734383579226fe4ec827410e8650941381e6c269
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39
40 /* Get the ECOFF swapping routines. */
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/ecoff.h"
44 #include "coff/mips.h"
45
46 #include "hashtab.h"
47
48 /* Types of TLS GOT entry. */
49 enum mips_got_tls_type {
50 GOT_TLS_NONE,
51 GOT_TLS_GD,
52 GOT_TLS_LDM,
53 GOT_TLS_IE
54 };
55
56 /* This structure is used to hold information about one GOT entry.
57 There are four types of entry:
58
59 (1) an absolute address
60 requires: abfd == NULL
61 fields: d.address
62
63 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
64 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
65 fields: abfd, symndx, d.addend, tls_type
66
67 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
68 requires: abfd != NULL, symndx == -1
69 fields: d.h, tls_type
70
71 (4) a TLS LDM slot
72 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
73 fields: none; there's only one of these per GOT. */
74 struct mips_got_entry
75 {
76 /* One input bfd that needs the GOT entry. */
77 bfd *abfd;
78 /* The index of the symbol, as stored in the relocation r_info, if
79 we have a local symbol; -1 otherwise. */
80 long symndx;
81 union
82 {
83 /* If abfd == NULL, an address that must be stored in the got. */
84 bfd_vma address;
85 /* If abfd != NULL && symndx != -1, the addend of the relocation
86 that should be added to the symbol value. */
87 bfd_vma addend;
88 /* If abfd != NULL && symndx == -1, the hash table entry
89 corresponding to a symbol in the GOT. The symbol's entry
90 is in the local area if h->global_got_area is GGA_NONE,
91 otherwise it is in the global area. */
92 struct mips_elf_link_hash_entry *h;
93 } d;
94
95 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
96 symbol entry with r_symndx == 0. */
97 unsigned char tls_type;
98
99 /* True if we have filled in the GOT contents for a TLS entry,
100 and created the associated relocations. */
101 unsigned char tls_initialized;
102
103 /* The offset from the beginning of the .got section to the entry
104 corresponding to this symbol+addend. If it's a global symbol
105 whose offset is yet to be decided, it's going to be -1. */
106 long gotidx;
107 };
108
109 /* This structure represents a GOT page reference from an input bfd.
110 Each instance represents a symbol + ADDEND, where the representation
111 of the symbol depends on whether it is local to the input bfd.
112 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
113 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
114
115 Page references with SYMNDX >= 0 always become page references
116 in the output. Page references with SYMNDX < 0 only become page
117 references if the symbol binds locally; in other cases, the page
118 reference decays to a global GOT reference. */
119 struct mips_got_page_ref
120 {
121 long symndx;
122 union
123 {
124 struct mips_elf_link_hash_entry *h;
125 bfd *abfd;
126 } u;
127 bfd_vma addend;
128 };
129
130 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
131 The structures form a non-overlapping list that is sorted by increasing
132 MIN_ADDEND. */
133 struct mips_got_page_range
134 {
135 struct mips_got_page_range *next;
136 bfd_signed_vma min_addend;
137 bfd_signed_vma max_addend;
138 };
139
140 /* This structure describes the range of addends that are applied to page
141 relocations against a given section. */
142 struct mips_got_page_entry
143 {
144 /* The section that these entries are based on. */
145 asection *sec;
146 /* The ranges for this page entry. */
147 struct mips_got_page_range *ranges;
148 /* The maximum number of page entries needed for RANGES. */
149 bfd_vma num_pages;
150 };
151
152 /* This structure is used to hold .got information when linking. */
153
154 struct mips_got_info
155 {
156 /* The number of global .got entries. */
157 unsigned int global_gotno;
158 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
159 unsigned int reloc_only_gotno;
160 /* The number of .got slots used for TLS. */
161 unsigned int tls_gotno;
162 /* The first unused TLS .got entry. Used only during
163 mips_elf_initialize_tls_index. */
164 unsigned int tls_assigned_gotno;
165 /* The number of local .got entries, eventually including page entries. */
166 unsigned int local_gotno;
167 /* The maximum number of page entries needed. */
168 unsigned int page_gotno;
169 /* The number of relocations needed for the GOT entries. */
170 unsigned int relocs;
171 /* The first unused local .got entry. */
172 unsigned int assigned_low_gotno;
173 /* The last unused local .got entry. */
174 unsigned int assigned_high_gotno;
175 /* A hash table holding members of the got. */
176 struct htab *got_entries;
177 /* A hash table holding mips_got_page_ref structures. */
178 struct htab *got_page_refs;
179 /* A hash table of mips_got_page_entry structures. */
180 struct htab *got_page_entries;
181 /* In multi-got links, a pointer to the next got (err, rather, most
182 of the time, it points to the previous got). */
183 struct mips_got_info *next;
184 };
185
186 /* Structure passed when merging bfds' gots. */
187
188 struct mips_elf_got_per_bfd_arg
189 {
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
211 };
212
213 /* A structure used to pass information to htab_traverse callbacks
214 when laying out the GOT. */
215
216 struct mips_elf_traverse_got_arg
217 {
218 struct bfd_link_info *info;
219 struct mips_got_info *g;
220 int value;
221 };
222
223 struct _mips_elf_section_data
224 {
225 struct bfd_elf_section_data elf;
226 union
227 {
228 bfd_byte *tdata;
229 } u;
230 };
231
232 #define mips_elf_section_data(sec) \
233 ((struct _mips_elf_section_data *) elf_section_data (sec))
234
235 #define is_mips_elf(bfd) \
236 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
237 && elf_tdata (bfd) != NULL \
238 && elf_object_id (bfd) == MIPS_ELF_DATA)
239
240 /* The ABI says that every symbol used by dynamic relocations must have
241 a global GOT entry. Among other things, this provides the dynamic
242 linker with a free, directly-indexed cache. The GOT can therefore
243 contain symbols that are not referenced by GOT relocations themselves
244 (in other words, it may have symbols that are not referenced by things
245 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
246
247 GOT relocations are less likely to overflow if we put the associated
248 GOT entries towards the beginning. We therefore divide the global
249 GOT entries into two areas: "normal" and "reloc-only". Entries in
250 the first area can be used for both dynamic relocations and GP-relative
251 accesses, while those in the "reloc-only" area are for dynamic
252 relocations only.
253
254 These GGA_* ("Global GOT Area") values are organised so that lower
255 values are more general than higher values. Also, non-GGA_NONE
256 values are ordered by the position of the area in the GOT. */
257 #define GGA_NORMAL 0
258 #define GGA_RELOC_ONLY 1
259 #define GGA_NONE 2
260
261 /* Information about a non-PIC interface to a PIC function. There are
262 two ways of creating these interfaces. The first is to add:
263
264 lui $25,%hi(func)
265 addiu $25,$25,%lo(func)
266
267 immediately before a PIC function "func". The second is to add:
268
269 lui $25,%hi(func)
270 j func
271 addiu $25,$25,%lo(func)
272
273 to a separate trampoline section.
274
275 Stubs of the first kind go in a new section immediately before the
276 target function. Stubs of the second kind go in a single section
277 pointed to by the hash table's "strampoline" field. */
278 struct mips_elf_la25_stub {
279 /* The generated section that contains this stub. */
280 asection *stub_section;
281
282 /* The offset of the stub from the start of STUB_SECTION. */
283 bfd_vma offset;
284
285 /* One symbol for the original function. Its location is available
286 in H->root.root.u.def. */
287 struct mips_elf_link_hash_entry *h;
288 };
289
290 /* Macros for populating a mips_elf_la25_stub. */
291
292 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
293 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
294 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
295 #define LA25_LUI_MICROMIPS(VAL) \
296 (0x41b90000 | (VAL)) /* lui t9,VAL */
297 #define LA25_J_MICROMIPS(VAL) \
298 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
299 #define LA25_ADDIU_MICROMIPS(VAL) \
300 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
301
302 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
303 the dynamic symbols. */
304
305 struct mips_elf_hash_sort_data
306 {
307 /* The symbol in the global GOT with the lowest dynamic symbol table
308 index. */
309 struct elf_link_hash_entry *low;
310 /* The least dynamic symbol table index corresponding to a non-TLS
311 symbol with a GOT entry. */
312 long min_got_dynindx;
313 /* The greatest dynamic symbol table index corresponding to a symbol
314 with a GOT entry that is not referenced (e.g., a dynamic symbol
315 with dynamic relocations pointing to it from non-primary GOTs). */
316 long max_unref_got_dynindx;
317 /* The greatest dynamic symbol table index not corresponding to a
318 symbol without a GOT entry. */
319 long max_non_got_dynindx;
320 };
321
322 /* We make up to two PLT entries if needed, one for standard MIPS code
323 and one for compressed code, either a MIPS16 or microMIPS one. We
324 keep a separate record of traditional lazy-binding stubs, for easier
325 processing. */
326
327 struct plt_entry
328 {
329 /* Traditional SVR4 stub offset, or -1 if none. */
330 bfd_vma stub_offset;
331
332 /* Standard PLT entry offset, or -1 if none. */
333 bfd_vma mips_offset;
334
335 /* Compressed PLT entry offset, or -1 if none. */
336 bfd_vma comp_offset;
337
338 /* The corresponding .got.plt index, or -1 if none. */
339 bfd_vma gotplt_index;
340
341 /* Whether we need a standard PLT entry. */
342 unsigned int need_mips : 1;
343
344 /* Whether we need a compressed PLT entry. */
345 unsigned int need_comp : 1;
346 };
347
348 /* The MIPS ELF linker needs additional information for each symbol in
349 the global hash table. */
350
351 struct mips_elf_link_hash_entry
352 {
353 struct elf_link_hash_entry root;
354
355 /* External symbol information. */
356 EXTR esym;
357
358 /* The la25 stub we have created for ths symbol, if any. */
359 struct mips_elf_la25_stub *la25_stub;
360
361 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
362 this symbol. */
363 unsigned int possibly_dynamic_relocs;
364
365 /* If there is a stub that 32 bit functions should use to call this
366 16 bit function, this points to the section containing the stub. */
367 asection *fn_stub;
368
369 /* If there is a stub that 16 bit functions should use to call this
370 32 bit function, this points to the section containing the stub. */
371 asection *call_stub;
372
373 /* This is like the call_stub field, but it is used if the function
374 being called returns a floating point value. */
375 asection *call_fp_stub;
376
377 /* The highest GGA_* value that satisfies all references to this symbol. */
378 unsigned int global_got_area : 2;
379
380 /* True if all GOT relocations against this symbol are for calls. This is
381 a looser condition than no_fn_stub below, because there may be other
382 non-call non-GOT relocations against the symbol. */
383 unsigned int got_only_for_calls : 1;
384
385 /* True if one of the relocations described by possibly_dynamic_relocs
386 is against a readonly section. */
387 unsigned int readonly_reloc : 1;
388
389 /* True if there is a relocation against this symbol that must be
390 resolved by the static linker (in other words, if the relocation
391 cannot possibly be made dynamic). */
392 unsigned int has_static_relocs : 1;
393
394 /* True if we must not create a .MIPS.stubs entry for this symbol.
395 This is set, for example, if there are relocations related to
396 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
397 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
398 unsigned int no_fn_stub : 1;
399
400 /* Whether we need the fn_stub; this is true if this symbol appears
401 in any relocs other than a 16 bit call. */
402 unsigned int need_fn_stub : 1;
403
404 /* True if this symbol is referenced by branch relocations from
405 any non-PIC input file. This is used to determine whether an
406 la25 stub is required. */
407 unsigned int has_nonpic_branches : 1;
408
409 /* Does this symbol need a traditional MIPS lazy-binding stub
410 (as opposed to a PLT entry)? */
411 unsigned int needs_lazy_stub : 1;
412
413 /* Does this symbol resolve to a PLT entry? */
414 unsigned int use_plt_entry : 1;
415 };
416
417 /* MIPS ELF linker hash table. */
418
419 struct mips_elf_link_hash_table
420 {
421 struct elf_link_hash_table root;
422
423 /* The number of .rtproc entries. */
424 bfd_size_type procedure_count;
425
426 /* The size of the .compact_rel section (if SGI_COMPAT). */
427 bfd_size_type compact_rel_size;
428
429 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
430 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
431 bfd_boolean use_rld_obj_head;
432
433 /* The __rld_map or __rld_obj_head symbol. */
434 struct elf_link_hash_entry *rld_symbol;
435
436 /* This is set if we see any mips16 stub sections. */
437 bfd_boolean mips16_stubs_seen;
438
439 /* True if we can generate copy relocs and PLTs. */
440 bfd_boolean use_plts_and_copy_relocs;
441
442 /* True if we can only use 32-bit microMIPS instructions. */
443 bfd_boolean insn32;
444
445 /* True if we're generating code for VxWorks. */
446 bfd_boolean is_vxworks;
447
448 /* True if we already reported the small-data section overflow. */
449 bfd_boolean small_data_overflow_reported;
450
451 /* Shortcuts to some dynamic sections, or NULL if they are not
452 being used. */
453 asection *srelbss;
454 asection *sdynbss;
455 asection *srelplt;
456 asection *srelplt2;
457 asection *sgotplt;
458 asection *splt;
459 asection *sstubs;
460 asection *sgot;
461
462 /* The master GOT information. */
463 struct mips_got_info *got_info;
464
465 /* The global symbol in the GOT with the lowest index in the dynamic
466 symbol table. */
467 struct elf_link_hash_entry *global_gotsym;
468
469 /* The size of the PLT header in bytes. */
470 bfd_vma plt_header_size;
471
472 /* The size of a standard PLT entry in bytes. */
473 bfd_vma plt_mips_entry_size;
474
475 /* The size of a compressed PLT entry in bytes. */
476 bfd_vma plt_comp_entry_size;
477
478 /* The offset of the next standard PLT entry to create. */
479 bfd_vma plt_mips_offset;
480
481 /* The offset of the next compressed PLT entry to create. */
482 bfd_vma plt_comp_offset;
483
484 /* The index of the next .got.plt entry to create. */
485 bfd_vma plt_got_index;
486
487 /* The number of functions that need a lazy-binding stub. */
488 bfd_vma lazy_stub_count;
489
490 /* The size of a function stub entry in bytes. */
491 bfd_vma function_stub_size;
492
493 /* The number of reserved entries at the beginning of the GOT. */
494 unsigned int reserved_gotno;
495
496 /* The section used for mips_elf_la25_stub trampolines.
497 See the comment above that structure for details. */
498 asection *strampoline;
499
500 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
501 pairs. */
502 htab_t la25_stubs;
503
504 /* A function FN (NAME, IS, OS) that creates a new input section
505 called NAME and links it to output section OS. If IS is nonnull,
506 the new section should go immediately before it, otherwise it
507 should go at the (current) beginning of OS.
508
509 The function returns the new section on success, otherwise it
510 returns null. */
511 asection *(*add_stub_section) (const char *, asection *, asection *);
512
513 /* Small local sym cache. */
514 struct sym_cache sym_cache;
515
516 /* Is the PLT header compressed? */
517 unsigned int plt_header_is_comp : 1;
518 };
519
520 /* Get the MIPS ELF linker hash table from a link_info structure. */
521
522 #define mips_elf_hash_table(p) \
523 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
524 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
525
526 /* A structure used to communicate with htab_traverse callbacks. */
527 struct mips_htab_traverse_info
528 {
529 /* The usual link-wide information. */
530 struct bfd_link_info *info;
531 bfd *output_bfd;
532
533 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
534 bfd_boolean error;
535 };
536
537 /* MIPS ELF private object data. */
538
539 struct mips_elf_obj_tdata
540 {
541 /* Generic ELF private object data. */
542 struct elf_obj_tdata root;
543
544 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
545 bfd *abi_fp_bfd;
546
547 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
548 bfd *abi_msa_bfd;
549
550 /* The abiflags for this object. */
551 Elf_Internal_ABIFlags_v0 abiflags;
552 bfd_boolean abiflags_valid;
553
554 /* The GOT requirements of input bfds. */
555 struct mips_got_info *got;
556
557 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
558 included directly in this one, but there's no point to wasting
559 the memory just for the infrequently called find_nearest_line. */
560 struct mips_elf_find_line *find_line_info;
561
562 /* An array of stub sections indexed by symbol number. */
563 asection **local_stubs;
564 asection **local_call_stubs;
565
566 /* The Irix 5 support uses two virtual sections, which represent
567 text/data symbols defined in dynamic objects. */
568 asymbol *elf_data_symbol;
569 asymbol *elf_text_symbol;
570 asection *elf_data_section;
571 asection *elf_text_section;
572 };
573
574 /* Get MIPS ELF private object data from BFD's tdata. */
575
576 #define mips_elf_tdata(bfd) \
577 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
578
579 #define TLS_RELOC_P(r_type) \
580 (r_type == R_MIPS_TLS_DTPMOD32 \
581 || r_type == R_MIPS_TLS_DTPMOD64 \
582 || r_type == R_MIPS_TLS_DTPREL32 \
583 || r_type == R_MIPS_TLS_DTPREL64 \
584 || r_type == R_MIPS_TLS_GD \
585 || r_type == R_MIPS_TLS_LDM \
586 || r_type == R_MIPS_TLS_DTPREL_HI16 \
587 || r_type == R_MIPS_TLS_DTPREL_LO16 \
588 || r_type == R_MIPS_TLS_GOTTPREL \
589 || r_type == R_MIPS_TLS_TPREL32 \
590 || r_type == R_MIPS_TLS_TPREL64 \
591 || r_type == R_MIPS_TLS_TPREL_HI16 \
592 || r_type == R_MIPS_TLS_TPREL_LO16 \
593 || r_type == R_MIPS16_TLS_GD \
594 || r_type == R_MIPS16_TLS_LDM \
595 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
596 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
597 || r_type == R_MIPS16_TLS_GOTTPREL \
598 || r_type == R_MIPS16_TLS_TPREL_HI16 \
599 || r_type == R_MIPS16_TLS_TPREL_LO16 \
600 || r_type == R_MICROMIPS_TLS_GD \
601 || r_type == R_MICROMIPS_TLS_LDM \
602 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
603 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
604 || r_type == R_MICROMIPS_TLS_GOTTPREL \
605 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
606 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
607
608 /* Structure used to pass information to mips_elf_output_extsym. */
609
610 struct extsym_info
611 {
612 bfd *abfd;
613 struct bfd_link_info *info;
614 struct ecoff_debug_info *debug;
615 const struct ecoff_debug_swap *swap;
616 bfd_boolean failed;
617 };
618
619 /* The names of the runtime procedure table symbols used on IRIX5. */
620
621 static const char * const mips_elf_dynsym_rtproc_names[] =
622 {
623 "_procedure_table",
624 "_procedure_string_table",
625 "_procedure_table_size",
626 NULL
627 };
628
629 /* These structures are used to generate the .compact_rel section on
630 IRIX5. */
631
632 typedef struct
633 {
634 unsigned long id1; /* Always one? */
635 unsigned long num; /* Number of compact relocation entries. */
636 unsigned long id2; /* Always two? */
637 unsigned long offset; /* The file offset of the first relocation. */
638 unsigned long reserved0; /* Zero? */
639 unsigned long reserved1; /* Zero? */
640 } Elf32_compact_rel;
641
642 typedef struct
643 {
644 bfd_byte id1[4];
645 bfd_byte num[4];
646 bfd_byte id2[4];
647 bfd_byte offset[4];
648 bfd_byte reserved0[4];
649 bfd_byte reserved1[4];
650 } Elf32_External_compact_rel;
651
652 typedef struct
653 {
654 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
655 unsigned int rtype : 4; /* Relocation types. See below. */
656 unsigned int dist2to : 8;
657 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
658 unsigned long konst; /* KONST field. See below. */
659 unsigned long vaddr; /* VADDR to be relocated. */
660 } Elf32_crinfo;
661
662 typedef struct
663 {
664 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
665 unsigned int rtype : 4; /* Relocation types. See below. */
666 unsigned int dist2to : 8;
667 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
668 unsigned long konst; /* KONST field. See below. */
669 } Elf32_crinfo2;
670
671 typedef struct
672 {
673 bfd_byte info[4];
674 bfd_byte konst[4];
675 bfd_byte vaddr[4];
676 } Elf32_External_crinfo;
677
678 typedef struct
679 {
680 bfd_byte info[4];
681 bfd_byte konst[4];
682 } Elf32_External_crinfo2;
683
684 /* These are the constants used to swap the bitfields in a crinfo. */
685
686 #define CRINFO_CTYPE (0x1)
687 #define CRINFO_CTYPE_SH (31)
688 #define CRINFO_RTYPE (0xf)
689 #define CRINFO_RTYPE_SH (27)
690 #define CRINFO_DIST2TO (0xff)
691 #define CRINFO_DIST2TO_SH (19)
692 #define CRINFO_RELVADDR (0x7ffff)
693 #define CRINFO_RELVADDR_SH (0)
694
695 /* A compact relocation info has long (3 words) or short (2 words)
696 formats. A short format doesn't have VADDR field and relvaddr
697 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
698 #define CRF_MIPS_LONG 1
699 #define CRF_MIPS_SHORT 0
700
701 /* There are 4 types of compact relocation at least. The value KONST
702 has different meaning for each type:
703
704 (type) (konst)
705 CT_MIPS_REL32 Address in data
706 CT_MIPS_WORD Address in word (XXX)
707 CT_MIPS_GPHI_LO GP - vaddr
708 CT_MIPS_JMPAD Address to jump
709 */
710
711 #define CRT_MIPS_REL32 0xa
712 #define CRT_MIPS_WORD 0xb
713 #define CRT_MIPS_GPHI_LO 0xc
714 #define CRT_MIPS_JMPAD 0xd
715
716 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
717 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
718 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
719 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
720 \f
721 /* The structure of the runtime procedure descriptor created by the
722 loader for use by the static exception system. */
723
724 typedef struct runtime_pdr {
725 bfd_vma adr; /* Memory address of start of procedure. */
726 long regmask; /* Save register mask. */
727 long regoffset; /* Save register offset. */
728 long fregmask; /* Save floating point register mask. */
729 long fregoffset; /* Save floating point register offset. */
730 long frameoffset; /* Frame size. */
731 short framereg; /* Frame pointer register. */
732 short pcreg; /* Offset or reg of return pc. */
733 long irpss; /* Index into the runtime string table. */
734 long reserved;
735 struct exception_info *exception_info;/* Pointer to exception array. */
736 } RPDR, *pRPDR;
737 #define cbRPDR sizeof (RPDR)
738 #define rpdNil ((pRPDR) 0)
739 \f
740 static struct mips_got_entry *mips_elf_create_local_got_entry
741 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
742 struct mips_elf_link_hash_entry *, int);
743 static bfd_boolean mips_elf_sort_hash_table_f
744 (struct mips_elf_link_hash_entry *, void *);
745 static bfd_vma mips_elf_high
746 (bfd_vma);
747 static bfd_boolean mips_elf_create_dynamic_relocation
748 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
749 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
750 bfd_vma *, asection *);
751 static bfd_vma mips_elf_adjust_gp
752 (bfd *, struct mips_got_info *, bfd *);
753
754 /* This will be used when we sort the dynamic relocation records. */
755 static bfd *reldyn_sorting_bfd;
756
757 /* True if ABFD is for CPUs with load interlocking that include
758 non-MIPS1 CPUs and R3900. */
759 #define LOAD_INTERLOCKS_P(abfd) \
760 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
761 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
762
763 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
764 This should be safe for all architectures. We enable this predicate
765 for RM9000 for now. */
766 #define JAL_TO_BAL_P(abfd) \
767 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
768
769 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
770 This should be safe for all architectures. We enable this predicate for
771 all CPUs. */
772 #define JALR_TO_BAL_P(abfd) 1
773
774 /* True if ABFD is for CPUs that are faster if JR is converted to B.
775 This should be safe for all architectures. We enable this predicate for
776 all CPUs. */
777 #define JR_TO_B_P(abfd) 1
778
779 /* True if ABFD is a PIC object. */
780 #define PIC_OBJECT_P(abfd) \
781 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
782
783 /* Nonzero if ABFD is using the O32 ABI. */
784 #define ABI_O32_P(abfd) \
785 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
786
787 /* Nonzero if ABFD is using the N32 ABI. */
788 #define ABI_N32_P(abfd) \
789 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
790
791 /* Nonzero if ABFD is using the N64 ABI. */
792 #define ABI_64_P(abfd) \
793 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
794
795 /* Nonzero if ABFD is using NewABI conventions. */
796 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
797
798 /* Nonzero if ABFD has microMIPS code. */
799 #define MICROMIPS_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
801
802 /* Nonzero if ABFD is MIPS R6. */
803 #define MIPSR6_P(abfd) \
804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
805 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
806
807 /* The IRIX compatibility level we are striving for. */
808 #define IRIX_COMPAT(abfd) \
809 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
810
811 /* Whether we are trying to be compatible with IRIX at all. */
812 #define SGI_COMPAT(abfd) \
813 (IRIX_COMPAT (abfd) != ict_none)
814
815 /* The name of the options section. */
816 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
817 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
818
819 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
820 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
821 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
822 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
823
824 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
825 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
826 (strcmp (NAME, ".MIPS.abiflags") == 0)
827
828 /* Whether the section is readonly. */
829 #define MIPS_ELF_READONLY_SECTION(sec) \
830 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
831 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
832
833 /* The name of the stub section. */
834 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
835
836 /* The size of an external REL relocation. */
837 #define MIPS_ELF_REL_SIZE(abfd) \
838 (get_elf_backend_data (abfd)->s->sizeof_rel)
839
840 /* The size of an external RELA relocation. */
841 #define MIPS_ELF_RELA_SIZE(abfd) \
842 (get_elf_backend_data (abfd)->s->sizeof_rela)
843
844 /* The size of an external dynamic table entry. */
845 #define MIPS_ELF_DYN_SIZE(abfd) \
846 (get_elf_backend_data (abfd)->s->sizeof_dyn)
847
848 /* The size of a GOT entry. */
849 #define MIPS_ELF_GOT_SIZE(abfd) \
850 (get_elf_backend_data (abfd)->s->arch_size / 8)
851
852 /* The size of the .rld_map section. */
853 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
854 (get_elf_backend_data (abfd)->s->arch_size / 8)
855
856 /* The size of a symbol-table entry. */
857 #define MIPS_ELF_SYM_SIZE(abfd) \
858 (get_elf_backend_data (abfd)->s->sizeof_sym)
859
860 /* The default alignment for sections, as a power of two. */
861 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
862 (get_elf_backend_data (abfd)->s->log_file_align)
863
864 /* Get word-sized data. */
865 #define MIPS_ELF_GET_WORD(abfd, ptr) \
866 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
867
868 /* Put out word-sized data. */
869 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
870 (ABI_64_P (abfd) \
871 ? bfd_put_64 (abfd, val, ptr) \
872 : bfd_put_32 (abfd, val, ptr))
873
874 /* The opcode for word-sized loads (LW or LD). */
875 #define MIPS_ELF_LOAD_WORD(abfd) \
876 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
877
878 /* Add a dynamic symbol table-entry. */
879 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
880 _bfd_elf_add_dynamic_entry (info, tag, val)
881
882 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
883 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
884
885 /* The name of the dynamic relocation section. */
886 #define MIPS_ELF_REL_DYN_NAME(INFO) \
887 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
888
889 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
890 from smaller values. Start with zero, widen, *then* decrement. */
891 #define MINUS_ONE (((bfd_vma)0) - 1)
892 #define MINUS_TWO (((bfd_vma)0) - 2)
893
894 /* The value to write into got[1] for SVR4 targets, to identify it is
895 a GNU object. The dynamic linker can then use got[1] to store the
896 module pointer. */
897 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
898 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
899
900 /* The offset of $gp from the beginning of the .got section. */
901 #define ELF_MIPS_GP_OFFSET(INFO) \
902 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
903
904 /* The maximum size of the GOT for it to be addressable using 16-bit
905 offsets from $gp. */
906 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
907
908 /* Instructions which appear in a stub. */
909 #define STUB_LW(abfd) \
910 ((ABI_64_P (abfd) \
911 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
912 : 0x8f998010)) /* lw t9,0x8010(gp) */
913 #define STUB_MOVE(abfd) \
914 ((ABI_64_P (abfd) \
915 ? 0x03e0782d /* daddu t7,ra */ \
916 : 0x03e07821)) /* addu t7,ra */
917 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
918 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
919 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
920 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
921 #define STUB_LI16S(abfd, VAL) \
922 ((ABI_64_P (abfd) \
923 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
924 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
925
926 /* Likewise for the microMIPS ASE. */
927 #define STUB_LW_MICROMIPS(abfd) \
928 (ABI_64_P (abfd) \
929 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
930 : 0xff3c8010) /* lw t9,0x8010(gp) */
931 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
932 #define STUB_MOVE32_MICROMIPS(abfd) \
933 (ABI_64_P (abfd) \
934 ? 0x581f7950 /* daddu t7,ra,zero */ \
935 : 0x001f7950) /* addu t7,ra,zero */
936 #define STUB_LUI_MICROMIPS(VAL) \
937 (0x41b80000 + (VAL)) /* lui t8,VAL */
938 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
939 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
940 #define STUB_ORI_MICROMIPS(VAL) \
941 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
942 #define STUB_LI16U_MICROMIPS(VAL) \
943 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
944 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
945 (ABI_64_P (abfd) \
946 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
947 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
948
949 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
950 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
951 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
952 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
953 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
954 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
955
956 /* The name of the dynamic interpreter. This is put in the .interp
957 section. */
958
959 #define ELF_DYNAMIC_INTERPRETER(abfd) \
960 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
961 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
962 : "/usr/lib/libc.so.1")
963
964 #ifdef BFD64
965 #define MNAME(bfd,pre,pos) \
966 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
967 #define ELF_R_SYM(bfd, i) \
968 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
969 #define ELF_R_TYPE(bfd, i) \
970 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
971 #define ELF_R_INFO(bfd, s, t) \
972 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
973 #else
974 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
975 #define ELF_R_SYM(bfd, i) \
976 (ELF32_R_SYM (i))
977 #define ELF_R_TYPE(bfd, i) \
978 (ELF32_R_TYPE (i))
979 #define ELF_R_INFO(bfd, s, t) \
980 (ELF32_R_INFO (s, t))
981 #endif
982 \f
983 /* The mips16 compiler uses a couple of special sections to handle
984 floating point arguments.
985
986 Section names that look like .mips16.fn.FNNAME contain stubs that
987 copy floating point arguments from the fp regs to the gp regs and
988 then jump to FNNAME. If any 32 bit function calls FNNAME, the
989 call should be redirected to the stub instead. If no 32 bit
990 function calls FNNAME, the stub should be discarded. We need to
991 consider any reference to the function, not just a call, because
992 if the address of the function is taken we will need the stub,
993 since the address might be passed to a 32 bit function.
994
995 Section names that look like .mips16.call.FNNAME contain stubs
996 that copy floating point arguments from the gp regs to the fp
997 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
998 then any 16 bit function that calls FNNAME should be redirected
999 to the stub instead. If FNNAME is not a 32 bit function, the
1000 stub should be discarded.
1001
1002 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1003 which call FNNAME and then copy the return value from the fp regs
1004 to the gp regs. These stubs store the return value in $18 while
1005 calling FNNAME; any function which might call one of these stubs
1006 must arrange to save $18 around the call. (This case is not
1007 needed for 32 bit functions that call 16 bit functions, because
1008 16 bit functions always return floating point values in both
1009 $f0/$f1 and $2/$3.)
1010
1011 Note that in all cases FNNAME might be defined statically.
1012 Therefore, FNNAME is not used literally. Instead, the relocation
1013 information will indicate which symbol the section is for.
1014
1015 We record any stubs that we find in the symbol table. */
1016
1017 #define FN_STUB ".mips16.fn."
1018 #define CALL_STUB ".mips16.call."
1019 #define CALL_FP_STUB ".mips16.call.fp."
1020
1021 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1022 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1023 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1024 \f
1025 /* The format of the first PLT entry in an O32 executable. */
1026 static const bfd_vma mips_o32_exec_plt0_entry[] =
1027 {
1028 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1029 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1030 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1031 0x031cc023, /* subu $24, $24, $28 */
1032 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1033 0x0018c082, /* srl $24, $24, 2 */
1034 0x0320f809, /* jalr $25 */
1035 0x2718fffe /* subu $24, $24, 2 */
1036 };
1037
1038 /* The format of the first PLT entry in an N32 executable. Different
1039 because gp ($28) is not available; we use t2 ($14) instead. */
1040 static const bfd_vma mips_n32_exec_plt0_entry[] =
1041 {
1042 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1043 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1044 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1045 0x030ec023, /* subu $24, $24, $14 */
1046 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1047 0x0018c082, /* srl $24, $24, 2 */
1048 0x0320f809, /* jalr $25 */
1049 0x2718fffe /* subu $24, $24, 2 */
1050 };
1051
1052 /* The format of the first PLT entry in an N64 executable. Different
1053 from N32 because of the increased size of GOT entries. */
1054 static const bfd_vma mips_n64_exec_plt0_entry[] =
1055 {
1056 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1057 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1058 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1059 0x030ec023, /* subu $24, $24, $14 */
1060 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1061 0x0018c0c2, /* srl $24, $24, 3 */
1062 0x0320f809, /* jalr $25 */
1063 0x2718fffe /* subu $24, $24, 2 */
1064 };
1065
1066 /* The format of the microMIPS first PLT entry in an O32 executable.
1067 We rely on v0 ($2) rather than t8 ($24) to contain the address
1068 of the GOTPLT entry handled, so this stub may only be used when
1069 all the subsequent PLT entries are microMIPS code too.
1070
1071 The trailing NOP is for alignment and correct disassembly only. */
1072 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1073 {
1074 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1075 0xff23, 0x0000, /* lw $25, 0($3) */
1076 0x0535, /* subu $2, $2, $3 */
1077 0x2525, /* srl $2, $2, 2 */
1078 0x3302, 0xfffe, /* subu $24, $2, 2 */
1079 0x0dff, /* move $15, $31 */
1080 0x45f9, /* jalrs $25 */
1081 0x0f83, /* move $28, $3 */
1082 0x0c00 /* nop */
1083 };
1084
1085 /* The format of the microMIPS first PLT entry in an O32 executable
1086 in the insn32 mode. */
1087 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1088 {
1089 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1090 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1091 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1092 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1093 0x001f, 0x7950, /* move $15, $31 */
1094 0x0318, 0x1040, /* srl $24, $24, 2 */
1095 0x03f9, 0x0f3c, /* jalr $25 */
1096 0x3318, 0xfffe /* subu $24, $24, 2 */
1097 };
1098
1099 /* The format of subsequent standard PLT entries. */
1100 static const bfd_vma mips_exec_plt_entry[] =
1101 {
1102 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1103 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1104 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1105 0x03200008 /* jr $25 */
1106 };
1107
1108 /* In the following PLT entry the JR and ADDIU instructions will
1109 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1110 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1111 static const bfd_vma mipsr6_exec_plt_entry[] =
1112 {
1113 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1114 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1115 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1116 0x03200009 /* jr $25 */
1117 };
1118
1119 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1120 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1121 directly addressable. */
1122 static const bfd_vma mips16_o32_exec_plt_entry[] =
1123 {
1124 0xb203, /* lw $2, 12($pc) */
1125 0x9a60, /* lw $3, 0($2) */
1126 0x651a, /* move $24, $2 */
1127 0xeb00, /* jr $3 */
1128 0x653b, /* move $25, $3 */
1129 0x6500, /* nop */
1130 0x0000, 0x0000 /* .word (.got.plt entry) */
1131 };
1132
1133 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1134 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1135 static const bfd_vma micromips_o32_exec_plt_entry[] =
1136 {
1137 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1138 0xff22, 0x0000, /* lw $25, 0($2) */
1139 0x4599, /* jr $25 */
1140 0x0f02 /* move $24, $2 */
1141 };
1142
1143 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1144 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1145 {
1146 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1147 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1148 0x0019, 0x0f3c, /* jr $25 */
1149 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1150 };
1151
1152 /* The format of the first PLT entry in a VxWorks executable. */
1153 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1154 {
1155 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1156 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1157 0x8f390008, /* lw t9, 8(t9) */
1158 0x00000000, /* nop */
1159 0x03200008, /* jr t9 */
1160 0x00000000 /* nop */
1161 };
1162
1163 /* The format of subsequent PLT entries. */
1164 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1165 {
1166 0x10000000, /* b .PLT_resolver */
1167 0x24180000, /* li t8, <pltindex> */
1168 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1169 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1170 0x8f390000, /* lw t9, 0(t9) */
1171 0x00000000, /* nop */
1172 0x03200008, /* jr t9 */
1173 0x00000000 /* nop */
1174 };
1175
1176 /* The format of the first PLT entry in a VxWorks shared object. */
1177 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1178 {
1179 0x8f990008, /* lw t9, 8(gp) */
1180 0x00000000, /* nop */
1181 0x03200008, /* jr t9 */
1182 0x00000000, /* nop */
1183 0x00000000, /* nop */
1184 0x00000000 /* nop */
1185 };
1186
1187 /* The format of subsequent PLT entries. */
1188 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1189 {
1190 0x10000000, /* b .PLT_resolver */
1191 0x24180000 /* li t8, <pltindex> */
1192 };
1193 \f
1194 /* microMIPS 32-bit opcode helper installer. */
1195
1196 static void
1197 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1198 {
1199 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1200 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1201 }
1202
1203 /* microMIPS 32-bit opcode helper retriever. */
1204
1205 static bfd_vma
1206 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1207 {
1208 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1209 }
1210 \f
1211 /* Look up an entry in a MIPS ELF linker hash table. */
1212
1213 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1214 ((struct mips_elf_link_hash_entry *) \
1215 elf_link_hash_lookup (&(table)->root, (string), (create), \
1216 (copy), (follow)))
1217
1218 /* Traverse a MIPS ELF linker hash table. */
1219
1220 #define mips_elf_link_hash_traverse(table, func, info) \
1221 (elf_link_hash_traverse \
1222 (&(table)->root, \
1223 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1224 (info)))
1225
1226 /* Find the base offsets for thread-local storage in this object,
1227 for GD/LD and IE/LE respectively. */
1228
1229 #define TP_OFFSET 0x7000
1230 #define DTP_OFFSET 0x8000
1231
1232 static bfd_vma
1233 dtprel_base (struct bfd_link_info *info)
1234 {
1235 /* If tls_sec is NULL, we should have signalled an error already. */
1236 if (elf_hash_table (info)->tls_sec == NULL)
1237 return 0;
1238 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1239 }
1240
1241 static bfd_vma
1242 tprel_base (struct bfd_link_info *info)
1243 {
1244 /* If tls_sec is NULL, we should have signalled an error already. */
1245 if (elf_hash_table (info)->tls_sec == NULL)
1246 return 0;
1247 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1248 }
1249
1250 /* Create an entry in a MIPS ELF linker hash table. */
1251
1252 static struct bfd_hash_entry *
1253 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1254 struct bfd_hash_table *table, const char *string)
1255 {
1256 struct mips_elf_link_hash_entry *ret =
1257 (struct mips_elf_link_hash_entry *) entry;
1258
1259 /* Allocate the structure if it has not already been allocated by a
1260 subclass. */
1261 if (ret == NULL)
1262 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1263 if (ret == NULL)
1264 return (struct bfd_hash_entry *) ret;
1265
1266 /* Call the allocation method of the superclass. */
1267 ret = ((struct mips_elf_link_hash_entry *)
1268 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1269 table, string));
1270 if (ret != NULL)
1271 {
1272 /* Set local fields. */
1273 memset (&ret->esym, 0, sizeof (EXTR));
1274 /* We use -2 as a marker to indicate that the information has
1275 not been set. -1 means there is no associated ifd. */
1276 ret->esym.ifd = -2;
1277 ret->la25_stub = 0;
1278 ret->possibly_dynamic_relocs = 0;
1279 ret->fn_stub = NULL;
1280 ret->call_stub = NULL;
1281 ret->call_fp_stub = NULL;
1282 ret->global_got_area = GGA_NONE;
1283 ret->got_only_for_calls = TRUE;
1284 ret->readonly_reloc = FALSE;
1285 ret->has_static_relocs = FALSE;
1286 ret->no_fn_stub = FALSE;
1287 ret->need_fn_stub = FALSE;
1288 ret->has_nonpic_branches = FALSE;
1289 ret->needs_lazy_stub = FALSE;
1290 ret->use_plt_entry = FALSE;
1291 }
1292
1293 return (struct bfd_hash_entry *) ret;
1294 }
1295
1296 /* Allocate MIPS ELF private object data. */
1297
1298 bfd_boolean
1299 _bfd_mips_elf_mkobject (bfd *abfd)
1300 {
1301 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1302 MIPS_ELF_DATA);
1303 }
1304
1305 bfd_boolean
1306 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1307 {
1308 if (!sec->used_by_bfd)
1309 {
1310 struct _mips_elf_section_data *sdata;
1311 bfd_size_type amt = sizeof (*sdata);
1312
1313 sdata = bfd_zalloc (abfd, amt);
1314 if (sdata == NULL)
1315 return FALSE;
1316 sec->used_by_bfd = sdata;
1317 }
1318
1319 return _bfd_elf_new_section_hook (abfd, sec);
1320 }
1321 \f
1322 /* Read ECOFF debugging information from a .mdebug section into a
1323 ecoff_debug_info structure. */
1324
1325 bfd_boolean
1326 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1327 struct ecoff_debug_info *debug)
1328 {
1329 HDRR *symhdr;
1330 const struct ecoff_debug_swap *swap;
1331 char *ext_hdr;
1332
1333 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1334 memset (debug, 0, sizeof (*debug));
1335
1336 ext_hdr = bfd_malloc (swap->external_hdr_size);
1337 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1338 goto error_return;
1339
1340 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1341 swap->external_hdr_size))
1342 goto error_return;
1343
1344 symhdr = &debug->symbolic_header;
1345 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1346
1347 /* The symbolic header contains absolute file offsets and sizes to
1348 read. */
1349 #define READ(ptr, offset, count, size, type) \
1350 if (symhdr->count == 0) \
1351 debug->ptr = NULL; \
1352 else \
1353 { \
1354 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1355 debug->ptr = bfd_malloc (amt); \
1356 if (debug->ptr == NULL) \
1357 goto error_return; \
1358 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1359 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1360 goto error_return; \
1361 }
1362
1363 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1364 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1365 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1366 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1367 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1368 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1369 union aux_ext *);
1370 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1371 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1372 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1373 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1374 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1375 #undef READ
1376
1377 debug->fdr = NULL;
1378
1379 return TRUE;
1380
1381 error_return:
1382 if (ext_hdr != NULL)
1383 free (ext_hdr);
1384 if (debug->line != NULL)
1385 free (debug->line);
1386 if (debug->external_dnr != NULL)
1387 free (debug->external_dnr);
1388 if (debug->external_pdr != NULL)
1389 free (debug->external_pdr);
1390 if (debug->external_sym != NULL)
1391 free (debug->external_sym);
1392 if (debug->external_opt != NULL)
1393 free (debug->external_opt);
1394 if (debug->external_aux != NULL)
1395 free (debug->external_aux);
1396 if (debug->ss != NULL)
1397 free (debug->ss);
1398 if (debug->ssext != NULL)
1399 free (debug->ssext);
1400 if (debug->external_fdr != NULL)
1401 free (debug->external_fdr);
1402 if (debug->external_rfd != NULL)
1403 free (debug->external_rfd);
1404 if (debug->external_ext != NULL)
1405 free (debug->external_ext);
1406 return FALSE;
1407 }
1408 \f
1409 /* Swap RPDR (runtime procedure table entry) for output. */
1410
1411 static void
1412 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1413 {
1414 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1415 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1416 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1417 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1418 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1419 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1420
1421 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1422 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1423
1424 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1425 }
1426
1427 /* Create a runtime procedure table from the .mdebug section. */
1428
1429 static bfd_boolean
1430 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1431 struct bfd_link_info *info, asection *s,
1432 struct ecoff_debug_info *debug)
1433 {
1434 const struct ecoff_debug_swap *swap;
1435 HDRR *hdr = &debug->symbolic_header;
1436 RPDR *rpdr, *rp;
1437 struct rpdr_ext *erp;
1438 void *rtproc;
1439 struct pdr_ext *epdr;
1440 struct sym_ext *esym;
1441 char *ss, **sv;
1442 char *str;
1443 bfd_size_type size;
1444 bfd_size_type count;
1445 unsigned long sindex;
1446 unsigned long i;
1447 PDR pdr;
1448 SYMR sym;
1449 const char *no_name_func = _("static procedure (no name)");
1450
1451 epdr = NULL;
1452 rpdr = NULL;
1453 esym = NULL;
1454 ss = NULL;
1455 sv = NULL;
1456
1457 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1458
1459 sindex = strlen (no_name_func) + 1;
1460 count = hdr->ipdMax;
1461 if (count > 0)
1462 {
1463 size = swap->external_pdr_size;
1464
1465 epdr = bfd_malloc (size * count);
1466 if (epdr == NULL)
1467 goto error_return;
1468
1469 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1470 goto error_return;
1471
1472 size = sizeof (RPDR);
1473 rp = rpdr = bfd_malloc (size * count);
1474 if (rpdr == NULL)
1475 goto error_return;
1476
1477 size = sizeof (char *);
1478 sv = bfd_malloc (size * count);
1479 if (sv == NULL)
1480 goto error_return;
1481
1482 count = hdr->isymMax;
1483 size = swap->external_sym_size;
1484 esym = bfd_malloc (size * count);
1485 if (esym == NULL)
1486 goto error_return;
1487
1488 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1489 goto error_return;
1490
1491 count = hdr->issMax;
1492 ss = bfd_malloc (count);
1493 if (ss == NULL)
1494 goto error_return;
1495 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1496 goto error_return;
1497
1498 count = hdr->ipdMax;
1499 for (i = 0; i < (unsigned long) count; i++, rp++)
1500 {
1501 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1502 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1503 rp->adr = sym.value;
1504 rp->regmask = pdr.regmask;
1505 rp->regoffset = pdr.regoffset;
1506 rp->fregmask = pdr.fregmask;
1507 rp->fregoffset = pdr.fregoffset;
1508 rp->frameoffset = pdr.frameoffset;
1509 rp->framereg = pdr.framereg;
1510 rp->pcreg = pdr.pcreg;
1511 rp->irpss = sindex;
1512 sv[i] = ss + sym.iss;
1513 sindex += strlen (sv[i]) + 1;
1514 }
1515 }
1516
1517 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1518 size = BFD_ALIGN (size, 16);
1519 rtproc = bfd_alloc (abfd, size);
1520 if (rtproc == NULL)
1521 {
1522 mips_elf_hash_table (info)->procedure_count = 0;
1523 goto error_return;
1524 }
1525
1526 mips_elf_hash_table (info)->procedure_count = count + 2;
1527
1528 erp = rtproc;
1529 memset (erp, 0, sizeof (struct rpdr_ext));
1530 erp++;
1531 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1532 strcpy (str, no_name_func);
1533 str += strlen (no_name_func) + 1;
1534 for (i = 0; i < count; i++)
1535 {
1536 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1537 strcpy (str, sv[i]);
1538 str += strlen (sv[i]) + 1;
1539 }
1540 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1541
1542 /* Set the size and contents of .rtproc section. */
1543 s->size = size;
1544 s->contents = rtproc;
1545
1546 /* Skip this section later on (I don't think this currently
1547 matters, but someday it might). */
1548 s->map_head.link_order = NULL;
1549
1550 if (epdr != NULL)
1551 free (epdr);
1552 if (rpdr != NULL)
1553 free (rpdr);
1554 if (esym != NULL)
1555 free (esym);
1556 if (ss != NULL)
1557 free (ss);
1558 if (sv != NULL)
1559 free (sv);
1560
1561 return TRUE;
1562
1563 error_return:
1564 if (epdr != NULL)
1565 free (epdr);
1566 if (rpdr != NULL)
1567 free (rpdr);
1568 if (esym != NULL)
1569 free (esym);
1570 if (ss != NULL)
1571 free (ss);
1572 if (sv != NULL)
1573 free (sv);
1574 return FALSE;
1575 }
1576 \f
1577 /* We're going to create a stub for H. Create a symbol for the stub's
1578 value and size, to help make the disassembly easier to read. */
1579
1580 static bfd_boolean
1581 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1582 struct mips_elf_link_hash_entry *h,
1583 const char *prefix, asection *s, bfd_vma value,
1584 bfd_vma size)
1585 {
1586 struct bfd_link_hash_entry *bh;
1587 struct elf_link_hash_entry *elfh;
1588 const char *name;
1589
1590 if (ELF_ST_IS_MICROMIPS (h->root.other))
1591 value |= 1;
1592
1593 /* Create a new symbol. */
1594 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1595 bh = NULL;
1596 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1597 BSF_LOCAL, s, value, NULL,
1598 TRUE, FALSE, &bh))
1599 return FALSE;
1600
1601 /* Make it a local function. */
1602 elfh = (struct elf_link_hash_entry *) bh;
1603 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1604 elfh->size = size;
1605 elfh->forced_local = 1;
1606 return TRUE;
1607 }
1608
1609 /* We're about to redefine H. Create a symbol to represent H's
1610 current value and size, to help make the disassembly easier
1611 to read. */
1612
1613 static bfd_boolean
1614 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1615 struct mips_elf_link_hash_entry *h,
1616 const char *prefix)
1617 {
1618 struct bfd_link_hash_entry *bh;
1619 struct elf_link_hash_entry *elfh;
1620 const char *name;
1621 asection *s;
1622 bfd_vma value;
1623
1624 /* Read the symbol's value. */
1625 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1626 || h->root.root.type == bfd_link_hash_defweak);
1627 s = h->root.root.u.def.section;
1628 value = h->root.root.u.def.value;
1629
1630 /* Create a new symbol. */
1631 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1632 bh = NULL;
1633 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1634 BSF_LOCAL, s, value, NULL,
1635 TRUE, FALSE, &bh))
1636 return FALSE;
1637
1638 /* Make it local and copy the other attributes from H. */
1639 elfh = (struct elf_link_hash_entry *) bh;
1640 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1641 elfh->other = h->root.other;
1642 elfh->size = h->root.size;
1643 elfh->forced_local = 1;
1644 return TRUE;
1645 }
1646
1647 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1648 function rather than to a hard-float stub. */
1649
1650 static bfd_boolean
1651 section_allows_mips16_refs_p (asection *section)
1652 {
1653 const char *name;
1654
1655 name = bfd_get_section_name (section->owner, section);
1656 return (FN_STUB_P (name)
1657 || CALL_STUB_P (name)
1658 || CALL_FP_STUB_P (name)
1659 || strcmp (name, ".pdr") == 0);
1660 }
1661
1662 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1663 stub section of some kind. Return the R_SYMNDX of the target
1664 function, or 0 if we can't decide which function that is. */
1665
1666 static unsigned long
1667 mips16_stub_symndx (const struct elf_backend_data *bed,
1668 asection *sec ATTRIBUTE_UNUSED,
1669 const Elf_Internal_Rela *relocs,
1670 const Elf_Internal_Rela *relend)
1671 {
1672 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1673 const Elf_Internal_Rela *rel;
1674
1675 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1676 one in a compound relocation. */
1677 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1678 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1679 return ELF_R_SYM (sec->owner, rel->r_info);
1680
1681 /* Otherwise trust the first relocation, whatever its kind. This is
1682 the traditional behavior. */
1683 if (relocs < relend)
1684 return ELF_R_SYM (sec->owner, relocs->r_info);
1685
1686 return 0;
1687 }
1688
1689 /* Check the mips16 stubs for a particular symbol, and see if we can
1690 discard them. */
1691
1692 static void
1693 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1694 struct mips_elf_link_hash_entry *h)
1695 {
1696 /* Dynamic symbols must use the standard call interface, in case other
1697 objects try to call them. */
1698 if (h->fn_stub != NULL
1699 && h->root.dynindx != -1)
1700 {
1701 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1702 h->need_fn_stub = TRUE;
1703 }
1704
1705 if (h->fn_stub != NULL
1706 && ! h->need_fn_stub)
1707 {
1708 /* We don't need the fn_stub; the only references to this symbol
1709 are 16 bit calls. Clobber the size to 0 to prevent it from
1710 being included in the link. */
1711 h->fn_stub->size = 0;
1712 h->fn_stub->flags &= ~SEC_RELOC;
1713 h->fn_stub->reloc_count = 0;
1714 h->fn_stub->flags |= SEC_EXCLUDE;
1715 }
1716
1717 if (h->call_stub != NULL
1718 && ELF_ST_IS_MIPS16 (h->root.other))
1719 {
1720 /* We don't need the call_stub; this is a 16 bit function, so
1721 calls from other 16 bit functions are OK. Clobber the size
1722 to 0 to prevent it from being included in the link. */
1723 h->call_stub->size = 0;
1724 h->call_stub->flags &= ~SEC_RELOC;
1725 h->call_stub->reloc_count = 0;
1726 h->call_stub->flags |= SEC_EXCLUDE;
1727 }
1728
1729 if (h->call_fp_stub != NULL
1730 && ELF_ST_IS_MIPS16 (h->root.other))
1731 {
1732 /* We don't need the call_stub; this is a 16 bit function, so
1733 calls from other 16 bit functions are OK. Clobber the size
1734 to 0 to prevent it from being included in the link. */
1735 h->call_fp_stub->size = 0;
1736 h->call_fp_stub->flags &= ~SEC_RELOC;
1737 h->call_fp_stub->reloc_count = 0;
1738 h->call_fp_stub->flags |= SEC_EXCLUDE;
1739 }
1740 }
1741
1742 /* Hashtable callbacks for mips_elf_la25_stubs. */
1743
1744 static hashval_t
1745 mips_elf_la25_stub_hash (const void *entry_)
1746 {
1747 const struct mips_elf_la25_stub *entry;
1748
1749 entry = (struct mips_elf_la25_stub *) entry_;
1750 return entry->h->root.root.u.def.section->id
1751 + entry->h->root.root.u.def.value;
1752 }
1753
1754 static int
1755 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1756 {
1757 const struct mips_elf_la25_stub *entry1, *entry2;
1758
1759 entry1 = (struct mips_elf_la25_stub *) entry1_;
1760 entry2 = (struct mips_elf_la25_stub *) entry2_;
1761 return ((entry1->h->root.root.u.def.section
1762 == entry2->h->root.root.u.def.section)
1763 && (entry1->h->root.root.u.def.value
1764 == entry2->h->root.root.u.def.value));
1765 }
1766
1767 /* Called by the linker to set up the la25 stub-creation code. FN is
1768 the linker's implementation of add_stub_function. Return true on
1769 success. */
1770
1771 bfd_boolean
1772 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1773 asection *(*fn) (const char *, asection *,
1774 asection *))
1775 {
1776 struct mips_elf_link_hash_table *htab;
1777
1778 htab = mips_elf_hash_table (info);
1779 if (htab == NULL)
1780 return FALSE;
1781
1782 htab->add_stub_section = fn;
1783 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1784 mips_elf_la25_stub_eq, NULL);
1785 if (htab->la25_stubs == NULL)
1786 return FALSE;
1787
1788 return TRUE;
1789 }
1790
1791 /* Return true if H is a locally-defined PIC function, in the sense
1792 that it or its fn_stub might need $25 to be valid on entry.
1793 Note that MIPS16 functions set up $gp using PC-relative instructions,
1794 so they themselves never need $25 to be valid. Only non-MIPS16
1795 entry points are of interest here. */
1796
1797 static bfd_boolean
1798 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1799 {
1800 return ((h->root.root.type == bfd_link_hash_defined
1801 || h->root.root.type == bfd_link_hash_defweak)
1802 && h->root.def_regular
1803 && !bfd_is_abs_section (h->root.root.u.def.section)
1804 && (!ELF_ST_IS_MIPS16 (h->root.other)
1805 || (h->fn_stub && h->need_fn_stub))
1806 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1807 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1808 }
1809
1810 /* Set *SEC to the input section that contains the target of STUB.
1811 Return the offset of the target from the start of that section. */
1812
1813 static bfd_vma
1814 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1815 asection **sec)
1816 {
1817 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1818 {
1819 BFD_ASSERT (stub->h->need_fn_stub);
1820 *sec = stub->h->fn_stub;
1821 return 0;
1822 }
1823 else
1824 {
1825 *sec = stub->h->root.root.u.def.section;
1826 return stub->h->root.root.u.def.value;
1827 }
1828 }
1829
1830 /* STUB describes an la25 stub that we have decided to implement
1831 by inserting an LUI/ADDIU pair before the target function.
1832 Create the section and redirect the function symbol to it. */
1833
1834 static bfd_boolean
1835 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1836 struct bfd_link_info *info)
1837 {
1838 struct mips_elf_link_hash_table *htab;
1839 char *name;
1840 asection *s, *input_section;
1841 unsigned int align;
1842
1843 htab = mips_elf_hash_table (info);
1844 if (htab == NULL)
1845 return FALSE;
1846
1847 /* Create a unique name for the new section. */
1848 name = bfd_malloc (11 + sizeof (".text.stub."));
1849 if (name == NULL)
1850 return FALSE;
1851 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1852
1853 /* Create the section. */
1854 mips_elf_get_la25_target (stub, &input_section);
1855 s = htab->add_stub_section (name, input_section,
1856 input_section->output_section);
1857 if (s == NULL)
1858 return FALSE;
1859
1860 /* Make sure that any padding goes before the stub. */
1861 align = input_section->alignment_power;
1862 if (!bfd_set_section_alignment (s->owner, s, align))
1863 return FALSE;
1864 if (align > 3)
1865 s->size = (1 << align) - 8;
1866
1867 /* Create a symbol for the stub. */
1868 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1869 stub->stub_section = s;
1870 stub->offset = s->size;
1871
1872 /* Allocate room for it. */
1873 s->size += 8;
1874 return TRUE;
1875 }
1876
1877 /* STUB describes an la25 stub that we have decided to implement
1878 with a separate trampoline. Allocate room for it and redirect
1879 the function symbol to it. */
1880
1881 static bfd_boolean
1882 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1883 struct bfd_link_info *info)
1884 {
1885 struct mips_elf_link_hash_table *htab;
1886 asection *s;
1887
1888 htab = mips_elf_hash_table (info);
1889 if (htab == NULL)
1890 return FALSE;
1891
1892 /* Create a trampoline section, if we haven't already. */
1893 s = htab->strampoline;
1894 if (s == NULL)
1895 {
1896 asection *input_section = stub->h->root.root.u.def.section;
1897 s = htab->add_stub_section (".text", NULL,
1898 input_section->output_section);
1899 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1900 return FALSE;
1901 htab->strampoline = s;
1902 }
1903
1904 /* Create a symbol for the stub. */
1905 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1906 stub->stub_section = s;
1907 stub->offset = s->size;
1908
1909 /* Allocate room for it. */
1910 s->size += 16;
1911 return TRUE;
1912 }
1913
1914 /* H describes a symbol that needs an la25 stub. Make sure that an
1915 appropriate stub exists and point H at it. */
1916
1917 static bfd_boolean
1918 mips_elf_add_la25_stub (struct bfd_link_info *info,
1919 struct mips_elf_link_hash_entry *h)
1920 {
1921 struct mips_elf_link_hash_table *htab;
1922 struct mips_elf_la25_stub search, *stub;
1923 bfd_boolean use_trampoline_p;
1924 asection *s;
1925 bfd_vma value;
1926 void **slot;
1927
1928 /* Describe the stub we want. */
1929 search.stub_section = NULL;
1930 search.offset = 0;
1931 search.h = h;
1932
1933 /* See if we've already created an equivalent stub. */
1934 htab = mips_elf_hash_table (info);
1935 if (htab == NULL)
1936 return FALSE;
1937
1938 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1939 if (slot == NULL)
1940 return FALSE;
1941
1942 stub = (struct mips_elf_la25_stub *) *slot;
1943 if (stub != NULL)
1944 {
1945 /* We can reuse the existing stub. */
1946 h->la25_stub = stub;
1947 return TRUE;
1948 }
1949
1950 /* Create a permanent copy of ENTRY and add it to the hash table. */
1951 stub = bfd_malloc (sizeof (search));
1952 if (stub == NULL)
1953 return FALSE;
1954 *stub = search;
1955 *slot = stub;
1956
1957 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1958 of the section and if we would need no more than 2 nops. */
1959 value = mips_elf_get_la25_target (stub, &s);
1960 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1961
1962 h->la25_stub = stub;
1963 return (use_trampoline_p
1964 ? mips_elf_add_la25_trampoline (stub, info)
1965 : mips_elf_add_la25_intro (stub, info));
1966 }
1967
1968 /* A mips_elf_link_hash_traverse callback that is called before sizing
1969 sections. DATA points to a mips_htab_traverse_info structure. */
1970
1971 static bfd_boolean
1972 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1973 {
1974 struct mips_htab_traverse_info *hti;
1975
1976 hti = (struct mips_htab_traverse_info *) data;
1977 if (!hti->info->relocatable)
1978 mips_elf_check_mips16_stubs (hti->info, h);
1979
1980 if (mips_elf_local_pic_function_p (h))
1981 {
1982 /* PR 12845: If H is in a section that has been garbage
1983 collected it will have its output section set to *ABS*. */
1984 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1985 return TRUE;
1986
1987 /* H is a function that might need $25 to be valid on entry.
1988 If we're creating a non-PIC relocatable object, mark H as
1989 being PIC. If we're creating a non-relocatable object with
1990 non-PIC branches and jumps to H, make sure that H has an la25
1991 stub. */
1992 if (hti->info->relocatable)
1993 {
1994 if (!PIC_OBJECT_P (hti->output_bfd))
1995 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1996 }
1997 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1998 {
1999 hti->error = TRUE;
2000 return FALSE;
2001 }
2002 }
2003 return TRUE;
2004 }
2005 \f
2006 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2007 Most mips16 instructions are 16 bits, but these instructions
2008 are 32 bits.
2009
2010 The format of these instructions is:
2011
2012 +--------------+--------------------------------+
2013 | JALX | X| Imm 20:16 | Imm 25:21 |
2014 +--------------+--------------------------------+
2015 | Immediate 15:0 |
2016 +-----------------------------------------------+
2017
2018 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2019 Note that the immediate value in the first word is swapped.
2020
2021 When producing a relocatable object file, R_MIPS16_26 is
2022 handled mostly like R_MIPS_26. In particular, the addend is
2023 stored as a straight 26-bit value in a 32-bit instruction.
2024 (gas makes life simpler for itself by never adjusting a
2025 R_MIPS16_26 reloc to be against a section, so the addend is
2026 always zero). However, the 32 bit instruction is stored as 2
2027 16-bit values, rather than a single 32-bit value. In a
2028 big-endian file, the result is the same; in a little-endian
2029 file, the two 16-bit halves of the 32 bit value are swapped.
2030 This is so that a disassembler can recognize the jal
2031 instruction.
2032
2033 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2034 instruction stored as two 16-bit values. The addend A is the
2035 contents of the targ26 field. The calculation is the same as
2036 R_MIPS_26. When storing the calculated value, reorder the
2037 immediate value as shown above, and don't forget to store the
2038 value as two 16-bit values.
2039
2040 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2041 defined as
2042
2043 big-endian:
2044 +--------+----------------------+
2045 | | |
2046 | | targ26-16 |
2047 |31 26|25 0|
2048 +--------+----------------------+
2049
2050 little-endian:
2051 +----------+------+-------------+
2052 | | | |
2053 | sub1 | | sub2 |
2054 |0 9|10 15|16 31|
2055 +----------+--------------------+
2056 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2057 ((sub1 << 16) | sub2)).
2058
2059 When producing a relocatable object file, the calculation is
2060 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2061 When producing a fully linked file, the calculation is
2062 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2063 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2064
2065 The table below lists the other MIPS16 instruction relocations.
2066 Each one is calculated in the same way as the non-MIPS16 relocation
2067 given on the right, but using the extended MIPS16 layout of 16-bit
2068 immediate fields:
2069
2070 R_MIPS16_GPREL R_MIPS_GPREL16
2071 R_MIPS16_GOT16 R_MIPS_GOT16
2072 R_MIPS16_CALL16 R_MIPS_CALL16
2073 R_MIPS16_HI16 R_MIPS_HI16
2074 R_MIPS16_LO16 R_MIPS_LO16
2075
2076 A typical instruction will have a format like this:
2077
2078 +--------------+--------------------------------+
2079 | EXTEND | Imm 10:5 | Imm 15:11 |
2080 +--------------+--------------------------------+
2081 | Major | rx | ry | Imm 4:0 |
2082 +--------------+--------------------------------+
2083
2084 EXTEND is the five bit value 11110. Major is the instruction
2085 opcode.
2086
2087 All we need to do here is shuffle the bits appropriately.
2088 As above, the two 16-bit halves must be swapped on a
2089 little-endian system. */
2090
2091 static inline bfd_boolean
2092 mips16_reloc_p (int r_type)
2093 {
2094 switch (r_type)
2095 {
2096 case R_MIPS16_26:
2097 case R_MIPS16_GPREL:
2098 case R_MIPS16_GOT16:
2099 case R_MIPS16_CALL16:
2100 case R_MIPS16_HI16:
2101 case R_MIPS16_LO16:
2102 case R_MIPS16_TLS_GD:
2103 case R_MIPS16_TLS_LDM:
2104 case R_MIPS16_TLS_DTPREL_HI16:
2105 case R_MIPS16_TLS_DTPREL_LO16:
2106 case R_MIPS16_TLS_GOTTPREL:
2107 case R_MIPS16_TLS_TPREL_HI16:
2108 case R_MIPS16_TLS_TPREL_LO16:
2109 return TRUE;
2110
2111 default:
2112 return FALSE;
2113 }
2114 }
2115
2116 /* Check if a microMIPS reloc. */
2117
2118 static inline bfd_boolean
2119 micromips_reloc_p (unsigned int r_type)
2120 {
2121 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2122 }
2123
2124 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2125 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2126 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2127
2128 static inline bfd_boolean
2129 micromips_reloc_shuffle_p (unsigned int r_type)
2130 {
2131 return (micromips_reloc_p (r_type)
2132 && r_type != R_MICROMIPS_PC7_S1
2133 && r_type != R_MICROMIPS_PC10_S1);
2134 }
2135
2136 static inline bfd_boolean
2137 got16_reloc_p (int r_type)
2138 {
2139 return (r_type == R_MIPS_GOT16
2140 || r_type == R_MIPS16_GOT16
2141 || r_type == R_MICROMIPS_GOT16);
2142 }
2143
2144 static inline bfd_boolean
2145 call16_reloc_p (int r_type)
2146 {
2147 return (r_type == R_MIPS_CALL16
2148 || r_type == R_MIPS16_CALL16
2149 || r_type == R_MICROMIPS_CALL16);
2150 }
2151
2152 static inline bfd_boolean
2153 got_disp_reloc_p (unsigned int r_type)
2154 {
2155 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2156 }
2157
2158 static inline bfd_boolean
2159 got_page_reloc_p (unsigned int r_type)
2160 {
2161 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2162 }
2163
2164 static inline bfd_boolean
2165 got_ofst_reloc_p (unsigned int r_type)
2166 {
2167 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
2168 }
2169
2170 static inline bfd_boolean
2171 got_hi16_reloc_p (unsigned int r_type)
2172 {
2173 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2174 }
2175
2176 static inline bfd_boolean
2177 got_lo16_reloc_p (unsigned int r_type)
2178 {
2179 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2180 }
2181
2182 static inline bfd_boolean
2183 call_hi16_reloc_p (unsigned int r_type)
2184 {
2185 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2186 }
2187
2188 static inline bfd_boolean
2189 call_lo16_reloc_p (unsigned int r_type)
2190 {
2191 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2192 }
2193
2194 static inline bfd_boolean
2195 hi16_reloc_p (int r_type)
2196 {
2197 return (r_type == R_MIPS_HI16
2198 || r_type == R_MIPS16_HI16
2199 || r_type == R_MICROMIPS_HI16
2200 || r_type == R_MIPS_PCHI16);
2201 }
2202
2203 static inline bfd_boolean
2204 lo16_reloc_p (int r_type)
2205 {
2206 return (r_type == R_MIPS_LO16
2207 || r_type == R_MIPS16_LO16
2208 || r_type == R_MICROMIPS_LO16
2209 || r_type == R_MIPS_PCLO16);
2210 }
2211
2212 static inline bfd_boolean
2213 mips16_call_reloc_p (int r_type)
2214 {
2215 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2216 }
2217
2218 static inline bfd_boolean
2219 jal_reloc_p (int r_type)
2220 {
2221 return (r_type == R_MIPS_26
2222 || r_type == R_MIPS16_26
2223 || r_type == R_MICROMIPS_26_S1);
2224 }
2225
2226 static inline bfd_boolean
2227 aligned_pcrel_reloc_p (int r_type)
2228 {
2229 return (r_type == R_MIPS_PC18_S3
2230 || r_type == R_MIPS_PC19_S2);
2231 }
2232
2233 static inline bfd_boolean
2234 micromips_branch_reloc_p (int r_type)
2235 {
2236 return (r_type == R_MICROMIPS_26_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 tls_gd_reloc_p (unsigned int r_type)
2244 {
2245 return (r_type == R_MIPS_TLS_GD
2246 || r_type == R_MIPS16_TLS_GD
2247 || r_type == R_MICROMIPS_TLS_GD);
2248 }
2249
2250 static inline bfd_boolean
2251 tls_ldm_reloc_p (unsigned int r_type)
2252 {
2253 return (r_type == R_MIPS_TLS_LDM
2254 || r_type == R_MIPS16_TLS_LDM
2255 || r_type == R_MICROMIPS_TLS_LDM);
2256 }
2257
2258 static inline bfd_boolean
2259 tls_gottprel_reloc_p (unsigned int r_type)
2260 {
2261 return (r_type == R_MIPS_TLS_GOTTPREL
2262 || r_type == R_MIPS16_TLS_GOTTPREL
2263 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2264 }
2265
2266 void
2267 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2268 bfd_boolean jal_shuffle, bfd_byte *data)
2269 {
2270 bfd_vma first, second, val;
2271
2272 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2273 return;
2274
2275 /* Pick up the first and second halfwords of the instruction. */
2276 first = bfd_get_16 (abfd, data);
2277 second = bfd_get_16 (abfd, data + 2);
2278 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2279 val = first << 16 | second;
2280 else if (r_type != R_MIPS16_26)
2281 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2282 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2283 else
2284 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2285 | ((first & 0x1f) << 21) | second);
2286 bfd_put_32 (abfd, val, data);
2287 }
2288
2289 void
2290 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2291 bfd_boolean jal_shuffle, bfd_byte *data)
2292 {
2293 bfd_vma first, second, val;
2294
2295 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2296 return;
2297
2298 val = bfd_get_32 (abfd, data);
2299 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2300 {
2301 second = val & 0xffff;
2302 first = val >> 16;
2303 }
2304 else if (r_type != R_MIPS16_26)
2305 {
2306 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2307 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2308 }
2309 else
2310 {
2311 second = val & 0xffff;
2312 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2313 | ((val >> 21) & 0x1f);
2314 }
2315 bfd_put_16 (abfd, second, data + 2);
2316 bfd_put_16 (abfd, first, data);
2317 }
2318
2319 bfd_reloc_status_type
2320 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2321 arelent *reloc_entry, asection *input_section,
2322 bfd_boolean relocatable, void *data, bfd_vma gp)
2323 {
2324 bfd_vma relocation;
2325 bfd_signed_vma val;
2326 bfd_reloc_status_type status;
2327
2328 if (bfd_is_com_section (symbol->section))
2329 relocation = 0;
2330 else
2331 relocation = symbol->value;
2332
2333 relocation += symbol->section->output_section->vma;
2334 relocation += symbol->section->output_offset;
2335
2336 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2337 return bfd_reloc_outofrange;
2338
2339 /* Set val to the offset into the section or symbol. */
2340 val = reloc_entry->addend;
2341
2342 _bfd_mips_elf_sign_extend (val, 16);
2343
2344 /* Adjust val for the final section location and GP value. If we
2345 are producing relocatable output, we don't want to do this for
2346 an external symbol. */
2347 if (! relocatable
2348 || (symbol->flags & BSF_SECTION_SYM) != 0)
2349 val += relocation - gp;
2350
2351 if (reloc_entry->howto->partial_inplace)
2352 {
2353 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2354 (bfd_byte *) data
2355 + reloc_entry->address);
2356 if (status != bfd_reloc_ok)
2357 return status;
2358 }
2359 else
2360 reloc_entry->addend = val;
2361
2362 if (relocatable)
2363 reloc_entry->address += input_section->output_offset;
2364
2365 return bfd_reloc_ok;
2366 }
2367
2368 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2369 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2370 that contains the relocation field and DATA points to the start of
2371 INPUT_SECTION. */
2372
2373 struct mips_hi16
2374 {
2375 struct mips_hi16 *next;
2376 bfd_byte *data;
2377 asection *input_section;
2378 arelent rel;
2379 };
2380
2381 /* FIXME: This should not be a static variable. */
2382
2383 static struct mips_hi16 *mips_hi16_list;
2384
2385 /* A howto special_function for REL *HI16 relocations. We can only
2386 calculate the correct value once we've seen the partnering
2387 *LO16 relocation, so just save the information for later.
2388
2389 The ABI requires that the *LO16 immediately follow the *HI16.
2390 However, as a GNU extension, we permit an arbitrary number of
2391 *HI16s to be associated with a single *LO16. This significantly
2392 simplies the relocation handling in gcc. */
2393
2394 bfd_reloc_status_type
2395 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2396 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2397 asection *input_section, bfd *output_bfd,
2398 char **error_message ATTRIBUTE_UNUSED)
2399 {
2400 struct mips_hi16 *n;
2401
2402 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2403 return bfd_reloc_outofrange;
2404
2405 n = bfd_malloc (sizeof *n);
2406 if (n == NULL)
2407 return bfd_reloc_outofrange;
2408
2409 n->next = mips_hi16_list;
2410 n->data = data;
2411 n->input_section = input_section;
2412 n->rel = *reloc_entry;
2413 mips_hi16_list = n;
2414
2415 if (output_bfd != NULL)
2416 reloc_entry->address += input_section->output_offset;
2417
2418 return bfd_reloc_ok;
2419 }
2420
2421 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2422 like any other 16-bit relocation when applied to global symbols, but is
2423 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2424
2425 bfd_reloc_status_type
2426 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2427 void *data, asection *input_section,
2428 bfd *output_bfd, char **error_message)
2429 {
2430 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2431 || bfd_is_und_section (bfd_get_section (symbol))
2432 || bfd_is_com_section (bfd_get_section (symbol)))
2433 /* The relocation is against a global symbol. */
2434 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2435 input_section, output_bfd,
2436 error_message);
2437
2438 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2439 input_section, output_bfd, error_message);
2440 }
2441
2442 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2443 is a straightforward 16 bit inplace relocation, but we must deal with
2444 any partnering high-part relocations as well. */
2445
2446 bfd_reloc_status_type
2447 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2448 void *data, asection *input_section,
2449 bfd *output_bfd, char **error_message)
2450 {
2451 bfd_vma vallo;
2452 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2453
2454 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2455 return bfd_reloc_outofrange;
2456
2457 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2458 location);
2459 vallo = bfd_get_32 (abfd, location);
2460 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2461 location);
2462
2463 while (mips_hi16_list != NULL)
2464 {
2465 bfd_reloc_status_type ret;
2466 struct mips_hi16 *hi;
2467
2468 hi = mips_hi16_list;
2469
2470 /* R_MIPS*_GOT16 relocations are something of a special case. We
2471 want to install the addend in the same way as for a R_MIPS*_HI16
2472 relocation (with a rightshift of 16). However, since GOT16
2473 relocations can also be used with global symbols, their howto
2474 has a rightshift of 0. */
2475 if (hi->rel.howto->type == R_MIPS_GOT16)
2476 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2477 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2478 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2479 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2480 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2481
2482 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2483 carry or borrow will induce a change of +1 or -1 in the high part. */
2484 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2485
2486 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2487 hi->input_section, output_bfd,
2488 error_message);
2489 if (ret != bfd_reloc_ok)
2490 return ret;
2491
2492 mips_hi16_list = hi->next;
2493 free (hi);
2494 }
2495
2496 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2497 input_section, output_bfd,
2498 error_message);
2499 }
2500
2501 /* A generic howto special_function. This calculates and installs the
2502 relocation itself, thus avoiding the oft-discussed problems in
2503 bfd_perform_relocation and bfd_install_relocation. */
2504
2505 bfd_reloc_status_type
2506 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2507 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2508 asection *input_section, bfd *output_bfd,
2509 char **error_message ATTRIBUTE_UNUSED)
2510 {
2511 bfd_signed_vma val;
2512 bfd_reloc_status_type status;
2513 bfd_boolean relocatable;
2514
2515 relocatable = (output_bfd != NULL);
2516
2517 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2518 return bfd_reloc_outofrange;
2519
2520 /* Build up the field adjustment in VAL. */
2521 val = 0;
2522 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2523 {
2524 /* Either we're calculating the final field value or we have a
2525 relocation against a section symbol. Add in the section's
2526 offset or address. */
2527 val += symbol->section->output_section->vma;
2528 val += symbol->section->output_offset;
2529 }
2530
2531 if (!relocatable)
2532 {
2533 /* We're calculating the final field value. Add in the symbol's value
2534 and, if pc-relative, subtract the address of the field itself. */
2535 val += symbol->value;
2536 if (reloc_entry->howto->pc_relative)
2537 {
2538 val -= input_section->output_section->vma;
2539 val -= input_section->output_offset;
2540 val -= reloc_entry->address;
2541 }
2542 }
2543
2544 /* VAL is now the final adjustment. If we're keeping this relocation
2545 in the output file, and if the relocation uses a separate addend,
2546 we just need to add VAL to that addend. Otherwise we need to add
2547 VAL to the relocation field itself. */
2548 if (relocatable && !reloc_entry->howto->partial_inplace)
2549 reloc_entry->addend += val;
2550 else
2551 {
2552 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2553
2554 /* Add in the separate addend, if any. */
2555 val += reloc_entry->addend;
2556
2557 /* Add VAL to the relocation field. */
2558 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2559 location);
2560 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2561 location);
2562 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2563 location);
2564
2565 if (status != bfd_reloc_ok)
2566 return status;
2567 }
2568
2569 if (relocatable)
2570 reloc_entry->address += input_section->output_offset;
2571
2572 return bfd_reloc_ok;
2573 }
2574 \f
2575 /* Swap an entry in a .gptab section. Note that these routines rely
2576 on the equivalence of the two elements of the union. */
2577
2578 static void
2579 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2580 Elf32_gptab *in)
2581 {
2582 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2583 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2584 }
2585
2586 static void
2587 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2588 Elf32_External_gptab *ex)
2589 {
2590 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2591 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2592 }
2593
2594 static void
2595 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2596 Elf32_External_compact_rel *ex)
2597 {
2598 H_PUT_32 (abfd, in->id1, ex->id1);
2599 H_PUT_32 (abfd, in->num, ex->num);
2600 H_PUT_32 (abfd, in->id2, ex->id2);
2601 H_PUT_32 (abfd, in->offset, ex->offset);
2602 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2603 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2604 }
2605
2606 static void
2607 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2608 Elf32_External_crinfo *ex)
2609 {
2610 unsigned long l;
2611
2612 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2613 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2614 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2615 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2616 H_PUT_32 (abfd, l, ex->info);
2617 H_PUT_32 (abfd, in->konst, ex->konst);
2618 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2619 }
2620 \f
2621 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2622 routines swap this structure in and out. They are used outside of
2623 BFD, so they are globally visible. */
2624
2625 void
2626 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2627 Elf32_RegInfo *in)
2628 {
2629 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2630 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2631 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2632 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2633 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2634 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2635 }
2636
2637 void
2638 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2639 Elf32_External_RegInfo *ex)
2640 {
2641 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2642 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2643 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2644 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2645 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2646 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2647 }
2648
2649 /* In the 64 bit ABI, the .MIPS.options section holds register
2650 information in an Elf64_Reginfo structure. These routines swap
2651 them in and out. They are globally visible because they are used
2652 outside of BFD. These routines are here so that gas can call them
2653 without worrying about whether the 64 bit ABI has been included. */
2654
2655 void
2656 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2657 Elf64_Internal_RegInfo *in)
2658 {
2659 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2660 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2661 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2662 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2663 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2664 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2665 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2666 }
2667
2668 void
2669 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2670 Elf64_External_RegInfo *ex)
2671 {
2672 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2673 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2674 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2675 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2676 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2677 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2678 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2679 }
2680
2681 /* Swap in an options header. */
2682
2683 void
2684 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2685 Elf_Internal_Options *in)
2686 {
2687 in->kind = H_GET_8 (abfd, ex->kind);
2688 in->size = H_GET_8 (abfd, ex->size);
2689 in->section = H_GET_16 (abfd, ex->section);
2690 in->info = H_GET_32 (abfd, ex->info);
2691 }
2692
2693 /* Swap out an options header. */
2694
2695 void
2696 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2697 Elf_External_Options *ex)
2698 {
2699 H_PUT_8 (abfd, in->kind, ex->kind);
2700 H_PUT_8 (abfd, in->size, ex->size);
2701 H_PUT_16 (abfd, in->section, ex->section);
2702 H_PUT_32 (abfd, in->info, ex->info);
2703 }
2704
2705 /* Swap in an abiflags structure. */
2706
2707 void
2708 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2709 const Elf_External_ABIFlags_v0 *ex,
2710 Elf_Internal_ABIFlags_v0 *in)
2711 {
2712 in->version = H_GET_16 (abfd, ex->version);
2713 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2714 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2715 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2716 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2717 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2718 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2719 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2720 in->ases = H_GET_32 (abfd, ex->ases);
2721 in->flags1 = H_GET_32 (abfd, ex->flags1);
2722 in->flags2 = H_GET_32 (abfd, ex->flags2);
2723 }
2724
2725 /* Swap out an abiflags structure. */
2726
2727 void
2728 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2729 const Elf_Internal_ABIFlags_v0 *in,
2730 Elf_External_ABIFlags_v0 *ex)
2731 {
2732 H_PUT_16 (abfd, in->version, ex->version);
2733 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2734 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2735 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2736 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2737 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2738 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2739 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2740 H_PUT_32 (abfd, in->ases, ex->ases);
2741 H_PUT_32 (abfd, in->flags1, ex->flags1);
2742 H_PUT_32 (abfd, in->flags2, ex->flags2);
2743 }
2744 \f
2745 /* This function is called via qsort() to sort the dynamic relocation
2746 entries by increasing r_symndx value. */
2747
2748 static int
2749 sort_dynamic_relocs (const void *arg1, const void *arg2)
2750 {
2751 Elf_Internal_Rela int_reloc1;
2752 Elf_Internal_Rela int_reloc2;
2753 int diff;
2754
2755 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2756 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2757
2758 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2759 if (diff != 0)
2760 return diff;
2761
2762 if (int_reloc1.r_offset < int_reloc2.r_offset)
2763 return -1;
2764 if (int_reloc1.r_offset > int_reloc2.r_offset)
2765 return 1;
2766 return 0;
2767 }
2768
2769 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2770
2771 static int
2772 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2773 const void *arg2 ATTRIBUTE_UNUSED)
2774 {
2775 #ifdef BFD64
2776 Elf_Internal_Rela int_reloc1[3];
2777 Elf_Internal_Rela int_reloc2[3];
2778
2779 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2780 (reldyn_sorting_bfd, arg1, int_reloc1);
2781 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2782 (reldyn_sorting_bfd, arg2, int_reloc2);
2783
2784 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2785 return -1;
2786 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2787 return 1;
2788
2789 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2790 return -1;
2791 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2792 return 1;
2793 return 0;
2794 #else
2795 abort ();
2796 #endif
2797 }
2798
2799
2800 /* This routine is used to write out ECOFF debugging external symbol
2801 information. It is called via mips_elf_link_hash_traverse. The
2802 ECOFF external symbol information must match the ELF external
2803 symbol information. Unfortunately, at this point we don't know
2804 whether a symbol is required by reloc information, so the two
2805 tables may wind up being different. We must sort out the external
2806 symbol information before we can set the final size of the .mdebug
2807 section, and we must set the size of the .mdebug section before we
2808 can relocate any sections, and we can't know which symbols are
2809 required by relocation until we relocate the sections.
2810 Fortunately, it is relatively unlikely that any symbol will be
2811 stripped but required by a reloc. In particular, it can not happen
2812 when generating a final executable. */
2813
2814 static bfd_boolean
2815 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2816 {
2817 struct extsym_info *einfo = data;
2818 bfd_boolean strip;
2819 asection *sec, *output_section;
2820
2821 if (h->root.indx == -2)
2822 strip = FALSE;
2823 else if ((h->root.def_dynamic
2824 || h->root.ref_dynamic
2825 || h->root.type == bfd_link_hash_new)
2826 && !h->root.def_regular
2827 && !h->root.ref_regular)
2828 strip = TRUE;
2829 else if (einfo->info->strip == strip_all
2830 || (einfo->info->strip == strip_some
2831 && bfd_hash_lookup (einfo->info->keep_hash,
2832 h->root.root.root.string,
2833 FALSE, FALSE) == NULL))
2834 strip = TRUE;
2835 else
2836 strip = FALSE;
2837
2838 if (strip)
2839 return TRUE;
2840
2841 if (h->esym.ifd == -2)
2842 {
2843 h->esym.jmptbl = 0;
2844 h->esym.cobol_main = 0;
2845 h->esym.weakext = 0;
2846 h->esym.reserved = 0;
2847 h->esym.ifd = ifdNil;
2848 h->esym.asym.value = 0;
2849 h->esym.asym.st = stGlobal;
2850
2851 if (h->root.root.type == bfd_link_hash_undefined
2852 || h->root.root.type == bfd_link_hash_undefweak)
2853 {
2854 const char *name;
2855
2856 /* Use undefined class. Also, set class and type for some
2857 special symbols. */
2858 name = h->root.root.root.string;
2859 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2860 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2861 {
2862 h->esym.asym.sc = scData;
2863 h->esym.asym.st = stLabel;
2864 h->esym.asym.value = 0;
2865 }
2866 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2867 {
2868 h->esym.asym.sc = scAbs;
2869 h->esym.asym.st = stLabel;
2870 h->esym.asym.value =
2871 mips_elf_hash_table (einfo->info)->procedure_count;
2872 }
2873 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2874 {
2875 h->esym.asym.sc = scAbs;
2876 h->esym.asym.st = stLabel;
2877 h->esym.asym.value = elf_gp (einfo->abfd);
2878 }
2879 else
2880 h->esym.asym.sc = scUndefined;
2881 }
2882 else if (h->root.root.type != bfd_link_hash_defined
2883 && h->root.root.type != bfd_link_hash_defweak)
2884 h->esym.asym.sc = scAbs;
2885 else
2886 {
2887 const char *name;
2888
2889 sec = h->root.root.u.def.section;
2890 output_section = sec->output_section;
2891
2892 /* When making a shared library and symbol h is the one from
2893 the another shared library, OUTPUT_SECTION may be null. */
2894 if (output_section == NULL)
2895 h->esym.asym.sc = scUndefined;
2896 else
2897 {
2898 name = bfd_section_name (output_section->owner, output_section);
2899
2900 if (strcmp (name, ".text") == 0)
2901 h->esym.asym.sc = scText;
2902 else if (strcmp (name, ".data") == 0)
2903 h->esym.asym.sc = scData;
2904 else if (strcmp (name, ".sdata") == 0)
2905 h->esym.asym.sc = scSData;
2906 else if (strcmp (name, ".rodata") == 0
2907 || strcmp (name, ".rdata") == 0)
2908 h->esym.asym.sc = scRData;
2909 else if (strcmp (name, ".bss") == 0)
2910 h->esym.asym.sc = scBss;
2911 else if (strcmp (name, ".sbss") == 0)
2912 h->esym.asym.sc = scSBss;
2913 else if (strcmp (name, ".init") == 0)
2914 h->esym.asym.sc = scInit;
2915 else if (strcmp (name, ".fini") == 0)
2916 h->esym.asym.sc = scFini;
2917 else
2918 h->esym.asym.sc = scAbs;
2919 }
2920 }
2921
2922 h->esym.asym.reserved = 0;
2923 h->esym.asym.index = indexNil;
2924 }
2925
2926 if (h->root.root.type == bfd_link_hash_common)
2927 h->esym.asym.value = h->root.root.u.c.size;
2928 else if (h->root.root.type == bfd_link_hash_defined
2929 || h->root.root.type == bfd_link_hash_defweak)
2930 {
2931 if (h->esym.asym.sc == scCommon)
2932 h->esym.asym.sc = scBss;
2933 else if (h->esym.asym.sc == scSCommon)
2934 h->esym.asym.sc = scSBss;
2935
2936 sec = h->root.root.u.def.section;
2937 output_section = sec->output_section;
2938 if (output_section != NULL)
2939 h->esym.asym.value = (h->root.root.u.def.value
2940 + sec->output_offset
2941 + output_section->vma);
2942 else
2943 h->esym.asym.value = 0;
2944 }
2945 else
2946 {
2947 struct mips_elf_link_hash_entry *hd = h;
2948
2949 while (hd->root.root.type == bfd_link_hash_indirect)
2950 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2951
2952 if (hd->needs_lazy_stub)
2953 {
2954 BFD_ASSERT (hd->root.plt.plist != NULL);
2955 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2956 /* Set type and value for a symbol with a function stub. */
2957 h->esym.asym.st = stProc;
2958 sec = hd->root.root.u.def.section;
2959 if (sec == NULL)
2960 h->esym.asym.value = 0;
2961 else
2962 {
2963 output_section = sec->output_section;
2964 if (output_section != NULL)
2965 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2966 + sec->output_offset
2967 + output_section->vma);
2968 else
2969 h->esym.asym.value = 0;
2970 }
2971 }
2972 }
2973
2974 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2975 h->root.root.root.string,
2976 &h->esym))
2977 {
2978 einfo->failed = TRUE;
2979 return FALSE;
2980 }
2981
2982 return TRUE;
2983 }
2984
2985 /* A comparison routine used to sort .gptab entries. */
2986
2987 static int
2988 gptab_compare (const void *p1, const void *p2)
2989 {
2990 const Elf32_gptab *a1 = p1;
2991 const Elf32_gptab *a2 = p2;
2992
2993 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2994 }
2995 \f
2996 /* Functions to manage the got entry hash table. */
2997
2998 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2999 hash number. */
3000
3001 static INLINE hashval_t
3002 mips_elf_hash_bfd_vma (bfd_vma addr)
3003 {
3004 #ifdef BFD64
3005 return addr + (addr >> 32);
3006 #else
3007 return addr;
3008 #endif
3009 }
3010
3011 static hashval_t
3012 mips_elf_got_entry_hash (const void *entry_)
3013 {
3014 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3015
3016 return (entry->symndx
3017 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3018 + (entry->tls_type == GOT_TLS_LDM ? 0
3019 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3020 : entry->symndx >= 0 ? (entry->abfd->id
3021 + mips_elf_hash_bfd_vma (entry->d.addend))
3022 : entry->d.h->root.root.root.hash));
3023 }
3024
3025 static int
3026 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3027 {
3028 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3029 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3030
3031 return (e1->symndx == e2->symndx
3032 && e1->tls_type == e2->tls_type
3033 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3034 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3035 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3036 && e1->d.addend == e2->d.addend)
3037 : e2->abfd && e1->d.h == e2->d.h));
3038 }
3039
3040 static hashval_t
3041 mips_got_page_ref_hash (const void *ref_)
3042 {
3043 const struct mips_got_page_ref *ref;
3044
3045 ref = (const struct mips_got_page_ref *) ref_;
3046 return ((ref->symndx >= 0
3047 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3048 : ref->u.h->root.root.root.hash)
3049 + mips_elf_hash_bfd_vma (ref->addend));
3050 }
3051
3052 static int
3053 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3054 {
3055 const struct mips_got_page_ref *ref1, *ref2;
3056
3057 ref1 = (const struct mips_got_page_ref *) ref1_;
3058 ref2 = (const struct mips_got_page_ref *) ref2_;
3059 return (ref1->symndx == ref2->symndx
3060 && (ref1->symndx < 0
3061 ? ref1->u.h == ref2->u.h
3062 : ref1->u.abfd == ref2->u.abfd)
3063 && ref1->addend == ref2->addend);
3064 }
3065
3066 static hashval_t
3067 mips_got_page_entry_hash (const void *entry_)
3068 {
3069 const struct mips_got_page_entry *entry;
3070
3071 entry = (const struct mips_got_page_entry *) entry_;
3072 return entry->sec->id;
3073 }
3074
3075 static int
3076 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3077 {
3078 const struct mips_got_page_entry *entry1, *entry2;
3079
3080 entry1 = (const struct mips_got_page_entry *) entry1_;
3081 entry2 = (const struct mips_got_page_entry *) entry2_;
3082 return entry1->sec == entry2->sec;
3083 }
3084 \f
3085 /* Create and return a new mips_got_info structure. */
3086
3087 static struct mips_got_info *
3088 mips_elf_create_got_info (bfd *abfd)
3089 {
3090 struct mips_got_info *g;
3091
3092 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3093 if (g == NULL)
3094 return NULL;
3095
3096 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3097 mips_elf_got_entry_eq, NULL);
3098 if (g->got_entries == NULL)
3099 return NULL;
3100
3101 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3102 mips_got_page_ref_eq, NULL);
3103 if (g->got_page_refs == NULL)
3104 return NULL;
3105
3106 return g;
3107 }
3108
3109 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3110 CREATE_P and if ABFD doesn't already have a GOT. */
3111
3112 static struct mips_got_info *
3113 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3114 {
3115 struct mips_elf_obj_tdata *tdata;
3116
3117 if (!is_mips_elf (abfd))
3118 return NULL;
3119
3120 tdata = mips_elf_tdata (abfd);
3121 if (!tdata->got && create_p)
3122 tdata->got = mips_elf_create_got_info (abfd);
3123 return tdata->got;
3124 }
3125
3126 /* Record that ABFD should use output GOT G. */
3127
3128 static void
3129 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3130 {
3131 struct mips_elf_obj_tdata *tdata;
3132
3133 BFD_ASSERT (is_mips_elf (abfd));
3134 tdata = mips_elf_tdata (abfd);
3135 if (tdata->got)
3136 {
3137 /* The GOT structure itself and the hash table entries are
3138 allocated to a bfd, but the hash tables aren't. */
3139 htab_delete (tdata->got->got_entries);
3140 htab_delete (tdata->got->got_page_refs);
3141 if (tdata->got->got_page_entries)
3142 htab_delete (tdata->got->got_page_entries);
3143 }
3144 tdata->got = g;
3145 }
3146
3147 /* Return the dynamic relocation section. If it doesn't exist, try to
3148 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3149 if creation fails. */
3150
3151 static asection *
3152 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3153 {
3154 const char *dname;
3155 asection *sreloc;
3156 bfd *dynobj;
3157
3158 dname = MIPS_ELF_REL_DYN_NAME (info);
3159 dynobj = elf_hash_table (info)->dynobj;
3160 sreloc = bfd_get_linker_section (dynobj, dname);
3161 if (sreloc == NULL && create_p)
3162 {
3163 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3164 (SEC_ALLOC
3165 | SEC_LOAD
3166 | SEC_HAS_CONTENTS
3167 | SEC_IN_MEMORY
3168 | SEC_LINKER_CREATED
3169 | SEC_READONLY));
3170 if (sreloc == NULL
3171 || ! bfd_set_section_alignment (dynobj, sreloc,
3172 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3173 return NULL;
3174 }
3175 return sreloc;
3176 }
3177
3178 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3179
3180 static int
3181 mips_elf_reloc_tls_type (unsigned int r_type)
3182 {
3183 if (tls_gd_reloc_p (r_type))
3184 return GOT_TLS_GD;
3185
3186 if (tls_ldm_reloc_p (r_type))
3187 return GOT_TLS_LDM;
3188
3189 if (tls_gottprel_reloc_p (r_type))
3190 return GOT_TLS_IE;
3191
3192 return GOT_TLS_NONE;
3193 }
3194
3195 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3196
3197 static int
3198 mips_tls_got_entries (unsigned int type)
3199 {
3200 switch (type)
3201 {
3202 case GOT_TLS_GD:
3203 case GOT_TLS_LDM:
3204 return 2;
3205
3206 case GOT_TLS_IE:
3207 return 1;
3208
3209 case GOT_TLS_NONE:
3210 return 0;
3211 }
3212 abort ();
3213 }
3214
3215 /* Count the number of relocations needed for a TLS GOT entry, with
3216 access types from TLS_TYPE, and symbol H (or a local symbol if H
3217 is NULL). */
3218
3219 static int
3220 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3221 struct elf_link_hash_entry *h)
3222 {
3223 int indx = 0;
3224 bfd_boolean need_relocs = FALSE;
3225 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3226
3227 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3228 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
3229 indx = h->dynindx;
3230
3231 if ((info->shared || indx != 0)
3232 && (h == NULL
3233 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3234 || h->root.type != bfd_link_hash_undefweak))
3235 need_relocs = TRUE;
3236
3237 if (!need_relocs)
3238 return 0;
3239
3240 switch (tls_type)
3241 {
3242 case GOT_TLS_GD:
3243 return indx != 0 ? 2 : 1;
3244
3245 case GOT_TLS_IE:
3246 return 1;
3247
3248 case GOT_TLS_LDM:
3249 return info->shared ? 1 : 0;
3250
3251 default:
3252 return 0;
3253 }
3254 }
3255
3256 /* Add the number of GOT entries and TLS relocations required by ENTRY
3257 to G. */
3258
3259 static void
3260 mips_elf_count_got_entry (struct bfd_link_info *info,
3261 struct mips_got_info *g,
3262 struct mips_got_entry *entry)
3263 {
3264 if (entry->tls_type)
3265 {
3266 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3267 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3268 entry->symndx < 0
3269 ? &entry->d.h->root : NULL);
3270 }
3271 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3272 g->local_gotno += 1;
3273 else
3274 g->global_gotno += 1;
3275 }
3276
3277 /* Output a simple dynamic relocation into SRELOC. */
3278
3279 static void
3280 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3281 asection *sreloc,
3282 unsigned long reloc_index,
3283 unsigned long indx,
3284 int r_type,
3285 bfd_vma offset)
3286 {
3287 Elf_Internal_Rela rel[3];
3288
3289 memset (rel, 0, sizeof (rel));
3290
3291 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3292 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3293
3294 if (ABI_64_P (output_bfd))
3295 {
3296 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3297 (output_bfd, &rel[0],
3298 (sreloc->contents
3299 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3300 }
3301 else
3302 bfd_elf32_swap_reloc_out
3303 (output_bfd, &rel[0],
3304 (sreloc->contents
3305 + reloc_index * sizeof (Elf32_External_Rel)));
3306 }
3307
3308 /* Initialize a set of TLS GOT entries for one symbol. */
3309
3310 static void
3311 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3312 struct mips_got_entry *entry,
3313 struct mips_elf_link_hash_entry *h,
3314 bfd_vma value)
3315 {
3316 struct mips_elf_link_hash_table *htab;
3317 int indx;
3318 asection *sreloc, *sgot;
3319 bfd_vma got_offset, got_offset2;
3320 bfd_boolean need_relocs = FALSE;
3321
3322 htab = mips_elf_hash_table (info);
3323 if (htab == NULL)
3324 return;
3325
3326 sgot = htab->sgot;
3327
3328 indx = 0;
3329 if (h != NULL)
3330 {
3331 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3332
3333 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3334 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3335 indx = h->root.dynindx;
3336 }
3337
3338 if (entry->tls_initialized)
3339 return;
3340
3341 if ((info->shared || indx != 0)
3342 && (h == NULL
3343 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3344 || h->root.type != bfd_link_hash_undefweak))
3345 need_relocs = TRUE;
3346
3347 /* MINUS_ONE means the symbol is not defined in this object. It may not
3348 be defined at all; assume that the value doesn't matter in that
3349 case. Otherwise complain if we would use the value. */
3350 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3351 || h->root.root.type == bfd_link_hash_undefweak);
3352
3353 /* Emit necessary relocations. */
3354 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3355 got_offset = entry->gotidx;
3356
3357 switch (entry->tls_type)
3358 {
3359 case GOT_TLS_GD:
3360 /* General Dynamic. */
3361 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3362
3363 if (need_relocs)
3364 {
3365 mips_elf_output_dynamic_relocation
3366 (abfd, sreloc, sreloc->reloc_count++, indx,
3367 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3368 sgot->output_offset + sgot->output_section->vma + got_offset);
3369
3370 if (indx)
3371 mips_elf_output_dynamic_relocation
3372 (abfd, sreloc, sreloc->reloc_count++, indx,
3373 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3374 sgot->output_offset + sgot->output_section->vma + got_offset2);
3375 else
3376 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3377 sgot->contents + got_offset2);
3378 }
3379 else
3380 {
3381 MIPS_ELF_PUT_WORD (abfd, 1,
3382 sgot->contents + got_offset);
3383 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3384 sgot->contents + got_offset2);
3385 }
3386 break;
3387
3388 case GOT_TLS_IE:
3389 /* Initial Exec model. */
3390 if (need_relocs)
3391 {
3392 if (indx == 0)
3393 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3394 sgot->contents + got_offset);
3395 else
3396 MIPS_ELF_PUT_WORD (abfd, 0,
3397 sgot->contents + got_offset);
3398
3399 mips_elf_output_dynamic_relocation
3400 (abfd, sreloc, sreloc->reloc_count++, indx,
3401 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3402 sgot->output_offset + sgot->output_section->vma + got_offset);
3403 }
3404 else
3405 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3406 sgot->contents + got_offset);
3407 break;
3408
3409 case GOT_TLS_LDM:
3410 /* The initial offset is zero, and the LD offsets will include the
3411 bias by DTP_OFFSET. */
3412 MIPS_ELF_PUT_WORD (abfd, 0,
3413 sgot->contents + got_offset
3414 + MIPS_ELF_GOT_SIZE (abfd));
3415
3416 if (!info->shared)
3417 MIPS_ELF_PUT_WORD (abfd, 1,
3418 sgot->contents + got_offset);
3419 else
3420 mips_elf_output_dynamic_relocation
3421 (abfd, sreloc, sreloc->reloc_count++, indx,
3422 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3423 sgot->output_offset + sgot->output_section->vma + got_offset);
3424 break;
3425
3426 default:
3427 abort ();
3428 }
3429
3430 entry->tls_initialized = TRUE;
3431 }
3432
3433 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3434 for global symbol H. .got.plt comes before the GOT, so the offset
3435 will be negative. */
3436
3437 static bfd_vma
3438 mips_elf_gotplt_index (struct bfd_link_info *info,
3439 struct elf_link_hash_entry *h)
3440 {
3441 bfd_vma got_address, got_value;
3442 struct mips_elf_link_hash_table *htab;
3443
3444 htab = mips_elf_hash_table (info);
3445 BFD_ASSERT (htab != NULL);
3446
3447 BFD_ASSERT (h->plt.plist != NULL);
3448 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3449
3450 /* Calculate the address of the associated .got.plt entry. */
3451 got_address = (htab->sgotplt->output_section->vma
3452 + htab->sgotplt->output_offset
3453 + (h->plt.plist->gotplt_index
3454 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3455
3456 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3457 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3458 + htab->root.hgot->root.u.def.section->output_offset
3459 + htab->root.hgot->root.u.def.value);
3460
3461 return got_address - got_value;
3462 }
3463
3464 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3465 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3466 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3467 offset can be found. */
3468
3469 static bfd_vma
3470 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3471 bfd_vma value, unsigned long r_symndx,
3472 struct mips_elf_link_hash_entry *h, int r_type)
3473 {
3474 struct mips_elf_link_hash_table *htab;
3475 struct mips_got_entry *entry;
3476
3477 htab = mips_elf_hash_table (info);
3478 BFD_ASSERT (htab != NULL);
3479
3480 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3481 r_symndx, h, r_type);
3482 if (!entry)
3483 return MINUS_ONE;
3484
3485 if (entry->tls_type)
3486 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3487 return entry->gotidx;
3488 }
3489
3490 /* Return the GOT index of global symbol H in the primary GOT. */
3491
3492 static bfd_vma
3493 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3494 struct elf_link_hash_entry *h)
3495 {
3496 struct mips_elf_link_hash_table *htab;
3497 long global_got_dynindx;
3498 struct mips_got_info *g;
3499 bfd_vma got_index;
3500
3501 htab = mips_elf_hash_table (info);
3502 BFD_ASSERT (htab != NULL);
3503
3504 global_got_dynindx = 0;
3505 if (htab->global_gotsym != NULL)
3506 global_got_dynindx = htab->global_gotsym->dynindx;
3507
3508 /* Once we determine the global GOT entry with the lowest dynamic
3509 symbol table index, we must put all dynamic symbols with greater
3510 indices into the primary GOT. That makes it easy to calculate the
3511 GOT offset. */
3512 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3513 g = mips_elf_bfd_got (obfd, FALSE);
3514 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3515 * MIPS_ELF_GOT_SIZE (obfd));
3516 BFD_ASSERT (got_index < htab->sgot->size);
3517
3518 return got_index;
3519 }
3520
3521 /* Return the GOT index for the global symbol indicated by H, which is
3522 referenced by a relocation of type R_TYPE in IBFD. */
3523
3524 static bfd_vma
3525 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3526 struct elf_link_hash_entry *h, int r_type)
3527 {
3528 struct mips_elf_link_hash_table *htab;
3529 struct mips_got_info *g;
3530 struct mips_got_entry lookup, *entry;
3531 bfd_vma gotidx;
3532
3533 htab = mips_elf_hash_table (info);
3534 BFD_ASSERT (htab != NULL);
3535
3536 g = mips_elf_bfd_got (ibfd, FALSE);
3537 BFD_ASSERT (g);
3538
3539 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3540 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3541 return mips_elf_primary_global_got_index (obfd, info, h);
3542
3543 lookup.abfd = ibfd;
3544 lookup.symndx = -1;
3545 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3546 entry = htab_find (g->got_entries, &lookup);
3547 BFD_ASSERT (entry);
3548
3549 gotidx = entry->gotidx;
3550 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3551
3552 if (lookup.tls_type)
3553 {
3554 bfd_vma value = MINUS_ONE;
3555
3556 if ((h->root.type == bfd_link_hash_defined
3557 || h->root.type == bfd_link_hash_defweak)
3558 && h->root.u.def.section->output_section)
3559 value = (h->root.u.def.value
3560 + h->root.u.def.section->output_offset
3561 + h->root.u.def.section->output_section->vma);
3562
3563 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3564 }
3565 return gotidx;
3566 }
3567
3568 /* Find a GOT page entry that points to within 32KB of VALUE. These
3569 entries are supposed to be placed at small offsets in the GOT, i.e.,
3570 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3571 entry could be created. If OFFSETP is nonnull, use it to return the
3572 offset of the GOT entry from VALUE. */
3573
3574 static bfd_vma
3575 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3576 bfd_vma value, bfd_vma *offsetp)
3577 {
3578 bfd_vma page, got_index;
3579 struct mips_got_entry *entry;
3580
3581 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3582 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3583 NULL, R_MIPS_GOT_PAGE);
3584
3585 if (!entry)
3586 return MINUS_ONE;
3587
3588 got_index = entry->gotidx;
3589
3590 if (offsetp)
3591 *offsetp = value - entry->d.address;
3592
3593 return got_index;
3594 }
3595
3596 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3597 EXTERNAL is true if the relocation was originally against a global
3598 symbol that binds locally. */
3599
3600 static bfd_vma
3601 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3602 bfd_vma value, bfd_boolean external)
3603 {
3604 struct mips_got_entry *entry;
3605
3606 /* GOT16 relocations against local symbols are followed by a LO16
3607 relocation; those against global symbols are not. Thus if the
3608 symbol was originally local, the GOT16 relocation should load the
3609 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3610 if (! external)
3611 value = mips_elf_high (value) << 16;
3612
3613 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3614 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3615 same in all cases. */
3616 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3617 NULL, R_MIPS_GOT16);
3618 if (entry)
3619 return entry->gotidx;
3620 else
3621 return MINUS_ONE;
3622 }
3623
3624 /* Returns the offset for the entry at the INDEXth position
3625 in the GOT. */
3626
3627 static bfd_vma
3628 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3629 bfd *input_bfd, bfd_vma got_index)
3630 {
3631 struct mips_elf_link_hash_table *htab;
3632 asection *sgot;
3633 bfd_vma gp;
3634
3635 htab = mips_elf_hash_table (info);
3636 BFD_ASSERT (htab != NULL);
3637
3638 sgot = htab->sgot;
3639 gp = _bfd_get_gp_value (output_bfd)
3640 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3641
3642 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3643 }
3644
3645 /* Create and return a local GOT entry for VALUE, which was calculated
3646 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3647 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3648 instead. */
3649
3650 static struct mips_got_entry *
3651 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3652 bfd *ibfd, bfd_vma value,
3653 unsigned long r_symndx,
3654 struct mips_elf_link_hash_entry *h,
3655 int r_type)
3656 {
3657 struct mips_got_entry lookup, *entry;
3658 void **loc;
3659 struct mips_got_info *g;
3660 struct mips_elf_link_hash_table *htab;
3661 bfd_vma gotidx;
3662
3663 htab = mips_elf_hash_table (info);
3664 BFD_ASSERT (htab != NULL);
3665
3666 g = mips_elf_bfd_got (ibfd, FALSE);
3667 if (g == NULL)
3668 {
3669 g = mips_elf_bfd_got (abfd, FALSE);
3670 BFD_ASSERT (g != NULL);
3671 }
3672
3673 /* This function shouldn't be called for symbols that live in the global
3674 area of the GOT. */
3675 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3676
3677 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3678 if (lookup.tls_type)
3679 {
3680 lookup.abfd = ibfd;
3681 if (tls_ldm_reloc_p (r_type))
3682 {
3683 lookup.symndx = 0;
3684 lookup.d.addend = 0;
3685 }
3686 else if (h == NULL)
3687 {
3688 lookup.symndx = r_symndx;
3689 lookup.d.addend = 0;
3690 }
3691 else
3692 {
3693 lookup.symndx = -1;
3694 lookup.d.h = h;
3695 }
3696
3697 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3698 BFD_ASSERT (entry);
3699
3700 gotidx = entry->gotidx;
3701 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3702
3703 return entry;
3704 }
3705
3706 lookup.abfd = NULL;
3707 lookup.symndx = -1;
3708 lookup.d.address = value;
3709 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3710 if (!loc)
3711 return NULL;
3712
3713 entry = (struct mips_got_entry *) *loc;
3714 if (entry)
3715 return entry;
3716
3717 if (g->assigned_low_gotno > g->assigned_high_gotno)
3718 {
3719 /* We didn't allocate enough space in the GOT. */
3720 (*_bfd_error_handler)
3721 (_("not enough GOT space for local GOT entries"));
3722 bfd_set_error (bfd_error_bad_value);
3723 return NULL;
3724 }
3725
3726 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3727 if (!entry)
3728 return NULL;
3729
3730 if (got16_reloc_p (r_type)
3731 || call16_reloc_p (r_type)
3732 || got_page_reloc_p (r_type)
3733 || got_disp_reloc_p (r_type))
3734 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3735 else
3736 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3737
3738 *entry = lookup;
3739 *loc = entry;
3740
3741 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3742
3743 /* These GOT entries need a dynamic relocation on VxWorks. */
3744 if (htab->is_vxworks)
3745 {
3746 Elf_Internal_Rela outrel;
3747 asection *s;
3748 bfd_byte *rloc;
3749 bfd_vma got_address;
3750
3751 s = mips_elf_rel_dyn_section (info, FALSE);
3752 got_address = (htab->sgot->output_section->vma
3753 + htab->sgot->output_offset
3754 + entry->gotidx);
3755
3756 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3757 outrel.r_offset = got_address;
3758 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3759 outrel.r_addend = value;
3760 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3761 }
3762
3763 return entry;
3764 }
3765
3766 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3767 The number might be exact or a worst-case estimate, depending on how
3768 much information is available to elf_backend_omit_section_dynsym at
3769 the current linking stage. */
3770
3771 static bfd_size_type
3772 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3773 {
3774 bfd_size_type count;
3775
3776 count = 0;
3777 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3778 {
3779 asection *p;
3780 const struct elf_backend_data *bed;
3781
3782 bed = get_elf_backend_data (output_bfd);
3783 for (p = output_bfd->sections; p ; p = p->next)
3784 if ((p->flags & SEC_EXCLUDE) == 0
3785 && (p->flags & SEC_ALLOC) != 0
3786 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3787 ++count;
3788 }
3789 return count;
3790 }
3791
3792 /* Sort the dynamic symbol table so that symbols that need GOT entries
3793 appear towards the end. */
3794
3795 static bfd_boolean
3796 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3797 {
3798 struct mips_elf_link_hash_table *htab;
3799 struct mips_elf_hash_sort_data hsd;
3800 struct mips_got_info *g;
3801
3802 if (elf_hash_table (info)->dynsymcount == 0)
3803 return TRUE;
3804
3805 htab = mips_elf_hash_table (info);
3806 BFD_ASSERT (htab != NULL);
3807
3808 g = htab->got_info;
3809 if (g == NULL)
3810 return TRUE;
3811
3812 hsd.low = NULL;
3813 hsd.max_unref_got_dynindx
3814 = hsd.min_got_dynindx
3815 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3816 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3817 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3818 elf_hash_table (info)),
3819 mips_elf_sort_hash_table_f,
3820 &hsd);
3821
3822 /* There should have been enough room in the symbol table to
3823 accommodate both the GOT and non-GOT symbols. */
3824 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3825 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3826 == elf_hash_table (info)->dynsymcount);
3827 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3828 == g->global_gotno);
3829
3830 /* Now we know which dynamic symbol has the lowest dynamic symbol
3831 table index in the GOT. */
3832 htab->global_gotsym = hsd.low;
3833
3834 return TRUE;
3835 }
3836
3837 /* If H needs a GOT entry, assign it the highest available dynamic
3838 index. Otherwise, assign it the lowest available dynamic
3839 index. */
3840
3841 static bfd_boolean
3842 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3843 {
3844 struct mips_elf_hash_sort_data *hsd = data;
3845
3846 /* Symbols without dynamic symbol table entries aren't interesting
3847 at all. */
3848 if (h->root.dynindx == -1)
3849 return TRUE;
3850
3851 switch (h->global_got_area)
3852 {
3853 case GGA_NONE:
3854 h->root.dynindx = hsd->max_non_got_dynindx++;
3855 break;
3856
3857 case GGA_NORMAL:
3858 h->root.dynindx = --hsd->min_got_dynindx;
3859 hsd->low = (struct elf_link_hash_entry *) h;
3860 break;
3861
3862 case GGA_RELOC_ONLY:
3863 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3864 hsd->low = (struct elf_link_hash_entry *) h;
3865 h->root.dynindx = hsd->max_unref_got_dynindx++;
3866 break;
3867 }
3868
3869 return TRUE;
3870 }
3871
3872 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3873 (which is owned by the caller and shouldn't be added to the
3874 hash table directly). */
3875
3876 static bfd_boolean
3877 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3878 struct mips_got_entry *lookup)
3879 {
3880 struct mips_elf_link_hash_table *htab;
3881 struct mips_got_entry *entry;
3882 struct mips_got_info *g;
3883 void **loc, **bfd_loc;
3884
3885 /* Make sure there's a slot for this entry in the master GOT. */
3886 htab = mips_elf_hash_table (info);
3887 g = htab->got_info;
3888 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3889 if (!loc)
3890 return FALSE;
3891
3892 /* Populate the entry if it isn't already. */
3893 entry = (struct mips_got_entry *) *loc;
3894 if (!entry)
3895 {
3896 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3897 if (!entry)
3898 return FALSE;
3899
3900 lookup->tls_initialized = FALSE;
3901 lookup->gotidx = -1;
3902 *entry = *lookup;
3903 *loc = entry;
3904 }
3905
3906 /* Reuse the same GOT entry for the BFD's GOT. */
3907 g = mips_elf_bfd_got (abfd, TRUE);
3908 if (!g)
3909 return FALSE;
3910
3911 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3912 if (!bfd_loc)
3913 return FALSE;
3914
3915 if (!*bfd_loc)
3916 *bfd_loc = entry;
3917 return TRUE;
3918 }
3919
3920 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3921 entry for it. FOR_CALL is true if the caller is only interested in
3922 using the GOT entry for calls. */
3923
3924 static bfd_boolean
3925 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3926 bfd *abfd, struct bfd_link_info *info,
3927 bfd_boolean for_call, int r_type)
3928 {
3929 struct mips_elf_link_hash_table *htab;
3930 struct mips_elf_link_hash_entry *hmips;
3931 struct mips_got_entry entry;
3932 unsigned char tls_type;
3933
3934 htab = mips_elf_hash_table (info);
3935 BFD_ASSERT (htab != NULL);
3936
3937 hmips = (struct mips_elf_link_hash_entry *) h;
3938 if (!for_call)
3939 hmips->got_only_for_calls = FALSE;
3940
3941 /* A global symbol in the GOT must also be in the dynamic symbol
3942 table. */
3943 if (h->dynindx == -1)
3944 {
3945 switch (ELF_ST_VISIBILITY (h->other))
3946 {
3947 case STV_INTERNAL:
3948 case STV_HIDDEN:
3949 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3950 break;
3951 }
3952 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3953 return FALSE;
3954 }
3955
3956 tls_type = mips_elf_reloc_tls_type (r_type);
3957 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3958 hmips->global_got_area = GGA_NORMAL;
3959
3960 entry.abfd = abfd;
3961 entry.symndx = -1;
3962 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3963 entry.tls_type = tls_type;
3964 return mips_elf_record_got_entry (info, abfd, &entry);
3965 }
3966
3967 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3968 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3969
3970 static bfd_boolean
3971 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3972 struct bfd_link_info *info, int r_type)
3973 {
3974 struct mips_elf_link_hash_table *htab;
3975 struct mips_got_info *g;
3976 struct mips_got_entry entry;
3977
3978 htab = mips_elf_hash_table (info);
3979 BFD_ASSERT (htab != NULL);
3980
3981 g = htab->got_info;
3982 BFD_ASSERT (g != NULL);
3983
3984 entry.abfd = abfd;
3985 entry.symndx = symndx;
3986 entry.d.addend = addend;
3987 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3988 return mips_elf_record_got_entry (info, abfd, &entry);
3989 }
3990
3991 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3992 H is the symbol's hash table entry, or null if SYMNDX is local
3993 to ABFD. */
3994
3995 static bfd_boolean
3996 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3997 long symndx, struct elf_link_hash_entry *h,
3998 bfd_signed_vma addend)
3999 {
4000 struct mips_elf_link_hash_table *htab;
4001 struct mips_got_info *g1, *g2;
4002 struct mips_got_page_ref lookup, *entry;
4003 void **loc, **bfd_loc;
4004
4005 htab = mips_elf_hash_table (info);
4006 BFD_ASSERT (htab != NULL);
4007
4008 g1 = htab->got_info;
4009 BFD_ASSERT (g1 != NULL);
4010
4011 if (h)
4012 {
4013 lookup.symndx = -1;
4014 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4015 }
4016 else
4017 {
4018 lookup.symndx = symndx;
4019 lookup.u.abfd = abfd;
4020 }
4021 lookup.addend = addend;
4022 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4023 if (loc == NULL)
4024 return FALSE;
4025
4026 entry = (struct mips_got_page_ref *) *loc;
4027 if (!entry)
4028 {
4029 entry = bfd_alloc (abfd, sizeof (*entry));
4030 if (!entry)
4031 return FALSE;
4032
4033 *entry = lookup;
4034 *loc = entry;
4035 }
4036
4037 /* Add the same entry to the BFD's GOT. */
4038 g2 = mips_elf_bfd_got (abfd, TRUE);
4039 if (!g2)
4040 return FALSE;
4041
4042 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4043 if (!bfd_loc)
4044 return FALSE;
4045
4046 if (!*bfd_loc)
4047 *bfd_loc = entry;
4048
4049 return TRUE;
4050 }
4051
4052 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4053
4054 static void
4055 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4056 unsigned int n)
4057 {
4058 asection *s;
4059 struct mips_elf_link_hash_table *htab;
4060
4061 htab = mips_elf_hash_table (info);
4062 BFD_ASSERT (htab != NULL);
4063
4064 s = mips_elf_rel_dyn_section (info, FALSE);
4065 BFD_ASSERT (s != NULL);
4066
4067 if (htab->is_vxworks)
4068 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4069 else
4070 {
4071 if (s->size == 0)
4072 {
4073 /* Make room for a null element. */
4074 s->size += MIPS_ELF_REL_SIZE (abfd);
4075 ++s->reloc_count;
4076 }
4077 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4078 }
4079 }
4080 \f
4081 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4082 mips_elf_traverse_got_arg structure. Count the number of GOT
4083 entries and TLS relocs. Set DATA->value to true if we need
4084 to resolve indirect or warning symbols and then recreate the GOT. */
4085
4086 static int
4087 mips_elf_check_recreate_got (void **entryp, void *data)
4088 {
4089 struct mips_got_entry *entry;
4090 struct mips_elf_traverse_got_arg *arg;
4091
4092 entry = (struct mips_got_entry *) *entryp;
4093 arg = (struct mips_elf_traverse_got_arg *) data;
4094 if (entry->abfd != NULL && entry->symndx == -1)
4095 {
4096 struct mips_elf_link_hash_entry *h;
4097
4098 h = entry->d.h;
4099 if (h->root.root.type == bfd_link_hash_indirect
4100 || h->root.root.type == bfd_link_hash_warning)
4101 {
4102 arg->value = TRUE;
4103 return 0;
4104 }
4105 }
4106 mips_elf_count_got_entry (arg->info, arg->g, entry);
4107 return 1;
4108 }
4109
4110 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4111 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4112 converting entries for indirect and warning symbols into entries
4113 for the target symbol. Set DATA->g to null on error. */
4114
4115 static int
4116 mips_elf_recreate_got (void **entryp, void *data)
4117 {
4118 struct mips_got_entry new_entry, *entry;
4119 struct mips_elf_traverse_got_arg *arg;
4120 void **slot;
4121
4122 entry = (struct mips_got_entry *) *entryp;
4123 arg = (struct mips_elf_traverse_got_arg *) data;
4124 if (entry->abfd != NULL
4125 && entry->symndx == -1
4126 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4127 || entry->d.h->root.root.type == bfd_link_hash_warning))
4128 {
4129 struct mips_elf_link_hash_entry *h;
4130
4131 new_entry = *entry;
4132 entry = &new_entry;
4133 h = entry->d.h;
4134 do
4135 {
4136 BFD_ASSERT (h->global_got_area == GGA_NONE);
4137 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4138 }
4139 while (h->root.root.type == bfd_link_hash_indirect
4140 || h->root.root.type == bfd_link_hash_warning);
4141 entry->d.h = h;
4142 }
4143 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4144 if (slot == NULL)
4145 {
4146 arg->g = NULL;
4147 return 0;
4148 }
4149 if (*slot == NULL)
4150 {
4151 if (entry == &new_entry)
4152 {
4153 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4154 if (!entry)
4155 {
4156 arg->g = NULL;
4157 return 0;
4158 }
4159 *entry = new_entry;
4160 }
4161 *slot = entry;
4162 mips_elf_count_got_entry (arg->info, arg->g, entry);
4163 }
4164 return 1;
4165 }
4166
4167 /* Return the maximum number of GOT page entries required for RANGE. */
4168
4169 static bfd_vma
4170 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4171 {
4172 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4173 }
4174
4175 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4176
4177 static bfd_boolean
4178 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4179 asection *sec, bfd_signed_vma addend)
4180 {
4181 struct mips_got_info *g = arg->g;
4182 struct mips_got_page_entry lookup, *entry;
4183 struct mips_got_page_range **range_ptr, *range;
4184 bfd_vma old_pages, new_pages;
4185 void **loc;
4186
4187 /* Find the mips_got_page_entry hash table entry for this section. */
4188 lookup.sec = sec;
4189 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4190 if (loc == NULL)
4191 return FALSE;
4192
4193 /* Create a mips_got_page_entry if this is the first time we've
4194 seen the section. */
4195 entry = (struct mips_got_page_entry *) *loc;
4196 if (!entry)
4197 {
4198 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4199 if (!entry)
4200 return FALSE;
4201
4202 entry->sec = sec;
4203 *loc = entry;
4204 }
4205
4206 /* Skip over ranges whose maximum extent cannot share a page entry
4207 with ADDEND. */
4208 range_ptr = &entry->ranges;
4209 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4210 range_ptr = &(*range_ptr)->next;
4211
4212 /* If we scanned to the end of the list, or found a range whose
4213 minimum extent cannot share a page entry with ADDEND, create
4214 a new singleton range. */
4215 range = *range_ptr;
4216 if (!range || addend < range->min_addend - 0xffff)
4217 {
4218 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4219 if (!range)
4220 return FALSE;
4221
4222 range->next = *range_ptr;
4223 range->min_addend = addend;
4224 range->max_addend = addend;
4225
4226 *range_ptr = range;
4227 entry->num_pages++;
4228 g->page_gotno++;
4229 return TRUE;
4230 }
4231
4232 /* Remember how many pages the old range contributed. */
4233 old_pages = mips_elf_pages_for_range (range);
4234
4235 /* Update the ranges. */
4236 if (addend < range->min_addend)
4237 range->min_addend = addend;
4238 else if (addend > range->max_addend)
4239 {
4240 if (range->next && addend >= range->next->min_addend - 0xffff)
4241 {
4242 old_pages += mips_elf_pages_for_range (range->next);
4243 range->max_addend = range->next->max_addend;
4244 range->next = range->next->next;
4245 }
4246 else
4247 range->max_addend = addend;
4248 }
4249
4250 /* Record any change in the total estimate. */
4251 new_pages = mips_elf_pages_for_range (range);
4252 if (old_pages != new_pages)
4253 {
4254 entry->num_pages += new_pages - old_pages;
4255 g->page_gotno += new_pages - old_pages;
4256 }
4257
4258 return TRUE;
4259 }
4260
4261 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4262 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4263 whether the page reference described by *REFP needs a GOT page entry,
4264 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4265
4266 static bfd_boolean
4267 mips_elf_resolve_got_page_ref (void **refp, void *data)
4268 {
4269 struct mips_got_page_ref *ref;
4270 struct mips_elf_traverse_got_arg *arg;
4271 struct mips_elf_link_hash_table *htab;
4272 asection *sec;
4273 bfd_vma addend;
4274
4275 ref = (struct mips_got_page_ref *) *refp;
4276 arg = (struct mips_elf_traverse_got_arg *) data;
4277 htab = mips_elf_hash_table (arg->info);
4278
4279 if (ref->symndx < 0)
4280 {
4281 struct mips_elf_link_hash_entry *h;
4282
4283 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4284 h = ref->u.h;
4285 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4286 return 1;
4287
4288 /* Ignore undefined symbols; we'll issue an error later if
4289 appropriate. */
4290 if (!((h->root.root.type == bfd_link_hash_defined
4291 || h->root.root.type == bfd_link_hash_defweak)
4292 && h->root.root.u.def.section))
4293 return 1;
4294
4295 sec = h->root.root.u.def.section;
4296 addend = h->root.root.u.def.value + ref->addend;
4297 }
4298 else
4299 {
4300 Elf_Internal_Sym *isym;
4301
4302 /* Read in the symbol. */
4303 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4304 ref->symndx);
4305 if (isym == NULL)
4306 {
4307 arg->g = NULL;
4308 return 0;
4309 }
4310
4311 /* Get the associated input section. */
4312 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4313 if (sec == NULL)
4314 {
4315 arg->g = NULL;
4316 return 0;
4317 }
4318
4319 /* If this is a mergable section, work out the section and offset
4320 of the merged data. For section symbols, the addend specifies
4321 of the offset _of_ the first byte in the data, otherwise it
4322 specifies the offset _from_ the first byte. */
4323 if (sec->flags & SEC_MERGE)
4324 {
4325 void *secinfo;
4326
4327 secinfo = elf_section_data (sec)->sec_info;
4328 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4329 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4330 isym->st_value + ref->addend);
4331 else
4332 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4333 isym->st_value) + ref->addend;
4334 }
4335 else
4336 addend = isym->st_value + ref->addend;
4337 }
4338 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4339 {
4340 arg->g = NULL;
4341 return 0;
4342 }
4343 return 1;
4344 }
4345
4346 /* If any entries in G->got_entries are for indirect or warning symbols,
4347 replace them with entries for the target symbol. Convert g->got_page_refs
4348 into got_page_entry structures and estimate the number of page entries
4349 that they require. */
4350
4351 static bfd_boolean
4352 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4353 struct mips_got_info *g)
4354 {
4355 struct mips_elf_traverse_got_arg tga;
4356 struct mips_got_info oldg;
4357
4358 oldg = *g;
4359
4360 tga.info = info;
4361 tga.g = g;
4362 tga.value = FALSE;
4363 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4364 if (tga.value)
4365 {
4366 *g = oldg;
4367 g->got_entries = htab_create (htab_size (oldg.got_entries),
4368 mips_elf_got_entry_hash,
4369 mips_elf_got_entry_eq, NULL);
4370 if (!g->got_entries)
4371 return FALSE;
4372
4373 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4374 if (!tga.g)
4375 return FALSE;
4376
4377 htab_delete (oldg.got_entries);
4378 }
4379
4380 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4381 mips_got_page_entry_eq, NULL);
4382 if (g->got_page_entries == NULL)
4383 return FALSE;
4384
4385 tga.info = info;
4386 tga.g = g;
4387 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4388
4389 return TRUE;
4390 }
4391
4392 /* Return true if a GOT entry for H should live in the local rather than
4393 global GOT area. */
4394
4395 static bfd_boolean
4396 mips_use_local_got_p (struct bfd_link_info *info,
4397 struct mips_elf_link_hash_entry *h)
4398 {
4399 /* Symbols that aren't in the dynamic symbol table must live in the
4400 local GOT. This includes symbols that are completely undefined
4401 and which therefore don't bind locally. We'll report undefined
4402 symbols later if appropriate. */
4403 if (h->root.dynindx == -1)
4404 return TRUE;
4405
4406 /* Symbols that bind locally can (and in the case of forced-local
4407 symbols, must) live in the local GOT. */
4408 if (h->got_only_for_calls
4409 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4410 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4411 return TRUE;
4412
4413 /* If this is an executable that must provide a definition of the symbol,
4414 either though PLTs or copy relocations, then that address should go in
4415 the local rather than global GOT. */
4416 if (info->executable && h->has_static_relocs)
4417 return TRUE;
4418
4419 return FALSE;
4420 }
4421
4422 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4423 link_info structure. Decide whether the hash entry needs an entry in
4424 the global part of the primary GOT, setting global_got_area accordingly.
4425 Count the number of global symbols that are in the primary GOT only
4426 because they have relocations against them (reloc_only_gotno). */
4427
4428 static int
4429 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4430 {
4431 struct bfd_link_info *info;
4432 struct mips_elf_link_hash_table *htab;
4433 struct mips_got_info *g;
4434
4435 info = (struct bfd_link_info *) data;
4436 htab = mips_elf_hash_table (info);
4437 g = htab->got_info;
4438 if (h->global_got_area != GGA_NONE)
4439 {
4440 /* Make a final decision about whether the symbol belongs in the
4441 local or global GOT. */
4442 if (mips_use_local_got_p (info, h))
4443 /* The symbol belongs in the local GOT. We no longer need this
4444 entry if it was only used for relocations; those relocations
4445 will be against the null or section symbol instead of H. */
4446 h->global_got_area = GGA_NONE;
4447 else if (htab->is_vxworks
4448 && h->got_only_for_calls
4449 && h->root.plt.plist->mips_offset != MINUS_ONE)
4450 /* On VxWorks, calls can refer directly to the .got.plt entry;
4451 they don't need entries in the regular GOT. .got.plt entries
4452 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4453 h->global_got_area = GGA_NONE;
4454 else if (h->global_got_area == GGA_RELOC_ONLY)
4455 {
4456 g->reloc_only_gotno++;
4457 g->global_gotno++;
4458 }
4459 }
4460 return 1;
4461 }
4462 \f
4463 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4464 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4465
4466 static int
4467 mips_elf_add_got_entry (void **entryp, void *data)
4468 {
4469 struct mips_got_entry *entry;
4470 struct mips_elf_traverse_got_arg *arg;
4471 void **slot;
4472
4473 entry = (struct mips_got_entry *) *entryp;
4474 arg = (struct mips_elf_traverse_got_arg *) data;
4475 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4476 if (!slot)
4477 {
4478 arg->g = NULL;
4479 return 0;
4480 }
4481 if (!*slot)
4482 {
4483 *slot = entry;
4484 mips_elf_count_got_entry (arg->info, arg->g, entry);
4485 }
4486 return 1;
4487 }
4488
4489 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4490 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4491
4492 static int
4493 mips_elf_add_got_page_entry (void **entryp, void *data)
4494 {
4495 struct mips_got_page_entry *entry;
4496 struct mips_elf_traverse_got_arg *arg;
4497 void **slot;
4498
4499 entry = (struct mips_got_page_entry *) *entryp;
4500 arg = (struct mips_elf_traverse_got_arg *) data;
4501 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4502 if (!slot)
4503 {
4504 arg->g = NULL;
4505 return 0;
4506 }
4507 if (!*slot)
4508 {
4509 *slot = entry;
4510 arg->g->page_gotno += entry->num_pages;
4511 }
4512 return 1;
4513 }
4514
4515 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4516 this would lead to overflow, 1 if they were merged successfully,
4517 and 0 if a merge failed due to lack of memory. (These values are chosen
4518 so that nonnegative return values can be returned by a htab_traverse
4519 callback.) */
4520
4521 static int
4522 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4523 struct mips_got_info *to,
4524 struct mips_elf_got_per_bfd_arg *arg)
4525 {
4526 struct mips_elf_traverse_got_arg tga;
4527 unsigned int estimate;
4528
4529 /* Work out how many page entries we would need for the combined GOT. */
4530 estimate = arg->max_pages;
4531 if (estimate >= from->page_gotno + to->page_gotno)
4532 estimate = from->page_gotno + to->page_gotno;
4533
4534 /* And conservatively estimate how many local and TLS entries
4535 would be needed. */
4536 estimate += from->local_gotno + to->local_gotno;
4537 estimate += from->tls_gotno + to->tls_gotno;
4538
4539 /* If we're merging with the primary got, any TLS relocations will
4540 come after the full set of global entries. Otherwise estimate those
4541 conservatively as well. */
4542 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4543 estimate += arg->global_count;
4544 else
4545 estimate += from->global_gotno + to->global_gotno;
4546
4547 /* Bail out if the combined GOT might be too big. */
4548 if (estimate > arg->max_count)
4549 return -1;
4550
4551 /* Transfer the bfd's got information from FROM to TO. */
4552 tga.info = arg->info;
4553 tga.g = to;
4554 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4555 if (!tga.g)
4556 return 0;
4557
4558 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4559 if (!tga.g)
4560 return 0;
4561
4562 mips_elf_replace_bfd_got (abfd, to);
4563 return 1;
4564 }
4565
4566 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4567 as possible of the primary got, since it doesn't require explicit
4568 dynamic relocations, but don't use bfds that would reference global
4569 symbols out of the addressable range. Failing the primary got,
4570 attempt to merge with the current got, or finish the current got
4571 and then make make the new got current. */
4572
4573 static bfd_boolean
4574 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4575 struct mips_elf_got_per_bfd_arg *arg)
4576 {
4577 unsigned int estimate;
4578 int result;
4579
4580 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4581 return FALSE;
4582
4583 /* Work out the number of page, local and TLS entries. */
4584 estimate = arg->max_pages;
4585 if (estimate > g->page_gotno)
4586 estimate = g->page_gotno;
4587 estimate += g->local_gotno + g->tls_gotno;
4588
4589 /* We place TLS GOT entries after both locals and globals. The globals
4590 for the primary GOT may overflow the normal GOT size limit, so be
4591 sure not to merge a GOT which requires TLS with the primary GOT in that
4592 case. This doesn't affect non-primary GOTs. */
4593 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4594
4595 if (estimate <= arg->max_count)
4596 {
4597 /* If we don't have a primary GOT, use it as
4598 a starting point for the primary GOT. */
4599 if (!arg->primary)
4600 {
4601 arg->primary = g;
4602 return TRUE;
4603 }
4604
4605 /* Try merging with the primary GOT. */
4606 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4607 if (result >= 0)
4608 return result;
4609 }
4610
4611 /* If we can merge with the last-created got, do it. */
4612 if (arg->current)
4613 {
4614 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4615 if (result >= 0)
4616 return result;
4617 }
4618
4619 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4620 fits; if it turns out that it doesn't, we'll get relocation
4621 overflows anyway. */
4622 g->next = arg->current;
4623 arg->current = g;
4624
4625 return TRUE;
4626 }
4627
4628 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4629 to GOTIDX, duplicating the entry if it has already been assigned
4630 an index in a different GOT. */
4631
4632 static bfd_boolean
4633 mips_elf_set_gotidx (void **entryp, long gotidx)
4634 {
4635 struct mips_got_entry *entry;
4636
4637 entry = (struct mips_got_entry *) *entryp;
4638 if (entry->gotidx > 0)
4639 {
4640 struct mips_got_entry *new_entry;
4641
4642 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4643 if (!new_entry)
4644 return FALSE;
4645
4646 *new_entry = *entry;
4647 *entryp = new_entry;
4648 entry = new_entry;
4649 }
4650 entry->gotidx = gotidx;
4651 return TRUE;
4652 }
4653
4654 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4655 mips_elf_traverse_got_arg in which DATA->value is the size of one
4656 GOT entry. Set DATA->g to null on failure. */
4657
4658 static int
4659 mips_elf_initialize_tls_index (void **entryp, void *data)
4660 {
4661 struct mips_got_entry *entry;
4662 struct mips_elf_traverse_got_arg *arg;
4663
4664 /* We're only interested in TLS symbols. */
4665 entry = (struct mips_got_entry *) *entryp;
4666 if (entry->tls_type == GOT_TLS_NONE)
4667 return 1;
4668
4669 arg = (struct mips_elf_traverse_got_arg *) data;
4670 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4671 {
4672 arg->g = NULL;
4673 return 0;
4674 }
4675
4676 /* Account for the entries we've just allocated. */
4677 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4678 return 1;
4679 }
4680
4681 /* A htab_traverse callback for GOT entries, where DATA points to a
4682 mips_elf_traverse_got_arg. Set the global_got_area of each global
4683 symbol to DATA->value. */
4684
4685 static int
4686 mips_elf_set_global_got_area (void **entryp, void *data)
4687 {
4688 struct mips_got_entry *entry;
4689 struct mips_elf_traverse_got_arg *arg;
4690
4691 entry = (struct mips_got_entry *) *entryp;
4692 arg = (struct mips_elf_traverse_got_arg *) data;
4693 if (entry->abfd != NULL
4694 && entry->symndx == -1
4695 && entry->d.h->global_got_area != GGA_NONE)
4696 entry->d.h->global_got_area = arg->value;
4697 return 1;
4698 }
4699
4700 /* A htab_traverse callback for secondary GOT entries, where DATA points
4701 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4702 and record the number of relocations they require. DATA->value is
4703 the size of one GOT entry. Set DATA->g to null on failure. */
4704
4705 static int
4706 mips_elf_set_global_gotidx (void **entryp, void *data)
4707 {
4708 struct mips_got_entry *entry;
4709 struct mips_elf_traverse_got_arg *arg;
4710
4711 entry = (struct mips_got_entry *) *entryp;
4712 arg = (struct mips_elf_traverse_got_arg *) data;
4713 if (entry->abfd != NULL
4714 && entry->symndx == -1
4715 && entry->d.h->global_got_area != GGA_NONE)
4716 {
4717 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4718 {
4719 arg->g = NULL;
4720 return 0;
4721 }
4722 arg->g->assigned_low_gotno += 1;
4723
4724 if (arg->info->shared
4725 || (elf_hash_table (arg->info)->dynamic_sections_created
4726 && entry->d.h->root.def_dynamic
4727 && !entry->d.h->root.def_regular))
4728 arg->g->relocs += 1;
4729 }
4730
4731 return 1;
4732 }
4733
4734 /* A htab_traverse callback for GOT entries for which DATA is the
4735 bfd_link_info. Forbid any global symbols from having traditional
4736 lazy-binding stubs. */
4737
4738 static int
4739 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4740 {
4741 struct bfd_link_info *info;
4742 struct mips_elf_link_hash_table *htab;
4743 struct mips_got_entry *entry;
4744
4745 entry = (struct mips_got_entry *) *entryp;
4746 info = (struct bfd_link_info *) data;
4747 htab = mips_elf_hash_table (info);
4748 BFD_ASSERT (htab != NULL);
4749
4750 if (entry->abfd != NULL
4751 && entry->symndx == -1
4752 && entry->d.h->needs_lazy_stub)
4753 {
4754 entry->d.h->needs_lazy_stub = FALSE;
4755 htab->lazy_stub_count--;
4756 }
4757
4758 return 1;
4759 }
4760
4761 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4762 the primary GOT. */
4763 static bfd_vma
4764 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4765 {
4766 if (!g->next)
4767 return 0;
4768
4769 g = mips_elf_bfd_got (ibfd, FALSE);
4770 if (! g)
4771 return 0;
4772
4773 BFD_ASSERT (g->next);
4774
4775 g = g->next;
4776
4777 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4778 * MIPS_ELF_GOT_SIZE (abfd);
4779 }
4780
4781 /* Turn a single GOT that is too big for 16-bit addressing into
4782 a sequence of GOTs, each one 16-bit addressable. */
4783
4784 static bfd_boolean
4785 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4786 asection *got, bfd_size_type pages)
4787 {
4788 struct mips_elf_link_hash_table *htab;
4789 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4790 struct mips_elf_traverse_got_arg tga;
4791 struct mips_got_info *g, *gg;
4792 unsigned int assign, needed_relocs;
4793 bfd *dynobj, *ibfd;
4794
4795 dynobj = elf_hash_table (info)->dynobj;
4796 htab = mips_elf_hash_table (info);
4797 BFD_ASSERT (htab != NULL);
4798
4799 g = htab->got_info;
4800
4801 got_per_bfd_arg.obfd = abfd;
4802 got_per_bfd_arg.info = info;
4803 got_per_bfd_arg.current = NULL;
4804 got_per_bfd_arg.primary = NULL;
4805 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4806 / MIPS_ELF_GOT_SIZE (abfd))
4807 - htab->reserved_gotno);
4808 got_per_bfd_arg.max_pages = pages;
4809 /* The number of globals that will be included in the primary GOT.
4810 See the calls to mips_elf_set_global_got_area below for more
4811 information. */
4812 got_per_bfd_arg.global_count = g->global_gotno;
4813
4814 /* Try to merge the GOTs of input bfds together, as long as they
4815 don't seem to exceed the maximum GOT size, choosing one of them
4816 to be the primary GOT. */
4817 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4818 {
4819 gg = mips_elf_bfd_got (ibfd, FALSE);
4820 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4821 return FALSE;
4822 }
4823
4824 /* If we do not find any suitable primary GOT, create an empty one. */
4825 if (got_per_bfd_arg.primary == NULL)
4826 g->next = mips_elf_create_got_info (abfd);
4827 else
4828 g->next = got_per_bfd_arg.primary;
4829 g->next->next = got_per_bfd_arg.current;
4830
4831 /* GG is now the master GOT, and G is the primary GOT. */
4832 gg = g;
4833 g = g->next;
4834
4835 /* Map the output bfd to the primary got. That's what we're going
4836 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4837 didn't mark in check_relocs, and we want a quick way to find it.
4838 We can't just use gg->next because we're going to reverse the
4839 list. */
4840 mips_elf_replace_bfd_got (abfd, g);
4841
4842 /* Every symbol that is referenced in a dynamic relocation must be
4843 present in the primary GOT, so arrange for them to appear after
4844 those that are actually referenced. */
4845 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4846 g->global_gotno = gg->global_gotno;
4847
4848 tga.info = info;
4849 tga.value = GGA_RELOC_ONLY;
4850 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4851 tga.value = GGA_NORMAL;
4852 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4853
4854 /* Now go through the GOTs assigning them offset ranges.
4855 [assigned_low_gotno, local_gotno[ will be set to the range of local
4856 entries in each GOT. We can then compute the end of a GOT by
4857 adding local_gotno to global_gotno. We reverse the list and make
4858 it circular since then we'll be able to quickly compute the
4859 beginning of a GOT, by computing the end of its predecessor. To
4860 avoid special cases for the primary GOT, while still preserving
4861 assertions that are valid for both single- and multi-got links,
4862 we arrange for the main got struct to have the right number of
4863 global entries, but set its local_gotno such that the initial
4864 offset of the primary GOT is zero. Remember that the primary GOT
4865 will become the last item in the circular linked list, so it
4866 points back to the master GOT. */
4867 gg->local_gotno = -g->global_gotno;
4868 gg->global_gotno = g->global_gotno;
4869 gg->tls_gotno = 0;
4870 assign = 0;
4871 gg->next = gg;
4872
4873 do
4874 {
4875 struct mips_got_info *gn;
4876
4877 assign += htab->reserved_gotno;
4878 g->assigned_low_gotno = assign;
4879 g->local_gotno += assign;
4880 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4881 g->assigned_high_gotno = g->local_gotno - 1;
4882 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4883
4884 /* Take g out of the direct list, and push it onto the reversed
4885 list that gg points to. g->next is guaranteed to be nonnull after
4886 this operation, as required by mips_elf_initialize_tls_index. */
4887 gn = g->next;
4888 g->next = gg->next;
4889 gg->next = g;
4890
4891 /* Set up any TLS entries. We always place the TLS entries after
4892 all non-TLS entries. */
4893 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4894 tga.g = g;
4895 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4896 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4897 if (!tga.g)
4898 return FALSE;
4899 BFD_ASSERT (g->tls_assigned_gotno == assign);
4900
4901 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4902 g = gn;
4903
4904 /* Forbid global symbols in every non-primary GOT from having
4905 lazy-binding stubs. */
4906 if (g)
4907 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4908 }
4909 while (g);
4910
4911 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4912
4913 needed_relocs = 0;
4914 for (g = gg->next; g && g->next != gg; g = g->next)
4915 {
4916 unsigned int save_assign;
4917
4918 /* Assign offsets to global GOT entries and count how many
4919 relocations they need. */
4920 save_assign = g->assigned_low_gotno;
4921 g->assigned_low_gotno = g->local_gotno;
4922 tga.info = info;
4923 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4924 tga.g = g;
4925 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4926 if (!tga.g)
4927 return FALSE;
4928 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4929 g->assigned_low_gotno = save_assign;
4930
4931 if (info->shared)
4932 {
4933 g->relocs += g->local_gotno - g->assigned_low_gotno;
4934 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4935 + g->next->global_gotno
4936 + g->next->tls_gotno
4937 + htab->reserved_gotno);
4938 }
4939 needed_relocs += g->relocs;
4940 }
4941 needed_relocs += g->relocs;
4942
4943 if (needed_relocs)
4944 mips_elf_allocate_dynamic_relocations (dynobj, info,
4945 needed_relocs);
4946
4947 return TRUE;
4948 }
4949
4950 \f
4951 /* Returns the first relocation of type r_type found, beginning with
4952 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4953
4954 static const Elf_Internal_Rela *
4955 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4956 const Elf_Internal_Rela *relocation,
4957 const Elf_Internal_Rela *relend)
4958 {
4959 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4960
4961 while (relocation < relend)
4962 {
4963 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4964 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4965 return relocation;
4966
4967 ++relocation;
4968 }
4969
4970 /* We didn't find it. */
4971 return NULL;
4972 }
4973
4974 /* Return whether an input relocation is against a local symbol. */
4975
4976 static bfd_boolean
4977 mips_elf_local_relocation_p (bfd *input_bfd,
4978 const Elf_Internal_Rela *relocation,
4979 asection **local_sections)
4980 {
4981 unsigned long r_symndx;
4982 Elf_Internal_Shdr *symtab_hdr;
4983 size_t extsymoff;
4984
4985 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4986 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4987 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4988
4989 if (r_symndx < extsymoff)
4990 return TRUE;
4991 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4992 return TRUE;
4993
4994 return FALSE;
4995 }
4996 \f
4997 /* Sign-extend VALUE, which has the indicated number of BITS. */
4998
4999 bfd_vma
5000 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5001 {
5002 if (value & ((bfd_vma) 1 << (bits - 1)))
5003 /* VALUE is negative. */
5004 value |= ((bfd_vma) - 1) << bits;
5005
5006 return value;
5007 }
5008
5009 /* Return non-zero if the indicated VALUE has overflowed the maximum
5010 range expressible by a signed number with the indicated number of
5011 BITS. */
5012
5013 static bfd_boolean
5014 mips_elf_overflow_p (bfd_vma value, int bits)
5015 {
5016 bfd_signed_vma svalue = (bfd_signed_vma) value;
5017
5018 if (svalue > (1 << (bits - 1)) - 1)
5019 /* The value is too big. */
5020 return TRUE;
5021 else if (svalue < -(1 << (bits - 1)))
5022 /* The value is too small. */
5023 return TRUE;
5024
5025 /* All is well. */
5026 return FALSE;
5027 }
5028
5029 /* Calculate the %high function. */
5030
5031 static bfd_vma
5032 mips_elf_high (bfd_vma value)
5033 {
5034 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5035 }
5036
5037 /* Calculate the %higher function. */
5038
5039 static bfd_vma
5040 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5041 {
5042 #ifdef BFD64
5043 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5044 #else
5045 abort ();
5046 return MINUS_ONE;
5047 #endif
5048 }
5049
5050 /* Calculate the %highest function. */
5051
5052 static bfd_vma
5053 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5054 {
5055 #ifdef BFD64
5056 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5057 #else
5058 abort ();
5059 return MINUS_ONE;
5060 #endif
5061 }
5062 \f
5063 /* Create the .compact_rel section. */
5064
5065 static bfd_boolean
5066 mips_elf_create_compact_rel_section
5067 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5068 {
5069 flagword flags;
5070 register asection *s;
5071
5072 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5073 {
5074 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5075 | SEC_READONLY);
5076
5077 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5078 if (s == NULL
5079 || ! bfd_set_section_alignment (abfd, s,
5080 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5081 return FALSE;
5082
5083 s->size = sizeof (Elf32_External_compact_rel);
5084 }
5085
5086 return TRUE;
5087 }
5088
5089 /* Create the .got section to hold the global offset table. */
5090
5091 static bfd_boolean
5092 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5093 {
5094 flagword flags;
5095 register asection *s;
5096 struct elf_link_hash_entry *h;
5097 struct bfd_link_hash_entry *bh;
5098 struct mips_elf_link_hash_table *htab;
5099
5100 htab = mips_elf_hash_table (info);
5101 BFD_ASSERT (htab != NULL);
5102
5103 /* This function may be called more than once. */
5104 if (htab->sgot)
5105 return TRUE;
5106
5107 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5108 | SEC_LINKER_CREATED);
5109
5110 /* We have to use an alignment of 2**4 here because this is hardcoded
5111 in the function stub generation and in the linker script. */
5112 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5113 if (s == NULL
5114 || ! bfd_set_section_alignment (abfd, s, 4))
5115 return FALSE;
5116 htab->sgot = s;
5117
5118 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5119 linker script because we don't want to define the symbol if we
5120 are not creating a global offset table. */
5121 bh = NULL;
5122 if (! (_bfd_generic_link_add_one_symbol
5123 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5124 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5125 return FALSE;
5126
5127 h = (struct elf_link_hash_entry *) bh;
5128 h->non_elf = 0;
5129 h->def_regular = 1;
5130 h->type = STT_OBJECT;
5131 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5132 elf_hash_table (info)->hgot = h;
5133
5134 if (info->shared
5135 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5136 return FALSE;
5137
5138 htab->got_info = mips_elf_create_got_info (abfd);
5139 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5140 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5141
5142 /* We also need a .got.plt section when generating PLTs. */
5143 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5144 SEC_ALLOC | SEC_LOAD
5145 | SEC_HAS_CONTENTS
5146 | SEC_IN_MEMORY
5147 | SEC_LINKER_CREATED);
5148 if (s == NULL)
5149 return FALSE;
5150 htab->sgotplt = s;
5151
5152 return TRUE;
5153 }
5154 \f
5155 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5156 __GOTT_INDEX__ symbols. These symbols are only special for
5157 shared objects; they are not used in executables. */
5158
5159 static bfd_boolean
5160 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5161 {
5162 return (mips_elf_hash_table (info)->is_vxworks
5163 && info->shared
5164 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5165 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5166 }
5167
5168 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5169 require an la25 stub. See also mips_elf_local_pic_function_p,
5170 which determines whether the destination function ever requires a
5171 stub. */
5172
5173 static bfd_boolean
5174 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5175 bfd_boolean target_is_16_bit_code_p)
5176 {
5177 /* We specifically ignore branches and jumps from EF_PIC objects,
5178 where the onus is on the compiler or programmer to perform any
5179 necessary initialization of $25. Sometimes such initialization
5180 is unnecessary; for example, -mno-shared functions do not use
5181 the incoming value of $25, and may therefore be called directly. */
5182 if (PIC_OBJECT_P (input_bfd))
5183 return FALSE;
5184
5185 switch (r_type)
5186 {
5187 case R_MIPS_26:
5188 case R_MIPS_PC16:
5189 case R_MIPS_PC21_S2:
5190 case R_MIPS_PC26_S2:
5191 case R_MICROMIPS_26_S1:
5192 case R_MICROMIPS_PC7_S1:
5193 case R_MICROMIPS_PC10_S1:
5194 case R_MICROMIPS_PC16_S1:
5195 case R_MICROMIPS_PC23_S2:
5196 return TRUE;
5197
5198 case R_MIPS16_26:
5199 return !target_is_16_bit_code_p;
5200
5201 default:
5202 return FALSE;
5203 }
5204 }
5205 \f
5206 /* Calculate the value produced by the RELOCATION (which comes from
5207 the INPUT_BFD). The ADDEND is the addend to use for this
5208 RELOCATION; RELOCATION->R_ADDEND is ignored.
5209
5210 The result of the relocation calculation is stored in VALUEP.
5211 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5212 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5213
5214 This function returns bfd_reloc_continue if the caller need take no
5215 further action regarding this relocation, bfd_reloc_notsupported if
5216 something goes dramatically wrong, bfd_reloc_overflow if an
5217 overflow occurs, and bfd_reloc_ok to indicate success. */
5218
5219 static bfd_reloc_status_type
5220 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5221 asection *input_section,
5222 struct bfd_link_info *info,
5223 const Elf_Internal_Rela *relocation,
5224 bfd_vma addend, reloc_howto_type *howto,
5225 Elf_Internal_Sym *local_syms,
5226 asection **local_sections, bfd_vma *valuep,
5227 const char **namep,
5228 bfd_boolean *cross_mode_jump_p,
5229 bfd_boolean save_addend)
5230 {
5231 /* The eventual value we will return. */
5232 bfd_vma value;
5233 /* The address of the symbol against which the relocation is
5234 occurring. */
5235 bfd_vma symbol = 0;
5236 /* The final GP value to be used for the relocatable, executable, or
5237 shared object file being produced. */
5238 bfd_vma gp;
5239 /* The place (section offset or address) of the storage unit being
5240 relocated. */
5241 bfd_vma p;
5242 /* The value of GP used to create the relocatable object. */
5243 bfd_vma gp0;
5244 /* The offset into the global offset table at which the address of
5245 the relocation entry symbol, adjusted by the addend, resides
5246 during execution. */
5247 bfd_vma g = MINUS_ONE;
5248 /* The section in which the symbol referenced by the relocation is
5249 located. */
5250 asection *sec = NULL;
5251 struct mips_elf_link_hash_entry *h = NULL;
5252 /* TRUE if the symbol referred to by this relocation is a local
5253 symbol. */
5254 bfd_boolean local_p, was_local_p;
5255 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5256 bfd_boolean gp_disp_p = FALSE;
5257 /* TRUE if the symbol referred to by this relocation is
5258 "__gnu_local_gp". */
5259 bfd_boolean gnu_local_gp_p = FALSE;
5260 Elf_Internal_Shdr *symtab_hdr;
5261 size_t extsymoff;
5262 unsigned long r_symndx;
5263 int r_type;
5264 /* TRUE if overflow occurred during the calculation of the
5265 relocation value. */
5266 bfd_boolean overflowed_p;
5267 /* TRUE if this relocation refers to a MIPS16 function. */
5268 bfd_boolean target_is_16_bit_code_p = FALSE;
5269 bfd_boolean target_is_micromips_code_p = FALSE;
5270 struct mips_elf_link_hash_table *htab;
5271 bfd *dynobj;
5272
5273 dynobj = elf_hash_table (info)->dynobj;
5274 htab = mips_elf_hash_table (info);
5275 BFD_ASSERT (htab != NULL);
5276
5277 /* Parse the relocation. */
5278 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5279 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5280 p = (input_section->output_section->vma
5281 + input_section->output_offset
5282 + relocation->r_offset);
5283
5284 /* Assume that there will be no overflow. */
5285 overflowed_p = FALSE;
5286
5287 /* Figure out whether or not the symbol is local, and get the offset
5288 used in the array of hash table entries. */
5289 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5290 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5291 local_sections);
5292 was_local_p = local_p;
5293 if (! elf_bad_symtab (input_bfd))
5294 extsymoff = symtab_hdr->sh_info;
5295 else
5296 {
5297 /* The symbol table does not follow the rule that local symbols
5298 must come before globals. */
5299 extsymoff = 0;
5300 }
5301
5302 /* Figure out the value of the symbol. */
5303 if (local_p)
5304 {
5305 Elf_Internal_Sym *sym;
5306
5307 sym = local_syms + r_symndx;
5308 sec = local_sections[r_symndx];
5309
5310 symbol = sec->output_section->vma + sec->output_offset;
5311 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5312 || (sec->flags & SEC_MERGE))
5313 symbol += sym->st_value;
5314 if ((sec->flags & SEC_MERGE)
5315 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5316 {
5317 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5318 addend -= symbol;
5319 addend += sec->output_section->vma + sec->output_offset;
5320 }
5321
5322 /* MIPS16/microMIPS text labels should be treated as odd. */
5323 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5324 ++symbol;
5325
5326 /* Record the name of this symbol, for our caller. */
5327 *namep = bfd_elf_string_from_elf_section (input_bfd,
5328 symtab_hdr->sh_link,
5329 sym->st_name);
5330 if (*namep == '\0')
5331 *namep = bfd_section_name (input_bfd, sec);
5332
5333 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5334 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5335 }
5336 else
5337 {
5338 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5339
5340 /* For global symbols we look up the symbol in the hash-table. */
5341 h = ((struct mips_elf_link_hash_entry *)
5342 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5343 /* Find the real hash-table entry for this symbol. */
5344 while (h->root.root.type == bfd_link_hash_indirect
5345 || h->root.root.type == bfd_link_hash_warning)
5346 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5347
5348 /* Record the name of this symbol, for our caller. */
5349 *namep = h->root.root.root.string;
5350
5351 /* See if this is the special _gp_disp symbol. Note that such a
5352 symbol must always be a global symbol. */
5353 if (strcmp (*namep, "_gp_disp") == 0
5354 && ! NEWABI_P (input_bfd))
5355 {
5356 /* Relocations against _gp_disp are permitted only with
5357 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5358 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5359 return bfd_reloc_notsupported;
5360
5361 gp_disp_p = TRUE;
5362 }
5363 /* See if this is the special _gp symbol. Note that such a
5364 symbol must always be a global symbol. */
5365 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5366 gnu_local_gp_p = TRUE;
5367
5368
5369 /* If this symbol is defined, calculate its address. Note that
5370 _gp_disp is a magic symbol, always implicitly defined by the
5371 linker, so it's inappropriate to check to see whether or not
5372 its defined. */
5373 else if ((h->root.root.type == bfd_link_hash_defined
5374 || h->root.root.type == bfd_link_hash_defweak)
5375 && h->root.root.u.def.section)
5376 {
5377 sec = h->root.root.u.def.section;
5378 if (sec->output_section)
5379 symbol = (h->root.root.u.def.value
5380 + sec->output_section->vma
5381 + sec->output_offset);
5382 else
5383 symbol = h->root.root.u.def.value;
5384 }
5385 else if (h->root.root.type == bfd_link_hash_undefweak)
5386 /* We allow relocations against undefined weak symbols, giving
5387 it the value zero, so that you can undefined weak functions
5388 and check to see if they exist by looking at their
5389 addresses. */
5390 symbol = 0;
5391 else if (info->unresolved_syms_in_objects == RM_IGNORE
5392 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5393 symbol = 0;
5394 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5395 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5396 {
5397 /* If this is a dynamic link, we should have created a
5398 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5399 in in _bfd_mips_elf_create_dynamic_sections.
5400 Otherwise, we should define the symbol with a value of 0.
5401 FIXME: It should probably get into the symbol table
5402 somehow as well. */
5403 BFD_ASSERT (! info->shared);
5404 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5405 symbol = 0;
5406 }
5407 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5408 {
5409 /* This is an optional symbol - an Irix specific extension to the
5410 ELF spec. Ignore it for now.
5411 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5412 than simply ignoring them, but we do not handle this for now.
5413 For information see the "64-bit ELF Object File Specification"
5414 which is available from here:
5415 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5416 symbol = 0;
5417 }
5418 else if ((*info->callbacks->undefined_symbol)
5419 (info, h->root.root.root.string, input_bfd,
5420 input_section, relocation->r_offset,
5421 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5422 || ELF_ST_VISIBILITY (h->root.other)))
5423 {
5424 return bfd_reloc_undefined;
5425 }
5426 else
5427 {
5428 return bfd_reloc_notsupported;
5429 }
5430
5431 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5432 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5433 }
5434
5435 /* If this is a reference to a 16-bit function with a stub, we need
5436 to redirect the relocation to the stub unless:
5437
5438 (a) the relocation is for a MIPS16 JAL;
5439
5440 (b) the relocation is for a MIPS16 PIC call, and there are no
5441 non-MIPS16 uses of the GOT slot; or
5442
5443 (c) the section allows direct references to MIPS16 functions. */
5444 if (r_type != R_MIPS16_26
5445 && !info->relocatable
5446 && ((h != NULL
5447 && h->fn_stub != NULL
5448 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5449 || (local_p
5450 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5451 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5452 && !section_allows_mips16_refs_p (input_section))
5453 {
5454 /* This is a 32- or 64-bit call to a 16-bit function. We should
5455 have already noticed that we were going to need the
5456 stub. */
5457 if (local_p)
5458 {
5459 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5460 value = 0;
5461 }
5462 else
5463 {
5464 BFD_ASSERT (h->need_fn_stub);
5465 if (h->la25_stub)
5466 {
5467 /* If a LA25 header for the stub itself exists, point to the
5468 prepended LUI/ADDIU sequence. */
5469 sec = h->la25_stub->stub_section;
5470 value = h->la25_stub->offset;
5471 }
5472 else
5473 {
5474 sec = h->fn_stub;
5475 value = 0;
5476 }
5477 }
5478
5479 symbol = sec->output_section->vma + sec->output_offset + value;
5480 /* The target is 16-bit, but the stub isn't. */
5481 target_is_16_bit_code_p = FALSE;
5482 }
5483 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5484 to a standard MIPS function, we need to redirect the call to the stub.
5485 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5486 indirect calls should use an indirect stub instead. */
5487 else if (r_type == R_MIPS16_26 && !info->relocatable
5488 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5489 || (local_p
5490 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5491 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5492 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5493 {
5494 if (local_p)
5495 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5496 else
5497 {
5498 /* If both call_stub and call_fp_stub are defined, we can figure
5499 out which one to use by checking which one appears in the input
5500 file. */
5501 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5502 {
5503 asection *o;
5504
5505 sec = NULL;
5506 for (o = input_bfd->sections; o != NULL; o = o->next)
5507 {
5508 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5509 {
5510 sec = h->call_fp_stub;
5511 break;
5512 }
5513 }
5514 if (sec == NULL)
5515 sec = h->call_stub;
5516 }
5517 else if (h->call_stub != NULL)
5518 sec = h->call_stub;
5519 else
5520 sec = h->call_fp_stub;
5521 }
5522
5523 BFD_ASSERT (sec->size > 0);
5524 symbol = sec->output_section->vma + sec->output_offset;
5525 }
5526 /* If this is a direct call to a PIC function, redirect to the
5527 non-PIC stub. */
5528 else if (h != NULL && h->la25_stub
5529 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5530 target_is_16_bit_code_p))
5531 symbol = (h->la25_stub->stub_section->output_section->vma
5532 + h->la25_stub->stub_section->output_offset
5533 + h->la25_stub->offset);
5534 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5535 entry is used if a standard PLT entry has also been made. In this
5536 case the symbol will have been set by mips_elf_set_plt_sym_value
5537 to point to the standard PLT entry, so redirect to the compressed
5538 one. */
5539 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5540 && !info->relocatable
5541 && h != NULL
5542 && h->use_plt_entry
5543 && h->root.plt.plist->comp_offset != MINUS_ONE
5544 && h->root.plt.plist->mips_offset != MINUS_ONE)
5545 {
5546 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5547
5548 sec = htab->splt;
5549 symbol = (sec->output_section->vma
5550 + sec->output_offset
5551 + htab->plt_header_size
5552 + htab->plt_mips_offset
5553 + h->root.plt.plist->comp_offset
5554 + 1);
5555
5556 target_is_16_bit_code_p = !micromips_p;
5557 target_is_micromips_code_p = micromips_p;
5558 }
5559
5560 /* Make sure MIPS16 and microMIPS are not used together. */
5561 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5562 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5563 {
5564 (*_bfd_error_handler)
5565 (_("MIPS16 and microMIPS functions cannot call each other"));
5566 return bfd_reloc_notsupported;
5567 }
5568
5569 /* Calls from 16-bit code to 32-bit code and vice versa require the
5570 mode change. However, we can ignore calls to undefined weak symbols,
5571 which should never be executed at runtime. This exception is important
5572 because the assembly writer may have "known" that any definition of the
5573 symbol would be 16-bit code, and that direct jumps were therefore
5574 acceptable. */
5575 *cross_mode_jump_p = (!info->relocatable
5576 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5577 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5578 || (r_type == R_MICROMIPS_26_S1
5579 && !target_is_micromips_code_p)
5580 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5581 && (target_is_16_bit_code_p
5582 || target_is_micromips_code_p))));
5583
5584 local_p = (h == NULL || mips_use_local_got_p (info, h));
5585
5586 gp0 = _bfd_get_gp_value (input_bfd);
5587 gp = _bfd_get_gp_value (abfd);
5588 if (htab->got_info)
5589 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5590
5591 if (gnu_local_gp_p)
5592 symbol = gp;
5593
5594 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5595 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5596 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5597 if (got_page_reloc_p (r_type) && !local_p)
5598 {
5599 r_type = (micromips_reloc_p (r_type)
5600 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5601 addend = 0;
5602 }
5603
5604 /* If we haven't already determined the GOT offset, and we're going
5605 to need it, get it now. */
5606 switch (r_type)
5607 {
5608 case R_MIPS16_CALL16:
5609 case R_MIPS16_GOT16:
5610 case R_MIPS_CALL16:
5611 case R_MIPS_GOT16:
5612 case R_MIPS_GOT_DISP:
5613 case R_MIPS_GOT_HI16:
5614 case R_MIPS_CALL_HI16:
5615 case R_MIPS_GOT_LO16:
5616 case R_MIPS_CALL_LO16:
5617 case R_MICROMIPS_CALL16:
5618 case R_MICROMIPS_GOT16:
5619 case R_MICROMIPS_GOT_DISP:
5620 case R_MICROMIPS_GOT_HI16:
5621 case R_MICROMIPS_CALL_HI16:
5622 case R_MICROMIPS_GOT_LO16:
5623 case R_MICROMIPS_CALL_LO16:
5624 case R_MIPS_TLS_GD:
5625 case R_MIPS_TLS_GOTTPREL:
5626 case R_MIPS_TLS_LDM:
5627 case R_MIPS16_TLS_GD:
5628 case R_MIPS16_TLS_GOTTPREL:
5629 case R_MIPS16_TLS_LDM:
5630 case R_MICROMIPS_TLS_GD:
5631 case R_MICROMIPS_TLS_GOTTPREL:
5632 case R_MICROMIPS_TLS_LDM:
5633 /* Find the index into the GOT where this value is located. */
5634 if (tls_ldm_reloc_p (r_type))
5635 {
5636 g = mips_elf_local_got_index (abfd, input_bfd, info,
5637 0, 0, NULL, r_type);
5638 if (g == MINUS_ONE)
5639 return bfd_reloc_outofrange;
5640 }
5641 else if (!local_p)
5642 {
5643 /* On VxWorks, CALL relocations should refer to the .got.plt
5644 entry, which is initialized to point at the PLT stub. */
5645 if (htab->is_vxworks
5646 && (call_hi16_reloc_p (r_type)
5647 || call_lo16_reloc_p (r_type)
5648 || call16_reloc_p (r_type)))
5649 {
5650 BFD_ASSERT (addend == 0);
5651 BFD_ASSERT (h->root.needs_plt);
5652 g = mips_elf_gotplt_index (info, &h->root);
5653 }
5654 else
5655 {
5656 BFD_ASSERT (addend == 0);
5657 g = mips_elf_global_got_index (abfd, info, input_bfd,
5658 &h->root, r_type);
5659 if (!TLS_RELOC_P (r_type)
5660 && !elf_hash_table (info)->dynamic_sections_created)
5661 /* This is a static link. We must initialize the GOT entry. */
5662 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5663 }
5664 }
5665 else if (!htab->is_vxworks
5666 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5667 /* The calculation below does not involve "g". */
5668 break;
5669 else
5670 {
5671 g = mips_elf_local_got_index (abfd, input_bfd, info,
5672 symbol + addend, r_symndx, h, r_type);
5673 if (g == MINUS_ONE)
5674 return bfd_reloc_outofrange;
5675 }
5676
5677 /* Convert GOT indices to actual offsets. */
5678 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5679 break;
5680 }
5681
5682 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5683 symbols are resolved by the loader. Add them to .rela.dyn. */
5684 if (h != NULL && is_gott_symbol (info, &h->root))
5685 {
5686 Elf_Internal_Rela outrel;
5687 bfd_byte *loc;
5688 asection *s;
5689
5690 s = mips_elf_rel_dyn_section (info, FALSE);
5691 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5692
5693 outrel.r_offset = (input_section->output_section->vma
5694 + input_section->output_offset
5695 + relocation->r_offset);
5696 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5697 outrel.r_addend = addend;
5698 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5699
5700 /* If we've written this relocation for a readonly section,
5701 we need to set DF_TEXTREL again, so that we do not delete the
5702 DT_TEXTREL tag. */
5703 if (MIPS_ELF_READONLY_SECTION (input_section))
5704 info->flags |= DF_TEXTREL;
5705
5706 *valuep = 0;
5707 return bfd_reloc_ok;
5708 }
5709
5710 /* Figure out what kind of relocation is being performed. */
5711 switch (r_type)
5712 {
5713 case R_MIPS_NONE:
5714 return bfd_reloc_continue;
5715
5716 case R_MIPS_16:
5717 if (howto->partial_inplace)
5718 addend = _bfd_mips_elf_sign_extend (addend, 16);
5719 value = symbol + addend;
5720 overflowed_p = mips_elf_overflow_p (value, 16);
5721 break;
5722
5723 case R_MIPS_32:
5724 case R_MIPS_REL32:
5725 case R_MIPS_64:
5726 if ((info->shared
5727 || (htab->root.dynamic_sections_created
5728 && h != NULL
5729 && h->root.def_dynamic
5730 && !h->root.def_regular
5731 && !h->has_static_relocs))
5732 && r_symndx != STN_UNDEF
5733 && (h == NULL
5734 || h->root.root.type != bfd_link_hash_undefweak
5735 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5736 && (input_section->flags & SEC_ALLOC) != 0)
5737 {
5738 /* If we're creating a shared library, then we can't know
5739 where the symbol will end up. So, we create a relocation
5740 record in the output, and leave the job up to the dynamic
5741 linker. We must do the same for executable references to
5742 shared library symbols, unless we've decided to use copy
5743 relocs or PLTs instead. */
5744 value = addend;
5745 if (!mips_elf_create_dynamic_relocation (abfd,
5746 info,
5747 relocation,
5748 h,
5749 sec,
5750 symbol,
5751 &value,
5752 input_section))
5753 return bfd_reloc_undefined;
5754 }
5755 else
5756 {
5757 if (r_type != R_MIPS_REL32)
5758 value = symbol + addend;
5759 else
5760 value = addend;
5761 }
5762 value &= howto->dst_mask;
5763 break;
5764
5765 case R_MIPS_PC32:
5766 value = symbol + addend - p;
5767 value &= howto->dst_mask;
5768 break;
5769
5770 case R_MIPS16_26:
5771 /* The calculation for R_MIPS16_26 is just the same as for an
5772 R_MIPS_26. It's only the storage of the relocated field into
5773 the output file that's different. That's handled in
5774 mips_elf_perform_relocation. So, we just fall through to the
5775 R_MIPS_26 case here. */
5776 case R_MIPS_26:
5777 case R_MICROMIPS_26_S1:
5778 {
5779 unsigned int shift;
5780
5781 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5782 the correct ISA mode selector and bit 1 must be 0. */
5783 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5784 return bfd_reloc_outofrange;
5785
5786 /* Shift is 2, unusually, for microMIPS JALX. */
5787 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5788
5789 if (was_local_p)
5790 value = addend | ((p + 4) & (0xfc000000 << shift));
5791 else if (howto->partial_inplace)
5792 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5793 else
5794 value = addend;
5795 value = (value + symbol) >> shift;
5796 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5797 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5798 value &= howto->dst_mask;
5799 }
5800 break;
5801
5802 case R_MIPS_TLS_DTPREL_HI16:
5803 case R_MIPS16_TLS_DTPREL_HI16:
5804 case R_MICROMIPS_TLS_DTPREL_HI16:
5805 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5806 & howto->dst_mask);
5807 break;
5808
5809 case R_MIPS_TLS_DTPREL_LO16:
5810 case R_MIPS_TLS_DTPREL32:
5811 case R_MIPS_TLS_DTPREL64:
5812 case R_MIPS16_TLS_DTPREL_LO16:
5813 case R_MICROMIPS_TLS_DTPREL_LO16:
5814 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5815 break;
5816
5817 case R_MIPS_TLS_TPREL_HI16:
5818 case R_MIPS16_TLS_TPREL_HI16:
5819 case R_MICROMIPS_TLS_TPREL_HI16:
5820 value = (mips_elf_high (addend + symbol - tprel_base (info))
5821 & howto->dst_mask);
5822 break;
5823
5824 case R_MIPS_TLS_TPREL_LO16:
5825 case R_MIPS_TLS_TPREL32:
5826 case R_MIPS_TLS_TPREL64:
5827 case R_MIPS16_TLS_TPREL_LO16:
5828 case R_MICROMIPS_TLS_TPREL_LO16:
5829 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5830 break;
5831
5832 case R_MIPS_HI16:
5833 case R_MIPS16_HI16:
5834 case R_MICROMIPS_HI16:
5835 if (!gp_disp_p)
5836 {
5837 value = mips_elf_high (addend + symbol);
5838 value &= howto->dst_mask;
5839 }
5840 else
5841 {
5842 /* For MIPS16 ABI code we generate this sequence
5843 0: li $v0,%hi(_gp_disp)
5844 4: addiupc $v1,%lo(_gp_disp)
5845 8: sll $v0,16
5846 12: addu $v0,$v1
5847 14: move $gp,$v0
5848 So the offsets of hi and lo relocs are the same, but the
5849 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5850 ADDIUPC clears the low two bits of the instruction address,
5851 so the base is ($t9 + 4) & ~3. */
5852 if (r_type == R_MIPS16_HI16)
5853 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5854 /* The microMIPS .cpload sequence uses the same assembly
5855 instructions as the traditional psABI version, but the
5856 incoming $t9 has the low bit set. */
5857 else if (r_type == R_MICROMIPS_HI16)
5858 value = mips_elf_high (addend + gp - p - 1);
5859 else
5860 value = mips_elf_high (addend + gp - p);
5861 overflowed_p = mips_elf_overflow_p (value, 16);
5862 }
5863 break;
5864
5865 case R_MIPS_LO16:
5866 case R_MIPS16_LO16:
5867 case R_MICROMIPS_LO16:
5868 case R_MICROMIPS_HI0_LO16:
5869 if (!gp_disp_p)
5870 value = (symbol + addend) & howto->dst_mask;
5871 else
5872 {
5873 /* See the comment for R_MIPS16_HI16 above for the reason
5874 for this conditional. */
5875 if (r_type == R_MIPS16_LO16)
5876 value = addend + gp - (p & ~(bfd_vma) 0x3);
5877 else if (r_type == R_MICROMIPS_LO16
5878 || r_type == R_MICROMIPS_HI0_LO16)
5879 value = addend + gp - p + 3;
5880 else
5881 value = addend + gp - p + 4;
5882 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5883 for overflow. But, on, say, IRIX5, relocations against
5884 _gp_disp are normally generated from the .cpload
5885 pseudo-op. It generates code that normally looks like
5886 this:
5887
5888 lui $gp,%hi(_gp_disp)
5889 addiu $gp,$gp,%lo(_gp_disp)
5890 addu $gp,$gp,$t9
5891
5892 Here $t9 holds the address of the function being called,
5893 as required by the MIPS ELF ABI. The R_MIPS_LO16
5894 relocation can easily overflow in this situation, but the
5895 R_MIPS_HI16 relocation will handle the overflow.
5896 Therefore, we consider this a bug in the MIPS ABI, and do
5897 not check for overflow here. */
5898 }
5899 break;
5900
5901 case R_MIPS_LITERAL:
5902 case R_MICROMIPS_LITERAL:
5903 /* Because we don't merge literal sections, we can handle this
5904 just like R_MIPS_GPREL16. In the long run, we should merge
5905 shared literals, and then we will need to additional work
5906 here. */
5907
5908 /* Fall through. */
5909
5910 case R_MIPS16_GPREL:
5911 /* The R_MIPS16_GPREL performs the same calculation as
5912 R_MIPS_GPREL16, but stores the relocated bits in a different
5913 order. We don't need to do anything special here; the
5914 differences are handled in mips_elf_perform_relocation. */
5915 case R_MIPS_GPREL16:
5916 case R_MICROMIPS_GPREL7_S2:
5917 case R_MICROMIPS_GPREL16:
5918 /* Only sign-extend the addend if it was extracted from the
5919 instruction. If the addend was separate, leave it alone,
5920 otherwise we may lose significant bits. */
5921 if (howto->partial_inplace)
5922 addend = _bfd_mips_elf_sign_extend (addend, 16);
5923 value = symbol + addend - gp;
5924 /* If the symbol was local, any earlier relocatable links will
5925 have adjusted its addend with the gp offset, so compensate
5926 for that now. Don't do it for symbols forced local in this
5927 link, though, since they won't have had the gp offset applied
5928 to them before. */
5929 if (was_local_p)
5930 value += gp0;
5931 overflowed_p = mips_elf_overflow_p (value, 16);
5932 break;
5933
5934 case R_MIPS16_GOT16:
5935 case R_MIPS16_CALL16:
5936 case R_MIPS_GOT16:
5937 case R_MIPS_CALL16:
5938 case R_MICROMIPS_GOT16:
5939 case R_MICROMIPS_CALL16:
5940 /* VxWorks does not have separate local and global semantics for
5941 R_MIPS*_GOT16; every relocation evaluates to "G". */
5942 if (!htab->is_vxworks && local_p)
5943 {
5944 value = mips_elf_got16_entry (abfd, input_bfd, info,
5945 symbol + addend, !was_local_p);
5946 if (value == MINUS_ONE)
5947 return bfd_reloc_outofrange;
5948 value
5949 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5950 overflowed_p = mips_elf_overflow_p (value, 16);
5951 break;
5952 }
5953
5954 /* Fall through. */
5955
5956 case R_MIPS_TLS_GD:
5957 case R_MIPS_TLS_GOTTPREL:
5958 case R_MIPS_TLS_LDM:
5959 case R_MIPS_GOT_DISP:
5960 case R_MIPS16_TLS_GD:
5961 case R_MIPS16_TLS_GOTTPREL:
5962 case R_MIPS16_TLS_LDM:
5963 case R_MICROMIPS_TLS_GD:
5964 case R_MICROMIPS_TLS_GOTTPREL:
5965 case R_MICROMIPS_TLS_LDM:
5966 case R_MICROMIPS_GOT_DISP:
5967 value = g;
5968 overflowed_p = mips_elf_overflow_p (value, 16);
5969 break;
5970
5971 case R_MIPS_GPREL32:
5972 value = (addend + symbol + gp0 - gp);
5973 if (!save_addend)
5974 value &= howto->dst_mask;
5975 break;
5976
5977 case R_MIPS_PC16:
5978 case R_MIPS_GNU_REL16_S2:
5979 if (howto->partial_inplace)
5980 addend = _bfd_mips_elf_sign_extend (addend, 18);
5981
5982 if ((symbol + addend) & 3)
5983 return bfd_reloc_outofrange;
5984
5985 value = symbol + addend - p;
5986 overflowed_p = mips_elf_overflow_p (value, 18);
5987 value >>= howto->rightshift;
5988 value &= howto->dst_mask;
5989 break;
5990
5991 case R_MIPS_PC21_S2:
5992 if (howto->partial_inplace)
5993 addend = _bfd_mips_elf_sign_extend (addend, 23);
5994
5995 if ((symbol + addend) & 3)
5996 return bfd_reloc_outofrange;
5997
5998 value = symbol + addend - p;
5999 overflowed_p = mips_elf_overflow_p (value, 23);
6000 value >>= howto->rightshift;
6001 value &= howto->dst_mask;
6002 break;
6003
6004 case R_MIPS_PC26_S2:
6005 if (howto->partial_inplace)
6006 addend = _bfd_mips_elf_sign_extend (addend, 28);
6007
6008 if ((symbol + addend) & 3)
6009 return bfd_reloc_outofrange;
6010
6011 value = symbol + addend - p;
6012 overflowed_p = mips_elf_overflow_p (value, 28);
6013 value >>= howto->rightshift;
6014 value &= howto->dst_mask;
6015 break;
6016
6017 case R_MIPS_PC18_S3:
6018 if (howto->partial_inplace)
6019 addend = _bfd_mips_elf_sign_extend (addend, 21);
6020
6021 if ((symbol + addend) & 7)
6022 return bfd_reloc_outofrange;
6023
6024 value = symbol + addend - ((p | 7) ^ 7);
6025 overflowed_p = mips_elf_overflow_p (value, 21);
6026 value >>= howto->rightshift;
6027 value &= howto->dst_mask;
6028 break;
6029
6030 case R_MIPS_PC19_S2:
6031 if (howto->partial_inplace)
6032 addend = _bfd_mips_elf_sign_extend (addend, 21);
6033
6034 if ((symbol + addend) & 3)
6035 return bfd_reloc_outofrange;
6036
6037 value = symbol + addend - p;
6038 overflowed_p = mips_elf_overflow_p (value, 21);
6039 value >>= howto->rightshift;
6040 value &= howto->dst_mask;
6041 break;
6042
6043 case R_MIPS_PCHI16:
6044 value = mips_elf_high (symbol + addend - p);
6045 overflowed_p = mips_elf_overflow_p (value, 16);
6046 value &= howto->dst_mask;
6047 break;
6048
6049 case R_MIPS_PCLO16:
6050 if (howto->partial_inplace)
6051 addend = _bfd_mips_elf_sign_extend (addend, 16);
6052 value = symbol + addend - p;
6053 value &= howto->dst_mask;
6054 break;
6055
6056 case R_MICROMIPS_PC7_S1:
6057 if (howto->partial_inplace)
6058 addend = _bfd_mips_elf_sign_extend (addend, 8);
6059 value = symbol + addend - p;
6060 overflowed_p = mips_elf_overflow_p (value, 8);
6061 value >>= howto->rightshift;
6062 value &= howto->dst_mask;
6063 break;
6064
6065 case R_MICROMIPS_PC10_S1:
6066 if (howto->partial_inplace)
6067 addend = _bfd_mips_elf_sign_extend (addend, 11);
6068 value = symbol + addend - p;
6069 overflowed_p = mips_elf_overflow_p (value, 11);
6070 value >>= howto->rightshift;
6071 value &= howto->dst_mask;
6072 break;
6073
6074 case R_MICROMIPS_PC16_S1:
6075 if (howto->partial_inplace)
6076 addend = _bfd_mips_elf_sign_extend (addend, 17);
6077 value = symbol + addend - p;
6078 overflowed_p = mips_elf_overflow_p (value, 17);
6079 value >>= howto->rightshift;
6080 value &= howto->dst_mask;
6081 break;
6082
6083 case R_MICROMIPS_PC23_S2:
6084 if (howto->partial_inplace)
6085 addend = _bfd_mips_elf_sign_extend (addend, 25);
6086 value = symbol + addend - ((p | 3) ^ 3);
6087 overflowed_p = mips_elf_overflow_p (value, 25);
6088 value >>= howto->rightshift;
6089 value &= howto->dst_mask;
6090 break;
6091
6092 case R_MIPS_GOT_HI16:
6093 case R_MIPS_CALL_HI16:
6094 case R_MICROMIPS_GOT_HI16:
6095 case R_MICROMIPS_CALL_HI16:
6096 /* We're allowed to handle these two relocations identically.
6097 The dynamic linker is allowed to handle the CALL relocations
6098 differently by creating a lazy evaluation stub. */
6099 value = g;
6100 value = mips_elf_high (value);
6101 value &= howto->dst_mask;
6102 break;
6103
6104 case R_MIPS_GOT_LO16:
6105 case R_MIPS_CALL_LO16:
6106 case R_MICROMIPS_GOT_LO16:
6107 case R_MICROMIPS_CALL_LO16:
6108 value = g & howto->dst_mask;
6109 break;
6110
6111 case R_MIPS_GOT_PAGE:
6112 case R_MICROMIPS_GOT_PAGE:
6113 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6114 if (value == MINUS_ONE)
6115 return bfd_reloc_outofrange;
6116 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6117 overflowed_p = mips_elf_overflow_p (value, 16);
6118 break;
6119
6120 case R_MIPS_GOT_OFST:
6121 case R_MICROMIPS_GOT_OFST:
6122 if (local_p)
6123 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6124 else
6125 value = addend;
6126 overflowed_p = mips_elf_overflow_p (value, 16);
6127 break;
6128
6129 case R_MIPS_SUB:
6130 case R_MICROMIPS_SUB:
6131 value = symbol - addend;
6132 value &= howto->dst_mask;
6133 break;
6134
6135 case R_MIPS_HIGHER:
6136 case R_MICROMIPS_HIGHER:
6137 value = mips_elf_higher (addend + symbol);
6138 value &= howto->dst_mask;
6139 break;
6140
6141 case R_MIPS_HIGHEST:
6142 case R_MICROMIPS_HIGHEST:
6143 value = mips_elf_highest (addend + symbol);
6144 value &= howto->dst_mask;
6145 break;
6146
6147 case R_MIPS_SCN_DISP:
6148 case R_MICROMIPS_SCN_DISP:
6149 value = symbol + addend - sec->output_offset;
6150 value &= howto->dst_mask;
6151 break;
6152
6153 case R_MIPS_JALR:
6154 case R_MICROMIPS_JALR:
6155 /* This relocation is only a hint. In some cases, we optimize
6156 it into a bal instruction. But we don't try to optimize
6157 when the symbol does not resolve locally. */
6158 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6159 return bfd_reloc_continue;
6160 value = symbol + addend;
6161 break;
6162
6163 case R_MIPS_PJUMP:
6164 case R_MIPS_GNU_VTINHERIT:
6165 case R_MIPS_GNU_VTENTRY:
6166 /* We don't do anything with these at present. */
6167 return bfd_reloc_continue;
6168
6169 default:
6170 /* An unrecognized relocation type. */
6171 return bfd_reloc_notsupported;
6172 }
6173
6174 /* Store the VALUE for our caller. */
6175 *valuep = value;
6176 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6177 }
6178
6179 /* Obtain the field relocated by RELOCATION. */
6180
6181 static bfd_vma
6182 mips_elf_obtain_contents (reloc_howto_type *howto,
6183 const Elf_Internal_Rela *relocation,
6184 bfd *input_bfd, bfd_byte *contents)
6185 {
6186 bfd_vma x;
6187 bfd_byte *location = contents + relocation->r_offset;
6188
6189 /* Obtain the bytes. */
6190 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
6191
6192 return x;
6193 }
6194
6195 /* It has been determined that the result of the RELOCATION is the
6196 VALUE. Use HOWTO to place VALUE into the output file at the
6197 appropriate position. The SECTION is the section to which the
6198 relocation applies.
6199 CROSS_MODE_JUMP_P is true if the relocation field
6200 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6201
6202 Returns FALSE if anything goes wrong. */
6203
6204 static bfd_boolean
6205 mips_elf_perform_relocation (struct bfd_link_info *info,
6206 reloc_howto_type *howto,
6207 const Elf_Internal_Rela *relocation,
6208 bfd_vma value, bfd *input_bfd,
6209 asection *input_section, bfd_byte *contents,
6210 bfd_boolean cross_mode_jump_p)
6211 {
6212 bfd_vma x;
6213 bfd_byte *location;
6214 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6215
6216 /* Figure out where the relocation is occurring. */
6217 location = contents + relocation->r_offset;
6218
6219 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6220
6221 /* Obtain the current value. */
6222 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6223
6224 /* Clear the field we are setting. */
6225 x &= ~howto->dst_mask;
6226
6227 /* Set the field. */
6228 x |= (value & howto->dst_mask);
6229
6230 /* If required, turn JAL into JALX. */
6231 if (cross_mode_jump_p && jal_reloc_p (r_type))
6232 {
6233 bfd_boolean ok;
6234 bfd_vma opcode = x >> 26;
6235 bfd_vma jalx_opcode;
6236
6237 /* Check to see if the opcode is already JAL or JALX. */
6238 if (r_type == R_MIPS16_26)
6239 {
6240 ok = ((opcode == 0x6) || (opcode == 0x7));
6241 jalx_opcode = 0x7;
6242 }
6243 else if (r_type == R_MICROMIPS_26_S1)
6244 {
6245 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6246 jalx_opcode = 0x3c;
6247 }
6248 else
6249 {
6250 ok = ((opcode == 0x3) || (opcode == 0x1d));
6251 jalx_opcode = 0x1d;
6252 }
6253
6254 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6255 convert J or JALS to JALX. */
6256 if (!ok)
6257 {
6258 (*_bfd_error_handler)
6259 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
6260 input_bfd,
6261 input_section,
6262 (unsigned long) relocation->r_offset);
6263 bfd_set_error (bfd_error_bad_value);
6264 return FALSE;
6265 }
6266
6267 /* Make this the JALX opcode. */
6268 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6269 }
6270
6271 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6272 range. */
6273 if (!info->relocatable
6274 && !cross_mode_jump_p
6275 && ((JAL_TO_BAL_P (input_bfd)
6276 && r_type == R_MIPS_26
6277 && (x >> 26) == 0x3) /* jal addr */
6278 || (JALR_TO_BAL_P (input_bfd)
6279 && r_type == R_MIPS_JALR
6280 && x == 0x0320f809) /* jalr t9 */
6281 || (JR_TO_B_P (input_bfd)
6282 && r_type == R_MIPS_JALR
6283 && x == 0x03200008))) /* jr t9 */
6284 {
6285 bfd_vma addr;
6286 bfd_vma dest;
6287 bfd_signed_vma off;
6288
6289 addr = (input_section->output_section->vma
6290 + input_section->output_offset
6291 + relocation->r_offset
6292 + 4);
6293 if (r_type == R_MIPS_26)
6294 dest = (value << 2) | ((addr >> 28) << 28);
6295 else
6296 dest = value;
6297 off = dest - addr;
6298 if (off <= 0x1ffff && off >= -0x20000)
6299 {
6300 if (x == 0x03200008) /* jr t9 */
6301 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6302 else
6303 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6304 }
6305 }
6306
6307 /* Put the value into the output. */
6308 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6309
6310 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6311 location);
6312
6313 return TRUE;
6314 }
6315 \f
6316 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6317 is the original relocation, which is now being transformed into a
6318 dynamic relocation. The ADDENDP is adjusted if necessary; the
6319 caller should store the result in place of the original addend. */
6320
6321 static bfd_boolean
6322 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6323 struct bfd_link_info *info,
6324 const Elf_Internal_Rela *rel,
6325 struct mips_elf_link_hash_entry *h,
6326 asection *sec, bfd_vma symbol,
6327 bfd_vma *addendp, asection *input_section)
6328 {
6329 Elf_Internal_Rela outrel[3];
6330 asection *sreloc;
6331 bfd *dynobj;
6332 int r_type;
6333 long indx;
6334 bfd_boolean defined_p;
6335 struct mips_elf_link_hash_table *htab;
6336
6337 htab = mips_elf_hash_table (info);
6338 BFD_ASSERT (htab != NULL);
6339
6340 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6341 dynobj = elf_hash_table (info)->dynobj;
6342 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6343 BFD_ASSERT (sreloc != NULL);
6344 BFD_ASSERT (sreloc->contents != NULL);
6345 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6346 < sreloc->size);
6347
6348 outrel[0].r_offset =
6349 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6350 if (ABI_64_P (output_bfd))
6351 {
6352 outrel[1].r_offset =
6353 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6354 outrel[2].r_offset =
6355 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6356 }
6357
6358 if (outrel[0].r_offset == MINUS_ONE)
6359 /* The relocation field has been deleted. */
6360 return TRUE;
6361
6362 if (outrel[0].r_offset == MINUS_TWO)
6363 {
6364 /* The relocation field has been converted into a relative value of
6365 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6366 the field to be fully relocated, so add in the symbol's value. */
6367 *addendp += symbol;
6368 return TRUE;
6369 }
6370
6371 /* We must now calculate the dynamic symbol table index to use
6372 in the relocation. */
6373 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6374 {
6375 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6376 indx = h->root.dynindx;
6377 if (SGI_COMPAT (output_bfd))
6378 defined_p = h->root.def_regular;
6379 else
6380 /* ??? glibc's ld.so just adds the final GOT entry to the
6381 relocation field. It therefore treats relocs against
6382 defined symbols in the same way as relocs against
6383 undefined symbols. */
6384 defined_p = FALSE;
6385 }
6386 else
6387 {
6388 if (sec != NULL && bfd_is_abs_section (sec))
6389 indx = 0;
6390 else if (sec == NULL || sec->owner == NULL)
6391 {
6392 bfd_set_error (bfd_error_bad_value);
6393 return FALSE;
6394 }
6395 else
6396 {
6397 indx = elf_section_data (sec->output_section)->dynindx;
6398 if (indx == 0)
6399 {
6400 asection *osec = htab->root.text_index_section;
6401 indx = elf_section_data (osec)->dynindx;
6402 }
6403 if (indx == 0)
6404 abort ();
6405 }
6406
6407 /* Instead of generating a relocation using the section
6408 symbol, we may as well make it a fully relative
6409 relocation. We want to avoid generating relocations to
6410 local symbols because we used to generate them
6411 incorrectly, without adding the original symbol value,
6412 which is mandated by the ABI for section symbols. In
6413 order to give dynamic loaders and applications time to
6414 phase out the incorrect use, we refrain from emitting
6415 section-relative relocations. It's not like they're
6416 useful, after all. This should be a bit more efficient
6417 as well. */
6418 /* ??? Although this behavior is compatible with glibc's ld.so,
6419 the ABI says that relocations against STN_UNDEF should have
6420 a symbol value of 0. Irix rld honors this, so relocations
6421 against STN_UNDEF have no effect. */
6422 if (!SGI_COMPAT (output_bfd))
6423 indx = 0;
6424 defined_p = TRUE;
6425 }
6426
6427 /* If the relocation was previously an absolute relocation and
6428 this symbol will not be referred to by the relocation, we must
6429 adjust it by the value we give it in the dynamic symbol table.
6430 Otherwise leave the job up to the dynamic linker. */
6431 if (defined_p && r_type != R_MIPS_REL32)
6432 *addendp += symbol;
6433
6434 if (htab->is_vxworks)
6435 /* VxWorks uses non-relative relocations for this. */
6436 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6437 else
6438 /* The relocation is always an REL32 relocation because we don't
6439 know where the shared library will wind up at load-time. */
6440 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6441 R_MIPS_REL32);
6442
6443 /* For strict adherence to the ABI specification, we should
6444 generate a R_MIPS_64 relocation record by itself before the
6445 _REL32/_64 record as well, such that the addend is read in as
6446 a 64-bit value (REL32 is a 32-bit relocation, after all).
6447 However, since none of the existing ELF64 MIPS dynamic
6448 loaders seems to care, we don't waste space with these
6449 artificial relocations. If this turns out to not be true,
6450 mips_elf_allocate_dynamic_relocation() should be tweaked so
6451 as to make room for a pair of dynamic relocations per
6452 invocation if ABI_64_P, and here we should generate an
6453 additional relocation record with R_MIPS_64 by itself for a
6454 NULL symbol before this relocation record. */
6455 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6456 ABI_64_P (output_bfd)
6457 ? R_MIPS_64
6458 : R_MIPS_NONE);
6459 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6460
6461 /* Adjust the output offset of the relocation to reference the
6462 correct location in the output file. */
6463 outrel[0].r_offset += (input_section->output_section->vma
6464 + input_section->output_offset);
6465 outrel[1].r_offset += (input_section->output_section->vma
6466 + input_section->output_offset);
6467 outrel[2].r_offset += (input_section->output_section->vma
6468 + input_section->output_offset);
6469
6470 /* Put the relocation back out. We have to use the special
6471 relocation outputter in the 64-bit case since the 64-bit
6472 relocation format is non-standard. */
6473 if (ABI_64_P (output_bfd))
6474 {
6475 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6476 (output_bfd, &outrel[0],
6477 (sreloc->contents
6478 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6479 }
6480 else if (htab->is_vxworks)
6481 {
6482 /* VxWorks uses RELA rather than REL dynamic relocations. */
6483 outrel[0].r_addend = *addendp;
6484 bfd_elf32_swap_reloca_out
6485 (output_bfd, &outrel[0],
6486 (sreloc->contents
6487 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6488 }
6489 else
6490 bfd_elf32_swap_reloc_out
6491 (output_bfd, &outrel[0],
6492 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6493
6494 /* We've now added another relocation. */
6495 ++sreloc->reloc_count;
6496
6497 /* Make sure the output section is writable. The dynamic linker
6498 will be writing to it. */
6499 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6500 |= SHF_WRITE;
6501
6502 /* On IRIX5, make an entry of compact relocation info. */
6503 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6504 {
6505 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6506 bfd_byte *cr;
6507
6508 if (scpt)
6509 {
6510 Elf32_crinfo cptrel;
6511
6512 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6513 cptrel.vaddr = (rel->r_offset
6514 + input_section->output_section->vma
6515 + input_section->output_offset);
6516 if (r_type == R_MIPS_REL32)
6517 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6518 else
6519 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6520 mips_elf_set_cr_dist2to (cptrel, 0);
6521 cptrel.konst = *addendp;
6522
6523 cr = (scpt->contents
6524 + sizeof (Elf32_External_compact_rel));
6525 mips_elf_set_cr_relvaddr (cptrel, 0);
6526 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6527 ((Elf32_External_crinfo *) cr
6528 + scpt->reloc_count));
6529 ++scpt->reloc_count;
6530 }
6531 }
6532
6533 /* If we've written this relocation for a readonly section,
6534 we need to set DF_TEXTREL again, so that we do not delete the
6535 DT_TEXTREL tag. */
6536 if (MIPS_ELF_READONLY_SECTION (input_section))
6537 info->flags |= DF_TEXTREL;
6538
6539 return TRUE;
6540 }
6541 \f
6542 /* Return the MACH for a MIPS e_flags value. */
6543
6544 unsigned long
6545 _bfd_elf_mips_mach (flagword flags)
6546 {
6547 switch (flags & EF_MIPS_MACH)
6548 {
6549 case E_MIPS_MACH_3900:
6550 return bfd_mach_mips3900;
6551
6552 case E_MIPS_MACH_4010:
6553 return bfd_mach_mips4010;
6554
6555 case E_MIPS_MACH_4100:
6556 return bfd_mach_mips4100;
6557
6558 case E_MIPS_MACH_4111:
6559 return bfd_mach_mips4111;
6560
6561 case E_MIPS_MACH_4120:
6562 return bfd_mach_mips4120;
6563
6564 case E_MIPS_MACH_4650:
6565 return bfd_mach_mips4650;
6566
6567 case E_MIPS_MACH_5400:
6568 return bfd_mach_mips5400;
6569
6570 case E_MIPS_MACH_5500:
6571 return bfd_mach_mips5500;
6572
6573 case E_MIPS_MACH_5900:
6574 return bfd_mach_mips5900;
6575
6576 case E_MIPS_MACH_9000:
6577 return bfd_mach_mips9000;
6578
6579 case E_MIPS_MACH_SB1:
6580 return bfd_mach_mips_sb1;
6581
6582 case E_MIPS_MACH_LS2E:
6583 return bfd_mach_mips_loongson_2e;
6584
6585 case E_MIPS_MACH_LS2F:
6586 return bfd_mach_mips_loongson_2f;
6587
6588 case E_MIPS_MACH_LS3A:
6589 return bfd_mach_mips_loongson_3a;
6590
6591 case E_MIPS_MACH_OCTEON2:
6592 return bfd_mach_mips_octeon2;
6593
6594 case E_MIPS_MACH_OCTEON:
6595 return bfd_mach_mips_octeon;
6596
6597 case E_MIPS_MACH_XLR:
6598 return bfd_mach_mips_xlr;
6599
6600 default:
6601 switch (flags & EF_MIPS_ARCH)
6602 {
6603 default:
6604 case E_MIPS_ARCH_1:
6605 return bfd_mach_mips3000;
6606
6607 case E_MIPS_ARCH_2:
6608 return bfd_mach_mips6000;
6609
6610 case E_MIPS_ARCH_3:
6611 return bfd_mach_mips4000;
6612
6613 case E_MIPS_ARCH_4:
6614 return bfd_mach_mips8000;
6615
6616 case E_MIPS_ARCH_5:
6617 return bfd_mach_mips5;
6618
6619 case E_MIPS_ARCH_32:
6620 return bfd_mach_mipsisa32;
6621
6622 case E_MIPS_ARCH_64:
6623 return bfd_mach_mipsisa64;
6624
6625 case E_MIPS_ARCH_32R2:
6626 return bfd_mach_mipsisa32r2;
6627
6628 case E_MIPS_ARCH_64R2:
6629 return bfd_mach_mipsisa64r2;
6630
6631 case E_MIPS_ARCH_32R6:
6632 return bfd_mach_mipsisa32r6;
6633
6634 case E_MIPS_ARCH_64R6:
6635 return bfd_mach_mipsisa64r6;
6636 }
6637 }
6638
6639 return 0;
6640 }
6641
6642 /* Return printable name for ABI. */
6643
6644 static INLINE char *
6645 elf_mips_abi_name (bfd *abfd)
6646 {
6647 flagword flags;
6648
6649 flags = elf_elfheader (abfd)->e_flags;
6650 switch (flags & EF_MIPS_ABI)
6651 {
6652 case 0:
6653 if (ABI_N32_P (abfd))
6654 return "N32";
6655 else if (ABI_64_P (abfd))
6656 return "64";
6657 else
6658 return "none";
6659 case E_MIPS_ABI_O32:
6660 return "O32";
6661 case E_MIPS_ABI_O64:
6662 return "O64";
6663 case E_MIPS_ABI_EABI32:
6664 return "EABI32";
6665 case E_MIPS_ABI_EABI64:
6666 return "EABI64";
6667 default:
6668 return "unknown abi";
6669 }
6670 }
6671 \f
6672 /* MIPS ELF uses two common sections. One is the usual one, and the
6673 other is for small objects. All the small objects are kept
6674 together, and then referenced via the gp pointer, which yields
6675 faster assembler code. This is what we use for the small common
6676 section. This approach is copied from ecoff.c. */
6677 static asection mips_elf_scom_section;
6678 static asymbol mips_elf_scom_symbol;
6679 static asymbol *mips_elf_scom_symbol_ptr;
6680
6681 /* MIPS ELF also uses an acommon section, which represents an
6682 allocated common symbol which may be overridden by a
6683 definition in a shared library. */
6684 static asection mips_elf_acom_section;
6685 static asymbol mips_elf_acom_symbol;
6686 static asymbol *mips_elf_acom_symbol_ptr;
6687
6688 /* This is used for both the 32-bit and the 64-bit ABI. */
6689
6690 void
6691 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6692 {
6693 elf_symbol_type *elfsym;
6694
6695 /* Handle the special MIPS section numbers that a symbol may use. */
6696 elfsym = (elf_symbol_type *) asym;
6697 switch (elfsym->internal_elf_sym.st_shndx)
6698 {
6699 case SHN_MIPS_ACOMMON:
6700 /* This section is used in a dynamically linked executable file.
6701 It is an allocated common section. The dynamic linker can
6702 either resolve these symbols to something in a shared
6703 library, or it can just leave them here. For our purposes,
6704 we can consider these symbols to be in a new section. */
6705 if (mips_elf_acom_section.name == NULL)
6706 {
6707 /* Initialize the acommon section. */
6708 mips_elf_acom_section.name = ".acommon";
6709 mips_elf_acom_section.flags = SEC_ALLOC;
6710 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6711 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6712 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6713 mips_elf_acom_symbol.name = ".acommon";
6714 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6715 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6716 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6717 }
6718 asym->section = &mips_elf_acom_section;
6719 break;
6720
6721 case SHN_COMMON:
6722 /* Common symbols less than the GP size are automatically
6723 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6724 if (asym->value > elf_gp_size (abfd)
6725 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6726 || IRIX_COMPAT (abfd) == ict_irix6)
6727 break;
6728 /* Fall through. */
6729 case SHN_MIPS_SCOMMON:
6730 if (mips_elf_scom_section.name == NULL)
6731 {
6732 /* Initialize the small common section. */
6733 mips_elf_scom_section.name = ".scommon";
6734 mips_elf_scom_section.flags = SEC_IS_COMMON;
6735 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6736 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6737 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6738 mips_elf_scom_symbol.name = ".scommon";
6739 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6740 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6741 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6742 }
6743 asym->section = &mips_elf_scom_section;
6744 asym->value = elfsym->internal_elf_sym.st_size;
6745 break;
6746
6747 case SHN_MIPS_SUNDEFINED:
6748 asym->section = bfd_und_section_ptr;
6749 break;
6750
6751 case SHN_MIPS_TEXT:
6752 {
6753 asection *section = bfd_get_section_by_name (abfd, ".text");
6754
6755 if (section != NULL)
6756 {
6757 asym->section = section;
6758 /* MIPS_TEXT is a bit special, the address is not an offset
6759 to the base of the .text section. So substract the section
6760 base address to make it an offset. */
6761 asym->value -= section->vma;
6762 }
6763 }
6764 break;
6765
6766 case SHN_MIPS_DATA:
6767 {
6768 asection *section = bfd_get_section_by_name (abfd, ".data");
6769
6770 if (section != NULL)
6771 {
6772 asym->section = section;
6773 /* MIPS_DATA is a bit special, the address is not an offset
6774 to the base of the .data section. So substract the section
6775 base address to make it an offset. */
6776 asym->value -= section->vma;
6777 }
6778 }
6779 break;
6780 }
6781
6782 /* If this is an odd-valued function symbol, assume it's a MIPS16
6783 or microMIPS one. */
6784 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6785 && (asym->value & 1) != 0)
6786 {
6787 asym->value--;
6788 if (MICROMIPS_P (abfd))
6789 elfsym->internal_elf_sym.st_other
6790 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6791 else
6792 elfsym->internal_elf_sym.st_other
6793 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6794 }
6795 }
6796 \f
6797 /* Implement elf_backend_eh_frame_address_size. This differs from
6798 the default in the way it handles EABI64.
6799
6800 EABI64 was originally specified as an LP64 ABI, and that is what
6801 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6802 historically accepted the combination of -mabi=eabi and -mlong32,
6803 and this ILP32 variation has become semi-official over time.
6804 Both forms use elf32 and have pointer-sized FDE addresses.
6805
6806 If an EABI object was generated by GCC 4.0 or above, it will have
6807 an empty .gcc_compiled_longXX section, where XX is the size of longs
6808 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6809 have no special marking to distinguish them from LP64 objects.
6810
6811 We don't want users of the official LP64 ABI to be punished for the
6812 existence of the ILP32 variant, but at the same time, we don't want
6813 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6814 We therefore take the following approach:
6815
6816 - If ABFD contains a .gcc_compiled_longXX section, use it to
6817 determine the pointer size.
6818
6819 - Otherwise check the type of the first relocation. Assume that
6820 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6821
6822 - Otherwise punt.
6823
6824 The second check is enough to detect LP64 objects generated by pre-4.0
6825 compilers because, in the kind of output generated by those compilers,
6826 the first relocation will be associated with either a CIE personality
6827 routine or an FDE start address. Furthermore, the compilers never
6828 used a special (non-pointer) encoding for this ABI.
6829
6830 Checking the relocation type should also be safe because there is no
6831 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6832 did so. */
6833
6834 unsigned int
6835 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6836 {
6837 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6838 return 8;
6839 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6840 {
6841 bfd_boolean long32_p, long64_p;
6842
6843 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6844 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6845 if (long32_p && long64_p)
6846 return 0;
6847 if (long32_p)
6848 return 4;
6849 if (long64_p)
6850 return 8;
6851
6852 if (sec->reloc_count > 0
6853 && elf_section_data (sec)->relocs != NULL
6854 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6855 == R_MIPS_64))
6856 return 8;
6857
6858 return 0;
6859 }
6860 return 4;
6861 }
6862 \f
6863 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6864 relocations against two unnamed section symbols to resolve to the
6865 same address. For example, if we have code like:
6866
6867 lw $4,%got_disp(.data)($gp)
6868 lw $25,%got_disp(.text)($gp)
6869 jalr $25
6870
6871 then the linker will resolve both relocations to .data and the program
6872 will jump there rather than to .text.
6873
6874 We can work around this problem by giving names to local section symbols.
6875 This is also what the MIPSpro tools do. */
6876
6877 bfd_boolean
6878 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6879 {
6880 return SGI_COMPAT (abfd);
6881 }
6882 \f
6883 /* Work over a section just before writing it out. This routine is
6884 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6885 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6886 a better way. */
6887
6888 bfd_boolean
6889 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6890 {
6891 if (hdr->sh_type == SHT_MIPS_REGINFO
6892 && hdr->sh_size > 0)
6893 {
6894 bfd_byte buf[4];
6895
6896 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6897 BFD_ASSERT (hdr->contents == NULL);
6898
6899 if (bfd_seek (abfd,
6900 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6901 SEEK_SET) != 0)
6902 return FALSE;
6903 H_PUT_32 (abfd, elf_gp (abfd), buf);
6904 if (bfd_bwrite (buf, 4, abfd) != 4)
6905 return FALSE;
6906 }
6907
6908 if (hdr->sh_type == SHT_MIPS_OPTIONS
6909 && hdr->bfd_section != NULL
6910 && mips_elf_section_data (hdr->bfd_section) != NULL
6911 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6912 {
6913 bfd_byte *contents, *l, *lend;
6914
6915 /* We stored the section contents in the tdata field in the
6916 set_section_contents routine. We save the section contents
6917 so that we don't have to read them again.
6918 At this point we know that elf_gp is set, so we can look
6919 through the section contents to see if there is an
6920 ODK_REGINFO structure. */
6921
6922 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6923 l = contents;
6924 lend = contents + hdr->sh_size;
6925 while (l + sizeof (Elf_External_Options) <= lend)
6926 {
6927 Elf_Internal_Options intopt;
6928
6929 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6930 &intopt);
6931 if (intopt.size < sizeof (Elf_External_Options))
6932 {
6933 (*_bfd_error_handler)
6934 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6935 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6936 break;
6937 }
6938 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6939 {
6940 bfd_byte buf[8];
6941
6942 if (bfd_seek (abfd,
6943 (hdr->sh_offset
6944 + (l - contents)
6945 + sizeof (Elf_External_Options)
6946 + (sizeof (Elf64_External_RegInfo) - 8)),
6947 SEEK_SET) != 0)
6948 return FALSE;
6949 H_PUT_64 (abfd, elf_gp (abfd), buf);
6950 if (bfd_bwrite (buf, 8, abfd) != 8)
6951 return FALSE;
6952 }
6953 else if (intopt.kind == ODK_REGINFO)
6954 {
6955 bfd_byte buf[4];
6956
6957 if (bfd_seek (abfd,
6958 (hdr->sh_offset
6959 + (l - contents)
6960 + sizeof (Elf_External_Options)
6961 + (sizeof (Elf32_External_RegInfo) - 4)),
6962 SEEK_SET) != 0)
6963 return FALSE;
6964 H_PUT_32 (abfd, elf_gp (abfd), buf);
6965 if (bfd_bwrite (buf, 4, abfd) != 4)
6966 return FALSE;
6967 }
6968 l += intopt.size;
6969 }
6970 }
6971
6972 if (hdr->bfd_section != NULL)
6973 {
6974 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6975
6976 /* .sbss is not handled specially here because the GNU/Linux
6977 prelinker can convert .sbss from NOBITS to PROGBITS and
6978 changing it back to NOBITS breaks the binary. The entry in
6979 _bfd_mips_elf_special_sections will ensure the correct flags
6980 are set on .sbss if BFD creates it without reading it from an
6981 input file, and without special handling here the flags set
6982 on it in an input file will be followed. */
6983 if (strcmp (name, ".sdata") == 0
6984 || strcmp (name, ".lit8") == 0
6985 || strcmp (name, ".lit4") == 0)
6986 {
6987 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6988 hdr->sh_type = SHT_PROGBITS;
6989 }
6990 else if (strcmp (name, ".srdata") == 0)
6991 {
6992 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6993 hdr->sh_type = SHT_PROGBITS;
6994 }
6995 else if (strcmp (name, ".compact_rel") == 0)
6996 {
6997 hdr->sh_flags = 0;
6998 hdr->sh_type = SHT_PROGBITS;
6999 }
7000 else if (strcmp (name, ".rtproc") == 0)
7001 {
7002 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7003 {
7004 unsigned int adjust;
7005
7006 adjust = hdr->sh_size % hdr->sh_addralign;
7007 if (adjust != 0)
7008 hdr->sh_size += hdr->sh_addralign - adjust;
7009 }
7010 }
7011 }
7012
7013 return TRUE;
7014 }
7015
7016 /* Handle a MIPS specific section when reading an object file. This
7017 is called when elfcode.h finds a section with an unknown type.
7018 This routine supports both the 32-bit and 64-bit ELF ABI.
7019
7020 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7021 how to. */
7022
7023 bfd_boolean
7024 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7025 Elf_Internal_Shdr *hdr,
7026 const char *name,
7027 int shindex)
7028 {
7029 flagword flags = 0;
7030
7031 /* There ought to be a place to keep ELF backend specific flags, but
7032 at the moment there isn't one. We just keep track of the
7033 sections by their name, instead. Fortunately, the ABI gives
7034 suggested names for all the MIPS specific sections, so we will
7035 probably get away with this. */
7036 switch (hdr->sh_type)
7037 {
7038 case SHT_MIPS_LIBLIST:
7039 if (strcmp (name, ".liblist") != 0)
7040 return FALSE;
7041 break;
7042 case SHT_MIPS_MSYM:
7043 if (strcmp (name, ".msym") != 0)
7044 return FALSE;
7045 break;
7046 case SHT_MIPS_CONFLICT:
7047 if (strcmp (name, ".conflict") != 0)
7048 return FALSE;
7049 break;
7050 case SHT_MIPS_GPTAB:
7051 if (! CONST_STRNEQ (name, ".gptab."))
7052 return FALSE;
7053 break;
7054 case SHT_MIPS_UCODE:
7055 if (strcmp (name, ".ucode") != 0)
7056 return FALSE;
7057 break;
7058 case SHT_MIPS_DEBUG:
7059 if (strcmp (name, ".mdebug") != 0)
7060 return FALSE;
7061 flags = SEC_DEBUGGING;
7062 break;
7063 case SHT_MIPS_REGINFO:
7064 if (strcmp (name, ".reginfo") != 0
7065 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7066 return FALSE;
7067 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7068 break;
7069 case SHT_MIPS_IFACE:
7070 if (strcmp (name, ".MIPS.interfaces") != 0)
7071 return FALSE;
7072 break;
7073 case SHT_MIPS_CONTENT:
7074 if (! CONST_STRNEQ (name, ".MIPS.content"))
7075 return FALSE;
7076 break;
7077 case SHT_MIPS_OPTIONS:
7078 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7079 return FALSE;
7080 break;
7081 case SHT_MIPS_ABIFLAGS:
7082 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7083 return FALSE;
7084 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7085 break;
7086 case SHT_MIPS_DWARF:
7087 if (! CONST_STRNEQ (name, ".debug_")
7088 && ! CONST_STRNEQ (name, ".zdebug_"))
7089 return FALSE;
7090 break;
7091 case SHT_MIPS_SYMBOL_LIB:
7092 if (strcmp (name, ".MIPS.symlib") != 0)
7093 return FALSE;
7094 break;
7095 case SHT_MIPS_EVENTS:
7096 if (! CONST_STRNEQ (name, ".MIPS.events")
7097 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7098 return FALSE;
7099 break;
7100 default:
7101 break;
7102 }
7103
7104 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7105 return FALSE;
7106
7107 if (flags)
7108 {
7109 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7110 (bfd_get_section_flags (abfd,
7111 hdr->bfd_section)
7112 | flags)))
7113 return FALSE;
7114 }
7115
7116 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7117 {
7118 Elf_External_ABIFlags_v0 ext;
7119
7120 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7121 &ext, 0, sizeof ext))
7122 return FALSE;
7123 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7124 &mips_elf_tdata (abfd)->abiflags);
7125 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7126 return FALSE;
7127 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7128 }
7129
7130 /* FIXME: We should record sh_info for a .gptab section. */
7131
7132 /* For a .reginfo section, set the gp value in the tdata information
7133 from the contents of this section. We need the gp value while
7134 processing relocs, so we just get it now. The .reginfo section
7135 is not used in the 64-bit MIPS ELF ABI. */
7136 if (hdr->sh_type == SHT_MIPS_REGINFO)
7137 {
7138 Elf32_External_RegInfo ext;
7139 Elf32_RegInfo s;
7140
7141 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7142 &ext, 0, sizeof ext))
7143 return FALSE;
7144 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7145 elf_gp (abfd) = s.ri_gp_value;
7146 }
7147
7148 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7149 set the gp value based on what we find. We may see both
7150 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7151 they should agree. */
7152 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7153 {
7154 bfd_byte *contents, *l, *lend;
7155
7156 contents = bfd_malloc (hdr->sh_size);
7157 if (contents == NULL)
7158 return FALSE;
7159 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7160 0, hdr->sh_size))
7161 {
7162 free (contents);
7163 return FALSE;
7164 }
7165 l = contents;
7166 lend = contents + hdr->sh_size;
7167 while (l + sizeof (Elf_External_Options) <= lend)
7168 {
7169 Elf_Internal_Options intopt;
7170
7171 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7172 &intopt);
7173 if (intopt.size < sizeof (Elf_External_Options))
7174 {
7175 (*_bfd_error_handler)
7176 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7177 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7178 break;
7179 }
7180 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7181 {
7182 Elf64_Internal_RegInfo intreg;
7183
7184 bfd_mips_elf64_swap_reginfo_in
7185 (abfd,
7186 ((Elf64_External_RegInfo *)
7187 (l + sizeof (Elf_External_Options))),
7188 &intreg);
7189 elf_gp (abfd) = intreg.ri_gp_value;
7190 }
7191 else if (intopt.kind == ODK_REGINFO)
7192 {
7193 Elf32_RegInfo intreg;
7194
7195 bfd_mips_elf32_swap_reginfo_in
7196 (abfd,
7197 ((Elf32_External_RegInfo *)
7198 (l + sizeof (Elf_External_Options))),
7199 &intreg);
7200 elf_gp (abfd) = intreg.ri_gp_value;
7201 }
7202 l += intopt.size;
7203 }
7204 free (contents);
7205 }
7206
7207 return TRUE;
7208 }
7209
7210 /* Set the correct type for a MIPS ELF section. We do this by the
7211 section name, which is a hack, but ought to work. This routine is
7212 used by both the 32-bit and the 64-bit ABI. */
7213
7214 bfd_boolean
7215 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7216 {
7217 const char *name = bfd_get_section_name (abfd, sec);
7218
7219 if (strcmp (name, ".liblist") == 0)
7220 {
7221 hdr->sh_type = SHT_MIPS_LIBLIST;
7222 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7223 /* The sh_link field is set in final_write_processing. */
7224 }
7225 else if (strcmp (name, ".conflict") == 0)
7226 hdr->sh_type = SHT_MIPS_CONFLICT;
7227 else if (CONST_STRNEQ (name, ".gptab."))
7228 {
7229 hdr->sh_type = SHT_MIPS_GPTAB;
7230 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7231 /* The sh_info field is set in final_write_processing. */
7232 }
7233 else if (strcmp (name, ".ucode") == 0)
7234 hdr->sh_type = SHT_MIPS_UCODE;
7235 else if (strcmp (name, ".mdebug") == 0)
7236 {
7237 hdr->sh_type = SHT_MIPS_DEBUG;
7238 /* In a shared object on IRIX 5.3, the .mdebug section has an
7239 entsize of 0. FIXME: Does this matter? */
7240 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7241 hdr->sh_entsize = 0;
7242 else
7243 hdr->sh_entsize = 1;
7244 }
7245 else if (strcmp (name, ".reginfo") == 0)
7246 {
7247 hdr->sh_type = SHT_MIPS_REGINFO;
7248 /* In a shared object on IRIX 5.3, the .reginfo section has an
7249 entsize of 0x18. FIXME: Does this matter? */
7250 if (SGI_COMPAT (abfd))
7251 {
7252 if ((abfd->flags & DYNAMIC) != 0)
7253 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7254 else
7255 hdr->sh_entsize = 1;
7256 }
7257 else
7258 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7259 }
7260 else if (SGI_COMPAT (abfd)
7261 && (strcmp (name, ".hash") == 0
7262 || strcmp (name, ".dynamic") == 0
7263 || strcmp (name, ".dynstr") == 0))
7264 {
7265 if (SGI_COMPAT (abfd))
7266 hdr->sh_entsize = 0;
7267 #if 0
7268 /* This isn't how the IRIX6 linker behaves. */
7269 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7270 #endif
7271 }
7272 else if (strcmp (name, ".got") == 0
7273 || strcmp (name, ".srdata") == 0
7274 || strcmp (name, ".sdata") == 0
7275 || strcmp (name, ".sbss") == 0
7276 || strcmp (name, ".lit4") == 0
7277 || strcmp (name, ".lit8") == 0)
7278 hdr->sh_flags |= SHF_MIPS_GPREL;
7279 else if (strcmp (name, ".MIPS.interfaces") == 0)
7280 {
7281 hdr->sh_type = SHT_MIPS_IFACE;
7282 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7283 }
7284 else if (CONST_STRNEQ (name, ".MIPS.content"))
7285 {
7286 hdr->sh_type = SHT_MIPS_CONTENT;
7287 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7288 /* The sh_info field is set in final_write_processing. */
7289 }
7290 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7291 {
7292 hdr->sh_type = SHT_MIPS_OPTIONS;
7293 hdr->sh_entsize = 1;
7294 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7295 }
7296 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7297 {
7298 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7299 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7300 }
7301 else if (CONST_STRNEQ (name, ".debug_")
7302 || CONST_STRNEQ (name, ".zdebug_"))
7303 {
7304 hdr->sh_type = SHT_MIPS_DWARF;
7305
7306 /* Irix facilities such as libexc expect a single .debug_frame
7307 per executable, the system ones have NOSTRIP set and the linker
7308 doesn't merge sections with different flags so ... */
7309 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7310 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7311 }
7312 else if (strcmp (name, ".MIPS.symlib") == 0)
7313 {
7314 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7315 /* The sh_link and sh_info fields are set in
7316 final_write_processing. */
7317 }
7318 else if (CONST_STRNEQ (name, ".MIPS.events")
7319 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7320 {
7321 hdr->sh_type = SHT_MIPS_EVENTS;
7322 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7323 /* The sh_link field is set in final_write_processing. */
7324 }
7325 else if (strcmp (name, ".msym") == 0)
7326 {
7327 hdr->sh_type = SHT_MIPS_MSYM;
7328 hdr->sh_flags |= SHF_ALLOC;
7329 hdr->sh_entsize = 8;
7330 }
7331
7332 /* The generic elf_fake_sections will set up REL_HDR using the default
7333 kind of relocations. We used to set up a second header for the
7334 non-default kind of relocations here, but only NewABI would use
7335 these, and the IRIX ld doesn't like resulting empty RELA sections.
7336 Thus we create those header only on demand now. */
7337
7338 return TRUE;
7339 }
7340
7341 /* Given a BFD section, try to locate the corresponding ELF section
7342 index. This is used by both the 32-bit and the 64-bit ABI.
7343 Actually, it's not clear to me that the 64-bit ABI supports these,
7344 but for non-PIC objects we will certainly want support for at least
7345 the .scommon section. */
7346
7347 bfd_boolean
7348 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7349 asection *sec, int *retval)
7350 {
7351 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7352 {
7353 *retval = SHN_MIPS_SCOMMON;
7354 return TRUE;
7355 }
7356 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7357 {
7358 *retval = SHN_MIPS_ACOMMON;
7359 return TRUE;
7360 }
7361 return FALSE;
7362 }
7363 \f
7364 /* Hook called by the linker routine which adds symbols from an object
7365 file. We must handle the special MIPS section numbers here. */
7366
7367 bfd_boolean
7368 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7369 Elf_Internal_Sym *sym, const char **namep,
7370 flagword *flagsp ATTRIBUTE_UNUSED,
7371 asection **secp, bfd_vma *valp)
7372 {
7373 if (SGI_COMPAT (abfd)
7374 && (abfd->flags & DYNAMIC) != 0
7375 && strcmp (*namep, "_rld_new_interface") == 0)
7376 {
7377 /* Skip IRIX5 rld entry name. */
7378 *namep = NULL;
7379 return TRUE;
7380 }
7381
7382 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7383 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7384 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7385 a magic symbol resolved by the linker, we ignore this bogus definition
7386 of _gp_disp. New ABI objects do not suffer from this problem so this
7387 is not done for them. */
7388 if (!NEWABI_P(abfd)
7389 && (sym->st_shndx == SHN_ABS)
7390 && (strcmp (*namep, "_gp_disp") == 0))
7391 {
7392 *namep = NULL;
7393 return TRUE;
7394 }
7395
7396 switch (sym->st_shndx)
7397 {
7398 case SHN_COMMON:
7399 /* Common symbols less than the GP size are automatically
7400 treated as SHN_MIPS_SCOMMON symbols. */
7401 if (sym->st_size > elf_gp_size (abfd)
7402 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7403 || IRIX_COMPAT (abfd) == ict_irix6)
7404 break;
7405 /* Fall through. */
7406 case SHN_MIPS_SCOMMON:
7407 *secp = bfd_make_section_old_way (abfd, ".scommon");
7408 (*secp)->flags |= SEC_IS_COMMON;
7409 *valp = sym->st_size;
7410 break;
7411
7412 case SHN_MIPS_TEXT:
7413 /* This section is used in a shared object. */
7414 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7415 {
7416 asymbol *elf_text_symbol;
7417 asection *elf_text_section;
7418 bfd_size_type amt = sizeof (asection);
7419
7420 elf_text_section = bfd_zalloc (abfd, amt);
7421 if (elf_text_section == NULL)
7422 return FALSE;
7423
7424 amt = sizeof (asymbol);
7425 elf_text_symbol = bfd_zalloc (abfd, amt);
7426 if (elf_text_symbol == NULL)
7427 return FALSE;
7428
7429 /* Initialize the section. */
7430
7431 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7432 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7433
7434 elf_text_section->symbol = elf_text_symbol;
7435 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7436
7437 elf_text_section->name = ".text";
7438 elf_text_section->flags = SEC_NO_FLAGS;
7439 elf_text_section->output_section = NULL;
7440 elf_text_section->owner = abfd;
7441 elf_text_symbol->name = ".text";
7442 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7443 elf_text_symbol->section = elf_text_section;
7444 }
7445 /* This code used to do *secp = bfd_und_section_ptr if
7446 info->shared. I don't know why, and that doesn't make sense,
7447 so I took it out. */
7448 *secp = mips_elf_tdata (abfd)->elf_text_section;
7449 break;
7450
7451 case SHN_MIPS_ACOMMON:
7452 /* Fall through. XXX Can we treat this as allocated data? */
7453 case SHN_MIPS_DATA:
7454 /* This section is used in a shared object. */
7455 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7456 {
7457 asymbol *elf_data_symbol;
7458 asection *elf_data_section;
7459 bfd_size_type amt = sizeof (asection);
7460
7461 elf_data_section = bfd_zalloc (abfd, amt);
7462 if (elf_data_section == NULL)
7463 return FALSE;
7464
7465 amt = sizeof (asymbol);
7466 elf_data_symbol = bfd_zalloc (abfd, amt);
7467 if (elf_data_symbol == NULL)
7468 return FALSE;
7469
7470 /* Initialize the section. */
7471
7472 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7473 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7474
7475 elf_data_section->symbol = elf_data_symbol;
7476 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7477
7478 elf_data_section->name = ".data";
7479 elf_data_section->flags = SEC_NO_FLAGS;
7480 elf_data_section->output_section = NULL;
7481 elf_data_section->owner = abfd;
7482 elf_data_symbol->name = ".data";
7483 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7484 elf_data_symbol->section = elf_data_section;
7485 }
7486 /* This code used to do *secp = bfd_und_section_ptr if
7487 info->shared. I don't know why, and that doesn't make sense,
7488 so I took it out. */
7489 *secp = mips_elf_tdata (abfd)->elf_data_section;
7490 break;
7491
7492 case SHN_MIPS_SUNDEFINED:
7493 *secp = bfd_und_section_ptr;
7494 break;
7495 }
7496
7497 if (SGI_COMPAT (abfd)
7498 && ! info->shared
7499 && info->output_bfd->xvec == abfd->xvec
7500 && strcmp (*namep, "__rld_obj_head") == 0)
7501 {
7502 struct elf_link_hash_entry *h;
7503 struct bfd_link_hash_entry *bh;
7504
7505 /* Mark __rld_obj_head as dynamic. */
7506 bh = NULL;
7507 if (! (_bfd_generic_link_add_one_symbol
7508 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7509 get_elf_backend_data (abfd)->collect, &bh)))
7510 return FALSE;
7511
7512 h = (struct elf_link_hash_entry *) bh;
7513 h->non_elf = 0;
7514 h->def_regular = 1;
7515 h->type = STT_OBJECT;
7516
7517 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7518 return FALSE;
7519
7520 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7521 mips_elf_hash_table (info)->rld_symbol = h;
7522 }
7523
7524 /* If this is a mips16 text symbol, add 1 to the value to make it
7525 odd. This will cause something like .word SYM to come up with
7526 the right value when it is loaded into the PC. */
7527 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7528 ++*valp;
7529
7530 return TRUE;
7531 }
7532
7533 /* This hook function is called before the linker writes out a global
7534 symbol. We mark symbols as small common if appropriate. This is
7535 also where we undo the increment of the value for a mips16 symbol. */
7536
7537 int
7538 _bfd_mips_elf_link_output_symbol_hook
7539 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7540 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7541 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7542 {
7543 /* If we see a common symbol, which implies a relocatable link, then
7544 if a symbol was small common in an input file, mark it as small
7545 common in the output file. */
7546 if (sym->st_shndx == SHN_COMMON
7547 && strcmp (input_sec->name, ".scommon") == 0)
7548 sym->st_shndx = SHN_MIPS_SCOMMON;
7549
7550 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7551 sym->st_value &= ~1;
7552
7553 return 1;
7554 }
7555 \f
7556 /* Functions for the dynamic linker. */
7557
7558 /* Create dynamic sections when linking against a dynamic object. */
7559
7560 bfd_boolean
7561 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7562 {
7563 struct elf_link_hash_entry *h;
7564 struct bfd_link_hash_entry *bh;
7565 flagword flags;
7566 register asection *s;
7567 const char * const *namep;
7568 struct mips_elf_link_hash_table *htab;
7569
7570 htab = mips_elf_hash_table (info);
7571 BFD_ASSERT (htab != NULL);
7572
7573 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7574 | SEC_LINKER_CREATED | SEC_READONLY);
7575
7576 /* The psABI requires a read-only .dynamic section, but the VxWorks
7577 EABI doesn't. */
7578 if (!htab->is_vxworks)
7579 {
7580 s = bfd_get_linker_section (abfd, ".dynamic");
7581 if (s != NULL)
7582 {
7583 if (! bfd_set_section_flags (abfd, s, flags))
7584 return FALSE;
7585 }
7586 }
7587
7588 /* We need to create .got section. */
7589 if (!mips_elf_create_got_section (abfd, info))
7590 return FALSE;
7591
7592 if (! mips_elf_rel_dyn_section (info, TRUE))
7593 return FALSE;
7594
7595 /* Create .stub section. */
7596 s = bfd_make_section_anyway_with_flags (abfd,
7597 MIPS_ELF_STUB_SECTION_NAME (abfd),
7598 flags | SEC_CODE);
7599 if (s == NULL
7600 || ! bfd_set_section_alignment (abfd, s,
7601 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7602 return FALSE;
7603 htab->sstubs = s;
7604
7605 if (!mips_elf_hash_table (info)->use_rld_obj_head
7606 && !info->shared
7607 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7608 {
7609 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7610 flags &~ (flagword) SEC_READONLY);
7611 if (s == NULL
7612 || ! bfd_set_section_alignment (abfd, s,
7613 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7614 return FALSE;
7615 }
7616
7617 /* On IRIX5, we adjust add some additional symbols and change the
7618 alignments of several sections. There is no ABI documentation
7619 indicating that this is necessary on IRIX6, nor any evidence that
7620 the linker takes such action. */
7621 if (IRIX_COMPAT (abfd) == ict_irix5)
7622 {
7623 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7624 {
7625 bh = NULL;
7626 if (! (_bfd_generic_link_add_one_symbol
7627 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7628 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7629 return FALSE;
7630
7631 h = (struct elf_link_hash_entry *) bh;
7632 h->non_elf = 0;
7633 h->def_regular = 1;
7634 h->type = STT_SECTION;
7635
7636 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7637 return FALSE;
7638 }
7639
7640 /* We need to create a .compact_rel section. */
7641 if (SGI_COMPAT (abfd))
7642 {
7643 if (!mips_elf_create_compact_rel_section (abfd, info))
7644 return FALSE;
7645 }
7646
7647 /* Change alignments of some sections. */
7648 s = bfd_get_linker_section (abfd, ".hash");
7649 if (s != NULL)
7650 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7651
7652 s = bfd_get_linker_section (abfd, ".dynsym");
7653 if (s != NULL)
7654 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7655
7656 s = bfd_get_linker_section (abfd, ".dynstr");
7657 if (s != NULL)
7658 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7659
7660 /* ??? */
7661 s = bfd_get_section_by_name (abfd, ".reginfo");
7662 if (s != NULL)
7663 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7664
7665 s = bfd_get_linker_section (abfd, ".dynamic");
7666 if (s != NULL)
7667 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7668 }
7669
7670 if (!info->shared)
7671 {
7672 const char *name;
7673
7674 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7675 bh = NULL;
7676 if (!(_bfd_generic_link_add_one_symbol
7677 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7678 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7679 return FALSE;
7680
7681 h = (struct elf_link_hash_entry *) bh;
7682 h->non_elf = 0;
7683 h->def_regular = 1;
7684 h->type = STT_SECTION;
7685
7686 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7687 return FALSE;
7688
7689 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7690 {
7691 /* __rld_map is a four byte word located in the .data section
7692 and is filled in by the rtld to contain a pointer to
7693 the _r_debug structure. Its symbol value will be set in
7694 _bfd_mips_elf_finish_dynamic_symbol. */
7695 s = bfd_get_linker_section (abfd, ".rld_map");
7696 BFD_ASSERT (s != NULL);
7697
7698 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7699 bh = NULL;
7700 if (!(_bfd_generic_link_add_one_symbol
7701 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7702 get_elf_backend_data (abfd)->collect, &bh)))
7703 return FALSE;
7704
7705 h = (struct elf_link_hash_entry *) bh;
7706 h->non_elf = 0;
7707 h->def_regular = 1;
7708 h->type = STT_OBJECT;
7709
7710 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7711 return FALSE;
7712 mips_elf_hash_table (info)->rld_symbol = h;
7713 }
7714 }
7715
7716 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7717 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7718 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7719 return FALSE;
7720
7721 /* Cache the sections created above. */
7722 htab->splt = bfd_get_linker_section (abfd, ".plt");
7723 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7724 if (htab->is_vxworks)
7725 {
7726 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7727 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7728 }
7729 else
7730 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7731 if (!htab->sdynbss
7732 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7733 || !htab->srelplt
7734 || !htab->splt)
7735 abort ();
7736
7737 /* Do the usual VxWorks handling. */
7738 if (htab->is_vxworks
7739 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7740 return FALSE;
7741
7742 return TRUE;
7743 }
7744 \f
7745 /* Return true if relocation REL against section SEC is a REL rather than
7746 RELA relocation. RELOCS is the first relocation in the section and
7747 ABFD is the bfd that contains SEC. */
7748
7749 static bfd_boolean
7750 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7751 const Elf_Internal_Rela *relocs,
7752 const Elf_Internal_Rela *rel)
7753 {
7754 Elf_Internal_Shdr *rel_hdr;
7755 const struct elf_backend_data *bed;
7756
7757 /* To determine which flavor of relocation this is, we depend on the
7758 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7759 rel_hdr = elf_section_data (sec)->rel.hdr;
7760 if (rel_hdr == NULL)
7761 return FALSE;
7762 bed = get_elf_backend_data (abfd);
7763 return ((size_t) (rel - relocs)
7764 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7765 }
7766
7767 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7768 HOWTO is the relocation's howto and CONTENTS points to the contents
7769 of the section that REL is against. */
7770
7771 static bfd_vma
7772 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7773 reloc_howto_type *howto, bfd_byte *contents)
7774 {
7775 bfd_byte *location;
7776 unsigned int r_type;
7777 bfd_vma addend;
7778
7779 r_type = ELF_R_TYPE (abfd, rel->r_info);
7780 location = contents + rel->r_offset;
7781
7782 /* Get the addend, which is stored in the input file. */
7783 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7784 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7785 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7786
7787 return addend & howto->src_mask;
7788 }
7789
7790 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7791 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7792 and update *ADDEND with the final addend. Return true on success
7793 or false if the LO16 could not be found. RELEND is the exclusive
7794 upper bound on the relocations for REL's section. */
7795
7796 static bfd_boolean
7797 mips_elf_add_lo16_rel_addend (bfd *abfd,
7798 const Elf_Internal_Rela *rel,
7799 const Elf_Internal_Rela *relend,
7800 bfd_byte *contents, bfd_vma *addend)
7801 {
7802 unsigned int r_type, lo16_type;
7803 const Elf_Internal_Rela *lo16_relocation;
7804 reloc_howto_type *lo16_howto;
7805 bfd_vma l;
7806
7807 r_type = ELF_R_TYPE (abfd, rel->r_info);
7808 if (mips16_reloc_p (r_type))
7809 lo16_type = R_MIPS16_LO16;
7810 else if (micromips_reloc_p (r_type))
7811 lo16_type = R_MICROMIPS_LO16;
7812 else if (r_type == R_MIPS_PCHI16)
7813 lo16_type = R_MIPS_PCLO16;
7814 else
7815 lo16_type = R_MIPS_LO16;
7816
7817 /* The combined value is the sum of the HI16 addend, left-shifted by
7818 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7819 code does a `lui' of the HI16 value, and then an `addiu' of the
7820 LO16 value.)
7821
7822 Scan ahead to find a matching LO16 relocation.
7823
7824 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7825 be immediately following. However, for the IRIX6 ABI, the next
7826 relocation may be a composed relocation consisting of several
7827 relocations for the same address. In that case, the R_MIPS_LO16
7828 relocation may occur as one of these. We permit a similar
7829 extension in general, as that is useful for GCC.
7830
7831 In some cases GCC dead code elimination removes the LO16 but keeps
7832 the corresponding HI16. This is strictly speaking a violation of
7833 the ABI but not immediately harmful. */
7834 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7835 if (lo16_relocation == NULL)
7836 return FALSE;
7837
7838 /* Obtain the addend kept there. */
7839 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7840 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7841
7842 l <<= lo16_howto->rightshift;
7843 l = _bfd_mips_elf_sign_extend (l, 16);
7844
7845 *addend <<= 16;
7846 *addend += l;
7847 return TRUE;
7848 }
7849
7850 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7851 store the contents in *CONTENTS on success. Assume that *CONTENTS
7852 already holds the contents if it is nonull on entry. */
7853
7854 static bfd_boolean
7855 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7856 {
7857 if (*contents)
7858 return TRUE;
7859
7860 /* Get cached copy if it exists. */
7861 if (elf_section_data (sec)->this_hdr.contents != NULL)
7862 {
7863 *contents = elf_section_data (sec)->this_hdr.contents;
7864 return TRUE;
7865 }
7866
7867 return bfd_malloc_and_get_section (abfd, sec, contents);
7868 }
7869
7870 /* Make a new PLT record to keep internal data. */
7871
7872 static struct plt_entry *
7873 mips_elf_make_plt_record (bfd *abfd)
7874 {
7875 struct plt_entry *entry;
7876
7877 entry = bfd_zalloc (abfd, sizeof (*entry));
7878 if (entry == NULL)
7879 return NULL;
7880
7881 entry->stub_offset = MINUS_ONE;
7882 entry->mips_offset = MINUS_ONE;
7883 entry->comp_offset = MINUS_ONE;
7884 entry->gotplt_index = MINUS_ONE;
7885 return entry;
7886 }
7887
7888 /* Look through the relocs for a section during the first phase, and
7889 allocate space in the global offset table and record the need for
7890 standard MIPS and compressed procedure linkage table entries. */
7891
7892 bfd_boolean
7893 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7894 asection *sec, const Elf_Internal_Rela *relocs)
7895 {
7896 const char *name;
7897 bfd *dynobj;
7898 Elf_Internal_Shdr *symtab_hdr;
7899 struct elf_link_hash_entry **sym_hashes;
7900 size_t extsymoff;
7901 const Elf_Internal_Rela *rel;
7902 const Elf_Internal_Rela *rel_end;
7903 asection *sreloc;
7904 const struct elf_backend_data *bed;
7905 struct mips_elf_link_hash_table *htab;
7906 bfd_byte *contents;
7907 bfd_vma addend;
7908 reloc_howto_type *howto;
7909
7910 if (info->relocatable)
7911 return TRUE;
7912
7913 htab = mips_elf_hash_table (info);
7914 BFD_ASSERT (htab != NULL);
7915
7916 dynobj = elf_hash_table (info)->dynobj;
7917 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7918 sym_hashes = elf_sym_hashes (abfd);
7919 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7920
7921 bed = get_elf_backend_data (abfd);
7922 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7923
7924 /* Check for the mips16 stub sections. */
7925
7926 name = bfd_get_section_name (abfd, sec);
7927 if (FN_STUB_P (name))
7928 {
7929 unsigned long r_symndx;
7930
7931 /* Look at the relocation information to figure out which symbol
7932 this is for. */
7933
7934 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7935 if (r_symndx == 0)
7936 {
7937 (*_bfd_error_handler)
7938 (_("%B: Warning: cannot determine the target function for"
7939 " stub section `%s'"),
7940 abfd, name);
7941 bfd_set_error (bfd_error_bad_value);
7942 return FALSE;
7943 }
7944
7945 if (r_symndx < extsymoff
7946 || sym_hashes[r_symndx - extsymoff] == NULL)
7947 {
7948 asection *o;
7949
7950 /* This stub is for a local symbol. This stub will only be
7951 needed if there is some relocation in this BFD, other
7952 than a 16 bit function call, which refers to this symbol. */
7953 for (o = abfd->sections; o != NULL; o = o->next)
7954 {
7955 Elf_Internal_Rela *sec_relocs;
7956 const Elf_Internal_Rela *r, *rend;
7957
7958 /* We can ignore stub sections when looking for relocs. */
7959 if ((o->flags & SEC_RELOC) == 0
7960 || o->reloc_count == 0
7961 || section_allows_mips16_refs_p (o))
7962 continue;
7963
7964 sec_relocs
7965 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7966 info->keep_memory);
7967 if (sec_relocs == NULL)
7968 return FALSE;
7969
7970 rend = sec_relocs + o->reloc_count;
7971 for (r = sec_relocs; r < rend; r++)
7972 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7973 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7974 break;
7975
7976 if (elf_section_data (o)->relocs != sec_relocs)
7977 free (sec_relocs);
7978
7979 if (r < rend)
7980 break;
7981 }
7982
7983 if (o == NULL)
7984 {
7985 /* There is no non-call reloc for this stub, so we do
7986 not need it. Since this function is called before
7987 the linker maps input sections to output sections, we
7988 can easily discard it by setting the SEC_EXCLUDE
7989 flag. */
7990 sec->flags |= SEC_EXCLUDE;
7991 return TRUE;
7992 }
7993
7994 /* Record this stub in an array of local symbol stubs for
7995 this BFD. */
7996 if (mips_elf_tdata (abfd)->local_stubs == NULL)
7997 {
7998 unsigned long symcount;
7999 asection **n;
8000 bfd_size_type amt;
8001
8002 if (elf_bad_symtab (abfd))
8003 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8004 else
8005 symcount = symtab_hdr->sh_info;
8006 amt = symcount * sizeof (asection *);
8007 n = bfd_zalloc (abfd, amt);
8008 if (n == NULL)
8009 return FALSE;
8010 mips_elf_tdata (abfd)->local_stubs = n;
8011 }
8012
8013 sec->flags |= SEC_KEEP;
8014 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8015
8016 /* We don't need to set mips16_stubs_seen in this case.
8017 That flag is used to see whether we need to look through
8018 the global symbol table for stubs. We don't need to set
8019 it here, because we just have a local stub. */
8020 }
8021 else
8022 {
8023 struct mips_elf_link_hash_entry *h;
8024
8025 h = ((struct mips_elf_link_hash_entry *)
8026 sym_hashes[r_symndx - extsymoff]);
8027
8028 while (h->root.root.type == bfd_link_hash_indirect
8029 || h->root.root.type == bfd_link_hash_warning)
8030 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8031
8032 /* H is the symbol this stub is for. */
8033
8034 /* If we already have an appropriate stub for this function, we
8035 don't need another one, so we can discard this one. Since
8036 this function is called before the linker maps input sections
8037 to output sections, we can easily discard it by setting the
8038 SEC_EXCLUDE flag. */
8039 if (h->fn_stub != NULL)
8040 {
8041 sec->flags |= SEC_EXCLUDE;
8042 return TRUE;
8043 }
8044
8045 sec->flags |= SEC_KEEP;
8046 h->fn_stub = sec;
8047 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8048 }
8049 }
8050 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8051 {
8052 unsigned long r_symndx;
8053 struct mips_elf_link_hash_entry *h;
8054 asection **loc;
8055
8056 /* Look at the relocation information to figure out which symbol
8057 this is for. */
8058
8059 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8060 if (r_symndx == 0)
8061 {
8062 (*_bfd_error_handler)
8063 (_("%B: Warning: cannot determine the target function for"
8064 " stub section `%s'"),
8065 abfd, name);
8066 bfd_set_error (bfd_error_bad_value);
8067 return FALSE;
8068 }
8069
8070 if (r_symndx < extsymoff
8071 || sym_hashes[r_symndx - extsymoff] == NULL)
8072 {
8073 asection *o;
8074
8075 /* This stub is for a local symbol. This stub will only be
8076 needed if there is some relocation (R_MIPS16_26) in this BFD
8077 that refers to this symbol. */
8078 for (o = abfd->sections; o != NULL; o = o->next)
8079 {
8080 Elf_Internal_Rela *sec_relocs;
8081 const Elf_Internal_Rela *r, *rend;
8082
8083 /* We can ignore stub sections when looking for relocs. */
8084 if ((o->flags & SEC_RELOC) == 0
8085 || o->reloc_count == 0
8086 || section_allows_mips16_refs_p (o))
8087 continue;
8088
8089 sec_relocs
8090 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8091 info->keep_memory);
8092 if (sec_relocs == NULL)
8093 return FALSE;
8094
8095 rend = sec_relocs + o->reloc_count;
8096 for (r = sec_relocs; r < rend; r++)
8097 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8098 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8099 break;
8100
8101 if (elf_section_data (o)->relocs != sec_relocs)
8102 free (sec_relocs);
8103
8104 if (r < rend)
8105 break;
8106 }
8107
8108 if (o == NULL)
8109 {
8110 /* There is no non-call reloc for this stub, so we do
8111 not need it. Since this function is called before
8112 the linker maps input sections to output sections, we
8113 can easily discard it by setting the SEC_EXCLUDE
8114 flag. */
8115 sec->flags |= SEC_EXCLUDE;
8116 return TRUE;
8117 }
8118
8119 /* Record this stub in an array of local symbol call_stubs for
8120 this BFD. */
8121 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8122 {
8123 unsigned long symcount;
8124 asection **n;
8125 bfd_size_type amt;
8126
8127 if (elf_bad_symtab (abfd))
8128 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8129 else
8130 symcount = symtab_hdr->sh_info;
8131 amt = symcount * sizeof (asection *);
8132 n = bfd_zalloc (abfd, amt);
8133 if (n == NULL)
8134 return FALSE;
8135 mips_elf_tdata (abfd)->local_call_stubs = n;
8136 }
8137
8138 sec->flags |= SEC_KEEP;
8139 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8140
8141 /* We don't need to set mips16_stubs_seen in this case.
8142 That flag is used to see whether we need to look through
8143 the global symbol table for stubs. We don't need to set
8144 it here, because we just have a local stub. */
8145 }
8146 else
8147 {
8148 h = ((struct mips_elf_link_hash_entry *)
8149 sym_hashes[r_symndx - extsymoff]);
8150
8151 /* H is the symbol this stub is for. */
8152
8153 if (CALL_FP_STUB_P (name))
8154 loc = &h->call_fp_stub;
8155 else
8156 loc = &h->call_stub;
8157
8158 /* If we already have an appropriate stub for this function, we
8159 don't need another one, so we can discard this one. Since
8160 this function is called before the linker maps input sections
8161 to output sections, we can easily discard it by setting the
8162 SEC_EXCLUDE flag. */
8163 if (*loc != NULL)
8164 {
8165 sec->flags |= SEC_EXCLUDE;
8166 return TRUE;
8167 }
8168
8169 sec->flags |= SEC_KEEP;
8170 *loc = sec;
8171 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8172 }
8173 }
8174
8175 sreloc = NULL;
8176 contents = NULL;
8177 for (rel = relocs; rel < rel_end; ++rel)
8178 {
8179 unsigned long r_symndx;
8180 unsigned int r_type;
8181 struct elf_link_hash_entry *h;
8182 bfd_boolean can_make_dynamic_p;
8183 bfd_boolean call_reloc_p;
8184 bfd_boolean constrain_symbol_p;
8185
8186 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8187 r_type = ELF_R_TYPE (abfd, rel->r_info);
8188
8189 if (r_symndx < extsymoff)
8190 h = NULL;
8191 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8192 {
8193 (*_bfd_error_handler)
8194 (_("%B: Malformed reloc detected for section %s"),
8195 abfd, name);
8196 bfd_set_error (bfd_error_bad_value);
8197 return FALSE;
8198 }
8199 else
8200 {
8201 h = sym_hashes[r_symndx - extsymoff];
8202 if (h != NULL)
8203 {
8204 while (h->root.type == bfd_link_hash_indirect
8205 || h->root.type == bfd_link_hash_warning)
8206 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8207
8208 /* PR15323, ref flags aren't set for references in the
8209 same object. */
8210 h->root.non_ir_ref = 1;
8211 }
8212 }
8213
8214 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8215 relocation into a dynamic one. */
8216 can_make_dynamic_p = FALSE;
8217
8218 /* Set CALL_RELOC_P to true if the relocation is for a call,
8219 and if pointer equality therefore doesn't matter. */
8220 call_reloc_p = FALSE;
8221
8222 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8223 into account when deciding how to define the symbol.
8224 Relocations in nonallocatable sections such as .pdr and
8225 .debug* should have no effect. */
8226 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8227
8228 switch (r_type)
8229 {
8230 case R_MIPS_CALL16:
8231 case R_MIPS_CALL_HI16:
8232 case R_MIPS_CALL_LO16:
8233 case R_MIPS16_CALL16:
8234 case R_MICROMIPS_CALL16:
8235 case R_MICROMIPS_CALL_HI16:
8236 case R_MICROMIPS_CALL_LO16:
8237 call_reloc_p = TRUE;
8238 /* Fall through. */
8239
8240 case R_MIPS_GOT16:
8241 case R_MIPS_GOT_HI16:
8242 case R_MIPS_GOT_LO16:
8243 case R_MIPS_GOT_PAGE:
8244 case R_MIPS_GOT_OFST:
8245 case R_MIPS_GOT_DISP:
8246 case R_MIPS_TLS_GOTTPREL:
8247 case R_MIPS_TLS_GD:
8248 case R_MIPS_TLS_LDM:
8249 case R_MIPS16_GOT16:
8250 case R_MIPS16_TLS_GOTTPREL:
8251 case R_MIPS16_TLS_GD:
8252 case R_MIPS16_TLS_LDM:
8253 case R_MICROMIPS_GOT16:
8254 case R_MICROMIPS_GOT_HI16:
8255 case R_MICROMIPS_GOT_LO16:
8256 case R_MICROMIPS_GOT_PAGE:
8257 case R_MICROMIPS_GOT_OFST:
8258 case R_MICROMIPS_GOT_DISP:
8259 case R_MICROMIPS_TLS_GOTTPREL:
8260 case R_MICROMIPS_TLS_GD:
8261 case R_MICROMIPS_TLS_LDM:
8262 if (dynobj == NULL)
8263 elf_hash_table (info)->dynobj = dynobj = abfd;
8264 if (!mips_elf_create_got_section (dynobj, info))
8265 return FALSE;
8266 if (htab->is_vxworks && !info->shared)
8267 {
8268 (*_bfd_error_handler)
8269 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8270 abfd, (unsigned long) rel->r_offset);
8271 bfd_set_error (bfd_error_bad_value);
8272 return FALSE;
8273 }
8274 can_make_dynamic_p = TRUE;
8275 break;
8276
8277 case R_MIPS_NONE:
8278 case R_MIPS_JALR:
8279 case R_MICROMIPS_JALR:
8280 /* These relocations have empty fields and are purely there to
8281 provide link information. The symbol value doesn't matter. */
8282 constrain_symbol_p = FALSE;
8283 break;
8284
8285 case R_MIPS_GPREL16:
8286 case R_MIPS_GPREL32:
8287 case R_MIPS16_GPREL:
8288 case R_MICROMIPS_GPREL16:
8289 /* GP-relative relocations always resolve to a definition in a
8290 regular input file, ignoring the one-definition rule. This is
8291 important for the GP setup sequence in NewABI code, which
8292 always resolves to a local function even if other relocations
8293 against the symbol wouldn't. */
8294 constrain_symbol_p = FALSE;
8295 break;
8296
8297 case R_MIPS_32:
8298 case R_MIPS_REL32:
8299 case R_MIPS_64:
8300 /* In VxWorks executables, references to external symbols
8301 must be handled using copy relocs or PLT entries; it is not
8302 possible to convert this relocation into a dynamic one.
8303
8304 For executables that use PLTs and copy-relocs, we have a
8305 choice between converting the relocation into a dynamic
8306 one or using copy relocations or PLT entries. It is
8307 usually better to do the former, unless the relocation is
8308 against a read-only section. */
8309 if ((info->shared
8310 || (h != NULL
8311 && !htab->is_vxworks
8312 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8313 && !(!info->nocopyreloc
8314 && !PIC_OBJECT_P (abfd)
8315 && MIPS_ELF_READONLY_SECTION (sec))))
8316 && (sec->flags & SEC_ALLOC) != 0)
8317 {
8318 can_make_dynamic_p = TRUE;
8319 if (dynobj == NULL)
8320 elf_hash_table (info)->dynobj = dynobj = abfd;
8321 }
8322 break;
8323
8324 case R_MIPS_26:
8325 case R_MIPS_PC16:
8326 case R_MIPS_PC21_S2:
8327 case R_MIPS_PC26_S2:
8328 case R_MIPS16_26:
8329 case R_MICROMIPS_26_S1:
8330 case R_MICROMIPS_PC7_S1:
8331 case R_MICROMIPS_PC10_S1:
8332 case R_MICROMIPS_PC16_S1:
8333 case R_MICROMIPS_PC23_S2:
8334 call_reloc_p = TRUE;
8335 break;
8336 }
8337
8338 if (h)
8339 {
8340 if (constrain_symbol_p)
8341 {
8342 if (!can_make_dynamic_p)
8343 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8344
8345 if (!call_reloc_p)
8346 h->pointer_equality_needed = 1;
8347
8348 /* We must not create a stub for a symbol that has
8349 relocations related to taking the function's address.
8350 This doesn't apply to VxWorks, where CALL relocs refer
8351 to a .got.plt entry instead of a normal .got entry. */
8352 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8353 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8354 }
8355
8356 /* Relocations against the special VxWorks __GOTT_BASE__ and
8357 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8358 room for them in .rela.dyn. */
8359 if (is_gott_symbol (info, h))
8360 {
8361 if (sreloc == NULL)
8362 {
8363 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8364 if (sreloc == NULL)
8365 return FALSE;
8366 }
8367 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8368 if (MIPS_ELF_READONLY_SECTION (sec))
8369 /* We tell the dynamic linker that there are
8370 relocations against the text segment. */
8371 info->flags |= DF_TEXTREL;
8372 }
8373 }
8374 else if (call_lo16_reloc_p (r_type)
8375 || got_lo16_reloc_p (r_type)
8376 || got_disp_reloc_p (r_type)
8377 || (got16_reloc_p (r_type) && htab->is_vxworks))
8378 {
8379 /* We may need a local GOT entry for this relocation. We
8380 don't count R_MIPS_GOT_PAGE because we can estimate the
8381 maximum number of pages needed by looking at the size of
8382 the segment. Similar comments apply to R_MIPS*_GOT16 and
8383 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8384 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8385 R_MIPS_CALL_HI16 because these are always followed by an
8386 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8387 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8388 rel->r_addend, info, r_type))
8389 return FALSE;
8390 }
8391
8392 if (h != NULL
8393 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8394 ELF_ST_IS_MIPS16 (h->other)))
8395 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8396
8397 switch (r_type)
8398 {
8399 case R_MIPS_CALL16:
8400 case R_MIPS16_CALL16:
8401 case R_MICROMIPS_CALL16:
8402 if (h == NULL)
8403 {
8404 (*_bfd_error_handler)
8405 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8406 abfd, (unsigned long) rel->r_offset);
8407 bfd_set_error (bfd_error_bad_value);
8408 return FALSE;
8409 }
8410 /* Fall through. */
8411
8412 case R_MIPS_CALL_HI16:
8413 case R_MIPS_CALL_LO16:
8414 case R_MICROMIPS_CALL_HI16:
8415 case R_MICROMIPS_CALL_LO16:
8416 if (h != NULL)
8417 {
8418 /* Make sure there is room in the regular GOT to hold the
8419 function's address. We may eliminate it in favour of
8420 a .got.plt entry later; see mips_elf_count_got_symbols. */
8421 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8422 r_type))
8423 return FALSE;
8424
8425 /* We need a stub, not a plt entry for the undefined
8426 function. But we record it as if it needs plt. See
8427 _bfd_elf_adjust_dynamic_symbol. */
8428 h->needs_plt = 1;
8429 h->type = STT_FUNC;
8430 }
8431 break;
8432
8433 case R_MIPS_GOT_PAGE:
8434 case R_MICROMIPS_GOT_PAGE:
8435 case R_MIPS16_GOT16:
8436 case R_MIPS_GOT16:
8437 case R_MIPS_GOT_HI16:
8438 case R_MIPS_GOT_LO16:
8439 case R_MICROMIPS_GOT16:
8440 case R_MICROMIPS_GOT_HI16:
8441 case R_MICROMIPS_GOT_LO16:
8442 if (!h || got_page_reloc_p (r_type))
8443 {
8444 /* This relocation needs (or may need, if h != NULL) a
8445 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8446 know for sure until we know whether the symbol is
8447 preemptible. */
8448 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8449 {
8450 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8451 return FALSE;
8452 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8453 addend = mips_elf_read_rel_addend (abfd, rel,
8454 howto, contents);
8455 if (got16_reloc_p (r_type))
8456 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8457 contents, &addend);
8458 else
8459 addend <<= howto->rightshift;
8460 }
8461 else
8462 addend = rel->r_addend;
8463 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8464 h, addend))
8465 return FALSE;
8466
8467 if (h)
8468 {
8469 struct mips_elf_link_hash_entry *hmips =
8470 (struct mips_elf_link_hash_entry *) h;
8471
8472 /* This symbol is definitely not overridable. */
8473 if (hmips->root.def_regular
8474 && ! (info->shared && ! info->symbolic
8475 && ! hmips->root.forced_local))
8476 h = NULL;
8477 }
8478 }
8479 /* If this is a global, overridable symbol, GOT_PAGE will
8480 decay to GOT_DISP, so we'll need a GOT entry for it. */
8481 /* Fall through. */
8482
8483 case R_MIPS_GOT_DISP:
8484 case R_MICROMIPS_GOT_DISP:
8485 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8486 FALSE, r_type))
8487 return FALSE;
8488 break;
8489
8490 case R_MIPS_TLS_GOTTPREL:
8491 case R_MIPS16_TLS_GOTTPREL:
8492 case R_MICROMIPS_TLS_GOTTPREL:
8493 if (info->shared)
8494 info->flags |= DF_STATIC_TLS;
8495 /* Fall through */
8496
8497 case R_MIPS_TLS_LDM:
8498 case R_MIPS16_TLS_LDM:
8499 case R_MICROMIPS_TLS_LDM:
8500 if (tls_ldm_reloc_p (r_type))
8501 {
8502 r_symndx = STN_UNDEF;
8503 h = NULL;
8504 }
8505 /* Fall through */
8506
8507 case R_MIPS_TLS_GD:
8508 case R_MIPS16_TLS_GD:
8509 case R_MICROMIPS_TLS_GD:
8510 /* This symbol requires a global offset table entry, or two
8511 for TLS GD relocations. */
8512 if (h != NULL)
8513 {
8514 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8515 FALSE, r_type))
8516 return FALSE;
8517 }
8518 else
8519 {
8520 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8521 rel->r_addend,
8522 info, r_type))
8523 return FALSE;
8524 }
8525 break;
8526
8527 case R_MIPS_32:
8528 case R_MIPS_REL32:
8529 case R_MIPS_64:
8530 /* In VxWorks executables, references to external symbols
8531 are handled using copy relocs or PLT stubs, so there's
8532 no need to add a .rela.dyn entry for this relocation. */
8533 if (can_make_dynamic_p)
8534 {
8535 if (sreloc == NULL)
8536 {
8537 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8538 if (sreloc == NULL)
8539 return FALSE;
8540 }
8541 if (info->shared && h == NULL)
8542 {
8543 /* When creating a shared object, we must copy these
8544 reloc types into the output file as R_MIPS_REL32
8545 relocs. Make room for this reloc in .rel(a).dyn. */
8546 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8547 if (MIPS_ELF_READONLY_SECTION (sec))
8548 /* We tell the dynamic linker that there are
8549 relocations against the text segment. */
8550 info->flags |= DF_TEXTREL;
8551 }
8552 else
8553 {
8554 struct mips_elf_link_hash_entry *hmips;
8555
8556 /* For a shared object, we must copy this relocation
8557 unless the symbol turns out to be undefined and
8558 weak with non-default visibility, in which case
8559 it will be left as zero.
8560
8561 We could elide R_MIPS_REL32 for locally binding symbols
8562 in shared libraries, but do not yet do so.
8563
8564 For an executable, we only need to copy this
8565 reloc if the symbol is defined in a dynamic
8566 object. */
8567 hmips = (struct mips_elf_link_hash_entry *) h;
8568 ++hmips->possibly_dynamic_relocs;
8569 if (MIPS_ELF_READONLY_SECTION (sec))
8570 /* We need it to tell the dynamic linker if there
8571 are relocations against the text segment. */
8572 hmips->readonly_reloc = TRUE;
8573 }
8574 }
8575
8576 if (SGI_COMPAT (abfd))
8577 mips_elf_hash_table (info)->compact_rel_size +=
8578 sizeof (Elf32_External_crinfo);
8579 break;
8580
8581 case R_MIPS_26:
8582 case R_MIPS_GPREL16:
8583 case R_MIPS_LITERAL:
8584 case R_MIPS_GPREL32:
8585 case R_MICROMIPS_26_S1:
8586 case R_MICROMIPS_GPREL16:
8587 case R_MICROMIPS_LITERAL:
8588 case R_MICROMIPS_GPREL7_S2:
8589 if (SGI_COMPAT (abfd))
8590 mips_elf_hash_table (info)->compact_rel_size +=
8591 sizeof (Elf32_External_crinfo);
8592 break;
8593
8594 /* This relocation describes the C++ object vtable hierarchy.
8595 Reconstruct it for later use during GC. */
8596 case R_MIPS_GNU_VTINHERIT:
8597 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8598 return FALSE;
8599 break;
8600
8601 /* This relocation describes which C++ vtable entries are actually
8602 used. Record for later use during GC. */
8603 case R_MIPS_GNU_VTENTRY:
8604 BFD_ASSERT (h != NULL);
8605 if (h != NULL
8606 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8607 return FALSE;
8608 break;
8609
8610 default:
8611 break;
8612 }
8613
8614 /* Record the need for a PLT entry. At this point we don't know
8615 yet if we are going to create a PLT in the first place, but
8616 we only record whether the relocation requires a standard MIPS
8617 or a compressed code entry anyway. If we don't make a PLT after
8618 all, then we'll just ignore these arrangements. Likewise if
8619 a PLT entry is not created because the symbol is satisfied
8620 locally. */
8621 if (h != NULL
8622 && jal_reloc_p (r_type)
8623 && !SYMBOL_CALLS_LOCAL (info, h))
8624 {
8625 if (h->plt.plist == NULL)
8626 h->plt.plist = mips_elf_make_plt_record (abfd);
8627 if (h->plt.plist == NULL)
8628 return FALSE;
8629
8630 if (r_type == R_MIPS_26)
8631 h->plt.plist->need_mips = TRUE;
8632 else
8633 h->plt.plist->need_comp = TRUE;
8634 }
8635
8636 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8637 if there is one. We only need to handle global symbols here;
8638 we decide whether to keep or delete stubs for local symbols
8639 when processing the stub's relocations. */
8640 if (h != NULL
8641 && !mips16_call_reloc_p (r_type)
8642 && !section_allows_mips16_refs_p (sec))
8643 {
8644 struct mips_elf_link_hash_entry *mh;
8645
8646 mh = (struct mips_elf_link_hash_entry *) h;
8647 mh->need_fn_stub = TRUE;
8648 }
8649
8650 /* Refuse some position-dependent relocations when creating a
8651 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8652 not PIC, but we can create dynamic relocations and the result
8653 will be fine. Also do not refuse R_MIPS_LO16, which can be
8654 combined with R_MIPS_GOT16. */
8655 if (info->shared)
8656 {
8657 switch (r_type)
8658 {
8659 case R_MIPS16_HI16:
8660 case R_MIPS_HI16:
8661 case R_MIPS_HIGHER:
8662 case R_MIPS_HIGHEST:
8663 case R_MICROMIPS_HI16:
8664 case R_MICROMIPS_HIGHER:
8665 case R_MICROMIPS_HIGHEST:
8666 /* Don't refuse a high part relocation if it's against
8667 no symbol (e.g. part of a compound relocation). */
8668 if (r_symndx == STN_UNDEF)
8669 break;
8670
8671 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8672 and has a special meaning. */
8673 if (!NEWABI_P (abfd) && h != NULL
8674 && strcmp (h->root.root.string, "_gp_disp") == 0)
8675 break;
8676
8677 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8678 if (is_gott_symbol (info, h))
8679 break;
8680
8681 /* FALLTHROUGH */
8682
8683 case R_MIPS16_26:
8684 case R_MIPS_26:
8685 case R_MICROMIPS_26_S1:
8686 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8687 (*_bfd_error_handler)
8688 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8689 abfd, howto->name,
8690 (h) ? h->root.root.string : "a local symbol");
8691 bfd_set_error (bfd_error_bad_value);
8692 return FALSE;
8693 default:
8694 break;
8695 }
8696 }
8697 }
8698
8699 return TRUE;
8700 }
8701 \f
8702 bfd_boolean
8703 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8704 struct bfd_link_info *link_info,
8705 bfd_boolean *again)
8706 {
8707 Elf_Internal_Rela *internal_relocs;
8708 Elf_Internal_Rela *irel, *irelend;
8709 Elf_Internal_Shdr *symtab_hdr;
8710 bfd_byte *contents = NULL;
8711 size_t extsymoff;
8712 bfd_boolean changed_contents = FALSE;
8713 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8714 Elf_Internal_Sym *isymbuf = NULL;
8715
8716 /* We are not currently changing any sizes, so only one pass. */
8717 *again = FALSE;
8718
8719 if (link_info->relocatable)
8720 return TRUE;
8721
8722 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8723 link_info->keep_memory);
8724 if (internal_relocs == NULL)
8725 return TRUE;
8726
8727 irelend = internal_relocs + sec->reloc_count
8728 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8729 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8730 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8731
8732 for (irel = internal_relocs; irel < irelend; irel++)
8733 {
8734 bfd_vma symval;
8735 bfd_signed_vma sym_offset;
8736 unsigned int r_type;
8737 unsigned long r_symndx;
8738 asection *sym_sec;
8739 unsigned long instruction;
8740
8741 /* Turn jalr into bgezal, and jr into beq, if they're marked
8742 with a JALR relocation, that indicate where they jump to.
8743 This saves some pipeline bubbles. */
8744 r_type = ELF_R_TYPE (abfd, irel->r_info);
8745 if (r_type != R_MIPS_JALR)
8746 continue;
8747
8748 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8749 /* Compute the address of the jump target. */
8750 if (r_symndx >= extsymoff)
8751 {
8752 struct mips_elf_link_hash_entry *h
8753 = ((struct mips_elf_link_hash_entry *)
8754 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8755
8756 while (h->root.root.type == bfd_link_hash_indirect
8757 || h->root.root.type == bfd_link_hash_warning)
8758 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8759
8760 /* If a symbol is undefined, or if it may be overridden,
8761 skip it. */
8762 if (! ((h->root.root.type == bfd_link_hash_defined
8763 || h->root.root.type == bfd_link_hash_defweak)
8764 && h->root.root.u.def.section)
8765 || (link_info->shared && ! link_info->symbolic
8766 && !h->root.forced_local))
8767 continue;
8768
8769 sym_sec = h->root.root.u.def.section;
8770 if (sym_sec->output_section)
8771 symval = (h->root.root.u.def.value
8772 + sym_sec->output_section->vma
8773 + sym_sec->output_offset);
8774 else
8775 symval = h->root.root.u.def.value;
8776 }
8777 else
8778 {
8779 Elf_Internal_Sym *isym;
8780
8781 /* Read this BFD's symbols if we haven't done so already. */
8782 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8783 {
8784 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8785 if (isymbuf == NULL)
8786 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8787 symtab_hdr->sh_info, 0,
8788 NULL, NULL, NULL);
8789 if (isymbuf == NULL)
8790 goto relax_return;
8791 }
8792
8793 isym = isymbuf + r_symndx;
8794 if (isym->st_shndx == SHN_UNDEF)
8795 continue;
8796 else if (isym->st_shndx == SHN_ABS)
8797 sym_sec = bfd_abs_section_ptr;
8798 else if (isym->st_shndx == SHN_COMMON)
8799 sym_sec = bfd_com_section_ptr;
8800 else
8801 sym_sec
8802 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8803 symval = isym->st_value
8804 + sym_sec->output_section->vma
8805 + sym_sec->output_offset;
8806 }
8807
8808 /* Compute branch offset, from delay slot of the jump to the
8809 branch target. */
8810 sym_offset = (symval + irel->r_addend)
8811 - (sec_start + irel->r_offset + 4);
8812
8813 /* Branch offset must be properly aligned. */
8814 if ((sym_offset & 3) != 0)
8815 continue;
8816
8817 sym_offset >>= 2;
8818
8819 /* Check that it's in range. */
8820 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8821 continue;
8822
8823 /* Get the section contents if we haven't done so already. */
8824 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8825 goto relax_return;
8826
8827 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8828
8829 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8830 if ((instruction & 0xfc1fffff) == 0x0000f809)
8831 instruction = 0x04110000;
8832 /* If it was jr <reg>, turn it into b <target>. */
8833 else if ((instruction & 0xfc1fffff) == 0x00000008)
8834 instruction = 0x10000000;
8835 else
8836 continue;
8837
8838 instruction |= (sym_offset & 0xffff);
8839 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8840 changed_contents = TRUE;
8841 }
8842
8843 if (contents != NULL
8844 && elf_section_data (sec)->this_hdr.contents != contents)
8845 {
8846 if (!changed_contents && !link_info->keep_memory)
8847 free (contents);
8848 else
8849 {
8850 /* Cache the section contents for elf_link_input_bfd. */
8851 elf_section_data (sec)->this_hdr.contents = contents;
8852 }
8853 }
8854 return TRUE;
8855
8856 relax_return:
8857 if (contents != NULL
8858 && elf_section_data (sec)->this_hdr.contents != contents)
8859 free (contents);
8860 return FALSE;
8861 }
8862 \f
8863 /* Allocate space for global sym dynamic relocs. */
8864
8865 static bfd_boolean
8866 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8867 {
8868 struct bfd_link_info *info = inf;
8869 bfd *dynobj;
8870 struct mips_elf_link_hash_entry *hmips;
8871 struct mips_elf_link_hash_table *htab;
8872
8873 htab = mips_elf_hash_table (info);
8874 BFD_ASSERT (htab != NULL);
8875
8876 dynobj = elf_hash_table (info)->dynobj;
8877 hmips = (struct mips_elf_link_hash_entry *) h;
8878
8879 /* VxWorks executables are handled elsewhere; we only need to
8880 allocate relocations in shared objects. */
8881 if (htab->is_vxworks && !info->shared)
8882 return TRUE;
8883
8884 /* Ignore indirect symbols. All relocations against such symbols
8885 will be redirected to the target symbol. */
8886 if (h->root.type == bfd_link_hash_indirect)
8887 return TRUE;
8888
8889 /* If this symbol is defined in a dynamic object, or we are creating
8890 a shared library, we will need to copy any R_MIPS_32 or
8891 R_MIPS_REL32 relocs against it into the output file. */
8892 if (! info->relocatable
8893 && hmips->possibly_dynamic_relocs != 0
8894 && (h->root.type == bfd_link_hash_defweak
8895 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8896 || info->shared))
8897 {
8898 bfd_boolean do_copy = TRUE;
8899
8900 if (h->root.type == bfd_link_hash_undefweak)
8901 {
8902 /* Do not copy relocations for undefined weak symbols with
8903 non-default visibility. */
8904 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8905 do_copy = FALSE;
8906
8907 /* Make sure undefined weak symbols are output as a dynamic
8908 symbol in PIEs. */
8909 else if (h->dynindx == -1 && !h->forced_local)
8910 {
8911 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8912 return FALSE;
8913 }
8914 }
8915
8916 if (do_copy)
8917 {
8918 /* Even though we don't directly need a GOT entry for this symbol,
8919 the SVR4 psABI requires it to have a dynamic symbol table
8920 index greater that DT_MIPS_GOTSYM if there are dynamic
8921 relocations against it.
8922
8923 VxWorks does not enforce the same mapping between the GOT
8924 and the symbol table, so the same requirement does not
8925 apply there. */
8926 if (!htab->is_vxworks)
8927 {
8928 if (hmips->global_got_area > GGA_RELOC_ONLY)
8929 hmips->global_got_area = GGA_RELOC_ONLY;
8930 hmips->got_only_for_calls = FALSE;
8931 }
8932
8933 mips_elf_allocate_dynamic_relocations
8934 (dynobj, info, hmips->possibly_dynamic_relocs);
8935 if (hmips->readonly_reloc)
8936 /* We tell the dynamic linker that there are relocations
8937 against the text segment. */
8938 info->flags |= DF_TEXTREL;
8939 }
8940 }
8941
8942 return TRUE;
8943 }
8944
8945 /* Adjust a symbol defined by a dynamic object and referenced by a
8946 regular object. The current definition is in some section of the
8947 dynamic object, but we're not including those sections. We have to
8948 change the definition to something the rest of the link can
8949 understand. */
8950
8951 bfd_boolean
8952 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8953 struct elf_link_hash_entry *h)
8954 {
8955 bfd *dynobj;
8956 struct mips_elf_link_hash_entry *hmips;
8957 struct mips_elf_link_hash_table *htab;
8958
8959 htab = mips_elf_hash_table (info);
8960 BFD_ASSERT (htab != NULL);
8961
8962 dynobj = elf_hash_table (info)->dynobj;
8963 hmips = (struct mips_elf_link_hash_entry *) h;
8964
8965 /* Make sure we know what is going on here. */
8966 BFD_ASSERT (dynobj != NULL
8967 && (h->needs_plt
8968 || h->u.weakdef != NULL
8969 || (h->def_dynamic
8970 && h->ref_regular
8971 && !h->def_regular)));
8972
8973 hmips = (struct mips_elf_link_hash_entry *) h;
8974
8975 /* If there are call relocations against an externally-defined symbol,
8976 see whether we can create a MIPS lazy-binding stub for it. We can
8977 only do this if all references to the function are through call
8978 relocations, and in that case, the traditional lazy-binding stubs
8979 are much more efficient than PLT entries.
8980
8981 Traditional stubs are only available on SVR4 psABI-based systems;
8982 VxWorks always uses PLTs instead. */
8983 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8984 {
8985 if (! elf_hash_table (info)->dynamic_sections_created)
8986 return TRUE;
8987
8988 /* If this symbol is not defined in a regular file, then set
8989 the symbol to the stub location. This is required to make
8990 function pointers compare as equal between the normal
8991 executable and the shared library. */
8992 if (!h->def_regular)
8993 {
8994 hmips->needs_lazy_stub = TRUE;
8995 htab->lazy_stub_count++;
8996 return TRUE;
8997 }
8998 }
8999 /* As above, VxWorks requires PLT entries for externally-defined
9000 functions that are only accessed through call relocations.
9001
9002 Both VxWorks and non-VxWorks targets also need PLT entries if there
9003 are static-only relocations against an externally-defined function.
9004 This can technically occur for shared libraries if there are
9005 branches to the symbol, although it is unlikely that this will be
9006 used in practice due to the short ranges involved. It can occur
9007 for any relative or absolute relocation in executables; in that
9008 case, the PLT entry becomes the function's canonical address. */
9009 else if (((h->needs_plt && !hmips->no_fn_stub)
9010 || (h->type == STT_FUNC && hmips->has_static_relocs))
9011 && htab->use_plts_and_copy_relocs
9012 && !SYMBOL_CALLS_LOCAL (info, h)
9013 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9014 && h->root.type == bfd_link_hash_undefweak))
9015 {
9016 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9017 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9018
9019 /* If this is the first symbol to need a PLT entry, then make some
9020 basic setup. Also work out PLT entry sizes. We'll need them
9021 for PLT offset calculations. */
9022 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9023 {
9024 BFD_ASSERT (htab->sgotplt->size == 0);
9025 BFD_ASSERT (htab->plt_got_index == 0);
9026
9027 /* If we're using the PLT additions to the psABI, each PLT
9028 entry is 16 bytes and the PLT0 entry is 32 bytes.
9029 Encourage better cache usage by aligning. We do this
9030 lazily to avoid pessimizing traditional objects. */
9031 if (!htab->is_vxworks
9032 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9033 return FALSE;
9034
9035 /* Make sure that .got.plt is word-aligned. We do this lazily
9036 for the same reason as above. */
9037 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9038 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9039 return FALSE;
9040
9041 /* On non-VxWorks targets, the first two entries in .got.plt
9042 are reserved. */
9043 if (!htab->is_vxworks)
9044 htab->plt_got_index
9045 += (get_elf_backend_data (dynobj)->got_header_size
9046 / MIPS_ELF_GOT_SIZE (dynobj));
9047
9048 /* On VxWorks, also allocate room for the header's
9049 .rela.plt.unloaded entries. */
9050 if (htab->is_vxworks && !info->shared)
9051 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9052
9053 /* Now work out the sizes of individual PLT entries. */
9054 if (htab->is_vxworks && info->shared)
9055 htab->plt_mips_entry_size
9056 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9057 else if (htab->is_vxworks)
9058 htab->plt_mips_entry_size
9059 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9060 else if (newabi_p)
9061 htab->plt_mips_entry_size
9062 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9063 else if (!micromips_p)
9064 {
9065 htab->plt_mips_entry_size
9066 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9067 htab->plt_comp_entry_size
9068 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9069 }
9070 else if (htab->insn32)
9071 {
9072 htab->plt_mips_entry_size
9073 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9074 htab->plt_comp_entry_size
9075 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9076 }
9077 else
9078 {
9079 htab->plt_mips_entry_size
9080 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9081 htab->plt_comp_entry_size
9082 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9083 }
9084 }
9085
9086 if (h->plt.plist == NULL)
9087 h->plt.plist = mips_elf_make_plt_record (dynobj);
9088 if (h->plt.plist == NULL)
9089 return FALSE;
9090
9091 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9092 n32 or n64, so always use a standard entry there.
9093
9094 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9095 all MIPS16 calls will go via that stub, and there is no benefit
9096 to having a MIPS16 entry. And in the case of call_stub a
9097 standard entry actually has to be used as the stub ends with a J
9098 instruction. */
9099 if (newabi_p
9100 || htab->is_vxworks
9101 || hmips->call_stub
9102 || hmips->call_fp_stub)
9103 {
9104 h->plt.plist->need_mips = TRUE;
9105 h->plt.plist->need_comp = FALSE;
9106 }
9107
9108 /* Otherwise, if there are no direct calls to the function, we
9109 have a free choice of whether to use standard or compressed
9110 entries. Prefer microMIPS entries if the object is known to
9111 contain microMIPS code, so that it becomes possible to create
9112 pure microMIPS binaries. Prefer standard entries otherwise,
9113 because MIPS16 ones are no smaller and are usually slower. */
9114 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9115 {
9116 if (micromips_p)
9117 h->plt.plist->need_comp = TRUE;
9118 else
9119 h->plt.plist->need_mips = TRUE;
9120 }
9121
9122 if (h->plt.plist->need_mips)
9123 {
9124 h->plt.plist->mips_offset = htab->plt_mips_offset;
9125 htab->plt_mips_offset += htab->plt_mips_entry_size;
9126 }
9127 if (h->plt.plist->need_comp)
9128 {
9129 h->plt.plist->comp_offset = htab->plt_comp_offset;
9130 htab->plt_comp_offset += htab->plt_comp_entry_size;
9131 }
9132
9133 /* Reserve the corresponding .got.plt entry now too. */
9134 h->plt.plist->gotplt_index = htab->plt_got_index++;
9135
9136 /* If the output file has no definition of the symbol, set the
9137 symbol's value to the address of the stub. */
9138 if (!info->shared && !h->def_regular)
9139 hmips->use_plt_entry = TRUE;
9140
9141 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9142 htab->srelplt->size += (htab->is_vxworks
9143 ? MIPS_ELF_RELA_SIZE (dynobj)
9144 : MIPS_ELF_REL_SIZE (dynobj));
9145
9146 /* Make room for the .rela.plt.unloaded relocations. */
9147 if (htab->is_vxworks && !info->shared)
9148 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9149
9150 /* All relocations against this symbol that could have been made
9151 dynamic will now refer to the PLT entry instead. */
9152 hmips->possibly_dynamic_relocs = 0;
9153
9154 return TRUE;
9155 }
9156
9157 /* If this is a weak symbol, and there is a real definition, the
9158 processor independent code will have arranged for us to see the
9159 real definition first, and we can just use the same value. */
9160 if (h->u.weakdef != NULL)
9161 {
9162 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9163 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9164 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9165 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9166 return TRUE;
9167 }
9168
9169 /* Otherwise, there is nothing further to do for symbols defined
9170 in regular objects. */
9171 if (h->def_regular)
9172 return TRUE;
9173
9174 /* There's also nothing more to do if we'll convert all relocations
9175 against this symbol into dynamic relocations. */
9176 if (!hmips->has_static_relocs)
9177 return TRUE;
9178
9179 /* We're now relying on copy relocations. Complain if we have
9180 some that we can't convert. */
9181 if (!htab->use_plts_and_copy_relocs || info->shared)
9182 {
9183 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9184 "dynamic symbol %s"),
9185 h->root.root.string);
9186 bfd_set_error (bfd_error_bad_value);
9187 return FALSE;
9188 }
9189
9190 /* We must allocate the symbol in our .dynbss section, which will
9191 become part of the .bss section of the executable. There will be
9192 an entry for this symbol in the .dynsym section. The dynamic
9193 object will contain position independent code, so all references
9194 from the dynamic object to this symbol will go through the global
9195 offset table. The dynamic linker will use the .dynsym entry to
9196 determine the address it must put in the global offset table, so
9197 both the dynamic object and the regular object will refer to the
9198 same memory location for the variable. */
9199
9200 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9201 {
9202 if (htab->is_vxworks)
9203 htab->srelbss->size += sizeof (Elf32_External_Rela);
9204 else
9205 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9206 h->needs_copy = 1;
9207 }
9208
9209 /* All relocations against this symbol that could have been made
9210 dynamic will now refer to the local copy instead. */
9211 hmips->possibly_dynamic_relocs = 0;
9212
9213 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
9214 }
9215 \f
9216 /* This function is called after all the input files have been read,
9217 and the input sections have been assigned to output sections. We
9218 check for any mips16 stub sections that we can discard. */
9219
9220 bfd_boolean
9221 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9222 struct bfd_link_info *info)
9223 {
9224 asection *sect;
9225 struct mips_elf_link_hash_table *htab;
9226 struct mips_htab_traverse_info hti;
9227
9228 htab = mips_elf_hash_table (info);
9229 BFD_ASSERT (htab != NULL);
9230
9231 /* The .reginfo section has a fixed size. */
9232 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9233 if (sect != NULL)
9234 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9235
9236 /* The .MIPS.abiflags section has a fixed size. */
9237 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9238 if (sect != NULL)
9239 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9240
9241 hti.info = info;
9242 hti.output_bfd = output_bfd;
9243 hti.error = FALSE;
9244 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9245 mips_elf_check_symbols, &hti);
9246 if (hti.error)
9247 return FALSE;
9248
9249 return TRUE;
9250 }
9251
9252 /* If the link uses a GOT, lay it out and work out its size. */
9253
9254 static bfd_boolean
9255 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9256 {
9257 bfd *dynobj;
9258 asection *s;
9259 struct mips_got_info *g;
9260 bfd_size_type loadable_size = 0;
9261 bfd_size_type page_gotno;
9262 bfd *ibfd;
9263 struct mips_elf_traverse_got_arg tga;
9264 struct mips_elf_link_hash_table *htab;
9265
9266 htab = mips_elf_hash_table (info);
9267 BFD_ASSERT (htab != NULL);
9268
9269 s = htab->sgot;
9270 if (s == NULL)
9271 return TRUE;
9272
9273 dynobj = elf_hash_table (info)->dynobj;
9274 g = htab->got_info;
9275
9276 /* Allocate room for the reserved entries. VxWorks always reserves
9277 3 entries; other objects only reserve 2 entries. */
9278 BFD_ASSERT (g->assigned_low_gotno == 0);
9279 if (htab->is_vxworks)
9280 htab->reserved_gotno = 3;
9281 else
9282 htab->reserved_gotno = 2;
9283 g->local_gotno += htab->reserved_gotno;
9284 g->assigned_low_gotno = htab->reserved_gotno;
9285
9286 /* Decide which symbols need to go in the global part of the GOT and
9287 count the number of reloc-only GOT symbols. */
9288 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9289
9290 if (!mips_elf_resolve_final_got_entries (info, g))
9291 return FALSE;
9292
9293 /* Calculate the total loadable size of the output. That
9294 will give us the maximum number of GOT_PAGE entries
9295 required. */
9296 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9297 {
9298 asection *subsection;
9299
9300 for (subsection = ibfd->sections;
9301 subsection;
9302 subsection = subsection->next)
9303 {
9304 if ((subsection->flags & SEC_ALLOC) == 0)
9305 continue;
9306 loadable_size += ((subsection->size + 0xf)
9307 &~ (bfd_size_type) 0xf);
9308 }
9309 }
9310
9311 if (htab->is_vxworks)
9312 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9313 relocations against local symbols evaluate to "G", and the EABI does
9314 not include R_MIPS_GOT_PAGE. */
9315 page_gotno = 0;
9316 else
9317 /* Assume there are two loadable segments consisting of contiguous
9318 sections. Is 5 enough? */
9319 page_gotno = (loadable_size >> 16) + 5;
9320
9321 /* Choose the smaller of the two page estimates; both are intended to be
9322 conservative. */
9323 if (page_gotno > g->page_gotno)
9324 page_gotno = g->page_gotno;
9325
9326 g->local_gotno += page_gotno;
9327 g->assigned_high_gotno = g->local_gotno - 1;
9328
9329 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9330 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9331 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9332
9333 /* VxWorks does not support multiple GOTs. It initializes $gp to
9334 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9335 dynamic loader. */
9336 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9337 {
9338 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9339 return FALSE;
9340 }
9341 else
9342 {
9343 /* Record that all bfds use G. This also has the effect of freeing
9344 the per-bfd GOTs, which we no longer need. */
9345 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9346 if (mips_elf_bfd_got (ibfd, FALSE))
9347 mips_elf_replace_bfd_got (ibfd, g);
9348 mips_elf_replace_bfd_got (output_bfd, g);
9349
9350 /* Set up TLS entries. */
9351 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9352 tga.info = info;
9353 tga.g = g;
9354 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9355 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9356 if (!tga.g)
9357 return FALSE;
9358 BFD_ASSERT (g->tls_assigned_gotno
9359 == g->global_gotno + g->local_gotno + g->tls_gotno);
9360
9361 /* Each VxWorks GOT entry needs an explicit relocation. */
9362 if (htab->is_vxworks && info->shared)
9363 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9364
9365 /* Allocate room for the TLS relocations. */
9366 if (g->relocs)
9367 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9368 }
9369
9370 return TRUE;
9371 }
9372
9373 /* Estimate the size of the .MIPS.stubs section. */
9374
9375 static void
9376 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9377 {
9378 struct mips_elf_link_hash_table *htab;
9379 bfd_size_type dynsymcount;
9380
9381 htab = mips_elf_hash_table (info);
9382 BFD_ASSERT (htab != NULL);
9383
9384 if (htab->lazy_stub_count == 0)
9385 return;
9386
9387 /* IRIX rld assumes that a function stub isn't at the end of the .text
9388 section, so add a dummy entry to the end. */
9389 htab->lazy_stub_count++;
9390
9391 /* Get a worst-case estimate of the number of dynamic symbols needed.
9392 At this point, dynsymcount does not account for section symbols
9393 and count_section_dynsyms may overestimate the number that will
9394 be needed. */
9395 dynsymcount = (elf_hash_table (info)->dynsymcount
9396 + count_section_dynsyms (output_bfd, info));
9397
9398 /* Determine the size of one stub entry. There's no disadvantage
9399 from using microMIPS code here, so for the sake of pure-microMIPS
9400 binaries we prefer it whenever there's any microMIPS code in
9401 output produced at all. This has a benefit of stubs being
9402 shorter by 4 bytes each too, unless in the insn32 mode. */
9403 if (!MICROMIPS_P (output_bfd))
9404 htab->function_stub_size = (dynsymcount > 0x10000
9405 ? MIPS_FUNCTION_STUB_BIG_SIZE
9406 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9407 else if (htab->insn32)
9408 htab->function_stub_size = (dynsymcount > 0x10000
9409 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9410 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9411 else
9412 htab->function_stub_size = (dynsymcount > 0x10000
9413 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9414 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9415
9416 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9417 }
9418
9419 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9420 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9421 stub, allocate an entry in the stubs section. */
9422
9423 static bfd_boolean
9424 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9425 {
9426 struct mips_htab_traverse_info *hti = data;
9427 struct mips_elf_link_hash_table *htab;
9428 struct bfd_link_info *info;
9429 bfd *output_bfd;
9430
9431 info = hti->info;
9432 output_bfd = hti->output_bfd;
9433 htab = mips_elf_hash_table (info);
9434 BFD_ASSERT (htab != NULL);
9435
9436 if (h->needs_lazy_stub)
9437 {
9438 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9439 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9440 bfd_vma isa_bit = micromips_p;
9441
9442 BFD_ASSERT (htab->root.dynobj != NULL);
9443 if (h->root.plt.plist == NULL)
9444 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9445 if (h->root.plt.plist == NULL)
9446 {
9447 hti->error = TRUE;
9448 return FALSE;
9449 }
9450 h->root.root.u.def.section = htab->sstubs;
9451 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9452 h->root.plt.plist->stub_offset = htab->sstubs->size;
9453 h->root.other = other;
9454 htab->sstubs->size += htab->function_stub_size;
9455 }
9456 return TRUE;
9457 }
9458
9459 /* Allocate offsets in the stubs section to each symbol that needs one.
9460 Set the final size of the .MIPS.stub section. */
9461
9462 static bfd_boolean
9463 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9464 {
9465 bfd *output_bfd = info->output_bfd;
9466 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9467 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9468 bfd_vma isa_bit = micromips_p;
9469 struct mips_elf_link_hash_table *htab;
9470 struct mips_htab_traverse_info hti;
9471 struct elf_link_hash_entry *h;
9472 bfd *dynobj;
9473
9474 htab = mips_elf_hash_table (info);
9475 BFD_ASSERT (htab != NULL);
9476
9477 if (htab->lazy_stub_count == 0)
9478 return TRUE;
9479
9480 htab->sstubs->size = 0;
9481 hti.info = info;
9482 hti.output_bfd = output_bfd;
9483 hti.error = FALSE;
9484 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9485 if (hti.error)
9486 return FALSE;
9487 htab->sstubs->size += htab->function_stub_size;
9488 BFD_ASSERT (htab->sstubs->size
9489 == htab->lazy_stub_count * htab->function_stub_size);
9490
9491 dynobj = elf_hash_table (info)->dynobj;
9492 BFD_ASSERT (dynobj != NULL);
9493 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9494 if (h == NULL)
9495 return FALSE;
9496 h->root.u.def.value = isa_bit;
9497 h->other = other;
9498 h->type = STT_FUNC;
9499
9500 return TRUE;
9501 }
9502
9503 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9504 bfd_link_info. If H uses the address of a PLT entry as the value
9505 of the symbol, then set the entry in the symbol table now. Prefer
9506 a standard MIPS PLT entry. */
9507
9508 static bfd_boolean
9509 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9510 {
9511 struct bfd_link_info *info = data;
9512 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9513 struct mips_elf_link_hash_table *htab;
9514 unsigned int other;
9515 bfd_vma isa_bit;
9516 bfd_vma val;
9517
9518 htab = mips_elf_hash_table (info);
9519 BFD_ASSERT (htab != NULL);
9520
9521 if (h->use_plt_entry)
9522 {
9523 BFD_ASSERT (h->root.plt.plist != NULL);
9524 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9525 || h->root.plt.plist->comp_offset != MINUS_ONE);
9526
9527 val = htab->plt_header_size;
9528 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9529 {
9530 isa_bit = 0;
9531 val += h->root.plt.plist->mips_offset;
9532 other = 0;
9533 }
9534 else
9535 {
9536 isa_bit = 1;
9537 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9538 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9539 }
9540 val += isa_bit;
9541 /* For VxWorks, point at the PLT load stub rather than the lazy
9542 resolution stub; this stub will become the canonical function
9543 address. */
9544 if (htab->is_vxworks)
9545 val += 8;
9546
9547 h->root.root.u.def.section = htab->splt;
9548 h->root.root.u.def.value = val;
9549 h->root.other = other;
9550 }
9551
9552 return TRUE;
9553 }
9554
9555 /* Set the sizes of the dynamic sections. */
9556
9557 bfd_boolean
9558 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9559 struct bfd_link_info *info)
9560 {
9561 bfd *dynobj;
9562 asection *s, *sreldyn;
9563 bfd_boolean reltext;
9564 struct mips_elf_link_hash_table *htab;
9565
9566 htab = mips_elf_hash_table (info);
9567 BFD_ASSERT (htab != NULL);
9568 dynobj = elf_hash_table (info)->dynobj;
9569 BFD_ASSERT (dynobj != NULL);
9570
9571 if (elf_hash_table (info)->dynamic_sections_created)
9572 {
9573 /* Set the contents of the .interp section to the interpreter. */
9574 if (info->executable)
9575 {
9576 s = bfd_get_linker_section (dynobj, ".interp");
9577 BFD_ASSERT (s != NULL);
9578 s->size
9579 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9580 s->contents
9581 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9582 }
9583
9584 /* Figure out the size of the PLT header if we know that we
9585 are using it. For the sake of cache alignment always use
9586 a standard header whenever any standard entries are present
9587 even if microMIPS entries are present as well. This also
9588 lets the microMIPS header rely on the value of $v0 only set
9589 by microMIPS entries, for a small size reduction.
9590
9591 Set symbol table entry values for symbols that use the
9592 address of their PLT entry now that we can calculate it.
9593
9594 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9595 haven't already in _bfd_elf_create_dynamic_sections. */
9596 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9597 {
9598 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9599 && !htab->plt_mips_offset);
9600 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9601 bfd_vma isa_bit = micromips_p;
9602 struct elf_link_hash_entry *h;
9603 bfd_vma size;
9604
9605 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9606 BFD_ASSERT (htab->sgotplt->size == 0);
9607 BFD_ASSERT (htab->splt->size == 0);
9608
9609 if (htab->is_vxworks && info->shared)
9610 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9611 else if (htab->is_vxworks)
9612 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9613 else if (ABI_64_P (output_bfd))
9614 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9615 else if (ABI_N32_P (output_bfd))
9616 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9617 else if (!micromips_p)
9618 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9619 else if (htab->insn32)
9620 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9621 else
9622 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9623
9624 htab->plt_header_is_comp = micromips_p;
9625 htab->plt_header_size = size;
9626 htab->splt->size = (size
9627 + htab->plt_mips_offset
9628 + htab->plt_comp_offset);
9629 htab->sgotplt->size = (htab->plt_got_index
9630 * MIPS_ELF_GOT_SIZE (dynobj));
9631
9632 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9633
9634 if (htab->root.hplt == NULL)
9635 {
9636 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9637 "_PROCEDURE_LINKAGE_TABLE_");
9638 htab->root.hplt = h;
9639 if (h == NULL)
9640 return FALSE;
9641 }
9642
9643 h = htab->root.hplt;
9644 h->root.u.def.value = isa_bit;
9645 h->other = other;
9646 h->type = STT_FUNC;
9647 }
9648 }
9649
9650 /* Allocate space for global sym dynamic relocs. */
9651 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9652
9653 mips_elf_estimate_stub_size (output_bfd, info);
9654
9655 if (!mips_elf_lay_out_got (output_bfd, info))
9656 return FALSE;
9657
9658 mips_elf_lay_out_lazy_stubs (info);
9659
9660 /* The check_relocs and adjust_dynamic_symbol entry points have
9661 determined the sizes of the various dynamic sections. Allocate
9662 memory for them. */
9663 reltext = FALSE;
9664 for (s = dynobj->sections; s != NULL; s = s->next)
9665 {
9666 const char *name;
9667
9668 /* It's OK to base decisions on the section name, because none
9669 of the dynobj section names depend upon the input files. */
9670 name = bfd_get_section_name (dynobj, s);
9671
9672 if ((s->flags & SEC_LINKER_CREATED) == 0)
9673 continue;
9674
9675 if (CONST_STRNEQ (name, ".rel"))
9676 {
9677 if (s->size != 0)
9678 {
9679 const char *outname;
9680 asection *target;
9681
9682 /* If this relocation section applies to a read only
9683 section, then we probably need a DT_TEXTREL entry.
9684 If the relocation section is .rel(a).dyn, we always
9685 assert a DT_TEXTREL entry rather than testing whether
9686 there exists a relocation to a read only section or
9687 not. */
9688 outname = bfd_get_section_name (output_bfd,
9689 s->output_section);
9690 target = bfd_get_section_by_name (output_bfd, outname + 4);
9691 if ((target != NULL
9692 && (target->flags & SEC_READONLY) != 0
9693 && (target->flags & SEC_ALLOC) != 0)
9694 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9695 reltext = TRUE;
9696
9697 /* We use the reloc_count field as a counter if we need
9698 to copy relocs into the output file. */
9699 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9700 s->reloc_count = 0;
9701
9702 /* If combreloc is enabled, elf_link_sort_relocs() will
9703 sort relocations, but in a different way than we do,
9704 and before we're done creating relocations. Also, it
9705 will move them around between input sections'
9706 relocation's contents, so our sorting would be
9707 broken, so don't let it run. */
9708 info->combreloc = 0;
9709 }
9710 }
9711 else if (! info->shared
9712 && ! mips_elf_hash_table (info)->use_rld_obj_head
9713 && CONST_STRNEQ (name, ".rld_map"))
9714 {
9715 /* We add a room for __rld_map. It will be filled in by the
9716 rtld to contain a pointer to the _r_debug structure. */
9717 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9718 }
9719 else if (SGI_COMPAT (output_bfd)
9720 && CONST_STRNEQ (name, ".compact_rel"))
9721 s->size += mips_elf_hash_table (info)->compact_rel_size;
9722 else if (s == htab->splt)
9723 {
9724 /* If the last PLT entry has a branch delay slot, allocate
9725 room for an extra nop to fill the delay slot. This is
9726 for CPUs without load interlocking. */
9727 if (! LOAD_INTERLOCKS_P (output_bfd)
9728 && ! htab->is_vxworks && s->size > 0)
9729 s->size += 4;
9730 }
9731 else if (! CONST_STRNEQ (name, ".init")
9732 && s != htab->sgot
9733 && s != htab->sgotplt
9734 && s != htab->sstubs
9735 && s != htab->sdynbss)
9736 {
9737 /* It's not one of our sections, so don't allocate space. */
9738 continue;
9739 }
9740
9741 if (s->size == 0)
9742 {
9743 s->flags |= SEC_EXCLUDE;
9744 continue;
9745 }
9746
9747 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9748 continue;
9749
9750 /* Allocate memory for the section contents. */
9751 s->contents = bfd_zalloc (dynobj, s->size);
9752 if (s->contents == NULL)
9753 {
9754 bfd_set_error (bfd_error_no_memory);
9755 return FALSE;
9756 }
9757 }
9758
9759 if (elf_hash_table (info)->dynamic_sections_created)
9760 {
9761 /* Add some entries to the .dynamic section. We fill in the
9762 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9763 must add the entries now so that we get the correct size for
9764 the .dynamic section. */
9765
9766 /* SGI object has the equivalence of DT_DEBUG in the
9767 DT_MIPS_RLD_MAP entry. This must come first because glibc
9768 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9769 may only look at the first one they see. */
9770 if (!info->shared
9771 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9772 return FALSE;
9773
9774 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9775 used by the debugger. */
9776 if (info->executable
9777 && !SGI_COMPAT (output_bfd)
9778 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9779 return FALSE;
9780
9781 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9782 info->flags |= DF_TEXTREL;
9783
9784 if ((info->flags & DF_TEXTREL) != 0)
9785 {
9786 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9787 return FALSE;
9788
9789 /* Clear the DF_TEXTREL flag. It will be set again if we
9790 write out an actual text relocation; we may not, because
9791 at this point we do not know whether e.g. any .eh_frame
9792 absolute relocations have been converted to PC-relative. */
9793 info->flags &= ~DF_TEXTREL;
9794 }
9795
9796 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9797 return FALSE;
9798
9799 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9800 if (htab->is_vxworks)
9801 {
9802 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9803 use any of the DT_MIPS_* tags. */
9804 if (sreldyn && sreldyn->size > 0)
9805 {
9806 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9807 return FALSE;
9808
9809 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9810 return FALSE;
9811
9812 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9813 return FALSE;
9814 }
9815 }
9816 else
9817 {
9818 if (sreldyn && sreldyn->size > 0)
9819 {
9820 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9821 return FALSE;
9822
9823 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9824 return FALSE;
9825
9826 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9827 return FALSE;
9828 }
9829
9830 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9831 return FALSE;
9832
9833 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9834 return FALSE;
9835
9836 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9837 return FALSE;
9838
9839 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9840 return FALSE;
9841
9842 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9843 return FALSE;
9844
9845 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9846 return FALSE;
9847
9848 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9849 return FALSE;
9850
9851 if (IRIX_COMPAT (dynobj) == ict_irix5
9852 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9853 return FALSE;
9854
9855 if (IRIX_COMPAT (dynobj) == ict_irix6
9856 && (bfd_get_section_by_name
9857 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9858 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9859 return FALSE;
9860 }
9861 if (htab->splt->size > 0)
9862 {
9863 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9864 return FALSE;
9865
9866 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9867 return FALSE;
9868
9869 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9870 return FALSE;
9871
9872 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9873 return FALSE;
9874 }
9875 if (htab->is_vxworks
9876 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9877 return FALSE;
9878 }
9879
9880 return TRUE;
9881 }
9882 \f
9883 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9884 Adjust its R_ADDEND field so that it is correct for the output file.
9885 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9886 and sections respectively; both use symbol indexes. */
9887
9888 static void
9889 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9890 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9891 asection **local_sections, Elf_Internal_Rela *rel)
9892 {
9893 unsigned int r_type, r_symndx;
9894 Elf_Internal_Sym *sym;
9895 asection *sec;
9896
9897 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9898 {
9899 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9900 if (gprel16_reloc_p (r_type)
9901 || r_type == R_MIPS_GPREL32
9902 || literal_reloc_p (r_type))
9903 {
9904 rel->r_addend += _bfd_get_gp_value (input_bfd);
9905 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9906 }
9907
9908 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9909 sym = local_syms + r_symndx;
9910
9911 /* Adjust REL's addend to account for section merging. */
9912 if (!info->relocatable)
9913 {
9914 sec = local_sections[r_symndx];
9915 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9916 }
9917
9918 /* This would normally be done by the rela_normal code in elflink.c. */
9919 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9920 rel->r_addend += local_sections[r_symndx]->output_offset;
9921 }
9922 }
9923
9924 /* Handle relocations against symbols from removed linkonce sections,
9925 or sections discarded by a linker script. We use this wrapper around
9926 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9927 on 64-bit ELF targets. In this case for any relocation handled, which
9928 always be the first in a triplet, the remaining two have to be processed
9929 together with the first, even if they are R_MIPS_NONE. It is the symbol
9930 index referred by the first reloc that applies to all the three and the
9931 remaining two never refer to an object symbol. And it is the final
9932 relocation (the last non-null one) that determines the output field of
9933 the whole relocation so retrieve the corresponding howto structure for
9934 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9935
9936 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9937 and therefore requires to be pasted in a loop. It also defines a block
9938 and does not protect any of its arguments, hence the extra brackets. */
9939
9940 static void
9941 mips_reloc_against_discarded_section (bfd *output_bfd,
9942 struct bfd_link_info *info,
9943 bfd *input_bfd, asection *input_section,
9944 Elf_Internal_Rela **rel,
9945 const Elf_Internal_Rela **relend,
9946 bfd_boolean rel_reloc,
9947 reloc_howto_type *howto,
9948 bfd_byte *contents)
9949 {
9950 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9951 int count = bed->s->int_rels_per_ext_rel;
9952 unsigned int r_type;
9953 int i;
9954
9955 for (i = count - 1; i > 0; i--)
9956 {
9957 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9958 if (r_type != R_MIPS_NONE)
9959 {
9960 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9961 break;
9962 }
9963 }
9964 do
9965 {
9966 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9967 (*rel), count, (*relend),
9968 howto, i, contents);
9969 }
9970 while (0);
9971 }
9972
9973 /* Relocate a MIPS ELF section. */
9974
9975 bfd_boolean
9976 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9977 bfd *input_bfd, asection *input_section,
9978 bfd_byte *contents, Elf_Internal_Rela *relocs,
9979 Elf_Internal_Sym *local_syms,
9980 asection **local_sections)
9981 {
9982 Elf_Internal_Rela *rel;
9983 const Elf_Internal_Rela *relend;
9984 bfd_vma addend = 0;
9985 bfd_boolean use_saved_addend_p = FALSE;
9986 const struct elf_backend_data *bed;
9987
9988 bed = get_elf_backend_data (output_bfd);
9989 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9990 for (rel = relocs; rel < relend; ++rel)
9991 {
9992 const char *name;
9993 bfd_vma value = 0;
9994 reloc_howto_type *howto;
9995 bfd_boolean cross_mode_jump_p = FALSE;
9996 /* TRUE if the relocation is a RELA relocation, rather than a
9997 REL relocation. */
9998 bfd_boolean rela_relocation_p = TRUE;
9999 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10000 const char *msg;
10001 unsigned long r_symndx;
10002 asection *sec;
10003 Elf_Internal_Shdr *symtab_hdr;
10004 struct elf_link_hash_entry *h;
10005 bfd_boolean rel_reloc;
10006
10007 rel_reloc = (NEWABI_P (input_bfd)
10008 && mips_elf_rel_relocation_p (input_bfd, input_section,
10009 relocs, rel));
10010 /* Find the relocation howto for this relocation. */
10011 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10012
10013 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10014 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10015 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10016 {
10017 sec = local_sections[r_symndx];
10018 h = NULL;
10019 }
10020 else
10021 {
10022 unsigned long extsymoff;
10023
10024 extsymoff = 0;
10025 if (!elf_bad_symtab (input_bfd))
10026 extsymoff = symtab_hdr->sh_info;
10027 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10028 while (h->root.type == bfd_link_hash_indirect
10029 || h->root.type == bfd_link_hash_warning)
10030 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10031
10032 sec = NULL;
10033 if (h->root.type == bfd_link_hash_defined
10034 || h->root.type == bfd_link_hash_defweak)
10035 sec = h->root.u.def.section;
10036 }
10037
10038 if (sec != NULL && discarded_section (sec))
10039 {
10040 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10041 input_section, &rel, &relend,
10042 rel_reloc, howto, contents);
10043 continue;
10044 }
10045
10046 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10047 {
10048 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10049 64-bit code, but make sure all their addresses are in the
10050 lowermost or uppermost 32-bit section of the 64-bit address
10051 space. Thus, when they use an R_MIPS_64 they mean what is
10052 usually meant by R_MIPS_32, with the exception that the
10053 stored value is sign-extended to 64 bits. */
10054 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10055
10056 /* On big-endian systems, we need to lie about the position
10057 of the reloc. */
10058 if (bfd_big_endian (input_bfd))
10059 rel->r_offset += 4;
10060 }
10061
10062 if (!use_saved_addend_p)
10063 {
10064 /* If these relocations were originally of the REL variety,
10065 we must pull the addend out of the field that will be
10066 relocated. Otherwise, we simply use the contents of the
10067 RELA relocation. */
10068 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10069 relocs, rel))
10070 {
10071 rela_relocation_p = FALSE;
10072 addend = mips_elf_read_rel_addend (input_bfd, rel,
10073 howto, contents);
10074 if (hi16_reloc_p (r_type)
10075 || (got16_reloc_p (r_type)
10076 && mips_elf_local_relocation_p (input_bfd, rel,
10077 local_sections)))
10078 {
10079 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10080 contents, &addend))
10081 {
10082 if (h)
10083 name = h->root.root.string;
10084 else
10085 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10086 local_syms + r_symndx,
10087 sec);
10088 (*_bfd_error_handler)
10089 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10090 input_bfd, input_section, name, howto->name,
10091 rel->r_offset);
10092 }
10093 }
10094 else
10095 addend <<= howto->rightshift;
10096 }
10097 else
10098 addend = rel->r_addend;
10099 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10100 local_syms, local_sections, rel);
10101 }
10102
10103 if (info->relocatable)
10104 {
10105 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10106 && bfd_big_endian (input_bfd))
10107 rel->r_offset -= 4;
10108
10109 if (!rela_relocation_p && rel->r_addend)
10110 {
10111 addend += rel->r_addend;
10112 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10113 addend = mips_elf_high (addend);
10114 else if (r_type == R_MIPS_HIGHER)
10115 addend = mips_elf_higher (addend);
10116 else if (r_type == R_MIPS_HIGHEST)
10117 addend = mips_elf_highest (addend);
10118 else
10119 addend >>= howto->rightshift;
10120
10121 /* We use the source mask, rather than the destination
10122 mask because the place to which we are writing will be
10123 source of the addend in the final link. */
10124 addend &= howto->src_mask;
10125
10126 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10127 /* See the comment above about using R_MIPS_64 in the 32-bit
10128 ABI. Here, we need to update the addend. It would be
10129 possible to get away with just using the R_MIPS_32 reloc
10130 but for endianness. */
10131 {
10132 bfd_vma sign_bits;
10133 bfd_vma low_bits;
10134 bfd_vma high_bits;
10135
10136 if (addend & ((bfd_vma) 1 << 31))
10137 #ifdef BFD64
10138 sign_bits = ((bfd_vma) 1 << 32) - 1;
10139 #else
10140 sign_bits = -1;
10141 #endif
10142 else
10143 sign_bits = 0;
10144
10145 /* If we don't know that we have a 64-bit type,
10146 do two separate stores. */
10147 if (bfd_big_endian (input_bfd))
10148 {
10149 /* Store the sign-bits (which are most significant)
10150 first. */
10151 low_bits = sign_bits;
10152 high_bits = addend;
10153 }
10154 else
10155 {
10156 low_bits = addend;
10157 high_bits = sign_bits;
10158 }
10159 bfd_put_32 (input_bfd, low_bits,
10160 contents + rel->r_offset);
10161 bfd_put_32 (input_bfd, high_bits,
10162 contents + rel->r_offset + 4);
10163 continue;
10164 }
10165
10166 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10167 input_bfd, input_section,
10168 contents, FALSE))
10169 return FALSE;
10170 }
10171
10172 /* Go on to the next relocation. */
10173 continue;
10174 }
10175
10176 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10177 relocations for the same offset. In that case we are
10178 supposed to treat the output of each relocation as the addend
10179 for the next. */
10180 if (rel + 1 < relend
10181 && rel->r_offset == rel[1].r_offset
10182 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10183 use_saved_addend_p = TRUE;
10184 else
10185 use_saved_addend_p = FALSE;
10186
10187 /* Figure out what value we are supposed to relocate. */
10188 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10189 input_section, info, rel,
10190 addend, howto, local_syms,
10191 local_sections, &value,
10192 &name, &cross_mode_jump_p,
10193 use_saved_addend_p))
10194 {
10195 case bfd_reloc_continue:
10196 /* There's nothing to do. */
10197 continue;
10198
10199 case bfd_reloc_undefined:
10200 /* mips_elf_calculate_relocation already called the
10201 undefined_symbol callback. There's no real point in
10202 trying to perform the relocation at this point, so we
10203 just skip ahead to the next relocation. */
10204 continue;
10205
10206 case bfd_reloc_notsupported:
10207 msg = _("internal error: unsupported relocation error");
10208 info->callbacks->warning
10209 (info, msg, name, input_bfd, input_section, rel->r_offset);
10210 return FALSE;
10211
10212 case bfd_reloc_overflow:
10213 if (use_saved_addend_p)
10214 /* Ignore overflow until we reach the last relocation for
10215 a given location. */
10216 ;
10217 else
10218 {
10219 struct mips_elf_link_hash_table *htab;
10220
10221 htab = mips_elf_hash_table (info);
10222 BFD_ASSERT (htab != NULL);
10223 BFD_ASSERT (name != NULL);
10224 if (!htab->small_data_overflow_reported
10225 && (gprel16_reloc_p (howto->type)
10226 || literal_reloc_p (howto->type)))
10227 {
10228 msg = _("small-data section exceeds 64KB;"
10229 " lower small-data size limit (see option -G)");
10230
10231 htab->small_data_overflow_reported = TRUE;
10232 (*info->callbacks->einfo) ("%P: %s\n", msg);
10233 }
10234 if (! ((*info->callbacks->reloc_overflow)
10235 (info, NULL, name, howto->name, (bfd_vma) 0,
10236 input_bfd, input_section, rel->r_offset)))
10237 return FALSE;
10238 }
10239 break;
10240
10241 case bfd_reloc_ok:
10242 break;
10243
10244 case bfd_reloc_outofrange:
10245 if (jal_reloc_p (howto->type))
10246 {
10247 msg = _("JALX to a non-word-aligned address");
10248 info->callbacks->warning
10249 (info, msg, name, input_bfd, input_section, rel->r_offset);
10250 return FALSE;
10251 }
10252 if (aligned_pcrel_reloc_p (howto->type))
10253 {
10254 msg = _("PC-relative load from unaligned address");
10255 info->callbacks->warning
10256 (info, msg, name, input_bfd, input_section, rel->r_offset);
10257 return FALSE;
10258 }
10259 /* Fall through. */
10260
10261 default:
10262 abort ();
10263 break;
10264 }
10265
10266 /* If we've got another relocation for the address, keep going
10267 until we reach the last one. */
10268 if (use_saved_addend_p)
10269 {
10270 addend = value;
10271 continue;
10272 }
10273
10274 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10275 /* See the comment above about using R_MIPS_64 in the 32-bit
10276 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10277 that calculated the right value. Now, however, we
10278 sign-extend the 32-bit result to 64-bits, and store it as a
10279 64-bit value. We are especially generous here in that we
10280 go to extreme lengths to support this usage on systems with
10281 only a 32-bit VMA. */
10282 {
10283 bfd_vma sign_bits;
10284 bfd_vma low_bits;
10285 bfd_vma high_bits;
10286
10287 if (value & ((bfd_vma) 1 << 31))
10288 #ifdef BFD64
10289 sign_bits = ((bfd_vma) 1 << 32) - 1;
10290 #else
10291 sign_bits = -1;
10292 #endif
10293 else
10294 sign_bits = 0;
10295
10296 /* If we don't know that we have a 64-bit type,
10297 do two separate stores. */
10298 if (bfd_big_endian (input_bfd))
10299 {
10300 /* Undo what we did above. */
10301 rel->r_offset -= 4;
10302 /* Store the sign-bits (which are most significant)
10303 first. */
10304 low_bits = sign_bits;
10305 high_bits = value;
10306 }
10307 else
10308 {
10309 low_bits = value;
10310 high_bits = sign_bits;
10311 }
10312 bfd_put_32 (input_bfd, low_bits,
10313 contents + rel->r_offset);
10314 bfd_put_32 (input_bfd, high_bits,
10315 contents + rel->r_offset + 4);
10316 continue;
10317 }
10318
10319 /* Actually perform the relocation. */
10320 if (! mips_elf_perform_relocation (info, howto, rel, value,
10321 input_bfd, input_section,
10322 contents, cross_mode_jump_p))
10323 return FALSE;
10324 }
10325
10326 return TRUE;
10327 }
10328 \f
10329 /* A function that iterates over each entry in la25_stubs and fills
10330 in the code for each one. DATA points to a mips_htab_traverse_info. */
10331
10332 static int
10333 mips_elf_create_la25_stub (void **slot, void *data)
10334 {
10335 struct mips_htab_traverse_info *hti;
10336 struct mips_elf_link_hash_table *htab;
10337 struct mips_elf_la25_stub *stub;
10338 asection *s;
10339 bfd_byte *loc;
10340 bfd_vma offset, target, target_high, target_low;
10341
10342 stub = (struct mips_elf_la25_stub *) *slot;
10343 hti = (struct mips_htab_traverse_info *) data;
10344 htab = mips_elf_hash_table (hti->info);
10345 BFD_ASSERT (htab != NULL);
10346
10347 /* Create the section contents, if we haven't already. */
10348 s = stub->stub_section;
10349 loc = s->contents;
10350 if (loc == NULL)
10351 {
10352 loc = bfd_malloc (s->size);
10353 if (loc == NULL)
10354 {
10355 hti->error = TRUE;
10356 return FALSE;
10357 }
10358 s->contents = loc;
10359 }
10360
10361 /* Work out where in the section this stub should go. */
10362 offset = stub->offset;
10363
10364 /* Work out the target address. */
10365 target = mips_elf_get_la25_target (stub, &s);
10366 target += s->output_section->vma + s->output_offset;
10367
10368 target_high = ((target + 0x8000) >> 16) & 0xffff;
10369 target_low = (target & 0xffff);
10370
10371 if (stub->stub_section != htab->strampoline)
10372 {
10373 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10374 of the section and write the two instructions at the end. */
10375 memset (loc, 0, offset);
10376 loc += offset;
10377 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10378 {
10379 bfd_put_micromips_32 (hti->output_bfd,
10380 LA25_LUI_MICROMIPS (target_high),
10381 loc);
10382 bfd_put_micromips_32 (hti->output_bfd,
10383 LA25_ADDIU_MICROMIPS (target_low),
10384 loc + 4);
10385 }
10386 else
10387 {
10388 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10389 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10390 }
10391 }
10392 else
10393 {
10394 /* This is trampoline. */
10395 loc += offset;
10396 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10397 {
10398 bfd_put_micromips_32 (hti->output_bfd,
10399 LA25_LUI_MICROMIPS (target_high), loc);
10400 bfd_put_micromips_32 (hti->output_bfd,
10401 LA25_J_MICROMIPS (target), loc + 4);
10402 bfd_put_micromips_32 (hti->output_bfd,
10403 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10404 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10405 }
10406 else
10407 {
10408 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10409 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10410 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10411 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10412 }
10413 }
10414 return TRUE;
10415 }
10416
10417 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10418 adjust it appropriately now. */
10419
10420 static void
10421 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10422 const char *name, Elf_Internal_Sym *sym)
10423 {
10424 /* The linker script takes care of providing names and values for
10425 these, but we must place them into the right sections. */
10426 static const char* const text_section_symbols[] = {
10427 "_ftext",
10428 "_etext",
10429 "__dso_displacement",
10430 "__elf_header",
10431 "__program_header_table",
10432 NULL
10433 };
10434
10435 static const char* const data_section_symbols[] = {
10436 "_fdata",
10437 "_edata",
10438 "_end",
10439 "_fbss",
10440 NULL
10441 };
10442
10443 const char* const *p;
10444 int i;
10445
10446 for (i = 0; i < 2; ++i)
10447 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10448 *p;
10449 ++p)
10450 if (strcmp (*p, name) == 0)
10451 {
10452 /* All of these symbols are given type STT_SECTION by the
10453 IRIX6 linker. */
10454 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10455 sym->st_other = STO_PROTECTED;
10456
10457 /* The IRIX linker puts these symbols in special sections. */
10458 if (i == 0)
10459 sym->st_shndx = SHN_MIPS_TEXT;
10460 else
10461 sym->st_shndx = SHN_MIPS_DATA;
10462
10463 break;
10464 }
10465 }
10466
10467 /* Finish up dynamic symbol handling. We set the contents of various
10468 dynamic sections here. */
10469
10470 bfd_boolean
10471 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10472 struct bfd_link_info *info,
10473 struct elf_link_hash_entry *h,
10474 Elf_Internal_Sym *sym)
10475 {
10476 bfd *dynobj;
10477 asection *sgot;
10478 struct mips_got_info *g, *gg;
10479 const char *name;
10480 int idx;
10481 struct mips_elf_link_hash_table *htab;
10482 struct mips_elf_link_hash_entry *hmips;
10483
10484 htab = mips_elf_hash_table (info);
10485 BFD_ASSERT (htab != NULL);
10486 dynobj = elf_hash_table (info)->dynobj;
10487 hmips = (struct mips_elf_link_hash_entry *) h;
10488
10489 BFD_ASSERT (!htab->is_vxworks);
10490
10491 if (h->plt.plist != NULL
10492 && (h->plt.plist->mips_offset != MINUS_ONE
10493 || h->plt.plist->comp_offset != MINUS_ONE))
10494 {
10495 /* We've decided to create a PLT entry for this symbol. */
10496 bfd_byte *loc;
10497 bfd_vma header_address, got_address;
10498 bfd_vma got_address_high, got_address_low, load;
10499 bfd_vma got_index;
10500 bfd_vma isa_bit;
10501
10502 got_index = h->plt.plist->gotplt_index;
10503
10504 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10505 BFD_ASSERT (h->dynindx != -1);
10506 BFD_ASSERT (htab->splt != NULL);
10507 BFD_ASSERT (got_index != MINUS_ONE);
10508 BFD_ASSERT (!h->def_regular);
10509
10510 /* Calculate the address of the PLT header. */
10511 isa_bit = htab->plt_header_is_comp;
10512 header_address = (htab->splt->output_section->vma
10513 + htab->splt->output_offset + isa_bit);
10514
10515 /* Calculate the address of the .got.plt entry. */
10516 got_address = (htab->sgotplt->output_section->vma
10517 + htab->sgotplt->output_offset
10518 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10519
10520 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10521 got_address_low = got_address & 0xffff;
10522
10523 /* Initially point the .got.plt entry at the PLT header. */
10524 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10525 if (ABI_64_P (output_bfd))
10526 bfd_put_64 (output_bfd, header_address, loc);
10527 else
10528 bfd_put_32 (output_bfd, header_address, loc);
10529
10530 /* Now handle the PLT itself. First the standard entry (the order
10531 does not matter, we just have to pick one). */
10532 if (h->plt.plist->mips_offset != MINUS_ONE)
10533 {
10534 const bfd_vma *plt_entry;
10535 bfd_vma plt_offset;
10536
10537 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10538
10539 BFD_ASSERT (plt_offset <= htab->splt->size);
10540
10541 /* Find out where the .plt entry should go. */
10542 loc = htab->splt->contents + plt_offset;
10543
10544 /* Pick the load opcode. */
10545 load = MIPS_ELF_LOAD_WORD (output_bfd);
10546
10547 /* Fill in the PLT entry itself. */
10548
10549 if (MIPSR6_P (output_bfd))
10550 plt_entry = mipsr6_exec_plt_entry;
10551 else
10552 plt_entry = mips_exec_plt_entry;
10553 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10554 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10555 loc + 4);
10556
10557 if (! LOAD_INTERLOCKS_P (output_bfd))
10558 {
10559 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10560 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10561 }
10562 else
10563 {
10564 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10565 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10566 loc + 12);
10567 }
10568 }
10569
10570 /* Now the compressed entry. They come after any standard ones. */
10571 if (h->plt.plist->comp_offset != MINUS_ONE)
10572 {
10573 bfd_vma plt_offset;
10574
10575 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10576 + h->plt.plist->comp_offset);
10577
10578 BFD_ASSERT (plt_offset <= htab->splt->size);
10579
10580 /* Find out where the .plt entry should go. */
10581 loc = htab->splt->contents + plt_offset;
10582
10583 /* Fill in the PLT entry itself. */
10584 if (!MICROMIPS_P (output_bfd))
10585 {
10586 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10587
10588 bfd_put_16 (output_bfd, plt_entry[0], loc);
10589 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10590 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10591 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10592 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10593 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10594 bfd_put_32 (output_bfd, got_address, loc + 12);
10595 }
10596 else if (htab->insn32)
10597 {
10598 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10599
10600 bfd_put_16 (output_bfd, plt_entry[0], loc);
10601 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10602 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10603 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10604 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10605 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10606 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10607 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10608 }
10609 else
10610 {
10611 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10612 bfd_signed_vma gotpc_offset;
10613 bfd_vma loc_address;
10614
10615 BFD_ASSERT (got_address % 4 == 0);
10616
10617 loc_address = (htab->splt->output_section->vma
10618 + htab->splt->output_offset + plt_offset);
10619 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10620
10621 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10622 if (gotpc_offset + 0x1000000 >= 0x2000000)
10623 {
10624 (*_bfd_error_handler)
10625 (_("%B: `%A' offset of %ld from `%A' "
10626 "beyond the range of ADDIUPC"),
10627 output_bfd,
10628 htab->sgotplt->output_section,
10629 htab->splt->output_section,
10630 (long) gotpc_offset);
10631 bfd_set_error (bfd_error_no_error);
10632 return FALSE;
10633 }
10634 bfd_put_16 (output_bfd,
10635 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10636 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10637 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10638 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10639 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10640 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10641 }
10642 }
10643
10644 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10645 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10646 got_index - 2, h->dynindx,
10647 R_MIPS_JUMP_SLOT, got_address);
10648
10649 /* We distinguish between PLT entries and lazy-binding stubs by
10650 giving the former an st_other value of STO_MIPS_PLT. Set the
10651 flag and leave the value if there are any relocations in the
10652 binary where pointer equality matters. */
10653 sym->st_shndx = SHN_UNDEF;
10654 if (h->pointer_equality_needed)
10655 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10656 else
10657 {
10658 sym->st_value = 0;
10659 sym->st_other = 0;
10660 }
10661 }
10662
10663 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10664 {
10665 /* We've decided to create a lazy-binding stub. */
10666 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10667 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10668 bfd_vma stub_size = htab->function_stub_size;
10669 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10670 bfd_vma isa_bit = micromips_p;
10671 bfd_vma stub_big_size;
10672
10673 if (!micromips_p)
10674 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10675 else if (htab->insn32)
10676 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10677 else
10678 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10679
10680 /* This symbol has a stub. Set it up. */
10681
10682 BFD_ASSERT (h->dynindx != -1);
10683
10684 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10685
10686 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10687 sign extension at runtime in the stub, resulting in a negative
10688 index value. */
10689 if (h->dynindx & ~0x7fffffff)
10690 return FALSE;
10691
10692 /* Fill the stub. */
10693 if (micromips_p)
10694 {
10695 idx = 0;
10696 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10697 stub + idx);
10698 idx += 4;
10699 if (htab->insn32)
10700 {
10701 bfd_put_micromips_32 (output_bfd,
10702 STUB_MOVE32_MICROMIPS (output_bfd),
10703 stub + idx);
10704 idx += 4;
10705 }
10706 else
10707 {
10708 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10709 idx += 2;
10710 }
10711 if (stub_size == stub_big_size)
10712 {
10713 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10714
10715 bfd_put_micromips_32 (output_bfd,
10716 STUB_LUI_MICROMIPS (dynindx_hi),
10717 stub + idx);
10718 idx += 4;
10719 }
10720 if (htab->insn32)
10721 {
10722 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10723 stub + idx);
10724 idx += 4;
10725 }
10726 else
10727 {
10728 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10729 idx += 2;
10730 }
10731
10732 /* If a large stub is not required and sign extension is not a
10733 problem, then use legacy code in the stub. */
10734 if (stub_size == stub_big_size)
10735 bfd_put_micromips_32 (output_bfd,
10736 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10737 stub + idx);
10738 else if (h->dynindx & ~0x7fff)
10739 bfd_put_micromips_32 (output_bfd,
10740 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10741 stub + idx);
10742 else
10743 bfd_put_micromips_32 (output_bfd,
10744 STUB_LI16S_MICROMIPS (output_bfd,
10745 h->dynindx),
10746 stub + idx);
10747 }
10748 else
10749 {
10750 idx = 0;
10751 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10752 idx += 4;
10753 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10754 idx += 4;
10755 if (stub_size == stub_big_size)
10756 {
10757 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10758 stub + idx);
10759 idx += 4;
10760 }
10761 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10762 idx += 4;
10763
10764 /* If a large stub is not required and sign extension is not a
10765 problem, then use legacy code in the stub. */
10766 if (stub_size == stub_big_size)
10767 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10768 stub + idx);
10769 else if (h->dynindx & ~0x7fff)
10770 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10771 stub + idx);
10772 else
10773 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10774 stub + idx);
10775 }
10776
10777 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10778 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10779 stub, stub_size);
10780
10781 /* Mark the symbol as undefined. stub_offset != -1 occurs
10782 only for the referenced symbol. */
10783 sym->st_shndx = SHN_UNDEF;
10784
10785 /* The run-time linker uses the st_value field of the symbol
10786 to reset the global offset table entry for this external
10787 to its stub address when unlinking a shared object. */
10788 sym->st_value = (htab->sstubs->output_section->vma
10789 + htab->sstubs->output_offset
10790 + h->plt.plist->stub_offset
10791 + isa_bit);
10792 sym->st_other = other;
10793 }
10794
10795 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10796 refer to the stub, since only the stub uses the standard calling
10797 conventions. */
10798 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10799 {
10800 BFD_ASSERT (hmips->need_fn_stub);
10801 sym->st_value = (hmips->fn_stub->output_section->vma
10802 + hmips->fn_stub->output_offset);
10803 sym->st_size = hmips->fn_stub->size;
10804 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10805 }
10806
10807 BFD_ASSERT (h->dynindx != -1
10808 || h->forced_local);
10809
10810 sgot = htab->sgot;
10811 g = htab->got_info;
10812 BFD_ASSERT (g != NULL);
10813
10814 /* Run through the global symbol table, creating GOT entries for all
10815 the symbols that need them. */
10816 if (hmips->global_got_area != GGA_NONE)
10817 {
10818 bfd_vma offset;
10819 bfd_vma value;
10820
10821 value = sym->st_value;
10822 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10823 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10824 }
10825
10826 if (hmips->global_got_area != GGA_NONE && g->next)
10827 {
10828 struct mips_got_entry e, *p;
10829 bfd_vma entry;
10830 bfd_vma offset;
10831
10832 gg = g;
10833
10834 e.abfd = output_bfd;
10835 e.symndx = -1;
10836 e.d.h = hmips;
10837 e.tls_type = GOT_TLS_NONE;
10838
10839 for (g = g->next; g->next != gg; g = g->next)
10840 {
10841 if (g->got_entries
10842 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10843 &e)))
10844 {
10845 offset = p->gotidx;
10846 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10847 if (info->shared
10848 || (elf_hash_table (info)->dynamic_sections_created
10849 && p->d.h != NULL
10850 && p->d.h->root.def_dynamic
10851 && !p->d.h->root.def_regular))
10852 {
10853 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10854 the various compatibility problems, it's easier to mock
10855 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10856 mips_elf_create_dynamic_relocation to calculate the
10857 appropriate addend. */
10858 Elf_Internal_Rela rel[3];
10859
10860 memset (rel, 0, sizeof (rel));
10861 if (ABI_64_P (output_bfd))
10862 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10863 else
10864 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10865 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10866
10867 entry = 0;
10868 if (! (mips_elf_create_dynamic_relocation
10869 (output_bfd, info, rel,
10870 e.d.h, NULL, sym->st_value, &entry, sgot)))
10871 return FALSE;
10872 }
10873 else
10874 entry = sym->st_value;
10875 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10876 }
10877 }
10878 }
10879
10880 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10881 name = h->root.root.string;
10882 if (h == elf_hash_table (info)->hdynamic
10883 || h == elf_hash_table (info)->hgot)
10884 sym->st_shndx = SHN_ABS;
10885 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10886 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10887 {
10888 sym->st_shndx = SHN_ABS;
10889 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10890 sym->st_value = 1;
10891 }
10892 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10893 {
10894 sym->st_shndx = SHN_ABS;
10895 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10896 sym->st_value = elf_gp (output_bfd);
10897 }
10898 else if (SGI_COMPAT (output_bfd))
10899 {
10900 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10901 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10902 {
10903 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10904 sym->st_other = STO_PROTECTED;
10905 sym->st_value = 0;
10906 sym->st_shndx = SHN_MIPS_DATA;
10907 }
10908 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10909 {
10910 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10911 sym->st_other = STO_PROTECTED;
10912 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10913 sym->st_shndx = SHN_ABS;
10914 }
10915 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10916 {
10917 if (h->type == STT_FUNC)
10918 sym->st_shndx = SHN_MIPS_TEXT;
10919 else if (h->type == STT_OBJECT)
10920 sym->st_shndx = SHN_MIPS_DATA;
10921 }
10922 }
10923
10924 /* Emit a copy reloc, if needed. */
10925 if (h->needs_copy)
10926 {
10927 asection *s;
10928 bfd_vma symval;
10929
10930 BFD_ASSERT (h->dynindx != -1);
10931 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10932
10933 s = mips_elf_rel_dyn_section (info, FALSE);
10934 symval = (h->root.u.def.section->output_section->vma
10935 + h->root.u.def.section->output_offset
10936 + h->root.u.def.value);
10937 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10938 h->dynindx, R_MIPS_COPY, symval);
10939 }
10940
10941 /* Handle the IRIX6-specific symbols. */
10942 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10943 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10944
10945 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10946 to treat compressed symbols like any other. */
10947 if (ELF_ST_IS_MIPS16 (sym->st_other))
10948 {
10949 BFD_ASSERT (sym->st_value & 1);
10950 sym->st_other -= STO_MIPS16;
10951 }
10952 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10953 {
10954 BFD_ASSERT (sym->st_value & 1);
10955 sym->st_other -= STO_MICROMIPS;
10956 }
10957
10958 return TRUE;
10959 }
10960
10961 /* Likewise, for VxWorks. */
10962
10963 bfd_boolean
10964 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10965 struct bfd_link_info *info,
10966 struct elf_link_hash_entry *h,
10967 Elf_Internal_Sym *sym)
10968 {
10969 bfd *dynobj;
10970 asection *sgot;
10971 struct mips_got_info *g;
10972 struct mips_elf_link_hash_table *htab;
10973 struct mips_elf_link_hash_entry *hmips;
10974
10975 htab = mips_elf_hash_table (info);
10976 BFD_ASSERT (htab != NULL);
10977 dynobj = elf_hash_table (info)->dynobj;
10978 hmips = (struct mips_elf_link_hash_entry *) h;
10979
10980 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
10981 {
10982 bfd_byte *loc;
10983 bfd_vma plt_address, got_address, got_offset, branch_offset;
10984 Elf_Internal_Rela rel;
10985 static const bfd_vma *plt_entry;
10986 bfd_vma gotplt_index;
10987 bfd_vma plt_offset;
10988
10989 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10990 gotplt_index = h->plt.plist->gotplt_index;
10991
10992 BFD_ASSERT (h->dynindx != -1);
10993 BFD_ASSERT (htab->splt != NULL);
10994 BFD_ASSERT (gotplt_index != MINUS_ONE);
10995 BFD_ASSERT (plt_offset <= htab->splt->size);
10996
10997 /* Calculate the address of the .plt entry. */
10998 plt_address = (htab->splt->output_section->vma
10999 + htab->splt->output_offset
11000 + plt_offset);
11001
11002 /* Calculate the address of the .got.plt entry. */
11003 got_address = (htab->sgotplt->output_section->vma
11004 + htab->sgotplt->output_offset
11005 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11006
11007 /* Calculate the offset of the .got.plt entry from
11008 _GLOBAL_OFFSET_TABLE_. */
11009 got_offset = mips_elf_gotplt_index (info, h);
11010
11011 /* Calculate the offset for the branch at the start of the PLT
11012 entry. The branch jumps to the beginning of .plt. */
11013 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11014
11015 /* Fill in the initial value of the .got.plt entry. */
11016 bfd_put_32 (output_bfd, plt_address,
11017 (htab->sgotplt->contents
11018 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11019
11020 /* Find out where the .plt entry should go. */
11021 loc = htab->splt->contents + plt_offset;
11022
11023 if (info->shared)
11024 {
11025 plt_entry = mips_vxworks_shared_plt_entry;
11026 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11027 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11028 }
11029 else
11030 {
11031 bfd_vma got_address_high, got_address_low;
11032
11033 plt_entry = mips_vxworks_exec_plt_entry;
11034 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11035 got_address_low = got_address & 0xffff;
11036
11037 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11038 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11039 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11040 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11041 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11042 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11043 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11044 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11045
11046 loc = (htab->srelplt2->contents
11047 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11048
11049 /* Emit a relocation for the .got.plt entry. */
11050 rel.r_offset = got_address;
11051 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11052 rel.r_addend = plt_offset;
11053 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11054
11055 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11056 loc += sizeof (Elf32_External_Rela);
11057 rel.r_offset = plt_address + 8;
11058 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11059 rel.r_addend = got_offset;
11060 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11061
11062 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11063 loc += sizeof (Elf32_External_Rela);
11064 rel.r_offset += 4;
11065 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11066 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11067 }
11068
11069 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11070 loc = (htab->srelplt->contents
11071 + gotplt_index * sizeof (Elf32_External_Rela));
11072 rel.r_offset = got_address;
11073 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11074 rel.r_addend = 0;
11075 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11076
11077 if (!h->def_regular)
11078 sym->st_shndx = SHN_UNDEF;
11079 }
11080
11081 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11082
11083 sgot = htab->sgot;
11084 g = htab->got_info;
11085 BFD_ASSERT (g != NULL);
11086
11087 /* See if this symbol has an entry in the GOT. */
11088 if (hmips->global_got_area != GGA_NONE)
11089 {
11090 bfd_vma offset;
11091 Elf_Internal_Rela outrel;
11092 bfd_byte *loc;
11093 asection *s;
11094
11095 /* Install the symbol value in the GOT. */
11096 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11097 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11098
11099 /* Add a dynamic relocation for it. */
11100 s = mips_elf_rel_dyn_section (info, FALSE);
11101 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11102 outrel.r_offset = (sgot->output_section->vma
11103 + sgot->output_offset
11104 + offset);
11105 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11106 outrel.r_addend = 0;
11107 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11108 }
11109
11110 /* Emit a copy reloc, if needed. */
11111 if (h->needs_copy)
11112 {
11113 Elf_Internal_Rela rel;
11114
11115 BFD_ASSERT (h->dynindx != -1);
11116
11117 rel.r_offset = (h->root.u.def.section->output_section->vma
11118 + h->root.u.def.section->output_offset
11119 + h->root.u.def.value);
11120 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11121 rel.r_addend = 0;
11122 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11123 htab->srelbss->contents
11124 + (htab->srelbss->reloc_count
11125 * sizeof (Elf32_External_Rela)));
11126 ++htab->srelbss->reloc_count;
11127 }
11128
11129 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11130 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11131 sym->st_value &= ~1;
11132
11133 return TRUE;
11134 }
11135
11136 /* Write out a plt0 entry to the beginning of .plt. */
11137
11138 static bfd_boolean
11139 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11140 {
11141 bfd_byte *loc;
11142 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11143 static const bfd_vma *plt_entry;
11144 struct mips_elf_link_hash_table *htab;
11145
11146 htab = mips_elf_hash_table (info);
11147 BFD_ASSERT (htab != NULL);
11148
11149 if (ABI_64_P (output_bfd))
11150 plt_entry = mips_n64_exec_plt0_entry;
11151 else if (ABI_N32_P (output_bfd))
11152 plt_entry = mips_n32_exec_plt0_entry;
11153 else if (!htab->plt_header_is_comp)
11154 plt_entry = mips_o32_exec_plt0_entry;
11155 else if (htab->insn32)
11156 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11157 else
11158 plt_entry = micromips_o32_exec_plt0_entry;
11159
11160 /* Calculate the value of .got.plt. */
11161 gotplt_value = (htab->sgotplt->output_section->vma
11162 + htab->sgotplt->output_offset);
11163 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11164 gotplt_value_low = gotplt_value & 0xffff;
11165
11166 /* The PLT sequence is not safe for N64 if .got.plt's address can
11167 not be loaded in two instructions. */
11168 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11169 || ~(gotplt_value | 0x7fffffff) == 0);
11170
11171 /* Install the PLT header. */
11172 loc = htab->splt->contents;
11173 if (plt_entry == micromips_o32_exec_plt0_entry)
11174 {
11175 bfd_vma gotpc_offset;
11176 bfd_vma loc_address;
11177 size_t i;
11178
11179 BFD_ASSERT (gotplt_value % 4 == 0);
11180
11181 loc_address = (htab->splt->output_section->vma
11182 + htab->splt->output_offset);
11183 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11184
11185 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11186 if (gotpc_offset + 0x1000000 >= 0x2000000)
11187 {
11188 (*_bfd_error_handler)
11189 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11190 output_bfd,
11191 htab->sgotplt->output_section,
11192 htab->splt->output_section,
11193 (long) gotpc_offset);
11194 bfd_set_error (bfd_error_no_error);
11195 return FALSE;
11196 }
11197 bfd_put_16 (output_bfd,
11198 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11199 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11200 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11201 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11202 }
11203 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11204 {
11205 size_t i;
11206
11207 bfd_put_16 (output_bfd, plt_entry[0], loc);
11208 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11209 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11210 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11211 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11212 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11213 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11214 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11215 }
11216 else
11217 {
11218 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11219 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11220 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11221 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11222 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11223 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11224 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11225 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11226 }
11227
11228 return TRUE;
11229 }
11230
11231 /* Install the PLT header for a VxWorks executable and finalize the
11232 contents of .rela.plt.unloaded. */
11233
11234 static void
11235 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11236 {
11237 Elf_Internal_Rela rela;
11238 bfd_byte *loc;
11239 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11240 static const bfd_vma *plt_entry;
11241 struct mips_elf_link_hash_table *htab;
11242
11243 htab = mips_elf_hash_table (info);
11244 BFD_ASSERT (htab != NULL);
11245
11246 plt_entry = mips_vxworks_exec_plt0_entry;
11247
11248 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11249 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11250 + htab->root.hgot->root.u.def.section->output_offset
11251 + htab->root.hgot->root.u.def.value);
11252
11253 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11254 got_value_low = got_value & 0xffff;
11255
11256 /* Calculate the address of the PLT header. */
11257 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11258
11259 /* Install the PLT header. */
11260 loc = htab->splt->contents;
11261 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11262 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11263 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11264 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11265 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11266 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11267
11268 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11269 loc = htab->srelplt2->contents;
11270 rela.r_offset = plt_address;
11271 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11272 rela.r_addend = 0;
11273 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11274 loc += sizeof (Elf32_External_Rela);
11275
11276 /* Output the relocation for the following addiu of
11277 %lo(_GLOBAL_OFFSET_TABLE_). */
11278 rela.r_offset += 4;
11279 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11280 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11281 loc += sizeof (Elf32_External_Rela);
11282
11283 /* Fix up the remaining relocations. They may have the wrong
11284 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11285 in which symbols were output. */
11286 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11287 {
11288 Elf_Internal_Rela rel;
11289
11290 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11291 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11292 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11293 loc += sizeof (Elf32_External_Rela);
11294
11295 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11296 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11297 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11298 loc += sizeof (Elf32_External_Rela);
11299
11300 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11301 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11302 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11303 loc += sizeof (Elf32_External_Rela);
11304 }
11305 }
11306
11307 /* Install the PLT header for a VxWorks shared library. */
11308
11309 static void
11310 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11311 {
11312 unsigned int i;
11313 struct mips_elf_link_hash_table *htab;
11314
11315 htab = mips_elf_hash_table (info);
11316 BFD_ASSERT (htab != NULL);
11317
11318 /* We just need to copy the entry byte-by-byte. */
11319 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11320 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11321 htab->splt->contents + i * 4);
11322 }
11323
11324 /* Finish up the dynamic sections. */
11325
11326 bfd_boolean
11327 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11328 struct bfd_link_info *info)
11329 {
11330 bfd *dynobj;
11331 asection *sdyn;
11332 asection *sgot;
11333 struct mips_got_info *gg, *g;
11334 struct mips_elf_link_hash_table *htab;
11335
11336 htab = mips_elf_hash_table (info);
11337 BFD_ASSERT (htab != NULL);
11338
11339 dynobj = elf_hash_table (info)->dynobj;
11340
11341 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11342
11343 sgot = htab->sgot;
11344 gg = htab->got_info;
11345
11346 if (elf_hash_table (info)->dynamic_sections_created)
11347 {
11348 bfd_byte *b;
11349 int dyn_to_skip = 0, dyn_skipped = 0;
11350
11351 BFD_ASSERT (sdyn != NULL);
11352 BFD_ASSERT (gg != NULL);
11353
11354 g = mips_elf_bfd_got (output_bfd, FALSE);
11355 BFD_ASSERT (g != NULL);
11356
11357 for (b = sdyn->contents;
11358 b < sdyn->contents + sdyn->size;
11359 b += MIPS_ELF_DYN_SIZE (dynobj))
11360 {
11361 Elf_Internal_Dyn dyn;
11362 const char *name;
11363 size_t elemsize;
11364 asection *s;
11365 bfd_boolean swap_out_p;
11366
11367 /* Read in the current dynamic entry. */
11368 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11369
11370 /* Assume that we're going to modify it and write it out. */
11371 swap_out_p = TRUE;
11372
11373 switch (dyn.d_tag)
11374 {
11375 case DT_RELENT:
11376 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11377 break;
11378
11379 case DT_RELAENT:
11380 BFD_ASSERT (htab->is_vxworks);
11381 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11382 break;
11383
11384 case DT_STRSZ:
11385 /* Rewrite DT_STRSZ. */
11386 dyn.d_un.d_val =
11387 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11388 break;
11389
11390 case DT_PLTGOT:
11391 s = htab->sgot;
11392 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11393 break;
11394
11395 case DT_MIPS_PLTGOT:
11396 s = htab->sgotplt;
11397 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11398 break;
11399
11400 case DT_MIPS_RLD_VERSION:
11401 dyn.d_un.d_val = 1; /* XXX */
11402 break;
11403
11404 case DT_MIPS_FLAGS:
11405 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11406 break;
11407
11408 case DT_MIPS_TIME_STAMP:
11409 {
11410 time_t t;
11411 time (&t);
11412 dyn.d_un.d_val = t;
11413 }
11414 break;
11415
11416 case DT_MIPS_ICHECKSUM:
11417 /* XXX FIXME: */
11418 swap_out_p = FALSE;
11419 break;
11420
11421 case DT_MIPS_IVERSION:
11422 /* XXX FIXME: */
11423 swap_out_p = FALSE;
11424 break;
11425
11426 case DT_MIPS_BASE_ADDRESS:
11427 s = output_bfd->sections;
11428 BFD_ASSERT (s != NULL);
11429 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11430 break;
11431
11432 case DT_MIPS_LOCAL_GOTNO:
11433 dyn.d_un.d_val = g->local_gotno;
11434 break;
11435
11436 case DT_MIPS_UNREFEXTNO:
11437 /* The index into the dynamic symbol table which is the
11438 entry of the first external symbol that is not
11439 referenced within the same object. */
11440 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11441 break;
11442
11443 case DT_MIPS_GOTSYM:
11444 if (htab->global_gotsym)
11445 {
11446 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11447 break;
11448 }
11449 /* In case if we don't have global got symbols we default
11450 to setting DT_MIPS_GOTSYM to the same value as
11451 DT_MIPS_SYMTABNO, so we just fall through. */
11452
11453 case DT_MIPS_SYMTABNO:
11454 name = ".dynsym";
11455 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11456 s = bfd_get_section_by_name (output_bfd, name);
11457 BFD_ASSERT (s != NULL);
11458
11459 dyn.d_un.d_val = s->size / elemsize;
11460 break;
11461
11462 case DT_MIPS_HIPAGENO:
11463 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11464 break;
11465
11466 case DT_MIPS_RLD_MAP:
11467 {
11468 struct elf_link_hash_entry *h;
11469 h = mips_elf_hash_table (info)->rld_symbol;
11470 if (!h)
11471 {
11472 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11473 swap_out_p = FALSE;
11474 break;
11475 }
11476 s = h->root.u.def.section;
11477 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11478 + h->root.u.def.value);
11479 }
11480 break;
11481
11482 case DT_MIPS_OPTIONS:
11483 s = (bfd_get_section_by_name
11484 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11485 dyn.d_un.d_ptr = s->vma;
11486 break;
11487
11488 case DT_RELASZ:
11489 BFD_ASSERT (htab->is_vxworks);
11490 /* The count does not include the JUMP_SLOT relocations. */
11491 if (htab->srelplt)
11492 dyn.d_un.d_val -= htab->srelplt->size;
11493 break;
11494
11495 case DT_PLTREL:
11496 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11497 if (htab->is_vxworks)
11498 dyn.d_un.d_val = DT_RELA;
11499 else
11500 dyn.d_un.d_val = DT_REL;
11501 break;
11502
11503 case DT_PLTRELSZ:
11504 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11505 dyn.d_un.d_val = htab->srelplt->size;
11506 break;
11507
11508 case DT_JMPREL:
11509 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11510 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11511 + htab->srelplt->output_offset);
11512 break;
11513
11514 case DT_TEXTREL:
11515 /* If we didn't need any text relocations after all, delete
11516 the dynamic tag. */
11517 if (!(info->flags & DF_TEXTREL))
11518 {
11519 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11520 swap_out_p = FALSE;
11521 }
11522 break;
11523
11524 case DT_FLAGS:
11525 /* If we didn't need any text relocations after all, clear
11526 DF_TEXTREL from DT_FLAGS. */
11527 if (!(info->flags & DF_TEXTREL))
11528 dyn.d_un.d_val &= ~DF_TEXTREL;
11529 else
11530 swap_out_p = FALSE;
11531 break;
11532
11533 default:
11534 swap_out_p = FALSE;
11535 if (htab->is_vxworks
11536 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11537 swap_out_p = TRUE;
11538 break;
11539 }
11540
11541 if (swap_out_p || dyn_skipped)
11542 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11543 (dynobj, &dyn, b - dyn_skipped);
11544
11545 if (dyn_to_skip)
11546 {
11547 dyn_skipped += dyn_to_skip;
11548 dyn_to_skip = 0;
11549 }
11550 }
11551
11552 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11553 if (dyn_skipped > 0)
11554 memset (b - dyn_skipped, 0, dyn_skipped);
11555 }
11556
11557 if (sgot != NULL && sgot->size > 0
11558 && !bfd_is_abs_section (sgot->output_section))
11559 {
11560 if (htab->is_vxworks)
11561 {
11562 /* The first entry of the global offset table points to the
11563 ".dynamic" section. The second is initialized by the
11564 loader and contains the shared library identifier.
11565 The third is also initialized by the loader and points
11566 to the lazy resolution stub. */
11567 MIPS_ELF_PUT_WORD (output_bfd,
11568 sdyn->output_offset + sdyn->output_section->vma,
11569 sgot->contents);
11570 MIPS_ELF_PUT_WORD (output_bfd, 0,
11571 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11572 MIPS_ELF_PUT_WORD (output_bfd, 0,
11573 sgot->contents
11574 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11575 }
11576 else
11577 {
11578 /* The first entry of the global offset table will be filled at
11579 runtime. The second entry will be used by some runtime loaders.
11580 This isn't the case of IRIX rld. */
11581 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11582 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11583 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11584 }
11585
11586 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11587 = MIPS_ELF_GOT_SIZE (output_bfd);
11588 }
11589
11590 /* Generate dynamic relocations for the non-primary gots. */
11591 if (gg != NULL && gg->next)
11592 {
11593 Elf_Internal_Rela rel[3];
11594 bfd_vma addend = 0;
11595
11596 memset (rel, 0, sizeof (rel));
11597 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11598
11599 for (g = gg->next; g->next != gg; g = g->next)
11600 {
11601 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11602 + g->next->tls_gotno;
11603
11604 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11605 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11606 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11607 sgot->contents
11608 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11609
11610 if (! info->shared)
11611 continue;
11612
11613 for (; got_index < g->local_gotno; got_index++)
11614 {
11615 if (got_index >= g->assigned_low_gotno
11616 && got_index <= g->assigned_high_gotno)
11617 continue;
11618
11619 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11620 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11621 if (!(mips_elf_create_dynamic_relocation
11622 (output_bfd, info, rel, NULL,
11623 bfd_abs_section_ptr,
11624 0, &addend, sgot)))
11625 return FALSE;
11626 BFD_ASSERT (addend == 0);
11627 }
11628 }
11629 }
11630
11631 /* The generation of dynamic relocations for the non-primary gots
11632 adds more dynamic relocations. We cannot count them until
11633 here. */
11634
11635 if (elf_hash_table (info)->dynamic_sections_created)
11636 {
11637 bfd_byte *b;
11638 bfd_boolean swap_out_p;
11639
11640 BFD_ASSERT (sdyn != NULL);
11641
11642 for (b = sdyn->contents;
11643 b < sdyn->contents + sdyn->size;
11644 b += MIPS_ELF_DYN_SIZE (dynobj))
11645 {
11646 Elf_Internal_Dyn dyn;
11647 asection *s;
11648
11649 /* Read in the current dynamic entry. */
11650 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11651
11652 /* Assume that we're going to modify it and write it out. */
11653 swap_out_p = TRUE;
11654
11655 switch (dyn.d_tag)
11656 {
11657 case DT_RELSZ:
11658 /* Reduce DT_RELSZ to account for any relocations we
11659 decided not to make. This is for the n64 irix rld,
11660 which doesn't seem to apply any relocations if there
11661 are trailing null entries. */
11662 s = mips_elf_rel_dyn_section (info, FALSE);
11663 dyn.d_un.d_val = (s->reloc_count
11664 * (ABI_64_P (output_bfd)
11665 ? sizeof (Elf64_Mips_External_Rel)
11666 : sizeof (Elf32_External_Rel)));
11667 /* Adjust the section size too. Tools like the prelinker
11668 can reasonably expect the values to the same. */
11669 elf_section_data (s->output_section)->this_hdr.sh_size
11670 = dyn.d_un.d_val;
11671 break;
11672
11673 default:
11674 swap_out_p = FALSE;
11675 break;
11676 }
11677
11678 if (swap_out_p)
11679 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11680 (dynobj, &dyn, b);
11681 }
11682 }
11683
11684 {
11685 asection *s;
11686 Elf32_compact_rel cpt;
11687
11688 if (SGI_COMPAT (output_bfd))
11689 {
11690 /* Write .compact_rel section out. */
11691 s = bfd_get_linker_section (dynobj, ".compact_rel");
11692 if (s != NULL)
11693 {
11694 cpt.id1 = 1;
11695 cpt.num = s->reloc_count;
11696 cpt.id2 = 2;
11697 cpt.offset = (s->output_section->filepos
11698 + sizeof (Elf32_External_compact_rel));
11699 cpt.reserved0 = 0;
11700 cpt.reserved1 = 0;
11701 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11702 ((Elf32_External_compact_rel *)
11703 s->contents));
11704
11705 /* Clean up a dummy stub function entry in .text. */
11706 if (htab->sstubs != NULL)
11707 {
11708 file_ptr dummy_offset;
11709
11710 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11711 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11712 memset (htab->sstubs->contents + dummy_offset, 0,
11713 htab->function_stub_size);
11714 }
11715 }
11716 }
11717
11718 /* The psABI says that the dynamic relocations must be sorted in
11719 increasing order of r_symndx. The VxWorks EABI doesn't require
11720 this, and because the code below handles REL rather than RELA
11721 relocations, using it for VxWorks would be outright harmful. */
11722 if (!htab->is_vxworks)
11723 {
11724 s = mips_elf_rel_dyn_section (info, FALSE);
11725 if (s != NULL
11726 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11727 {
11728 reldyn_sorting_bfd = output_bfd;
11729
11730 if (ABI_64_P (output_bfd))
11731 qsort ((Elf64_External_Rel *) s->contents + 1,
11732 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11733 sort_dynamic_relocs_64);
11734 else
11735 qsort ((Elf32_External_Rel *) s->contents + 1,
11736 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11737 sort_dynamic_relocs);
11738 }
11739 }
11740 }
11741
11742 if (htab->splt && htab->splt->size > 0)
11743 {
11744 if (htab->is_vxworks)
11745 {
11746 if (info->shared)
11747 mips_vxworks_finish_shared_plt (output_bfd, info);
11748 else
11749 mips_vxworks_finish_exec_plt (output_bfd, info);
11750 }
11751 else
11752 {
11753 BFD_ASSERT (!info->shared);
11754 if (!mips_finish_exec_plt (output_bfd, info))
11755 return FALSE;
11756 }
11757 }
11758 return TRUE;
11759 }
11760
11761
11762 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11763
11764 static void
11765 mips_set_isa_flags (bfd *abfd)
11766 {
11767 flagword val;
11768
11769 switch (bfd_get_mach (abfd))
11770 {
11771 default:
11772 case bfd_mach_mips3000:
11773 val = E_MIPS_ARCH_1;
11774 break;
11775
11776 case bfd_mach_mips3900:
11777 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11778 break;
11779
11780 case bfd_mach_mips6000:
11781 val = E_MIPS_ARCH_2;
11782 break;
11783
11784 case bfd_mach_mips4000:
11785 case bfd_mach_mips4300:
11786 case bfd_mach_mips4400:
11787 case bfd_mach_mips4600:
11788 val = E_MIPS_ARCH_3;
11789 break;
11790
11791 case bfd_mach_mips4010:
11792 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11793 break;
11794
11795 case bfd_mach_mips4100:
11796 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11797 break;
11798
11799 case bfd_mach_mips4111:
11800 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11801 break;
11802
11803 case bfd_mach_mips4120:
11804 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11805 break;
11806
11807 case bfd_mach_mips4650:
11808 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11809 break;
11810
11811 case bfd_mach_mips5400:
11812 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11813 break;
11814
11815 case bfd_mach_mips5500:
11816 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11817 break;
11818
11819 case bfd_mach_mips5900:
11820 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11821 break;
11822
11823 case bfd_mach_mips9000:
11824 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11825 break;
11826
11827 case bfd_mach_mips5000:
11828 case bfd_mach_mips7000:
11829 case bfd_mach_mips8000:
11830 case bfd_mach_mips10000:
11831 case bfd_mach_mips12000:
11832 case bfd_mach_mips14000:
11833 case bfd_mach_mips16000:
11834 val = E_MIPS_ARCH_4;
11835 break;
11836
11837 case bfd_mach_mips5:
11838 val = E_MIPS_ARCH_5;
11839 break;
11840
11841 case bfd_mach_mips_loongson_2e:
11842 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11843 break;
11844
11845 case bfd_mach_mips_loongson_2f:
11846 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11847 break;
11848
11849 case bfd_mach_mips_sb1:
11850 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11851 break;
11852
11853 case bfd_mach_mips_loongson_3a:
11854 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11855 break;
11856
11857 case bfd_mach_mips_octeon:
11858 case bfd_mach_mips_octeonp:
11859 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11860 break;
11861
11862 case bfd_mach_mips_xlr:
11863 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11864 break;
11865
11866 case bfd_mach_mips_octeon2:
11867 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11868 break;
11869
11870 case bfd_mach_mipsisa32:
11871 val = E_MIPS_ARCH_32;
11872 break;
11873
11874 case bfd_mach_mipsisa64:
11875 val = E_MIPS_ARCH_64;
11876 break;
11877
11878 case bfd_mach_mipsisa32r2:
11879 case bfd_mach_mipsisa32r3:
11880 case bfd_mach_mipsisa32r5:
11881 val = E_MIPS_ARCH_32R2;
11882 break;
11883
11884 case bfd_mach_mipsisa64r2:
11885 case bfd_mach_mipsisa64r3:
11886 case bfd_mach_mipsisa64r5:
11887 val = E_MIPS_ARCH_64R2;
11888 break;
11889
11890 case bfd_mach_mipsisa32r6:
11891 val = E_MIPS_ARCH_32R6;
11892 break;
11893
11894 case bfd_mach_mipsisa64r6:
11895 val = E_MIPS_ARCH_64R6;
11896 break;
11897 }
11898 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11899 elf_elfheader (abfd)->e_flags |= val;
11900
11901 }
11902
11903
11904 /* The final processing done just before writing out a MIPS ELF object
11905 file. This gets the MIPS architecture right based on the machine
11906 number. This is used by both the 32-bit and the 64-bit ABI. */
11907
11908 void
11909 _bfd_mips_elf_final_write_processing (bfd *abfd,
11910 bfd_boolean linker ATTRIBUTE_UNUSED)
11911 {
11912 unsigned int i;
11913 Elf_Internal_Shdr **hdrpp;
11914 const char *name;
11915 asection *sec;
11916
11917 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11918 is nonzero. This is for compatibility with old objects, which used
11919 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11920 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11921 mips_set_isa_flags (abfd);
11922
11923 /* Set the sh_info field for .gptab sections and other appropriate
11924 info for each special section. */
11925 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11926 i < elf_numsections (abfd);
11927 i++, hdrpp++)
11928 {
11929 switch ((*hdrpp)->sh_type)
11930 {
11931 case SHT_MIPS_MSYM:
11932 case SHT_MIPS_LIBLIST:
11933 sec = bfd_get_section_by_name (abfd, ".dynstr");
11934 if (sec != NULL)
11935 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11936 break;
11937
11938 case SHT_MIPS_GPTAB:
11939 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11940 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11941 BFD_ASSERT (name != NULL
11942 && CONST_STRNEQ (name, ".gptab."));
11943 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11944 BFD_ASSERT (sec != NULL);
11945 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11946 break;
11947
11948 case SHT_MIPS_CONTENT:
11949 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11950 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11951 BFD_ASSERT (name != NULL
11952 && CONST_STRNEQ (name, ".MIPS.content"));
11953 sec = bfd_get_section_by_name (abfd,
11954 name + sizeof ".MIPS.content" - 1);
11955 BFD_ASSERT (sec != NULL);
11956 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11957 break;
11958
11959 case SHT_MIPS_SYMBOL_LIB:
11960 sec = bfd_get_section_by_name (abfd, ".dynsym");
11961 if (sec != NULL)
11962 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11963 sec = bfd_get_section_by_name (abfd, ".liblist");
11964 if (sec != NULL)
11965 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11966 break;
11967
11968 case SHT_MIPS_EVENTS:
11969 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11970 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11971 BFD_ASSERT (name != NULL);
11972 if (CONST_STRNEQ (name, ".MIPS.events"))
11973 sec = bfd_get_section_by_name (abfd,
11974 name + sizeof ".MIPS.events" - 1);
11975 else
11976 {
11977 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11978 sec = bfd_get_section_by_name (abfd,
11979 (name
11980 + sizeof ".MIPS.post_rel" - 1));
11981 }
11982 BFD_ASSERT (sec != NULL);
11983 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11984 break;
11985
11986 }
11987 }
11988 }
11989 \f
11990 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11991 segments. */
11992
11993 int
11994 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11995 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11996 {
11997 asection *s;
11998 int ret = 0;
11999
12000 /* See if we need a PT_MIPS_REGINFO segment. */
12001 s = bfd_get_section_by_name (abfd, ".reginfo");
12002 if (s && (s->flags & SEC_LOAD))
12003 ++ret;
12004
12005 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12006 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12007 ++ret;
12008
12009 /* See if we need a PT_MIPS_OPTIONS segment. */
12010 if (IRIX_COMPAT (abfd) == ict_irix6
12011 && bfd_get_section_by_name (abfd,
12012 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12013 ++ret;
12014
12015 /* See if we need a PT_MIPS_RTPROC segment. */
12016 if (IRIX_COMPAT (abfd) == ict_irix5
12017 && bfd_get_section_by_name (abfd, ".dynamic")
12018 && bfd_get_section_by_name (abfd, ".mdebug"))
12019 ++ret;
12020
12021 /* Allocate a PT_NULL header in dynamic objects. See
12022 _bfd_mips_elf_modify_segment_map for details. */
12023 if (!SGI_COMPAT (abfd)
12024 && bfd_get_section_by_name (abfd, ".dynamic"))
12025 ++ret;
12026
12027 return ret;
12028 }
12029
12030 /* Modify the segment map for an IRIX5 executable. */
12031
12032 bfd_boolean
12033 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12034 struct bfd_link_info *info)
12035 {
12036 asection *s;
12037 struct elf_segment_map *m, **pm;
12038 bfd_size_type amt;
12039
12040 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12041 segment. */
12042 s = bfd_get_section_by_name (abfd, ".reginfo");
12043 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12044 {
12045 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12046 if (m->p_type == PT_MIPS_REGINFO)
12047 break;
12048 if (m == NULL)
12049 {
12050 amt = sizeof *m;
12051 m = bfd_zalloc (abfd, amt);
12052 if (m == NULL)
12053 return FALSE;
12054
12055 m->p_type = PT_MIPS_REGINFO;
12056 m->count = 1;
12057 m->sections[0] = s;
12058
12059 /* We want to put it after the PHDR and INTERP segments. */
12060 pm = &elf_seg_map (abfd);
12061 while (*pm != NULL
12062 && ((*pm)->p_type == PT_PHDR
12063 || (*pm)->p_type == PT_INTERP))
12064 pm = &(*pm)->next;
12065
12066 m->next = *pm;
12067 *pm = m;
12068 }
12069 }
12070
12071 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12072 segment. */
12073 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12074 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12075 {
12076 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12077 if (m->p_type == PT_MIPS_ABIFLAGS)
12078 break;
12079 if (m == NULL)
12080 {
12081 amt = sizeof *m;
12082 m = bfd_zalloc (abfd, amt);
12083 if (m == NULL)
12084 return FALSE;
12085
12086 m->p_type = PT_MIPS_ABIFLAGS;
12087 m->count = 1;
12088 m->sections[0] = s;
12089
12090 /* We want to put it after the PHDR and INTERP segments. */
12091 pm = &elf_seg_map (abfd);
12092 while (*pm != NULL
12093 && ((*pm)->p_type == PT_PHDR
12094 || (*pm)->p_type == PT_INTERP))
12095 pm = &(*pm)->next;
12096
12097 m->next = *pm;
12098 *pm = m;
12099 }
12100 }
12101
12102 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12103 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12104 PT_MIPS_OPTIONS segment immediately following the program header
12105 table. */
12106 if (NEWABI_P (abfd)
12107 /* On non-IRIX6 new abi, we'll have already created a segment
12108 for this section, so don't create another. I'm not sure this
12109 is not also the case for IRIX 6, but I can't test it right
12110 now. */
12111 && IRIX_COMPAT (abfd) == ict_irix6)
12112 {
12113 for (s = abfd->sections; s; s = s->next)
12114 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12115 break;
12116
12117 if (s)
12118 {
12119 struct elf_segment_map *options_segment;
12120
12121 pm = &elf_seg_map (abfd);
12122 while (*pm != NULL
12123 && ((*pm)->p_type == PT_PHDR
12124 || (*pm)->p_type == PT_INTERP))
12125 pm = &(*pm)->next;
12126
12127 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12128 {
12129 amt = sizeof (struct elf_segment_map);
12130 options_segment = bfd_zalloc (abfd, amt);
12131 options_segment->next = *pm;
12132 options_segment->p_type = PT_MIPS_OPTIONS;
12133 options_segment->p_flags = PF_R;
12134 options_segment->p_flags_valid = TRUE;
12135 options_segment->count = 1;
12136 options_segment->sections[0] = s;
12137 *pm = options_segment;
12138 }
12139 }
12140 }
12141 else
12142 {
12143 if (IRIX_COMPAT (abfd) == ict_irix5)
12144 {
12145 /* If there are .dynamic and .mdebug sections, we make a room
12146 for the RTPROC header. FIXME: Rewrite without section names. */
12147 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12148 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12149 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12150 {
12151 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12152 if (m->p_type == PT_MIPS_RTPROC)
12153 break;
12154 if (m == NULL)
12155 {
12156 amt = sizeof *m;
12157 m = bfd_zalloc (abfd, amt);
12158 if (m == NULL)
12159 return FALSE;
12160
12161 m->p_type = PT_MIPS_RTPROC;
12162
12163 s = bfd_get_section_by_name (abfd, ".rtproc");
12164 if (s == NULL)
12165 {
12166 m->count = 0;
12167 m->p_flags = 0;
12168 m->p_flags_valid = 1;
12169 }
12170 else
12171 {
12172 m->count = 1;
12173 m->sections[0] = s;
12174 }
12175
12176 /* We want to put it after the DYNAMIC segment. */
12177 pm = &elf_seg_map (abfd);
12178 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12179 pm = &(*pm)->next;
12180 if (*pm != NULL)
12181 pm = &(*pm)->next;
12182
12183 m->next = *pm;
12184 *pm = m;
12185 }
12186 }
12187 }
12188 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12189 .dynstr, .dynsym, and .hash sections, and everything in
12190 between. */
12191 for (pm = &elf_seg_map (abfd); *pm != NULL;
12192 pm = &(*pm)->next)
12193 if ((*pm)->p_type == PT_DYNAMIC)
12194 break;
12195 m = *pm;
12196 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12197 glibc's dynamic linker has traditionally derived the number of
12198 tags from the p_filesz field, and sometimes allocates stack
12199 arrays of that size. An overly-big PT_DYNAMIC segment can
12200 be actively harmful in such cases. Making PT_DYNAMIC contain
12201 other sections can also make life hard for the prelinker,
12202 which might move one of the other sections to a different
12203 PT_LOAD segment. */
12204 if (SGI_COMPAT (abfd)
12205 && m != NULL
12206 && m->count == 1
12207 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12208 {
12209 static const char *sec_names[] =
12210 {
12211 ".dynamic", ".dynstr", ".dynsym", ".hash"
12212 };
12213 bfd_vma low, high;
12214 unsigned int i, c;
12215 struct elf_segment_map *n;
12216
12217 low = ~(bfd_vma) 0;
12218 high = 0;
12219 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12220 {
12221 s = bfd_get_section_by_name (abfd, sec_names[i]);
12222 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12223 {
12224 bfd_size_type sz;
12225
12226 if (low > s->vma)
12227 low = s->vma;
12228 sz = s->size;
12229 if (high < s->vma + sz)
12230 high = s->vma + sz;
12231 }
12232 }
12233
12234 c = 0;
12235 for (s = abfd->sections; s != NULL; s = s->next)
12236 if ((s->flags & SEC_LOAD) != 0
12237 && s->vma >= low
12238 && s->vma + s->size <= high)
12239 ++c;
12240
12241 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12242 n = bfd_zalloc (abfd, amt);
12243 if (n == NULL)
12244 return FALSE;
12245 *n = *m;
12246 n->count = c;
12247
12248 i = 0;
12249 for (s = abfd->sections; s != NULL; s = s->next)
12250 {
12251 if ((s->flags & SEC_LOAD) != 0
12252 && s->vma >= low
12253 && s->vma + s->size <= high)
12254 {
12255 n->sections[i] = s;
12256 ++i;
12257 }
12258 }
12259
12260 *pm = n;
12261 }
12262 }
12263
12264 /* Allocate a spare program header in dynamic objects so that tools
12265 like the prelinker can add an extra PT_LOAD entry.
12266
12267 If the prelinker needs to make room for a new PT_LOAD entry, its
12268 standard procedure is to move the first (read-only) sections into
12269 the new (writable) segment. However, the MIPS ABI requires
12270 .dynamic to be in a read-only segment, and the section will often
12271 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12272
12273 Although the prelinker could in principle move .dynamic to a
12274 writable segment, it seems better to allocate a spare program
12275 header instead, and avoid the need to move any sections.
12276 There is a long tradition of allocating spare dynamic tags,
12277 so allocating a spare program header seems like a natural
12278 extension.
12279
12280 If INFO is NULL, we may be copying an already prelinked binary
12281 with objcopy or strip, so do not add this header. */
12282 if (info != NULL
12283 && !SGI_COMPAT (abfd)
12284 && bfd_get_section_by_name (abfd, ".dynamic"))
12285 {
12286 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12287 if ((*pm)->p_type == PT_NULL)
12288 break;
12289 if (*pm == NULL)
12290 {
12291 m = bfd_zalloc (abfd, sizeof (*m));
12292 if (m == NULL)
12293 return FALSE;
12294
12295 m->p_type = PT_NULL;
12296 *pm = m;
12297 }
12298 }
12299
12300 return TRUE;
12301 }
12302 \f
12303 /* Return the section that should be marked against GC for a given
12304 relocation. */
12305
12306 asection *
12307 _bfd_mips_elf_gc_mark_hook (asection *sec,
12308 struct bfd_link_info *info,
12309 Elf_Internal_Rela *rel,
12310 struct elf_link_hash_entry *h,
12311 Elf_Internal_Sym *sym)
12312 {
12313 /* ??? Do mips16 stub sections need to be handled special? */
12314
12315 if (h != NULL)
12316 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12317 {
12318 case R_MIPS_GNU_VTINHERIT:
12319 case R_MIPS_GNU_VTENTRY:
12320 return NULL;
12321 }
12322
12323 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12324 }
12325
12326 /* Update the got entry reference counts for the section being removed. */
12327
12328 bfd_boolean
12329 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12330 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12331 asection *sec ATTRIBUTE_UNUSED,
12332 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12333 {
12334 #if 0
12335 Elf_Internal_Shdr *symtab_hdr;
12336 struct elf_link_hash_entry **sym_hashes;
12337 bfd_signed_vma *local_got_refcounts;
12338 const Elf_Internal_Rela *rel, *relend;
12339 unsigned long r_symndx;
12340 struct elf_link_hash_entry *h;
12341
12342 if (info->relocatable)
12343 return TRUE;
12344
12345 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12346 sym_hashes = elf_sym_hashes (abfd);
12347 local_got_refcounts = elf_local_got_refcounts (abfd);
12348
12349 relend = relocs + sec->reloc_count;
12350 for (rel = relocs; rel < relend; rel++)
12351 switch (ELF_R_TYPE (abfd, rel->r_info))
12352 {
12353 case R_MIPS16_GOT16:
12354 case R_MIPS16_CALL16:
12355 case R_MIPS_GOT16:
12356 case R_MIPS_CALL16:
12357 case R_MIPS_CALL_HI16:
12358 case R_MIPS_CALL_LO16:
12359 case R_MIPS_GOT_HI16:
12360 case R_MIPS_GOT_LO16:
12361 case R_MIPS_GOT_DISP:
12362 case R_MIPS_GOT_PAGE:
12363 case R_MIPS_GOT_OFST:
12364 case R_MICROMIPS_GOT16:
12365 case R_MICROMIPS_CALL16:
12366 case R_MICROMIPS_CALL_HI16:
12367 case R_MICROMIPS_CALL_LO16:
12368 case R_MICROMIPS_GOT_HI16:
12369 case R_MICROMIPS_GOT_LO16:
12370 case R_MICROMIPS_GOT_DISP:
12371 case R_MICROMIPS_GOT_PAGE:
12372 case R_MICROMIPS_GOT_OFST:
12373 /* ??? It would seem that the existing MIPS code does no sort
12374 of reference counting or whatnot on its GOT and PLT entries,
12375 so it is not possible to garbage collect them at this time. */
12376 break;
12377
12378 default:
12379 break;
12380 }
12381 #endif
12382
12383 return TRUE;
12384 }
12385
12386 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12387
12388 bfd_boolean
12389 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12390 elf_gc_mark_hook_fn gc_mark_hook)
12391 {
12392 bfd *sub;
12393
12394 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12395
12396 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12397 {
12398 asection *o;
12399
12400 if (! is_mips_elf (sub))
12401 continue;
12402
12403 for (o = sub->sections; o != NULL; o = o->next)
12404 if (!o->gc_mark
12405 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12406 (bfd_get_section_name (sub, o)))
12407 {
12408 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12409 return FALSE;
12410 }
12411 }
12412
12413 return TRUE;
12414 }
12415 \f
12416 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12417 hiding the old indirect symbol. Process additional relocation
12418 information. Also called for weakdefs, in which case we just let
12419 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12420
12421 void
12422 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12423 struct elf_link_hash_entry *dir,
12424 struct elf_link_hash_entry *ind)
12425 {
12426 struct mips_elf_link_hash_entry *dirmips, *indmips;
12427
12428 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12429
12430 dirmips = (struct mips_elf_link_hash_entry *) dir;
12431 indmips = (struct mips_elf_link_hash_entry *) ind;
12432 /* Any absolute non-dynamic relocations against an indirect or weak
12433 definition will be against the target symbol. */
12434 if (indmips->has_static_relocs)
12435 dirmips->has_static_relocs = TRUE;
12436
12437 if (ind->root.type != bfd_link_hash_indirect)
12438 return;
12439
12440 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12441 if (indmips->readonly_reloc)
12442 dirmips->readonly_reloc = TRUE;
12443 if (indmips->no_fn_stub)
12444 dirmips->no_fn_stub = TRUE;
12445 if (indmips->fn_stub)
12446 {
12447 dirmips->fn_stub = indmips->fn_stub;
12448 indmips->fn_stub = NULL;
12449 }
12450 if (indmips->need_fn_stub)
12451 {
12452 dirmips->need_fn_stub = TRUE;
12453 indmips->need_fn_stub = FALSE;
12454 }
12455 if (indmips->call_stub)
12456 {
12457 dirmips->call_stub = indmips->call_stub;
12458 indmips->call_stub = NULL;
12459 }
12460 if (indmips->call_fp_stub)
12461 {
12462 dirmips->call_fp_stub = indmips->call_fp_stub;
12463 indmips->call_fp_stub = NULL;
12464 }
12465 if (indmips->global_got_area < dirmips->global_got_area)
12466 dirmips->global_got_area = indmips->global_got_area;
12467 if (indmips->global_got_area < GGA_NONE)
12468 indmips->global_got_area = GGA_NONE;
12469 if (indmips->has_nonpic_branches)
12470 dirmips->has_nonpic_branches = TRUE;
12471 }
12472 \f
12473 #define PDR_SIZE 32
12474
12475 bfd_boolean
12476 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12477 struct bfd_link_info *info)
12478 {
12479 asection *o;
12480 bfd_boolean ret = FALSE;
12481 unsigned char *tdata;
12482 size_t i, skip;
12483
12484 o = bfd_get_section_by_name (abfd, ".pdr");
12485 if (! o)
12486 return FALSE;
12487 if (o->size == 0)
12488 return FALSE;
12489 if (o->size % PDR_SIZE != 0)
12490 return FALSE;
12491 if (o->output_section != NULL
12492 && bfd_is_abs_section (o->output_section))
12493 return FALSE;
12494
12495 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12496 if (! tdata)
12497 return FALSE;
12498
12499 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12500 info->keep_memory);
12501 if (!cookie->rels)
12502 {
12503 free (tdata);
12504 return FALSE;
12505 }
12506
12507 cookie->rel = cookie->rels;
12508 cookie->relend = cookie->rels + o->reloc_count;
12509
12510 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12511 {
12512 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12513 {
12514 tdata[i] = 1;
12515 skip ++;
12516 }
12517 }
12518
12519 if (skip != 0)
12520 {
12521 mips_elf_section_data (o)->u.tdata = tdata;
12522 if (o->rawsize == 0)
12523 o->rawsize = o->size;
12524 o->size -= skip * PDR_SIZE;
12525 ret = TRUE;
12526 }
12527 else
12528 free (tdata);
12529
12530 if (! info->keep_memory)
12531 free (cookie->rels);
12532
12533 return ret;
12534 }
12535
12536 bfd_boolean
12537 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12538 {
12539 if (strcmp (sec->name, ".pdr") == 0)
12540 return TRUE;
12541 return FALSE;
12542 }
12543
12544 bfd_boolean
12545 _bfd_mips_elf_write_section (bfd *output_bfd,
12546 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12547 asection *sec, bfd_byte *contents)
12548 {
12549 bfd_byte *to, *from, *end;
12550 int i;
12551
12552 if (strcmp (sec->name, ".pdr") != 0)
12553 return FALSE;
12554
12555 if (mips_elf_section_data (sec)->u.tdata == NULL)
12556 return FALSE;
12557
12558 to = contents;
12559 end = contents + sec->size;
12560 for (from = contents, i = 0;
12561 from < end;
12562 from += PDR_SIZE, i++)
12563 {
12564 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12565 continue;
12566 if (to != from)
12567 memcpy (to, from, PDR_SIZE);
12568 to += PDR_SIZE;
12569 }
12570 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12571 sec->output_offset, sec->size);
12572 return TRUE;
12573 }
12574 \f
12575 /* microMIPS code retains local labels for linker relaxation. Omit them
12576 from output by default for clarity. */
12577
12578 bfd_boolean
12579 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12580 {
12581 return _bfd_elf_is_local_label_name (abfd, sym->name);
12582 }
12583
12584 /* MIPS ELF uses a special find_nearest_line routine in order the
12585 handle the ECOFF debugging information. */
12586
12587 struct mips_elf_find_line
12588 {
12589 struct ecoff_debug_info d;
12590 struct ecoff_find_line i;
12591 };
12592
12593 bfd_boolean
12594 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
12595 asymbol **symbols, bfd_vma offset,
12596 const char **filename_ptr,
12597 const char **functionname_ptr,
12598 unsigned int *line_ptr)
12599 {
12600 asection *msec;
12601
12602 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
12603 filename_ptr, functionname_ptr,
12604 line_ptr))
12605 return TRUE;
12606
12607 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
12608 section, symbols, offset,
12609 filename_ptr, functionname_ptr,
12610 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
12611 &elf_tdata (abfd)->dwarf2_find_line_info))
12612 return TRUE;
12613
12614 msec = bfd_get_section_by_name (abfd, ".mdebug");
12615 if (msec != NULL)
12616 {
12617 flagword origflags;
12618 struct mips_elf_find_line *fi;
12619 const struct ecoff_debug_swap * const swap =
12620 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12621
12622 /* If we are called during a link, mips_elf_final_link may have
12623 cleared the SEC_HAS_CONTENTS field. We force it back on here
12624 if appropriate (which it normally will be). */
12625 origflags = msec->flags;
12626 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12627 msec->flags |= SEC_HAS_CONTENTS;
12628
12629 fi = mips_elf_tdata (abfd)->find_line_info;
12630 if (fi == NULL)
12631 {
12632 bfd_size_type external_fdr_size;
12633 char *fraw_src;
12634 char *fraw_end;
12635 struct fdr *fdr_ptr;
12636 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12637
12638 fi = bfd_zalloc (abfd, amt);
12639 if (fi == NULL)
12640 {
12641 msec->flags = origflags;
12642 return FALSE;
12643 }
12644
12645 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12646 {
12647 msec->flags = origflags;
12648 return FALSE;
12649 }
12650
12651 /* Swap in the FDR information. */
12652 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12653 fi->d.fdr = bfd_alloc (abfd, amt);
12654 if (fi->d.fdr == NULL)
12655 {
12656 msec->flags = origflags;
12657 return FALSE;
12658 }
12659 external_fdr_size = swap->external_fdr_size;
12660 fdr_ptr = fi->d.fdr;
12661 fraw_src = (char *) fi->d.external_fdr;
12662 fraw_end = (fraw_src
12663 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12664 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12665 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12666
12667 mips_elf_tdata (abfd)->find_line_info = fi;
12668
12669 /* Note that we don't bother to ever free this information.
12670 find_nearest_line is either called all the time, as in
12671 objdump -l, so the information should be saved, or it is
12672 rarely called, as in ld error messages, so the memory
12673 wasted is unimportant. Still, it would probably be a
12674 good idea for free_cached_info to throw it away. */
12675 }
12676
12677 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12678 &fi->i, filename_ptr, functionname_ptr,
12679 line_ptr))
12680 {
12681 msec->flags = origflags;
12682 return TRUE;
12683 }
12684
12685 msec->flags = origflags;
12686 }
12687
12688 /* Fall back on the generic ELF find_nearest_line routine. */
12689
12690 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
12691 filename_ptr, functionname_ptr,
12692 line_ptr);
12693 }
12694
12695 bfd_boolean
12696 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12697 const char **filename_ptr,
12698 const char **functionname_ptr,
12699 unsigned int *line_ptr)
12700 {
12701 bfd_boolean found;
12702 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12703 functionname_ptr, line_ptr,
12704 & elf_tdata (abfd)->dwarf2_find_line_info);
12705 return found;
12706 }
12707
12708 \f
12709 /* When are writing out the .options or .MIPS.options section,
12710 remember the bytes we are writing out, so that we can install the
12711 GP value in the section_processing routine. */
12712
12713 bfd_boolean
12714 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12715 const void *location,
12716 file_ptr offset, bfd_size_type count)
12717 {
12718 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12719 {
12720 bfd_byte *c;
12721
12722 if (elf_section_data (section) == NULL)
12723 {
12724 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12725 section->used_by_bfd = bfd_zalloc (abfd, amt);
12726 if (elf_section_data (section) == NULL)
12727 return FALSE;
12728 }
12729 c = mips_elf_section_data (section)->u.tdata;
12730 if (c == NULL)
12731 {
12732 c = bfd_zalloc (abfd, section->size);
12733 if (c == NULL)
12734 return FALSE;
12735 mips_elf_section_data (section)->u.tdata = c;
12736 }
12737
12738 memcpy (c + offset, location, count);
12739 }
12740
12741 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12742 count);
12743 }
12744
12745 /* This is almost identical to bfd_generic_get_... except that some
12746 MIPS relocations need to be handled specially. Sigh. */
12747
12748 bfd_byte *
12749 _bfd_elf_mips_get_relocated_section_contents
12750 (bfd *abfd,
12751 struct bfd_link_info *link_info,
12752 struct bfd_link_order *link_order,
12753 bfd_byte *data,
12754 bfd_boolean relocatable,
12755 asymbol **symbols)
12756 {
12757 /* Get enough memory to hold the stuff */
12758 bfd *input_bfd = link_order->u.indirect.section->owner;
12759 asection *input_section = link_order->u.indirect.section;
12760 bfd_size_type sz;
12761
12762 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12763 arelent **reloc_vector = NULL;
12764 long reloc_count;
12765
12766 if (reloc_size < 0)
12767 goto error_return;
12768
12769 reloc_vector = bfd_malloc (reloc_size);
12770 if (reloc_vector == NULL && reloc_size != 0)
12771 goto error_return;
12772
12773 /* read in the section */
12774 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12775 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12776 goto error_return;
12777
12778 reloc_count = bfd_canonicalize_reloc (input_bfd,
12779 input_section,
12780 reloc_vector,
12781 symbols);
12782 if (reloc_count < 0)
12783 goto error_return;
12784
12785 if (reloc_count > 0)
12786 {
12787 arelent **parent;
12788 /* for mips */
12789 int gp_found;
12790 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12791
12792 {
12793 struct bfd_hash_entry *h;
12794 struct bfd_link_hash_entry *lh;
12795 /* Skip all this stuff if we aren't mixing formats. */
12796 if (abfd && input_bfd
12797 && abfd->xvec == input_bfd->xvec)
12798 lh = 0;
12799 else
12800 {
12801 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12802 lh = (struct bfd_link_hash_entry *) h;
12803 }
12804 lookup:
12805 if (lh)
12806 {
12807 switch (lh->type)
12808 {
12809 case bfd_link_hash_undefined:
12810 case bfd_link_hash_undefweak:
12811 case bfd_link_hash_common:
12812 gp_found = 0;
12813 break;
12814 case bfd_link_hash_defined:
12815 case bfd_link_hash_defweak:
12816 gp_found = 1;
12817 gp = lh->u.def.value;
12818 break;
12819 case bfd_link_hash_indirect:
12820 case bfd_link_hash_warning:
12821 lh = lh->u.i.link;
12822 /* @@FIXME ignoring warning for now */
12823 goto lookup;
12824 case bfd_link_hash_new:
12825 default:
12826 abort ();
12827 }
12828 }
12829 else
12830 gp_found = 0;
12831 }
12832 /* end mips */
12833 for (parent = reloc_vector; *parent != NULL; parent++)
12834 {
12835 char *error_message = NULL;
12836 bfd_reloc_status_type r;
12837
12838 /* Specific to MIPS: Deal with relocation types that require
12839 knowing the gp of the output bfd. */
12840 asymbol *sym = *(*parent)->sym_ptr_ptr;
12841
12842 /* If we've managed to find the gp and have a special
12843 function for the relocation then go ahead, else default
12844 to the generic handling. */
12845 if (gp_found
12846 && (*parent)->howto->special_function
12847 == _bfd_mips_elf32_gprel16_reloc)
12848 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12849 input_section, relocatable,
12850 data, gp);
12851 else
12852 r = bfd_perform_relocation (input_bfd, *parent, data,
12853 input_section,
12854 relocatable ? abfd : NULL,
12855 &error_message);
12856
12857 if (relocatable)
12858 {
12859 asection *os = input_section->output_section;
12860
12861 /* A partial link, so keep the relocs */
12862 os->orelocation[os->reloc_count] = *parent;
12863 os->reloc_count++;
12864 }
12865
12866 if (r != bfd_reloc_ok)
12867 {
12868 switch (r)
12869 {
12870 case bfd_reloc_undefined:
12871 if (!((*link_info->callbacks->undefined_symbol)
12872 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12873 input_bfd, input_section, (*parent)->address, TRUE)))
12874 goto error_return;
12875 break;
12876 case bfd_reloc_dangerous:
12877 BFD_ASSERT (error_message != NULL);
12878 if (!((*link_info->callbacks->reloc_dangerous)
12879 (link_info, error_message, input_bfd, input_section,
12880 (*parent)->address)))
12881 goto error_return;
12882 break;
12883 case bfd_reloc_overflow:
12884 if (!((*link_info->callbacks->reloc_overflow)
12885 (link_info, NULL,
12886 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12887 (*parent)->howto->name, (*parent)->addend,
12888 input_bfd, input_section, (*parent)->address)))
12889 goto error_return;
12890 break;
12891 case bfd_reloc_outofrange:
12892 default:
12893 abort ();
12894 break;
12895 }
12896
12897 }
12898 }
12899 }
12900 if (reloc_vector != NULL)
12901 free (reloc_vector);
12902 return data;
12903
12904 error_return:
12905 if (reloc_vector != NULL)
12906 free (reloc_vector);
12907 return NULL;
12908 }
12909 \f
12910 static bfd_boolean
12911 mips_elf_relax_delete_bytes (bfd *abfd,
12912 asection *sec, bfd_vma addr, int count)
12913 {
12914 Elf_Internal_Shdr *symtab_hdr;
12915 unsigned int sec_shndx;
12916 bfd_byte *contents;
12917 Elf_Internal_Rela *irel, *irelend;
12918 Elf_Internal_Sym *isym;
12919 Elf_Internal_Sym *isymend;
12920 struct elf_link_hash_entry **sym_hashes;
12921 struct elf_link_hash_entry **end_hashes;
12922 struct elf_link_hash_entry **start_hashes;
12923 unsigned int symcount;
12924
12925 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12926 contents = elf_section_data (sec)->this_hdr.contents;
12927
12928 irel = elf_section_data (sec)->relocs;
12929 irelend = irel + sec->reloc_count;
12930
12931 /* Actually delete the bytes. */
12932 memmove (contents + addr, contents + addr + count,
12933 (size_t) (sec->size - addr - count));
12934 sec->size -= count;
12935
12936 /* Adjust all the relocs. */
12937 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12938 {
12939 /* Get the new reloc address. */
12940 if (irel->r_offset > addr)
12941 irel->r_offset -= count;
12942 }
12943
12944 BFD_ASSERT (addr % 2 == 0);
12945 BFD_ASSERT (count % 2 == 0);
12946
12947 /* Adjust the local symbols defined in this section. */
12948 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12949 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12950 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12951 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12952 isym->st_value -= count;
12953
12954 /* Now adjust the global symbols defined in this section. */
12955 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12956 - symtab_hdr->sh_info);
12957 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12958 end_hashes = sym_hashes + symcount;
12959
12960 for (; sym_hashes < end_hashes; sym_hashes++)
12961 {
12962 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12963
12964 if ((sym_hash->root.type == bfd_link_hash_defined
12965 || sym_hash->root.type == bfd_link_hash_defweak)
12966 && sym_hash->root.u.def.section == sec)
12967 {
12968 bfd_vma value = sym_hash->root.u.def.value;
12969
12970 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12971 value &= MINUS_TWO;
12972 if (value > addr)
12973 sym_hash->root.u.def.value -= count;
12974 }
12975 }
12976
12977 return TRUE;
12978 }
12979
12980
12981 /* Opcodes needed for microMIPS relaxation as found in
12982 opcodes/micromips-opc.c. */
12983
12984 struct opcode_descriptor {
12985 unsigned long match;
12986 unsigned long mask;
12987 };
12988
12989 /* The $ra register aka $31. */
12990
12991 #define RA 31
12992
12993 /* 32-bit instruction format register fields. */
12994
12995 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12996 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12997
12998 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12999
13000 #define OP16_VALID_REG(r) \
13001 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13002
13003
13004 /* 32-bit and 16-bit branches. */
13005
13006 static const struct opcode_descriptor b_insns_32[] = {
13007 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13008 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13009 { 0, 0 } /* End marker for find_match(). */
13010 };
13011
13012 static const struct opcode_descriptor bc_insn_32 =
13013 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13014
13015 static const struct opcode_descriptor bz_insn_32 =
13016 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13017
13018 static const struct opcode_descriptor bzal_insn_32 =
13019 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13020
13021 static const struct opcode_descriptor beq_insn_32 =
13022 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13023
13024 static const struct opcode_descriptor b_insn_16 =
13025 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13026
13027 static const struct opcode_descriptor bz_insn_16 =
13028 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13029
13030
13031 /* 32-bit and 16-bit branch EQ and NE zero. */
13032
13033 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13034 eq and second the ne. This convention is used when replacing a
13035 32-bit BEQ/BNE with the 16-bit version. */
13036
13037 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13038
13039 static const struct opcode_descriptor bz_rs_insns_32[] = {
13040 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13041 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13042 { 0, 0 } /* End marker for find_match(). */
13043 };
13044
13045 static const struct opcode_descriptor bz_rt_insns_32[] = {
13046 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13047 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13048 { 0, 0 } /* End marker for find_match(). */
13049 };
13050
13051 static const struct opcode_descriptor bzc_insns_32[] = {
13052 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13053 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13054 { 0, 0 } /* End marker for find_match(). */
13055 };
13056
13057 static const struct opcode_descriptor bz_insns_16[] = {
13058 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13059 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13060 { 0, 0 } /* End marker for find_match(). */
13061 };
13062
13063 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13064
13065 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
13066 #define BZ16_REG_FIELD(r) \
13067 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
13068
13069
13070 /* 32-bit instructions with a delay slot. */
13071
13072 static const struct opcode_descriptor jal_insn_32_bd16 =
13073 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13074
13075 static const struct opcode_descriptor jal_insn_32_bd32 =
13076 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13077
13078 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13079 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13080
13081 static const struct opcode_descriptor j_insn_32 =
13082 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13083
13084 static const struct opcode_descriptor jalr_insn_32 =
13085 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13086
13087 /* This table can be compacted, because no opcode replacement is made. */
13088
13089 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13090 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13091
13092 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13093 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13094
13095 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13096 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13097 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13098 { 0, 0 } /* End marker for find_match(). */
13099 };
13100
13101 /* This table can be compacted, because no opcode replacement is made. */
13102
13103 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13104 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13105
13106 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13107 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13108 { 0, 0 } /* End marker for find_match(). */
13109 };
13110
13111
13112 /* 16-bit instructions with a delay slot. */
13113
13114 static const struct opcode_descriptor jalr_insn_16_bd16 =
13115 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13116
13117 static const struct opcode_descriptor jalr_insn_16_bd32 =
13118 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13119
13120 static const struct opcode_descriptor jr_insn_16 =
13121 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13122
13123 #define JR16_REG(opcode) ((opcode) & 0x1f)
13124
13125 /* This table can be compacted, because no opcode replacement is made. */
13126
13127 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13128 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13129
13130 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13131 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13132 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13133 { 0, 0 } /* End marker for find_match(). */
13134 };
13135
13136
13137 /* LUI instruction. */
13138
13139 static const struct opcode_descriptor lui_insn =
13140 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13141
13142
13143 /* ADDIU instruction. */
13144
13145 static const struct opcode_descriptor addiu_insn =
13146 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13147
13148 static const struct opcode_descriptor addiupc_insn =
13149 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13150
13151 #define ADDIUPC_REG_FIELD(r) \
13152 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13153
13154
13155 /* Relaxable instructions in a JAL delay slot: MOVE. */
13156
13157 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13158 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13159 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13160 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13161
13162 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13163 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13164
13165 static const struct opcode_descriptor move_insns_32[] = {
13166 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13167 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13168 { 0, 0 } /* End marker for find_match(). */
13169 };
13170
13171 static const struct opcode_descriptor move_insn_16 =
13172 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13173
13174
13175 /* NOP instructions. */
13176
13177 static const struct opcode_descriptor nop_insn_32 =
13178 { /* "nop", "", */ 0x00000000, 0xffffffff };
13179
13180 static const struct opcode_descriptor nop_insn_16 =
13181 { /* "nop", "", */ 0x0c00, 0xffff };
13182
13183
13184 /* Instruction match support. */
13185
13186 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13187
13188 static int
13189 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13190 {
13191 unsigned long indx;
13192
13193 for (indx = 0; insn[indx].mask != 0; indx++)
13194 if (MATCH (opcode, insn[indx]))
13195 return indx;
13196
13197 return -1;
13198 }
13199
13200
13201 /* Branch and delay slot decoding support. */
13202
13203 /* If PTR points to what *might* be a 16-bit branch or jump, then
13204 return the minimum length of its delay slot, otherwise return 0.
13205 Non-zero results are not definitive as we might be checking against
13206 the second half of another instruction. */
13207
13208 static int
13209 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13210 {
13211 unsigned long opcode;
13212 int bdsize;
13213
13214 opcode = bfd_get_16 (abfd, ptr);
13215 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13216 /* 16-bit branch/jump with a 32-bit delay slot. */
13217 bdsize = 4;
13218 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13219 || find_match (opcode, ds_insns_16_bd16) >= 0)
13220 /* 16-bit branch/jump with a 16-bit delay slot. */
13221 bdsize = 2;
13222 else
13223 /* No delay slot. */
13224 bdsize = 0;
13225
13226 return bdsize;
13227 }
13228
13229 /* If PTR points to what *might* be a 32-bit branch or jump, then
13230 return the minimum length of its delay slot, otherwise return 0.
13231 Non-zero results are not definitive as we might be checking against
13232 the second half of another instruction. */
13233
13234 static int
13235 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13236 {
13237 unsigned long opcode;
13238 int bdsize;
13239
13240 opcode = bfd_get_micromips_32 (abfd, ptr);
13241 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13242 /* 32-bit branch/jump with a 32-bit delay slot. */
13243 bdsize = 4;
13244 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13245 /* 32-bit branch/jump with a 16-bit delay slot. */
13246 bdsize = 2;
13247 else
13248 /* No delay slot. */
13249 bdsize = 0;
13250
13251 return bdsize;
13252 }
13253
13254 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13255 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13256
13257 static bfd_boolean
13258 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13259 {
13260 unsigned long opcode;
13261
13262 opcode = bfd_get_16 (abfd, ptr);
13263 if (MATCH (opcode, b_insn_16)
13264 /* B16 */
13265 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13266 /* JR16 */
13267 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13268 /* BEQZ16, BNEZ16 */
13269 || (MATCH (opcode, jalr_insn_16_bd32)
13270 /* JALR16 */
13271 && reg != JR16_REG (opcode) && reg != RA))
13272 return TRUE;
13273
13274 return FALSE;
13275 }
13276
13277 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13278 then return TRUE, otherwise FALSE. */
13279
13280 static bfd_boolean
13281 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13282 {
13283 unsigned long opcode;
13284
13285 opcode = bfd_get_micromips_32 (abfd, ptr);
13286 if (MATCH (opcode, j_insn_32)
13287 /* J */
13288 || MATCH (opcode, bc_insn_32)
13289 /* BC1F, BC1T, BC2F, BC2T */
13290 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13291 /* JAL, JALX */
13292 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13293 /* BGEZ, BGTZ, BLEZ, BLTZ */
13294 || (MATCH (opcode, bzal_insn_32)
13295 /* BGEZAL, BLTZAL */
13296 && reg != OP32_SREG (opcode) && reg != RA)
13297 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13298 /* JALR, JALR.HB, BEQ, BNE */
13299 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13300 return TRUE;
13301
13302 return FALSE;
13303 }
13304
13305 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13306 IRELEND) at OFFSET indicate that there must be a compact branch there,
13307 then return TRUE, otherwise FALSE. */
13308
13309 static bfd_boolean
13310 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13311 const Elf_Internal_Rela *internal_relocs,
13312 const Elf_Internal_Rela *irelend)
13313 {
13314 const Elf_Internal_Rela *irel;
13315 unsigned long opcode;
13316
13317 opcode = bfd_get_micromips_32 (abfd, ptr);
13318 if (find_match (opcode, bzc_insns_32) < 0)
13319 return FALSE;
13320
13321 for (irel = internal_relocs; irel < irelend; irel++)
13322 if (irel->r_offset == offset
13323 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13324 return TRUE;
13325
13326 return FALSE;
13327 }
13328
13329 /* Bitsize checking. */
13330 #define IS_BITSIZE(val, N) \
13331 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13332 - (1ULL << ((N) - 1))) == (val))
13333
13334 \f
13335 bfd_boolean
13336 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13337 struct bfd_link_info *link_info,
13338 bfd_boolean *again)
13339 {
13340 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13341 Elf_Internal_Shdr *symtab_hdr;
13342 Elf_Internal_Rela *internal_relocs;
13343 Elf_Internal_Rela *irel, *irelend;
13344 bfd_byte *contents = NULL;
13345 Elf_Internal_Sym *isymbuf = NULL;
13346
13347 /* Assume nothing changes. */
13348 *again = FALSE;
13349
13350 /* We don't have to do anything for a relocatable link, if
13351 this section does not have relocs, or if this is not a
13352 code section. */
13353
13354 if (link_info->relocatable
13355 || (sec->flags & SEC_RELOC) == 0
13356 || sec->reloc_count == 0
13357 || (sec->flags & SEC_CODE) == 0)
13358 return TRUE;
13359
13360 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13361
13362 /* Get a copy of the native relocations. */
13363 internal_relocs = (_bfd_elf_link_read_relocs
13364 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13365 link_info->keep_memory));
13366 if (internal_relocs == NULL)
13367 goto error_return;
13368
13369 /* Walk through them looking for relaxing opportunities. */
13370 irelend = internal_relocs + sec->reloc_count;
13371 for (irel = internal_relocs; irel < irelend; irel++)
13372 {
13373 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13374 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13375 bfd_boolean target_is_micromips_code_p;
13376 unsigned long opcode;
13377 bfd_vma symval;
13378 bfd_vma pcrval;
13379 bfd_byte *ptr;
13380 int fndopc;
13381
13382 /* The number of bytes to delete for relaxation and from where
13383 to delete these bytes starting at irel->r_offset. */
13384 int delcnt = 0;
13385 int deloff = 0;
13386
13387 /* If this isn't something that can be relaxed, then ignore
13388 this reloc. */
13389 if (r_type != R_MICROMIPS_HI16
13390 && r_type != R_MICROMIPS_PC16_S1
13391 && r_type != R_MICROMIPS_26_S1)
13392 continue;
13393
13394 /* Get the section contents if we haven't done so already. */
13395 if (contents == NULL)
13396 {
13397 /* Get cached copy if it exists. */
13398 if (elf_section_data (sec)->this_hdr.contents != NULL)
13399 contents = elf_section_data (sec)->this_hdr.contents;
13400 /* Go get them off disk. */
13401 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13402 goto error_return;
13403 }
13404 ptr = contents + irel->r_offset;
13405
13406 /* Read this BFD's local symbols if we haven't done so already. */
13407 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13408 {
13409 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13410 if (isymbuf == NULL)
13411 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13412 symtab_hdr->sh_info, 0,
13413 NULL, NULL, NULL);
13414 if (isymbuf == NULL)
13415 goto error_return;
13416 }
13417
13418 /* Get the value of the symbol referred to by the reloc. */
13419 if (r_symndx < symtab_hdr->sh_info)
13420 {
13421 /* A local symbol. */
13422 Elf_Internal_Sym *isym;
13423 asection *sym_sec;
13424
13425 isym = isymbuf + r_symndx;
13426 if (isym->st_shndx == SHN_UNDEF)
13427 sym_sec = bfd_und_section_ptr;
13428 else if (isym->st_shndx == SHN_ABS)
13429 sym_sec = bfd_abs_section_ptr;
13430 else if (isym->st_shndx == SHN_COMMON)
13431 sym_sec = bfd_com_section_ptr;
13432 else
13433 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13434 symval = (isym->st_value
13435 + sym_sec->output_section->vma
13436 + sym_sec->output_offset);
13437 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13438 }
13439 else
13440 {
13441 unsigned long indx;
13442 struct elf_link_hash_entry *h;
13443
13444 /* An external symbol. */
13445 indx = r_symndx - symtab_hdr->sh_info;
13446 h = elf_sym_hashes (abfd)[indx];
13447 BFD_ASSERT (h != NULL);
13448
13449 if (h->root.type != bfd_link_hash_defined
13450 && h->root.type != bfd_link_hash_defweak)
13451 /* This appears to be a reference to an undefined
13452 symbol. Just ignore it -- it will be caught by the
13453 regular reloc processing. */
13454 continue;
13455
13456 symval = (h->root.u.def.value
13457 + h->root.u.def.section->output_section->vma
13458 + h->root.u.def.section->output_offset);
13459 target_is_micromips_code_p = (!h->needs_plt
13460 && ELF_ST_IS_MICROMIPS (h->other));
13461 }
13462
13463
13464 /* For simplicity of coding, we are going to modify the
13465 section contents, the section relocs, and the BFD symbol
13466 table. We must tell the rest of the code not to free up this
13467 information. It would be possible to instead create a table
13468 of changes which have to be made, as is done in coff-mips.c;
13469 that would be more work, but would require less memory when
13470 the linker is run. */
13471
13472 /* Only 32-bit instructions relaxed. */
13473 if (irel->r_offset + 4 > sec->size)
13474 continue;
13475
13476 opcode = bfd_get_micromips_32 (abfd, ptr);
13477
13478 /* This is the pc-relative distance from the instruction the
13479 relocation is applied to, to the symbol referred. */
13480 pcrval = (symval
13481 - (sec->output_section->vma + sec->output_offset)
13482 - irel->r_offset);
13483
13484 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13485 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13486 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13487
13488 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13489
13490 where pcrval has first to be adjusted to apply against the LO16
13491 location (we make the adjustment later on, when we have figured
13492 out the offset). */
13493 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13494 {
13495 bfd_boolean bzc = FALSE;
13496 unsigned long nextopc;
13497 unsigned long reg;
13498 bfd_vma offset;
13499
13500 /* Give up if the previous reloc was a HI16 against this symbol
13501 too. */
13502 if (irel > internal_relocs
13503 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13504 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13505 continue;
13506
13507 /* Or if the next reloc is not a LO16 against this symbol. */
13508 if (irel + 1 >= irelend
13509 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13510 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13511 continue;
13512
13513 /* Or if the second next reloc is a LO16 against this symbol too. */
13514 if (irel + 2 >= irelend
13515 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13516 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13517 continue;
13518
13519 /* See if the LUI instruction *might* be in a branch delay slot.
13520 We check whether what looks like a 16-bit branch or jump is
13521 actually an immediate argument to a compact branch, and let
13522 it through if so. */
13523 if (irel->r_offset >= 2
13524 && check_br16_dslot (abfd, ptr - 2)
13525 && !(irel->r_offset >= 4
13526 && (bzc = check_relocated_bzc (abfd,
13527 ptr - 4, irel->r_offset - 4,
13528 internal_relocs, irelend))))
13529 continue;
13530 if (irel->r_offset >= 4
13531 && !bzc
13532 && check_br32_dslot (abfd, ptr - 4))
13533 continue;
13534
13535 reg = OP32_SREG (opcode);
13536
13537 /* We only relax adjacent instructions or ones separated with
13538 a branch or jump that has a delay slot. The branch or jump
13539 must not fiddle with the register used to hold the address.
13540 Subtract 4 for the LUI itself. */
13541 offset = irel[1].r_offset - irel[0].r_offset;
13542 switch (offset - 4)
13543 {
13544 case 0:
13545 break;
13546 case 2:
13547 if (check_br16 (abfd, ptr + 4, reg))
13548 break;
13549 continue;
13550 case 4:
13551 if (check_br32 (abfd, ptr + 4, reg))
13552 break;
13553 continue;
13554 default:
13555 continue;
13556 }
13557
13558 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13559
13560 /* Give up unless the same register is used with both
13561 relocations. */
13562 if (OP32_SREG (nextopc) != reg)
13563 continue;
13564
13565 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13566 and rounding up to take masking of the two LSBs into account. */
13567 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13568
13569 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13570 if (IS_BITSIZE (symval, 16))
13571 {
13572 /* Fix the relocation's type. */
13573 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13574
13575 /* Instructions using R_MICROMIPS_LO16 have the base or
13576 source register in bits 20:16. This register becomes $0
13577 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13578 nextopc &= ~0x001f0000;
13579 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13580 contents + irel[1].r_offset);
13581 }
13582
13583 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13584 We add 4 to take LUI deletion into account while checking
13585 the PC-relative distance. */
13586 else if (symval % 4 == 0
13587 && IS_BITSIZE (pcrval + 4, 25)
13588 && MATCH (nextopc, addiu_insn)
13589 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13590 && OP16_VALID_REG (OP32_TREG (nextopc)))
13591 {
13592 /* Fix the relocation's type. */
13593 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13594
13595 /* Replace ADDIU with the ADDIUPC version. */
13596 nextopc = (addiupc_insn.match
13597 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13598
13599 bfd_put_micromips_32 (abfd, nextopc,
13600 contents + irel[1].r_offset);
13601 }
13602
13603 /* Can't do anything, give up, sigh... */
13604 else
13605 continue;
13606
13607 /* Fix the relocation's type. */
13608 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13609
13610 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13611 delcnt = 4;
13612 deloff = 0;
13613 }
13614
13615 /* Compact branch relaxation -- due to the multitude of macros
13616 employed by the compiler/assembler, compact branches are not
13617 always generated. Obviously, this can/will be fixed elsewhere,
13618 but there is no drawback in double checking it here. */
13619 else if (r_type == R_MICROMIPS_PC16_S1
13620 && irel->r_offset + 5 < sec->size
13621 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13622 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13623 && ((!insn32
13624 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13625 nop_insn_16) ? 2 : 0))
13626 || (irel->r_offset + 7 < sec->size
13627 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13628 ptr + 4),
13629 nop_insn_32) ? 4 : 0))))
13630 {
13631 unsigned long reg;
13632
13633 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13634
13635 /* Replace BEQZ/BNEZ with the compact version. */
13636 opcode = (bzc_insns_32[fndopc].match
13637 | BZC32_REG_FIELD (reg)
13638 | (opcode & 0xffff)); /* Addend value. */
13639
13640 bfd_put_micromips_32 (abfd, opcode, ptr);
13641
13642 /* Delete the delay slot NOP: two or four bytes from
13643 irel->offset + 4; delcnt has already been set above. */
13644 deloff = 4;
13645 }
13646
13647 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13648 to check the distance from the next instruction, so subtract 2. */
13649 else if (!insn32
13650 && r_type == R_MICROMIPS_PC16_S1
13651 && IS_BITSIZE (pcrval - 2, 11)
13652 && find_match (opcode, b_insns_32) >= 0)
13653 {
13654 /* Fix the relocation's type. */
13655 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13656
13657 /* Replace the 32-bit opcode with a 16-bit opcode. */
13658 bfd_put_16 (abfd,
13659 (b_insn_16.match
13660 | (opcode & 0x3ff)), /* Addend value. */
13661 ptr);
13662
13663 /* Delete 2 bytes from irel->r_offset + 2. */
13664 delcnt = 2;
13665 deloff = 2;
13666 }
13667
13668 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13669 to check the distance from the next instruction, so subtract 2. */
13670 else if (!insn32
13671 && r_type == R_MICROMIPS_PC16_S1
13672 && IS_BITSIZE (pcrval - 2, 8)
13673 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13674 && OP16_VALID_REG (OP32_SREG (opcode)))
13675 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13676 && OP16_VALID_REG (OP32_TREG (opcode)))))
13677 {
13678 unsigned long reg;
13679
13680 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13681
13682 /* Fix the relocation's type. */
13683 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13684
13685 /* Replace the 32-bit opcode with a 16-bit opcode. */
13686 bfd_put_16 (abfd,
13687 (bz_insns_16[fndopc].match
13688 | BZ16_REG_FIELD (reg)
13689 | (opcode & 0x7f)), /* Addend value. */
13690 ptr);
13691
13692 /* Delete 2 bytes from irel->r_offset + 2. */
13693 delcnt = 2;
13694 deloff = 2;
13695 }
13696
13697 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13698 else if (!insn32
13699 && r_type == R_MICROMIPS_26_S1
13700 && target_is_micromips_code_p
13701 && irel->r_offset + 7 < sec->size
13702 && MATCH (opcode, jal_insn_32_bd32))
13703 {
13704 unsigned long n32opc;
13705 bfd_boolean relaxed = FALSE;
13706
13707 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13708
13709 if (MATCH (n32opc, nop_insn_32))
13710 {
13711 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13712 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13713
13714 relaxed = TRUE;
13715 }
13716 else if (find_match (n32opc, move_insns_32) >= 0)
13717 {
13718 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13719 bfd_put_16 (abfd,
13720 (move_insn_16.match
13721 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13722 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13723 ptr + 4);
13724
13725 relaxed = TRUE;
13726 }
13727 /* Other 32-bit instructions relaxable to 16-bit
13728 instructions will be handled here later. */
13729
13730 if (relaxed)
13731 {
13732 /* JAL with 32-bit delay slot that is changed to a JALS
13733 with 16-bit delay slot. */
13734 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13735
13736 /* Delete 2 bytes from irel->r_offset + 6. */
13737 delcnt = 2;
13738 deloff = 6;
13739 }
13740 }
13741
13742 if (delcnt != 0)
13743 {
13744 /* Note that we've changed the relocs, section contents, etc. */
13745 elf_section_data (sec)->relocs = internal_relocs;
13746 elf_section_data (sec)->this_hdr.contents = contents;
13747 symtab_hdr->contents = (unsigned char *) isymbuf;
13748
13749 /* Delete bytes depending on the delcnt and deloff. */
13750 if (!mips_elf_relax_delete_bytes (abfd, sec,
13751 irel->r_offset + deloff, delcnt))
13752 goto error_return;
13753
13754 /* That will change things, so we should relax again.
13755 Note that this is not required, and it may be slow. */
13756 *again = TRUE;
13757 }
13758 }
13759
13760 if (isymbuf != NULL
13761 && symtab_hdr->contents != (unsigned char *) isymbuf)
13762 {
13763 if (! link_info->keep_memory)
13764 free (isymbuf);
13765 else
13766 {
13767 /* Cache the symbols for elf_link_input_bfd. */
13768 symtab_hdr->contents = (unsigned char *) isymbuf;
13769 }
13770 }
13771
13772 if (contents != NULL
13773 && elf_section_data (sec)->this_hdr.contents != contents)
13774 {
13775 if (! link_info->keep_memory)
13776 free (contents);
13777 else
13778 {
13779 /* Cache the section contents for elf_link_input_bfd. */
13780 elf_section_data (sec)->this_hdr.contents = contents;
13781 }
13782 }
13783
13784 if (internal_relocs != NULL
13785 && elf_section_data (sec)->relocs != internal_relocs)
13786 free (internal_relocs);
13787
13788 return TRUE;
13789
13790 error_return:
13791 if (isymbuf != NULL
13792 && symtab_hdr->contents != (unsigned char *) isymbuf)
13793 free (isymbuf);
13794 if (contents != NULL
13795 && elf_section_data (sec)->this_hdr.contents != contents)
13796 free (contents);
13797 if (internal_relocs != NULL
13798 && elf_section_data (sec)->relocs != internal_relocs)
13799 free (internal_relocs);
13800
13801 return FALSE;
13802 }
13803 \f
13804 /* Create a MIPS ELF linker hash table. */
13805
13806 struct bfd_link_hash_table *
13807 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13808 {
13809 struct mips_elf_link_hash_table *ret;
13810 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13811
13812 ret = bfd_zmalloc (amt);
13813 if (ret == NULL)
13814 return NULL;
13815
13816 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13817 mips_elf_link_hash_newfunc,
13818 sizeof (struct mips_elf_link_hash_entry),
13819 MIPS_ELF_DATA))
13820 {
13821 free (ret);
13822 return NULL;
13823 }
13824 ret->root.init_plt_refcount.plist = NULL;
13825 ret->root.init_plt_offset.plist = NULL;
13826
13827 return &ret->root.root;
13828 }
13829
13830 /* Likewise, but indicate that the target is VxWorks. */
13831
13832 struct bfd_link_hash_table *
13833 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13834 {
13835 struct bfd_link_hash_table *ret;
13836
13837 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13838 if (ret)
13839 {
13840 struct mips_elf_link_hash_table *htab;
13841
13842 htab = (struct mips_elf_link_hash_table *) ret;
13843 htab->use_plts_and_copy_relocs = TRUE;
13844 htab->is_vxworks = TRUE;
13845 }
13846 return ret;
13847 }
13848
13849 /* A function that the linker calls if we are allowed to use PLTs
13850 and copy relocs. */
13851
13852 void
13853 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13854 {
13855 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13856 }
13857
13858 /* A function that the linker calls to select between all or only
13859 32-bit microMIPS instructions. */
13860
13861 void
13862 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13863 {
13864 mips_elf_hash_table (info)->insn32 = on;
13865 }
13866 \f
13867 /* Return the .MIPS.abiflags value representing each ISA Extension. */
13868
13869 unsigned int
13870 bfd_mips_isa_ext (bfd *abfd)
13871 {
13872 switch (bfd_get_mach (abfd))
13873 {
13874 case bfd_mach_mips3900:
13875 return AFL_EXT_3900;
13876 case bfd_mach_mips4010:
13877 return AFL_EXT_4010;
13878 case bfd_mach_mips4100:
13879 return AFL_EXT_4100;
13880 case bfd_mach_mips4111:
13881 return AFL_EXT_4111;
13882 case bfd_mach_mips4120:
13883 return AFL_EXT_4120;
13884 case bfd_mach_mips4650:
13885 return AFL_EXT_4650;
13886 case bfd_mach_mips5400:
13887 return AFL_EXT_5400;
13888 case bfd_mach_mips5500:
13889 return AFL_EXT_5500;
13890 case bfd_mach_mips5900:
13891 return AFL_EXT_5900;
13892 case bfd_mach_mips10000:
13893 return AFL_EXT_10000;
13894 case bfd_mach_mips_loongson_2e:
13895 return AFL_EXT_LOONGSON_2E;
13896 case bfd_mach_mips_loongson_2f:
13897 return AFL_EXT_LOONGSON_2F;
13898 case bfd_mach_mips_loongson_3a:
13899 return AFL_EXT_LOONGSON_3A;
13900 case bfd_mach_mips_sb1:
13901 return AFL_EXT_SB1;
13902 case bfd_mach_mips_octeon:
13903 return AFL_EXT_OCTEON;
13904 case bfd_mach_mips_octeonp:
13905 return AFL_EXT_OCTEONP;
13906 case bfd_mach_mips_octeon2:
13907 return AFL_EXT_OCTEON2;
13908 case bfd_mach_mips_xlr:
13909 return AFL_EXT_XLR;
13910 }
13911 return 0;
13912 }
13913
13914 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
13915
13916 static void
13917 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
13918 {
13919 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
13920 {
13921 case E_MIPS_ARCH_1:
13922 abiflags->isa_level = 1;
13923 abiflags->isa_rev = 0;
13924 break;
13925 case E_MIPS_ARCH_2:
13926 abiflags->isa_level = 2;
13927 abiflags->isa_rev = 0;
13928 break;
13929 case E_MIPS_ARCH_3:
13930 abiflags->isa_level = 3;
13931 abiflags->isa_rev = 0;
13932 break;
13933 case E_MIPS_ARCH_4:
13934 abiflags->isa_level = 4;
13935 abiflags->isa_rev = 0;
13936 break;
13937 case E_MIPS_ARCH_5:
13938 abiflags->isa_level = 5;
13939 abiflags->isa_rev = 0;
13940 break;
13941 case E_MIPS_ARCH_32:
13942 abiflags->isa_level = 32;
13943 abiflags->isa_rev = 1;
13944 break;
13945 case E_MIPS_ARCH_32R2:
13946 abiflags->isa_level = 32;
13947 /* Handle MIPS32r3 and MIPS32r5 which do not have a header flag. */
13948 if (abiflags->isa_rev < 2)
13949 abiflags->isa_rev = 2;
13950 break;
13951 case E_MIPS_ARCH_64:
13952 abiflags->isa_level = 64;
13953 abiflags->isa_rev = 1;
13954 break;
13955 case E_MIPS_ARCH_64R2:
13956 /* Handle MIPS64r3 and MIPS64r5 which do not have a header flag. */
13957 abiflags->isa_level = 64;
13958 if (abiflags->isa_rev < 2)
13959 abiflags->isa_rev = 2;
13960 break;
13961 default:
13962 (*_bfd_error_handler)
13963 (_("%B: Unknown architecture %s"),
13964 abfd, bfd_printable_name (abfd));
13965 }
13966
13967 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
13968 }
13969
13970 /* Return true if the given ELF header flags describe a 32-bit binary. */
13971
13972 static bfd_boolean
13973 mips_32bit_flags_p (flagword flags)
13974 {
13975 return ((flags & EF_MIPS_32BITMODE) != 0
13976 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13977 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13978 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13979 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13980 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13981 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
13982 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
13983 }
13984
13985 /* Infer the content of the ABI flags based on the elf header. */
13986
13987 static void
13988 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
13989 {
13990 obj_attribute *in_attr;
13991
13992 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
13993 update_mips_abiflags_isa (abfd, abiflags);
13994
13995 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
13996 abiflags->gpr_size = AFL_REG_32;
13997 else
13998 abiflags->gpr_size = AFL_REG_64;
13999
14000 abiflags->cpr1_size = AFL_REG_NONE;
14001
14002 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14003 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14004
14005 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14006 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14007 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14008 && abiflags->gpr_size == AFL_REG_32))
14009 abiflags->cpr1_size = AFL_REG_32;
14010 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14011 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14012 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14013 abiflags->cpr1_size = AFL_REG_64;
14014
14015 abiflags->cpr2_size = AFL_REG_NONE;
14016
14017 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14018 abiflags->ases |= AFL_ASE_MDMX;
14019 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14020 abiflags->ases |= AFL_ASE_MIPS16;
14021 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14022 abiflags->ases |= AFL_ASE_MICROMIPS;
14023
14024 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14025 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14026 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14027 && abiflags->isa_level >= 32
14028 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14029 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14030 }
14031
14032 /* We need to use a special link routine to handle the .reginfo and
14033 the .mdebug sections. We need to merge all instances of these
14034 sections together, not write them all out sequentially. */
14035
14036 bfd_boolean
14037 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14038 {
14039 asection *o;
14040 struct bfd_link_order *p;
14041 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14042 asection *rtproc_sec, *abiflags_sec;
14043 Elf32_RegInfo reginfo;
14044 struct ecoff_debug_info debug;
14045 struct mips_htab_traverse_info hti;
14046 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14047 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14048 HDRR *symhdr = &debug.symbolic_header;
14049 void *mdebug_handle = NULL;
14050 asection *s;
14051 EXTR esym;
14052 unsigned int i;
14053 bfd_size_type amt;
14054 struct mips_elf_link_hash_table *htab;
14055
14056 static const char * const secname[] =
14057 {
14058 ".text", ".init", ".fini", ".data",
14059 ".rodata", ".sdata", ".sbss", ".bss"
14060 };
14061 static const int sc[] =
14062 {
14063 scText, scInit, scFini, scData,
14064 scRData, scSData, scSBss, scBss
14065 };
14066
14067 /* Sort the dynamic symbols so that those with GOT entries come after
14068 those without. */
14069 htab = mips_elf_hash_table (info);
14070 BFD_ASSERT (htab != NULL);
14071
14072 if (!mips_elf_sort_hash_table (abfd, info))
14073 return FALSE;
14074
14075 /* Create any scheduled LA25 stubs. */
14076 hti.info = info;
14077 hti.output_bfd = abfd;
14078 hti.error = FALSE;
14079 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14080 if (hti.error)
14081 return FALSE;
14082
14083 /* Get a value for the GP register. */
14084 if (elf_gp (abfd) == 0)
14085 {
14086 struct bfd_link_hash_entry *h;
14087
14088 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14089 if (h != NULL && h->type == bfd_link_hash_defined)
14090 elf_gp (abfd) = (h->u.def.value
14091 + h->u.def.section->output_section->vma
14092 + h->u.def.section->output_offset);
14093 else if (htab->is_vxworks
14094 && (h = bfd_link_hash_lookup (info->hash,
14095 "_GLOBAL_OFFSET_TABLE_",
14096 FALSE, FALSE, TRUE))
14097 && h->type == bfd_link_hash_defined)
14098 elf_gp (abfd) = (h->u.def.section->output_section->vma
14099 + h->u.def.section->output_offset
14100 + h->u.def.value);
14101 else if (info->relocatable)
14102 {
14103 bfd_vma lo = MINUS_ONE;
14104
14105 /* Find the GP-relative section with the lowest offset. */
14106 for (o = abfd->sections; o != NULL; o = o->next)
14107 if (o->vma < lo
14108 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14109 lo = o->vma;
14110
14111 /* And calculate GP relative to that. */
14112 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14113 }
14114 else
14115 {
14116 /* If the relocate_section function needs to do a reloc
14117 involving the GP value, it should make a reloc_dangerous
14118 callback to warn that GP is not defined. */
14119 }
14120 }
14121
14122 /* Go through the sections and collect the .reginfo and .mdebug
14123 information. */
14124 abiflags_sec = NULL;
14125 reginfo_sec = NULL;
14126 mdebug_sec = NULL;
14127 gptab_data_sec = NULL;
14128 gptab_bss_sec = NULL;
14129 for (o = abfd->sections; o != NULL; o = o->next)
14130 {
14131 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14132 {
14133 /* We have found the .MIPS.abiflags section in the output file.
14134 Look through all the link_orders comprising it and remove them.
14135 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14136 for (p = o->map_head.link_order; p != NULL; p = p->next)
14137 {
14138 asection *input_section;
14139
14140 if (p->type != bfd_indirect_link_order)
14141 {
14142 if (p->type == bfd_data_link_order)
14143 continue;
14144 abort ();
14145 }
14146
14147 input_section = p->u.indirect.section;
14148
14149 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14150 elf_link_input_bfd ignores this section. */
14151 input_section->flags &= ~SEC_HAS_CONTENTS;
14152 }
14153
14154 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14155 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14156
14157 /* Skip this section later on (I don't think this currently
14158 matters, but someday it might). */
14159 o->map_head.link_order = NULL;
14160
14161 abiflags_sec = o;
14162 }
14163
14164 if (strcmp (o->name, ".reginfo") == 0)
14165 {
14166 memset (&reginfo, 0, sizeof reginfo);
14167
14168 /* We have found the .reginfo section in the output file.
14169 Look through all the link_orders comprising it and merge
14170 the information together. */
14171 for (p = o->map_head.link_order; p != NULL; p = p->next)
14172 {
14173 asection *input_section;
14174 bfd *input_bfd;
14175 Elf32_External_RegInfo ext;
14176 Elf32_RegInfo sub;
14177
14178 if (p->type != bfd_indirect_link_order)
14179 {
14180 if (p->type == bfd_data_link_order)
14181 continue;
14182 abort ();
14183 }
14184
14185 input_section = p->u.indirect.section;
14186 input_bfd = input_section->owner;
14187
14188 if (! bfd_get_section_contents (input_bfd, input_section,
14189 &ext, 0, sizeof ext))
14190 return FALSE;
14191
14192 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14193
14194 reginfo.ri_gprmask |= sub.ri_gprmask;
14195 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14196 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14197 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14198 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14199
14200 /* ri_gp_value is set by the function
14201 mips_elf32_section_processing when the section is
14202 finally written out. */
14203
14204 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14205 elf_link_input_bfd ignores this section. */
14206 input_section->flags &= ~SEC_HAS_CONTENTS;
14207 }
14208
14209 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14210 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14211
14212 /* Skip this section later on (I don't think this currently
14213 matters, but someday it might). */
14214 o->map_head.link_order = NULL;
14215
14216 reginfo_sec = o;
14217 }
14218
14219 if (strcmp (o->name, ".mdebug") == 0)
14220 {
14221 struct extsym_info einfo;
14222 bfd_vma last;
14223
14224 /* We have found the .mdebug section in the output file.
14225 Look through all the link_orders comprising it and merge
14226 the information together. */
14227 symhdr->magic = swap->sym_magic;
14228 /* FIXME: What should the version stamp be? */
14229 symhdr->vstamp = 0;
14230 symhdr->ilineMax = 0;
14231 symhdr->cbLine = 0;
14232 symhdr->idnMax = 0;
14233 symhdr->ipdMax = 0;
14234 symhdr->isymMax = 0;
14235 symhdr->ioptMax = 0;
14236 symhdr->iauxMax = 0;
14237 symhdr->issMax = 0;
14238 symhdr->issExtMax = 0;
14239 symhdr->ifdMax = 0;
14240 symhdr->crfd = 0;
14241 symhdr->iextMax = 0;
14242
14243 /* We accumulate the debugging information itself in the
14244 debug_info structure. */
14245 debug.line = NULL;
14246 debug.external_dnr = NULL;
14247 debug.external_pdr = NULL;
14248 debug.external_sym = NULL;
14249 debug.external_opt = NULL;
14250 debug.external_aux = NULL;
14251 debug.ss = NULL;
14252 debug.ssext = debug.ssext_end = NULL;
14253 debug.external_fdr = NULL;
14254 debug.external_rfd = NULL;
14255 debug.external_ext = debug.external_ext_end = NULL;
14256
14257 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14258 if (mdebug_handle == NULL)
14259 return FALSE;
14260
14261 esym.jmptbl = 0;
14262 esym.cobol_main = 0;
14263 esym.weakext = 0;
14264 esym.reserved = 0;
14265 esym.ifd = ifdNil;
14266 esym.asym.iss = issNil;
14267 esym.asym.st = stLocal;
14268 esym.asym.reserved = 0;
14269 esym.asym.index = indexNil;
14270 last = 0;
14271 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14272 {
14273 esym.asym.sc = sc[i];
14274 s = bfd_get_section_by_name (abfd, secname[i]);
14275 if (s != NULL)
14276 {
14277 esym.asym.value = s->vma;
14278 last = s->vma + s->size;
14279 }
14280 else
14281 esym.asym.value = last;
14282 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14283 secname[i], &esym))
14284 return FALSE;
14285 }
14286
14287 for (p = o->map_head.link_order; p != NULL; p = p->next)
14288 {
14289 asection *input_section;
14290 bfd *input_bfd;
14291 const struct ecoff_debug_swap *input_swap;
14292 struct ecoff_debug_info input_debug;
14293 char *eraw_src;
14294 char *eraw_end;
14295
14296 if (p->type != bfd_indirect_link_order)
14297 {
14298 if (p->type == bfd_data_link_order)
14299 continue;
14300 abort ();
14301 }
14302
14303 input_section = p->u.indirect.section;
14304 input_bfd = input_section->owner;
14305
14306 if (!is_mips_elf (input_bfd))
14307 {
14308 /* I don't know what a non MIPS ELF bfd would be
14309 doing with a .mdebug section, but I don't really
14310 want to deal with it. */
14311 continue;
14312 }
14313
14314 input_swap = (get_elf_backend_data (input_bfd)
14315 ->elf_backend_ecoff_debug_swap);
14316
14317 BFD_ASSERT (p->size == input_section->size);
14318
14319 /* The ECOFF linking code expects that we have already
14320 read in the debugging information and set up an
14321 ecoff_debug_info structure, so we do that now. */
14322 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14323 &input_debug))
14324 return FALSE;
14325
14326 if (! (bfd_ecoff_debug_accumulate
14327 (mdebug_handle, abfd, &debug, swap, input_bfd,
14328 &input_debug, input_swap, info)))
14329 return FALSE;
14330
14331 /* Loop through the external symbols. For each one with
14332 interesting information, try to find the symbol in
14333 the linker global hash table and save the information
14334 for the output external symbols. */
14335 eraw_src = input_debug.external_ext;
14336 eraw_end = (eraw_src
14337 + (input_debug.symbolic_header.iextMax
14338 * input_swap->external_ext_size));
14339 for (;
14340 eraw_src < eraw_end;
14341 eraw_src += input_swap->external_ext_size)
14342 {
14343 EXTR ext;
14344 const char *name;
14345 struct mips_elf_link_hash_entry *h;
14346
14347 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14348 if (ext.asym.sc == scNil
14349 || ext.asym.sc == scUndefined
14350 || ext.asym.sc == scSUndefined)
14351 continue;
14352
14353 name = input_debug.ssext + ext.asym.iss;
14354 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14355 name, FALSE, FALSE, TRUE);
14356 if (h == NULL || h->esym.ifd != -2)
14357 continue;
14358
14359 if (ext.ifd != -1)
14360 {
14361 BFD_ASSERT (ext.ifd
14362 < input_debug.symbolic_header.ifdMax);
14363 ext.ifd = input_debug.ifdmap[ext.ifd];
14364 }
14365
14366 h->esym = ext;
14367 }
14368
14369 /* Free up the information we just read. */
14370 free (input_debug.line);
14371 free (input_debug.external_dnr);
14372 free (input_debug.external_pdr);
14373 free (input_debug.external_sym);
14374 free (input_debug.external_opt);
14375 free (input_debug.external_aux);
14376 free (input_debug.ss);
14377 free (input_debug.ssext);
14378 free (input_debug.external_fdr);
14379 free (input_debug.external_rfd);
14380 free (input_debug.external_ext);
14381
14382 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14383 elf_link_input_bfd ignores this section. */
14384 input_section->flags &= ~SEC_HAS_CONTENTS;
14385 }
14386
14387 if (SGI_COMPAT (abfd) && info->shared)
14388 {
14389 /* Create .rtproc section. */
14390 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14391 if (rtproc_sec == NULL)
14392 {
14393 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14394 | SEC_LINKER_CREATED | SEC_READONLY);
14395
14396 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14397 ".rtproc",
14398 flags);
14399 if (rtproc_sec == NULL
14400 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14401 return FALSE;
14402 }
14403
14404 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14405 info, rtproc_sec,
14406 &debug))
14407 return FALSE;
14408 }
14409
14410 /* Build the external symbol information. */
14411 einfo.abfd = abfd;
14412 einfo.info = info;
14413 einfo.debug = &debug;
14414 einfo.swap = swap;
14415 einfo.failed = FALSE;
14416 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14417 mips_elf_output_extsym, &einfo);
14418 if (einfo.failed)
14419 return FALSE;
14420
14421 /* Set the size of the .mdebug section. */
14422 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14423
14424 /* Skip this section later on (I don't think this currently
14425 matters, but someday it might). */
14426 o->map_head.link_order = NULL;
14427
14428 mdebug_sec = o;
14429 }
14430
14431 if (CONST_STRNEQ (o->name, ".gptab."))
14432 {
14433 const char *subname;
14434 unsigned int c;
14435 Elf32_gptab *tab;
14436 Elf32_External_gptab *ext_tab;
14437 unsigned int j;
14438
14439 /* The .gptab.sdata and .gptab.sbss sections hold
14440 information describing how the small data area would
14441 change depending upon the -G switch. These sections
14442 not used in executables files. */
14443 if (! info->relocatable)
14444 {
14445 for (p = o->map_head.link_order; p != NULL; p = p->next)
14446 {
14447 asection *input_section;
14448
14449 if (p->type != bfd_indirect_link_order)
14450 {
14451 if (p->type == bfd_data_link_order)
14452 continue;
14453 abort ();
14454 }
14455
14456 input_section = p->u.indirect.section;
14457
14458 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14459 elf_link_input_bfd ignores this section. */
14460 input_section->flags &= ~SEC_HAS_CONTENTS;
14461 }
14462
14463 /* Skip this section later on (I don't think this
14464 currently matters, but someday it might). */
14465 o->map_head.link_order = NULL;
14466
14467 /* Really remove the section. */
14468 bfd_section_list_remove (abfd, o);
14469 --abfd->section_count;
14470
14471 continue;
14472 }
14473
14474 /* There is one gptab for initialized data, and one for
14475 uninitialized data. */
14476 if (strcmp (o->name, ".gptab.sdata") == 0)
14477 gptab_data_sec = o;
14478 else if (strcmp (o->name, ".gptab.sbss") == 0)
14479 gptab_bss_sec = o;
14480 else
14481 {
14482 (*_bfd_error_handler)
14483 (_("%s: illegal section name `%s'"),
14484 bfd_get_filename (abfd), o->name);
14485 bfd_set_error (bfd_error_nonrepresentable_section);
14486 return FALSE;
14487 }
14488
14489 /* The linker script always combines .gptab.data and
14490 .gptab.sdata into .gptab.sdata, and likewise for
14491 .gptab.bss and .gptab.sbss. It is possible that there is
14492 no .sdata or .sbss section in the output file, in which
14493 case we must change the name of the output section. */
14494 subname = o->name + sizeof ".gptab" - 1;
14495 if (bfd_get_section_by_name (abfd, subname) == NULL)
14496 {
14497 if (o == gptab_data_sec)
14498 o->name = ".gptab.data";
14499 else
14500 o->name = ".gptab.bss";
14501 subname = o->name + sizeof ".gptab" - 1;
14502 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14503 }
14504
14505 /* Set up the first entry. */
14506 c = 1;
14507 amt = c * sizeof (Elf32_gptab);
14508 tab = bfd_malloc (amt);
14509 if (tab == NULL)
14510 return FALSE;
14511 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14512 tab[0].gt_header.gt_unused = 0;
14513
14514 /* Combine the input sections. */
14515 for (p = o->map_head.link_order; p != NULL; p = p->next)
14516 {
14517 asection *input_section;
14518 bfd *input_bfd;
14519 bfd_size_type size;
14520 unsigned long last;
14521 bfd_size_type gpentry;
14522
14523 if (p->type != bfd_indirect_link_order)
14524 {
14525 if (p->type == bfd_data_link_order)
14526 continue;
14527 abort ();
14528 }
14529
14530 input_section = p->u.indirect.section;
14531 input_bfd = input_section->owner;
14532
14533 /* Combine the gptab entries for this input section one
14534 by one. We know that the input gptab entries are
14535 sorted by ascending -G value. */
14536 size = input_section->size;
14537 last = 0;
14538 for (gpentry = sizeof (Elf32_External_gptab);
14539 gpentry < size;
14540 gpentry += sizeof (Elf32_External_gptab))
14541 {
14542 Elf32_External_gptab ext_gptab;
14543 Elf32_gptab int_gptab;
14544 unsigned long val;
14545 unsigned long add;
14546 bfd_boolean exact;
14547 unsigned int look;
14548
14549 if (! (bfd_get_section_contents
14550 (input_bfd, input_section, &ext_gptab, gpentry,
14551 sizeof (Elf32_External_gptab))))
14552 {
14553 free (tab);
14554 return FALSE;
14555 }
14556
14557 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14558 &int_gptab);
14559 val = int_gptab.gt_entry.gt_g_value;
14560 add = int_gptab.gt_entry.gt_bytes - last;
14561
14562 exact = FALSE;
14563 for (look = 1; look < c; look++)
14564 {
14565 if (tab[look].gt_entry.gt_g_value >= val)
14566 tab[look].gt_entry.gt_bytes += add;
14567
14568 if (tab[look].gt_entry.gt_g_value == val)
14569 exact = TRUE;
14570 }
14571
14572 if (! exact)
14573 {
14574 Elf32_gptab *new_tab;
14575 unsigned int max;
14576
14577 /* We need a new table entry. */
14578 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14579 new_tab = bfd_realloc (tab, amt);
14580 if (new_tab == NULL)
14581 {
14582 free (tab);
14583 return FALSE;
14584 }
14585 tab = new_tab;
14586 tab[c].gt_entry.gt_g_value = val;
14587 tab[c].gt_entry.gt_bytes = add;
14588
14589 /* Merge in the size for the next smallest -G
14590 value, since that will be implied by this new
14591 value. */
14592 max = 0;
14593 for (look = 1; look < c; look++)
14594 {
14595 if (tab[look].gt_entry.gt_g_value < val
14596 && (max == 0
14597 || (tab[look].gt_entry.gt_g_value
14598 > tab[max].gt_entry.gt_g_value)))
14599 max = look;
14600 }
14601 if (max != 0)
14602 tab[c].gt_entry.gt_bytes +=
14603 tab[max].gt_entry.gt_bytes;
14604
14605 ++c;
14606 }
14607
14608 last = int_gptab.gt_entry.gt_bytes;
14609 }
14610
14611 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14612 elf_link_input_bfd ignores this section. */
14613 input_section->flags &= ~SEC_HAS_CONTENTS;
14614 }
14615
14616 /* The table must be sorted by -G value. */
14617 if (c > 2)
14618 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14619
14620 /* Swap out the table. */
14621 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14622 ext_tab = bfd_alloc (abfd, amt);
14623 if (ext_tab == NULL)
14624 {
14625 free (tab);
14626 return FALSE;
14627 }
14628
14629 for (j = 0; j < c; j++)
14630 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14631 free (tab);
14632
14633 o->size = c * sizeof (Elf32_External_gptab);
14634 o->contents = (bfd_byte *) ext_tab;
14635
14636 /* Skip this section later on (I don't think this currently
14637 matters, but someday it might). */
14638 o->map_head.link_order = NULL;
14639 }
14640 }
14641
14642 /* Invoke the regular ELF backend linker to do all the work. */
14643 if (!bfd_elf_final_link (abfd, info))
14644 return FALSE;
14645
14646 /* Now write out the computed sections. */
14647
14648 if (abiflags_sec != NULL)
14649 {
14650 Elf_External_ABIFlags_v0 ext;
14651 Elf_Internal_ABIFlags_v0 *abiflags;
14652
14653 abiflags = &mips_elf_tdata (abfd)->abiflags;
14654
14655 /* Set up the abiflags if no valid input sections were found. */
14656 if (!mips_elf_tdata (abfd)->abiflags_valid)
14657 {
14658 infer_mips_abiflags (abfd, abiflags);
14659 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14660 }
14661 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14662 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14663 return FALSE;
14664 }
14665
14666 if (reginfo_sec != NULL)
14667 {
14668 Elf32_External_RegInfo ext;
14669
14670 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14671 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14672 return FALSE;
14673 }
14674
14675 if (mdebug_sec != NULL)
14676 {
14677 BFD_ASSERT (abfd->output_has_begun);
14678 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14679 swap, info,
14680 mdebug_sec->filepos))
14681 return FALSE;
14682
14683 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14684 }
14685
14686 if (gptab_data_sec != NULL)
14687 {
14688 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14689 gptab_data_sec->contents,
14690 0, gptab_data_sec->size))
14691 return FALSE;
14692 }
14693
14694 if (gptab_bss_sec != NULL)
14695 {
14696 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14697 gptab_bss_sec->contents,
14698 0, gptab_bss_sec->size))
14699 return FALSE;
14700 }
14701
14702 if (SGI_COMPAT (abfd))
14703 {
14704 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14705 if (rtproc_sec != NULL)
14706 {
14707 if (! bfd_set_section_contents (abfd, rtproc_sec,
14708 rtproc_sec->contents,
14709 0, rtproc_sec->size))
14710 return FALSE;
14711 }
14712 }
14713
14714 return TRUE;
14715 }
14716 \f
14717 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14718
14719 struct mips_mach_extension
14720 {
14721 unsigned long extension, base;
14722 };
14723
14724
14725 /* An array describing how BFD machines relate to one another. The entries
14726 are ordered topologically with MIPS I extensions listed last. */
14727
14728 static const struct mips_mach_extension mips_mach_extensions[] =
14729 {
14730 /* MIPS64r2 extensions. */
14731 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14732 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14733 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14734 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14735
14736 /* MIPS64 extensions. */
14737 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14738 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14739 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14740
14741 /* MIPS V extensions. */
14742 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14743
14744 /* R10000 extensions. */
14745 { bfd_mach_mips12000, bfd_mach_mips10000 },
14746 { bfd_mach_mips14000, bfd_mach_mips10000 },
14747 { bfd_mach_mips16000, bfd_mach_mips10000 },
14748
14749 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14750 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14751 better to allow vr5400 and vr5500 code to be merged anyway, since
14752 many libraries will just use the core ISA. Perhaps we could add
14753 some sort of ASE flag if this ever proves a problem. */
14754 { bfd_mach_mips5500, bfd_mach_mips5400 },
14755 { bfd_mach_mips5400, bfd_mach_mips5000 },
14756
14757 /* MIPS IV extensions. */
14758 { bfd_mach_mips5, bfd_mach_mips8000 },
14759 { bfd_mach_mips10000, bfd_mach_mips8000 },
14760 { bfd_mach_mips5000, bfd_mach_mips8000 },
14761 { bfd_mach_mips7000, bfd_mach_mips8000 },
14762 { bfd_mach_mips9000, bfd_mach_mips8000 },
14763
14764 /* VR4100 extensions. */
14765 { bfd_mach_mips4120, bfd_mach_mips4100 },
14766 { bfd_mach_mips4111, bfd_mach_mips4100 },
14767
14768 /* MIPS III extensions. */
14769 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14770 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14771 { bfd_mach_mips8000, bfd_mach_mips4000 },
14772 { bfd_mach_mips4650, bfd_mach_mips4000 },
14773 { bfd_mach_mips4600, bfd_mach_mips4000 },
14774 { bfd_mach_mips4400, bfd_mach_mips4000 },
14775 { bfd_mach_mips4300, bfd_mach_mips4000 },
14776 { bfd_mach_mips4100, bfd_mach_mips4000 },
14777 { bfd_mach_mips4010, bfd_mach_mips4000 },
14778 { bfd_mach_mips5900, bfd_mach_mips4000 },
14779
14780 /* MIPS32 extensions. */
14781 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14782
14783 /* MIPS II extensions. */
14784 { bfd_mach_mips4000, bfd_mach_mips6000 },
14785 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14786
14787 /* MIPS I extensions. */
14788 { bfd_mach_mips6000, bfd_mach_mips3000 },
14789 { bfd_mach_mips3900, bfd_mach_mips3000 }
14790 };
14791
14792
14793 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14794
14795 static bfd_boolean
14796 mips_mach_extends_p (unsigned long base, unsigned long extension)
14797 {
14798 size_t i;
14799
14800 if (extension == base)
14801 return TRUE;
14802
14803 if (base == bfd_mach_mipsisa32
14804 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14805 return TRUE;
14806
14807 if (base == bfd_mach_mipsisa32r2
14808 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14809 return TRUE;
14810
14811 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14812 if (extension == mips_mach_extensions[i].extension)
14813 {
14814 extension = mips_mach_extensions[i].base;
14815 if (extension == base)
14816 return TRUE;
14817 }
14818
14819 return FALSE;
14820 }
14821
14822
14823 /* Merge object attributes from IBFD into OBFD. Raise an error if
14824 there are conflicting attributes. */
14825 static bfd_boolean
14826 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
14827 {
14828 obj_attribute *in_attr;
14829 obj_attribute *out_attr;
14830 bfd *abi_fp_bfd;
14831 bfd *abi_msa_bfd;
14832
14833 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
14834 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
14835 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
14836 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14837
14838 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
14839 if (!abi_msa_bfd
14840 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14841 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
14842
14843 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14844 {
14845 /* This is the first object. Copy the attributes. */
14846 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14847
14848 /* Use the Tag_null value to indicate the attributes have been
14849 initialized. */
14850 elf_known_obj_attributes_proc (obfd)[0].i = 1;
14851
14852 return TRUE;
14853 }
14854
14855 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
14856 non-conflicting ones. */
14857 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
14858 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
14859 {
14860 int out_fp, in_fp;
14861
14862 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
14863 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14864 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
14865 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
14866 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
14867 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
14868 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14869 || in_fp == Val_GNU_MIPS_ABI_FP_64
14870 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
14871 {
14872 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14873 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14874 }
14875 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
14876 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14877 || out_fp == Val_GNU_MIPS_ABI_FP_64
14878 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
14879 /* Keep the current setting. */;
14880 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
14881 && in_fp == Val_GNU_MIPS_ABI_FP_64)
14882 {
14883 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14884 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14885 }
14886 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
14887 && out_fp == Val_GNU_MIPS_ABI_FP_64)
14888 /* Keep the current setting. */;
14889 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
14890 {
14891 const char *out_string, *in_string;
14892
14893 out_string = _bfd_mips_fp_abi_string (out_fp);
14894 in_string = _bfd_mips_fp_abi_string (in_fp);
14895 /* First warn about cases involving unrecognised ABIs. */
14896 if (!out_string && !in_string)
14897 _bfd_error_handler
14898 (_("Warning: %B uses unknown floating point ABI %d "
14899 "(set by %B), %B uses unknown floating point ABI %d"),
14900 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
14901 else if (!out_string)
14902 _bfd_error_handler
14903 (_("Warning: %B uses unknown floating point ABI %d "
14904 "(set by %B), %B uses %s"),
14905 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
14906 else if (!in_string)
14907 _bfd_error_handler
14908 (_("Warning: %B uses %s (set by %B), "
14909 "%B uses unknown floating point ABI %d"),
14910 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
14911 else
14912 {
14913 /* If one of the bfds is soft-float, the other must be
14914 hard-float. The exact choice of hard-float ABI isn't
14915 really relevant to the error message. */
14916 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14917 out_string = "-mhard-float";
14918 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14919 in_string = "-mhard-float";
14920 _bfd_error_handler
14921 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14922 obfd, abi_fp_bfd, ibfd, out_string, in_string);
14923 }
14924 }
14925 }
14926
14927 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
14928 non-conflicting ones. */
14929 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14930 {
14931 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
14932 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
14933 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
14934 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14935 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14936 {
14937 case Val_GNU_MIPS_ABI_MSA_128:
14938 _bfd_error_handler
14939 (_("Warning: %B uses %s (set by %B), "
14940 "%B uses unknown MSA ABI %d"),
14941 obfd, abi_msa_bfd, ibfd,
14942 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
14943 break;
14944
14945 default:
14946 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
14947 {
14948 case Val_GNU_MIPS_ABI_MSA_128:
14949 _bfd_error_handler
14950 (_("Warning: %B uses unknown MSA ABI %d "
14951 "(set by %B), %B uses %s"),
14952 obfd, abi_msa_bfd, ibfd,
14953 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
14954 break;
14955
14956 default:
14957 _bfd_error_handler
14958 (_("Warning: %B uses unknown MSA ABI %d "
14959 "(set by %B), %B uses unknown MSA ABI %d"),
14960 obfd, abi_msa_bfd, ibfd,
14961 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
14962 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
14963 break;
14964 }
14965 }
14966 }
14967
14968 /* Merge Tag_compatibility attributes and any common GNU ones. */
14969 _bfd_elf_merge_object_attributes (ibfd, obfd);
14970
14971 return TRUE;
14972 }
14973
14974 /* Merge backend specific data from an object file to the output
14975 object file when linking. */
14976
14977 bfd_boolean
14978 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
14979 {
14980 flagword old_flags;
14981 flagword new_flags;
14982 bfd_boolean ok;
14983 bfd_boolean null_input_bfd = TRUE;
14984 asection *sec;
14985 obj_attribute *out_attr;
14986
14987 /* Check if we have the same endianness. */
14988 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
14989 {
14990 (*_bfd_error_handler)
14991 (_("%B: endianness incompatible with that of the selected emulation"),
14992 ibfd);
14993 return FALSE;
14994 }
14995
14996 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
14997 return TRUE;
14998
14999 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15000 {
15001 (*_bfd_error_handler)
15002 (_("%B: ABI is incompatible with that of the selected emulation"),
15003 ibfd);
15004 return FALSE;
15005 }
15006
15007 /* Set up the FP ABI attribute from the abiflags if it is not already
15008 set. */
15009 if (mips_elf_tdata (ibfd)->abiflags_valid)
15010 {
15011 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15012 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15013 in_attr[Tag_GNU_MIPS_ABI_FP].i =
15014 mips_elf_tdata (ibfd)->abiflags.fp_abi;
15015 }
15016
15017 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
15018 return FALSE;
15019
15020 /* Check to see if the input BFD actually contains any sections.
15021 If not, its flags may not have been initialised either, but it cannot
15022 actually cause any incompatibility. */
15023 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15024 {
15025 /* Ignore synthetic sections and empty .text, .data and .bss sections
15026 which are automatically generated by gas. Also ignore fake
15027 (s)common sections, since merely defining a common symbol does
15028 not affect compatibility. */
15029 if ((sec->flags & SEC_IS_COMMON) == 0
15030 && strcmp (sec->name, ".reginfo")
15031 && strcmp (sec->name, ".mdebug")
15032 && (sec->size != 0
15033 || (strcmp (sec->name, ".text")
15034 && strcmp (sec->name, ".data")
15035 && strcmp (sec->name, ".bss"))))
15036 {
15037 null_input_bfd = FALSE;
15038 break;
15039 }
15040 }
15041 if (null_input_bfd)
15042 return TRUE;
15043
15044 /* Populate abiflags using existing information. */
15045 if (!mips_elf_tdata (ibfd)->abiflags_valid)
15046 {
15047 infer_mips_abiflags (ibfd, &mips_elf_tdata (ibfd)->abiflags);
15048 mips_elf_tdata (ibfd)->abiflags_valid = TRUE;
15049 }
15050 else
15051 {
15052 Elf_Internal_ABIFlags_v0 abiflags;
15053 Elf_Internal_ABIFlags_v0 in_abiflags;
15054 infer_mips_abiflags (ibfd, &abiflags);
15055 in_abiflags = mips_elf_tdata (ibfd)->abiflags;
15056
15057 /* It is not possible to infer the correct ISA revision
15058 for R3 or R5 so drop down to R2 for the checks. */
15059 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15060 in_abiflags.isa_rev = 2;
15061
15062 if (in_abiflags.isa_level != abiflags.isa_level
15063 || in_abiflags.isa_rev != abiflags.isa_rev
15064 || in_abiflags.isa_ext != abiflags.isa_ext)
15065 (*_bfd_error_handler)
15066 (_("%B: warning: Inconsistent ISA between e_flags and "
15067 ".MIPS.abiflags"), ibfd);
15068 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15069 && in_abiflags.fp_abi != abiflags.fp_abi)
15070 (*_bfd_error_handler)
15071 (_("%B: warning: Inconsistent FP ABI between e_flags and "
15072 ".MIPS.abiflags"), ibfd);
15073 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15074 (*_bfd_error_handler)
15075 (_("%B: warning: Inconsistent ASEs between e_flags and "
15076 ".MIPS.abiflags"), ibfd);
15077 if (in_abiflags.isa_ext != abiflags.isa_ext)
15078 (*_bfd_error_handler)
15079 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15080 ".MIPS.abiflags"), ibfd);
15081 if (in_abiflags.flags2 != 0)
15082 (*_bfd_error_handler)
15083 (_("%B: warning: Unexpected flag in the flags2 field of "
15084 ".MIPS.abiflags (0x%lx)"), ibfd,
15085 (unsigned long) in_abiflags.flags2);
15086 }
15087
15088 if (!mips_elf_tdata (obfd)->abiflags_valid)
15089 {
15090 /* Copy input abiflags if output abiflags are not already valid. */
15091 mips_elf_tdata (obfd)->abiflags = mips_elf_tdata (ibfd)->abiflags;
15092 mips_elf_tdata (obfd)->abiflags_valid = TRUE;
15093 }
15094
15095 if (! elf_flags_init (obfd))
15096 {
15097 elf_flags_init (obfd) = TRUE;
15098 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15099 elf_elfheader (obfd)->e_ident[EI_CLASS]
15100 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15101
15102 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15103 && (bfd_get_arch_info (obfd)->the_default
15104 || mips_mach_extends_p (bfd_get_mach (obfd),
15105 bfd_get_mach (ibfd))))
15106 {
15107 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15108 bfd_get_mach (ibfd)))
15109 return FALSE;
15110
15111 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15112 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15113 }
15114
15115 return TRUE;
15116 }
15117
15118 /* Update the output abiflags fp_abi using the computed fp_abi. */
15119 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15120 mips_elf_tdata (obfd)->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15121
15122 #define max(a,b) ((a) > (b) ? (a) : (b))
15123 /* Merge abiflags. */
15124 mips_elf_tdata (obfd)->abiflags.isa_rev
15125 = max (mips_elf_tdata (obfd)->abiflags.isa_rev,
15126 mips_elf_tdata (ibfd)->abiflags.isa_rev);
15127 mips_elf_tdata (obfd)->abiflags.gpr_size
15128 = max (mips_elf_tdata (obfd)->abiflags.gpr_size,
15129 mips_elf_tdata (ibfd)->abiflags.gpr_size);
15130 mips_elf_tdata (obfd)->abiflags.cpr1_size
15131 = max (mips_elf_tdata (obfd)->abiflags.cpr1_size,
15132 mips_elf_tdata (ibfd)->abiflags.cpr1_size);
15133 mips_elf_tdata (obfd)->abiflags.cpr2_size
15134 = max (mips_elf_tdata (obfd)->abiflags.cpr2_size,
15135 mips_elf_tdata (ibfd)->abiflags.cpr2_size);
15136 #undef max
15137 mips_elf_tdata (obfd)->abiflags.ases
15138 |= mips_elf_tdata (ibfd)->abiflags.ases;
15139 mips_elf_tdata (obfd)->abiflags.flags1
15140 |= mips_elf_tdata (ibfd)->abiflags.flags1;
15141
15142 new_flags = elf_elfheader (ibfd)->e_flags;
15143 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15144 old_flags = elf_elfheader (obfd)->e_flags;
15145
15146 /* Check flag compatibility. */
15147
15148 new_flags &= ~EF_MIPS_NOREORDER;
15149 old_flags &= ~EF_MIPS_NOREORDER;
15150
15151 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15152 doesn't seem to matter. */
15153 new_flags &= ~EF_MIPS_XGOT;
15154 old_flags &= ~EF_MIPS_XGOT;
15155
15156 /* MIPSpro generates ucode info in n64 objects. Again, we should
15157 just be able to ignore this. */
15158 new_flags &= ~EF_MIPS_UCODE;
15159 old_flags &= ~EF_MIPS_UCODE;
15160
15161 /* DSOs should only be linked with CPIC code. */
15162 if ((ibfd->flags & DYNAMIC) != 0)
15163 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15164
15165 if (new_flags == old_flags)
15166 return TRUE;
15167
15168 ok = TRUE;
15169
15170 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15171 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15172 {
15173 (*_bfd_error_handler)
15174 (_("%B: warning: linking abicalls files with non-abicalls files"),
15175 ibfd);
15176 ok = TRUE;
15177 }
15178
15179 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15180 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15181 if (! (new_flags & EF_MIPS_PIC))
15182 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15183
15184 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15185 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15186
15187 /* Compare the ISAs. */
15188 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15189 {
15190 (*_bfd_error_handler)
15191 (_("%B: linking 32-bit code with 64-bit code"),
15192 ibfd);
15193 ok = FALSE;
15194 }
15195 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15196 {
15197 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15198 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15199 {
15200 /* Copy the architecture info from IBFD to OBFD. Also copy
15201 the 32-bit flag (if set) so that we continue to recognise
15202 OBFD as a 32-bit binary. */
15203 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15204 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15205 elf_elfheader (obfd)->e_flags
15206 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15207
15208 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15209 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15210
15211 /* Copy across the ABI flags if OBFD doesn't use them
15212 and if that was what caused us to treat IBFD as 32-bit. */
15213 if ((old_flags & EF_MIPS_ABI) == 0
15214 && mips_32bit_flags_p (new_flags)
15215 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15216 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15217 }
15218 else
15219 {
15220 /* The ISAs aren't compatible. */
15221 (*_bfd_error_handler)
15222 (_("%B: linking %s module with previous %s modules"),
15223 ibfd,
15224 bfd_printable_name (ibfd),
15225 bfd_printable_name (obfd));
15226 ok = FALSE;
15227 }
15228 }
15229
15230 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15231 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15232
15233 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15234 does set EI_CLASS differently from any 32-bit ABI. */
15235 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15236 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15237 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15238 {
15239 /* Only error if both are set (to different values). */
15240 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15241 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15242 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15243 {
15244 (*_bfd_error_handler)
15245 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15246 ibfd,
15247 elf_mips_abi_name (ibfd),
15248 elf_mips_abi_name (obfd));
15249 ok = FALSE;
15250 }
15251 new_flags &= ~EF_MIPS_ABI;
15252 old_flags &= ~EF_MIPS_ABI;
15253 }
15254
15255 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15256 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15257 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15258 {
15259 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15260 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15261 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15262 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15263 int micro_mis = old_m16 && new_micro;
15264 int m16_mis = old_micro && new_m16;
15265
15266 if (m16_mis || micro_mis)
15267 {
15268 (*_bfd_error_handler)
15269 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15270 ibfd,
15271 m16_mis ? "MIPS16" : "microMIPS",
15272 m16_mis ? "microMIPS" : "MIPS16");
15273 ok = FALSE;
15274 }
15275
15276 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15277
15278 new_flags &= ~ EF_MIPS_ARCH_ASE;
15279 old_flags &= ~ EF_MIPS_ARCH_ASE;
15280 }
15281
15282 /* Compare NaN encodings. */
15283 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15284 {
15285 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15286 ibfd,
15287 (new_flags & EF_MIPS_NAN2008
15288 ? "-mnan=2008" : "-mnan=legacy"),
15289 (old_flags & EF_MIPS_NAN2008
15290 ? "-mnan=2008" : "-mnan=legacy"));
15291 ok = FALSE;
15292 new_flags &= ~EF_MIPS_NAN2008;
15293 old_flags &= ~EF_MIPS_NAN2008;
15294 }
15295
15296 /* Compare FP64 state. */
15297 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15298 {
15299 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15300 ibfd,
15301 (new_flags & EF_MIPS_FP64
15302 ? "-mfp64" : "-mfp32"),
15303 (old_flags & EF_MIPS_FP64
15304 ? "-mfp64" : "-mfp32"));
15305 ok = FALSE;
15306 new_flags &= ~EF_MIPS_FP64;
15307 old_flags &= ~EF_MIPS_FP64;
15308 }
15309
15310 /* Warn about any other mismatches */
15311 if (new_flags != old_flags)
15312 {
15313 (*_bfd_error_handler)
15314 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
15315 ibfd, (unsigned long) new_flags,
15316 (unsigned long) old_flags);
15317 ok = FALSE;
15318 }
15319
15320 if (! ok)
15321 {
15322 bfd_set_error (bfd_error_bad_value);
15323 return FALSE;
15324 }
15325
15326 return TRUE;
15327 }
15328
15329 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15330
15331 bfd_boolean
15332 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15333 {
15334 BFD_ASSERT (!elf_flags_init (abfd)
15335 || elf_elfheader (abfd)->e_flags == flags);
15336
15337 elf_elfheader (abfd)->e_flags = flags;
15338 elf_flags_init (abfd) = TRUE;
15339 return TRUE;
15340 }
15341
15342 char *
15343 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15344 {
15345 switch (dtag)
15346 {
15347 default: return "";
15348 case DT_MIPS_RLD_VERSION:
15349 return "MIPS_RLD_VERSION";
15350 case DT_MIPS_TIME_STAMP:
15351 return "MIPS_TIME_STAMP";
15352 case DT_MIPS_ICHECKSUM:
15353 return "MIPS_ICHECKSUM";
15354 case DT_MIPS_IVERSION:
15355 return "MIPS_IVERSION";
15356 case DT_MIPS_FLAGS:
15357 return "MIPS_FLAGS";
15358 case DT_MIPS_BASE_ADDRESS:
15359 return "MIPS_BASE_ADDRESS";
15360 case DT_MIPS_MSYM:
15361 return "MIPS_MSYM";
15362 case DT_MIPS_CONFLICT:
15363 return "MIPS_CONFLICT";
15364 case DT_MIPS_LIBLIST:
15365 return "MIPS_LIBLIST";
15366 case DT_MIPS_LOCAL_GOTNO:
15367 return "MIPS_LOCAL_GOTNO";
15368 case DT_MIPS_CONFLICTNO:
15369 return "MIPS_CONFLICTNO";
15370 case DT_MIPS_LIBLISTNO:
15371 return "MIPS_LIBLISTNO";
15372 case DT_MIPS_SYMTABNO:
15373 return "MIPS_SYMTABNO";
15374 case DT_MIPS_UNREFEXTNO:
15375 return "MIPS_UNREFEXTNO";
15376 case DT_MIPS_GOTSYM:
15377 return "MIPS_GOTSYM";
15378 case DT_MIPS_HIPAGENO:
15379 return "MIPS_HIPAGENO";
15380 case DT_MIPS_RLD_MAP:
15381 return "MIPS_RLD_MAP";
15382 case DT_MIPS_DELTA_CLASS:
15383 return "MIPS_DELTA_CLASS";
15384 case DT_MIPS_DELTA_CLASS_NO:
15385 return "MIPS_DELTA_CLASS_NO";
15386 case DT_MIPS_DELTA_INSTANCE:
15387 return "MIPS_DELTA_INSTANCE";
15388 case DT_MIPS_DELTA_INSTANCE_NO:
15389 return "MIPS_DELTA_INSTANCE_NO";
15390 case DT_MIPS_DELTA_RELOC:
15391 return "MIPS_DELTA_RELOC";
15392 case DT_MIPS_DELTA_RELOC_NO:
15393 return "MIPS_DELTA_RELOC_NO";
15394 case DT_MIPS_DELTA_SYM:
15395 return "MIPS_DELTA_SYM";
15396 case DT_MIPS_DELTA_SYM_NO:
15397 return "MIPS_DELTA_SYM_NO";
15398 case DT_MIPS_DELTA_CLASSSYM:
15399 return "MIPS_DELTA_CLASSSYM";
15400 case DT_MIPS_DELTA_CLASSSYM_NO:
15401 return "MIPS_DELTA_CLASSSYM_NO";
15402 case DT_MIPS_CXX_FLAGS:
15403 return "MIPS_CXX_FLAGS";
15404 case DT_MIPS_PIXIE_INIT:
15405 return "MIPS_PIXIE_INIT";
15406 case DT_MIPS_SYMBOL_LIB:
15407 return "MIPS_SYMBOL_LIB";
15408 case DT_MIPS_LOCALPAGE_GOTIDX:
15409 return "MIPS_LOCALPAGE_GOTIDX";
15410 case DT_MIPS_LOCAL_GOTIDX:
15411 return "MIPS_LOCAL_GOTIDX";
15412 case DT_MIPS_HIDDEN_GOTIDX:
15413 return "MIPS_HIDDEN_GOTIDX";
15414 case DT_MIPS_PROTECTED_GOTIDX:
15415 return "MIPS_PROTECTED_GOT_IDX";
15416 case DT_MIPS_OPTIONS:
15417 return "MIPS_OPTIONS";
15418 case DT_MIPS_INTERFACE:
15419 return "MIPS_INTERFACE";
15420 case DT_MIPS_DYNSTR_ALIGN:
15421 return "DT_MIPS_DYNSTR_ALIGN";
15422 case DT_MIPS_INTERFACE_SIZE:
15423 return "DT_MIPS_INTERFACE_SIZE";
15424 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15425 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15426 case DT_MIPS_PERF_SUFFIX:
15427 return "DT_MIPS_PERF_SUFFIX";
15428 case DT_MIPS_COMPACT_SIZE:
15429 return "DT_MIPS_COMPACT_SIZE";
15430 case DT_MIPS_GP_VALUE:
15431 return "DT_MIPS_GP_VALUE";
15432 case DT_MIPS_AUX_DYNAMIC:
15433 return "DT_MIPS_AUX_DYNAMIC";
15434 case DT_MIPS_PLTGOT:
15435 return "DT_MIPS_PLTGOT";
15436 case DT_MIPS_RWPLT:
15437 return "DT_MIPS_RWPLT";
15438 }
15439 }
15440
15441 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15442 not known. */
15443
15444 const char *
15445 _bfd_mips_fp_abi_string (int fp)
15446 {
15447 switch (fp)
15448 {
15449 /* These strings aren't translated because they're simply
15450 option lists. */
15451 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15452 return "-mdouble-float";
15453
15454 case Val_GNU_MIPS_ABI_FP_SINGLE:
15455 return "-msingle-float";
15456
15457 case Val_GNU_MIPS_ABI_FP_SOFT:
15458 return "-msoft-float";
15459
15460 case Val_GNU_MIPS_ABI_FP_OLD_64:
15461 return _("-mips32r2 -mfp64 (12 callee-saved)");
15462
15463 case Val_GNU_MIPS_ABI_FP_XX:
15464 return "-mfpxx";
15465
15466 case Val_GNU_MIPS_ABI_FP_64:
15467 return "-mgp32 -mfp64";
15468
15469 case Val_GNU_MIPS_ABI_FP_64A:
15470 return "-mgp32 -mfp64 -mno-odd-spreg";
15471
15472 default:
15473 return 0;
15474 }
15475 }
15476
15477 static void
15478 print_mips_ases (FILE *file, unsigned int mask)
15479 {
15480 if (mask & AFL_ASE_DSP)
15481 fputs ("\n\tDSP ASE", file);
15482 if (mask & AFL_ASE_DSPR2)
15483 fputs ("\n\tDSP R2 ASE", file);
15484 if (mask & AFL_ASE_EVA)
15485 fputs ("\n\tEnhanced VA Scheme", file);
15486 if (mask & AFL_ASE_MCU)
15487 fputs ("\n\tMCU (MicroController) ASE", file);
15488 if (mask & AFL_ASE_MDMX)
15489 fputs ("\n\tMDMX ASE", file);
15490 if (mask & AFL_ASE_MIPS3D)
15491 fputs ("\n\tMIPS-3D ASE", file);
15492 if (mask & AFL_ASE_MT)
15493 fputs ("\n\tMT ASE", file);
15494 if (mask & AFL_ASE_SMARTMIPS)
15495 fputs ("\n\tSmartMIPS ASE", file);
15496 if (mask & AFL_ASE_VIRT)
15497 fputs ("\n\tVZ ASE", file);
15498 if (mask & AFL_ASE_MSA)
15499 fputs ("\n\tMSA ASE", file);
15500 if (mask & AFL_ASE_MIPS16)
15501 fputs ("\n\tMIPS16 ASE", file);
15502 if (mask & AFL_ASE_MICROMIPS)
15503 fputs ("\n\tMICROMIPS ASE", file);
15504 if (mask & AFL_ASE_XPA)
15505 fputs ("\n\tXPA ASE", file);
15506 if (mask == 0)
15507 fprintf (file, "\n\t%s", _("None"));
15508 }
15509
15510 static void
15511 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15512 {
15513 switch (isa_ext)
15514 {
15515 case 0:
15516 fputs (_("None"), file);
15517 break;
15518 case AFL_EXT_XLR:
15519 fputs ("RMI XLR", file);
15520 break;
15521 case AFL_EXT_OCTEON2:
15522 fputs ("Cavium Networks Octeon2", file);
15523 break;
15524 case AFL_EXT_OCTEONP:
15525 fputs ("Cavium Networks OcteonP", file);
15526 break;
15527 case AFL_EXT_LOONGSON_3A:
15528 fputs ("Loongson 3A", file);
15529 break;
15530 case AFL_EXT_OCTEON:
15531 fputs ("Cavium Networks Octeon", file);
15532 break;
15533 case AFL_EXT_5900:
15534 fputs ("Toshiba R5900", file);
15535 break;
15536 case AFL_EXT_4650:
15537 fputs ("MIPS R4650", file);
15538 break;
15539 case AFL_EXT_4010:
15540 fputs ("LSI R4010", file);
15541 break;
15542 case AFL_EXT_4100:
15543 fputs ("NEC VR4100", file);
15544 break;
15545 case AFL_EXT_3900:
15546 fputs ("Toshiba R3900", file);
15547 break;
15548 case AFL_EXT_10000:
15549 fputs ("MIPS R10000", file);
15550 break;
15551 case AFL_EXT_SB1:
15552 fputs ("Broadcom SB-1", file);
15553 break;
15554 case AFL_EXT_4111:
15555 fputs ("NEC VR4111/VR4181", file);
15556 break;
15557 case AFL_EXT_4120:
15558 fputs ("NEC VR4120", file);
15559 break;
15560 case AFL_EXT_5400:
15561 fputs ("NEC VR5400", file);
15562 break;
15563 case AFL_EXT_5500:
15564 fputs ("NEC VR5500", file);
15565 break;
15566 case AFL_EXT_LOONGSON_2E:
15567 fputs ("ST Microelectronics Loongson 2E", file);
15568 break;
15569 case AFL_EXT_LOONGSON_2F:
15570 fputs ("ST Microelectronics Loongson 2F", file);
15571 break;
15572 default:
15573 fputs (_("Unknown"), file);
15574 break;
15575 }
15576 }
15577
15578 static void
15579 print_mips_fp_abi_value (FILE *file, int val)
15580 {
15581 switch (val)
15582 {
15583 case Val_GNU_MIPS_ABI_FP_ANY:
15584 fprintf (file, _("Hard or soft float\n"));
15585 break;
15586 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15587 fprintf (file, _("Hard float (double precision)\n"));
15588 break;
15589 case Val_GNU_MIPS_ABI_FP_SINGLE:
15590 fprintf (file, _("Hard float (single precision)\n"));
15591 break;
15592 case Val_GNU_MIPS_ABI_FP_SOFT:
15593 fprintf (file, _("Soft float\n"));
15594 break;
15595 case Val_GNU_MIPS_ABI_FP_OLD_64:
15596 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15597 break;
15598 case Val_GNU_MIPS_ABI_FP_XX:
15599 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15600 break;
15601 case Val_GNU_MIPS_ABI_FP_64:
15602 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15603 break;
15604 case Val_GNU_MIPS_ABI_FP_64A:
15605 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15606 break;
15607 default:
15608 fprintf (file, "??? (%d)\n", val);
15609 break;
15610 }
15611 }
15612
15613 static int
15614 get_mips_reg_size (int reg_size)
15615 {
15616 return (reg_size == AFL_REG_NONE) ? 0
15617 : (reg_size == AFL_REG_32) ? 32
15618 : (reg_size == AFL_REG_64) ? 64
15619 : (reg_size == AFL_REG_128) ? 128
15620 : -1;
15621 }
15622
15623 bfd_boolean
15624 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15625 {
15626 FILE *file = ptr;
15627
15628 BFD_ASSERT (abfd != NULL && ptr != NULL);
15629
15630 /* Print normal ELF private data. */
15631 _bfd_elf_print_private_bfd_data (abfd, ptr);
15632
15633 /* xgettext:c-format */
15634 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15635
15636 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15637 fprintf (file, _(" [abi=O32]"));
15638 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15639 fprintf (file, _(" [abi=O64]"));
15640 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15641 fprintf (file, _(" [abi=EABI32]"));
15642 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15643 fprintf (file, _(" [abi=EABI64]"));
15644 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15645 fprintf (file, _(" [abi unknown]"));
15646 else if (ABI_N32_P (abfd))
15647 fprintf (file, _(" [abi=N32]"));
15648 else if (ABI_64_P (abfd))
15649 fprintf (file, _(" [abi=64]"));
15650 else
15651 fprintf (file, _(" [no abi set]"));
15652
15653 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15654 fprintf (file, " [mips1]");
15655 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15656 fprintf (file, " [mips2]");
15657 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15658 fprintf (file, " [mips3]");
15659 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15660 fprintf (file, " [mips4]");
15661 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15662 fprintf (file, " [mips5]");
15663 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15664 fprintf (file, " [mips32]");
15665 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15666 fprintf (file, " [mips64]");
15667 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15668 fprintf (file, " [mips32r2]");
15669 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15670 fprintf (file, " [mips64r2]");
15671 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15672 fprintf (file, " [mips32r6]");
15673 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15674 fprintf (file, " [mips64r6]");
15675 else
15676 fprintf (file, _(" [unknown ISA]"));
15677
15678 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15679 fprintf (file, " [mdmx]");
15680
15681 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15682 fprintf (file, " [mips16]");
15683
15684 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15685 fprintf (file, " [micromips]");
15686
15687 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15688 fprintf (file, " [nan2008]");
15689
15690 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15691 fprintf (file, " [old fp64]");
15692
15693 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15694 fprintf (file, " [32bitmode]");
15695 else
15696 fprintf (file, _(" [not 32bitmode]"));
15697
15698 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15699 fprintf (file, " [noreorder]");
15700
15701 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15702 fprintf (file, " [PIC]");
15703
15704 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15705 fprintf (file, " [CPIC]");
15706
15707 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15708 fprintf (file, " [XGOT]");
15709
15710 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15711 fprintf (file, " [UCODE]");
15712
15713 fputc ('\n', file);
15714
15715 if (mips_elf_tdata (abfd)->abiflags_valid)
15716 {
15717 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15718 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15719 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15720 if (abiflags->isa_rev > 1)
15721 fprintf (file, "r%d", abiflags->isa_rev);
15722 fprintf (file, "\nGPR size: %d",
15723 get_mips_reg_size (abiflags->gpr_size));
15724 fprintf (file, "\nCPR1 size: %d",
15725 get_mips_reg_size (abiflags->cpr1_size));
15726 fprintf (file, "\nCPR2 size: %d",
15727 get_mips_reg_size (abiflags->cpr2_size));
15728 fputs ("\nFP ABI: ", file);
15729 print_mips_fp_abi_value (file, abiflags->fp_abi);
15730 fputs ("ISA Extension: ", file);
15731 print_mips_isa_ext (file, abiflags->isa_ext);
15732 fputs ("\nASEs:", file);
15733 print_mips_ases (file, abiflags->ases);
15734 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15735 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15736 fputc ('\n', file);
15737 }
15738
15739 return TRUE;
15740 }
15741
15742 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15743 {
15744 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15745 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15746 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15747 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15748 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15749 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15750 { NULL, 0, 0, 0, 0 }
15751 };
15752
15753 /* Merge non visibility st_other attributes. Ensure that the
15754 STO_OPTIONAL flag is copied into h->other, even if this is not a
15755 definiton of the symbol. */
15756 void
15757 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15758 const Elf_Internal_Sym *isym,
15759 bfd_boolean definition,
15760 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15761 {
15762 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15763 {
15764 unsigned char other;
15765
15766 other = (definition ? isym->st_other : h->other);
15767 other &= ~ELF_ST_VISIBILITY (-1);
15768 h->other = other | ELF_ST_VISIBILITY (h->other);
15769 }
15770
15771 if (!definition
15772 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15773 h->other |= STO_OPTIONAL;
15774 }
15775
15776 /* Decide whether an undefined symbol is special and can be ignored.
15777 This is the case for OPTIONAL symbols on IRIX. */
15778 bfd_boolean
15779 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15780 {
15781 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15782 }
15783
15784 bfd_boolean
15785 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15786 {
15787 return (sym->st_shndx == SHN_COMMON
15788 || sym->st_shndx == SHN_MIPS_ACOMMON
15789 || sym->st_shndx == SHN_MIPS_SCOMMON);
15790 }
15791
15792 /* Return address for Ith PLT stub in section PLT, for relocation REL
15793 or (bfd_vma) -1 if it should not be included. */
15794
15795 bfd_vma
15796 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15797 const arelent *rel ATTRIBUTE_UNUSED)
15798 {
15799 return (plt->vma
15800 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15801 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15802 }
15803
15804 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15805 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15806 and .got.plt and also the slots may be of a different size each we walk
15807 the PLT manually fetching instructions and matching them against known
15808 patterns. To make things easier standard MIPS slots, if any, always come
15809 first. As we don't create proper ELF symbols we use the UDATA.I member
15810 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15811 with the ST_OTHER member of the ELF symbol. */
15812
15813 long
15814 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15815 long symcount ATTRIBUTE_UNUSED,
15816 asymbol **syms ATTRIBUTE_UNUSED,
15817 long dynsymcount, asymbol **dynsyms,
15818 asymbol **ret)
15819 {
15820 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15821 static const char microsuffix[] = "@micromipsplt";
15822 static const char m16suffix[] = "@mips16plt";
15823 static const char mipssuffix[] = "@plt";
15824
15825 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15826 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15827 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15828 Elf_Internal_Shdr *hdr;
15829 bfd_byte *plt_data;
15830 bfd_vma plt_offset;
15831 unsigned int other;
15832 bfd_vma entry_size;
15833 bfd_vma plt0_size;
15834 asection *relplt;
15835 bfd_vma opcode;
15836 asection *plt;
15837 asymbol *send;
15838 size_t size;
15839 char *names;
15840 long counti;
15841 arelent *p;
15842 asymbol *s;
15843 char *nend;
15844 long count;
15845 long pi;
15846 long i;
15847 long n;
15848
15849 *ret = NULL;
15850
15851 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15852 return 0;
15853
15854 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15855 if (relplt == NULL)
15856 return 0;
15857
15858 hdr = &elf_section_data (relplt)->this_hdr;
15859 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15860 return 0;
15861
15862 plt = bfd_get_section_by_name (abfd, ".plt");
15863 if (plt == NULL)
15864 return 0;
15865
15866 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15867 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15868 return -1;
15869 p = relplt->relocation;
15870
15871 /* Calculating the exact amount of space required for symbols would
15872 require two passes over the PLT, so just pessimise assuming two
15873 PLT slots per relocation. */
15874 count = relplt->size / hdr->sh_entsize;
15875 counti = count * bed->s->int_rels_per_ext_rel;
15876 size = 2 * count * sizeof (asymbol);
15877 size += count * (sizeof (mipssuffix) +
15878 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15879 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15880 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15881
15882 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
15883 size += sizeof (asymbol) + sizeof (pltname);
15884
15885 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15886 return -1;
15887
15888 if (plt->size < 16)
15889 return -1;
15890
15891 s = *ret = bfd_malloc (size);
15892 if (s == NULL)
15893 return -1;
15894 send = s + 2 * count + 1;
15895
15896 names = (char *) send;
15897 nend = (char *) s + size;
15898 n = 0;
15899
15900 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15901 if (opcode == 0x3302fffe)
15902 {
15903 if (!micromips_p)
15904 return -1;
15905 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
15906 other = STO_MICROMIPS;
15907 }
15908 else if (opcode == 0x0398c1d0)
15909 {
15910 if (!micromips_p)
15911 return -1;
15912 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
15913 other = STO_MICROMIPS;
15914 }
15915 else
15916 {
15917 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
15918 other = 0;
15919 }
15920
15921 s->the_bfd = abfd;
15922 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
15923 s->section = plt;
15924 s->value = 0;
15925 s->name = names;
15926 s->udata.i = other;
15927 memcpy (names, pltname, sizeof (pltname));
15928 names += sizeof (pltname);
15929 ++s, ++n;
15930
15931 pi = 0;
15932 for (plt_offset = plt0_size;
15933 plt_offset + 8 <= plt->size && s < send;
15934 plt_offset += entry_size)
15935 {
15936 bfd_vma gotplt_addr;
15937 const char *suffix;
15938 bfd_vma gotplt_hi;
15939 bfd_vma gotplt_lo;
15940 size_t suffixlen;
15941
15942 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
15943
15944 /* Check if the second word matches the expected MIPS16 instruction. */
15945 if (opcode == 0x651aeb00)
15946 {
15947 if (micromips_p)
15948 return -1;
15949 /* Truncated table??? */
15950 if (plt_offset + 16 > plt->size)
15951 break;
15952 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
15953 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
15954 suffixlen = sizeof (m16suffix);
15955 suffix = m16suffix;
15956 other = STO_MIPS16;
15957 }
15958 /* Likewise the expected microMIPS instruction (no insn32 mode). */
15959 else if (opcode == 0xff220000)
15960 {
15961 if (!micromips_p)
15962 return -1;
15963 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
15964 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
15965 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
15966 gotplt_lo <<= 2;
15967 gotplt_addr = gotplt_hi + gotplt_lo;
15968 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
15969 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
15970 suffixlen = sizeof (microsuffix);
15971 suffix = microsuffix;
15972 other = STO_MICROMIPS;
15973 }
15974 /* Likewise the expected microMIPS instruction (insn32 mode). */
15975 else if ((opcode & 0xffff0000) == 0xff2f0000)
15976 {
15977 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
15978 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
15979 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
15980 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
15981 gotplt_addr = gotplt_hi + gotplt_lo;
15982 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
15983 suffixlen = sizeof (microsuffix);
15984 suffix = microsuffix;
15985 other = STO_MICROMIPS;
15986 }
15987 /* Otherwise assume standard MIPS code. */
15988 else
15989 {
15990 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
15991 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
15992 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
15993 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
15994 gotplt_addr = gotplt_hi + gotplt_lo;
15995 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
15996 suffixlen = sizeof (mipssuffix);
15997 suffix = mipssuffix;
15998 other = 0;
15999 }
16000 /* Truncated table??? */
16001 if (plt_offset + entry_size > plt->size)
16002 break;
16003
16004 for (i = 0;
16005 i < count && p[pi].address != gotplt_addr;
16006 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16007
16008 if (i < count)
16009 {
16010 size_t namelen;
16011 size_t len;
16012
16013 *s = **p[pi].sym_ptr_ptr;
16014 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16015 we are defining a symbol, ensure one of them is set. */
16016 if ((s->flags & BSF_LOCAL) == 0)
16017 s->flags |= BSF_GLOBAL;
16018 s->flags |= BSF_SYNTHETIC;
16019 s->section = plt;
16020 s->value = plt_offset;
16021 s->name = names;
16022 s->udata.i = other;
16023
16024 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16025 namelen = len + suffixlen;
16026 if (names + namelen > nend)
16027 break;
16028
16029 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16030 names += len;
16031 memcpy (names, suffix, suffixlen);
16032 names += suffixlen;
16033
16034 ++s, ++n;
16035 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16036 }
16037 }
16038
16039 free (plt_data);
16040
16041 return n;
16042 }
16043
16044 void
16045 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16046 {
16047 struct mips_elf_link_hash_table *htab;
16048 Elf_Internal_Ehdr *i_ehdrp;
16049
16050 i_ehdrp = elf_elfheader (abfd);
16051 if (link_info)
16052 {
16053 htab = mips_elf_hash_table (link_info);
16054 BFD_ASSERT (htab != NULL);
16055
16056 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16057 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16058 }
16059
16060 _bfd_elf_post_process_headers (abfd, link_info);
16061
16062 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16063 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16064 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16065 }