Automatic date update in version.in
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2022 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "ecoff-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40 #include "dwarf2.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* Types of TLS GOT entry. */
51 enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56 };
57
58 /* This structure is used to hold information about one GOT entry.
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
76 struct mips_got_entry
77 {
78 /* One input bfd that needs the GOT entry. */
79 bfd *abfd;
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
91 corresponding to a symbol in the GOT. The symbol's entry
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
94 struct mips_elf_link_hash_entry *h;
95 } d;
96
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
99 unsigned char tls_type;
100
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
105 /* The offset from the beginning of the .got section to the entry
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
109 };
110
111 /* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121 struct mips_got_page_ref
122 {
123 long symndx;
124 union
125 {
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
130 };
131
132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135 struct mips_got_page_range
136 {
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
140 };
141
142 /* This structure describes the range of addends that are applied to page
143 relocations against a given section. */
144 struct mips_got_page_entry
145 {
146 /* The section that these entries are based on. */
147 asection *sec;
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
152 };
153
154 /* This structure is used to hold .got information when linking. */
155
156 struct mips_got_info
157 {
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
167 /* The number of local .got entries, eventually including page entries. */
168 unsigned int local_gotno;
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
173 /* The first unused local .got entry. */
174 unsigned int assigned_low_gotno;
175 /* The last unused local .got entry. */
176 unsigned int assigned_high_gotno;
177 /* A hash table holding members of the got. */
178 struct htab *got_entries;
179 /* A hash table holding mips_got_page_ref structures. */
180 struct htab *got_page_refs;
181 /* A hash table of mips_got_page_entry structures. */
182 struct htab *got_page_entries;
183 /* In multi-got links, a pointer to the next got (err, rather, most
184 of the time, it points to the previous got). */
185 struct mips_got_info *next;
186 };
187
188 /* Structure passed when merging bfds' gots. */
189
190 struct mips_elf_got_per_bfd_arg
191 {
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
213 };
214
215 /* A structure used to pass information to htab_traverse callbacks
216 when laying out the GOT. */
217
218 struct mips_elf_traverse_got_arg
219 {
220 struct bfd_link_info *info;
221 struct mips_got_info *g;
222 int value;
223 };
224
225 struct _mips_elf_section_data
226 {
227 struct bfd_elf_section_data elf;
228 union
229 {
230 bfd_byte *tdata;
231 } u;
232 };
233
234 #define mips_elf_section_data(sec) \
235 ((struct _mips_elf_section_data *) elf_section_data (sec))
236
237 #define is_mips_elf(bfd) \
238 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
239 && elf_tdata (bfd) != NULL \
240 && elf_object_id (bfd) == MIPS_ELF_DATA)
241
242 /* The ABI says that every symbol used by dynamic relocations must have
243 a global GOT entry. Among other things, this provides the dynamic
244 linker with a free, directly-indexed cache. The GOT can therefore
245 contain symbols that are not referenced by GOT relocations themselves
246 (in other words, it may have symbols that are not referenced by things
247 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248
249 GOT relocations are less likely to overflow if we put the associated
250 GOT entries towards the beginning. We therefore divide the global
251 GOT entries into two areas: "normal" and "reloc-only". Entries in
252 the first area can be used for both dynamic relocations and GP-relative
253 accesses, while those in the "reloc-only" area are for dynamic
254 relocations only.
255
256 These GGA_* ("Global GOT Area") values are organised so that lower
257 values are more general than higher values. Also, non-GGA_NONE
258 values are ordered by the position of the area in the GOT. */
259 #define GGA_NORMAL 0
260 #define GGA_RELOC_ONLY 1
261 #define GGA_NONE 2
262
263 /* Information about a non-PIC interface to a PIC function. There are
264 two ways of creating these interfaces. The first is to add:
265
266 lui $25,%hi(func)
267 addiu $25,$25,%lo(func)
268
269 immediately before a PIC function "func". The second is to add:
270
271 lui $25,%hi(func)
272 j func
273 addiu $25,$25,%lo(func)
274
275 to a separate trampoline section.
276
277 Stubs of the first kind go in a new section immediately before the
278 target function. Stubs of the second kind go in a single section
279 pointed to by the hash table's "strampoline" field. */
280 struct mips_elf_la25_stub {
281 /* The generated section that contains this stub. */
282 asection *stub_section;
283
284 /* The offset of the stub from the start of STUB_SECTION. */
285 bfd_vma offset;
286
287 /* One symbol for the original function. Its location is available
288 in H->root.root.u.def. */
289 struct mips_elf_link_hash_entry *h;
290 };
291
292 /* Macros for populating a mips_elf_la25_stub. */
293
294 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
295 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
296 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
297 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
298 #define LA25_LUI_MICROMIPS(VAL) \
299 (0x41b90000 | (VAL)) /* lui t9,VAL */
300 #define LA25_J_MICROMIPS(VAL) \
301 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
302 #define LA25_ADDIU_MICROMIPS(VAL) \
303 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
304
305 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
306 the dynamic symbols. */
307
308 struct mips_elf_hash_sort_data
309 {
310 /* The symbol in the global GOT with the lowest dynamic symbol table
311 index. */
312 struct elf_link_hash_entry *low;
313 /* The least dynamic symbol table index corresponding to a non-TLS
314 symbol with a GOT entry. */
315 bfd_size_type min_got_dynindx;
316 /* The greatest dynamic symbol table index corresponding to a symbol
317 with a GOT entry that is not referenced (e.g., a dynamic symbol
318 with dynamic relocations pointing to it from non-primary GOTs). */
319 bfd_size_type max_unref_got_dynindx;
320 /* The greatest dynamic symbol table index corresponding to a local
321 symbol. */
322 bfd_size_type max_local_dynindx;
323 /* The greatest dynamic symbol table index corresponding to an external
324 symbol without a GOT entry. */
325 bfd_size_type max_non_got_dynindx;
326 /* If non-NULL, output BFD for .MIPS.xhash finalization. */
327 bfd *output_bfd;
328 /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
329 real final dynindx. */
330 bfd_byte *mipsxhash;
331 };
332
333 /* We make up to two PLT entries if needed, one for standard MIPS code
334 and one for compressed code, either a MIPS16 or microMIPS one. We
335 keep a separate record of traditional lazy-binding stubs, for easier
336 processing. */
337
338 struct plt_entry
339 {
340 /* Traditional SVR4 stub offset, or -1 if none. */
341 bfd_vma stub_offset;
342
343 /* Standard PLT entry offset, or -1 if none. */
344 bfd_vma mips_offset;
345
346 /* Compressed PLT entry offset, or -1 if none. */
347 bfd_vma comp_offset;
348
349 /* The corresponding .got.plt index, or -1 if none. */
350 bfd_vma gotplt_index;
351
352 /* Whether we need a standard PLT entry. */
353 unsigned int need_mips : 1;
354
355 /* Whether we need a compressed PLT entry. */
356 unsigned int need_comp : 1;
357 };
358
359 /* The MIPS ELF linker needs additional information for each symbol in
360 the global hash table. */
361
362 struct mips_elf_link_hash_entry
363 {
364 struct elf_link_hash_entry root;
365
366 /* External symbol information. */
367 EXTR esym;
368
369 /* The la25 stub we have created for ths symbol, if any. */
370 struct mips_elf_la25_stub *la25_stub;
371
372 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
373 this symbol. */
374 unsigned int possibly_dynamic_relocs;
375
376 /* If there is a stub that 32 bit functions should use to call this
377 16 bit function, this points to the section containing the stub. */
378 asection *fn_stub;
379
380 /* If there is a stub that 16 bit functions should use to call this
381 32 bit function, this points to the section containing the stub. */
382 asection *call_stub;
383
384 /* This is like the call_stub field, but it is used if the function
385 being called returns a floating point value. */
386 asection *call_fp_stub;
387
388 /* If non-zero, location in .MIPS.xhash to write real final dynindx. */
389 bfd_vma mipsxhash_loc;
390
391 /* The highest GGA_* value that satisfies all references to this symbol. */
392 unsigned int global_got_area : 2;
393
394 /* True if all GOT relocations against this symbol are for calls. This is
395 a looser condition than no_fn_stub below, because there may be other
396 non-call non-GOT relocations against the symbol. */
397 unsigned int got_only_for_calls : 1;
398
399 /* True if one of the relocations described by possibly_dynamic_relocs
400 is against a readonly section. */
401 unsigned int readonly_reloc : 1;
402
403 /* True if there is a relocation against this symbol that must be
404 resolved by the static linker (in other words, if the relocation
405 cannot possibly be made dynamic). */
406 unsigned int has_static_relocs : 1;
407
408 /* True if we must not create a .MIPS.stubs entry for this symbol.
409 This is set, for example, if there are relocations related to
410 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
411 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
412 unsigned int no_fn_stub : 1;
413
414 /* Whether we need the fn_stub; this is true if this symbol appears
415 in any relocs other than a 16 bit call. */
416 unsigned int need_fn_stub : 1;
417
418 /* True if this symbol is referenced by branch relocations from
419 any non-PIC input file. This is used to determine whether an
420 la25 stub is required. */
421 unsigned int has_nonpic_branches : 1;
422
423 /* Does this symbol need a traditional MIPS lazy-binding stub
424 (as opposed to a PLT entry)? */
425 unsigned int needs_lazy_stub : 1;
426
427 /* Does this symbol resolve to a PLT entry? */
428 unsigned int use_plt_entry : 1;
429 };
430
431 /* MIPS ELF linker hash table. */
432
433 struct mips_elf_link_hash_table
434 {
435 struct elf_link_hash_table root;
436
437 /* The number of .rtproc entries. */
438 bfd_size_type procedure_count;
439
440 /* The size of the .compact_rel section (if SGI_COMPAT). */
441 bfd_size_type compact_rel_size;
442
443 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
444 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
445 bool use_rld_obj_head;
446
447 /* The __rld_map or __rld_obj_head symbol. */
448 struct elf_link_hash_entry *rld_symbol;
449
450 /* This is set if we see any mips16 stub sections. */
451 bool mips16_stubs_seen;
452
453 /* True if we can generate copy relocs and PLTs. */
454 bool use_plts_and_copy_relocs;
455
456 /* True if we can only use 32-bit microMIPS instructions. */
457 bool insn32;
458
459 /* True if we suppress checks for invalid branches between ISA modes. */
460 bool ignore_branch_isa;
461
462 /* True if we are targetting R6 compact branches. */
463 bool compact_branches;
464
465 /* True if we already reported the small-data section overflow. */
466 bool small_data_overflow_reported;
467
468 /* True if we use the special `__gnu_absolute_zero' symbol. */
469 bool use_absolute_zero;
470
471 /* True if we have been configured for a GNU target. */
472 bool gnu_target;
473
474 /* Shortcuts to some dynamic sections, or NULL if they are not
475 being used. */
476 asection *srelplt2;
477 asection *sstubs;
478
479 /* The master GOT information. */
480 struct mips_got_info *got_info;
481
482 /* The global symbol in the GOT with the lowest index in the dynamic
483 symbol table. */
484 struct elf_link_hash_entry *global_gotsym;
485
486 /* The size of the PLT header in bytes. */
487 bfd_vma plt_header_size;
488
489 /* The size of a standard PLT entry in bytes. */
490 bfd_vma plt_mips_entry_size;
491
492 /* The size of a compressed PLT entry in bytes. */
493 bfd_vma plt_comp_entry_size;
494
495 /* The offset of the next standard PLT entry to create. */
496 bfd_vma plt_mips_offset;
497
498 /* The offset of the next compressed PLT entry to create. */
499 bfd_vma plt_comp_offset;
500
501 /* The index of the next .got.plt entry to create. */
502 bfd_vma plt_got_index;
503
504 /* The number of functions that need a lazy-binding stub. */
505 bfd_vma lazy_stub_count;
506
507 /* The size of a function stub entry in bytes. */
508 bfd_vma function_stub_size;
509
510 /* The number of reserved entries at the beginning of the GOT. */
511 unsigned int reserved_gotno;
512
513 /* The section used for mips_elf_la25_stub trampolines.
514 See the comment above that structure for details. */
515 asection *strampoline;
516
517 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
518 pairs. */
519 htab_t la25_stubs;
520
521 /* A function FN (NAME, IS, OS) that creates a new input section
522 called NAME and links it to output section OS. If IS is nonnull,
523 the new section should go immediately before it, otherwise it
524 should go at the (current) beginning of OS.
525
526 The function returns the new section on success, otherwise it
527 returns null. */
528 asection *(*add_stub_section) (const char *, asection *, asection *);
529
530 /* Is the PLT header compressed? */
531 unsigned int plt_header_is_comp : 1;
532 };
533
534 /* Get the MIPS ELF linker hash table from a link_info structure. */
535
536 #define mips_elf_hash_table(p) \
537 ((is_elf_hash_table ((p)->hash) \
538 && elf_hash_table_id (elf_hash_table (p)) == MIPS_ELF_DATA) \
539 ? (struct mips_elf_link_hash_table *) (p)->hash : NULL)
540
541 /* A structure used to communicate with htab_traverse callbacks. */
542 struct mips_htab_traverse_info
543 {
544 /* The usual link-wide information. */
545 struct bfd_link_info *info;
546 bfd *output_bfd;
547
548 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
549 bool error;
550 };
551
552 /* MIPS ELF private object data. */
553
554 struct mips_elf_obj_tdata
555 {
556 /* Generic ELF private object data. */
557 struct elf_obj_tdata root;
558
559 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
560 bfd *abi_fp_bfd;
561
562 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
563 bfd *abi_msa_bfd;
564
565 /* The abiflags for this object. */
566 Elf_Internal_ABIFlags_v0 abiflags;
567 bool abiflags_valid;
568
569 /* The GOT requirements of input bfds. */
570 struct mips_got_info *got;
571
572 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
573 included directly in this one, but there's no point to wasting
574 the memory just for the infrequently called find_nearest_line. */
575 struct mips_elf_find_line *find_line_info;
576
577 /* An array of stub sections indexed by symbol number. */
578 asection **local_stubs;
579 asection **local_call_stubs;
580
581 /* The Irix 5 support uses two virtual sections, which represent
582 text/data symbols defined in dynamic objects. */
583 asymbol *elf_data_symbol;
584 asymbol *elf_text_symbol;
585 asection *elf_data_section;
586 asection *elf_text_section;
587 };
588
589 /* Get MIPS ELF private object data from BFD's tdata. */
590
591 #define mips_elf_tdata(bfd) \
592 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
593
594 #define TLS_RELOC_P(r_type) \
595 (r_type == R_MIPS_TLS_DTPMOD32 \
596 || r_type == R_MIPS_TLS_DTPMOD64 \
597 || r_type == R_MIPS_TLS_DTPREL32 \
598 || r_type == R_MIPS_TLS_DTPREL64 \
599 || r_type == R_MIPS_TLS_GD \
600 || r_type == R_MIPS_TLS_LDM \
601 || r_type == R_MIPS_TLS_DTPREL_HI16 \
602 || r_type == R_MIPS_TLS_DTPREL_LO16 \
603 || r_type == R_MIPS_TLS_GOTTPREL \
604 || r_type == R_MIPS_TLS_TPREL32 \
605 || r_type == R_MIPS_TLS_TPREL64 \
606 || r_type == R_MIPS_TLS_TPREL_HI16 \
607 || r_type == R_MIPS_TLS_TPREL_LO16 \
608 || r_type == R_MIPS16_TLS_GD \
609 || r_type == R_MIPS16_TLS_LDM \
610 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
611 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
612 || r_type == R_MIPS16_TLS_GOTTPREL \
613 || r_type == R_MIPS16_TLS_TPREL_HI16 \
614 || r_type == R_MIPS16_TLS_TPREL_LO16 \
615 || r_type == R_MICROMIPS_TLS_GD \
616 || r_type == R_MICROMIPS_TLS_LDM \
617 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
618 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
619 || r_type == R_MICROMIPS_TLS_GOTTPREL \
620 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
621 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
622
623 /* Structure used to pass information to mips_elf_output_extsym. */
624
625 struct extsym_info
626 {
627 bfd *abfd;
628 struct bfd_link_info *info;
629 struct ecoff_debug_info *debug;
630 const struct ecoff_debug_swap *swap;
631 bool failed;
632 };
633
634 /* The names of the runtime procedure table symbols used on IRIX5. */
635
636 static const char * const mips_elf_dynsym_rtproc_names[] =
637 {
638 "_procedure_table",
639 "_procedure_string_table",
640 "_procedure_table_size",
641 NULL
642 };
643
644 /* These structures are used to generate the .compact_rel section on
645 IRIX5. */
646
647 typedef struct
648 {
649 unsigned long id1; /* Always one? */
650 unsigned long num; /* Number of compact relocation entries. */
651 unsigned long id2; /* Always two? */
652 unsigned long offset; /* The file offset of the first relocation. */
653 unsigned long reserved0; /* Zero? */
654 unsigned long reserved1; /* Zero? */
655 } Elf32_compact_rel;
656
657 typedef struct
658 {
659 bfd_byte id1[4];
660 bfd_byte num[4];
661 bfd_byte id2[4];
662 bfd_byte offset[4];
663 bfd_byte reserved0[4];
664 bfd_byte reserved1[4];
665 } Elf32_External_compact_rel;
666
667 typedef struct
668 {
669 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
670 unsigned int rtype : 4; /* Relocation types. See below. */
671 unsigned int dist2to : 8;
672 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
673 unsigned long konst; /* KONST field. See below. */
674 unsigned long vaddr; /* VADDR to be relocated. */
675 } Elf32_crinfo;
676
677 typedef struct
678 {
679 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
680 unsigned int rtype : 4; /* Relocation types. See below. */
681 unsigned int dist2to : 8;
682 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
683 unsigned long konst; /* KONST field. See below. */
684 } Elf32_crinfo2;
685
686 typedef struct
687 {
688 bfd_byte info[4];
689 bfd_byte konst[4];
690 bfd_byte vaddr[4];
691 } Elf32_External_crinfo;
692
693 typedef struct
694 {
695 bfd_byte info[4];
696 bfd_byte konst[4];
697 } Elf32_External_crinfo2;
698
699 /* These are the constants used to swap the bitfields in a crinfo. */
700
701 #define CRINFO_CTYPE (0x1U)
702 #define CRINFO_CTYPE_SH (31)
703 #define CRINFO_RTYPE (0xfU)
704 #define CRINFO_RTYPE_SH (27)
705 #define CRINFO_DIST2TO (0xffU)
706 #define CRINFO_DIST2TO_SH (19)
707 #define CRINFO_RELVADDR (0x7ffffU)
708 #define CRINFO_RELVADDR_SH (0)
709
710 /* A compact relocation info has long (3 words) or short (2 words)
711 formats. A short format doesn't have VADDR field and relvaddr
712 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
713 #define CRF_MIPS_LONG 1
714 #define CRF_MIPS_SHORT 0
715
716 /* There are 4 types of compact relocation at least. The value KONST
717 has different meaning for each type:
718
719 (type) (konst)
720 CT_MIPS_REL32 Address in data
721 CT_MIPS_WORD Address in word (XXX)
722 CT_MIPS_GPHI_LO GP - vaddr
723 CT_MIPS_JMPAD Address to jump
724 */
725
726 #define CRT_MIPS_REL32 0xa
727 #define CRT_MIPS_WORD 0xb
728 #define CRT_MIPS_GPHI_LO 0xc
729 #define CRT_MIPS_JMPAD 0xd
730
731 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
732 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
733 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
734 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
735 \f
736 /* The structure of the runtime procedure descriptor created by the
737 loader for use by the static exception system. */
738
739 typedef struct runtime_pdr {
740 bfd_vma adr; /* Memory address of start of procedure. */
741 long regmask; /* Save register mask. */
742 long regoffset; /* Save register offset. */
743 long fregmask; /* Save floating point register mask. */
744 long fregoffset; /* Save floating point register offset. */
745 long frameoffset; /* Frame size. */
746 short framereg; /* Frame pointer register. */
747 short pcreg; /* Offset or reg of return pc. */
748 long irpss; /* Index into the runtime string table. */
749 long reserved;
750 struct exception_info *exception_info;/* Pointer to exception array. */
751 } RPDR, *pRPDR;
752 #define cbRPDR sizeof (RPDR)
753 #define rpdNil ((pRPDR) 0)
754 \f
755 static struct mips_got_entry *mips_elf_create_local_got_entry
756 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
757 struct mips_elf_link_hash_entry *, int);
758 static bool mips_elf_sort_hash_table_f
759 (struct mips_elf_link_hash_entry *, void *);
760 static bfd_vma mips_elf_high
761 (bfd_vma);
762 static bool mips_elf_create_dynamic_relocation
763 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
764 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
765 bfd_vma *, asection *);
766 static bfd_vma mips_elf_adjust_gp
767 (bfd *, struct mips_got_info *, bfd *);
768
769 /* This will be used when we sort the dynamic relocation records. */
770 static bfd *reldyn_sorting_bfd;
771
772 /* True if ABFD is for CPUs with load interlocking that include
773 non-MIPS1 CPUs and R3900. */
774 #define LOAD_INTERLOCKS_P(abfd) \
775 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
776 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
777
778 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
779 This should be safe for all architectures. We enable this predicate
780 for RM9000 for now. */
781 #define JAL_TO_BAL_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
783
784 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
785 This should be safe for all architectures. We enable this predicate for
786 all CPUs. */
787 #define JALR_TO_BAL_P(abfd) 1
788
789 /* True if ABFD is for CPUs that are faster if JR is converted to B.
790 This should be safe for all architectures. We enable this predicate for
791 all CPUs. */
792 #define JR_TO_B_P(abfd) 1
793
794 /* True if ABFD is a PIC object. */
795 #define PIC_OBJECT_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
797
798 /* Nonzero if ABFD is using the O32 ABI. */
799 #define ABI_O32_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
801
802 /* Nonzero if ABFD is using the N32 ABI. */
803 #define ABI_N32_P(abfd) \
804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
805
806 /* Nonzero if ABFD is using the N64 ABI. */
807 #define ABI_64_P(abfd) \
808 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
809
810 /* Nonzero if ABFD is using NewABI conventions. */
811 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
812
813 /* Nonzero if ABFD has microMIPS code. */
814 #define MICROMIPS_P(abfd) \
815 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
816
817 /* Nonzero if ABFD is MIPS R6. */
818 #define MIPSR6_P(abfd) \
819 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
820 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
821
822 /* The IRIX compatibility level we are striving for. */
823 #define IRIX_COMPAT(abfd) \
824 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
825
826 /* Whether we are trying to be compatible with IRIX at all. */
827 #define SGI_COMPAT(abfd) \
828 (IRIX_COMPAT (abfd) != ict_none)
829
830 /* The name of the options section. */
831 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
832 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
833
834 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
835 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
836 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
837 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
838
839 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
840 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
841 (strcmp (NAME, ".MIPS.abiflags") == 0)
842
843 /* Whether the section is readonly. */
844 #define MIPS_ELF_READONLY_SECTION(sec) \
845 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
846 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
847
848 /* The name of the stub section. */
849 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
850
851 /* The size of an external REL relocation. */
852 #define MIPS_ELF_REL_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_rel)
854
855 /* The size of an external RELA relocation. */
856 #define MIPS_ELF_RELA_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->sizeof_rela)
858
859 /* The size of an external dynamic table entry. */
860 #define MIPS_ELF_DYN_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->sizeof_dyn)
862
863 /* The size of a GOT entry. */
864 #define MIPS_ELF_GOT_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->arch_size / 8)
866
867 /* The size of the .rld_map section. */
868 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
869 (get_elf_backend_data (abfd)->s->arch_size / 8)
870
871 /* The size of a symbol-table entry. */
872 #define MIPS_ELF_SYM_SIZE(abfd) \
873 (get_elf_backend_data (abfd)->s->sizeof_sym)
874
875 /* The default alignment for sections, as a power of two. */
876 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
877 (get_elf_backend_data (abfd)->s->log_file_align)
878
879 /* Get word-sized data. */
880 #define MIPS_ELF_GET_WORD(abfd, ptr) \
881 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
882
883 /* Put out word-sized data. */
884 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
885 (ABI_64_P (abfd) \
886 ? bfd_put_64 (abfd, val, ptr) \
887 : bfd_put_32 (abfd, val, ptr))
888
889 /* The opcode for word-sized loads (LW or LD). */
890 #define MIPS_ELF_LOAD_WORD(abfd) \
891 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
892
893 /* Add a dynamic symbol table-entry. */
894 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
895 _bfd_elf_add_dynamic_entry (info, tag, val)
896
897 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
898 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
899
900 /* The name of the dynamic relocation section. */
901 #define MIPS_ELF_REL_DYN_NAME(INFO) \
902 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
903 ? ".rela.dyn" : ".rel.dyn")
904
905 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
906 from smaller values. Start with zero, widen, *then* decrement. */
907 #define MINUS_ONE (((bfd_vma)0) - 1)
908 #define MINUS_TWO (((bfd_vma)0) - 2)
909
910 /* The value to write into got[1] for SVR4 targets, to identify it is
911 a GNU object. The dynamic linker can then use got[1] to store the
912 module pointer. */
913 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
914 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
915
916 /* The offset of $gp from the beginning of the .got section. */
917 #define ELF_MIPS_GP_OFFSET(INFO) \
918 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
919 ? 0x0 : 0x7ff0)
920
921 /* The maximum size of the GOT for it to be addressable using 16-bit
922 offsets from $gp. */
923 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
924
925 /* Instructions which appear in a stub. */
926 #define STUB_LW(abfd) \
927 ((ABI_64_P (abfd) \
928 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
929 : 0x8f998010)) /* lw t9,0x8010(gp) */
930 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
931 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
932 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
933 #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
934 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
935 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
936 #define STUB_LI16S(abfd, VAL) \
937 ((ABI_64_P (abfd) \
938 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
939 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
940
941 /* Likewise for the microMIPS ASE. */
942 #define STUB_LW_MICROMIPS(abfd) \
943 (ABI_64_P (abfd) \
944 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
945 : 0xff3c8010) /* lw t9,0x8010(gp) */
946 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
947 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
948 #define STUB_LUI_MICROMIPS(VAL) \
949 (0x41b80000 + (VAL)) /* lui t8,VAL */
950 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
951 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
952 #define STUB_ORI_MICROMIPS(VAL) \
953 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
954 #define STUB_LI16U_MICROMIPS(VAL) \
955 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
956 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
957 (ABI_64_P (abfd) \
958 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
959 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
960
961 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
962 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
963 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
964 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
965 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
966 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
967
968 /* The name of the dynamic interpreter. This is put in the .interp
969 section. */
970
971 #define ELF_DYNAMIC_INTERPRETER(abfd) \
972 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
973 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
974 : "/usr/lib/libc.so.1")
975
976 #ifdef BFD64
977 #define MNAME(bfd,pre,pos) \
978 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
979 #define ELF_R_SYM(bfd, i) \
980 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
981 #define ELF_R_TYPE(bfd, i) \
982 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
983 #define ELF_R_INFO(bfd, s, t) \
984 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
985 #else
986 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
987 #define ELF_R_SYM(bfd, i) \
988 (ELF32_R_SYM (i))
989 #define ELF_R_TYPE(bfd, i) \
990 (ELF32_R_TYPE (i))
991 #define ELF_R_INFO(bfd, s, t) \
992 (ELF32_R_INFO (s, t))
993 #endif
994 \f
995 /* The mips16 compiler uses a couple of special sections to handle
996 floating point arguments.
997
998 Section names that look like .mips16.fn.FNNAME contain stubs that
999 copy floating point arguments from the fp regs to the gp regs and
1000 then jump to FNNAME. If any 32 bit function calls FNNAME, the
1001 call should be redirected to the stub instead. If no 32 bit
1002 function calls FNNAME, the stub should be discarded. We need to
1003 consider any reference to the function, not just a call, because
1004 if the address of the function is taken we will need the stub,
1005 since the address might be passed to a 32 bit function.
1006
1007 Section names that look like .mips16.call.FNNAME contain stubs
1008 that copy floating point arguments from the gp regs to the fp
1009 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1010 then any 16 bit function that calls FNNAME should be redirected
1011 to the stub instead. If FNNAME is not a 32 bit function, the
1012 stub should be discarded.
1013
1014 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1015 which call FNNAME and then copy the return value from the fp regs
1016 to the gp regs. These stubs store the return value in $18 while
1017 calling FNNAME; any function which might call one of these stubs
1018 must arrange to save $18 around the call. (This case is not
1019 needed for 32 bit functions that call 16 bit functions, because
1020 16 bit functions always return floating point values in both
1021 $f0/$f1 and $2/$3.)
1022
1023 Note that in all cases FNNAME might be defined statically.
1024 Therefore, FNNAME is not used literally. Instead, the relocation
1025 information will indicate which symbol the section is for.
1026
1027 We record any stubs that we find in the symbol table. */
1028
1029 #define FN_STUB ".mips16.fn."
1030 #define CALL_STUB ".mips16.call."
1031 #define CALL_FP_STUB ".mips16.call.fp."
1032
1033 #define FN_STUB_P(name) startswith (name, FN_STUB)
1034 #define CALL_STUB_P(name) startswith (name, CALL_STUB)
1035 #define CALL_FP_STUB_P(name) startswith (name, CALL_FP_STUB)
1036 \f
1037 /* The format of the first PLT entry in an O32 executable. */
1038 static const bfd_vma mips_o32_exec_plt0_entry[] =
1039 {
1040 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1041 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1042 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1043 0x031cc023, /* subu $24, $24, $28 */
1044 0x03e07825, /* or t7, ra, zero */
1045 0x0018c082, /* srl $24, $24, 2 */
1046 0x0320f809, /* jalr $25 */
1047 0x2718fffe /* subu $24, $24, 2 */
1048 };
1049
1050 /* The format of the first PLT entry in an O32 executable using compact
1051 jumps. */
1052 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1053 {
1054 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1055 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1056 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1057 0x031cc023, /* subu $24, $24, $28 */
1058 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1059 0x0018c082, /* srl $24, $24, 2 */
1060 0x2718fffe, /* subu $24, $24, 2 */
1061 0xf8190000 /* jalrc $25 */
1062 };
1063
1064 /* The format of the first PLT entry in an N32 executable. Different
1065 because gp ($28) is not available; we use t2 ($14) instead. */
1066 static const bfd_vma mips_n32_exec_plt0_entry[] =
1067 {
1068 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1069 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1070 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1071 0x030ec023, /* subu $24, $24, $14 */
1072 0x03e07825, /* or t7, ra, zero */
1073 0x0018c082, /* srl $24, $24, 2 */
1074 0x0320f809, /* jalr $25 */
1075 0x2718fffe /* subu $24, $24, 2 */
1076 };
1077
1078 /* The format of the first PLT entry in an N32 executable using compact
1079 jumps. Different because gp ($28) is not available; we use t2 ($14)
1080 instead. */
1081 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1082 {
1083 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1084 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1085 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1086 0x030ec023, /* subu $24, $24, $14 */
1087 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1088 0x0018c082, /* srl $24, $24, 2 */
1089 0x2718fffe, /* subu $24, $24, 2 */
1090 0xf8190000 /* jalrc $25 */
1091 };
1092
1093 /* The format of the first PLT entry in an N64 executable. Different
1094 from N32 because of the increased size of GOT entries. */
1095 static const bfd_vma mips_n64_exec_plt0_entry[] =
1096 {
1097 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1098 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1099 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1100 0x030ec023, /* subu $24, $24, $14 */
1101 0x03e07825, /* or t7, ra, zero */
1102 0x0018c0c2, /* srl $24, $24, 3 */
1103 0x0320f809, /* jalr $25 */
1104 0x2718fffe /* subu $24, $24, 2 */
1105 };
1106
1107 /* The format of the first PLT entry in an N64 executable using compact
1108 jumps. Different from N32 because of the increased size of GOT
1109 entries. */
1110 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1111 {
1112 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1113 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1114 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1115 0x030ec023, /* subu $24, $24, $14 */
1116 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1117 0x0018c0c2, /* srl $24, $24, 3 */
1118 0x2718fffe, /* subu $24, $24, 2 */
1119 0xf8190000 /* jalrc $25 */
1120 };
1121
1122
1123 /* The format of the microMIPS first PLT entry in an O32 executable.
1124 We rely on v0 ($2) rather than t8 ($24) to contain the address
1125 of the GOTPLT entry handled, so this stub may only be used when
1126 all the subsequent PLT entries are microMIPS code too.
1127
1128 The trailing NOP is for alignment and correct disassembly only. */
1129 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1130 {
1131 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1132 0xff23, 0x0000, /* lw $25, 0($3) */
1133 0x0535, /* subu $2, $2, $3 */
1134 0x2525, /* srl $2, $2, 2 */
1135 0x3302, 0xfffe, /* subu $24, $2, 2 */
1136 0x0dff, /* move $15, $31 */
1137 0x45f9, /* jalrs $25 */
1138 0x0f83, /* move $28, $3 */
1139 0x0c00 /* nop */
1140 };
1141
1142 /* The format of the microMIPS first PLT entry in an O32 executable
1143 in the insn32 mode. */
1144 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1145 {
1146 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1147 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1148 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1149 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1150 0x001f, 0x7a90, /* or $15, $31, zero */
1151 0x0318, 0x1040, /* srl $24, $24, 2 */
1152 0x03f9, 0x0f3c, /* jalr $25 */
1153 0x3318, 0xfffe /* subu $24, $24, 2 */
1154 };
1155
1156 /* The format of subsequent standard PLT entries. */
1157 static const bfd_vma mips_exec_plt_entry[] =
1158 {
1159 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1160 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1161 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1162 0x03200008 /* jr $25 */
1163 };
1164
1165 static const bfd_vma mipsr6_exec_plt_entry[] =
1166 {
1167 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1168 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1169 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1170 0x03200009 /* jr $25 */
1171 };
1172
1173 static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1174 {
1175 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1176 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1177 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1178 0xd8190000 /* jic $25, 0 */
1179 };
1180
1181 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1182 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1183 directly addressable. */
1184 static const bfd_vma mips16_o32_exec_plt_entry[] =
1185 {
1186 0xb203, /* lw $2, 12($pc) */
1187 0x9a60, /* lw $3, 0($2) */
1188 0x651a, /* move $24, $2 */
1189 0xeb00, /* jr $3 */
1190 0x653b, /* move $25, $3 */
1191 0x6500, /* nop */
1192 0x0000, 0x0000 /* .word (.got.plt entry) */
1193 };
1194
1195 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1196 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1197 static const bfd_vma micromips_o32_exec_plt_entry[] =
1198 {
1199 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1200 0xff22, 0x0000, /* lw $25, 0($2) */
1201 0x4599, /* jr $25 */
1202 0x0f02 /* move $24, $2 */
1203 };
1204
1205 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1206 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1207 {
1208 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1209 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1210 0x0019, 0x0f3c, /* jr $25 */
1211 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1212 };
1213
1214 /* The format of the first PLT entry in a VxWorks executable. */
1215 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1216 {
1217 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1218 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1219 0x8f390008, /* lw t9, 8(t9) */
1220 0x00000000, /* nop */
1221 0x03200008, /* jr t9 */
1222 0x00000000 /* nop */
1223 };
1224
1225 /* The format of subsequent PLT entries. */
1226 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1227 {
1228 0x10000000, /* b .PLT_resolver */
1229 0x24180000, /* li t8, <pltindex> */
1230 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1231 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1232 0x8f390000, /* lw t9, 0(t9) */
1233 0x00000000, /* nop */
1234 0x03200008, /* jr t9 */
1235 0x00000000 /* nop */
1236 };
1237
1238 /* The format of the first PLT entry in a VxWorks shared object. */
1239 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1240 {
1241 0x8f990008, /* lw t9, 8(gp) */
1242 0x00000000, /* nop */
1243 0x03200008, /* jr t9 */
1244 0x00000000, /* nop */
1245 0x00000000, /* nop */
1246 0x00000000 /* nop */
1247 };
1248
1249 /* The format of subsequent PLT entries. */
1250 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1251 {
1252 0x10000000, /* b .PLT_resolver */
1253 0x24180000 /* li t8, <pltindex> */
1254 };
1255 \f
1256 /* microMIPS 32-bit opcode helper installer. */
1257
1258 static void
1259 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1260 {
1261 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1262 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1263 }
1264
1265 /* microMIPS 32-bit opcode helper retriever. */
1266
1267 static bfd_vma
1268 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1269 {
1270 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1271 }
1272 \f
1273 /* Look up an entry in a MIPS ELF linker hash table. */
1274
1275 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1276 ((struct mips_elf_link_hash_entry *) \
1277 elf_link_hash_lookup (&(table)->root, (string), (create), \
1278 (copy), (follow)))
1279
1280 /* Traverse a MIPS ELF linker hash table. */
1281
1282 #define mips_elf_link_hash_traverse(table, func, info) \
1283 (elf_link_hash_traverse \
1284 (&(table)->root, \
1285 (bool (*) (struct elf_link_hash_entry *, void *)) (func), \
1286 (info)))
1287
1288 /* Find the base offsets for thread-local storage in this object,
1289 for GD/LD and IE/LE respectively. */
1290
1291 #define TP_OFFSET 0x7000
1292 #define DTP_OFFSET 0x8000
1293
1294 static bfd_vma
1295 dtprel_base (struct bfd_link_info *info)
1296 {
1297 /* If tls_sec is NULL, we should have signalled an error already. */
1298 if (elf_hash_table (info)->tls_sec == NULL)
1299 return 0;
1300 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1301 }
1302
1303 static bfd_vma
1304 tprel_base (struct bfd_link_info *info)
1305 {
1306 /* If tls_sec is NULL, we should have signalled an error already. */
1307 if (elf_hash_table (info)->tls_sec == NULL)
1308 return 0;
1309 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1310 }
1311
1312 /* Create an entry in a MIPS ELF linker hash table. */
1313
1314 static struct bfd_hash_entry *
1315 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1316 struct bfd_hash_table *table, const char *string)
1317 {
1318 struct mips_elf_link_hash_entry *ret =
1319 (struct mips_elf_link_hash_entry *) entry;
1320
1321 /* Allocate the structure if it has not already been allocated by a
1322 subclass. */
1323 if (ret == NULL)
1324 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1325 if (ret == NULL)
1326 return (struct bfd_hash_entry *) ret;
1327
1328 /* Call the allocation method of the superclass. */
1329 ret = ((struct mips_elf_link_hash_entry *)
1330 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1331 table, string));
1332 if (ret != NULL)
1333 {
1334 /* Set local fields. */
1335 memset (&ret->esym, 0, sizeof (EXTR));
1336 /* We use -2 as a marker to indicate that the information has
1337 not been set. -1 means there is no associated ifd. */
1338 ret->esym.ifd = -2;
1339 ret->la25_stub = 0;
1340 ret->possibly_dynamic_relocs = 0;
1341 ret->fn_stub = NULL;
1342 ret->call_stub = NULL;
1343 ret->call_fp_stub = NULL;
1344 ret->mipsxhash_loc = 0;
1345 ret->global_got_area = GGA_NONE;
1346 ret->got_only_for_calls = true;
1347 ret->readonly_reloc = false;
1348 ret->has_static_relocs = false;
1349 ret->no_fn_stub = false;
1350 ret->need_fn_stub = false;
1351 ret->has_nonpic_branches = false;
1352 ret->needs_lazy_stub = false;
1353 ret->use_plt_entry = false;
1354 }
1355
1356 return (struct bfd_hash_entry *) ret;
1357 }
1358
1359 /* Allocate MIPS ELF private object data. */
1360
1361 bool
1362 _bfd_mips_elf_mkobject (bfd *abfd)
1363 {
1364 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1365 MIPS_ELF_DATA);
1366 }
1367
1368 bool
1369 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1370 {
1371 if (!sec->used_by_bfd)
1372 {
1373 struct _mips_elf_section_data *sdata;
1374 size_t amt = sizeof (*sdata);
1375
1376 sdata = bfd_zalloc (abfd, amt);
1377 if (sdata == NULL)
1378 return false;
1379 sec->used_by_bfd = sdata;
1380 }
1381
1382 return _bfd_elf_new_section_hook (abfd, sec);
1383 }
1384 \f
1385 /* Read ECOFF debugging information from a .mdebug section into a
1386 ecoff_debug_info structure. */
1387
1388 bool
1389 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1390 struct ecoff_debug_info *debug)
1391 {
1392 HDRR *symhdr;
1393 const struct ecoff_debug_swap *swap;
1394 char *ext_hdr;
1395
1396 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1397 memset (debug, 0, sizeof (*debug));
1398
1399 ext_hdr = bfd_malloc (swap->external_hdr_size);
1400 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1401 goto error_return;
1402
1403 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1404 swap->external_hdr_size))
1405 goto error_return;
1406
1407 symhdr = &debug->symbolic_header;
1408 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1409
1410 /* The symbolic header contains absolute file offsets and sizes to
1411 read. */
1412 #define READ(ptr, offset, count, size, type) \
1413 do \
1414 { \
1415 size_t amt; \
1416 debug->ptr = NULL; \
1417 if (symhdr->count == 0) \
1418 break; \
1419 if (_bfd_mul_overflow (size, symhdr->count, &amt)) \
1420 { \
1421 bfd_set_error (bfd_error_file_too_big); \
1422 goto error_return; \
1423 } \
1424 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0) \
1425 goto error_return; \
1426 debug->ptr = (type) _bfd_malloc_and_read (abfd, amt, amt); \
1427 if (debug->ptr == NULL) \
1428 goto error_return; \
1429 } while (0)
1430
1431 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1432 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1433 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1434 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1435 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1436 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1437 union aux_ext *);
1438 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1439 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1440 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1441 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1442 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1443 #undef READ
1444
1445 debug->fdr = NULL;
1446
1447 return true;
1448
1449 error_return:
1450 free (ext_hdr);
1451 free (debug->line);
1452 free (debug->external_dnr);
1453 free (debug->external_pdr);
1454 free (debug->external_sym);
1455 free (debug->external_opt);
1456 free (debug->external_aux);
1457 free (debug->ss);
1458 free (debug->ssext);
1459 free (debug->external_fdr);
1460 free (debug->external_rfd);
1461 free (debug->external_ext);
1462 return false;
1463 }
1464 \f
1465 /* Swap RPDR (runtime procedure table entry) for output. */
1466
1467 static void
1468 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1469 {
1470 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1471 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1472 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1473 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1474 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1475 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1476
1477 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1478 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1479
1480 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1481 }
1482
1483 /* Create a runtime procedure table from the .mdebug section. */
1484
1485 static bool
1486 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1487 struct bfd_link_info *info, asection *s,
1488 struct ecoff_debug_info *debug)
1489 {
1490 const struct ecoff_debug_swap *swap;
1491 HDRR *hdr = &debug->symbolic_header;
1492 RPDR *rpdr, *rp;
1493 struct rpdr_ext *erp;
1494 void *rtproc;
1495 struct pdr_ext *epdr;
1496 struct sym_ext *esym;
1497 char *ss, **sv;
1498 char *str;
1499 bfd_size_type size;
1500 bfd_size_type count;
1501 unsigned long sindex;
1502 unsigned long i;
1503 PDR pdr;
1504 SYMR sym;
1505 const char *no_name_func = _("static procedure (no name)");
1506
1507 epdr = NULL;
1508 rpdr = NULL;
1509 esym = NULL;
1510 ss = NULL;
1511 sv = NULL;
1512
1513 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1514
1515 sindex = strlen (no_name_func) + 1;
1516 count = hdr->ipdMax;
1517 if (count > 0)
1518 {
1519 size = swap->external_pdr_size;
1520
1521 epdr = bfd_malloc (size * count);
1522 if (epdr == NULL)
1523 goto error_return;
1524
1525 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1526 goto error_return;
1527
1528 size = sizeof (RPDR);
1529 rp = rpdr = bfd_malloc (size * count);
1530 if (rpdr == NULL)
1531 goto error_return;
1532
1533 size = sizeof (char *);
1534 sv = bfd_malloc (size * count);
1535 if (sv == NULL)
1536 goto error_return;
1537
1538 count = hdr->isymMax;
1539 size = swap->external_sym_size;
1540 esym = bfd_malloc (size * count);
1541 if (esym == NULL)
1542 goto error_return;
1543
1544 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1545 goto error_return;
1546
1547 count = hdr->issMax;
1548 ss = bfd_malloc (count);
1549 if (ss == NULL)
1550 goto error_return;
1551 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1552 goto error_return;
1553
1554 count = hdr->ipdMax;
1555 for (i = 0; i < (unsigned long) count; i++, rp++)
1556 {
1557 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1558 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1559 rp->adr = sym.value;
1560 rp->regmask = pdr.regmask;
1561 rp->regoffset = pdr.regoffset;
1562 rp->fregmask = pdr.fregmask;
1563 rp->fregoffset = pdr.fregoffset;
1564 rp->frameoffset = pdr.frameoffset;
1565 rp->framereg = pdr.framereg;
1566 rp->pcreg = pdr.pcreg;
1567 rp->irpss = sindex;
1568 sv[i] = ss + sym.iss;
1569 sindex += strlen (sv[i]) + 1;
1570 }
1571 }
1572
1573 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1574 size = BFD_ALIGN (size, 16);
1575 rtproc = bfd_alloc (abfd, size);
1576 if (rtproc == NULL)
1577 {
1578 mips_elf_hash_table (info)->procedure_count = 0;
1579 goto error_return;
1580 }
1581
1582 mips_elf_hash_table (info)->procedure_count = count + 2;
1583
1584 erp = rtproc;
1585 memset (erp, 0, sizeof (struct rpdr_ext));
1586 erp++;
1587 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1588 strcpy (str, no_name_func);
1589 str += strlen (no_name_func) + 1;
1590 for (i = 0; i < count; i++)
1591 {
1592 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1593 strcpy (str, sv[i]);
1594 str += strlen (sv[i]) + 1;
1595 }
1596 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1597
1598 /* Set the size and contents of .rtproc section. */
1599 s->size = size;
1600 s->contents = rtproc;
1601
1602 /* Skip this section later on (I don't think this currently
1603 matters, but someday it might). */
1604 s->map_head.link_order = NULL;
1605
1606 free (epdr);
1607 free (rpdr);
1608 free (esym);
1609 free (ss);
1610 free (sv);
1611 return true;
1612
1613 error_return:
1614 free (epdr);
1615 free (rpdr);
1616 free (esym);
1617 free (ss);
1618 free (sv);
1619 return false;
1620 }
1621 \f
1622 /* We're going to create a stub for H. Create a symbol for the stub's
1623 value and size, to help make the disassembly easier to read. */
1624
1625 static bool
1626 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1627 struct mips_elf_link_hash_entry *h,
1628 const char *prefix, asection *s, bfd_vma value,
1629 bfd_vma size)
1630 {
1631 bool micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1632 struct bfd_link_hash_entry *bh;
1633 struct elf_link_hash_entry *elfh;
1634 char *name;
1635 bool res;
1636
1637 if (micromips_p)
1638 value |= 1;
1639
1640 /* Create a new symbol. */
1641 name = concat (prefix, h->root.root.root.string, NULL);
1642 bh = NULL;
1643 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1644 BSF_LOCAL, s, value, NULL,
1645 true, false, &bh);
1646 free (name);
1647 if (! res)
1648 return false;
1649
1650 /* Make it a local function. */
1651 elfh = (struct elf_link_hash_entry *) bh;
1652 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1653 elfh->size = size;
1654 elfh->forced_local = 1;
1655 if (micromips_p)
1656 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1657 return true;
1658 }
1659
1660 /* We're about to redefine H. Create a symbol to represent H's
1661 current value and size, to help make the disassembly easier
1662 to read. */
1663
1664 static bool
1665 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1666 struct mips_elf_link_hash_entry *h,
1667 const char *prefix)
1668 {
1669 struct bfd_link_hash_entry *bh;
1670 struct elf_link_hash_entry *elfh;
1671 char *name;
1672 asection *s;
1673 bfd_vma value;
1674 bool res;
1675
1676 /* Read the symbol's value. */
1677 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1678 || h->root.root.type == bfd_link_hash_defweak);
1679 s = h->root.root.u.def.section;
1680 value = h->root.root.u.def.value;
1681
1682 /* Create a new symbol. */
1683 name = concat (prefix, h->root.root.root.string, NULL);
1684 bh = NULL;
1685 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1686 BSF_LOCAL, s, value, NULL,
1687 true, false, &bh);
1688 free (name);
1689 if (! res)
1690 return false;
1691
1692 /* Make it local and copy the other attributes from H. */
1693 elfh = (struct elf_link_hash_entry *) bh;
1694 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1695 elfh->other = h->root.other;
1696 elfh->size = h->root.size;
1697 elfh->forced_local = 1;
1698 return true;
1699 }
1700
1701 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1702 function rather than to a hard-float stub. */
1703
1704 static bool
1705 section_allows_mips16_refs_p (asection *section)
1706 {
1707 const char *name;
1708
1709 name = bfd_section_name (section);
1710 return (FN_STUB_P (name)
1711 || CALL_STUB_P (name)
1712 || CALL_FP_STUB_P (name)
1713 || strcmp (name, ".pdr") == 0);
1714 }
1715
1716 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1717 stub section of some kind. Return the R_SYMNDX of the target
1718 function, or 0 if we can't decide which function that is. */
1719
1720 static unsigned long
1721 mips16_stub_symndx (const struct elf_backend_data *bed,
1722 asection *sec ATTRIBUTE_UNUSED,
1723 const Elf_Internal_Rela *relocs,
1724 const Elf_Internal_Rela *relend)
1725 {
1726 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1727 const Elf_Internal_Rela *rel;
1728
1729 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1730 one in a compound relocation. */
1731 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1732 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1733 return ELF_R_SYM (sec->owner, rel->r_info);
1734
1735 /* Otherwise trust the first relocation, whatever its kind. This is
1736 the traditional behavior. */
1737 if (relocs < relend)
1738 return ELF_R_SYM (sec->owner, relocs->r_info);
1739
1740 return 0;
1741 }
1742
1743 /* Check the mips16 stubs for a particular symbol, and see if we can
1744 discard them. */
1745
1746 static void
1747 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1748 struct mips_elf_link_hash_entry *h)
1749 {
1750 /* Dynamic symbols must use the standard call interface, in case other
1751 objects try to call them. */
1752 if (h->fn_stub != NULL
1753 && h->root.dynindx != -1)
1754 {
1755 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1756 h->need_fn_stub = true;
1757 }
1758
1759 if (h->fn_stub != NULL
1760 && ! h->need_fn_stub)
1761 {
1762 /* We don't need the fn_stub; the only references to this symbol
1763 are 16 bit calls. Clobber the size to 0 to prevent it from
1764 being included in the link. */
1765 h->fn_stub->size = 0;
1766 h->fn_stub->flags &= ~SEC_RELOC;
1767 h->fn_stub->reloc_count = 0;
1768 h->fn_stub->flags |= SEC_EXCLUDE;
1769 h->fn_stub->output_section = bfd_abs_section_ptr;
1770 }
1771
1772 if (h->call_stub != NULL
1773 && ELF_ST_IS_MIPS16 (h->root.other))
1774 {
1775 /* We don't need the call_stub; this is a 16 bit function, so
1776 calls from other 16 bit functions are OK. Clobber the size
1777 to 0 to prevent it from being included in the link. */
1778 h->call_stub->size = 0;
1779 h->call_stub->flags &= ~SEC_RELOC;
1780 h->call_stub->reloc_count = 0;
1781 h->call_stub->flags |= SEC_EXCLUDE;
1782 h->call_stub->output_section = bfd_abs_section_ptr;
1783 }
1784
1785 if (h->call_fp_stub != NULL
1786 && ELF_ST_IS_MIPS16 (h->root.other))
1787 {
1788 /* We don't need the call_stub; this is a 16 bit function, so
1789 calls from other 16 bit functions are OK. Clobber the size
1790 to 0 to prevent it from being included in the link. */
1791 h->call_fp_stub->size = 0;
1792 h->call_fp_stub->flags &= ~SEC_RELOC;
1793 h->call_fp_stub->reloc_count = 0;
1794 h->call_fp_stub->flags |= SEC_EXCLUDE;
1795 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1796 }
1797 }
1798
1799 /* Hashtable callbacks for mips_elf_la25_stubs. */
1800
1801 static hashval_t
1802 mips_elf_la25_stub_hash (const void *entry_)
1803 {
1804 const struct mips_elf_la25_stub *entry;
1805
1806 entry = (struct mips_elf_la25_stub *) entry_;
1807 return entry->h->root.root.u.def.section->id
1808 + entry->h->root.root.u.def.value;
1809 }
1810
1811 static int
1812 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1813 {
1814 const struct mips_elf_la25_stub *entry1, *entry2;
1815
1816 entry1 = (struct mips_elf_la25_stub *) entry1_;
1817 entry2 = (struct mips_elf_la25_stub *) entry2_;
1818 return ((entry1->h->root.root.u.def.section
1819 == entry2->h->root.root.u.def.section)
1820 && (entry1->h->root.root.u.def.value
1821 == entry2->h->root.root.u.def.value));
1822 }
1823
1824 /* Called by the linker to set up the la25 stub-creation code. FN is
1825 the linker's implementation of add_stub_function. Return true on
1826 success. */
1827
1828 bool
1829 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1830 asection *(*fn) (const char *, asection *,
1831 asection *))
1832 {
1833 struct mips_elf_link_hash_table *htab;
1834
1835 htab = mips_elf_hash_table (info);
1836 if (htab == NULL)
1837 return false;
1838
1839 htab->add_stub_section = fn;
1840 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1841 mips_elf_la25_stub_eq, NULL);
1842 if (htab->la25_stubs == NULL)
1843 return false;
1844
1845 return true;
1846 }
1847
1848 /* Return true if H is a locally-defined PIC function, in the sense
1849 that it or its fn_stub might need $25 to be valid on entry.
1850 Note that MIPS16 functions set up $gp using PC-relative instructions,
1851 so they themselves never need $25 to be valid. Only non-MIPS16
1852 entry points are of interest here. */
1853
1854 static bool
1855 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1856 {
1857 return ((h->root.root.type == bfd_link_hash_defined
1858 || h->root.root.type == bfd_link_hash_defweak)
1859 && h->root.def_regular
1860 && !bfd_is_abs_section (h->root.root.u.def.section)
1861 && !bfd_is_und_section (h->root.root.u.def.section)
1862 && (!ELF_ST_IS_MIPS16 (h->root.other)
1863 || (h->fn_stub && h->need_fn_stub))
1864 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1865 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1866 }
1867
1868 /* Set *SEC to the input section that contains the target of STUB.
1869 Return the offset of the target from the start of that section. */
1870
1871 static bfd_vma
1872 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1873 asection **sec)
1874 {
1875 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1876 {
1877 BFD_ASSERT (stub->h->need_fn_stub);
1878 *sec = stub->h->fn_stub;
1879 return 0;
1880 }
1881 else
1882 {
1883 *sec = stub->h->root.root.u.def.section;
1884 return stub->h->root.root.u.def.value;
1885 }
1886 }
1887
1888 /* STUB describes an la25 stub that we have decided to implement
1889 by inserting an LUI/ADDIU pair before the target function.
1890 Create the section and redirect the function symbol to it. */
1891
1892 static bool
1893 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1894 struct bfd_link_info *info)
1895 {
1896 struct mips_elf_link_hash_table *htab;
1897 char *name;
1898 asection *s, *input_section;
1899 unsigned int align;
1900
1901 htab = mips_elf_hash_table (info);
1902 if (htab == NULL)
1903 return false;
1904
1905 /* Create a unique name for the new section. */
1906 name = bfd_malloc (11 + sizeof (".text.stub."));
1907 if (name == NULL)
1908 return false;
1909 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1910
1911 /* Create the section. */
1912 mips_elf_get_la25_target (stub, &input_section);
1913 s = htab->add_stub_section (name, input_section,
1914 input_section->output_section);
1915 if (s == NULL)
1916 return false;
1917
1918 /* Make sure that any padding goes before the stub. */
1919 align = input_section->alignment_power;
1920 if (!bfd_set_section_alignment (s, align))
1921 return false;
1922 if (align > 3)
1923 s->size = (1 << align) - 8;
1924
1925 /* Create a symbol for the stub. */
1926 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1927 stub->stub_section = s;
1928 stub->offset = s->size;
1929
1930 /* Allocate room for it. */
1931 s->size += 8;
1932 return true;
1933 }
1934
1935 /* STUB describes an la25 stub that we have decided to implement
1936 with a separate trampoline. Allocate room for it and redirect
1937 the function symbol to it. */
1938
1939 static bool
1940 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1941 struct bfd_link_info *info)
1942 {
1943 struct mips_elf_link_hash_table *htab;
1944 asection *s;
1945
1946 htab = mips_elf_hash_table (info);
1947 if (htab == NULL)
1948 return false;
1949
1950 /* Create a trampoline section, if we haven't already. */
1951 s = htab->strampoline;
1952 if (s == NULL)
1953 {
1954 asection *input_section = stub->h->root.root.u.def.section;
1955 s = htab->add_stub_section (".text", NULL,
1956 input_section->output_section);
1957 if (s == NULL || !bfd_set_section_alignment (s, 4))
1958 return false;
1959 htab->strampoline = s;
1960 }
1961
1962 /* Create a symbol for the stub. */
1963 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1964 stub->stub_section = s;
1965 stub->offset = s->size;
1966
1967 /* Allocate room for it. */
1968 s->size += 16;
1969 return true;
1970 }
1971
1972 /* H describes a symbol that needs an la25 stub. Make sure that an
1973 appropriate stub exists and point H at it. */
1974
1975 static bool
1976 mips_elf_add_la25_stub (struct bfd_link_info *info,
1977 struct mips_elf_link_hash_entry *h)
1978 {
1979 struct mips_elf_link_hash_table *htab;
1980 struct mips_elf_la25_stub search, *stub;
1981 bool use_trampoline_p;
1982 asection *s;
1983 bfd_vma value;
1984 void **slot;
1985
1986 /* Describe the stub we want. */
1987 search.stub_section = NULL;
1988 search.offset = 0;
1989 search.h = h;
1990
1991 /* See if we've already created an equivalent stub. */
1992 htab = mips_elf_hash_table (info);
1993 if (htab == NULL)
1994 return false;
1995
1996 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1997 if (slot == NULL)
1998 return false;
1999
2000 stub = (struct mips_elf_la25_stub *) *slot;
2001 if (stub != NULL)
2002 {
2003 /* We can reuse the existing stub. */
2004 h->la25_stub = stub;
2005 return true;
2006 }
2007
2008 /* Create a permanent copy of ENTRY and add it to the hash table. */
2009 stub = bfd_malloc (sizeof (search));
2010 if (stub == NULL)
2011 return false;
2012 *stub = search;
2013 *slot = stub;
2014
2015 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2016 of the section and if we would need no more than 2 nops. */
2017 value = mips_elf_get_la25_target (stub, &s);
2018 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2019 value &= ~1;
2020 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2021
2022 h->la25_stub = stub;
2023 return (use_trampoline_p
2024 ? mips_elf_add_la25_trampoline (stub, info)
2025 : mips_elf_add_la25_intro (stub, info));
2026 }
2027
2028 /* A mips_elf_link_hash_traverse callback that is called before sizing
2029 sections. DATA points to a mips_htab_traverse_info structure. */
2030
2031 static bool
2032 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2033 {
2034 struct mips_htab_traverse_info *hti;
2035
2036 hti = (struct mips_htab_traverse_info *) data;
2037 if (!bfd_link_relocatable (hti->info))
2038 mips_elf_check_mips16_stubs (hti->info, h);
2039
2040 if (mips_elf_local_pic_function_p (h))
2041 {
2042 /* PR 12845: If H is in a section that has been garbage
2043 collected it will have its output section set to *ABS*. */
2044 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2045 return true;
2046
2047 /* H is a function that might need $25 to be valid on entry.
2048 If we're creating a non-PIC relocatable object, mark H as
2049 being PIC. If we're creating a non-relocatable object with
2050 non-PIC branches and jumps to H, make sure that H has an la25
2051 stub. */
2052 if (bfd_link_relocatable (hti->info))
2053 {
2054 if (!PIC_OBJECT_P (hti->output_bfd))
2055 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2056 }
2057 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2058 {
2059 hti->error = true;
2060 return false;
2061 }
2062 }
2063 return true;
2064 }
2065 \f
2066 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2067 Most mips16 instructions are 16 bits, but these instructions
2068 are 32 bits.
2069
2070 The format of these instructions is:
2071
2072 +--------------+--------------------------------+
2073 | JALX | X| Imm 20:16 | Imm 25:21 |
2074 +--------------+--------------------------------+
2075 | Immediate 15:0 |
2076 +-----------------------------------------------+
2077
2078 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2079 Note that the immediate value in the first word is swapped.
2080
2081 When producing a relocatable object file, R_MIPS16_26 is
2082 handled mostly like R_MIPS_26. In particular, the addend is
2083 stored as a straight 26-bit value in a 32-bit instruction.
2084 (gas makes life simpler for itself by never adjusting a
2085 R_MIPS16_26 reloc to be against a section, so the addend is
2086 always zero). However, the 32 bit instruction is stored as 2
2087 16-bit values, rather than a single 32-bit value. In a
2088 big-endian file, the result is the same; in a little-endian
2089 file, the two 16-bit halves of the 32 bit value are swapped.
2090 This is so that a disassembler can recognize the jal
2091 instruction.
2092
2093 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2094 instruction stored as two 16-bit values. The addend A is the
2095 contents of the targ26 field. The calculation is the same as
2096 R_MIPS_26. When storing the calculated value, reorder the
2097 immediate value as shown above, and don't forget to store the
2098 value as two 16-bit values.
2099
2100 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2101 defined as
2102
2103 big-endian:
2104 +--------+----------------------+
2105 | | |
2106 | | targ26-16 |
2107 |31 26|25 0|
2108 +--------+----------------------+
2109
2110 little-endian:
2111 +----------+------+-------------+
2112 | | | |
2113 | sub1 | | sub2 |
2114 |0 9|10 15|16 31|
2115 +----------+--------------------+
2116 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2117 ((sub1 << 16) | sub2)).
2118
2119 When producing a relocatable object file, the calculation is
2120 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2121 When producing a fully linked file, the calculation is
2122 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2123 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2124
2125 The table below lists the other MIPS16 instruction relocations.
2126 Each one is calculated in the same way as the non-MIPS16 relocation
2127 given on the right, but using the extended MIPS16 layout of 16-bit
2128 immediate fields:
2129
2130 R_MIPS16_GPREL R_MIPS_GPREL16
2131 R_MIPS16_GOT16 R_MIPS_GOT16
2132 R_MIPS16_CALL16 R_MIPS_CALL16
2133 R_MIPS16_HI16 R_MIPS_HI16
2134 R_MIPS16_LO16 R_MIPS_LO16
2135
2136 A typical instruction will have a format like this:
2137
2138 +--------------+--------------------------------+
2139 | EXTEND | Imm 10:5 | Imm 15:11 |
2140 +--------------+--------------------------------+
2141 | Major | rx | ry | Imm 4:0 |
2142 +--------------+--------------------------------+
2143
2144 EXTEND is the five bit value 11110. Major is the instruction
2145 opcode.
2146
2147 All we need to do here is shuffle the bits appropriately.
2148 As above, the two 16-bit halves must be swapped on a
2149 little-endian system.
2150
2151 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2152 relocatable field is shifted by 1 rather than 2 and the same bit
2153 shuffling is done as with the relocations above. */
2154
2155 static inline bool
2156 mips16_reloc_p (int r_type)
2157 {
2158 switch (r_type)
2159 {
2160 case R_MIPS16_26:
2161 case R_MIPS16_GPREL:
2162 case R_MIPS16_GOT16:
2163 case R_MIPS16_CALL16:
2164 case R_MIPS16_HI16:
2165 case R_MIPS16_LO16:
2166 case R_MIPS16_TLS_GD:
2167 case R_MIPS16_TLS_LDM:
2168 case R_MIPS16_TLS_DTPREL_HI16:
2169 case R_MIPS16_TLS_DTPREL_LO16:
2170 case R_MIPS16_TLS_GOTTPREL:
2171 case R_MIPS16_TLS_TPREL_HI16:
2172 case R_MIPS16_TLS_TPREL_LO16:
2173 case R_MIPS16_PC16_S1:
2174 return true;
2175
2176 default:
2177 return false;
2178 }
2179 }
2180
2181 /* Check if a microMIPS reloc. */
2182
2183 static inline bool
2184 micromips_reloc_p (unsigned int r_type)
2185 {
2186 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2187 }
2188
2189 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2190 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2191 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2192
2193 static inline bool
2194 micromips_reloc_shuffle_p (unsigned int r_type)
2195 {
2196 return (micromips_reloc_p (r_type)
2197 && r_type != R_MICROMIPS_PC7_S1
2198 && r_type != R_MICROMIPS_PC10_S1);
2199 }
2200
2201 static inline bool
2202 got16_reloc_p (int r_type)
2203 {
2204 return (r_type == R_MIPS_GOT16
2205 || r_type == R_MIPS16_GOT16
2206 || r_type == R_MICROMIPS_GOT16);
2207 }
2208
2209 static inline bool
2210 call16_reloc_p (int r_type)
2211 {
2212 return (r_type == R_MIPS_CALL16
2213 || r_type == R_MIPS16_CALL16
2214 || r_type == R_MICROMIPS_CALL16);
2215 }
2216
2217 static inline bool
2218 got_disp_reloc_p (unsigned int r_type)
2219 {
2220 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2221 }
2222
2223 static inline bool
2224 got_page_reloc_p (unsigned int r_type)
2225 {
2226 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2227 }
2228
2229 static inline bool
2230 got_lo16_reloc_p (unsigned int r_type)
2231 {
2232 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2233 }
2234
2235 static inline bool
2236 call_hi16_reloc_p (unsigned int r_type)
2237 {
2238 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2239 }
2240
2241 static inline bool
2242 call_lo16_reloc_p (unsigned int r_type)
2243 {
2244 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2245 }
2246
2247 static inline bool
2248 hi16_reloc_p (int r_type)
2249 {
2250 return (r_type == R_MIPS_HI16
2251 || r_type == R_MIPS16_HI16
2252 || r_type == R_MICROMIPS_HI16
2253 || r_type == R_MIPS_PCHI16);
2254 }
2255
2256 static inline bool
2257 lo16_reloc_p (int r_type)
2258 {
2259 return (r_type == R_MIPS_LO16
2260 || r_type == R_MIPS16_LO16
2261 || r_type == R_MICROMIPS_LO16
2262 || r_type == R_MIPS_PCLO16);
2263 }
2264
2265 static inline bool
2266 mips16_call_reloc_p (int r_type)
2267 {
2268 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2269 }
2270
2271 static inline bool
2272 jal_reloc_p (int r_type)
2273 {
2274 return (r_type == R_MIPS_26
2275 || r_type == R_MIPS16_26
2276 || r_type == R_MICROMIPS_26_S1);
2277 }
2278
2279 static inline bool
2280 b_reloc_p (int r_type)
2281 {
2282 return (r_type == R_MIPS_PC26_S2
2283 || r_type == R_MIPS_PC21_S2
2284 || r_type == R_MIPS_PC16
2285 || r_type == R_MIPS_GNU_REL16_S2
2286 || r_type == R_MIPS16_PC16_S1
2287 || r_type == R_MICROMIPS_PC16_S1
2288 || r_type == R_MICROMIPS_PC10_S1
2289 || r_type == R_MICROMIPS_PC7_S1);
2290 }
2291
2292 static inline bool
2293 aligned_pcrel_reloc_p (int r_type)
2294 {
2295 return (r_type == R_MIPS_PC18_S3
2296 || r_type == R_MIPS_PC19_S2);
2297 }
2298
2299 static inline bool
2300 branch_reloc_p (int r_type)
2301 {
2302 return (r_type == R_MIPS_26
2303 || r_type == R_MIPS_PC26_S2
2304 || r_type == R_MIPS_PC21_S2
2305 || r_type == R_MIPS_PC16
2306 || r_type == R_MIPS_GNU_REL16_S2);
2307 }
2308
2309 static inline bool
2310 mips16_branch_reloc_p (int r_type)
2311 {
2312 return (r_type == R_MIPS16_26
2313 || r_type == R_MIPS16_PC16_S1);
2314 }
2315
2316 static inline bool
2317 micromips_branch_reloc_p (int r_type)
2318 {
2319 return (r_type == R_MICROMIPS_26_S1
2320 || r_type == R_MICROMIPS_PC16_S1
2321 || r_type == R_MICROMIPS_PC10_S1
2322 || r_type == R_MICROMIPS_PC7_S1);
2323 }
2324
2325 static inline bool
2326 tls_gd_reloc_p (unsigned int r_type)
2327 {
2328 return (r_type == R_MIPS_TLS_GD
2329 || r_type == R_MIPS16_TLS_GD
2330 || r_type == R_MICROMIPS_TLS_GD);
2331 }
2332
2333 static inline bool
2334 tls_ldm_reloc_p (unsigned int r_type)
2335 {
2336 return (r_type == R_MIPS_TLS_LDM
2337 || r_type == R_MIPS16_TLS_LDM
2338 || r_type == R_MICROMIPS_TLS_LDM);
2339 }
2340
2341 static inline bool
2342 tls_gottprel_reloc_p (unsigned int r_type)
2343 {
2344 return (r_type == R_MIPS_TLS_GOTTPREL
2345 || r_type == R_MIPS16_TLS_GOTTPREL
2346 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2347 }
2348
2349 void
2350 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2351 bool jal_shuffle, bfd_byte *data)
2352 {
2353 bfd_vma first, second, val;
2354
2355 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2356 return;
2357
2358 /* Pick up the first and second halfwords of the instruction. */
2359 first = bfd_get_16 (abfd, data);
2360 second = bfd_get_16 (abfd, data + 2);
2361 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2362 val = first << 16 | second;
2363 else if (r_type != R_MIPS16_26)
2364 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2365 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2366 else
2367 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2368 | ((first & 0x1f) << 21) | second);
2369 bfd_put_32 (abfd, val, data);
2370 }
2371
2372 void
2373 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2374 bool jal_shuffle, bfd_byte *data)
2375 {
2376 bfd_vma first, second, val;
2377
2378 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2379 return;
2380
2381 val = bfd_get_32 (abfd, data);
2382 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2383 {
2384 second = val & 0xffff;
2385 first = val >> 16;
2386 }
2387 else if (r_type != R_MIPS16_26)
2388 {
2389 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2390 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2391 }
2392 else
2393 {
2394 second = val & 0xffff;
2395 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2396 | ((val >> 21) & 0x1f);
2397 }
2398 bfd_put_16 (abfd, second, data + 2);
2399 bfd_put_16 (abfd, first, data);
2400 }
2401
2402 bfd_reloc_status_type
2403 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2404 arelent *reloc_entry, asection *input_section,
2405 bool relocatable, void *data, bfd_vma gp)
2406 {
2407 bfd_vma relocation;
2408 bfd_signed_vma val;
2409 bfd_reloc_status_type status;
2410
2411 if (bfd_is_com_section (symbol->section))
2412 relocation = 0;
2413 else
2414 relocation = symbol->value;
2415
2416 relocation += symbol->section->output_section->vma;
2417 relocation += symbol->section->output_offset;
2418
2419 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2420 return bfd_reloc_outofrange;
2421
2422 /* Set val to the offset into the section or symbol. */
2423 val = reloc_entry->addend;
2424
2425 _bfd_mips_elf_sign_extend (val, 16);
2426
2427 /* Adjust val for the final section location and GP value. If we
2428 are producing relocatable output, we don't want to do this for
2429 an external symbol. */
2430 if (! relocatable
2431 || (symbol->flags & BSF_SECTION_SYM) != 0)
2432 val += relocation - gp;
2433
2434 if (reloc_entry->howto->partial_inplace)
2435 {
2436 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2437 (bfd_byte *) data
2438 + reloc_entry->address);
2439 if (status != bfd_reloc_ok)
2440 return status;
2441 }
2442 else
2443 reloc_entry->addend = val;
2444
2445 if (relocatable)
2446 reloc_entry->address += input_section->output_offset;
2447
2448 return bfd_reloc_ok;
2449 }
2450
2451 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2452 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2453 that contains the relocation field and DATA points to the start of
2454 INPUT_SECTION. */
2455
2456 struct mips_hi16
2457 {
2458 struct mips_hi16 *next;
2459 bfd_byte *data;
2460 asection *input_section;
2461 arelent rel;
2462 };
2463
2464 /* FIXME: This should not be a static variable. */
2465
2466 static struct mips_hi16 *mips_hi16_list;
2467
2468 /* A howto special_function for REL *HI16 relocations. We can only
2469 calculate the correct value once we've seen the partnering
2470 *LO16 relocation, so just save the information for later.
2471
2472 The ABI requires that the *LO16 immediately follow the *HI16.
2473 However, as a GNU extension, we permit an arbitrary number of
2474 *HI16s to be associated with a single *LO16. This significantly
2475 simplies the relocation handling in gcc. */
2476
2477 bfd_reloc_status_type
2478 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2479 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2480 asection *input_section, bfd *output_bfd,
2481 char **error_message ATTRIBUTE_UNUSED)
2482 {
2483 struct mips_hi16 *n;
2484
2485 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2486 return bfd_reloc_outofrange;
2487
2488 n = bfd_malloc (sizeof *n);
2489 if (n == NULL)
2490 return bfd_reloc_outofrange;
2491
2492 n->next = mips_hi16_list;
2493 n->data = data;
2494 n->input_section = input_section;
2495 n->rel = *reloc_entry;
2496 mips_hi16_list = n;
2497
2498 if (output_bfd != NULL)
2499 reloc_entry->address += input_section->output_offset;
2500
2501 return bfd_reloc_ok;
2502 }
2503
2504 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2505 like any other 16-bit relocation when applied to global symbols, but is
2506 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2507
2508 bfd_reloc_status_type
2509 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2510 void *data, asection *input_section,
2511 bfd *output_bfd, char **error_message)
2512 {
2513 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2514 || bfd_is_und_section (bfd_asymbol_section (symbol))
2515 || bfd_is_com_section (bfd_asymbol_section (symbol)))
2516 /* The relocation is against a global symbol. */
2517 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2518 input_section, output_bfd,
2519 error_message);
2520
2521 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2522 input_section, output_bfd, error_message);
2523 }
2524
2525 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2526 is a straightforward 16 bit inplace relocation, but we must deal with
2527 any partnering high-part relocations as well. */
2528
2529 bfd_reloc_status_type
2530 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2533 {
2534 bfd_vma vallo;
2535 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2536
2537 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2538 return bfd_reloc_outofrange;
2539
2540 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false,
2541 location);
2542 vallo = bfd_get_32 (abfd, location);
2543 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false,
2544 location);
2545
2546 while (mips_hi16_list != NULL)
2547 {
2548 bfd_reloc_status_type ret;
2549 struct mips_hi16 *hi;
2550
2551 hi = mips_hi16_list;
2552
2553 /* R_MIPS*_GOT16 relocations are something of a special case. We
2554 want to install the addend in the same way as for a R_MIPS*_HI16
2555 relocation (with a rightshift of 16). However, since GOT16
2556 relocations can also be used with global symbols, their howto
2557 has a rightshift of 0. */
2558 if (hi->rel.howto->type == R_MIPS_GOT16)
2559 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, false);
2560 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2561 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, false);
2562 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2563 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, false);
2564
2565 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2566 carry or borrow will induce a change of +1 or -1 in the high part. */
2567 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2568
2569 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2570 hi->input_section, output_bfd,
2571 error_message);
2572 if (ret != bfd_reloc_ok)
2573 return ret;
2574
2575 mips_hi16_list = hi->next;
2576 free (hi);
2577 }
2578
2579 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2580 input_section, output_bfd,
2581 error_message);
2582 }
2583
2584 /* A generic howto special_function. This calculates and installs the
2585 relocation itself, thus avoiding the oft-discussed problems in
2586 bfd_perform_relocation and bfd_install_relocation. */
2587
2588 bfd_reloc_status_type
2589 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2590 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2591 asection *input_section, bfd *output_bfd,
2592 char **error_message ATTRIBUTE_UNUSED)
2593 {
2594 bfd_signed_vma val;
2595 bfd_reloc_status_type status;
2596 bool relocatable;
2597
2598 relocatable = (output_bfd != NULL);
2599
2600 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2601 return bfd_reloc_outofrange;
2602
2603 /* Build up the field adjustment in VAL. */
2604 val = 0;
2605 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2606 {
2607 /* Either we're calculating the final field value or we have a
2608 relocation against a section symbol. Add in the section's
2609 offset or address. */
2610 val += symbol->section->output_section->vma;
2611 val += symbol->section->output_offset;
2612 }
2613
2614 if (!relocatable)
2615 {
2616 /* We're calculating the final field value. Add in the symbol's value
2617 and, if pc-relative, subtract the address of the field itself. */
2618 val += symbol->value;
2619 if (reloc_entry->howto->pc_relative)
2620 {
2621 val -= input_section->output_section->vma;
2622 val -= input_section->output_offset;
2623 val -= reloc_entry->address;
2624 }
2625 }
2626
2627 /* VAL is now the final adjustment. If we're keeping this relocation
2628 in the output file, and if the relocation uses a separate addend,
2629 we just need to add VAL to that addend. Otherwise we need to add
2630 VAL to the relocation field itself. */
2631 if (relocatable && !reloc_entry->howto->partial_inplace)
2632 reloc_entry->addend += val;
2633 else
2634 {
2635 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2636
2637 /* Add in the separate addend, if any. */
2638 val += reloc_entry->addend;
2639
2640 /* Add VAL to the relocation field. */
2641 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false,
2642 location);
2643 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2644 location);
2645 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false,
2646 location);
2647
2648 if (status != bfd_reloc_ok)
2649 return status;
2650 }
2651
2652 if (relocatable)
2653 reloc_entry->address += input_section->output_offset;
2654
2655 return bfd_reloc_ok;
2656 }
2657 \f
2658 /* Swap an entry in a .gptab section. Note that these routines rely
2659 on the equivalence of the two elements of the union. */
2660
2661 static void
2662 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2663 Elf32_gptab *in)
2664 {
2665 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2666 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2667 }
2668
2669 static void
2670 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2671 Elf32_External_gptab *ex)
2672 {
2673 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2674 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2675 }
2676
2677 static void
2678 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2679 Elf32_External_compact_rel *ex)
2680 {
2681 H_PUT_32 (abfd, in->id1, ex->id1);
2682 H_PUT_32 (abfd, in->num, ex->num);
2683 H_PUT_32 (abfd, in->id2, ex->id2);
2684 H_PUT_32 (abfd, in->offset, ex->offset);
2685 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2686 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2687 }
2688
2689 static void
2690 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2691 Elf32_External_crinfo *ex)
2692 {
2693 unsigned long l;
2694
2695 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2696 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2697 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2698 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2699 H_PUT_32 (abfd, l, ex->info);
2700 H_PUT_32 (abfd, in->konst, ex->konst);
2701 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2702 }
2703 \f
2704 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2705 routines swap this structure in and out. They are used outside of
2706 BFD, so they are globally visible. */
2707
2708 void
2709 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2710 Elf32_RegInfo *in)
2711 {
2712 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2713 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2714 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2715 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2716 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2717 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2718 }
2719
2720 void
2721 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2722 Elf32_External_RegInfo *ex)
2723 {
2724 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2725 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2726 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2727 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2728 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2729 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2730 }
2731
2732 /* In the 64 bit ABI, the .MIPS.options section holds register
2733 information in an Elf64_Reginfo structure. These routines swap
2734 them in and out. They are globally visible because they are used
2735 outside of BFD. These routines are here so that gas can call them
2736 without worrying about whether the 64 bit ABI has been included. */
2737
2738 void
2739 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2740 Elf64_Internal_RegInfo *in)
2741 {
2742 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2743 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2744 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2745 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2746 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2747 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2748 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2749 }
2750
2751 void
2752 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2753 Elf64_External_RegInfo *ex)
2754 {
2755 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2756 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2757 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2758 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2759 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2760 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2761 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2762 }
2763
2764 /* Swap in an options header. */
2765
2766 void
2767 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2768 Elf_Internal_Options *in)
2769 {
2770 in->kind = H_GET_8 (abfd, ex->kind);
2771 in->size = H_GET_8 (abfd, ex->size);
2772 in->section = H_GET_16 (abfd, ex->section);
2773 in->info = H_GET_32 (abfd, ex->info);
2774 }
2775
2776 /* Swap out an options header. */
2777
2778 void
2779 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2780 Elf_External_Options *ex)
2781 {
2782 H_PUT_8 (abfd, in->kind, ex->kind);
2783 H_PUT_8 (abfd, in->size, ex->size);
2784 H_PUT_16 (abfd, in->section, ex->section);
2785 H_PUT_32 (abfd, in->info, ex->info);
2786 }
2787
2788 /* Swap in an abiflags structure. */
2789
2790 void
2791 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2792 const Elf_External_ABIFlags_v0 *ex,
2793 Elf_Internal_ABIFlags_v0 *in)
2794 {
2795 in->version = H_GET_16 (abfd, ex->version);
2796 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2797 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2798 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2799 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2800 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2801 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2802 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2803 in->ases = H_GET_32 (abfd, ex->ases);
2804 in->flags1 = H_GET_32 (abfd, ex->flags1);
2805 in->flags2 = H_GET_32 (abfd, ex->flags2);
2806 }
2807
2808 /* Swap out an abiflags structure. */
2809
2810 void
2811 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2812 const Elf_Internal_ABIFlags_v0 *in,
2813 Elf_External_ABIFlags_v0 *ex)
2814 {
2815 H_PUT_16 (abfd, in->version, ex->version);
2816 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2817 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2818 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2819 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2820 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2821 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2822 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2823 H_PUT_32 (abfd, in->ases, ex->ases);
2824 H_PUT_32 (abfd, in->flags1, ex->flags1);
2825 H_PUT_32 (abfd, in->flags2, ex->flags2);
2826 }
2827 \f
2828 /* This function is called via qsort() to sort the dynamic relocation
2829 entries by increasing r_symndx value. */
2830
2831 static int
2832 sort_dynamic_relocs (const void *arg1, const void *arg2)
2833 {
2834 Elf_Internal_Rela int_reloc1;
2835 Elf_Internal_Rela int_reloc2;
2836 int diff;
2837
2838 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2839 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2840
2841 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2842 if (diff != 0)
2843 return diff;
2844
2845 if (int_reloc1.r_offset < int_reloc2.r_offset)
2846 return -1;
2847 if (int_reloc1.r_offset > int_reloc2.r_offset)
2848 return 1;
2849 return 0;
2850 }
2851
2852 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2853
2854 static int
2855 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2856 const void *arg2 ATTRIBUTE_UNUSED)
2857 {
2858 #ifdef BFD64
2859 Elf_Internal_Rela int_reloc1[3];
2860 Elf_Internal_Rela int_reloc2[3];
2861
2862 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2863 (reldyn_sorting_bfd, arg1, int_reloc1);
2864 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2865 (reldyn_sorting_bfd, arg2, int_reloc2);
2866
2867 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2868 return -1;
2869 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2870 return 1;
2871
2872 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2873 return -1;
2874 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2875 return 1;
2876 return 0;
2877 #else
2878 abort ();
2879 #endif
2880 }
2881
2882
2883 /* This routine is used to write out ECOFF debugging external symbol
2884 information. It is called via mips_elf_link_hash_traverse. The
2885 ECOFF external symbol information must match the ELF external
2886 symbol information. Unfortunately, at this point we don't know
2887 whether a symbol is required by reloc information, so the two
2888 tables may wind up being different. We must sort out the external
2889 symbol information before we can set the final size of the .mdebug
2890 section, and we must set the size of the .mdebug section before we
2891 can relocate any sections, and we can't know which symbols are
2892 required by relocation until we relocate the sections.
2893 Fortunately, it is relatively unlikely that any symbol will be
2894 stripped but required by a reloc. In particular, it can not happen
2895 when generating a final executable. */
2896
2897 static bool
2898 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2899 {
2900 struct extsym_info *einfo = data;
2901 bool strip;
2902 asection *sec, *output_section;
2903
2904 if (h->root.indx == -2)
2905 strip = false;
2906 else if ((h->root.def_dynamic
2907 || h->root.ref_dynamic
2908 || h->root.type == bfd_link_hash_new)
2909 && !h->root.def_regular
2910 && !h->root.ref_regular)
2911 strip = true;
2912 else if (einfo->info->strip == strip_all
2913 || (einfo->info->strip == strip_some
2914 && bfd_hash_lookup (einfo->info->keep_hash,
2915 h->root.root.root.string,
2916 false, false) == NULL))
2917 strip = true;
2918 else
2919 strip = false;
2920
2921 if (strip)
2922 return true;
2923
2924 if (h->esym.ifd == -2)
2925 {
2926 h->esym.jmptbl = 0;
2927 h->esym.cobol_main = 0;
2928 h->esym.weakext = 0;
2929 h->esym.reserved = 0;
2930 h->esym.ifd = ifdNil;
2931 h->esym.asym.value = 0;
2932 h->esym.asym.st = stGlobal;
2933
2934 if (h->root.root.type == bfd_link_hash_undefined
2935 || h->root.root.type == bfd_link_hash_undefweak)
2936 {
2937 const char *name;
2938
2939 /* Use undefined class. Also, set class and type for some
2940 special symbols. */
2941 name = h->root.root.root.string;
2942 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2943 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2944 {
2945 h->esym.asym.sc = scData;
2946 h->esym.asym.st = stLabel;
2947 h->esym.asym.value = 0;
2948 }
2949 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2950 {
2951 h->esym.asym.sc = scAbs;
2952 h->esym.asym.st = stLabel;
2953 h->esym.asym.value =
2954 mips_elf_hash_table (einfo->info)->procedure_count;
2955 }
2956 else
2957 h->esym.asym.sc = scUndefined;
2958 }
2959 else if (h->root.root.type != bfd_link_hash_defined
2960 && h->root.root.type != bfd_link_hash_defweak)
2961 h->esym.asym.sc = scAbs;
2962 else
2963 {
2964 const char *name;
2965
2966 sec = h->root.root.u.def.section;
2967 output_section = sec->output_section;
2968
2969 /* When making a shared library and symbol h is the one from
2970 the another shared library, OUTPUT_SECTION may be null. */
2971 if (output_section == NULL)
2972 h->esym.asym.sc = scUndefined;
2973 else
2974 {
2975 name = bfd_section_name (output_section);
2976
2977 if (strcmp (name, ".text") == 0)
2978 h->esym.asym.sc = scText;
2979 else if (strcmp (name, ".data") == 0)
2980 h->esym.asym.sc = scData;
2981 else if (strcmp (name, ".sdata") == 0)
2982 h->esym.asym.sc = scSData;
2983 else if (strcmp (name, ".rodata") == 0
2984 || strcmp (name, ".rdata") == 0)
2985 h->esym.asym.sc = scRData;
2986 else if (strcmp (name, ".bss") == 0)
2987 h->esym.asym.sc = scBss;
2988 else if (strcmp (name, ".sbss") == 0)
2989 h->esym.asym.sc = scSBss;
2990 else if (strcmp (name, ".init") == 0)
2991 h->esym.asym.sc = scInit;
2992 else if (strcmp (name, ".fini") == 0)
2993 h->esym.asym.sc = scFini;
2994 else
2995 h->esym.asym.sc = scAbs;
2996 }
2997 }
2998
2999 h->esym.asym.reserved = 0;
3000 h->esym.asym.index = indexNil;
3001 }
3002
3003 if (h->root.root.type == bfd_link_hash_common)
3004 h->esym.asym.value = h->root.root.u.c.size;
3005 else if (h->root.root.type == bfd_link_hash_defined
3006 || h->root.root.type == bfd_link_hash_defweak)
3007 {
3008 if (h->esym.asym.sc == scCommon)
3009 h->esym.asym.sc = scBss;
3010 else if (h->esym.asym.sc == scSCommon)
3011 h->esym.asym.sc = scSBss;
3012
3013 sec = h->root.root.u.def.section;
3014 output_section = sec->output_section;
3015 if (output_section != NULL)
3016 h->esym.asym.value = (h->root.root.u.def.value
3017 + sec->output_offset
3018 + output_section->vma);
3019 else
3020 h->esym.asym.value = 0;
3021 }
3022 else
3023 {
3024 struct mips_elf_link_hash_entry *hd = h;
3025
3026 while (hd->root.root.type == bfd_link_hash_indirect)
3027 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
3028
3029 if (hd->needs_lazy_stub)
3030 {
3031 BFD_ASSERT (hd->root.plt.plist != NULL);
3032 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
3033 /* Set type and value for a symbol with a function stub. */
3034 h->esym.asym.st = stProc;
3035 sec = hd->root.root.u.def.section;
3036 if (sec == NULL)
3037 h->esym.asym.value = 0;
3038 else
3039 {
3040 output_section = sec->output_section;
3041 if (output_section != NULL)
3042 h->esym.asym.value = (hd->root.plt.plist->stub_offset
3043 + sec->output_offset
3044 + output_section->vma);
3045 else
3046 h->esym.asym.value = 0;
3047 }
3048 }
3049 }
3050
3051 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3052 h->root.root.root.string,
3053 &h->esym))
3054 {
3055 einfo->failed = true;
3056 return false;
3057 }
3058
3059 return true;
3060 }
3061
3062 /* A comparison routine used to sort .gptab entries. */
3063
3064 static int
3065 gptab_compare (const void *p1, const void *p2)
3066 {
3067 const Elf32_gptab *a1 = p1;
3068 const Elf32_gptab *a2 = p2;
3069
3070 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3071 }
3072 \f
3073 /* Functions to manage the got entry hash table. */
3074
3075 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3076 hash number. */
3077
3078 static inline hashval_t
3079 mips_elf_hash_bfd_vma (bfd_vma addr)
3080 {
3081 #ifdef BFD64
3082 return addr + (addr >> 32);
3083 #else
3084 return addr;
3085 #endif
3086 }
3087
3088 static hashval_t
3089 mips_elf_got_entry_hash (const void *entry_)
3090 {
3091 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3092
3093 return (entry->symndx
3094 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3095 + (entry->tls_type == GOT_TLS_LDM ? 0
3096 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3097 : entry->symndx >= 0 ? (entry->abfd->id
3098 + mips_elf_hash_bfd_vma (entry->d.addend))
3099 : entry->d.h->root.root.root.hash));
3100 }
3101
3102 static int
3103 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3104 {
3105 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3106 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3107
3108 return (e1->symndx == e2->symndx
3109 && e1->tls_type == e2->tls_type
3110 && (e1->tls_type == GOT_TLS_LDM ? true
3111 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3112 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3113 && e1->d.addend == e2->d.addend)
3114 : e2->abfd && e1->d.h == e2->d.h));
3115 }
3116
3117 static hashval_t
3118 mips_got_page_ref_hash (const void *ref_)
3119 {
3120 const struct mips_got_page_ref *ref;
3121
3122 ref = (const struct mips_got_page_ref *) ref_;
3123 return ((ref->symndx >= 0
3124 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3125 : ref->u.h->root.root.root.hash)
3126 + mips_elf_hash_bfd_vma (ref->addend));
3127 }
3128
3129 static int
3130 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3131 {
3132 const struct mips_got_page_ref *ref1, *ref2;
3133
3134 ref1 = (const struct mips_got_page_ref *) ref1_;
3135 ref2 = (const struct mips_got_page_ref *) ref2_;
3136 return (ref1->symndx == ref2->symndx
3137 && (ref1->symndx < 0
3138 ? ref1->u.h == ref2->u.h
3139 : ref1->u.abfd == ref2->u.abfd)
3140 && ref1->addend == ref2->addend);
3141 }
3142
3143 static hashval_t
3144 mips_got_page_entry_hash (const void *entry_)
3145 {
3146 const struct mips_got_page_entry *entry;
3147
3148 entry = (const struct mips_got_page_entry *) entry_;
3149 return entry->sec->id;
3150 }
3151
3152 static int
3153 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3154 {
3155 const struct mips_got_page_entry *entry1, *entry2;
3156
3157 entry1 = (const struct mips_got_page_entry *) entry1_;
3158 entry2 = (const struct mips_got_page_entry *) entry2_;
3159 return entry1->sec == entry2->sec;
3160 }
3161 \f
3162 /* Create and return a new mips_got_info structure. */
3163
3164 static struct mips_got_info *
3165 mips_elf_create_got_info (bfd *abfd)
3166 {
3167 struct mips_got_info *g;
3168
3169 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3170 if (g == NULL)
3171 return NULL;
3172
3173 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3174 mips_elf_got_entry_eq, NULL);
3175 if (g->got_entries == NULL)
3176 return NULL;
3177
3178 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3179 mips_got_page_ref_eq, NULL);
3180 if (g->got_page_refs == NULL)
3181 return NULL;
3182
3183 return g;
3184 }
3185
3186 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3187 CREATE_P and if ABFD doesn't already have a GOT. */
3188
3189 static struct mips_got_info *
3190 mips_elf_bfd_got (bfd *abfd, bool create_p)
3191 {
3192 struct mips_elf_obj_tdata *tdata;
3193
3194 if (!is_mips_elf (abfd))
3195 return NULL;
3196
3197 tdata = mips_elf_tdata (abfd);
3198 if (!tdata->got && create_p)
3199 tdata->got = mips_elf_create_got_info (abfd);
3200 return tdata->got;
3201 }
3202
3203 /* Record that ABFD should use output GOT G. */
3204
3205 static void
3206 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3207 {
3208 struct mips_elf_obj_tdata *tdata;
3209
3210 BFD_ASSERT (is_mips_elf (abfd));
3211 tdata = mips_elf_tdata (abfd);
3212 if (tdata->got)
3213 {
3214 /* The GOT structure itself and the hash table entries are
3215 allocated to a bfd, but the hash tables aren't. */
3216 htab_delete (tdata->got->got_entries);
3217 htab_delete (tdata->got->got_page_refs);
3218 if (tdata->got->got_page_entries)
3219 htab_delete (tdata->got->got_page_entries);
3220 }
3221 tdata->got = g;
3222 }
3223
3224 /* Return the dynamic relocation section. If it doesn't exist, try to
3225 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3226 if creation fails. */
3227
3228 static asection *
3229 mips_elf_rel_dyn_section (struct bfd_link_info *info, bool create_p)
3230 {
3231 const char *dname;
3232 asection *sreloc;
3233 bfd *dynobj;
3234
3235 dname = MIPS_ELF_REL_DYN_NAME (info);
3236 dynobj = elf_hash_table (info)->dynobj;
3237 sreloc = bfd_get_linker_section (dynobj, dname);
3238 if (sreloc == NULL && create_p)
3239 {
3240 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3241 (SEC_ALLOC
3242 | SEC_LOAD
3243 | SEC_HAS_CONTENTS
3244 | SEC_IN_MEMORY
3245 | SEC_LINKER_CREATED
3246 | SEC_READONLY));
3247 if (sreloc == NULL
3248 || !bfd_set_section_alignment (sreloc,
3249 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3250 return NULL;
3251 }
3252 return sreloc;
3253 }
3254
3255 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3256
3257 static int
3258 mips_elf_reloc_tls_type (unsigned int r_type)
3259 {
3260 if (tls_gd_reloc_p (r_type))
3261 return GOT_TLS_GD;
3262
3263 if (tls_ldm_reloc_p (r_type))
3264 return GOT_TLS_LDM;
3265
3266 if (tls_gottprel_reloc_p (r_type))
3267 return GOT_TLS_IE;
3268
3269 return GOT_TLS_NONE;
3270 }
3271
3272 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3273
3274 static int
3275 mips_tls_got_entries (unsigned int type)
3276 {
3277 switch (type)
3278 {
3279 case GOT_TLS_GD:
3280 case GOT_TLS_LDM:
3281 return 2;
3282
3283 case GOT_TLS_IE:
3284 return 1;
3285
3286 case GOT_TLS_NONE:
3287 return 0;
3288 }
3289 abort ();
3290 }
3291
3292 /* Count the number of relocations needed for a TLS GOT entry, with
3293 access types from TLS_TYPE, and symbol H (or a local symbol if H
3294 is NULL). */
3295
3296 static int
3297 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3298 struct elf_link_hash_entry *h)
3299 {
3300 int indx = 0;
3301 bool need_relocs = false;
3302 bool dyn = elf_hash_table (info)->dynamic_sections_created;
3303
3304 if (h != NULL
3305 && h->dynindx != -1
3306 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3307 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3308 indx = h->dynindx;
3309
3310 if ((bfd_link_dll (info) || indx != 0)
3311 && (h == NULL
3312 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3313 || h->root.type != bfd_link_hash_undefweak))
3314 need_relocs = true;
3315
3316 if (!need_relocs)
3317 return 0;
3318
3319 switch (tls_type)
3320 {
3321 case GOT_TLS_GD:
3322 return indx != 0 ? 2 : 1;
3323
3324 case GOT_TLS_IE:
3325 return 1;
3326
3327 case GOT_TLS_LDM:
3328 return bfd_link_dll (info) ? 1 : 0;
3329
3330 default:
3331 return 0;
3332 }
3333 }
3334
3335 /* Add the number of GOT entries and TLS relocations required by ENTRY
3336 to G. */
3337
3338 static void
3339 mips_elf_count_got_entry (struct bfd_link_info *info,
3340 struct mips_got_info *g,
3341 struct mips_got_entry *entry)
3342 {
3343 if (entry->tls_type)
3344 {
3345 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3346 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3347 entry->symndx < 0
3348 ? &entry->d.h->root : NULL);
3349 }
3350 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3351 g->local_gotno += 1;
3352 else
3353 g->global_gotno += 1;
3354 }
3355
3356 /* Output a simple dynamic relocation into SRELOC. */
3357
3358 static void
3359 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3360 asection *sreloc,
3361 unsigned long reloc_index,
3362 unsigned long indx,
3363 int r_type,
3364 bfd_vma offset)
3365 {
3366 Elf_Internal_Rela rel[3];
3367
3368 memset (rel, 0, sizeof (rel));
3369
3370 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3371 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3372
3373 if (ABI_64_P (output_bfd))
3374 {
3375 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3376 (output_bfd, &rel[0],
3377 (sreloc->contents
3378 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3379 }
3380 else
3381 bfd_elf32_swap_reloc_out
3382 (output_bfd, &rel[0],
3383 (sreloc->contents
3384 + reloc_index * sizeof (Elf32_External_Rel)));
3385 }
3386
3387 /* Initialize a set of TLS GOT entries for one symbol. */
3388
3389 static void
3390 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3391 struct mips_got_entry *entry,
3392 struct mips_elf_link_hash_entry *h,
3393 bfd_vma value)
3394 {
3395 bool dyn = elf_hash_table (info)->dynamic_sections_created;
3396 struct mips_elf_link_hash_table *htab;
3397 int indx;
3398 asection *sreloc, *sgot;
3399 bfd_vma got_offset, got_offset2;
3400 bool need_relocs = false;
3401
3402 htab = mips_elf_hash_table (info);
3403 if (htab == NULL)
3404 return;
3405
3406 sgot = htab->root.sgot;
3407
3408 indx = 0;
3409 if (h != NULL
3410 && h->root.dynindx != -1
3411 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3412 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3413 indx = h->root.dynindx;
3414
3415 if (entry->tls_initialized)
3416 return;
3417
3418 if ((bfd_link_dll (info) || indx != 0)
3419 && (h == NULL
3420 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3421 || h->root.type != bfd_link_hash_undefweak))
3422 need_relocs = true;
3423
3424 /* MINUS_ONE means the symbol is not defined in this object. It may not
3425 be defined at all; assume that the value doesn't matter in that
3426 case. Otherwise complain if we would use the value. */
3427 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3428 || h->root.root.type == bfd_link_hash_undefweak);
3429
3430 /* Emit necessary relocations. */
3431 sreloc = mips_elf_rel_dyn_section (info, false);
3432 got_offset = entry->gotidx;
3433
3434 switch (entry->tls_type)
3435 {
3436 case GOT_TLS_GD:
3437 /* General Dynamic. */
3438 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3439
3440 if (need_relocs)
3441 {
3442 mips_elf_output_dynamic_relocation
3443 (abfd, sreloc, sreloc->reloc_count++, indx,
3444 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3445 sgot->output_offset + sgot->output_section->vma + got_offset);
3446
3447 if (indx)
3448 mips_elf_output_dynamic_relocation
3449 (abfd, sreloc, sreloc->reloc_count++, indx,
3450 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3451 sgot->output_offset + sgot->output_section->vma + got_offset2);
3452 else
3453 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3454 sgot->contents + got_offset2);
3455 }
3456 else
3457 {
3458 MIPS_ELF_PUT_WORD (abfd, 1,
3459 sgot->contents + got_offset);
3460 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3461 sgot->contents + got_offset2);
3462 }
3463 break;
3464
3465 case GOT_TLS_IE:
3466 /* Initial Exec model. */
3467 if (need_relocs)
3468 {
3469 if (indx == 0)
3470 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3471 sgot->contents + got_offset);
3472 else
3473 MIPS_ELF_PUT_WORD (abfd, 0,
3474 sgot->contents + got_offset);
3475
3476 mips_elf_output_dynamic_relocation
3477 (abfd, sreloc, sreloc->reloc_count++, indx,
3478 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3479 sgot->output_offset + sgot->output_section->vma + got_offset);
3480 }
3481 else
3482 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3483 sgot->contents + got_offset);
3484 break;
3485
3486 case GOT_TLS_LDM:
3487 /* The initial offset is zero, and the LD offsets will include the
3488 bias by DTP_OFFSET. */
3489 MIPS_ELF_PUT_WORD (abfd, 0,
3490 sgot->contents + got_offset
3491 + MIPS_ELF_GOT_SIZE (abfd));
3492
3493 if (!bfd_link_dll (info))
3494 MIPS_ELF_PUT_WORD (abfd, 1,
3495 sgot->contents + got_offset);
3496 else
3497 mips_elf_output_dynamic_relocation
3498 (abfd, sreloc, sreloc->reloc_count++, indx,
3499 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3500 sgot->output_offset + sgot->output_section->vma + got_offset);
3501 break;
3502
3503 default:
3504 abort ();
3505 }
3506
3507 entry->tls_initialized = true;
3508 }
3509
3510 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3511 for global symbol H. .got.plt comes before the GOT, so the offset
3512 will be negative. */
3513
3514 static bfd_vma
3515 mips_elf_gotplt_index (struct bfd_link_info *info,
3516 struct elf_link_hash_entry *h)
3517 {
3518 bfd_vma got_address, got_value;
3519 struct mips_elf_link_hash_table *htab;
3520
3521 htab = mips_elf_hash_table (info);
3522 BFD_ASSERT (htab != NULL);
3523
3524 BFD_ASSERT (h->plt.plist != NULL);
3525 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3526
3527 /* Calculate the address of the associated .got.plt entry. */
3528 got_address = (htab->root.sgotplt->output_section->vma
3529 + htab->root.sgotplt->output_offset
3530 + (h->plt.plist->gotplt_index
3531 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3532
3533 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3534 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3535 + htab->root.hgot->root.u.def.section->output_offset
3536 + htab->root.hgot->root.u.def.value);
3537
3538 return got_address - got_value;
3539 }
3540
3541 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3542 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3543 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3544 offset can be found. */
3545
3546 static bfd_vma
3547 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3548 bfd_vma value, unsigned long r_symndx,
3549 struct mips_elf_link_hash_entry *h, int r_type)
3550 {
3551 struct mips_elf_link_hash_table *htab;
3552 struct mips_got_entry *entry;
3553
3554 htab = mips_elf_hash_table (info);
3555 BFD_ASSERT (htab != NULL);
3556
3557 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3558 r_symndx, h, r_type);
3559 if (!entry)
3560 return MINUS_ONE;
3561
3562 if (entry->tls_type)
3563 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3564 return entry->gotidx;
3565 }
3566
3567 /* Return the GOT index of global symbol H in the primary GOT. */
3568
3569 static bfd_vma
3570 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3571 struct elf_link_hash_entry *h)
3572 {
3573 struct mips_elf_link_hash_table *htab;
3574 long global_got_dynindx;
3575 struct mips_got_info *g;
3576 bfd_vma got_index;
3577
3578 htab = mips_elf_hash_table (info);
3579 BFD_ASSERT (htab != NULL);
3580
3581 global_got_dynindx = 0;
3582 if (htab->global_gotsym != NULL)
3583 global_got_dynindx = htab->global_gotsym->dynindx;
3584
3585 /* Once we determine the global GOT entry with the lowest dynamic
3586 symbol table index, we must put all dynamic symbols with greater
3587 indices into the primary GOT. That makes it easy to calculate the
3588 GOT offset. */
3589 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3590 g = mips_elf_bfd_got (obfd, false);
3591 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3592 * MIPS_ELF_GOT_SIZE (obfd));
3593 BFD_ASSERT (got_index < htab->root.sgot->size);
3594
3595 return got_index;
3596 }
3597
3598 /* Return the GOT index for the global symbol indicated by H, which is
3599 referenced by a relocation of type R_TYPE in IBFD. */
3600
3601 static bfd_vma
3602 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3603 struct elf_link_hash_entry *h, int r_type)
3604 {
3605 struct mips_elf_link_hash_table *htab;
3606 struct mips_got_info *g;
3607 struct mips_got_entry lookup, *entry;
3608 bfd_vma gotidx;
3609
3610 htab = mips_elf_hash_table (info);
3611 BFD_ASSERT (htab != NULL);
3612
3613 g = mips_elf_bfd_got (ibfd, false);
3614 BFD_ASSERT (g);
3615
3616 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3617 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, false))
3618 return mips_elf_primary_global_got_index (obfd, info, h);
3619
3620 lookup.abfd = ibfd;
3621 lookup.symndx = -1;
3622 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3623 entry = htab_find (g->got_entries, &lookup);
3624 BFD_ASSERT (entry);
3625
3626 gotidx = entry->gotidx;
3627 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3628
3629 if (lookup.tls_type)
3630 {
3631 bfd_vma value = MINUS_ONE;
3632
3633 if ((h->root.type == bfd_link_hash_defined
3634 || h->root.type == bfd_link_hash_defweak)
3635 && h->root.u.def.section->output_section)
3636 value = (h->root.u.def.value
3637 + h->root.u.def.section->output_offset
3638 + h->root.u.def.section->output_section->vma);
3639
3640 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3641 }
3642 return gotidx;
3643 }
3644
3645 /* Find a GOT page entry that points to within 32KB of VALUE. These
3646 entries are supposed to be placed at small offsets in the GOT, i.e.,
3647 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3648 entry could be created. If OFFSETP is nonnull, use it to return the
3649 offset of the GOT entry from VALUE. */
3650
3651 static bfd_vma
3652 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3653 bfd_vma value, bfd_vma *offsetp)
3654 {
3655 bfd_vma page, got_index;
3656 struct mips_got_entry *entry;
3657
3658 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3659 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3660 NULL, R_MIPS_GOT_PAGE);
3661
3662 if (!entry)
3663 return MINUS_ONE;
3664
3665 got_index = entry->gotidx;
3666
3667 if (offsetp)
3668 *offsetp = value - entry->d.address;
3669
3670 return got_index;
3671 }
3672
3673 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3674 EXTERNAL is true if the relocation was originally against a global
3675 symbol that binds locally. */
3676
3677 static bfd_vma
3678 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3679 bfd_vma value, bool external)
3680 {
3681 struct mips_got_entry *entry;
3682
3683 /* GOT16 relocations against local symbols are followed by a LO16
3684 relocation; those against global symbols are not. Thus if the
3685 symbol was originally local, the GOT16 relocation should load the
3686 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3687 if (! external)
3688 value = mips_elf_high (value) << 16;
3689
3690 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3691 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3692 same in all cases. */
3693 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3694 NULL, R_MIPS_GOT16);
3695 if (entry)
3696 return entry->gotidx;
3697 else
3698 return MINUS_ONE;
3699 }
3700
3701 /* Returns the offset for the entry at the INDEXth position
3702 in the GOT. */
3703
3704 static bfd_vma
3705 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3706 bfd *input_bfd, bfd_vma got_index)
3707 {
3708 struct mips_elf_link_hash_table *htab;
3709 asection *sgot;
3710 bfd_vma gp;
3711
3712 htab = mips_elf_hash_table (info);
3713 BFD_ASSERT (htab != NULL);
3714
3715 sgot = htab->root.sgot;
3716 gp = _bfd_get_gp_value (output_bfd)
3717 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3718
3719 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3720 }
3721
3722 /* Create and return a local GOT entry for VALUE, which was calculated
3723 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3724 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3725 instead. */
3726
3727 static struct mips_got_entry *
3728 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3729 bfd *ibfd, bfd_vma value,
3730 unsigned long r_symndx,
3731 struct mips_elf_link_hash_entry *h,
3732 int r_type)
3733 {
3734 struct mips_got_entry lookup, *entry;
3735 void **loc;
3736 struct mips_got_info *g;
3737 struct mips_elf_link_hash_table *htab;
3738 bfd_vma gotidx;
3739
3740 htab = mips_elf_hash_table (info);
3741 BFD_ASSERT (htab != NULL);
3742
3743 g = mips_elf_bfd_got (ibfd, false);
3744 if (g == NULL)
3745 {
3746 g = mips_elf_bfd_got (abfd, false);
3747 BFD_ASSERT (g != NULL);
3748 }
3749
3750 /* This function shouldn't be called for symbols that live in the global
3751 area of the GOT. */
3752 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3753
3754 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3755 if (lookup.tls_type)
3756 {
3757 lookup.abfd = ibfd;
3758 if (tls_ldm_reloc_p (r_type))
3759 {
3760 lookup.symndx = 0;
3761 lookup.d.addend = 0;
3762 }
3763 else if (h == NULL)
3764 {
3765 lookup.symndx = r_symndx;
3766 lookup.d.addend = 0;
3767 }
3768 else
3769 {
3770 lookup.symndx = -1;
3771 lookup.d.h = h;
3772 }
3773
3774 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3775 BFD_ASSERT (entry);
3776
3777 gotidx = entry->gotidx;
3778 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3779
3780 return entry;
3781 }
3782
3783 lookup.abfd = NULL;
3784 lookup.symndx = -1;
3785 lookup.d.address = value;
3786 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3787 if (!loc)
3788 return NULL;
3789
3790 entry = (struct mips_got_entry *) *loc;
3791 if (entry)
3792 return entry;
3793
3794 if (g->assigned_low_gotno > g->assigned_high_gotno)
3795 {
3796 /* We didn't allocate enough space in the GOT. */
3797 _bfd_error_handler
3798 (_("not enough GOT space for local GOT entries"));
3799 bfd_set_error (bfd_error_bad_value);
3800 return NULL;
3801 }
3802
3803 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3804 if (!entry)
3805 return NULL;
3806
3807 if (got16_reloc_p (r_type)
3808 || call16_reloc_p (r_type)
3809 || got_page_reloc_p (r_type)
3810 || got_disp_reloc_p (r_type))
3811 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3812 else
3813 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3814
3815 *entry = lookup;
3816 *loc = entry;
3817
3818 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3819
3820 /* These GOT entries need a dynamic relocation on VxWorks. */
3821 if (htab->root.target_os == is_vxworks)
3822 {
3823 Elf_Internal_Rela outrel;
3824 asection *s;
3825 bfd_byte *rloc;
3826 bfd_vma got_address;
3827
3828 s = mips_elf_rel_dyn_section (info, false);
3829 got_address = (htab->root.sgot->output_section->vma
3830 + htab->root.sgot->output_offset
3831 + entry->gotidx);
3832
3833 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3834 outrel.r_offset = got_address;
3835 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3836 outrel.r_addend = value;
3837 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3838 }
3839
3840 return entry;
3841 }
3842
3843 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3844 The number might be exact or a worst-case estimate, depending on how
3845 much information is available to elf_backend_omit_section_dynsym at
3846 the current linking stage. */
3847
3848 static bfd_size_type
3849 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3850 {
3851 bfd_size_type count;
3852
3853 count = 0;
3854 if (bfd_link_pic (info)
3855 || elf_hash_table (info)->is_relocatable_executable)
3856 {
3857 asection *p;
3858 const struct elf_backend_data *bed;
3859
3860 bed = get_elf_backend_data (output_bfd);
3861 for (p = output_bfd->sections; p ; p = p->next)
3862 if ((p->flags & SEC_EXCLUDE) == 0
3863 && (p->flags & SEC_ALLOC) != 0
3864 && elf_hash_table (info)->dynamic_relocs
3865 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3866 ++count;
3867 }
3868 return count;
3869 }
3870
3871 /* Sort the dynamic symbol table so that symbols that need GOT entries
3872 appear towards the end. */
3873
3874 static bool
3875 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3876 {
3877 struct mips_elf_link_hash_table *htab;
3878 struct mips_elf_hash_sort_data hsd;
3879 struct mips_got_info *g;
3880
3881 htab = mips_elf_hash_table (info);
3882 BFD_ASSERT (htab != NULL);
3883
3884 if (htab->root.dynsymcount == 0)
3885 return true;
3886
3887 g = htab->got_info;
3888 if (g == NULL)
3889 return true;
3890
3891 hsd.low = NULL;
3892 hsd.max_unref_got_dynindx
3893 = hsd.min_got_dynindx
3894 = (htab->root.dynsymcount - g->reloc_only_gotno);
3895 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3896 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3897 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3898 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3899 hsd.output_bfd = abfd;
3900 if (htab->root.dynobj != NULL
3901 && htab->root.dynamic_sections_created
3902 && info->emit_gnu_hash)
3903 {
3904 asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash");
3905 BFD_ASSERT (s != NULL);
3906 hsd.mipsxhash = s->contents;
3907 BFD_ASSERT (hsd.mipsxhash != NULL);
3908 }
3909 else
3910 hsd.mipsxhash = NULL;
3911 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3912
3913 /* There should have been enough room in the symbol table to
3914 accommodate both the GOT and non-GOT symbols. */
3915 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3916 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3917 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3918 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3919
3920 /* Now we know which dynamic symbol has the lowest dynamic symbol
3921 table index in the GOT. */
3922 htab->global_gotsym = hsd.low;
3923
3924 return true;
3925 }
3926
3927 /* If H needs a GOT entry, assign it the highest available dynamic
3928 index. Otherwise, assign it the lowest available dynamic
3929 index. */
3930
3931 static bool
3932 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3933 {
3934 struct mips_elf_hash_sort_data *hsd = data;
3935
3936 /* Symbols without dynamic symbol table entries aren't interesting
3937 at all. */
3938 if (h->root.dynindx == -1)
3939 return true;
3940
3941 switch (h->global_got_area)
3942 {
3943 case GGA_NONE:
3944 if (h->root.forced_local)
3945 h->root.dynindx = hsd->max_local_dynindx++;
3946 else
3947 h->root.dynindx = hsd->max_non_got_dynindx++;
3948 break;
3949
3950 case GGA_NORMAL:
3951 h->root.dynindx = --hsd->min_got_dynindx;
3952 hsd->low = (struct elf_link_hash_entry *) h;
3953 break;
3954
3955 case GGA_RELOC_ONLY:
3956 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3957 hsd->low = (struct elf_link_hash_entry *) h;
3958 h->root.dynindx = hsd->max_unref_got_dynindx++;
3959 break;
3960 }
3961
3962 /* Populate the .MIPS.xhash translation table entry with
3963 the symbol dynindx. */
3964 if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL)
3965 bfd_put_32 (hsd->output_bfd, h->root.dynindx,
3966 hsd->mipsxhash + h->mipsxhash_loc);
3967
3968 return true;
3969 }
3970
3971 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3972 (which is owned by the caller and shouldn't be added to the
3973 hash table directly). */
3974
3975 static bool
3976 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3977 struct mips_got_entry *lookup)
3978 {
3979 struct mips_elf_link_hash_table *htab;
3980 struct mips_got_entry *entry;
3981 struct mips_got_info *g;
3982 void **loc, **bfd_loc;
3983
3984 /* Make sure there's a slot for this entry in the master GOT. */
3985 htab = mips_elf_hash_table (info);
3986 g = htab->got_info;
3987 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3988 if (!loc)
3989 return false;
3990
3991 /* Populate the entry if it isn't already. */
3992 entry = (struct mips_got_entry *) *loc;
3993 if (!entry)
3994 {
3995 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3996 if (!entry)
3997 return false;
3998
3999 lookup->tls_initialized = false;
4000 lookup->gotidx = -1;
4001 *entry = *lookup;
4002 *loc = entry;
4003 }
4004
4005 /* Reuse the same GOT entry for the BFD's GOT. */
4006 g = mips_elf_bfd_got (abfd, true);
4007 if (!g)
4008 return false;
4009
4010 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4011 if (!bfd_loc)
4012 return false;
4013
4014 if (!*bfd_loc)
4015 *bfd_loc = entry;
4016 return true;
4017 }
4018
4019 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4020 entry for it. FOR_CALL is true if the caller is only interested in
4021 using the GOT entry for calls. */
4022
4023 static bool
4024 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4025 bfd *abfd, struct bfd_link_info *info,
4026 bool for_call, int r_type)
4027 {
4028 struct mips_elf_link_hash_table *htab;
4029 struct mips_elf_link_hash_entry *hmips;
4030 struct mips_got_entry entry;
4031 unsigned char tls_type;
4032
4033 htab = mips_elf_hash_table (info);
4034 BFD_ASSERT (htab != NULL);
4035
4036 hmips = (struct mips_elf_link_hash_entry *) h;
4037 if (!for_call)
4038 hmips->got_only_for_calls = false;
4039
4040 /* A global symbol in the GOT must also be in the dynamic symbol
4041 table. */
4042 if (h->dynindx == -1)
4043 {
4044 switch (ELF_ST_VISIBILITY (h->other))
4045 {
4046 case STV_INTERNAL:
4047 case STV_HIDDEN:
4048 _bfd_mips_elf_hide_symbol (info, h, true);
4049 break;
4050 }
4051 if (!bfd_elf_link_record_dynamic_symbol (info, h))
4052 return false;
4053 }
4054
4055 tls_type = mips_elf_reloc_tls_type (r_type);
4056 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
4057 hmips->global_got_area = GGA_NORMAL;
4058
4059 entry.abfd = abfd;
4060 entry.symndx = -1;
4061 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4062 entry.tls_type = tls_type;
4063 return mips_elf_record_got_entry (info, abfd, &entry);
4064 }
4065
4066 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4067 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4068
4069 static bool
4070 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4071 struct bfd_link_info *info, int r_type)
4072 {
4073 struct mips_elf_link_hash_table *htab;
4074 struct mips_got_info *g;
4075 struct mips_got_entry entry;
4076
4077 htab = mips_elf_hash_table (info);
4078 BFD_ASSERT (htab != NULL);
4079
4080 g = htab->got_info;
4081 BFD_ASSERT (g != NULL);
4082
4083 entry.abfd = abfd;
4084 entry.symndx = symndx;
4085 entry.d.addend = addend;
4086 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4087 return mips_elf_record_got_entry (info, abfd, &entry);
4088 }
4089
4090 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4091 H is the symbol's hash table entry, or null if SYMNDX is local
4092 to ABFD. */
4093
4094 static bool
4095 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4096 long symndx, struct elf_link_hash_entry *h,
4097 bfd_signed_vma addend)
4098 {
4099 struct mips_elf_link_hash_table *htab;
4100 struct mips_got_info *g1, *g2;
4101 struct mips_got_page_ref lookup, *entry;
4102 void **loc, **bfd_loc;
4103
4104 htab = mips_elf_hash_table (info);
4105 BFD_ASSERT (htab != NULL);
4106
4107 g1 = htab->got_info;
4108 BFD_ASSERT (g1 != NULL);
4109
4110 if (h)
4111 {
4112 lookup.symndx = -1;
4113 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4114 }
4115 else
4116 {
4117 lookup.symndx = symndx;
4118 lookup.u.abfd = abfd;
4119 }
4120 lookup.addend = addend;
4121 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4122 if (loc == NULL)
4123 return false;
4124
4125 entry = (struct mips_got_page_ref *) *loc;
4126 if (!entry)
4127 {
4128 entry = bfd_alloc (abfd, sizeof (*entry));
4129 if (!entry)
4130 return false;
4131
4132 *entry = lookup;
4133 *loc = entry;
4134 }
4135
4136 /* Add the same entry to the BFD's GOT. */
4137 g2 = mips_elf_bfd_got (abfd, true);
4138 if (!g2)
4139 return false;
4140
4141 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4142 if (!bfd_loc)
4143 return false;
4144
4145 if (!*bfd_loc)
4146 *bfd_loc = entry;
4147
4148 return true;
4149 }
4150
4151 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4152
4153 static void
4154 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4155 unsigned int n)
4156 {
4157 asection *s;
4158 struct mips_elf_link_hash_table *htab;
4159
4160 htab = mips_elf_hash_table (info);
4161 BFD_ASSERT (htab != NULL);
4162
4163 s = mips_elf_rel_dyn_section (info, false);
4164 BFD_ASSERT (s != NULL);
4165
4166 if (htab->root.target_os == is_vxworks)
4167 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4168 else
4169 {
4170 if (s->size == 0)
4171 {
4172 /* Make room for a null element. */
4173 s->size += MIPS_ELF_REL_SIZE (abfd);
4174 ++s->reloc_count;
4175 }
4176 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4177 }
4178 }
4179 \f
4180 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4181 mips_elf_traverse_got_arg structure. Count the number of GOT
4182 entries and TLS relocs. Set DATA->value to true if we need
4183 to resolve indirect or warning symbols and then recreate the GOT. */
4184
4185 static int
4186 mips_elf_check_recreate_got (void **entryp, void *data)
4187 {
4188 struct mips_got_entry *entry;
4189 struct mips_elf_traverse_got_arg *arg;
4190
4191 entry = (struct mips_got_entry *) *entryp;
4192 arg = (struct mips_elf_traverse_got_arg *) data;
4193 if (entry->abfd != NULL && entry->symndx == -1)
4194 {
4195 struct mips_elf_link_hash_entry *h;
4196
4197 h = entry->d.h;
4198 if (h->root.root.type == bfd_link_hash_indirect
4199 || h->root.root.type == bfd_link_hash_warning)
4200 {
4201 arg->value = true;
4202 return 0;
4203 }
4204 }
4205 mips_elf_count_got_entry (arg->info, arg->g, entry);
4206 return 1;
4207 }
4208
4209 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4210 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4211 converting entries for indirect and warning symbols into entries
4212 for the target symbol. Set DATA->g to null on error. */
4213
4214 static int
4215 mips_elf_recreate_got (void **entryp, void *data)
4216 {
4217 struct mips_got_entry new_entry, *entry;
4218 struct mips_elf_traverse_got_arg *arg;
4219 void **slot;
4220
4221 entry = (struct mips_got_entry *) *entryp;
4222 arg = (struct mips_elf_traverse_got_arg *) data;
4223 if (entry->abfd != NULL
4224 && entry->symndx == -1
4225 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4226 || entry->d.h->root.root.type == bfd_link_hash_warning))
4227 {
4228 struct mips_elf_link_hash_entry *h;
4229
4230 new_entry = *entry;
4231 entry = &new_entry;
4232 h = entry->d.h;
4233 do
4234 {
4235 BFD_ASSERT (h->global_got_area == GGA_NONE);
4236 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4237 }
4238 while (h->root.root.type == bfd_link_hash_indirect
4239 || h->root.root.type == bfd_link_hash_warning);
4240 entry->d.h = h;
4241 }
4242 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4243 if (slot == NULL)
4244 {
4245 arg->g = NULL;
4246 return 0;
4247 }
4248 if (*slot == NULL)
4249 {
4250 if (entry == &new_entry)
4251 {
4252 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4253 if (!entry)
4254 {
4255 arg->g = NULL;
4256 return 0;
4257 }
4258 *entry = new_entry;
4259 }
4260 *slot = entry;
4261 mips_elf_count_got_entry (arg->info, arg->g, entry);
4262 }
4263 return 1;
4264 }
4265
4266 /* Return the maximum number of GOT page entries required for RANGE. */
4267
4268 static bfd_vma
4269 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4270 {
4271 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4272 }
4273
4274 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4275
4276 static bool
4277 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4278 asection *sec, bfd_signed_vma addend)
4279 {
4280 struct mips_got_info *g = arg->g;
4281 struct mips_got_page_entry lookup, *entry;
4282 struct mips_got_page_range **range_ptr, *range;
4283 bfd_vma old_pages, new_pages;
4284 void **loc;
4285
4286 /* Find the mips_got_page_entry hash table entry for this section. */
4287 lookup.sec = sec;
4288 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4289 if (loc == NULL)
4290 return false;
4291
4292 /* Create a mips_got_page_entry if this is the first time we've
4293 seen the section. */
4294 entry = (struct mips_got_page_entry *) *loc;
4295 if (!entry)
4296 {
4297 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4298 if (!entry)
4299 return false;
4300
4301 entry->sec = sec;
4302 *loc = entry;
4303 }
4304
4305 /* Skip over ranges whose maximum extent cannot share a page entry
4306 with ADDEND. */
4307 range_ptr = &entry->ranges;
4308 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4309 range_ptr = &(*range_ptr)->next;
4310
4311 /* If we scanned to the end of the list, or found a range whose
4312 minimum extent cannot share a page entry with ADDEND, create
4313 a new singleton range. */
4314 range = *range_ptr;
4315 if (!range || addend < range->min_addend - 0xffff)
4316 {
4317 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4318 if (!range)
4319 return false;
4320
4321 range->next = *range_ptr;
4322 range->min_addend = addend;
4323 range->max_addend = addend;
4324
4325 *range_ptr = range;
4326 entry->num_pages++;
4327 g->page_gotno++;
4328 return true;
4329 }
4330
4331 /* Remember how many pages the old range contributed. */
4332 old_pages = mips_elf_pages_for_range (range);
4333
4334 /* Update the ranges. */
4335 if (addend < range->min_addend)
4336 range->min_addend = addend;
4337 else if (addend > range->max_addend)
4338 {
4339 if (range->next && addend >= range->next->min_addend - 0xffff)
4340 {
4341 old_pages += mips_elf_pages_for_range (range->next);
4342 range->max_addend = range->next->max_addend;
4343 range->next = range->next->next;
4344 }
4345 else
4346 range->max_addend = addend;
4347 }
4348
4349 /* Record any change in the total estimate. */
4350 new_pages = mips_elf_pages_for_range (range);
4351 if (old_pages != new_pages)
4352 {
4353 entry->num_pages += new_pages - old_pages;
4354 g->page_gotno += new_pages - old_pages;
4355 }
4356
4357 return true;
4358 }
4359
4360 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4361 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4362 whether the page reference described by *REFP needs a GOT page entry,
4363 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4364
4365 static int
4366 mips_elf_resolve_got_page_ref (void **refp, void *data)
4367 {
4368 struct mips_got_page_ref *ref;
4369 struct mips_elf_traverse_got_arg *arg;
4370 struct mips_elf_link_hash_table *htab;
4371 asection *sec;
4372 bfd_vma addend;
4373
4374 ref = (struct mips_got_page_ref *) *refp;
4375 arg = (struct mips_elf_traverse_got_arg *) data;
4376 htab = mips_elf_hash_table (arg->info);
4377
4378 if (ref->symndx < 0)
4379 {
4380 struct mips_elf_link_hash_entry *h;
4381
4382 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4383 h = ref->u.h;
4384 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4385 return 1;
4386
4387 /* Ignore undefined symbols; we'll issue an error later if
4388 appropriate. */
4389 if (!((h->root.root.type == bfd_link_hash_defined
4390 || h->root.root.type == bfd_link_hash_defweak)
4391 && h->root.root.u.def.section))
4392 return 1;
4393
4394 sec = h->root.root.u.def.section;
4395 addend = h->root.root.u.def.value + ref->addend;
4396 }
4397 else
4398 {
4399 Elf_Internal_Sym *isym;
4400
4401 /* Read in the symbol. */
4402 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, ref->u.abfd,
4403 ref->symndx);
4404 if (isym == NULL)
4405 {
4406 arg->g = NULL;
4407 return 0;
4408 }
4409
4410 /* Get the associated input section. */
4411 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4412 if (sec == NULL)
4413 {
4414 arg->g = NULL;
4415 return 0;
4416 }
4417
4418 /* If this is a mergable section, work out the section and offset
4419 of the merged data. For section symbols, the addend specifies
4420 of the offset _of_ the first byte in the data, otherwise it
4421 specifies the offset _from_ the first byte. */
4422 if (sec->flags & SEC_MERGE)
4423 {
4424 void *secinfo;
4425
4426 secinfo = elf_section_data (sec)->sec_info;
4427 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4428 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4429 isym->st_value + ref->addend);
4430 else
4431 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4432 isym->st_value) + ref->addend;
4433 }
4434 else
4435 addend = isym->st_value + ref->addend;
4436 }
4437 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4438 {
4439 arg->g = NULL;
4440 return 0;
4441 }
4442 return 1;
4443 }
4444
4445 /* If any entries in G->got_entries are for indirect or warning symbols,
4446 replace them with entries for the target symbol. Convert g->got_page_refs
4447 into got_page_entry structures and estimate the number of page entries
4448 that they require. */
4449
4450 static bool
4451 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4452 struct mips_got_info *g)
4453 {
4454 struct mips_elf_traverse_got_arg tga;
4455 struct mips_got_info oldg;
4456
4457 oldg = *g;
4458
4459 tga.info = info;
4460 tga.g = g;
4461 tga.value = false;
4462 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4463 if (tga.value)
4464 {
4465 *g = oldg;
4466 g->got_entries = htab_create (htab_size (oldg.got_entries),
4467 mips_elf_got_entry_hash,
4468 mips_elf_got_entry_eq, NULL);
4469 if (!g->got_entries)
4470 return false;
4471
4472 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4473 if (!tga.g)
4474 return false;
4475
4476 htab_delete (oldg.got_entries);
4477 }
4478
4479 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4480 mips_got_page_entry_eq, NULL);
4481 if (g->got_page_entries == NULL)
4482 return false;
4483
4484 tga.info = info;
4485 tga.g = g;
4486 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4487
4488 return true;
4489 }
4490
4491 /* Return true if a GOT entry for H should live in the local rather than
4492 global GOT area. */
4493
4494 static bool
4495 mips_use_local_got_p (struct bfd_link_info *info,
4496 struct mips_elf_link_hash_entry *h)
4497 {
4498 /* Symbols that aren't in the dynamic symbol table must live in the
4499 local GOT. This includes symbols that are completely undefined
4500 and which therefore don't bind locally. We'll report undefined
4501 symbols later if appropriate. */
4502 if (h->root.dynindx == -1)
4503 return true;
4504
4505 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4506 to the local GOT, as they would be implicitly relocated by the
4507 base address by the dynamic loader. */
4508 if (bfd_is_abs_symbol (&h->root.root))
4509 return false;
4510
4511 /* Symbols that bind locally can (and in the case of forced-local
4512 symbols, must) live in the local GOT. */
4513 if (h->got_only_for_calls
4514 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4515 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4516 return true;
4517
4518 /* If this is an executable that must provide a definition of the symbol,
4519 either though PLTs or copy relocations, then that address should go in
4520 the local rather than global GOT. */
4521 if (bfd_link_executable (info) && h->has_static_relocs)
4522 return true;
4523
4524 return false;
4525 }
4526
4527 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4528 link_info structure. Decide whether the hash entry needs an entry in
4529 the global part of the primary GOT, setting global_got_area accordingly.
4530 Count the number of global symbols that are in the primary GOT only
4531 because they have relocations against them (reloc_only_gotno). */
4532
4533 static bool
4534 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4535 {
4536 struct bfd_link_info *info;
4537 struct mips_elf_link_hash_table *htab;
4538 struct mips_got_info *g;
4539
4540 info = (struct bfd_link_info *) data;
4541 htab = mips_elf_hash_table (info);
4542 g = htab->got_info;
4543 if (h->global_got_area != GGA_NONE)
4544 {
4545 /* Make a final decision about whether the symbol belongs in the
4546 local or global GOT. */
4547 if (mips_use_local_got_p (info, h))
4548 /* The symbol belongs in the local GOT. We no longer need this
4549 entry if it was only used for relocations; those relocations
4550 will be against the null or section symbol instead of H. */
4551 h->global_got_area = GGA_NONE;
4552 else if (htab->root.target_os == is_vxworks
4553 && h->got_only_for_calls
4554 && h->root.plt.plist->mips_offset != MINUS_ONE)
4555 /* On VxWorks, calls can refer directly to the .got.plt entry;
4556 they don't need entries in the regular GOT. .got.plt entries
4557 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4558 h->global_got_area = GGA_NONE;
4559 else if (h->global_got_area == GGA_RELOC_ONLY)
4560 {
4561 g->reloc_only_gotno++;
4562 g->global_gotno++;
4563 }
4564 }
4565 return 1;
4566 }
4567 \f
4568 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4569 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4570
4571 static int
4572 mips_elf_add_got_entry (void **entryp, void *data)
4573 {
4574 struct mips_got_entry *entry;
4575 struct mips_elf_traverse_got_arg *arg;
4576 void **slot;
4577
4578 entry = (struct mips_got_entry *) *entryp;
4579 arg = (struct mips_elf_traverse_got_arg *) data;
4580 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4581 if (!slot)
4582 {
4583 arg->g = NULL;
4584 return 0;
4585 }
4586 if (!*slot)
4587 {
4588 *slot = entry;
4589 mips_elf_count_got_entry (arg->info, arg->g, entry);
4590 }
4591 return 1;
4592 }
4593
4594 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4595 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4596
4597 static int
4598 mips_elf_add_got_page_entry (void **entryp, void *data)
4599 {
4600 struct mips_got_page_entry *entry;
4601 struct mips_elf_traverse_got_arg *arg;
4602 void **slot;
4603
4604 entry = (struct mips_got_page_entry *) *entryp;
4605 arg = (struct mips_elf_traverse_got_arg *) data;
4606 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4607 if (!slot)
4608 {
4609 arg->g = NULL;
4610 return 0;
4611 }
4612 if (!*slot)
4613 {
4614 *slot = entry;
4615 arg->g->page_gotno += entry->num_pages;
4616 }
4617 return 1;
4618 }
4619
4620 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4621 this would lead to overflow, 1 if they were merged successfully,
4622 and 0 if a merge failed due to lack of memory. (These values are chosen
4623 so that nonnegative return values can be returned by a htab_traverse
4624 callback.) */
4625
4626 static int
4627 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4628 struct mips_got_info *to,
4629 struct mips_elf_got_per_bfd_arg *arg)
4630 {
4631 struct mips_elf_traverse_got_arg tga;
4632 unsigned int estimate;
4633
4634 /* Work out how many page entries we would need for the combined GOT. */
4635 estimate = arg->max_pages;
4636 if (estimate >= from->page_gotno + to->page_gotno)
4637 estimate = from->page_gotno + to->page_gotno;
4638
4639 /* And conservatively estimate how many local and TLS entries
4640 would be needed. */
4641 estimate += from->local_gotno + to->local_gotno;
4642 estimate += from->tls_gotno + to->tls_gotno;
4643
4644 /* If we're merging with the primary got, any TLS relocations will
4645 come after the full set of global entries. Otherwise estimate those
4646 conservatively as well. */
4647 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4648 estimate += arg->global_count;
4649 else
4650 estimate += from->global_gotno + to->global_gotno;
4651
4652 /* Bail out if the combined GOT might be too big. */
4653 if (estimate > arg->max_count)
4654 return -1;
4655
4656 /* Transfer the bfd's got information from FROM to TO. */
4657 tga.info = arg->info;
4658 tga.g = to;
4659 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4660 if (!tga.g)
4661 return 0;
4662
4663 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4664 if (!tga.g)
4665 return 0;
4666
4667 mips_elf_replace_bfd_got (abfd, to);
4668 return 1;
4669 }
4670
4671 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4672 as possible of the primary got, since it doesn't require explicit
4673 dynamic relocations, but don't use bfds that would reference global
4674 symbols out of the addressable range. Failing the primary got,
4675 attempt to merge with the current got, or finish the current got
4676 and then make make the new got current. */
4677
4678 static bool
4679 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4680 struct mips_elf_got_per_bfd_arg *arg)
4681 {
4682 unsigned int estimate;
4683 int result;
4684
4685 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4686 return false;
4687
4688 /* Work out the number of page, local and TLS entries. */
4689 estimate = arg->max_pages;
4690 if (estimate > g->page_gotno)
4691 estimate = g->page_gotno;
4692 estimate += g->local_gotno + g->tls_gotno;
4693
4694 /* We place TLS GOT entries after both locals and globals. The globals
4695 for the primary GOT may overflow the normal GOT size limit, so be
4696 sure not to merge a GOT which requires TLS with the primary GOT in that
4697 case. This doesn't affect non-primary GOTs. */
4698 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4699
4700 if (estimate <= arg->max_count)
4701 {
4702 /* If we don't have a primary GOT, use it as
4703 a starting point for the primary GOT. */
4704 if (!arg->primary)
4705 {
4706 arg->primary = g;
4707 return true;
4708 }
4709
4710 /* Try merging with the primary GOT. */
4711 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4712 if (result >= 0)
4713 return result;
4714 }
4715
4716 /* If we can merge with the last-created got, do it. */
4717 if (arg->current)
4718 {
4719 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4720 if (result >= 0)
4721 return result;
4722 }
4723
4724 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4725 fits; if it turns out that it doesn't, we'll get relocation
4726 overflows anyway. */
4727 g->next = arg->current;
4728 arg->current = g;
4729
4730 return true;
4731 }
4732
4733 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4734 to GOTIDX, duplicating the entry if it has already been assigned
4735 an index in a different GOT. */
4736
4737 static bool
4738 mips_elf_set_gotidx (void **entryp, long gotidx)
4739 {
4740 struct mips_got_entry *entry;
4741
4742 entry = (struct mips_got_entry *) *entryp;
4743 if (entry->gotidx > 0)
4744 {
4745 struct mips_got_entry *new_entry;
4746
4747 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4748 if (!new_entry)
4749 return false;
4750
4751 *new_entry = *entry;
4752 *entryp = new_entry;
4753 entry = new_entry;
4754 }
4755 entry->gotidx = gotidx;
4756 return true;
4757 }
4758
4759 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4760 mips_elf_traverse_got_arg in which DATA->value is the size of one
4761 GOT entry. Set DATA->g to null on failure. */
4762
4763 static int
4764 mips_elf_initialize_tls_index (void **entryp, void *data)
4765 {
4766 struct mips_got_entry *entry;
4767 struct mips_elf_traverse_got_arg *arg;
4768
4769 /* We're only interested in TLS symbols. */
4770 entry = (struct mips_got_entry *) *entryp;
4771 if (entry->tls_type == GOT_TLS_NONE)
4772 return 1;
4773
4774 arg = (struct mips_elf_traverse_got_arg *) data;
4775 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4776 {
4777 arg->g = NULL;
4778 return 0;
4779 }
4780
4781 /* Account for the entries we've just allocated. */
4782 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4783 return 1;
4784 }
4785
4786 /* A htab_traverse callback for GOT entries, where DATA points to a
4787 mips_elf_traverse_got_arg. Set the global_got_area of each global
4788 symbol to DATA->value. */
4789
4790 static int
4791 mips_elf_set_global_got_area (void **entryp, void *data)
4792 {
4793 struct mips_got_entry *entry;
4794 struct mips_elf_traverse_got_arg *arg;
4795
4796 entry = (struct mips_got_entry *) *entryp;
4797 arg = (struct mips_elf_traverse_got_arg *) data;
4798 if (entry->abfd != NULL
4799 && entry->symndx == -1
4800 && entry->d.h->global_got_area != GGA_NONE)
4801 entry->d.h->global_got_area = arg->value;
4802 return 1;
4803 }
4804
4805 /* A htab_traverse callback for secondary GOT entries, where DATA points
4806 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4807 and record the number of relocations they require. DATA->value is
4808 the size of one GOT entry. Set DATA->g to null on failure. */
4809
4810 static int
4811 mips_elf_set_global_gotidx (void **entryp, void *data)
4812 {
4813 struct mips_got_entry *entry;
4814 struct mips_elf_traverse_got_arg *arg;
4815
4816 entry = (struct mips_got_entry *) *entryp;
4817 arg = (struct mips_elf_traverse_got_arg *) data;
4818 if (entry->abfd != NULL
4819 && entry->symndx == -1
4820 && entry->d.h->global_got_area != GGA_NONE)
4821 {
4822 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4823 {
4824 arg->g = NULL;
4825 return 0;
4826 }
4827 arg->g->assigned_low_gotno += 1;
4828
4829 if (bfd_link_pic (arg->info)
4830 || (elf_hash_table (arg->info)->dynamic_sections_created
4831 && entry->d.h->root.def_dynamic
4832 && !entry->d.h->root.def_regular))
4833 arg->g->relocs += 1;
4834 }
4835
4836 return 1;
4837 }
4838
4839 /* A htab_traverse callback for GOT entries for which DATA is the
4840 bfd_link_info. Forbid any global symbols from having traditional
4841 lazy-binding stubs. */
4842
4843 static int
4844 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4845 {
4846 struct bfd_link_info *info;
4847 struct mips_elf_link_hash_table *htab;
4848 struct mips_got_entry *entry;
4849
4850 entry = (struct mips_got_entry *) *entryp;
4851 info = (struct bfd_link_info *) data;
4852 htab = mips_elf_hash_table (info);
4853 BFD_ASSERT (htab != NULL);
4854
4855 if (entry->abfd != NULL
4856 && entry->symndx == -1
4857 && entry->d.h->needs_lazy_stub)
4858 {
4859 entry->d.h->needs_lazy_stub = false;
4860 htab->lazy_stub_count--;
4861 }
4862
4863 return 1;
4864 }
4865
4866 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4867 the primary GOT. */
4868 static bfd_vma
4869 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4870 {
4871 if (!g->next)
4872 return 0;
4873
4874 g = mips_elf_bfd_got (ibfd, false);
4875 if (! g)
4876 return 0;
4877
4878 BFD_ASSERT (g->next);
4879
4880 g = g->next;
4881
4882 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4883 * MIPS_ELF_GOT_SIZE (abfd);
4884 }
4885
4886 /* Turn a single GOT that is too big for 16-bit addressing into
4887 a sequence of GOTs, each one 16-bit addressable. */
4888
4889 static bool
4890 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4891 asection *got, bfd_size_type pages)
4892 {
4893 struct mips_elf_link_hash_table *htab;
4894 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4895 struct mips_elf_traverse_got_arg tga;
4896 struct mips_got_info *g, *gg;
4897 unsigned int assign, needed_relocs;
4898 bfd *dynobj, *ibfd;
4899
4900 dynobj = elf_hash_table (info)->dynobj;
4901 htab = mips_elf_hash_table (info);
4902 BFD_ASSERT (htab != NULL);
4903
4904 g = htab->got_info;
4905
4906 got_per_bfd_arg.obfd = abfd;
4907 got_per_bfd_arg.info = info;
4908 got_per_bfd_arg.current = NULL;
4909 got_per_bfd_arg.primary = NULL;
4910 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4911 / MIPS_ELF_GOT_SIZE (abfd))
4912 - htab->reserved_gotno);
4913 got_per_bfd_arg.max_pages = pages;
4914 /* The number of globals that will be included in the primary GOT.
4915 See the calls to mips_elf_set_global_got_area below for more
4916 information. */
4917 got_per_bfd_arg.global_count = g->global_gotno;
4918
4919 /* Try to merge the GOTs of input bfds together, as long as they
4920 don't seem to exceed the maximum GOT size, choosing one of them
4921 to be the primary GOT. */
4922 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4923 {
4924 gg = mips_elf_bfd_got (ibfd, false);
4925 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4926 return false;
4927 }
4928
4929 /* If we do not find any suitable primary GOT, create an empty one. */
4930 if (got_per_bfd_arg.primary == NULL)
4931 g->next = mips_elf_create_got_info (abfd);
4932 else
4933 g->next = got_per_bfd_arg.primary;
4934 g->next->next = got_per_bfd_arg.current;
4935
4936 /* GG is now the master GOT, and G is the primary GOT. */
4937 gg = g;
4938 g = g->next;
4939
4940 /* Map the output bfd to the primary got. That's what we're going
4941 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4942 didn't mark in check_relocs, and we want a quick way to find it.
4943 We can't just use gg->next because we're going to reverse the
4944 list. */
4945 mips_elf_replace_bfd_got (abfd, g);
4946
4947 /* Every symbol that is referenced in a dynamic relocation must be
4948 present in the primary GOT, so arrange for them to appear after
4949 those that are actually referenced. */
4950 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4951 g->global_gotno = gg->global_gotno;
4952
4953 tga.info = info;
4954 tga.value = GGA_RELOC_ONLY;
4955 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4956 tga.value = GGA_NORMAL;
4957 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4958
4959 /* Now go through the GOTs assigning them offset ranges.
4960 [assigned_low_gotno, local_gotno[ will be set to the range of local
4961 entries in each GOT. We can then compute the end of a GOT by
4962 adding local_gotno to global_gotno. We reverse the list and make
4963 it circular since then we'll be able to quickly compute the
4964 beginning of a GOT, by computing the end of its predecessor. To
4965 avoid special cases for the primary GOT, while still preserving
4966 assertions that are valid for both single- and multi-got links,
4967 we arrange for the main got struct to have the right number of
4968 global entries, but set its local_gotno such that the initial
4969 offset of the primary GOT is zero. Remember that the primary GOT
4970 will become the last item in the circular linked list, so it
4971 points back to the master GOT. */
4972 gg->local_gotno = -g->global_gotno;
4973 gg->global_gotno = g->global_gotno;
4974 gg->tls_gotno = 0;
4975 assign = 0;
4976 gg->next = gg;
4977
4978 do
4979 {
4980 struct mips_got_info *gn;
4981
4982 assign += htab->reserved_gotno;
4983 g->assigned_low_gotno = assign;
4984 g->local_gotno += assign;
4985 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4986 g->assigned_high_gotno = g->local_gotno - 1;
4987 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4988
4989 /* Take g out of the direct list, and push it onto the reversed
4990 list that gg points to. g->next is guaranteed to be nonnull after
4991 this operation, as required by mips_elf_initialize_tls_index. */
4992 gn = g->next;
4993 g->next = gg->next;
4994 gg->next = g;
4995
4996 /* Set up any TLS entries. We always place the TLS entries after
4997 all non-TLS entries. */
4998 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4999 tga.g = g;
5000 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5001 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
5002 if (!tga.g)
5003 return false;
5004 BFD_ASSERT (g->tls_assigned_gotno == assign);
5005
5006 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
5007 g = gn;
5008
5009 /* Forbid global symbols in every non-primary GOT from having
5010 lazy-binding stubs. */
5011 if (g)
5012 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
5013 }
5014 while (g);
5015
5016 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
5017
5018 needed_relocs = 0;
5019 for (g = gg->next; g && g->next != gg; g = g->next)
5020 {
5021 unsigned int save_assign;
5022
5023 /* Assign offsets to global GOT entries and count how many
5024 relocations they need. */
5025 save_assign = g->assigned_low_gotno;
5026 g->assigned_low_gotno = g->local_gotno;
5027 tga.info = info;
5028 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5029 tga.g = g;
5030 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
5031 if (!tga.g)
5032 return false;
5033 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5034 g->assigned_low_gotno = save_assign;
5035
5036 if (bfd_link_pic (info))
5037 {
5038 g->relocs += g->local_gotno - g->assigned_low_gotno;
5039 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
5040 + g->next->global_gotno
5041 + g->next->tls_gotno
5042 + htab->reserved_gotno);
5043 }
5044 needed_relocs += g->relocs;
5045 }
5046 needed_relocs += g->relocs;
5047
5048 if (needed_relocs)
5049 mips_elf_allocate_dynamic_relocations (dynobj, info,
5050 needed_relocs);
5051
5052 return true;
5053 }
5054
5055 \f
5056 /* Returns the first relocation of type r_type found, beginning with
5057 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5058
5059 static const Elf_Internal_Rela *
5060 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5061 const Elf_Internal_Rela *relocation,
5062 const Elf_Internal_Rela *relend)
5063 {
5064 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5065
5066 while (relocation < relend)
5067 {
5068 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5069 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5070 return relocation;
5071
5072 ++relocation;
5073 }
5074
5075 /* We didn't find it. */
5076 return NULL;
5077 }
5078
5079 /* Return whether an input relocation is against a local symbol. */
5080
5081 static bool
5082 mips_elf_local_relocation_p (bfd *input_bfd,
5083 const Elf_Internal_Rela *relocation,
5084 asection **local_sections)
5085 {
5086 unsigned long r_symndx;
5087 Elf_Internal_Shdr *symtab_hdr;
5088 size_t extsymoff;
5089
5090 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5091 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5092 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5093
5094 if (r_symndx < extsymoff)
5095 return true;
5096 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5097 return true;
5098
5099 return false;
5100 }
5101 \f
5102 /* Sign-extend VALUE, which has the indicated number of BITS. */
5103
5104 bfd_vma
5105 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5106 {
5107 if (value & ((bfd_vma) 1 << (bits - 1)))
5108 /* VALUE is negative. */
5109 value |= ((bfd_vma) - 1) << bits;
5110
5111 return value;
5112 }
5113
5114 /* Return non-zero if the indicated VALUE has overflowed the maximum
5115 range expressible by a signed number with the indicated number of
5116 BITS. */
5117
5118 static bool
5119 mips_elf_overflow_p (bfd_vma value, int bits)
5120 {
5121 bfd_signed_vma svalue = (bfd_signed_vma) value;
5122
5123 if (svalue > (1 << (bits - 1)) - 1)
5124 /* The value is too big. */
5125 return true;
5126 else if (svalue < -(1 << (bits - 1)))
5127 /* The value is too small. */
5128 return true;
5129
5130 /* All is well. */
5131 return false;
5132 }
5133
5134 /* Calculate the %high function. */
5135
5136 static bfd_vma
5137 mips_elf_high (bfd_vma value)
5138 {
5139 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5140 }
5141
5142 /* Calculate the %higher function. */
5143
5144 static bfd_vma
5145 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5146 {
5147 #ifdef BFD64
5148 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5149 #else
5150 abort ();
5151 return MINUS_ONE;
5152 #endif
5153 }
5154
5155 /* Calculate the %highest function. */
5156
5157 static bfd_vma
5158 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5159 {
5160 #ifdef BFD64
5161 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5162 #else
5163 abort ();
5164 return MINUS_ONE;
5165 #endif
5166 }
5167 \f
5168 /* Create the .compact_rel section. */
5169
5170 static bool
5171 mips_elf_create_compact_rel_section
5172 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5173 {
5174 flagword flags;
5175 register asection *s;
5176
5177 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5178 {
5179 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5180 | SEC_READONLY);
5181
5182 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5183 if (s == NULL
5184 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5185 return false;
5186
5187 s->size = sizeof (Elf32_External_compact_rel);
5188 }
5189
5190 return true;
5191 }
5192
5193 /* Create the .got section to hold the global offset table. */
5194
5195 static bool
5196 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5197 {
5198 flagword flags;
5199 register asection *s;
5200 struct elf_link_hash_entry *h;
5201 struct bfd_link_hash_entry *bh;
5202 struct mips_elf_link_hash_table *htab;
5203
5204 htab = mips_elf_hash_table (info);
5205 BFD_ASSERT (htab != NULL);
5206
5207 /* This function may be called more than once. */
5208 if (htab->root.sgot)
5209 return true;
5210
5211 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5212 | SEC_LINKER_CREATED);
5213
5214 /* We have to use an alignment of 2**4 here because this is hardcoded
5215 in the function stub generation and in the linker script. */
5216 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5217 if (s == NULL
5218 || !bfd_set_section_alignment (s, 4))
5219 return false;
5220 htab->root.sgot = s;
5221
5222 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5223 linker script because we don't want to define the symbol if we
5224 are not creating a global offset table. */
5225 bh = NULL;
5226 if (! (_bfd_generic_link_add_one_symbol
5227 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5228 0, NULL, false, get_elf_backend_data (abfd)->collect, &bh)))
5229 return false;
5230
5231 h = (struct elf_link_hash_entry *) bh;
5232 h->non_elf = 0;
5233 h->def_regular = 1;
5234 h->type = STT_OBJECT;
5235 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5236 elf_hash_table (info)->hgot = h;
5237
5238 if (bfd_link_pic (info)
5239 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5240 return false;
5241
5242 htab->got_info = mips_elf_create_got_info (abfd);
5243 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5244 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5245
5246 /* We also need a .got.plt section when generating PLTs. */
5247 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5248 SEC_ALLOC | SEC_LOAD
5249 | SEC_HAS_CONTENTS
5250 | SEC_IN_MEMORY
5251 | SEC_LINKER_CREATED);
5252 if (s == NULL)
5253 return false;
5254 htab->root.sgotplt = s;
5255
5256 return true;
5257 }
5258 \f
5259 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5260 __GOTT_INDEX__ symbols. These symbols are only special for
5261 shared objects; they are not used in executables. */
5262
5263 static bool
5264 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5265 {
5266 return (mips_elf_hash_table (info)->root.target_os == is_vxworks
5267 && bfd_link_pic (info)
5268 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5269 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5270 }
5271
5272 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5273 require an la25 stub. See also mips_elf_local_pic_function_p,
5274 which determines whether the destination function ever requires a
5275 stub. */
5276
5277 static bool
5278 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5279 bool target_is_16_bit_code_p)
5280 {
5281 /* We specifically ignore branches and jumps from EF_PIC objects,
5282 where the onus is on the compiler or programmer to perform any
5283 necessary initialization of $25. Sometimes such initialization
5284 is unnecessary; for example, -mno-shared functions do not use
5285 the incoming value of $25, and may therefore be called directly. */
5286 if (PIC_OBJECT_P (input_bfd))
5287 return false;
5288
5289 switch (r_type)
5290 {
5291 case R_MIPS_26:
5292 case R_MIPS_PC16:
5293 case R_MIPS_PC21_S2:
5294 case R_MIPS_PC26_S2:
5295 case R_MICROMIPS_26_S1:
5296 case R_MICROMIPS_PC7_S1:
5297 case R_MICROMIPS_PC10_S1:
5298 case R_MICROMIPS_PC16_S1:
5299 case R_MICROMIPS_PC23_S2:
5300 return true;
5301
5302 case R_MIPS16_26:
5303 return !target_is_16_bit_code_p;
5304
5305 default:
5306 return false;
5307 }
5308 }
5309 \f
5310 /* Obtain the field relocated by RELOCATION. */
5311
5312 static bfd_vma
5313 mips_elf_obtain_contents (reloc_howto_type *howto,
5314 const Elf_Internal_Rela *relocation,
5315 bfd *input_bfd, bfd_byte *contents)
5316 {
5317 bfd_vma x = 0;
5318 bfd_byte *location = contents + relocation->r_offset;
5319 unsigned int size = bfd_get_reloc_size (howto);
5320
5321 /* Obtain the bytes. */
5322 if (size != 0)
5323 x = bfd_get (8 * size, input_bfd, location);
5324
5325 return x;
5326 }
5327
5328 /* Store the field relocated by RELOCATION. */
5329
5330 static void
5331 mips_elf_store_contents (reloc_howto_type *howto,
5332 const Elf_Internal_Rela *relocation,
5333 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5334 {
5335 bfd_byte *location = contents + relocation->r_offset;
5336 unsigned int size = bfd_get_reloc_size (howto);
5337
5338 /* Put the value into the output. */
5339 if (size != 0)
5340 bfd_put (8 * size, input_bfd, x, location);
5341 }
5342
5343 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5344 RELOCATION described by HOWTO, with a move of 0 to the load target
5345 register, returning TRUE if that is successful and FALSE otherwise.
5346 If DOIT is FALSE, then only determine it patching is possible and
5347 return status without actually changing CONTENTS.
5348 */
5349
5350 static bool
5351 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5352 const Elf_Internal_Rela *relocation,
5353 reloc_howto_type *howto, bool doit)
5354 {
5355 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5356 bfd_byte *location = contents + relocation->r_offset;
5357 bool nullified = true;
5358 bfd_vma x;
5359
5360 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location);
5361
5362 /* Obtain the current value. */
5363 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5364
5365 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5366 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5367 if (mips16_reloc_p (r_type)
5368 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5369 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5370 x = (0x3cdU << 22) | (x & (7 << 16)) << 3; /* LI */
5371 else if (micromips_reloc_p (r_type)
5372 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5373 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5374 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5375 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5376 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5377 else
5378 nullified = false;
5379
5380 /* Put the value into the output. */
5381 if (doit && nullified)
5382 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5383
5384 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, false, location);
5385
5386 return nullified;
5387 }
5388
5389 /* Calculate the value produced by the RELOCATION (which comes from
5390 the INPUT_BFD). The ADDEND is the addend to use for this
5391 RELOCATION; RELOCATION->R_ADDEND is ignored.
5392
5393 The result of the relocation calculation is stored in VALUEP.
5394 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5395 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5396
5397 This function returns bfd_reloc_continue if the caller need take no
5398 further action regarding this relocation, bfd_reloc_notsupported if
5399 something goes dramatically wrong, bfd_reloc_overflow if an
5400 overflow occurs, and bfd_reloc_ok to indicate success. */
5401
5402 static bfd_reloc_status_type
5403 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5404 asection *input_section, bfd_byte *contents,
5405 struct bfd_link_info *info,
5406 const Elf_Internal_Rela *relocation,
5407 bfd_vma addend, reloc_howto_type *howto,
5408 Elf_Internal_Sym *local_syms,
5409 asection **local_sections, bfd_vma *valuep,
5410 const char **namep,
5411 bool *cross_mode_jump_p,
5412 bool save_addend)
5413 {
5414 /* The eventual value we will return. */
5415 bfd_vma value;
5416 /* The address of the symbol against which the relocation is
5417 occurring. */
5418 bfd_vma symbol = 0;
5419 /* The final GP value to be used for the relocatable, executable, or
5420 shared object file being produced. */
5421 bfd_vma gp;
5422 /* The place (section offset or address) of the storage unit being
5423 relocated. */
5424 bfd_vma p;
5425 /* The value of GP used to create the relocatable object. */
5426 bfd_vma gp0;
5427 /* The offset into the global offset table at which the address of
5428 the relocation entry symbol, adjusted by the addend, resides
5429 during execution. */
5430 bfd_vma g = MINUS_ONE;
5431 /* The section in which the symbol referenced by the relocation is
5432 located. */
5433 asection *sec = NULL;
5434 struct mips_elf_link_hash_entry *h = NULL;
5435 /* TRUE if the symbol referred to by this relocation is a local
5436 symbol. */
5437 bool local_p, was_local_p;
5438 /* TRUE if the symbol referred to by this relocation is a section
5439 symbol. */
5440 bool section_p = false;
5441 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5442 bool gp_disp_p = false;
5443 /* TRUE if the symbol referred to by this relocation is
5444 "__gnu_local_gp". */
5445 bool gnu_local_gp_p = false;
5446 Elf_Internal_Shdr *symtab_hdr;
5447 size_t extsymoff;
5448 unsigned long r_symndx;
5449 int r_type;
5450 /* TRUE if overflow occurred during the calculation of the
5451 relocation value. */
5452 bool overflowed_p;
5453 /* TRUE if this relocation refers to a MIPS16 function. */
5454 bool target_is_16_bit_code_p = false;
5455 bool target_is_micromips_code_p = false;
5456 struct mips_elf_link_hash_table *htab;
5457 bfd *dynobj;
5458 bool resolved_to_zero;
5459
5460 dynobj = elf_hash_table (info)->dynobj;
5461 htab = mips_elf_hash_table (info);
5462 BFD_ASSERT (htab != NULL);
5463
5464 /* Parse the relocation. */
5465 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5466 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5467 p = (input_section->output_section->vma
5468 + input_section->output_offset
5469 + relocation->r_offset);
5470
5471 /* Assume that there will be no overflow. */
5472 overflowed_p = false;
5473
5474 /* Figure out whether or not the symbol is local, and get the offset
5475 used in the array of hash table entries. */
5476 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5477 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5478 local_sections);
5479 was_local_p = local_p;
5480 if (! elf_bad_symtab (input_bfd))
5481 extsymoff = symtab_hdr->sh_info;
5482 else
5483 {
5484 /* The symbol table does not follow the rule that local symbols
5485 must come before globals. */
5486 extsymoff = 0;
5487 }
5488
5489 /* Figure out the value of the symbol. */
5490 if (local_p)
5491 {
5492 bool micromips_p = MICROMIPS_P (abfd);
5493 Elf_Internal_Sym *sym;
5494
5495 sym = local_syms + r_symndx;
5496 sec = local_sections[r_symndx];
5497
5498 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5499
5500 symbol = sec->output_section->vma + sec->output_offset;
5501 if (!section_p || (sec->flags & SEC_MERGE))
5502 symbol += sym->st_value;
5503 if ((sec->flags & SEC_MERGE) && section_p)
5504 {
5505 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5506 addend -= symbol;
5507 addend += sec->output_section->vma + sec->output_offset;
5508 }
5509
5510 /* MIPS16/microMIPS text labels should be treated as odd. */
5511 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5512 ++symbol;
5513
5514 /* Record the name of this symbol, for our caller. */
5515 *namep = bfd_elf_string_from_elf_section (input_bfd,
5516 symtab_hdr->sh_link,
5517 sym->st_name);
5518 if (*namep == NULL || **namep == '\0')
5519 *namep = bfd_section_name (sec);
5520
5521 /* For relocations against a section symbol and ones against no
5522 symbol (absolute relocations) infer the ISA mode from the addend. */
5523 if (section_p || r_symndx == STN_UNDEF)
5524 {
5525 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5526 target_is_micromips_code_p = (addend & 1) && micromips_p;
5527 }
5528 /* For relocations against an absolute symbol infer the ISA mode
5529 from the value of the symbol plus addend. */
5530 else if (bfd_is_abs_section (sec))
5531 {
5532 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5533 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5534 }
5535 /* Otherwise just use the regular symbol annotation available. */
5536 else
5537 {
5538 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5539 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5540 }
5541 }
5542 else
5543 {
5544 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5545
5546 /* For global symbols we look up the symbol in the hash-table. */
5547 h = ((struct mips_elf_link_hash_entry *)
5548 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5549 /* Find the real hash-table entry for this symbol. */
5550 while (h->root.root.type == bfd_link_hash_indirect
5551 || h->root.root.type == bfd_link_hash_warning)
5552 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5553
5554 /* Record the name of this symbol, for our caller. */
5555 *namep = h->root.root.root.string;
5556
5557 /* See if this is the special _gp_disp symbol. Note that such a
5558 symbol must always be a global symbol. */
5559 if (strcmp (*namep, "_gp_disp") == 0
5560 && ! NEWABI_P (input_bfd))
5561 {
5562 /* Relocations against _gp_disp are permitted only with
5563 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5564 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5565 return bfd_reloc_notsupported;
5566
5567 gp_disp_p = true;
5568 }
5569 /* See if this is the special _gp symbol. Note that such a
5570 symbol must always be a global symbol. */
5571 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5572 gnu_local_gp_p = true;
5573
5574
5575 /* If this symbol is defined, calculate its address. Note that
5576 _gp_disp is a magic symbol, always implicitly defined by the
5577 linker, so it's inappropriate to check to see whether or not
5578 its defined. */
5579 else if ((h->root.root.type == bfd_link_hash_defined
5580 || h->root.root.type == bfd_link_hash_defweak)
5581 && h->root.root.u.def.section)
5582 {
5583 sec = h->root.root.u.def.section;
5584 if (sec->output_section)
5585 symbol = (h->root.root.u.def.value
5586 + sec->output_section->vma
5587 + sec->output_offset);
5588 else
5589 symbol = h->root.root.u.def.value;
5590 }
5591 else if (h->root.root.type == bfd_link_hash_undefweak)
5592 /* We allow relocations against undefined weak symbols, giving
5593 it the value zero, so that you can undefined weak functions
5594 and check to see if they exist by looking at their
5595 addresses. */
5596 symbol = 0;
5597 else if (info->unresolved_syms_in_objects == RM_IGNORE
5598 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5599 symbol = 0;
5600 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5601 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5602 {
5603 /* If this is a dynamic link, we should have created a
5604 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5605 in _bfd_mips_elf_create_dynamic_sections.
5606 Otherwise, we should define the symbol with a value of 0.
5607 FIXME: It should probably get into the symbol table
5608 somehow as well. */
5609 BFD_ASSERT (! bfd_link_pic (info));
5610 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5611 symbol = 0;
5612 }
5613 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5614 {
5615 /* This is an optional symbol - an Irix specific extension to the
5616 ELF spec. Ignore it for now.
5617 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5618 than simply ignoring them, but we do not handle this for now.
5619 For information see the "64-bit ELF Object File Specification"
5620 which is available from here:
5621 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5622 symbol = 0;
5623 }
5624 else
5625 {
5626 bool reject_undefined
5627 = ((info->unresolved_syms_in_objects == RM_DIAGNOSE
5628 && !info->warn_unresolved_syms)
5629 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5630
5631 info->callbacks->undefined_symbol
5632 (info, h->root.root.root.string, input_bfd,
5633 input_section, relocation->r_offset, reject_undefined);
5634
5635 if (reject_undefined)
5636 return bfd_reloc_undefined;
5637
5638 symbol = 0;
5639 }
5640
5641 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5642 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5643 }
5644
5645 /* If this is a reference to a 16-bit function with a stub, we need
5646 to redirect the relocation to the stub unless:
5647
5648 (a) the relocation is for a MIPS16 JAL;
5649
5650 (b) the relocation is for a MIPS16 PIC call, and there are no
5651 non-MIPS16 uses of the GOT slot; or
5652
5653 (c) the section allows direct references to MIPS16 functions. */
5654 if (r_type != R_MIPS16_26
5655 && !bfd_link_relocatable (info)
5656 && ((h != NULL
5657 && h->fn_stub != NULL
5658 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5659 || (local_p
5660 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5661 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5662 && !section_allows_mips16_refs_p (input_section))
5663 {
5664 /* This is a 32- or 64-bit call to a 16-bit function. We should
5665 have already noticed that we were going to need the
5666 stub. */
5667 if (local_p)
5668 {
5669 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5670 value = 0;
5671 }
5672 else
5673 {
5674 BFD_ASSERT (h->need_fn_stub);
5675 if (h->la25_stub)
5676 {
5677 /* If a LA25 header for the stub itself exists, point to the
5678 prepended LUI/ADDIU sequence. */
5679 sec = h->la25_stub->stub_section;
5680 value = h->la25_stub->offset;
5681 }
5682 else
5683 {
5684 sec = h->fn_stub;
5685 value = 0;
5686 }
5687 }
5688
5689 symbol = sec->output_section->vma + sec->output_offset + value;
5690 /* The target is 16-bit, but the stub isn't. */
5691 target_is_16_bit_code_p = false;
5692 }
5693 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5694 to a standard MIPS function, we need to redirect the call to the stub.
5695 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5696 indirect calls should use an indirect stub instead. */
5697 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5698 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5699 || (local_p
5700 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5701 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5702 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5703 {
5704 if (local_p)
5705 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5706 else
5707 {
5708 /* If both call_stub and call_fp_stub are defined, we can figure
5709 out which one to use by checking which one appears in the input
5710 file. */
5711 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5712 {
5713 asection *o;
5714
5715 sec = NULL;
5716 for (o = input_bfd->sections; o != NULL; o = o->next)
5717 {
5718 if (CALL_FP_STUB_P (bfd_section_name (o)))
5719 {
5720 sec = h->call_fp_stub;
5721 break;
5722 }
5723 }
5724 if (sec == NULL)
5725 sec = h->call_stub;
5726 }
5727 else if (h->call_stub != NULL)
5728 sec = h->call_stub;
5729 else
5730 sec = h->call_fp_stub;
5731 }
5732
5733 BFD_ASSERT (sec->size > 0);
5734 symbol = sec->output_section->vma + sec->output_offset;
5735 }
5736 /* If this is a direct call to a PIC function, redirect to the
5737 non-PIC stub. */
5738 else if (h != NULL && h->la25_stub
5739 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5740 target_is_16_bit_code_p))
5741 {
5742 symbol = (h->la25_stub->stub_section->output_section->vma
5743 + h->la25_stub->stub_section->output_offset
5744 + h->la25_stub->offset);
5745 if (ELF_ST_IS_MICROMIPS (h->root.other))
5746 symbol |= 1;
5747 }
5748 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5749 entry is used if a standard PLT entry has also been made. In this
5750 case the symbol will have been set by mips_elf_set_plt_sym_value
5751 to point to the standard PLT entry, so redirect to the compressed
5752 one. */
5753 else if ((mips16_branch_reloc_p (r_type)
5754 || micromips_branch_reloc_p (r_type))
5755 && !bfd_link_relocatable (info)
5756 && h != NULL
5757 && h->use_plt_entry
5758 && h->root.plt.plist->comp_offset != MINUS_ONE
5759 && h->root.plt.plist->mips_offset != MINUS_ONE)
5760 {
5761 bool micromips_p = MICROMIPS_P (abfd);
5762
5763 sec = htab->root.splt;
5764 symbol = (sec->output_section->vma
5765 + sec->output_offset
5766 + htab->plt_header_size
5767 + htab->plt_mips_offset
5768 + h->root.plt.plist->comp_offset
5769 + 1);
5770
5771 target_is_16_bit_code_p = !micromips_p;
5772 target_is_micromips_code_p = micromips_p;
5773 }
5774
5775 /* Make sure MIPS16 and microMIPS are not used together. */
5776 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5777 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5778 {
5779 _bfd_error_handler
5780 (_("MIPS16 and microMIPS functions cannot call each other"));
5781 return bfd_reloc_notsupported;
5782 }
5783
5784 /* Calls from 16-bit code to 32-bit code and vice versa require the
5785 mode change. However, we can ignore calls to undefined weak symbols,
5786 which should never be executed at runtime. This exception is important
5787 because the assembly writer may have "known" that any definition of the
5788 symbol would be 16-bit code, and that direct jumps were therefore
5789 acceptable. */
5790 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5791 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5792 && ((mips16_branch_reloc_p (r_type)
5793 && !target_is_16_bit_code_p)
5794 || (micromips_branch_reloc_p (r_type)
5795 && !target_is_micromips_code_p)
5796 || ((branch_reloc_p (r_type)
5797 || r_type == R_MIPS_JALR)
5798 && (target_is_16_bit_code_p
5799 || target_is_micromips_code_p))));
5800
5801 resolved_to_zero = (h != NULL
5802 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5803
5804 switch (r_type)
5805 {
5806 case R_MIPS16_CALL16:
5807 case R_MIPS16_GOT16:
5808 case R_MIPS_CALL16:
5809 case R_MIPS_GOT16:
5810 case R_MIPS_GOT_PAGE:
5811 case R_MIPS_GOT_DISP:
5812 case R_MIPS_GOT_LO16:
5813 case R_MIPS_CALL_LO16:
5814 case R_MICROMIPS_CALL16:
5815 case R_MICROMIPS_GOT16:
5816 case R_MICROMIPS_GOT_PAGE:
5817 case R_MICROMIPS_GOT_DISP:
5818 case R_MICROMIPS_GOT_LO16:
5819 case R_MICROMIPS_CALL_LO16:
5820 if (resolved_to_zero
5821 && !bfd_link_relocatable (info)
5822 && mips_elf_nullify_got_load (input_bfd, contents,
5823 relocation, howto, true))
5824 return bfd_reloc_continue;
5825
5826 /* Fall through. */
5827 case R_MIPS_GOT_HI16:
5828 case R_MIPS_CALL_HI16:
5829 case R_MICROMIPS_GOT_HI16:
5830 case R_MICROMIPS_CALL_HI16:
5831 if (resolved_to_zero
5832 && htab->use_absolute_zero
5833 && bfd_link_pic (info))
5834 {
5835 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5836 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5837 false, false, false);
5838 BFD_ASSERT (h != NULL);
5839 }
5840 break;
5841 }
5842
5843 local_p = (h == NULL || mips_use_local_got_p (info, h));
5844
5845 gp0 = _bfd_get_gp_value (input_bfd);
5846 gp = _bfd_get_gp_value (abfd);
5847 if (htab->got_info)
5848 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5849
5850 if (gnu_local_gp_p)
5851 symbol = gp;
5852
5853 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5854 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5855 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5856 if (got_page_reloc_p (r_type) && !local_p)
5857 {
5858 r_type = (micromips_reloc_p (r_type)
5859 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5860 addend = 0;
5861 }
5862
5863 /* If we haven't already determined the GOT offset, and we're going
5864 to need it, get it now. */
5865 switch (r_type)
5866 {
5867 case R_MIPS16_CALL16:
5868 case R_MIPS16_GOT16:
5869 case R_MIPS_CALL16:
5870 case R_MIPS_GOT16:
5871 case R_MIPS_GOT_DISP:
5872 case R_MIPS_GOT_HI16:
5873 case R_MIPS_CALL_HI16:
5874 case R_MIPS_GOT_LO16:
5875 case R_MIPS_CALL_LO16:
5876 case R_MICROMIPS_CALL16:
5877 case R_MICROMIPS_GOT16:
5878 case R_MICROMIPS_GOT_DISP:
5879 case R_MICROMIPS_GOT_HI16:
5880 case R_MICROMIPS_CALL_HI16:
5881 case R_MICROMIPS_GOT_LO16:
5882 case R_MICROMIPS_CALL_LO16:
5883 case R_MIPS_TLS_GD:
5884 case R_MIPS_TLS_GOTTPREL:
5885 case R_MIPS_TLS_LDM:
5886 case R_MIPS16_TLS_GD:
5887 case R_MIPS16_TLS_GOTTPREL:
5888 case R_MIPS16_TLS_LDM:
5889 case R_MICROMIPS_TLS_GD:
5890 case R_MICROMIPS_TLS_GOTTPREL:
5891 case R_MICROMIPS_TLS_LDM:
5892 /* Find the index into the GOT where this value is located. */
5893 if (tls_ldm_reloc_p (r_type))
5894 {
5895 g = mips_elf_local_got_index (abfd, input_bfd, info,
5896 0, 0, NULL, r_type);
5897 if (g == MINUS_ONE)
5898 return bfd_reloc_outofrange;
5899 }
5900 else if (!local_p)
5901 {
5902 /* On VxWorks, CALL relocations should refer to the .got.plt
5903 entry, which is initialized to point at the PLT stub. */
5904 if (htab->root.target_os == is_vxworks
5905 && (call_hi16_reloc_p (r_type)
5906 || call_lo16_reloc_p (r_type)
5907 || call16_reloc_p (r_type)))
5908 {
5909 BFD_ASSERT (addend == 0);
5910 BFD_ASSERT (h->root.needs_plt);
5911 g = mips_elf_gotplt_index (info, &h->root);
5912 }
5913 else
5914 {
5915 BFD_ASSERT (addend == 0);
5916 g = mips_elf_global_got_index (abfd, info, input_bfd,
5917 &h->root, r_type);
5918 if (!TLS_RELOC_P (r_type)
5919 && !elf_hash_table (info)->dynamic_sections_created)
5920 /* This is a static link. We must initialize the GOT entry. */
5921 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5922 }
5923 }
5924 else if (htab->root.target_os != is_vxworks
5925 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5926 /* The calculation below does not involve "g". */
5927 break;
5928 else
5929 {
5930 g = mips_elf_local_got_index (abfd, input_bfd, info,
5931 symbol + addend, r_symndx, h, r_type);
5932 if (g == MINUS_ONE)
5933 return bfd_reloc_outofrange;
5934 }
5935
5936 /* Convert GOT indices to actual offsets. */
5937 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5938 break;
5939 }
5940
5941 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5942 symbols are resolved by the loader. Add them to .rela.dyn. */
5943 if (h != NULL && is_gott_symbol (info, &h->root))
5944 {
5945 Elf_Internal_Rela outrel;
5946 bfd_byte *loc;
5947 asection *s;
5948
5949 s = mips_elf_rel_dyn_section (info, false);
5950 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5951
5952 outrel.r_offset = (input_section->output_section->vma
5953 + input_section->output_offset
5954 + relocation->r_offset);
5955 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5956 outrel.r_addend = addend;
5957 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5958
5959 /* If we've written this relocation for a readonly section,
5960 we need to set DF_TEXTREL again, so that we do not delete the
5961 DT_TEXTREL tag. */
5962 if (MIPS_ELF_READONLY_SECTION (input_section))
5963 info->flags |= DF_TEXTREL;
5964
5965 *valuep = 0;
5966 return bfd_reloc_ok;
5967 }
5968
5969 /* Figure out what kind of relocation is being performed. */
5970 switch (r_type)
5971 {
5972 case R_MIPS_NONE:
5973 return bfd_reloc_continue;
5974
5975 case R_MIPS_16:
5976 if (howto->partial_inplace)
5977 addend = _bfd_mips_elf_sign_extend (addend, 16);
5978 value = symbol + addend;
5979 overflowed_p = mips_elf_overflow_p (value, 16);
5980 break;
5981
5982 case R_MIPS_32:
5983 case R_MIPS_REL32:
5984 case R_MIPS_64:
5985 if ((bfd_link_pic (info)
5986 || (htab->root.dynamic_sections_created
5987 && h != NULL
5988 && h->root.def_dynamic
5989 && !h->root.def_regular
5990 && !h->has_static_relocs))
5991 && r_symndx != STN_UNDEF
5992 && (h == NULL
5993 || h->root.root.type != bfd_link_hash_undefweak
5994 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5995 && !resolved_to_zero))
5996 && (input_section->flags & SEC_ALLOC) != 0)
5997 {
5998 /* If we're creating a shared library, then we can't know
5999 where the symbol will end up. So, we create a relocation
6000 record in the output, and leave the job up to the dynamic
6001 linker. We must do the same for executable references to
6002 shared library symbols, unless we've decided to use copy
6003 relocs or PLTs instead. */
6004 value = addend;
6005 if (!mips_elf_create_dynamic_relocation (abfd,
6006 info,
6007 relocation,
6008 h,
6009 sec,
6010 symbol,
6011 &value,
6012 input_section))
6013 return bfd_reloc_undefined;
6014 }
6015 else
6016 {
6017 if (r_type != R_MIPS_REL32)
6018 value = symbol + addend;
6019 else
6020 value = addend;
6021 }
6022 value &= howto->dst_mask;
6023 break;
6024
6025 case R_MIPS_PC32:
6026 value = symbol + addend - p;
6027 value &= howto->dst_mask;
6028 break;
6029
6030 case R_MIPS16_26:
6031 /* The calculation for R_MIPS16_26 is just the same as for an
6032 R_MIPS_26. It's only the storage of the relocated field into
6033 the output file that's different. That's handled in
6034 mips_elf_perform_relocation. So, we just fall through to the
6035 R_MIPS_26 case here. */
6036 case R_MIPS_26:
6037 case R_MICROMIPS_26_S1:
6038 {
6039 unsigned int shift;
6040
6041 /* Shift is 2, unusually, for microMIPS JALX. */
6042 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6043
6044 if (howto->partial_inplace && !section_p)
6045 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
6046 else
6047 value = addend;
6048 value += symbol;
6049
6050 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6051 be the correct ISA mode selector except for weak undefined
6052 symbols. */
6053 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6054 && (*cross_mode_jump_p
6055 ? (value & 3) != (r_type == R_MIPS_26)
6056 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
6057 return bfd_reloc_outofrange;
6058
6059 value >>= shift;
6060 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6061 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6062 value &= howto->dst_mask;
6063 }
6064 break;
6065
6066 case R_MIPS_TLS_DTPREL_HI16:
6067 case R_MIPS16_TLS_DTPREL_HI16:
6068 case R_MICROMIPS_TLS_DTPREL_HI16:
6069 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6070 & howto->dst_mask);
6071 break;
6072
6073 case R_MIPS_TLS_DTPREL_LO16:
6074 case R_MIPS_TLS_DTPREL32:
6075 case R_MIPS_TLS_DTPREL64:
6076 case R_MIPS16_TLS_DTPREL_LO16:
6077 case R_MICROMIPS_TLS_DTPREL_LO16:
6078 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6079 break;
6080
6081 case R_MIPS_TLS_TPREL_HI16:
6082 case R_MIPS16_TLS_TPREL_HI16:
6083 case R_MICROMIPS_TLS_TPREL_HI16:
6084 value = (mips_elf_high (addend + symbol - tprel_base (info))
6085 & howto->dst_mask);
6086 break;
6087
6088 case R_MIPS_TLS_TPREL_LO16:
6089 case R_MIPS_TLS_TPREL32:
6090 case R_MIPS_TLS_TPREL64:
6091 case R_MIPS16_TLS_TPREL_LO16:
6092 case R_MICROMIPS_TLS_TPREL_LO16:
6093 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6094 break;
6095
6096 case R_MIPS_HI16:
6097 case R_MIPS16_HI16:
6098 case R_MICROMIPS_HI16:
6099 if (!gp_disp_p)
6100 {
6101 value = mips_elf_high (addend + symbol);
6102 value &= howto->dst_mask;
6103 }
6104 else
6105 {
6106 /* For MIPS16 ABI code we generate this sequence
6107 0: li $v0,%hi(_gp_disp)
6108 4: addiupc $v1,%lo(_gp_disp)
6109 8: sll $v0,16
6110 12: addu $v0,$v1
6111 14: move $gp,$v0
6112 So the offsets of hi and lo relocs are the same, but the
6113 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6114 ADDIUPC clears the low two bits of the instruction address,
6115 so the base is ($t9 + 4) & ~3. */
6116 if (r_type == R_MIPS16_HI16)
6117 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6118 /* The microMIPS .cpload sequence uses the same assembly
6119 instructions as the traditional psABI version, but the
6120 incoming $t9 has the low bit set. */
6121 else if (r_type == R_MICROMIPS_HI16)
6122 value = mips_elf_high (addend + gp - p - 1);
6123 else
6124 value = mips_elf_high (addend + gp - p);
6125 }
6126 break;
6127
6128 case R_MIPS_LO16:
6129 case R_MIPS16_LO16:
6130 case R_MICROMIPS_LO16:
6131 case R_MICROMIPS_HI0_LO16:
6132 if (!gp_disp_p)
6133 value = (symbol + addend) & howto->dst_mask;
6134 else
6135 {
6136 /* See the comment for R_MIPS16_HI16 above for the reason
6137 for this conditional. */
6138 if (r_type == R_MIPS16_LO16)
6139 value = addend + gp - (p & ~(bfd_vma) 0x3);
6140 else if (r_type == R_MICROMIPS_LO16
6141 || r_type == R_MICROMIPS_HI0_LO16)
6142 value = addend + gp - p + 3;
6143 else
6144 value = addend + gp - p + 4;
6145 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6146 for overflow. But, on, say, IRIX5, relocations against
6147 _gp_disp are normally generated from the .cpload
6148 pseudo-op. It generates code that normally looks like
6149 this:
6150
6151 lui $gp,%hi(_gp_disp)
6152 addiu $gp,$gp,%lo(_gp_disp)
6153 addu $gp,$gp,$t9
6154
6155 Here $t9 holds the address of the function being called,
6156 as required by the MIPS ELF ABI. The R_MIPS_LO16
6157 relocation can easily overflow in this situation, but the
6158 R_MIPS_HI16 relocation will handle the overflow.
6159 Therefore, we consider this a bug in the MIPS ABI, and do
6160 not check for overflow here. */
6161 }
6162 break;
6163
6164 case R_MIPS_LITERAL:
6165 case R_MICROMIPS_LITERAL:
6166 /* Because we don't merge literal sections, we can handle this
6167 just like R_MIPS_GPREL16. In the long run, we should merge
6168 shared literals, and then we will need to additional work
6169 here. */
6170
6171 /* Fall through. */
6172
6173 case R_MIPS16_GPREL:
6174 /* The R_MIPS16_GPREL performs the same calculation as
6175 R_MIPS_GPREL16, but stores the relocated bits in a different
6176 order. We don't need to do anything special here; the
6177 differences are handled in mips_elf_perform_relocation. */
6178 case R_MIPS_GPREL16:
6179 case R_MICROMIPS_GPREL7_S2:
6180 case R_MICROMIPS_GPREL16:
6181 /* Only sign-extend the addend if it was extracted from the
6182 instruction. If the addend was separate, leave it alone,
6183 otherwise we may lose significant bits. */
6184 if (howto->partial_inplace)
6185 addend = _bfd_mips_elf_sign_extend (addend, 16);
6186 value = symbol + addend - gp;
6187 /* If the symbol was local, any earlier relocatable links will
6188 have adjusted its addend with the gp offset, so compensate
6189 for that now. Don't do it for symbols forced local in this
6190 link, though, since they won't have had the gp offset applied
6191 to them before. */
6192 if (was_local_p)
6193 value += gp0;
6194 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6195 overflowed_p = mips_elf_overflow_p (value, 16);
6196 break;
6197
6198 case R_MIPS16_GOT16:
6199 case R_MIPS16_CALL16:
6200 case R_MIPS_GOT16:
6201 case R_MIPS_CALL16:
6202 case R_MICROMIPS_GOT16:
6203 case R_MICROMIPS_CALL16:
6204 /* VxWorks does not have separate local and global semantics for
6205 R_MIPS*_GOT16; every relocation evaluates to "G". */
6206 if (htab->root.target_os != is_vxworks && local_p)
6207 {
6208 value = mips_elf_got16_entry (abfd, input_bfd, info,
6209 symbol + addend, !was_local_p);
6210 if (value == MINUS_ONE)
6211 return bfd_reloc_outofrange;
6212 value
6213 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6214 overflowed_p = mips_elf_overflow_p (value, 16);
6215 break;
6216 }
6217
6218 /* Fall through. */
6219
6220 case R_MIPS_TLS_GD:
6221 case R_MIPS_TLS_GOTTPREL:
6222 case R_MIPS_TLS_LDM:
6223 case R_MIPS_GOT_DISP:
6224 case R_MIPS16_TLS_GD:
6225 case R_MIPS16_TLS_GOTTPREL:
6226 case R_MIPS16_TLS_LDM:
6227 case R_MICROMIPS_TLS_GD:
6228 case R_MICROMIPS_TLS_GOTTPREL:
6229 case R_MICROMIPS_TLS_LDM:
6230 case R_MICROMIPS_GOT_DISP:
6231 value = g;
6232 overflowed_p = mips_elf_overflow_p (value, 16);
6233 break;
6234
6235 case R_MIPS_GPREL32:
6236 value = (addend + symbol + gp0 - gp);
6237 if (!save_addend)
6238 value &= howto->dst_mask;
6239 break;
6240
6241 case R_MIPS_PC16:
6242 case R_MIPS_GNU_REL16_S2:
6243 if (howto->partial_inplace)
6244 addend = _bfd_mips_elf_sign_extend (addend, 18);
6245
6246 /* No need to exclude weak undefined symbols here as they resolve
6247 to 0 and never set `*cross_mode_jump_p', so this alignment check
6248 will never trigger for them. */
6249 if (*cross_mode_jump_p
6250 ? ((symbol + addend) & 3) != 1
6251 : ((symbol + addend) & 3) != 0)
6252 return bfd_reloc_outofrange;
6253
6254 value = symbol + addend - p;
6255 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6256 overflowed_p = mips_elf_overflow_p (value, 18);
6257 value >>= howto->rightshift;
6258 value &= howto->dst_mask;
6259 break;
6260
6261 case R_MIPS16_PC16_S1:
6262 if (howto->partial_inplace)
6263 addend = _bfd_mips_elf_sign_extend (addend, 17);
6264
6265 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6266 && (*cross_mode_jump_p
6267 ? ((symbol + addend) & 3) != 0
6268 : ((symbol + addend) & 1) == 0))
6269 return bfd_reloc_outofrange;
6270
6271 value = symbol + addend - p;
6272 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6273 overflowed_p = mips_elf_overflow_p (value, 17);
6274 value >>= howto->rightshift;
6275 value &= howto->dst_mask;
6276 break;
6277
6278 case R_MIPS_PC21_S2:
6279 if (howto->partial_inplace)
6280 addend = _bfd_mips_elf_sign_extend (addend, 23);
6281
6282 if ((symbol + addend) & 3)
6283 return bfd_reloc_outofrange;
6284
6285 value = symbol + addend - p;
6286 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6287 overflowed_p = mips_elf_overflow_p (value, 23);
6288 value >>= howto->rightshift;
6289 value &= howto->dst_mask;
6290 break;
6291
6292 case R_MIPS_PC26_S2:
6293 if (howto->partial_inplace)
6294 addend = _bfd_mips_elf_sign_extend (addend, 28);
6295
6296 if ((symbol + addend) & 3)
6297 return bfd_reloc_outofrange;
6298
6299 value = symbol + addend - p;
6300 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6301 overflowed_p = mips_elf_overflow_p (value, 28);
6302 value >>= howto->rightshift;
6303 value &= howto->dst_mask;
6304 break;
6305
6306 case R_MIPS_PC18_S3:
6307 if (howto->partial_inplace)
6308 addend = _bfd_mips_elf_sign_extend (addend, 21);
6309
6310 if ((symbol + addend) & 7)
6311 return bfd_reloc_outofrange;
6312
6313 value = symbol + addend - ((p | 7) ^ 7);
6314 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6315 overflowed_p = mips_elf_overflow_p (value, 21);
6316 value >>= howto->rightshift;
6317 value &= howto->dst_mask;
6318 break;
6319
6320 case R_MIPS_PC19_S2:
6321 if (howto->partial_inplace)
6322 addend = _bfd_mips_elf_sign_extend (addend, 21);
6323
6324 if ((symbol + addend) & 3)
6325 return bfd_reloc_outofrange;
6326
6327 value = symbol + addend - p;
6328 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6329 overflowed_p = mips_elf_overflow_p (value, 21);
6330 value >>= howto->rightshift;
6331 value &= howto->dst_mask;
6332 break;
6333
6334 case R_MIPS_PCHI16:
6335 value = mips_elf_high (symbol + addend - p);
6336 value &= howto->dst_mask;
6337 break;
6338
6339 case R_MIPS_PCLO16:
6340 if (howto->partial_inplace)
6341 addend = _bfd_mips_elf_sign_extend (addend, 16);
6342 value = symbol + addend - p;
6343 value &= howto->dst_mask;
6344 break;
6345
6346 case R_MICROMIPS_PC7_S1:
6347 if (howto->partial_inplace)
6348 addend = _bfd_mips_elf_sign_extend (addend, 8);
6349
6350 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6351 && (*cross_mode_jump_p
6352 ? ((symbol + addend + 2) & 3) != 0
6353 : ((symbol + addend + 2) & 1) == 0))
6354 return bfd_reloc_outofrange;
6355
6356 value = symbol + addend - p;
6357 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6358 overflowed_p = mips_elf_overflow_p (value, 8);
6359 value >>= howto->rightshift;
6360 value &= howto->dst_mask;
6361 break;
6362
6363 case R_MICROMIPS_PC10_S1:
6364 if (howto->partial_inplace)
6365 addend = _bfd_mips_elf_sign_extend (addend, 11);
6366
6367 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6368 && (*cross_mode_jump_p
6369 ? ((symbol + addend + 2) & 3) != 0
6370 : ((symbol + addend + 2) & 1) == 0))
6371 return bfd_reloc_outofrange;
6372
6373 value = symbol + addend - p;
6374 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6375 overflowed_p = mips_elf_overflow_p (value, 11);
6376 value >>= howto->rightshift;
6377 value &= howto->dst_mask;
6378 break;
6379
6380 case R_MICROMIPS_PC16_S1:
6381 if (howto->partial_inplace)
6382 addend = _bfd_mips_elf_sign_extend (addend, 17);
6383
6384 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6385 && (*cross_mode_jump_p
6386 ? ((symbol + addend) & 3) != 0
6387 : ((symbol + addend) & 1) == 0))
6388 return bfd_reloc_outofrange;
6389
6390 value = symbol + addend - p;
6391 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6392 overflowed_p = mips_elf_overflow_p (value, 17);
6393 value >>= howto->rightshift;
6394 value &= howto->dst_mask;
6395 break;
6396
6397 case R_MICROMIPS_PC23_S2:
6398 if (howto->partial_inplace)
6399 addend = _bfd_mips_elf_sign_extend (addend, 25);
6400 value = symbol + addend - ((p | 3) ^ 3);
6401 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6402 overflowed_p = mips_elf_overflow_p (value, 25);
6403 value >>= howto->rightshift;
6404 value &= howto->dst_mask;
6405 break;
6406
6407 case R_MIPS_GOT_HI16:
6408 case R_MIPS_CALL_HI16:
6409 case R_MICROMIPS_GOT_HI16:
6410 case R_MICROMIPS_CALL_HI16:
6411 /* We're allowed to handle these two relocations identically.
6412 The dynamic linker is allowed to handle the CALL relocations
6413 differently by creating a lazy evaluation stub. */
6414 value = g;
6415 value = mips_elf_high (value);
6416 value &= howto->dst_mask;
6417 break;
6418
6419 case R_MIPS_GOT_LO16:
6420 case R_MIPS_CALL_LO16:
6421 case R_MICROMIPS_GOT_LO16:
6422 case R_MICROMIPS_CALL_LO16:
6423 value = g & howto->dst_mask;
6424 break;
6425
6426 case R_MIPS_GOT_PAGE:
6427 case R_MICROMIPS_GOT_PAGE:
6428 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6429 if (value == MINUS_ONE)
6430 return bfd_reloc_outofrange;
6431 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6432 overflowed_p = mips_elf_overflow_p (value, 16);
6433 break;
6434
6435 case R_MIPS_GOT_OFST:
6436 case R_MICROMIPS_GOT_OFST:
6437 if (local_p)
6438 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6439 else
6440 value = addend;
6441 overflowed_p = mips_elf_overflow_p (value, 16);
6442 break;
6443
6444 case R_MIPS_SUB:
6445 case R_MICROMIPS_SUB:
6446 value = symbol - addend;
6447 value &= howto->dst_mask;
6448 break;
6449
6450 case R_MIPS_HIGHER:
6451 case R_MICROMIPS_HIGHER:
6452 value = mips_elf_higher (addend + symbol);
6453 value &= howto->dst_mask;
6454 break;
6455
6456 case R_MIPS_HIGHEST:
6457 case R_MICROMIPS_HIGHEST:
6458 value = mips_elf_highest (addend + symbol);
6459 value &= howto->dst_mask;
6460 break;
6461
6462 case R_MIPS_SCN_DISP:
6463 case R_MICROMIPS_SCN_DISP:
6464 value = symbol + addend - sec->output_offset;
6465 value &= howto->dst_mask;
6466 break;
6467
6468 case R_MIPS_JALR:
6469 case R_MICROMIPS_JALR:
6470 /* This relocation is only a hint. In some cases, we optimize
6471 it into a bal instruction. But we don't try to optimize
6472 when the symbol does not resolve locally. */
6473 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6474 return bfd_reloc_continue;
6475 /* We can't optimize cross-mode jumps either. */
6476 if (*cross_mode_jump_p)
6477 return bfd_reloc_continue;
6478 value = symbol + addend;
6479 /* Neither we can non-instruction-aligned targets. */
6480 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6481 return bfd_reloc_continue;
6482 break;
6483
6484 case R_MIPS_PJUMP:
6485 case R_MIPS_GNU_VTINHERIT:
6486 case R_MIPS_GNU_VTENTRY:
6487 /* We don't do anything with these at present. */
6488 return bfd_reloc_continue;
6489
6490 default:
6491 /* An unrecognized relocation type. */
6492 return bfd_reloc_notsupported;
6493 }
6494
6495 /* Store the VALUE for our caller. */
6496 *valuep = value;
6497 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6498 }
6499
6500 /* It has been determined that the result of the RELOCATION is the
6501 VALUE. Use HOWTO to place VALUE into the output file at the
6502 appropriate position. The SECTION is the section to which the
6503 relocation applies.
6504 CROSS_MODE_JUMP_P is true if the relocation field
6505 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6506
6507 Returns FALSE if anything goes wrong. */
6508
6509 static bool
6510 mips_elf_perform_relocation (struct bfd_link_info *info,
6511 reloc_howto_type *howto,
6512 const Elf_Internal_Rela *relocation,
6513 bfd_vma value, bfd *input_bfd,
6514 asection *input_section, bfd_byte *contents,
6515 bool cross_mode_jump_p)
6516 {
6517 bfd_vma x;
6518 bfd_byte *location;
6519 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6520
6521 /* Figure out where the relocation is occurring. */
6522 location = contents + relocation->r_offset;
6523
6524 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location);
6525
6526 /* Obtain the current value. */
6527 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6528
6529 /* Clear the field we are setting. */
6530 x &= ~howto->dst_mask;
6531
6532 /* Set the field. */
6533 x |= (value & howto->dst_mask);
6534
6535 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6536 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6537 {
6538 bfd_vma opcode = x >> 26;
6539
6540 if (r_type == R_MIPS16_26 ? opcode == 0x7
6541 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6542 : opcode == 0x1d)
6543 {
6544 info->callbacks->einfo
6545 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6546 input_bfd, input_section, relocation->r_offset);
6547 return true;
6548 }
6549 }
6550 if (cross_mode_jump_p && jal_reloc_p (r_type))
6551 {
6552 bool ok;
6553 bfd_vma opcode = x >> 26;
6554 bfd_vma jalx_opcode;
6555
6556 /* Check to see if the opcode is already JAL or JALX. */
6557 if (r_type == R_MIPS16_26)
6558 {
6559 ok = ((opcode == 0x6) || (opcode == 0x7));
6560 jalx_opcode = 0x7;
6561 }
6562 else if (r_type == R_MICROMIPS_26_S1)
6563 {
6564 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6565 jalx_opcode = 0x3c;
6566 }
6567 else
6568 {
6569 ok = ((opcode == 0x3) || (opcode == 0x1d));
6570 jalx_opcode = 0x1d;
6571 }
6572
6573 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6574 convert J or JALS to JALX. */
6575 if (!ok)
6576 {
6577 info->callbacks->einfo
6578 (_("%X%H: unsupported jump between ISA modes; "
6579 "consider recompiling with interlinking enabled\n"),
6580 input_bfd, input_section, relocation->r_offset);
6581 return true;
6582 }
6583
6584 /* Make this the JALX opcode. */
6585 x = (x & ~(0x3fu << 26)) | (jalx_opcode << 26);
6586 }
6587 else if (cross_mode_jump_p && b_reloc_p (r_type))
6588 {
6589 bool ok = false;
6590 bfd_vma opcode = x >> 16;
6591 bfd_vma jalx_opcode = 0;
6592 bfd_vma sign_bit = 0;
6593 bfd_vma addr;
6594 bfd_vma dest;
6595
6596 if (r_type == R_MICROMIPS_PC16_S1)
6597 {
6598 ok = opcode == 0x4060;
6599 jalx_opcode = 0x3c;
6600 sign_bit = 0x10000;
6601 value <<= 1;
6602 }
6603 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6604 {
6605 ok = opcode == 0x411;
6606 jalx_opcode = 0x1d;
6607 sign_bit = 0x20000;
6608 value <<= 2;
6609 }
6610
6611 if (ok && !bfd_link_pic (info))
6612 {
6613 addr = (input_section->output_section->vma
6614 + input_section->output_offset
6615 + relocation->r_offset
6616 + 4);
6617 dest = (addr
6618 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6619
6620 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6621 {
6622 info->callbacks->einfo
6623 (_("%X%H: cannot convert branch between ISA modes "
6624 "to JALX: relocation out of range\n"),
6625 input_bfd, input_section, relocation->r_offset);
6626 return true;
6627 }
6628
6629 /* Make this the JALX opcode. */
6630 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6631 }
6632 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6633 {
6634 info->callbacks->einfo
6635 (_("%X%H: unsupported branch between ISA modes\n"),
6636 input_bfd, input_section, relocation->r_offset);
6637 return true;
6638 }
6639 }
6640
6641 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6642 range. */
6643 if (!bfd_link_relocatable (info)
6644 && !cross_mode_jump_p
6645 && ((JAL_TO_BAL_P (input_bfd)
6646 && r_type == R_MIPS_26
6647 && (x >> 26) == 0x3) /* jal addr */
6648 || (JALR_TO_BAL_P (input_bfd)
6649 && r_type == R_MIPS_JALR
6650 && x == 0x0320f809) /* jalr t9 */
6651 || (JR_TO_B_P (input_bfd)
6652 && r_type == R_MIPS_JALR
6653 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6654 {
6655 bfd_vma addr;
6656 bfd_vma dest;
6657 bfd_signed_vma off;
6658
6659 addr = (input_section->output_section->vma
6660 + input_section->output_offset
6661 + relocation->r_offset
6662 + 4);
6663 if (r_type == R_MIPS_26)
6664 dest = (value << 2) | ((addr >> 28) << 28);
6665 else
6666 dest = value;
6667 off = dest - addr;
6668 if (off <= 0x1ffff && off >= -0x20000)
6669 {
6670 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6671 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6672 else
6673 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6674 }
6675 }
6676
6677 /* Put the value into the output. */
6678 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6679
6680 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6681 location);
6682
6683 return true;
6684 }
6685 \f
6686 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6687 is the original relocation, which is now being transformed into a
6688 dynamic relocation. The ADDENDP is adjusted if necessary; the
6689 caller should store the result in place of the original addend. */
6690
6691 static bool
6692 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6693 struct bfd_link_info *info,
6694 const Elf_Internal_Rela *rel,
6695 struct mips_elf_link_hash_entry *h,
6696 asection *sec, bfd_vma symbol,
6697 bfd_vma *addendp, asection *input_section)
6698 {
6699 Elf_Internal_Rela outrel[3];
6700 asection *sreloc;
6701 bfd *dynobj;
6702 int r_type;
6703 long indx;
6704 bool defined_p;
6705 struct mips_elf_link_hash_table *htab;
6706
6707 htab = mips_elf_hash_table (info);
6708 BFD_ASSERT (htab != NULL);
6709
6710 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6711 dynobj = elf_hash_table (info)->dynobj;
6712 sreloc = mips_elf_rel_dyn_section (info, false);
6713 BFD_ASSERT (sreloc != NULL);
6714 BFD_ASSERT (sreloc->contents != NULL);
6715 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6716 < sreloc->size);
6717
6718 outrel[0].r_offset =
6719 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6720 if (ABI_64_P (output_bfd))
6721 {
6722 outrel[1].r_offset =
6723 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6724 outrel[2].r_offset =
6725 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6726 }
6727
6728 if (outrel[0].r_offset == MINUS_ONE)
6729 /* The relocation field has been deleted. */
6730 return true;
6731
6732 if (outrel[0].r_offset == MINUS_TWO)
6733 {
6734 /* The relocation field has been converted into a relative value of
6735 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6736 the field to be fully relocated, so add in the symbol's value. */
6737 *addendp += symbol;
6738 return true;
6739 }
6740
6741 /* We must now calculate the dynamic symbol table index to use
6742 in the relocation. */
6743 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6744 {
6745 BFD_ASSERT (htab->root.target_os == is_vxworks
6746 || h->global_got_area != GGA_NONE);
6747 indx = h->root.dynindx;
6748 if (SGI_COMPAT (output_bfd))
6749 defined_p = h->root.def_regular;
6750 else
6751 /* ??? glibc's ld.so just adds the final GOT entry to the
6752 relocation field. It therefore treats relocs against
6753 defined symbols in the same way as relocs against
6754 undefined symbols. */
6755 defined_p = false;
6756 }
6757 else
6758 {
6759 if (sec != NULL && bfd_is_abs_section (sec))
6760 indx = 0;
6761 else if (sec == NULL || sec->owner == NULL)
6762 {
6763 bfd_set_error (bfd_error_bad_value);
6764 return false;
6765 }
6766 else
6767 {
6768 indx = elf_section_data (sec->output_section)->dynindx;
6769 if (indx == 0)
6770 {
6771 asection *osec = htab->root.text_index_section;
6772 indx = elf_section_data (osec)->dynindx;
6773 }
6774 if (indx == 0)
6775 abort ();
6776 }
6777
6778 /* Instead of generating a relocation using the section
6779 symbol, we may as well make it a fully relative
6780 relocation. We want to avoid generating relocations to
6781 local symbols because we used to generate them
6782 incorrectly, without adding the original symbol value,
6783 which is mandated by the ABI for section symbols. In
6784 order to give dynamic loaders and applications time to
6785 phase out the incorrect use, we refrain from emitting
6786 section-relative relocations. It's not like they're
6787 useful, after all. This should be a bit more efficient
6788 as well. */
6789 /* ??? Although this behavior is compatible with glibc's ld.so,
6790 the ABI says that relocations against STN_UNDEF should have
6791 a symbol value of 0. Irix rld honors this, so relocations
6792 against STN_UNDEF have no effect. */
6793 if (!SGI_COMPAT (output_bfd))
6794 indx = 0;
6795 defined_p = true;
6796 }
6797
6798 /* If the relocation was previously an absolute relocation and
6799 this symbol will not be referred to by the relocation, we must
6800 adjust it by the value we give it in the dynamic symbol table.
6801 Otherwise leave the job up to the dynamic linker. */
6802 if (defined_p && r_type != R_MIPS_REL32)
6803 *addendp += symbol;
6804
6805 if (htab->root.target_os == is_vxworks)
6806 /* VxWorks uses non-relative relocations for this. */
6807 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6808 else
6809 /* The relocation is always an REL32 relocation because we don't
6810 know where the shared library will wind up at load-time. */
6811 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6812 R_MIPS_REL32);
6813
6814 /* For strict adherence to the ABI specification, we should
6815 generate a R_MIPS_64 relocation record by itself before the
6816 _REL32/_64 record as well, such that the addend is read in as
6817 a 64-bit value (REL32 is a 32-bit relocation, after all).
6818 However, since none of the existing ELF64 MIPS dynamic
6819 loaders seems to care, we don't waste space with these
6820 artificial relocations. If this turns out to not be true,
6821 mips_elf_allocate_dynamic_relocation() should be tweaked so
6822 as to make room for a pair of dynamic relocations per
6823 invocation if ABI_64_P, and here we should generate an
6824 additional relocation record with R_MIPS_64 by itself for a
6825 NULL symbol before this relocation record. */
6826 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6827 ABI_64_P (output_bfd)
6828 ? R_MIPS_64
6829 : R_MIPS_NONE);
6830 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6831
6832 /* Adjust the output offset of the relocation to reference the
6833 correct location in the output file. */
6834 outrel[0].r_offset += (input_section->output_section->vma
6835 + input_section->output_offset);
6836 outrel[1].r_offset += (input_section->output_section->vma
6837 + input_section->output_offset);
6838 outrel[2].r_offset += (input_section->output_section->vma
6839 + input_section->output_offset);
6840
6841 /* Put the relocation back out. We have to use the special
6842 relocation outputter in the 64-bit case since the 64-bit
6843 relocation format is non-standard. */
6844 if (ABI_64_P (output_bfd))
6845 {
6846 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6847 (output_bfd, &outrel[0],
6848 (sreloc->contents
6849 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6850 }
6851 else if (htab->root.target_os == is_vxworks)
6852 {
6853 /* VxWorks uses RELA rather than REL dynamic relocations. */
6854 outrel[0].r_addend = *addendp;
6855 bfd_elf32_swap_reloca_out
6856 (output_bfd, &outrel[0],
6857 (sreloc->contents
6858 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6859 }
6860 else
6861 bfd_elf32_swap_reloc_out
6862 (output_bfd, &outrel[0],
6863 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6864
6865 /* We've now added another relocation. */
6866 ++sreloc->reloc_count;
6867
6868 /* Make sure the output section is writable. The dynamic linker
6869 will be writing to it. */
6870 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6871 |= SHF_WRITE;
6872
6873 /* On IRIX5, make an entry of compact relocation info. */
6874 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6875 {
6876 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6877 bfd_byte *cr;
6878
6879 if (scpt)
6880 {
6881 Elf32_crinfo cptrel;
6882
6883 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6884 cptrel.vaddr = (rel->r_offset
6885 + input_section->output_section->vma
6886 + input_section->output_offset);
6887 if (r_type == R_MIPS_REL32)
6888 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6889 else
6890 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6891 mips_elf_set_cr_dist2to (cptrel, 0);
6892 cptrel.konst = *addendp;
6893
6894 cr = (scpt->contents
6895 + sizeof (Elf32_External_compact_rel));
6896 mips_elf_set_cr_relvaddr (cptrel, 0);
6897 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6898 ((Elf32_External_crinfo *) cr
6899 + scpt->reloc_count));
6900 ++scpt->reloc_count;
6901 }
6902 }
6903
6904 /* If we've written this relocation for a readonly section,
6905 we need to set DF_TEXTREL again, so that we do not delete the
6906 DT_TEXTREL tag. */
6907 if (MIPS_ELF_READONLY_SECTION (input_section))
6908 info->flags |= DF_TEXTREL;
6909
6910 return true;
6911 }
6912 \f
6913 /* Return the MACH for a MIPS e_flags value. */
6914
6915 unsigned long
6916 _bfd_elf_mips_mach (flagword flags)
6917 {
6918 switch (flags & EF_MIPS_MACH)
6919 {
6920 case E_MIPS_MACH_3900:
6921 return bfd_mach_mips3900;
6922
6923 case E_MIPS_MACH_4010:
6924 return bfd_mach_mips4010;
6925
6926 case E_MIPS_MACH_4100:
6927 return bfd_mach_mips4100;
6928
6929 case E_MIPS_MACH_4111:
6930 return bfd_mach_mips4111;
6931
6932 case E_MIPS_MACH_4120:
6933 return bfd_mach_mips4120;
6934
6935 case E_MIPS_MACH_4650:
6936 return bfd_mach_mips4650;
6937
6938 case E_MIPS_MACH_5400:
6939 return bfd_mach_mips5400;
6940
6941 case E_MIPS_MACH_5500:
6942 return bfd_mach_mips5500;
6943
6944 case E_MIPS_MACH_5900:
6945 return bfd_mach_mips5900;
6946
6947 case E_MIPS_MACH_9000:
6948 return bfd_mach_mips9000;
6949
6950 case E_MIPS_MACH_SB1:
6951 return bfd_mach_mips_sb1;
6952
6953 case E_MIPS_MACH_LS2E:
6954 return bfd_mach_mips_loongson_2e;
6955
6956 case E_MIPS_MACH_LS2F:
6957 return bfd_mach_mips_loongson_2f;
6958
6959 case E_MIPS_MACH_GS464:
6960 return bfd_mach_mips_gs464;
6961
6962 case E_MIPS_MACH_GS464E:
6963 return bfd_mach_mips_gs464e;
6964
6965 case E_MIPS_MACH_GS264E:
6966 return bfd_mach_mips_gs264e;
6967
6968 case E_MIPS_MACH_OCTEON3:
6969 return bfd_mach_mips_octeon3;
6970
6971 case E_MIPS_MACH_OCTEON2:
6972 return bfd_mach_mips_octeon2;
6973
6974 case E_MIPS_MACH_OCTEON:
6975 return bfd_mach_mips_octeon;
6976
6977 case E_MIPS_MACH_XLR:
6978 return bfd_mach_mips_xlr;
6979
6980 case E_MIPS_MACH_IAMR2:
6981 return bfd_mach_mips_interaptiv_mr2;
6982
6983 default:
6984 switch (flags & EF_MIPS_ARCH)
6985 {
6986 default:
6987 case E_MIPS_ARCH_1:
6988 return bfd_mach_mips3000;
6989
6990 case E_MIPS_ARCH_2:
6991 return bfd_mach_mips6000;
6992
6993 case E_MIPS_ARCH_3:
6994 return bfd_mach_mips4000;
6995
6996 case E_MIPS_ARCH_4:
6997 return bfd_mach_mips8000;
6998
6999 case E_MIPS_ARCH_5:
7000 return bfd_mach_mips5;
7001
7002 case E_MIPS_ARCH_32:
7003 return bfd_mach_mipsisa32;
7004
7005 case E_MIPS_ARCH_64:
7006 return bfd_mach_mipsisa64;
7007
7008 case E_MIPS_ARCH_32R2:
7009 return bfd_mach_mipsisa32r2;
7010
7011 case E_MIPS_ARCH_64R2:
7012 return bfd_mach_mipsisa64r2;
7013
7014 case E_MIPS_ARCH_32R6:
7015 return bfd_mach_mipsisa32r6;
7016
7017 case E_MIPS_ARCH_64R6:
7018 return bfd_mach_mipsisa64r6;
7019 }
7020 }
7021
7022 return 0;
7023 }
7024
7025 /* Return printable name for ABI. */
7026
7027 static inline char *
7028 elf_mips_abi_name (bfd *abfd)
7029 {
7030 flagword flags;
7031
7032 flags = elf_elfheader (abfd)->e_flags;
7033 switch (flags & EF_MIPS_ABI)
7034 {
7035 case 0:
7036 if (ABI_N32_P (abfd))
7037 return "N32";
7038 else if (ABI_64_P (abfd))
7039 return "64";
7040 else
7041 return "none";
7042 case E_MIPS_ABI_O32:
7043 return "O32";
7044 case E_MIPS_ABI_O64:
7045 return "O64";
7046 case E_MIPS_ABI_EABI32:
7047 return "EABI32";
7048 case E_MIPS_ABI_EABI64:
7049 return "EABI64";
7050 default:
7051 return "unknown abi";
7052 }
7053 }
7054 \f
7055 /* MIPS ELF uses two common sections. One is the usual one, and the
7056 other is for small objects. All the small objects are kept
7057 together, and then referenced via the gp pointer, which yields
7058 faster assembler code. This is what we use for the small common
7059 section. This approach is copied from ecoff.c. */
7060 static asection mips_elf_scom_section;
7061 static const asymbol mips_elf_scom_symbol =
7062 GLOBAL_SYM_INIT (".scommon", &mips_elf_scom_section);
7063 static asection mips_elf_scom_section =
7064 BFD_FAKE_SECTION (mips_elf_scom_section, &mips_elf_scom_symbol,
7065 ".scommon", 0, SEC_IS_COMMON | SEC_SMALL_DATA);
7066
7067 /* MIPS ELF also uses an acommon section, which represents an
7068 allocated common symbol which may be overridden by a
7069 definition in a shared library. */
7070 static asection mips_elf_acom_section;
7071 static const asymbol mips_elf_acom_symbol =
7072 GLOBAL_SYM_INIT (".acommon", &mips_elf_acom_section);
7073 static asection mips_elf_acom_section =
7074 BFD_FAKE_SECTION (mips_elf_acom_section, &mips_elf_acom_symbol,
7075 ".acommon", 0, SEC_ALLOC);
7076
7077 /* This is used for both the 32-bit and the 64-bit ABI. */
7078
7079 void
7080 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7081 {
7082 elf_symbol_type *elfsym;
7083
7084 /* Handle the special MIPS section numbers that a symbol may use. */
7085 elfsym = (elf_symbol_type *) asym;
7086 switch (elfsym->internal_elf_sym.st_shndx)
7087 {
7088 case SHN_MIPS_ACOMMON:
7089 /* This section is used in a dynamically linked executable file.
7090 It is an allocated common section. The dynamic linker can
7091 either resolve these symbols to something in a shared
7092 library, or it can just leave them here. For our purposes,
7093 we can consider these symbols to be in a new section. */
7094 asym->section = &mips_elf_acom_section;
7095 break;
7096
7097 case SHN_COMMON:
7098 /* Common symbols less than the GP size are automatically
7099 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7100 if (asym->value > elf_gp_size (abfd)
7101 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7102 || IRIX_COMPAT (abfd) == ict_irix6)
7103 break;
7104 /* Fall through. */
7105 case SHN_MIPS_SCOMMON:
7106 asym->section = &mips_elf_scom_section;
7107 asym->value = elfsym->internal_elf_sym.st_size;
7108 break;
7109
7110 case SHN_MIPS_SUNDEFINED:
7111 asym->section = bfd_und_section_ptr;
7112 break;
7113
7114 case SHN_MIPS_TEXT:
7115 {
7116 asection *section = bfd_get_section_by_name (abfd, ".text");
7117
7118 if (section != NULL)
7119 {
7120 asym->section = section;
7121 /* MIPS_TEXT is a bit special, the address is not an offset
7122 to the base of the .text section. So subtract the section
7123 base address to make it an offset. */
7124 asym->value -= section->vma;
7125 }
7126 }
7127 break;
7128
7129 case SHN_MIPS_DATA:
7130 {
7131 asection *section = bfd_get_section_by_name (abfd, ".data");
7132
7133 if (section != NULL)
7134 {
7135 asym->section = section;
7136 /* MIPS_DATA is a bit special, the address is not an offset
7137 to the base of the .data section. So subtract the section
7138 base address to make it an offset. */
7139 asym->value -= section->vma;
7140 }
7141 }
7142 break;
7143 }
7144
7145 /* If this is an odd-valued function symbol, assume it's a MIPS16
7146 or microMIPS one. */
7147 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7148 && (asym->value & 1) != 0)
7149 {
7150 asym->value--;
7151 if (MICROMIPS_P (abfd))
7152 elfsym->internal_elf_sym.st_other
7153 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7154 else
7155 elfsym->internal_elf_sym.st_other
7156 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7157 }
7158 }
7159 \f
7160 /* Implement elf_backend_eh_frame_address_size. This differs from
7161 the default in the way it handles EABI64.
7162
7163 EABI64 was originally specified as an LP64 ABI, and that is what
7164 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7165 historically accepted the combination of -mabi=eabi and -mlong32,
7166 and this ILP32 variation has become semi-official over time.
7167 Both forms use elf32 and have pointer-sized FDE addresses.
7168
7169 If an EABI object was generated by GCC 4.0 or above, it will have
7170 an empty .gcc_compiled_longXX section, where XX is the size of longs
7171 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7172 have no special marking to distinguish them from LP64 objects.
7173
7174 We don't want users of the official LP64 ABI to be punished for the
7175 existence of the ILP32 variant, but at the same time, we don't want
7176 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7177 We therefore take the following approach:
7178
7179 - If ABFD contains a .gcc_compiled_longXX section, use it to
7180 determine the pointer size.
7181
7182 - Otherwise check the type of the first relocation. Assume that
7183 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7184
7185 - Otherwise punt.
7186
7187 The second check is enough to detect LP64 objects generated by pre-4.0
7188 compilers because, in the kind of output generated by those compilers,
7189 the first relocation will be associated with either a CIE personality
7190 routine or an FDE start address. Furthermore, the compilers never
7191 used a special (non-pointer) encoding for this ABI.
7192
7193 Checking the relocation type should also be safe because there is no
7194 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7195 did so. */
7196
7197 unsigned int
7198 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7199 {
7200 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7201 return 8;
7202 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7203 {
7204 bool long32_p, long64_p;
7205
7206 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7207 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7208 if (long32_p && long64_p)
7209 return 0;
7210 if (long32_p)
7211 return 4;
7212 if (long64_p)
7213 return 8;
7214
7215 if (sec->reloc_count > 0
7216 && elf_section_data (sec)->relocs != NULL
7217 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7218 == R_MIPS_64))
7219 return 8;
7220
7221 return 0;
7222 }
7223 return 4;
7224 }
7225 \f
7226 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7227 relocations against two unnamed section symbols to resolve to the
7228 same address. For example, if we have code like:
7229
7230 lw $4,%got_disp(.data)($gp)
7231 lw $25,%got_disp(.text)($gp)
7232 jalr $25
7233
7234 then the linker will resolve both relocations to .data and the program
7235 will jump there rather than to .text.
7236
7237 We can work around this problem by giving names to local section symbols.
7238 This is also what the MIPSpro tools do. */
7239
7240 bool
7241 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7242 {
7243 return elf_elfheader (abfd)->e_type == ET_REL && SGI_COMPAT (abfd);
7244 }
7245 \f
7246 /* Work over a section just before writing it out. This routine is
7247 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7248 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7249 a better way. */
7250
7251 bool
7252 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7253 {
7254 if (hdr->sh_type == SHT_MIPS_REGINFO
7255 && hdr->sh_size > 0)
7256 {
7257 bfd_byte buf[4];
7258
7259 BFD_ASSERT (hdr->contents == NULL);
7260
7261 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7262 {
7263 _bfd_error_handler
7264 (_("%pB: incorrect `.reginfo' section size; "
7265 "expected %" PRIu64 ", got %" PRIu64),
7266 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7267 (uint64_t) hdr->sh_size);
7268 bfd_set_error (bfd_error_bad_value);
7269 return false;
7270 }
7271
7272 if (bfd_seek (abfd,
7273 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7274 SEEK_SET) != 0)
7275 return false;
7276 H_PUT_32 (abfd, elf_gp (abfd), buf);
7277 if (bfd_bwrite (buf, 4, abfd) != 4)
7278 return false;
7279 }
7280
7281 if (hdr->sh_type == SHT_MIPS_OPTIONS
7282 && hdr->bfd_section != NULL
7283 && mips_elf_section_data (hdr->bfd_section) != NULL
7284 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7285 {
7286 bfd_byte *contents, *l, *lend;
7287
7288 /* We stored the section contents in the tdata field in the
7289 set_section_contents routine. We save the section contents
7290 so that we don't have to read them again.
7291 At this point we know that elf_gp is set, so we can look
7292 through the section contents to see if there is an
7293 ODK_REGINFO structure. */
7294
7295 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7296 l = contents;
7297 lend = contents + hdr->sh_size;
7298 while (l + sizeof (Elf_External_Options) <= lend)
7299 {
7300 Elf_Internal_Options intopt;
7301
7302 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7303 &intopt);
7304 if (intopt.size < sizeof (Elf_External_Options))
7305 {
7306 _bfd_error_handler
7307 /* xgettext:c-format */
7308 (_("%pB: warning: bad `%s' option size %u smaller than"
7309 " its header"),
7310 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7311 break;
7312 }
7313 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7314 {
7315 bfd_byte buf[8];
7316
7317 if (bfd_seek (abfd,
7318 (hdr->sh_offset
7319 + (l - contents)
7320 + sizeof (Elf_External_Options)
7321 + (sizeof (Elf64_External_RegInfo) - 8)),
7322 SEEK_SET) != 0)
7323 return false;
7324 H_PUT_64 (abfd, elf_gp (abfd), buf);
7325 if (bfd_bwrite (buf, 8, abfd) != 8)
7326 return false;
7327 }
7328 else if (intopt.kind == ODK_REGINFO)
7329 {
7330 bfd_byte buf[4];
7331
7332 if (bfd_seek (abfd,
7333 (hdr->sh_offset
7334 + (l - contents)
7335 + sizeof (Elf_External_Options)
7336 + (sizeof (Elf32_External_RegInfo) - 4)),
7337 SEEK_SET) != 0)
7338 return false;
7339 H_PUT_32 (abfd, elf_gp (abfd), buf);
7340 if (bfd_bwrite (buf, 4, abfd) != 4)
7341 return false;
7342 }
7343 l += intopt.size;
7344 }
7345 }
7346
7347 if (hdr->bfd_section != NULL)
7348 {
7349 const char *name = bfd_section_name (hdr->bfd_section);
7350
7351 /* .sbss is not handled specially here because the GNU/Linux
7352 prelinker can convert .sbss from NOBITS to PROGBITS and
7353 changing it back to NOBITS breaks the binary. The entry in
7354 _bfd_mips_elf_special_sections will ensure the correct flags
7355 are set on .sbss if BFD creates it without reading it from an
7356 input file, and without special handling here the flags set
7357 on it in an input file will be followed. */
7358 if (strcmp (name, ".sdata") == 0
7359 || strcmp (name, ".lit8") == 0
7360 || strcmp (name, ".lit4") == 0)
7361 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7362 else if (strcmp (name, ".srdata") == 0)
7363 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7364 else if (strcmp (name, ".compact_rel") == 0)
7365 hdr->sh_flags = 0;
7366 else if (strcmp (name, ".rtproc") == 0)
7367 {
7368 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7369 {
7370 unsigned int adjust;
7371
7372 adjust = hdr->sh_size % hdr->sh_addralign;
7373 if (adjust != 0)
7374 hdr->sh_size += hdr->sh_addralign - adjust;
7375 }
7376 }
7377 }
7378
7379 return true;
7380 }
7381
7382 /* Handle a MIPS specific section when reading an object file. This
7383 is called when elfcode.h finds a section with an unknown type.
7384 This routine supports both the 32-bit and 64-bit ELF ABI. */
7385
7386 bool
7387 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7388 Elf_Internal_Shdr *hdr,
7389 const char *name,
7390 int shindex)
7391 {
7392 flagword flags = 0;
7393
7394 /* There ought to be a place to keep ELF backend specific flags, but
7395 at the moment there isn't one. We just keep track of the
7396 sections by their name, instead. Fortunately, the ABI gives
7397 suggested names for all the MIPS specific sections, so we will
7398 probably get away with this. */
7399 switch (hdr->sh_type)
7400 {
7401 case SHT_MIPS_LIBLIST:
7402 if (strcmp (name, ".liblist") != 0)
7403 return false;
7404 break;
7405 case SHT_MIPS_MSYM:
7406 if (strcmp (name, ".msym") != 0)
7407 return false;
7408 break;
7409 case SHT_MIPS_CONFLICT:
7410 if (strcmp (name, ".conflict") != 0)
7411 return false;
7412 break;
7413 case SHT_MIPS_GPTAB:
7414 if (! startswith (name, ".gptab."))
7415 return false;
7416 break;
7417 case SHT_MIPS_UCODE:
7418 if (strcmp (name, ".ucode") != 0)
7419 return false;
7420 break;
7421 case SHT_MIPS_DEBUG:
7422 if (strcmp (name, ".mdebug") != 0)
7423 return false;
7424 flags = SEC_DEBUGGING;
7425 break;
7426 case SHT_MIPS_REGINFO:
7427 if (strcmp (name, ".reginfo") != 0
7428 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7429 return false;
7430 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7431 break;
7432 case SHT_MIPS_IFACE:
7433 if (strcmp (name, ".MIPS.interfaces") != 0)
7434 return false;
7435 break;
7436 case SHT_MIPS_CONTENT:
7437 if (! startswith (name, ".MIPS.content"))
7438 return false;
7439 break;
7440 case SHT_MIPS_OPTIONS:
7441 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7442 return false;
7443 break;
7444 case SHT_MIPS_ABIFLAGS:
7445 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7446 return false;
7447 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7448 break;
7449 case SHT_MIPS_DWARF:
7450 if (! startswith (name, ".debug_")
7451 && ! startswith (name, ".gnu.debuglto_.debug_")
7452 && ! startswith (name, ".zdebug_")
7453 && ! startswith (name, ".gnu.debuglto_.zdebug_"))
7454 return false;
7455 break;
7456 case SHT_MIPS_SYMBOL_LIB:
7457 if (strcmp (name, ".MIPS.symlib") != 0)
7458 return false;
7459 break;
7460 case SHT_MIPS_EVENTS:
7461 if (! startswith (name, ".MIPS.events")
7462 && ! startswith (name, ".MIPS.post_rel"))
7463 return false;
7464 break;
7465 case SHT_MIPS_XHASH:
7466 if (strcmp (name, ".MIPS.xhash") != 0)
7467 return false;
7468 default:
7469 break;
7470 }
7471
7472 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7473 return false;
7474
7475 if (hdr->sh_flags & SHF_MIPS_GPREL)
7476 flags |= SEC_SMALL_DATA;
7477
7478 if (flags)
7479 {
7480 if (!bfd_set_section_flags (hdr->bfd_section,
7481 (bfd_section_flags (hdr->bfd_section)
7482 | flags)))
7483 return false;
7484 }
7485
7486 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7487 {
7488 Elf_External_ABIFlags_v0 ext;
7489
7490 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7491 &ext, 0, sizeof ext))
7492 return false;
7493 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7494 &mips_elf_tdata (abfd)->abiflags);
7495 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7496 return false;
7497 mips_elf_tdata (abfd)->abiflags_valid = true;
7498 }
7499
7500 /* FIXME: We should record sh_info for a .gptab section. */
7501
7502 /* For a .reginfo section, set the gp value in the tdata information
7503 from the contents of this section. We need the gp value while
7504 processing relocs, so we just get it now. The .reginfo section
7505 is not used in the 64-bit MIPS ELF ABI. */
7506 if (hdr->sh_type == SHT_MIPS_REGINFO)
7507 {
7508 Elf32_External_RegInfo ext;
7509 Elf32_RegInfo s;
7510
7511 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7512 &ext, 0, sizeof ext))
7513 return false;
7514 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7515 elf_gp (abfd) = s.ri_gp_value;
7516 }
7517
7518 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7519 set the gp value based on what we find. We may see both
7520 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7521 they should agree. */
7522 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7523 {
7524 bfd_byte *contents, *l, *lend;
7525
7526 if (!bfd_malloc_and_get_section (abfd, hdr->bfd_section, &contents))
7527 {
7528 free (contents);
7529 return false;
7530 }
7531 l = contents;
7532 lend = contents + hdr->sh_size;
7533 while (l + sizeof (Elf_External_Options) <= lend)
7534 {
7535 Elf_Internal_Options intopt;
7536
7537 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7538 &intopt);
7539 if (intopt.size < sizeof (Elf_External_Options))
7540 {
7541 bad_opt:
7542 _bfd_error_handler
7543 /* xgettext:c-format */
7544 (_("%pB: warning: truncated `%s' option"),
7545 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd));
7546 break;
7547 }
7548 if (intopt.kind == ODK_REGINFO)
7549 {
7550 if (ABI_64_P (abfd))
7551 {
7552 Elf64_Internal_RegInfo intreg;
7553 size_t needed = (sizeof (Elf_External_Options)
7554 + sizeof (Elf64_External_RegInfo));
7555 if (intopt.size < needed || (size_t) (lend - l) < needed)
7556 goto bad_opt;
7557 bfd_mips_elf64_swap_reginfo_in
7558 (abfd,
7559 ((Elf64_External_RegInfo *)
7560 (l + sizeof (Elf_External_Options))),
7561 &intreg);
7562 elf_gp (abfd) = intreg.ri_gp_value;
7563 }
7564 else
7565 {
7566 Elf32_RegInfo intreg;
7567 size_t needed = (sizeof (Elf_External_Options)
7568 + sizeof (Elf32_External_RegInfo));
7569 if (intopt.size < needed || (size_t) (lend - l) < needed)
7570 goto bad_opt;
7571 bfd_mips_elf32_swap_reginfo_in
7572 (abfd,
7573 ((Elf32_External_RegInfo *)
7574 (l + sizeof (Elf_External_Options))),
7575 &intreg);
7576 elf_gp (abfd) = intreg.ri_gp_value;
7577 }
7578 }
7579 l += intopt.size;
7580 }
7581 free (contents);
7582 }
7583
7584 return true;
7585 }
7586
7587 /* Set the correct type for a MIPS ELF section. We do this by the
7588 section name, which is a hack, but ought to work. This routine is
7589 used by both the 32-bit and the 64-bit ABI. */
7590
7591 bool
7592 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7593 {
7594 const char *name = bfd_section_name (sec);
7595
7596 if (strcmp (name, ".liblist") == 0)
7597 {
7598 hdr->sh_type = SHT_MIPS_LIBLIST;
7599 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7600 /* The sh_link field is set in final_write_processing. */
7601 }
7602 else if (strcmp (name, ".conflict") == 0)
7603 hdr->sh_type = SHT_MIPS_CONFLICT;
7604 else if (startswith (name, ".gptab."))
7605 {
7606 hdr->sh_type = SHT_MIPS_GPTAB;
7607 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7608 /* The sh_info field is set in final_write_processing. */
7609 }
7610 else if (strcmp (name, ".ucode") == 0)
7611 hdr->sh_type = SHT_MIPS_UCODE;
7612 else if (strcmp (name, ".mdebug") == 0)
7613 {
7614 hdr->sh_type = SHT_MIPS_DEBUG;
7615 /* In a shared object on IRIX 5.3, the .mdebug section has an
7616 entsize of 0. FIXME: Does this matter? */
7617 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7618 hdr->sh_entsize = 0;
7619 else
7620 hdr->sh_entsize = 1;
7621 }
7622 else if (strcmp (name, ".reginfo") == 0)
7623 {
7624 hdr->sh_type = SHT_MIPS_REGINFO;
7625 /* In a shared object on IRIX 5.3, the .reginfo section has an
7626 entsize of 0x18. FIXME: Does this matter? */
7627 if (SGI_COMPAT (abfd))
7628 {
7629 if ((abfd->flags & DYNAMIC) != 0)
7630 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7631 else
7632 hdr->sh_entsize = 1;
7633 }
7634 else
7635 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7636 }
7637 else if (SGI_COMPAT (abfd)
7638 && (strcmp (name, ".hash") == 0
7639 || strcmp (name, ".dynamic") == 0
7640 || strcmp (name, ".dynstr") == 0))
7641 {
7642 if (SGI_COMPAT (abfd))
7643 hdr->sh_entsize = 0;
7644 #if 0
7645 /* This isn't how the IRIX6 linker behaves. */
7646 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7647 #endif
7648 }
7649 else if (strcmp (name, ".got") == 0
7650 || strcmp (name, ".srdata") == 0
7651 || strcmp (name, ".sdata") == 0
7652 || strcmp (name, ".sbss") == 0
7653 || strcmp (name, ".lit4") == 0
7654 || strcmp (name, ".lit8") == 0)
7655 hdr->sh_flags |= SHF_MIPS_GPREL;
7656 else if (strcmp (name, ".MIPS.interfaces") == 0)
7657 {
7658 hdr->sh_type = SHT_MIPS_IFACE;
7659 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7660 }
7661 else if (startswith (name, ".MIPS.content"))
7662 {
7663 hdr->sh_type = SHT_MIPS_CONTENT;
7664 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7665 /* The sh_info field is set in final_write_processing. */
7666 }
7667 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7668 {
7669 hdr->sh_type = SHT_MIPS_OPTIONS;
7670 hdr->sh_entsize = 1;
7671 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7672 }
7673 else if (startswith (name, ".MIPS.abiflags"))
7674 {
7675 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7676 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7677 }
7678 else if (startswith (name, ".debug_")
7679 || startswith (name, ".gnu.debuglto_.debug_")
7680 || startswith (name, ".zdebug_")
7681 || startswith (name, ".gnu.debuglto_.zdebug_"))
7682 {
7683 hdr->sh_type = SHT_MIPS_DWARF;
7684
7685 /* Irix facilities such as libexc expect a single .debug_frame
7686 per executable, the system ones have NOSTRIP set and the linker
7687 doesn't merge sections with different flags so ... */
7688 if (SGI_COMPAT (abfd) && startswith (name, ".debug_frame"))
7689 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7690 }
7691 else if (strcmp (name, ".MIPS.symlib") == 0)
7692 {
7693 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7694 /* The sh_link and sh_info fields are set in
7695 final_write_processing. */
7696 }
7697 else if (startswith (name, ".MIPS.events")
7698 || startswith (name, ".MIPS.post_rel"))
7699 {
7700 hdr->sh_type = SHT_MIPS_EVENTS;
7701 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7702 /* The sh_link field is set in final_write_processing. */
7703 }
7704 else if (strcmp (name, ".msym") == 0)
7705 {
7706 hdr->sh_type = SHT_MIPS_MSYM;
7707 hdr->sh_flags |= SHF_ALLOC;
7708 hdr->sh_entsize = 8;
7709 }
7710 else if (strcmp (name, ".MIPS.xhash") == 0)
7711 {
7712 hdr->sh_type = SHT_MIPS_XHASH;
7713 hdr->sh_flags |= SHF_ALLOC;
7714 hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4;
7715 }
7716
7717 /* The generic elf_fake_sections will set up REL_HDR using the default
7718 kind of relocations. We used to set up a second header for the
7719 non-default kind of relocations here, but only NewABI would use
7720 these, and the IRIX ld doesn't like resulting empty RELA sections.
7721 Thus we create those header only on demand now. */
7722
7723 return true;
7724 }
7725
7726 /* Given a BFD section, try to locate the corresponding ELF section
7727 index. This is used by both the 32-bit and the 64-bit ABI.
7728 Actually, it's not clear to me that the 64-bit ABI supports these,
7729 but for non-PIC objects we will certainly want support for at least
7730 the .scommon section. */
7731
7732 bool
7733 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7734 asection *sec, int *retval)
7735 {
7736 if (strcmp (bfd_section_name (sec), ".scommon") == 0)
7737 {
7738 *retval = SHN_MIPS_SCOMMON;
7739 return true;
7740 }
7741 if (strcmp (bfd_section_name (sec), ".acommon") == 0)
7742 {
7743 *retval = SHN_MIPS_ACOMMON;
7744 return true;
7745 }
7746 return false;
7747 }
7748 \f
7749 /* Hook called by the linker routine which adds symbols from an object
7750 file. We must handle the special MIPS section numbers here. */
7751
7752 bool
7753 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7754 Elf_Internal_Sym *sym, const char **namep,
7755 flagword *flagsp ATTRIBUTE_UNUSED,
7756 asection **secp, bfd_vma *valp)
7757 {
7758 if (SGI_COMPAT (abfd)
7759 && (abfd->flags & DYNAMIC) != 0
7760 && strcmp (*namep, "_rld_new_interface") == 0)
7761 {
7762 /* Skip IRIX5 rld entry name. */
7763 *namep = NULL;
7764 return true;
7765 }
7766
7767 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7768 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7769 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7770 a magic symbol resolved by the linker, we ignore this bogus definition
7771 of _gp_disp. New ABI objects do not suffer from this problem so this
7772 is not done for them. */
7773 if (!NEWABI_P(abfd)
7774 && (sym->st_shndx == SHN_ABS)
7775 && (strcmp (*namep, "_gp_disp") == 0))
7776 {
7777 *namep = NULL;
7778 return true;
7779 }
7780
7781 switch (sym->st_shndx)
7782 {
7783 case SHN_COMMON:
7784 /* Common symbols less than the GP size are automatically
7785 treated as SHN_MIPS_SCOMMON symbols. */
7786 if (sym->st_size > elf_gp_size (abfd)
7787 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7788 || IRIX_COMPAT (abfd) == ict_irix6)
7789 break;
7790 /* Fall through. */
7791 case SHN_MIPS_SCOMMON:
7792 *secp = bfd_make_section_old_way (abfd, ".scommon");
7793 (*secp)->flags |= SEC_IS_COMMON | SEC_SMALL_DATA;
7794 *valp = sym->st_size;
7795 break;
7796
7797 case SHN_MIPS_TEXT:
7798 /* This section is used in a shared object. */
7799 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7800 {
7801 asymbol *elf_text_symbol;
7802 asection *elf_text_section;
7803 size_t amt = sizeof (asection);
7804
7805 elf_text_section = bfd_zalloc (abfd, amt);
7806 if (elf_text_section == NULL)
7807 return false;
7808
7809 amt = sizeof (asymbol);
7810 elf_text_symbol = bfd_zalloc (abfd, amt);
7811 if (elf_text_symbol == NULL)
7812 return false;
7813
7814 /* Initialize the section. */
7815
7816 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7817 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7818
7819 elf_text_section->symbol = elf_text_symbol;
7820 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7821
7822 elf_text_section->name = ".text";
7823 elf_text_section->flags = SEC_NO_FLAGS;
7824 elf_text_section->output_section = NULL;
7825 elf_text_section->owner = abfd;
7826 elf_text_symbol->name = ".text";
7827 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7828 elf_text_symbol->section = elf_text_section;
7829 }
7830 /* This code used to do *secp = bfd_und_section_ptr if
7831 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7832 so I took it out. */
7833 *secp = mips_elf_tdata (abfd)->elf_text_section;
7834 break;
7835
7836 case SHN_MIPS_ACOMMON:
7837 /* Fall through. XXX Can we treat this as allocated data? */
7838 case SHN_MIPS_DATA:
7839 /* This section is used in a shared object. */
7840 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7841 {
7842 asymbol *elf_data_symbol;
7843 asection *elf_data_section;
7844 size_t amt = sizeof (asection);
7845
7846 elf_data_section = bfd_zalloc (abfd, amt);
7847 if (elf_data_section == NULL)
7848 return false;
7849
7850 amt = sizeof (asymbol);
7851 elf_data_symbol = bfd_zalloc (abfd, amt);
7852 if (elf_data_symbol == NULL)
7853 return false;
7854
7855 /* Initialize the section. */
7856
7857 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7858 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7859
7860 elf_data_section->symbol = elf_data_symbol;
7861 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7862
7863 elf_data_section->name = ".data";
7864 elf_data_section->flags = SEC_NO_FLAGS;
7865 elf_data_section->output_section = NULL;
7866 elf_data_section->owner = abfd;
7867 elf_data_symbol->name = ".data";
7868 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7869 elf_data_symbol->section = elf_data_section;
7870 }
7871 /* This code used to do *secp = bfd_und_section_ptr if
7872 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7873 so I took it out. */
7874 *secp = mips_elf_tdata (abfd)->elf_data_section;
7875 break;
7876
7877 case SHN_MIPS_SUNDEFINED:
7878 *secp = bfd_und_section_ptr;
7879 break;
7880 }
7881
7882 if (SGI_COMPAT (abfd)
7883 && ! bfd_link_pic (info)
7884 && info->output_bfd->xvec == abfd->xvec
7885 && strcmp (*namep, "__rld_obj_head") == 0)
7886 {
7887 struct elf_link_hash_entry *h;
7888 struct bfd_link_hash_entry *bh;
7889
7890 /* Mark __rld_obj_head as dynamic. */
7891 bh = NULL;
7892 if (! (_bfd_generic_link_add_one_symbol
7893 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, false,
7894 get_elf_backend_data (abfd)->collect, &bh)))
7895 return false;
7896
7897 h = (struct elf_link_hash_entry *) bh;
7898 h->non_elf = 0;
7899 h->def_regular = 1;
7900 h->type = STT_OBJECT;
7901
7902 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7903 return false;
7904
7905 mips_elf_hash_table (info)->use_rld_obj_head = true;
7906 mips_elf_hash_table (info)->rld_symbol = h;
7907 }
7908
7909 /* If this is a mips16 text symbol, add 1 to the value to make it
7910 odd. This will cause something like .word SYM to come up with
7911 the right value when it is loaded into the PC. */
7912 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7913 ++*valp;
7914
7915 return true;
7916 }
7917
7918 /* This hook function is called before the linker writes out a global
7919 symbol. We mark symbols as small common if appropriate. This is
7920 also where we undo the increment of the value for a mips16 symbol. */
7921
7922 int
7923 _bfd_mips_elf_link_output_symbol_hook
7924 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7925 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7926 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7927 {
7928 /* If we see a common symbol, which implies a relocatable link, then
7929 if a symbol was small common in an input file, mark it as small
7930 common in the output file. */
7931 if (sym->st_shndx == SHN_COMMON
7932 && strcmp (input_sec->name, ".scommon") == 0)
7933 sym->st_shndx = SHN_MIPS_SCOMMON;
7934
7935 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7936 sym->st_value &= ~1;
7937
7938 return 1;
7939 }
7940 \f
7941 /* Functions for the dynamic linker. */
7942
7943 /* Create dynamic sections when linking against a dynamic object. */
7944
7945 bool
7946 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7947 {
7948 struct elf_link_hash_entry *h;
7949 struct bfd_link_hash_entry *bh;
7950 flagword flags;
7951 register asection *s;
7952 const char * const *namep;
7953 struct mips_elf_link_hash_table *htab;
7954
7955 htab = mips_elf_hash_table (info);
7956 BFD_ASSERT (htab != NULL);
7957
7958 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7959 | SEC_LINKER_CREATED | SEC_READONLY);
7960
7961 /* The psABI requires a read-only .dynamic section, but the VxWorks
7962 EABI doesn't. */
7963 if (htab->root.target_os != is_vxworks)
7964 {
7965 s = bfd_get_linker_section (abfd, ".dynamic");
7966 if (s != NULL)
7967 {
7968 if (!bfd_set_section_flags (s, flags))
7969 return false;
7970 }
7971 }
7972
7973 /* We need to create .got section. */
7974 if (!mips_elf_create_got_section (abfd, info))
7975 return false;
7976
7977 if (! mips_elf_rel_dyn_section (info, true))
7978 return false;
7979
7980 /* Create .stub section. */
7981 s = bfd_make_section_anyway_with_flags (abfd,
7982 MIPS_ELF_STUB_SECTION_NAME (abfd),
7983 flags | SEC_CODE);
7984 if (s == NULL
7985 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7986 return false;
7987 htab->sstubs = s;
7988
7989 if (!mips_elf_hash_table (info)->use_rld_obj_head
7990 && bfd_link_executable (info)
7991 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7992 {
7993 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7994 flags &~ (flagword) SEC_READONLY);
7995 if (s == NULL
7996 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7997 return false;
7998 }
7999
8000 /* Create .MIPS.xhash section. */
8001 if (info->emit_gnu_hash)
8002 s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash",
8003 flags | SEC_READONLY);
8004
8005 /* On IRIX5, we adjust add some additional symbols and change the
8006 alignments of several sections. There is no ABI documentation
8007 indicating that this is necessary on IRIX6, nor any evidence that
8008 the linker takes such action. */
8009 if (IRIX_COMPAT (abfd) == ict_irix5)
8010 {
8011 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8012 {
8013 bh = NULL;
8014 if (! (_bfd_generic_link_add_one_symbol
8015 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8016 NULL, false, get_elf_backend_data (abfd)->collect, &bh)))
8017 return false;
8018
8019 h = (struct elf_link_hash_entry *) bh;
8020 h->mark = 1;
8021 h->non_elf = 0;
8022 h->def_regular = 1;
8023 h->type = STT_SECTION;
8024
8025 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8026 return false;
8027 }
8028
8029 /* We need to create a .compact_rel section. */
8030 if (SGI_COMPAT (abfd))
8031 {
8032 if (!mips_elf_create_compact_rel_section (abfd, info))
8033 return false;
8034 }
8035
8036 /* Change alignments of some sections. */
8037 s = bfd_get_linker_section (abfd, ".hash");
8038 if (s != NULL)
8039 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8040
8041 s = bfd_get_linker_section (abfd, ".dynsym");
8042 if (s != NULL)
8043 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8044
8045 s = bfd_get_linker_section (abfd, ".dynstr");
8046 if (s != NULL)
8047 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8048
8049 /* ??? */
8050 s = bfd_get_section_by_name (abfd, ".reginfo");
8051 if (s != NULL)
8052 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8053
8054 s = bfd_get_linker_section (abfd, ".dynamic");
8055 if (s != NULL)
8056 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8057 }
8058
8059 if (bfd_link_executable (info))
8060 {
8061 const char *name;
8062
8063 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8064 bh = NULL;
8065 if (!(_bfd_generic_link_add_one_symbol
8066 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8067 NULL, false, get_elf_backend_data (abfd)->collect, &bh)))
8068 return false;
8069
8070 h = (struct elf_link_hash_entry *) bh;
8071 h->non_elf = 0;
8072 h->def_regular = 1;
8073 h->type = STT_SECTION;
8074
8075 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8076 return false;
8077
8078 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8079 {
8080 /* __rld_map is a four byte word located in the .data section
8081 and is filled in by the rtld to contain a pointer to
8082 the _r_debug structure. Its symbol value will be set in
8083 _bfd_mips_elf_finish_dynamic_symbol. */
8084 s = bfd_get_linker_section (abfd, ".rld_map");
8085 BFD_ASSERT (s != NULL);
8086
8087 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8088 bh = NULL;
8089 if (!(_bfd_generic_link_add_one_symbol
8090 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, false,
8091 get_elf_backend_data (abfd)->collect, &bh)))
8092 return false;
8093
8094 h = (struct elf_link_hash_entry *) bh;
8095 h->non_elf = 0;
8096 h->def_regular = 1;
8097 h->type = STT_OBJECT;
8098
8099 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8100 return false;
8101 mips_elf_hash_table (info)->rld_symbol = h;
8102 }
8103 }
8104
8105 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8106 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8107 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8108 return false;
8109
8110 /* Do the usual VxWorks handling. */
8111 if (htab->root.target_os == is_vxworks
8112 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8113 return false;
8114
8115 return true;
8116 }
8117 \f
8118 /* Return true if relocation REL against section SEC is a REL rather than
8119 RELA relocation. RELOCS is the first relocation in the section and
8120 ABFD is the bfd that contains SEC. */
8121
8122 static bool
8123 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8124 const Elf_Internal_Rela *relocs,
8125 const Elf_Internal_Rela *rel)
8126 {
8127 Elf_Internal_Shdr *rel_hdr;
8128 const struct elf_backend_data *bed;
8129
8130 /* To determine which flavor of relocation this is, we depend on the
8131 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8132 rel_hdr = elf_section_data (sec)->rel.hdr;
8133 if (rel_hdr == NULL)
8134 return false;
8135 bed = get_elf_backend_data (abfd);
8136 return ((size_t) (rel - relocs)
8137 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8138 }
8139
8140 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8141 HOWTO is the relocation's howto and CONTENTS points to the contents
8142 of the section that REL is against. */
8143
8144 static bfd_vma
8145 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8146 reloc_howto_type *howto, bfd_byte *contents)
8147 {
8148 bfd_byte *location;
8149 unsigned int r_type;
8150 bfd_vma addend;
8151 bfd_vma bytes;
8152
8153 r_type = ELF_R_TYPE (abfd, rel->r_info);
8154 location = contents + rel->r_offset;
8155
8156 /* Get the addend, which is stored in the input file. */
8157 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, false, location);
8158 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8159 _bfd_mips_elf_reloc_shuffle (abfd, r_type, false, location);
8160
8161 addend = bytes & howto->src_mask;
8162
8163 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8164 accordingly. */
8165 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8166 addend <<= 1;
8167
8168 return addend;
8169 }
8170
8171 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8172 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8173 and update *ADDEND with the final addend. Return true on success
8174 or false if the LO16 could not be found. RELEND is the exclusive
8175 upper bound on the relocations for REL's section. */
8176
8177 static bool
8178 mips_elf_add_lo16_rel_addend (bfd *abfd,
8179 const Elf_Internal_Rela *rel,
8180 const Elf_Internal_Rela *relend,
8181 bfd_byte *contents, bfd_vma *addend)
8182 {
8183 unsigned int r_type, lo16_type;
8184 const Elf_Internal_Rela *lo16_relocation;
8185 reloc_howto_type *lo16_howto;
8186 bfd_vma l;
8187
8188 r_type = ELF_R_TYPE (abfd, rel->r_info);
8189 if (mips16_reloc_p (r_type))
8190 lo16_type = R_MIPS16_LO16;
8191 else if (micromips_reloc_p (r_type))
8192 lo16_type = R_MICROMIPS_LO16;
8193 else if (r_type == R_MIPS_PCHI16)
8194 lo16_type = R_MIPS_PCLO16;
8195 else
8196 lo16_type = R_MIPS_LO16;
8197
8198 /* The combined value is the sum of the HI16 addend, left-shifted by
8199 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8200 code does a `lui' of the HI16 value, and then an `addiu' of the
8201 LO16 value.)
8202
8203 Scan ahead to find a matching LO16 relocation.
8204
8205 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8206 be immediately following. However, for the IRIX6 ABI, the next
8207 relocation may be a composed relocation consisting of several
8208 relocations for the same address. In that case, the R_MIPS_LO16
8209 relocation may occur as one of these. We permit a similar
8210 extension in general, as that is useful for GCC.
8211
8212 In some cases GCC dead code elimination removes the LO16 but keeps
8213 the corresponding HI16. This is strictly speaking a violation of
8214 the ABI but not immediately harmful. */
8215 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8216 if (lo16_relocation == NULL)
8217 return false;
8218
8219 /* Obtain the addend kept there. */
8220 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, false);
8221 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8222
8223 l <<= lo16_howto->rightshift;
8224 l = _bfd_mips_elf_sign_extend (l, 16);
8225
8226 *addend <<= 16;
8227 *addend += l;
8228 return true;
8229 }
8230
8231 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8232 store the contents in *CONTENTS on success. Assume that *CONTENTS
8233 already holds the contents if it is nonull on entry. */
8234
8235 static bool
8236 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8237 {
8238 if (*contents)
8239 return true;
8240
8241 /* Get cached copy if it exists. */
8242 if (elf_section_data (sec)->this_hdr.contents != NULL)
8243 {
8244 *contents = elf_section_data (sec)->this_hdr.contents;
8245 return true;
8246 }
8247
8248 return bfd_malloc_and_get_section (abfd, sec, contents);
8249 }
8250
8251 /* Make a new PLT record to keep internal data. */
8252
8253 static struct plt_entry *
8254 mips_elf_make_plt_record (bfd *abfd)
8255 {
8256 struct plt_entry *entry;
8257
8258 entry = bfd_zalloc (abfd, sizeof (*entry));
8259 if (entry == NULL)
8260 return NULL;
8261
8262 entry->stub_offset = MINUS_ONE;
8263 entry->mips_offset = MINUS_ONE;
8264 entry->comp_offset = MINUS_ONE;
8265 entry->gotplt_index = MINUS_ONE;
8266 return entry;
8267 }
8268
8269 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8270 for PIC code, as otherwise there is no load-time relocation involved
8271 and local GOT entries whose value is zero at static link time will
8272 retain their value at load time. */
8273
8274 static bool
8275 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8276 struct mips_elf_link_hash_table *htab,
8277 unsigned int r_type)
8278 {
8279 union
8280 {
8281 struct elf_link_hash_entry *eh;
8282 struct bfd_link_hash_entry *bh;
8283 }
8284 hzero;
8285
8286 BFD_ASSERT (!htab->use_absolute_zero);
8287 BFD_ASSERT (bfd_link_pic (info));
8288
8289 hzero.bh = NULL;
8290 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8291 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8292 NULL, false, false, &hzero.bh))
8293 return false;
8294
8295 BFD_ASSERT (hzero.bh != NULL);
8296 hzero.eh->size = 0;
8297 hzero.eh->type = STT_NOTYPE;
8298 hzero.eh->other = STV_PROTECTED;
8299 hzero.eh->def_regular = 1;
8300 hzero.eh->non_elf = 0;
8301
8302 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, true, r_type))
8303 return false;
8304
8305 htab->use_absolute_zero = true;
8306
8307 return true;
8308 }
8309
8310 /* Look through the relocs for a section during the first phase, and
8311 allocate space in the global offset table and record the need for
8312 standard MIPS and compressed procedure linkage table entries. */
8313
8314 bool
8315 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8316 asection *sec, const Elf_Internal_Rela *relocs)
8317 {
8318 const char *name;
8319 bfd *dynobj;
8320 Elf_Internal_Shdr *symtab_hdr;
8321 struct elf_link_hash_entry **sym_hashes;
8322 size_t extsymoff;
8323 const Elf_Internal_Rela *rel;
8324 const Elf_Internal_Rela *rel_end;
8325 asection *sreloc;
8326 const struct elf_backend_data *bed;
8327 struct mips_elf_link_hash_table *htab;
8328 bfd_byte *contents;
8329 bfd_vma addend;
8330 reloc_howto_type *howto;
8331
8332 if (bfd_link_relocatable (info))
8333 return true;
8334
8335 htab = mips_elf_hash_table (info);
8336 BFD_ASSERT (htab != NULL);
8337
8338 dynobj = elf_hash_table (info)->dynobj;
8339 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8340 sym_hashes = elf_sym_hashes (abfd);
8341 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8342
8343 bed = get_elf_backend_data (abfd);
8344 rel_end = relocs + sec->reloc_count;
8345
8346 /* Check for the mips16 stub sections. */
8347
8348 name = bfd_section_name (sec);
8349 if (FN_STUB_P (name))
8350 {
8351 unsigned long r_symndx;
8352
8353 /* Look at the relocation information to figure out which symbol
8354 this is for. */
8355
8356 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8357 if (r_symndx == 0)
8358 {
8359 _bfd_error_handler
8360 /* xgettext:c-format */
8361 (_("%pB: warning: cannot determine the target function for"
8362 " stub section `%s'"),
8363 abfd, name);
8364 bfd_set_error (bfd_error_bad_value);
8365 return false;
8366 }
8367
8368 if (r_symndx < extsymoff
8369 || sym_hashes[r_symndx - extsymoff] == NULL)
8370 {
8371 asection *o;
8372
8373 /* This stub is for a local symbol. This stub will only be
8374 needed if there is some relocation in this BFD, other
8375 than a 16 bit function call, which refers to this symbol. */
8376 for (o = abfd->sections; o != NULL; o = o->next)
8377 {
8378 Elf_Internal_Rela *sec_relocs;
8379 const Elf_Internal_Rela *r, *rend;
8380
8381 /* We can ignore stub sections when looking for relocs. */
8382 if ((o->flags & SEC_RELOC) == 0
8383 || o->reloc_count == 0
8384 || section_allows_mips16_refs_p (o))
8385 continue;
8386
8387 sec_relocs
8388 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8389 info->keep_memory);
8390 if (sec_relocs == NULL)
8391 return false;
8392
8393 rend = sec_relocs + o->reloc_count;
8394 for (r = sec_relocs; r < rend; r++)
8395 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8396 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8397 break;
8398
8399 if (elf_section_data (o)->relocs != sec_relocs)
8400 free (sec_relocs);
8401
8402 if (r < rend)
8403 break;
8404 }
8405
8406 if (o == NULL)
8407 {
8408 /* There is no non-call reloc for this stub, so we do
8409 not need it. Since this function is called before
8410 the linker maps input sections to output sections, we
8411 can easily discard it by setting the SEC_EXCLUDE
8412 flag. */
8413 sec->flags |= SEC_EXCLUDE;
8414 return true;
8415 }
8416
8417 /* Record this stub in an array of local symbol stubs for
8418 this BFD. */
8419 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8420 {
8421 unsigned long symcount;
8422 asection **n;
8423 bfd_size_type amt;
8424
8425 if (elf_bad_symtab (abfd))
8426 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8427 else
8428 symcount = symtab_hdr->sh_info;
8429 amt = symcount * sizeof (asection *);
8430 n = bfd_zalloc (abfd, amt);
8431 if (n == NULL)
8432 return false;
8433 mips_elf_tdata (abfd)->local_stubs = n;
8434 }
8435
8436 sec->flags |= SEC_KEEP;
8437 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8438
8439 /* We don't need to set mips16_stubs_seen in this case.
8440 That flag is used to see whether we need to look through
8441 the global symbol table for stubs. We don't need to set
8442 it here, because we just have a local stub. */
8443 }
8444 else
8445 {
8446 struct mips_elf_link_hash_entry *h;
8447
8448 h = ((struct mips_elf_link_hash_entry *)
8449 sym_hashes[r_symndx - extsymoff]);
8450
8451 while (h->root.root.type == bfd_link_hash_indirect
8452 || h->root.root.type == bfd_link_hash_warning)
8453 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8454
8455 /* H is the symbol this stub is for. */
8456
8457 /* If we already have an appropriate stub for this function, we
8458 don't need another one, so we can discard this one. Since
8459 this function is called before the linker maps input sections
8460 to output sections, we can easily discard it by setting the
8461 SEC_EXCLUDE flag. */
8462 if (h->fn_stub != NULL)
8463 {
8464 sec->flags |= SEC_EXCLUDE;
8465 return true;
8466 }
8467
8468 sec->flags |= SEC_KEEP;
8469 h->fn_stub = sec;
8470 mips_elf_hash_table (info)->mips16_stubs_seen = true;
8471 }
8472 }
8473 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8474 {
8475 unsigned long r_symndx;
8476 struct mips_elf_link_hash_entry *h;
8477 asection **loc;
8478
8479 /* Look at the relocation information to figure out which symbol
8480 this is for. */
8481
8482 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8483 if (r_symndx == 0)
8484 {
8485 _bfd_error_handler
8486 /* xgettext:c-format */
8487 (_("%pB: warning: cannot determine the target function for"
8488 " stub section `%s'"),
8489 abfd, name);
8490 bfd_set_error (bfd_error_bad_value);
8491 return false;
8492 }
8493
8494 if (r_symndx < extsymoff
8495 || sym_hashes[r_symndx - extsymoff] == NULL)
8496 {
8497 asection *o;
8498
8499 /* This stub is for a local symbol. This stub will only be
8500 needed if there is some relocation (R_MIPS16_26) in this BFD
8501 that refers to this symbol. */
8502 for (o = abfd->sections; o != NULL; o = o->next)
8503 {
8504 Elf_Internal_Rela *sec_relocs;
8505 const Elf_Internal_Rela *r, *rend;
8506
8507 /* We can ignore stub sections when looking for relocs. */
8508 if ((o->flags & SEC_RELOC) == 0
8509 || o->reloc_count == 0
8510 || section_allows_mips16_refs_p (o))
8511 continue;
8512
8513 sec_relocs
8514 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8515 info->keep_memory);
8516 if (sec_relocs == NULL)
8517 return false;
8518
8519 rend = sec_relocs + o->reloc_count;
8520 for (r = sec_relocs; r < rend; r++)
8521 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8522 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8523 break;
8524
8525 if (elf_section_data (o)->relocs != sec_relocs)
8526 free (sec_relocs);
8527
8528 if (r < rend)
8529 break;
8530 }
8531
8532 if (o == NULL)
8533 {
8534 /* There is no non-call reloc for this stub, so we do
8535 not need it. Since this function is called before
8536 the linker maps input sections to output sections, we
8537 can easily discard it by setting the SEC_EXCLUDE
8538 flag. */
8539 sec->flags |= SEC_EXCLUDE;
8540 return true;
8541 }
8542
8543 /* Record this stub in an array of local symbol call_stubs for
8544 this BFD. */
8545 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8546 {
8547 unsigned long symcount;
8548 asection **n;
8549 bfd_size_type amt;
8550
8551 if (elf_bad_symtab (abfd))
8552 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8553 else
8554 symcount = symtab_hdr->sh_info;
8555 amt = symcount * sizeof (asection *);
8556 n = bfd_zalloc (abfd, amt);
8557 if (n == NULL)
8558 return false;
8559 mips_elf_tdata (abfd)->local_call_stubs = n;
8560 }
8561
8562 sec->flags |= SEC_KEEP;
8563 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8564
8565 /* We don't need to set mips16_stubs_seen in this case.
8566 That flag is used to see whether we need to look through
8567 the global symbol table for stubs. We don't need to set
8568 it here, because we just have a local stub. */
8569 }
8570 else
8571 {
8572 h = ((struct mips_elf_link_hash_entry *)
8573 sym_hashes[r_symndx - extsymoff]);
8574
8575 /* H is the symbol this stub is for. */
8576
8577 if (CALL_FP_STUB_P (name))
8578 loc = &h->call_fp_stub;
8579 else
8580 loc = &h->call_stub;
8581
8582 /* If we already have an appropriate stub for this function, we
8583 don't need another one, so we can discard this one. Since
8584 this function is called before the linker maps input sections
8585 to output sections, we can easily discard it by setting the
8586 SEC_EXCLUDE flag. */
8587 if (*loc != NULL)
8588 {
8589 sec->flags |= SEC_EXCLUDE;
8590 return true;
8591 }
8592
8593 sec->flags |= SEC_KEEP;
8594 *loc = sec;
8595 mips_elf_hash_table (info)->mips16_stubs_seen = true;
8596 }
8597 }
8598
8599 sreloc = NULL;
8600 contents = NULL;
8601 for (rel = relocs; rel < rel_end; ++rel)
8602 {
8603 unsigned long r_symndx;
8604 unsigned int r_type;
8605 struct elf_link_hash_entry *h;
8606 bool can_make_dynamic_p;
8607 bool call_reloc_p;
8608 bool constrain_symbol_p;
8609
8610 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8611 r_type = ELF_R_TYPE (abfd, rel->r_info);
8612
8613 if (r_symndx < extsymoff)
8614 h = NULL;
8615 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8616 {
8617 _bfd_error_handler
8618 /* xgettext:c-format */
8619 (_("%pB: malformed reloc detected for section %s"),
8620 abfd, name);
8621 bfd_set_error (bfd_error_bad_value);
8622 return false;
8623 }
8624 else
8625 {
8626 h = sym_hashes[r_symndx - extsymoff];
8627 if (h != NULL)
8628 {
8629 while (h->root.type == bfd_link_hash_indirect
8630 || h->root.type == bfd_link_hash_warning)
8631 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8632 }
8633 }
8634
8635 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8636 relocation into a dynamic one. */
8637 can_make_dynamic_p = false;
8638
8639 /* Set CALL_RELOC_P to true if the relocation is for a call,
8640 and if pointer equality therefore doesn't matter. */
8641 call_reloc_p = false;
8642
8643 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8644 into account when deciding how to define the symbol. */
8645 constrain_symbol_p = true;
8646
8647 switch (r_type)
8648 {
8649 case R_MIPS_CALL16:
8650 case R_MIPS_CALL_HI16:
8651 case R_MIPS_CALL_LO16:
8652 case R_MIPS16_CALL16:
8653 case R_MICROMIPS_CALL16:
8654 case R_MICROMIPS_CALL_HI16:
8655 case R_MICROMIPS_CALL_LO16:
8656 call_reloc_p = true;
8657 /* Fall through. */
8658
8659 case R_MIPS_GOT16:
8660 case R_MIPS_GOT_LO16:
8661 case R_MIPS_GOT_PAGE:
8662 case R_MIPS_GOT_DISP:
8663 case R_MIPS16_GOT16:
8664 case R_MICROMIPS_GOT16:
8665 case R_MICROMIPS_GOT_LO16:
8666 case R_MICROMIPS_GOT_PAGE:
8667 case R_MICROMIPS_GOT_DISP:
8668 /* If we have a symbol that will resolve to zero at static link
8669 time and it is used by a GOT relocation applied to code we
8670 cannot relax to an immediate zero load, then we will be using
8671 the special `__gnu_absolute_zero' symbol whose value is zero
8672 at dynamic load time. We ignore HI16-type GOT relocations at
8673 this stage, because their handling will depend entirely on
8674 the corresponding LO16-type GOT relocation. */
8675 if (!call_hi16_reloc_p (r_type)
8676 && h != NULL
8677 && bfd_link_pic (info)
8678 && !htab->use_absolute_zero
8679 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8680 {
8681 bool rel_reloc;
8682
8683 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8684 return false;
8685
8686 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8687 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8688
8689 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8690 false))
8691 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8692 return false;
8693 }
8694
8695 /* Fall through. */
8696 case R_MIPS_GOT_HI16:
8697 case R_MIPS_GOT_OFST:
8698 case R_MIPS_TLS_GOTTPREL:
8699 case R_MIPS_TLS_GD:
8700 case R_MIPS_TLS_LDM:
8701 case R_MIPS16_TLS_GOTTPREL:
8702 case R_MIPS16_TLS_GD:
8703 case R_MIPS16_TLS_LDM:
8704 case R_MICROMIPS_GOT_HI16:
8705 case R_MICROMIPS_GOT_OFST:
8706 case R_MICROMIPS_TLS_GOTTPREL:
8707 case R_MICROMIPS_TLS_GD:
8708 case R_MICROMIPS_TLS_LDM:
8709 if (dynobj == NULL)
8710 elf_hash_table (info)->dynobj = dynobj = abfd;
8711 if (!mips_elf_create_got_section (dynobj, info))
8712 return false;
8713 if (htab->root.target_os == is_vxworks
8714 && !bfd_link_pic (info))
8715 {
8716 _bfd_error_handler
8717 /* xgettext:c-format */
8718 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8719 abfd, (uint64_t) rel->r_offset);
8720 bfd_set_error (bfd_error_bad_value);
8721 return false;
8722 }
8723 can_make_dynamic_p = true;
8724 break;
8725
8726 case R_MIPS_NONE:
8727 case R_MIPS_JALR:
8728 case R_MICROMIPS_JALR:
8729 /* These relocations have empty fields and are purely there to
8730 provide link information. The symbol value doesn't matter. */
8731 constrain_symbol_p = false;
8732 break;
8733
8734 case R_MIPS_GPREL16:
8735 case R_MIPS_GPREL32:
8736 case R_MIPS16_GPREL:
8737 case R_MICROMIPS_GPREL16:
8738 /* GP-relative relocations always resolve to a definition in a
8739 regular input file, ignoring the one-definition rule. This is
8740 important for the GP setup sequence in NewABI code, which
8741 always resolves to a local function even if other relocations
8742 against the symbol wouldn't. */
8743 constrain_symbol_p = false;
8744 break;
8745
8746 case R_MIPS_32:
8747 case R_MIPS_REL32:
8748 case R_MIPS_64:
8749 /* In VxWorks executables, references to external symbols
8750 must be handled using copy relocs or PLT entries; it is not
8751 possible to convert this relocation into a dynamic one.
8752
8753 For executables that use PLTs and copy-relocs, we have a
8754 choice between converting the relocation into a dynamic
8755 one or using copy relocations or PLT entries. It is
8756 usually better to do the former, unless the relocation is
8757 against a read-only section. */
8758 if ((bfd_link_pic (info)
8759 || (h != NULL
8760 && htab->root.target_os != is_vxworks
8761 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8762 && !(!info->nocopyreloc
8763 && !PIC_OBJECT_P (abfd)
8764 && MIPS_ELF_READONLY_SECTION (sec))))
8765 && (sec->flags & SEC_ALLOC) != 0)
8766 {
8767 can_make_dynamic_p = true;
8768 if (dynobj == NULL)
8769 elf_hash_table (info)->dynobj = dynobj = abfd;
8770 }
8771 break;
8772
8773 case R_MIPS_26:
8774 case R_MIPS_PC16:
8775 case R_MIPS_PC21_S2:
8776 case R_MIPS_PC26_S2:
8777 case R_MIPS16_26:
8778 case R_MIPS16_PC16_S1:
8779 case R_MICROMIPS_26_S1:
8780 case R_MICROMIPS_PC7_S1:
8781 case R_MICROMIPS_PC10_S1:
8782 case R_MICROMIPS_PC16_S1:
8783 case R_MICROMIPS_PC23_S2:
8784 call_reloc_p = true;
8785 break;
8786 }
8787
8788 if (h)
8789 {
8790 if (constrain_symbol_p)
8791 {
8792 if (!can_make_dynamic_p)
8793 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8794
8795 if (!call_reloc_p)
8796 h->pointer_equality_needed = 1;
8797
8798 /* We must not create a stub for a symbol that has
8799 relocations related to taking the function's address.
8800 This doesn't apply to VxWorks, where CALL relocs refer
8801 to a .got.plt entry instead of a normal .got entry. */
8802 if (htab->root.target_os != is_vxworks
8803 && (!can_make_dynamic_p || !call_reloc_p))
8804 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = true;
8805 }
8806
8807 /* Relocations against the special VxWorks __GOTT_BASE__ and
8808 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8809 room for them in .rela.dyn. */
8810 if (is_gott_symbol (info, h))
8811 {
8812 if (sreloc == NULL)
8813 {
8814 sreloc = mips_elf_rel_dyn_section (info, true);
8815 if (sreloc == NULL)
8816 return false;
8817 }
8818 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8819 if (MIPS_ELF_READONLY_SECTION (sec))
8820 /* We tell the dynamic linker that there are
8821 relocations against the text segment. */
8822 info->flags |= DF_TEXTREL;
8823 }
8824 }
8825 else if (call_lo16_reloc_p (r_type)
8826 || got_lo16_reloc_p (r_type)
8827 || got_disp_reloc_p (r_type)
8828 || (got16_reloc_p (r_type)
8829 && htab->root.target_os == is_vxworks))
8830 {
8831 /* We may need a local GOT entry for this relocation. We
8832 don't count R_MIPS_GOT_PAGE because we can estimate the
8833 maximum number of pages needed by looking at the size of
8834 the segment. Similar comments apply to R_MIPS*_GOT16 and
8835 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8836 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8837 R_MIPS_CALL_HI16 because these are always followed by an
8838 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8839 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8840 rel->r_addend, info, r_type))
8841 return false;
8842 }
8843
8844 if (h != NULL
8845 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8846 ELF_ST_IS_MIPS16 (h->other)))
8847 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = true;
8848
8849 switch (r_type)
8850 {
8851 case R_MIPS_CALL16:
8852 case R_MIPS16_CALL16:
8853 case R_MICROMIPS_CALL16:
8854 if (h == NULL)
8855 {
8856 _bfd_error_handler
8857 /* xgettext:c-format */
8858 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8859 abfd, (uint64_t) rel->r_offset);
8860 bfd_set_error (bfd_error_bad_value);
8861 return false;
8862 }
8863 /* Fall through. */
8864
8865 case R_MIPS_CALL_HI16:
8866 case R_MIPS_CALL_LO16:
8867 case R_MICROMIPS_CALL_HI16:
8868 case R_MICROMIPS_CALL_LO16:
8869 if (h != NULL)
8870 {
8871 /* Make sure there is room in the regular GOT to hold the
8872 function's address. We may eliminate it in favour of
8873 a .got.plt entry later; see mips_elf_count_got_symbols. */
8874 if (!mips_elf_record_global_got_symbol (h, abfd, info, true,
8875 r_type))
8876 return false;
8877
8878 /* We need a stub, not a plt entry for the undefined
8879 function. But we record it as if it needs plt. See
8880 _bfd_elf_adjust_dynamic_symbol. */
8881 h->needs_plt = 1;
8882 h->type = STT_FUNC;
8883 }
8884 break;
8885
8886 case R_MIPS_GOT_PAGE:
8887 case R_MICROMIPS_GOT_PAGE:
8888 case R_MIPS16_GOT16:
8889 case R_MIPS_GOT16:
8890 case R_MIPS_GOT_HI16:
8891 case R_MIPS_GOT_LO16:
8892 case R_MICROMIPS_GOT16:
8893 case R_MICROMIPS_GOT_HI16:
8894 case R_MICROMIPS_GOT_LO16:
8895 if (!h || got_page_reloc_p (r_type))
8896 {
8897 /* This relocation needs (or may need, if h != NULL) a
8898 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8899 know for sure until we know whether the symbol is
8900 preemptible. */
8901 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8902 {
8903 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8904 return false;
8905 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, false);
8906 addend = mips_elf_read_rel_addend (abfd, rel,
8907 howto, contents);
8908 if (got16_reloc_p (r_type))
8909 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8910 contents, &addend);
8911 else
8912 addend <<= howto->rightshift;
8913 }
8914 else
8915 addend = rel->r_addend;
8916 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8917 h, addend))
8918 return false;
8919
8920 if (h)
8921 {
8922 struct mips_elf_link_hash_entry *hmips =
8923 (struct mips_elf_link_hash_entry *) h;
8924
8925 /* This symbol is definitely not overridable. */
8926 if (hmips->root.def_regular
8927 && ! (bfd_link_pic (info) && ! info->symbolic
8928 && ! hmips->root.forced_local))
8929 h = NULL;
8930 }
8931 }
8932 /* If this is a global, overridable symbol, GOT_PAGE will
8933 decay to GOT_DISP, so we'll need a GOT entry for it. */
8934 /* Fall through. */
8935
8936 case R_MIPS_GOT_DISP:
8937 case R_MICROMIPS_GOT_DISP:
8938 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8939 false, r_type))
8940 return false;
8941 break;
8942
8943 case R_MIPS_TLS_GOTTPREL:
8944 case R_MIPS16_TLS_GOTTPREL:
8945 case R_MICROMIPS_TLS_GOTTPREL:
8946 if (bfd_link_pic (info))
8947 info->flags |= DF_STATIC_TLS;
8948 /* Fall through */
8949
8950 case R_MIPS_TLS_LDM:
8951 case R_MIPS16_TLS_LDM:
8952 case R_MICROMIPS_TLS_LDM:
8953 if (tls_ldm_reloc_p (r_type))
8954 {
8955 r_symndx = STN_UNDEF;
8956 h = NULL;
8957 }
8958 /* Fall through */
8959
8960 case R_MIPS_TLS_GD:
8961 case R_MIPS16_TLS_GD:
8962 case R_MICROMIPS_TLS_GD:
8963 /* This symbol requires a global offset table entry, or two
8964 for TLS GD relocations. */
8965 if (h != NULL)
8966 {
8967 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8968 false, r_type))
8969 return false;
8970 }
8971 else
8972 {
8973 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8974 rel->r_addend,
8975 info, r_type))
8976 return false;
8977 }
8978 break;
8979
8980 case R_MIPS_32:
8981 case R_MIPS_REL32:
8982 case R_MIPS_64:
8983 /* In VxWorks executables, references to external symbols
8984 are handled using copy relocs or PLT stubs, so there's
8985 no need to add a .rela.dyn entry for this relocation. */
8986 if (can_make_dynamic_p)
8987 {
8988 if (sreloc == NULL)
8989 {
8990 sreloc = mips_elf_rel_dyn_section (info, true);
8991 if (sreloc == NULL)
8992 return false;
8993 }
8994 if (bfd_link_pic (info) && h == NULL)
8995 {
8996 /* When creating a shared object, we must copy these
8997 reloc types into the output file as R_MIPS_REL32
8998 relocs. Make room for this reloc in .rel(a).dyn. */
8999 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9000 if (MIPS_ELF_READONLY_SECTION (sec))
9001 /* We tell the dynamic linker that there are
9002 relocations against the text segment. */
9003 info->flags |= DF_TEXTREL;
9004 }
9005 else
9006 {
9007 struct mips_elf_link_hash_entry *hmips;
9008
9009 /* For a shared object, we must copy this relocation
9010 unless the symbol turns out to be undefined and
9011 weak with non-default visibility, in which case
9012 it will be left as zero.
9013
9014 We could elide R_MIPS_REL32 for locally binding symbols
9015 in shared libraries, but do not yet do so.
9016
9017 For an executable, we only need to copy this
9018 reloc if the symbol is defined in a dynamic
9019 object. */
9020 hmips = (struct mips_elf_link_hash_entry *) h;
9021 ++hmips->possibly_dynamic_relocs;
9022 if (MIPS_ELF_READONLY_SECTION (sec))
9023 /* We need it to tell the dynamic linker if there
9024 are relocations against the text segment. */
9025 hmips->readonly_reloc = true;
9026 }
9027 }
9028
9029 if (SGI_COMPAT (abfd))
9030 mips_elf_hash_table (info)->compact_rel_size +=
9031 sizeof (Elf32_External_crinfo);
9032 break;
9033
9034 case R_MIPS_26:
9035 case R_MIPS_GPREL16:
9036 case R_MIPS_LITERAL:
9037 case R_MIPS_GPREL32:
9038 case R_MICROMIPS_26_S1:
9039 case R_MICROMIPS_GPREL16:
9040 case R_MICROMIPS_LITERAL:
9041 case R_MICROMIPS_GPREL7_S2:
9042 if (SGI_COMPAT (abfd))
9043 mips_elf_hash_table (info)->compact_rel_size +=
9044 sizeof (Elf32_External_crinfo);
9045 break;
9046
9047 /* This relocation describes the C++ object vtable hierarchy.
9048 Reconstruct it for later use during GC. */
9049 case R_MIPS_GNU_VTINHERIT:
9050 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9051 return false;
9052 break;
9053
9054 /* This relocation describes which C++ vtable entries are actually
9055 used. Record for later use during GC. */
9056 case R_MIPS_GNU_VTENTRY:
9057 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9058 return false;
9059 break;
9060
9061 default:
9062 break;
9063 }
9064
9065 /* Record the need for a PLT entry. At this point we don't know
9066 yet if we are going to create a PLT in the first place, but
9067 we only record whether the relocation requires a standard MIPS
9068 or a compressed code entry anyway. If we don't make a PLT after
9069 all, then we'll just ignore these arrangements. Likewise if
9070 a PLT entry is not created because the symbol is satisfied
9071 locally. */
9072 if (h != NULL
9073 && (branch_reloc_p (r_type)
9074 || mips16_branch_reloc_p (r_type)
9075 || micromips_branch_reloc_p (r_type))
9076 && !SYMBOL_CALLS_LOCAL (info, h))
9077 {
9078 if (h->plt.plist == NULL)
9079 h->plt.plist = mips_elf_make_plt_record (abfd);
9080 if (h->plt.plist == NULL)
9081 return false;
9082
9083 if (branch_reloc_p (r_type))
9084 h->plt.plist->need_mips = true;
9085 else
9086 h->plt.plist->need_comp = true;
9087 }
9088
9089 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9090 if there is one. We only need to handle global symbols here;
9091 we decide whether to keep or delete stubs for local symbols
9092 when processing the stub's relocations. */
9093 if (h != NULL
9094 && !mips16_call_reloc_p (r_type)
9095 && !section_allows_mips16_refs_p (sec))
9096 {
9097 struct mips_elf_link_hash_entry *mh;
9098
9099 mh = (struct mips_elf_link_hash_entry *) h;
9100 mh->need_fn_stub = true;
9101 }
9102
9103 /* Refuse some position-dependent relocations when creating a
9104 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9105 not PIC, but we can create dynamic relocations and the result
9106 will be fine. Also do not refuse R_MIPS_LO16, which can be
9107 combined with R_MIPS_GOT16. */
9108 if (bfd_link_pic (info))
9109 {
9110 switch (r_type)
9111 {
9112 case R_MIPS_TLS_TPREL_HI16:
9113 case R_MIPS16_TLS_TPREL_HI16:
9114 case R_MICROMIPS_TLS_TPREL_HI16:
9115 case R_MIPS_TLS_TPREL_LO16:
9116 case R_MIPS16_TLS_TPREL_LO16:
9117 case R_MICROMIPS_TLS_TPREL_LO16:
9118 /* These are okay in PIE, but not in a shared library. */
9119 if (bfd_link_executable (info))
9120 break;
9121
9122 /* FALLTHROUGH */
9123
9124 case R_MIPS16_HI16:
9125 case R_MIPS_HI16:
9126 case R_MIPS_HIGHER:
9127 case R_MIPS_HIGHEST:
9128 case R_MICROMIPS_HI16:
9129 case R_MICROMIPS_HIGHER:
9130 case R_MICROMIPS_HIGHEST:
9131 /* Don't refuse a high part relocation if it's against
9132 no symbol (e.g. part of a compound relocation). */
9133 if (r_symndx == STN_UNDEF)
9134 break;
9135
9136 /* Likewise an absolute symbol. */
9137 if (h != NULL && bfd_is_abs_symbol (&h->root))
9138 break;
9139
9140 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9141 and has a special meaning. */
9142 if (!NEWABI_P (abfd) && h != NULL
9143 && strcmp (h->root.root.string, "_gp_disp") == 0)
9144 break;
9145
9146 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9147 if (is_gott_symbol (info, h))
9148 break;
9149
9150 /* FALLTHROUGH */
9151
9152 case R_MIPS16_26:
9153 case R_MIPS_26:
9154 case R_MICROMIPS_26_S1:
9155 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9156 /* An error for unsupported relocations is raised as part
9157 of the above search, so we can skip the following. */
9158 if (howto != NULL)
9159 info->callbacks->einfo
9160 /* xgettext:c-format */
9161 (_("%X%H: relocation %s against `%s' cannot be used"
9162 " when making a shared object; recompile with -fPIC\n"),
9163 abfd, sec, rel->r_offset, howto->name,
9164 (h) ? h->root.root.string : "a local symbol");
9165 break;
9166 default:
9167 break;
9168 }
9169 }
9170 }
9171
9172 return true;
9173 }
9174 \f
9175 /* Allocate space for global sym dynamic relocs. */
9176
9177 static bool
9178 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9179 {
9180 struct bfd_link_info *info = inf;
9181 bfd *dynobj;
9182 struct mips_elf_link_hash_entry *hmips;
9183 struct mips_elf_link_hash_table *htab;
9184
9185 htab = mips_elf_hash_table (info);
9186 BFD_ASSERT (htab != NULL);
9187
9188 dynobj = elf_hash_table (info)->dynobj;
9189 hmips = (struct mips_elf_link_hash_entry *) h;
9190
9191 /* VxWorks executables are handled elsewhere; we only need to
9192 allocate relocations in shared objects. */
9193 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
9194 return true;
9195
9196 /* Ignore indirect symbols. All relocations against such symbols
9197 will be redirected to the target symbol. */
9198 if (h->root.type == bfd_link_hash_indirect)
9199 return true;
9200
9201 /* If this symbol is defined in a dynamic object, or we are creating
9202 a shared library, we will need to copy any R_MIPS_32 or
9203 R_MIPS_REL32 relocs against it into the output file. */
9204 if (! bfd_link_relocatable (info)
9205 && hmips->possibly_dynamic_relocs != 0
9206 && (h->root.type == bfd_link_hash_defweak
9207 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9208 || bfd_link_pic (info)))
9209 {
9210 bool do_copy = true;
9211
9212 if (h->root.type == bfd_link_hash_undefweak)
9213 {
9214 /* Do not copy relocations for undefined weak symbols that
9215 we are not going to export. */
9216 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9217 do_copy = false;
9218
9219 /* Make sure undefined weak symbols are output as a dynamic
9220 symbol in PIEs. */
9221 else if (h->dynindx == -1 && !h->forced_local)
9222 {
9223 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9224 return false;
9225 }
9226 }
9227
9228 if (do_copy)
9229 {
9230 /* Even though we don't directly need a GOT entry for this symbol,
9231 the SVR4 psABI requires it to have a dynamic symbol table
9232 index greater that DT_MIPS_GOTSYM if there are dynamic
9233 relocations against it.
9234
9235 VxWorks does not enforce the same mapping between the GOT
9236 and the symbol table, so the same requirement does not
9237 apply there. */
9238 if (htab->root.target_os != is_vxworks)
9239 {
9240 if (hmips->global_got_area > GGA_RELOC_ONLY)
9241 hmips->global_got_area = GGA_RELOC_ONLY;
9242 hmips->got_only_for_calls = false;
9243 }
9244
9245 mips_elf_allocate_dynamic_relocations
9246 (dynobj, info, hmips->possibly_dynamic_relocs);
9247 if (hmips->readonly_reloc)
9248 /* We tell the dynamic linker that there are relocations
9249 against the text segment. */
9250 info->flags |= DF_TEXTREL;
9251 }
9252 }
9253
9254 return true;
9255 }
9256
9257 /* Adjust a symbol defined by a dynamic object and referenced by a
9258 regular object. The current definition is in some section of the
9259 dynamic object, but we're not including those sections. We have to
9260 change the definition to something the rest of the link can
9261 understand. */
9262
9263 bool
9264 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9265 struct elf_link_hash_entry *h)
9266 {
9267 bfd *dynobj;
9268 struct mips_elf_link_hash_entry *hmips;
9269 struct mips_elf_link_hash_table *htab;
9270 asection *s, *srel;
9271
9272 htab = mips_elf_hash_table (info);
9273 BFD_ASSERT (htab != NULL);
9274
9275 dynobj = elf_hash_table (info)->dynobj;
9276 hmips = (struct mips_elf_link_hash_entry *) h;
9277
9278 /* Make sure we know what is going on here. */
9279 if (dynobj == NULL
9280 || (! h->needs_plt
9281 && ! h->is_weakalias
9282 && (! h->def_dynamic
9283 || ! h->ref_regular
9284 || h->def_regular)))
9285 {
9286 if (h->type == STT_GNU_IFUNC)
9287 _bfd_error_handler (_("IFUNC symbol %s in dynamic symbol table - IFUNCS are not supported"),
9288 h->root.root.string);
9289 else
9290 _bfd_error_handler (_("non-dynamic symbol %s in dynamic symbol table"),
9291 h->root.root.string);
9292 return true;
9293 }
9294
9295 hmips = (struct mips_elf_link_hash_entry *) h;
9296
9297 /* If there are call relocations against an externally-defined symbol,
9298 see whether we can create a MIPS lazy-binding stub for it. We can
9299 only do this if all references to the function are through call
9300 relocations, and in that case, the traditional lazy-binding stubs
9301 are much more efficient than PLT entries.
9302
9303 Traditional stubs are only available on SVR4 psABI-based systems;
9304 VxWorks always uses PLTs instead. */
9305 if (htab->root.target_os != is_vxworks
9306 && h->needs_plt
9307 && !hmips->no_fn_stub)
9308 {
9309 if (! elf_hash_table (info)->dynamic_sections_created)
9310 return true;
9311
9312 /* If this symbol is not defined in a regular file, then set
9313 the symbol to the stub location. This is required to make
9314 function pointers compare as equal between the normal
9315 executable and the shared library. */
9316 if (!h->def_regular
9317 && !bfd_is_abs_section (htab->sstubs->output_section))
9318 {
9319 hmips->needs_lazy_stub = true;
9320 htab->lazy_stub_count++;
9321 return true;
9322 }
9323 }
9324 /* As above, VxWorks requires PLT entries for externally-defined
9325 functions that are only accessed through call relocations.
9326
9327 Both VxWorks and non-VxWorks targets also need PLT entries if there
9328 are static-only relocations against an externally-defined function.
9329 This can technically occur for shared libraries if there are
9330 branches to the symbol, although it is unlikely that this will be
9331 used in practice due to the short ranges involved. It can occur
9332 for any relative or absolute relocation in executables; in that
9333 case, the PLT entry becomes the function's canonical address. */
9334 else if (((h->needs_plt && !hmips->no_fn_stub)
9335 || (h->type == STT_FUNC && hmips->has_static_relocs))
9336 && htab->use_plts_and_copy_relocs
9337 && !SYMBOL_CALLS_LOCAL (info, h)
9338 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9339 && h->root.type == bfd_link_hash_undefweak))
9340 {
9341 bool micromips_p = MICROMIPS_P (info->output_bfd);
9342 bool newabi_p = NEWABI_P (info->output_bfd);
9343
9344 /* If this is the first symbol to need a PLT entry, then make some
9345 basic setup. Also work out PLT entry sizes. We'll need them
9346 for PLT offset calculations. */
9347 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9348 {
9349 BFD_ASSERT (htab->root.sgotplt->size == 0);
9350 BFD_ASSERT (htab->plt_got_index == 0);
9351
9352 /* If we're using the PLT additions to the psABI, each PLT
9353 entry is 16 bytes and the PLT0 entry is 32 bytes.
9354 Encourage better cache usage by aligning. We do this
9355 lazily to avoid pessimizing traditional objects. */
9356 if (htab->root.target_os != is_vxworks
9357 && !bfd_set_section_alignment (htab->root.splt, 5))
9358 return false;
9359
9360 /* Make sure that .got.plt is word-aligned. We do this lazily
9361 for the same reason as above. */
9362 if (!bfd_set_section_alignment (htab->root.sgotplt,
9363 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9364 return false;
9365
9366 /* On non-VxWorks targets, the first two entries in .got.plt
9367 are reserved. */
9368 if (htab->root.target_os != is_vxworks)
9369 htab->plt_got_index
9370 += (get_elf_backend_data (dynobj)->got_header_size
9371 / MIPS_ELF_GOT_SIZE (dynobj));
9372
9373 /* On VxWorks, also allocate room for the header's
9374 .rela.plt.unloaded entries. */
9375 if (htab->root.target_os == is_vxworks
9376 && !bfd_link_pic (info))
9377 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9378
9379 /* Now work out the sizes of individual PLT entries. */
9380 if (htab->root.target_os == is_vxworks
9381 && bfd_link_pic (info))
9382 htab->plt_mips_entry_size
9383 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9384 else if (htab->root.target_os == is_vxworks)
9385 htab->plt_mips_entry_size
9386 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9387 else if (newabi_p)
9388 htab->plt_mips_entry_size
9389 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9390 else if (!micromips_p)
9391 {
9392 htab->plt_mips_entry_size
9393 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9394 htab->plt_comp_entry_size
9395 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9396 }
9397 else if (htab->insn32)
9398 {
9399 htab->plt_mips_entry_size
9400 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9401 htab->plt_comp_entry_size
9402 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9403 }
9404 else
9405 {
9406 htab->plt_mips_entry_size
9407 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9408 htab->plt_comp_entry_size
9409 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9410 }
9411 }
9412
9413 if (h->plt.plist == NULL)
9414 h->plt.plist = mips_elf_make_plt_record (dynobj);
9415 if (h->plt.plist == NULL)
9416 return false;
9417
9418 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9419 n32 or n64, so always use a standard entry there.
9420
9421 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9422 all MIPS16 calls will go via that stub, and there is no benefit
9423 to having a MIPS16 entry. And in the case of call_stub a
9424 standard entry actually has to be used as the stub ends with a J
9425 instruction. */
9426 if (newabi_p
9427 || htab->root.target_os == is_vxworks
9428 || hmips->call_stub
9429 || hmips->call_fp_stub)
9430 {
9431 h->plt.plist->need_mips = true;
9432 h->plt.plist->need_comp = false;
9433 }
9434
9435 /* Otherwise, if there are no direct calls to the function, we
9436 have a free choice of whether to use standard or compressed
9437 entries. Prefer microMIPS entries if the object is known to
9438 contain microMIPS code, so that it becomes possible to create
9439 pure microMIPS binaries. Prefer standard entries otherwise,
9440 because MIPS16 ones are no smaller and are usually slower. */
9441 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9442 {
9443 if (micromips_p)
9444 h->plt.plist->need_comp = true;
9445 else
9446 h->plt.plist->need_mips = true;
9447 }
9448
9449 if (h->plt.plist->need_mips)
9450 {
9451 h->plt.plist->mips_offset = htab->plt_mips_offset;
9452 htab->plt_mips_offset += htab->plt_mips_entry_size;
9453 }
9454 if (h->plt.plist->need_comp)
9455 {
9456 h->plt.plist->comp_offset = htab->plt_comp_offset;
9457 htab->plt_comp_offset += htab->plt_comp_entry_size;
9458 }
9459
9460 /* Reserve the corresponding .got.plt entry now too. */
9461 h->plt.plist->gotplt_index = htab->plt_got_index++;
9462
9463 /* If the output file has no definition of the symbol, set the
9464 symbol's value to the address of the stub. */
9465 if (!bfd_link_pic (info) && !h->def_regular)
9466 hmips->use_plt_entry = true;
9467
9468 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9469 htab->root.srelplt->size += (htab->root.target_os == is_vxworks
9470 ? MIPS_ELF_RELA_SIZE (dynobj)
9471 : MIPS_ELF_REL_SIZE (dynobj));
9472
9473 /* Make room for the .rela.plt.unloaded relocations. */
9474 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
9475 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9476
9477 /* All relocations against this symbol that could have been made
9478 dynamic will now refer to the PLT entry instead. */
9479 hmips->possibly_dynamic_relocs = 0;
9480
9481 return true;
9482 }
9483
9484 /* If this is a weak symbol, and there is a real definition, the
9485 processor independent code will have arranged for us to see the
9486 real definition first, and we can just use the same value. */
9487 if (h->is_weakalias)
9488 {
9489 struct elf_link_hash_entry *def = weakdef (h);
9490 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9491 h->root.u.def.section = def->root.u.def.section;
9492 h->root.u.def.value = def->root.u.def.value;
9493 return true;
9494 }
9495
9496 /* Otherwise, there is nothing further to do for symbols defined
9497 in regular objects. */
9498 if (h->def_regular)
9499 return true;
9500
9501 /* There's also nothing more to do if we'll convert all relocations
9502 against this symbol into dynamic relocations. */
9503 if (!hmips->has_static_relocs)
9504 return true;
9505
9506 /* We're now relying on copy relocations. Complain if we have
9507 some that we can't convert. */
9508 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9509 {
9510 _bfd_error_handler (_("non-dynamic relocations refer to "
9511 "dynamic symbol %s"),
9512 h->root.root.string);
9513 bfd_set_error (bfd_error_bad_value);
9514 return false;
9515 }
9516
9517 /* We must allocate the symbol in our .dynbss section, which will
9518 become part of the .bss section of the executable. There will be
9519 an entry for this symbol in the .dynsym section. The dynamic
9520 object will contain position independent code, so all references
9521 from the dynamic object to this symbol will go through the global
9522 offset table. The dynamic linker will use the .dynsym entry to
9523 determine the address it must put in the global offset table, so
9524 both the dynamic object and the regular object will refer to the
9525 same memory location for the variable. */
9526
9527 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9528 {
9529 s = htab->root.sdynrelro;
9530 srel = htab->root.sreldynrelro;
9531 }
9532 else
9533 {
9534 s = htab->root.sdynbss;
9535 srel = htab->root.srelbss;
9536 }
9537 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9538 {
9539 if (htab->root.target_os == is_vxworks)
9540 srel->size += sizeof (Elf32_External_Rela);
9541 else
9542 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9543 h->needs_copy = 1;
9544 }
9545
9546 /* All relocations against this symbol that could have been made
9547 dynamic will now refer to the local copy instead. */
9548 hmips->possibly_dynamic_relocs = 0;
9549
9550 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9551 }
9552 \f
9553 /* This function is called after all the input files have been read,
9554 and the input sections have been assigned to output sections. We
9555 check for any mips16 stub sections that we can discard. */
9556
9557 bool
9558 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9559 struct bfd_link_info *info)
9560 {
9561 asection *sect;
9562 struct mips_elf_link_hash_table *htab;
9563 struct mips_htab_traverse_info hti;
9564
9565 htab = mips_elf_hash_table (info);
9566 BFD_ASSERT (htab != NULL);
9567
9568 /* The .reginfo section has a fixed size. */
9569 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9570 if (sect != NULL)
9571 {
9572 bfd_set_section_size (sect, sizeof (Elf32_External_RegInfo));
9573 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9574 }
9575
9576 /* The .MIPS.abiflags section has a fixed size. */
9577 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9578 if (sect != NULL)
9579 {
9580 bfd_set_section_size (sect, sizeof (Elf_External_ABIFlags_v0));
9581 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9582 }
9583
9584 hti.info = info;
9585 hti.output_bfd = output_bfd;
9586 hti.error = false;
9587 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9588 mips_elf_check_symbols, &hti);
9589 if (hti.error)
9590 return false;
9591
9592 return true;
9593 }
9594
9595 /* If the link uses a GOT, lay it out and work out its size. */
9596
9597 static bool
9598 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9599 {
9600 bfd *dynobj;
9601 asection *s;
9602 struct mips_got_info *g;
9603 bfd_size_type loadable_size = 0;
9604 bfd_size_type page_gotno;
9605 bfd *ibfd;
9606 struct mips_elf_traverse_got_arg tga;
9607 struct mips_elf_link_hash_table *htab;
9608
9609 htab = mips_elf_hash_table (info);
9610 BFD_ASSERT (htab != NULL);
9611
9612 s = htab->root.sgot;
9613 if (s == NULL)
9614 return true;
9615
9616 dynobj = elf_hash_table (info)->dynobj;
9617 g = htab->got_info;
9618
9619 /* Allocate room for the reserved entries. VxWorks always reserves
9620 3 entries; other objects only reserve 2 entries. */
9621 BFD_ASSERT (g->assigned_low_gotno == 0);
9622 if (htab->root.target_os == is_vxworks)
9623 htab->reserved_gotno = 3;
9624 else
9625 htab->reserved_gotno = 2;
9626 g->local_gotno += htab->reserved_gotno;
9627 g->assigned_low_gotno = htab->reserved_gotno;
9628
9629 /* Decide which symbols need to go in the global part of the GOT and
9630 count the number of reloc-only GOT symbols. */
9631 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9632
9633 if (!mips_elf_resolve_final_got_entries (info, g))
9634 return false;
9635
9636 /* Calculate the total loadable size of the output. That
9637 will give us the maximum number of GOT_PAGE entries
9638 required. */
9639 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9640 {
9641 asection *subsection;
9642
9643 for (subsection = ibfd->sections;
9644 subsection;
9645 subsection = subsection->next)
9646 {
9647 if ((subsection->flags & SEC_ALLOC) == 0)
9648 continue;
9649 loadable_size += ((subsection->size + 0xf)
9650 &~ (bfd_size_type) 0xf);
9651 }
9652 }
9653
9654 if (htab->root.target_os == is_vxworks)
9655 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9656 relocations against local symbols evaluate to "G", and the EABI does
9657 not include R_MIPS_GOT_PAGE. */
9658 page_gotno = 0;
9659 else
9660 /* Assume there are two loadable segments consisting of contiguous
9661 sections. Is 5 enough? */
9662 page_gotno = (loadable_size >> 16) + 5;
9663
9664 /* Choose the smaller of the two page estimates; both are intended to be
9665 conservative. */
9666 if (page_gotno > g->page_gotno)
9667 page_gotno = g->page_gotno;
9668
9669 g->local_gotno += page_gotno;
9670 g->assigned_high_gotno = g->local_gotno - 1;
9671
9672 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9673 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9674 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9675
9676 /* VxWorks does not support multiple GOTs. It initializes $gp to
9677 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9678 dynamic loader. */
9679 if (htab->root.target_os != is_vxworks
9680 && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9681 {
9682 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9683 return false;
9684 }
9685 else
9686 {
9687 /* Record that all bfds use G. This also has the effect of freeing
9688 the per-bfd GOTs, which we no longer need. */
9689 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9690 if (mips_elf_bfd_got (ibfd, false))
9691 mips_elf_replace_bfd_got (ibfd, g);
9692 mips_elf_replace_bfd_got (output_bfd, g);
9693
9694 /* Set up TLS entries. */
9695 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9696 tga.info = info;
9697 tga.g = g;
9698 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9699 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9700 if (!tga.g)
9701 return false;
9702 BFD_ASSERT (g->tls_assigned_gotno
9703 == g->global_gotno + g->local_gotno + g->tls_gotno);
9704
9705 /* Each VxWorks GOT entry needs an explicit relocation. */
9706 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
9707 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9708
9709 /* Allocate room for the TLS relocations. */
9710 if (g->relocs)
9711 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9712 }
9713
9714 return true;
9715 }
9716
9717 /* Estimate the size of the .MIPS.stubs section. */
9718
9719 static void
9720 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9721 {
9722 struct mips_elf_link_hash_table *htab;
9723 bfd_size_type dynsymcount;
9724
9725 htab = mips_elf_hash_table (info);
9726 BFD_ASSERT (htab != NULL);
9727
9728 if (htab->lazy_stub_count == 0)
9729 return;
9730
9731 /* IRIX rld assumes that a function stub isn't at the end of the .text
9732 section, so add a dummy entry to the end. */
9733 htab->lazy_stub_count++;
9734
9735 /* Get a worst-case estimate of the number of dynamic symbols needed.
9736 At this point, dynsymcount does not account for section symbols
9737 and count_section_dynsyms may overestimate the number that will
9738 be needed. */
9739 dynsymcount = (elf_hash_table (info)->dynsymcount
9740 + count_section_dynsyms (output_bfd, info));
9741
9742 /* Determine the size of one stub entry. There's no disadvantage
9743 from using microMIPS code here, so for the sake of pure-microMIPS
9744 binaries we prefer it whenever there's any microMIPS code in
9745 output produced at all. This has a benefit of stubs being
9746 shorter by 4 bytes each too, unless in the insn32 mode. */
9747 if (!MICROMIPS_P (output_bfd))
9748 htab->function_stub_size = (dynsymcount > 0x10000
9749 ? MIPS_FUNCTION_STUB_BIG_SIZE
9750 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9751 else if (htab->insn32)
9752 htab->function_stub_size = (dynsymcount > 0x10000
9753 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9754 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9755 else
9756 htab->function_stub_size = (dynsymcount > 0x10000
9757 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9758 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9759
9760 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9761 }
9762
9763 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9764 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9765 stub, allocate an entry in the stubs section. */
9766
9767 static bool
9768 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9769 {
9770 struct mips_htab_traverse_info *hti = data;
9771 struct mips_elf_link_hash_table *htab;
9772 struct bfd_link_info *info;
9773 bfd *output_bfd;
9774
9775 info = hti->info;
9776 output_bfd = hti->output_bfd;
9777 htab = mips_elf_hash_table (info);
9778 BFD_ASSERT (htab != NULL);
9779
9780 if (h->needs_lazy_stub)
9781 {
9782 bool micromips_p = MICROMIPS_P (output_bfd);
9783 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9784 bfd_vma isa_bit = micromips_p;
9785
9786 BFD_ASSERT (htab->root.dynobj != NULL);
9787 if (h->root.plt.plist == NULL)
9788 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9789 if (h->root.plt.plist == NULL)
9790 {
9791 hti->error = true;
9792 return false;
9793 }
9794 h->root.root.u.def.section = htab->sstubs;
9795 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9796 h->root.plt.plist->stub_offset = htab->sstubs->size;
9797 h->root.other = other;
9798 htab->sstubs->size += htab->function_stub_size;
9799 }
9800 return true;
9801 }
9802
9803 /* Allocate offsets in the stubs section to each symbol that needs one.
9804 Set the final size of the .MIPS.stub section. */
9805
9806 static bool
9807 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9808 {
9809 bfd *output_bfd = info->output_bfd;
9810 bool micromips_p = MICROMIPS_P (output_bfd);
9811 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9812 bfd_vma isa_bit = micromips_p;
9813 struct mips_elf_link_hash_table *htab;
9814 struct mips_htab_traverse_info hti;
9815 struct elf_link_hash_entry *h;
9816 bfd *dynobj;
9817
9818 htab = mips_elf_hash_table (info);
9819 BFD_ASSERT (htab != NULL);
9820
9821 if (htab->lazy_stub_count == 0)
9822 return true;
9823
9824 htab->sstubs->size = 0;
9825 hti.info = info;
9826 hti.output_bfd = output_bfd;
9827 hti.error = false;
9828 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9829 if (hti.error)
9830 return false;
9831 htab->sstubs->size += htab->function_stub_size;
9832 BFD_ASSERT (htab->sstubs->size
9833 == htab->lazy_stub_count * htab->function_stub_size);
9834
9835 dynobj = elf_hash_table (info)->dynobj;
9836 BFD_ASSERT (dynobj != NULL);
9837 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9838 if (h == NULL)
9839 return false;
9840 h->root.u.def.value = isa_bit;
9841 h->other = other;
9842 h->type = STT_FUNC;
9843
9844 return true;
9845 }
9846
9847 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9848 bfd_link_info. If H uses the address of a PLT entry as the value
9849 of the symbol, then set the entry in the symbol table now. Prefer
9850 a standard MIPS PLT entry. */
9851
9852 static bool
9853 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9854 {
9855 struct bfd_link_info *info = data;
9856 bool micromips_p = MICROMIPS_P (info->output_bfd);
9857 struct mips_elf_link_hash_table *htab;
9858 unsigned int other;
9859 bfd_vma isa_bit;
9860 bfd_vma val;
9861
9862 htab = mips_elf_hash_table (info);
9863 BFD_ASSERT (htab != NULL);
9864
9865 if (h->use_plt_entry)
9866 {
9867 BFD_ASSERT (h->root.plt.plist != NULL);
9868 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9869 || h->root.plt.plist->comp_offset != MINUS_ONE);
9870
9871 val = htab->plt_header_size;
9872 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9873 {
9874 isa_bit = 0;
9875 val += h->root.plt.plist->mips_offset;
9876 other = 0;
9877 }
9878 else
9879 {
9880 isa_bit = 1;
9881 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9882 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9883 }
9884 val += isa_bit;
9885 /* For VxWorks, point at the PLT load stub rather than the lazy
9886 resolution stub; this stub will become the canonical function
9887 address. */
9888 if (htab->root.target_os == is_vxworks)
9889 val += 8;
9890
9891 h->root.root.u.def.section = htab->root.splt;
9892 h->root.root.u.def.value = val;
9893 h->root.other = other;
9894 }
9895
9896 return true;
9897 }
9898
9899 /* Set the sizes of the dynamic sections. */
9900
9901 bool
9902 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9903 struct bfd_link_info *info)
9904 {
9905 bfd *dynobj;
9906 asection *s, *sreldyn;
9907 bool reltext;
9908 struct mips_elf_link_hash_table *htab;
9909
9910 htab = mips_elf_hash_table (info);
9911 BFD_ASSERT (htab != NULL);
9912 dynobj = elf_hash_table (info)->dynobj;
9913 BFD_ASSERT (dynobj != NULL);
9914
9915 if (elf_hash_table (info)->dynamic_sections_created)
9916 {
9917 /* Set the contents of the .interp section to the interpreter. */
9918 if (bfd_link_executable (info) && !info->nointerp)
9919 {
9920 s = bfd_get_linker_section (dynobj, ".interp");
9921 BFD_ASSERT (s != NULL);
9922 s->size
9923 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9924 s->contents
9925 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9926 }
9927
9928 /* Figure out the size of the PLT header if we know that we
9929 are using it. For the sake of cache alignment always use
9930 a standard header whenever any standard entries are present
9931 even if microMIPS entries are present as well. This also
9932 lets the microMIPS header rely on the value of $v0 only set
9933 by microMIPS entries, for a small size reduction.
9934
9935 Set symbol table entry values for symbols that use the
9936 address of their PLT entry now that we can calculate it.
9937
9938 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9939 haven't already in _bfd_elf_create_dynamic_sections. */
9940 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9941 {
9942 bool micromips_p = (MICROMIPS_P (output_bfd)
9943 && !htab->plt_mips_offset);
9944 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9945 bfd_vma isa_bit = micromips_p;
9946 struct elf_link_hash_entry *h;
9947 bfd_vma size;
9948
9949 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9950 BFD_ASSERT (htab->root.sgotplt->size == 0);
9951 BFD_ASSERT (htab->root.splt->size == 0);
9952
9953 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
9954 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9955 else if (htab->root.target_os == is_vxworks)
9956 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9957 else if (ABI_64_P (output_bfd))
9958 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9959 else if (ABI_N32_P (output_bfd))
9960 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9961 else if (!micromips_p)
9962 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9963 else if (htab->insn32)
9964 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9965 else
9966 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9967
9968 htab->plt_header_is_comp = micromips_p;
9969 htab->plt_header_size = size;
9970 htab->root.splt->size = (size
9971 + htab->plt_mips_offset
9972 + htab->plt_comp_offset);
9973 htab->root.sgotplt->size = (htab->plt_got_index
9974 * MIPS_ELF_GOT_SIZE (dynobj));
9975
9976 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9977
9978 if (htab->root.hplt == NULL)
9979 {
9980 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9981 "_PROCEDURE_LINKAGE_TABLE_");
9982 htab->root.hplt = h;
9983 if (h == NULL)
9984 return false;
9985 }
9986
9987 h = htab->root.hplt;
9988 h->root.u.def.value = isa_bit;
9989 h->other = other;
9990 h->type = STT_FUNC;
9991 }
9992 }
9993
9994 /* Allocate space for global sym dynamic relocs. */
9995 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9996
9997 mips_elf_estimate_stub_size (output_bfd, info);
9998
9999 if (!mips_elf_lay_out_got (output_bfd, info))
10000 return false;
10001
10002 mips_elf_lay_out_lazy_stubs (info);
10003
10004 /* The check_relocs and adjust_dynamic_symbol entry points have
10005 determined the sizes of the various dynamic sections. Allocate
10006 memory for them. */
10007 reltext = false;
10008 for (s = dynobj->sections; s != NULL; s = s->next)
10009 {
10010 const char *name;
10011
10012 /* It's OK to base decisions on the section name, because none
10013 of the dynobj section names depend upon the input files. */
10014 name = bfd_section_name (s);
10015
10016 if ((s->flags & SEC_LINKER_CREATED) == 0)
10017 continue;
10018
10019 if (startswith (name, ".rel"))
10020 {
10021 if (s->size != 0)
10022 {
10023 const char *outname;
10024 asection *target;
10025
10026 /* If this relocation section applies to a read only
10027 section, then we probably need a DT_TEXTREL entry.
10028 If the relocation section is .rel(a).dyn, we always
10029 assert a DT_TEXTREL entry rather than testing whether
10030 there exists a relocation to a read only section or
10031 not. */
10032 outname = bfd_section_name (s->output_section);
10033 target = bfd_get_section_by_name (output_bfd, outname + 4);
10034 if ((target != NULL
10035 && (target->flags & SEC_READONLY) != 0
10036 && (target->flags & SEC_ALLOC) != 0)
10037 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
10038 reltext = true;
10039
10040 /* We use the reloc_count field as a counter if we need
10041 to copy relocs into the output file. */
10042 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
10043 s->reloc_count = 0;
10044
10045 /* If combreloc is enabled, elf_link_sort_relocs() will
10046 sort relocations, but in a different way than we do,
10047 and before we're done creating relocations. Also, it
10048 will move them around between input sections'
10049 relocation's contents, so our sorting would be
10050 broken, so don't let it run. */
10051 info->combreloc = 0;
10052 }
10053 }
10054 else if (bfd_link_executable (info)
10055 && ! mips_elf_hash_table (info)->use_rld_obj_head
10056 && startswith (name, ".rld_map"))
10057 {
10058 /* We add a room for __rld_map. It will be filled in by the
10059 rtld to contain a pointer to the _r_debug structure. */
10060 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
10061 }
10062 else if (SGI_COMPAT (output_bfd)
10063 && startswith (name, ".compact_rel"))
10064 s->size += mips_elf_hash_table (info)->compact_rel_size;
10065 else if (s == htab->root.splt)
10066 {
10067 /* If the last PLT entry has a branch delay slot, allocate
10068 room for an extra nop to fill the delay slot. This is
10069 for CPUs without load interlocking. */
10070 if (! LOAD_INTERLOCKS_P (output_bfd)
10071 && htab->root.target_os != is_vxworks
10072 && s->size > 0)
10073 s->size += 4;
10074 }
10075 else if (! startswith (name, ".init")
10076 && s != htab->root.sgot
10077 && s != htab->root.sgotplt
10078 && s != htab->sstubs
10079 && s != htab->root.sdynbss
10080 && s != htab->root.sdynrelro)
10081 {
10082 /* It's not one of our sections, so don't allocate space. */
10083 continue;
10084 }
10085
10086 if (s->size == 0)
10087 {
10088 s->flags |= SEC_EXCLUDE;
10089 continue;
10090 }
10091
10092 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10093 continue;
10094
10095 /* Allocate memory for the section contents. */
10096 s->contents = bfd_zalloc (dynobj, s->size);
10097 if (s->contents == NULL)
10098 {
10099 bfd_set_error (bfd_error_no_memory);
10100 return false;
10101 }
10102 }
10103
10104 if (elf_hash_table (info)->dynamic_sections_created)
10105 {
10106 /* Add some entries to the .dynamic section. We fill in the
10107 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10108 must add the entries now so that we get the correct size for
10109 the .dynamic section. */
10110
10111 /* SGI object has the equivalence of DT_DEBUG in the
10112 DT_MIPS_RLD_MAP entry. This must come first because glibc
10113 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10114 may only look at the first one they see. */
10115 if (!bfd_link_pic (info)
10116 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10117 return false;
10118
10119 if (bfd_link_executable (info)
10120 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10121 return false;
10122
10123 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10124 used by the debugger. */
10125 if (bfd_link_executable (info)
10126 && !SGI_COMPAT (output_bfd)
10127 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10128 return false;
10129
10130 if (reltext
10131 && (SGI_COMPAT (output_bfd)
10132 || htab->root.target_os == is_vxworks))
10133 info->flags |= DF_TEXTREL;
10134
10135 if ((info->flags & DF_TEXTREL) != 0)
10136 {
10137 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10138 return false;
10139
10140 /* Clear the DF_TEXTREL flag. It will be set again if we
10141 write out an actual text relocation; we may not, because
10142 at this point we do not know whether e.g. any .eh_frame
10143 absolute relocations have been converted to PC-relative. */
10144 info->flags &= ~DF_TEXTREL;
10145 }
10146
10147 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10148 return false;
10149
10150 sreldyn = mips_elf_rel_dyn_section (info, false);
10151 if (htab->root.target_os == is_vxworks)
10152 {
10153 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10154 use any of the DT_MIPS_* tags. */
10155 if (sreldyn && sreldyn->size > 0)
10156 {
10157 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10158 return false;
10159
10160 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10161 return false;
10162
10163 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10164 return false;
10165 }
10166 }
10167 else
10168 {
10169 if (sreldyn && sreldyn->size > 0
10170 && !bfd_is_abs_section (sreldyn->output_section))
10171 {
10172 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10173 return false;
10174
10175 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10176 return false;
10177
10178 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10179 return false;
10180 }
10181
10182 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10183 return false;
10184
10185 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10186 return false;
10187
10188 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10189 return false;
10190
10191 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10192 return false;
10193
10194 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10195 return false;
10196
10197 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10198 return false;
10199
10200 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10201 return false;
10202
10203 if (info->emit_gnu_hash
10204 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0))
10205 return false;
10206
10207 if (IRIX_COMPAT (dynobj) == ict_irix5
10208 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10209 return false;
10210
10211 if (IRIX_COMPAT (dynobj) == ict_irix6
10212 && (bfd_get_section_by_name
10213 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10214 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10215 return false;
10216 }
10217 if (htab->root.splt->size > 0)
10218 {
10219 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10220 return false;
10221
10222 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10223 return false;
10224
10225 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10226 return false;
10227
10228 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10229 return false;
10230 }
10231 if (htab->root.target_os == is_vxworks
10232 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10233 return false;
10234 }
10235
10236 return true;
10237 }
10238 \f
10239 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10240 Adjust its R_ADDEND field so that it is correct for the output file.
10241 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10242 and sections respectively; both use symbol indexes. */
10243
10244 static void
10245 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10246 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10247 asection **local_sections, Elf_Internal_Rela *rel)
10248 {
10249 unsigned int r_type, r_symndx;
10250 Elf_Internal_Sym *sym;
10251 asection *sec;
10252
10253 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10254 {
10255 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10256 if (gprel16_reloc_p (r_type)
10257 || r_type == R_MIPS_GPREL32
10258 || literal_reloc_p (r_type))
10259 {
10260 rel->r_addend += _bfd_get_gp_value (input_bfd);
10261 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10262 }
10263
10264 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10265 sym = local_syms + r_symndx;
10266
10267 /* Adjust REL's addend to account for section merging. */
10268 if (!bfd_link_relocatable (info))
10269 {
10270 sec = local_sections[r_symndx];
10271 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10272 }
10273
10274 /* This would normally be done by the rela_normal code in elflink.c. */
10275 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10276 rel->r_addend += local_sections[r_symndx]->output_offset;
10277 }
10278 }
10279
10280 /* Handle relocations against symbols from removed linkonce sections,
10281 or sections discarded by a linker script. We use this wrapper around
10282 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10283 on 64-bit ELF targets. In this case for any relocation handled, which
10284 always be the first in a triplet, the remaining two have to be processed
10285 together with the first, even if they are R_MIPS_NONE. It is the symbol
10286 index referred by the first reloc that applies to all the three and the
10287 remaining two never refer to an object symbol. And it is the final
10288 relocation (the last non-null one) that determines the output field of
10289 the whole relocation so retrieve the corresponding howto structure for
10290 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10291
10292 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10293 and therefore requires to be pasted in a loop. It also defines a block
10294 and does not protect any of its arguments, hence the extra brackets. */
10295
10296 static void
10297 mips_reloc_against_discarded_section (bfd *output_bfd,
10298 struct bfd_link_info *info,
10299 bfd *input_bfd, asection *input_section,
10300 Elf_Internal_Rela **rel,
10301 const Elf_Internal_Rela **relend,
10302 bool rel_reloc,
10303 reloc_howto_type *howto,
10304 bfd_byte *contents)
10305 {
10306 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10307 int count = bed->s->int_rels_per_ext_rel;
10308 unsigned int r_type;
10309 int i;
10310
10311 for (i = count - 1; i > 0; i--)
10312 {
10313 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10314 if (r_type != R_MIPS_NONE)
10315 {
10316 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10317 break;
10318 }
10319 }
10320 do
10321 {
10322 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10323 (*rel), count, (*relend),
10324 howto, i, contents);
10325 }
10326 while (0);
10327 }
10328
10329 /* Relocate a MIPS ELF section. */
10330
10331 int
10332 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10333 bfd *input_bfd, asection *input_section,
10334 bfd_byte *contents, Elf_Internal_Rela *relocs,
10335 Elf_Internal_Sym *local_syms,
10336 asection **local_sections)
10337 {
10338 Elf_Internal_Rela *rel;
10339 const Elf_Internal_Rela *relend;
10340 bfd_vma addend = 0;
10341 bool use_saved_addend_p = false;
10342
10343 relend = relocs + input_section->reloc_count;
10344 for (rel = relocs; rel < relend; ++rel)
10345 {
10346 const char *name;
10347 bfd_vma value = 0;
10348 reloc_howto_type *howto;
10349 bool cross_mode_jump_p = false;
10350 /* TRUE if the relocation is a RELA relocation, rather than a
10351 REL relocation. */
10352 bool rela_relocation_p = true;
10353 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10354 const char *msg;
10355 unsigned long r_symndx;
10356 asection *sec;
10357 Elf_Internal_Shdr *symtab_hdr;
10358 struct elf_link_hash_entry *h;
10359 bool rel_reloc;
10360
10361 rel_reloc = (NEWABI_P (input_bfd)
10362 && mips_elf_rel_relocation_p (input_bfd, input_section,
10363 relocs, rel));
10364 /* Find the relocation howto for this relocation. */
10365 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10366
10367 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10368 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10369 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10370 {
10371 sec = local_sections[r_symndx];
10372 h = NULL;
10373 }
10374 else
10375 {
10376 unsigned long extsymoff;
10377
10378 extsymoff = 0;
10379 if (!elf_bad_symtab (input_bfd))
10380 extsymoff = symtab_hdr->sh_info;
10381 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10382 while (h->root.type == bfd_link_hash_indirect
10383 || h->root.type == bfd_link_hash_warning)
10384 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10385
10386 sec = NULL;
10387 if (h->root.type == bfd_link_hash_defined
10388 || h->root.type == bfd_link_hash_defweak)
10389 sec = h->root.u.def.section;
10390 }
10391
10392 if (sec != NULL && discarded_section (sec))
10393 {
10394 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10395 input_section, &rel, &relend,
10396 rel_reloc, howto, contents);
10397 continue;
10398 }
10399
10400 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10401 {
10402 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10403 64-bit code, but make sure all their addresses are in the
10404 lowermost or uppermost 32-bit section of the 64-bit address
10405 space. Thus, when they use an R_MIPS_64 they mean what is
10406 usually meant by R_MIPS_32, with the exception that the
10407 stored value is sign-extended to 64 bits. */
10408 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, false);
10409
10410 /* On big-endian systems, we need to lie about the position
10411 of the reloc. */
10412 if (bfd_big_endian (input_bfd))
10413 rel->r_offset += 4;
10414 }
10415
10416 if (!use_saved_addend_p)
10417 {
10418 /* If these relocations were originally of the REL variety,
10419 we must pull the addend out of the field that will be
10420 relocated. Otherwise, we simply use the contents of the
10421 RELA relocation. */
10422 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10423 relocs, rel))
10424 {
10425 rela_relocation_p = false;
10426 addend = mips_elf_read_rel_addend (input_bfd, rel,
10427 howto, contents);
10428 if (hi16_reloc_p (r_type)
10429 || (got16_reloc_p (r_type)
10430 && mips_elf_local_relocation_p (input_bfd, rel,
10431 local_sections)))
10432 {
10433 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10434 contents, &addend))
10435 {
10436 if (h)
10437 name = h->root.root.string;
10438 else
10439 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10440 local_syms + r_symndx,
10441 sec);
10442 _bfd_error_handler
10443 /* xgettext:c-format */
10444 (_("%pB: can't find matching LO16 reloc against `%s'"
10445 " for %s at %#" PRIx64 " in section `%pA'"),
10446 input_bfd, name,
10447 howto->name, (uint64_t) rel->r_offset, input_section);
10448 }
10449 }
10450 else
10451 addend <<= howto->rightshift;
10452 }
10453 else
10454 addend = rel->r_addend;
10455 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10456 local_syms, local_sections, rel);
10457 }
10458
10459 if (bfd_link_relocatable (info))
10460 {
10461 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10462 && bfd_big_endian (input_bfd))
10463 rel->r_offset -= 4;
10464
10465 if (!rela_relocation_p && rel->r_addend)
10466 {
10467 addend += rel->r_addend;
10468 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10469 addend = mips_elf_high (addend);
10470 else if (r_type == R_MIPS_HIGHER)
10471 addend = mips_elf_higher (addend);
10472 else if (r_type == R_MIPS_HIGHEST)
10473 addend = mips_elf_highest (addend);
10474 else
10475 addend >>= howto->rightshift;
10476
10477 /* We use the source mask, rather than the destination
10478 mask because the place to which we are writing will be
10479 source of the addend in the final link. */
10480 addend &= howto->src_mask;
10481
10482 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10483 /* See the comment above about using R_MIPS_64 in the 32-bit
10484 ABI. Here, we need to update the addend. It would be
10485 possible to get away with just using the R_MIPS_32 reloc
10486 but for endianness. */
10487 {
10488 bfd_vma sign_bits;
10489 bfd_vma low_bits;
10490 bfd_vma high_bits;
10491
10492 if (addend & ((bfd_vma) 1 << 31))
10493 #ifdef BFD64
10494 sign_bits = ((bfd_vma) 1 << 32) - 1;
10495 #else
10496 sign_bits = -1;
10497 #endif
10498 else
10499 sign_bits = 0;
10500
10501 /* If we don't know that we have a 64-bit type,
10502 do two separate stores. */
10503 if (bfd_big_endian (input_bfd))
10504 {
10505 /* Store the sign-bits (which are most significant)
10506 first. */
10507 low_bits = sign_bits;
10508 high_bits = addend;
10509 }
10510 else
10511 {
10512 low_bits = addend;
10513 high_bits = sign_bits;
10514 }
10515 bfd_put_32 (input_bfd, low_bits,
10516 contents + rel->r_offset);
10517 bfd_put_32 (input_bfd, high_bits,
10518 contents + rel->r_offset + 4);
10519 continue;
10520 }
10521
10522 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10523 input_bfd, input_section,
10524 contents, false))
10525 return false;
10526 }
10527
10528 /* Go on to the next relocation. */
10529 continue;
10530 }
10531
10532 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10533 relocations for the same offset. In that case we are
10534 supposed to treat the output of each relocation as the addend
10535 for the next. */
10536 if (rel + 1 < relend
10537 && rel->r_offset == rel[1].r_offset
10538 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10539 use_saved_addend_p = true;
10540 else
10541 use_saved_addend_p = false;
10542
10543 /* Figure out what value we are supposed to relocate. */
10544 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10545 input_section, contents,
10546 info, rel, addend, howto,
10547 local_syms, local_sections,
10548 &value, &name, &cross_mode_jump_p,
10549 use_saved_addend_p))
10550 {
10551 case bfd_reloc_continue:
10552 /* There's nothing to do. */
10553 continue;
10554
10555 case bfd_reloc_undefined:
10556 /* mips_elf_calculate_relocation already called the
10557 undefined_symbol callback. There's no real point in
10558 trying to perform the relocation at this point, so we
10559 just skip ahead to the next relocation. */
10560 continue;
10561
10562 case bfd_reloc_notsupported:
10563 msg = _("internal error: unsupported relocation error");
10564 info->callbacks->warning
10565 (info, msg, name, input_bfd, input_section, rel->r_offset);
10566 return false;
10567
10568 case bfd_reloc_overflow:
10569 if (use_saved_addend_p)
10570 /* Ignore overflow until we reach the last relocation for
10571 a given location. */
10572 ;
10573 else
10574 {
10575 struct mips_elf_link_hash_table *htab;
10576
10577 htab = mips_elf_hash_table (info);
10578 BFD_ASSERT (htab != NULL);
10579 BFD_ASSERT (name != NULL);
10580 if (!htab->small_data_overflow_reported
10581 && (gprel16_reloc_p (howto->type)
10582 || literal_reloc_p (howto->type)))
10583 {
10584 msg = _("small-data section exceeds 64KB;"
10585 " lower small-data size limit (see option -G)");
10586
10587 htab->small_data_overflow_reported = true;
10588 (*info->callbacks->einfo) ("%P: %s\n", msg);
10589 }
10590 (*info->callbacks->reloc_overflow)
10591 (info, NULL, name, howto->name, (bfd_vma) 0,
10592 input_bfd, input_section, rel->r_offset);
10593 }
10594 break;
10595
10596 case bfd_reloc_ok:
10597 break;
10598
10599 case bfd_reloc_outofrange:
10600 msg = NULL;
10601 if (jal_reloc_p (howto->type))
10602 msg = (cross_mode_jump_p
10603 ? _("cannot convert a jump to JALX "
10604 "for a non-word-aligned address")
10605 : (howto->type == R_MIPS16_26
10606 ? _("jump to a non-word-aligned address")
10607 : _("jump to a non-instruction-aligned address")));
10608 else if (b_reloc_p (howto->type))
10609 msg = (cross_mode_jump_p
10610 ? _("cannot convert a branch to JALX "
10611 "for a non-word-aligned address")
10612 : _("branch to a non-instruction-aligned address"));
10613 else if (aligned_pcrel_reloc_p (howto->type))
10614 msg = _("PC-relative load from unaligned address");
10615 if (msg)
10616 {
10617 info->callbacks->einfo
10618 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10619 break;
10620 }
10621 /* Fall through. */
10622
10623 default:
10624 abort ();
10625 break;
10626 }
10627
10628 /* If we've got another relocation for the address, keep going
10629 until we reach the last one. */
10630 if (use_saved_addend_p)
10631 {
10632 addend = value;
10633 continue;
10634 }
10635
10636 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10637 /* See the comment above about using R_MIPS_64 in the 32-bit
10638 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10639 that calculated the right value. Now, however, we
10640 sign-extend the 32-bit result to 64-bits, and store it as a
10641 64-bit value. We are especially generous here in that we
10642 go to extreme lengths to support this usage on systems with
10643 only a 32-bit VMA. */
10644 {
10645 bfd_vma sign_bits;
10646 bfd_vma low_bits;
10647 bfd_vma high_bits;
10648
10649 if (value & ((bfd_vma) 1 << 31))
10650 #ifdef BFD64
10651 sign_bits = ((bfd_vma) 1 << 32) - 1;
10652 #else
10653 sign_bits = -1;
10654 #endif
10655 else
10656 sign_bits = 0;
10657
10658 /* If we don't know that we have a 64-bit type,
10659 do two separate stores. */
10660 if (bfd_big_endian (input_bfd))
10661 {
10662 /* Undo what we did above. */
10663 rel->r_offset -= 4;
10664 /* Store the sign-bits (which are most significant)
10665 first. */
10666 low_bits = sign_bits;
10667 high_bits = value;
10668 }
10669 else
10670 {
10671 low_bits = value;
10672 high_bits = sign_bits;
10673 }
10674 bfd_put_32 (input_bfd, low_bits,
10675 contents + rel->r_offset);
10676 bfd_put_32 (input_bfd, high_bits,
10677 contents + rel->r_offset + 4);
10678 continue;
10679 }
10680
10681 /* Actually perform the relocation. */
10682 if (! mips_elf_perform_relocation (info, howto, rel, value,
10683 input_bfd, input_section,
10684 contents, cross_mode_jump_p))
10685 return false;
10686 }
10687
10688 return true;
10689 }
10690 \f
10691 /* A function that iterates over each entry in la25_stubs and fills
10692 in the code for each one. DATA points to a mips_htab_traverse_info. */
10693
10694 static int
10695 mips_elf_create_la25_stub (void **slot, void *data)
10696 {
10697 struct mips_htab_traverse_info *hti;
10698 struct mips_elf_link_hash_table *htab;
10699 struct mips_elf_la25_stub *stub;
10700 asection *s;
10701 bfd_byte *loc;
10702 bfd_vma offset, target, target_high, target_low;
10703 bfd_vma branch_pc;
10704 bfd_signed_vma pcrel_offset = 0;
10705
10706 stub = (struct mips_elf_la25_stub *) *slot;
10707 hti = (struct mips_htab_traverse_info *) data;
10708 htab = mips_elf_hash_table (hti->info);
10709 BFD_ASSERT (htab != NULL);
10710
10711 /* Create the section contents, if we haven't already. */
10712 s = stub->stub_section;
10713 loc = s->contents;
10714 if (loc == NULL)
10715 {
10716 loc = bfd_malloc (s->size);
10717 if (loc == NULL)
10718 {
10719 hti->error = true;
10720 return false;
10721 }
10722 s->contents = loc;
10723 }
10724
10725 /* Work out where in the section this stub should go. */
10726 offset = stub->offset;
10727
10728 /* We add 8 here to account for the LUI/ADDIU instructions
10729 before the branch instruction. This cannot be moved down to
10730 where pcrel_offset is calculated as 's' is updated in
10731 mips_elf_get_la25_target. */
10732 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10733
10734 /* Work out the target address. */
10735 target = mips_elf_get_la25_target (stub, &s);
10736 target += s->output_section->vma + s->output_offset;
10737
10738 target_high = ((target + 0x8000) >> 16) & 0xffff;
10739 target_low = (target & 0xffff);
10740
10741 /* Calculate the PC of the compact branch instruction (for the case where
10742 compact branches are used for either microMIPSR6 or MIPSR6 with
10743 compact branches. Add 4-bytes to account for BC using the PC of the
10744 next instruction as the base. */
10745 pcrel_offset = target - (branch_pc + 4);
10746
10747 if (stub->stub_section != htab->strampoline)
10748 {
10749 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10750 of the section and write the two instructions at the end. */
10751 memset (loc, 0, offset);
10752 loc += offset;
10753 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10754 {
10755 bfd_put_micromips_32 (hti->output_bfd,
10756 LA25_LUI_MICROMIPS (target_high),
10757 loc);
10758 bfd_put_micromips_32 (hti->output_bfd,
10759 LA25_ADDIU_MICROMIPS (target_low),
10760 loc + 4);
10761 }
10762 else
10763 {
10764 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10765 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10766 }
10767 }
10768 else
10769 {
10770 /* This is trampoline. */
10771 loc += offset;
10772 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10773 {
10774 bfd_put_micromips_32 (hti->output_bfd,
10775 LA25_LUI_MICROMIPS (target_high), loc);
10776 bfd_put_micromips_32 (hti->output_bfd,
10777 LA25_J_MICROMIPS (target), loc + 4);
10778 bfd_put_micromips_32 (hti->output_bfd,
10779 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10780 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10781 }
10782 else
10783 {
10784 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10785 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10786 {
10787 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10788 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10789 }
10790 else
10791 {
10792 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10793 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10794 }
10795 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10796 }
10797 }
10798 return true;
10799 }
10800
10801 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10802 adjust it appropriately now. */
10803
10804 static void
10805 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10806 const char *name, Elf_Internal_Sym *sym)
10807 {
10808 /* The linker script takes care of providing names and values for
10809 these, but we must place them into the right sections. */
10810 static const char* const text_section_symbols[] = {
10811 "_ftext",
10812 "_etext",
10813 "__dso_displacement",
10814 "__elf_header",
10815 "__program_header_table",
10816 NULL
10817 };
10818
10819 static const char* const data_section_symbols[] = {
10820 "_fdata",
10821 "_edata",
10822 "_end",
10823 "_fbss",
10824 NULL
10825 };
10826
10827 const char* const *p;
10828 int i;
10829
10830 for (i = 0; i < 2; ++i)
10831 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10832 *p;
10833 ++p)
10834 if (strcmp (*p, name) == 0)
10835 {
10836 /* All of these symbols are given type STT_SECTION by the
10837 IRIX6 linker. */
10838 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10839 sym->st_other = STO_PROTECTED;
10840
10841 /* The IRIX linker puts these symbols in special sections. */
10842 if (i == 0)
10843 sym->st_shndx = SHN_MIPS_TEXT;
10844 else
10845 sym->st_shndx = SHN_MIPS_DATA;
10846
10847 break;
10848 }
10849 }
10850
10851 /* Finish up dynamic symbol handling. We set the contents of various
10852 dynamic sections here. */
10853
10854 bool
10855 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10856 struct bfd_link_info *info,
10857 struct elf_link_hash_entry *h,
10858 Elf_Internal_Sym *sym)
10859 {
10860 bfd *dynobj;
10861 asection *sgot;
10862 struct mips_got_info *g, *gg;
10863 const char *name;
10864 int idx;
10865 struct mips_elf_link_hash_table *htab;
10866 struct mips_elf_link_hash_entry *hmips;
10867
10868 htab = mips_elf_hash_table (info);
10869 BFD_ASSERT (htab != NULL);
10870 dynobj = elf_hash_table (info)->dynobj;
10871 hmips = (struct mips_elf_link_hash_entry *) h;
10872
10873 BFD_ASSERT (htab->root.target_os != is_vxworks);
10874
10875 if (h->plt.plist != NULL
10876 && (h->plt.plist->mips_offset != MINUS_ONE
10877 || h->plt.plist->comp_offset != MINUS_ONE))
10878 {
10879 /* We've decided to create a PLT entry for this symbol. */
10880 bfd_byte *loc;
10881 bfd_vma header_address, got_address;
10882 bfd_vma got_address_high, got_address_low, load;
10883 bfd_vma got_index;
10884 bfd_vma isa_bit;
10885
10886 got_index = h->plt.plist->gotplt_index;
10887
10888 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10889 BFD_ASSERT (h->dynindx != -1);
10890 BFD_ASSERT (htab->root.splt != NULL);
10891 BFD_ASSERT (got_index != MINUS_ONE);
10892 BFD_ASSERT (!h->def_regular);
10893
10894 /* Calculate the address of the PLT header. */
10895 isa_bit = htab->plt_header_is_comp;
10896 header_address = (htab->root.splt->output_section->vma
10897 + htab->root.splt->output_offset + isa_bit);
10898
10899 /* Calculate the address of the .got.plt entry. */
10900 got_address = (htab->root.sgotplt->output_section->vma
10901 + htab->root.sgotplt->output_offset
10902 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10903
10904 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10905 got_address_low = got_address & 0xffff;
10906
10907 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10908 cannot be loaded in two instructions. */
10909 if (ABI_64_P (output_bfd)
10910 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10911 {
10912 _bfd_error_handler
10913 /* xgettext:c-format */
10914 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10915 "supported; consider using `-Ttext-segment=...'"),
10916 output_bfd,
10917 htab->root.sgotplt->output_section,
10918 (int64_t) got_address);
10919 bfd_set_error (bfd_error_no_error);
10920 return false;
10921 }
10922
10923 /* Initially point the .got.plt entry at the PLT header. */
10924 loc = (htab->root.sgotplt->contents
10925 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10926 if (ABI_64_P (output_bfd))
10927 bfd_put_64 (output_bfd, header_address, loc);
10928 else
10929 bfd_put_32 (output_bfd, header_address, loc);
10930
10931 /* Now handle the PLT itself. First the standard entry (the order
10932 does not matter, we just have to pick one). */
10933 if (h->plt.plist->mips_offset != MINUS_ONE)
10934 {
10935 const bfd_vma *plt_entry;
10936 bfd_vma plt_offset;
10937
10938 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10939
10940 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10941
10942 /* Find out where the .plt entry should go. */
10943 loc = htab->root.splt->contents + plt_offset;
10944
10945 /* Pick the load opcode. */
10946 load = MIPS_ELF_LOAD_WORD (output_bfd);
10947
10948 /* Fill in the PLT entry itself. */
10949
10950 if (MIPSR6_P (output_bfd))
10951 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10952 : mipsr6_exec_plt_entry;
10953 else
10954 plt_entry = mips_exec_plt_entry;
10955 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10956 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10957 loc + 4);
10958
10959 if (! LOAD_INTERLOCKS_P (output_bfd)
10960 || (MIPSR6_P (output_bfd) && htab->compact_branches))
10961 {
10962 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10963 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10964 }
10965 else
10966 {
10967 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10968 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10969 loc + 12);
10970 }
10971 }
10972
10973 /* Now the compressed entry. They come after any standard ones. */
10974 if (h->plt.plist->comp_offset != MINUS_ONE)
10975 {
10976 bfd_vma plt_offset;
10977
10978 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10979 + h->plt.plist->comp_offset);
10980
10981 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10982
10983 /* Find out where the .plt entry should go. */
10984 loc = htab->root.splt->contents + plt_offset;
10985
10986 /* Fill in the PLT entry itself. */
10987 if (!MICROMIPS_P (output_bfd))
10988 {
10989 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10990
10991 bfd_put_16 (output_bfd, plt_entry[0], loc);
10992 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10993 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10994 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10995 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10996 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10997 bfd_put_32 (output_bfd, got_address, loc + 12);
10998 }
10999 else if (htab->insn32)
11000 {
11001 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
11002
11003 bfd_put_16 (output_bfd, plt_entry[0], loc);
11004 bfd_put_16 (output_bfd, got_address_high, loc + 2);
11005 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11006 bfd_put_16 (output_bfd, got_address_low, loc + 6);
11007 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11008 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11009 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
11010 bfd_put_16 (output_bfd, got_address_low, loc + 14);
11011 }
11012 else
11013 {
11014 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
11015 bfd_signed_vma gotpc_offset;
11016 bfd_vma loc_address;
11017
11018 BFD_ASSERT (got_address % 4 == 0);
11019
11020 loc_address = (htab->root.splt->output_section->vma
11021 + htab->root.splt->output_offset + plt_offset);
11022 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
11023
11024 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11025 if (gotpc_offset + 0x1000000 >= 0x2000000)
11026 {
11027 _bfd_error_handler
11028 /* xgettext:c-format */
11029 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11030 "beyond the range of ADDIUPC"),
11031 output_bfd,
11032 htab->root.sgotplt->output_section,
11033 (int64_t) gotpc_offset,
11034 htab->root.splt->output_section);
11035 bfd_set_error (bfd_error_no_error);
11036 return false;
11037 }
11038 bfd_put_16 (output_bfd,
11039 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11040 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11041 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11042 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11043 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11044 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11045 }
11046 }
11047
11048 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11049 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
11050 got_index - 2, h->dynindx,
11051 R_MIPS_JUMP_SLOT, got_address);
11052
11053 /* We distinguish between PLT entries and lazy-binding stubs by
11054 giving the former an st_other value of STO_MIPS_PLT. Set the
11055 flag and leave the value if there are any relocations in the
11056 binary where pointer equality matters. */
11057 sym->st_shndx = SHN_UNDEF;
11058 if (h->pointer_equality_needed)
11059 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
11060 else
11061 {
11062 sym->st_value = 0;
11063 sym->st_other = 0;
11064 }
11065 }
11066
11067 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
11068 {
11069 /* We've decided to create a lazy-binding stub. */
11070 bool micromips_p = MICROMIPS_P (output_bfd);
11071 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11072 bfd_vma stub_size = htab->function_stub_size;
11073 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
11074 bfd_vma isa_bit = micromips_p;
11075 bfd_vma stub_big_size;
11076
11077 if (!micromips_p)
11078 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
11079 else if (htab->insn32)
11080 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11081 else
11082 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
11083
11084 /* This symbol has a stub. Set it up. */
11085
11086 BFD_ASSERT (h->dynindx != -1);
11087
11088 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
11089
11090 /* Values up to 2^31 - 1 are allowed. Larger values would cause
11091 sign extension at runtime in the stub, resulting in a negative
11092 index value. */
11093 if (h->dynindx & ~0x7fffffff)
11094 return false;
11095
11096 /* Fill the stub. */
11097 if (micromips_p)
11098 {
11099 idx = 0;
11100 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11101 stub + idx);
11102 idx += 4;
11103 if (htab->insn32)
11104 {
11105 bfd_put_micromips_32 (output_bfd,
11106 STUB_MOVE32_MICROMIPS, stub + idx);
11107 idx += 4;
11108 }
11109 else
11110 {
11111 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11112 idx += 2;
11113 }
11114 if (stub_size == stub_big_size)
11115 {
11116 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11117
11118 bfd_put_micromips_32 (output_bfd,
11119 STUB_LUI_MICROMIPS (dynindx_hi),
11120 stub + idx);
11121 idx += 4;
11122 }
11123 if (htab->insn32)
11124 {
11125 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11126 stub + idx);
11127 idx += 4;
11128 }
11129 else
11130 {
11131 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11132 idx += 2;
11133 }
11134
11135 /* If a large stub is not required and sign extension is not a
11136 problem, then use legacy code in the stub. */
11137 if (stub_size == stub_big_size)
11138 bfd_put_micromips_32 (output_bfd,
11139 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11140 stub + idx);
11141 else if (h->dynindx & ~0x7fff)
11142 bfd_put_micromips_32 (output_bfd,
11143 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11144 stub + idx);
11145 else
11146 bfd_put_micromips_32 (output_bfd,
11147 STUB_LI16S_MICROMIPS (output_bfd,
11148 h->dynindx),
11149 stub + idx);
11150 }
11151 else
11152 {
11153 idx = 0;
11154 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11155 idx += 4;
11156 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11157 idx += 4;
11158 if (stub_size == stub_big_size)
11159 {
11160 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11161 stub + idx);
11162 idx += 4;
11163 }
11164
11165 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11166 {
11167 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11168 idx += 4;
11169 }
11170
11171 /* If a large stub is not required and sign extension is not a
11172 problem, then use legacy code in the stub. */
11173 if (stub_size == stub_big_size)
11174 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11175 stub + idx);
11176 else if (h->dynindx & ~0x7fff)
11177 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11178 stub + idx);
11179 else
11180 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11181 stub + idx);
11182 idx += 4;
11183
11184 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11185 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
11186 }
11187
11188 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11189 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11190 stub, stub_size);
11191
11192 /* Mark the symbol as undefined. stub_offset != -1 occurs
11193 only for the referenced symbol. */
11194 sym->st_shndx = SHN_UNDEF;
11195
11196 /* The run-time linker uses the st_value field of the symbol
11197 to reset the global offset table entry for this external
11198 to its stub address when unlinking a shared object. */
11199 sym->st_value = (htab->sstubs->output_section->vma
11200 + htab->sstubs->output_offset
11201 + h->plt.plist->stub_offset
11202 + isa_bit);
11203 sym->st_other = other;
11204 }
11205
11206 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11207 refer to the stub, since only the stub uses the standard calling
11208 conventions. */
11209 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11210 {
11211 BFD_ASSERT (hmips->need_fn_stub);
11212 sym->st_value = (hmips->fn_stub->output_section->vma
11213 + hmips->fn_stub->output_offset);
11214 sym->st_size = hmips->fn_stub->size;
11215 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11216 }
11217
11218 BFD_ASSERT (h->dynindx != -1
11219 || h->forced_local);
11220
11221 sgot = htab->root.sgot;
11222 g = htab->got_info;
11223 BFD_ASSERT (g != NULL);
11224
11225 /* Run through the global symbol table, creating GOT entries for all
11226 the symbols that need them. */
11227 if (hmips->global_got_area != GGA_NONE)
11228 {
11229 bfd_vma offset;
11230 bfd_vma value;
11231
11232 value = sym->st_value;
11233 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11234 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11235 }
11236
11237 if (hmips->global_got_area != GGA_NONE && g->next)
11238 {
11239 struct mips_got_entry e, *p;
11240 bfd_vma entry;
11241 bfd_vma offset;
11242
11243 gg = g;
11244
11245 e.abfd = output_bfd;
11246 e.symndx = -1;
11247 e.d.h = hmips;
11248 e.tls_type = GOT_TLS_NONE;
11249
11250 for (g = g->next; g->next != gg; g = g->next)
11251 {
11252 if (g->got_entries
11253 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11254 &e)))
11255 {
11256 offset = p->gotidx;
11257 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11258 if (bfd_link_pic (info)
11259 || (elf_hash_table (info)->dynamic_sections_created
11260 && p->d.h != NULL
11261 && p->d.h->root.def_dynamic
11262 && !p->d.h->root.def_regular))
11263 {
11264 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11265 the various compatibility problems, it's easier to mock
11266 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11267 mips_elf_create_dynamic_relocation to calculate the
11268 appropriate addend. */
11269 Elf_Internal_Rela rel[3];
11270
11271 memset (rel, 0, sizeof (rel));
11272 if (ABI_64_P (output_bfd))
11273 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11274 else
11275 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11276 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11277
11278 entry = 0;
11279 if (! (mips_elf_create_dynamic_relocation
11280 (output_bfd, info, rel,
11281 e.d.h, NULL, sym->st_value, &entry, sgot)))
11282 return false;
11283 }
11284 else
11285 entry = sym->st_value;
11286 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11287 }
11288 }
11289 }
11290
11291 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11292 name = h->root.root.string;
11293 if (h == elf_hash_table (info)->hdynamic
11294 || h == elf_hash_table (info)->hgot)
11295 sym->st_shndx = SHN_ABS;
11296 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11297 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11298 {
11299 sym->st_shndx = SHN_ABS;
11300 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11301 sym->st_value = 1;
11302 }
11303 else if (SGI_COMPAT (output_bfd))
11304 {
11305 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11306 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11307 {
11308 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11309 sym->st_other = STO_PROTECTED;
11310 sym->st_value = 0;
11311 sym->st_shndx = SHN_MIPS_DATA;
11312 }
11313 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11314 {
11315 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11316 sym->st_other = STO_PROTECTED;
11317 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11318 sym->st_shndx = SHN_ABS;
11319 }
11320 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11321 {
11322 if (h->type == STT_FUNC)
11323 sym->st_shndx = SHN_MIPS_TEXT;
11324 else if (h->type == STT_OBJECT)
11325 sym->st_shndx = SHN_MIPS_DATA;
11326 }
11327 }
11328
11329 /* Emit a copy reloc, if needed. */
11330 if (h->needs_copy)
11331 {
11332 asection *s;
11333 bfd_vma symval;
11334
11335 BFD_ASSERT (h->dynindx != -1);
11336 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11337
11338 s = mips_elf_rel_dyn_section (info, false);
11339 symval = (h->root.u.def.section->output_section->vma
11340 + h->root.u.def.section->output_offset
11341 + h->root.u.def.value);
11342 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11343 h->dynindx, R_MIPS_COPY, symval);
11344 }
11345
11346 /* Handle the IRIX6-specific symbols. */
11347 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11348 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11349
11350 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11351 to treat compressed symbols like any other. */
11352 if (ELF_ST_IS_MIPS16 (sym->st_other))
11353 {
11354 BFD_ASSERT (sym->st_value & 1);
11355 sym->st_other -= STO_MIPS16;
11356 }
11357 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11358 {
11359 BFD_ASSERT (sym->st_value & 1);
11360 sym->st_other -= STO_MICROMIPS;
11361 }
11362
11363 return true;
11364 }
11365
11366 /* Likewise, for VxWorks. */
11367
11368 bool
11369 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11370 struct bfd_link_info *info,
11371 struct elf_link_hash_entry *h,
11372 Elf_Internal_Sym *sym)
11373 {
11374 bfd *dynobj;
11375 asection *sgot;
11376 struct mips_got_info *g;
11377 struct mips_elf_link_hash_table *htab;
11378 struct mips_elf_link_hash_entry *hmips;
11379
11380 htab = mips_elf_hash_table (info);
11381 BFD_ASSERT (htab != NULL);
11382 dynobj = elf_hash_table (info)->dynobj;
11383 hmips = (struct mips_elf_link_hash_entry *) h;
11384
11385 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11386 {
11387 bfd_byte *loc;
11388 bfd_vma plt_address, got_address, got_offset, branch_offset;
11389 Elf_Internal_Rela rel;
11390 static const bfd_vma *plt_entry;
11391 bfd_vma gotplt_index;
11392 bfd_vma plt_offset;
11393
11394 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11395 gotplt_index = h->plt.plist->gotplt_index;
11396
11397 BFD_ASSERT (h->dynindx != -1);
11398 BFD_ASSERT (htab->root.splt != NULL);
11399 BFD_ASSERT (gotplt_index != MINUS_ONE);
11400 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11401
11402 /* Calculate the address of the .plt entry. */
11403 plt_address = (htab->root.splt->output_section->vma
11404 + htab->root.splt->output_offset
11405 + plt_offset);
11406
11407 /* Calculate the address of the .got.plt entry. */
11408 got_address = (htab->root.sgotplt->output_section->vma
11409 + htab->root.sgotplt->output_offset
11410 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11411
11412 /* Calculate the offset of the .got.plt entry from
11413 _GLOBAL_OFFSET_TABLE_. */
11414 got_offset = mips_elf_gotplt_index (info, h);
11415
11416 /* Calculate the offset for the branch at the start of the PLT
11417 entry. The branch jumps to the beginning of .plt. */
11418 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11419
11420 /* Fill in the initial value of the .got.plt entry. */
11421 bfd_put_32 (output_bfd, plt_address,
11422 (htab->root.sgotplt->contents
11423 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11424
11425 /* Find out where the .plt entry should go. */
11426 loc = htab->root.splt->contents + plt_offset;
11427
11428 if (bfd_link_pic (info))
11429 {
11430 plt_entry = mips_vxworks_shared_plt_entry;
11431 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11432 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11433 }
11434 else
11435 {
11436 bfd_vma got_address_high, got_address_low;
11437
11438 plt_entry = mips_vxworks_exec_plt_entry;
11439 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11440 got_address_low = got_address & 0xffff;
11441
11442 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11443 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11444 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11445 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11446 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11447 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11448 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11449 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11450
11451 loc = (htab->srelplt2->contents
11452 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11453
11454 /* Emit a relocation for the .got.plt entry. */
11455 rel.r_offset = got_address;
11456 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11457 rel.r_addend = plt_offset;
11458 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11459
11460 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11461 loc += sizeof (Elf32_External_Rela);
11462 rel.r_offset = plt_address + 8;
11463 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11464 rel.r_addend = got_offset;
11465 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11466
11467 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11468 loc += sizeof (Elf32_External_Rela);
11469 rel.r_offset += 4;
11470 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11471 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11472 }
11473
11474 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11475 loc = (htab->root.srelplt->contents
11476 + gotplt_index * sizeof (Elf32_External_Rela));
11477 rel.r_offset = got_address;
11478 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11479 rel.r_addend = 0;
11480 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11481
11482 if (!h->def_regular)
11483 sym->st_shndx = SHN_UNDEF;
11484 }
11485
11486 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11487
11488 sgot = htab->root.sgot;
11489 g = htab->got_info;
11490 BFD_ASSERT (g != NULL);
11491
11492 /* See if this symbol has an entry in the GOT. */
11493 if (hmips->global_got_area != GGA_NONE)
11494 {
11495 bfd_vma offset;
11496 Elf_Internal_Rela outrel;
11497 bfd_byte *loc;
11498 asection *s;
11499
11500 /* Install the symbol value in the GOT. */
11501 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11502 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11503
11504 /* Add a dynamic relocation for it. */
11505 s = mips_elf_rel_dyn_section (info, false);
11506 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11507 outrel.r_offset = (sgot->output_section->vma
11508 + sgot->output_offset
11509 + offset);
11510 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11511 outrel.r_addend = 0;
11512 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11513 }
11514
11515 /* Emit a copy reloc, if needed. */
11516 if (h->needs_copy)
11517 {
11518 Elf_Internal_Rela rel;
11519 asection *srel;
11520 bfd_byte *loc;
11521
11522 BFD_ASSERT (h->dynindx != -1);
11523
11524 rel.r_offset = (h->root.u.def.section->output_section->vma
11525 + h->root.u.def.section->output_offset
11526 + h->root.u.def.value);
11527 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11528 rel.r_addend = 0;
11529 if (h->root.u.def.section == htab->root.sdynrelro)
11530 srel = htab->root.sreldynrelro;
11531 else
11532 srel = htab->root.srelbss;
11533 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11534 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11535 ++srel->reloc_count;
11536 }
11537
11538 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11539 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11540 sym->st_value &= ~1;
11541
11542 return true;
11543 }
11544
11545 /* Write out a plt0 entry to the beginning of .plt. */
11546
11547 static bool
11548 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11549 {
11550 bfd_byte *loc;
11551 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11552 static const bfd_vma *plt_entry;
11553 struct mips_elf_link_hash_table *htab;
11554
11555 htab = mips_elf_hash_table (info);
11556 BFD_ASSERT (htab != NULL);
11557
11558 if (ABI_64_P (output_bfd))
11559 plt_entry = (htab->compact_branches
11560 ? mipsr6_n64_exec_plt0_entry_compact
11561 : mips_n64_exec_plt0_entry);
11562 else if (ABI_N32_P (output_bfd))
11563 plt_entry = (htab->compact_branches
11564 ? mipsr6_n32_exec_plt0_entry_compact
11565 : mips_n32_exec_plt0_entry);
11566 else if (!htab->plt_header_is_comp)
11567 plt_entry = (htab->compact_branches
11568 ? mipsr6_o32_exec_plt0_entry_compact
11569 : mips_o32_exec_plt0_entry);
11570 else if (htab->insn32)
11571 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11572 else
11573 plt_entry = micromips_o32_exec_plt0_entry;
11574
11575 /* Calculate the value of .got.plt. */
11576 gotplt_value = (htab->root.sgotplt->output_section->vma
11577 + htab->root.sgotplt->output_offset);
11578 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11579 gotplt_value_low = gotplt_value & 0xffff;
11580
11581 /* The PLT sequence is not safe for N64 if .got.plt's address can
11582 not be loaded in two instructions. */
11583 if (ABI_64_P (output_bfd)
11584 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11585 {
11586 _bfd_error_handler
11587 /* xgettext:c-format */
11588 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11589 "supported; consider using `-Ttext-segment=...'"),
11590 output_bfd,
11591 htab->root.sgotplt->output_section,
11592 (int64_t) gotplt_value);
11593 bfd_set_error (bfd_error_no_error);
11594 return false;
11595 }
11596
11597 /* Install the PLT header. */
11598 loc = htab->root.splt->contents;
11599 if (plt_entry == micromips_o32_exec_plt0_entry)
11600 {
11601 bfd_vma gotpc_offset;
11602 bfd_vma loc_address;
11603 size_t i;
11604
11605 BFD_ASSERT (gotplt_value % 4 == 0);
11606
11607 loc_address = (htab->root.splt->output_section->vma
11608 + htab->root.splt->output_offset);
11609 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11610
11611 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11612 if (gotpc_offset + 0x1000000 >= 0x2000000)
11613 {
11614 _bfd_error_handler
11615 /* xgettext:c-format */
11616 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11617 "beyond the range of ADDIUPC"),
11618 output_bfd,
11619 htab->root.sgotplt->output_section,
11620 (int64_t) gotpc_offset,
11621 htab->root.splt->output_section);
11622 bfd_set_error (bfd_error_no_error);
11623 return false;
11624 }
11625 bfd_put_16 (output_bfd,
11626 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11627 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11628 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11629 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11630 }
11631 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11632 {
11633 size_t i;
11634
11635 bfd_put_16 (output_bfd, plt_entry[0], loc);
11636 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11637 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11638 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11639 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11640 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11641 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11642 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11643 }
11644 else
11645 {
11646 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11647 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11648 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11649 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11650 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11651 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11652 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11653 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11654 }
11655
11656 return true;
11657 }
11658
11659 /* Install the PLT header for a VxWorks executable and finalize the
11660 contents of .rela.plt.unloaded. */
11661
11662 static void
11663 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11664 {
11665 Elf_Internal_Rela rela;
11666 bfd_byte *loc;
11667 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11668 static const bfd_vma *plt_entry;
11669 struct mips_elf_link_hash_table *htab;
11670
11671 htab = mips_elf_hash_table (info);
11672 BFD_ASSERT (htab != NULL);
11673
11674 plt_entry = mips_vxworks_exec_plt0_entry;
11675
11676 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11677 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11678 + htab->root.hgot->root.u.def.section->output_offset
11679 + htab->root.hgot->root.u.def.value);
11680
11681 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11682 got_value_low = got_value & 0xffff;
11683
11684 /* Calculate the address of the PLT header. */
11685 plt_address = (htab->root.splt->output_section->vma
11686 + htab->root.splt->output_offset);
11687
11688 /* Install the PLT header. */
11689 loc = htab->root.splt->contents;
11690 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11691 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11692 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11693 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11694 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11695 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11696
11697 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11698 loc = htab->srelplt2->contents;
11699 rela.r_offset = plt_address;
11700 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11701 rela.r_addend = 0;
11702 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11703 loc += sizeof (Elf32_External_Rela);
11704
11705 /* Output the relocation for the following addiu of
11706 %lo(_GLOBAL_OFFSET_TABLE_). */
11707 rela.r_offset += 4;
11708 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11709 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11710 loc += sizeof (Elf32_External_Rela);
11711
11712 /* Fix up the remaining relocations. They may have the wrong
11713 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11714 in which symbols were output. */
11715 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11716 {
11717 Elf_Internal_Rela rel;
11718
11719 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11720 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11721 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11722 loc += sizeof (Elf32_External_Rela);
11723
11724 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11725 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11726 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11727 loc += sizeof (Elf32_External_Rela);
11728
11729 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11730 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11731 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11732 loc += sizeof (Elf32_External_Rela);
11733 }
11734 }
11735
11736 /* Install the PLT header for a VxWorks shared library. */
11737
11738 static void
11739 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11740 {
11741 unsigned int i;
11742 struct mips_elf_link_hash_table *htab;
11743
11744 htab = mips_elf_hash_table (info);
11745 BFD_ASSERT (htab != NULL);
11746
11747 /* We just need to copy the entry byte-by-byte. */
11748 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11749 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11750 htab->root.splt->contents + i * 4);
11751 }
11752
11753 /* Finish up the dynamic sections. */
11754
11755 bool
11756 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11757 struct bfd_link_info *info)
11758 {
11759 bfd *dynobj;
11760 asection *sdyn;
11761 asection *sgot;
11762 struct mips_got_info *gg, *g;
11763 struct mips_elf_link_hash_table *htab;
11764
11765 htab = mips_elf_hash_table (info);
11766 BFD_ASSERT (htab != NULL);
11767
11768 dynobj = elf_hash_table (info)->dynobj;
11769
11770 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11771
11772 sgot = htab->root.sgot;
11773 gg = htab->got_info;
11774
11775 if (elf_hash_table (info)->dynamic_sections_created)
11776 {
11777 bfd_byte *b;
11778 int dyn_to_skip = 0, dyn_skipped = 0;
11779
11780 BFD_ASSERT (sdyn != NULL);
11781 BFD_ASSERT (gg != NULL);
11782
11783 g = mips_elf_bfd_got (output_bfd, false);
11784 BFD_ASSERT (g != NULL);
11785
11786 for (b = sdyn->contents;
11787 b < sdyn->contents + sdyn->size;
11788 b += MIPS_ELF_DYN_SIZE (dynobj))
11789 {
11790 Elf_Internal_Dyn dyn;
11791 const char *name;
11792 size_t elemsize;
11793 asection *s;
11794 bool swap_out_p;
11795
11796 /* Read in the current dynamic entry. */
11797 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11798
11799 /* Assume that we're going to modify it and write it out. */
11800 swap_out_p = true;
11801
11802 switch (dyn.d_tag)
11803 {
11804 case DT_RELENT:
11805 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11806 break;
11807
11808 case DT_RELAENT:
11809 BFD_ASSERT (htab->root.target_os == is_vxworks);
11810 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11811 break;
11812
11813 case DT_STRSZ:
11814 /* Rewrite DT_STRSZ. */
11815 dyn.d_un.d_val =
11816 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11817 break;
11818
11819 case DT_PLTGOT:
11820 s = htab->root.sgot;
11821 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11822 break;
11823
11824 case DT_MIPS_PLTGOT:
11825 s = htab->root.sgotplt;
11826 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11827 break;
11828
11829 case DT_MIPS_RLD_VERSION:
11830 dyn.d_un.d_val = 1; /* XXX */
11831 break;
11832
11833 case DT_MIPS_FLAGS:
11834 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11835 break;
11836
11837 case DT_MIPS_TIME_STAMP:
11838 {
11839 time_t t;
11840 time (&t);
11841 dyn.d_un.d_val = t;
11842 }
11843 break;
11844
11845 case DT_MIPS_ICHECKSUM:
11846 /* XXX FIXME: */
11847 swap_out_p = false;
11848 break;
11849
11850 case DT_MIPS_IVERSION:
11851 /* XXX FIXME: */
11852 swap_out_p = false;
11853 break;
11854
11855 case DT_MIPS_BASE_ADDRESS:
11856 s = output_bfd->sections;
11857 BFD_ASSERT (s != NULL);
11858 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11859 break;
11860
11861 case DT_MIPS_LOCAL_GOTNO:
11862 dyn.d_un.d_val = g->local_gotno;
11863 break;
11864
11865 case DT_MIPS_UNREFEXTNO:
11866 /* The index into the dynamic symbol table which is the
11867 entry of the first external symbol that is not
11868 referenced within the same object. */
11869 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11870 break;
11871
11872 case DT_MIPS_GOTSYM:
11873 if (htab->global_gotsym)
11874 {
11875 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11876 break;
11877 }
11878 /* In case if we don't have global got symbols we default
11879 to setting DT_MIPS_GOTSYM to the same value as
11880 DT_MIPS_SYMTABNO. */
11881 /* Fall through. */
11882
11883 case DT_MIPS_SYMTABNO:
11884 name = ".dynsym";
11885 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11886 s = bfd_get_linker_section (dynobj, name);
11887
11888 if (s != NULL)
11889 dyn.d_un.d_val = s->size / elemsize;
11890 else
11891 dyn.d_un.d_val = 0;
11892 break;
11893
11894 case DT_MIPS_HIPAGENO:
11895 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11896 break;
11897
11898 case DT_MIPS_RLD_MAP:
11899 {
11900 struct elf_link_hash_entry *h;
11901 h = mips_elf_hash_table (info)->rld_symbol;
11902 if (!h)
11903 {
11904 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11905 swap_out_p = false;
11906 break;
11907 }
11908 s = h->root.u.def.section;
11909
11910 /* The MIPS_RLD_MAP tag stores the absolute address of the
11911 debug pointer. */
11912 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11913 + h->root.u.def.value);
11914 }
11915 break;
11916
11917 case DT_MIPS_RLD_MAP_REL:
11918 {
11919 struct elf_link_hash_entry *h;
11920 bfd_vma dt_addr, rld_addr;
11921 h = mips_elf_hash_table (info)->rld_symbol;
11922 if (!h)
11923 {
11924 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11925 swap_out_p = false;
11926 break;
11927 }
11928 s = h->root.u.def.section;
11929
11930 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11931 pointer, relative to the address of the tag. */
11932 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11933 + (b - sdyn->contents));
11934 rld_addr = (s->output_section->vma + s->output_offset
11935 + h->root.u.def.value);
11936 dyn.d_un.d_ptr = rld_addr - dt_addr;
11937 }
11938 break;
11939
11940 case DT_MIPS_OPTIONS:
11941 s = (bfd_get_section_by_name
11942 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11943 dyn.d_un.d_ptr = s->vma;
11944 break;
11945
11946 case DT_PLTREL:
11947 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11948 if (htab->root.target_os == is_vxworks)
11949 dyn.d_un.d_val = DT_RELA;
11950 else
11951 dyn.d_un.d_val = DT_REL;
11952 break;
11953
11954 case DT_PLTRELSZ:
11955 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11956 dyn.d_un.d_val = htab->root.srelplt->size;
11957 break;
11958
11959 case DT_JMPREL:
11960 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11961 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11962 + htab->root.srelplt->output_offset);
11963 break;
11964
11965 case DT_TEXTREL:
11966 /* If we didn't need any text relocations after all, delete
11967 the dynamic tag. */
11968 if (!(info->flags & DF_TEXTREL))
11969 {
11970 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11971 swap_out_p = false;
11972 }
11973 break;
11974
11975 case DT_FLAGS:
11976 /* If we didn't need any text relocations after all, clear
11977 DF_TEXTREL from DT_FLAGS. */
11978 if (!(info->flags & DF_TEXTREL))
11979 dyn.d_un.d_val &= ~DF_TEXTREL;
11980 else
11981 swap_out_p = false;
11982 break;
11983
11984 case DT_MIPS_XHASH:
11985 name = ".MIPS.xhash";
11986 s = bfd_get_linker_section (dynobj, name);
11987 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11988 break;
11989
11990 default:
11991 swap_out_p = false;
11992 if (htab->root.target_os == is_vxworks
11993 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11994 swap_out_p = true;
11995 break;
11996 }
11997
11998 if (swap_out_p || dyn_skipped)
11999 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12000 (dynobj, &dyn, b - dyn_skipped);
12001
12002 if (dyn_to_skip)
12003 {
12004 dyn_skipped += dyn_to_skip;
12005 dyn_to_skip = 0;
12006 }
12007 }
12008
12009 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
12010 if (dyn_skipped > 0)
12011 memset (b - dyn_skipped, 0, dyn_skipped);
12012 }
12013
12014 if (sgot != NULL && sgot->size > 0
12015 && !bfd_is_abs_section (sgot->output_section))
12016 {
12017 if (htab->root.target_os == is_vxworks)
12018 {
12019 /* The first entry of the global offset table points to the
12020 ".dynamic" section. The second is initialized by the
12021 loader and contains the shared library identifier.
12022 The third is also initialized by the loader and points
12023 to the lazy resolution stub. */
12024 MIPS_ELF_PUT_WORD (output_bfd,
12025 sdyn->output_offset + sdyn->output_section->vma,
12026 sgot->contents);
12027 MIPS_ELF_PUT_WORD (output_bfd, 0,
12028 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12029 MIPS_ELF_PUT_WORD (output_bfd, 0,
12030 sgot->contents
12031 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
12032 }
12033 else
12034 {
12035 /* The first entry of the global offset table will be filled at
12036 runtime. The second entry will be used by some runtime loaders.
12037 This isn't the case of IRIX rld. */
12038 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
12039 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12040 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12041 }
12042
12043 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12044 = MIPS_ELF_GOT_SIZE (output_bfd);
12045 }
12046
12047 /* Generate dynamic relocations for the non-primary gots. */
12048 if (gg != NULL && gg->next)
12049 {
12050 Elf_Internal_Rela rel[3];
12051 bfd_vma addend = 0;
12052
12053 memset (rel, 0, sizeof (rel));
12054 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12055
12056 for (g = gg->next; g->next != gg; g = g->next)
12057 {
12058 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
12059 + g->next->tls_gotno;
12060
12061 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
12062 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12063 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12064 sgot->contents
12065 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12066
12067 if (! bfd_link_pic (info))
12068 continue;
12069
12070 for (; got_index < g->local_gotno; got_index++)
12071 {
12072 if (got_index >= g->assigned_low_gotno
12073 && got_index <= g->assigned_high_gotno)
12074 continue;
12075
12076 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
12077 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
12078 if (!(mips_elf_create_dynamic_relocation
12079 (output_bfd, info, rel, NULL,
12080 bfd_abs_section_ptr,
12081 0, &addend, sgot)))
12082 return false;
12083 BFD_ASSERT (addend == 0);
12084 }
12085 }
12086 }
12087
12088 /* The generation of dynamic relocations for the non-primary gots
12089 adds more dynamic relocations. We cannot count them until
12090 here. */
12091
12092 if (elf_hash_table (info)->dynamic_sections_created)
12093 {
12094 bfd_byte *b;
12095 bool swap_out_p;
12096
12097 BFD_ASSERT (sdyn != NULL);
12098
12099 for (b = sdyn->contents;
12100 b < sdyn->contents + sdyn->size;
12101 b += MIPS_ELF_DYN_SIZE (dynobj))
12102 {
12103 Elf_Internal_Dyn dyn;
12104 asection *s;
12105
12106 /* Read in the current dynamic entry. */
12107 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12108
12109 /* Assume that we're going to modify it and write it out. */
12110 swap_out_p = true;
12111
12112 switch (dyn.d_tag)
12113 {
12114 case DT_RELSZ:
12115 /* Reduce DT_RELSZ to account for any relocations we
12116 decided not to make. This is for the n64 irix rld,
12117 which doesn't seem to apply any relocations if there
12118 are trailing null entries. */
12119 s = mips_elf_rel_dyn_section (info, false);
12120 dyn.d_un.d_val = (s->reloc_count
12121 * (ABI_64_P (output_bfd)
12122 ? sizeof (Elf64_Mips_External_Rel)
12123 : sizeof (Elf32_External_Rel)));
12124 /* Adjust the section size too. Tools like the prelinker
12125 can reasonably expect the values to the same. */
12126 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
12127 elf_section_data (s->output_section)->this_hdr.sh_size
12128 = dyn.d_un.d_val;
12129 break;
12130
12131 default:
12132 swap_out_p = false;
12133 break;
12134 }
12135
12136 if (swap_out_p)
12137 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12138 (dynobj, &dyn, b);
12139 }
12140 }
12141
12142 {
12143 asection *s;
12144 Elf32_compact_rel cpt;
12145
12146 if (SGI_COMPAT (output_bfd))
12147 {
12148 /* Write .compact_rel section out. */
12149 s = bfd_get_linker_section (dynobj, ".compact_rel");
12150 if (s != NULL)
12151 {
12152 cpt.id1 = 1;
12153 cpt.num = s->reloc_count;
12154 cpt.id2 = 2;
12155 cpt.offset = (s->output_section->filepos
12156 + sizeof (Elf32_External_compact_rel));
12157 cpt.reserved0 = 0;
12158 cpt.reserved1 = 0;
12159 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12160 ((Elf32_External_compact_rel *)
12161 s->contents));
12162
12163 /* Clean up a dummy stub function entry in .text. */
12164 if (htab->sstubs != NULL
12165 && htab->sstubs->contents != NULL)
12166 {
12167 file_ptr dummy_offset;
12168
12169 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12170 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12171 memset (htab->sstubs->contents + dummy_offset, 0,
12172 htab->function_stub_size);
12173 }
12174 }
12175 }
12176
12177 /* The psABI says that the dynamic relocations must be sorted in
12178 increasing order of r_symndx. The VxWorks EABI doesn't require
12179 this, and because the code below handles REL rather than RELA
12180 relocations, using it for VxWorks would be outright harmful. */
12181 if (htab->root.target_os != is_vxworks)
12182 {
12183 s = mips_elf_rel_dyn_section (info, false);
12184 if (s != NULL
12185 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12186 {
12187 reldyn_sorting_bfd = output_bfd;
12188
12189 if (ABI_64_P (output_bfd))
12190 qsort ((Elf64_External_Rel *) s->contents + 1,
12191 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12192 sort_dynamic_relocs_64);
12193 else
12194 qsort ((Elf32_External_Rel *) s->contents + 1,
12195 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12196 sort_dynamic_relocs);
12197 }
12198 }
12199 }
12200
12201 if (htab->root.splt && htab->root.splt->size > 0)
12202 {
12203 if (htab->root.target_os == is_vxworks)
12204 {
12205 if (bfd_link_pic (info))
12206 mips_vxworks_finish_shared_plt (output_bfd, info);
12207 else
12208 mips_vxworks_finish_exec_plt (output_bfd, info);
12209 }
12210 else
12211 {
12212 BFD_ASSERT (!bfd_link_pic (info));
12213 if (!mips_finish_exec_plt (output_bfd, info))
12214 return false;
12215 }
12216 }
12217 return true;
12218 }
12219
12220
12221 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12222
12223 static void
12224 mips_set_isa_flags (bfd *abfd)
12225 {
12226 flagword val;
12227
12228 switch (bfd_get_mach (abfd))
12229 {
12230 default:
12231 if (ABI_N32_P (abfd) || ABI_64_P (abfd))
12232 val = E_MIPS_ARCH_3;
12233 else
12234 val = E_MIPS_ARCH_1;
12235 break;
12236
12237 case bfd_mach_mips3000:
12238 val = E_MIPS_ARCH_1;
12239 break;
12240
12241 case bfd_mach_mips3900:
12242 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12243 break;
12244
12245 case bfd_mach_mips6000:
12246 val = E_MIPS_ARCH_2;
12247 break;
12248
12249 case bfd_mach_mips4010:
12250 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12251 break;
12252
12253 case bfd_mach_mips4000:
12254 case bfd_mach_mips4300:
12255 case bfd_mach_mips4400:
12256 case bfd_mach_mips4600:
12257 val = E_MIPS_ARCH_3;
12258 break;
12259
12260 case bfd_mach_mips4100:
12261 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12262 break;
12263
12264 case bfd_mach_mips4111:
12265 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12266 break;
12267
12268 case bfd_mach_mips4120:
12269 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12270 break;
12271
12272 case bfd_mach_mips4650:
12273 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12274 break;
12275
12276 case bfd_mach_mips5400:
12277 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12278 break;
12279
12280 case bfd_mach_mips5500:
12281 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12282 break;
12283
12284 case bfd_mach_mips5900:
12285 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12286 break;
12287
12288 case bfd_mach_mips9000:
12289 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12290 break;
12291
12292 case bfd_mach_mips5000:
12293 case bfd_mach_mips7000:
12294 case bfd_mach_mips8000:
12295 case bfd_mach_mips10000:
12296 case bfd_mach_mips12000:
12297 case bfd_mach_mips14000:
12298 case bfd_mach_mips16000:
12299 val = E_MIPS_ARCH_4;
12300 break;
12301
12302 case bfd_mach_mips5:
12303 val = E_MIPS_ARCH_5;
12304 break;
12305
12306 case bfd_mach_mips_loongson_2e:
12307 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12308 break;
12309
12310 case bfd_mach_mips_loongson_2f:
12311 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12312 break;
12313
12314 case bfd_mach_mips_sb1:
12315 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12316 break;
12317
12318 case bfd_mach_mips_gs464:
12319 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12320 break;
12321
12322 case bfd_mach_mips_gs464e:
12323 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12324 break;
12325
12326 case bfd_mach_mips_gs264e:
12327 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12328 break;
12329
12330 case bfd_mach_mips_octeon:
12331 case bfd_mach_mips_octeonp:
12332 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12333 break;
12334
12335 case bfd_mach_mips_octeon3:
12336 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12337 break;
12338
12339 case bfd_mach_mips_xlr:
12340 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12341 break;
12342
12343 case bfd_mach_mips_octeon2:
12344 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12345 break;
12346
12347 case bfd_mach_mipsisa32:
12348 val = E_MIPS_ARCH_32;
12349 break;
12350
12351 case bfd_mach_mipsisa64:
12352 val = E_MIPS_ARCH_64;
12353 break;
12354
12355 case bfd_mach_mipsisa32r2:
12356 case bfd_mach_mipsisa32r3:
12357 case bfd_mach_mipsisa32r5:
12358 val = E_MIPS_ARCH_32R2;
12359 break;
12360
12361 case bfd_mach_mips_interaptiv_mr2:
12362 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12363 break;
12364
12365 case bfd_mach_mipsisa64r2:
12366 case bfd_mach_mipsisa64r3:
12367 case bfd_mach_mipsisa64r5:
12368 val = E_MIPS_ARCH_64R2;
12369 break;
12370
12371 case bfd_mach_mipsisa32r6:
12372 val = E_MIPS_ARCH_32R6;
12373 break;
12374
12375 case bfd_mach_mipsisa64r6:
12376 val = E_MIPS_ARCH_64R6;
12377 break;
12378 }
12379 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12380 elf_elfheader (abfd)->e_flags |= val;
12381
12382 }
12383
12384
12385 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12386 Don't do so for code sections. We want to keep ordering of HI16/LO16
12387 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12388 relocs to be sorted. */
12389
12390 bool
12391 _bfd_mips_elf_sort_relocs_p (asection *sec)
12392 {
12393 return (sec->flags & SEC_CODE) == 0;
12394 }
12395
12396
12397 /* The final processing done just before writing out a MIPS ELF object
12398 file. This gets the MIPS architecture right based on the machine
12399 number. This is used by both the 32-bit and the 64-bit ABI. */
12400
12401 void
12402 _bfd_mips_final_write_processing (bfd *abfd)
12403 {
12404 unsigned int i;
12405 Elf_Internal_Shdr **hdrpp;
12406 const char *name;
12407 asection *sec;
12408
12409 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12410 is nonzero. This is for compatibility with old objects, which used
12411 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12412 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12413 mips_set_isa_flags (abfd);
12414
12415 /* Set the sh_info field for .gptab sections and other appropriate
12416 info for each special section. */
12417 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12418 i < elf_numsections (abfd);
12419 i++, hdrpp++)
12420 {
12421 switch ((*hdrpp)->sh_type)
12422 {
12423 case SHT_MIPS_MSYM:
12424 case SHT_MIPS_LIBLIST:
12425 sec = bfd_get_section_by_name (abfd, ".dynstr");
12426 if (sec != NULL)
12427 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12428 break;
12429
12430 case SHT_MIPS_GPTAB:
12431 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12432 name = bfd_section_name ((*hdrpp)->bfd_section);
12433 BFD_ASSERT (name != NULL
12434 && startswith (name, ".gptab."));
12435 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12436 BFD_ASSERT (sec != NULL);
12437 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12438 break;
12439
12440 case SHT_MIPS_CONTENT:
12441 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12442 name = bfd_section_name ((*hdrpp)->bfd_section);
12443 BFD_ASSERT (name != NULL
12444 && startswith (name, ".MIPS.content"));
12445 sec = bfd_get_section_by_name (abfd,
12446 name + sizeof ".MIPS.content" - 1);
12447 BFD_ASSERT (sec != NULL);
12448 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12449 break;
12450
12451 case SHT_MIPS_SYMBOL_LIB:
12452 sec = bfd_get_section_by_name (abfd, ".dynsym");
12453 if (sec != NULL)
12454 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12455 sec = bfd_get_section_by_name (abfd, ".liblist");
12456 if (sec != NULL)
12457 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12458 break;
12459
12460 case SHT_MIPS_EVENTS:
12461 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12462 name = bfd_section_name ((*hdrpp)->bfd_section);
12463 BFD_ASSERT (name != NULL);
12464 if (startswith (name, ".MIPS.events"))
12465 sec = bfd_get_section_by_name (abfd,
12466 name + sizeof ".MIPS.events" - 1);
12467 else
12468 {
12469 BFD_ASSERT (startswith (name, ".MIPS.post_rel"));
12470 sec = bfd_get_section_by_name (abfd,
12471 (name
12472 + sizeof ".MIPS.post_rel" - 1));
12473 }
12474 BFD_ASSERT (sec != NULL);
12475 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12476 break;
12477
12478 case SHT_MIPS_XHASH:
12479 sec = bfd_get_section_by_name (abfd, ".dynsym");
12480 if (sec != NULL)
12481 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12482 }
12483 }
12484 }
12485
12486 bool
12487 _bfd_mips_elf_final_write_processing (bfd *abfd)
12488 {
12489 _bfd_mips_final_write_processing (abfd);
12490 return _bfd_elf_final_write_processing (abfd);
12491 }
12492 \f
12493 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12494 segments. */
12495
12496 int
12497 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12498 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12499 {
12500 asection *s;
12501 int ret = 0;
12502
12503 /* See if we need a PT_MIPS_REGINFO segment. */
12504 s = bfd_get_section_by_name (abfd, ".reginfo");
12505 if (s && (s->flags & SEC_LOAD))
12506 ++ret;
12507
12508 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12509 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12510 ++ret;
12511
12512 /* See if we need a PT_MIPS_OPTIONS segment. */
12513 if (IRIX_COMPAT (abfd) == ict_irix6
12514 && bfd_get_section_by_name (abfd,
12515 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12516 ++ret;
12517
12518 /* See if we need a PT_MIPS_RTPROC segment. */
12519 if (IRIX_COMPAT (abfd) == ict_irix5
12520 && bfd_get_section_by_name (abfd, ".dynamic")
12521 && bfd_get_section_by_name (abfd, ".mdebug"))
12522 ++ret;
12523
12524 /* Allocate a PT_NULL header in dynamic objects. See
12525 _bfd_mips_elf_modify_segment_map for details. */
12526 if (!SGI_COMPAT (abfd)
12527 && bfd_get_section_by_name (abfd, ".dynamic"))
12528 ++ret;
12529
12530 return ret;
12531 }
12532
12533 /* Modify the segment map for an IRIX5 executable. */
12534
12535 bool
12536 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12537 struct bfd_link_info *info)
12538 {
12539 asection *s;
12540 struct elf_segment_map *m, **pm;
12541 size_t amt;
12542
12543 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12544 segment. */
12545 s = bfd_get_section_by_name (abfd, ".reginfo");
12546 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12547 {
12548 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12549 if (m->p_type == PT_MIPS_REGINFO)
12550 break;
12551 if (m == NULL)
12552 {
12553 amt = sizeof *m;
12554 m = bfd_zalloc (abfd, amt);
12555 if (m == NULL)
12556 return false;
12557
12558 m->p_type = PT_MIPS_REGINFO;
12559 m->count = 1;
12560 m->sections[0] = s;
12561
12562 /* We want to put it after the PHDR and INTERP segments. */
12563 pm = &elf_seg_map (abfd);
12564 while (*pm != NULL
12565 && ((*pm)->p_type == PT_PHDR
12566 || (*pm)->p_type == PT_INTERP))
12567 pm = &(*pm)->next;
12568
12569 m->next = *pm;
12570 *pm = m;
12571 }
12572 }
12573
12574 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12575 segment. */
12576 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12577 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12578 {
12579 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12580 if (m->p_type == PT_MIPS_ABIFLAGS)
12581 break;
12582 if (m == NULL)
12583 {
12584 amt = sizeof *m;
12585 m = bfd_zalloc (abfd, amt);
12586 if (m == NULL)
12587 return false;
12588
12589 m->p_type = PT_MIPS_ABIFLAGS;
12590 m->count = 1;
12591 m->sections[0] = s;
12592
12593 /* We want to put it after the PHDR and INTERP segments. */
12594 pm = &elf_seg_map (abfd);
12595 while (*pm != NULL
12596 && ((*pm)->p_type == PT_PHDR
12597 || (*pm)->p_type == PT_INTERP))
12598 pm = &(*pm)->next;
12599
12600 m->next = *pm;
12601 *pm = m;
12602 }
12603 }
12604
12605 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12606 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12607 PT_MIPS_OPTIONS segment immediately following the program header
12608 table. */
12609 if (NEWABI_P (abfd)
12610 /* On non-IRIX6 new abi, we'll have already created a segment
12611 for this section, so don't create another. I'm not sure this
12612 is not also the case for IRIX 6, but I can't test it right
12613 now. */
12614 && IRIX_COMPAT (abfd) == ict_irix6)
12615 {
12616 for (s = abfd->sections; s; s = s->next)
12617 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12618 break;
12619
12620 if (s)
12621 {
12622 struct elf_segment_map *options_segment;
12623
12624 pm = &elf_seg_map (abfd);
12625 while (*pm != NULL
12626 && ((*pm)->p_type == PT_PHDR
12627 || (*pm)->p_type == PT_INTERP))
12628 pm = &(*pm)->next;
12629
12630 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12631 {
12632 amt = sizeof (struct elf_segment_map);
12633 options_segment = bfd_zalloc (abfd, amt);
12634 options_segment->next = *pm;
12635 options_segment->p_type = PT_MIPS_OPTIONS;
12636 options_segment->p_flags = PF_R;
12637 options_segment->p_flags_valid = true;
12638 options_segment->count = 1;
12639 options_segment->sections[0] = s;
12640 *pm = options_segment;
12641 }
12642 }
12643 }
12644 else
12645 {
12646 if (IRIX_COMPAT (abfd) == ict_irix5)
12647 {
12648 /* If there are .dynamic and .mdebug sections, we make a room
12649 for the RTPROC header. FIXME: Rewrite without section names. */
12650 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12651 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12652 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12653 {
12654 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12655 if (m->p_type == PT_MIPS_RTPROC)
12656 break;
12657 if (m == NULL)
12658 {
12659 amt = sizeof *m;
12660 m = bfd_zalloc (abfd, amt);
12661 if (m == NULL)
12662 return false;
12663
12664 m->p_type = PT_MIPS_RTPROC;
12665
12666 s = bfd_get_section_by_name (abfd, ".rtproc");
12667 if (s == NULL)
12668 {
12669 m->count = 0;
12670 m->p_flags = 0;
12671 m->p_flags_valid = 1;
12672 }
12673 else
12674 {
12675 m->count = 1;
12676 m->sections[0] = s;
12677 }
12678
12679 /* We want to put it after the DYNAMIC segment. */
12680 pm = &elf_seg_map (abfd);
12681 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12682 pm = &(*pm)->next;
12683 if (*pm != NULL)
12684 pm = &(*pm)->next;
12685
12686 m->next = *pm;
12687 *pm = m;
12688 }
12689 }
12690 }
12691 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12692 .dynstr, .dynsym, and .hash sections, and everything in
12693 between. */
12694 for (pm = &elf_seg_map (abfd); *pm != NULL;
12695 pm = &(*pm)->next)
12696 if ((*pm)->p_type == PT_DYNAMIC)
12697 break;
12698 m = *pm;
12699 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12700 glibc's dynamic linker has traditionally derived the number of
12701 tags from the p_filesz field, and sometimes allocates stack
12702 arrays of that size. An overly-big PT_DYNAMIC segment can
12703 be actively harmful in such cases. Making PT_DYNAMIC contain
12704 other sections can also make life hard for the prelinker,
12705 which might move one of the other sections to a different
12706 PT_LOAD segment. */
12707 if (SGI_COMPAT (abfd)
12708 && m != NULL
12709 && m->count == 1
12710 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12711 {
12712 static const char *sec_names[] =
12713 {
12714 ".dynamic", ".dynstr", ".dynsym", ".hash"
12715 };
12716 bfd_vma low, high;
12717 unsigned int i, c;
12718 struct elf_segment_map *n;
12719
12720 low = ~(bfd_vma) 0;
12721 high = 0;
12722 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12723 {
12724 s = bfd_get_section_by_name (abfd, sec_names[i]);
12725 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12726 {
12727 bfd_size_type sz;
12728
12729 if (low > s->vma)
12730 low = s->vma;
12731 sz = s->size;
12732 if (high < s->vma + sz)
12733 high = s->vma + sz;
12734 }
12735 }
12736
12737 c = 0;
12738 for (s = abfd->sections; s != NULL; s = s->next)
12739 if ((s->flags & SEC_LOAD) != 0
12740 && s->vma >= low
12741 && s->vma + s->size <= high)
12742 ++c;
12743
12744 amt = sizeof *n - sizeof (asection *) + c * sizeof (asection *);
12745 n = bfd_zalloc (abfd, amt);
12746 if (n == NULL)
12747 return false;
12748 *n = *m;
12749 n->count = c;
12750
12751 i = 0;
12752 for (s = abfd->sections; s != NULL; s = s->next)
12753 {
12754 if ((s->flags & SEC_LOAD) != 0
12755 && s->vma >= low
12756 && s->vma + s->size <= high)
12757 {
12758 n->sections[i] = s;
12759 ++i;
12760 }
12761 }
12762
12763 *pm = n;
12764 }
12765 }
12766
12767 /* Allocate a spare program header in dynamic objects so that tools
12768 like the prelinker can add an extra PT_LOAD entry.
12769
12770 If the prelinker needs to make room for a new PT_LOAD entry, its
12771 standard procedure is to move the first (read-only) sections into
12772 the new (writable) segment. However, the MIPS ABI requires
12773 .dynamic to be in a read-only segment, and the section will often
12774 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12775
12776 Although the prelinker could in principle move .dynamic to a
12777 writable segment, it seems better to allocate a spare program
12778 header instead, and avoid the need to move any sections.
12779 There is a long tradition of allocating spare dynamic tags,
12780 so allocating a spare program header seems like a natural
12781 extension.
12782
12783 If INFO is NULL, we may be copying an already prelinked binary
12784 with objcopy or strip, so do not add this header. */
12785 if (info != NULL
12786 && !SGI_COMPAT (abfd)
12787 && bfd_get_section_by_name (abfd, ".dynamic"))
12788 {
12789 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12790 if ((*pm)->p_type == PT_NULL)
12791 break;
12792 if (*pm == NULL)
12793 {
12794 m = bfd_zalloc (abfd, sizeof (*m));
12795 if (m == NULL)
12796 return false;
12797
12798 m->p_type = PT_NULL;
12799 *pm = m;
12800 }
12801 }
12802
12803 return true;
12804 }
12805 \f
12806 /* Return the section that should be marked against GC for a given
12807 relocation. */
12808
12809 asection *
12810 _bfd_mips_elf_gc_mark_hook (asection *sec,
12811 struct bfd_link_info *info,
12812 Elf_Internal_Rela *rel,
12813 struct elf_link_hash_entry *h,
12814 Elf_Internal_Sym *sym)
12815 {
12816 /* ??? Do mips16 stub sections need to be handled special? */
12817
12818 if (h != NULL)
12819 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12820 {
12821 case R_MIPS_GNU_VTINHERIT:
12822 case R_MIPS_GNU_VTENTRY:
12823 return NULL;
12824 }
12825
12826 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12827 }
12828
12829 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12830
12831 bool
12832 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12833 elf_gc_mark_hook_fn gc_mark_hook)
12834 {
12835 bfd *sub;
12836
12837 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12838
12839 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12840 {
12841 asection *o;
12842
12843 if (! is_mips_elf (sub))
12844 continue;
12845
12846 for (o = sub->sections; o != NULL; o = o->next)
12847 if (!o->gc_mark
12848 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o)))
12849 {
12850 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12851 return false;
12852 }
12853 }
12854
12855 return true;
12856 }
12857 \f
12858 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12859 hiding the old indirect symbol. Process additional relocation
12860 information. Also called for weakdefs, in which case we just let
12861 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12862
12863 void
12864 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12865 struct elf_link_hash_entry *dir,
12866 struct elf_link_hash_entry *ind)
12867 {
12868 struct mips_elf_link_hash_entry *dirmips, *indmips;
12869
12870 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12871
12872 dirmips = (struct mips_elf_link_hash_entry *) dir;
12873 indmips = (struct mips_elf_link_hash_entry *) ind;
12874 /* Any absolute non-dynamic relocations against an indirect or weak
12875 definition will be against the target symbol. */
12876 if (indmips->has_static_relocs)
12877 dirmips->has_static_relocs = true;
12878
12879 if (ind->root.type != bfd_link_hash_indirect)
12880 return;
12881
12882 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12883 if (indmips->readonly_reloc)
12884 dirmips->readonly_reloc = true;
12885 if (indmips->no_fn_stub)
12886 dirmips->no_fn_stub = true;
12887 if (indmips->fn_stub)
12888 {
12889 dirmips->fn_stub = indmips->fn_stub;
12890 indmips->fn_stub = NULL;
12891 }
12892 if (indmips->need_fn_stub)
12893 {
12894 dirmips->need_fn_stub = true;
12895 indmips->need_fn_stub = false;
12896 }
12897 if (indmips->call_stub)
12898 {
12899 dirmips->call_stub = indmips->call_stub;
12900 indmips->call_stub = NULL;
12901 }
12902 if (indmips->call_fp_stub)
12903 {
12904 dirmips->call_fp_stub = indmips->call_fp_stub;
12905 indmips->call_fp_stub = NULL;
12906 }
12907 if (indmips->global_got_area < dirmips->global_got_area)
12908 dirmips->global_got_area = indmips->global_got_area;
12909 if (indmips->global_got_area < GGA_NONE)
12910 indmips->global_got_area = GGA_NONE;
12911 if (indmips->has_nonpic_branches)
12912 dirmips->has_nonpic_branches = true;
12913 }
12914
12915 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12916 to hide it. It has to remain global (it will also be protected) so as to
12917 be assigned a global GOT entry, which will then remain unchanged at load
12918 time. */
12919
12920 void
12921 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12922 struct elf_link_hash_entry *entry,
12923 bool force_local)
12924 {
12925 struct mips_elf_link_hash_table *htab;
12926
12927 htab = mips_elf_hash_table (info);
12928 BFD_ASSERT (htab != NULL);
12929 if (htab->use_absolute_zero
12930 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12931 return;
12932
12933 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12934 }
12935 \f
12936 #define PDR_SIZE 32
12937
12938 bool
12939 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12940 struct bfd_link_info *info)
12941 {
12942 asection *o;
12943 bool ret = false;
12944 unsigned char *tdata;
12945 size_t i, skip;
12946
12947 o = bfd_get_section_by_name (abfd, ".pdr");
12948 if (! o)
12949 return false;
12950 if (o->size == 0)
12951 return false;
12952 if (o->size % PDR_SIZE != 0)
12953 return false;
12954 if (o->output_section != NULL
12955 && bfd_is_abs_section (o->output_section))
12956 return false;
12957
12958 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12959 if (! tdata)
12960 return false;
12961
12962 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12963 info->keep_memory);
12964 if (!cookie->rels)
12965 {
12966 free (tdata);
12967 return false;
12968 }
12969
12970 cookie->rel = cookie->rels;
12971 cookie->relend = cookie->rels + o->reloc_count;
12972
12973 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12974 {
12975 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12976 {
12977 tdata[i] = 1;
12978 skip ++;
12979 }
12980 }
12981
12982 if (skip != 0)
12983 {
12984 mips_elf_section_data (o)->u.tdata = tdata;
12985 if (o->rawsize == 0)
12986 o->rawsize = o->size;
12987 o->size -= skip * PDR_SIZE;
12988 ret = true;
12989 }
12990 else
12991 free (tdata);
12992
12993 if (! info->keep_memory)
12994 free (cookie->rels);
12995
12996 return ret;
12997 }
12998
12999 bool
13000 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
13001 {
13002 if (strcmp (sec->name, ".pdr") == 0)
13003 return true;
13004 return false;
13005 }
13006
13007 bool
13008 _bfd_mips_elf_write_section (bfd *output_bfd,
13009 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
13010 asection *sec, bfd_byte *contents)
13011 {
13012 bfd_byte *to, *from, *end;
13013 int i;
13014
13015 if (strcmp (sec->name, ".pdr") != 0)
13016 return false;
13017
13018 if (mips_elf_section_data (sec)->u.tdata == NULL)
13019 return false;
13020
13021 to = contents;
13022 end = contents + sec->size;
13023 for (from = contents, i = 0;
13024 from < end;
13025 from += PDR_SIZE, i++)
13026 {
13027 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
13028 continue;
13029 if (to != from)
13030 memcpy (to, from, PDR_SIZE);
13031 to += PDR_SIZE;
13032 }
13033 bfd_set_section_contents (output_bfd, sec->output_section, contents,
13034 sec->output_offset, sec->size);
13035 return true;
13036 }
13037 \f
13038 /* microMIPS code retains local labels for linker relaxation. Omit them
13039 from output by default for clarity. */
13040
13041 bool
13042 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
13043 {
13044 return _bfd_elf_is_local_label_name (abfd, sym->name);
13045 }
13046
13047 /* MIPS ELF uses a special find_nearest_line routine in order the
13048 handle the ECOFF debugging information. */
13049
13050 struct mips_elf_find_line
13051 {
13052 struct ecoff_debug_info d;
13053 struct ecoff_find_line i;
13054 };
13055
13056 bool
13057 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13058 asection *section, bfd_vma offset,
13059 const char **filename_ptr,
13060 const char **functionname_ptr,
13061 unsigned int *line_ptr,
13062 unsigned int *discriminator_ptr)
13063 {
13064 asection *msec;
13065
13066 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13067 filename_ptr, functionname_ptr,
13068 line_ptr, discriminator_ptr,
13069 dwarf_debug_sections,
13070 &elf_tdata (abfd)->dwarf2_find_line_info)
13071 == 1)
13072 return true;
13073
13074 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13075 filename_ptr, functionname_ptr,
13076 line_ptr))
13077 {
13078 if (!*functionname_ptr)
13079 _bfd_elf_find_function (abfd, symbols, section, offset,
13080 *filename_ptr ? NULL : filename_ptr,
13081 functionname_ptr);
13082 return true;
13083 }
13084
13085 msec = bfd_get_section_by_name (abfd, ".mdebug");
13086 if (msec != NULL)
13087 {
13088 flagword origflags;
13089 struct mips_elf_find_line *fi;
13090 const struct ecoff_debug_swap * const swap =
13091 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13092
13093 /* If we are called during a link, mips_elf_final_link may have
13094 cleared the SEC_HAS_CONTENTS field. We force it back on here
13095 if appropriate (which it normally will be). */
13096 origflags = msec->flags;
13097 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13098 msec->flags |= SEC_HAS_CONTENTS;
13099
13100 fi = mips_elf_tdata (abfd)->find_line_info;
13101 if (fi == NULL)
13102 {
13103 bfd_size_type external_fdr_size;
13104 char *fraw_src;
13105 char *fraw_end;
13106 struct fdr *fdr_ptr;
13107 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13108
13109 fi = bfd_zalloc (abfd, amt);
13110 if (fi == NULL)
13111 {
13112 msec->flags = origflags;
13113 return false;
13114 }
13115
13116 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13117 {
13118 msec->flags = origflags;
13119 return false;
13120 }
13121
13122 /* Swap in the FDR information. */
13123 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
13124 fi->d.fdr = bfd_alloc (abfd, amt);
13125 if (fi->d.fdr == NULL)
13126 {
13127 msec->flags = origflags;
13128 return false;
13129 }
13130 external_fdr_size = swap->external_fdr_size;
13131 fdr_ptr = fi->d.fdr;
13132 fraw_src = (char *) fi->d.external_fdr;
13133 fraw_end = (fraw_src
13134 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13135 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
13136 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
13137
13138 mips_elf_tdata (abfd)->find_line_info = fi;
13139
13140 /* Note that we don't bother to ever free this information.
13141 find_nearest_line is either called all the time, as in
13142 objdump -l, so the information should be saved, or it is
13143 rarely called, as in ld error messages, so the memory
13144 wasted is unimportant. Still, it would probably be a
13145 good idea for free_cached_info to throw it away. */
13146 }
13147
13148 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13149 &fi->i, filename_ptr, functionname_ptr,
13150 line_ptr))
13151 {
13152 msec->flags = origflags;
13153 return true;
13154 }
13155
13156 msec->flags = origflags;
13157 }
13158
13159 /* Fall back on the generic ELF find_nearest_line routine. */
13160
13161 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13162 filename_ptr, functionname_ptr,
13163 line_ptr, discriminator_ptr);
13164 }
13165
13166 bool
13167 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13168 const char **filename_ptr,
13169 const char **functionname_ptr,
13170 unsigned int *line_ptr)
13171 {
13172 bool found;
13173 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13174 functionname_ptr, line_ptr,
13175 & elf_tdata (abfd)->dwarf2_find_line_info);
13176 return found;
13177 }
13178
13179 \f
13180 /* When are writing out the .options or .MIPS.options section,
13181 remember the bytes we are writing out, so that we can install the
13182 GP value in the section_processing routine. */
13183
13184 bool
13185 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13186 const void *location,
13187 file_ptr offset, bfd_size_type count)
13188 {
13189 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13190 {
13191 bfd_byte *c;
13192
13193 if (elf_section_data (section) == NULL)
13194 {
13195 size_t amt = sizeof (struct bfd_elf_section_data);
13196 section->used_by_bfd = bfd_zalloc (abfd, amt);
13197 if (elf_section_data (section) == NULL)
13198 return false;
13199 }
13200 c = mips_elf_section_data (section)->u.tdata;
13201 if (c == NULL)
13202 {
13203 c = bfd_zalloc (abfd, section->size);
13204 if (c == NULL)
13205 return false;
13206 mips_elf_section_data (section)->u.tdata = c;
13207 }
13208
13209 memcpy (c + offset, location, count);
13210 }
13211
13212 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13213 count);
13214 }
13215
13216 /* This is almost identical to bfd_generic_get_... except that some
13217 MIPS relocations need to be handled specially. Sigh. */
13218
13219 bfd_byte *
13220 _bfd_elf_mips_get_relocated_section_contents
13221 (bfd *abfd,
13222 struct bfd_link_info *link_info,
13223 struct bfd_link_order *link_order,
13224 bfd_byte *data,
13225 bool relocatable,
13226 asymbol **symbols)
13227 {
13228 bfd *input_bfd = link_order->u.indirect.section->owner;
13229 asection *input_section = link_order->u.indirect.section;
13230 long reloc_size;
13231 arelent **reloc_vector;
13232 long reloc_count;
13233
13234 reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13235 if (reloc_size < 0)
13236 return NULL;
13237
13238 /* Read in the section. */
13239 if (!bfd_get_full_section_contents (input_bfd, input_section, &data))
13240 return NULL;
13241
13242 if (data == NULL)
13243 return NULL;
13244
13245 if (reloc_size == 0)
13246 return data;
13247
13248 reloc_vector = (arelent **) bfd_malloc (reloc_size);
13249 if (reloc_vector == NULL)
13250 {
13251 struct mips_hi16 **hip, *hi;
13252 error_return:
13253 /* If we are going to return an error, remove entries on
13254 mips_hi16_list that point into this section's data. Data
13255 will typically be freed on return from this function. */
13256 hip = &mips_hi16_list;
13257 while ((hi = *hip) != NULL)
13258 {
13259 if (hi->input_section == input_section)
13260 {
13261 *hip = hi->next;
13262 free (hi);
13263 }
13264 else
13265 hip = &hi->next;
13266 }
13267 data = NULL;
13268 goto out;
13269 }
13270
13271 reloc_count = bfd_canonicalize_reloc (input_bfd,
13272 input_section,
13273 reloc_vector,
13274 symbols);
13275 if (reloc_count < 0)
13276 goto error_return;
13277
13278 if (reloc_count > 0)
13279 {
13280 arelent **parent;
13281 /* for mips */
13282 int gp_found;
13283 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13284
13285 {
13286 struct bfd_hash_entry *h;
13287 struct bfd_link_hash_entry *lh;
13288 /* Skip all this stuff if we aren't mixing formats. */
13289 if (abfd && input_bfd
13290 && abfd->xvec == input_bfd->xvec)
13291 lh = 0;
13292 else
13293 {
13294 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
13295 lh = (struct bfd_link_hash_entry *) h;
13296 }
13297 lookup:
13298 if (lh)
13299 {
13300 switch (lh->type)
13301 {
13302 case bfd_link_hash_undefined:
13303 case bfd_link_hash_undefweak:
13304 case bfd_link_hash_common:
13305 gp_found = 0;
13306 break;
13307 case bfd_link_hash_defined:
13308 case bfd_link_hash_defweak:
13309 gp_found = 1;
13310 gp = lh->u.def.value;
13311 break;
13312 case bfd_link_hash_indirect:
13313 case bfd_link_hash_warning:
13314 lh = lh->u.i.link;
13315 /* @@FIXME ignoring warning for now */
13316 goto lookup;
13317 case bfd_link_hash_new:
13318 default:
13319 abort ();
13320 }
13321 }
13322 else
13323 gp_found = 0;
13324 }
13325 /* end mips */
13326
13327 for (parent = reloc_vector; *parent != NULL; parent++)
13328 {
13329 char *error_message = NULL;
13330 asymbol *symbol;
13331 bfd_reloc_status_type r;
13332
13333 symbol = *(*parent)->sym_ptr_ptr;
13334 /* PR ld/19628: A specially crafted input file
13335 can result in a NULL symbol pointer here. */
13336 if (symbol == NULL)
13337 {
13338 link_info->callbacks->einfo
13339 /* xgettext:c-format */
13340 (_("%X%P: %pB(%pA): error: relocation for offset %V has no value\n"),
13341 abfd, input_section, (* parent)->address);
13342 goto error_return;
13343 }
13344
13345 /* Zap reloc field when the symbol is from a discarded
13346 section, ignoring any addend. Do the same when called
13347 from bfd_simple_get_relocated_section_contents for
13348 undefined symbols in debug sections. This is to keep
13349 debug info reasonably sane, in particular so that
13350 DW_FORM_ref_addr to another file's .debug_info isn't
13351 confused with an offset into the current file's
13352 .debug_info. */
13353 if ((symbol->section != NULL && discarded_section (symbol->section))
13354 || (symbol->section == bfd_und_section_ptr
13355 && (input_section->flags & SEC_DEBUGGING) != 0
13356 && link_info->input_bfds == link_info->output_bfd))
13357 {
13358 bfd_vma off;
13359 static reloc_howto_type none_howto
13360 = HOWTO (0, 0, 0, 0, false, 0, complain_overflow_dont, NULL,
13361 "unused", false, 0, 0, false);
13362
13363 off = ((*parent)->address
13364 * bfd_octets_per_byte (input_bfd, input_section));
13365 _bfd_clear_contents ((*parent)->howto, input_bfd,
13366 input_section, data, off);
13367 (*parent)->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
13368 (*parent)->addend = 0;
13369 (*parent)->howto = &none_howto;
13370 r = bfd_reloc_ok;
13371 }
13372
13373 /* Specific to MIPS: Deal with relocation types that require
13374 knowing the gp of the output bfd. */
13375
13376 /* If we've managed to find the gp and have a special
13377 function for the relocation then go ahead, else default
13378 to the generic handling. */
13379 else if (gp_found
13380 && ((*parent)->howto->special_function
13381 == _bfd_mips_elf32_gprel16_reloc))
13382 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, symbol, *parent,
13383 input_section, relocatable,
13384 data, gp);
13385 else
13386 r = bfd_perform_relocation (input_bfd,
13387 *parent,
13388 data,
13389 input_section,
13390 relocatable ? abfd : NULL,
13391 &error_message);
13392
13393 if (relocatable)
13394 {
13395 asection *os = input_section->output_section;
13396
13397 /* A partial link, so keep the relocs. */
13398 os->orelocation[os->reloc_count] = *parent;
13399 os->reloc_count++;
13400 }
13401
13402 if (r != bfd_reloc_ok)
13403 {
13404 switch (r)
13405 {
13406 case bfd_reloc_undefined:
13407 (*link_info->callbacks->undefined_symbol)
13408 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13409 input_bfd, input_section, (*parent)->address, true);
13410 break;
13411 case bfd_reloc_dangerous:
13412 BFD_ASSERT (error_message != NULL);
13413 (*link_info->callbacks->reloc_dangerous)
13414 (link_info, error_message,
13415 input_bfd, input_section, (*parent)->address);
13416 break;
13417 case bfd_reloc_overflow:
13418 (*link_info->callbacks->reloc_overflow)
13419 (link_info, NULL,
13420 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13421 (*parent)->howto->name, (*parent)->addend,
13422 input_bfd, input_section, (*parent)->address);
13423 break;
13424 case bfd_reloc_outofrange:
13425 /* PR ld/13730:
13426 This error can result when processing some partially
13427 complete binaries. Do not abort, but issue an error
13428 message instead. */
13429 link_info->callbacks->einfo
13430 /* xgettext:c-format */
13431 (_("%X%P: %pB(%pA): relocation \"%pR\" goes out of range\n"),
13432 abfd, input_section, * parent);
13433 goto error_return;
13434
13435 case bfd_reloc_notsupported:
13436 /* PR ld/17512
13437 This error can result when processing a corrupt binary.
13438 Do not abort. Issue an error message instead. */
13439 link_info->callbacks->einfo
13440 /* xgettext:c-format */
13441 (_("%X%P: %pB(%pA): relocation \"%pR\" is not supported\n"),
13442 abfd, input_section, * parent);
13443 goto error_return;
13444
13445 default:
13446 /* PR 17512; file: 90c2a92e.
13447 Report unexpected results, without aborting. */
13448 link_info->callbacks->einfo
13449 /* xgettext:c-format */
13450 (_("%X%P: %pB(%pA): relocation \"%pR\" returns an unrecognized value %x\n"),
13451 abfd, input_section, * parent, r);
13452 break;
13453 }
13454
13455 }
13456 }
13457 }
13458
13459 out:
13460 free (reloc_vector);
13461 return data;
13462 }
13463 \f
13464 static bool
13465 mips_elf_relax_delete_bytes (bfd *abfd,
13466 asection *sec, bfd_vma addr, int count)
13467 {
13468 Elf_Internal_Shdr *symtab_hdr;
13469 unsigned int sec_shndx;
13470 bfd_byte *contents;
13471 Elf_Internal_Rela *irel, *irelend;
13472 Elf_Internal_Sym *isym;
13473 Elf_Internal_Sym *isymend;
13474 struct elf_link_hash_entry **sym_hashes;
13475 struct elf_link_hash_entry **end_hashes;
13476 struct elf_link_hash_entry **start_hashes;
13477 unsigned int symcount;
13478
13479 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13480 contents = elf_section_data (sec)->this_hdr.contents;
13481
13482 irel = elf_section_data (sec)->relocs;
13483 irelend = irel + sec->reloc_count;
13484
13485 /* Actually delete the bytes. */
13486 memmove (contents + addr, contents + addr + count,
13487 (size_t) (sec->size - addr - count));
13488 sec->size -= count;
13489
13490 /* Adjust all the relocs. */
13491 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13492 {
13493 /* Get the new reloc address. */
13494 if (irel->r_offset > addr)
13495 irel->r_offset -= count;
13496 }
13497
13498 BFD_ASSERT (addr % 2 == 0);
13499 BFD_ASSERT (count % 2 == 0);
13500
13501 /* Adjust the local symbols defined in this section. */
13502 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13503 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13504 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13505 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13506 isym->st_value -= count;
13507
13508 /* Now adjust the global symbols defined in this section. */
13509 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13510 - symtab_hdr->sh_info);
13511 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13512 end_hashes = sym_hashes + symcount;
13513
13514 for (; sym_hashes < end_hashes; sym_hashes++)
13515 {
13516 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13517
13518 if ((sym_hash->root.type == bfd_link_hash_defined
13519 || sym_hash->root.type == bfd_link_hash_defweak)
13520 && sym_hash->root.u.def.section == sec)
13521 {
13522 bfd_vma value = sym_hash->root.u.def.value;
13523
13524 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13525 value &= MINUS_TWO;
13526 if (value > addr)
13527 sym_hash->root.u.def.value -= count;
13528 }
13529 }
13530
13531 return true;
13532 }
13533
13534
13535 /* Opcodes needed for microMIPS relaxation as found in
13536 opcodes/micromips-opc.c. */
13537
13538 struct opcode_descriptor {
13539 unsigned long match;
13540 unsigned long mask;
13541 };
13542
13543 /* The $ra register aka $31. */
13544
13545 #define RA 31
13546
13547 /* 32-bit instruction format register fields. */
13548
13549 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13550 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13551
13552 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13553
13554 #define OP16_VALID_REG(r) \
13555 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13556
13557
13558 /* 32-bit and 16-bit branches. */
13559
13560 static const struct opcode_descriptor b_insns_32[] = {
13561 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13562 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13563 { 0, 0 } /* End marker for find_match(). */
13564 };
13565
13566 static const struct opcode_descriptor bc_insn_32 =
13567 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13568
13569 static const struct opcode_descriptor bz_insn_32 =
13570 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13571
13572 static const struct opcode_descriptor bzal_insn_32 =
13573 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13574
13575 static const struct opcode_descriptor beq_insn_32 =
13576 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13577
13578 static const struct opcode_descriptor b_insn_16 =
13579 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13580
13581 static const struct opcode_descriptor bz_insn_16 =
13582 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13583
13584
13585 /* 32-bit and 16-bit branch EQ and NE zero. */
13586
13587 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13588 eq and second the ne. This convention is used when replacing a
13589 32-bit BEQ/BNE with the 16-bit version. */
13590
13591 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13592
13593 static const struct opcode_descriptor bz_rs_insns_32[] = {
13594 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13595 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13596 { 0, 0 } /* End marker for find_match(). */
13597 };
13598
13599 static const struct opcode_descriptor bz_rt_insns_32[] = {
13600 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13601 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13602 { 0, 0 } /* End marker for find_match(). */
13603 };
13604
13605 static const struct opcode_descriptor bzc_insns_32[] = {
13606 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13607 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13608 { 0, 0 } /* End marker for find_match(). */
13609 };
13610
13611 static const struct opcode_descriptor bz_insns_16[] = {
13612 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13613 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13614 { 0, 0 } /* End marker for find_match(). */
13615 };
13616
13617 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13618
13619 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13620 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13621
13622
13623 /* 32-bit instructions with a delay slot. */
13624
13625 static const struct opcode_descriptor jal_insn_32_bd16 =
13626 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13627
13628 static const struct opcode_descriptor jal_insn_32_bd32 =
13629 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13630
13631 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13632 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13633
13634 static const struct opcode_descriptor j_insn_32 =
13635 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13636
13637 static const struct opcode_descriptor jalr_insn_32 =
13638 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13639
13640 /* This table can be compacted, because no opcode replacement is made. */
13641
13642 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13643 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13644
13645 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13646 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13647
13648 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13649 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13650 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13651 { 0, 0 } /* End marker for find_match(). */
13652 };
13653
13654 /* This table can be compacted, because no opcode replacement is made. */
13655
13656 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13657 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13658
13659 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13660 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13661 { 0, 0 } /* End marker for find_match(). */
13662 };
13663
13664
13665 /* 16-bit instructions with a delay slot. */
13666
13667 static const struct opcode_descriptor jalr_insn_16_bd16 =
13668 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13669
13670 static const struct opcode_descriptor jalr_insn_16_bd32 =
13671 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13672
13673 static const struct opcode_descriptor jr_insn_16 =
13674 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13675
13676 #define JR16_REG(opcode) ((opcode) & 0x1f)
13677
13678 /* This table can be compacted, because no opcode replacement is made. */
13679
13680 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13681 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13682
13683 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13684 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13685 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13686 { 0, 0 } /* End marker for find_match(). */
13687 };
13688
13689
13690 /* LUI instruction. */
13691
13692 static const struct opcode_descriptor lui_insn =
13693 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13694
13695
13696 /* ADDIU instruction. */
13697
13698 static const struct opcode_descriptor addiu_insn =
13699 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13700
13701 static const struct opcode_descriptor addiupc_insn =
13702 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13703
13704 #define ADDIUPC_REG_FIELD(r) \
13705 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13706
13707
13708 /* Relaxable instructions in a JAL delay slot: MOVE. */
13709
13710 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13711 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13712 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13713 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13714
13715 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13716 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13717
13718 static const struct opcode_descriptor move_insns_32[] = {
13719 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13720 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13721 { 0, 0 } /* End marker for find_match(). */
13722 };
13723
13724 static const struct opcode_descriptor move_insn_16 =
13725 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13726
13727
13728 /* NOP instructions. */
13729
13730 static const struct opcode_descriptor nop_insn_32 =
13731 { /* "nop", "", */ 0x00000000, 0xffffffff };
13732
13733 static const struct opcode_descriptor nop_insn_16 =
13734 { /* "nop", "", */ 0x0c00, 0xffff };
13735
13736
13737 /* Instruction match support. */
13738
13739 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13740
13741 static int
13742 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13743 {
13744 unsigned long indx;
13745
13746 for (indx = 0; insn[indx].mask != 0; indx++)
13747 if (MATCH (opcode, insn[indx]))
13748 return indx;
13749
13750 return -1;
13751 }
13752
13753
13754 /* Branch and delay slot decoding support. */
13755
13756 /* If PTR points to what *might* be a 16-bit branch or jump, then
13757 return the minimum length of its delay slot, otherwise return 0.
13758 Non-zero results are not definitive as we might be checking against
13759 the second half of another instruction. */
13760
13761 static int
13762 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13763 {
13764 unsigned long opcode;
13765 int bdsize;
13766
13767 opcode = bfd_get_16 (abfd, ptr);
13768 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13769 /* 16-bit branch/jump with a 32-bit delay slot. */
13770 bdsize = 4;
13771 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13772 || find_match (opcode, ds_insns_16_bd16) >= 0)
13773 /* 16-bit branch/jump with a 16-bit delay slot. */
13774 bdsize = 2;
13775 else
13776 /* No delay slot. */
13777 bdsize = 0;
13778
13779 return bdsize;
13780 }
13781
13782 /* If PTR points to what *might* be a 32-bit branch or jump, then
13783 return the minimum length of its delay slot, otherwise return 0.
13784 Non-zero results are not definitive as we might be checking against
13785 the second half of another instruction. */
13786
13787 static int
13788 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13789 {
13790 unsigned long opcode;
13791 int bdsize;
13792
13793 opcode = bfd_get_micromips_32 (abfd, ptr);
13794 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13795 /* 32-bit branch/jump with a 32-bit delay slot. */
13796 bdsize = 4;
13797 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13798 /* 32-bit branch/jump with a 16-bit delay slot. */
13799 bdsize = 2;
13800 else
13801 /* No delay slot. */
13802 bdsize = 0;
13803
13804 return bdsize;
13805 }
13806
13807 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13808 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13809
13810 static bool
13811 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13812 {
13813 unsigned long opcode;
13814
13815 opcode = bfd_get_16 (abfd, ptr);
13816 if (MATCH (opcode, b_insn_16)
13817 /* B16 */
13818 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13819 /* JR16 */
13820 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13821 /* BEQZ16, BNEZ16 */
13822 || (MATCH (opcode, jalr_insn_16_bd32)
13823 /* JALR16 */
13824 && reg != JR16_REG (opcode) && reg != RA))
13825 return true;
13826
13827 return false;
13828 }
13829
13830 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13831 then return TRUE, otherwise FALSE. */
13832
13833 static bool
13834 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13835 {
13836 unsigned long opcode;
13837
13838 opcode = bfd_get_micromips_32 (abfd, ptr);
13839 if (MATCH (opcode, j_insn_32)
13840 /* J */
13841 || MATCH (opcode, bc_insn_32)
13842 /* BC1F, BC1T, BC2F, BC2T */
13843 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13844 /* JAL, JALX */
13845 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13846 /* BGEZ, BGTZ, BLEZ, BLTZ */
13847 || (MATCH (opcode, bzal_insn_32)
13848 /* BGEZAL, BLTZAL */
13849 && reg != OP32_SREG (opcode) && reg != RA)
13850 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13851 /* JALR, JALR.HB, BEQ, BNE */
13852 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13853 return true;
13854
13855 return false;
13856 }
13857
13858 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13859 IRELEND) at OFFSET indicate that there must be a compact branch there,
13860 then return TRUE, otherwise FALSE. */
13861
13862 static bool
13863 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13864 const Elf_Internal_Rela *internal_relocs,
13865 const Elf_Internal_Rela *irelend)
13866 {
13867 const Elf_Internal_Rela *irel;
13868 unsigned long opcode;
13869
13870 opcode = bfd_get_micromips_32 (abfd, ptr);
13871 if (find_match (opcode, bzc_insns_32) < 0)
13872 return false;
13873
13874 for (irel = internal_relocs; irel < irelend; irel++)
13875 if (irel->r_offset == offset
13876 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13877 return true;
13878
13879 return false;
13880 }
13881
13882 /* Bitsize checking. */
13883 #define IS_BITSIZE(val, N) \
13884 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13885 - (1ULL << ((N) - 1))) == (val))
13886
13887 \f
13888 bool
13889 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13890 struct bfd_link_info *link_info,
13891 bool *again)
13892 {
13893 bool insn32 = mips_elf_hash_table (link_info)->insn32;
13894 Elf_Internal_Shdr *symtab_hdr;
13895 Elf_Internal_Rela *internal_relocs;
13896 Elf_Internal_Rela *irel, *irelend;
13897 bfd_byte *contents = NULL;
13898 Elf_Internal_Sym *isymbuf = NULL;
13899
13900 /* Assume nothing changes. */
13901 *again = false;
13902
13903 /* We don't have to do anything for a relocatable link, if
13904 this section does not have relocs, or if this is not a
13905 code section. */
13906
13907 if (bfd_link_relocatable (link_info)
13908 || (sec->flags & SEC_RELOC) == 0
13909 || sec->reloc_count == 0
13910 || (sec->flags & SEC_CODE) == 0)
13911 return true;
13912
13913 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13914
13915 /* Get a copy of the native relocations. */
13916 internal_relocs = (_bfd_elf_link_read_relocs
13917 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13918 link_info->keep_memory));
13919 if (internal_relocs == NULL)
13920 goto error_return;
13921
13922 /* Walk through them looking for relaxing opportunities. */
13923 irelend = internal_relocs + sec->reloc_count;
13924 for (irel = internal_relocs; irel < irelend; irel++)
13925 {
13926 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13927 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13928 bool target_is_micromips_code_p;
13929 unsigned long opcode;
13930 bfd_vma symval;
13931 bfd_vma pcrval;
13932 bfd_byte *ptr;
13933 int fndopc;
13934
13935 /* The number of bytes to delete for relaxation and from where
13936 to delete these bytes starting at irel->r_offset. */
13937 int delcnt = 0;
13938 int deloff = 0;
13939
13940 /* If this isn't something that can be relaxed, then ignore
13941 this reloc. */
13942 if (r_type != R_MICROMIPS_HI16
13943 && r_type != R_MICROMIPS_PC16_S1
13944 && r_type != R_MICROMIPS_26_S1)
13945 continue;
13946
13947 /* Get the section contents if we haven't done so already. */
13948 if (contents == NULL)
13949 {
13950 /* Get cached copy if it exists. */
13951 if (elf_section_data (sec)->this_hdr.contents != NULL)
13952 contents = elf_section_data (sec)->this_hdr.contents;
13953 /* Go get them off disk. */
13954 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13955 goto error_return;
13956 }
13957 ptr = contents + irel->r_offset;
13958
13959 /* Read this BFD's local symbols if we haven't done so already. */
13960 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13961 {
13962 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13963 if (isymbuf == NULL)
13964 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13965 symtab_hdr->sh_info, 0,
13966 NULL, NULL, NULL);
13967 if (isymbuf == NULL)
13968 goto error_return;
13969 }
13970
13971 /* Get the value of the symbol referred to by the reloc. */
13972 if (r_symndx < symtab_hdr->sh_info)
13973 {
13974 /* A local symbol. */
13975 Elf_Internal_Sym *isym;
13976 asection *sym_sec;
13977
13978 isym = isymbuf + r_symndx;
13979 if (isym->st_shndx == SHN_UNDEF)
13980 sym_sec = bfd_und_section_ptr;
13981 else if (isym->st_shndx == SHN_ABS)
13982 sym_sec = bfd_abs_section_ptr;
13983 else if (isym->st_shndx == SHN_COMMON)
13984 sym_sec = bfd_com_section_ptr;
13985 else
13986 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13987 symval = (isym->st_value
13988 + sym_sec->output_section->vma
13989 + sym_sec->output_offset);
13990 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13991 }
13992 else
13993 {
13994 unsigned long indx;
13995 struct elf_link_hash_entry *h;
13996
13997 /* An external symbol. */
13998 indx = r_symndx - symtab_hdr->sh_info;
13999 h = elf_sym_hashes (abfd)[indx];
14000 BFD_ASSERT (h != NULL);
14001
14002 if (h->root.type != bfd_link_hash_defined
14003 && h->root.type != bfd_link_hash_defweak)
14004 /* This appears to be a reference to an undefined
14005 symbol. Just ignore it -- it will be caught by the
14006 regular reloc processing. */
14007 continue;
14008
14009 symval = (h->root.u.def.value
14010 + h->root.u.def.section->output_section->vma
14011 + h->root.u.def.section->output_offset);
14012 target_is_micromips_code_p = (!h->needs_plt
14013 && ELF_ST_IS_MICROMIPS (h->other));
14014 }
14015
14016
14017 /* For simplicity of coding, we are going to modify the
14018 section contents, the section relocs, and the BFD symbol
14019 table. We must tell the rest of the code not to free up this
14020 information. It would be possible to instead create a table
14021 of changes which have to be made, as is done in coff-mips.c;
14022 that would be more work, but would require less memory when
14023 the linker is run. */
14024
14025 /* Only 32-bit instructions relaxed. */
14026 if (irel->r_offset + 4 > sec->size)
14027 continue;
14028
14029 opcode = bfd_get_micromips_32 (abfd, ptr);
14030
14031 /* This is the pc-relative distance from the instruction the
14032 relocation is applied to, to the symbol referred. */
14033 pcrval = (symval
14034 - (sec->output_section->vma + sec->output_offset)
14035 - irel->r_offset);
14036
14037 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
14038 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
14039 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
14040
14041 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
14042
14043 where pcrval has first to be adjusted to apply against the LO16
14044 location (we make the adjustment later on, when we have figured
14045 out the offset). */
14046 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
14047 {
14048 bool bzc = false;
14049 unsigned long nextopc;
14050 unsigned long reg;
14051 bfd_vma offset;
14052
14053 /* Give up if the previous reloc was a HI16 against this symbol
14054 too. */
14055 if (irel > internal_relocs
14056 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
14057 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
14058 continue;
14059
14060 /* Or if the next reloc is not a LO16 against this symbol. */
14061 if (irel + 1 >= irelend
14062 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
14063 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
14064 continue;
14065
14066 /* Or if the second next reloc is a LO16 against this symbol too. */
14067 if (irel + 2 >= irelend
14068 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
14069 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
14070 continue;
14071
14072 /* See if the LUI instruction *might* be in a branch delay slot.
14073 We check whether what looks like a 16-bit branch or jump is
14074 actually an immediate argument to a compact branch, and let
14075 it through if so. */
14076 if (irel->r_offset >= 2
14077 && check_br16_dslot (abfd, ptr - 2)
14078 && !(irel->r_offset >= 4
14079 && (bzc = check_relocated_bzc (abfd,
14080 ptr - 4, irel->r_offset - 4,
14081 internal_relocs, irelend))))
14082 continue;
14083 if (irel->r_offset >= 4
14084 && !bzc
14085 && check_br32_dslot (abfd, ptr - 4))
14086 continue;
14087
14088 reg = OP32_SREG (opcode);
14089
14090 /* We only relax adjacent instructions or ones separated with
14091 a branch or jump that has a delay slot. The branch or jump
14092 must not fiddle with the register used to hold the address.
14093 Subtract 4 for the LUI itself. */
14094 offset = irel[1].r_offset - irel[0].r_offset;
14095 switch (offset - 4)
14096 {
14097 case 0:
14098 break;
14099 case 2:
14100 if (check_br16 (abfd, ptr + 4, reg))
14101 break;
14102 continue;
14103 case 4:
14104 if (check_br32 (abfd, ptr + 4, reg))
14105 break;
14106 continue;
14107 default:
14108 continue;
14109 }
14110
14111 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
14112
14113 /* Give up unless the same register is used with both
14114 relocations. */
14115 if (OP32_SREG (nextopc) != reg)
14116 continue;
14117
14118 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14119 and rounding up to take masking of the two LSBs into account. */
14120 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
14121
14122 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
14123 if (IS_BITSIZE (symval, 16))
14124 {
14125 /* Fix the relocation's type. */
14126 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14127
14128 /* Instructions using R_MICROMIPS_LO16 have the base or
14129 source register in bits 20:16. This register becomes $0
14130 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
14131 nextopc &= ~0x001f0000;
14132 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14133 contents + irel[1].r_offset);
14134 }
14135
14136 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14137 We add 4 to take LUI deletion into account while checking
14138 the PC-relative distance. */
14139 else if (symval % 4 == 0
14140 && IS_BITSIZE (pcrval + 4, 25)
14141 && MATCH (nextopc, addiu_insn)
14142 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14143 && OP16_VALID_REG (OP32_TREG (nextopc)))
14144 {
14145 /* Fix the relocation's type. */
14146 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14147
14148 /* Replace ADDIU with the ADDIUPC version. */
14149 nextopc = (addiupc_insn.match
14150 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14151
14152 bfd_put_micromips_32 (abfd, nextopc,
14153 contents + irel[1].r_offset);
14154 }
14155
14156 /* Can't do anything, give up, sigh... */
14157 else
14158 continue;
14159
14160 /* Fix the relocation's type. */
14161 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14162
14163 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14164 delcnt = 4;
14165 deloff = 0;
14166 }
14167
14168 /* Compact branch relaxation -- due to the multitude of macros
14169 employed by the compiler/assembler, compact branches are not
14170 always generated. Obviously, this can/will be fixed elsewhere,
14171 but there is no drawback in double checking it here. */
14172 else if (r_type == R_MICROMIPS_PC16_S1
14173 && irel->r_offset + 5 < sec->size
14174 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14175 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
14176 && ((!insn32
14177 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14178 nop_insn_16) ? 2 : 0))
14179 || (irel->r_offset + 7 < sec->size
14180 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14181 ptr + 4),
14182 nop_insn_32) ? 4 : 0))))
14183 {
14184 unsigned long reg;
14185
14186 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14187
14188 /* Replace BEQZ/BNEZ with the compact version. */
14189 opcode = (bzc_insns_32[fndopc].match
14190 | BZC32_REG_FIELD (reg)
14191 | (opcode & 0xffff)); /* Addend value. */
14192
14193 bfd_put_micromips_32 (abfd, opcode, ptr);
14194
14195 /* Delete the delay slot NOP: two or four bytes from
14196 irel->offset + 4; delcnt has already been set above. */
14197 deloff = 4;
14198 }
14199
14200 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
14201 to check the distance from the next instruction, so subtract 2. */
14202 else if (!insn32
14203 && r_type == R_MICROMIPS_PC16_S1
14204 && IS_BITSIZE (pcrval - 2, 11)
14205 && find_match (opcode, b_insns_32) >= 0)
14206 {
14207 /* Fix the relocation's type. */
14208 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14209
14210 /* Replace the 32-bit opcode with a 16-bit opcode. */
14211 bfd_put_16 (abfd,
14212 (b_insn_16.match
14213 | (opcode & 0x3ff)), /* Addend value. */
14214 ptr);
14215
14216 /* Delete 2 bytes from irel->r_offset + 2. */
14217 delcnt = 2;
14218 deloff = 2;
14219 }
14220
14221 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
14222 to check the distance from the next instruction, so subtract 2. */
14223 else if (!insn32
14224 && r_type == R_MICROMIPS_PC16_S1
14225 && IS_BITSIZE (pcrval - 2, 8)
14226 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14227 && OP16_VALID_REG (OP32_SREG (opcode)))
14228 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14229 && OP16_VALID_REG (OP32_TREG (opcode)))))
14230 {
14231 unsigned long reg;
14232
14233 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14234
14235 /* Fix the relocation's type. */
14236 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14237
14238 /* Replace the 32-bit opcode with a 16-bit opcode. */
14239 bfd_put_16 (abfd,
14240 (bz_insns_16[fndopc].match
14241 | BZ16_REG_FIELD (reg)
14242 | (opcode & 0x7f)), /* Addend value. */
14243 ptr);
14244
14245 /* Delete 2 bytes from irel->r_offset + 2. */
14246 delcnt = 2;
14247 deloff = 2;
14248 }
14249
14250 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14251 else if (!insn32
14252 && r_type == R_MICROMIPS_26_S1
14253 && target_is_micromips_code_p
14254 && irel->r_offset + 7 < sec->size
14255 && MATCH (opcode, jal_insn_32_bd32))
14256 {
14257 unsigned long n32opc;
14258 bool relaxed = false;
14259
14260 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14261
14262 if (MATCH (n32opc, nop_insn_32))
14263 {
14264 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14265 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14266
14267 relaxed = true;
14268 }
14269 else if (find_match (n32opc, move_insns_32) >= 0)
14270 {
14271 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14272 bfd_put_16 (abfd,
14273 (move_insn_16.match
14274 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14275 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14276 ptr + 4);
14277
14278 relaxed = true;
14279 }
14280 /* Other 32-bit instructions relaxable to 16-bit
14281 instructions will be handled here later. */
14282
14283 if (relaxed)
14284 {
14285 /* JAL with 32-bit delay slot that is changed to a JALS
14286 with 16-bit delay slot. */
14287 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14288
14289 /* Delete 2 bytes from irel->r_offset + 6. */
14290 delcnt = 2;
14291 deloff = 6;
14292 }
14293 }
14294
14295 if (delcnt != 0)
14296 {
14297 /* Note that we've changed the relocs, section contents, etc. */
14298 elf_section_data (sec)->relocs = internal_relocs;
14299 elf_section_data (sec)->this_hdr.contents = contents;
14300 symtab_hdr->contents = (unsigned char *) isymbuf;
14301
14302 /* Delete bytes depending on the delcnt and deloff. */
14303 if (!mips_elf_relax_delete_bytes (abfd, sec,
14304 irel->r_offset + deloff, delcnt))
14305 goto error_return;
14306
14307 /* That will change things, so we should relax again.
14308 Note that this is not required, and it may be slow. */
14309 *again = true;
14310 }
14311 }
14312
14313 if (isymbuf != NULL
14314 && symtab_hdr->contents != (unsigned char *) isymbuf)
14315 {
14316 if (! link_info->keep_memory)
14317 free (isymbuf);
14318 else
14319 {
14320 /* Cache the symbols for elf_link_input_bfd. */
14321 symtab_hdr->contents = (unsigned char *) isymbuf;
14322 }
14323 }
14324
14325 if (contents != NULL
14326 && elf_section_data (sec)->this_hdr.contents != contents)
14327 {
14328 if (! link_info->keep_memory)
14329 free (contents);
14330 else
14331 {
14332 /* Cache the section contents for elf_link_input_bfd. */
14333 elf_section_data (sec)->this_hdr.contents = contents;
14334 }
14335 }
14336
14337 if (elf_section_data (sec)->relocs != internal_relocs)
14338 free (internal_relocs);
14339
14340 return true;
14341
14342 error_return:
14343 if (symtab_hdr->contents != (unsigned char *) isymbuf)
14344 free (isymbuf);
14345 if (elf_section_data (sec)->this_hdr.contents != contents)
14346 free (contents);
14347 if (elf_section_data (sec)->relocs != internal_relocs)
14348 free (internal_relocs);
14349
14350 return false;
14351 }
14352 \f
14353 /* Create a MIPS ELF linker hash table. */
14354
14355 struct bfd_link_hash_table *
14356 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14357 {
14358 struct mips_elf_link_hash_table *ret;
14359 size_t amt = sizeof (struct mips_elf_link_hash_table);
14360
14361 ret = bfd_zmalloc (amt);
14362 if (ret == NULL)
14363 return NULL;
14364
14365 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14366 mips_elf_link_hash_newfunc,
14367 sizeof (struct mips_elf_link_hash_entry),
14368 MIPS_ELF_DATA))
14369 {
14370 free (ret);
14371 return NULL;
14372 }
14373 ret->root.init_plt_refcount.plist = NULL;
14374 ret->root.init_plt_offset.plist = NULL;
14375
14376 return &ret->root.root;
14377 }
14378
14379 /* Likewise, but indicate that the target is VxWorks. */
14380
14381 struct bfd_link_hash_table *
14382 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14383 {
14384 struct bfd_link_hash_table *ret;
14385
14386 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14387 if (ret)
14388 {
14389 struct mips_elf_link_hash_table *htab;
14390
14391 htab = (struct mips_elf_link_hash_table *) ret;
14392 htab->use_plts_and_copy_relocs = true;
14393 }
14394 return ret;
14395 }
14396
14397 /* A function that the linker calls if we are allowed to use PLTs
14398 and copy relocs. */
14399
14400 void
14401 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14402 {
14403 mips_elf_hash_table (info)->use_plts_and_copy_relocs = true;
14404 }
14405
14406 /* A function that the linker calls to select between all or only
14407 32-bit microMIPS instructions, and between making or ignoring
14408 branch relocation checks for invalid transitions between ISA modes.
14409 Also record whether we have been configured for a GNU target. */
14410
14411 void
14412 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bool insn32,
14413 bool ignore_branch_isa,
14414 bool gnu_target)
14415 {
14416 mips_elf_hash_table (info)->insn32 = insn32;
14417 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14418 mips_elf_hash_table (info)->gnu_target = gnu_target;
14419 }
14420
14421 /* A function that the linker calls to enable use of compact branches in
14422 linker generated code for MIPSR6. */
14423
14424 void
14425 _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bool on)
14426 {
14427 mips_elf_hash_table (info)->compact_branches = on;
14428 }
14429
14430 \f
14431 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14432
14433 struct mips_mach_extension
14434 {
14435 unsigned long extension, base;
14436 };
14437
14438
14439 /* An array describing how BFD machines relate to one another. The entries
14440 are ordered topologically with MIPS I extensions listed last. */
14441
14442 static const struct mips_mach_extension mips_mach_extensions[] =
14443 {
14444 /* MIPS64r2 extensions. */
14445 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14446 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14447 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14448 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14449 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14450 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14451 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14452
14453 /* MIPS64 extensions. */
14454 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14455 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14456 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14457
14458 /* MIPS V extensions. */
14459 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14460
14461 /* R10000 extensions. */
14462 { bfd_mach_mips12000, bfd_mach_mips10000 },
14463 { bfd_mach_mips14000, bfd_mach_mips10000 },
14464 { bfd_mach_mips16000, bfd_mach_mips10000 },
14465
14466 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14467 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14468 better to allow vr5400 and vr5500 code to be merged anyway, since
14469 many libraries will just use the core ISA. Perhaps we could add
14470 some sort of ASE flag if this ever proves a problem. */
14471 { bfd_mach_mips5500, bfd_mach_mips5400 },
14472 { bfd_mach_mips5400, bfd_mach_mips5000 },
14473
14474 /* MIPS IV extensions. */
14475 { bfd_mach_mips5, bfd_mach_mips8000 },
14476 { bfd_mach_mips10000, bfd_mach_mips8000 },
14477 { bfd_mach_mips5000, bfd_mach_mips8000 },
14478 { bfd_mach_mips7000, bfd_mach_mips8000 },
14479 { bfd_mach_mips9000, bfd_mach_mips8000 },
14480
14481 /* VR4100 extensions. */
14482 { bfd_mach_mips4120, bfd_mach_mips4100 },
14483 { bfd_mach_mips4111, bfd_mach_mips4100 },
14484
14485 /* MIPS III extensions. */
14486 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14487 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14488 { bfd_mach_mips8000, bfd_mach_mips4000 },
14489 { bfd_mach_mips4650, bfd_mach_mips4000 },
14490 { bfd_mach_mips4600, bfd_mach_mips4000 },
14491 { bfd_mach_mips4400, bfd_mach_mips4000 },
14492 { bfd_mach_mips4300, bfd_mach_mips4000 },
14493 { bfd_mach_mips4100, bfd_mach_mips4000 },
14494 { bfd_mach_mips5900, bfd_mach_mips4000 },
14495
14496 /* MIPS32r3 extensions. */
14497 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14498
14499 /* MIPS32r2 extensions. */
14500 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14501
14502 /* MIPS32 extensions. */
14503 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14504
14505 /* MIPS II extensions. */
14506 { bfd_mach_mips4000, bfd_mach_mips6000 },
14507 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14508 { bfd_mach_mips4010, bfd_mach_mips6000 },
14509
14510 /* MIPS I extensions. */
14511 { bfd_mach_mips6000, bfd_mach_mips3000 },
14512 { bfd_mach_mips3900, bfd_mach_mips3000 }
14513 };
14514
14515 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14516
14517 static bool
14518 mips_mach_extends_p (unsigned long base, unsigned long extension)
14519 {
14520 size_t i;
14521
14522 if (extension == base)
14523 return true;
14524
14525 if (base == bfd_mach_mipsisa32
14526 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14527 return true;
14528
14529 if (base == bfd_mach_mipsisa32r2
14530 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14531 return true;
14532
14533 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14534 if (extension == mips_mach_extensions[i].extension)
14535 {
14536 extension = mips_mach_extensions[i].base;
14537 if (extension == base)
14538 return true;
14539 }
14540
14541 return false;
14542 }
14543
14544 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14545
14546 static unsigned long
14547 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14548 {
14549 switch (isa_ext)
14550 {
14551 case AFL_EXT_3900: return bfd_mach_mips3900;
14552 case AFL_EXT_4010: return bfd_mach_mips4010;
14553 case AFL_EXT_4100: return bfd_mach_mips4100;
14554 case AFL_EXT_4111: return bfd_mach_mips4111;
14555 case AFL_EXT_4120: return bfd_mach_mips4120;
14556 case AFL_EXT_4650: return bfd_mach_mips4650;
14557 case AFL_EXT_5400: return bfd_mach_mips5400;
14558 case AFL_EXT_5500: return bfd_mach_mips5500;
14559 case AFL_EXT_5900: return bfd_mach_mips5900;
14560 case AFL_EXT_10000: return bfd_mach_mips10000;
14561 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14562 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14563 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14564 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14565 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14566 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14567 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14568 default: return bfd_mach_mips3000;
14569 }
14570 }
14571
14572 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14573
14574 unsigned int
14575 bfd_mips_isa_ext (bfd *abfd)
14576 {
14577 switch (bfd_get_mach (abfd))
14578 {
14579 case bfd_mach_mips3900: return AFL_EXT_3900;
14580 case bfd_mach_mips4010: return AFL_EXT_4010;
14581 case bfd_mach_mips4100: return AFL_EXT_4100;
14582 case bfd_mach_mips4111: return AFL_EXT_4111;
14583 case bfd_mach_mips4120: return AFL_EXT_4120;
14584 case bfd_mach_mips4650: return AFL_EXT_4650;
14585 case bfd_mach_mips5400: return AFL_EXT_5400;
14586 case bfd_mach_mips5500: return AFL_EXT_5500;
14587 case bfd_mach_mips5900: return AFL_EXT_5900;
14588 case bfd_mach_mips10000: return AFL_EXT_10000;
14589 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14590 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14591 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14592 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14593 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14594 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14595 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14596 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14597 case bfd_mach_mips_interaptiv_mr2:
14598 return AFL_EXT_INTERAPTIV_MR2;
14599 default: return 0;
14600 }
14601 }
14602
14603 /* Encode ISA level and revision as a single value. */
14604 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14605
14606 /* Decode a single value into level and revision. */
14607 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14608 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14609
14610 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14611
14612 static void
14613 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14614 {
14615 int new_isa = 0;
14616 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14617 {
14618 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14619 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14620 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14621 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14622 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14623 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14624 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14625 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14626 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14627 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14628 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14629 default:
14630 _bfd_error_handler
14631 /* xgettext:c-format */
14632 (_("%pB: unknown architecture %s"),
14633 abfd, bfd_printable_name (abfd));
14634 }
14635
14636 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14637 {
14638 abiflags->isa_level = ISA_LEVEL (new_isa);
14639 abiflags->isa_rev = ISA_REV (new_isa);
14640 }
14641
14642 /* Update the isa_ext if ABFD describes a further extension. */
14643 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14644 bfd_get_mach (abfd)))
14645 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14646 }
14647
14648 /* Return true if the given ELF header flags describe a 32-bit binary. */
14649
14650 static bool
14651 mips_32bit_flags_p (flagword flags)
14652 {
14653 return ((flags & EF_MIPS_32BITMODE) != 0
14654 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14655 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14656 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14657 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14658 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14659 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14660 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14661 }
14662
14663 /* Infer the content of the ABI flags based on the elf header. */
14664
14665 static void
14666 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14667 {
14668 obj_attribute *in_attr;
14669
14670 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14671 update_mips_abiflags_isa (abfd, abiflags);
14672
14673 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14674 abiflags->gpr_size = AFL_REG_32;
14675 else
14676 abiflags->gpr_size = AFL_REG_64;
14677
14678 abiflags->cpr1_size = AFL_REG_NONE;
14679
14680 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14681 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14682
14683 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14684 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14685 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14686 && abiflags->gpr_size == AFL_REG_32))
14687 abiflags->cpr1_size = AFL_REG_32;
14688 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14689 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14690 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14691 abiflags->cpr1_size = AFL_REG_64;
14692
14693 abiflags->cpr2_size = AFL_REG_NONE;
14694
14695 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14696 abiflags->ases |= AFL_ASE_MDMX;
14697 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14698 abiflags->ases |= AFL_ASE_MIPS16;
14699 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14700 abiflags->ases |= AFL_ASE_MICROMIPS;
14701
14702 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14703 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14704 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14705 && abiflags->isa_level >= 32
14706 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14707 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14708 }
14709
14710 /* We need to use a special link routine to handle the .reginfo and
14711 the .mdebug sections. We need to merge all instances of these
14712 sections together, not write them all out sequentially. */
14713
14714 bool
14715 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14716 {
14717 asection *o;
14718 struct bfd_link_order *p;
14719 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14720 asection *rtproc_sec, *abiflags_sec;
14721 Elf32_RegInfo reginfo;
14722 struct ecoff_debug_info debug;
14723 struct mips_htab_traverse_info hti;
14724 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14725 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14726 HDRR *symhdr = &debug.symbolic_header;
14727 void *mdebug_handle = NULL;
14728 asection *s;
14729 EXTR esym;
14730 unsigned int i;
14731 bfd_size_type amt;
14732 struct mips_elf_link_hash_table *htab;
14733
14734 static const char * const secname[] =
14735 {
14736 ".text", ".init", ".fini", ".data",
14737 ".rodata", ".sdata", ".sbss", ".bss"
14738 };
14739 static const int sc[] =
14740 {
14741 scText, scInit, scFini, scData,
14742 scRData, scSData, scSBss, scBss
14743 };
14744
14745 htab = mips_elf_hash_table (info);
14746 BFD_ASSERT (htab != NULL);
14747
14748 /* Sort the dynamic symbols so that those with GOT entries come after
14749 those without. */
14750 if (!mips_elf_sort_hash_table (abfd, info))
14751 return false;
14752
14753 /* Create any scheduled LA25 stubs. */
14754 hti.info = info;
14755 hti.output_bfd = abfd;
14756 hti.error = false;
14757 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14758 if (hti.error)
14759 return false;
14760
14761 /* Get a value for the GP register. */
14762 if (elf_gp (abfd) == 0)
14763 {
14764 struct bfd_link_hash_entry *h;
14765
14766 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
14767 if (h != NULL && h->type == bfd_link_hash_defined)
14768 elf_gp (abfd) = (h->u.def.value
14769 + h->u.def.section->output_section->vma
14770 + h->u.def.section->output_offset);
14771 else if (htab->root.target_os == is_vxworks
14772 && (h = bfd_link_hash_lookup (info->hash,
14773 "_GLOBAL_OFFSET_TABLE_",
14774 false, false, true))
14775 && h->type == bfd_link_hash_defined)
14776 elf_gp (abfd) = (h->u.def.section->output_section->vma
14777 + h->u.def.section->output_offset
14778 + h->u.def.value);
14779 else if (bfd_link_relocatable (info))
14780 {
14781 bfd_vma lo = MINUS_ONE;
14782
14783 /* Find the GP-relative section with the lowest offset. */
14784 for (o = abfd->sections; o != NULL; o = o->next)
14785 if (o->vma < lo
14786 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14787 lo = o->vma;
14788
14789 /* And calculate GP relative to that. */
14790 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14791 }
14792 else
14793 {
14794 /* If the relocate_section function needs to do a reloc
14795 involving the GP value, it should make a reloc_dangerous
14796 callback to warn that GP is not defined. */
14797 }
14798 }
14799
14800 /* Go through the sections and collect the .reginfo and .mdebug
14801 information. */
14802 abiflags_sec = NULL;
14803 reginfo_sec = NULL;
14804 mdebug_sec = NULL;
14805 gptab_data_sec = NULL;
14806 gptab_bss_sec = NULL;
14807 for (o = abfd->sections; o != NULL; o = o->next)
14808 {
14809 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14810 {
14811 /* We have found the .MIPS.abiflags section in the output file.
14812 Look through all the link_orders comprising it and remove them.
14813 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14814 for (p = o->map_head.link_order; p != NULL; p = p->next)
14815 {
14816 asection *input_section;
14817
14818 if (p->type != bfd_indirect_link_order)
14819 {
14820 if (p->type == bfd_data_link_order)
14821 continue;
14822 abort ();
14823 }
14824
14825 input_section = p->u.indirect.section;
14826
14827 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14828 elf_link_input_bfd ignores this section. */
14829 input_section->flags &= ~SEC_HAS_CONTENTS;
14830 }
14831
14832 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14833 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14834
14835 /* Skip this section later on (I don't think this currently
14836 matters, but someday it might). */
14837 o->map_head.link_order = NULL;
14838
14839 abiflags_sec = o;
14840 }
14841
14842 if (strcmp (o->name, ".reginfo") == 0)
14843 {
14844 memset (&reginfo, 0, sizeof reginfo);
14845
14846 /* We have found the .reginfo section in the output file.
14847 Look through all the link_orders comprising it and merge
14848 the information together. */
14849 for (p = o->map_head.link_order; p != NULL; p = p->next)
14850 {
14851 asection *input_section;
14852 bfd *input_bfd;
14853 Elf32_External_RegInfo ext;
14854 Elf32_RegInfo sub;
14855 bfd_size_type sz;
14856
14857 if (p->type != bfd_indirect_link_order)
14858 {
14859 if (p->type == bfd_data_link_order)
14860 continue;
14861 abort ();
14862 }
14863
14864 input_section = p->u.indirect.section;
14865 input_bfd = input_section->owner;
14866
14867 sz = (input_section->size < sizeof (ext)
14868 ? input_section->size : sizeof (ext));
14869 memset (&ext, 0, sizeof (ext));
14870 if (! bfd_get_section_contents (input_bfd, input_section,
14871 &ext, 0, sz))
14872 return false;
14873
14874 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14875
14876 reginfo.ri_gprmask |= sub.ri_gprmask;
14877 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14878 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14879 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14880 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14881
14882 /* ri_gp_value is set by the function
14883 `_bfd_mips_elf_section_processing' when the section is
14884 finally written out. */
14885
14886 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14887 elf_link_input_bfd ignores this section. */
14888 input_section->flags &= ~SEC_HAS_CONTENTS;
14889 }
14890
14891 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14892 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14893
14894 /* Skip this section later on (I don't think this currently
14895 matters, but someday it might). */
14896 o->map_head.link_order = NULL;
14897
14898 reginfo_sec = o;
14899 }
14900
14901 if (strcmp (o->name, ".mdebug") == 0)
14902 {
14903 struct extsym_info einfo;
14904 bfd_vma last;
14905
14906 /* We have found the .mdebug section in the output file.
14907 Look through all the link_orders comprising it and merge
14908 the information together. */
14909 symhdr->magic = swap->sym_magic;
14910 /* FIXME: What should the version stamp be? */
14911 symhdr->vstamp = 0;
14912 symhdr->ilineMax = 0;
14913 symhdr->cbLine = 0;
14914 symhdr->idnMax = 0;
14915 symhdr->ipdMax = 0;
14916 symhdr->isymMax = 0;
14917 symhdr->ioptMax = 0;
14918 symhdr->iauxMax = 0;
14919 symhdr->issMax = 0;
14920 symhdr->issExtMax = 0;
14921 symhdr->ifdMax = 0;
14922 symhdr->crfd = 0;
14923 symhdr->iextMax = 0;
14924
14925 /* We accumulate the debugging information itself in the
14926 debug_info structure. */
14927 debug.line = NULL;
14928 debug.external_dnr = NULL;
14929 debug.external_pdr = NULL;
14930 debug.external_sym = NULL;
14931 debug.external_opt = NULL;
14932 debug.external_aux = NULL;
14933 debug.ss = NULL;
14934 debug.ssext = debug.ssext_end = NULL;
14935 debug.external_fdr = NULL;
14936 debug.external_rfd = NULL;
14937 debug.external_ext = debug.external_ext_end = NULL;
14938
14939 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14940 if (mdebug_handle == NULL)
14941 return false;
14942
14943 esym.jmptbl = 0;
14944 esym.cobol_main = 0;
14945 esym.weakext = 0;
14946 esym.reserved = 0;
14947 esym.ifd = ifdNil;
14948 esym.asym.iss = issNil;
14949 esym.asym.st = stLocal;
14950 esym.asym.reserved = 0;
14951 esym.asym.index = indexNil;
14952 last = 0;
14953 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14954 {
14955 esym.asym.sc = sc[i];
14956 s = bfd_get_section_by_name (abfd, secname[i]);
14957 if (s != NULL)
14958 {
14959 esym.asym.value = s->vma;
14960 last = s->vma + s->size;
14961 }
14962 else
14963 esym.asym.value = last;
14964 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14965 secname[i], &esym))
14966 return false;
14967 }
14968
14969 for (p = o->map_head.link_order; p != NULL; p = p->next)
14970 {
14971 asection *input_section;
14972 bfd *input_bfd;
14973 const struct ecoff_debug_swap *input_swap;
14974 struct ecoff_debug_info input_debug;
14975 char *eraw_src;
14976 char *eraw_end;
14977
14978 if (p->type != bfd_indirect_link_order)
14979 {
14980 if (p->type == bfd_data_link_order)
14981 continue;
14982 abort ();
14983 }
14984
14985 input_section = p->u.indirect.section;
14986 input_bfd = input_section->owner;
14987
14988 if (!is_mips_elf (input_bfd))
14989 {
14990 /* I don't know what a non MIPS ELF bfd would be
14991 doing with a .mdebug section, but I don't really
14992 want to deal with it. */
14993 continue;
14994 }
14995
14996 input_swap = (get_elf_backend_data (input_bfd)
14997 ->elf_backend_ecoff_debug_swap);
14998
14999 BFD_ASSERT (p->size == input_section->size);
15000
15001 /* The ECOFF linking code expects that we have already
15002 read in the debugging information and set up an
15003 ecoff_debug_info structure, so we do that now. */
15004 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
15005 &input_debug))
15006 return false;
15007
15008 if (! (bfd_ecoff_debug_accumulate
15009 (mdebug_handle, abfd, &debug, swap, input_bfd,
15010 &input_debug, input_swap, info)))
15011 return false;
15012
15013 /* Loop through the external symbols. For each one with
15014 interesting information, try to find the symbol in
15015 the linker global hash table and save the information
15016 for the output external symbols. */
15017 eraw_src = input_debug.external_ext;
15018 eraw_end = (eraw_src
15019 + (input_debug.symbolic_header.iextMax
15020 * input_swap->external_ext_size));
15021 for (;
15022 eraw_src < eraw_end;
15023 eraw_src += input_swap->external_ext_size)
15024 {
15025 EXTR ext;
15026 const char *name;
15027 struct mips_elf_link_hash_entry *h;
15028
15029 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
15030 if (ext.asym.sc == scNil
15031 || ext.asym.sc == scUndefined
15032 || ext.asym.sc == scSUndefined)
15033 continue;
15034
15035 name = input_debug.ssext + ext.asym.iss;
15036 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
15037 name, false, false, true);
15038 if (h == NULL || h->esym.ifd != -2)
15039 continue;
15040
15041 if (ext.ifd != -1)
15042 {
15043 BFD_ASSERT (ext.ifd
15044 < input_debug.symbolic_header.ifdMax);
15045 ext.ifd = input_debug.ifdmap[ext.ifd];
15046 }
15047
15048 h->esym = ext;
15049 }
15050
15051 /* Free up the information we just read. */
15052 free (input_debug.line);
15053 free (input_debug.external_dnr);
15054 free (input_debug.external_pdr);
15055 free (input_debug.external_sym);
15056 free (input_debug.external_opt);
15057 free (input_debug.external_aux);
15058 free (input_debug.ss);
15059 free (input_debug.ssext);
15060 free (input_debug.external_fdr);
15061 free (input_debug.external_rfd);
15062 free (input_debug.external_ext);
15063
15064 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15065 elf_link_input_bfd ignores this section. */
15066 input_section->flags &= ~SEC_HAS_CONTENTS;
15067 }
15068
15069 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
15070 {
15071 /* Create .rtproc section. */
15072 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
15073 if (rtproc_sec == NULL)
15074 {
15075 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
15076 | SEC_LINKER_CREATED | SEC_READONLY);
15077
15078 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
15079 ".rtproc",
15080 flags);
15081 if (rtproc_sec == NULL
15082 || !bfd_set_section_alignment (rtproc_sec, 4))
15083 return false;
15084 }
15085
15086 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
15087 info, rtproc_sec,
15088 &debug))
15089 return false;
15090 }
15091
15092 /* Build the external symbol information. */
15093 einfo.abfd = abfd;
15094 einfo.info = info;
15095 einfo.debug = &debug;
15096 einfo.swap = swap;
15097 einfo.failed = false;
15098 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
15099 mips_elf_output_extsym, &einfo);
15100 if (einfo.failed)
15101 return false;
15102
15103 /* Set the size of the .mdebug section. */
15104 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
15105
15106 /* Skip this section later on (I don't think this currently
15107 matters, but someday it might). */
15108 o->map_head.link_order = NULL;
15109
15110 mdebug_sec = o;
15111 }
15112
15113 if (startswith (o->name, ".gptab."))
15114 {
15115 const char *subname;
15116 unsigned int c;
15117 Elf32_gptab *tab;
15118 Elf32_External_gptab *ext_tab;
15119 unsigned int j;
15120
15121 /* The .gptab.sdata and .gptab.sbss sections hold
15122 information describing how the small data area would
15123 change depending upon the -G switch. These sections
15124 not used in executables files. */
15125 if (! bfd_link_relocatable (info))
15126 {
15127 for (p = o->map_head.link_order; p != NULL; p = p->next)
15128 {
15129 asection *input_section;
15130
15131 if (p->type != bfd_indirect_link_order)
15132 {
15133 if (p->type == bfd_data_link_order)
15134 continue;
15135 abort ();
15136 }
15137
15138 input_section = p->u.indirect.section;
15139
15140 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15141 elf_link_input_bfd ignores this section. */
15142 input_section->flags &= ~SEC_HAS_CONTENTS;
15143 }
15144
15145 /* Skip this section later on (I don't think this
15146 currently matters, but someday it might). */
15147 o->map_head.link_order = NULL;
15148
15149 /* Really remove the section. */
15150 bfd_section_list_remove (abfd, o);
15151 --abfd->section_count;
15152
15153 continue;
15154 }
15155
15156 /* There is one gptab for initialized data, and one for
15157 uninitialized data. */
15158 if (strcmp (o->name, ".gptab.sdata") == 0)
15159 gptab_data_sec = o;
15160 else if (strcmp (o->name, ".gptab.sbss") == 0)
15161 gptab_bss_sec = o;
15162 else
15163 {
15164 _bfd_error_handler
15165 /* xgettext:c-format */
15166 (_("%pB: illegal section name `%pA'"), abfd, o);
15167 bfd_set_error (bfd_error_nonrepresentable_section);
15168 return false;
15169 }
15170
15171 /* The linker script always combines .gptab.data and
15172 .gptab.sdata into .gptab.sdata, and likewise for
15173 .gptab.bss and .gptab.sbss. It is possible that there is
15174 no .sdata or .sbss section in the output file, in which
15175 case we must change the name of the output section. */
15176 subname = o->name + sizeof ".gptab" - 1;
15177 if (bfd_get_section_by_name (abfd, subname) == NULL)
15178 {
15179 if (o == gptab_data_sec)
15180 o->name = ".gptab.data";
15181 else
15182 o->name = ".gptab.bss";
15183 subname = o->name + sizeof ".gptab" - 1;
15184 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15185 }
15186
15187 /* Set up the first entry. */
15188 c = 1;
15189 amt = c * sizeof (Elf32_gptab);
15190 tab = bfd_malloc (amt);
15191 if (tab == NULL)
15192 return false;
15193 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15194 tab[0].gt_header.gt_unused = 0;
15195
15196 /* Combine the input sections. */
15197 for (p = o->map_head.link_order; p != NULL; p = p->next)
15198 {
15199 asection *input_section;
15200 bfd *input_bfd;
15201 bfd_size_type size;
15202 unsigned long last;
15203 bfd_size_type gpentry;
15204
15205 if (p->type != bfd_indirect_link_order)
15206 {
15207 if (p->type == bfd_data_link_order)
15208 continue;
15209 abort ();
15210 }
15211
15212 input_section = p->u.indirect.section;
15213 input_bfd = input_section->owner;
15214
15215 /* Combine the gptab entries for this input section one
15216 by one. We know that the input gptab entries are
15217 sorted by ascending -G value. */
15218 size = input_section->size;
15219 last = 0;
15220 for (gpentry = sizeof (Elf32_External_gptab);
15221 gpentry < size;
15222 gpentry += sizeof (Elf32_External_gptab))
15223 {
15224 Elf32_External_gptab ext_gptab;
15225 Elf32_gptab int_gptab;
15226 unsigned long val;
15227 unsigned long add;
15228 bool exact;
15229 unsigned int look;
15230
15231 if (! (bfd_get_section_contents
15232 (input_bfd, input_section, &ext_gptab, gpentry,
15233 sizeof (Elf32_External_gptab))))
15234 {
15235 free (tab);
15236 return false;
15237 }
15238
15239 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15240 &int_gptab);
15241 val = int_gptab.gt_entry.gt_g_value;
15242 add = int_gptab.gt_entry.gt_bytes - last;
15243
15244 exact = false;
15245 for (look = 1; look < c; look++)
15246 {
15247 if (tab[look].gt_entry.gt_g_value >= val)
15248 tab[look].gt_entry.gt_bytes += add;
15249
15250 if (tab[look].gt_entry.gt_g_value == val)
15251 exact = true;
15252 }
15253
15254 if (! exact)
15255 {
15256 Elf32_gptab *new_tab;
15257 unsigned int max;
15258
15259 /* We need a new table entry. */
15260 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15261 new_tab = bfd_realloc (tab, amt);
15262 if (new_tab == NULL)
15263 {
15264 free (tab);
15265 return false;
15266 }
15267 tab = new_tab;
15268 tab[c].gt_entry.gt_g_value = val;
15269 tab[c].gt_entry.gt_bytes = add;
15270
15271 /* Merge in the size for the next smallest -G
15272 value, since that will be implied by this new
15273 value. */
15274 max = 0;
15275 for (look = 1; look < c; look++)
15276 {
15277 if (tab[look].gt_entry.gt_g_value < val
15278 && (max == 0
15279 || (tab[look].gt_entry.gt_g_value
15280 > tab[max].gt_entry.gt_g_value)))
15281 max = look;
15282 }
15283 if (max != 0)
15284 tab[c].gt_entry.gt_bytes +=
15285 tab[max].gt_entry.gt_bytes;
15286
15287 ++c;
15288 }
15289
15290 last = int_gptab.gt_entry.gt_bytes;
15291 }
15292
15293 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15294 elf_link_input_bfd ignores this section. */
15295 input_section->flags &= ~SEC_HAS_CONTENTS;
15296 }
15297
15298 /* The table must be sorted by -G value. */
15299 if (c > 2)
15300 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15301
15302 /* Swap out the table. */
15303 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15304 ext_tab = bfd_alloc (abfd, amt);
15305 if (ext_tab == NULL)
15306 {
15307 free (tab);
15308 return false;
15309 }
15310
15311 for (j = 0; j < c; j++)
15312 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15313 free (tab);
15314
15315 o->size = c * sizeof (Elf32_External_gptab);
15316 o->contents = (bfd_byte *) ext_tab;
15317
15318 /* Skip this section later on (I don't think this currently
15319 matters, but someday it might). */
15320 o->map_head.link_order = NULL;
15321 }
15322 }
15323
15324 /* Invoke the regular ELF backend linker to do all the work. */
15325 if (!bfd_elf_final_link (abfd, info))
15326 return false;
15327
15328 /* Now write out the computed sections. */
15329
15330 if (abiflags_sec != NULL)
15331 {
15332 Elf_External_ABIFlags_v0 ext;
15333 Elf_Internal_ABIFlags_v0 *abiflags;
15334
15335 abiflags = &mips_elf_tdata (abfd)->abiflags;
15336
15337 /* Set up the abiflags if no valid input sections were found. */
15338 if (!mips_elf_tdata (abfd)->abiflags_valid)
15339 {
15340 infer_mips_abiflags (abfd, abiflags);
15341 mips_elf_tdata (abfd)->abiflags_valid = true;
15342 }
15343 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15344 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15345 return false;
15346 }
15347
15348 if (reginfo_sec != NULL)
15349 {
15350 Elf32_External_RegInfo ext;
15351
15352 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15353 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15354 return false;
15355 }
15356
15357 if (mdebug_sec != NULL)
15358 {
15359 BFD_ASSERT (abfd->output_has_begun);
15360 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15361 swap, info,
15362 mdebug_sec->filepos))
15363 return false;
15364
15365 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15366 }
15367
15368 if (gptab_data_sec != NULL)
15369 {
15370 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15371 gptab_data_sec->contents,
15372 0, gptab_data_sec->size))
15373 return false;
15374 }
15375
15376 if (gptab_bss_sec != NULL)
15377 {
15378 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15379 gptab_bss_sec->contents,
15380 0, gptab_bss_sec->size))
15381 return false;
15382 }
15383
15384 if (SGI_COMPAT (abfd))
15385 {
15386 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15387 if (rtproc_sec != NULL)
15388 {
15389 if (! bfd_set_section_contents (abfd, rtproc_sec,
15390 rtproc_sec->contents,
15391 0, rtproc_sec->size))
15392 return false;
15393 }
15394 }
15395
15396 return true;
15397 }
15398 \f
15399 /* Merge object file header flags from IBFD into OBFD. Raise an error
15400 if there are conflicting settings. */
15401
15402 static bool
15403 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15404 {
15405 bfd *obfd = info->output_bfd;
15406 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15407 flagword old_flags;
15408 flagword new_flags;
15409 bool ok;
15410
15411 new_flags = elf_elfheader (ibfd)->e_flags;
15412 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15413 old_flags = elf_elfheader (obfd)->e_flags;
15414
15415 /* Check flag compatibility. */
15416
15417 new_flags &= ~EF_MIPS_NOREORDER;
15418 old_flags &= ~EF_MIPS_NOREORDER;
15419
15420 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15421 doesn't seem to matter. */
15422 new_flags &= ~EF_MIPS_XGOT;
15423 old_flags &= ~EF_MIPS_XGOT;
15424
15425 /* MIPSpro generates ucode info in n64 objects. Again, we should
15426 just be able to ignore this. */
15427 new_flags &= ~EF_MIPS_UCODE;
15428 old_flags &= ~EF_MIPS_UCODE;
15429
15430 /* DSOs should only be linked with CPIC code. */
15431 if ((ibfd->flags & DYNAMIC) != 0)
15432 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15433
15434 if (new_flags == old_flags)
15435 return true;
15436
15437 ok = true;
15438
15439 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15440 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15441 {
15442 _bfd_error_handler
15443 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15444 ibfd);
15445 ok = true;
15446 }
15447
15448 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15449 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15450 if (! (new_flags & EF_MIPS_PIC))
15451 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15452
15453 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15454 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15455
15456 /* Compare the ISAs. */
15457 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15458 {
15459 _bfd_error_handler
15460 (_("%pB: linking 32-bit code with 64-bit code"),
15461 ibfd);
15462 ok = false;
15463 }
15464 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15465 {
15466 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15467 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15468 {
15469 /* Copy the architecture info from IBFD to OBFD. Also copy
15470 the 32-bit flag (if set) so that we continue to recognise
15471 OBFD as a 32-bit binary. */
15472 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15473 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15474 elf_elfheader (obfd)->e_flags
15475 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15476
15477 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15478 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15479
15480 /* Copy across the ABI flags if OBFD doesn't use them
15481 and if that was what caused us to treat IBFD as 32-bit. */
15482 if ((old_flags & EF_MIPS_ABI) == 0
15483 && mips_32bit_flags_p (new_flags)
15484 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15485 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15486 }
15487 else
15488 {
15489 /* The ISAs aren't compatible. */
15490 _bfd_error_handler
15491 /* xgettext:c-format */
15492 (_("%pB: linking %s module with previous %s modules"),
15493 ibfd,
15494 bfd_printable_name (ibfd),
15495 bfd_printable_name (obfd));
15496 ok = false;
15497 }
15498 }
15499
15500 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15501 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15502
15503 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15504 does set EI_CLASS differently from any 32-bit ABI. */
15505 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15506 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15507 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15508 {
15509 /* Only error if both are set (to different values). */
15510 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15511 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15512 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15513 {
15514 _bfd_error_handler
15515 /* xgettext:c-format */
15516 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15517 ibfd,
15518 elf_mips_abi_name (ibfd),
15519 elf_mips_abi_name (obfd));
15520 ok = false;
15521 }
15522 new_flags &= ~EF_MIPS_ABI;
15523 old_flags &= ~EF_MIPS_ABI;
15524 }
15525
15526 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15527 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15528 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15529 {
15530 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15531 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15532 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15533 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15534 int micro_mis = old_m16 && new_micro;
15535 int m16_mis = old_micro && new_m16;
15536
15537 if (m16_mis || micro_mis)
15538 {
15539 _bfd_error_handler
15540 /* xgettext:c-format */
15541 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15542 ibfd,
15543 m16_mis ? "MIPS16" : "microMIPS",
15544 m16_mis ? "microMIPS" : "MIPS16");
15545 ok = false;
15546 }
15547
15548 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15549
15550 new_flags &= ~ EF_MIPS_ARCH_ASE;
15551 old_flags &= ~ EF_MIPS_ARCH_ASE;
15552 }
15553
15554 /* Compare NaN encodings. */
15555 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15556 {
15557 /* xgettext:c-format */
15558 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15559 ibfd,
15560 (new_flags & EF_MIPS_NAN2008
15561 ? "-mnan=2008" : "-mnan=legacy"),
15562 (old_flags & EF_MIPS_NAN2008
15563 ? "-mnan=2008" : "-mnan=legacy"));
15564 ok = false;
15565 new_flags &= ~EF_MIPS_NAN2008;
15566 old_flags &= ~EF_MIPS_NAN2008;
15567 }
15568
15569 /* Compare FP64 state. */
15570 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15571 {
15572 /* xgettext:c-format */
15573 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15574 ibfd,
15575 (new_flags & EF_MIPS_FP64
15576 ? "-mfp64" : "-mfp32"),
15577 (old_flags & EF_MIPS_FP64
15578 ? "-mfp64" : "-mfp32"));
15579 ok = false;
15580 new_flags &= ~EF_MIPS_FP64;
15581 old_flags &= ~EF_MIPS_FP64;
15582 }
15583
15584 /* Warn about any other mismatches */
15585 if (new_flags != old_flags)
15586 {
15587 /* xgettext:c-format */
15588 _bfd_error_handler
15589 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15590 "(%#x)"),
15591 ibfd, new_flags, old_flags);
15592 ok = false;
15593 }
15594
15595 return ok;
15596 }
15597
15598 /* Merge object attributes from IBFD into OBFD. Raise an error if
15599 there are conflicting attributes. */
15600 static bool
15601 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15602 {
15603 bfd *obfd = info->output_bfd;
15604 obj_attribute *in_attr;
15605 obj_attribute *out_attr;
15606 bfd *abi_fp_bfd;
15607 bfd *abi_msa_bfd;
15608
15609 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15610 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15611 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15612 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15613
15614 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15615 if (!abi_msa_bfd
15616 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15617 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15618
15619 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15620 {
15621 /* This is the first object. Copy the attributes. */
15622 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15623
15624 /* Use the Tag_null value to indicate the attributes have been
15625 initialized. */
15626 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15627
15628 return true;
15629 }
15630
15631 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15632 non-conflicting ones. */
15633 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15634 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15635 {
15636 int out_fp, in_fp;
15637
15638 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15639 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15640 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15641 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15642 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15643 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15644 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15645 || in_fp == Val_GNU_MIPS_ABI_FP_64
15646 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15647 {
15648 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15649 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15650 }
15651 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15652 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15653 || out_fp == Val_GNU_MIPS_ABI_FP_64
15654 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15655 /* Keep the current setting. */;
15656 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15657 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15658 {
15659 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15660 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15661 }
15662 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15663 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15664 /* Keep the current setting. */;
15665 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15666 {
15667 const char *out_string, *in_string;
15668
15669 out_string = _bfd_mips_fp_abi_string (out_fp);
15670 in_string = _bfd_mips_fp_abi_string (in_fp);
15671 /* First warn about cases involving unrecognised ABIs. */
15672 if (!out_string && !in_string)
15673 /* xgettext:c-format */
15674 _bfd_error_handler
15675 (_("warning: %pB uses unknown floating point ABI %d "
15676 "(set by %pB), %pB uses unknown floating point ABI %d"),
15677 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15678 else if (!out_string)
15679 _bfd_error_handler
15680 /* xgettext:c-format */
15681 (_("warning: %pB uses unknown floating point ABI %d "
15682 "(set by %pB), %pB uses %s"),
15683 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15684 else if (!in_string)
15685 _bfd_error_handler
15686 /* xgettext:c-format */
15687 (_("warning: %pB uses %s (set by %pB), "
15688 "%pB uses unknown floating point ABI %d"),
15689 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15690 else
15691 {
15692 /* If one of the bfds is soft-float, the other must be
15693 hard-float. The exact choice of hard-float ABI isn't
15694 really relevant to the error message. */
15695 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15696 out_string = "-mhard-float";
15697 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15698 in_string = "-mhard-float";
15699 _bfd_error_handler
15700 /* xgettext:c-format */
15701 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15702 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15703 }
15704 }
15705 }
15706
15707 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15708 non-conflicting ones. */
15709 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15710 {
15711 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15712 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15713 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15714 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15715 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15716 {
15717 case Val_GNU_MIPS_ABI_MSA_128:
15718 _bfd_error_handler
15719 /* xgettext:c-format */
15720 (_("warning: %pB uses %s (set by %pB), "
15721 "%pB uses unknown MSA ABI %d"),
15722 obfd, "-mmsa", abi_msa_bfd,
15723 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15724 break;
15725
15726 default:
15727 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15728 {
15729 case Val_GNU_MIPS_ABI_MSA_128:
15730 _bfd_error_handler
15731 /* xgettext:c-format */
15732 (_("warning: %pB uses unknown MSA ABI %d "
15733 "(set by %pB), %pB uses %s"),
15734 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15735 abi_msa_bfd, ibfd, "-mmsa");
15736 break;
15737
15738 default:
15739 _bfd_error_handler
15740 /* xgettext:c-format */
15741 (_("warning: %pB uses unknown MSA ABI %d "
15742 "(set by %pB), %pB uses unknown MSA ABI %d"),
15743 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15744 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15745 break;
15746 }
15747 }
15748 }
15749
15750 /* Merge Tag_compatibility attributes and any common GNU ones. */
15751 return _bfd_elf_merge_object_attributes (ibfd, info);
15752 }
15753
15754 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15755 there are conflicting settings. */
15756
15757 static bool
15758 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15759 {
15760 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15761 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15762 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15763
15764 /* Update the output abiflags fp_abi using the computed fp_abi. */
15765 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15766
15767 #define max(a, b) ((a) > (b) ? (a) : (b))
15768 /* Merge abiflags. */
15769 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15770 in_tdata->abiflags.isa_level);
15771 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15772 in_tdata->abiflags.isa_rev);
15773 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15774 in_tdata->abiflags.gpr_size);
15775 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15776 in_tdata->abiflags.cpr1_size);
15777 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15778 in_tdata->abiflags.cpr2_size);
15779 #undef max
15780 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15781 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15782
15783 return true;
15784 }
15785
15786 /* Merge backend specific data from an object file to the output
15787 object file when linking. */
15788
15789 bool
15790 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15791 {
15792 bfd *obfd = info->output_bfd;
15793 struct mips_elf_obj_tdata *out_tdata;
15794 struct mips_elf_obj_tdata *in_tdata;
15795 bool null_input_bfd = true;
15796 asection *sec;
15797 bool ok;
15798
15799 /* Check if we have the same endianness. */
15800 if (! _bfd_generic_verify_endian_match (ibfd, info))
15801 {
15802 _bfd_error_handler
15803 (_("%pB: endianness incompatible with that of the selected emulation"),
15804 ibfd);
15805 return false;
15806 }
15807
15808 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15809 return true;
15810
15811 in_tdata = mips_elf_tdata (ibfd);
15812 out_tdata = mips_elf_tdata (obfd);
15813
15814 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15815 {
15816 _bfd_error_handler
15817 (_("%pB: ABI is incompatible with that of the selected emulation"),
15818 ibfd);
15819 return false;
15820 }
15821
15822 /* Check to see if the input BFD actually contains any sections. If not,
15823 then it has no attributes, and its flags may not have been initialized
15824 either, but it cannot actually cause any incompatibility. */
15825 /* FIXME: This excludes any input shared library from consideration. */
15826 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15827 {
15828 /* Ignore synthetic sections and empty .text, .data and .bss sections
15829 which are automatically generated by gas. Also ignore fake
15830 (s)common sections, since merely defining a common symbol does
15831 not affect compatibility. */
15832 if ((sec->flags & SEC_IS_COMMON) == 0
15833 && strcmp (sec->name, ".reginfo")
15834 && strcmp (sec->name, ".mdebug")
15835 && (sec->size != 0
15836 || (strcmp (sec->name, ".text")
15837 && strcmp (sec->name, ".data")
15838 && strcmp (sec->name, ".bss"))))
15839 {
15840 null_input_bfd = false;
15841 break;
15842 }
15843 }
15844 if (null_input_bfd)
15845 return true;
15846
15847 /* Populate abiflags using existing information. */
15848 if (in_tdata->abiflags_valid)
15849 {
15850 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15851 Elf_Internal_ABIFlags_v0 in_abiflags;
15852 Elf_Internal_ABIFlags_v0 abiflags;
15853
15854 /* Set up the FP ABI attribute from the abiflags if it is not already
15855 set. */
15856 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15857 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15858
15859 infer_mips_abiflags (ibfd, &abiflags);
15860 in_abiflags = in_tdata->abiflags;
15861
15862 /* It is not possible to infer the correct ISA revision
15863 for R3 or R5 so drop down to R2 for the checks. */
15864 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15865 in_abiflags.isa_rev = 2;
15866
15867 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15868 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15869 _bfd_error_handler
15870 (_("%pB: warning: inconsistent ISA between e_flags and "
15871 ".MIPS.abiflags"), ibfd);
15872 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15873 && in_abiflags.fp_abi != abiflags.fp_abi)
15874 _bfd_error_handler
15875 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15876 ".MIPS.abiflags"), ibfd);
15877 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15878 _bfd_error_handler
15879 (_("%pB: warning: inconsistent ASEs between e_flags and "
15880 ".MIPS.abiflags"), ibfd);
15881 /* The isa_ext is allowed to be an extension of what can be inferred
15882 from e_flags. */
15883 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15884 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15885 _bfd_error_handler
15886 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15887 ".MIPS.abiflags"), ibfd);
15888 if (in_abiflags.flags2 != 0)
15889 _bfd_error_handler
15890 (_("%pB: warning: unexpected flag in the flags2 field of "
15891 ".MIPS.abiflags (0x%lx)"), ibfd,
15892 in_abiflags.flags2);
15893 }
15894 else
15895 {
15896 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15897 in_tdata->abiflags_valid = true;
15898 }
15899
15900 if (!out_tdata->abiflags_valid)
15901 {
15902 /* Copy input abiflags if output abiflags are not already valid. */
15903 out_tdata->abiflags = in_tdata->abiflags;
15904 out_tdata->abiflags_valid = true;
15905 }
15906
15907 if (! elf_flags_init (obfd))
15908 {
15909 elf_flags_init (obfd) = true;
15910 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15911 elf_elfheader (obfd)->e_ident[EI_CLASS]
15912 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15913
15914 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15915 && (bfd_get_arch_info (obfd)->the_default
15916 || mips_mach_extends_p (bfd_get_mach (obfd),
15917 bfd_get_mach (ibfd))))
15918 {
15919 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15920 bfd_get_mach (ibfd)))
15921 return false;
15922
15923 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15924 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15925 }
15926
15927 ok = true;
15928 }
15929 else
15930 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15931
15932 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15933
15934 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15935
15936 if (!ok)
15937 {
15938 bfd_set_error (bfd_error_bad_value);
15939 return false;
15940 }
15941
15942 return true;
15943 }
15944
15945 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15946
15947 bool
15948 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15949 {
15950 BFD_ASSERT (!elf_flags_init (abfd)
15951 || elf_elfheader (abfd)->e_flags == flags);
15952
15953 elf_elfheader (abfd)->e_flags = flags;
15954 elf_flags_init (abfd) = true;
15955 return true;
15956 }
15957
15958 char *
15959 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15960 {
15961 switch (dtag)
15962 {
15963 default: return "";
15964 case DT_MIPS_RLD_VERSION:
15965 return "MIPS_RLD_VERSION";
15966 case DT_MIPS_TIME_STAMP:
15967 return "MIPS_TIME_STAMP";
15968 case DT_MIPS_ICHECKSUM:
15969 return "MIPS_ICHECKSUM";
15970 case DT_MIPS_IVERSION:
15971 return "MIPS_IVERSION";
15972 case DT_MIPS_FLAGS:
15973 return "MIPS_FLAGS";
15974 case DT_MIPS_BASE_ADDRESS:
15975 return "MIPS_BASE_ADDRESS";
15976 case DT_MIPS_MSYM:
15977 return "MIPS_MSYM";
15978 case DT_MIPS_CONFLICT:
15979 return "MIPS_CONFLICT";
15980 case DT_MIPS_LIBLIST:
15981 return "MIPS_LIBLIST";
15982 case DT_MIPS_LOCAL_GOTNO:
15983 return "MIPS_LOCAL_GOTNO";
15984 case DT_MIPS_CONFLICTNO:
15985 return "MIPS_CONFLICTNO";
15986 case DT_MIPS_LIBLISTNO:
15987 return "MIPS_LIBLISTNO";
15988 case DT_MIPS_SYMTABNO:
15989 return "MIPS_SYMTABNO";
15990 case DT_MIPS_UNREFEXTNO:
15991 return "MIPS_UNREFEXTNO";
15992 case DT_MIPS_GOTSYM:
15993 return "MIPS_GOTSYM";
15994 case DT_MIPS_HIPAGENO:
15995 return "MIPS_HIPAGENO";
15996 case DT_MIPS_RLD_MAP:
15997 return "MIPS_RLD_MAP";
15998 case DT_MIPS_RLD_MAP_REL:
15999 return "MIPS_RLD_MAP_REL";
16000 case DT_MIPS_DELTA_CLASS:
16001 return "MIPS_DELTA_CLASS";
16002 case DT_MIPS_DELTA_CLASS_NO:
16003 return "MIPS_DELTA_CLASS_NO";
16004 case DT_MIPS_DELTA_INSTANCE:
16005 return "MIPS_DELTA_INSTANCE";
16006 case DT_MIPS_DELTA_INSTANCE_NO:
16007 return "MIPS_DELTA_INSTANCE_NO";
16008 case DT_MIPS_DELTA_RELOC:
16009 return "MIPS_DELTA_RELOC";
16010 case DT_MIPS_DELTA_RELOC_NO:
16011 return "MIPS_DELTA_RELOC_NO";
16012 case DT_MIPS_DELTA_SYM:
16013 return "MIPS_DELTA_SYM";
16014 case DT_MIPS_DELTA_SYM_NO:
16015 return "MIPS_DELTA_SYM_NO";
16016 case DT_MIPS_DELTA_CLASSSYM:
16017 return "MIPS_DELTA_CLASSSYM";
16018 case DT_MIPS_DELTA_CLASSSYM_NO:
16019 return "MIPS_DELTA_CLASSSYM_NO";
16020 case DT_MIPS_CXX_FLAGS:
16021 return "MIPS_CXX_FLAGS";
16022 case DT_MIPS_PIXIE_INIT:
16023 return "MIPS_PIXIE_INIT";
16024 case DT_MIPS_SYMBOL_LIB:
16025 return "MIPS_SYMBOL_LIB";
16026 case DT_MIPS_LOCALPAGE_GOTIDX:
16027 return "MIPS_LOCALPAGE_GOTIDX";
16028 case DT_MIPS_LOCAL_GOTIDX:
16029 return "MIPS_LOCAL_GOTIDX";
16030 case DT_MIPS_HIDDEN_GOTIDX:
16031 return "MIPS_HIDDEN_GOTIDX";
16032 case DT_MIPS_PROTECTED_GOTIDX:
16033 return "MIPS_PROTECTED_GOT_IDX";
16034 case DT_MIPS_OPTIONS:
16035 return "MIPS_OPTIONS";
16036 case DT_MIPS_INTERFACE:
16037 return "MIPS_INTERFACE";
16038 case DT_MIPS_DYNSTR_ALIGN:
16039 return "DT_MIPS_DYNSTR_ALIGN";
16040 case DT_MIPS_INTERFACE_SIZE:
16041 return "DT_MIPS_INTERFACE_SIZE";
16042 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
16043 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
16044 case DT_MIPS_PERF_SUFFIX:
16045 return "DT_MIPS_PERF_SUFFIX";
16046 case DT_MIPS_COMPACT_SIZE:
16047 return "DT_MIPS_COMPACT_SIZE";
16048 case DT_MIPS_GP_VALUE:
16049 return "DT_MIPS_GP_VALUE";
16050 case DT_MIPS_AUX_DYNAMIC:
16051 return "DT_MIPS_AUX_DYNAMIC";
16052 case DT_MIPS_PLTGOT:
16053 return "DT_MIPS_PLTGOT";
16054 case DT_MIPS_RWPLT:
16055 return "DT_MIPS_RWPLT";
16056 case DT_MIPS_XHASH:
16057 return "DT_MIPS_XHASH";
16058 }
16059 }
16060
16061 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
16062 not known. */
16063
16064 const char *
16065 _bfd_mips_fp_abi_string (int fp)
16066 {
16067 switch (fp)
16068 {
16069 /* These strings aren't translated because they're simply
16070 option lists. */
16071 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16072 return "-mdouble-float";
16073
16074 case Val_GNU_MIPS_ABI_FP_SINGLE:
16075 return "-msingle-float";
16076
16077 case Val_GNU_MIPS_ABI_FP_SOFT:
16078 return "-msoft-float";
16079
16080 case Val_GNU_MIPS_ABI_FP_OLD_64:
16081 return _("-mips32r2 -mfp64 (12 callee-saved)");
16082
16083 case Val_GNU_MIPS_ABI_FP_XX:
16084 return "-mfpxx";
16085
16086 case Val_GNU_MIPS_ABI_FP_64:
16087 return "-mgp32 -mfp64";
16088
16089 case Val_GNU_MIPS_ABI_FP_64A:
16090 return "-mgp32 -mfp64 -mno-odd-spreg";
16091
16092 default:
16093 return 0;
16094 }
16095 }
16096
16097 static void
16098 print_mips_ases (FILE *file, unsigned int mask)
16099 {
16100 if (mask & AFL_ASE_DSP)
16101 fputs ("\n\tDSP ASE", file);
16102 if (mask & AFL_ASE_DSPR2)
16103 fputs ("\n\tDSP R2 ASE", file);
16104 if (mask & AFL_ASE_DSPR3)
16105 fputs ("\n\tDSP R3 ASE", file);
16106 if (mask & AFL_ASE_EVA)
16107 fputs ("\n\tEnhanced VA Scheme", file);
16108 if (mask & AFL_ASE_MCU)
16109 fputs ("\n\tMCU (MicroController) ASE", file);
16110 if (mask & AFL_ASE_MDMX)
16111 fputs ("\n\tMDMX ASE", file);
16112 if (mask & AFL_ASE_MIPS3D)
16113 fputs ("\n\tMIPS-3D ASE", file);
16114 if (mask & AFL_ASE_MT)
16115 fputs ("\n\tMT ASE", file);
16116 if (mask & AFL_ASE_SMARTMIPS)
16117 fputs ("\n\tSmartMIPS ASE", file);
16118 if (mask & AFL_ASE_VIRT)
16119 fputs ("\n\tVZ ASE", file);
16120 if (mask & AFL_ASE_MSA)
16121 fputs ("\n\tMSA ASE", file);
16122 if (mask & AFL_ASE_MIPS16)
16123 fputs ("\n\tMIPS16 ASE", file);
16124 if (mask & AFL_ASE_MICROMIPS)
16125 fputs ("\n\tMICROMIPS ASE", file);
16126 if (mask & AFL_ASE_XPA)
16127 fputs ("\n\tXPA ASE", file);
16128 if (mask & AFL_ASE_MIPS16E2)
16129 fputs ("\n\tMIPS16e2 ASE", file);
16130 if (mask & AFL_ASE_CRC)
16131 fputs ("\n\tCRC ASE", file);
16132 if (mask & AFL_ASE_GINV)
16133 fputs ("\n\tGINV ASE", file);
16134 if (mask & AFL_ASE_LOONGSON_MMI)
16135 fputs ("\n\tLoongson MMI ASE", file);
16136 if (mask & AFL_ASE_LOONGSON_CAM)
16137 fputs ("\n\tLoongson CAM ASE", file);
16138 if (mask & AFL_ASE_LOONGSON_EXT)
16139 fputs ("\n\tLoongson EXT ASE", file);
16140 if (mask & AFL_ASE_LOONGSON_EXT2)
16141 fputs ("\n\tLoongson EXT2 ASE", file);
16142 if (mask == 0)
16143 fprintf (file, "\n\t%s", _("None"));
16144 else if ((mask & ~AFL_ASE_MASK) != 0)
16145 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16146 }
16147
16148 static void
16149 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16150 {
16151 switch (isa_ext)
16152 {
16153 case 0:
16154 fputs (_("None"), file);
16155 break;
16156 case AFL_EXT_XLR:
16157 fputs ("RMI XLR", file);
16158 break;
16159 case AFL_EXT_OCTEON3:
16160 fputs ("Cavium Networks Octeon3", file);
16161 break;
16162 case AFL_EXT_OCTEON2:
16163 fputs ("Cavium Networks Octeon2", file);
16164 break;
16165 case AFL_EXT_OCTEONP:
16166 fputs ("Cavium Networks OcteonP", file);
16167 break;
16168 case AFL_EXT_OCTEON:
16169 fputs ("Cavium Networks Octeon", file);
16170 break;
16171 case AFL_EXT_5900:
16172 fputs ("Toshiba R5900", file);
16173 break;
16174 case AFL_EXT_4650:
16175 fputs ("MIPS R4650", file);
16176 break;
16177 case AFL_EXT_4010:
16178 fputs ("LSI R4010", file);
16179 break;
16180 case AFL_EXT_4100:
16181 fputs ("NEC VR4100", file);
16182 break;
16183 case AFL_EXT_3900:
16184 fputs ("Toshiba R3900", file);
16185 break;
16186 case AFL_EXT_10000:
16187 fputs ("MIPS R10000", file);
16188 break;
16189 case AFL_EXT_SB1:
16190 fputs ("Broadcom SB-1", file);
16191 break;
16192 case AFL_EXT_4111:
16193 fputs ("NEC VR4111/VR4181", file);
16194 break;
16195 case AFL_EXT_4120:
16196 fputs ("NEC VR4120", file);
16197 break;
16198 case AFL_EXT_5400:
16199 fputs ("NEC VR5400", file);
16200 break;
16201 case AFL_EXT_5500:
16202 fputs ("NEC VR5500", file);
16203 break;
16204 case AFL_EXT_LOONGSON_2E:
16205 fputs ("ST Microelectronics Loongson 2E", file);
16206 break;
16207 case AFL_EXT_LOONGSON_2F:
16208 fputs ("ST Microelectronics Loongson 2F", file);
16209 break;
16210 case AFL_EXT_INTERAPTIV_MR2:
16211 fputs ("Imagination interAptiv MR2", file);
16212 break;
16213 default:
16214 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
16215 break;
16216 }
16217 }
16218
16219 static void
16220 print_mips_fp_abi_value (FILE *file, int val)
16221 {
16222 switch (val)
16223 {
16224 case Val_GNU_MIPS_ABI_FP_ANY:
16225 fprintf (file, _("Hard or soft float\n"));
16226 break;
16227 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16228 fprintf (file, _("Hard float (double precision)\n"));
16229 break;
16230 case Val_GNU_MIPS_ABI_FP_SINGLE:
16231 fprintf (file, _("Hard float (single precision)\n"));
16232 break;
16233 case Val_GNU_MIPS_ABI_FP_SOFT:
16234 fprintf (file, _("Soft float\n"));
16235 break;
16236 case Val_GNU_MIPS_ABI_FP_OLD_64:
16237 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16238 break;
16239 case Val_GNU_MIPS_ABI_FP_XX:
16240 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16241 break;
16242 case Val_GNU_MIPS_ABI_FP_64:
16243 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16244 break;
16245 case Val_GNU_MIPS_ABI_FP_64A:
16246 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16247 break;
16248 default:
16249 fprintf (file, "??? (%d)\n", val);
16250 break;
16251 }
16252 }
16253
16254 static int
16255 get_mips_reg_size (int reg_size)
16256 {
16257 return (reg_size == AFL_REG_NONE) ? 0
16258 : (reg_size == AFL_REG_32) ? 32
16259 : (reg_size == AFL_REG_64) ? 64
16260 : (reg_size == AFL_REG_128) ? 128
16261 : -1;
16262 }
16263
16264 bool
16265 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16266 {
16267 FILE *file = ptr;
16268
16269 BFD_ASSERT (abfd != NULL && ptr != NULL);
16270
16271 /* Print normal ELF private data. */
16272 _bfd_elf_print_private_bfd_data (abfd, ptr);
16273
16274 /* xgettext:c-format */
16275 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16276
16277 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16278 fprintf (file, _(" [abi=O32]"));
16279 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16280 fprintf (file, _(" [abi=O64]"));
16281 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16282 fprintf (file, _(" [abi=EABI32]"));
16283 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16284 fprintf (file, _(" [abi=EABI64]"));
16285 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16286 fprintf (file, _(" [abi unknown]"));
16287 else if (ABI_N32_P (abfd))
16288 fprintf (file, _(" [abi=N32]"));
16289 else if (ABI_64_P (abfd))
16290 fprintf (file, _(" [abi=64]"));
16291 else
16292 fprintf (file, _(" [no abi set]"));
16293
16294 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16295 fprintf (file, " [mips1]");
16296 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16297 fprintf (file, " [mips2]");
16298 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16299 fprintf (file, " [mips3]");
16300 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16301 fprintf (file, " [mips4]");
16302 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16303 fprintf (file, " [mips5]");
16304 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16305 fprintf (file, " [mips32]");
16306 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16307 fprintf (file, " [mips64]");
16308 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16309 fprintf (file, " [mips32r2]");
16310 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16311 fprintf (file, " [mips64r2]");
16312 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16313 fprintf (file, " [mips32r6]");
16314 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16315 fprintf (file, " [mips64r6]");
16316 else
16317 fprintf (file, _(" [unknown ISA]"));
16318
16319 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16320 fprintf (file, " [mdmx]");
16321
16322 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16323 fprintf (file, " [mips16]");
16324
16325 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16326 fprintf (file, " [micromips]");
16327
16328 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16329 fprintf (file, " [nan2008]");
16330
16331 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16332 fprintf (file, " [old fp64]");
16333
16334 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16335 fprintf (file, " [32bitmode]");
16336 else
16337 fprintf (file, _(" [not 32bitmode]"));
16338
16339 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16340 fprintf (file, " [noreorder]");
16341
16342 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16343 fprintf (file, " [PIC]");
16344
16345 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16346 fprintf (file, " [CPIC]");
16347
16348 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16349 fprintf (file, " [XGOT]");
16350
16351 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16352 fprintf (file, " [UCODE]");
16353
16354 fputc ('\n', file);
16355
16356 if (mips_elf_tdata (abfd)->abiflags_valid)
16357 {
16358 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16359 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16360 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16361 if (abiflags->isa_rev > 1)
16362 fprintf (file, "r%d", abiflags->isa_rev);
16363 fprintf (file, "\nGPR size: %d",
16364 get_mips_reg_size (abiflags->gpr_size));
16365 fprintf (file, "\nCPR1 size: %d",
16366 get_mips_reg_size (abiflags->cpr1_size));
16367 fprintf (file, "\nCPR2 size: %d",
16368 get_mips_reg_size (abiflags->cpr2_size));
16369 fputs ("\nFP ABI: ", file);
16370 print_mips_fp_abi_value (file, abiflags->fp_abi);
16371 fputs ("ISA Extension: ", file);
16372 print_mips_isa_ext (file, abiflags->isa_ext);
16373 fputs ("\nASEs:", file);
16374 print_mips_ases (file, abiflags->ases);
16375 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16376 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16377 fputc ('\n', file);
16378 }
16379
16380 return true;
16381 }
16382
16383 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16384 {
16385 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16386 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16387 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16388 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16389 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16390 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16391 { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH, SHF_ALLOC },
16392 { NULL, 0, 0, 0, 0 }
16393 };
16394
16395 /* Merge non visibility st_other attributes. Ensure that the
16396 STO_OPTIONAL flag is copied into h->other, even if this is not a
16397 definiton of the symbol. */
16398 void
16399 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16400 unsigned int st_other,
16401 bool definition,
16402 bool dynamic ATTRIBUTE_UNUSED)
16403 {
16404 if ((st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16405 {
16406 unsigned char other;
16407
16408 other = (definition ? st_other : h->other);
16409 other &= ~ELF_ST_VISIBILITY (-1);
16410 h->other = other | ELF_ST_VISIBILITY (h->other);
16411 }
16412
16413 if (!definition
16414 && ELF_MIPS_IS_OPTIONAL (st_other))
16415 h->other |= STO_OPTIONAL;
16416 }
16417
16418 /* Decide whether an undefined symbol is special and can be ignored.
16419 This is the case for OPTIONAL symbols on IRIX. */
16420 bool
16421 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16422 {
16423 return ELF_MIPS_IS_OPTIONAL (h->other) != 0;
16424 }
16425
16426 bool
16427 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16428 {
16429 return (sym->st_shndx == SHN_COMMON
16430 || sym->st_shndx == SHN_MIPS_ACOMMON
16431 || sym->st_shndx == SHN_MIPS_SCOMMON);
16432 }
16433
16434 /* Return address for Ith PLT stub in section PLT, for relocation REL
16435 or (bfd_vma) -1 if it should not be included. */
16436
16437 bfd_vma
16438 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16439 const arelent *rel ATTRIBUTE_UNUSED)
16440 {
16441 return (plt->vma
16442 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16443 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16444 }
16445
16446 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16447 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16448 and .got.plt and also the slots may be of a different size each we walk
16449 the PLT manually fetching instructions and matching them against known
16450 patterns. To make things easier standard MIPS slots, if any, always come
16451 first. As we don't create proper ELF symbols we use the UDATA.I member
16452 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16453 with the ST_OTHER member of the ELF symbol. */
16454
16455 long
16456 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16457 long symcount ATTRIBUTE_UNUSED,
16458 asymbol **syms ATTRIBUTE_UNUSED,
16459 long dynsymcount, asymbol **dynsyms,
16460 asymbol **ret)
16461 {
16462 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16463 static const char microsuffix[] = "@micromipsplt";
16464 static const char m16suffix[] = "@mips16plt";
16465 static const char mipssuffix[] = "@plt";
16466
16467 bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool);
16468 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16469 bool micromips_p = MICROMIPS_P (abfd);
16470 Elf_Internal_Shdr *hdr;
16471 bfd_byte *plt_data;
16472 bfd_vma plt_offset;
16473 unsigned int other;
16474 bfd_vma entry_size;
16475 bfd_vma plt0_size;
16476 asection *relplt;
16477 bfd_vma opcode;
16478 asection *plt;
16479 asymbol *send;
16480 size_t size;
16481 char *names;
16482 long counti;
16483 arelent *p;
16484 asymbol *s;
16485 char *nend;
16486 long count;
16487 long pi;
16488 long i;
16489 long n;
16490
16491 *ret = NULL;
16492
16493 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16494 return 0;
16495
16496 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16497 if (relplt == NULL)
16498 return 0;
16499
16500 hdr = &elf_section_data (relplt)->this_hdr;
16501 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16502 return 0;
16503
16504 plt = bfd_get_section_by_name (abfd, ".plt");
16505 if (plt == NULL)
16506 return 0;
16507
16508 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16509 if (!(*slurp_relocs) (abfd, relplt, dynsyms, true))
16510 return -1;
16511 p = relplt->relocation;
16512
16513 /* Calculating the exact amount of space required for symbols would
16514 require two passes over the PLT, so just pessimise assuming two
16515 PLT slots per relocation. */
16516 count = relplt->size / hdr->sh_entsize;
16517 counti = count * bed->s->int_rels_per_ext_rel;
16518 size = 2 * count * sizeof (asymbol);
16519 size += count * (sizeof (mipssuffix) +
16520 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16521 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16522 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16523
16524 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16525 size += sizeof (asymbol) + sizeof (pltname);
16526
16527 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16528 return -1;
16529
16530 if (plt->size < 16)
16531 return -1;
16532
16533 s = *ret = bfd_malloc (size);
16534 if (s == NULL)
16535 return -1;
16536 send = s + 2 * count + 1;
16537
16538 names = (char *) send;
16539 nend = (char *) s + size;
16540 n = 0;
16541
16542 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16543 if (opcode == 0x3302fffe)
16544 {
16545 if (!micromips_p)
16546 return -1;
16547 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16548 other = STO_MICROMIPS;
16549 }
16550 else if (opcode == 0x0398c1d0)
16551 {
16552 if (!micromips_p)
16553 return -1;
16554 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16555 other = STO_MICROMIPS;
16556 }
16557 else
16558 {
16559 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16560 other = 0;
16561 }
16562
16563 s->the_bfd = abfd;
16564 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16565 s->section = plt;
16566 s->value = 0;
16567 s->name = names;
16568 s->udata.i = other;
16569 memcpy (names, pltname, sizeof (pltname));
16570 names += sizeof (pltname);
16571 ++s, ++n;
16572
16573 pi = 0;
16574 for (plt_offset = plt0_size;
16575 plt_offset + 8 <= plt->size && s < send;
16576 plt_offset += entry_size)
16577 {
16578 bfd_vma gotplt_addr;
16579 const char *suffix;
16580 bfd_vma gotplt_hi;
16581 bfd_vma gotplt_lo;
16582 size_t suffixlen;
16583
16584 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16585
16586 /* Check if the second word matches the expected MIPS16 instruction. */
16587 if (opcode == 0x651aeb00)
16588 {
16589 if (micromips_p)
16590 return -1;
16591 /* Truncated table??? */
16592 if (plt_offset + 16 > plt->size)
16593 break;
16594 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16595 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16596 suffixlen = sizeof (m16suffix);
16597 suffix = m16suffix;
16598 other = STO_MIPS16;
16599 }
16600 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16601 else if (opcode == 0xff220000)
16602 {
16603 if (!micromips_p)
16604 return -1;
16605 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16606 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16607 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16608 gotplt_lo <<= 2;
16609 gotplt_addr = gotplt_hi + gotplt_lo;
16610 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16611 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16612 suffixlen = sizeof (microsuffix);
16613 suffix = microsuffix;
16614 other = STO_MICROMIPS;
16615 }
16616 /* Likewise the expected microMIPS instruction (insn32 mode). */
16617 else if ((opcode & 0xffff0000) == 0xff2f0000)
16618 {
16619 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16620 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16621 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16622 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16623 gotplt_addr = gotplt_hi + gotplt_lo;
16624 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16625 suffixlen = sizeof (microsuffix);
16626 suffix = microsuffix;
16627 other = STO_MICROMIPS;
16628 }
16629 /* Otherwise assume standard MIPS code. */
16630 else
16631 {
16632 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16633 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16634 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16635 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16636 gotplt_addr = gotplt_hi + gotplt_lo;
16637 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16638 suffixlen = sizeof (mipssuffix);
16639 suffix = mipssuffix;
16640 other = 0;
16641 }
16642 /* Truncated table??? */
16643 if (plt_offset + entry_size > plt->size)
16644 break;
16645
16646 for (i = 0;
16647 i < count && p[pi].address != gotplt_addr;
16648 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16649
16650 if (i < count)
16651 {
16652 size_t namelen;
16653 size_t len;
16654
16655 *s = **p[pi].sym_ptr_ptr;
16656 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16657 we are defining a symbol, ensure one of them is set. */
16658 if ((s->flags & BSF_LOCAL) == 0)
16659 s->flags |= BSF_GLOBAL;
16660 s->flags |= BSF_SYNTHETIC;
16661 s->section = plt;
16662 s->value = plt_offset;
16663 s->name = names;
16664 s->udata.i = other;
16665
16666 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16667 namelen = len + suffixlen;
16668 if (names + namelen > nend)
16669 break;
16670
16671 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16672 names += len;
16673 memcpy (names, suffix, suffixlen);
16674 names += suffixlen;
16675
16676 ++s, ++n;
16677 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16678 }
16679 }
16680
16681 free (plt_data);
16682
16683 return n;
16684 }
16685
16686 /* Return the ABI flags associated with ABFD if available. */
16687
16688 Elf_Internal_ABIFlags_v0 *
16689 bfd_mips_elf_get_abiflags (bfd *abfd)
16690 {
16691 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16692
16693 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16694 }
16695
16696 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16697 field. Taken from `libc-abis.h' generated at GNU libc build time.
16698 Using a MIPS_ prefix as other libc targets use different values. */
16699 enum
16700 {
16701 MIPS_LIBC_ABI_DEFAULT = 0,
16702 MIPS_LIBC_ABI_MIPS_PLT,
16703 MIPS_LIBC_ABI_UNIQUE,
16704 MIPS_LIBC_ABI_MIPS_O32_FP64,
16705 MIPS_LIBC_ABI_ABSOLUTE,
16706 MIPS_LIBC_ABI_XHASH,
16707 MIPS_LIBC_ABI_MAX
16708 };
16709
16710 bool
16711 _bfd_mips_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
16712 {
16713 struct mips_elf_link_hash_table *htab = NULL;
16714 Elf_Internal_Ehdr *i_ehdrp;
16715
16716 if (!_bfd_elf_init_file_header (abfd, link_info))
16717 return false;
16718
16719 i_ehdrp = elf_elfheader (abfd);
16720 if (link_info)
16721 {
16722 htab = mips_elf_hash_table (link_info);
16723 BFD_ASSERT (htab != NULL);
16724 }
16725
16726 if (htab != NULL
16727 && htab->use_plts_and_copy_relocs
16728 && htab->root.target_os != is_vxworks)
16729 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16730
16731 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16732 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16733 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16734
16735 /* Mark that we need support for absolute symbols in the dynamic loader. */
16736 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16737 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16738
16739 /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16740 if it is the only hash section that will be created. */
16741 if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash)
16742 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH;
16743 return true;
16744 }
16745
16746 int
16747 _bfd_mips_elf_compact_eh_encoding
16748 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16749 {
16750 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16751 }
16752
16753 /* Return the opcode for can't unwind. */
16754
16755 int
16756 _bfd_mips_elf_cant_unwind_opcode
16757 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16758 {
16759 return COMPACT_EH_CANT_UNWIND_OPCODE;
16760 }
16761
16762 /* Record a position XLAT_LOC in the xlat translation table, associated with
16763 the hash entry H. The entry in the translation table will later be
16764 populated with the real symbol dynindx. */
16765
16766 void
16767 _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h,
16768 bfd_vma xlat_loc)
16769 {
16770 struct mips_elf_link_hash_entry *hmips;
16771
16772 hmips = (struct mips_elf_link_hash_entry *) h;
16773 hmips->mipsxhash_loc = xlat_loc;
16774 }