2004-12-01 Paul Brook <paul@codesourcery.com>
[binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71 };
72
73 /* This structure is used to hold .got information when linking. */
74
75 struct mips_got_info
76 {
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94 };
95
96 /* Map an input bfd to a got in a multi-got link. */
97
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101 };
102
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106 struct mips_elf_got_per_bfd_arg
107 {
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128 };
129
130 /* Another structure used to pass arguments for got entries traversal. */
131
132 struct mips_elf_set_global_got_offset_arg
133 {
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138 };
139
140 struct _mips_elf_section_data
141 {
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148 };
149
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
152
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156 struct mips_elf_hash_sort_data
157 {
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary GOTs). */
167 long max_unref_got_dynindx;
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171 };
172
173 /* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176 struct mips_elf_link_hash_entry
177 {
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
189 bfd_boolean readonly_reloc;
190
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
195 bfd_boolean no_fn_stub;
196
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
200
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
203 bfd_boolean need_fn_stub;
204
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
208
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
212
213 /* Are we forced local? .*/
214 bfd_boolean forced_local;
215 };
216
217 /* MIPS ELF linker hash table. */
218
219 struct mips_elf_link_hash_table
220 {
221 struct elf_link_hash_table root;
222 #if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226 #endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
232 entry is set to the address of __rld_obj_head as in IRIX5. */
233 bfd_boolean use_rld_obj_head;
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
237 bfd_boolean mips16_stubs_seen;
238 };
239
240 /* Structure used to pass information to mips_elf_output_extsym. */
241
242 struct extsym_info
243 {
244 bfd *abfd;
245 struct bfd_link_info *info;
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
248 bfd_boolean failed;
249 };
250
251 /* The names of the runtime procedure table symbols used on IRIX5. */
252
253 static const char * const mips_elf_dynsym_rtproc_names[] =
254 {
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
259 };
260
261 /* These structures are used to generate the .compact_rel section on
262 IRIX5. */
263
264 typedef struct
265 {
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272 } Elf32_compact_rel;
273
274 typedef struct
275 {
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282 } Elf32_External_compact_rel;
283
284 typedef struct
285 {
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292 } Elf32_crinfo;
293
294 typedef struct
295 {
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301 } Elf32_crinfo2;
302
303 typedef struct
304 {
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308 } Elf32_External_crinfo;
309
310 typedef struct
311 {
312 bfd_byte info[4];
313 bfd_byte konst[4];
314 } Elf32_External_crinfo2;
315
316 /* These are the constants used to swap the bitfields in a crinfo. */
317
318 #define CRINFO_CTYPE (0x1)
319 #define CRINFO_CTYPE_SH (31)
320 #define CRINFO_RTYPE (0xf)
321 #define CRINFO_RTYPE_SH (27)
322 #define CRINFO_DIST2TO (0xff)
323 #define CRINFO_DIST2TO_SH (19)
324 #define CRINFO_RELVADDR (0x7ffff)
325 #define CRINFO_RELVADDR_SH (0)
326
327 /* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330 #define CRF_MIPS_LONG 1
331 #define CRF_MIPS_SHORT 0
332
333 /* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
335
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
341 */
342
343 #define CRT_MIPS_REL32 0xa
344 #define CRT_MIPS_WORD 0xb
345 #define CRT_MIPS_GPHI_LO 0xc
346 #define CRT_MIPS_JMPAD 0xd
347
348 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
352 \f
353 /* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
355
356 typedef struct runtime_pdr {
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
366 long reserved;
367 struct exception_info *exception_info;/* Pointer to exception array. */
368 } RPDR, *pRPDR;
369 #define cbRPDR sizeof (RPDR)
370 #define rpdNil ((pRPDR) 0)
371 \f
372 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
373 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
374 static void ecoff_swap_rpdr_out
375 (bfd *, const RPDR *, struct rpdr_ext *);
376 static bfd_boolean mips_elf_create_procedure_table
377 (void *, bfd *, struct bfd_link_info *, asection *,
378 struct ecoff_debug_info *);
379 static bfd_boolean mips_elf_check_mips16_stubs
380 (struct mips_elf_link_hash_entry *, void *);
381 static void bfd_mips_elf32_swap_gptab_in
382 (bfd *, const Elf32_External_gptab *, Elf32_gptab *);
383 static void bfd_mips_elf32_swap_gptab_out
384 (bfd *, const Elf32_gptab *, Elf32_External_gptab *);
385 static void bfd_elf32_swap_compact_rel_out
386 (bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *);
387 static void bfd_elf32_swap_crinfo_out
388 (bfd *, const Elf32_crinfo *, Elf32_External_crinfo *);
389 static int sort_dynamic_relocs
390 (const void *, const void *);
391 static int sort_dynamic_relocs_64
392 (const void *, const void *);
393 static bfd_boolean mips_elf_output_extsym
394 (struct mips_elf_link_hash_entry *, void *);
395 static int gptab_compare
396 (const void *, const void *);
397 static asection *mips_elf_rel_dyn_section
398 (bfd *, bfd_boolean);
399 static asection *mips_elf_got_section
400 (bfd *, bfd_boolean);
401 static struct mips_got_info *mips_elf_got_info
402 (bfd *, asection **);
403 static bfd_vma mips_elf_local_got_index
404 (bfd *, bfd *, struct bfd_link_info *, bfd_vma);
405 static bfd_vma mips_elf_global_got_index
406 (bfd *, bfd *, struct elf_link_hash_entry *);
407 static bfd_vma mips_elf_got_page
408 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *);
409 static bfd_vma mips_elf_got16_entry
410 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean);
411 static bfd_vma mips_elf_got_offset_from_index
412 (bfd *, bfd *, bfd *, bfd_vma);
413 static struct mips_got_entry *mips_elf_create_local_got_entry
414 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
415 static bfd_boolean mips_elf_sort_hash_table
416 (struct bfd_link_info *, unsigned long);
417 static bfd_boolean mips_elf_sort_hash_table_f
418 (struct mips_elf_link_hash_entry *, void *);
419 static bfd_boolean mips_elf_record_local_got_symbol
420 (bfd *, long, bfd_vma, struct mips_got_info *);
421 static bfd_boolean mips_elf_record_global_got_symbol
422 (struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
423 struct mips_got_info *);
424 static const Elf_Internal_Rela *mips_elf_next_relocation
425 (bfd *, unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *);
426 static bfd_boolean mips_elf_local_relocation_p
427 (bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean);
428 static bfd_boolean mips_elf_overflow_p
429 (bfd_vma, int);
430 static bfd_vma mips_elf_high
431 (bfd_vma);
432 static bfd_vma mips_elf_higher
433 (bfd_vma);
434 static bfd_vma mips_elf_highest
435 (bfd_vma);
436 static bfd_boolean mips_elf_create_compact_rel_section
437 (bfd *, struct bfd_link_info *);
438 static bfd_boolean mips_elf_create_got_section
439 (bfd *, struct bfd_link_info *, bfd_boolean);
440 static bfd_reloc_status_type mips_elf_calculate_relocation
441 (bfd *, bfd *, asection *, struct bfd_link_info *,
442 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
443 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
444 bfd_boolean *, bfd_boolean);
445 static bfd_vma mips_elf_obtain_contents
446 (reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *);
447 static bfd_boolean mips_elf_perform_relocation
448 (struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *,
449 bfd_vma, bfd *, asection *, bfd_byte *, bfd_boolean);
450 static bfd_boolean mips_elf_stub_section_p
451 (bfd *, asection *);
452 static void mips_elf_allocate_dynamic_relocations
453 (bfd *, unsigned int);
454 static bfd_boolean mips_elf_create_dynamic_relocation
455 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
456 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
457 bfd_vma *, asection *);
458 static void mips_set_isa_flags
459 (bfd *);
460 static INLINE char *elf_mips_abi_name
461 (bfd *);
462 static void mips_elf_irix6_finish_dynamic_symbol
463 (bfd *, const char *, Elf_Internal_Sym *);
464 static bfd_boolean mips_mach_extends_p
465 (unsigned long, unsigned long);
466 static bfd_boolean mips_32bit_flags_p
467 (flagword);
468 static INLINE hashval_t mips_elf_hash_bfd_vma
469 (bfd_vma);
470 static hashval_t mips_elf_got_entry_hash
471 (const void *);
472 static int mips_elf_got_entry_eq
473 (const void *, const void *);
474
475 static bfd_boolean mips_elf_multi_got
476 (bfd *, struct bfd_link_info *, struct mips_got_info *,
477 asection *, bfd_size_type);
478 static hashval_t mips_elf_multi_got_entry_hash
479 (const void *);
480 static int mips_elf_multi_got_entry_eq
481 (const void *, const void *);
482 static hashval_t mips_elf_bfd2got_entry_hash
483 (const void *);
484 static int mips_elf_bfd2got_entry_eq
485 (const void *, const void *);
486 static int mips_elf_make_got_per_bfd
487 (void **, void *);
488 static int mips_elf_merge_gots
489 (void **, void *);
490 static int mips_elf_set_global_got_offset
491 (void **, void *);
492 static int mips_elf_set_no_stub
493 (void **, void *);
494 static int mips_elf_resolve_final_got_entry
495 (void **, void *);
496 static void mips_elf_resolve_final_got_entries
497 (struct mips_got_info *);
498 static bfd_vma mips_elf_adjust_gp
499 (bfd *, struct mips_got_info *, bfd *);
500 static struct mips_got_info *mips_elf_got_for_ibfd
501 (struct mips_got_info *, bfd *);
502
503 /* This will be used when we sort the dynamic relocation records. */
504 static bfd *reldyn_sorting_bfd;
505
506 /* Nonzero if ABFD is using the N32 ABI. */
507
508 #define ABI_N32_P(abfd) \
509 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
510
511 /* Nonzero if ABFD is using the N64 ABI. */
512 #define ABI_64_P(abfd) \
513 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
514
515 /* Nonzero if ABFD is using NewABI conventions. */
516 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
517
518 /* The IRIX compatibility level we are striving for. */
519 #define IRIX_COMPAT(abfd) \
520 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
521
522 /* Whether we are trying to be compatible with IRIX at all. */
523 #define SGI_COMPAT(abfd) \
524 (IRIX_COMPAT (abfd) != ict_none)
525
526 /* The name of the options section. */
527 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
528 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
529
530 /* The name of the stub section. */
531 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
532
533 /* The size of an external REL relocation. */
534 #define MIPS_ELF_REL_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->sizeof_rel)
536
537 /* The size of an external dynamic table entry. */
538 #define MIPS_ELF_DYN_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_dyn)
540
541 /* The size of a GOT entry. */
542 #define MIPS_ELF_GOT_SIZE(abfd) \
543 (get_elf_backend_data (abfd)->s->arch_size / 8)
544
545 /* The size of a symbol-table entry. */
546 #define MIPS_ELF_SYM_SIZE(abfd) \
547 (get_elf_backend_data (abfd)->s->sizeof_sym)
548
549 /* The default alignment for sections, as a power of two. */
550 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
551 (get_elf_backend_data (abfd)->s->log_file_align)
552
553 /* Get word-sized data. */
554 #define MIPS_ELF_GET_WORD(abfd, ptr) \
555 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
556
557 /* Put out word-sized data. */
558 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
559 (ABI_64_P (abfd) \
560 ? bfd_put_64 (abfd, val, ptr) \
561 : bfd_put_32 (abfd, val, ptr))
562
563 /* Add a dynamic symbol table-entry. */
564 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
565 _bfd_elf_add_dynamic_entry (info, tag, val)
566
567 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
568 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
569
570 /* Determine whether the internal relocation of index REL_IDX is REL
571 (zero) or RELA (non-zero). The assumption is that, if there are
572 two relocation sections for this section, one of them is REL and
573 the other is RELA. If the index of the relocation we're testing is
574 in range for the first relocation section, check that the external
575 relocation size is that for RELA. It is also assumed that, if
576 rel_idx is not in range for the first section, and this first
577 section contains REL relocs, then the relocation is in the second
578 section, that is RELA. */
579 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
580 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
581 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
582 > (bfd_vma)(rel_idx)) \
583 == (elf_section_data (sec)->rel_hdr.sh_entsize \
584 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
585 : sizeof (Elf32_External_Rela))))
586
587 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
588 from smaller values. Start with zero, widen, *then* decrement. */
589 #define MINUS_ONE (((bfd_vma)0) - 1)
590 #define MINUS_TWO (((bfd_vma)0) - 2)
591
592 /* The number of local .got entries we reserve. */
593 #define MIPS_RESERVED_GOTNO (2)
594
595 /* The offset of $gp from the beginning of the .got section. */
596 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
597
598 /* The maximum size of the GOT for it to be addressable using 16-bit
599 offsets from $gp. */
600 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
601
602 /* Instructions which appear in a stub. */
603 #define STUB_LW(abfd) \
604 ((ABI_64_P (abfd) \
605 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
606 : 0x8f998010)) /* lw t9,0x8010(gp) */
607 #define STUB_MOVE(abfd) \
608 ((ABI_64_P (abfd) \
609 ? 0x03e0782d /* daddu t7,ra */ \
610 : 0x03e07821)) /* addu t7,ra */
611 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
612 #define STUB_LI16(abfd) \
613 ((ABI_64_P (abfd) \
614 ? 0x64180000 /* daddiu t8,zero,0 */ \
615 : 0x24180000)) /* addiu t8,zero,0 */
616 #define MIPS_FUNCTION_STUB_SIZE (16)
617
618 /* The name of the dynamic interpreter. This is put in the .interp
619 section. */
620
621 #define ELF_DYNAMIC_INTERPRETER(abfd) \
622 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
623 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
624 : "/usr/lib/libc.so.1")
625
626 #ifdef BFD64
627 #define MNAME(bfd,pre,pos) \
628 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
629 #define ELF_R_SYM(bfd, i) \
630 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
631 #define ELF_R_TYPE(bfd, i) \
632 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
633 #define ELF_R_INFO(bfd, s, t) \
634 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
635 #else
636 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
637 #define ELF_R_SYM(bfd, i) \
638 (ELF32_R_SYM (i))
639 #define ELF_R_TYPE(bfd, i) \
640 (ELF32_R_TYPE (i))
641 #define ELF_R_INFO(bfd, s, t) \
642 (ELF32_R_INFO (s, t))
643 #endif
644 \f
645 /* The mips16 compiler uses a couple of special sections to handle
646 floating point arguments.
647
648 Section names that look like .mips16.fn.FNNAME contain stubs that
649 copy floating point arguments from the fp regs to the gp regs and
650 then jump to FNNAME. If any 32 bit function calls FNNAME, the
651 call should be redirected to the stub instead. If no 32 bit
652 function calls FNNAME, the stub should be discarded. We need to
653 consider any reference to the function, not just a call, because
654 if the address of the function is taken we will need the stub,
655 since the address might be passed to a 32 bit function.
656
657 Section names that look like .mips16.call.FNNAME contain stubs
658 that copy floating point arguments from the gp regs to the fp
659 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
660 then any 16 bit function that calls FNNAME should be redirected
661 to the stub instead. If FNNAME is not a 32 bit function, the
662 stub should be discarded.
663
664 .mips16.call.fp.FNNAME sections are similar, but contain stubs
665 which call FNNAME and then copy the return value from the fp regs
666 to the gp regs. These stubs store the return value in $18 while
667 calling FNNAME; any function which might call one of these stubs
668 must arrange to save $18 around the call. (This case is not
669 needed for 32 bit functions that call 16 bit functions, because
670 16 bit functions always return floating point values in both
671 $f0/$f1 and $2/$3.)
672
673 Note that in all cases FNNAME might be defined statically.
674 Therefore, FNNAME is not used literally. Instead, the relocation
675 information will indicate which symbol the section is for.
676
677 We record any stubs that we find in the symbol table. */
678
679 #define FN_STUB ".mips16.fn."
680 #define CALL_STUB ".mips16.call."
681 #define CALL_FP_STUB ".mips16.call.fp."
682 \f
683 /* Look up an entry in a MIPS ELF linker hash table. */
684
685 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
686 ((struct mips_elf_link_hash_entry *) \
687 elf_link_hash_lookup (&(table)->root, (string), (create), \
688 (copy), (follow)))
689
690 /* Traverse a MIPS ELF linker hash table. */
691
692 #define mips_elf_link_hash_traverse(table, func, info) \
693 (elf_link_hash_traverse \
694 (&(table)->root, \
695 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
696 (info)))
697
698 /* Get the MIPS ELF linker hash table from a link_info structure. */
699
700 #define mips_elf_hash_table(p) \
701 ((struct mips_elf_link_hash_table *) ((p)->hash))
702
703 /* Create an entry in a MIPS ELF linker hash table. */
704
705 static struct bfd_hash_entry *
706 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
707 struct bfd_hash_table *table, const char *string)
708 {
709 struct mips_elf_link_hash_entry *ret =
710 (struct mips_elf_link_hash_entry *) entry;
711
712 /* Allocate the structure if it has not already been allocated by a
713 subclass. */
714 if (ret == NULL)
715 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
716 if (ret == NULL)
717 return (struct bfd_hash_entry *) ret;
718
719 /* Call the allocation method of the superclass. */
720 ret = ((struct mips_elf_link_hash_entry *)
721 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
722 table, string));
723 if (ret != NULL)
724 {
725 /* Set local fields. */
726 memset (&ret->esym, 0, sizeof (EXTR));
727 /* We use -2 as a marker to indicate that the information has
728 not been set. -1 means there is no associated ifd. */
729 ret->esym.ifd = -2;
730 ret->possibly_dynamic_relocs = 0;
731 ret->readonly_reloc = FALSE;
732 ret->no_fn_stub = FALSE;
733 ret->fn_stub = NULL;
734 ret->need_fn_stub = FALSE;
735 ret->call_stub = NULL;
736 ret->call_fp_stub = NULL;
737 ret->forced_local = FALSE;
738 }
739
740 return (struct bfd_hash_entry *) ret;
741 }
742
743 bfd_boolean
744 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
745 {
746 struct _mips_elf_section_data *sdata;
747 bfd_size_type amt = sizeof (*sdata);
748
749 sdata = bfd_zalloc (abfd, amt);
750 if (sdata == NULL)
751 return FALSE;
752 sec->used_by_bfd = sdata;
753
754 return _bfd_elf_new_section_hook (abfd, sec);
755 }
756 \f
757 /* Read ECOFF debugging information from a .mdebug section into a
758 ecoff_debug_info structure. */
759
760 bfd_boolean
761 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
762 struct ecoff_debug_info *debug)
763 {
764 HDRR *symhdr;
765 const struct ecoff_debug_swap *swap;
766 char *ext_hdr;
767
768 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
769 memset (debug, 0, sizeof (*debug));
770
771 ext_hdr = bfd_malloc (swap->external_hdr_size);
772 if (ext_hdr == NULL && swap->external_hdr_size != 0)
773 goto error_return;
774
775 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
776 swap->external_hdr_size))
777 goto error_return;
778
779 symhdr = &debug->symbolic_header;
780 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
781
782 /* The symbolic header contains absolute file offsets and sizes to
783 read. */
784 #define READ(ptr, offset, count, size, type) \
785 if (symhdr->count == 0) \
786 debug->ptr = NULL; \
787 else \
788 { \
789 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
790 debug->ptr = bfd_malloc (amt); \
791 if (debug->ptr == NULL) \
792 goto error_return; \
793 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
794 || bfd_bread (debug->ptr, amt, abfd) != amt) \
795 goto error_return; \
796 }
797
798 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
799 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
800 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
801 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
802 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
803 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
804 union aux_ext *);
805 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
806 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
807 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
808 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
809 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
810 #undef READ
811
812 debug->fdr = NULL;
813
814 return TRUE;
815
816 error_return:
817 if (ext_hdr != NULL)
818 free (ext_hdr);
819 if (debug->line != NULL)
820 free (debug->line);
821 if (debug->external_dnr != NULL)
822 free (debug->external_dnr);
823 if (debug->external_pdr != NULL)
824 free (debug->external_pdr);
825 if (debug->external_sym != NULL)
826 free (debug->external_sym);
827 if (debug->external_opt != NULL)
828 free (debug->external_opt);
829 if (debug->external_aux != NULL)
830 free (debug->external_aux);
831 if (debug->ss != NULL)
832 free (debug->ss);
833 if (debug->ssext != NULL)
834 free (debug->ssext);
835 if (debug->external_fdr != NULL)
836 free (debug->external_fdr);
837 if (debug->external_rfd != NULL)
838 free (debug->external_rfd);
839 if (debug->external_ext != NULL)
840 free (debug->external_ext);
841 return FALSE;
842 }
843 \f
844 /* Swap RPDR (runtime procedure table entry) for output. */
845
846 static void
847 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
848 {
849 H_PUT_S32 (abfd, in->adr, ex->p_adr);
850 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
851 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
852 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
853 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
854 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
855
856 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
857 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
858
859 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
860 #if 0 /* FIXME */
861 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
862 #endif
863 }
864
865 /* Create a runtime procedure table from the .mdebug section. */
866
867 static bfd_boolean
868 mips_elf_create_procedure_table (void *handle, bfd *abfd,
869 struct bfd_link_info *info, asection *s,
870 struct ecoff_debug_info *debug)
871 {
872 const struct ecoff_debug_swap *swap;
873 HDRR *hdr = &debug->symbolic_header;
874 RPDR *rpdr, *rp;
875 struct rpdr_ext *erp;
876 void *rtproc;
877 struct pdr_ext *epdr;
878 struct sym_ext *esym;
879 char *ss, **sv;
880 char *str;
881 bfd_size_type size;
882 bfd_size_type count;
883 unsigned long sindex;
884 unsigned long i;
885 PDR pdr;
886 SYMR sym;
887 const char *no_name_func = _("static procedure (no name)");
888
889 epdr = NULL;
890 rpdr = NULL;
891 esym = NULL;
892 ss = NULL;
893 sv = NULL;
894
895 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
896
897 sindex = strlen (no_name_func) + 1;
898 count = hdr->ipdMax;
899 if (count > 0)
900 {
901 size = swap->external_pdr_size;
902
903 epdr = bfd_malloc (size * count);
904 if (epdr == NULL)
905 goto error_return;
906
907 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
908 goto error_return;
909
910 size = sizeof (RPDR);
911 rp = rpdr = bfd_malloc (size * count);
912 if (rpdr == NULL)
913 goto error_return;
914
915 size = sizeof (char *);
916 sv = bfd_malloc (size * count);
917 if (sv == NULL)
918 goto error_return;
919
920 count = hdr->isymMax;
921 size = swap->external_sym_size;
922 esym = bfd_malloc (size * count);
923 if (esym == NULL)
924 goto error_return;
925
926 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
927 goto error_return;
928
929 count = hdr->issMax;
930 ss = bfd_malloc (count);
931 if (ss == NULL)
932 goto error_return;
933 if (! _bfd_ecoff_get_accumulated_ss (handle, ss))
934 goto error_return;
935
936 count = hdr->ipdMax;
937 for (i = 0; i < (unsigned long) count; i++, rp++)
938 {
939 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
940 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
941 rp->adr = sym.value;
942 rp->regmask = pdr.regmask;
943 rp->regoffset = pdr.regoffset;
944 rp->fregmask = pdr.fregmask;
945 rp->fregoffset = pdr.fregoffset;
946 rp->frameoffset = pdr.frameoffset;
947 rp->framereg = pdr.framereg;
948 rp->pcreg = pdr.pcreg;
949 rp->irpss = sindex;
950 sv[i] = ss + sym.iss;
951 sindex += strlen (sv[i]) + 1;
952 }
953 }
954
955 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
956 size = BFD_ALIGN (size, 16);
957 rtproc = bfd_alloc (abfd, size);
958 if (rtproc == NULL)
959 {
960 mips_elf_hash_table (info)->procedure_count = 0;
961 goto error_return;
962 }
963
964 mips_elf_hash_table (info)->procedure_count = count + 2;
965
966 erp = rtproc;
967 memset (erp, 0, sizeof (struct rpdr_ext));
968 erp++;
969 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
970 strcpy (str, no_name_func);
971 str += strlen (no_name_func) + 1;
972 for (i = 0; i < count; i++)
973 {
974 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
975 strcpy (str, sv[i]);
976 str += strlen (sv[i]) + 1;
977 }
978 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
979
980 /* Set the size and contents of .rtproc section. */
981 s->size = size;
982 s->contents = rtproc;
983
984 /* Skip this section later on (I don't think this currently
985 matters, but someday it might). */
986 s->link_order_head = NULL;
987
988 if (epdr != NULL)
989 free (epdr);
990 if (rpdr != NULL)
991 free (rpdr);
992 if (esym != NULL)
993 free (esym);
994 if (ss != NULL)
995 free (ss);
996 if (sv != NULL)
997 free (sv);
998
999 return TRUE;
1000
1001 error_return:
1002 if (epdr != NULL)
1003 free (epdr);
1004 if (rpdr != NULL)
1005 free (rpdr);
1006 if (esym != NULL)
1007 free (esym);
1008 if (ss != NULL)
1009 free (ss);
1010 if (sv != NULL)
1011 free (sv);
1012 return FALSE;
1013 }
1014
1015 /* Check the mips16 stubs for a particular symbol, and see if we can
1016 discard them. */
1017
1018 static bfd_boolean
1019 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1020 void *data ATTRIBUTE_UNUSED)
1021 {
1022 if (h->root.root.type == bfd_link_hash_warning)
1023 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1024
1025 if (h->fn_stub != NULL
1026 && ! h->need_fn_stub)
1027 {
1028 /* We don't need the fn_stub; the only references to this symbol
1029 are 16 bit calls. Clobber the size to 0 to prevent it from
1030 being included in the link. */
1031 h->fn_stub->size = 0;
1032 h->fn_stub->flags &= ~SEC_RELOC;
1033 h->fn_stub->reloc_count = 0;
1034 h->fn_stub->flags |= SEC_EXCLUDE;
1035 }
1036
1037 if (h->call_stub != NULL
1038 && h->root.other == STO_MIPS16)
1039 {
1040 /* We don't need the call_stub; this is a 16 bit function, so
1041 calls from other 16 bit functions are OK. Clobber the size
1042 to 0 to prevent it from being included in the link. */
1043 h->call_stub->size = 0;
1044 h->call_stub->flags &= ~SEC_RELOC;
1045 h->call_stub->reloc_count = 0;
1046 h->call_stub->flags |= SEC_EXCLUDE;
1047 }
1048
1049 if (h->call_fp_stub != NULL
1050 && h->root.other == STO_MIPS16)
1051 {
1052 /* We don't need the call_stub; this is a 16 bit function, so
1053 calls from other 16 bit functions are OK. Clobber the size
1054 to 0 to prevent it from being included in the link. */
1055 h->call_fp_stub->size = 0;
1056 h->call_fp_stub->flags &= ~SEC_RELOC;
1057 h->call_fp_stub->reloc_count = 0;
1058 h->call_fp_stub->flags |= SEC_EXCLUDE;
1059 }
1060
1061 return TRUE;
1062 }
1063 \f
1064 bfd_reloc_status_type
1065 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1066 arelent *reloc_entry, asection *input_section,
1067 bfd_boolean relocatable, void *data, bfd_vma gp)
1068 {
1069 bfd_vma relocation;
1070 bfd_signed_vma val;
1071 bfd_reloc_status_type status;
1072
1073 if (bfd_is_com_section (symbol->section))
1074 relocation = 0;
1075 else
1076 relocation = symbol->value;
1077
1078 relocation += symbol->section->output_section->vma;
1079 relocation += symbol->section->output_offset;
1080
1081 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1082 return bfd_reloc_outofrange;
1083
1084 /* Set val to the offset into the section or symbol. */
1085 val = reloc_entry->addend;
1086
1087 _bfd_mips_elf_sign_extend (val, 16);
1088
1089 /* Adjust val for the final section location and GP value. If we
1090 are producing relocatable output, we don't want to do this for
1091 an external symbol. */
1092 if (! relocatable
1093 || (symbol->flags & BSF_SECTION_SYM) != 0)
1094 val += relocation - gp;
1095
1096 if (reloc_entry->howto->partial_inplace)
1097 {
1098 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1099 (bfd_byte *) data
1100 + reloc_entry->address);
1101 if (status != bfd_reloc_ok)
1102 return status;
1103 }
1104 else
1105 reloc_entry->addend = val;
1106
1107 if (relocatable)
1108 reloc_entry->address += input_section->output_offset;
1109
1110 return bfd_reloc_ok;
1111 }
1112
1113 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1114 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1115 that contains the relocation field and DATA points to the start of
1116 INPUT_SECTION. */
1117
1118 struct mips_hi16
1119 {
1120 struct mips_hi16 *next;
1121 bfd_byte *data;
1122 asection *input_section;
1123 arelent rel;
1124 };
1125
1126 /* FIXME: This should not be a static variable. */
1127
1128 static struct mips_hi16 *mips_hi16_list;
1129
1130 /* A howto special_function for REL *HI16 relocations. We can only
1131 calculate the correct value once we've seen the partnering
1132 *LO16 relocation, so just save the information for later.
1133
1134 The ABI requires that the *LO16 immediately follow the *HI16.
1135 However, as a GNU extension, we permit an arbitrary number of
1136 *HI16s to be associated with a single *LO16. This significantly
1137 simplies the relocation handling in gcc. */
1138
1139 bfd_reloc_status_type
1140 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1141 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1142 asection *input_section, bfd *output_bfd,
1143 char **error_message ATTRIBUTE_UNUSED)
1144 {
1145 struct mips_hi16 *n;
1146
1147 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1148 return bfd_reloc_outofrange;
1149
1150 n = bfd_malloc (sizeof *n);
1151 if (n == NULL)
1152 return bfd_reloc_outofrange;
1153
1154 n->next = mips_hi16_list;
1155 n->data = data;
1156 n->input_section = input_section;
1157 n->rel = *reloc_entry;
1158 mips_hi16_list = n;
1159
1160 if (output_bfd != NULL)
1161 reloc_entry->address += input_section->output_offset;
1162
1163 return bfd_reloc_ok;
1164 }
1165
1166 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1167 like any other 16-bit relocation when applied to global symbols, but is
1168 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1169
1170 bfd_reloc_status_type
1171 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1172 void *data, asection *input_section,
1173 bfd *output_bfd, char **error_message)
1174 {
1175 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1176 || bfd_is_und_section (bfd_get_section (symbol))
1177 || bfd_is_com_section (bfd_get_section (symbol)))
1178 /* The relocation is against a global symbol. */
1179 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1180 input_section, output_bfd,
1181 error_message);
1182
1183 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1184 input_section, output_bfd, error_message);
1185 }
1186
1187 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1188 is a straightforward 16 bit inplace relocation, but we must deal with
1189 any partnering high-part relocations as well. */
1190
1191 bfd_reloc_status_type
1192 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1193 void *data, asection *input_section,
1194 bfd *output_bfd, char **error_message)
1195 {
1196 bfd_vma vallo;
1197
1198 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1199 return bfd_reloc_outofrange;
1200
1201 vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1202 while (mips_hi16_list != NULL)
1203 {
1204 bfd_reloc_status_type ret;
1205 struct mips_hi16 *hi;
1206
1207 hi = mips_hi16_list;
1208
1209 /* R_MIPS_GOT16 relocations are something of a special case. We
1210 want to install the addend in the same way as for a R_MIPS_HI16
1211 relocation (with a rightshift of 16). However, since GOT16
1212 relocations can also be used with global symbols, their howto
1213 has a rightshift of 0. */
1214 if (hi->rel.howto->type == R_MIPS_GOT16)
1215 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1216
1217 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1218 carry or borrow will induce a change of +1 or -1 in the high part. */
1219 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1220
1221 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1222 hi->input_section, output_bfd,
1223 error_message);
1224 if (ret != bfd_reloc_ok)
1225 return ret;
1226
1227 mips_hi16_list = hi->next;
1228 free (hi);
1229 }
1230
1231 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1232 input_section, output_bfd,
1233 error_message);
1234 }
1235
1236 /* A generic howto special_function. This calculates and installs the
1237 relocation itself, thus avoiding the oft-discussed problems in
1238 bfd_perform_relocation and bfd_install_relocation. */
1239
1240 bfd_reloc_status_type
1241 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1242 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1243 asection *input_section, bfd *output_bfd,
1244 char **error_message ATTRIBUTE_UNUSED)
1245 {
1246 bfd_signed_vma val;
1247 bfd_reloc_status_type status;
1248 bfd_boolean relocatable;
1249
1250 relocatable = (output_bfd != NULL);
1251
1252 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1253 return bfd_reloc_outofrange;
1254
1255 /* Build up the field adjustment in VAL. */
1256 val = 0;
1257 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1258 {
1259 /* Either we're calculating the final field value or we have a
1260 relocation against a section symbol. Add in the section's
1261 offset or address. */
1262 val += symbol->section->output_section->vma;
1263 val += symbol->section->output_offset;
1264 }
1265
1266 if (!relocatable)
1267 {
1268 /* We're calculating the final field value. Add in the symbol's value
1269 and, if pc-relative, subtract the address of the field itself. */
1270 val += symbol->value;
1271 if (reloc_entry->howto->pc_relative)
1272 {
1273 val -= input_section->output_section->vma;
1274 val -= input_section->output_offset;
1275 val -= reloc_entry->address;
1276 }
1277 }
1278
1279 /* VAL is now the final adjustment. If we're keeping this relocation
1280 in the output file, and if the relocation uses a separate addend,
1281 we just need to add VAL to that addend. Otherwise we need to add
1282 VAL to the relocation field itself. */
1283 if (relocatable && !reloc_entry->howto->partial_inplace)
1284 reloc_entry->addend += val;
1285 else
1286 {
1287 /* Add in the separate addend, if any. */
1288 val += reloc_entry->addend;
1289
1290 /* Add VAL to the relocation field. */
1291 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1292 (bfd_byte *) data
1293 + reloc_entry->address);
1294 if (status != bfd_reloc_ok)
1295 return status;
1296 }
1297
1298 if (relocatable)
1299 reloc_entry->address += input_section->output_offset;
1300
1301 return bfd_reloc_ok;
1302 }
1303 \f
1304 /* Swap an entry in a .gptab section. Note that these routines rely
1305 on the equivalence of the two elements of the union. */
1306
1307 static void
1308 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1309 Elf32_gptab *in)
1310 {
1311 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1312 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1313 }
1314
1315 static void
1316 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1317 Elf32_External_gptab *ex)
1318 {
1319 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1320 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1321 }
1322
1323 static void
1324 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1325 Elf32_External_compact_rel *ex)
1326 {
1327 H_PUT_32 (abfd, in->id1, ex->id1);
1328 H_PUT_32 (abfd, in->num, ex->num);
1329 H_PUT_32 (abfd, in->id2, ex->id2);
1330 H_PUT_32 (abfd, in->offset, ex->offset);
1331 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1332 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1333 }
1334
1335 static void
1336 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1337 Elf32_External_crinfo *ex)
1338 {
1339 unsigned long l;
1340
1341 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1342 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1343 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1344 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1345 H_PUT_32 (abfd, l, ex->info);
1346 H_PUT_32 (abfd, in->konst, ex->konst);
1347 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1348 }
1349 \f
1350 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1351 routines swap this structure in and out. They are used outside of
1352 BFD, so they are globally visible. */
1353
1354 void
1355 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1356 Elf32_RegInfo *in)
1357 {
1358 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1359 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1360 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1361 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1362 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1363 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1364 }
1365
1366 void
1367 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1368 Elf32_External_RegInfo *ex)
1369 {
1370 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1371 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1372 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1373 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1374 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1375 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1376 }
1377
1378 /* In the 64 bit ABI, the .MIPS.options section holds register
1379 information in an Elf64_Reginfo structure. These routines swap
1380 them in and out. They are globally visible because they are used
1381 outside of BFD. These routines are here so that gas can call them
1382 without worrying about whether the 64 bit ABI has been included. */
1383
1384 void
1385 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1386 Elf64_Internal_RegInfo *in)
1387 {
1388 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1389 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1390 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1391 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1392 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1393 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1394 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1395 }
1396
1397 void
1398 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1399 Elf64_External_RegInfo *ex)
1400 {
1401 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1402 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1403 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1404 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1405 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1406 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1407 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1408 }
1409
1410 /* Swap in an options header. */
1411
1412 void
1413 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1414 Elf_Internal_Options *in)
1415 {
1416 in->kind = H_GET_8 (abfd, ex->kind);
1417 in->size = H_GET_8 (abfd, ex->size);
1418 in->section = H_GET_16 (abfd, ex->section);
1419 in->info = H_GET_32 (abfd, ex->info);
1420 }
1421
1422 /* Swap out an options header. */
1423
1424 void
1425 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1426 Elf_External_Options *ex)
1427 {
1428 H_PUT_8 (abfd, in->kind, ex->kind);
1429 H_PUT_8 (abfd, in->size, ex->size);
1430 H_PUT_16 (abfd, in->section, ex->section);
1431 H_PUT_32 (abfd, in->info, ex->info);
1432 }
1433 \f
1434 /* This function is called via qsort() to sort the dynamic relocation
1435 entries by increasing r_symndx value. */
1436
1437 static int
1438 sort_dynamic_relocs (const void *arg1, const void *arg2)
1439 {
1440 Elf_Internal_Rela int_reloc1;
1441 Elf_Internal_Rela int_reloc2;
1442
1443 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1444 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1445
1446 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1447 }
1448
1449 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1450
1451 static int
1452 sort_dynamic_relocs_64 (const void *arg1, const void *arg2)
1453 {
1454 Elf_Internal_Rela int_reloc1[3];
1455 Elf_Internal_Rela int_reloc2[3];
1456
1457 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1458 (reldyn_sorting_bfd, arg1, int_reloc1);
1459 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1460 (reldyn_sorting_bfd, arg2, int_reloc2);
1461
1462 return (ELF64_R_SYM (int_reloc1[0].r_info)
1463 - ELF64_R_SYM (int_reloc2[0].r_info));
1464 }
1465
1466
1467 /* This routine is used to write out ECOFF debugging external symbol
1468 information. It is called via mips_elf_link_hash_traverse. The
1469 ECOFF external symbol information must match the ELF external
1470 symbol information. Unfortunately, at this point we don't know
1471 whether a symbol is required by reloc information, so the two
1472 tables may wind up being different. We must sort out the external
1473 symbol information before we can set the final size of the .mdebug
1474 section, and we must set the size of the .mdebug section before we
1475 can relocate any sections, and we can't know which symbols are
1476 required by relocation until we relocate the sections.
1477 Fortunately, it is relatively unlikely that any symbol will be
1478 stripped but required by a reloc. In particular, it can not happen
1479 when generating a final executable. */
1480
1481 static bfd_boolean
1482 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1483 {
1484 struct extsym_info *einfo = data;
1485 bfd_boolean strip;
1486 asection *sec, *output_section;
1487
1488 if (h->root.root.type == bfd_link_hash_warning)
1489 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1490
1491 if (h->root.indx == -2)
1492 strip = FALSE;
1493 else if ((h->root.def_dynamic
1494 || h->root.ref_dynamic)
1495 && !h->root.def_regular
1496 && !h->root.ref_regular)
1497 strip = TRUE;
1498 else if (einfo->info->strip == strip_all
1499 || (einfo->info->strip == strip_some
1500 && bfd_hash_lookup (einfo->info->keep_hash,
1501 h->root.root.root.string,
1502 FALSE, FALSE) == NULL))
1503 strip = TRUE;
1504 else
1505 strip = FALSE;
1506
1507 if (strip)
1508 return TRUE;
1509
1510 if (h->esym.ifd == -2)
1511 {
1512 h->esym.jmptbl = 0;
1513 h->esym.cobol_main = 0;
1514 h->esym.weakext = 0;
1515 h->esym.reserved = 0;
1516 h->esym.ifd = ifdNil;
1517 h->esym.asym.value = 0;
1518 h->esym.asym.st = stGlobal;
1519
1520 if (h->root.root.type == bfd_link_hash_undefined
1521 || h->root.root.type == bfd_link_hash_undefweak)
1522 {
1523 const char *name;
1524
1525 /* Use undefined class. Also, set class and type for some
1526 special symbols. */
1527 name = h->root.root.root.string;
1528 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1529 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1530 {
1531 h->esym.asym.sc = scData;
1532 h->esym.asym.st = stLabel;
1533 h->esym.asym.value = 0;
1534 }
1535 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1536 {
1537 h->esym.asym.sc = scAbs;
1538 h->esym.asym.st = stLabel;
1539 h->esym.asym.value =
1540 mips_elf_hash_table (einfo->info)->procedure_count;
1541 }
1542 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1543 {
1544 h->esym.asym.sc = scAbs;
1545 h->esym.asym.st = stLabel;
1546 h->esym.asym.value = elf_gp (einfo->abfd);
1547 }
1548 else
1549 h->esym.asym.sc = scUndefined;
1550 }
1551 else if (h->root.root.type != bfd_link_hash_defined
1552 && h->root.root.type != bfd_link_hash_defweak)
1553 h->esym.asym.sc = scAbs;
1554 else
1555 {
1556 const char *name;
1557
1558 sec = h->root.root.u.def.section;
1559 output_section = sec->output_section;
1560
1561 /* When making a shared library and symbol h is the one from
1562 the another shared library, OUTPUT_SECTION may be null. */
1563 if (output_section == NULL)
1564 h->esym.asym.sc = scUndefined;
1565 else
1566 {
1567 name = bfd_section_name (output_section->owner, output_section);
1568
1569 if (strcmp (name, ".text") == 0)
1570 h->esym.asym.sc = scText;
1571 else if (strcmp (name, ".data") == 0)
1572 h->esym.asym.sc = scData;
1573 else if (strcmp (name, ".sdata") == 0)
1574 h->esym.asym.sc = scSData;
1575 else if (strcmp (name, ".rodata") == 0
1576 || strcmp (name, ".rdata") == 0)
1577 h->esym.asym.sc = scRData;
1578 else if (strcmp (name, ".bss") == 0)
1579 h->esym.asym.sc = scBss;
1580 else if (strcmp (name, ".sbss") == 0)
1581 h->esym.asym.sc = scSBss;
1582 else if (strcmp (name, ".init") == 0)
1583 h->esym.asym.sc = scInit;
1584 else if (strcmp (name, ".fini") == 0)
1585 h->esym.asym.sc = scFini;
1586 else
1587 h->esym.asym.sc = scAbs;
1588 }
1589 }
1590
1591 h->esym.asym.reserved = 0;
1592 h->esym.asym.index = indexNil;
1593 }
1594
1595 if (h->root.root.type == bfd_link_hash_common)
1596 h->esym.asym.value = h->root.root.u.c.size;
1597 else if (h->root.root.type == bfd_link_hash_defined
1598 || h->root.root.type == bfd_link_hash_defweak)
1599 {
1600 if (h->esym.asym.sc == scCommon)
1601 h->esym.asym.sc = scBss;
1602 else if (h->esym.asym.sc == scSCommon)
1603 h->esym.asym.sc = scSBss;
1604
1605 sec = h->root.root.u.def.section;
1606 output_section = sec->output_section;
1607 if (output_section != NULL)
1608 h->esym.asym.value = (h->root.root.u.def.value
1609 + sec->output_offset
1610 + output_section->vma);
1611 else
1612 h->esym.asym.value = 0;
1613 }
1614 else if (h->root.needs_plt)
1615 {
1616 struct mips_elf_link_hash_entry *hd = h;
1617 bfd_boolean no_fn_stub = h->no_fn_stub;
1618
1619 while (hd->root.root.type == bfd_link_hash_indirect)
1620 {
1621 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1622 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1623 }
1624
1625 if (!no_fn_stub)
1626 {
1627 /* Set type and value for a symbol with a function stub. */
1628 h->esym.asym.st = stProc;
1629 sec = hd->root.root.u.def.section;
1630 if (sec == NULL)
1631 h->esym.asym.value = 0;
1632 else
1633 {
1634 output_section = sec->output_section;
1635 if (output_section != NULL)
1636 h->esym.asym.value = (hd->root.plt.offset
1637 + sec->output_offset
1638 + output_section->vma);
1639 else
1640 h->esym.asym.value = 0;
1641 }
1642 #if 0 /* FIXME? */
1643 h->esym.ifd = 0;
1644 #endif
1645 }
1646 }
1647
1648 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1649 h->root.root.root.string,
1650 &h->esym))
1651 {
1652 einfo->failed = TRUE;
1653 return FALSE;
1654 }
1655
1656 return TRUE;
1657 }
1658
1659 /* A comparison routine used to sort .gptab entries. */
1660
1661 static int
1662 gptab_compare (const void *p1, const void *p2)
1663 {
1664 const Elf32_gptab *a1 = p1;
1665 const Elf32_gptab *a2 = p2;
1666
1667 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1668 }
1669 \f
1670 /* Functions to manage the got entry hash table. */
1671
1672 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1673 hash number. */
1674
1675 static INLINE hashval_t
1676 mips_elf_hash_bfd_vma (bfd_vma addr)
1677 {
1678 #ifdef BFD64
1679 return addr + (addr >> 32);
1680 #else
1681 return addr;
1682 #endif
1683 }
1684
1685 /* got_entries only match if they're identical, except for gotidx, so
1686 use all fields to compute the hash, and compare the appropriate
1687 union members. */
1688
1689 static hashval_t
1690 mips_elf_got_entry_hash (const void *entry_)
1691 {
1692 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1693
1694 return entry->symndx
1695 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1696 : entry->abfd->id
1697 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1698 : entry->d.h->root.root.root.hash));
1699 }
1700
1701 static int
1702 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1703 {
1704 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1705 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1706
1707 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1708 && (! e1->abfd ? e1->d.address == e2->d.address
1709 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1710 : e1->d.h == e2->d.h);
1711 }
1712
1713 /* multi_got_entries are still a match in the case of global objects,
1714 even if the input bfd in which they're referenced differs, so the
1715 hash computation and compare functions are adjusted
1716 accordingly. */
1717
1718 static hashval_t
1719 mips_elf_multi_got_entry_hash (const void *entry_)
1720 {
1721 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1722
1723 return entry->symndx
1724 + (! entry->abfd
1725 ? mips_elf_hash_bfd_vma (entry->d.address)
1726 : entry->symndx >= 0
1727 ? (entry->abfd->id
1728 + mips_elf_hash_bfd_vma (entry->d.addend))
1729 : entry->d.h->root.root.root.hash);
1730 }
1731
1732 static int
1733 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1734 {
1735 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1736 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1737
1738 return e1->symndx == e2->symndx
1739 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1740 : e1->abfd == NULL || e2->abfd == NULL
1741 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1742 : e1->d.h == e2->d.h);
1743 }
1744 \f
1745 /* Returns the dynamic relocation section for DYNOBJ. */
1746
1747 static asection *
1748 mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
1749 {
1750 static const char dname[] = ".rel.dyn";
1751 asection *sreloc;
1752
1753 sreloc = bfd_get_section_by_name (dynobj, dname);
1754 if (sreloc == NULL && create_p)
1755 {
1756 sreloc = bfd_make_section (dynobj, dname);
1757 if (sreloc == NULL
1758 || ! bfd_set_section_flags (dynobj, sreloc,
1759 (SEC_ALLOC
1760 | SEC_LOAD
1761 | SEC_HAS_CONTENTS
1762 | SEC_IN_MEMORY
1763 | SEC_LINKER_CREATED
1764 | SEC_READONLY))
1765 || ! bfd_set_section_alignment (dynobj, sreloc,
1766 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
1767 return NULL;
1768 }
1769 return sreloc;
1770 }
1771
1772 /* Returns the GOT section for ABFD. */
1773
1774 static asection *
1775 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
1776 {
1777 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1778 if (sgot == NULL
1779 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1780 return NULL;
1781 return sgot;
1782 }
1783
1784 /* Returns the GOT information associated with the link indicated by
1785 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1786 section. */
1787
1788 static struct mips_got_info *
1789 mips_elf_got_info (bfd *abfd, asection **sgotp)
1790 {
1791 asection *sgot;
1792 struct mips_got_info *g;
1793
1794 sgot = mips_elf_got_section (abfd, TRUE);
1795 BFD_ASSERT (sgot != NULL);
1796 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1797 g = mips_elf_section_data (sgot)->u.got_info;
1798 BFD_ASSERT (g != NULL);
1799
1800 if (sgotp)
1801 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1802
1803 return g;
1804 }
1805
1806 /* Returns the GOT offset at which the indicated address can be found.
1807 If there is not yet a GOT entry for this value, create one. Returns
1808 -1 if no satisfactory GOT offset can be found. */
1809
1810 static bfd_vma
1811 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1812 bfd_vma value)
1813 {
1814 asection *sgot;
1815 struct mips_got_info *g;
1816 struct mips_got_entry *entry;
1817
1818 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1819
1820 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1821 if (entry)
1822 return entry->gotidx;
1823 else
1824 return MINUS_ONE;
1825 }
1826
1827 /* Returns the GOT index for the global symbol indicated by H. */
1828
1829 static bfd_vma
1830 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
1831 {
1832 bfd_vma index;
1833 asection *sgot;
1834 struct mips_got_info *g, *gg;
1835 long global_got_dynindx = 0;
1836
1837 gg = g = mips_elf_got_info (abfd, &sgot);
1838 if (g->bfd2got && ibfd)
1839 {
1840 struct mips_got_entry e, *p;
1841
1842 BFD_ASSERT (h->dynindx >= 0);
1843
1844 g = mips_elf_got_for_ibfd (g, ibfd);
1845 if (g->next != gg)
1846 {
1847 e.abfd = ibfd;
1848 e.symndx = -1;
1849 e.d.h = (struct mips_elf_link_hash_entry *)h;
1850
1851 p = htab_find (g->got_entries, &e);
1852
1853 BFD_ASSERT (p->gotidx > 0);
1854 return p->gotidx;
1855 }
1856 }
1857
1858 if (gg->global_gotsym != NULL)
1859 global_got_dynindx = gg->global_gotsym->dynindx;
1860
1861 /* Once we determine the global GOT entry with the lowest dynamic
1862 symbol table index, we must put all dynamic symbols with greater
1863 indices into the GOT. That makes it easy to calculate the GOT
1864 offset. */
1865 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1866 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1867 * MIPS_ELF_GOT_SIZE (abfd));
1868 BFD_ASSERT (index < sgot->size);
1869
1870 return index;
1871 }
1872
1873 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1874 are supposed to be placed at small offsets in the GOT, i.e.,
1875 within 32KB of GP. Return the index into the GOT for this page,
1876 and store the offset from this entry to the desired address in
1877 OFFSETP, if it is non-NULL. */
1878
1879 static bfd_vma
1880 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1881 bfd_vma value, bfd_vma *offsetp)
1882 {
1883 asection *sgot;
1884 struct mips_got_info *g;
1885 bfd_vma index;
1886 struct mips_got_entry *entry;
1887
1888 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1889
1890 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1891 (value + 0x8000)
1892 & (~(bfd_vma)0xffff));
1893
1894 if (!entry)
1895 return MINUS_ONE;
1896
1897 index = entry->gotidx;
1898
1899 if (offsetp)
1900 *offsetp = value - entry->d.address;
1901
1902 return index;
1903 }
1904
1905 /* Find a GOT entry whose higher-order 16 bits are the same as those
1906 for value. Return the index into the GOT for this entry. */
1907
1908 static bfd_vma
1909 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1910 bfd_vma value, bfd_boolean external)
1911 {
1912 asection *sgot;
1913 struct mips_got_info *g;
1914 struct mips_got_entry *entry;
1915
1916 if (! external)
1917 {
1918 /* Although the ABI says that it is "the high-order 16 bits" that we
1919 want, it is really the %high value. The complete value is
1920 calculated with a `addiu' of a LO16 relocation, just as with a
1921 HI16/LO16 pair. */
1922 value = mips_elf_high (value) << 16;
1923 }
1924
1925 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1926
1927 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1928 if (entry)
1929 return entry->gotidx;
1930 else
1931 return MINUS_ONE;
1932 }
1933
1934 /* Returns the offset for the entry at the INDEXth position
1935 in the GOT. */
1936
1937 static bfd_vma
1938 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
1939 bfd *input_bfd, bfd_vma index)
1940 {
1941 asection *sgot;
1942 bfd_vma gp;
1943 struct mips_got_info *g;
1944
1945 g = mips_elf_got_info (dynobj, &sgot);
1946 gp = _bfd_get_gp_value (output_bfd)
1947 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1948
1949 return sgot->output_section->vma + sgot->output_offset + index - gp;
1950 }
1951
1952 /* Create a local GOT entry for VALUE. Return the index of the entry,
1953 or -1 if it could not be created. */
1954
1955 static struct mips_got_entry *
1956 mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
1957 struct mips_got_info *gg,
1958 asection *sgot, bfd_vma value)
1959 {
1960 struct mips_got_entry entry, **loc;
1961 struct mips_got_info *g;
1962
1963 entry.abfd = NULL;
1964 entry.symndx = -1;
1965 entry.d.address = value;
1966
1967 g = mips_elf_got_for_ibfd (gg, ibfd);
1968 if (g == NULL)
1969 {
1970 g = mips_elf_got_for_ibfd (gg, abfd);
1971 BFD_ASSERT (g != NULL);
1972 }
1973
1974 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1975 INSERT);
1976 if (*loc)
1977 return *loc;
1978
1979 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1980
1981 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1982
1983 if (! *loc)
1984 return NULL;
1985
1986 memcpy (*loc, &entry, sizeof entry);
1987
1988 if (g->assigned_gotno >= g->local_gotno)
1989 {
1990 (*loc)->gotidx = -1;
1991 /* We didn't allocate enough space in the GOT. */
1992 (*_bfd_error_handler)
1993 (_("not enough GOT space for local GOT entries"));
1994 bfd_set_error (bfd_error_bad_value);
1995 return NULL;
1996 }
1997
1998 MIPS_ELF_PUT_WORD (abfd, value,
1999 (sgot->contents + entry.gotidx));
2000
2001 return *loc;
2002 }
2003
2004 /* Sort the dynamic symbol table so that symbols that need GOT entries
2005 appear towards the end. This reduces the amount of GOT space
2006 required. MAX_LOCAL is used to set the number of local symbols
2007 known to be in the dynamic symbol table. During
2008 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2009 section symbols are added and the count is higher. */
2010
2011 static bfd_boolean
2012 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2013 {
2014 struct mips_elf_hash_sort_data hsd;
2015 struct mips_got_info *g;
2016 bfd *dynobj;
2017
2018 dynobj = elf_hash_table (info)->dynobj;
2019
2020 g = mips_elf_got_info (dynobj, NULL);
2021
2022 hsd.low = NULL;
2023 hsd.max_unref_got_dynindx =
2024 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2025 /* In the multi-got case, assigned_gotno of the master got_info
2026 indicate the number of entries that aren't referenced in the
2027 primary GOT, but that must have entries because there are
2028 dynamic relocations that reference it. Since they aren't
2029 referenced, we move them to the end of the GOT, so that they
2030 don't prevent other entries that are referenced from getting
2031 too large offsets. */
2032 - (g->next ? g->assigned_gotno : 0);
2033 hsd.max_non_got_dynindx = max_local;
2034 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2035 elf_hash_table (info)),
2036 mips_elf_sort_hash_table_f,
2037 &hsd);
2038
2039 /* There should have been enough room in the symbol table to
2040 accommodate both the GOT and non-GOT symbols. */
2041 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2042 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2043 <= elf_hash_table (info)->dynsymcount);
2044
2045 /* Now we know which dynamic symbol has the lowest dynamic symbol
2046 table index in the GOT. */
2047 g->global_gotsym = hsd.low;
2048
2049 return TRUE;
2050 }
2051
2052 /* If H needs a GOT entry, assign it the highest available dynamic
2053 index. Otherwise, assign it the lowest available dynamic
2054 index. */
2055
2056 static bfd_boolean
2057 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2058 {
2059 struct mips_elf_hash_sort_data *hsd = data;
2060
2061 if (h->root.root.type == bfd_link_hash_warning)
2062 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2063
2064 /* Symbols without dynamic symbol table entries aren't interesting
2065 at all. */
2066 if (h->root.dynindx == -1)
2067 return TRUE;
2068
2069 /* Global symbols that need GOT entries that are not explicitly
2070 referenced are marked with got offset 2. Those that are
2071 referenced get a 1, and those that don't need GOT entries get
2072 -1. */
2073 if (h->root.got.offset == 2)
2074 {
2075 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2076 hsd->low = (struct elf_link_hash_entry *) h;
2077 h->root.dynindx = hsd->max_unref_got_dynindx++;
2078 }
2079 else if (h->root.got.offset != 1)
2080 h->root.dynindx = hsd->max_non_got_dynindx++;
2081 else
2082 {
2083 h->root.dynindx = --hsd->min_got_dynindx;
2084 hsd->low = (struct elf_link_hash_entry *) h;
2085 }
2086
2087 return TRUE;
2088 }
2089
2090 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2091 symbol table index lower than any we've seen to date, record it for
2092 posterity. */
2093
2094 static bfd_boolean
2095 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2096 bfd *abfd, struct bfd_link_info *info,
2097 struct mips_got_info *g)
2098 {
2099 struct mips_got_entry entry, **loc;
2100
2101 /* A global symbol in the GOT must also be in the dynamic symbol
2102 table. */
2103 if (h->dynindx == -1)
2104 {
2105 switch (ELF_ST_VISIBILITY (h->other))
2106 {
2107 case STV_INTERNAL:
2108 case STV_HIDDEN:
2109 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2110 break;
2111 }
2112 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2113 return FALSE;
2114 }
2115
2116 entry.abfd = abfd;
2117 entry.symndx = -1;
2118 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2119
2120 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2121 INSERT);
2122
2123 /* If we've already marked this entry as needing GOT space, we don't
2124 need to do it again. */
2125 if (*loc)
2126 return TRUE;
2127
2128 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2129
2130 if (! *loc)
2131 return FALSE;
2132
2133 entry.gotidx = -1;
2134 memcpy (*loc, &entry, sizeof entry);
2135
2136 if (h->got.offset != MINUS_ONE)
2137 return TRUE;
2138
2139 /* By setting this to a value other than -1, we are indicating that
2140 there needs to be a GOT entry for H. Avoid using zero, as the
2141 generic ELF copy_indirect_symbol tests for <= 0. */
2142 h->got.offset = 1;
2143
2144 return TRUE;
2145 }
2146
2147 /* Reserve space in G for a GOT entry containing the value of symbol
2148 SYMNDX in input bfd ABDF, plus ADDEND. */
2149
2150 static bfd_boolean
2151 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2152 struct mips_got_info *g)
2153 {
2154 struct mips_got_entry entry, **loc;
2155
2156 entry.abfd = abfd;
2157 entry.symndx = symndx;
2158 entry.d.addend = addend;
2159 loc = (struct mips_got_entry **)
2160 htab_find_slot (g->got_entries, &entry, INSERT);
2161
2162 if (*loc)
2163 return TRUE;
2164
2165 entry.gotidx = g->local_gotno++;
2166
2167 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2168
2169 if (! *loc)
2170 return FALSE;
2171
2172 memcpy (*loc, &entry, sizeof entry);
2173
2174 return TRUE;
2175 }
2176 \f
2177 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2178
2179 static hashval_t
2180 mips_elf_bfd2got_entry_hash (const void *entry_)
2181 {
2182 const struct mips_elf_bfd2got_hash *entry
2183 = (struct mips_elf_bfd2got_hash *)entry_;
2184
2185 return entry->bfd->id;
2186 }
2187
2188 /* Check whether two hash entries have the same bfd. */
2189
2190 static int
2191 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2192 {
2193 const struct mips_elf_bfd2got_hash *e1
2194 = (const struct mips_elf_bfd2got_hash *)entry1;
2195 const struct mips_elf_bfd2got_hash *e2
2196 = (const struct mips_elf_bfd2got_hash *)entry2;
2197
2198 return e1->bfd == e2->bfd;
2199 }
2200
2201 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2202 be the master GOT data. */
2203
2204 static struct mips_got_info *
2205 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2206 {
2207 struct mips_elf_bfd2got_hash e, *p;
2208
2209 if (! g->bfd2got)
2210 return g;
2211
2212 e.bfd = ibfd;
2213 p = htab_find (g->bfd2got, &e);
2214 return p ? p->g : NULL;
2215 }
2216
2217 /* Create one separate got for each bfd that has entries in the global
2218 got, such that we can tell how many local and global entries each
2219 bfd requires. */
2220
2221 static int
2222 mips_elf_make_got_per_bfd (void **entryp, void *p)
2223 {
2224 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2225 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2226 htab_t bfd2got = arg->bfd2got;
2227 struct mips_got_info *g;
2228 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2229 void **bfdgotp;
2230
2231 /* Find the got_info for this GOT entry's input bfd. Create one if
2232 none exists. */
2233 bfdgot_entry.bfd = entry->abfd;
2234 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2235 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2236
2237 if (bfdgot != NULL)
2238 g = bfdgot->g;
2239 else
2240 {
2241 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2242 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2243
2244 if (bfdgot == NULL)
2245 {
2246 arg->obfd = 0;
2247 return 0;
2248 }
2249
2250 *bfdgotp = bfdgot;
2251
2252 bfdgot->bfd = entry->abfd;
2253 bfdgot->g = g = (struct mips_got_info *)
2254 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2255 if (g == NULL)
2256 {
2257 arg->obfd = 0;
2258 return 0;
2259 }
2260
2261 g->global_gotsym = NULL;
2262 g->global_gotno = 0;
2263 g->local_gotno = 0;
2264 g->assigned_gotno = -1;
2265 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2266 mips_elf_multi_got_entry_eq, NULL);
2267 if (g->got_entries == NULL)
2268 {
2269 arg->obfd = 0;
2270 return 0;
2271 }
2272
2273 g->bfd2got = NULL;
2274 g->next = NULL;
2275 }
2276
2277 /* Insert the GOT entry in the bfd's got entry hash table. */
2278 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2279 if (*entryp != NULL)
2280 return 1;
2281
2282 *entryp = entry;
2283
2284 if (entry->symndx >= 0 || entry->d.h->forced_local)
2285 ++g->local_gotno;
2286 else
2287 ++g->global_gotno;
2288
2289 return 1;
2290 }
2291
2292 /* Attempt to merge gots of different input bfds. Try to use as much
2293 as possible of the primary got, since it doesn't require explicit
2294 dynamic relocations, but don't use bfds that would reference global
2295 symbols out of the addressable range. Failing the primary got,
2296 attempt to merge with the current got, or finish the current got
2297 and then make make the new got current. */
2298
2299 static int
2300 mips_elf_merge_gots (void **bfd2got_, void *p)
2301 {
2302 struct mips_elf_bfd2got_hash *bfd2got
2303 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2304 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2305 unsigned int lcount = bfd2got->g->local_gotno;
2306 unsigned int gcount = bfd2got->g->global_gotno;
2307 unsigned int maxcnt = arg->max_count;
2308
2309 /* If we don't have a primary GOT and this is not too big, use it as
2310 a starting point for the primary GOT. */
2311 if (! arg->primary && lcount + gcount <= maxcnt)
2312 {
2313 arg->primary = bfd2got->g;
2314 arg->primary_count = lcount + gcount;
2315 }
2316 /* If it looks like we can merge this bfd's entries with those of
2317 the primary, merge them. The heuristics is conservative, but we
2318 don't have to squeeze it too hard. */
2319 else if (arg->primary
2320 && (arg->primary_count + lcount + gcount) <= maxcnt)
2321 {
2322 struct mips_got_info *g = bfd2got->g;
2323 int old_lcount = arg->primary->local_gotno;
2324 int old_gcount = arg->primary->global_gotno;
2325
2326 bfd2got->g = arg->primary;
2327
2328 htab_traverse (g->got_entries,
2329 mips_elf_make_got_per_bfd,
2330 arg);
2331 if (arg->obfd == NULL)
2332 return 0;
2333
2334 htab_delete (g->got_entries);
2335 /* We don't have to worry about releasing memory of the actual
2336 got entries, since they're all in the master got_entries hash
2337 table anyway. */
2338
2339 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
2340 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2341
2342 arg->primary_count = arg->primary->local_gotno
2343 + arg->primary->global_gotno;
2344 }
2345 /* If we can merge with the last-created got, do it. */
2346 else if (arg->current
2347 && arg->current_count + lcount + gcount <= maxcnt)
2348 {
2349 struct mips_got_info *g = bfd2got->g;
2350 int old_lcount = arg->current->local_gotno;
2351 int old_gcount = arg->current->global_gotno;
2352
2353 bfd2got->g = arg->current;
2354
2355 htab_traverse (g->got_entries,
2356 mips_elf_make_got_per_bfd,
2357 arg);
2358 if (arg->obfd == NULL)
2359 return 0;
2360
2361 htab_delete (g->got_entries);
2362
2363 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
2364 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2365
2366 arg->current_count = arg->current->local_gotno
2367 + arg->current->global_gotno;
2368 }
2369 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2370 fits; if it turns out that it doesn't, we'll get relocation
2371 overflows anyway. */
2372 else
2373 {
2374 bfd2got->g->next = arg->current;
2375 arg->current = bfd2got->g;
2376
2377 arg->current_count = lcount + gcount;
2378 }
2379
2380 return 1;
2381 }
2382
2383 /* If passed a NULL mips_got_info in the argument, set the marker used
2384 to tell whether a global symbol needs a got entry (in the primary
2385 got) to the given VALUE.
2386
2387 If passed a pointer G to a mips_got_info in the argument (it must
2388 not be the primary GOT), compute the offset from the beginning of
2389 the (primary) GOT section to the entry in G corresponding to the
2390 global symbol. G's assigned_gotno must contain the index of the
2391 first available global GOT entry in G. VALUE must contain the size
2392 of a GOT entry in bytes. For each global GOT entry that requires a
2393 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2394 marked as not eligible for lazy resolution through a function
2395 stub. */
2396 static int
2397 mips_elf_set_global_got_offset (void **entryp, void *p)
2398 {
2399 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2400 struct mips_elf_set_global_got_offset_arg *arg
2401 = (struct mips_elf_set_global_got_offset_arg *)p;
2402 struct mips_got_info *g = arg->g;
2403
2404 if (entry->abfd != NULL && entry->symndx == -1
2405 && entry->d.h->root.dynindx != -1)
2406 {
2407 if (g)
2408 {
2409 BFD_ASSERT (g->global_gotsym == NULL);
2410
2411 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2412 if (arg->info->shared
2413 || (elf_hash_table (arg->info)->dynamic_sections_created
2414 && entry->d.h->root.def_dynamic
2415 && !entry->d.h->root.def_regular))
2416 ++arg->needed_relocs;
2417 }
2418 else
2419 entry->d.h->root.got.offset = arg->value;
2420 }
2421
2422 return 1;
2423 }
2424
2425 /* Mark any global symbols referenced in the GOT we are iterating over
2426 as inelligible for lazy resolution stubs. */
2427 static int
2428 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
2429 {
2430 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2431
2432 if (entry->abfd != NULL
2433 && entry->symndx == -1
2434 && entry->d.h->root.dynindx != -1)
2435 entry->d.h->no_fn_stub = TRUE;
2436
2437 return 1;
2438 }
2439
2440 /* Follow indirect and warning hash entries so that each got entry
2441 points to the final symbol definition. P must point to a pointer
2442 to the hash table we're traversing. Since this traversal may
2443 modify the hash table, we set this pointer to NULL to indicate
2444 we've made a potentially-destructive change to the hash table, so
2445 the traversal must be restarted. */
2446 static int
2447 mips_elf_resolve_final_got_entry (void **entryp, void *p)
2448 {
2449 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2450 htab_t got_entries = *(htab_t *)p;
2451
2452 if (entry->abfd != NULL && entry->symndx == -1)
2453 {
2454 struct mips_elf_link_hash_entry *h = entry->d.h;
2455
2456 while (h->root.root.type == bfd_link_hash_indirect
2457 || h->root.root.type == bfd_link_hash_warning)
2458 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2459
2460 if (entry->d.h == h)
2461 return 1;
2462
2463 entry->d.h = h;
2464
2465 /* If we can't find this entry with the new bfd hash, re-insert
2466 it, and get the traversal restarted. */
2467 if (! htab_find (got_entries, entry))
2468 {
2469 htab_clear_slot (got_entries, entryp);
2470 entryp = htab_find_slot (got_entries, entry, INSERT);
2471 if (! *entryp)
2472 *entryp = entry;
2473 /* Abort the traversal, since the whole table may have
2474 moved, and leave it up to the parent to restart the
2475 process. */
2476 *(htab_t *)p = NULL;
2477 return 0;
2478 }
2479 /* We might want to decrement the global_gotno count, but it's
2480 either too early or too late for that at this point. */
2481 }
2482
2483 return 1;
2484 }
2485
2486 /* Turn indirect got entries in a got_entries table into their final
2487 locations. */
2488 static void
2489 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
2490 {
2491 htab_t got_entries;
2492
2493 do
2494 {
2495 got_entries = g->got_entries;
2496
2497 htab_traverse (got_entries,
2498 mips_elf_resolve_final_got_entry,
2499 &got_entries);
2500 }
2501 while (got_entries == NULL);
2502 }
2503
2504 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2505 the primary GOT. */
2506 static bfd_vma
2507 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
2508 {
2509 if (g->bfd2got == NULL)
2510 return 0;
2511
2512 g = mips_elf_got_for_ibfd (g, ibfd);
2513 if (! g)
2514 return 0;
2515
2516 BFD_ASSERT (g->next);
2517
2518 g = g->next;
2519
2520 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2521 }
2522
2523 /* Turn a single GOT that is too big for 16-bit addressing into
2524 a sequence of GOTs, each one 16-bit addressable. */
2525
2526 static bfd_boolean
2527 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2528 struct mips_got_info *g, asection *got,
2529 bfd_size_type pages)
2530 {
2531 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2532 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2533 struct mips_got_info *gg;
2534 unsigned int assign;
2535
2536 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2537 mips_elf_bfd2got_entry_eq, NULL);
2538 if (g->bfd2got == NULL)
2539 return FALSE;
2540
2541 got_per_bfd_arg.bfd2got = g->bfd2got;
2542 got_per_bfd_arg.obfd = abfd;
2543 got_per_bfd_arg.info = info;
2544
2545 /* Count how many GOT entries each input bfd requires, creating a
2546 map from bfd to got info while at that. */
2547 mips_elf_resolve_final_got_entries (g);
2548 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2549 if (got_per_bfd_arg.obfd == NULL)
2550 return FALSE;
2551
2552 got_per_bfd_arg.current = NULL;
2553 got_per_bfd_arg.primary = NULL;
2554 /* Taking out PAGES entries is a worst-case estimate. We could
2555 compute the maximum number of pages that each separate input bfd
2556 uses, but it's probably not worth it. */
2557 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2558 / MIPS_ELF_GOT_SIZE (abfd))
2559 - MIPS_RESERVED_GOTNO - pages);
2560
2561 /* Try to merge the GOTs of input bfds together, as long as they
2562 don't seem to exceed the maximum GOT size, choosing one of them
2563 to be the primary GOT. */
2564 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2565 if (got_per_bfd_arg.obfd == NULL)
2566 return FALSE;
2567
2568 /* If we find any suitable primary GOT, create an empty one. */
2569 if (got_per_bfd_arg.primary == NULL)
2570 {
2571 g->next = (struct mips_got_info *)
2572 bfd_alloc (abfd, sizeof (struct mips_got_info));
2573 if (g->next == NULL)
2574 return FALSE;
2575
2576 g->next->global_gotsym = NULL;
2577 g->next->global_gotno = 0;
2578 g->next->local_gotno = 0;
2579 g->next->assigned_gotno = 0;
2580 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2581 mips_elf_multi_got_entry_eq,
2582 NULL);
2583 if (g->next->got_entries == NULL)
2584 return FALSE;
2585 g->next->bfd2got = NULL;
2586 }
2587 else
2588 g->next = got_per_bfd_arg.primary;
2589 g->next->next = got_per_bfd_arg.current;
2590
2591 /* GG is now the master GOT, and G is the primary GOT. */
2592 gg = g;
2593 g = g->next;
2594
2595 /* Map the output bfd to the primary got. That's what we're going
2596 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2597 didn't mark in check_relocs, and we want a quick way to find it.
2598 We can't just use gg->next because we're going to reverse the
2599 list. */
2600 {
2601 struct mips_elf_bfd2got_hash *bfdgot;
2602 void **bfdgotp;
2603
2604 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2605 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2606
2607 if (bfdgot == NULL)
2608 return FALSE;
2609
2610 bfdgot->bfd = abfd;
2611 bfdgot->g = g;
2612 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2613
2614 BFD_ASSERT (*bfdgotp == NULL);
2615 *bfdgotp = bfdgot;
2616 }
2617
2618 /* The IRIX dynamic linker requires every symbol that is referenced
2619 in a dynamic relocation to be present in the primary GOT, so
2620 arrange for them to appear after those that are actually
2621 referenced.
2622
2623 GNU/Linux could very well do without it, but it would slow down
2624 the dynamic linker, since it would have to resolve every dynamic
2625 symbol referenced in other GOTs more than once, without help from
2626 the cache. Also, knowing that every external symbol has a GOT
2627 helps speed up the resolution of local symbols too, so GNU/Linux
2628 follows IRIX's practice.
2629
2630 The number 2 is used by mips_elf_sort_hash_table_f to count
2631 global GOT symbols that are unreferenced in the primary GOT, with
2632 an initial dynamic index computed from gg->assigned_gotno, where
2633 the number of unreferenced global entries in the primary GOT is
2634 preserved. */
2635 if (1)
2636 {
2637 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2638 g->global_gotno = gg->global_gotno;
2639 set_got_offset_arg.value = 2;
2640 }
2641 else
2642 {
2643 /* This could be used for dynamic linkers that don't optimize
2644 symbol resolution while applying relocations so as to use
2645 primary GOT entries or assuming the symbol is locally-defined.
2646 With this code, we assign lower dynamic indices to global
2647 symbols that are not referenced in the primary GOT, so that
2648 their entries can be omitted. */
2649 gg->assigned_gotno = 0;
2650 set_got_offset_arg.value = -1;
2651 }
2652
2653 /* Reorder dynamic symbols as described above (which behavior
2654 depends on the setting of VALUE). */
2655 set_got_offset_arg.g = NULL;
2656 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2657 &set_got_offset_arg);
2658 set_got_offset_arg.value = 1;
2659 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2660 &set_got_offset_arg);
2661 if (! mips_elf_sort_hash_table (info, 1))
2662 return FALSE;
2663
2664 /* Now go through the GOTs assigning them offset ranges.
2665 [assigned_gotno, local_gotno[ will be set to the range of local
2666 entries in each GOT. We can then compute the end of a GOT by
2667 adding local_gotno to global_gotno. We reverse the list and make
2668 it circular since then we'll be able to quickly compute the
2669 beginning of a GOT, by computing the end of its predecessor. To
2670 avoid special cases for the primary GOT, while still preserving
2671 assertions that are valid for both single- and multi-got links,
2672 we arrange for the main got struct to have the right number of
2673 global entries, but set its local_gotno such that the initial
2674 offset of the primary GOT is zero. Remember that the primary GOT
2675 will become the last item in the circular linked list, so it
2676 points back to the master GOT. */
2677 gg->local_gotno = -g->global_gotno;
2678 gg->global_gotno = g->global_gotno;
2679 assign = 0;
2680 gg->next = gg;
2681
2682 do
2683 {
2684 struct mips_got_info *gn;
2685
2686 assign += MIPS_RESERVED_GOTNO;
2687 g->assigned_gotno = assign;
2688 g->local_gotno += assign + pages;
2689 assign = g->local_gotno + g->global_gotno;
2690
2691 /* Take g out of the direct list, and push it onto the reversed
2692 list that gg points to. */
2693 gn = g->next;
2694 g->next = gg->next;
2695 gg->next = g;
2696 g = gn;
2697
2698 /* Mark global symbols in every non-primary GOT as ineligible for
2699 stubs. */
2700 if (g)
2701 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
2702 }
2703 while (g);
2704
2705 got->size = (gg->next->local_gotno
2706 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2707
2708 return TRUE;
2709 }
2710
2711 \f
2712 /* Returns the first relocation of type r_type found, beginning with
2713 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2714
2715 static const Elf_Internal_Rela *
2716 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2717 const Elf_Internal_Rela *relocation,
2718 const Elf_Internal_Rela *relend)
2719 {
2720 while (relocation < relend)
2721 {
2722 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2723 return relocation;
2724
2725 ++relocation;
2726 }
2727
2728 /* We didn't find it. */
2729 bfd_set_error (bfd_error_bad_value);
2730 return NULL;
2731 }
2732
2733 /* Return whether a relocation is against a local symbol. */
2734
2735 static bfd_boolean
2736 mips_elf_local_relocation_p (bfd *input_bfd,
2737 const Elf_Internal_Rela *relocation,
2738 asection **local_sections,
2739 bfd_boolean check_forced)
2740 {
2741 unsigned long r_symndx;
2742 Elf_Internal_Shdr *symtab_hdr;
2743 struct mips_elf_link_hash_entry *h;
2744 size_t extsymoff;
2745
2746 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2747 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2748 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2749
2750 if (r_symndx < extsymoff)
2751 return TRUE;
2752 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2753 return TRUE;
2754
2755 if (check_forced)
2756 {
2757 /* Look up the hash table to check whether the symbol
2758 was forced local. */
2759 h = (struct mips_elf_link_hash_entry *)
2760 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2761 /* Find the real hash-table entry for this symbol. */
2762 while (h->root.root.type == bfd_link_hash_indirect
2763 || h->root.root.type == bfd_link_hash_warning)
2764 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2765 if (h->root.forced_local)
2766 return TRUE;
2767 }
2768
2769 return FALSE;
2770 }
2771 \f
2772 /* Sign-extend VALUE, which has the indicated number of BITS. */
2773
2774 bfd_vma
2775 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
2776 {
2777 if (value & ((bfd_vma) 1 << (bits - 1)))
2778 /* VALUE is negative. */
2779 value |= ((bfd_vma) - 1) << bits;
2780
2781 return value;
2782 }
2783
2784 /* Return non-zero if the indicated VALUE has overflowed the maximum
2785 range expressible by a signed number with the indicated number of
2786 BITS. */
2787
2788 static bfd_boolean
2789 mips_elf_overflow_p (bfd_vma value, int bits)
2790 {
2791 bfd_signed_vma svalue = (bfd_signed_vma) value;
2792
2793 if (svalue > (1 << (bits - 1)) - 1)
2794 /* The value is too big. */
2795 return TRUE;
2796 else if (svalue < -(1 << (bits - 1)))
2797 /* The value is too small. */
2798 return TRUE;
2799
2800 /* All is well. */
2801 return FALSE;
2802 }
2803
2804 /* Calculate the %high function. */
2805
2806 static bfd_vma
2807 mips_elf_high (bfd_vma value)
2808 {
2809 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2810 }
2811
2812 /* Calculate the %higher function. */
2813
2814 static bfd_vma
2815 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
2816 {
2817 #ifdef BFD64
2818 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2819 #else
2820 abort ();
2821 return MINUS_ONE;
2822 #endif
2823 }
2824
2825 /* Calculate the %highest function. */
2826
2827 static bfd_vma
2828 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
2829 {
2830 #ifdef BFD64
2831 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2832 #else
2833 abort ();
2834 return MINUS_ONE;
2835 #endif
2836 }
2837 \f
2838 /* Create the .compact_rel section. */
2839
2840 static bfd_boolean
2841 mips_elf_create_compact_rel_section
2842 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
2843 {
2844 flagword flags;
2845 register asection *s;
2846
2847 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2848 {
2849 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2850 | SEC_READONLY);
2851
2852 s = bfd_make_section (abfd, ".compact_rel");
2853 if (s == NULL
2854 || ! bfd_set_section_flags (abfd, s, flags)
2855 || ! bfd_set_section_alignment (abfd, s,
2856 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2857 return FALSE;
2858
2859 s->size = sizeof (Elf32_External_compact_rel);
2860 }
2861
2862 return TRUE;
2863 }
2864
2865 /* Create the .got section to hold the global offset table. */
2866
2867 static bfd_boolean
2868 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
2869 bfd_boolean maybe_exclude)
2870 {
2871 flagword flags;
2872 register asection *s;
2873 struct elf_link_hash_entry *h;
2874 struct bfd_link_hash_entry *bh;
2875 struct mips_got_info *g;
2876 bfd_size_type amt;
2877
2878 /* This function may be called more than once. */
2879 s = mips_elf_got_section (abfd, TRUE);
2880 if (s)
2881 {
2882 if (! maybe_exclude)
2883 s->flags &= ~SEC_EXCLUDE;
2884 return TRUE;
2885 }
2886
2887 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2888 | SEC_LINKER_CREATED);
2889
2890 if (maybe_exclude)
2891 flags |= SEC_EXCLUDE;
2892
2893 /* We have to use an alignment of 2**4 here because this is hardcoded
2894 in the function stub generation and in the linker script. */
2895 s = bfd_make_section (abfd, ".got");
2896 if (s == NULL
2897 || ! bfd_set_section_flags (abfd, s, flags)
2898 || ! bfd_set_section_alignment (abfd, s, 4))
2899 return FALSE;
2900
2901 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2902 linker script because we don't want to define the symbol if we
2903 are not creating a global offset table. */
2904 bh = NULL;
2905 if (! (_bfd_generic_link_add_one_symbol
2906 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2907 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
2908 return FALSE;
2909
2910 h = (struct elf_link_hash_entry *) bh;
2911 h->non_elf = 0;
2912 h->def_regular = 1;
2913 h->type = STT_OBJECT;
2914
2915 if (info->shared
2916 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2917 return FALSE;
2918
2919 amt = sizeof (struct mips_got_info);
2920 g = bfd_alloc (abfd, amt);
2921 if (g == NULL)
2922 return FALSE;
2923 g->global_gotsym = NULL;
2924 g->global_gotno = 0;
2925 g->local_gotno = MIPS_RESERVED_GOTNO;
2926 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2927 g->bfd2got = NULL;
2928 g->next = NULL;
2929 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2930 mips_elf_got_entry_eq, NULL);
2931 if (g->got_entries == NULL)
2932 return FALSE;
2933 mips_elf_section_data (s)->u.got_info = g;
2934 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2935 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2936
2937 return TRUE;
2938 }
2939 \f
2940 /* Calculate the value produced by the RELOCATION (which comes from
2941 the INPUT_BFD). The ADDEND is the addend to use for this
2942 RELOCATION; RELOCATION->R_ADDEND is ignored.
2943
2944 The result of the relocation calculation is stored in VALUEP.
2945 REQUIRE_JALXP indicates whether or not the opcode used with this
2946 relocation must be JALX.
2947
2948 This function returns bfd_reloc_continue if the caller need take no
2949 further action regarding this relocation, bfd_reloc_notsupported if
2950 something goes dramatically wrong, bfd_reloc_overflow if an
2951 overflow occurs, and bfd_reloc_ok to indicate success. */
2952
2953 static bfd_reloc_status_type
2954 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
2955 asection *input_section,
2956 struct bfd_link_info *info,
2957 const Elf_Internal_Rela *relocation,
2958 bfd_vma addend, reloc_howto_type *howto,
2959 Elf_Internal_Sym *local_syms,
2960 asection **local_sections, bfd_vma *valuep,
2961 const char **namep, bfd_boolean *require_jalxp,
2962 bfd_boolean save_addend)
2963 {
2964 /* The eventual value we will return. */
2965 bfd_vma value;
2966 /* The address of the symbol against which the relocation is
2967 occurring. */
2968 bfd_vma symbol = 0;
2969 /* The final GP value to be used for the relocatable, executable, or
2970 shared object file being produced. */
2971 bfd_vma gp = MINUS_ONE;
2972 /* The place (section offset or address) of the storage unit being
2973 relocated. */
2974 bfd_vma p;
2975 /* The value of GP used to create the relocatable object. */
2976 bfd_vma gp0 = MINUS_ONE;
2977 /* The offset into the global offset table at which the address of
2978 the relocation entry symbol, adjusted by the addend, resides
2979 during execution. */
2980 bfd_vma g = MINUS_ONE;
2981 /* The section in which the symbol referenced by the relocation is
2982 located. */
2983 asection *sec = NULL;
2984 struct mips_elf_link_hash_entry *h = NULL;
2985 /* TRUE if the symbol referred to by this relocation is a local
2986 symbol. */
2987 bfd_boolean local_p, was_local_p;
2988 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2989 bfd_boolean gp_disp_p = FALSE;
2990 Elf_Internal_Shdr *symtab_hdr;
2991 size_t extsymoff;
2992 unsigned long r_symndx;
2993 int r_type;
2994 /* TRUE if overflow occurred during the calculation of the
2995 relocation value. */
2996 bfd_boolean overflowed_p;
2997 /* TRUE if this relocation refers to a MIPS16 function. */
2998 bfd_boolean target_is_16_bit_code_p = FALSE;
2999
3000 /* Parse the relocation. */
3001 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3002 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3003 p = (input_section->output_section->vma
3004 + input_section->output_offset
3005 + relocation->r_offset);
3006
3007 /* Assume that there will be no overflow. */
3008 overflowed_p = FALSE;
3009
3010 /* Figure out whether or not the symbol is local, and get the offset
3011 used in the array of hash table entries. */
3012 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3013 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3014 local_sections, FALSE);
3015 was_local_p = local_p;
3016 if (! elf_bad_symtab (input_bfd))
3017 extsymoff = symtab_hdr->sh_info;
3018 else
3019 {
3020 /* The symbol table does not follow the rule that local symbols
3021 must come before globals. */
3022 extsymoff = 0;
3023 }
3024
3025 /* Figure out the value of the symbol. */
3026 if (local_p)
3027 {
3028 Elf_Internal_Sym *sym;
3029
3030 sym = local_syms + r_symndx;
3031 sec = local_sections[r_symndx];
3032
3033 symbol = sec->output_section->vma + sec->output_offset;
3034 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3035 || (sec->flags & SEC_MERGE))
3036 symbol += sym->st_value;
3037 if ((sec->flags & SEC_MERGE)
3038 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3039 {
3040 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3041 addend -= symbol;
3042 addend += sec->output_section->vma + sec->output_offset;
3043 }
3044
3045 /* MIPS16 text labels should be treated as odd. */
3046 if (sym->st_other == STO_MIPS16)
3047 ++symbol;
3048
3049 /* Record the name of this symbol, for our caller. */
3050 *namep = bfd_elf_string_from_elf_section (input_bfd,
3051 symtab_hdr->sh_link,
3052 sym->st_name);
3053 if (*namep == '\0')
3054 *namep = bfd_section_name (input_bfd, sec);
3055
3056 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3057 }
3058 else
3059 {
3060 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3061
3062 /* For global symbols we look up the symbol in the hash-table. */
3063 h = ((struct mips_elf_link_hash_entry *)
3064 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3065 /* Find the real hash-table entry for this symbol. */
3066 while (h->root.root.type == bfd_link_hash_indirect
3067 || h->root.root.type == bfd_link_hash_warning)
3068 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3069
3070 /* Record the name of this symbol, for our caller. */
3071 *namep = h->root.root.root.string;
3072
3073 /* See if this is the special _gp_disp symbol. Note that such a
3074 symbol must always be a global symbol. */
3075 if (strcmp (*namep, "_gp_disp") == 0
3076 && ! NEWABI_P (input_bfd))
3077 {
3078 /* Relocations against _gp_disp are permitted only with
3079 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3080 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3081 return bfd_reloc_notsupported;
3082
3083 gp_disp_p = TRUE;
3084 }
3085 /* If this symbol is defined, calculate its address. Note that
3086 _gp_disp is a magic symbol, always implicitly defined by the
3087 linker, so it's inappropriate to check to see whether or not
3088 its defined. */
3089 else if ((h->root.root.type == bfd_link_hash_defined
3090 || h->root.root.type == bfd_link_hash_defweak)
3091 && h->root.root.u.def.section)
3092 {
3093 sec = h->root.root.u.def.section;
3094 if (sec->output_section)
3095 symbol = (h->root.root.u.def.value
3096 + sec->output_section->vma
3097 + sec->output_offset);
3098 else
3099 symbol = h->root.root.u.def.value;
3100 }
3101 else if (h->root.root.type == bfd_link_hash_undefweak)
3102 /* We allow relocations against undefined weak symbols, giving
3103 it the value zero, so that you can undefined weak functions
3104 and check to see if they exist by looking at their
3105 addresses. */
3106 symbol = 0;
3107 else if (info->unresolved_syms_in_objects == RM_IGNORE
3108 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3109 symbol = 0;
3110 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3111 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
3112 {
3113 /* If this is a dynamic link, we should have created a
3114 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3115 in in _bfd_mips_elf_create_dynamic_sections.
3116 Otherwise, we should define the symbol with a value of 0.
3117 FIXME: It should probably get into the symbol table
3118 somehow as well. */
3119 BFD_ASSERT (! info->shared);
3120 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3121 symbol = 0;
3122 }
3123 else
3124 {
3125 if (! ((*info->callbacks->undefined_symbol)
3126 (info, h->root.root.root.string, input_bfd,
3127 input_section, relocation->r_offset,
3128 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3129 || ELF_ST_VISIBILITY (h->root.other))))
3130 return bfd_reloc_undefined;
3131 symbol = 0;
3132 }
3133
3134 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3135 }
3136
3137 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3138 need to redirect the call to the stub, unless we're already *in*
3139 a stub. */
3140 if (r_type != R_MIPS16_26 && !info->relocatable
3141 && ((h != NULL && h->fn_stub != NULL)
3142 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3143 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3144 && !mips_elf_stub_section_p (input_bfd, input_section))
3145 {
3146 /* This is a 32- or 64-bit call to a 16-bit function. We should
3147 have already noticed that we were going to need the
3148 stub. */
3149 if (local_p)
3150 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3151 else
3152 {
3153 BFD_ASSERT (h->need_fn_stub);
3154 sec = h->fn_stub;
3155 }
3156
3157 symbol = sec->output_section->vma + sec->output_offset;
3158 }
3159 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3160 need to redirect the call to the stub. */
3161 else if (r_type == R_MIPS16_26 && !info->relocatable
3162 && h != NULL
3163 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3164 && !target_is_16_bit_code_p)
3165 {
3166 /* If both call_stub and call_fp_stub are defined, we can figure
3167 out which one to use by seeing which one appears in the input
3168 file. */
3169 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3170 {
3171 asection *o;
3172
3173 sec = NULL;
3174 for (o = input_bfd->sections; o != NULL; o = o->next)
3175 {
3176 if (strncmp (bfd_get_section_name (input_bfd, o),
3177 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3178 {
3179 sec = h->call_fp_stub;
3180 break;
3181 }
3182 }
3183 if (sec == NULL)
3184 sec = h->call_stub;
3185 }
3186 else if (h->call_stub != NULL)
3187 sec = h->call_stub;
3188 else
3189 sec = h->call_fp_stub;
3190
3191 BFD_ASSERT (sec->size > 0);
3192 symbol = sec->output_section->vma + sec->output_offset;
3193 }
3194
3195 /* Calls from 16-bit code to 32-bit code and vice versa require the
3196 special jalx instruction. */
3197 *require_jalxp = (!info->relocatable
3198 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3199 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3200
3201 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3202 local_sections, TRUE);
3203
3204 /* If we haven't already determined the GOT offset, or the GP value,
3205 and we're going to need it, get it now. */
3206 switch (r_type)
3207 {
3208 case R_MIPS_GOT_PAGE:
3209 case R_MIPS_GOT_OFST:
3210 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3211 bind locally. */
3212 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
3213 if (local_p || r_type == R_MIPS_GOT_OFST)
3214 break;
3215 /* Fall through. */
3216
3217 case R_MIPS_CALL16:
3218 case R_MIPS_GOT16:
3219 case R_MIPS_GOT_DISP:
3220 case R_MIPS_GOT_HI16:
3221 case R_MIPS_CALL_HI16:
3222 case R_MIPS_GOT_LO16:
3223 case R_MIPS_CALL_LO16:
3224 /* Find the index into the GOT where this value is located. */
3225 if (!local_p)
3226 {
3227 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3228 GOT_PAGE relocation that decays to GOT_DISP because the
3229 symbol turns out to be global. The addend is then added
3230 as GOT_OFST. */
3231 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3232 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3233 input_bfd,
3234 (struct elf_link_hash_entry *) h);
3235 if (! elf_hash_table(info)->dynamic_sections_created
3236 || (info->shared
3237 && (info->symbolic || h->root.dynindx == -1)
3238 && h->root.def_regular))
3239 {
3240 /* This is a static link or a -Bsymbolic link. The
3241 symbol is defined locally, or was forced to be local.
3242 We must initialize this entry in the GOT. */
3243 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3244 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3245 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3246 }
3247 }
3248 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3249 /* There's no need to create a local GOT entry here; the
3250 calculation for a local GOT16 entry does not involve G. */
3251 break;
3252 else
3253 {
3254 g = mips_elf_local_got_index (abfd, input_bfd,
3255 info, symbol + addend);
3256 if (g == MINUS_ONE)
3257 return bfd_reloc_outofrange;
3258 }
3259
3260 /* Convert GOT indices to actual offsets. */
3261 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3262 abfd, input_bfd, g);
3263 break;
3264
3265 case R_MIPS_HI16:
3266 case R_MIPS_LO16:
3267 case R_MIPS16_GPREL:
3268 case R_MIPS_GPREL16:
3269 case R_MIPS_GPREL32:
3270 case R_MIPS_LITERAL:
3271 gp0 = _bfd_get_gp_value (input_bfd);
3272 gp = _bfd_get_gp_value (abfd);
3273 if (elf_hash_table (info)->dynobj)
3274 gp += mips_elf_adjust_gp (abfd,
3275 mips_elf_got_info
3276 (elf_hash_table (info)->dynobj, NULL),
3277 input_bfd);
3278 break;
3279
3280 default:
3281 break;
3282 }
3283
3284 /* Figure out what kind of relocation is being performed. */
3285 switch (r_type)
3286 {
3287 case R_MIPS_NONE:
3288 return bfd_reloc_continue;
3289
3290 case R_MIPS_16:
3291 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
3292 overflowed_p = mips_elf_overflow_p (value, 16);
3293 break;
3294
3295 case R_MIPS_32:
3296 case R_MIPS_REL32:
3297 case R_MIPS_64:
3298 if ((info->shared
3299 || (elf_hash_table (info)->dynamic_sections_created
3300 && h != NULL
3301 && h->root.def_dynamic
3302 && !h->root.def_regular))
3303 && r_symndx != 0
3304 && (input_section->flags & SEC_ALLOC) != 0)
3305 {
3306 /* If we're creating a shared library, or this relocation is
3307 against a symbol in a shared library, then we can't know
3308 where the symbol will end up. So, we create a relocation
3309 record in the output, and leave the job up to the dynamic
3310 linker. */
3311 value = addend;
3312 if (!mips_elf_create_dynamic_relocation (abfd,
3313 info,
3314 relocation,
3315 h,
3316 sec,
3317 symbol,
3318 &value,
3319 input_section))
3320 return bfd_reloc_undefined;
3321 }
3322 else
3323 {
3324 if (r_type != R_MIPS_REL32)
3325 value = symbol + addend;
3326 else
3327 value = addend;
3328 }
3329 value &= howto->dst_mask;
3330 break;
3331
3332 case R_MIPS_PC32:
3333 value = symbol + addend - p;
3334 value &= howto->dst_mask;
3335 break;
3336
3337 case R_MIPS_GNU_REL16_S2:
3338 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
3339 overflowed_p = mips_elf_overflow_p (value, 18);
3340 value = (value >> 2) & howto->dst_mask;
3341 break;
3342
3343 case R_MIPS16_26:
3344 /* The calculation for R_MIPS16_26 is just the same as for an
3345 R_MIPS_26. It's only the storage of the relocated field into
3346 the output file that's different. That's handled in
3347 mips_elf_perform_relocation. So, we just fall through to the
3348 R_MIPS_26 case here. */
3349 case R_MIPS_26:
3350 if (local_p)
3351 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3352 else
3353 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
3354 value &= howto->dst_mask;
3355 break;
3356
3357 case R_MIPS_HI16:
3358 if (!gp_disp_p)
3359 {
3360 value = mips_elf_high (addend + symbol);
3361 value &= howto->dst_mask;
3362 }
3363 else
3364 {
3365 value = mips_elf_high (addend + gp - p);
3366 overflowed_p = mips_elf_overflow_p (value, 16);
3367 }
3368 break;
3369
3370 case R_MIPS_LO16:
3371 if (!gp_disp_p)
3372 value = (symbol + addend) & howto->dst_mask;
3373 else
3374 {
3375 value = addend + gp - p + 4;
3376 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3377 for overflow. But, on, say, IRIX5, relocations against
3378 _gp_disp are normally generated from the .cpload
3379 pseudo-op. It generates code that normally looks like
3380 this:
3381
3382 lui $gp,%hi(_gp_disp)
3383 addiu $gp,$gp,%lo(_gp_disp)
3384 addu $gp,$gp,$t9
3385
3386 Here $t9 holds the address of the function being called,
3387 as required by the MIPS ELF ABI. The R_MIPS_LO16
3388 relocation can easily overflow in this situation, but the
3389 R_MIPS_HI16 relocation will handle the overflow.
3390 Therefore, we consider this a bug in the MIPS ABI, and do
3391 not check for overflow here. */
3392 }
3393 break;
3394
3395 case R_MIPS_LITERAL:
3396 /* Because we don't merge literal sections, we can handle this
3397 just like R_MIPS_GPREL16. In the long run, we should merge
3398 shared literals, and then we will need to additional work
3399 here. */
3400
3401 /* Fall through. */
3402
3403 case R_MIPS16_GPREL:
3404 /* The R_MIPS16_GPREL performs the same calculation as
3405 R_MIPS_GPREL16, but stores the relocated bits in a different
3406 order. We don't need to do anything special here; the
3407 differences are handled in mips_elf_perform_relocation. */
3408 case R_MIPS_GPREL16:
3409 /* Only sign-extend the addend if it was extracted from the
3410 instruction. If the addend was separate, leave it alone,
3411 otherwise we may lose significant bits. */
3412 if (howto->partial_inplace)
3413 addend = _bfd_mips_elf_sign_extend (addend, 16);
3414 value = symbol + addend - gp;
3415 /* If the symbol was local, any earlier relocatable links will
3416 have adjusted its addend with the gp offset, so compensate
3417 for that now. Don't do it for symbols forced local in this
3418 link, though, since they won't have had the gp offset applied
3419 to them before. */
3420 if (was_local_p)
3421 value += gp0;
3422 overflowed_p = mips_elf_overflow_p (value, 16);
3423 break;
3424
3425 case R_MIPS_GOT16:
3426 case R_MIPS_CALL16:
3427 if (local_p)
3428 {
3429 bfd_boolean forced;
3430
3431 /* The special case is when the symbol is forced to be local. We
3432 need the full address in the GOT since no R_MIPS_LO16 relocation
3433 follows. */
3434 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3435 local_sections, FALSE);
3436 value = mips_elf_got16_entry (abfd, input_bfd, info,
3437 symbol + addend, forced);
3438 if (value == MINUS_ONE)
3439 return bfd_reloc_outofrange;
3440 value
3441 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3442 abfd, input_bfd, value);
3443 overflowed_p = mips_elf_overflow_p (value, 16);
3444 break;
3445 }
3446
3447 /* Fall through. */
3448
3449 case R_MIPS_GOT_DISP:
3450 got_disp:
3451 value = g;
3452 overflowed_p = mips_elf_overflow_p (value, 16);
3453 break;
3454
3455 case R_MIPS_GPREL32:
3456 value = (addend + symbol + gp0 - gp);
3457 if (!save_addend)
3458 value &= howto->dst_mask;
3459 break;
3460
3461 case R_MIPS_PC16:
3462 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
3463 overflowed_p = mips_elf_overflow_p (value, 16);
3464 break;
3465
3466 case R_MIPS_GOT_HI16:
3467 case R_MIPS_CALL_HI16:
3468 /* We're allowed to handle these two relocations identically.
3469 The dynamic linker is allowed to handle the CALL relocations
3470 differently by creating a lazy evaluation stub. */
3471 value = g;
3472 value = mips_elf_high (value);
3473 value &= howto->dst_mask;
3474 break;
3475
3476 case R_MIPS_GOT_LO16:
3477 case R_MIPS_CALL_LO16:
3478 value = g & howto->dst_mask;
3479 break;
3480
3481 case R_MIPS_GOT_PAGE:
3482 /* GOT_PAGE relocations that reference non-local symbols decay
3483 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3484 0. */
3485 if (! local_p)
3486 goto got_disp;
3487 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3488 if (value == MINUS_ONE)
3489 return bfd_reloc_outofrange;
3490 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3491 abfd, input_bfd, value);
3492 overflowed_p = mips_elf_overflow_p (value, 16);
3493 break;
3494
3495 case R_MIPS_GOT_OFST:
3496 if (local_p)
3497 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3498 else
3499 value = addend;
3500 overflowed_p = mips_elf_overflow_p (value, 16);
3501 break;
3502
3503 case R_MIPS_SUB:
3504 value = symbol - addend;
3505 value &= howto->dst_mask;
3506 break;
3507
3508 case R_MIPS_HIGHER:
3509 value = mips_elf_higher (addend + symbol);
3510 value &= howto->dst_mask;
3511 break;
3512
3513 case R_MIPS_HIGHEST:
3514 value = mips_elf_highest (addend + symbol);
3515 value &= howto->dst_mask;
3516 break;
3517
3518 case R_MIPS_SCN_DISP:
3519 value = symbol + addend - sec->output_offset;
3520 value &= howto->dst_mask;
3521 break;
3522
3523 case R_MIPS_PJUMP:
3524 case R_MIPS_JALR:
3525 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3526 hint; we could improve performance by honoring that hint. */
3527 return bfd_reloc_continue;
3528
3529 case R_MIPS_GNU_VTINHERIT:
3530 case R_MIPS_GNU_VTENTRY:
3531 /* We don't do anything with these at present. */
3532 return bfd_reloc_continue;
3533
3534 default:
3535 /* An unrecognized relocation type. */
3536 return bfd_reloc_notsupported;
3537 }
3538
3539 /* Store the VALUE for our caller. */
3540 *valuep = value;
3541 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3542 }
3543
3544 /* Obtain the field relocated by RELOCATION. */
3545
3546 static bfd_vma
3547 mips_elf_obtain_contents (reloc_howto_type *howto,
3548 const Elf_Internal_Rela *relocation,
3549 bfd *input_bfd, bfd_byte *contents)
3550 {
3551 bfd_vma x;
3552 bfd_byte *location = contents + relocation->r_offset;
3553
3554 /* Obtain the bytes. */
3555 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3556
3557 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3558 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3559 && bfd_little_endian (input_bfd))
3560 /* The two 16-bit words will be reversed on a little-endian system.
3561 See mips_elf_perform_relocation for more details. */
3562 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3563
3564 return x;
3565 }
3566
3567 /* It has been determined that the result of the RELOCATION is the
3568 VALUE. Use HOWTO to place VALUE into the output file at the
3569 appropriate position. The SECTION is the section to which the
3570 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3571 for the relocation must be either JAL or JALX, and it is
3572 unconditionally converted to JALX.
3573
3574 Returns FALSE if anything goes wrong. */
3575
3576 static bfd_boolean
3577 mips_elf_perform_relocation (struct bfd_link_info *info,
3578 reloc_howto_type *howto,
3579 const Elf_Internal_Rela *relocation,
3580 bfd_vma value, bfd *input_bfd,
3581 asection *input_section, bfd_byte *contents,
3582 bfd_boolean require_jalx)
3583 {
3584 bfd_vma x;
3585 bfd_byte *location;
3586 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3587
3588 /* Figure out where the relocation is occurring. */
3589 location = contents + relocation->r_offset;
3590
3591 /* Obtain the current value. */
3592 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3593
3594 /* Clear the field we are setting. */
3595 x &= ~howto->dst_mask;
3596
3597 /* If this is the R_MIPS16_26 relocation, we must store the
3598 value in a funny way. */
3599 if (r_type == R_MIPS16_26)
3600 {
3601 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3602 Most mips16 instructions are 16 bits, but these instructions
3603 are 32 bits.
3604
3605 The format of these instructions is:
3606
3607 +--------------+--------------------------------+
3608 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3609 +--------------+--------------------------------+
3610 ! Immediate 15:0 !
3611 +-----------------------------------------------+
3612
3613 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3614 Note that the immediate value in the first word is swapped.
3615
3616 When producing a relocatable object file, R_MIPS16_26 is
3617 handled mostly like R_MIPS_26. In particular, the addend is
3618 stored as a straight 26-bit value in a 32-bit instruction.
3619 (gas makes life simpler for itself by never adjusting a
3620 R_MIPS16_26 reloc to be against a section, so the addend is
3621 always zero). However, the 32 bit instruction is stored as 2
3622 16-bit values, rather than a single 32-bit value. In a
3623 big-endian file, the result is the same; in a little-endian
3624 file, the two 16-bit halves of the 32 bit value are swapped.
3625 This is so that a disassembler can recognize the jal
3626 instruction.
3627
3628 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3629 instruction stored as two 16-bit values. The addend A is the
3630 contents of the targ26 field. The calculation is the same as
3631 R_MIPS_26. When storing the calculated value, reorder the
3632 immediate value as shown above, and don't forget to store the
3633 value as two 16-bit values.
3634
3635 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3636 defined as
3637
3638 big-endian:
3639 +--------+----------------------+
3640 | | |
3641 | | targ26-16 |
3642 |31 26|25 0|
3643 +--------+----------------------+
3644
3645 little-endian:
3646 +----------+------+-------------+
3647 | | | |
3648 | sub1 | | sub2 |
3649 |0 9|10 15|16 31|
3650 +----------+--------------------+
3651 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3652 ((sub1 << 16) | sub2)).
3653
3654 When producing a relocatable object file, the calculation is
3655 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3656 When producing a fully linked file, the calculation is
3657 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3658 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3659
3660 if (!info->relocatable)
3661 /* Shuffle the bits according to the formula above. */
3662 value = (((value & 0x1f0000) << 5)
3663 | ((value & 0x3e00000) >> 5)
3664 | (value & 0xffff));
3665 }
3666 else if (r_type == R_MIPS16_GPREL)
3667 {
3668 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3669 mode. A typical instruction will have a format like this:
3670
3671 +--------------+--------------------------------+
3672 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3673 +--------------+--------------------------------+
3674 ! Major ! rx ! ry ! Imm 4:0 !
3675 +--------------+--------------------------------+
3676
3677 EXTEND is the five bit value 11110. Major is the instruction
3678 opcode.
3679
3680 This is handled exactly like R_MIPS_GPREL16, except that the
3681 addend is retrieved and stored as shown in this diagram; that
3682 is, the Imm fields above replace the V-rel16 field.
3683
3684 All we need to do here is shuffle the bits appropriately. As
3685 above, the two 16-bit halves must be swapped on a
3686 little-endian system. */
3687 value = (((value & 0x7e0) << 16)
3688 | ((value & 0xf800) << 5)
3689 | (value & 0x1f));
3690 }
3691
3692 /* Set the field. */
3693 x |= (value & howto->dst_mask);
3694
3695 /* If required, turn JAL into JALX. */
3696 if (require_jalx)
3697 {
3698 bfd_boolean ok;
3699 bfd_vma opcode = x >> 26;
3700 bfd_vma jalx_opcode;
3701
3702 /* Check to see if the opcode is already JAL or JALX. */
3703 if (r_type == R_MIPS16_26)
3704 {
3705 ok = ((opcode == 0x6) || (opcode == 0x7));
3706 jalx_opcode = 0x7;
3707 }
3708 else
3709 {
3710 ok = ((opcode == 0x3) || (opcode == 0x1d));
3711 jalx_opcode = 0x1d;
3712 }
3713
3714 /* If the opcode is not JAL or JALX, there's a problem. */
3715 if (!ok)
3716 {
3717 (*_bfd_error_handler)
3718 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
3719 input_bfd,
3720 input_section,
3721 (unsigned long) relocation->r_offset);
3722 bfd_set_error (bfd_error_bad_value);
3723 return FALSE;
3724 }
3725
3726 /* Make this the JALX opcode. */
3727 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3728 }
3729
3730 /* Swap the high- and low-order 16 bits on little-endian systems
3731 when doing a MIPS16 relocation. */
3732 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3733 && bfd_little_endian (input_bfd))
3734 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3735
3736 /* Put the value into the output. */
3737 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3738 return TRUE;
3739 }
3740
3741 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3742
3743 static bfd_boolean
3744 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
3745 {
3746 const char *name = bfd_get_section_name (abfd, section);
3747
3748 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3749 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3750 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3751 }
3752 \f
3753 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3754
3755 static void
3756 mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
3757 {
3758 asection *s;
3759
3760 s = mips_elf_rel_dyn_section (abfd, FALSE);
3761 BFD_ASSERT (s != NULL);
3762
3763 if (s->size == 0)
3764 {
3765 /* Make room for a null element. */
3766 s->size += MIPS_ELF_REL_SIZE (abfd);
3767 ++s->reloc_count;
3768 }
3769 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3770 }
3771
3772 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3773 is the original relocation, which is now being transformed into a
3774 dynamic relocation. The ADDENDP is adjusted if necessary; the
3775 caller should store the result in place of the original addend. */
3776
3777 static bfd_boolean
3778 mips_elf_create_dynamic_relocation (bfd *output_bfd,
3779 struct bfd_link_info *info,
3780 const Elf_Internal_Rela *rel,
3781 struct mips_elf_link_hash_entry *h,
3782 asection *sec, bfd_vma symbol,
3783 bfd_vma *addendp, asection *input_section)
3784 {
3785 Elf_Internal_Rela outrel[3];
3786 asection *sreloc;
3787 bfd *dynobj;
3788 int r_type;
3789 long indx;
3790 bfd_boolean defined_p;
3791
3792 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3793 dynobj = elf_hash_table (info)->dynobj;
3794 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3795 BFD_ASSERT (sreloc != NULL);
3796 BFD_ASSERT (sreloc->contents != NULL);
3797 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3798 < sreloc->size);
3799
3800 outrel[0].r_offset =
3801 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3802 outrel[1].r_offset =
3803 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3804 outrel[2].r_offset =
3805 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3806
3807 #if 0
3808 /* We begin by assuming that the offset for the dynamic relocation
3809 is the same as for the original relocation. We'll adjust this
3810 later to reflect the correct output offsets. */
3811 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
3812 {
3813 outrel[1].r_offset = rel[1].r_offset;
3814 outrel[2].r_offset = rel[2].r_offset;
3815 }
3816 else
3817 {
3818 /* Except that in a stab section things are more complex.
3819 Because we compress stab information, the offset given in the
3820 relocation may not be the one we want; we must let the stabs
3821 machinery tell us the offset. */
3822 outrel[1].r_offset = outrel[0].r_offset;
3823 outrel[2].r_offset = outrel[0].r_offset;
3824 /* If we didn't need the relocation at all, this value will be
3825 -1. */
3826 if (outrel[0].r_offset == MINUS_ONE)
3827 skip = TRUE;
3828 }
3829 #endif
3830
3831 if (outrel[0].r_offset == MINUS_ONE)
3832 /* The relocation field has been deleted. */
3833 return TRUE;
3834
3835 if (outrel[0].r_offset == MINUS_TWO)
3836 {
3837 /* The relocation field has been converted into a relative value of
3838 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3839 the field to be fully relocated, so add in the symbol's value. */
3840 *addendp += symbol;
3841 return TRUE;
3842 }
3843
3844 /* We must now calculate the dynamic symbol table index to use
3845 in the relocation. */
3846 if (h != NULL
3847 && (! info->symbolic || !h->root.def_regular)
3848 /* h->root.dynindx may be -1 if this symbol was marked to
3849 become local. */
3850 && h->root.dynindx != -1)
3851 {
3852 indx = h->root.dynindx;
3853 if (SGI_COMPAT (output_bfd))
3854 defined_p = h->root.def_regular;
3855 else
3856 /* ??? glibc's ld.so just adds the final GOT entry to the
3857 relocation field. It therefore treats relocs against
3858 defined symbols in the same way as relocs against
3859 undefined symbols. */
3860 defined_p = FALSE;
3861 }
3862 else
3863 {
3864 if (sec != NULL && bfd_is_abs_section (sec))
3865 indx = 0;
3866 else if (sec == NULL || sec->owner == NULL)
3867 {
3868 bfd_set_error (bfd_error_bad_value);
3869 return FALSE;
3870 }
3871 else
3872 {
3873 indx = elf_section_data (sec->output_section)->dynindx;
3874 if (indx == 0)
3875 abort ();
3876 }
3877
3878 /* Instead of generating a relocation using the section
3879 symbol, we may as well make it a fully relative
3880 relocation. We want to avoid generating relocations to
3881 local symbols because we used to generate them
3882 incorrectly, without adding the original symbol value,
3883 which is mandated by the ABI for section symbols. In
3884 order to give dynamic loaders and applications time to
3885 phase out the incorrect use, we refrain from emitting
3886 section-relative relocations. It's not like they're
3887 useful, after all. This should be a bit more efficient
3888 as well. */
3889 /* ??? Although this behavior is compatible with glibc's ld.so,
3890 the ABI says that relocations against STN_UNDEF should have
3891 a symbol value of 0. Irix rld honors this, so relocations
3892 against STN_UNDEF have no effect. */
3893 if (!SGI_COMPAT (output_bfd))
3894 indx = 0;
3895 defined_p = TRUE;
3896 }
3897
3898 /* If the relocation was previously an absolute relocation and
3899 this symbol will not be referred to by the relocation, we must
3900 adjust it by the value we give it in the dynamic symbol table.
3901 Otherwise leave the job up to the dynamic linker. */
3902 if (defined_p && r_type != R_MIPS_REL32)
3903 *addendp += symbol;
3904
3905 /* The relocation is always an REL32 relocation because we don't
3906 know where the shared library will wind up at load-time. */
3907 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3908 R_MIPS_REL32);
3909 /* For strict adherence to the ABI specification, we should
3910 generate a R_MIPS_64 relocation record by itself before the
3911 _REL32/_64 record as well, such that the addend is read in as
3912 a 64-bit value (REL32 is a 32-bit relocation, after all).
3913 However, since none of the existing ELF64 MIPS dynamic
3914 loaders seems to care, we don't waste space with these
3915 artificial relocations. If this turns out to not be true,
3916 mips_elf_allocate_dynamic_relocation() should be tweaked so
3917 as to make room for a pair of dynamic relocations per
3918 invocation if ABI_64_P, and here we should generate an
3919 additional relocation record with R_MIPS_64 by itself for a
3920 NULL symbol before this relocation record. */
3921 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
3922 ABI_64_P (output_bfd)
3923 ? R_MIPS_64
3924 : R_MIPS_NONE);
3925 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
3926
3927 /* Adjust the output offset of the relocation to reference the
3928 correct location in the output file. */
3929 outrel[0].r_offset += (input_section->output_section->vma
3930 + input_section->output_offset);
3931 outrel[1].r_offset += (input_section->output_section->vma
3932 + input_section->output_offset);
3933 outrel[2].r_offset += (input_section->output_section->vma
3934 + input_section->output_offset);
3935
3936 /* Put the relocation back out. We have to use the special
3937 relocation outputter in the 64-bit case since the 64-bit
3938 relocation format is non-standard. */
3939 if (ABI_64_P (output_bfd))
3940 {
3941 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3942 (output_bfd, &outrel[0],
3943 (sreloc->contents
3944 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3945 }
3946 else
3947 bfd_elf32_swap_reloc_out
3948 (output_bfd, &outrel[0],
3949 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
3950
3951 /* We've now added another relocation. */
3952 ++sreloc->reloc_count;
3953
3954 /* Make sure the output section is writable. The dynamic linker
3955 will be writing to it. */
3956 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3957 |= SHF_WRITE;
3958
3959 /* On IRIX5, make an entry of compact relocation info. */
3960 if (IRIX_COMPAT (output_bfd) == ict_irix5)
3961 {
3962 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3963 bfd_byte *cr;
3964
3965 if (scpt)
3966 {
3967 Elf32_crinfo cptrel;
3968
3969 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3970 cptrel.vaddr = (rel->r_offset
3971 + input_section->output_section->vma
3972 + input_section->output_offset);
3973 if (r_type == R_MIPS_REL32)
3974 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3975 else
3976 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3977 mips_elf_set_cr_dist2to (cptrel, 0);
3978 cptrel.konst = *addendp;
3979
3980 cr = (scpt->contents
3981 + sizeof (Elf32_External_compact_rel));
3982 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3983 ((Elf32_External_crinfo *) cr
3984 + scpt->reloc_count));
3985 ++scpt->reloc_count;
3986 }
3987 }
3988
3989 return TRUE;
3990 }
3991 \f
3992 /* Return the MACH for a MIPS e_flags value. */
3993
3994 unsigned long
3995 _bfd_elf_mips_mach (flagword flags)
3996 {
3997 switch (flags & EF_MIPS_MACH)
3998 {
3999 case E_MIPS_MACH_3900:
4000 return bfd_mach_mips3900;
4001
4002 case E_MIPS_MACH_4010:
4003 return bfd_mach_mips4010;
4004
4005 case E_MIPS_MACH_4100:
4006 return bfd_mach_mips4100;
4007
4008 case E_MIPS_MACH_4111:
4009 return bfd_mach_mips4111;
4010
4011 case E_MIPS_MACH_4120:
4012 return bfd_mach_mips4120;
4013
4014 case E_MIPS_MACH_4650:
4015 return bfd_mach_mips4650;
4016
4017 case E_MIPS_MACH_5400:
4018 return bfd_mach_mips5400;
4019
4020 case E_MIPS_MACH_5500:
4021 return bfd_mach_mips5500;
4022
4023 case E_MIPS_MACH_SB1:
4024 return bfd_mach_mips_sb1;
4025
4026 default:
4027 switch (flags & EF_MIPS_ARCH)
4028 {
4029 default:
4030 case E_MIPS_ARCH_1:
4031 return bfd_mach_mips3000;
4032 break;
4033
4034 case E_MIPS_ARCH_2:
4035 return bfd_mach_mips6000;
4036 break;
4037
4038 case E_MIPS_ARCH_3:
4039 return bfd_mach_mips4000;
4040 break;
4041
4042 case E_MIPS_ARCH_4:
4043 return bfd_mach_mips8000;
4044 break;
4045
4046 case E_MIPS_ARCH_5:
4047 return bfd_mach_mips5;
4048 break;
4049
4050 case E_MIPS_ARCH_32:
4051 return bfd_mach_mipsisa32;
4052 break;
4053
4054 case E_MIPS_ARCH_64:
4055 return bfd_mach_mipsisa64;
4056 break;
4057
4058 case E_MIPS_ARCH_32R2:
4059 return bfd_mach_mipsisa32r2;
4060 break;
4061
4062 case E_MIPS_ARCH_64R2:
4063 return bfd_mach_mipsisa64r2;
4064 break;
4065 }
4066 }
4067
4068 return 0;
4069 }
4070
4071 /* Return printable name for ABI. */
4072
4073 static INLINE char *
4074 elf_mips_abi_name (bfd *abfd)
4075 {
4076 flagword flags;
4077
4078 flags = elf_elfheader (abfd)->e_flags;
4079 switch (flags & EF_MIPS_ABI)
4080 {
4081 case 0:
4082 if (ABI_N32_P (abfd))
4083 return "N32";
4084 else if (ABI_64_P (abfd))
4085 return "64";
4086 else
4087 return "none";
4088 case E_MIPS_ABI_O32:
4089 return "O32";
4090 case E_MIPS_ABI_O64:
4091 return "O64";
4092 case E_MIPS_ABI_EABI32:
4093 return "EABI32";
4094 case E_MIPS_ABI_EABI64:
4095 return "EABI64";
4096 default:
4097 return "unknown abi";
4098 }
4099 }
4100 \f
4101 /* MIPS ELF uses two common sections. One is the usual one, and the
4102 other is for small objects. All the small objects are kept
4103 together, and then referenced via the gp pointer, which yields
4104 faster assembler code. This is what we use for the small common
4105 section. This approach is copied from ecoff.c. */
4106 static asection mips_elf_scom_section;
4107 static asymbol mips_elf_scom_symbol;
4108 static asymbol *mips_elf_scom_symbol_ptr;
4109
4110 /* MIPS ELF also uses an acommon section, which represents an
4111 allocated common symbol which may be overridden by a
4112 definition in a shared library. */
4113 static asection mips_elf_acom_section;
4114 static asymbol mips_elf_acom_symbol;
4115 static asymbol *mips_elf_acom_symbol_ptr;
4116
4117 /* Handle the special MIPS section numbers that a symbol may use.
4118 This is used for both the 32-bit and the 64-bit ABI. */
4119
4120 void
4121 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
4122 {
4123 elf_symbol_type *elfsym;
4124
4125 elfsym = (elf_symbol_type *) asym;
4126 switch (elfsym->internal_elf_sym.st_shndx)
4127 {
4128 case SHN_MIPS_ACOMMON:
4129 /* This section is used in a dynamically linked executable file.
4130 It is an allocated common section. The dynamic linker can
4131 either resolve these symbols to something in a shared
4132 library, or it can just leave them here. For our purposes,
4133 we can consider these symbols to be in a new section. */
4134 if (mips_elf_acom_section.name == NULL)
4135 {
4136 /* Initialize the acommon section. */
4137 mips_elf_acom_section.name = ".acommon";
4138 mips_elf_acom_section.flags = SEC_ALLOC;
4139 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4140 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4141 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4142 mips_elf_acom_symbol.name = ".acommon";
4143 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4144 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4145 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4146 }
4147 asym->section = &mips_elf_acom_section;
4148 break;
4149
4150 case SHN_COMMON:
4151 /* Common symbols less than the GP size are automatically
4152 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4153 if (asym->value > elf_gp_size (abfd)
4154 || IRIX_COMPAT (abfd) == ict_irix6)
4155 break;
4156 /* Fall through. */
4157 case SHN_MIPS_SCOMMON:
4158 if (mips_elf_scom_section.name == NULL)
4159 {
4160 /* Initialize the small common section. */
4161 mips_elf_scom_section.name = ".scommon";
4162 mips_elf_scom_section.flags = SEC_IS_COMMON;
4163 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4164 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4165 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4166 mips_elf_scom_symbol.name = ".scommon";
4167 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4168 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4169 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4170 }
4171 asym->section = &mips_elf_scom_section;
4172 asym->value = elfsym->internal_elf_sym.st_size;
4173 break;
4174
4175 case SHN_MIPS_SUNDEFINED:
4176 asym->section = bfd_und_section_ptr;
4177 break;
4178
4179 case SHN_MIPS_TEXT:
4180 {
4181 asection *section = bfd_get_section_by_name (abfd, ".text");
4182
4183 BFD_ASSERT (SGI_COMPAT (abfd));
4184 if (section != NULL)
4185 {
4186 asym->section = section;
4187 /* MIPS_TEXT is a bit special, the address is not an offset
4188 to the base of the .text section. So substract the section
4189 base address to make it an offset. */
4190 asym->value -= section->vma;
4191 }
4192 }
4193 break;
4194
4195 case SHN_MIPS_DATA:
4196 {
4197 asection *section = bfd_get_section_by_name (abfd, ".data");
4198
4199 BFD_ASSERT (SGI_COMPAT (abfd));
4200 if (section != NULL)
4201 {
4202 asym->section = section;
4203 /* MIPS_DATA is a bit special, the address is not an offset
4204 to the base of the .data section. So substract the section
4205 base address to make it an offset. */
4206 asym->value -= section->vma;
4207 }
4208 }
4209 break;
4210 }
4211 }
4212 \f
4213 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4214 relocations against two unnamed section symbols to resolve to the
4215 same address. For example, if we have code like:
4216
4217 lw $4,%got_disp(.data)($gp)
4218 lw $25,%got_disp(.text)($gp)
4219 jalr $25
4220
4221 then the linker will resolve both relocations to .data and the program
4222 will jump there rather than to .text.
4223
4224 We can work around this problem by giving names to local section symbols.
4225 This is also what the MIPSpro tools do. */
4226
4227 bfd_boolean
4228 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4229 {
4230 return SGI_COMPAT (abfd);
4231 }
4232 \f
4233 /* Work over a section just before writing it out. This routine is
4234 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4235 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4236 a better way. */
4237
4238 bfd_boolean
4239 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
4240 {
4241 if (hdr->sh_type == SHT_MIPS_REGINFO
4242 && hdr->sh_size > 0)
4243 {
4244 bfd_byte buf[4];
4245
4246 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4247 BFD_ASSERT (hdr->contents == NULL);
4248
4249 if (bfd_seek (abfd,
4250 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4251 SEEK_SET) != 0)
4252 return FALSE;
4253 H_PUT_32 (abfd, elf_gp (abfd), buf);
4254 if (bfd_bwrite (buf, 4, abfd) != 4)
4255 return FALSE;
4256 }
4257
4258 if (hdr->sh_type == SHT_MIPS_OPTIONS
4259 && hdr->bfd_section != NULL
4260 && mips_elf_section_data (hdr->bfd_section) != NULL
4261 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4262 {
4263 bfd_byte *contents, *l, *lend;
4264
4265 /* We stored the section contents in the tdata field in the
4266 set_section_contents routine. We save the section contents
4267 so that we don't have to read them again.
4268 At this point we know that elf_gp is set, so we can look
4269 through the section contents to see if there is an
4270 ODK_REGINFO structure. */
4271
4272 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4273 l = contents;
4274 lend = contents + hdr->sh_size;
4275 while (l + sizeof (Elf_External_Options) <= lend)
4276 {
4277 Elf_Internal_Options intopt;
4278
4279 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4280 &intopt);
4281 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4282 {
4283 bfd_byte buf[8];
4284
4285 if (bfd_seek (abfd,
4286 (hdr->sh_offset
4287 + (l - contents)
4288 + sizeof (Elf_External_Options)
4289 + (sizeof (Elf64_External_RegInfo) - 8)),
4290 SEEK_SET) != 0)
4291 return FALSE;
4292 H_PUT_64 (abfd, elf_gp (abfd), buf);
4293 if (bfd_bwrite (buf, 8, abfd) != 8)
4294 return FALSE;
4295 }
4296 else if (intopt.kind == ODK_REGINFO)
4297 {
4298 bfd_byte buf[4];
4299
4300 if (bfd_seek (abfd,
4301 (hdr->sh_offset
4302 + (l - contents)
4303 + sizeof (Elf_External_Options)
4304 + (sizeof (Elf32_External_RegInfo) - 4)),
4305 SEEK_SET) != 0)
4306 return FALSE;
4307 H_PUT_32 (abfd, elf_gp (abfd), buf);
4308 if (bfd_bwrite (buf, 4, abfd) != 4)
4309 return FALSE;
4310 }
4311 l += intopt.size;
4312 }
4313 }
4314
4315 if (hdr->bfd_section != NULL)
4316 {
4317 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4318
4319 if (strcmp (name, ".sdata") == 0
4320 || strcmp (name, ".lit8") == 0
4321 || strcmp (name, ".lit4") == 0)
4322 {
4323 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4324 hdr->sh_type = SHT_PROGBITS;
4325 }
4326 else if (strcmp (name, ".sbss") == 0)
4327 {
4328 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4329 hdr->sh_type = SHT_NOBITS;
4330 }
4331 else if (strcmp (name, ".srdata") == 0)
4332 {
4333 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4334 hdr->sh_type = SHT_PROGBITS;
4335 }
4336 else if (strcmp (name, ".compact_rel") == 0)
4337 {
4338 hdr->sh_flags = 0;
4339 hdr->sh_type = SHT_PROGBITS;
4340 }
4341 else if (strcmp (name, ".rtproc") == 0)
4342 {
4343 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4344 {
4345 unsigned int adjust;
4346
4347 adjust = hdr->sh_size % hdr->sh_addralign;
4348 if (adjust != 0)
4349 hdr->sh_size += hdr->sh_addralign - adjust;
4350 }
4351 }
4352 }
4353
4354 return TRUE;
4355 }
4356
4357 /* Handle a MIPS specific section when reading an object file. This
4358 is called when elfcode.h finds a section with an unknown type.
4359 This routine supports both the 32-bit and 64-bit ELF ABI.
4360
4361 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4362 how to. */
4363
4364 bfd_boolean
4365 _bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4366 const char *name)
4367 {
4368 flagword flags = 0;
4369
4370 /* There ought to be a place to keep ELF backend specific flags, but
4371 at the moment there isn't one. We just keep track of the
4372 sections by their name, instead. Fortunately, the ABI gives
4373 suggested names for all the MIPS specific sections, so we will
4374 probably get away with this. */
4375 switch (hdr->sh_type)
4376 {
4377 case SHT_MIPS_LIBLIST:
4378 if (strcmp (name, ".liblist") != 0)
4379 return FALSE;
4380 break;
4381 case SHT_MIPS_MSYM:
4382 if (strcmp (name, ".msym") != 0)
4383 return FALSE;
4384 break;
4385 case SHT_MIPS_CONFLICT:
4386 if (strcmp (name, ".conflict") != 0)
4387 return FALSE;
4388 break;
4389 case SHT_MIPS_GPTAB:
4390 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4391 return FALSE;
4392 break;
4393 case SHT_MIPS_UCODE:
4394 if (strcmp (name, ".ucode") != 0)
4395 return FALSE;
4396 break;
4397 case SHT_MIPS_DEBUG:
4398 if (strcmp (name, ".mdebug") != 0)
4399 return FALSE;
4400 flags = SEC_DEBUGGING;
4401 break;
4402 case SHT_MIPS_REGINFO:
4403 if (strcmp (name, ".reginfo") != 0
4404 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4405 return FALSE;
4406 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4407 break;
4408 case SHT_MIPS_IFACE:
4409 if (strcmp (name, ".MIPS.interfaces") != 0)
4410 return FALSE;
4411 break;
4412 case SHT_MIPS_CONTENT:
4413 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4414 return FALSE;
4415 break;
4416 case SHT_MIPS_OPTIONS:
4417 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4418 return FALSE;
4419 break;
4420 case SHT_MIPS_DWARF:
4421 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4422 return FALSE;
4423 break;
4424 case SHT_MIPS_SYMBOL_LIB:
4425 if (strcmp (name, ".MIPS.symlib") != 0)
4426 return FALSE;
4427 break;
4428 case SHT_MIPS_EVENTS:
4429 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4430 && strncmp (name, ".MIPS.post_rel",
4431 sizeof ".MIPS.post_rel" - 1) != 0)
4432 return FALSE;
4433 break;
4434 default:
4435 return FALSE;
4436 }
4437
4438 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4439 return FALSE;
4440
4441 if (flags)
4442 {
4443 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4444 (bfd_get_section_flags (abfd,
4445 hdr->bfd_section)
4446 | flags)))
4447 return FALSE;
4448 }
4449
4450 /* FIXME: We should record sh_info for a .gptab section. */
4451
4452 /* For a .reginfo section, set the gp value in the tdata information
4453 from the contents of this section. We need the gp value while
4454 processing relocs, so we just get it now. The .reginfo section
4455 is not used in the 64-bit MIPS ELF ABI. */
4456 if (hdr->sh_type == SHT_MIPS_REGINFO)
4457 {
4458 Elf32_External_RegInfo ext;
4459 Elf32_RegInfo s;
4460
4461 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4462 &ext, 0, sizeof ext))
4463 return FALSE;
4464 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4465 elf_gp (abfd) = s.ri_gp_value;
4466 }
4467
4468 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4469 set the gp value based on what we find. We may see both
4470 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4471 they should agree. */
4472 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4473 {
4474 bfd_byte *contents, *l, *lend;
4475
4476 contents = bfd_malloc (hdr->sh_size);
4477 if (contents == NULL)
4478 return FALSE;
4479 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4480 0, hdr->sh_size))
4481 {
4482 free (contents);
4483 return FALSE;
4484 }
4485 l = contents;
4486 lend = contents + hdr->sh_size;
4487 while (l + sizeof (Elf_External_Options) <= lend)
4488 {
4489 Elf_Internal_Options intopt;
4490
4491 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4492 &intopt);
4493 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4494 {
4495 Elf64_Internal_RegInfo intreg;
4496
4497 bfd_mips_elf64_swap_reginfo_in
4498 (abfd,
4499 ((Elf64_External_RegInfo *)
4500 (l + sizeof (Elf_External_Options))),
4501 &intreg);
4502 elf_gp (abfd) = intreg.ri_gp_value;
4503 }
4504 else if (intopt.kind == ODK_REGINFO)
4505 {
4506 Elf32_RegInfo intreg;
4507
4508 bfd_mips_elf32_swap_reginfo_in
4509 (abfd,
4510 ((Elf32_External_RegInfo *)
4511 (l + sizeof (Elf_External_Options))),
4512 &intreg);
4513 elf_gp (abfd) = intreg.ri_gp_value;
4514 }
4515 l += intopt.size;
4516 }
4517 free (contents);
4518 }
4519
4520 return TRUE;
4521 }
4522
4523 /* Set the correct type for a MIPS ELF section. We do this by the
4524 section name, which is a hack, but ought to work. This routine is
4525 used by both the 32-bit and the 64-bit ABI. */
4526
4527 bfd_boolean
4528 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
4529 {
4530 register const char *name;
4531
4532 name = bfd_get_section_name (abfd, sec);
4533
4534 if (strcmp (name, ".liblist") == 0)
4535 {
4536 hdr->sh_type = SHT_MIPS_LIBLIST;
4537 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
4538 /* The sh_link field is set in final_write_processing. */
4539 }
4540 else if (strcmp (name, ".conflict") == 0)
4541 hdr->sh_type = SHT_MIPS_CONFLICT;
4542 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4543 {
4544 hdr->sh_type = SHT_MIPS_GPTAB;
4545 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4546 /* The sh_info field is set in final_write_processing. */
4547 }
4548 else if (strcmp (name, ".ucode") == 0)
4549 hdr->sh_type = SHT_MIPS_UCODE;
4550 else if (strcmp (name, ".mdebug") == 0)
4551 {
4552 hdr->sh_type = SHT_MIPS_DEBUG;
4553 /* In a shared object on IRIX 5.3, the .mdebug section has an
4554 entsize of 0. FIXME: Does this matter? */
4555 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4556 hdr->sh_entsize = 0;
4557 else
4558 hdr->sh_entsize = 1;
4559 }
4560 else if (strcmp (name, ".reginfo") == 0)
4561 {
4562 hdr->sh_type = SHT_MIPS_REGINFO;
4563 /* In a shared object on IRIX 5.3, the .reginfo section has an
4564 entsize of 0x18. FIXME: Does this matter? */
4565 if (SGI_COMPAT (abfd))
4566 {
4567 if ((abfd->flags & DYNAMIC) != 0)
4568 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4569 else
4570 hdr->sh_entsize = 1;
4571 }
4572 else
4573 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4574 }
4575 else if (SGI_COMPAT (abfd)
4576 && (strcmp (name, ".hash") == 0
4577 || strcmp (name, ".dynamic") == 0
4578 || strcmp (name, ".dynstr") == 0))
4579 {
4580 if (SGI_COMPAT (abfd))
4581 hdr->sh_entsize = 0;
4582 #if 0
4583 /* This isn't how the IRIX6 linker behaves. */
4584 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4585 #endif
4586 }
4587 else if (strcmp (name, ".got") == 0
4588 || strcmp (name, ".srdata") == 0
4589 || strcmp (name, ".sdata") == 0
4590 || strcmp (name, ".sbss") == 0
4591 || strcmp (name, ".lit4") == 0
4592 || strcmp (name, ".lit8") == 0)
4593 hdr->sh_flags |= SHF_MIPS_GPREL;
4594 else if (strcmp (name, ".MIPS.interfaces") == 0)
4595 {
4596 hdr->sh_type = SHT_MIPS_IFACE;
4597 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4598 }
4599 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4600 {
4601 hdr->sh_type = SHT_MIPS_CONTENT;
4602 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4603 /* The sh_info field is set in final_write_processing. */
4604 }
4605 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4606 {
4607 hdr->sh_type = SHT_MIPS_OPTIONS;
4608 hdr->sh_entsize = 1;
4609 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4610 }
4611 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4612 hdr->sh_type = SHT_MIPS_DWARF;
4613 else if (strcmp (name, ".MIPS.symlib") == 0)
4614 {
4615 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4616 /* The sh_link and sh_info fields are set in
4617 final_write_processing. */
4618 }
4619 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4620 || strncmp (name, ".MIPS.post_rel",
4621 sizeof ".MIPS.post_rel" - 1) == 0)
4622 {
4623 hdr->sh_type = SHT_MIPS_EVENTS;
4624 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4625 /* The sh_link field is set in final_write_processing. */
4626 }
4627 else if (strcmp (name, ".msym") == 0)
4628 {
4629 hdr->sh_type = SHT_MIPS_MSYM;
4630 hdr->sh_flags |= SHF_ALLOC;
4631 hdr->sh_entsize = 8;
4632 }
4633
4634 /* The generic elf_fake_sections will set up REL_HDR using the default
4635 kind of relocations. We used to set up a second header for the
4636 non-default kind of relocations here, but only NewABI would use
4637 these, and the IRIX ld doesn't like resulting empty RELA sections.
4638 Thus we create those header only on demand now. */
4639
4640 return TRUE;
4641 }
4642
4643 /* Given a BFD section, try to locate the corresponding ELF section
4644 index. This is used by both the 32-bit and the 64-bit ABI.
4645 Actually, it's not clear to me that the 64-bit ABI supports these,
4646 but for non-PIC objects we will certainly want support for at least
4647 the .scommon section. */
4648
4649 bfd_boolean
4650 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4651 asection *sec, int *retval)
4652 {
4653 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4654 {
4655 *retval = SHN_MIPS_SCOMMON;
4656 return TRUE;
4657 }
4658 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4659 {
4660 *retval = SHN_MIPS_ACOMMON;
4661 return TRUE;
4662 }
4663 return FALSE;
4664 }
4665 \f
4666 /* Hook called by the linker routine which adds symbols from an object
4667 file. We must handle the special MIPS section numbers here. */
4668
4669 bfd_boolean
4670 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
4671 Elf_Internal_Sym *sym, const char **namep,
4672 flagword *flagsp ATTRIBUTE_UNUSED,
4673 asection **secp, bfd_vma *valp)
4674 {
4675 if (SGI_COMPAT (abfd)
4676 && (abfd->flags & DYNAMIC) != 0
4677 && strcmp (*namep, "_rld_new_interface") == 0)
4678 {
4679 /* Skip IRIX5 rld entry name. */
4680 *namep = NULL;
4681 return TRUE;
4682 }
4683
4684 switch (sym->st_shndx)
4685 {
4686 case SHN_COMMON:
4687 /* Common symbols less than the GP size are automatically
4688 treated as SHN_MIPS_SCOMMON symbols. */
4689 if (sym->st_size > elf_gp_size (abfd)
4690 || IRIX_COMPAT (abfd) == ict_irix6)
4691 break;
4692 /* Fall through. */
4693 case SHN_MIPS_SCOMMON:
4694 *secp = bfd_make_section_old_way (abfd, ".scommon");
4695 (*secp)->flags |= SEC_IS_COMMON;
4696 *valp = sym->st_size;
4697 break;
4698
4699 case SHN_MIPS_TEXT:
4700 /* This section is used in a shared object. */
4701 if (elf_tdata (abfd)->elf_text_section == NULL)
4702 {
4703 asymbol *elf_text_symbol;
4704 asection *elf_text_section;
4705 bfd_size_type amt = sizeof (asection);
4706
4707 elf_text_section = bfd_zalloc (abfd, amt);
4708 if (elf_text_section == NULL)
4709 return FALSE;
4710
4711 amt = sizeof (asymbol);
4712 elf_text_symbol = bfd_zalloc (abfd, amt);
4713 if (elf_text_symbol == NULL)
4714 return FALSE;
4715
4716 /* Initialize the section. */
4717
4718 elf_tdata (abfd)->elf_text_section = elf_text_section;
4719 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4720
4721 elf_text_section->symbol = elf_text_symbol;
4722 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4723
4724 elf_text_section->name = ".text";
4725 elf_text_section->flags = SEC_NO_FLAGS;
4726 elf_text_section->output_section = NULL;
4727 elf_text_section->owner = abfd;
4728 elf_text_symbol->name = ".text";
4729 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4730 elf_text_symbol->section = elf_text_section;
4731 }
4732 /* This code used to do *secp = bfd_und_section_ptr if
4733 info->shared. I don't know why, and that doesn't make sense,
4734 so I took it out. */
4735 *secp = elf_tdata (abfd)->elf_text_section;
4736 break;
4737
4738 case SHN_MIPS_ACOMMON:
4739 /* Fall through. XXX Can we treat this as allocated data? */
4740 case SHN_MIPS_DATA:
4741 /* This section is used in a shared object. */
4742 if (elf_tdata (abfd)->elf_data_section == NULL)
4743 {
4744 asymbol *elf_data_symbol;
4745 asection *elf_data_section;
4746 bfd_size_type amt = sizeof (asection);
4747
4748 elf_data_section = bfd_zalloc (abfd, amt);
4749 if (elf_data_section == NULL)
4750 return FALSE;
4751
4752 amt = sizeof (asymbol);
4753 elf_data_symbol = bfd_zalloc (abfd, amt);
4754 if (elf_data_symbol == NULL)
4755 return FALSE;
4756
4757 /* Initialize the section. */
4758
4759 elf_tdata (abfd)->elf_data_section = elf_data_section;
4760 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4761
4762 elf_data_section->symbol = elf_data_symbol;
4763 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4764
4765 elf_data_section->name = ".data";
4766 elf_data_section->flags = SEC_NO_FLAGS;
4767 elf_data_section->output_section = NULL;
4768 elf_data_section->owner = abfd;
4769 elf_data_symbol->name = ".data";
4770 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4771 elf_data_symbol->section = elf_data_section;
4772 }
4773 /* This code used to do *secp = bfd_und_section_ptr if
4774 info->shared. I don't know why, and that doesn't make sense,
4775 so I took it out. */
4776 *secp = elf_tdata (abfd)->elf_data_section;
4777 break;
4778
4779 case SHN_MIPS_SUNDEFINED:
4780 *secp = bfd_und_section_ptr;
4781 break;
4782 }
4783
4784 if (SGI_COMPAT (abfd)
4785 && ! info->shared
4786 && info->hash->creator == abfd->xvec
4787 && strcmp (*namep, "__rld_obj_head") == 0)
4788 {
4789 struct elf_link_hash_entry *h;
4790 struct bfd_link_hash_entry *bh;
4791
4792 /* Mark __rld_obj_head as dynamic. */
4793 bh = NULL;
4794 if (! (_bfd_generic_link_add_one_symbol
4795 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
4796 get_elf_backend_data (abfd)->collect, &bh)))
4797 return FALSE;
4798
4799 h = (struct elf_link_hash_entry *) bh;
4800 h->non_elf = 0;
4801 h->def_regular = 1;
4802 h->type = STT_OBJECT;
4803
4804 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4805 return FALSE;
4806
4807 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4808 }
4809
4810 /* If this is a mips16 text symbol, add 1 to the value to make it
4811 odd. This will cause something like .word SYM to come up with
4812 the right value when it is loaded into the PC. */
4813 if (sym->st_other == STO_MIPS16)
4814 ++*valp;
4815
4816 return TRUE;
4817 }
4818
4819 /* This hook function is called before the linker writes out a global
4820 symbol. We mark symbols as small common if appropriate. This is
4821 also where we undo the increment of the value for a mips16 symbol. */
4822
4823 bfd_boolean
4824 _bfd_mips_elf_link_output_symbol_hook
4825 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4826 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
4827 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
4828 {
4829 /* If we see a common symbol, which implies a relocatable link, then
4830 if a symbol was small common in an input file, mark it as small
4831 common in the output file. */
4832 if (sym->st_shndx == SHN_COMMON
4833 && strcmp (input_sec->name, ".scommon") == 0)
4834 sym->st_shndx = SHN_MIPS_SCOMMON;
4835
4836 if (sym->st_other == STO_MIPS16)
4837 sym->st_value &= ~1;
4838
4839 return TRUE;
4840 }
4841 \f
4842 /* Functions for the dynamic linker. */
4843
4844 /* Create dynamic sections when linking against a dynamic object. */
4845
4846 bfd_boolean
4847 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
4848 {
4849 struct elf_link_hash_entry *h;
4850 struct bfd_link_hash_entry *bh;
4851 flagword flags;
4852 register asection *s;
4853 const char * const *namep;
4854
4855 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4856 | SEC_LINKER_CREATED | SEC_READONLY);
4857
4858 /* Mips ABI requests the .dynamic section to be read only. */
4859 s = bfd_get_section_by_name (abfd, ".dynamic");
4860 if (s != NULL)
4861 {
4862 if (! bfd_set_section_flags (abfd, s, flags))
4863 return FALSE;
4864 }
4865
4866 /* We need to create .got section. */
4867 if (! mips_elf_create_got_section (abfd, info, FALSE))
4868 return FALSE;
4869
4870 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4871 return FALSE;
4872
4873 /* Create .stub section. */
4874 if (bfd_get_section_by_name (abfd,
4875 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4876 {
4877 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4878 if (s == NULL
4879 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4880 || ! bfd_set_section_alignment (abfd, s,
4881 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4882 return FALSE;
4883 }
4884
4885 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4886 && !info->shared
4887 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4888 {
4889 s = bfd_make_section (abfd, ".rld_map");
4890 if (s == NULL
4891 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4892 || ! bfd_set_section_alignment (abfd, s,
4893 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4894 return FALSE;
4895 }
4896
4897 /* On IRIX5, we adjust add some additional symbols and change the
4898 alignments of several sections. There is no ABI documentation
4899 indicating that this is necessary on IRIX6, nor any evidence that
4900 the linker takes such action. */
4901 if (IRIX_COMPAT (abfd) == ict_irix5)
4902 {
4903 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4904 {
4905 bh = NULL;
4906 if (! (_bfd_generic_link_add_one_symbol
4907 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
4908 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4909 return FALSE;
4910
4911 h = (struct elf_link_hash_entry *) bh;
4912 h->non_elf = 0;
4913 h->def_regular = 1;
4914 h->type = STT_SECTION;
4915
4916 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4917 return FALSE;
4918 }
4919
4920 /* We need to create a .compact_rel section. */
4921 if (SGI_COMPAT (abfd))
4922 {
4923 if (!mips_elf_create_compact_rel_section (abfd, info))
4924 return FALSE;
4925 }
4926
4927 /* Change alignments of some sections. */
4928 s = bfd_get_section_by_name (abfd, ".hash");
4929 if (s != NULL)
4930 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4931 s = bfd_get_section_by_name (abfd, ".dynsym");
4932 if (s != NULL)
4933 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4934 s = bfd_get_section_by_name (abfd, ".dynstr");
4935 if (s != NULL)
4936 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4937 s = bfd_get_section_by_name (abfd, ".reginfo");
4938 if (s != NULL)
4939 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4940 s = bfd_get_section_by_name (abfd, ".dynamic");
4941 if (s != NULL)
4942 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4943 }
4944
4945 if (!info->shared)
4946 {
4947 const char *name;
4948
4949 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4950 bh = NULL;
4951 if (!(_bfd_generic_link_add_one_symbol
4952 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
4953 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4954 return FALSE;
4955
4956 h = (struct elf_link_hash_entry *) bh;
4957 h->non_elf = 0;
4958 h->def_regular = 1;
4959 h->type = STT_SECTION;
4960
4961 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4962 return FALSE;
4963
4964 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4965 {
4966 /* __rld_map is a four byte word located in the .data section
4967 and is filled in by the rtld to contain a pointer to
4968 the _r_debug structure. Its symbol value will be set in
4969 _bfd_mips_elf_finish_dynamic_symbol. */
4970 s = bfd_get_section_by_name (abfd, ".rld_map");
4971 BFD_ASSERT (s != NULL);
4972
4973 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
4974 bh = NULL;
4975 if (!(_bfd_generic_link_add_one_symbol
4976 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
4977 get_elf_backend_data (abfd)->collect, &bh)))
4978 return FALSE;
4979
4980 h = (struct elf_link_hash_entry *) bh;
4981 h->non_elf = 0;
4982 h->def_regular = 1;
4983 h->type = STT_OBJECT;
4984
4985 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4986 return FALSE;
4987 }
4988 }
4989
4990 return TRUE;
4991 }
4992 \f
4993 /* Look through the relocs for a section during the first phase, and
4994 allocate space in the global offset table. */
4995
4996 bfd_boolean
4997 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4998 asection *sec, const Elf_Internal_Rela *relocs)
4999 {
5000 const char *name;
5001 bfd *dynobj;
5002 Elf_Internal_Shdr *symtab_hdr;
5003 struct elf_link_hash_entry **sym_hashes;
5004 struct mips_got_info *g;
5005 size_t extsymoff;
5006 const Elf_Internal_Rela *rel;
5007 const Elf_Internal_Rela *rel_end;
5008 asection *sgot;
5009 asection *sreloc;
5010 const struct elf_backend_data *bed;
5011
5012 if (info->relocatable)
5013 return TRUE;
5014
5015 dynobj = elf_hash_table (info)->dynobj;
5016 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5017 sym_hashes = elf_sym_hashes (abfd);
5018 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5019
5020 /* Check for the mips16 stub sections. */
5021
5022 name = bfd_get_section_name (abfd, sec);
5023 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5024 {
5025 unsigned long r_symndx;
5026
5027 /* Look at the relocation information to figure out which symbol
5028 this is for. */
5029
5030 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5031
5032 if (r_symndx < extsymoff
5033 || sym_hashes[r_symndx - extsymoff] == NULL)
5034 {
5035 asection *o;
5036
5037 /* This stub is for a local symbol. This stub will only be
5038 needed if there is some relocation in this BFD, other
5039 than a 16 bit function call, which refers to this symbol. */
5040 for (o = abfd->sections; o != NULL; o = o->next)
5041 {
5042 Elf_Internal_Rela *sec_relocs;
5043 const Elf_Internal_Rela *r, *rend;
5044
5045 /* We can ignore stub sections when looking for relocs. */
5046 if ((o->flags & SEC_RELOC) == 0
5047 || o->reloc_count == 0
5048 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5049 sizeof FN_STUB - 1) == 0
5050 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5051 sizeof CALL_STUB - 1) == 0
5052 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5053 sizeof CALL_FP_STUB - 1) == 0)
5054 continue;
5055
5056 sec_relocs
5057 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
5058 info->keep_memory);
5059 if (sec_relocs == NULL)
5060 return FALSE;
5061
5062 rend = sec_relocs + o->reloc_count;
5063 for (r = sec_relocs; r < rend; r++)
5064 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5065 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5066 break;
5067
5068 if (elf_section_data (o)->relocs != sec_relocs)
5069 free (sec_relocs);
5070
5071 if (r < rend)
5072 break;
5073 }
5074
5075 if (o == NULL)
5076 {
5077 /* There is no non-call reloc for this stub, so we do
5078 not need it. Since this function is called before
5079 the linker maps input sections to output sections, we
5080 can easily discard it by setting the SEC_EXCLUDE
5081 flag. */
5082 sec->flags |= SEC_EXCLUDE;
5083 return TRUE;
5084 }
5085
5086 /* Record this stub in an array of local symbol stubs for
5087 this BFD. */
5088 if (elf_tdata (abfd)->local_stubs == NULL)
5089 {
5090 unsigned long symcount;
5091 asection **n;
5092 bfd_size_type amt;
5093
5094 if (elf_bad_symtab (abfd))
5095 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5096 else
5097 symcount = symtab_hdr->sh_info;
5098 amt = symcount * sizeof (asection *);
5099 n = bfd_zalloc (abfd, amt);
5100 if (n == NULL)
5101 return FALSE;
5102 elf_tdata (abfd)->local_stubs = n;
5103 }
5104
5105 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5106
5107 /* We don't need to set mips16_stubs_seen in this case.
5108 That flag is used to see whether we need to look through
5109 the global symbol table for stubs. We don't need to set
5110 it here, because we just have a local stub. */
5111 }
5112 else
5113 {
5114 struct mips_elf_link_hash_entry *h;
5115
5116 h = ((struct mips_elf_link_hash_entry *)
5117 sym_hashes[r_symndx - extsymoff]);
5118
5119 /* H is the symbol this stub is for. */
5120
5121 h->fn_stub = sec;
5122 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5123 }
5124 }
5125 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5126 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5127 {
5128 unsigned long r_symndx;
5129 struct mips_elf_link_hash_entry *h;
5130 asection **loc;
5131
5132 /* Look at the relocation information to figure out which symbol
5133 this is for. */
5134
5135 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5136
5137 if (r_symndx < extsymoff
5138 || sym_hashes[r_symndx - extsymoff] == NULL)
5139 {
5140 /* This stub was actually built for a static symbol defined
5141 in the same file. We assume that all static symbols in
5142 mips16 code are themselves mips16, so we can simply
5143 discard this stub. Since this function is called before
5144 the linker maps input sections to output sections, we can
5145 easily discard it by setting the SEC_EXCLUDE flag. */
5146 sec->flags |= SEC_EXCLUDE;
5147 return TRUE;
5148 }
5149
5150 h = ((struct mips_elf_link_hash_entry *)
5151 sym_hashes[r_symndx - extsymoff]);
5152
5153 /* H is the symbol this stub is for. */
5154
5155 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5156 loc = &h->call_fp_stub;
5157 else
5158 loc = &h->call_stub;
5159
5160 /* If we already have an appropriate stub for this function, we
5161 don't need another one, so we can discard this one. Since
5162 this function is called before the linker maps input sections
5163 to output sections, we can easily discard it by setting the
5164 SEC_EXCLUDE flag. We can also discard this section if we
5165 happen to already know that this is a mips16 function; it is
5166 not necessary to check this here, as it is checked later, but
5167 it is slightly faster to check now. */
5168 if (*loc != NULL || h->root.other == STO_MIPS16)
5169 {
5170 sec->flags |= SEC_EXCLUDE;
5171 return TRUE;
5172 }
5173
5174 *loc = sec;
5175 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5176 }
5177
5178 if (dynobj == NULL)
5179 {
5180 sgot = NULL;
5181 g = NULL;
5182 }
5183 else
5184 {
5185 sgot = mips_elf_got_section (dynobj, FALSE);
5186 if (sgot == NULL)
5187 g = NULL;
5188 else
5189 {
5190 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5191 g = mips_elf_section_data (sgot)->u.got_info;
5192 BFD_ASSERT (g != NULL);
5193 }
5194 }
5195
5196 sreloc = NULL;
5197 bed = get_elf_backend_data (abfd);
5198 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5199 for (rel = relocs; rel < rel_end; ++rel)
5200 {
5201 unsigned long r_symndx;
5202 unsigned int r_type;
5203 struct elf_link_hash_entry *h;
5204
5205 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5206 r_type = ELF_R_TYPE (abfd, rel->r_info);
5207
5208 if (r_symndx < extsymoff)
5209 h = NULL;
5210 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5211 {
5212 (*_bfd_error_handler)
5213 (_("%B: Malformed reloc detected for section %s"),
5214 abfd, name);
5215 bfd_set_error (bfd_error_bad_value);
5216 return FALSE;
5217 }
5218 else
5219 {
5220 h = sym_hashes[r_symndx - extsymoff];
5221
5222 /* This may be an indirect symbol created because of a version. */
5223 if (h != NULL)
5224 {
5225 while (h->root.type == bfd_link_hash_indirect)
5226 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5227 }
5228 }
5229
5230 /* Some relocs require a global offset table. */
5231 if (dynobj == NULL || sgot == NULL)
5232 {
5233 switch (r_type)
5234 {
5235 case R_MIPS_GOT16:
5236 case R_MIPS_CALL16:
5237 case R_MIPS_CALL_HI16:
5238 case R_MIPS_CALL_LO16:
5239 case R_MIPS_GOT_HI16:
5240 case R_MIPS_GOT_LO16:
5241 case R_MIPS_GOT_PAGE:
5242 case R_MIPS_GOT_OFST:
5243 case R_MIPS_GOT_DISP:
5244 if (dynobj == NULL)
5245 elf_hash_table (info)->dynobj = dynobj = abfd;
5246 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5247 return FALSE;
5248 g = mips_elf_got_info (dynobj, &sgot);
5249 break;
5250
5251 case R_MIPS_32:
5252 case R_MIPS_REL32:
5253 case R_MIPS_64:
5254 if (dynobj == NULL
5255 && (info->shared || h != NULL)
5256 && (sec->flags & SEC_ALLOC) != 0)
5257 elf_hash_table (info)->dynobj = dynobj = abfd;
5258 break;
5259
5260 default:
5261 break;
5262 }
5263 }
5264
5265 if (!h && (r_type == R_MIPS_CALL_LO16
5266 || r_type == R_MIPS_GOT_LO16
5267 || r_type == R_MIPS_GOT_DISP))
5268 {
5269 /* We may need a local GOT entry for this relocation. We
5270 don't count R_MIPS_GOT_PAGE because we can estimate the
5271 maximum number of pages needed by looking at the size of
5272 the segment. Similar comments apply to R_MIPS_GOT16 and
5273 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5274 R_MIPS_CALL_HI16 because these are always followed by an
5275 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5276 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5277 rel->r_addend, g))
5278 return FALSE;
5279 }
5280
5281 switch (r_type)
5282 {
5283 case R_MIPS_CALL16:
5284 if (h == NULL)
5285 {
5286 (*_bfd_error_handler)
5287 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
5288 abfd, (unsigned long) rel->r_offset);
5289 bfd_set_error (bfd_error_bad_value);
5290 return FALSE;
5291 }
5292 /* Fall through. */
5293
5294 case R_MIPS_CALL_HI16:
5295 case R_MIPS_CALL_LO16:
5296 if (h != NULL)
5297 {
5298 /* This symbol requires a global offset table entry. */
5299 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5300 return FALSE;
5301
5302 /* We need a stub, not a plt entry for the undefined
5303 function. But we record it as if it needs plt. See
5304 _bfd_elf_adjust_dynamic_symbol. */
5305 h->needs_plt = 1;
5306 h->type = STT_FUNC;
5307 }
5308 break;
5309
5310 case R_MIPS_GOT_PAGE:
5311 /* If this is a global, overridable symbol, GOT_PAGE will
5312 decay to GOT_DISP, so we'll need a GOT entry for it. */
5313 if (h == NULL)
5314 break;
5315 else
5316 {
5317 struct mips_elf_link_hash_entry *hmips =
5318 (struct mips_elf_link_hash_entry *) h;
5319
5320 while (hmips->root.root.type == bfd_link_hash_indirect
5321 || hmips->root.root.type == bfd_link_hash_warning)
5322 hmips = (struct mips_elf_link_hash_entry *)
5323 hmips->root.root.u.i.link;
5324
5325 if (hmips->root.def_regular
5326 && ! (info->shared && ! info->symbolic
5327 && ! hmips->root.forced_local))
5328 break;
5329 }
5330 /* Fall through. */
5331
5332 case R_MIPS_GOT16:
5333 case R_MIPS_GOT_HI16:
5334 case R_MIPS_GOT_LO16:
5335 case R_MIPS_GOT_DISP:
5336 /* This symbol requires a global offset table entry. */
5337 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5338 return FALSE;
5339 break;
5340
5341 case R_MIPS_32:
5342 case R_MIPS_REL32:
5343 case R_MIPS_64:
5344 if ((info->shared || h != NULL)
5345 && (sec->flags & SEC_ALLOC) != 0)
5346 {
5347 if (sreloc == NULL)
5348 {
5349 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5350 if (sreloc == NULL)
5351 return FALSE;
5352 }
5353 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5354 if (info->shared)
5355 {
5356 /* When creating a shared object, we must copy these
5357 reloc types into the output file as R_MIPS_REL32
5358 relocs. We make room for this reloc in the
5359 .rel.dyn reloc section. */
5360 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5361 if ((sec->flags & MIPS_READONLY_SECTION)
5362 == MIPS_READONLY_SECTION)
5363 /* We tell the dynamic linker that there are
5364 relocations against the text segment. */
5365 info->flags |= DF_TEXTREL;
5366 }
5367 else
5368 {
5369 struct mips_elf_link_hash_entry *hmips;
5370
5371 /* We only need to copy this reloc if the symbol is
5372 defined in a dynamic object. */
5373 hmips = (struct mips_elf_link_hash_entry *) h;
5374 ++hmips->possibly_dynamic_relocs;
5375 if ((sec->flags & MIPS_READONLY_SECTION)
5376 == MIPS_READONLY_SECTION)
5377 /* We need it to tell the dynamic linker if there
5378 are relocations against the text segment. */
5379 hmips->readonly_reloc = TRUE;
5380 }
5381
5382 /* Even though we don't directly need a GOT entry for
5383 this symbol, a symbol must have a dynamic symbol
5384 table index greater that DT_MIPS_GOTSYM if there are
5385 dynamic relocations against it. */
5386 if (h != NULL)
5387 {
5388 if (dynobj == NULL)
5389 elf_hash_table (info)->dynobj = dynobj = abfd;
5390 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5391 return FALSE;
5392 g = mips_elf_got_info (dynobj, &sgot);
5393 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5394 return FALSE;
5395 }
5396 }
5397
5398 if (SGI_COMPAT (abfd))
5399 mips_elf_hash_table (info)->compact_rel_size +=
5400 sizeof (Elf32_External_crinfo);
5401 break;
5402
5403 case R_MIPS_26:
5404 case R_MIPS_GPREL16:
5405 case R_MIPS_LITERAL:
5406 case R_MIPS_GPREL32:
5407 if (SGI_COMPAT (abfd))
5408 mips_elf_hash_table (info)->compact_rel_size +=
5409 sizeof (Elf32_External_crinfo);
5410 break;
5411
5412 /* This relocation describes the C++ object vtable hierarchy.
5413 Reconstruct it for later use during GC. */
5414 case R_MIPS_GNU_VTINHERIT:
5415 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5416 return FALSE;
5417 break;
5418
5419 /* This relocation describes which C++ vtable entries are actually
5420 used. Record for later use during GC. */
5421 case R_MIPS_GNU_VTENTRY:
5422 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5423 return FALSE;
5424 break;
5425
5426 default:
5427 break;
5428 }
5429
5430 /* We must not create a stub for a symbol that has relocations
5431 related to taking the function's address. */
5432 switch (r_type)
5433 {
5434 default:
5435 if (h != NULL)
5436 {
5437 struct mips_elf_link_hash_entry *mh;
5438
5439 mh = (struct mips_elf_link_hash_entry *) h;
5440 mh->no_fn_stub = TRUE;
5441 }
5442 break;
5443 case R_MIPS_CALL16:
5444 case R_MIPS_CALL_HI16:
5445 case R_MIPS_CALL_LO16:
5446 case R_MIPS_JALR:
5447 break;
5448 }
5449
5450 /* If this reloc is not a 16 bit call, and it has a global
5451 symbol, then we will need the fn_stub if there is one.
5452 References from a stub section do not count. */
5453 if (h != NULL
5454 && r_type != R_MIPS16_26
5455 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5456 sizeof FN_STUB - 1) != 0
5457 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5458 sizeof CALL_STUB - 1) != 0
5459 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5460 sizeof CALL_FP_STUB - 1) != 0)
5461 {
5462 struct mips_elf_link_hash_entry *mh;
5463
5464 mh = (struct mips_elf_link_hash_entry *) h;
5465 mh->need_fn_stub = TRUE;
5466 }
5467 }
5468
5469 return TRUE;
5470 }
5471 \f
5472 bfd_boolean
5473 _bfd_mips_relax_section (bfd *abfd, asection *sec,
5474 struct bfd_link_info *link_info,
5475 bfd_boolean *again)
5476 {
5477 Elf_Internal_Rela *internal_relocs;
5478 Elf_Internal_Rela *irel, *irelend;
5479 Elf_Internal_Shdr *symtab_hdr;
5480 bfd_byte *contents = NULL;
5481 size_t extsymoff;
5482 bfd_boolean changed_contents = FALSE;
5483 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5484 Elf_Internal_Sym *isymbuf = NULL;
5485
5486 /* We are not currently changing any sizes, so only one pass. */
5487 *again = FALSE;
5488
5489 if (link_info->relocatable)
5490 return TRUE;
5491
5492 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
5493 link_info->keep_memory);
5494 if (internal_relocs == NULL)
5495 return TRUE;
5496
5497 irelend = internal_relocs + sec->reloc_count
5498 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5499 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5500 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5501
5502 for (irel = internal_relocs; irel < irelend; irel++)
5503 {
5504 bfd_vma symval;
5505 bfd_signed_vma sym_offset;
5506 unsigned int r_type;
5507 unsigned long r_symndx;
5508 asection *sym_sec;
5509 unsigned long instruction;
5510
5511 /* Turn jalr into bgezal, and jr into beq, if they're marked
5512 with a JALR relocation, that indicate where they jump to.
5513 This saves some pipeline bubbles. */
5514 r_type = ELF_R_TYPE (abfd, irel->r_info);
5515 if (r_type != R_MIPS_JALR)
5516 continue;
5517
5518 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5519 /* Compute the address of the jump target. */
5520 if (r_symndx >= extsymoff)
5521 {
5522 struct mips_elf_link_hash_entry *h
5523 = ((struct mips_elf_link_hash_entry *)
5524 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5525
5526 while (h->root.root.type == bfd_link_hash_indirect
5527 || h->root.root.type == bfd_link_hash_warning)
5528 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5529
5530 /* If a symbol is undefined, or if it may be overridden,
5531 skip it. */
5532 if (! ((h->root.root.type == bfd_link_hash_defined
5533 || h->root.root.type == bfd_link_hash_defweak)
5534 && h->root.root.u.def.section)
5535 || (link_info->shared && ! link_info->symbolic
5536 && !h->root.forced_local))
5537 continue;
5538
5539 sym_sec = h->root.root.u.def.section;
5540 if (sym_sec->output_section)
5541 symval = (h->root.root.u.def.value
5542 + sym_sec->output_section->vma
5543 + sym_sec->output_offset);
5544 else
5545 symval = h->root.root.u.def.value;
5546 }
5547 else
5548 {
5549 Elf_Internal_Sym *isym;
5550
5551 /* Read this BFD's symbols if we haven't done so already. */
5552 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5553 {
5554 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5555 if (isymbuf == NULL)
5556 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5557 symtab_hdr->sh_info, 0,
5558 NULL, NULL, NULL);
5559 if (isymbuf == NULL)
5560 goto relax_return;
5561 }
5562
5563 isym = isymbuf + r_symndx;
5564 if (isym->st_shndx == SHN_UNDEF)
5565 continue;
5566 else if (isym->st_shndx == SHN_ABS)
5567 sym_sec = bfd_abs_section_ptr;
5568 else if (isym->st_shndx == SHN_COMMON)
5569 sym_sec = bfd_com_section_ptr;
5570 else
5571 sym_sec
5572 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5573 symval = isym->st_value
5574 + sym_sec->output_section->vma
5575 + sym_sec->output_offset;
5576 }
5577
5578 /* Compute branch offset, from delay slot of the jump to the
5579 branch target. */
5580 sym_offset = (symval + irel->r_addend)
5581 - (sec_start + irel->r_offset + 4);
5582
5583 /* Branch offset must be properly aligned. */
5584 if ((sym_offset & 3) != 0)
5585 continue;
5586
5587 sym_offset >>= 2;
5588
5589 /* Check that it's in range. */
5590 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5591 continue;
5592
5593 /* Get the section contents if we haven't done so already. */
5594 if (contents == NULL)
5595 {
5596 /* Get cached copy if it exists. */
5597 if (elf_section_data (sec)->this_hdr.contents != NULL)
5598 contents = elf_section_data (sec)->this_hdr.contents;
5599 else
5600 {
5601 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5602 goto relax_return;
5603 }
5604 }
5605
5606 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5607
5608 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5609 if ((instruction & 0xfc1fffff) == 0x0000f809)
5610 instruction = 0x04110000;
5611 /* If it was jr <reg>, turn it into b <target>. */
5612 else if ((instruction & 0xfc1fffff) == 0x00000008)
5613 instruction = 0x10000000;
5614 else
5615 continue;
5616
5617 instruction |= (sym_offset & 0xffff);
5618 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5619 changed_contents = TRUE;
5620 }
5621
5622 if (contents != NULL
5623 && elf_section_data (sec)->this_hdr.contents != contents)
5624 {
5625 if (!changed_contents && !link_info->keep_memory)
5626 free (contents);
5627 else
5628 {
5629 /* Cache the section contents for elf_link_input_bfd. */
5630 elf_section_data (sec)->this_hdr.contents = contents;
5631 }
5632 }
5633 return TRUE;
5634
5635 relax_return:
5636 if (contents != NULL
5637 && elf_section_data (sec)->this_hdr.contents != contents)
5638 free (contents);
5639 return FALSE;
5640 }
5641 \f
5642 /* Adjust a symbol defined by a dynamic object and referenced by a
5643 regular object. The current definition is in some section of the
5644 dynamic object, but we're not including those sections. We have to
5645 change the definition to something the rest of the link can
5646 understand. */
5647
5648 bfd_boolean
5649 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5650 struct elf_link_hash_entry *h)
5651 {
5652 bfd *dynobj;
5653 struct mips_elf_link_hash_entry *hmips;
5654 asection *s;
5655
5656 dynobj = elf_hash_table (info)->dynobj;
5657
5658 /* Make sure we know what is going on here. */
5659 BFD_ASSERT (dynobj != NULL
5660 && (h->needs_plt
5661 || h->u.weakdef != NULL
5662 || (h->def_dynamic
5663 && h->ref_regular
5664 && !h->def_regular)));
5665
5666 /* If this symbol is defined in a dynamic object, we need to copy
5667 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5668 file. */
5669 hmips = (struct mips_elf_link_hash_entry *) h;
5670 if (! info->relocatable
5671 && hmips->possibly_dynamic_relocs != 0
5672 && (h->root.type == bfd_link_hash_defweak
5673 || !h->def_regular))
5674 {
5675 mips_elf_allocate_dynamic_relocations (dynobj,
5676 hmips->possibly_dynamic_relocs);
5677 if (hmips->readonly_reloc)
5678 /* We tell the dynamic linker that there are relocations
5679 against the text segment. */
5680 info->flags |= DF_TEXTREL;
5681 }
5682
5683 /* For a function, create a stub, if allowed. */
5684 if (! hmips->no_fn_stub
5685 && h->needs_plt)
5686 {
5687 if (! elf_hash_table (info)->dynamic_sections_created)
5688 return TRUE;
5689
5690 /* If this symbol is not defined in a regular file, then set
5691 the symbol to the stub location. This is required to make
5692 function pointers compare as equal between the normal
5693 executable and the shared library. */
5694 if (!h->def_regular)
5695 {
5696 /* We need .stub section. */
5697 s = bfd_get_section_by_name (dynobj,
5698 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5699 BFD_ASSERT (s != NULL);
5700
5701 h->root.u.def.section = s;
5702 h->root.u.def.value = s->size;
5703
5704 /* XXX Write this stub address somewhere. */
5705 h->plt.offset = s->size;
5706
5707 /* Make room for this stub code. */
5708 s->size += MIPS_FUNCTION_STUB_SIZE;
5709
5710 /* The last half word of the stub will be filled with the index
5711 of this symbol in .dynsym section. */
5712 return TRUE;
5713 }
5714 }
5715 else if ((h->type == STT_FUNC)
5716 && !h->needs_plt)
5717 {
5718 /* This will set the entry for this symbol in the GOT to 0, and
5719 the dynamic linker will take care of this. */
5720 h->root.u.def.value = 0;
5721 return TRUE;
5722 }
5723
5724 /* If this is a weak symbol, and there is a real definition, the
5725 processor independent code will have arranged for us to see the
5726 real definition first, and we can just use the same value. */
5727 if (h->u.weakdef != NULL)
5728 {
5729 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5730 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5731 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5732 h->root.u.def.value = h->u.weakdef->root.u.def.value;
5733 return TRUE;
5734 }
5735
5736 /* This is a reference to a symbol defined by a dynamic object which
5737 is not a function. */
5738
5739 return TRUE;
5740 }
5741 \f
5742 /* This function is called after all the input files have been read,
5743 and the input sections have been assigned to output sections. We
5744 check for any mips16 stub sections that we can discard. */
5745
5746 bfd_boolean
5747 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
5748 struct bfd_link_info *info)
5749 {
5750 asection *ri;
5751
5752 bfd *dynobj;
5753 asection *s;
5754 struct mips_got_info *g;
5755 int i;
5756 bfd_size_type loadable_size = 0;
5757 bfd_size_type local_gotno;
5758 bfd *sub;
5759
5760 /* The .reginfo section has a fixed size. */
5761 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5762 if (ri != NULL)
5763 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
5764
5765 if (! (info->relocatable
5766 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5767 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5768 mips_elf_check_mips16_stubs, NULL);
5769
5770 dynobj = elf_hash_table (info)->dynobj;
5771 if (dynobj == NULL)
5772 /* Relocatable links don't have it. */
5773 return TRUE;
5774
5775 g = mips_elf_got_info (dynobj, &s);
5776 if (s == NULL)
5777 return TRUE;
5778
5779 /* Calculate the total loadable size of the output. That
5780 will give us the maximum number of GOT_PAGE entries
5781 required. */
5782 for (sub = info->input_bfds; sub; sub = sub->link_next)
5783 {
5784 asection *subsection;
5785
5786 for (subsection = sub->sections;
5787 subsection;
5788 subsection = subsection->next)
5789 {
5790 if ((subsection->flags & SEC_ALLOC) == 0)
5791 continue;
5792 loadable_size += ((subsection->size + 0xf)
5793 &~ (bfd_size_type) 0xf);
5794 }
5795 }
5796
5797 /* There has to be a global GOT entry for every symbol with
5798 a dynamic symbol table index of DT_MIPS_GOTSYM or
5799 higher. Therefore, it make sense to put those symbols
5800 that need GOT entries at the end of the symbol table. We
5801 do that here. */
5802 if (! mips_elf_sort_hash_table (info, 1))
5803 return FALSE;
5804
5805 if (g->global_gotsym != NULL)
5806 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5807 else
5808 /* If there are no global symbols, or none requiring
5809 relocations, then GLOBAL_GOTSYM will be NULL. */
5810 i = 0;
5811
5812 /* In the worst case, we'll get one stub per dynamic symbol, plus
5813 one to account for the dummy entry at the end required by IRIX
5814 rld. */
5815 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5816
5817 /* Assume there are two loadable segments consisting of
5818 contiguous sections. Is 5 enough? */
5819 local_gotno = (loadable_size >> 16) + 5;
5820
5821 g->local_gotno += local_gotno;
5822 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5823
5824 g->global_gotno = i;
5825 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5826
5827 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5828 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5829 return FALSE;
5830
5831 return TRUE;
5832 }
5833
5834 /* Set the sizes of the dynamic sections. */
5835
5836 bfd_boolean
5837 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
5838 struct bfd_link_info *info)
5839 {
5840 bfd *dynobj;
5841 asection *s;
5842 bfd_boolean reltext;
5843
5844 dynobj = elf_hash_table (info)->dynobj;
5845 BFD_ASSERT (dynobj != NULL);
5846
5847 if (elf_hash_table (info)->dynamic_sections_created)
5848 {
5849 /* Set the contents of the .interp section to the interpreter. */
5850 if (info->executable)
5851 {
5852 s = bfd_get_section_by_name (dynobj, ".interp");
5853 BFD_ASSERT (s != NULL);
5854 s->size
5855 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5856 s->contents
5857 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5858 }
5859 }
5860
5861 /* The check_relocs and adjust_dynamic_symbol entry points have
5862 determined the sizes of the various dynamic sections. Allocate
5863 memory for them. */
5864 reltext = FALSE;
5865 for (s = dynobj->sections; s != NULL; s = s->next)
5866 {
5867 const char *name;
5868 bfd_boolean strip;
5869
5870 /* It's OK to base decisions on the section name, because none
5871 of the dynobj section names depend upon the input files. */
5872 name = bfd_get_section_name (dynobj, s);
5873
5874 if ((s->flags & SEC_LINKER_CREATED) == 0)
5875 continue;
5876
5877 strip = FALSE;
5878
5879 if (strncmp (name, ".rel", 4) == 0)
5880 {
5881 if (s->size == 0)
5882 {
5883 /* We only strip the section if the output section name
5884 has the same name. Otherwise, there might be several
5885 input sections for this output section. FIXME: This
5886 code is probably not needed these days anyhow, since
5887 the linker now does not create empty output sections. */
5888 if (s->output_section != NULL
5889 && strcmp (name,
5890 bfd_get_section_name (s->output_section->owner,
5891 s->output_section)) == 0)
5892 strip = TRUE;
5893 }
5894 else
5895 {
5896 const char *outname;
5897 asection *target;
5898
5899 /* If this relocation section applies to a read only
5900 section, then we probably need a DT_TEXTREL entry.
5901 If the relocation section is .rel.dyn, we always
5902 assert a DT_TEXTREL entry rather than testing whether
5903 there exists a relocation to a read only section or
5904 not. */
5905 outname = bfd_get_section_name (output_bfd,
5906 s->output_section);
5907 target = bfd_get_section_by_name (output_bfd, outname + 4);
5908 if ((target != NULL
5909 && (target->flags & SEC_READONLY) != 0
5910 && (target->flags & SEC_ALLOC) != 0)
5911 || strcmp (outname, ".rel.dyn") == 0)
5912 reltext = TRUE;
5913
5914 /* We use the reloc_count field as a counter if we need
5915 to copy relocs into the output file. */
5916 if (strcmp (name, ".rel.dyn") != 0)
5917 s->reloc_count = 0;
5918
5919 /* If combreloc is enabled, elf_link_sort_relocs() will
5920 sort relocations, but in a different way than we do,
5921 and before we're done creating relocations. Also, it
5922 will move them around between input sections'
5923 relocation's contents, so our sorting would be
5924 broken, so don't let it run. */
5925 info->combreloc = 0;
5926 }
5927 }
5928 else if (strncmp (name, ".got", 4) == 0)
5929 {
5930 /* _bfd_mips_elf_always_size_sections() has already done
5931 most of the work, but some symbols may have been mapped
5932 to versions that we must now resolve in the got_entries
5933 hash tables. */
5934 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5935 struct mips_got_info *g = gg;
5936 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5937 unsigned int needed_relocs = 0;
5938
5939 if (gg->next)
5940 {
5941 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5942 set_got_offset_arg.info = info;
5943
5944 mips_elf_resolve_final_got_entries (gg);
5945 for (g = gg->next; g && g->next != gg; g = g->next)
5946 {
5947 unsigned int save_assign;
5948
5949 mips_elf_resolve_final_got_entries (g);
5950
5951 /* Assign offsets to global GOT entries. */
5952 save_assign = g->assigned_gotno;
5953 g->assigned_gotno = g->local_gotno;
5954 set_got_offset_arg.g = g;
5955 set_got_offset_arg.needed_relocs = 0;
5956 htab_traverse (g->got_entries,
5957 mips_elf_set_global_got_offset,
5958 &set_got_offset_arg);
5959 needed_relocs += set_got_offset_arg.needed_relocs;
5960 BFD_ASSERT (g->assigned_gotno - g->local_gotno
5961 <= g->global_gotno);
5962
5963 g->assigned_gotno = save_assign;
5964 if (info->shared)
5965 {
5966 needed_relocs += g->local_gotno - g->assigned_gotno;
5967 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
5968 + g->next->global_gotno
5969 + MIPS_RESERVED_GOTNO);
5970 }
5971 }
5972
5973 if (needed_relocs)
5974 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
5975 }
5976 }
5977 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
5978 {
5979 /* IRIX rld assumes that the function stub isn't at the end
5980 of .text section. So put a dummy. XXX */
5981 s->size += MIPS_FUNCTION_STUB_SIZE;
5982 }
5983 else if (! info->shared
5984 && ! mips_elf_hash_table (info)->use_rld_obj_head
5985 && strncmp (name, ".rld_map", 8) == 0)
5986 {
5987 /* We add a room for __rld_map. It will be filled in by the
5988 rtld to contain a pointer to the _r_debug structure. */
5989 s->size += 4;
5990 }
5991 else if (SGI_COMPAT (output_bfd)
5992 && strncmp (name, ".compact_rel", 12) == 0)
5993 s->size += mips_elf_hash_table (info)->compact_rel_size;
5994 else if (strncmp (name, ".init", 5) != 0)
5995 {
5996 /* It's not one of our sections, so don't allocate space. */
5997 continue;
5998 }
5999
6000 if (strip)
6001 {
6002 _bfd_strip_section_from_output (info, s);
6003 continue;
6004 }
6005
6006 /* Allocate memory for the section contents. */
6007 s->contents = bfd_zalloc (dynobj, s->size);
6008 if (s->contents == NULL && s->size != 0)
6009 {
6010 bfd_set_error (bfd_error_no_memory);
6011 return FALSE;
6012 }
6013 }
6014
6015 if (elf_hash_table (info)->dynamic_sections_created)
6016 {
6017 /* Add some entries to the .dynamic section. We fill in the
6018 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6019 must add the entries now so that we get the correct size for
6020 the .dynamic section. The DT_DEBUG entry is filled in by the
6021 dynamic linker and used by the debugger. */
6022 if (! info->shared)
6023 {
6024 /* SGI object has the equivalence of DT_DEBUG in the
6025 DT_MIPS_RLD_MAP entry. */
6026 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6027 return FALSE;
6028 if (!SGI_COMPAT (output_bfd))
6029 {
6030 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6031 return FALSE;
6032 }
6033 }
6034 else
6035 {
6036 /* Shared libraries on traditional mips have DT_DEBUG. */
6037 if (!SGI_COMPAT (output_bfd))
6038 {
6039 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6040 return FALSE;
6041 }
6042 }
6043
6044 if (reltext && SGI_COMPAT (output_bfd))
6045 info->flags |= DF_TEXTREL;
6046
6047 if ((info->flags & DF_TEXTREL) != 0)
6048 {
6049 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6050 return FALSE;
6051 }
6052
6053 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6054 return FALSE;
6055
6056 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6057 {
6058 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6059 return FALSE;
6060
6061 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6062 return FALSE;
6063
6064 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6065 return FALSE;
6066 }
6067
6068 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6069 return FALSE;
6070
6071 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6072 return FALSE;
6073
6074 #if 0
6075 /* Time stamps in executable files are a bad idea. */
6076 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
6077 return FALSE;
6078 #endif
6079
6080 #if 0 /* FIXME */
6081 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
6082 return FALSE;
6083 #endif
6084
6085 #if 0 /* FIXME */
6086 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
6087 return FALSE;
6088 #endif
6089
6090 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6091 return FALSE;
6092
6093 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6094 return FALSE;
6095
6096 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6097 return FALSE;
6098
6099 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6100 return FALSE;
6101
6102 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6103 return FALSE;
6104
6105 if (IRIX_COMPAT (dynobj) == ict_irix5
6106 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6107 return FALSE;
6108
6109 if (IRIX_COMPAT (dynobj) == ict_irix6
6110 && (bfd_get_section_by_name
6111 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6112 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6113 return FALSE;
6114 }
6115
6116 return TRUE;
6117 }
6118 \f
6119 /* Relocate a MIPS ELF section. */
6120
6121 bfd_boolean
6122 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6123 bfd *input_bfd, asection *input_section,
6124 bfd_byte *contents, Elf_Internal_Rela *relocs,
6125 Elf_Internal_Sym *local_syms,
6126 asection **local_sections)
6127 {
6128 Elf_Internal_Rela *rel;
6129 const Elf_Internal_Rela *relend;
6130 bfd_vma addend = 0;
6131 bfd_boolean use_saved_addend_p = FALSE;
6132 const struct elf_backend_data *bed;
6133
6134 bed = get_elf_backend_data (output_bfd);
6135 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6136 for (rel = relocs; rel < relend; ++rel)
6137 {
6138 const char *name;
6139 bfd_vma value;
6140 reloc_howto_type *howto;
6141 bfd_boolean require_jalx;
6142 /* TRUE if the relocation is a RELA relocation, rather than a
6143 REL relocation. */
6144 bfd_boolean rela_relocation_p = TRUE;
6145 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6146 const char *msg;
6147
6148 /* Find the relocation howto for this relocation. */
6149 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6150 {
6151 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6152 64-bit code, but make sure all their addresses are in the
6153 lowermost or uppermost 32-bit section of the 64-bit address
6154 space. Thus, when they use an R_MIPS_64 they mean what is
6155 usually meant by R_MIPS_32, with the exception that the
6156 stored value is sign-extended to 64 bits. */
6157 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6158
6159 /* On big-endian systems, we need to lie about the position
6160 of the reloc. */
6161 if (bfd_big_endian (input_bfd))
6162 rel->r_offset += 4;
6163 }
6164 else
6165 /* NewABI defaults to RELA relocations. */
6166 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6167 NEWABI_P (input_bfd)
6168 && (MIPS_RELOC_RELA_P
6169 (input_bfd, input_section,
6170 rel - relocs)));
6171
6172 if (!use_saved_addend_p)
6173 {
6174 Elf_Internal_Shdr *rel_hdr;
6175
6176 /* If these relocations were originally of the REL variety,
6177 we must pull the addend out of the field that will be
6178 relocated. Otherwise, we simply use the contents of the
6179 RELA relocation. To determine which flavor or relocation
6180 this is, we depend on the fact that the INPUT_SECTION's
6181 REL_HDR is read before its REL_HDR2. */
6182 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6183 if ((size_t) (rel - relocs)
6184 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6185 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6186 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6187 {
6188 /* Note that this is a REL relocation. */
6189 rela_relocation_p = FALSE;
6190
6191 /* Get the addend, which is stored in the input file. */
6192 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6193 contents);
6194 addend &= howto->src_mask;
6195
6196 /* For some kinds of relocations, the ADDEND is a
6197 combination of the addend stored in two different
6198 relocations. */
6199 if (r_type == R_MIPS_HI16
6200 || (r_type == R_MIPS_GOT16
6201 && mips_elf_local_relocation_p (input_bfd, rel,
6202 local_sections, FALSE)))
6203 {
6204 bfd_vma l;
6205 const Elf_Internal_Rela *lo16_relocation;
6206 reloc_howto_type *lo16_howto;
6207
6208 /* The combined value is the sum of the HI16 addend,
6209 left-shifted by sixteen bits, and the LO16
6210 addend, sign extended. (Usually, the code does
6211 a `lui' of the HI16 value, and then an `addiu' of
6212 the LO16 value.)
6213
6214 Scan ahead to find a matching LO16 relocation.
6215
6216 According to the MIPS ELF ABI, the R_MIPS_LO16
6217 relocation must be immediately following.
6218 However, for the IRIX6 ABI, the next relocation
6219 may be a composed relocation consisting of
6220 several relocations for the same address. In
6221 that case, the R_MIPS_LO16 relocation may occur
6222 as one of these. We permit a similar extension
6223 in general, as that is useful for GCC. */
6224 lo16_relocation = mips_elf_next_relocation (input_bfd,
6225 R_MIPS_LO16,
6226 rel, relend);
6227 if (lo16_relocation == NULL)
6228 return FALSE;
6229
6230 /* Obtain the addend kept there. */
6231 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
6232 R_MIPS_LO16, FALSE);
6233 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6234 input_bfd, contents);
6235 l &= lo16_howto->src_mask;
6236 l <<= lo16_howto->rightshift;
6237 l = _bfd_mips_elf_sign_extend (l, 16);
6238
6239 addend <<= 16;
6240
6241 /* Compute the combined addend. */
6242 addend += l;
6243 }
6244 else if (r_type == R_MIPS16_GPREL)
6245 {
6246 /* The addend is scrambled in the object file. See
6247 mips_elf_perform_relocation for details on the
6248 format. */
6249 addend = (((addend & 0x1f0000) >> 5)
6250 | ((addend & 0x7e00000) >> 16)
6251 | (addend & 0x1f));
6252 }
6253 else
6254 addend <<= howto->rightshift;
6255 }
6256 else
6257 addend = rel->r_addend;
6258 }
6259
6260 if (info->relocatable)
6261 {
6262 Elf_Internal_Sym *sym;
6263 unsigned long r_symndx;
6264
6265 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6266 && bfd_big_endian (input_bfd))
6267 rel->r_offset -= 4;
6268
6269 /* Since we're just relocating, all we need to do is copy
6270 the relocations back out to the object file, unless
6271 they're against a section symbol, in which case we need
6272 to adjust by the section offset, or unless they're GP
6273 relative in which case we need to adjust by the amount
6274 that we're adjusting GP in this relocatable object. */
6275
6276 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6277 FALSE))
6278 /* There's nothing to do for non-local relocations. */
6279 continue;
6280
6281 if (r_type == R_MIPS16_GPREL
6282 || r_type == R_MIPS_GPREL16
6283 || r_type == R_MIPS_GPREL32
6284 || r_type == R_MIPS_LITERAL)
6285 addend -= (_bfd_get_gp_value (output_bfd)
6286 - _bfd_get_gp_value (input_bfd));
6287
6288 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6289 sym = local_syms + r_symndx;
6290 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6291 /* Adjust the addend appropriately. */
6292 addend += local_sections[r_symndx]->output_offset;
6293
6294 if (rela_relocation_p)
6295 /* If this is a RELA relocation, just update the addend. */
6296 rel->r_addend = addend;
6297 else
6298 {
6299 if (r_type == R_MIPS_HI16
6300 || r_type == R_MIPS_GOT16)
6301 addend = mips_elf_high (addend);
6302 else if (r_type == R_MIPS_HIGHER)
6303 addend = mips_elf_higher (addend);
6304 else if (r_type == R_MIPS_HIGHEST)
6305 addend = mips_elf_highest (addend);
6306 else
6307 addend >>= howto->rightshift;
6308
6309 /* We use the source mask, rather than the destination
6310 mask because the place to which we are writing will be
6311 source of the addend in the final link. */
6312 addend &= howto->src_mask;
6313
6314 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6315 /* See the comment above about using R_MIPS_64 in the 32-bit
6316 ABI. Here, we need to update the addend. It would be
6317 possible to get away with just using the R_MIPS_32 reloc
6318 but for endianness. */
6319 {
6320 bfd_vma sign_bits;
6321 bfd_vma low_bits;
6322 bfd_vma high_bits;
6323
6324 if (addend & ((bfd_vma) 1 << 31))
6325 #ifdef BFD64
6326 sign_bits = ((bfd_vma) 1 << 32) - 1;
6327 #else
6328 sign_bits = -1;
6329 #endif
6330 else
6331 sign_bits = 0;
6332
6333 /* If we don't know that we have a 64-bit type,
6334 do two separate stores. */
6335 if (bfd_big_endian (input_bfd))
6336 {
6337 /* Store the sign-bits (which are most significant)
6338 first. */
6339 low_bits = sign_bits;
6340 high_bits = addend;
6341 }
6342 else
6343 {
6344 low_bits = addend;
6345 high_bits = sign_bits;
6346 }
6347 bfd_put_32 (input_bfd, low_bits,
6348 contents + rel->r_offset);
6349 bfd_put_32 (input_bfd, high_bits,
6350 contents + rel->r_offset + 4);
6351 continue;
6352 }
6353
6354 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6355 input_bfd, input_section,
6356 contents, FALSE))
6357 return FALSE;
6358 }
6359
6360 /* Go on to the next relocation. */
6361 continue;
6362 }
6363
6364 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6365 relocations for the same offset. In that case we are
6366 supposed to treat the output of each relocation as the addend
6367 for the next. */
6368 if (rel + 1 < relend
6369 && rel->r_offset == rel[1].r_offset
6370 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6371 use_saved_addend_p = TRUE;
6372 else
6373 use_saved_addend_p = FALSE;
6374
6375 /* Figure out what value we are supposed to relocate. */
6376 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6377 input_section, info, rel,
6378 addend, howto, local_syms,
6379 local_sections, &value,
6380 &name, &require_jalx,
6381 use_saved_addend_p))
6382 {
6383 case bfd_reloc_continue:
6384 /* There's nothing to do. */
6385 continue;
6386
6387 case bfd_reloc_undefined:
6388 /* mips_elf_calculate_relocation already called the
6389 undefined_symbol callback. There's no real point in
6390 trying to perform the relocation at this point, so we
6391 just skip ahead to the next relocation. */
6392 continue;
6393
6394 case bfd_reloc_notsupported:
6395 msg = _("internal error: unsupported relocation error");
6396 info->callbacks->warning
6397 (info, msg, name, input_bfd, input_section, rel->r_offset);
6398 return FALSE;
6399
6400 case bfd_reloc_overflow:
6401 if (use_saved_addend_p)
6402 /* Ignore overflow until we reach the last relocation for
6403 a given location. */
6404 ;
6405 else
6406 {
6407 BFD_ASSERT (name != NULL);
6408 if (! ((*info->callbacks->reloc_overflow)
6409 (info, NULL, name, howto->name, (bfd_vma) 0,
6410 input_bfd, input_section, rel->r_offset)))
6411 return FALSE;
6412 }
6413 break;
6414
6415 case bfd_reloc_ok:
6416 break;
6417
6418 default:
6419 abort ();
6420 break;
6421 }
6422
6423 /* If we've got another relocation for the address, keep going
6424 until we reach the last one. */
6425 if (use_saved_addend_p)
6426 {
6427 addend = value;
6428 continue;
6429 }
6430
6431 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6432 /* See the comment above about using R_MIPS_64 in the 32-bit
6433 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6434 that calculated the right value. Now, however, we
6435 sign-extend the 32-bit result to 64-bits, and store it as a
6436 64-bit value. We are especially generous here in that we
6437 go to extreme lengths to support this usage on systems with
6438 only a 32-bit VMA. */
6439 {
6440 bfd_vma sign_bits;
6441 bfd_vma low_bits;
6442 bfd_vma high_bits;
6443
6444 if (value & ((bfd_vma) 1 << 31))
6445 #ifdef BFD64
6446 sign_bits = ((bfd_vma) 1 << 32) - 1;
6447 #else
6448 sign_bits = -1;
6449 #endif
6450 else
6451 sign_bits = 0;
6452
6453 /* If we don't know that we have a 64-bit type,
6454 do two separate stores. */
6455 if (bfd_big_endian (input_bfd))
6456 {
6457 /* Undo what we did above. */
6458 rel->r_offset -= 4;
6459 /* Store the sign-bits (which are most significant)
6460 first. */
6461 low_bits = sign_bits;
6462 high_bits = value;
6463 }
6464 else
6465 {
6466 low_bits = value;
6467 high_bits = sign_bits;
6468 }
6469 bfd_put_32 (input_bfd, low_bits,
6470 contents + rel->r_offset);
6471 bfd_put_32 (input_bfd, high_bits,
6472 contents + rel->r_offset + 4);
6473 continue;
6474 }
6475
6476 /* Actually perform the relocation. */
6477 if (! mips_elf_perform_relocation (info, howto, rel, value,
6478 input_bfd, input_section,
6479 contents, require_jalx))
6480 return FALSE;
6481 }
6482
6483 return TRUE;
6484 }
6485 \f
6486 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6487 adjust it appropriately now. */
6488
6489 static void
6490 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6491 const char *name, Elf_Internal_Sym *sym)
6492 {
6493 /* The linker script takes care of providing names and values for
6494 these, but we must place them into the right sections. */
6495 static const char* const text_section_symbols[] = {
6496 "_ftext",
6497 "_etext",
6498 "__dso_displacement",
6499 "__elf_header",
6500 "__program_header_table",
6501 NULL
6502 };
6503
6504 static const char* const data_section_symbols[] = {
6505 "_fdata",
6506 "_edata",
6507 "_end",
6508 "_fbss",
6509 NULL
6510 };
6511
6512 const char* const *p;
6513 int i;
6514
6515 for (i = 0; i < 2; ++i)
6516 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6517 *p;
6518 ++p)
6519 if (strcmp (*p, name) == 0)
6520 {
6521 /* All of these symbols are given type STT_SECTION by the
6522 IRIX6 linker. */
6523 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6524 sym->st_other = STO_PROTECTED;
6525
6526 /* The IRIX linker puts these symbols in special sections. */
6527 if (i == 0)
6528 sym->st_shndx = SHN_MIPS_TEXT;
6529 else
6530 sym->st_shndx = SHN_MIPS_DATA;
6531
6532 break;
6533 }
6534 }
6535
6536 /* Finish up dynamic symbol handling. We set the contents of various
6537 dynamic sections here. */
6538
6539 bfd_boolean
6540 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6541 struct bfd_link_info *info,
6542 struct elf_link_hash_entry *h,
6543 Elf_Internal_Sym *sym)
6544 {
6545 bfd *dynobj;
6546 asection *sgot;
6547 struct mips_got_info *g, *gg;
6548 const char *name;
6549
6550 dynobj = elf_hash_table (info)->dynobj;
6551
6552 if (h->plt.offset != MINUS_ONE)
6553 {
6554 asection *s;
6555 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6556
6557 /* This symbol has a stub. Set it up. */
6558
6559 BFD_ASSERT (h->dynindx != -1);
6560
6561 s = bfd_get_section_by_name (dynobj,
6562 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6563 BFD_ASSERT (s != NULL);
6564
6565 /* FIXME: Can h->dynindex be more than 64K? */
6566 if (h->dynindx & 0xffff0000)
6567 return FALSE;
6568
6569 /* Fill the stub. */
6570 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6571 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6572 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6573 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6574
6575 BFD_ASSERT (h->plt.offset <= s->size);
6576 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6577
6578 /* Mark the symbol as undefined. plt.offset != -1 occurs
6579 only for the referenced symbol. */
6580 sym->st_shndx = SHN_UNDEF;
6581
6582 /* The run-time linker uses the st_value field of the symbol
6583 to reset the global offset table entry for this external
6584 to its stub address when unlinking a shared object. */
6585 sym->st_value = (s->output_section->vma + s->output_offset
6586 + h->plt.offset);
6587 }
6588
6589 BFD_ASSERT (h->dynindx != -1
6590 || h->forced_local);
6591
6592 sgot = mips_elf_got_section (dynobj, FALSE);
6593 BFD_ASSERT (sgot != NULL);
6594 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6595 g = mips_elf_section_data (sgot)->u.got_info;
6596 BFD_ASSERT (g != NULL);
6597
6598 /* Run through the global symbol table, creating GOT entries for all
6599 the symbols that need them. */
6600 if (g->global_gotsym != NULL
6601 && h->dynindx >= g->global_gotsym->dynindx)
6602 {
6603 bfd_vma offset;
6604 bfd_vma value;
6605
6606 value = sym->st_value;
6607 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6608 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6609 }
6610
6611 if (g->next && h->dynindx != -1)
6612 {
6613 struct mips_got_entry e, *p;
6614 bfd_vma entry;
6615 bfd_vma offset;
6616
6617 gg = g;
6618
6619 e.abfd = output_bfd;
6620 e.symndx = -1;
6621 e.d.h = (struct mips_elf_link_hash_entry *)h;
6622
6623 for (g = g->next; g->next != gg; g = g->next)
6624 {
6625 if (g->got_entries
6626 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6627 &e)))
6628 {
6629 offset = p->gotidx;
6630 if (info->shared
6631 || (elf_hash_table (info)->dynamic_sections_created
6632 && p->d.h != NULL
6633 && p->d.h->root.def_dynamic
6634 && !p->d.h->root.def_regular))
6635 {
6636 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6637 the various compatibility problems, it's easier to mock
6638 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6639 mips_elf_create_dynamic_relocation to calculate the
6640 appropriate addend. */
6641 Elf_Internal_Rela rel[3];
6642
6643 memset (rel, 0, sizeof (rel));
6644 if (ABI_64_P (output_bfd))
6645 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6646 else
6647 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6648 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6649
6650 entry = 0;
6651 if (! (mips_elf_create_dynamic_relocation
6652 (output_bfd, info, rel,
6653 e.d.h, NULL, sym->st_value, &entry, sgot)))
6654 return FALSE;
6655 }
6656 else
6657 entry = sym->st_value;
6658 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
6659 }
6660 }
6661 }
6662
6663 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6664 name = h->root.root.string;
6665 if (strcmp (name, "_DYNAMIC") == 0
6666 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6667 sym->st_shndx = SHN_ABS;
6668 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6669 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6670 {
6671 sym->st_shndx = SHN_ABS;
6672 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6673 sym->st_value = 1;
6674 }
6675 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6676 {
6677 sym->st_shndx = SHN_ABS;
6678 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6679 sym->st_value = elf_gp (output_bfd);
6680 }
6681 else if (SGI_COMPAT (output_bfd))
6682 {
6683 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6684 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6685 {
6686 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6687 sym->st_other = STO_PROTECTED;
6688 sym->st_value = 0;
6689 sym->st_shndx = SHN_MIPS_DATA;
6690 }
6691 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6692 {
6693 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6694 sym->st_other = STO_PROTECTED;
6695 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6696 sym->st_shndx = SHN_ABS;
6697 }
6698 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6699 {
6700 if (h->type == STT_FUNC)
6701 sym->st_shndx = SHN_MIPS_TEXT;
6702 else if (h->type == STT_OBJECT)
6703 sym->st_shndx = SHN_MIPS_DATA;
6704 }
6705 }
6706
6707 /* Handle the IRIX6-specific symbols. */
6708 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6709 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6710
6711 if (! info->shared)
6712 {
6713 if (! mips_elf_hash_table (info)->use_rld_obj_head
6714 && (strcmp (name, "__rld_map") == 0
6715 || strcmp (name, "__RLD_MAP") == 0))
6716 {
6717 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6718 BFD_ASSERT (s != NULL);
6719 sym->st_value = s->output_section->vma + s->output_offset;
6720 bfd_put_32 (output_bfd, 0, s->contents);
6721 if (mips_elf_hash_table (info)->rld_value == 0)
6722 mips_elf_hash_table (info)->rld_value = sym->st_value;
6723 }
6724 else if (mips_elf_hash_table (info)->use_rld_obj_head
6725 && strcmp (name, "__rld_obj_head") == 0)
6726 {
6727 /* IRIX6 does not use a .rld_map section. */
6728 if (IRIX_COMPAT (output_bfd) == ict_irix5
6729 || IRIX_COMPAT (output_bfd) == ict_none)
6730 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6731 != NULL);
6732 mips_elf_hash_table (info)->rld_value = sym->st_value;
6733 }
6734 }
6735
6736 /* If this is a mips16 symbol, force the value to be even. */
6737 if (sym->st_other == STO_MIPS16)
6738 sym->st_value &= ~1;
6739
6740 return TRUE;
6741 }
6742
6743 /* Finish up the dynamic sections. */
6744
6745 bfd_boolean
6746 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6747 struct bfd_link_info *info)
6748 {
6749 bfd *dynobj;
6750 asection *sdyn;
6751 asection *sgot;
6752 struct mips_got_info *gg, *g;
6753
6754 dynobj = elf_hash_table (info)->dynobj;
6755
6756 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6757
6758 sgot = mips_elf_got_section (dynobj, FALSE);
6759 if (sgot == NULL)
6760 gg = g = NULL;
6761 else
6762 {
6763 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6764 gg = mips_elf_section_data (sgot)->u.got_info;
6765 BFD_ASSERT (gg != NULL);
6766 g = mips_elf_got_for_ibfd (gg, output_bfd);
6767 BFD_ASSERT (g != NULL);
6768 }
6769
6770 if (elf_hash_table (info)->dynamic_sections_created)
6771 {
6772 bfd_byte *b;
6773
6774 BFD_ASSERT (sdyn != NULL);
6775 BFD_ASSERT (g != NULL);
6776
6777 for (b = sdyn->contents;
6778 b < sdyn->contents + sdyn->size;
6779 b += MIPS_ELF_DYN_SIZE (dynobj))
6780 {
6781 Elf_Internal_Dyn dyn;
6782 const char *name;
6783 size_t elemsize;
6784 asection *s;
6785 bfd_boolean swap_out_p;
6786
6787 /* Read in the current dynamic entry. */
6788 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6789
6790 /* Assume that we're going to modify it and write it out. */
6791 swap_out_p = TRUE;
6792
6793 switch (dyn.d_tag)
6794 {
6795 case DT_RELENT:
6796 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6797 BFD_ASSERT (s != NULL);
6798 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6799 break;
6800
6801 case DT_STRSZ:
6802 /* Rewrite DT_STRSZ. */
6803 dyn.d_un.d_val =
6804 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6805 break;
6806
6807 case DT_PLTGOT:
6808 name = ".got";
6809 s = bfd_get_section_by_name (output_bfd, name);
6810 BFD_ASSERT (s != NULL);
6811 dyn.d_un.d_ptr = s->vma;
6812 break;
6813
6814 case DT_MIPS_RLD_VERSION:
6815 dyn.d_un.d_val = 1; /* XXX */
6816 break;
6817
6818 case DT_MIPS_FLAGS:
6819 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6820 break;
6821
6822 case DT_MIPS_TIME_STAMP:
6823 time ((time_t *) &dyn.d_un.d_val);
6824 break;
6825
6826 case DT_MIPS_ICHECKSUM:
6827 /* XXX FIXME: */
6828 swap_out_p = FALSE;
6829 break;
6830
6831 case DT_MIPS_IVERSION:
6832 /* XXX FIXME: */
6833 swap_out_p = FALSE;
6834 break;
6835
6836 case DT_MIPS_BASE_ADDRESS:
6837 s = output_bfd->sections;
6838 BFD_ASSERT (s != NULL);
6839 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6840 break;
6841
6842 case DT_MIPS_LOCAL_GOTNO:
6843 dyn.d_un.d_val = g->local_gotno;
6844 break;
6845
6846 case DT_MIPS_UNREFEXTNO:
6847 /* The index into the dynamic symbol table which is the
6848 entry of the first external symbol that is not
6849 referenced within the same object. */
6850 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6851 break;
6852
6853 case DT_MIPS_GOTSYM:
6854 if (gg->global_gotsym)
6855 {
6856 dyn.d_un.d_val = gg->global_gotsym->dynindx;
6857 break;
6858 }
6859 /* In case if we don't have global got symbols we default
6860 to setting DT_MIPS_GOTSYM to the same value as
6861 DT_MIPS_SYMTABNO, so we just fall through. */
6862
6863 case DT_MIPS_SYMTABNO:
6864 name = ".dynsym";
6865 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6866 s = bfd_get_section_by_name (output_bfd, name);
6867 BFD_ASSERT (s != NULL);
6868
6869 dyn.d_un.d_val = s->size / elemsize;
6870 break;
6871
6872 case DT_MIPS_HIPAGENO:
6873 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6874 break;
6875
6876 case DT_MIPS_RLD_MAP:
6877 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6878 break;
6879
6880 case DT_MIPS_OPTIONS:
6881 s = (bfd_get_section_by_name
6882 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6883 dyn.d_un.d_ptr = s->vma;
6884 break;
6885
6886 case DT_RELSZ:
6887 /* Reduce DT_RELSZ to account for any relocations we
6888 decided not to make. This is for the n64 irix rld,
6889 which doesn't seem to apply any relocations if there
6890 are trailing null entries. */
6891 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6892 dyn.d_un.d_val = (s->reloc_count
6893 * (ABI_64_P (output_bfd)
6894 ? sizeof (Elf64_Mips_External_Rel)
6895 : sizeof (Elf32_External_Rel)));
6896 break;
6897
6898 default:
6899 swap_out_p = FALSE;
6900 break;
6901 }
6902
6903 if (swap_out_p)
6904 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6905 (dynobj, &dyn, b);
6906 }
6907 }
6908
6909 /* The first entry of the global offset table will be filled at
6910 runtime. The second entry will be used by some runtime loaders.
6911 This isn't the case of IRIX rld. */
6912 if (sgot != NULL && sgot->size > 0)
6913 {
6914 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
6915 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
6916 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6917 }
6918
6919 if (sgot != NULL)
6920 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6921 = MIPS_ELF_GOT_SIZE (output_bfd);
6922
6923 /* Generate dynamic relocations for the non-primary gots. */
6924 if (gg != NULL && gg->next)
6925 {
6926 Elf_Internal_Rela rel[3];
6927 bfd_vma addend = 0;
6928
6929 memset (rel, 0, sizeof (rel));
6930 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6931
6932 for (g = gg->next; g->next != gg; g = g->next)
6933 {
6934 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6935
6936 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
6937 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6938 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
6939 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6940
6941 if (! info->shared)
6942 continue;
6943
6944 while (index < g->assigned_gotno)
6945 {
6946 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6947 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6948 if (!(mips_elf_create_dynamic_relocation
6949 (output_bfd, info, rel, NULL,
6950 bfd_abs_section_ptr,
6951 0, &addend, sgot)))
6952 return FALSE;
6953 BFD_ASSERT (addend == 0);
6954 }
6955 }
6956 }
6957
6958 {
6959 asection *s;
6960 Elf32_compact_rel cpt;
6961
6962 if (SGI_COMPAT (output_bfd))
6963 {
6964 /* Write .compact_rel section out. */
6965 s = bfd_get_section_by_name (dynobj, ".compact_rel");
6966 if (s != NULL)
6967 {
6968 cpt.id1 = 1;
6969 cpt.num = s->reloc_count;
6970 cpt.id2 = 2;
6971 cpt.offset = (s->output_section->filepos
6972 + sizeof (Elf32_External_compact_rel));
6973 cpt.reserved0 = 0;
6974 cpt.reserved1 = 0;
6975 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
6976 ((Elf32_External_compact_rel *)
6977 s->contents));
6978
6979 /* Clean up a dummy stub function entry in .text. */
6980 s = bfd_get_section_by_name (dynobj,
6981 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6982 if (s != NULL)
6983 {
6984 file_ptr dummy_offset;
6985
6986 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
6987 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
6988 memset (s->contents + dummy_offset, 0,
6989 MIPS_FUNCTION_STUB_SIZE);
6990 }
6991 }
6992 }
6993
6994 /* We need to sort the entries of the dynamic relocation section. */
6995
6996 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6997
6998 if (s != NULL
6999 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7000 {
7001 reldyn_sorting_bfd = output_bfd;
7002
7003 if (ABI_64_P (output_bfd))
7004 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
7005 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7006 else
7007 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
7008 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7009 }
7010 }
7011
7012 return TRUE;
7013 }
7014
7015
7016 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7017
7018 static void
7019 mips_set_isa_flags (bfd *abfd)
7020 {
7021 flagword val;
7022
7023 switch (bfd_get_mach (abfd))
7024 {
7025 default:
7026 case bfd_mach_mips3000:
7027 val = E_MIPS_ARCH_1;
7028 break;
7029
7030 case bfd_mach_mips3900:
7031 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7032 break;
7033
7034 case bfd_mach_mips6000:
7035 val = E_MIPS_ARCH_2;
7036 break;
7037
7038 case bfd_mach_mips4000:
7039 case bfd_mach_mips4300:
7040 case bfd_mach_mips4400:
7041 case bfd_mach_mips4600:
7042 val = E_MIPS_ARCH_3;
7043 break;
7044
7045 case bfd_mach_mips4010:
7046 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7047 break;
7048
7049 case bfd_mach_mips4100:
7050 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7051 break;
7052
7053 case bfd_mach_mips4111:
7054 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7055 break;
7056
7057 case bfd_mach_mips4120:
7058 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7059 break;
7060
7061 case bfd_mach_mips4650:
7062 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7063 break;
7064
7065 case bfd_mach_mips5400:
7066 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7067 break;
7068
7069 case bfd_mach_mips5500:
7070 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7071 break;
7072
7073 case bfd_mach_mips5000:
7074 case bfd_mach_mips7000:
7075 case bfd_mach_mips8000:
7076 case bfd_mach_mips10000:
7077 case bfd_mach_mips12000:
7078 val = E_MIPS_ARCH_4;
7079 break;
7080
7081 case bfd_mach_mips5:
7082 val = E_MIPS_ARCH_5;
7083 break;
7084
7085 case bfd_mach_mips_sb1:
7086 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7087 break;
7088
7089 case bfd_mach_mipsisa32:
7090 val = E_MIPS_ARCH_32;
7091 break;
7092
7093 case bfd_mach_mipsisa64:
7094 val = E_MIPS_ARCH_64;
7095 break;
7096
7097 case bfd_mach_mipsisa32r2:
7098 val = E_MIPS_ARCH_32R2;
7099 break;
7100
7101 case bfd_mach_mipsisa64r2:
7102 val = E_MIPS_ARCH_64R2;
7103 break;
7104 }
7105 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7106 elf_elfheader (abfd)->e_flags |= val;
7107
7108 }
7109
7110
7111 /* The final processing done just before writing out a MIPS ELF object
7112 file. This gets the MIPS architecture right based on the machine
7113 number. This is used by both the 32-bit and the 64-bit ABI. */
7114
7115 void
7116 _bfd_mips_elf_final_write_processing (bfd *abfd,
7117 bfd_boolean linker ATTRIBUTE_UNUSED)
7118 {
7119 unsigned int i;
7120 Elf_Internal_Shdr **hdrpp;
7121 const char *name;
7122 asection *sec;
7123
7124 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7125 is nonzero. This is for compatibility with old objects, which used
7126 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7127 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7128 mips_set_isa_flags (abfd);
7129
7130 /* Set the sh_info field for .gptab sections and other appropriate
7131 info for each special section. */
7132 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7133 i < elf_numsections (abfd);
7134 i++, hdrpp++)
7135 {
7136 switch ((*hdrpp)->sh_type)
7137 {
7138 case SHT_MIPS_MSYM:
7139 case SHT_MIPS_LIBLIST:
7140 sec = bfd_get_section_by_name (abfd, ".dynstr");
7141 if (sec != NULL)
7142 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7143 break;
7144
7145 case SHT_MIPS_GPTAB:
7146 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7147 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7148 BFD_ASSERT (name != NULL
7149 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7150 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7151 BFD_ASSERT (sec != NULL);
7152 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7153 break;
7154
7155 case SHT_MIPS_CONTENT:
7156 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7157 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7158 BFD_ASSERT (name != NULL
7159 && strncmp (name, ".MIPS.content",
7160 sizeof ".MIPS.content" - 1) == 0);
7161 sec = bfd_get_section_by_name (abfd,
7162 name + sizeof ".MIPS.content" - 1);
7163 BFD_ASSERT (sec != NULL);
7164 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7165 break;
7166
7167 case SHT_MIPS_SYMBOL_LIB:
7168 sec = bfd_get_section_by_name (abfd, ".dynsym");
7169 if (sec != NULL)
7170 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7171 sec = bfd_get_section_by_name (abfd, ".liblist");
7172 if (sec != NULL)
7173 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7174 break;
7175
7176 case SHT_MIPS_EVENTS:
7177 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7178 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7179 BFD_ASSERT (name != NULL);
7180 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7181 sec = bfd_get_section_by_name (abfd,
7182 name + sizeof ".MIPS.events" - 1);
7183 else
7184 {
7185 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7186 sizeof ".MIPS.post_rel" - 1) == 0);
7187 sec = bfd_get_section_by_name (abfd,
7188 (name
7189 + sizeof ".MIPS.post_rel" - 1));
7190 }
7191 BFD_ASSERT (sec != NULL);
7192 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7193 break;
7194
7195 }
7196 }
7197 }
7198 \f
7199 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7200 segments. */
7201
7202 int
7203 _bfd_mips_elf_additional_program_headers (bfd *abfd)
7204 {
7205 asection *s;
7206 int ret = 0;
7207
7208 /* See if we need a PT_MIPS_REGINFO segment. */
7209 s = bfd_get_section_by_name (abfd, ".reginfo");
7210 if (s && (s->flags & SEC_LOAD))
7211 ++ret;
7212
7213 /* See if we need a PT_MIPS_OPTIONS segment. */
7214 if (IRIX_COMPAT (abfd) == ict_irix6
7215 && bfd_get_section_by_name (abfd,
7216 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7217 ++ret;
7218
7219 /* See if we need a PT_MIPS_RTPROC segment. */
7220 if (IRIX_COMPAT (abfd) == ict_irix5
7221 && bfd_get_section_by_name (abfd, ".dynamic")
7222 && bfd_get_section_by_name (abfd, ".mdebug"))
7223 ++ret;
7224
7225 return ret;
7226 }
7227
7228 /* Modify the segment map for an IRIX5 executable. */
7229
7230 bfd_boolean
7231 _bfd_mips_elf_modify_segment_map (bfd *abfd,
7232 struct bfd_link_info *info ATTRIBUTE_UNUSED)
7233 {
7234 asection *s;
7235 struct elf_segment_map *m, **pm;
7236 bfd_size_type amt;
7237
7238 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7239 segment. */
7240 s = bfd_get_section_by_name (abfd, ".reginfo");
7241 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7242 {
7243 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7244 if (m->p_type == PT_MIPS_REGINFO)
7245 break;
7246 if (m == NULL)
7247 {
7248 amt = sizeof *m;
7249 m = bfd_zalloc (abfd, amt);
7250 if (m == NULL)
7251 return FALSE;
7252
7253 m->p_type = PT_MIPS_REGINFO;
7254 m->count = 1;
7255 m->sections[0] = s;
7256
7257 /* We want to put it after the PHDR and INTERP segments. */
7258 pm = &elf_tdata (abfd)->segment_map;
7259 while (*pm != NULL
7260 && ((*pm)->p_type == PT_PHDR
7261 || (*pm)->p_type == PT_INTERP))
7262 pm = &(*pm)->next;
7263
7264 m->next = *pm;
7265 *pm = m;
7266 }
7267 }
7268
7269 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7270 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7271 PT_MIPS_OPTIONS segment immediately following the program header
7272 table. */
7273 if (NEWABI_P (abfd)
7274 /* On non-IRIX6 new abi, we'll have already created a segment
7275 for this section, so don't create another. I'm not sure this
7276 is not also the case for IRIX 6, but I can't test it right
7277 now. */
7278 && IRIX_COMPAT (abfd) == ict_irix6)
7279 {
7280 for (s = abfd->sections; s; s = s->next)
7281 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7282 break;
7283
7284 if (s)
7285 {
7286 struct elf_segment_map *options_segment;
7287
7288 pm = &elf_tdata (abfd)->segment_map;
7289 while (*pm != NULL
7290 && ((*pm)->p_type == PT_PHDR
7291 || (*pm)->p_type == PT_INTERP))
7292 pm = &(*pm)->next;
7293
7294 amt = sizeof (struct elf_segment_map);
7295 options_segment = bfd_zalloc (abfd, amt);
7296 options_segment->next = *pm;
7297 options_segment->p_type = PT_MIPS_OPTIONS;
7298 options_segment->p_flags = PF_R;
7299 options_segment->p_flags_valid = TRUE;
7300 options_segment->count = 1;
7301 options_segment->sections[0] = s;
7302 *pm = options_segment;
7303 }
7304 }
7305 else
7306 {
7307 if (IRIX_COMPAT (abfd) == ict_irix5)
7308 {
7309 /* If there are .dynamic and .mdebug sections, we make a room
7310 for the RTPROC header. FIXME: Rewrite without section names. */
7311 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7312 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7313 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7314 {
7315 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7316 if (m->p_type == PT_MIPS_RTPROC)
7317 break;
7318 if (m == NULL)
7319 {
7320 amt = sizeof *m;
7321 m = bfd_zalloc (abfd, amt);
7322 if (m == NULL)
7323 return FALSE;
7324
7325 m->p_type = PT_MIPS_RTPROC;
7326
7327 s = bfd_get_section_by_name (abfd, ".rtproc");
7328 if (s == NULL)
7329 {
7330 m->count = 0;
7331 m->p_flags = 0;
7332 m->p_flags_valid = 1;
7333 }
7334 else
7335 {
7336 m->count = 1;
7337 m->sections[0] = s;
7338 }
7339
7340 /* We want to put it after the DYNAMIC segment. */
7341 pm = &elf_tdata (abfd)->segment_map;
7342 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7343 pm = &(*pm)->next;
7344 if (*pm != NULL)
7345 pm = &(*pm)->next;
7346
7347 m->next = *pm;
7348 *pm = m;
7349 }
7350 }
7351 }
7352 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7353 .dynstr, .dynsym, and .hash sections, and everything in
7354 between. */
7355 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7356 pm = &(*pm)->next)
7357 if ((*pm)->p_type == PT_DYNAMIC)
7358 break;
7359 m = *pm;
7360 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7361 {
7362 /* For a normal mips executable the permissions for the PT_DYNAMIC
7363 segment are read, write and execute. We do that here since
7364 the code in elf.c sets only the read permission. This matters
7365 sometimes for the dynamic linker. */
7366 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7367 {
7368 m->p_flags = PF_R | PF_W | PF_X;
7369 m->p_flags_valid = 1;
7370 }
7371 }
7372 if (m != NULL
7373 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7374 {
7375 static const char *sec_names[] =
7376 {
7377 ".dynamic", ".dynstr", ".dynsym", ".hash"
7378 };
7379 bfd_vma low, high;
7380 unsigned int i, c;
7381 struct elf_segment_map *n;
7382
7383 low = ~(bfd_vma) 0;
7384 high = 0;
7385 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7386 {
7387 s = bfd_get_section_by_name (abfd, sec_names[i]);
7388 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7389 {
7390 bfd_size_type sz;
7391
7392 if (low > s->vma)
7393 low = s->vma;
7394 sz = s->size;
7395 if (high < s->vma + sz)
7396 high = s->vma + sz;
7397 }
7398 }
7399
7400 c = 0;
7401 for (s = abfd->sections; s != NULL; s = s->next)
7402 if ((s->flags & SEC_LOAD) != 0
7403 && s->vma >= low
7404 && s->vma + s->size <= high)
7405 ++c;
7406
7407 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7408 n = bfd_zalloc (abfd, amt);
7409 if (n == NULL)
7410 return FALSE;
7411 *n = *m;
7412 n->count = c;
7413
7414 i = 0;
7415 for (s = abfd->sections; s != NULL; s = s->next)
7416 {
7417 if ((s->flags & SEC_LOAD) != 0
7418 && s->vma >= low
7419 && s->vma + s->size <= high)
7420 {
7421 n->sections[i] = s;
7422 ++i;
7423 }
7424 }
7425
7426 *pm = n;
7427 }
7428 }
7429
7430 return TRUE;
7431 }
7432 \f
7433 /* Return the section that should be marked against GC for a given
7434 relocation. */
7435
7436 asection *
7437 _bfd_mips_elf_gc_mark_hook (asection *sec,
7438 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7439 Elf_Internal_Rela *rel,
7440 struct elf_link_hash_entry *h,
7441 Elf_Internal_Sym *sym)
7442 {
7443 /* ??? Do mips16 stub sections need to be handled special? */
7444
7445 if (h != NULL)
7446 {
7447 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7448 {
7449 case R_MIPS_GNU_VTINHERIT:
7450 case R_MIPS_GNU_VTENTRY:
7451 break;
7452
7453 default:
7454 switch (h->root.type)
7455 {
7456 case bfd_link_hash_defined:
7457 case bfd_link_hash_defweak:
7458 return h->root.u.def.section;
7459
7460 case bfd_link_hash_common:
7461 return h->root.u.c.p->section;
7462
7463 default:
7464 break;
7465 }
7466 }
7467 }
7468 else
7469 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7470
7471 return NULL;
7472 }
7473
7474 /* Update the got entry reference counts for the section being removed. */
7475
7476 bfd_boolean
7477 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7478 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7479 asection *sec ATTRIBUTE_UNUSED,
7480 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
7481 {
7482 #if 0
7483 Elf_Internal_Shdr *symtab_hdr;
7484 struct elf_link_hash_entry **sym_hashes;
7485 bfd_signed_vma *local_got_refcounts;
7486 const Elf_Internal_Rela *rel, *relend;
7487 unsigned long r_symndx;
7488 struct elf_link_hash_entry *h;
7489
7490 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7491 sym_hashes = elf_sym_hashes (abfd);
7492 local_got_refcounts = elf_local_got_refcounts (abfd);
7493
7494 relend = relocs + sec->reloc_count;
7495 for (rel = relocs; rel < relend; rel++)
7496 switch (ELF_R_TYPE (abfd, rel->r_info))
7497 {
7498 case R_MIPS_GOT16:
7499 case R_MIPS_CALL16:
7500 case R_MIPS_CALL_HI16:
7501 case R_MIPS_CALL_LO16:
7502 case R_MIPS_GOT_HI16:
7503 case R_MIPS_GOT_LO16:
7504 case R_MIPS_GOT_DISP:
7505 case R_MIPS_GOT_PAGE:
7506 case R_MIPS_GOT_OFST:
7507 /* ??? It would seem that the existing MIPS code does no sort
7508 of reference counting or whatnot on its GOT and PLT entries,
7509 so it is not possible to garbage collect them at this time. */
7510 break;
7511
7512 default:
7513 break;
7514 }
7515 #endif
7516
7517 return TRUE;
7518 }
7519 \f
7520 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7521 hiding the old indirect symbol. Process additional relocation
7522 information. Also called for weakdefs, in which case we just let
7523 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7524
7525 void
7526 _bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7527 struct elf_link_hash_entry *dir,
7528 struct elf_link_hash_entry *ind)
7529 {
7530 struct mips_elf_link_hash_entry *dirmips, *indmips;
7531
7532 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7533
7534 if (ind->root.type != bfd_link_hash_indirect)
7535 return;
7536
7537 dirmips = (struct mips_elf_link_hash_entry *) dir;
7538 indmips = (struct mips_elf_link_hash_entry *) ind;
7539 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7540 if (indmips->readonly_reloc)
7541 dirmips->readonly_reloc = TRUE;
7542 if (indmips->no_fn_stub)
7543 dirmips->no_fn_stub = TRUE;
7544 }
7545
7546 void
7547 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7548 struct elf_link_hash_entry *entry,
7549 bfd_boolean force_local)
7550 {
7551 bfd *dynobj;
7552 asection *got;
7553 struct mips_got_info *g;
7554 struct mips_elf_link_hash_entry *h;
7555
7556 h = (struct mips_elf_link_hash_entry *) entry;
7557 if (h->forced_local)
7558 return;
7559 h->forced_local = force_local;
7560
7561 dynobj = elf_hash_table (info)->dynobj;
7562 if (dynobj != NULL && force_local)
7563 {
7564 got = mips_elf_got_section (dynobj, FALSE);
7565 g = mips_elf_section_data (got)->u.got_info;
7566
7567 if (g->next)
7568 {
7569 struct mips_got_entry e;
7570 struct mips_got_info *gg = g;
7571
7572 /* Since we're turning what used to be a global symbol into a
7573 local one, bump up the number of local entries of each GOT
7574 that had an entry for it. This will automatically decrease
7575 the number of global entries, since global_gotno is actually
7576 the upper limit of global entries. */
7577 e.abfd = dynobj;
7578 e.symndx = -1;
7579 e.d.h = h;
7580
7581 for (g = g->next; g != gg; g = g->next)
7582 if (htab_find (g->got_entries, &e))
7583 {
7584 BFD_ASSERT (g->global_gotno > 0);
7585 g->local_gotno++;
7586 g->global_gotno--;
7587 }
7588
7589 /* If this was a global symbol forced into the primary GOT, we
7590 no longer need an entry for it. We can't release the entry
7591 at this point, but we must at least stop counting it as one
7592 of the symbols that required a forced got entry. */
7593 if (h->root.got.offset == 2)
7594 {
7595 BFD_ASSERT (gg->assigned_gotno > 0);
7596 gg->assigned_gotno--;
7597 }
7598 }
7599 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7600 /* If we haven't got through GOT allocation yet, just bump up the
7601 number of local entries, as this symbol won't be counted as
7602 global. */
7603 g->local_gotno++;
7604 else if (h->root.got.offset == 1)
7605 {
7606 /* If we're past non-multi-GOT allocation and this symbol had
7607 been marked for a global got entry, give it a local entry
7608 instead. */
7609 BFD_ASSERT (g->global_gotno > 0);
7610 g->local_gotno++;
7611 g->global_gotno--;
7612 }
7613 }
7614
7615 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7616 }
7617 \f
7618 #define PDR_SIZE 32
7619
7620 bfd_boolean
7621 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7622 struct bfd_link_info *info)
7623 {
7624 asection *o;
7625 bfd_boolean ret = FALSE;
7626 unsigned char *tdata;
7627 size_t i, skip;
7628
7629 o = bfd_get_section_by_name (abfd, ".pdr");
7630 if (! o)
7631 return FALSE;
7632 if (o->size == 0)
7633 return FALSE;
7634 if (o->size % PDR_SIZE != 0)
7635 return FALSE;
7636 if (o->output_section != NULL
7637 && bfd_is_abs_section (o->output_section))
7638 return FALSE;
7639
7640 tdata = bfd_zmalloc (o->size / PDR_SIZE);
7641 if (! tdata)
7642 return FALSE;
7643
7644 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7645 info->keep_memory);
7646 if (!cookie->rels)
7647 {
7648 free (tdata);
7649 return FALSE;
7650 }
7651
7652 cookie->rel = cookie->rels;
7653 cookie->relend = cookie->rels + o->reloc_count;
7654
7655 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
7656 {
7657 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
7658 {
7659 tdata[i] = 1;
7660 skip ++;
7661 }
7662 }
7663
7664 if (skip != 0)
7665 {
7666 mips_elf_section_data (o)->u.tdata = tdata;
7667 o->size -= skip * PDR_SIZE;
7668 ret = TRUE;
7669 }
7670 else
7671 free (tdata);
7672
7673 if (! info->keep_memory)
7674 free (cookie->rels);
7675
7676 return ret;
7677 }
7678
7679 bfd_boolean
7680 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
7681 {
7682 if (strcmp (sec->name, ".pdr") == 0)
7683 return TRUE;
7684 return FALSE;
7685 }
7686
7687 bfd_boolean
7688 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7689 bfd_byte *contents)
7690 {
7691 bfd_byte *to, *from, *end;
7692 int i;
7693
7694 if (strcmp (sec->name, ".pdr") != 0)
7695 return FALSE;
7696
7697 if (mips_elf_section_data (sec)->u.tdata == NULL)
7698 return FALSE;
7699
7700 to = contents;
7701 end = contents + sec->size;
7702 for (from = contents, i = 0;
7703 from < end;
7704 from += PDR_SIZE, i++)
7705 {
7706 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7707 continue;
7708 if (to != from)
7709 memcpy (to, from, PDR_SIZE);
7710 to += PDR_SIZE;
7711 }
7712 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7713 sec->output_offset, sec->size);
7714 return TRUE;
7715 }
7716 \f
7717 /* MIPS ELF uses a special find_nearest_line routine in order the
7718 handle the ECOFF debugging information. */
7719
7720 struct mips_elf_find_line
7721 {
7722 struct ecoff_debug_info d;
7723 struct ecoff_find_line i;
7724 };
7725
7726 bfd_boolean
7727 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7728 asymbol **symbols, bfd_vma offset,
7729 const char **filename_ptr,
7730 const char **functionname_ptr,
7731 unsigned int *line_ptr)
7732 {
7733 asection *msec;
7734
7735 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7736 filename_ptr, functionname_ptr,
7737 line_ptr))
7738 return TRUE;
7739
7740 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7741 filename_ptr, functionname_ptr,
7742 line_ptr, ABI_64_P (abfd) ? 8 : 0,
7743 &elf_tdata (abfd)->dwarf2_find_line_info))
7744 return TRUE;
7745
7746 msec = bfd_get_section_by_name (abfd, ".mdebug");
7747 if (msec != NULL)
7748 {
7749 flagword origflags;
7750 struct mips_elf_find_line *fi;
7751 const struct ecoff_debug_swap * const swap =
7752 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7753
7754 /* If we are called during a link, mips_elf_final_link may have
7755 cleared the SEC_HAS_CONTENTS field. We force it back on here
7756 if appropriate (which it normally will be). */
7757 origflags = msec->flags;
7758 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7759 msec->flags |= SEC_HAS_CONTENTS;
7760
7761 fi = elf_tdata (abfd)->find_line_info;
7762 if (fi == NULL)
7763 {
7764 bfd_size_type external_fdr_size;
7765 char *fraw_src;
7766 char *fraw_end;
7767 struct fdr *fdr_ptr;
7768 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7769
7770 fi = bfd_zalloc (abfd, amt);
7771 if (fi == NULL)
7772 {
7773 msec->flags = origflags;
7774 return FALSE;
7775 }
7776
7777 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7778 {
7779 msec->flags = origflags;
7780 return FALSE;
7781 }
7782
7783 /* Swap in the FDR information. */
7784 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
7785 fi->d.fdr = bfd_alloc (abfd, amt);
7786 if (fi->d.fdr == NULL)
7787 {
7788 msec->flags = origflags;
7789 return FALSE;
7790 }
7791 external_fdr_size = swap->external_fdr_size;
7792 fdr_ptr = fi->d.fdr;
7793 fraw_src = (char *) fi->d.external_fdr;
7794 fraw_end = (fraw_src
7795 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7796 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
7797 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
7798
7799 elf_tdata (abfd)->find_line_info = fi;
7800
7801 /* Note that we don't bother to ever free this information.
7802 find_nearest_line is either called all the time, as in
7803 objdump -l, so the information should be saved, or it is
7804 rarely called, as in ld error messages, so the memory
7805 wasted is unimportant. Still, it would probably be a
7806 good idea for free_cached_info to throw it away. */
7807 }
7808
7809 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7810 &fi->i, filename_ptr, functionname_ptr,
7811 line_ptr))
7812 {
7813 msec->flags = origflags;
7814 return TRUE;
7815 }
7816
7817 msec->flags = origflags;
7818 }
7819
7820 /* Fall back on the generic ELF find_nearest_line routine. */
7821
7822 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7823 filename_ptr, functionname_ptr,
7824 line_ptr);
7825 }
7826 \f
7827 /* When are writing out the .options or .MIPS.options section,
7828 remember the bytes we are writing out, so that we can install the
7829 GP value in the section_processing routine. */
7830
7831 bfd_boolean
7832 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
7833 const void *location,
7834 file_ptr offset, bfd_size_type count)
7835 {
7836 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7837 {
7838 bfd_byte *c;
7839
7840 if (elf_section_data (section) == NULL)
7841 {
7842 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
7843 section->used_by_bfd = bfd_zalloc (abfd, amt);
7844 if (elf_section_data (section) == NULL)
7845 return FALSE;
7846 }
7847 c = mips_elf_section_data (section)->u.tdata;
7848 if (c == NULL)
7849 {
7850 c = bfd_zalloc (abfd, section->size);
7851 if (c == NULL)
7852 return FALSE;
7853 mips_elf_section_data (section)->u.tdata = c;
7854 }
7855
7856 memcpy (c + offset, location, count);
7857 }
7858
7859 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7860 count);
7861 }
7862
7863 /* This is almost identical to bfd_generic_get_... except that some
7864 MIPS relocations need to be handled specially. Sigh. */
7865
7866 bfd_byte *
7867 _bfd_elf_mips_get_relocated_section_contents
7868 (bfd *abfd,
7869 struct bfd_link_info *link_info,
7870 struct bfd_link_order *link_order,
7871 bfd_byte *data,
7872 bfd_boolean relocatable,
7873 asymbol **symbols)
7874 {
7875 /* Get enough memory to hold the stuff */
7876 bfd *input_bfd = link_order->u.indirect.section->owner;
7877 asection *input_section = link_order->u.indirect.section;
7878 bfd_size_type sz;
7879
7880 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7881 arelent **reloc_vector = NULL;
7882 long reloc_count;
7883
7884 if (reloc_size < 0)
7885 goto error_return;
7886
7887 reloc_vector = bfd_malloc (reloc_size);
7888 if (reloc_vector == NULL && reloc_size != 0)
7889 goto error_return;
7890
7891 /* read in the section */
7892 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
7893 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
7894 goto error_return;
7895
7896 reloc_count = bfd_canonicalize_reloc (input_bfd,
7897 input_section,
7898 reloc_vector,
7899 symbols);
7900 if (reloc_count < 0)
7901 goto error_return;
7902
7903 if (reloc_count > 0)
7904 {
7905 arelent **parent;
7906 /* for mips */
7907 int gp_found;
7908 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7909
7910 {
7911 struct bfd_hash_entry *h;
7912 struct bfd_link_hash_entry *lh;
7913 /* Skip all this stuff if we aren't mixing formats. */
7914 if (abfd && input_bfd
7915 && abfd->xvec == input_bfd->xvec)
7916 lh = 0;
7917 else
7918 {
7919 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
7920 lh = (struct bfd_link_hash_entry *) h;
7921 }
7922 lookup:
7923 if (lh)
7924 {
7925 switch (lh->type)
7926 {
7927 case bfd_link_hash_undefined:
7928 case bfd_link_hash_undefweak:
7929 case bfd_link_hash_common:
7930 gp_found = 0;
7931 break;
7932 case bfd_link_hash_defined:
7933 case bfd_link_hash_defweak:
7934 gp_found = 1;
7935 gp = lh->u.def.value;
7936 break;
7937 case bfd_link_hash_indirect:
7938 case bfd_link_hash_warning:
7939 lh = lh->u.i.link;
7940 /* @@FIXME ignoring warning for now */
7941 goto lookup;
7942 case bfd_link_hash_new:
7943 default:
7944 abort ();
7945 }
7946 }
7947 else
7948 gp_found = 0;
7949 }
7950 /* end mips */
7951 for (parent = reloc_vector; *parent != NULL; parent++)
7952 {
7953 char *error_message = NULL;
7954 bfd_reloc_status_type r;
7955
7956 /* Specific to MIPS: Deal with relocation types that require
7957 knowing the gp of the output bfd. */
7958 asymbol *sym = *(*parent)->sym_ptr_ptr;
7959 if (bfd_is_abs_section (sym->section) && abfd)
7960 {
7961 /* The special_function wouldn't get called anyway. */
7962 }
7963 else if (!gp_found)
7964 {
7965 /* The gp isn't there; let the special function code
7966 fall over on its own. */
7967 }
7968 else if ((*parent)->howto->special_function
7969 == _bfd_mips_elf32_gprel16_reloc)
7970 {
7971 /* bypass special_function call */
7972 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
7973 input_section, relocatable,
7974 data, gp);
7975 goto skip_bfd_perform_relocation;
7976 }
7977 /* end mips specific stuff */
7978
7979 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
7980 relocatable ? abfd : NULL,
7981 &error_message);
7982 skip_bfd_perform_relocation:
7983
7984 if (relocatable)
7985 {
7986 asection *os = input_section->output_section;
7987
7988 /* A partial link, so keep the relocs */
7989 os->orelocation[os->reloc_count] = *parent;
7990 os->reloc_count++;
7991 }
7992
7993 if (r != bfd_reloc_ok)
7994 {
7995 switch (r)
7996 {
7997 case bfd_reloc_undefined:
7998 if (!((*link_info->callbacks->undefined_symbol)
7999 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8000 input_bfd, input_section, (*parent)->address,
8001 TRUE)))
8002 goto error_return;
8003 break;
8004 case bfd_reloc_dangerous:
8005 BFD_ASSERT (error_message != NULL);
8006 if (!((*link_info->callbacks->reloc_dangerous)
8007 (link_info, error_message, input_bfd, input_section,
8008 (*parent)->address)))
8009 goto error_return;
8010 break;
8011 case bfd_reloc_overflow:
8012 if (!((*link_info->callbacks->reloc_overflow)
8013 (link_info, NULL,
8014 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8015 (*parent)->howto->name, (*parent)->addend,
8016 input_bfd, input_section, (*parent)->address)))
8017 goto error_return;
8018 break;
8019 case bfd_reloc_outofrange:
8020 default:
8021 abort ();
8022 break;
8023 }
8024
8025 }
8026 }
8027 }
8028 if (reloc_vector != NULL)
8029 free (reloc_vector);
8030 return data;
8031
8032 error_return:
8033 if (reloc_vector != NULL)
8034 free (reloc_vector);
8035 return NULL;
8036 }
8037 \f
8038 /* Create a MIPS ELF linker hash table. */
8039
8040 struct bfd_link_hash_table *
8041 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
8042 {
8043 struct mips_elf_link_hash_table *ret;
8044 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8045
8046 ret = bfd_malloc (amt);
8047 if (ret == NULL)
8048 return NULL;
8049
8050 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8051 mips_elf_link_hash_newfunc))
8052 {
8053 free (ret);
8054 return NULL;
8055 }
8056
8057 #if 0
8058 /* We no longer use this. */
8059 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8060 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8061 #endif
8062 ret->procedure_count = 0;
8063 ret->compact_rel_size = 0;
8064 ret->use_rld_obj_head = FALSE;
8065 ret->rld_value = 0;
8066 ret->mips16_stubs_seen = FALSE;
8067
8068 return &ret->root.root;
8069 }
8070 \f
8071 /* We need to use a special link routine to handle the .reginfo and
8072 the .mdebug sections. We need to merge all instances of these
8073 sections together, not write them all out sequentially. */
8074
8075 bfd_boolean
8076 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
8077 {
8078 asection **secpp;
8079 asection *o;
8080 struct bfd_link_order *p;
8081 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8082 asection *rtproc_sec;
8083 Elf32_RegInfo reginfo;
8084 struct ecoff_debug_info debug;
8085 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8086 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
8087 HDRR *symhdr = &debug.symbolic_header;
8088 void *mdebug_handle = NULL;
8089 asection *s;
8090 EXTR esym;
8091 unsigned int i;
8092 bfd_size_type amt;
8093
8094 static const char * const secname[] =
8095 {
8096 ".text", ".init", ".fini", ".data",
8097 ".rodata", ".sdata", ".sbss", ".bss"
8098 };
8099 static const int sc[] =
8100 {
8101 scText, scInit, scFini, scData,
8102 scRData, scSData, scSBss, scBss
8103 };
8104
8105 /* We'd carefully arranged the dynamic symbol indices, and then the
8106 generic size_dynamic_sections renumbered them out from under us.
8107 Rather than trying somehow to prevent the renumbering, just do
8108 the sort again. */
8109 if (elf_hash_table (info)->dynamic_sections_created)
8110 {
8111 bfd *dynobj;
8112 asection *got;
8113 struct mips_got_info *g;
8114 bfd_size_type dynsecsymcount;
8115
8116 /* When we resort, we must tell mips_elf_sort_hash_table what
8117 the lowest index it may use is. That's the number of section
8118 symbols we're going to add. The generic ELF linker only
8119 adds these symbols when building a shared object. Note that
8120 we count the sections after (possibly) removing the .options
8121 section above. */
8122
8123 dynsecsymcount = 0;
8124 if (info->shared)
8125 {
8126 asection * p;
8127
8128 for (p = abfd->sections; p ; p = p->next)
8129 if ((p->flags & SEC_EXCLUDE) == 0
8130 && (p->flags & SEC_ALLOC) != 0
8131 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
8132 ++ dynsecsymcount;
8133 }
8134
8135 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
8136 return FALSE;
8137
8138 /* Make sure we didn't grow the global .got region. */
8139 dynobj = elf_hash_table (info)->dynobj;
8140 got = mips_elf_got_section (dynobj, FALSE);
8141 g = mips_elf_section_data (got)->u.got_info;
8142
8143 if (g->global_gotsym != NULL)
8144 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8145 - g->global_gotsym->dynindx)
8146 <= g->global_gotno);
8147 }
8148
8149 #if 0
8150 /* We want to set the GP value for ld -r. */
8151 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8152 include it, even though we don't process it quite right. (Some
8153 entries are supposed to be merged.) Empirically, we seem to be
8154 better off including it then not. */
8155 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8156 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8157 {
8158 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8159 {
8160 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8161 if (p->type == bfd_indirect_link_order)
8162 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8163 (*secpp)->link_order_head = NULL;
8164 bfd_section_list_remove (abfd, secpp);
8165 --abfd->section_count;
8166
8167 break;
8168 }
8169 }
8170
8171 /* We include .MIPS.options, even though we don't process it quite right.
8172 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8173 to be better off including it than not. */
8174 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8175 {
8176 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8177 {
8178 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8179 if (p->type == bfd_indirect_link_order)
8180 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8181 (*secpp)->link_order_head = NULL;
8182 bfd_section_list_remove (abfd, secpp);
8183 --abfd->section_count;
8184
8185 break;
8186 }
8187 }
8188 #endif
8189
8190 /* Get a value for the GP register. */
8191 if (elf_gp (abfd) == 0)
8192 {
8193 struct bfd_link_hash_entry *h;
8194
8195 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8196 if (h != NULL && h->type == bfd_link_hash_defined)
8197 elf_gp (abfd) = (h->u.def.value
8198 + h->u.def.section->output_section->vma
8199 + h->u.def.section->output_offset);
8200 else if (info->relocatable)
8201 {
8202 bfd_vma lo = MINUS_ONE;
8203
8204 /* Find the GP-relative section with the lowest offset. */
8205 for (o = abfd->sections; o != NULL; o = o->next)
8206 if (o->vma < lo
8207 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8208 lo = o->vma;
8209
8210 /* And calculate GP relative to that. */
8211 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8212 }
8213 else
8214 {
8215 /* If the relocate_section function needs to do a reloc
8216 involving the GP value, it should make a reloc_dangerous
8217 callback to warn that GP is not defined. */
8218 }
8219 }
8220
8221 /* Go through the sections and collect the .reginfo and .mdebug
8222 information. */
8223 reginfo_sec = NULL;
8224 mdebug_sec = NULL;
8225 gptab_data_sec = NULL;
8226 gptab_bss_sec = NULL;
8227 for (o = abfd->sections; o != NULL; o = o->next)
8228 {
8229 if (strcmp (o->name, ".reginfo") == 0)
8230 {
8231 memset (&reginfo, 0, sizeof reginfo);
8232
8233 /* We have found the .reginfo section in the output file.
8234 Look through all the link_orders comprising it and merge
8235 the information together. */
8236 for (p = o->link_order_head; p != NULL; p = p->next)
8237 {
8238 asection *input_section;
8239 bfd *input_bfd;
8240 Elf32_External_RegInfo ext;
8241 Elf32_RegInfo sub;
8242
8243 if (p->type != bfd_indirect_link_order)
8244 {
8245 if (p->type == bfd_data_link_order)
8246 continue;
8247 abort ();
8248 }
8249
8250 input_section = p->u.indirect.section;
8251 input_bfd = input_section->owner;
8252
8253 if (! bfd_get_section_contents (input_bfd, input_section,
8254 &ext, 0, sizeof ext))
8255 return FALSE;
8256
8257 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8258
8259 reginfo.ri_gprmask |= sub.ri_gprmask;
8260 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8261 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8262 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8263 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8264
8265 /* ri_gp_value is set by the function
8266 mips_elf32_section_processing when the section is
8267 finally written out. */
8268
8269 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8270 elf_link_input_bfd ignores this section. */
8271 input_section->flags &= ~SEC_HAS_CONTENTS;
8272 }
8273
8274 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8275 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
8276
8277 /* Skip this section later on (I don't think this currently
8278 matters, but someday it might). */
8279 o->link_order_head = NULL;
8280
8281 reginfo_sec = o;
8282 }
8283
8284 if (strcmp (o->name, ".mdebug") == 0)
8285 {
8286 struct extsym_info einfo;
8287 bfd_vma last;
8288
8289 /* We have found the .mdebug section in the output file.
8290 Look through all the link_orders comprising it and merge
8291 the information together. */
8292 symhdr->magic = swap->sym_magic;
8293 /* FIXME: What should the version stamp be? */
8294 symhdr->vstamp = 0;
8295 symhdr->ilineMax = 0;
8296 symhdr->cbLine = 0;
8297 symhdr->idnMax = 0;
8298 symhdr->ipdMax = 0;
8299 symhdr->isymMax = 0;
8300 symhdr->ioptMax = 0;
8301 symhdr->iauxMax = 0;
8302 symhdr->issMax = 0;
8303 symhdr->issExtMax = 0;
8304 symhdr->ifdMax = 0;
8305 symhdr->crfd = 0;
8306 symhdr->iextMax = 0;
8307
8308 /* We accumulate the debugging information itself in the
8309 debug_info structure. */
8310 debug.line = NULL;
8311 debug.external_dnr = NULL;
8312 debug.external_pdr = NULL;
8313 debug.external_sym = NULL;
8314 debug.external_opt = NULL;
8315 debug.external_aux = NULL;
8316 debug.ss = NULL;
8317 debug.ssext = debug.ssext_end = NULL;
8318 debug.external_fdr = NULL;
8319 debug.external_rfd = NULL;
8320 debug.external_ext = debug.external_ext_end = NULL;
8321
8322 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8323 if (mdebug_handle == NULL)
8324 return FALSE;
8325
8326 esym.jmptbl = 0;
8327 esym.cobol_main = 0;
8328 esym.weakext = 0;
8329 esym.reserved = 0;
8330 esym.ifd = ifdNil;
8331 esym.asym.iss = issNil;
8332 esym.asym.st = stLocal;
8333 esym.asym.reserved = 0;
8334 esym.asym.index = indexNil;
8335 last = 0;
8336 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8337 {
8338 esym.asym.sc = sc[i];
8339 s = bfd_get_section_by_name (abfd, secname[i]);
8340 if (s != NULL)
8341 {
8342 esym.asym.value = s->vma;
8343 last = s->vma + s->size;
8344 }
8345 else
8346 esym.asym.value = last;
8347 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8348 secname[i], &esym))
8349 return FALSE;
8350 }
8351
8352 for (p = o->link_order_head; p != NULL; p = p->next)
8353 {
8354 asection *input_section;
8355 bfd *input_bfd;
8356 const struct ecoff_debug_swap *input_swap;
8357 struct ecoff_debug_info input_debug;
8358 char *eraw_src;
8359 char *eraw_end;
8360
8361 if (p->type != bfd_indirect_link_order)
8362 {
8363 if (p->type == bfd_data_link_order)
8364 continue;
8365 abort ();
8366 }
8367
8368 input_section = p->u.indirect.section;
8369 input_bfd = input_section->owner;
8370
8371 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8372 || (get_elf_backend_data (input_bfd)
8373 ->elf_backend_ecoff_debug_swap) == NULL)
8374 {
8375 /* I don't know what a non MIPS ELF bfd would be
8376 doing with a .mdebug section, but I don't really
8377 want to deal with it. */
8378 continue;
8379 }
8380
8381 input_swap = (get_elf_backend_data (input_bfd)
8382 ->elf_backend_ecoff_debug_swap);
8383
8384 BFD_ASSERT (p->size == input_section->size);
8385
8386 /* The ECOFF linking code expects that we have already
8387 read in the debugging information and set up an
8388 ecoff_debug_info structure, so we do that now. */
8389 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8390 &input_debug))
8391 return FALSE;
8392
8393 if (! (bfd_ecoff_debug_accumulate
8394 (mdebug_handle, abfd, &debug, swap, input_bfd,
8395 &input_debug, input_swap, info)))
8396 return FALSE;
8397
8398 /* Loop through the external symbols. For each one with
8399 interesting information, try to find the symbol in
8400 the linker global hash table and save the information
8401 for the output external symbols. */
8402 eraw_src = input_debug.external_ext;
8403 eraw_end = (eraw_src
8404 + (input_debug.symbolic_header.iextMax
8405 * input_swap->external_ext_size));
8406 for (;
8407 eraw_src < eraw_end;
8408 eraw_src += input_swap->external_ext_size)
8409 {
8410 EXTR ext;
8411 const char *name;
8412 struct mips_elf_link_hash_entry *h;
8413
8414 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
8415 if (ext.asym.sc == scNil
8416 || ext.asym.sc == scUndefined
8417 || ext.asym.sc == scSUndefined)
8418 continue;
8419
8420 name = input_debug.ssext + ext.asym.iss;
8421 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8422 name, FALSE, FALSE, TRUE);
8423 if (h == NULL || h->esym.ifd != -2)
8424 continue;
8425
8426 if (ext.ifd != -1)
8427 {
8428 BFD_ASSERT (ext.ifd
8429 < input_debug.symbolic_header.ifdMax);
8430 ext.ifd = input_debug.ifdmap[ext.ifd];
8431 }
8432
8433 h->esym = ext;
8434 }
8435
8436 /* Free up the information we just read. */
8437 free (input_debug.line);
8438 free (input_debug.external_dnr);
8439 free (input_debug.external_pdr);
8440 free (input_debug.external_sym);
8441 free (input_debug.external_opt);
8442 free (input_debug.external_aux);
8443 free (input_debug.ss);
8444 free (input_debug.ssext);
8445 free (input_debug.external_fdr);
8446 free (input_debug.external_rfd);
8447 free (input_debug.external_ext);
8448
8449 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8450 elf_link_input_bfd ignores this section. */
8451 input_section->flags &= ~SEC_HAS_CONTENTS;
8452 }
8453
8454 if (SGI_COMPAT (abfd) && info->shared)
8455 {
8456 /* Create .rtproc section. */
8457 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8458 if (rtproc_sec == NULL)
8459 {
8460 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8461 | SEC_LINKER_CREATED | SEC_READONLY);
8462
8463 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8464 if (rtproc_sec == NULL
8465 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8466 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8467 return FALSE;
8468 }
8469
8470 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8471 info, rtproc_sec,
8472 &debug))
8473 return FALSE;
8474 }
8475
8476 /* Build the external symbol information. */
8477 einfo.abfd = abfd;
8478 einfo.info = info;
8479 einfo.debug = &debug;
8480 einfo.swap = swap;
8481 einfo.failed = FALSE;
8482 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8483 mips_elf_output_extsym, &einfo);
8484 if (einfo.failed)
8485 return FALSE;
8486
8487 /* Set the size of the .mdebug section. */
8488 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
8489
8490 /* Skip this section later on (I don't think this currently
8491 matters, but someday it might). */
8492 o->link_order_head = NULL;
8493
8494 mdebug_sec = o;
8495 }
8496
8497 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8498 {
8499 const char *subname;
8500 unsigned int c;
8501 Elf32_gptab *tab;
8502 Elf32_External_gptab *ext_tab;
8503 unsigned int j;
8504
8505 /* The .gptab.sdata and .gptab.sbss sections hold
8506 information describing how the small data area would
8507 change depending upon the -G switch. These sections
8508 not used in executables files. */
8509 if (! info->relocatable)
8510 {
8511 for (p = o->link_order_head; p != NULL; p = p->next)
8512 {
8513 asection *input_section;
8514
8515 if (p->type != bfd_indirect_link_order)
8516 {
8517 if (p->type == bfd_data_link_order)
8518 continue;
8519 abort ();
8520 }
8521
8522 input_section = p->u.indirect.section;
8523
8524 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8525 elf_link_input_bfd ignores this section. */
8526 input_section->flags &= ~SEC_HAS_CONTENTS;
8527 }
8528
8529 /* Skip this section later on (I don't think this
8530 currently matters, but someday it might). */
8531 o->link_order_head = NULL;
8532
8533 /* Really remove the section. */
8534 for (secpp = &abfd->sections;
8535 *secpp != o;
8536 secpp = &(*secpp)->next)
8537 ;
8538 bfd_section_list_remove (abfd, secpp);
8539 --abfd->section_count;
8540
8541 continue;
8542 }
8543
8544 /* There is one gptab for initialized data, and one for
8545 uninitialized data. */
8546 if (strcmp (o->name, ".gptab.sdata") == 0)
8547 gptab_data_sec = o;
8548 else if (strcmp (o->name, ".gptab.sbss") == 0)
8549 gptab_bss_sec = o;
8550 else
8551 {
8552 (*_bfd_error_handler)
8553 (_("%s: illegal section name `%s'"),
8554 bfd_get_filename (abfd), o->name);
8555 bfd_set_error (bfd_error_nonrepresentable_section);
8556 return FALSE;
8557 }
8558
8559 /* The linker script always combines .gptab.data and
8560 .gptab.sdata into .gptab.sdata, and likewise for
8561 .gptab.bss and .gptab.sbss. It is possible that there is
8562 no .sdata or .sbss section in the output file, in which
8563 case we must change the name of the output section. */
8564 subname = o->name + sizeof ".gptab" - 1;
8565 if (bfd_get_section_by_name (abfd, subname) == NULL)
8566 {
8567 if (o == gptab_data_sec)
8568 o->name = ".gptab.data";
8569 else
8570 o->name = ".gptab.bss";
8571 subname = o->name + sizeof ".gptab" - 1;
8572 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8573 }
8574
8575 /* Set up the first entry. */
8576 c = 1;
8577 amt = c * sizeof (Elf32_gptab);
8578 tab = bfd_malloc (amt);
8579 if (tab == NULL)
8580 return FALSE;
8581 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8582 tab[0].gt_header.gt_unused = 0;
8583
8584 /* Combine the input sections. */
8585 for (p = o->link_order_head; p != NULL; p = p->next)
8586 {
8587 asection *input_section;
8588 bfd *input_bfd;
8589 bfd_size_type size;
8590 unsigned long last;
8591 bfd_size_type gpentry;
8592
8593 if (p->type != bfd_indirect_link_order)
8594 {
8595 if (p->type == bfd_data_link_order)
8596 continue;
8597 abort ();
8598 }
8599
8600 input_section = p->u.indirect.section;
8601 input_bfd = input_section->owner;
8602
8603 /* Combine the gptab entries for this input section one
8604 by one. We know that the input gptab entries are
8605 sorted by ascending -G value. */
8606 size = input_section->size;
8607 last = 0;
8608 for (gpentry = sizeof (Elf32_External_gptab);
8609 gpentry < size;
8610 gpentry += sizeof (Elf32_External_gptab))
8611 {
8612 Elf32_External_gptab ext_gptab;
8613 Elf32_gptab int_gptab;
8614 unsigned long val;
8615 unsigned long add;
8616 bfd_boolean exact;
8617 unsigned int look;
8618
8619 if (! (bfd_get_section_contents
8620 (input_bfd, input_section, &ext_gptab, gpentry,
8621 sizeof (Elf32_External_gptab))))
8622 {
8623 free (tab);
8624 return FALSE;
8625 }
8626
8627 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8628 &int_gptab);
8629 val = int_gptab.gt_entry.gt_g_value;
8630 add = int_gptab.gt_entry.gt_bytes - last;
8631
8632 exact = FALSE;
8633 for (look = 1; look < c; look++)
8634 {
8635 if (tab[look].gt_entry.gt_g_value >= val)
8636 tab[look].gt_entry.gt_bytes += add;
8637
8638 if (tab[look].gt_entry.gt_g_value == val)
8639 exact = TRUE;
8640 }
8641
8642 if (! exact)
8643 {
8644 Elf32_gptab *new_tab;
8645 unsigned int max;
8646
8647 /* We need a new table entry. */
8648 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8649 new_tab = bfd_realloc (tab, amt);
8650 if (new_tab == NULL)
8651 {
8652 free (tab);
8653 return FALSE;
8654 }
8655 tab = new_tab;
8656 tab[c].gt_entry.gt_g_value = val;
8657 tab[c].gt_entry.gt_bytes = add;
8658
8659 /* Merge in the size for the next smallest -G
8660 value, since that will be implied by this new
8661 value. */
8662 max = 0;
8663 for (look = 1; look < c; look++)
8664 {
8665 if (tab[look].gt_entry.gt_g_value < val
8666 && (max == 0
8667 || (tab[look].gt_entry.gt_g_value
8668 > tab[max].gt_entry.gt_g_value)))
8669 max = look;
8670 }
8671 if (max != 0)
8672 tab[c].gt_entry.gt_bytes +=
8673 tab[max].gt_entry.gt_bytes;
8674
8675 ++c;
8676 }
8677
8678 last = int_gptab.gt_entry.gt_bytes;
8679 }
8680
8681 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8682 elf_link_input_bfd ignores this section. */
8683 input_section->flags &= ~SEC_HAS_CONTENTS;
8684 }
8685
8686 /* The table must be sorted by -G value. */
8687 if (c > 2)
8688 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8689
8690 /* Swap out the table. */
8691 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8692 ext_tab = bfd_alloc (abfd, amt);
8693 if (ext_tab == NULL)
8694 {
8695 free (tab);
8696 return FALSE;
8697 }
8698
8699 for (j = 0; j < c; j++)
8700 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8701 free (tab);
8702
8703 o->size = c * sizeof (Elf32_External_gptab);
8704 o->contents = (bfd_byte *) ext_tab;
8705
8706 /* Skip this section later on (I don't think this currently
8707 matters, but someday it might). */
8708 o->link_order_head = NULL;
8709 }
8710 }
8711
8712 /* Invoke the regular ELF backend linker to do all the work. */
8713 if (!bfd_elf_final_link (abfd, info))
8714 return FALSE;
8715
8716 /* Now write out the computed sections. */
8717
8718 if (reginfo_sec != NULL)
8719 {
8720 Elf32_External_RegInfo ext;
8721
8722 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8723 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
8724 return FALSE;
8725 }
8726
8727 if (mdebug_sec != NULL)
8728 {
8729 BFD_ASSERT (abfd->output_has_begun);
8730 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8731 swap, info,
8732 mdebug_sec->filepos))
8733 return FALSE;
8734
8735 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8736 }
8737
8738 if (gptab_data_sec != NULL)
8739 {
8740 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8741 gptab_data_sec->contents,
8742 0, gptab_data_sec->size))
8743 return FALSE;
8744 }
8745
8746 if (gptab_bss_sec != NULL)
8747 {
8748 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8749 gptab_bss_sec->contents,
8750 0, gptab_bss_sec->size))
8751 return FALSE;
8752 }
8753
8754 if (SGI_COMPAT (abfd))
8755 {
8756 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8757 if (rtproc_sec != NULL)
8758 {
8759 if (! bfd_set_section_contents (abfd, rtproc_sec,
8760 rtproc_sec->contents,
8761 0, rtproc_sec->size))
8762 return FALSE;
8763 }
8764 }
8765
8766 return TRUE;
8767 }
8768 \f
8769 /* Structure for saying that BFD machine EXTENSION extends BASE. */
8770
8771 struct mips_mach_extension {
8772 unsigned long extension, base;
8773 };
8774
8775
8776 /* An array describing how BFD machines relate to one another. The entries
8777 are ordered topologically with MIPS I extensions listed last. */
8778
8779 static const struct mips_mach_extension mips_mach_extensions[] = {
8780 /* MIPS64 extensions. */
8781 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
8782 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8783
8784 /* MIPS V extensions. */
8785 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8786
8787 /* R10000 extensions. */
8788 { bfd_mach_mips12000, bfd_mach_mips10000 },
8789
8790 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8791 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8792 better to allow vr5400 and vr5500 code to be merged anyway, since
8793 many libraries will just use the core ISA. Perhaps we could add
8794 some sort of ASE flag if this ever proves a problem. */
8795 { bfd_mach_mips5500, bfd_mach_mips5400 },
8796 { bfd_mach_mips5400, bfd_mach_mips5000 },
8797
8798 /* MIPS IV extensions. */
8799 { bfd_mach_mips5, bfd_mach_mips8000 },
8800 { bfd_mach_mips10000, bfd_mach_mips8000 },
8801 { bfd_mach_mips5000, bfd_mach_mips8000 },
8802 { bfd_mach_mips7000, bfd_mach_mips8000 },
8803
8804 /* VR4100 extensions. */
8805 { bfd_mach_mips4120, bfd_mach_mips4100 },
8806 { bfd_mach_mips4111, bfd_mach_mips4100 },
8807
8808 /* MIPS III extensions. */
8809 { bfd_mach_mips8000, bfd_mach_mips4000 },
8810 { bfd_mach_mips4650, bfd_mach_mips4000 },
8811 { bfd_mach_mips4600, bfd_mach_mips4000 },
8812 { bfd_mach_mips4400, bfd_mach_mips4000 },
8813 { bfd_mach_mips4300, bfd_mach_mips4000 },
8814 { bfd_mach_mips4100, bfd_mach_mips4000 },
8815 { bfd_mach_mips4010, bfd_mach_mips4000 },
8816
8817 /* MIPS32 extensions. */
8818 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8819
8820 /* MIPS II extensions. */
8821 { bfd_mach_mips4000, bfd_mach_mips6000 },
8822 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8823
8824 /* MIPS I extensions. */
8825 { bfd_mach_mips6000, bfd_mach_mips3000 },
8826 { bfd_mach_mips3900, bfd_mach_mips3000 }
8827 };
8828
8829
8830 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8831
8832 static bfd_boolean
8833 mips_mach_extends_p (unsigned long base, unsigned long extension)
8834 {
8835 size_t i;
8836
8837 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8838 if (extension == mips_mach_extensions[i].extension)
8839 extension = mips_mach_extensions[i].base;
8840
8841 return extension == base;
8842 }
8843
8844
8845 /* Return true if the given ELF header flags describe a 32-bit binary. */
8846
8847 static bfd_boolean
8848 mips_32bit_flags_p (flagword flags)
8849 {
8850 return ((flags & EF_MIPS_32BITMODE) != 0
8851 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8852 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8853 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8854 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8855 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8856 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
8857 }
8858
8859
8860 /* Merge backend specific data from an object file to the output
8861 object file when linking. */
8862
8863 bfd_boolean
8864 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
8865 {
8866 flagword old_flags;
8867 flagword new_flags;
8868 bfd_boolean ok;
8869 bfd_boolean null_input_bfd = TRUE;
8870 asection *sec;
8871
8872 /* Check if we have the same endianess */
8873 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8874 {
8875 (*_bfd_error_handler)
8876 (_("%B: endianness incompatible with that of the selected emulation"),
8877 ibfd);
8878 return FALSE;
8879 }
8880
8881 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8882 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8883 return TRUE;
8884
8885 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
8886 {
8887 (*_bfd_error_handler)
8888 (_("%B: ABI is incompatible with that of the selected emulation"),
8889 ibfd);
8890 return FALSE;
8891 }
8892
8893 new_flags = elf_elfheader (ibfd)->e_flags;
8894 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8895 old_flags = elf_elfheader (obfd)->e_flags;
8896
8897 if (! elf_flags_init (obfd))
8898 {
8899 elf_flags_init (obfd) = TRUE;
8900 elf_elfheader (obfd)->e_flags = new_flags;
8901 elf_elfheader (obfd)->e_ident[EI_CLASS]
8902 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8903
8904 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8905 && bfd_get_arch_info (obfd)->the_default)
8906 {
8907 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8908 bfd_get_mach (ibfd)))
8909 return FALSE;
8910 }
8911
8912 return TRUE;
8913 }
8914
8915 /* Check flag compatibility. */
8916
8917 new_flags &= ~EF_MIPS_NOREORDER;
8918 old_flags &= ~EF_MIPS_NOREORDER;
8919
8920 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8921 doesn't seem to matter. */
8922 new_flags &= ~EF_MIPS_XGOT;
8923 old_flags &= ~EF_MIPS_XGOT;
8924
8925 /* MIPSpro generates ucode info in n64 objects. Again, we should
8926 just be able to ignore this. */
8927 new_flags &= ~EF_MIPS_UCODE;
8928 old_flags &= ~EF_MIPS_UCODE;
8929
8930 if (new_flags == old_flags)
8931 return TRUE;
8932
8933 /* Check to see if the input BFD actually contains any sections.
8934 If not, its flags may not have been initialised either, but it cannot
8935 actually cause any incompatibility. */
8936 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8937 {
8938 /* Ignore synthetic sections and empty .text, .data and .bss sections
8939 which are automatically generated by gas. */
8940 if (strcmp (sec->name, ".reginfo")
8941 && strcmp (sec->name, ".mdebug")
8942 && (sec->size != 0
8943 || (strcmp (sec->name, ".text")
8944 && strcmp (sec->name, ".data")
8945 && strcmp (sec->name, ".bss"))))
8946 {
8947 null_input_bfd = FALSE;
8948 break;
8949 }
8950 }
8951 if (null_input_bfd)
8952 return TRUE;
8953
8954 ok = TRUE;
8955
8956 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
8957 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
8958 {
8959 (*_bfd_error_handler)
8960 (_("%B: warning: linking PIC files with non-PIC files"),
8961 ibfd);
8962 ok = TRUE;
8963 }
8964
8965 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
8966 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
8967 if (! (new_flags & EF_MIPS_PIC))
8968 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
8969
8970 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8971 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8972
8973 /* Compare the ISAs. */
8974 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
8975 {
8976 (*_bfd_error_handler)
8977 (_("%B: linking 32-bit code with 64-bit code"),
8978 ibfd);
8979 ok = FALSE;
8980 }
8981 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
8982 {
8983 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
8984 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
8985 {
8986 /* Copy the architecture info from IBFD to OBFD. Also copy
8987 the 32-bit flag (if set) so that we continue to recognise
8988 OBFD as a 32-bit binary. */
8989 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
8990 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
8991 elf_elfheader (obfd)->e_flags
8992 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
8993
8994 /* Copy across the ABI flags if OBFD doesn't use them
8995 and if that was what caused us to treat IBFD as 32-bit. */
8996 if ((old_flags & EF_MIPS_ABI) == 0
8997 && mips_32bit_flags_p (new_flags)
8998 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
8999 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9000 }
9001 else
9002 {
9003 /* The ISAs aren't compatible. */
9004 (*_bfd_error_handler)
9005 (_("%B: linking %s module with previous %s modules"),
9006 ibfd,
9007 bfd_printable_name (ibfd),
9008 bfd_printable_name (obfd));
9009 ok = FALSE;
9010 }
9011 }
9012
9013 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9014 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9015
9016 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9017 does set EI_CLASS differently from any 32-bit ABI. */
9018 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9019 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9020 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9021 {
9022 /* Only error if both are set (to different values). */
9023 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9024 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9025 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9026 {
9027 (*_bfd_error_handler)
9028 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9029 ibfd,
9030 elf_mips_abi_name (ibfd),
9031 elf_mips_abi_name (obfd));
9032 ok = FALSE;
9033 }
9034 new_flags &= ~EF_MIPS_ABI;
9035 old_flags &= ~EF_MIPS_ABI;
9036 }
9037
9038 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9039 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9040 {
9041 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9042
9043 new_flags &= ~ EF_MIPS_ARCH_ASE;
9044 old_flags &= ~ EF_MIPS_ARCH_ASE;
9045 }
9046
9047 /* Warn about any other mismatches */
9048 if (new_flags != old_flags)
9049 {
9050 (*_bfd_error_handler)
9051 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9052 ibfd, (unsigned long) new_flags,
9053 (unsigned long) old_flags);
9054 ok = FALSE;
9055 }
9056
9057 if (! ok)
9058 {
9059 bfd_set_error (bfd_error_bad_value);
9060 return FALSE;
9061 }
9062
9063 return TRUE;
9064 }
9065
9066 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9067
9068 bfd_boolean
9069 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
9070 {
9071 BFD_ASSERT (!elf_flags_init (abfd)
9072 || elf_elfheader (abfd)->e_flags == flags);
9073
9074 elf_elfheader (abfd)->e_flags = flags;
9075 elf_flags_init (abfd) = TRUE;
9076 return TRUE;
9077 }
9078
9079 bfd_boolean
9080 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
9081 {
9082 FILE *file = ptr;
9083
9084 BFD_ASSERT (abfd != NULL && ptr != NULL);
9085
9086 /* Print normal ELF private data. */
9087 _bfd_elf_print_private_bfd_data (abfd, ptr);
9088
9089 /* xgettext:c-format */
9090 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9091
9092 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9093 fprintf (file, _(" [abi=O32]"));
9094 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9095 fprintf (file, _(" [abi=O64]"));
9096 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9097 fprintf (file, _(" [abi=EABI32]"));
9098 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9099 fprintf (file, _(" [abi=EABI64]"));
9100 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9101 fprintf (file, _(" [abi unknown]"));
9102 else if (ABI_N32_P (abfd))
9103 fprintf (file, _(" [abi=N32]"));
9104 else if (ABI_64_P (abfd))
9105 fprintf (file, _(" [abi=64]"));
9106 else
9107 fprintf (file, _(" [no abi set]"));
9108
9109 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9110 fprintf (file, _(" [mips1]"));
9111 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9112 fprintf (file, _(" [mips2]"));
9113 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9114 fprintf (file, _(" [mips3]"));
9115 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9116 fprintf (file, _(" [mips4]"));
9117 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9118 fprintf (file, _(" [mips5]"));
9119 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9120 fprintf (file, _(" [mips32]"));
9121 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9122 fprintf (file, _(" [mips64]"));
9123 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9124 fprintf (file, _(" [mips32r2]"));
9125 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9126 fprintf (file, _(" [mips64r2]"));
9127 else
9128 fprintf (file, _(" [unknown ISA]"));
9129
9130 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9131 fprintf (file, _(" [mdmx]"));
9132
9133 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9134 fprintf (file, _(" [mips16]"));
9135
9136 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9137 fprintf (file, _(" [32bitmode]"));
9138 else
9139 fprintf (file, _(" [not 32bitmode]"));
9140
9141 fputc ('\n', file);
9142
9143 return TRUE;
9144 }
9145
9146 struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9147 {
9148 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9149 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9150 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9151 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9152 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9153 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9154 { NULL, 0, 0, 0, 0 }
9155 };