 bfd_size_type size;
10695 unsigned long last;
10696 bfd_size_type gpentry;
10697
10698 if (p->type != bfd_indirect_link_order)
10699 {
10700 if (p->type == bfd_data_link_order)
10701 continue;
10702 abort ();
10703 }
10704
10705 input_section = p->u.indirect.section;
10706 input_bfd = input_section->owner;
10707
10708 /* Combine the gptab entries for this input section one
10709 by one. We know that the input gptab entries are
10710 sorted by ascending -G value. */
10711 size = input_section->size;
10712 last = 0;
10713 for (gpentry = sizeof (Elf32_External_gptab);
10714 gpentry < size;
10715 gpentry += sizeof (Elf32_External_gptab))
10716 {
10717 Elf32_External_gptab ext_gptab;
10718 Elf32_gptab int_gptab;
10719 unsigned long val;
10720 unsigned long add;
10721 bfd_boolean exact;
10722 unsigned int look;
10723
10724 if (! (bfd_get_section_contents
10725 (input_bfd, input_section, &ext_gptab, gpentry,
10726 sizeof (Elf32_External_gptab))))
10727 {
10728 free (tab);
10729 return FALSE;
10730 }
10731
10732 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10733 &int_gptab);
10734 val = int_gptab.gt_entry.gt_g_value;
10735 add = int_gptab.gt_entry.gt_bytes - last;
10736
10737 exact = FALSE;
10738 for (look = 1; look < c; look++)
10739 {
10740 if (tab[look].gt_entry.gt_g_value >= val)
10741 tab[look].gt_entry.gt_bytes += add;
10742
10743 if (tab[look].gt_entry.gt_g_value == val)
10744 exact = TRUE;
10745 }
10746
10747 if (! exact)
10748 {
10749 Elf32_gptab *new_tab;
10750 unsigned int max;
10751
10752 /* We need a new table entry. */
10753 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10754 new_tab = bfd_realloc (tab, amt);
10755 if (new_tab == NULL)
10756 {
10757 free (tab);
10758 return FALSE;
10759 }
10760 tab = new_tab;
10761 tab[c].gt_entry.gt_g_value = val;
10762 tab[c].gt_entry.gt_bytes = add;
10763
10764 /* Merge in the size for the next smallest -G
10765 value, since that will be implied by this new
10766 value. */
10767 max = 0;
10768 for (look = 1; look < c; look++)
10769 {
10770 if (tab[look].gt_entry.gt_g_value < val
10771 && (max == 0
10772 || (tab[look].gt_entry.gt_g_value
10773 > tab[max].gt_entry.gt_g_value)))
10774 max = look;
10775 }
10776 if (max != 0)
10777 tab[c].gt_entry.gt_bytes +=
10778 tab[max].gt_entry.gt_bytes;
10779
10780 ++c;
10781 }
10782
10783 last = int_gptab.gt_entry.gt_bytes;
10784 }
10785
10786 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10787 elf_link_input_bfd ignores this section. */
10788 input_section->flags &= ~SEC_HAS_CONTENTS;
10789 }
10790
10791 /* The table must be sorted by -G value. */
10792 if (c > 2)
10793 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10794
10795 /* Swap out the table. */
10796 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10797 ext_tab = bfd_alloc (abfd, amt);
10798 if (ext_tab == NULL)
10799 {
10800 free (tab);
10801 return FALSE;
10802 }
10803
10804 for (j = 0; j < c; j++)
10805 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10806 free (tab);
10807
10808 o->size = c * sizeof (Elf32_External_gptab);
10809 o->contents = (bfd_byte *) ext_tab;
10810
10811 /* Skip this section later on (I don't think this currently
10812 matters, but someday it might). */
10813 o->map_head.link_order = NULL;
10814 }
10815 }
10816
10817 /* Invoke the regular ELF backend linker to do all the work. */
10818 if (!bfd_elf_final_link (abfd, info))
10819 return FALSE;
10820
10821 /* Now write out the computed sections. */
10822
10823 if (reginfo_sec != NULL)
10824 {
10825 Elf32_External_RegInfo ext;
10826
10827 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10828 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10829 return FALSE;
10830 }
10831
10832 if (mdebug_sec != NULL)
10833 {
10834 BFD_ASSERT (abfd->output_has_begun);
10835 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10836 swap, info,
10837 mdebug_sec->filepos))
10838 return FALSE;
10839
10840 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10841 }
10842
10843 if (gptab_data_sec != NULL)
10844 {
10845 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10846 gptab_data_sec->contents,
10847 0, gptab_data_sec->size))
10848 return FALSE;
10849 }
10850
10851 if (gptab_bss_sec != NULL)
10852 {
10853 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10854 gptab_bss_sec->contents,
10855 0, gptab_bss_sec->size))
10856 return FALSE;
10857 }
10858
10859 if (SGI_COMPAT (abfd))
10860 {
10861 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10862 if (rtproc_sec != NULL)
10863 {
10864 if (! bfd_set_section_contents (abfd, rtproc_sec,
10865 rtproc_sec->contents,
10866 0, rtproc_sec->size))
10867 return FALSE;
10868 }
10869 }
10870
10871 return TRUE;
10872 }
10873 \f
10874 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10875
10876 struct mips_mach_extension {
10877 unsigned long extension, base;
10878 };
10879
10880
10881 /* An array describing how BFD machines relate to one another. The entries
10882 are ordered topologically with MIPS I extensions listed last. */
10883
10884 static const struct mips_mach_extension mips_mach_extensions[] = {
10885 /* MIPS64 extensions. */
10886 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10887 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10888
10889 /* MIPS V extensions. */
10890 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10891
10892 /* R10000 extensions. */
10893 { bfd_mach_mips12000, bfd_mach_mips10000 },
10894
10895 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10896 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10897 better to allow vr5400 and vr5500 code to be merged anyway, since
10898 many libraries will just use the core ISA. Perhaps we could add
10899 some sort of ASE flag if this ever proves a problem. */
10900 { bfd_mach_mips5500, bfd_mach_mips5400 },
10901 { bfd_mach_mips5400, bfd_mach_mips5000 },
10902
10903 /* MIPS IV extensions. */
10904 { bfd_mach_mips5, bfd_mach_mips8000 },
10905 { bfd_mach_mips10000, bfd_mach_mips8000 },
10906 { bfd_mach_mips5000, bfd_mach_mips8000 },
10907 { bfd_mach_mips7000, bfd_mach_mips8000 },
10908 { bfd_mach_mips9000, bfd_mach_mips8000 },
10909
10910 /* VR4100 extensions. */
10911 { bfd_mach_mips4120, bfd_mach_mips4100 },
10912 { bfd_mach_mips4111, bfd_mach_mips4100 },
10913
10914 /* MIPS III extensions. */
10915 { bfd_mach_mips8000, bfd_mach_mips4000 },
10916 { bfd_mach_mips4650, bfd_mach_mips4000 },
10917 { bfd_mach_mips4600, bfd_mach_mips4000 },
10918 { bfd_mach_mips4400, bfd_mach_mips4000 },
10919 { bfd_mach_mips4300, bfd_mach_mips4000 },
10920 { bfd_mach_mips4100, bfd_mach_mips4000 },
10921 { bfd_mach_mips4010, bfd_mach_mips4000 },
10922
10923 /* MIPS32 extensions. */
10924 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10925
10926 /* MIPS II extensions. */
10927 { bfd_mach_mips4000, bfd_mach_mips6000 },
10928 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10929
10930 /* MIPS I extensions. */
10931 { bfd_mach_mips6000, bfd_mach_mips3000 },
10932 { bfd_mach_mips3900, bfd_mach_mips3000 }
10933 };
10934
10935
10936 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10937
10938 static bfd_boolean
10939 mips_mach_extends_p (unsigned long base, unsigned long extension)
10940 {
10941 size_t i;
10942
10943 if (extension == base)
10944 return TRUE;
10945
10946 if (base == bfd_mach_mipsisa32
10947 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10948 return TRUE;
10949
10950 if (base == bfd_mach_mipsisa32r2
10951 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10952 return TRUE;
10953
10954 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10955 if (extension == mips_mach_extensions[i].extension)
10956 {
10957 extension = mips_mach_extensions[i].base;
10958 if (extension == base)
10959 return TRUE;
10960 }
10961
10962 return FALSE;
10963 }
10964
10965
10966 /* Return true if the given ELF header flags describe a 32-bit binary. */
10967
10968 static bfd_boolean
10969 mips_32bit_flags_p (flagword flags)
10970 {
10971 return ((flags & EF_MIPS_32BITMODE) != 0
10972 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10973 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10974 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10975 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10976 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10977 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
10978 }
10979
10980
10981 /* Merge backend specific data from an object file to the output
10982 object file when linking. */
10983
10984 bfd_boolean
10985 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
10986 {
10987 flagword old_flags;
10988 flagword new_flags;
10989 bfd_boolean ok;
10990 bfd_boolean null_input_bfd = TRUE;
10991 asection *sec;
10992
10993 /* Check if we have the same endianess */
10994 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
10995 {
10996 (*_bfd_error_handler)
10997 (_("%B: endianness incompatible with that of the selected emulation"),
10998 ibfd);
10999 return FALSE;
11000 }
11001
11002 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11003 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
11004 return TRUE;
11005
11006 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11007 {
11008 (*_bfd_error_handler)
11009 (_("%B: ABI is incompatible with that of the selected emulation"),
11010 ibfd);
11011 return FALSE;
11012 }
11013
11014 new_flags = elf_elfheader (ibfd)->e_flags;
11015 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11016 old_flags = elf_elfheader (obfd)->e_flags;
11017
11018 if (! elf_flags_init (obfd))
11019 {
11020 elf_flags_init (obfd) = TRUE;
11021 elf_elfheader (obfd)->e_flags = new_flags;
11022 elf_elfheader (obfd)->e_ident[EI_CLASS]
11023 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11024
11025 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
11026 && (bfd_get_arch_info (obfd)->the_default
11027 || mips_mach_extends_p (bfd_get_mach (obfd),
11028 bfd_get_mach (ibfd))))
11029 {
11030 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11031 bfd_get_mach (ibfd)))
11032 return FALSE;
11033 }
11034
11035 return TRUE;
11036 }
11037
11038 /* Check flag compatibility. */
11039
11040 new_flags &= ~EF_MIPS_NOREORDER;
11041 old_flags &= ~EF_MIPS_NOREORDER;
11042
11043 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11044 doesn't seem to matter. */
11045 new_flags &= ~EF_MIPS_XGOT;
11046 old_flags &= ~EF_MIPS_XGOT;
11047
11048 /* MIPSpro generates ucode info in n64 objects. Again, we should
11049 just be able to ignore this. */
11050 new_flags &= ~EF_MIPS_UCODE;
11051 old_flags &= ~EF_MIPS_UCODE;
11052
11053 /* Don't care about the PIC flags from dynamic objects; they are
11054 PIC by design. */
11055 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11056 && (ibfd->flags & DYNAMIC) != 0)
11057 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11058
11059 if (new_flags == old_flags)
11060 return TRUE;
11061
11062 /* Check to see if the input BFD actually contains any sections.
11063 If not, its flags may not have been initialised either, but it cannot
11064 actually cause any incompatibility. */
11065 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11066 {
11067 /* Ignore synthetic sections and empty .text, .data and .bss sections
11068 which are automatically generated by gas. */
11069 if (strcmp (sec->name, ".reginfo")
11070 && strcmp (sec->name, ".mdebug")
11071 && (sec->size != 0
11072 || (strcmp (sec->name, ".text")
11073 && strcmp (sec->name, ".data")
11074 && strcmp (sec->name, ".bss"))))
11075 {
11076 null_input_bfd = FALSE;
11077 break;
11078 }
11079 }
11080 if (null_input_bfd)
11081 return TRUE;
11082
11083 ok = TRUE;
11084
11085 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11086 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
11087 {
11088 (*_bfd_error_handler)
11089 (_("%B: warning: linking PIC files with non-PIC files"),
11090 ibfd);
11091 ok = TRUE;
11092 }
11093
11094 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11095 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11096 if (! (new_flags & EF_MIPS_PIC))
11097 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11098
11099 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11100 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11101
11102 /* Compare the ISAs. */
11103 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
11104 {
11105 (*_bfd_error_handler)
11106 (_("%B: linking 32-bit code with 64-bit code"),
11107 ibfd);
11108 ok = FALSE;
11109 }
11110 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11111 {
11112 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11113 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
11114 {
11115 /* Copy the architecture info from IBFD to OBFD. Also copy
11116 the 32-bit flag (if set) so that we continue to recognise
11117 OBFD as a 32-bit binary. */
11118 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11119 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11120 elf_elfheader (obfd)->e_flags
11121 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11122
11123 /* Copy across the ABI flags if OBFD doesn't use them
11124 and if that was what caused us to treat IBFD as 32-bit. */
11125 if ((old_flags & EF_MIPS_ABI) == 0
11126 && mips_32bit_flags_p (new_flags)
11127 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11128 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11129 }
11130 else
11131 {
11132 /* The ISAs aren't compatible. */
11133 (*_bfd_error_handler)
11134 (_("%B: linking %s module with previous %s modules"),
11135 ibfd,
11136 bfd_printable_name (ibfd),
11137 bfd_printable_name (obfd));
11138 ok = FALSE;
11139 }
11140 }
11141
11142 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11143 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11144
11145 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11146 does set EI_CLASS differently from any 32-bit ABI. */
11147 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11148 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11149 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11150 {
11151 /* Only error if both are set (to different values). */
11152 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11153 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11154 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11155 {
11156 (*_bfd_error_handler)
11157 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11158 ibfd,
11159 elf_mips_abi_name (ibfd),
11160 elf_mips_abi_name (obfd));
11161 ok = FALSE;
11162 }
11163 new_flags &= ~EF_MIPS_ABI;
11164 old_flags &= ~EF_MIPS_ABI;
11165 }
11166
11167 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11168 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11169 {
11170 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11171
11172 new_flags &= ~ EF_MIPS_ARCH_ASE;
11173 old_flags &= ~ EF_MIPS_ARCH_ASE;
11174 }
11175
11176 /* Warn about any other mismatches */
11177 if (new_flags != old_flags)
11178 {
11179 (*_bfd_error_handler)
11180 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11181 ibfd, (unsigned long) new_flags,
11182 (unsigned long) old_flags);
11183 ok = FALSE;
11184 }
11185
11186 if (! ok)
11187 {
11188 bfd_set_error (bfd_error_bad_value);
11189 return FALSE;
11190 }
11191
11192 return TRUE;
11193 }
11194
11195 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11196
11197 bfd_boolean
11198 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11199 {
11200 BFD_ASSERT (!elf_flags_init (abfd)
11201 || elf_elfheader (abfd)->e_flags == flags);
11202
11203 elf_elfheader (abfd)->e_flags = flags;
11204 elf_flags_init (abfd) = TRUE;
11205 return TRUE;
11206 }
11207
11208 bfd_boolean
11209 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11210 {
11211 FILE *file = ptr;
11212
11213 BFD_ASSERT (abfd != NULL && ptr != NULL);
11214
11215 /* Print normal ELF private data. */
11216 _bfd_elf_print_private_bfd_data (abfd, ptr);
11217
11218 /* xgettext:c-format */
11219 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11220
11221 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11222 fprintf (file, _(" [abi=O32]"));
11223 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11224 fprintf (file, _(" [abi=O64]"));
11225 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11226 fprintf (file, _(" [abi=EABI32]"));
11227 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11228 fprintf (file, _(" [abi=EABI64]"));
11229 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11230 fprintf (file, _(" [abi unknown]"));
11231 else if (ABI_N32_P (abfd))
11232 fprintf (file, _(" [abi=N32]"));
11233 else if (ABI_64_P (abfd))
11234 fprintf (file, _(" [abi=64]"));
11235 else
11236 fprintf (file, _(" [no abi set]"));
11237
11238 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11239 fprintf (file, " [mips1]");
11240 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11241 fprintf (file, " [mips2]");
11242 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11243 fprintf (file, " [mips3]");
11244 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11245 fprintf (file, " [mips4]");
11246 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11247 fprintf (file, " [mips5]");
11248 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11249 fprintf (file, " [mips32]");
11250 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11251 fprintf (file, " [mips64]");
11252 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11253 fprintf (file, " [mips32r2]");
11254 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11255 fprintf (file, " [mips64r2]");
11256 else
11257 fprintf (file, _(" [unknown ISA]"));
11258
11259 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11260 fprintf (file, " [mdmx]");
11261
11262 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11263 fprintf (file, " [mips16]");
11264
11265 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11266 fprintf (file, " [32bitmode]");
11267 else
11268 fprintf (file, _(" [not 32bitmode]"));
11269
11270 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
11271 fprintf (file, " [noreorder]");
11272
11273 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
11274 fprintf (file, " [PIC]");
11275
11276 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
11277 fprintf (file, " [CPIC]");
11278
11279 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
11280 fprintf (file, " [XGOT]");
11281
11282 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
11283 fprintf (file, " [UCODE]");
11284
11285 fputc ('\n', file);
11286
11287 return TRUE;
11288 }
11289
11290 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11291 {
11292 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11293 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11294 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11295 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11296 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11297 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11298 { NULL, 0, 0, 0, 0 }
11299 };
11300
11301 /* Merge non visibility st_other attributes. Ensure that the
11302 STO_OPTIONAL flag is copied into h->other, even if this is not a
11303 definiton of the symbol. */
11304 void
11305 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11306 const Elf_Internal_Sym *isym,
11307 bfd_boolean definition,
11308 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11309 {
11310 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11311 {
11312 unsigned char other;
11313
11314 other = (definition ? isym->st_other : h->other);
11315 other &= ~ELF_ST_VISIBILITY (-1);
11316 h->other = other | ELF_ST_VISIBILITY (h->other);
11317 }
11318
11319 if (!definition
11320 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11321 h->other |= STO_OPTIONAL;
11322 }
11323
11324 /* Decide whether an undefined symbol is special and can be ignored.
11325 This is the case for OPTIONAL symbols on IRIX. */
11326 bfd_boolean
11327 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11328 {
11329 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11330 }
11331
11332 bfd_boolean
11333 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11334 {
11335 return (sym->st_shndx == SHN_COMMON
11336 || sym->st_shndx == SHN_MIPS_ACOMMON
11337 || sym->st_shndx == SHN_MIPS_SCOMMON);
11338 }